

Program Product

5C19",:,6209-1
File No. 5370/4300-39

IBM Virtual Machine/
System Product:
CMS Command and
Macro Reference

Program Number 5664-167

--- ------ ----- ---- - ---- - - ----------_.-

~£ Edition (April 1982)

This edition (SC19-6209-1) applies to Belease 2 of the IBft Virtual
!achinejSystem Product (5664-167) and to all subsequent releases (if
any) and modifications until otherwise indicated in new editions or
Technical Newsletters. This is a major rev~s~on of SC19-6209-0 and
includes Technical Newsletter SN24-5700. Changes are periodically made
to-the inforllation contained herein; before using this publication in
connection with the operation of IBft systems, consult the latest ~
~stem/370 and 4300 ~~~ ~ibliograph~, GC20-000l, for the editions
that are applicable and current.

For a list of changes, see page iii.

Technical changes and additions to te~t or illustrations are indicated
by a vertical bar to the left of the change.

It is possible that this material may contain references to, or
information about, IB! products ,machines and programs), programlling, or
services that are not announced in your country. Such references or
information must not be construed to mean that IBft intends to announce
such IB! products, programming, or services in your country.

Publications are not stocked at the address given below; request for
copies of IB! publications should be made to your IB! representative or
to the IBft branch office serving your locality.

A form for readers' comments is provided at the back of this
publication; if the form has been relloved, co.ments may be addressed to
IBft Programming Publications, Dept. G60, P.o. Box 6, Endicott, New York,
O.S.A. 13760. IB! may use or distribute any of the information you
supply in any way it believes appropriate without incurring any
obligation whatever. You may, of course, continue to use the
information you supply.

C> Copyright International Business ftachines Corporation 1980, 1981, 1982

J

Summary of Amendments

Summary of Amendments for SC19-6209-1 for VM/SP Release 2

New: Document new CMS functions for
the end-user in addition to the
new CM~ productivity aids
provided for the DP professional.
Document changes due to the
restructuring of the CMS nucleus.
Support of the IOC? and the
enhanced ASCII is included.

changed: This major rev~s~on incorporates
minor technical and editorial
changes.

Summary of Amendments for SC19-6209-0 as updated by SN24-5700

New: Document support of
Direct Access storage
IBM GAM/SP Program
5668-918.

IBM 3315
Device and

Product

Changed: Minor technical and editorial
changes have been made to clarify
the text.

Summary of Amendments iii

iv IB~ VK/SP: CKS Command and Macro Reference

Use this publication as a reference manual;
it contains all of the command formats,
syntax rules, and operand and option
descriptions for C~S commands, subcommands,
functions, and macro instructions for
general users.

The IBM VML2f: CMS User's Guide,
SC19-6210;--contains tutorial -rnformatIon
and functional descriptions of CMS
commands, as well as information on using
the editor, EXEC, and debugging facilities
of eMS. You should be familiar with the
contents of the !.!1L~f CPlS Q§~'!'§ Guig!!
before you attempt to use this reference
manual. For most of the CMS commands
described in this publication, you may find
additional useful notes in the VPI/Sf £~~
user.!.!! Guig~.

This publication has eight sections:

"Section 1. Introduction and General
concepts"describes the components of the
V!'I/SP system and tells you how to enter C!'IS
commands. It lists the notational
conventions used in this manual, so that
you can interpret the command format
descriptions in Section 2. Section 1 also
contains information about the C!'IS command
search order and a summary of all the CPlS
commands available under V!'I/SP, including
those not for general users.

"Section 2. C!'IS Commands" contains
complete format descriptions, and operand
and option lists, for the CI'IS commands
available to general users. Each command
description contains usage notes, and lists
responses and error messages (with
associated return codes) produced by the
command.

"Section 3. EDIT Subcommands and Macros"
describes the subcommands and macros
available in the environment of the C!'IS
editor, which you can invoke using the EDIT
command with the OLD option. Each
subcommand description contains usage notes
and summarizes the types of responses you
might receive. Where applicable,
additional information is provided for
users of display terminals.

"Section ~. DEBUG Subcommands" describes
the subcommands available in the debug
environment of C!'IS. Each subcommand
description contains usage notes and, where
applicable, lists the responses to the
subcommand.

Preface

"Section 5. EXEC Control Statements"
describes the control statements, special
variables, and built-in functions you can
use when you create EXEC procedures to
execute in C!'IS. The control statement
descriptions contain usage notes, where
applicable.

"Section 6. CI'IS
functions that are
user.

Functions" describes
available to the C!'IS

"Section 7. CI'IS Macro Instructions"
lists the formats and operands of the CMS
assembler language macro instructions you
can use when you write programs to execute
in C!'IS.

"Section 8. HELP Format Words" describes
the formats, operands, and defaults of the
HELP facility format words. HELP format
words are used in HELP description files
when the user wants HELP to format output
when the HELP file is processed.

This publication
appendixes:

also has three

"Appendix A: Reserved Filetype Defaults"
lists the filetypes that are recognized by
the C!'IS editor and indicates the default
settings that the editor supplies for
logical tabs, truncation, verification,
logical record length, and so on.

"Appendix B: VSE/VSAM Functions Hot
Supported in C!'IS" lists the restrictions on
the use of access method services and VSAM
in the CPlS/DOS environment of CPlS.

"Appendix C: OS/VS Access Plethod
Services and VSAI'I Functions Not supported
in CMS" lists the restrictions for OS
programmers using access method services
and VSAM in Cl'Is.

Some of the following convenience terms are
used throughout this publication:

• Throughout this publication, the term
"V!'I/SP" refers to the VII/SP program
package when you use it in conjunction
with '1'1/370 Release 6. The terms "CP"
and "CMS" refer to the VII/370 components
enhanced by the functions included in
the V!'I/SP package~ Any references to
"RSCS" and "IPCS", unless otherwise
noted, is to the V!'I/370 components
unchanged by the ,PI/SP package.

Preface v

When you install and use VM/SP in
conjunction with the VM/370 Release 6
System Control Program (SCP), it becomes
a functional operating system that
provides extended features to the
Control ?rogram (CP) and Conversational
Monitor System (CMS) components of
VM/370 Release 6. VM/SP adds no
additional functions to the Remote
Spooling Communications Subsystem (RSCS)
and the Interactive Problem Control
System (IPCS) components of VM/370.
However, you can appreciably expand the
capabilities of these components in a
VM/SP system by installing the RSCS
Networking program product (5748-XP1)
and the VM/IPCS Extension program
product (5748-SA1).

• The term "CMS/DOS" refers to the
functions of CMS that become available
when you issue the command:

set dos on

CMS/DOS is a part of the normal CMS
system, and is not a separate system.
Users who do not use CMS/DOS are
sometimes referred to as OS users, since
they use the OS simulation functions of
CMS.

• Unless otherwise noted, the term "VSE"
refers to the combination of the DOS/VSE
system control program and the
VSE/Advanced Functions program product.

In certain cases, the term DOS is still
used as a generic term. For example,
disk packs initialized for use with VSE
or any predecessor DOS or DOS/VS system
may be referred to as DOS disks.

The DOS-like simulation environment
provided under the CMS component of the
VM/System Product, continues to be
referred to as CMS/DOS.

• The term "GAM/SP", Graphic Access
Method/System Product, refers to IBM
Program Product 5668-978.

• The term "C~S files" refers exclusively
to files that are in the format used by
CMS file system commands. VSAM and os
data sets and DOS files are not
compatible with the CMS file format, and
cannot be manipulated using CMS file
system commands.

• The terms "disk" and "virtual disk"
are used interchangeably to indicate
disks that are in your CMS virtual
machine configuration. Where necessary,
a distinction is made between the
CMS-formatted disks and disks in os or
DOS format.

• The term "CMS console stack" refers to
the combination of the program stack and
the terminal input buffer.

The following terms in this publication
refer to the indicated support devices:

• "2305" refers to IBM 2305 Fixed Head
Storage, Models 1 and 2.

• "270x" refers to IBM 2701, 2702, and
2703 Transmission Control units or the
Integrated Communications Adapter (ICA)
on the System/370 Model 135.

• "3270" refers to a series of display
devices, namely, the IBM 3275, 3276,
3277, 3278, and 3279 Display Stations.
A specific device type is used only when
a distinction is required between device
types.

Information about display terminal usage
also applies to the IBM 3138, 3148, and
3158 Display Consoles when used in
display mode, unless otherwise noted.

Any information pertaining to the IBM
3284 or 3286 Printer also pertains to
the IBM 3287, 3288, and 3289 printers,
unless otherwise noted.

• "3330" refers to the IBM 3330 Disk
Storage Models 1, 2, or 11i and the 3350
Direct Access storage operating in
3330/3333 Model 1 or 3330/3333 Model 11
compatibility mode.

• "3340" refers to the IBM 3340 Disk
Storage, lIJodels A2, B1, and B2, and the
3344 Direct Access storage Model B2.

• "3350" refers to the IBM 3350 Direct
Access storage Models A2 and B2 in
native mode.

• "3375" refers to the IBM 3375 Direct
Access Storage Device.

• "3380" refers to the IBM 3380 Direct
Access Storage Device.

• "3704", "3705", or "3704/3705" refers to
IBM 3704 and 3705 Communications
controllers.

• "3705" refers to the 3705 I and the 3705
II unless otherwise noted.

• "2741" refers to the IBM 2741 and the
3767, unless otherwise specified.

• "3066" refers to the IBM 3066 System
Console •

• "3800" refers to the IBM 3800 Printing
Subsystem.

For a glossary of VM/SP terms, see the
I~ !i£1~l Machine/System Product: Library
Guidg ~nd Mastet I~dex, GC19-6207.

vi IBM VM/SP: CMS Command and Macro Reference

L

PREREQUISITE PUBLICATIONS

In addition to the VM/SR CMS User's Guide,
prerequisite information is contain~In
the following publications:

• For information about the terminal that
you are using, including procedures for
gaining access to the VM/SP system and
logging on, see the IBM Virtual
Machine/System Rroduct: TermInal-]ser'~
Guid~, GC19-6206.

•

•

If you are using an IBM 3767
Communications Terainal, the IBM 3761
operator's Guid~, GA18-2000, is a
prerequisi teo

The CP commands that are available to
you as a general user are described in
IBM Virtual Machine/System Rrod~£!: CP
Command Reference f01; ~al ~,
SC19-62l1.

For additional tutorial information on
using CMS, you may want to use CM~ !or
Programmers - ! Pri~, SB20-4438.

If you are going to use an IBM Program
Product compiler under CMS, you should have
available the appropriate program product
documentation. These publications are
listed in IBM !irtual Machine/Syste!
Product: Introduction, GC19-6200.

COBEQUISITE PUBLICATIONS

The IBM Virtual Machine/System Product:
Syst~ Messages and cOB~~, SC19-6204,
describes all of the error messages and
system responses produced by the CMS
commands and EDIT and DEBUG subcommands
referenced in this publication. It also
lists the error messages issued by the EXEC
processor during execution of your EXEC
procedures.

If you are alternating between CMS and
other operating systems in virtual machines
running under VM/SP, you should consult IB~
Virtu~l Machine/System R1;oduct: 0Feratin~
Systems in ~ Virtual Machine, GC19-62l2.

For information on the VM/SP System
Product Editor refer to !~~f Systg!
Product Edito1; £Q!mand and ~Q Beference,
SC24-5221 and VK/SR Syst~ Produ~! ~dito1;
User~ Guide, SC24-5220.

For information on EXEC 2 refer to VM/SP
EXEC £ Refe~~, SC24-5219.

SUPPLEMENTAL PUBLICATIONS

For general information about the VM/SP
system, see IB~ Virtual Machine/System
product: Introduction, GC19-6200.

Additional descriptions of various CMS
functions and commands which are normally
used by system support personnel are
described in:

I~ Virtual Machin£LSystea Product:

system Programmer's Guide, SC19-6203

operator~ Guide, SC19-6202

Pla!!.!!ing and ~ystem Generation Guide,
SC19-6201

Information on IPCS commands, which are
invoked under cas, is contained in IB!
Virt~! Machine Facility/370: Interactive
Proble! Control system (IPCS) User's Guide,
GC20-1823. .

Details on the CMS CPEBEP, a command
used to generate output reports from VM/SP
error recording records, are contained in:

IBM Virtual Machine/System Product: OLTSEP
~nd Error Becording Guide, SC19-6205.------

For more details on the operands used
with CPEBEP, refer to:

OS/VS, DOS/VSE,
j~rding, Editing,
Program, GC28-0772.

VM/370 Environmental
and Printing (EBEP)

For messages issued by CMS CPEBEP, see:

OS/VS, DOS/VSH, VM/370 EBEP Messages,
GC38-1045.

For information on IBM GAM/SP, refer to:

QS/VS Graphic Programming Services (~PS)
!Q!: IBM 2250 Displa:l Un!! and IBM 3250
Graphics Display Syste!, SC27-6971

£MS GAM/SP User~ Guide, LC33-0126

Details on the CMS IOCP
contained in:

command are

VM/SP and Stand-Alone Versions:
!!!.EUt/outEut confiqUraUonprograa Guide
~nd Reference, GC20-1840.

Preface vii

There are three publications available as
ready reference material when you use VM/SP
and CMS. They are:

IB~ Virtual Machine/SY§te! Product:

QJ!ick Guid~ i2!: Us~£§, S120-iJ400

Commands (Q~al Usef), SI20-iJ401.

£ommands (other than
SI20-4402.

If you are going to use the
Spooling Communications subsystem,
IBM !irtua! !achi,!!~ lacilitY/37Q:
Spooling Communications ~£2Y§1~m
Q§g£~ Guid~, GC20-1816.

Remote
see the
Remot~
(RSCS)

Assembler language programmers may find
information about the VM/SP assembler in
OS/VS, DO§LVS, and !M/370 !§§embl~
Lanqua~, Order No. GC33-iJ010, and OS/V§
!.!!g Vlt/370 !§semb!~ gf2.9!:~~.!.§ Guide,
GC33-4021.

CMS support of Access Method Services is
based on VSE and VSE/VSA!. The control
statements that you can use are described
in Using VSE/VSAM £2mm~!!g§ gnd Macros,
SC24-5144. The !M/SP: £~~ Userls- Guide
contains details on how to---Use ~his
support. Error messages produced by the
Access Method Services program, and return
codes and reason codes are listed in
VSE/VSAM ~§aqes and Code§, SC24-5146.

For additional information refer to the
VSE/VSAM Proqr~f.!.§ ~efg~nce, SC24-5145.

For a detailed description of VSE/VSAM
macros and macro parameters, refer to the
!SE/Ad~ced Fu,!!ctio,!!§ Mac!:2 Userls Guid~,
SC2iJ-5210 and VSE/Advan~g Functio,!!§ !acr,Q
Ref~~!!~, SC24-5211. For information on
OS/VS VSAM macros, refer to OS/VS Virtual
Storggg Acce§§ Method illAM) Programmer l s
guid~, GC26-3818.

The CMS ESERV command invokes the VSE ESERV
program, and uses, as input, the control
statements that you would use in VSE.
These control stateaents are described in
Quidg 12 1he VSE Assemble!:, GC33-4024.

Linkage editor control statements, used
when invoking the linkage editor under
CMS/DOS, are described in VS~ §ystem
£ontfol §1a1~nts, SC33-6095.

Batch DL/I application programs can be
written and tested in the CMS/DOS
environment. See is/SP Cft§ ~§er's Quide,
and ~1LI DOS/VS Generg! Information,
GH20-1246, for details.

For information on VSE and CMS/DOS tape
label processing, refer to: VSE/Advanced
Functions Tape 1abels, SC24-5212.

viii IBM VM/SP: CMS Command and Macro Reference

VM/SP Lic.n .. d
Program Spcification. f----
GC20-1B42 (36)

VM/SP Library Guide

Publications that support VM/SP as used

in conjunction with VM/370 Release 6

VM/SP G.n.ral Information
Manual

GC20-1838 (00) System
Programming ,

VM/SP Planning and VM/SP Introduction Note: The numbers given in Ind Malter Index I- GC19-6200 (20) parentheses represent System Generation Guide
GC19-6207 (20) the Su bject Code. SC19-6201 (34)

II
,

VM/SP T.rminal U .. r', VM/SP Op.rating Sy't.m,
Guide in 8 Virtual Machine

GC19-6206 (40)
Operations

GC19-6212 (34)

fJ 1
VM/SP Syst.m M g •• VM/SP CP Command VM/SP System
and Cod.s f- Reference for General VM/SP Op.rator', Guid. Programmer', Guide

Users SC19-6202 (40)
SC19-6204 (40)

SC19-6211 (36)
SC19-6203 (36)

eMS User

II

EREP Messeg., VM/SP CMS Primer

GC38-1045 (40) SC24-5236 (39)

II

A

VM/SP CMS User', Guid. VM/SP CMS Command VM/SP Quick Guide for

(39) - and Macro Reference Users
SC19-6210

SX2O-4400 (36) uxiliary Support SC19-6209 (39)

D I ,
II

VM/370 R.moto Spooling OSIVS and VM/370 OSIVS, DOSIVS, VM/370 V M/SP Command, CommuniClitlonl Assembler Programmer', - Assembler Language (G.n.r.1 User) Susbsyltem User', Guitle Guide

GC20-1816 (30) GC33-4021 (21) GC33-4010 (~1) SX20-4401 (36)

II J "',

III
VM/370 System Logic and VM/SP System Product VM/SP Command, Problem Determination Editor User's Guide (Other then General Use) Guide Voluma 3 (RSCS).

SY2O-0888 (36) SC24-5220 (39) SX20-4402 (36)

II
VM/370 Interactivo VM/SP Systom Product VM/SP SP Editor
Problem Control System Editor Command and Command Language
(lPCS) User', Guida Macro Reference Reference Summary

GC20-1823 (37) SC24-5221 (39) SX24-5122 (36) , 1
VM/SP EXEC 2 Ref.r.nce

VM/SP EXEC 2 Language
Reference Summary

SC24-5219 (36) SX24-5124 (36)

Legend:

II For SNA terminal users, the prerequisite publication is: VMNCNA Instal/tion, Operations, and Terminal Use, Order Number SC27 -OS02.

IJ All users of virtual machine must use the VMISP System Messages and Codes publication.

II Contains information on VM/EAEP support. EAEP Aelease 3 is recommended for UH with VM/SP Aelease 2.

II VM/370 Aelease 6 components. However, the IPes Extension Program Product (S748-SA 11 and the ASCS Networking Program Product (S748-XP1)
are recommended for use with VM/SP.

II If you want all three of the Reference Summary publications, use SBOF 3820 when ordering.

Figure 1. VM/SP Library Interrelationship of publications

Support

Device Support
Facilities User4 s
Guide and Reference

GC35-0033 (30)

II
VM/SP OLTSEP and
Error Recording Guide

SC19-6205 (37)

VM/SP Syst.m Logic and
Problem Determination
Guid. Volu. 1 (CP)

LY20-0892 (36)

I
VM/SP Syst.m Logic and
Problem Determination
Guide Volum. 2 (CMS)

LY20-0893 (39) ,
< VM/SP Data Area' and

Control Block Logic

LY20-0891 (36) , II
VM/SP Service Routine.
Program Logic

LY2O-0890 (37) ,
OSIVS and VM/370
Assembler Program Logic

SY33-8041 (211

II
Environmental Recording,
Editing, and Printing
(EREP) Program

GC28-0772 (37)

II
Environmental Recording,
Editing. and Printing
(ER EP) Program Logic

SY28-0773 (37)

Preface ix

x IBM V~/SP: CMS Command and Macro Reference

SECTION 1. INTRODUCTION AND GENERAL
CONCEPTS.

The CMS Environment.
Entering CMS Commands.
Character Set Usage.
Notational Conventions
CMS Command Search Order
CMS Command Summary.

SECTION 2. CMS COMMANDS
ACCESS
AMSERV
ASSEMBLE •
ASSGN.
CMDCALL.
C!'ISBATCH
COMPARE.
CONWAIT.
COPY FILE

Using the COPYFILE Command
CP
DDR.

DDR Control Statements
I/O Definition Statements.

DEBUG.
DEFAULTS
DESBUF •
DISK
DLBL
DOSLIB •
DOSLKED.
DROPBUF.
DSERV.
EDIT •
ERASE.
ESERV.
EXEC
EIBCIO
F~TCH.

FILEDEF.
FILELIST •
FINIS.
FORMAT
GENDIRT.
GENMOD •
GLOBAL
GLOBALV.
HELP •
IDENTIFY
INCLUDE.
LABELDEF •
LISTDS
LISTFILE
LISTIO
LKBD
LOAD

Loader Control statements.
LOADLIB.
LOAD MOD.
MACLIB
IUKEBUF.
I!ODMAP •
1'I0VEFILE •
NAMEFIND •
NA!'!ES.
NOTE •

• 1
.1
.3
.4
.4
.7
10

19
20
24
27
33
36
37
38
40
41
44
52
53
54
54
67
68
70
71
74
87
89
92
93
95
98

.100

.102

.105

.120

.122
• 134
.143
.144
.148
.149
• 152
.154
.163
• 167
.169
.173
• 177
• 182
• 188
.190
• 193
• 197
• 202
.205
.206
.209
• 210
.211
.215
• 221
.226

NUCXDROP
NUCXLOAD
NUCXMAP.
OPTION
OSRUN.
PEEK
PRINT.
PSERV.
PUNCH.
QUERY.
RDR.
RDRLIST.
READCARD •
RECEIVE.
RELEASE.
RENAME •
RSERV.
RUN.
SENDFILE •
SENTRIES •
SET.
SETPRT
SORT
SSERV.
START.
STATE/STATEW •
SVCTRACE
SYNONYM.

,.

The User Synonym Table •
TAPE
TAPEMAC.
TAPPDS
TELL
TXTLIB
TYPE
UPDATE •

Update Control Statements.

Contents

.233

.234

.237

.239

.241

.242

.246

.249

.251

.254

.264

.267

.274

.277

.281

.283

.286

.288

.290

.297

.298

.304

.306

.308

.310

.312

.314

.318

.319

.322

.328

.331

.335

.336

.339

.341

.342
Summary of Files Used by the UPDATE

Command .346
.353
.358
.358
.358
.359
.359
.359
.360
.360

XEDIT.
Immediate Commands •
HB
HO
HT
HI •
RO •
RT •
SO •

SECTION 3. EDIT SUBCOMMANDS AND
EDIT Subcommands •
ALTER •
AUTOSAVE •
BACKWARD (Primarily 3270).
BOTTOM •
CASE •
CHANGE •
CMS.
DELETE
DOWN
DSTRING •
FILE
FIND
FMODE •
FNAME.
FORMAT (3270 only)

MACROS.361
.361
.362
.363
.364
.365
.365
.366
.369
.370
.371
.371
.372
.373
.373
.374
.375

Contents xi

FORWARD (Primarily 3270)
GETPILE.
IMAGE.
INPUT.
LINE"IODE •
LOCATE •
LONG.
NEXT •
OVERLAY.
PRESERVE •
PRO!'lPT
QUIT
RECPM.
R-,;oNU1!.
REPEAT
REPLACE.
RESTORE.
RETURN
REUSE (=).
SAVE.
SCROLL/SCROLL UP (3270 only).
SERIAL
SHORT.
STACK.
TABSET
TOP.
TRUNC.
TYPE
UP
VERIPY
X or Y
ZONE.
? (QUESTION !'lARK)
nnnnn.
EDIT Macros.

$DUP
$!'I0VE.

.376

.377

.378

.379

.380
.382
.383
.383
.384
• 385
• 386
.386
.387
.388
.389
• 390
.391
.391
.392
• 393
.394
• 395
• 396
.397
.398
• 399
• 399
.400
• 401
.402
.403
.404
.405
.406
.407
.407
• 408

SECTION 4.
BREAK.
CAW.

DEBUG SUBCOMMANDS. .409
.410
.411
.412
.413
.414
.415
.416
.416
.417
.418
.418
.419
.420

CSW.
DEFINE
DU!'IP •
GO
GPR.
HX
ORIGIN
PSW.
RETURN
SET.
STORE.

SECTION~. C!'IS EXEC CONTROL
The Assignment Statement
SARGS.
SBEGEftSG •
&BEGPUNCH.
SBEGSTACK.
SBEGTYPE •
SCONTINUE.
SCONTROL •
&EMSG.
SEND •
SERROR
SEXIT.
SGOTO.
SHEX •
SIP.
SLOOP.
SPUNCH
&READ.

STATEMENTS. 423
.424
.426
.426
.428
.428
.429
• 430
.430
.431
.432
.432
.433
.434
.434
.435
• 436
.437
.438

&SKIP.
SSPACE
&STACK •
STIME.
STYPE.
Built-in Functions
SCONCAT.
&DATATYPE.
SLENGTH •
SLITERAL •
SSUBSTR.
Special Variables.
&n •
s* and S$.
&DISKx •
SDISK*
&DISK?
SDOS
SEXEC •
SGLOBAL.
SGLOBALn •
SINDEX •
SLINENUM
SREADFLAG.
SRETCODE •
STYPEFLAG •

SECTION 6. CMS FUNCTIONS.
ATTN Function •
NUCEXT Function.
WAITRD Function.

'.

SECTION 7.
COMPSWT.
FSCB

CMS MACRO INSTRUCTIONS

FSCBD •
FSCLOSE.
FSERASE.
FSOPEN
FSPOINT.
FSREAD •
FSSTATE. '0
FSWRITE.
HNDEXT
HNDINT
HNDSVC
LINEDIT.
PRINTL •
PUNCHC
RDCARD •
RDTAPE
RDTERM •
REGEQU •
TAPECTL.
TAPESL •
WAITD.
WAITT.
WRTAPE •
WRTERM

SECTION 8. HELP FORMAT WORDS •
• BX (BOX).
.Cl! (CO!'lMENT).
.CS (CONDITIONAL SECTION).
.FO (FORMAT MODE).
.IL (INDENT LINE) •
• IN (INDENT)
• OF (OFFSET)
.SP (SPACE LINES) •
.TR (TRANSLATE CHARACTER).

APPENDIXES

xii IBM V!'I/SP: C!'IS Command and Macro Reference

.439

.440

.440

.441

.442

.443

.443

.444

.444

.445

.445

.446

.446

.446

.446

.447

.447

.447

.447

.447

.448

.448

.448

.448

.448

.448

.449

.450

.451

.456

.459

.460

.460

.461

.463

.464

.465

.466

.467

.469

.471

.473

.474

.476

.477

.488

.490

.491

.492

.493

.495

.496

.497

.499

.500

.501

.502

.505

.507

.509

.510

.511

.512

.513

.514

.515

.516

.517

APPENDIX A: RESERVED FILETYPE DEFAULTS.519

APPENDIX B: VSE/VSAM FUNCTIONS NOT
SUPPORTED IN CMS •••••••••••• 521

APPENDIX C: OS/VS ACCESS ~ETHOD
SERVICES AND VSAM FUNCTIONS NOT
SUPPORTED IN eMS. • ••• 523

INDEX. • • • • • • .525

Contents xiii

Figure 1.

Figure 2.

Figure 3.

Figure 4.
Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.

V~/SP Library Interrelation
ship of Publications •••••••••• ix
Character Sets and Their
Contents •••••••••••••••••••••• 4
How CMS Searches for the
Command to Execute •••••••••••• 9
CMS Command Summary •••••••••• 12
CMS Commands for System
Programmers •••••••••••••••••• 17
COPYFILE option
Incompatibilities •••••••••••• 44
An Annotated Sample of
output From the TYPE and
PRINT Functions of the DDR
Program •••••••••••••••.•••••• 6Q
Determining Which VSAM
Catalog to Use ••••••••••••••• 82
Valid File Characteristics
for Each Device Type of
the FILEDEF Command ••••••••• 124
Sample FILELIST Screen •••••• 142
Loader Search Order ••••••••• 196
ENTRY Statement Format •••••• 197
LIBRARY Statement Format •••• 197
LDT Statement Format •••••••• 198
ICS statement Format •••••••• 198
SLC Statement Format •••••••• 199
REP Statement Format. ••••••• 200

Figure 18.
Figure 19.

Figure 20.
Figure 21.
Figure 22.

Figure 23.

Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.

Figure 30.

Figure 31.

Figure 32.

Figure 33.

Figure 34.

xiv IBM V~/SP: CMS Command and Macro Reference

SPB Statement Format •••••••• 201
Default Device Attributes for
the MOVEFILE Command •••••••• 213
Sample 'userid NAMES' File •• 220
Sample NAMES screen ••••••••• 224
Sample entry for a list of
Names ••••••••••••••••••••••• 225
Sample NOTE with Short
Headings •••••••••••••••••••• 232
Example of Long Headings •••• 232
Sample PEEK Screen •••••••••• 245
Header Card Format •••••••••• 252
Sample RDRLIST Screen ••••••• 273
Sample SENDFILE Menu •••••••• 296
Sample FILELIST Screen Invoked
from SEHDFILE ••••••••••••••• 296
Summary of SVC Trace output
Lines ••••••••••••••••••••••• 317
System and User-Defined
Truncations ••••••••••••••••• 321
HELP Format Word
Summary ••••••••••••••••••••• 506
Default EDIT Subcommand
Settings for the CMS
Reserved Filetypes •••••••••• 519
OS Access Method Services
operands Hot Supported in
CMS ••••••••••••••••••••••••• 524

J

Section 1. Introduction and General Concepts

Virtual Machine/System Product (VM/SF) is a program product that, when
used in conjunction with V8/370 Release 6, controls "virtual machines."
A virtual machine is the functional equivalent of a real machine.
However, where the real machine has lights to show status, and buttons
and switches on the real system console to control it, the virtual
machine does not. It has a virtual system console to display status and
a command language to start operations and control them. The virtual
system console is your terminal.

VM/SP has two command languages, which correspond to the two
components of the VM/SP system:

• The Control Program (CP) controls the resources of the real machine;
that is, it controls the physical machine in your computer room. The
CP commands are described in V8L§g CP Command Reference fo£ General
Use£.§.

• The Conversational Monitor System (CMS) is a conversational operating
system designed to run under CPo This publication describes general
use CMS commands, and the subcommands aDd macros that you can use in
the CMS environment.

When used in conjunction with VM/370 Release 6, the VM/370 components
RSCS and IPCS are also available to the VM/SP user.

• The Remote Spooling Communications Subsystem (RSCS) is a sUbsystem
designed to supervise transmission of files across a teleprocessing
network controlled by CPo For information about RSCS, see the VM/370
£emote Spooling Communications Subsystem (RSCS) .!!ser's Guide.

• The Interactive Problem Control system (IPCS) provides system
programmers and installation support personnel with problem analysis
and management facilities, including problem report creation, problem
tracking, and CP abend dump analysis. IPCS runs in the CMS command
environment; for details, see VM/J70 IgCS User!§ Quid~.

Not~: In the VM/SP environment, do not use the IPCS component of
VM/370 for: (1) analysis, formatting, and printing of CP dumps taken
in MP mode, and (2) analysis of CP dumps with an abend code added
since VM/370 Release 6. Note also that IPCS formats control blocks
in VM/370 Release 6 format, except RECELOK which is not formatted at
all. If a block has been extended since VM/370 Release 6, IPCS does
not format the extension.

Except for IPCS, each of the above components has a unigue "command
environment" that must be active in order for a command to be accepted.
For CMS users, the two basic command environments are the CP command
environment and the CMS command environment. By default, CP commands are
acceptable input in the CMS command environment; if you enter a CP
command, CP executes it, but control returns to the CMS environment.

The eMS Environment

The CMS command language allows you to create, modify, debug, and, in
general, manipulate a system of files.

Section 1. Introduction and General Concepts 1

The OS/VS Assembler and many OS/VS and VSE (DOS) language processors
can be executed under CMS. For example, the OS/VS BASIC, FORTRAN IV
(G1), COBOL and PL/I compilers, as well as the DOS PL/I and DOS/VS COBOL
compilers, can execute under CMS. You can find a complete list of
language processors that can be executed under CMS in the VM/SP
Introduction. CMS invokes the assembler and the compilers when you
issue the appropriate CMS commands. The ASSEMBLE command is described
in this manual; the supported compiler commands are described in the
appropriate program product publications.

CMS commands allow you to read cards from a virtual card reader,
punch cards to a virtual card punch, and print records on a virtual
printer. Many commands are provided to help you manipulate your virtual
disks and files. The CMS commands are described in "Section 2. CMS
Commands. "

A special set of CMS commands becomes available to you when you issue
the command:

set dos on

These commands, called CMS/DOS commands, simulate various fUnctions of
the VSE Operating System (DOS) in your CMS virtual machine. When the
CMS/DOS environment is active, the CMS/DOS commands are an integral part
of the CMS command language; they are listed alphabetically among the
other CMS commands in "Section 2. CMS Commands."

The EDIT command places your virtual machine in the EDIT
compatibility mode. In EDIT compatibility mode, you can issue both EDIT
and XEDIT subcommands. In this environment you can use the editors to
create and modify files. In the subcommand environment, you can place
your virtual machine in either of two modes, edit mode or input mode.
Edit mode lets you modify a file; input mode lets you create or add to a
file. The subcommands available to you in the EDIT subcommand
environment are described in "Section 3. EDIT Subcommands and Macros."
For more information on XEDIT subcommands, see VM/SP: ~Istg! Product
!;dit.Q£ Co~,g and ~.Q !!gfereBgg.

The DEBUG command places your virtual machine in the DEBUG subcommand
environment. In this environment yeu can issue commands to display
registers and storage, specify breakpoints (address instruction stops),
display the contents of control words, and so on. The DEBUG subcommands
are described in "Section 4. DEBUG Subcommands."

The EXEC command executes CMS command procedures, called EXEC files.
You can create EXEC files consisting of CMS and CP commands and EXEC
control statements. The EXEC facility also has a symbolic capability; by
manipulating variable symbols within an EXEC file, you can control the
execution of the procedure. These ~rocedures are usually created in the
edit environment. The EXEC control statements, variable symbols, and
built-in functions are described in "Section 5. EXEC Control
Statements. II

You can use the CMS assembler language
assembler language programs to execute in
Descriptions of these macros are contained in
Instructions. II

macros when you write
the CMS environment.
IISection 7. CMS Macro

The HELP format words are used to create HELP 'text' information for
user-defined commands, EXECs, and messages. The function, formats, and
operands of the HELP facility format words are described in "Section 8.
HELP Format Words."

2 IBM VM/SP CMS Command and Macro Beference

l-J

Entering eMS Commands

A CMS command consists of a command name, usually followed by one or
more positional operands and, in many cases, by an option list. CMS
commands and EDIT and DEBUG subcommands described in this publication
are shown in the format:

command name [operands •••] [(o~tions ••• [)]] L-___ J

You must use one or more tlanks tc separate each entry in the command
line unless otherwise indicated. For an explanation of the special
symbols used to describe the command syntax, see "Notational
Conventions."

The command name is an al~hameric symbol of one to eight characters. In
general, the names are based on verbs that describe the function you
want the system to perform. For example, you may want to find out
information concerning your GMS files. In this case, you would use the
LISTFILE command.

The command operands are keywords and/or positional operands of one to
eight, and in a few cases, one to seven alphameric characters each. The
operands specify the information on which the system operates when it
performs the command function.

You must write the operands in the order in which they appear in the
command formats in "Section 2. CMS Commands," unless otherwise
specified. When you are using CMS, blanks may optionally be used to
separate the last operand from the option list. CMS recognizes a left
parenthesis "(" as the beginning of an option list; it does not have to
be preceded by a blank.

The command options are keywords used to control the execution of the
command. The command formats in "Section 2. CMS Commands" show all the
options for each CMS command.

The option list must be preceded by a left parenthesis; the closing
parenthesis is not necessary.

For most commands, if conflicting or duplicate options are entered,
the last option entered is the option in effect for the command.
Exceptions to this rule are noted where applicable.

Section 1. Introduction and General Concepts 3

If you want to write comments with CMS commands, you enter them
following the closing parenthesis of the option list. The only
exception to this rule is the ERASE command, for which comments are not
allowed.

You can also enter comments on your console by using the CP •
command.

Character Set Usage

CMS commands may be entered using a combination of characters from six
different character sets. !he contents of each of the character sets is
shown in Figure 2.

Character Set , Names Symbols

Separator Blank , ,
National Dollar Sign . , $

Pound Sign , t
At Sign , OJ ,

Alphabetic Uppercase , A Z
Lowercase , a - z

I
Numeric Numeric , 0 9 ,
Alphameric National

.'
$, I, 1.i)

Alphabetic I A Z

I a z
Numeric , 0 9 ,

Special I All other
I characters

Figure 2. Character Sets and !heir contents

Notational Conventions

The notation used to define the command syntax in this publication is:

• Truncations and Abbreviations of Commands

Where truncation of a command name is permitted, the shortest
acceptable version of the command is represented by uppercase
letters. (Remember, however, that CMS commands can be entered with
any combination of uppercase and lowercase letters.) The following
example shows the format specification for the FILEDEF command.

FIledef

This format means that FI, FIL, FILE, FILED, FILEDE, and FILEDEF are
all valid specifications for this ccmmand name.

4 IBM VM/SP CMS Command and Macro Reference

(.J

operands and options are specified in the same manner. Where
truncation is permitted, the ~hortest acceptable version of the
operand or option is rep£esented by uppercase letters in the command
format box. If no minimum truncation is noted, the entire wo£d
(represented by all uppercase letter~ must be entered.

Abbreviations are shorter forms of command operands and options.
Abbreviations for operands and options are shown in the description
of the individual operands and cptions that follow the format box.
For example, the abbreviation for MEMBER in the PRINT command is MEM.
Only these two forms are valid and no truncations are allowed. The
format box contains

MEMBER ~ n:me ~

and the description that follows the format box is

MEMBER ~ name t
MEM I * ~

• The following symbols are used to define the command format and
should never be typed when the actual command is entered.

underscore
braces { }
brackets []
ellipsis

• Uppercase letters and words, and the following sYlilbols, should be
entered as specified in the format box.

asterisk
comma
hyphen
equal sign
parentheses
period
colon

* ,
=

()

• The abbreviations "fn", Oft", and "fm" refer to filename, filetype,
and filemode, respectively. The combination "fn ft [fm]" is also
called the file identifier or fileid.

When a command forlilat box shows the characters, fn ft fm or fileid
and they are not enclosed by brackets or braces, it indicates that a
CMS file identifier must be entered. If an asterisk (*) appears
beneath fn, ft, or fm, it indicates that an asterisk may be coded in
that position of the fileid. The operand description describes the
usage of the *.

• Lowercase letters, words, and symbols that appear in the command
format box represent variables for which specific information should
be substituted. For example, "fn ft fm" indicates that file
identifiers such as "MIFILE EXEC A1" should be entered.

• Choices are represented in the command format boxes by stacking.

A
B
C

Section 1. Introduction and General Concepts 5

• An underscore indicates an assumed default option. If an underscored
choice is selected, it need not be specified when the command is
entered.

Example
The representation

A

~
C

indicates that either A,
selected, it need not be
assumed.

B, or C may be selected. However, if B is
specified. Or, if none is entered, B is

• The use of braces denotes choices, one of which must be selected.

Example
The representation

{ ~ }
indicates that you~! specify either A, or B, or C. If a list of
choices is enclosed by neither brackets or braces, it is to be
treated as if enclosed by braces.

• The use of brackets denotes choices, one of which may be selected.

•

Example:
The representation

r ,
I A I
I B I
I C I
L .J

indicates that you may enter A, B, or C, or you may omit the field.

In instances where there are nested
lines, the following rule applies:
dependent upon the selection of the
nesting.'

Level 1 Level 2 Level 3
[filename [filetype [filemode]]]

braces or brackets on the text
nested operand selection is
operand of a higher level of

where the highest level of nesting is the operand that is enclosed in
only one pair of brackets and the lowest level of nesting is the
operand that is enclosed by the maximum number of brackets. Thus, in
the previous example, the user has the option of selecting a file by
filename only or filename filetype only or by filename filetype
file.ode. The user cannot select filetype alone because filetype is
nested within filename and our rule states: the higher level of
nesting must be selected in order to select the next level (lower
level) operand. The same is true if the user wants to select
filemode; filename and ,filetype must also be selected.

6 IB~ VM/SP C~S Command and ~acro Reference

~I

• An ellipsis indicates that the preceding item or group of items may
be repeated more than once in succession.

~xample
The representation

(options •••)

indicates that more than one option may be coded within the
parentheses.

CMS Command Search Order

When you enter a command line in the CMS environment, CMS has to locate
the command to execute. If you have EXEC or MODULE files on any of your
accessed disks, CMS treats them as commands; also, they are known as
user-written commands.

As soon as the command name is found, the search stops and the
command is executed. The search order is:

1. Search for a file with filetype EXEC on any currently accessed
disk. CMS uses the standard search order (A through Z.)

2. Search for a valid name on any currently accessed disk, according
to current SYNONYM file definitions in effect.

3. Search for a nucleus extension command if the high order byte of
register 1 is not equal to X'03' or X'04'.

4. Search for a command in the transient area. Commands which may be
in the transient area are:

ACCESS HELP READCARD
ASSGN LISTPILE RELEASE
COMPARE MODMAP RENAME
DISK OPTION SET
DLBL PRINT SVCTRACE
FILEDEF PUNCH SYNONYM
GENDIRT QUERY TAPE
GLOBAL EDR TYPE

Section 1. Introduction and General Concepts 7

5. Search for a nucleus-resident command. The nucleus-resident CMS
commands are:

CP
DEBUG
ERASE
EXECIO
PETCH

GENMOD
INCLUDE
LOAD
LOADMOD

NAMEFIND
S!ART
STATE
S!ATE~

6. Search for a file with filetype MODULE on any currently accessed
disk

7. Search for a valid abbreviation or truncation of a nucleus
extension.

8. Search for a valid abbreviation or truncation of a command in the
transient area.

9. Search for a valid abbreviation or truncation of a command in the
nucleus.

10. Search for a valid abbreviation or truncation of any other CMS
command

11. Search for a CP command.

12. Search for a valid abbreviation or truncation of a CP command.

For example, if you create a command module that has the same name as
a CMS nucleus~resident command, your command module cannot be executed,
since CMS locates the nucleus-resident command first, and executes it.
When a user-written command has the same name as a CMS command module
abbreviation, certain error messages may indicate the CMS command name,
rather than the program name.

Figure 3 shows a basic description of the command search order; you
can find complete details in the !~L2g 2Y§!g~ grog~g~~§ Guid~.

8 IBM VM/SP CMS Command and Macro Reference

(..

Figure

r
CMS
EXEC

SEARCH

l
I

NUCLEUS
EXTENSION.
TRANSIENT.

OR
NUCLEUS
RESIDENT
COMMAND

CMS
MODULE
SEARCH

Ii
CP

SEARCH

lL

KEY IN A
COMMAND NAME

ISSUE
AN ERROR
MESSAGE

YES

YES

YES

YES

YES

YES

YES

EXECUTE
THE FILE
AND RETURN
CONTROL TO
CMS.

EXPAND THE
NAME TO THE
FULL REAL
NAME. EXECUTE
IT. AND RETURN
CONTROL TO CMS.

EXECUTE THE
NUCLEUS EXTENSION
AND RETURN CONTROL
TO CMS.

EXECUTE THE
FILE AND
RETURN CONTROL
TOCMS.

EXECUTE THE MODULE
AND RETURN CONTROL
TO CMS.

EXECUTE THE FI LE
AND RETURN CONTROL
TO CMS.

EXPAND THE NAME
TO THE FULL REAL
NAME. EXECUTE IT.
AND RETURN
CONTRO L TO CMS.

EXPAND THE
NAME TO THE FULL
REAL NAME. EXECUTE
IT. AND RETURN
CONTROL TO CMS.

EXECUTE THE COMMAND
..".~ ______ .,/ ~~~=~.TURN CONTROL

3. How eMS Searches for the Command to Execute

section 1. Introduction and General concepts 9

CMS Command Summary

Figures 4 and 5 contain alphabetical lists of the CMS commands and the
functions each performs. Figure 4 lists those commands that are
available for general use; Figure 5 lists the commands used by system
programmers and system support personnel who are responsible for
generating, maintaining, and updating Vft/SP. Unless otherwise noted,
CMS commands are described in this manual. For those commands not
described in this manual, the "Code" column indicates the publication
that describes the command:

VSE PP

EREP

IPCS

Op Gd

as PP

SCRIPT

Meaning

indicates that this command invokes a VSE Program Product,
available from IBM for a license fee.

indicates that this command is described in
~nd Er~~ .R.§£Q£diilll Guide; further details
used by this command are contained in the
llLSP EnvirQ.B.!!!g,!!tal !!g£orging:, Editiilll, ~!!g
Program.

the VM/SP OLTSEP
on the operands
QS/V~, DOS/VSE,
Printing (EREP)

indicates that this command is a part of the Interactive
Problem Control System (IPCS), and is invoked under CMS. It
is described in the !~Ll1Q Intg£gctiyg g~QRle~ Cont~l System
(IP~~) User's gYigg.

indicates that this command is
Qperato~~§ Guigg.

described in the Vft/SP

indicates that this command invokes an os Program product,
available from IBM for a license fee.

indicates that this command invokes a text
an IBM Installed User Program, available
license fee.

processor that is
from IBft for a

SPG indicates that this command is described in the Vft/~g Sys~
grog:~mer~§ gYigg.

SYSGEN

IOCP UG

indicates that this ccmmand is described in the Vft/ag Planning
~nd §.y§te~ Ge!!g£ati~m Guigg.

indicates that this command is described in the !ft/sg ~
Stand-Alone Ve£sions: Input/Output ~Q.!!fig:uration Prog~
Qser's Guide ~l!g !!efe&.m!£.§.

Note: If a CMS command is described in this manual, but is also repeated
in-other VM/SP publications, the chart does not refer to those other
publications.

You can enter CMS commands when you are running CMS in your virtual
machine, the terminal is idle, and the virtual machine can accept input.
However, if CMS is processing a previously entered command and your
typewriter terminal keyboard is locked, you must signal your virtual
machine via an attention interruption. The system acknowledges the
interruption by unlocking the keyboard. Now you can enter commands.

If your terminal is a display device, there is no problem of entering
commands while the virtual machine is busy because its keyboard remains

10 IBM Vft/SP CMS Command and Macro Reference

unlocked for additional command input. Note that in these circumstances
the command you enter is stacked in the terminal input buffer and is not
executed until the command that is currently being executed completes.
If more commands are entered than CP can handle, a NOT ACCEPTED message
is displayed at the display terminal.

In addition to the commands listed in Figures q and 5, there are
seven commands called Immediate commands that are handled in a different
manner from the others. They may be entered while another command is
being executed by pressing the Attention key (or its eguivalent), and
they are executed immediately. The Immediate commands are:

• BB - Halt batch execution
• HO - Halt tracing
• HT - Halt typing
• HX - Halt execution
• RO - Resume tracing
• RT - Resume typing
• SO - Suspend tracing

Section 1. Introduction and General Concepts 11

i

ICommand 1 Code Usage
1--
ACCESS

AMSERV

ASSEMBLE

ASSGN

CMDCALL

CMSBATCH

COBOL

COMPARE

CONVERT

COPYFILE

CP

CPEREP

DDR

DEBUG

DEFAULTS

DISK

DLBL

DOSLIB

DOSLKED

DOSPLI

OS PP

OS PP

EREP

Identify direct access space to a CMS virtual
machine, create extensions and relate the disk
space to a logical directory.

Invoke access method services utility functions to
create, alter, list, copy, delete, import, or
export VSAM catalogs and data sets.

Assemble assembleE language source code.

Assign or unassign a CMS/DOS system or programmer
logical unit for a virtual I/O device.

Converts EXEC 2 extended plist function calls to
CMS extended plist command calls.

Invoke the CMS batch facility.

Compile OS ANS Version 4 or OS/VS COBOL source
code.

Compare records in CMS disk files.

Convert free form FORTRAN statements to fixed form.

Copy CMS disk files according to specifications.

Enter CP commands from the CMS environment.

Format and edit system error records for output.

Perform backup, restore, and copy operations for
disks.

Enter EEBUG subcommand environment.

set or display default options for the commands:
FILELIST, NOTE, BDRLIST, RECEIVE, PEEK and SENDFILE

Perform disk-to-card and card-to-disk operations
for CMS files.

Define a VSE filename or VSAM ddname and relate
that name to a disk file.

Delete, compact, or list information about the
phases of a CMS/DeS phase library.

Link-edit CMS text decks or object modules from a
VSE relocatable library and place them in
executable form in a CMS/DOS phase library.

VSE PP Compile DOS PL/I source code under CMS/DOS.

DROPBUF Eliminate a program stack buffer.

DSERV Display information contained in the VSE core
image, relocatatle, source, procedure, and
transient directories.

Figure 4. CMS Command Summary (Part 1 of 5)

12 IBM VM/SP CMS Command and Macro Reference

r,---,
ICommand ICode Usage I

---1
EDIT

ERASE

ESERV

EXEC

EXECIO

FCOBOL

FETCH

FILEDEF

FILELIST

FINIS

FORMAT

FORTGI

FORTHX

GENDIRT

GENMOD

GLOBAL

GLOBALV

GOFORT

HELP

IDENTIFY

Invoke the VM/SP System Product editor in CMS
editor (EDI!) compatibility mode to create or
modify a disk file.

Delete CMS disk files.

Display, punch cr print an edited (compressed)
macro from a VSE source statement library
(E sublibrary).

Execute special procedures made up of frequently
used sequences of commands.

Do I/O operations between a device and the program
stack.

VSE PP Compile DOS/VS COBOL source code under CMS/DOS.

OS PP

OS PP

OS PP

Fetch a CMS/DOS or VSE executable phase.

Define an OS ddname and relate that ddname to any
device supported by CMS.

List information about CMS disk files, with the
ability to edit and issue commands from the list.

Close an open file.

Prepare disks in CMS fixed block format.

Compile FOR!RAN source code using the G1 compiler.

Compile FOR~RAN source code using the H-extended
compiler.

Fill in auxiliary module directories.

Generate nonrelocatable CMS files (MODULE files).

Identify specific CMS libraries to be searched for
macros, copy files, missing subroutines, LOADLIB
modules, or DOS executable phases.

set, maintain, and retrieve a collection of named
variables.

Compile FORTRAN source code and execute the program
using the FORTRAN Code and Go compiler.

Display information about CP, CMS, or user
commands, EDIT, XEDIT, or DEBUG subcommands, EXEC
and EXEC2 control statements, and descriptions of
CMS and CP messages.

Display or stack userid, nodeid, rscsid, date,
time, time zone, and day of the week.

INCLUDE Bring additional ~EXT files into storage and
establish linkages.

Figure 4. CMS Command Summary (Part 2 of 5)

1
1
1
1
I
I
I
1
1

Section 1. IntrodUction and General Concepts 13

Command

IOCP

LABELDEF

LISTDS

LISTFILE

LISTIO

LKED

LOAD

LOADLIB

LOADMOD

MACLIB

MAKEBUF

MODMAP

MOVEFILE

NAMEFIND

NAMES

NOTE

I NUCXDROP

NUCXLOAD

NUCXMAP

OPTION

OSBUN

ICode Usage

IOCP UG Invoke the Input/Cutput Configuration Program

Specify standard HDR1 and EOF1 tape label descrip
tion information for CMS, CMS/DOS, and OS
simulation.

List information about data sets and space
allocation on OS, DOS, and VSAM disks.

List information about CMS disk files.

Display informaticn concerning CMS/DOS system and
programmer logical units.

Link edit a CMS TEXT file or as object module into
a CMS lCADLlE.

Bring TEXT files into storage for execution.

I Maintain CMS LOADLIB libraries.

Bring a single MODULE file into storage.

create or modify eMS macro libraries.

create a new Frogram stack buffer.

Display the load map of a MODULE file.

Move data from one device to another device of the
same or a different type.

Display/stack information from a NAMES file.
(default 'userid NAMES').

Display a menu to create, display or modify entries
l.n a 'userid NAMES' file. (The menu is available
only on disFlay terminals.)

Prepare a 'note' for one or more computer users,
to be sent via the SENDFILE command.

Delete specified nucleus extensions.

Load a nuclEus extension.

Identify existing nucleus extensions.

ChangE the DOS/VS COBOL compiler (FCOBOL) options
that are in effect for the current terminal
session.

Load, relocate, and execute a load module from a
CMS LCAtLIB or as module library.

PEEK Display a file that is in
out reading it onto disk.

your virtual reader with-I

PLIC as PP Compile and execute PL/I source code using the
PL/I Checkout ComFiler.

Figure q. CMS Command Summary (Part 3 of 5)

1q IBM VIi/SP CMS Command and Macro REference

I
I
I
I ,

~
Command

PLICR

PLIOPT

PRINT

ICode

105 PP
I
I
OS PP

Usage

Execute the PL/I object code generated by the OS
PL/I Checkout Compiler.

Compile PL/I source code using the OS PL/I
optimizing Compiler.

Spool a specified CftS file to the virtua~ printer.

IPSERV Copy a procedure from the VSE procedure library
onto a CftS disk, display the procedure at the
terminal, or spool the procedure to the virtual
punch or printer.

I
I
I
I
PUNCH

QUERY

RDR

RDRLIST

RECEIVE

READCARD

Spool a copy of a CftS file to the virtual punch.

Request information about a CMS virtual machine.

Generate a return code and either display or stack
a message that identifies the characteristics of
the next file in your virtual reader.

Display information about files in your virtual
reader with the ability to issue commands from the
list.

Read onto disk a file or note that is in your
virtual reader.

Read data from spooled card input device.

IRELEASE
I

Make a disk and its directory inaccessible to a CMS
virtual machine.

I
IRENAME Change the name of a CMS file or files.
I
IRSERV Copy a VSE relocatable module onto a CMS disk,

display it at the terminal, or spool a copy to
the virtual punch or printer.

I
I
I

RUN

SCRIPT

Initiate series of functions to be performed on a
source, MODULE, TEXT, or EXEC file.

SCRIPT Format and print documents according to embedded
SCRIPT control words in the document file.

SENDFILE Send files or notes to one or more computer users,
attached locally or remotely, by issuing the
command or by using a menu. (display terminal only)

SENTRIES Determine the number of lines currently in the
Frogram stack.

SET Establish, set, or reset CMS virtual machine
characteristics.

SETPRT Load a virtual 3800 printer.

SORT Arrange a specified file in ascending order
according to sort fields in the data records.

Figure 4. CMS Command Summary (Part 4 of 5)

Section 1. Introduction and General Concepts 15

Command ICode

SSERV

START

STATE

STATEW

SVCTRACE

SYNONYM

TAPE

TAPEMAC

TAPPDS

TELL

TESTCOB OS PP

TESTFORT OS PP

TXTLIB

TYPE

UPDATE

VSAPL OS PP

VSBASIC OS PP

VSBUTIL OS PP

Usage

Copy a VSE source statement book onto a CMS
disk, display it at the terminal, or spool a copy
to the virtual punch or printer.

Begin execution of programs previously loaded (OS
and CMS) or fetched (CMS/DOS).

Verify the existence of a CMS disk file.

Verify a file on a read/write eMS disk.

Record information about supervisor calls.

Invoke a table containing synonyms you have created
for CMS and user-written commands.

Perform tape-to-disk and disk-to-tape operations
for CMS files, position tapes, and display or
write VOL1 labels.

create CMS MACLIB libraries directly from an
IEHMOVE-created partitioned data set on tape.

Load OS partitioned data set (PDS) files or card
image files from tape to disk.

Send a message to one or more computer users who
are logged on to your computer or to one attached
to yours via RSCS.

Invoke the OS COBCL Interactive Debug Program.

Invoke the FORTRAN Interactive Debug Program.

Generate and modify text libraries.

Display all or part of a CMS file at the terminal.

Make changes in a program source file as defined
by control cards in a control file.

Invoke VS APL interface in CMS.

Compile and execute VS BASIC programs under CMS.

Convert EASIC 1.2 data files to VS EASIC format.

XEDIT Invoke the VM/SP System Product Editor to create or
modify a disk file.

Figure 4. CMS Command Summary (Part 5 of 5)

16 IEM VM/SP CMS Command and Macro Reference

~.
I
ICommand
I
IASM3705
I
IASMGEND
I
ICMSGEND
I
I
ICMSXGEN
I
CPEREP

DIRECT

DOSGEN

DU!!IPSCAN

GEN3705

GENERATE

NCPDUMP

PRB

PROB

PROP

SA!!IGEN

SAVENCP

SETKEY

STAT

ITRAPRED
I
I
IVMFBLD
I

VMFDOS

VMFDUMP

VMFLOAD

VSA!!IGEN

ZAP

I Code

SYSGEN

SYSGEN

SYSGEN

SYSGEN

EREP

SYSGEN

SYSGEN

IPCS

SYSGEN

SYSGEN

Usage

Assemble 370x source code.

Regenerate the VM/SP assembler command modules.

Generate a new CMS disk-resident module from
updated TEXT files.

Generate the CMSSEG discontiguous saved segment.

Format and edit system error records for output.

Set up VM/SP directory entries.

Load and save CMSDOS and INSTVSAM shared segments.

Provide interactive analysis of CP abend dumps.

Generate an EXEC file that assembles and link-edits
the 370x control program.

Update VM/SP or the VM/SP directory, or generate
a new standalone copy of a service program.

OP Gd, Process CP spool reader files created by 370x
SPG dumping operations.

IPCS Update IPCS protlem status.

IPCS Enter a problem report in IPCS.

OP Gd Provide Programmatle Operator capability.

SYSGEN Load and save the CMSBAM shared segment.

SYSGEN, Read 370x centrel program load into virtual
SPG storage and save an image on a CP-owned disk.

SPG Assign storage protect keys to storage assigned to
named systems.

IPCS Display the status of reported system problems.

OP Gd Allows the data collected by CPTRAP to be displayed
or printed.

SYSGEN Generate and/or update VM/SP using the PLC tape.

SYSGEN Create CMS files for VSE modules from VSE library
distribution tape or SYSIN tape.

Op Gd, Format and print system abend dumps; under IPCS,
IPCS create a problem report.

SYSGEN Generate a new CP, CMS or RSCS module.

SYSGEN Load and save CMSVSAM and CMSAMS shared segments.

Op Gd, Modify or dump IOADLIB, TXTLIB, or MODULE files.
SPG

Figure 5. CMS Commands for System Programmers

Section 1. Introduction and General Concepts 17

18 IBM VM/SP CMS Command and Macro Beference

Section 2. CMS Commands

This section contains reference information for the CMS commands used by
general users. Each command description indicates the command format,
operands and options; it also lists error messages and return codes the
command issues. Usage notes are provided, where applicable.

The formats of the tEEUG, EDIT, XEDIT, and EXEC commands are also
listed; for details on the EDIT or DEBUG subcommands or EXEC control
statements, see:

• "Section 3. EDIT Subcommands and Macros"
• "Section 4. DEBUG Sutcommands"
• "Section 5. EXEC Control Statements"

For details on the XEDIT subcommands and macros, see !K/SP: System
Product ~ditor CO!!!.!!!.2,!!Q .2'!!Q 11.2££2 Refe~!!_

For usage information on XEDIT sutcommands and macros, see VM/SP:
~st!!J! E!:oduct ~di1Q!: Q§!!!:'!'§ GU!Q!!_

For more detailed usage information on CMS commands, see the VM/~E CMS
User.!.§ Guid!!.

Section 2. CMS Commands 19

ACCESS

ACCESS

Use the ACCESS command to identify a disk to CMS, establish a filemode
letter for the files on the disk, and set up a file directory in
storage. The specifications you make with the ACCESS command determine
the entries in the user file directory. The format of the ACCESS
command is:

ACcess

wherg:

r
I cuu mode[/ext [fn [ft [fm]]]]
I 121! * * *
I
L

options:
NOPROF
ERASE
NODISK

,
[(options ••• [)]] I

I
I

J

I

I
I
I
I
I
I
I
I
I
I
I

cuu makes available the disk at the specified virtual device
address. The default value is 191.

Valid addresses are 001 through 5FF for a virtual machine in
basic control mode, and 001 through FFF for a virtual machine
in extended centrol mode •

. mode assigns a one-character filemode letter to all files on the
disk being accessed. This field must be specified if cuu is
specified. The default value is A.

ext indicates the mode of the parent disk. Files on the disk
being accessed (cuu) are logically associated with files on
the parent disk; the disk at cuu is considered a read-only
extension. A blank must not precede or follow the slash (I).

fn [ft [fm]]
defines a subset of the files on the specified disk. Only the
specified files are included in the user file directory and
only those files can be read. An asterisk coded in any of
these fields indicates all filenames, filetypes, or filemode
numbers (except 0) are to be included. (See Usage Notes 3 and
4.) To specify a filemode use a letter and a number, for
example: Bl. For OS and DOS disk access restrictions, see
Usage Note 9.

Options:

NOPROF
suppresses execution of a PROFILE EXEC file. This option is
valid only if the ACCESS command is the first command entered
after you IPL CMS. On subsequent ACCESS commands, the NOPROF
option is ignored.

ERASE specifies that you want to erase all
specified disk. This oFtion is only
disks. (See Usage Note 7.)

of the files on the
valid for read/write

20 IBfl VM/SP CMS Command and Macro Reference

HODISK

ACCESS

lets you gain access to the CMS operating system with no disks
accessed by C"S except the system disk (S-disk) and its
extensions. This option is only valid if the ACCESS command
is the first command you enter after you IPL CMS.

1. If you have defined disk addresses 190, 191, 192, and 19E in the
VM/SP directory, or if they are defined before you IPL CMS, these
disks are accessed as the S-, A-, D-, and Y-disks respectively.
Following an IPL of CftS, you must issue explicit ACCESS commands to
access other disks. Ordinarily, you have access only to files with
a filemode number of 2 on the system disk.

2.

When ACCESS is the first command issued after an IPL of the CMS
system, the A-disk is not automatically defined. Another ACCESS
command must be issued to define the A-disk.

Associated with each CMS disk is a file
an entry for every CMS file on the disk.
created in storage by the ACCESS command
those files that you can reference.

directory, which contains
The user file directory

contains entries for only

If you use the CP LINK command to
ACCESS command each time. Do
appropriate file directory.

link to a new minidisk, issue an
this so that you obtain the

3. The filename, filetype, and filemode fields can only be specified
for disks that are accessed as read-only extensions. For example:

~ access 195 b/a • assemble

gives you read-only access to all the files with a filetype of
ASSEMBLE on the disk at virtual address 195. The command:

access 190 z/a * • z1

gives you access to all files on the system disk (190) that have a
filemode number of 1.

When you access any disk in read-only status, files with a filemode
number of 0 are not accessed.

4. You can also identify a set of files on a disk by referring to a
filename or filetype prefix. For example:

access 192 cIa abc.

accesses only those files in the disk at virtual address 192 whose
filenames begin with the characters ABC. The command line:

access 192 cIa * a* c2

gives you access to all files whose filetypes begin with an A and
that have a file.ode number of 2.

5. You can force a read/write disk into read-only status by accessing
it as an extension of another disk or of itself; for example:

access 191 a/a

forces your A-disk into read-only status.

Section 2. CMS Commands 21

ACCESS

6. When a disk is made a read-only extension of another disk, commands
that typically require or allow you to specify a filemode may
search extensions of the specified disk. The exceptions to this
are the LISTFILE and tISK DUftP commands. For a detailed
description of read-only extensions, see the jftLSP £~~ User's
Guide.

7. If you enter the ERASE option by mistake, you can recover from the
error as long as you have not yet written any new files onto the
disk. (That is, you have not yet caused CftS to rewrite the file
directory.) Reissue the ACCESS ccmmand without the ERASE option.

8. You should never attempt to access a disk in read/write status if
another user already has it in read/write status; the results are
unpredictable.

9. When accessing OS and DOS disks:

a. You cannot specify filename, file type and filemode when you
access OS or DOS disks, nor can you specify any options.

b. In order to see OS and DOS disks, you must have a read/write
CftS A-disk available if you are going to use the LOAD command
with the ftAP option. (ftAP is a default option.)

10. If two or more disks have been accessed in CftS, and CP DEFINE
commands are executed that swap virtual addresses, then a
subsequent RELEASE command may write the file directory on the
wrong disk; for exam~le:

(CftS)
(CftS)
(CP)
(CP)
(CMS)

ACCESS 193 C
ACCESS 198 E
DEFINE 193 293
DEFINE 198 193
RELEASE C

This sequence of commands will write the file directory from 193 to
198 since the CP definitions are unknown to CftS.

I 11. To free an accessed disk, refer to the CftS RELEASE Command.

r ,
DftSACC7231 mode (cuu) ~ R/O l I-OS I

, 1 R/i ~ I-DOSI
L oJ

If the specified disk is a CftS disk, this message is displayed if
the disk is read-only. If the disk is in OS or DOS format, the
message indicates the format, as well as whether it is a read/write
or read-only disk.

DftSACC7241 cuu1 REPLACES mode(cuu2)

Before execution of the command, the disk represented by cuu2 was
the "mode" disk. The disk, cuu1, is now assigned that filemode
letter. This message is followed by message DftSACC726I.

r ,
DMSACC7251 cuu ALSO = 'mode' I-OS I DISK

I-DOS I
L .J

The disk specified by cuu is the mode disk and an ACCESS command
was issued to assign it another filemode letter.

22 IBft VM/SP CftS Command and ftacro Reference

ACCESS

DKSACC7261 'cuu mode' RELEASED

The disk being accessed at virtual address cuu as a read/write disk
is already accessed at a different mode. It is released from that
mode. Or, a disk currently accessed at mode is being replaced.

DKSACC002E FILE 'DKSROS TEXT' NeT FCUND RC=28
DKSACC003E INVALID OPTION 'option' RC=24
DKSACC017E INVALID DEVICE ADDRESS 'cuu' RC=24
DKSACC048E INVALID KODE 'mode' RC=24
DKSACC059E 'cuu' ALREAtY ACCESSED AS READ/WRITE 'mode' DISK RC=36
DKSACC060E FILE(S) 'fn [ft [fm]]' NO~ FOUND. DISK 'mode (cuu) , WILL NOT

BE ACCESSED RC=28
DKSACC070E INVALID PARAKETER 'parameter' RC=24
D!SACC109S VIRTUAL STORAGE CAPACITY EXCEEDED RC=104
DKSACC112S DISK 'mode (cuu) , DEVICE ERROR RC=100
DKSACC113S mode (cuu) NOT ATTACHED RC=100
DKSACC230W OS DISK - FILEID AND/OR OPTIONS SPECIFIED ARE IGNORED RC=4
D!SACC240S ERROR LOADING READ OS ROUTINE 'DKSROS TEXT'

Section 2. CKS Commands 23

AMSERV

AMSERV

Use the AMSERV command to invoke access method services to:

• Define VSAM catalogs, data sFace~, or clusters
• Alter, list, copy, delete, export or import VSAM catalogs and data

sets

The format of the AMSERV command ic'

AMserv fn1

where:

r ,
Ifn21
1!!!11
L .J

[(options ••• [)))

opti~!!§:
[PRINT)
r
ITUIN
I
L

~ 18n tl
I TAPn ~I

.J

r
ITAPOUT
I
L

~ 18n t I
1 TAPn p

.J

fn1 specifies the filename of a CMS file with a filetype of AMSERV
that contains the access method services control statements to
be executed. CMS searches all of your accessed disks, using
the standard search order, to locate the file.

fn2 specifies the filename of the CMS file that is to contain the
access method services listing; the filetype is always
LISTING. If fn2 is not specified, the LISTING file will have
the same name as the AMSERV input file (fn1).

The LISTING file/is written to the first read/write disk in
the standard search order, usually your A-disk. If a LISTING
file with the same name already exists, it is replaced.

Options:

PRINT

TAPIN

'rAPOUT

spools the output listing to the virtual printer, instead of
writing it to disk. If PRINT is specified, fn2 cannot be
specified.

~ ~:;n ~
specifies that tape input is on the tape drive at the address
indicated by 18n or TAPn.n may be 1, 2, 3, or 4, indicating
virtual addresses 181 through 184, respectively.

~~:;)
speci!ies that tape output should be written to the tape drive
at the address indicated by 18n or TAPn. n may be 1, 2, 3, or
4, indicating virtual addresses 181 through 184, respectively.

~: If both TAPIN and TAPOUT are specified, their virtual device
addresses must be different.

24 IBM VM/SP CMS Command and Macro Reference

USERY

1. To create a job stream for access method services, you can use the
CMS Editor to create a file with the filetype of AMSERV. The
editor automatically sets input margins at columns 2 and 72.

2. Restrictions placed on VSAM usage in CMS are listed in this
publication in "Appendix B: iSE/VSAM Functions Not supported in
CMS" and "Appendix C: as/Is Access Method Services and VSIM
Functions Not Supported in CMS." Refer to .Qsi!!g VSE/VSIM Comllands
~nd Macros for a description of access method services control
statements format and syntax.

3. You must use the DLBL command to identify the master catalog. Disk
input and output files may also require a DLBL command. For more
information on DLEL requirements for IMSERV see VSE/VSA~

Prog~~§ R~fe~.!!£~.

4. When you use tape input and/or output with the IMSERV cOliliand, you
are prompted to enter the ddnamesi a maximum of 16 ddnames are
allowed for either input and output. The ddnames can each have a
maximum of seven characters and must be separated by blanks.

While using AMSERV, only one
either input or output. If
ddname, specify the tape files
input stream.

tape at a time can be attached for
you you enter more than one tape
in the sequence they are used in the

5. A CMS format variable file cannot be used directly as input to
AKSERV functions as a variable (V) or variable blocked (VB) file
because the standard variable CMS record does not contain the BL
and RL headers needed by the variable record modules. If these
headers are not included in the record, errors will result.

Kost files placed on the CMS disk by AMSERV will show a RECFK of V,
even if the true format is fixed (F), fixed blocked (FB), undefined
(U), variable or variable blocked. The programmer must know the
true format of the file he is trying to use with the IMSERV command
and access it properly, or errors will result.

6. If an AKSERV command abnormally terminates or you
terminate an AMSERV command, the lKSERV environment
reset correctly. If a subsequent IMSERV abends, you
CMS.

Additional Note for CKSLDQ~ .!l~:

IMSERV internally issues an A5SGN command for SYSIPT and
source filei therefore, yeu do not need to assign it. If
TIPIN or TIPODT options, IKSERV also issues A5SGN cemmands
drives (assigning logical units 5YS004 and SYS005).

Any other assignments and DLBL definitions that are in
you invoke the IMSERV command are saved and restored when
completes executing.

Responses

issue HX to
may not be
must re-IPL

locates the
you use the

for the tape

effect when
the command

The CKS ready message indicates that access method services has
completed processing. If access method services completed with a nonzero
return code, the return code is shown in the ready message. Examine the
LISTING file created by AMSERV to determine the results of access method
services processing.

Section 2. CMS Commands 25

A!!SERV

The publication lSEL!~AM !!e§§g~§ and Codes lists and explains the
messages access method se~vices geneLates--aDd the associated Leason
codes.

DMSAMS367R ENTER TAPE {INPU~IOU~PUT} DDNAMES:

This message prompts you to enteL the ddnames associated with the
tape files.

DMSAMS722I FILE 'fn2 LISTING fm' WILL HOLD A!!SERV OUTPUT

This message is displayed when you enter a fn2 opeLand OL when the
listing is not being wLitten on YOUL A-disk; it tells you the file
identifier of the output listing.

D!!SAMS001E NO FILENAME SPECIfIED RC=24
DMSAMS002E FILE 'fn1 A!!SERV' NO~ FOUND RC=28
D!!SAMS003E INVALID OPTION 'option' RC=24
DMSAMS006E NO READ/WRITE DISK ACCESSED FOR 'fn2 LISTING' RC=36
DMSAMS007E FILE 'fn1 AMSERV fm' NOT FIXED, 80-CHAR. RECORDS RC=32
DMSAMS065E 'option' OPTION SPECIFIEt TWICE RC=24
DMSAMS066E 'option' AND 'option' ARE CONFLICTING OPTIONS RC=24
DMSAMS070E INVALID PARAMETEE 'paLameter' RC=24
DMSAMS109S VIRTUAL STORAGE CAPACITY EXCEEDED RC=104
Dl!SAMS113E {TAPINI TAPOUT} (addr) NOT ATTACHED RC=100
DMSAMS136S UNABLE TO LOAD 'IDCAMS' RC=104
Dl!SAMS228E NO DDNAME ENTERED RC=24
DPiSSTT062E INVALID CHARACTER 'chaL' IN FILEID {'fn1 A!!SERV' I 'fn2

LISTING '} RC=20

26 IBM VM/SP CMS Command and MaCLO RefeLence

ASSEMBLE

ASSEMBLE

Use the ASSEKBLE command to invoke the assembler to assemble a file
containing source statements. Assembler processing and output is
controlled by the options selected. The format of the ASSEMBLE command
is:

r--,
Assemble

fn

fn [(options ••• [) JJ

r ,
I ALQg£ I
I NOALOGICI
L

r ,

I bill I
I NOLISTI
L .J

.J

r ,
I IS! I
INOESDI
L .J

r ,
IMCALL I
I N01!£ll11
L .J

r ,
IFLAG (nnn) 1
1 FLAG (Q) 1
L .J

r ,
IMLOGIC 1
1 N01!LOGI£1
L .J

r ,
I XREF (FULL) I
I.!!!~! (.§J.!QRT) I

r ,
IPRINT 1
I ROPRINTI

I NOXEEF I 1121SK 1
L .J L .J

r ,
IDECK I
1!@~£1S1
L .J

r ,
IOBJECl 1
INOOBJECTI
L .J

r ,
ITEST I
J!.Q1ESTI
L .J

r ,
ILINECOUN (nn) 1
I LIN ECOUN (55) I
L .J

r ,

1]112 1
INORLDI
L .J

r ,
ILIBMAC I
1 N01IB.!!AC I
L .J

SYSTERM QptiQB§:

r ,
INUM]~!!I
1 NONUM 1
L .J

r
I ALIGN ----

,
1

INOALIGNI
L .J

r ,
IYFLAG 1
1 NOYlil.§ I
L .J

r ,
IST1!l 1
INOST!TJ
L .J

r
IBUFSIZE
I1H!!.§lZE
IBUFSIZE
L

r
ISYSPARM
ISYSPARM
ISYSPARM
L

r ,
1llill!llA11
INOTERM J
L .J

, r ,
(MIN) I 1 RENT 1
(~TD) 1 1 NOR~!fI I
(MAX) I L .J

.J

, r
(string) I IWCRKSIZE
() 1 liiORKSIZE
(1) I L

.J

,
(2048K) 1
(nnnnnK) 1

.J

is the filename of the source file to be assembled and/or the
filename of assembler output files. The file must have
fixed-length, aO-character records. By default, the assembler
expects a CMS file with a filetype of ASSEMBLE.

Section 2. CMS Commands 27

ASSEMBLE

1isti!!Sl Control Q1!!.i.Q!!"§: The
options you can use to control
values are underscored.

list below describes the assembler
the assembler listing. The default

NOALOGIC

NOESD

FLAG (nnn)
FLAG Jill.

lists conditional assembly statements in open code.

suppresses the ALOGIe option.

lists the external symbol dictionary (ESD).

suppresses the printing of the ESD listing.

does not include diagnostic messages and MNOTE
messages below severity code nnn 1n the listing.
Diagnostic messages can have severity codes of 4, 8,
12, 16, or 20 (20 is the most severe); and MNOTE
message severity codes can be between 0 and 255. For
example, FLAG (8) sUFpresses diagnostic messages with a
severity code of 4 and MNOTE messages with severity
codes of 0 through 7.

LINECOUN (nn) nn specifies the number of lines to be listed per
LINECOUN 1221 page.

NOLIST

!!CALL

,!OMCALL

HLOGIC

NOMLOGIC

]112

NORLD

LIBHAC

produces an assembler listing. Any previous listing is
erased.

does not produce an assembler listing. However, any
previous listing is still erased. This option overrides
ESD, RLD, and XREF.

lists the inner macxo instructions encountered during
macro generation following their respective outer macro
instructions. ~he assembler assigns statement numbers
to these instructions. The 8CALL option is imFlied by
the MLOGIC option; NOMCALL has no effect if MLOGIC is
specified.

suppresses the 8CALL option.

lists all statements of a macro definition processed
during macro generation after the macro instruction.
The assemtler assigns statement numbers to them.

suppresses the MLOGIC option.

produces the relocation dictionary (RLD) as part of the
listing.

does not print the relocation directory.

lists the macro definitions read from the macro
libraries and any assembler statements following the
logical END statement. The logical END statement is
the first END statement processed during macro
generation. It may appear in a macro or in open code;
it may even be created by substitution. The assembler
assigns statement Dumbers to the statements that follow
the logical ENt statement.

suppresses the LIBMAC option.

28 IBM V!!/SP CMS Command and Macro Reference

J

ASSE!!BLE

XREF (FULL) includes in the assembler listing a cross-reference
table of all symbols used in the assembly. This
includes symbols that are defined but never referenced.
The assembler listing also contains a cross-reference
table of literals used in the assembly.

XREF (SHOR!) includes in the assembler listing a cross-reference
table of all symbols that are referenced in the
assembly. Any symbols defined but not referenced are
not included in the table. The assembler listing
contains a cross-reference table of literals used in
the assembly.

NOXREF does not print the cross-reference tables.

PRINT writes the LISTING file to the printer.
PR

NOPRINT suppresses the printing of the LISTING file.
NOPR

DIS~ places the LISTING file on a virtual disk.
DI

Qutput control QEtion§: The output control options are used to
control the object module output of the assembler.

DECK

1!ODECK

QBJEC!
OBJ

NOOBJECT
NOOBJ

TEST

writes the object module on the device specified on the
FILEDEF statement for PUNCH. If this option is
specified with the OBJECT option, the object module is
written both on the PUNCH and TEXT files.

suppresses the DECK option.

writes the object module on the device, which is
specified by the FILEDEF statement for TEXT, and erases
any previous object modules. If this option is
specified with the DECK option, the object module is
written on the two devices specified in the FILEDEF
statement for ~EIT and PUNCH.

does not create the object module. However, any previous
object module is still erased.

includes the special source symbol table (SI!! cards) in
the object module. This option should not be used for
programs to be run under CMS because the SIM cards are
not acceptable to the CMS LOAD and INCLUDE commands.

does not produce SIM cards.

SISTERM options: The SISTERM options are used to control the SISTERM
file associated with your assembly.

NUMBER
NUM

NONUM

writes the line number field (columns 73-80 of the
input records) in the SISTER!! listing for statements
for which diagnostic information is given. This option
is valid only if TER!!INAL is specified.

suppresses the NUMBER option.

writes the statement number assigned by the assembler

Section 2. CMS Commands 29

ISSE!tBLE

NOST!T

TER!INIL
TERM

NOTER!

in the SISTER! listing for statements for which
diagnostic information is given. This option is valid
only if TER!INIL is specified.

suppresses the STMT option.

writes the diagnostic information on the
SISTER! data set. The diagnostic inforaation consists
of the diagnosed statement followed by the error
message issued.

suppresses the TER!INAL option.

other Assembler QEti~§: The following options allow you to specify
various functions and values for the assembler.

NOILIGN
NOALGN

aligns all data on the proper boundary in the
object module; for example, an P-type constant is
aligned on a fullword boundary. In addition, the
assembler checks storage addresses used in machine
instructions for alignment violations.

does not align data areas other than those
specified in ecw instructions. The assembler does not
skip bytes to align constants on proper boundaries.
Alignment violations in machine instructions are not
diagnosed.

BUFSIZE (!tIN) uses the minimum buffer sizes (790 bytes) for each of
the utility data sets (SISUT1, SISUT2, and SISUT3).
storage normally used for buffers is allocated to work
space. Because more work space is available, more
complex programs can be assembled in a given virtual
storage size; but the speed of the assembly is
substantially reduced.

BUPSIZE (STDl. chooses the buffer size that gives optimum
The buffer size depends on the amount
storage. Of the assembler working storage
minimum requirements, 37J is allocated to
data set buffers and the rest to macro
dictionaries.

perforllance.
of virtual

in excess of
the utility
generation

BUFSIZE (!tAX) is useful when many macros and/or large macros are used
in an assembly. The assembler uses up to 15 save areas
for input records and saves the areas according to
their frequency of use, optimizing the macro generation
phase. This option has no effect unless a large enough
region is available. The number of allocated save
areas is printed on the statistics page of the

RENT

NORENT

YFLAG

assembler listing. .

Refer to the OS/'S-'8/370 lssembler programmer's Guide,
Appendix E for a description of the effects of BUPSIZE.

checks your program for a possible violation of program
reenterability. Code that makes your program
nonreenterable is identified by an error message.

suppresses the RENT option.

does not suppress the warning messages that indicate
that relocatable y-type address constants have been
declared.

30 IBM V!l/SP e!lS Com. and and Macro Reference

J

NOYFLAG

SYSPARI!

ISS El!BLE

suppresses the warning messages that indicate
relocatable Y-type constants have been declared.

>{ ~~tring)}
(1)

passes a character value to the system variable symbol,
SYSPARl!. ihe variable (string) may be up to 100
characters long, and may not contain any blanks or
parentheses. If you want to enter a string containing
blanks or parentheses, use the SYSPABft (1) format.
With the SYSPARft (1) format, CftS prompts you with the
message:

ENTER SYSPABft:

You can enter up to 100 characters. SYSPABft () enters
a null string of characters.

Note: If ASSEftBLE is called as a command, the SYSPIRft
information is translated to uppercase.

WORKSIZE ~(2048K) t
1(nnnnnK) ~

allows the user to delimit the use of region space. The
specified value does not include the space for modules
and system areas. The allowed range is from 32K to
10240K. The virtual machine size must be large enough
to accommodate the WORKSIZE option; otherwise the
option has no effect.

Usage Notes

1. When you issue the ASSEftBLE command, default FILEDEl commands are
issued for assembler data sets. You may want to override these
with explicit FILEDEl commands. The ddnames used by the assembler
are:

2.

ASSEMBLE
TEXT
LISTING
PUNCH
CMSLIB
SYSUTl
SYSUT2
SYSUT3

(SYSIN input to the assembler)
(SYSLIN output of the assembler)
(SYSPRINT output of the assembler)
(SYSPUNCB output of the assembler)
(SYSLIB input to the assembler)
(workfile of the assemble~
(work file of the assembler)
(workfile of the assembler)

The default lILEDEF commands issued by the assembler for these
ddnalles are:

FILEDEF ASSEMBLE DISK fn ASSEMBLE fll (RECFM FB LRECL 80 BLOCK 800
FILEDEF TEXT DISK fn TEXT fm
FILEDEF LISTING DISK fn LISTING fm (RECFM FBA BLOCK 1210
FILEDEF PUNCH PUNCH
FILEDEF CI!SLIB DISK CMSLIB MACLIB * (RECFM FE LRECL 80 BLOCK 800
FILEDEF SYSUT1 DISK fn SYSUT1 fm4 (BLOCK 7294 AUXPROC asmproc
FILEDEF SYSUT2 DISK fn SYSUT2 fm4 (BLOCK 7294 AUXPROC asmproc
FILEDEF SYSUT3 DISK fn SYSUT3 fm4 (BLOCK 7294 AUXPROC asmproc

At the completion of the ASSEI!BLE command, all FILEDEFs that do not
have the PERI! opticn are erased.

If you want to use any eMS macro or copy libraries during an
assembly, issue the GLOBAL command to identify the macro libraries

Section 2. CMS Commands 31

ASSEMBLE

3.

before you issue the ASSEMBLE command. Por example:

global maclib dmssp cmslib osmacro testlib

identifies the MACLIB files named CMSLIB, DMSSP, OSMACBO, and
TESTLIB.

To use OS macro libraries during an assembly, issue
command for the OS data set. Use a ddname of CMSLIB
CMS file identifier; the filetype must be MACLIB, and
the filename on the GLOBAL command line. For example:

the FILEDEP
and assign a
you must use

filedef cmslib disk oldtest maclib c dsn old test macros
global mac lib oldtest

assigns the OS data set OLDTEST.MACBOS, on the disk accessed as
mode C, a CMS fileid of OLD TEST MICLIB and identifies it as the
macro library to be used during assembly.

4. You cannot assemble programs using DOS macros from the DOS/VS
source statement libraries under CMS/DOS. Iou should use the
SSEBV, ESERV, and ftACLIB commands to create CftS MACLIBs to contain
DOS macros for assembly under CMS/DOS. See the Vft/SP CMS User's
Guide for examples.

5. You need not make any logical assignments for input or output files
when you use the assembler under CMS/DOS. Pile definitions are
assigned by default under CMS, as described in usage Note 1.

6. Usage information about the VM/SP Assembler Language and assembler
options can be found in OSL!~ and VS/37Q Assembler Programmer's
Guide and OS/!~, ~Q~LVS, ~g VML370 Assembler Language.

Messages and BetY!! Code§

Por the messages and return codes associated with the ASSEMBLE command,
see the OS/VS and !AL370 Assembler ~ogram~~~~ Guid~.

32 IBM VM/SP CMS Command and Macro Reference

ASSGN

ASSGN

Use the ASSGN command in CMS/DOS to assign or unassign a system or
programmer logical unit for a virtual I/O device. The format of the
ASSGN command is:

ASSGN

SYSxxx

READER

SYSxxx Reader [(options ••• [)]]
PUnch
PRinter
Terminal .Q£.!;!.2.!!.2:

r ,
TAPlnl r , r ,

111 I UPCASE I 17TRACKI [TRTCH a]
L .J ILOWCASEI 19TRACKI

mode L .J L .J [DEN den]
IGN
UA

specifies the system or programmer logical unit to be assigned
to a particular physical device. SYSOOO through SYS241 are
valid programmer logical units in CMS/DOSi they may be
assigned to any valid device. The system logical units you
may assign, and the devices to which they may be assigned,
are:

SYSx~~
SYSRDR
SYSIPT
SYSIN
SYSPCH
SYSLST
SYSLOG
SYSOUT
SYSSLB
SYSRLB
SYSCLB
SYSCAT

Valid ~!g!!.!~
Reader,disk,tape
Reader,disk,tape
Reader,disk,tape
Punch,disk,tape
Printer, disk, tape
Terminal,printer
Tape
Disk
Disk
Disk
Disk

The assignment of a system logical unit to a particular device
type must be consistent with the device type definition for
the file in your program.

is the spooled card reader (card reader I/O must not be
blocked) •

PUNCH is the spooled punch.

PRINTER is the spooled printer.

TERMINAL is your terminal (terminal I/O must not he blocked).

TAP[n] is a magnetic tape. n is the symbolic number of the tape
drive. It is either 1, 2, 3, or 4, representing virtual
addresses 181, 182, 183, and 184, respectively. If n is
omitted, TAP1 is assumed.

mode specifies
assigned

the one-character mode letter
to the logical unit (SYSxxx).

of the disk being
The disk must be

Section 2. CMS Commands 33

ASSGN

accessed when the ASSGN command is issued. SYSRDR, SYSIP~,
and SYSIN cannot be assigned to a DOS-formatted FB-512 disk.

IGN (ignore) specifies that any attempt to read from the specified
device results in an end-of-file indication; any attempt to
write to the device is ignored. IGN is not valid when
associated with SYSRDR, SYSIP~, SYSIN, or SYSCLB.

UA indicates that the logical unit is to be unassigned. When you
release a disk for which an assignment is active, it is
automatically unassigned.

Options:

UPCASE translates all terminal input data to uppercase.

LOWCASE
retains all terminal input data as keyed in.

7~RACK is the tape setting.
9~RACK

~R~CH a

DEN den

refers to the tape recording technique for 7-track tapes. use
the following chart to determine the value of a.

a Parity Converter ~ranslator

0 odd off off
OC odd on off
O~ odd off on

E even off off
ET even off on

is tape density: den can be 200, 556, 800, 1600, or 6250 bits
per inch (bpi). If 200 or 556 are specified, 7TRACK is
assumed. If 800, 1600, or 6250 are specified, 9~RACK is
assumed. (See usage Note 8.)

!!§aqe Notes

1. When you enter the CBS/DOS environment with the command'SE~ DOS ON,
SYSLOG 1S assigned by default to ~ER!INAL. If you specify the mode
letter of the VSE system residence on the SET DOS ON command line,
SYSRES is assigned to that disk mode.

2. You cannot assign any of the following VSE system logical units
with the ASSGN command:

SYSRES
SYSCTL

SYSLNK
SYSREC

SYSDltP

3. If you assign the logical unit SYSIN to a virtual device, SYSRDR
and SYSIPT are also assigned to that device. If you make a logical
assignment for SYSOUT, both 5Y5L5T and 5YSPCH are assigned.

4. To obtain a list of current assignments, use the LI5TIO command.

34 IBM Vlt/SP CMS Command and Macro Reference

ASSGN

5. To cancel all current assignments (that is, to unassign them), you
can enter, in succession, the commands:

set dos off
set dos on [mode]

6. If you want to access VSE private libraries, you must assign the
logical units SYSSLB (source statement library), SYSRLB
(relocatable library), and SYSCLB (core image library), and you
must issue the DLBL ccmmand to establish a file definition.

7. An assignment to disk (mode) should be accompanied by a DLBL
command that provides the disk file identification.

8. If no tape options are specified on the command line, the default
for a 7-track tape is 800 bpi, data converter off, translator off
and odd parity. If the tape is 9-track, the density defaults to
the density of the tape drive. 1600 bpi is the reset condition for
9-track dual-density tapes. If the tape drive is phase-encoded,
density defaults to the density of the tape. If the tape drive is
NRZI, the reset condition is 800 bpi.

9. 8809 tape drives require the 9TRACK and DEN 1600 options. These
are the default options; it is not necessary to state them
explicitly.

10. Assignment of Programmer Logical units to 'T' and 'R' is restricted
to terminal and reader respectively.

Responses

None.

DMSASN003E INVALID OPTION 'option' RC=24
DMSASN027E INVALID DEVICE 'device' RC=24
DMSASN028E NO LOGICAL UNI~ SPECIFIED RC=24
DMSASN029E INVALID PARAMETEE 'parameter' IN THE OPTION 'option'

FIELD RC=24
DMSASN035E INVALID TAPE MODE RC=24
DMSASN050E PARAMETER MISSING AFTER SYSxxx RC=24
DMSASN065E 'option' OPTION SPECIFIED TWICE RC=24
DMSASN066E 'option' AND 'option' AR! CONFLICTING OPTIONS RC=24
DMSASN069E DISK 'mode' NOT ACCESSED RC=36
DMSASN070E INVALID PARAMETER 'parameter' RC=24
DMSASN087E INVALID ASSIGNMENT of 'SYSxxx' TO DEVICE 'device' RC=24
DMSASN090E INVALID DEVICE CLASS 'deviceclass' FOR 'device' RC=36
DMSASN099E CMS/DOS ENVIRONMENT NOT ACTIVE RC=40
DMSASN113S '{TAPnlmodeIREADERIPUNCHIPRINTER} (cuu) , NOT ATTACHED RC=100

Section 2. CMS Commands 35

C!DClLL

CMDCAll

Use the C!DClLL co.mand in an EIEC 2 procedure to allow
co •• ands (ERlSE, LISTFILE, RERlME, and STATE) to display
'FILE ROT FOURD'. CBDCALL accomplishes this by converting
extended plist function calls to CBS extended plist command
format of the CBDCILL command is:

certain C!S
the message
the EIEC 2
calls. The

I

ICBDCALLI [cmd (operand1 [operand2 ••• operandn]]] ,

where:

cmd is the command that is to be invoked with the C!S extended
plist, indicating invocation as a command, rather than as a
function.

operand1 operand2
are the operands to be passed with the command.

1. The extended plist and the standard CBS plist are adjusted for the
command or function called, and that command or function is
invoked via SVC 202.

2. If an extended plist is not available, the command or function
called is invoked only with the standard plist adjusted for the
command or function called.

3. C!DCALL invoked with no calling command or function returns a
return code of zero. Otherwise, the return code is that of the
command invoked via the CBDClLL function.

4. If the high-order byte of register 1 contains a 1'01', it is
changed to I'OB'.

36 IBM VB/SP CBS Command and !acro Reference

•

CMSBATCH

CMSBATCH

The system operator uses the CMSBATCH command to invoke the CMS batch
facility. Instead cf compiling or executing a program interactively,
virtual machine users can transfer jobs to the virtual card reader of an
active CMS batch virtual machine. This frees their terminals for other
work. The format of the CMSBATCH command is:

CMSBATCH [sysname] L---__ ~

where:

sysname is the eight-character identification of the saved system that
is specifically generated for CMS batch operations via the CP
SAVESYS command and the NAMESYS macro. Refer to the VM/SP
System prgg~~§ Guide. for details on SAVESYS and NAMESYS
use.

Not~: If sysname is not supplied on the command line, then the
system that the system operator is currently logged onto
becomes the CMS batch virtual machine.

Usage Notes

1. The CMSBATCH command may be invoked immediately after an IPL of the
CMS system. Alternatively, BATCH may be specified following the
PARM operand on the IPL command line.

2. Do not issue the CMSBATCH command if you use a virtual disk at
address 195; the CMS batch virtual machine erases all files on the
disk at address 195.

3. For a description of how to send jobs to the CMS batch virtual
machine, see the VM/5P f~~ ~~ Guide. For an explanation of
setting up a batch virtual machine, see the !~~R Operator's Guide.

4. The CMS batch virtual machine can be utilized by personnel who do
not have access to a terminal or a virtual machine. This is
accomplished by submitting jobs via the real card reader. For
details on this, see the VM/SR f!§ Q§er'§ Guide.

5. If the CMSBATCH command encounters recursive abends, the message
"CMSBATCH system ABEND" appears on the system operator's console.

DMSBTB100E NO BATCH PROCESSOR AVAILABLE RC=40
DMSBTB101E BATCH NOT LOADED RC= 88
DMSBTP105E NO JOB CARD FRCVItED RC=None
DMSBTP106E JOB CARD FORMA! INVALID RC=None
DMSBTP107E CP/CMS COMMAND 'command, (device)' NOT ALLOWED RC=88
DMSBTP108E /SET CARD FORMAT INVALID RC=None
DMSBTP109E {CPUIPRINTERIPONCH} LIMIT EXCEEDED RC=None

Section 2. CMS Commands 37

COMPARE

COMPARE

Use the COftPARE command to compare two C~S disk files of fixed- or
variable-length format on a record-for-record basis and to display
dissimilar records at the terminal. The format of the COftPABE command
is:

COMpare fileid1 fileid2 ((option •••)]

Q,EtiQ,!! :
r ,

COL Imm(-]nn 1
1 1
11 lrecl 1
L .J

where:

fileid1 fileid2
are the file identifiers of the files to be compared. An
equal sign may be coded for one or more of the file
identifiers for fileid2 in any combination except 1= = =1.
All three file identifiers (filename, filetype, filemode) must
be specified for each fileid. An equal sign (=) coded in
fileid2 implies that the file identifier in that position is
identical to the corresponding file identifier in fileid1.

Options:

r ,
COL Imm(-]nn 1

1 1
11 lrecl I
L .J

defines specific columns to be compared. The comparison
begins at position mm of each record. The comparison proceeds
up to and including column nne The hyphen (-) may be used in
place of a blank if the total number of characters required
for mm-nn is not more than eight (maximum parameter length).
If column nn is specified, the hyphen may not follow or
precede a blank. If column nn is not specified, the default
ending position is the last character of each record (the
logical record length).

Usage Notes

1. To find out whether two files are identical, enter both file
identifications, as follows:

compare test1 assemble a test1 assemble b
or

compare test1 assemble a - - b

Any records that do not match are displayed at the terminal.

2. To stop the display of dissimilar records, use the CftS Immediate
command HT.

38 IBft VK/SP CftS Command and !acro REference

J

COMPABE

3. If a file does not exist on a specified disk, the read-only
extensions of that disk are also searched. The complete fileids of
the files being compared are disFlayed in message DMSCMP179I.

DMSCKP179I COMPARING 'fn ft fm' WITH 'fn ft fm'

This message identifies the files being compared. If the files are
the same (in the columns indicated), this message is followed by
the CMS ready message. If any records do not match, the records
are displayed. When all dissimilar records have been displayed the
message DMSCMP209W is issued.

DMSCMP002E FILE 'fn ft fm' NOT FOUND RC=28
DMSCMP003E INVALID OPTION 'option' RC=24
DMSCMP005E NO COLUMN SPECIFIED RC=24
DMSCMP009E COLUMN 'col' EXCEEDS RECORD LENGTH RC=24
DMSCMP010E PREMATURE EOF ON FILE 'fn ft fm' RC=40
DMSCMP011E CONFLICTING FILE FORMATS RC=32
DKSCKP019E IDENTICAL FILEIDS RC=24
DMSCMP029E INVALID PARAKETEE 'parameter' IN THE OPTION 'COL' FIELD

RC=24
DKSCKP054E INCOMPLETE FILEID SPECIFIED RC=24
DMSCMP062E INVALID * IN FILEID RC=20
DMSCMP069E DISK 'mode' NOT ACCESSED BC=36
DMSCMP104S ERROR Inn' BEADING FILE 'fn ft fm' FROM DISK BC=100
DMSCKP209W FILES DO NeT COMiARE BC=4
DMSCMP211E COLUMN FIELDS CUT OF SEQUENCE BC=24

Section 2. CMS Commands 39

CONWAIT

CONWAIT

Use the CONWAIT command to cause a program to wait until all pending
terminal I/O is complete. The format of the CONiAIT command is:

r--,
1 CONWAIT I I
L--J

The CON WAIT command synchronizes input
ensures that the output console stack
continues execution. Also, you can
operation is finished before you modify

and output to the terminal; it
is cleared before the program

ensure that a read or write
an I/O buffer.

qO IB! VM/SP C!S Command and Macro Reference

COPYFILE

COPYFILE

Use the COPY FILE command to copy and/or modify CMS disk files. The
manner in which the file identifiers are entered determines whether or
not one or more output files are created. The format of the COPYFILE
command is:

COpy file

fileidi1

fileidi2

fileido

fileidi1 [fileidi2 •••] [fileido] [(options ••• [)]]

optio.!!,2:
r ,
IType I
INOTypel
L .J

r ,
Ill!]atel
IOLDDatel
L .J

r ,
INEWFilel
I REPlace I
L .J

r ,
IPRompt I
I NOPRomptl
L .J

r , r , r ,
I SPecs I
INOSPecsl
L .J

IFRom recno I IFOR numrec I
IFRLabel xxxxxxxxi
L .J

ITOLabel xxxxxxxxi
L .J

r ,
IOVly I
IAPpendl
L .J

r ,
IPAck I
IUNPackl
L .J

[SIngle]

r ,
IRECfm \Ftl
I I V \ I
L .J

r ,
IFIll c I
IFIll hh I
11Ill '!!QI
L .J

(LRecl nnnnn]
r ,
ITRunc I
I NOTRuncl
L .J

(EBCdic]
r ,
IUPcase I (TRAns]
ILOwcasel
L .J

is the first (or only) input file. Each file identifier
(filename, filetype, and filemode) must be specified either
by indicating the specific identifier or by coding an
asterisk.

is one or more additional input files. Each file identifier
(filename, filetype, and file.ode) must be specified. In
single output mode, any of the three input file identifiers
may be specified either by indicating the specific
identifier or by coding an asterisk. However, all three
file identifiers of fileidi2 cannot be specified by
asterisks. In multiple output mode, an asterisk (*) is an
invalid file identifier. An equal sign (=) may be coded for
any of the file identifiers, indicating that it is the same
as the corresponding identifier in fileidi1.

is the output file(s) to be created. Each file identifier
(filename, filetype, and filemode) must be specified. To
create multiple output files, an equal sign (=) must be
coded in one or more of the identifier fields. If there is
only one input file, fileido may be omitted, in which case
it defaults to = = = (the input file represented by fileidi1
is replaced).

The COPY FILE command options are
notes and examples, see "Using the
option descriptions.

listed below, briefly. For usage
COPYFILE Command" following the

Section 2. CMS Commands 41

COPY FILE

TYPE

NEWDAT,!';

OLDDATE

REPLACE

PROMPT

NO PROMPT

displays, at the terminal, the names of the files being
copied.

suppresses the display of the names of the files being
copied.

uses the current date as the creation date of the new
file (s) •

uses the date on the (first) input file as the creation
date of the new file(s).

checks that files with the same fileid as the output file
do not already exist. If one or more output files do
exist, an error message is displayed and the COPYFILE
command terminates. This option is the default so that
existing files are not inadvertently destroyed.

causes the output file to replace an existing file with
the same file identifier. REPLACE is the default option
when only one fileid is entered or when the output fileid
is specified as "= = =."

displays the messages that request specification or
translation lists.

suppresses the display 6f promFting messages
specification and translation lists.

for

£QEY Ext~nt Options:

FROM'recno is the starting record number for each input file in the
copy operation.

FRLABEL xxxxxxxx
xxxxxxxx is
beginning of
input file.
specified.

a character string that appears at the
the first record to be copied from each
Up to eight nonblank characters may be

FOR numrec is the number of records to be copied from each inp~t
file.

TOLABEL xxxxxxxx

SPECS

OVLY

xxxxxxxx is a character string which, if at the beginning
of a record, stops the cOFY operation for that input
file. The record containing the given character is not
copied. Up to eight nonblank characters may be specified.

indicates that you are going to enter a specification
list to define hew records should be copied. See
"Entering a COPYFILE specification List" for information
on how you can define output records in a specification
list.

indicates that no specification list is to be entered.

overlays the data in an existing output file with data
from the input file. You can use OVLY with the SPECS
option to overlay data in particular columns.

42 IBM VM/SP CMS Command and Macro Reference

APPEND

COPYFlLE

appends the data from the input file at the end of the
output file.

Data Modification QEti££~: ~he following options can be used to
chaiige~reCord- format of a file. See "Modifying Record Formats"
for more details.

RECFM is the record format
specified, the output
of the input file.

of the output files. If not
record format is the same as that

LRECL nnnnn is the logical record length of the output file(s) if it
is to be different from that of the input file(s). The
maximum value of nnnnn is 65535.

TRUNC

PACK

UNPACK

FILL c
FILL hh
!.ill 40

EBCDIC

UPCASE

LOWCASE

TRANS

removes trailing blanks (or fill characters) when
converting fixed-length files to variable-length format.

suppresses the removal of trailing blanks
characters) when converting fixed-length
variable-length format.

(or fill
files to

compresses records in a file so that they can be stored
in packed format.

Caution: A file in Facked format should not be modified
in any way. If such a file is modified, the UNPACK
routines are unable to reconstruct the original file.

reverses the PACK operation. If a file is inadvertently
packed twice, you can restore the file to its original
unpacked form by issuing the COPYFILE command twice.

is the padding and truncation character for the TRUNC
option or the principal packing character for the PACK
option. The fill character may be specified as a single
character, c, or by entering a two-digit hexadecimal
representation of a character. The default is 40 (the
hexadecimal representation for a blank in EBCDIC).

converts a file that was created with 026
characters (BCD), to 029 keypunch characters
The following conversions are made:

{ to
& to +

" to
I to =
(i to'
, to

keypunch
(EBCDIC) •

converts all lowercase characters in each record to
uppercase before writing the record to the output file.

converts all uppercase characters in each record to
lowercase before writing the record to the output file.

indicates that you are going to enter a list of character
translations to be made as the file is copied. See
"Entering Translation Specifications" for details on
entering a list of characters to be translated.

Section 2. CMS Commands 43

COPYFILE

SINGLE suppresses multiple output mode regardless of how the
file identifiers are specified.

Figure 6 shows combinations of options that should n2! be specified
together in the same COPYFILE command. If the option in the first
column is specified, do not code any of the options in the second
column.

Option

APPEND

EBCDIC
FOR
FRLABEL
FROM
LOWCASE
LRECL
NEWDATE
NEWFILE
NOPROMPT
NOSPECS
NOTRUNC
NOTYPE
OLDDATE
OVLY
PACK

PROMPT
RECFM
REPLACE
SPECS
TOLABEL
TRANS
TRUNC
TYPE
UNPACK

UPCASE

Figure 6.

Incompatitle Options

LRECL, NEiDATE, NEWIllE, OLDDATE, OVLY, PACK, RECFM,
REPLACE, UNPACK

PACK, UNPACK
PACK, TOLABEL, UNPACK
FROM, PACK, UNPACK
FRLABEL, PACK, UNPACK
PACK, UNPACK
APPEND, PACK, UNPACK
APPEND, OLDDATE
APPEND, OVLY, REPLACE
PROMPT
SPECS
TRUNC
TYPE
APPEND, NEW DATE
APPEND, NEWFILE, PACK, REPLACE, UHPACK
APPEND, EECDIC, FOR, FRLABEL, FROM, LOWCASE, LRECL,

OVLY, RECFl!, SPECS, TOLABEL, TRANS, TRUNC, UNPACK,
UPCASE

NOPROMPT
APPEND, PACK, UNPACK
APPEND, NEWFILE, OVlY
NOSPECS, PACK, UNPACK
FOR, PACK, UNPACK
PACK, UNPACK
NOTRUNC, PACK, UNPACK
NOTYPE
APPEND, EECDIC, FOR, FRLABEL, FROM, LOWCASE, LRECL,

OVLY, PACK, RECFM, SPECS, TOLABEL, TRANS, TRUNC,
UPCASE

PACK, UNPACK

COPYFILE Option Incompatibilities

USING THE COpy FILE COMMAND

Tvo simple uses of the COPYFILE command are: (1) to copy a single CMS
file from one disk to another, or (2) to make a duplicate copy of the
file on the same disk. For example:

copyfile test1 assemble a test2 assemble a

makes a copy of the file 'UST1 ASSEMBLE A and names it TEST2 ASSEMBLE A.

44 IBM VM/SP CMS Command and Maoro Reference

For those portions of the file identifier that you want
same, you may code an equal sign in the output fileid.
command line above can be entered:

copyfile test1 assemble a test2 = =

COPYFILE

to stay the
Thus, the

The equal sign may be used as a prefix or suffix of a file
identifier. For example, the command:

copy file abc file= type= =

creates an output file called FILEA TYPEB C.

When you copy a file from one
the old and new filemodes, and any
to make; for example:

virtual disk to another, you specify
filename or filetype change you want

copyfile test3 assemble c good = a

This command makes a copy of the file TEST3 ASSEMBLE C, and names it
GOOD ASSEMBLE A.

If you want to copy only particular records in a file, you can use
the FROM/FOR FRLABEL/TOLABEL options. For example:

copyfile old test a new test a (frlabel start for 41

copies 41 records from the file OLD TEST A1, beginning with the record
starting with the character string START into the file NEW TEST A1.
Since the user's command line, as passed to COPYFILE in the PLIST, has
been translated into uppercase letters, any FRLABEL or TOLABEL character
string consisting of either all lowercase or mixed case letters is not
found in the input file. Error message DMSCPY157E is issued if the
FRLABEL character string is not found. If the TOLAEEL character string
is not found, the copy operation continues as if TOLABEL was not
specified.

Note: If the input filemode is an '*', then you should specify an
explicit filemode, not an '=', for the output filemode. If you do not
specify an explicit output filemode, it is possible to create an output
file that would be recognized as an input file which generates the error
message DMSCPY024E stating that the file already exists. For example,
if you have a file' C E A' and you issue the command 'COpy C * * = D
=', COPY creates an output file named 'C D A'. This file matches the
input fileid of the file 'C * *' and copy attempts to write an output
file with the name 'C D A', which already exists.

You can combine two or more files into a single file with the COPYFILE
command. For example:

copyfile test data1 a test data2 = test data3 b

copies the files TEST DATA1 and TEST DATA2 from your A-disk and combines
them into a file, TEST DATA3, on your B-disk.

Note that if any input file has a filemode number of 3, it is
possible that the file will be copied in a sequence different from its
order on the disk.

If you want to combine two more files without creating a new file:

Section 2. CMS Commands 45

COPYFILE

use the APPEND option. For example:

copyfile new list a old list a (append

appends the file NEW LIST A to the bottom of the existing file labeled
OLD LIST A.

Note: If the file NEW LIST A has a different LRECL from the file OLD
LIST A, the appended data is padded, or truncated, to the LRECL of the
file OLD LIST A.

Whenever you code an asterisk (*) in an input fileid, you may cause
one or more files to be copied, depending upon the number of files that
satisfy the remaining conditions. For example:

copyfile * test a combined test a

copies all files with a filetype of TEST on your A-disk into a single
file named COMBINED TEST. If only one file with a filetype of TEST
exists, only that file is copied.

If you want to copy all the files on a particular disk to another
disk, you could enter:

copyfile * * b = = a

All the files on the B-disk are copied to the A-disk. The filenames and
filetypes remain unchanged.

You can also copy a group of files and change all the filenames or
all the filetypes. For example:

copyfile * assemble b = test a

copies all ASSEMBLE
TEST on the A-disk.

files in the B-disk into files with a
The filenames are not changed.

filetype of

You can use the SINGLE option to override multiple output mode. For
example:

copyfile * test a = = B (single

copies all files on the A-disk with a filetype of TEST to the B-disk as
one combined file, with the filename and filetype equal to the first
input file found.

Whenever an asterisk appears, it indicates that all files are to be
copied; whenever an equal sign (=) appears, it indicates that the same
files are to be copied. For example:

copyfile x * a1 = file =

combines all files with a filename of X on the A-disk into a single file
named X FILE A 1.

Whenever an equal sign appears in the output fileid in a position
corresponding to an asterisk in an input fileid, multiple input files
produce multiple output files. When you perform copy operations of this
nature you might wish to use the TYPE option, which displays the naaes
of files being copied. For example:

copyfile * test a = output a = summary = (type

might result in the display:

46 IBM VM/SP CMS Command and Macro Beference

COPY 'ALPHA TEST Al' TO 'ALPHA SUMMARY A1' (NEW FILE)
COpy 'ALPHA OUTPUT A'
COPY 'BETA TEST A1' TO 'BETA SUMMARY A1' (NEW FILE)
COPY 'BETA OUTPUT A.'

COPYFILE

which indicates that files ALPHA TEST A and ALPHA OUTPUT A were copied
into a file named ALPHA SUMMARY A and that files BETA TEST A and BETA
OUTPUT A were copied into a file named BETA SUBMARY A.

You can use the RECF! and LRECL options to change the record format of a
file as you copy it. Por example:

copyfile data file a (recfa f lrecl 130

converts the file DATA fILE A1 to fiXEd-length 130-character records.

If you specify an output fileid, for example:

copyfile data file a fixdata file a (recfm f lrecl 130

the original file remains unchanged. The file FIXDATA FILE A contains
the converted records.

If the records in a file being copied are variable-length, each
output record is padded with blanks to the specified record length. If
any records are longer than the record length, they are truncated.

When you convert files from fiXEd-length records to variable-length
records, you can specify the TRUNC option to ensure that all trailing
blanks are truncated:

copyfile data file a (recfa v trunc

If you specify the LRBCL option and RECFM V, the LRECL option is
ignored and the output record length is taken from the longest record in
the input file.

When you convert a file from variable-length to fixed-length records,
you may also specify a fill character to be used for padding instead of
a blank. If you specify:

copy file short recs a (recfm f fill *
then each record
record length.
variable-length
existing record.
not altered.

in the file SHORT RECS is padded with asterisks to the
Assuming that SHORT RECS was originally a

file, the record length is taken from the longest
Note that if SHORT RECS is already fixed-length, it is

Similarly, when you are converting back to variable-length a file
that was padded with a character other than a blank, you must specify
the FILL option to indicate the pad character, so that character is
truncated.

The FILL option can also be USEd to specify the packing character
used with the PACK option. When you use the PACK option, a file is
compressed as follows: all occurrences of two or more blanks are
encoded as one character, and four or more occurrences of any other
character are written as three characters. If you use the PILL option
to specify a fill character, then that character is treated as a blank
when records are compressed. You must, of course, specify the FILL
option to unpack any files packEd in this way. Since most fixed-length

Section 2. CMS Commands 41

COpy FILE

files are blank-padded to the record length, you do not need to specify
the FILL option unless you know that some other character appears more
frequently.

A file which is packed on an 800 byte blocksize disk will be fixed
format file with a logical record length of 800. On a 1K, 2K, or 4K
blocksize disk, the file will be fixed format with a logical record
length of 1024. A packed file of either logical record length can be
unpacked back to its original specifications regardless of the disk
blocksize it resides on. A packed file with logical record length 800
on a disk with blocksize 1K, 2K, or 4K, and packed files with logical
record length 1024 on 800 byte disks should be unpacked and re-packed if
minimal disk block usage is needed.

When you convert record formats on packed files with the cOPYFILE
command you can. specify single or multiple output files, in accordance
with the procedures outlined under "Modifying Record Formats." For
example:

copyfile * assemble a (pack

compresses all ASSEMBLE files in the A-disk without changing any file
identifiers. The command:

copyfile * assemble a = script = (recfm trunc

converts all ASSEMBLE files to variable-length, and changes their
filetypes to SCRIPT.

Entering ~ COPYFILE ~~cifi.£ati.Q.!! list

When you use the cOPYFILE command, you can specify particular columns of
data to be manipulated or particular characters to be translated.
Again, how you specify the file identifier determines how many files are
copied or modified.

When you use the SPECS option on the COPYFILE command, you receive
the message:

DMSCPY601R ENTER SPECIFICAiION LIST:

CP waits for you to enter a specification list. If you do not wish to
receive this message, use the NOPROMPT option. The specification lis~
you enter may consist of one or more pairs of operands in the following
format:

{
nn-mm }
/string/
hxx •••

col

nn-mm specifies the start and end columns of the input file that
be copied to the output file. If mm exceeds the length
input record, the end of the record is the assumed
position.

are to
of the
ending

string is any string of uppercase and lowercase characters or numbers
delimited by any non-alphameric character.

hxx ••• is an even number of hexadecimal digits prefixed with an h.

col is the column in the output file at which the copy operation is

48 IBM VM/SP CMS Command and Macro Reference

~I

COPYFILE

to begin.

You can enter as many as 20 pairs of specifications. If you want to
enter more than one line of specifications, enter two plus signs (++) at
the end of one input line as continuation indicators.

A specification list .ay contain any combination of specification
pairsi for example:

copy file sorted list a (specs
DMSCPY601R ENTER SPECIFICATION LIST:
III 1 1-8 3 III 12 /**.1 14 ++
9-80 18

After this command is executed, each record in the file SORTED LIST
will look like the following:

I 00000000 I ••• 0000 ••••

where the o's in columns 3 through 10 indicate information originally in
columns 1 through 8; the a's following the asterisks indicate the
remainder of each record, columns 9 through 80.

When you enter a specification list,
file column by column. If you specify
the same copy operation is performed
file.

you are actually constructing a
multiple input or output files,
for each record in each output

Those columns for which you do not specify any data are filled with
blanks or, if you use the FILL option, the fill character of your
choice. For example:

copyfile sorted list a (specs no prompt lrecl 20 fill $
1-15 6

copies columns 1 through 15 beginning in column 6 and writes dollar
signs($)in columns 1 through 5.

If you do want to modify data in particular columns of a file but
want to leave all of the rest of each record unchanged, you can use the
OVLY (overlay) option. Fer Example, the seguence:

COPY FILE * bracket a (specs ovly noprompt
had 1 hbd 80

overlays the characters [(X'AD') and] (X'BD') in columns 1 and 80 of
all the files with a filetype of BRACKET on your A-disk.

When you copy fixed-length files, records
the record length; variable-length files
specified.

~~te~!~ Tr~!iQ~ ~E~£!!!£at!QB§

are padded or truncated to
are always written as

You can perform conversion on particular characters in CMS files or
groups of files with the ~RANS option of the COPYFILE command.

When you enter the TRANS option, you receive the message:

DKSCPY602R ENTER TRANSLATICN LIST:

and a read is presented to your virtual machine. You may enter the
translation list. If you do not wish to receive this message, use the
NOPROKPT option.

Section 2. CMS Commands 49

COPYFILE

A translation list consists of one or more pairs of characters or hex
digits, each pair representing the character you want to translate and
the character you want to translate it to, respectively. For example:

copy test file a (trans
DMSCPY602R ENTER TRANSLATION LIST:
* - A fO 00 ff

specifies that all occurrences of the character * are to be translated
to -, all character A's are to be translated to X'FO' and all X'OO's are
to be translated to X·FF·s.

If any translation specifications you enter conflict with the
LOWCASE, EBCDIC, or UPCASE options s~ecified on the same command line,
the translation list takes precedence. In the preceding example, if
LOWCASE had also been specified, all A's would be translated to liFO's,
not to a's.

You can enter translation pairs on more than one line if you enter a
++ as a continuation indicator.

DMSCPY601R ENTER SPECIFICATION LIST:

This message prompts you to enter a specification list when you use
the SPECS option.

DMSCPY602R ENTER TRANSLATION LIST:

This message prompts you to enter a translation list when you use
the TRANS option.

DMSCPY721I COPY 'fn ft fm' [TO IAPPENtl OVLY] 'fn ft fm' [OLDINEW] FILE

This message appears for each file copied with the TYPE option. It
indicates the names of the input file and output file. When you
have multiple input files, the output fileid is displaled only
once.

DMSCPY002E
DMSCPY003E
DMSCPY024E
DMSCPY029E

DMSCPY030E
DMSCPY037E
DMSCPY042E
DMSCPY048E
DMSCPY05QE
DMSCPY062E
DMSCPY063E
DMSCPY064E

DMSCPY065E
DMSCPY066E
DMSCPY067E

DMSCPY068E
DMSCPY069E
DMSCPY101S

{INPUTIOVERLAY} FILE 'fn ft fm' NOT FOUND RC=28
INVALID OPTION 'option' RC:24
FILE 'fn ft fm' ALREADY EXISTS SPECIFY 'REPLACE' RC=28
INVALID PARAMETER • parameter' IN THE OPTION 'option' FIELD
RC=24
FILE 'fn ft fm' ALREADY ACTIVE RC=28
DISK 'mode' IS READ/ONLY RC=36
NO pILEID(S) SPECIFIED RC=24
INVALID MODE 'mode' RC=24
INCOMPLETE pILEID 'fn [ft'] SPECIFIED RC=24
INVALID CHAR '[=I*lchar]' IN FILEID '(fn ft fm]' RC=20
NO (TRANSLATIONISPECIFICATION} LIST ENTERED RC=40
INVALID [TRANSLATE] SPECIFICATION AT OR NEAR
RC=24
'option'
'option'
COMBINED
RC=24

OPTION SPECIFIED TWICE RC=24
AND 'option' ARE CONFLICTING OPTIONS RC=24

INPUT FILES ILLEGAL WITH PACK OR UNPACK

INPUT PILE 'fn ft fm' NOT IN PACKED FORMAT RC=32
DISK 'mode' NOT ACCESSED RC=36
'SPECS' TEMP STRING STORAGE EXHAUSTED AT •••••••••

OPTIONS

RC=88

50 IBM VM/SP CMS Command and Macro Reference

COPYFILE

DMSCPY102S TOO MANY FIllIDS RC=88
DMSCPY103S NUMBER OF SPECS EXCEEDS MAl 20 RC=88
DMSCPY156E 'FROM nnn' NOT FOUND --FILE 'fn ft fro' HAS ONLY 'nnn' RECORDS

RC=32
DMSCPY151E LABEL 'label' NOT FOUND IN FILE 'fn ft fm' RC=32
DMSCPY112E TO LABEL 'label' {EQUALSI IS AN INITIAL SUBSTRING OF} FRLABEL

'label' RC=24
DMSCPY113E NO RECORDS WERE COPIED TO OUTPUT FILE 'fn ft fm' RC=40
DMSCPY901T UNEXPECTED ERROR AT 'addr': PLIST 'plist' AT 'addr', BASE

'addr', RC Inn' RC=256
DMSCPY903T IMPOSSIBLE PHASE CODE 'xx' RC=256
DMSCPY904T UNEXPECTED UNPACK ERROR AT 'addr', BASE 'addr' RC=256

Section 2. CMS Commands 51

CP

CP

Use the CP command to transmit commands to the Vft/SP control program
environment without leaving the CMS environment. The format of the CP
command is:

CP [commandline] L---___ ~

commandline
is any CP command valid fo~ your CP command privilege class.
If this field is omitted, you are placed in the CP environment
and may enter CP commands without preceding each command with
CPo To return to CMS, issue the CP command BEGIN.

1. You must use the CP command to invoke a CP command:

• Within an EXEC procedure

• If the implied CP (IMPCP) function is set to OFF for your
virtual machine

• In a job you send to the CMS tatch facility

2. To enter a CP command from the CMS environment without CMS
processing the command line, use 'CP.

3. When you enter an invalid CP
receive a return code of -1.

command following the CP command, you
In an EXEC, this return code is +1.

All responses are from the CP command that was issued; the CMS ready
message follows the response.

52 IBM VM/SP CMS Command and Macro Reference

.. ~

DDR

DDR

Use the DASD Dump Restore (DDR) program to dump, restore, copy, or print
VM/SP user minidisks. The DDR program may run as a standalone program,
or under CMS via the DDR command.

The DDR program has five functions:

1. Dumps part or all of the data from a DASD device to tape.

2. Transfers data from tapes created by the DDR dump function to a
direct access device. The direct access device must be the same as
that which originally contained the data.

3. Copies data from one device to another of the same type. Data may
te reordered, by cylinder or by block for fixed-block DASD, when
copied from disk to disk. In order to copy one tape to another,
the original tape must haVE been created by the DDR DUMP function.

4. Prints selected parts of DASD and tape records in hexadecimal and
EBCDIC on the virtual printer.

5. Displays selected parts of DASD and tape records in hexadecimal and
EBCDIC on the terminal.

The format of the DDE command is:

DDR
r ,

[fn ft I fm I]
L! I
L J

r ,
fn ft Ifml

I * I
L J

identifies the file containing the control statements for the
DDR program. If no file identification is provided, the DDR
program attempts to obtain control statements from the
console. The filemode defaults to * if a value is not
provided.

1. If you use the CMS DDR command, CMS ignores the SYSPBINT control
statement and directs the output to the CMS printer OOE.

2. Be aware that DDR, when run as a standalone program, does not have
error recovery support. However, when DDR is invoked in CMS, in a
virtual machine environ.ent, the I/O operation is performed by CP;
CP has better error recovery facilities.

3. When running as a standalone program, DDR searches for a console at
address 009 or 01F. If there is no operational console at one of
these addresses, the program enters a wait state until an interrupt

Section 2. CMS Commands 53

DDR

occurs to identify the address of the console. If any nonconsole
device is physically connected to address 009 or 01F, it must be
disconnected or results are unpredictable.

4. When performing the DUMP or COpy functions, the standalone DDR
utility viII not support cylinder faults for MSS virtual volumes.

5. DDR copies mode zero (private) files from a CMS disk if that disk
vas linked R/O. Use read passwords to protect private files on CMS
disks when using ACCESS.

6. Results are unpredictable if DDR is used to copy data from one
minidisk to another minidisk formatted with a different blocksize
(if the output disk is larger than the input disk).

DDR CONTROL STATEMENTS

DDR control statements describe the intended processing and the needed
I/O devices. Specify I/O definition statements first.

All control statements may be entered from either the console or the
card reader. The program inspects only columns 1 to 71. All data after
the last operand in a statement is ignored. An output tape must have
the DASD cylinder header records in ascending seguences; therefore,
enter extents in seguence by DASD location, that is, in seguence by
cylinder number if count-key-data or by block number if FB-S12. Only
one type of function -- dump, restore, or copy -- may be performed in
one execution, but up to 20 statements describing cylinder or block
extents may be entered.

The function statements are delimited by an INPUT or OUTPUT
statement, or by a null line if the console is used for input. If
additional functions are to be performed, the seguence of control cards
must be repeated. If you do not use INPUT or OUTPUT control statements
to separate the functions you specify when the input is read from a card
reader or CMS file, an error message (DMKDDR702E) is displayed. The
remainder of the input stream is checked for proper syntax, but no
further DDR operations are performed. Only those statements needed to
redefine the I/O devices are necessary for subseguent steps. All other
I/O definitions remain the same.

To return to CMS, enter a null line (carriage return) in response to
the prompting message (ENTER:). To return directly to CP, key in ICP.

The PRINT and TYPE statements work differently from other DDR control
statements in that they operate on only one data extent at a time. If
the input is from a tape created by the dump function, it must be
positioned at the header record for each step. The PRINT and TYPE
statements have an implied output of either the console (TYPE) or system
printer (PRINT). Therefore, PRINT and TYPE statements need not be
delimited by an INPUT or OUTPUT statement.

I/O DEFINITION STATEMENTS

The I/O definition statements describe the tape, DASD, and printer
devices used while executing the DASD Dump Restore program.

54 IBM V!/SP CMS Command and Macro Reference

DDR

INPUT/OUTPUT f~trQ! 2tat~ment

An INPUT or OUTPUT statement describes each tape and DASD unit used.
The format of the INPUT/OUTPUT statement is:

INput
OUTput

INPUT

OUTPUT

cuu

type

r ,
cuu type I volserl [(options •••)]

laltapel
L .J

Opt!Q!!§:
r
ISKip
ISK!.p
L

, r
nn I I!!Ode
Q I I!!Ode

.J I!!Ode
L

, r ,
6250 I IREWindl
1600 I IUN!Q.ggl

800 I I LEave I
.J L .J

indicates that the device described is an input device.

indicates that the device described is an output device •.

!ot~: If the output d€vice is a DASD device and DDR is running
under eMS, the device is released using the eMS RELEASE
command function and DDR processing continues.

is the unit address of the device.

is the device type:

2314 3350 2400
2319 3375 2420
3330 3380 3410
3330-11 2305-1 3420
3340-35 2305-2 8809
3340-70 liE-512 (FB)

DDR does not provide 7-track support for any tape devices.

