

Program Product

File No. S370-39
Order No. SC19-6210-0

IBM Virtual
Machine/System Product:
eMS User's Guide
Program Number 5664-167

Contains general information and examples about the
Conversational Monitor System (CMS) component of
I BM Virtual Machine/System Product.

This publication is written for applications programmers
who want to learn how to use CMS to create and modify
data files (including VSAM data sets) and programs, and
to compile, test, and debug as or DOS programs under
CMS.

The CMS Editor and CMS EXEC facilities are described
with usage information and examples. Also included
are brief descriptions of the System Product Editor and
EXEC 2 facilities.

PREREQUISITE PUBLICATIONS

IBM Virtual Machine/System Product:

Terminal Users Guide, SC19-6206

Introduction, SC19-6200

--....- ~ ---- --- --_ - ~--- --... _ -- - - -....,-
-~----~-.-

r
INotice: The term VM/SP, as used in this publication,
Iwhen-used in conjunction with VM/370 Release 6.

--,
refers to VM/SP, ,

L

Ii~§~ ~giiiQn (September 1980)

This edition, SC19-6210, applies to the IBM Virtual Machine/System
Product and to all subsequent releases unless otherwise indicated in new
editions or Technical Newsletters.

Changes are continually made to the information contained herein; before
usinq this publication in connection with the operation of IBM systems,
consult the I~~ ~Y§1~!L1Iq gng !lqq R~Qce§§or§]i~liQg~gEhY, Q~lQ-Olll,
for the editions that are applicable and current.

It is possible that this material may contain reference to, or
information about, IBM products (machines and programs), proqramming, or
services that are not announced in products (machines and programs),
proqramminq, services that are announced in your country. Such
references or information must not be construed to mean that IBM intends
to announce such IBM products, programming, or services in your country.

Publications are not stocked at the address given below; requests for
copies of IBM publications should be made to your IBM representative or
to the IBM branch office serving your locality.

~ form for readers' comments is provided at the back of this
publication; if the form has been removed, comments may be addressed to
IBM Proqramminq publications, Dept. G60, P.O. Box 6, Endicott, New York,
u.S.~. 13760. IBM may use or distribute any of the information you
suP?ly in any way it believes appropriate without. incurring any
obliqation whatever. You may, of course, continue to use the
information you supply.

© Copyriqht International Business Machines Corporation 1980

---'

\,

II'

This publication .is intended for the
general CMS user. It contains information
describing the interactive facilities of
CMS, and includes examples showing you how
to use CMS.

"Part 1. Understanding CMS" contains
sEctions that describe, in general terms,
the CMS facilities and the CMS and CP
commands that you can use to control your
virtual machine. If you are an experienced
programmer who has used interactive
terminal systems before, you may be able to
refer directly to the !~L~R ~~~ ~Qm~~ng ang
~~£~Q B~!~~g~£g publication to find
specific details about CMS commands that
are summarized in this part. otherwise,
you may need to refer to later sections of
this publication to gain a broader
background in using CMS. The topics
discussed in Part 1 are:

• what It Means To Have a CMS Virt ua I
Mach ine

• VM/SP-CMS 'Env ironment s and Mode
switching

• What You Can Do with VM/SP-CMS Commands

• The CMS File System

• The Edi tors

• Introduction to the CMS EXEC Processors

• Using Real Printers, Punches, Readers,
and Tapes

"Part 2. Program Development Using CMS"
is primarily for applications programmers
who want to use CMS to develop and test os
and nos programs under CMS. The topics
oiscussed in Part 2 are:

• Dev~lopinq os Programs Under CMS

• Developing DOS Programs Under CMS

• Using Access Method Services and VS~M
Under CMS and CMS/DOS

• How VM/SP Can Help
Proqrams

You Debug Your

• Using the CMS Batch Facility

• Programming for the CMS Environment

Preface

"Part 3. Learning To Use CMS EXECs"
gives detailed information on creating EXEC
procedures to use with CMS. The topics
discussed in Part 3 are:

• Building CMS EXEC Procedures
• Using CMS EXECs with CMS Commands
• Refining Your CMS EXEC Procedures
• Writing CMS Edit Macros

"Part 4. The HELP Facility" contains
descriptions and examples of the use of
HELP facility format words in creating HELP
description files.

• Using the HELP Facility
• How the HELP Facility Works
• Tailoring the HELP Facility
• HELP File Naming Conventions
• Creating HELP Files

"Appendix A. Summary of CMS Commands"
lists the commands available in the CMS
command environment.

"Appendix B. Summary of CP Commands"
lists the CP command privilege classes and
summarizes the commands available. in the CP
command environment.

"Appendix C. Considerations for 3270
Display Terminal Users" discusses aspects
of VM/SP and CMS that are different or
unique when you use a 3270 display
termi nal.

"Appendix D. Sample Terminal Sessions"
shows sample terminal sessions for:

• Usinq the CMS Editor and CMS file system
commands

• Using line-number editing with the CMS
editor

• Creating, assembling, and executing an
os program in CMS

• Creating, assembling, and executing a
DOS program in CMS/DOS

• Usinq access method services in CMS

Preface iii

Some of the following terms are used, for
convenience, throughout this publication:

• The term "CMS/DOS" refers to the
functions of CMS that become available
when you issue the command

set dos on

eMS/DOS is a part of the normal CMS
system, and is not a separate system.
Users who do not use CMS/DOS are
sometimes referred to as OS users, since
they use the OS simulation functions of
CMS.

• The term "CMS files" refers exclusiv~ly
to files that are in the fixed block
format used by CMS file system commands.
VSAM and OS data sets and DOS files are
not compatible with the eMS file format,
and cannot be manipulated using CMS file
syst8m commands. The terms "disk" and
"virtual disk" are used interchangeably
to indicate disks that are in your CMS
virtual machine configuration. Where
necessary, a distinction is made between
CMS-formatted disks and disks in OS or
DOS format.

• " 3 27 0" ref e r s t 0 a se r i e s 0 f dis p la y
devices, namely, the IBM 3275, 3276
Controller Display Station, and 3277 and
3278 Display Stations. A specific
device 'type is used only when a
distinction is required between device
+,ypes.

Information about display terminal usage
also applies to the IBM 3138, 3148, and
315A Display Consoles when used in displ~y
mode, unless otherwise noted.

Any information pertaining to the IBM
32A4 or 3286 Printer also pertains to the
IBM 32A7, 3288, and 3289 printers, unless
otherwise noted.

• "3330" refers to the IBM 3330 Disk
Storaqe Models 1, 2, and 11, the IBM
3333 Disk Storage and Control Models 1
and 11, and the IBM 3350 Direct Access
Storage in 3330 compatibility mode.

• "2305" refers to the IBM 2305 Fixed Head
Storaqe, Models 1 and 2.

• "3340" refers to the IBM 3340 Direct
Access Storage Facility and the IBM 3344
Direct Access stora~e.

• "3350" refers to the
Access Storage device
native mode.

IBM 3350 Direct
when used in

iv IBM VM/SP CMS User~s Guide

• Any information pertaininq to the IBM
2741 terminal also applies to the IBM
3767 terminal, unless otherwise noted.

• 370x refers to the 3704/3705
Communications Controllers.

• "3370" refers to the IBM 3370 Direct
Access Storage Device.

• "3310" refers to the IBM 3310 Direct
Access Storage Device.

• "FB-512" refers to the IBM 3370 and 3310
Direct Access Storage Devices.

For a glossary of VM/SP terms, see the
l~~ Y!£!Y~! ~~chin~L~~!~~ ££Qgy£! 21~§§~~~
~ng ~~§i~£ lng~~, GC19-6207.

SCRIPT/VS is a component of the IBM
Document Composition Facility program
product, which is available from IBM for a
license fee. For additional information on
SCRIPT/VS usage, see QQ£Y~~ni ~Q~~~§i!!Qn
f~£!!!iY: ~§~£~2 2yid~, SH20-9161.

PREREQUISITE PUBLICATIONS

COREQUISITE PUBLICATIONS

~R ~QmID~ng R~!~£~nc~
SC 19-6211

~Y§!~m ~£QgY£i ~gitQ£ ~Q~ID~ng ~ng ~~££g
R~f~£~n£~, SC24-5221

Q2~£~!ing ~Y2i~m§!n ~ !i£iY~l ~~£hin~,
SC19-6212

/

RELATED VM/SP PUBLICATIONS

Additional descriptions of various CMS
functions and commands that are normally
used by system support personnel are
described in the following publications:

Information describing the CMS command
CPEREP, a command used to generate output
~eports from VM/SP's error recording
~ecords, is contained in the IBM Yi£!~l

~~£hin~L2Y§!~ill R£Qgy£! Q1T~~f ~nQ ~££Q£
R§£Q£ging gQig~, SC19-620S

Details on the use of OS/VS ERE~
operands, reguire~ to make use of CPEREP,
are contained in the Q~LY~, QQ~LY~~, Y~L1IQ
~nYi£Qnill~n!~J B~£Q£ging, ~Qi!ing, ~ng
E£in1ing R£Qg~gID, GC28-0772.

There are three publications available
as ready reference material when you use
VM/SP and CMS. They are:

l]~ Yi£!ygl ~s£hin~ Es£ili!YL11Q:

QYi£~ gYig~ !QI ~§~£§, SX20-4400

For information on OS/VS tape
processinq, discussed with
Processinq in OS Simulation" in
publication, refer to:

label
"Label

this

IPCS CMS commands are described in I~~
VM/3 7 0 Interactive Problem Control ~Y§!~ill
(IR£~) Q§~£~§-~YI~§,-GC20:1823;--and not in
this publication.

If you use the Remote
Communications Subsystem, see !~~
~~£hin~ l~£iliiYL11Q:]~~Q!§
~Q~~yni£~!iQn§ ~Y~§Y§!~ID (~~£~)
~YiQ~, GC20-1816.

Spoolinq
IiI!Y~!

~~QQ!ing
y§g~~§

RELATED PUBLICATIONS FOR VSAM AND ACCESS
METHOD SERVICFS USERS

CMS support of access method services is
based on VSE/AF and VSE/VSAM. The control
statements that you can use are described
in Y§ing I~~LY~!~ ~QmmsnQ ~ng ~~£~Q§,
SC24-S144.

Error messages produced by the access
method services program, and return codes
and reason codes, are listed in I2~LY2j~
~~§§~g~§ ~nQ ~Qg~§, SC24-S146.

For a detailed description of VSE/VSAM
macros and macro parameters, refer to the
VSE/AF Macro User's Guide, SC24-S210

For information on OS/VS VSAM
refer to Q~LY~ Iir!Y~l 2!QI~9~
~g1hQg (!~!~) R£Q9£~IDID~I~§
GC26-3818.

macros,
!£f.~§§
§Yig~,

RELATED PUBLICATIONS FOR CMS/DOS USERS

The CMS ESERV command invokes the VSE/AF
ESERV program, and uses, as input, the
control statements that you would use in
VSE/AF. These control statements are
described in gQig~ !Q !hg ~Q2LI~E
!§§gmblg~, GC33-4024.

Linkage editor control statements, used
when invoking the linkage editor under
CMS/DOS, are described in I~~L!f ~Y§!~ID
~Qn!IQl ~!si~illgThi§, SC33-4024.

For information on DOS/VSE and CMS/DOS
tape label processing, refer to the
following pUblications:

Preface v

vi IBM VM/370 eMS User's Guide

\
/

,/

PART 1. UNDERSTANDING CMS ••••••••• 1

SECTION 1. WHAT IT MEANS TO HAVE A CMS
VIRTU AL MACHINE • • • • • • • • • 3

How You Communicate With VM/SP •••••• 3
Getting Commands Into the System .5
Loading CMS in the Virtual Machine: The

1PL Command •••••••••••••• 6
Logical Line Editing Symbols ••••••• 6

How VM/SP Responds to Your Commands ••• 9
Getting Acquainted With CMS ••••••• 10
Virtual Disks and How They Are Defined. 12

permanent virtual Disks. • • • • • 12
Defining Temporary virtual Disks ••• 13
Formatting V irtual Disks • • • • • • • 13

Sharing Virtual Disks: Linking ••••• 14
Identifying Your Disk To CMS: Accessing. 15

Releasing Virtual Disks. • • • • • • • 15

SECTION 2. VM/SP ENVIRONMENTS AND MODE
SWITCHING • • . • • • • • • 17

The CP Environment ••••••••••• 18
The CMS Environment. • • • • • • 18

ED IT, INPUT, and CMS Subset. • • • • • 19
DEBUG ••••.•••••••••••• 21
CMS/DOS. • • . • • • • • • • • • • 21

Interrupting Program Execution • 22
Control Program Interruptions. • • 23
Address stops and Breakpoints. 24

SECTION 3. WHAT YOU CAN DO WITH
VM/SP-CMS COMMANDS. • • •

Command Defaul ts • • ••••
Commands to Control Terminal

• 25
• 25

Communications.. •• • • • 25
Establishing and Terminating
Communications with VM/SP • • • 25

Controlling Terminal Output. • • 26
Controlling Keyboard-dependent

Communications. • • • • • • • • • 30
Commands to Create, Modify, and Move

Data Files and Programs. • • • • • 31
Commands that Create Files •••••• 31
Commands that Modify Disk Files. • 33
Co mman ds to Move Files • • • •• • 33
Commands to Print and Punch Files. 34

Commands to Develop and Test OS and CMS
Programs. • • • •••••••••••• 35

Commands to Develop and Test DOS
Programs. . . . •••••••••••• 36

Commands Used in Debugging Programs. • • 37
Commands to Re~uest Information. • • • • 38

Commands to Request Information About
Terminal Characteristics. • • • ••• 38

Ccmmands to Request Information About
Data Files •.•••••••••••• 39

Ccmmands to Request Information About
Your Virtual Disks. • • • • • • • • • 40

Commands to Request Information About
Your Virtual Machine. • • • • •••• 41

Contents

SECTION 4. THE CMS FILE SYSTEM •
CMS File Formats • • • • • • •
How CMS Files Get Their Names. • • • •

Duplicating Filenames and Filetypes.
What Are Reserved Filetypes? • • •

Filetypes for CMS Commands • •

• 43
43

• 44
• 44

46
46

• 49 output Files: TEXT and LISTING •
Filetypes for Temporary Files.
Filetypes for Documentation. •

• • 50

Filemode Letters and Numbers ••
When to Specify Filemode Letters:

Reading Files • • • • • • • • • •
When to Specify Filemode Letters:

• 51
• 51

53

writing Files • • • • • • ••• 54
How Filemode Numbers are Used. • • 55

Managing Your CMS Disks. • • •••• 57
CMS File Directories • • • • _ 57
CMS Command Search Order • • • 58

SECTION 5. THE EDITORS • •
The CMS Editor •
The EDIT Command • • •

Writing a File Onto Disk
EDIT Subcommands • • • •

The Current Line Pointer •
Verification and Search Columns.
Changing, Deleting, and Adding Lines.
Describing Data File Characteristics •
. Record Length. • • • • • • • • • • •

Record Format. • • • • • •
Using Special Characters • •
Setting Truncation Limits.
Entering a Continuation Character in

• 6 1
•. 61
• 61
• 62
• 64
• 65
• 69
• 69
• 73
• 74

75
• 76
• 79

Column 72 • • • • • • 79
Serializing Records. • • • • 80
Line-Number Editing. • • • • • • 82

Controlling the CMS Editor ••••••• 84
Communicating with CMS and CPo • 84
Changing File Identifiers. • • • • 85
Controlling the CMS Editor's Displays. 86
Preserving and Restoring CMS Editor
Settings. • • • • • • • • • • • 87

X, Y, =, ? Subcommands • • • • • 87
What To Do When You Run Out of Space. 88

The System Product Editor. • • • • • 91
Summary of CMS EDIT Subcommands. • 92

SECTION 6. INTRODUCTION TO THE EXEC
PROCESSORS. • • • • • • • • • • 97

The CMS EXEC Processor • •
Creating EXEC Files.
Invoking EXEC Files.

• • • • • 97
• 98
• 98

PROFILE EXECs. • • • •
Executing Your PROFILE

CMS EXECs and How To Use
Modifying CMS EXECs. •

• • • • • • • 99
EXEC. • • • • • 100
Them. .100

.102
Summary of the CMS EXEC Language
Facilities •••••••••••

Arguments and Variables •••••
Assignment Statements. • • • •
Built-in Functions and Special
Variables • • • • • • • • • •

• .102
.103
.104

• • 105

contents vii

Flow Control in an EXEC. • • • 106
Comparing Variable Symbols and

Constants • . • • • • • • • • 107
Doing I/O With an EXEC. • • • • 108
Monitoring EXEC Procedures • • • • • • 110

The FXEC 2 Processor • • • 110
Relationship of EXEC and EXEC 2 •••• 111
Invoking EXEC 2. • • • • • • •• .111
At tributes of EXEC 2 Files • • • • • • 111

Summary of ~MS EXEC Control Statements
an d Speci al Variables • • • • • • 112

SECTION 7. USING REAL PRINTERS,
PUNCHES, READERS, AND TAPES •• • • • • 117

CMS Unit Record Device Support.
Using the CP Spooling System • •
Altering Spool Files •••••

• • 1 17
• 117

• • 120
Using Your Card Punch and Card Reader

in CM S. . . . • • • • • • • • 122
Handling Tape Files in CMS ••••••• 124

Using the CMS TAPE Command. • 125
Tape Labels in CMS • • • • • • • 127

User Responsibilities. • • • 127
Label Processing in OS Simulation. • 127
Label Processing in CMS/DOS. • 134
CMS TAPESL Macro. • • • .137
Tape Label processing by CMS Commands. 137
LAEELDEF Command. • • • • • • .139
End-of-Volume and End-of-Tape

• 140 Processing. . •••••••••
Error Processing • • • • • • •
The MOVEFILE Command • • • • •

• • 14 1

Tapes Created by OS Utility Programs
Specifying Special Tape Handling

• 142
• 142

Options •..•••••••••••• 143
using Remote spooling Communications •• 143

PART 2. PROGRAM DEVELOPMENT USING CMS •• 145

SECTION A: DEVELOPING OS PROGRAMS
UNDER CMS ...•••••••••••• 147

Using OS Data Sets in CMS •••••••• 149
Access Methods supported by CMS •••• 150

Using the FILEDEF Command. • • • 151
Specifying the ddname. • • • 151
Specifying the Device Type.. • • 152
Entering File Identifications. • • 152

Creating CMS Files From OS Data Sets •• 155
Using CMS Libraries ••••••••••• 156
Using OS Macro Simulation Under CMS ••• 162
Assembling Programs in CMS • •• • .164
Executing Programs. • • • • • • • • 165

TEXT LIBRARIES (TXTLIBS) • •• •• 166
Resolving External References. •• 168
Controlling the CMS Loader •• •• 169
Creating Program Modules. • • • 110
Using FXEC Procedures. • • •• • • 171

Executing Members of OS Module
Libraries or CMS LOADLIBS • • • • 112

SECTION q: DEVELOPING DOS PROGRAMS
UNDER CMS . . . • • • • • • •• • • 115

The CMS/DOS Environment. • • •• •• 115
DL/I in the CM S/DOS Environmen t. • • • • 118
Using DOS Files on DOS Disks • • • • • • 178

Reading DOS Files ••••••••••• 179
Creating CMS Files from DOS" Libraries. 180

Using the ASSGN Command ••••••••• 181

viii IBM VM/SP CMS User's Guide

Manipulating Device Assignments. .182
Virtual Machine Assignments •••••• 183

Using the DLBL Command • • • • • • 183
Entering File Identifications. .184

Using DOS Libraries in CMS/DOS • .185
The SSERV Command. • .186
The RSERV Command. • • • • • .186
The PSERV Command. • • 187
The ESERV Command. • .187
The DSERV Command. • .188
Using DOS Core Image Libraries • • 189

Using Macro Libraries. • •••• 189
CMS MACLIBs. • • • • .190
Creating a CMS MACLIB. • • •••• 190
The MACLIB Command. • • .191

DOS Assembler Language Macros Supported. 194
Assembling Source Programs ••••••• 196
Link-editing Programs in CMS/DOS •••• 197

Linkage Editor Input ••••••••• 197
Linkage Editor Output: CMS DOSLIBs •• 199

Executing Programs in CMS/DOS •••••• 200
Executing DOS Phases • • • • • •••• 200
Search Order for Executable Phases •• 201
Making I/O Device Assignments. .201
Specifying a Virtual Partition Size •• 202
Setting the UPSI Byte ••••••••• 203
Debugging Programs in CMS/DOS ••••• 203
Using CMS EXEC Procedures in CMS/DOS .203

SECTION 10. USING ACCESS METHOD
SERVICES AND VSAM UNDER CMS AND
CMS/DOS •••• ". • • • • • • • .205
Executing VSAM Programs Under CMS ••• 205

Using the AMSERV Command •••••••• 206
AMSERV Output Listings •••••••• 207
Controlling AMSERV Command Listings •• 208

Manipulating OS and DOS Disks for Use
with AMSERV • • • • • • • • • • .209

Data and Mastercatalog Sharing. .209
Disk Compatibility. • • .210
Using VM/SP Minidisks. • • • • .211
Using The LISTDS Command. • •• .212
Usi ng Temporary Disks. • • • • • 213

Defining DOS Input and output Files ••• 214
Using VSAM Catalogs •••••••••• 215
Defining and Allocating Space for

VSAM files. • • • • • • • • •• .218
Using Tape Input and output •••••• 220

Defining OS Input and Output Files ••• 222
Allocating Extents on OS Disks and
Minidisks •••••••••••••• 223

Using VSAM Catalogs •••••••••• 224
Defining and Allocating Space for

VSAM files. • • • •••••••• 227
Using Tape Input and Output •••••• 229

Using AMSERV Under CMS ••••••••• 230
Using the DEFINE and DELETE Functions.231
Using the REPRO, IMPORT, and EXPORT

(or EXPORTRA/IMPORTRA) functions ••• 233
239. • • • • • • • • • • • • .235

SECTION 11. HOW VM/SP CAN HELP YOU
DEBUG YOUR PROGRAMS. • •••• 237

Preparing to Debug. • • • .237
When a Program Abends. • • • •• 237

Resuming Execution After a Program
Check •••••••••••••••• 238

Using DEBUG Subcommands to Monitor

Program Execution • • • • •
Using Symbols with DEBUG.

.•• 239

~ What To Do When Your Program Loops • •
~ Tracing Program Activity ••••

Using the CP TRACE Command • • • • •
Using the SVCTRACE command •

.240

.242
• 242
.243

'\

Using CP Debugging Commands •••
Debugging with CP After a Program

Check • • • • •
Program Du mps. . • • • • •
Debugging Modules. • • • •

• 245
.245

• .246
.247

• .247
268. . • . • . . • • • • • ••••• 248
What Your Virtual Machine Storage Looks
Like.. .. • • • • • • • • .249

Shared and Nonshared Systems ••••• 249

SECTION 12. USING THE CMS BATCH
FACILITY ••.••

Submitting Jobs to the CMS Batch
Facility .•..••••••••
Input to the Batch Machine • •
How the Batch Facility Works.

Preparing Jobs for Batch Execution •
Restrictions on CP and CMS Commands

.253

.253
• .253

.256
• .257

in Batch Jobs •••••••••••• 258
Batch Facility Output ••••••••• 259

Purging, Reordering, and Restarting
Batch Jobs. . . • • • •••• 259

Using CMS EXEC Files for Input to the
Batch Facility. • • • • • • .260

Sample System Procedures for Batch
Execution. • • • • • • • .261

A Eatch EXEC for a Non-CMS User •••• 262

) SECTION 13. PROGRAMMING FOR THE CMS
ENVIRONMENT. . • • • • • • •• • .265

.265 Program Linkage .•••••
Return Code Handling • •
Parameter Lists. • • • •

Calling a CMS Command from a
Executing Program Modules.

• • • • • 266
• .266

Program •• 267

The Transien t Program Area • • • • •
CMS Macro Instructions • • • • • • ••

Macros for Disk File Manipulation ••
CMS Macros for Terminal

• 268
• 269
.270
• 270

Communications. • • • • • .276
CMS Macros for unit Record and Tape

1/0 • • • • • • • • • • • .278
Interruption Handling Macros. .278

Updating Source Programs Using CMS .278
The UP rATE Philosophy ••••••••• 279
Update Files. • • • • • • . .279
sequencing Output Records. .281
Multiple Updates. • • • • • .284
The VMFASM EXEC Procedure ••••••• 289

PART 3. LEARNING TO USE EXECS ••

SECTION 14. BUILDING CMS EXEC
PROCEDUFES. . . •

What is a Token? •
Var iables. . . .
Arguments•

Using the &INDEX Special Variable. •
Checking Arguments. • •

~ Execution Paths in a CMS EXEC. •
~ Labels in a CMS EXEC Procedure

Conditional Execution with the &IF

• 29 1

• 293
.293
.294
.297
.299
.299
• 301
• 301

Statement • • • •••••• 302
Branching with the &GOTO Statement •• 303
Branching with the &SKIP Statement •• 304
Using Counters for Loop Control •••• 305
Loop Control with the &LOOP Statement.306
Nesting CMS EXEC Procedures. •• .308
Exiting From CMS EXEC Procedures ••• 309

Terminal Communications ••••••••• 310
Reading CMS Commands and CMSEXEC
Control Statements from the Terminal.311

Displaying Data at a Terminal. • .311
Reading from the Console Stack. .314
Exchanging Data Between Programs

through the Stack • • • • • ••••
Stacking CMS Commands. • •
Stacking Lines for EXEC to Read.
Clearing the Console Stack • •

File Manipulation with CMS EXECs •
Stacking EXEC Files. • • • • •

SECTION 15. USING CMS EXECS WITH CMS

• .315
• .318

.319

.320

.321

.321

COMMANDS. • • • • • • • • • • • .325
Monitoring CMS Command Execution .325
Handling Error Returns From CMS

Commands. • • • • • • • • • • • .326
Using the &ERROR Control Statement •• 326
Using the &RETCODE Special Variable •• 327

Tailoring CMS Commands for Your Own Use.328
Creating Your Own Default Filetypes •• 329

SECTION 16. REFINING YOUR CMS EXEC
PROCEDURES ••••••••••••••• 331

Annotating CMS EXEC Procedures. .331
Error situations • • • • • • • • .332

Wri ting Error Messages. • • • .332
Debugging CMS EXEC Procedures. • .334

Using CMS Subset • • • • • • • .334
Summary of CMS EXEC Interpreter Logic.335

SECTION 17. WRITING CMS EDIT MACROS ••• 337
Creating CMS Edit Macro Files.. • .337
How CMS Edit Macros Work. • • • • .337

The Console Stack. • • • • • • .339
Notes on Using EDIT Subcommands. .340

The STACK Subcommand. • • .343
An Annotated Edit Macro. • .344
User-Written Edit Macros. • •••• 346

$M ACRO S. • .346
$MARK. • • • .347
$POINT • • • • • • •••• 349
$COL • • •••• 350

PART 4. THE HELP FACILITY.

SECTION 18. USING THE HELP
Issuing the Help Command •
Menus •••••••••••
The System Product Editor.
Printing Help Files.
Using the PF Keys. • • • •

• • .351

FACILITY ••• 353
• .354

••• 356
.357

• • • • • • .357
.358

SECTION 19. HOW THE HELP FACILITY WORKS.361
HELP Facility Filetypes. • •••• 361

SECTION 20. TAILORING THE HELP FACILITY.363
HELP Files. • • • • • .363

Adding HELP Files. • • .363
Deleting HELP Files. .363

Contents ix

Altering Existing HELP Files.
creating Menus • • • • • •

Example of Menu Creation ••
375. • • • • • • • • • • • •

SECTION 21. HELP FILE NAMING
. CONVENTIONS • • •
Naming Conventions • • • •••

SECTION 22. CREATING HELP FILES.
Creating Additional HELP F~les •

Enclosing Text (.BX Format Word)

.364
• • 364
• .364
• .365

.367
• .367

• .369
• .369

.370
Placing comments in HELP Files (.CM

Format Word). • • • • • • • • • • • • 372
Conditional Display of Text (.CS

Format Word) ••••••••••••• 372
Use of Format Mode (. FO Format Word) .373
Indenting Text (.IN and .IL format

Words) •••••••••••••••• 373
Use of Offsets (. OF Format Word) ••• 375
spacing between Lines of Text (.SP

Format Word) ••••••••••••• 376
Translating Output Characters (.TR

Format Word). • • •••• .377

APPENDIXES • • • • • • 379

APPENDIX A. SUMMARY OF CMS COMMANDS ••• 381

APPENDIX B. SUMMARY OF CP COMMANDS ••• 389

x IBM VM/SP CMS User's Guide

APPENDIX C. CONSIDERATIONS FOR 3270
DISPLAY TERMINAL USERS ••

En ter ing Commands. • • • •
Setting Program Function Keys. •
Controlling the Display Screen •

Additional Display Screen

.395

.395
•• 395

.396

Ca pab iIi ties. • • • • • .398
Console Output. • • • • .398

Signaling Interruptions. • • •••• 400
Halting Screen Displays. • ••• 401

Using the CMS Editor with a 3270 • .401
Entering EDIT Subcommands •• -. .401
Controlling the Display Screen. .403
The Current Line Pointer. • • .404
Using Program Function (PF) Keys .404
Using the Editor in Line Mode. • .405
Using Special Characters on a 3270 •• 406

Using APL with a 3270 •••••••••• 407
409. • • • • • • • • • • • • • .408
Leaving the APL Environment. • • .408

Using the 3277 Text Feature. • • • .409
Error Situations ••••••••••• 409
Leaving the Text Environment. • .409

APPENDIX D. SAMPLE TERMINAL SESSIONS •• 411
Sample Terminal Session Using the CMS
Editor and CMS File System Commands

Sample Terminal Session Using
Line-Number Edi tin g • • • • • •

Sample Terminal Session For OS
Proq rammers • • • • • • • • • •

Sample Terminal Session for DOS
Programmmers •••••••••••

Sample Terminal Session Usinq Access
Method Services •

INDEX •••••••

.412

.420

.423

.427

.433

• .441

~ Figure

Figure

Figure
Figure

Figure

Figure

Figure
Figure

Figure

Figure

1.

2.

3.
4.

5.

6.

7.
A.

10.

Figure 11.
Figure 12.

Figure 13.
Figure 14.

Figure 15.

Figure 16.
Figure 17.

VM/SP Environments and Mode
Switching ••••••••••••••••••••• 17
Filetypes Used by CMS
Commands •••••••••••••••••••••• 48
Filetypes Used in CMS/DOS ••••• 49
How CMS Searches for the
Com.and to Execute •••••••••••• 60
Positioning the Current Line
Pointer ••.•••••••••••••••••••• 68
Number of Records Handled by
the Editor •••••••••••••••••••• 75
Default Tab Settings •••••••••• 77
Summary of CMS EDIT Subcommands
and Macros •••••••••••••••••••• 92
Summary of CMS EXEC Built-In
Functions •••••••••••••••••••• 10S

Summary of CMS EXEC Control
Statements ••••••••••••••••••• 112
CMS EXEC Special Variables ••• 115
CP Query unit Record
Response ••••••••••••••••••••• 117
OS Terms and CMS Equivalents.148
CMS Commands That Recognize
OS Data Sets and OS Disks •••• 149
Creating CMS Files From OS
Data Sets •••••••••••••••••••• 157
OS Macros Simulated by CMS ••• 163
CMS/DOS Commands and CMS
Commands with Special
Operands for CMS/DOS ••••••••• 177

Figure 18.

Figure 19.
Figure 20.

Figure 21.
Figure 22.

Figure 23.
Figure 24.

Figure 25.

Figure 26.

Figure 27.
Figure 28.
Figure 29.

Figure 30.
Figure 31.
Figure 32.

Figure 33.

Figure 34.
Figure 35.
Figure 36.

VSE/AF Macros Supported by
CMS •••••••••••••••••••••••••• 195
Summary of DEBUG Subcommands.241
Comparison of CP and CMS
Facilities for Debugging ••••• 248
Simplified CMS storage Map ••• 250
Sample CMS Assembler Program
Entry and Exit Linkage ••••••• 266
FSCB Format •• ~ ••••••••••••••• 270
A Sample Listing of a
Program That Uses CMS Macros.277
Updating Source Files with the
UPDATE Command ••••••••••••••• 282
An Update with a Control
File ••••••••••••••••••••••••• 288
CMS Stacks ••••••••••••••••••• 316
CMS Menu ••••••••••••••••••••• 356
Example of Using PF1, PF3
and PF12 •••••••• ~ •••••••••••• 359
HELP Format Word Summary ••••• 370
CMS Command Summary •••••••••• 386
CMS Commands for System
programmers •••••••••••••••••• 387
CP Privilege Class
Descriptions ••••••••••••••••• 389
CP Command Summary ••••••••••• 390
3270 Screen Display •••••••••• 400
How the CMS Editor Formats
a 3270 Screen •••••••••••••••• 402

Contents xi

xii IBM VM!SP eMS User's Guide

Part 1. Understanding eMS

Learning how to use CMS is not an end in itself: you have a specific
task or tasks to do, and you need to use the computer to perform them.
CMS has been designed to make these tasks easier, but if you are
unfamiliar with CMS, then the tasks may seem more difficult. The
information contained in Part 1 of the user's guide is organized to help
you make the acquaintance of CMS quickly, so that it enhances, rather
than impedes, the performance of your tasks.

"Section 1. What It Means To Have a CMS Virtual Machine" introduces
you to VM/SP and its conversational component, CMS. It should help you
to get a picture of how you, at a terminal, use and interact with the
system.

During a terminal session, commands and requests that
processed by different parts of the system. How and
communicate with these different programs, is described
VM/SP Environments and Mode Switching."

you enter are
when you can

in .. Section 2.

There are almost two hundred commands and subcommands comprising the
VM/SP language. There are some that you may never need to use; there are
others that you will use over and over again. "Section 3. What You Can
Do With VM/SP-CMS Commands" contains a sampling of ccmmands in various
functional areas, to give you a general idea of the kinds of things you
can do, and the commands available to help you do them.

Almost every CMS command that you enter results in some kind of
activity with a direct access storage device (DASD), known in CMS simply
as a disk, or minidisk. Data and programs are stored on disks in what
are called "files." "Section 4. The CMS File System" introduces you to
the creation and handling of CMS files.

"Section 5. The Editors" contains all the basic information you need
to create and write a disk file directly from your terminal, or to
correct or modify an existing CMS file.

Just as important as the CMS editors are the CMS facilities, called
EXEC and EXEC 2 processor or interpreter. Using EXEC files, you can
execute many commands and programs by entering a single command line
from your terminal, or you can write your own CMS commands. "Section 6.
Introduction to the EXEC Processors" presents a survey of the basic
characteristics and functions of EXEC.

"Section 7. Using Real Printers, Punches, Readers, and Tapes"
discusses how to use punched cards and tapes in CMS, and how to use your
virtual printer and punch to get real output.

Part 1. Understanding CMS

(
\

2 IBM VM/SP eMS User's Guide

\

,/

Section 1. What It Means To Have a eMS
Virtual Machine

Virtual Machine/System Product (VM/SP) is a program product that
controls "virtual machines." A virtual machine 1S the functional
equivalent of a real computer that you control from your terminal, using
a command language of active verbs and nouns.

The command languages correspond to the components l of VK/SP. CP
controls the resources of the real machine; that is, the physical
machine in your computer room; it also manages the communications among
virtual machines, and between a virtual machine and the real system.
eMS is the conversational operating system designed specifically to run
under CP; it can simulate many of the functions of the OS and DOS
operating systems, so that you can run many OS and DOS programs in a
conversational environment.

Although this publication is concerned primarily with using CMS, it
also contains examples of CP commands that you, as a eMS user, should be
familiar with.

How You Communicate with VM/SP

When you are running your virtual machine under VM/SP, each command, or
request for work, that you enter on your terminal is processed as it is
entered; usually, you enter one command at a time and commands are
processed in the order that you enter them.

You can enter CP commands from either the CP or CMS environment; but
you cannot enter CMS commands while in the CP environment. The concept
of "environments" in VM/SP is discussed in "Section 2. VM/SP
Environments and Mode Switching."

After you have typed or keyed in the line you wish to enter, you
press the Return or Enter key on the keyboard~ When you press this key,
the line you have entered is passed to the command environment you want
to have process it. If you press this key without entering any data,
you have entered a "null line." Null lines sometimes have special
meanings in VM/SP.

If you make a mistake entering a command line, VM/SP tells you what
your mistake was, and you must enter the line again. The examples in
this publication assume that the command lines are correctly entered.

You can enter commands using any combination of uppercase and
lowercase characters; VM/SP translates your input to uppercase.

ITwo of these components, ep and eMS, have been extensively modified and
integrated into a VM/370 Release 6 base. This collective package (CP,
eMS, RSCS, and IPCS) 1S referred to a VM/SP. The components RSCS and
IPCS are technically at a Release 6 level of the product. They do not
contain new function supportive of the new CP and CMS functions.
However, there are recommended program products (Remote Spooling
Communication Subsystem (RSCS) Networking, program number 5148-XP1 and
Interactive Problem Control System (IFCS) Extension, program number
5748-SA1) available that have been technically advanced to function
supportively with VM/SP.

Section 1. What it Means to Have a CMS Virtual Machine 3

Examples in this publication show all user-entered input lines in
lowercase characters and system responses in uppercase characters.

You use CP commands to communicate with the control program. CP commands
control the devices attached to your virtual machine and their
characteristics.

For example, if you want to allocate additional disk space for a work
area or if you want to increase the virtual address space assigned to
your virtual machine, use the CP command DEFINE. CP takes care of the
space allocation for you and then allows your virtual machine to use it.

Or if, for example, you are rece1v1ng printed output at your terminal
and do not want to be interrupted by messages from other VM/SP users,
you can use the CP command SET MSG OFF to refuse messages, since it is
CP that handles communication among virtual machines.

Using CP commands, you can also send messages to the system operator
and to other users, modify the configuration of devices in your virtual
machine, and use the virtual machine input/output devices. CP commands
are available to all virtual machines using VM/SP. You can invoke these
commands when you are in the virtual machine environment using CMS (or
some other operating system) in your virtual machine.

The CP commands and command privilege classes (not all commands are
available to all users) are listed in "Appendix B: Summary of CP
Commands". The CP Commands applicable to the average user are discussed
in detail in the VML.§.g CP ~.Q1!!'!!!ru!g Re!er~l}£~ fo!: Gen~! Us~rs. The rest
of the CP commands are discussed in Y~/SP QE~~atQr's Guide. However,
since many CP commands are used with CMS commands, some of the CP
commands you will use most frequently are discussed in this publication,
in the context of their usefulness for a CMS application. To aid you in
distinguishing between CMS commands and CP commands, all CP commands
used in examples in this publication a re prefaced with "CP".

The CMS command language allows you to create, modify, and debug problem
or application programs and, in general, to manipulate data files.

Many OS language processors can be executed under CMS: the assembler,
VS BASIC, OS FORTRAN IV, OS/VS COBOL, and OS PL/IOptimizing and
Checkout Compilers. In addition, the DOS/VS COBOL and OOS PL/I Program
Products are supported. You can find a comprehensive list of language
processors that can be executed under CMS and relevant publications in
the !~L'§'R Int~Q~~£!iQD. CMS executes the assembler and the compilers
when you invoke them with CMS commands. The ASSEMBLE command is used to
present examples in this publication; the supported compiler commands
are described in the appropriate DOS and OS program product
documentation.

When you invoke the EDIT command, the System Product Editor places
you in CMS (EDIT) compatibility mode. In this mode the CMS editor and
the System Product Editor both allow you to create and modify files.
The CMS EXEC interpreter and the EXEC 2 interpreter both provide
execution procedures consisting of CP and CMS commands; they also

4 IBM VM/SP CMS User's Guide

provide the conditional execution capability of a macro language. The
DEBUG command .gives you several program debugging subcommands.

other CMS commands allow you to read cards from a virtual card
reader, punch cards to a virtual card punch, and print records on a
virtual printer. Many commands are provided to help you manipulate your
virtual disks and files.

You use the HELP command
how to use CP commands and
explanations of CP and CMS
when a brief explanation
sufficient, thereby avoiding
to a manual.

to display at your terminal information on
CMS commands, subcommands, and EXECs, and
messages. You can issue the HELP command
of syntax, a parameter, or function is
interrupting your terminal session to refer

Since you can invoke CP commands from within the CMS virtual machine
environment, the CP and CMS command languages are, for practical
purposes, a single, integrated ccmmand language for CMS users.

GETTING COMMANDS INTO THE SYSTEM

Before you can use CP and CMS, you should know (1) how to operate your
terminal and (2) your userid (user identification) and password.

There are many types of terminals you can use as a VM/SP virtual
console. Before you can conveniently use any of the commands and
facilities described in this publication, you have to familiarize
yourself with the terminal you are uS1ng. Generally, you can find
information about the type of terminal you are using and how to use it
with VM/SP in the !~L~g !~~~in~l Us~~~§ Guid~. If your terminal is a'
37 67, you also need the IBM 1161 Q~~!g~§ Gui£~.

In this publication, examples and usage notes assu~e that you are
using a typewriter-style terminal (such as a 2741). If you are using a
display terminal (such as a 3270), consult "Appendix C: Considerations
for 3270 Display Terminal Users" for a discussion of special techniques
that you can use to communicate with VM/SP.

Your userid is a symbol that identifies your virtual machine to VM/SP
and allows you to ga1n access to the system. Your password is a symbol
that functions as a protective device ensuring that only those allowed
can use your virtual machine. The use rid and password are usually
defined by the system programmer for your installation.

To establish contact with VM/SP, you switch the terminal device on and
VM/SP responds with some form of the message

VM/370 online

Section 1. What it Means to Have a CMS Virtual Machine 5

to let you know that VM/SP is running
do not receive the "VM/370 online"
~~~ ~uig~ for specific directions. 
key (or equivalent) on your terminal 
identify yourself to the system: 

and that you can use it. If you 
message, see the !I1/SP ler.inal 

You can now press the Attention 
and issue the LOGON command to 

ep logon smith 

where SMITH represents a userid. The LOGON command is entered by 
pressing the Return (or Enter) key. If VM/SP accepts your userid, it 
responds by asking you for your password: 

ENTER PASSWORD: 

You then enter your password, the displaying of it may be supressed, 
depending on your terminal. 

LOADING CMS IN THE VIRTUAL MACHINE: THE IPL COMMAND 

You load CMS in your virtual machine using the IPL command: 

cp ipl cms 

where "ems" is assumed to be the saved system name 
installation's CMS. You could also load CMS by referring to 
its virtual device address, such as 190: 

cp ipl 190 

VM/SP responds by displaying a message such as: 

VM/SP CMS - 02/28/79 12:02 

for your 
it using 

to indicate that the IPL command executed successfully and that CMS is 
loaded into your virtual machine. 

Your userid may be set up for an automatic IPL, 
this message, indicating that you are in the CMS 
without having to issue the IPL command. 

so that you receive 
command environment, 

Now you can enter a null line to begin your virtual machine 
operation. 

Note: If this is the first time you are using a new virtual disk 
assIgned to you, you receive the message: 

DMSACCl12S DISK'A(191}' DEVICE ERROR 

and you must "format" the disk, that is, prepare it for use with CMS 
files. See "Formatting Virtual Disks" below. 

Logical Line Editing Symbols 

To aid you in entering command or data lines from your terminal, VM/SP 
provides a set of logical line editing symbols, which you can use to 
correct mistakes as you enter lines. Each symbol has been assigned a 
default character value. These normally are: 

6 IBM VM/SP CMS User's Guide 



) 

~Y!!!!!Q! 
IJogical 
Loqical 
Logical 
Logical 

character delete 
line end 
line delete 
escape 

Ch~I:a£i~!: 
Q) 
# 
¢ 

" 

The loqical character delete symbol (~) allows you to delete one or more 
of the previous characters entered. The Q) deletes one character per Q) 
entered, including the ¢ and # logical editing characters. For example: 

ABCIQ)Q) results in AB 
ABCQ)D results in ABD 
¢Q)DEF ~esults in DEF 
ABCQ)Q)Q) deletes the entire strinq 

The logical line end symbol (I) allows you to key in more than one 
command o.n the same line, and thus minimizes the amount of time you have 
to wait between entering commands. You type the I at the end of each 
logical command line, and follow it with the next logical command line. 
VM/SP stacks the commands and executes them in sequence. For example, 
the entry: 

query blip'query rdymsglquery search 

is executed in the same way as the entries: 

query bli p 
query rdymsg 
query search 

The logical line end symbol also has special significance for the #CP 
function. Beginning any physical line with #CP indicates that you are 
enterinq a command that is to be processed by CP immediately. If you 
have set a character other than # as your logical line end symbol, you 
should use that character instead of a I. 

'T'he logical line delete symbol (¢) (or 9 for Teletype l Model 33/35 
terminals) deletes the entire previous physical line, or the last 
logical line back to (and including) the previous logical line end (I). 
You can use it to cancel a line containing many or serious errors. If a 
~ immediately precedes the ¢ sign, only the I sign is deleted, since the 
I indicates the beginning of a new line, and the ¢ cancels the current 
lin e. For example: 

• Loqical Line Delete: 

ABCltrEF¢ deletes the IDEF and results in ABC 
ABCI¢ results in ABC 
ABC#DEF¢#GHI results in ABCIGHI 

lTrademark of the Teletype Corporation, Skokie, Illinois. 

Section 1. What it Means to Have a CMS Virtual Machine 7 



ABC#DEF¢GHI results in ABCGHI 

• Physical Line Delete: 

ABC¢ deletes the whole line 

Note that when you cancel a line by using the ¢ logical line delete 
symbol, you do not need to press a-carriage return; you can-continue 
entering data on the same line. 

The logical escape symbol (") causes VM/SP to consider the next 
character entered to be a data character, even if it is normally one of 
the logical line editing symbols (W, ¢, It, or #). For example: 

ABC"¢D r~sults in ABC¢D 
""ABC"" results in "ABC" 

If you enter a single logical escape symbol (~ as the last character 
on a line, or on a line by itself, it is ignored. 

When you enter logical escape 
logical editing characters, the 
For example, the lines: 

ABC""WDEF 

characters in conjunction 
results may be difficult 

ABC""WWDEF both result in the line:ABCDEF 

with other 
to predict. 

The logical line editing symbols are defined for each virtual machine 
during VM/SP system generation. If your terminal's keyboard lacks any 
of these special characters, your installation can define other special 
characters for logical line editing. You can find out what logical line 
editing symbols are in effect for your virtual machine by entering the 
command: 

cp query terminal 

The response might be something like: 

LINEND # , LINEDEL ¢ , CHARDEL W , ESCAPE " 
LINESIZE 130, MASK OFF, APL OFF, ATTN OFF, MODE VM 

You can use the CP TERMINAL command to 
editing characters for your virtual machine. 

cp terminal linend / 

Then, the line: 

input # line I input / # 

would be interpreted: 

input ~ line 
input 
# 

8 IBM VM/SP CMS User's Guide 

change the logical line 
For example, if you enter: 



The terminal characteristics listed in the response to the CP QUERY 
TERMINAL command are all controlled by operands of the CP TERMINAL 
command. 

HOW VM/SP RESPONDS TO YOUR COMMANDS 

CP and CMS respond differently to different types of requests. All CMS 
command responses (and all responses to CP commands that are entered 
from the CMS environment) are followed by the C"S ready message. The 
form of the ready message can vary, since it can be changed using the 
SET command. The long form of the ready message is: 

R; T=7.36/19.89 09:26:11 

If you have issued the command: 

set rdymsg smsg 

the ready message looks like: 

R; 

When you enter a command line incorrectly, you receive an error 
message, describing the error. The ready message contains the last 5 
digits (4 digits for a negative return code) from the command: for 
example: 

R(00028); 

indicates that the return code from the command was 28. 

A ready message from the command may contain a negative return code; 
for example: 

R(-OOOl); 

indicates that the return code from the command was -0001. 

If you enter a CP or CMS command that requests information about your 
virtual machine, the response should be the information requested. For 
example, if you issue the command: 

cp display g 

CP responds by showing you the contents of your virtual machine's 
general registers, for example: 

GPR 0 
GPR 4 
GPR A 
GPR 12 

00000003 00003340 000007AO 00000003 
= 00000848 C4404040 00000040 00002DFO 

00000008 000132F8 00002BAO 00002230 
= 00003238 FFFFFFFD 50013386 00000000 

Similarly, if you issue the CMS command: 

listfile * assemble c 

you might receive the following information: 

Section 1. What it Means to Have a CMS Virtual Machine 9 



JUNK 
MYPROG 

ASSEMBLE Cl 
ASSEMBLE C1 

If you enter a CP command to alter your virtual machine configuration 
or the status of your spool files, CP responds by telling you that the 
task is accomplished. The response to: 

cp purge reader all 

might be: 

0004 FILES PURGED 

Some CP commands, those that alter some of thecharacteris~ics of 
your virtual machine, give you no response at all. If you enter: 

cp spool e class x hold 

you receive no response from CP. 

certain CMS commands may issue prompting messages, to request you to 
enter more information. The SORT command, which sorts CMS disk files, 
is an example. If you enter: 

sort i~ file at out file a1 

you are prompted with the message: 

DMSSRT604R ENTER SORT FIELDS: 

and you can then specify which fields you wish the input records to be 
sorted on. 

Getting Acquainted with eMS 

If you have just logged on for the first time, and you want to try a few 
eMS commands, enter: 

query disk a 

the response might look like: 

A (lq1): 18 FILES; 321 REC IN USE, 143 LEFT (OF 1064), 30% FULL (4 CYL), 3330, R/W 

The response should tell you that you have an A-disk at virtual address 
191; it also provides information such as how much room there is on the 
disk and how much of it is used. Again, if you receive an error message 
that indicates the disk may not be formatted, see "Formatting Virtual 
Disks." 

Your A-disk is the disk you use most often in eftS, to contain your 
CMS files. Files are collections of data, and may have many purposes. 

]ot§: When you issue the EDIT command, the System Product Editor 
automatically places you in CMS Editor (EDIT) comp.tibility mode. In 
this mode, you can issue both EDIT and XEDIT subcommands. For complete 
information on EDIT compatibility mode, as well as instructions on how 
to invoke the CMS editor itself, refer to the publication !liSP System 
~,guc:t Edi1.Q!: ~.Q.!.m51nd and ~ !lef~~.!!~. 

10 IBM VM/SP CMS User's Guide 



For this exercise, the data is meaningless. Using the CMS Editor, 
ent er: 

edit junk file 

You should receive the response: 

NEW FILE: 
EDIT: 

which indicates that this file does not already exist on your A-disk. 
Enter: 

input 

You should receive the response: 

INPUT: 

and you can start to create the file, that is, write input records that 
are eventually going to be written onto your A-disk. Enter 5 or 6 data 
lines, such as: 

hickory dickory dock 
the mouse ran up the clock 
the clock struck one 
and down he run 
dickory hickory dock 

Now, enter a null line (one with no data}. You should receive the 
message: 

EDIT: 

Enter: 

file 

You shouid see the message: 

R ; T= 0 • 0 1 10 • 0 2 09: 3 1 : 29 

You have ;ust written a CMS file onto your A-disk. If you enter: 

type junk file a 

you should see the following: 

HICKORY DICKORY DOCK 
THE MOUSE RAN UP THE CLOCK 
THE CLOCK STRUCK ONE 
AND DOWN HE RUN 
DICKORY HICKORY DOCK 

The CMS command, TYPE, requested a display of the disk file JUNK 
FILE, on your A-disk. 

To erase the file, enter: 

erase junk file 

NOw, if you reissue the TYPE command, you should receive the message: 

FILE NOT FOUND 

section 1. What it Means to Have a CMS Virtual Machine 11 



Most CMS commands create or reference disk files, and are as easy to 
use as the commands shown above. Your CMS disks are among the most 
important features in your VM/SP virtual machine. 

Virtual Disks and How They Are Defined 

Under VIi/SP, a real direct access storage device (DASD) (disk pack) or 
an FB-512 device can be divided into many small areas, called minidisks. 
Minidisks (also called virtual disks because they are not equivalent to 
an entire real disk) are defined in the VM/SP directory, as extents on 
real disks. For CMS applications, you never have to be concerned with 
the extents on your minidisks; when you use CMS-formatted minidisks, 
they are, for practical purposes, functionally the same as real disks. 
Minidisks can also be formatted for use with as or DOS data sets or VSAM 
files. 

You can have two types of disks, permanent and temporary. Permanent 
disks persist across logons while temporary disks are automatically 
destroyed at logoff. Both types may be attached to your machine during 
a terminal session. Permanent disks are defined in the VM/SP directory 
entry for your virtual machine. Temporary disks are those you define for 
your own virtual machine using the CP DEFINE command, or those attached 
to your virtual machine by the system operator. 

PERMANENT VIRTUAL DISKS 

The VM/SP directory entry for your userid defines your permanent virtual 
disks. Each disk has associated with it an access mode specifying 
whether you can read and write on the disk or only read from it (its 
read/write status). virtual disk entries in the VM/SP directory may 
look like the following: 

MDISK 190 2314 000 050 CMS190 R 
MDISK 191 3330 010 005 BDISKE W 
MDISK 194 3330 010 020 CMSOOl W 
MDISK 195 FB-512 1000 500 FBDISK W 
MDISK 198 3330 050 010 CMS192 W 
MDISK 19E 3330 010 050 CMS19E R 

The first two fields describe the device, minidisk in this example, 
and the virtual address of the device. Virtual addresses (shown above 
as 190, 191, and so on), are the names by which you and VM/SP identify 
the disk. Each device in your virtual machine has an address which may 
or may not correspond to the actual location of the device on the VM/SP 
system. 

The third field specifies the device type of your virtual disk. For 
count-key-data devices, the fourth and fifth fields specify the starting 
real cylinder at which your virtual disk logically begins and the number 
of cylinders allocated to your virtual disk, respectively. For PB-512 
devices, the fourth field specifies the starting real block numbers 
where your virtual disk begins, and the fifth field is the number of 
blocks allocated to your virtual disk. 

The sixth field is the label of the real disk on which the virtual 
disk is defined and the seventh field is a letter specifying the 
read/write mode of the disk; "R" indicates that the disk is a read-only 
disk, and "W" indica tes that you have read/write privileges. The KDISK 

12 IBM VM/SP CMS User's Guide 



control statement of the Directory Service Program is described in the 
!~L~g QE~!~1QI~§ §YiQ~· 

DEFINING TEMPORARY VIRTUAL DISKS 

Using the CP DEFINE command, you can attach a temporary disk to your 
virtual machine for the duration of a terminal session. The following 
command allocates a 10-cylinder temporary disk from a 3330 device and 
assigns it a virtual address of 291: 

cp define t3330 as 291 cyl 10 

When you define a minidisk, you can choose any valid address that is not 
already assigned to a device, in your virtual machine. Valid addresses 
for minidisks range from 001 through 5FF, for a virtual machine in basic 
control mode. 

FORMATTING VIRTUAL DISKS 

Before you can use any new virtual disk, you must format it. This 
applies to new disks that have been assigned to you and to temporary 
disks that you have allocated with the CP DEFINE command. When you 
issue the FORMAT command you must use the virtual address you have 
defined for the disk and assign a CMS mode letter, for example: 

format 291 c 

y CMS then prompts you with the following message: 

DMSFOR603R FORMAT WILL ERASE ALL FILES ON DISK 'C(291} '. DO YOU 
WISH TO CONTINUE? (YES, NO) : 

You respond: 

yes 

CMS then asks you to assign a label for the disk, which may be anything 
you choose. Labels can have a maximum of 6 characters. When the 
mess age: 

DMSFOR605R ENTER DISK LABEL: 

is issued, you respond by supplying a disk label. For example, if this 
is a temporary disk, you might enter: 

scrtch 

CMS then erases all the files on that ~isk, if any existed, and formats 
the disk for your use. When you enter the label, CMS responds by 
telling vou: 

FORMATTING DISK 'c' 

, 10' CYLINDERS FORMATTED ON 'c (291) '. 

R; T= 0 . 15 /1 . 60 1 1 : 26: 03 

The FORMAT command should only be used 
disks vou are going to use to contain 

to format CMS disks, that is, 
CMS files. In addition, this 

Section 1. What it Means to Have a CMS Virtual Machine 13 



command allows you a choice of physical disk block size as an option. 
Refer to the VML~~ £MS £.Qyg.ng gjlg 1!g£~ .Refer§!!.£~ t.Q~ s§!ail for 
details. To format count-key-data disks for OS, DOS, or VSAM 
applications, the disks should be formatted using the IBCDASDI program. 
To format FB-5t2 disks for OS, DOS, or VSAM applications, use the INTDK 
stand-alone utility program. See VML~~ QE~~ato~!§ Guig~ for details. 

Sharing Virtual Disks: Linking 

Since only one user can own a virtual disk, and there are many occasions 
that require users to share data or programs, VM/SP allows you to share 
virtual disks, on either a permanent or temporary basis, by "linking." 

Permanent links can be established for 
entry. These disks are then a part 
configuration every time you log on. 

you in your 
of your 

VM/SP directory 
virtual machine 

You can also have another user's disk temporarily added to your 
configuration by using the CP LINK command. For example, if you have a 
program that uses data that resides on a disk identified in userid 
DATA's configuration as a 194, and you know that the password assigned 
to this disk is GO, you could issue the command: 

cp link to data 194 as 198 r pass= gol 

DATA's 1q4 disk is then added to your virtual machine configuration at 
virtual address 198. to avoid gutter. 

The "R" in the command line indicates the access mode; in this case, 
it tells CP that you only want to read files from this disk and you will 
not be allowed to write on it. If you try to issue this command when 
someone already has write access to that disk, you will not be able to 
establish the link. If you want to link to DATA in any event, you can 
reissue the LINK command using the access mode RR: 

cp link data 194 198 rr gol 

The keywords 'TO', 'AS', and 'PASS=' are optional; you do not have to 
specify them. 

However, note that using the RR access allows one user to read a disk 
while another is updating the same disk at the same time. TL:a may 
produce unpredictable results. 

You can also use the CP LINK command to link to your own disks. For 
example, if you log on and discover that another user has access to one 
of your disks, you may be given read-only access, even if it is a 
read/write disk. You can request the other user to detach your disk 
from his virtual machine, and after he has done so, you can establish 
the link: 

cp link * 19 t t 91 

When you link to your own disks, you can specify the userid as * and you 
do not need to specify the access mode or a password. 

You can find more information about the CP LINK command and CP access 
modes in !~L~g ~~ CO.m.!!!gnd !!ef~~~~ fQ~ ~~! Use!.§. 

lNote that the password cannot be entered on the command line if the 
password suppression facility was specified at sysgen. 

14 IBM VM/SP CMS User's Guide 



Identifying Your Disk to eMS: Accessing 

LINK and DEFINE are CP commands: they tell CP to add DASD devices to 
your virtual machine configuration. CMS must also know about these 
disks, and you must use the ACCESS command to establish a filemode 
lett er for them: 

access 194 b 

CMS uses filemode letters to manage your files during a terminal 
session. By using the ACCESS command you can control: 

• whether you can write on a disk or only read from it (its read/write 
status) 

• The library search order for programs executi~g in your virtual 
machine 

• Which disks are to contain the new files that you create 

If you want to know which disks you currently have access to, issue 
the command: 

query search 

You might see the following display: 

PER191 
DAT194 
CMS1ClO 
CMS19E 

191 A 
198 B 
190 S 
19E Y 

R/W 
R/O 
R/O 
R/O 

The first column indicates the label on the disk (assiqned when the 
disk is formatted), and the second column shows the virtual address 
assiqned to it. 

The third column contains the filemode letter. All letters of the 
alphabet are valid filemode letters. 

The fourth cclumn indicates the read/write status of the disk. The 
190 and lQE disks in this example are read-only disks that contain the 
CMS nucleus and disk-resident commands for the CMS system. You will 
probably use your 191 (A) disk as your primary read/write work disk. 

RELEASING VIRTUAL DISKS 

When you no longer need a disk during a terminal session, or if you want 
to assign a currently active filemode letter to another disk, use the 
CMS command RELEASE: 

release c 

Then, you can issue the ACCESS command to assign the filemode letter C 
to another disk. 

When you no longer need disks in your virtual machine configuration, 
use the CP command DETACH to disconnect them from your virtual machine: 

cp detach 194 
cp detach 291 

Section 1. What it Means to Have a CMS Virtual Machine 15 



If you are going to release and detach the disk at the same time, you 
can use the DET option of the RELEASE command: 

release 19q (det 

For more information on controlling disks in CMS, see "Se~ion q. The 
eMS Pile System." 

16 IBM VM/SP CMS User's Guide 



Section 2. VM/SP Environments and Mode 
Switching 

When you are using VM/SP, your virtual machine can be in one of two 
possible "environments": the CP, or control program environment, or the 
virtual machine environment, which may be CMS. The CMS environment has 
several subenvironments, sometimes called "modes." Each environment or 
sub environment accepts particular commands or subcommands, and each 
environment has its own entry and exit paths, responses and error 
messages. If you have a good understanding of how the VM/SP 
environments are related, you can learn to change environments quickly 
and use your virtual machine efficiently. 

This section introduces th~ CP and 
describes: 

• Entry and exit paths 

CMS environments that you use and 

• Command subsets that are valid as input 

Figure 1 summarizes the VM/SP command environments and lists the 
commands and terminal paths that allow you to go from one environment to 
another. 

Any "Class Any" 
CP Command 

LOGON~ 

~ ~ 
,---. CP Environment 1 

/ 
CMS Environment 

/ Any CP Command 2 
Any CMS Command 

IPL CMS Any CP comm~~ 
BEGIN 3 

/ CMS EDIT fn ft 

.-- EXTERNAL Execute any OS or 
CMS Program 

SET DOS ON 

- DEBUG 
#CP Command Line 

~ DEBUG Environment CMS/DOS Environment ~ 

~~~~~~Uo~ ~~bCO~ I-
Any CMS Command

~
Any CMS/DOS Command

GO Any CPCommand

#CP Command Line ;-- Execute any DOS
Program

#CP Command Line

-- Program Execution ~

HX or (Abend)
(Breakpoint)
(Address Stop)

CMS Subset

Any CMS Subset Command
Any CP Command
HX
RETURN

+
#CP Command Line

CMS EDIT Environment

/ Any CMS EDIT
Subcommand

FILE or QUIT
Any CMS EDIT Macro
CMS
INPUT

INPUT MODE #CP Command Line

t
Any Input Line
Carrier return or

null line
#CP Command Line

Notes:

1. The CP environment may be entered from any other environment
using your terminal's Attention key or equivalent, or by entering t

either by

he

command #CP.
2. Any CP command that is valid for your privilege class. Any time a CP

command can be entered, it may be prefixed by #CP.
3. The BEGIN command returns your virtual machine to the environ ment it

was in when CP was entered. For example: . If you were in edit or input mode, the current line pointer rem ains

unchanged. . I f you were executing a program, execution resumes as the inst ruction

address indicated in the PSW.

Figure 1. VM/SP Environments and Mode switching

Section 2. VM/SP Environments and Mode Switching 17

with the exception of input mode in the edit environment, you can
always determine which environment your virtual machine is in by
pressing the Return or Enter key on a null line. The responses you
receive and the environments they indicate, are:

]~§.EQn§~
CP
CMS
CMS (DOS ON)
EDIT:
CMS SUBSET
DEBUG

~1!YiJ;:Q1!!L~1!!
CP
CMS
CMS/DOS
Edit
CMS Subset
Debug

The CP Environment

When you log on to VM/SP, your virtual machine is in the CP environment.
In this environment, you can enter any CP command that is valid for your
privilege class. This publication assumes that you are a general, or
class G, user. You can find information about the commands that you can
use in the !~L~g £g £Q~~~ng R~fe~enQ~ fo~ Q~ne~~l Q§g~§.

Only CP commands are valid terminal input in the CP environment. You
can, however, preface a CP command line with the characters "CP" or
"#CP", followed by cne or more blanks, although it is not necessary.
These functions are described under "The CMS Environment."

You can enter CP commands from other VM/SP environments. There may
be times during your terminal session when you want to enter the CP
environment to issue one or more CP commands. You can do this from any
other environment by doing either of two things:

1 • Is sue the command:

#cp

2. Use your terminal's Attention key (or equivalent). On a 2741
terminal, you must normally press the Attention key twice, quickly,
to enter the CP environment.

The following message indicates that your virtual machine is in the
CP environment:

CP

After entering whatever CP commands you
virtual machine to the environment or mode
the CP command:

cp begin

need to use, you return your
that it came from by using

which, literally, begins execution of your virtual machine.

The CMS Environment

You enter the CMS environment from CP by issuing the IPL command, which
loads CMS into your virtual storage area. If you are planning to use
CMS for your entire terminal session, you should not have to IPL again
unless a program failure forces you into the CP environment.

18 IBM VM/SP CMS User's Guide

When you issue the IPt command, you can specify either the named
system CMS at your installati6n or you can load CMS by specifying the
virtual address of the disk on which the CMS system resides. For
example:

cp ipl cms

-- or --

cp ipl 190

When your virtual machdne is in the CMS environment, you can issue
any CMS command and any of the CP commands that are valid for your user
privilege class. You can also execute many of your own OS or DOS
programs; the ways you can execute programs are discussed in "Section 8.
Developing as Programs Under CMS" and "Section 9. Developing DOS
Programs Under CMS."

You can enter CP commands from CMS in any of the following ways:

• Using the implied CP function of CMS (See !g!~.)
• With the CP command
• With the tcp function

!ot~: For the most part, you may enter any CP command directly from the
CMS environment. This implied CP function is controlled by an operand
of the CMS SET command, IMPCP. You can determine whether the implied CP
function is in effect for your virtual machine by entering the command:

query impcp

\ If the response is:

IMPCP = OFF

you can change it by entering:

set impcp on

When the implied CP function is set off, you must use either the CP
command or the tcp function to enter CP commands from the CMS
environment. CP commands that you execute in EXEC procedures must
always be prefaced by the CP command, regardless of the implied CP
setting. An example of using the CP command is:

cp close punch

When you issue CP commands from the CMS environment either implicitly
or with the CP command, you receive, in addition to the CP response (if
any), the CMS ready message. If you use the tcp function, discussed
next, you do not receive the ready message.

You can preface any CP command line wi th the characters "tcP",
followed by one or ·more blanks. When you enter a CP command this way,
the command is processed by CP immediately; it is as if your virtnal
machine were actually in the CP environment.

EDIT, INPUT, AND CMS SUBSET

The CMS editor is a VM/SP facility that allows you to create and modify
data files that reside on CMS disks. The editor environment, more
commonly called the edit environment, is entered when you· issue the CMS

Section 2. VM/SP Environments and Mode Switching 19

command EDIT, specifying the identification of a data file you want to
create or modify •

.N0t~: When you issue the EDIT command, the System Product Editor
automatically places you in CMS Editor (EDIT) compatibility mode. In
this mode, you can issue both EDIT and XEDIT subcommands. For complete
information on EDIT compatibility mode, as well as instructions on how
to invoke the System Product Editor, refer to the publication VM~R

~Y§1~! gro~y£~ ~~i19~ Commgnd g~Q Ma£~ Ref~re~£~.

edit myfile assemble

is an example of how you would enter the edit environment to either
create a file called MYFILE ASSEMBLE or to make changes to a disk file
that already exists under that name:

When you enter the edit environment
automatically in edit mode, where you can
subcommands or CP commands prefaced by "#CP."
editor what you wish to do with the data you
enter the EDIT subcommand:

input

your virtual machine is
only issue EDIT or XEDIT

EDIT subcommands tell the
have accessed. After you

data lines that you enter are considered input to the file~ To return
to edit mode, you must enter a null line.

If you issue the EDIT subcommand:

cms

the editor responds:

CMS SUBSET

and your virtual machine is in CMS subset mode, where you can issue any
valid CMS subset command, that is, a CMS command that is allowed in CMS
subset mode. These include:

ACCESS
CP
DISK
ERASE
EXEC

LISTFILE
PRINT
PUNCH
QUERY
READCARD

SET
STATE
STATEW
TYPE

You can also issue CP commands. To return to edit mode, you use the
special CMS subset command, RETURN. If you enter the Immediate command
HX, your editing session is terminated abnormally and your virtual
machine is returned to the CMS environment.

When you are finished with an edit session, you return to the CMS
environment by issuing the FILE subcommand, which indicates that all
modifications or data insertions that you have made should be written
onto a CMS disk, or by issuing the subcommand QUIT, which tells the
editor not to save any modifications or insertions made since the last
time the file was written.

More detailed information about EDIT subcommands and how to use the
eMS editor is contained in this publication in "Section 5. The Editors"
and in the !~L~g £~~ £9mmg~~ and ~g£~Q Bef~ren£~.

20 IBM VM/SP eMS User's Guide

DEBUG

CMS DEBUG is a special eMS facility that provides sub commands to help
you debug programs at your terminal. Your virtual machine enters the
debug environment when you issue the CMS command:

debug

You may want to enter this command after you have loaded a program into
storage and before you begin executing it. At this time you can set
"breakpoints," or address stops, where you wish to halt your program's
execution so that you can examine and change the contents of general
registers and storage areas. When these breakpoints are encountered,
your virtual machine is placed in the debug environment. You can also
enter the debug environment by issuing the CP EXTERNAL command, which
causes an external interrupt to your virtual machine.

Valid DEBUG subcommands that you can enter in this environment are:

BREAK
CAW
CSW
DEFINE
DUMP

GO
GPR
HX
ORIGIN
PSW

RETURN
SET
STORE
X

You can also use the #CP function in the debug envircnment to enter CP
commands.

You leave the debug environment in any of the following ways:

• If the program you are running completes execution, you are returned
to the CMS environment.

• If your virtual machine entered the debug environment after a
breakpoint was encountered, it returns to CMS when you issue the
DEBUG subcommand:

hx

To continue the execution of your program, you use the DEBUG
subcommand:

go

• If your virtual machine is in the debug environment and is not
executing a program, the DEBUG subcommand:

return

returns it to the CMS environment.

CMS/DOS

If you are a VSE/AF user, the CMS/DOS environment provides you with all
the CMS interactive functions and facilities, as well as special CMS/DOS
commands which simulate DOS functions. The CMS/DOS environment becomes
active when you issue the command:

set dos on

Section 2. VM/SP Environments and Mode Switching 21

When your virtual machine is in the CMS/DOS environment you can issue
any command line that would be valid in the CMS environment, including
the facilities of EDIT, DEBUG, and EXEC, but excluding CMS commands or
program modules that load and/or execute proqrams that use OS macros or
functions.

The following commands are provided in CMS/DOS to test and develop
DOS programs, and to provide access to VSE/AF libraries:

ASSGN
DLBL
DOSLIB
DOSLKED
DOSPLI

DSERV
ESERV
FETCH
FCOBOL
LISTIO

OPTION
PSERV
RSERV
SSERV

Your virtual machine leaves the eMS/DOS environment when you issue
the command:

set dos off

If vou reload CMS (with an IPL command) during a terminal session, you
must also reissue the SET DOS ON command.

Interrupting Program Execution

When you are executing a program under CMS or executing a CMS command,
your virtual machine is not available for you to enter commands. There
are, however, ways in which you can interrupt a program and halt its
execution, either temporarily, in which case you can resume its

. execution, or permanently, in which case your virtual machine returns to
the CMS environment. In both cases, you interrupt execution by creating
an "attention interruption," which may take two forms:

• An attention interruption to your virtual machine operating system
• An attention interruption to the control program

These situations result in what are known as virtual machine (VM) or
control program (CP) "reads" being presented to your virtual console.
On a typewriter terminal, the keyboard unlocks when a read occurs.

Whether you have to press the Attention key once or twice depends on
the terminal mode setting in effect for your virtual machine. This
setting is controlled by the CP TERMINAL command:

cp terminai mode vm

The setting VM is the default for virtual machines; you do not need to
specify it. The VM setting indicates that one depression of the
Attention key sends an interruption to your virtual machine, and that
two depressions results in an interruption to the control program ~P).

The CP setting for terminal mode, which is the default for the system
operator, indicates that one depression of the Attention key results in
an interruption to the control program (Cm. If you are using your
virtual machine to run an operating system other than CMS, you might
wish to use this setting. Issue the command:

cp terminal mode cp

22 IBM VM/SP CMS User's Guide

VIRTUAL MACHINE INTERRUPTIONS

While a command or program is executing, if you press the Attention key
once on a 2741 (or the Enter key on a 3270), you have created a virtual
machine interruption. The program halts execution, your terminal will
accept an input line, and you may:

• Terminate the execution of the program by issuing an Immediate
command to halt execution:

hx

The HX command causes the program to abnormally terminate (abend).

• Enter a CMS command. The command is stacked in a console buffer and
is processed by CMS when your program is finished executing and the
next virtual machine read occurs. For example:

print abc listing

After you enter this line, the program resumes execution.

• If the program is directing output to your terminal and you wish only
to halt the terminal display, use the Immediate command:

ht

The program resumes execution. Terminal output can also be
suppressed immediately when you enter a command by placing tHT at the
end of the command line. The logical line end character (I) allows
the Immediate command HT to be accepted; program execution proceeds
without typing.

You can, if you want, cause another interruption and request that
typing be resumed by entering the RT (resume typing) command:

rt

• Enter a null line; your program continues execution. The null line is
stacked in the console stack and read by CMS as a stacked command
line.

HX, HT, and RT are three of the CMS Immediate commands. They are
"immediate" because they are executed as soon as they are entered.
Unlike other commands, they are not stacked in the console buffer. You
can only enter an Immediate command following an attention interruption.

CONTROL PROGRAM INTERRUPTIONS

You can interrupt a program and enter the CP environment directly by
pressing the Attention key twice quickly, on a 2741, or pressing the PAl
key on a 3270. Then, you can enter any CP command. To resume the
program's execution, issue the CP command:

cp begin

If your terminal is operating with the terminal mode set to CP, pressing
the Attention key once places your virtual machine in the CP
environment.

Section 2. VM/SP Environments and Mode switching 23

ADDRESS STOPS AND BREAKPOINTS

A program may also be interrupted
you specifically set by the CP
issue the command:

by an instruction address stop, which
command ADSTOP. For example, if you

cp adstop 201ea

an address stop is set at virtual storage location X' 201EAI. When your
program reaches this address during its execution, it is interrupted and
your virtual machine is placed in the CP environment, where ·you can
issue any CP command, including another ADS TOP command, before resuming
your program's execution with the CP command BEGIN.

Breakpoints, similar to address stops, are set using the
subcommand BREAK, which you issue in the debug environment
executing a program. For example, if you issue:

break 1 201ae

DEBUG
before

your program's execution is interrupted at this address and your virtual
machine is placed in the debug environment. You can then enter any
DEBUG subcommand. To resume program execution, use the DEBUG subcommand
GO. If you want to halt execution of the program entirely, use the
DEBUG subcommand HX, which returns your virtual machine to the CMS
environment. You can find more information about setting address stops
and breakpoints in "Section 11. How VM/SP Can Help You Debug Your
Programs."

24 IBM VM/SP CKS User's Guide

Section 3. What You Can Do with VM/SP-CMS
Commands

This section provides an overview of the CMS and CP command languages,
and describes the various commands within functional areas, with
examples. The commands are not presented in their entirety, nor is a
complete selection of commands represented.

When you finish reading this section you should have an understanding
of the kinds of commands available to you, so that when you need to
perform a particular task using CMS you may have an idea of whether it
can be done, and know what command to reference for details. For
complete lists of the CP and CMS commands available, see "Appendix A:
Summary of CMS Commands" and "Appendix B: Summary of CP Commands."

Command Defaults

Many of the characteristics of your CMS virtual machine are already
established when you log on, but there are commands available so you can
change them. In the case of many CMS commands, there are implied values
for operands, so that when you enter a command line without certain
operands, values are assumed for them. In both of these instances, the
values set or implied are considered default values. As you learn CP
and CMS commands, you also should become familiar with the default
values or settings for each.

Commands to Control Terminal Communications

Using VM/SP, you control your virtual machine directly from your
terminal. VM/SP provides a set of commands for terminal communications.

ESTABLISHING AND TERMINATING COMMUNICATIONS WITH VM/SP

To initiate your communication with VM/SP, use the CP LOGON command:

cp logon sam

Optionally, you may enter your password on the same line 1:

cp logon sam 123456

When you are sure that your communication line is all right and you have
difficulty logging on (for example, someone else has logged on under
your userid), you can use the CP MESSAGE command:

cp message sam this is sam ••• pls log off

1Note that the password cannot be entered on the command line if the
password suppression facility was specified at sysgen.

Section 3. What You Can Do With VM/SP-CMS Commands 25

Another way to access the VM/SP system is to use the CP command DIAL:

cp dial t sosys

In this example, TSOSYS is the u$erid of a virtual machine running a TSO
system. After this DIAL command is successful, you can use your
terminal as if you were actually connected to a TSO system, and you can
begin TSO logon procedures.

To end your terminal session, use the CP command LOGOFF:

cp logoff

If you have used a switched (or dial-up) communication path to the VM/SP
computer and you want the line to remain available, you can enter:

cp logoff hold

At times, you miqht be running a long program under one userid and wish
to use your terminal for some other work. Then, you can disconnect your
terminal:

cp disconn

-- or --

cp disconn hold

Your virtual machine continues to run, and is logged off the system when
your program has finished executing. If you want to regain terminal
control of your virtual machine after disconnecting, log on as you would
to initiate your terminal session. Your virtual machine is placed in
the CP environment, and to resume its execution, you use the CP command \
BEGIN.

You should not disconnect your virtual machine if a program requires
an operator response, since the console read request cannot be
satisfied.

CONTROLLING TERMINAL OUTPUT

During the course of a terminal session, you can receive many kinds of
messages from VM/SP, from the system operator, from other users, or from
your own programs. You can decide whether or not you want these
messages to actually reach you. For example, if you use the command:

cp set msg off

no one will be able to send messages to you with theCP MESSAGE command;
if another virtual machine user tries to send you a message, he receives
the message:

userid NOT RECEIVING, MSG OFF

If your virtual machine handles special messages and you do not want to
receive special messages at this time, you can issue:

cp set smsg off

26 IBM VM/SP CMS User's Guide

No one will be able to send special messages to you with the CP S~SG

command; if another virtual machine user attempts to do so, he receives
a message:

userid NOT RECEIVING, SMSG OFF

Similarly, you can use:

cp set wng off

to prevent warning messages (which usually come from the system
operator) from coming to you. You would probably do this, however, only
in cases where you were typing some output at your terminal and did not
want the copy ruined. "

VM/SP issues error messages whenever you issue a command incorrectly
or if a command or program fails. These messages have a long form,
consisting of the error message code and number, followed by text
describing the error. If you wish to receive only the text portion of
messages with severity codes I, E, and W (for " informational, error, and
warning, respectively), you can issue the command:

cp set emsg text

If you want to receive only the message code and number (from which you
can locate an explanation of the error in Y~L~~ ~~~1~m ~~§§~g~ ~ng
£Q~~~), you specify:

cp set emsg code

You can also cancel error messages completely:

cp set emsg off

To restore the EMSG setting to its default, which is the message text,
enter:

cp set emsg text

Some CP commands issue informational messages telling you that CP has
performed a particular function. You can prevent the reception of these
messages with the command:

cp set imsg off

or restore the default by issuing:

cp set imsg on

The setting of EMSG applies to C~S commands as well as to CP commands.

You can also control the format of the CMS ready message. If you
enter:

set rdymsg smsg

you receive ~ly the "R;" or shortened form of the ready message after
the completion of CMS commands. If you are not receiving error messages
(as described above) and an error occurs, the return code from the

command still appears in parentheses following the "R".

Section 3. What You Can Do With VM/SP-CMS Commands 21

An additional feature exists for CMS. If you have a typewriter
terminal with a two-color ribbon, you can specify:

set redtype on

so that CMS error messages are typed in red.

Some commands or messages result in displays of lines that are very
long. If you want to limit the width of lines that are received at your
terminal (for example, if you are using terminal paper that is only
eight inches wide), you can specify:

cp terminal linesize 80

so that all lines received at your terminal are formatted to fit within
an 80-character display.

You can also control two special characters in VM/SP. One is the
exclamation point (!) that types when the Attention key is pressed. If
you do not want this character to type when you press the Attention key,
use the command:

cp terminal attn off

CMS allows you to specify a "blip" character: this character is typed
or displayed whenever two seconds of processor time are used by your
virtual machine. If you enter:

set blip *

then, during program
seconds of CPU time.

set blip off

execution, this character
You can cancel the function:

or set it to nonprintable characters:

set blip on

types for every

When this
Selectric
received.

command has been entered on a typewriter terminal,
type ball tilts and rotates whenever a blip character

two

the
is

~Ql~: Issuance of the STIMER macro for more than two seconds will mask
off blips.

On a display terminal, you can control the intensity of the redisplay
of user input. If you enter:

cp terminal hilight on

the redisplay of user input is highlighted. If you enter:

cp terminal hilight off

the redisplay of user input is at normal intensity.
default.

28 IBM VM/SP CMS User's Guide

This is the

COMMANDS TO CONTROL HOW VM/SP PROCESSES INPUT LINES

You can manipulate VM/SP's logical line editing function to suit your
own needs. In addition to using the CP TERMINAL command to change the
default logical line editing symbols, you can issue:

cp set linedit off

so that none of the symbols are recognized by VM/SP when it interprets
your input lines.

When you are in the CMS environment, there are a number of commands
that you can use to control how CMS validates a command line. The SET
command functions IMPCP (implied CP) and IMPEX (implied EXEC) control
the recognition of CP commands and CMS EXEC procedures. For example, if
you issue:

set impcp off # set impex off

then, when you enter CP commands in CMS or try
'procedures, you must preface the name of the command
CP (or tcP), or EXEC, respectively.

to execute EXEC
or procedure with

By using the SYNONYM and the SET ABBREV commands, you can control
what command names, synonyms, or truncations are valid in CMS. For
example, you could set up a file named MYSYN SYNONYM which contains the
following records:

PRINT
RELEASE
ACCESS
DOSLKED

PRT
LETGOOF
GET
LNKEDT

1
5
1
3

The first cclumn specifies an existing CMS command, module, or EXEC
name; the second column specifies the alternate name, or synonym, you
want to use; and the third column is a count field that indicates the
minimum number of characters of the synonym that can be used to truncate
the name. Using this file, after you enter the command:

synonym mysyn

you can use PRT, LETGOOF, GET, and LNKEDT in place of the corresponding
CMS command names. Also, if the ABBREV function is in effect, (it is
the default; you can make sure it is in effect by issuing the command
SET ABBREV ON), you can truncate any of your synonyms to the minimum
number of characters specified in the count field of the record (that
is, you could enter "pH for PRINT, "letgo" for RELEASE, and so on) •

You can set up CMS EXEC files
that mayor may not perform the
duplicate. For example, if every
used the same operands, you could
that contained a single record:

global maclib cmslib osmacro

with the same names as CMS commands,
same function as the CMS names they
time you used the GLOBAL command you
have a CMS EXEC file, named GLOBAL,

Then, every time you entered the command name:

global

the command GLOBAL MACLIB CMSLIB OSMACRO would execute.

Section 3. What You Can Do With VM/SP-CMS Commands 29

As another example, suppose you had an EXEC file named 'T', that
contained the following records:

&CONTROL OFF
CP QUERY TIME

Then, whenever you entered:

t

you would receive the CP time-of-day message, and you could no longer
use the truncation "T" for the CMS command TYPE. In order to see the
contents of a CMS file displayed at your terminal you would' have to
enter at least "TY" as a truncation.

CONTROLLING KEYBOARD-DEPENDENT COMMUNICATIONS

You are dependent on your terminal for communication with V"/SP: when
your virtual machine is waiting for a read either from the control
program or from your virtual machine operating system, you can not
receive messages until you press the Return key to enter a command or a
null line. If you are in a situation where you must wait for a message
before continuing your work, for example, if you are waiting for a tape
device to be attached to your virtual machine, you can use the CP
command SLEEP to lock your keyboard:

cp sleep

You must then press the Attention key to get out of sleep and unlock the
keyboard so you can enter a command.

If your virtual machine is in the CP environment when you issue the
SLEEP command, or if you issue the SLEEP command from the CMS
environment using the iCP function, your virtual machine is in the CP
environment after you press the Attention key. If your virtual machine
is in the CMS environment when you enter the SLEEP command (or if .you
enter CP SLEEP), your virtual machine is in the CMS environment when you
press the Attention key once.

You can control the effect of pressing the Attention key on your
terminal with the CP TERMINAL command. If you specify:

cp terminal mode cp

then, whenever you press the Attention key, you are in the CP
environment.

If you use the default terminal mode setting, which is VM, and then
you press the Attention key once, you cause a read to your virtual
machine; if you press the Attention key twice you cause a CP read, and
you are in the CP environment.

The effect of pressing the Attention key is also important when you
are executing a program. At times, you may wish to enter some CP
commands while your program executes, but you do not want to interrupt
the execution of the program. If, before you begin your program you
issue the command:

cp set run on

and then use the Attention key to get to the CP environm~nt while your
program executes, the program continues executing while you communicate

30 IBM VM/SP CMS User's Guide

with CPo The default setting for the RUN operand of the SET command is
off; usually, when you press the Attention key (twice) during program
execution, your program is interrupted.