Specify a 3340-70F as a 3340-70, and a 3333 as a 3330. Specify
a 3350 that is in 3330-1 or 3330-11 compatibility mode as a
3330 or 3330-11. Specify a 3344 as a 3340-70, and specify
3350 for a 3350 operating in native mode (as opposed to
compatibility mode). Note that both 3310 and 3370 are denoted
by specifying FE-512 or simply FE.

Note: The DASD Dump Restore (DDR) program, executing in a
virtual machine, uses I/O DIAGNOSE 20 to perform I/O
operations on taFe and DASD devices. DDR under eMS requires
that the device type entered agree with the device type of the
real device as recognized by VM/SP. If there is a conflict
with device types, the following message is issued:

DMKDDR708E INVAlID CP!ION

However, if DDR executes standalone in a virtual machine, DDR
uses DIAGNOSE 20 to perform the I/O operation if the device
types agree. If the device types do not agree, error message
DMKDDR708E is issued.

Section 2. eMS Commands 55

DDR

The speed setting for 8809 tape drives is not under the user's
control. When DDR is running as a command under CMS, the 8809
is supported only in start/stop mode. If DDR is run
stand-alone in a virtual machine, DDR attempts to run the 8809
in high-speed mode. In this mode, the data transfer time is
reduced. However, this does not mean that the time for a DDR
job is reduced; job duration depends on many factors such as
processor and device contention.

volser is the volume serial number of a DASD device. If the keyword
"SCRATCH" is specified instead of the volume serial number, no
label verification is performed.

altape is the address of an alternate tape drive.

1!0t~: If multiple reels of tape are required and "altape" is
not specified, DDR types the following at the end of the reel:

END OF VOLUME CYL xxx HD xxx, MOUNT NEXT TAPE

After the new tape is mounted, DDR continues automatically.

SKIP nn
o

forward spaces nn files on the tape. nn is any number
up to 255. The SKIP option is reset to zero after the
tape has been positioned.

r ,
MODE 162501 causes all output tapes that are opened for the first

116001 time and at the load point to be written or read in
I 8001 the specified density. All subsequent tapes mounted
L J are also set to the specified density. If no mode

REWIND

UNLOAD

LEAVE

Note§:

option is specified, then no mode set is performed and
the density setting remains as it previously was.

rewinds the tape at the end of a function.

rewinds and unloads the tape at the end of a function.

leaves the tape positioned at the end of the file at
the end of a function.

1. When the wrong input tape is mounted, the message DMKDDR709E is
displayed and the tape will rewind and unload Iegardless of options
REWIND, UNLOAD, or LEAVE being specified.

2. If DDR is executed from CMS, failure to .attach the tape drive or
the disk device (or both) to YOUI virtual machine prior to invoking
the input/output statement causes the following response to be
displayed:

INVALID INPUT OR OUTPUT DEFINITION

56 IBM VM/SP CMS Command and Macro Reference

.~

DDR

The SYSPRINT control statement describes the device that output is to be
sent to. If the SYSPRIN! CONS option is specified, the output is
directed to the console fer both the CMS environment and the standalone
DDR virtual machine.

In the C~S environment, all output is directed (by default) to OOE,
unless the SYSPRINT CONS option is sFecified. Any SYSPRINT cuu option
specification is ignored.

In the standalone DDR virtual machine, the output is directed to the
output device specified by the SYSPRINT cuu option. If the SYSPRINT
CONS option is specified, all output is directed to the console. If no
options are specified, the output is directed (by default) to OOE.

r--,
I SYsprint I ~cuu l . I
I I lCONS~ I L--J

cuu specifies the unit address of thE device.

CONS specifies the console as the output device.

The function statements tell the DDR program what action to perform.
The function commands also describe the extents to be dumped, copied, or
restored. The format of the DUftP/CCPY/BESTORE control statement is:

r--,
I I r , I
I DUmp I [FTr]1 Icy11 [To] [cy12 [Reorder] [TO] [cy13]] I I
I copy I Iblock1 [To] [block2 [Reorder] iTo] [block3]] I I
I REstore I I CPvol I I
I I I ALL I I
I I INUcleus I I
I I L J I
1--1
11The FTR option is valid only with the DUftP control statement. I L-------------------------____________________________ -----------------J

DUMP requests the program to move data from a direct access volume
onto a magnetic tape or tapes. The format of the tape depends
on the type of the direct access volume. The tape format is
shown for both count-key-data and FB-512 devices.

Section 2. eMS Commands 57

DDR

FTR requests an output tape format of variable unblocked records.
The size of the records and the number of records per track
written to the tape depend on the density of the tape. The
option can be used for those devices supporting the
full-track-read feature (FTR) (3330, 3340, 3344, 3350, 3375,
and 3380) and for FB-512 devices. (FTR is the default for
3375 and 3380 and therefore need not be specified.)

statement for a
unit does not

the operation

If FTR is specified on the DUMP control
count-key-data (CKD) DASD but the control
support the feature, a message is written and
proceeds with data written in the old format.

For count-key-data DASD, the data
cylinder-by-cylinder. Any number of cylinders can
The format of the resulting tape is:

B~rd 1: a volume header
describing the volumes.

record, consisting

is moved
be moved.

of data

B~ord-l: a track header record, consisting of a list of count
fields to restore the track, and the number of data records
written on tape. After the last count field the record
contains key and data records to fill the 4K buffer.

Record 3: track data records, consisting of key and data
records packed into 4K blocks, with the last record truncated.

Record 4: either the end-of-volume (EOV) or end-of-job (EOJ)
trailer label. The end-of-volume label contains the same
information as the next volume header record, except that the
ID field contains EOV. The end-of-job trailer label contains
the same information as record 1 except that the cylinder
number field contains the disk address of the last record on
tape and the ID field contains EOJ.

fTR Fo~!

BecQrd 1 and B§cord ~ are the same as described for the
non-FTR format.

Record l: a track header record, consisting of fields
containing the length of the track, the density of the tape,
and the number of count fields in the track follo~ed by the
track contents.

B~rd }: track data records, consisting of count-key-data
records in 8K, 12K, or 49K blocks for 800, 1600, or 6250 BPI
respectively, with the last block being a short block.

For FB-512 devices, the· data is moved in 'sets' of blocks.
Each set contains 95 blocks of data. (The last set moved may
have less than 95 blocks.) Any number of blocks can be moved
with one DUMP statement. The format of the resulting tape
depends on the density of the output tape and whether or not
the FTR option is specified.

Record 1: a volume header record, consisting
describing the volume.

of data

BecQrd l: a data header record. This consists of control data
that describes the set of blocks that follow (such as block
numbers and the number of tape records required to hold these

58 IBM VM/SP CMS Command and Macro Reference

COpy

RESTORE

DDR

FB-512 blocks). Following the control data is the actual
FB-512 blocks filling out the tape record.

Record 3: FB-512 data records. ihese contain the rest of the
blocks making up the set.

Record ~: either the end-of-volume (EOV) or end-of-job (EOJ)
trailer label. The EOV label contains the same information as
the next header record, except that the ID field contains EOV.
The EOJ trailer label is just like record 1 except that it
contains the number of the last DASD block dumped and the ID
field contains EOJ.

In non-FTR format, the record length of record 2 and of record
3 is 4K bytes. For FTR formatted tapes, the record length is
8K, 12K, or 49K bytes for 800, 1600, 6250 BPI respectively,
with the last block being a short one.

requests the program to copy data from one device to another
device of the same or equivalent type. Note that you cannot
copy between FB-512 and count-key-data DASD. Data may be
recorded on a cylinder or block basis from input device to
output device. A tape-to-tape copy can be accomplished only
with data dumped by this program.

requests the program to return data that has been dumped by
this program. Data can be restored only to a DASD volume of
the same or equivalent device type from which it was dumped.
It is possible to dump from a real disk and restore to a
minidisk as long as the device types are the same.

cyl1 [TO] [cyl2 [REORDER] [TO] [cyI3]]
Only those cylinders specified are moved, starting with the
first track of the first cylinder (cyI1), and ending with the
last track of the second cylinder (cyI2). The REORDER operand
causes the output to te reordered, that is, moved to different
cylinders, starting at the specified cylinder (cyI3) or at the
starting cylinder (cyI1) if cyl3 is not specified. The
REORDER operand must not be specified unless specified limits
are defined for the operation; the starting and, if required,
ending cylinders (cyl1 and cy12) must be specified. Note that
if the input device cylinder extents exceed the numher of
cylinders specified on the output device, an error message
results.

block1 [To] [block2 [Reorder] [To] (block3]]
Only those blocks specified are moved, starting with the block
indicated by block1, up to and including the block indicated
by block2. The REORDER operand causes. the data to be moved to
a different DASD location. The REORDER operand must not be
specified unless specified limits are defined for the
operation. If the input block extents exceed the capacity of
the output device, an error message results.

CPVOL specifies that cylinder 0 (blocks 0-15 if FB-512) and all
active directory and permanent disk space are to be copied,
dumped, or restored. This indicates that both source and
target disk must be in CP format; that is, the CP
Format/Allocate program must have formatted them.

ALL specifies that the operation is to be performed on the entire
DASD volume (all cylinders or all blocks).

Section 2. CMS Commands 59

DDR

Note: The occurrence of message DMKDDB705E (issued upon
completion of the copy, restore, or dump operation) indicates
that an attempt ~as made to copy, restore, or dump the
contents of DASD locations beyond the extents of the
designated minidisk.

NUCLEUS specifies that record 2 on cylinde~ 0, track 0 (blocks 5-12 if
FB-512) and the nucleus are dumped, copied, or restored.

• Each track must contain a valid home address, containing the real
cylinder and track location.

• Record zero must not contain more than eight key and/or data
characters.

• Flagged tracks are treated just as any other track for all 2314,
2319, 3340, and 2305 devices. That is, no attempt is made to
substitute the alternate track data ~hen a defective primary track is
read. In addition, tracks are not inspected to determine whether
they were previously flagged when written. Therefore, volumes
containing flagged tracks should be restored to the same cylinders of
the volume from which they were dumped. !he message DMKDDB715E occurs
each time a defective track is dumped, copied or restored, and the
operation continues.

• Flagged tracks on 3330, and 3350 devices are handled automatically by
the control unit and may never te detected by the program. The
program may detect a flagged track if, for example, no alternate
track is assigned to the defective primary track. If a flagged track
is detected by the program, the message DMKDDB715E occurs and the
operation terminates.

• Por DASD devices other than the 3375 and 3380 that support the full
track - read (PTR) processing, the option must be specified.
otherwise, the tape is produced in the current DDE format of 4096
blocks. The 3330/3340 DASD devices can only take advantage of the
full track read feature when t~e 3830 has microcode supporting either
the 3344 or 3350.

INPUT 191 3330 SYSRES
OUTPUT 180 2400 181 (MCDE 800
SYSPBINT OOF
DUMP CPVOL
INPUT 130 3330 MINI01
DUMP 1 TO 50 REOBD!R 51
60 70 101

This example sets the density to 800 ~pi, then dumps all pertinent
data from the volume labeled SYSRES onto the tape that is mounted on
unit 180. If the program runs out of space on the first tape, it
continues dumping onto the alternate device (181). A map of the dumped
cylinders is printed on unit OOF while the program is dumping. When the
first function is complete, the volume labeled MINI01 is dumped onto a
new tape. Its cylinder header records are labeled 51 to 100. A map of
the dumped cylinders is printed on unit OOF. Next, cylinders 60 to 70
are dumped and labeled 101 to 111. This extent is added to the cylinder
map on unit OOF. When the DDR processing is complete, the tapes are
unloaded and the program stops.

60 IBM V~/SP CMS Command and Macro Reference

DDR

If cylinder extents are being defined from the console, the user need
only enter DUMP, COPY or RESTORE on the command line. The following is
displayed:

ENTER CYLINDER EXTENTS
ENTER:

For any extent after the first extent, the message:

ENTER NEXT EXTENT OR NULL LINE
ENTER:

is displayed.

You may then enter additional extents to be dumped, restored, or
copied. A null line causes the job step to start.

1. When a cylinder map is printed on the virtual printer (OOF as in
the previous example) a heading precedes the map information.
Module DMKDDR controls the disk, time and zone printed in the
heading. Your installation must apply a local modification to
DMKDDR to ensure that local time, rather than GMT (Greenwich
Meridian Time), is printed in the heading.

2. Attempts
had been
printout
tape.

to restore cylinders or blocks beyond the capacity that
recorded on the tape produces a successful EOJ, but the

only indicates the last cylinder or block found on the

Use the PRINT and TYPE function statement to print or type (display) a
hexadecimal and EBCDIC translation of each record specified. The input
device must be defined as direct access disk. The output is directed to
the system console for the TYPE function, or to the SYSPRINT device for
the PRINT function. (This does not cause redefinition of the output unit
definition.) The format of the PRINT/TYPE control statement is:

PRint
TYpe

l[cy11 [hh1 [rr1]] [To
1 [block 1 [To block2]

.2,Etion§:

cyl2 [hh2 [rr2

I
1
I (Hex] [Graphic] [Count]

I

]]] [(options ••• ()]]]1
]I
1
1
I
I

cy11 is the starting cylinder.

hh1 is the starting track. If present, it must follow the cyl1
operand. The default is track zero.

rr1

TO cy12

is the starting record. If present, it must follow the hh1
operand. The default is home address and record zero.

is the ending cylinder. If more than one cylinder is to be
printed or typed, "TO cyl2" must be specified.

Section 2. CMS Commands 61

DDR

hh2 is the ending
operand. The
cylinder.

track. If present, it must follow the cy12
default is the last track on the ending

rr2 is the record ID of the last record to print. The default is
the last record on the ending track.

block1 is the starting FB-S12 block number.

To block2 is the ending block number. If more than one block is to be
printed or typed, 'To block2' must be specified.

options:

HEX prints or displays a hExadecimal representation of each record
specified.

GRAPHIC
prints or displays an EBCDIC translation of each record
specified.

COUNT prints or
specified.

Us~~

displays only the count field for each record
This option is ignored for FB-S12 data.

If the TYPE statement follows the occurrence of error message DMKDDB70SE
and specifies the same cylinder, track, and record extents indicated in
the error message, the contents of the printed record must be
interpreted in the context of the I/O error information given in the
initial message.

PRINT 0 TO 3

Prints all of the records from cylinders or blocks 0, 1, 2, arid 3.

PRINT 0 1 3

Prints only one record, from cylinder 0, track 1, record 3.

PRINT 1 10 3 TO 1 15 4

Prints all records starting with cylinder 1, track 10, record 3, and
ending with cylinder 1, track 15, record 4.

The example in Figure 7 shows the information displayed at the
console (TYPE function) cr system printer (PRINT function) by the DDR
program. The listing is annotated to describe some of the data fields.

The printed output for FB-512 data is self-explanatory. DDR prints a
short heading telling the block number, then prints the 512 bytes of
data in that block.

DMKDDR711R VOLID READ IS volid2 [NOT vOlid1]
DO YOU WISH TC CONTINUE: RESPOND YES NO OR REREAD:

62 IBM VM/SP eMS Command and Macro Reference

J

volid2

volid1

DDR

is the volume serial number from the VOL1 label on the
DASD unit.

is the volume serial number from the INPUT or OUTPUT
control card.

The volume serial number read from the device at cuu is not the
same as that specified on the INPUT or OUTPUT control card.

DHKDDR716R NO VOL1 lABEL FOUND FOR volser

where:

volser

DO YOU WISH TC CONTINUE? RESPONt YES NO OR REREAD:

is the volume serial number of the DASD device from the
INPUT or the OUTPUT control card.

The DASD device at cuu contains no volume serial number.

DHKDDR717R DATA DUMPED FROM volid1 TO BE RESTORED TO volid2
DO YOU WISH TO CONTINUE? RESPOND YES NO OR REREAD:

where:

volid1

volid2

is the volume serial number from the input tape header
record (volume dU.Fed).

is the volume serial number from the output DASD device.

The above message is printed to verify the input parameters.

ENTER CYLINDER EXTENTS
ENTER:

or ENTER BLOCK EXTENTS
ENTER:

This message is received only if you are entering input from your
terminal.

END OF VOLUME CYL xxx HD xx, MOUN! NEXT TAPE
or END OF BLOCK xxxxxxxx, MOUNT NEXT TAPE

DDR continues processing, after the mounting of the next tape reel.

Section 2. CMS Commands 63

DDR

Home Address
Rc-.:ord 0

(hexadecimal)

ro ~the data length ;:w is ::7ze;:-

I • A heading is printed containing the I
Record 1 -+--00_

4EJ.~~~~~
Cylinder. head, and

-l

record numbers in
decirllal

(hexadecimal)
data length from the count field first in

I decimal, then in hexadecimal
• The data is. then printed in hexadecimal I

~
with graphIc interpretation at the right

_ ~t shown here) ___ J

04096 1000 DATA LENGTH _----------

00000 0000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
SUPPRESSED CHARACTERS SAME AS ABOVE.

1st Halfof-+---__ CYL 019HD 00 REC 002 COUNT 0013000002 009AS
Record 2

Note: Data Length field repeated
in heading.

02472 09AS DATA LENGTH

00000 0000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
SUPPRESSED CHARACTERS SAME AS ABOVE.

ABOVE RECORD WRITTEN USING RECORD OVERFLOW"

r::;--------,
Ie This statement indicates th~t this portion I

of Record 2 was written usmg the Write

I Special Count, Key, and Data command. The
remainder of Record 2 is found on the next I
track as the first record after Record O. L _____ _ .J

Home Addressf---_CYL 019 HD 01 HOME ADDRESS 0000130001 RECORD ZERO 0013000100 00 OOOS 00000000 00000000
Record (J

2nd Halfof
Record 2

CYL 019 HD 01 REC 002 COUNT 0013000102 00 065S-f-------------------'

01624 065S DATA LENGTH

00000 0000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
SUPPRESSED CHARACTERS SAME AS ABOVE

r.----------, CIt If the key length field is not zero

I • A heading is printed containing the key length I
~ first in decimal, then in hexadecimal. I • The key is then printed in hexadecimal with I

G ________ .J J7 graphic interpretation atthe right (not shown here).

Record 3 ---+--...... - CYL 019 HD 01 REC 003 COUNT 0013000103 SO OF SO

0012S OOSO KEY LENGTH_~-------

00000 0000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
SUPPRESSED CHARACTERS SAME AS ABOVE

0396S OFSO DATA LENGTH

00000 0000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
SUPPRESSED CHARACTERS SAME AS ABOVE ..

Record 4 ---1---0- CYL 019 HD 01 REC 004 COUNT 0013000104 00 0000

Figure 7.

END OF FILE RECORD

liD - Whenev::e data length fi:, z-:: I
I an end-of-file prints next. I
L _______ ...J

An Annotated Sample of Output from
Functions of the DDR Program

the TYPE and

64 IBM VM/SP CMS Command and Macro Reference

PRINT

RESTORING volser

where:

volser is the volume serial number of the disk dumped.

The RESTORE operation has begun.

COPYING volser

where:

volser is the volume serial number described by the input unit.

The COpy operation has begun.

DUMPING volser

where:

volser is the volume serial number described by the input unit.

The DUMP operation has begun.

PRINTING volser

where:

volser is the volume serial number described by the input unit.

The PRINT operation has begun.

END OF DUMP

The DUMP operation has ended.

END OF RESTORE

The RESTORE operation has ended.

END OF COpy

The COpy operation has ended.

END OF PRINT

The PRINT operation has ended.

END OF JOB

All specified operations have completed.

DDR

section 2. CMS Commands 65

DDR

ENTER:

Prompts for input from the terminal. A null line (that is,
pressing the Enter key or equivalent) causes control to return to
CMS if the virtual machine is in the CMS environment.

DMKDDR725R ORIGINAL INPUT DEVICE WAS (IS) LARGER THAN OUTPUT DEVICE.
DO YOU WISH TO CONTINUE? RESPONSE YES CR NO:

Explanation:
RESTORE function - The number of
original DASD input unit is compared
device.

cylinders or blocks on the
with the number on the output

COpy function - The input device contains more cylinders or blocks
than the output device.

Operator Actio~: The operator must determine if the copy or RESTORE
function is to continue. ~he response is either yes or no.

Note: Except as shown, there is no return code returned for the
following messages. For FB-512 devices, DASD locations are described by
a specific block number instead of ty cchhr.

DMKDDR700E INPUT UNIT IS NOT A CPVOI
DMKDDR701E INVALID OPERAND - operand
DMKDDR702E CONTROL STATEMENT SEQUENCE ERROR
DMKDDR703E OPERAND MISSING
DMKDDR704E DEV cuu NOT OPERATIONAL
DMKDDR705E 10 ERROR cuu CSW csw SENSE sense INPUT bbcchhlblock OUTPUT

bbcchhlblock CCW ccw
DMKDDR707E MACHINE CHECK RUN SEREP AND SAVE OUTPUT FOR CE
DMKDDR708E INVALID INPUT OR OUTPUT DEFINITION
DMKDDR709E WRONG INPUT TAPE !JOUNTED
DMKDDR710A DEV cuu INTERVENTION REQUIRED
DMKDDR712E NUMBER OF EXTENTS EXCEEDS 20
DMKDDR713E OVERLAPPING OR INVALID EXTENTS
DMKDDR714E RECORD bbcchhlblock NOT FOUND ON TAPE
DMKDDR715E LOCATION bbcchhlblock IS A FLAGGED TRACK RC=3
DMKDDR718E OUTPUT UNIT IS FILE FROTECTED Re=1
DMKDDR719E INVALID FILENAME OR FILE NCT FOUND
DMKDDR720E ERROR IN routine RC=varies
DMKDDR721E RECORD cchhrlblock NOT FCUND
DMKDDR722E OUTPUT UNIT NCT PEOPERIY FCRMATTED FOR THE CP NUCLEUS
DMKDDR723E NO VALID CP NUCLEUS ON THE INPUT UNIT
DMKDDR724E INPUT TAPE CONTAINS A CP NUCLEUS DUMP
DMKDDR756E PROGRAM CHECK PSW=psw

66 IBM VM/SP CMS Command and Macro Reference

DEBUG

DEBUG

Use the DEBUG command to enter the debug envircnment from the CMS
environment. In thE debug environment you can use a variety of DEBUG
subcommands that allow you to test and debug your programs. The DEBUG
subcommands are described in "Section 4. DEBUG Subcommands." For
tutorial information, including examples, see the VML§R CM~ Use~§
Guid~. The format of the DEBUG command is:

DEBUG I

1. The debug environment is also entered
interruption or the result of a
enco~ntered during program execution.

as a result of an external
breakpoint (address stop)

2. Once you are in the debug environment, you can enter only DEBUG
subcommands and CP commands via the ICP function.

3. To return to the CMS environment, enter the DEBUG subcommand
RETURN.

DMSDBG128I DEBUG ENTERED

This message indicates that you are in the detug environment.

Section 2. CMS Commands 61

DEFAULTS

DEFAULTS

Use the DEFAULTS EXEC procedure to set up default options for the
commands that are listed below. Each time you enter one of these
commands, the options specified in the DEFAULTS command are in effect.
However, the options specified with each invocation of the various
commands override the ones set up in the DEFAULTS command. Thus, you
can customize the options by using DEFAULTS, yet override them when you
desire. DEFAULTS can also be used to display the current default
options for one or more of the commands.

The format of the DEFAULTS command is:

I i

I I
IDEFAULTSI
I I
I I

where:

.- ,
ISet command options ••• 1
IList [command] I
L J

Set specifies that default options are to be set up for the
command indicated.

List

command

options

specifies that the current default options for the command
indicated are to be displayed. If no command is specified,
all the commands listed below and their current default
options are displayed.

is one of the commands listed below.

is one or more options associated with a particular command,
as shown below.

The commands and their options that can be specified as defaults are
listed below. Valid abbreviations for both the command n~mes and the
keyword options are indicated by uppercase letters. Mutually exclusive
options are listed one under the other.

Command Nam~

Filelist

Note

SendfilelSfile

RDrlistlRList

Peek

Receive

Q£!i.2.!!§

Profile fn
Profile PROFFLST

Profile fn
Profile PBOFNOTE

Filelist
NOFilelist

Short LOG
LONg NOLog

NOAck NOTebook fn
Ack NOTebook ALL

NOTebook *
NONotebook

New NOType
Old Type

NOFilelist Log NOAck
Filelist NOLog Ack

Profile fn
Profile PROFRLST

Profile fn FRom recno FOr numrec
Profile PROFPEEK

Log Olddate
NOLog NEwdate

NOTebook fn
NOTebook ALL
NOTebook *

68 IBM VM/SP CMS Command and Macro Reference

DEFAULTS

The DEFAULTS command uses the GLOBALV command, which maintains a LASTING
GLOBALV file on your A-disk. This file contains the options specified
in a DEFAULTS command. However, do ~21 ~dit th~ LASTING GLOBALV file to
change the options. Use the DEFAULTS command, instead. For more
information on GLOBALV files, see the description of the GLOBAL V
command.

Responses

The following is a list of your default options for the 'command'
command:

option •••

To change these default options enter 'DEFAULTS Set command opt1
<opt2 •• >'.
The following default options havE been set:

commandname option •••

To change any default options
<opt2 •• >'.

enter 'DEFAULTS Set cmdname opt1

DHSiDF014E INVALID KEYWORD 'function'. RC=24
DHSiDF029E INVALID PARAMETER 'parmi IN THE OPTION 'option' FIELD.

RC=24
D!SiDF637E MISSING VALUE FOR THE {PROFILEIFROBIFORINOTEBOOK}

OPTION. RC=24
D!SiDF641E NO {optionslcommand} SPECIFIED. RC=24
D!SiDF642E DEFAULTS DOES NOT ACCEPT {'COMBAND' commandl'oPTION'

OPTION FOR 'CCMMAND'}. RC=24
DMSiDF653E ERROR EXECUTING 'GLOBALV', RC = nn. RC=40
DMSSTT062E INVALID CHARACTER 'character' IN FILEID 'fn ft fm'. RC=20

Section 2. CMS Commands 69

DESBUF

DESBUF

Use the DESBaF command to clear the console and program stack input and
output buffers. The format of the DESBaF command is:

DESBaF

Note that DESBUF clears the output tuffers as well as the input buffers.
Use the CONWAIT command tefore DESBUl to halt program execution until
all output lines are displayed at the terminal.

Warning: Be careful when using the DISBUF command because the input and
output console and program stack tuffers are used to communicate
information hetween prograas.

70 IBH VH/SP CHS Command and Macro Reference

.~

DISK

DISK

Use the DISK command to:

• Punch CMS disk files to the virtual spooled card punch in a special
format which allows the punched deck to be restored to disk in the
form of the original disk file.

• Restore punched decks created by the DISK DUMP command to a disk
file.

The format of the DISK command is:

DISK ~DUMP fn ft [fm] t
1LOAD [(OLDDate [)]]~

DUMP fn ft fm

LOAD

OLDDATE

punches the specified file (fn ft fm). The file may have
either fixed- or variable-length records. After all data is
punched, an end-of-file card is created with an N in column 5.
This card contains directory information and must remain in
the deck. The original disk file is retained.

loads a file or files from the spooled card reader and writes
them as CMS files on your A-disk. The filename and filetype
are obtained from the card stream. If a file exists with the
same filename and filetype as one of those in the card stream,
it is replaced.

The card-image sequence numbers on all files being loaded
are checked. A message notifies the user of any record
numbers missing or out of order. The file is loaded whether
or not a problem is found in the sequence number check.

The DISK LOAD function checks for invalid characters in the
fileid field of the reader file to be loaded. If an invalid
character is found, message DftSDSK496S is printed at the
console informing the user that the fileid of the reader file
has been altered. The file is left in the reader. A file is
not loaded when the last card of the reader file does not
match the filename, filetype, and filemode of the first card
in the reader file.

Note: DISK LOAD file identifiers are those of the specified
file issued by the DISK DUMP command.

is an option of the LOAD parameter. When specified, OLDDATE
retains the date and time of the most recent update of the
file prior to it being sent to your virtual reader. This date
becomes the creation date for the file being loaded.
Otherwise, the date and time of execution of the DISK LOAD
command will be used as the creation date for the output file
produced by the DISK LOAD.

Usage Note,§

1. To read files with the DISK LOAD command, they must have been

Section 2. CMS Commands 71

DISK

created by the DISK DUMP command. To identify the proper method to
use in loading spooled reader files, use the 'RDR' command. Also
see the 'RECEIVE' command.

2. To load reader files created by DISK DUMP, you must issue the DISK
LOAD command for each spool file. For example, if you enter:

disk dump source1 assemble
disk dump source2 assemble

the virtual machine that receives the files must issue the DISK
LOAD command twice to read the files onto disk. If you use the CP
SPOOL command to spocl continuous, for example:

cp spool punch cont
disk dump source1 assemble
disk dump source2 assemble
cp spool punch nocont close

then you only need to issue the DISK LOAD command once to read both
files.

3. DISK LOAD loads a file from the reader into a temporary work file
called 'DISK CMSUI1'. Ihe existing file with the same name as the
one being loaded from the reader is then erased. The name of the
temporary work file just created is changed to the name of the work
file just read in. If the file you are loading has the name 'DISK
CMSUT1', it is changed to 'DISK CMSUT2'. 'DISK CMSUT1' is a
reserved work file name for the DISK command.

4. DISK LOAD or DISK LUMF may cause a file to occupy one extra block
on the disk. If the file is close to filling or exactly fills the
last block on a 1024, 2048, or 4096 formatted disk, the last record
produced by the DISK DUMP or DISK LOAD may be filled with X'OO's
causing the file to occupy one extra block consisting of X'OO's on
the disk.

Responses

There is no response to the DISK DUMP command. The file identifiers of
each file loaded are displayed when you issue the DISK LOAD command:

fn ft fm

DMSDSK002E
DMSDSK014E
DMSDSK037E
DMSDSK047E
DMSDSK048E
DMSDSK054E
DMSDSK062E
DMSDSK070E
DMSDSK077E
DMSDSK078E
DMSDSK104S
DMSDSK105S
DMSDSK109S
DMSDSK118S

FILE 'fn ft fm' NOT FOUND RC=28
INVALID FUNCTION 'function' RC=24
DISK 'A' IS READ/ONLY RC=36
NO FUNCTION SFECIFIEL RC=24
INVALID MODE 'mode' RC=24
INCOMPLETE FILEID SPECIFIED RC=24
INVALID * IN FILEID ['fn ft fm'] RC=20
INVALID PARAMEIER 'parameter' RC=24
END CARD MISSING FROM INFUT DECK RC=32
INVALID CARD IN INPUT DECK RC=32
ERROR Inn' REArING F~LE 'fn ft fm'
ERROR Inn' WRITING FILE 'fn ft fm'
VIRTUAL STORAGE CAPACITY EXCEEDED
ERROR PUNCHING FILE RC=100

FROM DISK RC=100
ON DISK RC=100
RC=104

72 IBM VM/SF CMS Command and Macro Reference

'J

~.

DISK

DMSDSK124S ERROR READING CAED FILE RC=100
DMSDSK496S READER FILE ALTERED TO DISK LOAD AS: 'fn ft fm'. DISK LOAD

STOPPED! FILE HAS BEEN LEFT IN YOUR READER. RC=100
DMSDSK078W SEQUENCE ERROR DETECTED LOADING 'fn ft'. EXPECTED , ••••• ,

FOUND , ••••• ,. RC=32
DMSDSK205W READER EMPTY OR NOT READY RC=8
DMSDSK445W INVALID DATA IN SEQUENCE FIELD, BYPASSING SEQUENCE CHECK.
DMSDSK550W DATE/TIME DATA NOT PRESENT FOR FILE 'fn ft'.

Section 2. CMS Commands 73

DLBL

DLBL

Use the DLBL command:

• In CMS/DOS, to define VSE and C~S sequential disk files for program
input/output; to identify VSE files and libraries; to define and
identify VSAM catalogs, clusters, and data spaces; and to identify
VSAM, VSE, or CMS files used for VSAM program input/output and access
method services functions. In many situations, VSE/VSAM does not
require the DLBL command. Information on when a DLBL statement is
required can be found in the VSELVSA~ Progra~~§ ~eference.

• In CMS, to define and identify VSAM catalogs, clusters, and data
spaces; to identify VSAM files used for program input/output; and to
identify input/output files for AMSERV.

The format of the DLBL command is:

DLBL
r r
Iddname ~mode ~ ICMS fn
I DUMMY IfM FILE
I L

I
I r
I IDSN qual1
Iddname ~mode ~ IDSN qual1
I DUM!! IDSN ?
I L

I
I
Iddname CLEAR
I
L *

,Q£tionA:
[SYsxxx]

,Q,EtionB:
[PEB!]
r ,
I£~ I
INOCHANG!I
L .J

,
ft I [(optionA optionB [) J]
dd~ I

.J

,
[.gual2 ••• qualn] I
[gual2 ••• gualn] I

I
.J

[(optionA optionB

oPtiQ!!£:
[VSAM]
r ,
IEXTENTI
IMULT I
L .J

[CAT catdd]
[BUFSP nnnnnn]

optionC [)]]

,

Note: The operands and options of the DLBL command are described below.
Usage notes are provided for general usage, followed by additional notes
for CMS/DOS users, and then additional notes for OS VSAM users.

ddname

mode

specifies a one- to seven-character program ddname (OS) or
filename (VSE), or dname (as specified in the FILE parameter
of an access method services control statement). An asterisk
(*) entered with the CLEAB operand indicates that all DLBL
definitions, except those that are entered with the PEBM
option, are to te cleared.

specifies a valid C~S disk mode letter and
filemode number. A letter must be specified; if
not specified, it defaults to 1. The disk must
when the DLBL command is issued.

optionally,
a number is
be accessed

74 IBM VM/SP CMS Command and Macro Reference

DU!!!!Y

CLEAR

specifies that no real I/O is to be performed. A
operation results in an end-of-file condition and a
operation results in a successful return code. DUMMY
not be used for as VSAM data sets (see Usage Note 3).

DLBL

read
write

should

removes any existing definitions for the specified ddname.
Clearing a ddname before defining it ensures that a file
definition does not exist and that any options previously
defined with that ddname no longer have any effect.

CMS fn ft indicates that this is a eMS file, and the file identifier (fn
ft) that follows is a CMS filename and filetype.

FILE ddname is the default CMS file identifier associated with
all non-CMS data sets. (See Usage Note 3 for CMS/DOS users.)

DSN indicates that this is a non-CMS file.

? indicates that you are going to enter the data set name
interactively. When FromFted, you enter the data set name or
fileid in its exact form, including embedded blanks, hyphens,
or periods.

qua11 [.qua12 ••• qualnJ
-- or --

qua11 [qua12 ••• qualnJ

SYSxxx

PERM

is an as data set name o~ VSE file-ide Only data sets named
according to standard as conventions may be entered this way;
you may omit the periods tetween qualifiers, or specify the
full dataset name, including periods between qualifiers. (See
Usage Note 2.) .

(CMS/DOS only) indicates the system or programmer logical unit
that is associated with the disk on which the disk file
resides. !he logical unit must have been previously assigned
with the ASSGN command. In many situations VSE/VSAM does not
require a SYSxxx operand. ihus no previous ASSGN is required.
See VSE/V~!~ Programmer's Refer~~ for information on when
the SYSxxx operand is reguired.

indicates that this DLBL definition can be cleared only with
an explicit CLEAR request. It will not be cleared when the
DLBL * CLEAR command line is entered.

All DLBL definitions, including those entered with the PERM
option, are cleared as a result of a program abend or HX (halt
execution) Immediate command.

indicates that any existing DLBL for this ddname is not to be
canceled, but that conflicting oFtions are to be overridden
and new options merged into the old definition. Both the
ddname and the file identifier must be the same in order for
the definitions to te merged.

ROCHANGE

VSAM

does not alter any existing DLBL definition for the specified
ddname, but creates a definition if none existed.

indicates that the file is a VS!M data set. This option must
be specified fo~ VSAM functions unless the EXTENT, MULT, CAT,

Section 2. CMS Commands 75

DLBL

EXTENT

MULT

or BUFSP options are entered or the ddnames IJSYSCT or IJSYSUC
are used.

indicates that you are going to use access method services to
define a VSAM catalog, data space, or unique cluster and you
want to enter extent information.

indicates that you are going
multivolume data set and you
specifications.

to
want

reference
to enter

an existing
the volume

Not~: In many situations VSE/VSAM does not require EXTENT or
MULT information. See !~E/VSAM Proqr~mer's Refere~ for
information on when EXTENl or MULT information is reguired.

CAT catdd
identifies the VSAM catalog (defined by a previous DLBL
definition) which contains the entry for this data set. You
must use the CAT oFtion when the VSAM data set you are
creating or identifying is not cataloged in the current job
catalog. catdd is the ddname in the DLBL definition for the
catalog.

BUFSP nnnnnn
specifies the number of bytes (in decimal) to be used for I/O
buffers by VSAM data management during program execution,
overriding the BUFSP value in the ACB for the file. The
maximum value for nnnnnn is 999999i embedded commas are not
permitted.

Usage !iili§

1. To display all of the disk file definitions in effect, enter:

2.

dlbl

The response will be:

ddname DISK fn ft

If no DLBL definitions are in effect, the following .essage is
displayed:

DMSDLB324I NO USER DEFINED DLBL' S IN EFFECT

You may enter an OS or VSE file identification on the DLBL
line. The maximum length cf the file identification
characters, including periods. For example, the
TEST.INPUT.SOURCE.D could be identified as follows:

dlbl dd1 c dsn test input source d (options •••
-- or --

dlbl dd1 c dsn test.input.source.d (options •••

Or, it may be entered interactively, as follows:

dlbl dd1 c dsn ? (options
DMSDLB220E ENTER tATA SET NAME:
test.input.source.d

command
is 44

file

76 IBM VM/SP CMS Command and Macro Reference

3.

4.

DLBL

If the dataset name is entered interactively, the dataset name ~ust
be entered in its exact form. If it is entered as a command, or
from EXEC 2, the dataset name !~~ be entered in its exact form. If
the command is entered with blanks separating the gualifiers, DLBL"
replaces them with periods. If it is entered via CMS EXEC, the
periods between qualifiers must be omitted, and the qualifiers must
be 1 to 8 characters long.

In VSE, a VSAM data set that has been defined as DUMMY is opened
with an error code of X'11'. CMS supports the DUMMY operand of the
DLBL command in the same manner. OS users should not use the DUMMY
operand in CMS, since a dummy data set does not return, on open, an
end-of-file indication.

Do not use the same ddname for a CMS disk if a DLBL already exists
with the same ddname for a DOS disk. The use of DSN and CMS is not
interchangeable.

1. Each DLBL definition must be associated with a system or programmer
logical unit assignment, previously made with an ASSGN command.
Specify the SYSxxx option cn the first, or only, DLBL definition
for a particular ddname. Many DLBL definitions may be associated
with the same logical unit. For example:

2.

assgn sys100 b
dlbl dd1 b cms test file1 (sys100
dlbl dd2 b cms test file2 (sys100
dlbl dd1 cms test file3

is a valid command SEquencE.

In many situations VSE/VSAM does not require the DLBL command. See
VSE/VSAM Progr~~~ ~~tg~~B£~ for information on when the DLBL
command is required.

The following special ddnames must be used to define VSE private
libraries, and must be associated with the indicated logical units:

ddn~~
IJSYSSL
IJSYSRL
IJSYSCL

Logical
Q!!~
SYSSLE
SYSELE
SYSCLE

1J:.!!.f~.f:i
Source statement
Eelocatable
Core image

These libraries must be identified in order to perform librarian
functions (with the SSERV, ESERV, DSERV, or RSERV commands) for
private libraries; or to link-edit or fetch modules or phases from
private relocatable or core image libraries (with the DOSLKED and
FETCH commands).

3. Each VSE file has a CMS file identifier associated with it by
default; the filename is always FILE and the filetype is always the
same as the ddname. For example, if you enter a DLBL command for a
VSE file MOD.TES~.STREAM as follows:

dlbl test c dsn mod.test.stream

then you can refer to this data set as FILE TEST when you use the
STATE command:

state file test

Section 2. CMS Commands 11

DLBL

When you enter a DLBL command specifying only a ddname and mode, as
follows:

dlbl junk a

CMS assigns a file identifier of FILE JUNK A1 to the ddname JUNK.

ij. The FILEDEF command performs a function similar to that of the DLBL
command; you need to use the FILEDEF command in CMS/DOS only:

• When you want to override a default ddname for an assembler
input or output file.

• When you want to use the MOVEiILE command to process a file.

5. If you use the DUMMY operand, you must have issued an ASSGN command
specifying a device type of 1GB, or ignore, for the SYSxxx unit
specified in the DLBL command, for example,

assgn sys003 ign
dlbl test dummy (sys003

~g!£!l!ING ~ EXTENT INFOBMA1ION: You may specify extent information
when you use the access method services control statements DEFINE SPACE,
DEFINE MASTERCATALOG, DEFINE USERCATALOG, DEFINE CLOSTER (UNIQOE); or
when you use the IMPORT or IMPOBTRA functions for a unique file.

In many situations, VSH/VSAM does not
See VSE/VSA" Proqr~mmer'§ Ref~~ for
information is required.

require EXTENT
inf orma tion on

information.
when EXTENT

When you enter the EXTENT option of the DLBL command, you are
prompted to enter the disk extents for the specified file. You must
enter extent information in accordance with the following rules:

• For count-key-data d_evices, you must specify the starting track
number and number of tracks for each extent, as follows:

19 38

This extent allocates 38 tracks, beginning with the 19th track, on a
3330 device.

• For fixed-block devices, you must specify the starting block number
and the number of blocks for each extent. The following example
allocates 200 blocks, starting at block number 352, on a fixed-block
device.

352 200

Because VSAM rounds the starting block to the next highest cylinder
boundary, it is advisable to specify the starting block on a cylinder
boundary.

• All count-key-data extents must begin and end on cylinder boundaries,
regardless of whether the AMSERV file contains extent information in
terms of cylinders, tracks, or records.

•

•

Multiple extent entries may be entered
commas or on different lines. Commas
ignored.

on a single line separated by
at the end of a line are

Multiple extents for the same volume must be entered in numerically
ascending order; for example:

78 IBM VM/SP CMS Command and Macro Reference

DLBL

20 400, 600 80

These extents are valid for a 2314 device.

• When you enter multivolume extents, you must specify the mode letter
and logical unit associated with each disk that contains extents;
extents for each disk must be entered consecutively. For example:

assgn sys001 b
assgn sys002 c
assgn sys003 d
dlbl file1 b (extent sys001
DKSDLB331R ENTER !X!EHT SPECIFICATIONS:
100 60, 400 80, 60 40 d sys003
200 100 c sys002
400 100 c sys002

(null line)

specifies extents on disks accessed at modes B, C, and D. These
disks are assigned to the logical units SIS001, SYS002, and SIS003.
Since B is the mode specified on the DLBL command line, it does not
need to be respecified along with the extent information.

• A DASD volume must be mounted, accessed, and assigned for each disk
mode referenced in an extent.

When you are finished entering extent information, you must enter a
null line to terminate the DLBL command sequence. If you do not, an
error may result and you will have to reenter the DLBL command. If you
make any error entering the extents, you must reenter all the extent
information.

The DLBL command does not check the extents to see whether they are
on cylinder boundaries or whether they are entered in the proper
seguence. If you do not enter them correctly, the access method services
DEFINE function will terminate with an error.

CMS assigns sequence numbers to the extents according to the order in
which they were entered. These sequence numbers are listed when you use
the LISTDS command with the EXTENT option.

In order to display the actual extents that were entered for a VSA!
data set at DLBL definition time, the following commands may be entered:

DLBL (EXTENT) or QUERY tLBL EXTENT

Either of these commands will provide the following information to
the user:

DDNAME

MODE

LOGUNIT

EXTENT

The VSE filename or as ddname.

The CKS disk mode identifying the disk on which the extent
resides.

The VSE logical unit specification (SIS~xx). This operand
will be blank for a data set defined while in CMS/OS
environment; that is, the SET DeS ON command had not been
issued at DLBL definition time.

Specifies the relative starting track number and number of
tracks for each extent entered for the given dataset ddname.

If no DLBL definitions with extent information are active, the
following message is issued:

Section 2. CKS Commands 79

DLBL

DftSDLB3241 NO OSER DEFINED EXTENTS IN EFFECT

IDENTIFYING MULTIVOLUME VSAM EXTENT~: When you want to execute a program
or use access method services to reference an existing multivolume VSA!
data set, you may use the MULT option on the DLBL command that
identifies the file.

In many situations, VSE/VSAM does
VSE/Vill progr~£!.§ Ref~~ for
EXTENT information is required.

not require this information. See
information on when this type of

When you use the MOLT option, you are prompted to enter additional
disk mode letters, as follows:

assgn sys001 c
assgn sys002 d
assgn sys003 e
assgn sys004 f
assgn sys005 g
dlbl infile c (mult sys001
DftSDLB330R ENTER VOLO!E SPECIFICATIONS:
d sys002, e sys003 , f sys004
g sys005

(null line)

The above identifies a file that has extents on disks accessed at modes
C, D, E, F, and G. These disks have been assigned to the logical units
SY5001, 5Y5002, 5Y5003, 5Y5004, and SY5005. The rules for entering
multiple extents are:

• All disks must be mounted, accessed, and assigned when you issue the
DLBL command.

• You must not repeat the mode letter and logical unit of the disk that
is entered on the DLBL command line (C in the above example).

• If you enter
they must be

. ignored.

more than one mode letter and logical unit
separated by commas; trailing commas on

on a line,
a line are

• A maximum of nine disks may be specified you do not need to specify
them in alphabetical order.

You must enter a null line to terminate the
finished entering extents; if not, an error may
reenter the entire command sequence.

command when you are
result and you must

In order to display the volumes on which all multivolume data sets
reside, the following commands are issued:

DLBL (MULT) or QOERY tLBL !OLT

The following information concerning multiple volume datasets is
provided:

DDNAftE

ftODE

LOGONIT

The VSE filename or as ddname.

The CftS disk mode identifying one of the disks on which the
dataset resides.

The VSE logical unit specification (SY5xxx). This operand
will be blank for a data set defined while in CftS/OS
environment; that is, the SET DOS ON command had not been
issued at DLBL definition time.

80 IBM VM/SP CMS Command and Macro Reference

DLBL

If no DLBL definitions with multiple volume specifications are
active, the following message is issued:

D8SDLB324I NO USER DEFINED ~ULTS IN EFFECT

USING VSA8 CATALOGS: There are two special ddnames you must use to
identify-a-Vsi~master catalog and jot catalog:

IJSYSCT

IJSYSUC

identifies the master catalog when you initially define it
(using A!SERV), and when you begin a terminal session. You
should use the PER~ option when you define it.

You must assign the logical unit SYSCAT to the disk on which
the master catalog resides. If you are redefining a master
catalog that has already been identified, you may omit the
SYSCAT option on the DLBL command line.

identifies a job catalog to be used for subsequent AMSERV jobs
or V5AM programs.

Any programmer logical unit may be used to assign a job
catalog.

Only one VSA8 catalog is ever searched when a VSAM function is
performed. If a job catalog is defined, you may override it by using
the CAT option on the DLBL command for a data set. The following DLBL
command sequence illustrates the use of catalogs:

assgn syscat c
dlbl ijsysct c dsn mastcat (perm sjscat

identifies the master catalog, !ASTCAT, for the terminal session.

assgn sys010 d
dlbl ijsysuc d dSD mycat (perm sys010

identifies the job (user) catalog, MyeAT, for the terminal session.

assgn sys100 e
dlbl intest1 e dsn test.case (vsam S1s100

identifies a VSAM file to be used in a program. It is cataloged in the
job catalog, MYCAT.

assgn sys101 f
dlbl cat3 f dsn testcat (cat ijsysct sys101

identifies an additional user catalog, which has an entry in the master
catalog. Since a job catalog is in use, you must use the CAT option to
indicate that another catalog, in this case the master catalog, should
be used.

dlbl infile f dsn test. input (cat cat3 sys101

identifies an input file cataloged in the user catalog TESTCAT, which
was identified with a ddname of CAT3 on the DLBL command.

The selection of a VSAM catalog for A~SERV jobs and VSAM programs
running in CMS is summarized in Figure 8.

Section 2. CMS Commands 81

DlBl

IS THE
CAT OPTION

SPECIFIED ON THE
DLBL

COMMAND
?

NO

IS
THERE A

DLBL ACTIVE
FOR

IJSYSUC
?

NO

USE THE
MASTER

CATALOG

YES

YES

USE THE
CATALOG

DEFINED BY
THAT DDNAME

USE THE
JOB CATALOG

Figure 8. Determining Which VSAM Catalog to Use

1. You may use the DlBL command to identify all access method services
input and output files, and to identify all VSAM input and output
files referenced in Frograms.

For all other file definitions, including as or CMS disk files
referenced in programs that use VSAM data management, you must use
the FILEDEF command.

File definition statements, either DLBl or FIlEDEF, are not always
required by VSAM. For more information on file definition
requirements, see !SE/VSAM Programmer's Beference.

2. A DlBl ddname may have a maximum of seven characters. If you have
ddnames in your programs that are eight characters long, only the
first seven characters are processed when the programs are executed
in CMS. If you have two ddnames with the same first seven
characters and you attempt to execute this program in CMS, you will
receive an open error when the second file is opened. You should
recompile these programs providing unigue seven-character ddnames.

3. If you release a disk for which you have a DlBl definition in
effect, you should clear the DlBL definition before you execute a
VSAM program or an AMSERV command. eMS checks that all disks for
which there are DLBl definitions are accessed, and issues error
message DMSSTT069E if any are not.

82 IBM VM/SP eMS Command and Macro Reference

J

DLBL

4. The DLBL command does not support the DISP option. DISP is used in
VSE/VSAM to specify the disposition of a reusable file. Therefore,
in CMS, only the default values are available. For more
information on the DISP option, refer to the 1~E/VSA~ g£2grammer's
Reference.

SPECIFYINQ VSA~ EXT]NT 1!FO~~!11Q]: You may specify extent information
when you use the access method services control statements DEFINE SPACE,
DEFINE MASTERCATALOG, DEFINE USERCATALOG, DEFINE CLUSTER (UNIQUE); or
when you use the IMPORT or IMPORTRA functions for a unique file. Space
allocation is made only fer primary allocation amounts.

In many situations, VSE/VSAM does not
See VSE/VSAM PrQy£am~~~§ Ref~~£~ for
information is reguired.

require EXTENT
information on

information.
when EXTENT

When you enter the EXTENT option of the DLBL command, you are
prompted to enter the disk extents for the specified file. You must
enter extent information in accordance with the following rules:

• For count-key-data devices, you must specify the starting track
number and number of tracks for each extent, as follows:

19 38

This extent allocates 38 tracks, beginning with the 19th track, on a
3330 device.

• For fixed-block devices, you must specify the starting block number
and the number of blocks for each extent. The following example
allocates 200 blocks, starting at block number 352, on a fixed-block
device.

352 200

Because VSAM rounds the starting block to the next highest cylinder
boundary, it is advisable to specify the starting block on a cylinder
boundary.

• All count-key-data extents must begin and end on cylinder boundaries,
regardless of whether the AMSERV file contains extent information in
terms of cylinders, tracks, or records.

• Multiple extent entries may be entered
commas or on different lines. Commas
ignored.

on a single line separated by
at the end of a line are

• Multiple extents for the same volume must be entered in numerically
ascending order; for exam~le:

20 400, 600 80

These extents are valid for a 2314 device.

• When you enter multivolume extents, you must specify the mode letter
for extents on additional disks; extents for each disk must be
entered consecutively. For example:

dlbl file1 b (extent
DMSDLB331R ENTER EXTENT SPECIFICATIONS:
100 60, 400 80, 60 40 d
200 100 c
400 100 c

(null line)

Section 2. CMS Commands 83

DLBL

specifies extents on disks accessed at modes B, C, and D. Since B is
the mode specified en the DLBL command line, it does not need to be
respecified along with the extent information.

• A DASD volume must be mounted and accessed for each mode referenced
in an extent.

When you are finished entering extent information, you must enter a
null line to terminate the DLBL command sequence. If you do not, an
error may result and you will have to reenter the entire DLBL command.
If you make any error entering the extents, you must reenter all the
extent information.

The DLBL command does not check
cylinder boundaries or that they are
you do not enter them correctly,
function terminates with an error.

the extents to see if they are on
entered in the proper sequence. If

the access method services DEFINE

CMS assigns sequence numbers to the extents according to the order in
which they were entered. These sequence numbers are listed when you use
the LISTDS command with the EXTENT option.

IDENTIFYING ~IVOLOM! ~ EXiEN~§: When you want to execute a program
or use access method services to reference an existing multivolume VSAM
data set, you may use the MULT option on the DLBL command that
identifies the file.

In many situations, VSE/VSAH does
VSELVSAM Programmer's Re!§£~~ for
EXTENT information is required.

not require this information. See
information on when this type of

When you use the MULT option, you are Frompted to enter additional
disk mode letters, as follows:

dlbl infile c (mult
DMSDLB330R ENTER VOLOftE SPECIFICATIONS:
d, e, f
g

(null line)

The above example identifies a file that has extents on disks accessed
at modes C, D, E, F, and G. The rules for entering multiple extents are:

• All disks must be mcunted and accessed when you issue the DLBL
command.

• Iou must not repeat the mode letter of the disk that is entered on
the DLBL command line (C in the atove example).

• If you enter more than one mode letter on a line, they must be
separated by commas; trailing commas on a line are ignored.

• A maximum of nine disks may be specified; you do not need to specify
them in alphabetical order.

You must enter a null line to terminate the
finished entering extents; if not, an error may
re-enter the entire command sequence.

command when
result and

you are
you must

USING VSAM CATALOGS: There are two special ddnames you must use to
identify-a-vsi~ster catalog and jot catalog:

IJSYSCT identifies the master catalog, both when you initially define

84 IBM VM/SP CMS Command and Macro Reference

DLBL

it (using AMSERV) and when you begin a terminal session. You
should use the PERM option when you define it.

IJSYSUC identifies a job catalog to be used for subsequent AMSERV jobs
or VSAM programs.

Only one VSAM catalog is ever searched when a VSAM function is
performed. If a job catalcg is defined, you may override it by using
the CAT option on the DLBL command for a data set. The following DLBL
command sequence illustrates the use cf catalogs:

dlbl ijsysct c dsn mastcat (perm

identifies the master catalog, MASTCAT, for the terminal session.

dlbl ijsysuc d dsn mycat (perm

identifies the job (user) catalog, MYCAT, for the terminal session.

dlbl intest1 e dsn test.case (vsam

identifies a VSAM file to be used in a program. It is cataloged in the
job catalog, MYCAT.

dlbl cat3 dsn testcat (cat ijsysct

identifies an additional user catalog, which has an entry in the master
catalog. Since a job catalcg is in use, you must use the CAT option to
indicate that another catalog, in this case the master catalog, should
be used.

dlbl infile e dsn test. input (cat cat3

identifies an input file cataloged in the user catalog TESTCAT, which
was identified with a ddname of CAT3 on the DLBL command.

The selection of a VSAM catalog for AMSERV jobs and VSAM programs
running in CMS is summarized in Figure 8.

If the DLBL command is issued with no operands, the current DLBL
definitions are displayed at your terminal:

ddname1 device1 [fn1 ft1 fm1 [datasetname1]]

ddnamen devicen [fnn ftn fmn [datasetnamen]]

DMSDLB220R ENTER DATA SET NAME:

This message is displayed when you use the DSN 7 form of the DLBL
command. Enter the exact DOS or OS data set name.

DMSDLB320I MAXIMUM NU~BER CF DISK ENTRIES RECORDED

This message indicates that nine volumes have been specified for a
VSAM data set, which is the maximum allowed under CMS.

DMSDLB321I MAXIMUM NUMBER OF EXTENTS RECORDED

This message indicates that 16 extents on a single disk or minidisk
have been specified for a VSAM data space, catalog, or unique data

Section 2. CMS Commands 85

DLBL

set. This is the maximum number of extents allowed on a minidisk
or disk.

DMSDLB322I DDNAME 'ddname' NOT FOUND; NO CLEAR EXECUTED

This message indicates that the clear function was not performed
because no DLBL definition is in effect for the ddname.

DMSDLB323I {MASTERIJOB} CA~ALOG DLBl CLEARED

This message indicates that either the master catalog or job
catalog has been cleared as a result of a clear request.

You also receive this message if JOu issue a DLBL * CLEAR command,
and any DLBL definition is in effect for IJSYSCT or IJSYSOC that
was not entered with the PERM option.

DMSDLB330R ENTER VOLUME SPECIFICATIONS:

This message prompts you to enter volume specifications for
existing multivolume VSAM files. (See "Identifying Multivolume VSAM
Extents" in the appropriate usage section.)

DMSDLB331R ENTER EX~EN! SPECIFICATIONS:

This message
a new VSAM
I1Specifying
section.)

prompts you to enter the data set extent or extents of
data space, catalog or unique data set. {See

VSAM Extent Information" in the appropriate usage

DMSDLB001E NO FILENAME SPECIFIED RC=24
DMSDLB003E INVALID OPTION 'option' RC=24
DMSDLB005E NO '{CATIBUFSP}' SPECIFIED RC=24
DMSDLB023E NO FILETYPE SPECIFIED RC=24
DMSDLB048E INVALID MODE 'mode' RC=24
DMSDLB050E PARAMETER MISSING AF~ER DDNAME RC=24
DMSDLB065E 'option' OPTION SPECIFIED TWICE RC=24
DMSDLB066E 'option' AND 'option' ARE CONFLICTING OPTIONS RC=24
DMSDLB069E DISK 'mode' NOT ACCESSED RC=36
DMSDLB070E INVALID PARAMETER 'parameter' RC=24
DMSDLB086E INVALID DDNAME 'ddname' RC=24
DMSDLB109S VIRTOAL STORAGE CAPACITY EXCEEDED RC=104
DMSDLB221E INVALID DATA SET NAME RC=24
DMSDLB301E 'SYSxxx' NOT ASSIGNED FOR DISK 'fm' RC=36
DMSDLB302E NO SYSXXX OPERAND ENTERED RC=24
DMSDLB304E INVALID OPERANt VALUE 'value' RC=24
DMSDLB305E INCOMPLETE EXTENT RANGE RC=24
DMSDLB306E SYSXXX NO~ ASSIGNED FOR 'IGNORE' RC=36
DMSDLB307E CATALOG DDNAME 'ddname' NO! FOOND RC=24
DMSDLB308E 'mode' DISK IN {CMSINON-CMS} FORMAT; INVALID FOR

{NON-CMSICMS} DATASET RC=24

86 IBM VM/SP CMS Command and Macro Reference

DOSLIB

DOSUB

Use the DOSLIB command to delete, compact, or list information about the
executable phases in a CMS/DOS phasE library. The format of the DOSLIB
command is:

DOSLIB

~
DEL litname phasename1 [••• phasenamen]

COMP litname

DEL

MAP libname [(opticns ••• [)]]

QptiQ'!!§:
r ,
ITERM I
IDI.2~ I
IPRINT I
L .J

deletes phases from a CMS/DOS phase library. The library is
not erased when the last phase is deleted from the library.

COMP compacts a CMS/DOS phase library.

MAP lists certain information about the phases of
Available information provided is phase name,
relative location in the library.

a DOSLIB.
size, and

libname is the filename of a CMS/DOS phase library. The filetype must
be DOSLIB.

phasename1 ••• phasenamen
is the name of one or more phases that exist in the CMS/DOS
phase library.

MAP Opti~§: The following options specify the output device for the
MAP function. If more than one option is specified, only the first
option is used.

TERM displays the MAP output at the terminal.

writes the MAP output to a CMS disk file with the file
identifier of 'litname MAP AS'. If a file with that name
already exists, the old file is erased.

PRINT spools the MAP output to the virtual printer.

1. The CMS/DOS environment does not have to be active when you issue
the DOSLIB command.

2. Phases may only be added to a DOSLIB by the CMS/DOS linkage editor
as a result of the DOSLKED command.

Section 2. CMS Commands 87

DOSLIB

3. In order to fetch a program phase from a DOSLIB for execution, you
must issue the GLOBAL command to identify the DOSLIB. When a FETCH
command or dynamic fetch from a program is issued, all current
DOSLIBs are searched for the specified phases.

4. If DOSLIBs are very large, or there are many of them to search,
program execution is slowed down accordingly. To avoid excessive
execution time, you should keep your DOSLIBs small and issue a
GLOBAL command specifying only those libraries that you need.

When you use the TERM option on the DOSLIB MAP command line, the
following is displayed:

PHASE
name1

Dl'iSDSL002E
DMSDSL003E
DMSDSL013W
DMSDSL014E
DMSDSL037E
DMSDSL046E
DMSDSL047E
DMSDSL069E
DMSDSL070E
DMSDSL098E
DMSDSL104S
DMSDSL105S
DMSDSL213W

INDEX BLOCKS
lac size

FILE 'fn DOSLIB' NOT FOUND RC=28
INVALID OPTION 'option' RC=24
PHASE 'phase' NCT FOUND IN LIBRARY 'fn DOSLIB fa'
INVALID FUNCTION 'function' RC=24

BC=4

DISK 'mode' IS READ/ONLY RC=36
NO LIBRARY NAME S~ECIFIED RC=24
NO FUNCTION SPECIFIED RC=24
DISK 'mode' NOT ACCESSED RC=36
INVALID PARAMETER 'parameter' RC=24
NO PHASE NAME SPECIFIED RC=24
EBROR Inn' BEAtING FILE 'fn DOSLIB
ERROR Inn' WRITING FILE 'fn DOSLIB
LIBRARY 'fn DOSIIE fm' NCT CBEATED

fm' FROM DISK RC=100
fm' ON DISK RC=100

RC=4

88 IBM VM/SP eMS Command and Macro Reference

~

DOSLKED

DOSLKED

Use the DOSLKED command in CMS/DOS to link-edit TEXT files from CMS
disks or object modules from VSE private or system relocatable libraries
and place them in executatle form in a CMS phase library (DOSLIB). The
format of the DOSLKED command is:

r---.-------------------,
DOSLKED

fn

r ,
fn llibname I [(options ••• [)]]

Ifn I
L ~

.Q,Eti.Q'!!'§:
r ,
IDISK I
IPRINTI
ITERM I
L ~

specifies the name of the source file or module to be
link-edited. CMS searches for:

1.

2.

3.

4.

A CMS file with a filetype of DOSLNK

A module in a private relocatatle library (if IJSYSRL has
been defined)

A CMS file with a filetype of TEXT

A module in the system relocatable library (if a mode was
specified on the SET DOS ON command line)

libname designates the name of the DOSLIB where the link-edited phase
is to be written. The filetype is DOSLIB. If libname is not
specified, the default is fn. The output filemode of the
DOSLIB is determined as fellows:

• If libname DOSLIB exists on a read/write disk, that
filemode is used and the output is appended to it.

• If fn DOSINK exists on a read/write disk, libname DOSLIB is
written to that disk.

• If fn DOSLNK exists on a read-only extension of a
read/write disk, libname DOSLIB is written to the parent
disk.

• If none of the above apply, libname DCSLIB is writt~n to
your A-disk.

options: Only one of the following options should be specified. If
more than one is specified, only the first entry is used.

writes the linkage editor map produced by the DOSLKED command
on your A-disk into a file with the filename of fn and a
filetype of MAP. This is the default option.

Section 2. CMS Commands 89

DOSLKED

PRINT spools the linkage editor map to the virtual printer.

TERM displays the linkage editor map at your terminal.

~: All error messages are sent to the terminal as well as to the
specified device.

USgg~ Not~

1. You can create a CMS file with a filetype of DOSLNK to contain
linkage editor control statements and, optionally, CftS text files.

2. If you want to link-edit a mcdule from a private relocatable
library, you must issue an ASSGN command for the logical unit
SYSRLB and enter a DLBL command using a ddname of IJSYSBL to
identify the library:

assgn sysrlb c
dlbl ijsysrl c dsn reloc lit (sysrlh

If you have defined a private relocatable library but do not want
it to be searched, enter:

assgn sysrlb ign

to temporarily bypass it.

3. CMS TEXT files may also contain linkage editcr control statements
INCLUDE, PHASE, and ENTRY. The ACTION statement is ignored when a
TEXT file is link-edited.

4. To access modules on a VSE system residence volume, you must have
spe~ified the mode letter of the system residence on the SET DOS ON
command line:

set dos on z

5. The search order that CMS uses to locate object modules to be
link-edited is:

a. The specified object module on the VSE private relocatable
library, if one is available

b. CMS disks for a file with the specified filename and with a
filetype of TEX'I

c. The specified object module on the VSE system relocatable
library, if it is availatle

6. When a phase is added to an existing DOSLIB, it is always written
at the end of the library. If a phase that is being added has the
same name as an existing phase, the DOSLIB directory is updated to
point to the new pbase. The old pbase is not deleted, boweveri you
should issue the DOSLIB ccmmand with the COMP option to compress
the space.

If you run out of space in a DOSLIB while you are executing the
DOSLKED command, you should reissue the DOSLKED command specifying
a different DOSLIB, or compress the DOS LIB before attempting to
reissue the DOSLKED command.

7. Prior to performing a DCSLKED on a TEXT file baving multiple phase
cards following the TEXT END cards, rename the filetype of TEXT to
a filetype DOSLNK.

90 IBM VM/SP CMS Command and Macro Reference

DOSLKED

LINKAGE EDITO~ fONTR01 ~~]l!~ENl~: The CHS/DOS linkage editor recognizes
and supports the VSE linkage editcr control statements ACTION, PHASE,
ENTRY, and INCLUDE. The CMS/DOS linkage editor ignores:

• The SVA operand of the PHASE statement
• The F+address form for specifying origin on the PHASE statement

I • The BG, Fn, and SMAP operands of the ACTION statement

The S-form of specifying the origin on the PHASE statement corresponds
to the CMS user area under CMS/DOS. If a default PHASE statement is
required, the origin is assumed to te S. The PBDY operand of the PHASE
statement indicates that the phase is link-edited on a 4K page boundary
under CMS/DOS as opposed to a 2K page boundary for VSE.

In VSE, an ACTION CLEAR control statement clears the unused portion
of the core image library to binary zeros. In VSE, the core image
library has a defined size, while in CMS/DOS the CMS phase library
varies in size, depending on the number of phases cataloged. Therefore,
in CMS/DOS an ACTION CLEAR control statement clears the current buffers
to binary zeros before loading them; CMS/DOS cannot clear the entire
unused portion of the CMS phase litrary because that portion varies as
phases are added to and deleted from the CMS phase library. In CMS/DOS
if you want your phases cleared you must issue an ACTION CLEAR control
statement each time you add a phase to the CMS phase library.

LINK!GE ~DITO~ f!g~ IYPE§: ~he input to the linkage editor can consist
of six card types, produced by a language translator or a programmer.
These cards appear in the following order:

f~rd I~
ESD
SYM
TXT
RLD
REP
END

Definition
External-symbol dictionary
Ignored by linkage editor
Text
Relocation list dictionary
Replacement of text made by the programmer
End of module

CMS/DOS supports these six card types in the same manner that VSE
does.

When you use the TERM option of the LOSLKED command, the linkage editor
map is displayed at the terminal.

21011 INVALID OPERATION IN CONTROL STATEMENT

This message indicates that a clank card was encountered in the
process of link-editing a relocatable module. This message also
appears in the MAP filE. ~be invalid card is ignored and
processing continues.

DMSDLK001E NO FILENAME SPECIFIED RC=24
DMSDLK003E INVALID OPTION 'option' RC=24
DMSDLK006E NO READ/WElTE DISK ACCESSED RC=36
DMSDLK007E FILE 'fn ft fm' IS NOT FIXED, 80-CHAR. RECORDS RC=32
DMSDLK070E INVALID PARAMETER 'parameter' RC=24
DMSDLK099E CMS/DOS ENVIRONMENT NOT ACTIVE RC=40
DMSDLK104S ERROR Inn' REAtING FILE 'fn ft fm' FROM DISK RC=100
DMSDLK105S ERROR Inn' WRITING FILE 'fn ft fm' ON DISK RC=100
DMSDLK210E LIBRARY 'library' IS ON BEAD-ONLY DISK RC=36
DMSDLK245S ERROR 'nnn' eN PRINTER RC=100

Section 2. CMS Commands 91

DROPBUF

DROPBUF

Use the DROPBUF command to eliminate the most recently created program
stack huffer. The format of the DRCPEUF command is:

----------------------,
DROPBUF, n I

where:

n indicates the number of the first program stack buffer you
want to drop. CMS drops the indicated buffer and all buffers
created after it. If n is not specified, only the most
recently created buffer is dropped.

UsruI~ Note

Note that you can specify a number with DROPBUF. For example, if you
issue:

DROPBUF 4

CMS eliminates program stack buffer 4 and all program
created after it. Thus, if there were presently six
buffers, eMS would eliminate program stack buffers 6, 5,
issued DROPBUF without specifying n, only program stack
be eliminated.

Response§

None.

Retu.£! £Q~§

stack buffers
program stack
and 4. If you
buffer 6 would

If an error occurs in DROPBUF processing, Register 15 contains one of
the following nonzero return codes:

Return
Code

1
2

Invalid buffer number specified
Specified buffer does not exist

92 IBM VM/SP CMS Command and Macro Reference

L

DSERV

DSERV

Use the DSERV command in CMS/DOS to obtain information that is contained
in VSE private or system libraries. The format of the DSERV command is:

DSERV

r
I

CD IPHASE {name

RD
SD
PD
TD
ALL

L

r , ,
Innl I
11111 I
L .J .J

[d2 ••• dn J [(options ••• [)]]

QE!ion§:
r ,
I.QISK I
ITEEM I
IPRINTI
L .J

[SORT]

CD specifies that informaticn concerning one or more types of
RD directories is to be displayed or printed. The directory
SD types that can be specified are: CD (core image library),
PD RD (relocatatle library), SD (source statement library),
TD PD (procedure litrary) , TD (transient directory) , and
ALL ALL (all directories).

There is no default value. ihe private libraries take
precedence over system litraries.

PHASE name

nn

specifies the name of the phase to be listed. If the
phasename ends with an asterisk, all phases that start with
the letters preceding the asterisk are listed. This operand
is valid only for CD.

is the displacement within the phase where the version and
level are to he found (the default is 12).

[d2 ••• dn]
indicates additicnal libraries whose directories are to be
listed. (See Usage Note 1.)

Options:

DISK writes the output on your CMS A-disk to a file named DSERV MAP
A5. This is the default value if TERM or PRINT is not
specified.

TERM displays the output at your terminal.

PRINT spools the output to the system printer.

SORT sorts the entries for each library alphamerically; otherwise,
the order is the order in which the entries were cataloged.

Section 2. CMS Commands 93

DSERV

1. You may specify more than one directory on DSERV command line; for
example:

dserv rd sd cd pbase $$bofen (term

displays the directories of the relocatable and source statement
libraries, as well as the entry for the phase $$BOPEN from the core
image directory.

You can specify only one phasename or phasename* at a time,
however. If you specify more than one PHASE operand, only the last
one entered is listed. For example, if you enter:

dserv cd phase cor* phase idc*

the file DSERV MAP contains a list of all phases tbat begin with
the characters IDC. lhe first phasename specification is ignored.

2. If you want to obtain informaticn from the directories of private
source statement litrary directories, relocatable library
directories, or core image library directories, the libraries must
be assigned and identified (via ASSGB and DLBL commands) when tbe
DSERV command is issued. otherwise, the system library directories
are used. System directories are made available when you specify a .
mode letter on the SET DOS ON command line.

3. The current assignments for logical units are ignored by the DSERV
command; output is directed only to the output device indicated by
the option list.

Besponses

When you use the TERM option of the DSERV command, the contents of the
specified directory are displayed at your terminal.

DMSDSV003E INVALID OPTION 'option' RC=24
DMSDSV021W NO TRANSIENT DIRECTORY RC=4
DMSDSV022W NO CORE IMAGE tIRECTOEY BC=4
DHSDSV023W NO RELOCATABLE DIRECTORY RC=4
DMSDSV024W NO PROCEDURE DIBECTOEY RC=4
DMSDSV025W NO SOURCE STATEMENT DIREC10RY RC=4
DMSDSV026W 'phase' NOT IN LIERAEY BC=4
DMSDSV027E INVALID DEVICE Inn' RC=24
DMSDSV027W NO PRIVATE CORE IMAGE LIEBARY BC=4
DMSDSV028W NO {PRIVATEISISTEM} TRANSIENT DIRECTORY ENTRIES RC=4
DMSDSV047E NO FUNCTION SPECIFIED RC=24
DMSDSV065E 'option' OPTION SPECIFIED TWICE RC=24
DMSDSV066E 'option' AND 'option' ARE CONFLICTING OPTIONS RC=24
DMSDSV070E INVALID PARAMETER 'parameter' RC=24
DMSDSV095E INVALID ADDRESS 'address' RC=24
DMSDSV099E CMS/DOS ENVIRONMENT NOT ACTIVE RC=40
DMSDSV105S ERROR Inn' WRITING FILE 'DSERV MAP AS' ON DISK RC=24
DMSDSV245S ERROR 'nnn' ON PRINTER RC=100
DMSDSV411S INPUT ERROR CODE Inn' ON {SYRESISYSRLBJ BC=24

94 IBM VM/SP CMS Command and Hacro Reference

L

EDIT

EDIT

Use the EDIT command to invoke the VM/SP System Product editor in CMS
editor (EDIT) compatibility mode. Use the editor to create, modify, and
manipulate CMS disk files. In EDIT compatibility mode, you may execute
both EDIT and XEDIT subcommands. For complete details on EDIT
compatibility mode, refer to the publication !~L~g: al~~ produc!
1;gitm;: Command and Mac£Q ~€f.!§f.g.!lS:'!§, "Appendix B".

To invoke only the CMS editor, refer to the "Usage Note" below.

Once the eMS editor has been invoked, you may only execute EDIT
subcommands and EDIT macro requests, and enter data lines into the disk
file. A limited number of CMS ccmmands may be executed in the eMS
subset mode. Enter CMS sutset mode from the edit environment by issuing
the EDIT subcommand, CMS.

You can return control to the CMS environment by issuing the EDIT
subcommands FILE or QUIT.

For complete details on the EDIT subcommand formats and usage, see
"Section 3. EDIT Subcommands and Macros." For tutorial information on
using the CMS editor, including Examples, see the VMLSP ~MS User's
Guid~. The format of the EDIT command is:

Edit

L--

fn ft

fm

,
fn ft [fm] [(options ••• [))] j

* I
QptiQ!!§: j
[LREeL nn] I
[NODISP] I

I

is the filename and filetype of the file to be created or
edited. If a file with the specified filename and filetype
does not exist, the CMS editor assumes that you want to create
a new file, and after you issue the INPUT subcommand, all data
lines you enter become input to the file. If a file with the
specified filename and filetype exists, you may issue EDIT
subcommands to modify the specified file.

is the filemode of the file to be edited, indicating the disk
on which the file resides. The editor determines the filemode
of the edited file as follows:

.]diting ~~istilli1 !il.!§§: If the file does not reside on your
A-disk or its extensions, you must specify fm.

When you specify fm, the specified disk and its extensions are
searched. If a file is found on a read-only extension, the
filemode of the parent disk is saved; when you issue a FILE or
SAVE subcommand, the modified file is written to the parent
disk.

If you specify fm as an asterisk (*) all accessed disks are
searched for the specified file.

£~tiQg ~ !il~§: If you do not specify fm, the new file is
written on your A-disk when you issue the FILE or SAVE
subcommands.

Section 2. CMS Commands 95

EDIT

options:

LRECL nn is the record length of the file to be created or edited.

NODISP

Usgg~ Note

Use this option to override the default values supplied by
the editor, which are determined as follows:

~ditinq Ex~§tigg Fil~§: Existing record length is kept
regardless of format. If the file has variable-length
records and the existing record length is less than the
default record length, the default record length is used.

£~ing !~ !il~§: All new files have a record length of
80, with the following exceptions:

FiletIE,g
LIS'IING
SCRIPT, V SELATA
FREEFORT

IRECI
-121-

132
81

The maximum record length supported by the editor is 160
characters.

forces a 3270 display terminal into line (typewriter) mode.
When the NODISP option is in effect, all subcommands that
control the display as a 3270 terminal such as SCROLL,
SCROLLUP, and FORMAT (and CHANGE with no operands) are made
invalid for the edit session.

Not~: It is recommended that the NODISP option always be
used when editing on a 30664

When yo~ issue the EDIT command, an EXEC named EDIT EXEC S2 is executed.
This EXEC invokes the VM/SP System Product editor in EDIT compatibility
mode.

If you want to invoke only the CMS editor on a permanent basis, your
system programmer must rename this EXEC. Then, when you issue the EDIT
command, the EXEC will not execute and the CMS editor will be invoked.

If you want to invoke the CMS editor only for a particular edit
session, specify OLD on the EDIT command line. CMS passes the OLD
parameter to EDIT EXEC S2 and only the CMS editor is invoked. Note that
the old editor has not been enhanced for VM/SP and will not be enbanced
for future releases; specifically the old editor will not include any
support for new display devices.

NEW FILE:

EDIT:

Tbe specified file dces not exist.

The edit environment is entered. You may issue any valid EDIT
subcommand or macro reguest.

96 IBM VM/SP CMS Command and Macro Reference

EDIT

INPUT:

The input environment is entered
REPLACE or INPUT with no 0Ferands.
accepted as input to the file.

by issuing the EDIT subcommands
All subseguent input lines are

DMSEDI003E INVALID OPTION 'option' RC=24
DMSEDI024E FILE 'EDIT CMSUT1 fm' ALREADY EXIS!S RC=28
DMSEDI029E INVALID PARAMETER 'parameter' IN THE OPTION 'LRECL' fIELD RC=24
DMSEDI044E RECORD LENGTH EXCEEDS ALLOWABLE MAXIMUM RC=32
DMSEDI054E INCOMPLETE FILElt SPECIfIED RC=24
DMSEDI069E DISK 'mode' NO! ACCESSED RC=36
DMSEDI076E ACTUAL RECORD LENGTH EXCEEDS THAT SPECIfIED RC=40
DMSEDI104S ERROR Inn' REAtING FILE 'fn ft fm' FROM DISK RC=100
DMSEDI105S ERROR Inn' WRITING FILE 'fn ft fm' ON DISK RC=100
DMSEDI117S ERROR WRITING TO DISPLAY TERMINAL RC=100
DMSEDI132S FILE 'tn ft fm' TOO LARGE RC=88
DMSEDI143S UNABLE TO LOAD SAVED SYSTEM OR LOAD MODULE RC=40
DMSEDI144S REQUESTED FILE IS IN ACTIVE STATOS
DMSEDX069E DISK 'mode' NOT ACCESSED RC=36

Section 2. CMS Commands 97

ERASE

ERASE

Use the ERASE command to delete one or more CMS files from a read/write
disk. The format of the ERASE command is:

ERASE

fn

ft

fm

TYPE

[fm]
[*]

[(options ••• [)]]

is the filename of the file(s)
coded in this position indicates
used. fn must be specified,
asterisk.

r ,
IType I
1!.Q.!.yJ2~1
L .J

I

I
I
I
I
I
I
I

to be erased. An asterisk
that all filenames are to be
either with a name or an

is the filetype of the file(s) to be erased. An asterisk
coded in this position indicates that all filetypes are to be
used. This field must be sFecified, either with a name or an
asterisk.

is the filemode of the files to be erased. If this field is
omitted, only the A-disk is searched. An asterisk coded in
this position indicates that files with the specified filename
and/or filetype are to be erased from all read/write disks.

displays at the terminal the file identifier of each file
erased

file identifiers are not displayed at the terminal.

Usag§ Notes

1. If you specify an asterisk for toth filename and filetype you must
specify both a filemode letter and number; for example:

erase * * as

2. To erase all files on a particular disk, you can use the FORMAT
command to reformat it, or you can access the disk using the ACCESS
command with the ERASE option.

3. If an asterisk is entered as the filemode, then either the filename
or the filetype or both must be specified by name.

98 IBM VM/SP CMS Command and Macro Reference

ERASE

Responses

If you specify the TYPE oFtion, the file identification of each file
erased is displayed. For example:

erase oldfile temF (tYFe

results in the display:

OLDFILE TEMP A 1
R;

DMSERS002E FILE [' fn [ft [fm]]'] NO'! FOUND RC=28
DMSERS003E INVALID OPTION 'oFtion' RC=24
DMSERS037E DISK 'mode' IS READ/ONLY RC=36
DMSERS048E INVALID MODE 'mode' RC=24
DMSERS054E INCOMPLETE FILEIt SPECIFIED RC=24
DMSERS069E DISK 'mode' NOT ACCESSED RC=36
DMSERS070E INVALID PARAMETEB 'parameter' RC=24
DMSERS071E ERASE * * [*Imode] NOT ALLOWED RC=24
DMSERS109T VIRTUAL STORAGE CAPACI'lY EXCEEDED

Note: You can invoke the ERASE command from the terminal,
file, or as a function from a program. If ERASE is invoked
or from an EXEC file that has the &CONTROL NOMSG option
error message is issued.

from an EXEC
as a function
in effect, no

Section 2. CMS Commands 99

ESERV

ESERV

Use the ESERV EXEC procedure in CMS/DOS to copy edited VSE macros from
system or private source statement E suhlitraries to CMS disk files, or
to list de-edited macros. The format of the ESERV command is:

fn

ESERV I fn

specifies the filename of the CMS file that contains the ESERV
control statements; it must have a filetype of ESERV. The
logical unit SYSIPT must be assigned to the disk on which the
ESERV file resides. fn is also the filename of the LISTING
and MACRO files produced by the ESERV program.

1. The input file can contain any or all of the ESERV control
statements as defined in Guide !2 th~ D02LVS§ A§§~~bl~.

2. You must have a read/write A-disk accessed when you use the ESERV
command.

3. To copy macros from the system source statement library, you must
have entered the CMS/DOS environment specifying the mode letter of
the VSE system residence. To copy from a private source statement
library, you must assign the logical unit SYSSLB and issue a DLBL
command for the ddname IJSYSSL.

4. The output of the ESEEV program is directed (as in VSE/AF) to
devices assigned to the logical units SYSLST and/or SYSPCH. If
either SYSLST or SYSPCB is not assigned, the following files are
created:

,!!ni!
SYSLST
SYSPCH

Qy!.E,Y! !~le
fn LISTING mode
fn MACRO mode

where mode is the mode letter of the disk on which the source file,
fn ESERV resides. If fn ESERV is on a read-only disk, the files are
written to your A-disk.

You can override default assignments made by the ESERV EXEC as
follows:

• If you assign SYSIPT to TAPE or READER, the source statements
are read from that device.

• If you assign SYSLST or SYSPCB to another device, the SYSLST or
SYSPCB files are written to that device.

5. The ESERV EXEC procedure clears all DLBL definitions, except those
entered with the PERM option.

6. If you want to use the ESEEV command in an EXEC procedure, you must
use the EXEC command (because ESERV is also an EXEC).

100 IBM VM/SP CMS Command and Macro Reference

ESERV

7. When you use the ESERV control statements PUNCH or DSPCH, the ESERV
program may generate CATAl.S, END, or /* records in the output
file. When you add a MACRO file containing these statements to a
CMS macro library using the MACLIB command, the statements are
ignored and are not read into the MAC LIB member.

8. Any DISKS accessed with a mode letter of 'R' or 'T' should be in
read/only mode when an ESERV is running on them, otherwise message
DMSDLB301E may occur.

None. The CMS ready message indicates that the ESERV program completed
execution successfully. You may examine the SYSLST output to verify the
results of the ESEEV program execution.

DMSEEV001E NO FILENAME SPECIFIED RC=24
DMSERV002E FILE 'fn ESEEV' NOT FOUND RC=28
DMSERV006E NO READ / WElTE DISK ACCESSED RC=36
DMSERV027E INVALID DEVICE ' device ' FOR SYSxxx RC=28
DMSERV037E DISK 'mode' IS EEAD ONLY RC=36
DMSERV070E INVALID ARGUMENT ' argument' EC=24
DMSERV099E CMS/DOS ENVIEONMENT NOT ACTIVE RC=40

Note: The ESERV EXEC calls other CMS commands to perform certain
functions, and so you may, on occasion, receive error messages that
occur as a result of those commands.

Non-CMS error messages produced by the VSE ESERV program are
described in the ~~ig~ to 1hg ~Q~L!~£ As§g~~l~~.

Section 2. eMS Commands 101

EXEC

EXEC

Use the EXEC command to eXEcute one or more CMS commands or EXEC control
statements contained in a specified CMS EXEC or EXEC2 file. The format
of the EXEC command is:

r-----------------------------------.--,
[EXec] I

[EXec]

fn

args

fn [args •••] I ,

indicates that the EXEC command may be omitted if you are
executing the EXEC procedure from the CMS command environment
and have not issued the command SET IMPEX OFF.

is the filename of a file containing one or more CMS commands
and/or EXEC control statements to be executed. The filetype
of the file must he EXEC. The file can have either fixed- or
variable-length records with a logical record length not
exceeding 130 characters. I text editor or a user program can
create EXEC files. EXEC files a CMS editor creates have, by
default, variable-length, aO-character records.

are any arguments you wish to pass to the EXEC. The CMS EXEC
processor assigns arguments to special variables &1 through
&30 in the order in which they appear in the argument list.
The EXEC 2 processor assigns arguments to special variables
starting with special variable &1. With the EXEC 2 processor,
the numbe~ of arguments is not limited. However, the number
of bytes of data you can Fass in the argument list is limited.
The limit is the aaximum number of bytes that can fit in a
line: 130 bytes if the command is entered from a terminal,
255 bytes if the command is issued from a Frogram.

"Section 5.
of EXEC control
For information
word usage, see

EXEC Control Statements" contains complete descriptions
statements, special variables, and built-in functions.
on designing EXEC procedures and examples of control

the lliSP CM§ User'§ Guide.

See VM/SP ~!§£ 1 Refe~~~ for information about EXEC 2.

The amount of information displayed during the execution of an EXEC
depends on the setting of the &CONTBOL control statement. By default,
&CONTROL displays all CMS commands, responses, and error messages. In
addition, it displays nonzero return codes from CMS in the format:

+++ R(nnnnn) +++

where nnnnn is the return code from the CMS command.

For details, see the description of the SCONTROL control statement in
"Section 5. EXEC Control Statements."

The amount of information displayed during the execution of an EXEC 2
file depends on the setting of the &TRICE control statement. See VH/SP
EXEC £ Refeum~ for details.

102 IBM VM/SP CMS Command and Macro Reference

DMSEXC001E NO FILENAME SPECIFIED RC=24

If the EXEC interpreter finds an error, it displays the message:

DMSEXT072E ERROIl IN EXEC FILE filename, LINE nnnn - description

The possible errors, and the associatEd return codes, are:

Description
FILE NOT FOUND
&SKIP OR &GOTO EBROR
BAD FILE FORMAT
TOO MANY ARGUMENTS
MAX DEPTH OF LOOP NESTING EXCEEDED
ERROR READING FILE
INVALID SYNTAX
INVALID FORM OF CONDITION
INVALID ASSIGNMENT
MISUSE OF SPECIAL VARIABLE
ERROR IN &ERROR ACTION
CONVERSION ERROR
TOO MANY TOKENS IN STATEMENT
MISUSE OF BUILT-IN FUNCTION
EOF FOUND IN LOOP
INVALID CONTROL WORD
EXEC ARITHMETIC UNDEIlFLOW
EXEC ARITHMETIC OVEBFLOW
SPECIAL CHARACTER IN VARIABLE SYMBOL

Return
Code
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819

If the EXEC 2 interpreter finds an error, it displays the message:

DMSEXE085E ERROR IN fn ft fm, LINE nnn - description

The possible errors and the associated return codes are:

Description
FILE NOT FOUND
WRONG FILE FORMAT
WORD TOO LONG
STATEMENT TOO LONG
INVALID CONTROL WORD
LABEL NOT FOUND
INVALID VARIABLE NAME
INVALID FORM OF CONDITION
INVALID ASSIGNMENT
MISSING ARGUMENT
INVALID ARGUMENT
CONVERSION ERROR
NUMERIC OVERFLOW
INVALID FUNCTION NAME
END OF FILE FOUND IN LOOP
DIVISION BY ZERO
INVALID LOOP CONDITION
EBROR IlETURN DURING &ERROR ACTION
ASSIGNMENT TO UNSET ARGUMENT
STATEMENT OUT OF CONIEXT
INSUFFICIENT STORAGE AVAILABLE
FILE READ ERROR nnn
TIlACE EBROR nnn

Return
Code
1000"1-
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10019
10020
10021
10097
10098
10099

EXEC

Section 2. CMS Commands 103

EXEC

DMSEXE255T INSUFFICIENT STORAGE FOR EXEC INTEBPBETER

DMSEXE175E INVALID EXEC COMMAND BC=10000

104 IBM VM/SP CMS Command and Macro Reference

RC=10096

EXECIO

I EXECIO

Use the EXEClO command to:

I • Read lines from disk or virtual reader to the program stack.

I • write lines from the program stack to a CMS disk file or to a virtual
I spool device (punch or printer).

I • Cause execution of CP commands and recover resulting output.

In some cases output data to be written may be supplied directly on the
EXECIO command line.

The information immediately following is reference level information
about EXECIO format and operands. Following this reference information
you can find extended descriptive and use information. If you are not
familiar with EXECIO, you should review the complete command description
before attempting to use it. Also, to get full benefit from EXECIO you
should be familiar with use of execs under EXEC 2. (Refer to the EXEC ~
Refere~, SC24-5219).

In the following descriptions, 'relative line number' means the number
of lines processed to satisfy an EXECIO operation; 'absolute line
number' means the number of the line relative to the top of the file.

The format of the EXECIO command is:

Section 2. eMS Commands 105

EXECIO

,
I

EXECIO :{li~es }
DISKR
CARD

fn ft [fm [linenum]] [([FINIs] options [a] [b]] [)]
[(options (a][bJ] [)]

I CP [(options (a] (b] Cd]] [) 1
I DISKii fn ft fm [linenum
I [recfm [lrecl]]] [([FINIs] options [b] [c] [dJ] [)]
I PUNCH [(options [b] [c] Cd]] [)]
I PRINT
I

[([CC {COde p options [b] [c](d]] [)]
[[DATA]

I EIISG [(options [b] [c] Cd]] ()]
I

Option formats:

(a) (b) (C) (d)

FInd /chars/ lIargins CAse {~} STring xxx •••
LOcate /chars/
Avoid /chars/ STRIP

Zone ~11 ;2~ NOTIPE

LIFO
FIFO

SKip

Note: Parsing of the EXECIO command differs from that of other CIIS
commands in that it involves handling of strings that may

where:

lines

DISKR

CARD

CP

contain embedded blanks, Farenthesis, other special characters,
and words of more than eight characters. Therefore, if a right
parenthesis is used to mark the end of an EXECIO option, it must
be preceded by at least one tlank character. A right parenthesis
cannot be used to mark the end of the STRING option.

is the number of source lines processed. This can be any
non-negative integer. An asterisk (*) indicates that the
operation is to terminate when:

a. a null (O-length) line is read during an output operation;
b. an end-of-file condition is detected during an inEut

operation.

Specification of *, together with the STRING option, is valid
only with the CP operand. Using the * and STRING combination
with any other operand causes an error message to be issued.
If 'lines' is specified as zero (0), no I/O operation is
performed other than FINIS, if it is specified as an option.

is used to read a specified number of lines from the CMS file
'fn ft [fm]' to the program stack FIFO (first-in first-out).

is used to read a specified number of lines from the virtual
reader to the program stack (FIFO).

causes output resulting from a CP command to be placed on the
program stack (IIFO). You may specify which CP command is to
be issued via:

106 IBM VM/SP CMS Command and Macro Reference

DISKW

recfm
lrecl

PUNCH

PRINT

CC

code

DATA

EXECIO

a. the STRING oFt ion on the EXECIO command line;
b. the next line from the program stack.

is used to write a specified number of lines from the program
stack to a new or existing CMS file 'fn ft fm'.

Inserting a line into a variable length CMS file can cause
truncation of the portion of the file following the inserted
line. See the extended DISKW operand description.

define the record format and record length for any new file
created as a result of a DISKW operation. The default value
for recfm is V (variable), in which case 'lrecl' has no
meaning. If you specify F (fixed) for recfm, the default
lrecl value is 80. The maximum lrecl value that may be
specified is 255.

is used to transfer a specified number of lines from the
program stack to the virtual punch.

is used to transfer a specified number of lines
program stack to the virtual printer.

from the

is used with the PRIN! operand to specify carriage control for
each line transferred to the virtual printer. Using the CC
operand, you can supply carriage control code explicitly, or,
by specifying DATA, indicate that the carriage control
character is the first byte of each line.

is the character (ASA or machine code) that defines carriage
control. A tlank code (the default value) cannot be specified
on the command line.

specifies that the first byte of each line sent to the virtual
printer is a carriage control character.

EMSG causes a message to be displayed. The text of the message may
be:

fn

ft

fm

a. the character string specified on the STRING option;
b. the next available line(s) from the program stack.

Messages are edited according to the current CP SET EMSG
settings.

is the filename of the file.

is the filetype of the file.

is the filemode of the file. When filemode is specified, that
disk and its extensions are searched. If filemode is not
specified, or is specified as an asterisk (*), all accessed
disks are searched for the specified file.

Section 2. CMS Commands 107

EXECIO

linenum

FINIS

(Option a)

FIND

LOCATE

AVOID

ZONE

LIFO
FIFO

is the absolute line number within the specified file where a
DISKR or DISKW operation is to begin. If a value is not
specified (default is 0) for newly opened files, reading
begins at the first line and writing begins at the last line.
For other files, reading or writing begins at the line
following the one at which the previous operation ended.

causes the specified file to be closed following completion of
a DISKR or DISKW operation.

is used to
first-out) :

write to the program stack LIFO (last-in

1. the contents of that line;
2. the line number of the first occurrence of a line (or zone

portion of that line) that begins ~ith the characters
specified hetween delimiters. For DISKR operations both
the relative and absolute line numbers are written.
otherwise, only the relative line number is written.

If you wish to ~B only a portion of each line, use the
ZONE option, explained below. If you wish to write only a
portion of any line matching the search argument to the
program stack, use the MARGINS option, also explained below.

is like the FIND oFtion explained above, except that the
object characters may occur any place within a line (or zone
portion of that line).

is like the LOCATE option explained above, except that the
search is for a line (or zone portion of that line) that does
~ot contain the specified characters.

is used to restrict the portion of the input lines searched as
a result of the FIND, LOCATE, or AVOID options. The search is
between columns n1 and n2 (inclusive), if specified. The
default values are column 1 through the end of the line (*).
The limits of values that may be specified for n1 or n2 are 1
through 255.

defines the order in which lines are written
stack. Generally, the default order is
first-out) • The exceptions are operations
numbers on the Frogram stack as a result of a
(FIND, LOCATE, or AVOID). These operations
(last-in first-out).

to the program
FIFO (first-in
that put line

search operation
default to LIFO

SKIP allows a read function (DISKR, CARD, CP) to occur without
writing any information to the program stack.

108 IBM VM/SP CMS Command and Macro Reference

(Option b)

MARGINS

STRIP

NOTYPE

(option c)

CASE

(0 ption d)

STRING

EXEeIO

specifies that only a portion (columns n1 through n2
inclusive) of affected lines is to be put on, or taken from
the program stack. The default values are column 1 through
the end of each line (*). The limits of values that may be
specified for n1 or n2 are 1 through 255.

specifies that trailing blank characters are to be removed
from any output lines or lines put on the program stack.

suppresses the display of message D!SEIC632E at the virtual
console.

causes data read from the program stack to be:

a. translated to uppercase if U is specified;
b. not translated (mixed) if ! is specified.

PI (mixed) is the default value.

is used to
line. Any
as string
STRING, if
line.

supply output data explicitly on the EXECIO command
characters following the STRING keyword are treated
data, not additional EXEeIO operands. Therefore,
specified, must be the final option on the command

EXTENDED DESCRIPTIONS !M~ US! l!!Q~~ATION

General £Q!~ts

EXECIO commands are normally issued as statements from execs running
under EXEC 2. Because some EXEClO option values can exceed eight
characters, an extended parameter list is reguiced for EXEClO execution
with options specified. Otherwise, an error message results. EXEC 2
supplies an extended parameter list.

You should keep in mind that when a CMS operation completes and the
READY message (R;) displays, eMS closes all files. Any subsequent
EXECIO read operation will begin at file line one unless a 'linenum'
value is specified. Any subsequent EXECIO write operation will begin at
the end of the file unless a 'linenum' value is specified. Therefore,
when possible, it is a good idea to specify a 'linenum' value on the
EXECIO command line.

For write operations, data to be written is normally taken
program stack. However, data to be written may be supplied
STRING option if, as is the case when using EXEC 2, an
(nontokenized) parameter list is provided.

from the
via the

extended

The program stack is a buffer area, expanded as necessary from available
free storage. Data flow into and out of the program stack is:

a. normally FIFO (first-in first-out) for read or write operations;
h. LIFO (last-in first-out) for read options, such as FIND or LOCATE,

Section 2. CMS Commands 109

EXECIO

that result in a line number being stacked.

A successful search (LOCATE, FIND, etc.) operation results in two lines
being written (LIFO) to the Frogram stack:

1. the contents of the line that satisfied the search argument;
2. the relative line number (number of lines read to obtain a match for

the search argument), and for a DISKR operation only, the absolute
line number (position from the top of the file) •

Stacked line number values may be used on subsequent EXEeIO operations
for 'lines' or 'linenum' operands.

The CMS SENTRIES command results in a return code equal to the number of
lines in the program stack. Thus, the difference between SENTRIES
return codes, one before and one after an EXEeIO operation, is the
number of lines stacked as a result of that operation.

EXECIO (DISKR or DISKW) operations do not close referenced files when
the operation terminatE~ unless the FINIS operand is specified on the
command line. If you choose, you may clOSE these files manually by
invoking the CMS FINIS command. There is considerable system overhead
associated with the execution of FINIS. Therefore, if multiple
references are to be made to a given file, it should be closed only when
necessary.

If successive EXEeIO commands reference a particular internal area of a
CMS file, it is probably more efficient to let the file remain open
until the last of these commands is issued. If so, each operation
begins at the file line following the last line processed. This
eliminates much of the need for calculating the 'linenum' value.

EXECIO does not close virtual spool devices.
spooled EXECIO output to be processed you must
device. For example:

CP CLOSE PRINTER

Therefore, to cause any
close the corresponding

For a DISKW, PUNCH, PRINT, or EMSG operation, if the 'lines' operand
exceeds the number of lines on the program stack, reading continues
through the terminal input buffer. If the 'lines' operand is still not
satisfied, a VM READ is issued to the terminal. At that point, you must
enter the balance of the lines (the number specified in the 'lines'
operand) from the terminal. Entering a blank character (null line) does
not terminate the EXEeIO operation; it writes a blank character to the
output device. When the 'lines' operand has been satisfied, the exec
from which EXECIO was issued continues to execute.

If * (to end of file) is specified for 'lines' on an output operation,
and you want the operation to terminate at any given line in the program
stack, you must make sure that line is null. Reading a null line
terminates any of the four cutput operations if * is specified for the
'lines' operand.

For input operations, the number of lines written to the program stack
does not necessarily equal the number specified by 'lines'. For
example, an end-of-file or a satisfied search condition terminates a
read operation, even if the specified number of lines has not been

110 IBM VM/SP CMS Command and Macro Reference

J

EXECIO

written to the program stack. When a search argument (FIND, LOCATE,
AVOID option) is satisfied, and no SKIP option is specified, and the
default stacking order (LIFO) is used, the line at the top (first line
out) of the stack contains the number of operations reguired to satisfy
the search. The next line contains the line that satisfied the search.

The first line read on a DISKR operation may be:

a. the first line of the specified file;
b. specified using the 'linenum' operand;
c. determined by the results of a previous operation.

The DISKR operation may be used to simply read a specified number of
lines from a specified file and write them to the program stack. For
example, suppose file MYFILE DA!A contains:

The number one color is red
The number two color is yellow
The number three color is green
The number four color is blue
The number five color is black

The command:

EXECIO 2 DISKR MYFIL! DATA * 1

writes to the program stack (FIFO) two lines beginning with line one,
like this:

r--------------------------------,
I The number one color is red
I The number two color is yellow
I
/

I<-next
I
I
/

line read

However, a little more ccmplex version of this command:

EXECIO 2 DISKR MYFIL! DA!A * 3 (LIFO MARGINS 5 14

would have resulted in this Frogram stack:

r----------------------------------,
I number fou I <-next line read
I number thr I
I I
/ /

Note the use of * as a filemode operand on the command lines just above
to serve as a place holder.

When a line satisfies the LOCATE, FIND, or AVOID option for a DISK,E
operation, EXECIO writes that line to the program stack (LIFO), and in
an additional stack line, writes the relative (number of lines read to
satisfy the search) and absolute (position from the top of the file)
line numbers.

£f operand

When a search argument is reguired, the CP operand uses the FIND,
LOCATE, and AVOID options to process output resulting from the
associated CP command. !he line that satisfies the search criteria is

section 2. CMS Commands 111

ElECIO

written to the program stack. Any data in excess of 8192 characters is
truncated and an error code is returned. lhe number of read operations
required to match the search argument is written to the next stack line.

If you do not supply the CP command to be issued via
the next line in the program stack is treated as that
are no lines in the program stack, the next line in
buffer is treated as the CP command. If there are
console input buffer, then a VM READ is issued to the
line terminates the operation.

the STRING option,
command. If there

the console input
no lines in the

terminal. A null

Keep in mind that all characters of CP commands must be uppercase.

ZONE and MARGINS options do not affect
however, they do affect the portions of
of the command execution.

the reading of the CP command;
the lines processed as a result

The DISKW operand causes the next lines from the program stack to be
written to a CMS file. The point at which writing begins in an existing
file on a DISKW operation may:

a. follow the last file line (default 'linenum l when writing to a newly
opened file, for example);

b. be specified using the Ilinenum l oFerand;
c. be determined by the results of a previous operation.

For example, suppose you want to write 10 lines from
to the end of an existing A-disk file, BOCKET STACK
statement to do this would be:

EXECIO 10 DISKW BOCKE! SlACK A

the program stack
A. Your exec file

Now, take a slightly more complex reguirement. Osing stack lines down
to the first null line, create a new A-disk file, EASKET STAX A, then
close the file after it is written. Also, make the file fixed length
format with a record length of 60. The EXECIO command to do this is:

EXECIO * DISKW BASKEl STAX A 1 F 60 (FINIS

A word of caution about using the linenum operand to insert lines in the
middle of CMS variable length files. Because of the way CMS handles
these files, any variable length line inserted must be egual in length
to the line it displaces. otherwise, for disks formatted in:

a. 1K, 2K, or 4K blocks, all file lines following the one inserted are
truncated;

b. 800-byte blocks, the file remains unchanged and CMS issues message
105S (nn=15).

For example, assume a disk format in 2K blocks. The variable format
file WORDS LEARNING A is:

A is for apple
C is for cake
C is for candy
D is for dog

execution of:

EXECIO 1 DISKW WORDS LEARNING A 2 (STRING B is for butterfly

produces a file that contains only:

112 IBM VM/SP CMS Command and Macro Reference

EXECIO

A is for apple
B is for butterfly

Because 'B is for butterfly' contains more characters than the line it
writes over, 'C is for cake', all lines following it are truncated.
However, slightly modifying the command to:

EIECIO 1 DISKW WORDS LEARNING A 2 (STRING B is for baby

results in:

A is for apple
B is for baby
C is for candy
D is for dog

To prevent truncation when inserting records in a variable-length file,
you can use fixed-format files.

recfm
lr~cl operands

The default value for recfm is V (variable), in which case 'lrecl' has
no meaning. If you specify F (fixed) for recfm, the default lrecl value
is 80. The maximum lrecl value that you may specify is 255.

When lines are written to an existing file, the record format and record
length of that file apply. Specifying recfm or lrecl values on the
EXECIO command line that conflict with those of the existing file causes
an error message to be issued.

CC operand

When you specify CC together with the DATA operand, be sure the first
character of each line to be sent to the virtual printer may be removed
and interpreted as carriage control for that line.

You may use ASA or machine code characters with the CC operand to
specify carriage control. For example, CC 0 causes space two lines
before printing. You can find information about these codes under the
PRINTL macro description in !~SP CMS Com~and ~nd MacrQ Reference.

EMSG operand

Lines to be displayed by EMSG should have the format:

xxxmmmnnns

where:

I xxxmmm is the issuing module name
I nnn is the message number
I s indicates the message type (E - error, I - informational, W-
I warning etc.)

The current settings of the CP SET EMSG command control the displayed
lines. These settings, combined with message length, can cause messages
to be abbreviated or not displayed at all.

Section 2. CMS Commands 113

EXECIO

li~num operand

When a linenum value (default 0) is not specified on the EXECIO command
line, the number of the next file line available for reading or writing
depends on results of previous operations that referenced that file.
For example, consider the two EXECIO DISKR operations just below. By
looking at the first of these commands you can see:

a. Four lines are to be read from MYFILE DATA, starting at line 1;
b. Because FINIS is not specified on the command line, MYFILE DATA

remains open after the first read operation. Because the first
command reads 4 lines, the subsequent read operation will begin at
line 5.

EXECIO 4 DISKR MYFILE DATA * 1

EXECIO 3 DISKR MYFILE DATA (FINIS

Because the second EXECIO command specifies no linenum operand, reading
of the specified 3 lines begins at line 5.

Two situations that would caUSE the second EIECIO command to not begin
execution at line 5 are:

a. a program other than EIECIO accessing MY FILE DATA after the first and
before the second EXECIO command is executed;

b. a CMS operation completing such that the CMS READY message (R;) is
displayed. In that case CMS closes associated files. Therefore,
subsequent operations using these files would begin at line 1.

The FINIS operand causes MYFILE DATA to close. Therefore, any
subsequent DISKR operation using a default linenum value would begin
reading at line 1.

FIND
LOCATE
AVOID options

The delimiter pair for the specified character string need not be / /.
They may be any character not included in the string. For example:

EIECIO * DISKR MYFILE DATES (LOCATE $12/25/81$

FIFO
LIKQ options

Most EXECIO operations that write to the program stack default to FIFO,
first line written to the stack will be the first read out. The
exceptions (LIFO) are operations involving a search (LOCATE, FIND, and
AVOID options). These operations result in the relative line number
(number of lines read to satisfy the search) being stacked. For DISKR
operations the absolute line number (position from the top of file) is
also stacked on the same line. It is necessary to have these numbers at
the top of the stack so that they are immediately accessable to a
subsequent EXECIO command.

SKIP .Q.Ption

On EXECIO read operations the SKIP operand prevents input lines from
being written to the program stack. For example, you might want to put

114 IBM VM/SP CMS Command and Macro Reference

EXEClO

on the program stack all lines of MYFlLE DATA that follow the line
containing '4120 Rock Road'. First, to search through the file for the
line after which reading to the program stack is to begin, issue:

EXEClO * DISKR MYFILE DATA * 1 (lOCATE /4120 Rock Road/ SKIP

The SKIP option prevents the line being searched for, together with the
line number, from being written to the program stack. .Then, to write to
the program stack the next line through the end of file, issue:

EIECIO * DISKR MYFlL! DATA

Keep in mind that accessing MYFILE DATA by another program or causing a
CMS READY message to be displayed prior to issuing the second EIECIO
command would change the point at which the second command begins
reading. When possible, you should specify the linenum operand
explicitly.

Another use of the SKIP option might be the execution of a CP command
via the CP operand to obtain a return code without displaying the
resulting messages or writing them to the program stack. For example:

EXECIO * CP (SKIP STRING Q userid

The userid must be uppercase.

As an alternative, specifying 0 for the 'lines' operand value with the
CP operand also causes results not to be displayed or written to the
program stack.

This example is not intended to teach you all you need to know to write
EXEC 2 execs. If you are not already familiar with EXEC 2, see VM/SP
EXEC £ Reference.

The example illustrates how you might use EXEClO commands in an EXEC 2
exec to read a CMS file from the program stack, then print that file, 60
lines per page, with the cutput indented 15 spaces.

This is not the only, nor necessarily the best way to
results. However, it does show some uses of the EIEClO
an EXEC 2 exec. The eXEC statement numbers in the left
reference explanations below, and are not a part
Indentation of statements is only to identify groups
routines within the exec.

Because the exec reads, prints, and indents, lets name
(the filetype must be EXEC).

RDPRIND EXEC

1. &TRACE
2. &CASE M
3. &UPPER IRGS
4. DROPBUF 0
5. &B = &LEFT OF &BLINK 15
6. &L = 0
7. EXEClO 1 PRINT (CC 1 STRING
8. -AGAIN
9. EXEClO 100 DISKR &1 &2 &3
10. &TEST = &RC
11. SENTRIES

accomplish the
command within

margin are to
of the exec.
that make up

it RDPRIND EXEC

Section 2. CMS Commands 115

EXECIO

12. &LOOP -END &RC
13. &READ STRING &S
14. &S = &CONCAT OF &B &S
15. EXECIO 1 PRINT (S!RING &S
16. &L = &L + 1
17. &IF &L < 60 &GOTO -END
18. EXECIO 1 PRINT (CC 1 STRING
19. &L = 0
20. -END
21. &IF &TEST = 0 &GOTO -AGAIN
22. CP CLOSE PRT NAME &1 &2
23. &EXIT

(Explanations, by statement number)

1. &TRICE - EXEC 2 execs begin with an &TRICE statement (to distinguish
them from CMS execs) •

2. &CASE M - Input characters, resulting from subseguent exec statements
causing read operations, are not to be translated to uppercase (the
default condition).

3. SUPPER IRGS - Command line
This statement caused any
translated to uppercase.

arguments are processed in uppercase.
arguments entered in lowercase to be

4. DROPBUF 0 - Clears the program stack of any existing lines.

5. &B = &LEFT OF &BLINK 15 - Creates a variable (&B) that is 15 blank
(&BLANK) characters and begins at the left margin (&LEFT OF). This
is used to indent printed output 15 positions.

6. &L = 0 - Initialize to 0 the variable (&L) used to count the number
of lines printed on the current page. When this number reaches 60
the exec causes a page eject.

7. EXECIO 1 PRINT (CC 1 STRING - Cause the printer to eject to the top
of a new page (CC 1) before the first line is printed. Because no
lines are to print on this particular operation, the dummy STRING
operand is included to prevent reading a line from the program stack
or the console.

8. -AGAIN - Marks the start of the read/print routine.

9. EXECIO 100 DISKR &1 &2 &3 - The input file is to be read 100 lines
each time through this loop until an end of file condition occurs.
This is because some files may be so large that stacking space
becomes a problem. If you are certain that the entire file can be
handled on one DISKR operation, you can specify * in place of the 100
for a 'lines' operand.

10. &TEST = &RC - Set the variable &TEST to the value of
from the EXECIO DISKR operation. A 0 return code
more lines remain to be read. &TEST is checked at
determine if the last group of lines from the Iile
resulting in an exit from the exec.

the return code
indicates that

statement 21 to
have been read,

11. SENTRIES - The return code from this CMS command is equal to the
number of lines on the program stack. Because 100 lines are read on
the DISKR operation, this number will be 100, except for the final
DISKR operation, when the number will probably be something less
than 100. This number is used at statement 12 to set up the number
of times to loop through the print routine.

116 IBM VM/SP CMS Command and Macro Reference

EXECIO

12. SLOOP -END SRC - LOOP through the following routine (to -END) a
number of times equal to the number of lines on the program stack
(SRC). One file line is printed each time through the loop.

13. &READ STRING &S - Read a line from the program stack and assign the
string of characters read as the value of variable &S.

14. &S = &CONCAT OF &B &S - Concatnate 15 blanks (&B, assigned in
statement 5) to precede the line just read (&S).

15. EXECIO 1 PRINT (STRING &5 - Print one line, the characters of which
are the value of &S. Because no CC operand is specified, single
spacing follows.

16. &L = &L + 1 - Add one to the variable (&L) that counts the number of
lines printed on the current page.

17. &IF &L < 60 &GOTO -END - If 60 lines have not yet printed on this
page (value of &L less than 60), bypass next two statements.

18. EXECIO 1 PRINT (CC 1
new page (similar to
printed line counter
satisfied) •

STRING - Eject the printer form to the top of a
statement 7). This statement is executed when

advances to 60 (condition in statement 17 not

19. &L = 0 - Reset printed line counter to begin new page.

20. -END - This label marks the end of the print routine loop.

21. &IF &TEST = 0 &GOTO -AGAIN If the return code from the previous
EXECIO DISKR operation (&RC now saved in &TEST) is not 0 (no end of
file condition), branch back to -AGAIN to read and print another
group of lines.

22. CP CLOSE PRT NAME &1 &2 - Close the printer spool file, and assign
it the same filename (&1) and filetype (&2) as the disk file read.

23. &EXIT - Returns control to CMS.

NOw, to cause the exec to read and print a CMS disk file named TESTFILE
DATA A, issue:

RDPRIND TESTFILE DATA A

TESTFILE, DlTA, and A are substituted into the exec for &1, &2, and &3
respectively.

Messages ang Set urn Cod~

DMSEI0618E

DMSEI0621E

NUCEXT FAILED RC=13

BAD PLIST: EXECIO MUS~ BE INVOKED AS A NUCLEUS
EXTENSION RC=24

BAD PLIST: DISK argument ARGUMENT IS MISSING RC=24

BAD PLIST: INPUT FILE "fileid" DOES NOT EXIST RC=24

BAD PLIST: INVALID POSITIONAL ARGUMENT (argument) RC=24

Section 2. CMS Commands 117

EXECIO

DMSEI0622E

DMSEI0632E

BAD PLIST: UNKNOWN OPTION NAME (name) RC=24

BAD PLIST: VALUE MISSING AFTER option OPTION RC=24

BAD PLIST: VALUE (value) NOT VALID FOR option OPTION
RC=24

BAD PLIST: option OPTION IS NOT VALID WITH option
OPTION RC=24

BAD PLIST: option OPTION NOT VALID WITH operation
OPERATION RC=24

BAD PLIST: STRING OPTION WITH LINES=* IS VALID ONLY
FOR CP OPERATION RC=24

BAD PLIST: DEVICE AND LINES ARGUMENTS ARE REQUIRED
RC=24

BAD PLIST: INVALIL VALUE (value) FOR NUMBER OF LINES
RC=24

BAD PLIST: MISSING "DEVICE" ARGUMENT RC=24

BAD PLIST: INVALID "DEVICE" ARGUMENT (argumen~ RC=24

BAD PLIST: INVALID VALUE (value) FOR DISK FILE LINE NUMBER
RC=24

BAD PLIST: DISK FILEMODE REQUIRED FOR DISKW RC=24

BAD PLIST: INVALID RECORD FORMAT (recfm) -- MUST BE
EITHER F OR V RC=24

BAD PLIST: INVALID RECORD LENGTH ARGUMENT (lrecl)
RC=24

BAD PLIST: FILE FORMA~ SPECIFIED (recfm) DOES NOT
AGREE WITH EIISTING FILE FORMAT (recfm) RC=24

BAD PLIST: FILE LRECL SPECIFIED (lrecl) DOES NOT AGREE
WITH EXISTING FILE LRBCL (lrecl) RC=24

BAD PLIST: EIECIO OPTIONS ONLY ALLOWED WITH EXTENDED
PLIST RC=24

BAD PLIST: INVALID MOtE 'mode' RC=24

BAD PLIST: INVALID CHARACTER IN FILE IDENTIFIER RC=24

INSUFFICIEN~ FREE STORAGE FOR EXECIO RC=41

I/O ERROR IN EIECIO: RC='return code' FROM 'command'
COMMAND RC=1nn

118 IBM VM/SP CMS Command and Macro Reference

,J

EXECIO

Re~ Code Definition~

, Finished correctly.................................... 0
I Truncated ••••••••••••••••••••••••••• ~................. 1
I EOF before specified number of lines were read •••••••• 2
I Count ran out without successful pattern match •••••••• 3
I NUCEXT initialization failed •• '........................ 13
I Bad PLIST ••• 24
I Insufficient free storage to load EXECIO •••••••••••••• 41
I 100 + return code from I/O operation (if nonzero) ••••• 1nn
I 1000 + return code from CP command (if nonzero),
I where x is 0, 1, 2, or 3, as described above ••• x1nnn

Section 2. CMS Commands 119

FETCH

FETCH

Use the FETCH command in CMS/DOS to load an executable phase
into storage for execution. The format of the FETCH command is:

r--,
FETch phasename [(options ••• [)]]

.QE!ifm.§:
(START]
[CaMP]
[ORIGIN hexloc]

I
I
I
I
I ,

phasename is the name of the phase to be loaded into virtual storage.
CMS searches for the phase:

• In a VSE private core image library, if IJSYSCL has been
defined

• In CMS DOSLIEs that have been identified with the GLOBAL
command

• In the VSE system core image library, if you specified· the
mode letter of the VSE system residence on the SET DOS ON
command line

Qptions:

START- specifies that once the phase is loaded into storage,
execution should begin immediat~ly.

CaMP specifies that
should contain
Note 5.)

whEn t,he phase is to be executed,
the address of its entry point.

register 1
(See Usage

ORIGIN hexloc
fetches the program and loads it at the location specified by
hexloc; this location must ce in the CMS user area below the
start of the CMS nucleus. The location, hexloc, is a
hexadecimal number of up to eight characters. (See Usage Note
6.)

1. If you do not use the START option, FETCH displays a message at
your terminal indicating the name of the phase and the storage
location of its entry point. At this time, you can set address
instruction stops for testing. To continue, issue the START
command to initiate execution of the phase just loaded.

2. The fetch routine is alsc invoked by supervisor call (SVC)
instructions 1, 2, 4, or 65. The search order for executable
phases is the same as listed acove.

3. If you want to fetch a phase from a private core image library, you
must issue an ASSGN command for the logical unit SYSCLB and define
the library in a DLBL ccmmand using the ddname IJSSYCL. For
example:

120 IBM VM/SP CMS Command and Macro Reference

FETCH

assgn sysclb c
dlbl ijsyscl c dsn core image lib (sysclb perm

4. Phases fetched fro. VSE core image libraries must have been
link-edited with ACTION REL.

5. CMS uses the COMi option when it fetches the DOS PL/I compiler
because that compiler expects register 1 to contain its entry point
address. This option is net required when you issue the FETCH
command to load your own programs.

6.

When CMS starts executing a phase that has COMP specified, the
DMSLI0740I EXECUTION BEGINS ••• message is not displayed.

The ORIGIN option is used by the VSAMGEN installation EXEC
procedure to load nonsharatle modules on a segment boundary. It is
not required when you issue the FETCH command to load your ovn
programs, unless you want to load them at a location other than
20000.

7. The FETCH command should only be used with the START command to
execute a VSE program. It should not be used with GENHOD to
attempt to create an executable CMS module file.

8. Multiphase program support is different in CMS/DOS than in VSE.
The core image directory is not searched for multiphase programs.
Thus the value of HIPROG in BGCOM reflects only the ending address
of the longest phase loaded, not that of the phase in'the library
that has the highest ending address.

DMSFET710I PHASE 'phase' ENTEY POINT AT LOCATION xxxxxx

This message is issued when the
indicates the virtual storage
loaded.

START option is not specified. It
address at which the phase vas

DMSLI0740I EXECUTION BEGINS •••

This message is issued when the START option is specified~ it
indicates that program execution has begun.

DMSFCH104S ERROR Inn' READING FILE 'fn ft fm' FROM DISK RC=100
DMSFCH109S VIRTUAL STORAGE CAPACITY EXCEEDED RC=104
DMSFCH113S DISK (cuu) NOT ATTACHED RC=100
DMSFCH115E PHASE LOAD POINT LESS THAN 'address' RC=40
DMSFCH411S INPUT ERROR COtE "nn" ON '{SYSRESISYSCLB}' RC=100
DMSFCH623S PHASE CANNOT BE LOADED AT LOCATION 'location' BECAUSE IT

WOULD OVERLAY THE CMS NUCLEUS RC=88
DMSFCH777S DOS PARTITION TOO SMALL TO ACCOMMODATE FETCH REQUEST RC=104
DMSFET003E INVALID OPTION 'option' BC=24
DMSFET004E PHASE 'phase' NOT FOUND RC=28
DMSFET029E INVALID PARAMETER 'parameter' IN THE OPTION 'ORIGIN' FIELD

RC=24
DMSFET070E INVALID PARAMETER 'parameter' RC=24
DMSFET098E NO PHASE NAME SPECIFIED RC=24
DMSFET099E CMS/DOS ENVIRONMENT NOT ACTIVE RC=40
DMSFET623S PHASE CANNOT BE LOADED AT LOCATION 'location' BECAUSE IT

WOULD OVERLAY THE CMS NUCLEUS RC=88
DMSLI0055E NO ENTRY POINT DEFINED BC=40

Section 2. CMS Commands 121

FILEDEF

FILEDEF

Use the FILEDEF command to establish data definitions for OS ddnames, to
define files to be copied with the MOVEFILE command, or to override
default file definitions made by the assembler and the os language
processors. The format of the FILEDEF command is:

I
FIledef r

I {ddname} I nn
I *

Terminal [(optionA optionD[)]]

[(optionA OPTCD j[)]]

[(optionA[)]]

PRinter

PUnch

Reader
r r "

DISK Ifn ft Ifmll [(option! optionB[)]]
I FILE ddname IAlII
L L ~J

or
r

, r "

,
I In

IIIDISK
III
I I I

fn ft I I fm I I {OS N ?
FILE ~~~I 1!111 DSN gual1 qual2

II II DSN qual1. qua12
J L ~J

... }:

. •. I
ILL

I
I
L

DUMMY

[(optionl optionED]]

[(option![)] J

r ,
TAPn I LABOn I

I BLP -[n] I

~tion!:
[PER!]
r ,
I CH!NG] I
INOCHANGEI
L J

GRAF
CLEAR

[RECFM a]
[LRECL nnnnn]
r ,
IBLOCK nnnnn I
IBLKSIZE nnnnni
L J

ISL [n] [VOLID vOlid] [DISP MOD] I
ISUL [n] [VOLID volid] I
I NL [n] I
I NSL filename I
L J

cuu
[(option! optionC optionE[)]]
[(optionA[)]]

.QptionB:
[KElLEN nnnJ
r ,
IXTENT nnnnni
1!.ll!I 50 I
L J

[LIMCT nnn]
[OPTCD a]
[DISP !tOD]

r ,
17TRACK I
19TRACK I
L' J

[TRTCH aJ
[DEN den J

[MEMBER membername]
[CONCn]
r ,

I DSOBG {PS}I
I PO I
I DA I
L J

optionD:
r ,
I UPCASE I
ILOiCISEI
L J

optionE:
[LEAVE]
[HOEOV]

I
I
I
~

122 IBM VK/SP CMS Command and Macro Reference

,

J

where:

ddname
nn

*

FILEDEF

is the name by which the file is referred to in your
program. The ddname may be from one to eight alphameric
characters, but the first character must be alphabetic or
national. If a number nn is specified, it is translated to a
FORTRAN data definition name of FTnnF001. An asterisk (*) may
be specified with the CLEAR operand to indicate that all file
definitions not entered with the PERK option should be
cleared.

TER!INAL is your terminal (terminal I/O must not be blocked).

PRINTER is the spooled printer.

PUNCH is the spooled punch.

READER

DISK

DUMMY

TAP[n]

GRAF

cuu

CLEAR

is the spooled card reader (card reader I/O must not be
blocked) •

specifies that the virtual I/O
the format, you can choose one
DISK operand. Both forms are
DISK Operand."

device is a disk. As shown in
of two forms for specifying the
described in "Using the FILEDEF

indicates that no real I/O takes place for a data set.

is a magnetic tape. The symtolic number of the tape drive, n,
can be 1, 2, 3, or 4, representing virtual units 181, 182,
183, and 18Q, respectively. If n is not specified, FILEDEF
uses the existing TAPn device for the specified ddname. TAP
defaults to TAP2 if there is no existing definition for the
specified ddname, or if the existing device was not TAPn. You
can also specify the type of label processing you want on your
tape. Specifying label processing is discussed in "Using the
FILEDEF TAPn operand."

specifies that the virtual I/O device is a Graphic Display.

is the virtual device address of the attached graphic display.

removes any existing definition for the specified ddname.
Clearing a ddna.e before defining it ensures that a file
definition does not exist and that any options previously
defined with the ddname no longer have effect.

Section 2. CMS Commands 123

FILEDEF

Qptions: Whenever an invalid option is specified for a particular
device type, an error message is issued. Figure 9 shows valid
options for each device type.

OPERANDSI
READER, I

Options PUNCH, I DISK
PBIN'IEE I TEE!!INAL TAPn DUMMyt GRAF

BLOCK, BLKSIZE I X X X X
CHANGE, NOCHANGE X X X X X
CONCAT X
DEN X
DISP MOD X" X
DSORG X
KEYLEN 12
LEAVE X
LIMCT X2
LOWCASE, UPCASE X
LRECL X X X X
PIEMBER X
NOEOV 1 5 X
OPT CD X2

PERM X X X 1 X
RECF!! X X 1 X
TRTCH 1 3

XTENT 12
7TRACK, 9TRACK X

tNo options may be necessary but all disk options are accepted.
2This option is meaningful only for BDA! files.
3This option is for 7-track tapes only.
"This option is for SL tapes only.
5This option is for Printer only.

Figure 9.