SP1J~l!!! ~HARA~lln~ ~El'§: If you are using a programming language or
entering data that requires you to use characters that are not on your
keyboard, you can select some characters that you do not use very often
and establish a translate table with the SET command. For example, if
your terminal does not have the special characters [and] (which have
the hexadecimal values AD and BD, respectively), you could issue the
commands:

set input " ad
set input $ bd

Then, when you are entering data lines at your terminal, whenever you
enter the characters "%" or "$", they are translated and written into
your file as "[" and "l". When you display these lines, the character
positions occupied by the special characters appear to be blanks,
because they are not available on your keyboard. If you want these
special characters to appear on your terminal in symbolic form, you
should issue the commands:

set output ad "
set output bd $

so that when you are displaying lines th~t contain these characters,
they will appear translated as % and $ on your terminal. If you are
going to use the input and output functions together, you must set the
output character first; if you set the input character first, then you
are unable to set the output function.

If you are an APL user and have the special APL type font or the APL
3270 feature and keyboard, you can tell VM/SP to use APL translation
tables with the command:

cp terminal apl on

Commands to Create, Modify, and Move Data Files
and Programs

The CMS command language provides you with many different ways of
manipulating files. A file, in CMS, is any collection of data; it is
most often a disk file, but it may also be contained on cards or tape,
or it may be a printed or punched output file.

COMMANDS THAT CREATE FILES

You create files in CMS by several methods; either specifically or by
default. The EDIT command invokes the CMS editor to allow you to create
a file directly at your terminal. You must specify a file identifier
when you are creating a new file:

edit mother goose

In this example, the file has an identifier, or fileid, of MOTHER GOOSE.
The EDIT subcommand INPUT allows you to begin inserting lines of data or
source code into this file. When you issue the subcommands FILE or
SAVE, the lines that you have entered are written into a CMS disk file.

Section 3. What You Can Do With VM/SP-CMS Commands 31

Files are created, and sometimes named, by default, with the
following types of commands:

• Commands that invoke programming language processors or compilers.
For example, if you issue the command:

assemble myfi1e

t he assembler assembles source statements from an existing CMS file
named MYFILE ASSEMBLE and produces an output file containing object
code, as well as a listing. The files that are created are named:

MYFILE TEXT
MY FILE LISTING

• Commands that load CMS files onto a disk from cards or tapes. These
commands are BEADCARD, TAPE LOAD, and DISK LOAD.

• The LISTFILE and LISTIO commands with the EXEC option create files
named CMS EXEC and $LISTIO EXEC which you can execute as EXEC
procedures.

• The TAPPDS and TAPEMAC commands create CMS disk files from OS data
sets on tape. If the data set is a partitioned data set, the TAPPDS
command creates individual CMS files from each of the members; the
TAPEMAC command creates a CMS macro library, called a MACLIB, from an
OS macro library.

• The MOVEFILE and FILEDEF commands, used together, can copy OS or DOS
data sets or files into CMS files; they can also copy files from
cards or tapes.

• CMS/DOS commands SSERV, ESERV, RSERV, and PSERV copy DOS files from
source statement, relocatab1e, and procedure libraries into eMS
files.

• Some CMS commands produce maps, or lists of files, data sets, or
program entry points. For example, if you issue the command:

tape scan (disk

a CMS disk file named TAPE MAP is created that contains a list of the
CMS files that exist on a tape attached to your virtual machine at
virtual address 181.

Some commands create new files from files that already exist on your
virtual disks. The creation may involve a simple copy operation, or it
may be a combining of many files of one type into a larger file of the
same or a different type:

• The COPYFILE command, in its simplest form, copies a file from one
virtual disk to another:

copy file yourprog assemble b myprog assemble a

• The MACLIB and TXTLIB commands create libraries from MACRO or COpy
files, or from TEXT (object) files.

• The SORT command rearranges (in alphameric sequence) the records in a
file and creates a new file to contain the result. You have to
specify the name of the new file:

sort nonseq recs a seq recs a

32 IBM VM/SP CMS User's Guide

• The GENMOD ccmmand creates nonrelocatable modules from object modules
that you have loaded into your virtual storage area. For example,
the commands:

load test
genmod payroll

create a file named PAYROLL MODULE, which you can then execute as a
user-written eMS command.

• The DOSLKED command creates or adds members to DOSLlBS, which are
libraries containing link-edited CMS/DOS program phases.

• The UPDATE ccmmand creates an updated source file and special update
files when you use it to apply updates to your source programs.

COMMANDS THAT MODIFY DISK FILES

You can use the CMS Editor to modify existing files on your virtual
disks. You issue the EDIT command, giving the file identifier:

edit old file

CMS editor subcommands allow you to make minor specific changes or
global changes, which can affect many lines in a file at one time.

The MACLIB and TXTLIB commands also allow you to modify CMS macro and
text libraries. You can add, delete, or replace members in these
libraries using these commands.

The COPYFILE command has seme options that allow you to change a file
without creating a new output file. For example, if you enter the
command:

copyfile my file a (lowcase

then all of the uppercase characters in the file MY FILE are translated
to lowercase.

You can change the file identifier of a file using the RENAME
command:

rename test file al good file al

The ERASE command deletes files from your virtual disks:

erase temporary file bl

For additional examples of CMS file system commands, see "Appendix D:
Sample Terminal Sessions."

COMMANDS TO MOVE FILES

You can use CMS commands to transfer a data file from one device or
medium to another device of the same or of a different type. The types
of movement and the commands to use are described briefly here and in

~ detail in "Secti~n 1. Using Real Printers, Punches, Readers, and Tapes."

Section 3. What You Can Do with VM/SP-CMS Commands 33

If you need to transfer files between virtual machines, you can use
the PUNCH or DISK DUMP commands to punch virtual card image records.
Thes~ are then placed in the virtual card reader of the receiving
virtual machine.

Before you use either of these commands, you must indicate the output
disposition of the files. You do this with the CP SPOOL command:

cp spool OOd to mickey

Then, you can use the PUNCH command to punch virtual card images:

punch acct records

The file ACCT RECORDS is spooled to the userid MICKEY's virtual card
reader. If the CMS file you are transferring does not have fixed
length, eO-character (card image) records, you can use the command:

disk dump acct records

The CMS TAPE command allows you to dump CMS files onto tape, or to
restore previously dumped files:

tape dump archive file
tape load archive file

VM/SP also provides a special utility program, DASD Dump Restore
(DDR), that allows you to dump the entire contents of your virtual disk

onto a tape and then later restore it to a disk. You might use this
program, invoked by the DDR command in CMS, to back up your data files
before using them to test a new program.

COMMANDS TO PRINT AND PUNCH FILES

The commands that you use most often to print and punch CMS files are
the commands PRINT and PUNCH. For example:

print myprog listing

prints the contents of the LISTING file on the system printer, and:

punch myprog assemble

punches the assembler language source statement file onto cards. You
can also punch members of KACLIBs and TITtIBs:

punch cms1ib mac1ib (member fscb

Some CMS commands have a PRINT option, so that instead of having some
kinds of output displayed at your terminal or placed in a disk file, you
can request to have it printed on the real system printer. For example,
if you want a list of the contents of a macro library to print, you
could issue the command:

mac1ib map my1ib (print

You can see the contents of a file displayed at your terminal by
using the TYPE command:

type week3 report

34 IBM VK/SP CMS User's Guide

You can specify, on the TYPE command, that you want to see only some
specific records in this file:

type week3 report a 1 20

Commands to Develop and Test OS and CMS
Programs

Use CftS to prepare programs: you can create them with the CKS editor, or
write them onto your CKS disks using any of the methods discussed above.
You can also assemble or compile source programs directly from cards,
tapes, or OS data sets. If your source program is in a CKS disk file,
then during the developmen~ process you can use the editor to make
corrections and updates.

To'compile your programs, use the assembler or any of the language
processors available at your installation. If your program uses macros
that are contained in either system or private program libraries, you
must make these libraries known to CKS by using the GLOBAL command:

global maclib cmslib asmlib

In this example, you are using two libraries: the CKS macro library,
CKSLIB KACLIB, and a private library, named ASKLIB KACLIB.

The output from the compilers, in relocatable object form, is stored
on a CftS disk as a file with the filetype of TEXT. To load TEXT files
into virtual storage to execute them, use the LOAD command:

load myprog

The LOAD command performs the linkage editor function in CMS. If
KYPROG contains references to external routines, and these routines are
the names of CKS TEXT files, those TEXT files are automatically included
in the load. If you receive a message telling you that there is an
undefined name (which might happen if you have a CSECT name or entry
point that is not the same as the name of the TEXT file that contains
it), you can then use the INCLUDE command to load this TEXT file:

include scanrtn

When you have loaded the object modules into storage, you can begin
program execution with the START command:

start

If you want to begin execution at a specified entry point, enter:

start scanl

where SCANl is the name of a control section, entry point, or procedure.

If you are testing a program that either reads or writes files or
data sets using OS macros, you must use the FILEDEF command to supply a
file definition to correspond to the ddname you specify in your program.
The command:

filedef indd reader

indicates that the input file is to be read from your virtual card
~ reader. A disk file might be defined:

filedef outdd disk out file al

section 3. What You Can Do With VK/SP-CMS Commands 35

The FILEDEF command in CMS performs the same function as a data
definition (DD) card in os.

The commands to load and execute as programs are discussed in
"Section A. Developing as Programs Under CMS."

The RUN command, which is actually a CMS EXEC procedure, combines
many of these command~ for you, so that if you want to compile, load,
and execute a single source file, or load and execute a TEXT or MODULE
file, you can use the RUN command instead of issuing a series of
commands. See the discussion of the RUN command in VMLSP ~~~ ~Q!mAnd An~
~~£~Q Re!~~~n£~ for a list of the as language processors available.

Commands to Develop and Test DOS Programs

CMS simulates many functions of VSE/AF in the CMS/DOS environment.
CMS/DOS is not a separate system, but is part of CMS. When you enter the
command:

set dos on

you are in the CMS/DOS environment. If you want to use the libraries on
the VSE/AF system residence volume, you should access the disk on which
it resides and specify the mode letter on the SET DOS ON command line:

access 132 c
set dos on c

Using commands that are available only in the CMS/DOS environment,
you can assign system and programmer logical units with the ASSGN
command:

assgn sys200 reader

If the device is a disk device, you can set up a data definition with
the DLBL command:

assqn sys 100 b
d1bl infi1e b dsn myinput file (sys100

You can find out the current logical unit assignments and active file
definitions with the LISTIO and QUERY DLBL commands, respectively:

1istio a
query dlbl

If you are an assembler language programmer, you can assemble a
source file with the ASSEMBLE command:

assemble myprog

A eMS file with a fi1etype of DOSLIB simulates a DOS core image
library; you can link-edit TEXT files or relocatab1e modules from a DOS
relocatable library and place the link-edited phase in a DOSLIB using
the DOSLKED command:

dos1ked myprog new1ib

36 IBM VM/SP CMS User's Guide

"-
\

/

Then, use the GLOBAL command to identify the phase library and issue the
FETCH command to bring the phase into virtual storage:

global doslib newlib
fetch myprog

The START command begins program execution:

start

During program development with CMS, you can use VSE/AF system or
private libraries. You can use files on these libraries or you can copy
them into CMS files. The DSERV command displays the directories of
VSE/AF libraries. The command:

dserv cd

produces a copy of the directory for the core image library. To copy
phases from re10catable libraries into CMS TEXT files, you could use the
RSERV command:

rserv oldprog

The SSERV and ESERV commands are available for you to copy files from
source statement libraries, or copy and de-edit macros from E
sub1ibraries. Also, the PSERV command copies procedures from the
procedure library.

The CMS/DOS commands are described
Developing DOS Programs Under CMS."

in detail in "Section 9.

Commands Used in Debugging Programs

When you execute your programs under CMS, you can debug them as they
execute, by forcing execution to halt at specific instruction addresses.
You do this by entering the debug environment before you issue the START
command. You enter the debug environment with the DEBUG command:

debug

To specify that execution be stopped at a particular virtual address,
you can use the BREAK subcommand to set a breakpoint. For example:

break 1 20adO

Then, when this virtual address is encountered during the execution of
the program, the debug environment is entered and you can examine
registers or specific storage locations, or print a dump of your virtual
storage. Subcommands that do these things might look like the
following:

f\,ol

gpr 0 15
x 20c12 8
dump 20000 *

Instead of using the CMS DEBUG subcommands, you can use the CP ADSTOP
command to set address stops. For example:

cp adstop 20adO

Section 3. What You Can Do With VM/SP-CMS Commands 37

Then, in the CP environment, you can use CP commands to do the same
things. For example:

cp display g
cp display 20c12.8
cp dump 20000

Both sets of commands shown in these examples result in displays of (1)
the contents of your virtual machine's general purpose registers, (2) a
display of eight bytes of storage beginning at location X'20C12' and (3)
a dump of virtual storage from location X'20000' to the end.

You can also use the CMS SVCTRACE command and the CP TRACE commands
to see a record of interruption activity in your virtual machine.

The DEBUG subcommands and the CMS and
described in more detail in "Section 11.
Your programs."

CP debugging facilities are
How VM/SP Can Help You Debug

Commands to Request Information

All of the CP and CMS commands discussed in this section have required
some action on your part: you set your terminal characteristics,
manipulate disk files, develop, compile, and test programs, and control
your virtual machine devices and spool files. During a terminal session
you can change the status of many of your devices and virtual machine
characteristics, modify the files on your disks and create spool files.
VM/SP provides many commands to help you find out what is and what is
not currently defined in your virtual machine.

COMMANDS TO REQUEST INFORMATION ABOUT TERMINAL CHARACTERISTICS

You can find out the status of your terminal characteristics by using
the CP command QUERY with the TERMINAL or SET operands. If you issue the
command:

cp guery terminal

you can see the settings for all of the functions controlled by the CP
TERMINAL command, including the· current line size and line editing
symbols.

Similarly, the command:

cp query set

tells you the settings for the functions controlled by the CP JET
command, such as error message display, and the MSG and WNG flags.

For most of the functions controlled by the CMS SET command, there
are corresponding CMS QUERY command operands; to find out a particular
setting, you must specify the function in the QUERY command. For
example:

query input

38 IBM VM/SP CMS User's Guide

/
I
~

'",
\

~"

lists the current settings in effect for input
other functions that you can query this way are:

BLIP
IKPCP
IKPEX

INPUT
OUTPUT
RDYKSG

REDTYPE
SYNONYK

COMMANDS TO REQUEST INFORMATION ABOUT DATA PILES

character translation.

Use the LISTFILE command to get information about CKS files. The
information you can obtain from the LISTPILE command includes:

• The names of all the files on your A-disk:

listfile

• The names of all the files on any other accessed disk:

list file * * b

• The names of all files that have the same filename:

listfile myprog *
• The names of all files with the same .filetype:

listfile * assemble

• The record length and format, blocksize, creation date and disk label
for a particular file:

listfile records saved a2 (label

Use the STATE command to find out whether a certain file exists:

state sales list c

If you want to know if the file is on a read/write disk, you can use the
STATEW command.

To find out what CKS libraries have been made available, you can use
the cOllmands:

query dos1 ib
query maclib
query txtlib
query library

To find out what members are contained in a particular macro or text
library use the commands:

maclib map mylib (term
txt lib map prog1ib (term

The KODKAP command displays a load map of a KODULE file:

mod map payroll

To examine load maps created by the LOAD command, use the TYPE
command:

type load map as

Section 3. What You Can Do With VK/SP-CftS Commands 39

The TYPE command can a'lso be used to display the contents of any CMS
file. To examine large files, you can use the PRINT command to spool a
copy to the high-speed printer.

To compare the contents of two files to see if they are identical,
use the COMPARE command:

compare labor stat al labor stat bl

Any records in these files that do not match are displayed at your
terminal.

If you have OS or DOS disks a ttached to your virtual machine, you can
display a list of OS data sets or DOS files by using the LISTDS command;
for example:

listds d

displays a list of the data sets or files on the OS or DOS disk accessed
as your D-disk.

COMMANDS TO REQUEST INFORMATION ABOUT YOUR VIRTUAL DISKS

Use the CP QUERY command to find out:

• What virtual disks are currently part of your configuration:

cp query virtual dasd

• Whether a particular virtual disk address is in use:

cp query virtual 291

• What users might be linked to one of your disks:

cp query links 330

The CMS QUERY command can tell you about your accessed disks. If you
enter:

query disk a

you can find out the number of files on your A-disk, the amount of space
that is being used, and its percentage of the total disk space, ana the
read/write status. To get this informa tion for a 11 of your accessed
disks, issue the command:

query disk *
To obtain information about the extents occupied by files on OS and DOS
disks, enter the command:

listds * (extent

If you want to know the current order in which your disks are
searched for data files or programs, issue the command:

query search

You could also use this command to find out what disks you have
accessed, what filemode letters you have assigned to them, whether they
are read/write or read-only, and whether they are CMS, OS, or DOS disks.

40 IBM VM/SP CMS User's Guide

CO""ANDS TO REQUEST INFOR"ATION A~OUT YOUR VIRTUAL "ACHINE

If you issue the command:

cpquery virtual

you can find out the status of your virtual machine configuration. You
can also request specific information; for example, the command:

cp query storage

gives you the amount of virtual storage you have available.

To find out the current spooling characteristics of your printer,
punch, or reader, issue the commands:

cp query OOe
cp query OOd
cp query OOc

To see information about all three at once, use:

cp query ur

For the status of spool files on any of these devices, issue the
commands:

cp guery printer
cp guery punch
cp guery reader

Using these commands, you can request the status of particular spool
files by referring to the spoolid number; for example:

cp guery printer 4181

You can also request additional information about the files, including
file identification and creation time:

cp guery reader all

If you want to know the total number of spool files associated with
your virtual machine, you can use the command:

cp qu ery files

The response to this message is the same as the message you receive if
you have spool files when you log on.

Section 3. What You Can Do with V"/SP-C"S Commands "41

42 IBK VM/SP CKS User's Guide

;

Section 4. The eMS File System

The file is the essential unit of data in the CMS system. CMS disk
files are unique to the CMS system and cannot be read or written using
other operating systems. When you create a file in CMS, you name it
using a file identifier. The file identifier consists of three fields:

• Filename (fn)
• Filetype (ft)
• Filemode (fm)

When you use CMS commands and programs to modify, update, or
reference files, yo~ must identify the file by using these fields. Some
eMS commands require you to enter only the filename, or the filename and
filetype; others require you to enter the filemode field as well. This
section contains information about the things you must consider when you
give your CMS files their identifiers, notes on the file system commands
that create and modify CMS files, and additional notes on using CMS
disks.

eMS File Formats

The eMS file management routines write CMS files on disk in fixed
physical blocks, regardless of whether they have fixed- or
variable-length records. For most of your C!S applications, you never
need to specify either a logical record length and record format or
block size when you create a CMS file.

When you create a file using one of the eMS editors, the file has
certain default characteristics, based on its filetype. The special
filEtypes recognized by the editor, and their applications, are
discussed under "What are Reserved Filetypes?"

VSAM files written by CMS are in
written by OS/VS or VSE/AF and are
systems. You cannot, however, use any
and write VSAM files, because VSAM
virtual storage access method.

the same format as VSAM files
recognized by those operating

CMS file system commands to read
file formats are unique to the

For a minidisk formatted in 800-byte physical blocks, a single CMS
file can contain up to 12,848,000 bytes of data grouped into as many as
65,533 logical records, all of which must be on the same minidisk. If
the file is a source program, the file size limit may be smaller. The
maximum number of files per real disk in the aOO-byte physical block
format is 3400 for a 3330, 3333, 3340, or 3350 disk, or 3500 for a 2314
or 2319.

For a minidisk formatted in 1024-, 2048-, or 4096-byte logical
blocks, a single eMS file can contain up to about (2 31 - 132,000) disk
blocks of data, grouped into as many as 231 -1 logical records, all of
which must be on the same minidisk. The approximate limits to the
number of files per disk, expressed in thousands, are:

Section 4. The CMS File System 43

DISK LOGICAL BLOCK SIZE
12~.!iQj! I.I.E! 1~24-12.I!! 2048-!l.ll~ 4096-bYl~

2314 21 11 5
3330-11 149 86 44
3340 50 26 11
3350 45 25 13
331'0 55 29 15
3370 216 114 59

How eMS Files Get Their Names

When you create a CMS file, you can give it any filename and filetype
you wish. The rules for forming filenames and filetypes are:

• The filename and filetype can each be .from one to eight characters.
• The valid characters are A-Z, 0-9, and $, I, a.

When you enter a command line into the VM/SP system,
translates your input line into uppercase characters.
specify a file identifier, you can enter it in lowercase.

VK/SP always
So, when you

Remember that, by default, the t and a characters are line editing
symbols in VK/SP; when you use them to identify a file, you must precede
them with the logical escape symbol (").

The third field in the file identifier~ the filemode, indicates the
mode letter (A-Z) currently assigned to the virtual disk on which you
want the file to reside. When you use the CKS Editor to create a file,
and you do not specify this field, the file you create is written on
your A-disk, and bas a filemode letter of A.

The filemode letter, for any file, can change during a terminal
session. For example, when you log on, your virtual disk at address 191
is accessed as your A-disk, so a file on that disk named SPECIAL EVENTS
has a file identifier of:

SPECIAL EVENTS A

If, however, you later access another disk as your A-disk, and access
your 191 as your B-disk, then this file has a file identifier of:

SPECIAL EVENTS B

DUPLICATING FILENAKES AND FILETYPES

You can give the same filename to as many files on a given disk as you
want, as long as you assign them different filetypes. Or you can crea~e
many files with the same filetype but different filenames.

For the most part, filenames that you choose for your files ,have no
special significance to CMS. If, however, you choose a name that is the
same as the name of a CMS command, and the file that you assign this
name to is an executable module or EXEC procedure, then you may
encounter difficulty if you try to execute the CKS command whose name
you duplicated.

44 IBM VM/SP CMS User's Guide

For an explanation of how eMS identifies a command name, see "eMS
Command Search Order" later in this section.

Many eMS commands allow you to specify one or more of the fields in a
file identifier as an asterisk (*) or equal sign (=), which identify
files with similar fileids.

Some CMS commands that manipulate disk files allow you to enter the
filename and/or filetype fields as an asterisk (*), indicating that all
files of the specified filename/filetype are to be modified. These
commands are:

COPYFILE
ERASE

RENAME
TAPE DUMP

For example, if you specify:

erase * test a

all files with a filetype of TEST on your A-disk are erased. The
LISTFILE command allows you to request similar lists. If you specify an
asterisk for a filename or filetype, all of the files of that filename
or filetype are listed. There is an additional feature that you can use
with the LISTFILE command, to obtain a list of all the files that have a
filename or filetype that begin with the same character string. For
example:

listfile t* assemble

produces a list of all files on your A-disk whose filenam~s begin with
the letter T. The command:

listfile tr* a*

produces a list of all files on your A-disk whose filenames begin with
the letters TR and whose filetypes begin with the letter A.

The COFYFILE, RENAME, and SORT commands allow you to enter output file
identifiers as equal signs (=), to indicate that it is the same as the
corresponding input file identifier. For example:

copyfile myprog assemble b = = a

copies the file MYPROG ASSEMBLE from your B-disk to your A-disk, and
uses the same filename and filetype as specified in the input fileid for
those positions in the output fileid.

Similarly, if you enter the command:

rename temp * b perm = =

Section 4. The eMS File System 45

all files with a filename of TEMP are renamed to have filenames of PER!;
the existing filetypes of the files remain unchanged.

What Are Reserved Filetypes?

For the purposes of most CMS commands, the filetype field is used merely
as an identifier. Some filetypes, though, have special uses in CMS;
these are known as "reserved filetypes."

Nothing prevents you from assigning any of the reserved filetypes to
files that are not being used for the specific CMS function normally
associated with that filetype.

Some reserved filetypes also have special significance to the CftS
editor. When you use the EDIT command to create a file with a reserved
filetype, the editor assumes various default characteristics for the
file, suc.h as record length and format, tab settings, translation to
uppercase, truncation column, and so on.

Reserved filetypes sometimes indicate how the file is used in the eftS
. system: the filetype ASSEftBLE, for example, indicates that the file is
to be used as input to the assembler; the filetype TEXT indicates that
the file is in relocatable object form, and so on. ftany CftS commands
assume input files of particular filetypes, and require you to enter
only the filename on the command line. For example, if you enter:

synonym test

CMS searches for a file with a filetype of SYNONYM and a filename of
TEST. A file named TEST that has any other filetype is ignored.

Some CMS commands create files of particular filetypes, using the
filename you enter on the command line. The language processors do this
as well; if you are recompiling a source file, but wish to save previous
output files, you should rename them before executing the command.

Figure 2 lists the filetypes used by CMS commands and describes how
they are used. Figure 3 lists the filetypes used by CMS/DOS commands.

In addition to these CMS filetypes, there are special filetypes
reserved for use by the language processors, which are IBM program
products. These filetypes, and the commands that use them, are:

COBOL, SYKDMP, TESTCOB
FORTRAN, FREEFORT,

FTnn001, TESTFORT
PL!, PLIOPT
VSBASlC, VSBDATA

COBOL, FCOBOL, TESTCOB
FORTRAN, FORTGl, FORTHX

GOFORT, ~ESTFORT
DOSPLI, PLlC, PLlCR, PLlOPT
VSBASlC

Por details on how to use these filetypes, consult the appropriate
program product documentation.

Filetype ,Command ,Comments

AMSERV

ASM3105

ASSEMBLE

AUXxxxx

CNTRL

COpy

DIRECT

EXEC

HELPCMS
HELPCP
HELPDEBU
HELPEDIT
HELPMENU
HELPMSG
HELPEXEC
HELPEXC2
HELPHELP
HELPXEDI
HELPSET
HELPPREF

LISTING

LKEDIT

LOADLIB

---------1---AMSERV

ASM3705
GEN3705

ASSEMBLE

UPDATE

UPDATE

MACLIB

DIRECT

EXEC
GEN3705
LISTFILE

HELP

AMSERV
ASSEMBLE
ASM3705
LOADLIB
COBOL
PLIOPT
FCOBOL
DOSPLI

LKED

GLOBAL
LKED
LOADLIB
OSRUN
QUERY
ZAP

, Contains VSAM access method services control
, statements executed with the AMSERV command.
t command. ,
, Used by system programmers to generate the
1 3704/3705 control program. ,
I Contains source statements for assembler
r language programs.
t
, Points to files that contain UPDATE control
, statements for multiple updates. ,
, Lists files that either contain UPDATE control
I statements or point to additional files.
t
I Can contain COpy control statements and macros
, or copy files to be added to MACLIBs. ,
, contains entries for the VM/SP user directory
, file. The system operator controls this file.
t
, Can contain sequences of CMS or user-written
, commands, with execution control statements. , ,
, Contains descriptive information for CP and
, eMS commands, messages, EXEC and EXEC2
, statements, CMS Editor and System Product
, Editor subcommands, and menu lists. , , , , , , , , ,
, Listings are produced by the assembler, the
, language processors, and the AMSERV and
, LOADLIB commands.
I , , , , ,
, Contains the printer output from the LINK
I EDIT of a CMS text file or OS object module. ,
, Is a library created by the LKED command or
, the LOADLIB utility command. The GLOBAL
, command identified the libraries that should
, be searched for program execution. OSRUN
, executes a member of a CMS LOADLIB library
I or an OS module library. QUERY indicates
, what libraries have been affected by the
, GLOBAL command. ZAP is used to modify an
, existing LOADLIB member.

Figure 2. Filetypes Used by CMS Commands (Part 1 of 2)

Section 4. The CMS File System 47

r , Filetype I
I

M ACLIB ,
I
l , , , ,

MACRO

MAP

MODULE

SYNONYM

SCRIPT

TEXT

TXTLIB

UPDATE

UPDLOG

UPDTxxxx

ZAP

L---

Command

GLOBAL
MACLIB

MACLIB

INCLUDE
LOAD
MACLIB
TAPE
TXTLIB

GENMOD
LOADMOD
MODMAP

SYNONYM

SCRIPT

ASSEMBLE
INCLUDE
LOAD
TXTLIB

GLOBAL
TXTLIB

UPDATE

UPDATE

UPDATE

ZAP

Comments

Library members contain macro definitions or
copy files; the MACLIB command creates the
library, and lists, adds, deletes, or replaces
members. The GLOBAL command identifies which
macro libraries should be searched during an
assembly or compilation.

Contains macro definitions to be added to a
CMS macro library (MACLI~.

Maps created by the LOAD and INCLUDE commands
indicate entry point locations; the MACLIB,
TXTLIB, and TAPE commands produce MAP files.

MODULE files created by the GENMOD command are,
nonrelocatable executable programs. ,
The LOAD MOD commands loads a MODULE file for ,
execution; the MODMAP command displays a map I
of entry point locations. I ,
contains a table of synonyms for CMS commands ,
and user-written EXEC and MODULE files. I ,
SCRIPT text processor input includes data and ,
SCRIPT control words.

TEXT files contain relocatable object code
created by the assembler and compilers. The
LOAD and INCLUDE commands load them into
storage for execution. The TXTLIB command
manipula tes libraries of TEXT files.

Library members contain relocatable object
code. The TXTLIB command creates the library,
and lists or deletes existing members. The
GLOBAL command identifies TXTLIBs to search.

Contains UPDATE control statements for single
updates applied to source programs.

Contains a record of additions, deletions, or
changes made with the UPDATE command.

Contains UPDATE control statements for
multilevel updates.

Contains control records for the ZAP command,
which is used by system support personnel.

Figure 2. Filetypes Used by CMS Commands (Part 2 of 2)

48 IBM VM/SP CMS User's Guide

r--
, Filetype

COpy

DOSLIB

DOSLNK

, ESERV

EXEC

LISTING

MACRO

MAP

PROC

TEXT

Command

MACLIB
SSERV

DOSLIB
DOSLNK
FETCH
GLOBAL

DOSLKED

1 ESERV

LISTIO

ASSEMBLE
ESERV

ESERV
MACLIB

DOSLIB
DOSLKED
DSERV

PSERV

,
ASSEMBLE,
DOSLKED ,
RSERV , , ,

,
Comments I

I
When the SSERV command copies books or macros I
from DOS source statement libraries, the output ,
is written to CMS COpy files, which can be added
to CMS macro libraries with the MACLIB command.

DOS core image phases are placed in a DOSLIB by
linkage editor, invoked with the DOSLNK command.
The GLOBAL command identifies DOSLIBs to be
searched when the FETCH command is executed.

Contains linkage editor control statements for
input to the CMS/DOS linkage editor.

Contains input control statements for the ESERV
utility program.

The LISTIO command with the EXEC option creates
the $LISTIO EXEC that lists system and
programmer logical unit assignments.

Listings contain processor output from the ESERV
command, and compiler output from the assembler
and language processors.

Contains SYSPCH output from the ESERV program,
suitable for addition to a CMS MACLIB file.

The DSERV command creates listings of the
directories of DOS libraries. The DOSLIB command
with the MAP option produces a list of DOSLIB
members. The linkage editor map from the DOSLKED
command is written into a MAP file.

The PSERV command copies procedures from DOS
procedure libraries into CMS PROC files.

Object decks created by the assembler or
compilers are written into TEXT files. The
command creates TEXT files from modules in
relocatable libraries. TEXT files can also
used as input to the linkage editor.

RSERV,
DOS I
be , ,

,
Figure 3. Filetypes Used in CMS/DOS

OUTPUT FILES: TEXT AND LISTING

Output files from the assembler and the language processors are
logically related to the source programs by their filenames. Some of
these files are permanent and some are temporary. For example, if you
issue the command:

assemble myfile

CMS locates a file named MYFILE with a filetype of ASSEMBLE and the
system assembler assembles it. If the file is on your A-disk, then when
the' assembler completes execution, the permanent files you have are:

MYFILE ASSEMBLE A1
MYFILE TEXT A1
MYFILE LISTING Al

Section 4. The CMS File System 49

where the TEXT file contains the object code resulting from the
assembly, and the LISTING file contains the program listing generated by
the assembly. If any TEXT or LISTING file with the same name previously
existed, it is erased. The source input file, MYFILE ASSEMBLE A1, is
neither erased nor changed.

The characteristics of the TEXT and LISTING files produced by the
assembler are the same as those created by other processors and programs
in CMS.

Because these files are CMS files, you can use the CMS editor to
examine or modify their contents. If you want a printed copy of a
LISTING file, you can use the PRINT command to print it. If you want to
examine a TEXT file, you can use the TYPE or PRINT command specifying
the HEX option.

Note that if a TEXT file contains control changes for the terminal,
the edit lines may not be displayed in their true form. Therefore, it
is suggested you do not use the editor for TEXT files, because the
results are unpredictable. Instead, use the TYPE or PRINT commands with
the HEX option to display TEXT decks. Put TEXT decks into a TXTLIB and
ZAP the TXTLIB to modify the TEXT deck.

FILETYPES FOR TEMPORARY FILES

The filetypes of files created by the assembler and language processors
for use as temporary workfiles are:

SYSUT1
SYSUT2
SYSUT3
SYSUT4

SYS001
SYS002
SYS003

SYS004
SYS005
SYS006

CMS handles all SYSUTx and SYSOOx files as temporary files.

The CMS AMSERV command, executing VSAM utility functions, uses two
workfiles that have filetypes of LDTFDI1 and LDTFDI2.

Disk space is allocated for temporary files on an as-needed basis.
They are erased when processing is complete. If a program you are
executing is terminated before completion, these workfiles may remain on
your disk. You can erase them.

The CMSUT1 filetype is used by CMS commands that create files on your
CMS disks. The CMSUTl file is used as a workfile and is erased when the
file is created. When a command fails to complete execution properly,
the CMSUTl fi~e may not be erased. CMSUTl files are reserved for system
usage, and use of these files may cause unpredictable results. The
commands, and the filenames they assign to files they create, are listed
below.

~Q~~~ng
COPYFILE
DISK LOAD
EDIT
INCLUDE
LOAD

Fil~n~m~
COPYFILE
DISK
EDIT
DMSLDR
DMSLDR

50 IBM VM/SP CMS User's Guide

£omm~nd
MACLIB
READCARD
TAPE LOAD
UPDATE

li!~n~m~
DMSLBM
READCARD
TAPE
fn (the filename of
the UPDATE file)

-,~

FILETYPES FOR DOCUMENTATION

There are two CMS reserved filetypes for which the CMS Editor and System
Product Editor accept (by default) uppercase and lowercase input data.
These are MEMO and SCRIPT. You can use MEftO files to document program
notes or to write reports. The SCRIPT filetype is used by the SCRIPT or
SCR 1PTVS commands. These commands invoke text processors that are IBM
Installed User Program (IUP) and IBM program products, respectively.

Filemode Letters and Numbers

The filemode field of a CMS file identifier has two characters: the
filemode letter and the filemode number. The filemode letter is
established by the ACCESS command and specifies the virtual disk on
which a file resides: A through Z. The filemode number is a number from
o to 5, which y~u can assign to the file when you create it or rename
it; if you do not specify it, the value defaults to 1. How you access
your disks and what filemode letters you give them with the ACCESS
command depends on how you want to use the files that are on them.

For most of the reading and writing you do of files, you use your
A-disk, which is also known as your primary disk. This is a read/write
disk. You may access other disks in your configuration, or access
linked-to disks, in read-only or read/write status, depending on whether
you have a read-only or read/write link.

When you load CMS (with the 1PL command), your virtual disk at
address 191 is accessed for you as your A-disk. Your virtual disk at
address 190 (the system disk) is accessed as your S-disk; and the disk
at 19E is accessed as an extension of yourS-disk, with a mode letter of
Y. The S-disk and Y-disk are accessed for only mode S2 and Y2 files,
thus:

access 190 S ** S2
access 19E Y ** Y2

In addition, if you have a disk defined at address 192, it is accessed
for you as your D-disk. If the 192 disk has not been formatted, CMS
will do it automatically and label the minidisk 'SCRTCB'.

If ACCESS is the first command issued after an IPL of the CMS system,
only the A-disk is not automatically defined. Another ACCESS co •• and
must be issued to define the A-disk.

The actual letters you assign to any other disks (and you may
reassign the letters A, D, and Y), is arbitrary; but it does determine
the CMS search order, which is the order in which CMS searches your
disks when it is looking for a file. The order of search (when all disks
are being searched) is alphabetical: A through Z. If you have duplicate
file identifiers on different disks, you should check your disk search
order before issuing commands against that filename to be sure that you
will get the file you want. You can find out the current search order
for your virtual disks by issuing the command:

query search

You can also access disks as logical extensions of other disks, for
example:

access 235 b/a

Section 4. The eftS Pile S'ystell 51

The "/A" indicates that the B-disk is to be a read-only extension of the
A-disk, and the A-disk is considered the "parent" of the B-disk. A disk
may have many extensions, but only one level of extension is allowed.
If you access an extension A-disk containing no files, the access fails.

If you have a disk accessed as an extension of another disk, the
extension disk is automatically read-only, and you cannot write on it.
You might access a disk as its own extension, therefore, to protect the
files on it, so that you do not accidentally write on it. For example:

access 235 bIb

Another use of extensions is to extend the eMS search order. If you
issue a command requesting to read a file, for example:

type alpha plan

eMS searches your A-disk for the file named ALPHA PLAN and if it does
not find it, searches any extensions that your A-disk may have. If you
have a file named ALPHA PLAN on your B-disk but have not accessed it as
an extension of your A-disk, eMS will not find the file, and you will
have to reenter the command:

type alpha plan b

Additionally, if you issue a eMS command that reads and writes a
file, and the file to be read is on an extension of a read/write disk,
the output file is written to the parent read/write disk. The EDIT
command is a good e.xample of this type of command. If you have a file
named FINAL LIST on a B-disk extension of a read/write A-disk, and if
you invoke the editor to modify the file with the command:

edit final list

after you have made modifications to the file, the changed file is
written onto your A-disk. The file on the B-disk remains unchanged.

When you access a disk as a read-only extension, it remains an extension
of the parent disk as long as both disks are still accessed. If either
disk is released, the relationship of parent disk/extension is
terminated.

If the parent disk is released, the extension remains accessed and
you may still read files on it. If you access another disk at the mode
letter of the original parent disk, the parent/extension relationship
remains in effect.

If you release a read-only extension and access another disk with the
same mode letter, it is not an extension of the original parent disk
unless you access it as such. For example, if you enter:

52 IBM VM/SP eMS User's Guide

access 198 cIa
release c
access 199 c

the C-disk at virtual address 199 is not an extension of your A-disk.

WHEN TO SPECIFY FILEKODE LETTERS: READING FILES

When you request CMS to access a file, you have to identify it so that
CKS can locate it for you. The commands that expect files of particular
filetypes (reserved filetypes) allow you to enter only the filename of
the file when you issue the command. When you execute any of these
commands or execute a MODULE or EXEC file, CKS searches all of your
accessed disks (using the standard search order) to locate the file.
The CMS commands that perform this type of search are:

AMSERV
ASSEKBLE
DOSLIB
EXEC

GLOBAL
LOAD
LOADMOD
KACLIB

KODMAP
RUN
TXTLIB

Some CMS commands require you to enter the filename and filetype to
identify a file. You may specify the filemode letter; if you do not
specify the filemode, CMS searches only your A-disk and its extensions
when it looks for the file. If you do specify a filemode letter, the
disk you specify and its extensions are searched for the file. The
commands you use this way are:

EDIT
ERASE
FILEDEF
PRINT

PUNCH
STATE
SYNONYK

TAPE DUKP
TYPE
UPDATE

There are two CMS commands that do not search extensions of disks
when looking for files. They are:

DISK DUMP
LISTFILE

You must explicitly enter the filemode if you want to use these commands
to list or dump files that are on extensions.

For some CKS commands, if you specify the filemode of a file as an
asterisk, it indicates that you either do not know or do not care what
disk the file is on and you want CMS to locate it for you. For. example,
if you enter:

listfile myfile test *
the LISTFILE command responds by listing all files on your accessed
disks named MYFILE TEST. When you specify an asterisk for the filemode
of the COPYFILE, ERASE, or RENAME commands, CKS locates all copies of
the specified file. For example:

rename temp sort * good sort =

Section 4. The CKS File System 53

renames all files named TEKP SORT to GOOD SORT on all of your accessed
read/write disks. An equal sign (=) is va~id in output fileids for the
RENAKE and COPYFILE commands.

For some commands, when you specify an asterisk for the filemode of a
file, CKS stops searching as soon as it finds the first copy of the
file. For example:

type myfile assemble *
If there are files named KYFILE ASSEKBLE on your A-disk and C-disk, then
only the copy on your A-disk is displayed. The commands that perform
this type of search are:

COKPARE
DISK DUKP
EDIT
FILEDEF

PRINT
PUNCH
RUN
SORT

STATE
SYNONYM
TAPE DUKP
TYPE

For the COKPARE, COPYFILE, RENAKE, and SORT commands, you must always
specify a filemode letter, even if it is specified as an asterisk.

WHEN TO SPECIFY FILEMODE LETTERS: WRITING FILES

When you issue a CKS command that writes a file onto one of your virtual
disks, and you specify the output filemode, CKS writes the file onto
that disk. The commands that require you to specify the output filemode
are:

COPYFILE
RENAME
SORT

The commands that allow you to specify the output filemode, but do
not require it, are:

FILEDEF
GENKOD
READCARD

TAPE LOAD
TAPPDS
UPDATE

When you do not specify the filemode on these commands, CKS writes the
output files onto your A-disk.

Some CKS commands that create files always write them onto your
A-disk. The LOAD and INCLUDE commands write a file named LOAD KAP A5.
The LISTFILE command creates a file named CKS EXEC, on your A-disk. The
CKS/DOS commands DSERV, ESERV, SSERV, PSERV, and RSERV also write files
onto your A-disk.

Other commands that do not allow you to specify the filemode, write
output files either:

• To the disk from which the input file was read, or
• To your A-disk, if the file was read from a read-only disk

54 IBM VK/SP CKS User's Guide

These commands are:

AMSERV
MACLIB
TXTLIB
UPDATE

The SORT command also functions this way if you specify the output
filemode as an asterisk (*).

In addition, many of the language processors, when creating work
files and permanent files, write onto the first read/write disk in your
search order, if they cannot write on the source file's disk or its
parent.

HOW FILEMODE NUMBERS ARE USED

Whenever you specify a filemode letter to reference a file, you can also
specify a filemode number. Since a filemode number for most of your
files is 1, you do not n~ed to specify it. The filemode numbers 0, 2,
3, 4, and 5 are discussed below. Filemode numbers 6 through 9 are
reserved for IBM use.

Filemode Q: A filemode number of 0 assigned to a file makes that file
private: No other user may access it unless they have read/write access
to your disk. Under normal circumstances; if someone links to your disk
in read-only mode and requests a list of all the files on your disk, the
files with a filemode of 0 are not listed.

The DDR command will allow you to copy the mini disk from one disk to
another, and therefore, the filemode 0 files. Use a read share
password to protect minidisks with private files.

Filemode 2: Filemode 2 is essentially the same, for the purposes of
reading-and writing files, as filemode 1. Usually a filemode of 2 is
assigned to files that are shared by users who link to a common disk,
like the system disk. Since you can access a disk and specify which
files on that disk you want to access, files with a filemode of 2
provide a convenient subset of all files on a disk. For example, if you
issue the command:

access 489 e/a * * e2

you can only read files with a filemode of 2 on the disk at virtual
address 489.

Filemode 3: Files with a filemode of 3 are erased after they are read.
Ifyoucreate a file with a filemode of.3 and then request that it be
printed, the file is printed, and then erased. You can use this filemode
if you write a program or EXEC procedure that creates files that you do
not want to maintain copies of on your virtual disks. You can create the
file, print it, and not have to worry about erasing it later.

The language processors and some CMS commands create work files and
give these work files a filemode of 3.

Note: A filemode of 3 should not be used with EXECs. Depending on what
commands are issued within it, an EXEC with a filemode of 3 may be
erased before it completes execution.

Section 4. The CMS Pile System 55

Fi!~~od! q: Files with a filemode of 4 are in as simulated data set
format. ~hese files are created by os macros in programs running in
CMS. You specify that a file created by a program 1S to have os
simulated data set format by specifying a filemode of 4 when you issue
the FILBDEF command for the output file. If you do not specify a
fi1emode of 4, the output file is created in CMS format.

You can find more details about os si mula ted data sets in "Sect ion 8.
Developing os Programs Under CMS."

Note: There are no filemode numbers reserved fer DOS or VSAM data sets,
SInce CMS does not simulate these file organizations.

Filemode 5: This filemode number is the same, for purposes of reading
~wrIting, as filemode 1. You can assign a filemode of 5 to files that
you want to maintain as logical groups, so that you can manipulate them
in groups. For example, you can reserve the filemode of 5 for all files
that you are retaining for a certain period of time; then, when you want
to erase them, you could issue the command:

erase * * as

You can assign filemode numbers when you use the following commands:

£QfIlltj: You can assign a filemode number when you create a new file
with the COPYFILE command.

I]!I: You can assign a filemode number when you create a file with the
CMS editor. To change the filemode number of an existing file, use the
RENAME or COPYFILE commands, or use the FMODE subcommand when you are in
the edit environment.

DL]~, lIL~EF: When you assign file definitions to disk files for
programs or CMS command functions, you can specify a filemode number.

GENl1.Q]: You can specify a filemode number on the GENMOD command line.
To change the filemode number of an existing MODULE file, use the RENAME
or COPYFILE commands.

READCARD: You can assign a filemode number when you specify a file
identIfIer on the READCARD command line or on a READ control card.

~Al1]: When you specify the fi1eids
specify the filemode numbers for the
change only the fi1emode number of an
RENAME option. For example:

RENAME test module a1 = = a2

on the RENAME command, you can
input and/or output files. To
existingfi Ie, you must use the

changes the fi1emode number of the file TEST MODULE A from 1 to 2 •

. SORT: You can specify fi1emode numbers for the input and/or output
file ids on the SORT command line.

56 IBM VM/SP CMS User's Guide

)

Managing Your CMS Disks

The number of files you can write on a CMS disk depends on both the size
of the disk and the size of the files that it contains. You can find
out how much space is being used on a disk by using the QUERY DISK
command. For example, to see how much space is on your A-disk, you would
enter:

query disk a

The response may be something like this:

LABEL cuu M STAT CYL TYPE BLKSIZE FILES BLKS USED-(%) BLKS LEFT BIR TOTAL
MYDISK 1q1 A R/W 5 3330 1024 171 1221-92 107 1328

When a disk is becoming full, you should erase whatever files you no
longer need. Or dump to tape files that you need to keep but do not need
to keep active on disk.

When you are executing a command or program that writes a file to
disk, and the disk becomes full in the process, you receive an error
m~ssage, and you have to try to clear some space on the disk before you
can attempt to execute the command or program again. To avoid the
delays that such situations cause, you should try to maintain an
awareness of the usage of your disks. If you cannot erase any more
files from your disks, you should contact installation support personnel
about obtaining additional read/write CMS disk space.

CMS File Directories

Each CMS disk has a master file directory that contains entries for each
of the CMS files on the disk. When you access a disk, information from
the master file directory is brought into virtual storage and written
into a user file directory. The user file directory has an entry for
each file that you may access. If you have accessed a disk specifying
only particular files, then the user file directory contains entries
only for those files.

If you have read/write access to a disk, then each time you write the
file onto disk the user file directory and master file directory are
updated to reflect the current status of the disk. If you have
read/write access to a disk and the FSCLOSE macro is issued, the user
file directory is updated. When there are no open files on the disk,
the master file directory is only updated to reflect the current status
of the disk. If you have read-only access to a disk, then you cannot
update the master file directory or user file directory. If you access
a read-only disk while another user is writing files onto it, you may
need to periodically reissue the ACCESS command for the disk, to obtain
a fresh copy of the master file directory.

!Qi~: You should never attempt to write on a disk at the same time as
another user.

The user file directory remains in virtual storage until you issue
the RELEASE command specifying the mode letter or virtual address of the
disk. If you detach a virtual disk (with the CP DETACH command) without
releasing it, CMS does not know that the disk is no longer part of your
virtual machine. When you attempt to read or write a file on the disk
CMS assumes that the disk is still active (because the user file
directory is still in storage) and encounters an error when it tries to
read or write the file.

Section 4. The CMS File System 57

A similar situation occurs if you detach a disk and then add a new
disk to your virtual machine using the same virtual address as the disk
you detached. Por example, if you enter the following sequence of ~
commands:

cp link user1 191 195 rr rpass 1

access 195 d
cp detach 195
cp link user2 193 195 rr rpass2 1

listfile * * d

the LISTPILE command produces a list of the files on USER1's 191 disk;
if you attempt to read one of these files, you receive an error message.
Yo~ must issue the ACCESS command to obtain a copy of the master file
directory for USER2's 193 disk.

The entries in the master file directory are sorted alphamerically by
filename and filetype, to facilitate the CMS search for particular
files. When you are updating disk files, the entries in the user file
directory and master file directory tend to become unsorted as files are
created, updated, and erased. When you use the RELElSE command to
release a read/write disk, the entries a re sorted and the .aster f1l.e
directory is rewritten. If you or any other user subsequently access
the disk, the file search may be more efficient.

CMS Command Search Order

When you enter a command line in the CMS environment, CMS has to locate
the command to execute. If you have EXEC or !ODULE files on any of your
accessed disks, CKS treats them as commands; also, they are known as
~ser-written commands.

As soon as the command name is found, the search stops and the
command is executed. The search order is:

1. Search for a file with filetype EXEC on any currently accessed
disk. CMS uses the standard search order (A through Z.)

2. Search for a valid name on any currently accessed disk, according
to current SYNONYM file definitions in effect.

3. Search for a cemmand in the transient area. The transient area
commands are:

ACCESS
ASSGN
COMPARE
DISK
DLBL
PILEDEF
GENDIRT
GLOBAL

HELP
LISTFILE
KODMAP
OPTION
PRINT
PUNCH
QUERY
READCARD

RELEASE
RENAKE
SET
SVCTRACE
SYNONY!
TAPE
TYPE

tNote that the password cannot be entered on the command line if the
password suppression facility was specified at sysgen.

5S IBM VM/SP C!S User's Guide

4. Search for a nucleus-resident ccmmand. The nucleus-resident CMS
commands are:

CP GENMOD START
DEBUG INCLUDE STATE
ERASE LOAD STATEW
FETCH LOADMOD

5. Search for a file with filetype MODULE on an y currently accessed
disk

6. Search for a valid abbreviation or truncation of a command in the
transient area.

7. Search for a valid abbreviation or truncation of a command in the
nucleus.

8. Search for a valid abbreviation or truncation of any other CMS
command

g. Search for a CP command.

10. Search for a valid abbreviaticn or truncation of a CP command.

For example, if you create a command module that has the same name as
a CMS nucleus-resident command, your command module cannot be executed,
since eMS locates the nucleus-resident command first, and executes it.
When a user-written command has the same name as a CMS command module
abbreviation, certain error messages may indicate the CMS command name,
rather than the program name.

Figure 4 illustrates details of the command search order.

Section 4. The CMS File System 59

r
CMS

EXEC SEARL

r
TRANSIENT OR

NUCLEUS RESIDENT COMMl

r
CMS

MODULE
SEARCH

L
F
CP

SEARCH

~

EXECUTE
THE FILE
AND RETURN
CONTROL TO
CMS.

EXPAND THE
NAME TO THE
FULL REAL
NAME, EXECUTE
IT, AND RETURN
CONTROL TO CMS.

EXECUTE
THE FILE
AND RETURN
CONTROL TO
CMS.

EXECUTE THE
FILE AND
RETURN CONTROL
TOCMS

EXECUTE THE
FILE AND
RETURN CONTROL
TO CMS.

EXPAND THE
NAME TO THE FULL

~allllll_~ REAL NAME, EXECUTE
IT, AND RETURN
CONTROL TO CMS.

EXECUTE THE
COMMAND
AND RETURN
CONTROL TO
CMS.

Figure 4. How CMS Searches for the Command to Execute

60 IBM VM/SP CMS User's Guide

Section 5. The Editors

In eMS usage, the term edit is used in a variety of ways, all of which
refer, ultimately, to the functions of the eMS Editor or the System
Product Editor. when you issue the EDIT command.

When you issue the EDIT command, the System Product Editor
automatically places you in eMS Editor (EDIT) compatibility mode. In
this mode, you can issue both EDIT and XEDIT subcommands. For complete
information on EDIT compatibility mode, as well as instructions on how
to invoke the System Product Editor, see the !~L~g ~§tem frod~! Edi!Q~
~Qm~E~g Eng Ma£~Q Re!~~~£~.

The CMS Editor

To edit a file means to make changes, additions, or deletions to a eMS
file that is on a disk, and to make these changes interactively: you
instruct the editor to make a change, the editor does it, and then you
request another change.

You can edit a file that does not exist; when you do so, you create
the file online, and can modify it as you enter it.

To file a file means to write a file you are editing back onto a
disk, incorporating any chang~s you made during the editing session.
When you issue the FILE subcommand to write a file, you are no longer in
the environment of the eMS Editor, but are returned to the eMS
environment. You can, however, write a file to disk and then continue
editing it, by using the SAVE subcommand.

An editing session is the period of time during which a file is in
your virtual storage area, from the moment you issue the EDIT command
and the editor responds EDIT: until you issue the FILE or QUIT
subcommands to return to the eMS command environment.

The EDIT Command

When you issue the EDIT command you must specify the filename and
filetype of the file you want to edit. If you issue:

edit test file

eMS searches your A-disk and its extensions for a file with the
identification TEST FILE. If the file is not found, eMS assumes that you
want to create the file and issues the message:

NEW FILE:
EDIT:

to inform you that the file does not already exist.

If the file exists on a disk other than your A-disk and its
extensions, or if you want to create a file to write on a read/write
disk other than your A-disk, you must specify the filemode of the file:

edit test file b

Section 5. The Editors 61

In this example, your B-disk and its extensions are searched for the
file TEST FILE.

After you issue the EDIT command, vou are in edit mode, or the
environment of the CMS editor. If you have specified the filename and
filetype of a file that already exists, you can now use EDIT subcommands
to make changes or corrections to lines in that file. If you want to
add records to the file, as you would if you are creating a new file,
issue the EDIT subcommand:

input

~o enter input mode. Every line that you enter is considered a data line
to be written into the disk file. For most filetypes, the editor
translates all of your input data to uppercase characters, regardless of
how you enter it. For example, if you create a file and enter input
mode as follows:

edit mvfile test
NEW FILE:
EDIT:
input
INPUT:
This is a file I am
learning to create with the CMS editor.

the lines are written into the file as:

THIS IS A FILE I AM
LEARNING TO CREATE WITH THE CMS EDITOR.

You can use the VM/SP logical line editing symbols to modify data
lines as you enter them.

To return to edit mode to modify a file or to terminate the edit
session, you must press the Return key on a null line. If you have just
entered a data line, for example, and your terminal's typing element or
cursor is positioned at the last character you entered, you must press
the Return key once to enter the data line, and a second time to enter a
null line.

You may also use the logical line end symbol to enter a null line;
for example:

last line of input#

Eoth of these lines cause you to return to edit mode from input mode.

If you do not enter a null line, but enter an EDIT subcommand or CMS
command, the command line is written into your file as input. The only
exception to this is a line that begins with the characters #CP. These
characters indicate that the command is to be passed immediately to CP
'for processing.

WRITING A FILE ONTO DISK

A file you create and the modifications that you make to
edit session are not automatically written to a disk file.
results, you can do the following:

62 IBM VM/SP eMS User's Guide

it during an
To save the

• Periodically issue the subcommand:
~

1'\ save r
to write onto disk the contents of the file
issue t~e subcommand. periodically issuing
protects your data against a system failure;
changes you make are not lost.

as it exists when you
this EDIT subcolllland
JOu can be sure that

• At the beginning of the edit session, issue the AUTOSAVE subcommand,
with a number:

autosave 10

Then, for every tenth change or addition to the file, the editor
issues an automatic save request, which writes the file onto disk.

• At the end of the edit session, issue the subcommand:

file

This subcommand terminates the CMS Editor session, writes the file
onto disk, replacing a previous file by that name (if one existed),
and returns you to the CMS environment. You can return to the edit
environment by issuing the EDIT command, specifying a different file
or the same file.

The editor decides which disk to write the file onto according to the
following hierarchy:

• If you specify a filemode on the FILE or SAVE subcommand line, the
file is written onto the specified disk.

• If the current filemode of the file is the mode of a read/write disk,
the file is written onto that disk. (If you have not specified a
filemode letter, it defaults to your A-disk.)

• If the filemode is the mode of a read-only extension of a read/write
disk, the file is written onto the read/write parent disk.

• If the filemode is the mode of a read-only disk that is not an
extension of a read/write disk, the editor cannot write the file and
issues an error message.

see "Changing File Identifiers" for information on how you can tell
the editor what disk to use when writing a file.

If you are editing a file and decide, after making several changes,
that you do not wish to save the changes, you can use the subcommand:

quit

No changes that you made since you last used the SAVE subcommand (or the
editor last issued an automatic save for you) are retained. If you have
just begun an edit session, and have made no changes at all to a file,
and for some reason you do not want to edit it at all (for example, you
misspelled the name, or want to change a CMS setting before editing the
file), you can use the QUIT subcommand instead of the FILE subcommand to
terminate the edit session and return to CMS.

A file must have at least one line of data in order to be written.

Section 5. The Editors 63

EDIT SUBCOMMANDS

While you are in the edit environment, you can issue any EDIT subcommand
or macro. An edit macro is an EXEC file that contains a sequence of EDIT
subcommands that execute as a unit. You can create your own EDIT
subcommands with the CMS EXEC facility. EDIT subcommands provide a
variety of functions. You can:

• position the current line pointer at a particular line, or record, in
a file.

• Control which columns of a file are displayed or searched during an
editing session.

• Modify data lines.

• Describe the characteristics that a file and its individual records
will have.

• Automatically write and update sequence numbers for fixed-length
records.

• Edit files by line number.

• Control the editing session.

Like CMS commands, EDIT subcommands have a subcommand name and some have
operands. In most cases, a subcommand name (or its truncation) can be
separated from its operands by one or more blanks, or no blanks. For
example, the subcommand lines:

type 5
ty 5
t5

are equivalent.

Several subcommands also use delimiters, which enclose a character
string that you want the editor to operate on. For example, the CHANGE
subcommand can be entered:

change/apple/pearl

The diagonal (/) delimits the character strings APPLE and PEAR. For the
subcommands CHANGE, LOCATE, and DSTRING, the first nonblank character
following the subcommand name (or its truncation) is considered the
delimiter. No blank is required following the subcommand name. In the
subcommand:

locate $vm/$

the dollar sign ($) is the delimiter. You cannot use a I in this case,
since the diagonal is part of the character string you want to locate.

When you enter these subcommands, you may omit the final delimiter;
for example:

dstring/csect

64 IBM VM/SP CMS User's Guide

You must enter the final delimiter, however, when you specify a global
~ change with the CHANGE subcommand.
~)

For the FIND and OVERLAY subcommands, additional blanks following the
subcommand names are interpreted as arguments. The subcommand:

find pudding

requests the editor to locate the line that has" Pudding" in columns 1
through 9. Initial blanks are considered part of the character string.

An asterisk, when used with an EDIT
of the file" or "to the record length."

de1ete*

subcommand, may mean "to the end
For example:

deletes all of the lines in a file, beginning ~ith the current line.

verify *

indicates that the editor should display the entire length of records.

When you make an error entering an EDIT subcommand, the editor displays
the message.:

?EDIT: line •••

where line ••. is the line, as you entered it, that the editor does not
understand.

The Current Line Pointer

When you begin an editing session, a file is copied into virtual
storage; in the case of a new file, virtual storage is acquired for the
file you are creating. In either case, you can picture the file as a
series of records, or lines; these lines are available to you, one at a
time, for you to modify or delete. You can also insert new lines or
records following any line that is already in the file.

The line that you are currently edi ting is poin ted to by the current
line pointer. On a display terminal, this line is highlighted.

What you do during an editing session is:

• position the current line pointer to access the line you want to
edit.

• Edit the line: change character strings in it, delete it or insert
new records following it.

• Position the line pointer ~t the next line you want to edit.

When you are editing a file and you issue an EDIT subcommand that
either changes the position of the line pointer or that changes a line,

Section 5. The Editors 65

the current line or the changed line (or lines) is displayed. You can
also display the current line by using the TYPE subcommand:

type

If you want to examine more than one line in your file, you can use the
TYPE subcommand with a numeric parameter. If you enter:

type 10

the current line and the nine lines that follow it are displayed; the
line pointer then stays positioned at the last line that was displayed~

You can mOVE the line pointer up or down in your file. "Up" indicates
a location toward the beginning of the file (the first record); "down"
indicates a location toward the end of the file (the last record). You
use the EDIT subcommands UP and DOWN to move the line pointer up or down
one or more lines. For example:

up 5

moves the current line pointer to a line five lines closer to the
beginning of the filer and:

down

moves the pointer to point at the next sequential record in the file.

You can also request that
beginning, or top of the file,
When you issue the subcommand:

top

you receive the message:

TOP:

the line
or at the

pointer be placed at the
end, or bottom of the file.

and the line pointer is positioned at a null line that is always at the
top of the file. This null line exists only during your editing session;
it is not filed on disk when you end the editing session.

When you issue the subcommand:.

bottom

the current line pointer is positioned at the last record in the file.
If you now enter input mode, all lines that you enter are appended to
the end of the file.

If the current line pointer is at the bottom of the file and you
issue the DOWN subcommand, you receive the message:

EOF:

and the current line pointer is positioned at the end of file, following
the last record.

When you are adding records to your file, the current line pointer is
always pointing at the line you last entered. When you delete a line
from a file, the line pointer moves down to point to the next line down
in th~ file.

66 IBM VM/SP eMS User's Guide

Going from edit mode to input mode does not change the current line
pointer. If you are creating a new file and, every 30 lines or so, you
move the current line pointer to make corrections to the lines that you
have entered, you must issue the BOTTOM subcommand to begin entering
more lines at the end of the file.

The current line pointer is also moved as the result of the LOCATE
and FIND subcommands. You use the FIND subcommand to get to a line when
you know the characters at the beginning of the line. For example, if
you want to change the line:

BAXTER J.F. 065941 ACCNTNT

you could first locate it by using the subcommand:

find baxter

If you do not know the first characters on a line, you can issue the
LOCATE subcommand:

locate laccntnt/

Both of these subcommands work only in a top-to-bottom direction: you
cannot use them to position the line pointer above the current line. If
you use the FIND or LOCATE subcommands and the target (the character
string you seek) is not found, the editor displays a message, and
positions the line pointer at the end of the file. Subsequently, if you
reissue the subcommand, the editor starts searching at the top of the
file.

In a situation like that above, or in a case where you are
repetitively entering the same LOCATE or FIND subcommand (if, for
example, there are many occurrences of the same character string, but
you seek a particular occurrence) you can use the = (REUSE) subcommand.
To use the example above, you are looking for a line that contains the
string ONCE UPON A TIME, but you do not know that it is above the
current line. When you issue the subcommand:

locate lonce upon a time/

the editor does not locate the line, and responds:

NOT FOUND
EOF:

If you enter:

=

the editor searches again for the same string, beginning this time at
the top of the file, and locates the line:

"ONCE UPON A TIME" IS A COMMON

This may still not be the line you are looking for. You can, again,
enter:

=

The LOCATE subcommand is executed again.
locate the line:

A STORY THAT STARTED ONCE UPON A TIME

This time, the editor might

Section 5. The Editors 67

Figure 5 illustrates a simple CMS file, and indicates how the current
line pointer would be positioned following a sequence of EDIT
subcommands.

LI!~-NYH~R EDIT1!§: Some fixed-length files are suitable for editing by
referencing line numbers instead of character strings. The EDIT
subcommands that allow you to change the line pointer position by line
number are discussed under "Line-Number Editing."

EDIT PPRINT EXEC
CLP
---) TOF:

o (null line)
1 &CONTBOL OFF
2 &P =
3 &IF .&1 EO • &EXIT 100
4 &FN = &1
5 &IF &1 EQ ? &GOTO -TELL
6 &NFN = &CONCAT $ &1
7 &IF .S2 EQ • SEXIT 200
8 &FT = &2
q SFM = S3

10 &IF .&3 NE • SSKIP 2
11 SFM = A
12 &SKIP 3
13 &IF &3 NE (&SKIP 2
14 &FM = A
15 &P = (
16 &CONTROL ALL
17 COpy SFN SFT SFM &NFN &FT A (UNPACK
18 PRINT &NFN SFT A &P &4 &5 &6 &7 &8 &9 &10 &11 &12 &13 &14
1~ ERASE SNFN SFT A
20 &EXIT
21 -TELL &TYPE THIS EXEC PRINTS A LISTING PROM PACKED FORKAT

EOF:

The line numbers represented are symbolic: they are not an actual
part of the file, but are used below to indicate at which line the
current line pointer is pcsitioned after execution of the EDIT
subccmmand indicated.

L---

Subcommand

DOWN 5
UP
LOCATE /UNP/
TYPE 3
BOTTOM
DOWN
FIND -
TOP
CHANGE /EQ/EQ/ 6
DELETE 2
INPUT *

CLP Position
---) 0
---) 5
---) 4
---) 17
---) 19
---) 21
---) EOP:
---) 21
---) 0
---) 5
---) 7 (lines numbered 5 and 6 are deleted)
---) the line just entered (between 7 and 8)

Figure 5. Positioning the Current Line Pointer

68 IBM VM/SP CMS User's Guide

lot.,

'1'1 ,
Verification and Search Columns

There are two EDIT subcommands you can use to control what you and the
editor "see" in a file. The VERIFY subcommand controls what you see
displayed; the ZONE subcommand controls what columns the editor
searches. NormallYr when you edit a filer every request that you make
of the editor results in the display of one or more lines at your
terminal. If you do not want to see the linesr you can specify:

verify off

Alternatively, if you want to see only particular columns in a filer you
can specify the columns you wish to have displayed:

verify 1 30

Some filetypes have default values set for verification r which
usually include those columns in the file that contain text or data r and
exclude columns that contain sequence numbers. If a verification column
is less than the record length r you can specify:

verify *
to indicate that you want to see all columns displayed.

In conjunction with the VERIFY subcommand, you can use the ZONE
subcommand to tell the editor within which columns it can search or
modify data. when you issue the subcommand:

zone 20 30

The editor ignores all text in columns 1-19 and 31 to the end of the
record when it searches lines for LOCATE r CHANGEr ALTER r and FIND
subcommands. You .cannot unintentionally modify data outside of these
fields; you must change the zones in order to operate on any other data.

The zone setting also controls the truncation column for records when
you are using the CHANGE subcommand; for more details r see "Setting
Truncation Limits."

Changing, Deleting, and Adding Lines

You can change character strings in individual lines of data with the
CHANGE subcommand. A character string may be any length r or it may be a
null string. Any of the characters on your terminal keyboard, including
blanks, are valid characters. The following example shows a simple data
line and the cumulative effect of CHANGE subcommands.

ABC ABC ABC
is the initial data line.

CHANGE /ABC/XYZ/
changes the first occurrence of the character string "ABC" to the
str in g "XYZ".

XYZ ABC ABC

CHANGE IABC//
deletes the character string "ABC" and concatenates the characters
on each side of it.

XYZ ABC

section 5. The Editors 69

CHANGE //ABC/
inserts the string "ABC" at the beginning of the line.

ABCXYZ ABC

CHANGE /XYZ /XYZ/
deletes one blank character following "XYZ".

ABCXYZ ABC

CHANGE /C/C /
adds a blank following the first occurrence of the character "CIt.

ABC XYZ ABC

is the final line.

!1:!~ !1!]!! ~UB-£QMM!!Q: You can use the ALTER subcommand to change a
single character; the ALTER subcommand allows you to specify a
hexadecimal value so that you can include characters in your files for
which there are no keyboard equivalents. Once in your file, these
characters appear during editing as nonprintable blanks. For example,
if you input the line:

IF A = B THEN

in edit mode and then issue the subccmmand:

alter = Sc

the line is displayed:

IF A B THEN

If you subsequently print the file containing this line on a printer
equipped to handle special characters, the line appears as:

IF A ~ B THEN

since X'SC' is the hexadecimal value of the-special character S.

Either or both of the operands on the ALTER
hexadecimal or character values. To change the
character, for example <, you could issue either:

alter Sc ae

-- or

alter Sc <

subcommand can be
X'SC' to another

!1:!~ QVE~1!I ~Y~£Q~~!!Q: The OVERLAY subcommand allows you to replace
characters in a line by spacing the terminal's typing element or cursor
to a particular character position to make character-for-character
replacements, or overlays. For example, given the line:

ABCDEF

the subcommand:

overlay xyz

results in the line:

XYZDEF

10 IBM VM/SP CMS User's Guide

A blank entered on an OVERLAY line indicates that the corresponding
character is not to be changed; to replace a character with a blank, use
an underscore character (_). Given the above line, XYZDEF, the
subcommand:

overlay 3

results in:

DE3 (The "D" is preceded by blanks in columns 1, 2, and 3.)

You can make global or repetitive changes with the CHANGE and ALTER
subcommands. On these subcommand lines, you can include operands that
indicate:

e The number of lines to be searched for a character or character
string. An asterisk (*) indicates that all lines, from the current
line to the end of the file, are to be searched.

e Whether only the f~rst occurrence or all occurrences on each line are
to be modified. An asterisk (*) indicates all occurrences. If you do
not specify an asterisk, only the first occurrence on any line is
changed.

For example, if you are creating a file that uses the (e) special
character (X'AF') and you do not want to use the ALTER subcommand each
time you need to enter the e, you could use the character ~ as a
sUbstitute each time you need to enter a e. When you are finished
entering input, move the current line pointer to the top of the file,
and issue the global ALTER subcommand:

top#alter ~ af * *
All occurrences of the character ~ are changed to X'AF'.
line pointer is positioned at the end of the file.

The current

When you use a global CHANGE subcommand, you must be sure to use the
final delimiter on the subcommand line. For example:

change /hannible/hannibal/ 5

This subcommand changes the first occurrence of the string "HANNIBLE" on
the current line and the four lines immediately following it.

You can also make global changes with the OVERLAY subcommand, by
issuing a REPEAT subcommand just prior to the OVERLAY subcommand. Use
the REPEAT subcommand to indicate how many lines you want to be
affected. For example, if you are editing a file containing the three
lines:

A
B
C

with the current line pointer at line "A", issuing the subcommands:

repeat 3
overlay

Section 5. The Editors 71

results in:

A
B
C

The current line pointer is now positioned at the line beginning with
the character "C".

You delete lines from a file with the DELETE subcommand; to delete more
than one line, specify the number of lines:

delete 6

Or, if you want to delete all the lines from the current line to the end
of the file, use an asterisk (*):

delete *
If you want to delete an undetermined number of lines, up to a

particular character string, you can use the DSTRING subcommand:

dstring /weather/

When this subcommand is entered, all the lines from and including the
current line down to and including the line just above the line
containing the character string "WEATHER" are deleted. The current line
pointer is positioned at the line that has "WEATHER" on it.

If you want to replace a line with another line, you can use the
REPLACE subcommand:

replace *******
The current line is deleted and the line "*******" is inserted in its
place. The current line pointer is not moved.

To replace an existing line with many new lines, you can issue the
REPLACE subcommand with no new data line:

replace

The editor deletes the current line and enters input mode.

You can insert a single line of data between existing lines using the
INPUT subcommand followed by the line of data you want inserted. For
example:

input * this subroutine is for testing only

inserts a single line following the current line. If you want to insert
many lines, you can issue the INPUT subcommand to enter input mode.

72 IBM VM/SP CMS User's Guide

You can also add new lines to a file by using the GETPILE subcommand.
~ This allows you to copy lines from other files to include in the file
, you are editing or creating. For example:

get file single items c

inserts all the lines in the file SINGLE ITEMS C immediately following
the current line pointer. The line pointer is positioned at the last
line that was read in.

You could also specify:

getfile double items c 10 25

to copy 25 lines, beginning with the tenth line, from the file DOUBLE
ITEMS C.

The SMOVE and SDUP EDIT macros provide two additional ways of adding
lines into a file in a particular position. The $MOVE macro moves lines
from one place in a file to another, and deletes them from their former
position. For example, if you want to move 10 lines, beginning with the
current line, to follow a line 9 lines above the current line, you can
enter:

Smove 10 up 8

The SDUP macro duplicates the current line a specified number of
times, and inserts the new lines immediately following the current line.
Por example:

Sdup 3

creates 3 copies of the current line, and leaves the .current line
pointer positioned at the last copy.

Describing Data File Characteristics

When you issue the EDIT command to create a new file, the editor checks
the filetype. If it is one of the reserved filetypes, the editor may
assign particular attributes to it, which can simplify the editing
process for you. The default attributes assigned to most filetypes are
as follows:

• Fixed-length, 80-character records

• All alphabetic characters are translated to uppercase, regardless of
how they are entered

• Input lines are truncated in column 80

• Tab settings are in columns 1, 6, 11, 16, 21, ••• 51, 61, and so on,
and the tab characters are expanded to blanks

• Records are not serialized

The filetypes for some CMS commands and for the language processors
deviate from these default values. Some of the attributes assigned to
files and how you can adjust them to suit your needs are discussed
below.

Section 5. The Editors 73

RECORD LENGTH

You can specify the logical record length of a file you are creating on
the EDIT command line:

edit new file (lrecl 130

If you do not specify a record length, the editor assumes the
following defaults:

• For editing old files, the existing record length is used.
• For creating n~w files, the following default values are in effect:

liletYB~
EXEC
FREEFORT
LISTING
SCRIPT
VSBDATA
All others

~~£~~Q 1~g!h
SO characters
Sl characters

121 characters
132 characters
132 characters

SO

Foyat
Variable
Variable
Variable
Variable
Variable
Fixed

If you edit a variable-length file and the existing record length is
less than the default for the filetype, the record length is taken from
the default value.

When you use the LRECL option of the EDIT command you can override
these default record lengths; you can also change the record lengths of
existing files to make them larger, but not smaller.

If you try to override the record length of an existing file and make
it .smaller, the editor displays an error message, and you must issue the
EDIT command again with a larger record length. For example, suppose
you have on your B-disk a file named ftYFILE FREEFORT, which was created
with the default record length of Sl. If you try to edit that file by
issuing:

edit myfilE free fort b (lrecl 72

the editor disFlays the message:

GIVE A LARGER RECORD LENGTH.

You must then issue the EDIT command again and either
of 81 or more, or allow it to default to the current
the file.

specify a length
record length of

You can use the COPYFILE command to increase or decrease the record
length of a file before you edit it. For example, if you have
fixed-length, 132-character records in a file, and you want to truncate
all the records at column SO and create a file with SO-character
records, you could issue the command:

copyfile extra funds a (lrecl SO

The largest record you can edit with the editor is 160
file with record length up to 160 bytes (for example, a
created by a DOS program) can be displayed and edited.

characters. A
listing file

The largest record you can create with the CMS editor, however, is
130 characters using a 3270 display terminal and 134 characters using a

74 IBM VM/SP CMS User's Guide

'"
Iii

typewriter terminal such as a 2741 or 1050. If you enter more than 130
characters on a 3270, the record is truncated to 130 characters when you
press the Enter key. Note that as the line is truncated to '30
characters, the CMS editor will not know the actual line length entered,
and will not issue the "TRUNCATED" message. If you type more than 134
characters on a line using a typewriter terminal, CP generates an
attention interruption to your virtual machine and the input line is
lost when you press the Return Key.

For most purposes, you will not need to create records longer than
130 characters. If it is necessary, you can expand a record that you
have entered. You do this by 1ssu1ng the CHANGE subcommand with
operands, to add more characters to the record (for example, by changing
a 1-character string to a 31-character string). However, if a record is
longer than 130 characters, the CHANGE subcommand without operands will
cause truncation to 130 characters.

You cannot create a record that is longer than the record length of
the file. For example, if the file you are editing has a default record
length of 80, or if you specified LRECL 80 when you created the file,
the editor truncates all records to 80 characters.

There is a relationship between the record length of a file and the
maximum number of records it can contain. Figure 6 shows the
approximate number of records, rounded to the nearest hundred, that the
CMS Editor can handle in a virtual machine with different amounts of
virtual storage.

r-
I Virtual Machine Size , Record
I Length 320K 512K 768K 11024K
I
I 80 Characters 1700 3800 6800 9800
I
I 120 Characters 1100 2600 4700 6800
I-
I 132 Characters 1100 2400 4300 6200
I
I 160 Characters 900 2000 3600 5100
I

Figure 6. Number of Records Handled by the CMS Edi tor

RECORD FORMAT

With the CMS Editor, you can create either fixed- or variable-length
files. Except for the filetypes EXEC, LISTING, FREEPORT, SCRIPT, and
VSBDATA, all the files you create have fixed-length records, by default.
You can change the format of a file at any time during?n editing
session by using the RECP! subcommand:

recfm v

This changes the record format to variable-length. This does not change
the record length; in order to add new records with a greater length,
you mus~ write the file onto disk and then reissue the EDIT command
using the LRECL option.

Section 5. The Editors 75

The COPYFILE command also has an RECFM option, so that you can change
the record format of a file without editing it. The command:

copyfile * requests a1 (recfm v trunc

changes the record formats of all the files with a filetype of REQUESTS
on your A-disk to variable-length. The TRUNC option specifies that you
want trailing blanks removed from each of the records. When you are
editing a file with variable-length records, trailing blanks are
truncated when you write the file onto disk with the FILE or SAVE
subcommand. (In VSBDATA files, however, blanks are not truncated.)

USING SPECIAL CHARACTERS

The IMAGE and CASE subcommands control how data, once entered on an
input line, is going to be represented in a file. The specific
characters affected, and the subcommands that control their
representation, are:

• Alphabetic characters: CASE subcommand
• Tab characters (X'05'): IMAGE subcommand (ON and OFF operands)
• Backspaces (X'16'): IMAGE subcommand (CANON operand)

If you are using a terminal that has only uppercase characters, you do
not need to use the CASE subcommand; all of the alphabetic characters
you enter are uppercase. On terminals equipped with both uppercase and
lowercase letters, all lowercase alphabetic characters are converted to
uppercase in your file, regardless of how you enter them. If you are
creating a file and you want it to contain both uppercase and lowercase
letters you can use the subcommand:

case m

The "M" stands for "mixed." This attribute is not stored with the file
on disk. If you create a new file, and you issue the CASE M subcommand.
all the lowercase characters you enter remain in lowercase. If you
subsequently file the file and later edit it again, you must issue the
CASE M subcommand again to locate or enter lowercase data.

There are two reserved filetypes for which uppercase and lowercase is
the default. These are SCRIPT and MEMO, both of which are text or
document-oriented filetypes. For most programming applications, you do
not need to use lowercase letters.

Logical tab, settings indicate the column positions where fields within a
record begin. These logical tab settings do not necessarily correspond
to the physical tab settings on a typewriter terminal. What happens
when you press the Tab key on a typewriter terminal depends on whether
the image setting is on or off. The default for all filetypes except
sCRfpT is IMAGE ON. You can change the default by issuing the
subcommand:

image off

76 IBM VM/SP CMS User's Guide

If the image setting is on, when you press the Tab key the editor
replaces the tab characters with blanks, starting at the column where
you pressed the Tab key, and ending at the last column before the next
logical tab setting. The next character entered after the tab becomes
the first character of the next field. For example, if you enter:

tabset 1 1S

and then enter a line that begins with a tab
character following the tab 1S written into
regardless of the tab stop on your terminal.

character, the first data
the file in column 1S,

If the image setting is off, the tab character, X'OS', is inserted in
the record, just as any other data character is inserted. No blanks are
inserted.

If you want to insert a tab character (X'OS') into a record and the
image setting is on, you can do one of the following:

1. Set IMAGE OFF before you enter or edit the record, and then use the
Tab key as a character key.

2. Enter some other character at the appropriate place in the record,
and use the ALTER subcommand to alter that character to a X'OS'.

~E~11Ig TA~~: When you create a file,
effect, so that you do not need to set
language processors correspond to the
If you want to change them, or if
nonreserved filetype, you may want to
subcommand, for example:

tabset 1 12 20 28 12

there are logical tab settings in
them. The default values for the
columns used by those processors.
you are creating a file with a
set them yourself. Use the TABSET

Then, regardless of what physical tab stops are in effect for your
terminal, when you press the Tab key with image set ting ON, the data you
enter is spaced to the appropriate columns.

See Figure 7 for the default tab settings used by the eMS Editor.

r , ,
,Filetype , Defaul t Tab Settings ,
~ , ~

IASSEMBLE, MACRO, COPY, UPDATE, , " 10, 16, 30, 35, 40, 45,50, 55, 60, 65,70 ,
, UPDT, ASM3705, MACLIB, XEDIT , ,
J--- I ~
, AM S ERV, E S ER V , 2, 5, 10, 1 5, 20, 25, 30, 35, 40, 45, 50, 55, 60 1
J--- , ~

I FORTRAN 1 " 7, 10, 15, 20, 25, 30, 80 ,
r , ~

I FREEPORT I 9, 15, 18, 23, 33, 38, 81 ,
J--- -+- ~
I DIRECT, JOB 1 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 1
I I 70, 75 1
J--- 1 ~
,EXEC, CNTRL , " 5, 8, 17, 27, 31 ,
r- -+- I
,COBOL I 1, 8, 12, 20, 28, 36, 44, 68, 72, 80 ,
r , ~

,BASIC, BASDATA, VSBASIC 1 7, 10, 15, 20, 25, 30, 80 1
r- 1 ~
IVSBDATA, SCRIPT, MEMO, 1 " 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, ,
, LISTING, ******* 1 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120 ,
r- , ~

IPLI, PLIOPT ,2,4,7, 10,13,16,19,22,25,31,37,43,49,55, 1
~ I , 79, 80 ,
~ L-' .J

Figure 7. Default Tab Settings

Section S. The Editors 11

When you are specifying tab settings for files, the first tab setting
you specify should be the column in which you want your data to begin.
The editor will not allow you to place data in a column preceding this
one. For example, if you issue:

tabset 5 10 15 20

and enter an input line:

input This is a line

Columns 1, 2, 3, and 4 contain blanks; text begins in columm 5.

For most of your applications, you do not need to underscore or
overstrike characters or character strings. If you are using a
typewriter terminal and are typing files that use backspaces and
underscores, you should use either the IMAGE OFF or IMAGE CANON
subcommands so that the editor handles the backspaces properly. IMAGE
CANON is the default value for SCRIPT files.

CANON means that regardless of how the characters are keyed in
(characters, backspaces, underscores), the editor orders, or canonizes,
the characters in the file as: character-backspace-underscore,
character-backspace-underscore, and so on. If, for example, you want an
input line to look like:

You could enter it as:

ABC, 3 backspaces, 3 underscores

- or -

3 underscores, 3 backspaces, ABC

A typewriter types out the line in the following order:

A backspace, underscore
B backspace, underscore
C backspace, underscore, which results in:
!~~

If you need to modify a line that has backspaces, and you do not want
to rekey all of the characters, backspaces, and overstrike characters in
a CHANGE or REPLACE subcommand, you can ~se the ALTER subcommand to
alter all of the backspaces to some other character and use a global
CHANGE command. For example, the following sequences shows how to
delete all of the backspace characters on a line:

A!!!!
alter 16 + 1 *

+A_+A_+A_+A_+A
change /_+// 1 *
AAAAA

This technique may also be useful on a display terminal.

18 IBM VM/SP CMS User's Guide

)

SETTING TRUNCATION LI~ITS

Every CMS file that you edit has a truncation column setting: this
column represents the last character position in a record into which you
can enter data. When you try to input a record that is longer than the
truncation column, the record is truncated, and the editor sends you a
message telling you that it has been truncated.

You can change the truncation column setting with the TRUNC
subcommand. For example, if you are creating a file with a record length
of 80 and wish to insert some records that do not extend beyond column
20, you could issue the subccmmand:

trunc 20

Then, when you enter data lines, any line that is longer than 20
characters is truncated and the editor sends you a message. If you are
entering data in input mode, your virtual machine remains in input mode.

When you use the CHANGE subcommand to modify records, the column at
which truncation occurs is determined by the current zone setting. If
you change a character string in a line to a longer string, and the
resultant line extends beyond the current end zone, you receive the
message:

TRUNCATED.

If you need to create a line longer than the current end zone setting,
use the ZONE subcommand to increase the setting. The subcommand:

zone 1 *
extends the zone to the record length of the file. If the end zone
already equals the record length, you have to write the file onto disk
and reissue the EDIT subcommand specifying a longer record length.

For most filetypes, the truncation and end zone columns are the same
as the record length. For some filetypes, however, data is truncated
short of the record length. The default truncation and end zone columns
are:

liletn~ ColJ!.mn
ASSE~BLE, ~ACRO 71

UPDATE,
UPDTxxxx

AMSERV, COBOL, 72
DIRECT, FORTRAN
PLI, PLIOPT

All other filetypes are truncated at their record length.

You can, when creating files for your own uses, set truncation
columns so that data does not extend beyond particular columns.