PERM

CHANGE

NOCHANGE

Valid File Characteristics for Each Device Type of the
FILEDEF Command

retains the current definition until it either is
explicitly cleared or is changed with a new FILEDEF
command with the CHANGE option. If PERf! is not
specified, the definition is cleared when a FILEDEF * CLEAR command is executed.

merges the file definitions whenever a file definition
already exists for a ddname and a new FILEDEF command
specifying the same ddname is issued; the options
associated with the two definitions are merged. Options
from the original definition remain in effect unless
duplicated in the new definition. New options are added
to the option list.

retains the current file definition, if one exists, for
the specified ddname. With this option, the system stops
further processing (error checking, scanning, etc.) of
the new FILEDEF command if a file definition exists for
the specified ddname.

12q IBM VM/SP CMS Command and Macro Reference

RECFM a

FILEDEF

is the record format of the file, where "a" can be one of
the following:

F
FH
V
VB
U
FS,FBS
VS,VBS
A
M

fixed length
fixed blocked 1

variable length
variatle blocked 1

undefined
fixed length, standard blocks
variable length, spanned xecords
ASA print control characters2
machine print control codes2

LRECL nnnnn is the logical record length (nnnnn) of the file, in
bytes. LRECL should not exceed 32760 bytes because of OS
restrictions.

BLOCK nnnnn
BLKSIZE nnnnn

is the logical block size (nnnnn) of the file, in bytes.
BLOCK should not exceed 32760 bytes because of OS
restrictions. If both BLOCK and BLKSIZE options are
specified, the value of nnnnn for BLOCK is used and
BLKSIZE is· ignorEd.

KEYLEN nnn is the size (nnn) of the key (in bytes).
value accepted is 256.

The maximum

XTENT nnnnn is tbe numter of records (nnnnn) in the extent for the
file. The default is 50. The maximum value is
16,777,215.

LIMCT nnn

OPTCD a

OPTCD j

is the maximum number of extra tracks or blocks (nnn) to
be searched. The maximum value is 256.

is the direct access search processing desired. The
variable "a" may be any comtination of up to three of the
following: (A and R are mutually exclusive.)

Code
A
E
F
R

DASD Search
ActuaI-aevice addressing
Extended search
Feedback addressing
Relative block addressing

is valid only for the Printer.

a When the virtual printer is a 3800, 'a' indicates
to QSAM and BSAM that the output line contains a
TRC (Table Reference Character) byte.

Not~: The KEYLEN, X'rENT, LI~CT, and OPTCD options should only be used
with BDAM, QSAM, or ESAM files.

DISP MOD positions the read/write pointer after the last record in
the disk file. This option should only be used for

lFE and VE should not be used with TERMINAL or READER devices.
2A and M may be used with any of the valid RECFM settings (for example,

FA, FBA, VA, VEA, etc.) M should not be used with TERMINAL devices.

Section 2. CMS Commands 125

PILEDEP

adding records to the end of a file. When adding records
to the End of a file, the file must be on a disk accessed
as read/write. If a disk is an extension of another
disk, the extension is automatically read/only and you
cannot write to it. DISP MOD may be used to add records
to the end of the tape file only for standard label
tapes.

MEMBER membername

CONCAT

DSORG {!~}

r ,
I 7TRACK I
I 9TRACK I
L .J

TRTCH a

DEN den

UPCASE

LOWCASE

LEAVE

NOEOV

allows you to specify the name of a member of an as
partitioned data seti membername is the name of the PDS
member.

allows you to assign the same ddname to two or more as
libraries so that you can refer to them in a single
GLOBAL command. You may concatenate libraries with
filetypes of MACLIB and LOA~LIB.

Any file format options you specify in the first FILEDEP
command line remain in effect for subsequently
concatenated libraries. Por a detailed description of
concatenated macro libraries, see "Using os Macro
Libraries" in VMLSP f1!.§ ~~ f!uid!!-

is the data set organization: physical sequential (PS),
partitioned (PO), or direct access (DA).

is the tape setting. The tape device mode is not checked
or set by filedef. Use the TAPE command MODESET option to
set the mode of a tape •

is the tape recording technique for 7-track tapes. Use
the following chart to determine the value of "a" for
7-track tapes.

a Parity converter Translator

a odd off off
OC odd on off
aT odd off on

E even off off
ET even off on

The default value of TRTCH is OC.

is tape density: den can be
bpi {bits per inch}. If 200
is assumed. If 800, 1600, or
assumed.

200, 556, 800, 1600, or 6250
or 556 are specified, 7TRACK
6250 are specified 9TRACK is

translates all terminal input data to uppercase.

retains all terminal input data as typed in.

is only valid for TAPn files that are SUL or SL (standard
label). With this option selected, the tape is not moved
before latel processing. If LEAVE is not specified,
tapes with files specified as SL or SUL are rewound and
then positicned before the files are processed.

is only valid for TAPn files. With NOEOV selected, there

126 IBM VM/SP CMS Command and Macro Reference

r
-~

FILEDEF

is no automatic limited end-of-volume processing when end
of tape is sensed on output. See the section "CMS Tape
Label processing" in the !1!LSP CM~ User'§ Guide for a
description of end-of-volume processing.

Us~~ !otes

1. If you do not issue a FILEDE! command for an OS input or output
file, eKS uses the ddname on the DeB macro to issue the following
default file definition:

FILEDEF ddname DISK FILE ddname A1

See "Osage Notes" under the discussion of the ASSEMBLE command for
information on the default file definitions made by the assembler.

2. To identify VSE files for VSE program execution or to identify VSAM
data sets for either OS or VSE program execution, you must use the
DLBL command.

3. A file definition established with the FILEDEF command remains in
effect until explicitly changed or cleared. The system clears file
definitions under the following circumstances:

• When the assembler or any of the language processors are
invoked. (Note that FILEDEF definitions entered with the PERM
option are not cleared.)

• When a program abends or when you issue the Immediate command HX
to halt command or program execution.

4. The FILEDEF command does not supply default values for LEBeL and
BLKSIZE. As under OS, if DCE information is unavailable when a
file is opened, an open error is issued for the file. The
following chart summarizes the results at OPEN time of specifying
LREeL and BLKSIZE options.

BLKSIZE

Not
Specified

Specified

Not
Specified

Specified

lREel :Results

Not IIf the input file exists on disk, the
Specified litem length (or item length +4 for vari

lable-Iength records) becomes the BLKSIZE.

Not ILRECL=BLKSIZE (or LRECL=BLKSIZE-4, for
specified Ivariable-length records).

Specified IBLKSIZE=LRECL (or BLKSIZE=LRECL+4, for
Ivariatle-length records).

Specified IThe values specified are used.

If V or VB is specified for RECFM, LEEel must be at least 4 bytes
less than BlKSIZB and lRECl must be at least 4 bytes greater than
the largest record of the file.

VSE sequential (SAM) files do not contain BLKSIZE, LRECL, or REeFM
specifications. !hese options must be specified by a FILEDEF
command or DCB statement if OS macros are used to access VSE files.
Otherwise the defaults, BlKSIZE=32760 and RECFM=U, are assumed.
LRECL is not used for RECFK=U files.

5. There is an auxiliary processing option for FIlEDEF that is only

Section 2. eMS Commands 127

FILEDEF

valid when FILEDEF is executed by an internal program call: this
option cannot be entered as a terminal command. The option,
AUXPROC addr, allows an auxiliary processing routine to receive
control during I/O operations. For details cn how to use this
option of the FILEDEF command, see !~~ §Y21~ prog£g~~~~§ Guide.

6. If a FILEDEF command is issued with a DDNAME that matches a current
DDNAME defined by a previous FILEDEF command and the devices are
the same, the filename, filetype, filemode, and options previously
specified remain in effect, unless respecified by the new FILEDEF
command. If the devices are not the same, all previous
specifications are removed.

7. If the FILEDEF command is entered with no operands, a list of
current definitions is displayed.

Using the FILEDEF QJSK Operand

There are two general forms for specifying th~DISK operand in a FILEDEF
command. If you specify the first form:

FILEDEF ddname DISK fn ft [fm]

fn and ft (filename and. filetype) are assumed to be a CMS fileid. If fm
is the filemode of an OS disk, fn and ft are assumed to be the only two
qualifiers of an as data set name. If fm is specified as an asterisk,
(*) then all accessed disks are searched.

You cannot use this form unless the OS data set name or VSE file-id
conforms to the OS naming convention (1- to 8-byte qualifiers separated
by periods, to a maximum of qq characters, including periods). Also,
the data set name can have only two gualifiers; otherwise, you must use
the DSN ? or DSN qua11 ••• form. For example, if the OS data set name
or VSE file-id is TEST.SA~FLE.MAY, you enter:

FILEDEF MINE B1 DSN TEST SAMPLE HAY

-- or --

FILEDEF MINE B1 DSN TEST.SAMPLE.MAY

-- or --

FILEDEF MINE B1 DSN ?
TEST.SAMPLE.8AY

If the OS data set name or VSE file-id is TEST.SA8PLE, then you may
enter:

FILEDEF MINE DISK TEST SAMPLE B1

The second form of the DISK operand is used only with OS data sets
and VSE files:

r
FILEDEF ddname I DISK

I
I
L

fn
l11~

,
ft I
ddn~.§1

I
.I

,. ,
Ifml
1!.11
I I
l .I

{ ~~: ~ua11 [gua12 •••] }
DSN qua11 [.gua12 •••]

This form allows you to to enter OS and VSE file identifications that do
not conform to OS data set naming conventions. The DSN operand
corresponds to the DSN parameter on the OS DD (data definition)
statement. There are three ways you can specify this form:

128 IBM VM/SP CMS Command and Macro Reference

J

J

FILEDEF

• FILEDEF ddname DISK fn ft fm DSN quaIl [quaI2 •••]
, or --
, • FILEDEF ddname DISK fn ft fm DSN quaIl [.quaI2 •••]

This form of the FILEDEF command associates the CMS filename and
filetype you specify with the as data set name or VSE file-id specified
following the DSN operand. Once it is defined, you can refer to the as
data set name or VSE file-id by using the CftS filename and filetype. If
you omit DISK, filename, filetype, and filemode, the default values are
FILE ddname A 1.

• FILEDEF ddname DSN 1

This form of the FILEDEF command allows you to specify the as data
set name or VSE file-id interactively. Using this form, you can
enter an OS data set name or VSE file-id containing embedded special
characters such as blanks. If you use this form, the default
filename and filetype for your file, FILE ddname, is the CftS filename
and file type associated with the as data set name or VSE file-id.
The filemode for this form is always the default, A1.

To use the interactive DSN operand, you key in DSN 1i CMS then
requests that you enter the as data set name or DOS file-id exactly
as it appears in the data set or file. Do not omit the periods that
separate the qualifiers of an as data set name, but do not insert
periods where they do not appear.

quaI1[.quaI2 •••]

where qua11.quaI2 ••• are the qualifiers of the as data set name or
VSE file-id. When you use this form, you must code the periods
separating the qualifiers.

• FILEDEF ddname mode DSN quall [quaI2 •••]

-- or --

I • FILEDEF ddname mode DSN quaIl [.gua12 •••]

This form allows you to specify the as data set name or VSE file-id
explicitly. The default value for the filename and filetype is FILE
ddname. When you use this form, you can use periods to separate the
qualifiers or you can omit the periods. If the command is entered
with a blank separating the qualifiers, FILEDEF replaces them with
periods. For example, for an as data set or VSE file named
ftY.FILE.IN, you enter:

FILEDEF ddname Bl DSN ftY FILE IN

-- or --

FILEDEF ddname Bl DSN ftY.FILE.IN

All of these forms have many variations, as is apparent from the
command format.

!!§ing 1~ FILEDEF TAPn QrullBnd

When you define a tape file with the FILEDEF command, you can specify
the type of label processing to be done for the file. You do this by
specifying a second operand after the word TAPn. The operands that you
may specify and their meanings are:

Section 2. CMS Commands 129

FILEDEF

LABOFF

BLP

SL

SUL

NL

indicates that there is no CMS tape label processing for this
tape file. LABOFF is the default. The tape is not positioned
if 'this operand is specified.

indicates that the system is to bypass label processing but
that the tape is to be positioned before the file is processed.

indicates that yeu are using IB! standard labels.

indicates that you are using
processed for MOVEFILE).

standard user labels (not

indicates that your
use this operand if
will not be opened.)

tape has no IBM standard labels. (Do not
your tape has a VOL1 label. A file on it

NSL indicates that you are using nonstandard labels.

For the operands BLP, SL, and SUL:

n indicates the position of the file on a multifile volume. When
n is not specified, the default is 1.

For SL and SUL files:

volid specifies a 1- to 6-character volume serial number to be
verified by reading the VOL1 label on the tape. If not
specified in FIlEDEF, volid may be specified on a LABELDEF
command. If specified on bobh commands, the more recent
specification is used. VOLID is only valid for SL or SUL tape
files. If VOLID is not specified, the volume label on the tape
is not checked.

For SL files:

DISP MOD The DISP MOD option may be used to add records to tape files
only for standard label tapes:

FILEDEF file a tap1 sl (disp mod

when the file is opened (output), the tape is positioned at the
end of the file, ready to add new records.

For the NSL operand:

filename is required for NSL files. It is the filename of a file that
contains a routine for processing nonstandard labels. The
filename must be that of a !EXT or MODULE file. If you have
both a MODULE and TEXT file with this name, the MODULE file is
used. MODULE files must be created so that they start at an
address that does not allow them to overlay a user program if
they are to be used for NSL routines. See the section "Tape
Labels in CMS" in the !~L2R CM~ User's Guide. for details on
writing routines to process nonstandard labels.

You can define a file on tap2 with standard labels by using the
following command:

filedef filea tap2 sl volid dept10

When this tape file is opened, CMS checks to see that it has a VOL1
label with a volume serial number of dept10.

To specify the second file on the same tape, use

130 IBM VM/SP CMS Command and Macro Reference

FILEDEF

filedef filea tap2 sl 2 volid deptl0

The same file could be defined as having no labels by using

filedef filea tap2 blp 2 filedef filea tap2 nl 2

If you use the above specification, your tape must not contain IBM
standard labels. NL causes CMS to read your tape when you try to open a
file on it and checks to see if the tape contains a VOLl label as its
first record. If a VOLl label is there, CMS does not open your tape
file.

If you spec if y

filedef filea tap2 hlp 2

CMS positions the tape to the second file, but does not check to see if
the tape has a label.

Note: If you mount a blank tape and specify NL, the tape will run off
the end of the reel. Write a tape mark to prevent this from occurring.

To define a tape file with nonstandard labels, use the following
command:

filedef filea tap2 nsl nonstd

The routine NONSTD must exist as a TEXT or MODULE file and be able to
process the particular nonstandard labels you are using for your tapes.

If you defined filea with no label parameter at all, for example,

filedef filea tap2

there is no label processing or positioning before the data in filea is
processed.

When you use the options DEN, TRTCH, 7TRACK or 9TRACK to set the mode of
an output file, if the type of label processing is anything other than
LABOFF (the default), the tape will be written at the current mode of
the tape drive and not the mode specified in the FILEDEF command. This
is due to a hardware restriction which allows the mode of a tape drive
to be reset only when the tape is at load point. If LABOFF is used, the
tape will still be at the load point when the first record of the file
is written, so the mode will be reset. See the CMS TAPE Command Usage
Notes for more information.

Read the section "Tape Labels in CftS" in the !1!L2,f £MS Use!:~ Guide
before you write programs that handle labeled tapes.

Use the LEAVE and NOEOV options for tape files only.

LEAVE indicates that a tape containing standard-label
moved before label processing. Using this option
rewinding the tape and checking the VOLl label as it
SL and SUL files. The command

filedef fileb tapl sl (leave

files is not to be
prevents CMS from
otherwise does for

defines a tape file on tape1 but tells CMS not to position the tape
before processing the labels for fileb. Note that you must position the
tape properly yourself before using the LEAVE option. LEAVE may be used
with SL. SUL, and BLP. However, it has no effect if used with NL. NL
tapes are always rewound and positioned before a file on them is opened
(even if you specify LEAVE).

Section 2. CftS Commands 131

PILEDEF

Use the LEAVE option with multifile volumes where rewinding and
repositioning a tape before processing each file is inefficient. You
must not move the tape between files if you use this option. Note that
for BLP files you can obtain the effect of LEAVE by defining the file as
LABOPP rather than BLP.

Using NOEOV, CKS does not do any end-of-tape processing on output. If
this option is not specified, C8S writes a tape mark after it encounters
EDT on output and, for SL and SUL files, also writes an EOVl label and
another tape mark after the first tape mark. The tape is then rewound
and unloaded. NOEOV suppresses this limited EOV processing.

If PILEDEP is entered with no oFerands and there are no filedefs in
effect, the message:

DKSFLD32QI NO USEB DEFINED FILEDIF'S IN EFFECT

is displayed.

If PILEDEP is entered with no operands and there are filedefs in effect,
a list of current definitions is displayed. Par example:

ddnamel devicel [filename1 filetype1 filemode1 [da tasetnaae]]

ddnameN deviceN [filenameN filetypeN filemodeN [da tasetname]]

DKSPLD069I DISK 'mode' NOT ACCESSED

Th& specified disk is not accessed; the file definition remains in
effect. You should access the disk before you attempt to read or
write the file.

DKSPLD220R ENTER DATA SET NAKE:

A FILEDEF command with the DSN ? operand was entered. Enter the
exact OS or VSE file identification, including embedded periods and
blanks.

DKSFLD70QI INVALID CLEAB REQUES~

A CLEAR request was entered for a file definition that does not
exist; no action is taken.

DKSSTT2281 USER LABELS BYPASSED ON DATA SET 'data set name'

This message is displayed when you issue a PILEDEP command for an
OS data set that contains user labels. The message is displayed the
first time you issue the FILEDE! command after accessing the disk
on which the data set resides.

132 IBK VK/SP CKS Command and Macro Beference

L

DMSFLD003E INVALID OPTION 'option' RC=24
DMSFLD023E NO FILETYPE SPECIFIED RC=24
DMSFLD027E INVALID DEVICE 'device name' RC=24

FILEDEF

DMSFLD029E INVALID PARAMETER 'parameter' IN THE OPTION 'option' PIELD
RC=24

DMSFLD03SE INVALID TAPE MODE RC=24
DMSFLDOSOE PARAMETER MISSING AFTER DDNAME RC=24
DMSFLD06SE 'option' OPTION SPECIFIED TWICE RC=24
DMSFLD066E 'option' AND 'option' ARf CONFLICTING OPTIONS RC=24
DMSPLD070E INVALID PARAMETER 'parameter' RC=24
DMSFLD221E INVALID DATA SET NAME 'data set name' RC=24
DMSFLD224E FILEID ALREADY IN OSf RC=24
DMSFLD3241 NO OSER DEPINED FILEDEPs IN EFPECT RC=O
DMSFLD420E NSL EXIT FILENAME MISSING OR INVALID RC=24

Section 2. CMS Commands 133

FILELIST

FILELIST

Use the FILELIST EXEC procedure to display a list of information about
CMS files residing on accessed disks. In the FILELIST environment,
information that is normally provided by the LISTFILE command (with the
DATE option) is displayed under the control of the System Product
editor. You can use XEDIT subcommands to manipulate the list itself.
You can also issue CMS commands against the files directly from the
displayed list.

The format of the FILELIST command is:

I

IFILEList
I
I
I
I
•

fn

ft

fm

I

I[fn [ft [fm]]] [(options ••• [)]]
I options:
I [Append]
I [Filelistl !.gfi]&!!§!]
I [PROFile fn]
I

is the filename of the filets) for which information is to be
collected. If· an asterisk (*) is coded in this field, all
filenames are used.

Certain special 'characters can be used as part of the filename
to request that the list contain a specific subset of files.
See the usage note, "Pattern Matching", for more information
on using these characters.

is the filetype of the filets)
collected. If an asterisk
filetypes are used.

for which information is to be
is coded in this field, all

Certain special characters can be used as part of the filetype
to request that the list contain a specific subset o~ files.
See the usage note, "Pattern Matching", for more information
on using these characters~

is the filemode of the filets) for which information is to be
collected. If this field is omitted, only the A-disk is
searched. If an asterisk is coded, all accessed disks are
searched.

If no operands are specified, the list contains all the files on your
A-disk. (Issuing FILELIS~ with no operands is like issuing "filelist *
* a".)

Append

Filelist

specifies that the list of files should be appended to the
existing list. ~his option is meaningful only when issued
from within the FILELIST environment. If issued outside of
FILELIST, it results in an error condition.

specifies that fn ft fm is a file that already contains a
list of files, produced by an earlier invocation of FILELIST
or LISTFILE (using the EXEC option). Information about each
file in this list is displayed.

If this option is specified, no special characters used for
pattern matching may appear in fn ft or fm. For information
on pattern matching, see the usage note, "Pattern Matching",

13q IBM VM/SP CMS Command and Macro Reference

FHELIST

below.

For information on creating and sa.ring a list of files, see
the usage note, "Saving a List of Files", below.

Nofilelist specifies that fn ft fm is not a list of files.

PROFile fn specifies the name of an XEDIT macro to be executed when
XEDIT is invoked by the FILELIST command. If not specified, a
macro named PBOFFLST XEDIT is invoked. For more information
on the PROFFLST macro, see the usage note, "Default PF Key
Settings", below.

1. Tailoring the FILELIST Command Options

You can use the DEFAULTS ccmmand to set up options and/or override
command defaults for FILELIST. However, the options you specify in
the command line when entering the FILELIST command override those
specified in the DEFAULTS command. This allows you to customize
the defaults of the FILELIST command, yet override them when you
desire. Befer to the DEFAULTS command description for more
information.

2. Pattern ~atching

You can use two special characters in the fn, ft, and fm operands
to request that the file list contain a specific subset of files.
The special characters are * (asterisk) and % (percent), where:

* represents any number of character(s). As many asterisks as
required can apFear ~~~wh~~ in a filename or filetype. (Only
one asterisk may be used for a filemode.)

For example, if you enter:

.filelist *d* *file*

you are requesting that the list contain all files on your
A-disk whose filename contains "d" and whose filetype contains
"file". The list might contain the following files:

YOURDATA
HISDATA
ADOG
DATA

AFlLE1 A
AFILE2 A
1DOGFILE A
FILE1 A

means any §!ngl~ character, but any character will do. As
many percent symbols as necessary may appear anywhere in a
filename or filetype. For example, if you enter:

filelist ~~% stock

you are requesting that the list contain all files on your
A-disk whose filename is three characters in length and whose
filetype is "stock". The list might contain the following
files:

THE
HIS
HER

STOCK
STOCK
STOCK

A
A
A

3. Format of the List

Section 2. CMS Commands 135

FILELIST

When you invoke the FILELIST command you are placed in the XEDIT
environment, editing a file "userid FILELIST A1". A sample
FILELIST screen is shown in the "Examples" section. Each line in
this file contains:

• a command area

• filename, filetype, filemode

• format and logical record length of the file

• number of records and number of blocks in the file

• date and time the file was last written on the disk

The full power of XEtIT is available to you while you issue
commands against the list of files. For example, you may want to
use XEDIT subcommands to scroll through the list of files, locate a
particular file, etc.

However, some XEDIT subcommands are inappropriate in this
environment. Subcommands that alter the format or the contents of
"userid FILELIST" (for example, SET TRUNC, SET FTYPE, or SET
LINEND) may cause unpredictable results.

4. Saving a List of Files

You can save a list of files created hy the FILELIST command simply
by filing it, that is, issuing FILE or SAVE from the command line.
Remember that the list is a file, whose filename is your userid and
whose filetype is FILELIST. If you issue FILE or SAVE, the file
"userid FILELIST" is kept until the next time you issue FILE or
SAVE from the list.

You can also save a particular file list b} filing it under a
different fileid. Cne way to do this is to issue the XEDIT
suhcommand FILE from the command line, specifying a different
filename and/or filetype. For example, you could issue "FILE MY
FILES". Another way is to issue FILE from the command line, and
then to use the CMS command RENAME.

Saving a list of files is useful when you want to send multiple
files using the SENDFILE cemmand. The list of files that you saved
can be specified in the SENDFILE command issued with the FILELIST
option. With this method, you can send multiple files by issuing
the SENDFILE command only once. The only file identifier you have
to keep track of is that of the list. For information on sending a
list of files, see the SENDFILE command (the description of the
Filelist option).

5. Issuing Commands From the List

On a full screen display, you can issue commands directly from the
line on which a file is displayed. You do this by moving the
cursor to the line that describes the file to be used by the
command, typing the command in the space provided to the left of
the filename, and then F~essing the PF10 key (not the ENTER key) to
execute the command.

If a command is longer than the command space provided on the
screen, just continue typing over the information in the line. You
may type over the entire line displayed, up to column 79.

The default setting of the PF10
below, under "Special Commands".

key is EXECUTE, which is described
When you press the PF10 key, all

136 IBM VM/SP CMS Command and Macro Reference

I
I
I

FILELIST

commands typed on one screen are executed, and the screen is
restored to its previous state. However, the list is updated to
reflect the current status of the files (see "Responses").

Pressing the ENTER key (or a PF key other than PF10) does not
execute commands typed on the list. This allows you to move
through the list and to enter commands on different lines of the
list.

Another way to issue commands that make use of the files displayed
is to issue EXECUTE from the FILELIST command line. A complete
description of EXECUTE follows, in the section "Special Commands".

6. Default PF Key Settings

The PROFFLST XEDI! macro is executed when the FILELIST command is
invoked, unless you specified a different macro as an option in the

,FILELIST command. It sets the PF keys to the following values:

PF 1
PF 2

PF 3
PF 4
PF 5
PF 6
PF 7
PF 8
PF 9

PF 10
PF 11
PF 12

Help
Refresh

Quit
Sort
Sort
Sort
Backward
Forward
Fl/n

Execute
XEDIT
Cursor

Display FILELIST command description.
Update the list to indicate new files,
erased files, etc., using the same parameters
as those specified when FILELIST was invoked.
Exit from FILELIST.
by filetype, filename.
by date and time, newest to oldest.
by size, largest first.
Scroll back one screen.
Scroll forward one screen.
ISSUE the command FILELIST In * * at the cursor,
so that a list is displayed, containing
all files that havE the filename that is
displayed on the line containing the cursor
(all filetypes and filemodes).
Execute command(s) typed on the list.
Edit the file where the cursor is placed.
Place cursor on current line.

Note: On a terminal equipped with 24 PF keys, PF keys 13 to 24 are
assigned the same values as PF keys 1 to 12 as discussed here.

When a command is executed, one of the following symbols is displayed in
the "Cmd" space to the left of the file for which the command was
executed.

I * Means the command was executed successfully (RC=O).

Is the return code from the command executed (RC=n).

*7

*!

Means that the command was an unknown CP/CMS command (RC=-3).

Means that the command was not valid in CftS subset. You are
automatically placed in CMS subset mode if the editor is not
in the shared segment. For a list of commands valid in CMS
subset mode, see the VM/SP Sys!em Product ~ditor Command and
MacrQ Reference, the CMS subcommand description.

The following responses can also appear directly on the FILELIST screen:

I * fname ftype fmode ** Not found. **
I * No files match the search criteria: fname ftype fmode
I * fname ftype fmode ** Discarded or renamed **

section 2. CMS Commands 137

FILELIST

DMSWFL002E
DMSWFL003E
DMSWFL054E
DMSWFL070E
DMSWF1680E
DMSiFL637E
DMSWFL651E

DMSSTT062E

FILE 'fn ft fm' NOT FOUND. RC=28
INVALID OPTION 'option'. RC=24
INCOMPLETE FILEIL SPECIFIED. RC=24
INVALID PARAMETER 'parameter'. RC=24
INVALID FILEID SPECIFIED WITH 'FILELIST'
MISSING VALUE FOR THE 'PROFILE' OPTION.
'APPEND' MUST BE ISSUED FROM BDBLIST OR
RC=40

OPTION.
RC=24

FILELIST.

RC=20

INVALID CHARACTER 'character' IN FILEID 'fn ft fm'.
RC=20

~!£ia! Commands .!!§~g !!! the n~1 Envi~£!!!me!!!

Two commands, EXECUTE and DISCARD, make use of the list of
displayed by the FILELIS~ command. EXECUTE can be used only
FILELIST and RDRLIST command environments, while DISCARD can
only in the FILELIST, RDRLIST, and PEEK command environments.

files
in the

be used

Use EXECUTE (an XEDIT macro) to issue CP/CMS commands (or EXECs) that
make use of files displayed by FILELIST.

EXECUTE may be used in two ways. First, on a display terminal, the
command(s) to be executed can be typed directly on the FILELIST screen
and "EXECUTE" entered either on the command line or from a PF key (the
default for the PF10 key in the FILELIST environment). Second, the
command to be executed can be typed in the command line at the bottom of
the screen, following "EXECUTE" (as one of its operands). The command
is then executed against one or more files in the list, beginning with
the current line of the list.

The format of the EXECUTE macro is:

• I
IEXECUTEI , ,

Cursor

lines

command

[Cursorllines] [command]

means that a command is to be executed against the line that
contains the cursor. The command can either be typed on the
line that describes the file, or it can be typed as an operand
of EXECUTE. The CURSOR operand is valid only on display
terminals and is particularly useful when assigned to a PF
key. For example, if EXECUTE tURSOR XEDIT is assigned to a PF
key, you can place the cursor on the line describing the file
you want to edit and then press the PF key.

is the number of lines in the file the command is to be
executed for, starting with the current line of the list. If
a command is specified, the default is one (1). You can
specify an asterisk (*), which means "execute this command on
all lines, from the current line to the end of the file".

is a CMS or CP command (or any program or EXEC) that makes use
of files in the list. You can either type out the command
operands, or you can use the symbols described below to
represent the filename, filetype, and/or filemode. (See the

138 IBM VM/SP CMS Command and Macro Reference

FILELIST

usage note, nUsing Symbols as Part of a Command".)

1. Entering Commands on a Full Screen Display

2.

You can type commands that operate on files in the list directly on
the lines of the FILELIST display. When you enter EXECUTE (either
from the command line or by pressing the PF10 key), all commands
typed on the lines in the file displayed on the current screen are
executed. The filename, filetype, and filemode are appended
automatically to the command, unless you typed one of the symbols
described below (in usage note 3).

Note that when a command is typed on the FILELIST or RDRLIST screen,
EXECUTE rebuilds the line and compares it with the line displayed on
the screen. The line is scanned from right to left, and the first
character that is different signals the end of the command.
Therefore, if the file information has been changed (as the result
of a previous command), but this information has not yet been
updated (by pressing PF2 to refresh the screen), EXECUTE will
incorrectly interpret the information on the screen. An example
follows.

Sample FILELIST list:

Cllld Filename Filetype Fm Format Lrecl Records Blocks Date Time
CMS EXEC A1 F 80 268 21 1/11/82 13:114:19
TEST LIST A1 F 80 22 2 1/11/82 13: 19:29 ·

Issue COPYFILE command:

Clld Filename Filetype Fm Format Lrecl Records Blocks Date Time
copyfile / test list- a (APPEND 80 268 21 1/11/82 13:44:19

TEST LIST A1 F 80 22 2 1/11/82 13: 19:29 ·
After pressing PF10 only the line with the command is refreshed:

Cllld Filename Filetype Fm Format Lrecl Records Blocks Date Time

* CMS EXEC A1 F 80 268 21 1/11/82 13:44:19
TEST LIST A1 F 80 22 2 1/11/82 13:19:29

·
Pressing PF2 updates the other files in the list:

Cmd Filename Filetype Fm Format Lrecl Records Blocks Date Time
TEST LIST A1 F 80 290 23 1/11/82 13:46:38
CMS EXEC A1 F 80 268 21 1/11/82 13:44:19 ·

Entering Commands on the Command Line

Another way to issue commands that make use of the files displayed
is to move the current line to the first (or only) file you want the
command to use, and then to issue EXECUTE (in the form IIEXECUTE
lines command ll) from the XEDIT command line. This method may be
used on both display and typewriter terminals.

For example:

First move the current line (by using XEDIT subcommands like UP or
DOWN) to the first file you want to use in the command. On a full
screen display, the current line is the first file on the screen and
is highlighted. Then (in the XEDIT command line) you type:

execute n xedit

Section 2. CMS Commands 139

------------- -----

FILELIST

where "n" is the number of files to be edited, starting with the
current line. (You can use any command, not just XEDIT.)

Note: You can use XED IT synonyms or macros to make issuing common
commands easier. For example, you might want to set up a
command "EX" to be a synonym for "EXECUTE 1 XEDIT".

3. Using Symbols as Part of a Command

Symbols can be used to represent operands in the command to be
executed. They can be used in the commands typed on the screen, or
as part of the command inEXECU~E (on the command line). Symbols
are needed if the command to te executed has operands or options
that follow the fileid. Examples of using symbols are in the
"Examples" section, below.

The following symbols can be used:

I means the filename filetype filemode displayed on the
line.

In means the filename displayed on the line.

It means the filetype displayed on the line.

1m means the fiiemode displayed on the line.

10 means execute the line as is, and omit appending anything.

Any combinations of symbols can be used. For example:

In It means: filename followed by filetype.

Int means: filename followed by filetype.

Itn means: filetype followed by filename.

Intm is equivalent to / alone.

Innt means filename followed by filename and file type

4. Special Symbols Used Alone

The following special symbols can be typed alone on the lines of the
FILELIST display. ~hey have the following meanings:

=

?

I

means execute the previous command for this file.
Commands are executed starting at the top of the screen.
For example, suppose you enter the DISCARD command on a
line. You can then type an equal sign on any other
line(s). ~hose files preceded by equal signs are
discarded when the EXECUTE command is entered (from the
command line or by pressing the PF10 key).

means display the last command executed. The command is
displayed on the line in which the ? is entered.

means make this line the current line. (On the FILELIST
screen, the current line is the first file on the screen.)

DMSWEX561E CURSOR IS NCT ON A VALID DATA FIELD. RC=3
DMSWEX526E OPTION 'CURSOR' VALID IN DISPLAY MCDE ONLY. RC=3

140 IBM VM/SP eMS Command and Macro Reference

FlLELIST

DKSWEX654E INVALID SYKBOl 'symbol'. {I/O' MUST BE SPECIFIED AlONEI
INVALID CHARAC~ER 'char' FOLLOWING '/' SYMBOL}. RC=24

DMSWEX651E 'EXECUTE' MUST EE ISSUEC FROK FILELIST OR BDRLIST. RC=40

On a typewriter terminal cnly:
Executing: command
+++E (nn) +++

Use the DISCARD command to erase from disk a file that is displayed in
the list. (DISCARD is eguivalent to the CMS command ERASE.) DISCARD
can either be typed in the command area of the line that describes the
file you want discarded, or it can be entered from the command line (at
the bottom of the screen).

The format of the DISCARD command as used in the FILELIST environment
is:

I I
I DISCARD I [fn ft fm] ,

fn ft fm is the file identifier of the file to be erased.
is typed on the line that describes the file to be
no file identifier should be specified. The
filetype, and filemode are appended automatically.

DMSWDC649E EXTRANEOUS PARAMETER 'parameter'. RC=24

If DISCARD
discarded,
filename,

DKSWDC651E DISCARD MUST BE ISSUED FROM RDRLIST, PEEK OR FILELIST RC=40
DMSWDC653E ERROR EXECUTING 'command', RC = Inn'. RC=40

Messages when in FILELIST and RDRLIS~ environments (in XEDIT) :

DMSWDC652E MISSING OPERAND(S}. SPECIFY 'EXECUTE en] DISCARD'. RC=24

Examples

The following FILELIST screen was created by issuing the FILELIST
command with no operands, which is eguivalent to FILELIST * * A. Note
that the files are sorted by date and time, newest to oldest.

Section 2. CMS Commands 141

FlLELIST

OHARA FILELIS~ A1 V 105 ~RUNC=105 SIZE=418 LINE=1 COLUMN=1

Cmd Filename Filetype Fm Format Lrecl Records Blocks Date Time
PIZZA TOPPINGS A1 F 107 281 10 10/04/80 17:59:00
COOKIE ASSEMBLE A1 F 98 49 2 10/03/80 15: 17: 01
JELLY BEANS A1 F 120 277 10 9/25/80 9:14:02
DIETING TIPS A1 F 75 28 1 9/24/80 12:10:03
CUSTOMER LIST A1 F 95 34 2 8/04/80 21:12:04
SEND EXEC A1 F 80 101 4 8/04/80 15:33:05
MY MEMO A1 V 26 7 1 8/01/80 16:50:06
MYMACRO XEDIT A1 V 95 29 2 7/30/80 20:58:07
CMSFILES SCRIPT A1 V 80 489 30 7/26/80 16:05:08

1=Help 2=Refresh 3=Quit 7=Backward 8=Forward . 9=FL/n
4=Sort (type) 5=Sort(date)6=Sort(size) 10=Execute 11=XEDIT 12=Cursor
===)

XEDIT

Figure 10. Sample FILElIS~ Screen

Examples of Qsinq ~~mbol§

The following examples show how symbols can be used to represent
operands in a command. ~he values substituted for the symbols and the
resulting command are shown. In each case, the command can be entered
in either of the following ways:

I. typed in the "Cmd" area of the screen. The command is executed
I either by entering EXECUTE on the XEDIT command line and then
I pressing ENTER, or by pressing PF10.

I. entered from the XEDIT command line, as an operand of EXECUTE (in
I the form "EXECUTE lines command").

If a symbol is not specified, the filename, filetype, and filemode are
appended automatically to the command.

i
I FILEID

• Ipizza toppings a
Icookie assemble a
I jelly beans a
Idieting tips a
I

,
I COMMAND
I
I discard
I assemble In
Icopy / = flavors
Icopy / /nt 1: ,

I I
I RESULTING COMMAND I
I I
Idiscard pizza toppings a I
lassemble cookie I

=lcoPy jelly beans a jelly flavors al
Icopy dieting tips a dieting tips bl
, ,

142 IBM VM/SP CMS Command and Macro Reference

J

L

L

FINIS

FINIS

Use the FINIS command to close one or more files. The format of the
FINIS command is:

r--,
I I r , I
I FINIS I fn ft Ifml I
I I * * 1* I I
I I L .J I
L--.J

where:

fn

ft

fm

is the filename of the file to be closed. If you code an
asterisk (*) in this field, all filenames are closed.

is the filetype of the file to be closed. If you code an
asterisk (*) in this field, all filetypes are closed.

is the filemode of the file to be closed. If you code an
asterisk (*) in this field, all disks are searched for the
specified file. If this field is omitted, A1 is assumed.

Use FINIS when your program does not close a file during its execution.
C!S commands close files automatically at the end of their execution.
(An 'EXEC' file is considered to be a single C!S command, independent of
its content.)

None.

If an error occurs, register 15 contains the following error code:

6 File not open

Section 2. C!S Commands 1q3

FORMAT

FORMAT

Use the FORMAT command to:

• Initialize a virtual disk (mini disk} for use with CMS files
• Count or reset the number of cylinders on a virtual disk
• Write a label on a virtual disk

The format of the FOBMAT command ic.

FORMAT cuu mode [nocyl] [(options ••• () J]
[noblk]

opti.Qns:
r
lJ!lksize
I
I
I
I
I
I
I
INoerase
ILabel
IRecomp
L

r " I 8001
110241
120481
140961
11K I
I 2KI
I 4KI
L J

cuu is the virtual device address of the virtual disk to be
formatted.

mode

nocyl

noblk

Valid addresses are 001 through 5FF for a virtual machine in
basic control mode and 001 through FFF for a virtual machine
in extended control mode.

is the filemode letter to be assigned to the specified device
address. Valid filemcde letters are A through Z. This field
must be specified. If any other disk is accessed at mode, it
is released.

is the number of cylinders to be made available for use. All
available cylinders on the disk are used if the number
specified Exceeds the actual number available.

is the number of FB-512 blocks to be made
If the number specified exceeds the actual
the disk, then all the blocks on the disk
for use.

available for use.
number of blocks on
are made available

options:

BLKSIZE
specifies the physical DASD block size of the CMS minidisk.
The block sizes 1024, 2048, and 4096 may alternately be
specified as 1K, 2K, and 4K, respectively. For FB-512

144 IBM VM/SP CMS Command and Macro Reference

NOERASE

FORMAT

devices, only block sizes 1024, 2048, and 4096 are supported;
for CKD (count key data) devices, all block si2es are
supported.

specifies for FB-512 devices that the permanently formatted
FB-512 blocks are not to be cleared to 2eros. If not
specified, the FB-512 blocks will be cleared. For non-FB-512
devices, this option is ignored.

LABEL writes a label on the disk without formatting the disk. The
CMS disk label is written on cylinder 0, track 0, record 3 of
the virtual disk or block1 of an FB-512 device. A prompting
message requests a six-character disk label (fewer than six
characters are left-justified and blanks padde~.

RECOMP
changes the number of cylinders or FB-512 blocks on the disk
that are available to the user. This number becomes the
actual number of minidisk cylinders or FB-512 blocks, or the
number specified by nocyl/noblk, whichever is less. If nocyl
is not specified and the disk is formatted in aOO-byte blocks,
all cylinders are used. If the disk is formatted in 1K, 2K,
or 4K blocks, the maximum number of cylinders initially
formatted on the disk is made available to the user.

1. You can use the FORMAT command with any virtual 3310, 3330, 3340,
3350, 3370, 3375, 3380, or 2314 device. The speed matching buffer
feature (Feature 16550) for the 3380 supports the use of extended
count-key-data channel programs.

2. When you do not specify either the BECOMP or LABEL option, the disk
area is initialized by writing a device-dependent number of records
(containing binary zeros) on each track. Any previous data on the
disk is erased. A read after write check is made as the disk is
formatted. For example:

format 191 a 25

initializes 25 cylinders of the disk located at virtual address 191
in CMS format. The command:

format 192 b 25 (recomp)

changes the number of cylinders available at virtual address 192 to
25 cylinders, but does not erase any existing CMS files. To change
only the label on a disk, you can enter:

format 193 c (label)

Respond to the prompting message with a six-character label.

3. If you want to format a minidisk for VSAM files, you must use the
IBCDASDI program. If you want to format an entire disk, you may
use any as or DOS disk initialization program.

4. Because the FORMAT ccmmand requires heavy processor utilization and
is heavily I/O bound, system performance may be degraded if there
are many users on the system when you use FORMAT.

5. When formatting FB-512 devices, enough
must be formatted to support the CMS

blocks of the minidisk area
disk structure, or message

section 2. CMS Commands 145

FORMAT

DMS216E will be
terminated. The
for minidisks of
respectively.

displayed, and the FORHAT request will be
number of FB-512 blocks which must be formatted
1K, 2K, and 4K CMS blocksize is 12, 24, and 48,

6. If the FORMAT command with the RECOMP option fails and CKS issues
message DHSFOB214W, "CANNOT RECOMPUTE WITHOUT LOSS OF DATA. NO
CHANGE.", query your A-disk to determine the number of unallocated
cylinders. If the number of cylinders seems adequate, it is
possible that some of the allocated space is at the end of the
disk, and is thus not available to the FORMAT command. Issue the
command:

COpy * * A = = = (REP

followed by the FORMAT command with the RECOKP option.

7. Choosing an appropriate BLKSIZE to format a disk depends upon its
intended use. A 4K BLKSIZE will optimize the I/O if the disk is to
contain large files with no missing records (dense). A BLKSIZE of
1K is more appropriate when creating many small files or sparse
files. For examFle, PL/I regional files are sparse and they may
allocate more space on a 4K disk than on a 1K disk, therefore, the
smaller BLKSIZE is p~eferable.

The larger the blocksize of the disk, the greater the amount of
storage required for input/output buffers. Each buffer that the
system needs must be a contiguous block of system keyed storage.
The size of this area of storage being the blocksize of the disk.
Programs that dynamically allocate storage based upon machine size
may use up all of the available storage. This may not allow the
system enough storage to allocate buffers for its use.
Consequently, a program needing a 4K disk that uses all of the
available storage may be unable to get I/O buffers if they are not
already allocated. For more information on CMS storage management,
refer to the VH/~ System ~gi~ ~nd Proble~ Determination Guide
yolo 1 - ill.

DMSFOR603R FOR HAT WILL ERASE ALL FILES ON DISK Imode(cuu) I. DO IOU WISH
TO CONTINUE? (IESINO):

You have indicated that a disk area is to be initialized: all
existing files are erased. This message gives you the option of
canceling the execution of the FORMAT command. Reply yes or no.

DHSFOR605R ENTER DISK LABEL:

You have requested that a label be written on the disk.
one- to six-character label.

DMSFOR7051 DISK REMAINS UNCHANGED.

Enter a

The response to message DMSFOR603R was NO or a null line was
entered.

DMSFOR732I {'nnn' CYLINDERSI'nnnnnnnnnn' FB-512 BLOCKS} FORMATTED ON
DISK 'mode (cuu) ,

The format operation is complete.

146 IBM VM/SP CMS Command and Macro Reference

L

FORMAT

D~SFOR133I FORftATTING DISK 'mode'

The disk represented by mode letter 'mode' is being formatted.

LABEL CUU M STAT CYL TYPE BLKSIZE FILES ELKS USED-(~} ELKS LEFT BLK TOTAL
label cuu m R/W nnn type blksize nnnnn nnnn- J nnn nnnnnn

This message provides the status of a disk when you use the RECOMP
option. The response is the same as when you issue the QUERY
command with the DISK operand.

DMSFOR003E INVALID OPTION 'option' RC=24
DMSFOR005E NO 'option' SPECIFIED RC=24
DMSFOR011E INVALID DEVICE ADDRESS 'cuu' RC=24
D~SFOR028E NO DEVICE SPECIFIED RC=24
DMSFOR031E DISK 'mode[(cuu)]' IS READ/ONLY RC=36
D~SFOR048E INVALID MODE 'mode' RC=24
DMSFOR069E DISK 'mode' NOT ACCESSED RC=36
DMSFOR010E INVALID PARAMETER 'parameter' RC=24
DMSFOR113S DEVICE 'cuu' N01 ATTACHED RC=100
DMSFOR114S 'cuu' IS AN UNSUPFOR~ED DEVICE TYPE

OR REQUESTED BLKSIZE IS NOT SUPPORTED
FOR THE DEVICE RC=88

DMSFOR125S PERMANENT UNIT CHECK ON DISK 'mode (cuu) , RC=100
DMSFOR126S ERROR {READIWRIT}ING LABEL ON DISK 'mode (cuu) , RC=100
DMSFOR214W CANNOT RECOMPUTE WITHOUT LOSS OF DATA. NO CHANGE RC=8
DMSFOR216E INSUFFICIEN~ BLOCKS ON DISK TO SUPPORT

CMS DISK STRUCTURE BC=100

Section 2. CMS Commands 141

GENDIRT

GENDIRT

Use the GENDIRT command to fill in a C!S auxiliary directory. The
auxiliary directory contains the name and location of modules that would
otherwise significantly increase the size of the resident directory,
thus increasing search time and storage requirements. By using GENDIRT
to fill in an auxiliary directory, the file entries for the given
command are loaded only when the command is invoked. The format of the
GENDIRT command is:

GENDIRT directoryname [target.ode]

where:

directorynalle

targetllode

is the entry point of the auxiliary directory.

is the file mode letter of the disk containing the modules
referred to in thE directory. The letter is the filemode of
the disk containing the modules at execution time, not the
filemode of the disk at creation of the directory. At
directory creation time, all modules named in the directory
being created must be on Either the A-disk or a read-only
extension; that is, not all disks are searched. The default
value for target.ode is S (system disk). It is your
responsibility to determine the usefulness of this operand at
your installation, and to inform all users whose programs are
in auxiliary directories exactly what filemode to specify on
the ACCESS command.

Note: For information on creating auxiliary directories and for further
requirements for using the targetmode option, see the V!/SP System
Prograllmer's Guide.

D!SGND002W FILE 'fn ft fm' NOT !OUND RC=4
D!SGND021E ENTRY POINT 'name' NeT FOUND RC=40
D!SGND022E NO DIRECTORY NA!E SPECIFIED RC=24
D!SGND070E INVALID PIR1!ETEE 'parameter' RC=24

148 IB! VM/SP C!S Command and Macro Reference

GENMOD

GENMOD

Use the GENMOD command to generate a nonrelocatable (MODULE) file on a
eMS disk. The format of the GENMOD command is:

fn

fm

Genmod
r ,

[fn [MODULE I fm I]] [(options ••• [)]]
I A1 I
L .J

.QE!l,.Q.!!.§: [FBOM entry1] [TO entry2
r , r , r ,
IMAP I ISTR I lOS I
INOMAPI I NOSTR I IDOSI
L .I L .I IALLI
[SYSTEM] l .J

]

is the filename of the MODULE file being created. If fn is
not specified, the file created has a filename equal to that
of the first entry point in the LOAD MAP.

is the filemode of the MCDULE file being created. If fm is
not specified, A1 is assumed.

Ogtions: If conflicting options are specified, the last one entered
is used.

FROM entry1
specifies an entry point or a control section name that
represents the starting virtual storage location from which
the nonrelocatatle copy is generated.

TO entry2
specifies an entry point or a control section name that
represents the ending virtual storage location from which the
nonrelocatable copy is generated.

]AP copies system loader table entries for the generated module
into a load map record which is included at the end of the
MODULE file. The record can contain as many as 3276 load map
entries. 'I'he MOD/UP command can be issued to display the load
map.

NOMAP specifies that a load map is not to be contained in the BODULE
file.

Note: If a module is generated with the NOBAP option, that
module cannot later be loaded and started with the CMS LOADMOD
and START commands. When NOMAP is specified, the information
produced is not sufficient for the START command to execute
properly. However, a module generated with the NOMAP option
can later be invoked as a command; that is, it can be invoked
if its filename is entered.

Section 2. eMS Commands 149

GENMOD

STR invokes the CMS storage initialization routine when the MODULE
file is subseguently loaded (see the LOADMOD command
description). This routine frees any storage remaining from a
previous program. STR is the default setting if the MODULE is
to be loaded at the beginning of available user storage.

NOSTR

If you have issued CMS SET RELPAGE ON, STR causes CMS storage
initialization to release the remaining pages of storage.

~ot~: If a program running in the user area calls a transient
routine that was generated with the STR option, the user area
storage pointers will he reset. This reset condition could
cause errors upon return to the original program (for example,
when OS GETMAIN/FREEMAIN macros are issued in the user
program).

indicates
pointers
NOSTR is
loaded at

that, when the MODULE is loaded, free storage
are not reset for any storage currently in use.
the default setting if the MODULE file is to be
a location other than the default load address.

SYSTEM indicates that when the MCDULE file is suhseguently loaded, it
is to have a storage ~rotect key of zero.

Q~ indicates that the program may contain OS macros and,
therefore, should be executed only when CMS/DOS is not active.

DOS indicates that the program contains VSE macros; CMS/DOS must
be active (that is, SET DeS ON must have been previously
invoked) in order for this program to execute. (See Usage
Note 2).

ALL indicates that the program:

• Contains CMS macros and must be capable of running
regardless of whether CMS/DOS is active or not

• Contains no VSE or OS macros

• Preserves and resets the DOS flag in the CMS nucleus

• Does its own setting of the DOS flags

~ot~: The ALL option is primarily for use by CMS system
programmers. CMS system routines are aware of which
environment is active and will preserve and reset the DOS flag
in the CMS nucleus.

1. The GENMOD command is usually invoked following the LOAD command,
and possibly the INCLUDE command. For example, the seguence:

2.

load myprog
genmod testprog

loads the file MYPROG TEXT into virtual storage and creates a
nonrelocatable load module named TESTPROG MODULE. TESTPROG may now
be invoked as a user-written command from the CMS environment.

The execution of
supported and may
for use with the
initialization for

MODULE files created from VSE programs is not
give unpredictable results. GENMOD is intended
LCAD command, not the FETCH command. Storage
FETCH is different from that for LOAD.

150 IBM VM/SP CMS Command and Macro Reference

GENMOD

3. Before the file is written, undefined symbols are set to location
zero and the common reference control section is initialized. The
undefined symbols are not retained as unresolved symbols in the
MODULE file. Therefore, once the MODULE file is generated, those
references cannot be resolved and may cause unpredictable results
during execution.

4. If you load a program into the transient area you should issue the
GENMOD command with the STR option. Be careful if the program uses
OS GETMAIN or FREEMAIN macros because your program, plus the amount
of storage obtained via GETMAIN, cannot exceed two pages (8192
bytes). It is recommended that you de not use GETMAIN macros in
programs that execute in the transient area.

S. A transient module (loaded with the ORIGIN TRANS option) that was
generated with the SYSTEM option is written on disk as a
fixed-length record with a maximum length of 8192 bytes.

6. If you are using FORTRAN under eMS, use FROM MAIN as an option to
avoid unpredictable results.

7. If FROM is not specified on the GENMOD command, the starting
virtual storage location (entry Foint) of the module is either the
address of fn (if it is an external name) or the entry pOint
determined according to the hierarchy discussed in Usage Note 4 of
the LOAD command. !his is not necessarily the lowest address
loaded. If you have any external references before your START or
CSECT instructions, you must specify the 'FROM entry1' operand on
the GENMOD command to load your program properly.

8. If you are using PL/I under CMS, use FROM PLISTABT as an option to
avoid unpredictable results.

Responses

None.

DMSMOD003E
DMSMODOOSE
DMSMOD021E
DMSMOD032E
DMSMOD037E
DMSMOD040E
DMSMOD070E
DMSMOD084E
DMSMOD10SS
DMSSTT048E
DMSSTT069E

INVALID OPTION 'option' RC=24
NO {FROM ITO} ENTRY SPECIFIED RC=24
ENTRY POINT 'name' NeT FOUND RC=40
INVALID FILE!YPE 'ft' RC=24
DISK 'mode' IS BEAD/ONLY RC=36
NO FILES LOADED RC=40
INVALID PARAMETER 'parameter'
INVALID USE OF 'FROM' ANt ITO'
ERROR 'nn' WRITING FILE 'fn ft
INVALID MODE 'model RC=24
DISK 'mode' NOT ACCESSED RC=36

RC=24
CPT IONS RC=24
fm' ON DISK RC=100

Section 2. CMS Commands 151

GLOBAL

GLOBAL

Use the GLOBAL command to identify which eMS, eMS/DOS, or OS libraries
are to be searched for macros, copy files, subroutines, VSE executable
phases, or OS load modules when processing subsequent CMS commands. The
format of the GLOBAL command is:

GLobal

MACLIB

TXTLIB

DOSLIB

LOADLIB

{
MACLIB l [libname1 ••• libname8]
TXTLIB
DOSLIE
LOADLIB

precedes the specification of ~acro libraries that are to be
searched for macros and copy files during the execution of
language processor commands. The macro libraries may be CMS
files or OS data sets. If you specify an OS data set, a
FILEDEF command must be issued for the data set before you
issue the GLOBAL command.

precedes the specification of text libraries to be searched
for missing sutroutines when the LOAD or INCLUDE command is
issued, or when a dynamic load occurs (that is, when an OS
SVC 8 is issued).

!gte: Subroutines that are called by dynamic load should (1)
contain only VCONs that are resolved within the same text
library member or (2) be resident in storage throughout the
processing of the original CftS LOAD or INCLUDE command.
otherwise, the entry point is unpredictable.

precedes the specification of DOS simulated core image
libraries (that is, eMS/Des phase libraries) to be searched
for missing phases. This operand does not apply to system
or private core image libraries residing on DOS disks.
DOSLIB can be specified regardless of whether the CMS/DOS
environment is active or not.

precedes the specification of load module libraries to be
searched for a module that the OSRUN command or the LINK,
LOAD, ATTACH, or XC!L macros refer to. The libraries can be
CMS LOADLIBS or OS module libraries. If you specify an OS
data set, issue a FILEDEF command for the data set before
you issue the GLCBAL command.

libname1 ••• are the filenames of up to eight libraries. Filetypes must
be MACLIB, TX!LIB, DOSLIB, or LOADLIB accordingly. The
libraries are searched in the order in which they are named.
If no litrary names are specified, the command cancels the
effect of any previous GLOBAL command.

1. A GLOBAL command remains in effect for an entire CMS session unless
it is explicitly canceled or reissued. If a program failure forces
you to IPL CMS again, you must reissue the GLOBAL command.

152 IBM VM/SP CMS Command and Macro Reference

2. There are no default litraries;
libraries during every terminal
command(s) in Jour PROFILE EXEC.

if you wish to
session, place

GLOBAL

use the same
the GLOBAL

3. If JOu want to use an OS library during the execution of a language
processor, you can issue a GLOBAL command to access the library, as
long as you have defined the library via the PILEDEP command. If
you want to use that library for more than one job, however, you
should use the PEB! option on the PILEDEP command, since the
language processors clear nonpermanent file definitions.

4. To find out what libraries have been specified, issue the QUERY
co •• and with the ftACLIB, TXTLIB, DOSLIB, LOADLIB, or LIBRARY
operands. (The LIERARY operand requests a display of all
libraries.)

5. Por information on creating and/or manipulating CftS libraries, see
the discussion of the ftACLIB, ~XTLIB, DOSLIB, and LOADLIB commands.

Responses

None.

!essages and ~~ £2g~

DftSGLB002W PILE 'fn ft' Nei POUND BC=28
DftSGLB014E INVALID FUNCTION 'function' BC=24
DftSGLB047E NO FUNCTION SPECIFIED RC=24
DftSGLB108S ftORE THAN 8 LIBRARIES SPECIFIED RC=88

section 2. CftS commands 153

GLOBALV

I GLOBALV

The GLOBALV (GLOBAL
the need for several
to retain those
subsequent use.

Variables) command addresses two primary needs: 1)
EXECs to share a common set of values; 2) the need

values, either temporarily or permanently, for

Values are often given names, describing what they represent, for easy
reference. Although the values often vary, their names usually do not.
The GLOEALV command processor builds and maintains group(s) of named,
variable values in free storage for shared use by EXECs. EXECs "share"
a value by referring to it by a common name. When requested, GLOBALV
retrieves a variable(s) from the group(s) and places it in the program
stack for subsequent use by the requesting EXEC.

GLOBALV supports use of more than one group. This allows for grouping
distinct variables that are either related or often used together, which
facilitates both more efficient retrieval and more selective use. The
"global variable group(s)", built 1::y GLOBALV from a set of CMS GLOBALV
type files on the user's A-disk and extensions, exist throughout an IPL,
unless explicitly purged or re-initialized.

When variables are defined or changed, the user decides whether the
variables or changes are to last:

1) For the current IPL only
2) Throughout an entire session (normally, from LOGON to LOGOFF)
3) Permanently, i.e. across sessions

Variables defined for the current IPL only are retained in storage.
Those required longer than a single IPL are retained in CMS files on the
user's A-disk from where they are put in storage. The CMS filenames are
SESSION GLOBALV (for values required throughout the session), and
LASTING GLOBALV (for values that are to last permanently). These two
files and a third A-disk file (INITIAL GLOBALV) are the source from
which the GLOBALV command processor creates and initializes the
variable(s) in storage. The INITIAL file is normally created by the
user as an alternative way of defining a large number of variables for
an IPL.

The CMS GLOBALV disk files may be of fixed or variable format. Fixed
format facilitates creation cf files by users (via editing). It
accommodates variables whose names and values do not exceed eight bytes
each. The GLOBALV command Frocessor uses variable format which allows
for varying length variable names and values. In addition, variable
format includes a special field which, when used, identifies the group
name into which the variable will be grouped. (See "Usage Note 1. 11)

The GLOBALV command processor manages requests to define or set (SET •••)
variables both in storage and in the LASTING and SESSION GLOBALV files
on the user's A-disk.

1SQ IBM VM/SP CMS Command and Macro Beference

GLOBAL V

I The format of the GLOBAlV command is:

GLOBALV INIT

SELEC'I

r
I
I
I
I
I SELECT
I
I
I
I
I
I
I
I
L

SELECT

GRPLIS'I
GRPSTACK
PURGE

r- ,
Igroup I
I]1!1!! 1'1 EQ I
L J

group
UNNAIHD

group
UNNAMED

,
I

SET
SETS name1 [valuel] [name2 value2] •••
SETP

SETl
SE'ILS
SETSL name [value]
SE'ILP
SETPL

LIST [namel [name2] •••]

S'IACK namel [name2J •••
S'IACKR

PURGE

Note: A though this command may te used in CMS EXECs, it is designed for
use with EXEC 2 EXECs. Restrictions/precautions are listed in
"Usage Notes for C!S EXECs".

INIT allocates and initializes global variable(s) in free storage
from data in the LASTING, SESSION, and INITIAL GLOBALV files on
the issuer's A-disk and extensions. Not all files need be
present. It also performs any needed cleanup (to eliminate
multiple and null entries) in the LASTING GLOBALV file.

If the records in the GLOBALV file(s) contain no group name,
for grouping the variables, (as with fixed format records)
GLOBILV's INIT function allocates only cne global variable
group, UNNA!ED, in free storage. Otherwise, (variable format)
GLOBALV INIT will allocate as many unique global variable
groups in free storage as identified in the GLOBALV files.

GLOBALV INIT initializes free storage with variables defined in
the LASTING, SESSION, and INITIAL GLOBALV files respectively.
If any variables are defined more than once within the LASTING
file or within the SESSION file, the value defined last in the
file is the one used to initialize storage. If a variable of
the same name is defined in both the LASTING and SESSION files,
the value assigned in the SESSION file will override the value
assigned in the LASTING file when the storage is initialized.
(See "Usage Notes 2 and 3".)

After initializing free-storage from the LASTING GLOBALV file,
the file is re-written to eliminate multiple definitions for
any variable names and any null (zero length) value

Section 2. CMS Commands 155

GLOBAL V

SELECT

assignments.

The global variable(s) in free storage are required by all
other GLOBALV functions. iherefore, GLOBALV INIT is performed
automatically if not explicitly requested prior to other
GLOBALV requests.

identifies the global variable group which is the subject of
this or subsequent SELECT subfunctions. If no subfunction is
specified, the GLOBALV command processor interprets the command
as a request to set the default group for subsequent SELECT
subfunctions. The default is set to the group indicated by
'group' or to UNNAMED if nc group is specified. A GLOBALV
SELECT command that do~§ specify a subfunction affects only the
group specified in the command. It has no effect on setting or
resett~ng the default group.

The SELECT phrase (SELECT group or SELECT UNNAMED) is optional
preceding all forms of the SELECT subfunctions, SET, LIST, and
STACK. If the SELECT phrase is not used, the subfunction
affects the default group, described above. (See "Examples"
for uses of GLCE1LV SELECT.)

SET
SETS
SETP

SETL
SETLS
SETSL
SETLP
SETPL

assigns the value 'value1' to the variable 'name1', the
value 'value2' to the variable 'name2', etc. Since SET
fields are delimited by blanks, the values cannot
contain any blanks. (Use the SETL subfunction,
described next, for such values.) If no value is
specified, the value is assumed to be nUll.

SET adds the assignment(s) in the selected or default
global variable group in storage. If the variable name
is already defined, its value is replaced by the one
specified in the command. SETS adds/replaces the
assignment(s) in the selected or default group and
appends it to the SESSION GLOB1LV disk file. SETP
adds/replaces the assignment(s) in the selected or
default group and appends it to the LASTING GLOEALV disk
file.

CMS EXEC users, refer to "Usage Notes for CMS EXECs".

assigns the specified literal value, which may contain
blanks, to the variable name. The first blank following
the name delimits the name from the value field and is
not part of the value. All characters following this
blank (including any other blanks) are part of the
value. If no value is specified, the value is assumed
to be null.

SETL adds the assignment in the selected or default
global variable group in stcrage. If the variable name
is already defined, its value replaced by the one
specified in the command. SETLS adds/replaces the
assignment in the selected or default group and appends
it to the SESSleR GLOBALV disk file. SETSL is
equivalent to SETLS. SETLP adds/replaces the assignment

156 IBM VM/SP CMS Command and Macro Reference

in the selected
LASTING GLOEALV
SETLP.

GLOBALV

or default group and appends it to the
disk file. SETPL is equivalent to

CMS EXEC users, refer to "Usage Notes for CMS EXECs".

LIST displays a list of the specified variable name(s) and
their associated value(s). If no name is specified, all
variables in the selected or default group are listed.

STACK places the value(s) associated with the specified
variable name(s), from the selected or default group,
LIFO in the program stack. When multiple variables are
named in a single stack request, the values are stacked
LIFO in the program stack such that the variable named
first in the command is the first retrieved from the
stack. Refer to Example 2 under "EXAMPLES". If a
variable is not found in the group, a null (zero length)
line is stacked. The command has no effect of the
variable name is omitted.

This stacking technique requires that the EXEC issue a
separate "SREAD ••• " control statement to read each
value from the stack.

STACKR places a 'SREAL n' control statement and, for each
variable name spec-ified, a "&name = &LITERAL OF value"
assignment statement lIFO in the program stack such that
'SREAD n' is the first retrievable line. In the &READ
control statement, In' is the number of subsequent
assignment statements and, in the assignment statement,
'value' is the value associated with the specified
variable name in the selected or default group. When
multiple variables are named in a single STACKR request,
the values are stacked LIFO in the program stack such
that the "&HEAD n" is the first retrievable line from
the stack, and the first named variable assignment
statement is the next retrievable line from the stack,
etc. Refer to Example 1 in the "Examples" section. The
command has no effect if the variable name is omitted.

This stacking technique requires only a single &READ
control statement to read all the variables named on the
GLOBALV command from the stack.

CMS EXEC users, refer to "Usage Notes for CMS EXECs".

PURGE causes the variables in storage to be cleared. The
group itself is not purged.

Cautio.!!: If the SELECT phrase is not included with the
PURGE subfunction the result will be a GLOBALV PURGE of
al! glotal variable(s) in storage.

GRPLIST displays a list of all. existing global variable groups.

GRPSTACK places the names of all. existing variable groups, line by
line, in the program stack such that these items will be the
first retrievable from the stack. A null line, used as a
delimiter, indicates the end of the stacked group names.

PURGE causes all* global variable(s) in free storage to be released.

*Note that "all" includes those groups created by use of the DEFAULTS
and EXECUTE commands.

Section 2. CMS Commands 157

GLOBALV

1. The CftS GLOBALV disk files may be of fixed or variable format. Fixed
format records are 16 bytes in length and consist of two eight-byte
fields that contain a variable name, followed by its assigned value.
Variable format records may be uF to 520 bytes in length and consist

group name I f1 I variable name I f2 I variable value

o 8

of the following
group name

f1

variable name

f2

variable value

9 n n+1

five fields:
identifies the group for grouping the variable (from
GLOBALV [SELECT grouPIUNNAMED] SET •••)
defines the actual length of the variable name field
immediately following
identifies the name by which this shared value will
be commonly referenced
defines the actual length of the variable value
field immediately following
specifies the actual value assigned to the named
variable

Use fixed format when editing (creating or updating) files. Variable
format records would be difficult to edit because changes in the
variable name or variable value fields must also be reflected in
their respective length fields. Although not impossible, this
further editing is awkward and likely to be overlooked, increasing
the chance of errors in those fields.

To establish the initial set of lasting variables, the user may edit
them into a fixed format LASTING file. Note that whenever the
GLOBALV command processor rewrites this file, during initialization,
it will use variable format.

Probably the easiest way to create
GLOBALV command processor do the
containing the appropriate GLOBALV
Then when the EXEC is invoked, the
build the file(s) as it executes the

GLOBALV file (s)
work. Create

••• SETS and/or
GLOBALV command

commands.

is to let the
an EIEC file

SETL cOllmands.
processor will

2. The SESSION file is not erased by the GLOBALV command processor.
This is the responsibility of the user. The length of a session is
thus determined by the freguency with which the user erases the
SESSION GLOBALV file. To make the duration of a session the time
between eMS IPLs, the user might choose to include an ERASE SESSION
GLOBALV command in the PROFILE EXEC. To make a session last for all
IPLs of CMS during one day, erase the SESSION GLOBALV file whenever
the date changes.

The SESSION GLOBALV file also is ~ cleaned up (to eliminate
multiple and null entries) by the GLOBALV command processor, as the
LASTING GLOBALV file is at each initialization. Without this
automatic cleanup, the SESSION GLOBALV file continues to grow longer
with each SETS and SETSL command.

3. If the file is present during initialization of the global
variable(s) in storage, its variables take precedence over LASTING
variables of the same name. For variables of the same name defined
within a file or in more than one file, the order of precedence, is:

158 IBM VM/SP CMS Command and Macro Reference

SESSION
LASTING
INITIAL

last in file is used
last in file is used
first in file is used

GLOBALV

So, for example, if a variable were defined for a given group several
times in each file, and all files were present at initialization, the
value used in the storage would be that defined last in the SESSION
GLOBALV file.

Usage ~ fo£ CMS EX~f§

1. When defining values using GLOEALV's SELECT sutfunction, SET ••• , be
aware that values (tokens) larger than eight characters will be
truncated to eight characters by the CftS EXEC processor.

2. Avoid use of GLOBALV's SELECT sutfunction, SETL.... It requires an
extended parameter list, such as is provided by EXEC 2. Use in CMS
EXECs causes an error from the GIOBALV command processor.

3. Avoid use of GLOBALV's SELECT subfunction, STACKR. The literal
assignment statement it generates is not in a format the CftS EXEC
processor recognizes. ~he CftS EXEC command processor will generate
the following error message:

DMSEXT012E ERROR IN EXEC FILE fn, LINE nnn - INVALID ASSIGNMENT

Examples

These examples illustrate the use and effect of several, consecutive
GLOEALV SELECT commands.

Example 1.

GLOBALV SET DEPT 222
(SELECT phrase is omitted.)

Effect: The value '222' is assigned
to variable name 'DEPT' in
the default global variable
group 'UNNAMED'.

GLOBALV SELECT TABA

Effect: The default glcbal variatle
group for subsequent SELEC~
subfunctions is set to
'TABA'.

GLOBALV SET EMP 8888 MCN~H MAY

Effect: The value '8888' is assigned
to the variable name 'EMP'
and the value 'HAY' is as
signed to the variable name
'MONTH' in thE default group
'TABA'.

DEPT 222

EMP 8888
MONTH MAY

Section 2. CMS Commands 159

GLOBALV

GLOBALV SELECT UNNAMED SET YEAR 1982

Effect: The value '1982' is assigned
to the variable name 'YEAR'
in the global variable group
'UNNAMED'. The default set
ting is not changed.

GLOBALV SETS YEAR 1981

Effect: The value '1981' is assigned
to the varia~le name 'YEAR'
in the default global vari
able group 'TABA' and the
assignment is entered into
the SESSION GLCEALV disk
file.

GLOBALV STACK YEAR DEPT

Effect: Places the value associated
with variable name 'YEAR'
from group 'TABA' onto the
stack. Since the variable
'DEPT' is not defined in
global variable group 'TABA',
a null line is stacked.

GLOBALV SELECT UNNAMED STACKR YEAR tEPT

Effect: Places a "&READ 002" control
statement, and two literal
assignment statements, de
fining the variable name
'YEAR' and the variable name
'DEPT' with their associated
values from global variable
group 'UNNAMED', onto the
stack.

UNNAMED
__ Q£Q~E __

DEPT 222
YEAR 1982

SESSION
TABA GLOBALV

2£QYE __Xi!_e __ _

EMP 8888 YEAR 1981
MONTH MAY
YEAR 1981

Stack
_!lgfor!L JfteL

Next line
to read: ABC

XYZ

Next
line to
read: &READ 002

1981
(null line)
ABC
XYZ

&YEAR
&DEPT
1981
(null
ABC
XYZ

LITERAL OF 1982
= LITERAL OF 222

line)

160 IBM VM/SP CMS Command and Macro Reference

The effect of the following request, which names 3 variables:

GLOBALV SELECT ~ABA STACK EMP MeNTH YEAR Stack After

Next line
to read: 8888

BAY
1981

GLOBALV

Whereas, the effect of 3 consecutive STACK requests, naming a single
variable each (the same 3 variables as the multiple request above):

GLOBALV SELECT ~ABA
GLOBALV STACK EMP
GLOBALV STACK MONTH
GLOBALV S~ACK YEAR

Stack After

Next line
to read: 1981

MAY
8888

GLOBALV LIST results in a display of the requested list.

GLOBALV GRPLIST results in a display of the requested list.

DMSGL0047E NO FUNCTION SPECIFIED RC=24
DftSGL0104S ERROR 'nn' REAtING FILE 'fn ft fm' FROM DISK RC=1nn
DftSGL0618E NUCEXT FAILED RC=4nn
DftSGL0622E INSUFFICIENT FREE STORAGE - NO TABLE ftADE RC=41
DftSGL0628E INVALID GLOBALV FUNCTION 'xxx' RC=4
DftSGL0631E SETL/SETLP/SETI.S CAN ONLY EE EXECUTED FROM AN EXEC 2 EXEC OR

A CMS COMftAND RC=4
DftSGL0649E EXTRANEOUS PARAMETER 'parameter' RC=24

Section 2. CftS Commands 161

GLOBALV

GLOBALV error codes consist of two 3-character fields. The first field
corresponds to errors encountered during the GLOBALV INlT function; the
second corresponds to errors encountered during other GLOBALV functions.

nnnlnnn

000

004

008
012

016

024
1nn

Function completed successfully.

Invalid function/subfunction; or invalid environment for
use of function/subfunction.

Error return from ATTN. Stacking suspended.
No free storage available to define (SET ••) additional
variables. Processing suspended at point of error.

A system error occurred in preceding processing while
GLOBALV was attempting to release its storage (presumably
upon a NUCXDROP command). Reissue NUCXDROP.

No function specified on GLOBALV command.
I/O error appending newly defined variable(s) to LASTING
or SESSION GLOBALV file on the user's A-disk. The
assignment was, however, added to the appropriate global
variable group in storage. Refer to FSWRITE macro for
meaning of 'nn'.

1nn 000 I/O error reading GLCBALV type files from user's A-disk.

2nn •••

No global variable(s) in storage created. Refer to
FSREAD macro for meaning of 'nn'.

I/O error rewriting LASTING GLOBALV file into a temporary
file. Glebal variables in storage are created, but
rewrite of the LASTING file was suspended. The original
LASTING file remains intact on the user's A-disk. Refer
to FSWRITE macro for meaning of 'nn'.

000 Function completed successfully.
1nn I/O error appending newly defined variable(s) to LASTING

or SESSION GLOBALV file on the user's A-disk. The
assignment was, however, added to the appropriate global
variable in storage. Refer to FSWRITE macro for meaning
of 'nn'.

3nn •••

000
008

4nn 000

Error occurred renaming the temporary LASTING GLOBALV file
to become the new LASTING file. Global variables in
storage are created. The original LASTING file vas
destroyed, but TEMPFILE GLOBALV contains its
corresponding variables. Refer to RENAME command for
meaning of 'nn'.

Function completed successfully.
Error return from ATTN. Stacking suspended.

Error occurrEd when GIOBALV attempted to establish itself
as a nucleus extension. GLOBALV initialization functions
could not Froceed. Refer to NUCEXT function for meaning
of 'nn'.

162 IBM VM/SP CMS Command and Macro Reference

HELP

HELP

Issue the HELP command to use the CMS HELP facility. The HELP facility
allows you to display a menu of the components for which HELP files are
available, a menu of the HELP files available for a particular
component, and the actual HELP files. HELP files contain descriptions,
formats, and parameters of CMS and CP commands, EDIT, XEDIT, and DEBUG
subcommands, and EXEC and EXEC 2 control statements, and descriptions of
CMS and CP messages. The format of the HELP command is:

Help

where:

HELP

message

MENU

componen t

r
I
I
I
I
I
I
I
L

Help
message
1!EN!!
component

... ,
I component I
IfMS
L

!bb
FOEM
PARM
DESC

I
.J

,
I
I
I

ftEND I
I

{name [(oFtion()]]} I
I

.J

displays information on how to use the eMS HELP facility.
HELP HELP displays a description of the function of the HELP
command, its syntax, keywords, operands, and options.

is the 1-character message id you specify to display the HELP
file for a message. Specify the message id in the form
xxxnnnt, where:

xxx indicates the component (for
messages, DMK for CP messages)

example, DMS for CMS

nnn is the message number

t is the message type

Note that you must specify the 1-character message id, not the
10-character id that also identifies the issuing module. For
example, specify DMS250S rather than DKSHLP250S for
information cn that message.

displays a list of component menus available.
menus list the commands, subcommands or
statements for which HELP files are available.
default if no parameters are specified.

The component
EXEC can trol

MENU is the

is the name of the component you want information about. The
HELP facility has the following components:

section 2. CMS Commands 163

HELP

C;llJS
CP
DEBUG
EDIT
EXEC
EXEC 2
XEDIT

Conversational Monitor System commands
Control Program commands
CMS DEBUG subcommands
CMS EDIT subcommands
CMS EXEC statements
EXEC 2 statements
XEDIT sub commands

component MENU
displays the menu of HELP files available for the specified
component. There is no default component when you specify
component MENU. (For example, if you want to display the menu
of CMS commands, you must issue HELP CMS MENU.) .

component name

option

displays the HELP file for the specified command, subcommand,
or statement. CMS command abbreviations are the only
abbreviations allowed when using HELP. If a component is not
specified, CMS is assumed. Thus, if you want to display the
HELP file for a CMS command, you need only specify:

HELP name

is valid only for CMS and CP commands and subcommands. You
may specify DESC, FOBM, PABM, or ALL. ALL is the default.
The HELP ccmmand options are:

ALL display the specified HELP file starting at the
beginning.

DESC display the specified HELP file starting with the
description.

FORM display the specified HELP file starting with the format
specification.

PARM display the specified HELP file starting with the
parameter descriptions.

When a HELP command option is specified, the entire HELP file
is made available to the user. The options effect only the
initial position of the HELP file display.

f~amE1~§: These are examFles of HELP requests issued as CMS commands.
Remember that you may also request HELP files directly from menus or
from the XEDIT environment.

To request a HELP file for CP message DMK006I, issue:

HELP DMK006I

To request a menu of CP commands, issue:

HELP CP MENU

To request a HELP file for the XEDIT LOCATE subcommand, issue:

HELP XEDIT LOCATE

To request display of the HELP file for the CMS TAPE command beginning
with the description, issue:

164 IBM VM/SP CMS Command and Macro Reference

HELP

HELP CKS TAPE (DESC or HELP TAPE (DESC

USgg~ l!.Qte~

1. If you specify more than one option, only the first is checked for
validity.

2. HELP accesses the disk containing the system HELP files, if not
already accessed (This disk is specified at system generation time
by the system support personnel). The HELP disk is accessed using
the first available filemode and remains accessed after HELP has
completed processing.

3. If the command or statement name begins with a special character,
followed by alphanumeric characters (for example, EXEC statements
&STACK and &END), HELP creates the filename by translating the
special character as follows:

? is translated to QUESl'IARK
is translated to EQUAL

/ is translated to SLASH
" is translated to DELQUOTE
& is translated to Al'IPRSANI:
* is translat€d to AS7ERISK

is translated to PEInor:

The first character of the name of the special character replaces
the special character in the filename.

Thus, the statements &STACK and &END would have the filenames
ASTACK and AEND. Remember that these changes only apply to the
filenames of the statements; they do not affect the way you call
for a HELP file display. ~o display the HELP files for &STACK and
&END, you would issue HELP EXEC &STACK and HELP EXEC &END.

Names which have more than one special character are handled
differently. The first special character ~s handled as above.
However, any special characters that are not the first character in
the filename must be translated to the first character of their
name, even when asking for a HELP file display. (This applies to
the special characters listed in the table above, and to the
Asterisk, *, which must be translated to a. Remember that the
asterisk is not valid as the first character of a filename.)

Thus, to display the HELP files for the EXEC statements &*, &DISK*,
and &DISK?, you would issue HELP EXEC &A, HELP EXEC &DISKA, and
HELP EXEC &DISKQ, respectively. The following table reviews all
the above changes:

--,
NAME FILENAME CALLED AS I

I
& AMPRSAND & I
&STACK ASTACK &STACK I
&DISK? ADISKQ &DISKQ I
&* AA &A ,
&$ 1$ &$ I

I

Section 2. eMS Commands 165

HELP

DMSHLP003E INVALID OPTION 'option' BC=24
DMSHLP104S ERROR ff READING FILE 'fn ft fm' FROM DISK RC=104
DMSHLP109S VIRTUAL STORAGE CAPACITY EXCEEDED RC=104
DMSHLP143S UNABLE TO LOAD SAVED SYStEM OR LOAD MODULE ['ERROR CODE=nn']
DHSHLP250S I/O ERROR OR DEVICE ERROR RC=100
DMSHLP251E HELP PROCESSING ERROR, CODE nnn 'description' RC=12

801
802
803
804
805
806
807
808

DMSHLP252E
DMSHLP254E

DMSHEL529E
DMSHEL545E
DMSHEL561E
DMSHEL586E
DMSHEL640E

DMSHLP907T

Descd.ption

Output line too long.
Format word parameter should be a number.
Invalid format word.
Format word parameter missing.
Invalid format word parameter.
Undent greater than indent.
Excessive or negative space count generated.
Numeric format word parameter is outside valid
range.

VALID OPTIONS IRE: DISC FORM PARM ALL RC=24
HELP CANNOT FIND THE INFORMATION YOU REQUESTED. IF
NOT MISSPELLED, PLEASE ENTER 'HELP' FOR MENU SELECTION
OR 'HELP HELP' FOR THE HELP COMMANE RC=28
'subcommand' SUBCOMMAND IS ONLY VALID IN EDITING MODE
MISSING OPERIND(S)
CURSOR IS NOT ON A VALID DATA FIELD
NOT FOUND
UNABLE TO
COMMAND
I/O ERROR

ACCESS HELP DISK (cuu), RC='nn' FROM ACCESS
RC=100
ON FILE 'fn ft fm' RC=256

166 IBM VM/SP CMS Command and Macro Reference

IDENTIFY

I IDENTIFY

Use the IDENTIFY command to display or stack the following information:
your userid and node; the userid of the RSCS virtual machine; the date,
time, time zone, and day of the week.

The format of the IDENTIFY command is:

IDentify

Options:

[(options ••• [)]]

2,EtiQ!!§:
r
I STACK
IFIFO
I LIFO
ITYP~
L

,
[FIIQ I LIFO] I

I
I
I

J

STACK [FIFOILIFO]

FIFO

LIFO

TYPE

Responses

specifies that the information
stack rather than displayed at
is stacked either FIFO (first
first out). The default order

should be placed in the program
the terminal. The information

in first out) or LIFO (last in
is FIFO.

specifies that the information should be placed in the program
stack rather than displayed at the terminal. The information
is stacked FIFO. The options STACK, STACK FIFO, and FIFO are
all equivalent.

specifies that the information should be placed in the program
stack rather than displayed at the terminal. The information
is stacked LIFO. Ihis option is equivalent to STACK LIFO.

specifies that the information should be displayed at the
terminal. This is the default option.

The following information is displayed or stacked:

userid AT node VIA rscsid date time zone day

wherg:

userid is the userid of your virtual machine.

node is the RSCS node cf your computer.

rscsid is the userid of the RSCS virtual machine.

date is the local date, in the form IlII/dd/YY·

time is the local time, in the form hh:mm:ss.

zone is the local time zone.

day is the day of the week.

Section 2. CftS Co.mands 167

IDENTIFY

The userid and node are from the CP QUERY USERID command.
time, and zone are from the CP QUERY TIME command.

The date,

The CP QUERY CPUID command is used to retrieve the CPU serial number.
(CP QUERY CPUID returns a 16-digit processor identification; however,
IDENTIFY only uses digits three through eight.) This number is then
looked up in the file SYSTEM NETID *. That file will have one or more
lines of the form:

cpu-serial-number node rscsid

If there is a conflict in nodes between the SYSTEM NETID file and CP
QUERY USERID, the node in SYSTEM NETID takes precedence. If there is no
record with a matching serial number, or if the file is not found, the
rscsid is set to *.

IDENTIFY keeps some of its information in storage, such as userid, node
and rscsid. To change any of that information, you must issue NUCXDROP
IDENTIFY and then reissue the IDENTIFY command.

The person responsible for the CMS system
responsible for creating the SYSTEM NETID file.
filemode of S2.

DMSIDE003E INVALID OPTION Inn' RC=24

at an installation is
This file should have a

DMSIDE056E FILE 'fn ft' CONTAINS INVALID RECORD FORMAT RC=32
DMSIDE070E INVALID PARAMETIE Inn' RC=24
DMSIDE104S ERROR Inn' RlADING FILE 'fn ft fn' FROM DISK. RC=100

168 IBM VM/SP CMS Command and Macro Reference

INCLUDE

INCLUDE

Use the INCLUDE command to read one or more TEXT files (containing
relocatable object code) from disk and to load them into virtual
storage, establishing the p:roper linkages between the files. A LOAD
command must have been previously issued for the INCLUDE command to
produce desirable results. For information on the CMS loader and the
handling of unresolved references, see the description of the LOAD
command. The format of the INCLUDE command is:

r-------------------------------------.-------------------------------------,
INclude

fn •••

fn... [(options ••• [)]]
Q.e!ion.§: r , r ,

r ,
IMAP I

I CLEAR , II RESET {en.trY}11
I!QCLEARI
L .J L .J

r , r , r
ITYPE I IINV , I REP

r ,
,ORIGIN {heXloc}1
, TRANS I
L .J

, r ,
I IAUTO ,

I NOMAP I I]CTYPl;1 INOINVI INOREPI INOAUTO,
L .J L .J L .J L .J L .J

r , r ,
I LIBE I [S'IAR'l] [SAME] IDUP I
I NOLIBE I INODUPI
L .J L .J

are the names of the files to be loaded into storage. Files
must have a filetype of TEXT and consist of relocatable object
code such as that Froduced by the OS language processor. If a
GLOBAL TXTLIB command has identified one or more TXTLIBs, fn
may indicate the name of a 'lXTLIB member.

Options: If options were specified with a previous LOAD or INCLUDE
command, these options (with the exception of CLEAR and ORIGIN)
remain set if SAME is sFecified when INCLUDE is issued. otherwise,
the options assume their default settings. If conflicting options
are specified, the last one entered is in effect.

CLEAR clears the load area in storage to binary zeros before the
files are loaded.

RESET

does not clear the load area before loading.

{en;ry}

resets the execution starting point previously set by a LOAD
or INCLUDE command. If entry is specified, the starting
execution address is reset to the specified location. If an
asterisk (*) is sFecified or if the RESET option is omitted,
the loader input is searched for control statements. The
entry point is selected from the last ENTRY statement
encountered or from an assembler- or compiler-produced END
statement. If none is found, a default entry pOint is
selected as follows: if an asterisk was specified, the first
byte of the first control section loaded by the INCLUDE
command becomes the default entry point; if the RESET option

Section 2. CMS Commands 169

INCLUDE

was omitted, the entry point defaults to the execution
starting point previously set by a LOAD or INCLUDE command.

ORIGIN {heXloc}
TRANS

begins loading the program at the location specified by
hexloc; this location must be in the CMS transient area or 1n
the user area below the start of the CMS nucleus. The
variable, hexloc, is a hexadecimal number of up to six
characters. If this option is not specified, loading begins
at the next available storage location. INCLUDE does not
overlay any previously loaded files unless this option is
specified and the address given indicates a location within a
previously loaded object module. TRANS indicates that the
file is loaded into the transient area.

MAP adds information to the load map.

NOMAP does not add any information to the load map.

TYPE displays the load map of the files at the terminal, as well as
writing it on the A-disk. This option is valid only if MAP is
specified or implied.

!OT~ does not display the load map at the terminal.

INV writes invalid card images in the LOAD MAP file.

NOINV does not write invalid card images in the LOAD MAP file.

~EP writes Replace (REP) statement images in the LOAD MAP file.
See the explanation of the CMS LOAD command for a description
of the Replace (REP) statement.

NOREP suppresses the writing of Replace (REP) statements in the LOAD
MAP file.

searches your disks for TEXT files to resolve undefined
references.

NOAUTO suppresses automatic searching for TEXT files.

bIBE searches the text libraries defined by .the GLOBAL command for
missing sutroutines.

NOLIBE does not search any text libraries for unresolved references.

START begins execution after loading is completed.

SAME retains the same options (except ORIGIN and CLEAR) that were
used by a previous INCLUDE or LOAD command. Otherwise, the
default setting of unspecified options is assumed. If other
options are specified with SAME, they override previously
specified options. (See Usage Note 1.)

displays warning messages at your virtual console when a
duplicate CSECT is encountered during processing. The
duplicate CSECT is not loaded.

NODUP does not display warning messages at your virtual console when
duplicate CSECTs are encountered during processing. The
duplicate CSECT is not loaded.

170 IBM VM/SP CMS Command and Macro Reference

INCLUDE

1. If you specify several nondefault options on the LOAD command and
you want those options to remain in effect, use the SAME option
when you issue the INCLUDE command; for example:

include main subi data (reset main map start)

brings the files named MAIN !EXT, SUEI
virtual storage and appends them to
Information about these loaded files is
Execution begins at entry point MAIN.

load myprog (nomap nolibe norep)

include mysub (map same)

TEXT, and DATA TEXT into
previously loaded files.

added to the LOAD MAP file.

During execution of the LOAD command, the file named MYPROG TEXT is
brought into real storage. The fo~lowing options are in effect:
NOMAP, NOLI BE, NOHEP, NOTYPE, INV, and AUTO. During execution of
the INCLUDE command, the file named MYSUB TEXT is appended to
MYPROG TEXT. The following options are in effect:

MAP, NOLIBE, NOHEF, NOTYPE, INV, AUTO

2. When the INCLUDE command is issued, the loader tables are not
reset.

3. For additional information on the CMS loader, see the discussion of
the LOAD command, or consult 1~L]R CM~ Y~~2 Guide.

DMSLI07401 EXECUTION BEGINS •••

START was specified with INCLUDE and the loaded program has begun
execution. Any further responses are from the program.

INVALID CARD - xxx ••• xxx

INV was specified with LOAD and an invalid card has been found.
The message and the contents of the invalid card (xxx ••• xxx) are
listed in the LOAD MAP file. The invalid card is ignored and
loading continues.

DMSLGT0021 FILE Ifni TXTLIE NOT FOUND RC=O
DMSLI0001E NO FILENAME SPECIFIED RC=24
DMSLI0002E FILE 'fn ft' NOT FOUND RC=28
DMSLI0003E INVALID OPTION 'option' RC=24
DMSLI0005E NO 'option' SPECIFIED RC=24
DMSLI0021E ENTRY POINT 'name' NeT FOUND RC=40
DMSLI0029E INVALID PARAMETER 'parameter' IN THE OPTION 'option' FIELD

RC=24
DMSLI0055E NO ENTRY POINT DEFINED RC=40
DMSLI0056E FILE 'fn ft' CONTAINS INVALID [NAMEIALIASIENTRYIESD] RECORD

FORMATS RC=32
DMSLI0099E CMS/DOS ENVIRONMENT ACTIVE RC=40
DMSLI0104S ERROR Inn' READING FILE 'fn ft fm' FROM DISK RC=100
DMSLI0105S ERROR Inn' WRITING FILE 'fn ft fm' ON DISK RC=100
DMSLI0109S VIRTUAL STORAGE CAPACITY EXCEEDED RC=104

Section 2. CMS Commands 171

INCLUDE

DMSLI0116S LOADER TABLE OVERFLOW RC=104
DMSLI0168S PSEUDO REGISTER TABLE OVERFLCW RC=104
DMSLI0169S ESDID TABLE CVERFLOW RC=104
DMSLI0201W THE FOLLOWING NAMES ARE UNDEFINED: RC=4
DMSLI0202W DUPLICATE IDENTIFIER 'identifier' RC=4
DMSLI0203W "SET LOCATION COUNTER" NAME 'name' UNDEFINED RC=4
DMSLI0206W PSEUDO REGISTER ALIGN~ENT ERROR RC=4
DMSLI0623S MODULE CANNOT BE LOADED AT LOCATION 'location' BECAUSE IT

WOULD OVERLAY THE CMS NUCLEUS RC=88
DMSLI0907T I/O ERROR ON FILE 'fn ft fm' RC=256

172 IBM VM/SP CMS Command and Macro Reference

L

L

LABELDEF

LABELDEF

Use the LABELDEF command to specify standard HDR1 and EOE1 tape label
description information for CMS, CMS/DOS, and OS simulation. This
command is required for CMS/DOS and CMS tape label processing. It is
optional for OS simulation. However, it is needed if you want to
specify a filename to be checked or the exact data to be written in any
field of an output HDR1 and EOF1 label. The format of the LABELDEF
command is:

LAbeldef

*

filename

CLEAR

FID{ ? }
fid

CLEAR
r ,

IFID{ ? }I
I fid I

[VaLID volid] [VOLSEC volseq]

L J

[FSEQ fseg] [GENN genn] [GENV genv]

[CRDTE yyddd] [EXDTE yyddd]

[(options ••• [)]J

Q.E!im!§:
r ,

[PERM] I CHANGE I
INOCHANGEI
L J

r ,

I SEC{Q}I I 1 I
I 3 I
L J

,

may be specified only with CLEAR.
label definitions.

It clears all existing

is one of the following:

ddname for FILEDEF files (aS simulation).

filename in DTFMT macro (CMS/DOS simulation).

labeldefid specified in the TAPEMAC or TAPPDS command or in
the LABID field of the TAPESL macro (can be 1-8 characters).

removes a label definition.

LABELDEF filename CLEAR clears only the label definition for
that filename.

LABELDEF * CLEAR removes all existing label definitions
unless specified as PERM.

supplies the file (data set for OS) identifier in the tape
label. Use the FID ? form if the identifier exceeds 8
characters (up to a maximum of 17) or the identifier contains
special characters. The system responds by prompting you to
supply the information. If the file identifier does not

Section 2. eMS Commands 173

"
LABELDEF

exceed 8 characters, enter the fileid directly (FID fid).

VOLID volid
is the volume serial number (1-6 numeric characters).

VOLSEQ vol seq
is the volume sequence numter (1-4 numeric characters).

FSEQ fseq is the file (data set for OS) sequence number in the label
(1-4 numeric characters).

GENN genn is the generation number (1-4 numeric characters).

GENV genv is the generation version (1-2 numeric characters).

CRDTE yyddd
is the creation date.

EXDTE yyddd

SEC

PERM

CHANGE

is the expiration date.

specifies security classification (0 , 1, or 3). See the IBM
publication OSL!~ 19~ 19~Els, GC26-3795, for the meaning of
security classification on tape files. Note that this number
has no effect on how the file is processed. It is used only
for checking or writing Furposes.

retains the current definition until it either is explicitly
cleared or is changed by a new LABELDEF command with the
CHANGE option. If PERM is not specified, the definition is
cleared when a LABELEEF * CLEAR command is executed.

merges the label definitions whenever a label definition
already exists for a filename and a nEW LABELDE~ command
specifying the same filename is issued. In this situation,
the options associated with the two definitions are merged.
Options from the original definition remain in effect unless
duplicated in the new definition. New options are added to
the option list.

NOCHANGE retains the current label definition, if one exists, for the
specified filename.

The following default values are used in output labels when a value is
not explicitly specified:

FID For OS simulation, fid is the ddname specified in the
FILEDEF command for the file.

For CMS/DOS, fid is the DTFMT symtolic name.

For the CMS TAPESL macro, fid is the LABELDEF specified in
the LABID parameter.

VOLID is CMS001.

FSEQ is 0001.

VOLSEQ is 0001.

GENN is blanks.

174 IBM VM/SP CMS Command and Macro Refetence

LABELDEF

GENV is blanks.

CRDTE is the date whEn the label is written.

EXDTE is the date when the label is written.

SEC is O.

1. To check a field in an input label, specify it on your LABELDEF
command for the label. If you do not specify a value for a
particular field, this field is not checked at all for input. For
output, any field you specify is written in the label exactly as
you specify it on the LIBELtEF command. If you do not specify a
field for output, the default value for that field is written in
the label.

If you write the following LABELDEF command,

labeldef filex fid master fseq 2 exdte 78285

and use the statement for an input file, only the file identifier,
file sequence number, and expiration date in HDR1 labels are
checked. Error messages are issued when there fields in the tape
label do not match those specified in the LAEELDEF statement. If
you use the same statement for an output file, the fields leave the
following values:

fileid
file sequence numter
volume sequence number
creation date
expiration date
security
volume serial number
generation Dumber
generation version

MASTER
0002
0001
date when label is written
78285
o
CMS001
1:lank
blank

2. If you issue LAEELDEF without any operands, a list of all LABELDEFs
currently in effect is displayed on your terminal.

3. For OS simulation, a lABELIlEF statement may be used as well as a
FILEDEF statement for a file. Use of a LABELDEF statement is
optional in this case. The statements

filedef filez tap1 sl volid vo14
labeldef filez fid payroll fseq 2 exdte 78300

define filez as a labeled tape file on tape 181. The volume serial
is VOL4, the fileid is PAYROLL, and the file sequence number is
0002. Expiration date is day 300 in 1978. If you only use the
FILEDEF command, you have only defined the VOLID (volume serial
number) •

4. For CMS and CMS/DOS, a LABELDEF command is required. The command

labeldef file14 volid supvol volseq 3

defines a tape label with a volume serial of SUPVOL and a volume
sequence number of 0003. This LABELDEF statement could be used by
a CMS/DOS program containing a D1FMT macro with the form

FILE14 D'InT ••• FILAEL=STD •••

Section 2. CMS Commands 175

LABELDEF

or by a CMS program with a TAPESL macro similar to the following:

TAPESL HOUT,181,LABID=FIlE14

A CMS TAPEMAC command could use the same LABELDEF as follows:

tapemac mac lib sl file14

In all three preceding examples, the lABELDEF statement must be
issued before the program or ccmmand is executed.

5. See the section "TapE Labels in CMS" in the llL~E fl1~ !!~!:~ Guide
for more details on CBS tape label processing.

DMSLBD003E INVALID OPTION-option RC=24
DMSLBD029E INVALID PARAMETER 'parameter' IN THE OPTION 'option' FIELD

RC=24
DMSLBD065E 'option' OPTION SPECIFIED TWICE RC=24
DMSLBD066E 'option' AND 'option' ARE CONFLICTING OPTIONS RC=24
DMSLBD070E INVALID PARAMETER 'parameter' RC=24
DMSLBD221E INVALID DATA SET NAME RC=24
DMSLBD324I NO USER DEFINEE LABElDEFS IN EFFECT RC=20
DMSLBD704I INVALID CLEAR REQUEST RC=24

176 IBM VM/SP CMS Command and Macro Reference

LISTDS

L1STDS

Use the LISTDS command to list,
data sets or files residing on
use LISTDS to display extent or
allocate space for VSAM files.

at your terminal, information about the
accessed as or DOS disks. In addition,
free space information when you want to
The fermat of the LISTDS command is:

LISTDS

1

r ,
I 1 I {.fm} [(options ••• [) J]
Idsnamel
L .J

QJ2!.io!!.§:
r ,
IEXTENTI
IFREE I
L .J

[FORMAT]
[PDS]

indicates that you want to enter interactively the as data
set name, VSE fileid, cr VSA! data space name. When you
enter a question mark (1), C8S prompts you to enter the as
data set name, DOS fileid, or VSA! data space name exactly as
it appears on the disk. ~his form allows you to enter names
that contain embedded blanks or hyphens.

dsname is the as data set name or VSE fileid or VSA! data space
name. It takes the form:

fm

•

qual1 (qual2 gualn]
-- or --

qual1 [.quaI2 gualn]

where qual1, qual2, through qualn are the qualifiers of the
dataset. If blanks separate the qualifiers, the dataset name
used will be the concatenation of the qualifiers with
periods. (See Usage Note 1.)

is the filemode of the disk to be searched for the specified
file. If a dsname is not specified, a list of all the files
or data sets on the specified disk is displayed.

indicates that you want all of your accessed DOS or as disks
searched for the specified data set or file. If a dsname is
not specified, a list of all files on all accessed as and DOS
disks is displayed.

Options: The FREE and EXTENT options are mutually exclusivei the
FaRHAT and PDS options cannot be specified with either FREE or
EXTENT.

FREE requests a display of all free space extents on
minidisk or on all accessed DOS and as disks. If
the FREE option, you cannot specify a dsname.

a specific
you enter

EXTENT requests a display of allocated extents for a single file
EX or for an entire disk or minidisk. If a dsname is specified,

only the extents for that particular file or data set are
listed; if fa is specified as *, all disks are searched for
extents occupied by that file.

Section 2. C8S Commands 177

LISTDS

If a dsname is not specified, then a list of all currently
allocated extents on the specified disk, or on all disks, is
displayed.

FORMA'! requests a display of the date, disk label, file mode, and
FO data set name fOl: an OS data set as well as RECFM., LHECL,

BLKSIZE, and DSORG information. For a VSE file, LISTDS
displays the date, disk label, filemode, and fileid, but
gives no information about the RECFM, LRECL, and BLKSIZE (two
blanks appear for each) ; DSORG is always PS.

PDS displays the member names of referenced OS partitioned data
sets.

Par examples of the displays produced as a result of each of these
options, see the "ResFonses" section, below.

1. If you want to enter an OS or VSE file identification on the LISTDS
command line, it may consist of qualifiers separated by periods or
blanks. For examFle, tbe file iEST.INPO!.SOORCE.D could be listed
as follows:

listds test input source d
-- or --

listds test.input.source.d

Or, you can enter the name interactively, as follows:

listds '/ *
D~SLDS220R ENTER DATA SET NAME:
test.input.source.d

Note that when the data set name is entered interactively, it must
be entered in its exact form; when entered on the LISTDS command
line, the periods may he omitted.

You must use the interactive form to enter a VSE fileid that
contains embedded blanks.

2. When using access method services, use the FREE option to determine
what free space is available for allocation by VSAM. For example:

listds * (free

requests a display of unallocated extents on all accessed OS or DOS
disks. You can then use the EXTENT option on the DLEL command when
you define the file for AMSERV.

3. Full disk displays using the FREE option will display free
alternate tracks as well as free space extents.

q. Since eMS does not support ISAM files, LISTDS lists extent and free
information on ISAM files, but ignores format 2 DSCB's.

5. Since eMS does not support track overflow, LISTDS will not read
beyond a track if DCB=RECFM=T is specified for the OS VTOC.

178 IBM VM/SP eMS Command and Macro Reference

LISTDS

DMSLDS220R ENTER DATA SET NAftE:

This message prompts you to enter the data set name when you use
the? operand on the LISTDS command. Enter the file identification
in its exact form. A sample sequence might be:

listds ? c
DMSLDS220R ENTER DATA SE~ NAftE:
my. file. test
PM DATA SET NAftE
C MY.FILE.'1ES'l
R;

The response shown above following the entry of the data set name
is the same as the response given when you enter a data set name on
the LI3TDS command line.

DMSLDS229I NO MEMBERS FCUND

This message is displayed when you use the PDS option and the data
set has no members.

D~SLDS233I NO FREE SPACE AVAILABLE ON 'fm' DISK

This message is displayed when you use the FREE option and there is
no free space availacle on the Sf€cified disk.

Re§Eon§es to the ~XT~NT g~!ion: A sample response to the EXTENT option
is shown below. The headers and the type of information supplied are the
same when you request information for a specific file only, or for all
disks.

listds 9 (extent

EXTENT INFORMATION FOR 'VTGC' ON 'G' DISK:
SEQ TYPE CYL-HD(REL'lRK) TO CYL-HD(BEL'lRK)
000 VTOC 099 00 1881 099 18 1899

TRACKS
19

EXTENT INFORftATION FOR 'PRIVA'l.CCRE.IftAGE.LIB' ON 'G' DISK:
SEQ TY?E CYL-HD{REL'lRK) TO CYL-HD(REITRK) TRACKS
000 DATA 000 01 1 049 18 949 949

EXTENT INFORMATION FOR 'SYSTEft.iiORK.FIIE.NO.6' ON 'G' DISK:
SEQ TYPE CYL-HD{REL'lRK) TO CYL-HD(REITRK) TRACKS
000 DATA 050 00 950 051 18 987 38

EXTENT INFORftATION FOR 'COEOL TEST PROGRAM' ON 'G' DISK:
SEQ TYPE CYL-HD(RELTRK) TO CYL-HD(RELTRK) TRACKS
000 DATA 052 02 990 054 01 1027 38

EXTENT INFORftATION FOR 'DKSQ01A' ON 'G' DISK:
SEQ TYPE CYL- ED (RELTRK) TO CYl-HD (REL'lRK) TRACKS
000 DATA 080 01 1521 081 00 1539 19

or for a fixed-block device:

EXTENT INFORMATION FOR 'DSQ01A' ON G DISK:
SEQ TYPE REL-EIK TO REL-BLK BLOCKS
000 DATA 00500 00550 51

Section 2. eftS Commands 179

LISTDS

SEQ indicates the sequence number assigned this extent when the
extents were defined via the DLBL command. CMS assigns the
sequence numbers for VSAM data sets; the first extent set has a
sequence of 000, the second extent has a sequence of 001, and so
on.

TYPE can have the following designations:

Ill~
DATA
VTOC
SPLIT
LABEL
INDEX.
OVFLO
MODEL

l1~l!in.9
Data area extent
VTOC extent of the disk
Split cylinder extent
User label extent
ISAM index area extent
ISAM independent overflow area extent
Model data set label in the VTOC. Does not define an extent

CYL-HD(BELTRK) TO CYL-HD(BELTRK)
indicates the cylinder, head, and relative track numbers of the
start and end tracks cf this extent.

TRACKS indicates the number of tracks in the extent.

BEL-BLK TO REL-BLK
indicates the relative block numbers of the start and end of the
extent.

BLOCKS indicates the number of blocks in the extent.

Response to the l~EE Q~ti~: A sample response to the FREE option is
shown below. The same headers and type of information is shown when you
reque~t free information for all accessed disks.

listds 9 (free
FREESPACE EXTENTS
CYL-HD(RELTRK) TO
052 00 988
054 02 1028
081 01 1540

FOR 'G' DISK:
CYL-HD(REL'IRK)
052 01 989
080 00 1520
098 18 1880

or for a fixed-block device:

listds 9 (free
FREESPACE EXTENTS FOB 'G' DISK:
BEL-BLK TO REL-ELK BLOCKS

501 1330 830
10310 29610 19301
68990 69990 1001

CYL-HD(RELTRK) TO CYL-HD(BELTRK)

TRACKS
2

493
341

indicates the cylinder, head and relative track numbers of the
starting.and ending track in the free extent.

TRACKS indicates the total number of free tracks in the extent.

REL-BLK TO BEL-BLK
indicates the relative block number of the start and end of
extents that are free on the fixed-block device.

BLOCKS indicates the total number of blocks contained in each extent.

180 IBM VM/SP CMS Command and Macro Reference

LISTDS

Respon~ to !.h~ FORMAT .!.!!~ g~ .Q1!ti.Q'!!'§: If JOu enter the FORMAT and PDS
options, JOu receive information similar to the following:

listds d (fo pds)

RECFM LRECL BLKSI DSORG DATE LABEL
FB 80 800 PO 01/31/15 055151

MEMBER NAMES:
ABEND ATTACH BLDL ESP CLOSE
FIND PUT READ WRITE XDAP
RECFM LRECL BLKSI DSORG DATE LABEL

F 80 80 PS 01;10/75 OSS1S1

DMSLDS002E DATA SET NOT FOUND RC=28
DMSLDS003E INVALID OPTICN 'option' RC=24
DMSLDS048E INVALID MODE 'mode' RC=24
DMSLDS069E DISK 'mode' NOT ACCESSED RC=36

FM DATA SET NAME
D SIS1.MACLIB

DCB DETACH DEVTIPE

FM DATA SET NAME
D SAlHLE

DMSLDS117E INVALID EXTENT FOUND FOR 'data set name' ON 'fm' DISK RC=24
DMSLDS221E INVALID DATA SET NAME RC=24
DMSLDS222E I/O ERROR READING 'data set name' FROM {fmIOSIDOS} DISK

RC=28
DMSLDS223E NO FILEMODE SPECIFIEr RC=24
DMSLDS226E NO DATA SET NAME ALLOWED WITH FREE OPTION RC=24
DMSLDS227W INVALID EXTENT FOUND FOR 'datasetname' ON {fmIOSIDOS} DISK

RC=4
DMSLDS231E I/O ERROR READING VTOC FROM {fmIOSIDOS} DISK RC=28

Section 2. cMS Commands 181

LIST FILE

lISTFILE

Use the LISTFILE command to obtain specified information about CMS files
residing on accessed disks. The format of the LISTFILE command is:

fn

ft

fm

Listfile

HEADEB

r r r ",
Ifn 1ft I fm I I I [((options ••• [)]]
I * I * I * II I
L L L .J.J.J

r , r , r ,
I Header I I Exec[Trace][IBGS]1 I FName I (Blocks]
I NOHeader I I Trace [IBGS J I I FType I
L .J I APpend [AEGS] I I ~ I [Ix]

I S7ACK [FIFQILIFO]I I POrmat I
I FIFO
I LIFO
L

is the filename of the files
collected. If an asterisk
filenames are used.

In addition, certain special
as part of the filename to
specific subset of files.
ftatching", for information on

is the filetype of the files
collected. If an asterisk
filetypes are used.

I I ILloc I
I I Date I

.J I Label I
L .J

for which information is to be
is coded in this field, all

characters (* and I) can be used
request that the list contain a

See the usage note, "Pattern
using these special characters.

for which information is to be
is coded in this field, all

In addition, certain special characters (* and I) can be used
as part of the filetype to request that the list contain a
specific subset of files. See the usage note, "Pattern
Matching", for information on using these special characters.

is the filemode of the files for which information is to be
collected. If this field is omi~ted, only the A-disk is
searched. If an asterisk is coded, all accessed disks are
searched.

includes column headings in the listing. HEADEB is the
default if any of the supplemental information options
(FOBBIT, ALLOCATE, DA~E, or LABEL) are specified. The
format of the heading is:

FILENAftE FILETYPE FM FOB BAT LEECL BECS BLOCKS DATE TIftE LABEL

NOH EADER does not include column headings in the list. NOHEADEB is
the default if only filename, filetype, or filemode

182 IBM VM/SP CftS Command and Bacro Reference

L

L

EXEC

TRACE

ARGS

LISTFILE

information is requested.

creates a CMS EXEC file of 80- or SS-character records (one
record for each of the files that satisfies the given file
identifier) on your A-disk. An SO-character record file is
created unless you specify the LABEL option, in which case
an S8-character record file is created. If a CMS EXEC
already exists, it is reFlaced. The header is not included
in the file.

causes the EXEC 2 statement &TRACE OFF to be written as the
first record of the CMS EXEC file, which is created when
the EXEC option is specified. With this option, no
statements issued from the CMS EXEC file are traced. For
more information on the &TRACE statement, see the VM/SP
EXEC 1 Refer€~. ihe TRACE option implies the EXEC
option.

causes EXEC 2 dummy arguments &3 through &15 to be appended
to each line in the CMS EXEC file (following the fileid of
each file). Each record of the CMS EXEC file has the form:

&1 &2 fileid &3 &4 &5 &6 ••• &15

Specifying this option allows you to
arguments to the CMS EXEC file. The ARGS
imply the EXEC option and therefore must
conjunction with EXEC, TRACE, or APPEND.

pass up to 15
option does not

be specified in

APPEND creates a CMS BXEC and appends it to the existing CMS EXEC
file. If no CMS EXEC file exists, one is created.

STACK [FIFOILIFO]
specifies that the information should be placed in the
program stack (for use by an EXEC or other program) instead
of being displayed at the terminal. The information is
stacked either FIFO (first in first out) or LIFO (last in
first out). The default order is FIFO.

FIFO specifies that the information should be placed in the
program stack rather than displayed at the terminal. The
information is stacked FIFO. The options STACK, STACK
FIFO, and FIFC are all eguivalent.

LIFO specifies that the informaticn should be placed in the
program stack rather than displayed at the terminal. The
information is stacked LIFO. This option.is equivalent to
STACK LIFO.

Information ~equ~st gptio~:

Informa tion
specified.
are also in
the default

Request £ption~: Only one of these options need be
If one is specified, any options with a higher priority
effect. If none of the following options are specified,
information request options are in effect.

Section 2. eMS Commands 183

LISTFILE

FNAME

FTYPE

FMODE

FORMAT

ALLOC

DATE

LABEL

creates a list containing only filenames. Option priority
is 7.

creates a list containing only filenames and filetypes.
Option priority is 6.

creates a list containing filenames,
filemodes. oFticn Friority is 5.

filetypes, and

includes the record format and logical record length of
each file in the list. Option priority is 4.

includes the amount of disk space that CMS has allocated to
the specified file in the list. The quantities given are
the number of blocks and the number o£ logical records in
the file. opticn priority is 3.

includes the date the file was last written in the list.

The form cf thE date is:

month/day/year hour:minute

for 800-byte block disks, or:

month/day/year hour:minute:second

for all other format sizes.

Option priority is 2.

includes the label of the disk on which the file resides in
the list. OFtion Friority is 1.

Other Options:

BLOCKS causes the total number of CMS blocks used by the files in
the list to be disFlayed as the last line of the list, in
the form BLOCKS n. It is displayed as a separate line.

%x is used to change the place holding character from ~ to x,
where x is any character, for this invocation of LISTFILE.
For more information on using a Flace holding character,
see the usage note, "Pattern Matching", below.

1. Pattern Matching

If you enter the LIS!FILE command with no operands, a list of all
files on your A-disk is disFlayed at the terminal.

If you want information about a specific subset of your files, you
can use two special characters in the fn and ft operands. (Only an
asterisk may be specified for filemode.) The special characters
are * (asterisk) and J (percent), where:

* represents any number of character(s). As many asterisks as
required can apFear gBy!her~ in a filename or filetype. (Only
one asterisk may be used for a filemode.)

184 IBM VM/SP C~s Command and Macro Reference

J

LISTFILE

For example, if you enter:

listfile *d* *file*

you are requesting that the list contain all files on your
A-disk whose filename ccntains "d" and whose filetype contains
"file". The list might contain the following files:

YOURDATA AFILE1 A1
HISDATA AFILE2 A1
ADOG 1DOGFILE 12

is a place holding character that means a §ingle character,
but any character will do. As many percent symbols as
necessary may appear anywhere in a filename or filetYRe. For
example, if you enter:

filelist ~~~ stock

you are requesting that the list contain all files on your
A-disk whose filename is three characters in length and whose
filetype is "stock". The list might contain the following
files:

THE STOCK A 1
HIS STOCK A 1
HER STOCK A 1

The default place holding character (~) can be changed by
using the ~x cpt ion. For example,

listfile $ script (~$

displays all SCRIPT files on the A-disk whose filename is one
character in length.

2. If you request any additional information with the supplemental
information options, that infcrmation is displayed along with the
header.

3. When you use the EXEC or APPEND option, the CMS EXEC A 1 that is
created is in the format:

&1 &2 filename filetype filemode

where column 1 is blank.

If you specify the ARGS option with EXEC or APPEND, each line in
the CMS EXEC is in the format:

&1 &2 filename filetype filemode &3 &4 &5 &6 ••• &15

This allows you to pass up to 15 arguments to the EXEC. For
example, if the following command is issued,

LIST FILE * * A (EXEC AEGS

a CMS EXEC file is created, with each record formatted as shown
above. The following command

CMS TAPE DUMP (iTM

causes the tape dumping command to be executed against each file in
the CMS EXEC, with TAPE assigned to &1, DUMP to &2, (to &3, and

Section 2. CMS Commands 185

LISTFILE

WTM to &4.

If you use any of the supplemental information options, that
information is included in the EXEC file. For information on using
CMS EXEC files, see the VM/SP f~~ Q§~f~ &uiQ~.

4. You can invoke the LISTFILE command from the terminal, from an EXEC
file, or as a function from a program. If LISTFILE is invoked as a
function or from an EXEC file that has the &CONTRCL NOftSG option in
effect, the DMSlST002E FILE NOT FOUND error message is not issued.

5. To display only the files with a particular file mode
specify the numeric portion of the filemode in the
command. For example, to display only the files with
'EXEC' on your A2 disk:

listfile * exec a2

The display might look like this:

ALPHA
SEND
TEMP

EXEC A2
EXEC A2
EXEC A2

number,
listfile
filetype

6. The options STACK, LIFO, and FIFO cause the requested information
to be placed in the program stack. When the requested information
is to be stacked, the options relating to the CMS EXEC (APPEND,
EXEC, TRACE, and ARGS) and the options relating to the display
format (HEADER, NOHEADER) should not be specified.

Unless the EXEC, TRACE, APPEND, STACK, LIFO, or FIFO option is
specified, the requested information is displayed at the terminal.
Depending on the options specified, as discussed above, the information
displayed is:

FILENAME FILETYPE FM FORMAT LRECl RECS BLOCKS DATE TIME lABEL

fn ASSEMBLE fm {:} lrecl norecs noblks mm/dd/yy hh:mm:ss volid

fn

ft

fm

lrecl

norecs

noblks

is the filename of the file.

is the filetype of the file.

is the filemode of the file

is the file format: F is fixed-length, V is variable-
length.

is the logical record length of the largest record in the
file.

is the number of logical records in the file.

is the number of physical blocks that the file occupies
on disk.

186 IBM VM/SP CMS Command and Macro Reference

LISTFILE

mm/dd/yy is the date (month/day/year) tha t the file was last
updated.

hh:mm:ss is the time (hours:minutes:second~ that the file was
last updated.

valid is the volume serial number of the virtual disk on which
the file resides.

One entry is displayed for each file listed.

D~SLST002E PILE NOT FOUND RC=28
DftSLST003E INVALID OPTION 'option' RC=24
DftSLST037E DISK 'mode' IS READ/ONLY RC=36
DftSLST048E INVALID MODE 'mode' RC=24
DMSLST066E 'option' and 'option' ARE CONFLICTING OPTIONS RC=24
DftSLST069E DISK 'mode' NOT ACCESSED RC=36
DMSLST070E INVALID PARAMETER 'parameter' RC=24
DMSLST105S ERROR Inn' WRITING FILE 'fn ft fm' ON DISK RC=100

Section 2. CMS Commands 187

LISTIO

LlSTIO

Use the LISTIO command in CMS/DOS to display a list of current
assignments for system and/or programmer logical units in your virtual
machine. The format of the LISTIO command is:

LISTIO l5YS (PROG ((options, ••• ()]]
5YSxxx
A
UA
ALL

.Qptio!!§:
r ,
I EXEC I
IAPPENDI
L .J

(STAT]

wher~:

SYS requests a list of the physical devices assigned to all system
logical units.

PROG requests a list' of the physical devices assigned to programmer
logical units S15000 through 5Y5241.

5Y5xxx requests a display of the physical device assigned to the
particular logical unit specified.

A requests a list of only those logical units that have been
assigned to physical devices.

UA requests a list af only those logical units that have not been
assigned to physical devices; that is, that are unassigned.

!11 requests a list of the physical units assigned to all system
and programmer logical units. If no operand is specified, ALL
is the default.

Options: The EXEC and APPEND options are mutually exclusive; if both
are entered on the command line, the last one entered is in effect.

EXEC erases the existing $L15T10 EXEC file, if one exists, and
creates a new one.

APPEND adds new entries to the end of an existing $LI5TIO EXEC file.

5TAT

If no $LI5TIO EXEC file exists, a new one is created.

lists the status (read-only or read/write) of all disk devices
currently assigned.

1!.§~ge Notes

1. Logical units are assigned and unassigned with the A5SGN command.
For a list of logical units and valid device types, see the
discussion of the ASSGN command.

188 IBM VM/SP CMS Command and Macro Reference

LISTIO

2. The $LISTIO EXEC contains one record for each logical unit listed.
The format is:

& 1 &2 SYSxxx {deVice }
mode [status J

where column 1 is blank.

Depending on the operands specified, the following is displayed for each
unit requested in the LISTIO command:

SYSxxx { device }
mode [status]

where device is the device type (READER, PRINTER, PUNCH, TERMINAL, TAPn,
IGN, or UA). If the device is a disk, the one-character mode letter is
displayed. If the STAT option is specified, the status (R/O or R/W) is
also displayed.

other Messages and ~!! Codes

DMSLL0003E INVALID OPTION 'option' RC=24
DMSLLU006E NO READ/WRITE 'A' DISK ACCESSED RC=36
DMSLLU010E INVALID PARAMETEB 'parameter' RC=24
DMSLLU099E CMS/DOS ENVIRONMENT NOT ACTIVE RC=40
DMSLLU105S ERROR Inn' WRITING FILE '$lISTIO EXEC A1' ON DISK RC=100

Section 2. CMS Commands 189

LKED

lKED

Use the LKED command to create a CMS LOADLIB or LOADLIB member. The
format of the LKED command is:

LKED

fname

fname [(options ••• [)]]

QE!io!!s:
[NeAL][LE7][ALIGN 2][HE][01.][BEN7]

[REUS][REFB][OVLY][xeAL]

[NAME membername][LIBE libraryname]
r ,
IXREFI
IUP 1
11IS71
L .I

r
ISIZE
I
I
1
1
L

r ,
IIlll1 1
INOTERMI
L .I

r ,
IPRINT I
I!USK 1
1 NOPRINT 1
L .I ,

~
value1 value2 ~
value1
value1,
,value2
,

1
1
1
I
1

.I

specifies the filename of the object file to
The file must have a filetype of TEXT and
SO-character records.

be processed.
fixed-length,

options:

If duplicate or conflicting linkage editor options are specified, the
linkage editor resolves them according to normal procedures (refer to
OSLVS Linkage Edi!£I and loader) If duplicate or conflicting
CMS-related options are specified, the last one entered on the
command line is in effect. The eMS-related options are: TERM,
N07ERM, PRINT, DISK, NOPRINT, NAME, and LIBE.

NeAL suppresses the automatic library call function of the linkage
editor.

LET suppresses marking of the load module "not executable" in the
event of so.e linkage editor error condition.

ALIGN2

NE

OL

RENT

indicates that boundary alignment specified in the linkage
editor input file is to be performed on the basis of 20QS-byte
boundaries. If this option is omitted, alignment is performed
on the basis of 4096-byte boundaries.

marks the load module output as "not to be edited" such that
it cannot be processed again by the linkage editor.

marks the load module output "only loadable".

marks the load module reenterable.

190 IBM VM/SP eMS Command and Macro Reference

LKED

REUS marks the load module reusable.

BEFR marks the load module refreshable.

OVLY processes an overlay structure.

ICAL allows valid exclusive CALLs in the overlay structure.

IU"E membername
is the member name to be used for the load module created.
The member name specified here overrides the default name, but
it cannot override a name specified via the linkage editor
NAME control statement.

LIBE libraryname

XREF

is the filename of a LOADLIB file where the output load module
is to be placed. The LOADLIB file specified here may also be
used for auxiliary input to the linkage editor via the INCLUDE
statement.

produces an external symbol cross-reference for the modules
being processed.

ftAP produces only a module map for the processed module(s).

NOTER"

includes only linkage editor control messages in the printed
output file.

displays any linkage editor diagnostic messages at the user
terminal.

suppresses the displaying of diagnostic messages.

PRINT spools the linkage editor printed output file to the printer.

NOPRINT

stores the linkage editor output in a CftS disk file with a
filetype of LKEDIT.

produces no output file.

SIZE value1 value2
indicates the amount of virtual storage to be used by the
linkage editor and specifies the portion of that storage to be
reserved for the load module buffer. The SIZE parameters must
lie within the following limits:

value1 64K to 9999K (or 65536 to 999999)
value2 6K to 100K (or 6144 to 102400)

If either of the SIZE parameters is omitted or is invalid, the
default values established for the parameters are substituted.
Values greater that 999999 can be entered in the form nnnnK
(with K equal to 1024). For example, enter 2000K instead of
2048000,. Values accepted by the linkage editor are displayed
in the output file.

Usag!! Notes:

1. Only a subset of the possible linkage editor control statements are
meaningful in CftS. Since the C"S interface program cannot examine
the input data for the LKED command, all of the control statements
are allowed, even though several of them result in the creation of

Section 2. CMS Commands 191

LKED

a load module file that cannot be used under CMS. For both command
options and control statements, see the publication OS/VS Linkage
Editor and 10ade~.

2. When you use the linkage editor INCLUDE control statement to
include a load module, the DDNAME referring to the module library
must be other than SYSLMOD and it must have been previously defined
by a FILEDEF. If you include a member of the load lib which
receives linkage editor output, you can enter statements in the
following form:

filedef libdef disk mylib loadlib A
lked fname (lib mylib)

include libdef (libmem1)
name libmem2

3. The LKED command produces one temporary file:

fname SYSUT1

This file is temporarily created for each link-edit step; any
existing file with the same file identifier is erased at the
beginning of the ~ink edit. This file is placed on the read/write
disk with the most available space. Work space is automatically
allocated as needed during the link edit and returned to available
status when the link edit is complete. Insufficient space causes
abnormal termination of the link edit.

4. The LKED command produces two permanent file:

fname LOADLIB
fname LKEDIT

The 'fname LOADLIB' file contains the load module(s) that the
linkage editor created. This file is in CMS simulated partitioned
data set format, as created by the CMS OS data management macros.
The filename of the input file becomes the filename of the LOADLIB
file, unless the LIBE option is specified. The filename of the
input file also becomes the member name of the output load module,
unless either the NAME option or a NAME control statement is used.
One or more load modules may be created during a single LKED
command execution if the NAME linkage editor control statement is
used in the input file. When the NAME control statement is used,
that name becomes the member name in the LOADLIB file. The replace
option of the NAME statement determines whether existing members
with the same name are replaced or retained.

The 'fname LKEDIT' file contains the printed output listing
produced according to the XREF, MAP, or LIST options. This file is
created on disk unless the PRINT or NOPRINT option is specified.
The LOADLIB and LKEDIT files are placed on (1) the disk from which
the input file was read, (2) the parent disk, or (3) the primary
disk. Failure to obtain sufficient space for these files results
in abnormal termination of the linkage editor.

192 IBM VM/SP CMS Command and Macro Reference

LOAD

LOAD

Use the LOAD command to read one or more CMS or OS TEXT files
(containing relocatable object code) from disk and to load them into
virtual storage, establishing the proper linkages between the files.
The format of the LOAD command is:

LOAD

fn •••

fn ••• [(options ••• [)]]
r , r , r ,

jORIGIN {heXlOC} I Q.E!:io!!2: jCLEAR I
j!!.QS;1jARI

:RESET {en!ry}:
I TRANS I

L .J L .J L .J

r ,
I MAP j
jNOMAPI
L .J

r ,
I LIB]; I
INOLIBEI
L .J

r ,
ITYPE I
I!!O'IYPEI
L .J

[START]

r ,
IINV I
INOINVI
L .J

r ,
IDUg I
INODUPI
L .J

specifies the names of the files
The files must have a filetype
relocatable object code such as
language processors. If a GLOBAL
issued, fn may indicate the name of

r ,
IBEP I
INOREPI
L .J

r ,
IAYIQ I
INOAUTOI
L .J

to be loaded into storage.
of TEXT and consist of
that produced by the OS

TIT LIB command has been
a TXTLIB member.

Options: If conflicting options are specified, the last one entered
is in effect. options may be overridden or added when you use the
INCLUDE command to load additional TEXT files.

CLEAR clears the load area in storage before the object files are
loaded. Whole page frames are released; the remainder of
storage that is not on a page boundary is set to binary
zeros.

NOCLEAR does not clear the load area before loading.

RESET {en~ry}

sets the starting location for the programs currently loaded.
The operand, entry, must be an external name (for example,
CSECT or ENTRY) in the loaded programs. If RESET is not
specified, the default entry point is used. (See Usage Note
4.) If * is entered the results are the same as if the RESET
option were omitted.

Note: The RESET option should not be used when loading TEXT
files created by any of the following OS/VS language
processors under CMS: OS Code and Go FORTRAN, OS FORTRAN IV
(G1), OS FORTRAN IV (H) Extended, OS/VS COBOL Compiler and
Library, OS Full American National standard COBOL Version 4
Compiler and Library.

Section 2. CMS Commands 193

LOAD

ORIGIN {hexloc }
TRANS .
loads the program beginning at the location specified by
hexloc; this location must be in the CMS transient area or ~n
the user area below the start of the CMS nucleus. The
location, hexloc, is a hexadecimal number of up to six
characters. If TRANS is specified, the file is loaded into
the CMS nucleus transient area. If ORIGIN is not specified,
loading begins at the first available storage location in the
user program area.

!£!~: Any program loaded into the transient area must have a
starting address of X'EOOO'. See the discussion of the
GENMOD cOllmand for information on loading programs in the
transient area.

MAP writes a load map on your A-disk, named LOAD MAP AS.

NOMAP does not create the LOAD MAP file.

TYPE displays the load map at your terminal, as well as writing it
on the A-disk. This option is valid only if the MAP option
is in effect.

NOTYPE does not display the load map at the terminal.

INV includes invalid card images in the load map.

NOINV does not include invalid card images in the load map.

REP includes Replace (REP) statements in the load map.

NOREP does not include the Replace (REP) statements in the load
map.

searches your virtual disks for TEXT files to resolve
undefined references.

NOAUTO suppresses automatic searching for TEXT files.

LIBE searches the text libraries for missing subroutines. If text
libraries are to be searched for TEXT files, they must
previously have been defined by a GLOBAL command.

NOLIBE does not search the text libraries for unresolved references.

START executes the program being loaded when loading is completed.
LOAD does not normally begin execution of the loaded files.
To begin execution immediately uFon successful completion of
loading, specify START. Execution begins at the default
entry point. (See Usage Note 4.)

DUP displays warning messages at your terminal when a duplicate
CSECT is encountered during processing. The duplicate CSECT
is not loaded. (See Usage Note 3.)

NOD UP does not display warning messages at your terminal
duplicate CSECTs are encountered during processing.
duplicate CSECT is not loaded.

when
The

1. You must have a read/write CMS A-disk accessed when you issue the
LOAD command; the loader creates a temporary workfile named DMSLDR
SYSUT1 and writes it on the A-disk.

194 IBM VM/SP CMS Command and Macro Reference

LOAD

2. Unless the NOMIP option is specified, a load map is created on the
A-disk each time the LOAD command is issued. A load map is a file
that contains the location of control sections and entry points of
files loaded into storage. This load map is named LOAD MAP A5.
Each time LOAD is issued, a new LOAD MAP file replaces any previous
LOAD MAP file.

If invalid card images exist in the file or files that are being
loaded, they are listed with the message INVALID CARD in the LOAD
MAP file. To suppress this listing in the load map, use the NOINV
option.

If Replace (REP) statements exist in the file being loaded, they
are included in the LeAD MAP file. To suppress this listing of REP
statements, specify the NOREP option.

If the ENTRY or LIERARY control cards are encountered in the
file, the load map contains an entry:

CONTROL CARD-

listing the card that was read.

Mapping of any common areas that exist in the loaded files will
occur when the program is prepared for execution by the START or
GENMOD command or by the START option of the LOAD or INCLUDE
command. An updated load map may be displayed prior to program
execution if the START command is issued with the NO option to
suppress execution.

3. Duplicate CSECTs (control sections) are bypassed by the loader.
Only the first CSECT encountered is physically loaded. The
duplicates are not loaded. A warning message is displayed at your
terminal if you specified the DUP option. If a section contains an
ADCON that references a duplicate CSECT that has not been loaded,
that ADCON may be resolved incorrectly.

q. The loader selects the entry point for the loaded program according
to the following hierarchy:

• From the parameter list on the START command

• From the last RESET operand in a LOAD or INCLUDE command

• From the last ENTRY statement in the input

• From the last LDT statement in the input

• From the first
that specifies
input

assembler- or compiler-produced END statement
an entry point if. no ENTRY statement is in the

• From the first byte of the first control section of the loaded
program if there is no ENTRY statement and no assembler- or
compiler-produced END statement specifying an entry point

5. The LOAD command should not be used to execute programs containing
DOS macros. To link-edit and execute programs in the CMS/DOS
environment, use the DOSLKED and FETCH commands.

6. See Figure 11 for an illustration of the loader search order. The
loader uses this search order to locate the filename on the LOAD
and INCLUDE command lines, as well as in the handling of unresolved
refer~nces.

Section 2. CMS Commands 195

LOAD

Use standard order of search to
locate the IEXT files specified
by fn ...

L .J

* . * Any *
* unresolved * NO Search

* references * complete

* ? *
* · · *

*
IYES
I

· * ·
* Is *

* NCAUTO * YES

* specified * ,
* 7 *

* · *
*
INO
I ,

Use standard order of search to I
locate files with a filetype of I
TEXT and a filename correspond- I
ing to the unresolved reference I

I

1<
I

· * · . * Any * ,
* unresolved * NO Search I

* references * complete I

* 7 •
* · · *

*
IYES
I

· * · * Is * r--

* NOLIBE • YES I Search

* specified * I complete

* ? * • · *
*
INO
I

Search active text libraries
(those that were previously
specified by a GLOBAL command).
Files are searched in the order I
they are entered in the command. I

r---------------------,
Search complete I ~ ____________________ .J

Figure 11. Loader Search Order

196 IBM VM/SP CMS Command and Macro Reference

7. The CMS loader also loads routines called dynamically
LOAD, and XCTL macros. Under certain circumstances,
entry point may be returned to the calling program.
CMS Us~£~ Gui£~ for more details.

LOAD

by OS LINK,
an incorrect

See the VM/SP

8. LOAD does not clear user storage unless the CLEAR option is
specified.

LOADER CONTROL STATEMENTS

You can add loader control statements to TEXT files either by editing
them or by punching real cards and adding them to a punched text deck
before reading it into your virtual machine. The seven control cards
recognized by the CMS loader are discussed below.

The ENTRY and LIBRARY cards, which are discussed first, are similar
to the OS linkage editor control statements ENTRY and LIBRARY. The CMS
ENTRY and LIBRARY statements must be entered beginning in column 1.

ENTRY Statement: The ENTRY statement specifies the first instruction to
be-executea:--It can be placed before, between, or after object modules
or other control statements. The fermat of the ENTRY statement is shown
in Figure 12. The external name is the name of a control section or an
entry name in the input deck. It must be the name of an instruction,
not of data.

ENTRY I external name

Figure 12. ENTRY Statement Format

1!BRAR! ~ta!~ment: The LIBRARY statement can be used to specify the
never-call function. The never-call function (indicated by an asterisk
(*) as the first operand) specifies those external references that are
not to be resolved by the automatic library call during any loader step.
It is negated when a deck containing the external name referred to is
included as part of the input to the loader. The format of the LIBRARY
statement is shown in Figure 13. The external reference refers to an
external reference that may be unresolved after input processing. It is
not to be resolved. Multiple external references within the parentheses
must be separated by commas. The LIBRARY statement can be placed
before, between, or after object decks or other control statements.

LIBRARY * (external reference)

Figure 13. LIBRARY Statement Format

1Qad~ Terminate (1DT) ~!~!~.!!!: !he LDT statement is used in a text
library as the last record of a member. It indicates to the loader that
all records for that member were processed. The LDT statement can
contain a name to be used as the entry point for the loaded member. The
LDT statement has the format shown in Figure 14.

Section 2. CMS Commands 197

LOAD

Column Contents

1 X'02' (12-2-9 punch).
Identifies this as a loadeL control statement.

2-4 LDT -- identifies type of statement.

5-16 Not used.

17-24 Blank or entry name (left-justified and padded with
blanks to eight characters).

25 Blank.

26-33 May contain information specified on a SETSSI card
processed by the TXTLIB command.

34-80 Not used.

Figure 14. LDT Statement Format

Include £~trol Sec!ion U~) Statement: The ICS statement changes the
length of a specified control section or defines a new control section.
It should be used only when REP statements cause a control section to be
increased in length. The format of an ICS statement is shown in Figure
15. An ICS statement must te placed at the front of the file or TEXT
file.

Column

1 i

2-4

5-16

17-22

23

24

25-28

Contents

X'02' (12-2-9 punch).
Identifies this as a loader control statement.

ICS -- identifies the, type of load statement.

Blank.

Control section name -- left-justified in these columns.

Blank.

, (comma) •

Hexadecimal length in bytes of the control section. This
must not be less than the actual length of the previously
specified control section. It must be right-justified in
columns with unused leading columns filled with zeros.

29 Blank.

30-72 May be used fer comments or left blank.

73-80 Not used by the loader. You may leave these columns blank
or insert program identification for your own convenience.

Figure 15. ICS Statement Pormat

198 IBM VM/SP CMS Command and Macro Reference

. ..)

LOAD

NO~: Only six characters can be coded for the CSECT name in the ICS
statement, but the loader compares eight characters to the CSECT name
from the TEXT file.

Set Location Counter ~~) ~ta!~ent: The SLC statement sets the
location counter--u5ed with the loader. The file loaded after the SLC
statement is placed in virtual storage beginning at the address set by
this SLC statement. The SLC statement has the format shown in Figure
16. It sets the location counter in one of three ways:

1. With the absolute virtual address specified as a hexadecimal number
in columns 7-12.

2. With the symbolic address already defined as a
entry point. This is specified by a symbolic
columns 17-22.

program name or
name punched in

3. If both a hexadecimal address and a symbolic name are specified,
the absolute virtual address is converted to binary and added to
the address assigned to the symbolic name; the resulting sum is
the address to which the loader's location counter is set. For
example, if 0000F8 was specified in columns 7-12 of the SLC card
image and GAMMA was specified in columns 17-22, where GAMMA has an
assigned address of 006100 (hexadecimal), the absolute address in
columns 7-12 is added to the address assigned to GAMMA giving a
total of 0061F8. Thus, the location counter would be set to
0061F8.

r·--------
Column

1

2-4

5-6

7-12

13-Hi

17-22

23

24-72

73-80

Contents

X'02' (12-2-9 punch).
Identifies this as a loader control statement.

SLC -- identifies the type of load statement.

Blank.

Hexadecimal address to be added to the value of the symbol,
if any, in columns 17-22. It must be right-justified in
these columns, with unused leading columns filled with
zeros.

Blank.

Symbolic name whose assigned location is used by the
loader. Must be left-justified in these columns. If blank,
the address in the absolute field is used.

Blank.

May be used for comments or left blank.

Not used by the loader. You may leave these columns
blank or insert program identification for your own
convenience.

Figure 16. SLC statement Format

Replace (~) State!!!~~!: A REP statement
constants to be changed and additions made.
punched in hexadecimal code. The format of

allows instructions and
The REP statement must be

a REP statement is shown in

Section 2. CMS Commands 199

LOAD

Figure 17. The data in columns 17-70 (excluding the commas) replaces
what has already beEn loaded into virtual storage, beginning at the
address specified in columns 7-12. REP statements are placed in the
file either (1) immediately preceding the last statement (END statement)
if the text deck does not contain relocatable data such as address
constants, or (2) immediately preceding the first RLD (relocatable
dictionary) statement if there is relocatable data in the text deck. If
additions made by REP statements increase the length of a control
section, an rcs statement, which defines the total length of the control
section, must be placed at the front of the deck.

Column

1

2-4

5-6

7-12

Contents

X' 02' (12-2-9 punch).
Identifies this as a loader control statement.

REP -- identifies the type of load statement.

Blank.

Hexadecimal starting address of the area to be replaced as
assigned by the assembler. It must be right-justified
in these columns with unused leading columns filled with
zeros.

13-14 Blank.

15-16 ESID (External Symbol Identification) -- the hexadecimal
number assigned to the control section in which replacement
is to be made. ~he LISTING file produced by the compiler
or assembler indicates this number.

17-70 A maximum of 11 four-digit hexadecimal fields, separated by
commas, each replacing one previously loaded halfword (two I
bytes). The last field must not be followed by a comma. I

I
71-72 Blank. I

I
73-80 Not used by the loader. This field may be left blank or I

program identification may be inserted. I
I

Figure 17. REP Statement Format

Se! Pa~ Boundary (SP~) ~!atement: An SPB statement instructs the loader
to update the location counter to point to the next page boundary. The
SPB statement has the format shown in Figure 18. This statement can be
placed before, between, or after object modules or other control
statements.

Column Contents

1 X' 02' (12-2-9 punch).
Identifies this as a loader control statement.

2-4 SPB identifies the type of load statement.

5-80 May be used for comments or left blank.

igure 18. SPB Statement Format

200 IBM VM/SP CMS Command and Macro Reference

LOAD

Responses

DMSLI0740I EXECU~ION BEGINS.~.

START was specified with LOAD and the loaded program starts
execution. Any further responses are from the program.

INVALID CARD - xxx ••• xxx

INV was specified with LOAD and an invalid statement was found.
The message and the contents of the invalid statement (xxx ••• xxx)
are listed in the file LOAD MAP. The invalid statement is ignored
and loading continues.

Other 8essages and Ret!lll .£.Qlli

DMSLGT0021
DMSLI0001E
DMSLI0003E
DMSLI0005E
DMSLI0021E
DMSLI0029E
DMSLI0055E
DMSLI0056E

DMSLI0099E
DHSLI0104S
D8SLI0105S
DMSLI0109S
D8SLI0116S
DHSLI0168S
DMSLI0169S
DMSLI0201W
DMSLI0202W
DMSLI0203W
DHSLI0206W
DMSLI0623S

D8SLI0907T
DMSSTT062E

FILE 'fn TXTLIB' NOT FOUND RC=O
NO FILENAME SPECIFIED RC=24
INVALID OPTION 'option' RC=24
NO 'option' SPECIFIED RC=24
ENTRY POINT 'name' NOT FOUND RC=40
INVALID PARAMETER 'parameter' IN ~HE OPTION 'option' FIELD RC=24
NO ENTRY POINT DEFINED RC=40
FILE 'fn ft' CONTAINS INVALID [NAHEIALIASIENTRYIESD] RECORD
FORMATS RC=32
CMS/DOS ENVIRON8ENT ACTIVE RC=40
ERROR Inn' REAtING FILE 'fn ft fm'
ERROR Inn' WRITING FILE 'in ft fm'
VIRTUAL STORAGE CAPACITY EXCEEDED
LOADER TABLE OVERFLOW RC=104

FROH DISK RC=100
ON DISK RC=100
RC=104

PSEUDO REGISTER TABLE OVERFLOW RC=104
ESDID TABLE CVERFLOW RC=104
THE FOLLOWING NAMES ARE UNDEFINED: RC=4
DUPLICA~E IDENTIFIER 'identifier' RC=4
"SET LOCATION COUNTER" NAME 'name' UNDEFINED RC=4
PSEUDO REGISTER ALIGNMENT ERROR RC=4
MODULE CANNOT BE LOADED AT LOCATION 'location' BECAUSE IT
WOULD OVERLAY THE CHS NUCLEUS RC=88
I/O ERROR ON FILE 'fn ft fm' RC=256
INVALID * IN FILEID RC=20

section 2. CMS Commands 201

LOADLIB

LOADLIB

Use the LOADLIB command to list, copy, or compress a CMS LOADLIB. C~S
LOADLIBs can be merged, and specified members can optionally be selected
or excluded during the merge. !he format of the LOADLIB command is:

1 r ,
LOADLIB 1 I LIST I [fileid2 [fileid3 J] [(options ••• [)]]

I 1 COMPRESS fileid 11
1 I COpy 1
I L J

I r, r ,
I optio~§: 11ERM I IREPlACEI
I IPRINTI IMODIFY I
I I DISK I l .J

I l J

I
1 SYSIN control statements (COpy function only):
1
1 r ,
I I SELECT 1
) I EXCLUDE I
I L J

LIST lists by member name, the contents of the CMS LOADLIB
specified ty fileid1, and gives a hexadecimal representation
of each member's size.

COMPRESS recreates a lOABLIB with the same name as the specified file
(fileid1), and deletes all obsolete members from the new data
set.

COpy copies members of fileid1 into fileid2. If fileid2 already
exists, MODIFY or REPLACE must be specified. If you specify
MODIFY, existing members are not replaced in the output data
set, but new members are added. If you specify REPLACE,
existing members are replaced in the output data set and new
members are added.

You must specify SYSIN control statements. If you do not
specify SYSIN control statements in a SYSIN dataset (fileid3),
you will be prompted for them at the terminal with the
message: "ENTER:"

Bgte: You may specify the LOADLIB function (LIST, COMPRESS, COPY) either
on the command line or in the SYSIN data set (fileid3). If you specify
the function in the SYSIN data set, you must issue the FILEDEF command
for fileid1, fileid2 (if required), and fileid3 before you issue the
LOADLIB command. However, if you specify the function on the command
line, fileid1, and optionally, fileid2 and fileid3 may be specified
either on the command line or defined via FILEDEF commands. Any FILEDEF
commands issued by the user remain in effect after the command function
completes. During subsequent UEe of LOAD LIB functions, file definitions
which have not been cleared or reissued may override the file
identifiers entered in the LOAD LIB command line.

fileid1 is the filename, filetype, and filemode of the input LOADLIB.
This data set is referred to as the SYSUT1 data set. SYSUT1

202 IBM VM/SP CMS Command and Macro Reference

fileid2

fileid3

TERM

PRINT

DISK

REPLACE

MODIFY

SELECT

EXCLUDE

LOADLIB

is always required.
as input.

An OS load library may not be specified

is the filename, filetype, and filemode of the output LOADLIB.
This data set is referred to as the SYSUT2 data set. If the
SYSUT2 data set already exists, either MODIFY or REPLACE must
be specified. If a SYSUT2 data set is not specified, LOADLIB
SYSUT2 A (or the filemode of the first available read/write
disk) is the default. When the default SYSUT2 file is used
and no errors occur, fileid1 is erased and the new file is
renamed fileid1. SYSUT2 is ignored for the LIST or COMPRESS
functions.

is the filename, filetype, and filemode of the control data
set. This data set is referred to as the SYSIN data set. If
no SYSIN data set is specified, the user is prompted at the
terminal to enter LOADLIB functions or SYSIN COpy control
statements.

directs printer output to the terminal. TERM is the default.

directs printer output to the printer.

directs printer output to disk. The
file named LOADLIB LISTING *, where "*"
first available read/write disk.

DISK option creates a
is the filemode of the

replaces existing members of a data set and adds new members.

does not replace existing members of a data set; adds new
members.

copies only selected members of a data set. Each member to be
copied must te named in a separate line entry following the
SELECT statement. Note that if you specify the SELECT
statement, the LOADLIB command does not replace existing
members of a data set. If you want to replace an existing
member of a data set, you must specify (R) immediately
following the member name.

copies a whole data set except for a few members.
to be excluded must be named in a separate
following the EXCLUDE statement.

Each member
line entry

Note: Indicate the end of control statements from the terminal by
entering a null line; EOF serves this purpose in a SYSIN file. If you
want to copy an entire data set, specify COpy and enter a null line at
the terminal (or include a blank line in a SYSIN file). To avoid
unexpected results, clear the file definitions used by the copy function
before specifying new file identifiers in subsequent LOADLIB commands.

MEMBER - member name HAS BEEN COPIED
MEMBER - member name HAS BEEN REPLACED IN DATA SET
MEMBER - member name DOES NOT EXIST EUT HAS BEEN ADDED TO DATA SET

REPLACE was specified but the member was not in the output data
set, therefore the member was added to the output data set.

Section 2. eMS Commands 203

LOADLIB

MEMBER - member name COpy UNSUCCESSFUL
An error occurred while trying to add/replace
output data set. (For example, if MODIFY was
member already existed in the output data
continues with the next member to be copied.

MEMBER - member name NOT FCUND

the member in the
specified and the
set.) The COpy

The member requested was
MEMBER - member name NOT COPIED.
MEMBER - member name NOT COPIED.
USER TTR WAS NOT UPDATED

not found in the input data set.
WRONG LENGTH NOTE LIST FOUND.
NOTE LIST UPDATE LOGIC ERROR.

NOTE LIST TTR OR RECORD WAS NOT UPDATED

DMSUTL003E
DMSUTL014E
DMSUTL024E
DMSUTL032E
DMSUTL039E
DMSUTL042E
DMSUTL047E
DMSUTL054E
DMSUTL065E
DMSUTL066E
DMSUTL073E
DMSUTL901T

DMSUTL907T

INVALID OPTION 'option' RC=24
INVALID FUNCTION 'function' RC=24
FILE 'fn ft fm' ALREADY EXISTS RC=28
INVALID FILETYPE 'filetype' RC=24
NO ENTRIES IN LIBRARY 'fn ft fm' RC=32
NO FILEID (S) SPECIFIED RC=24
NO FUNCTION SPECIFIED RC=24
INCOMPLETE FILEID SPECIFIED RC=24
'option' OPTION SPECIFIED TWICE RC=24
'option' AND 'option' ARE CONFLICTING OPTIONS RC=24
UNABLE TO OPEN FILE ddname RC=28
UNEXPECTED ERROR AT 'addr': PLIST 'plist fn ft fm'
AT 'addr', EASE: 'addr', RC nn RC=256
I/O ERROR ON FILE 'fn ft fm' RC=256

204 IBM VM/SP CMS Command and Macro Reference

LOADIWD

LOADMOD

Use the LOADMOD command to load a
must be in nonrelocatable format as
format of the LOADMOD command is:

MODULE file into storage. The file
created by the GENMOD command. The

LOADMod fn [MODULE [fm]]
[*]

fn

fm

1.

2.

is the filename of the file to be loaded into storage. The
filetype must be MODULE.

is the filemode of the module to be loaded. If not specified,
or specified as an asterisk, all your disks are searched for
the file.

You can use the LOADMOD command when JOu want to
file. After the file is loaded, you may set
breakpoints before you begin execution with the
example:

loadmod prog1
cp adstop 210ae
start

debug a CMS MODULE
address stops or

START command; for

If a MODULE file was created using the DOS option of the GENMOD
command, the CMS/DOS environment must he active when it is loaded.
If it was created using the OS option (the default), the CMS/DOS
environment must not be active when it is loaded.

3. MODULE files created with the ALL option, or with SYSTEM option and
loaded into the transient area, may be loaded regardless of whether
the CMS/DOS environment is active. If the LOADMOD command is
called from a program, the loading is also done regardless of
whether the CMS/DOS environment is active.

None.

DMSMOD001E NO FILENAME SPECIEIED RC=24
DMSMOD002E FILE 'fn ft' NOT FOUND RC=28
DHSMOD032E INVALID FILETYPE 'ft' RC=24
DMSMOD070E INVALID PARAMETER 'parameter' RC=24
DMSMOD104S ERROR Inn' READING FILE 'fn ft fm' FROM DISK RC=100
DMSMOD109S VIRTUAL STORAGE CAPACITY EXCEEDEt RC=104
DMSMOD114E 'fn ft fm' NOT LOADED; CMS/DOS ENVIRONMENT [NOT] ACTIVE

RC=40 or RC=-0005
DMSMOD116S LOADER TAELE OVERFLOW RC=104
DMSSTT048E INVALID MODE 'mode' RC=24

Section 2. CMS Commands 205

MACLIB

MACLIB

Use the MACLIB command to create and modify CMS macro libraries. The
format of the MACLIB command is:

MAClib
litname fn1[fn2 •••] { GEN} ADD

EEP

DEL libname membername1[membername2 •••]

CaMP libname

UP lil:name [(options ••• [)]]

,Q£tions: ,. ,
ITEBM I
IDISK I
IPEINTI
1.. .J

GEN generates a CMS macro library.

ADD adds members to an existing macro library. No checking is
done for duplicate names, entry points, or CSECTS.

EEP

DEL

replaces existing members in a macro library.

deletes members from a macro library. If more than one member
exists with the same name, only the first entry is deleted.

CaMP compacts a macro library.

MAP lists certain information about the members in a macro
library. Available information includes member name, size,
and location relative to the beginning of the library.

libname is the filename of a macro library. If the file
exists, it must have a filetype of "ACLIBi if it
created, it is given a filetype of "ACLIB.

already
is being

fn1 [fn2 •••]
are the names of the macro definition files to be used. A
macro definition file must reside on a CMS disk and its
filetype must be either MACEO or COPY. Each file may contain
one or more macros and must contain fixed-length, aD-character
records.

membername1[membername2 •••]
are the names of the macros that exist in a macro library.

~AR Options: The following options specify where the output of the
MAP function is sent. Only one option may be specified. If more
than one option is specified, only the first one given is used.

TEEM displays the MAP output at the terminal.

206 IBM VM/SP CMS Command and Macro Beference

ftACI.IB

writes the ftAP output on a CftS disk with the file identifier
of "libname ftAP A1". If a file with that name already exists,
the old file is erased. If no option is specified, DISK is
the default.

PRINT writes the file "libname MAP A1" to your A-disk and spools a
copy to the virtual printer.

Yll~~

1. When a ftACRO file is added to a MACLIB, the membername is taken
from the macro prototYFe statement. If there is more than one
macro definition in the file, each macro is written into a separate
ftACLIB member.

If the filetype is COpy and the file contains more than one macro,
each macro must be preceded by a control statement of the following
format:

*COpy membername

The name on the control statement is the name of the macro when it
is placed in the macro library. If there is only one macro in the
COpy file and it is not preceded by a COPY control statement, its
name (in the macro library) is the same as the filename of the COpy
file. If there are several macro definitions in a COpy file and
the first one is not Freceded by a COPY control statement, the
entire file is treated as one macro.

2. If any KACRO file contains invalid records between members, the
!lACLIB command displays an error message and terminates. Any
members read before the invalid card is encountered are already in
the ftACLIB. The ftACLIB command ignores CATAL.S, END, and 1*
records when it reads MACRO files created by the ESERV program.

3. If you want a macro library searched during an assembly or
compilation, you must identify it using the GLOBAL command before
you begin compiling.

4. The ftACLIBs distributed with the CMS system are: CMSLIB, OSftACRO,
OS!lACR01, TSOMAC, and DOSMACRO.

5. The TERft or PRINT options will erase the old MAP file, if one
exists.

6. If you delete the last remaining member of a maclib, the maclib is
erased.

Besp~

When you enter the ftACLIB MAP command with the TERM option, the names of
the library members, their sizes, and their locations in the library are
displayed.

!lACRO INDEX SIZE
name loc si7e

section 2. CMS Commands 207

MACLIB

DMSLBM001E NO FILENAME SPECIFIED RC=24
DMSLBM002E FILE 'fn ft' NOi FOUND RC=28
DMSLBM002W FILE 'fn ft [fmJ' NOT FOUND RC=4
DMSLBM003E INVALID OPTION 'option' RC=24
DMSLBM013W MEMBER 'name' NOT FOUND IN LIBRARY 'fn ft fm' RC=4
DMSLBM014E INVALID FUNCTION 'function' RC=24
DMSLBM037E DISK 'mode' IS READ/ONLY RC=36
DMSLBM046E NO LIBRARY NAME SPECIFIED RC=24
DMSLBM047E NO FUNCTION SPECIFIED RC=24
DMSLBM056E FILE 'fn ft fm' CONTAINS INVALID BECORD FORMATS RC=32
DMSLBM069E DISK 'mode' NO! ACCESSED RC=36
DMSLBM070E INVALID PARAMETEE 'parameter' RC=24
DMSLBM104S ERROR Inn' READING FILE 'fn ft fm' FROM DISK RC=100
DMSLBM105S ERROR Inn' WRI!ING FILE 'fn ft fm' ON DISK RC=100
DMSLBM109S VIRTUAL STORAGE CAPACITY EXCEEDED RC=104
DMSLBM157S MACLIB LIMIT EXCEEDED[, LAST MEMBER NAME ADDED WAS

'membername' J RC=88
DMSLBM167S PREVIOUS MACLIB FUNCTION NOT FINISHED RC=88
DMSLBM213W LIBRARY 'filename' MACLIE NOT CREATED, OR EBASED IF EMPTY BC=4
DMSLBM907T I/O ERROR ON FILE 'fn ft fm' RC=256

208 IBM VM/SP CMS Command and Macro Reference

MAKEBUF

MAKEBUF

Use the MAKEBUF command to create a new buffer within the program stack.
The format of the MAKEBUF command is:

MAKEBUF I

1. When you issue a MAKEBUF command, CBS returns as a return code the
number of the program stack buffer just created. If you issue a
MAKEBUF command in an EXEC that has the &ERROR statement in effect,
the MAKEBUF return code causes the &ERROR statement to execute.

2. Use the WAITRD function to read lines from the buffers the MAKEBUF
command creates. WAITRD first reads lines from the most recently
created buffer. When the most ~ecent buffer is exhausted, WAITRD
reads the next most recent buffer. When all program stack buffers
are exhausted, WAITRD reads from the terminal input buffer.

Section 2. CMS Commands 209

ftOVEFILE

2. To copy an entire as partitioned data set into individual CftS
files, you could enter:

filedef test2 disk sys1 maclib b
filedef macro disk
movefile test2 macro (pds

These commands copy members from the as partitioned data set
SYS1.MACLIB or the CMS file SYS1 MACLIB into separate files, each
with a filename equal to the membername and a filetype of MACRO.
Note that the output ddname was not specified in full, so that CMS
assigned the default file definition (FILE ddname).

3. You cannot copy VSAM data sets with the MOVEFILE command.

4. The MOVEFILE command does not support data containing
records. Use of spanned records results in the error
DMSSOP036E and an error code of 7.

spanned
message

5. To copy an entire partitioned data set into another partitioned
data set, use the COPYFILE command. If an attempt is made to use
the MOVEFILE command without the PDS option for a partitioned data
set, only the first member is copied and an end-of-file condition
results. The resultant output file will contain all inFut records,
including the head~r, until the end of the first member.

6. When using the MOVEFILE command to move members from CMS maclibs,
note that each member is followed by a // record, which is a maclib
delimiter. You can edit the file to delete the // record.

7. Since VM knows the real device characteristics of a tape unit,
some of the options specified in the FILEDEF command may be ignored
when performing I/O operations to a tape unit. For example, in
using FILEDEF, if you specify a ddname of 7TRACK and a density of
200 and the real devicE is a 3420 Model 5, VM writes at 9TRACK and
density of 1600,.

8. If you use the MOVEIILE command and FILEDEF command with the
options DISP MOD and RECF! FB to add a file to the end of an
existing as simulated file, t.he user should erase the end-of-file
mark at the End of the existing file. The end-of-file mark will be
present only if the last physical record written was a short block.

9. The following record formats are supported for DOS files on FBA
device: fixed, fixed blocked, variable, variable blocked, and
undefined. The FILEDEF for the input file must specify at least
the RECF! and BLOCK; for fixed block files the LRECL must also be
specified.

If a record format (RECFM), tlocksi2e (BLOCK), and logical record length
(LRECL) are specified on the FILEDEF command, these values are used in
the data control bleck (DCB) defining the characteristics of the move
operation. If the FILEDEF was issued without a record format or
blocksize specified, these values are determined according to the
defaults listed in Figure 19. If the block size was not specified, the
default block size is used. If the logical record length was not
specified, the default logical record length is determined as follows:
for an F or U record format, the logical record length equals the
blocksizei for a V record format, the logical record length equals the
blocksize minus 4.

212 IBM VM/SP CMS Command and Macro Reference

MOVEFILE

Input ddname output ddname

Device RECFM Blocksize RECFM Blocksize

Card Reader F 80 NA2 NA2

Card Punch NA2 NA2 F 80

Printer NA2 NA2 U 132

Terminal U 130 U 130

Tape l U 3600 RECFM of Blocksize of
input ddname input ddname

Disk file RECFM of Blocksize of RECFM of Blocksize of
file file inpu t ddname input ddname

Dummy NA2 NA2 RECFM of Blocksi ze of
input ddname input ddname

lIf the default record format and blocksize are used in a
tape-to-tape move operation and an input record is greater than 3600
bytes, it is truncated to 3600 bytes on the output tape.

2Not applicable.

Figure 19. Default Device Attributes for MOVEFILE Command

DMSMVE225I PDS MEMBER 'memhername' MOVED

The specified member of an OS partitioned data set was
successfully to a CMS file. This response is issued for
member moved when you use the PDS option.

DMSMVE226I END OF PDS MOVE

moved
each

The last member of the partitioned data set was moved successfully
to a eMS file.

DMSMVE706I TERM INPUT -- TYPE NULL LINE FOB END OF DATA

The input ddname in the MOVEFILE specified
terminal. This message reguests the input
terminates input.

a device type of
data; a null line

DMSMVE708I DISK FILE 'FILE ddname A1' ASSUMED FOR DDNAME 'ddname'

No file definition is in effect £or a ddname specified on the
MOVEFILE command. The MOVEFILE issues the de£ault FILEDEF command:

FILEDEF ddname LISK FILE ddname A1

If file ddname does not exist for the input file, MOVEFILE
terminates processing.

Section 2. CMS Commands 213

MOVEFILE

DMSMVE002E FILE 'fn ft fm' NeT FOUND RC=28
nMSMVE003E INVALID OPTION 'option' RC=24
DMSMVE037E OUTPUT DISK 'mode' IS READ/ONLY RC=36
DMSMVE041E INPUT AND OUTPUT FILES ARE THE SAME RC=40
DMSMVE069E OUTPUT DISK 'mode' IS NOT ACCESSED RC=36
DMSMVE070E INVALID PARAMETER 'parameter' RC=24
D!SMVE073E UNABLE TO OPEN FILE ddname RC=28
DMSMVE075E DEVICE 'device name' ILLEGAL FOR {INPUTIOUTPUT} RC=40
DMSMVE086E INVALID DDNAME 'ddname' RC=24
DMSMVE127S UNSUPPORTED DEVICE FOR ddname RC=100
DMSMVE128S I/O ERROR ON INPUT AFTER READING nnnn RECORDS: INPUT ERROR

code ON ddname RC=100
DMSMVE129S I/O ERROR ON OU~PUT WRITING RECORD NUMBER nnnn: OUTPUT ERROR

code ON ddname RC=100
DMSMVE130S BLOCKSIZE ON V FORMAT FILE ddname IS LESS THAN 8 RC=88
DMSMVE232S INVALID RECFM -- SPANNED RECORDS NOT SUPPORTED

214 IBM VM/SP CMS Command and Macro Reference

L

NAMEFIND

I NAMEFIND

Use the NAftEFIND command to display information from a names file, or to
place that information in the program stack (for use by an EXEC or other
program).

A names file has a file type of NAMES and must be in the format described
in the usage note below, "Format cf a Names File". A "userid HAMES"
file is a special names file, used by the HAMES, HOTE, SEHDFILE,
RECEIVE, and TELL commands, that makes it easier for you to communicate
with other computer users. You can use the NAMES command to create a
"userid NAMES" file. NAftEFIHD searches a "userid NAMES" file, unless a
different filename is specified.

The format of the NAMEFIND command i~'

I I
HAMEFindl :tag value [: tag [value]] ••• ((options, ••• [)]]

I
1 Q£tions:
I r ,
I I STACK [nl *1 1] [11IQ ILIFO] I (FILe fn]
I 1 FIFO [nl*1 1] I (LINenum]
I ILIFO [n 1* 1 1] I [STARt recnum]
I I TYPE (n I * 1 1] I (SI ze (n 1 * I ~]]
I L J

where:

:tag is a tag in a names file. You can specify multiple tags in a
NAMEFIHD command. The maximum length of a tag is 255. For
more information on tags, see the usage note, "Format of a
Names File".

value is the value of a tag in a names file. The maximum length of
a value is 255.

STACK (n] (FIFOILIFO]
means that informaticn from the number of entries specified
(n) that meet the search criteria is placed in the program
stack, rather than being displayed at the terminal. The
number (n) specified is the number of entries containing
matching information. If n is omitted, the default is one
(1). If an asterisk (*) is specified, information from all
the entries meeting the search criteria is stacked. The
information is stacked either FIFO (first in first out) or
LIFO (last in first out). The default order is FIFO.

FIFO n specifies that the information is placed in the console stack.

LIFO n

TYPE n

The options S~ACK, STACK FIFO, and FIFO are all equivalent.

specifies that the information
rather than being displayed at
is stacked LIFO (last in
equivalent to SiACK LIFO.

is placed in the console stack
the terminal. The information

first out). This option is

means that information from the number of entries specified
(n) that meet the search criteria is displayed at the
terminal. The number (n) specified is the number of entries
containing matching information. If n is omitted, the default
is one (1). If an asterisk (*) is specified, information from

section 2. CMS Commands 215

NAMEFIND

FILe fn

LINenum

all the entries meeting the search criteria is displayed.

specifies a file whose filename is "fn" and whose filetype is
"NAMES". This option allows you to use NAMEFIND to search a
names file whose filename is something other than your userid.
If this option is not specified, the file "userid NAMES *" is
searched.

requests that the record number of the beginning of the entry
be displayed or stacked. It is displayed or stacked before
any of the other information.

STARt recnum

SIze n

specifies that the search is to begin at the "recnum" record
of the file.

specifies the maximum size of a buffer where a names file is
kept. The size of the buffer is n, where n is in
1024-character units. Valid values for n are 0-99999999 or *.
If zero (0) is specified, no buffer is used, and the names
file is read into storage each time NAMEFIND is invoked. If
an asterisk (*) is specified, the buffer is as large as the
names file requires. If no SIZE option is specified, SIZE 8
(8192 characters) is the default. This represents the maximum
size of the buffer. (If the names file is smaller than 8192
characters, a smaller buffer is used.) This option improves
the performance of NAMEFIND when a names file is large. For
more information on its use, see the usage note, "Using the
SIZE Option", below.

1. Format of a Names File

A names file is a collection of entries, with each entry identified
by a "nickname". A nickname tag plus a series of other tags with
associated values make up,an entry.

A special names file is one whose fileid is "userid NAMES", which
can be created using the NAMES command. A "userid NAMES" file
contains entries for other computer users and entries for lists of
users. An entry contains the information necessary to communicate
with that person. Once you create a "userid NAMES" file, you can
prepare notes for and send files and messages to other people just
by using their "nicknames" as operands in the NOTE, SENDFILE, and
TELL commands. 7he tags in each entry supply the additional
information required to perform these functions.

You can add, remove, or change entries in the "userid NAMES" file
either by using the NAMES command (which displays a menu), or by
editing the "userid NAMES" file directly. (The NAMES command can
be used only for a file whose fileid is "userid NAMES".)

A sample "userid NAMES" file is shown below, in the "Examples"
section.

The format of data lines in a names file is as follows:

I
I: tag. value (: tag. value .• _.]

The value need not be on the same record as its tag and can

216 IBM VM/SP CMS Command and Macro Reference

continue onto the next record.

The only tag that is required is a :NICK tag:

I

I:NICK.nickname

NAMEFIND

L---__ ~

This is the primary tag, one for each entry. It identifies the
beginning of an entry and must be the first word on a line.

Any tags that follow relate to the preceding :NICK tag. The
maximum number of tags with values for a given :HICK entry is 64.
Therefore, between :NICK entries, you can have from zero to 63
tags.

In addition,

I

1*
1

An aster~sk begins a comment line.
Blank lines are ignored.

I

2. How NAMEFIND Searches a Names File

When you issue a NAMEFIND command, each tag specified with a value
is a search tag. NAMEEIND searches until all search tags are found
in an entry. Each tag specified without a value is a "return" tag,
whose value is returned. If no return tags are specified, the
entire entry is displayed or stacked.

Given the "userid NAMES" file shown in the "Examples" section
below, the command

NAMEFIND :HICK SHOW :NAME :PHONE

would display:

Snow White
ZZZ-ZZZZ

(:NICK SNOW is the search tag.
:NAME and :PHONE are the return tags.)

You can specify the tag ":LIST" to display all the names in a list.
For example, the command

NAMEFIND :HICK DWARFS :LIST

would display:

SHOOZY DUMMY BOSS SHILEY GROUCHY SNIFFLES WISTFUL

You could then issue NAME FIND for each of the names in the list
shown above, specifying the return tag :USERID to retrieve the
userid of each person.

You need know the value of only ODe unigue tag in an entry for that
entry to be located. The tags specified without values determine
the information that is displayed (or stacked). For example, the
command

NAMEFIND :OSERlt QUEEN :NICK

would display:

Section 2. CMS Commands 217

RAMEFIND

WITCH

If duplicate entries exist in a names file, only the first is
found, unless an option value (n) greater than one is specified.
If duplicate :NICK entries are submitted from the NAMES menu (which
is displayed with the NAMES command), a warning message is
displayed •.

Case and multiple blanks are ignored during the search. Case and
multiple blanks in tag values are preserved when the values are
displayed or stacked.

3. Tags in a "userid NAMES" File

The CKS commands that reference a "userid NAMES" file are NOTE,
SENDFILE, TELL, and RECEIVE. These commands make use of the tags
described below. Fields that correspond to these tags appear on
the NAKES menu. You can also add other tags to the file (for
example, for use by other applications).

I
I: NICK. nickname
I

This is the primary tag, one for each person or list in the file.
It identifies the beginning cf an entry and must be the first word
on a line.

You should have a :NICK entry for yourself, because
supply your address, phone number, etc., are used
command to generate note headings.

the tags that
by the NOTE

All of the following tags relate to the
all tags are required for each entry;
that reference the "userid NAMES" file
tags.)

preceding :NICK tag. (Not
however, the CKS commands
make use of the following

I
I: USERID. userid
I

specifies the userid of the preceding :NICK
required for communicating with this user via
TELL. If no :USERID tag is specified, the
entry (for an address list, or perhaps a name
not use a computer).

I
I: NODE.node
I

entry. This tag is
NOTE, SENDFILE, and

nickname is just an
of someone who does

specifies the node of the preceding :NICK entry. If no node is
specified, the default node is your node.

I

I:NOTEBOOK.filename
I

is the name of a file whose filetype is NOTEBOOK, in which notes
(prepared by the NOTE command) sent to or received from this person
are kept. See the NOTE command for more information on keeping
notes.

218 IBM VM/SP CMS Command and Macro Reference

L

NAMEFIND

I
I : NAME. name L __ ~

is the person's real name.

I
I:PHONE.phone number

is the person's phonE number.

I
I: ADDR. address ,

is the person's postal address. Semicolons (i) in the tag's value
separate the lines of the address. They do not appear in the
header of a note (prEpared by the NOTE command).

I

I :LIST.[name •••] ,

is a list of names. If a name in the list is not a nickname in the
"userid NAMES" file, it is assumed to be a userid on the sender's
computer. A name can also be specified as "userid AT node", just
as it can in the NOTE, SENDFILE, and TELL commands. The nickname
specified on the associated :NICK tag can be the nickname for the
whole list, or it can bE the nickname for one user.

q. Using the SIZE Option

When NAMEFIND is invoked, the names file is read into a buffer in
virtual storage. It is kept in this buffer instead of being read
from disk each time NAMEFIND is invoked. The CMS commands NOTE,
RECEIVE, SENDFILE, and TELL all invoke the NAMEFIND command to
search a names file. Having a names file kept in a buffer improves
performance of these commands, particularly if the file is large.

I If no SIZE option is specified, the default buffer si2e is SIZE 8
I (8192 characters). If a names file is too large to fit in the
I buffer, the size of the buffer can be increased accordingly.
I Naturally, it can also be decreased to conserve virtual storage.
I However, if the names file is larger than the size (n) allocated for
I the buffer, NAMEFIND reads as much of the file as will fit into the
I buffer, and then reads the rest from disk. By specifying "NAMEFIND
I (SIZE *" (a good candidate for your PROFILE EXEC), the buffer uses
I as much storage as is needed to contain a names file, no more and no

. I less.

Section 2. CMS Commands 219

NAHEFIND

DMSNAM002E FILE 'fn ft fm' NOT FOUND. RC=28
DMSNAM003E INVALID OPTION 'option'. RC=24
DMSNAM029E INVALID PARAMETER 'parmi IN THE OPTION 'option' FIELD.

RC=24
DMSNAM104S ERROR Inn' RIAtING FILE 'fn ft fm' FROM DISK. RC=100
DMSNAM156E RECORD 'nnn' NOT FOUND - FILE 'fn ft fm' HAS ONLY 'nnn'

RECORDS RC==32
DMSNAM618E NUCEXT FAILED. RC=13
DMSNAM621E BAD PLIST: NAMEFIND MUST BE INVOKED AS A NUCLEUS

EXTENSION. RC=24
DMSNAH622E INSUFFICIENT STORAGE FOR NAMEFIND. RC=41
DMSNAB622W INSUFFICIENT FREE STORAGE FOR NAMEFIND BUFFER,

PROCESSING CONTINUES.
DHSNAM633E TOO MANY TAGS WERE ENCOUNTERED. MAXIMUM IS 64 PER

LINE. RC=88
DMSNAM634E NO VALUE TO SEARCH FOR WAS SPECIFIED. RC=24
DMSNAM6351 NO ENTRIES WERE FOUND THAT MATCHED YOUR SEARCH

CRITERIA. RC=32
DMSNAM636W RETURNED VALUES WERE TRUNCATED. RC=88
DHSNAM637E MISSING VALUE FOR THE 'oFtion' OPTION. RC=24

The following is a samFle "userid NAMES" file:

:nick.SNOW :userid.SNOWHITE :node.FOREST
:name.Snow White
:addr.Forest Primeval

:nick.SNOOZY :userid.SNCOZY :node.COTTAGE
:name.I. M. Dozing
:addr.Dwarf CottageiForest

:nick.DUMMY :userid.DUHMY :node.COTTAGE
:name.S. A. What
:addr.Dwarf CottageiForest

:nick.BOSS :userid.BOSS :node.COTTAGE
:name.i.O.P. Banana
:addr.Dwarf CottageiForest

:nick.SNIFFLES :userid.SNIFFLES :node.COTTAGE
:name.A. H. Choo
:addr.Dwarf CottageiForest

:nick.GROUCHY :userid.GBOUCHY :node.COTTAGE
:name.E. B. scrooge
:addr.Dwarf CottageiForest

:nick.SMILEY :userid.SMILEY :node.COTTAGE
:name.H. A. Haas
:addr.Dwarf cottage;Forest

:nick.WISTFUL :userid.WISTFUL :node.COTTAGE
:name.R. U. Shy
:addr.Dwarf CottageiForest

:nick.WITCH :userid.QUEEN :node.CASTLE
:name.Bad Queen
:addr.Vanity LaneiMirror City

:nick.GORGEOUS :userid.PBINCE :node.ATLABGE
:name.Prince Charming

:nick.DWABFS

:phone.ZZZ-ZZZZ

: phone. 777-7777

: phone. 777-7777

: phone. 777-7777

: phone. 777-7777

: phone. 777-7777

: phone. 777-7777

: phone. 777-7777

: phone. UGL Y-1111

:notebook.PBIVATE
:phone.Area 111 111-1111

:list. SNOOZY DUMMY BOSS SMILEY GROUCHY SNIFFLES WISTFUL

I Figure 20. Sample 'userid NAMES' File

220 IBM VM/SP CMS Command and Macro Reference

I NAMES

Use the NAMES EXEC procedure to display a menu from
create, change, and remove entries in a "userid HAKES"
can be used only on a display terminal.

The format of the NAKES command is:

I

INAMES

where:

[nickname]

HAKES

which you can
file. The menu

nickname is the name assigned to an entry in a "userid NAMES" file. If
you specify a nickname, the NAMES menu is displayed with all
the information from that entry (if the entry exists) filled
in on the menu. You can then examine or change the values in
that entry. For example, you might want to update someone's
address or phone number.

If the entry does not exist, the menu is displayed with only
the "nickname" field filled in (with the nickname you
specified). You can then fill in the other fields to add a
new entry to the NAKES file.

If you invoke NAKES without specifying a nickname, the menu is displayed
with all fields left blank. You can then "fill in the blanks" on the
menu to create a new entry, or you can scroll through the names file.

1. What Is a "userid NAMES" File?

A "userid NAKES" file (where "userid" is your use rid) is a
collection of information about other computer users with whom you
communicate. An "entry" in this file is all the information
associated with a particular nickname.

Having a "userid HAMES" file makes it easier for you to communicate
with other users, because you can assign nicknames to them. You
can then prepare notes for and send files and messages to other
users by using their nicknames as operands in the NOTE, SENDFILE,
and TELL commands.

You can also create an entry for a list of names. In this case,
the nickname refers to all the users in the list. This makes it
possible to send notes, files, or messages to everyone on the list
by issuing the appropriate command only once.

2. Entering Information on the NAMES Menu

The NAMES menu helps you to create and edit a "userid NAMES" file.
All of the information you type on one menu is an "entry" in the
file. You fill in the fields on the menu and press a PF key to
create, display, and/or change your names file. The PF key
functions are described in the usage note, "PF Key Settings on the
NAMES Menu".

Tne following list describes the various fields on the menu and
explains the information you type in. Refer to the sample menus in
the "Examples" section, below, to see the location of the fields on
the menu.

Section 2. eMS Commands 221

NAMES

Nickname:

is any name you choose to represent a single user or a list of
users. An example of each is shown in the "Examples" section,
below. Once an entry is created, the nickname is the only piece of
information you need to communicate with this user (using the NOTE,
SEHDFILE, or TELL commands).

You should create an entry for lQY~~~, because the
contain your mailing address, phone number, etc., are
HOTE command to generate headings.

fields that
used by the

is the userid of the person whose nickname you specified. You can
leave this field blank if the nickname represents a list, that is,
if the List of Hames field is filled in. However, if the nickname
represents a list and you also specify a userid, the note is also
sent to this userid.

You can also leave this field blank if you want the entry to
contain information about a person, but you do not intend to
communicate with him via the computer. You might choose to do this
if you're using the HAMES file simply to compile an address list.

Hode:

is the node of the person whose nickname you specified. If not
specified, the default node is the one on which this names file
exists. You can leave this field blank if the nickname represents
a list.

Notebook:

is the filename of a file whose filetype is NOTEBOOK, in which
notes (prepared by the NOTE command) sent to or received from this
person are to be kept. You can leave this field blank if you want
all incoming and outgoing notes saved in the default notebook file,
ALL NOTEBOOK.

Name:

is the name of the person whose nickname you specified.
leave this field blank if the nickname represents a list.

Phone:

You can

is the phone number(s} of the person whose nickname you specified.
You can leave this field blank if the nickname represents a list.

is the address of the person whose nickname you specified. You can
leave this field blank if the nickname represents a list.

is the names of the people in a list, when the nickname represents
the name of this list. The names of the people in the list can be
specified in the following ways: as a nickname of an entry in the
names filei as a userid of a user who shares your computeri or in
the form "userid AT node". Each time you send a note, a file, or a
message to the nickname specified, it will go to everyone on this
list. A sample entry for a list of names is shown in the
"Examples" section, telow.

222 IBM VM/SP CMS Command and Macro Reference

L

NAMES

3. PF Key Settings on the NAMES Menu

The PF key functions appear on the NAKES menu itself (see
"Examples") and are summarized in the following list:

PF 1
PF 2
PF 3
PF 4
PF 5

PF 6
PF 7
PF 8
PF 9
PF 10
PF 11
PF 12

Help
Add
Quit
Clear
Find

Change
Previous
Next

Delete

Cursor

Display NAKES command description.
Add this entry to the NAMES file.
Exi t from menu.
Clear input fields.
Locate in the file the first field that is
filled in on the menu.
change this entry.
DisFlay the previous entry.
DisFlay the next entry.
Not assigned.
Delete this entry.
Not assigned.
Place cursor in Nickname field.

Note: On a terminal eguipped with 24 PF keys, PF keys 13 to 24 are
assigned the same values as PF keys 1 to 12 as discussed here.

4. Updating a "userid NAKES" File

You can make changes to the file by using the menu and appropriate
PF keys (see above), or by editing the file (XEDIT userid NAKES).
If you issue NAMES from a line mode terminal, you are placed in
edit mode, editing the file "userid NAMES". The format of a
"userid NAMES" ~ile is shown in the "Examples" section of the
NAMEFIND command.

'name' has been added to your userid NAKES file.
Entry has been deleted from your userid NAMES file.
Entry changed in your userid NAMES file.
Warning: There {islare} nn undisplayed tag(s).

The following response is displayed on a line mode terminal:

YoU are now editing your Userid NAMES File.

DKSWNK649E EXTRANEOUS PARAME!ER 'value'. RC=24

Messages when in the NAMES Fanel:

DMSWNM645W THE USER TAG NAME 'tagname' IS TOO LONG TO DISPLAY
IN THE PANEL.

DMSWNM656E ERROR SEARCHING YOUR NAMES FILE,
RC = XX FROK NAME FIND COMMAND.

DMSWNM657E UNDEFINED PFkey.
DKSWNM658W THE VALUE FOE THE 'tag' TAG IS TOO LONG TO DISPLAY

IN THE PANEL.
DMSWNM660E THE NICKNAME FIELD MUST EE FILLED IN.
DMSWNM660W WARNING: THIS ENTEY DUPLICATES AN EXISTING NICKNAME.
DMSWNM662E YOU ARE NOT GN AN ENTRY. PRESS PF 5, 7 or 8

TO MOVE TO AN EH1RY.
DMSWNM664E {EntrYINext entrylPrevious entry} NOT FOUND.

Section 2. CMS Commands 223

NAMES

Examples

The following is an entry in the file "SNOWHITE NAMES".

====> SNOWHITE NAMES <========> N A M E S FILE EDITING <====

Pill in the fields and press a PFkey to display and/or change your NAMES file

Nickname: SNOW Userid: SNOWHITE Node: FOREST
Name: Snow White

Phone: ZZZ-ZZZ2
Address: Forest Primeval

List of Names:

Notebook:

You can enter optional information belovo Describe it by giving it a "tag".

ITag:
ITag:
1
11= Help
14= Clear
1===>
1

Value:
Value:

2= Add 3= Quit
5= Find 6= Change

I Figure 21. Sample NAMES Screen

7= Previous
10= Delete

224 IBM VM/SP CMS Command and Macro Reference

8= Next
11=

9=
12=Cursor

MACEO-READ 1 FILE

J

. ..)

NAMES

The following menu shows an entry for a list of names. Each name in the
list is the nickname of an entry in the names file.

I
I ====> SNOWHITE NAftES <========) N A ft E S FILE EDITING <====
I
Fill in the fields and press a PFkey to display and/or change your NAMES file

Nickname: DWARFS Userid: Node: Notebook:
Name:

Phone:
Address:

:
List of Names: SNOOZY DUftMY BOSS SftILEY GROUCHY SRIFFLES WISTFUL

You can enter optional information below. Describe it by giving it a "tag".

Tag:
Tag:

1= Help
4= Clear

2= Add
5= Find

Value:
Value:

3= Quit
6= Change

7= Previous
10= Delete

8= Next
11=

9=
12=Cursor

1===)
I MACRO-READ 1 FILE
I

I Figure 22. Sample Entry for a List of names.

section 2. CMS Commands 225

NOTE

NOTE

Use the NOTE EXEC procedure to prepare a "note" for one or
users on your computer or cn other computers connected to
Remote Spooling Communications Subsystem (RSCS) network.
short communication, the kind usually done by letter.
features of the NOTE command are:

more computer
yours via the
A "note" is a

Some of the

I • The System Product editor (XEDIT) controls the environment in which a
I note is prepared. Therefore, the full power of the editor is
I available to help you prepare notes.

I. NOTE is one of several commands that references a "userid NAMES"
I file. By setting up a names file, you can identify recipients just
I by using nicknames, which are automatically converted into node and
I userid. For informaticn on creating a names file, see the NAMES
I command.

I • Notes can be sent not only to individual users but also to everyone
I on a list.

I • Headings identifying the sender and the recipients are automatically
I generated on each note. The information in the headings is collected
I from the "userid NAMES" file. Notes can be prepared with either
I short or long headings. An example of each is shown in the
I "Examples" section, below.

I • PF keys are assigned to freguently used functions like sending the
I note, tabbing, calling for HELP, etc.

The format of the NOTE command is:

NOTE

name

[name ••• [CC: name •••]] [(options ••• [)]]

options:
[ACk I !!OA£~]
[ADd]
[Cancel]
[NOTebook fnlNOTebook *INONotebook]
[bOG I BOLog]
[LONg I Shor.1]
[Replace]
[PROF ile fn]

is one or more "names" of the computer users to whom the note is
to be sent. If the same recipient is specified more than once,
he receives only one copy of the note. The "name" may take any
of the following forms, and the different forms can be freely
intermixed:

• a "nickname" that can be found
where "userid" is your userid.
single person (on your computer
list of several people.

in the file "userid NAMES",
This nickname may represent a
or on another computer), or a

• a userid of a user on your computer. If a name cannot be
found in the "userid NAMES" file, it is assumed to be a
userid of a user on your computer.

• "userid AT node", which identifies a user ("userid") on your

226 IBM VM/SP CMS Command and Macro Reference

NOTE

computer or another computer ("node").

A userid cannot be "AT" or "CC:".

CC: indicates the following name(s) are "complimentary copy"
recipients of the note. A name can take any of the forms
described above. Complimentary copy recipients are designated
as such in the note header.

Issued without parameters, NOTE is used to continue
started previously. For more information on saving
notes, see the usage note, "Continuing Notes".

a note that was
and continuing

ACk

NOAck

ADd

Cancel

NOTebook fn

NOTebook *

requests an acknowledgment be sent to you when the
addressee receives your note. For more information on
acknowledgments, see the RECEIVE command description.

requests that no acknowledgment be sent.

causes the addressees to be added to the current
invocation of NOTE. No other options may be specified
when the ADD option is used. This option is intended to
be used from within the NOTE command environment. For
more information on this option, see the usage note,
"Adding and Deleting Names of Recipients".

causes the note you are currently editing to be erased.
You are returned to the file you were previously editing
or to CES, and no note is sent. You enter NOTE with the
CANCEL option from the XEDIT command line. All other
options are ignored if CANCEL is specified.

causes the text of the outgOing note to be saved in a
file named "fn NOTEBOOK". You can use this option if you
want a copy of the note(s) sent to a particular recipient
to be kept in a separate file.

If you do not specify a notebook filename here, a
filename is first searched for in the (first) recipient's
entry in your "userid NAMES" file, and then in a file set
up by the DEFAOLTS command. If neither contains a
notebook filename, the note is saved in the default
notebook file, "ALL NOTEBOOK". A note is saved by
appending it to the NOTEBOOK file, with a line of 73
equal signs (:) separating each note.

(See the NAMEFIND or NAMES command for more information
on the relationship between the NAEES file and the
NOTEBOOK file.)

specifies that the text of the outgoing note is saved in
a file named "name NOTEBOOK", where "name" is the value
of the Notebook tag in the recipient's entry in your
"userid NAEES" file, or the recipient's nickname, or the
recipient's userid (whichever is located first).

When there is more than one recipient, the full text of
the note is saved in the NOTEBOOK file of the first
addressee (selected as described above). In the notebook
files of the other addressees and complimentary copy
recipients (if any), only the note header and a line
referencing the file in which the full text exists is
saved. The search order for the notebook filename for

Section 2. CMS Commands 227

NOTE

these recipients is the same as described above.

NO Notebook specifies that a copy of the outgoing note is not to be
saved.

LOG

NOLog

LONg

Short

speci£ies that the
note are logged in
"userid" is your
acknowledgments are

addressees, date, and
a file called "userid
userid. This log is
received (it they were

time of this
NETLOG", where
updated when

reguested).

specifies that this note is not to be logged.

causes the lcng
example of the
section, below.

form of the note header to be used. An
long form is shown in the "Examples"

causes the short form of the
example of the short form
section, below.

note header to be used. An
is shown in the "Examples"

Replace causes the work file from a previously interrupted note
to be erased before NOTE is entered. If there is no work
file, this option has no effect.

PROFile fn specifies the name of
XEDIT is invoked by
macro PReFNOTE XEDIT
the PROPNOTE macro,
Settings".

an XEDIT macro to be executed when
the NOTE command. By default the

is invoked. For more information on
see the usage note, "Default PF Key

1. Tailoring the NOTE Command Options

You can use the DEFAULTS command to set up options and/or override
command defaults for NOTE. However, tbe options you specify in the
command line when entering the NOTE command override those
specified in the DEFAULTS command. ihis allows you to customize
the defaults of the NOTE command, yet override them when you
desire. Refer to the DEFAULTS command description for more
information.

The current options for an invocation of the NOTE command are
displayed as the second line of the file while the note is being
prepared. You can alter some of these options (such as LOG or ACK,
but not LONG or SHORT) by typing over this line. The options line
is not sent with the note.

2. Composing the Note

When you enter the NCTE command, the note screen appears (with the
headings). An example of a note screen is shown in the "Examples"
section, below. You type in the text of your note in the XEDIT
environment. The full power of IEDIT is available while you
compose your note. Initially, you are placed in edit mode
(although no prefix area or scale is displayed). You can also
enter input or power typing mode by entering the appropriate IEDIT
subcommand.

The PROPNOTE macro is executed when you issue the NOTE command. It
assigns values to PP keys and creates two synonyms that make the
NOTE command easier to use. The synonyms are SEND and CANCEL, for
"SENDFILE (NOTE" and "NOTE (CANCEL", respectively. SEND is also
assigned to a PF key. (You can specify the name of a different
macro in the PROFILE option if you do not want the PROFNOTE macro

228 IBM VM/SP CMS Command and Macro Reference

NOTE

to be executed.)

3. Sending the Note

To send the note, you can do one of the fol~owing:

• Press the PF5 key.

• Enter SENDFILE (NOTE or SENDFILE (NOTE OLD. The OLD option
should be used when the recipient does not have the RECEIVE
command available to read the note. For more information on the
OLD option, see the SENDFILE command.

• Enter SEND (a synonym for "SENDFILE (NOTE").

The note is sent to the addressees and is logged
specified. control is returned either to CMS or to
was being edited when NOTE was issued.

or saved as
the file that

4. Continuing Notes

If you want to save
subcommand FILE from
note is kept on your
note later, issue the

a note and finish
the command line.
disk as "userid

NCTE command ~!th

5. Adding and Deleting Names of Recipients

it ~ater, issue the XEDIT
No note is sent, but the

NOTE AO". To continue the
1!Q J22..f~~ters.

You can add recipients to a note whi~e composing it, that is, after
you have already entered a NOTE command. To do this, issue a NOTE
command with the ADt option (from the XEDIT command line),
specifying the names of the additional recipient(s). For example,

===) NOTE name1 name2 (ADD

Any nicknames are resolved, and the additional recipients are
automatica~ly added to the Dote header.

You can also alter the address list and complimentary copy list by
typing over the header lines. However, with this method, no
nicknames are resolved, and no userids are checked for validity.
Therefore, issuing the NOTE command with the ADD option is the
preferred way to add recipients.

You can delete the names of recipients directly from the note
screen. Just blank out the names you wish de~eted from the header
lines.

6. Naming Conventions for Userid and Node

You cannot send a note to a userid (or nickname) or node named AT
or CC:, nor can your userid be AT or CC:. Also, your userid must
contain only those characters that are valid for CMS filenames.

7. Conflicting options

If conflicting options are entered (such as ACK and NOACK) the last
one entered (the rightmost) overrides the others.

Section 2. eMS Commands 229

NOTE

8. Default PF Key Settings

The PROF NOTE XEDIT macro is executed when the NOTE command is
invoked. It sets the PF keys to the following functions:

PF 1
PF 2

PF 3

PF 4
PF S
PF 6
PF 7
PF 8
PF 9
PF 10
PF 11
PF 12

Help
Add

Quit

Tab
Send
?
Backward
Forward
=
Split
Join
Powerinput

Display NOTE command description.
Add a blank line after the line containing
the cursor.
Quit this note. The following message may be
displayed: FILE HAS BEEN CHANGED. USE QQUIT
TC QOIT U1YWAY.
Ta.i: the cursor.
Issue SENDFILE with the NOTE option.
Display the last command issued.
Scroll hack one screen.
scroll forward one screen.
Repeat the last command issued.
SFlit the line in two, at the cursor.
Join two lines, at the cursor.
Enter power typing mode (XEDIT subcommand
POWEllINP) •

Note: On a terminal equipped with 24 PF keys, PF keys 13 to 24 are
assigned the same values as PF keys 1 to 12 as discussed here.

If you enter the "PROFILE fn" option, the macro specified (fn
XEDIT) is invoked instead of PBOFNOTE XEDIT. In "fn XEDIT", you can
easily change the PF key settings.

9. The format of the file created by NOTE and sent by the SENDFILE
command is described in the SENDFILE command description, in the
section "Format of the File sent by SENDFILE".

10. You cannot start a new note while in NOTE.

11. Format of the Note Header Records

Header records are generated ~utomatically in the note file. The
information in the headers 1S collected from the defaults and
options you supplied in the NOTE command.

You can change the information displayed on these lines simply by
typing over them. Changing the recipients (the users listed in the
"To:" line) is discussed in the usage note, "Adding and Deleting
Names of Recipients".

You can also type over the NOTE command options (the "OPTIONS":"
line) • Because the information listed in these lines is
positional, you must type over the options in the correct order.

The format of the options header record is as follows:

OPTIONS: opt1 opt2 opt3 opt4 optS

where:

opt1 is either ACK or NOACK.

opt2 is LOG or NOLOG.

opt3 is LONG or SHOET. (This option cannot be altered.)

opt4 is NOTEBOOK or NONOTEBOOK.

230 IBM VM/SP CMS Command and Macro Reference

J

NOTE

optS is the NOTEBOOK filename: ALL, *, or the filename specified
in the NOTE command.

The other header records are:

Date: is the date and time the note is prepared.

From: is information about the sender. The format of this line
depends on whether LONG or SHORT is specified.

To: is information about the recipient(s). The format of this line
depends on whether LONG or SHORT is specified.

cc: is information about the complimentary copy recipient(s). The
format of this line depends on whether LONG or SHORT is
specified.

Responses

Note cancelled.

DMSWNT003E INVALID OPTION 'option'. RC=24
DMSWNT006E NO READ/WRITE DISK ACCESSED. RC=36
DMSSTT062E INVALID CHARACTER 'character' IN FILEID 'fn ft'. RC=20
D8SWNT637E MISSING {valuel'value'} FOR THE {'option' OPTIONI

'operand' OPERAND}. RC=24
DMSWNT647E USERID N07 SPECIFIED FOR 'nickname' IN 'Userid

NAMES' FILE. RC=32
DMSWNT648E USERID 'name' N07 FOUND. CHECK THE 'Userid NAMES' FILE.

RC=32
DMSWNT6S1E {'CANCEL'I'ADD'} MUSl BE ISSUED FROM NOTE. RC=40
DMSWNT665E FILE 'Userid NeTE *' NOT FOUND. TO BEGIN A NEW NOTE

ENTER 'NOTE name'. RC=28
DMSWNT666E NOTE ALREADY EXISTS. ENTER 'N07E' TO CONTINUE

OR SPECIFY 'REPLACE'. RC=28
D!SWNT668E THE 'ADD' OPTION MUST BE SPECIFIED ALONE. RC=40
D!SWNT669E LIST OF ADDRESSEES CANNOT BEGIN WITH 'CC:' RC=24
D!SWNT670E NO NAMES TO BE ADtED WERE FOUND. RC=24

Messages when in the NOTE environment (in XEDIT):

D!SWNT667E NOTE HEADER DOES NOT CON7AIN THE {keyword
'FROM',keyword 'TO: ,,'OPTIONS' LINE}.

Examples

When a NOTE command is issued, the type of heading generated depends on
whether the SHORT option (the default) or LONG is specified. The short
form lists only the userids and nodes (if different from the sender's)
of the addressees. The long form also lists the name and phone number
of each addressee.

An example of each type of heading is shown below.
the headings was collected from the names file shown
section of the NA!EFIND command.

The information in
in the "Examples"

The command
nicknames in
screen:

"NOTE DWARFS CC: GORGEOUS",
the names file referenced

where DWARFS and
above, produced

GORGEOUS are
the following

Section 2. CMS Commands 231

NOTE

I
I SNOiiHITE NOTE AO
I
I
IOPTIONS: NOACK LOG

F 80 TRUNC=80 SIZE=211 LINE=12 COLUMN=1

SHORT NOTEBOOK ALL

I

I
I
I
I
I I

IDate: 11 February 1981, 11:011:52 EDT I
IFrom: Snow White ZZZ-ZZZZ SNOWHITE at FOREST I
I To: SNOOZY at COTTAGE, DUMMY at COTTAGE, BOSS at COTTAGE, SMILEY at COTTAGEI

GROUCHY at COTTAGE, SNIFFLES at COTTAGE, WISTFUL at COTTAGE I
cc: PRINCE at ATLARGE I

Dear Guys,
Would you be interested in hiring domestic help?

I understand the cottage is a mess, what with your having
to work in the mines and sing "Heigh-Ho" and all that.
In addition to being a hard worker, my skin is white as snow,
my lips are red as blood, and I have black hair.

1=Help
II=Tab
===>

2=Add line
5=Send

3=Quit
6=?

Sincerely,
S. White

7=Backward
10=Split

8=Forvard
11=Join

I
I
I
I
I
I
I
I
I
I

9== I
12=Powerinputl

XED I T
I

FILE I

Figure 23. Sample Note with Short Headings

If the command "NOTE DWARFS CC: GORGEOUS (LONG" is issued, the headings
look like this:

IOPTIONS: NOACK LOG LONG NOTEBOOK ALL
I
IDate:
IFrom:
I
ITo:
I
I
I
I
I
I
Icc:
I

11 February 1981,
Snow White
Forest Primeval
1. M. Dozing
S. A. What
T.O.P. Banana
H. A. Haas
E. B. Scrooge
A. H. Choo
R. U. Shy
Prince Charming

11:04:52 EDT
ZZZ-ZZZZ

777-7777
777-7777
777-7777
777-7777
777-7777
777-7777
777-7777
111 111-1111

Figure 24. Example of Long Headings

232 IBM VM/SP CMS Command and Macro Reference

,
I
I
I

SNOWHITE at FOREST

SNOOZY at COTTAGE
DUMMY at COTTAGE
BOSS at COTTAGE
SMILEY at COTTAGE
GROUCHY at COTTAGE
SNIFFLES at COTTAGE
WISTFUL at COTTAGE
PRINCE at ATLARGE

NUCXDROP

I NUCXDROP

Use the NUCXDROP command to cancel nucleus extensions and release the
storage occupied by the corresponding program. The NUCXDROP command
uses the NUCEXT function which is described in detail in the section of
this book devoted to functions.

The command format is:

r,---------,--,
: NUCXDROP { :ame 1 [na me2 •••] } ~
L---______ ~ __ ~I

Where:

I name Is the nucleus extension to be cancelled.

* Means all currently loaded nucleus extensions.

Usaq~ Notes

1. If a nucleus extension has the 'SERVICE' attribute, it is called by
NUCXDROP with the following parameter list:

DS OF
DC CLS'NUCLEUS EXTENSION NABE'
DC CLS' RESET'
DC SX'FF'

The high order byte in register 1 is set to X'FF'.

2. It is the responsibility of the unloaded program to cancel any
secondary nucleus extension entry points by reacting to the RESET
service call issued by NUCXDROP before the main entry point is
cancelled and the program unloaded. The RESET call allows programs
with several entry pOints to cancel these at the same time, or to
free static storage areas obtained from free storage.

3. Look-aside entries can not be dropped. Look-aside entries are
described in Section 6 of this manual under NUCEXT function.

None.

DMSNXDOSOE
DMSNXD070E
DMSNXD616W
DPlSNXD617E

DHSNXD624W

PARAMETER MISSING AFTER NUCXDBOP RC=24
INVALID ARGUMENT 'argument' RC=24
'name' DOES NCT EXIST RC=28
ERROR CODE n FROM DMSFRET WHILE UNLOADING
'module name' HC~ULE RC=3
NO NUCLEUS EXTENSIONS ARE LOADED RC=2S

Section 2. CMS Coamands 233

NUCILOAD

I NUCXLOAD

Use NUCILOAD to install nucleus extensions. The command loads either an
ADCON-free, serially reusable, or relocatable module into free storage
and installs it as a nucleus extension. The nucleus extension is
invoked by issuing the name of the nucleus extension. The NUCXLOAD
command uses the NUCEIT function which is described in detail in the
section of this book devoted to functions.

The format of the command is:

I NUCXLOAD
J ,

Where:

name fn

{ name
name

I

[fn]]} [«(SYstem] [SErvice] [Push] [)]]I
member ddname I

'name' is the name associated with this nucleus extension.
'fn' is the optional filename of a module file to be loaded
and associated with 'name'. The module being loaded must be
either an ADCON-free or serially reusable module. The term
ADCON-free implies that the program needs no relocation,
i.e., it runs correctly when loaded at an address different
from that at which it was generated (via GENMOD). It allows
the object module to be read directly into storage obtained
from the free storage manager, after determining the size
needed from the module header (or the file format, for the
one-record fixed format CMS system transient routines). The
term serially reusable implies that the same copy of a
routine may be used by another task after the current use
has been concluded. If the second argument (i.e., fn) is
not specified, the command name is also used as the filename
of the module.

name member ddname

SYstem

SErvice

Push

'name' is the name to be associated with this nucleus
extension. 'member' must be a member of a CMS or OS load
library. To create a CMS load library, see the CMS command
LKED. 'ddname' is the ddname from the FILEDEF command that
must be issued prior to calling the NUCILOAD that identifies
the load library.

indicates that system free storage should be used, and the
program is to receive control disabled, key o. The SYSTEM
option 1S assumed by default for transient routines
generated with the SYSTEM option of the GENMOD command.

indicates that service calls are accepted (for instance a
PURGE from an abend).

causes no check to be made to see if there is already a
nucleus extension of the same name. Otherwise, an existing
nucleus extension is not overridden.

234 IBM VM/SP eMS Command and Macro Reference

NUCXLOAD

1. Nucleus extensions remain in effect unti~ cancelled, either
explicitly or implicitly. Implicit cance~lation norma~ly occurs
only for nucleus extensions of the 'user' type (during an abnormal
end cleanup time when all stcrage of 'user' type is reclaimed).
Explicit cancellation does not release the storage (if any)
occupied by the nucleus extension: that is the responsibility of
the program that issues the cancellation (usually the program
NUCXDROP).

2. Overlay modules may not be loaded by NUCXLOAD.

3. GETMAIN storage management should generally not be used by modules
loaded as nucleus extensicns, unless all such storage is released
before returning from the nucleus extension and no command is
issued from the nucleus extension which may perform a STRINIT
function.

4. If a module generated from a higher leve~ language is loaded using
NUCXLOAD, caution should be taken when passing parameters to the
module. See the registers on entry to a nucleus extension in
Section 6 of this manual under NUCEXT function.

None.

Messages ~Q Return Codes

DMSNXL001E
DMSNXL070E
DMSNXL104S
DMSNXL589E
DMSNXL618E
DMSNXL619E
DMSNXL622E

NO FILENAME SPECIFIED RC=24
INVALID ARGUMENT 'argument' RC=24
ERROR 'n' REAtING FILE 'fn ft fm' FROM DISK
MISSING FILEDEF FOR DDNAHE 'ddname' RC=32
NUCEXT FAILED Re=13
MODULE 'module name' NOT FOUND RC=28
INSUFFICIENT FREE STORAGE RC=41

RC=100

1 Nucleus Extension already exists.

4 Module is marked "not executable." The module is not
loaded; no nucleus extension is defined. To determine
why the "not executable" flag was set, examine the
information FrovidEd by the linkage editor at the
time the module was created.

10 Module is an overlay structure. The module is not
loaded; no nucleus extension is defined. Overlay
structures may not be used as nucleus extensions,
because CMS does not support more than one such
program at a time. Only an overlay structure in
the user area is supported. If this program is to

12

be used as a nucleus extension, it must be restructured
so that it does not require overlays.

Module is marked 'only loadable." The module is not
loaded; no nucleus extension is defined. Modules are
marked "only loadable" because of an explicit command
to do so at the time they are link-edited. This is
typically done when a module contains data, but not
executable instructions. Such a nature makes a module
unsuitable for use as a nucleus extension.

Section 2. CMS Commands 235

NUCXLOAD

13 The nucleus extension could not be installed.

24 A filename vas not specified, an invalid operand was
specified, or too many or extraneous operands were
specified.

28 This is the return code generated by NUCXLOAD when the
specified module cannot be found. It is also used in
the case of an error when oFening a LOADLIB file, in
which case message DMSSOP036E is produced by the open
routine.

32 For NUCXLOAD, a FILEDEF command identifying the load
library must be issued prior to calling NOCXLOAD.

41 There was not enough free storage to build the table of
SCBLOCK addresses.

100 An unrecoverable error occurred while reading the module
from disk.

236 IBM VM/SP CMS Command and ~acro Reference

NUCXMAP

I NUCXMAP

Use the NUCXMAP command to get information about the currently defined
nucleus extensions. NUCXMAP displays on the console or stacks a list of
the nucleus extensions. The NUCXMAP command uses the NUCEXT function
which is described in detail in the section of this book devoted to
functions.

The command format is:

,
I
INUCXMAP
I
I ,

Where:

ALL

STACK

FIFO

LIFO

LIFO
FIFO

[ALL]
r ,

[([STACK] I LIFOI
1.I1IOI
L .J

[)]]

If no options are specified, one line describing each
loaded nucleus extension is printed on the user's
virtual console.

Produces a descriptive line for NUCEXT look-aside
entries as well as nucleus extensions. Look-aside
entries are described in Section 6 of this manual
under NUCEXT function.

Specifies that the information should be placed in
the program stack (for use by an EXEC or other
program) instead of being displayed at the terminal.
The information is stacked either FIFO (first in
first out) or LIFO (last in first out). The default
order is FIFO. ihe header is not stacked.

Specifies that the information should be placed in
the program stack rather than displayed at the
terminal. The information is stacked FIFO. The
options STACK, STACK FIFO, and FIFO are all
eguivalent. The header is not stacked.

Specifies that the information should be placed in
the program stack rather than displayed at the
terminal. 7he information is stacked LIFO. This
option is eguivalent to STACK LIFO. The header is
not stacked.

Section 2. CMS Commands 237

I

NUCXMAP

ResEonses

NAME
GLOBALV
EXECIO
NAMEFIND
IDENTIFY

DMSNXM070E
Dl!SRXM622E
DMSNXM624I

ENTRY USER WORD ORIGIN BYTES (ALL NUMBERS ARE
OE9888 00000000 OE9888 001258 SYSTEM SERVICE
1FIJCCO 000AD67C 1F4CCO 000000 SYSTEM SERVICE
1F7020 000AAE70 1F7020 000000 SYSTEM SERVICE
OE5E48 00000000 OE5E48 0001C8

INVALID PARAMETER 'parameter' RC=24
INSUFFICIENT FREE STORAGE (nn ENTRIES)
NO NUCLEUS EXTENSIONS ARE LOADED RC=O

RC=41

238 IBM VM/SP CMS Command and Macro Reference

HEXADECIMAL)

OPTION

OPTION

Use the OPTION command to change any or all of the options in effect for
the DOS/VS COBOL compiler and the RPG II compiler in CMS/DOS. The
format of the OPTION ccmmand is:

OPTION [options •••]

.Q£ti5!!!§:
r , r , r ,
IDUMP I
IIDUM:EI

I~!.£! I
INODECKI

ILlS:! I
INOLISTI
L .J L .J L .J

r ,
URn' I
I NOIBElI
L .J

r ,
IERES J
INOERRSI
L .J

r ,
148CI
160.£1
L .J

r ,
I LISTX I
I N0llinl
L .J

r ,
ITERM I
J!Q1ill1
L .J

r ,
ISIM I
INOSIMI
L .J

Options: If an invalid option is specified on the command line, an
error message is issued for that option; all other valid options are
accepted. Only those options specified are altered, and all other
options remain unchanged.

DUMP dumps the registers and the virtual partition on the virtual
SISLST device in the case of abnormal program end.

NODU~g suppresses the DUMP option.

punches the resulting otject module on the virtual
device. If you do not issue an ASSGN command for the
unit SYSPCH before invoking the compiler, the text
written to your CMS A-disk.

NODECK suppresses the tICK cption.

SYSPCH
logical
deck is

writes the output listing of the source module on the SYSLST
device.

NOLIST suppresses the LIST option. This option overrides the XREF
option as it does in DOS/VS.

LISTX produces a procedure division map on the SISLST device.

NOLISTX suppresses the LISTX option.

SIft prints a Data Division maF on SYSLST.

NOSYM suppresses the 51ft oFtion.

IREF writes the output symbolic cross-reference list on SISLST.

NOIREF suppresses the XREF option.

writes an output listing of all errors in the source program
on SYSLST.

NOERRS suppresses the ERRS option.

48C Uses the 48-character set.

Section 2. CMS Commands 239

OPTION

60C Uses the 60-character set.

TERM Writes all compiler messages to the user's terminal.

NOTERM suppresses the TERM option.

1. If you enter the OPTION command with no options, all options are
reset to their default values, that is, the default settings that
are in effect when you enter the CMS/DOS environment. CMS/DOS
defaults are not necessarily the same as the defaults generated on
the VSE system being use~ and do not include additional options
that are available with some DOS compilers.

2. The OPTION command has no effect on the DOS PL/I compiler nor on
any of the OS language compilers in CMS.

None. To display a list of options currently in effect, use the QUERY
comma~d with the OPTION operand.

DMSOPT070E INVALID PARAMETER 'parameter'
DMSOPT099E CMS/DOS ENVIRONMENT NOT AC!IVE

RC=24
RC=40

240 IBM VM/SP CMS Command and Macro Reference

L

OSRUN

OSRUN

Use the OSRUN command to execute a load module from a CMS LOADLIB or an
OS module library. The library containing the module must have been
previously identified by a GLOBAL command. For an OS module library,
the library must also havE been defined in a FILEDEF command. If no
library has been identified by a GLOBAL command, the OSRUN command
searches the $SYSLIB 10ADLIB library for the specified module. The
format of the OSRUN command is:

OSRUN

member

PARM=

member (PARM=parametersJ

is the member of a CMS LCAnLIB or an OS module library to be
executed.

are the OS parameters that the user wants to pass to the
module. If the parameters contain blanks or special
characters, they must be enclosed in quotes. To include
quotes in the parameters, use double quotes. The parameters
are passed in OS format: registerl points to a fullword
containing the address of a character string headed by a
halfword field containing the length of the character string.
The parameters are restricted to a maximum length of 100
characters.

Not~: You may not
issue the OSBUN
command can be
restrictions.

pass parameters (PARM=) to the module if you
command from a CMS EXEC file. The OSRUN
issued from an EXEC 2 file with no

DMSOSR001E NO FILENAME SPECIFIED RC=24
DMSLOS013E MEMBER member name NOT FOUND IN LIBRARY BC=32
DMSOSR052E MORE THAN 100 CHARACTERS OF OPTIONS SPECIFIED RC=24
DMSOSR070E INVALID PARAMETER RC=24
DMSIOS073E UNABLE TO OPEN FILE IfnI RC=28

Section 2. CMS Commands 241

PEEK

PEEK

Use the PEEK EXEC procedure to display a file that is in your virtual
reader without reading it onto your disk. Once you issue the PEEK
command you can use XEDIT subcommands to view the file. In most cases
the files in your reader were sent to you hy other computer users, on
your computer or on other computers that are connected to yours via the
Remote Spooling Communications Subsystem (RSCS) network.

The format of the PEEK command is:

I

IPEEK [spoolid] [(options ••• [)]]
I
I
I
I
I

options:
[FRom recno]
[FOr numrec]
[PROFile fn]

'--

spoolid

FRom recno

FOr numrec

PROFile fn

is the spoolid of the file to be displayed. The default is
the "next" file in the virtual reader.

The "next" file is the one for which the RDR command returns
information. Which file this is depends on the class of the
reader, the class of the files in the reader, and whether or
not they are held.

is the starting record number to be read. The default is
1 (one).

is the number cf records of the file to ~e read.
specifying an asterisk (*) causes the entire f,ile to be
used. The default is to read up to 200 records.

specifies the name of an IEDIT macro to be executed when
XEDIT is invoked by the PEEK command. The default macro
is PROFPEEK XEDIT. For more information on the PROFPEEK
macro, see the usage note, "PF Key Settings on the PEEK
Screen".

1. Tailoring the PEEK Command Options

You can use the DEFAULTS command to set up options and/or override
command defaults for PEEK. However, the options you specify in the
command line when entering the PEEK command override those
specified in the DEFAULTS command. This allows you to customize
the defaults of the PEEK command, yet override them when you
desire. Refer to the DEFAULTS command description for more
information.

2. Editing from the PEEK Screen

When you invoke the PEEK command you are placed in the IEDIT
environment, editing the file "spoolid PEEK A1". The full power of
XEDIT is available to you while you "peek" at the file. You can
make changes to this file and then issue the XEDIT subcommand FILE
or SAVE from the XEDIT command line on the PEEK screen. In this

2q2 IBM VM/SP CMS Command and Macro Reference

J

PEEK

case, the reader spool file is ~ot changed. . The changes are made
only to the file that is saved or filed.

You can purge the file by entering the DISCARD command from the
XEDIT command line. The DISCARD command is described in the
section "Special Comlland", below.

3. PF Key Settings on the PEEK Screen

The PROFPEEK macro is executed when the PEEK command is invoked,
unless you specified a different macro as an option in the PEEK
command. It assigns the following values to the PF keys:

PF 1
PF 2
PF 3
PF 4
PF 5

PF 6

PF 7
PF 8
PF 9

PF 10
PF 11
PF 12

Help
Add line
Quit
Tab
Clocate

?/Change

Backward
Forward
Receive

Split
Join
Cursor

Display PEEK command description.
Add a blank line after the current line.
Exit from the PEEK display.
Tal:: the cursor.
Locate the string specified in an XEDIT
subcommand CIOCATE or CHANGE that is typed
in the command line. This PF key is set to
the XEDIT macro SCHANGE 6. For more information
on its use, see the publication
.!11L.§~ Sysj&! Product ~di1Q£ ~~ill and ~
Reference.
Display the last command, or change the string
specified in a CHANGE subcommand.
(The Change function is the XEDIT SCHANGE macro
and must be used in conjunction with PF5.)
Scroll backward one screen.
Scroll fcrward one screen.
irite this file on the A-disk, using the
same filename and file type.
Split a line in two, at the cursor.
Join two lines, at the cursor.
Place the cursor in the current column of the
current line.

Note: On a terminal eguipped with 24 PF keys, PF keys 13 to 24 are
assigned the same values as PF keys 1 to 12 as discussed here.

If you enter the "PROFILE fnn option, the file "fn XEDIT" is
invoked instead of the file PROFPEEK XEDIT. In "fn XEDITn, you can
easily change the PF key settings.

4. Files in DISK DUMP or NETDATA lormat

Files in DISK DUMP or NETDATA format are reformatted so that they
are readable. However, the entire file must be "peeked" at and
have a logical record length of less than 256 in order to be
reformatted. For more information on NETDATA format, see the
SENDFILE command.

5. Using the PEEK Com.and

This command is useful not only when issued in the CMS environment
but also in the RDRLIST command environment. In the RDRLIST
display, the PF11 key is set to the PEEK command.

6. Special NETDATA Files from MVS with TSO Extensions (PP)

The MVS with TSC Extensions program product (program number
5662-285) can send an empty file. It can also send two files in
NETDATA format in a single transmission. Peeking at an empty
(null) file results in a warning message that the file is empty.
Peeking at two files sent in one transmission results in two

Section 2. CMS Commands 243

PEEK

messages, identifying each of the files. A line of equal signs (=)
separates the two files.

FilelNote 'fname ftype' frem 'user' at 'node'. Format is 'transmission
format'.

D!SWPK003E INVALID OPTION 'option'. RC=24
DMSWPK029E INVALID PARAMETER 'parmi IN THE OPTION 'option' FIELD. RC=24
DMSWPK132S FILE IS TOO LARGE. RC=88
DMSWPK156E FROM 'nnn' NCT FCUND - THE FILE HAS ONLY 'nnn'

RECORDS. RC=32
DMSWPK630S ERROR ACCESSING 51001 FILE. RC=36
DMSWPK637E MISSING VALUE FOR THE {PROFILEIFRO!IFOR} OPTION. RC=24
DMSWPK643E NO CLASS 'class' FILES IN yeUR REAtER. RC=28
DMSWPK644E ALL READER FILES ARE IN HOLD STAiUS OR NOT CLASS

'class'. RC=28
DMSWPK649E EXTRANEOUS PARAME!ER 'value'. RC=24
DMSWPK650E INVALID SPOILlt 'nnnn'. RC=20
DMSWPK655E SPOOLID 'nnnn' tOlS NOT EXIST. RC=28
DMSWPK672E VIRTUAL READER INVALID CR NOT DEFINED. RC=36
DMSWPK674E READER IS NOT BEAty. RC=36
DMSWPK683E THE ENTIRE FILE 8UST BE PEEKED 70 BE BEFORMATTED. RC=36
DMSWPK684E FILE CONTAINS INVALID RlCORDS AND CANNOT EE

REFORMATTED. RC=36
DMSWPK685E THE FILE IS TOC LABGl TO BE REFCR8ATTED. RC=36
DMSWPK686E THE FILE HAS AN LRECL GRlAiER THAN 255

AND CANNOT EE BEPCRMATTlI. RC=36
DMSSTT062E INVALID CHARAC7ER 'character' IN FILEID 'fn ft fm'.

RC=20

Use the DISCARD command te purg~ the file displayed on the PEEK screen.
DISCARD can be used only 1n the PEEK, FILELIST, and RDRLIST
environments. When DISCARt is used to purge a file, an acknowledgaent
is sent to the sender (if Eeguested). For more information on
acknowledgments, see the RECEIVE command, the usage note,
"Acknowledgments". Iou enteE DISCARt in the XEDIT command line at the
bottom of the PEEK screen. The spoolid of this reader file is
automatically appended to the DISCARD command and it is displayed on the
top line of the PEEK screen, as the filename of the PEEK file.

I. The format of the DISCARD command as used in the PEEK environment is:

r----.----~----------------

IDISCARD ,

DMSWDC649E EXTRANEOUS PARAMETER 'parameter'. RC=24
DMSWDC651E DISCARD MUST BE ISSUED FROM RDRLIST, PEEK OB FILELIST. BC=40
DMSWDC653E ERROR EXECUTING 'command', Be = nn. RC=40

244 IBM VM/SP CMS Command and Macro Reference

PEEK

Examples

A sample PEEK screen follows:

3001 PEEK A1 V 255 TRUNC=255 SIZE=20 LINB=O COLUMN=1

File NEW IDEA from OHARA at BLUESKY.
* * * TOP OF FILE * * *

Small business Opportunity

Greetings •••

Format is DISK-DUMP.

I am planning to open a store, in which I will sell
computer microforms and integrated circuits. I plan to call
it Bob's Fiche and Chips.

1 1= Help
I 4= Tab
I 1===>
I 1
!

2= Add line
5= Clocate

Bob

3= Quit
6= ?jChange

I Figure 25. Sample PEEK Screen

7= Backward 8= Forward 9= Receive
10= Split 11= Join 12= Cursor

XED I T 1 FILE

Section 2. eMS Commands 245

PRINT

PRINT

Use the PRINT command to print a CMS file on the spooled virtual
printer. The format of the PRINT command is:

PRint

fn

ft

fm

r ,
fn ft I fm I [(options ••• [)]]

I * I
L .J

r , r,
optio~~: ICC [HEADer] I ITRC I

INO~~ I [UPCASE] I!QI!£I
L .J L.J

r
ILINECOUN
I
L

...
{ nn} I

55 I
.J

r ,

I MEMBER { * } II
i member name
L .J

is the filename of the file to be printed.

is the filetype of the file to be printed.

£HEX]

is the filemode of the file to be printed. If this field is
specified as an asterisk (*), the standard order of search is
followed and the first file found with the given filename and
filetype is printed. If fm is not specified, the A-disk and
its extensions are searched •

.Qptions:

CC [HEADer]

UPCASE
UP

interprets the first
control character. If
CC option is assumed.
neither performs page
page; these functions
characters in the file.
is in effect.

character of each record as a carriage
the filetype is LISTING or LIST3800, the
If CC is in effect, the PRINT command

ejects nor counts the number of lines per
are controlled by the carriage control

The LINECOUN option has no effect if CC

HEADer creates a header page with only the filename, filetype and
filemode at the top of the page. The records in the file being
printed begin on a new page following the header page. The
HEADER option can only be used in conjunction with the CC option.
If the CC option is not specified HEADer has no effect.

does not interpret the first character of each record as a
carriage control character. In this case, the PRINT command
ejects a new page and prints a heading after the number of lines
specified by LINECOUN are printed. If NOCC is specified, it is
in effect even if CC was specified previously or if the filetype
is LISTING.

translates the lowercase letters in the file to uppercase for
printing.

246 IBM VM/SP CftS Command and Macro Reference

J

L
TRC

PlUNT

interprets the first data byte in each record as a TRC (Table
Reference Character) byte. The value of the TRC byte determines
which translate table the 3800 printer selects to print a record.
The value of the TRC byte corresponds to the order in which you
have loaded WCGMs (via the CHARS keyword of the SETPRT command) •
Valid values for TRC are 0, 1, 2, and 3. If an invalid value is
found, a TRC byte of 0 is assumed. If the filetype is LIST3800,
THC is assumed.

NOTRC does not interpret the first data byte in each record as a TRC
byte. NOTHC is the default.

LINECOUN {nn}
LI .2.2

allows you to set the number of lines to be printed on each page.
nn can be any decimal number from 0 through 99. If a number is
not specified, the default value is 55. If nn is set to zero,
the effect is that of an infinite line count and page ejection
does not occur. !his o~tion has no effect if the CC option is
also specified.

!!EMBER
MEM { :embername }

HEX

prints the members of·macro or text libraries. This option may be
specified if the file is a simulated partitioned data set
(filetype MACLIB or TXTLIE). If an asterisk (*) is entered, all
individual members of that library are printed. If a membername
is specified, only that member is printed.

prints the file in graphic hexadecimal format. If HEX is
specified, the options CC and UPCASE are ignored, even if
specified, and even if the filetype is LISTING.

1. The file may contain carriage control characters and may have
either fixed- or variable-length records, but no record may exceed
132 characters for a 1403, 3203, or 3289 Model 4 printer or 150
characters for a 3211 printer. There are exceptions:

• If the CC option is in effect,
character longer (133 or 151) to
character.

the record length can be one
allow for the carriage control

• If the virtual printer is a 3800, you can specify a carriage
control byte, a TRC byte, or both, for a total line length of up
to 206 bytes.

• If the HEX option is in effect, a record of any length can be
printed, up to the CMS file system maximum of 65,535 bytes.

2. If you want the first character of each line to be interpreted as a
carriage control character, you must use the CC option. When you
use the CC option for files that do not contain carriage control
characters, the first character of each line is stripped off. An
attempt is made to interpret the first character for carriage
control purposes. If the character is not valid, the results are
unpredictable because CMS does not check for valid carriage control
characters.

Files with a filetype of UPDLOG (produced by the UPDATE command)
must be printed with the CC option.

3. If the virtual printer is not a 3800 and you have specified THC,

Section 2. CMS Commands 247

PRINT

PRINT strips off the first data byte before each line is printed.

4. One spool printer file is ~roduced for each PRINT command: for
example:

print mylit maclit (member get

prints the member GET from the file MYLIB MACLIB. If you want to
print a number of files as a single file (so that you do not get
output separator pages, for example), use the CP command SPOOL to
spool your virtual printer with the CONT option.

5. If the MEMBEB option is specified more than once, only
member specified will be printed. However, if one MEMBEB
coded with an asterisk (*), and another MEMBER option is
with a membername, only the specified member will be
regardless of their order on the command line.

For example, if you code:

PRINT ONE MACLIE (KEMBEB EXAMPLE1 MEMBEB EXAMPLE2

only EXAMPLE2 will he ~rinted. If you code:

PRINTER ONE MACLIE (MEMBEB EXAMPLE1 MEMBEB *
only EXAMPLE1 will bE printed.

the last
option is
specified
printed,

None. The CMS ready message indicates the command completed without
error (that is, the file is written to the s~ooled printer). The file
is now under the control of CP spooling functions. If a CP SPOOL
command option such as HOLD or COpy is in effect, you may receive a
message from CP.

DMSPBT002E FILE 'fn ft fm' NOT FOUND RC=28
DMSPBT003E INVALID OPTION 'dption' RC=24
DMSPBT008E DEVICE 'cuu' {INVALID OB NONEXISTENTIUNSUPPORTED DEVICE TYPE}

RC=36
DMSPRT013E MEMBER 'name' NOT FOUND IN LIBBARY RC=32
DMSPRT029E INVALID PABAMETER 'parameter' IN THE OPTION 'option' FIELD

RC=24
DMSPRT033E FILE 'fn ft fm' IS NOT A LIBRARY BC=32
DMSPRT039E NO ENTRIES IN LIERARY 'fn ft fm' RC=32
DMSPRT044E RECORD LINGTH EXCEEDS ALLOWABLE M~XIKUM RC=32
DMSPRT048E INVALID MODE 'mode' RC=24
DMSPRT054E INCOMPLETE FILEID SPECIFIED RC=24
DMSPRT062E INVALID * IN FILEID RC=20
DMSPRT069E DISK 'mode' NOT ACCESSED RC=36
DMSPRT070E INVALID PARAMETER 'parameter' RC=24
DMSPRT104S ERROR Inn' RIADING FILE 'fn ft fm' FRO! DISK RC=100
DMSPRT123S ERROR PRINTING FILE 'fn ft f.' RC= 100

248 IBM VM/SP CMS Command and Macro Reference

PSERV

PSERV

Use the PSERV command in CBS/DOS to copy, display, print, or punch a
procedure from the VSE procedure library. The format of the PSERV
command is:

i

I
IPSERV

r ,
procedure I ft I [(options ••• [)]]

1R!Qf1 I
I L.I optiol!§:
I [Q~] (PRINT]
I
I (PUNCH] r TERM] ,

procedure

ft

specifies the name of the procedure in the VSE procedure
library that you want to copy, print, punch, or display.

specifies the filetype of the file to be created on your
A-disk. ft defaults to PROC if a filetype is not specified;
the filename is always the same as the procedure name.

Options: You may enter as many options as you wish, depending on the
functions you want to perform.

copies the procedure to a CMS file.
specified, DISK is thE default.

If no options are

PRINT spools a copy of the procedure to the virtual printer.

PUNCH spools a copy of the procedure to the virtual punch.

TERM displays the procedure on your terminal.

1. You cannot execute VSE procedures in CMS/DOS. You can use the
PSERV command to copy an existing VSE procedure onto a CMS disk,
use the CMS Editor to change or add VSE job control statements to
it, and then spool it to the reader of a VSE virtual machine for
execution.

2. The PSERV command ignores current assignments of logical units, and
directs output according to the option list.

3. The PSERV command does not support a private procedure library.

Responses

When you issue the TERM option, the procedure is displayed at your
terllinal.

Section 2. CMS Commands 249

PSERV

DMSPRV003E INVALID OPTION 'option' RC=24
DMSPRV004E PROCEDURE 'Frocedure' NO~ FOUND RC=28
DMSPRV006E NO READ/WRITE 'A' DISK ACCESSED RC=36
DMSPRV037E DISK 'A' IS READ/ONLY RC=36
DMSPRV070E INVALID PARAMETEE 'parameter' RC=24
DMSPRV097E NO 'SYSRES' VOLUME ACTIVE RC=36
DMSPRV098E NO PROCEDURE NAME SPECIFIED RC=24
DMSPRV099E CMS/DOS ENVIRONMENT NOT ACTIVE RC=40
DMSPRV105S ERROR Inn' WRITING FILE 'fn ft fm' TO DISK RC=100
DMSPRV113S DISK (cuu) NOT A~TACHED RC=100
DMSPRV411S INPUT ERROR CODE Inn' ON 'SYSRES' RC=100

250 IBM VM/SP CMS Command and Macro Reference

J

PUNCH

PUNCH

Use the PUNCH command to punch a eMS disk file to Jour virtual card
punch. The format of the FUNCH command is:

fn

ft

fm

PUnch
r ,

fn ft I fml
I * I
L J

[(options ••• [)]]

r ,
IHEADEj I
INOHEADERI
L J

r ,

I MEMBER {* }I
I membername I
L J

is the filename of the file to be punched. This field must be
specified.

is the filetype of the file to be punched. This field must be
specified.

is the filemode of the file to be punched. If you specify it
as an asterisk (*), the standard order of search is followed
and the first file found with the specified filename and
filetype is punched. If fm is net specified, Jour A-disk and
its extensions are searched.

inserts a control card in front of the punched output.
H This control card indicates the filename and filetype for a

subsequent READCARD command to restore the file to a disk.
The control card format is shown in Figure 26.

NOH EADER NOH

MEMBER
MEl!

does not punch a header control card.

{:embername}
punches members of MACLIBs or TXTLIBs. If an asterisk (*) is
entered, all individual members of that macro or text library
are punched. If membername is specified, only that member is
punched. If the filetype is MACLIB and the MEMBER membername
option is specified, the header contains MEMBER as the
filetype. If the filetype is TXTLIB and the MEMBER membername
option is specified, the header card contains TEXT as the
filetype.

Section 2. CMS Commands 251

PUNCH

r--,
INumber of I I

CclumnlCharacterslContentsl Meaning

1

2-5

6-7

8-15

16

17-24

25

26-27

28

29-34

35

36-43

44-45

46-50

51-80 -I

Figure 26.

Usage Notes

1 Identifies card as a control card.

4 READ

2 l;lank

8 fname

1 blank

8 ftype

1 blank

2

1

6

fmode
I
blank

valid

1 blank

Identifies card as a READ control card.

Filename of the file punched.

Filetype of the file punched.

Filemode of the file punched.

Latel of the disk from which the file was
read.

8 mm/dd/yy The date that the file was last written.

2 Hank

5 hh:mm

30 Hank

The time of day that the file was written
to disk.

Header Card Format

1. You can punch fixed- or variable-length records with the PUNCH
command, as long as no record exceeds 80 characters. Records with
less than 80 characters are right-padded with blanks. Records
longer than 80 characters are rejected.

2. If you
option,
member.
option,
deck.

punch a MACLIB or TXTLIB file specifying
a read control card is placed in front of
If you punch a library without specifying

only one read control card is placed at the

the MEMBER *
each library

the MEMBER *
front of the

3. One spool punch file is produced for each PUNCH commandi for
example:

punch compute assemble (noh

punches the file COMPUTE ASSEMELE, without inserting a header card.
To transmit multiple CMS files as a single punch file, use the CP
SPOOL command to spool the punch with the CONT option.

4. If the MEMBER option is specified more than once, only the last
member specified will be punched. However, if one MEMBER option is
coded with an asterisk (*), and another MEMBEB option is specified

252 IBM VM/SP CMS Command and Macro Reference

PUNCH

with a membername, only the member specified by membername will be
punched, regardless of their order on the command line.

For example, if you code:

PUNCH ONE MACLIB (MEMBER EXAMPLE1 MEMBER EXAMPLE2

only EXAMPLE2 will be punched. If you code:

PUNCH ONE MACLIE (MEMBER EXAMPLE1 MEMEER *
only EXAMPLE1 will be punched.

5. When punching members from CMS mac~ibs, each member is followed by
a II record, which is a maclib delimiter. YoU can edit the file to
delete the II record

None. The CMS ready message indicates that the command completed
without error (the file was successful~y spooled); the file is now under
control of CP spooling functions. You may receive a message from CP
indicating that the file is heing spooled to a particular user's virtual
card reader.

DMSPUN002E FILE 'fn ft fm' NeT FOUND RC=28
DHSPON003E INVALID OPTION 'oFtion' RC=24
DHSPON008E DEVICE 'cuu' (INVALID OR NONEXISTENTIONSOPPORTED DEVICE TYPE}

RC=36
DHSPON013E MEMBER 'name' NOT FOUND IN LIBRARY RC=32
DHSPON033E FILE 'fn ft fm' IS NOT A LIBRARY RC=32
DMSPON039E NO ENTRIES IN lIERARY 'fn ft fm' RC=32
DHSPON044E RECORD LENGTH EXCEEDS ALLOWABLE MAXIMUM RC=32
DMSPUN054E INCOMPLETE FILEID SPECIFIED RC=24
DMSPUN062E INVALID * IN FIIEID RC=20
DMSPUN069E DISK 'mode NOT ACCESSED RC=36
DMSPUN104S ERROR Inn' READING FILE 'fn ft fm' FROM DISK RC=100
DMSPON118S ERROR PUNCHING FILE 'fn ft fm' RC=100

..

Section 2. CMS Commands 253

QUERY

QUERY

Use the QUERY command to gather information about your CMS virtual
machine. You can determine:

• The state of virtual machine characteristics that are controlled by
the CMS SET command

• File definitions (set with the FILEDEF and DLBL commands) that are in
effect

• The status of accessed disks

• The status of CMS/DOS functions

The format of the QUERY command is:

Query BLIP
RDYMSG
LDRTBLS
RELPAGE
IMPCP
IMPEl
ABBREV
REDTYPE
PBOTECT
INPUT
OUTPUT
SYSNAlIES
SEIBCB

DISK {mo~e }
R/N
!II

{
SYSTEM}

SYNONYM USER
ALL

FILEDEF
LIBELDEF
!!.lCLIB
LOIDLIB
'l'XTLIB
LIBRARY
CMSLEVEL

DLBI.
DOS
DOSI.IB
DOSPART
DOSI.NCNT
OPTION
UPSI

254 IBM VM/SP CMS Command and Macro Eeference

r ,
I (options... [)] I
L J

r
I STICK
I FIFO
I LIFO
L

,
[nlQ]1 LIFO]I

I
I

J

L

QUERY

Operands for Functions thai ~ §~ f£B!rol!ed Via !h~ ~~ Command:

BLIP

RDYMSG

LDRTBLS

BELPIGE

IMPCP

I!PEX

displays the BLIP character(s).

Response: BLIP = {XXXXXXXX}
OFF

displays the format of the CMS ready message.

Resp~~: RDYMSG = {LMSG}
SMSG

LMSG is the standard CMS ready message:

R; T = 0.12/0.33 17:06:20

SHSG is the shortened CMS ready message:

Ri

displays the number of loader tables.

Response: LDRTBlS = nn

indicates whether pages of storage are to be released or
retained after certain commands complete execution.

Response: RELPAGE = {ON }
OFF

ON releases pages.
OFF retains pages.

displays the status of implied CP command indicator.

~~ponse: IMPCP = {ON }
OFF

where:

ON indicates that CP commands can be entered from the
environment.

OFF indicates that you must use the CP comlland or the
function to enter CP commands from the
environ.ent.

displays status of implied EXEC indicator.

= {ON} OFF

CMS

'CP
CMS

ON indicates that EXEC files can be executed by entering
the filename of the file.

OFF indicates that the EXEC command must be explicitly
entered to execute EXEC files.

Section 2. CMS Commands 255

QUERY

ABBREV

REDTYPE

PlWTECT

INPUT

OUTPUT

displays the status of the minimum truncation indicator.

~esponse: ABBREV = {ON }
OFF

ON

OFF

indicates that truncations are accepted for
commands.

indicates that truncations are not accepted.

displays the status of the REDTYPE indicator.

Response: REDTYPE = {ON }
OFF

CMS

ON types CMS
equipped
two-color
the VML2R

error messages in red, for certain terminals
with the aFpropriate terminal feature and a
ritbon. Supported terminals are described in
TermiBgl ~§er'§ gy!de.

OFF does not type CMS error messages in red.

displays the status of CMS nucleus protection.

Response: PROTECT = {ON }
OFF

ON means CMS nucleus protection is in effect.
OFF means CMS nucleus Frotection is not in effect.

displays the contents of any input translate table in effect.

~es£Qgse: INPUT a1 xx1

3n xxn

If you do not have an input translate table in effect, the
response is:

NO USER DEFINED INPUT TRANSLATE TABLE IN USE

displays the contents of any output translate table in effect.

Response: OUTPUT xx1 a1

xxn an

If you do not have an output translate table defined, the
response is:

NO USER DEFINED OUTPUT TRANSLATE TABLE IN USE

256 IBM VM/SP CMS Command and Macro Reference

J

L
SYSNAMES displays the names of the standard saved systems.

SEARCH

Response: SYSNAl!ES: Cl!SSEG C!SVSA!
ERTliIES: entry~ •• entry_ ••

where:

SYSNA!ES are the standard names
discontiguous saved systems.

C!SAMS CMSDOS
entry ••• entry •••

that identify the

ENTRIES are the standard system default names or the system
names established via the SET SYSNAME command.

displays the search order of all disks currently accessed.

r ,
Response: label cuu .ode

{R/O} I-OS I
I-DOSI R/il
L .J

where:

label is the label assigned to the disk when it was
forllattedi or, if it is an OS or DOS disk, the volume
label.

cuu

mode

is the virtual device address.

is the filemode letter assigned to the disk when it was
accessed.

{R/O}· indicates whether read/write or read-only is the status
R/i of the disk.

r &
lOS I indicates an OS or DOS disk.
IDOSI
L .J

DISK mode displays the status of the single disk represented by "mode".

Response:

QUERY

LABEL CUU ft STA~ CYL TYPE BLKSIZE
label cuu m {R/O} cyl type blksize

Rji

FILES BLKS OSED-(J) BLKS LEFT BLK TOTAL
nnnn nnnn-nn nnnn nnnnn

If the disk is an as or DOS disk, the response is:

LABEL CUU ! STAT CIL TYPE BLKSIZE
label cuu m {:~~} {~~i} type

FILES BLKS USED-{~) BLKS LEFT BLK TOTAL

{Dg~}

Section 2. CMS Commands 257

QUERY

DISK *

where:

label is the label assigned to the disk when it was
formatted; or, if it is an as or DOS disk, the volume
label.

cuu is tbe virtual device address.

m is the access mode letter.

cyl

type

{ R/O}
R/ii

STAT indicates whether read/write or read-only
is the status of the disk.

is the number of cylinders available on the disk. For
an FE-512 device, this field contains the notation
'FEA' rather than the number of cylinders.

is the device type of the disk.

blksize
is the CMS disk block size when the minidisk was
formatted.

nnnn FILES
is the number of CMS files on the disk.

nnnn ELKS USED
indicates the number of CMS disk blocks in use.

nn I indicates the percentage of blocks in use.

nnnn BLKS LEFT
indicates the number of disk blocks left. This is a
high approximation because control blocks are included.

nnnnn BLK TOTAL
indicates the total number of disk blocks.

{ OS} indicates an as or DOS disk.
DOS

If the disk with the specified mode is not accessed,
the response is:

DISK 'mode' NOT ACCESSED

displays the status of all CMS disks.

Response: Is the same as for QUERY DISK mode; one line is
displayed for each accessed disk.

DISK R/W displays the status of all CMS disks that have been accessed in
the Rea~Write mode.

Respo~: Is of the same format as QUERY DISK mode; one header
is displayed followed by one line for each accessed CMS
Read/Write disk.

DISK MAX displays the status of the CMS disk accessed in Read/Write mode
having the most availatle space.

258 IBM VH/SP eMS Command and Macro Reference

QUERY

Response: Is of the same format as QUERY DISK mode; a header
and one line are displayed for the CMS Read/Write disk with the
most available sFace.

SYNONYM SYSTEft
displays the CMS system synonyms in effect.

Response: SYSTEM SHOR~EST

COMMAND FORM

command minimum truncation

If no system synonyms are in effect, the following message is
displayed at the terminal:

NO SYSTEM SYNONYMS IN EFFECT

SYNONYM USER
displays user synonyms in effect.

SYSTEM USER SHORTEST
COMMAND SYNONYM FORM (IF ANY)

command synonym minimum truncation

If no user synonyms are in effect, the following message is
displayed at the terminal:

NO USER SYNONYMS IN EFFECT

SYNONYM ALL

FILEDEF

displays all synonyms in effect.

Response: The response to the command QUERY SYNONYM SYSTEM is
followed by the response to QUERY SYNONYM USER.

displays all file definitions in effect.

Besp~: ddname device [fn [ft]]

If no file definitions are in effect, the following message is
displayed at the terminal:

NO USER DEFINED FILEDEF'S IN EFFECT

LABELDEF displays all label definitions in effect.

~esponse: ddname volid fseg volseg genn genv crdte exdte fid

Section 2. CMS Commands 259

QUERY

!lCLIB

TITLIB

LOADLIB

LIERIRY

Only fields you have explicitly specified are displayed.
Defaulted fields are not displayed. If no label definitions
are in effect, the following message is displayed at the
terminal:

NO USER DEFINED LAB!LDEF'S IN EFFECT

displays the nalles of all files, with a filetype of MACLIB,
that are to be searched for macro definitions (that is, all
MACLIBs specified on the last GLOBAL MACLIE command, if any) •

Response: MACLIB = litname •••

If no macro libraries are
definitions, the response is:

MACLIE = NONE

to be searched for macro

displays the
that are to
all TITLIBs
any) •

names of all files, with a filetype of TITLIB,
be searched for unresolved references (that is,
specified on the last GLOBAL TITLIB cOlllland, if

Resp~se: TXTLIE = libname •••

If no TXTLIBs are to be searched for unresolved references,
the following message is displayed at the terminal:

TXTLIB = NONE

displays the names of all files, that have a filetype of
LOADLIB, that are to be searched for load modules (that is,
all LOADLIBs specified on the last GLOBAL LOADLIB command, if
any) •

Response: LOAtLIE = libname •••

If no LOADLIBs are to be searched, the following message is
displayed at the terminal:

LOADLIB = NONE

displays the names of all library files with filetypes of
MACLIB, TXTLIB, DOSLIB, and LOADLIB that are to be searched.

Resp~: MACLIB = {libname ••• }
NONE

TXTLIE = {libname ••• }
NONE

DOS LIE = {libname ••• }
NONE

LOADLIB = {libname ••• }
NONE

260 IBM VM/SP CMS Command and Macro Reference

L'

CKSLEVEL returns the feature
service level of CMS.
CMSLEVEL in a program.

QUERY

or program product, release, and the
Refe~ to the CMSLEVEL macro for issuing

EesEon~: Displays the VM/SP Release Level and the Service
Level.

for example: VM/SP RELEASE 2, SERVICE LEVEL 102

CMSLDQ2 Functions:

DLBL in order to display the contents of the current data set
definitions, it is necessary only to enter:

DLBL or QUERY tLBl

Entering the command yields the following information:

DDNAME

MODE

LOGUNIT

TYPE

CATALOG

EXT

VOL

BUFSP

PERM

DISK

the VSE filename or os ddname.

the CMS disk mode identifying the disk on wbich the
data set resides.

the VSE logical unit specification (SYSxxx). This
operand will be hlank for a data set defined while
in CMS/OS environment; that is, the SET DOS ON
command had not been issued at DLBL definition time.

indicates the type of data set defined. Tbis field
may only have the values SEQ (sequential) and VSAM.

indicates the ddname of the VSAM catalog to be
sea~ched for the specified data set. This field
will be blank for sequential (SEQ) dataset
definitions.

specifies the number of extents defined for the data
set. The actual extents may be displayed by
entering either the DLBL (EXTENT) or the QUERY DLBL
EX7ENT command. Tbis field will be blank if no
extents are active for a VSAM data set or if the
data set is sequential (SEQ).

specifies the number (if greater than one) of
volumes cn which the VSAM data set resides. The
actual volumes may be displayed by entering either
the DLEL (MUlT) or the QUERY DLBL MULT commands.
This field will be blank if the VSAS data set
resides only on one volume or if the data set is
sequential (SEQ).

indicates the si2e of the VSAM buffer space if
entered at DLBL definition time. This field will be
blank if the dataset is sequential (SEQ).

indicates whether the DLBL definition was made with
the PERM option. The field will contain YES or NO.

indicates whether the data set resided on a CMS or
DOS/OS disk at DLBL definition time. The values for
this field are DOS and CMS.

DATASET. NAME
for a data set residing on a CMS disk, the CMS

Section 2. CMS Commands 261

QUERY

filename and filetype are given; for a data set
residing on a tOS/OS disk, the data set name
(maximum 44 characters) is given. This field will
be blank if no DOS/OS data set name is entered at
DLBL definition time.

If no DLBL definitions are active, the following message is
issued:

DMSDLB324I NO USER DEFINED DLBL'S IN EFFECT

DOS displays whether the CMS/DOS environment is active or not.

DOSLIE

DOSPART

Resp.Q!!~: DOS = {ON }
OFF

displays the names of all files with a filetype of DOSLIB that
are to be searched for executable phases (that is, all DOSLlBs
specified on the last GLOBAL DOSLIB command, if any).

Resp~: DOSLIB = {libname _ •• }
HeNE

displays the current setting of the virtual partition size.

~~pon~: {nnnnnK}
NONE

nDnnnK indicates the size of the virtual partition to be used
at program execution time.

HONE indicates that CMS determines the virtual partition
size at program eXEcution time.

DOSLNCNT displays the number of SYSLST lines per page.

Response: DOSLNCNT = nn

nn is an integer from 30 to 99.

OPTION displays the compiler options that are currently in effect.

Response: OPTION = options •••

UPSI displays the current setting of the UPSI byte. The eight
individual bits are displayed as zeros or ones depending upon
whether the corresponding bit is on or off.

Response: UPSI = nnnnnnnD

262 IBH VH/SP CMS Command and Macro Beference

. ..)

STACK

QUERY

causes the results of the QUERY command to be placed in the
program stack instead of teing displayed at the terminal. The
information is stacked either FIFO (first in first out) or
LIFO (last in first out). The default order is FIFO.

If CMS passes the command tc CP, then the response from CP is
also put in the Frogram stack. If CP precedes the QUERY
command, CMS does not stack the results. The STACK option is
valid only when issued from CMS.

FIFO (first-in first-out) is the default option for STACK. FIFO
causes the results of the QUERY command to be placed in the
program stack instead of being displayed at the terminal. The
information is stacked FIFO. The options STACK, STACK FIFO,
and FIFO are all eguivalent.

LIFO (last-in first-out) causes the
be placed in the program stack
the terminal. ~he information
is eguivalent to STACK LIFO.

results of the QUERY command to
rather than being displayed at
is stacked LIFO. This option

1. You may specify only one QUERY parameter at a time.

2. If the implied CP (IMPCP) function is in effect and you enter an
invalid QUERY parameter, you may receive the message DMKCQG04SE -
userid NOT LOGGED CN.

3. If an invalid QUERY parameter is specified from an EXEC and the
implied CP (IMPCP) function is in effect, then the return code is
-0003.

4. The DOSPART, OPTION, and UPSI functions are valid only if the
CMS/DOS environment is active.

5. When the STACK option is specified, the header is included in the
program stack.

DMSQRYOOSE NO 'option' SPECIFIED RC=24
DMSQRY014E INVALID FUNCTION 'function' RC=24
DMSQBY026E INVALID PARAMETEB 'parameter' FOR 'function' FUNCTION RC=24
DMSQBY047E NO FUNCTICN SPECIFIED RC=24
DMSQRY070E INVALID PARAMETER 'parameter' RC=24
DMSQRY099E CMS/DOS ENVIRONMENT NOT ACTIVE RC=40

Section 2. CMS Commands 263

BDB

RDR

Use RDR to determine the characteristics of the next file in your
virtual reader. BDB generates a return code and either displays or
stacks a message for each type of file recognized. Which file is "next"
depends upon the class of the reader, the class of the files in the
reader, and whether or not they are held. The format of the RDR command
is:

BDR

spool-class

r ,
I spool-class I
I = I

[(options ••• [)]]

L .J

2,2tion§:
r ,
I ROTIPE I
ISTACK [flFO I LIFO] I
I FIFO I
I LIFO I
L .J

is the class of the spoo~ file for which information is
to be returned. The virtual reader remains spooled to
the class specified in the RDR command.

= indicates that i lformation is to be returned for a file
having the same spocl file class as that of the virtual
reader. This if; the default.

ROTIPE specifies that no message is to be displayed or stacked.
However, a return code is generated, which is accessible
from within an EXEC 2 (or EXEC) procedure, by examining
the variable &RC (or SRETCODE).

STACK [FIFOllIFO]

FIFO

LIFO

Usage ~:

specifies that the message is placed in the program stack
rather than disFlayed at the terminal. The information
is stacked either FIFO (first in first out) or LIFO (last
in first out). !he default order is FIFO.

specifies that
stack rather
information is
FIFO, and FIFO

specifies that
stack rather
information is
to STACK LIFO.

the information is placed in the program
than displayed at the terminal. The

stacked FIFO. The options STACK, STACK
are all equivalent.

the information is placed in the program
than displayed at the terminal. The

stacked LIFO. This option is equivalent

1. Issued with no options, RDR displays the return code and message.

2. Issued with the ROTYPE option from an EXEC, BDR places a return

264 IBB VB/SP CBS Command and !acro Reference

RDR

code in the variable SRC (or &RETCODE). Appropriate action can be
taken by examining this variable. For example:

3.

RDR (NOTYPE
&IF SRC = 22 SCOMMAND DISK LOAt
SIF SRC = 7 SCOMMAND REAtCARD

If the spool-class specified is
class of the virtual reader, the
changed to the one specified.
virtual reader can be determined
VIRTUAL OOC or QUERY VIRTUAL UR.

different £rom the current spool
virtual reader's spool class is

The current spool class of the
by issuing the CP command QUERY

4. The RDR command changes the order of the files in your virtual
reader. Files that are not held are re-ordered according to class.

The return codes and messages are:

o READER EMPTY
1 SYSTEM DUMP FILE
2 PRINTER FILE (ITEM LENGTH 132)
3 DISK LOAD fn ft fm
4 :READ fn ft fm originid mm/dd/yy hh:mm:ss
5 CARDS FOR IPL
6 UNNAMED CARD tECK
7 :READ fn ft fm
9 READER NOT OPERATIONAL
13 READER NOT READY
18 CONSOLE SPOOL FILE
22 DISK LOAD fn ft fa
23 NETDATA FILE
26 MESSAGE

Explanations of the messages follow. (The return code is not part of
the message.)

READER EMPTY RC=O
The reader is empty, the reader file is held, or there are no files in
the reader of the current reader spool class. You can check to make
sure the reader corresponds to the current spool class, or check for
held files.

SYSTEM DUMP FILE RC=1
The reader contains a system dump file, which can be handled using the
appropriate system utility.

PRINTER FILE (ITEM LENGTH 132) RC=2
The reader contains an unnamed printer file.

DISK LOAD fn ft fm RC=3
The reader contains a file sent via DISK DUMP from a VM/370 Release 6
(or earlier version) CMS file system. The CMS file system in VM/370
Release 6 (or earlier) only supports minidisks formatted in 800-byte
physical blocks.

:READ fn ft fm originid mm/dd/yy hh:mm:ss RC=4
The reader contains a file produced by the PUNCH command.

CARDS FOR IPL RC=5
The reader contains a file that has IPL cards as the first cards in the
file.

Section 2. eMS Commands 265

RDR

UNNAMED CARD DECK RC=6
The reader contains a PUNCH file that can not be identified.

:READ fn ft fm RC=7
The reader contains a file produced by the PRINT command.

READER NOT OPERATIONAL RC=9
The reader is not operational: device OOC does not exist in the virtual
machine configuration or device OOc is not a reader. Possible causes:
the reader is not defined in the directory; the reader was detached;
some other device was at OOC. (CMS assumes the reader to be at address
OOC.)

READER NOT READY RC=13
The reader is not ready. To reverse the not ready status, issue the CP
command READY OOC.

CONSOLE SPOOL FILE RC=18
The reader contains a file that is from a console.

DISK LOAD fn ft fm
The reader contains
6 CMS file system.
by the VM/370 file
formatted in 1024-,

NETDATA FILE RC=23

RC=22
a file sent via DISK DUMP from a post-VM/370 Release
In addition to the 800-byte physical blocksize used
system, the enhanced file system supports minidisks
2048-, or 4096-byte logical blocks.