ENTERING A CONTINUATION CHARACTER IN COLU~N 72

When you are using the editor to enter source records for an assembler
language program and you need to enter a continuation character in
column 72, or whenever you want to enter data outside a particular
truncation setting, you can use the following technique. Note that this
technique will not work if CANON is specified on the IMAGE subcommand.

Section 5. The Editors 79

",
I

,
1

/
1. Change the truncation setting to 72, so that the editor does not

i truncate the continuation character:

trunc 72

2. Use the TABSET subcommand to set the left margin at column 72:

tabset 72

3. Use the OVERLAY subcommand to overlay an asterisk in column 72:

overlay *
Since the left margin is set at 72, the OVERLAY subcommand line
re~ults in the character * being placed in column 72.

4. Restore the editor truncation and tab settings:

trunc 71
tabset 1 10 16 31 36 41 516171 81

!Q1~: If you issue the PRESERVE subcommand before you change the
truncation and tab settings, then after you enter the OVERLAY
subcommand, you can restore them with the RESTORE subcommand. See
"Preserving and Restoring CMS Editor Settings."

Us~ !h~ $M!R~ ~git ~£~g: Another way to insert a continuation character
is to use the SMARK edit macro. You can find out if the SMARK edit macro
is available on your system by entering, in the CMS or CMS subset
env ironment:

1istfile Smart exec *
If it is not available on your system, you can create the $MIRK edit
macro for your own use. See "Section 17. Writing Edit Macros" in "Part
3. Learning to Use EXEC."

If you have the $MARK macro, then when you need to enter a
continuation character, you can enter a null line to get into edit mode,
issue the command:

Smart

and then return to input mode to continue entering text.

SERIALIZING RECORDS

Some eMS files that you create are automatically serialized for you.
This means that columns 73 to 80 of each record contain an identifier in
the form:

cccxxxxx

where ccc are the first three characters of the filename and xxxxx is a
sequence number. Sequence numbers begin at 00010 and are incremented by
10.

The filetypes that are automatically serialized in columBs 73 to 80
are:

80 IBM VM/SP CMS User's Guide

(

ASSEr!BL E
DIRECT
r!ACRO

FORTRAN
COBOL
PLI

PLIOPT
UPDATE
UPDTxxxx

You can serialize any file that has fixed-length, 80-character
records by using the SERIAL subcommand:

serial on

The SERIAL subcommand can also be used to:

• Assign a particular three-character identifier:

serial abc

• Specify that all eight bytes of the sequence field be used to contain
numbers:

serial all

• Specify a sequence increment other than 10:

serial on 100

-- or --

serial ccc 100

• Indicate that no sequence numbers are to be assigned to new records
being inserted:

serial off

When you create a file or edit a file with sequence numbers, the
sequence numbers are not written or updated until you issue a FILE or
SAVE subcommand. Because the end verification columns for the filetypes
that are automatically serialized are the same as their truncation
columns, you do not see the serial numbers unless you specify:

verify *
-- or --

verify 80

Although the serial numbers are not displayed while you edit the file,
they do appear on your output listings or printer files.

If you are editing files with the following filetypes:

BASIC
VSBASIC
FREEFORT

the sequence numbers are on the left. For BASIC and VSBASIC files,
columns 1-5 are used; numbers are blank-padded to the left. For
FREEFORT files, the sequence numbers use col umms 1-8, and aIle
zero-padded to ths left. To edit these files, you should use line-numb'r
editing, which is discussed next.

Section 5. The Editors 81

LINE-NUMBER EDITING

To edit a file by line numbers means that when you are adding new lines
to a file or referencing lines that you wish to change, you refer to
them by their line, or sequence numbers, rather than by character
strings. You can use right line-number editing only on files with
fixed-length, SO-character records.

If you want to edit by line numbers, issue the subcommand:

linemode right

-- or --

linemode left

where "right" indicates that the sequence numbers are on the right, in
columns 76-80, and "left" indicates you want sequence numbers on the
left in columns 1-5. LINEMODE LEFT is the default for BASIC, VSBASIC,
and FREEFORT files. You do not have to specify it. You must specify
LINEMODE for files with other filetypes.

If you specify LINEMODE RIGHT to use line-number editing on a
typewriter terminal, the line numbers are displayed on the left, as a
convenience, while you edit the file.

When you are using line-number editing in input mode, you are
prompted to enter lines; the line numbers are in increments of 10. For
example, when you are creating a new file, you are prompted for the
first line number as follows:

10

On a typewriter terminal, you enter your input line following the 10.
When you press the carriage return, you are prompted again:

20

and you continue entering lines in this manner until you enter a null
line.

You can change the prompting increment to a larger or smaller number
with the PROMPT subcommand:

prompt 100

When you are in edit mode you can locate a line by giving its line
number:

700

This is the nnnnn subcommand. In line-number editing, you use it instead
of the INPUT subcommand to insert a single line of text. For example:

Q05 x = a * b

inserts the text line "X = A * B" in the proper sequence in the file.
If you use "nnnnn text" specifying the number of a line that already
exists, that line is replaced; the current line pointer is moved to
point to it.

The EDIT subcommands that you normally use for context editing, such
as CHANGE, ALTER, LOCATE, UP, DOWN, and so forth, can also be used when
you are line-number editing; their operation does not change.

82 IBM VM/SP eMS User's Guide

I

RENUMBERING LINES

When you are using line-number editing,. the editor uses the prompting
increment set by the PROMPT subcommand. However, when you begin adding
lines of data between existing lines, the editor uses an algorithm to
select a line number between the current line number and the next line
number. If a prompting number cannot be generated because the current
line numbe~ and the next line number differ only by one, the editor
displays the message:

RENUMBER LINES

and you must resequence the line numbers in the file before you can
continue line-number editing.

You can resequence the line numbers in one of three ways:

1. If you are a VSBASIC or FREEFORT user, you may use the RENUM
subcommand:

renum

This subcommand resolves
renumbered.

all references to lines that are

2. If you are using right-handed line-number editing, you must:

a. Turn off line-number editing:

linemode off

b. If you want to change the three-character identifier or specify
eight-character sequence numbers, issue the SERIAL subcommand.
for example:

serial all

If you want to use the default serialization setting. you do not
need to issue the SERIAL subcommand.

c. Issue the SAVE subcommand:

save

d. Reissue the LINEMODE subcommand and continue line-number
editing:

linemode right

3. If you are using left-handed line-number editing for a filetype
other than VSBASIC or FREEFORT, you must manually change individual
line numbers using EDIT subcommands. In order to modify the line
numbers, you must change the zone setting and the tab setting:

zone 1 *
tabset 1 6

so that you can place data in columns 1 through 6.

section 5. The Editors 83

,

When you are using right-handed line-number editing, and a FILE,
SAVE, or automatic save request is issued, the editor does not
resequence the serial numbers, but displays the message:

RESERIALIZATION SUPPRESSED

so that the lines numbers that are currently saved on disk match the
line numbers in the file. You must cancel line-number editing (using the
LINEMODE OFF subcommand) before you can issue a FILE or SAVE subcommand
if you want to update the sequence numbers.

Controlling the CMS Editor

There are a number of EDIT subcommands that you can use to maximize the
use of the editor in CMS. A few techniques are suggested here; as you
become more familiar with VM/SP and CMS you will develop additional
techniques for your own applications.

COMMUNICATING WITH CMS AND CP

Often during a terminal session, you may need to issue a CMS command or
a CP ccmmand. You can is~ue certain CMS commands and most CP commands
without terminating the edit session. The EDIT subcommand CMS places
your .virtual machine in the CMS subset mode of the editor, where you can
issue CMS commands that do not modify your virtual storage. Remember
that the editor is using your virtual storage; if you overlay it with
any other command or program, you will not be able to finish your
editing.

One occasion when you may want to enter CMS subset is when you want
to issue a GETFILE subcommand for a file on one of your virtual disks
and you have not accessed the disk. You can enter:

cms

The editor responds:

CMS SUBSET

Then you can enter:

access 193 b/a
return
get setup script b

The special CMS SUBSET command RETURN returns your virtual machine to
edit m cde.

You can enter CP commands from CMS subset, or you can issue them
directly from edit mode or input mode with the ICP function. For
example, if you are inputting lines into a file and another user sends
you a message, you can reply without leaving input mode:

#cp m oph i will call you later

If you enter #CP without specifying a command line, you receive the
message:

CP

84 IBM VM/SP CMS User's Guide

which indicates that your virtual machine is in the CP command
environment, and you can issue CP commands. You would not, however,
want to issue any CP command that would modify your virtual storage or
alter the status of the disk on which you want to write the file.

To return to edit or input mode from CP, use the CP command, BEGIN .•
If you are working at a display terminal and the screen image does not
reappear, enter the TYPE command to cause the editor to redisplay the
screen.

CHANGING FILE IDENTIFIERS

There are several methods you can use to change a file identifier before
writing the file onto disk. You can use the FNAME and PMODE subcommands
to change the filename' or filemode, or you can issue a PILE or SAVE
subcommand specifying a new file identifier.

For example, if you want to create several copies of a file while you
are using the editor, you can issue a series of FNAME subcommands,
followed by SAVE subcommands, as follows:

edit test file
EDIT:

fn testl#save

fn test2#save

fn test3#file

Or, you could issue the SlVE and FILE subcommands as follows:

edit test file

save testl

save test2

file test3

In both of the preceding examples, when the FILE subcommand is executed,
there are files named TEST FILE, TESTl FILE, TEST2 PILE, and TEST3 PILE.
The original TEST FILE is unchanged.

To change the filemode letter of a disk, use the FMODE subcommand.
You can do this in cases where you have begun editing a file that is on
a read-only disk, and want to write it. Since you cannot write a file
onto a read-only disk, you can issue the FMODE subcommand to change the
mode before filing it:

Section 5. The Editors 85

fmode a
file

Or, you can use the FILE (or SAVE) subcommand specifying a complete file
identifier:

file test file a

You should remember, however, that when you write a file onto disk,
it replaces any existing file that has the same identifier. The editor
does not issue any warning or informational messages. If you are
changing a file identifier while you are editing the file, you must be
careful that you do not unintentionally overlay existing files. To
verify the existence of a file, you can enter CMS subset and issue the
STATE or LISTFILE commands.

CONTROLLING THE CMS EDITOR'S DISPLAYS

When you are using a typewriter terminal, you may not always want to see
the editor verify the results of each of your subccmmands. Particularly
when you are making global changes, you may not want to see each line
displayed as it is changed. You can issue the VERIFY subcommand with
the OFF ope~and to instruct the editor not to display anything unless
specifically requested. After you issue:

verify off

lines that are normally displayed as a result of a subcommand that moves
the current line pointer (UP, DOWN, TOP, BOTTOM, and so forth), or that
changes a line (CHANGE, ALTER, and so forth), are not displayed. If the
current line pointer moves to the end of the file, however, the editor
always displays the EOF: message.

If you are editing with verification off, then you must be
particularly careful to stay aware of the position of your current line
pointer. You can display the current line at any time using the TYPE
subcommand:

type

~on~ snd ShQ~1 ErIQI Mes§~ges: When you enter an invalid subcommand
while you are using the editor, the editor normally responds with the
error message:

?EDIT: line •••

displaying the line that it did not recognize. If you prefer, you can
issue the SHORT subcommand so that instead of receiving the long form of
the error, you receive the short form, which is:

When you issue an invalid edit macro request (any line that begins with
a $), you receive the message:

To resume receiving the long form of the error message, use the LONG
subcommand:

long

86 IBM VM/SP CMS User's Guide

LONG and SHORT control the display of the error message regardless of
~ whether you are editing with verification on or off.

On a display terminal, all EDIT messages that are displayed at the
top of the screen, including error messages and '?EDIT:' messages, are
highlighted.

PRESERVING AND RESTORING CMS EDITOR SETTINGS

The PRESERVE and RESTORE subcommands are used together; the PRESERVE
subcommand saves the settings of the EDIT subcommands that control the
file format, message and verification display, and file identifier. If
you are editing a file and you want to temporarily change some of these
settings, issue the PRESERVE subcommand to save their current status.
When you have finished your temporary edit project, issue the RESTORE
subcommand to restore the settings.

For example, if you are editing a SCRIPT file and want to change the
image setting to create a particular format, you can enter:

preserve
image on
tabset 1 .15 40 60 12
zone 1 12
trunc 12

When you have finished entering data using these settings, you can issue
the subcommand:

restore

v to restore the default settings for SCRIPT filetypes.

x, Y, =, ? SUBCOMMANDS

The X, Y, =, and? subcommands all perform very simple
can help you to extend the language of the CMS editor.
to manipulate, reuse, or interrogate EDIT subcommands.

functions that
They allow you

If you have an editing project in
subcommand a number of times, you
subcommands, as follows:

which you have to execute the same
can assign it to the X or Y

x locate /insert here/
y get file insert file c

Each time that you enter the X subcommand:

x

the command line LOCATE /INSERT HEREI is executed, and every time you
enter the Y subcommand:

y

the GBTFILE subcommand is executed.

When you specify a number following an X or Y subcommand, the
subcommand assigned to X or Y is executed the specified number of times;
for example:

Section 5. The Editors 81

x locate /aa/
x 10

the LOCATE subcommand line is executed 10 times before you can enter
another EDIT subcommand.

Another method of re-executing a particular subcomma~d is to use the
= (REUSE) subcommand. For example, if you enter:

locate /ard/
AARDVARK

the LOCATE subcommand is re-executed seven times.

What the = (REUSE) subcommand' actually does is to stack the
subcommand in the console stack. Since CMS, and the editor, read from
the console stack before reading from the terminal, the lines in the
stack execute before a read request is presented to the terminal. When
you enter multiple equal signs, the subcommand is stacked once for each
equal sign you enter.

You can also stack an additional EDIT subcommand following an equal
sign. The subccmmand line is also stacked, but it is sta'cked LIFO
(last-in, first-out) so that it executes before the stacked subcommand.
For example, if you enter:

delete
= next

a DELETE subcommand is executed, then a DELETE subcommand is stacked,
and a NEXT subcommand is stacked in front, of it. Then the stacked lines
are read in and executed. The above sequence has the same effect as if
you enter:

delete
next
delete

In addition to stacking the last
find out what it was, using the?
enter:

next 10
?

the editor displays:

NEXT 10

subcommand eXEcuted, you can also
subcommand. For example, if you

Since the subcommand line NEXT 10
you enter an = subcommand, it is
subcommand.

was the last subcommand entered, if
executed again. You cannot stack a ?

!Q1~: The ? subcommand,
subcommand into the user
re-entering it.

on a display terminal,
input area, where you

copies the
may modify

last EDIT
it before

WHAT TO DO WHEN YOU RUN OUT OF SPACE

There are two situations that may
session or from writing a file onto

88 IBM VM/SP CMS User's Guide

prevent you from continuing an edit
disk. You should be aware of these

situations, know how to avoid them, and how to recover from them, should
they occur.

When you issue the EDIT command to edit a file, the editor copies the
file into virtual storage. If it is a large file, or you have made many
additions to it, the editor may run out of storage space. If it does, it
issues the message:

AVAILABLE STORAGE IS NOW FULL

When this happens, you cannot make any
unless you first delete some lines. If
editor issues the message:

NO ROOK

changes or additions to the file
you attempt to add a line, the

If you were entering data in input mode, your virtual machine is
returned to edit mode, and you may receive the message:

STACKED LINES CLEARED

which indicates that any additional lines you entered are cleared and
will not be processed.

You should use the FILE subcommand to write the file onto disk. If
you want to continue editing, you should see that the editor has more
storage space to work with. To do this, you can find out how large your
virtual machine is and then increase its size. To find out the size,
issue the CP QUERY command:

cp query virtual storage

If the response is:

STORAGE = 256K

You might want to redefine your .storage to 512K. Use the CP command
DEFINE, as follows:

cp define storage 512k

This command resets your virtual machine, and you must issue the CP IPL
command to reload the eMS system before you can continue editing.

If a file is very large, the editor may not have enough space to
allow you to edit it using the EDIT command. The message:

DKSEDI132S FILE 'fn ft fm' TOO LARGE

indicates that you must obtain more storage space before you can edit
the file. If this is the case, or if you are editing large files, you
should redefine your storage before beginning the terminal session. If
this happens consistently, you should see your installation support
personnel about having the directory entry for your userid updated so
that you have a large storage size to begin with.

If the file you are editing is too large, and the data it contains does
not have to be in one file, you can split the file into smaller files,
so that it is easier to work with. Two of the methods you can use to do
this are described below.

Section 5. The Editors 89

Q§~ lh~ ~QfYF1~E Command: You can use the COPYFILE command to copy
portions of a file Into separate files, and then delete the copied lines
from the original file. For example, if you have a file named TEST FILE
that has 1000 records, and you want to split it into four files, you
could enter:

copyfile test file a testl file a (from 1 for 250
copyfile test file a test2 file a (from 251 for 250
copyfile test file a test3 file a (from 501 for 250
copyfile test file a test4 file a (from 151 for 250

When these COPYFILE commands are complete, you have four files
containing the information from the original TEST FILE, which you can
erase:

erase test file

Us~ i~~]gitg~: If you use the editor to create smaller files, you can
edit them as you copy them, that is, if you have other changes that you
want to make to the data. To copy files with the editor, you use the
GET FILE subcommand. Using the file TEST FILE as an example, you might
enter:

edit testl file
getfile test file a 1 250

file
edit test2 file
getfile test file a 251 250

Again, you could erase the original TEST FILE when you are through with
your edit session.

When you enter a FILE or SAVE subcommand or when an automatic save
request is issued, the editor writes a copy of the file you are editing
onto disk, and names it EDIT CMSUT1. If this causes the disk to become
full, you receive th~ message:

DMSBWR170S DISK 'mode (cuu) , IS FULL

The editor erases the workfile, and issues the message:

SET NEW FILEMODE, OR ENTER CMS SUBSET AND CLEAR SOME SPACE

The original file (as last written onto dis~ remains unchanged. You
can use the CMS subcommand to enter CMS subset, and erase any files that
you do not need. You can use the LISTFILE command to list the files on
the disk, then the ERASE command to erase the unwanted files.

If you cannot erase any of the files on the disk, there are several
alternate recovery paths you can take:

1. If you have another read/write disk accessed, you can use the FMODE
subcommand to change the filemode of the file, so that when you
file it, it is written to the other disk. If you have a read/write
disk that is not accessed, you can access it in CMS subset. After

90 IBM VM/SP CMS User's Guide

\

.J

2.

filing the file on the second disk, erase the original cOPYw and
then use the COPYFILE command to transfer the file back to its
original disk.

If you do not have any other read/write disk in your virtual
machine, you may be able to transfer some of your files to another
user, using the PUNCH or DISK DU~P commands in CftS subset. When the
files have been read onto the other user's disk, you can erase them
from your disk. Then, return to edit mode and issue the FILE
suhcommand.

3. In C~S subset, erase the original disk file (if it existed) w then
return to edit mode and file the copy that you are editing_ You
should not use this method unless absolutely necessary, since any
unexpected problems may result in the loss of both the disk file
and the copy.

After you use the FILE subcommand to write the file onto diskw you
should continue erasing any files you no longer need.

The System Product Editor

The System Product Editor provides full screen and file manipulation
capabilities not offered by the C~S Editor.

This editor has the following advantages:

• Full screen support for IB~ 3270 Display Terminals is available
including:

the ability to display multiple views of the same file or of
different files

- automatic "wrapping" of lines that are wider than a screen line

- the ability to enter selected subcommands directly on the displayed
lines

- the ability to define the screen format according to individual
preferences

• Extended string search facilities are provided for improved text
process in g •

• A variety of macros, that use the EXEC 2 interpreter are offered.

• An enhanced set of functions to handle program development is
available, including automatic update generation.

• The ability to import and export data between files is provided.

For complete information about the System Product Editor, see the
VML~~ ~Y§!~m ~~ody£! ~di12~ Use~~§ Guid! and the ~LSP System Product
EditQ~ ~Q~j@nd ~Dg ~~Q Ref!~£~.

Section 5. The Editors 91

Summary of eMS EDIT Subcommands

The EDIT subcommands, and their formats, are shown in Figure 8. Refer to
the VML~~ CM~ ~S~~~g ~g Ma£~2 ~fe~~ for complete details.

I

1 Subcommand Format Function
1--
1 r r , ,

ALter chart char2 I n , , I
I * I G I I
I 1 , * , I

1
1
1
1
1
1
1
1
1
1
1 ,

L L J J

IScans the next n records of
Ithe file, alterIng the speci
Ified character, either once in
I each line or for all occur
Irences in the line.

r ,
AUTOsave In I

IOFFI

, ,
I
I ,
I

BAckward

Bottom

L

r
1
I
L

1 r,
I CASE I K 1
1 I U ,
I , L J

J

,
nl
11

J

r 1 , CHange [/stringt[/string2[1 In , , ,
1
1
I
I
1
f
1 ,
I ,
1 , ,
I , ,
1 ,
I
1
1
1

CMS

r ,
DELete I n I , * f

1 1 1
L ..

r ,
DOwn I n 1

I 1 I
L ..

DString I[string [/J J

FIL E [fn [ft [f m J J J

1*
11
L

IAutomatically saves the file
Ion disk after the indicated
Inumber of lines have been
1 processed.

IPoints the current line
Ipointer to a line above the
Iline currently pointed to.
I

IMakes the last line of the
Ifile the current line.

IIndicates whether translation
Ito uppercase is to be done, or
Idisplays the current status.
I

r " ,Changes stringt to string2 for
,G, 'JJJIn records or to EOF, either
1*1' (for the first occurrence in
L J 1 ,each line or for all

J I occurrence s.
IEnters CMS subset command
, mode.

IDeletes n lines or to the end
lof the fIle (*).
I
I
I

IPoints to the nth line from
,the current line.
I
1

,Deletes all lines from the
'current line down to the line
,containing the indicated
Istring.

,Saves the file being edited on
,disk or changes its identi
Ifiers. Returns to CMS.

Figure 8. Summary of CMS EDIT Subcommands and Macros (Part 1 of 4)

92 IBM VM/SP CMS User's Guide

r-

) I Subcommand Format Function ,I,

I--
I Find (line] ,Searches the file for the
I I gi ven line.
I
I FMode [fm] I Resets or displays the
I If ilemode.
I
I FName [fn] IResets or displays the , Ifilename. ,
I FORMat {DISPLAY} ISwitches the 3270 terminal
I LINE Ibetween display mode and line
I Imode. (3270 only)
I
I r , IPoints to the nth line after
I FOrward , n I ,the current line.
I , 1 , I , L ..1 t ,
I r r r r , , , , IInserts a portion or all of
I Getfile fn , ft , fm I m I n I , , , ,the specified file after the
I , I , 1 , * I I , , ,current line.
I L L L L .I .I .I .I I ,
I r , IExpands text into line images
I IMAGE ION , lor displays current settings. , ,OFF , ,
I ICANONI I
I L .I ,

'~ ,
; I Input (line] ,Inserts a line in the file or

I ,enters input mode.
I , r , ,Sets or displays current
I LINEmode ,LEFT , ,setting of line-number
I , RIGHT, ,edi tinge , IOFF , 1
I L .I I , , [Locate]1[string [/]] , Scans file from next line for , ,first occurrence of 'string'~ , , LONG tEnters long error message , ,mode.
I , r , ,Points to the- nth line down , Next , n , Ifrom the current, line.
I I 1 I ,
I L .I , , , t , Overlay [line] ,Replaces all or part of the , , Icurrent line. I
I I , PREserve fSavescurrent mode settings. t , I
I r , ,Sets or displays line number , , PROMPT In , Ii ncrement. Initial setting is ,
I I1QI 110. I , L -' , I

Figure 8. Summary of eMS EDIT Subcommands and Macros (Part 2 of 4)

Section 5. The Editors 93

, ,
I Subcommand Format Function,
I --1 I QUIT ITerminates edit session with I
I Ino updates incorporated since I
I ,last save request. I
I I
I r, ,Sets or displays record format
I RECfm f F I Ifor subsequent files.
I I V I' ,
I L.J I
I
I r r "
I RENum Istrtno lincrnofl
, I 1 0 l.§li1.n2 "
ILL ..1..1

1-------
I
I
I ,
I
I

r ,
REPEAT I n I

I * I
I 1 I
L ..I

I Replace [line] ,
I ,
I REStore
I ,
I RETURN
I
I
: {RE~SE} [subcommand]

I
I
I
I
I S A V E (f n [ft [f m]]]
I
I
I
I
I
I ,
I ,
I
I
I
I

r ,

{
SCroll } In I
S[croll]U[p] I * I

t1 I
L ..I

SERial { OFF r , l ON I incrl .
ALL I 1Q I
seq L ..I

I SHORT
I
I
I
(
(,
I ,

r ,
STACK I n I

I 1 (
lOt
Isubcommandl
L ..I

L---

IRecomputes line numbers for
IVSBASIC and FREEFORT source
,files.
I

IExecutes the following OVERLAY
Isubcommand n times.
I
I
I

,Replaces the current line or
Ideletes the current line and
tenters input mode.

IRestores editor settings to
Ivalues last preserved.

IReturns to edit environment
Ifrom CMS subset.

IStacks (LIFO) the last EDIT
'subcommand that does not start
Iwith REUSE or the question
Imark (?) and then executes any
Igiven EDIT subcommand.

ISaves the file on disk and
Istays in edit environment.

IDisplays a number of screens
lof data above or below the
Icurrent line (3270 only).
I
I

ITurns serialization on or off
lin columns 73 through 80.
I
I

IEnters short error message
Imode.

IStacks data lines or EDIT
Isubcommands in the console
I input stack.
I
I
I

Figure 8. Summary of CMS EDIT Subcommands and Macros (Part 3 of q)

qq IBM VM/SP eMS User's Guide

r-, Subcommand Format ,
, TABSet n1 (n2 ••• nn] , , TOP , ,
1-----
I , ,
I
I , , ,
I ,

TRUNC

Type
r
I
I ,
L

r
I
I
L

m
1
*

,
n ,
* , .J

r , ,
I n I ,
I * I I , I I
L .J .J

,
Function I
-----------------1

ISets logical tab stops. I
-------------------------1

IMoves the current line pointerl
Ito the null line at the top I
lof the file. I

---------------------1
,Sets or displays the co1umn
,truncation. An asterisk (*)
lindicates the logical record
Ilength.

ofl ,
I
I

-----------------------------1 IDisplays ~ lines beginning
'with the current line. Each
Iline may be truncated to D
,characters.
I

,
I ,
1 , ,

------·---~-----I
I , , , , , , ,
I , ,
I
I , , , ,
I , , ,
I ,
I

r ,
Up I n ,

I 1 I
L .J

r ,
Verify ION I

IOFF,
L .J

r ,
{i} fsubcommandl , n ,

I 1 ,
L .J

r r , ,
Zone , m I n , ,

I 1 , * I ,
I * I , I
L L .J .I

?

rr , ,
Iistartcollendcoll
II 1 '* ,
LL .I .I

{nnnnn } [text]
nnnnnnnn

r ,
$DUP , n ,

, 1 I
L .J

$MOVE n { Up m } Down m
TO label

L--

,Moves the current
Itoward the top of
I
I

line pointer
the file.

ISets, displays, or resets
,verification. An asterisk (*)
,indicates the logical record
Ilength.

,Assigns to X or Y the givEn
,EDIT subcommand or eXEcutES
Ithe previously assigned
Isubcommand n times.
I

ISets or displays the columns
Ibetween which editing is to
,take place.
I
I

'Displays the last EDIT
Isubcommand, except = or 1.

ILocates the line specified by
Ithe given line number and
linserts teJt, if given.

IDuplicates the current line D
,times. $DUP is an edit macro. ,
I

IMoves up n lines or down ~
Ilines. $MOVE is an edit macro. ,

Figure 8. Summary of CMS EDIT Subcommands and Macros (Part 4 of 4)

Section 5. The Editors 95

(

96 IBM VM/SP eMS User's Guide

Section 6. I ntroduction to the EXEC Processors

There are two EXEC processors available: CKS EXEC and EXEC 2. The CMS
EXEC processor handles CMS EXEC programs, while the EXEC 2 pro~essor
handles EXEC 2 programs. EXEC 2 programs and processing are similar to
those of the CMS EXEC.

The CMS EXEC Processor

A CMS EXEC processor is a CMS file that contains executable statements.'
The statements may be CMS or CP commands or EXEC control statements.
The execution can be conditionally controlled with additional EXEC
statements, or it may contain no EXEC statements at all. In its simplest
form, an EXEC file may contain only one record, have no variables, and
expect no arguments to be passed to it. In its most complex form, it can
contain thousands of records and may resemble a program written in a
high-level programming language. As a CKS user, you should become
familiar with the EXEC processor and use it often to tailor CMS commands
to your own needs, as well. as to create your own commands.

The following is an example of a simple EXEC procedure that might be
named RDLINKS EXEC:

CP LINK DEWEY 191 291 RR DEWEY
CP LINK LIBRARY 192 292 RR DEWEY
ACCESS 291 B/A
ACC 292 C/A

When you enter:

rdlinks

each command line contained in the file RDLINKS EXEC is executed.

You could also create an EXEC procedure that functions like a
cataloged procedure, and set it up to receive an argument, so that it
executes somewhat differently each time you invoke it. For example, a
file named ASM EXEC contains the following:

ASSEMBLE & 1
PRINT &1 LISTING
LOAD &1
START

If you invoke the EXEC specifying the name of an assembler language
source file, such as:

asm myprog

the procedure executes as follows:

ASSEMBLE MYPROG
PRINT MYPROG LISTING
LOAD MYPROG
START

Section 6. Introduction to the EXEC Processors 97

The variable &1 in the EXEC file is substituted with the argument you
enter when you execute the EXEC. As many as 30 arguments can be passed
to an EXEC in this manner; the variables thus set range from &1 through
&30.

CREATING EXEC FILES

EXEC files can be created with the CMS editors, by punching cards, or by
using CMS commands or programs. When you create a file with the editor,
records are, by default, variable-length with a logical record length of
80 characters. EXEC can process variable-length files of up to 130
characters. To create a variable-length EXEC file larger than 80
characters, use the LRECL option of the EDIT command:

edit new exec a (lrecl 130

To convert a variable-length file toa fixed-length file, you can
edit the EXEC file and issue the subcommand:

recfm f

Or, you can use the COPYFILE command:

copyfile old exec a (recfm f

If you use fixed-length EXEC files, you should be aware that the EXEC
interpreter only processes the first 72 characters of each record in a
fixed-length file, regardless of the record length. You can, however,
enter command or data lines that are longer than than 72 characters to
be processed by using the &BEGSTACK, &BEGTYPE, &BEGPUNCH, and &BEGEMSG
control statements preceding the line(s) you want to be processed. If
you specify &BEGPUNCH ALL, EXEC processes lines up to 80 characters
long; if you specify &BEGTYPE ALL, &BEGSTACK ALL, or &BEGEMSG ALL, EXEC
processes lines up to 130 characters.

In variable-length EXEC files, there are no such restrictions; lines
up to 130 characters are processed in their entirety.

Two eMS commands create EXEC files. One is LISTFILE, which can be
invoked with the EXEC option; it creates a file named CMS EXEC. The uses
of CMS EXEC files are discussed under the heading "CMS EXECs and How To
Use Them." The CMS/DOS command LISTIO creates an EXEC file named
$LISTIO EXEC, which creates records for each of the system and
programmer logical unit assignments. The LISTIO command and the $LISTIO
EXEC are described in "Section 9. Developing DOS Programs Under CMS."

INVOKING EXEC FILES

EXEC procedures are invoked when you
file. You can precede the filename on
command, EXEC. For example:

exec test type list

enter the filename of
the command line with

the EXEC
the CMS

where TEST is the filename of the EXEC file and TYPE and LIST are
arguments (&1, &2, and so on) you are passing to the EXEC. For example,
an EXEC named PREPEDIT would be eXEcuted when you entered either:

98 IBM VM/SP CMS User's Guide

prepedit newfile replace

-- or --

exec prepedit newfile replace

You must precede the EXEC filename with the EXEC command when:

• You invoke an EXEC from within another EXEC.
• You invoke an EXEC from a program.
• You have the implied EXEC function set off for your virtual machine~

The implied EXEC function is controlled by the SET command. If you
issue the command:

set impex off

then you must use the EXEC command to invoke an EXEC procedurE. The
default setting is ON; you almost never need to change it.

There is one EXEC file that you never have to specifically invoke.
This is a PROFILE EXEC, which is automatically executed after you load
CMS, when your A-disk is accessed. PROFILE EXECs are discussed next.

PROFILE EXECs

A PROFILE EXEC must have a filename of PROFILE. It can contain the CP
and CMS commands you normally issue at the start of every terminal
session. For example:

• Commands that describe your terminal characteristics, such as:

CP SET LINEDIT ON
SET BLIP *
SET RDYMSG SMSG
SYNONYM MYSYN

• Commands that spool your printer and punch for particular classes or
characteristics:

CP SPOOL E CLASS S HOLD

• Commands to initialize macro and text libraries that you commonly
use:

GLOBAL MACLIB OSMACRO CMSLIB
GLOBAL TXTLIB PRIVLIB

• Commands to access disks that are
configuration:

ACCESS 196 B

a permanent part of your

A PROFILE EXEC file that contains all of these commands might look
like this:

Section 6. Introduction to the EXEC Processors 99

&CONTROL OFF
CP SET LINEDIT ON
CP SPOOL E CLASS S HOLD
SET R DYMSG SKSG
SET BLIP *
SYNONYM MYSYN
GLOBAL MACLIB OSMACRO CKSLIB
GLOBAL TXTLIB PRIVLIB
ACCESS 196 B

&CONTROL OFF is an EXEC control
and CMS command lines are not to
they execute.

statement that specifies that the CP
be displayed on your terminal before

A PROFILE EXEC can be as simple or as complex as you require. As an
EXEC file, it can contain any valid EXEC control statements or CMS
commands. The only thing that makes it special is its filename,
PROFILE, which causes it to be executed the first time you press the
Return key after loading CMS.

EXECUTING YOUR PROFILE EXEC

Usually, the first thing you do after loading CMS is to type a CMS
command. When you press the Return key to enter this command or if you
enter a null line, CMS searches your A-disk for a file with a filename
of PROFILE and a filetype of EXEC. If such a file exists, it is
executed before the first CKS command you enter is executed. Because
you do not do anything special to cause your PROFILE EXEC to execute,
you can say that it executes "automatically."

You can prevent your PROFILE EXEC from executing automatically by
entering: .

access (noprof)

as the first CMS command after you IPL CMS. You can enter:

profile

at any time during a CMS session to execute the PROFILE EXEC, if you had
accessed your A-disk without it, or if you had made changes to it and
wanted to execute it, or if you had changed your virtual machine and
wanted to restore its original characteristics.

CMS EXECs and How to Use Them

A file named CMS EXEC is created when you use the EXEC option of the
LISTFILE command; for example:

list file pr* document a (exec

The usual display that results from this LISTFILE command is a list of
all the files on your A-disk with a filetype of DOCUMENT that have
filenames beginning with the characters "PR". CMS, however, creates a
CMS EXEC file that contains a record for each file that would be listed.
The records are in the format:

&1 &2 filename filetype filemode

100 IBM VM/SP CMS User's Guide

Column 1 is blank. NOw, if you have the following files on your A-disk:

PRFILEl DOCUKENT
PRFILE2 DOCUMENT
PRFILE3 DOCUMENT
PRFILE4 DOCUMENT

The CMS EXEC file would contain the records:

&1 &2 PRFILE1
& 1 &2 PRFILE2
&1 &2 PRFILE3
& 1 &2 PRFILE4

DOCUftENT A1
DOCUMENT A1
DOCUMENT A1
DOCUMENT A1

In the preceding lines, &1 and &2 are variables that can receive values
from arguments you pass to the EXEC when you execute it. For example,
if you execute this CMS EXEC by issuing:

cms disk dump

the EXEC interpreter substitutes, on each line, the variable &1 with the
DISK and the variable &2 with DUMP and executes the commands:

DISK DUMP PRFILE1 DOCU!ENT A1
DISK DUMP PRFILE2 DOCUMENT A1
DISK DUMP PRFILE3 DOCUMENT A1
DISK DUMP PRFILE4 DOCUMENT A1

You can use this technique to transfer a number of files to another
user. You should remember to spool your punch with the CONT option
before you execute the EXEC, so that all of the files are transferred as
a single spool file; for example:

cp spool d cont library

Then, after executing the EXEC file, close the punch:

cp spool d nocont close

If you pass only one argument to your CMS EXEC file, the variable &2
is set to a null string. For example:

cms erase

executes as:

ERASE PRFILEl
ER ASE PRFILE2
ERASE PRFILE3
ERASE PRFILE4

DOCUMENT Al
DOCUMENT Al
DOCU!ENT Al
DOCUMENT A1

You could also use a CMS EXEC to obtain a listing of files on a
virtual disk. If you want, you can use one of the other LISTFILE command
options with the EXEC option to get more information about the files
listed. For example:

listfile * * a (exec date

produces a CMS EXEC that contains, in addition to the
filetype, and filemode of each file listed, the file format
and date information. You can then use the PRINT command to
printed copy:

print cms exec

filename,
and size,
obtain a

Section 6. Introduction to the EXEC Processors 101

Before printing this file, you may want to use the SORT command to
sort the list into alphabetic order by filename, by filetype, or both;
for example:

sort cms exec a cmssort exec a

When you are prompted to enter sort fields, you can enter:

f 25

The file CMSSORT EXEC that is created contains a completely alphabetical
list.

MODIFYING CMS EXECS

A CMS EXEC is like any other CMS file; you can edit it, erase it, rename
it, or change it. If you have created it to catalog a particular group
of files, you might want to rename it; each time you use the LISTFILE
command with the EXEC option a CMS EXEC is created, and any old CMS EXEC
is erased. To rename it, you can use the CMS RENAME command, or, if you
are editing it, you can rename it when you file it:

edit cms exec
input &control off
file prfile exec

You might also want to edit a CMS EXEC to provide it with more
numeric variables; for example:

edit cms exec
input &control off
input cp spool printer class s cont
change /a1/al &3 &4 &5 &6/ *

input cp spool printer nocont
input cp close printer
file prfile exec
prfile print % (cc

When this EXEC is executed, the variable &1 is substituted with PRINT,
the variable &2 is set to a null string (the special character I
indicates that you are not passing an argument to i~, and &3 and &4 are
set to the PRINT command option (CC, so that the files in the EXEC print
with carriage control. The CP commands that are inserted ensure that
the files print as a single spool file, and not individually.

Summary of the CMS EXEC Language Facilities

The CMS EXEC processor, or interpreter, recognizes keywords that begin
with the special character ampersand (&). Keywords may indicate:

• Control statements
• Built-in functions
• Special variables
• Arguments

102 IBM VM/SP CMS User's Guide

You may also define your own variables in an EXEC file; the CMS EXEC
interpreter can process them as long as they begin with an ampersand.
The following pages briefly discuss the kinds of things you can do with
an EXEC, introduce you to the control statements, built-in functions,
and special variables, and give some examples of how to use the CMS EXEC
processor. If you want more information on writing EXEC procedures, see
"Part 3. Learning To Use EXECs." For specific information on the format
and usage rules for any EXEC statement or variable, consult the 1M/SP
CM~ ~om~~ng gng ~g£~Q ~~fer~A£~.

In general the following rules apply to entering lines into an EXEC
procedure:

1. Most input lines (with a few exceptions) are scanned during
execution of the EXEC. Every word on a line is padded or truncated
to fit into an eight-charactet "token." So, for example, if you
enter the EXEC control statement:

&type today is wednesday

when this EXEC is executed, the line is displayed at your terminal:

TODAY IS WEDNESDAY

The lines that are not tokenized are those that begin with an *
(and are considered comments), and those that follow an &BEGEMSG,

&BEGPUNCH, &BEGSTACK, or &BEGTYPE control statement, up to an &END
. statement.

2. You can enter input lines beginning in any column. The only time
that you must enter an EXEC line beginning in column 1 is when you
are using the &END control statement to terminate a series of lines
being punched, stacked, or typed.

ARGUMENTS AND VARIABLES

Most EXEC processing is contingent on the value of variable expressions.
A variable expression in an EXEC is a symbol that begins with an
ampersand (&). When the EXEC interpreter processes a line and
encounters a variable symbol, it substitutes the variable with a
predefined value, if the symbol has been defined. Symbols can be
defined in three ways: (1) when passed as arguments to the EXEC, (2) by
assignment statements, (3) interactively, as a result of a &READ ARGS or
&READ VARS control statement.

You can pass arguments to EXEC files when you invoke them. Each
argument you enter is assigned a variable name: the first argument is
&1, the second is &2, the third is &3, and so on. You can assign values
for up to 30 variables this way. For example, if an EXEC is invoked:

scan alpha 2 notype print

the variable &1 has a value of ALPHA, the variable &2 has a value of 2,
&3 is NOTYPE and &4 is PRINT. These values remain in effect until you
change them.

You can test the arguments passed in several ways. The special
variable &INDEX contains the number of arguments received. Using the
example SCAN ALPHA 2 NOTYPE PRINT, the statement:

&IF &INDEX EQ 4 &GOTO -SET

Section 6. Introduction to the EXEC Processors 103

would be true, since four arguments were entered, so a branch to the
label -SET is taken.

You can change the values of arguments or assign values using the
&ARGS control statement. For example:

SIP SINDEX EO 0 SARGS ABC

assigns the values A, B, and C to the variables &1, &2, and &3 when the
EXEC is invoked without any arguments.

Use the SREAD ARGS control statement to enter arguments
interactively. For example, if your EXEC file contains the line:

SREAD ARGS

when this line is executed, the EXEC issues a read to your virtual
machine so that you can enter up to 30 arguments, to be assigned to the
variables &1, S2, and so on.

ASSIGNMENT STATEMENTS

User-defined variable names begin with an ampersand (S) and contain up
to seven additional characters. These variables can contain numeric or
alphameric data. You define and initialize EXEC variables in assignment
statements. In an assignment statement, the first data item starts with
an ampersand (S) and the second data item is an equal sign (=). The
value of the expression on the right side of the equal sign is assigned
to the variable named on the left of the equal sign. For example:

&A = 35

is an assignment statement that assigns the numeric value 35 to the
variable symbol SA. A subsequent assignment statement might be:

&B = SA + 10

After this assignment statement executes, the value of SB would be 35
plus 10, or 45.

You can use the SREAD control statement to assign variable names
interactively. For example, when the statement:

SREAD VARS &NAME SAGE

is executed, the EXEC issues a read to your virtual machine, and you can
enter a line of data. The first two words, or tokens, you enter are
assigned to the variable symbols SNAME and SAGE, respectively.

Not.§!: The data item immediately following the target of an assignment
statement must be an egual sign (=) and not an EXEC variable that has
the value of an equal sign. Conversely, if an equal sign is to be the
first data item following an EXEC control word, then it must be
specified as an EXEC variable that has the value of an equal sign and
not as an equal sign; otherwise, the statement is interpreted as an
assignment statement and the control word is thereafter treated as a
variable.

104 IBM VM/SP CMS User's Guide

If you use a variable name that has not been defined, the variable
symbol is set to a null string by the EXEC processor when the statement
is executed. For example, if you have entered only two arguments on the
EXEC command line, then the statement:

&IF &3 EQ CONT &ERROB &CONTINUE

is interpreted:

&IF EQ CONT &ERBOR &CONTINUE

&ERBOB and &CONTINUE are recognized by EXEC as control statements.
Since &3 is undefined, however, it 1S replaced by blanks and the
resulting line produces an error during EXEC processing. You can
prevent the error, and allow for null arguments or variables, by
concatenating some other character with the variable. A period is used
most frequently:

&IF .&3 EQ .CONT &ERBOR &CONTINUE

If &3 is undefined when this line is scanned, the result is:

&IF • EQ .CONT &ERROR &CONTINUE

which is a valid control statement line.

BUILT-IN FUNCTIONS AND SPECIAL VARIABLES

The EXEC built-in functions are similar to those
languages. You can use the EXEC built-in functions to
symbols in an EXEC procedure.

Figure 9 summarizes the built-in functions. It
variable &A, the values resulting in a variable &B
function is used to assign its value. Notice that all
functions are used on the right-hand side of assignment
the &LITERAL built-in function can be used in control
example:

~&TYPE &LITERAL &A

.--
I Function Usage Example

&A = 123
&CONCAT Concatenates tokens into a

of higher-level
define variable

shows, given the
when a built-in
of the built-in

statements. Only
statements; for

&B

single token. &B = &CONCAT &A 55 12355
&DATATYPE Assigns the data type (NU~

or CHAR) to the variable. &B = &DATATYPE &A NUM
&LENGTH Assigns the length of a

token to a variable. &B = &LENGTH &A 3
&LITERAL Prohibits substitution of a

variable symbol. &B = &LITERAL &A &A
&SUBSTR Extracts a character string

from a token. &B = &SUBSTR &A 2 2 23
1-

Figure 9. Summary of CMS EXEC Built-in Functions

Section 6. Introduction to the EXEC Processors 105

FLOW CONTROL IN AN EXEC

An EXEC is processed line by line: if a statement is encountered that
passes control to another line in the procedure, execution continues
there and each line is, again, executed sequentially. You can pass
control with an &GOTO control statement:

&GOTO -BEGIN

where -BEGIN is a label. All labels in EXEC files must begin with a
hyphen, and must be the first token on a line. For example:

-LOOP

A label may have control statements or commands following it; for
example:

-HERE &CONTINUE

which indicates that the processing is to continue with the next line,
or:

-END &EXIT

The &EXIT control statement indicates that the EXEC processor should
terminate execution of the EXEC and return control to CMS. You can also
specify a return code on the &EXIT control statement:

&EXIT 6

results in a "(00006)" following the "R" in the CMS ready message. If
you invoke a CMS command from the EXEC, you can specify that the return
code from the CMS command be used:

&EX"IT &RETCODE

Since the &RETCODE special variable is se't after each CMS command
that is executed, you can test it after any command to decide whether
you want execution to end. For example, you could use the &IF control
statement to test it:

&IP &RETCODE NE 0 &EXIT &RETCODE

"&EXIT &RETCODE" places the value of the CMS return code in the CMS
ready message. You could place a line similar to the above following
each of your CMS command lines, or you could use the &ERROR control
statement, that will cause an exit as soon as an error is encountered:

&ERROR &EXIT &RETCODE

or you could use the &ERROR control statement to transfer control to
some other part of your EXEC:

&ERROR &GOTO -CHECK

-CHECK

106 IBM VM/SP CMS User's Guide

Another way to transfer control tc another line is to use the SSKIP
control statement:

SSKIP 10

transfers control to a line that is 10 lines below the SSKIP line. You
can transfer control above the current line as well:

&IF &X NE &Y SSKIP -3

Transferring control with SSKIP is faster, when an EXEC is executing,
than it is with SGOTO, but modifying your EXEC files becomes more
difficult, particularly when you add or delete many lines.

You can use combinations of SIF, SGOTO, and SSKIP to set up loops in
an EXEC. For example:

SX = 1
SIF SX = 4 SGOTO -ENDPRT
PRINT FILESX TEST A
SX = &X + 1
SSKIP -3
-ENDPRT

Or, you can use the SLOOP control statement:

&X = 1
SLOOP 2 SX > 3
PRINT FILESX TEST
SX = SX + 1
-ENDPRT

In both of these examples, a loop is established to print the files
FILE1 TEST, FILE2 TEST, and FILE3 TEST. SX is initialized with a value
of 1 and then incremented within the loop. The loop executes until the
value of SX is greater than 3. As soon as this condition is met, control
is passed to the label -ENDPRT.

COMPARING VARIABLE SYMBOLS AND CONSTANTS

In an EXEC, you can test whether a certain condition is true, and then
perform some function based on the decision. Some examples have already
appeared in this section, such as:

SLOOP 3 SX EQ SY

In this example, the value of the variable &X is tested for an equal
comparison with the value of the variable SY. The loop is executed until
the condition (&X equal to &Y) is true.

The logical comparisons you can make are:

£Q.nditiQ.n l1.n~.ni£ ~ymbQ!
equal EQ =
not equal NE =
greater than GT >
less than LT <
greater than

or equal to GE >=
less than or

equal to LE <:-:

section 6. Introduction to the EXEC Processors 107

When you are testing a condition in an EXEC filer you can use either the
mnemonic or the symbol to represent the condition:

&IF &A LT &B &GOTO -NEXT

is the same as:

&IF &A < &B &GOTO -NEXT

DOING I/O WITH AN EXEC

You can communicate with your terminal using the &TYPE and &READ control
statements. Use &TYPE to display a line at your terminal:

&TYPE ASMBLNG &1 ASSEMBLE

When this line is processed, if the variable &1 has a value of PROG1,
the line is displayed as:

ASMBLNG PROGl ASSEMBLE

Use the &READ control statement when you want to be able to enter
data, variables r or control statements into your EXEC file while it is
executing. If you use it with an &TYPE statement, for example:

&TYPE DO YOU WANT TO CONTINUE ?
&READ VARS &ANS

you could test the variable &ANS in your EXEC to find out how processing
is to continue.

The &BEGTYPE control statement can be followed by a sequence of lines
you want to be displayed at the terminal. For example r if you want to
display ten lines of data r instead of using ten &TYPE control
statements r you could use:

&BEGTYPE
linel
line2

linel0
&END

The &END control statement indicates the end of the lines to be typed.
You can also use the &BEGTYPE control statement when you want to type a
line that contains a word with more than eight characters in it; for
example:

&BEGTYPE
TODAY IS WEDNESDAY
&END

The EXEC interpreter r however, does not perform sUbstitutions on lines
entered this way. The lines:

&A = DOG
&BEGTYPE
MY &A IS NAMED FIDDLEFADDLE
&END

108 IBM VM/SP CMS User's Guide

\ ,

)

result in the display:

MY &A IS NAMED FIDDLEFADDLE

You must use the &TYPE statement when you want to display variable data;
you must use the &BEGTYPE control statement to display words with more
than eight characters.

To type null or blank lines at your terminal (to make output
readable, for example), you can use the &SPACE control statement:

&SPACE 5

You can punch lines of tokens into your virtual card punch with the
&PUNCH control statement:

&PUNCH &NAME &TOTAL

When you want to punch more than one line of data, or a line that
contains a word of more than eight characters in it, you should use the
&BEGPUNCH control statement preceding the lines you want to punch, and
follow them with an &END statement. The EXEC processor does not
interpret these "lines, however, so any variable symbols you enter on
these lines are not substituted.

When you punch lines from an EXEC procedure what you
doing is creating a file in your virtual card punch. To
file for processing, you must close the punch:

cp close punch

are actually
release the

The destination of the file depends on how you have spooled your punch.
If you have spooled it to yourself, the file is placed in your virtual
card reader, and you can read it onto a virtual disk using the READCARD
command.

The EXEC control statements &STACK and &BEGSTACK allow you to stack
lines in your program stack, to be executed as soon as a read occurs in
your virtual machine. Stacking is useful when you use commands that
require responses, for example, the SORT command:

&STACK 1 20
SORT INFILE FILE A OUTFILE FILE A

When the SORT command is executed, a prompting message is issued, the
virtual machine read occurs, and the response that you have stacked is
read. If you do not stack a response to this command, your EXEC does
not continue processing until you enter the response from your terminal.

In the above example of the SORT command, you can suppress the
prompting message by issuing either the SET CMSTYPE HT command or &STACK
HT immediately before the SORT command. Restore normal terminal
operations by placing either a SET CMSTYPE RT command or &STACK RT ~fter
the SORT command.

section 6. Introduction to the EXEC Processors 109

Stacking is useful in creating edit macros or in editing files from
EXEC procedures. r1

Noi~: &STACK HT and SET CMSTYPE HT create the same effect when
interpreted by the CMS EXEC processor. Similarly, &STACK RT and SET
CMSTYPE RT are equivalent for the EXEC 2 processor. However, when using
EXEC 2, the commands &STACK HT and &STACK RT will cause the characters
"HT" and "RT" to be placed in the Frogram stack but will not affect the
console output. Unless these characters are part of a program or
cleared from the stack, you will receive an "UNKNOWN CP/CMS COMMAND"
error message when they are read from the stack.

MONITORING EXEC PROCEDURES

Two EXEC control statements, &CONTROL and &TIME, control how much
information is displayed at your terminal while your EXEC file is
executing. This display is called an execution summary.

Since you do not usually receive a CMS ready message after the
execution of each CMS command in an EXEC, you do not rece1ve the timing
information that is provided with the ready message. If you want this
timing information to appear, you can specify:

&TIME ON

or you can type the CPU times at particular places by using:

&TIME TYPE

The &CONTROL control statement allows you to specify whether certain
lines or types of information are displayed during execution. By
default, CP and CMS commands are displayed before they are executed. If
you do not wish to see them displayed, you can specify:

&CONTROL OFF

You might find it useful, when you are debugging your EXECs, to use:

&CONTROL ALL

When you use this form, all EXEC statements, as well as all CP and CMS
commands, are displayed and you can see the variable substitutions being
performed and the branches being taken in a procedure.

The EXEC 2 Processor

The EXEC 2 processor handles EXEC 2 programs. These EXEC 2 programs and
processing are similar to CMS EXEC programs and processing.

EXEC 2 differs from eMS EXEC in the following ways:

1. There is no 8-byte token restriction. Statements are composed of
'words' of up to 255 characters each.

2. Commands may be issued from EXEC 2 either to CMS or to specified
'subcommand' environments, for example the System Product editor.

3. EXEC 2 has extended string manipulation functions.

110 IBM VM/SP CMS User's Guide

~

'>I
I

..

4. EXEC 2 has arithmetic functions for multiplication and division.

5. EXEC 2 has extended debugging facilities.

6. EXEC 2 supports user defined functions and subroutines.

In addition, the EXEC 2 interpreter is used by the System Product Editor
for edit macro processing support.

RELATIONSHIP OF EXEC AND EXEC 2

EXEC 2 does not support all language keywords and syntax of the CMS EXEC
processor. EXEC 2 coexists with the CMS EXEC processor program.

EXEC programs written for the CMS EXEC processor will continue to
execute correctly with no user modifications. To run CMS EXEC programs
as EXEC 2 programs, you must convert the EXEC programs to EXEC 2
programs. See the publication VMLSP !XE£ 1 Be!~Q! for information on
conversion.

You may not use CMS EXEC language statements in a program to be
interpreted by the EXEC 2 processor, nor EXEC 2 language statements in a
program to be interpreted by the CMS EXEC processor. However, you may
call an EXEC 2 program from a CMS EXEC program, and vice versa.

INVOKING EXEC 2

EXEC 2 programs may reside in EXEC files (with a filetype of EXEC), and
~e invoked by the EXEC 2 interpreter. The EXEC 2 interpreter is invoked
in the same way the CMS EXEC interpreter is invoked.

For both CMS EXEC and EXEC 2 files with a filetype of EXEC, CMS
examines the first statement of the EXEC file to determine which EXEC
processor must handle it. If the first statement of the EXEC is
&TRACE, CMS calls the EXEC 2 processor to handle it. If the first
statement is not &TRACE, CMS calls the EXEC processor to handle it.

Note: The &TRACE statement does not have to be the first statement in a
file if the file does not have a filetype of EXEC.

ATTRIBUTES OF EXEC 2 FILES

EXEC 2 files can have any filename. EXEC 2 files have the filetype EXEC
for files that are invoked from CMS command mode, and the filetype XEDIT
for files used as System Product Editor macros.

EXEC 2 files can
length for lines read
stack it is 255.

be either 'F' or 'V' format.
from the console is 130; for

The maximum line
lines read from the

For complete information about EXEC 2, see the publication VML~g EXEC
~ g~!~1:~'!!£~.

Section 6. Introduction to the EXEC Processors 111

Summary'of CMS EXEC Control Statements and
Special Variables
Figures 10 and 11 summarize CMS EXEC control statements and special
variables.

r
I
I
, &variable , ,
I

Control statement

t
string~ ,
~:nction
X'xxxxxx

I , &ARGS [arg1 [arg2 ••• [arg30]]] ,
I ,
I
I ,
I
I
I
I
I
I
I , , , , ,
I , , , ,
I
I ,
I
I
I
I
I
I
I
I
I
I ,

&BEGEMSG
line1
line2

&END

&BEGPUNCH
line1
line2

&END

& BEGSTACK
line1
line2

&END

&BEGTYPE
line1
line2

&END

&CONTINUE

[ALL]

[ALL]

r , r ,
IlllQI IALL,
ILIFOI L ..I

L ..I

[ALL]

Function

IAssigns a value to the symbol
,specified by &variable; the
lequal sign must be preced€d
land followed by a blank.

IRedefines the variable symbols
1&1, &2 ••• with the values of
,largl', 'arg2 1 , ••• , and re
Isets the variable &INDEX.

IDisplays the following lines
las CMS error messages, without
,scanning them.
I , ,
IPunches the fcllowing lines
lin the virtual card punch,
Iwithout scanning them. ,
I
I

IStacks the following lines
lin the console input buffer,
Iwithout scanning them.
I
I
I
I

IDisplays the following lines
lat the console, without
,scanning them.
I
I
I

,Provides a branch address for
,&ERROR, &GOTO, and other con
Iditional branching statements.

Figure 10. Summary of CMS EXEC Control statements (Part 1 of 3)

112 IBM VM/SP CMS User's Guide

! .

.--, Control statement ,
, SCONTROL , .. , .. , .. , .. ,
, ,OFF I I ~g I ,TIME , I PA CK I
, IERROR, I NOMSGI I!Q!IM~I INOPACKI
I , '!;;11.§ ,L .J L .J L .J

, ,ALL I
, L .J

I
, SEMSG mmmnnns [tokl [••• tokn]]
I
I
I &END , , , ,
,.. ,
, SERROR ,executable-statementl
, , SCON11!B!~ I ,L .J

I , .. ,
, SEXIT ,return-codel
, '.Q , , L .J ,
, SGOTO {TOP }
, linenumber
, -label , ,
, SHEX {ON}
, OF! ,
! &IF Ut}
, , , ,
I
I , , , ,
I

EO
NE
LT
LE
GT
GE

<
<=
>
>=

{:

t:Ok2} executable
statement

; SLOOP {~label} {~ondition} ,
I
I
,&PUNCH[tokl [••• tokn]]
I
L---

Function

ISets, until further notice,
Ithe characteristics of the
,execution summary of the EXEC,
Iwhich is displayed at the
Iconsole.
I
I
---------~--------.---------

IDisplays a line of tokens
las a CMS error message.

ITerminates a series of lines
Ifollowing an SBEGEMSG,
ISBEGPUNCH, SBEGSTACK, or
I&BEGTYPE control statement.

IExecutes the specified
Istatement whenever a CMS
Icommand returns a nonzero
Ireturn code.

IExits from the EXEC file with
Ithe given return code.
I ,
ITransfers control to the top
lof the EXEC file, to the given
Iline, or to the line starting
Iwith the given label.

ITurns on or off hexadecimal
Iconversion.

Executes the specified
statement if the condition is
satisfied.

ILoops through the following ~
Ilines, or down to (and includ-I
ling) the line at label, for I
1m times, or until the ,
,condition is satisfied. ,

---I
Ipunches the specified tokens ,
I to your, vi rtual card punch. I

Figure 10. Summary of CMS EXEC Control statements (Part 2 of 3)

Section 6. Introduction to the EXEC Processor 113

.---, Control statement ,
1 , r ,

&READ In I , , 11 1
IARGS I , lVARS (&var1 (••• &var11]]1 , L ,

1
1 r,
,&SKIP 'n'
, 1 1 t
, L.J ,
, r,
, &SPACE , n t
1 I 1 1
, L.J

I
, r, r
, & S TACK , Il FO lit 0 k 1 (•••
, tLIFO, 1 HT
, L.J 1 RT ,
I
I , ,
I , ,
I

r ,
&TIME ION 1

'QII 1
IRESETI
,TYPE 1
L .J

L

I &TYPE [tok 1 [••• tokn]] ,
I

,
tokn] 1

1
1

.J

.J

Function

tReads lines from the terminal
lor from the console stack.
,ARGS assigns the tokens read
Ito the variables &1, &2 •••
IVARS assigns the tokens read
Ito the specified variable
Isymbols.

ITransfers control forward or
Ibackward a specified number
lof lines. ,
'Displays blank lines at the
,terminal.
t ,
IStacks a line in the terminal
1 input stack. ,
1
1

IDisplays timing information
Ifollowing the execution of
ICMS commands.
I
I
1

IDisplays a line at the
Iterminal.

Figure 10. Summary of CMS EXEC Control statements (Part 3 of 3)

114 IBM VM/SP eMS User's Guide

r---------
1 Variable

&n

&*
&$

&DISKx

&DISK*

&DISK?

&DOS

&EXEC

&GLOBAL

&GLOBALn

&INDEX

&LINENUM

&READFLAG

&RETCODE

&TYPEFLAG

&0
1
IKe~:

1

Usage

Arguments passed to an EXEC are assigned to
the variables &1 through &30.

Test whether all (&*) or any (&$) of the
arguments passed to EXEC have a particular
value.

Indicates whether the disk access at mode 'x'
is a CMS OS, or DOS disk, or not accessed
(CMS, OS, DOS, or NA).

Contains the mode letter of the first read/write
disk in the CMS search order, or NONE if no
read/write disk is accessed.

Contains the mode letter of the read/write disk
with the most available space or NONE, if no
read/write disk is accessed.

Indicates whether or not the CMS/DOS environment
is active (ON or OFF).

Contains the filename of the EXEC file currently
being executed.

Has a value ranging from 1 to 19, to indicate
the recursion (nesting) level of the EXEC that
is currently executing.

The variables &GLOBAL1 through &GLOBAL9 can
contain integral numeric values, and can be
passed among different recursion levels. If
not explicitly set, the variable will have a
value of 1.

1 \ •
1 Conta~ns the number of arguments passed to

'1 the EXEC on the command line or the number of
1 arguments entered as a result of an &ARGS or
1 &READ ARGS control statement. ,
1
1
1
1
I , ,
1
I , , , ,

Contains the current line number in the EXEC.

Indicates whether (STACK) or not (CONSOLE)
there are lines stacked in the terminal input
buffer (console stack).

Contains the return code from the most recently
executed CMS command.

Indicates whether (RT) or not (HT) output is
being displayed at the console.

Contains the name of the EXEC file.

set By

User

EXEC

User

User

User

User

EXEC

EXEC

User

EXEC

EXEC

EXEC

eMS

EXEC

User

IUs~~:
IEX]~:

Variables are assigned values by EXEC but you may modify them.
You may not modify these variables.

I~~:
1

You may assign a value to this variable but -it is reset at the
completion of each CMS command.

Figure 11. CMS EXEC Special Variables

Section 6. Introduction to the EXEC Processor 115

116 IBM VM/SP eMS User's Guide

Section 7. Using Real Printers, Punches,
Readers, an,d Tapes

eMS Unit Record Device Support

CMS supports one virtual card reader at address OOC, one virtual card
punch at address OOD, and one virtual printer at address OOE. When you
invoke a CMS ccmmand or execute a program that uses one of these unit
record devices, the device must be attached at the virtual address
indicated.

USING THE CP SPOOLING SYSTEM

Any output that you direct to your virtual card printer or punch, or any
output you receive through your card reader, is controlled by the
spooling facilities of the control program (CP). Each output unit is
known to CP as a spool file, and is queued for processing with the spool
files of other users on the system. Ultimately, a spooled printer file
or a spooled punch file may be released to a real printer or card punch
for printing or punching.

The final disposition of a unit record spool file depends on the
spooling characteristics of your virtual unit record devices, which you
can alter with the CP command SPOOL. To find out the current
characteristics of your unit record devices you can issue the command:

cp query ur

See Figure 12 for an example of the response you will receive from
issuing this command.

q ur

RDR DOC CL A NOCONT NOHOLD EOF READY
PUN 000 CL A NOCONT NOH OLD COpy 01 READY

000 FOR CMSGDE DIST 2G47-706
PRT ODE CL A NOCONT NOH OLD COpy 01 READY

ODE FOR CMSGDE DIST 2G47-706
DEV OFF PSEUDO TIMER
Ri

RUNNING

Figure 12. CP Query Unit Record Response

Seqtion 7. Using Real Printers, Punches, Readers, and Tapes 111

Some of the characteristics, and ways you can modify the 'cp query
ur' command are discussed below. When you use the SPOOL command to
control a virtual unit record device, you do not change the status of
spool files that already exist, but rather set the characteristics for
subsequent output. For information on modifying existing spool files,
see "Altering Spool Files," below.

fLA~~ (£1): Spool files, in the CP spool file queue, are grouped
according to class, and all files of a particular class may be processed
together, or directed to the same real output device. The default
values for your virtual machine are set in your VM/SP directory entry,
and are probably the standard classes for your installation.

You may need, however, to change the class of a device if you want a
particular type of output, or some special handling for a spool file.
For example, if you are printing an output file that requires special
forms, and your installation expects that output to be spooled class Y,
issue the command:

cp spool printer class y

All subsequent printed output directed to your printer at virtual
addres~ OOE (all CMS output) is processed as class Y.

HOLD: If you place a HOLD on your printer or punch, any files that you
prInt or punch are not released to the control program's spooling queue
until you specifically alter the hold status. By placing your output
spool files in a hold status, you can select which files you print or
punch, and you can purge duplicate or unwanted files. To place printer
and punch output files in a hold status issue the commands:

cp spool printer hold
cp spool punch hold

No1~: When you issue a· SPOOL command for a uni t rEcord device, you can
refer to it by its virtual address, as well as by its generic device
type (for example, CP SPOOL E HOLD).

When you have placed a hold status on printer or punch files and you
produce an output file for one of these devices, CP sends you ~ message
to remind you that you have placed the file in a hold:

PRT FILE xxxx FOR userid COpy xx HOLD

If, however, you havE issued the command:

cp set msg off

then you do not receive the message.

When you place a reader file in a hold status, then the file remains
in the card reader until vou remove the hold status and read it, or you
purge it.

£OPl: If you want multiple copies of a spool file, you should use the
COpy operand of the SPOOL command:

cp spool printer copy 10

If you enter this command, then all subsequent printer files that you
produce are each printed 10 times, until you change the COpy attribute
of your printer.

118 IBM VM/SP CMS User's Guide

FO~: You can spool printed or punched output under another userid's name
by using the FOR operand of the SPOOL command. For example, if you
enter:

cp spool printer for charlie

Then, all subsequent printer files that you produce have, on the output
separator page, the userid CHARLIE and the distribution code for that
user. The spool file is then under the control of that user, and you
cannot alter it further.

~QB!, BQCO!l: You can print or punch many spool files, but have them
print or punch as one continuous spool file 'if you use the CONT operand
on the SPOOL command. For example, if you issue the following sequence
of commands:

cp spool punch cont to brown
punch asm1 assemble
punch asm2 assemble
punch asm3 assemble
cp spool punch nocont
cp close punch

Then, the three files ASMl ASSEMBLE, ASM2 ASSEMBLE, and ASM3 ASSEMBLE,
are punched to user BROWN as a single spool file. When user BROWN reads
this file onto a disk, however, CMS creates separate disk files.

1Q: When you spool your printer or punch to another userid, all output
from that device is transferred to the virtual card reader of the userid
you specify. When you are punching a CMS disk file, as in the example
above, you should use the TO operand of the SPOOL command to specify the

~ destination of the punch file.

You can also use this operand to place output in your own virtual
card reader by using the * operand:

cp spool printer to *
After you enter this command, subsequent printed output is placed in
your virtual card reader. You might use this technique as an alternative
way of preventing a printer file from printing, or, if you choose to
read the file onto disk from your reader, of creating a disk file from
printer output.

Similarly, if you are creating punched output in a program and you
want to examine the output during testing, you could enter:

cp spool punch to *
so that you do not punch any real cards or transfer a virtual punch file
to another user.

ALTERING SPOOL FILES

After you have requested that VM/SP print or punch a file, or after you
have received a file in your virtual card reader and before the file is
actually printed, punched, or read, you can alter some of its
characteristics, change its destination, or delete it altogether.

Every spool file in the VM/SP system has a unique four-digit number
from 1 to 9900 assigned to it, called a spoolid. You can use the spoolid

Section 7. Using Real Printers, punches, Readers, and Tapes 119

of a file to identify it when you want to do something to it. You can
also change a group of files, by specifying that all files of a
particular class be altered in some way, or you can manipulate all of
your spool files for a certain device at the same time.

The CP commands that allow you to manipulate spool files are CHANGE,
ORDER, PURGE, and TRANSFER. In addition, you can use the CP QUERY
command to list the status and characteristics of spool files associated
with your userid.

When you use any of these commands to reference spool files of a
particular device, you have the choice of referring to the files by
class or by spoolid. You can also specify ALL. For example, if you
enter the command:

cp query printer all

you might see the display:

ORIGINID FILE CLASS RECDS CPY HOLD DATE TI~E NAME TYPE
CMSUG 0142 K PRT 000118 02 USER 04/11 01:58:48 SCHlD SCRIPT
C~SUG 0180 1 PRT 002021 01 NONE 04/11 08:02:26 TESTFILE SCRIPT

DIS'!
BIN106
BIN106

until any of these files are processed, or in the case of files in the
hold status, until they are released, you can change the spool file name
and spool file type (this information appears on the first page or first
card of output), the distribution code, the number of copies, the class,
or the hold status, using the CP CHANGE command. For example:

cp change printer all nohold

changes all printer files that are in a hold status to a nohold status.
The CP CHANGE command can also change the spooling class, distribution
code, and so on.

If you decide that you do not want to print a particular printer
file, you can delete it with the CP PURGE command:

cp purge printer 1615

After you have punched a file to some other user, you cannot change
its characteristics or delete it unless you restore it to your own
virtual reader. You ca,n do this with the TRANSFER command:

cp transfer all from usera

This command returns to your virtual card reader all punch files that
you spooled to USERA's virtual card reader.

You can determine, for your reader or printer files, in what order
they should be read or printed. If you issue the command:

cp order printer 8195 6547

Then, the file with spoolid of 8195 is printed before the file with a
spoolid of 6547.

The CP spooling system is very flexible, and can be a useful tool, if
you understand and use it properly. The !~SP ~f ~nd Re~~~ ~
Gene~gl Us~~§ contains complete format and operand descriptions for the
CP commands you can use to modify spool files.

120 IBM VM/SP CMS User's Guide

USING YOUR CARD PUNCH AND CARD READER IN CMS

The CMS READCARD command reads cards from your virtual card reader at
address DOC. Cards can be placed in the reader in one of two ways:

• By reading real punched cards into the system card reader. A CP ID
card tells the CP spooling system which virtual card reader is to
receive the card images.

• By transferring a file from another virtual machine. Cards are
transferred as a result of a virtual punch or printer being spooled
with the TO operand, or as a result of the TRANSFER command. Virtual
card images are created with the CMS PUNCH command, or from user
programs or EXEC procedures.

If you have a deck of punched cards that you want read into your virtual
machine card reader, you should punch, preceding the deck, a CP ID card:

ID HAPPY

If you plan to use the READCARD command to read this file onto a CMS
disk, you can also punch a READ control card that specifies the filename
and filetype you want to have assigned to the file:

:READ PROG6 ASSEMBLE

~ Then, to read this file onto your CMS A-disk, you can enter the command:

readcard *
If a file named PROG6 ASSEMBLE already exists, it is replaced.

If you do not punch a READ control card, you can specify a filename
and filetype on the READCARD command:

readcard prog6 assemble

If this spool file contained a READ control card, the card is not read,
but remains in the file; if you edit the file, you can use the DELETE
subcommand to delete it.

If a file does not have a READ control card, and if you do not
specify a filename and filetype when you read the file, CMS names the
file READCARD CMSUT1.

If you are reading many files into the real system card reader, and
you want to read them in as separate spool files (or you want to spool
them to different userids), you must separate the cards and read the
decks onto disk individually. The CP system, after reading an ID card,
continues reading until it reaches a physical end of file.

When you use the CMS PUNCH command to punch a spool file, a READ control
card is punched to precede the deck, so that it can be read with the
READCARD command. If you do not wish to punch a READ control card (also
referred to as a header card), you can use the NOHEADER option on the
PUNCH command:

Section 7. Using Real printers, Punches, Readers, and Tapes 121

punch prog8 assemble * (noheader

You should use the NOHEADER option whenever you punch a file that is not
going to be read by the READCARD command.

The PUNCH command can only punch records of up to 80 characters in
length. If you need to punch or to transfer to another user a file that
has records greater than 80 characters in length, you can use the DISK
DUMP command:

disk dump prog9 data

If your virtual card punch has been spooled to another user, that user
can read this file using the DISK LOAD command:

disk load

Unlike the READCARD command, DISK LOAD does not allow you to specify a
file identification for a file you are reading; the filename and
filetype are always the same as those specified by the DISK DUMP command
that created the spool file.

A card file created by the DISK DUMP command can only be read onto
disk by the DISK LOAD command.

You can use the MOVEFILE command, in
command, to place a file in your virtual
from your card reader to another device.

cp spool punch to *
filedef punch punch
filedef input disk coffee exec al
movefile input punch

conjunction with the FILEDEP
card reader, or to copy a file
For example:

the file COFFEE EXEC Al is punched to your virtual card punch (in
card-image format) and spooled to your own virtual reader.

Apart from
one or two
using your
punch one
command to

the procedures shown above, that transfer whole files with
commands, there are other methods you can use to create files
virtual card punch. From a program or an EXEC file, you can
line at a time to your virtual punch. Then use the CLOSE
close the spool file:

cp close punch

Depending on how the punch was spooled (the TO setting), the virtual
punch file is either punched or transferred to a virtual card reader.

RQNC]l!§ ~!n~~ ~SI!~ ILQ ~AC~OS: If you write an OS, DOS, or CMS program
that produces punched card output, you should make an appropriate file
definition. If you are an OS user, you should use the FILEDEF command
to define the punch as an output data device; if you are a nos user: yog
must use the ASSGN command. If you are using the eMS PUNCHC macro, the

122 IBM VM/SP CMS User's Guide

punch is assigned for you. The spooling characteristics of your virtual
~ punch control the destination of the punched output.
~

PUNCHING CARDS FROM AN EXEC: The EXEC facilities provide two control
statements-for punching cards: &PUNCH, which punches a single line to
the virtual card punch, and &BEGPUNCH, which precedes a number of lines
to be punched. You can also, in an EXEC, use the commands PUNCH and
DISK DUMP to punch CMS files.

Handling Tape Files in eMS

There are a variety of tape functions that you can perform in CMS, and a
number of commands that you can use to control tape operations or to
read or write tape files. One of the advantages of placing files on
tapes is portability: it is a convenient method of transferring data
from one real computing system to another. In CMS, you can use tapes
created under other operating systems. There are also two CMS commands,
TAPE and DDR, that create tape files in formats unique to CMS, that you
can use to back up minidisks or to archive or transfer CMS files.

Under VM/SP, virtual addresses 181 through 184 are usually reserved
for tape devices. In most cases, you can refer to these tapes in CMS by
using the symbolic names TAPl through T,AP4. In any event, before you
can use a tape, you must have it mounted and attached to your virtual
machine by the system operator. When the tape is attached, you receive
a message. For example, if the operator attaches a tape to your virtual
machine at virtual address 181, you receive the message:

TAPE 181 ATTACHED

The various types of tape files, and the commands and programs you
can use to read or write them are:

~!£E ~g~ma~£: The CMS TAPE command creates tape files from CMS disk
files. They are in a special format, and should only be read by the CMS
TAPE LOAD command. For examples of TAPE command operands and options,
see "Using the CMS TAPE Command."

I!R£DS ~Qm~gnd: The TAPPDS command creates CMS disk files from OS or DOS
sequential tape files, or from OS partitioned data sets.

IAPEMA~ COYA.n£:
macro libraries
program.