The reader contains a file that was sent using the SENDFILE command with
the NEW option.

MESSAGE RC=26
The reader contains a file that is a message that was sent from an RSCS
virtual machine.

DMSRDR070E INVALID PARAMETER 'parmI. RC=24
DMSRDR630S ERROR ACCESSING SPOOL FILE. RC=36

266 IBM VM/SP CMS Command and Macro Reference

J

L'

RDRLIST

I RDRLlST

Use the RDRLIST EXEC procedure to display information about the files in
your virtual reader. The RDRLIST environment is controlled by the
System Product editor. Therefore, you can use XEDIT subcommands to
manipulate the files. In addition, you can look at a given reader file,
discard it, copy it to a CMS mini-disk, or send it to someone else
(local or remote).

I In most cases these files were sent to you by other computer users, on
I your computer or on other computers that are connected to yours via the
I Remote Spooling Communications Subsystem (RSCS) network.

The format of the RDRLIST command is:

I
IRDRList
I RList
I

[(options ••• [)]]

options:
[PROFile fn]
[Append]

I
I
I

PROFile fn specifies the name of an XEDIT macro to be executed when
XEDIT is invoked by the RDRLIST command. If not specified,
the default macro FROFRLST XEDIT is invoked. For more
information on the PROFRLST macro, see the usage note,
"Defaul t PF Key Settings. II

Append specifies that the list of files in your reader should be
appended to the existing list. This option has meaning only
when issued from within RDRLIST, and is ignored otherwise.

1. Tailoring the RDRLIST Command Options

You can use the DEFAULTS command to set up options and/or override
command defaults for RDRLIST. However, the options you specify in
the command line when entering the RDRLIST command override those
specified in the DEFAULTS command. This allows you to customize
the defaults of the RDRLIST command, yet override them when you
desire. Refer to the DEFAULTS command description for more
information.

2. Format of the List

When you invoke the RDRLIST command you are p~aced in the XEDIT
environment, editing a file "userid RDRLIST Al". The existing copy
of this file is erased if it exists.

The file you are editing is a list of files with information
collected from the CP QUERY RDR ALL command. Each line contains:

• a command area

• filename and filetype

• class and type

• number of records

Section 2. eMS Commands 267

RDRLIST

• whether or not the file is held

• creation date and time

• originating userid and node

The full power of XEDIT is available to you while you issue
commands against the list of files. For example, you may want to
use XEDIT subcommands to scroll through the list of files, locate a
particular file, etc.

However, some XEDIT subcommands are
environment. Subcommands that alter the
"userid RDRLIST" (for example, SET TRUNC,
may cause unpredictable results.

3. Issuing Commands from the List

inappropriate in this
format or the contents of
SET FTYPE, or SET LINEND)

On a full screen display, you can issue commands directly from the
line on which a reader file is displayed. These commands must be
CP or CMS commands that operate on reader files (for example,
CHANGE RDR, PURGE RDR, TRANSFER RDR, PEEK, DISCARD). For the above
commands that operate on the reader files, the spoolid number is
automatically appended to the end of the command. Use the slash
(/) symbols described in below to specify the spoolid elsewhere in
the command. For example:

r CHANGE RDR / CLASS A
L RECEIVE / fn ft (REPLACE

To enter a command, just move the cursor to the line that describes the
file to be used by the command, and type the command in the space
provided to the left of the filename. If a command is longer than the
command space provided on the screen, just continue typing over the rest
of the line. You press the PF10 key (not the ENTER key) to execute the
command. (The default setting of PF10 is EXECUTE, which is described in
the section "Special Commands", below.)

For example, to purge a file, you would move the cursor up to that line
on the screen, and type "discard" in the space provided to the left of
the filename. DISCARD is another special command described in the
section "Special Commands". When the PF10 key is pressed, all the
commands typed on one screen are executed. The screen is restored to
its previous state; however, the list is updated to reflect the current
status of the files (see "Responses").

If you type a command on the RDRLISl screen and then press the ENTER key
(or a PF key other than PF10), the command is not issued immediately.
This allows you to move through the list, and to enter commands on
different lines of the list.

Another way to issue commands that make use of the reader files
displayed is to issue EXECUTE from the RDRLIST command line. A complete
description of EXECUTE follows, in the section "Special Commands".

4. Default PF Key Settings

The PROFRLST XEDIT macro is executed when the RDRLIST command is
invoked, unless you specified a different macro in the RDRLIST
command. It sets the PF keys to the following values:

PF 1
PF 2

PF 3

Help
Refresh

Quit

Display RDRLIST command description.
Update the list to indicate discarded
files, etc.
Exit from RDRLIST display.

268 IBM VM/SP CMS Command and Macro Reference

<J

L
PF 4
PF 5
PF 6
PF 7
PF 8
PF 9

PF 10

Sort
Sort
Sort
Backward
Forward
Receive

Execute

by filetype, filename.
by date and time, oldest to newest.
by userid, in alphabetical order.
Scroll back one screen.
Scroll forward one screen.
Receive the file pointed to by the cursor
(see the RECEIVE command).
Execute command(s) typed on the list.

RDRLIST

PF 11 Peek Display file where cursor is placed, but do not
write it on disk. The file is displayed
in the XEDIT environment. See also the
PEEK command description.

PF 12 Cursor Place cursor on current line.

Note: On a terminal eguipped with 24 PF keys, PF keys 13 to 24 are
assigned the same values as PF keys 1 to 12 as discussed here.

5. Displaying a File

To display a file on the screen without reading it onto disk,
position the cursor at the file you want to see and press the PF11
key, which is set to the PEEK command. Refer to the PEEK command
for more information on the PEEK screen.

6. RDRLIST lists only the first 100 files in your virtual reader.

Responses

After a command is executed, one of the following symbols is displayed
in the "Cmd" space to the left of the file for which it was executed.

I * Means the command was executed successfully (RC=O).

*n Is the return code from the command executed (RC=n).

*1 Means the command was an unknown ep/CMS command (RC=-3).

*! Means the command was not valid in CMS
automatically placed in eMS subset mode if the
shared segment. For a list of commands valid
see the VM/SP Syst~~ Product Editor £Q~mand ang
description of the eMS subcommand.

subset. You are
editor is not in the
in CMS subset mode,
Ma££Q Reference, the

The following response can also appear on the RDRLIST screen:

I * spoolfn spoolft **Discarded or Received**

The following response can also appear:

No files in your reader.

DMSWRL003E INVALID OPTION 'option'. RC=24
DHSWRL205E NO FILES IN YOUR REAtER. RC=28
DHSWRL637E MISSING VALUE FOR THE 'PROFILE' OPTION. RC=24
DHSWRL649E EXTRANEOUS PARAMETER 'value'. RC=24
DMSWRL651E 'APPEND' MUST BE ISSUED FROM RDRLIST OR FILELIST. RC=40
DMSSTT062E INVALID CHARACTER 'character' IN FILEID Ifn ftl. RC=20

Section 2. CMS Commands 269

RDRLIST

Two commands, EXECUTE and DISCARD, make use of the list of files
displayed by the RDRLIST command. EXECUTE can be used only in the
RDRLIST and FILELIST command environments, and DISCARD can be used only
in the RDRLIST, FILELIST, and PEEK command environments.

Use EXECUTE (an XEDIT macro) to issue CP/CftS commands (or EXECS) that
make use of the reader spool files displayed by RDRLIST.

EXECUTE may be used in two ways. First, on a display terminal, the
command(s) to be executed can be tYFed directly on the RDRLIST screen
and "EXECUTE" entered either on the command line or from a PF key (the
default for the PF10 key in the BDRLIST environment). Second, the
command to be executed can be typed in the command line, following
"EXECUTE", as one of its operands. The command is then executed against
one or more reader files in the list.

The format of the EXECUTE macro is:

i I
IEXECUTEI
I ,

where:

Cursor

lines

command

[Cursorllines] [command]

means that a command is to be executed against the line that
contains the cursor. The command can either be typed on the
line that describes the file, or it can be typed as an operand
of EXECUTE. The CURSOR operand is valid only on display
terminals and is particularly useful when assigned to a PF
key. For exa~ple, if EXECUTE CURSOR PEEK is assigned to a PF
key, you can place the cursor on the line describing the file
you want to peek at and then press the PF key.

is the number of lines in the file the command is to be
executed for. If a command is specified, the default is one
(1). You can specify an asterisk (*), which means "execute
this command on all lines from the current line to the end of
the file".

is a CftS or CP command (or any program or EXEC) that makes use
of reader spool files. You can either type out the command
operands, or you can use the symbols described below to
represent the filename, filetype, spoolid, and device type.
(See the usage note, "using Symbols as Part of a Command".)

1. Entering Commands on a Full Screen Display

You can type commands that operate on reader spool files directly on
the lines of the RDRLIST display. When you enter EXECUTE (either
from the command line or by pressing the PF10 key), all commands
entered on the lines in the file that are currently displayed are
executed. The spoolid number of the reader file is appended
automatically to the command, unless you typed one of the symbols
described below (in usage note 3).

270 IBft Vft/SP CMS Command and Macro Reference

oJ

BDRLIST

2. Entering Commands on the Command line

Another way to issue commands that make
is to move the current line to the first
command to use, and then to issue the
form "EXECUTE lines command") from the
method may be used on both display and
example:

use of the files displayed
(or only) file you want the
EXECUTE subcommand (in the

XEDIT command line. This
typewriter terminals. For

First move the current line (by using XEDIT subcommands like UP or
DOWN) to the first file you want to use in the command. On a full
screen display, the current line is the first file on the screen and
is highlighted. Then (in the XEDIT command line) you type:

execute n peek

where "n" is the number of lines to be peeked, starting with the
current line. (You can use any command, not just PEEK.)

Note: You can use synonyms or macros to make issuing common
commands easier. For example, you might want to set up a
command "SEE" to be a synonym for "EXECUTE 1 PEEK".

3. Using Symbols as Part of a Command

Symbols can be used to represent operands in the command to be
executed. They can be used in the commands typed on the list, or as
part of the command in EXECUTE (on the command line). Symbols are
needed if the command to be executed has operands or options that
follow the command name. Examples of using symbols are in the
"Examples" section, below. The following symbols can be used:

I means the spoolid of the file displayed on the line.

In means the filename displayed on the line.

It means the filetype displayed on the line.

10 means execute the line as is, without appending anything.

1m means the device type (from which the file was sent).

Any combinations of symbols can be used. For example:

In It means: filename followed by filetype.

Int means: filename followed by filetype.

ij. Special Symbols Used Alone

The following special symbols can be typed alone on the lines of the
RDRLIST display. They have the following meanings:

?

I

means execute the previous command for this file. Commands are
executed starting at the top of the screen. For example,
suppose you enter DISCARD on a line. You can then type an equal
sign on any other line(s). Those files preceded by equal signs
are discarded when the EXECUTE command is entered (from the
command line or by pressing the PF10 key).

means display the last command executed. The command is
displayed on the line in which the ? is entered.

means make this line the current line. (On the RDRLIST screen,
the cur~ent line is the first file on the screen.)

Section 2. CMS Commands 271

RDRLIST

£MSWEX526E OPTION 'CURSOR' VALID IN DISPLAY MCDE ONLY. RC=3
DMSWEX561E CURSOR IS NCT ON A VAIIt tATA FIELD. RC=3
£MSWEX651E 'EXECUTE' MUST EE ISSUED FROM FILELIST OR RDRLIS~. RC=40
DMSWEX654E INVALID SYMECL 'symbol'. {'/O' MUST BE SPECIFIED ALONEI

INVALID CHARACTER 'char' FCLLOWING '/' SYMEOL}. RC=24

On a typewriter terminal only:
Executing: command
+++E (nn) +++

Use the DISCARD command to purge a file displayed in the reader list.
DISCARD is equivalent to a RECEIVE command issued with the PURGE option.
Unlike the CP PURGE command, DISCARD allows an acknowledgment to be sent
to the sender (if he reguested one). ~he acknowledgment indicates that
the file was discarded. DISCARD also makes an entry in your "userid
NETLOG" file, which indicates that this file was discarded. A log entry
is made only if the LOG 0Ftion (the default) is in effect in the RECEIVE
command. (For more informaticn on ackncwledgments and the "userid
NETLOG" file, see the RECEIVE "Command.)

DISCARD can either be tYFed in the command area of the line that
describes the reader file ycu want Furged, or it can be entered from the
command line (at the bottom of the screen). ~he format of the DISCARD
command as used in the RDRLIST environment is:

i
IDISCARD
I

I
I [spoolid]
I

spoolid is the spoolid of the reader file to be furged. If DISCARD is
typed on the ~ine that describes the fi~e to be purged, the
spoolid is. appended automatically.

If you want to enter DISCARD from .the XEDIT command line, use EXECUTE,
which automatically appends the Sfcclid. For example,

EXECUTE 1 DISCARD

purges the first file disFlayed in the reader list (the current line).
EXECUTE automatically apFends the f:!poolid to th.e command (DISCARD)
specified. This method is particularly useful on a typewriter terminal.

DMSWDC649E EXTRANEOUS PARAMETER 'parameter'. RC=24
DMSWDC651E DISCARD MUST BE ISSUED FROM RDRLIS~, PEEK OR FILELIST
DMSWDC653E ERROR EXECUTING 'comaand', RC = Dn RC=40

Messages when in FILELIST and RDRLIST eDvironments (in XEDIT) :

DMSWDC652E MISSING OPERAND(S). SPECIFY 'EX!CU~E [n] DISCARD'

272 IBM VM/SP CMS Command and Macro Reference

RC=40

RC=24

RDRLIST

Examples

In the RDRLIST environment, information about the user's virtual reader
is displayed in a format similar to what the FILELIST command provides
about a CMS mini-disk.

The following is a sample RDRLIST screen.

OHARA RDRLIST

Cmd Filename
PIZZA
COOKIE
$JELLY
DIETING
KEN
SEND
GOOD
Acknowl

A1 V 105 TRUNC=105 SIZE=17 LINE=1 COLUMN=1

Filetype Class
TOPPINGS PUN A
ASSUBLE PUN A
SCRIPT PRT A
TIPS' PUN A
NOTE PUN A
EXEC PUNA
DAY PUN A
edgment PUN A

User At Node
KEN NODE04
KEN NODE04
KEN NODE04
KEN NODE04
KEN NODE04
BOE NODE02
GEOFF NODE02
BOB NODE02

Hold
NONE
NONE
NONE
NONE
NONE
NONE
NONE
NONE

Records
10
10

7
11
10

2
29

2

Date Tille
10/06 10:39:38
10/06 10:25:11
10/06 10:15:50
10/06 09:40:28
10/06 08:43:07
10/06 07: 12: 35
10/05 11:44:34
10/05 11:42:21

1=Help 2=Refresh 3=Quit 7=Backward 8=Forward 9=Receive
4=sort(type) 5=Sort (date) 6=sort(user) 10=Execute 11=Peek 12=Cursor

1===>
I nDll
I ,

Figure 27. Sample RDRLIST Screen

Examples of Using ~~mbols

The following examples show how symbols can be used to represent
operands in a command. The values substituted for the symbols and the
resulting command are shown. In each case, the command can be entered
in either of the following ways:

I. typed in the "Cmd" area of the screen. The command is executed
I either by entering EXECUTE on the XEDIT command line and then
I pressing ENTER, or by pressing PF10.

I. entered from the XEDIT command line, as an operand of EXECUTE (in
I the form "EXECDTE lines command").

If a symbol is not specified, the spoolid number of the reader file is
appended automatically to the command.

I
I SPOOL FILEID
I
Ipizza toppings
I
Icookie assemble
I
I
Iken note
I
I send exec
I
I$jelly script
I

COMMAND

DISCARD

RECEIVE I CAKE
It (REPLACE

PEEK

FILELIST In * *
TRANSFER RDR /
TO * PRT

I
I RESULTING COMMAND
I
IDISCARD spoolid
I
IRECEIVE spoolid CAKE
IASSEMBLE (REPLACE
I
IPEEK spoolid

• IFILELIST SEND * *
I
ITRANSFER RDR spoolid
ITO * PRT (prints the file)

section 2. CMS Commands 273

READCARD

DMS8DC702I :READ filEname filetype fn (other information)

A READ control card has been processed; the designated file is
being written on disk.

DMSRDC702I READ CONTROL CARD IS MISSING. FOLLOWING ASSUMED:
DMSRDC702I :READ REAtCARD CMSUT1 11

The first card in the deck is not a READ control card. Therefore,
the file READCARD CMSOT1 A1 is created.

DMSRDC7381 RECORD LENGTH IS 'nnn' BYTES

The records being read are not 80 bytes long; this message gives
the leng.th.

DMSRDC008E DEVICE 'cuu' {INVALID OR NONEIISTENTIONSOPPORTED DEVICE TYPE}
RC=36

DMSRDC037E DISK 'mode' IS READ/ONLY RC=36
DftSRDC042E NO FILEID SPECIFIED RC=24
DMSRDC054E INCOMPLETE FILEID SPECIFIED 8C=24
DMSRDC062E INVALID * IN FILEID RC=20
DMSRDC069E DISK 'mode' NOT ACCESSED RC=36
DMSRDC105S ERROR Inn' WRITING FILE 'fn ft fa' ON DISK RC=100
DftS8DC124S ERROR READING CARD FILE RC=100
DMSRDC205W READER EMPTY OR NOT READY RC=8

276 IBM VM/SP CMS Command and Macro Reference

.~

RECEIVE

I RECEIVE

Use the RECEIVE EXEC procedure to read onto disk one of the files or
notes that is in your virtual reader. In most cases these files were
sent to you by other computer users, on your computer or on other
computers that are connected to yours via the Remote Spooling
Communications SUbsystem (BSCS) network.

The format of the RECEIVE command is:

RECEIVE

where:

spoolid

fn

ft

fm

[spoolid [fn eft [£m]] [(options ••• [)]]]]

.QE!ions:
[NOTebook fnlNOTebook *]
[129 I NOLog]
[Purge]
[Replace]
[Q!gdate I NEwdate]
[STack]

specifies which file in the virtual reader is to be received.
The default is '=' or 'next' which means the 'next' file in
the reader is received.

The 'next' file is the ODe for which the RDR command returns
information. Which file this is depends on the class of the
reader, the class of the files in the reader, and whether or
not they are held.

is the filename the file is to be given. The default is =,
which means the file's present name is used.

is the filetype the file is to be given. The default is =,
which means the file's present type is used.

is the filemode the file is to be given. If not specified,
the default is "A".

If the file being received is a note (prepared by
if the PURGE option is specified, the operands
ignored. If the file being received is an
parameters and all options (except the spoolid and
ignored. (See the usage note, "Acknowledgments",
on acknowledgments.)

the NOTE command), or
fn, ft, and fm are
acknowledgment, all

the PURGE option) are
for more information

NOTebook fn causes the file to be saved as a note in a file named "fn
NOTEBOOK." You can use this option if you want the
note(s) from this person to be kept in a separate file.
If you do not specify a notebook filename here, a
filename is first searched for in the sender's entry in
your "userid NAMES" file and then in a file set up by the
DEFAULTS command. If neither contains a notebook
filename, the note is saved in the default notebook file,
"ALL NOTEBOOK". A note is saved by appending it to the
NOTEBOOK file, with a line of 73 equal signs (=)
separating each note.

Section 2. CMS Commands 277

RECEIVE

If the file is not a note (prepared by the NOTE comman~,
this option is ignored.

See the NAMEFIND or NAMES command description for more
information on the relationship between a "userid NAMES"
file and the NOTEBOOK file.

NOTebook * specifies that note is saved in a file named "name
NOTEBOOK", where "name" is the value of the Notebook tag
in the sender's entry in your "userid NAMES" file, or the
sender's nickname, or the sender's userid (whichever is
located first).

Log

NOLog

Purge

If the file is not a note (prepared by the NOTE command),
this option is ignored.

specifies that the recipients, date, and time of this
file transmission are logged in a file called "userid
NETLOG". 'Ihis log is updated when acknowledgments of
sent files are received (if they were reguested). Do not
use this option if you have no read/write disk accessed.

specifies that this file transmission is not to be
logged.

specifies that this file is to be purged and not read
onto disk.

Replace specifies that if a file of the same filename, filetype
and filemode exists, it is to be replaced with this one.
Without this option, the file will not be read onto disk
if it would overlay an existing file.

If the file being received is a NOTE file, REPLACE is
ignored.

Olddate means that when a file that was sent in NETDATA or DISK
DUMP format is received, it is written to disk with its
original date and time (that is, the date and time it was
created or last updated by the sender), not the date and
time you received it. For more information on NETDATA
format, see the SENDFILE command, the usage note "Format
of the File Sent by SENDFILE".

NEwdate means to re-date the file to the current date and time it
is received.

STack specifies
completes
option is
displayed

that the message returned when RECEIVE
successfully should be stacked (LIFO). If this

not specified, the messages from RECEIVE are
at the terminal.

1. Tailoring the RECEIVE Command Options

You can use the DEFAULTS command to set up options and/or override
command defaults for RECEIVE. However, the options you specify in
the command line when entering the RECEIVE command override those
specified in the DEFAULTS command. This allows you to customize
the defaults of the RECEIVE command, yet override them when you
desire. Refer to the DEFAULTS command description for more
information.

278 IBM VM/SP CMS Command and Macro Reference

RECEIVE

2. Why Should I Use Receive?

You should use RECEIVE instead of READCARD or DISK for general
purpose use, because RECEIVE calls either READCARD or DISK,
whichever is appropriate. It also handles notes, acknowledgments,
etc. In fact, RECEIVE handles most of the various formats of files
that can appear in your virtual reader. RECEIVE is the only way to
read a file that was sent using the SENDFILE command issued with
the NEW option.

RECEIVE is particularly useful within the RDRLIST command
environment, where it is assigned to the PF9 key.

3. Acknowledgments

Acknowledgments can be sent to users on different computers
connected by the RSCS network so that they can be sure that a file
they sent was received.

The sender can specify on the SENDFILE or NOTE command that an
acknowledgment be returned to him when a file is RECEIVEd. The
SENDFILE command must be issued with the NEW option (the default)
in order to request an acknowledgment; otherwise, the request is
ignored. Even if a recipient discards a file (using the DISCARD
command), an acknowledgment is returned to the sender. This is
possible because DISCARD is equivalent to a RECEIVE issued with the
PURGE option. (For more information on DISCARD, see the RDRLIST
command.) The acknowledgment indicates whether the file was
received (written to disk) or discarded (purged).

When you RECEIVE an acknowledgment that appears in your reader, all
parameters and all options (except the spoolid and the PURGE
option) are ignored. The acknowledgment is used to make an entry
in your "userid NETLOG" file. This entry confirms that the file
you sent was received (or discarded). The format of entries in the
"userid NETLOG" file is shown in the "Examples" section, below.

4. Special NETDATA Files from MVS with TSO Extensions (PP)

The MVS with TSO Extensions Program Product can send an empty file.
It can also send two files in NETDATA format in a single
transmission. Receiving an empty (null) file results in an error
message that indicates no file was created on disk. Receiving two
files sent in one transmission results in two messages, identifying
each file that was received.

Responses

File 'fn ft fm' received from 'userid' at 'node' sent as 'spfn spft
spfm'
File 'fn ft fm' received from 'userid' at 'node'
File 'spfn spft' has been discarded.
Note 'spfn spft' has been discarded.
Note 'spfn spft' added to 'fn NOTEBOOK fm'
Ackn added to 'userid NETLOG'

DMSWRC003E INVALID OPTION 'option'. RC=24
DMSWRC006E NO READ/WRITE DISK ACCESSED. RC=36
DMSWRC024E FILE 'fn ft fm' ALREADY EXISTS. RC=28
DMSWRC029E INVALID PARAMETER 'nnnn' IN THE OPTION 'Spoolid'

FIELD. RC=24
DMSWRC037E DISK 'mode' IS ACCESSED AS READ/ONLY. RC=36
DMSWRC062E INVALID CHARACTER '*' IN FILEID 'fn ft fm'. RC=20

section 2. CMS Commands 279

RECEIVE

DMSWRC069E DISK 'mode' NOT ACCESSED. RC=36
DMSWRC630S ERROR ACCESSING SPOOL FILE. RC=36
DMSWRC637E MISSING VALUE FOR THE ['NO~EBOOK'I 'SPOOLID'] OPTION.

RC=24
D~SWRC643E NO CLASS 'class' FILES IN YOUR READER. RC=28
DMSWRC644E ALL READER FILES ARE IN HOLD STATUS OR NOT CLASS

'class'. RC=28
DMSWRC649E EXTRANEOUS PARAMETER 'value'. RC=24
DMSWRC655E SPOOLID 'nnnn' DOES NOT EXIST. RC=28
DMSWRC671E ERROR RECEIVING FILE 'fn ft fm', RC = nn FROM

'command'. RC=100
DMSWRC672E VIRTUAL READER INVALID OR NOT DEFINED. RC=36
DMSWRC674E READER IS NOT READY. RC=36
DMSWRC681E THIS IS AN UNNAMED FILE. SPECIFY FILENAME AND

FILETYPE. RC=88
DMSWRC682E ERROR COPYING FILE 'fn ft' FROM 'A' DISK TO 'mode'

DISK, RC = nn FROM COpy FILE COMMAND. RC=100
DMSSTT062E INVALID CHARACTER 'character' IN FILEID 'fn ft'. RC=20

Example§

The format of entries
and RECEIVE is shown
SENDFILE or NOTE are
NET LOG file. When an
this file.

,
I
I File SHALL DATA A
I File SHALL DATA A
Isent as SMALL DATA A
IAckn 10/14/80 11:30:47

in the "userid NETLOG" file maintained by SENDFILE
below. If both the "ACK" and "LOG" options of
specified, a "sent to" record is placed in the
acknowledgment is received, it is also placed in

sent to OHARA at HODE01 on 10/14/80 11:30:25
recv froll CHARA at HODE01 on 10/14/80 11:30:47

recv by OHARA at NODE01 on 10/14/80 11:30:25

In this example, the user sent himself a file (SMALL DATA) using
SENDFILE with the LOG and ACK options specified. The first line in the
NETLOG file was placed in the file by the SENDFILE command.

He then used RECEIVE (with the LOG option) to read the file onto disk.
The second line was added when the file was received. (In this case the
sender was the receiver.) The "recv" in this line means "received". If
a file is discarded (using DISCARD), the line contains "disc" instead of
"recv". This line also indicates the fileid that the file was "sent
as". (The file can be RECEIVEd with a different fileid than it vas sent
as.)

Last, he received an acknowledgment. It indicates whether the recipient
received ("recv") or discarded ("disc") the file.

280 IBM VM/SP CMS Command and Macro Reference

J

RELEASE

RELEASE

Use the RELEASE command to free an accessed disk and make the files on
it unavailable. The format of the RELEASE command is:

RELease { cuu }
mode

[(nn[)]]

wh~:

cuu is the virtual device address of the disk that is to be
released.

mode

Valid addresses are 001 through SFF for a virtual machine in
basic control mode and 001 through FFF for a virtual machine
in extended control mode.

is the mode letter at which the disk is currently accessed.

Q.E!ion:

DET specifies that the disk is to be detached from your virtual
machine configuration; CMS calls the CP command DETACH •

.Yg~~

1. If a disk is accessed at more than one mode letter, the RELEASE cuu
command releases all modes. If you access a disk specifying the
mode letter of an active disk, the first disk is released.

2. You cannot release the system disk (S-disk).

3. When a disk is released, the user file directory is freed from
storage and that storage becomes available for other CftS commands
and programs. When you releasE a read/write CMS disk, either with
the RELEASE command or implicitly with the FORMAT command, the user
file directory is sorted and rewritten on disk; user(s} who may
subseguently access the same disk may have a resultant favorable
decrease in file search time.

4. When a disk is released, any read-only extensions it may have are
not released. The extensions may be referred to by their own mode
letters. If a disk is then accessed with the same mode as the
original parent disk, the original read-only extensions remain
extensions to the new disk at that mode.

5. In CftS/DOS, when you release a disk, any system or programmer
logical unit assignments made for the disk are unassigned.

DASD cuu DETACHED

This is a CP message that is issued when you use the DET option.
It indicates that the disk has been detached.

Section 2. CftS Commands 281

RELEASE

DMSARE017E INVALID DEVICE ADDRESS 'cuu' RC=24
DMSARE028E NO DEVICE SPECIIIED RC=24
DKSARE048E INVALID KODE 'mode' RC=24
DKSARE069E DISK {'mode'I'cuu'} NOT ACCESSED RC=36
DMSARE070E INVALID PARAMETER 'parameter' RC=24

282 IBM VM/SP CMS Command and Macro Reference

RENAKE

RENAME

Use the REHAKE command to change the fileid of one or more eKS files on
a read/write eKS disk. ThE format of the REHAKE command is:

Rename

fileid1

fileid2

fileid 1 fileid2 [(options ••• [)]]

r ,
ITYPE I
I!OTYF£I
L .J

r ,
I UPDIBl I
I HOUPDIRTI
L .J

is the file idEntifier of the original file whose name is to
be changed. All components of the fileid (filename, filetype,
and filemode) must be coded, with either a name or an
asterisk. If an asterisk is coded in any field, any file that
satisfies the other gualifications is renamed.

is the new file identifier of the file. All components of the
file (filename, filetype, and filemode) must be coded, with
either a name or an egual sign; if an egual sign (=) is coded,
the corresponding file identifier is unchanged. The output
filemode can also be specified as an asterisk (*), indicating
that the filemode is not changed.

options:

TYPE
T

UPDIRT
QR

displays, at the terminal, the new identifiers of all the
files that are renamed. The file identifiers are displayed
only when an asterisk (*) is specified fer one or more of the
file identifiers (fn, ft, or fm) in fileid1.

suppresses at the terminal, displaying of the new file
identifiers of all files renamed.

updates the master file directory upon completion of this
command.

HOUPDIRT
HOUP

suppresses the updating of the master file directory upon
completion of this command. (See Usage Hote 3.)

Section 2. eKS Commands 283

RENAME

1. When you code an asterisk (*) in any portion of the input fileid,
any or all of the files that satisfy the other qualifiers may be
renamed, depending upon how you specify the output fileid. For
example:

2.

rename * assemble a test file a

results in the first ASSEMBLE file found on the A-disk being
renamed to TEST FILE. If more than one ASSEMBLE file exists, error
messages are issued to indicate that they cannot be renamed.

If you code an equal sign (=) in an output fileid in
corresponding to an asterisk in an input fileid, all
satisfy the condition are renamed. For example:

rename * assemble a = oldasm =

a position
files that

renames all files
filetype of OLDASM.

with a file type of ASSEMBLE to
Current filenames are retained.

files with a

You cannot use the
another. You must
filemode letters.

RENAME command to move a file from one disk to
use the COPY FILE command if you want to change

You can use the RENAME command to modify filemode numbers, for
example,

rename * module a1 = = a2

changes the filemode number on all MODULE files that have a mode
number of 1 to a mode number of 2.

~: You can invoke the RENAME com.and from the terminal, from an
EXEC file, or as a function from a program. If RENAME is invoked as
a function or from an EXEC file that has the &CONTROL NOMSG option
in effect, the message D!SRNM002E FILE 'fn it fm' NOT POUND is not
issued.

3. Normally, the file directory for a CMS disk is updated whenever you
issue a command that affects files on the disk. When you use the
NOUPDIRT option of the RENA!E command, the file directory is not
updated until you issue a command that writes, updates, or deletes
any file on the disk, or until you explicitly release the disk
(with the RELEASE command) •

newfn newft newfm

The new filename, filetype, and filemode of each file altered is
displayed when the TYPE option is specified and an asterisk was
specified for at least one of the file identifiers (fn, ft or fm)
of the input fileid.

284 IBM VM/SP CMS Command and Macro Reference

J

l;

DMSRNM002E
DMSRNM003E
DMSRNM019E
DMSRNM024E
DMSRNM030E
DMSRNM037E
DMSRNM048E
DMSRNM051E
DMSRNM054E
DMSBNM062E
DMSBNM069E

FILE 'fn ft fm' NeT FOUND RC=28
INVALID OPTION 'option' RC=24
IDENTICAL FILEIDS RC=24

RC=28
RC=28

RC=36

FILE 'fn tt tm' ALREADY EXISTS
FILE 'fn tt tm' AlREADY ACTIVE
DISK 'mode (cuu) , IS READ/ONLY
INVALID FILE MODE 'fm' RC=24
INVALID MODE CHANGE RC=24
INCOMPLEiE FlLEID SPECIFIED RC=24
INVALID * IN OUTPUT FILEID RC=20
DISK 'mode' NOT ACCESSED RC=36

RENAME

Section 2. CMS Commands 285

RSERV

RSERV

Use the RSERV command in eMS/DOS to copy, display, print, or punch a VSE
relocatable module from a Frivate or system library. The format of the
RSERV command is:

RSERV
r ,

modname J ft I [(options ••• [) J J
Jlll1J
L J ~E!ion§:

[QI.§!SJ
[PUNCH]

[PRINT]
[TERM]

modname specifies the name of the module on the VSE private or system
relocatable litrary. The private library, if any, is searched
before the system library.

ft specifies the filetype of the file to be created on your
A-disk. ft defaults to !EXT if a filetype is not specified.
The filename is always the same as the module name.

Options: You may specify as many options as you wish on the RSERV
command, depending on which functions you want to perform.

copies the relocatable module onto your A-disk.
options are specified, DISK is the default.

If no other

PUNCH punches the relocatable module on the virtual punch.

PRINT prints the relocatable module on the virtual printer.

TERM displays the relocatable module at your terminal.

1. If you want to copy modules from a private relocatable library, you
must issue an ASSGB command for the logical unit SYSRLB and
identify the library on a DIBL command line using the ddname
IJSYSRL.

To copy modules from the system relocatable library, you must have
entered the CMS/DOS environment specifying a mode letter on the SET
DOS ON command line.

2. The RSERV command ignores the assignment of logical units, and
directs output to the devices specified on the cption list.

286 IBM VB/SP CMS Command and Macro Reference

RSERV

If you use the TERM option, the relocatable module is displayed at the
terminal.

DMSRRV003E INVALID OPTION 'option' RC=24
DMSRRV004E MODULE 'module' NOT FOUND RC=28
DMSRRV006E NO READ/WBI!E 'A' DISK ACCESSED RC=36
DMSRRV070E INVALID PARAMETER 'parameter' RC=24
DMSRRV097E NO 'SYSRES' VOLUME ACTIVE RC=36
DMSRRV098E NO MODULE NAME SFECIFIED RC=24
DMSRRV099E CMS/DOS ENVIRONMENT NOT ACTIVE RC=40
DMSRRV105S ERROR Inn' WRITING FI1E 'fn ft fm' ON DISK RC=100
DMSRRV113S DISK (cuu) NO! ATTACHED RC=100
DMSRRV411S INPUT ERROR CODE Inn' ON '{SYSRESISYSRLB)' RC=100

section 2. CMS Commands 287

RUN

RUN

Use the RUN EXEC procedure to initiate a series of functions on a file
depending on the filetype. The RUN command can select or combine the
procedures required to compile, load, or start execution of the
specified file. The format of the RUN command is:

fn

ft

fm

RUN fn [ft [fm]] [(args ••• [)]]

is the filename of the file to be manipulated.

is the filetype of the file to be manipulated. If filetype is
not specified, a search is made for a file with the specified
filename and the filetype of EXEC, MODULE, or TEXT (the search
is performed in that order). If the filetype of an input file
for a language processor is specified, the language processor
is invoked to compile the source statements and produce a TEXT
file. If no compilation errors are found, LOAD and START may
then be called to initiate program execution. The valid
filetypes and resulting action for this command are:

Piletype Action
EXEC The EXEC processor is called to process the file.

MODULE The LOADMOD command is issued to load the program into
storage and the START command begins execution of the
program at the entry point equal to fn.

TEXT The LOAD command brings the file into storage in an
executable formalt and the START command executes the
program beginning at the entry point named by fn.

PORTRAN The PORTRAN processor module that is called is PORTRAN,
PORTGI, GOPORT, or PORTHX, whichever is found first.
Object text successfully compiled by the PORTGI or PORTHX
processors will be loaded and executed.

TESTPORT The TESTPORT module is called to initiate PORTRAN
Interactive Debug and will process a TEXT file that has
been compiled with the TEST option.

PREEPORT The GOPORT module is called to process the file.

COBOL The COBOL processor module that is called is COBOL or
TESTCOB, whichever is found first. After successful
compilation, the program text will be loaded and
executed.

PLI The PLIOPT processor module is called to process
PLIOPT the file. After successful compilation, the program text

will be loaded and executed.

is the filemode of the file to
is specified, a file type must
specified, the default search
disks for the file.

be manipulated. If this field
be specified. If fm is not
order is used to search your

288 IBM VM/SP CMS Command and Macro Eeference

args

RUN

are arguments you want to pass to your program. You can
specify up to 13 arguments in the RUN command, provided they
fit on a single input line. Each argument is left-justified,
and any argument more than eight characters long is truncated
from the right.

Usage ~

1. The RUN command is an EXEC file; if you want to execute it from
within an EXEC, you must use the EXEC command.

2. If you are executing an EXEC file, the arguments you
RUN command line are assigned to the variable symbols
so on.

enter on the
&1, &2, and

3. If you are executing a ~EXT or MODULE file, or compiling and
executing a program, the arguments are placed in a parameter list
and passed to your program when it executes. ~he arguments are
placed in a series of doublewords in storage, terminated by X'FF'.
If you enter:

run myprog (cbarlie dog

the arguments *, CHARLIE, and DOG are placed in
parameter list, and tbe address of the list is in
your program receives control.

doublewords in a
register 1 when

Note: You cannot use the argument list to override default options
for the compilers or for the LOAD or STAR~ commands.

q. ~be RUN command is not designed for use with CMS/DOS.

5. ~he RUN EXEC cannot be used for COBOL and PL/I programs that
require facilities net sUPForted under CMS. For specific language
support limitations, see !ALSP Planni~ ~nd System Generation
Guide.

Responses

Any responses are from the programs or procedures that executed within
tbe RUN EXEC.

DHSRUN001E NO FILENAME SPECIFIED RC=24
DMSRUN002E FILE['fn [ft [fm)]'] NOi FCUND RC=28
DMSRUNOQ8E INVALID HODE 'fm' RC=24
DHSRON070E INVALID ARGUMENT 'argument' RC=24
D8SRUN999E NO [ft] HODULE FOUND RC=28

Section 2. CMS Commands 289

SENDFILE

SENDFILE

Use the SENDFILE EXEC procedure to send files or notes to one or more
computer users on your computer or on other computers that are connected
to yours via the Remote Spooling Communications Subsystem (RSCS)
network.

SENDFILE is one of several commands that references a "userid NAMES"
file,. By setting up a names file, you can identify recipients just by
using nicknames, which are automatically converted into node and userid.
For information on creating a names file, see the NAMES command.

The format of the SENDPILE command is:

ISENDFile
I SFile

[fn ft [fmJ [[TOJ name ••• J [(options ••• [)]]]

I
I
I
I
I
I
I

.Ql!tion.§:
[Ack I NCAc~]
[Filelist I !OPilelis!]
[Log I NOLog]
[!~~ I Old]
[NOTE]
[.!Y~ I NOType] L---______ ~ __ ~

fn is the filename of the file to be sent.

ft is the filetype of the file to be sent.

fm is the filEmode of the file to be sent. If "*" is specified
(the default), all accessed disks are searched, and the first
file found is sent. !his operand can be omitted if the first
"name" would not be misinterpreted as a filemode, or if the
keyword "TO" is used.

TO is a keyword operand. It can be omitted if the first "name" is
not "TO".

name is one or more "names" of the computer users to whom the file
is to be sent. If the same recipient is specified more than
once, he receives only one copy of the file. The "name" may
take any of the following forms, and the different forms can be
freely intermixed:

• a "nickname" that can be found in the file "userid NAMES",
where "userid" is your userid. 'Ihis nickname may represent
a single person (on your computer' or on another computer),
or a list of several people. See the NAMES command for more
information on nicknames.

• a userid of a computer user on your computer. If a name
cannot be found in the "userid NAMES" file, it is assumed to
be a userid of somecne on your computer.

• "userid AT node", which identifies a user (lluserid") on your
computer or an9ther computer ("node").

You cannot send files to a userid named "AT" or "CC:".

If no operands are specified, a menu is displayed. This menu is
described in the Usage Note below, "Using the SENDFILE Menu".

290 IBM VM/SP CMS Command and Macro Reference

Ack

NOAck

Filelist

NOFilelist

Log

NOLog

NEw

Old

NOTE

Type

NOType

SENDFILE

requests. an acknowledgment be returned to you and logged
when the recipient receives your file (using the RECEIVE
command). Acknowledgments are added to your "userid
NETLOG" file. An acknowledgment is sent only if the NEW
option is also in effect.

requests that no acknowledgment be returned when the
recipient RECEIVEs a file.

specifies that the file (fn ft fm) is a list of files in
the format of a CftS EXEC file produced by the LISTFILE
command issued with the EXEC option, or a file saved from
a FILELIST command. This option is used to send multiple
files with only one invocation of SENDFILE. Both the
file containing the list of files and each file in the
list are sent.

Lines beginning with an asterisk (*) and blank lines are
ignored. All EXEC tokens (for example, &1, &2) or any
token beginning with an ampersand (&) is ignored.

For information on creating a list of files that can be
saved and used to send multiple files, see the FILELIST
command, the usage note "Saving a List of Files".

specifies that the file is not a list of files.

specifies that the recipients, date, and time of this
file transmission are logged in a file called "userid
NETLOG". This log is updated when acknowledgments of
sent files arE received (if they were requested). Do not
use this option if you have no read/write disk accessed.

specifies that this file transmission is not to be
logged.

specifies that header records are added and
sent as described below, in "Format of the
SENDFILE". If this option is specified,
.!!1.Yst .Y§~ REfllll to read the file.

the file is
File Sent by

the recipient

specifies that the file is sent using DISK DUMP.
option should be specified when the recipient of the
does not have the RECEIVE command available to read
file. When OLD is specified, no acknowledgment (the
option) can be rEquested.

This
file
the
ACK

specifies that the file is to be sent as a note (that was
prepared using the NOTE command). The "TO" operand and
the list of names cannot be specified if this option is
given. If no file is specified, the file "userid NOTE *"
is sent as a note. (On a display terminal, the PFS key
is set to this oFtion in the NOTE command environment.)

specifies that the files sent and the
to which the files were sent are
terminal.

userids and nodes
displayed at the

specifies that no information is to be displayed.

Section 2. CMS Commands 291

SENDFILE

1. Tailoring the SENDFILE Command options

You can use the DEFAUL1S command to set up options and/or override
command defaults for SENDFILE. However, the options you specify in
the command line when entering the SENDFILE command override those
specified in the DEFAULTS command. ~his allows you to customize
the defaults of the SENDFILE command, yet override them when you
desire. Refer to the DEFAULTS command description for more
information.

2. Using the SENDFILE Menu (Display Terminals only)

Enter the SENDFILE command without operands to display a menu, on
which you "fill in the blanks" with the necessary information. A
sample SENDFILE menu is shown in the "Examples", below.

You type the filename, filetype, and filemode of a file that you
want to send directly on the menu in the spaces provided. If you
do not enter a filemode, the default is "A".

If you want to select the files from a list, you can type an
asterisk (*) for filename, filetype, and/or filemode. An asterisk
means that you want the list to contain all filenames (or
filetypes, or filemodes).

You can also use two special characters in the filename and/or
filetype to request that the list contain a specific subset of
files. The special characters are * (asterisk) and % (percent),
where:

* represents any ~umber of character(s). As many asterisks as
required can appear ~~ywh~~~ in a filename or filetype.

means any §i~B1~ character, but any
many percent symbols as necessary may
filename or filetype.

character will do.
appear anywhere

As
in a

To display the list, first finish filling out the menu, and then
press either PFS or PF10. A special FILELIST screen is displayed
instead of the SENtFILE menu. You select the files by typing a
letter Us" in front of the filename of each file to be sent. Then
press the PF10 key to send the files.

Another way to select files to be sent from the FILELIST screen is
to position the cursor on the line describing a file you want to
send, and then press PF5.

!h~ Recipient(§}

You type the name(s) of the recipient(s) in the space provided. A
name can take any of the ferms listed above, in the "name" operand
description.

A list of options
option appears to
for which you do
press the space
are as follows:

also appears on the menu. The default for each
its left. You type YES or NO over any options

not want the default. (If you type NO over YES,
bar, because NOS is not recognized.) The options

292 IBM VM/SP CMS Command and Macro Reference

'j

L'

SENDFILE

NO Request acknowledgment when the file has been received?

Type YES only if you
person receives your
and time the file was
node.

want to get an acknowledgment when the
file. The acknowledgment shows the date
received, and the recipient's userid and

When you get an acknowledgment, it appears in your reader. If
you choose to receive it, an entry is made in a "userid NETLOG"
file, which is explained below.

YES Make a log entry when the file has been sent?

Each time you send a file,
the file "userid NETLOG".
this:

an entry is automatically made in
A typical entry might look like

File MY DATA A1 sent to JONES at NODE1 on 10/10/81 11:30:25 EDT

If you speci£ied YES on the first option (acknowledgment), an
entry is also made when you receive the acknowledgment.

Type NO if you don't want an entry made in the log file.

YES Display the file name when the £ile has been sent?

The names of the file(s) and the userid(s) and
recipients are displayed on a cleared screen.
do not want this in£ormation displayed.

node(s) of the
Type NO if you

NO This file is actually a list o£ files to be sent?

See the FILELIST command, the usage
Files", for information on sav1ng a
list of files created by either the
LISTFILE command issued with the EXEC
the files (and the list of files) at
file is a list of files.

note "Saving a List of
file list. By saving a

FILELIST command or the
option, you can send all
once. Type YES if your

Sending g File

If you specified only one fileid, press either PF5 or PF10 after
filling out the SENtFILE menu. PF5 sends the file and exits from
the menu. PF10 sends the file but keeps the menu.

If you are selecting files from a FILELIST screen type a letter "s"
in front of each filename you want to send. Then press PF10 to
send the file(s).

PF 1 Help Display information about the SENDFILE command.
PF 2 Not assigned.
PF 3 Quit Exit from the menu.
PF 4 Not assigned
PF 5 Execute and Quit

Send the file (s) and exit £rom the screen.
PF 6 Not assigned
PF 7 Not assigned
PF 8 Not assigned
PF 9 Not assigned
PF 10 Execute Send the file.
PF 11 Not assigned
PF 12 Cursor Put cursor in "Enter filename: " field

Section 2. CMS Commands 293

SENDFILE

Note: On a terminal eguipped with 24 PF keys, PF keys 13 to 24 are
assigned the same values as PF keys 1 to 12 as discussed here.

PF 1 Help
PF 2 Refresh

PF 3 Quit
PF 4 Sort
PF 5 Sendfile

PF 6 Sort
PF 7 Backward
PF 8 Forward
PF 9 FL/n

PF 10 Execute

PF 11 XEDIT
PF 12 Cursor

Display information about the FILELIST command.
Update the list to indicate new files,
erased files, etc., using the same parameters
as those specified on the SENDFILE panel.
Exit from the list.
files by filetype, filename.
at cursor. Append the fn ft fm on this line and
send the file.
files by size, largest first.
Scroll backward one screen.
Scroll forward one screen.
Issue the command FILELIST In * * at the cursor,
so that a list is displayed, containing
all files that have the filename that is
displayed on the line with the cursor.
Execute command(s) typed on display or on command
line.
Edit the file pointed to by the cursor.
Move cursor to current column in current line.

An example of a SENDFILE menu and a FILELIST screen are shown in
the "Examples" section, below.

3. Format of the File Sent by SENDFILE

The format of the
NEW (the default)

file that is sent depends on
option is specified.

whether the OLD or

Important note: Unless the OLD option is specified, the RECEIVE
command is the ~11 way you can read a file sent by SENDFILE.

If the OLD option is specified, DISK DUMP is used to send the file.
The OLD option should be used if the recipient does not have the
RECEIVE command available to read the file.

If the NEW option is specified, control records are added and the
file is sent in a format called "NETDATA".

The transmitted file is composed of several control records,
followed by the data records, and ending with a trailer record. If
the file is an acknowledgment, it consists only of control records.
An acknowledgment can be requested only with the NEW option.

The NEW option should be used when the recipient can read the file
with the RECEIVE command on his CMS system, or when the file is
being sent to the MVS operating system with TSO extensions Program
Product.

4. Priority

When SENDFILE is issued to send a file across the network (to a node
different from yours), the file is assigned a priority. The order
and speed of transmission are based on both this priority and the
size of the file.

The priorities are assigned as follows:

294 IBM VM/SP CMS Command and Macro Reference

L'

SENDFILE

NOTEs approximately 100 records in size: Priority
other files: Priority = 50 (medium)
Acknowledgments: Priority = 90 (low)

00 (high)

Body of the note kept in 'fn NOTEBOOK fm'
Header only added to other NOTEBOOK files.
FilelNote 'fn fm ft' sent to 'userid' at 'node' on 'date time timezone'
'nnn' FILES HAVE BEEN SENT.
File 'fn ft fm' not found.
NOTE added to 'fn NOTEBOOK fm'

The following message appears on the FILELIST screen invoked from a
SENDFILE menu:

Type'S' in front of each file to be sent, and press pf10.

DMSWSF002E FILE 'fn ft fm' NOT FOUND. RC=28
DMSWSF003E INVALID OPTION 'option'. RC=24
DMSWSF006E NO READ/WRITE DISK ACCESSED. RC=36
DMSWSF054E INCOMPLETE FILEID SPECIFIED. RC=24
D~SWSF062E INVALID CHARACTER '*' IN FILEID 'fn ft fm'. RC=20
DMSWSF069E DISK 'mode' NOT ACCESSED. RC=36
DMSWSF637E MISSING NODEID FOR THE AT OPERAND. RC=24
DMSWSF647E USERID NOT SPECIFIED FOR 'nickname' IN 'Userid NAMES'

FIL!. RC=32
DMSWSF6Q8E USERID 'name' NOT FOUND. NO FILES HAVE BEEN SENT.

RC=32
DMSWSF667E NOTE HEADER DOES NOT CONTAIN THE {keyword

'FROM'lkeyword ' TO: 'I 'OPTIONS' line}. RC=32
DMSWSF671E ERROR SENDING FILE 'fn ft fm', RC = nn FROM 'command'.

RC=100
DMSWSF672E VIRTUAL PUNCH INVALID OR NOT DEFINED. RC=36
DMSWSF673E ADDRESSEES ARE IN THE NOTE HEADER CARDS, DO NOT

SPECIFY NAMES WITH NOTE OPTION. RC=24
DMSWSF674E PUNCH IS NOT READY. RC=36
DMSWSF675E NO NAMES SPECIFIED. RC=24
DMSWSF676E INVALID CHARACTER '*' FOR NETWORK ID. RC=20
DMSWSF677E INVALID OPTION 'option' IN OPTION LINE. RC=32
DMSWSF678E INVALID NOTE HEADER FORMAT. NOTE CANNOT BE SENT.

RC=32
DMSWSF679E {Disk 'mode' IS READ/ONLYIDISK 'mode' IS FULL}.

NOTE CANNOT BE SENT. RC=36
DMSSTT048E INVALID MODE 'mode'. RC=24
DMSSTT062E INVALID CHARACTER 'character' IN FILEID 'fn ft'.

RC=20

Messages from the SENDFILE Panel:

D~SWSF002E FILE 'fn ft fm' NOT FOUND.
DMSWSF048E INVALID MODE 'mode'.
DMSWSF054E INCOMPLETE FILEID SPECIFIED.
DMSWSF069E DISK 'mode' NOT ACCESSED.
DMSWSF081E INVALID REPLY - ANSWER "YES" OR "NO".
DMSWSF637E MISSING NODEID FOR THE AT OPERAND.
DMSWSF647E USERID NOT SPECIFIED FOR 'nickname' IN 'Userid NAMES'
DMSWSF648E USERID 'name' NOT FOUND. NO FILES HAVE BEEN SENT.
DMSWSF657E UNDEFINED PFkey.
DMSWSF675E NO NAMES SPECIFIED.
DMSWSF680E INVALID FILEID SPECIFIED WITH 'FILELIST' OPTION.

Section 2. CMS Commands 295

SENDFILE

EX.9.!!ple§

The following is a sample SENDFILE menu:

r--,
---------------- SENDFILE ----------------

File(s) to be sent

Enter filename *
filetype data
filemode a

(use * for Filename, Filetype and/or Filemode
to select from a list of files)

Send files to sleepy

Type over YES or NO to change the options:

NO Request acknowledgement when the file has been received?

YES Make a log entry when the file has been sent?

YES Display the file name when the file has been sent?

NO This file is actually a list of files to be sent?

1= Help 3= Quit 5= Execute and Quit 10= Execute 12= Cursor
===)

MACRO-READ 1 FILE

Figure 28. Sample SENDFILE Menu

In Figure 28., the sender typed an asterisk for filename, "data" for
filetype, and "a" for filemode. The name of the recipient (sleepy) is
also typed on the screen. When PF5 (or PF10) is pressed, a special
FILELIST screen is displayed. The files to be sent can be selected from
this screen (shown in Figure 29.).

SNOWHITE FILELIST A1 V 105 TRUNC=105 SIZE=418 LINE=1 COLUMN=1
Type I S I in front of each file to be sent, and press pf10.

Cmd Filename Filetype Fm Format Lrecl Records Blocks Date Time

I
I
I
1

WISTFUL DATA A1 V 95 34 2 10/04/80 21:12:041
s BOSS DATA A1 V 95 29 2 10/04/80 20:58:071

DUMMY DATA A1 V 107 281 10 10/04/80 17:59:001
s GROUCHY DATA A1 V 92 101 4 10/02/80 15:33:05

PRINCE DATA A2 V 75 28 1 9/25/80 12:10:03
s SNOOZY DATA A2 V 120 277 10 9/24/80 9:14:02

SNIFFLES DATA A1 V 26 7 1 9/23/80 16:50:06
WITCH DATA A1 V 80 489 30 8/26/80 16:05:08

1=Help 2=Refresh 3=Quit 7=Backward 8=Forward 9=FL/n
4=Sort(type) 5=Sendfile 6=Sort (size) 10=Execute 11=XEDIT 12=Cursor
===)

XEDIT

Figure 29. Sample FILELIST Screen Invoked from SENDFILE

To send one or more of these files, you can type a letter "s" in front
of the filename of each file you want sent (see above) and then press
the PF10 key. You can also position the cursor on the line describing
the file you want to send, and then press the PF5 key.

296 IBM VM/SP CMS Command and Macro Reference

~\

SENTRIES

SENTRIES

Use the SENTRIES command to determine the number of lines currently in
the program stack. When you issue a SENTRIES command, CMS returns the
number of lines in the program stack (but not the console input buffer)
as a return code. The format of the SENTRIES command is:

SENTRIES I

!!§age Notes

If you issue a SENTRIES command in an EXEC that bas the SERBOR statement
in effect, a nonzero SENTRIES return code causes the SERROR statement to
execute.

Section 2. CMS Command~ 297

SET

SET

Use the SET command to establish, turn off, or reset a particular
function in your CMS virtual machine. Only one function may be
specified per SET command. ihe format of the SET command is:

SET function
r , r ,

functi2!l.§: I BLIP string[(count))I IRDYB,§§ l!l1SGI
I BLIP ON I IRDYMSG SMSGI
IBLIP OFF I L .J

L .J

r , r r , ,
[LDRTBLS nn] 1l!.HPAGE f] I IINPUT I a xxi I

IRELPAGE OFFI I I xx yyl I
L .J L L .J .J

[OUTPUT [xx a]]
r , r , r ,
IABBR~'y ON I IREDTYPE ON I I IMPEX ON I
IABBREV OFFI I REtTYPE ----- OHI IIMPEX OFFI
L .J L .J L .J

r , r , r ,
IIMPC~ ON I IPROTECT Q'! I I AUTOREAD ON I
IIMPCP OFFI I PROTECT OFFI IAUTOREAD OFFI
L J L .J L .J

r fmos ~
, r rmos ~

,
ISYSNAME CMSVSAM entryname I I NONSHARE CI1SVSAM I
I CMSAMS I I CMSAMS I
I CMSSEG I I CMSSEG I
L CBSBAM .J L CMSBAM .J

r ,
ICMSTYPE {HT}I
I RT I
L .J

fMSLQQ'§ fUl!ctio.!!.2:
r , r ,
IDOS ON [mode [(V SAM[)]]] I I DOSLNCNT nnl
IDOS OFF I L J

L .J

r , r ,
IUPSI nnnnnnnni IDOSPART nnnnKI
IUPSI OFF I IDOSPARi OFF I
L .J L .J

BLIP string[(count)]
defines the characters that are displayed at the terminal to
indicate every two seconds of virtual interval timer time.
This time is made up of virtual processor time plus, if the
REALTIMER option is in effect, self-imposed wait time. Blips
may also be caused by the execution of the STIMER macro.

298 IBM VM/SP CMS Command and Macro Beference

J

BLIP ON

SET

You can define up to eight characters as a blip string; if you
want trailing blanks, you must specify count. ON and OFF must
not be used as BLIP characters.

sets the BLIP character string to its default, which is a
string of nonprintable characters. ON is the default for
typewriter devices. !he default BLIP character provides no
visual or audio-visual signal on a 3767 terminal. You must
define a BLIP character for a 3767 if you want the BLIP
function.

BLIP OFF turns off BLIP. OFF is the default for graphics devices.

RDYffSG

Note: The BLIP operand will be ignored when issued from the
CMS batch machine.

LffSG
---Indicates that the

current and elapsed
Ready message is:

standard CMS
time, is used.

R; T;s.mm/s.mm hh:mm:ss

ready message, including
The format of the standard

where the virtual processor time, real processor time, and
clock time are listed.

RDYMSG SffSG

LDRTBLS nn

indicates that a shortened form of the CMS ready message (R;)
which does not include the time is used.

defines the number (nn) of pages of storage to be used for
loader tables. To successfully set the size of the loader
tables, the SET LDRTBLS command must be issued immediately
after IPL. By default, a virtual machine having up to 384K of
addressable real storage has two pages of loader tables; a
larger virtual machine has three pages. Each loader table
page has a capacity of 204 external names. During LOAD and
INCLUDE command processing, each unique external name
encountered in a !EXT deck is entered in the loader table.
The LOAD command clears the table before reading TEXT files;
INCLUDE does not. This number can be changed with the SET
LDRTBLS nn command provided that: (1) nn is a decimal number
between 0 and 128, and (2) the virtual machine has enough
storage available to allew nn pages to be used for loader
tables. If these two conditions are met, nn pages are set
aside for loader tables. If you plan to change the number of
pages allocated for loader tables, you should deallocate
storage at the high end of storage so that the storage for the
loader tables may be obtained from that area. Usually, you
can deallocate storage by releasing one or more of the disks
that were accessed.

releases page frames of storage and sets them to binary zeros
after the following commands complete execution: ASSEMBLE,
COPYFILE, COMPABE, EDIT, MACLIB, SORT, TXTLIB, UPDATE, HELP,
and the program product language processors supported by
VM/SP. These processors are listed in the Vff/SP Introduction.

RELPAGE OFF
does not release pages of storage after the commands listed in
the RELPAGE ON description complete execution. Use the SET
RELPAGE OFF function when debugging or analyzing a Froblem so
that the storage used is not released and can be examined.

Section 2. CMS Commands 299

SET

INPUT a xx
translates the specified character a to the specified
hexadecimal code xx for characters entered from the terminal.

lN1>UT xx yy
allows you to reset the hexadecimal code xx to the specified
hexadecimal code yy in your translate table.

Note: If you issue SEi INPUT and SET OUTPUT commands for the
same characters, issue the SET OUTPUT command first.

INPUT returns all characters to their default translation.

OU!rPUT xx a
translates the specified hexadecimal representation xx to the
spe'cified charac.ter "a" for all xx characters displayed at the
terminal.

OU~PUT returns a~l characters to their default translation.

ABBREV OFF

~: Output trapslaticn does not occur for SCRIPT files when
the SCBIPi command output is directed to the terminal, nor
when you use the CMS editor on a display terminal in display
mode.

accepts system and user attreviations for system commands. The
SYNONYM command makes the system and user abbreviations
available.

accepts only the full system command name or the full user
synonym (if one is availatle) for system commands.

For a discussioI! of the relationship of the SET ABBBEV and
SYNONYM commands~ refer to the SYNONYM command description.

REDTYPE ON

UlPEX OFF

IlfPCP OFF

types CMS error .messages in red for certain terminals equipped
with the appropriate terminal feature and a two-color ribbon.
Supported terminals are described in the !~SP Terminal User's
Guid§.

suppresses red tjping of error messages.

treats EXEC files as commands; an EXEC file is invoked when
the filename of the EXEC file is entered.

does not consider EXEC files as commands. You must issue the
EXEC command to ~xEcute an EXEC file.

passes command I!ames that CMS does not recognize to CPi that
is, unknown commands are considered to be CP commands.

generates an error message at the terminal if a command is not
recognized hy CMS.

jjeTECT ON
--protects the CMS nucleus against writing in its storage area.

300 IBM VB/SP CMS Command and Macro Reference

SET

PROTECT OFF
does not protect the storage area containing the CMS nucleus.

AUTOREAD ON
specifies that a console read
after command e~ecution. ON is
nonbuffered terminals.

is to be issued immediately
the default for nondisplay,

AUTO READ OFF
specifies that you do not want a console read to be issued
until you Fress the Enter key or its equivalent. OFF is the
default for display terminals because the display terminal
does not lock, even when there is no READ active for it.

~: If
reconnect
unchanged.

you disconnect from one type of terminal and
on another type, the AUTOBEAD status remains

SiSNAME ~~:~!~~M~ entrynam~
CMSSEG
CMSBAM
allows you to ~eflace a saved system name entry in the
SYSNAMES table with the name of an alternative, or backup
system. A separate SET SISKAME command must be issued for
each name entry to be changed. CMSDOS, CMSVSAM, CMSAMS, and
CMSSEG are the default nanes assigned to the systems when the
CMS system is generated,.

NONSHARE ~ ~:i!:~M~
CMSSEG
CMSBAM

CMSTiPE HT

CMSTYPE RT

specifies that you want your ow~ nonshared copy of a normally
shared named system.

suppresses CMS terminal display within an EXEC. All CftS
terminal display from an EXEC, except for CMS error messages
with a suffi~ letter of'S' or 'T', is suppressed until the
end of the EXEC file or until a SET CHSTYPE RT command is
e~ecuted.

resumes CMS terminal disFlay which has been suppressed as a
result of a previous SET CMSTYPE HT command.

Note: &STACK HT and SE~ CMS~iPE HT have the same effect when interpreted
by the CMS EXEC processor. Similarly, &STACK RT and SET CMSTYPE RT are
equivalent for the CMS EXEC processor. However, when using EXEC 2, the
commands &STACK HT and &STACK R~ cause the characters "HT" and "RT" to
be placed in the progra& stack and do not affect the console output.
These characters must be used by a program or cleared from the stack.
Otherwise, you will receive an "UNKNOWN ep/CMS COMMAND" error message
when they are read from th~ frogram stack.

The followiny functions d~scribe the SET
CMS/DOS environment.

DOS ON places your CMS virtual machine

operands that apply to the

in the CMS/DOS environment.

Section 2. CMS Commands 301

,

SET

mode

VSAM

The logical unit SYSLOG is assigned to your terminal.

specifies the mode letter at which the VSE system residence is
accessed; the logical assignment of SYSBES is made for the
indicated mode letter.

specifies that you are going to use the AMSERV command or you
are going to execute programs to access VSAM data sets.

returns your virtual machine to
All previously assigned system
are unassigned.

the normal CMS environment.
and programmer logical units

DOSLNCNT nn
specifies the number of SISLST lines fer page.
integer from 30 to 99.

UPS I nnnnnnnn

nn is an

sets the UPSI (user Program Switch Indicator) byte to the
specified bit string of O's and 1's. If you enter fewer than
eight digits, tfte UPSI byte is filled in from the left and
zero-padded to the right. If you enter an "x" for any digit,
the corresponding tit in the UPSI byte is left unchanged.

UP~! OFF resets the UPSI byte to binary zeros.

DOSPART nnnnnK
specifies the size of the virtual partition in which you want
a program to ex~cute. The value, nnnnnK, may not exceed the
amount of user free storage available in your virtual machine.
Iou should use this function only when you can control the
performance of a particular program by reducing the amount of
available virtua~ storage.

!ote: In rare circumstances, it may happen that when a program
is executed, the amount of storage available is less than the
current DOSPART. !hen, only the a.ount of storage available is
obtained; no message is issued.

OFF
--Specifies that you no longer want to control your virtual

machine partitiop size. When the DOSPART setting is OFF, CMS
computes the partition size whenever a program is executed.

US.2!l~ Notes

1. If you issue the SE! cemmand specifying an invalid function and the
implied CP fUnction is in effect, you may receive message
DMKCFC003E INVALID OP!ION - option.

2. If an invalid SET command fUnction is specified from an EXEC and
the imp~ied CP function is in effect, then the return code is
-0003.

None. To determine or verify the setting of a function, use the QUERY
command.

302 IBM VM/SP CMS Command and Macro Reference

Messages ~g Return Codes

DMSLI00021 FILE Ifni i~iLIE NOT FOUND BC=O
DMSSET014E INVALID FUNCiION 'function' BC=24

SET

DMSSET026E INVALID PARAME~ER 'parameter' FOR 'function' FUNCTION RC=24
LMSSET031E LOADER TAELIS CANNOT EE MODIFIED RC=40
DMSSET047E NO FUNCTION SPECIFIED RC=24
DMSSET048E INVALID MODE 'mode' RC=24
DMSSETOSOE PARAMETER MISSING AF1EB 'function' BC=24
DMSSET061E NO TRANSLATION CHARACTER SPECIFIED BC=24
IMSSET070E INVALID PABAMETEE 'parameter' BC=24
DMSSET098i CMS as SIMULATION NOT AVAIIABLE BC=4
DftSSET099E CMS/DOS ENVIRONBENT NOi ACUVE BC=40
DMSSET100i SISTEB NAME 'name' NOT AVAILABLE BC=4
DMSSET142S SAVED SISTEM NAME 'name' INVALID BC=24
DftSSET333E nnnnnK PABTITION TOO LARGE FOB THIS VIRTUAL BACHINE RC=24
tMSSET400S SISTEM 'sysname' DOES NOi EXIST RC=44
DMSSET401S V.ft. SIZE (size) CANNeT E~CEED 'DMSDOS' START ADDRESS

(address) RC=104
DMSSET410S CONTROL PROGRAM ERBOR INDICATION 'retcode' RC=nnn

Note: In BC=nnn, the nnn represents the actual error code
generated by CPa

DMSSET444E VOLUME 'label' IS NOT A DOS SISRES BC=32

Section 2. CMS Commands 303

SETPRT

SETPRT

Use the SETPRT command to load a virtual 3800 printer. The SETPRT
command is valid only for a virtual 3800 printer.

SETPRT I
I
I
I
j

I
j
I
I

Chars [(]cccc.~. [)]]
COpies [(]nnn·()]
COPInr [(]nnnI)]
Fcb [(]ffff[)]
FLash [(]ffff[)]
Init
Modify [(]mmmm[D][)]

CHARS cccc •••

COP~ES nnn

COPINE nnn

FCB ffff

specifies the na~es of from one to four character arraDgement
tables (CATS) te be loaded into the virtual 3800. CAT names
may be from one to four alphameric characters. The CATs must
exist as 'XTE1cccc TEXT' files on an accessed CMS disk.

specifies the total
printed. ~he value
The default value is

number
of DDD
1.

of copies
must be a

of each page to be
Dumber from 1 to 255.

specifies the capy number of the first copy in a copy group.
The value of DnD must be a number from 1 to 255. If COPYNR is
not specified, a startiDg copy number of 1 is assumed.

specifies the FCE to be loaded iDto the virtual 3800. The FCE
must exist as a 'ICE3ffff IEXT' file on an accessed CMS disk
unless ffff is specified as 6, 8, or 12.. In that case, the
FCB is not leaded from a CMS file. CP determines the
appropriate FCB to load and prints the eDtire file at 6, 8, or
12 liDes per inch.

ILASH id nnn

IN~T

MODIFY

specifies the on.e- to four-character overlay Dame (id) and the
number of copies of each page (Dnn) to be priDted with the
overlay indicated by lid'. nnn may be a number from 0 to 255.
If D is not specified, 1 is the default. If the FLASH keyword
is omitted, no copies are printed with an overlay.

specifies that an
before any othex
performed.

"IDitialize PriDter"
fUDctioDS specified

ccw will be issued
in this commaDd are

mmmm [n]
specifies copy modification data to be
modification must exist as a 'MOD1mmmm
accessed CMS disk. Further, n specifies
the copy modification lead. If n is
default.

copy loaded. The
TEXT' file

the CAT to
omitted, 0

on an
use for
is the

304 IBM VM/SP CMS Command and Macro Reference

SETPRT

Note: Keyword values must be enclosed
be interpreted as a SETPRi keyword or
the parentheses may te omitted.

in parentheses only if they could
keyword abbreviation. otherwise

illg~ !2tes :

1. The values specified with the COPYNR, COPIES, and FLASH keywords
override values specified in the SPOOL command except that multiple
copies specified in the SEOOL command result in that number of
retransmissions of the file.

2. CATs must be specified so that they correspond to the appropriate
TRC bytes. The first CAT specified corresponds to TRC byte 0, the
second CAT corresFonds to iRC tyte 1, and so on.

3. CATs can reference the Library Character Set modules that IEBIMAGE
supports.

4,. If the number of copies specified with the FLASH keyword is greater
than the number of cOFies sFecified in COPIES nnn, the actual
number of copies printed will equal the number specified with the
FLASH keyword. Thus, if you want all copies to be printed with an
overlay, you can specify the number with the FLASH keyword and omit
the COPIES keyword.

5,. The use of 'INIT' and 'FCB 6/8/12' together causes the printer to
always be reset to 6 lines Fer inch as would the use of 'INIT'
alone. Both the INIT CC~ and the 'CP SPOOL OOE FCB 6/8/12'
generated by the 'FCB 6/8/12' are passed to CPo The LOADFCB CC~ is
sent ot the printer before the INIT CCW. This resets the FCB to
the Init IMPL Default of 6 lines per inch. 'INIT' and 'FCB ffff'
does not have this problem, since 'FCB ffff' is handled directly by
CHS.

DHSSPR1961 PRT cuu SETUP COMPLETE
The virtual 3800 printer was successfully loaded.

DMSSPR002E FILE 'fn ft' NOT FOUND
DMSSPR014E INVALID KEYWORD 'keyword'
DHSSPR026E INVALID VALUE 'value' FOR 'keyword' KEYWORD
DHSSPRl13S PRINTER 'OOE' NO~ ATiACHED RC=100
DMSSPR145S INTERVENTION RECUIRED ON PRINTER RC=100
DMSSPR197S UNDIAGNOSED ERR~R FROM PRINTER 'OOE' RC=100
DMSSPR198E SETPRT CAUSED A LOAD CHECK - SNS=ssssssssss
DHSSPR199E PRT OOE NeT A VIRTUAL 3800
DMSSPR204E TOO HANY WCGM NEEDED FOR CHARS
DMSSPR352E INVALID SETPRT ~ATA IN FILE 'fn ft'

Section 2. CMS Commands 305

SSERV

SSERV

Use the SSERV command in
book from a VSE source
command is:

CMS/DOS to copy,
statement library.

display, print, or punch a
The format of the SSERV

I
j
, SSERV

r ,
sublib book name I ft I

I COP.! ,
[(options... [)]]

I ,
I
I
I ,

L .J

.Q.J2tions:
[1l~!]
[PUNCH

[PR.INT]
[TER!]

sublib specifies the source statement sublibrary in which the book is
cataloged.

bookname specifies the· name of the book in the VS! private or system
source statement sublibrary. The private library, if any, is
searched bEfore the system library.

ft specifies the filetype of the file to be created on your
A-disk. ft defaults to COpy if a filetlpe is not specified.
The filename is always the same as the bookname.

Options: You may enter as many options as you wish, depending upon
the functions you want to perform.

~ copies the book to a CMS file.

PUNCH punches thE book on the virtual punch.

PRINT spools a copy of the book to your virtual printer.

TERM displays the book on your terminal.

Usa9.!l Notes

1. If you want to copy books from private libraries, you must issue an
ASSGN command for the logical unit SYSSLB and identifl the library
on a DLBL command line using a ddname of IJSYSSL.

If you want to copy books from the slstem library, you must have
entered the CMS/DOS environment specifying the mode letter of the
system residenCE volume.

2. Iou should not use the SSERV command to copy books from macro (E)
sublibraries, since they are in "edited" (that is, compressed)
form. Use the ESERV command to copy and de-edit macros from a
macro (El sublilrary.

When you use the TEEM option, the specified book is displayed at the
terminal.

308 IEM VM/SP CMS Command and Macro Reference

l DMSSRV003E INVALID OPTION 'option' RC=24
DMSSRV004E BOOK 'subl_book' NOT FOUND RC=28
DMSSRV006E NO READ/WRITE 'A' DISK ACCESSED RC=36
DMSSRV070E INVALID PARAMETER 'parameter' RC=24
DMSSRV097E NO 'SYSRES' VOLUIH ACTIVE RC=36
DMSSRV098E NO BOOK NAME SPECIFIED RC=24
DHSSRV099E CMS/DOS ENVIRONMENT NOT ACTIVE RC=40
DMSSRV105S ERROR 'nn' WRITING FILE 'tn ft fm' ON DISK RC=100
DMSSRV113S DISK (cuu) NeT ATTACHED RC=100
DMSSRV411S INPUT ERROR CODE 'nn' ON '{SYSRESISYSSLB}' RC=100
DMSSRV194S BOOK 'subl.book' CONTAINS BAD RECORDS RC=100

SSERV

Section 2. CMS Commands 309

START

START

Use the START command to begin execution of CMS, OS, or VSE programs
that were previously loaded or fetched. The format of the START command
is:

START
r ,
, entry [aIg~., ••] I
, *
, {option [)]

I
I

L J

entry passes control t9 the control section name or entry point name
at execution tim~. The operand, entry, may be a filename only
if the filename is identical to a control section name or an
entry point name.

* passes control to the default entry point.
of the LOAD command for a discussion of
point selection.

See the discussion
the default entry

args ••• are arguments to te passed to the started program. If user
arguments are specified, the entry or * operands must be
specified; otherwise, the first argument is taken as the entry
point. Arguments are passed to the program via general
register 1. The entry operand and any arguments become a
string of doublewords, one argument per doubleword, and the
address of the list is placed in general register 1.

Q,Etion:

NO suppresses execution of the program. Linkage editor and loader
functions are performed and the program is in storage ready to
execute, but control is not given to the program. START * and
START (NO) are mutually exclusive.

Usage !totes:

1. Any undefined names cr references specified in the files loaded
into storage are defined as zero. Thus, if there is a call or
branch to a subroutine from a main program, and if the subroutine
has never been loaded, the call or branch transfers control at
execution time to location zero of the virtual machine.

2. Do not use the S7AR7 command for programs that are generated via
the GEHMOD command with the NOMAP option. The START command does
not execute properly for such programs.

3. When arguments are passed on the START command, the requirements of
both CMS and the language of the application program must be met.
For example, COBOL pr.ograms require arguments separated by commas:

START * A,f,C

See the appropriate language guide for details on parameter
requirements.

310 IBM VM/SP CMS Command and Macro Reference

S~AR~

4,. Issue the S~AR~ command immediately following the LOAD and INCLUDE
commands. If tbe LOAD and INCLUDE were issued in an EXEC
procedure, issue the S~AR~ command from within the EXEC as well.

5. If START
register
extended
register

is issued from the virtual console or from an EXEC 2 EXEC,
o points to an extended parameter list block. The
parameter list for the START command pointed to by

o has the follcving structure:

DC A (EPLCMD)
DC A (EPLABGBG)
DC A(EPLABGGN~

DC A (0)

where:

START entry

+
EPLCMD

or:

START entry

t
EPLCMD

or:

STAR~

+ +
EPLCMD

EPLABGBG
EPLARGND

any arguments

t
EPLA.BGBG

t
EPLABGE.G
EPLABGND

t
EPLABGND

~sponses

DMSLI0740I EXECOT~ON BEG~NS •••

is displayed when the designated entry point is validated.

This message is sUfpressed if CMS/DOS is active and the COMP option
is specified in the FETCH command.

DBSL~0021E EN~BY PO~NT 'name' NeT FOOND BC=40
DBSLI0055E NO ENTRY FO~NT DEFINED RC=40

Section 2. CBS Commands 311

STATE/STATEW

STATE/STATEW

Use the STATE command to verify the existence of a CMS, OS, or DOS file
on any accessed disk; use .the SiATEii command to verify the existence of
a C~S, OS, or DOS file on any accessed read/write disk. The formats of
the STATE and STATEW commands are:

[

I {STATE }
j STATn

.!here:

fn

ft

fm

is the filename of the file whose existence is to be verified.
If fn is specified as *, the first file found satisfying the
rest of the fileid is used.

is the fi~etype of the file whose existence is to be verified.
If ft is specified as *, the first fi~e found satisfying the
rest of the fileid is used.

is the filemode of the file whose existence is to be verified.
If fm is omitted, or specified as *, a~l your disks are
searched.

1. If you issue the SUTEW command specifying a file that exists on a
read-only disk, you receive error message D~SSTT002E.

2,. When you code an asterisk in the fn or ft fields, the search for
the file is ended as soon as any file satisfies any of the other
conditions~ Par example, ~he command:

state * file

executes successfully if any file on any accessed disk (including
the system disk) has a filetype of PILE.

3. To verify the existence of an OS or VSE file when DOS is set OFF,
you must issue the FILEDEF command to establish a CMS file
identifier for the file. For example, to verify the existence of
the OS file TEST.DATA on an OS C-disk you could enter:

filedef check disk check list c dsn test data
state check list

where CHECK LIST is the CMS filename and filetype associated with
the OS data set name.

4. To verify the existence of an OS or VSE file when the CMS/DOS
environment is active, you must issue the DLBL command to establish
a CMS file identifier for the file. For example, to verify the
existence of the DOS file TEST. DATA on a DOS C-disk, you could
enter:

dlbl check c dsn test data
state file check

312 IBM VM/SP C~S Command and Macro Beference

STATE/STATEW

where FILE CHECK is the default CBS filename and filetype (FILE
ddname) associated with the VS! file-id.

5. You can invoke the S7A7E/S7ATEi command trom the terminal, from an
EXEC tile, or as a function from a program. If STATE/STATEi is
invoked as a function or from an EXEC file that has the &CONTROL
NOMSG option in effect, the message DMSSTT002E FILE 'fn ft fm' NOT
FOUND is not issued.

The CMS ready message indicates that the specified file exists.

DBSSTT2271 PROCESSING VOLUBE 'no' IN DAU SET 'data set name'

The specified
processed is
end-of-volume
switching.

data set has multiple volumes; the volume being
shown in the message. The STATE command treats
as epd-ot-file and there is no end-oi-volume

DMSSTT2281 USER LABELS BIPASSED ON tATA SET 'data set name'

The specified data set has disk user labels; these labels are
skipped.

DMSSTT002E FILE 'fn it fm' NOT 10UND RC=28
DMSSTT048E INVALID MODE 'mode' RC=24
DMSSTT054E INCOHPLE7E IILEID SPECIFIED RC=24
DMSSTT062E INVALID 'char' IN FILEID 'fn ft' RC=20
DMSSTT069E DISK 'mode' N07 ACCESSED RC=36
DMSS!rT070E INVALID PARA8E7lli 'parameter' RC=24
DHSSTT229E UNSUPPORlED as tAiA SET, ERROR 'code' RC=code
DMSSTT253E FILE 'fn it fm' CAN NOT BE HANDLED WITH

SUPPLIED ILIST RC=88

Section 2. CMS Commands 313

SVCTRACE

SVCTRACE

Use the SVCTRACE command
supervisor calls occurring
SVCTRACE command is:

to trace and record
in your virtual machine.

information about
The format of the

SVCTrace

ON starts tracing all SVC instructions issued within CBS.

OFF stops SVC tracing.

U~age Notes

1. The trace informatio~ recorded on the printer includes:

• The virtual storage location of the calling SVC instruction and
the name of the called program or routine

• The normal and error return addresses

• The contents 0.£ the general r,egisters both before the SVC-called
program is given centrol and after a return from that program

• The contents of the general registers when the SVC handling
routine is finished frocessing

• The co~tents of the floating-point registers before the
SVC-called program is given control and after a return from that
program

• The contents of the floating-point registers when the SVC
handling routine is finished processing

• The parameter list passed to the SiC

2. To terminate tracing previously established by the SVCTRACE
command, issue the HO or SVCTBACE OFF commands. SVCTBACE OFF and
HO cause all trace information recorded, up to the point they are
issued, to be printed on the virtual spooled printer. On
typewriter terminals SVCTRACE OFF can be issued only when the
keyboard is unlocked to accept input to the CBS command
environment. To terminate tracing at any other point in system
pIocessing, HO must be issued. To suspend tracing temporarily
during a session, interrupt processing and enter the Immediate
command SO (Suspend !racing). To resume tracing that was suspended
with the SO command, enter the Immediate command BO (Besume
Tracing) •

If you issue the CMS Immediate command HX or you log
VM/SP system before termination of traci~g previously set
SVCTRACE command, th~ switches are cleared automatically
recorded trace information is printed on the virtual
printer.

314 IBM VM/SP CMS Command and Macro Reference

off the
by the

and all
spooled

If a user timer ~xit is activated while SVCTBACE is
SVCTBACE is disabled for the duration of the timer exit.
issued during the timer exit are not reflected in the
listing.

SVCTRACE

active,
Any SVCs
SVCTRACE

3. When tracing on a virtual machine with only one printer, the trace
data is intermixed with other data sent to the virtual printer.

Besponses

A variety of information is Frinted whenever the:

SVCTBACE ON

command is issued.

The first line of trace output starts with a dash or plus sign or an
asterisK (- or + or *). The format ox the first line of trace output
is:

{:}
N/D = xxx/dd name FRO!! loc CLDPSW = psw1 GOPSi = psw2 [RC=rc]

indicates information recorded before processing the SVC.

+ indicates informaticD recorded after processing the SVC, unless
the asterisk (*) aFFlies.

* indicates information recorded after processing a CMS SVC that
had an error returD.

N/D

xxx

dd

name

loc

psw1

psw2

rc

is an abbreviation for SVC number and depth (or level).

is the number of t,he SVC call (they are numbered sequentially).

is the nesting level of the SVC call.

is the macro or routine being called.

is the program location from which the SVC was issued.

is the PSi at the time the SVC was called.

is the PSW with which the routine being called is invoked, if
the first character of this line is a dash (-). Ix the first
character of this line is a plus sign or asterisk (+ or *), PSi2
represents the PSi that returns control to the user.

is the return code from the SVC handling routine in general
register 15. This field is omitted if the first character of
this line is a dash (-), or if this is an os SVC call. For a
CMS SVC, this fie~d is 0 if the line begins with a plus sign
(+), and nonzero for an asterisk (*). Also, this field equals
the contents of R15 in the "GPBS AFTER" line.

Section 2. eMS Commands 315

SVCTRACE

The next two lines of output are the
registers when control is Fassed to the SVC
output is identified at the left by ".GPRSB".
is:

contents of the general
handling routine. This
The format of the output

.GPBSB h h h h h h ~ h *dddddddd*
h h h h h h h h *dddddddd*

where ~ represents the contents of a general register in hexadecimal
format and g represents the EBCDIC translation of the contents of a
general register. ihe contents of general registers 0 through 7 are
printed on the first line, with the contents of registers 8 through F on
the second line. The hexadecimal contents of the registers are printed
first, followed by the EECDIC translation. The EBCDIC translation is
preceded and followed by an asterisk(*).

The next line of output is the contents of general registers 0, 1,
and 15 when control is returned to your program. The output is
identified at the left by ".GPRS AFTER :". The format of the output is:

.GPRS AFTER: RO-R1 = h h *dd* R15 = h *d*

where ~ represents the hexadecimal contents of a general register and g
is the EBCDIC translation of the contents of a general register. The
only general registers that CMS routines alter are registers 0, 1, and
15 so only those registexs are printed when control returns to your
pr.ogram. The EBCDIC translation is preceded and followed by an asterisk
(*) •

The next two lines cf output are the contents of the general
registers when the SVC handling routine is finished processing. This
output is identified at the left by ".GPBSS." The format of the output
is:

_GPBSS = h h h h h h h h *dddddddd*
= h h h h h h 9 h *dddddddd*

where ~ represents the hexadecimal contents of a
represents the EBCDIC tran~lation of the contents
General registers 0 through 7 are printed on
registers 8 through F on the second line. The
preceded and followed by an asterisk (*).

general register and g
of a general register.

the first line with
EBCDIC translation is

The next line of outp.ut is the contents of the
fl~ating-point registers. ihe output is identified
".FPRS". The format of the output is:

calling routine's
at the left by

_FPBS = f f f f *gggg*

where! represents the hexadecimal contents of a floating-point register
and ~ is the EBCDIC translation of a floating-point register. Each
floating point register is a doutleword; each f and g represents a
doubleword of data. The EBCDIC translation is preceded and followed by
an asterisk (*).

The next line of output is the contents of floating-point registers
when the SVC handling routine is finished processing. The output is
identified by ".FPBSS" at the left. The format of the output is:

.FPRSS = f f f f *gggg*

where! represents the hexadecimal co~tents of a floating-point register
and ~ is the EBCDIC translation. Each floating-point register is a
doubleword and each f and 9 represents a doubleword of data. The EBCDIC
translation is preceded and followed by an asterisk (*).

316 IBft VM/SP CMS Command and Macro Reference

J

SVCTRACE

The last two lines of output are printed only if the address
register 1 is a valid address for the virtual machine. If printed,
output is the parameter list passed to the SVC. The output
identified by ".PARB" at the left. The output format is:

.PARK = h h h h h h h h *dddddddd*
= h h h h h h h h *dddddddd*

in
the
is

where h represents a word of hexadecimal data and d is the EBCDIC
translation. The paramete~ list is found at the address contained in
register 1 before control is passed to the SVC handling program. The
EBCDIC translation is preceded and followed by an asterisk (*).

Figure 30 summarizes the types of SVC trace output •

• I Identification comments
1--
: {:} N/D

I
I .GPRSB
I
I
I . GPRS AFTER

.GPRSS

,.FPRS

,.FPRSS

• PARB

I

The SiC and the routine that issued the svc..

Contents of general registers when control is passed
to the SiC handling routine.

Contents of general registers 0, 1, and 15 when
control is returned to jour program.

Contents of the general registers when the SVC
handling routine is finished processing.

Contents of floating-point registers before the
SVC-called program is given control and after
returning from that program.

Icontents of the floating-point registers when the
I SVC handling routine is finished processing.
I
IThe para~eter list, when one is passed to the SVC •

Figure 30. Summary of SiC irace output Lines

DBSOVR014E INVALID FUNCTION 'function' RC=24
DBSOVR047E NO FUNCTION SPECIFIED RC=24
DBSOVR104S ERROR Inn' RlAtING FILE 'DBSOVR BODULE' ON DISK RC=100
DBSOVR109S VIRTUAL S~ORAGE CAPACITY EXCEEDED RC=104

Section 2. CBS Commands 317

SYNONY!

SYNONYM

Use the SYNONYM command to invoke a table of synonyms to be used with,
or in place of, CMS and user-written command names. You create the
table yourself using the CBS editor. The form for specifying the
entries for the table is described under "The User Synonym Table."

The names you define caQ te used either instead of or in conjunction
with the standard CMS command truncations. However, no matter what
truncations, synonyms, OJ: tJ:uncations of the synonyms are in effect, the
full real name of the command is always accepted. The format of the
SYNONYM cOlllland is:

fn

fll

1.

SYNonym
r r
'fn InNO]!!
I I
L L

r
1f.'11
1~1 ~ 1 I
I * 1..1..1
L ..I

((options ••• ()]]

r ...
~PtiQB§: I~ I (CLEAR]

Ili0STDI
L ..I

is the filename of the file containing your synonyms table.

is the filellode of the file containing your synonyms; if
omitted, your A-disk and its extensions are searched. If you
specify fm, you must enter the keyword, SYNONYM. If you
specify fm as an asterisk (*), all disks are searched for the
specified SYNONYB file.

Options:

ill specifies that standard Cl!!S abbreviations are accepted.

NOSTD standard CMS abbreviations are not to be accepted. (The full
CMS command and the synonyms you defined can still be used.)

CLEAR relloves any synonym table set by a previously entered SYNONYM
command.

If you enter the SYNONYM command with no
synonym table and the user synon]m table
listed.

operands, the system
(if one exists) are

2,. The SET ABBREV ON OJ: elF command, in conjunction with the SYNONYM
command, .deterllines which standard and user-defined forms of a
particular CBS cOllmand are acceptable.

3,. EXEC procedures having a synonym defined for them can be invoked by
its synonym if implied EXEC (IMPEX) function is on. However,
within an EXEC procedure, only the EXEC filename can be used. A
synonym is not recognized within an EXEC since the synonym tables
are not searched during EXEC processing.

318 IBB VM/SP CMS Command and Macro Reference

SYNONYM

7HE USER SYNONYM TAELE

You create the synonym table using the CMS editor. The table must be a
file with the filetype SYNONYM. The file consists of 80-byte
fixed-length records in free-form format with columns 73-80 ignored.
Th~ format for each rEcord is:

systemcommand usersynonym count

where:

systemcommand
is the name of the CMS command or MODULE or EXEC file for which lOU
are creating a synonym.

usersynonym
is the synonym you are assigning to the command name. When you
create the synonym, you must follow the same syntax rules as for
commands; that is, yeu must use the character set used to create
commands, the synonym may be no longer than eight characters, and
so on.

count is the m1n1mum numb~r of characters that must be entered for the
synonym to be accepted by eMS. If omitted, the entire synonym must
be entered (seE the following example).

A table of command synonyms is built from the contents of this file.
You may have several synonym files but only one may be active at a time.
For example, if the synonym file named MYSYN contains:

MOVEFILE MVIT

then, after you have issued the command:

synonym mysyn

the synonym MVIT can be entered as a command name to execute the
MOVEPILE command. It cannot be truncated since no count is specified.
If MYSYN SYNONYM contains:

ACCESS GETDISK 3

then, the synonyms GET, GElD, GETDI, GETDIS, or GETDISK can be entered
as the command name instEad of ACCESS.

If you have an EXEC file named TDISK, you might have a synonym entry:

TDISK TDISK 2

so that you can invoke the EXEC procedure by specifying the truncation
7D.

The default values of the SET and SYNONYM co~mands are such that the
system synonym abbreviation table is available unless otherwise
specified.

for the FILEDEF command states
Therefore, the acceptable
FILE, FILED, FILEDE, and

table is available whenever
effect.

The system synonym abbreviation table
that PI is the minimum truncation.
abbreviations for FILEDll are: II, FIL,
FILEDEF. The system sinomym abbreviation
both SET ABBREV ON and SYNONYM (STD) are in

Section 2. eMS Commands 319

SYNONYM

If you have a synonym table with the file identification USER TAB
SYNONYM A, that has the entry:

~ILEDEF USENAME 3

then, USENAME is a synonym for
OSENAME are: USE, USEN, USENA,
abbreviation table is available
OSERTAB are specified.

FILEDEF, and acceptable truncations of
OSENAM, and USENAME. The user synonym
whenever both SET ABBREV ON and SYNONYM

No matter what synonyms and truncations are defined, the full real
name of the command is always in effect.

Figure 31
available for
commands.

lists the forms of the system command and user synonyms
the various combinations of the SET ABBREV and SYNONYM

When you enter the SYNONYM command with no operands, the synonym
table(s) currently in effect are displayed.

SYSTEM
COMMAND

USER
SYNONYM

SHORTEST
FORM (IF ANY)

This response is the same as the response to the command QUERY
SYNONYM ALL.

DMSSYN7111 NO SYSTEM SYNONYMS IN EFFECT

This response is displayed when you issue the SYNONYM command with
no operands after the command SYNONYM (NOSTD) has been issued.

DMSSYN7121 NO SYNONYMS (DMSINA NOT IN NUCL~US)

The system routine which handles SYNONYM command processing is not
in the system.

DMSSYN002E FILE 'fn ft fm' NOT FOUND RC=28
DMSSYN003E INVALID OPTION 'option' R.C=24
DMSSYN007E FILE 'fn ft fm' NOT FIXED, 80 CHAR RECORDS RC=32
DMSSYN032E INVALID FILETYPE 'ft' RC=24
DMSSYN056E FILE 'fn ft fm' CONTAINS INVALID RECORD FORMATS RC=32
DMSSYN066E 'option AND 'option' ARE CONFLICTING OPTIONS RC=24
DMSSYN104S ERROR Inn' BEAtING FILE 'fn ft fm' FROM DISK RC=100

320 IBM VM/SP CMS Command and Macro Reference

Options

SET ABBIiEV ON
SYN USERTAB (STD

SET ABBREV OFF
SYN USERTAB (STD

SET ABBREV ON I
SYN USERTAB (NOSTDI

I
I
I
I
I
I
I
I

Acceptable
Co~mand
Forms

FI
FIL

FILEDEF
USE
USEN

USENAME

iIL.EDEF
USENAME

FILEDEF
USE
USEN

USENAME

SET ABBIiEV OFF I ilLEDEE
SYN USERTAB (NOSTDI USENAME

I
I
I
I
I
I
I
I
I

SYNONYM

Comments

The ABBREV ON option of the SET
command and the STD option of the
SYNONYM command make the system
table available. The user synonym,
USENAME, is available
tecause the synonym table
(USERTAB) is specified on the

SYNONYM command. The truncations
for USENAME are available because
SET ABBREV ON was specified with
the USERTAB also available.

lihe user-defined synonym, USENAME,
I is permitted because the user
I synonym table (USERTAB) is speci
I fied on the SYNONYM command. No
I system or user truncations are
I permit ted.

IThe system synonym table is un-
I available because the NOSTD option
I is specified on the SYNONYM com-
I mand. The user synonym, USENAME,
I is available because the user syno
I nym table (USERTAB) is specified on
I the SYNONYM command and the trunca
I tions of USENAME are permitted
I because SET ABBREV ON is specified
I with USERTAB also available.

IThe system synonym table is made
I unavailable either by the SET
I ABBREV OFF command or by the SYN
I (NOSTD command. The synonym,
I USENAME, is permitted because the
I user-defined synonym table
I (USEIiTAB) is specified on the
I SYNONYM command. The truncations
I for USE NAME are not permitted
I because the SET ABBREV OFF option
I is in effect.

J--
I SET ABBREV ON
I SYN (CLEAR STD

SET ABBREV OFF
SIN (CLEAR STD

SET ABBREY ON
SIN (CLEAR NOSTD

SET ABBREY OFF
SIN (CLEAR NOSTD

FI
ilL

FILEDEE

FILEDEF

IThe user-defined table is nov un
I availablE. The system synonym
I table is available because both
I the ABBREV ON option of the SET
I command and the STD option of the
I SYNONYM command are specified.

IEecause CLEAR is specified on the
I SYNONYM command, the synonym and
I its truncations are no longer
I available. Either the SET AEEREV
I OFF command or the SYNONYM (NOSTD
I command make the system synonym
• table unavailable.
I

Eigure 31. System and User-Defined Truncations

Section 2. CMS Commands 321

TAPE

TAPE

Use the TAPE command to dump CMS-formatted files from disk to tape, load
previously dumped files from tape to disk, and perform various control
operations on a specified tape drive. Files processed by the TAPE
command must be in a unigue CMS format. !he TAPE command does not
process multivolume files. Disk files to be dumped can contain either
fixed- or variable-length records. The format of the TAPE command is:

TAPE DUMP

r

r ,
Ifml
I * I
L .J

r

[(optionA optionB optionD[) lJ

, ,
LOAD

l{;n} {ft} Ifml I
* IA I I

[(optionB optionC optionD[)]]

L L .J .J

r ,
SCAN I {;n} {;t}

I
I I

i (optionB optionC optionDi)]]

l .J

SKIP
r

{;n} {;t}

,
I I
I I

[(optionB optionC optionD[)]]

L .J

DVOL1
WVOL1 volid [owner]

[(optionD optionEt:)]]
[(optionD optionE()]]

MODESET
r ,

tapcmd Inl
111

[(optionD[)))

((optionD[)]]

Q£tionE:

L .J

r "1 r ,
liiiM I IBLKSIZi{4096} I
I NO iiTl!1 I 800 I
L .J L .J

r ,
INOPRintl
IPRint I
11§il I
IDISK I
L .J

r ,
IEOT I
IEOF nl
IEOF 11
L .J

rr "
II TAPn II
111AP1 II
I L .J I
I r , I
Ilcuu JI
Ilill II
LL .JJ

r ,
IREWINDI
11ll!! I
L .J

r ,
j7TRACKI [DEN den] [TRTCH a]
19TRACKI
L .J

322 IBM VM/SP CMS Command and Macro Reference

\~

DUMP

lOAD

SCAN

SKIP

{fn} {ft}(fm]
• • (*]

dumps one or more disk files to
specified as an asterisk (*) all
file identifier are dumped.

TAPE

tape. If fn and/or ft is
files that satisfy the other

If fm is coded as a letter, that disk and its extensions are
searched for th~ specified filets). If fm is coded as a
letter and number, only files with that mode number and letter
(and the extensions of the disk referenced by that fm letter)
are dumped. If fm is coded as asterisk (*), all accessed
disks are searched for the specified file(s). If fm is not
specified, only the A-disk and its extensions are searched.

({fn} {ft}[fm]]
[* * fA]J

reads tape files onto disk. If a file identifier is
specified, only that one file is loaded. If the option EOP n
is specified and no file identifier is entered, n tape files
are written to disk. If an asterisk (*) is specified for fn
or ft, all files within Eep n that satisfy the other file
identifier are loaded.

The files are written to the disk indicated by the filemode
letter. The filemode numter, if entered, indicates that only
files with that ~ilemode number are to be loaded.

H;n}{;t}1
positions the tape at a specified point, and lists the
identifiers of the files it scans. Scanning occurs over n
tape marks, as specified by the option EOF n (the default is 1
tape file). However, if a file identifier (fn and ft) is
specified, scanning stops upon encountering that file; the
tape remains positioned ahead of the file.

H;n }{;t}~
positions the tape at a specified point and lists the
identifiers of the files it skips. Skipping occurs over n
tape marks, as specified by the option EOP n (the default is 1
tape mark). However, if a file identifier (fn and ft) is
specified, skipping stops after encountering that file; the
tape remains positioned immediately following the file.

80DESET sets the values specified by the DEN, TRACK, and TRTCH
options. After initial specification in a TAPE command, these
values remain in effect for the virtual tape device until they
are changed in a subseguent TAPE command, RDTAPE, WRTAPE, or
TAPECTl macro. .See Usage Note 7 for further explanation.

r ,
tapcmdlnl specifies a tape control function (tapcmd) to be executed n

111 times (default is 1 if n is not specified). These functions
L.I also work on tapes in a non-CMS format.

1apcmd
BSF
BSR
ERG
FSP
PSR
HEW

Actio.!!
Backspace ~ tape marks
Backspace ~ tape records
EraSE gap
Forward-space ~ tape marks
Forward-space ~ tape records
Rewind tape to load point

Section 2. CMS Commands 323

TAPE

DVOLl

WVOLl

Tapcmd
RUN
WTM

Action
Rewind tape and unload
write ~ tape marks

displays an 80-character VOLl label in EBCDIC on the user's
terminal if such a label exists on the tape. If the first
record on the tape is not a VOLl label, an ~rror message is
sent to the user.

volid [owner]
writes a VOLl label on a tape. All fields are set to the
same values they are set to when a VOLl label is written by
the IBM-supplied IEHINITT utility program (see the
publication Q~!~l M V§ Utiliti~§ for details) " The volid is
set to the 1- to 6-character volid specified on the command.
If ,the user specifies owner field, it is written in the owner
name and address code field of the label. It can be up to
eight characters long and left-justified in the 10-byte field
in the label. If not specified, the owner field is set to
blanks. ~he iVCLl option also writes a dummy HDRl label and
tape mark after the VOLl label.

Options:

If conflicting options are specified, the last one entered is in
effect.

WTM writes a tape mark on the tape after each file is dumped.

writes a tape mark after each file is dumped, then backspaces
over the tape mark so that subseguent files written on the
tape are not separated ty tape marks.

BLKSIZE 4096
BLKSIZE 800

specifies the si2e of the tape data block at which the files
are to be dumped (not including a five-byte prefix).

NOPRINT does not spool the list of files dumped, loaded, scanned, or
skipped to the printer.

PRINT

DISK

EOT

EOF n
~QK 1

TAPn
18n

r
spools the list of files dumped, loaded, scanned, or skipped
to the printer.

displays a list of files dumped, loaded, scanned, or skipped
at the terminal.

creates a disk file containing the list of files dumped,
loaded, scanned, or skipped. The disk file has the file
identification of ~APE MAP AS.

reads the tape until an end-of-tape indication is received.

reads the tape through a maximum of ~ tape marks. The
default is EOF .1.

specifies the symbolic tape identification (TAPn) or the
actual device address of the tape to be read from or written
to where n is 1, 2, 3, or 4. The default is TAPl or 181.
The unit specified by cuu must previously have been attached
to your CMS virtual machine before any tape I/O operation can
be attempted. Only symbolic names TAPl through TAP4 and
virtual device addresses ~81 through 184 are supported.

324 IBM VM/SP CMS Command and Macro Reference

TAPE

7TRACK specifies a 7-track tape. Odd parity, data convert on, and
translate off are assumed unless TRTCH is specified.

9TRACK specifies a 9-track tape.

DEN den is the tape deusity where den is 200, 556, 800, 1600, or
6250. If 200 or 556 is specified, 7TRACK is assumed. If
1600 or 6250 is specified, 9TBACK is assumed; if 800 is
specified, 9!RACK is assumed unless 7TRACK is specified. In
the case of eit_her 800/1600 or 1600/6250 dual-density drives,
1600 is the default if the 9TRACK option is specified. If
neither the 97BACK option nor the DEN option is specified,
the drive operates at whatever bpi the tape drive was last
set.

TRTCH a is the tape recording technique for 7-track tape. If TRTCH
is specified, 7TRACK is assumed. One of the following must
be specified as "a":

REWIND
1EA!]l

Usa~ Notes

~ Meani1!g
o Odd pa~ity, data convert off, translate off
OC Odd parity, data convert on, translate off
OT Odd paxity, data convert off, translate C~
E Even parity, data convert off, translate c:f
ET Even parity, data convert off, translate au

are only valid for the DVOLl and WVOL1 functions,.
specify the positioning of a tape after the VOLl

They
is

processed. If REiiIND is specified, the tape is rewound and
positioned at load point. If LEAVE (the default) is
specified, the tape is positioned at the record immediaxely
after the VaLl label.

1. Tape records written by the ces TAPE DUMP command are either 805
bytes long, if the option BLKSIZE is specified as 800; or 4101
bytes long if the BLKSIZE is specified as, or defaults to, 4096.
The first character is a binary 2 (X'02'), followed by the
characters CMS and a file format byte. For a variable format file,
the file format byte is V,. For a fixed format file without null
blocks, the file format byte is F; otherwise the file format byte
is S. In the final record, the character N replaces the file
format byte, and the data area contains CMS file directory
information. A tape created at 4096-byte block size is not
reloadable on a CMS system that does not have the multivalue
BLKSIZE option on the TAPE command; however, the 800-byte BLKSIZE
option provides backward compatibility to such a system.

2. If a tape file contains more CMS files than would fit on a disk,
the tape load operation may terminate if there is not enough disk
space to hold the files. 70 prevent this, when you dump the files,
separate logical files by tape marks, then forward space to the
appropriate file.

3. Because the CMS file directory is the last record of the file, the
TAPE command creates a separate workfile so that backspacing and
rereading can be avoided when the disk file is built. If the load
criteria is not satisfied, the workfile is erased; if it is
satisfied, the workfile is renamed. This workfile is named TAPE
CMSUT1, which may exist it a previous TAPE command has abnormally
terminated. If the work tile is accidentally dumped to tape and
subseguently loaded, it appears on your disk as TAPE CMSUT2.

Section 2. CMS Commands 325

TAPE

4~ The RUN option (rewind and unload) indicates completion before the
physical operation is comFleted. Thus, a subsequent operation to
the same physical device may enc_ounter a device busy situation.

5. It is possible to run a tape off the reel in at least one
situation. If you sF~cify EOF ~ and ~ is greater than the number
of tape marks on the taFe, the tape will run off the reel.

6, DVOL1 and WVOL1 are the only TAPE command functions that
automatically process tape labels. TAPE DUMP does not
automatically write labels on a tape when it writes the dump file,
and TAPE LOAD does not recognize tape labels when loading a file.

7. To reset the mode of a variable tape drive when using an IBM
standard label tape for output, rewrite the VOL1 label before
processing tape using the TAPE WVOL1 command. This is a hardware
restriction which allows changes to the tape drive mode only when
the tape is at load point. If yeu are writing to a non-label tape,
use the TAPE MODESE~ command to set the mode. The first write
operation will cause the mode to be reset since the tape will be at
loadpoint when the write takes Flace.

8. Do not use TAPE DVOL1 for a tape that you suspect to be blank. If
you do, and the tape -is blank, it will run off the reel.

9. The options for the 8809 tape drive. must be 9TRACK and DEN 1600.
Note that these are the default values, so you do not need to
specify them.

10. For more information on tape file handling, see the VM/SP CMS
!!~r's Q!!id,!!.

DMSTPE7011 NULL FILE

A final record was encountered and no prior records were read in a
TAPE LOAD operation. No file is created on disk.

If the TERM option is in effect, the following is displayed at the
terminal depending on the operation specified:

LOADING •••••
fn ft fm

SKIPPING •••••
fn ft fm

DUMPING •••••
fn ft fm

SCANNING., ••••
fn ft fm

326 IBM VB/SP CMS Commano and Macro Reference

\~

TAPE

When a tape mark is encountered, the following is displayed at the
terminal if the TERM oFtiQn is specified:

END-OF-PILE OR END-OP-TAPE

DMSTPE002E PILE 'fn ft fm' NO! FOUND BC=28
DMSTPE003E INVALID CPTICN 'option' RC=24
DMSTPE010E PREMATURE EOP OB FILE 'fn ft fm' RC=40
DHSTPE014E INVALID lUNCiION 'function' RC=24
DBSTPE017E INVALID DEVICE ADDRESS 'cuu' RC=24
DBSTPE023E NO PILETYEE SEECIFIED RC=24
DHSTPE027E INVALID DEVICE 'device name' RC=24
DKSTPE029E INVALID PARAMETEB 'parameter' IN THE OPTION 'option' PIELD

RC=24
DMSTPE037E DISK 'mode' IS READ/eNLY BC=36
DBSTPE042E NO PILEID SPECIFIED RC=24
DMSTPE043E 'TAPn(cuu)' IS FILE PROTECiEL RC=36
DHSTPE047E NO PUNCTION SPECIFIED RC=24
DBSTPE048E INVALID HODE 'mode' RC=24
DBSTPE057E INVALID RECORD FORMA! RC=32
DHSTPE058E END-OP-FILE OR END-OF-TAPE RC=40
DHSTPE069E DISK 'mode' NO! ACCESSED RC=36
DHSTPE070E INVALID PARAME!EB 'parameter' RC=24
DHSTPE096E FILE 'fn ft' DATA BLOCK COUNT INCORRECT RC=32
DBSTPE104S ERROR 'nn' READING FILE 'fn ft fm' PROH DISK RC=100
DBSTPE105S ERROR 'nn' WRITING FILE 'fn ft fm' ON DISK RC=100
DHSTPEll0S ERROR REAtING '!APn(cuu)' RC=100
DHSTPElllS ERROR WRliING 'TAPn(cuu)' RC=100
DBSTPEl13S TAPn(cuu) NOT ATTACHED RC=100
DHSTPEl15S (CONVERSIONI {719}-TRACKI {80016250} BPIITRANSLATIONIDUAL

DENSITY) FEATURE NOT SUPPORTED ON DEVICE 'cuu' RC=88
DHSTPE431E 'TAPn(cuu), VOLl LABEL HISSING RC=32

Section 2. CMS Commands 327

TAPEIUC

TAPEMAC

Use the TAPEMAC command to create a CMS MACLIB from an unloaded
partitioned data set (PDSj from a tape created by the IEHMOVE utility
Frogram under os. The P~S from which the tape was created can be
blocked, but the logical record length must be 80. The format of the
TAREMAC command is:

r ,
TAPEMAC fn 1.21 (labeldefid] 1 ((options[)]]

fn

SL

j NSL file_name (ID=identifier] 1
L ~

Optio!l§':'
r , r ,
ITAPnjlITEMCT llYlll
IIAR1"~TEAfT 5000QI
L ~ L ~

specifies the fi~e~ame of the first, or only, CMS MACLIB to be
created on the A-disk. If fn MACLIB already exists on the
A-disk, the old one is erased; no warning message is issued.

means tha t the .taFe has
without a labeldefid.
standard header labels
terminal. If labeldefid
not displayed, but are
routine.

standard labels. The default is SL
With the default specification, the
are only displayed on the user's

is specified, the standard labels are
checked by the tape label checking

NSL means that the tape has nonstandard labels.

labeldefid
identifies the LABELDEF command that supplies descriptive
label information for the file to be processed. The
laheldefid giveD here must match the 1- to 8-character
identifier specified as the filename on the LABELDEF command
that was previously issued.

filename is the CMS filename of a routine to process nonstandard
labels. The fi~etype must be TEXT or MODULE. If. both TEXT
and MODULE files exist, the MODULE file is used. MODULE files
that are used for NSL routines with the TAPEMAC command must
be created so that they start at an address above 1'21000'.
This prevents the NSL modules from overlaying the command.
See the section "Tape Lal:els in CMS" in the VM/SP CMS User's
Quide for details cn how to write routines to process
nonstandard labels.

ID=identifier
specifies a 1- to 8-character identifier to be passed to a
user-written NSL routine. You may use the identifier in any
way you want t.o identify the file being processed. The
identifier is passed to the user routine exactly as specified
in the ID operand. If an identifier is not specified, blanks
are passed. See the section IITape Labels in CMS" in the VM/SP
CMS Q§~~ Guid~ for details on communicating with routines
that process nonstandard labels.

328 IBM VM/SP CMS Command and Macro Beference

'j

TAPEMAC

options:

TAPn specifies the symbolic address of the tape, where n is a number
between 1 and 4 corresponding to virtual device addresses 181
through 184, respectively. The default is TAP1.

ITEMCT yyyyy
specifies the item count threshold of each MACLIB to be
created, which is the aaximum number of records to be written
into each file. (commas are not allowed). If ITEMCT is not
specified, the default is 50000.

1. Tape records are read and placed into fn HACLIB until the file size
exceeds the IT~HCT (item count); loading then continues until the
end of the current m_ember is reached. Then another CMS file is
created; its filename consists of the number 2 appended to the end
of the filename specified (fn) if the filename is seven characters
or less. The appended number overlays the last character of the
filename if the na.e is eight characters long. Loading then
continues with this new name. For example, if you enter the
command:

tapemac mylib

you may create files named !ILIB MACLIB, HILIB2 HACLIB, HILIB3
HACLIB, and so on.

This process continues until up to nine CMS files have been
created. If more data exists on the tape than can fit in nine CMS
files, processing is terminated with the error message DMSTHA139Sw
A maclib created by the TAPEHAC command may contain a maximum of
256 directory entries.

2. Only header labels of the first file encountered are displayed or
checked if SL or SL labdefid is specified. Trailer labels are not
processed or displayed; they are skipped.

3.. The following examples illustrate the different ways tape labels
are processed by TAPEHAC. 7he command

tape mac mac6 sl

displays any standard VOL1 or HDB1 labels on a tape before loading
maclib HAC6. It does not stop before loading the MACLIB.

If you specify

labeldef taplab fid macfile crdte 77106
tapemac mac8 sl taplab

CMS checks the HDR1 label on the tape before loading MAC8. It uses
the information you supplied in the LABELDEF command TAPLAB to
check the label. If there are discrepancies between fields you
specified in the LABELDEF command and in the actual tape label, the
MACLIB is not loaded.

Section 2. CMS Commands 329

TAPElIAC

If you specify

tapemac mac10 nsl ns13

CMS uses your own routine NSL3 to process tape labels before
loading MAC10.

Responses

The TAPEMAC command displays the message:

LOADING fn MACLIB

for each macro libra~y created.

Other Messages and Retu!.B Codes

DMSTMA001E NO F~LENAME SPEC~FIED RC=24
DMSTMA003E INVALID OPTION 'option' RC=24
DMSTMA057E INVALID BECORD ~ORMA7 BC=32
DMSTMA069E DISK 'mode' NOT ACCESSED RC=36
DMSTMA070E INVALID PARAMETEB 'parameter' BC=24
DMSTMA105S ERROR nn iBITIN~ FILE fn ft ON DISK BC=100
DMSTMA109S VIRTUAL STORAGE CAPACITY EXCEEDED BC=104
DMSTMA110S ERROB REAE~NG TAPn RC=100
DMSTMA137S ERROB nn ON STATE FOR fn ft RC=100
DMSTMA138S ERROR nn ERASIN~ 'fn ft' BEFORE LOADING TAPE RC=100
DMSTMA139S TAPE FILE EXCEEDS 9 eMS MACLIBS RC=104
DMSTMA420E NSL EXIT FILENAME MISSING OR INVALID RC=24

330 IBM VM/SP CMS Command and Macro Reference

TAPPDS

TAPPDS

Use the TAPPDS command to create CftS disk files from tapes that are used
as input to or output from the follcwing OS utility programs:

• IEBPTPCH tape files must be the
operation from either a
set in os. The default
have been issued:

result of an IEBPTPCH punch
seguential or partitioned data
attributes (IEBPTPCH DCB) must

DCB=(BECFM=FA,LBECL=81,BLKSIZE=81)

• IEBUPDTE -- tape files may be blocked or unblocked and must be in the
format acceFted by IEBUPDTE as "control data set" (SYSIN)
input with a control statement

• IEHliOVE

.j ADD .•••

preceding the records to be placed in each partitioned
data set member (OS) or separate CMS file (eMS».

unloaded partitioned data sets are read.

The tape can contain os standard labels or be unlabeled. The format
of the TAPPDS command is:

TAPPDS

fn

ft

fm

r r
Ifn 1ft
I * I *
I I
L 1

OEtj..2.!!§:

r ",
If!DIU
IA11 ..
1* I I I
L .J.J.J

r ,
IU~ I
I BOPDS I
IUPDAT!I
L .J

r ,
I END I
I NOEN.QI
L .J

r ,
151 [lateldefid) 1
INSL filename [ID=identifier]1
L .J

((options[)))
r ,
ICOLl I
I]OCOLl j
L .I

r ,
j MAXTEN I
l]QM!ml
L .J

r ,
ITAPnl
j~APll
L .J

is the filename of the disk file to be created from the
seguential tape file. If the tape contains members of a
partitioned data set (EDS), fn must be specified as an
asterisk (*); one file is created for each member with a
filename the same as the member name. If NOPDS or UPDATE is
specified and you do not specify fn or specify it as an
asterisk (*), the default filename is TAPPDS.

is the filetYPE of the newly created files. The default
filetypes are CMSUTl (for PDS or NOPDS) and ASSEMBLE (for
UPDATE). The defaults are used if ft is omitted or specified
as *.

is the mode of the disk to contain
field is omitted or specified as
assumed.

the new files. If this
an asterisk (*), A1 is

Section 2. CMS Commands 331

TAPPDS

SL means that the tape has standard labels. The default is SL
without a labeldefid. iith the default specification, the
standard labels are displayed at the user's terminal. If
labeldefid is specified, the standard labels are not
displayed, but are checked by the tape label checking
routine.

NSL means that the tape has nonstandard labels.

labeldefid identifies the LABELDEF command, which supplies descriptive
label information for the file to be processed. The
labeldefid given here must match the 1- to a-character
specified as t.he filename on the LABELDEF command that was
previously issued.

filename is the CMS filename of a routine to process nonstandard
labels. The filetype must be TEXT or MODULE. If both TEXT
and MODULE files exist, the MODULE file is used. MODULE
files that are used for NSL routines with the TAPPDS command
must be created so that they start at an address above
X'21000'. 7his prevents the MODULE files from overlaying the
command. See tlle section "Tape Labels in CMS" in the VM/SP
CMS Use~§ Guide for details on writing routines to process
nonstandard labels.

ID=identifier
specifies a 1- to a-character identifier to a user-written
NSL routine. 19U may use the identifier in any way you want
to identify th~ file being processed. The identifier is
passed to the user routine exactly as specified in the
operand. If an identifier is not specified, blanks are
passed. See tile section "Tape Labels in CMS" in the V!/SP
~ User's Guide for details on communication with routines
that process no~standard labels.

late: If either SL or NSL is specified for tape label processing, the
fn, ft, and fm operands must all be specified. They may be specified by
asterisks (*) if you want default values; however, none of the three
operands may be omitted.

QEtions: If conflicting options are specified, the last one entered
is the one that is used. All options, except TAPn, are ignored when
unloaded (IEHMOVE) PDS tapes are read.

~DS indicates that the tape cGntains member& of an OS partitioned
data set, each preceded by a ME~BE.R IA!?"=name statement. The
tape must have teen created by the OS IEBPTPCH service
program if this option is specified.

NOPDS indicates that the contents of the tape ~ill be placed in one
CMS file.

UPDATE indicates that the tape file is in IEBUPDTE control file
format. The filename of each iiI", is taken from the IAME=
parameter in the ".1 ADD" J:Ii-,:.ord that precedes each member.
(See Usage Note 2.)

COLl reads data from columns l-~O. iou should specify this option
when you use the UPDATE cptiuA.

!OCOLl reads data from columns 2-81; column 1 contains control
character information. This is the format produced by the OS
IEBPTPCH service program.

332 IB! VB/SF CMS Command and Macro .Reference

J

TAPn

END

NOEND

is the tape
representing
respectively.

unit numter. n can be 1, 2,
virtual units 181, 182, 183,
If not specified, TAPl is assumed.

TAPPDS

3, or 4,
and 184,

considers an END statement (characters 'END' in columns 2-5)
a delimiter for the current member.

specifies that END statements are not to be treated as member
delimiters, but are to be processed as text.

MAXTEN reads up to ten members.
option is selec.ted.

This is valid only if the PDS

NO!lAXTEN
reads any numbex cf members.

1. You can use the TAPE command to position a tape at a particular
tape file before reading it with the TAPPDS command. If the tape
has OS standard labels, TAPDDS will read and display the "VOL1" and
"HDR" records at the terminal. If the file 'you want to process is
not at the beginning of the tape, the TAPE command must be used to
position the tape at a Farticular tape file before reading it with
the TAPPDS command. Be aware that each file on an as standard
label tape is actuall'y three physical files (HDR, DATA, TRAILER).
If positioning to other than t.he first file, the user must skip
more physical tape files (3n-3 if positioning to the header labels,
3n-2 if positioning to the data file, where n is the number of the
file on the tape).

2. If you use the OPD.ATE option, you must also specify the COL 1
option. Each tape record is scanned for a H.I ADD" record
beginning in column 1. When a ".1 ADD" record is found, subsequent
records are read onto disk until the next ".1 ADD" record is
encoun tered or until a ".1 ENDUP" record is encountered.

A ".1 ENDUP" record or a tape mark ends the TAPPDS command
execution; the tape is not repositioned.

".1 label" records are not recognized by CMS and are included in
the file as data records.

If the NAME= parameter is missing on the ".1 ADD" record or if it
is followed by a bl~nk, TAPPDS uses the default filename, TAPPDS,
for the CMS disk fil.e. If this happens more than once during the
execution of the command, only the last unnamed member is contained
in the TAPPDS file.

3.. If you are reading a macro library from a tape created b'y the
IEHMOVE utility, you can create a CMS MACLIB file directly by using
the TAPEMAC command.

4. Only header labels of the first file encountered are displayed or
checked if SL or SL labeldefid is specified. Trailer labels are
not processed or displayed; they are skipped. When more than one
file is processed by one issuance of the TAPPDS command, only the
first file has its standard labels processed. Standard labels are
skipped on succeeding files.

5,. The following examples illustrate different ways in which tape
labels are processed by TAPPDS. If you specify

tappds fileg cmsut1 * sl

Section 2. eMS Commands 333

TAPPDS

then, before 10ad~ng the PDS into fi1eg, CMS displays a VOL1 and
HDR 1 label if it exists on the tape.. It does not stop before the
PDS is loaded; therefore, you cannot use the tape label to suppress
loading if the wrong tape has teen mounted.

If you specify

1abe1def 1abe12 fid pds1 valid xyz
tappds fileh cmsut1 * sl 1abe12

CMS uses the label information specified to check the label on the
tape before loading 19ur PDS. If there are discrepancies, the PDS
is not loaded.

If lOU specify

tappds filej * * nsl nonstd

CMS uses your own routine called NONSTD to process tape labels
before loading the PDS.

DMSTPD7031 FILE 'fn ft [fa]' COPIEt

The named file is copied to disk.

DMSTPD707I TEN FILES COPIED

The MAXTEN option was specified and tEn members have been copied.

Note: If the tape be~ng read contains standard OS labels, the labels are
displayed at the terminal.

DMSTPD003E INVALID CPTleN 'option' BC=24
DMSTPD058E END-OF-FILE OB END-OF-TAPE RC=40
DMSTPD105S ERROR Inn' WRITING FILE 'fn ft fm' ON DISK RC=100
DMSTPD109S VIRTUAL S70RAGE CAPACITY EXCEEDED RC=104
DMSTPD110S ERROR Inn' REAtING 'TAPn(cuu), RC=100
DMSTPD420E NSL EXn FILENAME MISSING OR INVALID RC=24

334 IBM VM/SP CMS Command and Macro Reference

TELL

I TELL

Use the TELL EXEC procedure to send a message to one or more computer
users on your computer or on other computers that are connected to yours
via the Remote Spooling Communications Subsystem (RSCS) network. These
users must be logged on to receive your message.

TELL is one of several commands that references a "userid NAMES" file.
By setting up a names file, you can identify recipients just by using
nicknames, which are automatically converted into node and userid. For
information on creating a NAMES file, see the NAMES command.

The format of the TELL command is:

ITELL

name

message

name message

is the "name" of the computer user to whom the message is to
be sent. If the same recipient is specified more than once,
he receives only one message. The "name" may take any of the
following forms:

• A "nickname" that can be found in the file "userid NAMES",
where "userid" is your userid. This nickname may represent
a single person (on your computer or on another computer),
or a list of people. If the nickname represents a list,
the message is sent to everyone on the list.

• A userid of a user on your computer.
found in the "userid NAMES" file, it
userid of someone on your computer.

If a name cannot be
is assumed to be a

• "userid AT node" which identifies a user ("userid") on your
computer or another computer ("node"). The "userid NAMES"
file is not examined in this case.

You cannot send messages to a userid named "AT" or CC:".

is the text of the message that is sent.

1. If the first word of your message is "at", you must use the third
form of "name" (shown above).

2. If the person to whom you are sending the message either is not
logged on or is not accepting messages (by issuing CP SET MSG OFF),
he will not receive the message.

DMSWTL637E Missing Nodeid for the AT operand. RC=24
DMSWTL647E Userid not specified for 'nickname' in 'Userid

NAMES' File. RC=32
DMSWTL648E Userid 'name' not found. No message has been sent.

RC=32
DMSWTL676E Invalid character '*' for Network ID. RC=20

Section 2. CMS Commands 335

TXTLIB

TXTLIB

Use the TXTLIB command to ~pdate CMS text libraries. The format of the
TXTLIB command is:

TXTlib GEN libname fn1 [fn2 '. ' ..]
ADD lil:name fn1 (fn2] oEi::i,Q!!§: ,. ,
DEL lillname membername1 (memllername2._.J ITEBM I

I~ I
MAP libname [(oFtions [) JJ IPBINTI

L .J

GEN creates a TXTLIB on your A-disk .• If a TXTLIB with the same
name already exists, it is replac~d.

ADD

DEL

MAP

adds TEXT files to the end
read/write disk. No checking
entry points, or CSECTs .•

of an existing TXTLIB on a
is done for duplicate names,

deletes memllers from a TXTLIB on a read/write disk and
compresses the TXiLIB to remove unused space. If more than
one member exists with the same name, only the first entry is
deleted.

lists the names (entry points) of TX~LIB members, their
locations in the library, and the number of entries.

lillname specifies the filename of a file with a filetype of TXTLIB,
which is to be created pr listed or from which members are to
be deleted or added.

fn 1 [fn2 •••]
specifies the name(s) of filets) with filetype(s) of TEXT,
that you want to add to a TXTLIB.

memllername1 [memllername2_ ••]
specifies the name(s) of TXTLIB memller(s) that you want to
delete.

options:

TEBM displays information about the TX~LIB on your terminal.

writes a CMS file, named litname MAP AS, that contains a list
of TXTLIB members.

PRINT spools a copy of the TXTLIB map to the virtual printer.

1. When a TEXT file is added to a lillrary, its membername(s) are taken
from the CSECT names or NAME statements in the TEXT file. Deletions
and LOAD or INCLUDE command references must be made on these names.
For example, a TEXT file with a filename of TESTPBOG that contains

336 IBM YM/SP eMS Command and Macro Reference

2.

TXTLIB

CSECTs named CHECK and RECHECK, when added to a TXTLIB, creates
members named CHECK and RECHECK.

Members must be deleted by their initial entry in the dictionary
(that is, their "name" or the first ID name). Any attempt to
delete a specific alias or entry point within a member will result
in a "Not found" message.

3_ If you want your TXTLIBs to be searched for missing subroutines
during CMS loader processing; you must identify the TXTLIB on a
GLOBAL command; for example:

global txtlib newlib

4. You may add OS li~kage editor control statements NAME, ALIAS,
ENTRY, and SETSSI to a TEXT file before adding it to a TXTLIB. You
must follow OS linkag~ editor conventions concerning format (column
1 must be blank) and placement within the TEXT file. The specified
entry point must be located within the CSECT.

5. TXTLIB members are not fully link-edited, and may return erroneous
entry points during d~namic loading.

6. The total number of memiers in the TXTLIB file cannot exceed 1000.
When this number is reached, an error message is displayed. The
total number of entry points in a member cannot exceed 255. When
this number is reached, an error message is displayed and the next
text file (if there is one) is processed. The text library created
includes all the text files entered up to (but not including) the
one that caused the cverflow.

7. TERM or PRINT options will erase the old MAP file, if one exists.

8. If you delete the last remaining member of a TXTLIB, the TXTLIB is
erased.

When the TXTLIB MAP command is issued with the TERM option, the contents
of the directory of the specified text library are displayed at the
terminal. The number of entries in the text library (xxx) is also
displayed. Note: Alias names follow the main member and they do not
have a location field.

ENTBY INDEX
name location

xxx ENTRIES IN LIERARY

DMSLBT001E NO FILENA~E SPECIfIED RC=24
DMSLBT002E FILE 'fn ft' NeT fOUND RC=28
DMSLBT002W FILE 'fn ft' NOT fOUND RC=4
DMSLBT003E INVALID CPTION 'option' RC=24
DMSLBT013E MEMBER 'name' NOT FOUND IN LIBRARY 'fn ft fm' RC=32
DMSLBT014E ,INVALID FUNCTION 'function' RC=24
DMSLBT037E D~SK 'mode' is READ/ONLY BC=36
DMSLBT046E NO LIBRARY NAME SPECIFIED RC=24
DMSLBT047E NO FUNCTICN SPE.CHIED BC=24
DMSLBT056E FILE 'fn ft zm' CONTAINS [NAMEIALIASIENTBYIESD] INVALID

Section 2. CMS Commands 337

TYPE

MEMBER
MEM {n:me}

displays member(s) of a library. If the format of the file is
MACLIB or TXTLIE, a MEMBER entry can be specified. If an
asterisk (*) is specified, all members of the library are
displayed. If a name is specified, only that particular member
is displayed.

!!§.2~ Notes

1. If the HEX option is specified, each record can be displayed in its
entiretYi if not, no _more than 130 characters of each recoxd can be
displayed.

2. The length of each output line is
current termi~al linesize (as
command), whichever is smaller.

limited to 130 characters or the
specified by the CP TERMINAL

3,. If the MEMBEB option is specified more than once, only the last
member specified will be typed. However, if one MEMBER option is
coded with an asterisk (*), and another MEMBER option is specified
with a membername, o~ly the member specified by membername will be
typed, regardless of their oxder o~ the command line.

For example, if you cpde:

TYPE ONE MACLIE (MEMBER EXABPLE1 MEMBER EXAMPLE2

only EXAMPLE2 viII be typed. If you code:

TYPE ONE MACLIB (MEMBER EXAMPLEl BEMBER *
only EXAMPLE1 will be typed.

~.§.E~

The file is
specifications.
a header record:

displayed at the terminal according to the given
When you lIse the HEX option, each record is preceded by

RECORD nnnnnnnnnn lEN~TH=nnnnnnnnnn

IlMSTYP002E
DMSTYP003E
DMSTYPOOSE
DMSTYP009E
DMSTU013E
DMSTYP029E

DMSTYP033E
DMSTYP039E
IlMSTYP049E
DMSTYP054E
IlllSTYP062E
DMSTYP069E
DMSTYP104S

FILE 'fn ft fm' NeT FOUND RC=28
INVALID OPTION 'option' RC=24
NO 'option' SP~CIFIEt RC=24
COLUMN 'col' EXCEEDS RECORD LENGTH
MEMBER 'name' NeT FOUND IN LIBRARY
INVALID PARAMETER 'parameter' (IN
RC=24
FILE 'fn ft fm' IS NCT A LIBRARY
NO ENTRIES IN LIBRARY 'fn ft fm'
INVALID LINE NUBBER 'line ~umber'
INCOMPLETE FILEID SPECIFIED RC=24
INVALID * IN IILEID RC=20
DISK 'mode' NOT ACCESSED RC=36
ERROE Inn' EEAtING FILE 'fn ft fm'

EC=24
RC=32

THE OPTION 'option' FIELD]

RC=32
RC=32

BC=24

FROM DISK RC=100

340 IBM VM/SP CMS Command and Macro Reference

UPDATE

UPDATE

Use the UPDATE command tp modify program source files. The UPDATE
command accepts a source input file and one or more files containing
UPDATE control statements ~nd updated source records; then it creates an
updated source output tile, an update log file indicating what changes,
if any, were made, and an update record file if more than a single
update file is applied to the input file. The format of the UPDATE
commaI!d is:

r r " Update fnl 1ft 1 Itml [fn2 (ft2 [fm2]]] I j [(options ••• [)]]
IASS~MBLE 111 I I
L L .J.J

r , r , r , r ,
QPtions: IREP I ISEQ8 I IINC j ICTl I

IlHlliEP I INOSEQ81 I NOINC I INOCTlj
L .J L ..J L .J L .J

r , r , r , r ,
IS'IK I ITERM I I DISK I ISTOR I
INOSTKI INOTERl'Ij j PRINT I IliOSTORI
L ..J L .J L .J L ..J

fn 1 ft 1 fm 1
is the file identifier of the source input file. The file
must consist of 80-character card image records with sequence
fields in positions 73 through 80 or 76 through 80. If the
filetype or filemode are omitted, ASSEMBLE and A1 are assumed,
respectively.

fn2 ft2 fm2
is the file identifier of the update file. If the NOCTL
option is in effect, this file must contain UPDATE control
statements and updated source records. The default file
identifier is fnl UPDATE Al. If the CTL option is specified,
this file must be a control file that lists the update files
to be applied; the default file identifier is fnl CNTRL Al.

REP creates an outpu± source file with the same filename as the
input source file. If the output file is placed on the same
disk as the input file, the input file is erased.

NOREP retains the old file in its original form, and assigns a
different filename to the new file, consisting of a dollar
sign ($) plus the first seven characters of the input filename
(fn 1) •

SEQ8 specifies that the entire sequence field (columns 73 through
80) contains an eight-digit sequence number on every record of
source input.

NOSEQ8
specifies that
field, and that
columns 76-80.

columns 73-75 contain a three-character label
the sequence number is a five-digit value in

Section 2. CMS Commands 341

UPDATE

INC

~: Source files sequenced by the CMS editor are seguenced,
by default, with five-digit seguence numbers.

increments seguence numbers in columns 73 through 80 in each
record inserted into the updated output file, according to
specifications in UPDATE control statements.

NOINC puts asterisks (********) in the seguence number field of each
updated record inserted from the update file.

CTL specifies that ~n2, ft2, and fm2 describe an update control
file for applying multiple update files to the source input
file. (See "7he C~I1 Option. ")

~: The CTL option implies the INC option.

!OCTL specifies that a single update file is to be applied to the
source input file.

STK stacks information from the
stack. S~K is valid only if
and is useful only when the
EXEC procedure.

control file in the CMS console
the CTL option is also specified

UPDATE command is executed in an

NOSTK does not stack control file information in the console stack.

TEBM displays warning messages at the terminal whenever a sequence
or update control card error is discovered. (Such warning
messages appear in the update log, whether they are displayed
at the terminal or not.)

NOTEBM suppresses the display of warning messages at
However, error messages that terminate the
procedure are displayed at the terminal.

the terminal.
entire update

DIS! places the update log file on disk. This file has a file
identifier "fn o.PDLOG", where "fn" is the filename of the file
being updated .•

PBINT prints the update log file directly on the virtual printer.

STOB specifies that the source input file is to be read into
storage and the updates performed in storage prior to placing
the updated souxce file on disk. This option is meaningful
only when used with the CTL option since the benefit of
increased proce~sing speed is reali2ed when processing
multiple updates. STOR is the default when CTL is specified.

specifies that no updating is to take place
NOSTOB is the default when single updates are
(CTL is omitted from the command line).

UPDATE CONTBOL STATEMENTS

in storage.
being applied

!he UPDATE control statements let you insert, delete, and replace source
records, as well as reseguence the cutput file.

All references to the sequence field of an input record refer to the
numeric data in columns 13-80 of the source record, or columns 16-80 if
NOSEQ8 is specified. Leading zeros in sequence fields are not reguired.
If no seguence numbers exist in an input file, a preliminary UPDATE with

342 IBM VM/SP CMS Command and Macro Reference

UPDATE

only the './ S' control .tatement can be used to establish file
seguencing.

Seguence numbers are checked while updates are being appliedi an
error condition results if any sequence errors occur in the update
control statements, and warnings are issued if an error is detected in
the sequencing of the input file. Any source input records with a
seguence field of eight blanks are skipped, without any indication of a
sequence error. Such records may be replaced or deleted only if they
occur within a range ef records that are being replaced or deleted
entirely and if that range has limits with valid seguence numbers.
Th.ere is no means provided for specif ling a sequence field of blanks on
an UPDATE control statement.

All UPDATE control statements are identified by the characters 1./' in
columns 1 and 2 of the 80-byte record, followed by one or more blanks
and additional, blank-delimited fields. Control statement data must not
extend beyond column 50.

SE.QJ!ENCE Cont!:ol Sta~~!!! -- resequences
in columns 73-80 (if SEQ8 is specified),
label placed in columns 73-75 (if NOSEQ8
the SEQUENCE control statement is:

the updated source output file
or in columns 76-80 with the

is specified). The format of

r---------------.----------------------------------,
_/ S (seqstrt (s~gincr (latel]]] I

segstrt

seqincr

label

is a one- to eight-digit numeric field specifying the
first dec~mal seguence number to be used. The default
value is JOOO if SEQ8 is specified and 10 if NOSEQ8 is
specified.

is a one- to eight-digit numeric field specifying the
decimal increment fer resequencing the output file.
The default is the "segstrt" value.

is a three-character field to be duplicated in columns
73-75 of each source record if NOSEQ8 is specified.
The default value is the first three characters of the
input filename (fnl).

If you use the SEQUENCE statEment, it must be the first statement in the
update file. If any valid control statement precedes it, the resequence
operation is suppressed.

When the sequence control statement is the first statement processed,
the sequence numbers in the source file are checked and warning message
1MSUPD210W is issued for any errors. If the sequence control statement
is processed after updates have been applied, no warning messages will
be issued.

Each source record is resequenced in columns 73-80 as it is written
onto the output file, including unchanged records from the source file
and records inserted from the update file.

Section 2. eMS Commands 343

UPDATE

lNSEj1 Control ~~~nt -- inserts all
next control statement, into the output
control statement is:

recoxds following it, up to the
file. The format of the INSERT

r-------------------------------.----------------,
./ I segno [$ [segstrt [segincr]]] I

segno

$

seqstrt

seqincr

is the s~quence number of the record in the source
input file following which new records are to be added.

is an ofticnal delimiter indicating that the inserted
records are to be sequenced by increments.

is a one- to eight-digit numeric field specifying the
first decimal number to be used for sequencing the
inserted xecords_

is a one- to eight-digit numeric field specifying the
decimal increment fox sequencing the inserted records .•

All records fol~owing the "./ I" statement, up to the next control
statement, are inserted in the output file following the record
identified by the "seq.no" field. If the NOINC option is specified, each
inserted record is identified with asterisks '********) in columns
73-80. If either the INC or CiL option is specified, the records are
inserted unchanged in the output file, or they are sequenced according
to the "seqstrt" and "seqincr" fields, if the dollar sign ($) key is
specified.

The default seguence increment, if the dollar sign is included, is
determined by using one tenth of the least significant, nonzero digit in
the seqno field, with a maximum of 100 .• The default segstrt is computed
as seqno plus the default seqincr. For examp~e, the control statement:

./ I 2600 S 2610

causes the inserted records to be seguenced XXX02610, XXX02620, and so
forth (NOSEQ8 assumed here). For the control statement:

./ I 240000 $

the defaulted segincr is the maximum, 100,
number is 240100. SEQ8 is assumed, so
seguenced 00240100, 002402.00, and so forth.

and the starting seguence
the inserted records are

If either INC or CTL is specified but· the dollar sign is not
included, whatever seguence number appears on the inserted records in
the update file is included in the output file.

344 IBM VM/SP CMS Command and Macro Reference

UPDATE

DELETE Control statement -- deletes one or more records from the source
file:- The format of the DELETE centrol statement is:

,
.1 D seqno1 [segno2 J [$] I L-~___~

where:

segno1

seqno2

$

is the sequence number identifying the first or only
record to tE deleted.

is the sequence number of the last record to be
deleted.

is an optional delimiter indicating the end of the
control fiElds.

All records of the input file, beginning at segno1, up to and
including the seqno2 record, are deleted from the output file. If the
segno2 field is omitted, only a single record is deleted.

BEPLACE Con!I21 Stat~ent -- replaces one or more input records with
updated records from the update file. The format of the REPLACE control
statement is:

I
.1 R seqno1 [seqno2] [$ [se9strt [segincrJJJI

where:

seqno1

segno2

$

seqstrt

seqincr

,

is the sequence number of the first input record to be
reflaced.

is the sequence number of the last record to be
replaced.

is an oftional delimiter key indicating that the
substituted records are to be seguenced incrementally.

is a one- to eight-digit numeric field specifying the
first decimal number to be used for sequencing the
substituted records.

is a one- to eight-digit numeric field specifying the
decimal increment for sequencing the substituted
records.

All records of the inp~t file, beginning with the seqno1 record, up
to and including the seqno2 record, are replaced in the output file by
the records following the "./ R" statement in the update file, up to the
next control statement. As with the ".1 D" (delete) function, if the
segno2 field is omitted, only a single record is replaced, but it may be
replaced by more than a single inserted record. The n.1 RIt (replace)
function is performed as a dElete followed by an insert: thus, the
number of statements inserted need not match the number deleted. The
dollar sign ($), segstrt, and segincr processing is identical to that
for the insert function.

Section 2. CMS Commands 345

UPDATE

fQMM~!1 ~tatement --allows inserting supplemental information that the
user may want. The format of the COMMENT statement is:

,
./ * [comment] I

~--~

* indicates that this is a comment statement and is only
copied into the update log file.

SUMMARY OF FILES USED BY ~HE UPIATE COMMAND

The following discussion shows input and output files used by the UPDATE
command for a:

• Single-level update
• Multilevel update
• Multilevel update with an auxiliary control file

Di§! ~cde 2! QB!~1 liJ~§: ~f several read/write disks are accessed when
the U?DATE command is invoked, the following steps are taken to
determine the disk upon which the output files are to be placed (the
search stops as soon as one of the following steps is successful):

1. If the disk on which the original source file resides is
read/write, then the output files are placed on that disk.

2. If that disk is a read-only extension of a read/write disk, then
the output files areflaced on that particular Lead/write disk.

3. If neither of the other steps is successful, the output files are
placed on the primary read/write disk (the A-disk).

fn ASSEMBLE
fn DPDA7E

update .in

fn !~SE~BLE is the source input file •

Sfn ASSEMBLE
fn UPDLOG

.f£ QPDA1~ contains UPDATE control statements and updated source input
records.

jfn !SSEMBLE is the updated source file, incorporating changes,
additions, and deletions specified in the update file. The output
filetype is always the same as the filetype of the input file. These

346 IBM VM/SP CMS Command and Macro Reference

UPDATE

default filetypes and filemodes can be overridden on the command line;
for example:

Ufdate testprog cobol b fix cotol b (rep

results in a source file 1ESTPROG CCBOL B being updated with control
statements contained in the file FIX COBOL B. The output file replaces
the existing TESTPBCG (OECL E.

!~ QPDLQ§ contains a record of updates applied. If you do not want this
file written on disk, specify the PRINT option.

fn ASSEMBl.E ,
fn CNTEL j $fn ASSEMBLE
fn UPDTABC I fn UFDLOG
fn UPDTXYZ , fn UPDATES

I
.J

update fn (ctl

fn ASSEMBLE is the source input file.

!~ CNTB1 is the control file that lists updates to be applied to the
source file. These default filetypes and filemodes can be overridden on
the command line; for examfle:

update acct pliopt a ~est cntrl a (ctl

results in the file 1ES1 CNTRL being used by the UPDATE command to
locate the update files fo~ ACCT PLIOPT.

fn UPDTABC and!~]g~111Z are update files containing UPDATE control
statements and new source records~ These files must have filenames that
are the same as the source input file. The first four characters of the
filetype must be 'UPDT'. .The UPDATE command searches all accessed disks
to locate the update files.

Ifn ASSEMBLE is the updated source file, incorporating changes,
additions, and deletionssFecified in the update files. The filetype is
always the same as the filetype of the source input file.

fn QgQbOG contains a record of updates applied. If you do not want this
file written on disk, sFecify the PEINT option.

!J! QPDATES summarizes theuFdates aFplied to the source file.

Section 2. CMS Commands 347

UPDATE

The CONTROL FILE (tn CNTRL) may not contain UPDATE control statements.
It may only list the filetypes of the files that contain UPDATE control
statements. This control file contains the records:

TEXT ftACS C!SLIB
TWO UPDTABC
ONE DPDTXYZ

where UPDTABC and Q~1111 are the filetypes of the update files. The
UPDATE command applies these updates to the source file beginning with
the last record in the control file. Thus, the updates in fn UPDTXYZ
are applied before the updates in fn DPDTABC.

When you create update files whose filetypes begin with 'UPDT', you
lIay omit these characters when you list the updates in the control file;
thus, the CNTRL file may be written:

TE~T ftACS CMSLIB
TWO ABC
ONE HZ

iEXT, TiQ, QNE: The first column of the control file consists of an
update level identifier, w~ich may be from one to five characters long.
These identifiers arE used by Vft/SP updating procedures, like the VBFASft
EXEC, to locate and identify text decks produced by multilevel updates.

MACS: The first record in the centrol file must be a MACS record that
contains an update level identifier (TEXT) and, optionally, lists up to
eight macro library (MACLIE) filenames.

UPDATE uses the information provided in the MACS card and the update
level identifier only when the STK option is specified. This
information is, however, r~guired in the CNTBL file.

fn ASSEMBLE
fn CNTRL
fn UPDTABC
fn UPDTXYZ
fn AUXLISi
fn FIX01
fn FIX02

update fn (ctl

L---___ ...J

Sfn ASSEMBLE
fn UPDLOG
fn UPDATES

fn ASSEMBLE, fn ~, !.!!UPDI!~~, f.!! DPDTll~, Ifn ASSj!§LE, fn UPDLOG,
and fn UPDATES are used as described, for "Multilevel Update," except
that~he CNTRL file contains:

TEXT ftACS CMSLIB
TWO UPDTABC
ONE UPDTXYZ
TE~T AUXLIST

348 IBM Vft/SP CftS Command and ftacro Reference

UPDATE

AU~ in the filetype AUXL157 indicates that this is the filetype of an
auxiliary control file that contains an additional list of updates. The
first three characters of .the filetlpe of an auxiliary control file must
be "AUX"; the remaining character(s) (to a maximum of 5) may be
anything. The filename must be the same as the source input file.

An auxiliary file may also be specified as:

xxxxx AUX

in the control file. For example, the record:

FIX TEST AUX

identifies the auxiliary tile fn AUX7EST.

Note that if you give an auxiliary control file the file type AUXPTF or
an update level identifier of AUX, the UPDATE command assumes that it is
a simple update file and dces not treat it as an auxiliary file.

PREFERRED AUX FILE: A preferred AOX file may be specified. A preferred
AUX file containS-the version of an update that applies to your version
of the source file. (There may be more than one version of the same
update if there is more than one version of the source file. For
example, you need one version for the source file that has a system
extension program product installed, and you need another version for
the source file that does not have a program product installed.)

When you specify an auxiliary control file, you can specify more than
one filetype. The first filetype indicates a file that UPDATE uses only
on one condition: the files that the second and subsequent filetypes
indicate do not exist. If they do exist, this AUX file entry is ignored
and no updating is done. The files that the second and SUbsequent
filetypes indicate are preferred because, if they exist, UPDATE does not
use the file that the first filetype indicates. For example, assume
that the file 'fn ASSEMBLE' does exist. The co~trol file MIMODS CNTRL:

TEXT MACS MIMACS CMSL1B OSMACRO

MI2 AUXTEST

MI1 AUXMINE AUX7ESl

and the command:

UPDATE fn ASSEMBLE * MIMODS CNTRL (CTL

would result in UPDAlE finding the preferred auxiliary control file 'fn
AUXTEST', and therefore not using 'fn AUXMINE' to update 'fn ASSEMBLE'.
UPDATE would then proceed to the MI2 AUXTEST entry and update 'fn
ASSEMBLE' with the updates listed in 'fn AUX7EST.' It is assumed that
AUXTEST and AUXMINE list similar but mutually exclusive updates.

The search for a "preferred" auxfile will continue until one is found or
until the token is an invalid filetype; that is, less than four or more
than eight characters. 7his token and the remainder of the line are
considered a comment.

fn FIXOj and fn !~X02 are update files containing UPDATE control
statements and new source records to be incorporated into the input
file. When update files are listed in an auxiliary control file, they
can have any filetlpe you choose but the filename must be the same as

Section 2. CMS Commands 349

UPDATE

the source input file.
be on any accessed disk.

The update files, as well as the AUX file, may
7hese are indicated in fn AUXLIST as follows:

FIX02
FIX01

The updates are app~ied from the bottom of the auxiliary file. Thus, fn
FIX01 is applied to the source file before fn FIX02. Since the
auxiliary fi~e is listed at the bottom of the control file, these
updates are applied before OPDTXYZ and UPDTABC.

ADDITIONAL £Q!~OL F~1! ~GCOBD~: In addition to the MACS record, the
filetypes of update (UPDT) files, and the filetypes of auxiliary control
(AUX) files, a control file may also contain:

• Comments. These records begin with an asterisk (*) in co~umn 1.

•

Comments are also valid in AUX files.

PTF records. If the
identifier field, the
contain the filetype
anythingi the filename

characters PTF appear in the update level
OPDA7E command expects the second field to
of an update file. The file type may be

must be the same as the source input file.

• Update level identifiers not associated with update files.

The following example of a control file shows all the valid types of
records:

* Example of a control file
ABC ftACS HYL~B

TEXT
004 UPDTABC
003 XYZ
002 ADXL~ST1
001 LIST2 AUX
PTF TESTF~X

1~~ STK OPTION: The STK (stack) option is valid only with the CTL option
and is meaningful only when the UPDATE command is invoked within an EXEC
fr9cedure.

When the STK option is specified, UPDATE stacks the following data
lines in the console stack:

first line: * update level identifier
second line: * library list from HACS record

The update level identifier is the identifier of the most recent update
file that was found and applied. For example, if a control file
contains

TEXT HACS CMSLIB OSMACBO TESTMAC
OFA UPDTOFA
PFA UPDTOFA

and the UPDATE command appears in an EXEC as follows:

UPDATE SAMPLE (CTL STK
&READ VARS &STAB &TEXT
&READ VABS &STAR &IIE1 &LIE2 &IIE3 &LIB4

350 IBM VM/SP CMS Command and Macro Beference

(~

•

UPDATE

then the variable symbols set by the &READ VARS statements have the
following values if the file SAMPLE UPDTOFA is found and applied to the
file SAMPLE ASSEMBLE:

Symbol
&STAR
&TEXT
&LIB1
&LIB2
&LIB3
&LIB4

Value

* OFA
C8SLIE
OSMACRO
TESTMAC
null

The library list may be useful to establish macro libraries in a
subseguent GLOBAL command within the EXEC Frocedure. If no update files
are found, UPDATE stacks the update level identifier on the MACS record.

FILE 'fn ft fm,' REC in = npdate control statement

This message is disFlayed when the TERM option is specified and an
error is detected in an update file. It identifies the file and
record number where the error is found.

DMSUPD177I WARNING
IGNORED.]

MESSAGES ISSUED (SEVERITY=nn). ['REP' OPTION

Warning messages were issued during the updating process. The
severity shown in the error message in the "nn" field is the
highest of the return codes associated with the warning messages
that were generated during the updating process.

The warning return codes have the following meanings:

RC = 4; Sequence errors were detected in the original source file
being updated.

RC = 8; Sequence errors, which did not previously exist in the
source file being .ufdated, were introduced in the output file
during the updating precess.

RC = 12; Any other warning error detected during the updating
process. Such errers include invalid update file control
stateme~ts and missing update or PTF files.

The severity value is passed back as the return code from the
UPDATE command. In addition, if the REP option is specified in
the command line, then it is ignored, and the updated source file
has the .fileid "$fnl ft1", as if the REF option was not specified.

D8SUPD178I UPDA~ING 'fn ft fm'
AEPLYING 'fn ft fm'
APPLYING 'fn ft fm'

The specified
This message
command line.

update file is being applied to the source file.
appears only if the CTL option is speci.fied in the

The ufdating process continues.

Section 2. CMS Commands 351

UPDATE

DMSUPD304~ UPDATE PROCESSING iILL BE DONE US~NG D~SK

An insufficien± amount of virtual storage was available to
perform the updating in virtual storage, so a CMS disk must
be used. This message is displayed only if NOSTOR was
specified in the UPDATE command line.

DMSUPD180W MISSING PTP FILE 'fn ft fm' RC=12

In the event that the usex receives this message during the
update process, the message MISS~NG PTF FILE 'fn ft fm' will
appear in the ufdate log associated with the frogram being
updated.

othe~ Messages gnd Return ~des

DMSUPD001E NO FILENAME SPEC~FIED RC=4
DMSUPD002E FILE 'in ft fm' NeT FOUND RC=28
DMSUPD003E INVALID OPT~ON 'oftion' RC=24
DMSUPD007E FILE 'fn ft fm' ~S NeT FIlED, 80 CHAR. RECORDS RC=32
DMSUPD010W PREMATURE EOF C.F FILE 'fn ft fm' --SEQ lUMBER ., •••••.•••• NOT

FOUND RC=12
DMSUPD024E FILE 'UPDATE CMSUT1 f.' ALREADY EIISTS RC=28
DMSUPD037E DISK 'mode' IS READ/OILY RC=36
DMSUPD048E INVALID MCDE 'mQde' RC=24
DMSUPD065E 'option' OPTION SPECIFIED TWICE RC=24
DMSUPD066E • option' AND 'option' ARI CONFLICTING OPTIONS RC=24
D~SUPD069E DISK 'mode' NOT ACCESSED RC=36
DMSUPD070E INVALID PARAMETER 'parameter' RC=24
DMSUPD104S ERROR 'nn' BIALING FILE 'fn ft fm' FROM DISK RC=100
DMSUPD105S ERROR 'nn' WRITING FILE 'fn ft fm' ON DISK RC=100
DHSUPD174W SEQUENCE ERROR INTBOLUCED IN OUTPUT FILE: •••••••• TO

....... _ •• ' BC=8
DMSUPD176W SEQUENCING OVERFLOW FOLLOWING SEQ NUMBER·.~ ••• _ •• • RC=8
DMSUPD179E MISSING OR DUPLICATE 'MACS' CARD IN CONTROL FILE 'fn ft fm'

RC=32
DMSUPD180W MISSING PTF PILE 'in ft fm' RC=12
DMSUPD181E NO UPDATE PILES WERE POUID RC=40
DMSUPD182W SEQUENCE INCREMENT IS ZERO RC=8
DMSUPD 183E INY ALID {CONTROL I AUI} FILE CONT.ROL CARD RC=32
DMSUPD184W ·./S • NOT FIRST CAliI IN IIPUT FILE --IGNORED RC=12
DMSUPD185W INVALID CHAR IN SEQUENCE FIELD ' ___ • ___ .' RC=12
DMSUPD186W SEQUENCE NUMBEli •.•.••••.•••• NOT POUND RC=12
DHSUPD187E OPTION 'STK' INVALID WITHOUT 'CTL' RC=2IJ
DMSUPD207W ~NVALID UPDATE BILE CONTROL CARD RC=12
DMSUPD210W INPUT FILE SEQUENCE ERROR: , •••••••••• TO •••••• _.... RC=4
DMSUPD299E INSUFFIC~EN7 STORAGE TC COMPLETE UPDATE RC=41
DMSUPD300E INSUPFICIENT ST~RAGE TO EEGIN UPDATE RC=41

352 IBM VM/SP CMS Command and Macro Reference

XEDIT

XEDIT

Use the XEDIT command to invoke the VM/SF System Product editor to
create, modify, and maniFulate CMS disk files. Once the VM/SF System
Product editor has been invoked, you may execute XEDIT subcommands and
use the EXEC 2 macro facility.

You can return control to the CMS environment by issuing the XEDIT
subcommand FILE, QUIT or QQUIT.

For complete details on XEDIT subcoamands and macros, see the
publication 1M/SF: SIS!!.!!! R!ggyS! ggito! f;2.!!!Hnd sAlg llSgg Bef~~.

The format of the XEDIT command is:

,
I
I ,
I
I
I
I
I
I
I
I
I
I ,

!EDIT

fn ft

fm

[fn (ft [fa]]] [(options ••• [)]]

options:
[ilidth nn]

[NOSCreen]

[PBOFile macroname]

[NOFBOFil]

[NOCl.ear]

options valid only in update mode:
[Update]
[NOOpdate]

[Seg8]
[NOSeg8]

[Ctl fn1]
[NOCtl]

[Merge]

[Incr nn]

[SIDcode string]

are the filename and filetype of the file to be edited. If
they are not specified here, they must be provided in the LOAD
subcommand as part of the profile.

is the filemode of the file to be edited, indicating the disk
on which the file resides. The editor determines the filemode
of the edited file as follows:

• Editing existing files

When the filemode is specified, that disk and its
extensions are searched. If the filemode is not specified
or is specifi,ed as an asterisk (*), all accessed disks are
searched for the specifiEd file.

Section 2. CMS Commands 353

XEDIT

• Creating new files

If the filemode is not specified, the editor assumes a
filemode of A1.

Width nn
defines the amount of virtual storage used to contain one line
of the file. If the value specified is too small, certain
file lines may he truncated.

If not specified here, WIDTH may be defined in the LOAD
subcommand, as a part cf the profile. If WIDTH is not
specified in either the XEDIT command or the LOAD subcommand,
the default is the larger of the following:

• The logical r~cord length (LRECL) of the file

• The default lcgical record length associated with the
filetype

NOSCreen
forces a 3270 display terminal into line (typewriter) mode.

PROFile macroname
If the specified macro exists on one of the accessed disks,
the editor executes it as the first subcommand.

If the specified macro, is not found on an accessed CMS disk,
an error message is disFlayed.

'If this option is not specified but a macro with a macro name
of PROFILE exists, the editor executes it.

In all cases, the Frofile macro must have a filetype of XEDIT.

NOPROFil

NOCLear

forces the editor not to execute the default PROFILE macro.

specifies that the screen is not cleared when the editor gets
control. Instead, the screen is Flaced in a MORE ••• (waiting)
status. Any messages remain on the screen until the CLEAR key
is pressed. lhis option is useful when the XEDIT command is
issued from a macro that displays messages.

The following options are meaningful only if the VM/SP System Product
editor is to be used in uFdate mode:

Update
The editor searcges all accessed CMS disks for a file with a
filename of fn and a filetype of UPDATE. If the file exists,
the editor apFlies the update statements before displaying the
file to be edited. Each new modification made by the user is
added to the existing UPDAiE file. The original source file
is ~ot modified.

If the file does not exist, the editor creates a new UPDATE
file to contain ~odifications made by the user.

NOUpdate
specifies that the editor is to apply no update statements
(even if UPDATE is specified in the LOAD subcommand in the

354 IBM VM/SP CMS Command and Macro Reference

"

'.'
'"",

5eg8

NOSeg8

Ctl fn1

XEDIT

profile) •

specifies that the entire seguence field (columns 73-80)
contains an eight-digit seguence number in every record of the
file to be edited. The 5EQ8 option automatically forces the
UPDATE option. SEQ8 is the default value.

specifies that columns 73-75 contain a three-character label
field, and that the seguence number is a five-digit number in
columns 76-80.

The N05EQ8 option forces th€ UPDATE option.

specifies that IIfn1 CNTRLII is an update control file that
controls the app~ication of multiple update files to the file
to be edited. (See the CMS UPDATE command description for
more information.)

This option automatically forces the UPDATE and 5EQ8 options.

NOCtl specifies that the editor is not to use the control (CTL) file
(even if" it is specified in the LOAD subcommand in the
profile) •

lferge specifies that all the updates made through the control file
and all the changes made while editing will be written into
the file whose name is defined by the latest update level
(that is, the mast recently applied UPDATE file in a control
file). This option forces the UPDATE option.

Incr nn
When inserting new lines in an update file, the
automatically comfutes the serialization; the INCR
forces a minimum increment between two adjacent lines.
specified, the minimum increment is one (1). This
forces the DPDA!! cption.

editor
option
If not
option

SIDcode string
specifies a string that the editor inserts in every line of an
update file whether the update file is an existing file or if
it is being created. The editor inserts the specified string
in columns 64-71 and pads on the right with blanks, if
necessary. Any data in columns 64-71 is overlaid. This
option forces the UPDAlE option.

1. For the PROFILE, ClL, SIDCODE, and WIDTH options, the operand must
be specified; otherwise, the next option will be interpreted as the
operand. For example, in the "PROFILE macroname ll option,
IImacroname" must be specified; if it is not, the next option will
be interpreted as a ~acro name.

2. Once the XEDIT commaE~ has been executed, the XEDIT §ub£2mmand can
be used to edit and display multiple files simultaneously. (See
the XEDIT subcommand descripticn in the publication VM/SP: System
R£Q£gct Edi!~£ ~~~~~nd ~Qg lfag£Q B~!~£~Q£~).

3. You can also call the editor recursively (using "CMS XEDIT ••• II, for
example). This atility is particularly useful when applications
are developed using the editor and its macro facilities to
interface with the user, for example, HELP.

Section 2. CMS Commands 355

XEDIT

4. If the editor is kept in virtual storage as part of the CBSSEG
shared segment, the CMS user area is unused. As a result, assuming
a large enough virtual machine, any CMS or CP command may be issued
directly from the editor environment itself (if a SET IMPCMSCP
subcommand is in effect). otherwise, the editor runs in the user
area and only CMS and CP commands that run in the transient area
may be issued from the editor environment.

5. The following parameters are passed to the PROFILE macro when it is
invoked by an XEDI~ command:

• Everything following the command name is assigned to the
EXEC 2 variatle &ABGSTRING.

• Each parameter following the command name is assigned to an
EXEC 2 argument (&1-&n).

The editor does not examine any parameters that follow a
closing right parenthesis on the XEDIT command.

6. When you issue an XEDIT command for a variable-format file,
trailing blanks are removed when the file is filed (or saved).

7. Comment control records are deleted from an update file whenever an
update file is applied to the original source file during an
editing session, and a FILE or SAVE subcommand is issued.

The following messages are disFlayed only if you are using the VB/SP
System Product editor in update mode:

DMSXUP1781 UPDATING 'fn ft fm'.
APPLYING 'fn ft fm'
APPLYING 'fn ft fm'

DMSXUP180W MISSING PTF FILE 'fn ft fm'.

DMSXIN002E FILE 'fn ft fm' NOi FOUND RC=28
DMSXIN003E INVALID O~TICN 'option' RC=24
DMSXIN024E FILE 'XEDTEMP CMSUT1 A1' ALREADY EXISTS RC=28
DMSXlN029E INVALID PARAMETER 'parameter' IN THE OPTION 'option'

FIELD RC=24
DMSXSU048E INVALID MODE 'mode' RC=24
DMSXIN054E INCOMPLETE F1LElt SPICIFIED RC=24
DMSXSU062E INVALID CHARAC~EB IN FILEID 'fn ft fm' RC=20
DMSXlN065E 'option' CFTleN SPECIFIEt iWICE RC=24
DMSXIN066E 'option' AND 'option' ARE CONFLICTING OPTIONS RC=24
DMSXSU069E DISK 'mode' NCT ACCESSED RC=36
BMSX1N070E INVALID PARAMETER 'parameter' RC=24
DMSXIN104S ERROR Inn' REAtING FILE 'fn ft fm' FROM DISK RC=100
DMSXIN132S FILE 'fn ft fm' Tee LARGE RC=88
DMSXSU229E UNSUPPORTED OS tATA SET BC=80,81,82,83
DMSXDS589E MISSING FILEDEF FCR ttNA!E SYSIN RC=32
IMSXDS590E DATA SET TOC LARGE EC=88
DMSXDS591E OPEN ERBOR ON SYSIN RC=32

356 IBM VM/SP CMS Command and Macro Reference

Error messages with UPDATE options:

DMSIUP007E FILE 'fn ft fm' IS NeT FIXED, 80 CHAR. RECORDS RC=32
DHSXUP174W SEQUENCE ERROR INTRODUCED IN OUTPUT PILE: •••••••••• TO

•••••••• BC=32

XEDIT

DHSIUP179E KISSING OE DUPLICATE 'MACS' CARD IN CONTROL FILE 'fn ft fm'
RC=32

DMSXUP183E INVALID aux/ctl FILE CONTRCL CARD RC=32
DMSIUP184W './5' NOT FIRST CARD IN UPDATE FILE -- IGNORED RC=32
DMSXUP185W NON NUMERIC CHARACTER IN SEQUENCE FIELD ••••••••• RC=32
DMSIUP186W SEQUENCE NUMBER NeT FOUND RC=32
DMSIUP207W INVALID UPDATE FILE CONnOL CARD RC=32
DMSXUP210W INPUT FILE SEQUlNCE ERROR , •••••••• , TO ,........ RC=32
DMSXUP597E UNABLE TO MERGE UPDATES CONTAINING '.1 S' CARDS RC=32

o Normal
6 Subcommand rejected in the profile due to LOAD error

20 Invalid character in filename or filetype
24 Invalid parameteIs, cr o~tiens
28 Source file net fcund (UPDATE MeDE) or file XEDTEMP

CMSUT1 already exists
32 Error during updating process
36 Corresponding disk not accessed
88 File is toe large and does not fit into storage

100 Error reading the file inte storage

Section 2. CMS Commands 357

Immediate Commands

Immediate Commands

You can issue an Immediate command from the terminal only after causing
an attention interruption by pressing the Attention key (or its
equivalent). These commands are proces~ed as soon as they are entered.
The HT and RT Immediate commands are also recognized when they are
stacked in an EXEC procedure, and the HT Immediate command can be
appended to a CMS command preceded by a logical line end symbol (I).
Any frogram execution in progress is suspended until the Immediate
command is processed.

None of the Immediate commands issue responses.

HB

Use the HB command to stop the execution of a eMS batch virtual machine
at the en.d of the current joll. The format of the HB Immediate command
is:

HB

1. If the batch virtual machine is running disconnected, it must be
reconnected.

2. When the HB command ~s eXEcuted, CMS sets a flag such that at the
end of the current job, the batch processor generates accounting
information for the current jot and then logs off the CMS batch
virtual machine.

HO

Use the HO command during the execution of a command or one of your
programs to stop the recording of trace information. Program ·execution
continues to its normal coapleticn, and all recorded trace information
is spooled to the printer. The format of the HO command is:

HO

358 IBM VM/SP CMS Command and Macro Reference

'J

Immediate Commands

HT

Use the HT command to sUPFLess all teLminal output generated by any CMS
command or YOUL program that is currently executing. The format of the
HT command is:

r--,
HT

1. Program execution co~tinues. When the
normal terminal output resumes. Use
typing or displajing.

l
I

readj message is displajed,
the BT command to restore

2. CMS error messages having a suffix letteL of S or T cannot be
suppressed.

HX

Use the HX command to stop the execution of any CMS or eMS/DOS command
or program, close any open files or I/O devices, and return to the CMS
command environment. the format of the HI command is:

HX

!!§2.9.§ Notes

1. HX clears all file definitions made via the FILEDEF or DLBL
commands, including those entered with the PEBM option.

2. The HI command is ex~cuted when
occurs: therefore a delay may
return to CMS. All terminal
processed is displajed before the

3. HX does not clear USEL stoLage.

RO

the next SVC or I/O inteLruption
occur between keying HX and the
output generated before HX is
command is executed.

Use the BO command, during the execution of a command or one of jour
progLams, to resume the LecoLding of trace information that was
temporarilj suspended by the SO command. Program execution continues to
its normal completion, and all recorded trace information is spooled to
the printer. The format of the BO command is:

r--,
BO I

Section 2. CMS Commands 359

Immediate Commands

RT

Use the RT command to restore terminal output from an executing CBS
command or one of your Frograms that was previously suppressed by the HT
command. The format of the RT command is:

I.
I RT

!!§~!! Note

Program execution continues, and displaying continues from the current
poin.t of e~ecution in the program. Any terminal output that is
generated after the HT command is issued and up to the time the RT
command is issued is lost. Execution continues to normal program
co~pletion.

so

Use the SO command during the execution of a command or one of your
programs to temporarily suspend the recording of trace information.
Program execution continues to its normal completion and all recorded
trace information is spo.oled to the printer. The format of the SO
co~mand is:

SO

To resume tracing, issue the BO command.

360 IBM VM/SP CBS Command and Macro Reference

EDIT Subcommands

Section 3. EDIT Subcommands and Macros

This section describes the formats and operands of the EDIT subcommands
and macros. EDIT subcommands are valid only in the environment of the
CMS editor or in CMS editor compatibility mode, which is invoked with
the EDIT command. The EDIT command format is described in "Section 2.
CMS Commands."

The editor has two modes of operation: edit mode and input mode.
Whenever the EDIT command is issued, edit mode is enteredi when the
INPUT or REPLACE subcommands are issued with no operands, input mode is
entered. In input mode, all lines you enter are written into the file
you are editing. To return to edit mode from iQput mode, you must enter
a null line (one that has nc data on it).

For a functional description of the CMS editor and information on how
to use it, consult the !~~R ~ Us~!~ Guide.

For a functional description of CMS editor compatibility mode and
information on how to use it, see the EDIT command in this book and the
VM/SP: System .Rrodu~ Edi!~ CC!!1!!~j!.9 and 1@£!.Q Refe~, "Appendix B".

For a summary of the default settings assumed by the editor for CMS
reserved filetypes, see "Appendix A: Reserved Filetype Defaults."

EDIT Subcommands

The EDIT subcommands are listed in alphabetical order for easy
reference. Each subcommand description includes the format, a list of
operands (if any), usage notes, and responses. For those subcommands
that operate somewhat differently on a 3270 display terminal than on a
typewriter terminal, an additional discussion, "Display Mode
Considerations, " is added.

Subcommands that are valid only with 3270 display terminals, namely
SCROLL, SCROLLUP, and FORMAT haVE the notation "(3270 only)" next to the
subcommand names. the FOEiABD and BACKWARD subcommands, which were
designed for use with 3270 terminals but can be issued at any terminal,
have the notation" (primarily 3270)" nExt to the subcommand names.

Section 3. EDIT Subcommands and Macros 361

EDIT Subcommands-ALTEB

ALTER

Use the ALTER subcommand to change a specific character to another
character, one that may not be available on your terminal keyboard. The
ALTER subcommand allows you to reference characters by their hexadecimal
values. The format of the ALTEB subcommand is:

ALter char1 char2
r r"
In IGII
1* 1*11
11 I II
L L.J.J

char1 specifies the cbaracter to be
either as a single character
digits (00 through FF).

altered.
or as a

It may
pair of

be specified
hexadecimal

char2 specifies the character to which char1 is to be altered. It
may be specified either as a single character or as a pair of
hexadecimal digits.

n

G

indicates the number of lines to be searched for the specified
character. If you specify an asterisk (*), all lines in the
file, beginning with the curre~t line, are searched. If this
option is omitted, then only the current line is searched.

requests the editor to alter every occurrence of char1 in the
lines specified. If G or * is not specified, only the first
occurrence of char1 in each line specified is altered.

1. If char2 is a hexadEc~mal value that cannot be represented on your
terminal, it may appear as a blank, for example:

input XSLC
alter X 02

SLC

Column 1 contains an X'02', which cannot be displayed.

2. Use the ZONE subcommand if you want only particular columns
searched for a specific character.

When verification is on, altered lines are displayed at your terminal.

362 IBM VM/SP CMS Command and Macro Reference

EDIT Subcommands-ALTER, AUTOSAVE

When you re~uest a global change on a 3270, the display is changed only
once, to reflect the final fosition of the current line pointer. The
editor displays a message to indicate the number of lines changed:

{:~nn} LINE (S) CHANGU

AUTOSAVE

Use the AUTOSAVE subcommand to set, reset, or displa} the automatic save
function of the editor. When the automatic save fUnction is in effect,
the editor automatically issues the SAVE subcommand each time the
specified number of changes or insertions are made. The format of the
AUTOSAVE subcommand is:

AUTOs ave

n

£ r ,
I I n I
I I OFF I
I L J

is a decimal number between 1 and 32767, indicating the
frequency of the automatic save function. One SAVE subcommand
is issued for every n lines that are changed, deleted, or
added to the file.

OFF turns off the automatic save function. This is the initial
setting.

1. Each line affected by the $MOVE macro is treated as one update.
However, all changes caused by a single CHANGE, DELETE, DSTRING,
GETFILE, or OVERLAY £ubcommand are treated as a single update, no
matter how many lines are affected.

2. If you are editing a file on a read-only disk, and an automatic
save request occurs, the message:

SET NEW FILEMODE AND RETRY

is issued. You can enter eMS subset and access the disk in
read/write mode, or use the FMCDE subcommand to change the filemode
to the mode of a read/write disk. If you were in input mode, you
are placed in edit mode.

3. The message "SAVED" is disFlayed at the terminal each time the save
operation occurs.

Section 3. EDIl Subcommands and Macros 363

EDIT Subcommands-AUTOSAVE, BACK~ARD

If you issue the AU!OSAVE subcommand with no operands, the editor
displays the current setting of the automatic save function.

BACKWARD (Primarily 3270)

Use the BACKWARD subcommand to move the current line pointer towards the
beginning of the file yeu are editing. The format of the BACKWARD
subcommand is:

n

r ,
BAckward Inl

u.
L .J

is the number of records backward you wish to move the current
line pointer. I.f n is not specified, the current line pointer
is moved backward one line, toward the top of the file.

The BACKWARD subcommand is eguivalent to the UP subcommand; it is
provided for the convenience of 3270 users.

When verification is on, the current line on the screen contains the
record located by the EACK~ARt n value. If n exceeds the number of
records above the current line, TOF is displayed on the current line.

On a typewriter
verification is on.

terminal the new current line

364 IBM VM/SP CMS Command and Macro Reference

is typed if

EDIT Subcommands-BOTTOM, CASE

BOTTOM

Use the BOTTOM subccmmand to make the last line of the file the new
current line. The format of the BOTTOM subcommand is:

Bottom

Use the BOTTOM subcommand followed by the INPUT subcommand to begin
entering new lines at the end of a file.

when verification is on, the last line in the file is displayed.

If the BOTTOM subcommand is issued at a 3270 display terminal in display
mode, EOF: is displayed on the line following the current line, preceded
by the last records of the file; the rest of the screen's output area is
tlank.

CASE

Use the CASE subcommand to indicate how the editor is to process
uppercase and lowercase letters. The format of the CASE subcommand is:

r---~-----,

CASE

M

U

I r ,
I I M I
I I U I
I L J

indicates that the editor is
uppercase and lpwercase letters
entered at the terminal.

I
I
I
I

to accept any mixture of
for the file as they are

indicates that the editor is to translate all lowercase
letters to uppercase letters before the letters are entered
into the file. U is the default value for all file types
except MEMe and SCRIPi.

Section 3,. EDIT Subcommands and Macros 365

EDIT Subcommands-CASE, CHANGE

If you enter the CASE subcommand with no operand, the current setting is
displayed at the terminal.

Di§£lay !ode Consideration~

If you specify CASE B when using a 3270 that does not have the lowercase
feature (RPQ), you can key in ~owercase characters, but they appear on
the screen as uppercase characters.

CHANGE

Use the CHANGE subcommand to change a specified group
another group of characters of the same or a different
use the CHANGE subcommand to change more than one line
foxmat of the CHANGE subcommand is:

of characters to
length. You may
at a time. The

r--~

Change j lIstriDgll1striDg~[/ [~[~]] III
L--~

where:

/ (diagonal) signifies any unigue delimiting character that does not
appear in the character strings involved in the change.

string 1

string2

n or *

G or *

specifies a group of characters to be changed (old data).
stringl may b~ a null string.

specifies th~ group of characters that are to replace
stringl (new data). string2 may be a null string; if
omitted, it is assumed null.

indicates the number of lines to be searched, starting at
the current line. If * is enter,ed, the search is performed
until the end of the file is reached. If this option is
omitted, then only one line is searched.

reguests the editor to Change every occurrence of stringl
in the lines specified. If G or * is not specified, only
the first occurrence of string1 in each line specified is
changed. If stringl is null, G or * may not be specified.

366 IBM VM/SP CMS Command and Macro Beference

1.

EDI! Subcommands-CHANGE

The first nonblank character following the CHANGE
any of its truncations) is considered the delimiter.

c.Vlt/SP.Clts.*

subcommand (or
For example:

changes the first occurrence of Vlt/SP to CltS on every line from the
current line to the end of t~e file.

2. If string2 is omitted, it is assumed to be a null string. For
example:

THIS ISN THE LINE.
change /n
THIS IS THE LINE.

A null string causes a character deletion. If string1 is null,
characters are insert~d at the beginning of the line. For example:

THIS IS THE LINE.
change //SO /
SO THIS IS THE LINE.

3. To change multiFle cccurrences of the same string on one line,
enter:

change/string 1jstring2/ 1 *

4,. The CHANGE subcommand can bE used on typewriter terminals to
display, without changing, any lines that contain the information
specified in string1. Enter:

change /string1/string1/ * *
5. Use the ZONE subcommand to indicate wftic~ columns are to be

searched for string1. If string1 is wider than the current zone,
you receive the message:

ZONE ERROR

and you should either reenter the CHANGE subcommand or change the
zone setting.

6. If the character string inserted causes the data line to extend
beyond the truncatipn column or the zone column, any excess
characters are truncated. (See the description of the TRUNC
subcommand for additional infcrmation on truncation.)

7. You should use the ALiEB
single character to some
available on your keyboard).

subcommand when you want
special character (one

to change a
that is not

8. When the IMAGE subcoJllmand is set with the CANON operand, backspace
characters at t~e beginning cr end of string1 are ignored.

9. To stack a CHANGE subcommand with no operands from a fixed-length
EXEC, you should use thE &STACK control statement.

Section 3,. EDIT Subcommands and ltacros 367

EDIT Subcommands-CHANGE

When verification is on, every line that is changed is displayed.

Q!spl~~ Mod~ Considerations

If you issue the CHANGE su£command without operands at a 3270 display
terminal in display mode, the following occurs:

1. The record pointed t9 £y the current line pointer appears in the
user input area of the display. If the line is longer than the
current truncation setting, it is truncated.

2. You can t~en alter the record in the user input area by retyping
part or all of the line, or by using the Insert, Delete, or Erase
EOF keys to insert or delete characters.

3. When the line is modified, press the Enter key. This causes the
record in the user input area to replace the old record at the
current line in the output display area.

If you bring a line down
change it, press the Erase
line is not changed.

to the user input area and decide
Input key and then the Enter key,

not to
and the

When a line is moved to the user input area, all nonprintable
characters (including tab~ backspaces, control characters, and so on)
are stripped from the line. Also, any characters currently assigned to
VM/SP logical line editing symbols (I, iii, '1-, ") are reinterpreted when
the line is reentered. Ypu should issue an explicit CHANGE subcommand
to change lines containing special characters.

The CHANGE subcommand is treated as
issued without operands at a typewriter
terminal that is not in display mode.

an invalid subcommand if it is
termi~al or at a 3270 display

When you request a global change on a 3270 terminal, the display is
chang.ed only once, to reflect the final position of the current line
pointer. The editor disFlays, in the message area of the display
screen:

{~~nn} LINE(S) CHANGEL

to indicate the
request resulted
displayed as:

number of lines that were
in the truncation of any

updated.
lines,

nnnn LINE(S} CHANGED nnnn LINE(S} TRUNCATED

If the change
the message is

If the change request .moves the curren t line pointer beyond the end
of the file, the word EOF: is displayed on the current line, preceded by
the last records of the file. The rest of the output area is blank.

368 IBM VM/SP CMS Command and Macro Reference

I.J

EDIT Subcommands-CMS

eMS

Use the CMS subcommand to cause the editor to enter the CMS subset mode,
where you may execute those CMS commands that do not need to use the
main storage being used by the editor. The format of the CMS subcommand
is:

r--,
CMS

1.

2.

I
I

In CMS subset, you can execute
nucleus-resident or that executes
nucleus-resident CMS £ommands are:

any CMS command that
in the transient area.

is
The

The

To

If

CP
DEBUG
ERASE
EIECIO
FETCH

commands

ACCESS
ASSGN
COMPARE
DISK
DLBL
FILEDEF
GENDIRT
GLOBAL

return to

that may be in the

edit lIode, use the

you attempt to execute a CMS
you receive the message:

INVALID SUBSET CCMMANt

GENMOD
INCLUDE
LOAD
LOADMOD

transient

HELP

area are:

LIS1FILE
MOD MAP
OPTION
PRINT
PUNCH
QUERY
READCARD

CMS subset command RETURN.

command that requires main

NAMEFIND
START
STATE
STATEW

RELEASE
RENAME
SET
SVCTRACE
SYNONYM
TAPE
TYPE

storage,

Results are unpredictable at this point. You should not attempt to
execute any program that executes in the user program area. Using
the LOAD, INCLUDE (RESET), FETCH, START, and RUN commands could
load programs that would overlay the editor's storage area and its
contents. Use these commands only for programs that execute in the
transient area.

3. In an edit macro, if you attempt to use a command that is invalid
in the CftS subset, you receive a return code of -0002.

~. If you attempt to e~ecute a CMS command that fails because of
insufficient storage, your EDIT session may abnormally terminate.
You should save input you have entered before you enter CMS subset
mode.

5. Combining EDIT and XEDIT, such as executing XEDIT as a CMS Subset
Command of EDIT, lIal not give you the INVALID SUBSET message, but
it can result in abends or unpredictable results.

Section 3. EDIT Subcommands and Macros 369

EDIT Suhcommands-DSTRING, FILE

The zone set hy the ZONE suhcommand or the default zone setting is
checked for the presence of the character string. A character string
with a length greater than the current zone setting causes the error
message ZONE EEEOR.

Responses

If the character string is not found hy the end of the file, no
deletions occur, the current line pointer is unchanged, and the message:

STRING NOT FOUND, NO ~EIETICNS !ADE

is displayed.

If verification is on when the DSTRING subcommand is issued at a display
terlllinal in display mode, the screen is changed to reflect the deletions
from the file.

FILE

Use the FILE suhcommand to write the edited file on disk and,
optionally, override the file identifier originally supplied in the EDIT
command. The format of the FILE suhcommand is:

FILE I [fn eft lfm]]]

.fn

ft

fm

indicates the filename for the file. If filename is omitted,
filetype and filelllode cannot be specified, and the existing
filename, filetype, and .filemode are used.

indicates the filetype for the file.

indicates the file.ode for the file.

.!!§:age ~

1. When you speci.fy a file identifier, any existing .file that has an
identical fileid is replaced. If the file being edited had been
previously written to disk, that copy of the file is not altered.

2. You can change the filename and filemode during the editing session
using the FNAME and FMOtE subcommands.

Responses

The CMS ready message indicates that the file has been written to disk
and control is returned to the CMS environment.

372 rBM VS/S2 CMS COlllmand and Macro Reference

EDIT Subcommands-FIND, FftODE

FIND

Use the FIND subcommand to locate a line based on its initial character
string. The format of the FIND subcommand is:

Find

line

I (line]

is any character string, including blanks and tabs, that you
expect to find beginning in column 1 of an input record. At
least one nonblank character must be specified. If line is
not specified or the line contains only blanks, the current
line pointer is moved down one line.

!!§~gg Note§

1. Only one blank can be used as a delimiter following the FIND
subcommand; additicnal blanks are considered part of the character
string.

2. If the image setting is ON, the editor expands tab characters to
the appropriate numbex of blanks before searching for the line.

3. If the current line fointer is at the bottom of the file when the
FIND subcommand is is~uEd the search begins at the top of the file.

When verification is on, the line is displayed at the terminal. If the
line is not found, the message:

EOF:

is displayed and you may use the RIUSE (=) subcommand to search again,
beginning at the tOf of the file.

FMODE

Use the FMODE subcommand to display or change the filemode of a file.
The format of the FMODE subcommand is:

r-------.---,
FMode

fm

I [fm] I
I

indicates the filemode that is to replace the current filemode
setting. You can specify a filemode letter (A-Z) or a
filemode letter and number (0-5). If you specify a filemode
letter, the existing filemode number is retained.

Section 3, EDI~ Subcommands and Macros 373

EDIT Subcommands-FliODE, FNAME

1. The specified file mode
automatic save reguest
been previously filen
unchanged.

is used the next time a FILE, SAVE, or
is issued. If the file being edited had
or saved, that copy of the file remains

2. If the disk specified by filemode already contains a file with the
same filename and filetype, that file is replaced when a FILE,
SAVE, or automatic save reguest is issued; no warning message is
issued.

3. If the filemode specified is that of a read-only disk, then when an
attempt is made to file or save the file, the editor displays an
error message.

If you enter the FMODE subcommand without specifying fm, the editor
displays the current fileAode.

When you specify a new filemode with the FMODE subcommand, the editor
writes the new filemode in the filemode £ield at the top of the screen.

FNAME

Use the FNAME subcommand to displa} or change the filename of a file.
The format of the FNAME subcommand is:

FName I [fn]

where:

fn

1.

indicates the filename that is
filename.

to replace the current

The specified filename
automatic save reguest
been previously filed
unchanged.

is used the next time a FILE, SAVE, or
is issued. If the file being edited had
or saved, that copy of the file remains

2. If a file already exists with the specified filename and the same
filetype and filemode, that file is replaced; no warning message is
issued.

3. You can use the FNAME subcommand when you want to make multiple
copies of a file, with different filenames, without terminating
your edit session.

374 IBM VM/SP CMS Command and Macro Beference

EDIT Subcommands-FNAME, FORMAT

If you enter the FNAME subcommand without specifying fn, the editor
displays the current filename.

Displa~ ~ode Consideration§

When you issue the FNAME subcommand specifying a new filename, the
editor writes the new name in the filename field at the top of the
screen.

FORMAT (3270 only)

Use the FORMAT subcommand to change the mode of a local or remote 3270
terminal from display to 1ine or line to display mode. The format of
the FORMAT subcommand is:

r--,
j FOBMat j { DISPLAY} I
j j LINE I
l--~

DISPLAY specifies that a full screen display of data is to occur.
Subcommands do not appear as part of the data displayed.

LINE specifies that the display station is to operate as a
typewriter terminal. Every line you enter is displayed on the
screen; thE scre.en looks like a type.wri ter terminal's console
sheet.

1. Line mode is the default for remote 3270s. If you are using a
remote 3270 in display mode, and you enter the INPUT subcommand,
you are placed in line mode while you enter input. When you return
to edit mode, the full screen display is restored.

2. The FOBMAT subcommand is treated as invalid under any of the
following conditions:

a. The NODISP option of the EDIT command was used to invoke the
editor.

b. The edit session was initiated on a typewriter terminal. (The
session may optionally be continued on a 3270 after a
reconnection.)

To obtain a full screen display, you must save your file and
restart your edit session.

3~ Tbe column settings for the VEBIFY, TBUNC, and ZONE subcommands
remain unchanged when you iSSUE the FORMAT subcommand.

section 3. EDIT SupcoJIIllands and Macros 375

EDIT Subcommands-FOBWABD

None.

FORWARD (Primarily 3270)

Use the FORWARD subcommand to move the current line pointer towards the
end of the file you are editing. The format of the FORWARD subcommand
is:

r--,
I J r, I
I FOrward 1 J nJ . J
J J UI J
1 1 L.I J
L--.1

wAere:

n

Usage Jiote

is the number of records you wish to move forward in the file
being edited. If n is not specified, 1 is assumed.

The FORWARD subcommand is eguivalent to the DOWN and NEXT subcommands;
it is Frovided for the convenience of 3270 users.

When verification is on, the new current line is displayed. If the
number specified exceeds the number of lines remaining in the file, the
current line pointer is positioned at EOP:.

376 IB~ VM/SP c~s com.a~d and Macro Reference

EDIT Subcommands-GETFILE

GETFILE

Use the GETFILE subcommand to insert all or part of a specific CMS file
into a file you are editing. The format of the GETFILE subcommand is:

r--,
I I r r r r "1'"1"1 I
I Getfile I {fn} I ft I fm I firstrec I nunec IIII I
I I * L! I! U I! j III I
I ILL L L .J.J.J.J I L--------------__ ----------------...1

fn

ft

fm

is the filename of the file that contains the data to be
inserted into the file you are editing. When an asterisk (*)
is specified, tpe filename of the file you are editing is
assumed.

is the filetype
inserted. If ft
specified, the
assumed.

is the filemode
inserted. If fm
specified, all
file.

of the file that contains the data to be
is not specified or when an asterisk (*) is

file type of the file you are editing is

of the file that contains the data to be
is not specified or when an asterisk (*) is

9f your accessed disks are searched for the

firstrec indicates the number of the first record you want to copy.

numrec indicates the Dumcer of lines to be inserted, starting with
the line specified by firstrec. If numrec is not specified,
or specified as *, then the remainder of the file between
firstrec and the end of the file is inserted.

1. The GETFILE operand list is positional; if you omit
you cannot specify any operands that follow. Thus, if
specify firstrec and lastrec, you must specify the
filemode of the file.

2. The last line inserted becomes the new current line.

one operand,
you want to

filetype and

3. If the length of the ~ecords in the file containing the data to be
inserted exceeds that of the file being edited, an error message is
displayed, and the GE~FILE is not executed; if shorter, the records
are padded to the record length of the file being edited and
inserted in the file.

4. If you use the GETFIlE succommand to insert lines into a VSBASIC
file, use the BENUM succommand to resequence the file.

5. If the editor fills up available storage whi~e executing a GETFILE
request, it may not be able to copy all of the file. You should
determine how many records were actually copied, and then write the
current file on disk.

Section 3. EDIT Subcommands and Macros 377

---------"'---

ED~T Subcommands-GETFILE, IMAGE

When verification is on, the last line inserted into the file is
displayed. If the end of the file has been reached, the message:

EOF REACHED

is displayed, followed by the display of the last line inserted.

IMAGE

Use the IMAGE subcommand to control how the editor should handle
Lackspaces and tab characters or to display the current image setting.
The format of the IMAGE subcommand is:

r--,
I I r , I
I IMAGE I ION I I
I I IOFF I I
I I ICANONI I
I I L .J I
L---__ -----------------.J

ON

OFF

CANON

specifies that any text entered while in input mode or as a
line of data following a FIND, INPUT, OVERLAY, or REPLACE
subcommand, is expanded into a line image; backspaces are

.removed and tats are replaced by blanks.

Text entered in the form of delimited strings,
LOCATE, and ALTER, is not expanded; tabs and
treated in the same way las ether characters.

as in CHANGE,
backspaces are

IMAGE ON is the default for all filetypes except SCRIPT.

specifies that tabs and backspaces are treated as data
characters in th~ same way as other characters. They are not
deleted, translated, expanded, or reordered.

specifies that tacks~aces may be used to produce compound
characters such as undersccred words, headings, or phrases.
Before they are inserted in the file, compound characters are
ordered, with backs~aces arranged singly between the
characters that overlay each other: the overlaying characters
are arranged acc9rding to their EBCDIC values. Tab characters
are handled as for IMAGE OFF.

CANON is the default for SCRIPT files.

1. When the image setting is ON, tab characters are expanded to an
appropriate number of blanks, according to the current settings of
the TABSET subcommand. The TABSET command has no effect if the
image setting is either OFF or CANON.

378 IBM VM/SP CMS Command and Macro Reference

J

EDIT Subcommands-IMAGE, INPUT

2. When the image setting is on, backspaces are handled as follows:

• Backspace characters act in a similar manner to the logical
character delete symbol, in deleting the previous characters if
a sufficient numb~r of other characters or blanks follow the
backspace characters. However, backspace characters that
immediately follow a command name are interpreted as separator
characters and do not delete any part of the command name.

• If a backspace character is the last character in the input
line, it is ignored.

When you issue the IMAGE sutcommand with no operand, the current IMAGE
setting is displayed.

INPUT

Use the INPUT subcommand to insert a single line into a file, or, if no
data line is specified, t9 leave edit mode and enter input mode. The
format of the INPUT subcom~and is:

r--,
I Input I [line] I
L--~

line pecifies the infut line to be entered into the file. It can
contain blanks and tabs; if you enter at least two blanks
following the INPU! subcommand and no additional text, a blank
line is inserted into the file.

1. Each line that is inserted into the file becomes the new current
line.

2. When you are using line-number editing (LINEMODE LEFT or LINEMODE
RIGHT) you cannot use the INPUT subcommand to insert a single line
of data; use the nnnnn subcommand.

3. To stack an INPU! subcommand in order to enter input mode from a
fixed-length EXEC, you should use the &STACK control statement.

section 3,. EDIT Subcommands and Macros 379

EDIT Subcommands-INPOT, LINEMOD!

ihen you issue the INPUT subcommand without operands, and verification
is on, the editor disFlays:

INPUT:

All subsequent lines you entered are written into the file, until you
enter a null line to return to edit mode.

Di§play Mode Consideration§

1. ihen you insert lines while using
display mode, the editor writes each
The 01d current 1ine and al1 records
except for the topmost record formerly
from the screen.

a local display terminal in
record on the current 1ine.
above it move up one 1ine,

on 1ine 2, which is de1eted

2. If you are using a remote display terminal in display mode and you
issue the INPU~ subcommand with no text, the termina1 is forced
into line mode. The display of the fi1e on the screen disappears
and the word INPU~: appears. As you enter input 1ines, they appear
in the output disp1ay area. When you leave input mode by entering
a null 1ine, the remote terminal returns to disp1ay mode. The
display of the file reappears on the screen, with the li~es you
have just entered in their pro Fer p1ace in the file.

3. ihen you are entering data in infut mode at a display termina1 that
is in line mode, a tab character generated by a program function
(PF) key on1y generates one character, and appears as one character
on the screen. That is, the line does not appear spaced according
to the tab settings.

LlNEMODE

Use the LINEMODE sutcommand to set, cance1, or display the status of
li~e-number editing. When you use line-number editing, you can input,
10cate, and rep1ace lines by referencing their record numbers.
Line-number editing is thE default for VSBASIC and FREEPORT files. The
format of the LINEMOD! sutcommand is:

r--,
I I r , I
I LINEmode I ILEFT I I
I I IRIGHTI I
I I IOFF I I
I I L J I
L--J

LEFT
L

initia1izes 1ine-number editing and p1aces sequence numbers
on the 1eft, in co~umns 1 through 5, right-justified and padded
with blanks; the n~ar zone is set to 7. If the fi1etype is
FBEEFORT, columns 1 through 8 are used for serial numbers: the
near zone is set to 9.

380 IBM VM/SP CMS Command and Macro Eeference

RIGHT
R

EDI! Subcommands-LINEMODE

You should never use left-handed line-number editing for files in
which data must occuFY columns 1 through 6, for example ASSEMBLE
files.

initializes line-number editing and places sequence numbers
on the right, in columns 76 to 80, right-justified and padded
with zeroes. The End zone and truncation columns are set to 72.

This operand is valid only
80-character records.

for files with fixed-length

OFF cancels line-numter editing and (if you were using left-handed
line-number editing) resets the first logical tab setting to
column 1. The VERIFY, TRUBC, and ZONE subcommand settings remain
unchanged. Serialization may still be in effect. OEF is the
default for all filet}pes except VSBASIC and FREEFORT.

1.

Note: If you enter LIBEIIODE OFF while editing a FREEFORT file,
line-number editing cannot be resumed for the remainder of the
edit session.

When you enter inFut mode while
you are prompted with a line
default prompting increment is
EROMPT subcommand.

you are using line-number editing,
number to enter each line. The
10; you may change it using the

If you enter input mode after using the nnnnn subcommand to
position the current line pointer, the prompted line number is the
next higher multiple cf the current prompting increment or an
adjusted line number, whichever is smaller. The adjusted line
number is determined according to the following formula:

pppp = 1 + cccc + -,,!!!!!n - ~£~ (Any fractional remainder is
4 dropped.)

where:

pppp is the prompt line number,.

cccc is the current line number.

nnnn is the next seguential line number in the file.

2. When you are prompted on a typewriter terminal, enter your input
line on the same line as the Frompted line number. If you are
using right-handed line-number editing, on a typewriter terminal or
on a display terminal in line mode, the serial numbers are not
redisplayed in columns 76 to 80 (unless you use the VERIFY
subcommand to increas~ the verification setting). When a line is
displayed in edit mode, the line numbers always appear on the left
even though they are on the right in the disk copy of the file.
Whether or not the line numbers are displayed on the right depends
on the current verification setting.

3. You cannot use the IBPUT or REPLACE subcommands to input a single
data line when you are using line-number editing; use the nnnnn
subcommand instead.

Section 3. EDI! Subcommands and Hacros 381

EDIT Subcommands-LINEMODE, LOCATE

4. When you initialize line-number editing for files that already
exist, the editor aSSDmes that the records are in the proper format
and numbered in ascending order.

5. If you want to place serial numbers in columns 76
you do not wish tQ use line-numbeE editing,
subcommand.

through 80, but
use the SERIAL

When you issue the LINEMODE subcommand with no operands, the current
setting is displayed.

When you use line-number editing on a display terminal in display mode,
the prompting numbers in input mode appear on line 2 of the display
screen, in the editor message area. Enter your input lines in the user
input area. Regardless of whether you aEe using Eight- or left-handed
line-number editing, the line numbers always appear in their true
position in the file.

LOCATE

Use the LOCATE subcommand to scan the file beginning with the next line
for the first occurrence of a specified character string. The format of
the LOCATE subcommand is:

i
I [Locate] I /[string[/] J
I

/ (diagonal) signifies any unique delimiting characteE that does not
appear in the string. The delimiter may be any nonblank
character. The closing delimiter is optional.

string specifies a~y group of characters to be searched for in
the file.

Usage Note§

1. If the beginning delimiter is /, you can omit the subcommand name
LOCATE. If you enter only:

/

on a line, the current line pointer is moved dcwn one line.

2. If string is null or blank, the search is successful
line encountered. If the line pointer is at the end
when the LOCATE subcommand is issued, scanning starts
of the file.

382 IBM VM/SP CMS Command and Macro Reference

on the first
of the file
from the top

J

EDIT Subcommands-lOCATE, LONG, NEXT

3. Use the ZONE subcommand when you want the editcr to search only a
specific column. If you specif1 a character string longer than the
current zone width, the editor issues the message ZONE ERBOR.

_hen verification is on, the line containing the specified string is
displayed. If tlle string is not found, the messages:

NOT FOUND
EOF:

are displayed, and you may use the REUSE (=) subcommand to request that
command be repeated, beginning at the top of tlle file.

LONG

Use the LONG subcommand to cancel a previous SHORT subcommand request.
The format of the LONG sutcommand is:

LONG

J!.2~~ Note

When the LONG subcommand is in effect (it is the default), the editor
responds to invalid subcommands with the message:

?EDIT: line •••

None.

NEXT

Use the NEXT subcommand to advance the line pointer a specified number
of lines toward the end of the file. The line pointed to becomes the
new current line. The foraat of the NEXT subcommand is:

Next

where:

n

,. ,
I n I
111
L .J

indicates the number of lines to move the line pointer. If
is omitted, then the Fointer is moved down only one line.

n

Section 3. EDIT Subcommands and Bacros 383

EDIT Subcommands-NEX7, OVEBLAY

OSgg~ Note

NEXT is equivalent to DOWN and FOBWABD.

Responses

When verification is on, the new current . line is displayed. If the end
of the file is reached, the message:

EOF:

is displayed.

OVERLAY

Use the OVERLAY subccmmand to selectively replace one or more, character
strings in the current line with the corresponding nonblank characters
in the line being keyed in. The format of the OVEBLAY subcommand is:

Overlay

.J!h~~:

line

I (line]

specifies an input line that replaces corresponding character
positions in the current line. On a typewriter terminal, if
you enter the OVERLAY subcommand with no data line, the input
record remains unchanged.

1. Blank characters in the input line indicate that the corresponding
characters in the current line are not to be overlaid. For
example:

CHARMIE
o L
CHABLIE

Blanks in columns 3, 4, 5, and 6 of the OVEBLAY line indicate that
columns 1, 2, 3, and 4 of the current line are not to be changed.
(At least onetlank must follow the OVEBLAY subcommand, which can
be truncated as 0).

2·. This subcommand may be entered at a typewriter terminal by typing
the letter "0", followed by a backspace, followed by the overlaying
characters. This sets up the correct alignment on the terminal.

3,. An underscore in the Qverlaying line must be used to place a blank
into the corresponding position of the current line. Thus, an
underscore cannot be placed (or replaced) in a line.

OVERLAY should be used with care on lines containing underscored
words or other compound characters.

384 IBM VM/SP CMS Command and Macro Beierence

EDIT Subcommands-OVERLAY, PRESERVE

4. To perform a global overlay
just prior to issuing the
you enter:

operation, issue the REPEAT subcommand
OVERLAY subcommand. For example, when

repeat *
overlay X

an X is placed
beginning with
with the IMAGE
setting.

in the left.ost column of each record in the file,
the current line. The leftmost column, for files
setting ON, is determined by the first logical tab

jesl!onses

When verification is on, t~e line is displayed at the terminal after it
has been overlaid.

p,i.§l!lay Mode Consid~~Ati~H!§

In addition to using the OVERLAY subcommand in the normal way, you may
also issue the OVERLAY subcommand with no operands. The next line you
enter is treated as overlay data. To cancel the overlay reguest, press
the Erase Input key and then the Enter key.

PRESERVE

Use the PRESERVE subcommand to save the settings of various EDIT
subcommands until a subseguent RESTORE subcommand is issued. The format
of the PRESERVE subcommand i~:

PREserve

!!§.!g~ Note

Settings are saved for the following subcommands:

CASE
FMODE
FUME
IMAGE
LINEMODE

None.

LONG
PRO!Pi
RECFM
SERIAL
SHORT

TABSET
TRUNC
VERIFY
ZONE

Sec tion 3,. EDIT Subcolllmands and Macros 385

EDIT Subcommands-PROMPT, QUIT

PROMPT

Use the PROMPT subcommand to change the prompting increment for input
line numbers when you are using line-number editing. The format of the
PROMPT subcommand is:

PROMPT

n

r ,
I n I
IlQl
L .J

specifies the FIompting increment: the default value is 10.
The value of n should not exceed 32,767.

When you issue the PROMPT subcommand with no operands, the current
setting is displayed.

QUIT

Use the QUIT subcommand to terminate the current editing session and
leave the previous co~y of the file, if any, intact on the disk. The
format of the QUIT subcommand is:

QUIT

1. You can use the QUIT subcommand when you have made a global change
that introduced errors into your file; or whenever you discover
that you have made errors in editing a file and want to cancel your
editing session.

If a SAVE subcommand or automatic save reguest has been issued, the
file remains as it was when last written.

2. The QUIT subcommand is a convenient way to terminate an edit
session when you ent~r an incorrect filename on the EDIT command
line, or when you edit a file merely to examine, but not to change,
its contents.

The CMS ready message indicates that control has been returned to CMS.

386 IBM VM/SP CMS Command and Macro Reference

'..J

EDIT Subcommands-RECFM

RECFM

Use the RECFM subcommand to indicate to the editor whether the record
format of the file is fixed-length or variable-length, or to display the
current RECFM setting. The format of the RECFM subcommand is:

F

V

RECfm
r ,
I FI
I V I
L J

indicates fixed-length records.

indicates variable-length records.

1. V is assumed by de~ault for all new EXEC, LISTING, FREEFORT,
VSBDATA, and SCRIPT files. Usually, a variable-length format file
occupies a smaller am9unt of disk space because trailing blanks are
deleted Lrom each line before it is written onto disk. When
variable-length VSEDATA files are written to disk, however,
trailing blanks are net truncated (to allow VSBDATA file to span
records) •

2. When you use the RECFM subcommand to change the format of a file
from fixed-length tc variable-length records, trailing blanks are
removed when the file is written to disk; when you are changing
variable-length records to fixed-length, all records are padded to
the record length.

When you use the RECFM subcemmand without speciLying F or V, the current
setting is displayed.

When you specify a Dew record format with the RECFM subcommand, the
editor writes the new record format in the format field at the top of
the screen.

Section 3. EDIT Subcommands and Macros 387

EDIT Subcommands-REND!

RENUM

Use the RENUM subcommand to recompute the line numbers for VSBASIC and
FREEFORT source files. ~he format of the RENUM subcommand is:

RENum

strtno

incrno

r r "
Istrtno lincrnol I
I lQ l.§y!B.Q I j
L L .J.J

indicates the number from which you wish to start renumbering
your file. Because RENU! renumbers the whole file from
beginning to end, the numter you specify as strtno becomes the
statement number of the first statement in the newly
renumbered file. This number may not exceed 99999 for VSBASIC
files or 99999999 for FREE1'ORT files. The default start
number value is jO and the specified start number must not be
zero.

indicates the increment number value by which you wish to
renumber your file. This value may not exceed 99999 for
VSBASIC files or 99999999 for FREEFORT files. The default for
incrno is strtno, the first seguence number in the renumbered
file, and the specified incrno must not be zero.

1. If you do not specify strtno and ipcrno, the default value for both
is 10. If you specify only strtno, incrno defaults to the same
value as strtno.

2. The current line pointer remains as it was before you entered the
RENUK subcommand regardless of whether or not RENU! completes
successfully. If you are editing a VSBASIC file, the file to be
renumbered must either originate from a read/write disk or you must
issue an FMODE subcommand to change the file destination to a
read/write disk.

3. All VSBASIC statements that use statement numbers for operands are
updated to reflect the new line numbers. The VSBASIC statements
with line number oferands are:

4.

CLOSE
CLOSEFILE
DELETE
EXIT
GET
GOSIJB
GOTO

If any error
terminates the
unchanged.

Ii
ON
OPEN
OPENFILE
PRINT USING
PUT

READFILE
REREADFILE
RESET
RESETFILE
REWRITEFILE
WRITEFILE

occurs during the
RENUM operation and

RENUM operation, the editor
the file being edited remains

388 IBM VM/SP CMS Command and Macro Reference

EDIT Subcommands-RENUM, REPEAT

Responses

When verification is OD, the message ED~T: indicates that the RENUM
subcommand completed processing.

REPEAT

Use the REPEAT subcommand to execute the immediately following OVERLAY
subcommand (or an X or Y subcommand assigned to invoke OVERLAY) for the
specified number of lines or to the end of the file. The format of the
REPEAT subcommand is:

n

r ,
REPEAT I nl

1*1
111
L .J

indicates the number of times to repeat the OVERLAY request that
immediately follows, beginning with the current line. An asterisk
(*) indicates that the request is to be repeated until the end of
the file is reached. If neither n nor * is specified, then only
one line is handled. The last line processed becomes the new
curren t line.

1. If the next subcommand issued after the REPEAT subcommand is not an
OVERLAY subcommand, the REPEAT subcommand is ignored.

2. For an example of a REPEAT subcommand followed by an OVERLAY
subcommand, see the discussion of the OVERLAY subcommand.

None.

Section 3. EDIT Subcommands and Macros 389

EDIT Subcommands-REPLACE

REPLACE

Use the REPLACE subcommand to replace the current line with a specified
li~e or to delete the current line and enter input mode. The format of
the REPLACE subcommand is:

Replace I (line]

wh~:

line specifies an input line that is to replace the current line.
If a line is specified, then the editor puts it into the file
in place of the current line. If no line is specified, the
editor deletes the current line and enters input mode (see
Usage Note 2 for exceFtion).

1. If the LINEHODE subcommand with a LEFT or RIGHT operand is in
effect, then issuing the REPLACE subcommand specifying a line is
not valid. If the REPLACE subcommand is used without any operands
when LINEHODE is set to LEFT or RIGHT, you are prompted for the
next available line number; the first data line you enter replaces
the current line number.

2. If.you use the REPLACE subcommand with no operands to enter input
mode, and the next line you enter is a null line, then the current
line is not deleted, and you are returned to edit mode.

3,. To stack a REPLACE subcollmand in order to enter input mode from a
fixed-length EXEC, you should use the &STACK control statement.

~sponses

When verification is on and you issue the REPLACE subcommand with no
data line, the message:

INPUT:

indicates that your virtual machine is in input mode.

390 IBM VH/SP CMS Command and Macro Reference

'J

.. ~

L

EDIT Subcommands-RESTORE, RETURN

RESTORE

Use the RESTORE subcommand to restore the settings of EDIT
to their values when the P~ESERVE subcommand was last issued
default values if a PRESERVE subcommand has not been iss~ed.
of the RESTORE subcommand is:

REStore

Usag~ Mote

The settings are restored for the following subcommands:

None •

RETURN

CASE
FMODE
FUME
IMAGE
LINEMODE

LONG
PROMPT
RECn
SERIAL
SHORT

iAESET
TRUNC
VERIFY
ZONE

subcommands
or to their

The format

Use the RETURN subcommand to return to edit mode from the CMS subset
environment. RETURN is not an EDIT subcommand, but is listed here as a
companion to the CMS subcommand,. The format of the RETURN command is:

RETURN

When verification is on, the editor responds:

EDIT:

to indicate that your virtual machine is in edit mode.

Section 3. EDIT Subcommands and Macros 391

EDIT Subcommands-REUSE (=)

REUSE (=)

Use the REUSE subcommand (which can also be specified as =) to stack
last in, first out (LIFO) the last EDIT request, except for REUSE or a
question mark, and then execute the stacked subcommands. The format of
the REUSE (or =) subcommand is:

(subcommand]

subcommand specifies any valid EDIT subcommand.

1. If the subcommand you enter on the REUSE subcommand line is an
invalid subcommand, -the editor clears the stack.

2. You can use the REUSE subcommand to repeat a subcommand request
that was not satisfied the first time, for example, a LOCATE
subcommand that resulted in an end-of-file condition. If you
enter:

=

the LOCATE subcommand is stacked, then read by the editor and
executed again. This time the search begins from the top of the
file.

3. You can also enter m9re than one equal sign (=) on a single line,
to stack the last issued subcommand more than once. For example:

locate /xyz/
XYZ IS MY FAVORITE
- - - -- - - -
I FIRST MET XYZ
XYZ'S NAME IS DERIVED
LAST SAW XYZ
E01:

the LOCATE subcommand is stacked four times, and then the editor,
reading from the stack, executes the four stacked subcommands.

4. You can do the following if you issue a CHANGE subcommand before
positioning your current line pointer:

c/xx/yy
NOT FOUND
= l/x/
LINE XXXX
LINE YYXX

In this example, the CHANGE request was issued and string1 was not
found. The REUSE subcommand stacks the CHANGE subcommand and
stacks a LOCATE subcommand in front of it. The LOCATE subcommand is
read and executed, followed by the CHANGE subcommand.

392 IBM VM/SP CMS Command and Macro Reference

EDIT Subcommands-REUSE (=), SAVE

5. You can stack an INPUT or REPLACE subcommand in front of a data
line you mistakenly entered in edit mode, for example:

roses are red, violets are blue
?EDIT: ROSES ABE RED, VIOLETS ARE BLUE
= input
INPUT:
without cms
i would be, too.

The = subcommand stacks the INPUT subcommand in front of the data
line. Reading from the stack, the editor executes the INPUT
subcommand, then reads in, as the first line of data, the line
beginning with ROSES. The file contains:

ROSES ARE RED, VIOLETS ARE ELUE
WITHOUT CMS
I WOULD BE, TOO.

Responses

Responses are those that are issued to the stacked subcommands.

SAVE

Use the SAVE subcommand to write the file that is currently being edited
onto the disk, without returning control to CMS, and optionally to
change the file identifier. The format of the SAVE subcommand is:

r--$
SAVE

fn

ft

fm

I [fn[ft [fm]]] I

indicates the filename of the file to be saved. If you
specify only fn, then the filetype and filemode are the same.

ndicates the filetype of the file to be saved.

indicates the filemode of the file to be saved.

1. If you specify a new file identifier, any existing file with the
same file identifier is replacedi no message is issued. The file
being edited, if previously written to disk, is not altered.

2. To write a file on disk and terminate the editing session, use the
FILE subcommand.

3. If you want to save the contents of a file at regular intervals,
use the AUTOSAVE subcommand.

Section 3. EDIT Subcommands and Macros 393

EDIT Subcommands-SAVE, SCBOLL/SCBOLLUP

When verification is on, the editor displays:

EDIT:

to indicate the SAVE request completed successfully and you may continue
to enter EDIT subcommands.

SCROLL/SCROLLUP (3270 only)

Use the SCBOLL and SCBOLLUP subcommands to scan the contents of a file
on a display screen.

SCROLL causes the editoI to scan forward through the file; SCBOLLUP
causes the editor to scan backward through the file. The format of the
SCROLL and SCROLLUP subcommands is:

n

I
{ Scroll } I

S[croll JU[p J I
I
I

is a number from 1 to 255 that specifies the number of
successive screens of data to be displayed. If an asterisk
(*) is specified, the entire file, from the current line to
the end or beginning of the file, is displayed. If n is not
specified, 1 is the default.

l. The SCROLLUP subcommand can be specified by any combination of the
truncation of SCROLL and UP; the minimum truncation is SUo

2. The number of lines shifted forward or backward depends on the
current verification setting. If the verification setting is 80
characters or less, then a scroll request displays a file in
increments equal to the number of lines that can be displayed in
the output display area of the screen. If the verification setting
is more than 80 characters, then a SCROLL request displays a file
in increments equal to half the number of lines that can be
displayed in the output area.

3.

Therefore, a single SCROLL on a 3270 Model 2 display terminal is
the eqUivalent of DOWN 20 or DOWN 10, depending on the record
length, and SCROLLUP is the equivalent of UP 20 or UP 10.

When you use the SCROLL or SCROLLUP
than one screenful, each display is
screen status area indicates MORE •••
lenger, press the Enter key.

subcommands to display more
held for one minute, and the
• To hold the screen display

394 IBM VM/SP CMS Command and Macro Reference

EDIl SubcommandS-SCROLL/SCROLLUP, SERIAL

To halt scrolling before all the reguested screenfuls are
displayed, enter the HT Immediate command and press the Cancel key
twice.

4. When you begin scrolling from the top of the file, the first
screenful contains only the first seven lines. When you scroll to
the end of the file, the last screen may duplicate lines displayed
in the previous screen.

The screen display is shifted forward or backward.

SERIAL

Use the SERIAL subcommand to control the serialization of records in
columns 73 through 80. The format of the SERIAL subcommand is:

r--,
I SERial j ~ OFF (j
j I r, I
I j ON lincrl I
I I ALL I1Q I I
I I seg L .J I
L--J

OFF

ON

indicates that neither serialization numbers nor identifiers
are to be placed in columns 73-80.

indicates that the first three characters of the filename are
to be used in columns 73-75 as an identifier.

ALL indicates that columns 73-80 are to be used for serialization
numbers.

seg specifies a three-character identification to be used in
columns 73-75.

incr specifies the increment for the line number in columns 76-80
(or 73-80). This number also becomes the first line number.
If incr is not specified, then 10 is assumed.

1. The SERIAL subcommand is valid only for files with fixed-length,
80-character recoxds. To renumber VSBASIC or FREEPORT files, use
the RENUM subcommand.

2. The serialization setting is ON, by default, for the following
filetypes:

ASSEMBLE
COBOL
DIRECT
FORTRAN
MACRO

.PLI
PLIOPT
UPDATE
.UPDTxxxx

Section 3. EDIT Subcommands and Macros 395

EDIT Subcommands-SERIAL, SHORT

3. When serialization is in effect, records in a file are resequenced
each time a FILE, SAVE, or AUTOSAVE request is issued. If you are
using line-number editing, you must issue the subcommand:

linemode off

before issuing a PILE or SAVE subcommand if you wish the records to
be resequenced.

If you issue the SERIAL subcommand in a file with a zone column greater
than 72, the message:

END ZONE SET TO 72

is displayed, to indicate that the zone has been changed. If the zone
column is 72 or less, but the truncation column is greater than 7'2, the
message:

TRUNC SET TO 72

is displayed.

SHORT

Use the SHORT subcoamand to request the editor to respond to invalid
subcommand lines with the short form of the 1EDIT message. The format
of the SHORT subcommand is:

SHORT

Usage Notes

1. When the SHORT subcommand is in effect, the editor responds:

..,

to an invalid subcommand line, and responds:

to an invalid macro request.

2. To resume displaying the long form, of the 1EDIT message, use the
LONG subcommand.

Responses

None.

396 IBM V!/SP CMS Command and Macro Reference

EDIT Subcommands-STACK

STACK

Use the STACK subcommand to stack data lines or EDIT subcommands in the
console stack for subsequent reading. The format of the STACK
subcommand is:

STACK

n

r ,
1 n 1
1 subcommand 1
I 0 I
11 1
L .J

indicates the number of lines to be stacked beginning with
the current line. If a number or a subcommand is not
specified, then one line is assumed by default. A maximum
of 25 lines can be stacked.

If the current line pointer is at the top of the file, then
n-1 lines are stacked. If fewer than n lines remain in the
file, only the lines remaining are stacked.

subcommand specifies an EDIT subcolllmand to be stacked.

o stacks a null line.

1. STACK subcommands are used
from a file so that they
additional subcomlllands.

to write edit macros, to
can be moved around, or

stack lines
to stack

2. All lines stacked with the STACK subcommand are stacked FIFO (first
in, first out) •

3. The length of input lines
current TRUNC setting.
characters.

that are stacked is determined
The maximum length, however,

by the
is 130

None. If you issue the STACK subcommand
line, the stacked subcommand is executed
those to the stacked subcommands, if any.

to stack an EDIT subcommand
immediatelYi responses are

Section 3. EDIT Subcommands and Macros 397

EDIT Subcommands-TABSET

TABSET

Use the TABSET subcommand to set logical tab stops for a file. The
format of the TABSET subcommand is:

TABSet n1 [n2 ••• nn]

n1 (n2 ••• nn] indicates column positions for logical tab settings. You
may specify up to 25 numbers, separated from each other
by at least one blank. n1 indicates the first column in
the file that may contain data.

~age Notes

1. The editor assigns the following tab settings by default:

Filetypes
ASM3705, ASSEMBLE,

MACRO, UPDATE,
UPDTxxxx

AMSERV

FORTRAN

FREEFORT

BASIC, VSBASIC

Default lab ~etting2
1, 10, 16, 31, 36, 41, 46, 69, 72, 80

2, 6, 11, 16, 21, 26, 31, 36, 41, 46,
61, 71, 80

1, 7, 10, 15, 20, 25, 30, 80

9, 15, 18, 23, 28, 33, 38, 81

7, 10, 15, 20, 25, 30, 80

51,

PLIOPT, PLI 2, 4, 7, 10, 13, 16, 19, 22, 25, 31, 37,
43, 49, 55, 79, 80

COBOL 1, 8, 12, 20, 28, 36, 44, 68, 72, 80

Others 1, 6, 11, 16, 21, 26, 31, 36, 41, 46, 51,
61, 71, 81, 91, 101, 111, 121, 131

2. Tab setting operands have no effect if the IMAGE subcommand's
operand is either OFF or CANON. (CANON is the default for SCRIPT
filetypes). A tab entered into a file under these conditions
appears as X'05'.

3. The margins set by the TABSET subcommand are used by the INPUT,
REPLACE, OVERLAY, and FIND subcommands.

None.

398 IBM VM/SP CMS Command and Macro Reference

EDIT Subcommands-TOP, TRUNC

TOP

Ose the TOP subcommand to ~ove the line pointer to the top of the file.
The null top line becomes the current line. The format of the TOP
subcommand is:

TOP

Responses

When verification is on, tpe message:

TOF:

is displayed.

Display Mode Considerations

When you are using a
verification is on, the
characters TOF (indicating
are blank, and the rest of
first lines of the file.

TRUNC

display terminal, if you specify TOP and
current line (see Figure 29) contains the
the top of the file), the lines preceding it
the screen's output display area contains the

Ose the TRONC subcommand to change the truncation column of records or
to display the current truncation column setting. The format of the
TRONC subcommand is:

TRONC

where:

n

r ,
I n I
I * I
L .J

indicates the column at which truncation is to occur. If n is
specified as an asterisk (*), the truncation column is set to
the record length for the filetype.

Osage Notes

1. The editor assigns the following truncation setting by default:

Filetypg~
ASSEMBLE, MACRO, UPDATE, OPDTxxxx
AMSERV, COEOL, DIRECT, FORTRAN,

PLI, PLIOPT
All Others

Truncation Column
71

72
Record Length

section 3. EDIT Subcommands and Macros 399

EDIT Subcommands-TBUNC, TYPE

2. The truncation value is used by the INPUT, REPLACE, STACK, and
OVERLAY subcommands also, and, for display terminals in display
mode, the CHANGE subcommand when it is used with no operands.

3. If your virtual machine is in input mode and you enter a line that
is longer than the current truncation setting, the message:

TRUNCATED

is displayed along with a display of the truncated line. Your
virtual machine is still in input mode.

When you enter the TRUNC subcommand with no operands, the editor
displays the current setting.

TYPE

Use the TYPE subcommand to display all or any part of a file at the
terminal. The format of the TYPE subcommand is:

Type
r r "
1m In II
1* 1* II
I 1 j I I
L L JJ

where:

m

n

indicates the number of lines to be displayed, beginning with
the current line. An asterisk (*) indicates all lines between
the current line and the end of the file. If m is omitted,
only one line is displayed. If the number of lines specified
exceeds the number remaining in the file, displaying stops at
the end of the file.

indicates the column at which displaying is to stop,
overriding the current end column for verification. ,If n is
specified as an asterisk (*), it indicates that displaying is
to take place for the full record length.

1. Use the TYPE subcommand to display lines when you are editing a
file with verification off.

2. If you display one line, the current line pointer does not move; if
you display more than one line, the current line is positioned at
the last line displayed, or at the end of the file if you specified
an asterisk (*).

3. If you have set an end verification column to a value less than the
record length, and you want to display an entire record, enter:

type 1 *

400 IBM YM/SP CMS Command and Macro Reference

EDIT Subcoamands-TYPE, UP

4. If you do not specify an end column, the length of the line(s)
displayed is determined by the current end verification setting.
If you are using right-handed line-number editing on a typewriter
terminal or a display terminal in line mode, the line numbers are
displayed on the left.

The requested lines are displayed.

Display Mode Considerations

Since the TYPE subcomaand was designed for printing terminals, it is of
marginal value on a display terminal, except when you use line mode.
However, if the display screen is interrupted by communication from the
control program (CP), you should use the TYPE subcommand to restore the
full screen display.

UP

Use the UP subcommand to reposition the current line pointer toward the
beginning of the file,. The format of the UP subcommand is:

Up

n

r ,
I n I
UI
L .J

indicates the number of lines the pointer is to be moved
toward the beginning of the file. If a number is not
specified, then the pointer is moved up only one line. The
line pointed to .becomes the new current line.

Usage !ote

UP is equivalent to BACKWARD.

Responses

When verification is on, the line pointed to is displayed at your
terminal. If the UP subcommand causes the current line pOinter to move
beyond the beginning of the file, the following message is displayed:

TOF:

section 3. EDIT Subcommands and Macros 401

EDIT Subcommands-VERIFY

VERIFY

Use the VERIFY subcommand to set or display the current verification
setting. The format of the VERIFY subcommand is:

Verify

ON

r , rr , ,
ION I Iistartcoll endcoll
I OFF I II 1 I * I
L .J LL .J .J

specifies
displayed,
indicated.

that lines located, altered,
and changes between edit and
ON is the initial setting.

or changed
input mode

are
are

OFF specifies that lines that are located, altered, or changed are
not displayed, and changes tetween edit and input mode are not
indicated.

startcol indicates the column in which verification is to begin, when
verification is on. The default is column 1. startcol must
not be greater than the record length nor greater than endcol.

endcol indicates the last column to be verified, when verification is
on. endcol must not be greater than the record length. If
end col is specified as an asterisk (*), each record is
displayed to the end of the record.

Usage Note§

1. If you issue the VERIFY subcommand with only one operand, that
operand is assumed to be the endcol operand. For example, if you
issue VERIFY 10, verification occurs in columns 1 through 10.

2. The editor assigns the following settings, by default:

Responses

lilety~.2
AMSERV, ASSEMBLE, COBOL,

DIRECT, FORTRAN, MACRO,
PLI, PLIOPT, UPDATE, UPDTxxxx

Others (Including FREEFORT)

!erification End Column
Column 72

Record Length

If you issue the VERIFY subcommand with no operands, the current
startcol and endcol settings are displayed, regardless of whether
verification is on or off.

402 IBM VM/SP CMS Command and Macro Reference

J

EDIT Subcommands-X, Y

XorY

Use the X or I subcommands to assign a given EDIT subcommand to be
executed whenever X or Y is entered, or to execute the previously
assigned subcommand a specified number of times. The format of the X
and Y subcommands is:

[

I

~ {~}
r ,
I subcommand I
In I

I
I

11 I
L .J

subcommand indicates any EDIT subcommand line. The editor assumes that
you have specified a valid EDIT subcommand, and no error
checking is done.

n indicates the number of times the previously assigned
subcommand is to be executed. If X or Y is entered with no
operands, 1 is assumed.

Usage Not~

1. Advancement of the current line pointer depends upon the EDIT
subcommand that has been assigned to X or I. If a number or a
subcommand is not specified, the previously assigned subcommand is
executed once.

2. X and I are initially set to null strings. If you enter X or I
without having previously assigned a subcommand to it, the editor
issues the ?EDIT error message.

3. Iou can use the X and I subcommands in
must repeat a subcommand line many times
the situation does not lend itself to
example, if you assign X to a LOCATE and
issue:

x

many instances where you
while editing a file, but

a global reguest. For
I to a CHANGE subcommand,

to execute the LOCATE reguest, and after examining the line, you
can change it and continue searching, by entering the Y SUbcommand
followed by the X subcommand:

yl%

or just continue searching:

x

Responses

Responses are issued for the EDIT subcommands that are assigned to X and
I, in accordance with the current verification setting.

Section 3. EDIT Subcommands and Macros Q03

EDIT Subcommands-ZONE

ZONE

Use the ZONE subcommand to specify the columns of each record (starting
position and ending position) to be scanned when the editor searches for
a character string or to display the current ZONE settings. The format
of the ZONE subcommand is:

1
I
I Zone

r
Ifirstcol r " Ilastcolll

I 1* I * II
I ,1 I I I
I L L .J.J

firstcol indicates the near zone column of each record to be scanned.
If firstcol is specified as an asterisk (*), the default is
column 1.

lastcol indicates the end zone column of each record to be scanned.
If lastcol is specified as an asterisk (*), the default is the
record length.

1. The editor assigns the following settings by default:

PiletY~2

ASSEMBLE, MACRO, UPDATE,
DPDT~xx

AMSERV, PLI, PLIOPT
COBOL, DIRECT, FORTRAN
BASIC, VSBASIC
FREEFORT
Others

!fear Zone
(£2!.YJ!!l)

1

2
1
7
9
1

End Zone
(£olumn)

71

72
72

Record Length
Record Length
Record Length

2. The ZONE settings are used by the ALTER, CHANGE, and LOCATE
subcommands to define the columns that will be scanned. If you
specify a character string longer than the zone, you receive the
message:

ZONE ERROR

and the subcommand is not executed.

3. If you issue a CHANGE subcommand that increases the length of a
line beyond the end zone setting, the line is truncated.

404 IBM VH/SP CMS Command and Macro Reference

EDIT Subcommands-ZONE, ?

4. Iou can use the ZONE subcommand to protect data in particular
columns, for example:

edit newfile memo
NEW FILE:
EDIT:
zone

1 80
zone 10 20
input the zone is now set for columns 10-20

EDIT:
change 10/*1
the zone is n*w set for columns 10-20

Note that the LOCATE and CHANGE
now, not the word zone, because
not in position 1.

subcommands operated on the word
scanning started in position 10,

When you enter the ZONE subcommand without specifying zone settings, the
editor displays the current setting.

? (QUESTION MARK)

Use the ? subcommand to display the last EDIT subcommand executed except
for a REUSE (=) or ? (question mark) subcommand. The format of the ?
subcommand is:

I.

I ?

After an X, I,
subcommand that
subcommand.

or = subcommand,
was executed as

Display ~ode Considerations

the last
a result

EDIT subcommand
of issuing the

is the
X or I

When you issue the ? subcommand using a 3270 in display mode~ the last
EDIT subcommand that was executed is redisplayed in the user input area.
Press the Enter key to execute it again; you may modify the line before
reentering it.

section 3. EDIT Subcommands and Macros 405

EDIT Subcommands-nnnnn

nnnnn

Use the nnnnn subcommand to enter and locate lines when you are using
line-number editing. The format of the nnnnn subcommand is:

I

I{nnnnn }
I nnnnnnnn

[text]

nnnnn

text

indicates a line number between 0 and 99999 if the filetype is
BASIC or YSBASIC, or a line number between 0 and 99999999 if
the filetype is FREEPORT.

specifies a line of text to be inserted into the file at the
specified line number. If a line with that number already
exists, it is replaced. If no text line is specified, the
current line pointer is positioned at the line number
specified.

The nnnnn subcommand
editingi that is, you
RIGHT or LEFT operand.
and FREEFORT files.

is valid only when you are using line-number
have issued the LINEMODE subcommand using the

Line-number editing is the default for YSBASIC

When you issue the nnnn.n subcommand with no operands, the line with the
specified line number is displayed. If the line is not found, the
editor displays the message:

LINE NOT FOUND

and the current line pointer is set at the largest line number that does
not exceed nnnnn.

406 IBM YM/SP CMS Command and Macro Reference

Edit Kacros-$DUP

EDIT Macros

Edit macros are CMS EXEC files that execute sequences of EDIT
subcommands. The following edit macros are supplied with VM/SP for your
convenience. For additional information on creating and invoking your
own edit macros and EXEC files, see the VMLSP £MS QEer'§ Guide.

$DUP

Use the $DUP to duplicate the current line. The format of the $DUP
macro is:

n

r ,
$DUP In I

11 I
L .J

indicates the number of times you want to duplicate the line;
the maximum value you can specify is 25. If n is omitted, the
current line is duplicated once.

1. The last copy of the line duplicated becomes the new current line.

2. If you use the logical line end symbol (I) to stack additional
subcommands on the same line with the $DUP edit macro those
subcommands are cleared from the console stack and the message:

3.

STACKED LINES CLEARED BY $DUP

is issued. The stacked subcommand(s} are not executed.

Because it
duplicating
characters.

uses console functions, $DUP cannot
records containing binary zeros or
Truncated duplicate records will result.

be used when
non printable

4. When using line-number editing, you can insert duplicate lines
between existing numbered lines if the interval between line
numbers is large enough. Execution of $DUP stops after the last
valid line number has been assigned. You can renumber your file to
increase the interval between line numbers.

5. Because it uses the STACK EDIT subcommand, $DUP can duplicate a
maximum of 130 characters in one line. Longer lines are truncated.

Responses

The last line duplicated (the new current line) is displayed.

Section 3. EDIi Subcommands and Macros 407

Edit Macros-$MOVE

$MOVE

Use the $HOVE edit macro to mOVe one or more lines from one place in a
file to another place. The format of the $MOVE macro is:

$MOVE
n {UP m } DOWN m

TO label

where:

n indicates the number of records you want to move, beginning
with the current line. The maximum number of lines you can
move is 25.

UP m indicates that you want to move the lines toward the top of
the file, m lines above the current line.

DOWN m

TO label

indicates that you want to move the lines toward the end of
the file, m lines telow the last line you are going to move.

indicates that you want the lines inserted
specified label. The label must be one to
characters and must start in column 1.

following the
eigh t uppercase

1. The last line moved becomes the new current line.

2. If the label is not found or if the DOWN value exceeds the number
of lines remaining before end of file, the lines are inserted at
the end of the file. If the UP value exceeds the number of lines
remaining before top of file, the lines are inserted at the top of
the file.

3. If you use the logical line end symbol (i) to stack additional
subcommands on the same line with the $MOVE reguest, those
subcommands are cleared from the console stack and the message:

STACKED LINES CLEARED BY $HOVE

is displayed. The stacked subcommands are not executed.

4. Because it uses console functions, $MOVE will truncate duplicated
records containing tinary zeros or nonprintable characters.

5. Because it uses the STACK EDI~ subcommand, $MOVE can move a maximum
of 130 characters in one line. Longer lines are truncated.

When verification is on, the last line moved is displayed.

408 IBM VH/SP CMS Command and Macro Reference

DEBUG Subcommands

Section 4. Debug Subcommands

This section describes the subcommands that
you use the debug environment to test and
debug environment is entered when:

are available to you when
debug your programs. The

• The DEBUG command is issued from the CftS environment.
command is described in "section 2. CBS Commands. ")

(The DEBUG

• An external interruption occurs.
by the CP EXTERNAL command.)

(An external interruption is caused

• A breakpoint (instruction address stop) is encountered during program
execution. (Breakpoints are set with the DEBUG subcommand BREAK.)

ihen the debug environment is entered, the contents of all general
registers, the channel status Kord (CSi), and the channel address word
(CAi) are saved so they may be examined and changed before being
restored when leaving the debug environment. If debug is entered via an
interruption, the old program status word (PSi) for that interruption is
also saved. If DEBUG is the first command entered after an abnormal
termination (abend) occurs, the contents of all general registers, the
CSi, the CAi, and the old PSi are availab~e from the time of the abend.

For hints on debugging your programs using the CftS debug environment,
consult the VB/SP £~~ User's Guide.

Section 4. DEBUG Subcommands 409

DEBUG Subcommands-BBEAK

BREAK

Use the BREAK subcommand to stop execution of a program or module at a
specific instruction ~ocation called a breakpoint. The format of the
BREAK sUbcommand is:

BReak id {Symbol}
hexloc

where:

id is a decima~ number, from 0 to 15, which identifies the
breakpoint. A maximum of 16 breakpoints may be in effect at
one time; if y,ou specify an identification number that is
already set for a breakpoint, the previous breakpoint is
cleared and the new one is set.

symbol is a name assigned to the storage ~ocation where the
breakpoint is set. symbol, if used, must have previously been
set using the DEFINE subcommand.

hexloc is the hexadecimal storage location (relative to the current
origin) where the breakpoint is to occur. hexloc must be on a
halfword boundary and its value added to the current origin
must not exceed your virtual machine size.

Usag!jt ~

1. To set breakpoints before beginning prograa execution, enter the
debug environment with the DEBUG command after you load the program
into storage. After setting the breakpoints, use the RETURN
subcommand to leave the debug environment and issue the START
command to begin program execution. For example:

load myprog
debug
break 1 20016
break 2 20032
return
start

2. When you assign hexloc to a breakpoint, you must know the current
origin (set with the ORIGIN subcommand). The hexloc you specify is
added to the current origin to determine the breakpoint address.

3. When a breakpoint is found during program execution, the message:

4.

DMSDBG728I DEBUG ENTEBED BREAKPOINT yy AT xxx xxx

is displayed at the terminal. To resume program execution, use the
GO subcollmand.

Breakpoints arE cleared after they are encountered; thus, if a
breakpoint is encountered during a program loop you must reset the
breakpoint if you want to interrupt execution the next time that
address is encountered.

5. When you set a breakpoint, the halfword'at the address specified is
replaced with B2Ex, where x represents the identification number

410 IBM VM/SP CMS Command and Macro Reference

.
. \."

'"""

DEBUG Subcommands-BREAK, CAW

you assigned. After the breakpoint is encountered during
execution, B2Ex is replaced with the origina~ operation code.

6,. You should set breakpoints only at valid operation code addresses;
the BREAK subcommand does not check to see whether or not the
specified location contains a valid operation code.

7. If you reference a virtual storage
segment, you are given a nonshared
receive the message:

address that is in
copy of the segment

SYSTEM sysnaae REPLACED WITH NON-SHARED copy

a shared
and you

Responses

None.

CAW

Use the CAW subcommand to display at the terminal the contents
CAW (channel address word) as it existed at the time the
environment was entered. The format of the CAW subcommand is:

of the
debug

CAW I

Usage Notes

1. Issue the CAW subcommand to check that the command address field
contains a valid CCW address, or to find the address of the current
CCW so you can examine it.

2. The three low-order bits of the command address field must be zeros
in order for the ccw to be on a doub~eword boundary. If the CCW is
not on a doubleword boundary or if the command address specifies a
location protected from fetching or outside the storage of a
particular user, the Start I/O instruction causes the status
portion of the CSW (channel status word) to be stored with the
program check or Frotection check bit on. In this event, the I/O
operation is not initiated.

Responses

The CAW, located at storage location X'48', is displayed. Its format is:

KEY I 0000 I Command Address

o

Bits
0-3

4-7

3 4 7 8 31

Contents
The protection key for all commands associated with Start I/O.
The protection key in the CAW is compared to a key in storage
whenever a reference is made to storage.

This field is not used and must contain binary zeros.

Section 4. DEBUG Subcommands 411

DEBUG Subcommands-CAW, CSW

8-31

csw

The command address field contains the storage address (in
hexadecimal representation) of the first CCW (channel command
word) associated with the next or most recent Start I/O.

Use the CSW subcommand to display at the terminal the contents
CSW (channel status word), as it existed at the time the
environment was entered. The format of the CSW subcommand is:

of the
debug

CSW

1. The CSW indicates the status of the channel or an input/output
device, or the conditions under which an I/O operation terminated.
The CSW is formed in the channel and stored in storage location
X'40' when an I/O interruption occurs. If I/O interruptions are
suppressed, the CSW is stored when the next start I/O, Test I/O, or
Halt I/O instruction is executed.

2. Whenever an I/O operation abnormally terminates, issue the
subcommand. The status and residual count information in the
is very useful in debugging. Also, use the CSW to calculate
address of the last executed CCW (subtract eight bytes from
command address to find the address of the last CCW executed).

CSW
CSW
the
the

Responses

The contents of the CSW are displayed at the terminal in hexadecimal
representation. Its format is:

i
IKEYIOOOOI Command Address Status Byte Count

03478 31 32 47 48 63

Bits
0-3

4-7

8-31

32-47

Contents
The protection key is moved to the CSW from the CAW. It shows
the protection key at the time the I/O operation started. The
contents of this field are not affected by programming errors
detected by the channel or by the condition causing
termination of the operation.

This field is not used and must contain binary zeros.

The command address contains a storage address (in hexadecimal
representation) that is eight bytes greater than the address
of the last eew executed.

The status bits indicate the conditions in the device or
channel that caused the esw to be stored.

412 IBM VM/SP eMS Command and Macro Reference

48-63

DEFINE

DEBUG Subcommands-CSW, DEFINE

The residual count is the difference between the number of
bytes specified in the last executed CCW and the number of
bytes that were actually transferred. When an input operation
is terminated, the difference between the original count in
the CCW and the residual count in the CSW is egual to the
number of bytes transferred to storage; on an output
operation, the difference is egual to the number of bytes
transferred to the I/O device.

Use the DEFINE subcommand to assign a symbolic name to a specific
storage address. Once a symbolic name is assigned to a storage address,
that symbolic name can be used to refer to that address in any of the
other DEBUG subcommands. The format of the DEFINE subcommand is:

DEFine

symbol

hexloc

bytecount

symbol hexloc
r ,
I bytecountl
I .!! I
L .J

is the name to be assigned to the storage address derived from
the second operand, hexloc. Symbol may be from one to eight
characters long, and must contain at least one nonhexadecimal
character. Any symbolic name longer than eight characters is
left-justified and truncated on the right after the eighth
character.

is the hexadecimal storage location, in relation
current origin, to which the name specified in the
operand (symbol), is assigned.

to the
first

is a decimal number, between 1 and 56 inclusive, which
specifies the length in bytes of the field whose name is
specified by the first operand (symbol) and whose starting
location is specified by the second operand (hexloc). When
bytecount is not sFecified, 4 is assumed.

1. Issuing the DEFINE subcommand creates an entry in the debug symbol
table. The entry consists of the symbol name, the storage address,
and the length of the field. A maximum of 16 symbols can be
defined in the debug symbol table at any given time.

2. When a DEFINE subcommand specifies a symbol that already exists in
the debug symbol table, the storage address derived from the
current reguest replaces the previous storage address. Several
symbols may be assig.ned to the same storage address, but each of
these symbols constitutes one entry in the debug symbol table. The
symbols remain defined until they are redefined or until an IPL
subcommand loads a new copy of CMS.

Section 4. DEBUG Subcommands 413

DEBUG SUDcommands-DEFINE, DU~P

3. When you assign a symbolic name to a storage location, you must
know the current origin (set by the ORIGIN subcommand). The hexloc
you specify is added to the current origin to create the entry in
the symbol table used by DEBUG subcommands. If you change the
current origin, existing entries are not changed.

ij. You can use symbolic names to refer to storage locations when you
issue the DEBUG subcommands BREAK, DU~P, GO, ORIGIN, STORE, and X.

None.

DUMP

Use the DU~P subcommand to print part or all of your virtual storage on
the printer. The requested information is printed offline as soon as
the printer is available. First, a heading:

ident FRO~ starting location TO ending location

is printed. Next, the general registers 0-7 and 8-15, and the
floating-point registers 0-6 are printed, followed by the PSW, CSW, and
CAW. Then the specified P9rtion of virtual storage is printed with the
storage address of the first byte in the line printed at the left,
followed by the alphameric interpretation of 32 bytes of storage. The
format of the DUMP subcommand is:

DUmf

symbol 1

hexloc1

symbo12

hexloc2

*

ident

r r , ,
I symbo11 I symbo12 I I
I hexloc1 I hexloc2 [ident J I I
I Q I * I I I

I I 32 I I
L L .I .I

is . the name assigned (via the DEFINE subcommand) to the
storage address that begins the dump.

is the hexadecimal storage location, in relation to current
origin, that begins the dump.

is the name assigned (via the DEFINE subcommand) to the
storage address that ends the dump.

is the hexadecimal storage location, in relation to the
current origin, that ends the dump.

indicates that the dump ends at your virtual machine's last
virtual storage address.

is any name (up to eight characters) that identifies the dump.

41ij IBM VB/SP CBS Command and Bacro Reference

DEBUG Subcommands-DUftP, GO

Usa~ Notes

1. If you issue the DUftP subcommand with no operands, 32 bytes of
storage are dumped, starting at the current origin.

2. The first and second operands must designate storage addresses that
do not exceed your virtual machine storage size. Also, the storage
address derived from the second operand must be greater than the
storage address derived from the first operand.

None.

GO

Use the GO subcommand to exit from the debug environment and begin
Frogram execution. The format of the GO subcommand is:

... ,
GO I symbol I

I hexloc I
L .J

symbol is the symbolic name assigned to the storage location where
you want execution to begin.

hexloc is the hexadecimal location, in relation to the current
origin, where you want execution to begin.

psage Notes

1. When you issue the GO subcommand, the general registers, CAi
(channel address word), and CSi (channel status word) are restored
either to their contents upon entering the debug environment, or,
if they have been modified, to their modified contents. Then the
old PSW is loaded and becomes the current PSi. Execution begins at
the instruction address contained in bits 40-63 of the PSi.

2. When you specify symbol or hexloc with
specified address replaces the instruction
so execution will begin at that address.
environment with the DEBUG command, you
with the GO subcommand.

the GO subcommand, the
address in the old PSW,

If you entered the debug
must specify an address

3. The address you specify must be within your virtual machine and it
must contain a valid operation code.

Responses

Program execution is resum~d.

Section 4. DEBUG Subcommands 415

DEBUG Subcommands-GPB, HX

GPR

Use the GPR subcommand to display the contents of one or more general
registers at the terminal. The format of the GPR subcommand is:

GPR I reg 1 [reg 2]

regl is a decimal number (from 0-15 inclusive) indicating the first
or only general register whose contents are to be displayed.

reg2 is a decimal number (from 0-15 inclusive) indicating
general register whose contents are to be displayed.
be larger than reg1.

ResEonses

the last
reg2 must

The register or registers specified are displayed, in hexadecimal
representation:

xxxxxxxx

HX

Use the HX subcommand to leave
reason the debug environment
subcommand is:

the debug environment, regardless of the
was entered. The format of 'the HX

,r---,
I HX

If you entered the debug environment following a prog~am interruption,
you receive the message:

CMS

to indicate a return to the CMS environment. If you entered the debug
environment by issuing the DEBUG command, you receive the message:

DMSABN148T SYSTEM ABEND 2E4 CA1LED FROM xxxxxx

where xxxxxx is the address of the debug routine.

416 IBM VM/SP CMS Command and Macro Reference

DEBUG Subcommands-ORIGIN

ORIGIN
•

Use the ORIGIN subcommand to set an or~g~n or base address to be used in
the debug environment. The format of the ORIGIN subcommand is:

ORigin
{

SymbOl}
hexloc

Q

symbol is a symbolic name that was previously assigned (via the
DEFINE subcommand) to a storage address.

hexloc is a hexadecimal location within
storage. If you do not explicitly
a value of O.

the limits of your virtual
set an origin, then it has

1. When the ORIGIN subcommand specifies a symbol, the debug symbol
table is searched. If a match is found, the value corresponding to
the symbol becomes the new origin. When a hexadecimal location is
specified, that value becomes the or~g~n. In either case, the
operand cannot specify an address greater than your virtual storage
size.

2. Any origin set by an ORIGIN subcommand remains in effect until
another ORIGIN subcommand is issued, or until you obtain a new copy
of CMS. Whenever a new ORIGIN subcommand is issued, the value
specified in that subcommand overlays the previous origin setting.
If you obtain a new copy of CMS (via IPL), the origin is set to 0
until a new ORIGIN subcommand is issued.

3.

None.

You can use the ORIGIN subcommand to set the origin to your
program's base address, and then refer to actual instruction
addresses in your program, rather than to virtual storage
locations.

Section 4. DEBUG Subcommands 417

DEBUG Subcommands-PSW, RETURN

PSW

Use the PSW
status word).

PSi

subcommand to display the contents of
The format of the PSW subcommand is:

the PSi (program

1. If the debug environment was entered because of a program
interruption, the program old PSW is displayed. If the debug
environment was entered because of an external interruption, the
external old PSW is displayed. If the debug environment was
entered for any other reason, the following is displayed in
response to the PSW subcommand:

01000000xxxxxxxx

where the 1 in the first byte means that external interruptions are
allowed and xxxxxxxx is the hexadecimal storage address of the
debug program.

2_ The PSW contains some information not contained in storage or
registers but required for proper program execution. In general,
the PSW is used to control instruction sequencing and to hold and
indicate the status of the system in relation to the program
curren tly executing. For a description of the PSW, refer to the
VM/SP System Pr.Q.gil~~ Guid~.

Responses

The PSW is displayed in hexadecimal representation.

RETURN

Use the RETURN subcommand to exit from the debug environment and enter
the CMS command environment. The format of the RETURN subcommand is:

RETurn

Usage Note

The RETURN subcommand is valid only when the debug environment was
entered via the DEBUG command.

Responses

The CMS ready message indicates that control has been returned to the
CMS environment.

418 IBM VM/SP CMS Command and ftacro Reference

DEBUG Subcommands-SET

SET

Use the SET subcommand to change the contents of the control words and
general registers. The format of the SET subcommand is:

SET
{

CAW
CSW
PSW
GPR

hexinfo
bexinfo
bennfo
reg

(hexinfo]
(hexinfo]
hexinfo [bexinfo 1 }

where:

CAW hexinfo
stores the specified information (hexinfo) in the CAW (channel
address word) that existed at tbe time the debug environment
was entered.

CSW hexinfo (hexinfo]
stores the specified information (hexinfo [hexinfo]) in the
CSi (channel status word) that existed at the time the debug
environment was entered.

PSi hexinfo [bexinfo]
stores the specified information (hexinfo (hexinfo]) in the
old PSi (program status word) for the interruption that caused
the debug environment to be entered.

GPB reg hexinfo [hexinfo]
stores the specified information (hexinfo [hexinfo]) in the
specified general register (reg).

1. The SET subcommand can only change the contents of one control word
at a time. For example, you must issue the SET subcommand three
times:

set caw hexinfo
set csw hexinfo [hexinfo]
set psw hexinfo [hexinfo]

to change the contents of the three control words.

2. The SET subcommand can change the contents of one or two general
registers each time it is issued. When four or fewer bytes of
information are specified, only the co~tents of the specified
register are changed. When more than four bytes of information are
specified, the contents of the specified register and the next
seguential register are changed. For example, the SET subcommand:

set gpr 2 xxxxxxxx

changes only the contents of general register 2. But, the SET
subcommand:

set gpr 2 xxxxxxxx xxxxxxxx

changes the contents of general registers 2 and 3~

Section 4. DEBUG Subcommands 419

DEBUG Subcommands-SET, STORE

3. Each hexinfo operand should be from one to four bytes long. If an
operand is less than four bytes and contains an uneven number of
hexadecimal digits (representing half-byte information), the
information is right-justified and the left half of the uneven byte
is set to zero. If more than eight hexadecimal digits are
specified in a single operand, the information is left-justified
and truncated on the right after the eighth digit.

4. The number of bytes that can be stored using the SET subcommand
varies depending on the form of the subcommand. With the CAW form,
up to four bytes of information may be stored. With the CSW, GPR,
and PSW forms, up to eight bytes of information may be stored, but
these bytes must be represented in .two operands of four bytes each.
When two operands. of information are specified, the information is
stored in consecutive locations (or registers), even if one or both
operands contain less than four bytes of information.

None. To display the contents of control words or registers after you
modify them, you must use the CAi, CSW, PSW, and GPR subcommands.

STORE

Use the STORE subcommand to store up to 12 bytes of hexadecimal
information in any valid virtual storage location. The format of the
STORE subcommand is:

STore

symbol

hexloc

hexinfo

{ SymbOl}
hexloc

hexinfo [hexinfo [hexinfo]]

is the symbolic name assigned (via the DEFINE subcommand) to
the storage address where the first byte of specified
information is to be stored.

is the hexadecimal location, relative to the current origin,
where the first byte of information is to be stored.

is the hexadecimal information, four bytes or less in length
(that is, two to eight hexadecillal digits), to be stored.

Usage Notes

1. If an operand is less than four bytes long and contains an uneven
number of hexadecimal digits (representing half-byte information),
the information is right-justified and the left half of the uneven
byte is set to zero. If more than eight hexadecimal digits are
specified in a single operand, the information is left-justified
and truncated on the right after the eighth digit.

2. The STORE subcommand can store a maximum of 12 bytes at one time.
By specifying all three information operands, each containing four
bytes of information, the maximum 12 bytes can be stored. If less
than four bytes are specified in any or all of the operands, the

420 IBM VM/SP CMS Command and Macro Reference

DEBUG Subcommands-STORE, X

information given is arranged into a string of consecutive bytes,
and that string is sto~ed starting at the location derived from the
first operand.

For example, if you have defined a four-byte symbol named FENCE
that currently contains X'FFFFFFFF' and you enter:

store fence 0

FENCE contains X' 00 FFFFFF' •

None. To display the coptents of a storage location after you have
modified it, you must use the X subcommand.

x

Use the X subcommand to examine and display the contents of specific
locations in virtual storage. The format of the X (examine) subcommand
is:

r ,
X symbol I n I

I le!!~1! I
L .J

r ,
hexloc I n I

I ! I
L .J

symbol n is the name assigned (via the DEFINE subcommand) to the
storage address of the first byte to be displayed. n is a
decimal number from 1 to 56 inclusive, that specifies the
number of bytes to be examined. If a symbol is specified
without a second operand, the length attribute associated with
that symbol in thE debug symbol table specifies the number of
bytes to be examined.

hexloc n is the hexadecimal location, in relation to the current
or1g1n, of the first byte to be examined. If hexloc is
specified without a second operand, four bytes are displayed.

usggg Note

The address represented by symbol or hexloc must be within your virtual
machine storage size.

Responses

The requested information is displayed at the terminal in hexadecimal
format.

Section 4. DEBUG subcommands 421

J

422 IBM VM/SP CMS Command and Macro Rezerence

EXEC Control statements

Section 5. CMS EXEC Control Statements

This section describes the formats, usage rules, and default values for
CMS EXEC control words, including:

• Control statements
• Built-in functions
• Special variables

An EXEC procedure is a CMS file that contains a seguence of CMS
commands and/or EXEC control statEments. Control statements determine
the logic flow for EXEC, provide terminal communications, and may be
used to manipulate CMS disk files. For an introduction to the EXEC
facilities, and for complete tutorial information, including examples,
consult the VM/SE £~2 Us~!!§ Guide. Refer to 1~2E lXE£ 1 Refe£~nce for
information on EXEC 2.