The TAPEMAC command creates CMS MACLIB files from OS
that were unloaded onto tape with the IEHMOVE utility

MOVEI1LE ~2m~~£: The MOVEFILE command can copy a sequential tape file
onto disk or a disk file onto tape. Or, it can move files from your
card reader to tape or from tape to your card punch.

~~~ ~~Q~~E: You can write programs that read or write sequential tape 
files using OS, DOS, or CMS macros. 

ACC~EE ~etho£ Servi£~E: Tapes created by the EXPORT function of access 
method services can be read only using the access method services IMPORT 
function. Both the IMPORT and EXPORT functions can be accomplished in 
CMS using the AMSERV command. The access method services REPRO function 
can also be used to copy sequential tape files. 

section 7. Using Real Printers, Punches, Readers, and Tapes 123 



DDR g~Qg~~: The DDR program, invoked with the CMS ccmmand DDR, dumps 
the contents of a virtual disk onto tape, and should be used to restore 
such files to disk. 

USING THE CMS TAPE COMMAND 

The CMS TAPE command provides a variety of tape handling functions. It 
allows you to selectively dump or load CMS files tc and from tapes, as 
well as to position, rewind, and scan the contents of tapes. You can 
use the TAPE command to save the contents of CMS disk files, or to 
transfer them from one VM/SP system to another. The following example 
shows how to create a CMS tape with three tape files on it, each 
containing one or more CMS files, and then shows how you, or another 
user, might use the tape at a later time. 

The example is in the form of a terminal session and shows, in the 
"Terminal Display" column, the commands and responses you might see. 
System messages and responses are in uppercase, and user-entered 
commands are in lowercase. The "Comments" columllll provides explanations 
of the commands and responses. 

Te£~i1!~l ,J2is]1.91 
TAPE 181 ATTACHED 

listfile * assemble a (exec 
R; 
cms tape dump 
TAPE DUMP PROGl ASSEMBLE Al 
DUMPING ••••. 
PROG1 ASSEMBLE Al 
TAPE DUMP PROG2 ASSEMBLE Al 
DUMPING ••••. 
PROG2 ASSEMBLE Al 
TAPE DUMP PROG3 ASSEMBLE Al 

TAPE DUMP PROG9 ASSEMBLE Al 
DUMPING ••••• 
PROG9 ASSEMBLE Al 
R; 
tape wtm 
R; 
tape dump mylib maclib a 
DUMPING ••••. 
MYLIB MACLIB Al 
R; 
tape dump cmslib maclib * 
DUMPING .•••• 
CMSLIB MACLIB S2 
R; 
tape wtm 
R; 
tape dump mylib txtlib a 
DUMPING ••••• 
MYLIB TXTLIB Al 
R; 
tape wtm 2 
R· , 
tape rew 
lJ • .. , , 

124 IBM VM/SP CMSUser's Guide 

comments 
Message-indicates that the tape is 

attached. 
Prepare to dump all ASSEMBLE files 

by using the LISTFILE command EXEC 
option; then execute the CMS EXEC 
using TAPE and DUMP as arguments. 

The TAPE command responds to each 
TAPE DUMP by printing the file 
identification of the file being 
dumped. 

The last file, PROG9 ASSEMBLE, is 
dumped. 

The TAPE command writes a tape mark 
to indicate an end of file. 

Two macro libraries are dumped, 
by specifying the file identifiers. 

Another tape mark is written. 

A TEXT library is dumped. 

Two tape marks are written to 
indicate the end of the tape. 

The tape is rewound. 



Teginal ]is.E1~I 
tape scan (eof 4 
SCANNING •••• 
PROGl ASSEMBLE Al 
PROG2 ASSEMBLE Al 
PROG3 ASSEMBLE Al 
PROG4 ASSEMBLE Al 
PROG5 ASSEMBLE Al 
PROG6 ASSEMBLE Al 
PROG7 ASSEMBLE Al 
PROG8 ASSEMBLE Al 
PROGQ ASSEMBLE Al 
END-OF-FILE OR END-OF-TAPE 
MYLIB MACLIB A1 
CMSLIB MACLIB S2 
END-OF-FILE OR END-OF-TAPE 
MYLIB TITLIB A1 
END-OF-FILE OR END-OF-TAPE 
END-OF-FILE OR END-OF-TAPE 
R; 
#cp det 181 
TAPE 181 DETACHED 
******** 
* 

Comments 
The-tape is scanned to verify 

that all of the files are on it. 

Tape mark indication. 

Two tape marks indicate the end 
of the tape. 

The CP DETACH command rewinds 
and detaches the tape. 

* The tape created above is going to be read. 

* ********* 
TAPE 181 ATTACHED 

tape load prog4 assemble 
LOADING ••••• 
PROG4 ASSEMBLE Al 
R; 

tape scan 
SCANNING •••• 
PROG5 ASSEMBLE A1 
PROG6 ASSEMBLE A1 
PROG1 ASSEMBLE A1 
PROG8 ASSEMBLE A1 
END-OF-FILE OR END-OF-TAPE 
R; 

. tape scan 
SCANNING •••• 
MYLIB MACLIB Al 
CMSLIB MACLIB S2 
END-OF-FILE OR END-OF-TAPE 
R; 
tape bsf 2 
R; 

tape fsf 
R; 
tape load (eof 2 
LOADING ••••• 
MYLIB MACLIB Al 
CMSLIB MACLIB A2 
END-OF-FILE OR END-OF-TAPE 
MYLIB TITLIB Al 
END-OF-FILE OR END-OF-TAPE 
R; 
#cp detach 181 
TAPE 181 DETACHED 

Message indicating the tape is 
attached. 

One file is to be read onto disk. 
The TAPE command displays the 

name of the file loaded. Any 
existing file with the same 
filename and filetype is erased. 

The remainder of the first tape 
file is scanned. 

Indication of end of first tape file. 

The second tape file is scanned • 

The tape is backed up and 
positioned in front of the 
last tape file. 

The tape is forward spaced past 
the tape mark. 

The next two tape files are 
going to be read. 

The tape is detached. 

Section 7. Using Real Printers, Punches, Readers, and Tapes 125 



Tape Labels in eMS 

support in the CMS component of VM/SP to process labelled tapes include 
the following features: 

• Checks IBM standard labels on input 

• Writes IBM standard labels on output 

• Allows you to specify routines to process standard user labels during 
DOS and OS macro simulation under CMS 

• Allows you to specif~ exits for processing tapes with nonstandard 
labels during execution of CMS macro simulations and some CMS tape 
operation commands CMS processes all tape labels; CP does not process 
tape labels. 

eMS tape label processing does not include: 

• Label processing for tapes that are read backwards 

• Processing of multivolume files on tapes 

• support for ANSI tapes or ASCII labels 

• Label processing for any functions of the CMS TAPE command except the 
two functions DVOLl and WVOL1 that procesS VOLl labels 

USER RESPONSIBILITIES 

You must initiate all your own tape label processing. To specify that 
you have a labelled tape, use the FILEDEF command for an OS simulation 
program, or use a DOS DTFMT macro for a CMS/DOS program. You can also 
use the TAPESL macro to process standard HDRl and EOF' labels and the 
CMS TAPE command to write and display standard VOLl ~abels. You can 
provide IBM standard label dEscription details with the LABELDEF command 
for all types of label processing. After label processing has been 
requested, it occurs automatically and there is no interaction between 
you and CMS unless an error occurs. See the "Error Processing" section 
later in this publication for a discussion of error processing. 

LABEL PROCESSING IN OS SIMULATION 

If you are running an OS simulation program and using OPEN and CLOSE 
macros, you specify the type of label processing you want in a FILEDEF 
command for a glven file. Detailed information about the FILEDEF 
command is found in the VML~f £~~ ~QE~~nd gnd ~~Q R~~~. You may 
specify that you want standard label processing (with SL) or nonstandard 
label processing (with NSL). If you choose nonstandard label 
processing, you must already have written a routine to process 
nonstandard labels. The name of this routine must be specified by the 
filename in the NSL parameter on FILEDEF. An example of nonstandard 
label processing is given in the section "NSL Processing". To be sure 
that the tape you are using contains no IBM labels, you may specify no 

126 IBM VM/SP CMS User's Guide 



label processing (NL) in the FILEDEF command. When NL is specified, CftS 
does n ct open files on a tape containing a VOL 1 label as its first 
record. You also can specify bypass tape label processing (BLP) on a 
FILEDEF command. BLP tells CMS to bypass tape label processing for a 
file, and instead, to position the tape at a particular file before 
processing the data records in the file. If you specify LABOFF for a 
FILEDEF tape file, label processing is turned off and there is no tape 
positioning or label checking. 

LABOFF is the default, so you do not receive any processing or tape 
positioning for a tape file unless you specifically request it. If you 
specify BLP, NL, SL, or SUL processing but omit a positional parameter, 
the position defaults to 1 and the tape is positioned at the first file. 
Examples of NL, BLP, and LABOFF processing are given in the sections "No 
Label (NL) Processing". Bypass Label (BL~ Processing", and "Label Off 
~ABOFF) Processing". 

For IBM .standard labels, you specify, SL or SUL, and optional positional 
and VaLID parameters. On a FILEDEF command, SUL means standard user 
labels. Everything you do for SL files, you must also do for SUL files. 
The pOSitional parameter for standard label files works the same way it 
does in OS/VS. If you specify: 

filedef filex tap1 sl 2 

the tape is spaced to what is physically the fourth file on the tape 
before processing begins. The reason for this spacing is that a 
standard labelled tape has one header file, one data file, and one 
trailer file for each data file. If you leave off the positional 
parameter: 

filedef filey tap3 suI 

you get the first file on the tape. 

The optional VaLID parameter on the FILEDEF command allows you to 
specify the volume serial number in the VaLl label of a tape in case you 
want only the VaLl label checked on the tape. If you want to specify 
other fields in IBM standard labels, you must also provide a LABELDEF 
statement for the tape file. The LABELDEF statement allows you to 
assign values to all fields in a standard HDR1 or EOFl label. A 
complete d~scription of how the LABELDEF command works may be found in 
the "LABELDEF Command" section later in this publication. 

The following command defines filez as a standard labelled tape file 
on a tape with a VaLl label and a volume serial number of DEPT78: 

filedef fi1ez tapl sl volid dept78 

If you also wish to specify a data set identifier for filez, you must 
furnish a LABELDEF command for filez as well as the FILEDEF command. 
Data set name may not be specified 9n the FILEDEF command. The LABELDEF 
statement below assigns a data set name of payroll to filez. 

labeldef filez fid payroll 

You can also specify file sequence number, volume sequence number, 
expiration date and other fields on a LABELDEF command. However, if you 
are using as simUlation macros (OPEN, CLOSE, REAt, WRITE, GET, PUT, 
etc.) to process your tape file, the only LABELDEF parameter that has 

Section 7. Using Real Printers, Punches, Readers, and Tapes 127 



meaning for input files is fid (data set identifier). This is the only 
field that is checked on input by os simulation. The other LABELDEF 
fields are used to specify values to be written in output labels. They ~ 
are also used by other types of tape label processing (CMS/DOS and CMS) 
to check input labels. If no LABELDEF ccmmand has been supplied for 
output files, default values are used to write out labels (see the 
section on the LABELDEF command for the. default values). 

After you have set up your descriptive information for a standard 
labelled tape file in FILEDEF and LABELDEF statement~, you run a regular 
OS simulation program under CMS. During program execution, HDRl and 
HDR2 labels are written or checked at OPEN time. EOFl and EOF2 labels 
are written or checked at CLOSE time. To have EOF labels processed, you 
must issue a CLOSE macro. The VOLl label on a tape, is checked whenever 
a file on that tape is opened if the user has specified a VOLID 
parameter on his FILEDEF statement or LABELDEF statement for the file. 
If the volid is specified on both LABELDEF and FILEDEF, the more recent 
specification is used. If no volid is specified, it is not checked. 
After checking the volid, the tape is positioned and the HDR label is 
processed. For processing multifile volumes, you may wish to use the 
LEAVE option on the FILEDEF command. This option prevents a tape from 
being rewound and positioned before each tape file is processed. The 
LEAVE option does not exist on an OS DD statement. 

For input files, HDR2 and EOF2 labels are skipped. There is no merge 
of information from a HDR2 label with information in the DCB as there is 
under an OS/VS operating system. output HDR2/EOF2 records are written 
from information in the DCB and the CMSCB (FCBSECT). Note that the tape 
density and TRTCH fields in HDR2/EOF2 records are taken from what the 
user specifies in his FILEDEF command for the tape file. They may not 
correspond to the actual density and TRTCHfields used to write the 
tape. 

To process standard user labels in OS simulation, you must do the 
following: 

1 • Specify the file as SUL in a FILEDEF command. 

2. Provide a routine to process the user standard labels in your 
program. 

3. Put the address of the user label routine in the DCB EXIT list of 
the DCB for the file. See the IBM publication OS/VSl ~ 
~sn~~~nl ~~~xi£~§ Guide or QSLV~Z ~ Data ~~gg~l Services 
gYig~, for instructions on how to establish a DCB EXIT list, and 
the exact linkage for communication between user label routines and 
the operating system. This exact linkage should be used under CMS 
with the following exceptions: 

a. There is no support for code x'06' EOV EXIT routine. 

b. For input labels, return codes 8 and 12 from the user routine 
are not supported. If an input return code is not 0, it is 
treated as if it were 4. 

4. Note that your standard user label routines do not perform any 
input/output. They set up an output label for writing, but the CMS 
tape label processing routines actually write out the label. For 
input, the CMS label processing routines read in your user standard 
label but then give control to your routine to check the label. . 

128 IBM VM/SP CMS User's Guide 

I 

\ 



You should specify NL in the FILEDEF command when you expect a tape does 
not contain any IBM standard tape labels. CMS reads your tape at the 
time a file is opened and does not open the file if the tape contains a 
VaLl label as its first record. If the tape does not contain a VaLl 
label, a file is opened and the tape is positioned by using the position 
parameter (n). For example, if you specify: 

filedef fileg tapl nl 2 

fileq is not opened if the tape on tapl (181) has a VOL' label. If the 
tape does not have a VOLl label, fileq is opened and the tape is 
positioned at the second file. If you do not specify a position 
parameter, the tape is positioned at the first file, (that is, the load 
point) • 

You should specify BLP in the FILEDEF command to bypass tape label 
processing. CMS does not check your tape for an IBM standard tape 
label. It uses the position parameter you specified to position the 
tape during open processing. If you do not specify a position 
parameter, the default is 1. For example: 

filedef fileabc tapel blp 4 

positions the tape at the fourth file when it opens fileabc. Because 
CMS does not know whether files on the tape are label files or data 
files, the tape is positioned at what is physically the fourth file, 
regardless of file content. Any label files on the tape are included in 
counting files. 

You should specify LABOFF in the FILEDEF command if you want no 
pos~tioning or label processing to occur during open processing. The 
position parameter is not valid for LABOFF. If you specify LABOFF, and 
your tape is positioned at record 6 in the third file before you issue 
an OPEN macro, the tape is positioned at exactly the same record after 
open processing (record 6 in the third file). The following FILEDEF 
command does not move tape2 (182) before processing the data in fileb: 

filedef fileb tap2 laboff 

In order to process nonstandard labels, you must write your own routine 
to read, write, and check the labels. If you have such a routine as a 
CMS TEXT or MODULE file, you put the filename of the routine after the 
NSL keyword parameter in the FILEDEF command for the file. The filename 
must be the name of the first CSECT in the program. It is to this point 
that control is transferred when the NSL routine gets control. If you 
do not have a TEXT or MODULE file with the NSL filename you specify, you 
get an error message. The OPEN and CLOSE routines will load your module 

Section 1. Using Real Printers, Punches, Readers, and Tapes 129 



if it is not already in storage and will pass control to it at the time 
they are opening or closing the file. Your routines will then be 
responsible for processing the tape labels. Nonstandard label routines 
must do the actual reading and writing of tape labels as well as 
checking and setting up the label. This is one of several ways 
nonstandard label processing is different from standard user label 
processing. Because the CMS label processing routines do not know the 
size or format of your nonstandard labels, they cannot read or write the 
labels. 

If you use a MODULE file for an NSL routine, it is important that you 
create the MODULE file so that it starts at an address that will not 
allow it to overlay the program or command you are executing at the time 
the NSL routine is invoked. The reason for this restriction is that the 
NSL routine is dynamically loaded while your program is executing. For 
the TAPEMAC and T1PPDS commands, starting the NSL routine at an address 
above X'21000' prevents such an overlay. If the NSL routine is invoked 
from your own program which is running in the user area, you must 
determine how big your program is and where the NSL MODULE file should 
be located to prevent overlay. Note that you do not have to specify a 
starting address for NSL routines that are TEX~ files. The CMS loader 
loads such files for you at an address that does not cause an overlay. 

Although any user may write his own NSL routine, it is expected that 
a system programmer will usually write such routines and then other 
programmers in the installation will use them. Before writing an NSL 
routine, read the Introduction to CMS, Interrupt Handling, and CMS 
Functional Information sections in Part 3 of the VM~f Syst§m 
PrQg£g~~I2 Guig~. In order to ensure proper communication with the CMS 
system routines, you must use the linkage described below when you write 
nonstandard label routines. 

When an NSL tape label processing routine gets control, register 1 
points to a 16-byte parameter list with the following format: 

.-- --, 
byte 0 I Type Caller Tape Mode- Reserved I 

I call id Set Byte I 
I I 

byte 4 I TAPID I 
I I -, ID parameter 

byte 8 I FCBSECT address I I for 
I I I TAPEMAC and 

byte 12 I DCB address I I TAPPDS 
'-- ---' -.l 

The Type call field is a code telling the type of label processing 
being done: 

x'OO' 
x' 04' 
x'OS' 
x' OCt 
x' 10' 

is OPEN input 
is OPEN output 
is CLOSE input 
is CLOSE output 
is End of Tape output 

The Caller id is a one-byte code which is one of the following: 

x'SO' 
x'20' 

Call by OS simulation 
Call by CMS TAPEMAC or TAPPDS commands 

Tape modeset byte is used to communicate with the eMS tape I/O 
routines. It is a one byte hexadecimal code that depends on the type of 

130 IBM VM/SP CMS User's Guide 



tape (7 or 9 track), tape density, etc. For further information on the 
Mode Set, see the TAPE command description in the !~§f ~MS £2!~~nd ~~ 
MaQ~Q Refe~~Q~. (You probably will pass this byte to the CMS tape 
controlling module to read and write your tape labels and will never 
need to know what its codes mean.) 

FCBSECT address is the address of the CMSCE (FCBSECT) for the tape 
file you are proc€ssing. 

DCB address is the address of the DCB for the tape file you are 
processing. 

Note that for the TAPEMAC and TAPPDS commands, the same interface is 
used, except that instead of the FCBSECT and DCB address fields, the 
eight character identifier specified in the ID=identifier field in the 
command is passed. This identifier enables you to identify which file 
you are processing since the TAPEMAC and TAPPDS commands do not work 
with CMSCBs or DCBs. 

Control is passed to your NSL routine by a BALR 14,15 instruction so 
register 15 contains the address of your routine when you receive 
control. Register 14 contains the address you should return to when you 
are finished processing the nonstandard labels. You can return with a 
BR 14 instruction. When you receive control, register 13 points to a 
save area in which to store the callers register. The save area linkage 
is standard as/vs linkage. You receive control with a PSW key of X'E' 
which allows you to modify only user storage. When you are finished 
processing, place a code in register 15 to the eMS label processing 
routine that called your routine. Place the value 0 (zero) in register 
15 if there have been no errors and you want processing to continue 
normally and the data set to be opened. If you return a nonzero value 
in register 15, a message is issued to your terminal and the data set is 
not opened. 

If you write the following FILEDEF statement: 

filedef tapf1 tap1 nsl read lab 

and have a program called READLAB as a MODULE or TEXT file, your program 
will receive control when the data set called tapf1 is opened. When 
your program gets control, register 1 contains the address of the 
parameter list described above. Using the data in this parameter list, 
you are able to read or write your own tape header labels. When the 
same data set is closed, your program again receives control and you can 
read or write your own trailer labels. Your program can test whether it 
is getting control for OPEN or CLOSE by examining the type call byte in 
the parameter list passed to you. If the type call byte is x'10', your 
NSL routine is being invoked while you are writing an output data set 
and you have reached the reflective mark that indicates end of tape. 
You may wish to do special processing in this case. See the "End of 
Tape" and "End of Volume" section in this publication for further 
information on end of tape processing. 

~i!!~~~~~~§ ~~l~~~n 1~~~ La~~l f~~§§ing ~nder OSL!§ ~nd OS Simulation 
in ~!1~ 

There are a few minor differences. in the way CMS OS simUlation processes 
tapes and the way as/vs processes them. These differences are listed 
below. 

• If you are using as/vs and you do not specify any label parameter on 
your Jct statement, the default is SL or standard labels. When you 
use as simulation under CMS and do not specify any label information 

Sect~on 7. Using Real Printers, Punches, Readers, and Tapes 131 



on a FILEDEF statement, the default is LABOFF. LABOFF turns off 
label processing and nothing is done to position the tape or process 
labels. Thus, if you specify no label information on FILEDEFw the 
system will process your tape files exactly the same way they are 
processed on a CMS system that has no tape label processing 
facilities. 

• You must specify CLOSE to process all trailer labels. No automatic 
CLOSE occurs at end of data or after reading a tape mark. There is 
no EOV moniter to process labels before a data set is closed. If an 
input tape is positioned at an EOFl cr EOVl record when CLOSE is 
issued, the label is processed. If a tape file is closed before all 
data records are read, the trailer label is not processed. Output 
tapes have EOF records written enly at CLOSE time. 

• There is no deferred label processing under OS simulation in CMS. 

• When the user has not specified a block count routine in his DCB EXIT 
list under OS/VS, the program abends when a block count error occurs. 
Under CMS, this condition produces a message that asks whether or not 
to abend the operation. 

• Certain fields in HDRl and EOF1 labels default to values different 
from those under OS/VS. These values can always be specified in a 
LABELDEF command if the user does not like the default values. For 
example, the default for data set name in an output label under OS 
simulation is DDNAME and not DSNAME. The default data set sequence 
number is always one even when the data set is not the first data set 
on the tape. The default volume sequence number is always one. Read 
the section on the LABELDEF ccmmand in this manual to learn what the 
default values are under CMS. You can find what default values are 

• 

in OS/VS by reading the IBM publication OS/y~ !~£g 1abe1§. Note that ( 
you can always get exactly what you want written on a tape label by \ 
explicitly specifying the field on a LABELDEF command. For example, 
you can specify DSNAME as FID on such a command and have it written 
in the label instead of DDNAME. 

Default volids (when you do not specify a volid in a 
FILEDEF statement) in output HDRl and EOFl records under 
CMSOOl and will not be the actual vclume serial in the 
already on the tape. It is recommended that you always 
volid in FILEDEF or LABELDEF to be sure the information 
correct. 

LABELDEF or 
eMS will be 
VOLl record 
specify the 
written is 

• Expiration date specification is always done in absolute form rather 
than by retention period. You must always use the form yyddd where 
yy is the year (0-99) and ddd the day (0-366). CMS does not handle 
expiration dates specified by retention periods. 

• When CMS reads a HDRl label and finds an unexpired file, it always 
issues a message allowing you to enter 'IGNORE' or 'ERROR'. 'ERROR' 
prevents opening the file but 'IGNORE' lets you ignore the error and 
write over the unexpired file. 

• The NSL routine linkage is quite different under CMS than in OS/VS. 
(See the section "NSL Processing" for details.) 

• Volume serial number verification occurs every time a file on a tape 
is opened under OS simulation unless the FILEDEF LEAVE option is used 
for multifile tapes. 

• Existing VOLl labels are not automatically rewritten for density 
incompatibility in CMS as they are in OS/VS. 

132 IBM VM/SP CMS User's Guide 



• HDR2 records are skipped for input under eMS for as simulation. They 
are not checked and information in them is not merged with DCB 
information. HDR2 records are written (with information obtained 
from the DCB) on output. 

• Blank tapes used for output in CMS cause the tape to run off the reel 
if you define the tape file as SL or NL. The tape label processing 
routines try to read an existing VaLl or HDRl label before writing on 
the tape. Therefore, you should always use the CMS TAPE command to 
write at least one tape mark (for NL tapes) or a VOL1 label (for SL 
or SUL tapes) before using the tape to write an output data set. 

• If you specify a position parameter that is too big (that is, there 
are not that many files on the tape), the tape will run off the reel 
in CMS. 

• There are no user exits for user standard labels for EOV label 
processing in CMS. 

• CMS does not support user return codes of 8 and 12 for input 
user labels. If the return code from a user routine is 
after input label processing, CMS treats it as if the return 
4. (See the IBM publication QSLV~l ~at2 ~ggem!n! Ser~§ 
Q~L!~l MV~ ~21g ~gng~~~n1 Se~ig~~ ~uide for details). 

standard 
not zero 
code was 
g,yide or 

• No count is kept of user standard labels read or bypassed in CMS. If 
more than eight such labels exist, the fact is not detected. 

• User label processing routines do not receive control under CMS when, 
an abend or a permanent I/O error occurs. 

• If a CMS output tape is not p08itioned at a HDRl label or a tape mark 
when label processing begins, error message 422 is issued. Under 
OS/VS such conditions cause an abend. 

• TCLOSE with the REREAD option causes a tape to be rewound under CMS 
and then forward spaced one file if the tape has standard labels. 
Under OS/VS, the tape is backspaced four files and forward spaced one 
file. REREAD for unlabelled tapes in CMS always causes a rewind. 

For further information on as/vs tape label processing, refer to the 
following IBM publications: Q2LVSl ~g1~ Mallggement ~rvic~ g,yide, 
OSL!~Z ~VS ~gig ~g~2g~~nt ~~rvig~§ Guig~, and Q~!a Ig~ ~abels. 

For details on end-of-tape/end-of-volume processing under CMS, see 
the "End-of-Volume" and "End-of-Tape Processing" section later in this 
publication. 

LABEL PROCESSING IN eMS/DOS 

You specify the type of label processing you want in eMS/DOS on a DTFMT 
macro in exactly the same way you specify it when you want to run your 
program under VSH/AF. See the VMLa~ a.I§te.m nogrn~r's §yid,! for 
details on CMS support for the DTFMT macro. 

Labelled tapes are only supported if you use the DTFMT macro. There 
is no support for labelled tapes in eMS/DOS for any other type. If you 
try to read labelled tapes with a DTFCP or DTFDI macro, input standard 
IBM header labels are skipped, but no other ~nput labels are processed. 
Output tapes with standard labels have these labels overwritten with a 
tape mark. All tape work files are treated as output unlabelled files 
in eMS/DOS although they are defined by a DTFMT. Tapes used for such 
files have a tape mark written as the first record when the file is 
opened. 

section 7. Using Real printers, Punches, Readers, and Tapes 133 



You define an unlabelled tape with the DTFMT parameter FILABL=NO. The 
tape file is processed as having no labels. 

You define a nonstandard labelled tape with the DTFMT parameter 
FILABL=NSTD. You also must provide a routine to process your 
nonstandard labels in the LABADDR=parameter of the DTFMT. Tape 
processing in CMS for these files is the same as it is under VSE/AF. 

You define a standard label tape with the DTFMT parameter FILABL=STD. 
You also must supply a LABELDEF command to specify label description 
information. This command replaces the VSE/AP TLBL card and is required 
for standard label processing under CMS/DOS. The LABELDEF command is 
discussed in detail in the "LABELDEP Command" section later in this 
publication. 

In order to connect the LABELDEF command for a file with the DTFMT 
for the same file, you must use the same name to label your DTPMT as you 
use for a filename in your LABELDEP command. If you code a DTFMT macro 
in your program as: 

MTl DTFMT ••• FILABL=STD 

you must then supply the following type of LABELDEF command: 

labeldef mtl fid yourfile fseq ••• 

You can put any d~scription parameters you want on your LABELDEF 
command but the filename for it must be mtl if you coded MTl as the 
label on the DTFMT. 

After you have set up your DTFMT and LABELDEP, you execute your 
CMS/DOS program. HDRl labels are checked or written when an OPEN macro 
is issued. EOPl labels are checked or written when a CLOSE macro is 
issued. A VOL1 label volume serial number is checked only if the tape 
is positioned at load point when the label processing begins and if you 
have specified a VOLID parameter on a LABELDEP statement for the file. 
Note, if NOREWIND is not specified in the DTPMT macro for the file, the 
tape is rewound so it is positioned at load point for label processing. 

If you want to process user standard labels as well as standard 
labels in CMS/DOS, you specify FILABL=STD and also supply a LABADDR 
parameter in the DTFMT for the file. Control is then transferred to 
your label processing routines after standard labels are processed. The 
linkage to user standard label routines is exactly the same as in 
VSE/AP. 

There are minor differences in the way tapes are processed by CMS/DOS 
and the way they are 'processed by VSE/AP. These differences are: 

• The tape error messages are CMS error messages and 
messages. In some cases VSE/AF allows the system 

134 IBM VM/SP CMS User's Guide 

not VSE/AF error 
operator to reply 



• 

• 

NEWTAP to an error message. The system then waits for the operator 
to mount a new tape and continues processing with this new tape. 
Such a reply is never possible under CMS/DOS. In CMS/DOS, you 
usually can reply IGNORE to ignore a tape label error condition or 
CANCEL to cancel a job. NEWTAP is never allowed. In a few cases, 
CMS/DOS allows an IGNORE reply where VSE/AF does not. 

You must specify CLOSE to process all trailer labels. No automatic 
CLOSE occurs at end of data or after reading a tape mark. If an 
input tape is positioned at an EOFl or EOVl record when CLOSE is 
issued, the label is processed. If a tape file is closed before all 
data records are read, the trailer label is not processed. output 
tapes have EOF records written only at CLOSE time. For nonstandard 
labelled tapes, your own routines do not receive control on input 
when a tape mark is read. You must issue a CLOSE macro 1n your 
EOFADDR routine in order to have the trailer labels processed. 

Certain fields in HDRl and EOFl labels default to values different 
from those in VSE/AF. For example, the default volume serial number 
written in a HDRl label is CMSOOl and not the actual volume serial 
number (volid) in the VOLl label already on the tape. The default 
file sequence and volume sequence numbers are always one even when 
the file is not the first file on the tape. You should read the 
section on the LABELDEF command in this publication to learn what the 
default values are in CMS/DOS. You also can read the IBM publication 
!~~L!l 19~ Lab~l§ to find what the default values are for VSE/AF. 
If you do not like the default values, you can always specify the 
exact values you want in label fields in a LABELDEF command. 

• Expiration date specification is always done in absolute form rather 
than by retention period. You must always use the form yyddd where 
yy is the year (0-99) and the ddd the day (0-366). CMS does not 
handle expiration dates specified by retention periods. 

• VOLl labels written in the wrong density 
automatically by CMS/DOS as they are by VSE/AF. 

are not rewritten 

• Blank tapes should not be used for tape files specified as FILABL=STD 
in eMS/DoS; they will run off the reel. Use the CMS TAPE command to 
write a VOLl label or a tape mark on a blank tape before using it for 
a STD file. 

• Not all tape movement and label checking that occurs in VSE/AF occurs 
under CMS. For example, when (pening an output file, a VSE/AF system 
expects the tape to be positioned at a HDRl label or a tape mark. It 
then backspaces the tape to read the last EOFl label on the tape. If 
it does not find the label it expects, it issues an error message. 
This check is not performed by CMS/DOS. If the tape is not 
positioned at a HDRl label or a tape mark when output open processing 
begins, error message 422 is issued. 

• After an EOVl label is written (see "End-of-Tape/End-of-Volume 
Processing" later in this publication), the ta pe is always rewound 
and unloaded under CMS/DOS. VSE/AF lets a DTFMT parameter control 
whether or not the tape is reweund. 

• User label processing routines do not receive control when an I/O 
error occurs under CMS/DOS. 

• Control is not passed to user standard label routines in CMS/DOS when 
EOT has been sensed on output and an EOVl label has been written by 
the system routines. 

• Work tapes are not checked for an expiration date 
standard labels under CftS/DOS. If a tape is to be 

when they contain 
opened as a work 

Section 7. Using Real printers, Punches, Readers, and Tapes 135 



tape, CMS/DOS tests to see if it contains a VOL1 label. If it does, 
a dummy HDR1 label and a tape mark are immediately written on the 
tape after the VOL1 label. If the tape does not contain a VOL1 
label, a tape mark is written at the beginning of the tape. VSE/AF 
checks expiration dates on previously labelled tapes used as work 
tapes and gives the operator a chance to reject the tapes if the 
expiration date has not expired. 

For further information on VSE/AF and 
refer to the IBM publications, ISE/AI 
Use~..!.§ Quig.!!. 

CMS TAPESL MACRO 

CMS/DOS tape 
Iape Labels 

label processing, 
and jgLlI ~~ 

The TAPESL macro is provided for use in CMS programs that do not use OS 
and DOS simulation features. You can use the CMS TAPESL macro to 
process IBM standard HDR1 and EOF1 labels without using DOS or OS OPEN 
and CLOSE macros. You will probably use TAPESL with the RDTAPE, WRTAPE, 
and TAPECTL macros. 

TAPESL processes only HDR1 and EOF1 labels. It does not perform any 
functions of opening a tape file other than label checking or writing. 
The TAPESL macro generates linkage to the CMS tape label processing 
routine that actually processes the label. The macro generates a block 
of data (32 bytes long) in order to communicate with the tape label 
processing routines. TAPESL is used both to check and to write tape 
labels. A LABI;LDEF command mus,t be issued prior to running the program 
that contains this macro. The LABID parameter of the TAPESL macro is 
used to specify the name of the LABELDEF to be used. For example, if 
you use the macro: 

TAPESL HOUT,181,LABID=GOODLAB 

in your assembly language program, you must supply a LABELDEF command 
for GOODLAB: 

1abedef good1ab fid fi1e10 fseq q exdte 78235 

The tape must be pOSitioned correctly (at the label to be checked or at 
the place where the label is to be written), before you issue the macro. 
TAPECTL may be used to position the tape. TAPESL reads or writes only 
one tape record unless you specify SPACE=YES for input. Then it spaces 
the tape to beyond the tape mark that ends the label file. TAPESL reads 
and checks a tape VOL1 label provided the tape is positioned at load 
point and the user,has specified a volid in his LABELDEF command. 

TAPE LABEL PROCESSING BY CMS COMMANDS 

There are three types of eMS commands that do some type of tape label 
processing. They are: 

• TAPEMAC and TAPPDS commands 
• TAPE command 
• MOVEFILE command 

136 IBM VM/SP CMS User's Guide 



~ 
!I 

~ TAPEMAC and TAPPDS have operands where you can indicate the type of 
label processing you want. The tape must be positioned properly (at the 
data file or label file you want) before you issue the command. The 
TAPE command may be used for positioning. A separate LABELDEF command 
is required for these commands if IBM standard label checking is 
desired. If SL label type is specified without a labdefid, standard 
header labels are displayed on the terminal but not checked by the CMS 
label processing routines. The command: 

tape mac macfi1e SL (tap2 

displays any standard labels that exist on your terminal while the 
series of commande: 

labeldef maclab fid macro volseq 2 crdte 77102 

tapemac mac file sl maclab (tap2 

invokes the CMS tape label precessing routines. These routines check to 
see that your tape has a HDR1 label that has a file identifier of macro, 
a volume sequence number 2, and a creation date of 77102. VOLl labels 
are not checked during label processing by TAPEMAC and TAPPDS unless the 
tape is positioned at load point and you have specified a volid on your 
LABELDEF command. The DVOLl function of the TAPE command can be used 
for volume verification before positioning the tape if the user does not 
want to start at the fir~t file. These commande process only HDR1 
labels; they skip HDR2, UHL, and all trailer labels without processing 
them. 

~, To process nonstandard tape labels with TAPEMAC and TAPPDS, you use 
the same interface described in the section "NSL Processing under OS 
Simulation." The only difference is that instead of putting the CMSCB 
and DCB addresses in the parameter list, the ID parameter you placed in 
the command line is passed to your NSL routine. 

tappds pdsfi1e cmsutl * nsl superck id XYZ12l45 

passes the EBCDIC identifier XYZ12345 to your nonstandard label checking 
routine called SUPERCK. This identifier may be up to eight characters 
long and is left justified in bytes 8-15 of the parameter list. You can 
use the identifier to inform your NSL routine of what file you are 
processing. 

Tap~ ~g~~gnd DVQ~l gnd WVQl1 FUDcti~D§ 

Use the DVOLl function of the CMSTAPE command to display the VaLl label 
of a tape on your terminal. You may use this command to ensure the 
system operator has mounted the correct tape before you begin processing 
the tape. If the tape does not have a VOLl label and you issue the 
CMSTAPE command, you are informed that the VOLl label is missing. Do 
not use TAPE DVOLl if you have a blank tape. If TAPE DVOLl is issued 
and a blank tape is used, CMS will search the entire tape to find the 
label record; since the tape is void of any records, the tape will run 
off the end of the reel. 

Use the WVOL1 function on the TAPE command to write a VOL' label on a 
tape. You can specify a one- to six-character volume serial number 
~olid) through this comman~ ~rid a1so a one- to eight-character owner 

\ field. 
1 

Section 7. Using Real Printers, Punches, Readers, and Tapes 137 



You can use the MOVEFILE command to move labelled tape files if these 
files are defined as labelled by the FILEDEF ~ommand. The MOVEFILE 
command supports only SL, NSL, BLP, NL, and LABOFF processing. SUL 
files are processed as SL files and no user exits are taken. 

You can also use the MOVEFILE command to display tape labels on your 
terminal if you want to see what these labels look like. The following 
sequence displays the VOLl and first HDRl labels on tap4 if the tape has 
standard labels: 

filedef in tap4 

filedef out term 

tape rew (tap4 

move in out 

lABELDEF COMMAND 

The LABELDEF command is used to specify the exact data you want written 
in certain fields of a HDRl or EOFl tape label for output. It can also 
be used to specify fields in the same labels that you want checked on 
input. If you do not explicitly specify a field fer output, a default 
value is used. If yeu do not explicitly specify a field for input, the 
field is not checked. For example: 

labeldef abc fid master volseg 1 exdte 77364 

used for input tells CMS to check the file identifier volume sequence 
number and expiration date in an input HDR1 label. No other ~ields in 
the label are checked. The same specification used for output causes 
the HDR1 label to have MASTER written in the file identifier field, 1 
written in the volume sequence number field and 77364 written in the 
expiration date field. Default values are written in the HDR1 fields 
that are not specified. 

Default values for HDR1 labels are as follows: 

FID 

VOLID 

VOLSEQ 

FSEQ 

GENN 

GENV 

CRDTE 

EXDTE 

SEC 

for OS simulation, the DDNAME (Specified on FILEDEF) 
for CMS/DOS, the DTFMT symbolic name 
for CMS TAPESL macro, the LABELDEF id (LABID=labeldefid) 
parameter 

CMS001 

0001 

0001 

blanks 

blanks 

current date that label is written 

current date that label is written 

o 

138 IBMVM/SP eMS User's Guide 



The filename on the LABELDEF command is used to connect your label 
def ini tion to a file defined elsewhere. This is why you specify 
different data for file name depending on the type of tape label 
processing you are doing. Filename is DDNAME for OS simulation, DTFKT 
symbolic name for CKS/DOS and labeldefid for TAPESL. 

The LABELDEF command takes the place of the VSE/AF TLBL statement for 
eMS/DOS. 

END-OF-VOLUME AND END-OF-TAPE PROCESSING 

There is no true end-of-volume support available with CKS tape label 
processing. FEOV instructions are not supported under OS simulation and 
there is no automatic volume switching. Kultivolume Iiles are not 
supported. The following features exist to aid the IBK standard label 
tape user when he reaches end-of-tape on output or an EOV label in 
input. These are the only ways in which CMS supports EOV processing. 

• 

• 

Input - When a CLOSE macro is issued or when a TAPESL macro processes 
an input trailer label, a message is issued if the label read is an 
EOVl label instead of an EOFl label. The EOVl label is then 
processed exactly as if it were an EOFl label. You must request that 
the operator mount a new tape and reopen a file if you want to 
continue processing the data. 

output - Under CKS/DOS and as simulation processing only (that is, 
the processing does not occur for TAPESL or CKS commands), the 
following limited EOV processing occurs: 

a. If you specify that you have an IBK standard label tape file, a 
single tape mark is written to end your data. This occurs when 
end-of-tape is sensed on output while you are using regular access 
method macros to write the file. The tape mark is written 
immediately after the record that caused the EOT to be sensed. 
Following this tape mark, CMS writes an EOVl label and a single 
tape mark. It then rewinds and unloads your tape. A message is 
issued telling you that an ROVl label was written. If you 
specified nDnstandard labels instead of writing the EOVl label, an 
exit to the nonstandard label routine you specified for the file 
is taken after the end-of-data tape mark is written. For BLP or 
NL files, only the ending tape mark is written. 

b. CMS/DOS jobs are always canceled after an EOT condition is 
detected on output. In order to continue processing the tape, you 
must have a new tape mounted, run the same job over again or run a 
new job and reopen the file. 

c. OS simulation programs that use QSAM or contain a BS!M CHECK macro 
cause an abend when EOT is detected, with code 001 after an error 
message. A BSAM program that does not use a CHECK macro has no 
way of detecting the EOT condition. Such a program continues to 
try to write on the tape after it is rewound and unloaded. The 
program enters a wait state rather than continue running to a 
normal or abnormal completion. Therefore, you should always 
include a BSAM CHECK macro after the WRITE if you expect your 
program to reach end-of-tape. OS simulation users are also 
responsible for completing processing on a new tape with the same 
or a new job after an EaT is detected. 

d. If you are a CMS/DOS user you always get the automatic output 
end-of-tape processing described above. However, if you are an OS 
simulation user and do not want CMS to do any special e~d-of-tape 

Section 7. Using ~eal Printers, Punches, Readers, and Tapes 139 



processing, you can suppress it by using the NOEOV option on your 
FILEDEP command for the file. If you enter: 

filedef ddl tap3 sl (noeov 

no tape marks or EOVl labels are written when EOT is sensed on 
output. Your tape is not rewound and unloaded. However, the 
program causes an abend if you use QSAM or include a ESA! CHECK 
macro after your WRITE macro. Without a CHECK macro, a ESA! 
program runs the tape off the reel when EOT is sensed and NOEOV is 
specified. 

ERROR PROCESSING 

When the standard label processing routines find errors or discrepancies 
on tape labels, they send a message to the CMS terminal user who is 
processing the tape. After an error message is issued, the user can ask 
the system operator to mount a new tape, use the CMS TAPE command to 
position the tape at a different file, or respecify his label 
description information. If you are a terminal user and want another 
tape mounted, you send the system operator a message telling him what 
tape to mount. 

Some errors cause program termination and others do not. The effect 
of tape label processing errors depends on both the type of error and 
the type of program (that is, CMS/DOS, OS simulation, CMS command, etc.) 
that invokes the label processing. The following are general guidelines 
on error handling: 

• Messages identifying the error are always issued. 

• Under OS simulation, tape label errors result in open errors.. These 
errors prevent a tape file from being opened. They do not 
necessarily end a job. Errors in trailer labels (except block count 
errors) have no effect on processing. 

• In CMS/DOS, the terminal user is generally given two choices: ignore 
the error or cancel the job. The new-tape option is not allowed. 

• The CMS commands TAPEMAC and TAPPDS terminates with a non-zero return 
code after a tape label error. 

• Certain error situations such as unexpired files and block count 
errors for OS simulation allow the user to ignore the error and do 
not cause open errors. In these cases, the user enters his decision 
at the terminal after he is nctified of the error. 

• Errors that occur during the loading of an NSt routine cause an abend 
(code 155 or 15A). A block count abend gives an error code of 500_ 

In all cases, after an error has been detected and diagnosed, you 
must decide what to do. You may wish to have a new tape mounted and 
then re-execute the cemmand or you may want to respecify your LABELDEF 
description if it was incorrect. You can also use the TAPE command to 
space the tape to a new file if it was positioned incorrectly. 

140 IBM VM/SP CMS User's Guide 



; 

THE MOVEFILE COMMAND 

The MOVEFILE command can copy sequential tape files into disk files, or 
sequential disk files onto tape. It can be particularly useful when you 
need to copy a file from a tape and you do not know the format of the 
tape. 

To use the MOVEFILE command, you must first define the input and 
output files using the FILEDEF command. For example, to copy a file from 
a tape attached to your virtual machine at virtual address 181 to a eMS 
disk, you would enter: 

filedef input tap1 
filedef output disk tape file a 
movefile input output 

This sequence of commands creates a file named TAPE FILE A1. Then use 
CMS commands to manipulate and examine the contents of the file. 

MOVEFILE can also be used to display tape labels and/or move labelled 
tape files. See "Tape Labels in CMS" for details. 

TAPES CREATED BY OS UTILITY PROGRAMS 

The CMS command TAPPDS can read OS partitioned and sequential data sets 
from tapes created by the IEBPTPCH, IEBUPDTE, and IEHMOVE utility 
programs. When you use the TAPPDS command, the OS data set is copied 
into a CMS disk file, or in the case of partitioned data sets, into 
multiple disk files. 

l~]R~~£]: Sequential or partitioned data sets created by IEBPTPCH must 
be unblocked for CMS to read them. If you have a tape created by this 
utility, each member (if the data set is partitioned) is preceded with a 
card that contains "MEMBER=membername". If you read this tape with the 
command: 

tappds * 
then, CMS creates a disk file from each member, using the membername for 
the ~ilename and assigning a filetype of CMSUT1. If you want to assign a 
particular filetype, for example TEST, you could enter the command as 
follows: 

tappds * test 

If the file you are reading is a sequential data set, you should use the 
NOPDS option of the TAPPDS command: 

tappds test file (nopds 

The above command reads a sequential data set and assigns it a file 
identifier of TEST FILE. If you do not specify a filename or filetype, 
the default file identifier is TAPPDS CMSUT1. 

IE]QPD~]: Tapes in control file format created by the IEBUPDTE utility 
program can be read by CMS. Data sets may be blocked or unblocked, and 
may be either sequential or partitioned~ Since files created by 
IEBUPDTE contain ./ADD control cards to signal the addition of members 
to partitioned data sets, you must use the COLl option of the TAPPDS 
command. Also, you must indi?ate to CMS that the tape was created by 

Section 7. Using Real Printers, Punches, Readers, and Tapes 141 



IEBUPDTE. For example, to read a partitioned data set, you would enter 
the command: 

tappds * test (update coIl 

The CMS disk files created are always in unblocked, 80-~haracter format. 

IE~~OV]: OS unloaded partitioned data sets on tapes created by the 
IEHMOVE utility program can be read either by the TAPPDS command or by 
the TAPEMAC command. The TAPPDS command creates an individual CMS file 
from each member of the PDS. 

If the PDS is a macro library, you can use the TAPBMAC command to 
copy it into a CMS KACLIB. A MACLIB, a CMS macro library, has a special 
format and can usually be created only by using the CMS MACLIB command. 
If you use the TAPPDS command, you have to use the KACLIB command to 
create the macro library from individual files containing macro 
definitions. 

SPECIFYING SPECIAL TAPE HANDLING OPTIONS 

For most of the tape handling that you do in CMS, you do not have to be 
concerned with the density or recording format of the magnetic tapes 
that you use. There are, however, some instances when it may be 
important and there are command options that you can use with the TAPE 
command MODESET operand and with ASSGN and FILEDEF command options. 

The specific situations and the command options you should use are 
listed below. 

• If you are reading or writing a 1-track tape and the density of the 
tape is either 200 or 556 bpi, you must specify DEN 200 or DEN 556. 

• If you are reading or writing a 1-track tape with a density of 800 
bpi, you must specify 1TRACK. 

• If you are reading or writing a 1-track tape without using the data 
convert feature, you must use the TRTCH option. 

• If you are writing a tape using a 9-track dual density tape drive 
with the 9TRACK option specified, and you want the density to be 800 
(on an 800/1600 drive) or 6250 (on a 1600/6250 drive), then you must 
specify DEN 800 or DEN 6250. 

• If you are writing a tape, the default tape block size is 4096 bytes 
plus a 5-byte header. This fermat is not compatible with previous 
VM/370 systems. Therefore, if you want to write a tape compatible 
with previous VK/310 systems, you must use the 'BLK 800' option of 
the TAPE command. The TAPE command is described in detail in VK/SP 
~!!~ ~Q.!ma1!g .§nd Ka.£l:2 Ref.!~.£~. 

Using Remote Spooling Communications 

You can send printer, punch, or reader spool files to users at remote 
locations. To send a spool file, you must know the userid of the 
virtual machine at your location that is running RSCS and the location 
identification (locid) of the remote location. If you are sending a 
sDool file to a Darticular user at the remote location. vou should also 
know that userid·of the user. ~ • 

142 IBM VK/SP CKS User's Guide 



The CP commands that you can use to transmit files across the network 
are TAG and SPOOL. The TAG command allows you to specify the-locid and 
userid that are to receive a spool file, or, in the case of tagging a 
printer or punch, of any spool files produced by that device. With the 
SPOOL command, you spool your virtual device to the RSCS virtual 
machine. You can also use the TRANSFER command to transfer files from 
your own virtual card reader. 

Iot~: The VK/SP component Remote Spooling Communications Subsystem 
(RSCS) is technically at a Release 6 level of the product. It does not 
contain a new function supportive of the new CP and CMS function. 
However, the R emote Spooling Commanica tion s Subsystem (RSCS) Net working, 
Frogram Number 51Q8-XP1 is available and has been technically advanced 
to function supportively with VM/SP. 

Section 1. Using Real printers, Punches, Readers, and Tapes 143 



144 IBM VM/SP eMS User's Guide 



Part 2. Program Development Using eMS 

You can use CMS to write, develop, update, and test: 

• as programs to execute either in the CMS environment (using as 
simulation) or in an as virtual machine 

• DOS programs to execute in either the CMS/DOS environment or in a DOS 
virtual machine 

• CMS programs to execute in the CMS environment 

The as and DOS simulation capabilities of CMS allow you to develop as 
and DOS programs interactively in a time-sharing environment. When your 
programs are thoroughly tested, you can execute them in an as or DOS 
virtual machine under the control of VM/SP. 

"Section 8. Developing as Programs Under CMS" is fer programmers who 
use as. It describes procedures and techniques for using CMS commands 
that simulate as functions. 

"Section 9. Developing DOS programs Under CMS" is for programmers who 
use DOS. It describes procedures and techniques for using CMS/DOS 
commands to simulate VSE/AF functions. 

If you use VSAM and access method services in either a DOS or an as 
environment, "Section '0. Using Access Method Services and VSAM in CftS 
and eMS/DOS" provides usage information for you. It describes how to 
use eMS to manipulate VSAM disks and data sets. 

You can use the interactive facilities of CP and CMS to test and 
debug programs directly at your terminal. "section 11. How VM/SP Can 
Help You Debug Your Programs" shows examples of commands and debugging 
techniques. 

The eMS batch facility is a CMS 
to another machine for execution. 
to a eMS batch virtual machine is 
eMS Batch Facility." 

feature that allows you to send jobs 
How to prepare and send job streams 
described in "Section 12. Using the 

As you learn to use eMS, you may want to write programs for CMS 
applications. "Section 13. programming for the CMS Environment" 
contains information for assembler language programmers: linkage 
conventions, programming notes, and macro instructions you can use in 
eMS programs. 

Part 2. Program Development Using CMS 145 



146 IBM VM/SP eMS User's Guide 



Section 8. Developing OS Programs under eMS 

eMS simulates many of the functions of the Operating System (OS), 
allowing you tc compile, execute and debug as programs interactively. 
For the most part, you do not need to be concerned with the eMS as 
simulation routines; they are built into the CMS system. Before you can 
compile and execute as programs in CMS, however, you must be acquainted 
with the following: 

- as macros that CMS can simulate 
- Using as data sets in CMS 
- How to use the FILEDEF command 
- Creating CMS files from as data sets 
- Using CMS and as macro libraries 
- Assembling program in eMS 
- Executing programs 

These topics are discussed below. Additional information for as VSAM 
users is in "section 10. Using Access Method Services and VSAM Under 
CMS and eMS/DOS". 

For a practice terminal session using the commands and techniques 
presented in Section 8, see "Appendix D" Sample Terminal Sessions". 

The CMS system uses many as terms, but there are a number of as 
functions that CMS performs somewhat differently. To help you become 
familiar with some of the equivalents (where they do exist) for as terms 
and functions, see Figure 13. It lists some commonly-used as terms and 
discusses how CMS handles the functions they imply. 

Section 8. Developing as Programs under eMS 147 



r 
OS Term/Function I 

---I 
Cataloged procedure I 

I 
I 
I 
I 

Data set I 

Data Definition (DO) 
card 

Data set Control 
Block (0 SCB) 

EXEC card 

Job Control Language 
(,lCL) 

Link-editing 

Load module 

Object module 

?artitioned data 
set 

SETPCAT, JOECAT 

STEPLlB, JOBLlB 

utility program 

Volume Table of 
Contents (VTOC) 

I 
I 
I 
I 

------, 
CMS Egui valen t 

EXEC files can execute command sequences . 
similar to cataloged procedures, and provide 
for conditional execution based on return 
codes from previous steps. 

Data sets are called files in CMS; CMS files 
are always sequential but CMS simUlates os 
partitioned data sets. CMS reads and writes 
VSAM data sets. 

The FILEDEF command allows you to perform the 
functions of the DO statement to specify 
device types and output file dispositions. 

Information about a CMS disk file is contained 
in a file status table (FST). 

To execute a program in CMS you specify only 
the name of the program if it is an EXEC, 
MODULE file, or CMS command. To execute TEXT 
files, use the LOAD and START commands. 

CMS and user-written commands perform the 
functions of JCL. 

The CMS LKED command creates LOADLIB libraries 
from CMS TEXT files and/or os object modules. 
The CMS LOAD command loads TEXT files into 
virtual storage, and resolves external 
references; the GENMOD command creates 
absolute nonrelocatable modules. 

Load modules are members of CMS LOADLIB 
libraries or CMS MODULE files. LOADLIB members 
are loaded, relocated, and executed by the 
OSRUN command. Also, LOAtLIB members are 
referenced by the LINK, LOAD, ATTACH, and 
XCTL macros. 

Language compiler output is placed in CMS 
files with a filetype of TEXT. 

CMS MACLIBs, TXTLIBs, and LOADLIBs are the 
only CMS files that resemble partitioned 
data sets. 

VSAM catalogs can be assigned for jobs or job 
steps in CMS by using the special ddnames 
IJSYSCT and lJSYSUC when identifying catalogs. 

The GLOBAL command establishes macro, text, 
and LOADLIB libraries; you can indirectly 
provide job libraries by accessing and 
releasing CMS disks that contain the files and 
programs you need. 

Functions similar to those performed by the os 
utility programs are provided by CMS commands. 

The list of files on a CMS disk is contained 
in a file directory for SaO-byte format CMS 
disks, or in the file directory for CMS disks 
with a 1024-, 2048-, or 4096-byte block format. I 

..J 

Figure 13. OS Terms and CMS Equivalents 

148 IBM VM/SP CMS User's Guide 



Using OS Data Sets in eMS 

You can have as disks defined in your virtual machine configuration; 
they may be either entire disks or minidisks: their size and extent 
depends on their VM/SP directory entries. You can use partitioned and 
sequential data sets on as disks in CMS. If you want, you can create 
CMS files from your as data sets. If you have da ta sets on as disks, 
you can read them from programs you execute in CMS, but you cannot 
update them. The CMS commands that recognize as data sets on as disks 
are listed in Figure 14. 

r-
, Command , Operation 

----I 
ACCESS , Makes the as disk containing the data set available 

I to your CMS virtual machine. , 
ASSEMBLE Assembles an as source prog~am under CMS. 

DDR Copies an entire as disk to tape. 

DLBL Defines as data sets for use with access method services 
and VSAM files for program input/output. 

FILEDEF Defines the as data set for use under CMS by associating 
an as ddname with an as data set name. Once defined, 

GLOBAL 

the data set can be used by an as program running under 
CMS and can be manipulated by the other commands that 
support as functions. 

Makes macro libraries or LOADLIB libraries 
available to CMS. You can prepare an as library 
for reference by the GLOBAL command by issuing a FILEDEF 
command for the data set and giving the data set the 
appropriate filetype of MACLIB or LOADLIB. 

LKED Creates CMS LOADLIB libraries from CMS TEXT files and 
or as object modules. 

LISTDS Lists information describing as data sets residing ,on 
as disks. 

MOVEFILE Moves data records from one device to another device. Each 
device is specified by a ddname, which must have been 
defined via FILEDEF. You can use the MOVEFILE command to 
create CMS files from as data sets. 

OSRUN Loads, relocates, and executes a load module either from 
a CMS LOADLIB or from an as module library on an as 
formatted disk. 

QUERY Lists (1) the files that have been defined with the 
FILEDEF and DLBL commands (QUERY FILEDEF, QUERY DLBL), or 
(2) the status of as disks attached to your virtual 
machine (QUERY DISK, QUERY SEARCH). 

RELEASE Releases an as disk you have accessed (via ACCESS) from 
your CMS virtual machine. 

STATE Verifies the existence of an as data set on a disk. 
Before STATE can verify the existence of the data set, 
you must have defined it (via FILEDEF). 

Figure 14. CMS Commands That Recognize as Data Sets and as Disks 

Section 8. Developing as Programs under CMS 149 



ACCESS METHODS SUPPORTED BY CMS 

OS access methods are supported, to varying extents, by CMS. Under CMS. 
you can execute programs that use the as data management macros that are 
supplied for the access methods listed below • 

.---
I CMS Support for as CMS Support for Real 
I Simulated Data Sets as Data Sets on as 
I Access Method on CMS Disks Disks 
I 
I EDAM Yes No , BPAM Yes Yes (read only) , BSAM Yes Yes (read only) 
I QSAM Yes Yes (read only) 
I VSAK No Yes 

]PA~, ~~j~, ~ng ~!~: You can execute programs in CMS that read records 
from as data sets using the BPAM, BSAM, or QSAM access methods. You 
cannot, however, write or update OS data sets that reside on as disks. 

BDAj!: CM S can neither read nor write OS data' sets on as disks using the 
EDAM access method. 

!~!H !ile§: CMS can read and write VSAM files 
information on using VSAM under CMS, see "Section 
Method Services and VSAM Under CMS and CMS/DOS." 

on as disks. 
10. Using 

For 
Access 

If you want to test programs in CMS that create or modify as data sets, 
you can write "as simulated data sets." These are CMS files that are 
maintained on CMS disks, but in as format rather than in CMS format. 
Since they are CMS files, you can edit, rename, copy, or manipulate them 
just as you would any other CMS file. Since they are in OS-simulated 
format, files with variable-blocked records may contain block and record 
descriptor words so that the access methods can manipulate them 
properly. 

The files that you create from as programs do not necessarily have to 
be as simulated data sets. You can create CMS files. The format of an 
output file depends on how yeu specify the filemode number when you 
issue the FILEDEF command to identify the file to CMS. If you specify 
the filemode number as 4, CMS creates a file that is in as simulated 
data set format on a CMS disk. 

CMS can read and write as simulated data sets using the BDAM, BPAM, 
BSAM, and QSAM access methods. 

When an input or output error occurs, do not depend on as sense 
bytes. An error code is supplied by CMS in the ECB in place of the 
sense bytes. These error codes differ for various types of devices and 
their meaning can be found in the IB1! !~2g 2~st~m A§§~g~ ~ ~des. 
under DMSxxx120S. 

150 IBM VM/SP CMS User's Guide 



The following restrictions apply when you read OS data sets from OS 
disks under CMS: 

• Read-password-protected data sets are not read. 

• RACF password protection is ignored. 

• BDAM and ISAM data sets are not read. 

• Multivolume data sets are read as single-volume data sets. 
End-of-volume is treated as end-of-file and there is no end-of-volume 
switching. 

• Keys in data sets with keys are ignored; only the data is read. 

• User labels in user-labeled data sets are bypassed. See "Tape Labels 
in CMS" for details. 

• Results may be unpredictable if two DCBs access the same data set at 
the same time. 

Using the FILEDEF Command 

Whenever you execute an OS program under CMS that has 
output files, or you need to read an OS data set onto a 
must first identify the files to CMS with the FILEDEF 
FILEDEF command in CMS performs the same functions 
definition (DD) card in OS job control language (JCL): it 
input and output files. 

When you enter the FILEDEF command, you specify: 

• The ddname 

• The device type 

• A file identification, if the device type is DISK 

inp ut and/or 
CMS disk, you 
command. The 
as the data 
describes the 

• Type of label on your tape file, if taFe label processing is 
specified 

• options (if necessary) 

Some guidelines for entering these specifications fellow. 

SPECIFYING THE DDNAME 

If the FILEDEF command is issued for a program input or output file, 
then the ddname must be the same as the ddname or file name specified 
for the file in the source program. For example, you have an assembler 
language source program that contains the line: 

INFILE DCB DDNAME=INPUTDD,MACRF=GL,DSORG=PS,RECFM=F,LRECL=80 

Section 8. Developing OS Programs under CMS 15. 



For a particular execution of this program, you want to use as your 
input file a CMS file on your A-disk that is named MYINPUT FILE, then, 
you must issue a FILEDEF for this file before executing the program: 

filedef inputdd disk myinput file at 

If the input file you want to use is on an OS disk accessed as your 
C-disk, and it has a data set name of PAYROLL.RECORDS.AUGUST, then your 
FILEDEF command might be: 

filedef inputdd cl dsn payroll records august 

SPECIFYING THE DEVICE TYPE 

For input files, the device type you enter on the FILEDEF command 
indicates the dEvice from which you want records read. It can be DISK, 
TERMINAL, READER (for input from real cards or virtual cards), or TAPn 
(for tape). Using the above example, if your input file is to be read 
from your virtual card reader, the FILEDEF command might be as follows: 

filedef inputdd reader 

Or, if you were reading from a tape attached to your virtual machine at 
virtual address 181 (TAP1): 

filedef inputdd tap1 

For output files, the device you specify can be DISK, PRINTER, PUNCH, 
TAPn (tape), or TERMINAL. 

If you do not want any real I/O performed during the execution of a 
program for a disk input or output file, you can specify the devicE type 
as DUMMY: 

filedef inputdd dummy 

ENTERING FILE IDENTIFICATIONS 

If you are using a CMS disk file for your input or output, you specify: 

filedef ddname disk filename filetype filemode 

Note that if * is used for the filemode of an output file, unpredictable 
results may occur. 

The filemode field is optional; if you do not specify it, your A-disk is 
assumed. If you want an output file to be constructed in OS simulated 
data set format, you must specify the filemode number as 4. For 
example, a program contains a DCB for an output file with a ddname of 
OUTPUTDD, and you are using it to create a CMS file named DAILY OUTPUT 
on your B-disk: 

filedef outputdd disk daily output b4 

If your input file is an OS data set on an OS disk, you can identify 
it in several ways: 

152 IBM VM/SP CMS User's Guide 



• If the data set name has only two 
HEALTH. RECORDS, you can specify: 

filedef inputdd disk health records bl 

qualifiers, for example 

• If it has more than two qualifiers, you can use the DSN keyword and 
enter: 

filedef inputdd bl dsn health records august 1914 

Or you can request a prompt for a complete data set name: 

filedef inputdd bl dsn ? 
ENTER DATA SET NAME: 
health.records.august.1914 

Bot~: When you enter a data set name using the DSN keyword, either 
with or without a ~equest for prompting, you should omit the device 
type specification of DISK, unless you want to assign a CMS file 
identifier, as in the example below. 

• You can also relate an OS data set name to a CMS file identifier: 

filedef inputdd disk ossim file cl dsn monthly records 

Then you can refer to the OS data set MONTHLY. RECORDS by using the 
CMS file identifier, OSSIM FILE: 

state ossim file c 

When you do not issue a FILEDEF command for a program input or output 
file, or if you enter only the ddname and device type on the FILEDEF 
command, such as: 

filedef oscar disk 

then CMS issues a default file definition, as follows: 

FILEDEF ddname DISK FILE ddname A1 

where ddname is the ddname you assigned in the DDNAME operand of the DCB 
macro in your program or on the FILEDEF command. For example, if you 
assign a ddname of OSCAR to an output file and do not issue a FILEDEP 
command before you execute the program, then the CMS file FILE OSCAR A1 
is created when you execute the program. 

SPECIFYING CMS TAPE LABEL PROCESSING 

You can use the label operands on the FILEDEF command to indicate that 
CMS tape label processing is not desired (this is the default). If CMS 
tape label processing is desired you can use the label operands on the 
FILEDEF command to indicate the types of labels on your tape. See "Tape 
Labels in CMS" for a description of CMS tape label processing. 

SPECIFYING OPTIONS 

The FILEDEF command has many options; those mentioned below are a 
sampling only. For complete descriptions of all the options of the 
FILEDEF command, see the VM/~g f~~ ~2~gnd 2nd ~~2neference. 

Section 8. Developing OS Programs under CMS 153 



BLO~Kr 1RECL r E~~FMr RSORQ: If you are using the FILEDEF command to 
relate a data control block (DeB) in a program to an input or output 
filer you may need to supply some of the file format information, such 
as the record length and block sizer on the FILEDEF command line. For 
example r if you have coded a DCB macro for an output file as follows: 

OUT FILE DeB DDNAME=OUTrMACRF=PM,DSORG=PS 

then r when you are issuing a FILEDEF for this ddname, you must specify 
the format of the file. To create an output file on disk, blocked in os 
simulated data set format, you could issue: 

filedef out disk myoutput file a4 (recfm fb lrecl 80 block 1600 

To punch the output file onto cards, you would issue: 

filedef out punch (lrecl 80 recfm f 

You must supply file format informa tion on the FILEDEF command line 
whenever it is not supplied on the DeB macro, except for existing disk 
files. 

~~E~: Usually, when you execute one of the language processors, all 
existing file definitions are cleared. If the development of a program 
requires you to recompile and re-execute it frequently, you might want 
to use the PERM option when you issue file definitions for your input 
and output files. For example: 

cp spool punch to * 
filedef indd disk test file al (lrecl 80 perm 
filedef outdd punch (lrecl 80 perm 

In this example r since you spooled your virtual punch to your own 
virtual card reader, output files are placed in your virtual reader. You 
can either read or delete them. 

All file definitions issued with the PERM option stay in effect until 
you log off, specifically clear those definitions, or redefine them: 

filedef indd clear 
filedef outdd tap1 (lrecl 80 

In the above example r the definition for INDD is cleared; OUTDD is 
redefined as a tape file. 

When you issue the command: 

filedef * clear 

all file definitions are cleared, except those you enter with the PERK 
option. 

When a program abends, or when you issue the HX Immediate command, 
all file definitions are cleared, including those entered with the PERK 
opt ion. 

~I~g ~Q~: When you issue a FILEDEF command for an output file and assign 
it a CMS file identifier that is identical to that of an existing CMS 
filer then when anything is written to that ddname the existing file is 
replaced by the new output file. If you want, instead, to have new 
records added to the bottom of the existing file, you can use the DISP 
MOD option: 

filedef outdd disk new update a1 (disp mod 

154 IBM VM/SP eMS User's Guide 



MEM],Ej: If the file you want to read is a member of an OS partitioned 
data set (or a CMS MACLIB or TXTLIB), you can use the MEMBER option to 
specify the membername; for example: 

filedef test c dsn sys1 maclib (member test 

defines the member TEST from the as macro library SYS1.MACLIB. 

AUX~jQ£: This option allows an auxiliary processing routine to receive 
control during I/O operating. It is valid only when FILEDEF is executed 
by an internal program call and cannot be entered on a terminal command. 
For details on how to use this option of the FILEtEF command, SEe the 
VM/~.R ~ystg ~~~.Ml.!!!~l:!§ GuiQ~. 

Creating CMS Files from OS Data Sets 

If you have data sets on OS disks, or on tapes or cards, you can copy 
them into eMS files so that you can edit, modify, or manipulate them 
with CMS commands. The eMS MOVEFILE command copies OS (or eMS) files 
from one device to another. You can move data sets from any valid input 
device to any valid output device. 

Before using the MOVEFILE command, you must define the input and 
output data sets or files and assign them ddnames using the FILEDEF 
command. If you use the ddnames INMOVE and OUTMOVE, then you do not 
need to specify the ddnames when you issue the MOVEFILE command. For 
example, the following sequence of commands copies a eMS disk file into 
your virtual card punch: 

filedef inmove disk diskin file a1 
filedef outmove punch 
movefile 

The result of these commands is effectively the same as if you had 
issued the command: 

punch diskin file (noheader 

The example does, however, illustrate the basic relationship between the 
FILEDEF and MOVEFILE commands. In addition to the MOVEFILE command, if 
the OS input data set is on tape or cards, you can use the TAPPDS or 
READCARD command to create CMS files. These are also discussed below. 

Note: The MOVEFILE command does not support data containing spanned 
records. 

cogI1B§ SE2QENI1AL DATA SETS FROM DISK: The MOVEFILE command copies a 
sequential OS disk data set-from-a--read-only OS disk into an integral 
CMS file on a eMS read/write disk. You use FILEDEF commands to identify 
the input file disk mode and data set name: 

filedef inmove c1 dsn sa+es manual 

the CMS output file's disk location and fileid: 

filedef outmove disk sales manual a1 

and then you issue the MOVEFILE command: 

movefile 

Section 8. Developing OS Programs under eMS 155 



£QRIINQ PARTIT1.Qll~ 12!ll SET~ FRQ!1 DISK: The MOVEFILE command can copy 
partitioned data sets (PDS) into CMS disk files, and create separate CMS 
files for each member of the data set. You can have the entire data set 
copied, or you can copy only a selected member. For example, if you 

. have a partitioned data set named ASSEMBLE. SOURCE whose members are 
individual assembler language source files, your input file definition 
might be: 

filedef inmove ct dsn assemble source 

To create individual CMS ASSEMBLE files, you would issue the output file 
definition as: 

filedef outmove disk qprint assemble at 

Then use the PDS option of the MOVEFILE command: 

movefile (pds 

When the CMS files are created, the filetype on the output file 
definition is used for the filetype and the member names are used 
instead of the CMS filename you specified. 

If you want to copy only a single member, you can use the MEMBER 
option of the FILEDEF command: 

filedef inmove disk assemble source c (member gprint 

and omit the PDS option on the MOVEFILE command: 

movefile 

Figure 15 summarizes the various ways that you can create CMS files 
from as data sets. 

Using eMS Libraries 

eMS provides three types of libraries to aid in as program development: 

• Macro libraries contain macro definitions and/or copy files 

• Text, or program libraries contain relocatable object programs 
(compiler output) 

• LOADLIB libraries contain link edit files (lead modules) 

These CMS libraries are like as partitioned data sets; each has a 
directory and members. Since they are not like other CMS files, you 
create, update, and use them differently than you do other CMS files. 
Although these library files are similar in function to as partitioned 
data sets~ as macros should not be used to update them. Macro libraries 
are discussed below; text libraries are discussed under "TEXT Libraries 
(TXTLIBs)", and LOADLIB librari~s are discussed under "Executing Members 
of as Modules Libraries or CMS LOADLIBS". 

A CMS macro litrary has a filetype of MACLIB. You can create a MACLIB 
from files with filetypes of MACRO or COPY. A MACRO file may contain 
macro definitions; COpy files contain predefined source statements. 

156 IBM VM/SP CMS User's Guide 



r , 
Input File: An OS sequential data set named: COMPUTE.TEST.RECORDS 

, 

Source 

Disk: 
OS RIO 
C-disk 

Tape: 
1 A 1 

Cards 

CMS Ccmmand Examples 

filedef indd cl dsn compute test records 
filedef outdd disk compute records al 
movefile indd outdd 

filedef inmove tap 1 (lrecl 80 
filedef outmove disk test records al 
movefile 

tappds newtest compute (nopds 

filedef cardin reader 
filedef diskout disk compute cards al 
movefile cardin diskout 

readcard compute test 

, Input file: OS partitioned data set named: TEST.CASES 
, Members named: SIMPLE, COMPLEX, MIXED , , , 
, 
, 
, , , , , 
I , 
I , 
L 

Source 

Disk: 
OS RIO 
C-disk 

Tape: 
lA2 

CMS Ccmmand Examples 

filedef infile disk test cases cl 
filedef outfile disk new testcase al 
mov~file infile outfile (pds 

filedef in cl dsn teEt cases (member simple 
filedef run disk 
movefile in run 

tapfds * testrun (tap2 

Figure 15. Creating CMS Files from OS Data Sets 

CMS Output File 

COMPUTE RECORDS Al 

TEST FECORDS Al 

NEWTES~ COMPUTE Al 

COMPUTE CARDS Al 

COMPUTE TEST Al 

CMS Output F i Ie (s) 

SIMPLE TESTCASE Al 
COMPLEX TESTCASE Al 
MIXED ~E STC ASE 

FILE RUN Al 

SIMPLE TES~RUN Al 
COMPLEX TES~RUN Al 
MIXED ~ESTRUN Al 

When you want to assemble or compile a source program that uses macro 
or copy definitions, you must ensure that the library containing the 
code is identified before you invoke the compiler. Otherwise, the 
library is not searched. You identify libraries to be searched using the 
GLOBAL command. For example, if you have two MACLIEs that contain your 
private macros and copy files whose names are TESTMAC MACLIB and 
TESTCOPY MACLIB, you would issue the command: 

global maclib testmac testcopy 

The libraries you specify on a GLOBAL command line are searched in the 
order you specify them. A GLOBAL command remains in effect for the 
remainder of your terminal session, until you issue another GLOBAL 
MACLIB command or IPL CMS again. To find out what macro libraries are 
currently available for searching, issue the command: 

query maclib 

You can reset the libraries or the search order by reissuing the GLOBAL 
command. 

Section 8. Developing OS Programs under CMS 157 

.J 



THE MACLIB COMMAND 

The MACLIB command performs a variety of functions. You use it to: 

• Create the MACLIB (GEN function) 
• Add, delete, or replace members (ADD, DEL, and REP functions) 
• Compress the MACLIB (COMP function) 
• List the contents of the MACLIB (MAP function) 

Descriptions of these MACLIB ccmmand functions follow. 

GEN FUD£tign: The GEN (generate) function creates a CMS macro library 
from input files specified on the command line. The input files must 
have filetypes of either MACRO or COPY. For example: 

maclib gen osmac access time put regegu 

creates a macro library with the file identifier OSMAC MACLlB A1 from 
macros existing in the files with the file identifiers: 

ACCESS {MACRO},TIME {MACRO},PUT {MACRO},and REGEQU {MACRO} 
COPY COpy COpy COpy 

If a file named OSMAC MACLIB A1 already exists, it is erased. 

Assume that the files ACCESS MACRO, TIME COpy, PUT MACRO, and REGEQU 
COpy exist and contain macros in the following form: 

ACCESS MACRO TIME COPY PUT MACBO REGEQU COpy 
------------ --------- --------- -~---------

GET *COPY TTl MER PUT XREG 
TTIMER 

PUT *COPY STIMER YREG 
STIMER 

The resulting file, OSMAC MACLIB A1, contains the members: 

GET 
PUT 
TTIMER 

STIMER 
PUT 
REGEQU 

The PUT macro, which appears twice in the input to the command, also 
appears twice in the output. The MAeLIB command does not check for 
duplicate macro names. If, at a later time, the PUT macro is requested 
from OSMAC MACLIB, the first PUT macro encountered in the directory is 
used. 

When COpy files are added to MACLIBs, the name of the library member 
is taken from the name of the COpy file, or from the *COPY statement, as 
in the file TIME COPY, above. Note that although the file REGEQU COpy 
contained two macros, they were both included in the MACLIB with the 
name REGEQU. When the input file is a MACRO file, the member name(s) are 
taken from macro prototype statements in the MACBO file. 

AD~ Fu~ctiQD: The ADD function appends new members to an existing macro 
library. For example, assume that OSMAC MACLIB A1 exists as created in 
the example in the explanation of the GEN function and the file DCB COPY 
exists as follows: 

*COPY DCB 
DCB macro definition 

*COPY DCBD 
DeBD wac~o definition 

158 IBM VM/SP CMS User's Guide 



If you issue the command: 

maclib add osmac dcb 

the resulting OSMAC MACLIB Al contains the members: 

GET 
PUT 
TTIMER 
STIMER 

PUT 
REGEQU 
DCB 
DCBD 

]lR FUD£tiQn: The REP (replace) function deletes the directory entry for 
the macro definition in the files specified. It then appends new macro 
definitions to the macro library and creates new directory entries. For 
example; assume that a macro library MYMAC MACLIB contains the me.bers 
A, B, and C, and that the following command is entered: 

maclib rep mymac a c 

The files represented by file identifiers A MACRO and C MACRO each have 
one macrQ definition. After execution of the command, MIMIC B1CLII 
contains members with the same names as before, but the contents of 1 
and C are different. 

~1~ Fu~cti~D: The DEL (delete) function removes the specified macro naae 
from the macro library directory and compresses the directory so there 
are no unused ~ntries. The macro definition still occupies space in the 
library, but since no directory entry exists it cannot be accessed or 
retrieved. If you attempt to delete a macro for which two .acro 
definitions exist in the macro library, only the first one encountered 
is deleted. For example: 

maclib del osmac get put ttimer dcb 

deletes macro names GET, PPT, TTIMER, and Dca from the directory of the 
macro library named OSMAC MACLIB. Assume that OSMAC exists as in the lDD 
function example. After the above command, OSMAC KACLIB contains the 
following members: 

STIMER 
PUT 
REGEQU 
DCaD 

COMP Function: Execution of a MACLIB command with the DEL or REP 
functionS--Can leave unused space within a macro library. The COMP 
(compress) function removes any macros that do not have directory 
entries. This function uses a temporary file named MACLIB CMSO!1. For 
example, the command: 

maclib comp mymac 

compresses the library MYMAC MACLIB. 

MAP Function: The MAP function creates a list containing the name of 
each-macro--in the directory, the size of the macro, and its position 
within the macro library. If you want to display a list of the .eabers 
of a MACL~B at the terminal, enter the command: 

maclib map mylib (term 

section 8. Developing os programs under CMS 159 



The default oFtion, DISK, creates a file on your A-disk, which 
filetype of MAP and a filename corresponding to the filename 
MACLIB. If you specify the PRINT cption, the list is spooled 
virtual printer. 

]ot~: TERM and PRINT options will erase the old MAP file. 

has a 
of the 

to your 

The following CMS commands have MEMBER options, which allow you to 
reference individual members of a MACLIB: 

• PRINT (to print a member) 
• PUNCH (to punch a member) 
• TYPE (to display a member) 
• FILEDEF (to establish a file definition for a member) 

You can use the CMS Editor to create MACRO and COpy 
use the MACLIB command to place the files in a library. 
in a library, you can erase the original files. 

files and then 
Once they are 

To extract a member from a macro library, you can use either the 
PUNCH or the MOVEFILE command. If you use the PUNCH command you can 
spool your virtual card punch to your own virtual reader: 

cp spool punch to * 
Then punch the member: 

punch testmac maclib (member get noheader 

and read it back cnto disk: 

readcard get macro 

In the above example, the member was punched with the NOHEADER option of 
the PUNCH command, so that a name could be assigned on the READCARD 
command line. If a header card had been created for the file, it would 
have indicated the filename and filetype as GET KEMBER. 

If you use the MOVEFILE command, you must issue a file definition for 
the input member name and the output macro or copy name before entering 
the MOVEFILE ccmmand: 

filedef inmove disk testcopy maclib (member enter 
filedef outmove disk enter copy a 
movefile 

This example copies the member ENTER from the macro library TESTCOPY 
MACLIB into a CMS file named ENTER COPY. 

When you use the PUNCH or MOVEFILE commands to extract members from 
CMS MACLIBs, each member is followed by a /1 record, which is a MACLIB 
delimiter. You can edit the file and use the DELETE subcommand to 
delete the II record. 

If you wish to move the complete MACLIB to another file, use the 
COPYFILE command. 

160 IBM VM/SP CMS User's Guide 



The macro libraries that are on the system disk contain CMS and OS 
assembler language macros that you may want to use in your programs: 

• CMSLIB MACLIB contains the CMS macros. 

• OSMACRO MACLIB contains the os macros that CMS supports or simulates 
or those that require no CMS support. 

• OSKACR01 MACLIB contains the macros CMS does not support or simulate. 
(You can assemble programs in CMS that contain these macros, but you 
must execute them in an os virtual machine.) 

• TSOMAC MACLIB contains TSO macros. 

• DOSMACRO MACLIB contains macros used in CMS/DOS. 

To obtain a list cf the macros in any of these libraries, use the MAP 
function of the MACLIB command. 

USING OS MACRO LIERARIES 

If you want to assemble source programs that contain macro statements 
that are defined in macro libraries on your OS disks, you can use the 
FILEDEF command to identify them to CMS so that you can name them when 
you issue the GLOBAL command. 
For example, the commands: 

filedef cms1ib disk temp maclib c dsn test asm macros 
global mac1ib temp 

allow you to access the macro library TEST.ASM.MACROS on the OS disk 
accessed as your C-disk. 

When you issue a FILEDEF command for an assembler language macro 
library you must use a ddname of CKSLIB and you must provide a CMS file 
identifier for the as data set. In the example above, the OS macro 
library TEST.ASK.MACROS is given the CMS file identifier TEMP MlCLIB. 

If you want to use more than one OS macro library you must issue a 
FILEDEF command for each library using the ddname CMSLIB and specifying 
the CONCAT option. For example: 

filedef cmslib disk aspl maclib * dsn aSFl macros Rl (recfm fb block 3360 lrecl 80 
filedef cmslib disk asp2 maclib * dsn aSF2 macros r1 (concat 
filedef cmslib disk sys1 mac lib * 
global maclib asp1 asp2 sys1 osmacro cmslib (concat 

The GLOBAL ccmmand establishes the search order of the libraries as: 
ASP1.MACROS.RL, ASP2.MACROS.RL, SYS1.MACLIB, OSMACRO MACLIB, and CMSLIB 
MACLIB. Note that the third library specified is entered in an 
abbreviated form. You can use this form when the data set name of the 
macro library has only two qualifiers and the second qualifier is 
KACLIB; thus, the equivalency is established between SYS1.MACLIB and the 
CMS file identifier SYS1 MACtIB. 

section 8. Developing os Programs under CMS 161 



The file format information describes the macro libraries to CMS; 
when you are concatenating as macro libraries, they must all be in the 
same format, since the options entered on the first FILEDEF command are 
applied to al~the libraries. 

Also, if you want to use the FILEDEF option PERM, the first FILEDEF 
command for concatenated macro libraries should describe the first 
library in the GLOBAL command. When a concatenated macro library is 
closed after use, the CMS filename in the ECB is restored to the first 
name in the global list. If this is not the one specified on the 
original FILEDEF, subseguent use may cause errors. Reissue the FILEDEF 
command. 

If you are using only one as macro library in addition to CMS MACLIBs 
you can enter either: 

filedef cmslib disk lib1 maclib * dsn sys1 maclib (concat 
global maclib lib1 cmslib 

or --

filedef cmslib disk lib1 maclib * dsn sys1 maclib 
global maclib lib1 cmslib 

To identify libraries for use with the language processors, you must 
use the ddname SYSLIB. 

Using OS Macro Simulation under eMS 

CMS provides routines that simulate the as functions required to support 
os language processors and user-written programs. eMS functionally 
simulates the as macros in such a way that equivalent results are 
presented to programs executing under eMS. 

Figure 16 lists the os macros and their functions that eMS partially 
or completely simulates. The macros that are listed as "effective 
no-op" and "no-op" are macros that are not supported in CMS; you can 
assemble programs that contain these macros. However, when you execute 
them in eMS, the macro functions are not performed. To execute these 
programs, you must run them in an as virtual machine. 

For a more detailed description of how CMS simulates the functions of 
these macros, and to see whether any particular function of a macro is 
not supported, see the !AL~f ~§~~ ~~~g!S!~~~ Qyide. 

as DATA MANAGEMENT SIMULATION 

A eMS file produced by an as program running under eMS and written on a 
CMS disk, has a different format than that of an OS data set produced by 
the same OS program running under as and written on an OS disk. The 
data is the same, but, the format is different. eMS can read, wri~e, or 
update any OS data that resides on a eMS disk. 

162 IBM VM/SP CMS User's Guide 



.-
I Macro 

L--

ABEND 
ATTACH 
BLDL 
BSP 
CHAP 
CHECK 
CHKPT 
CLOSE 
DCB 
DCBD 
DELETE 
DEQ 
DETACH 
DEVTYPE 
ENQ 
EXIT/RETURN 
EXTRACT 
FEOV 
FIND 
FREEDBUF 
FREEMAIN 
FREEMAIN 
FREE POOL 
GET 
GETMAIN 
GETMAIN 
GETPOOL 
IDENTIFY 
LINK 
LOAD 
NOTE 
OPEN 
OPENJ 
PGRLSE 
POINT 
POST 
PGRLSE 
PUT 
RDJFCB 
READ 
RESTORE 
RETURN 
SAVE 
SNAP 
SPIE 

STAE 

STAX 
STIMER 
STOW 
SYNADAF 
SYNADRLS 
TCLEARQ 

,Svc No. 
I 
I 13 
I "'2 
, 18 
I 69 
, ",q , 
I 63 

20 

09 
q8 
62 
2'" 
56 
03 
"'0 
31 
18 
57 
05 
10 

04 
10 

'" 1 
06 
08 

19 
22 

112 

02 
112 

6'" 
17 

51 

'''' 
60 

96 
"'7 
21 

9'" 

Function 

Terminate processing 
Effective LINK 
Build a directory list for a PDS 
Back up a record on a tape or disk 
Effective no-op 
Verify READ/WRITE macro completion 
Effective no-op 
Deactivate a data file 
Construct a data control block 
Generate a DSECT for a data control block 
Delete a loaded phase 
Effective no-op 
Effective no-op 
Obtain device-type characteristics 
Effective no-op 
Return from called phase 
Effective no-op 
Set forced EOV error code 
Locate a member of a partitioned data set 
Release a free storage buffer 
Release user-acquired storage 
Manipulate user free storage 
Simulate as SVC 10 
Read system-blocked data (QSA!) 
Conditionally acquire user storage 
Manipulate user free storage 
Simulate as SVC 10 
Add entry to loader table 
Link control to another phase 
Read a phase into storage 
Manage data set positioning 
Activate a data file 
Activate a data file 
Release storage contents 
Manage data set positioning 
Post the I/O completion 
Release storage contents 
Write system-blocked data (QSAM) 
Obtain information from FILEDEF command 
Access system-record data 
Effective no-op 
Return from a subroutine 
Save program registers 
Dump specified areas of storage 
Allow processing program to 

handle program interrupts 
Allow processing program to 

decipher abend conditions 
Create an attention exit block 
Set timer 
Manipulate partitioned directories 
Provide SYNAD analysis function 
Release SYNADAF message and save areas 
Clear terminal input queue I, 

Figure 16. OS Macros Simulated by CMS (Part 1 of 2) 

Section 8. Developing OS Programs under CMS 163 



r-
, Macro ISvc No.1 Function 

1----------------------------------------------TCLOSE 
TGET/TPUT 
TIME 
TRKBAL 
TTIMER 
WAIT 
WRITE 
iTO/iTOR 
XCTL 

XDAP 
'--

23 I 
93 I 
11 , 
25 I 
46 , 
01 I 

I 
35 I 
07 I , 
00 I 

Temporarily deactivate a data file 
Read or write a terminal line 
Get the time of day 
no-op 
Access or cancel timer 
Wait for an I/O completion 
Write system-record data 
Communicate with the terminal 
Delete, then. link control to another 

load phase 
Read or write direct access volumes 

Figure 16. OS Macros Simulated ~y CMS (Part 2 of 2) 

Assembling Programs in eMS 

To assemble assembler language source programs into object module 
format, you can use the ASSEMBLE command, and specify assembler options 
cn t he command line; for example: 

assemble myfile (print 

assembles a source program named MYFILE ASSEMBLE and directs the output 
listing to the printer. All of the ASSEMBLE command options are listed 
in the VMLSP ~11'§ gQlmand s.ng Ma.£~Q B!l!~~~. 

When you invoke the ASSEMBLE command specifying a file with the 
filetype of ASSEMBLE, CMS searches all of your accessed disks, using the 
standard search order, until it locates the specified file. When the 
assembler creates its output listing and text deck, it creates files 
with filetypes of LISTING and TEXT, and writes them onto disk according 
to the following priorities: 

1. If the source file is on a read/write disk, the TEXT and LISTING 
files are written onto that disk. 

2. If the source file is on a read-only extension of a read/write 
disk, the TEXT and LISTING files are written onto the parent disk. 

3. If the source file is on any other read-only disk, the TEXT and 
LISTING files are written onto the A-disk. 

4. If none of the above choices are available, the command is 
terminated. 

In all of the above cases, the TEXT and LISTING files have a filename 
that is the same as the input ASSEMBLE file. 

The input and output files used by the assembler are assigned by 
FILEDEF commands that CMS issues internally when the assembler is 
invoked. If you issue a FILEDEF command using one of the assembler 
ddna~es before you issue the ASSEMBLE command, you can override the 
default file definitions. 

164 IBM VM/SP CMS User's Guide 



The ddname for the source input file (SYSIN) is ASSEMBLE. 
enter: 

filedef assemble reader 
assemble sample 

If you 

then the assembler reads your input file from your card reader, and 
assigns the filename SAMPLE to the output TEXT and LISTING files. 

You could assemble a source file directly from an OS disk by 
entering: 

filedef assemble disk myfile assemble b4 dsn os source file 
assemble myfile 

In this example, the CMS file identifier MYFILE ASSEMBLE is assigned to 
the data set OS.SOURCE.FILE and then assembled. 

LISTING and TEXT are the ddnames assigned to the SYSPRINT and SYSLIN 
output of the assembler. You might assign file definitions to override 
these defaults as follows: 

filedef listing disk assemble listfile a 
filedef text disk assemble textfile a 
assemble source 

In this example, output from the assembly of the file, SOURCE ASSEMBLE, 
is written to the files, ASSEMBLE LISTFILE and ASSEMBLE TEXTFILE. 

The ddnames PUNCH and CMSLIB are used for SYSPUNCH and SYSLIB data 
sets. PUNCH output is produced when you use the DECK option of the 
ASSEMBLE command. The default file definition for CMSLIB is the macro 
library CMSLIB MACLIB, but you must still issue the GLOBAL command if 
you want to use it. 

Executing Programs 

After you have assembled or compiled a source program you can execute 
the TEXT files that were produced by the assembly or compilation. You 
may not, however, be able to execute all your as programs directly in 
CMS. There are a number of executicn-time restrictions placed on your 
virtual machine by VM/SP. You cannot execute a program that uses: 

• Multitasking 
• More than one partition 
• Teleprocessing 
• ISAM macros to read or write files 

The above is only a partial list, representing these restrictions with 
which you might be concerned. For a complete list of restrictions, see 
the !~L~g Plsn~in~ sng ~Y§!~~ Q~~§~s1iQn Qyide. 

EXECUTING TEXT FILES 

TEXT files, in CMS, are relocatable, and can be executed simply by 
loading them into virtual storage with the LOAD command and using the 
START command to begin execution. For example, if you have assembled a 
source program named CREATE, you have a file named CREATE TEXT. You can 
issue the command: 

Section 8. Developing OS Programs under eMS 165 



load create 

which loads the relocatable object file into storage# and then, to 
execute it, you can issue the START command: 

start 

In the case of a simple program, as in the above example, you can 
load and begin execution with a single command line, using the START 
option of the LOAD command: 

load create (start 

When you issue the START ccmmand or LOAD command with the START 
option, control is passed to the first entry point in your program. If 
you have more than one entry point and you want to begin execution at an 
entry point other than the first, you can specify the alternate entry 
point or CSECT name on the S~ART command: 

start create2 

When you issue the LOAD command specifying the filename of a TEIT file, 
eMS searches all of your accessed disks for the specified file. 

If your program expects a parameter list to be passed (via register 
1), you can specify the arguments on the START command line. If you 
enter arguments, then you must specify the entry point: 

start * namel 

When you specify the entry point as an asterisk (~ it indicates that 
you want to use the default entry point. 

You can issue the FILEDEF command to define input and output files any 
time before you begin program execution. You can issue all your file 
definitions before loading any TEXT files, or issue them during the 
loading process. You can find out what file definitions are currently 
in effect by issuing the FILEDEF command with no operands: 

filedef 

You can also use the FILEDEF operand of the QUERY command. 

TEXT LIBRARIES (TXTLIBS) 

You may want to keep your TEIT files in text libraries, that have a 
filetype of TXTLlB. Like MACLIBs, TITLlBs have a directory and members. 
TXTLIBs are created and modified by . the TITLlB command, which has 
functions similar to the MAeLlB command: 

• The GEN function creates the TITLIB. 
• The ADD function adds members to the TITLIB. 
• The DEL function deletes members and compresses the TXTLlB. 
• The MAP function lists members. 

There is no REP function; you must use a DEL followed by an ADD to 
replace an existing member. The eMS commands that recognize MACLIBs as 

166 IBM VM/SP eMS User's Guide 



special filetypes also recognize TXTLIBs, and allow you to display, 
print, or punch TXTLIB members. 

The TXTLIB ccmmand reads the object files as it writes them into the 
library, and creates a directory entry for each entry point or CSECT 
name. If you have a TEXT file named MYPROG, which has a single routine 
named BEGIN, and create the TXTLIB named TESTLIB as follows: 

txt lib gen testlib myprog 

TESTLIB contains no entry for the name MYPROG; you must specify the 
membername BEGIN to reference this TXTLIB member. 

When you want to load members of TXTLIBs into storage to execute them 
(just as you execute TEXT files), you must issue the GLOBAL command to 
identify the TXTLIB: 

global txtlib testlib 
load begin (start 

When you specify more than one TXTLIB on the GLOEAL command line, the 
order of search is established for the TXTLIBs. However, if the AUTO 
option is in effect (it is the default), CMS searches for TEXT files 
tefore searching active TXTLIBs. 

When the TXTLIB command processes a TEXT file, it writes an LDT 
(loader terminate) card at the end of the TEXT file, so that when a load 
request is issued for a TXTLIB member, loading terminates at the end of 
the member. If you add OS linkage editor control statements to the TEXT 
file (using the CMS editor) before you issue the TXTLIB command to add 
the file to a TXTLIB, the control statements are processed as follows: 

NAM]: A NAME statement causes the TXTLIB command to create the directory 
entry for the member using the specified name. Thereafter, when you want 
to load that member into storage or delete it from the TXTLIB you must 
refer to it by the name specified on the NAME statement. 

The loader does not use name cards to resolve entry points. It is 
important that the name on the name card be the same as the name on the 
CSECT or entry card. This will ensure that the loader will find the 
correct text deck and loader tables (any external references) will be 
resolved with the entry point. If the names differ, the loader will 
load the test deck based on the name card (or file name). However, the 
loader tables will be set up according to entry or CSECT cards 
encountered during the load. Any external reference using the name from 
the name card will be resolved as zeros. See the section "Resolving 
External References" for more detailed information. 

EN1]I: If you use an ENTRY statement, the entry );:oint you specify is 
validated and checked for a duplicate. If the entry point name is valid 
and there are no duplicates in the TEXT file, the entry name is written 
in the LDT card. Otherwise, an error message is issued. When this 
member is lo~ded, execution begins at the entry point specified. (See 
the following "Determining Program Entry Points.") 

ALI!~: An entry is created in the directory for the ALIAS name you 
specify. A maximum of 16 alias names can be used in a single text deck. 
You may load the single member and execute it by referring to the alias 
name, but you cannot use the alias name as the object of v-type address 
constant (VCON), because the address of the member cannot be resolved. 

SET~SI: Information you specify on the SETSSI card is written in bytes 
26 through 33 of the LDT card. 

Section 8. Developing OS Programs under CMS 167 



All other OS linkage editor control statements are ignored by the 
TXTLIB command and written into the TXTLIB member. When you attempt to 
load the member, the CMS loader flags these cards as invalid. 

RESOLVING EXTERNAL REFERENCES 

The eMS load~r loads files into storage as a result of a LOAD or INCLUDE 
command. When a file is loaded, the loader checks for unresolved 
references; if there are any, the loader searches your disks for TEXT 
files with fil.enames that match the external entry name. When it finds a 
match, it loads the TEXT file into storage. If a TEXT file is not found, 
the loader searches any available TXTLIBs fer members that match; if a 
match is found, it loads the member. 

If there are still unresolved references, for example, if you load a 
program that calls routines PRINT and ANALYZE but the loader cannot 
locate them, you receive the message: 

THE FOLLOWING NAMES ARE UNDEFINED: 
PRINT 
ANALYZE 

You can issue the INCLUDE command to load additional TEXT files or 
TXTLIB members into storage so the loader can resolve any remaining 
references. For example, if you did not identify the TXTLIB that 
contains the routines you want to call, you may enter the GLOBAL command 
followed by the INCLUDE command: 

global txtlib newlib 
include print analyze (start 

This situation might also occur if you have TEXT files with filenames 
that are different from the CSECT names; you must explicitly issue LOAD 
and INCLUDE commands for these files. 

At execution time, if there are still any unresolved references, 
their addresses are all set to 0 by the loader, so any attempt to 
address them in a program may result in a program check. 

The INCLUDE command has the same format and option list (with one 
exception) as the LOAD command. The main difference is that when you 
issue the INCLUDE command the loader tables are not reset; if you issue 
two LOAD commands in succession, the second LOAD command cancels the 
effect of the first, and the pointers to the files loaded are lost. 

Conversely, the INCLUDE command, which you must issue when you want 
to load additional files into storage, should not be used unless you 
have just issued a LOAD command. You may specify as many INCLUDE 
commands as necessary following a LOAD command to load files into 
storage. 

168 IBM VM/SP CMS User's Guide 



CONTROLLING THE CMS LOADER 

The LOAD and INCLUDE commands allow you to specify a number of options. 
You can: 

• Change the entry point to which control is to be passed when 
execution begins (RESET option). 

• specify the location in virtual storage at which you want the files 
to be 10aded (ORIGIN option). 

• Control how CMS resolves references and handles duplicate CSECT names 
(AUTO, LIB, and DUP options). 

• Clear storage to binary zeros before loading files (CLEAR option). 
Otherwise CMS does not clear user storage. 

When the LOAD and INCLUDE commands execute, they produce a load map, 
indicating the entry points loaded and their virtual storage locations. 
You may find this load map useful in debugging your programs. If you do 
not specify the NOMAP option, the load map is written onto your A-disk, 
in a file named LOAD MAP AS. Each time you issue the LOAD command, the 
old file LOAD MAP is erased and the new load map replaces it. If you do 
not want to produce a load map, specify the NOMAP 0Ftion. 

You can find details about· these, and other options under the 
discussion of the LOAD command in VM/~R CM~ Co~~~nd ~g Ma~Q Ref~~~. 

In addition to the options provided with the LOAD and INCLUDE commands 
that assist you in controlling the execution of TEXT files, you can also 
use loader control statements. These can be inserted in TEX~ files, 
using the CMS editor. The loader control statements allow you to: 

• set the location counter to specify the address at which the next 
TEXT file is to be loaded (SLC statement). 

• Modify instructions and constants in a 
length of the TEXT file to accomodate 
Include Control Section statements). 

• Change the entry point (ENTRY statement). 

TEXT file, and change 
modifications (Replace 

the 
and 

• Nullify an external reference so that it does not receive control 
when it is called, and you do not receive an error message when it is 
encountered (LIBRARY statement). 

These statements are also described under the LOAD command in !~/SP CMS 
Com..m,g.ng @s Ma£~Q R~!~~!!.£.§. 

When you load a single TEXT file or a TXTLIB member into storage for 
execution, the default entry point is the first CSECT name in the object 
file loaded. You can specify a different entry point at which to start 
execution either on the LOAD (or INCLUDE) command line with the RESET 
option: 

Section 8. Developing OS Programs under CMS 169 



load myprog (reset beta 

where BETA is the alternate entry point of your program, or you can 
specify the entry point on the START command line: 

start beta 

When you load multiple TEXT files (either explicitly or implicitly, 
by allowing the loader to resolve external reference~, you also have 
the option of specifying the entry point on the LOAD, INCLUDE, or START 
command lines • 

. If you do not specifically name an entry point, the loader determines 
the entry point for you, according to the following hierarchy: 

1. An entry point specified on the START command 

2. The last entry specified with the RESET option on a LOAD or INCLUDE 
command 

3. The name on the last ENTRY statement that was read 

4. The name on the last LDT statement that contained an entry name 
that was read 

5. The name on the first assembler- cr compiler-produced END statement 
that was read 

6. The first byte of the first control section loaded 

For example, if you load a series of TEXT files that contain no 
control statements, and do not specify an entry point on the LOAD, 
INCLUDE, or START commands, execution begins with the first file that 
you ,loaded. If you want to control the execution of program subroutines, 
you should be aware of this hierarchy when you load programs or when you 
place them in TXTLIBs. 

An area of particular concern is when you issue a dynamic load (with 
the OS LINK, LOAD, or XCTL macros) from a program, and you call members 
of CMS TXTLIBs. The CMS loader determines the entry point of the called 
program and returns the entry point to your program. If a TXTLIB member 
that you load bas a VCON to another TXT LIB member, the LDT card from the 
second member may be the last LDT card read by the loader. If this LDT 
card specifies the name of the second member, then CMS may return that 
entry point address to your program, rather than the address of the 
first member. 

CREATING PROGRAM MODULES 

When your programs are debugged and tested, you can use the LOAD and 
INCLUDE commands, in conjunction with the GENMOD command, to create 
program modules. A module is a nonrelocatable file whose external 
references have been resolved. In CMS, these files must have a filetype 
of MODULE. 

To create a program module, load the TEXT files or TXTLIB members 
into storage and issue the GENMOD command: 

load create analyze print 
genmod process 

170 IBM VM/SP CMS User's Guide 



In this example, PROCESS is the filename you are assigning the 
module; it will have a filetype of MODULE. You could use any name; if 
you use the name of an existing MODULE file, the old one is replaced. 

To execute the program composed ,of the source files CREATE, ANALYZE, 
and PRINT, enter: 

process 

If PROCESS requires input and/or output files, you will have to define 
these files before PROCESS can execute properly; if PROCESS expects 
arguments passed to it, you can enter them following the MODULE name; 
for example: 

process testl 

For more information on creating program modules, see "Section 13. 
Programming for the CMS Environment." 

USING EXEC PROCEDURES 

During your program development and testing cycle, you may want to 
create EXEC procedures to contain sequences of CMS commands that you 
execute frequently. For example, if you need a number of MACLIBs, 
TXTLIBs, and file definitions to execute a particular program, you might 
have an EXEC procedure as follows: 

&CCNTROL ERROR TIME 
&ERROR &EXIT &RETCODE 
GLOBAL MACLIB TESTLIB OSMACRO OSMACROl 
ASSEMBLE TESTA 
PRINT TESTA LISTING 
GLOBAL TXTLIB TESTLIB PROGLIB 
ACCESS 200 E 
&BEGSTACK 
OS.TEST3.STREAM.BETA 
&END 
FILEDEF INDDl E DSN ? 
FILEDEF INDD2 READER 
FILEDEF OUTFILE DISK TEST DATA Al 
LOAD TESTA (START 
&IF &RETCODE = 100 &GOTO -RET100 
&IF &RETCODE = 200 &GOTO -RET200 
&EXIT &RETCODE 
-RET100 &CONTINUE 

-RET200 &CONTINUE 

The &CONTROL and SERROR control statements in the EXEC procedure 
ensure that if an error occurs during any part of the EXEC, the 
remainder of the EXEC does not execute, and the execution summary of the 
EXEC indicates the command that caused the error. 

Note that for the FILEDEF command entered with the DSN ? operand, 
you must stack the response before issuing the FILEDEF command. In this 
example, since the OS data set name has more than eight characters, you 
must use the &BEGSTACK control statement to stack it. If you use the 
&STACK control statement, the EXEC processor truncates all words to 
eight characters. 

Section 8. Developing OS Programs under CMS 171 



When your program is finished executing, the EXEC special variable 
&RETCODE indicates the contents of general register 15 at the time the 
program exited. You can use this value to perform additional steps in 
your EXEC procedure. Additional steps are indicated in the preceding 
example by ellipses. 

For detailed information on creating EXEC procedures, see "Part 3. 
Learning to Use EXECs." 

Executing Members of OS Module Libraries or eMS 
LOADLIBs 

The OS relocating loader allows the user to load a member of a CMS 
LOADLIB or an OS module library on an OS formatted disk. The OS LINK, 
LOAD, ATTACH, and xeTL macros are supported. In addition, the OSRUN 
command (which generates a LINK SVQ) is supported to provide for loading 
and executing members directly from the console. 

For macros, the libraries specified in the LOADLIB global list are 
searched. If the requested member is not found, eMS looks for a TEXT 
file by that name; then, if itill net found, the TXTLIBs specified in 
the TXTLIB global list are searched for the member name. 

For the OSRUN command, the libraries specified in the LOADLIB global 
list are searched. If the member is not found and the user has a 
$SYSLIE LOADLIB file, it is searched for the member name. (TEXT and 
TEXTLIBs are not considered by OSRUN.) 

A FILEDEF command must define any OS module libraries from which 
members are to be loaded. The DDNAME specified must be $SYSLIB. The 
filename can be any name, but. it must correspond to the name stated in 
the GLOBAL statement; the filetype must be LOADLIB. To define more than 
one library with the same DDNAME, use the CONCAT option of the FILEDEF 
command. Any library to be searched (either CMS LOADLIB or OS module 
library) must be specified in the GLOBAL LOADLIB statement. The data 
set with the largest block size should be specified first (both in the 
FILEDEF and in the GLOBAL list). CMS files do not require a file 
definition, but if used, the file with the largest block size should be 
specified first. The GLOBAL list determines the order in which the 
libraries are searched. 

The LKED command is used to create a eMS LOADLIE. Input to the LKED 
command is a eMS TEXT file or an OS object module; output is a LOADLIB. 
For example: 

LKED TESTFILE 

will take a eMS TEXT file by the name of TESTFILE and create a file 
named TESTFILE LOADLIB. 

The LOADLIB the LKED TESTFILE example creates is an OS simulated PDS 
named TESTFILE LOADLIB and contains one member named TESTFILE. To 
execute TESTFILE using the OSRUN command, the GLOBAL command must be 
used. For example: 

GLOBAL LOADLIB TESTFILE 

The OSRUN command causes the TESTFILE member of the TESTFILE loadlib to 
be loaded, relocated, and executed: 

OSRUN TESTFILE 

172 IBM VM/SP CMS User's Guide 



If the module to be executed resides in an OS module library on an OS 
formatted disk, the disk must be accessed and the library must be 
defined (via the FILEDEF command) to make it known to CMS. For example, 
if SYS1.TESTLIB is a library on an OS disk and contains a member called 
TEST1, the following would be required to execute TEST1: 

ACCESS 390 B (where 390 is the address of the OS disk) 
FILEDEF $SYSLIB DISK OSLIB LOADLIB B DSN SYS1 TESTLIB 

(DSORG PO RECFM U BLOCK 7294 
GLOBAL LOADLIB OSLIB 
OSRUN TESTl 

The LOADLIB command provides the utility necessary to maintain the 
CMS LOADLIBs. The following functions are provided: 

COpy Copy members from one LOADLIB to another 
Merge complete LOADLIBs 
Copy with SELECT or EXCLUDE 

COMPRESS Compress a CMS LOADLIB 

LIST LIST members of a CMS LOADLIB 

For more detailed information on the LKED, GLOBAL, OSRUN, and LOADLIB 
commands, refer to the VM/SP £MS £QUgnd and Ma~ Bef~!.!l~. 

Section 8. Developing OS Programs under CMS 173 



• 

174 IEM VM/SP eMS User's Guide 



Section 9. Developing DOS Programs under eMS 

You can use CMS to create, compile, execute and debug DOS programs 
written in assembler, COBOL, PL/I or RPG-II programming languages. CMS 
simulates many functions of the Disk Operating System VSE/AF so that you 
can use the interactive facilities of VM/SP to develop your programs, 
and then execute them in a DOS virtual machine. 

This section tells you 
describes the CMS commands 
files and CMS/DOS commands 
VSE/AF: 

• The eMS/DOS environment 

how to use the eMS/DOS environment. It 
you can use to manipulate DOS disks and DOS 

you can use to simulate the functions of 

• Using DOS files on DOS disks 
• Using the ASSGN command 
• Using the DLBL command 
• Using DOS libraries in eMS/DOS 
• Using macro libraries 
• DOS assembler language macros supported 
• Assembling source programs 
• Link-editing programs in eMS/Dos 
• Executing programs in eMS/DOS 

For a practice terminal session using the commands and techniques 
presented in this section, see "Appendix D. Sample Terminal Sessions." 

eMS/DOS is neither eMS nor is it DOS; it is a composite, and its 
vocabulary contains both eMS and DOS terms. eMS/DOS performs many of 
the same functions as DOS, but where, under DOS, a function is initiated 
by a control card, in eMS it is initiated by a command. Many eMS/DOS 
commands, therefore, have the same names as the DOS control statement 
that performs the same function. In those cases where the control 
statement you would use in DOS and the command you use in eMS are 
different, the differences are explained. For the most part, whenever a 
term that is familiar to you as a DOS term is used, it has the same 
meaning to eMS/DOs, unless otherwise indicated. 

eMS/DOS support in VM/SP is based on the VSE/AF program product. The 
term DOS, however, continues to be used in a general sense and, in the 
discussion that follows, refers to the VSE/AF program product. 

The eMS/DOS Environment 

After you have loaded eMS into your virtual machine you can enter the 
eMS/DOS environment by issuing: 

set dos on 

Section 9. Developing DOS programs under eMS 175 



If you want to access a DOS system residence volume during your CMS/DOS 
terminal session, you should link to and access the disk that contains 
the DOS SYSRES before you issue the SET command. For example, if you 
share the system residence volume with other users and it is in your 
directory at virtual address 390, you would issue the command: 

access 390 g 

and then issue the SET command as follows: 

set dos on g 

to indicate that the SYSRES is located on your G-disk. If you are going 
to use the CMS/DOS librarian facilities to access any of the libraries 
on the system residence volume, you must enter the CMS/DOS environment 
this way. 

If you are using CMS exclusively for DOS applications, you could put 
the ACCESS and SET DOS ON commands in your PROFILE EXEC. 

If you are going to use access method services functions in CMS/DOS, 
or execute functions that read or write VSAM data sets, you must use the 
VSAM option of the SET DOS ON command: 

set dos on g (vsam 

When you are using CMS/DOS, you can use your virtual machine just as 
you would if you were in the CMS environment; but you cannot execute any 
CMS commands or program modules that load and/or use OS macros. The 
SCRIPT command, for example, uses OS macros, and is therefore invalid in 
the CMS/DOS environment. 

You have, however, in addition to the CP and CMS commands available, 
a series of commands that simulate VSE/AF functions. Except for the 
DLBL and DOSLIB commands, these commands or operands should only be 
issued in the CMS/DOS environment. 

The CMS/DOS commands are summarized in Figure 17. 

176 IBM VM/SP CMS User's Guide 



r --, 
,Command , . Function , 
1--------------------------------
, ASSGN Relates system and programmer logical units to physical 
, devices. 
1 
, DLBL , , 
, DOSLIB , , 
, DOSLKED 

DSERV 

DOSPLI 

ESERV 

FCOEOL 

FETCH 

GLOEAL 

L ISTIO 

OPTION 

QUERY 

PSERV 

RSERV 

SET 

SSEPV 

Relates a program DDname (filename) to a real disk file 
so you can perform input/output operations on it. 

Lists or deletes phases from a CMS/DOS phase library, 
or compresses the library. 

Link-edits CMS TEXT files or DOS phases from system or 
private relocatable libraries. 

Displays the directories of DOS libraries. 

An EXEC procedure that invokes the DOS/VS PL/I compiler. 

An EXEC procedure that invokes the ESERV utility 
functions on edited assembler language macros. 

An EXEC procedure that invokes the DOS/VS COBOL 
compiler. 

Loads executable phases from a DOSLIB or DOS library 
into storage for execution, and optionally starts 
execution. 

When you want DOSLIBs searched for executable phases 
or macro libraries searched for macro definitions, you 
must identify them with the GLOBAL command. 

Displays the current assignments of system and 
programmer logical units, and optionally creates an 
EXEC file to contain the information. 

Sets or changes the options in effect for the DOS/VS 
COBOL compiler. 

Use QUERY command operands to list current DLBL 
definitions (QUERY DLBL), to determine whether or not 
you are in the CMS/DOS environment (QUERY DOS), the 
setting of the UPS I byte (QUERY UPSI), the DOSLIBs 
identified by GLOBAL commands (QUERY DOSLIB or 
or QUERY LIBRARY), the current number of lines per 
page (QUERY DOSLNCNT), which options are in 
effect for the COBOL compiler (QUERY OPTION), or 
to find out whether you have set a virtual partition 
size (QUERY DOSPART). 

Creates CMS files with a filetype of PROC from the 
VSE/AF procedure library, or displays, prints or 
punches procedures. 

Copies a relocatable module from a DOS library and 
places it in a CMS file with a filetype of TEXT, 
or displays, prints, or punches modules. 

The SET command has operands that allow you to enter or 
leave the CMS/DOS environment (SET DOS ON or SET DOS 
OFF) to set the number of SYSLST lines per 
page (SET DOSLNCNT), to set the UPSI byte (SETUPSI), 
and to set a virtual partition size (SET DOSPART). 

Creates CMS COPY files from books on VSE/AF source 
statement libraries. L ________________________________________________________________ --J 

Figure 17. CMS/DOS Commands and CMS Commands with Special Operands 
for CMS/DOS 

Section 9. Developing DOS Programs under CMS 177 



DL/I in the eMSlDOS Environment 

Batch DL/1 programs can be 
enyironment. This includ~s all 
lBse.bler language. 

written and tested in the eMS/DOS 
programs written in COBOL. PL/1, and 

Data base description generation and program specification block 
generation can also be executed. However. the application control block 
generation must be submitt ed to a DOS virtual machine for execution. 
The data base recovery and reorganization utilities must also be 
executed in a DOS virtual machine. 

This support provides the ability to: 

• InteractiYely code DL/I control blocks and applica tion programs that 
contain imbedded DL/I calls. 

• Store and maintain macros used to generate DL/Icontrol blocks, and 
programs created under eKS, in the eMS library. Production libraries 
are thus isolated from the test environmentA 

• Kodify and compile programs using the CMS/DOS text manipulation and 
EXEC facilities. 

• Link-edit and execute batch DL/1 programs either interactively or in 
CMSBATCH. Online DL/I application programs requiring access to 
CICS/VS must be submitted to a DOS virtual machine for link-editing, 
cataloging, and execution. 

The following restrictions apply: 

• All the existing 'guidelines and restrictions that apply to VSAM data 
set creation, maintenance, and application program use apply to DL/I 
data sets. 

• The CMS/DOS restriction on writing to sequential files applies to 
SHSAM and HSAM. 

• To assemble a DBD 
DBDGEN and PSBGEN 
CMS KACLIB. 

or PSB under CMS/DOS, you must first copy the 
macros f~om the DOS source statement library to a 

For more information about using DL/I in the CMS/DOS environment, see 
~Ll ~Q§L!~ 2~~~I~!i2n !n!£~~ati£~. 

Using DOS Files on DOS Disks 

You can have DOS disks attached to your virtual machine by a directory 
entry or you can link to a DOS disk with the LINK command. You can use 
the ACCESS command to assign a mode letter to the disk: 

access 155 b 

and the RELEASE command to release it: 

release b 

Except for 'SAM disks, you cannot write on DOS disks, or update DOS 
files on them. You can, however, execute programs and CKS/DOS commands 
that read from these files, and you can use the LISTDS command to 
display the file-ids of files on a DOS disk; for example: 

178 IBM VK/SP CMS User's Guide 



) 
listds b 

You can also verify the existence of a particular file. For example, if 
the file-id is NEW.TEST.DATA you can enter: 

listds new test data b 

You can use this form only if the file-id has one- to eight-character 
qualifiers separated by periods. If the file-id of the DOS file you 
want to verify contains embedded blanks, for example NEW.TEST DATA, then 
you have to enter the LISTDS commands with a question mark: 

listds 1 b 

CMS responds: 

ENTER DATA SET NAME: 

and you can enter the exact file-id: 

new.test data 

If the data set exists, you receive a response: 

FM DATA SET NAME 
B NEW.TEST DATA 

READING DOS FILES 

Under CMS/DOS, you can execute programs that read DOS sequential (SAM) 
files; you can also execute programs that read and write VSAM files. 
You cannot, however, execute programs to read direct (DAM) or indexed 
sequential (ISAM) DOS files. 

Complete information on using CMS to access and manipulate VSAM files 
is described in "Section 10. Using Access Method Services and VSAM In 
CMS and CMS/DOS." The discussion below lists the restrictions placed on 
reading SAM files. 

CMS cannot read DOS files that: 

• Have the input security indicator on. 

• Contain more than 16 user labels and/or data extents. (If the file 

• 

has user labels, they occupy the first extent; therefore the file 
must contain no more than 15 data extents.) 

Are multivolume files. 
files. End of volume 
end-of-volume switching. 

Multivolume files are read as single-volume 
is treated as end of file. There is no 

• Have user labels. User labels in user-labeled files are bypassed. 

CMS does 
than one 
eMS/DOS. 

not support duplicate volume labels; you cannot access more 
volume with the same six-character label while you are using 

Section 9. Developing DOS Programs under CMS 179 



CBEATING CMS FILES FBOM DOS LIBRARIES 

You can create CMS files from existing DOS files on DOS disks. CMS 
simulates the DOS librarian functions DSERV r RSERV r SSERV r ESERV r and 
PSERV with commands of the same names; you can use these CMS/DOS 
commands to create CMS files from relocatable r source statement r or 
procedure libraries located either on the DOS system residence volume or 
in private libraries. The functions are fully described later in this 
section. 

If you want to create CMS files from DOS files that are not cataloged in 
libraries or from DOS files on taper you can use the MOVEFILE command. 
The MOVEFILE command allows you to copy a file from one device to 
another device of the same or a different type. Before issuing the 
MOVEFILE command, the input and the output files must be described to 
CMS with the FILEDEF command. 

The MOVEFILE and FILEDEF commands are described and examples are 
given of how to use them in "Section 8. Developing as Program Under 
CMS." The procedures are the same for copying DOS files as for as data 
sets. You must r however, keep the following in mind: 

• Since DOS files on DOS disks do not contain BLKSIZEr RECFM, or LRECL 
options, these options must be specified via the FILEDEF command; 
otherwise , defaults of BLOCKSIZE=32760 and R ECFM=U are assigned .• 
LRECL is not used for RECFM=U files. 

• If a DOS file-id does not follo~ as naming conventions (that is, one
to eight-byte qualifiers with each qualifier separated by a period; 
up to 44 characters including periods) r you must use the DSN ? 
operand of FILEDEF and the? operand of LISTDS to enter the DOS 
file-id. 

You can create individual CMS files for DOS modules from a DOS library 
distribution tape or DOS SYSIN tape. Use the VMFDOS command. The 
VMFDOS command can create a CMS file for each DOS module that exists, 
and the CMS filename corresponds to the DOS module name. You can 
restore individual modules r groups of modulesr or the entire module set. 

For DOS library distribution tapes r the VMFDOS command restores 
modules from either system or private (relocatable and/or source 
statement) libraries. The created CMS files have a filetype of 'TEXT' 
if they are from a relocatable library. They have a filetype of 'KACRO' 
if they are from a source statement library. 

For DOS SYSIN tapes r modules containing a period as the second 
character (for example r 'A.') of a DOS 'CATALx' control statement have a 
filetype of 'MACRO'. All other files have a filetype of 'TEXT'. 

The VMFDOS command is described in the VM/SP ~lgnning ~nS ~§tem 

~~n~~liQn QYig~· 

180 IBM VM/SP CMS User's Guide 



If you have DOS files or source programs on cards, you can create CMS 
files directly by having these cards read into the real system card 
reader. You direct the cards to your virtual machine by punching a CP 
ID card in this format: 

ID HARMONY 

and placing this card in front of your card deck. When the cards appear 
in your virtual card reader, you can read them onto your CMS A-disk with 
the READCARD command: 

readcard dataproc assemble 

You can use the editor to remove any DOS control cards that may be 
included in the deck. 

See "Tape Labels in CMS" for a description of CMS tape label processing 
for CMS/DOS tape files. The support for tape labels is only for files 
defined by a DTFMT macro. If you do not use this macro, CMS bypasses 
IBM standard labels on input tapes and writes a tape mark over any 
existing labels on an output tape. The CMS LABELDEF command is 
equivalent in CMS/DOS to the VSE/AF TLBL control statement when standard 
tape label processing is used. 

Using the ASSGN Command 

The ASSGN and DLBL commands perform the same functions for CMS/DOS as 
the ASSGN and DLBL control statements in VSE/AF. You use the ASSGN 
command to designate an I/O device for a system or programmer logical 
unit (SYSxxx) and, if the device is a disk device, you can use the DLBL 
command to establish a real file identification for a symbolic filename 
in a program. The DLBL command is described under "Using the DLBL 
Command." 

In addition to using the ASSGN command to relate real I/O devices 
with symbolic units, you must use it in CMS/DOS to: 

• Assign SYSIN or SYSIPT for the input source file for a language 
compiler when you use the DOSPLI or FCOBOL commands. 

• Identify the disk, by mode letter, on which a private core image, 
relocatable, or source statement library resides. 

• Assign SYSIN or SYSIPT to the CMS disk on which an ESERV file, 
containing control statements for the ESERV program, resides. 

When you enter the ASSGN command, you must supply the logical unit 
and the device; for example: 

assgn sys100 printer 

assigns the logical unit SYS100 to the printer. When you want to make 
an assignment to a disk device, you must specify the mode letter at 
which the disk is accessed. The command: 

Section 9. Developing DOS Programs under CMS 181 



assgn sysOl0 b 

assigns the logical unit SYS010 to your B-disk. 

The system logical units you can assign and the valid device types 
you can assign to them in CMS/DOS follow. 

~YSlg~, SYSRj2!!, SY~!!!: These units can be assigned to disk (mode), TAPE, 
or READER. If you make an assignment to SYSIN, both SYSRDR and SYSIPT 
are also assigned the same device. Assignment to DOS FB-512 disks is not 
supported. 

SYS1~1: The system logical unit for listings can be assigned to disk 
(mode), PRINTER, or TAPE. 

SYS1Q~: Terminal or operator output or messages can be assigned to 
PRINTER or TERMINAL. CMS/DOS always assigns SYSLOG to TERMINAL by 
default, so you never have to make this assignment except when you want 
to alter it. 

SYS~CH: Punched output, for example text decks, can be assigned to 
PUNCH, disk (mode), or TAPE. 

SYS£1~, .2ISR1!!, ~YS~1!!: The system logical units SYSCLB, SYSRLB, and 
SYSSLB can be assigned to private core image, relocatable, and source 
statement libraries, respectively. The only valid assignments for these 
units is to disk (mode). If you want to reference private libraries 
with the DOSLKED, DSERV, ESERV, FETCH, SSERV, or RSERV commands, you 
must assign SYSCLB, SYSRLB, or SYSSLB to the disks on which the 
libraries reside. 

MANIPULATING DEVICE ASSIGNMENTS 

You can assign programmer logical units SYSOOO through SYS241 with the 
ASSIGN command. Besides assigning I/O devices, the ASSGN command can 
also negate a previous assignment: 

assgn syspch ua 

or specify that, for a given device, no real I/O operation is to be 
performed during the execution of a program: 

assgn sys009 ign 

When you release a disk from your virtual machine, any assignments made 
to that disk are unassigned. 

You can find out the current assignments for system and programmer 
logical units with the LISTIO command, which lists all the system or 
programmer logical units, even those that are unassigned: 

listio 

To list only currently assigned units, enter: 

listio a 

To find out the current assignment of one specific unit, for example 
SYS100, enter: 

listio sysl00 

182 IBM VM/SP CMS User's Guide 



\ 
". 

With the EXEC option of the LISTIO command, you can create a disk 
file containing the list of assignments. The $LISTIO EXEC that is 
created contains two EXEC numeric variables, &1 and &2, for each unit 
listed. For example, if you entered the command: 

listio sys081 (exec 

then the file $LISTIO EXEC may contain the record: 

&1 &2 SYS081 PRINTER 

When you use the STAT option, LISTIO lists, for disk devices, whether 
the disk is read-only or read/write; for example: 

listio sys100 
SYS100 B R/W 

indicates that SYS100 is assigned to the B-disk, which is a read/write 
disk. 

You can cancel all current assignments by leaving the CMS/DOS 
environment and then re-entering. it: 

set dos off 
set dos on 

VIRTUAL MACHINE ASSIGNMENTS 

When you assign a physical device type to a system or programmer logical 
unit, eMS relates the device to your virtual machine configuration; you 
receive an error message if yeu try to assign a logical unit to a device 
not in your configuration. For example, if you are using the ASSGN 
command to assign a logical unit to a disk file, you must specify the 
access mode letter of the disk. If the disk is not accessed, the ASSGB 
command fails. 

For another example, if you issue: 

assgn syspch punch 

the punch specified is your own virtual machine card punch. The actual 
destination of punched output then depends on the spooling 
characteristics of the punch; if it is spooled to another user or to *, 
then no real cards are punched, but virtual card images are placed.in 
the virtual reader of the destination userid, which may be another 
virtual machine or your own. 

CMS supports only one reader, one punch, and one printer; you cannot 
make any assignments for multiple output devices in CMS/DOS. When you 
make an assignment fcr a logical unit that has already been assigned, it 
replaces the current assignment. 

Using the DLBL Command 

Use the DLBL command to supply CMS/DOS with specific file identification 
information for a disk file that is going to be used for input or 
output. For any DLBL command you issue, you must previously have issued 

Section 9. Developing DOS ~rograms under eMS 183 



an ASSGN command for the disk, specifying a system or programmer logical 
unit. The baSic relationship is: 

assgn SYSxxx mode 
dlbl filename mode DSN 1 (SYSxxx 

Both the SYSxxx and the mode values must match on the ASSGN and DLBL 
commands; the disk on which the file resides must be accessed at mode. 

The filename on the DLBL command line, called a ddname in CMS/DOS, 
corresponds to the symbolic name for a file in a program. If you want to 
reference a private DOS library, you m~st use one of the following 
ddnames: 

~:L§te.m 
1Qgical Y.n,!! 
SYSeLB 
SYSRLB 
SYSSLB 

Fil~~ 
IJSYSCL 
IJSYSRL 
IJSYSSL 

ENTERING FILE IDENTIFICATIONS 

When you issue the DLBL command you must identify the file, by file-id 
(for a DOS file) or by file identifier (for a eMS file). The keywords 

DSN and CMS indicate whether it is a DOS file or a CMS file, 
respectively. 

If the file is a DOS file residing on a DOS disk, you can enter the 
DLBL command in one of two ways. For example, for a file named 
TEST.INPUT you could enter either: 

assgn sys101 d 
d1b1 infile d dsn test input (sys101 

-- or --

assgn sys101 d 
d1b1 infi1e d dsn 1 (sys101 
ENTER DATA SET NAME: 
test.input 

For any DOS file with a fi1e-id that contains embedded blanks or 
hyphens, you must use the "DSN 1" form. 

When you issue a DLBL command for a eMS file, you enter the filename 
and fi1etype following the keyword CMS: 

assgn sys102 a 
d1b1 outfi1e a cms new output (sys102 

In this example. if SYS102 is defined as an output file for a program, 
the output is written to your eMS A-disk in a file named NEW OUTPUT. 

You can, for convenience, use a eMS default file identifier. If you 
enter: 

d1bl outfi1e a cms (sys102 

then the output filetype defaults to that of the ddname and the filename 
to FILE. So, this output file is TIaffied FILE CUTFIL~. 

184 IBM VM/SP eMS User's Guide 



You can clear a DLBL definition for a file by using the CLEAR operand of 
the DLBL command: 

dlbl outfile clear 

To clear all existing definitions, except those entered with the PERK 
option, you can enter: 

dlbl * clear 

This command is issued by the assembler and the language processors when 
they complete execution. Definitions entered with the PERK option must 
be individually cleared. 

Whenever you use the HX Immediate command to halt the execution of a 
program, the DLBL definitions in effect are cleared, including those 
entered with the PERK option. 

You can find out what definitions are currently in effect by issuing 
the DLBL command with no operands: 

dlbl 

or, you can use the QUERY command with the DLBL operand. 

Using DOS Libraries in eMS/DOS 

CKS/DOS provides you with the capability of using various types of files 
from DOS system or private libraries. You can copy, punch, display at 
the terminal, or print: 

• Books from system or private source statement libraries using the 
SSERV command 

• Relocatable modules from system or private relocatable libraries 
using the RSERV command 

• Procedures trom the system procedure library using the PSERV command 

You can also: 

• Copy and de-edit macros from system and private E sublibraries using 
the ESERV command 

• Access the directories of system or private libraries using the DSERV 
command 

• Link-edit relocatable modules from system or private relocatable 
libraries with the DOSLKED command. 

• Read core image phases from system or private core image libraries 
into storage for execution using the FETCH command 

Section 9. Developing DOS Programs under eMS 185 



THE SSERV CO~~AND 

If you have cataloged source programs or copy files on the system source 
statement library and you want to use C~S to modify and test them, you 
can copy them into C~S files using the SSERV command. For example, 
suppose you want to copy a book named PROCESS from the A sublibrary on 
the system residence volume. The DOS system residence is in your 
virtual machine configuration at virtual address 350, and you have 
accessed it as your F-disk. First, to indicate to CMS/DOS that the 
system residence is on your F-disk, you enter: 

set dos on f 

then you can enter the SSERV command, specifying the sublibrary 
identification and the book name: 

sserv a process 

This creates, from the A sublibrary, a file named PROCESS COPY and 
places it on your A-disk. If the book contained assembler language 
source statements you would want the filetype to be ASSE~BLE, so you may 
ent er: 

sserv a process assemble 

If you want to copy a book from a private source statement library, 
you must first use the ASSGN and DLBL commands to make the library known 
to CMS/DOS. For example, to obtain a copy file from a private library 
on a DOS disk accessed as your D-disk, enter: 

assqn sysslb d 
dlbl ijsyssl d dsn ? (sysslb 
ENTER DATA SET NA~E: 

program.test library 

low, when you enter the SSERV command: 

sserv t setup copy 

the book named SETUP in the T sublibrary of PROGRAM.TEST LIBRARY is 
copied into a CMS file named SETUP COPY. If SETUP is not found in the 
private library, then C~S searches the system library, if it is 
available. 

THE RSERV COMMAND 

In CMS/DOS, to manipulate relocatable modules that have been cataloged 
either on the system or a private relocatable library you must first 
copy them into CMS files with the RSERV command. You can link-edit 
modules directly from DOS relocatable libraries, but if you want to add 
or modify linkage editor control statements for a module, you must place 
~L ____ ~ __ , ~~_~ ____ ~~ ~ __ ~.c ~~,_ 

\,...1.1-';:;; ....,"'~l\..~V ... ....;J"""u.\"..v"'~ ... A.""'~ ....... "-I. ""'L.1u ........ ~. 

If you are copying a relocatable module from the system relocatable 
library, then you should make sure that you have indicated the system 
residence disk when you entered the C~S/DOS environment: 

set dos on f 

1R6 IBM VM/SP CMS User's Guide 



then you can issue the RSERV command specifying the name of the 
relocatable module you want to copy: 

rserv rtna 

The execution of this command results in the creation of a CMS file 
named RTNA TEXT on your A-disk. 

If you want to copy a relocatable module from 
library, you must first use the ASSGN and DLBL 
private library known to CMS/DOS: 

assgn sysrlb d 
dlbl ijsysrl d dsn reloc lib (sysrlb 

a private relocatable 
commands to make the 

Then, issue the RSERV command for a specific module in that library: 

rserv testrtna 

to create the CMS file TESTRTNA TEXT from the module named TESTRTNA. If 
the module TESTRTNA is not found in RELOC.LIB, CMS searches the system 
library, if it is available. 

THE PSERV COMMAND 

If you want to copy DOS cataloged procedures into CMS files to use, for 
example, in preparing job streams for a DOS virtual machine, you can use 
the PSERV command: 

pserv prep job 

This command creates a CMS file on your A-disk; the file is named 
PREPJOB PROC. To copy a procedure from the proced~e library you must 
have entered the CMS/DOS environment specifying a disk mode for the 
system residence volume. 

You cannot execute DOS/VS procedures directly from the CMS/DOS 
environment. However, if you modify a procedure, you can punch it to a 
virtual machine that is running a DOS system, and execute it there. 

THE ESERV COMMAND 

The CMS/DOS ESERV command is actually an EXEC procedure that calls 
th~ VSE/AF ESERV utility program. To use the ESERV program, you first 
must IPL CMS with a CMSBAM DCSS (shared segment), then create a file 
with a filetype of ESERV that contains the ESERV control statements you 
want to execute. For example, if you want to write a de-edited copy of 
the macro DTFCD onto your A-disk, you might create a file named DTFCD 
ESERV, with the record: 

PUNCH E.DTFCD 

As when you submit ESERV jobs in DOS column 1 must be blank. 

Prior to executing the ESERV program, you must enter the CMS/DOS 
environment by specifying the SET DOS ON command using a VSE/AF system 
residence volume. This is necessary because the ESERVE procedure 
invokes the ESERV program directly from the VSE/AF core image library. 

Section 9. Developing DOS Programs under CMS 181 



Then, you must assign SYSIN to the device on which the ESERV source 
file resides, usually your A-disk: 

assgn sysin a 

Then you can enter the ESERV command specifying the filename of the 
ESERV file: 

eserv dtfcd 

No other ASSGN commands are required; the CMS/DOS ESERV EXEC makes 
default ass~gnments for SYSPCH and SYSLST to disk. 

To copy and de-edit macros from a private E sublibrary, issue the 
ASSGN and DLBL commands to identify the library. For example, to 
identify a source statement library named TEST.MACROS on the DOS disk 
accessed as the C-disk, enter: 

assgn sysslb c 
dlbl ijsyssl c dsn test macros (sysslb 

The SYSLST output is contained in a CMS file with the same filename 
as the ESERV file and a filetype of LISTING; you must examine the 
LISTING file to see if the ESERV program executed successfully. You can 
either edit it, or display its contents with the TYPE command: 

type dtfcd listing 

The SYSPCH output is contained in a file with the same name as the 
ESERV file and a filetype of MACRO. If you want to punch ESERV output 
to your virtual card punch, make an assignment of SYSPCH to PUNCH. 

When you use the PUNCH or DSPCH ESERV control statements, CATAL.S, 
END, or /* records may be inserted in the output file. When you use the 
MACLIB command to add the MACRO file to a CMS macro library, these 
statements are ignored. 

See "Using Macro Libraries" for information on 
manipulating CMS macro libraries. 

THE DSERV COMMAND 

creatin9. and 

You can use the DSERV command to examine the contents of system or 
private libraries. If you do not specify any options with it, the DSERV 
command creates a disk file, named DSERV MAP, on your A-disk. You can 
use the PRINT or TERM options to specify that the directory list is 
either to be printed on your spooled printer or displayed at your 
terminal. You can also use the SORT option to create a list in 
collating sequence. 

In order to examine a system directory, you must have 
C~S/DOS e~~i~0~~e~t specifyi~g the ~01e lette~ of the 
residence: 

set dos on f 

entered the 
DOS c:vc:::+cm -'" - ---

If you want to examine the directory of a private source statement, 
core image, or relocatable library you must issue the ASSGN and DLBL 
commands establishing SYSSLB, SYSCLB, or SYSRLB before using the DSERV 
command. 

188 IBM VM/SP CMS User's Guide 



For example, to display at your terminal an alphameric list of 
procedures cataloged on the system procedure library, you would issue: 

dserv pd (sort term 

If the directory you are examining is for a core image library, you 
can specify a particular phase name to ascertain the existence of the 
phase: 

dserv cd phase $$bopen (term 

To list the directory of a private source statement library, you· 
would first issue the ASSGN and DLBL commands: 

assgn sysslb b 
dlbl ijsyssl b dsn test source (sysslb 

then enter the DSERV command: 

dserv sd 

The CMS file, DSERV MAP A, that is created in this example contains the 
directory of the private source statement library TEST. SOURCE. 

USING DOS CORE IMAGE LIBRARIES 

You can load core image phases from DOS core image libraries into 
virtual storage and execute them under CMS/DOS. Since CMS cannot write 
directly to DOS disks, linkage editor output under CMS/DOS is placed in 
a special CMS file called a DOSLIB. When you execute the FETCH command 
in eMS/DOS you can load phases from either system or private DOS core 
image libraries as well as from CMS DOSLlBs. More information on using 
the FETCH command is contained under "Executing Programs in CMS/DOS." 

Using Macro Libraries 

DOS macro libraries cannot be accessed directly by the VM/SP assembler. 
If you want to assemble DOS programs in CMS/DOS that use DOS macro or 
copy files that are on the system or a private macro library you must 
first create a eMS macro library (MACLlB) containing the macros you wish 
to use. Since the process of creating a eMS MACLlB from the DOS system 
source statement library (E sublibrary) can be very time-consuming, you 
should check with your installation's system programmer to see if.it has 
already been done, and to verify the filename of the macro library, so 
that you can use it in CMS/DOS. 

Nol~: The DOS, PL/l and DOS/VS COBOL compilers executing in CMS/DOS 
cannot read macro or copy files from CMS MACLlBs. Macros and copy files 
are obtained instead from a DOS source statement library. 

If you want to extract DOS system macros to modify them for your 
private use, or if you want to use macros from a private library in CMS, 
you must use the procedure outlined below to create the MICLIB files. 

Section 9. Developing DOS Programs under CMS 189 



CMS MACLIBS 

A CMS macro library has a filetype of MACLIB. You can create a MACLIB 
from files with filetypes of MACRO or COPY. A MACRO file may contain 
macro definitions; COpy files contain predefined, source statements. 

When you want to assemble a source program that uses macro or copy 
definitions, you must ensure that the library containing the code is 
identified befcre you invoke the assembler. otherwise, the library is 
not searched. You identify libraries to be searched using the GLOBAL 
command. For example, if you have two MACLIBs that contain your private 
macros and copy files whose names are TESTMAC MACLIB and TESTCOPY 
MACLIB, you would issue the command: 

global maclib test mac testcopy 

The libraries you specify on a GLOBAL command line are searched in the 
order you specify them. A GLOBAL command remains in effect for the 
remainder of your terminal session, or until you IPL CMS. To find out 
what macro libraries are currently available for searching, issue the 
command: 

query maclib 

You can reset the libraries or the search order by reissuing the GLOBAL 
command. 

CREATING A CMS MACLIB 

To create a CMS macro library, each macro or copy file you want included 
in the MACLIB must first be contained in a CMS file with a filetype of 
COpy or MACRO. If you are creating a CMS MACLIB file from a DOS library 
you must use the SSERV command to copy a file from any source statement 
library other than an E sublibrary, or use the ESERV command to copy and 
de-edit a macro from an E sublibrary. The SSERV command uses a default 
filetype of COPY; the ESERV command uses a default filetype of MACRO. 

The following example shows how to copy macros from various sources 
and shows how to create and use the CMS MACLIB that contains these 
macros. 

1. Enter the CMS/DOS environment with the DOS system residence on a 
disk accessed as mode C: 

set dos on c 

2. Copy the macro book named OPEN from the A sub library of the system 
source statement library: 

sserv a open 

3. Establish a private source statement library: 

access 351 d 
assgn sysslb d 
dlbl ijsyssl d dsn ? (sysslb 
test source. lib 

4. Issue the SSERV command for a macro in the M sublibrary of TEST 
SOURCE. LIB: 

190 IBM VM/SP CMS User's Guide 



sserv m releas 

5. Create an ESERV file to copy from the E sublibrary: 

edit contrl eserv 
NEW FILE 
EDIT: 
input punch contrl 
file 

6. Execute the ESERV command: 

assgn sysin a 
eserv contrl 

7. Create a C~S macro library named MYDOSMAC from the files 1ust 
created, which are named OPEN COPY, REtEAS COPY, and CONTRL ~ACRO: 

8. 

maclib gen mydosmac open releas contrl 

To use these macros in an 
indicate that this ~ACLIB is 
file: 

global maclib mydosmac 

assembler language program, you must 
accessible before assembling a source 

THE MACLIB COM~AND 

The MACLIB command performs a variety of functions. You use it to: 

• Create the ~ACLIB 1GEN function) 
• Add, delete, or replace members (ADD, DEt, and REP functions) 
• Compress the MACLIB (CaMP function) 
• List the contents of the ~ACLIB (MAP function) 

Descriptions of these KACLIB command functions follow. 

GEH Fu~ctiQ~: The GEN (generate) function creates a CMS macro library 
from input files specified on the command line. The input files must 
have filetypes of either ~ACRO or COPY. For example: 

maclib gen mymac get pdump put regequ 

creates a macro library with the file identifier MY~AC MACLIB A1 from 
macros existing in the files with the file identifiers: 

GET {KACRO},PDUMP {KACRO},PUT {KACRO},and REGEQU {KACRO} 
COpy COpy COpy COpy 

If a file named MYMAC ~ACLIB A1 already exists, it is erased. 

Assume that the files GET MACRO, PDUMP COPY, PUT MACRO, and REGEQU 
COpy exist and contain macros in the following form: 

GET MACRO PDUMP COpy PUT MACRO REGEQU COpy 
--------- ---------- --------- -----------

GET *COPY PDUMP PUT XREG 
PDUMP 

WAIT *COPY WAIT YREG 
WAIT 

section 9. Developing DOS ~rograms under CMS 191 



The resulting file, MYMAC MACLIB A1, contains the members: 

GET 
WAIT 
PDUMP 

WAIT 
PUT 
REGEQU 

The WAIT macro, which 
appears twice in the 
duplicate macrc names. 
from MYMAC MACLIB, the 
used. 

appears twice in the input to the command, also 
output. The MACLIB command does not check for 
If, at a later time, the WAIT macro is requested 
first WAIT macro encountered in the directory is 

When COpy files are added to MACLIBs, the name of the library member 
is taken from the name of the COpy file, or from the *COPY statement, as 
in the file PDUMP COPY, above. Note that although the file REGEQU COpy 
contained two macros, they iere both included in the MlCtIB with the 
name REGEQU. When the input file is a MACRO file, the member name is 
taken from the macro prototype statement in the MACRO file. 

AD~ Fu~£!iQn: The ADD function appends new members to an existing macro 
library. For example, assume that MYMAC MlCLIB A1 exists as created in 
the example in the explanation of the GEN function and the file DTFDI 
COpy exists as follows: 

*COPY DTFDI 
DTFDI macro definition 

*COPY DIMOD 
DIMOD macro definition 

If you issue the command: 

maclib add mymac dtfdi 

the resulting MYMAC MACLIB A1 contains the members: 

GET 
WAIT 
PDUMP 
WAIT 

PUT 
REGEQU 
DTFDI 
DIMOD 

]~g Fun£tiQn: The REP (replace) function deletes the directory entry for 
the macro definition in the files specified. It then appends new macro 
definitions to the macro library and creates new directory entries. For 
example, assume that a macro library TESTMAC MACLIB contains the members 
A, B, and C, and that the following command is entered: 

maclib rep test mac a c 

The files represented by file identifiers A MACRO and C MACRO each have 
one macro definition. After execution of the command, TESTMAC MlCLIB 
contains members with the same names as before, but the contents of A 
and C are different. 

~EL FUn£tion: The DEL (delete) function removes the specified macro name 
from th~ macro lihrarv ~ir~~.nrv ~n~ ~nmnr~~~~~ +hA ~iTo~+npv ~n +hOTO 
are no unused ent~ies.~ The macro defi~itio~·-;tili-occ~pi;;-;p~c;-i~-th; 
library, but since no directory entry exists, it cannot be accessed or 
retrieved. If you attempt to delete a macro for which two macro 
definitions exist in the macro library, only the first one encountered 
is deleted. For example: 

maclib del mymac get put wait dtfdi 

192 IBM VM/SP CMS User's Guide 



'\ 

deletes macro names GET, PUT, WAIT, and DTFDI from the directory of the 
macro library named MYMAC MACLIB. Assume that KYKAC exists as in the ADD 
function example. After the above command, MYMAC MACLIB contains the 
following members: 

PDUMP 
WAIT 
REGEQU 
DIM aD 

CaMP Funct~on: Execution of a MACLIB command with the DEL or REP 
functions--can leave unused space within a macro library. The CaMP 
(compress) function removes any macros that do not have directory 
entries. This function uses a temporary file named MACLIB CKSUT1. For 
example, the command: 

maclib comp mymac 

compresses the library MYMAC MACLIB. 

MAP Function: The MAP function creates a list containing the name of 
eachmacro--in t"he directory, the size of the macro, and its position 
within the macro library. If you want to display a list of the members 
of a MACLIB at the terminal, enter the command: 

maclib map my mac (term 

The default oFtion, DISK, creates a file on your A-disk which has a 
filetype of MAP and a filename equal to the filename of the MACLIB. If 
you specify the PRINT option, then a copy of the map file is spooled to 
your virtual printer as well as being written onto disk. 

The following CMS commands supply a MEMBEB option, which allows you to 
reference individual members of a MACLIB: 

• PRINT (to print a member) 
• PUNCH (to punch a member) 
• TYPE (to display a member) 
• FILEDEF (to Establish a file definition for a member) 

You can use the CMS editor to create the 
then use the MACLIB command to place them in a 
in a library, you can erase the original files. 

MACRO and COpy files and 
library. Once they are 

To extract a member from a macro library, you can use either the 
PUNCH or the MOVEFILE command. If you use the PUNCH command you can 
spool your virtual card punch to your own virtual reader: 

cp spool punch to * 
Then punch the member: 

punch testmac maclib (member get noheader 

and read it back onto disk: 

readcard get macro 

Section 9. Developing DOS Programs under CMS 193 



In the above example, the member was punched with the NOHEADER option of 
the PUNCH command, ~o that a name could be assigned on the READCARD 
command line. If a header had been created for the file, it would have 
indicated the filename and filetype as GET MEMBER. 

If you use the MOVEFILE command, you must issue a file definition for 
the input member name and the output macro or copy file before entering 
the MOVEFILE command: 

filedef inmove disk testcopy maclib (member enter 
filedef outmove disk enter copy a 
movefile 

This example copies the member ENTER from the macro library TESTCOPY 
MACLIB A into a CMS file named ENTER COPY. 

When you use the PUNCH or MOVEFILE commands to extract members from 
CMS MACLIBs, each member is followed by a II record, which is a MACLIB 
delimiter. You can edit the file and use the DELETE subcommand to 
delete the // record. 

If you wish to move the complete MACLIB to another file, use the 
COPYFILE command. 

The macro libraries that are on the system disk contain CMS, DOS, and OS 
assembler language macros. The MACLIBs are: 

• CMSLIB MACLIB, which contains the CMS macros. 

• DMSSP MACLIE, which contains CMS macros for VM/SP (Program No. 
5664-167) • 

• OSMACRO MACLIB, OSMACR01 MACLIB, and TSOMAC MACLIB, which are used by 
OS programmers. 

DOS Assembler Language Macros Supported 

Figure 18 lists the VSE/AF assembler language macros supported by 
eMS/DOS. You can assemble source programs that contain these macros 
under CMS/DOS, provided that you have the macros available in either 
your own or a shared CMS macro library. The macros whose functions are 
described in the "Function" column with the term "no-op" are supported 
for assembly only; when you execute programs that contain these macros, 
the VSE/AF functions are not performed. To accomplish the macro 
function you must execute the program in a VSE/AF virtual machine. 

194 IBM VM/SP CMS User's Guide 



r -----------------------, 
I, Macro 1 SVC 
1------
1 CALL 
1 CANCEL 
1 CDLOAD 
1 CHECK 
1 CLOSE/ 

CLOSER 
CNTRL 
COMRG 

DEQ 
DTFxxl 
DUMP 
ENQ 
EOJ 
ERET 
EXCP 
EXIT PC 
EXIT AB 
EXTRACT 

FCEPGOUT 
FETCH 

FREE 
FREEVIS 
GENL 
GET 
GETVIS 
GETIME 
JDUMP 
LOAD 
LOCK/ 

UNLOCK 
MVCOM 
NOTE 
OPEN/ 

OPENR 
PAGEIN 
PDUl1P 
PFIX 
PFREE 
POINTR 
POINTS 
POINTW 
POST 
PRTOV 
PUT 
PUTR 
READ 
RELPAG 
RELSE 
RETURN 
RUN!10DE 
SECTVAL 
SETI!1E 
SETPFA 
STXIT AB 

PC 
1 IT 
1 OC 
1 SUBSID 
1 TRUNC 
1 TTII1ER 
1 WAIT 
1 WRITE 
1 xxMOD2 

06 
65 

33 

41 

42 
14 

00 
17 
95 
98 

86 
01 
02 
36 
62 

61 
34 

04 

110 
05 

87 

67 
68 

40 

85 

66 
75 

10/24 
71 
37 
16 
20 
18 

105 

52 
07 

Function 

Pass contrel to another program 
Terminate processing 
Load a VSAM phase 
Verify completion of a read or write operation 

Deactivate a data file 
Control a physical device 
Return address of background partition 

communication region 
no-op 
Establish file definitions 
Dump storage and registers and terminate processing 
no-op 
Terminate processing normally 
Provide an error routine 
Execute a channel program 
Return from program check routine 
Return from abnormal termination routine 
Retrieve PUB, storage boundaries, or CPUID 

information 
no-op 
Load and pass control to a phase 
Load and pass control to a logical transient 
no-op 
Release user free storage 
Generate a phase directory list 
Access a sequential file 
Obtain user free storage 
Get the time of day 
Dump storage and registers and terminate processing 
Read a phase into storage 

Resource control 
Modify bytes in the partition communication region 
Manage data set access 

Activate a data file 
no-op 
Dump storage and registers and continue processing 
no-op 
no-op 
Position a file for reading 
Reposition a file to its beginning 
position a file for writing 
Post the event control block 
Control printer overflow 
write to a sequential file 
communicate with the system operator 
Access a sequential file 
no-op 
Skip to begin reading next block 
Return control to calling program 
Check if program ~s running real or virtual 
Obtain a sector number 
no-op 
no-op 
Provide or terminate linkage to abnormal ending 

routine 
no-op 
no-op 
Retrieve information on supervisor subsystem 
Skip to begin writing next block 
Return a 0 in Register 0 (effectively a noop) 
wait for the completion of I/O 
Write to a sequential file 
Create Logical laCS routine inline 

1 , lThe declarative macros supported are: 
1 
1 
1 
1 

DTFCN, DTFCD, DTFPR, DTFDI, DTFMT, DTFSD 

2The DOS logic modules supported are: 
CDMOD, PRI10D, DIMOD, MTMOD 

I 

L _____ , ___________________--J 

Figure 18. VSE/AF Macros Supported by CMS 

section 9. Developing DOS Programs under CMS 195 



Assembling Source Programs 

If you are a DOS assembler language programmer using CMS/DOS, you should 
be aware that the assembler used is the VM/SP assembler, not the DOS 
assembler. The major difference is that the VM/SP assembler, invoked by 
the ASSEMBLE command, is designed for interactive use, so that when you 
assemble a program, error messages are displayed at your terminal when 
compilation is completed, and you do not have to wait for a printed 
listing to see the results. You can correct yeur source file and 
reassemble it immediately. When your program assembles without errors, 
you can print the listing. 

To specify options to be used during the assembly, you enter them on 
the ASSEMBLE command line. So, for example, if you do not want the 
output LISTING file placed on disk, you can direct. it to the printer: 

assemble myfile (print 

All of the ASSEMBLE command options are listed in VML2f ~A~ ~2mm~nd ~ 
l1~£J;:Q Re!~~.n£~. 

When you invoke the ASSEMBLE command specifying a file with a 
filetype of ASSEMBLE, CMS searches all of your accessed disks, using the 
standard search order, until it locates the file. When the assembler 
creates the output LISTING and TEXT files, it writes them onto disk 
according to the following priorities: 

1. If the source file is on a read/write disk, the TEXT and LISTING 
files are written onto the same disk. 

2. If the source file is on a read-only disk that is an extension of a 
read/write disk, the TEXT and LISTING files are written onto the 
parent disk. 

3. If the source is on any other read-only disk, the TEXT and LISTING 
files are written onto the A-disk. 

In all of the above cases, the filenames assigned to the TEXT and 
LISTING files are the same as the filename of the input file. 

The output files used by the assembler are defined via FILEDEF 
commands issued by CMS when it calls the assembler. If you issue a 
FILEDEF command using one of the assembler ddnames before you issue the 
ASSEMBLE command, you can override the default file definitions. 

The ddname for the source input file is ASSEMBLE. If you enter: 

filedef assemble reader 
assemble sample 

then the assembler reads your input file from your card reader, and 
assigns the filename SAMPLE to the output TEXT and LISTING files. You 
can use this method to assemble programs directly from DOS sequential 
files on DOS disks. For example, to assemble a source file named 
D05PROG from a vas disk accessed as a C-disk, you could enter: 

filedef assemble c dsn dosprog (recfm f lrecl 80 
assemble dosprog 

Again, the name you assign on the ASSEMBLE command may be anything; the 
assembler uses this name to assign filenames to the TEXT and LISTING 
output files. 

196 IBM VM/SP CMS User's Guide 

_ .... _ ... _ .. --_ .. _ .....•.....••..•... -. __ .. _ ............ -.•.• - .•...... -.-.-.. --.~--- .... -



LISTING and TEXT are the ddnames assigned to the SYSLST and SYSPCH 
output of the assembler. You might issue file definitions to override 
these defaults as follows: 

filedef listing disk assemble listfile a 
filedef text disk assemble textfile a 
assemble source 

When these commands are executed, the output from the assembly of the 
file SOURCE ASSEMBLE is written to the disk files ASSEMBLE LISTFILE and 
ASSEMBLE TEXTFILE. 

Link-editing Programs in eMS/DOS 

When the assembler or one of the language compilers executes, the object 
module produced is written to a CMS disk in a file with a filetype of 
TEXT. The filename is always the same as that of the input source file. 
These TEXT files (sometimes referred to as decks, although they are not 
real card decks) can be used as input to the linkage editor or can be 
the target of an INCLUDE linkage editor control statement. 

You can invoke the CMS/DOS linkage editor with the DOSLKED command, 
for example: 

doslked test test lib 

where TEST is the filename of either a DOSLNK or TEXT file (that is, a 
file with a filetype of either DOSLNK or TEXT) or the name of a 
relocatable module in a system or private relocatable library. TESTLIB 
indicates the name of the output file which, in CMS/DOS, is a phase 
library with a filetype of DOSLIB. 

When you issue the DOSLKED command, CMS first searches for a file 
with the specified name and a filetype of DOSLNK. If none are found, it 
searches the private relocatable library, if you have assigned one (you 
must issue an ASSGN command for SYSRLB and use the ddname IJSSYRL in a 
DLBL statement). If the module is still not found, CMS searches all of 
your acce~sed disks for a file with the specified name and a filetype of 
TEXT. Last, CMS searches the system relocatable library, if it is 
available (you must enter the CMS/DOS environment specifying the mode 
letter of the DOS system residence if you want to access the system 
libraries) • 

LINKAGE EDITOR INPUT 

You can place the linkage editor contrel statements ACTION, PHASE, 
INCLUDE, and ENTRY in a CMS file with a filetype of DOSLNK. When you 
use the INCLUDE statement, you may specify the filename of a CMS TEXT 
file or the name of a module in a DOS relocatable library: 

INCLUDE XYZ 

or you may use the INCLUDE control statement to indicate that the object 
code follows: 

INCLUDE 
(CMS TEXT file) 

A typical DOSLNK file, named 
following: 

CONTROL DOSLNK, might contain the 

Section 9. Developing DOS Programs under CMS 197 



ACTION REL 
PHASE PROGMAIN,S 
INCLUDE SUBA 
PHASE PROGA,* 
INCLUDE SUBB 

When you issue the command: 

doslked control 

the linkage editor searches the following for the object files SUBI and 
SUBB: 

• A DOS private relocatable library, provided you have issued the lSSGN 
and DLBL commands to identify it: 

assgn sysrlb d 
dlbl ijsysrl d dsn ? (sysrlb 

• Your CMS disks for files with filenames SUBA and SUBB and a filetype 
of TEXT 

• The system relocatable library located on the DOS system residence 
volume (if it is available) 

When you want to link-edit individual CMS TEXT files, you can insert 
linkage editor control statements in the file using the CMS editor and 
then issue the DOSLKED command: 

edit rtnb text 
EDIT: 
input include rtnc 
file 
doslked rtnb mydoslib 

When the above DOSLKED command is executed, the CMS file RTNB TEXT is 
used as linkage editor input, as long as there is no file named RTNB 
DOSLNK. The ACTION statement, however, is not recognized in TEXT files. 

You can also link-edit relocatable modules directly from a DOS system 
or private relocatable library, provided that you have identified the 
library. If you do this, however, you cannot provide control statements 
for the linkage editor. 

To link-edit a relocatable module from a DOS private library and add 
linkage editor control statements to it, you could use this procedure: 

1. Identify the library and use the RSERV command to copy the 
relocatable module into a CMS TEXT file. In this example, the 
module RTNC is to be copied from the library OBJ.MODS: 

R~~g!! Eys:rlb ~ 
dlbl ijsysrl e dsn obj mods (sysrlb 
rserv rtnc 

2. Create a DOSLNK file, insert the linkage editor control statements, 
and copy the TEXT file created in step 1 into it using the GETFILE 
subcommand: 

198 IBM VM/SP eMS User's Guide 



3. 

edit rtnc doslnk 
input action reI 
getfile rtnc text a 
file 

Invoke the linkage editor with the DOSLKED command: 

doslked rtnc mydoslib 

~lternatively, you could create a DOSLNK file with the following 
records: 

ACTION REL 
INCLUDE RTNC 

and link-edit the module directly from the relocatable library. If you 
do not need a copy of the module on a CMS disk, you might want to use 
this method to conserve disk space. 

When the linkage editor is reading modules, it may encounter a blank 
card at the end of a file, or a * (commen~ card at the ·beginning of a 
file. In either case, it issues a warning message indicating an invalid 
card, but continues to complete the link-edit. 

LINKAGE EDITOR OUTPUT: CMS DOSLIBS 

The CMS/DOS linkage editor always places the link-edited executable 
phase in a CMS library with a filetype of DOSLIB. You should specify 
the filename of the DOSLIB when you enter the DOSLKED command: 

doslked progO templib 

where PROGO is the relocatable module you are link-editing and TEMPLIB 
is the filename of the DOSLIB. 

If you do not specify the name of a DOSLIB, the output is placed in a 
DOSLIB that has the same name as the DOSLNK or TEXT file being 
link-edited. In the above example, a CMS DOSLIB is created named 
TEMPLIB DOSLIB, or, if the file TEMPLIB DOSLIB already exists, the phase 
PROGO is added to it. 

DOSLIBs can contain relocatable core image phases suitable for 
execution in CMS/DOS. Before you can access phases in it, you must 
identify it to CMS with the GLOBAL command: 

global doslib templib permlib 

When CMS is searching for executable phases, it searches all DOSLIBs 
specified on the last GLOBAL DOSLIB command line. If you have named a 
number of DOSLIBs, or if any particular DOSLIB is very large, the time 
required for CMS to fetch and execute the phase increases. You should 
use separate DOSLIBs for executable phases, whenever possible, and then 
specify only the DOSLIBs you need on the GLOBAL command. 

When you link-edit a module into a DOSLIB that already contains a 
phase with the same name, the directory entry is updated to point to the 
new phase. However, the space tha t was occupied by the old phase is not 
reclaimed. You should periodically issue the command: 

doslib comp libname 

section 9. Developing DOS Programs under CMS 199 



where libname is the filename of the DOSLIB, to compress the DOSLIB and 
delete unused space. 

The DOSLKED command also produces a linkage editor map, which it writes 
into a CMS file with a filename that is that of the name specified on 
the DOSLKED command line and a filetype of MAP. The filemode is always 
AS. If you do not want a linkage editor map, use the NOMAP option on 
the ACTION statement in a DOSLNK file. 

Executing Programs in eMS/DOS 

Aft er you have assembled or compiled a source program and link-edited 
the TEXT files, you can execute the phases in your CMS virtual machine. 
You may not, however, be able to execute all your DOS programs directly 
in CMS. There are a number of execution-time restrictions placed on your 
virtual machine by VM/SP. You cannot execute a program that uses: 

• Multitasking 
• More than one partition 
• Teleprocessing 
• ISAM macros to read or write files 
• CMS module files created by DOS programs 

The above is only a partial list, representing those restrictions with 
which you might be concerned. For a complete list of restrictions, see 
the !~L~R R!snning sng ~~!~~ Q~~~~tiQn Guig~. See also the usage 
notes of the FETCH command in the !1!L[f CM§. Com~~ng sng Ma£I.Q Re:f~~l!'£.!!. 

EXECUTING DOS PHASES 

You can load executable phaSes into your CMS virtual machine using the 
FETCH command. phases must be link-edited before you load them; they 
must have been link-edited with ACTION REL. When you issue the FETCH 
command, you specify the name of the phase to be loaded: 

fetch myprog 

Then you can begin executing the program by issuing the START command: 

start 

Or, you can fetch a phase and begin executing it on a single command 
line: 

fetch prog2 (start 

;hen you u~e the FETCH c0illillalld ~llhotil th~ START up~~un, ~n~ issues a 
message telling you at what virtual storage address the phase is loaded: 

PHASE PROG2 ENTRY POINT AT LOCATION 020000 

Location x'20000' is the starting address of the user program area for 
CMS; relocatable phases are always loaded starting at this address 
unless you specify a different address using the ORIGIN option of the 
FETCH command: 

200 IBM VM/SP CMS User's Guide 



fetch prog3 (origin 22000 
start 

The program PROG3 executes beginning at location 22000 in the CMS user 
program area. 

SEARCH ORDER FOR EXECUTABLE PHASES 

When you execute the FETCH command, CMS searches for the phase name you 
specify in the following places: 

1. In a ~OS private core image library on a DOS disk. If you have a 
private library you want searched for phases, you must identify it 
using the ASSGN and DLBL commands, using the logical unit SYSCLB: 

2. 

assgn sysclb d 
dlbl ijsyscl d dsn ? (sysclb 

In CMS DOSLIBs on CMS 
phases, you must use 
CMS/DOS: 

disks. If you want 
the GLOBAL command 

global doslib templib mylib 

DOSLIBs searched 
to identify them 

You can specify up to eight DOSLIBs on the GLOBAL command line. 

for 
to 

3. On the DOS system residence core image library. If you want the 
system core image library searched you must have entered the 
CMS/DOS environment specifying the mode letter of the system 
residence: 

set dos on z 

When you want to fetch a core image phase that has copies in both the 
core image library and a DOSLIB, and you want to fetch the copy from the 
CMS DOSLIB, you can bypass the core image library by entering the 
command: 

assgn sysclb ua 

When you need to use the core image library, enter: 

assgn sysclb c 

where C is the mode letter of the system residence volume. You do not 
need to reissue the DLBL command to identify the library. 

MAKING I/O DEVICE ASSIGNMENTS 

If you are executing a program that performs I/O, you can use the ASSGN 
command to relate a system or programmer logical unit to a real I/O 
device: 

assgn syslst printer 
assgn sys052 reader 

In this example, your program is going to read input data from your 
virtual card reader; the output print file is directed to your virtual 

Section 9. Developing DOS Programs under CMS 201 



printer. If you want to reassign these units to different devices, you 
must be sure that the files have been defined as device independent. 

If you assign a logical unit to a disk, you should identify the file 
by using the DLBL command. On the DLBL command, you must always relate 
the DLBL to the system or programmer logical unit previously specified 
in an ASSGN command: 

assgn sys015 b 
dlbl myfile b dsn ? (sys015 

When you enter the DLBL command with the ? operand you are prompted to 
enter the DOS file-ide 

You must issue all of the ASSGN and DLBL commands necessary for your 
program's I/O before you issue the FETCH command to load the program 
phase and begin executing. 

SPECIFYING A VIRTUAL PARTITION SIZE 

For most of the programs that you execute in CMS, you do not need to 
specify how large a partition you want those programs to execute in. 
When you issue the START command or use the START option on the FETCH 
command, CMS calculates how much storage is available in your virtual 
machine and sets a partition size. CMS calculates how much storage is 
available in the following manner: 

FREELOWE - (MAINHIGH + (4096 * FRERESPG» 

where: 

FREELOWE equals the low extent of allocated storage obtained from the 
top of virtual storage downwards via the DMSFREE system 
request. 

MAINHIGH equals the high extent of allocated storage obtained from the 
low virtual storage upwards via the GETMAIN user request for 
storage. 

FRERESPG equals the amount of storage to be reserved for subsequent 
system requests, in pages. 

In some instances, you may want to control the partition size: 

• For performance considerations 

• Because the default may not leave enough free storage to satisfy the 
GETVIS commands issued by the DOS program or the access method 
services function being executed. 

You can set the partition size with the DOSPART operand of the SET 
command. For example, after you enter the command: 

set dospart 300k 

all programs that you subsequently execute during this session will 
execute in a 300K partition. In this way you can: 

• Set a smaller partition size for programs that run better in smaller 
partitions. 

202 IBM VM/SP CMS User's Guide 



• set a smaller partition size to leave more free storage. If the 
reduction of the DOS partition does not free enough storage for the 
GETVIS commands, a larger virtual machine must be defined. 

If you enter: 

set dospart off 

the CMS calculates a partition size when you execute a program. This is 
the default setting. Note that the CMS partition, unlike the DOS 
partition, is used only for the loading and executing of programs 
invoked by the FETCH or LOAD commands. Areas allocated by GETVIS will 
be assigned addresses outside the partition but within the user's 
virtual machine. 

SETTING THE UPSI BYTE 

If your program uses the user program switch indicator (UPSI) byte, you 
can set it by using the UPSI operand of the CMS SET command. The UPSI 
byte is initially binary zeros. To set it to ls, enter 

set upsi 11111111 

To reset it to zeros, enter: 

set upsi off 

Any value you set remains in effect for the duration of your terminal 
session, unless you reload CMS (with the IPL command) • 

DEBUGGING PROGRAMS IN CMS/DOS 

You can debug your DOS programs in CMS/DOS using the facilities of CP 
and CMS. By executing your programs interactively, you can more quickly 
determine the cause of an error or program abend, correct it, and 
attempt to execute a program again. 

The CP and CMS debugging facilities are described in "Section 11. How 
VM/SP Can Help You Debug Your Programs." Additional information for 
assembler language programmers is in "Section 13. Programming for the 
CMS Environment." 

USING CMS EXEC PROCEDURES IN CMS/DOS 

During your program development and testing cycle, you may want to 
create CMS EXEC procedures to contain sequences of CMS commands that you 
execute frequently. For example, if you need a number of MACLIBs, 
DOSLIBs, and DLBL definitions to execute a particular program, you might 
have an EXEC procedure as follows: 

section 9. Developing DOS Programs under CMS 203 



&CCNTROL ERROR TIME 
&ERROR &EXIT &RETCODE 
GLOBAL MACLIB TESTLIB DOSMAC 
ASS EMBLE TESTA 
PRINT TESTA LISTING 
DOSLKED TESTA TESTLIB 
GLOBAL DOSLIB TESTLIB PROGLIB 
ACCESS 200 E 
ASSGN SYS010 E 
&BEGSTACK 
DOS.TEST3.STREAK.BETA 
&END 
DLBL DISKl E DSN ? (SYS010 
ASSGN SYS011 PUNCH 
CP SPOOL PUNCH TO * 
ASSGN SYS012 A 
DLBL OUTFILE A CMS TEST DATA (SYS012 
FETCH TESTA (START 
&11 &RETCODE = 100 &GOTO -RET100 
&IF &RETCODE = 200 &GOTO -RET200 
&EXIT &RETCODE 
-RET100 &CONTINUE 

-RET200 &CONTINUE 

The &CONTROL and &ERROR control statements in the EXEC procedure 
ensure that if an error occurs during any part of the EXEC, the 
remainder of the EXEC does not execute, and the execution summary of the 
EXEC indicates the command that caused the error. 

Note that for the DLBL command entered with the DSN ? operand, you 
must stack the response before issuing the DLBL command. In this 
example, since the DOS file-id has more than eight characters, you must 
use the &BEGSTACK control statement to stack it. If you use the &STACK 
control statement, the EXEC processor truncates all words to eight 
characters. 

When your program is finished 
&RETCODE indicates the contents of 
program exited. You can use this 
your EXEC procedure. Additional 
example by ellipses. 

executing, the EXEC special variable 
general register 15 at the time your 
value to perform additional steps in 

steps are indicated in the preceding 

For detailed information on creating EXEC procedures, see "Part 3. 
Learning To Use EXECs." 

20Q IBM VM/SP CMS User's Guide 



~\ 

Section 10. Using Access Method Services 
and VSAM under CMS and CMS/DOS 

This section describes how you can use CMS to create and manipulate VSAM 
catalogs, data spaces, and files on as and DOS disks using access method 
services. The CMS support is based on VSE/AF and VSE/VSAM; this means 
that if you are an as VSAM user and plan to use CMS to manipulate VSAM 
files you are allowed to use those functions of access method services 
that are available under DOS/VS access method services. the access 
method services portion of VSE/VSAM. The control statements you can use 
are described in the publication ysing!SELISA~ Com~nds gng ~~2B. 

You can use CMS to: 

• Execute the access method services utility programs for VSAM and SAM 
data sets on as and DOS disks and minidisks. CMS can both read and 
write VSAM files using access method services. 

• Compile and execute programs that read and write VSAM files from DOS 
programs written in the COBOL or PL/I programming languages. 

• Compile and execute programs that read and write VSAM files from as 
programs written in the VS BASIC, COBOL, or PL/I programming 
languages. 

VSAM files written under CMS are written using VSE/VSAM. Certain 
files written under CMS cannot be used directly by OS/VS VSAM. For 
information relative to compatibility between VSE/VSAM and OS/VS VSAM 
files, you should refer to the !~~!~!~ Gengral ImformatiQn ~snual. 
None of the CMS commands normally used to manipulate CMS files are 
applicable to VSAM files, however. This includes such commands as PRINT, 
TYPE, EDIT, COPYFILB, and so on. 

This section provides information on using the CMS 
with which you can execute access method services. The 
divided as follows: 

AMSERV command 
discussion is 

• "Using the AMSERV command" contains general information. 

• "Manipulating as and DOS Disks for Use With AMSERV" describes how to 
use CMS commands with as and DOS disks. 

• "Defining DOS Input and Output Files" is for CMS/DOS users only. 

• "Defining as Input and Output Files" is for as users only. 

• "Using AMSERV Under CMS" includes notes and examples showing how to 
perform various access method services functions in CMS. 

EXECUTING VSAM PROGRAMS UNDER CMS 

The commands that are used to define input and output data sets for 
access method services (DLBL) and for CMS/DOS users (ASSGN) are also 
used to identify VSAM input and output files for program execution. 
Information on Executing programs under CMS that manipulate VSAM files 
is contained in the program product documentation for the language 
processors. These publications are listed in the VM~f Introducti2n. 

section 10. Using Access Method Services and VSAM 205 



Restrictions on the use of access method services and VSAM under CMS 
for as and DOS users are listed in VM~f CM~ ~.Q~nd SllQ Magg 
Re!~~~~~~, which also contains complete CMS and CMS/DOS command formats, 
operand descriptions, and responses for each of the commands described 
here. 

When you are 
should remember 
catalog, as well 
define. 

going to execute VSAM programs in CMS or CMS/DOS, you 
to issue the DLBL command to identify the master 

aE any other program input or output file you need to 

VSE/VSAM Release 2 has reduced its dependency on explicit ASSGN, 
EXTENT, and DLBL information. In many cases, this type of information 
need no longer be specified by the user. Identification of the master 
catalog within CMS, however, still requires ASSGN and DLBL commands. 

For complete inforamtion concerning the ASSGN, DLBL, and EXTENT 
requirements, refer to the !~!L!~ grog~m~~ !~fer~n~. 

In the discussion that follows, ASSGN, DLBL, and EXTENT information 
is included even though it may not be required. 

Using the AMSERV Command 

In CMS, you execute access method services utility programs with the 
AMSERV command, which has the basic format: 

amserv filename 

"filename" is the name of a CMS file that contains the control 
statements for access method services. 

N01~: Throughout the remainder of this section the term "AMSERV" is used 
to refer to both the CMS AMSERV command and the OS/VS or VSE/VSAM access 
method services, except where a distinction is being made between CMS 
and access method services. 

You create an AMSERV file with the CMS editor using a filetype of 
AMSERV and any filename you want; for example: 

edit mastcat amserv 
NEW FILE: 
EDIT: 
input 

The editor recognizes the filetype of AMSERV and so automatically sets 
the margins for your input lines at columns 2 and 72. The sample AMSERV 
file being created in the example above, MASTCAT AMSERV, might contain 
the following control statements: 

DEFINE MASTERCATALOG (NAME (MYCAT) -
VOLUME (123456) CYL(2) -
FILE (IJ SYSCT) ) 

Note that the syntax of the control statements must conform to the rules 
for access method services, including continuation characters and 
parentheses. The only difference is that the AMSERV file does not 
contain a "1*" for a termination indicator. 

Before yo~ can execute the DEFINE control statement in this AMSERV 
example, you must define the output file, using the ddname IJSYSCT. You 
v~u do this using the DLBL command, it required by VSE/VSAM. Since the 

20§ IBM VM/SP CMS User's Guide 



exact form required in the DLBL command varies according to whether you 
~ are an OS or a DOS user, separate discussions of the DLBL command are 
~ provided later in this section. All of the following examples assume 

that any disk data set or file that you are referencing with an AMSERV 
command will have been defined by a DLBL command, if required by 
VSE/VSAM. . 

When you execute the AMSERV command, the AMSERV control statement 
file can be on any accessed CMS disk; you do not need to specify the 
filemode and, if you are a DOS user, you do not need to assign SYSIPT. 
The task of locating the file and passing it to access method services 
is performed by CMS. 

AMSERV OUTPUT LISTINGS 

When the. AMSERV command is finished processing, you receive the eMS 
ready message, and if there was an error, the return code (from register 
15) is displayed following the "R". For example: 

R(00008); 

or, if you are receiving the long form of the ready message, it appears: 

R(00008); T=0.01/0.11 10:50:23 

If you receive a ready message with an error return code, you should 
examine the output listing from AMSERV to determine the cause of the 
error. 

y AMSERV output listings are written in CMS files with a filetype of 
LISTING; by default, the filename is the same as that of the input 
AMSERV file. For example, if you have executed: 

amserv mast cat 

and the CMS ready message indicates an error return code, you should 
examine the file MASTCAT LISTING: 

edit mastcat listing 
EDIT: 
locate /idc/I= 

Issuing the LOCATE subcommand twice to find the character string IDC 
will position you in the LISTING file at the first access method 
serviCES message. 

The publication !§]L!2!~ ~~§§gg~ ~~g £od~ lists and explains all of 
the messages generated by access method services together with the 
associated return and reason codes. 

Instead of editing the file, you could also use the TYPE command to 
display the contents of the entire file, so that you would be able to 
examine the input control statements as well as any error messages: 

type mastcat listing 

If you need to make changes to control statements before executing 
the AMSERV command again, use the CMS editor to modify the AMSERV input 
file. 

Section 10. Using Access Method Services and VSAM 2(#1 



If you execute the same AMSERV file a number of times, each execution 
results in a new LISTING file, which replaces any previous listing file 
with the same filename. 

When you use AMSERV to print a VSAM file, or to list catalog or recovery 
area contents using the PRINT, LISTCAT, or LISTCRA control statementE, 
the output is written in a listing file on a CMS read/write disk, and 
not spooled to the printer unless you use the PRINT option of the AMSERV 
command: 

amserv listcat (print 

If you want to save the output, you should issue the AMSERV command 
without the PRINT option and then use the CMS PRINT command to print the 
LISTING file. 

CONTROLLING AMSERV COMMAND LISTINGS 

The final disposition of the listing, as a printer or disk file, depends 
on how you enter the AMSERV command. If you enter the AMSERV command 
with no options, you get a CMS file with a filetype of LISTING and a 
filename equal to that of the AMSERV input file. This LISTING file is 
usually written on your A-disk, but if your A-disk is full or not 
accessed, it is written on any other read/write eMS disk you have 
accessed. 

If there is not enough room on your A-disk or any other disk, the 
AMSERV command issues an error message saying that it cannot write the 
LISTING file. If this happens, the LISTING file created may be 
incomplete and you may not be able to tell whether or not access method 
services actually completed successfully. In this case, after you have 
cleared some space on a read/write disk, you may have to execute an 
AMSERV PRINT or LISTCAT function. to verify the completion of the prior 
job. 

LISTING files take up considerable disk space, so you should erase 
them as soon as you no longer need them. 

If you do not want AMSERV to create a disk file from the listing, you 
can execute the AKSERV command with the PRINT option: 

amserv myfile (print 

The listing is spooled to your virtual printer, and no disk file is 
created. You might want to use this option if you are executing a PRINT 
or LISTCAT control statement and expect a very large output listing that 
you know cannot be contained on any of your disks. 

You can also control the filename of the output listing file by 
specifying a second name on the AMSERV command line: 

208 IBM VM/SP CMS User's Guide 



amserv 1istcat 1istcat1 

~ In this example, the input file is LISTCAT AMSERV and the output listing 
is placed in a file named LISTCAT1 LISTING. A subsequent execution of 
this same AMSERV file: 

amserv 1istcat 1istcat2 

creates a second listing file, LISTCAT2 LISTING, so that the listing 
created from the first execution is not erased. 

Manipulating OS and DOS Disks for Use with AMSERV 
/ 

To use CMS VSAM and AMSERV, you can have OS or DOS disks in your virtual 
machine configuration. They can be assigned in your directory entry, or 
you can link to them using the CP LINK command. You must have read/write 
access to them in order to execute any AMSERV function or VSAM program 
that requires opening the file for output or update. 

Before you can use an OS or DOS disk you must access it with the CMS 
ACCESS command: 

access 200 d 

The response from the ACCESS command indicates that the disk is in OS or 
DOS format: 

D(200) R/W - OS 

-- or --

D(200) R/i - DOS 

You can write on these disks cnly through AMSERV or througb the 
execution of a program writing VSAM data sets. Once an OS disk is used 
with AMSERV or VSAM, CMS considers it a DOS disk, so regardless of 
whether you are an OS user, when you access or request information about 
a VSAM disk, CMS indicates that it is a DOS disk. You can still use the 
disk in an OS or DOS system for VSAM data set processing. Although the 
format is not changed, the disk is still subject to any 
incompatibilities that can currently exist between OS and DOS disks. 

DATA AND MASTERCATALOG SHARING 

There are two meanings of "sharing" that must be defined clearly with 
respect to the CMS support of VSAM. The first is that of the 
SHAREOPTION parameter found in the DEFINE (and ALTER) command for access 
met hod services. 

The SHAREOPTION keyword enables the VSAM user to define how a 
component will te shared within or across VSE/AF partitions and VSE/AF 
systems. Since CMS supports only a single partition environment, cross 
partition sharing has no meaning in the CMS environment. In addition, 
since CMS does not provide DASD sharing support, cross system sharing is 
not supported. Consequently, the SHAREOPTION parameter only has meaning 
within a CMS virtual machine (functional equivalent of a VSE/AF 
partition) • 

Section 10. Using Access Method Services and VSAM 209 



The area of sharing most familiar to CMS users is that of disk 
(minidisk) read-sharing provided by CP. For the VSAM user under CMS, it 
is still possible to share disks in read-only mode in order to 
read-share VSAM components. However, there is a restriction with 
respect to the VSAM master catalog. That is, cnly one virtual machine 
may have the disk containing the master catalog in write status. This 
is necessary even if only read functions are being performed during the 
session. This is due to the master catalog updating read statistics at 
close time and, when necessary, writing a new control record in the 
catalog at open time. 

Under CMS, it is possible to have the master catalog disk read-only. 
A programming modification (a bit in the ACB) was made to the DOS/VS 
VSAM code so that VSAM knows it is running under CMS. If this bit is 
on, VSAM will not write to the master catalog for either of the two 
cases described above. This allows one or more CMS virtual machines to 
share the VSAM master catalog. This assumes either no other virtual 
machine has the master catalog disk in write status or only one virtual 
machine (DOS, OS, or eMS) has it. 

Multiple CMS users may have the VSAM master catalog disk in read-only 
status but only one virtual machine may have the same in write status. 
with respect to dataset sharing, there is only read-sharing for the CMS 
user. 

DISK COMPATIBILITY 

Since the CMS VSAM support writes VSAM datasets to DOS disks, the 
question of disk compatibility is not one between eMS and DOS nor 
between CMS or OS hut rather between DOS and OS disks. In other vords, 
because eMS actually uses VSE/VSAM for processing VSAM datasets, all 
disks used by eMS VSAM are DOS disks. For this reason, we need only 
discuss how DOS and OS disks are compatible and, because they are 
compatible, we can conclude that CMS and OS are also compatible. 

In the format-4 DSCB, there is a bit in the VTOC Indicators (byte 59, 
tit 0) defined by OS/VS to indicate (when OFF) that a format-5 label is 
included in the VTOC. This bit is always ON under VSE/AF because DOS 
does not maintain the format-5 label. This technique allows OS/VS to 
realize when the format-5 is invalid and that it must recompute free 
space and rewrite the format-5 so that device integrity is maintained. 

Thus, if a disk originally was used (allocated) under OS/VS and, 
subsequently, with VSE/AF further allocation could occur under VSE/AF 
but with the format-5 ignored and, therefore, no lenger valid. If the 
disk was then used under OS/VS and still further allocation performed, 
OS/VS would recognize the fact that the format-5 was not valid 
(contamination bit turned ON by VSE/AF and would rewrite the format-5, 
turning the bit OFF. 

In terms of space allocation, this shows that DOS and OS disks are 
compatible in that they are portable between the two systems, but one of 
the systems (OS/VS) must perform some extra procP~~i~g (~e~~iti~g 

format-5) prior to using the disk if it intends to reallocate using the 
format-5. 

DOS and as disks containing VSAM datasets are no exception to this. 
OS and DOS disks containing VSAM datasets that are used (allocated) 
under eMS,are portable among all three systems. Since CMS uses VSE/VSAM 
code, all disks used under CMS to process VSAM datasets become DOS disks 
in that the contamination bit is turned ON as it is when using VSE/AF. 

210 IBM VM/SP eMS User's Guide 



The term "minidisk" may be interchanged with the word "disk" in the 
above explanation if we are dealing with "virtual" VSE/AF and OS/VS 
systems. However, real systems are not aware of, and do not support, 
minidisks. 

VSE/VSAM uses physical record sizes ranging from .5K bytes to 8K 
bytes. All multiples of .5K bytes between those two values are 
suppored. OS/VS VSAM, however, only supports physical record- sizes of 
.5K, lK, 2K, and 4K. Therefore, certain VSAM files written undEr CMS 
cannot be used directly by OS/VS VSAM. 

It is necessary to distinguish between two types of allocation under 
VSAM. The first refers to actual space allocation on the disk, and the 
second is that within the dataset itself. 

Space for VSAM components must be allocated on the DASD using the 
DEFINE commands. The only component for which the user is able to 
allocate space is for the master catalog, a user catalog, a data space, 
and a UNIQUE cluster. In defining the actual DASD space for components, 
there are parameters for the DEFINE SPACE command which allows thE user 
to include a "secondary allocation" specification. These parameters 
(CYLINDERS, RECORDS, BLOCKS, TRACKS) have this secondary facility only 
as a syntactic compatibility with the OS/VS access method services 
commands. That is, VSE/AF (and, therefore, CMS) does not perform 
secondary space allocation on a DASD. 

The facility does exist under VSE/AF (and CMS) to extend data or 
index components through already allocated data space, catalog extents, 
or UNIQUE cluster extents. Thus, the CYLINDERS, TRACKS, RECORDS, and 
BLOCKS parameters of the DEFINE commands for alternate indexes, 
clusters, and catalogs do not dynamically allocate DASD space but only 
extend a component through existing space. 

USING VM/SP MINIDISKS 

If you have a VM/SP minidisk in your virtual machine configuration, you 
can use it to contain VSAM files. Before you can use it, it must be 
formatted with the IBCDASDI (or INITDISK for FB-512) program or other 
appropriate operating system utility program. When you request that a 
disk be added to your virtual machine configuration for use with VSAM 
files under CMS, you should indicate that it be formatted for use with 
OS or DOS. Or you can format it yourself using the IBCDASDI program. A 
brief example of how to do this is given under the following "Using 
Temporary Disks." The IBCDASDI and INITDISK control statements are 
fully described in the l~~g ~~!~!Q~~§ Guig~. 

!ot~: If you are an OS user, you should be careful about allocating 
space for VSAM on minidisks. Once you have used CMS AMSERV to allocate 
VSAM data space on a minidisk, you should not attempt to allocate 
additional space on that minidisk using an OS/VS system. as does not 
recognize minidisks, and would attempt to format the entire disk pack 
and thus erase any data on it. To allocate- additional space for VSAM, 
you should use CMS again. If you use the IBCDASDI program to format the 
disk, and use the CYLNO parameter, the entire disk is flagged as full, 
so that as cannot allocate additional space. Minidisk space allocation 
is fully described in the VML~g gl~nning ~nd ~~§1~~ Q~n~~tiQll Guide. 

section 10. Using Access Method Services and VSAM 211 



USING THE LISTDS COMMAND 

For OS or DOS disks or minidisks, you can use the LISTDS command to 
determine the extents of free space available for use by VSAK. You can 
also determine what space is already in use. You can use this 
information to supply the extent information when you define VSAM files. 

The options used with VSAM disks are: 

• EXTENT, to find out what extents are in use, and 
• FREE, to find out what extents are available. 

For example, if you have an OS disk accessed as a G-disk, and you enter: 

listds g (extent 

The response might look like: 

EXTENT INFORMATION FOR 'VTOC' ON 'G' DISK: 
SEQ TYPE CYL-HD(RELTRK) TO CYL-HD(RELTRK)' 
o 0 0 V TO C 099 0 0 188 1 099 1 81 89 9 

TRACKS 
19 

EXTENT INFORMATION FOR 'PRIVAT.CORE.IMAGE.LIB' ON 'G' DISK: 
SEQ TYPE CYL-HD(RELTRK) TO CYL-HD(RELTRK) TRACKS 
000 DATA 000 01 1 049 18 949 949 

EXTENT INFORMATION FOR 'SYSTEM.WORK.FILE.NO.6' ON 'G' DISK: 
SEQ TYPE CYL-HD(RELTRK) TO CYL-HD(RELTRK) TRACKS 
000 DATA 050 00 950 051 18 987 38 

You could also determine the extent for a particular data set: 

listds ? * (extent 

DMSLDS220R ENTER DATA SET NAME: 

system recorder file 

The response might look like: 

EXTENT INFORMATION FOR 'SYSTEM RECORDER FILE' ON 'P' DISK: 
SEQ TYPE CYL-HD(RELTRK) TO CYL-HD(RELTRK) TRACKS 
000 DATA 102 00 1938 102 18 1956 19 
002 DATA 010 06 206 010 08 208 3 

LISTDS searches all minidisks accessed until it locates the specified 
data set. In this example, the data set occupies two separate extents on 
disk P. If the data set is a multivolume data set, extents on all 
accessed volumes are located and displayed. 

If you want to find the free extents on a particular disk, enter: 

listds g (free 

The respon~e might l~~k like: 

FREESPACE EXTENTS 
CYL-HD(RELTRK) TO 
052 00 988 
054 02 1028 
081 01 1540 

paR 'G' DISK: 
CYL-HD (RELTRK) 
052 01 989 
080 00 1520 
098 18 1880 

TR ACKS 
2 

493 
341 

You can use this information when you allocate space for VSAM files~ If 
you enter: 

212 IBM VM/SP CMS User's Guide 



listds * (free 

~ CMS lists all the free space available on all of your accessed disks. 

USING TEMPORARY DISKS 

When you need extra space on a temporary basis for use with CMS VSAM and 
AMSERV, you can use the CP DEFINE command to define a temporary minidisk 
and then use the IBCDASDI program to format it. Once formatted and 
accessed, it is available to your virtual machine for the duration of 
your terminal session or until you detach it using the CP DETACH 
command. Remember that anything placed cn a temporary disk is lost, so 
that you should copy output that you want to keep onto permanent disks 
before you log off. 

The example below shows a control statement file and an EXEC procedure 
that, together, can be used to format a minidisk with the IBCDASDI 
program. For a complete description of the control statements used, 
refer to the !~L~g Q~~ato~~§ ~Yig~. 

The input control statements for the IBCDASDI programs should be 
placed in a CMS file, so that they can be punched to your virtual card 
reader. For this example, suppose the statements are in a CMS file named 

\ TEMP 1BCDASDI: 
; 

DASD198 JOB 
MSG 
DADEF 
VLD 
VTOCD 
END 

TODEV=1052,TOADDR=009 
TODEV=3330,TOADDR=198,VOLID=SCRATCH,CYLNO=10 
NEWVOLID=123456 
STRTADR=185,EXTENT=5 

Now consider the CMS file named TEMPDISK EXEC: 

&ERROR &EX1T 100 
CP DEFINE T3330 198 10 
CP CLOSE C 
CP PURGE READER ALL 
ACC 190 Z/Z .1PL * 
CP SPOOL PUNCH CONT TO * 
PUNCH IPL IBCDASD1 Z (NOH) 
PUNCH TEMP 1BCDASD1 * (NOH) 
CP SPOOL PUNCH NOCONT 
CP CLOSE PUNCH 
CP IPL OOC 

You execute this procedure by entering the filename of the EXEC: 

tempdisk 

When the final line of this EXEC is executed, the IBCDASDI program is in 
control. You must then signal an attention interruption using the 
Attention or Enter key, and you receive the message: 

IEC105A DEFINE INPUT DEVICE 

section 10. Using Access Method Services and VsAM 213 



You should enter: 

input=2S40,OOc 

to indicate that the control statements should be read from your card 
reader, which is a virtual 2540 device at virtual address OOC. 

When the IBCDASDI program is finished, your virtual machine is in the 
CP environment and must reload CMS (with the IPL command) to begin 
virtual machine execution. You can then access the temporary disk: 

acc 198 c 

and CMS responds: 

C ( 1 98) R /W - 0 S 

Defining DOS Input and Output Files 

!Ql~: This information is for VSE/VSAM users. OS/VS VSAM users should 
refer to the section "Defining OS Input and Output Files." 

You may use the DLBL command to define VS AM input and 
for both the AMSERV command and for program execution. 
required on the DLBL command are: 

dlbl ddname filemode DSN datasetname (options SYSxxx 

output files 
The operands 

where "ddname" corresponds to the FILE parameter in the AMSERV file and 
"datasetname" corresponds to the entry name or filename of the VSAM 
file. 

There are several options you can use when issuing the DLBL command 
to define VSAM input and output files. These are: 

• VSAM, which you \must use to indicate that the file is a VSAM file. 

Note: You do not have to use the 
VSAM file if you are using any 
since they imply that the file 
ddnames (filenames) IJSYSCT and 
being defined is a VSAM file. 

VSAM option to identify a file as a 
of the other options listed here, 
is a VSAM file. In addition, the 

IJSYSUC also indicate that the file 

• EXTENT, which you may use when you are defining a catalog or a VSAM 
data space; you are prompted to enter the volume information. This 
option effectively pxovides the function of the EXTENT card in 
VSE/AF. 

• MULT, which you must use in order to access a multivolume VSAM file; 
you are prompted to enter the extent information. 

• CAT, which you can use to identify a catalog which contains the entry 
fG~ the VSan fil~ IUU Q~e defining. 

• BUFSP, which you can use to specify the size of the buffers VSAM 
should use during program execution. 

Options are entered following the open parenthesis on the DLBL command 
line, with the SYSxxx: 

assgn sys003 e 
dlbl file1 bl dsn workfile (extent cat cat2 sys003 

214 IBM VM/SP CMS User's Guide 



USING VSAM CATALOGS 

While you are developing and testing your VSAM programs in CMS. you may 
find it convenient to create and u~e your cwn master catalog, which may 
be on a CMS minidisk. VSAM catalogs, like any other cluster. can be 
shared read-only among several users. 

You name the VSAM master catalog for your terminal session using the 
logical unit SYSCAT in the ASSGN command and the ddname IJSYSCT for the 
DLBL command. For example, if your VSAM master catalog is located on a 
DOS disk you have accessed as a C-disk. you would enter: 

assgn syscat c 
dlbl ijsysct c dsn mastcat (syscat 

Note: When you use the ddname IJSYSCT you do not need to specify the 
VSAM option on the DLBL command. 

You must identify the master catalog at the start of every terminal 
session. If you are always using the same master catalog, you might 
include the ASSGN and DLBL commands in an EXEC procedure or in your 
PROFILE EXEC. You could also include the ccmmands necessary to access 
the DOS system re~idence volume and enter the eMS/DOS environment: 

ACCESS 350 Z 
SET DOS ON Z (VSAM 
ACCESS 555 C 
ASSGN SYSCAT C 
DLBL IJSYSCT C DSN MASTCAT (SYSCAT PERM 

~ You should use the PERM option so that yeu do not have to reset the 
; master catalog assignment after clearing previous DLBL definitions. 

You must use the VSAM option on the SET DOS ON command line if you 
want to use any access method services function or access VSAM files. 

The sample ASSGN and DLBL commands used in the above EXEC are almost 
identical to those you issue to define a master catalog using AMSERV. 
The only difference is the EXTENT option which lists the data spaces 
that this master catalog is to control. 

As an example, suppose that you have a 30-cylinder 3330 minidisk 
assigned to you to use for testing your VSAM programs under CMS. 
Assuming that the minidisk is in your directory at address 333, you 
should first access it: 

access 333 d 
D(333) R/W - OS 

If you formatted the minidisk yourself, you know what its label is. If 
not, you can find out what the label is by using the CMS command: 

query search 

The response might be: 

USR1Q1 191 A R/W 
DOS333 333 D R/W - OS 
SYS1QO 190 S R/O 
SYS19E 19E Y/S R/O 

Section 10. Using Access Method Services and VSAM 215 



Use the label DOS333 in the VOLU~ES parameter in the MASTCAT AMSERV 
file: 

DEFINE MASTERCATALOG -
(NAME (M ASTCAT ) -
VOLUME (DOS333) -
CYL (4) -
FILE (IJ SYSCT) 

Now r to find out what extents on the minidisk you can allocate for VSAM r 
use the LISTDS command with the FREE option: 

listds d (free 

The response from LISTDS might look like this: 

FREESPACE INFORMATION FOR 'D' DISK: 
CYL-HD(RELTRK) TO CYL-HD(RELTRK) TRACKS 
000 01 1 000 09 9 9 
00011 11 02918 569 560 

From this response r you can see that the volume table of contents (VTOC) 
is located on the first cylinderr so you can allocate cylinders 1 
through 29 for VSAM: 

assgn syscat a 
dlbl ijsysct a dsn mastcat (syscat perm extent 
DMSDLB331R ENTER EXTENT SPECIFICATIONS: 
19 551 

(null line) 

After entering the extents r in tracks r giving the relative track number 
of the first track to be allocated followed by the number of tracksr you 
must enter a null line to complete the command. A null line is required 
because, when you enter multiple extents r entries may be placed on more 
than one line. If you do not enter a null line, the next line you enter 
causes an error, ana you must re-enter all of the extent information. 
Note that, as in VSE/AF the extents must be on cylinder boundaries, and 
you cannot allocate cylinder o. 

Now you can issue the AMSERV ccmmand: 

amserv mastcat 

A ready message with no return code indicates that the master catalog is 
defined. You do not need to reissue the ASSGN and DLBL commands in order 
to use the master catalog for additional AMSERV functions. 

You can use the AMSERV command to define private catalogs and spaces for 
them r also. The procedures for determining what space you can allocate 
are the ~~=G as thvs6 vutlill~u ill the example of defining a master 
catalog. 

For a user catalog, you may use any programmer logical unitr and any 
ddname: 

216 IBM VM/SP CMS User's Guide 



access 199 e 
listds e (free 

assgn sys001 e 
dlbl catl e dsn private cat1 (sys001 extent perm 

amserv usercat 

The file USERCAT AMSERV might contain the following: 

DEFINE USERCATALOG -
(NAME (PRIVATE.CAT1) -
FILE (IJSYSUC) -. 
CYL (4) -
VOLUME (DOSVS2) -
CATALOG (MASTCAT) 

After this AMSERV command has completed successfully you can use the 
catalog PRIVATE.CAT1. When you issue a DLBL command to identify a 
cluster or data set cataloged in this catalog, you must identify the 
catalog using the CAT option on the DLBL command for the file: 

assgn sys100 c 
dlbl file2 c dsn ? (sys100 cat cat1 

Or, you can define this catalog as a jcb catalog. 

If you want to set up ~ user catalog as a job catalog so that it will be 
searched during all subsequent jobs, you can define the catalog using 
the special ddname IJSYSUC. For example: 

assgn sysl01 c 
dlbl ijsysuc c dsn private catl (sys101 perm 

If you defined a user catalog (IJSYSUC) for a terminal session and 
you use the AMSERV command to access a VSAM file, the user catalog takes 
precedence over the master catalog. This means that for files that 
already exist, only the user catalog is searched. When you define a 
cluster, it is cataloged in the user catalog, rather than in the master 
catalog, unless you use the CAT option to override it. 

If you want to use additional catalogs during a terminal session, you 
first define them just as you would any other VSAM file: 

assgn sysOl0 f 
dlbl mycat2 f dsn private cat2 (sysOl0 vsam 

Then, when you enter the DLBL command for the VSAM file that is 
cataloged in PRIVATE.CAT2 use the CAT option to refer to the ddname of 
the catalog: 

assgn sysOl1 f 
dlbl input f dsn input file (sysOll cat mycat2 

Section 10. Using Access Method Services and VSAM 211 



, If you want to stop using a job catalog defined as IJSYSUC, you can 
clear it using the CLEAR option of the DLBL command: 

dlbl ijsysue clear 

Then, the master catalog becomes the job catalog for files not defined 
with the CAT option. 

When you define passwords for VSA~ catalogs in CMS, or when you use CMS 
to access VSAM catalogs that have passwords associated with them, you 
must supply the password from your terminal when the AMSERV command 
executes.' The message that you receive to prompt you for the password 
is the same message you receive when you execute access method services: 

q221A ATTEMPT 1 OF 2. ENTER PASSWORD FOR JOB AMSEBV FILE catalog 

When yeu enter the proper password, AMSERV continues execution. 

DEFINING AND ALLOCATING SPACE FOR VSAM FILES 

You can use CMS AMSERV to allocate additional data spaces for VSAM. To 
use the DEFINE SPACE control statement, you must have defined the 
catalog that is to control the space, and you must have the volume or 
volumes on which the space is to be allocated mounted and accessed. 

For example, suppose you have a DOS-formatted 3330 disk attached to 
your virtual machine at virtual address 255. After accessing the disk 
and determining the free space on it, you could create a file named 
SPACE AMSERV: 

DEFINE SPACE -
(FIL E (FILE 1) -
TRACKS (1900) -
VOLUME (123456) -
CATALOG (PRIVATE.CAT2 CAT2) ) 

To execute this AMSERV file, define PRIVATE.CAT2 as a user catalog using 
the ddname CAT2, and then define the ddname for the FILE parameter: 

access 255 c 
assgn sys010 c 
dlbl cat2 c dsn private cat2 (sys010 vsam 
assgn sys011 c 
dlbl file1 c (extent sys011 cat cat2 