EXEC procedures may be invoked with the EXEC command, described in
"Section 2. CMS Com~ands." You may also execute an EXEC procedure by
specifying its filename, as long as the implied EXEC function is in
effect.

Section 5. EXEC Control Statements 423

EXEC Control Statements-Assignment Statement

The Assignment Statement

Use the assignment statement
variable symbol. Variable
control the execution of
assignment statement is:

in an EXEC procedure to assign a value to a
symbols may be tested and manipulated to
an EXEC procedure. The format of the

&variable = {
string
ae
function
X'xxxxxx

&variable

string

ae

function

X'xxxxxx

indicates the variable symbol that is assigned the specified
value. A variable may contain a maximum of eight alphameric
and national characters, including the initial ampersand,
which is required. Except in the EXEC special variables &*
and &DISK*, a variable must not contain any special
characters.

is a data item of up to eight characters. It may also be a
variable symbol or null. Whether a numeric string is
treated as numeric or character data depends on how it is
used in the EXEC. If a string containing variable symbols
expands to more than eight characters, it is truncated. If
the string consists of eight X'FF' characters, the variable
is set to a null string.

is an arithmetic eXFression consisting of a sequence of data
items that possess positive or negative integral values and
are separated by plus or minus signs:

&1 - 4 + SCALC - 6

is an EXEC built-in function followed by at least one token.

indicates up to six hexadecimal digits to be converted to
decimal before assignment. For example:

&A = x'ca

results in SA baving the decimal value 192.

Hexadecima~ conversion is not performed unless you have used
the SHEX ON control statement.

All variable symbols occurring in executable statements are substituted
before the statement is executed. An executable statement is (1) a CMS
command line, or (2) an EXEC control statement (including assignment
statements) •

424 IBM VM/SP CMS Command and Macro Reference

EXEC Control Statements-Assignment Statement

Variable substitution is performed on all symbols on the left-hand
side of an assignment statement, except the leftmost variable. For
example:

&1 = 2
&X&I = 5

sets &X2 to 5.

If a variable on the left-hand side of an assignment statement has
already been assigned a value, it is replaced by the new value specified
in the assignment statement.

If the special form, X'&symbol, is
converted to its hexadecimal equivalent.

&A = 192
&TIPE X'&A

results in the display:

co

used, the specified symbol
For example:

is

If a variable symbol that has not been defined is used in an
executable statement the symbol is set to a null token and ignored. In
some instances this may cause an EXEC processing error.

All executable statements in an EXEC are scanned into eight-character
tokens, and padded or truncated as necessary. Tokens are formed of words
delimited by blanks and parentheses. If there is no blank before or
after a parenthesis, one is added in either case. If more than one
blank separates a word or a parenthesis from another, the extra blanks
are removed from the line. For example, the line:

&TIPE THIS IS AN EXAGGERATED (MESSAGE

scans as:

&TIPE THIS IS AN EXAGGERA (MESSAGE

Variable symbols are substituted after each line is scanned, and each
token is scanned repeatedly until all symbols in it are substituted.

In an executable statement, a token beginning with the character
X'FF' (or a variable to which such a token is assigned as a value)
usually prevents the processing of data following it on the same line.
However, if an assignment statement sets a variable to eight X'FF'
characters, data following the variable in an executable statement is
processed.

Section 5. EXEC Control Statements 425

EXEC Control Statements-&ARGS, &BEGEMSG

&ARGS

Use the &ARGS control statement to redefine the value of one or more of
the special variables, &1 through &30. The format of the &ARGS control
statement is:

&ARGS [arg1 [arg2 '... [arg30]]]

[arg1 [arg2 ••• [arg30]]]
specify up to 30 tokens to be assigned to the special
variables &1 through &30. If no arguments are specified, all
of the variables &1 through &30 are set to blanks. When fewer
than 30 arguments are entered, the remaining arguments are set
to blanks. An argument is also set to blanks if it is
specified as a ~~rcent sign (%).

1. To enter an argument list from the terminal, use the &READ ARGS
control statement.

2. An &ARGS control statement resets the values of the &INDEX, &*, and
&$ special variables.

&BEGEMSG

Use the &BEGEMSG control statement to introduce one or more unscanned
lines to be edited as VM/SP error messages. The list of lines to be
displayed must be terminated by an &END control statement, which must
appear beginning in column 1. The format of the &BEGEMSG control
statement is:

&BEGEMSG I [ALL]

ALL specifies, for fixed-length EXEC files, that the entire line
(to a maximum of 130 characters) is to be displayed.

Us~~ Notes

1. To gualify for error message editing, the first data item on each
line following the &BEGEMSG control statement must be seven
characters long, in the format:

mmmnnns

426 IBM VM/SP CMS Command and Macro Reference

EXEC Control Statements-SBEGEMSG

mmmnnn is a six-character message identification you can supply
for the error message. standard VM/SP error messages use a
three-character module code (mmm) and a three-character
message number (nnn).

s indicates the severity code. The following codes qualify
the message for error message editing:

l1~§§~g~ !.Y.E~
Informational
Error
Warning

When the severity code is E,
displayed in accordance with the
CODE, or TEXl)_ Iou can change
SET command, described in VM/SP
General Use.I§_

I, or W, the message is
CP EMSG setting (ON, OFF,
this setting vith the CP
CP £,gmmand Re;£~!:~nce for

2. When you use the &BEGEMSG control statement to display error
messages, the character string "DMS" is inserted in front of the
seven-character message identification. For example, if the EMSG
setting is ON, the lines:

&BEGEMSG
TEST01E INSURMOUNTABLE ERBOR
SEND

result in the display:

DMSTEST01E INSURMOUNTABLE ERROR

Note: Since the maximum length of a line that you can display at
your terminal is 130 characters, the insertion of the characters
DMS will cause lines greater than 127 characters long to be
truncated.

3. Messages that are displayed as the result of an &BEGEMSG control
statement are not scanned by the EXEC interpreter. Therefore, no
variable substitution is performed and no data items are truncated.
To display variable data, use the &EMSG control statement.

section 5. EXEC Control statements 427

EXEC Control Statements-&EEGPUNCH, &BEGSTACK

& BEG PUNCH

Use the &BEGPUNCH control statement to delimit the beginning of a list
of one or more data lines to be spooled to your virtual card punch. The
list of lines to be punched is terminated by the control statement &END,
which must occur beginning in column 1. The format of the &BEGPUNCH
control statement is:

&BEGPUNCH [ALL]

wher~:

ALL specifies that data occupying columns 73 through 80 should be
punched. If ALL is not specixied, input records are truncated
at column 72 and columns 73 through 80 of the output record
are padded with blanks.

Usage Notes

1. Lines that are punch~d as the result of an &BEGPUNCH control
statement are not scanned by the EXEC interpreter. Therefore, no
variable substitution is performed and no data items are truncated.
To punch variable data, you must use the &PUNCH control statement.

2. When you are finished punching lines in an EXEC procedure, you
should use the CP CLOSE command to close your virtual punch.

&BEGSTACK

Use the &BEGSTACK control statement to
of one or more data lines to be placed
of lines to be stacked is terminated by
must occur beginning in column 1. The
statement is:

&BEGSTACK
r ,
IlIFOI
ILliOI
L .I

r ,
I ALLI
L .I

delimit the beginning of a ·list
in the console stack. The 'list
the control statement &END which
format of the &BEGSTACK control

specifies that the lines that follow are to be stacked on a
first in, first out basis. This is the default value.

LIFO specifies that the lines that follow are to be stacked on a
last in, first out basis.

ALL specifies, for fixed-length EXEC files, that the entire line
(to a maximum of 130 characters) is to be stacked. If ALL is
not specified, the lines are truncated in column 72.

428 IBM VM/SP CMS Command and Macro Beference

EXEC Control Statements-&BEGSTACK, &BEGTYPE

Us.2,g~ Notes

1. Lines that are stacked as the result of an &BEGSTACK control
statement are not scanned by the EXEC interpreter. Therefore, no
variable sUbstitution is performed, and data items are not
truncated. To stack variable data, you must use the &STACK control
statement.

2. To stack a null line in an ~XEC file you must use the &STACK
control statement. A null line following an &BEGSTACK control
statement is interFreted as a line of blanks. To stack an INPUT,
REPLACE, or CHANGE subcommand to enter input mode from a
fixed-length EXEC, you should use the &STACK control statement.

&BEGTYPE

Use the &BEGTYPE control
one or more data lines
lines to be displayed is
must occur beginning in
statement is:

statement to delimit the beginning of a list of
to be displayed at the terminal. The list of
terminated by the control statement &END, which
column 1. The format of the &BEGTYPE control

r---,
&BEGTYPE [ALL] I

I

where:

ALL specifies, for fixed-length EXEC files, that data occupying
columns 73 through 130 is to be displayed. If ALL is not
specified, the lines are truncated at column 72.

Usage ~

Lines that are displayed as the result of an
are not scanned by the EXEC interpreter.
substitution is performed, and data items are
variable data, you must use the &TYPE control

&BEGTYPE control statement
Therefore, no variable

not truncated. To display
statement.

Section 5. EXEC Control Statements 429

EXEC Control Statements-SCCNTINUE, SCONTROL

&CONTINUE

Use the SCONTINUE control statement to instruct the EXEC interpreter to
process the next statement in the EXEC file. The format of the
SCONTINUE control statement is:

I
SCONTINUE I L-___J

SCONTINUE is generally used with an EXEC label (for example, -LAB
SCONTINUE) to provide a tranch address for &ERROR, SGOTO, and other
branching statements. SCONTlNOE is the default action taken when an
error is detected in processing a CMS command.

& CONTROL

Use the SCONTROL control statement to specify the amount of data to be
displayed in the execution summary of an EXEC. The format of the
SCONTROL control statement is:

.. , .. , .. ,
SCONTROL

.. ,
IOFF I
IERliORI
I£~ I
IALL I
L .J

IMSg j
INOMSGj

j TH!E I
I,!OTI!EI

InCK I
I NOPACK I

where:

OFF

ERROR

L .J L .J L .J

suppresses the display of CMS commands and EXEC
statements as they execute and of any return codes
result from CBS commands.

control
that may

displays only those CBS commands that result in an error and
also displays the error message and the return code.

CMS displays each CMS command as it is executed and all nonzero
return codes.

ALL

NOMSG

displays CMS commands and EXEC executable statements as they
execute as well as anl nonzero return codes from CBS commands.

does not suppress the "FILE NOT FOUND" message if it is issued
by the following commands when they are invoked from an EXEC
procedure: ERASE, LISTFILE, REHA!E, or STATE.

suppresses the "FILE NOT FOUND" message if it is issued when
the ERASE, LISTFILE, RENA!E, or STATE commands are invoked
from an EXEC Frocedure.

430 IB! VM/SP CMS Command and !acro Reference

EXEC Control Statements-&CORTBOL, &EMSG

TIME includes the time-of-day value with each CMS command printed
in the execution summary; for example:

14:36:30 TYPE A B

This operand is effective only if CMS or ALL is also
specified.

does not include the time-of-day value with CMS commands
printed in the execution summary.

packs the lines of the execution summary so that surplus
blanks are removed from the displayed lines.

ROPACK does not pack the lines of the execution summary.

1_ The execution summary may consist of CMS commands, responses, error
messages, and return codes, as well as EXEC control statements and
assignment statements. When EXEC statements are displaled, they
are displayed in their scanned format, with all variable symbols
substituted.

2. Each operand remains set
statement that specifies
used with no operands,
values.

until explicitly reset by another &CONTROL
a conflicting operand. When &CONTBOL is

all operands are reset to their default

3. There is no global setting for &CONTROL. When an EXEC is nested
within another EXEC, the execution summary is controlled by the
nested EXEC's &CONTBOL setting. When control returns to the outer
EXEC, the original &CCNTROL setting is restored.

&EMSG

Use the &EMSG control statement to display a line of tokens to be edited
as a VM/SP error message. 'Ihe format of the &EMSG control statement is:

&EMSG I mmmnnns [tok1 ._. [tokn]]

mmmnnn

s

is a six-character identification you
message. standard VM/SP messages
three-character module code (mmm)
message number (nnn).

mal suppll for the error
are coded using a

and a three-character

indicates the severity code. The following codes gualifl the
message for error message editing:

Cod~
I
E
W
R

~§g~ 1ll§
Information
Error
Warning
Besponse

Section 5. EXEC Control Statements 431

EXEC Control Statements-SEMSG, SEND, SERB OR

tok 1 ••• [tokn]
is the text of the message to be displayed.

1. When the severity code is I, li, or W, the message is displayed in
accordance with the CP EMSG setting (ON, OFF, CODE, or TEXT). You
can change the setting with the CP SET command, described in VM/SP
CP Command Refere~ce for ~£al User.§!.

2. When an SEMSG code is displayed, it is prefixed with DMS. For
example, the statement:

SEMSG ERROR1E INVALID ARGUMENT

displays as follows when the EMSG setting is ON:

DMSERROR1E INVALID ARGUMENT

3. To display an error message with unsubstituted data, or to display
a line with words of more than eight characters, use the SBEGEMSG
control statement.

&END

Use the SEND control statement to terminate a list of one or more lines
that began with an SBEGEMSG, SBEGPUNCH, SBEGSTACK, or SBEGTYPE control
statement. The format of the &END control statement is:

&END

The word "SEND" must be entered beginning in column 1.

&ERROR

Use the SERROR control statement to specify the action to be taken when
a CMS command results in an error and returns with a nonzero return
code. The format of the &ERROR control statement is:

&ERROR
r ,
lexecutable-statementl
I !!.CONTIl!.!!~ I
L J

executable-statement
specifies any executable statement, which may be an EXEC
control statement or assignment statement or a CMS command.
If you specify an EXEC control statement that transfers

432 IBM VM/SP CMS Command and Macro Reference

EXEC Control Statements-&ERROR, &EXIT

control to another line in the EXEC, execution continues at
the specified line. otherwise, execution continues with the
line following the CMS command line that caused the error.

Usage ~

1. If your EXEC does not contain an SERROR control statement, then the
default is SCONTINUEi that is, EXEC processing is to continue with
the line following the CMS command that caused the error. You can
use SERROR SCONTINUE to reset a previous SERROR statement.

2. The words following an SERROR control statement are not scanned
until a CMS command .returns a nonzero return code. Therefore, if
you specify an invalid EXEC statement, the error is not detected
until a CMS command failure triggers the SERROR statement. If the
SERROR statement executes a CMS command that also results in an
error, EXEC processing is terminated.

& EXIT

Use the SEXIT control statement to terminate processing the EXEC file.
If the exit is taken from a first-level EXEC procedure, control passes
to CMS. If the exit is taken from a nested EXEC procedure, control
passes to the calling EXEC procedure. The format of the SEXIT control
statement is:

SEXIT
r ,
Ireturn-codel
I .Q I
L .J

return-code
specifies a numeric value, which may be a variable symbol, to
be used as the return code from this EXEC. If the return code
is not specified, it defaults to O.

1. If control is returned to CMS, the CftS ready message indicates the
return code value. Thus, the statement:

&EXIT 12

results in the ready message:

R(00012) iT=O/02 15:32:34

2. If you specify:

&EXIT SRETCODE

the return code value displayed is the return code from the most
recently executed CMS command.

Section 5. EXEC Control statements 433

EXEC Control Statements-SG070, SHEX

& GOTO

Use the &GOTO control statement to transfer control to a specific
location in the EXEC procedure. Execution then continues at the
location that is branched .to. The format of the &GOTO control statement
is:

SGOTO
{ TOP }

line-number
-label

TOP transfers co~trol to the first line of the EXEC file.

line-number transfers control to a specific line in the EXEC file.

-label transfers control to a specific label in the EXEC file. A
label must begin with dash (-), and it must be the first
token on a line. The remainder of the line may contain an
executablE statement or it may be null.

1. Scanning for an EXEC label starts on the line following the SGOTO
statement, goes to the end of the file, then to the top of the
file, and (if unsuccessful) ends on the line above the SGOTO
statement. If more than one statement in the file has the same
label, the first one encountered by these rules satisfies the
search.

2. To provide a branch up or down a specific number of lines in the
EXEC, use the SSKIP control statement.

&HEX

Use the &HEX control statement to initiate or inhibit hexadecimal
conversion in an EXEC procedure. The format of the SHEX control
statement is:

&HEX

ON

{~;F }
I

~
I
I

indicates that tokens beginning with the string X' are to be
interpreted as hexadecimal notation.

OF! indicates that no hexadecimal conversion is to be done by
EXEC. OFF is the default setting.

434 IBM VM/SP eMS Command and Macro Reference

EXEC Control Statements-SHEX, &IF

1. You should use the SHEX control statement when you want to display
a hexadecimal value. For example:

SHEX ON
STIPE X'40
&HEX

results in the display:

28

If you did not use the &HEX ON control statement, the &TIPE
state.ent would result in the display:

X'40

2. To convert a hexadecimal value to its decimal equivalent, use an
assignment statement.

3. The VM/SP CMS User's Guig~ should be consulted for details and
examples of correct usage of EXEC control statements with &HEX ON
in effect.

& IF

Use the &IF control statement to test a condition in an EXEC procedure
and to perform a particular action if the test is valid. If the test is
invalid, execution continues with the statement following the &IF
control statement. The format of the &IF statement is:

SIF

token1
token2

S$

&*

operator

operator Executable-statement

may be numeric constants, character strings, or EXEC variable
symbols. All variable symbols are substituted before the &IF
statement is executed.

tests all of the arguments entered when the EXEC was invoked.
If at least one of the arguments satisfies the specified
condition, the &IF statement is true.

tests all of the arguments entered when the EXEC was invoked.
All of the entered arguments must meet the specified condition
in order for the &IF statement to be true.

indicates the test to
tokens are numeric,
Otherwise, a logical

be performed on the tokens. If both
an arithmetic test is performed.

(alphabetic) test is performed. The

Section 5,. EXEC Control S ta temen ts 435

EXEC Control Statements-&IF, &LOOP

comparison operators, listed below, may be specified either in
symbolic or mnemonic fo£m:

Symbol Operatio~
= or EQ eguals

.,= or HE not equal
< or LT less than
<= or LE less than or equal to (not greater than)
> or GT greater than
>= or GE greater than or egual to (not less than)

executable-statement
is any valid EXEC executable statement which may be a CMS
command, an EXEC control statement, or an assignment
statement. You may also specify another &IF statement; the
number of nested &IF statements allowed according to the
following criteria:

CMS EXEC file: a maximum of 32 tokens is allowed for a
variable length file.

EXEC 2 file: the record length of the file.

1. The values &* and &$ are reset when an &ARGS or &READ ARGS control
statement is executed. They are not changed when you reset a
specific numeric variable (&1 through &30).

2. If a variable symbol used in an &IF control statement is undefined,
the EXEC interpreter cannct properly compare it. In cases where a
variable may be null, or to check for a null symbol, you should use
a concatenation character when you write the &IF statement; for
example:

&IF .&1 EQ • &GOTO -NOARGS

tests for a null symtol &1.

3. If the symbols &* or &$ are null because no arguments were entered,
the entire &IF statement is treated as a null statement.

&LOOP

Use the &LOOP control statement to describe a loop in an EXEC procedure,
including the conditions for exit from the loop. The format of the
&LOOP control statement is:

&LOOP

n is a positive integer from 0 to 4095 that indicates the
number of executable and nonexecutable lines in the loop.
These lines must immediately follow the &LOOP statement.

436 IBM VM/SP CMS Command and Macro Reference

J

EXEC Control Statements-SLOOP, SPURCH

-label specifies that all of the lines following the SLOOP
statement down to, and including the line with the specified
label, are to be executed in the loop. The first character
of the label must be a hyphen, and it must be the first
token on a line. The remainder of the line may contain an
executable statement, or it may be null.

m is a positive integer from 0 to 4095 that indicates the
number of times the loop is to be executed.

condition specifies the condition that must be met. The syntax of the
exit condition is the same as that in the SIF statement,
that is:

{it} operator rom

US2~ l!gte§

1. When loop execution is complete, control passes to the next
statement following the end of the loop.

2. The condition is always tested before the loop is executed. If the
specified condition is met, then the loop is not executed. For
example, the statement:

SLOOP 3 &CCUNT = 100

specifies that the next three lines are interpreted until the value
of &COURT is 100.

3. Loops may be nested up to four levels deep. All nested loops may
end at the same label.

4. A loop is closed when the requirements for termination specified in
the SLOOP statement are met, or when control is transferred outside
the scope of the looF (via &GOTO or SSKIP).

&PUNCH

Use the &PUReH control statement to punch a line of tokens to the
virtual card punch. The format of the &PUNeH control statement is:

&PUReH [tokl [tok2 ••• [tokn]]]

tokl [tok2 ' ••• [tokn]]
specifies the tokens to be punched. All tokens are padded or
truncated to eight characters. The punched line is right-padded
with blanks to fill an aO-column card. If no tokens are specified,
a line consisting of 80 blank characters is punched.

Section 5. EXEC Control Statements 437

EXEC Control Statements-SPUNCH, &BEAD

Q§gg!! ~

1. Lines punched with the &PUNCH control statement are scanned by the
EXEC interpreter and variable symbols are substituted before the
line is punched. In fixEd-length EXEC files, only the first 72
characters of the record are scanned. To punch one or more lines
of unscanned data, use the &BEGPUNCH or &BEGPUNCH ALL control
statement.

2. When you have finished punching lines in an EXEC procedure, you can
use the CP command CLOSE to ClOSE the spool punch file and release
it for processing.

& READ

Use the SREAD control statement to read one or more lines from the
console stack. The lines may contain data or executable statements.
The format of the &BEAD control statement is:

&BEAD
,.
I n
I 1
IARGS
IVARS r&var1 [&var2 •••
L

,
I
I
I

r&varn JlJI
.J L---__ ~

n

j

ABGS

reads the next n lines from the terminal and treats them as if
they had been in the EXEC file. Beading from the terminal
stops when n lines have been read, or when an &LOOP statement
or a statement that transfers control is encountered. If an
&READ statement is encountered, the number of ~ines to be read
by it is added to the Dumber outstanding.

If n is not specified, the default 1 is assumed, and the EXEC
continues processing after reading a single line.

reads a single line, assigns the entered tokens to the special
variables &1, &2, ••• , &n, and resets the special variables
&INDEX, S*, and &$.

If any of the tokens is specified as a percent sign (J) or
begins with the character XIFFI, the corresponding argument is
set to blanks.

VABS [&var1 [&var2 ••• [&varn]]]
reads a sing~e ~ine and assigns the tokens entered to the
variable symbols &varl, &var2, ._ •• , &varn (up to 17).

These variables are scanned in the
appeared on the left-hand side of an
no variable names are specified,
termina~ is lost.

same way as though they
assignment statement. If
any data read from the

If any of the tokens is specified as a percent sign (J) or
begins with the character lippi, the corresponding variable is
set to blanks.

"38 IBM VlI/SF CliS Command and lIacro Beference

EXEC Control Statements-&READ, &SKIP

Us,9g~ ~

You can test the special variable &READFLAG to determine whether the
next &READ statement will result in a physical read to your terminal
(the value of &READFLAG is CONSOLE) or in reading a line from the
console stack (the value of &REAtFLAG is STACK).

&SKIP

Use the &SKIP control statement to cause a specified number of lines in
the EXEC file to be skipped. The format of the &SKIP control statement
is:

&SKIP

where:

r ,
I n I
I 1 I
L .J

n specifies the number of lines to be skipped:

• If n is greater than 0, the specified number of lines are
skipped. Execution continues on the line following the skipped
lines. If the value of n surpasses the number of lines
remaining in the file, the EXEC terminates processing.

• If n is equal tc 0, no lines are skipped, and execution
continues with the next line.

• If n is less than 0, execution continues with the line that is n
lines above the current line. An attempt to skip beyond the
beginning of the file results in an error exit from the EXEC.

• The n may be coded as a variable symbol. 1 is the default value
that is used when no value is specified for n.

Usage Note

To pass control to a particular label in an EXEC procedure, use the
&GOTO control statement. The &GOTO control statement provides more
flexibility when you want to update your EXEC procedures. The &SKIP
statement, however, is more efficient, in terms of execution time.

Section 5. EXEC Control statements q39

EXEC Control Statements-&SPACE, &STACK

8tSPACE

Use the &SPACE control statement to display a specified number of blank
lines at your terminal. The format of the &SPACE control statement is:

&SPACE

n

r ,
I n I
111
L .J

specifies the number of blank lines to be displayed at the
terminal. If no number is specified, &SPACE 1 is assumed by
default.

Usage Notes

1. You may want to use the &SPACE control statement to control the
format of the execution summary that displays vhile your EXEC
executes.

8tSTACK

Use the &STACK control statement to stack a single data line in the
console stack. Stacked lines may be read by the EXEC, by CBS, or by the
CMS editor. The format of the &STACK control statement is:

&STACK

LIFO

r , r ,
IXIFQI I tok1 [tok2 ••• [tokn]]1
I LIFO I J HT I
L .J I BT I

L .J

specifies that the line is to be sta~ked in a first in, first
out sequence. lIFO is the default.

specifies that the line is to be stacked in a last in, first
out sequence.

tok1 [tok2 , ••• [tokn]]

BT

specify the tokens to be stacked. If no tokens are specified,
a null line is stacked. The tokens are in expanded form.

stacks the CMS Immediate command HT (halt typing), which is
executed immediately. All CMS terminal display from the EXEC,
except for CMS error messages vith a suffix letter of'S' or
'T', is suppressed until the end of the file or until an BT
(resume typing) command is read.

440 IBM VM/SP CBS Command and Macro Reference

L

RT

EXEC Subcommands-&STACK, &TIME

stacks the CMS Immediate command
executed immediately. If CMS
suppressed as the result OL an
display is resumed.

RT (resume typing), which is
terminal display has been

HT (halt typing) request,

USgg~ Notes

1. Lines stacked with the &STACK control statement are scanned by the
EXEC interpreter and variable symbois are substituted before the
line is stacked. To stack one or more unscanned lines, use the
&BEGSTACK or SBEGSTACK ALL control statement.

2. You must use the SS!ACK control statement when you want to stack a
null line.

3. The commands SET CMSTYPE HT and SET CMSTYPE RT perform the same
functions as &STACK HT and &S!ACK HT.

IJ. A complete discussion of technigues you can use
and data in the console stack is provided in the
Guig~.

to stack commands
VM/SP £MS User's

&TIME

Use the &TIME control statement to request timing information to be
displayed at the terminal after each CMS command that is executed. The
format of the &TIME control statement is:

&TIME

ON

RESET

TYPE

r ,
ION I
IOFI I
IRESETI
I TYPE I
L J

resets the processor's time before every CMS command, and
prints the timing information on return. If the SCONTROL
control statement is set to CMS or ALL, the display of the
timing infor.ati~n is followed by a blank line.

does not automatically reset the processor's time before every
CMS command, nor does it print the timing information on
return.

performs an immediate reset of the processor's time.

displays the current timing information (and resets the
processor's time).

!l§sg~ Notes

1. When timing information is displayed, it is in the format:

T=X.XX/Y.lY hh:mm:ss

Section 5. EXEC Control statements IJIJ1

EXEC Control Statements-STIME, STIPE

where:

x.xx is the virtual Frocessor's time used since it was last
reset in the current EXEC file.

y. YY. is the total of the processor's time used since it was
last reset in the current EXEC file.

hh:mm:ss is the actual time of day in hours:minutes:seconds.

2. The processor's time is set to zero before the execution of the
first statement in the EXEC file, and is again set to zero (reset)
whenever timing information is printed.

&TYPE

Use the STYPE control statement to display a line of tokens at the
terminal. The format of the &TIPE control statement is:

STYPE I [tokl [tok2 ••• (tokn]]]

tok 1 (tok2... [tokn]]
specify the tokens to be displayed.
truncated to eight characters. If
null line is disFlayed.

All tokens are padded or
no tokens are specified, a

Lines displayed with the STIPE control statement are scanned by the EXEC
interpreter and variable symbols are substituted before the line is
displayed. To display one cr more unscanned lines, use the SBEGTYPE or
SBEGTIPE ALL control statements.

qq2 IBM VM/SP CMS Command and ~acro Reference

j

EXEC Built-In Functions-&CONCAT

Built-in Functions

You can use the
variable symbols.
may be used only
follows:

EXEC built-in functions to assign and manipulate
iith the exception of &LITERAL, built-in functions

on the right-hand side of an assignment statement, as

&MIX = &CONCAT &1 &2

Built-in functions may not be combined with arithmetic expressions.

Each of the built-in functions (&CONCAT,
&LITERAL, and &SUBSTR) is described separately.

&DATATYPE, &LENGTH,

&'CONCAT

Use the &CONCAT function to concatenate two or more tokens and assign
the result to a variable symbol. The format of the &CONCAT function is:

&variable = &CONCAT tok1 [tok2 ••• [tokn]]

&variable is the variable symbol whose value is determined by the
&CONCAT function.

tok 1 [tok2 ••• [tokn])
specifies the tokens that are to be concatenated into a
single tcken; for example:

&A = **

&B = &CONCAT XX &A 45
&TYPE &B

results in the printed line:

XX**45

If the concatenated token is longer than eight characters, the data is
left-justified and truncated on the right.

Section 5. EXEC Control statements 443

EXEC Built-In Functions-&DATATYPE, &LENGTH

&DATATYPE

Use the &DATATYPE function to determine whether the value of the
specified token is alphatetic or numeric data. The format of the
&DATATIPE function is:

&variable = &DATATIPE token

whe~~:

&variable

token

& LENGTH

is the variable symbol whose value is determined by the
&DATATIPE function.

specifies the target token that is to be examined for
alphabetic or numeric data. The result of the &DATATIPE
function has the value NUH or CHAR, depending on the data
type of the specified token. For example:

&CHECK = &DATAiYPE ABC
&TIPE &CHECK

results in the display:

CHAR

A null token is considered character data.

Use the &LEHGTH function to determine the number of characters in a
token. The format of the &LENGTH function is:

&variable = &LENGTH token

wh~:

&variable

token

is the variable symbol whose value is determined by the
&LENGTH function.

specifies the target token that
nonblank characters. The result of
the number of nonblank characters
For example:

&LEN = &LENGTH ALPHA
&TIPE &LEN

results in the display:

5

is to be examined for
the &LEHGTH function is

in the specified token.

444 IBH VM/SP CMS Command and Macro Reference

J

EXEC Built-in Functions-&LITERAL, &SUBSTB

& LITERAL

Use the &LITERAL function to inhitit variable sUbstitution on the
specified token. The &LITEBAL function mal appear in anI EXEC control
statement, as follows:

[_, ••] &LITERAL toke.n[___]

token

&SUBSTR

specifies the token whose literal value is to be used without
sUbstitution. ~or example:

&X = **
&TYPE &LITERAL &X EQUALS &X

results in the printed line:

&X EQUALS **

Use the &SUBSTR function to extract a character string from a specified
token and to assign the substring to a variable slmbol. The format of
the &SUBSTR function is:

&variable = &SUBSTR token i [j]

wh~:

&variahle is the variable Slmhol whose value is determined bl the
&SUBSTR functi9n.

token

i

j

is the token from which the character string is to be
extracted.

specifies the character position in the token of the first
character to be used in the substring.

specifies the .number of characters in the string.
omitted, the remainder of the token is used.

If

The values of i and j (if given) must be positive integers. For
example:

&A = &SUBSTR ABCD! 2 3
STYPE &A

results in the printed line:

BCD

Section 5. EXEC Control Statements 445

EXEC Special Variables

Special Variables

Special variables are variable symbols that are assigned values by the
EXEC interpreter, and that you can test or display in your EXEC
procedures. In some cases, you may assign your own values to EXEC
special variables; these cases are noted in the variable descriptions.

The &n special variable represents the numeric variables &1 through &30.
When an EXEC is invoked, the numeric variables from &1 through &30 are
initialized according to the arguments that are passed to the EXEC file
(if any).

The numeric variables can be reset by either an &ARGS or &READ ARGS
control statement; when fewer than 30 arguments are set or reset, the
remainder of the &n variables are set to blanks. A particular argument
can be set to blanks by assigning it a percent sign (%) when invoking
the EXEC procedure, in an &ARGS control statement, or in an &READ ARGS
control statement. An argument is also set to blanks if it begins with
the character X'FF' and is'specified when invoking the EXEC procedure or
in an &READ ARGS control statement.

You may set the values of specific
statements. Any value of n, however, that
than 0 is rejected by the EXlC interpreter.

arguments using assignment
is greater than 30 or less

&*and &$

These variables can be used to perform a
arguments passed to the EXEC procedure.
the &IF and &LOOP control statements
description of the &IF control statement.
the special variables &* and &$.

&0

collective test on all of the
&* and &$ may only be u~ed in
and are described under the

You may not assign values to

The &0 special variable contains the filename of the EXEC file. You may
test and manipulate this variable.

&DISKx

You can use the &DISKx special variable to determine whether a disk is
an os, DOS, or CMS disk. x represents the mode letter at which the disk
is accessed. For example, if you access an OS disk with a mode letter
of C, then the special variable &DISKC has a value of OS. The possible
values for the &DISKx special variable are OS (for an OS disk), DOS (for
a DOS disk), CMS (for a eMS disk), and NA (when the disk is not
accessed) •

You may set or change the values of an &DISKx special variable. If you
do so, you are no longer able to test the status of the disk at mode x.

446 IBM VM/SP CMS Command and Macro Reference

&OISK*

The SDISK*
the first
read/write
NONE.

EXEC Special Variables

special variable contains the one-character mode letter of
read/write disk in the CMS search order. If you have no
disks accessed, this special variable contains the value

You may assign a value to the SDISK* special variable for your own
use; if you do so, however, you will not be able to use it to obtain the
filemode letter of a read/write disk.

&OISK?

You can use the SDISK? special variable in an EXEC to determine which
read/write disk that you have accessed has the most space on it. If you
have no read/write disks accessed or if the accessed disk is full,
SDISK? contains the value NONE.

You may assign a value to the SDISK? special variable for your own
use; if you do so, however, you will no longer be able to locate the
read/write disk with the most space.

&005

The SDOS special variable contains one of the two character values ON or
OFF, depending on whether the CftS/DOS environment is active. If you
have issued the command:

set dos on

then the SDOS special variable contains the value ON.

You may set or change the value of the SDOS special variable for your
own use; if you do so, however, you will not be able to test whether the
CMS/DOS environment is active.

&EXEC

The SEXEC special variable is the filename of the EXEC file. You cannot
set this variable explicitly but you can examine and test it.

&GLOBAL

The SGLOBAL special variable contains the recursion level of the EXEC
currently executing. Since the EXEC interpreter can handle up to 19
levels of recursion, the value of SGLOBAL ranges from 1 to 19. You
cannot set this variable explicitly, but you can examine and test it.

Section 5. EXEC Control Statements qq7

EXEC Special Variables

&GLOBALn

The &GLOBALn special variable represents the variables &GLOBALO through
&GLOBAL9. You can set these variables only to integral numeric values.
They are all initially set to 1. Unlike other EXEC variables, these can
be used to communicate betveen different recursion levels of the EXEC
interpreter.

&INDEX

The &INDEX special variable contains the number of arguments passed to
the EXEC procedure. Since up to 30 arguments can be passed to an EXEC
procedure, the value of &INDEX can range from 0 through 30.

Although you cannot set this variable explicitly, it is reset by an
&ARGS or &READ ARGS control statement. &INDEX can be examined to
determine the number of active arguments in the EXEC procedure.

&LlNENUM

The &LINENUM special variable contains the current line number in the
EXEC file. You cannot explicitly set this variable but you can examine
and test it.

&READFLAG

The &READFLAG special variable contains one of two literal values:
CONSOLE or STACK. If there are stacked lines in the program stack or
terminal input buffer &REALFLAG contains the value STACK and the next
read request results in a line being read from the stack. If not, then
the next read request results in a physical read to the terminal, and
the value of &READFLAG is CONSOLE. You cannot explicitly set this
variable but you can examine and test it.

&RETCODE

The &RETCODE special variahle contains the return code from the most
recently executed CMS command. &RETCODE can contain only integral
numeric values (positive or negative), and is set after each CMS command
is executed. You can examine, test, and change this variable but
changing it is not recommended.

& TYPEFLAG

The &TYPEFLAG special variable contains one of two literal values: RT
(resume typing) or HT (halt typing) • It contains the value HT when
terminal display has been suppressed by the Immediate command HT. It
contains the value RT when the terminal is displaying output. You
cannot explicitly set this variable, but you can examine and test it.

448 IBM VM/SP CBS Command and Macro Reference

J

CMS Functions

Section 6. eMS Functions

This section describes functions that are avilable to the CMS user.

Execute CMS functions from application
parameter list and then issuing an SiC 202.
function in your program, load the address
list into Register 1 and issue the SiC 202 as

LA 1,Parameter List
SiC 202
DC AU (ERBOR)

programs by setting up a
When you want to execute a
of the function parameter
follows:

where ERROR is a routine to handle nonzero return codes returned in
register 1S'after execution of the SVC call.

If you want to ignore errors, you can code the sequence:

LA 1,Parameter List
SiC 202
DC ALq (1)

If the function completes normally, this sequence causes execution of
the next sequential instruction. However, if an error occurs while
executing the function and the program requires successful execution of
the function, abnormal termination of your program may result.

Section 6. CMS Functions qq9

ATTN Function

ATTN Function

Use the ATTN function to insert a line of input into the program stack.
ATTN may be executed from an assembler language program via SVC 202 with
the following parameter list:

PLIST

*

DS
DC
DC

DC
DC

OD
CLaw AlnN'
CL4'order'

AL 1 (length)
AL3 (addr)

where order may be LIFO or FIFO.
FIFO is the default
length of line to be stacked
address of line to be stacked

1. The line that ATTN stacks is extracted from the program stack when
WAITRD is executed to read a line of input. (See the WAITRD
function description for details of WAITRD function.)

2. ATTN stacks lines of up to 255 characters.

ResEonses

None

Return Code§

o
25

Function successfully completed
No more storage

Q50 IBM VM/SP CMS Command and !acro Reference

J

NUCEXT Function

I NUCEXT Function

The nucleus extension function (NUCEXT) allows the user to identify
command entry points in Frograms established in free storage, so that
they may be called by a SVC 202 as if they were nucleus commands. They
thus become nucleus extensions.

NUCEXT builds a chain of SCBLOCKS in
routines (look-aside entries) and nucleus
CMS nucleus resident function is invoked
chain .•

storage for
extensions.
an SCBLOCK

nucleus resident
The first time a
is added to the

The chain of nucleus extensions and look-aside entries is reordered
each time a command is found on the chain. The reordering puts the most
freguently used commands at the beginning of the chain.

NUCEXT is a name given to a group of commands that all make use of an
internal function named NUCEXI. The actual commands provided for
manipulation of nucleus extensions are:

1. NUCXLOAD

2. NUCXDROP

3. NUCXMAP

Loads an ADCON-free or relocatable module
into free storage and installs it as a nucleus
extension.

Cancels a nucleus extension and releases
the corresponding storage.

Prints on the console or stacks a list of
the nucleus extensions.

Use NUCEXT to access user-written programs without having to do disk
read operations (as would te reguired for modules) or to avoid
thrashing in the transient or user areas when several programs are used
repeatedly (the same programs are loaded many times).

Use NUCEXT for statistics gathering, filtering commands for various
purposes, creating anchors for data kept in free storage until the next
CMS IPL, and special operations during CMS abnormal end processing.

Unlike transient routines or user programs, nucleus extensions are
retained until they are unloaded eXFlicitly, or as a side effect of
abnormal end cleanup for those using free storage of type 'user' (which
is reclaimed during an abnormal end) or which are not designated as
system routines to survive atnormal end.

Nucleus extensions can have the same name as existing CMS nucleus
commands or functions. If they do the extensions override the existing
nucleus commands or functions. Only nucleus functions invoked via SVC
202 can be overridden. Two existing nucleus functions, however, RDBUF
and WRBUF, can not be overridden.

section 6. CMS Functions 451

NUCEXT Function

I Nucleus Extensions and AbnQLmal End§

I There are two types of nucleus extensions differentiated by their
I behavior during a CMS abnormal end. These two types are "system" and
I "user." The former will survive an abnormal termination of a user
I program (abnormal end), whereas the latter will not. Because CMS
r reclaims all storage of type "user" during the abnormal end cleanup
I phase, any nucleus extension in "user" storage is deleted during
I abnormal end, regardless of its "system" attribute.

Because of this storage reclamation dULing abnormal end, programs
which build data structures in free storage of type 'user' but keep
pointers in storage of type 'system' need to know when abnormal end
cleanup occurs (e.g., after HX).

A program's need to know about abnormal end cleanup is supported by
the idea of a service cal'l. When a nucleus extension is declared (via
NUCEXT), it may request that it receive a service call under appropriate
circumstances. There are two standard service calls supported by
NUCEXT. The PUBGE service call is issued during CMS abnormal end
cleanup. The RESET service call is issued by the HUCXDROP program when
a nucleus extension is explicitly unloaded. The service calls allow
programs with several entry points to cancel these at the same time, or
to free storage areas.

A note on service calls during an abnormal end: Do not stack during a
service call. This causes the system to allocate storage that is not
accounted for during abnormal end. 7he sequence of events that occur
during an abend are documented in the VM/SP System Programmer's Guide
under CMS abend recovery.

Nucleus extensions mayor may not have the "SYSTEM" attribute and/or
the "SERVICE" attribute. These attLibutes determine the handling of a
nucleus extension during abnormal end processing.

If a nucleus extension has the "SYSTEM" attribute, it
after an abnormal end. It is the user's responsibility to
a nucleus extension is loaded into ~ucleus storage, not
(which is recovered after an abnormal end).

remains active
see that such
user storage

If a nucleus extension has the "SERVICE" attribute, it is called
during abnormal end processing with the parameter list:

OS OF
DC CLa'NUCLE~S EXTENSION NAME'
DC CLa'POBGE'
DC aX'FF'

The high order byte in register 1 is set to X'FF'.

A nucleus extension may have the "SYSTEM" and "SERVICE" attributes in
any combina tion.

452 IBM VM/SP CMS Command and Macro Reference

\,)

NUCEXT Function

During abnormal end recovery, nucleus storage used by nucleus
extensions behaves as follows:

1. When a nucleus extension has the "SYSTEM" attribute, it should be
in nucleus storage and the length word is used by abnormal end
recovery to account for the amount of storage used by that
program.

I' 2. If a nucleus extension does not have the "SYSTEM" attribute but
1 is in nucleus storage anyway, that storage will be recovered
1 during abnormal end.

When a nucleus extension obtains nuc~eus-type free storage other than
what is accounted for by the origin and length fields in the SCBLOCK, it
should either:

1. Use the "SERVICE" flag so that it is called with the PURGE
parameter list during abnormal end, at which time it returns any
nucleus-type storage it obtained (but not that described in its
SCBLOCK) •

2. If it has the "SYSTElf" attribute, account for any extra nucleus
storage which is to be kept through an abnormal end by adding the
length in double words of such storage into the NUCXiRES field in
NUCON. It's a good idea to update this field as soon as the
storage is obtained. This is required if the nucleus extension
does not have the "SERVICE" attribute.

Nucleus extensions remain in effect until cancelled, either
explicitly or implicitly. Implicit cancellation normally occurs only
for nucleus extensions of the 'user' type (during an abnormal end
cleanup time when all storage of 'user' type is reclaimed). Explicit
cancellation does not release the storage (if any) occupied by the
nucleus extension: that is the responsibility of the program that issues
the cancellation (usually the program NUCXDROP).

Using the NUCEXT function affects the command resolution strategy of
DMSITS when a SVC 202 is processed. Nucleus extensions are sought
before functions in the real CMS nucleus (i.e., one which is defined by
an entry in DMSFNC) • This gives the user the ability to intercept,
filter, augment, etc., the 'real' nucleus functions.

Linkagg conventions

When a nucleus extension is declared, the following information must
be provided:

• The NAME of the command implemented by the nucleus extension.

• The PSW to be used when passing control to the nucleus extension.

• The address and length of the storage area occupied by the program.

Section 6. CMS Functions 453

NUCEXT Function

• Flag bits to indicate either type 'user' or 'system,' and indicate
whether service calls are desired.

Secondary entry points are declared by indicating a storage size of
zero. The PSw specifies the system mask, the PSi key to be used, the
program mask (and initial condition code), and the starting address for
execution. The problem-state and wait-state bits may be set, but that
would be useful only in very exceptional circumstances. The
machine-check bit has no effect in CMS under CP, and the EC-mode cannot
be set (it is always forced to zero). The flag bits are encoded in the
third byte of the PSi. Also, one byte of user defined flags and one
4-byte user-defined word can be associated with the nucleus extension,
and referred to when the entry point is subsequently called.

On entry to a nucleus extension, the register contents are:

RO

R1

R2
R12
R13
R11.6
R15

Address of extended parameter list (if
one was provided by the caller).

Address of the command name (and the
tokenized parameter list).

Address of SCBLOCK with NUCEXT extension.
Entry peint address.
24-word save area address.
Return address (CMSBET).
Entry peint address.

This is the standard entry point convention except that R2 points to
the SCBLOCK.

The NUCEXT function queries, declares, or cancels user nucleus
extensions. NUCEXT can be issued as a command only for its query
function. With one argument, 'name,' it returns either:

o 'name' resolved to a user nucleus extension (found it).
or

1 'name' not found.

PLISTs

As a function (called from a program), NUCEXT takes the following
PLIST:

Declared PLIST:

NUCX DS OF PLIS7 TO DECLARE NOCLEUS EXTENSION
DC CLa'NOCEXT'

NUCXNAME DC CLa'name' CO!!MAliD NAME
NOCXPSi DC .1L2' 0000' , lL2 (0) SISTEM MASK, STORAGE KEY, ETC
NOCXIDDR DC A (*-*) ENTRY ADDRESS, -1 for QUERY

DC 1 (0) OSER iORD
NOCXORG DC 1 (*-*) LOAD ADDRESS
HOCXLEN DC A (*-*) SIZE, IN BYTES

454 IBM VM/SP eMS Command and Ma~ro Reference

NUCEXT Function

This declares 'name' as a nucleus extension and puts an SCBLOCK at
the head of the NUCEX~ chain. The name may already be defined, in
which case the previous declaration will be hidden until the present one
is cancelled. Return code 25 means not enough storage was available to
allocate the necessary SCBLOCK.

The third and fourth bytes of the start-up PSi (interrupt code) are
used as flag bytes. The format of the PSi is:

Cancel PLIST:

CLS'NUCEXT'
CLSlname l
XL4 1 irrelevant i

AL 1 (system mask)
AL.4(storage key)
BL.4'OIUipl
ALl (NUCEXT flags)

AL 1 (user flag)

A (entry point)

(EC-mode bit forced to 0)

System=XISOI,
Service=X'40'

May be used for private
purpose.

A(O) identifies the cancel function

I This cancels the nucleus extensio~ or gives a return code of 1 if
I 'nalle' is not found. The storage occupied by the program calling for
I this nucleus extension is not freed. This is the responsibility of the
I cancelling program.

CLS'NUCEXT'
CLSlname'
XL4'irrelevant'
XL4'PPPPPFFFI

Receives A(SCBLOCK).
identifies the query function

This form returns the address of the SCBLOCK if Iname' is found,
otherwise it changes nothing and gives a return code of 1.

Note that if 'NUCEXT name' is called from a command level or from an
EXEC file, the Query PLIST is the form of PLIST which will be issued.

Get Anchor PLIST:

CLS'NUCEXT'
CLSlirrelevant'
A (*-*)

A (1)

Receives value (not address)
of NUCEXT list anchor or 0 if
there are no nucleus extensions.

Indicates reguest for anchor.

Note: The QUERY function does not locate I look-aside , entries. They
can only be located by following the SCBLOCK chain using the
anchor.

Section 6. CMS Functions 455

WAITRD Function

WAITRD Function

Use the WAITRD function to read a line of input from the program stack
or terminal input buffer into a specified buffer. WAITRD may be
executed from an assembler language program via SVC 202 with the
following parameter list:

PLIST DS
DC
DC
DC
DC
DC

OF
CL8'WAITRD'
AL 1 (1)
AL3(input buffer address)
CL1 'code'
AL3 (number of bytes) - See Usage Note 1

WAITRD first exhausts the program stack, then automatically switches
to the terminal input buffer. WAITRD does not perform logical. line
editing on lines read from the program stack (unless uppercase
translation is requested). WAITRD does perform logical line editing on
lines read from the terminal input buffer, unless you specify ~ode x.
WAITRD does not perform logical line editing if you specify code x.

The following codes specify what kind of processing WAITRD performs
on lines read from the terminal input buffer. With these codes you must
specify a buffer length of 130 bytes in the 'number of bytes' field in
the WAITRD parameter list.

U Reads a logical line, pads it with blanks, and translates it to
uppercase.

v Reads a logical line and translates it to upper case; does not
pad with blanks.

S Reads a logical line and pads it with blanks.

T Reads a logical line; does not pad with blanks.

X Reads a physical line.

Y Reads a logical line, pads with blanks to 130, does no uppercase
translation and does not do SET INPUT translation.

The following codes specify what kind of processing WAITRD performs
on lines read from the program stack. Indicate the length of the input
buffer as the last parameter in the WAITRD parameter list. The length
of the input buffer may be up to 255 bytes.

W Reads a physical line; performs no uppercase translation or
padding with blanks.

Z Reads a physical line and translates it to upper case; does not
pad with blanks.

Use the following codes when you use APL under CMS. Indicate the
length of the input buffer as the last parameter in the WAITRD parameter
list. The length of the £uffer may be up to 2030 bytes.

456 IBM VM/SP CMS Command and Macro Reference

..~. ,.-

*

Meaning

Reads a physical line into the caller's buffer.
4.)

WAITRD Function

(See usage Note

$ Reads a physical line into the caller's buffer. (See Usage Note
4.)

1. Specify the input buffer length as the last parameter in the WAITRD
parameter list. Upon completion of the WAITRD function, the
'number of bytes' field contains the number of bytes read.

2. WAITRD does not perform logical line editing when reading a
physical line.

3.

WAITRD performs line editing on lines read from the terminal input
buffer (lines typed at the terminal), unless code X is specified;
WAITRD does not perform logical line editing when you specify code
X. WAITRD does not perform line editing (except uppercase
translation, if requested) on lines read from the program stack.

Lines typed at the terminal (and stacked in
buffer) are scanned by CP for logical line
Logical line editing characters are set by the
The line editing characters may be set for:

Char del
Linedel
Linend
Escape

the terminal input
editing characters.
CP TERMINAL command.

In addition, CMS .scans the lines for the two following hexadecimal
characters:

X', 5' - interpreted as the end of the physical line. Any
character (s) to the right of this hexadecimal
character is ignored.

X'OO' - interpreted as the end of the logical line. Any
character (s) to the right of this hexadecimal
character is interpreted as a new line.

4. For code $, an attention interrupt during a read operation signals
the end of the line and does not result in a restart of the read.
For code *, an attention interrupt during a read results in a
restart of the read operation.

None

Return Code§

Code
-0-

2
4

Meaning
Function completed successfully.
Invalid code. Read not completed.
Code=$. An attention interruption ended the read operation.

Section 6. CMS Functions 457

458 IBM VM/SP CMS Command and Macro Reference

CMS Macros

Section 7. eMS Macro Instructions

This section describes the formats of the CMS assembler language ~acros,
which you can use when you write assemb1er language programs to execute
in the CMS environment. 70 assemble a program using any of these
macros, you must issue the G10BAL command specifying MACLIB DMSSP CMSLIB
which are the macro libraries (10cated on the system disk) which contain
CMS macros.

For functiona1 descriptions and usage examples of the CMS macros, see
the VIVSP CMS User' § Guid~.

Coding conventions for
assembler language macros.
operands in the format:

[, operand]

CMS macros are the same as
7he macro format descriptions

those for all
show optional

indicating that if you are going to use this operand, it must be
preceded by a comma (unless it is the first operand coded). If a macro
statement overf10ws to a second line, you must use a continuation
character in co1umn 72. No blanks may appear between operands.
Incorrect coding of any macro resu1ts in assemb1er errors and MNOTEs.

Where applicable, the end of a macro description contains a list of
the possible error conditions that may occur during the execution of the
macro, and the associated return cedes. These return codes are always
p1aced in register 15. The macros that produce these return codes have
ERROR= operands, that a110w you to specify the address of an error
hand1ing routine, so that you can check for particular errors during
macro processing. If an error occurs during macro processing and no
error address is provided, execution continues at the next sequential
instruction f0110wing the macro.

Section 7. CMS Macro Instructions 459

COMPSWT, FSCB Macros

COMPSWT

Use the COMPSWT macro instruction to turn the compiler switch (COMPSWT)
flag on or off. The COMPSWT flag is in the OSSFLAGS byte of the nucleus
constant area (NUCON). The format of the COMPSWT macro instruction is:

[label] COMPSWT

label

ON

FSCB

is an optional statement latel.

turns the COMPSi! flag on. When this flag is on, any program
called by a LINK, LOAD, XCTL, or ATTACH macro instruction must
be a nonrelocatable module in a file with a filetype of MODULE;
it is loaded via the CMS LOADMOD command.

turns the COMPSWT
called by a LINK,
be a relocatable
filetype of TEXT,
INCLUDE command.

flag off. When this flag is off, any program
LOAD, XC1L, or ATTACH macro instruction must
object module residing in a file with a
LOADLIB, or TXTLIB; it is loaded via the CMS

Use the FSCB macro instruction to create a file system control block
(FSCB) for a CMS input ox output disk file. The format of the FSCB
macro instruction is:

[label]

label

fileid

RECFM=format

FSCB [fileid] [,BECFM=format] [,BUFFER=buffer][,FOBM=E]
[,BSIZE=size] (,RECNO=number] (,NOREC=numrec]

is an optional statement label.

specifies the CMS file identifier,
in single guotation marks and
('filename filetype filemode'). If

A1 is assumed.

which must be enclosed
separated by blanks
filemode is omitted,

indicates whether the records are fixed- (F) or variable
(V) length format. The default is F.

BUFFER=buffer specifies the address of an I/O buffer, from which
records are to be read or written.

FORM=E specifies the extended format FSCB is to be generated.
This extended format FSCB allows you to specify a value
(up to 231 -1) for RECNO and NOREC. If you do not specify
FOBM=E, the RECNO and NOBEC values cannot exceed 65533.

460 IBM VM/SP CMS Command and M~cro Beference

BSIZE=size

FSCB, FSCBD Macros

specifies the number of bytes to be read or written for
each read or write reguest.

RECNO=number specifies the record number of the next record to be
accessed, relative to the beginning of the file, record
1. The default is 0, which indicates that records are to
be accessed seguentially.

NOREC=numrec specifies the number of records to be read in the next
read operation. ~he default is 1.

1. The options RECFM, BUFFER, BSIZE, RECNO, and NOREC must all be
specified as self-defining terms.

2. You can use the same FSCB to reference several different filesi you
can override the fileid, or any of the options, on the FSOPEN,
FSWRITE, or FSREAD macro instructions when you reference a file via
its FSCB. However, if the FSOPEN macro instruction is used to
ready an existing file, the BSIZI and HECFM fields in the FSCB are
reset to reflect actual file characteristics.

3. You can use multiple FSCBs to reference the same file, for example,
if you wanted one FSCB for writing and a different FSCB for reading
the file. Keep in mind, however, that the file characteristics are
inherent to the file and not to the FSCB,. If you establish a read
or write pointer using the HECNO option in one FSCB, that pointer
remains unchanged unless you specify the HECNO option again on the
same or any other FSCB for that file.

FSCBD

Use the FSCBD macro instruction to generate a DSECT for the file system
control block (FSCB). The format of the FSCBD macro instruction is:

[label] I FSCBD I

label is an optional statement label. The first statement in the
FSCBD macro expansion is labeled FSCBD.

1. You can use the labels established in the FSCB DSECT to modify the
fields in an FSCB for a particular file. An FSCB is created
explicitly by the FSCE macro instruction, and implicitly by the
FSHEAD, FSWRITE, and FSOPEN macro instructions.

Section 7. CMS Macro Instructions 461

FSCBD Macro

2. The FSCBD macro instruction expands as follows:

PSCBO
o PSCBCOMM
e PSCBFN
II, PSCBFT

:lQ FSCBPM
I'/- FSCBITNO
1(,. FSCBBUPF

FSCBSIZE
FSCBFV
FSCBFLG
FSCBNOIT
FSCBNORD
PSCBAITN
FSCBANIT
FSCBiPTR
FSCBRPTR

FSCBD
DSECT
DS CL8
OS CL8
DS CL8
OS Cl2
DS H
OS A
DS F
OS CLl
OS X
DS H
DS A
DS P
DS P
OS P
OS P

Command
Filename
Filetype
Filemode
Relative record (item) number
Address of readiwrite buffer
Length of buffer
Record format(p or V}
PLIST flag
Number of records to be read/written
Number of bytes actually read
Extended item number
Extended number of items
write pointer
Bead pointer

3. If you specify FORM=E as the parameter of the FSCB macro
instruction, the fields FSCBITNO and PSCBNOIT are no longer used.
They are replaced with FSCBAITN and FSCBANIT. The X'20' bit of the
PSCBPLG flag is turned on. The fields FSCBWPTB and FSCBRPTR are
used by the FSPOINT function. FOBM=E plists must be used to
manipulate files larger than 65,533 items.

462 IBM VM/SP CMS Command and Macro Reference

.1 .. ~

)
. ~

FSCLOSE Macro

FSCLOSE

Use the FSCLOSE macro instruction to close an open file. The format of
the FSCLOSE macro instruction is:

r--,
[label] FSCLOSE { fileid[,ISCE=fSCb]} [, ERROIi=erraddr]

FSCB=fscb
I
I
I

label is an optional statement label.

fileid specifies the CMS file identifier. It may be:

'fn ft fm' fileid enclosed in single gaotation marks and
separated by blanks. If fm is omitted, A1 is
assumed.

(reg) a register other than 0 or 1 containing the
address of the fileid (18 characters). When
register format is used, the fileid must be
exactly 18 characters in length; 8 for the
filename, 8 for the filetype, and 2 for the
filemode. Shorter names must be filled with
blanks.

FSCB=fscb specifies the address of an FSCB. It may be:

label
(reg)

the label on the FSCB macro instruction.
a register containing the address of an FSCB.

EBBOR=erraddr

1.

specifies the address of an error routine to be given control
if an error is found. If ERROR= is not coded and an error
occurs, control returns to the next seguential instruction in
the calling program, as it does if no error occurs.

Although CMS routines close files when a command
completes execution, you must use the FSCLOSE macro
when you are executing a program from within an EXEC,
are going to read and write records in the same file.

or program
instruction
or when you

2. If you specify both fileid and FSCB, the fileid is used to fill in
the FSCB.

3. Even though an FSCLOSE macro is issued for a file, the directory is
not updated on disk as long as there are other files open for
output on that disk.

If an error occurs, register 15 contains the following error code:

Code
-6-

MeaniBg
File is not open or no read or write was issued to file •

Section 7. cas Macro Instructions 463

FSERASE Macro

FSERASE

Use the FSERASE macro instruction to delete a CMS disk file. The format
of the FSERASE macro instruction is:

[label]

where:

label

fileid

FSEBASE { fileid[,FSCB=fscb] } [,EBROR=erraddr]
FSCB=fscb

is an optional statement label~

specifies the CMS file identifier. It may be:

'fn ft fm' fileid enclosed in single guotation marks
separated by blanks. If fm is omitted, A1
assumed.

(reg) a register other than 0 or 1 containing
address of the fileid (18 characters) •
register format is used, the fileid must
exactly 18 characters in length; 8 for
filename, 8 for the filetype, and 2 for
filemode. Shorter names must be filled
blanks~

FSCB=fscb specifies the address of an FSCB~ It may be:

label
(reg)

ERROR=erraddr

the label of an FSCB macro instruction.
a register containing the address of an FSCB.

and
is

the
When

be
the
the

with

specifies the address of an error routine to be given control
if an error occurs. If ERBOR= is not coded and an error
occurs, control returns to the next sequential instruction in
the calling program, as it does if no error occurs.

!!saq~ Notes

1. On return from the FSER!SE macro, register 1 points to a parameter
list~ The second, third, and fourth vords of the list contain the
filename, filetype, and filemode of the file.

2. If fileid and FSCB= are both coded, the fileid is used to fill in
the FSCB.

Error Conditions

If an error occurs, register 15 contains one of the following error
codes:

Code
24

28
36

l1~inq
Parameter list error
File not found
Disk not accessed

464 IBM Vft/SP CMS Command and Macro Reference

c
FSOPEN Macro

FSOPEN

Use the PSOPEN macro instruction to ready a file for either input or
output. The format of the FSOPER macro instruction is:

i
[label] FSOPER { fileid [,lSCB=fscb]

FSCB=fscb
} (,ERROR=erraddr][,options]1

[,FORM=E] I ,

where:

label is an optiona1 statement label.

fileid specifies the CMS file identifier. It may be:

'fn ft fm' the fileid enclosed in single quotation marks and
separated by blanks. If fm is omitted, A1 is
assumed.

(reg) a register other than 0 or 1 containing the
address of the fileid (18 characters). When
register format is used, the fileid must be
exactly 18 characters in length; 8 for the
filename, 8 for the filetype, and 2 for the
filemode. Shorter names must be filled with
blanks.

FSCB=fscb specifies the address of an PSCB. It may be:

label
(reg)

the label on an lSCB macro instruction.
a register containing the address of an FSCB.

EBBOR=erraddr ,

FOR!=E

specifies the address of an error routine to be given control
if an error is found. If ERROR= is not coded and an error
occurs, control returns to the next sequential instruction in
the calling program, as it does if no error occurs.

must be specified when the extended format is being used.

options

You can specify any of the following FSCB macro options on the lSOPER
macro instruction:

BUFFEB=buffer
RECNO=number
BSIZE=size
RECFM=format
NOREC=numrec

These options may be specified either as the actual value (for
example, NOREC=1) or as a register that contains the value (for
example, NOREC=(3) where register 3 contains the value 1}.

When you use any of these options, the associated field in the
FseB is modified.

Section 7. CMS Macro Instructions 465

FSOPEN, FSPOINT Macros

1. On return from the FSOPEN macro, register 1 pOints to the FSCB for
the file. If no FSCE exists, one is created in the FSOPEN macro
expansion. However, if the FSOPEN macro instruction is used to
ready an existing file, the ESIZE and RECFM fields are reset to
reflect actual file characteristics.

2. If you code both fileid and FSCB=, the fileid is used to fill in
the FSCB.

3. You can use the FSOPEN macro instruction to verify the existence of
a file to be opened for reading or writing, and you can use FSOPEN
to create an FSCB for that file.

If an error occurs, register 15 contains one of the following error
codes:

Code
-'20 ~~!!i1!.9:

Invalid file identifier
28 File does not exist

FSPOINT

Use the FS?OINT macro instructicn to reset the write and/or read
pointers for a file. The format of the FSPCINT macro instruction is:

[label]

label

fileid

FSPOINT { fileid(,FSCE=fSCb]}(,ERROR=erraddr]
FSCB=fscb

(,WBPNT=wrpnt] (,RDPNT=rdpnt] [,FORM=E]

is an optional statement latel.

specifies the CMS file identifier. It may be:

'fn ft fm' the fileid enclosed in guotation marks
separated by blanks. If fm is omitted, A1
assumed.

(reg) a register other than 0 or 1 containing
address of the fileid (18 characters).

and
is

the

FSCB=fsch specifies the add~ess of an FSCB. It may be:

label
(reg)

EIlROR=erraddr

the label of an FSCB macro instruction.
a register containing the address of an FSCB.

specifies the address of an error routine to be given control
if an error is found. If you don't code ERROR= is not coded
and an error occurs, control returns to the next sequential
instruction in the calling program, as it does if no error
occurs.

466 IBM VM/S? CMS Command and Macro Reference

/

.~

FSPOINT, FSREAD Macro

WRPNT=wrpnt specifies the new value of the write pointer.

number
(reg)

any assembler symbol cr number.
a register containing the binary number.

RDPNT=rdpnt

FORI1=E

specifies the new value of the r~ad pointer.

number
(reg)

any assembler symbol or number.
a register containing the binary number.

must be specified when the extended format FSCB is being used.

1. Both write and read pointers may be changed at the same time, and
zero indicates no change.

2. Minus one used for a write pointer indicates that the next item is
to be put at the end of the file.

If an error occurs, register 15 contains one of the following error
codes:

Cog~
20
24
28
36

FSREAD

Meani!!g
Invalid character in fileid
Invalid filemode
File not found
Disk not accessed

Use the FSREAD macro instruction to read a record from a disk file into
an I/O buffer. The format of the FSREID macro instruction is:

(label] FSRElD { fileid[,FSCB=fscb] }[,ERROR=erraddr] (,FOR!=E]
FSCB=fscb [,options]

label is an optional statement label.

fileid specifies the CMS file identifier. It may be:

, fn ft fm' the fileid enclosed in single quotation marks and
separated by blanks. If fm is omitted, A1 is
assumed.

(reg) a register other than 0 or 1 containing the
address of the fileid (18 characters). When
register format is used, the fileid must be
exactly 18 characters in length; 8 for the
filename, 8 for the filetype, and 2 for the
filemode. Shorter names must be filled with
blanks.

Section 7. CMS Macro Instructions 467

FSBE1D Macro

FSCB=fscb specifies the address of an FSCB. It may be:

label
(reg)

the label of an FSCB' macro instruction.
a register containing the address of an FSCB.

EBBOB=erraddr

FOBM=E

specifies the address of an error routine to be given control
if an error is found. If EBBOB= is not coded and an error
occurs, control returns to the next sequential instruction in
the calling program, as it does if no error occurs.

must be specified when the extended format FSCB is being used.

options

You can specify any of the following FSCB macro options on the FSBEAD
macro instruction:

BUFFER=buffer
NOBEC=numrec
BSIZE=size
RECNO=number

These options may be specified either as the actual value (for
example, NOBEC=1) or as a register that contains the value (for
example, NOBEC=(3) where register 3 contains the value 1).

When you use any of these options, the associated field in the
FSCB is modified.

Usag~ Notes

1. If an FSCB macro instruction has not been coded for a file (and the
FSCB= operand is not coded), you must specify the BUFFEB= and
BSIZE= options to indicate the address of the buffer and its
length. When reading variable-length records, a record that is
longer than the buffer length is truncated. FSBEAD does not clear
the buffer when the record length is not the maximum.

2. On return from the FSBEAD macro, register 1 points to the FSCB for
the file. If no FSCB exists, one is created following the FSREAD
macro instruction.

3. If you specify both fileid and FSCB=, the fileid is used to fill in
the FSCB.

4. Begister 0 contains, after the read operation is complete, the
number of bytes actually read. This information is also contained
in the FSCBNORD field of the FSCB. O~ly when zero records are read
is the EOF raised on a multiple record read. EOF is not raised
when a partial read occurs due to less records remaining than
requested.

5. To read records sequentially beginning with a particular record
number, use the RECNO option to specify the first record to be
read. On the next FSBEAD macro instruction, use RECNO=O so that
reading continues seguentially following the first record read.

468 IBM YB/SP CMS Command and Macro Reference

FSREAD, FSSTATE Macros

If an error occurs, register 15 contains one of the following error
codes:

Code
1
2
3
5

7

8
9

11
12

13

14
15
25

26

FSSTATE

Meaning
File not found
Invalid buffer address
Permanent I/O error
Number of records to be read is less than or equal to zero

(or greatEr than 32,768 for an 800-byte formatted disk)
Invalid record format (only checked when the file is first

opened for reading)
Incorrect length -buffer size too small for item read.
File open for output (for an 800-byte formatted disk)
Number of records greater than 1 for variable-length file
End of file, or record number greater than number of records

in data set
Variable-length file has invalid displacement in active file

table
Invalid character in filename
Invalid character in filetype
Insufficient free storage available for file management

control areas.
Requested item number is negative or item number plus number

of items exceeds file system capacity.

Use the FSSTATE macro instruction to determine whether a particular file
exists. The format of the FSSTATE macro instruction is:

[label]

label

fileid

FSSTATE { fileid [,FSCB=fscb]
FSCB=fscb

is an optional statement label.

} [,ERROR=erraddr]
[,FORM=EJ

specifies the eMS file identifier. It may be:

'fn ft fm' the fileid enclosed in single quotation marks and
separated by blanks. If fm is omitted, A1 is
assumed.

(reg) a ~egister other than 0 or 1 containing the
address of the fileid (18 characters). When
register format is used, the fileid must be
exactly 18 characters in length: 8 for the
filename, 8 for the filetype, and 2 for the
filemode. Shorter names must be filled with
blanks.

FSCB=fscb specifies the address of an FSCB. It may be:

label
(reg)

the label on an FSCB macro instruction.
a register containing the address of an FSCB.

Section 7. CMS Macro Instructions 469

FSSTATE Macro

ERROR=erraddr

FORM=E

specifies the address of an error routine to be given control
if an error is found. If ERROR= is not coded and an error
occurs, control returns to the next sequential instruction in
the calling program, as it does if no error occurs.

must be specified when the extended format FSCB is being used.

Usa~ Notes

1. If the specified file exists, register 15 contains a 0 return code.

2. When the FSSTATE macro completes execution, register 1 contains the
address of the file status table (FST) for the specified file.

The file status table contains the following information:

Decimal
Displacement

o
8

16
18
20
22
24
26
28
30
31
32
36
38

field Description

Filename
Filetype
Date (mmdd) last written
Time (hhmm) last written
Write pointer (number of item)
Read pointer (number of item)
Filemode
Number of records in file
Disk address of first chain link
Record format (F/Y)
FS'I Flag Byte
Logical record length
Number of BOO-byte data blocks
Year (Y1) last written

For Form=E the following are included;

Decimal
Displacement

40
44
48
52
53
54
60

Field tescription

Alternate file origin pointer
Alternate number of data blocks
Alternate item count
Number of pointer block levels
length of pointer element
Alternate date/time (11 mm dd hh mm ss)
Reserved

If an error occurs, register 15 contains one of the following error
codes:

Code
20

24
28
36

l1~anillil
Invalid character in fileid
Invalid filemode
File not found
Disk not accessed

470 IBM YM/SP CMS Command and Macro Reference

FSWRITE Macro

FSWRITE

Use the FSWRITE macro instruction to write a record from an I/O buffer
to a CMS disk file. The fo~mat of the FSWRITE macro instruction is:

r--,
(label] FSWRITE { fileid(,FSCB=fSCb]} [, ERROIi=erraddr] I

FSCB=fscb (,FORM=E] [,options] I
I

label is an optional statement label.

fileid specifies the CMS filE identifier. It may be:

'fn ft fm' the fileid enclosed in single quotation marks and
separated by blanks. If fm is omitted, A1 is
assumed.

(reg) a register other than 0 or 1 containing the
address of the fileid (18 characters) • When
register format is used, the fileid must be
exactly 18 characters in length; 8 for the
filename, 8 for the filetype, and 2 for the
filell!ode. Shorter names must be filled with
blanks.

FSCB=fscb specifies the address of an FSCB. It may be:

label
(reg)

the label on an FSCB macro instruction.
a register containing the address of an FSCB.

ERIWR=erraddr

FORM=E

specifies the address of an error routine to be given control
if an error is found. If ERROR= is not coded and an error
occurs, control returns to the next sequential instruction in
the calling program, as it does if no error occurs.

must be specified when the extended format FSCB is being used.

Q.E!im!§

You can specify any of the following FSCB macro options on the
FSWRITE macro instruction:

BUFFER=buffer
RECNO=number
BSIZE=size
NOREC=numrec
RECFM=format

These options may be specified either as the actual value (for
example, NOREC=1) or as a register that contains the value (for
example, NOREC=(3) where register 3 contains the value 1).

When you use any of these options, the associated field in the FSCB
for the file is filled in or modified.

section 7. CMS Macro Instructions 471

\

I

FSWRITE Macro

1. If an FSCB macro instruction has not been coded for a file (and the
FSCB= operand is not coded on the FSWRITE macro instruction), you
must specify the BUFFER= and BSIZE= options to indicate the
location of the read/write buffer and the length of the record to
be written. For the filemode, you must specify both a letter and a
number. If the file is a variable-length fi~e, you must also
specify RECFM=V.

2. On return from the FSWRITE macro, register 1 contains the address
of the FSCB for the file. If no FSCB exists, one is created
following the FSWRITE macro instruction.

3. If you specify both fileid and FSCB=, the fileid is used to fill in
the FSCB.

4. If the RECNO option is specified (either on the FSWRITE macro
instruction or in the FSCB), that specified record is written.
Otherwise, the next sequential record is written. For new files,
writing beg~s with record 1; for existing files, writing begins
with the first record following the end of the file.

5. To write records seguentially beginning with a particular record
number, use the RECNO option to specify the first record to be
written. On the next FSWRITE macro instruction, use RECNO=O so that
writing continues seguentially, following the first record written.

6. To write blocked records (valid for fixed-length files on~y), use
the BSIZE and NOREC options to specify the blocksize and number of
records per bleck, respectively. For example, to write 80-byte
records into aDO-byte blocks, you should specify BSIZE=800 and
NOREC=10. The buffer you use must be at least 800 bytes long.

7. When you use the FSiRITE macro to update an existing file of
variable-length records, the replacement record must be the same
length as the original record. An attempt to write a record
shorter or longer than the original record on a disk formatted with
1k, 2k or 4k blocksize results in truncation of the file at the
specified record number with no error return codes. An attempt to
write a record shorter or longer than the original record on a disk
formatted as an 800 byte blocksize results in no change to the file
and an error code of 27.

Err~ Condition§

If an error occurs, register 15 contains one of the following error
codes:

Code
2
3
4
5
6

7
a
9

10

11
12
13

Meani~g
Invalid buffer address
Permanent I/O Error
First character of filemode is invalid
Second character of filemode is invalid
Item number too large (more than 65,535) will not fit in

a halfword, extended PLIST not specified.
Attempt to skip over unwritten variable-length item
Buffer size not specified
File open for input (for an aDO-byte formatted disk)
Maximum number of files per minidisk reached (3400 for an

BOO-byte formatted disk)
Record format not F or V
Attempt to write on read-only disk
Disk is full

472 IBM VM/SP CMS Command and Macro Reference

FSWRITE, HNDEXT Macros

14 Number of bytes to be written is not integrally divisible
by the number of records to be written

15 Length of fixed-length item not the same as previous item
16 Record format specified not the same as file
17 Variable-length item greater than 65K bytes
18 Number of records greater than 1 for variable-length file
19 Maximum number of data blocks per file reached (16060 for

an 800-byte formatted disk)
20 Invalid character detected in filename
21 Invalid character detected in filetype
22 Virtual storage capacity exceeded
25 Insufficient free storage available for file directory

buffers
26 Requested item number is negative or item number plus

number of items exceeds file system capacity.
27 Attempt to update variable length item with one of

different length.

HNDEXT

Use the HNDEXT macro instruction to trap external interruptions and pass
control to an internal routine for processing. External interruptions
are caused, in a virtual machine, by the CP EXTERNAL command. The
format of the HNDEX7 macro instruction is:

[label]

label

SET

address

CLB

HNDEX'I { SET, address}
CLR

is an optional statement label.

specifies that you want to trap external interruptions.

specifies the address in your program of the routine to be
given control when an external interruption occurs.

specifies that
interruptions.

you no longer want to trap external

1. External interruptions (other than timer interruptions) normally
place your virtual machine in the debug environment.

2. When your interruption handling routine is given control, all
virtual interruptions, except multiplexer, are disabled. If you
are using the CMS blip function, all blips are stacked.

3. You are responsible for providing proper entry and exit linkage for
your interruption handling routine. When your routine receives
control, register 1 points to a save area in the format:

Label
GRS
FRS

Displacement
Dec Hex

--0- -0-
64 40

Section 7. CftS Macro Instructions 473

HNDEXT, HNDINT Kacros

PSW
UAREA
END

96
104
116

60
68
EO

Register 13 points to the user save area at label UAREA.

Register 15 contains the entry point address of your routine; it
. must return control to the address in register 14.

4. If you also issue a SIAX macro instruction to handle attention
interruptions while the HNDEXT macro is active, either exit may be
interrupted while the other is running. If your exits depend on
data in static areas, results are unpredictable.

HNDINT

Use the HNDINT macro instruction to trap interruptions for a specified
I/O device. The format of the HNDINT macro instruction is:

[label]

label

SET

HNDINT ~ SET,(deV1,{a~dr},cuu'{:i~i})[,(dev2 •••) ••• J l
l CLR, (dev 1)[, (dev2)[••• JJ ~
[, ERROR=erraddr]

is an optional statement label.

specifies that you want to
specified device.

trap interruptions for the

dev specifies a four-character symbolic name for the device whose
interruptions are to be trapped.

addr specifies the address in your program of the routine to be
given control when the interruption occurs. An address of 0
indicates that interruptions for the device are to be ignored.

cuu specifies the virtual device address, in hexadecimal, of the
device whose interruptions are to be trapped.

ASAP

WAIT

specifies that the routine at addr is to be given control as
soon as the interruption occuri.

specifies that the routine at addr is to be given control
after the WAITD macro is issued for the device.

CLR specifies that you no longer want to trap interruptions for
the specified device. HNDINT CLR should not be issued from
within the interruption handling routine.

ERROR=erraddr
specifies the address of an error routine to be given control
if an error is found. If ERROR= is not coded and an error
occurs, control returns to the next sequential instruction in
the calling program, as it does if no error occurs.

474 IB~ VM/SP CMS Command and Macro Reference

HHDIHT l!acro

Usag~ Notes

1. HNDINT does not trap I/O operations initiated by a DIAGNOSE
instruction.

2. In a single HNDINT macro instruction, you can define interruption
handling routines for more than one device. The argument list for
each device must be enclosed in parentheses and separated from the
next list by a comma.

3. If you specify WAIT, then the routine at the specified address in
your program receives control when a WAITD macro instruction that
specifies the same symbolic device name is issued. If the WAITD
macro instruction has already been issued for the device when the
interruption occurs, then the routine at the specified address
receives control immediately.

4. You are responsible for establishing proper entry and exit linkage
for your interruption handling routine. When your routine receives
control, the significant registers contain:

.R~!st~§
0-1
2-3

4
14
15

Contents
I/o-ola-psw
Channel status word (CSW)
Address of interrupting device
Return address
Entry peint address

Your routine must return contrel to the address in register 14, and
indicate, via register 15, whether processing is complete. A 0 in
register 15 means that you are through handling the interruption;
any nonzero return code indicates that you expect another
interruption.

5. The interruption handling routine that you code should not perform
any IIO operations. When it is given control, all 1/0
interruptions and external interruptions are disabled.

If an error condition eccurs, register 15 will contain one of the
following return codes:

2

3

~~ing
Invalid device address (cuu) or interruption handling routine
address (addr)

Trap item replaces another of same device name

Attempting to clear a nonexisting interruption

Section 7. eMS Macro Instructions 475

HNDSVC !'!acro

HNDSVC

Use the HNDSVC macro
specific supervisor call
macro instruction is:

instruction to trap
(SVC) instructions.

interruptions caused by
The format of the HHDSVC

[label]

label

HNDSVC { SET, (svcnum,address)[, (svcnum,address) •••] }
CLR,svcnum[,svcnum •••]

[,ERROR=erraddr]

is an optional statement label.

SET specifies that you want to trap SVCs of the specified
number (s) •

svcnum

address

specifies the number of the SVC you want to trap. SVC numbers
o through 200 and 206 through 255 are valid.

specifies the address of the routine in your program that
should receive control whenever the specified SVC is issued.

CLR specifies that you no longer want to trap the specified
SVC (s) •

ERROR=erraddr
specifies the address of an error routine to be given control
if an error is found. If ERROR= is not coded and an error
occurs, control returns tc the next sequential instruction in
the calling program, as it does if no error occurs.

You are responsible for providing the proper entry and exit linkage for
your SVC-handling routine. When your program receives control, the
register contents are as follows:

Regi~
12
13
14

Contents
Address-of your SVC-handling routine
Address of an 18-fullword save area (for
Return address

your use)

Your routine must return control to the address in register 14.

If an error occurs, register 15 contains one of the following error
codes:

Code
1
2
3

l1eaning
Invalid SVC number or address
SVC number set replaced previously set number
SVC number cleared was not set

476 IBM VM/SP CMS Command and Macro Reference

J

L'

LINEDIT Macro

LlNEDIT

Use the LINEDIT macro instruction to convert decimal values into EBCDIC
or hexadecimal and to display the results at your terminal. The format
of the LINEDIT macro instruction is:

[label] LINEDIT
r , r ,r ,
I,TEX'I='messagetext' I I,DOT={YES}II ,COMP={YES}I
I,TEXTA=address I I NO II NO I
L .J L .JL .J

[,SUB=(substitutionlist)]
r , r ,
I,DISP= TYPE I I ,BUFFA=({address}) I
I NONE I I (reg) I
I SIO I L .J

I PRINT I
I CPCOMM I
I ERRMSG I
L .J

r
I,MI=
I
I
I

~~{E,addreSS}) (l (reg) ~

, [,MAXSUBS=number]
I
I
I
I

L .J

r ,
I,RENT={YE~} I
I NO I
L .J

The LINEDIT macro operands are listed below, briefly. For detailed
formats, descriptions, and examples, refer to the appropriate heading
following "LINEDIT Macro Operands."

TEXT='message text'
specifies the text of the message to be edited.

TEXTA=address

DOT

COMP

SUB

DISP

BUFFA

MF

specifies the address of the message text. It may be: •
the symbolic address of the message text. label

(reg) a register containing the address of the message text.

specifies whether a period is to be placed at the end of the
line.

specifies whether multiple blanks are to be removed from the
line.

specifies a substitution list describing the conversions to be
performed on the line.

specifies how the edited line is to be used. When DISP is not
coded, the message text is displayed at the terminal.

specifies the address of the buffer in which the line is to be
copied.

specifies the macro format.

section 7. CMS Macro Instructions 477

LINEDIT Macro

MAXSUBS specifies the maximum number of substitutions (MAXSUBS is used
with the list ferm of the macro).

RENT specifies whether reentrant code must be generated.

1. You should never use registers 0, 1, or 15 as address registers
when you code the LINEDIT macro instruction; these registers are
used by the macro.

2. When message text for the LINE LIT macro instruction contains two or
more consecutive periods, it indicates that a sUbstitution is to be
performed on that portion of the message. The number of periods
you code indicates the number of characters that you want to appear
as output. To indicate what values are to replace the periods, code
a sUbstitution list using the SUE operand.

3. When you use the standard (default) form of the LINEDIT macro
instruction, reentrant code is produced, except when you specify
more than one sUbstitution list, or when you use register notation
to indicate an address on the TEXTA or BUFFA operands. When any of
these conditions occur, an MNOTE message is produced, indicating
that the code is not reentrant.

If you do not care whether the code is reentrant, you can specify
the RENT=NO operand to sup~ress the MNOTE message. otherwise, you
can use the list and execute forms of the macro to write reentrant
code (see "MF Operand").

Errors can only occur if DISP=CPCOMM is specified. In this case, R15
contains the return code from the CP command •

•

TEXT Operand

Use the TEXT operand to specify the exact text of the message on the
macro instruction. The message text must appear within single quotation
marks, as follows:

TEXT='message text'

If you want a single quotation mark
text, you must code two of them.

Text specified on the LINEDIT macro
appear as only a single tlank, and a
line, for example:

to appear within the actual message

is edited so that multiple blanks
period is placed at the end of the

LINEDIT TEXT='IT ISN"T READY'

results in the display:

478 IBM VM/SP CMS Command and Macro Reference

LINEDIT Macro

IT ISN'T READY.

Use the TEXTA operand when you want to display a line that is contained
in a buffer. You may specify either a symbolic address or use register
notation, as follows:

TEXTA={label}
(reg)

In either case, the first byte at the address specified must contain the
length of the message text, for example:

LINEDIT TEX~A=MESSAGE

X' 16' MESSAGE DC
DC CL22'THIS IS A LINE OF TEXT'

If you use register notation with either the standard or list forms of
the macro, the code generated is not reentrant. To suppress the MNOTE
that informs you that code is not reentrant, use the RENT=NO operand.

Use the DOT operand when you do not want a period placed at the end of
the message text. The format of the DOT operand is:

DOT= {i~S }

For example, if you code:

LINEDIT TEXT='HI!',DC!=NO

the line is displayed as:

HI!

COMP Operand

Use the COMP operand when you want to display multiple blanks within
your message text. The format of the COMP oFerand is:

For example, if you code:

LINEDIT TEXT='TOTAL 5',COMP=NO

the line is displayed as:

TOTAL 5.

Section 7. CMS Macro Instructions 479

LINEDIT Macro

Use the SUB operand to specify the type of substitution to be performed
on those portions of the message that contain periods. For each set of
periods, you must specify the type of substitution and the value to be
substituted or its address. The format of the SUB operand is:

SUB= (HEX{' (reg) }
DEC ,expression

HEXA{, addreSS}
DECA , (reg)

HEX4A i,address
CHARA , (reg)
CHAR8 A , ({ addreSS}, {length})

(reg) (reg)

Each of the possible SUbstitution pairs is described below, followed by
discussions of length specification and multiple SUbstitution lists.

HEX, (reg)
converts the value in the specified register to graphic hexadecimal
format and substitutes it in the message text. If you code fewer
than eight consecutive periods in the message text, then leading
digits are truncated; leading zeros are not suppressed.

For example, if register 3 contains the value C0031FC8, then the
macro instruction:

LINEDIT TEXT='VAIU! = ••• ',SUB=(H!X,(3»

results in the display:

VALUE = FC8.

HEX, expression
converts the given expression to graphic hexadecimal format and
SUbstitutes it 1n the message text. The expression may be a
symbolic address or symbol equate; it is evaluated by means of a
LOAD ADDRESS (LA) instruction. For example, if your program has a
label BUFF1, the line:

LINEDIT TEXT='BUFFER IS LOCATED AT •••••• ',SUB={HEX,BUFF1)

might result in the display:

BUFFER IS LOCATED AT 0201AC.

If you code fewer than eight periods in the message text, leading
digits are truncated; leading zeros are not suppressed.

DEC, (reg)
converts the value in the specified register into graphic decimal
format and substitutes it in the message text. Leading zeros are
suppressed. If the number is negative, a leading minus sign is
inserted. For example, if register 3 contains the decimal value
10,345, then the macro instruction:

LINEDIT TEXT='REG 3 = •••••• ',SUB={DEC,(3»

Q80 IBM VM/SP CMS Command and Macro Reference

LIHEDIT Macro

results in the line:

REG 3 = 103IJ5.

DEC, expression
converts the given expression to graphic decimal format and
substitutes it in the message text. The expression may be a
symbolic label in your program or a symbol equate. For example, if
your program contains the statement:

VALUE EQU 2003

then the macro instruction:

LINEDIT TEXT='VALUE IS •••••• ',SDB=(DEC,VALDE+5)

results in the display:

VALDE IS 2008.

HEXA,address
converts the fullword
hexadecimal format and
code fewer than eight
are truncated; leading
code:

at the specified
substitutes it in the
periods in the message
zeros are not removed.

address to
message text.
text, leading
For example,

LINEDIT TEXT='HEX VALUE IS ••••• ',SDB=(HEXA,CODE)

graphic
If you
digits
if you

then the last five hexadecimal digits of the fullword at the label
CODE are sutstituted into the message text.

HElA, (reg)
converts the
register into
message text.

fullword at the address indicated in the specified
graphic hexadecimal format and substitutes it in the
For example, if you code:

LINEDIT TEXT='REGISTER 5 -) •••••• ',SUB=(HEXA,(5»

then the last six hexadecimal digits of the fullword whose address
is in register 5 are substituted in the message text.

If you code fewer than eight digits, leading digits are truncated;
leading zeros are not suppressed.

DECA,address
converts the fullword at the specified address to graphic decimal
format. Leading zeros are suppressed; if the number is negative, a
minus sign is inserted. For example, if you code:

LINEDIT TEXT='CODN! = •••••• ',SUB=(DECA,CCUHT)

then the fullword at the location COUNT is converted to graphic
decimal format and substituted in the message text.

DECA, (reg)
converts the fullword at the address specified in the indicated
register into graphic decimal format and substitutes it in the
message text. For example:

LINEDIT TEXT='SUM = •••••••••• ',SUB=(DECA,(3»

causes the value in the fullword whose address is in register 3 to
be displayed in graphic decimal format.

Section 7. CMS Macro Instructions IJ81

tI NEDIT PJacro

HEXIJA,address
converts the data at the specified address into graphic hexadecimal
format, and inserts a blank character following every four bytes
(eight characters of output). !he data to be converted does not
have to be on a fullword boundary.

When you code periods in the message text for substitution, you
must code sufficient periods to allow for the blanks. Thus to
display 8 bytes of information (16 hexadecimal digits), you must
code 17 periods in the message text.

For example, to display seven bytes of hexadecimal data beginning
at the location STOR in your program, you could code:

tINEDIT TEXT='STOR: ••••••••••••••• ',SOB=(HEXIJA,STOB)

This might result in a display:

STOR: OA23F115 78ACFE

Note that 15 periods were coded in the message text, to allow for
the blank following the first four bytes displayed.

HEXIJA, (reg)
converts
register
character
output).

the data at the address indicated in the specified
into graphic hexadecimal format and inserts a blank
following every four bytes displayed (eight characters of

When you code the
sufficient periods
inserted.

message text for substitution, you must code
to allow for the blank characters to be

For example, the line:

tINEDIT TEXT='EUFFER: •••••••••••••••••••• ',SUB=(HEXqA,(6»

results in the display of the first nine bytes at the address in
register 6, in the format:

hhhhhhhh hhhhhhhh hh

CHARA,address
substi tutes the
message text.

character data at
For example:

the specified address

tINEDIT TEXT='NAMI IS " •••••••••• "',SOB=(CHARA,NAPJE)

into the

causes the 10 characters at location NAME to be substituted into
the message text. Multiple hlanks are removed.

CHARA, (reg)
substitutes the character data at the address indicated in the
specified register into the message text. For example:

LINEDIT TEXT='CODE IS •••• , ,SUB= (CHARA, (7»

the first four characters at the address indicated in register 7
are substituted in the message line.

CHAR8A,address
substitutes the character data at the specified address into the
message text, and inserts a tlank character following each eight
characters of output.

482 IBM VPJ/SP CMS Command and Macro Reference

LINEDIT Macro

When you code the message text, you must code enough periods to
allow for the blanks that will be substituted.

This substitution list is convenient for displaying CMS parameter
lists. For example, to display a fileid in an FSCB, you might code

LINEDIT TEXT='FILEID IS •••••••••••••••••••• ',
SOB=(CHAR8A,OUTFILE+8}

where OUTFILE is the label on an FSCB
this file were TEST OU!PU! A1, then the
would result in the display:

macro. If the fileid for
LINEDIT macro instruction

FILEID IS TEST OUTPUT A1.

In the final edited line, multiple blanks are reduced to a single
blank.

CHAR8A, (reg)
substitutes the character data at the address indicated in the
specified register and inserts a blank character following each
eight characters of output.

When you code the message text, you must include sufficient periods
to allow for the blanks. For example:

LINEDIT TEXT='PLIST: •••.••••.•••••••••••••.••••.•.••••. ,
SUB= (CHAR8A, (7))

results in a display of four doublewords of character data,
beginning at the address indicated in register 7 •

.§g]£1l!ING TH] LENGTH !OR LINEQIT IUCRO SUBSTITUTION: In all the
examples shown, the length of the argumen~eing--substituted was
determined by the number of periods in the message text. The number of
periods indicated the size of the output field, and indirectly
determined the size of the input data area.

For hexadecimal and decimal substitutions, the input data is
truncated on the left. !o ensure that a decimal number will never be
truncated, you can code 10 periods (11 for negative numbers) in the
message text where it will be substituted. For hexadecimal data, code
eight periods to ensure that no characters are truncated when a fullword
is substituted.

When you are coding substitution lists with the CHARA,
HEXqA options, however, you can specify the length of the
field. You must code the SUB operand as follows:

CHAR8!, and
input data

SUB=(type,(address,length}}

Both address and length may be specified using register notation. For
example:

SUB= (HEX4!, (LaC, (q»)

shows that the characters at location
message text; the number of characters
contained in register q, but it cannot
periods coded in the message text.

LaC are substituted into the
is determined by the value

be larger than the number of

You can use this method in the special case where only one character
is to be substituted. Since you must always code at least two periods

Section 7. CMS Macro Instructions 483

LINEDIT Macro

to indicate that substitution is to be performed, you can code two
periods and specify a length of one, as follows:

LINEDIT TEXT='INVAlID "CDE LETTER •• ',SOB=(CBARA, (PLIST+24,1»

SPECIFYING MOL1!~~ SU]S'IllYIIQ! 11STS: When you want to make several
substitutions in the same line, you must enter a substitution list for
each set of periods in the message text. For example:

LINEDIT TEXT='VALUES ARE ••••• and •••••• ',
SOB=(DEC,(3),HEXA,LOC)

might generate a line as follows:

VALUES ARE -45 ANt FFE3C2.

You should remember that if you are using the standard form of the
macro instruction, and you want to perform more than one substitution in
a single line, the LINEDIT macro will not generate reentrant code. If
you code RENT=NO on the macro line, then you will not receive the MNOTE
message indicating that the code is net reentrant. If you want reentrant
code, you must use the list and execute forms of the macro instruction.

DISP Operand

Use the DISP operand to specify the output disposition of the edited
line. The format of the DISP oFerand is:

DISP= TYPE

where:

DISP=TYPE

NONE
PRINT
SIO
CPCOMM
ERRMSG

specifies that the message is to be displayed on the terminal.
This is the default disposition.

DISP=NONE
specifies that no output occurs. This option is useful with the
BOFFA operand.

DISP=SIO
specifies that the message is to be displayed, at the terminal,
using 510 instead of TYPLIN, which is normally used. This option
is used by CMS routines in cases where free storage pointers may be
destroyed. Since lines are not stacked in the console buffer, no
CONWAIT function is performed.

DISP=PRINT
specifies that the line is to he printed on the virtual
The first character of the line is interpreted as a
control character and as such does not appear on the
output. (See the discussion of the PEIITl macro for a
valid ASA control characters.)

484 IBM VM/SP CftS Command and Macro Reference

printer.
carriage
printed
list of

.~

LINEDIT Macro

DISP=CPCOMM
specifies that the line is to be passed to CP to be executed as a
CP command. For example:

LINEDIT TEXT='QUERY USERS',DOT=NO,DISP=CPCOMM

results in the CP command line being passed to CP and executed. On
return, register 15 contains the return code from the CP command
that was executed.

DISP=ERRMSG
specifies that the line is to be checked to see if it qualifies for
error message editing. If it does, it is displayed as an error
message rather than as a regular line.

The standard format of VH/SP error messages is

xxxmmmnnns

where xxxmmm is the name of the module issuing the message, nnn is
the message number, and s is the severity code. You can code
whatever you want for the first nine characters of the code when
you write error messages for your programs, but the tenth character
must specify one of the following VM/SP message types:

Mess~g~ 1.:i12.§
Informa tiOD
Warning
Error

Then, the line is displayed in accordance with the CP EMSG setting.
If EMSG is set to ON, then the entire message is displayed; if EMSG
is set to TEXT, then only the message portion is displayed; if E8SG
is set to CODE, then only the 10-character code is displayed.

Use the BUFFA operand to specify the address of a buffer into which the
edited message is to be written. The message is copied into the
indicated buffer, as well as being used as specified in the DISP
operand. The format of the EUFFA operand is:

BUFFA={ addreSS}
(reg)

When the text is copied into the buffer, the length of the message
text is inserted into the first byte of the buffer, and the remainder of
the text is inserted in subseguent bytes.

If you use register notation to indicate the buffer address, the code
generated will not be reentrant. To suppress the MIOTE that informs you
that code is not reentrant, use the RENT=NO operand.

Section 7. CMS Macro Instructions QS5

LINEDIT Macro

Use the MF operand to specify the macro format when you want to code
list and execute forms when you write reentrant programs. The format of
the MF operand is:

MF=~~E' {addr }) l l (reg»)

MF=I (standard form)
generates an inline operand list for the LINEDIT macro instruction,
and calls the routine that displays the message. This is the
default. It generates reentrant code, except under the following
circumstances:

• When you specify more than one substitution list
• When you use register notation with the TEXTA or BUFFA operands

MF=L (List form)
generates a parameter list to te filled in when the execute form of
the macro is used.

The size of the area reserved
substitutions to be made, which you
operand. For example:

LINEDIT MF=L,MAXSUBS=5

depends upon the
can specify with

number of
the MAXSUBS

reserves space for
substitution lists.
macro instructions.

a parameter list
This same list may

that may hold up to five
be used by several LINEDIT

MF= (E,address) (Execute form)
generates code to fill in the parameter list at the specified
address, and calls the routine that displays the message text.

The address specified (either a symbolic address or
notation) indicates the location of the list form of
The following example shows how you might use the list
forms of the LINEDIT macro to write reentrant code:

in register
the macro.

and execute

WRITE TOT LINEDIT TEXT='SUE!OTAL ••••• TOTAL ••••• ',
SUB= (DEC, (4) ,DEC, (5» ,MF= (E,LINELIST)

LINELIST LINEDIT MF=L,MAXSUBS=6

When the execute form of the LINEDIT macro instruction is used, the
parameter list for the message is built at label LINELIST, where
the list form of the macro was coded.

486 IBM VM/SP CMS Command and Macro Reference

LINEDIT Macro

Use the MAXSUBS operand when you code the list form (MF=L) form of the
LINEDIT macro instruction. ~he format of the MAXSUBS operand is:

MAXSlJBS=number

where number specifies the maximum number of sUbstitutions that will be
made when the execute form of the macro is used.

Use the RENT operand when you are going to use the standard form of the
LINEDIT macro instruction and you do not care whether the code that is
generated is reentrant. The format of the RENT operand is:

RENT= {i~~}

When RENT=YES (the default) is in effect, the LINEDIT macro expansion
issues an MNOTE message indicating that nonreentrant code is being
generated. This occurs when you use the standard form of the macro
instruction and you specify one of the following:

• TEXTA= (reg)
• BUFFA= (reg)
• More than one substitution pair

If you do not care whether the code is reentrant, and you do not wish
to have the MNOTE appear, code RENT=NO. The RENT=NO coding merely
suppresses the MNOTE statement; it bas no effect on the expansion of the
LINEDIT macro instruction.

section 7. eMS Macro Instructions QS7

PRINTL Macro

PRINTL

Use the PRINTL macro instruction to write a line to a virtual printer.
The format of the PRINTL macro instruction is:

[label] I PRINTL I line [,length] [,TRC=] [,ERROR=erraddr]

label is an optional statement label.

line specifies the line to be printed. It may be:

length

TRC=

'linetext'
lineaddr
(reg)

text enclosed in quotation marks.
the symbolic address of the line.
a register containing the address of the line.

specifies the length of the line to be printed.
It may be:

(See Note 1.)

(reg)
n

a register containing the length.
a self-defining term indicating the length.

specifies whether or not the current print line includes a TRC
(Table Reference Character) byte. The TRC byte indicates
which 3800 translate table is selected to print a line.

!Q specifies that there is no TRC byte in the line to be
printed. NO is the default.

YES specifies that the line to be printed has a TRC :hyte as
the second byte in the line. The value of the TRC byte
determines which 3800 translate table is selected. If an
invalid value is found, translate table 0 is selected.

n specifies a value for TRC to indicate which 3800
translate table should be selected before printing the
line. The line to be printed does not contain a TRC
byte. If an invalid value is specified, translate table
o is selected.

The value
you have
command) •

of the lRC byte corresponds to the order in which
loaded WCGMs (via the CHARS keyword on the SETPRT

Valid values for TRC are.O, 1, 2, and 3.

ERROR=erraddr
specifies the address of an error routine to be given control
if an error is found. If ERROR= is not coded and an error
occurs, control returns to the next sequential instruction in
the calling program, as it does if no error occurs.

1. The maximum length allowed is 151 characters on a virtual 3211 or
133 characters on a virtual 1Q03 or 3203. If you do not specify
the length, it defaults to 133 characters, unless 'linetext' is
specified. In this case, the length is taken from the length of the
line text.

488 IBM VM/SP CMS Command and !acro Reference

2.

3.

PRINTL Macro

If the virtual printer is a 3800, the line may contain a maximum of
204 bytes of data. In addition, you can specify both a carriage
control byte, a TRC byte, or both, for a total line length of up to
206 bytes.

The first character of the line is
control character, which may be either
The valid ASA control characters are:

interpreted as a carriage
lSI (ANSI) or machine code.

Character ~ f2g~ ~ABing

" 40 Space 1 line before printing
0 FO Space 2 lines before printing

60 Space 3 lines before printing
+ 4E Suppress space before printing
1 F1 Skip to channel 1
2 F2 Skip to channel 2
3 F3 Skip to channel 3
4 F4 Skip to channel 4
5 F5 Skip to channel 5
6 F6 Skip to channel 6
7 F7 Skip to channel 7
8 F8 Skip to channel 8
9 F9 Skip to channel 9
A C1 Skip to channel 10
B C2 Skip to channel 11
C C3 Skip to channel 12

Hex codes X' C1' and X'C3' are used in both machine code and lSI
code. CKSrecognizes these codes as lSI control characters, not as
machine control characters.

4. If the line does not begin with a valid carriage control character,
the line is printed with a write command to space one line before
printing (ISA X'40').

5. If you specify TRC= and the virtual printer is not a 3800, the TRC
byte is stripped off before the line is printed. If the TRC byte
is invalid, PRINTL issues the following KNOTE:

KNOTE 8,'INV1LID THC SPECIFICATION'

Translate table 0 is selected if the THC byte is invalid.

6. When the macro completes, register 15 may contain a 2 or a 3,
indicating that a channel 9 or channel 12 punch was sensed,
respectively. You can use these codes to determine whether the end
of the page is near (channel 9), or if the end of the page has been
reached (channel 12). You might want to check for these codes if
you want to print particular information at the bottom or at the
end of each page being printed.

When the channel 9 or channel 12 punch is sensed, the write
operation terminates after carriage spacing but before writing the
line. If you want to write the line without additional space, you
must modify the carriage control character in the buffer to a code
that writes without spacing (ISA code + or machine code 01).

7. You must issue the CP CLOSE command to close the virtual printer
file. Issue the CLOSE command either from your program (using an
SVC 202 instruction or a LINED IT macro instruction) or from the CMS
environment after your program completes execution. The printer is
automatically closed when you log off or when you use the CMS PRINT
command.

Section 7. CMS Macro Instructions 489

PRINTL, PUNCHC Macros

If an error occurs register 15 contains one of the following error
codes:

Cod,g
1
2
3
4
5

100

PUNCHC

Me@ing
Line too long
Channel 9 punch sensed (virtual 3203 or 3211 only)
Channel 12 punch sensed (virtual 3203 or 3211 only)
Intervention reguired
Unknown error
Printer not attached

Use the PUNCHC macro instruction to write a line to a virtual card
punch. The format of the PUNCHC macro instruction is:

--,
[label] I PONCHC I line [, ERROR=erraddr] I

label

line

is an optional statement label.

specifies the line to be punched. It may be:

'linetext'
lineaddr
(reg)

text enclosed in quotation marks.
the symbolic address of the line.
a register containing the address of the line.

ERROR=erraddr
specifies the address of an error routine to be given control
if an error is found. If ERROR= is not coded and an error
occurs, control returns to the next sequential instruction in
the calling program, as it does if no error occurs.

US,2g,g Notes

1. No stacker selecting is allowed. The line length must be 80
characters.

2. You must issue the CP CLOSE command to close the virtual punch
file. Issue the CLOSE command either from your program (using an
SVC 202 instruction) or from the CMS environment when your program
completes execution. ~he punch is closed automatically when you log
off or when you use the CMS PUNCH command.

Er£.Q£ £ondi tio£.§

If an error occurs, register 15 contains one of the following error
codes:

1!~ning
unit check
Unknown error
Punch not attached

490 IBM VM/SP CMS Command and Macro Reference

RDCARD

Use the
reader.

RDCARD Macro

RDCARD macro instruction to read a line from a virtual card
The format of the RDCARD macro instruction is:

[label] I RDCAED I buffer[,length)[,ERROR=erraddr]

label

buffer

length

is an optional statement label.

specifies the buffer address into which the card is to be
read. It may be:

bufaddr
(reg)

the symbolic address of the buffer.
a register containing the address of the buffer.

specifies the length of card to be read. If omitted, 80 is
assumed. The length may be specified in one of two ways:

n
(reg)

a self-defining term indicating the length.
a register containing the length.

ERROR=erraddr
specifies the address of an error routine to be given
control if an error is found. If ERROR= is not coded and an
error occurs, control returns to the next sequential
instruction in the calling program, as it does if no error
occurs.

!!§~~ Notes

1. No stacker selecting is allowed.

2. When the macro completes, register 0 contains the length of the
card that was read.

3. You may not use the RDCARD macro in jobs that run under the CMS
batch machine.

If an error occurs, register 15 contains one of the following error
codes:

f.od~
1
2
3
5

100

l1~ing
End of file
Unit check
Unknown error
Length not equal to requested length
Device not attached

Section 7. CMS Macro Instructions 491

RDTAPE Macro

RDTAPE

Use the RDTAPE macro instruction to read a record from the specified
tape drive. The format of the RDTAPE macro instruction is:

[label]

label

buffer

length

device

RDTAPE huffer,length [,device] [,MODE=mode]
[,ERROR=erradr]

is an optional statement label.

specifies the buffer address into which the record is to be
read. It may be specified in either of two ways:

lineaddr
(reg)

the symbolic address of the buffer.
a register containing the address of the buffet.

specifies the length of the largest record to be read. A
65,535-byte record is the largest record that can be read. It
may be specified in either of two ways:

n
(reg)

a self-defining term indicating the length.
a register containing the length.

specifies the device from which the line is to be
omitted, TAP1 (virtual address 181) is assumed.
specified in either of two ways:

read. If
It may be

TAPn

cuu

indicates the symbolic tape n~mber (TAP1 through
TAP4) •
indicates the virtual device address.

MODE=mode specifies the number of tracks, density, and tape recording
technique options. It must be in the following form:

([track], [densi ty], [trtch])

ERROR=erraddr

track 7 indicates a 7-track tape (implies density=800 and
trtch=O) •

density

trtch

9 indicates a 9-track tape (implies density=800) •

200, 556, or 800 for a 7-track tape.
800, 1600, or 6250 for a 9-track tape.

indicates the
7-track tape.
specified:

tape recording technique for
One of the following must be

o - odd parity, converter off, translator off.
OC - odd parity, converter on, translator off.
OT - odd parity, converter off, translator on.
E - even parity, converter off, translator off.
ET - even parity, converter off, translator on.

specifies the address of an error routine to be given control
if an error is found. If ERROR= is not coded and an error
occurs, control returns to the next sequential instruction in
the calling program, as it does if no error occurs.

492 IBM V"/SP CMS Command and Macro Reference

RDTAPE, RDTERM Macros

1. When the macro completes, register 0 contains the number of bytes
read.

2. You need not specify the Mode option when you are reading from a
9-track tape and using the default density of the tape drive nor
when you are reading from a 7-track tape with a density of 800 bpi,
odd parity, with the data converter and translator off.

If an error occurs, register 15 contains one of the following error
codes:

fod~
1
2
3
IJ
5
8

Meani!!g
Invalid function or Farameter
End of file or end of tape
Permanent I/O error
Invalid device address
Tape not attached
Incorrect length error

list

RDTERM

Use the RDTERM macro instruction to read a line from the terminal into
an I/O buffer. The format of the RDTERM macro instruction is:

[label]

label

buffer

RDTERM

i

I
tuffer[,EDIT=ccde][,LENGTH=length][,PRBUFF=addr] t

I
r , I

[,PRLGTH=lengthJI,ATTREST={YES}1 I
I NO II
L .J I

is an optional statement latel.

specifies the address of a tuffer into which the line is to be
read. The tuffer is assumed to be 130 bytes long, unless
EDIT=PHYS is specified. The address may be specified as:

lineaddr
(reg)

the symbclic address of the buffer.
a register containing the address of the buffer.

EDIT=code specifies the tYFe of editing, if any, to be performed on the
input line.

NO

PAD

UPCASE

indicates that a logical line is to be read and no
editing is to be done.

requests that the input line be padded with blanks
to the length specified.

requests that the line be translated to uppercase.

section 7. CMS Macro Instructions IJ93

RDTERM Macros

XES indicates both padding and translation to uppercase.

PHYS

LENGTH=length
specifies
assumed.
specified
specified

n

(reg)

PRBUFF=addr (reg)

YES is the default.

indicates that a physical line is to he read. When
PHYS is specified, the LENGTH and ATTREST=NO
operands may also he entered. This option causes
the input line to be translated using the user
translation tahle.

the length of the huffer. If not specified,
The maximum length is 2030 bytes. The length
only if EDIT=PHYS (see Usage Note 2). It
in either of twc forms:

130 is
may he
may he

a self-defining term indicating the length of the
tuffer
a register containing the length of the huffer.

Specifies the address of a buffer in which the prompt data
resides. The length of the prompt data to he written is
specified by the PRLGTH parameter. If the PRLGTH parameter is
specified, but the PRBUFF parameter is not, the prompt
information is assumed to reside in the read huffer. The
PRBUFF address can be specified as follows:

addr
(reg)

PRLGTH=length

the symbclic address of the buffer.
a register containing the length of the buffer.

Specifies the length of the prompt information to he written
prior to the read. The prompt information is written with no
carriage return. ~he prompt information is written from the
user's read data buffer cr from the' huffer specified hy the
PRBUFF parameter. The length can he specified in either of
two forms:

n

(reg)

ATTREST=YESINO

a self-defining term indicating the length of the
buffer
a register containing the length of the huffer.

specifies whether an attention interruption during a read
should result in a restart of the read operation. (See Usage
Note 2.)

1. When the macro completes, register 0 contains the numher of
characters read.

2. You can use the ATTREST=NO and LENGTH operands only when you are
reading physical lines (EDIT=PHYS). When ATTREST=NO, an attention
interruption during a read operation signals the end of the line
and does not result in a restart of the read. These operands are
used primarily in writing VS APL programs.

3. The PRBD?F and PRLGTH operands are intended for use with TTY type
devices.

Q. If the prompt parameters are used with EDIT=PHYS, the read buffer
may not he used for the prompt data hecause the read buffer is
cleared prior to the execution of the function.

Q9Q IBM VM/SP CMS Command and Macro Reference

RDTERM, REGEQU Macros

When an error occurs, register 15 contains one of the following error
codes:

~eani!!g
Invalid parameter

fode
2
4 Read was terminated by an attention signal (possible only when

ATTREST= NO)

REGEQU

Use the REGEQU macro instruction to generate a list of EQU (equate)
statements to assign symbolic names for the general, floating-point, and
extended control registers. The format of the REGEQU macro instruction
is:

------------------.--------------------,
REGEQU I

I

The REGEQU macro instruction causes the following equate statements to
be generated:

General R~iste!:.§ Extended Control Registers
RO---- EQU 0 co EQU 0
R1 EQU 1 C1 EQU 1
R2 EQU 2 C2 EQU 2
R3 EQU 3 C3 EQU 3
R4 EQU 4 C4 EQU 4
R5 EQU ') C5 EQU 5
R6 EQU 6 C6 EQU 6
R7 EQU 7 C7 EQU 7
R8 EQU 8 C8 EQU 8
R9 EQU 9 C9 EQU 9
R10 EQU 10 C10 EQU 10
R11 EQU 11 C11 EQU 11
R12 EQU 12 C12 EQU 12
R13 EQU 13 f:13 EQU 13
R14 EQO 14 C14 EQU 14
R15 EQU 15 C15 EQU 15

Float,!Qg-Point]ggistg!:.§
FO EQU 0
F2 EQU 2
F4 EQU 4
F6 EQU 6

Section 7. CMS Macro Instructions 495

TAPECTL Macro

TAPECTl

Use the TAPECTL macro instruction to position the specified tape
according to the specified function code. The format of the TAPECTL
macro instruction is:

[label] , TAPECTL , function [,device][,MODE=mode][,ERROR=erraddr]

label is an optional statement label.

function specifies the control function to be performed. It must be
one of the following codes:

device

£od~
REW
RUN
ERG
BSR
BSF
FSR
FSF
WTM

Function
Rewind-the tape
Rewind and unload the tape
Erase a gap
Backspace one record
Backspace one file
Forward-space one record
Forward-space one file
Write a tape mark

specifies the tape on which the control operation is to be
performed. If omitted, TAPl (virtual address 181) is assumed.
It may be:

TAPn

cuu

indicates the symbolic tape number (TAP1 through
TAP4) •
indicates the virtual device address.

MODE=mode specifies the number of tracks, density, and tape recording
technique options. It must be in the following form:

([track],[density],[trtch])

ERROR=erraddr

track 7 indicates a 7-track tape (implies density=800 and
trtch=O) •

density

trtch

9 indicates a 9-track tape (implies density=800).

200, 556, or 800 for a 7-track tape.
800, 1600, or 6250 for a 9-track tape.

indicates the
7-track tape.
specified:

tape recording technique
One of the following must

for
be

a - odd parity, converter off, translator off.
OC - odd parity, converter on, translator off.
aT - odd parity, converter off, translator on.
E - even parity, converter off, translator off.
ET - even parity, converter off, translator on.

specifies the address of an error routine to be given control
if an error is found. If ERROR= is not coded and an error
occurs, control returns to the next sequential instruction in
the calling program, as it does if no error occurs.

496 IBM VM/SP CMS Command and Macrc Reference

TAPECTL, TAPESL Macros

You need not specify the MODE option when you are manipulating a 9-track
tape and you are using the default density for the tape drive, nor when
you are writing a 7-track tape with a density of 800 bpi, odd parity,
with data converter and translator off.

~!: Conditions

If an error occurs, register 15 contains one of the following error
codes:

Code -,
2
3
4
5
6

TAPESL

Meaning
Invalid function or parameter list.
End of file or end of tape
Permanent I/O error
Invalid device id
Tape is not attached
Tape is file-protected

The TAPESL macro processes IBM standard HDR1 and EOF1 labels without
using DOS or OS OPEN and CLOSE macros. This macro is used with RDTAPE,
WRTAPE, and TAPECT1. TAPESl processes only HDR1 and EOF1 labels. It
does not process other labels such as standard user labels or HDR2
labels. It does not perform any functions of opening a tape file other
than label checking or writing. The same macro is used both to check
and to write tape labels. A lABELDEF command must be supplied
separately to use the macro. The tape must be positioned correctly (at
.the label to be checked or at the place where label is to be written)
before issuing the macro. TAPECTl may be used to position the tape.
TAPESL reads or writes only one tape record unless SPACE=YES is
specified. The format of the TAPESL macro is:

[label]

function

device

TAPESL function[,device],LlBID=labeldefid[,MODE=mode]
[,ELKCN!=blkcnt][,ERROR=erraddr]
r , r ,
I ,SPACE={!ES}II ,TM={lli}1
I NO II HO I
L ~ l ~

is one
BIN
BOUT
EIN
EOUT
EVOUT

of the following:
checks input HDR1 label.
writes BDB1 label.
checks input EOF1 label.
writes output EOF1 label.
writes output EOV1 label.

is one of the following:
TAPn n=1-4. If omitted, 181 is assumed.
cuu 181-184 are the only values allowed.

Section 7. CMS "acro Instructions 497

TAPESt Macro

MODE=mode specifies the number of tracks, density, and tape recording
technique options. It must be in this form:

([track],[density],[trtch])

track

density

trtch

tlBID=labeldefid

1 indicates a 1-track tape (imflies density=800 and
trtch=O) •

9 indicates a 9-track tape (implies density=800).

200, 556, or 800 for a 1-track tape.
800, 1600, or 6250 for a 9-track tape.

indicates the
1-track tape.

tape recording technique for
One of these must be specified:

o - odd parity, converter off, translator off.
OC - odd parity, converter on, translator off.
OT - odd parity, converter off, translator on.
E - even parity, converter off, translator off.
ET - even parity, converter off, translator on.

specifies the 1- to a-character name on the tABEtDEF command
to be used for the file. (1 separate tABEtDEF statement must
be specified for the file before the program containing TAP ESt
is executed.)

BtKCNT=blkcnt
specifies the block count to be inserted in an EOF1 or EOVl
label on output or used to check against on input. This field
is only used for functions EOUT, EIN, or EVOUT. If not
specified, the cutput block count is set to O. This field may
also be speeified as a register number enclosed within
parentheses when a general register contains the block count.

ERROR=erraddr
specifies the address of an error routine to be given control
if an error of any kind occurs during label processing. If
ERROR= is not coded and an error occurs, control is returned
to the next sequential instruction in the calling program. If
you request the EIN function and a block count error is
detected, control is transferred to your error routine if you
specify an ERROR= parameter that contains an address different
from the next sequential instruction. If no error return is
specified or the ERROR= address is the same as the normal
return, a block count error causes message 425R to be issued.

SPACE={i~S}
may be specified for functions HIN and EIN. If YES is
specified, the tape is spaced, after processing, beyond the
tapemark at the end of the iabel record. If NO is specified,
the tape is not moved after the label has been processed. YES
is the default.

may be specified for functions HOUT, EOUT, and EVOUT. If YES
is specified, a single tapemark is written after a HDR1 or
EOV1 label. Two tapemarks are written after an EOP1 label.
If NO is specified, no tapemarks are written. YES is the
default.

498 IBM VM/SP CMS Command and Macro Reference

TAPES1, WAITD Macros

Us~,g Notes:

1. The input functions BIN and EIN read a tape label and check to see
if it is the type specified. They also check any fields in the
tape label that have been specified explicitly (no defaulted) in
the lABELDEF statement (indicated by lABID). Any discrepancies
between the fields in the lABELDEF statement and the fields on the
tape label cause an error message to be issued and an error return
to be made.

2. The output functions BeUT, EOOT, and EVOOT write a tape label of
the requested type on the specified tape. The values of fields
within the labels are those specified or defaulted to in the
lABE1DEF command. See the description of the lABE1DEF command in
this publication for information about the default fields.

3. For a more complete discussion of tape label processing, see the
section "CMS ~ape Latel Processing" in the VML2g CMS yser'§ Guid,g.

When an error occurs, register 15 contains one of the following error
codes:

Code
2q
28
32
36
qO

100

WAITD

I'le~!.!!g
Invalid device type specified.
LABELDEF cannot be found.
Error in checking tape label or block count error.
output tape is file-protected.
End of file or end of tape occurred.
Tape I/O error occurred.

Use the WAITD macro instruction to cause the program to wait until the
next interruption occurs on the specified device. The format of the
WAITD macro instruction is:

r---
I [label] I WAITD I device ••• (,devicen] [,ERROR=erraddr]
I

label

devicen

is an optional statement label.

specifies the device (5) to be waited for.
following may be specified:

One of the

symn indicates the symbolic device name and number, where:

sym is CON, DSK, PR!, PUN, RDR, or TAP.
n indicates a device number.

user is a four-character symbolic name specified a HNDINT
macro issued for the same device.

ERROR=erraddr
specifies the address of an error routine to be given control
if an error is found. If ERROR= is not coded and an error
occurs, control returns to the next sequential instruction in
the calling program, as it does if no error occurs.

Section 7. CMS Macro Instructions q99

WAITD, WAITT, Macros

1. Use the WAITD macro instruction to ensure completion of an I/O
operation. If an interruption has been received and not processed
from a device specified in the W1ITD macro instruction, the
interruption is processed before program execution continues.

2. When the interruption has been completely processed, control is
returned to the caller with the name of the interrupting device in
register 1.

3. If an HNDIHT macro instruction issued for the same device specified
ASAP and an interruption has already been processed for the device,
the wait condition is satisfied.

4. If an HNDINT macro instruction issued for the same device specified
WAIT and an interruption for the device has been received, the
interruption handling routine is given control.

5. The interruption routine determines if an interruption is
considered processed or if more interruptions are necessary to
satisfy the wait condition. For additional information see the
discussion of the HHDIH~ macro instruction.

Erro!: ConditiQ.!!.§

When an error is detected, register 15 contains a 1 to indicate that an
invalid device number was specified.

WAITT

Use the WAITT macro instruction to cause the program to wait until all
of the pending terminal I/C is complete. The format of the Wl~TT macro
instruction is:

[label] I WAITT I

label is an optional statement latel. Os~~!~

The WAITT macro instruction synchronizes input and output to the
terminal; it ensures that the console stack is cleared before the
program continues execution. Also, you can ensure that a read or write
operation is finished before you modify an I/O tuffer.

500 IBM VM/SP CMS Command and Macro Reference

WRTAPE l!acro

WRTAPE

Use the WRTAPE macro instruction to write a record on the specified tape
drive. The format of the WRTAPE macro instruction is:

[label]

label

buffer

length

device

WRTAPE buffer,length [,device] [,l!ODE=mode]
[, ERROB=erraddr]

is an optional statement label.

specifies the address of the record to be written. It may be:

lineaddr
(reg)

the symbolic address of the line.
a register containing the address of the time.

specifies the length of the line to be written. It may be
specified in either of two ways:

n
(reg)

a self-defining term indicating the length.
a register containing the length.

specifies the device to which the record is to be written. If
omitted, TAP1 (virtual address 181) is assumed. It may be:

TAPn

cuu

indicates the symbolic tape number (TAP1 through
TAP") •
indicates the virtual device address.

!ODE=mode specifies the number of tracks, density, and tape recording
technique. It must be in the following form:

([track], [density],[trtch])

ERROR=erraddr

track 7 indicates a 7-track tape (implies density=800 and
trtch=O) •

density

trtch

9 indicates a 9-track tape (implies density=800).

200, 556, or 800 for a 7-track tape
800, 1600, or 6250 for a 9-track tape.

indicates the
7-track tape.
specified:

tape recording technique for
One of the following must be

o - odd parity, converter off, translator off.
OC - odd parity, converter on, translator off.
O~ - odd parity, converter off, translator on.
E - even parity, converter off, translator off.
ET - even parity, converter off, translator on.

specifies the address of an error routine to be given control
if an error is found. If ERROR= is not coded and an error
occurs, control returns to the next sequential instruction in
the calling program, as it does if no error occurs.

section 7. Cl!S l!acro Instructions 501

WRTAPE, WR~ER" Macros

You need not specify the MODE option when you are writing to a 9-track
tape and want to use the default density, nor when you are writing to a
7-track tape with a density of 800 bFi, odd parity, with data converter
and translator off.

If an error occurs, register 15 contains one of the following error
codes:

Cog~
1
2
3
q
5
6

Meaning
Invalid function or Farameter list
End of file or end of tape
Permanent I/O error
Invalid device identification
Tape not attacbed
Tape is file-protected

WRTERM

Use the WRTER~ macro instruction to display a line at the terminal.
format of the WRTERM macro instruction is:

The

[label] I WRTERM I line [,length] [,EDIT=code] [,COLOR=color]

label

line

length

is an optional statement latel.

specifies the line to be displayed.
forms:

It may be one of three

'linetext'
lineaddr
(reg)

the actual text line enclosed in quotation marks.
the label on the statement containing the line.
a register containing the address of the" line.

specifies the length of the line. If the line is specified
within quotation marks in the macro instruction, the length
operand may be omitted. The length may be specified in either
of two ways:

n
(reg)

a self-defining term indicating the length.
a register containing the length.

EDIT=code specifies whether the line is to be edited:

!~~ indicates that trailing blanks are to be removed and a
carriage return added to the end of the line. YES is the
default value.

NO indicates that trailing blanks are not to be removed and
no carriage return is to be added.

LONG indicates the line may exceed 130 bytes.
performed.

502 IBM VM/SP C~S Command and Macro Reference

No editing is

WRTERft Macro

COtOR=color
indicates the color in which the line is to be typed, if the
typewriter terminal has a two-color ribbon:

~ indicates that the line is to be typed in black. This is
the default.

R indicates that the line is to be typed in red.

1. The maximum line length is 130 characters for a black line and 126
characters for a red line.

2. If EDIT=LONG, COLOR must be specified as "B". In this case, you may
write as many as 1760 bytes with a single WBTERft macro instruction.
You are responsible for embedding the proper terminal control
characters in the data. (This operand is for use primarily with VS
APt programs.)

3. You may want to use the WAITT macro instruction to ensure that
terminal I/O is complete before continuing program execution.

4. When EDIT =NO is used, the same output to graphics devices and to
line terminal devices may appear inconsistent because of
differences in device characteristics.

Section 7. CMS Macro Instructions 503

504 IBM VM/SP eMS Command and Macro Reference

HELP Format Words

Section 8. HELP Fonnat Words

This section describes the formats, operands, and defaults of the HELP
facility format words. In each of the format word descriptions, the
default values are those that are implied when you enter a format word
with no operands or parameters. For example, the default operand of the
.FO (FORMAT MODE) format word is 'on'. Therefore, the format lines

.fo

.fo on

are equivalent, and in the format tax of the .FO format word the 'on'
operand is underscored.

HELP format words are used only in HELP description files when the user
wants HELP to do output formatting when the file is processed. Figure
32 is a summary of the HELF facility format words.

Section 8. HELP Format Words 505

HELP Format Words

Format Operand Default

..) word Format Function Ereak Value

.EX (EOX) I V1 V2 ••• Vn Draws horizontal and Yes Draws a
I OFF vertical lines around horizontal
I subsequent output text in line.
I 1:lank columns.
I

.Cl! I Comments Places comments in a No
(COMMENT) I file for future reference.