Note that you do not need to enter a data set name to define the space. 
When CMS prompts you for the extents of the space you can enter the 
OVTonT ~no~;~;~~+;nn~. ------ -r-------------

DMSDLB331R ENTER EXTENT SPECIFICATIONS: 
190 1900 

218 IBM VM/SP CMS User's Guide 



When you define space for VSAM, you should be sure that the VOLUMES 
parameter and the space allocation parameter (whether CYLINDER, TRACKS, 
ELOCKS, or RECORDS) in the AMSERV file agrees with the information you 
provide in the DLBL command. All data extents must begin and end on 
cylinder boundaries. Any additional space you provide in the extent 
information that is beyond what you specified in the AKSERV file is 
claimed by VSAM. 

When you are specifying extents for a master catalog, data space, or 
unique file, you can specify up to 16 extents on a volume for a 
particular space. When prompted by CMS to enter the extents, you must 
separate different extents by commas or place them on different lines. 
To specify a range of extents in the above example, you can enter: 

dlbl file1 c (extent sysOl1 
190 190, 570 190, 1900 1520 

(null line) 

or --

dlbl filel c (extent sysOll 
190 190 
570 190 
1900 1520 

(null line) 

Again, the first number entered for each extent represents the relative 
track for the beginning of the extent and the second number indicates 
the number of tracks. 

You can define spaces that span up to nine volumes for VSAM files; all 
of the volumes must be accessed and assigned when you issue the DLBL 
command to define or identify the data space. 

You should remember, though, that if you are using AMSERV and you do 
not use the PRINT option, you must have a read/write CMS disk so that 
AMSERV can write the output LISTING file. 

If you are defining a new multivolume data space or unique cluster, 
you must specify the extents on each volume that the data is to occupy 
(starting track and number of tracks), followed by the disk mode letter 
at which the disk is accessed and the programmer logical unit to which 
the disk is assigned: 

access 135 b 
access 136 c 
access 137 d 
assgn sysOO 1 b 
assgn sys002 c 
assgn sys003 d 
dlbl newfile b (extent sysOOl 
DMSDLB331R ENTER EXTENT SPECIFICATIONS: 
100 60 b sys001, 400 80 b sys001, 60 40 d sys003 
2000 100 c sys002 

(null line) 

Section 10. Using Access Method Services and VSAM 219 



If you specify more than one extent on the same line, the extents must 
be separated by commas; if you enter a comma at the end of a line, it is 
ignored. Different extents for the same volume must be entered 
consecutively. 

Note that in the preceding example, the extent information is for 
2314 disks; and that these extents are also on cylinder boundaries. 

When you enter multivolume extents you can use a default mode. For 
example: 

dlbl newfile b (extent sysOOl 
DMSDLB331R ENTER EXTENT SPECIFICATIONS: 
100 60, 400 80, 60 40 d sys003, 
2000 100 c sys002 

(null line) 

Any extents you enter without specifying a mode letter and SYSxxx value 
default to the mode and SYSxxx on the DLBL command line, in this case, 
the B-disk, SYS001. 

If you make any errors issuing the DLBL command or extent 
information, you must re.-enter the entire command sequence. 

I~EN!1111~g ]Xl~llnQ ~Y1I!!Q1Q~~ FI1~2: When you issue a DLBL command to 
identify an existing multivolume VSAM file, you must use the MOLT option 
of the DLBL command: 

dlbl old bl dsn ? (sys002 mult 
DMSDLB220R ENTER DATA SET NAME: 
dostest.file 
DMSDLB330R ENTER VOLUME SPECIFICATIONS: 
c sys004, d sys003 
e sys007 

(null line) 

When you enter the DLBL command you should specify the mode letter and 
logical unit fer the first volume on the command line. When you enter 
the MULT option you are prompted to enter additional specifications for 
the remaining extents. In the preceding example, the data set has 
extents on disks accessed as B-, C-, D-, and E-disks. 

USING TAPE INPUT AND OUTPUT 

If you are using AMSERV for a function that requires tape input and/or 
output, you must have the tape(s) attached to your virtual machine. The 
valid addresses for tapes are 181, 182, 183, and 184. When referring to 
tapes, you can also refer to them using their CMS symbolic names TAP1, 
TAP2, TAP3, and TAP4. 

For AMSERV functions that use tape input/output, the TLBL control 
statement is simulated by building a dummy DLBL containing a 
user-supplied ddname (filename). CMS does not read tape labels and does 
not r~cogni7.A t~p~ d~ta s~t nam~s_ 

220 IBM VM/SP CMS User's Guide 



When you invoke the AMSERV command, you must use the TAPIN or TAPOUT 
option to specify the tape device being used: 

amserv export (tapout 181 

In this example, the output from the AMSERV control statements in a file 
named EXPORT goes to a tape at virtual address 181. eMS prompts you to 
enter the ddname: 

DMSAMS367R ENTER TAPE OUTPUT DDNAMES: 

After you enter the ddname specified on the FILE parameter in the AMSERV 
file and press the carriage return, the AMSERV command executes. 

AMSERV opens all tape files as standard labelled tapes (FILAB=STD on 
the DTFMT macro) • Therefore, you need a LABELDEF command for any tape 
file used for input or output with AMSERV. The LABELDEF command is the 
eMS/DOS equivalent of VSE/AF. TLB control statement. The LABELDEF 
command is used to specify information in VOLl and HDRl labels on the 
tape. See the description of the LABELDEF command in section 7 for more 
information on this command. 

You should use the same name for the filename on your LABELDEF 
command as you do for the ddname you enter in reply to message 
DMSAMS367R (the ddname specified on the FILE parameter in the AMSERV 
file). However, the LABELDEF command must be issued before the AMSERV 
command. The following sequence of commands might be used when you have 
tape output: 

assgn sys005 tapl 
tape rew ( 1 8 1 
assgn syscat e 
assgn sys006 e 
labeldef catout fid catfile volid amserv 
dlbl ijsysct e dsn mastcat (syscat vsam 
dlbl catin e dsn file (sys006 vsam 
amserv repro (tapout 181 

DMSAMS367R ENTER TAPE OUTPUT DDNAMES 

catout 

Not~: If you do not care what is written in a tape output label or do 
not want input labels checked, you can specify a LABELDEF with no 
parameters other than filename. 

The command: 

labeldef intape 

used for an input tape with ddname INTAPE causes the standard labels on 
the tape to be skipped without any checking. A similar statement for 
output writes tape labels with default values (see the description of 
the LABELDEF command in section 7). 

If you try to use a tape that does not already contain 
for an AMSERV tape file, you will receive an error message. 
is used for output, this message is followed by another 
informs you that you have a choice of continuing by writing 
on the previously unlabelled tape or rejecting this tape. 
files must already contain standard VOLl and HDRl labels to 
by AMSERV. 

a VOLl label 
If the tape 

message that 
a VOL 1 label 

Input tape 
be processed 

Section 10. Using Access Method Services and VSAM 221 



When you create a tape in CMS using AMSERV, C~S writes a tape mark 
preceding each output file that it writes. When the same tape is read 
using A~SERV under CMS, HDR1 and VOL1 labels are checked using the 
LABELDEF command you provide. If you read this tape in a real VSE/AF 
system, you should use a TLBL card instead of the LABELDEF command. 

Similarly, when you create a tape under a VSE/AF system using access 
method services, if the tape is created with standard labels, CMS AMSERV 
has no difficulty reading it. 

The only time you should worry about positioning a tape created by 
AMSERV is when you want to read the tape using a method other than 
AMSERV, for example, the MOVEFILE command. Then, you must forward space 
the tape past the label, using the CMS TAPE command before you can read 
it. 

Defining OS Input and Output Files 

]Ql~: This information is for OS/VS VSAM users only. VSE/VSAM users 
should refer to "Defining DOS Input and output Files" for information on 
defining files for use with VSAM. 

The OS/VS VSAM user should bear in mind that C~S uses VSE/VSAM to 
manipulate VSAM files. The VSAM and AMS statements that can be used are 
described in the pUblication ~§ing !~~L!~!~ CO~~gng§ ~nd ~g~Q§. 

In additon, there are certain incompatibilities between VSE/VSAM and 
OS/VS VSAM. For a description of these incompatibilities, refer to the 
!~~L!~!~ §~~~~~! l~!Q~ma!io~ ~g~Y~1· 

If you are going to use access method services to manipulate VSAM or 
SAM files or you are going to execute VSAM programs under eMS, use the 
DLBL command to define the input and output files. The basic format of 
the DLBL command is: 

DLBL ddname filemode DSN datasetname (options 

where ddname corresponds to the FILE parameter in the AMSERV file and 
datasetname corresponds to the entry name of the VSAM file, that is, the 
name specified in the NAME parameter of an access method services 
control statement. 

If you are using a CMS file for AMSERV input or output, use the CMS 
operand and enter CMS file identifiers as follows: 

dlbl mine a cms out file1 (vsam 

The maximum length allowed for ddnames, under CMS VSAM is seven 
characters. This means that if you have assigned eight-character ddnames 
{or fil~naiiiesi to files l.n your programs, only the first se'Yeii. 
characters of each ddname are used. So, if a program refers to the 
ddname OUTPUTDD, you should issue the DLBL command for a ddname of 
OUTPUTD. Since you can encounter problems with a program that contains 
ddnames with the same first seven characters, you should recompile those 
programs using seven-character ddnames. 

There are several options you can use when issuing the DLBL command 
to define VSAM input and output files. These are: 

222 IBM VM/SP CMS User's Guide 



• VSAM, which you must use to indicate that the file is a VSAM file. 

!Q1~: You do not have to use the 
VSAM file if you are using any 
since they imply that the file 
ddnames (filenames) IJSYSCT and 
being defined is a VSAM file. 

VSAM option to idEntify a file as a 
of the other options listed here, 
is a VSAM file. In addition, the 

IJSYSUC also indicate that the file 

• EXTENT, which you can use when you are defining a catalog or a VSAK 
data space; you are prompted to enter the volume information. 

• MULT, which you must use in order to access a multivolume VSAM file; 
you are prompted to enter the extent information. 

• CAT, which you can use to identify a catalog which contains the entry 
for the VSAM file you are defining. 

• BUFSP, which you can use to specify the size of the buffers VSAM 
should use during program execution. 

ALLOCATING EXTERTS ON OS DISKS AND MINIDISKS 

When you use access method services to manipulate VSAK files under OS, 
you do not have to worry about allocating the real cylinders and tracks 
to contain the files. You can, however, use CMS commands to indicate 
which cylinders and tracks should contain particular VSAM spaces when 
you use the DEFINE control statement to define space. 

Extents for VSAM data spaces can be defined, in AMSERV files, in 
terms of cylinders, tracks, or records. Extent information you supply to 
CMS when executing AMSERV must always be in terms of tracks. When you 
define data spaces or unique clusters, the extent information (number of 
cylinders, tracks, or records) in the AMSERV file must match the extents 
you supply when you issue the DLBL command to define the file. When you 
supply extent information for the master catalog, any extents you enter 
in excess of those required for the catalog are claimed by the catalog 
and used as data space. 

CMS does not make secondary space allocation for VSAM data spaces. 
If you execute an AMSERV file that specifies a secondary space 
allocation, CMS ignores the parameter. 

When you use the DLBL command to define VSAM data space, you can use 
the EXTENT option, which indicates to CMS that you are going to enter 
data extents. For example, if you enter: 

dlbl space b (extent 

CMS prompts you to enter the extents: 

DMSDLB331R ENTER EXTENT SPECIFICATIONS: 

When yeu enter the extents, you specify the relative track number of the 
first track of the extent, followed by the number of tracks. For 
example, if you are allocating an entire 2314 disk, you would enter: 

20 3980 
(null line) 

You can never write on cylinder 0, track 0; and, since VSAM data 
spaces must ~e allocated on cylinder boundaries, you should never 
allocate cylinder O. Cylinder 0 is often used for the volume table of 
contents (VTOC) as well, so it is always best to begin defining space 
with cylinder 1. 

Section 10. Using Access Method Services and VSAM 223 



You can determine which disk extents on an OS disk or minidisk are 
available for allocation by using the LISTDS command with the FREE 
option, which also indicates the relative track numbers, as well as 
actual cylinder and head numbers. 

USING VSAM CATALOGS 

While you are developing and testing your VSA~ programs in CMS, you may 
find it convenient to create and use your own master catalog, which may 
be on a CMS minidisk. VSA~ catalogs, like any other cluster, can be 
shared read-only among several users. 

You name the VSAM master catalog for your terminal session using the 
ddname IJSYSCT for the DLBL command. For example, if your VSA~ master 
catalog is located on an OS disk you have accessed as a C-disk, you 
would enter: 

dlbl ijsysct c dsn master catalog (perm 

You must define the master catalog at the start of every terminal 
session. If you are always using the same master cat~log, you might 
include the DLBL command you need to define it in your PROFILE EXEC: 

ACCESS 555 C 
DLBL IJSYSCT C DSN MASTCAT (PER~ 

You should use the PERM option so that you do not have to reset the 
master catalog assignment after clearing previous DLBL definitions. The 
command: 

dlbl * clear 

clears all file definitions except those entered with the PERM option. 

The sample DLBL command used in the preceding example is almost 
identical with the one you would issue to define a master catalog using 
AMSERV. The only difference is that you can enter the EXTENT option so 
that you can list the data spaces that this master catalog is to 
control. 

As an example, suppose that you have a 30-cylinder 3330 minidisk 
assigned to you to use for testing your VSAM programs under C~S. 
Assuming that the minidisk is in your directory at address 333, you 
should first access it: 

access 333 d 
D(333) R/W - OS 

If you formatted the minidisk yourself, you know what label you assigned 
it; if not~ you can find out the label assigned to the disk by issuing 
the CMS command: 

query search 

The response might be: 

224 IBM VM/SP CMS User's Guide 



Use 

USR191 191 A R/W 
VSAM03 333 D R/W 
SYS109 190 S RIO 
SYS19E 19E Y/S RIO 

the volume label VSAM03 

DEFINE MASTERCATALOG -
(N AM E (M AS TC AT) -
VOLUME (VSAM03) -
CYL (4) -
FILE (IJSYSCT) 

- OS 

in the MASTCAT AMSERV file: 

To find out what extents on this minidisk you can allocate for VSAM, 
use the LISTDS command with the FREE option: 

listds d (free 

The response from LISTDS might look like this: 

FREESPACE INFORMATION FOR 'D' DISK: 
CYL-HD~ELTRK) TO CYL-HD(RELTRK) TRACKS 
000 01 1 000 09 9 9 
000 11 11 029 18 569 560 

From this response, you can see that the VTOC is located on the first 
cylinder, so you can allocate cylinders 1 through 29 for VSAM: 

dlbl ijsysct d dsn mastcat (perm extent 
DMSDLB331R ENTER EXTENT SPECIFICATIONS: 
19 551 

(null line) 

~ After entering the extents, in tracks, g1v1ng the relative track number 
of the first track to be allocated followed by the number of tracks, you 
must enter a null line to complete the command. (A null line is required 
because, when you enter multiple extents, entries may be placed on more 
than one line.) 

Now you can issue the AMSERV command: 

amserv mastcat 

A ready message with no return code indicates that the master catalog is 
defined. You do not need to reissue the DLBL command in order to 
identify the master catalog for additional AMSERV functions. 

You can use the AMSERV command to define private catalogs and spaces for 
them. The procedures for determining what space you can allocate are the 
same as those outlined in the example of defining a master catalog. 

section 10. Using Access Method Services and VSAM 225 



To define a user catalog, you can assign any ddname you want: 

access 199 e 
listds e (free 

dlbl cat1 e dsn private cat1 (extent 

amserv usercat 

The file USERCAT AMSERV might contain the following: 

DEFINE USERCATALOG -
(NAME (PRIVATE.CAT1) -
FILE (CAT1)-
CYL (4) -
VOLU"E (OSVSAK) -
CATALOG (KASTCAT) 

After this AMSERV command has completed successfully you can use the 
catalog PRIVATE.CAT1. When you define a file cataloged in it, you 
identify it using the CAT option on the DLBL command: 

dlbl file2 e dsn ? (cat cat1 

Or, you can define it as a job catalog. 

During a terminal session, you may be referencing the same private 
catalog many times. If this is the case, you can identify a job catalog 
by using the ddname IJSYSUC. Then, that catalog is searched during all 
subsequent jobs, unless you override it using the CAT option when you 
use the DLBL command to define a file. 

If you defined a user catalog (IJSYSUC) for a terminal session and 
you use the AMSERV command to access a VSAM file, the user catalog takes 
precedence over the master catalog. This means that for files that 
already exist, the job catalog is searched. When you define a cluster, 
it is cataloged in the job catalog, rather than in the master catalog, 
unless you use the CAT option to override it. CMS never searches more 
than one VSAM catalog. 

You should use the CAT option to name a catalog when the AESERV file 
you are executing references, with the CATALOG parameter, a catalog that 
is not defined either as the master catalog or as a user catalog. 

226 IBM VM/SP CMS User's Guide 



If you want to use additional catalogs during a terminal session, you 
first define them just as you would any other VSAM file: 

dlbl mycat2 f dsn private cat2 (vsam 

Then, when you enter the DLBL command for the VSAM file that is 
cataloged in PRIVATE.CAT2 use the CAT option to refer to the ddname of 
the catalog: 

dlbl input f dsn input file (cat mycat2 

If you want to stop using·a job catalog defined with the ddname IJSYSUC, 
you can clear it using the CLEAR option of the DLBL command: 

dlbl ijsysuc clear 

or, you can assign the ddname IJSYSUC to some other catalog~ 
clear the ddname for IJSYSUC, then the master catalog becomes 
catalog. 

If you 
the job 

When you define passwords for VSAM catalogs in CMS, or when you use CMS 
to access VSAM catalogs that have passwords associated with them, you 
must supply the password from your terminal when the AMSERV command 
executes. The message that you receive to prompt you for the password 
is the same message you receive when you execute access method services: 

4221A ATTEMPT 1 OF 2. ENTER PASSWORD FOR JOB AMSEBV FILE catalog 

; When you enter the proper password, AMSERV continues execution. 

DEFINING AND ALLOCATING SPACE FOR VSAM FILES 

You can use CMS AMSERV to allocate additional data spaces for VSAM. To 
use the DEFINE SPACE control statement, you must have defined either the 
master catalog or a user catalog which will control the space, and you 
must have the volume or volumes on which the space is to be allocated 
mounted and accessed. 

For example, suppose you have an OS 3330 disk attached to your 
virtual machine at virtual address 255. After accessing the disk and 
determining the free space on it, you could create a file named SPACE 
AMSERV: 

DEFINE SPACE -
(FIL E (FILE 1) -
TRACKS (1900) -
VOLUME (123456) -
CATALOG (PRIVATE.CAT2 CAT2) ) 

To eXEcute this AMSERV file, you must define PRIVATE.CAT2 using the 
ddname CAT2, and then define the ddname for the file: 

access 255 c 
dlbl cat2 c dsn private cat2 (vsam 
dlbl file1 c (extent cat cat2 

Section 10. Using Access Method Services and VSAM 227 



You do not need to enter a data 
prompts you for the extents of 
specifications: 

set name to define the space. When C~S 
the space, you can enter the extent 

D~SDLB331R ENTER EXTENT SPECIFICATIONS: 
1901900 

When you define space for VSA~, you should be sure that the VOLU~ES 
parameter and the space allocation parameter (whether CYLINDER, TRACKS, 
BLOCKS, or RECORDS) in the A~SERV file agree with the track information 
you provide in the DLBL command. 

When you are specifying extents for a master catalog, data space, or 
unique file, you can specify up to 16 extents on a volume for a 
particular space. When prompted by C~S for the extents, you must 
separate the different extents by commas, or place them on different 
lines. To specify a range of extents in the above example, you could 
enter: 

dlbl file1 c (extent 
190 190, 570 190, 1900 1520 

(null line) 

or --

dlbl file1 c (extent 
190 190 
570 190 
1900 1520 

(null line) 

Again, the first number entered for each extent represents the relative 
track for the beginning of the extent and the second number indicates 
the number of tracks. 

You can define spaces that span up to nine volumes for VSA~ files; all 
of the volumes must be accessed and assigned when you issue the DLBL 
command to define or identify the data space. 

You should remember, though, that if you are using A~SERV and you do 
not use the PRINT option, you must have a read/write CMS disk so that 
AMSERV can write the output LISTING file. 

If you are defining a new multivolume data space or unique cluster, 
you must specify the extents on each volume that the data is to occupy 
(starting track and number of tracks), followed by the disk mode letter 
at which the disk is assigned: 

228 IBM V~/SP CMS User's Guide 



access 135 b 
access 136 c 
access 131 d 
dlbl newfile b (extent 
D~SDLB331R ENTER EXTENT SPECIFICATIONS: 
100 60 b, 400 80 b, 60 40 d, 
2000 100 c 

(null line) 

If you enter more than one extent on the same line, the extents must be 
separated by commas; if you enter a comma at the end of a line, it is 
ignored. Different extents for the same volume must be entered 
consecutively. Note that in this example, the extent information is for 
2314 disks and that these extents are also on cylinder boundaries. 

When you enter multivolume extents, you do not have to enter a mode 
letter for those extents on the disk identified in the DLBL command. 
For the extents on disk B in the above example, you could enter: 

dlbl newfile b (extent 
DMSDLB331R ENTER EXTENT SPECIFICATIONS: 
100 400 80, 60, 60 40 d 
2000 100 c 

(null line) 

If you make any errors issuing the DLBL command or extent 
information, you must reissue the entire command sequence. 

IDENTIFYING EXISTING MULTIVOLUME !IL~~: When you issue a DLBL command to 
fdentify-an existing multivolume VSAM file, you must use the HULT option 
of the DLBL command sequence: 

dlbl old bl dsn? (mult 
DMSDLB220R ENTER DATASET NAME: 
vsamtest. file 
DMSDLB330R ENTER VOLUME SPECIFICATIONS: 
c, d 
e 

(null line) 

When you enter the DLBL command you should specify the mode letter for 
the first disk volume on the command line. When you enter the MULT 
option you are prompted to enter additional specifications for the 
remaining extents. In the above example, the data set has extents on 
disks accessed as B-, C-, D-, and E-disks. 

USING TAPE INPUT AND OUTPUT 

If you are using AMSERV for a function that requires tape input and/or 
output, you must have the tape(s) attached to your virtual machine. The 
valid addresses for tapes are 181, 182, 183, and 184. When referring to 
tapes, you can also refer to them using their CMS symbolic names TAP1, 
TAP2, TAP3, and TAP4. 

When you use AMSERV to create or read a tape, you supply the ddname 
for the tape device interactively, after you issue the AMSERV command. 
To indicate to AMSERV that you are using tape for input or output, you 
must use the TAPIN or TAPOUT option to specify 'the tape device being 
used: 

section 10. Using Access Method Services and VSAM 229 



labeldef tapedd fid filename ••• 
amserv export (tapout 181 

In this example, the output fro~ an EXPORT function is to a tape at 
virtual address 181. eMS prompts you to enter the ddname: 

DMSAMS361R ENTER TAPE OUTPUT DDNAMES: 

After you enter the ddname (TAPEDD in this example) for the tape file, 
AMSERV begins execution. 

AMSERV in eMS treats all tape files as having standard labels. The 
LABELDEF command is required because the eMS/DOS routine that performs 
the tape open needs label information for standard labelled tapes. See 
the description of the LABELDEF command in Section 1 for further 
information. The filename you specify on the LABELDEF command should be 
the same one you use to reply to the access method service message that 
requested you to supply the tape's ddnames. However, the LABELDEF 
command must be issued before the AMSERV ccmmand. If you only want the 
tape labels skipped, but not checked, enter a LABELDEF with no 
parameters other than filename. 

Tapes used for input must always 
EOF1 labels or they are rejected by 
need to contain VOLl labels because 
volume serial number and have the 
However, blank tapes should not be 
routine tries to read the tape. 

contain standard VaLl, HDR1, and 
eMS AMSERV. Output tapes do not 
the user is prompted to enter a 
VOLl label written if he wants. 
used for output because the open 

When you create a tape file using AMSERV under eMS, eMS writes a mark 
preceding each output file. When eMS AMSERV is used to reade this same 
file, it automatically skips past the tape mark to read the file. If 
you want to read the tape on a real OS/VS system, however, you must use 
the LABEL=SL as a parameter on the data definition (D~ card for the 
tape. When you create a tape file using AMSERV under eMS, eMS writes a 
label file preceding each output file. When eMS AMSERV is used to read 
this same file, it checks the HDRl and VOLl labels using the LABELDEF 
command you provide before it reads the data file. If you want to read 
the tape on a real OS/VS system, ,however, you must use the LABEL=SL as a 
parameter on the data definition (DD) card fot the tape. If you want to 
read the tape on a real OS/VS system, however, you must use either 
LABEL=SL or LABEL=(2,NL) as a parameter on the data definition (DD) card 
for the tape. 

If you are creating a tape under OS/VS access method services to be 
read by eMS AMSERV, you must be sure to create the tape using standard 
labels so that eMS can read it properly. eMS will not be able to read a 
tape created with LABEL=(,NL) on the DD card. 

For eMS to read this tape for any other purpose (for example, to use 
the aOVEFILE co~~ana to copy it), you ~ust re:e=ber to for~ard space the 
file past the tape mark before beginning to read it. 

Using AMSERV under eMS 

This section provides examples of AMSERV functions 
The examples are applicable to both the eMS 

230 IBM VM/SP eMS User's Guide 

executed under eMS. 
(OS) and eMS/DOS 



environments. You should be familiar with the material presented in 
either "Defining DOS Input and Output Files" or "Defining OS Input and 
Output Files," depending on whether you are a OOS or an OS user, 
respectively. For the examples shown below, command lines and options 
that are required only for CMS/DOS users are shaded. OS users should 
ignore these shaded entries. 

A CMS format variable file cannot be used directly as input to AMSERV 
functions as a variable (V) or variable blocked (VB) file because the 
standard variable CMS record does not contain the BL and RL headers 
needed by the variable record modules. If these headers are not included 
in the record, errors will result. 

All files placed on the CMS disk by AMSERV will show a RECFM of V, 
even if the true format is fixed (F), fixed blocked (FB), undefined (U), 
variable or variable blocked. The programmer must know the true format 
of the file he is trying to use with the AMSERV command and access it 
properly or errors will result. 

A CMS standard variable-format file can be accessed as RECFM=U to use 
the file as follows: 

AMSERV AMREPUV 

The file AMREPUV AMSERV contains the following 2 cards: 

REPRO INFILE (INPUT ENV(RECFM(U) ,BLKSZ(800),PDEV(3330»} 
OUTFILE (OUTPUT ENV (RECFM (V) ,BLKSZ (800) ,RECSZ (84) , PDEV (3330» ) 

The input file can be any CMS file with LRECL 800 or less. The 
output file will be a true variable file that can be used with AMSERV. 

USING THE DEFINE AND DELETE FUNCTIONS 

When you use the DEFINE and DELETE control statements of AMSERV, you do 
not need to specify the DSN parameter on the DLBL command: 

dlbl ijsysct c (perm extent 1"111111 

If the above commands are eXEcuted prior to an AMS ERV command to define 
a master catalog, the DEFINE will be successful as long as you have 
assigned a data set name using the NAME parameter in the AMSERV file. 
The same is true when you define clusters, or when you use the DELETE 
function to delete a cluster, space, or catalog. 

When you do not specify a data set name, AMSERV obtains the name from 
the AMSERV file. In the case of defining or deleting space, no data set 
name is needed; the FILE parameter corresponding to the ddname is all 
that is necessary, and AMSERV assigns a default data set name to the 
space. 

When you' define space on a minidisk using AMSERV, CMS does not check 
the extents you specify to see whether they are greater than the number 
of cylinders available. As long as th~ starting cylinder is a valid 
cylinder number and the extents you specify are on cylinder boundaries, 
the DEFINE function completes successfully. However, you receive an 
error message when you use an AMSERV function that tries to use this 
space. 

section 10. Using Access Method Services and VSAM 231 



To define a cluster for VSAM space that has already been allocated, you 
need (1) an AMSERV file containing the control statements necessary for 
defining the cluster, and (2) the master catalog (and, perhaps, user 
catalog) volume, which will point to the cluster. The volume on which 
the cluster is to reside does not have to be online when you define a 
suballocated cluster. 

For example, the file CLUSTER AMSERV contains the following: 

DEFINE CL USTER ( NAME (BOOK. LIST) -
VOLUMES (123456) -
TRACKS (40) -
KEYS (14,0) RECORDSIZE (120,132) ) -

DATA (NAME (BOOK. LIST. DATA) ) -
INDEX (NAME (BOOK. LIST. INDEX) ) 

To execute this file, you would need to enter the following command 
sequence (assuming that the master catalog, on volume 123456, is in your 
virtual machine at address 310): 

access 310 b 
Iii .. I," .. ~ .• 
dlbl ijsy sct b (perm if. . ,III 
amserv cl uster 

For a unique cluster (one defined with the UNIQUE attribute), you must 
define the space for the cluster at the same time you define its name 
and attributes; thus the volume or volumes on which the cluster is to 
reside must be mounted and accessed when you execute the AMSERV command. 
You can supply extent information for the cluster's data and index 
portions separately. 

To execute an AMSERV file named UNIQUE which contains the following 
(the ellipses indicate that the AMSERV file is not complete): 

DEFINE CLUSTER -
(NAME (PAYROLL) ) -

DATA ( FILE (UDATA) -
UNIQUE -
VOLUMES (567890) -
CYLINDERS (40) -. .. ) -

INDEX ( FILE (UINDEX) ) -
UNIQUE -
VOLUMES (567890) -
CYLINDERS (10) -. .. ) 

232 IBM VM/SP CMS User's Guide 



the command sequence should be: 

access 350 c 

dlbl udata c (extent 
DMSDLB331R ENTER EXTENT SPECIFICATIONS: 
800 800 c _III_ 
dlbl uindex c (extent 
600 200 c 
amserv unique 

When you use AMSERV to delete a VSAM cluster, the volume containing the 
cluster does not have to be accessed unless the volume also contains the 
catalog in which the cluster is defined. In the case of data spaces and 
user catalogs or the master catalog, however, the volume(s) must be 
mount~d and accessed in order to delete the space. 

When you delete a cluster or a catalog, you do not need to use the 
DLBL command, except' to define the master catalog; AMSERV can obtain the 
necessary file information from the AMSERV file. 

You should be particularly careful when you are using temporary disks 
with AKSERV, that you have not cataloged a temporary data space or 
cluster in a permanent catalog. You will not be able to delete the space 
or cluster from the catalog. 

USING THE REPRO, IMPORT, AND EXPORT (OR EXPORTRA/IMPORTRA) FUNCTIONS 

You can manipulate VSAM files in CMS with the REPRO, IMPORT, and EXPORT 
functions of AMSERV. You can create VSAM files from sequential tape or 
disk files (on OS, DOS, or CMS disks) using the REPRO function. Using 
REPRO, you can also copy VSAM files into CMS disk files or onto tapes. 
For the IMPORT/EXPORT process, you have the option (for smaller files) 
of exporting VSAM files to CMS disks, as well as to tapes. 

You cannot, however, use the EXPORT function to write files onto OS 
or DOS disks. Nor can you use the REPRO function to copy ISAM (indexed 
sequential) files into VSAM data sets, since CMS cannot read ISAM files. 

When creating a VSAM file from a non-VSAM disk file, the device track 
size must be the maximum BLOCKSIZE in the INFILE statement. AMSERV 
expects a DOS or OS file as input and will not open a disk file when the 
BLOCKSIZE specified is greater than the track capacity of the disk 
device being used. 

Yo~ cannot use the ERASE or PURGE options of the EXPORT command if 
you are exporting a VSAM file from a read-only disk. The export 
operation succeeds, but the listing indicates an error code 184, meaning 
that the erase function could not be performed. 

You should not use an EXPORT DISCONNECT function from a CMS minidisk 
and try to perform an IMPORT CONNECT function for that data set onto an 
OS system. OS incorrectly rebuilds the data set control block (DSCB) 
that indicates how much space 1s available. 

Section 10. Using Access Method Services and VSAM 233 



The AMSERV file below gives an example of using the REPRO function to 
copy a CMS sequential file into a VSAM file. The CMS input file must be 
sorted in alphameric sequence before it can be copied into the VSAM 
file, which is a keyed sequential data set (KSD~. The VSAM cluster, 
NAME.LIST, is defined in an AMSERV file named PAYROLL: 

DEFINE CLUSTER ( NAME (NAME. LIST ) -
VOLUMES (CMSDEV) -
TR ACKS (20) -
KEYS (14,0) -
RECORDSIZE (120, 132) ) -

DATA (NAME (NAME.LIST.DATA) ) -
INDEX (NAME (NAME.LIST.INDEX ) ) 

To sort the CMS file, create the cluster and copy the CMS file into 
it, use the following commands: 

sort name list a name sort a 
DMSSRT604R ENTER SORT FIELDS: 
1 14 

'(perm 

name sort 

name list 
amservrepro 

The file REPRO AMSERV contains: 

REPRO INFILE ( SORT 
ENV (RECORDFORMAT (F) -

BLOCKSIZE (80) -
PDEV (3330) ) ) -

OUTFILE (NAME) , 

vsam 

When you use the REPRO, IMPORT, or EXPORT functions with tape files, 
you must remember to use the TAPIN and TAPOUT options of the AMSERV 
command. These options perform two functions: they allow you to specify 
the device address of the tape, and they notify AMSERV to prompt you to 
ent er a ddname. 

In the example below, a VSAM file is being exported to a tape. The 
file, TEXPORT AMSERV, contains: 

EXPORT NAME. LIST -
INFILE (NAME) -
OUTFILE (TAPE ENV (PDEV (2400) ) ) 

To execute this ,AMSERV, you enter the commands as follows: 

DDNAMES: 
tape 

The fid, volid, and exdte parameters on LABELDEF are only examples; 
you can substitute any value you want for them on your tape label. 

234 IBM VM/SP CMS User's Guide 



WRITING EXECS FOR AMSERV AND VSAM 

You may find it convenient to use EXEC procedures for most of your 
AMSERV functions, as well as setting up input and output files for 
program execution, and executing your VSAM programs. If, for example, a 
particular AMSERV function requires several disks and a number of DLBL 
statements, you can place all of the required commands in an EXEC file. 
For example, if the file below is named SETUP EXEC: 

ACCESS 135 B 
ACCESS 136 C 
ACCESS 137 D 
ACCESS 300 G 
II. 11.121.]&_ 
DLBL IJSYSCT G (PERM 

I] 
DLBL FILEl B DSN FIRST FILE (VSAM 

1 II 
DLBL FILE2 C DSN SECOND FILE (VSAM 

DLBL FILE3 D DSN THIRD FILE (VSAM 
AMSERV MULTFILE 

to invoke this sequence of commands, all you have to enter is the name 
of the EXEC: 

setup 

If you place, at the beginning of the EXEC file, the EXEC control . 
statement: 

&ERROR &EXIT &RETCODE 

then, you can be sure that the AMSERV command does not execute unless 
all of the prior commands completed successfully. 

For those AMSERV functions that issue response messages, you can use 
the &STACK EXEC control statement. For example: 

&ERROR &EXIT &RETCODE 
ACCESS 305 D 

DLBL OUTPUT D (VSAM 111111 
LABELDEF TAPE FID FILEl 
&ERROR &CONTINUE 
&STACK TAPE 
AMSERV TIMPORT (TAPIN 181 
&IF &RETCODE NE 0 TYPE TIMPORT LISTING 
TAPE REW 
SEXIT 0 

When the AMSERV command in the EXEC is executed, the request for the 
tape ddname is satisfied immediately, by the response stacked with 'the 
&STACK statement. 

If you are executing a command that accepts multiple response lines, 
you have to stack a null line as follows: 

&STACK C , D 
&STACK 
DLBL MULTFILE B (MULT 

Bot~: You can use the &BEGSTACK control statement to stack a series of 
responses in an EXEC, but you must use &STACK to stack a null line. 

Section 10. Using Access Method Services and VSAM 235 



236 IBM VM/SP eMS UserlsGuide 



Section 11. How VM/SP Can Help You Debug 
Your Programs 

Debugging is a critical part of the program development process. When 
you encounter problems executing application programs or when you want 
to test new lines of code, you can use a variety of CP and CKS debugging 
commands and techniques to examine your program while it is executing. 

You can interrupt the execution of a program to examine and change 
your general registers, storage areas, or control words such as the 
program status word (PSW), and then continue execution. Also, you can 
trace the execution of a program closely, so you can see where branches 
are being taken and when supervisor calls or I/O interruptions occur. 

In many cases, you may never need to look at a dump of a program to 
identify a problem. 

Preparing to Debug 

Before beginning to debug a program, you should have a current program 
listing for reference. When you use V"/SP to debug a program, you can 
monitor program execution, instruction by instruction, so you must have 
an accurate list of instruction addresses and addresses of program 
storage areas. You can obtain a listing of your program by using the 
PRINT command to print the LISTING file created by the assembler or 
compiler. To determine the virtual storage locations of program entry 
points, use the LOAD "AP file created by the LOAD and INCLUDE commands. 
If you are a CMS/DOS user, use the linkage editor map produced by the 
DOSLKED command. 

If the program that you are debugging creates printed or punched 
output and you will be executing the program repeatedly, you may not 
wish all of the output printed or punched. You should place your 
printer or punch in a hold status, so that any files spooled to these 
devices are not released until you specifically request it: 

cp spool printer hold 
cp spool punch hold 

When you are finished debugging you can use the CP QUERY command to see 
what files are being held and then you can select which files you may 
want to purge or release. 

When a Program Abends 

The most common problem you might encounter is an abnormal termination 
resulting from a program interruption. When a program running in a CKS 
virtual machine abnormally terminates (abends), you receive, at your 
terminal, the message: 

DMSITP141T exception EXCEPTION OCCURRED AT address IN ROUTINE name 

and your virtual machine is returned to the CMS environment. From the 
message you can determine the type of exception (program check, 
operation, specification, and so on), and, often, the instruction 
address in your program at which the error occurred. 

section 11. How VM/SP Can Help You Debug Your Programs 231 



sometimes this is enough information for you to correct the error in 
your source program, recompile it and attempt to execute it again. 

When this information does not immediately identify the problem in 
your program, you can begin debugging procedures using VM/SP. To access 
your program's storage areas and registers you can enter the command: 

debug 

immediately after rece1v1ng the abend message. This command places your 
virtual machine in the debug environment. 

To check the contents of general registers 0 through 15, issue the 
DEBUG subcommand: 

gpr 0 15 

If you want to look at only one regi~ter, enter: 

gpr 3 

You might also wish to check the program status word (PSW). Use the PSW 
subcommand: 

psw 

You can examine storage areas in your program using the X subcommand: 

X 201AC 20 

In this example, the subcommand requests a display of 20 bytes, 
beginning at location 201AC in your program. User programs executed in 
CMS are always loaded beginning at location X'20000' unless you specify 
a different address on the LOAD or FETCH command. To identify the 
virtual address of any instruction in a program, you only need to add 
20000 to the hexadecimal instruction address. 

RESUMING EXECUTION AFTER A PROGRAM CHECK 

On occasion, you will be able to determine the cause of a program check 
and continue the execution of your program. There are DEBUG subcommands 
you can use to alter your program while it is in storage and resume 
execution. 

If, for example, the error occurred because you had forgotten to 
initialize a register to contain a zero, you could use the DEBUG 
subcommand SET to place a zero in the register, and then resume 
execution with the GO subcommand. You can use the GO subcommand to 
specify the instruction address at which you want execution to begin: 

set gpr 11 0000 
go 200BO 

An alternate method of specifying a starting address at which execution 
is to resume is by using the SET subcommand to change the last word of 
the PSW: 

set psw 0 000200BO 
go 

238 IBM VM/SP CMS User's Guide 



If your program executes successfully, you can then make the 
necessary changes to your source file, recompile, and continue testing. 

Using DEBUG Subcommands to Monitor Program 
Execution 

The preceding examples did not represent a wide range of the 
possibilities for DEBUG subcommands. Nor do they represent the only way 
to approach program debugging. Some additional DEBUG subcommands are 
illustrated below. For complete details in using these subcommands, 
refer to the !~LSP ~MS ~ommgnd s.!!g ~s.Q!.Q l!~i~~.n£~. 

When you prepare to debug a program with known problems, or when you 
are beginning to debug a program for the first time, you might want to 
stop program execution at various instructions and examine the 
registers, constants, buffers, and so on. To temporarily stop program 
execution, use the BREAK subcommand to set breakpoints. You should set 
breakpoints after you load the program into storage, but before you 
begin executing it. You can set up to 16 breakpoints at one time. For 
each breakpoint, you assign a value (id), and an instruction address: 

load myprog 
debug 
break 0 20BCO 
break 1 20C10 
break 2 20DOO 

Then, you can return to CMS and begin execution: 

return 
start 

When the first breakpoint in this example is encountered, you receive 
the messages: 

DEEUG ENTERED. 
BREAKPOINT 0 AT 20BCO 

Then, in the debug environment, use the subcommands GPR, CSW. CAW, PSW, 
and X to display registers, control words, or storage locations. 

You can resume program execution with the GO subcommand: 

go 

If, at any time, you decide that you do not want to finish executing 
your program, but want to return to the CMS environment immediately, you 
must use the HX subcommand: 

hx 

There are three subcommands you can use to exit from the debug 
env ironment: 

1. RETURN, to return to the CMS environment when DEBUG is entered with 
the DEBUG command 

2. GO, to resume program execution when it has been interrupted by a 
breakpoint 

3. HX, to halt program execution entirely and return to the CMS 
environment 

Section 11. How VM/SP Can Help You Debug Your Programs 239 



If you try to leave the debug environment with the wrong subcommand 
you receive the message: 

INCORRECT DEBUG EXIT 

and you have to enter the proper subcommand. 

USING SYMBOLS WITH DEBUG 

To simplify the process of debugging in the CMS aebug environment, you 
can use the ORIGIN and DEFINE subcommands. The ORIGIN command allows 
you to set an instruction location to serve as the base for all the 
addresses you specify. For example, if you specify: 

origin 20000 

then, to refer to your virtual storage location 201BC, you only need to 
enter: 

x 1bc 

By setting the DEBUG or1g1n at your program's base address, you can 
refer to locations in your program by the virtual storage numbers in the 
listing, rather than having to compute the actual virtual storage 
address each time. The current DEBUG origin stays in effect until you 
set it to a different value or until you reload CMS (with the IPL 
command) • 

You can use the DEFINE subcommand to assign symbolic names to storage 
locations so that you can reference those locations by symboL, rather 
than by storage address. For example, suppose that during a DEBUG 
session you will repeatedly be examining three particular storage 
locations labeled in your program NAME1, NAME2, and.NAME3. They are at 
locations 20EFO, 20EFA, and 20F04. Enter: 

load nameprog 
debug 
origin 20000 
define name1 
define name2 
define na me3 
break 1 a04 
return 
start 

EFO 10 
EFA 10 
F04 10 

When the specified breakpoint is encountered, you can examine these 
storage areas by entering: 

x namel 
x name2 
x name3 

IOU can also refer to these symbols by name when you use the STORE 
subcommand: 

store name2 c4c5c3c5c1e4e5d6c9d9 

The names you specify do not have to be the same as the labels in the 
program; you can define any name up to eight characters. 

Figure 19 summarizes the DEBUG subcommands. 

240 IBM VM/SP CMS User's Guide 



b , 
i , Subcommand Format 
1------
, BBeak id {SymbOl} 
I hexloc 
I 
I CAW 
I , 
, CSW 
I 

Function 

,stops program execution at the 
,specified breakpoint. 

,Displays the contents of the 
,channel address word. 

IDisplays the contents of the 
,channel status word. 

1-------------------------------------------------------------
I r, 
I DEFine symbol hexloc Ibytecountl 
I , .!l I 
, L J 

I Assigns a symbolic name to the 
,virtual storage address. , , 

I 
I 
I 
I , 

r r , , ,Dumps the contents of specified 
DUmp I symbol 1 ,symbo12' [ident] , ,virtual storage locations to the 

Ihexloc1 Ihexloc21 I Ivirtual spooled printer. 
I 0 , * I I I , L L 11 J .J , 

I 
, r , 
, GO ,symbol' 
, I hexlocl 
, L J 

1------
., GPB reg1 (reg2] , 
I 
, HI 
I , 
I 
I , , , 
I 

r , 
ORigin ,symboll 

, hexlocl 
, Q I 
L· .J 

, PSi , 
I 
, BETurn 
I 
1-----, , 
I , , 

SET {CAW hex info 1 csw hexinfo [hexinfo] 
PSi hexinfo [hexinfo] 
GPR reg hexinfo [bexinfo] 

I STore {symbol} hexinfo [hexinfc] 
, {hexloc} , 
,--~----
, r, 
I X symbol , n I 
, 11§ng!hl 
, L J , , 
I , 
L

r , 
bexloc , n I 

I !l I 
L J 

IReturns control to your program 
land starts execution at the 
,specified location. , 
'Displays the contents of the 
,specified general registers. 

IHalts execution and returns to 
Ithe CMS command environment. 

,Specifies the basE address to be 
ladded to locations specified in 
lother DEBUG subcommands. , , 
IDisplays the contents of the old 
Iprogram status word. 

IExits from debug environment to 
Ithe CMS command environment. 

,Changes the contents of specified 
,control words or registers. 
I 
I 

IStores up to 12 bytes of informa
Ition starting at the specified 
,virtual storage location. 

IExamines virtual 
I locations. , , , , , , 

storage 

Figure 19. Summary of DEBUG Subcommands 

Section 11. How VM/SP Can Help You Debug Your Programs 241 



What To Do When Your Program Loopsc 

If, when your program is executing, it seems to be in a loop, you should 
first verify that it is looping, and then interruFt its execution and 
either (1) halt it entirely and return to the CMS environment or (2) 
resume its execution at an address outside of the loop. 

The first indication of a program loop may be either what seems to be 
an unreasonably long processing time, or, if you have a blip character 
defined, an inordinately large number of blips. 

You can verify a loop by checking the PSW frequently. If the last 
word repeatedly contains the same address, it is a fairly good 
indication that your program is in a loop. You can check the PSi by 
using the Attention key to enter the CP environment. You are notified 
by the message: 

CP 

that your virtual machine is in the CP environment. You can then use 
the CP command DISPLAY to examine the PSW: 

cp display psw 

and then enter the command BEGIN to resume program execution: 

cp begin 

If you are checking for a loop, you might enter both commands on the 
same line using the logical line end: 

cp d p#b 

When you have determined that your program is in a loop, you can halt 
execution using the CMS Immediate command HI. To enter this command, 
you must press the Attention key once to interrupt program execution, 
then enter: 

hx 

If you want your program to continue executing at an address past the 
loop, you can use the CP command BEGIN to specify the· address at which 
you want to continue execution: 

cp begin 20cdO 

Or, you could use the CP command STORE to change the instruction address 
in the PSi before entering the BEGIN command: 

cp store psw 0 20cdO#begin 

Tracing Program Activity 

When your program is in a loop, or when you have a program that takes an 
unexpected branch, you might need to trace the execution closely to 
determine at what instruction the program goes astray. There are two 
commands you can use to do this. The SVCTRACE command is a CMS command 
which traces all SVCs (supervisor calls) in your program. The TRACE 
command is a CP command which allows you to trace different kinds of 
information, including supervisor call instructions. 

242 IBM VM/SP CMS User's Guide 



USING THE CP TRACE COMMAND 

You can trace the following kinds of activity in a program using the CP 
TRACE command: 

• Instructions 
• Branches 
• Interrupts (including program, external, IIO and SVC interrupts) 
• I/O and channel activity 

When the TRACE command executes, it traces all your virtual machine's 
activity; when your program issues a supervisor call, or calls any CMS 
routine, the TRACE continues. 

You can make most efficient use of the TRACE command by starting the 
trace at a specific instruction location. You should set an address 
stop for the location. For example, if you are going to execute a 
program and you want to trace all of the branches made, you would enter 
the following sequence of commands to begin executing the program and 
start the trace: 

load progress 
cp adstop 20004 
start 
ADSTOP AT 20004 
cp trace branch 
cp begin 

NoW, whenever your program executes a branch instruction, you receive 
information at the terminal that might look like this: 

02001E BALR 05E6 ==) 020092 

This line indicates that the instruction at address 2001E resulted in a. 
branch to the address 020092. When this information is displayed, your 
virtual machine is placed in the CP environment, and you must use the 
BEGIN command to continue execution: 

cp begin 

When you locate the branch that caused the problem in your program, 
you should terminate tracing activity by entering: 

cp trace end 

and then you can use CP commands to continue debugging or you can use 
the EXTERNAL command to cause an external interruption that places your 
virtual machine in the debug environment: 

cp external 

You receive the message: 

DEBUG ENTERED. 
EXTERNAL INTERRUPT 

And you can use the DEBUG subcommands to investigate the status of your 
program. 

Section 11. How VM/SP Can Help You Debug Your Programs 243 



There are several things you can do to control the amount of information 
you receive when you are using the TRACE command, and how it is 
received. For example, if you do not want program execution to halt 
every time a trace output message is issued, you can use the RUN option: 

cp trace svc run 

Then, you can halt execution by pressing the Attention key when the 
interruption you are waiting for occurs. You should use this option if 
you do not want to halt execution at all, but merely want to watch what 
is happening in your program. 

Similarly, if you do not require your trace output immediately, you 
can specify that it be directed to the printer, so that your terminal 
does not receive any information at all: 

cp trace inst printer 

When you direct trace output to a 
with any printed program output. 
from other printed output, use the 
printer at a virtual address lower 
example: 

cp define printer 006 

printer, the trace output is mixed in 
If you want trace output separated 

CP DEFINE command to define a second 
than that of your printer at OOE. For 

Then, trace output will be in a separate spool file. eMS printed output 
always goes to the printer at address OOE. 

When you finish tracing, use the CP CLOSE command to close the 
virtual printer file: 

~ cp close e 

-- or --

cp close 006 

If you want trace output at the printer and at the terminal, you can use 
the BOTH option: 

cp trace all both 

If you are debugging a program that does a lot of I/O, or that issues 
many SVCs, arid you are tracing instructions or branches, you might not 
wish to have tracing in effect when the supervisor or I/O routine has 
control. When you notice that addresses being traced are not in your 
program, you can enter: 

cp trace end 

and then set an address stop at the location in your program that 
receives control when the supervisor or I/O routine has completed: 

cp adstop 20688 
begin 

244 IBM VM/SP CMS User's Guide 



Then, when this address is encountered, you can re-enter the CP TRACE 
command. 

USING THE SVCTRACE COMMAND 

If your program issues many SVCs, you may not get all of the information 
you need using the CP TRACE command. The SVCTRACE command is ~ CMS 
command, which provides more detailed information about all SVCS in your 
program, including register contents before and after the SVC, the name 
of the called routine, and the location from which it was called, and 
the contents of the parameter list passed to the SVC. 

The SVCTRACE command has only two operands, ON and OFF, to begin and 
end tracing. SVCTRACE information can be directed only to the printer, 
so you do not receive trace information at the terminal. 

Since the SVCTRACE command can only be entered from the CMS 
environment, you must use the Immediate commands SO (suspend tracing) or 
HO (halt tracing) if you want tracing to stop while a program is 
executing. Use the Immediate command RO to resume tracing. 

Since the CMS system is "SVC-driven", this debugging technique can be 
useful, especially, when you are debugging CMS programs. For more 
information on writing programs to execute in CMS, see "Section 13. 
Programming for the CMS Environment." 

Using CP Debugging Commands 

In addition to the CMS debugging facilities, there are CP commands that 
you can use to debug your programs. These commands are: 

• DISPLAY, which you can use to examine virtual storage, registers, or 
control words, like the PSi 

• ADSTOP, which you can use to set an instruction address stop in your 
program 

• STORE, which you can use to change the contents of a storage 
location, register, or control word 

When you use the display command, you can request an EBCDIC 
translation of the display by prefacing the location you want displayed 
with a "T": 

cp display t20000.10 

This command requests a display of X'10' (16) bytes beginning at 
location X'20000'. The display is formatted four words to a line, with 
EBCDIC translation at the left, much as you would see it in a dump. 

You can 
registers. 

also use the DISPLAY command 
For example, the commands: 

cp display g 
cp display gl 
cp display g2-5 

to examine 'the general 

result in displays of all the general registers, of general register 1, 
and of a range of registers 2 through 5. 

Section 11. How VM/SP Can Help You Debug Your Programs 245 



The DISPLAY command also displays the PSW, CAW, and CSW: 

cp display psw 
cp display caw 
cp display csw 

With the STORE command, you can change the contents of registers, 
storage areas, or the PSi. 

As you can see, the CMS DEBUG subcommands and the CP commands ADSTOP~ 
DISPLAY, and STORE, have many duplicate functions. The environment you 
choos€ to work in, CP or debug, is a matter of personal preference. The 
differences are summarized in Figure 20. What you should be aware of, 
however, is that you should never attempt to use a combination of CP 
commands and DEBUG subcommands when you are debugging a program. Since 
DEBUG itself is a program, when it is running (that is, when you are in 
the debug environment), the registers that CP recognizes as your virtual 
machine's registers are actually the registers being used by DEBUG. 
DEBUG saves your program's registers and PSW and keeps them in a special 
save area. Therefore, if you enter the DEBUG and CP commands to display 
registers, you will see that the register contents are different: 

gpr 0 15 
#cp d g 

DEBUGGING WITH CP AFTER A PROGRAM CHECK 

When a program that is executing under CMS abends because of a program 
check, the DEBUG routine is in centrol and saves your program's 
registers, so that if you want to begin debugging, you must use the 
DEBUG command to enter the debug environment. 

You can prevent DEBUG from gaining control when a program 
interruption occurs by setting the wait bit in the program new PSi: 

cp trace prog norum 

You should do this before you begin executing your program. Then, if a 
program check occurs during execution, when CP tries to load the program 
new PSi, the wait bit forces CP into a disabled wait state and you 
receive the message: 

DMKDSP450i CP ENTERED; DISABLED WAIT PSi 

All of your program's registers and storage areas remain exactly as they 
were when program interruption occurred. The PSi that was in effect 
when your program was interrupted is in the program old PSi, at location 
X'28'. Use the DISPLAY command to examine its contents: 

cp display 28.8 

The program new PSi, or the PSi you see if you enter the command DISPLAY 
PSW, contains th~ ~dd~ess of the DEBUG routine. 

If, after using CP to examine your registers and storage areas, you 
can recover from the problem, you must use the STORE command to restore 
the PSi, specifying the address of the instruction just before the one 
indicated at location X'28'. For example, if the instruction address in 
your pr6gram is X'566' enter:' 

CD store psv 0 20566 
cp begin 

246 IBM VM/SP CMS User's Guide 



In this example, setting the first word of the PSi to 0 turns the wait 
bit off, so that execution can resume. 

Program Dumps 

When a program you execute under C~S abnormally terminates, you do not 
automatically receive a program dump. If, after attempting to use CMS 
and CP to debug interactively, you still have not discovered the 
problem, you may want to obtain a dump. You might also want to obtain a 
dump if you find that you are displaying large amounts of information, 
which is not practical on a terminal. 

Depending on whether you are using CMS DEBUG or CP to do your 
debugging, you can use the DUMP command to specify storage locations you 
want printed. The formats of the DUMP command (CP) and the DUMP 
subcommand (DEBUG) are a little different. See !~.2f CM.2 ~Q1!u!l.~nd An.,g 
~~£~Q R~fe~~D£~ for a discussion of the DEBUG subcommand, DUMP; see 
!~L.2g ~g ~Q~~~nd R~!~~D£~ !Q~ Q~~~~l ~~~§ for a discussion of the CP 
DUMP command. 

In either event, you can selectively dump portions of your virtual 
storage, your entire virtual storage area, or portions of real storage. 
For example, in the debug environment, to dump the virtual storage space 
that contains your program, you would enter: 

dump 20000 20810 

The second value depends upon the size of your program. 

From the CP environment, enter: 

cp dump t20000-20810 

TheCP DUMP command allows you to request EBCDIC translation 
hexadecimal dump. The dump produced by the DEBUG subcommand 
provide EBCDIC translation. 

Debugging Modules 

with the 
does not 

You can debug nonrelocatable MODULE files (created with the GENMOD 
command) in the same way you can debug bbject modules (TEXT files). 

To load the MODULE into storage, use the LOADMOD command: 

loadmod mymod 
cp adstop 201CO 
start 

If you make any changes to a module while it is in your virtual 
storage area, you can generate a new module containing your changes 
provided your module file includes a load map (created with the MAP 
option in effect.) When you issue the GENMOD command, the changes 
become a permanent part of the executable module: 

loadmod my mod 
cp store 201CO 0002 
genmod my mod 

To debug MODULE files in this manner, you must have a listing of the 
program as it existed when the module was created. 

Section 11. How VM/SP Can Help You Debug Your Programs 241 



Comparison of CP and CMS Facilities for Debugging 

If you are debugging problems while running CMS, you can choose the CP 
or CMS debugging tools. Refer to Figure 20 for a comparison of the CP 
and CMS debu gging tools. 

r--------------------------------------------------------------------------, 
Function, CP , CMS ' 

setting ad- , Can set only one address 
dress stops., storage at a time. 

Dumping 
contents 
of storage 
to the 
printer. 

Displaying 
contents of 
storage and 
control 
registers 
at the 
terminal. 

storing 
information. 

The dump is printed in hexa
decimal format with EBCDIC 
translation. The storage 
address of the first byte of 
each line is at the left. 

The display is typed in hex
adecimal format with DBCDIC 
translation. The CP command 
displays storage keys, 
floating-point registers, 
and control registers. 

The amount of information 
stored by the CP command is 
limited only by the length of 
the input line. The informa
tion can be full word aligned 
when stored. CP stores data 
in the floating-point and 
control registers, as well as 
in general registers. CP 
stores data in the PSW, but 
not in the CAW or CSW. 
However, data can be stored 
in the CAW or CSW by specify
ing the hardware address in 
the STORE command. 

Tracing ! CP traces: 
information.! • All interruptions, in-

, structions and branches. 
, • SVC interruptions 
, • IIO interruptions 
, • Program Interruptions 
, • External interruptions 
, • Privileged instructions 
! • All user I/O operations 
, • Virtual and real CCW's 
, • All instructions , 
, The CP trace is interactive. 
, You can stop it and display 
, other fields. 

, Can set up to 16 address 
, stops at a time. 

The dump is printed in hex
adecimal format. The 
storage address of the first 
byte of each line is iden
tified at the left. The 
contents of general and 
floating-point registers are 
printed at the beginning of 
the dump. 

The display is typed in 
hexadecimal format. The CMS 
commands QQ not display 
storage key, floating-point 
registers, or control regis
ters as the CP command does. 

The CMS command stores up to 
12 bytes of information. 
CMS stores data in the 
general registers, but not 
in the floating-point or 
control registers. CMS 
stores data in the PSW, 
CA W, and CSW. 

CMS traces all SVC interru
tions. CMS displays the 
contents of general and 

-floating-point register~ 
before and after a routine 
called. The parameter list 
is recorded before a routine 
is called. 

L--------------------------------_-________ ~ __________ ---------____________ J 

Figure 20. Comparison of CP and CMS Facilities for Debugging 

248 IBM VM/SP CMS User's Guide 



What Your Virtual Machine Storage Looks Like 

Figure 21 illustrates a simplified CMS storage map. The portion of 
storage that is of most concern to you is the user program area, since 
that is where your programs are loaded and executed. The user program 
area and some of the other areas of storage shown in the figure are 
discussed below in general terms. 

When you issue a LOAD command (for OS or CMS programs) or a FETCH 
command (for DOS programs), and you do not specify the ORIGIN option, 
the first, or only, program you load is loaded at location X'20000', the 
beginning of the user program area. 

The upper limit, or maximum size, of the user program area is 
determined by the storage size of your virtual machine. You can find 
out how large your virtual machine is by using the CP QUERY command: 

cp query virtual storage 

If you need to increase the size of your virtual machine, then you 
must use the CP command DEFINE. For example: 

cp define storage 1024k 

increases the size of your virtual machine to 1024K bytes. If you are 
in the CKS environment when you enter this command, you receive a 
message like: 

STORAGE = 01024K 
DMKDSP450W CP ENTERED; DISABLED WAIT PSi '00020000 00000000' 

and you must reload CMS with the IPL command before you can continue. 

You might need to redefine your virtual machine to a larger size if 
you execute a program that issues many requests for free storage, with 
the OS GETMAIN or DOS/VS GETVIS macros. CKS allocates this storage from 
the user program area. 

At the top of the user program area are the loader tables, that are 
used by the CMS loader to point to programs that have have been loaded. 
You can increase the size of this area with the CMS SET LDRTBLS command. 
If you use the SET LDRTBLS command, you should issue it immediately 
after you IPL CMS. 

The transient program area is used for loading and executing 
disk-resident CMS MODULE files that have been cre·a ted using the ORIGIN 
TRANS cption of the LOAD command, followed by the GENMOD command. For 
more infOrmation on CMS KODULE files and the transient area, see 
"Executing Program Modules" in "Section 13. Programming for the CMS 
Environment." 

SHARED AND NONSHARED SYSTEMS 

The areas in storage labeled in Figure 21 as the CMS nucleus and the 
ncss are system programs that are loaded by various types of requests. 
When you enter the command: 

cp ipl cms 

Section 11. How VM/SP Can Help You Debug Your Programs 249 



~-------------------, 
I I 
II 

I I 
I ncss I 
I I 
I I 
, I 

~ -, 
I Loader Tables 
I 
I , , 
I 
I User Program Area , , 
I , 
I 
I CMS Nucleus , 
I 
I , Transient Program Area 
I , 
I Free storage used by , CMS routines , , Low-storage 
I CMS routines , , System Control Blocks, , Pointers, Flags 
L--

-Figure 21 • Simplified CMS Storage Map 

X'n' 
(where n = your 
virtual machine 
storage size) 

X'20000' 

X'10000' 

X'EOOO' 

X'8000' 

X'4000' 

X'O' 

the area shown 
is known to CP 
the CMS system 
using CMS, you 
command to load 
same system, CP 

as the CMS nucleus is loaded with the CMS system, which 
by its saved name, CMS. This saved system is a copy of 

that is available for many users to share. When you are 
share it with other users who have also issued the IPL 
the saved CMS system. By having many users share the 

can manage system resources more efficiently. 

Under some circumstances, you may need to load the CMS system into 
your virtual machine by entering the IPL command as follows: 

cp ipl 190 

This IPL command loads the CMS system by referring to its virtual 
address, which in most installations is 190. The copy of CMS you load 
this way is nonshared; it is your own copy, but it is the same system, 
functionally, as the saved system CMS. 

Some of the CP and CMS debugging ccmmands do not allow you to trace 
or store information that. is contained in shared areas of your virtual 
machine. For example, if you have entered the ccmmand: 

cp trace inst 

250 IEM VM/SP eMS User's Guide 



to trace instructions in your virtual machine, some of the instructions 
may be located in the CMS nucleus. If you have a shared copy of CMS, you 
receive a message like: 

DMKATS181E SHARED SYSTEM CMS REPLACED WITH NONSHARED COPY 

and CP loads a copy of CMS for you that you do not share with other 
users. 

Some CMS routines and programs are stored on disks and loaded into 
storage as needed. These segmentf include the CMS editor, EXEC 
processor, and OS simulation routines; CMS/DOS; VSAM; and access method 
services. Beyond the end of your virtual machine address space is an 
area of storage into which these segments are loaded when you need them. 
Since this area is not contiguous with your virtual storage, the 
segments that are loaded in this area are called discontiguous saved 
segments. 

These segments are loaded only when you need them, and are released 
from the end of your virtual machine when you are through using them. 
Like the CMS system, they are saved systems and can be shared by many 
users. For example, whenever you issue the EDIT command the segment 
named CMSSEG is loaded; when you enter the EDIT subcommands FILE or 
QUIT, the saved system CMSSEG is released. The other segments are named 
CMSDOS (for eMS/DOS), CMSBAM (for VSE/AF SAM interfaces), CMSVSAM (for 
VSAM interfaces), and CMSAMS (for access method services interfaces). 
These names are the defaults; they can be changed by the installation. 

You can spec~fically request a nonshared copy of a segment by loading 
the named system by volume rather than by name. If you do not do this 
before altering a shared segment (unless with the ADSTOP, TRACE, or 
STORE CP commands), CP issues the message DMKVMA456W and places you in 
console function mode. 

In addition, for the CMSSEG segment only, you can indicate an 
alternate segment to be loaded on the IPL command. The format of the 
1PL command to support this is: 

IPL {CUU } PARM SEG=segmentname 
systemname 

SEG=segmentname 
indicates the name of the saved segment to be loaded whenever the 
CMS editor, EXEC processor, or OS simulation routines are needed. 
Eight characters must be entered for segmentname; either assign an 
eight-character segment name when you code the NAMESYS macro for 
your installation, or be sure that the operator enters trailing 
blanks if segmentname is less than eight characters long. 

The eMS batch facility loads whatever segment is specified on the 
first IPL command issued for the batch virtual machine. Thus, if the 
first IPL command for a eMS batch facility machine is: 

IPt CMS PARM SEG=CMSSEG02 

all subsequent IPt commands issued by the CMS batch facility will 
specify the same segment name (CMSSEG02). 

For additional information on saved 
segments, and CMS virtual storage, see 
Gui.Q~. 

systems, discontiguous saved 
the !!1L2F. 2.yste.m £!:Qg~gll~ 

Section 11. How VM/SP Can Help You Debug Yeur Programs 251 



252 IBM VM/SP eMS User's Guide 



Section 12. Using the eMS Batch Facility 

The CMS batch facility provides a way of submitting jobs for batch 
processing in CMS. You can use the CMS batch facility when: 

• You have a job (like an assembly or execution) that takes a lot of 
time, and you want to be able to use your terminal for other work 
while the time-consuming job is being run. 

• You do not have access to a terminal. 

The eMS batch facility is really a virtual machine, generated and 
controlled by the system operator, who logs on VM/SP using the batch 
userid and invoking the CMSBATCH command. All jobs submitted for batch 
processing are spooled to the userid of this virtual machine, which 
executes the jobs sequentially. To use the CMS batch facility at your 
location, you must ask the system operator what the userid of the batch 
virtual machine is. 

Submitting Jobs to the eMS Batch Facility 

Under a real OS or DOS system, jobs submitted in batch mode are 
controlled by JCL specifications. Batch jobs submitted to the CMS batch 
facility are controlled by the control cards /JOB, /SET, and /*, and by 
CMS commands. 

Any application or development program written in a language 
supported by V~/SP may be executed on the batch facility virtual 
machine. However, there are restrictions on programs using certain CP 
and CMS commands, as described later in this section. 

INPUT TO THE BATCH MACHINE 

Input records must be in card-image format, and may be punched on real 
cards, placed in a CMS file with fixed-length, 80-character records, or 
punched to your virtual card punch. These jobs are sent to the batch 
virtual machine in one of two ways: 

• By reading the real punched card input into the system card reader 

• By spooling your virtual card punch to the virttial reader of the 
batch virtual machine 

When you submit a real card deck to the batch machine, the first card 
in the deck must be a CP ID card. The ID card takes the form: 

r-
lID userid 
'----

where It must begin in card cclumn one and be separated from userid (the 
~ batch facility virtual machine userid) by one or more blanks. 

Section 12. Using the CMS Batch Facility 253 



For example, if your installation's batch virtual machine has a 
userid of BATCH1, you punch the card: 

IO BATCH1 

and place it in front of your deck. 

When you are going to submit a job using your virtual card punch, you 
must first be sure that your punch is spooled to the virtual reader of 
the batch virtual machine: 

cp spool punch to batch1 

Virtual card input can be spooled to the batch machine in several ways. 
You may create a eMS file that contains the input control cards and use 
the CMS PUNCH command to punch the virtual cards: 

punch batch jcl (noheader 

When you punch a file this way, you must use the NOHEAOER option of the 
PUNCH command, since the CMS batch facility cannot interpret the header 
card that is usually produced by the PUNCH command. As it does with 
cards in an invalid format, the ,batch virtual machine would flush the 
header card. 

You can use an EXEC procedure to submit input to the batch machine. 
From an EXEC, you can punch one line at a time into your virtual punch, 
us~ng the &PUNCH and &BEGPUNCH EXEC control statements. When you do 
this, you must remember to use the CP CLOSE command to release the spool 
punch file when yeu are finished: 

CP CLOSE PUNCH 

If you are using the EXEC to punch individual lines and entire CMS files 
to be read by the batch virtual machine as one continuous job stream, 
you must remember to spool your punch accordingly: 

CP SPOOL PUNCH CONT 
&PUNCH IJOB BOSWELL 999888 
PUNCH BATCH JCL * (NOHEAOER 
CP SPOOL PUNCH NOCONT 
CP CLOSE PUNCH 

A IJOB card must precede each job to be executed under the batch 
facility. It identifies your userid to thp D~tch ~i~t~al machi~c ~~d 
provides accounting information for the system. It takes the form: 

r-
'/JOB userid accntnum [jobname] [comments] L--_________________________________ _ 

254 IBM VM/SP CMS User's Guide 



userid is your user identification, or the userid under which you 
want the job submitted. This parameter controls: (1) The 
userid charged by the CP accounting routines for the system 
resources used during a job. (2) The name and di stribution 
code that appear on any spooled printer or punch output. (3) 
The userid to whom status messages are sent while the batch 
machine is executing the job. 

No1~: Items 1 and 2 are correct only if the directory for the 
userid involved contains the accounting option. 

accntnum is your account number. This account number appears in the 
accounting data generated at the end of your job. It 
overrides the account number in the CP directory entry for the 
userid specified for this job. 

jobname is an optional parameter that specifies the name of the job 
being run. If you specify a jobname, . it appears as the CP 
spool file identification in the filetype field. The filename 
field always contains C~SBATCH. See "Batch Facility Output" 
below. 

comments may be any additional information you want to provide. 

The /* card indicates the end of a job to the batch facility. It 
tak,es the form: 

.--
I /* 

:~ .... '------
,I 

The batch facility treats all 1* cards after the first as null cards. 
Therefore, if you want to ensure against the previous job not having a 
/* end-of-job indicator, you should precede your /JOB card with a /* 
card. 

The /* card is also treated as an end-of-file indicator when a file 
is being read from the input stream. This is a special technique used in 
submitting source or data files throug~ the card reader and is discussed 
under "A Batch EXEC for Non-C~S Users." 

The /SET card sets limits on a system's time, printing, and punching 
resources during the execution of a job. It takes the form: 

.--
I /SET [TIME seconds] (PRINT lines] [PUNCH cards] 
L--

seconds 

lines 

is a decimal value that specifies the maximum number of 
seconds of virtual CPU time a job can use. 

is a decimal value that specifies the maximum number of lines 
a job can print. 

Section 12. Using the CMS Batch Facility 255 



• 
cards is a decimal number that specifies the maximum number of cards 

a job can punch. 

The default values for the batch facility are set at 32,767 seconds, 
printed lines, and punched cards per job. Any new limits defined using 
the /SET card must be less than these maximum settings. The system 
resources can be set at lesser values than the default values by an 
installation's system programmer; be sure you know the maximum 
installation values for batch resource limits before you use the /SET 
card. 

A /SET card can appear anywhere in the job following the /JOB card. 
The new limits defined by the /SET card apply only to the part of the 
job that follows the /SET card. 

; 

A job can contain up to three /SET cards (one for each operand); a 
/SET card cannot be entered more than once for the same operand. 

Only use /SET cards. for the operands whose values you want to change 
from the default; the default values are reset between jobs. A/SET 
card for an operand overrides its default but does not reset the other 
operands. 

HOW THE BATCH FACILITY WORKS 

The CMS batch facility, once initialized, runs continuously. When it 
begins executing a job, it sends a message to the userid of the user 
submitting the job. If you are logged on when the batch machine begins 
executing a job that you sent it, you receive the message: 

MSG FROM BATCHID: JOB 'yourjob' STARTED 

When the batch machine finishes processing a job, it sends the message: 

MSG FROM EATCHID: JOB 'yourjob' ENDED 

where yourjob is the jobname you specified on the /JOB card. Before it 
reads the next job from its card reader, the batch virtual machine: 

• Closes all spooling devices and releases spool files 
• Resets any spooling devices identified by the CP TAG command 
• Detaches any disk devices that were accessed 
• Punches accounting information to the system 
• Reloads CMS 

All of this "housekeeping" is done by the CMS batch facility so that 
each job that is executed is unaffected by any previous jobs. 

If a job that you sent to the batch virtual machine terminates 
abnormally (abends), the batch machine sends you a message: 

MSG FROM EATCHID: JOB 'yourjob' ABEND 

and spools a CP storage dump of your virtual machine to the printer. 
The remainder of your job is flushed. 

Whenever the batch virtual machine has read and executed all of the 
jobs in its card reader, it waits for more input. 

256 IBM VM/SP CMS User's Guide 



Preparing Jobs for Batch Execution 

When you want to submit a job to the CMS batch facility for execution, 
you .should provide the same CMS and CP commands you would use to prepare 
to execute the same job in your own virtual machine. 

You must provide the batch virtual machine with read access to any 
disk input files that are required for the job. You do this by supplying 
the LINK and ACCESS command lines necessary. The batch virtual machine 
has an A-disk (195), so you can enter commands to access your disks as 
read-only extensions. For example, if you wanted the batch machine to 
execute a program module riamed LONDON on your 291 disk, your input file 
might contain the following: 

/JOB FISH 012345 
CP LINK BOSWELL 291 291 RR SECRET 
ACCESS 291 B/A 
LONDON 

Similarly, if you are using the 
program using input and output 
definitions: 

CP LINK ARDEN 391 391 RR FOREST 
ACCESS 391 B/A 

batch virtual machine to 
files, you must supply 

FILEDEF INFILE DISK VITAL STAT B 
FILEDEF OUTFILE PUNCH 
CP SPOOL PUNCH TO BOSWELL 
LONDON 

execute a 
the file 

If you expect printed or punched output from your job, you may need 
to include the spooling commands necessary to control the output. In 
the above example, the batch machine's punch is spooled to userid 
BOSWELL's virtual reader. 

Any output printer files produced by your job are spooled by the 
batch virtual machine to the printer. These files are spooled under your 
userid and with the distribution code associated with your userid, 
provided the userid's directory has the accounting option set. You can 
change the characteristics of these output files with the CP SPOOL 
command: 

CP SPOOL E CLASS T 

If you want output to appear under a name other than your userid, use 
the FOR operand of the SPOOL command: 

CP SPOOL E FOR JONSON 

output punch files are spooled, by default, to the real system card 
punch (under your userid), unless you issue a SPOOL command in the batch 
job to control the virtual card punch of the batch virtual machine. 

Section 12. Using the CMS Batch Facility 251 



RESTRICTIONS ON CP AND CMS COMMANDS IN BATCH JOBS 

The batch facility permits the 
The following CP commands can 
machine: 

CHANGEt 
CLOSEt 
DETACH2 
DUMP 
DISPLAY 
LINK3 

Notes: 

MSG 
QUERY 
REWIND 
SMSG 
SPOOLt 
STORE 
TAG 

use of many CP and most CMS commands. 
be used to control the batch virtual 

-':--These commands may not be used to affect the virtual card reader. 

2. You can not use this command to detach any spooling devices or the 
system or IPL disks. 

3. The LINK command must be entered on one line in the format: 

CP LINK userid vaddr vaddr mode password 

None of the LINK command keywords (AS, PASS, TO) are accepted. If 
the disk has no password associated with it, you must enter the 
password as ALL. A maximum of ten links may be in effect at any 
one time. 

All CP commands in a batch job must be prefaced with the "CP" 
command. 

Since the batch virtual machine reads input from its card reader, you 
cannot use the following commands or operands that affect the card 
reader: 

ASSGN SYSxxx READER (eMS/DOS only) 
DISK LOAD 
F,ILEDEF READER 
READCARD 

The RDCARD macro cannot be used by jobs that run under the CMS batch 
machine. 

Inva~id SET command operands are: 

BLIP 
EMSG 
IMPCP 
INPUT 

OUTPUT 
REDTYPE 
RELPAGE 
PROTECT 

All the other operands of the SET command can be used in a job executing 
in the batch virtual machine. 

Note: If the SET TIMER RE~L COWWQud is u5~d fOL the batch machine, the 
tImer expires every two seconds (including while batch is waiting for 
the reader). To avoid this problem, use the command SET TIMER ON. 

258 IBM VM/SP CMS User's Guide 



BATCH FACILITY OUTPUT 

Any files that you request to have printed during your job's execution 
are spooled to the real system printer under your userid, unless you 
have spooled it ctherwise. Once released for processing, these output 
files are under the control of the CP spooling facilities; if yeu are 
logged on, you can control the disposition of these files before they 
are printed with the CLOSE, PURGE, ORDER, and CHANGE commands. See the 
following section "purging, Reordering, and Restarting Batch Jobs." 

Output files produced by the batch virtual machine are identifiable 
by the filename CMSBATCH in the CP spool file name field. The spool file 
type field contains the filetype JOB, unless you specified a jobname on 
the /JOB card. This applies to both printer and punch output files. 

In addition to your regular printed output, the CMS batch facility 
spools a console sheet that contains a record of all the lines read in, 
and the responses, error messages, and return codes that resulted from 
command or program execution. This file is identified by a spool file 
name of BATCH and a spool file type of CONSOLE. 

Purging, Reordering, and Restarting Batch Jobs 

When required, you can control the execution of batch virtual machine 
jobs by purging, reordering, and restarting them; by the same token, 
because all the closed printer files are queued for system output under 
the submitting userid, you can change, purge, or reorder these files 
prior to processing on the system printer. 

To purge a job executing under the batch monitor, follow the 
procedure below: 

1. Signal attention and enter the virtual machine environment. 
2. Enter the HX (halt execution) Immediate command. 
3. Disconnect the virtual machine using the CP DISCONN command. 

The HX command causes the batch facility to abnormally terminate. 
This provides the user with an error message and a CP dump of the batch 
facility virtual machine. The batch monitor then loads itself again and 
starts the next job (if any). 

To purge an individual input spool file that is not yet executing, 
issue the CP PURGE command: 

. PURGE READER spoolid 

In the format above, spoolid is the spool file number of the job to 
be purged from the batch virtual machine's job queue. For example, the 
statement: 

PURGE READER 123 

would purge 123 from the batch virtual m'achine's job queue. 

To reorder individual spool files in the batch facility's jdb queue, 
use the CP ORDER command: 

ORDER READER spoolid1 spoolid2 ••• 

In this forma t, spoolid 1 and" spoolid2 are the assigned spool file 
identifications of the jobs to be reordered. 

Section 12. Using the CMS Batch Facility 259 



You can determine which jobs are in the queue by using the CP QUERY 
command: 

QUERY REAtER ALL 

This QUERY command lists the filenames and filetypes of all the jobs 
in the batch virtual machine's job queue. You can then reorder them, 
using the ORDER command. 

Using CMS EXEC Files for Input to the Batch Facility 

There are a variety of ways that CMS EXEC procedures can help facilitate 
the submission of jobs to the CMS batch facility. You can prepare an 
EXEC file that contains all of the CMS commands you want to execute, and 
then pass the name of the EXEC to the batch virtual machine. For 
example, consider the files COpy JCL and COPYF EXEC: 

COpy JCL: IJOB CARBON 999999 
EXEC COPYF 
1* 

COPYF EXEC: COpy FILE FIRST FILE A SECOND = = 
COPYFILE THIRD FILE A FOURTH = = 

Then, if you enter the commands: 

cp spool punch to cmsbatch 
punch copy jcl * (noheader 

the commands in the EXEC file are executed by the batch virtual machine. 

You could also use a CMS EXEC to punch input to the batch virtual 
machine. Using the same commands as in the example above, you might 
have a CMS EXEC named BATCOPY: 

CP SPOOL PUNCH TO BATCH3 
SPUNCH /JOB CARBON 999999 
SPUNCH COPYFILE FIRST FILE A SECOND = = 
SPUNCH COPYFILE THIRD FILE A FOURTH = = 
SPUNCH /* 
CP CLOSE PUNCH 

Then, when you enter the EXEC name: 

batcopy 

the input lines are punched to the batch virtual machine. 

The examples above are very simple; you probably would not go t6 the 
trouble of sending such a job to the "batch virtual machine for 
processing. The examples do, however, illustrate the two basic ways 
that you can use CMS EXEC procedures with the batch facility: 

1. Invoking a CMS EXEC procedure from a batch virtual machine 

2. Using a CMS EXEC procedure to create a job stream for the batch 
virtual machine 

In either case, the EXECs that you use may be very simple or very 
complicated. In the first instance, an _ EXEC might contain many steps, 
with control statements to conditionally control execution, error 
routines, and so on. 

260 IBM VM/SP CMS User's Guide 



In the second instance, you mig"ht have an EXEC that is versatile so 
that it can be invoked with different arguments so as to satisfy more 

~ than one situation. For example, if you want to create a simple CMS 
~ EXEC to send jobs to the batch virtual machine to be assembled, it might 

contain: 

CP SPOOL PUNCH TO BATCH3 CONT 
&PUNCH /JOB ARIEL 888888 
&PUNCH CP LINK ARIEL 191 391 RR LINKPASS 
&PUNCH ACCESS 391 B/A 
&PUNCH ASSEMBLE & 1 (PRINT 
&PUNCH CP SPOOL PUNCH TO ARIEL 
&PUNCH PUNCH &1 TEXT A (NOHEADER 
&PUNCH /* 
CP SPOOL PUNCH NOCONT CLOSE 

If this file were named BATCHASM EXEC, then whenever you wanted the CMS 
batch facility to assemble a source file for you, you would enter: 

batchasm filename 

and the batch virtual machine would assemble the source file, print the 
listing, and send you a copy of the resulting TEXT file. 

SAMPLE SYSTEM PROCEDURES FOR BATCH EXECUTION 

To extend the above example ~ little further, suppose you wanted to 
process source files in languages other than the assembler language. You 
want, also, for any user to be able to use this CMS EXEC. You might 
have a separate EXEC file for each language, and an EXEC to control the 
submission of the job. This example shows the controlling EXEC file 
BATCH and the ASSEMBLE EXEC. 

* THIS CMS EXEC SUBMITS ASSEMBLIES/COMPILATIONS TO CMS BATCH 

* * - PUNCH BATCH JOB CARD; 
* - CALL APPROPRIATE LANGUAGE EXEC (&3) TO PUNCH EXECUTABLE COMMANDS 
* 

&CONTROL ERROR 
&IF &INDEX GT 2 &SKIP 2 
&TYPE CORRECT FORM IS: BATCH USERID FNAME FTYPE (LANGUAGE) 
&EXIT 100 
&ERROR &GOTO -ERRl 
CP SPOOL D CONT TO BATCHCMS 
&PUNCH /JOB & 1 1111 &2 
&PUNCH CP LINK &1 191 291 RR SECRET 
&PUNCH ACCESS 291 B/A 
EXEC &3 &2 &1 
&PUNCH /* 
CP SPOOL D NOCONT 
CP CLOSE D 
CP SPOOL DOFF 
&EXIT 
-ERRl &EXIT 100 

Section 12. Using the CMS Batch Facility 261 



* CORRECT FORM IS: ASSEMBLE FNAME USERID 
* * PUNCH COMMANDS TO: 
* - INVOKE CMS ASSEMBLER 
* - RETURN TEXT DECK TO CALLER 

* &CONTROL ERROR 
&ERROR &GOTO -ERR2 
&PUNCH GLOBAL MACLIB UPLIB CMSLIB OSMACRO 
&PUNCH CP MSG &2 ASMBLING ' &1 ' 
&PUNCH ASSEMBLE & 1 (PRINT NOTERM) 
&PUNCH CP MSG &2 ASSEMBLY DONE 
&PUNCH CP SPOOL D TO &2 NOCONT 
&PUNCH PUNCH & 1 TEXT A 1 (NOHEADER) 
&BEGPUNCH 
CP CLOSE D 
CP SPOOL DOFF 
RELEASE 291 
CP DETACH 291 
&END 
&EXIT 
-ERR2 &EXIT 102 

If the above CMS EXEC procedure is invoked with the line: 

batch fay payroll assemble 

the BATCHCMS virtual machine's card reader should contain the following 
statements (in the same general form as a FIFO console stack): 

IJOB FAY 1111 PAYROLL 
CP LINK FAY 191 291 RR SECRET 
ACCESS 291 BIB 
GLOBAL MACLIB UPLIB CMSLIB OSMACRO 
CP MSG FAY ASMBLING ' PAYROLL ' 
ASSEMBLE PAYROLL (PRINT NOTERM) 
CP MSG FAY ASSEMBLY DONE 
CP SPOOL D TO FAY NOCONT 
PUNCH PAYROLL TEXT A1 (NOHEADER) 
CP CLOSE D 
CP SPOOL DOFF 
RELEASE 291 
CP DETACH 291 
1* 

When the batch facility executes this job. the commands are executed as 
you see them: if you are logged on. you receive. in addition to the 
normal messages that the batch facility issues. those messages that are 
included in the EXEC. 

A BATCH EXEC FOR A NON-CMS USER 

Many installations run the CMS batch facility for non-CMS users to 
submit particular types of jobs. Usually. a series of CMS EXEC files 
are stored on the system disk so that each user only needs include a 

262 IBM VM/SP CMS User's Guide 



card to invoke the EXEC, which executes the 
process data included with the job stream. 

For example, if a non-CMS user wanted to 
files, the following BATFORT EXEC file could 
disk: 

&CONTROL OFF 

correct CMS commands to 

compile FORTRAN source 
be stored on the system 

FILEDEF INMOVE TERM (RECFM F BLOCK 80 LRECL 80 
FILEDEF OUTMOVE DISK &1 FORTRAN Al (RECFM F LRECL 80 BLOCK 80 
MOVEFILE 
GLOBAL TXTLIB FORTRAN 
FORTGI & 1 (PRINT) 
&FORTRET = &RETCODE 
&IF &RETCODE NE 0 &GOTO -EXIT 
PUNCH &1 TEXT A1 (NOHEADER) 
-EXIT &EXIT &FORTRET 

To use this EXEC", a non-CMS user might place the following real card 
deck in the system card reader: 

ID CMSBATCH 
/JOB JOEUSER 1234 JOB10 
BATFORT JOEFORT 

source file 

/* (end-of-file indicator) 
/* (end-of-job indicator) 

When the batch virtual machine executes this job, it begins reading 
the EXEC procedure from disk, and executes one line at a time. When it 
encounters the MOVEFILE command, it begins reading the source file from 
its card reader (the batch facility interprets a terminal read as a 
request to read from the card reader). It continues reading until it 
reaches the end-of-file indicator (the 1* card), and then resumes 
processing the EXEC on the next line following the MOVEFILE command 
line. 

Additional functions may be added to this EXEC procedure, or others 
may be written and stored on the system disk to provide, for example, a 
compile, load, and execute facility. These EXEC procedures would allow 
an installation to accommodate the non-CMS users and maintain common 
user procedures. 

Section 12. Using the CMS Batch Facility 263 



264 IBM VM/SP eMS User's Guide 



'\ 

Section 13. Programming for the eMS 
Environment 

This section contains information for assembler language programmers who 
may occasionally need to write programs to be used in the CMS 
environment. The conventions described here apply only to CMS virtual 
machines; you can not execute these programs under any other operating 
systems. 

Program Linkage 

Program linkages, in CMS, are generally made by means of a supervisor 
call instruction, SVC 202. The SVC handling routine takes care of 
program linkage for you. The registers. used and their contents are 
discussed in the following paragraphs. 

~~gi§~~~ 1: Points to a parameter list of successive doublewords. The 
first entry in the list is the name of the called routine or program, 
and any successive doublewords may contain arguments passed to the 
program. Parameter lists are discussed under "Parameter Lists." 

~gi~~§~ 1J: contains the address of a 24-fullword save area, which you 
can use to save your caller's registers. This save area is provided to 
satisfy standard as and DOS linkage conventions; you do not need to use 
it in CMS, since the SVC routines save the registers. 

; Regi~~§~ 1!: contains the return address of the SVC handling routines. 
You must return control to this address when you exit from your program. 

The CMS routines that get control by way of register 14 close files, 
update your disk file directory, and calculate and type the time used in 
program execution. These values appear in the CMS ready message, which 
is displayed at your terminal when your program finishes execution: 

R;T=n.nn/x.xx hh:mm:ss 

where n.nn is the CMS CPU time (in seconds) and x.xx is the combined CP 
and CMS CPU time. hh:mm:ss is the time of day in hours, minutes, and 
seconds. 

Not~: If CMS cannot calculate a valid time, it will display *.** in 
place of n.nn/x.xx. 

Regi2~~ 1.2: Contains' your program's entry point address. You can use 
this address to establish immediate addressabilityin your program. You 
should not use it as a base address, however, since all CMS SVCs use it 
for communication with your programs. 

Figure 22 shows a sample eMS assembler language program entry and exit. 

Section 13. Programming for the eMS Environment 265 

__ :g,."mil.A.; 



r , , , , , , 
I , , 
I 
I 
L--

PROGRAM 

SAVRET 

CSECT 
USING PROGRAM, 12 
LR 12, 15 
S T 1 4 , S A VR E T 

L 14,SAVRET 
LA 15,0 
BR 14 
DS F 

ESTABLISH ADDRESS ABILITY 

SAVE RETURN ADDRESS IN R14 

LOAD RETURN ADDRESS 
SET RETURN CODE IN R15 
GO 
SAVE AREA 

Figure 22. Sample CMS Assembler program Entry and Exit Linkage 

RETURN CODE HANDLING 

Register 15, in addition to its role in entry linkage, is also used in 
CMS as a return code register. All of the CMS internal routines pass a 
completion code by way of register 15, and the SVC routines that receive 
control when any program completes execution examine register 15. 

If register 15 contains a nonzero value, this value is placed in the 
CMS ready message, following the "R": -

R(nnnnn);T=n.nn/x.xx hh:mm:ss 

When you are executing programs in CMS, it is good practice, if your 
programs do not use register 15 as a return code register, to place a 
zero in it before transferring control back to CMS. Otherwise, the ready 

"message may display meaningless data. 

PARAMETER LISTS 

When you execute a program from your terminal, a CMS scan routine sets 
up a parameter list based on your command input line. The parameter list 
is doubleword-aligned, with parameters occupying successive doublewords. 
The scan routine recognizes blanks and parentheses as argument 
delimiters; parentheses are placed, in the parameter list, in separate 
doublewords. 

For example, if you have a CMS MODULE file named TESTPROG, and you 
call it with the command line: 

testprog (file2) 

The scan routine sets up the parameter list: 

CMNDLIST DS OD 
DC CL8'TESTPROG' 
DC CL8' (' .... ,.. 

CL8~FILE2: JJ"-

DC CL8') , 
DC 8X'FF' 

The last doubleword is made up of all ls, to act as a delimiter. 

If you enter any argument longer than eight characters, 
truncated and only the first eight characters appear in the 
However, no error condition results. 

266 IBM VM/SPCMS User's Guide 

it is 
list. 



The scan routine that sets up this parameter list places the address of 
the list in register 1 and then calls the SVC handling routine. The SVC 
routine gives control to the program named in the first doubleword of 
the parameter list. 

When your program receives control, it can examine the parameter list 
passed to it by way of register 1. 

You can use this technigue, also, to call CMS commands from your 
·programs. 

When you use the LOAD and RUN commands to execute 
you can pass an argument list to the program on the 
example, if you enter: 

load myprog 
start * run1 proga 

a program in CMS, 
command line. For 

the * indicates that the entry point is to be defaulted. The arguments 
RUN1 and PROGA are placed in a parameter list of doublewords and 
register 1 contains the address of this list when your program receives 
control. defaulted and If you want to use the RUN command to perform 
the load and start functions, you could enter: 

run myprog (run1 proga 

The parenthesis indicates the beginning of the argument list. 

To detect the absence of a parameter list that occurs when the LOAD 
command START option is used, your program may test the doublevord 
pointed to by register 1 for a delimiter made up of l's in all of the 
bit positions. 

Calling a CMS Command from a Program. 

You can call a CMS command from a program by setting up a parameter 
list, like that shown above, and then issuing an SVC 202. The parameter 
list you set up must have doublewords that contain the parameters or 
arguments you would enter if you were entering the command from the 
terminal. For example: 

PUNCHER DS 
DC 
DC 
DC 
DC 
DC 
DC 
DC 

OD 
CLS'PUNCH' 
CLS'NAME' 
CLS'TYPE' 
CLS'*' 
CLS' (' 
CLS'NOH' 
SX'FF' 

Not~: If you are using EXEC 2, 
!~L~R ~Y§te~ f~Qg~gmm~~~§ Guig~ 
without tokens. 

refer to VML~f !XE£ 1 ~EFERE!~], and 
for information on parameter lists 

In your program, when you want to execute this command, you should load 
~ the address of the list into register 1, and issue the supervisor call 
v instruction (SVC) as follows: 

Section 13. Programming for the eMS Environment 267 



LA ' r PUNCHER 
SVC 202 
DC AL4 (ERROR) 

When you issue 
the four bytes 
(register 15) 
call, control 
control would 

an SVC 202, you must supply an error return address in 
immediately after the SVC instruction. If the return code 
contains a nonzero value after returning from the SVC 
passes to the address specified. In the above example, 

go to the instruction at the label ERROR. 

If you want to ignore errors, you can use the sequence: 

LA 1,PUNCHER 
SVC 202 
DC AL4 (*+4) 

If you do not specify an error address, control is returned to the next 
instruction after a normal return, but if there was an error executing 
the CMS command, your program terminates execution. 

If you want to execute a CP command or an EXEC procedure from a 
program, you must use the CP and EXEC commands; for example: 

SPOOL 

EXEC 

DS 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 

OD 
CL8'CP' 
CL8'SPOOL' 
CL8'PRINTER' 
CL8'CLASS' 
CL8'S' 
aX'FF' 
CLa'EXEC' 
CLa'PFSET' 
aX'FF' 

It is not possible to ,enter a parameter that is longer than eight 
characters this way. 

As an alternative, you can use the CMS LINEDIT~ macro to call a CP 
command from a program. Specify DISP=CPCOMM on the macro instruction; 
for example: 

LINEDIT TEXT=' SPOOL E 0LASS S',DISP=CPCOMM,DOT=NO 

On return from the execution of the LINEDIT macro instruction, register 
15 contains the return code from the CP command. 

The LINEDIT macro is described in VML~R f~~ ~Qm~ng sng ~s~Q 

.!!~!~!:~ll£'§· 

Another way to execute a CP command from a program 
DIAGNOSE x'oa' instruction. For additional information 
!~L~R ~I~~~~ g~Q~g~me~~~ 2~ig~. 

Executing Program Modules 

is to use the 
on this, see 

MODULE files, in CMS, are nonrelocatable programs. Using the GENMOD 
command, you can create a module from any program that uses OS or CMS 
macros. When you create a module, it is generated at the virtual 
storage address at which it is loaded r for example: 

268 IBM VM/SP CMS User's Guide 



) 
load myprog 
genmod testit 

The CMS disk file, TESTIT MODULE A, that 
GENMOD command, always begins execution 
beginning of the user program area. 

is created as a result of this 
at location X'20000', the 

If you want to call your own program modules using SVC 202 
instructions, you must be careful not to execute a module that uses the 
same area of storage that your program occupies. If you want to call a 
module that executes at location X'20000', you can load the calling 
program at a higher location; for example: 

load myprog (origin 30000 

As long as the MODULE file called by MYPROG is no longer than X'10000' 
bytes, it will not overlay your program. 

Many CMS disk-resident command modules also execute in the user 
program area. When using the GENMOD command with the STR option, the 
user area storage pointers are reset. This could cause errors upon 
return to the original program. 

THE TRANSIENT PROGRAM AREA 

To avoid overlaying programs executing in the user program area, you can 
generate program modules to run in the CMS transient area, which is a 
two-page area of storage that is reserved for the execution of programs 
that are called for execution frequently. Many CMS commands run in this 
area, which is located at X'EOOO'. Programs that execute in this area 
run disabled. 

To generate a module to run in the transient area, use the ORIGIN 
TRANS option when yeu load the TEXT file into storage, then issue the 
GENMOD command: 

load myprog (origin trans 
genmod setup (str 

Note: If a program running in the user area calls a transient routine in 
which a module was generated using the GENMOD command with the STR 
option, the user area storage pointers will be reset. This reset 
condition could cause errors upon return to the original program (for 
example, when OS GETMAIN/FREEMAIN macros are issued in the user 
program) • 

The two restrictions placed on command modules executing in the 
transient area are: 

1. They may have a maximum size of 8192 bytes, since that is the size 
of the transient area. This size includes any free storage acquired 
by GETMAIN macros. 

2. They must be serially reusable. When a program is called by an SVC 
202, if it has already been loaded into the transient area, it is 
not reloaded. 

The CMS commands that execute in the transient area are: ACCESS, 
ASSGN, COMPARE, DISK, DLBL, FILEDEF, GENDIRT, GLOBAL, LISTFILE, MODMAP, 
OPTION, PRINT, PUNCH, QUERY, READCARD, RELEASE, RENAME, SET, SVCTRACE, 
SYNONYM, TAPE, and TYPE. 

Section 13. Programming for the CMS Environment 269 



eMS Macro Instructions 

There are a number of assembler language macros distributed with the CMS 
system that you can use when you are writing programs to execute in the 
CMS environment. They are in the macro library CMSLIB MACLIB r which is 
normally located on the system disk. There are macros to manipulate CMS 
disk files r to handle terminal communications, to manipulate unit record 
and tape input/output, and to trap interruptions. These macros are 
discussed in general terms here; for complete format descriptions, see 
Y!1L~~ ~!1~ ~Qmm~1!g ang !1.s£ro g~fe.I~£~. 

MACROS FOR DISK FILE MANIPULATION 

Disk files are described in CMS by means of a file system control block 
(FSCB). The CMS macro instructions that manipulate disk files use FSCBs 
to identify and describe the files. When you want to manipulate a CMS 
filer you can refer to the file either by its file identifier, 
specifying 'filename filetype filemode' in quotation marks, or you can 
refer to the FSCB for the file, specifying FSCB=fscb r where fscb is the 
label on an FSCB macro. 

To establish an FSCB for a filer you can use the FSCB macro 
instruction specifying a file identifier; for example: 

INFILE FSCB 'INPUT TEST Al' 

You can also provide, on the FSCB macro instruction, descriptive 
information to be used by the input and output macros. If you do not 
code an FSCB macro instruction for a file, an FSCB is created inline 
(following the macro instruction) when you code an FSREAD, FSWRITE, or 
FSOPEN macro instruction. 

The format of an FSCB is listed in Figure 23 r followed by a 
description of each of the fields. 

r-------------------~--------------------------------------------------, 
, Label Description , 
----------------------------------------------------------------------1 

FSCBCOMM DC 
FSCBFN DC 
FSCBFT DC 
FSCBFM DC 
FSCBITNO DC 
FSCBBUFF DC 
FSCBSIZE DC 
FSCBFV DC 
FSCBFLG EQU 
FSCBNOIT DC 
FSCBNORD DC 
FSCBAITN DC 

CL8' , 
CL8' , 
CL8' , 
CL2' , 
R'O' 
A'O' 
F'O' 
CL2'F' 
FSCBFV+l 
R' 1 ' 
AL4 (0) 
AL 4 (0) 

T!'I,.. ,....., 11 'T T m ",.. 11 T II I 1 , 
J.: ..:J\,..tJ..JC1U..L.1. U'" nu..,. \' I 

File system command 
Filename 
Filetype 
Filemode 
Relative record number (RECNO) 
Address of buffer (BUFFEm 
Number of bytes to read or write (BSIZE) 
Record format - F or V (RECFM) 
Flag byte 
Number of records to read or write (NOREC) 
Number of bytes actually read 
Extended FSCB relative record number 
E:terla.e!! FSCB relati 1!e 

FSCBWPTR DC AL4(0) Extended FSCB relative write pointer 
FSCBRPTR DC AL4(0) Extended FSCB relative read pointer L--------------------------___________________________ -----------------J 

Figure 23. FSCB Format 

The fields FSCBAITN, FSCBANIT, FSCBWPTR, and FSCBRPTR are only 
generated in the FSCB when the extended format FSCB is requested (FORM=E 
is coded on the FSCB macro instructiom. In this case r the fields 
FSCBITNO and FSCBNOIT are reserved fields. Extended format FSCBs must 

270 IBM VM/SP CMS User's Guide 



be used to manipulate files larger than 65,533 items. The labels shown 
above are not generated by the FSCB macro; to reference fields within 
the FSCB by these labels, you must use the FSCBD macro instruction to 
generate a DSECT. 