I
.CS I nON/OFF Allows conditional No

(CONDI- I inclusion of input in
I TIONAL I the formatted output.
I SECTION) I
I I
I. FO I ON/OFF Causes concatenation of Yes On
I (FORl!AT I inFut lines, and left and
I -MODE) I right-justification of
I I output.
I I
l.lL (IN- I nl+nl-n Indents only the next Yes 0
1 DENT LINE) line the specified
I number of sraces.
I
I. IN (IN- nl+nl-n specifies the number Yes 0
DENT) of spaces subsequent

text is to be indented.

.OF (OFF- nl+nl-n Provides a technique Yes 0
SET) for indenting all but

J the first line of a
section.

• SP n Specifies the number Yes 1
(SPACE) of blank lines to be

inserted l::efore the
next output line.

.TR(TRANS- s t specifies the final No
LATE) output representation.

of any input character.

Figure 32. HELP Format Word Summary

506 IBM VM/SP CMS Command and Macro Reference

HELP Format Words - .BX

.BX (Box)

The BOX format word defines and initializes a horizontal rule for output
and defines vertical rules for subseguent output lines.

The format of the .BX format word is:

.BX

vl-vn

Off

r ,
Ivl v2 [••• [vn]]1
10FF I
L J

are the positions at which you want to plae vertical rules in
output text. This format of the format word initializes the
box and draws a horizontal line with vertical descenders at
the columns indicated. Subsequently entering the .BX format
word with no operands causes HELP to print a horizontal line
with vertical bars at the columns indicated.

causes HELP to finish drawing the box by printing a horizontal
line with vertical ascenders at the columns specified in a
previous .EX format word.

1. The .BX format word describes an overlay structure for subseguent
text that is processed by HELP. After the '.BX v1 v2 ••• ' line is
processed, HELP continues processing output lines as usual.
However, before a line is printed, HELP places vertical bars in the
columns indicated by v1, v2, and so on, unless a column is already
occupied by a data character. In this case, HELP does not place a
vertical bar in the column.

2. The .BX control word causes a break in the text.

3. The terminal output characters for boxes are formed with dashes
(-), vertical bars (I), and plus signs (+).

4. You can specify a .BX format word with different columns while a
box is being drawn. When this happens, HELP puts in vertical
ascenders for all the old columns and vertical descenders for all
the new columns. The vertical rules then appear in all subsequent
output lines in the new columns designated.

5. The column specification for the .BX format word uses a different
rule than is used elsewhere in HELP. In some control words the
numbers in the format word represent not columns but displacements.
For example the HELP format word .IN 5 means that a blank character
should be expanded to enough blanks to fill up through column 5;
the next word starts in column 6. In the .BX control word, .BX 5
means to put vertical rules 1~ column 5. Thus, you can use the
same numbers for a .IN control word as for a .BX control word, and
the vertical bar will appear in the column immediately preceding
the first word on that line.

Section 8. HELP Format Words 507

HELP Format Words - .BX

Examli.!2

Consider the HELP file called 'MARYHAtA' that looks like this:

.fo off

.bx 1 43

.in 5
Mary had a little lamt,
Whose fleece was white as snow,
And everywhere that Ma£y went,
The lamb was sure to go •
• bx off

This file, when processed ty HELP, creates the following output:

r---,
Mary had a little lamb, I
Whose fleece was white as snow, I
And everywhere that Mary went, I
The lamb was sure to go. I

508 IBM VM/SP CMS Command and Macro Reference

HELP Format Words - .CM

.eM (Comment)

Use the COMMENT format word to place comments within a HELP file.

The format of the .CM fermat word is:

.CM comments

comments may be anything; this input line is not used in formatting the
output.

1. The .CM format word enables JOu to store comments in the HELP files
for future reference. The comments can be seen .Q.!!.!.t by editing the
HELP file.

2. You can use comments to store unique identifications to be used to
locate a specific region of the file during editing •

• CM Remember to change the date.

~he line above is seen only when editing the HELP file, and it reminds
you to change the date used in the text.

Section 8. HELP For.at Words 509

HELP Format Words - .cs

.CS (Conditional Section)

The CONDITIONAL SECTION format word identifies to HELP the section of
the input file that is to be displayed first based on the specified HELP
command option.

The format of the .CS format word is:

.CS

n specifies

on marks the

off marks the
necessary

Usage Notes

the

n [ON]
[OFF]

conditional section code number

beginning of conditional section n.

end of conditional section n. (For
to have control words • .cs n off' •

from 1 to 3.

HELP files, it is not

1. The .CS format word enables you to identify the specific sections
of the input file that are directly associated with the HELP
facility command 'options'.

I You can then specify which section of the HELP file is to be
I displayed first by using the HELP command options DESC, FORM and
I PARM.

If you choose to implement any HELP description files using the
ALL, PAR~, FORM, and DESC options, the format word .CS is required
in the file. You must use the following form:

Top of file
• CS 1 on

(Text for DESC option)
.cs 1 off
• CS 2 on

(Text for FOR~ option)
.cs 2 off
.cs 3 on

(Text for PARM option)
.cs 3 off
End of file

510 IBM VM/SP CMS Command and Macro Reference

HELP Format Words - .FO

.FO (Format Mode)

Use the FORKAT KODE format word to cancel or restore concatenation of
input lines and right-justification of output lines.

The format of the .FO format word is:

.FO
r ,
I f! I
I OFF I
l .J

ON restores default HELP formatting, including both justification
and concatenation of lines. If you use the .FO format word
with no operands, eN is assumed.

Off cancels concatenation of input lines and justification of
output lines. Subsequent text is printed 'as is'.

1. When format mode is in effect, lines are formed by shifting words
to or from the next line (concatenation) and padding with extra
blanks to produce an aligned right margin (justification).

2. This format word acts as a break.

3. When format mode is in effect, a
exceeds the current line length is
If a line is processed so that only
word is left-justified.

line without any blanks that
extended into the right margin.

one word fits on the line, the

4. If ~ formatting is to be done by HELP, HELP description files ~ust
contain a '.fo off' format word as the first line of the file.

1. • Fa off

Justification and concatenation are
completed for
the preceding line or lines, but the following
lines are
typed exactly as they appear in the file.

2. • Fa

Justification and formatting are
output from this point on in the
right margin on the output page.

resumed with the
file is padded to

next input line.
produce an aligned

Section 8. HELP Format Words 511

HELP Format Words - .IL

oiL (Indent Line)

Use the INDENT LINE format word to indent the ~ext !ine only a specified
number of characters.

The format of the .IL format word is:

.IL

n

,
r , I
I n I I
I +n I I
I -n I I
L .J I

I

specifies the number of character spaces to shift the next
line from the current margin. +n specifies that text is
shifted to the right, and -n shifts text to the left.

~age Notes

1. The .IL format word provides a way to indent the next output line.
The line is shifted to the right or the left of the current margin
(which includes any indent or offset values in effect).

2. This format word acts as a break.

3. The .IL format word is useful for beginning new paragraphs.

4. When successive .IL format vords are encountered without
intervening text, or when you specify positive or negative
increments for .IL format vords entered without intervening text,
the indent amount is modified to reflect the last .IL encountered;
that is, the increments are added together. Thus the lines::

. il 4

.il +6

result in the next line being indented 10 spaces.

5. When you use the .IL format word with a negative value (undenting),
an error message is generated if the resulting amount would cause a
shift to the left of character position one.

512 IBM VM/SP CMS Command and Macro Beference

L

HELP Format Words - .IN

.IN (Indent)

Use the INDENT format word to change the left margin displacement of
HELP output.

The format of the .IN for.at word is:

n

.IN
r ,
I n I
I +n I
I -n I
I Q I
L .J

specifies the number of spaces to be indented. If omitted, 0
is assumed, and indentation reverts to the left margin. If
you use +n or -n, the current left margin increases or
decreases by the amount specified.

1. The .IN format word resets the current left margin. This
indentation remains in effect for all following lines until another
.IN format word is encountered. '.IN 0' cancels the indentation,
and output continues at the original left margin setting.

2. The value of n represents the number of blank spaces left before
text margins. Thus, '.in 5' sets the left margin at column 6,
leaving 5 blank spaces at the left.

3. This format word acts as a break.

q. The .IN format word cancels any .OF (OFFSET) setting. The .OF 0
request cancels the current offset, but leaves the left margin
specified by the .IN format word unchanged.

Section 8. HELP Format Words 513

HELP Format Words - .OF

.OF (Offset)

Use the OFFSET format word to indent all but the first line of a block
of text.

The format of the .OF format word i c •

.OF

n

r ,
I n ,
I +n I , -n ,
I Q I
L .J

specifies the number of spaces to he indented after the next
line is formatted. If omitted, 0 is assumed, and indentation
reverts to the original margin setting. If you use +n or -n,
the current offset value increases or decreases the specified
amount, and a new offset is started.

Usage Notes

1. The .OF format word does not take effect until after the next line
is formatted. The indentation remains in effect until a .IN
(INDENT) format word or another OFFSET control word is encountered.

You can use the .OF fermat word within a section that is also
indented with the .IN format word. Note that .IN settings take
precedence over .OF, however, and any .IN request causes a previous
offset to he cleared.

If you want to start a new section with the same offset as the
previous section, you need only repeat the .OF n request.

2. This format word acts as a hreak.

3. You can use the .IL (INDENT lINE) format word to shift only the
next line to the left or right of the current margin.

1. Starting an offset:
• of 10

The line immediately following the .OF format word is printed
at the current left margin. All lines thereafter (until the
next indent or offset request) are indented ten spaces from
the current margin setting. These two examples were processed
with OFFSET control words in the positions shown.

2. Ending an offset:

.of

~he effect of any previous .OF request is canceled, and all output after
the next line continues at the current left margin setting.

514 IB~ VK/SP CKS Command and Kacro Reference

J

HELP Format Words - .SP

.SP (Space Lines)

Use the SPACE LINES format word when you want blank lines to appear
tetween text lines of output.

The format of the .SP format word is:

.SP

n

r ,
I n I
I 1 I
L .J

specifies the number of blank lines to be inserted in the
output. If omitted, 1 is assumed.

Section 8. HELP Format Words 515

HELP Format Words - .TR

.TR (Translate Character)

The TRANSLATE CHARACTER format word allows you to specify the output
representation of each character in the source text. For examFle, you
could specify that all exclamation points in the file appear as blanks
in the output.

The format of the .TR format word is:

.TR

s

t

[s t]

is a source character under consideration. It may be a single
character or a two-character hexadecimal code.

is the intended output representation of the source character.
It may be a single character or a tvo-character hexadecimal
code.

USM~ Note2

1. After formatting of an input source line has been completed and
immediately before actual output, each character of the output line
may be translated to a different output code.

2. Since format words are only processed internally, they are never
translated in the file.

3. Translate character specifications
explicitly respecified.

remain in effect until

q. A .TR format word with no operands causes the translation table to
be reinitialized and all Freviously specified translations to be
reset.

5. The .TR format word does not cause a break. If you have a section
of text that has translation characters in effect, followed by a
.TR to reset the translations, the last line of the text may not
yet have been printed. In this case, that last line is not
translated •

• tr qO ?

This causes all blanks in the file to be typed as question marks (?) on
output.

516 IBM VK/SP CMS Command and Kacro Reference

J

Appendixes

The following appendixes are provided for your convenience:

• Appendix A: Reserved Filetype Defaults

• Appendix B: VSE/VSAK Functions Not supported in CMS

• Appendix C: as/vs Access Method Services and VS!M Functions
Not Supported in CMS

Appendixes 517

518 IBM VM/SP CMS Command and Macro Reference

Appendix A: Reserved Filetype Defaults

iFiletypelRECFKILRECLIZONEITRUNCIVERIFY SERIALITABS IUsage -----------.~
I I
Idefault F BO 11 *1 * I * OFF 1',6,1',16,2',26,3',36,IAll other filetypes I
I I I I I 111,116,51,61,71,81,91, I I
I I I I 1101,111,121,131 I I
1--1
IAKSERV F 80 12 72 72 72 OFF 12,6,1',16,2',26,3',36,IInput Control statements for I
I I I I 111,116,51,61,71,80 I Access Kethod Services I
I I
IASSEKBLE F 80 11711 71 72 ON 11,10,16,31,36,111,116, IAssembler language source I
I I I I 69,72,80 I statements. I
I I
11SK3705 F BO 11 711 71 72 ON 11,10,16,31,36,111,116, Illacro instruction for 3705 I
I I I I 69,72,80 I Assembler I
I I
IBASIC F 80 17 *1 * * L/L 7,10,15,20,25,30,80 IBASIC source statements; and I
I BAS DATA I I I execution-time files. I
I I
ICOBOL F 80 11 721 72 72 ON 1,8,12,20,28,36,1I1I,68,ICOBOL source statements. I
I I I 72,80 I I
I I
I DIRECT F 80 11721 72 72 ON 1,6,1',16,2',26,3',36,IVII/S2 user directory entries I
I I I 111,116,51,61,71 I I
1--
I EXEC V 80 11 *1 * * OFF 1,6,1',16,2',26,3',36,IEXEC procedures.
I I I 111,116,51,61,71 I
1--
IFREEFORT V
I

81 19
I

*1
I

* * L/L 9,15,18,23,28,33,38,
81

IFREEFORII FORTRAN source
I statements.

1---
I FORTRAN F 80 11 721 72 72 ON 1,7,10,15,20,25,30,80 IFORTRAN source statements.
1---
ILISTING V
I
I

121 I 1
I
I

1-----------------·
IIIACRO
I

F 80

*1
I
I

711
I

* * OFF

71 72 ON

1,6,1',16,2',26,3',36,IComaand, program, and
111,116,51,61,71,81,91,1 compiler listings.
101,111,121,131 I

1,10,16,31,36,111,116,
69,72,80

Illacro definitions.
I

1---
IIIEIIO F 80 *1 * * OFF 1,6,11, 16,21,26,31,36, I Documentation. (Default CASEI
I I 111,116,51,61,71 I value is II.) I
1---1
IPLI F 80 2721 72 172 ON 2,11,7,10,13,16,19,22, IPL/I Source statements. I
IPLIOPT I 25,31,37,113,119,55,79,1 I
I I 80 I I
I I
I SCRIPT V 132 *1 * * OFF (IIIAGE setting is ISCRIPT text processor input. I
I I CANON.) I (Default CASE setting is II.) I
I I
IUPDATE F 80 711 71 72 ON 1,10,16,31,36,111,116, IUpdate files for assembler I
I I 69,72,80 I language programs. I
I I
IUPDTxxxxl F 80 711 71 72 ON 1,10,16,31,36,111,116, IUpdate files for assembler I
I I I 69,72,80 I language programs. I
I I
IVSBASIC F 80 7 *1 * * L/L 7,10,15,20,25,30,80 IVS BASIC source statements. I
I I
IVSBDATA V 132 *1 * * OFF 1,6,1',16,21,26,31,36,IVS BASIC execution-tiae I
I I 111,116,51,61,71,81 ••• I files. :Trailing blanks arel
I I 131 I not truncated.) I
I I
1* indicates that the ZONE, TRUNC, or VERIFY setting is equal to the current record length. I
IL/L indicates that the LINEIIODE settiny is LEFT, with serial numbers on the left. I

-----------------------------------"

Figure 33. Default EDII Subcommand settings for eMS Reserved Filetypes

Appendix A: Reserved Filetype Defaults 519

520 IBM VM/SP CMS Command and Macro Reference

Appendix B: VSE/VSAM Functions Not Supported in eMS

Refer to the publication]si~g l~~/VSA~ £2m~~§ ~B~ ~£Q§ for a
description of access method services functions available under VSE,
and, therefore, under C"s •. ~his knowledge of access method services is
assumed throughout this publication.

All of VSE/VSAM is supported by CMS, except for the following:

• Non-VSAM data sets with data formats that are not supported by
CMS/DOS (for example, EDA" and ISA! files are not supported).

• The SHAREOPTIONS operand
partition sharing in
supported) •

is not supported for cross
CMS/DOS (that is, PASD

system or cross
sharing is not

• The Local Shared Resources option is not supported by C"S/DOS.

• Space Management for SA" Feature

• Backup/Restore Feature

Appendix B: VSE/VSA" Functions Not Supported 521

522 IBM V~/SP eMS Command and Macro Eeference

Appendix C: OS/VS Access Method Services and

VSAM Functions Not Supported in CMS

In CMS, an OS user is defined as a user that has not issued the command:

SET DOS ON (VSAM)

OS users can use all of the access method services functions that are
supported by VSE/VSAM, with the following exceptions:

• Non-VSAM data sets with data formats that are not supported by
CMS/DOS (for example, BDA~ and ISA~ files are not supported).

• The SHAREOPTIONS operand
partition sharing in
supportea.) .

is not supported for cross
CMS/DOS (that is, DASD

system or cross
sharing is not

• Do not use the AUTHORIZATION (entrypoint) operand in the DEFINE and
ALTER commands unless your own authorization routine exists on the
DOS core image library, the private core image library, or in a CMS
DOSLIB file. In addition, results are unpredictable if your
authorization routine issues an OS SVC instruction.

• The OS access method services GRAPHICS TABLE options and the TEST
option of the PARM command are not supported.

• The filename
characters.

in the FILE (filename) operands is limited to seven
If an eighth character is specified, it is ignored.

• The OS access method services CNVTCAT and CHKLIST commands are not
supported in VSE/VSAM access method services. In addition, alIOS
access method services commands that support the 3850 Mass storage
System are not supported in DOS/VS access method services.

• Figure 3q is a list of OS operands, by control statement,
not supported by the C~S interface to VSE/VSAM access
services.

that are
method

If any of
specified, the
error message.

the unsupported
AMSERV command

operands or commands in Figure 3q are
terminates and displays an appropriate

When you use the PRINT, EXPORT, IMPORT, IMPORTRA, EXPORTRA, and REPRO
control statements for seguential access method (SAM) data sets, you
must specify the ENVIRONMENT operand with the required DOS options (that
is, PRIME DATA DEVICE, ELOCKSIZE, RECORDSIZE, or RECORDFORMAT). You
must have previously issued a DIBL for the SAM file.

AMSERV can write SAM data sets only to a CMS disk, but can read them
from DOS, as, or CMS disks.

Appendix C: OS/VS VSAM Functions Not Supported 523

OS Access ~ethod Services
Control Statement

ALTER

DEFINE

DELETE

EXPORT

IMPORT

LISTCAT

PRINT

REPRO

Operands Not Supported in CftS

Ef!PTY/NOEftPTY
SCRITCH/NOSCRATCH
DESTAGEWAIT/NODESTIGEWIIT
STIGE/BIND/CYLINDERFIULT

ALIAS
EftPTY/NOEMPTY
GENERATIONDATAGROUP
PAGESPACE
5CRITCH/!OSCRATCH
DESTAGEWAIT/NODESTIGEWAIT
STAGE/BIND/CYLINDERFAULT
TO/FOR/OWNEIP

lLIIS .
GENERATIONDATAGROUP
PAGESPACE

OUTDATISET

INDATASET
OU'IDA'IASET
IMPORTA

ALIAS
GENERATION£ATAGROUP
LEVEL
OUTFILE2
PAGESPACE

INDAUSET
OUTFILE2

INDA'IASET
OU'IDA'IASET

==
IThe TO/FOR/OWNER operands are sUPForted for the access method
services interface, but are not supported for the DEFINE NONVSAft
control statement.

2The OUTFILE operand is supported by the access method services
interface, but is not supported for th~ LISTCAT and PRINT control
statements.

Figure 34. as Access Method Services operands Not supported in eMS

524 IBM VM/SP CMS Command and Macro Reference

./ * (comments) UPDATE control statement
346

./ D (DELETE) UPDATE control statement 345

./ I (INSERT) UPDATE control statement 344

./ R (REPLACE) UPDATE control statement
345

./ S (SEQUENCE) UPDA!E control statement
343

.BX (BOX) format word 507

.Cft (COftftENT) format word 509

.CS (CONDITIONAL SECTION) format word 510

.FO (FORftAT MODE) format word 511

.IL (INDENT LINE) format word 512

.IN (INDENn format word 513

.OF (OFFSET) format word 514

.SP (SPACE LINES) format word 515

.TE (TRANSLATE CHARACTER) format word 516

&$ special variable 446
in &IF control statement 435
setting 426

&* special variable 446
in &IF control statement 435
setting 426

&AEGS control statement, description 426
&BEGEMSG control statement

ALL operand 1126
description 426

&BEGPUNCH control statement
ALL operand 428
description 428

&BEGSTACK control statement
ALL operand 428
description 428
FIFO operand 428
LIFO operand 428

&BEGTYPE control statement
ALL operand 429
description 429

&CONCAT built-in function, description 443
&CONTINUE control statement 1130

used with &ERROR control statement 433
&CONTROL control statement

ALL operand 430
CMS operand 430
description 430
ERROR operand 430
MSG operand 430
NOMSG operand 430
NOPACK operand 431
NOTIME operand 431
OFF operand 430
PACK operand 431
TIME operand 431

&DATATYPE built-in function, description
4114

&DISK* special variable 447
&DISK? special variable 447
&DISKx special variable 446

Index

&DOS special variable 447
&EMSG control statement, description 431
&END control statement 432

with &BEGEMSG control statement 426
with &BEGPUNCH control statement 428
with &BEGSTACK control statement 428
with &BEGTYPE control statement 428

&ERROR control statement, description 432
&EXEC special variable 447
&EXIT control statement, description 433
&GLOEAL special variable 447
&GLOBALn special variable 448
&GOTO control statement

description 434
TOP operand 434

&HEX control statement
description 434
OFF operand 434
ON operand 434

&IF control statement, descriftion 435
&INDEX special variable 448

setting 426,438
&LENGTH built-in function, description 444
&LINENUft special variable 1148
&LITERAL built-in function, description

445
&LOOP control statement, description 436
&n special variable 446
&PUNCH control statement, description 437
&READ control statement

AEGS operand 438
description 438
VAES operand 438

&READFLAG special variable 448
testing 439

&RETCODE special variable 448
&SKIP control statement, description 439
&SPACE control statement, description 440
&STACK control statement

description 440
FIFO operand 440
LIFO operand 440
stacking CHANGE subcommand 367
stacking INPUT subcommand 379
stacking REPLACE subcommand 390

&SUBSTR built-in function, description 445
&TIME control statement

description 441
OFF operand 441
ON operand 441
RESET operand 441
TYPE operand 441

&TYPE control statement, description 442
&TYPEFLAG special variable 448
&0 special variable 446

$DUP edit macro 407
$LISTIO EXEC file

appending information to 188

Index 525

creating 188
format 189

$MOVE edit macro 408
DOWN operand 408
TO operand 408
UP oFerand 408

* (asterisk)
entered in fileid 5
in ACCESS command 20

362 in ALTER subcommand
in CHANGE subcommand
in COpy FILE command

examples 44
in DDR program 53

3C6
41

in DELETE subcommand 37C
in DLBL command 74
in DSERV command 93
in EDIT command 95
in ERASE command 98
in EXECIO command 106
in FILEDEF command 122
in FILELIST EXEC Frocedure 134
in FINIS command 143
in GETFILE subcommand 377
in INCLUDE command 169
in LABELDEF command 173
in LISTDS command 177
in LISTFILE command 182
in LOAD command 193
in NAMEFIND command 215
in NUCXDROP command 233
in PEEK EXEC procedure 242
in PRINT command 246
in PUNCH command 251
in READCARD command 274
in RENAME command 283
in REPEAT subcommand 389
in SCROLL/SCROLLUP subcommand 394
in START command 310
in STATE and STATEi commands 312
in SYNONYM command 318
in TAPE command 322
in TAPPDS command 331
in TRUNC subcommand 399
in TYPE subcommand 400
in VERIFY subcommand 402
in XEDIT command 353
in ZONE subcommand 404
with DISK option, of CMS CUEEY command

258
with RESET option

of INCLUDE command 169
of LOAD command 193

* (comment) command 4
*COPY statement 207

/ (diagonal)
used in ACCESS command
used in EXECUTE command

20
140,271

" used to pass null argument to EXEC

526 IBM VM/SP CMS Command and Macro Reference

?

A

Frocedure 446

subcommand, description 405
used with DSN option of DLBL command 75
used with FILEDEF DISK option 129

(equal sign)
in COPYFILE command 41

examFles 45
in RDR command 264
in RENAME command 284

subcommand (~~ REUSE subcommand)

A option of LISTIO command 188
ABBREV option

of CMS QUERY command 256
of CMS SET command 300

relationshiF to SYNONYM command 319
abbreviation

of command names 4,300,319
querying acceptability of 256
setting acceptability of 300

used with synonyms 319
abnormal termination (abend)

effect on DLBL definitions 75
effect on FILEDEF definitions 127
encountered by CMSBATCH command 37
entering debug environment after 409

ACCESS command
description 20
ERASE option 20,22
examples 21
first command after IPL 20
NODISK option 21
NOPBOF option 20
read-only access 21
usage with DEFINE command 22

access method services
allocating VSAM space 83

in CMS/DOS 78
control statements, operands not

sUFPorted in ClIS (OS users) 524
determine free space extents for 179
invoking in CMS 24
LISTING file created by 24
restrictions

for OS/VS users 524
for VSE users 524

ACK option
of NOTE EXEC procedure 227
of SENDFILE EXEC procedure 291

ADD option
of MACLIB command 206
of NOTE EXEC Frocedure 227
of TXTLIB command 336

A-disk, accessed after IPLing CMS 21
ALIGN option of ASSEMBLE command 30
alignment of boundaries in assembler

Frogram statements 30
ALIGN2 option, of LKED command 140

ALL
operand

of &BEGEMSG control statement 426
of &BEGPUNCH control statement 428
of &BEGSTACK control statement 428
of &BEGTYPE control statement 429
of &CONTROL contrcl statement 430
of SERIAL subcommand 395

option
of GENHOD command 150
of LISTIO command 188
of NUCXMAP command 237

ALL option, of HELP command 164
ALLOC option of LISTFIIE command 184
ALOGIC option of ASSE!BLE command 28
ALTER subcommand

description 362
effect of zone setting 404

AKSERV
co •• and

description
lISTING file
PRINT option
TAPIN option
TAPODT option

filetype 25

24
24
24
24

24

default CKS editor settings 519
APPEND option

of COPYFILE command 43
of FILELIST command 13q
of LISTFILE command 183
of LISTIO command 188
of RDRLIST EXEC procedure 267

ARGS operand of &READ control statement
438

arguments
on RUN command 289
on START command 310
passed to EXEC procedure 102,426

initializing 426
passing to nested EXIC Frocedures

448
reading from the console stack 438
testing how many were passed 448

ASA carriage control characters 489
ASAP operand of HNDINT macro 474
ASSEftBLE

assembler input ddname 31
command 2

30
28

30

ALIGN option
ALOGIC option
BOFSIZE option
DECK option 29
description 27
DISK option 29
ESD option 28
FLAG option 28
LIB!!AC option 28
LINECOUN option 28
LIST option 28
listing control options for 28
!CALL option 28
!LOGIC option 28
NOALIGN option 30
NOALOGIC option 28
NODECK option 29
NOESD option 28
NOLIB!!AC option 28

28
28

28

NOLIST option
NOllCALL option
NO!LOGIC option
NONOft option 29
IOOBJECT option 29
ROPRINT option 29
NORENT option 30
IORLD option 28
IOST!T option 30
laTER! option 30
laTEST option 29
NOIREF option 29
NOYFLAG option 31
NUftBER option 29
OBJECT option 29
PRINT option 29
RENT option 30
RLD option 28

31
29
30

STlIT option 29
SYSPARft option
SISTERft listing
TERftlNAL option
TEST option 29
iORKSIZE option 31
IBEl option 29
lFLAG option 30

filetype
created
default
used as

assembler

by TAPPDS command 331
ClIS editor settings 519
input to assembler 27

conditional assembly statements, listing
28

overriding CftS file defaults 31
using under CMS 2,27

ASSGN command
DEN option 34
description 33
IGN option 34
LOiCASE option 3q
PRIITER option 33
PUNCH option 33
READER option 33
SYSxxx option 33
TUn option 33
TERftINAL option 33
TRTCH option 34
UPCASE option 34
7TRACK option 34
9TRACK option 34

assignment statement 424
assignments

logical unit, listing 188
sjstem and programmer, unassigning 281

attention interruption, causing 10
ATTN CftS function

description 450
using 450

ITTREST operand of RDTERft macro 494
AUTO 0Ftion

of INCLUDE command 170
of LOAD command 194

automatic
read function, setting 301
save function of CMS editor

canceling 363
invoking 363

ADTOREAD option of CftS SET command 301

Index 527

AUTOSAVE subcommand
description 363
OFF operand 363

auxiliary directory, creating 148
AUXPROC, option of FILEDEF command 127

B
hackspace

characters, how CHS editor handles 379
key, used with OVERLAY subcommand 384

BACKWARD subcommand, description 364
BASDATA filetype, default CMS editor
settings 519

base address, for debugging, set with
ORIGIN subcommand 417

EASIC filetype, default CHS editor settings
519

BCD characters, converting to EBCDIC 43
EDAM, files, specifying in CMS 122
blank lines, displaying at terminal during

EXEC processing 440
l:lanks

as delimiters 3
FIND subcommand 373

displaying in LINEDIT message text 479
overlaying characters with 383
trailing

removing with ~RTERM macre 502
truncating from variable-length file

387
blip

characters
for virtual machine 298
for virtual machine, displaying 255

function
querying setting of 255
setting 298

BLIP option
of CMS QUERY command 255
of CMS SET command 298

BLKCT operand, of TAPESL macro 498
BLKSIZE option

of FILEDEF command 125,127
of FORMAT command 144
of TAPE command 324

BLOCK option of FILEDEF command 125,127
blocksize, specifying with FILEDEF command

127
BLP operand, of FILEtEF command 129
books, from VSE source statement lil:raries,
copying 308

BOTTOM subcommand, description 365
boundary alignment, of statements in
assembler program 30

BOX (.BX) format word 507
BREAK subcommand, description 410
breakpoints, setting 410
BSF, tape control function 323
BSIZE operand of FSCB macre 461
BSR, tape control function 323
BUFFA operand of LINEDIT macro 486
buffer

size
controlling for assembler 30
for VSAM programs 76

BUFFER operand of FseB macro 460

528 IBM VM/SP CMS Command and Macro Eeference

BUFSIZE option of ASSEMBLE command 30
BUFSP option of DLBL command 76

C
CANCEL option of NOTE EXEC procedure 227
CANON operand of IMAGE subcommand 378
CARD option of EXECIO command 106
CASE subcommand

description 365
M operand 365
U operand 365

CAT option

CAW

of DLBL command 76
example of usage 85
example of usage in CMS/DOS 81

operand of SET subcommand 419
subcommand, description 411

CAW (channel address word)
changing in debug environment 419
displaying in debug environment 411
fermat 411

CC option .
of EXECIO command 107, 113
of NOTE EXEC procedure 227
of PRINT command 246

CD option of DSERV command 93
CHANGE

option
of DLBL command 75
of FILEDEF command 124
of LABELDEF command 174

subcommand
description 366
effect of zone setting 404
stacking with &STACK control
statement 367

CHAR, result of &DATATYPE built-in function
444

character
for blip string

displaying 255
setting 298

overlaying, with OVERLAY subcommand 384
sets, used in CMS 4
special, changing on 3270 368
strings

assigning to variable symbols 424
changing 366
copying 48
extracting in EXEC procedure 445
locating 382

valid in CMS command lines 4
CHARS option, of SETPRT command 304
CLEAR option

of DLBL command 75
of FILEDEF command
of INCLUDE command
of LABELDEF command
of LOAD command 193

123
169

173

of SYNONYM command 318
closing CMS files, via FINIS command 143
CLR operand

of HNtEXT macro
of HNDINT macro
of HNDSVC macro

473
474
476

CMDCALL command
description 36

CMS
operand of SCONTBCL control statement

430
option of DLBL command 75
subcommand, description 369

CMS (Conversational Menitor System) 1
accessing with no virtual disks attached

to virtual machine 21
basic description of 2
batch facility (~~~ CMS batch facility)
command language, basic description 1
commands (§~~ CMS commands)
editor 2
files (~file)
loader (~~ loader)
macros (~CMS macro instructions)
subset (~CMS subset)

CMS batch facility 37
halting 358

CMS commands
ACCESS 20
AI'ISERV 24
ASSEMBLE 27
ASSGN 33
CI'IDCALL 36
CMSEATCH 37
COMPARE 38
CONWAIT 40
COPYlILE 41
CP 52
DDR 53
DEEUG 67
DEFAULTS 68
Dl!SEUF 70
DISK 71
displaying during EXEC precessing Q30
DLBL 74
DOSLIB 87
DOSLKED 89
DROPEUF 92
DSERV 93
EDIT 95
entering 3
entering by synonym 319
l!RASl! 98
ESERV 100
EXEC 102
EXECIO 105
FETCH 120
FILEDEF 122
FILE LIST 134
FINIS 143
FORMAT 144
GENDIRT 148
GENI'IOD 149
GLOEAL 152
GLOBALV 154
halting execution 359
HELP 163
IDENTIFY 167
INCLUDE 169
LABELDEF 173
LISTDS 177
LISTFlLE 182
LIS'IIO 188
LKED 190

LOAD 193
LOADLIB 202
LCADMCD 205
MACLIB 206
MAKl!BUF 209
ltOEMAP 210
MOVEFILE 211
NU1!FIND 215
NAMES 221
NOTE 226
not for general users 17
nucleus-resident 8
NUCIDBOP 233
NUClLOAD 234
NUCIMAP 237
OPTION 239
OSBUN 241
PEEK 242
PRINT 246
PSEBV 249
PUNCH 251
QUERY 254
RDR 264
BDRLIST 267
Rl!HCARD 274
BECnVE 277
RUl!ASE 281
BEUME 283
RSERV 286
BUN 288
search order 7
SENr:FILE 290
SENTRIES 297
SE'I 298
SETPRT 304
SORT 306
SSERV 308
SUBT 310
S'Il'IE 312
S'IA'lEii 312
summary 12
SVCTRACE 314
SYNONYM 318
TAPE 322
TAHMAC 328
TAPPDS 331
TELL 336
transient area 7
TITLIE 336
TUE 339
UPLATE 341
valid in CMS subset 369
!EDIT 353

CMS editor, compatibility mode 95
CMS UIC file

appending information to 183
creating 182
format 184

CMS file (§~~ file)
CMS functions

A'ITN 450
description 450
invoking 450
NUCHT 451
iiAI'IBD 456

CMS Immediate commands (~~ Immediate
commands)

CMS ICADLIEs

Index 529

comFressing with LOADLIE command 202
copying with LOADIIE command 202
creating with LKED command 190
executing a load module from 241
listing with LOADIIB command 202

CMS macro instructions 455
COMPSWT 460
entering operands on 460
FSCB 460
FSCBD 461
FSCLOSE 463
FSERASE 464
FSOPEN 465
FSPOINT 466
FSREAD 467
FSSTATE 469
FSWRITE 471
HNDEXT 473
HNDINT 474
HNDSVC 476
LINEDIT 477
PRINTL 488
PUNCHC 490
RDCABD 491
RDTAPE 492
BDTERM 493
REGEQU 495
TAPECTL 496
TAPESL 497
WAITD 499
WAITT 500
WRTAPE 501
WRTERM 502

CMS subset
entering 369
returning to edit mode 391

CMSAMS, saved system name 301
CMSBATCH command

description 37
recursive abends encountered by 37

CMS/DOS
beginning program executicn in 120
defining files for 74
environment

description 2
initializing 301
leaving 302
testing whether it is active 261
testing whether it is active, in EXEC
procedure 447

CMSDOS, saved system name 301
CMSLEVEL option of CMS QUERI command 261
CMSLIB, assembler macro litrary ddname 31
CMSSEG, saved system name 301
CMSTYPE option of CMS SET command 301
CMSUT1 file

created by DISK LOAD command 72
created by READCARD command 274
created by TAPE LOAD command 324
created by TAPPDS command 331

CMSVSAM, saved system name 301
COBOL

compiler
querying options in effect for 273
specifying options for in CMS/DeS

239
filetype, default CMS editor settings

519

530 IBM VM/SP eMS Command and Macro Reference

COL 0Ftion
of COMPARE command 38
of TIPE command 339

COLOR operand of WRTERM macro 502
columns

comFaring disk files by 38
displaying particular

with TYPE command 339
with TYPE sutcommand 400

of data, copying 52
sFecifying

for copy oFerations 52
for verification setting 402
for zone setting for edit session

404
COL1 option of TAPPDS command 332
command

atbreviating 4
defaults, shown by underscore in command

format box 6
entering 3
environment

CMS 1
CP 1
defini tion 1

execution, halting 359
keytoard differences in entering 10
language, CMS 2
modules, creating 149
operands 3
0Ftions 3
stacking in terminal input buffer 10
truncating 4
valid in CMS subset 369
when to enter 10

COMMENT (.CM) format word 509
comments, in CMS command lines 4
COMP

oFerand, of LINEDIT macro 479
oFt ion

of DOS LIB command
of FETCH command
of MACLIB command

COMPARE command
cel option 38
description 38

87
120

206

comparison oFerators, in EXEC Frocedure
435

compilers, using under CMS 2
components

of VM/SP
of VM/370 1

COMPRESS option, of LOADLIB command 202
COMPSWT macro, description 460
CONCAT option, of FILEDEF command 126
conditional execution

&IF control statement 435
SLOOP control statement 436

CONDITIONAL SECTION (.CS) format word 510
console

terminal input buffer
clearing 70
reading a line from via WAITRD 459

read, after CMS command execution,
controlling 301

stack
reading data in EXEC procedure 438
stacking lines, &BEGSTACK control

J

statement 438
stacking lines, SS~ACK control

statement 440
stacking lines, STACK subcommand 397
testing whether it is empty 11118

CONSOLE, value of SB!AtFLAG special
variable 11118

constants
al tering

with LOAD command 199
with STORE subcommand 420

continuation character
on COPYFILE specificatien list 118
on COPYFILE translation list 50

control program (§~~ CP (control program»
control statements

for access method services 25
for DDR command 511
for UPDATE command 3112

conventions, notational 4
Conversational Monitor System (~~CMS

(Conversational Monitor System»
CONI/AIT command

description 40
using 110

COPIES option, of SE~PRT command 3011
COPY

filetype
adding to MACLlBs 207
created by SSERV co.mand 308

function statement, of DDR command 59
option, of LOADLIE command 202

COPYPILE command
APPEND option 113
description 111
EBCDIC option 43
examples 411
FILL option 43
FOR option 112
FRIABEL option 42
FROM option 42
incompatible options 114
LOWCASE option 113
LRECL option 113
NEWDATE option 112
NEWFILE option 42
NOFROMPT option 42
NOSPECS option 42
NOTRUNC option 113
NOTYPE option 42
OLDDATE option 112
OVL Y option 112
PACK option 43
PROMPT option 42
RECFI! option 43
REPLACE option 42
SINGLE option 411
specification list 48
SPECS option 42
TOIABEL option 42
TRANS option 43
TRUNC option 43
TYPE option 42
UNPACK option 43
UPCASE option 113
usage 44

COPYNR option, of SETPRT ccmmand 304
COUNT option of DDR command TYPE/PEINT

function control statement 62
CP (central program)

basic description 1
ccmmands (§~~ CF commands)

CP commands
description 52
executing

in CMS command environment 52,300
in EXEC procedure 52
in jobs for CMS batch facility 52
with LINEDIT macro 485

implied 300
when to use 52

CP option of EXECIO command 106, 111
CRDTE operand, of IABELDEF command 174
creating, a program stack buffer, via

MAKEEUE 209
CSECTs, duplicate, for LOAD command 195
CSW

operand of SET subcommand 1119
subcommand, description 1112

csw (channel status word)
changing in detug environment 1119
displaying in debug environment 412
format 412

CTL
option

D

of UPDATE command 342,3117
of XEDIT command 355

DASD Dump Restore (DDR) program, invoking
via DDR command 54

DATE option of LISTFILE command 184
DD (data definition), simulating in CMS

122
D-disk, accessed after IPL of CMS 21
ddnames

defining
with DLBL command 711
with FIIEDEl command 122

entering tape ddnames for AMSERV 25
for DIEL command, restrictions for OS

users 76
relating to CMS file 122
to identify VSAM catalogs 811

in CMS/DOS 81
used by assembler 31

DDR command
control statements, entering 55
CCPY function statement 59
ceUNT option of TYPE/PRINT function

control statement 62
description 54
DUMP function statement 57
example of TYPE/PRINT output 62
PTR option of DUMP/CepY/EESTORE function

58
GRAPHIC option of TYPE/PRINT function
control statement 62

HEX option of TYPE/PRINT function
control statement 62

INPUT control statement 55
OUTPUT control statement 55
PRINT function statement 61
RISTORE function statement 59

Index 531

SYSPRINT control statement 57
TYPE function statement 61

DEBUG
command 2

description 67
sub commands

BREAK 410
CAW 411
CSi 412
DEFINE 413
DUMP 414
GO 415
GPR 416
HX 416
ORIGIN 417
PSi 418
RETURN 418
SET 419
STORE 420
X 421

DECK option
of ASSEMBLE command 29
of OPTION command 239

DEFAULTS EXEC procedure
description 68
LIST option 68
SET option· 68
valid CMS command options 68

DEFINE, subcommand, description 413
DEL option

of DOSLIB
of MACLIB
of 'lITLIB

DELETE

command
command
command

87
206
336

control statement, for UPDATE command
345

subcommand, description 370
deleting, program stack tuffer 92
DEN option

of ASSGN command 34
of FILEDEF command 126
of TAPE command 325

DESBUF command, description
DESC option, of HELP command
DET option of RELEASE command
DETACH command 281

70
164

281

DIRECT, filetype, default CMS editor
settings 519

directories
CMS auxiliary 148
CMS file, writing to disk 281
of VSE libraries, sorting 93

discontiguous, shared segment, saved system
names 301

DISCARD command
use with FILELIS'l EXEC procedure 141
use with PEEK EXEC procedure 244
use with RDRLIST EXEC procedure 272

DISK
command

DUMP option 71
LOAD option 71

option
of ASSEMBLE command 29
of CMS QUERY command 257
of DOSLIB command 87
of DOSLKED command 89
of DSERV command 93

532 IBM V~/SP CKS Command and Macro Reference

of fILEDEF command 123
of FILED!! command, examples 128
of FILEDEF command, interactive use
of 129

of LKED command 191
of LOADLIB command 203
of MACLIB command 206
of PSERV command 249
of RSERV command 286
of SSERV command 308
of TAPE command 324
of TITLIB command 336
of UPDATE command 342

DISKR cption of EXECIO command 106,111
disks

accessing 20,21
detaching 281
determining

if disk is accessed, in EXEC
procedure 446

if disk is CMS OS or DOS, in EXEC
procedure 446

if disk is full 257
read/write status of 257

dumping to and restoring from tape 53
erasing files from 98
files (see file)
formatting 144
read/write, sharing 22
releasing 281

effect on logical unit assignments in
CMS/DOS 34

in CftS/DOS 281
when DLBL definitions are active 82

storage capacity, displaying status 257
writing files to 372

DISKW option of EIECIO command 107,112
DISP

operand of LINEDIT macro 484
option of FILED!l command 125

DISPLAY operand of FORMAT subcommand 375
DLBL

com.and
CAT option 76
CHANGE option 75
CLEAR option 75
CIIS option 75
ddname restrictions (OS users) 82
description 74
displaying volumes on which

multivolume data sets reside 80
displaying VSAft data set extents 79
LSN option 75
DUIIMY option 75
entering SYSxxx operand 77
establishing file definitions for

STATE command 312
EI'lENT option 76
flULT option 76
NOCHANGE option 75
PER! option 75
SYSxxx option 75
to identify files for A!SERV 25
VSA! option 75
when to use (OS users) 82

definitions
cleared by ESERV EIEC 100
cleaI:ing 75,82

L
displaying 271

option, of CMS QUERY command 261
DMSLDR SYSUT1 file 194
DOS (Disk Operating System)

disks, accessing 22
files

listing information 177
specifying FILEDEF options for 137

DOS option
of eMS QUERY command 2E2
of CMS SET command 301
of GENMOD command 150

DOSLIB
command

COMP option 87
DEL option 87
description 87
DISK option 87
l'IAP option 87
PRINT option 87
TERM option 87

files 88
adding phases to 91
fetching phases from 120
identifying for fetching 152
listing informatioD abcut members 87
output filemode 89
size considerations 88
space considerations 90
which DOSLIBs will be searched 261

option
of eMS QUERY command 262
of GLOBAL command 152

DOSLKED command
description 89
DISK option 89
PUNT option 90
TERM option 90

DOSLNCNT option
of CMS QUERY command 292
of CMS SET command 302

DOSLNK
filetype

CMS/DOS linkage editor input 89
creating 90

DOSPART option
of CMS QUERY command 2E2
of eMS SET command 302

DOT operand of LINEDIT macro 479
DOWN

operand of $MOVE edit macro 408
subcommand, description 371

DROPBUl command
description 92
using 92

DSECT, for file system control block (FSCB)
461

DSERV command
CD option 93
description 93
DISK option 93
PD option 93
PRINT option 93
RD option 93
SD option 93
SORT option 93
TD option 93
TERM option 93

DSN option of DLBL command 75
DSORG option of FILEDEF command 126
DSTRING subcommand, description 371
DUMMY option

of DLEL command 75
restrictions for OS iSA! user 77
using in CMS/DOS 79

of FILEDEF command 123
DUMP

function statement, of DDR command 57
option

of DISK command 71
of OPTION command 239
of TAP! command 323

subcommand, description 414
DUP option

of INCLUDE command 170
of LOAD command 194,195

DVOL1 operand, of TAPE command 324

E
EBCDIC

display file in 339
option, of COPYiILE command 43

EDIT
command 2

description 95
LREeL oFtion ·96
NCDISP option 96

operand
of BDTERM macro ~93
of liRTER! macro 502

subcommand environment 2
subcommands (§ee EDIT subcommands)

EDIT EXEC 52, suppressing execution of 96
EDIT subcommands 2

= 392
affected by zone setting 404
ALTER 362
ADTCSAVE 363
BACKIIARD 364
BOTTOM 365
CASE 365
CBANGE 366
CMS 369
DELETE 370
displaying last one executed 405
Dcn 371
DSTRING 371
FILE 372
FIND 373
FMODE 373
FllAlUi 374
FORMAT 375
FCBliAliD 376
GETllLE 377
II'lAGE 378
INPUT 379
LINUIODE 380
LeCATE 382
LONG 383
NEXT 383
nDDnn 406
OVEBLAY 384
PRESERVE 385
PROMPT 386

Index 533

QUIT 386
RECFft 387
re-executing 392,403
UNUM 388
REPEAT 389
REPLACE 390
RESTORE 391
RETURN 391
REUSE 392
SAVE 393
SCEOLL 39!J
SCROLLUP 394
SERIAL 395
settings saved by PRESIEVE subcommand

385
SHOET 396
STACK 397
TABSET 398
TOP 399
TRUNC 399
TYPE 400
UP 401
VERIFY 402
X 403
Y 403
ZONE !J04

editor
CMS

compatibility mode 95
IMAGE subcommand, default settings

378
TABSET subcommand, default settings

398
TEUNC subcommand, default settings

399
verifying changes made by 402
ZONE subcommand, default settings

404
System Product

invoking 353
using 355

EftSG option of EXEClO command 107,113
END, option of TAPPDS command 333
end of file

effect of LOCATE subcommand 382
position current line Fainter at 365

ENTRY, loader control statement 197
entry point

determined by loader 195
displayed with FETCH command 120
specifying

with ENTRY statement
with GENMOD command

EOF option of TAPE ccmmand
EOT option of TAPE command

197
148
324
324

EQU statements, generating for registers,
REGEQU macro 495

ERASE
command

description 98
NOTYPE option 98
TYPE option 98

option
of ACCESS command 20,22

ERG, tape control function 323
ERROR

operand
of TAPESL macro 498

534 IBft Vft/SP CftS Command and Macro Beference

of WAITD macro 499
ERROE operand

of SCONTROL control statement 430
of FSCLOSE macro 463
of !SIRASE macro 464
of ISOPEN macro 465
of lSPOINT macro 466
of 1SREAD macro 468
of FSSTATE macro 470
of FSWRITE macro 471
of HNDINT macro 474
of BNDSVC macro 476
of EBINTL macro 488
of PUNCHC macro 490
of EDCABD macro 491
of BLTAPE macro 492
of TAPECTL macro 496
of WAITD macro 499
of WRTAPE macro 501

ERRS option of OPTION command 239
ESD option of ASSEMBLE command 28
ESERV, command, description 100
EXCLUDE SIS~N control statement 203
EXDTE operand, of LABELDEF command 175
EXEC

built-in functions 443
&CONCAT 443
&DATATYPE 444
&I.!NGTH 444
SLITERAL 445
&SUBSTB 445

command 2
description 102
implied 300

control statements 424
&lEGS 426
&BEGEl!SG 426
SBEGPUNCB 428
SBEGSUCK 428
&BEGTIPE 429
&CONTINUE 430
SCCNTROL 430
SEl!SG 431
SEND 432
SERROR 432
SIXIT 433
SGOTO 434
SHEl 434
SIP 435
SLOOP 436
&PUNCB 437
&READ 438
SSKlP 439
SSP ACE 440
SSTACK 440
STIl!E 441
STIPE 442
assignment statement 424
displaying during EXEC processing

430
files

$LlST~O EXEC created by LISTIO
command 188

Cl!S EXEC created by LlSTFILE command
182

executing with RUN command 288
filetype

default Cl!S editor settings 519

record format 102
option

of LISTFILE command 183
of LISTIO command 188

procedures
branching with &GOTO centrol
statement 434

tranching with &SKI~ centrol
statement 440

comparing tokens in 435
concatenating tokens in 443
defining synonyms for 318
ESERV 100
executing 7,102,424
exiting from 433
halting terminal output during 440
passing arguments te nested EXEC

procedures 448
reading data from terminal during

438
resuming terminal output during 440
RUN 288

special variables 446
&$ 446
S* 446
SDISK* 447
&DISK'? 447
SDISKx 446
SDOS 447
SEXEC 447
SGLOBAL 447
&GLOBALn 448
SINDEX 448
SINDEX, setting 426
SLINENUM 448
Sn 426,446
SREADFLAG 448
&RETCODE 448
STYPEFLAG 448
SO 446
S1 through &30 426

EXECIO command
CARD option 106
CC option 107,113
CP option 106,111
description 105
DISKR option 106,111
DISK~ option 107,112
EMSG option 107,113
EXEC 2 example 115
machine code 107,113
PRINT option 107
PUNCH option 107
use in EXEC 2 EXECs 115

EXECUTE command
use in FILELIST EIEC procedure 138
use in RDRLIST EIEC procedure 270

EXEC 2, procedures, executing 102
extensions

read-only
accessing 21
editing files on 95
releasing 281

EXTENT option
of DLBL command 76,83

in CMS/DOS 78
of LISTDS command 177

EXTERNAL, command 409

F
FCB

macro, loaded by PRINT command 248
option, of SETPRT command 304

FETCH command
cellF option 120
descriFtion 120
OR~GIN option 120

FID operand, of LIE!LDEF command 173
FIFO operand

operand
of &BEGSTICK control statement 438
of SSTACK control statement 438

option

file

of IDENTIFY command
of NI!!FIND command
of NUCX!lP com.and
of RDR command 264

167
215

237

creating
with ClIS editor 95
with COPYFILE command 41
with FSWRIT! macro 471
with REltCIRD command 274

defining for ClIS/DOS 73
identifier

entering on FILEDEF command 129
entering on L~STDS command 178
in command syntax 5

inserting lines in
with INPUT subcomaand 379
with UPDATE command 344

listing information about 182
loading

from tape to disk 323
from virtual reader to disk 71

modifying 41
moving from device to device 211
numtering lines in 395
opening, during program execution 465
overlaying data in

specifying number of lines to overlay
389

with COPYiILE command 42,49
with OVERLAY subcommand 384

packing 43
specifying fill cbaracter 47

printing 2q6
in hexadecimal format 247
sFecifying number of lines per page

2q7
processed by TIFE command, listing 324
protecting data during edit session 405
punched

restoring to disk 71,27Q
punching to virtual card punch 71,251
reading

during program execution 467
from virtual card reader 71
seguentially 468

relating to OS ddname 122
renalling 283

displaying new names for 283
renumbering lines in 388,395
replacing lines in

with REPLIC! subcommand 390
with UPDlTE command 345

replacing old file with Dew copy 42

Index 535

serializing lines in 395
with line-number editing 396

sorting records in 306
tape, writing to disk 323
transferring, with DISK DUMP command 11
unpacking 43
updating, FSWRITE macrc 411
verifying existence of

with FSOPEN macro 465
with FSSTATE macro 469
with STATE and S1A1Ei commands 312

writing to disk
with AUTOS AVE subcommand 363
with FILE subcommand 372
with FSWRITE macro 471
with SAVE subcommand 393

FILE option of NAMEFIND command 216
FILE NeT FOUND error message, sUFFressing
during EXEC processing 430

FILE subcommand, description 312
IILEDEF

command
AUXPROC option 121
BLKSIZE option 125,127
BLOCK option 125,127
ELP operand 129
CHANGE option 124
CLEAR option 123
CONCAT option 126
default FILEDEI commands issued by

assembler 31
definitions for !CVEFILE command 211
DEN option 126
description 122
DISK option 123,12€
DISP MOD option 12~

DSORG option 126
DUMMY option 123
establishing file definitions for

STATE command 312
examples 128,129
GRAF option 123
KElLEN option12~
LABOFF operand 130
LEAVE option 126
LIMCT option 125
LOWCASE option 126
LRECL option 125
~EMBER option 126
NL operand 130
NOCHANGE option 124
NOEOV option 126
NSL operand 130
OPTCD option 125
PERM option 124
positioning read/write painter 126
PRINTER option 123
PUNCH option 123
READER option 123
RECFM option 125
SL operand 130
SUL operand 130
TAPn option 129
TERMINAL option 123
TRTCH option 126
UPCASE option 126
VOLID operand 130
when to use (CS users) 82

536 IB~ VM/SP CKS Command and !acro Reference

when to use in CKS/DOS 18
ITENT option 125
1TRACK option 126
9TRACK option 126

definitions
clearing 123,127
displaying 131

option of CMS QUERI command 259
fileid, in command syntax 5
FILELIST

EIEC procedure
APPEND option 134
descriptioD 134
DISCABD command use with FILELIST

141
examples 139
EXECUTE command use with FILELIST

138
IILELIST option 134
NOIILELIST optioD 135

option
of FILELIST EXEC procedure 134
of SENDFILE EXEC procedure 291,294

fileDodE
changing

with COPIlILE command 45
with FKODE subcommand 373

displaying, FKODE subcommand 313
letter

Establishing 20
replacing 281

numbers, chaDging 284
specifying, for FSWRITE macro 472
specifying on READCABD command 275

filenamE
changing, with FNAKE subcommand 374
of EXEC file

testing 446,447
file status table (FST) 470
file types, reserved, default CKS editor
settings for 519

FILL option of COPIFILE command 43
FIND subcommand

description 373
effect of image setting 378

FINIS comlland, description 143
first-in first-out stacking, in EXEC

procedure 428,440
FIFC (g~ FIFO)

fixed-length files, converting to
variable-length 47,387

FLAG option of ASSEMBLE commaDd 28
FLASE option, of SETPRT command 304
FKOD!

option of LISTFILE command 184
subcommand, description 373

fn ft fm, USEd to represent file identifier
5

FNAKE
optioD of LlSTFILE command 184
subcommaDd, descriptioD 374

FOR cptiOD of COPIFlLE command 42
FORM operand

of FSCE macro 460
465

467
468

470

of FSOPEN macro
of FSPCINT macro
of FSREAD macro
of lSSTATE macro

L

of FSWRITE macro 471
FORM option, of HELP command 164
FORlIAT

command
BLKSIZE option 144
choosing appropriate tlocksi7e 146
description 144
examples 145
LABEL option 145
NOERASE option 145
performance consideration 145
RECOMP option 145

option
of LISTDS command 178
of LISTFILE command 184

subcommand
description 375
DISPLAY operand 375
LINE operand 375

FORMAT MODE (.FO) format word 511
FORTRAN filetype, default CMS editor
settings 519

FORWARD subcommand, descriFtion 376
FREE option of LISTDS command 177
FREEFORT

files, renumbering 388
filetype, default CMS editor settings

519
FRLAEEL option of COPYllLE command 42
FROM cption

of COPYFILE command 42
of GEHMOD command 149

FSCB
macro

BUFFER operand 460
description 460
FORM operand 460
NOREC operand 461
RECNO operand 461

operand
of FSCLOSE macro 463
of FSERASE macro 462
of FSOPEN macro 465
of FSPOINT macro 466
of FSREAD macro 467
of PSSTATE macro 469
of PSWRITE macro 471

FSCB (file system control block)
creating 460
format 460

FSCBD macro, description 461
FSCLOSE macro

description 463
ERROR operand 463
FSCB operand 463

PSEQ operand, of LAEELDEF command 174
ISERASE macro

description 464
ERROR operand 464
FSCB operand 464

FSF, tape control function 323
FSOPEN macro

description 465
ERROR operand 465
FORM operand 465
FSCB operand 465

FSPCINT macro
description 466

ERRCR operand 466
FOEM operand 467
FSCE operand 466
RDENT operand 467
WBPNT operand 467

FSR, tape control function 323
PSREAD macro

description 467
EERCR operand 468
FORM operand 468
FSCE operand 468

FSSTATE macro
description 469
ERBCR operand 470
FCEM operand 470
FSCE operand 469

PST ~e€ file status table)
FSWRITE macro

description 471
EERCR operand 471
FOB! operand 471
FSCE operand 471

FTYPE option, of LISTFlLE command 184

G
GEN option

of MACLlB command 206
of TITLIB ccmmand 336

GENDIBT command, description 148
general registers

419
416
for

changing, in detug envircnment
displaying, in debug environment
generating list of EQU statements

495
printing contents of 414

GEN!OD command
ALL option 150
description 149
DeS option 150
FBCM option 149
MAP option 149
NCMAE option 149
NOSTR option 150
OS option 150
SiB option 149
SYSTEM option 150
TC option 149

GEHN operand, of LABELDEF command 174
GENV operand, of lAEELDEF command 174
GETFILE subcommand, description 377
global changes

with ALTER subcommand
with CHANGE subcommand
with OVERLAY subcommand

GLOBAL command
description 152
DOSLIB option 152
LOIDLIB option 152
MACIIB option 152

362
366

383

querying which LOSLIBs were last
specified 262

querying which MACLIBs were last
specified 261

querying which TITLIBs were last
specified 261

TITLIE option 152

Index 537

GLOBALV command
description 155
examples 159
GRPLIST option 157
GRPSTACK option 157
INIT option 155
LIST option 157
PURGE option 157
SELECT option 155
SESSION file 158
STACK option 157
STACKR option 157
use in CMS EXECs 159

GO subcommand, description 415
GPR

operand of SET subcommand 419
subcommand, description 416

GRAF option of FILEDEF conand 123
GRAPHIC option of DDR command TYPE/PRINT
function control statement 62

GRPLIST option of GLOBALV command 157
GRPSTACK option of GrCEALV command 157

H
HB Immediate command 358
header

card
as READ control card 277
punched by PUNCH command 251,252

for LISTFILE command output 182
format 184

HEADER option
of LISTFILE command 182
of PUNCH command 251

HELP
command

ALL option 164
DESC option 164
description 163
FORM option 164
HELP option 163
BENU option 163
PARM option 164
usage 164

option, -of HELP ccmmand 163
HELP format words

• BX (BOX) 507
.Cft (COMMENT) 509
.CS (CONDITIONAL SECTION) 510
• FO (FOR!AT MODE) 511
• IL (INDENT LIBE) 512
• IN (INDENT) 513
.OF (OFFSET) 514
.SP (SPACE LINES) 515
.TR (TRANSLATE CHABACTER) 516
summary 505

HEX option
of DDR command TYPE/PRINT function
control statement 62

of PRINT command 247
of TYPE command 339

hexadecimal
conversion, in assignment statement 423
converting to decimal, LINEDI~ macro

480
converting to EBCtIC, LINEDIT macro 477

538 IB! VM/SP CBS Command and Macro Reference

display file in 339
printing file in 247
representations of characters,
translating 399

substitution
in EXEC procedure 425
invoking in EXEC procedure 424
suppressing in EXEC procedure 424

values, displaying in EXEC Frocedure
435

BNDEn macro
CLR operand 473
description 473
SET operand 473

HNDINT macro
ASAP operand 474
CLR operand 474
description 474
ERBCR operand 474
SET operand 474
used with WAITD macro 500

HNDSVC aacro
CLR operand 476
description 476
ERBCR operand 476
sn operand 476

BO Imaediate coamand 358
BT Immediate command 359

HI

I

stacking in EXEC procedure 440

DEBUG subcommand 416
Immediate command 359

effect on DLEL definitions 75
effect on FILEDEF definitions 107

ICS control statement (~~ include control
section (ICS) statement)

ID card, CP, example 275
IDEN~IFY command

description 167
display user information 167
FIFC option 167
LHO option 167
S~ACK option 167
TIPE option 167

ID operand
of ~APE!AC command 328
of ~APPDS command 332

IEBPTPCB utility program, creating CMS
files from tapes created by 331

IBBUPDTE utility program, creating eMS
files from tapes created by 331,332

IEBMCVE utility program
creating eMS files from tapes created bj

331
creating CBS !ACLIBs from tapes created

1:y 328
IGN option

of ASSGB command 34
with DU!!I data sets 78

IJSYSCL, defining in CMS/DOS 77
IJSISCT

defining 84
in CMS/DOS 81

IJSISBL, defining in eMS/DoS 77

L
IJSYSSL, defining in C~S/DCS 77
IJSYSUC

defining 84
in CMS/DOS 78

image setting
effect on FIND sutcommand 378
effect on logical tat settings 398

IMAGE subcommand
CANON operand 378
description 378
OFF operand 378
ON operand 378

Immediate commands
HB 358
HO 358
HT 359
HI 359
RO 359
RT 360
SO 360
summary 11

IMPCP option
of C~S QUERY command 255
of CMS SET command 300

IMPEX option
of CMS QUERY command 255
of CMS SET command 300

implied
CP function 52

query status of 255
setting 300

EXEC function 102
query status of 255
setting 300

INC option of UPDATE command 342
INCLUDE command

AUTO option 170
called to load files dynamically 457
CLEAR option 169
description 169
DUP option 170
effect on loader tatles 299
examples 171
follcwing LOAD cOKmand 171
identify TXTLIB s to be searched
INV option 170
LIBE option 174
MAP option 170
NOAUTO option 170
NOCLEAR option 169
NODUP option 170
NOINV option 170
NOLIBE option 170
NOREP option 170
NOTYPE option 170
ORIGIN option 170
REP option 170
RESET option 169
SAME option 170
START option 170
TYPE option 170

include control section (ICS), loader
control statement 198

INCH option, of IEDIT command 355
increment

specifying for line-numter editing
specifying for sequence numbers in

395

152

386
file

INDENT (.IN) format word 393
INDENT LINE (.IL) format word 392
INIT option

of GLOEALY command 155
of SETPiT cemmand 304

INMOYE, MOYEPILE command ddname 211
INPUT

control statement, for DDR command 55
option

of CMS QUERY command 256
of C~S SET command 300

sul::comlland
description 379
effect of image setting 378
on = subcommand line 393
stacking with SSTACK control
statement 379

input mode 2,361
during line-numler editing 381
entering 379,390
leaving 361

INSEBT control statement, for UPDATE
cOluand 344

instructions
addresses, halting program execution at

410
altering

with LOAD command 199
vith STOBE subcommand 420

Interactive Problem Control System (IPCS)
1

interruptions
entering debug environment after 409
handling

external 473
I/O 476
SYC 476

INV option
of INCLUDE command 170
of LOAD cemmand 194

I/O, devices, handling interruptions for
474

IOCP (Input/Output Configuration Program)
10

IPCS (Interactive Problem Control System)
1

ITEHCT option of TAPEMAC command 329

K
KEYLEN option of FILED!F command 125

L
LABEL opticn

of FOBHAT command 145
of LIST FILE command 184

LABELDlF
command

CHANGE option 174
CLEAR operand 173
CRDTE operand 174
description 174
lIDTE operand 175
lID operand 173
FSEQ operand 174

Index 539

GENN operand 174
GENV operand 174
NOCHANGE option 174
PERM option 174
SEC operand 174
VOLID operand 174
VOLSEQ operand 174

operand of CMS QUERY command 259
LA BID operand, of TAPESL macro 498
LABOll operand, of FILEDEF cemmand 130
last-in first-out stacking, in EIEC
procedure 428,440

LIFO (gg LIFO)
LDRTBLS option

of CMS QUERY command 255
of CMS SET command 299

LDT statement (§gg loader terminate (LDT)
statement)

LEAVE option
of FILEDEF command 126
of TAPE command 325

LEAVE option of DDR command INPUT/OUTPUT
control statement 56

LEFT operand of LINEMOD! sutcommand 380
LENGTH operand of RD!ER!! mac£o 495
LET option, of LKED command 191
LIBE option

of INCLUDE command 170
of LKED command 191
of LOAD command 194

LIEMAC option of ASSEMBLE command 28
libraries

OS, macro libraries (§~~ macro
libraries, OS)

VSE
assigning logical units 35
obtain information about 93

VSE core image
defining IJSYSCL 77
fetching phases from 120, 121

VSE procedure
copying procedures from 249
displaying directories of 93
displaying procedures from 249
printing procedures from 249
punching procedu£es f£cm 249

VSE relocatable
assigning SYSRLB 286
copying modules fro~ 286
defining IJSYSRL 77
displaying modules from 286
link-editing medules from 89
printing modules freD 286
punching modules froD 28E

VSE source statement
aSSigning SYSSLE 308
copying books 308
copying macros from 100
defining IJSYSSL 77
displaying books 308
printing books 308
punching books 308

LIERARY
loader control statement 197
option of eMS QUERY command 260

LIFO operand
operand

of &BEGSTACK control statement 428

540 IB!! VM/SP CMS ComDand and Macro Reference

of &STACK control statement 428
option

of IDENTIFY command 167
of BAMEFIND command 215
of NUCIMAP command 237
of BDR command 264

LIMC! option of FILEDEF command 125
line

duplicating, in CMS file 407
image, of record 378
locating by beginning character string

373
mode

of C!!S editor 96
of 3270 375

moving, within CMS file 408
number, of EIEC statement, testing 448
printing

with LINEDIT macro 484
with PRINTL macro 488

punching
in EXEC procedure 438,437

punching with PUNCHC macro 490
reading frem console stack 397

LINE operand of FORMAT subcommand 375
LlNECeON option

of ASSEMBLE command 28
of PaINT command 247

LINEDI! macro
BUFFA operand 485
CCBP operand 479
description 477
DISP operand 484
DeT operand 479
BAISUBS operand 487
lIF operand 486
RENT operand 487
SUE operand 480
substitution list, specifying 480
TEXT operand 478
TEI!A operand 479

LINEBODE subcommand
description 380
LEFT operand 380
OFF operand 381
RIGHT operand 381

line-number editing
displaying line numbers 381
inserting single line 406
left-handed 380
reseriali2ing records in file 396
right-handed 381
setting prompting increment for 386

LINEIO!! option of IA!!EFIND command 216
LINK ccmmand, accessing disks after 21
linkage editor control statements

OS
£ead by TITLIB command 337
required format for TITLIB command

337
VSE supported in CMS/DOS 90

link-edi tiDg
in eMS/DOS 89
modules from VSE relocatable libraries

90
TEIT files in storage 193
TITLIE members 337

list form of LINEDIT macro 486

LIST 0Ftion
of ASSEMBLE command 28
of DEFAULTS EXEC Frocedure 68
of GIOBALV command 157
of LKED command 191
of LOADLIB command 202
of OPTION command 239

LISTDS command
description 177
examples 179
EXTENT option 177
FORMAT option 178
FREE option 177
PDS option 178

lISTFILE command
ALLOC option 184
APPEND option 183
DATE option 184
description 182
examples 185
EXEC option 183
FMODE option 184
FNAME option 184
FORMAT option 184
FTYPE option 184
HEADER 0Ftion 182
LABEL option 184
NOHEADER option 182

LISTING filetype
created by access methcd services 24
created by ASSEMELE command 28

controlling 28
created by ESERV Frogram 100
default CMS editor settings 519
printing 246

LISTIO command
A option 188
ALL option 188
APPEND option 188
description 188
EXEC option 188
FROG option 188
STAT option 188
SYS option 188
SYSxxx option 188
UA option 188

LISTX option, of OPTION ccmmand 239
literal values, using in EXEC Frocedure

445
LKED command

ALIGN2 option 190
description 190
DISK option 191
LET option 190
LIEE option 191
LIST option 191
MAP option 191
NAME option 191
NCAI option 190
NE option 190
NOPRINT option 191
NOTER! option 191
OL 0Ftion 190
OVLY option 190
PRINT option 191
RElR option 190
RENT option 190
REUS option 191

SIZE option 191
TUM 0Ftion 191
using 192
XClL option 191
IREF 0Ftion 191

LOAD
command

AUTe option 194
called to load files dynamically 459
CLEIR option 193
description 193
tUP option 194,195
duplicate CSECTs 195
effect on loader tables 299
executing program using 194
identify TITIIBs to be searched 152
INV option 194
IIEE option 194
MIP option 194
NCIUTO option 194
NOCLEIR option 193
NODUP option 194
NCINV option 194
NOLIEE option 194
IOBIE option 194
NOREP option 194
NOTYPE option 194
ORIGIN option 194
UP option 194
RESET option 193
START option 194
TYPE option 194
used with GENMOD command 150

option
of DISK command 71
of TAPE command 323

load map
creating 195

with INCLUDE command 170
with LelD command 194

displaying 194
generated by GENMOD command 149
invalid card images in 195
of BODULE file, displaying 210
reFlace card image in 170

load FCint, sFecifying 170,194
loader

CBS 195
control statements

ENTRY statement 197
include control section (ICS)
sta temen t 198

lIEBARY statement 197
loader terminate (LDT) statement 197
replace (REP) statement 199
set location counter (SLC) statement

199
set page boundary (SPE) statement

200
searcb order, for unresolved references

196
tables

defining storage for 299
displaying Dumber of 255

loader terminate (LDT), loader control
statement 197

loading a virtual 3800 printer, via SETPBT
command 304

Index 541

10ADLIB
command

COMPRESS option 202
COpy option 202
description 202
DISK option 203
EXCLUDE SYSIN control statement 203
LIST option 202
MODIFY option 203
PRINT option 203
REPLACE option 203
SELECT SYSIN centrol statement 203
TERM option 203

option
of CMS QUERY command 260
of GLOBAL command 162

LOADLIBs
CMS

compressing with LOADLIB command 202
copying with rOAELIE command 202
creating with LKED cemmand 190
executing a load module from 241
listing with 10AI)lIE cemmand 202

10ADKOD command
called to load files dynamically 460
CMS/DOS considerations 205
description 205

LOCATE subcommand
description 382
effect of zone setting 404

LOG option
of NOTE EXEC procedure 228
of RECEIVE EXEC procedure 278
of SENDFILE EXEC procedure 291,294

logical
operators, in EXEC procedure 435
record length, of CMS file, defaults

used by CMS editor 96
units

assigning 33
ignoring assignments 34
listing 188
unassigning 302
unassigning in CMS/DOS 34,35

lONG
option of NOTE EIEC procedure 228
subcommand , descriptien 383

look-aside entries 233
looping, in EXEC procedure 340
10iCASE option

of ASSGN command 34
of COPYFILE command 43
of PILEDEl command 126

lowercase letters
suppressing translation tc uppercase

365
translating to uppercase

with CASE subcommand 365
with COPYlILE com.and 43
with PRINT com.and 247

LRECL option
of COPYlILE command 43

example 47
of EDIT command 96
of FILEDEl command 125

542 IBM VM/SP CMS Com.and and Macro Reference

M
M operand of
machine code
MACLIE

CASE subcommand
107,113

365

comlland
ADE option 206
CCMF option 206
DEL option 206
description 206
DISK option 207
GEN option 206
MAE option 206
PRINT eption 207
reading files created by ESERV

program 101
REP option 206
iERM option 206

files
creating 206
displaying names of MACLIBs to be
searched 260

distributed with CMS system 207
specifying' for assembly or
compilation 152

option

MACRO

of CMS QUERY command 260
of GLOBAL command 152

files, created by ESERV program 100
filetype

adding to MACLIBs 207
default CMS editor settings 519
invalid records in, handling by

MACLIE command 207
macro definitions

in assembler listing 28
in MACRO files 207

macro libraries
CMS

adding to 206
compacting members of 206
creating 206
deleting memters of 206
displaying information about members
in 206

printing memters 248
punching memters 248,252
reading OS macro libraries into 328
replaCing members of 206
typing members 340

creating
from OS partitioned data sets on tape

328
froll tapes created by IEBMOVE utility

prograll 328
identifying for assembly 31,152
OS

concatenating 126
reading into CMS I!ACLIBs 328
using in CMS 31

VSE, copying macros from 100
I!AKEEOl command

description 209
return code, effect on&ERROR statement

209
I!AP

filetype
created by DCSIIB command 87

l:

created by DSERV coaaand 93
created by LOAD cODDand 195
created by MACLIB coamand 206
created by TAPE cellaand 324
created by TITLIE cOllaand 336

eption

maps

of DOSLIB command 87
of GEHMOD comlland 149
of IHCLUDE command 170
of LKED command 191
of LOAD command 194
of !ACLIB coalland 206
of TITLIB command 33E

created by DOSLIB command 87
created by GEHMOD command 149
created by LOAD command 195
created by MACLIB coamand 206
created by TITLIB comaand 336
linkage editor, in CMS/DOS 89

lIargins, setting left margin for input with
CMS editor 398

lIaster catalog (VSAM)
identifying 85
identifying in CMS/DOS 81

master file directory
contents of 21
suppressing updating after RENAME

cemmand 284
updating entries in 283
updating on disk 281

BAISUBS operand of lIB EDIT macro
MAITEN option of TAPPDS cemmand
BCALL option of ASSIftBLE cemaand
ftE!BER option

of FILEDEF command 126
of PRINT com.and 247
of PUNCH command 251
of TYPE command 340

487
333

28

MEftO filetype, default CKS editor settings
519

163
355

47S

MENU option, of HELP cOllmand
ftERGE eption, of IEDIT coalland
message, text for LINEDIT aacro
MF operand of LINEDIT macro 486
minidisks (§~~ al§9 disks)

copying 53
counting cylinders on 145

KLOGIC option of ASSEftBLE command 28
BODE

operand
of RDTAPE macro 492
of TAPECTL .acro 4S6
of TAPESL macro 497
of WRTAPE macro 501

option of DDR comlland IHPUT/OUTPU~
control statement 56

mode letter (~filemode letter)
BODESET option of TAPE cemmand 323
BODIFY option

of LCADLIB command 203
of SETPRT command 304

BODMAP command, description 210
ftODULE files

creating 1'f9
debugging 205
defining synonyms for 318
executing with RUN comlland 288

format 149
generating 149
loading dynamically during program

EJ[ecution 460
loading into storage for execution 205
JDaHing 210
VSE, link-editing 92

modules, iSE, link-editing 92
MOVElILE command

default device attributes 212
description 211
examples 211
PDS option 211

BSG operand of SCOHTROL control statement
430

MULT option of DLBL command 76
multilevel updates using UPDATE command,
examples 347,348

mUltiple
extents for iSA! files

specifying 83
specifying in CBS/DOS 78

FSCEs 461
input files

for UPDATE command 342
with COPYFILE command 45

output files
with COPYlILE command 31,45,48
with RENAME command 284

substitution lists, LIHEDIT macro 4a4
multivclume data sets, displaying volumes

on which they reside 80
multivolume VSAft extents

identifying with DLBL command 84

N

in CBS/DOS 80
maximum number of disks 84

in CMS/DOS 80
rules for specifying 84

in CMS/DOS 80

NAME option, of LKED command 191
NAHElIND command

description 215
lIFO option 215
FILE option 21E
LIFO option 215
LIBENU! option 216
NAftES file format 216
HAMES file tags 218
sample names file 220
STACK option 215
START option 216
SIZE option 216, 219
TIPI option 215

BABES EIEC procedure
description 221
nickname 221
PF keys on NAMES menu 223
sample NAftES screen 224

NCAL option, of LKED command 190
HE option, of LKED command 190
nesting

SIF statements in EXEC procedure 436
EIEC procedures

effect on SCCNTBCL 430

Index 543

passing variable data 448
testing recursion level 447

loops in EXEC procedure 437
never-call function, specifying in C~S TEXT
file 197

NEiDATE option
of COPYFILE command 42
of RECEIVE EXEC procedure 278

NEiFILE option of COPYFILE command 42
NEXT subcommand, description 383
nick name 221
NL operand, of FILEDEF cemmand 130
nnnnn subcommand, description 406
NO option of START command 310
NOACK option

of NOTE EXEC procedure 227
of SENDFILE EXEC procedure 291

NOALIGN option of ASSE~BLE command 30
NOALOGIC option of ASSEMBLE command 28
NCAUTO option

of INCLUDE command 170
of LOAD command 194

NOCC option of PRIN! command 246
NOCHINGE option

of DLBL command 75
of FILEDEF command 124
of LABELDEF command 174

NOCLEAB option
of INCLUDE command 169
of LOAD command 193
of XEDIT command 354

NOCOL1 option of TAPPDS cemmand
NOCTL eption, of XEDIT command
NOCTL option of UPDATE comDand
NOtECK option

of ASSE~BLE command 29
of OPTION command 239

332
355
342

NODISK option of ACCESS command 21
NCDISP option

of EDIT command 96
effect on FOB~AT sukcoamand 375

NODUMP option of OPTION command 239
NODUP option

of INCLUDE command 170
of LOAD command 194

NCEND option of TAPPDS command 333
NOEOV option, of FILEDEF cemmand 126
NOBBAS! option, of FOR~AT command 145
NOBRRS option of OPTION cemmand 239
NOESD option of ASSE~BLE cemmand 28
NOFILELIST option of FILELIS! EXEC
procedure 135

NOHEADER option
of LISTFILE command 182
of PUNCH command 251

NOINC option of UPDA!E command 342
NOINV option

of INCLUDE command 170
of LOAD command 194

NOLIBE option
of INCLUDE command 170
of LOAD command 194

NOLIBMAC option of ASSEMBLE command 28
NOIIST option

of ASSEMBLE command 28
of OPTION command 239

NOLISTX option of OFTICN cemmand 239
NOLOG option

544 IBM V~/SP C~S Command and Macro Reference

of NOTE EXEC procedure 228
of SENDEILE EXEC procedure 219,294

NO~AF option
of GENMOD command 149
of LOAD command 194

NOMAXTEN option of TAPPDS command 333
NOMCALL option of ASSEMBLE command 28
NOMLOG option of RECEIVE EXEC procedure

278
NC~LOGIC option of ASSEMBLE command 28
NOMSG operand of SCONTROL control statement

430
nonreentrant code, writing for LINEDIT

macro 487
nonrelocatable modules, in CMS 149
NONS BARE option of CMS SET command 301
nonshared copy

of named system, obtaining 301
of saved system, attained during debug

411
NONUM option of ASSEMBLE command 29
NOOBJECT option of ASSEMBLE command 29
NOPACK operand of SCONTBOL control
statement 431

NOPDS eption of TAFPDS command 332
NOPBINT option .

of ASSEMBLE command 29
of LKED command 191
of TAPE command 324

NOPROF option of ACCESS command 20
NOPROlIL option, of XEDIT command 354
NOPROMFT option of COPIllLE command 42
NOREC operand of FSCB macro 461
NORENT option of ASSE~BLE command 30
NOREE option

of INCLUDE command 170
of lOAD command 194
of UPDATE command 341

NORLD eption of ASSEMBLE command 28
NOSCREEN option, of XEDIT command 354
NOSEe8

option
of UPDATE command 341
of XEDIT command 355

NOSPECS option of COPIFILE command 42
NOSTD option of SINONYM command 318
NOSTK eption of UPDATE command 342
NOST!!! option of ASSEMBLE command 30
NCSTOE option of UPDATE command 342
NOSTR option of GENMOD command 150
NOSYM option of OPTION command 239
notational conventions 4
NOTE EIEC procedure

ACK option 227
ADI option 227
CANCEL option 227
CC option 227
description 226
LOG option 228
LCNG option 228
NOACK option 227
NOLOG option 228
NCTEBOOK option 227
PF key settings for NOTE 230
PROlILE option 228
REElACE option 228
send a note 229
SHOBT option 228

NOTE option of SENDFILE EXEC procedure
291,294

NOTEBOOK option of NCTE EIEC procedure 227
NCTEBOOK * option of RECEIVE EIEC Frocedure
278

NOTEBOOK fn option of RECEIVE EXEC
procedure 277

NOTERM option
of ASSEMBLE command 30
of LKED command 191
of OFTION command 240
of UPDATE command 342

NOTEST option of ASSEMBLE command 29
NOTI!E operand of &CCN~EOL control
statellent 431

NOTRC option, of PRIN~ cemmand 247
NOTRUNC option of COPY II IE command 43
NOTYPE option

of COPYFILE command 43
of ERASE command 98
of INCLUDE command 170
of LeAD command 194
of RDR command 264
of RENAME command 283
of SENDFILE EXEC Frocedure 291,294

NOUPDATE option, of XEDIT command 354
NOUPDIRT option of RENAME ceamand 283
NOiTM option of TAPE comaand 324
NOIBEF option

of ASSEMBLE cOllmand 29
of OPTION command 239

NOYFLAG option of ASSEMBLE command 30
NSL operand

of IILEDEF command
of TAPEMAC command
of TAPPDS comlland

NUCEIT function
description 451

130
328

332

linkage conventions 453
NUCIDROP command 233
NUCILOAD command 234
NUCXMAP command 237
PLISTs 454
register contents upon entry 454
System and Service Attritutes 452

nucleus
CMS, protected storage 300
Frotection feature

displaying status of 256
setting 300

resident commands, list 8
nucleus extensions

information about 237
installation 234, 237
cancel an extent ion 233

NUCIDROP command
description 233
look-aside entries 233

NUCILOAD command
description 234
PUSH operand 234
SERVICE operand 234
SYSTEM operand 234

NUCIIUP command
description
ALL option
FIFO option
LIFO option

237
237

237
237

STACK option 237
null

arguments in EXEC procedure, setting
with ~ 446

bleck, dumping to tape 325
line

stacking in console stack 397
stacking in EXEC 440
to return to edit mode from input

mode 361
when entering VSAM extents 84
when entering VSAM extents, in

CMS/DOS 79
symtols in EXEC statement 436

NUM, result of &DA~ATYPE built-in fUnction
444

number
of characters in token in EXEC

Frccedure, determining 444
of records to te read or written,

specifying 461
NUMBER 0Ftion of ASSEMBLE command 31
numeric

o

data, determining if token contains 444
variables in EXEC procedure 446

object deck, assembler, generating 29
OBJECT oFtion, of ASSEMBLE command 29
OIF oFerand

of &CCNTEOL control statement 430
of &HEX control statement 434
of &TIME control statement 441
of AUTOSAVE sutcommand 363
of IMAGE subcommand 378
of LINEMODE subcommand 381
of SERIAL sutcommand 395

OFFSET (.OF) format word 514
OL option, of LKED cemmand 190
OLD option of SEN DIlLE EXEC procedure

291,294
OLDDUE option

of DISK LCAD command 71
of COPYIILE command 42
of RECEIVE EXEC procedure 278

ON oFerand
of &HEX control statement 434
of &~IHE control statement 441
of IMAGE subccm.and 378
of SERIAL subcomlland 395

operands, command 3
oFerators, comparison, in EXEC Frocedure

435
OPTCD option of,FILEDEF command 130
OPTICN

command
.tECK option
description
DUMP option
ERRS option
LIST option
LISTX option
NCDECK option
NCDUMP option
NOEBRS option
NeLIST option

239
239
239
239
239

239
239
239
239
239

Index 545

NOLISTX option 239
NOSYM option 239
NOTERM option 240
NCXREF option 239
SYM option 239
TERM option 240
XREF option 239
48C option 240
60C option 240

option, of CMS QUERY ccmmand 262
options

command 3
for DOS/VS COBOL compiler, specifying

239
for DOS/VS COBOL compiler in CMS/DeS,

guerying 262
LOAD and INCLUDE ccmmand, retaining 170

origin
for debug environment

setting 417
used to compute symbcl location 414

CRIGIN

os

option
of FETCH command 120
of INCLUDE command 170
of LOAD command 194

subcommand, descripticn 417

data sets
defining in CMS 122
listing informaticn 177

disks, accessing 22
linkage editor control cards, adding to

TEXT files 331
macro libraries

reading into CMS MACLIBs 328
used in assembly 31

option, of GENKOD command 150
partitioned data sets (SE~ partitioned

data sets)
tapes

containing partiticnEd data SEts 332
standard-label processing 333

utility programs
creating CMS files from tapes created

by 331
IEEPTPCH
IEBUPDTE
IEHMOVE

331
331

331
OSRUN command

description 241
PARM keyword 241

OUTMOVE, MOVEFILE command ddname 211
OUTPUT

control statement, for DDR command 55
option

of CMS QUERY command 256
of CMS SET command 300

OVERLAY subcommand
description 383
effect of image setting 318

OVlY option
of COpy FILE command 42

example 49
of lKED command 190

546 IBM VS/SP CMS Command and Macro Reference

P
PACK

operand of &CCNTROL control statement
431

option
of COPYF~LE command 43
of CCPYF~LE command, example 48

parameter list
disflaying with LINEDIT macro 483
passed by RUN command 297
passed by START command 310
passed to SVC instruction, recorded 314

parent disk, of read-only extension 20
parentheses

befcre option list 3
scanned by EXEC interpreter 425

PARM
keyword, eSRUN command 241
option, of HELP command 164

partition size, for CMS/DOS, setting 302
partitioned data sets

copying into CMS files 211
copying into partitioned data sets 212
displaying member names 179
listing members of 178
on tapes, creating CMS files 332

PD option of DSERV command 93
PDS (§~~ partitioned data sets)
PDS option

of LISTDS command 178
of MOVEF~LE command 211
of TAPPDS command 332

PEEK EXEC procedure
description 242
D~SCARD command use with PEEK 244
PF key settings in PEEK 243
PROFILE option 242

periods
as concatenation character for EXEC

variables 436
indicating message substitution in
l~BED~T macro 488

placing at end of message text in
LINED~T macro 419

PERM option
of DLBL cemmand 75
of FILEDEF command 124
of LABELDEF command 174

permanent file definitions 123
PF key default settings

in BAMES EXEC procedure 223
in NOTE EXEC procedure 230
in PEEK EXEC procedure 243
in BDRLIST EXEC procedure 268
in SENDF~LE menu 293

phase library
clearing to zercs 91
CIIS/DOS 87
deleting phases from 87

phases
executing in CIIS/DOS 120
in iSE core image libraries, obtaining

information about 94
PLI filetype, default CMS editor settings

519
PLIOPT filetype, default CMS editor
settings 519

PLISTs 454

L·

PEEUFF operand of RDTER! macro 494
preferred auxiliary files 349
prefixes

identifying sets of files
with ACCESS command 21
with LISTFILE command 184

prefixing, error messages issued in EXEC
with D!!S 427

PEESEEVE subcommand, description 385
PEINT

command
CC option 246
description 246
FCB macro loaded ty 248
HEX option 247
LINECOUN option 247
!!E!!BER option 247
NOCC option 246
NOTRC option 247
TRC option 247
UPCASE option 246

fUnction statement of DtR comman~ 61
option

of AMSERV command 24
of ASSE!!BLE command 29
of DOSLIB com.and 87
of DOSLKED command 91
of DSERV command 93
of EXECIO command 107
of LKED command 191
of LOADLIB command 203
of !!ACLIB command 207
of PSERV command 249
of RSERV command 286
of SSERV command 308
of TAPE command 324
of TXTLIB command 336
of UPDATE command 342

printer, printing records at 53
PRINTER option

of ASSGN command 33
of FILEDEF command 123

printers, virtual, closing after using
PRIRTL macro 489

PRINTL macro
description 488
EREOR operand 488
TRC operand 488

private libraries (~libraries, VSE)
PRLGTH operand of RDTER! macro 494
PROC, files, creating in CKS/DOS 249
procedures, VSE, copying into C!S files

249
processor time, displaying in EXEC
procedure 441

PROFILE EXEC, suppressing execution of 20
PROFILE option

of NOTE EXEC procedure 228
of PEEK EXEC procedure 242
of RDRLIST EXEC procedure 267
of XEDIT command 354

PROG option of LISTIO command 188
program

compilation and execution, with RUN
command 288

entry point
selection during CKS loader

processing 195

specif ying 193
execution

considerations for clcsing files in
EXEC procedures 463

displaying data at terminal 477
displaying parameter lists 483
disF~aying storage 481
halting 358,410
handling external interruptions 473
handling I/O interruptions 474
handling SiC interruptions 475
in C!S subset 369
in CBS/DOS 120
modifying control words 419
modifying general registers 419
modifying storage 420
resuming after breakpoint 415
with INCLUDE command 170
with LOAD command 194
with START command 310

loading into storage
while using CMS editor 369
with INCLUDE command 169

stack tuffer, c~earing 70
program fUnction key (§~ PF key)
program stack

buffer
creating 209
eliminating 92
using WAITRD function to read lines

from 209
determining number of lines in 297
stacking an input line in 455

program stack buffer, reading a line from
via iAITllD 456

program status word (~PSi (program
status word»

programmer logical units
for job catalogs 81
listing assignments for in CMS/DOS 188
valid assignments in C!S/DOS 34

PROBPT
option of COPYlILE command 42
subcommand, description 386

prompting
increment for line-number editing 381

setting 386
PROTECT option

of CMS QUERY command 256
of CMS SET command 300

PSEBV command
description
DISK option
PRINT option
PUNCH option
TERM option

PSi

249
249

249
249

2L19

operand of SET subcommand 419
sulcemmand, description 418

PSi (program status wor~
changing, in debug environment 418
displaying in debug environment 418

PUNCH
assembler punch output ddname 31
command

description 251
HEADER card format 252
HEADER option 251

Index 547

MEMBER option 251
NOHlADER option 251

option
of ASSGN command 33
of EXECIO command 107
of FILEDEF command 123
of PSERV command 145
of RSERV command 286
of SSERV command 308

punch, virtual, closing after PURCHC macro
490

PURCHC macro
description 490
ERBOR operand 490

punched files, restoring to disk 71
PURGE option

of GLOBALV command 157
of RECEIVE EXEC procedure 278

PUSH option of NUCXLCAD command 234

Q
QUERY command (CMS)

ABBREV option 256
ElIP option 255
CMSLEVEL option 261
description 254
DISK option 257
DlBl option 261
DOS option 262
DOSlIB option 262
DOSLNCNT option 262
DOSPART option 262
FILEDEF option 259
IMPCP option 255
IMPEX option 255
INPUT option 256
IABElDEF operand 259
LDRTELS option 255
LIEBARY option 260
LOADlIB option 260
MACLIB option 260
OPTION option 262
OUTPUT option 256
PROTECT option 256
RDYMSG option 255
REDTYPE option 256
RELPAGE option 255
SEARCH option 257
SYNONYM ALL option 259
SYNONYM SYSTEM option 2~5
SYNONYM USER option 259
SYSNAMES option 257
TXTLIB option 260
UPSI option 262

QUIT subcommand, description 386

R
RD option of DSERV command 93
EDCARD macro

description 491
ERROR operand 451

RDPNT operand, of FSPOIN! macro 467
RDR command

description 264

548 IBM VM/SP CMS Command and Macro Eeference

F.HO option 264
LIFO option 2611
ROT1PE operand 2611
STACK option 2611
use of = 2611

BDRLISi EXEC procedure
APPEND option 267
default Pl key settings 268
description 267
DISCAED command use with RDBLIST 272
display file 2112
EIECUTE command use with BDRLIST 270
issue commands from BDRLIST 268
PRCFILE option 267
special symbols 271

RIlTAPE macro
description 1192
EEBOR operand 1192
MOllE operand 1192

RDTER!! macro
liiREST operand 1194
description 1193
EIlI1 operand 1193
LENGTH operand 11911
PREDFl operand 494
PBIGTH operand 494

RDYMSG option
of CMS QUERY command 255
of e!!s SET command 299

read, console read after CMS command
execution 301

READ central card 274
deleting 274
format 275

REIDCARD command, description 2711
reader

virtual
reading file from 71,2711
PEEK at a reader file 2112
characteristics of next file 2611
information about reader files 267

RuDEB option
of ASSGB command 33
of FILEDEl command 123

read-only
disks, editing files on 363
extensions

editing files on 85
releasing 281

read/write
status of disks

controlling 21
finding first read/write disk in the
standard search order 1147

finding read/write disk with the most
space ""7

listing for disk assignments in
C!lS/DOS lBB

querying 257
read/write painter, positioning, FSWRITE

macro 1172
ready message

displaying return code from EXEC
processing 433

format 299
long form 299
query setting of 255
setting 299

short form 299
special format in EXEC 102

RECEIVE EXEC procedure
acknowledge receipt of file 279
description 277
LOG option 278
NEWDATE option 278
NOLOG option 278
NOTEBOOK * 278
NOTEBOOK fn 277
OLDDATE option 278
PURGE option 278
REPLACE option 218
STACK option 278

RECFI'J
operand of FSCB macro 460
option

of COPYFILE command 43
of COPYFILE command, examples 47
of FILEDEF command 12~

subcommand
description 387
F operand 387
V operand 387

RECNO operand of FSCE macrc 461
RECOMP option of FORMA~ command 14~
record format

of CMS file
changing 43,41,387
listing 183

of file, specifying 125
records that can te punched 252
specifying, for FSiRITE macro 412

record length
default used by CMS editor 96
modifying 96
of CMS file

changing 43,47
listing 141
maximum lengths for PRINT command

247
specifying truncation setting for input

303
specifying with FILEDEF command 106

record number, specifying next record to be
accessed 359

records
displaying selected positions of 244
in file, numbering with UPDA~E command

246
red type

display lines with WRTERM macro 400
for error messages 206

REDTYPE option
of CMS QUERY command 256
of CMS SET command 300

reentrant code, writing for IINEDIT macro
486

references
unresolved

resolving with INCLUDE command 170
resolving with lCAD command 194

REFR option, of LKED command 191
REGEQU macro, description 495
registers (~~ general registers)
RELEASE command

description 281
DET option 281

relocatatle
litraries (VSE), displaying directories

of 93
modules, link-editing in CMS/DOS 89

relocation dictionary, assembler 28
BEl.PAGE option

of CMS QUERY cQmmand 255
of CMS SET command 299

remote terminals, using CMS editor 375
RENAME command

description 283
NOTYPE option 283
NOUEDIRT option 283
TUE option 283
UPEIRT option 283

RENT
operand of LINEEIT macro 487
option

of ASSEMBLE command 30
of LKED command 191

RENUM subcommand, description 388
REP option

of INCLUDE command 170
of LOAt command 194
of MACLIE command 206
of UEDATE ccmmand 341

REPEAT sutcommand 389
used with OVERl.AY subcommand 389

REPLACE
control statement, for UPDATE command

345
option

of COPlEILE command 42
of LOADLIB command 203
of NOTE EXEC procedure 228
of RECEIVE EXEC procedure 278

subcommand
description 390
effect of image setting 378
restriction while using line-number
editing 381

stacking with &STACK control
statement 390

replace (REP)
loader control statement 199

image of in load map 110

operand of &TIME control statement 441
option

of INCLUDE ccmmand 169
of LOAD command 193

responses, CMS editor, controlling format
of 383

RBSTCliE
function statement, of DDR command 59
subcommand, description 391

restrictions
access method services and VSAM

CS/VS users 523
VSE users 523

RETUliN
command, description 391
subcommand (DEBUG) 418

return code
from MAREBUE command, effect on &ERBOli
statement 209

from SENTRIES command, effect on &ERROR
statement 297

Index 549

return codes
CftS, in EXEC procedure 102
displaying during EI!C Erccessing 430
from access method services 26
from CMS commands, testing in EX!C

Erocedure 449
from CftS macro instructions 460
from EXEC, displaying in ready messagE

433
from EXEC interpreter 103
from EXEC 2 interEreter 103
specifying in EXEC Erocedure 433

REUS option, of LKED command 191
REDSE subcommand

description 392
examples 392

REW, tape cont"rol function 323
REWIND option, of TAPE ccmmand 325
REWIND option of DDR command INPU!/CUTPUT
control statement 56

ribbon, two-color, ccntrolling USE of 256
RIGHT oEerand of LIN!MCDE sutcommand 381
RLt option of ASSEftEL! ccaaand 28
RO Immediate command 359
RSCS (Remote Spooling Ccmmunications
sutsystem) 1

RSERV command
description 286
DISK option 286
PRIN! option 286
PUNCH option 286
TERft option 286

RT Immediate command 360
stacking in EXEC Erocedure 440

RUN

5

command, description 288
tape control function 326

SlftE option of INCLUtE command 170
SlVE subcommand, descriEticn 393
saved system

nalles
querying 257
setting 301

sharing" 301
SCAN option of TIPE command 323
scanning

&ERROR control statement 433
in EXEC procedure 425

SCRIPT, filetype, default CftS editcr
settings 519

SCROLL subcommand, dEscriEtion 394
SCReLLUF subcommand, descriEtion 394
SD option of DSERV command 93
S-disk, accessed after IPling CftS 21
SEARCH option of CftS ~OERI command 257
search order

for CftS com.ands 7
for CftS loader 196
for executable phases in CftS/DOS 120
for relocatable mcdules in CftS/DeS 90
of CftS disks, querying 257

SEC operand, of LAB!LDEl ccmmand 174
SELECT option of GLCEIlV command 155
SELECT SYSIN control stateDent 203

550 IBft Vft/SP CMS Comaand and ftacro Beference

send a note 229
S!NDlIL! EXEC procedure

ACK option 291
default PI key settings on SENDFILE menu

293
description 290
exallples 296
file format 294
FIl!LIST option 291, 294
LCG option 291, 294
lEi option 291, 294
IOACK option 291
ICICG option 291, 294
NO!! option 291, 294
NOTIPE option 291, 294
OLD option 291, 294
TIPI option 291, 294

SENTRIES command
description 297
return code, effect on &EBBOR statement

297
SEQUENCE control statement, fer UPDATE

command 343
sequence numbers

assigned to VSAft extents 84
in CftS/DOS 79

SIQB
option

of UPDATE command 341
of XEDIT ceDmand 355

SEBIAl subcommand
ALL operand 395
description 395
Off operand 395
01 operand 395

SEBVICE operand of lueXLOAD command 234
SISSIOI file of GLOBALV command 158
SET cODmand (CftS)

IEEREV option 300
IUTCREID option 301
BIlF option 298
CftSTIPE option 301
description 298
determining status of SET operands for
virtual machinE environment 254

Des option 301
DOSLICIT option 302
DCSFliT option 302
I!FCP option 300
I!PIX option 300
IIFOT option 300
LDBTELS option 299
NCISHABE option 301
OO!FOT option 300
PRO!!CT option 300
BDIftSG option 299
R!tTIPE option 300
BElPIG! option 299
SIS 11ft! option 301
UPSI option 302

set location counter (SLC), loader control
statement 199

SET operand
of DEfAULTS EXEC procedure 68
of BNDEXT macro 473
of HIDIIT macro 474
of HIDSVC macro 476

set page boundary (SPE), loader control

statement 199
SET subcommand

CAW operand
CSW operand
GPR operand
PSW operand

SEURT command

(DEBUG)
419
419
419
419

CHARS option 304
COPIES option 304
COPYNB option 304
description 304
FCB option 304
FLASH option 304
INIT option 304
HODllY option 304
using 305

SHORT

419

option of NOTE EXEC Irocedure 228
subcommand, description 396

SItCODE option, of XEDIT cemmand 355
SINGLE option of COPYI1LE command 44
SIZE option of NAKEIINt command 216,219
SKIP option

of DDR command INPUi/OUiPUT control
statement 56

of TAPE command 323
SL operand

of FILEDEF command 130
of TAPEMAC command 328
of TAPPDS command 332

SLC statement (~~ set location counter
(SLC) statement)

SO Immediate command 360
SORT

command
description 306
storage requirements 306

option of DSERV command 93
sort fields, defining 306
source file, numbering records with UPDATE

command 341
source files

assembling
identifying macrc libraries 31,152

for assembler 27
upda ting 341

source statement libraries, VSE, displaying
directories of 93

source symbol table, assembler, generating
29

space, determine free extents for VSAH 177
SPACE LINES (.SP) format word 515
SPACE operand, of TAPESL macro 499
special variables (§~~ EIEC special
variables)

specification list, for COPYFILE command,
format 48

SPECS option
of COPY FILE command 42

usage 48
SPOOL command

used with DISK DU!P command 71
used with PRINT command 247

SSERV command
description
DISK option
PRINT option
PUNCH option

308
308

308
308

TEBl! option 308
STACK

option
of GLOBALV command 157
ef IDENTIFY command 167
of NAl!EFIND command 215
of NUCIl!AP cemmand 237
of BDR command 264
of RECEIVE EIEC procedure 278

subcommand, description 397
value of &REAtFLAG special variable 448

stacking
EDI~ subcommands 391
in EXEC procedure, testing whether there

are lines in stack 448
lines in console stack

&BEGSTACK control statement 428
&STACK control statement 440

STACKB option of GLOBALV command 157
SUR~

command
description 310
NO option 310
passing arguments 310

optien
of FETCH command 120
of INCLUDE ccmmand 170
of LOAD command 194
of NAftEFIND command 216

starting point for execution cf module,
setting 193

SilT option of LISiIO cOlllmand 188
STATE command, description 312
SiATEi command, description 312
status of virtual machine environment 254
STD option of SINONYl! command 318
SiK option, of UPDATE command 342,350
STKT option of ASSEftBLE command 29
STOB option of UPDATE command 342
storage

clearing to zeros
in CftS/DOS 91
with INCLUDE command 169
with LOAD command 193

displaying with LINEDIT macro 481
examining in debug envircnment 421
initializing for !ODULE file execution

149
modifying during program execution 420
printing contents of 414
releasing pages of after cem.and

execution 255,299
reguirements for SORT co.mand 306
specifying storage for CHS/DOS partition

302
used by GETFI1E subcommand 377

STOBE, subcommand, description 420
STH option of GEN!OD command 149
SUB operand of LINEDIT macro 480
sublibraries, of VSE source statement,

copying hooks 30B
subset, CftS (§~~ Cl!S subset)
suhsti tution

in EXEC procedure, inhibiting 445
list for LINEDIT macro 480

specifying length 483
of message text in LINEDIT macro 478

substrings, extracting in EXEC procedure,

Index 551

SSDBSTR built-in function 445
SUL operand, of FILEDEI command 130
sUDmary, of HELP format words 505
SVC

instructions
handling interruptions during program

execution 416
tracing 314

SVCTRACE command
description 314
output 314

SY! option of OPTION cemmand 239
symtol table, debug 413
symbolic names, assigning to storage
locations, in debug environment 413

symbols
debug

defining 413
modifying 420
used to set breakpcints 410

in EXEC procedure
effect of undefined symbols in SIF

statement 436
reading from terminal or console
stack 438

substituted in EXEC procedure,
displaying 431

variable (~variatle symbols)
SYNONYM

command
CLEAR option 318
description 318
example 319
NOSTD option 318
relationship to SET AEBREV command

318
STD option 318

option, of CMS QDERY ccmmand 259
synonym table

clearing 318
defining 319
format for. entries in 319
invoking 318

synonyms
for CMS and user-written commands 318

defining 319
displaying 258,319
examples 319

system, displaying 25E
SYS option of LISTIe command 188
SYSCAT, assigning in CMS/DOS 81
SYSIN

assembler input 31
logical unit assignment in CMS/DOS 35

SYSIPT, assigning for ESERV program 100
SYSLCG, assigning in CMS/DOS 35
SYSLST lines per page

displaying number of 262
setting number of 302

SYSNAME option of CMS SET command 301
SYSNAMES option of CMS QUERY command 251
SYSPARM option of ASSEMBLE command 31
SYSPRINT control statement of DDR command

51
SYSRES, assigning in CMS/DeS 34
SYSTEM operand of NUCXICAD command 234
system and programmer logical units,
entering on DLBL command 11

552 IBM VM/SP CMS ComDand and Macro Reference

systell disk
files available 21
releasing 281

system logical units
invalid assignments in CMS/DOS 34
listing assignments for in CMS/DOS 188
valid assignments in CMS/DOS 34

SYSTEM option of GENMOD command 150
system residence volume, VSE, specifying

302
SISTERM option of ASSEMBLE command 29
SYSXXll option

of ASSGN command 33
of DLBL command 15
of 1ISTIO command 188

T
tab

characters, how CMS editor handles 318
settings, used by CMS editor 398

Table Reference Character byte 246
TABSET subcommand

affected by IMAGE subcommand 318
description 398 .

tape
assigning to logical units in CMS/DOS

34
backward spacing 323
control functions 323

restrictions when using 325
TAPECTL macro 496

controlling, TAPECTL macro 496
creating eMS disk files 331
density of, specifying 324
displaying filenames on 323
dUllping and loading CMS files 323
dumping and restoring disk data 53
files

created by OS utility programs 331
created by TAPE command 325
writing to disk 323

forward spacing 323
la1:els

displaying definitions in effect 259
displaying VOLl label 324
in FILEDEl command processing 129
in TAPEMAC command processing

328,329
in TAPESL macro processing 491
in TAPPDS command processing 332,332
specifying descriptive information

113
writing VaLl latel 324

marks
writing 324

as, standard-latel processing 332
positioning 323

after VCLl label is processed 325
at specified file 323
TAPECTL macro 496

reading records from, RDTAPE macro 492
recording technigue, specifying 325
rewinding 323
used for AMSERV input and output 24

entering ddnames 25
in CMS/DOS 25

writing records to, iR~APE macro 501
~APE comman d

BLKSIZE option 324
centrol functions

BSF 323
BSR 323
ERG 323
FSF 323
FSR 323
REW 323
RUN 324
W~M 324

DEN option 325
description 322
DISK option 324
DUMP option 323
dumping null block 325
DVOLl operand 324
EOF option 324
EOT option 324
LEAVE option 325
LOAD option 323
MODE SET option 323
NOPRINT option 324
NOWTM option 324
PRINT option 324
REWIND option 325
SCAN option 323
SKIP option 323
TAPn option 324
TERM option 324
~RTCH option 325
WT! option 324
WVOLl operand 324
1TRACK option 325
9TRACK option 325

TAFECTL macro
description 496
ERROR operand 496
MODE operand 496

TAPEMAC command
description 328
ID operand 328
ITEMCT option 329
NSL operand 328
SL operand 328
TUn option 329

~APESL macro
BLKCT operand 498
description 497
ERROR operand 498
LABID operand 498
MODE operand 491
SPACE operand 498
TM operand 498

TAPIN option of AMSERV comDand 24
TAPn option

of ASSGN command 33
of FILEDEF command 123, 129

usage 129
of TAPE command 324
of TAPE!!AC command 329
of TAPPDS command 333

TAPOUT option of AMSERV command 24
~APPDS command

COL 1 option 332
description 331
END option 333

ID operand 332
MAX~EN option 333
NCCCLl option 332
NCENE option 333
NCMAXTEN option 333
NePDS option 332
NSL operand 332
PDS option 332
processing OS standard-label tapes 333
Sl operand 332
TAPn option 333
UPDA~E option 332

TD option of DSERV command 93
TELL EXEC procedure

description 335
NAMES file 221
restrictions 335

~ERM option
of tOSLIB command 87
of DCSLKED command 90
of DSERV command 93
of 1KED command 191
of 1CADLIB command 203
of MACLIB ccmmand 206
of CPTICN command 240
of PSERV command 249
of RSERV command 286
of SSERV command 308
of ~APE command 324
of lXTLlB command 336
of UPDATE cCDmand 342

terminal
displajing lines at, WRTER! macro 502
displaying records at 53
output

determining if terminal is displaying
448

halting 359
halting in EXEC procedure 440
restoring 360
restoring in EXEC procedure 440

reading data from
during EXEC procedure 438
with EDTERM macro 493

waiting for I/O to complete, WAITT macro
500

~ERMINAL option
of ASSEMBLE command 30
of ASSGN command 33
of FILEDEF command 123

TEST option of ASSEMBLE command 29
nXT

assembler cutput ddname 31
files

automatic loading 194
cards read by loader 195
creating with assembler 29
executing with RUN command 288
link-editing in CMS/DOS 89,90
linking in storage 193
loading into storage during program
executicn 460

loading into virtual storage 193
resolving unresolved references with

LOAD command 194
libraries (~~ TITLIB)
operand of LINEDIT macro 478

TEXT files

Index 553

loading into storage for execution 169
setting starting point for execution

193
lEXTA operand of LINEDIl macro 479
time information, displaying during EXEC
processing 441

time of day, displaying during EXEC
processing 456

lIME operand of &CCN1BCl control statement
456

timers, virtual interval 298
TM operand, of TAPESL macro 498
TO

operand of $MOVE edit macro 408
option of GENMOD command 149

tokens
comparing in EXEC frocedure 425
description /J25

TOLABEL option of COPY FILE command 42
lOP

operand of &GOTO control statement 434
subcommand, descriFtion 399

tracing
resuming after temporarily halting 358
suspending recording tempcrarily 359
SVC instructions 314

halting 358
trailing fill characters, removing from
records 47

TRANS option of COPYFILE command 43
transient area

CMS commands that execute in 8
creating modules to execute in 151
loading programs into 194

transient directories in VSE, displaying
93

TRANSLATE CHARACTER (.lR) format word 416
translate tables

defining input charactErs for
translation 299

defining output charactErs for
translation 300

displaying 256
translation list, for COPYFIIE command,
description 47

!BC
operand, of PRINTL macro 488
option, of PRINT command 246

TRTCH option
of ASSGN command 34
of FILEDEF command 126
of TAPE command 325

TRUNC
option of COPYFILE command 43

example 47
subcommand, description 399

truncation
column, for input mode 399
of command names

querying acceptability of 256
setting acceptability of 300

of commands 4
of input records ~ith e~s editor,
default settings 399

of records in CMS file 43
during GETFILE subcommand 377
following CHANGE sutcommand 367

of tokens in EXEC procedure /J25

55/J IBM VM/SP eMS Command and Macro Reference

of trailing blanks from CMS file 43
two-color ribbon, controlling use of

256,300
TXTLIE

command
AtD option 336
DEL option 336
description 336
tISK option 336
GEN option 336
MAP option 336
PBINT option 336
TERM option 336

filE, searching for unresolved
references 17 0

files
adding members 336
creating 336
deleting members 336
determining which TITLIEs are
searched 260

identifying for LOAD and INCLUDE
command processing 152

listing members in 336
maximum number of memters 337
search for unresolved references 194
searched during INCLUDE command
processing 169

searched during LOAD command
processing 193

option
of CMS CUERY command 260
of GLOBAL command 152

TYPE
command

COL option 339
description 339
BEX option 339
MEMBER option 340

function statement of DDR command 61
operand of &TIME control statement 441
option

of COPYFILE command 42
of COPY FILE command (example) 46
of EBASE command 98
of IDENTIFY command 167
of INCLUDE command 170
of LOAD command 194
of NAMEFIND command 215
of RENAME command 283
of SENDFILE EXEC procedure 291,294

subcommand, description /JOO
TYPE/PRINT output of DDR command 62

U
U operand of CASE subcommand 365
UA option

of ASSGN command 34
of LISTIO command 188

underscore
character, 'on OVERLAY subcommand 38/J
data records, using backspaces 379

UNLOAD option of DDR command INPUT/OUTPUT
control statement 56

UNPACK option, of COPYFILE command 43
unresolved references

UP

during MODULE file generation 150
loader handling of 196
resolving with INCLUDE command 170
searching for TEX! files 194
searching TXTLIBs for 194

operand of SMOVE edit macro 408
subcommand, description 401

OPCAS! option
of ASSGN command 34
of COPYFIL~ command 43
of FILEDEF command 126
of PRINT command 247

OPDATE
command

control statements 342
CTL option 342,347
description 341
DISK option 342
error handling for 351
INC option 342
input files 34.6
multilevel updates, Example with
auxiliary control file 348

NOCTL option 342
NOINC option 342
NOREP option 341
NOSEQ8 option 341
NOSTK option 342
NOTERM option 342
output files 346
PRINT option 342
REP option 341
SEQ8 option 341
STK option 342,350
STaR option 342
TERM option 342
warnings by 351

control statements
comments 346
DELETE 345
INSERT 344
REPLACE 345
SEQUENCE 343

filetype, default CMS editor settings
519

option, of XEDIT command 354
option of TAPPDS command 332

update log
for UPDATE command oFerations 342

generating at your terminal 342
UPDIRT option of RENAME command 283
uppercase letters

converting to lowercase, with CCFYIILE
command 43

sUPFressing translaticn of lowercase
letters with CMS editor 269

UPS I
byte

querying setting of 262
setting 302

option
of CMS QUERY command 262
of CMS SET command 302

UPTDxxxx filetype, default CMS editor
set tings 519

user catalog
identifying 85

in CMS/DOS 89
user file directory 21

contents of 21
creating 21
updating on disk 281

user-defined synonyms, displaying 258
user-written commands

V

assigning synonyms for 318
creating 150

variable data
in EXEC procedure

displaying 442
Funching 437
stacking 440

variable symbols
assigning values to in EXEC procedures

425
reading from terminal or ccnsole stack,
in EXEC procedure 438

substituting, in EXEC procedure 438
testing, in EXEC procedure 435

variable-length files
converting to fixed-length 47

using RECFM subcommand 387
reading and writing with CMS macros 472

VARS operand of &READ control statement
438

verification setting, for CMS editor,
changing 402

VERIFI subcommand, description 402
virtual disks (~§ alsQ disks)

counting cylinders on 145
initializing 144
resetting number of cylinders on 145
valid addresses for 20

virtual machines
comFonents of 1
console 1
definition 1
environment, determining status of 254

VM/SP, tasic description 1
VOLID operand

of FILEDEl command 130
of lAEELDEF command 174

VOLSEQ operand, of LABELDEF command 174
VSAM

catalogs
determining which catalog is searched

82
identifying 85
identifying in CMS/DOS 81

data set extents, displaying 79
determining free sFace extents 177
files

defining with DLBL command 74
specifying disk extents 83
specifying disk extents in CMS/DOS

79
master catalog

identifying 85
identifying in CMS/DOS 81

°Ftion
of DLEL command 75
of SET DOS ON command 302

Index 555

restrictions
for OS/VS users 521
for VSE users 521

VSBASIC
files, renumbering 388
filetype, default CMS editor settings

519
VSEDATA filetype, default eMS editor
settings 519

W
wait, for terminal I/O to complete, WAITT

macro 500
WAITD macro

description 499
EEROE operand 499
used with HNDINT macro 415

WAITEI CMS function
description 456
logical line editing with 451
using 457

WAITED function, reading lines frem
terminal input buffer 209

WAITT macro, descriFticn 501
WIDTH option, of XEDIT command 354
WRFNT operand, of FSPCINT macro 461
WRTAPE macro

description 501
ERROR operand 501
MODE operand 501

WRTEEM macro

WTM

COLOR operand 503
description 502
EDIT operand 502

option of TAPE cemmand 324
tape control function 324

WVOL1 operand, of TAP! ccmmand 324

x
X

DEBUG subcommand 421
EDIT subcommand

description 403
example 403

XCAL option, of LKED command 190
XEDIT command

CTL option 355
description 353
INCE option 355
MERGE option 355
NOCTL option 355
NOCLEAE option 354
NOPECFIL option 354
NOSCREEN option 354
NOSEQ8 option 355
NOUPDATE option 354
PROFILE option 354
SEQ8 option 355
SIDCODE option 355
UPDATE option 354
using 355
WIDTH option 354

556 IBM VM/SP CMS Command and Macro Reference

XEEF option
of ASSEMBLE command 29
of LKED command 191
of CPTION command 239

XTENT option of FILEDEF command 125

Y
I subcommand

description 403
exallple 403

Y-disk, accessed after IPLing CMS 21
IFLAG cption of ASSEMBLE command 30

Z
zone settings, for edit session 404
ZONE subccmmand, description 404

1
19E virtual disk address, accessed as
I-disk 21

190 virtual disk address, accessed as
S-disk 21

191 virtual disk address, accEssed as
A-disk 21

192 viJ:tual disk address, accessed as
D-disk 21

195 virtual disk address, formatted by
batch facility 37

3

CMS

3800 Frinter, loading a virtual, via SETPRT
command 304

4
48C oftion of OPTION command 239

6
60C oftion of OPTICN command 240

1
7TRACK option

of ASSGN co.mand 34
of FILEDEF command 126
of TAP! ccmmand 325

7-track tapes, specifying on TAPE command
325

9
9TRACK option

of ASSGN command 34
of FILEDEF command 126
of TAPE command 325

9-track tapes, specifying on TAPE command
325

J

.... e
c: Q co>_
E CI)

.9- :.<:
:::J-

g-m
CO> co CI)

.5 Q
t::
Q CO>
CI) C. - '" .- -
~~

"C E
.i'!l E
'" :::J
E ""
Q -

- CO> :::J oJ:

"'15
:§ Q
3: CO>

'" .i!: E .t:
.!:! ~
.Q CO>
Q CI)

Q..co>
CO> :;
CI) CI)
:::J CI)

'" CO>

~ :-
'" '" ... :::J

'" .!! ~ c.",
So!! en 0...

.i'!l
Q

Z

IBM VM/SP
CMS Command and Macro Reference
SC 19-6209-1

READER'S
COMMENT
FORM

This manual is part of a library that serves as a reference source for systems analysts,
programmers, and operators of IBM systems. You may use this form to communicate your
comments about this publication, its organization, or subject matter, with the understanding
that IBM may use or distribute whatever information you supply in any way it believes
appropriate without incurring any obligation to you.

Your comments will be sent to the author's department for whatever review and action, if
any, are deemed appropriate. Comments may be written in your own language; English is
not required.

Note: Copies of IBM publications are not stocked at the location to which this form is
addressed. Please direct any requests for copies of publications, or for assistance in using your
IBM system, to your IBM representative or to the IBM branch office serving your locality.

• Does the publication meet your needs?

• Did you find the material:

Easy to read and understand?

Organized for convenient use?

Complete?

Well illustrated?

Written for your technical level?

• What is your occupation?

• How do you use this publication:

As an introduction to the subject?

For advanced knowledge of the subject?

To learn about operating procedures?

Your comments:

Yes

o

o
o
o
o
o

o
o
o

No

o

o
o
o
o
o

As an instructor in class?

As a student in class?

As a reference manual?

o
o
o

If you would like a reply, please supply your name and address on the reverse side of this form.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A.
(Elsewhere, an IBM office or representative will be happy to forward your comments or
you may mail directly to the address in the Edition Notice on the back of the title page.)

SC19-6209-1

Reader's Comment Form

Fold and Tape Please Do Not Staple Fold and Tape I
.. ·································1

Fold

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE:

I nternational Business Machines Corporation
Department G60
P. O. Box 6
Endicott, New York 13760

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

Fold

If you would like a reply, please print:

YourJVame __ ___

Company JVame ______________________ Department ______ _
Street Address ___________________________ _

a~---
State ________________ Zip Code __________ _

--..- ----- IBM Branch Office serving you _____________________________ _
- ----- ----- -. ---- ---------------_.-

®

CD s:
< s: --en
"0

0 s:
en
()
0
3
3
m
::::s
0-
m
::::s
0-

s:
m
n
~

0
::II
(1) -(1)
~
(1)
::::s
n
(1)

"'T1 J m
z
?
en w
......
0 --""" W
0
0
W
to

"0
~.
::::s
~
0-

::::s

C
en
~
en
0
to
m
"" 0
cp

. e -..
c " "'E co

.!:- :c =-!if:
CD CO

.€ s
" '" CO CL

:=~

E~
"C E
.l!! E
IV = E CJ " .. - '" =..c
IV -

..c "

.t: a
~ '" E :€
'" co
:E lii e co
CL~ '" = co co = co
fI e
c CL

IV III
u = co
'" '" cs..;
IV '" ~a:::

IBM VM/SP
CMS Command and Macro Reference
SC 19-6209-1

READER'S
COMMENT
FORM

This manual is part of a library that serves as a reference source for systems analysts,
programmers, and operators of IBM systems. You may use this form to communicate your
comments about this publication, its organization, or subject matter, with the understanding
that IBM may use or distribute whatever information you supply in any way it believes
appropriate without incurring any obligation to you.

Your comments will be sent to the author's department for whatever review and action, if
any, are deemed appropriate. Comments may be written in your own language; English is
n.)t required. .

Note: Copies of IBM publications are not stocked at the location to which this form is
addressed. Please direct any requests for copies of publications, or for assistance in using your
IBM system, to your IBM representative or to the IBM branch office serving your locality .

• Does the publication meet your needs?

• Did you find the material:

Easy to read and understand?

Organized for convenient use?

Complete?

Well illustrated?

Written for your technical level?

• What is your occupation?

• How do you use this publication:

As an introduction to the subject?

For advanced knowledge of the subject?

To learn about operating procedures?

Your comments:

Yes

o

o
o
o
o
o

o
o
o

No

o

o
o
o
o
o

As an instructor in class?

As a student in class?

As a reference manual?

o
o
o

If you would like a reply, please supply your name and address on the reverse side of this form.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A.
(Elsewhere, an IBM office or representative will be happy to forward your comments or
you may mail directly to the address in the Edition Notice on the back of the title page.)

SC 19-6209-1

Reader's Comment Form

Fold and Tape

Fold

Please Do Not Staple

II "I
BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE:

I nternational Business Machines Corporation
Department G60
P. O. Box 6
Endicott, New York 13760

Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

Fold

If you would like a reply, please print:

YourJVame __ ___

Company JVame ____________________________ Department _______ _

Street Address _____________________________________ _
Gry _____________________ _

State ________________________ Zip Code ___________ _

------ IBM Branch Office serving you _____________________________________ _
--------. ---- - - -~------------_.-

®

n

.~ ~
~

"" ~
Q

»
0
:> ...
r
:;
•

OJ
~

<
~ en
"'0

()

~
en
n
0
3
3
III
::J
C.
III
::J
C.

~
III
n ...
0
:0
CD -CD
CD
::J
n

..) CD

"n

CD
z
?
en
eN
-..J
0
.j:>,
eN
0
0 w
~

"'0
:!.
::J ...
CD
C.

::J

C
en
~
en
()

co
m
"" 0 cp
~

. e - ... C Q
11>_

E '"
.e-~
::I -g"iii
=~
C .€ .s
Q II>

'" Q. _ ftI

.- -
~~

"0 E
.l!! E
ftI ::I

E = Q ...
_ II>

::I ..c
ftI -..c Q

.~ Cs
3= II>

'" .:!: E :!::
.!! ~
.CI II>

E '"
Q.~
II> ::I

'" '" ::I '"
~ !!
C Q.

~ = ::I

'" II> II> 0.;
ftI II>

Ci5a:::

IBM VM/SP
CMS Command and Macro Reference
SC 19-6209-1

READER'S
COMMENT
FORM

This manual is part of a library that serves as a reference source for systems analysts,
programmers, and operators of IBM systems. You may use this form to communicate your
comments about this publication, its organization, or subject matter, with the understanding
that IBM may use or distribute whatever information you supply in any way it believes
appropriate without incurring any obligation to you.

Your comments will be sent to the author's department for whatever review and action, if
any, are deemed appropriate. Comments may be written in your own language; English is
not required.

Note: Copies of IBM publications are not stocked at the location to which this form is
addressed. Please direct any requests for copies of publications, or for assistance in using your
IBM system, to your IBM representative or to the IBM branch of lice serving your locality .

• Does the publication meet your needs?

• Did you find the material:

Easy to read and understand?

Organized for convenient use?

Complete?

Well illustrated?

Written for your technical level?

• What is your occupation?

• How do you use this publication:

As an introduction to the subject?

For advanced knowledge of the subject?

To learn about operating procedures?

Your comments:

Yes

o

o
o
o
o
o

o
o
o

No

o

o
o
o
o
o

As an instructor in class?

As a student in class?

As a reference manual?

o
o
o

If you would like a reply, please supply your name and address on the reverse side of this form.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A.
(Elsewhere, an IBM office or representative will be happy to forward your comments or
you may mail directly to the address in the Edition Notice on the back of the title page.)

SC19-6209-1

Reader's Comment Form

Fold and Tape

Fold

Please Do Not Staple

IIIII

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE:

I nternational Business Machines Corporation
Department G60
P. O. Box 6
Endicott, New York 13760

Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

Fold

If you would like a reply, please print:

Your Name __ ___

Company Name _____________________________ Department ______ _
Street Address ____________________________________ _
Ory _______________________________________ _

State _________________________ Zip Code __________ _

------ IBM Branch Office serving you _______________________________ _

- ------ ----- ~ ---- - - ----
---~------ - . ®

n

~ ~
~
"11
!!.
a.
~
0
~ ..
C
~ •

CD s:
< s:
en
"tI

(")

s:
Ul
c-
o
3
3
III
::l
Co
III
::l
Co

s:
III
n ...,
0
:0
CD
CD ...,
CD
::l
n

,J CD

i1

CD
z
?
Ul
w
0 -...
.;:.
w
0
0 w
~

"tI
:::l.
::l
CD
Co

::l

C
en
~
Ul
(")
co
m
r-.)

0 cp