~~~~£Q~~: When the FSCBFN, FSCBFT, and FSCBFM fields are filled in, you 
can fill in the FSCBCOMM field with the name of a CMS command and use
the FSCB as a parameter list for an SVC 202 instruction. (You must
place a delimiter to mark the end of the command line.)

l~£]f!, f~£~l!, ISC~I~: The filename, filetype and filemode fields
identify the CMS file to be read or written. You can code the fileid on
a macro line in the format 'filename filetype filemode' or you can use
register notation. If you use register notation, the register that you
specify must point to an lS-byte field in the format:

FILFID DC
DC
DC

CLS'filename'
CLS'filetype'
CL2'fm'

The fileid must be specified either in the FSCB for a file or
FSREAD, FSWRITE, FSOPEN, or FSERASE macro instruction you use
references the file.

on the
that

FSCBITNO: For an FSCB without the FORM=E option, the record or item
number-Indicates the relative record number of the next record to be
read or written; it can be changed with the RECNO option. The default
value for this field is o. When you are reading files, a 0 indicates
that records are to be read sequentially, beginning with the first
record in the file. When you are writing files, a 0 indicates that
records are to be written sequentially, beginning at the first record
following the end of the file, if the file already exists, or with
record 1, if it is a new file.

For an . FSCB generated with the
contains the record or item number.

FORM=E option, the FSCBAITN field
The FSCBITNO field is reserved.

Whenever you read discontiguous files in CMS (that is, files with
missing records), the input buffer will be filled with the appropriate
number of bytes. Be aware that the flag byte in the FSCB may not
reflect whether the input buffer contains generated data items from
RDBUF.

1~&~lB!ll: The buffer address,. specified in the BUFFER option, indicates
the label of the buffer from which the record is to be written or into
which the record is to be read. You should always supply a buffer large
enough to accommodate the longest record you expect to read or write.
This field must be specified, either in the FSCB, or on the FSREAD or
FSWRITE macro instruction.

FSCBSIZE: This field indicates the number of bytes that are read or
written-with each read or write operation. The default value is O. If
the buffer that you use represents the full length of the records you
are going to be reading or writing, you can use the BSIZE option to set
this field equal to your buffer length; when you are writing
variable-length records, use the BSIZE operand to indicate the length of
each record you write. This field must be specified.

l~&]l!: This two-character field indicates the record format (RECFM) of
the file. The default value is F (fixed).

FSCBFLG: The flag byte is X' 20' indicating an extended FSCB generated
when-the FORM=E option is coded on the FSCB macro instruction.

section 13. Programming for the CMS Environment 271

FS£~J!.Q1I: For an FSCB without the FORM=E option, this field contains the
number of whole records that are to be read or written in each read or
write operation. You "can use the NOREC option with the BSIZE option to
block and deblock records.

For an FSCB generated with the FORM=E option, the FSCBANIT field
contains the number of whole records to be read or written. The
FSCBNOIT field is reserved.

FS~~NO~]: Following a read operation, this field contains the number of
bytes that were actually read, so that if you are reading a
variable-length file, you can determine the size of the last record
read. The FSREAD macro instruction places the information from this
field into register o.

FS~~jlI!: The alternate record or item number indicates the relative
record number of the next record to be read or written in an extended"
FSCB format. See the description of the FSCBITNO field for the usage of
this field.

FS~BA!lI: This field contains the alternate number of whole records in
an extended FSCB format. See the description of the FSCBNOIT field for
the usage of this field.

FS~!!!~!l1: The FSPOINT macro instruction uses this field to contain the
alternate write pointer for an extended FSCB during a POINT operation.

FS~~RPIl1: The FSPOINT macro instruction uses this field to contain the
alternate read pointer for an extended FSCB during a POINT operation.

The following example shows how you might code an FSCB macro instruction
to define various fi1~ and buffer characteristics, and then use the same
FSCB to .refer to different files:

COMKON
SHARE

FSREAD 'INPUT FILE Al',FSCB=COMMON,FORft=E
FSWRITE 'OUTPUT FILE Al',FSCB=COftftON,FORft=E . ..

FSCB BUFFER=SHARE,RECFM=V,BSIZE=200,FORM=E
DS CL200

In the above example, the fi1eid specifications on the FSREAD and
FSWRITE macro instructions modify the FSCB at the label COMMON each time
a read or write operation "is performed. You can also modify an FSCB
directly by referring to fields by a displacement off the beginning of
the FSCB; for example: .

MVC FSCB+8,=CLS'NEWNAME'

moves the name NEWNAME into the filename field of the FSCB at the label
FSCBFN.

212 IBM VM/SP CMS User's Guide

)
As an alternative, you can use the FSCBD macro instruction to

generate a DSECT and refer to the labels in the DSECT to modify the
FSCB; for example:

LA R5,INFSCB
USING FSCBD,R5

~VC FSCBFN,NEWNA~E

INFSCB FSCB 'INPUT TEST A1',FORM=E
NEWNAME DC CL8'OUTPUT'

FSCBD

In the above example, the MVC instruction places the filename OUTPUT
into the FSCBFN (filename) field of the FSCB. The next time this FSCB is
referenced, the file OUTPUT TEST is the file that is manipulated.

CMS disk files are sequential files; when you use C~S macros to read and
write these files, you can access them sequentially with the FSREAD and
FSWRITE macros. However, you may also refer to records in a C~S file by
their relative record numbers, so you can, in effect, access records
using a direct access method.

If you know which record you want to read or write, you can specify
~ the RECNO option on the FSCB macro instruction, or on the FSOPEN,
v FSREAD, or FSWRITE macro instructions. When you use the RECNO option on

the FSCB macro instruction, you must specify it as a self-defining term;
for the FSOPEN, FSREAD, or FSWRITE macro instructions, you may specify
either a self-defining term, as:

WRITE FSWRITE FSCB=WFSCB,RECNO=10,FOR~=E

or using regi~ter notation, as follows:

WRITE FSWRITE FSCB=WFSCB,RECNO=(5) ,FORM=E

where register 5 contains the record number of the record to be read.

When you want to access files sequentially, the FSCBITNO field of the
FSCB must be 0 for an FSCB without the FORM=E option; for an extended
FSCB, the FSCBAITN field must be O. This is the default value. When you
are reading files with the FSREAD macro instruction, reading begins with
record number 1. When you are writing records to an existing file with
the FSWRITE macro, writing begins following the last record in the file.

To begin reading or writing files seguentially beginning at a
specific record number, you must specify the RECNO option twice: once to
specify the relative record number at which you want to begin reading,
and a second time to specify RECNO=O so that reading or writing will
continue sequentially beginning after the record just read or written.
You can specify the RECNO option on the FSREAD or FSWRITE macro
instruction, or you may change the FSCBITNO or FSCBAITN field in the
FSCB for the file, as necessary for the FSCB form.

Section 13. Programming for the eMS Environment 273

For example, to read the first record and then the SOth record of a
file, you could code the following:

READ1

READSO

RFSCB
WFSCB
COMMON

FSREAD FSCB=RFSCB,FORM=E
FSWRITE FSCB=WFSCB,FORM=E
LA S,RFSCB
USING FSCBD,S
MVC FSCBAITN,=F'SO'
FSREAD FSCB=RFSCB,FORM=E
FSVRITE FSCB=WFSCB,FORM=E

FSCB 'INPUT FILE A1',BUFFER=COMMON,BSIZE=120,FORM=E
FSCB 'OUTPUT FILE A1',BUFFER=COMMON,BSIZE=120,FORM=E
DS CL120

FSCBD

In this example, the statements at the label READ1 write record 1 from
the file INPUT FILE A1 to the file OUTPUT FILE A1. Then r " using the
DSECT generated by the FSCBD macro, the FSCBITNO field is changed
because an extended FSCB is being used

FSCBAITN field is changed because an extended FSCB is being used and
record SO is read from the input file and written into the output file.

!!]!]1l!~ AI] !RITIl!§ !ARIABL~-LENGTl! ~~CORD~: When you read or write
variable-length records, you must specify RECFM=V either in the FSCB for
the file or on the FSWRITE or FSREAD macro instruction. The read/write
buffer should be large enough to accommodate the largest record you are
going to read or write.

To write variable-length records, use the BSIZE= option on the
FSWRITE macro instruction to indicat~ the record length for each record
you write. When you read variable-length reco~ds, register 0 contains,
on return from FSREAD, the length of the record read.

The following example shows how you
variable-length file:

could read and write a

READ FSREAD 'DATA CHECK A1',BUFFER=SHABEr BSIZE=130 r ERROR=OUT,
FORM=E

FSWRITE 'COPY DATA A1'rBUFFER=SHARErBSIZE=(O) ,FORM=E
B READ

You can speci fy the ERROR= operand with the FSB BAD or FSWRITE macro
instruction, so that an error handling routine receives control in case
of an error. In CMS, when an end of file occurs during a read requestr
it is treated as an error condition. The return code is always i2. ~r
you specify an error handling routine on the FSREAD macro instruction,
then the first thing this routine can do is check for a 12 in register
1S.

Your error handling routine may also check for other types of errors.
See the macro description in VMLSP £~~ Co~sn£ sn£ ~g£~Q Bef~~ce for
details on the possible errors and the associated return codes.

214 IBM VM/SP CMS User's Guide

,
, Usually, CMS opens a file whenever an FSREAD or FSWRITE macro

instruction is issued for the file. When control returns to CMS from a
calling program, all files accidently left open are closed by CMS, so
you do not have to close files at the end of a program.

For a minidisk in lK-, 2K-, or 4K-byte block format, a file may be
open for concurrent read and write operations, and an FSCLOSE need not
te issued when switching from reading to writing, or vice versa. For
example:

LA 3,2
READ FSREAD FSCB=UPDATE,RECNO=(3) ,ERROR=READERR,FORM=E

FSWRITE FSCB=UPDATE,RECNO=(3),ERROR=WRITERR,FORM=E
LA 3,1(3)
B READ

UPDATE FSCB 'UPDATE FILE Al',BUFFER=BUF1,BSIZE=80,FORM=E

If you want to read and write records from the same file on an
SOO-byte block format minidisk, you must issue an FSCLOSE macro
instruction to close the file whenever you switch from reading to
writing. For example:

READ

UPDATE

LA 3,2
FSREAD FSCB=UPDATE,RECNO=(3) ,ERROR=READERR
FSCLOSE FSCB=UPDATE

FSWRITE FSCB=UPDATE,RECNO=(3),ERROR=WRITERR
FSCLOSE FSCB=UPDATE
LA 3, 1 (3)
B READ

FSCB 'UPDATE FILE Al',BUFFER=BUF1,BSIZE=80

To execute a loop to read, update, and rewrite records, you must read
a record, close the file, write a record, close the file, and so on.
Since closing a file repositions the read pointer to the beginning of
the file and the write pointer at the end of the file, you must specify
the relative record number (RECNO) for each read and write operation. In
the above example, register 3 is used to contain the relative record
number. It is initialized to begin reading with the second record in
the file and is increased by one following each write operation.

When you use an EXEC to execute a program to read or write ~ file,
the file is not closed by CMS until the EXEC completes execution.
Tberefore, if you read or write the same file more than once during the
EXEC procedure, you must use an FSCLOSE macro instruction to close the
file after using it in each program, or use the FSOPEN macro instruction
to open it before each use. Otherwise, the read or write pointer is
positioned as it was when the previous program completed execution.

Section 13. Programming for the eMS Environment 275

CR!ATIHQ HEW 11~]~: When you want to begin writing a new file using CMS
data management macros, there are two ways to ensure that the file you ~
want to create does not already exist. One way is to issue the FSSTATE ~
macro instructicn to verify the existence of the file.

A second way to ensure that a file does not already exist is to issue
an FSERASE macro instructicn to erase the file. If the file does not
exist, register 15 returns with a code of 28. If the file does exist, it
is erased.

See Figure 24 for an illustration of a sample program using CMS data
management macrcs.

CMS MACROS FOR TERMINAL COMMUNICATIONS

There are four CMS macros you can use to write interactive,
terminal-oriented programs. They are RDTERM, WRTERM, LINEDIT, and iAITT.
BDTERM and WRTERM only require a read/write buffer for sending and
receiving lines from the terminal. The third, LINEDIT, has a
substitution and translation capability.

When you use the WRTERM macro to write a line to your terminal you
can specify the actual text line in the macro instruction, for example:

DISPLAY WRTERM 'GOOD MORNING'

You can also specify the message text by referring to a buffer that
contains the message.

The RDTERM macro accepts a line from the terminal and reads it into a
buffer you specify. You could use the RDTERM and WRTERM macros together,
as follows:

WRITE
READ

REWRITE

BUFFER

WRTERM iENTER LINE;
RDTERM BUFFER
LR 3,0
WRTERM BUFFER, (3)

DS CL130

In this example, the WRTERM macro results in a prompting message. Then
the RDTERM macro accepts a line from the terminal and places it in the
buffer BUFFER. The length of the line read, contained in register 0 on
return from the RDTERM macro, is saved in register 3. When you specify
a buffer address on the WRTERM macro instruction, you must specify the
length of the line to be written. Here, register notation is used to
indicate that the length is contained in register 3.

The LINEDIT macro converts decimal. and hexadecimal data into EBCDIC,
--~ -,---- LL_ ----__ ~_~ __ , __ ~_~ __ ~ ___ ~~~_~ ~~o,~ ~n ~~ nn+nn+ l~~o
allU ~~a~~~ ~ll~ ~VUY~L~~U YQ~U~ ~"~V ~ ~r~~~~~-- ~---- -- -- ---r-- -----

There are list and execute forms of the macro instruction, which you can
use in writing reentrant code. Another option allows you to write lines
to the offline printer. The LINEDIT macro is described, with examples,
in Y~L~~ ~MS £~!~~~g sng ~s££Q ~~!~~~£g. Figure 24 shows how you might
use the LINEDIT macro to convert and display CMS return codes.

The WAITT (wait terminal) macro instruction can help you to
synchronize input and output to the terminal. If you are executing a
program that reads and writes to the terminal frequently, you may want

276 IBM VM/SP CMS User's Guide

(

~

r
ILINE SOURCE STATEMENT
I
IBEGIN CSECT II
, PRINT NOGEN
I USING *,12 ESTABLISH ADDRESSABILITY
I LR 12, 15
I ST 14,SAVE
I LA 2,8 (,1) R2=ADDR OF INPUT FILEID IN PLIST B
I LA 3,32 (,1) R3=ADDR OF OUTPUT FILEID IN PLIST
1* DETERMINE IF INPUT FILE EXISTS
I FSSTATE (2),ERROR=ERR1,FORM=E
1*
* READ A RECORD FROM INPUT FILE AND WRITE ON OUTPUT FILE
RD FSREAD (2) ,ERROR=EOF,BUFFER=BUFF1,BSIZE=80,FORM=E II

FSWRITE (3),ERROR=ERR2,BUFFER=BUFF1,BSIZE=80,FORM=E
B RD LOOP BACK FOR NEXT RECORD

* * COME HERE IF ERROR READING INPUT FILE
EO F C 1 5 , = F I 1 2 ' END 0 F F I L E? II

BNE ERR3 ERROR IF NOT
LA 15,0 ALL O.K. - ZERO OUT R15
B EXIT GO EXIT

* IF INPUT FILE DOES NOT EXIST
ERRl WRTERM 'FILE NOT FOUND',EDIT=YES

B EXIT

* * IF
f ERR2
I

ERROR WRITING FILE
LR 10,15 SAVE RET CODE IN REG 10 II
LINEDIT TEXT='ERROR CODE •••• IN WRITING FILE',SUB=(DEC, (10»

I B EXIT
1*
1* IF
I ERR3
I
1*
IEXIT ,
1*
IBUFFl
ISAVE
I

READING ERROR WAS NOT NORMAL END OF FILE
L R 1 0, 1 5 S A V E RET COD E IN REG 10 iii
LINEDIT TEXT='ERROR CODE •••• IN READING FoILE' ,SUB= (DEC, (10»

L
BR

DS
DS
END

14,SAVE
14

CL80
F

LOAD RETURN ADDRESS
RETURN TO CALLER

1---
I Notes:
a-The program might be invoked with a parameter list in the format

progname INPUT FILE Al OUTPUT FILE Al. This line is placed in a
parameter list by CMS routines and addressed by register 1
(see note 2). II The parameter list is a series of doublewords, each containing
one of the words entered on the command line. Thus, 8 bytes
past register 1 is the beginning of the input fileid; 24 bytes
beyond that is the beginning of the second fileid.

liThe FSREAD and FSWRITE macros cause the files to be opened; no
open macro is necessary. CMS routines close all open files when
a program completes execution (except CMS EXEC files).

liThe return code in register 15 is tested for the value 12,
which indicates an end-of-file condition. If it is the end of
the file, the program exits; otherwise, it writes an error
message.

liThe dots in the LINEDIT macro are substituted, during execution,
with the decimal value in register 10.

Figure 24. A Sample Listing of a Program that Uses CMS Macros

Section 13. Programming for the CMS Environment 211

to issue a.WAITT macro instruction to halt execution of the program
until all terminal I/O has completed.

CMS MACROS FOR UNIT RECORD AND TAPE I/O

CMS provides macros to simplify reading and punching ·cards (RDCARD and
PUNCHC), and creating printer files (PRINTL). When you use either the
PUNCHC or PRINTL macros to write er punch output files while a program
is executing, you should remember to issue a CLOSE command for your
virtual printer or punch when you are finished. You can do this either
after your program returns centrol to CMS, by entering:

cp close e

-- or --

cp close d

or, you can set up a parameter list with the command line CP CLOSE E or
CP CLOSE D and issue an SVC 202.

The tape control macros, RDTAPE, WRTAPE and TAPECTL, can read and
write CMS files from tape, or control the positioning of a tape.

INTERRUPTION HANDLING MACROS

You can set up routines in your programs to handle interruptions caused
by I/O devices, by SVCs, or by external interruptions using the HNDINT,
HNDSVC, or HNDEXT macro instructions.

With the HNDINT macro instruction, you can specify addresses that are
to receive control when an interruption occurs for a specified device.
If the WAIT option is used for a device specified in the HNDINT macro
instruction, then the interruption handling routine specified for the
device does not receive control until after the WAITD macro instruction
is issued for the device.

You can use the HNDSVC macro instruction to trap supervisor call
instructions of particular numbers, if, for example, you want to perform
some additional function before passing centrol or you do not want any
SVcs of the specified number to be executed.

The CP EXTERNAL command simulates external interruptions in your
virtual machine; if you want to be able to pass control to a particular
internal routine in the event of an external interruption, you can use
the HNDEXT macro instruction.

Updating Source Programs Using eMS

As you test and modify programs, you may want to keep backup copies of
the source pr6grams. Then you can always return to a certain level of a
program in case you have an error. CMS provides several approaches to
the problem of program backup: the method you choose depends on the
complexity of your project, the changes you want to make, and the size
of your programs.

218 IBM VM/SP CMS User's Guide

)
The simplest method is to make a copy of the current source file

under a new name. You can do this using either the COPYFILE command or
the CMS editor. If you use the COPYFILE command, your command line
might be:

copyfile account assemble a oldacct assemble a

Then, you can use the editor to modify ACCOUNT ASSEMBLE; the file
OLDACCT ASSEMBLE contains your original source file.

You can make a copy of your source file using the CMS editor
directly. For example, if you issue:

edit account assemble
EDIT:
fname newacct

then any subsequent changes you make to the file ACCOUNT ASSEMBLE are
written into the file NEWACCT ASSEMBLE. When you issue a FILE or SAVE
subcommand, your source file remains intact.

After your changes to the source program have been tested you can
replace the source file with your new copy.

THE UPDATE PHILOSOPHY

While the procedures outlined above for modifying programs are suitable
for many applications, they may not be adequate in a situation where
several programmers are applying changes to the same source cod~. These
procedures also have the drawback of not providing you with a record of
what has been changed. After using the editor, you do not have a record
of the lines that have been deleted, added, replaced, and so on, unless
you manually add comments to the code, insert special characters in the
serialization column, or use some technique that records program
activity.

The UPDATE ccmmand provides a way for you to modify a source program
without affecting the original, and it produces an update log,
indicating the changes that have been made. Moreover, it also has the
capability of combining multiple updates at one time, so that changes
made by different programmers or changes made at different times can be
combined into a single output file.

The UPDATE command is a basic element of the entire VM/SP updating
scheme and is used by system programmers who maintain VM/SP at your
installation. Although the input filetypes used by the UPDATE command
default to ASSEMBLE£ile characteristics, the UPtATE ·command is not
limited to assembler language programs, nor is it limited to system
programming applications. You can use it to modify and update any
fixEd-length, eO-character file that does not have data in columns 72
through 80.

UPDATE FILES

A simple update involves two input files:

• The source file, which is the program you want to ~pdate

Section 13. programming for the CMS Environment 279

• An update file, containing control statements that describe the
changes you want to make

The control statement file usually has a filetype of UPDATE. For
convenience, you can give it the same filename as your source file. For
example, if you want to update the file SAMPLE ASSEMBLE, you vould
create a file named SAMPLE UPDATE.

To apply the changes in the update file, you issue the command:

update sample

The default values used by the UPDATE command are filetypes of ASSEMBLE
and UPDATE for the source and update files, respectively. If you are
updating a COBOL source program named READY COBOL with an update file
named UPDATE READY, you would issue the command:

update ready cobol a update ready a

After an UPDATE command completes processing, the in~ut files are not
changed; two new files are created. One of them contains the updated
source file, with a filename that is the same as the original source
file but preceded by a dollar sign ($). Another file, containing a
record of updates is also created; it has a filename that is the same as
the source file and a filetype of UPDLOG. For example:

.§Qyrc~ fi!,g§
SAMPLE ASSEMBLE
S AMPLE UPDATE

READY COBOL
UPDATE READY

Qll:EY! file§
$SAMPLE ASSEMBLE
SAMPLE UPDLOG

$READY COBOL
READY UPDLOG

Now, you can assemble or compile the new source file created by the
UPDATE command.

The control statements used by the UPDATE command are similar to those
used by the as IEBUPDTE utility program or the DOS MAINT program UPDATE
function.

Each UPDATE statement must have the characters./ in columns one and
two, followed by one or more blanks. The statements are described
below, with examples.

'§~Q.Q~!£] .§tai~.m~!lj:: Th is statement tells the UPD ATE command th at you
want to number or renumber the records in a file. Sequence numbers are
written in columns 73 through 80. For example, the statement:

./ S 1000

inaicat~s that you ~ant sequence nu~bering to be d0n~~ in increments of
1000, with the first statement numbered 1000. The SEQUENCE statement is
convenient if you want to apply updates to a file that does not already
have sequence numbers. In this case, you may want to use the REP
(replace) option of the UPDATE command, so that instead of creating a
new file ($filename), the original source file is replaced:

update sample (rep

280 IBM VM/SP CMS User's Guide

1I~~!~ ~!A1§~~~!: This statement precedes new records that you want to
add to a source file. The INSERT statement tells the UPDATE command
where to add the new records. For example, the lines:

./ I 1600
TEST2 TM HOLID1Y,X'02'

BNO VACATION
HOLIDAY?
NOPE ••• VACATION

result in the two lines of code being inserted into the output file
following the statement numbered 00001600. The inserted lines are
flagged with asterisks in columns 73 through 80. The INSERT statement
also allows you to request that new statements be sequenced; see
"Sequencing Output Records."

DE1.~~l ~tatell~!: This statement tells the UPDATE command which records
you want to delete frem the source file. If your UPDATE file contains:

./ D 2500

then only the record 00002500 is deleted. If the file contains

./ D 2500 2S00

then all the statements from 2500 through 2800 are deleted from the
source file.

~~g1,!£1 ~S!§m~~!: The REPLACE statement allows you to replace one or
more records in the source file. It precedes the new records you want
to add. It is a combination of the DELETE and INSERT statements. For
example, the lines

./ R 3S000 3S500
PLIST DS OD

DC CLS'TYPE.
DC CLS"
DC CLS'FILE'
DC CLS'A1'
DC aX'FF'

replace existing statements numbered 38000 through 38500 with the new
lines of code. As with the INSERT statement, new lines are not
automatically resequenced.

~QMMENI ~at~~!: Use this statement when you want to place comments in
the update log file. For example, the line:

./ * Changes by John J. programmer

is not processed by the UPDATE command when it creates the new source
file, but it is written into the update log file.

SEQUENCING OUTPUT RECORDS

The UPDATE command expects source files to have sequence numbers in
columns 73 through 80. If you use the SERIAL subcommand of the CMS
editor to sequence your files, the sequence numbers are usually written
in columns 76 through 80; columns 73 through 75 contain a
three-character identifier which is usually the first three characters
of the filename. If you want an eight-character sequence number, you
must use the subcommand:

serial all

Section 13. Programming for the CMS Environment 281

prior to issuing a FILE or SAVE subcommand when you are editing the
file. or, you can create an UPDATE file with the single record:

./ S

and issue the UPDATE command to sequence the file.

If you use the UPDATE command with a file that has been sequenced
using the CMS editor's default values, you must use the NOSEQ8 option.
Otherwise, the UPDATE command cannot process your input file. The
command:

update sample (noseq8

tells UPDATE to use only columns 76 through 80 when it looks for
sequence numbers.

Figure 25 shows the four files involved in a simple update, and their
con tents.

The Source File, SAMPLE ASSEMBLE
r ----------------------------------- ,
I
I
I
I
I

SAMPLE

NAME
AGE
SAVRET

CSECT
USING SAMPLE,R12
LR R12,R15
ST R14,SAVRET
LINEDIT TEXT='PLEASE ENTER YOUR NAME' .
RDTERM NAME
LINEDIT TEXT='PLEASE ENTER YOUR AGE'
RDTERM AGE
LINEDIT TEXT='HI, •••••••••• , YOU JUST TOLD ME YOU ARE

SUB=(CHARA,NAME,CHARA,AGE) ,RENT=NO
L R14,SAVRET
BR R14
EJECT
DC CL 130' ,
DC CL 130' ,
DC F'O'
REGEQn
END

00000100
00000200
00000300
00000400
00000500
00000600
00000700
00000800

••••• ',x00000900
00001000
00001100
00001200
00001300
00001400
00001500
00001600
00001700
00001800

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
i

------------------------------------~

The Update File, SAMPLE UPDATE
r
I • / * REVISION BY DLC
I ./ R 500
I LINEDIT TEXT='WHAT"S YOUR NAME1',DOT=NO
I ./ R 700 1000
I LINEDIT TEXT='HI, •••••••••• , ENTER THE DOCNAME',
I SUB=(CHARA,NAME)
I RDTERM NAME
I MVC DOCFN,NAME

LA 1, PLIST
SVC 202
DC AL4 (ERROR)

RETURN EQU *
.1 I 1200
ERROR EQU *

WRTERM 'FILE NOT FOUND'
B RETURN

.1 D 1500

.1 I 1600
PLIST DS OD

DC CL8'TYPE'
DOCFN DC Ct8"

DC CL8'FILE'
DC CL8'Al'
DC 8X'FF'

SAM00010
SAM00020
SAM00030
SAM00040

xSAM00050
SAM00060
SAM00070
SAM00080
SAM00090
SAM00100
SAMOOll0
SAM00120
SAM00130
SAM00140
SAM00150
::>Al'lOOi60
SAM00170
SAM00180
SAM00190
SAM00200
SAM00210
SAM00220
SAM00230
SAM00240

Figure 25. Updating Source Files with the UPDATE Command (Part 1 of 2)

2A2 IBM VM/SP CMS User's Guide

,

.J

/
\

,
JI • .J

iii'

The Update File, SAMPLE UPDATE
r ---,
1 UPD~TING 'S~MPLE ASSEMBLE Al' WITH 'S~MPLE UPD~TE Al' UPDATE LOG -- PAGE 1
1 ./ * REVISION BY DLC
1 ./ R 500
1 DELETING... LINEDIT TEXT='PLEASE ENTER YOUR N~ME' 00000500

INSERTING... LINEDIT TEXT='WHAT"S YOUR NAME?',DOT=NO ********
./ R 700 1000

DELETING... LINEDIT TEXT='PLE~SE ENTER YOUR AGE' 00000700
RDTERM ~GE 00000800
LINEDIT TEXT='HI, •••••••••• , YOU JUS~ TOLD ME YOU ARE ••••• ',x00000900

SUB=(CHARA,NAME,CHARA,AGE) ,RENT=NO 00001000
INSERTING... LINEDIT TEXT='HI, •••••••••• , ENTER THE DOCNAME', x********

SUB=(CHARA,NAME) ********
RDTERM N~ME ********
MVC DOCFN,NAME ********
LA 1,PLIST ********
SVC 202 ********
DC AL4 (ERROR) ********

RETURN EQU * ********
./ I 1200

INSERTING... ERROR EQU * ********
WRTERM 'FILE NOT FOUND' ********1
B RETURN ********1

./ D 1500 1
DELETING... AGE DC CL130" 000015001

./ I 1600 1
INSERTING... PLIST DS OD ********1

DC CL8'TYPE' ********1
DOCFN DC CL8" ********1

DC CL8'FILE' ********1
DC CLa'!l' ********1
DC aX'FF' ********1 L-___ _

The Updated Output File, $SAMPLE ASSEMBLE

L

S ~MPLE

RETURN

ERROR

NAME
SAVRET
PLIST

DOCFN

CSECT
USING SAMPLE,R12
LR R12,R15
ST R14,SAVRET
LINEDIT TEXT='WHAT"S YOUR NAME?',DOT=NO
RDTERM NAME
LINEDIT TEXT='HI, •••••••••• , ENTER THE DOCNAME',

SUB=(CHARA,NAME)
RDTERM NAME
MVC DOCFN,NAME
LA 1,PLIST
SVC 202
DC AL4 (ERROR)
EQU *
L R14,SAVRET
BR R14
EQU *
iRTERM 'FILE NOT FOUND'
B RETURN
EJECT
DC CLBO"
DC F'O'
DS OD
DC CL8'TYPE'
DC CL8"
DC CL8'FILE'
DC CL8'Al'
DC 8X'FF'
REGEQU
END

---,
00000100
00000200
00000300
00000400

00000600

x********

00001100
00001200

00001300
00001400
00001600

00001700
00001800

Figure 25. Updating Source Files with the UPDATE Command (Part 2 of 2)

Section 13. Programming for the eMS Environment 283

The INSERT and REPLACE statements allow you to control the numbering
increment of records that you add to a source file. Notice, in Figure
25, that inserted records have the character string '********' in
columns 73 through 80. If you want sequence numbers on the inserted
records, you must do two things:

1. Use the INC option on the UPDATE command line. If you use the CTL
option, you do not have to specify the INC option. The CTL option
is described below, under. "Multiple Updates."

2. Include a dollar sign ($) on the INSERT or REPLACE statement,
optionally followed by operands indicating how the records should
be sequenced.

For example, to sequence the records added in Figure 25, the control
statements would appear as:

./ R 500 $

./ R 700 1000 $

./ I 1200 $

./ I 1600 $

and you would issue the UPDATE ccmmand:

update sample (inc

The UPDATE command sequences inserted records by increments of 10.
If you want to control the numbering, for example, if you need to insert
more than 10 statements between twc existing statements, you can specify
an alternate sequencing scheme:

./ I 1800 $ 1805 5

Records introduced following this INSERT statement are numbered
00001805, 00001810, 00001815, and so on. (If the NOSEQ8 option is in
effect, then the records would be XXX01805, XXX01810, and so on, where
XXX is the three-character identifier used in columns 13 through 15.)

MULTIPLE UPDATES

If you have several UPDATE files to apply to the same source, you may
apply them in a series of UPDATE commands. For example, if you have
updates named FICA UPDTUP1, FICA UPDTUP2, and FICA UPDTUP3 to apply to
the source file FICA PLIOPT, you could do the following:

1. Update the source file with TEST1 UPDATE:

update fica pliopt a fica updtup1

2. Update the source file produced by the above command with the TEST2
UPDATE:

update Sfica pliopt a fica updtup2

3. Update the new source ~ile with TEST3:

update $$fica pliopt a fica updtup3

284 IBM VM/SP CMS User's Guide·

This final UPDATE command produces the file $$$FICA PLIOPT, which is now
the fully updated source file. This method is cumbersome, however,
particularly if you have many updates to apply and they must be applied
in a particular order. Therefore, the UPDATE command provides a
multilevel update scheme, which you can use to apply many updates at one
time, in a specified order.

To apply multilevel updates, you must have a control file, which by
convention has a filetype of CNTRL and a filename that is the same as
the source input file. Therefore, to apply the three update files to
FICA PLIOPT, you should create a file named FICA CNTRL.

A control file is actually a list: it does not contain any actual update
control statements (INSERT, DELETE, and so on), but r~ther it indicates
what update files should be applied, and in what order. In the case of
a multilevel update, all the update files must have the same filename as
the source file. Therefore, only the filelI~§ need be specified in the
control file to uniquely identify the update file. In fact, if all your
update files have filetypes beginning with the characters UPDT, you need
only specify the unique part of the filetype. The control file for FICA
PLIOPT, named FICA CNTRL, may typically look like the following:

TEXT MACS PLILIB
FICA3 UP3
FICA2 UP2
FICAl UPl

The first record in the control file must be a MACS record. The
second field in this record must be "MACS," and it may be followed by up
to eight macro library names. Every record in the control file must
have an "update level identifier;" in this example, the update level
identifiers are TEXT on the MACS record, FleAl for the uPt record, and
so on. The update level identifier may have a maximum of five
characters. See the "STK option" for more details about the "update
level identifier".

The UPDATE command only uses the MACS
identifier under special circumstances.
under "VMFASM EXEC Procedure." For now,
these things must be in a control file in
to execute properly.

record and the update level
These are described later,
you only need to know that

order for the UPDATE command

To update FICA PLIOPT, then, you would issue the UPDATE command as
follows:

update fica pliopt (ctl
•

When you use the CTL option, and you do not specify the name of a
control file, the UPDATE command looks for a control file with the
filetype of CNTRL and a filename that is the same as the source file.
From the control file, it reads the filetypes of the updates to be
applied. In this example, it searches for the file FICA UPDTUPt and if
found, applies the updates; then UPDATE searches for FICA UPDTUP2, and
applies those updates, if any. Last it searches for FICA UPDTUP3, and
applies those updates.

Notice that the updates are applied from the bottom of the control
file, toward the top. This becomes important when an update is
dependent on a previous update. For example, if you add some lines to a

Section 13. Programming for the eMS Environment 285

file in PICA UPDTUP1, then modify one of those lines in PICA UPDTUP2, it
is important that UPDTUPl was applied first.

lLTJ~!jIj WAYS gl ~f~£!l!ING ~~tTI!E!!! UP~!~ lI1l§: The example above,
showing FICA eNTRL and UPDTxxxx filesl illustrates a naming scheme using
the UPDATE command defaults. You can override the default filetypes for
the control file's filename and filetype, as well as filetypes for the
update fi~es.

If you name a control file GROUPA CNTRL, for example, you can specify
the name of the control file on the UPDATE command line:

update fica pliopt a grcupa cntrl (ctl

Similarly, if your update files have unique filetypesl you must
specify the entire filetype in the control file. If your updates to
FICA FLIOPT are named FICA TEST1, FICA TEST2, and FICA TEST3, your
control file may look like the following:

TEXT MACS PLILIB
PICA3 TEST3
PICA2 TEST2
FICAl TESTl

Regardless of the filetypes you choose, however, the filenames must
always be the same as the filename of the input source file.

The two levels of update processing shown so far may be adequate for
your applications. There is, however, an additional level, or step, in
the update structure that the VM/SP procedures use and which you may
want to use also.

These techniques may be useful when you have more than one set of
updates to apply to a source program. For example, you may have two
groups of programmers who are working on different sets of changes for
the same source file. Each group may create several update files, and
have a unique control file. When you combine these changes, you could
create one control file, or you can use what are known as auxiliary
control files.

The updating structure for auxiliary control files is based on
conventions for assigning filenames and filetypes. If a control file
contains an entry that begins with the characters 'AUX', the UPDATE
command assumes that the file 'fn AUXnnnn' contains a list of filetypes,
not UPDATE control statements. For example, if the file SAMPLE ASSEMBLE
is being updated with a control file that'contains the record:

TESTl AUXLIST

then SAMPLE AUXLIST does not contain UPDATE control statements; it
contains entries ~na~ca~~ng ~ne ~~~~~~ oi the update iiles, all ui
which must have the same filename, SAMPLE.

Let'S expand the example to see how this structure works. We have
the source file, SAMPLE ASSEMBLE. The file SAMPLE eNTRL contains the
entries:

TEXT MACS
3616 AUXLIST

2A6 IBM VM/SP CMS User's Guide

The file, SAMPLE AUXLIST may look like the following:

TESTl
FIXLOOP
BYPASS

The files:

SAMPLE TEST1
SAMPLE FIXLOOP
SAMPLE BYPASS

all contain UPDATE control statements (INSERT, DELETE, and so on) that
are to be applied to the file SAMPLE ASSEMBLE. As with control file
processing, the updates are applied from the bottom of the AUX file, so
that the updates in SAMPLE BYPASS are applied first, then the updates in
SAMPLE FIXLOOP, and so on. For an illustration of a set of update
files, see Figure 26.

Since the updating scheme uses only filetypes to uniquely identi:fy
update files, it is possible to use the same control file to update
different source input files. For example, using the control file
BEPORT CNTRL shown in Figure 26, you issue the command:

update fica pliopt a report cntrl (ctl

The UPDATE command begins searching for updates to apply to FICA PLIOPT,
based on the entries in REPORT CNTRL: it searches for FICA AUXFIX, which
may contain entries pointing to update files; then it searches for FICA
UPDTREP1, and so on.

As long as all updates and auxiliary files associated with a source
file have the same filename as the source file, the updates are uniquely
identifiable, so the same centrol file can be used to update various
source files. VM/SP takes advantage of this capability in its own
updating procedures. By maintaining strict naming conventions, updates
to various CP and CMS modules are easily controlled and identified.

A control file may point to many AUX files in addition to many UPDT
files. You can modify a centrol file when you want to control which
updates are apFlied to a program, or you may have several control files,
and specify the name of the control file you want to use on the UPDATE
command line. There is a lot of flexibility in the UPDATE command
processing; you can implement procedures and conventions for your
individual applications.

PR~FERRE~ LE!]1 YfQ!l!!Q: There may exist more than one version of an
update, each applicable to different versions of the same module. For
example, you may need one version of an update for an unmodified base
source module, and another version of that update if that module has
been modified by a program product. The AUX file that will be used to
update a particular module must then be selected based on whether or not
a program product modifies that module. The AUX files listing the
updates applicable tc modules modified by a program product are called
"preferred AUX files" because they must be used if they exist rather
than the mutually exclusive updates applicable to unmodified modules.
Using this preferred AUX file concept, every module in a component can
be assembled using the one CNTRL file applicable to a user's
configuration.

A single AUX file entry in a CNTRL file can specify more than one
filetype. The first filetype indicates a file that UPDATE uses only on
one condition: the files that the second and subsequent filetypes
indicate do not exist. If they do exist, this AUX file entry is ignored
and no updating is done. The files that the. second and subsequent

Section 13. Programming for the eMS Environment 287

filetypes indicate are preferred because, if they exist, UPDATE does not
use the file that the first filetype indicates. Usually, the preferred
files appear later in the CNTRL file in a format that causes them to be
used for updating.

UPDATE scans each CNTRL file entry until a preferred filetype is
found, until there are no more filetypes on the entry, or until a
comment is found. (A character string that is less than four or more
than eight characters is assumed to be a comment.)

REPORT
UPDTPROC

REPORT
CNTRl

TEXT MACS
UP2 UPDTPROC
LIST AUXLlST
UP1 UPDTREP1
TEXT AUXFIX

REPORT
UPDTREP1

W/I .. .
.IR .. .
.ID . . .

REPORT W/L ..
.ID . ..
.IR. ..

REPORT REPORT
FIXIN FIXOUT

W/L .. W/L ..
.IR. . . .IR .. .
.ID. .. .ID . . .

update report assemble a (etl)

REPORT
RTNA

W-./I.··~ .IR. ..
.ID . ..

UPDATING 'REPORT ASSEMBLE A1' WITH 'REPORT RTNA A1'.
UPD . .8.T!I\!G \I\!!T~ '~~PORT RTI\II3 .81'

UPDATING WITH 'REPORT UPDTREP1 A1'.
UPDATING WITH 'REPORT FIXOUT A1'.
UPDATING WITH 'REPORT FIXIN A1'.
UPDATING WITH 'REPORT UPDTPROC A1'.
R;

Figure 26. An Update with a Control File

288 IBM VM/SP eMS User's Guide

REPORT
AUXFIX

REPORT
RTNB

W-·/I. .. -.IR .. .
.ID . . .

•

THE VMFASM EXEC PROCEDURE

If you are an assembler language programmer and you are using the UPDATE
command to update source programs you may want to use the VMFASM EXEC
procedure. VMFASM is a VM/SP update procedure; it invokes the UPDATE
command and then uses the ASSEMBLE command to assemble the updated
source file.

If you are not an assembler language programmer, you may wish to
create an EXEC similar to VMFASM that, instead of calling the assembler,
calls one of the language compilers to compile an updated source file.

When you use VMFASM, you specify the source filename, the filename of
the control file, and optionally, parameters for the assembler. (The
control file for VMFASM must have a filetype of CNTRL). For example, if
you use the file GENERAL CNTRL to update SAMPLE ASSEMBLE, you enter the
command line:

vmfasm sample general

The VMFASM EXEC uses the MACS card and the update level identifiers
in the control file. It reads the MACS card to determine which macro
libraries (MACLIBs) should be searched by the assembler. Then VMFASM
issues the GLOBAL MACLIB command specifying the MACLIBs you name on the
MACS card.

The update level identifier is used by VMFASM to name the output text
file produced by the assembly. If the update level identifier of the
most recent update file (the last one located and applied) is anything
other than TEXT, the update level identifier is prefixed with the
characters TXT to form the filetype. For example, if the file GENERAL
CNTRL contains the records:

TEXT MACS CMSLIB MYLIB OSMACRO
UP2 FIX2
UP1 FIXl
TEXT AUXLIST

and it is used to update the file SAMPLE ASSEMBLE, then:

• If the file SAMPLE UPDTFIX2 is found and the updates applied, VMFASM
names the output text deck SAMPLE TXTUP2.

• If the file SAMPLE UPDTFIX1 is found and the updates applied but no
SAMPLE UPDTFIX2 is found, the text deck is named SAMPLE TXTUP1.

• If the file SAMPLE AUXLIST is found but no SAMPLE UPDTFIX1 or SAMPLE
UPDTFIX2 files are found, the text deck is named SAMPLE TEXT.

• If no files are found, the update level identifier on the MACS card
is used and the text deck is named SAMPLE TEXT.

Since the UPDATE command works from the bottom of a control file
toward the top, it is logical that the text filename be taken from the
identifier of the last update applied.

The VMFASM EXEC does not produce an updated source file, but leaves
the original source intact. VMFASM produces two output files: a printed
output listing that shows update activity; and the text file, which
contains the update log as well as the actual object code. If you use
the CfiIS LOAD command to load a text fil'e prod uced by VMFASM, records
from the update log are flagged as invalid, but the LOAD operation is
not impair~d.

Section 13. Programming for the eMS Environment 289

1li~ 2!~ QRTIQN: If you are interested in writing your own EXEC procedure
to invoke the UPDATE command, you may wish to use the STK option. The
STK (stack) option is valid only with the CTL option, and is meaningful
only when the UPDATE command is invoked within an EXEC procedure.

When the STK option is specified, UPDATE stacks the following data
lines in the console stack:

first line: * update level identifier
second line: * library list from MACS record

The update level identifier is the identifier of the most recent update
that was found and applied.

For example, an EXEC file that invokes the UPDATE command and then
the ASSEMBLE command may contain the lines:

UPDATE &1 ASSEMBLE * &2 CNTRL * (STK CTL
&READ VARS &STAR &TX
&READ VARS &STAR &LIB1 &LIB2 &LIB3 &LIB4 &LIB5 &LIB6 &LIB7 &LIB8
GLOBAL MACLIB &LIB1 &LIB2 &LIB3 &LIB4 &LIB5 &LIB6 &LIB7 &LIB8
&IF &TX NE TEXT FILEDEF TEXT DISK &1 TXT&TX A1
ASSEMBLE &1 &3 &4 &5 &6 &7 &8 &9
ERASE $&1 ASSEMBLE

If this EXEC is named UPASM EXEC and is invoked with the line:

upasm fica fica (print noxref

and the file FICA CNTRL contains:

MAC MACS CMSLIB OSMACRO MYTEST
FIXl UPDTFIX
LIST AUXLIST

then the EXEC executes the following commands:

UPDATE FICA ASSEMBLE * FICA CNTRL * (STK CTL
GLOBAL MACLIB CMSLIB OSMACRO MYTEST
FILEDEF TEXT DISK FICA TXTFIX1 A1
ASSEMBLE $FICA (PRINT NOXREF
ERASE $FICA ASSEMBLE

The above example assumes that the update file FICA UPDTFIX was found
and applied.

290 IBM VM/SP CMS User,' s Guide

)
Part 3. Learning to Use EXECs

In previous sections, the CMS EXEC facilities were described in general
terms to acquaint you with the ex~ressions used in CMS EXEC files and
the basic way that' CMS EXECs function. Also, examples of CMS EXEC
procedures have appeared throughout this publication. You should be
familiar at least with the material in "Introduction to the EXEC
Processors" before you attempt to use the information in Part 3.

"Section 1q. Building CMS EXEC Procedures" describes the EXEC
facilities in detail, with examples of techniques you may find useful as
you learn about EXEC and develop your own EXEC procedures.

Special considerations for using CMS commands in EXECs and modifying
CMS command functions using EXEC procedures are described in "Section
15. Using CMS EXECs with CMS Commands."

"Section 16. Refining Your CMS EXEC Procedures" lists several
techniques you can use to make your EXEC files easier to use and
provides some hints on debugging EXEC procedures.

If you are a frequent user of the CMS Editor, then you may be
interested in "Section 11. Writing Edit Macros," which describes how to
create 'your own EDIT subcommands using EXEC procedures.

!Q1~: If you are using EXEC 2, refer to !Al§f Il!£ 1 ~~ns§, for
information pertaining to EXEC commands.

Part 3. Learning to Use EXECS 291

292 IBM VM/SP eMS User's Guide

j

Section 14. Building CMS EXEC Procedures

This section discusses various techniques that you can use when you
write CMS EXEC procedures. The examples are intended only as
suggestions: you should not feel that they represent either the only way
or the best way to achieve a particular result. Many combinations and
variations of control statements are possible; in most cases, there are
many ways to do the same thing.

This section is called "Building CMS EXEC Procedures" because you
will often find that once you have created an EXEC procedure and begun
to use it, you continually think of new applications or new uses for it.
Using the CMS editor, you may quickly build the additions and make the
necessary changes. You are encouraged to develop EXEC procedures to help
you in all the phases of your CMS work.

Note: If you are using EXEC 2, refer to VK~f]XE~ 1 Ref~~ for
detailed information.

What Isa Token?

An executable statement is any line in an EXEC file that is processed by
the EXEC interpreter, including:

• CMS command lines
• EXEC control statements
• Assignment statements
• Null lines

Executable statements may appear by themselves on a line or as the
object of another executable statement, for example in an &IF or &LOOP
control statement. If you want to execute CP commands or other EXEC
procedures in an EXEC, you must use the CP and EXEC commands,
respectively. CP cemmands are passed directly to. CP fer precessing.

All executable statements in an EXEC are scanned by the CMS scan
routine. This routine converts each word (words are delimited by blanks
and parentheses) into. an eight-character quantity called a token. If a
word contains mere than eight characters, it is truncated on the right.
If it contains fewer than eight characters, it is padded with blanks.
When a parenthesis appears on the line, it is treated both as a
delimiter and as a token. For example, the line:

&TYPE WHAT IS YOUR PREFERENCE (REDIBLUE)?

scans as follews:

&TYPE WHAT IS YOUR PREFEREN (REDIBLUE) ?

After a line has been scanned, each token is scanned for ampersands
and substitutions are performed on any variable symbols in the tokens
befere the statement is executed. After elimination of any null
variables, the statement may contain a maximum of 32 tokens.

Nenexecutable statements are lines that are net processed by the EXEC
interpreter, that is, comment lines (those that begin with an *), and
data lines following an &BEGEMSG, &BEGPUNCH, &BEGSTACK, or &BEGTYPE
control statement. . Since these lines are not scanned, words are not
truncated, and tokens are neither fermed nor substituted.

Section 14. Building CMS EXEC Procedures 293

Since all executable statements in an EXEC are scanned, and the data
items are treated as tokens, the term "token" is used throughout this
section to describe data items before and after scanning. The VMLSP CMS
QQ~g~g ~~~ ~g£~2 n~fe~!~£~, which contains the formats and descriptions
of the EXEC control statements, uses this convention as well.
Therefore, as you create your EXEC procedures, you may think of the
items that you enter on an EXEC statement as tokens, since that is how
they are used by the EXEC interpreter.

Variables

To make the best use of the CMS EXEC facilities, you should have an
understanding of how the EXEC interpreter performs substitutions on
variable symbols contained in tokens. Some examples follow. For each
example, the input lines are shown as they would appear in an EXEC file
and as they would appear after being interpreted and executed by EXEC.
Notes concerning sUbstitution follow each example.

~IMg1~ ~QBS111~11Q!: Most of the EXEC examples in this publication
contain variable symbols that result in one-for-one substitution. Most
of your variables, too, will have a similar relationship.

Lines
&X-;-'23
&TYPE &X

After Substitution
&X-;-,23----------
&TYPE 123

The EXEC interpreter accepts the variable symbol &X and assigns it the
value 123. In the second statement, &X is substituted with this value,
and the control statement &TYPE is recognized and executed.

After Substitution
&Y =-456----------
&Z = 456

In the second Q+::a+cmon+_ +}u;) - --- --_ .. -, ---The symbol &Y 1S assigned a value of 456.
symbol &Y is substituted with this value,
&z.

and this value is assigned to

~uB~£~lgTS !Q~ !ARIA~1~~: Since each token is scanned more than once for
ampersands, you can simulate subscripts by using two variable values in
the same token.

Li~~2
& 1 = ALPHA
&2 = BETA
&INDEX 1 = 1
&TYPE &&INDEXl
&INDEX 1 = 2
&TYPE &&INDEXl

Afte!: Suh2!ituti~
&1 = ALPHA
&2 = BETA
&INDEX1 = 1
&TYPE ALPHA
&INDEX 1 = 2
&TYPE BETA-

In the statement &TYPE &&INDEX1, the token &INDEX1 is scanned the first
time, and the value &INDEX1 is substituted with the value 1. The token
no~ ~on+~in~ &1: whi~h is suhstituted with the value ALPHA on a second
scan. When the value of &INDEX1 is changed to 2, the value of &&INDEX1
also changes.

1i~'§2
&1 = 2
&X&I = 5
&1 =
&X&I = 2
&X = &X&I + &X&X&I

lfte!: SUQ2!i!yti~
&1 = 2
&X2 = 5
&1 = 1
&X 1 = 2
&X = 2 + 5

294 IBM VM/SP CMS User's Guide

)
In the statement &X&I = 5, analysis of the first token
substitution of the symbol &1 with the value of 2. The
assigned a value of 5.

results in the
symbol &X2 is

The value of &1 is changed to 1, and the symbol &Xl is assigned a
value of 2.

In the last statement, &X = &X&I + &X&I&I, the value of &1 in the
token &X&I is replaced with 1, then the symbol &11 is substituted with
its value, which is 2. The token &X&I&I is substituted after each of
three scans: &1 is replaced with the value 1, to yield the token &I&Xl.
The symbol &Xl has the value of 2, so the token is reduced to &X2, which
has a value of 5.

COMPOUND VARIABLE ~XH~OL~: Variable symbols may also be combined with
character-strings.

1in~
&X = BEE
&TYPE HONEY&X
&TYPE ABUMBLE&X

!!1~~ SUQ§iitution
SX = BEE
STYPE HONEYBEE
STYPE ABUMBLE

In the above example, the first symbol encountered in the scan of
HONEY&X is &X, which is substituted with the value &BEE. In the second
&TYPE statement, the X is truncated when the line is scanned; the symbol
& is an undefined symbol and is therefore set to blanks.

1in~
sx = HONEY
SY = BEE
&TYPE &X&Y

!!1~~ SUQ§1itutiQn
&X = HONEY
&Y = BEE
STYPE

In the above example, after the symbol &Y is substituted with the value
BEE, the token contains the symbol &XBEE, which is an undefined symbol,
so the symbol is discarded.

1i.n.§§
&123 = ABCDE
SX = 12345678
&TYPE ABLES&X

Afte& SuQ§iituti.£!!
&123 = ABCDE
SI = 12345678
STYPE ABLEABCD

In this example, the substitution of SX in the token ABLE&&I results in
the character string ABLES12345618, which is truncated to eight
characters, or ABLES123. The scan continues, and &123 is substituted
with the appropriate value, to result in ABCDE. The token is again
truncated to eight characters.

CON£AT]!ATJQ! QX IQ!!B~: The SCONCAT built-in function is used to
concatenate two or more tokens.

1i.n.§§
&X = BB
&Y = &CONCAT AA &X CC
&TYPE &Y

Afte& ~YQ§1ituti.£!!
SX = BB
SY = SCONCAT AA BB CC
AABBCC

In the above example, the substitution of &Y results in the character
string &CONCATAABBCC. The scan continues with the concatenation, the
result, AABBCC.

SUBSTIl]lJNG 1I£~~!1 !!1Q!~: You might want an ampersand to appear in a
token. You can use the &LITERAL built-in function to suppress the
substitution of variable symbols in a token.

section 14. Building eMS EXEC Procedures 295

1in§2
S9 = HELLO
SA = SLITERAL S9
STYPE SA

!l!~~ ~a§!!tuti2n
S9 = HELLO
SA = SLITERAL S9
STYPE &9

Because the value of SA was defined as a literal S9, no sUbstitution is
performed.

Lines
STIPE = QUERY
STYPE BLIP

!l!~~ ~a§!i!Y!i2B
STYPE = QUERY
QUERY BLIP

In the above example, even though STYPE is an EXEC keyword, it is
assigned the value of QUERY, and substitution is performed when it
appears on an input line. In this example, wben it is substituted with
its value, the result is a command line which is passed to CMS for
processing.

~in!2
SCONTROL = FIRST
SLITERAL SCONTROL ALL

After Substitution
SCONTROL-;-PIRST--
SCONTROL ALL

In this example, SCONTROL is assigned a value as a variable symbol, but
when it is preceded by the built-in function SLITERAL, the substitution
is not performed, so EXEC processes it as a control statement.

HE!!~jCIMA1 AND DECIMAL ~2!!~!2IQ!2: You can perform hexadecimal to
decimal and decimaI-to-hexadecimal conversions in an EXEC if you use the
control statement SHEX ON.

Tokens of the form X'xxx, can be converted from hexadecimal to
decimal and from decimal to hexidecimal. The conversion takes place
according to the rules given below. These rules are in effect onl~ if
'SHEX ON' is in effect.

1. Hexadecimal-to-decimal conversion is performed in the assignm~nt
statement, and that is the ~nlI place where it occurs.

2.

3.

4.

Example:

SX = 100 + X'100

This results in SX being set to 356 (100 + 256)

Decimal-to-hexadecimal conversion is performed whenever
SUbstitution is performed, ~~R! on the
assignment.

right-hand-side of an

Example:

SSTACK LIFO 100 X'100 X'15
SREAD VARS SA SB SC

This sets SA to 100, SB to 64, and SC to F.

No cc~~ersic~ is pe~fcr:ed C~ the left-ha~d-~id~ ~f ~n
statement. Instead, the quote in SX'10 is treat~d as
character in a variable name.

A~~;nnmcn+
----~-----
an ~llegal

Conversion errcrs occur if the conversion cannot be performed,
either because the result is too large, or because the number
contains invalid digits.

296 IBM VM/SP CMS User's Guide

(
\

)
Example:

&X = FFFFFFF
&I = X'&X

The result of the conversion of X'FFFFFFF' to decimal is larger
than the maximum of 999-99999 decimal.

!Q1~: No intermediate truncation occurs during conversion, as in
the preceding example, where X'FFFFFFF contains 9 characters.

Example:

&TIPE X'FFFF

The conversion argument is expected to be a decimal number.

The following illustrates conversions with '&HEX ON' in effect:

~x~£ £Qn!~Ql ~!~!~~~n!§
&CONTROL ALL

-E1 &HEX ON
&NUM = X'FFFFFF
&TIPE HEX X'&NUMM = DEC &NUM

-E2 &IF X' 16777215 = X'&NUM SGOTO -E3

STIPE &LITERAL X'16777215
NE &LITERAL X'&NUM

STIPF X'16777215 NE X'&NUM
-E3 &NUM = X'10

S Y = S N UM + X' B
STYPE &I X'SY

-E4 SY = X'NUM
&Z = &CONCAT &LITERAL X'l X'&NUM
SHEX OFF
STIPE &I &Z
SHEX ON
STYPE &I &Z

SNUM = 16777215
STYPE HEX FFFFFF

= DEC 16777215
&IF 28F5C = FFFFFF

&GOTO -E3
STYPE X'167772 NE X'&NUM

STYPE 28F5C NE FFFFFF
SNUM = 16
&Y = 16 + 11
&TYPE 27 lB
SY = 22
&Z = SCONCAT X'l 22
&HEX OFF
STYPE 22 X' 122
&HEX ON
STYPE 22 7A

To suppress hexadecimal conversion during an EXEC procedure after
having used it, you can use the CMS EXEC control statement:

&HEX OFF

so you can use tokens containing the characters X' without the EXEC
processor converting them to hexadecimal.

Arguments

An argument in an CMS EXEC procedure is one of the special variable
symbols Sl through &30 that are assigned values when the EXEC is
invoked. For example, if the EXEC named LINKS is invoked with the line:

links viola ariel oberon

the tokens VIOLA, ARIEL, and OBERON are arguments and are assigned to
the variable symbols Sl, S2, and S3, respectively.

You can pass as many as 30 arguments to an EXEC procedure; ~hus the
variable symbols you can set range from Sl to &30. These variables are
collectively referred to as the special variable &n. Once these symbols

Section 14. Building CMS EXEC Procedures 297

are defined, they can be used and manipulated in the same manner as any
other variable in an EXEC. They can be tested, displayed, changed, and,
if they contain numeric quantities, used arithmetically.

&IF &2 EQ PRINT &GOTO -PH
&TYPE &1 IS AN INVALID ARGUMENT
&1 = 2
&CT = &1 + 100

The above examples illustrate some explicit methods of manipulating the
&nvariables. They can also be implicitly defined or redefined by two
EXEC control statements: &ARGS and &READ ARGS.

An &ARGS control statement redefines all of the special &n variables.
The statement:

&ARGS ABC

assigns the value of A, B, and C to the variables &1, &2, and &3 and
sets the remaining variables, &4 through &30, to blanks.

You can also redefine arguments interactively by using the &READ ARGS
control statement. When EXEC processes this statement, a read request is
presented to your terminal, and the tokens you enter are assigned to the
&n variables. For example, the lines:

&TYPE ENTER FILE NAME AND TYPE:
&READ ARGS
STATE &1 &2 *

request you to enter
arguments &1 and &2.
blanks.

two tokens, and then treat these tokens as the
The remaining variables &3 through &30 are set to

If you want to redefine specific &n variables, and leave the values
of others intact, you can either redefine the individual variables in
separate assignment statements, or use the variable symbol in the SARGS
or &READ ARGS statement. For

&ARGS CaNT &2 &3 RETURN &5 &6 &1 &8 &9 &10

assigns new values to the variables &1 and &4, but does not change the
existing values for the remaining symbols through &10.

If you need to set an argument or &n special variable to blanks,
either on an EXEC command line or in an &ARGS or &READ ARGS control
statement, you can use a percent sign- (I) in its place. For example, the
lines:

&ARGS SET QUERY % TYPE
&TYPE &1 &2 &3 &4

result in the display:

SET QTIER! TYPE

The symbol &3 has a value of blanks, and as a null token, is discarded
from the line.

298 IBM VK/SP CMS User's Guide

)
USING THE &INDEX SPECIAL VARIABLE

The EXEC special variable, &INDEX, initially contains a numeric value
corresponding to the number of arguments defined when the EXEC was
invoked. The value of &INDEX is reset whenever an &ARGS or &READ ARGS
control statement is executed.

&INDEX can be useful in many circumstances. If you create an EXEC
that may expect any number of arguments, and you are going to perform
the same operation for each, you might set a counter and use the value
of &INDEX to test it. For example, an EXEC named PRINTX accepts
arguments that are the filenames of ASSEMBLE files:

&CT = 1
&LOOP 2 &CT > &INDEX
PRINT &&CT ASSEMBLE
&CT = &CT + 1

In the preceding example, the token &CT is substituted with &1, &2, and
so on until all of the arguments entered on the PRINTX line are used.

You can also use &INDEX to test the number of arguments entered. If
you design an EXEC to expect at least two arguments, the procedure might
contain the statements:

&IF &INDEX LT 2 &GOTO -ERR1

-ERR1 &TYPE INVALID COMMAND LINE
&EXIT 1

In this example, if the EXEC is invoked with one or no arguments, an
error message is displayed and the EXEC terminates processing with a
return code of 1.

As another example, suppose you wanted to supply an EXEC with default
arguments, which might or might not be overridden. If the EXEC is
invoked with no arguments, the default values are in effect; if it is
invoked with arguments, the arguments replace the default values:

&DISP = PRINT
&COU~T = 2
&IF &INDEX GT 2 &EXIT 1
&IF &INDEX EQ 0 &GOTO -GO
&COUNT = &1
&IF &INDEX = 2 &DISP = &2
-GO

Default values are supplied for the variables &DISP and &COUNT. Then,
&INDEX is tested, and the variables are reset if any arguments were
entered.

CHECKING ARGUMENTS

There are a number of tests that you can perform on arguments passed to
a CMS EXEC. In some cases, you may want to test for the length of a
specific argument or to test whether an argument is character data or
numeric data. To perform these tests, you can use the EXEC built-in
functions &LENGTH and &DATATYPE.

Section 14. Building eMS EXEC Procedures 299

To use either &LENGTH or &DATATYPE, you must first assign a variable
to receive the result of the function, and then test the variable. For
example, to test whether an entered argument is five characters long,
you could use the statements:

&LI~IT = &LENGTH &1
&IF &LIMIT GT 5 &EXIT &LIMIT

When these statements are executed, if the first argument (&1) is
greater than five characters, the exit is taken, and the return code
indicates the .length of &1.

If you wish to check whether a number was entered for an argument,
use the &DATATYPE function:

&STRING = &DATATYPE &2
&IF &STRING ~= NUM &GOTO -ERR4

In this example, the second argument expected by the EXEC must be a
numeric quantity. If it is not, a branch is taken to an error exit
routine.

Often, you may create an EXEC that tests for specific arguments and
then takes various paths, depending on the argument. For example:

&IF &2 = PRINT &GOTO -PR
&IF &2 = TYPE &GOTO -TY
&IF &2 = ERASE &GOTO -ER
&EXIT

In this EXEC, if the value of &2 is not PRINT, TYPE, or ERASE, or was
not entered, the EXEC terminates processing.

There are two special EXEC keywords that you may use to test arguments
passed in an EXEC. They are &* and &$, which can be used only in an &IF
or an &LOOP control statement. They test the entire range of numeric
variables &1 through &30, as follows:

~!: The special token &$ is interpreted as "any of the variables &1, &2,
••• , &30." That is, if the value of anyone of the numeric variables
satisfies the established condition, then the &IF statement is
considered to be true. The statement is false only when none of the
variables fulfills the specified ~equirements.

As an example, suppose you want to make sure that
value is passed to the EXEC. You can check to see
arguments satisfy this condition, as follows:

&IF &$ EQ PRINT &SKIP 2
&TYPE PAR~ LIST MUST TNc~unE PRTNT

&EXIT

some particular
if any of the

In this example, the path to the &TYPE statement is taken only when none
of the arguments passed to the EXEC procedure equal the character string
PRINT.

~!: The special token &* is interpreted as "all of the variables &1, &2,
••• , &30." That is, if the value of each of the numeric variables
satisfies the established condition, then the &IF statement is

300 IBM VM/SP CMS User's Guide

(
\

considered to be true. The statement is false when at least one of the
variables fails to meet the specified requirements.

Use S* to test for the absence of an argument as follows:

SIF S* NE ASSEMBLE SEXIT 3

In this example, if an EXEC is invoked, and none of the arguments equals
ASSEMBLE, the EXEC terminates with a return code of 3.

The tokens &* and &$ are set by arguments entered when an EXEC is
invoked ~nd reset when you issue an &ARGS or &READ ARGS control
statement. If either s* or S$ is null because no arguments are entered,
the SIF statement is considered a null statement, and no error occurs.

Exe'cution Paths in an CMS EXEC

You have already seen examples of the
control statements. A more detailed
statements and additional techniques for
an EXEC procedure follow.

lABELS IN A CMS EXEC PROCEDURE

&IF, &GOTO, SSKIP, and SLOOP
discussion on each of these
controlling execution paths in

In many instances, an execution control statement in an EXEC procedure
causes a branch to a particular statement that is identified by a label.
The rules and conventions for creating syntactically correct EXEC labels
are:

• A label must begin with a hyphen (dash) and must have at least one
additional character following the hyphen.

• Up to seven additional alphameric characters may follow the hyphen
(with no intervening blanks). However, the sequence:

SGOTO -PROBABLY

-PROBABLY

executes successfully, because when each statement is scanned, the
token -PROBABLY is truncated to the same eight-character token,
-PROBABL.

• A label name may be the object of an SGOTO or SLOOP control
statement.

• A label that is branched to must be the first token on a line. It
may stand by itself, with no other tokens on the line, or it may
precede an executable CMS command or CMS EXEC control statement.

The following are examples of the correct use of labels:

&GOTO -LABl
-LAB1
-L AB2 &CONTINUE
-CHECK SIF SINDEX EQ 0 SGOTO -EXIT
&IF &INDEX LT 5 SSKIP
-EXIT & EXIT 4
STYPE SLITERAL SINDEX VALUE IS SINDEX

Section 14. Building CMS EXEC Procedures 301

CONDITIONAL EXECUTION WITH THE SIF STATEMENT

The main tool available to you for controlling conditional execution in
a CMS EXEC procedure is the &IF control statement. The &IF control
statement provides the decision-making ability that you need to set up
conditional branches in your EXEC procedure.

One approach to decision-making with the &IF control statement is to
compare two tokens, and perform some action based cn the result of the
comparison. When the comparison is specified true, the executable
statement is executed. When the comparison is false, control passes to
the next sequential statement in the EXEC procedure. An example of a
simple &IF statement is:

&IF &1 EQ &2 &TYPE MATCH FOUND

If the comparand values are not equal, the statement &TYPE MATCH
FOUND is not executed, and control passes to the next statement in the
EXEC procedure. If the comparand values are equal, the statement &TYPE
MATCH FOUND is executed before control passes to the next statement.
&IF statements can also be used to establish a comparison between a
variable and a constant~ For example, if a terminal user could properly
enter a YES or NO response to a prompting message, you could set up &IF
statements to check the response as follows:

&READ ARGS
&IF &1 EQ YES &GOTO -YESANS
&IF &1 EQ NO &GOTO -NOANS
&TYPE &1 IS NOT A VALID RESPONSE (MUST BE YES OR NO)
&EXIT
-YESANS

-NOANS

In this example, the branch to -YESANS is taken if the entered
argument is YES; otherwise, control passes to the next &IF statement.
The branch to -NOANS is taken if the argument is NO; otherwise, c_~trol
passes to the &TYPE statement, which displays the entered argument in an
error message and exits.

The test performed in an &IF statement need not be a simple test of
equality between two tokens; other types cf comparisons can be tested,
and more than two variables can be involved. The tests that can be
performed and the symbols you can use to represent them are:

~I.!!!bo.! !1!1~.!!!Qlli£ !t~ru!i!1g
= EQ A equals B
..,= NE A does not equal B
< LT A is less than B
<= LE A is less than or equal to B (not greater than)
> GT A is greater than B
>= GE A is greater than or equal to B (not less than)

302 IBM VM/SP eMS User's Guide

You can place multiple &IF control statements on one line, to test a
variable for more than one condition. For example, the statement:

&IP &NUM GT 5 &IF &NUM LT 10 &TYPE O.K.

checks the variable symbol &NUM for a value greater than 5 and less than
10. If both of these conditions are satisfied, the &IF statement is
true, and the &TYPE statement is executed. If either condition is false,
then the &TYPE statement is not executed.

The number of &IF statements that may be nested is limited only by
restrictions placed' on, the record length of the EXEC file.

BRANCHING WITH THE &GOTO STATEMENT

The &GOTO control statement allows yeu to transfer control within your
EXEC procedure:

• To a specified EXEC label somewhere in the EXEC file:

&GOTO -TEST

where -TEST is the label to which control is passed.

• To a particular line within the EXEC file. For example:

&GOTO 15

results in control being passed to statement 15 in the EXEC file.

• Directly to the top of the EXEC file. For example:

&GOTO TOP

passes control to the beginning of the EXEC procedure.

The &GOTO control statement can be coded wherever an executable
statement is permitted in an EXEC procedure. One cf its common uses is
in conjunction with the &IF control statement. Por example, in the
statement:

&IF &INDEX EQ 0 &GOTO -ERROR

the branch to the statement labeled -ERROR is taken when the value of
the &INDEX special variable is zero. Otherwise, centrol passes to the
next sequential statement in the EXEC procedure.

An &GOTO statement can also stand alone as an EXEC control statement.
When coded as such, it forces an unconditional branch to the specified
location. For example, you might create an EXEC that has several
execution paths, each of which terminates with an &GOTO statement
leading to a common exit routine:

Section 14. Building CMS EXEC Procedures 303

-PATHl &CONTINUE

&GOTO -EXIT
-PATH2 &CONTINUE

&GOTO -EXIT
&PATH3 &CONTINUE

-EXIT &CONTINUE

You can use the &GOTO control statement to establish a loop. For
example:

&GLOBALl = &GLOBALl + 1
&TYPE ENTER NUMBER:
&READ VARS &NEXT
&IF .&NEXT = • &GOTO -FINIS
&IF &GLOBALl ~ 2 &TOTAL = 0
&TOTAL = &TOTAL + &NEXT
&GOTO TOP
-FINIS
&TYPE TOTAL IS &TOTAL

In this EXEC example, all of the statements, through the &GOTO TOP
statement, are executed repeatedly until a null line is entered in
response to the prompting message. Then, the branch is taken to the
label -FINIS and the total is typed.

When an EXEC procedure processes an &GOTO statement, and searches for a
given label or line number, the scan begins on the line following the
&GOTO statement, proceeds to the bottom of the file, then wraps around
to the top of the file and continues to the line immediately preceding
the &GOTO statement. If there are duplicate labels in an EXEC file, the
first label encountered during the search is the one that is branched
to.

If the label or line number is not found during the scan, EXEC
terminates processing and displays the message:

ERROR IN EXEC FILE filename, LINE n - &SKIP or &GOTO ERROR

If the label or line number is found, control is passed to that location
and execution continues.

ERANCHING WITH THE &SKIP STATEMENT

The &SKIP control statement provides you with a second method of passing
control to various p~ints in an EXEC procedure. Instead of branching to
a named or numbered location in an EXEC procedure, &SKIP passes control
a specified number of lines forward or backward in the file.

304 IBM VM/SP CMS User's Guide

i

You pass control forward in an EXEC by specifying how many lines to
skip. Por example, to handle a conditional exit from an EXEC procedure,
you could code the following:

&IP &RETCODE EQ 0 &SKIP
&EXIT &RETCODE

where the &EXIT statement is skipped whenever the value of &RETCODE
equals zero. If the value of &RETCODE does not equal zero, control
passes out of the current EXEC procedure with a return code that is the
nonzero value in &RETCODE. Note that when no &SKIP operand is
specified, a value of 1 is assumed.

A succession of &SKIP statements can be used to perform multiple
tests on a variable. Por example, suppose an argument should contain a
value from 5 to 10 inclusive:

&IP &1 LT 5 &SKIP
&IP &1 LE 10 &SKIP
&TYPE &1 IS NOT WITHIN RANGE 5-10

If the value of &1 is less than 5, control passes to the &TYPE control
statement, which displays the erroneous value and an explanatory
message. If the value of &1 is greater than or equal to 5, the next
statement checks to see if it is less than or equal to 10. If this is
true, then the value is between 5 and 10 inclusive, and execution
continues following the &TYPE statement.

When you want to pass control to a statement that precedes the
current line, determine how many lines backward you want to go, and code
&SKIP with the desired negative value:

&VAL = 1
&TYPE &VAL
&VAL = &VAL + 1
&IP &VAL NE 10 &SKIP -2

In this EXEC, the &TYPE statement is executed repeatedly until the value
of &VAL is 10, and then execution continues with the statement following
the &IF statement.

USING COUNTERS FOR LOOP CONTROL

A primary consideration in designing a portion of ,an EXEC procedure that
is to be executed many times is how to control the number of executions.
One way to control the execution of a sequence of instructions is to
create a loop that tests and changes the value of a counter.

Before entering the loop, the counter is initialized to a value.
Each time through the loop, the counter is adjusted (increased or
decreased) toward a limit value. When the limit value is reached (the
counter value is the same as the limit value), control passes out of the
loop and it is not executed again. For example, the following EXEC
initializes a counter based on the argument &1:

&IP &INDEX EQ 0 &EXIT 12
&TYPE COUNT IS &1
&1 = &1 - 1
&IP &1 GT 0 SSKIP -2

When this EXEC procedure is invoked, it checks that at least one
argument was passed to it. If an argument is passed, it is assumed to
be a number that indicates how many times the loop is to execute. Each

Section 14. Building CMS EXEC Procedures 305

time it passes through the loop, the value of &1 is decreased by 1.
When the value of &1 reaches zero, control passes from the loop to the
next sequential statement.

There are several ways of setting, adjusting, and testing counters.
Some ways to set counters are by:

• Reading arg~ments from a terminal, such as:.

&RFAD VARS &COUNT1 &COUNT2

• Assigning an arbitrary value, such as:

&COUNTER = 43

• Assigning a variable value or expression, such as:

&COUNTS = &INDEX -

Counter values can be increased or decreased by any increment or
decrement that meets your purposes. For example:

&COUNTEM = &COUNTEM - &RETCODE
&COUNT1 = &COUNT + 100

LOOP CONTROL WITH THE &LOOP STATEMENT

A convenient way
is with the &LOOP
in four ways:

to control execution of a sequence of EXEC statements
control statement. An &LOOP statement can be set up

• To execute a particular number of statements a specified number of
times. For example, the statement:

&LOOP 3 2

indicates that the three statements following the &LOOP statement are
to be executed twice.

• To execute a particular number of statements until a specified
condition is satisfied. For example:

&LOOP 4 &X = 0

The four statements following this statement are executed until the
value of &X is o.

• To execute the statements down to (and including) the statement
identified by a label for a specified number of times. For example:

&LOOP -ENDLOOP 6

The statements between this &LOOP statement and ths l~hAl -ENDLOOP
are executed six times.

• To execute the statements down to (and including) the statement
identified by a label until a specified condition is satisfied. In
the following example:

&LOOP -ENDLOOP &X = 0

the statements are executed repeatedly until the value of &X is o.

306 IBM VM/SP CMS User's Guide

The numbers specified for the number of lines to execute and the
number of times through the loop must be positive integers. You can use
a variable symbol to represent the integer. If a label is used to
define the limit of the loop, it must follow the &LOOP statement (it
cannot precede the &LOOP statement).

In a conditional &LOOP statement, any
conditional ~hrase are substituted each time
example, the statements:

&X = 0
&LOOP -END &X EQ 2
&X = &X + 1
-END &TYPE &X

are interpreted and executed as follows:

1. The variable &X is assigned a value of O.

variable symbols in the
the loop is executed. For

2. The &LOOP statement is interpreted as a conditional form; that is,
tc loop to -END until the value of &X equals 2. Since the value of
&X is not 2, the loop is entered.

3. The variable &X is increased by 1 and is then displayed.

4. Control returns to the beginning of the loop, where &X is tested to
see if it equals 2. Since it does not, the loop is executed again
and 2 is displayed. The next time through the loop, when &X equals
2, control is passed to the EXEC statement immediately following
the label -END.

When this EXEC procedure is executed, the following lines are
displayed:

1
2

at which time the value of &X equals 2; the loop is not executed again.

Another example of a conditional loop is:

&Y = &LITERAL A&B
&LOOP 2 .&X EQ &LITERAL .&
&X = &SUBSTR &Y 2 1
&TYPE &X

These statements are interpreted and executed as follows:

1. The variable &Y is set to the literal value A&E.

2. The two statements following the &LOOP statement are to be executed
until the value of &X is &.

3. The &SUBSTR built-in function is used to set the variable &X to the
value of the second character in the variable &Y, which is a
literal ampersand (&).

4. The ampersand is typed once, and the loop does not execute again
because the condition that the value of &X be a literal ampersand
is met.

Section 14. Building CMS EXEC Procedures 301

NESTING CMS EXEC PROCEDURES

If you want to use a CMS EXEC procedure
must use the EXEC command to execute it.
statement:

EXEC TEST

within another CMS EXEC, you
For exam pIer if you have the

in an EXEC procedure, it invokes the EXEC procedure TEST. The procedure
TEST EXEC executes independently of the other EXEC; the variables S1, &2
and so on are assigned values and the default settings for control
statements such as &CONTROL and SHEX are reset. When TEST EXEC
completes execution, control returns to the next line in the calling
EXEC, where the values for variable symbols and EXEC settings are the
same as when the TEST EXEC was invoked.

Variables in an EXEC file have meaning only within the particular
procedure in which they are defined. There are two methods you can use
to pass variable information to nested EXECs. One way is to pass
arguments on the EXEC command line. For example r if the CHECK EXEC
contains the line:

EXEC COUNTEM SITEMCT &NUM

then the current values of SITEMCT and SNUM are assigned to the variable
symbols &1 and &2 in COUNTEM EXEC. (The values of &1 and &2 in CHECK
EXEC do not change.)

You can also use'the ten special variables &GLOBALO through &GLOBAL9.
These variables can only contain integral numeric values; you cannot
assign them character=string values. These variables can be used to set
up arguments to pass to nested procedures, or to communicate between
EXEC files at different recursion levels.

Thus, if CHECK EXEC contains:

&GLOBAL1 = 100
EXEC COUNTEM

The variable &GLOBALl has a value of 100 in COUNTEM EXEC, which may also
test and modify it.

Horizontal communication by means of global variables is also
possible at recursion levels 2 and above. For example: EXEC A calls
EXEC B, which sets SGLOBALl to 2 and exits, then EXEC A (STILL ACTIVE)
calls EXEC C, which finds that SGLOBALl has a value of 2, as set by EXEC
B.

The CMS EXEC interpreter can handle up to 19 levels of recursion at
one time, that is, up to 19 EXECs may be active, one nested within
another. An EXEC may also call itself.

You can test the &GLOBAL special variable to see if an EXEC is
executing within another procedure and if so, at what level of recursion
it is executing. For example, if the file RECOMP EXEC contained the
lines:

308 IB~ VM/SP CMS User's Guide

/

&IF &GLOBAL EQ 2 &GOTO -2NDPASS

EXEC RECOMP

-2NDPASS &TYPE SECOND PASS BEGINS

then when the line "EXEC RECOMP" is executed, control passes
beginning of the EXEC; the value of &GLOBAL changes from 1 to
control is passed to the &TYPE statement at the label 2NDPASS.

EXITING FROM CMS EXEC PROCEDURES

to the
2; and

Execution in a CMS EXEC procedure proceeds sequentially through a file,
line by line. When a statement causes control to be passed to another
statement, execution continues at the second statement, and again
proceeds sequentially through the file. When the end of the file is
reached, the EXEC terminates processing. Frequently, however, you may
not want processing to continue to the end of the file. You can use the
&EXIT statement to cause an immediate exit from EXEC processing and a
return to the CMS environment. If the EXEC has been invoked from
another EXEC, control is returned to the calling EXEC file. For
example, the statement:

&IF &RETCODE ~= 0 &EXIT

would cause an immediate exit from the EXEC if the return code from the
last issued CMS command was not zero.

You can use the &EIIT statement to
execution paths in an EXEC. For
statements,

&IF &1 EQ PRINT &GOTO -PRINT
&IF &1 EQ TYPE &GOTO -TYPE

-PRINT

&EXIT
-TYPE

&EXIT

terminate each of a
example, using the

series of
following

you ensure that once the path through the -PRINT routine has been taken,
the EXEC does not continue processing with the -TYPE routine.

section 14. Building eMS EXEC Procedures 309

The &EXIT control statement also provides a special function that allows
you to pass a return cod€ to CMS or to the program or EXEC that· called
this EXEC. You specify the return code value on the &EXIT control
statement as follows:

&EXIT 4

Execution of this line results in a return to CMS with a ready message:

R (00004) ;

If you have a variety of exits in an EXEC, you can use a different value
following each·&EXIT statement, to indicate which path had been taken in
the EXEC.

You can also use a variable symbol as the value to be passed as the
return code:

&EXIT &VAL

Another common use of the &EXIT statement
taken following an error in a CMS command,
from the CMS command in the &EXIT statement:

&IF &RETCODE NE 0 &EXIT &RETCODE

Terminal Communications

is to cause an exit to be
and using the return code

You can design EXECs to be used interactively, so that their execution
depends On information entered directly from the terminal during the
execution. With the &TYPE statement, you can display a line at the
+crm4n~' ~nA u4+h +ho £~~~n e+~+omo~+ u~n ~~" _~~A --- -- ---- ,:_--________ , ___ "~_~ W~~ v~_uu ~~~~_~~U~, IVY _QU ~~Q~ vu~ V~ wv~~ ~~u~~

from the terminal or console stack. Used together, these statements can
provide a prompting function in an EXEC:

&TYPE WHAT DO YOU WANT TO DC NOW?
&TYPE ENTER (STOP CONTINUE REPEAT):
&READ VARS &LABEL
&GOTO -&LABEL
-STOP

-CONTINUE

-REPEAT

In this example, the &READ control statement· is used with the VARS
operand, which accepts the words entered at the terminal as values to be
assigned to variable symbolS. If the word STOP is entered in response to
the &READ VARS statement in this example, the variable symbol &LABEL is
assigned the value STOP. Then, in the &GOTO statement, the symbol is
substituted with the value STOP, so the branch is taken to the label
-STOP.

310 IBM VM/SP CMS User's Guide

You can s.pecify up to 17 variable names on an &READ VARS control
statement. If you enter fewer words than are expected, the remaining
variables are set to blanks. If you enter a null line, any variable
symbols on the &READ line are set to blanks. If the execution of your
EXEC depends on a value entered as a result of an &READ VARS, you might
want to include a test for a null line immediately following the
statement; for example:

&READ VARS &TITLE &SUBJ
&IF .&TITLE = • &EXIT 100

If no tokens are entered in response to the terminal read request, the
variable &TITLE is null, and the EXEC terminates with a return cod@ of
100.

If you are writing an EXEC that may receive a number of tokens from
the terminal, you may find it more convenient to use the &READ ARGS form
of the &READ control statement. When the &REAt ARGS statement reads a
line from the terminal, the tokens entered are assigned to the &n
special variables (&1, &2, and so on).

READING CMS COMMANDS AND CMSEXEC CONTROL STATEMENTS FROM THE TERMINAL

When you use the &READ control statement with· no operands, or with a
numeric value, EXEC reads one line or the specified number of lines from
the terminal. These lines are treated, by EXEC, as if they were in the
EXEC file all along. For example, if you have an EXEC named COMMAND that
looks like the following:

&TYPE ENTER NEXT COMMAND:
&RFAD 1
&SKIP -2

all the commands you enter during the terminal session are processed by
the EXEC. Each time the &READ statement is executed, you enter a CMS
command. When the command finishes, control returns to EXEC, which
prompts you to enter the next command. Since the eMS commands are all
being executed from within the EXEC, you do not receive the CMS ready
message at the completion of each command.

You could also enter EXEC control statements or assignment
statements. To terminate the EXEC and return to the CMS environment,
you must enter the EXEC control statement &EXIT from the terminal:

&exit

DISPLAYING DATA AT A TERMINAL

You can use the &TYPE and &BEGTYPE control statements
from your EXFC at the terminal. In addition, you can
command to display the contents of CMS files.

to dis play lines
use the CMS TYPE

When you use the &TYPE control statement, you can display variable
symbols as well as data. Variable symbols on an &TYPE control statement
are substituted before they are displayed. For example, the lines:

&NAME = ARCHER
&TYPE & NAME

Section 14. Building CMS EXEC Procedures 311

~esult in the display:

ARCHER

You can use the STYPE statement to display prompting messages, error
or information messages, or lines of data.

In an EXEC file with fixed-length records, only the first 12
characters of each line are processed by the EXEC interpreter.
Therefore, if you want to use the STYPE control statement to display a
line longer than 72 characters, you must convert the file into
variable-length records.

All of the words in an STYPE control statement are scanned into
a-character tokens. If you need to display a word that has more than 8
characters, you must use the &BEGTYPE control statement. The SBEGTYPE
control statement precedes one or more data lines that you want to
display; for example:

SBEGTYPE
THIS EXEC PERFORMS THE FOLLOWING FUNCTIONS:
1. IT ACCESSES DISKS 193, 194, and 195 AS

E, C, AND D EXTENSIONS OF THE A-DISK.
2. IT DEFINES, FORMATS, AND ACCESSES A

TEMPORARY 195 DISK (E).
SEND

The SEND statement must be used to terminate a series of lines
introduced with the &BEGTYPE statement. "SEND" must begin in column 1 of
the EXEC file.

Th9 lines following an &BEGTYPE statement~ up to the SEND stateMent~
are not scanned by the EXEC interpreter. Therefore, no substitution is
performed on the variable symbols on these data lines. If you nEed to
display a symbol, you must use the STYPE control statement. To display a
combination of scanned and unscanned lines, you might need to use both
the STYPE and SBEGTYPE control statements:

SBEGTYPE
EVALUATION BEGINS •••
SEND
STYPE &VAL1 IS SNUM1.
&TYPE &VAL2 IS SNUM2.
SBEGTYPE
EVALUATION COMPLETE.
SEND

If you use the &BEGTYPE control statement in an
fixEd-length records, and you want to display lines
characters, you must USE the ALL operand. For example:

&BEGTYPE ALL
••• data line of 103 characters
••• data line of 98 characters
••• data line of 50 characters
SEND

EXEC file with
longer than 72

You can display lines of up to 130 characters in this way. When you
enter lines that are longer than the record length in an EXEC file, the

312 IBM VM/SP CMS User's Guide

)

•

records are truncated by the editor. You must increase the record length
of the file by using the LRECL option of the EDIT command, for example:

edit old exec a (lrecl 130

You can use the TYPE command in an EXEC file to display data files, or
portions of data files. For example, you might have a number of files
with the same filetype; the files contain various kinds of data. You
could create an EXEC that invokes the TYPE command to display a
particular file as follows:

&IF &INDEX EQ 2 &IF &2 EQ ? &GOTO -TYPE

-TYPE
ACCESS 198 B
TYPE &1 KEKO B

The filetype MEMO is a reserved
uppercase and lowercase; you can
programming notes.

filetype,
use it for

which accepts data
documentation files

in
or

The two CKS Immediate commands that control terminal display are HT
(halt typing) and RT (resume typing). When data is being displayed at
your terminal, you can suppress the display by signaling an attention
interruption and entering:

ht

This command affects output that is being displayed:

• As a response to a CMS command, including prompting messages, error
messages, or normal display responses (as from the TYPE command)

• From a program

• In response to an &TYPE or &BEGTYPE request in an EXEC

Once display has been suppressed, and before the command,
EXEC completes execution, yeu can request that display be
signaling another interruption and entering:

rt

program, or
resumed by

In an EXEC file, if you want to halt or resume display, you must use
the &STACK control statement to enter the RT or HT commands or use the
CMS commands SET CMSTYPE RT and SET CMSTYPE HT. For example, the ACCESS
command issues a message when a disk is accessed:

D(198) R/O

Section 14. Building CMS EXEC Procedures 313

If you are going to issue the ACCESS command within a CMS EXEC and you
do not wish this message displayed, you could enter the lines:

SET CMSTYPE HT
ACCESS 198 D

-- or --

&STACK HT
ACCESS 198 D

Once you have halted CMS terminal display, it is suppressed for the
remainder of the EXEC file's execution. To reverse the suppressed
display, use the RT immediate command or the SET CMSTYPE RT.' To execute
the RT Immediate command in an EXEC, use either of the statements:

&STACK RT

-- or --

SET CMSTYPE RT

lh~ &T!REF1!~ ~~£ig! Varig~l~: You can test the current value of the
display controlling an EXEC with the &TYPEFLAG special variable. The
value of &TYPEFLAG can only' be one of the literal values HT or RT. For
example:

&IF &$ EQ NOTYPE &STACK HT

&IF &TYPEFLAG ~Q HT &SKIP 3
&TYPE LINE1
&TYPE LINE2
&TYPE L INE3
&CONTINUE

In this example, if NOTYPE is entered as an argument when the EXEC is
invoked, the CMS command SET CMSTYPE HT is executed, hence no display
appears at the terminal. Within the EXEC, the variable &TYPEFLAG is
tested, and, if it is HT, then a series of &TYPE statements is skipped.
Since EXEC does not have to process these lines, you can save time and
system resources by not processing them.

Reading from the Console Stack

When you are in the CMS environment executing programs or CMS commands,
you can stack commands, either by entering multiple command lines
separated by the logical line end symbol, as follows:

print myfile listing#cp query printer

or by signaling
as follows:

an attention illte~~uptioll and

print myfile listing
!
cp query printer

ci C0iiiiiiciiiG ~ ..! - -
.L.LU~,

In both of the preceding examples, the second command line is saved
in a terminal input buffer, called the console stack. Whenever a read
occurs in your virtual machine, CMS reads lines from the console stack,

314 IBM VM/SP CMSUser's Guide

if there are any lines in it. If there are no lines
read results in a physical read to your terminal
terminal, the keyboard unlocks).

in the stack, the
(on a typewriter

A virtual machine read occurs whenever a command or subcommand
finishes execution, or when an EXEC or a program issues a read request.
Many CftS commands also issue read requests, for example, SORT and
COPYFILE. If you want to execute one of these commands in an EXEC, you
may want to stack, in the console stack, the response to the read
request so that when it is issued it is immediately satisfied. For
example:

&STACK 42-121 1
COPYFILE &NAME LISTING A = ASSEMBLE = (SPECS

When the COPYFILE command is issued with the SPECS option, a prompting
message for a specification list is issued, followed by a read request.
In this EXEC, the reque~t is satisfied with the line stacked with the
&STACK control statement. If the response were not stacked, you would
have to enter the appropriate information from the terminal during the
execution of the EXEC that contained this COPYFILE command line.

In addition to stacking predefined responses to commands and
programs, you can use the console stack to stack CMS commands and EDIT
subcommands, as well as data lines to be read within the EXEC.

The number of lines that you can place in the console stack at any
one time varies according to the amount of storage available in your
virtual machine for stacking. You may want to stack one or two lines at

~ a time, or you may wish to stack many lines. There are several features
I available in EXEC that can helV you manipulate the stack.

Exchanging Data Between Programs through the
Stack

There is a console input buffer (sometimes referred to as the console
stack) and a program stack. Lines typed at the terminal (maximum length
of 130 characters per line) are placed in the console input buffer.
Lines transmitted by programs through the CMS ATTN function are placed
in the program stack (maximum length of 255 characters per line).

When the WAITRD function is called (a~ a result of a RDTERM macro
call, for example), it will look in the most recently created buffer of
the program stack (see BUFFER #2 in Figure 27). As each buffer is
exhausted, RDTERM will look to the next buffer in the program stack
(BUFFER #1). If the program stack is empty, WAITRD will then look in
the console input buffer for an input line. If the console input buffer
is also empty, then a "console read I/O" will be issued to acquire data
from the terminal.

Previously stacked lines read from the program stack will not have
changed since the time they were stored by ATTN (unless uppercase
translation has been requested). Before lines are extracted from the
console input buffer, they are scanned by CP (when typed) for characters
defined by the CP TERMINAL command (or for their default values).
WAITRD will then scan them for X'15' (logical end of line character),
X'OO' (physical end of line character), and for any other character
defined through a CMS 'SET INPUT' command.

The MAKEBUF, DROPBUF, SENTRIES, and DESBUF CMS commands allow you to
create buffers in the program stack, eliminate some or all of the

Section 14. Building CMS EXEC Procedures 315

ATTN ATTN

FI)O LIFO ~I MACR

L
BUFFER #2

BUFFER #1

BUFFER #D

PROGRAM STACK

CONSOLE INPUT BUFFER

TERMINAL

Figure 27. CMS Stacks

program stack buffers, determine the number of lines in the program
stack, and empty both the program stack and the console input buffer.
These commands may also be called from a terminal (as CMS commands),
from EXEC files, or from assembler language programs. A complete
description of these commands can be found in the publication !~/SP CMS
Com~s~~ ~n~ Ma£IQ R~!~~~~·

Not~: Lines read from the terminal or stacked in the console input
buffer can be restacked in the program stack, using the ATTN function,
and executed at a later time. The line length specified in the
parameter list for the ATTN function should be the same length as the
line that was previously read from the terminal or the console input
buffer. A line stacked again by ATTN, using a line length greater than
the line length read from the terminal or the console input buffer, may
result in an error when execution of the itacked line is attempted.

316 IBM VM/SP eMS User's Guide

)
Just as the STIPE control statement has an SBEGTIPE counterpart, the
SSTACK control statement has an SBEGSTACK counterpart. Iou can stack
multiple data lines following an SBEGSTACK statement. Lines stacked in
this way are not scanned by the EXEC processor, and no sUbstitution is
performed on variable symbols. For example, the lines:

SBEGSTACK
••• 1ine of data
••• line of data
•.• 1ine of data
SEND

stack three data lines in the stack. The stacked lines must be followed
by an SEND control statement, which must be entered in the EXEC file
beginning in column 1.

If you have an EXEC with fixed-length records, and you want to stack
data lines longer than 12 characters, you must use the ALL operand of
the SBEGSTACK control statement:

SBEGSTACK ALL
••• line of 103 characters
••. 1ine of 98 characters
••• 1ine of 60 characters
SEND

The ALL operand is not necessary for variable-length EXEC files.

When you are stacking multiple lines in an EXEC, you may choose to
reverse the sequence in which lines are read in from the stack. The
default sequence is FIFO (first-in, first-ou~, but you may specify LIFO
(last-in, first-out) when you enter the SSTACK or SBEGSTACK control
statement. For example, execution of the lines:

SSTACK &TIPE A
&STACK &TIPE B
&STACK LIFO STIPE C
&STACK LIFO STIPE D
&STACK STYPE E

results in the display:

D
C
A
B
E

The EXEC special variable &READFLAG always contains one of two values,
STACK or CONSOLE. When it contains the value STACK, it indicates that
there are lines in the stack. When it contains the value CONSOLE, it

section 14. Building eMS EXEC Procedures 311

indicates that the stack is empty and that the next read request results
in a physical -read to the terminal (consol~.

You can test this value in an EXEC, for example:

&IF &READFLAG EQ STACK &SKIP 2
&TYPE STACK EMPTY
&EXIT
&CONTINUE

You might use a similar test in an EXEC that processes a number of lines
from the stack, and loops through a series of steps until the stack is
empty.

STACKING CMS COMMANDS

Whenever you place a command in the console stack, it remains there
until a read request is presented to the terminal. If the request is the
result of an &READ control statement, then the line is read from the
stack. For example, the lines:

&STACK CP QUERY TIME
&READ

result in the command line being stacked, read in, and then executed.

If there are no read requests in an EXEC file, then any commands that
are stacked are executed after the EXEC has finished and has returned
control to the CMS environment. For example, consider the lines:

TYPE &1 LISTING A
ACCESS 198 A
TYPE &1 LISTING A

If this EXEC is located on your 191 A-disk, then when the ACCESS command
accesses a new A-disk, eMS cannot continue reading the EXEC file and
issues an error message. However, if the EXEC was written as follows:

TYPE &1 LISTING A
&STACK ACCESS 198 A
&STACK TYPE &1 LISTING A

then, after the TYPE command, the next command lines are stacked, the
EXEC finishes executing and returns control to CMS, which reads the next
command lines from the console stack.

When you stack CMS commands with the &STACK control statement in an
EXEC procedure, you cannot place multiple command lines in one statement
separated by the logical line end symbol (for example, print abc
listing#print xyz listing). CP does not translate the logical line end
symbol (#) to a value of x'15' because a line is being read from the
EXEC file on disk and not from the terminal. However, you can place
multiple command lines in one statement if separated by the value x'15' •
...... - ._ -:- __ '- ______ !I _.L:! ~ ~ ___ '-_ .. ___ .:I ..L._ ~ ____ .L. .L.'- __ .4I~. __ ,___ "" .. t:'"

.LU\:::: 8J....lLn :::'UJJ\"UlUwauu VJ. LJJ.L.L \"all JJ~ u:::.~u v .LU:::'~J."" ... u~ A- , ... - Ya...LU~. '\.or.&oJ

does recognize the x'15' character.

If you want to issue the EDIT command from within an EXEC, you might
want to stack EDIT subcommands to be read by the CMS editor. You should
stack these subcommands, either with &STACK statements, or with the
&BEGSTACK statement, just before issuing the EDIT command. For example:

318 IBM VM/SP CMS User's Guide

&BEGSTACK
CASE M
GET SETUP FILE A 120
TOP
LOCATE /XX/
&END
&STACK REPLACE
EDIT &1 DATA (LRECL 120

If this EXEC is named EDEX, and yeu invoke it with:

edex fr01

the EDIT subcommands are stacked in the order they appear in the EXEC.
The EDIT command is invoked to edit the file FR01 DATA, and the EDIT
subcommands are read from the stack and executed. When the stack is
empty, your virtual machine is in the edit environment in input mode,
and the first line you enter replaces the existing line that contains
the character string XX.

Note that all of the EDIT subcommands in the example, except for the
REPLACE subcommand, are stacked within an &BEGSTACK stack, and that the
REPLACE subcommand is stacked with &STACK. If you are creating EXEC
files with fixed-length records, you must use &STACK to stack the INPUT
and REPLACE subcommands. If you use &BEGSTACK, then the INPU1 and
REPLACE subcommands are treated as if they contain text data, and so
insert or replace one line in the file (a line of blanks). This is not
true, however, for variable-length EXEC files.

Similarly, if you want to stack a null line, to change from input
mode tc edit mode in an EXEC, you must use the &STACK statement with no

\ other data on the line (in both fixed- and variable-length EXEC files),
i for example:

&STACK INPUT
&BEGSTACK
••• data line
••• data line
••• data line
&END
&STACK
&STACK FILE
EDIT &1 &2
&EXIT

When this EXEC is invoked with a filename and filetype as arguments, the
INPUT subcommand, data lines, null line, and FILE subcommand are placed
in the stack before the EDIT command is issued. The data lines are
placed in the specified file and the file is written onto disk before
the EXEC returns control to CMS.

STACKING LINES FOR EXEC TO READ

Lines in the console stack can be read by the EXEC interpreter with an
&READ control statement; for ~xample:

Section lq. Building CMS EXEC Procedures 319

-SETUP
&LOOP 3 &NUM = 50
&STACK &NUM &CHAR
&NUM = &NUM + 1
&CHAR = SCONCAT &STRNG SNUM

-READ
&LOOP -FINIS &READFLAG EQ CONSOLE
&READ ARGS

-FINIS

In this EXEC procedure, the statements following the label -SETUP stack
a number of lines. The variables &NUM and &CHAR are substituted before
they are stacked. At the label -READ, the lines are read in from the
stack and processed. The values stacked are read in as the variable
symbols &1 and S2. Control passes out of the loop when the stack is
empty.

CLEARING THE CONSOLE STACK

If you use the console stack in an EXEC procedure, you should bE sure
that it is empty before you begin stacking lines in it. Also, you
should be sure that it is empty before exiting from the EXEC (unless you
have purposely stacked CMS commands for execution).

One way to clear a line from the stack without affecting the
execution of your EXEC is to use the &READ VARS or SREAD ARGS control
statement. You can use SREAD VARS without specifying any variable
symbols so that the line read is read in and effectively ignored. For
example:

&LOOP 1 &READFLAG EQ CONSOLE
&READ ARGS

If these lines occur at the beginning of an EXEC file, they ensure that
any stacked lines are cleared. If the EXEC is named EXEC1 and is
invoked with the line:

exec1#type help memo#type print memo

then the lines TYPE HELP MEMO and TYPE PRINT MEMO are cleared from the
stack and are not executed.

You could use the same technique to clear the stack in case of an
error encountered in your EXEC, so that the stack is cleared before
returning to CMS. You would especially want to do this if you stacked
data lines or EXEC control statements that have no meaning to CMS.

Another way to clear the console stack is with the CMS function
DESBUF. For example:

&IF &READFLAG EQ STACK DESBUF

When you use the DESBUF function to clear the console input stack, the
output stack is also cleared. The output stack contains lines that are
waiting to be displayed or typed at the terminal. Frequently, when an
EXEC is processing, output lines are stacked, and are not displayed

320 IBM VM/SP CMS User's Guide

immediately following the execution of an &TYPE statement. If you want
to display all pending output lines before clearing the console input
stack, you should use the CONWAIT function, as follows:

CONWAIT
&IF &READFLAG EQ STACK DESBUF

The CONWAIT function causes a suspension of program execution until the
console output stack is empty. If there are no lines waiting to be
displayed, CONWAIT has no effect.

Clearing the stack is important when you write edit macros, since all
subcommands issued in an edit macro must be first stacked. See "Section
17. Writing Edit Macros" for additional information on using the console
stack.

File Manipulation with CMS EXECs

You can~ to a limited degree, read and write CMS disk files using EXECs.
You can stack files with a filetype of EXEC in the console stack and
then read them, one record at a time, with &READ control statements. All
data items are truncated to eight characters. Yeu can write a file, one
record at a time, with the &PUNCH control statement, and then you can
read the spool punch file onto disk. Examples of these techniques
follow.

STACKING EXEC FILES

There are twc methods to stack EXEC files in the
illustrated using a CMS EXEC file, as shown in
EXEC:

&LNAME SCONCAT &1 *
LISTFILE &LNAME SCRIPT * (EXEC
EXEC CMS SSTACK
&LOOP -END &READFLAG EQ CONSOLE
SREAD VARS &NAME &TYPE &MOD
&SUFFIX = &SUBSTR &NAME 3 6
&NEWNAM = SCONCAT &2 &SUFFIX
RENAME SNAME &TYPE &MOD &NEWNAM &TYPE &MOD
&IF &RETCODE EQ 0 &SKIP
STYPE FILE &NAME STYPE NOT RENAMED
-END

console stack. One is
the following PREFIX

This EXEC procedure is invoked with two arguments, each two characters
in length, which indicate old and new prefixes for filenames. The EXEC
renames files with a filetype of SCRIPT that have the first prefix,
changing only the prefix in the filename.

The LISTFILE command, invoked with the EXEC option, creates a CMS
EXEC file in the format:

&1 &2 filename SCRIPT mode

When the EXEC is invoked with the line:

EXEC CMS SSTACK

Section 14. Building CMS EXEC Procedures 321

the argument &STACK is substituted for the variable symbol &1 in each
line in the CMS EXEC. The execution of the CMS EXEC effectively stacks,
in the console stack, the complete file identifications of the files
listed:

&STACK filename SCRIPT mode
&STACK filename SCRIPT mode

These stacked lines are read back into the EXEC, one at a time, and the
tokens "filename", "SCRIPT", and "mode" are substituted for the variable
symbols &NAME, &TYPE, and &MOD.

Using the &SUBSTR and &CONCAT built-in functions, the new name for
each file is constructed, and the RENAME command is issued to rename the
files.

For example, if you invoke the EXEC procedure with the line:

prefix ab xy

all SCRIPT files that have filenames beginning with the characters AB
are renamed so that the first two characters of the filename are XY. A
sample execution summary of this EXEC is illustrated under "Debugging
EXEC Procedures" in "Section 16. Refining Your EXEC Procedures."

You can create a data file, containing fixed-length records, using a
filetype of EXEC. To stack these data lines in the console stack, you
can enter them following an &BEGSTACK (or &BEGSTACK ALL) control
statement. For example, the file DATA EXEC is as follows:

&BEGSTACK
HARRY 10/12/48
PATTI 1/18/49
DAVID 5/20/70
KATHY 8/6/43
MARVIN 2/28/50

The file BDAY EXEC contains:

&CONTROL ERROR
EXEC DATA
&IF &READFLAG EQ CONSOLE &GOTO -NO
&READ VARS &NAME &DATE
&IF &NAME NE &1 &SKIP -2
-FOUND
&IF .&1 EQ • &EXIT
&TYPE &1 'S BIRTHDAY IS &DATE
r.nNW~IT

DESBUF
&EXIT
-NO &TYPE &1 NOT IN LIST
&EXIT

When the BDAY EXEC is invoked, it expects an argument that is a first
name. The function of the EXEC is to display the birthday of the
specified person. A sample execution of this EXEC might be:

322 IBM VM/SP CMS User's Guide

)

)

bday kathy
KATHY'S BIRTHDAY IS 8/6/43
R;

BDAY EXEC first executes the DATA EXEC, which stacks names and dates
in the console stack. Then, BDAY EXEC reads one line at a time from the
stack, assigning the variable names &NAME and &DATE to the tokens on
each line. It compares &NAME with the argument read as &1. When it finds
a match, it displays the message indicating the date, and clears the
console stack after waiting for terminal output to finish.

Note that the file DATA EXEC begins with an &BEGSTACK control
statement, but contains no &END statement. The stack is terminated by
the end of the EXEC file. "Writing Data Files" describes a technique
you might use to add new names and birth dates to the DATA EXEC file.

You can build a CMS file in your virtual card punch using the &PUNCH and
&BEGPUNCH control statements. Depending on the spooling characteristics
of your virtual punch, the file that you build may be sent to another
user's card reader, or to your own virtual card reader. When you read
the file with the CMS READCARD command, the spool reader file becomes a
CMS disk file.

The following example illustrates how you might use your card punch
and reader to update a CMS file by adding records to the end of it. The
file being updated is the DATA EXEC, which is the input file for the
BDAY EXEC, shown in the example in "Stacking Data Files." You could
create a separate CMS EXEC to perform the update, but this example shows
how you might modify the BDAY EXEC to perform the addition function
(ellipses indicate the body of the EXEC, which is unchanged):

&CONTROL ERROR
&IF &1 EQ ADD &GOTO -ADDNAME

&EXIT
-ADDNAME
&TYPE ENTER FIRST NAME AND DATE IN FORM MM/DD/YY
&READ VARS &NAME &DATE
&IF .&NAME = • &SKIP 3
&PUNCH &NAME &DATE
&TYPE ENTER NEXT NAME OR NULL LINE:
&SKIP -4
CP SPOOL PUNCH TO *
CP CLOSE PUNCH
READCARD NEW NAMES
COPYFILE NEW NAMES A DATA EXEC A (APPEND
&IF &RETCODE = 0 &SKIP 2
&TYPE ERROR CREATING FILE
&EXIT &RETCODE
ERASE NEW NAMES

When BDAY EXEC is invoked with the keyword ADD, you are prompted to
enter lines to be added to the data file. Each line that you enter is
punched to the card punch. ~hen you enter a null line, indicating that
you have finished entering lines, the CP commands SPOOL and CLOSE direct
the spool file to your card reader and close the punch.

section 14. Building CMS EXEC Procedures 323

The file is read in as the file NEW NAMES, which is appended to the
file DATA EXEC using the COPYFILE command with the APPEND option. The ~
file NEW NAMES is erased and the EXEC terminates processing. ~

When you punch lines in your virtual punch, the lines are not released
as a CP spool file until the punch is closed. Since the EXEC processor
does not close the virtual punch when it terminates processing, you must
issue the CLOSE command to release the file. You can do this in the EXEC
with the command line:

CP CLOSE PUNCH

or from the CMS environment after the EXEC has finished. If you use the
CLOSE command in the EXEC, you must preface it with CP.

The CMS PUNCH command, which you can use in a eMS EXEC to punch an
entire CMS file, closes the punch after punching a file. Therefore, if
you want to create a punch file using a combination of &PUNCH control
statements and PUNCH commands, you must spool your punch using the CaNT
option, so that a close request does not affect the file:

CP SPOOL PUNCH TO * CaNT
&PUNCH FIRST FILE
&PUNCH
PUNCH FILE1 TEST (NOH EADER
&PUNCH SECOND FILE
&PUNCH
PUNCH FILE2 TEST (NOHEADER
CP SPOOL PUNCH CLOSE NOCONT

The preceding example punches title lines introducing the files punched
with the CMS PUNCH command. The null &PUNCH statements punch blank
lines. The PUNCH command is issued with the NOHEADER option, so that a
read control card is not punched.

You can also use an EXEC procedure to punch a job to send to the CMS
batch facility for processing. The batch facility, and an example of
using an EXEC to punch a job to it, are described in "Section 12. Using
the CMS Batch Facility."

All lines punched to the virtual card punch are fixed-length,
AO-character records. When you use the &PUNCH control statement in a
fixed-length EXEC file, EXEC scans only the first 72 columns of the
EXEC.

If yo~ w~n+ +0 p~n~h ~ ~0r~ th~t ~0nt~ins ~0r~ th~n ~i~ht ~h~r~~t~rs~
you must use the &BEGPUNCH control statement, which also, in
fixed-length files, causes EXEC to punch data in columns 1 through 80.

324 IBM VM/SP CMS User's Guide

\ ,

~, ,

Section 15. Using CMS EXECs with CMS
Commands

Whenever you create a CMS EXEC file you are, for all practical purposes.
creatinq a new CMS command. When you enter a command line in the CMS
environment, CMS searches for a CMS EXEC file with the specified
filename before searching for a MODULE file or eMS command. You can
place the names of your EXEC files in a synonym table and assign minimum
truncation values for the synonyms, just as you can for CMS command
names.

While many of your EXEC procedures may be very simple, others may be
very long and complicated, and perform many of the housekeeping
functions performed by CMS commands, such as syntax checking, error
message generation, and so on.

Monitoring CMS Command Execution

Many, or most, of your EXEC procedures may contain sequences of CMS
commands that you want to execute. If your EXEC procedure contains no
EXEC control statements, each command line is displayed and then the
command is executed. If an error occurred, the eMS error message is
displayed, followed by a return code in the format:

+++ R(nnnnn) +++

where nnnnn is the nonzero return code from the eMS command. If the
command is not a valid CMS command, or the command function for SET or
QUERY is invalid and the implicit CP function is in effect. the return
code is a -3:

+++ R(-0003) +++

You may also receive this error return when you use a CP command without
prefacing it with the CP command. If you enter an unknown CP command
following "CP". you receive a return code of 1.

If a command completes successfully. no return code is displayed.

If you do not want to seethe command lines displayed before
execu~ion, nor return codes following execution, you can use the EXEC
control statement:

&CONTROL OFF

Or, if you want to see only the command lines that produced errors, and
the resultant return codes, you can specify:

&CONTROL ERROR

Regardless of these settings of the &CONTROL statement, CMS error
messages are displayed, as long as the value of &READFLAG is RT, and the
terminal is dis Flaying output.

If you issue the LISTFILE, STATE. ERASE, or RENAME commands in an
EXEC procedure, and you do not want to see the error message FILE NOT
FOUND displayed, you can use the statement:

&CONTROL NOMSG

to suppress the display of these particular messages.

Section 15. Using CMS EXECs with CMS Commands 325

You can request that particular timing information be
during an EXEC's execution. If you want to display the time
which each command executes, you can specify:

&CONTROL TIME

displayed
of day at

Then, as each command line is displayed, it is prefaced with the time;
for example:

&CONTBOL CMS TIME
QUERY BLIP

executes as follows:

10:34:16 QUERY BLIP
BLIP = *

If you wish to see, following the execution of each CMS command,
specific CPU timing information, such as the long form of the ready
message, you can use the &TIME control statement. For example:

&TIME ON
QUERY BLIP
QUERY FILEDEF

might execute as:

QUERY BLIP
BLIP = OFF
T=0.01/0.04 10:44:21

QUERY FILEDEF
NO USER DEFINED FILEDEF'S IN EFFECT
T=0.01/0.04 10:45:26

Handling Error Returns from CMS Commands

In many cases, you want to execute a command only if previous commands
were successful. For example, you would not want to execute a PRINT
command to print a file if you had been unable to access the disk on
which the file resided. There are two methods, using EXEC procedures,
that allow you to monitor and control what happens following' the
execution of CMS commands. One method uses the EXEC control statement
&ERBOR to transfer control when an error occurs; the other tests the
special variable &RETCODE upon completion of a eMS command to determine
whether that particular command completed successfully.

USING THE &ERROR CONTROL STATEMENT

When a CMS command is executed within a eMS EXEC, a return code is
p~ssed to thp- EYRe interprP-tPr: ind;c~t;ng whp-thpr or not thp. comm~nd
completed successfully. If the return code is nonzero, EXEC then
activates the &ERROR control statement currently in effect. For
example, if the following statement is included at the beginning of an
EXEC file:

&ERROB &EXIT

then, whenever a CKS command (or user program) completes with a nonzero
return code, the &EXIT statement in the &ERBOR statement is executed,

326 IBM VM/SP CMS User's Guide

I

\

\
;

and the EXEC terminates processing. You might use a similar statement
in your EXECs to ensure that they do not attempt to continue processing
in the event of an error.

An &ERROR control statement can specify any executable statement. It
may transfer control to another portion of the EXEC, or it may be a
single statement that executes before control is returned to the next
statement in the EXEC. For example:

&ERROR &GOTO -EXIT

transfers contrdl to the label -EXIT, in case of any CKS error. The
statement:

&ERROR &TYPE CKS ERROR

results in the display of the message "CMS ERROR" before returning
control to the statement following the command that caused the error.

If you do not have an &ERROR control statement in an EXEC, or if you
specify &ERROR with no operands, EXEC takes no special action when a CKS
command returns with an error return code. Specifying &ERROR with no
operands is the same as specifying:

&ERROR &CONTINUE

Since an &ERROR control statement remains in effect for the remainder
of the EXEC execution, or until another &ERROR control statement is
encountered, you may use &ERROR &CONTINUE to restore default processing.

USING THE &RETCODE SPECIAL VARIABLE

An error return from a CMS command, in addition to calling an &ERROR
control statement, also places the return code value in the EXEC special
variable &RETCODE. Following the execution of any CKS command in an
EXEC procedure, you can test whether or not the command completed
without error. For example:

TYPE ALPHA FILE A
&IF &RETCODE ~= 0 &EXIT
TYPE BETA FILE A
&IF &RETCODE ~= 0 &EXIT

Not~: The value of &RETCODE is modified after the execution of each CKS
command.

The value of &RETCODE is affected by your own programs. If you
execute a program in your EXEC using the LOAD and START (or FETCH and
START) commands, or if you execute a MODULE file, then the &RETCODE
special variable contains whatever value was in general register 15 when
the program exited. If you are nesting EXEC procedures, then &RETCODE
contains the value passed from the &EXIT statement of the nested EXEC.

You can use the value of the return code, as well, to analyze the
extent or the cause of the error and to set up an error analysis routine
accordingly. For example, suppose you want to set up an analysis
routine to identify return codes 1 through 11 and to exit from the EXEC
when the return code is greater than 11. When a return code is
identified, control is passed to a corresponding routine that attempts
to correct the error. You could set up such an analysis routine as
follows:

Section 15. Using CMS EXECs with CKS Commands 321

-ERRANAL
&CNT = 0
&LOOP 2 &CNT EQ 12
&IF &RETCODE EQ &CNT &GOTO -FIX&CNT
&CNT = &CNT + 1

-FIXO &GOTO -ALLOK
-FIX1

&GOTO -ALLOK
-FIX2

&GOTO -ALLOK

-FIX 11

-ALLOK

When the value of the SCNT variable equals the return code value in
&RETCODE, the branch to the corresponding -FIX routine is taken. Each
corrective routine performs different actions, depending on its code,
and finishes at the routine labeled -ALLOK.

You can, in some cases, determine the cause of a CMS command error
and attempt to correct it in your EXEC. To do this, you must know the
return codes issued by VM/SP commands. See VM/SP ~§!~ ~~§§g~S§·and
Cod~§ for a discussion of the return codes for VM/SP commands. In
addition, the error messages and corresponding return codes are listed
under the command descriptions for each CMS command in the !~LSP CMS
£2U.2.!!g sng Ma£~.Q !~!§!:§1!£~.

As an example, all CMS commands that search for files issue a return
code of 28 when a file is not found. If you want to test for a
file-not-found condition in your EXEC, you might use statements similar
to the following:

&CONTROL OFF NOMSG

TYP E HELP MEMO A
&IF &RETCODE = 28 &GOTO -NOFILE

Tailoring eMS Commands for Your Own Use

You can create CMS EXEC procedures that simplify or extend the use of a
particular CMS command. Depending on your applications, you can modify
the CMS command language to suit your needs. You can create EXEC files
that have the same names as CMS commands, and, since CMS locates EXEC
files before MODULE files, the EXEC is found first. For example, the
COPYFILE command, when used to copy CMS disk files, requires six
operands. If you change only the filename when you copy files, you could
create a COpy EXEC as follows:

328 IBM VM/SP CMS User's Guide

&CONTROL OFF
&IF &INDEX ~= 3 &SKIP 2
COPYFILE &1 S2 = S3 S2 =
&EXIT
eOPYFILE &1 S2 &3 &4 S5 &6 &7 &8 &9 &10 S11 &12 &13 S14 &15

If you always invoke the COPYFILE command using the truncation COPY,
EXEC processes the command line for you, and if you have entered the
three arguments, EXEC formats the COPYFILE command for you. If any
other number of arguments is entered, the COPYFILE command is invoked
with all the arguments as entered.

CREATING YOUR OWN DEFAULT FILETYPES

If you use special fi1etypes for particular applications and they are
not among those that the CMS Editor supplies default settings for, but
do require special editor settings, you can create a eMS EXEC to invoke
the eMS Editor. The CMS EXEC can check for particular filetypes, and if
it finds them, stack the appropriate EDIT subcommands. If you name this
EXEC procedure E EXEC, then you can bypass it by using a longer form of
the EDIT command. The fo110win~ is a sample E EXEC:

seONTROL OFF
SIF &INDEX GT 1 &SKIP 2
EDIT &1 SCRIPT
&EXIT
SIF &2 EQ TABLE SGOTO -TABLE
&IF S2 EQ CHART SGOTO -CHART
SIF &2 EQ EXEC SGOTO -EX
SIF S2 EQ SYSIN &GOTO -SYSIN
-NORM EDIT &1 &2 &3 &4 &5 &6
&EXIT
-TABLE SBEGSTACK
IMAGE ON
TABS 1 10 20
CASE M
SEND
EDIT S1 &2 S3 (LRECL 20
&EXIT
-CHART &BEGSTACK
CASE M
IMAGE ON
&END
EDIT &1 &2 &3
&EXIT
-EX
EDIT &1 &2 &3 (LRECL 130
&EXIT
-SYSIN &BEGSTACK
TABS 1 10 16 31 36 41 46 69 72 80
SERIAL ON
TRUNC 71
VERIFY 72
&END
EDIT &1 &2 S3
&EXIT

•
This eMS EXEC defines special characteristics for filetypes CHART,
TABLE, and SYSIN, and defaults an EXEC file to 130-character records.
If only one argument is entered, it is assumed to be the filename of a

Section 15. Using CMS EXECs with CMS Commands 329

SCRIPT file. Since the editor is invoked from within the EXEC, control
returns to EXEC after you use the FItE or QUIT subcommands during the
edit session. You must use the &EXIT control statement so that the EXEC
does not continue processing, and execute the next EDIT command in the
file.

330 IBM VM/SP eMS User's Guide

)
Section 16. Refining Your CMS EXEC Procedures

This section provides supplementary information for writing complex EXEC
procedures. Although the EXEC interpreter resembles, in some aspects, a
high-level programming language, you do not need to be a programmer to
write EXECs. Some of the techniques suggested here, for example, on
annotating and writing error messages, are common programming practices,
which help make programs self-documenting and easier to read and to use.

Annotating CMS EXEC Procedures

Lines in a C"S EXEC file that begin with an asterisk (*) are commentary
and are treated as comments by the EXEC interpreter. You can use *
statements to annotate your EXECs. If you write EXECs frequently, you
may find it convenient to include a standard comment at the beginning of
each EXEC, indicating its function and the date it was written, for
example:

* EXEC TO HELP CONVERT LISTING FILES
* INTO SCRIPT FILES
* J. BEAN 10/18/75

You can also use single asterisks or null lines to provide spacing
between lines in an EXEC file to make examining the file easier.

In an EXEC, you cannot place comments on the same line with an
executable statement. If you want to annotate a particular statement or
group of statements, you must place the ccmments either above or below
the lines you are annotating.

A good practice to use, when writing EXECs, is to set them up to
respond to a ? (question mark) entered as the sole argument. For
example, an EXEC named FSORT might contain:

SCONTROL OFF
SIF SINDEX = 1 SIF S1 = ? SGOTO -TELL

-TELL SBEGTYPE
CORRECT FORM IS ' FSORT USERID <VADDR> '

PRINTS AN ALPHABE.TIC LISTING OF ALL FILES ON THE SPECIFIED
USER'S DISK. IF A VIRTUAL ADDRESS (VADDR) IS NOT
SPECIFIED, THE USER'S 191 IS THE DEFAULT.

SEND

You may also wish
enter an EXEC name
arguments:

to anticipate the situation in which a user might
with no arguments for an EXEC that requires

Section 16. Refining Your C"S EXEC Procedures 331

SIF SINDEX = 0 SGOTO -HELP
SIF &INDEX = 1 &IF &1 = ? &GOTO -TELL

SEXIT
-HELP &BEGTYPE

&END
&EXIT

CORRECT FORM IS ' COpy OLDFN OLDFT NEiFN '
TYPE I COpy ? ' FOR MORE INFO

-TELL &BEGTYPE

&END
&EXIT

CORRECT FORM IS • COpy OLDFN OLDFT NEiFI '
USES COPYFILE COMMAND TO CHANGE ONLY THE FILENAME

This type of annotating is especially useful if you share your disks or
your CMS EXECs with other users.

Error Situations

It is good practice, when writing CMS EXECs, to anticipate error
situations and to provide meaningful error or information messages to
describe the error when it occurs. The following error situations, and
suggestions for handling them, have already been discussed:

• Errors in invoking the EXEC, either
arguments, or with invalid arguments.
14. Building CMS EXEC Procedures.")

with an improper number of
(See "Arguments" in "Section

• Errors in CMS command processing that can be detected with an SERROR
control statement or with the SRETCODE special variable. (See
"Handling Error Returns from CMS Commands" in "Section 15. Using CMS
EXECs With CMS Commands.")

Many different kinds of errors may also occur, in the processing of
your CMS EXEC control statements. EXEC processing errors, such as an
attempt to branch to a nonexistent label or an invalid syntax, are
"unrecoverable" errors. These errors always terminate CMS EXEC
processing and return your virtual machine to the eMS environment or to
the calling EXEC procedure or program. The error messages produced by
EXEC, and the associated return codes, are described in the VM/SP ~stem
Me§§.gg~2 gnd £.Q.Q§.§

WRITING ERROR MESSAGES

One way to make your CMS EXECs more readable, especially if they are
long EXECs, is to group all of your error messages in one place,
probably at the end of the· EXEC file. You may also wish to number your
messaqes and associate the message number with a label number and a
return code. For example:

332 IBM VM/SP CMS User's Guide

)
&IF &CT > 100 &GOTO -ERR100
&IF &CT < 0 &GOTO -ERR200

&IF &RETCODE EQ 28 &GOTO -ERR300

-ERR100
&TYPE COUNT TOO HIGH
&EXIT 100
-ERR200
&TYPE COUNT TOO LOW
&EXIT 200
-ERR300
&TYPE &1 &2 NOT ON DISK 'ct.
&EXIT 300

There is a facility, available in the EXEC processor, which allows you
to write error messages that use the standard VM/SP .message format, with
an identification code and message number, as well as message text.
When you use the &EMSG or &BEGEMSG control statement, the EXEC
interpreter scans the first token and checks to see if the seventh (and
last character) is an I, E, or W, representing information, error, or
warning messages, respectively. If so, then the message is displayed
according to the CP EMSG setting (ON, OFF, CODE, or TEXT). For example,
if you have the statement:

&EMSG ERROR1E BAD ARGUMENT • &1 '

the ERROR1E is considered the code portion of the message and BAD
ARGUMENT is the text. If you have issued the CP command:

cp set emsg text

when this &EMSG statement is executed it may display:

BAD ARGUMENT • PRNIT '

where PRNIT is the argument that is invalid.

When you use &EMSG (or &BEGEMSG, which allows you to display error
messages of unscanned data), the code portion of the message is prefixed
with the characters DMS, when displayed. For example:

&BEGEMSG
ERROR2E INCOMPATIBLE ARGUMENTS
&END

displays when the EMSG setting is ON:

DMSERROR2E INCOMPATIBLE ARGUMENTS

You should use the &BEGEMSG control statement when you want to display
lines that have tokens longer than eight characters; however, no
variable sUbstitution is performed.

Section 16. Refining Your CMS EXEC Procedures 333

Debugging CMS EXEC Procedures

If you have difficulty getting an EXEC procedure to execute properly, or
if you are modifying an existing EXEC and wish to test it, there are a
couple of simple technigues that you can use that may save you time.

One is to place the SCONTROL ALL control statement at the top of your
EXEC file. When SCONTROL ALL is in effect, all the EXEC control
statements are displayed before they execute, as well as the CMS command
lines. One of the advantages of using this method is that the line is
displayed after it is scanned, so that you can see the results of symbol
and variable substitution.

"stacking CMS EXEC
Procedures" described a
qroups of files. If the
execute as follows:

prefix pt ag
SCONTROL ALL

Files" in "Section 14. Building CftS EXEC
PREFIX EXEC, which changes the prefixes of
EXEC had an &CONTROL ALL statement, it might

SLNAME = SCONCAT PT *
LISTFILE PT* SCRIPT * (EXEC
EXEC CMS &STACK
SLOOP -END SREADFLA EQ CONSOLE
LOOP UNTIL: STACK EQ CONS
SREAD VARS SNAME STYPE SMOD
SSUFFIX = &SOBSTR PTA 3 6
SNEWNAM = SCONCAT AG A
RENAME PTA SCRIPT A1 AGA SCRIPT A1
SIF 0 EQ 0 SSKIP
SSKIP
LOOP UNTIL: STACK EQ CONS
SREAD VARS SNAME STYPE SMOD
SSUFFIX = SSOBSTR PTB 3 6
SNEWNAM = SCONCAT AG B
RENAME PTB SCRIPT A1 AGB SCRIPT A1
SIF 0 EQ 0 SSKIP
SSKIP
LOOP UNTIL: CONSOLE EQ CONS
R;

You can see from this execution summary that the files named PTA SCRIPT
and PTB SCRIPT are renamed to AGA SCRIPT and AGB SCRIPT. NoticE that
the SLOOP statement results in a special LOOP UNTIL statement in the
execution summary, which indicates the condition under which thE loop
executes.

USING CMS SUBSET

~hen YOu aLe using the CnS EditoL to c~~at~ v~ modify d ~n~ EXEC
procedure, you can test the EXEC in the CMS subset environment, as long
as the EXEC does not issue any CMS commands that are invalid in CftS
subset.

Before entering CMS subset with the CMS subcommand, you must issue
the SAVE subcommand to write the current version of the EXEC onto disk;
then, in CMS subset, execute the EXEC. For example:

334 IBM Vft/SP CMS User's Guide

edit new exec
NEW FILE:
EDIT:
input
INPUT:
Sa = &1 + &2 + S3
Stype answer is Sa

EDIT:
save
EDIT:
cms
CMS SUBSET
new 34 56 899
ANSWER IS 989
R;
return
EDIT:
quit
R;

If the EXEC does not ex~cute properly, you can return to the edit
environment using the RETURN command, modify the EXEC, reissue the SAVE
and CMS subcommands, and attempt to execute the EXEC again.

SUMMARY OF CMS EXEC INTERPRETER LOGIC

The following information is provided for those who have an interest in
how the CMS EXEC interpreter works. It may help you i~ debugging your
EXEC procedures if you have some idea of how processing is done by EXEC.
When an EXEC file is invoked for execution, the EXEC interpreter
examines each statement and analyzes it, according to the following
sequence:

1. If the first nonblank character of the line is an *, the line is
counted and ignored.

2. Null lines, except as a reponse to an SREAD statement, are also
counted and ignored.

3. The line is scanned, and nonblank character strings are placed in
tokens.

4. All EXEC special variables, and then all user lariables, except for
those that appear as the target of an assignment statement, are
substituted.

6. All blank tokens (resulting from the substitution of undefined
symbols) are discarded.

7. If the first nonblank character is a hyphen (-), indicating a
label, the next token is considered the first token.

8. If the first logical token does not begin with an ampersand (&),
the line is passed to CMS for execution. The return code from CMS
is placed in the special variable SRETCODE.

9. If the first logical token begins with an ampersand (&) EXEC
interprets the statement.

10. If a statement is syntactically invalid and can be made valid by
adding a token of blanks at the end, EXEC adds blanks, for example:

Section 16. Refining;Your CMS EXEC Procedures 335

SBLANK =
STYPE
SLOOP 3 SX NE

All of the above ~re valid EXEC control statements.

11 • EXEC executes the statement. If no error is
passes to the next logical statement. If an
EXEC terminates processing.

encountered, control
error is encountered,

Note: For information on the EXEC 2 interpreter, see VM/~!JI£ 1
lL~!er~.!!.£~ •

336 IBM VM/SP CMS User's Guide

Section 17. Writing eMS Edit Macros

If you have a good knowledge of the CMS EXEC facilities and an
understanding cf the CMS Editor, you may wish to write edit macros. An
edit macro is simply an EXEC file that contains a sequence of EDIT
subcommands. Edit macros should only be invoked from the edit
environment. An edit macro may contain a simple sequence of EDIT
subcommands, or its execution may be dependent on arguments you enter
when you invoke it. This section provides information on creating edit
macros, suggestions on how to manipulate the console stack, and some
examples of macros that you can create and use.

Creating CMS Edit Macro Files

An edit macro must have a filename
a filetype of EXEC. Rules for
substitution are the same as for all
contain:

• EDIT subcommands
• CMS EXEC control statements

beginning with a dollar sign ($) and
file format, scanning and token

other EXEC files. A macro file may

• CMS commands that are valid in CMS subset

When you create an edit macro that accepts arguments, you should be
sure to check the validity· of the arguments, and issue appropriate error
messages. If you are writing an edit macro to expect arguments, you must
keep in mind that the macro command line is scanned, and that any data
items you enter are padded or truncated into eight-character tokens.
Tokens are always translated to uppercase letters.

You should annotate all of your macro files, and provide a response
to a question mark (1) entered as the sole argument (as described under
"Annotating CMS EXEC Procedures" in "Section 16. Refining Your CMS EXEC
Procedures") •

How CMS Edit Macros Work

Since an edit macro is a CMS EXEC filer it is actually executed by the
CMS EXEC interpreter, and not by the CMS Editor. The CMS EXEC
interpreter can only execute EXEC control statements and CMS commands.
The only way to issue an EDIT subcommand from an EXEC file is to stack
the subcommand in the console stackr so that when the editor is invoked,
or receives control, it reads the subccmmand(s) from the console stack
before accepting input lines from the terminal. For example:

&STACK CASE M
&STACK RECFM V
EDIT &1 CHART A1

When the EDIT command is invoked from this EXEC, the CMS Editor reads
the subcommands from the stack and executes them.

To execute these same subcommands from an edit macro file, you must
use the same technique; that iS r you must place the subcommands in the
console stackr for example:

Section 17. WritingCMS Edit Macros 337

&BEGSTACK
CASE M
RECFM V
&IND
&EXIT

If this were an EXEC file named $VARY, you might execute it from the
edit environment as follows:

edit test file
NEW FILE.
EDIT:
$vary

Stacked subcommands are executed only when the CMS EXEC completes its
execution, either by reaching the end of the file, or by processing an
&EXIT statement.

When you stack EDIT subcommands, you can use the &STACK and &BEGST1CK
control statements. If you are stacking a subcommand that uses a
variable expression, you must use the &STACK control statement, rather
than the &BEGSTACK control statement. The following EXEC, named $T,
displays a variable number of lines and then restores the current line
pointer to the position it was in when the EXEC was invoked:

&CONTROL OFF
&IF &INDEX EQ 0 &GOTO -ERR
&CHECK = &DATATYPE &1
&IP &CHECK NE NUM &GOTO -ERR
&STACK TYPE &1
SUP = & 1 - 1
&STACK UP SUP
&EXIT
-ERR &TYPE CORRECT FORM IS < $T N >
&EXIT 1

This edit macro uses the built-in function &DATATYPE to check that a
numeric operand is entered.

CMS commands in an edit macro are executed as they are read by the
CMS EXEC interpreter, just as they would if the EXEC were invoked in the
CMS environment. You could create a $TYPE edit macro, for example, tbat
would allow you to display a file from the edit environment:

&CONTROL OFP
TYPE &1 &2 &3 &4 &5 &6 &7

Or you might create a $STATE EXEC that would verify the existence of
another file:

&CONTROL OFF
STATE &1 &2 &3

III buth uf ~n~~~ ~x~wpl~~, th~ w~~~o iil~ invuk~~ ~n~ ~n~ ~ummand.
Macros like these can eliminate having to enter CMS subset environment
to execute one or two simple CMS commands. You must be careful, though,
not to execute any CMS command that uses the storage occupied by the
editor. Only commands that are valid in CMS subset are valid in an edit
macro.

338 IBM VM/SP CMS User's Guide

THE CONSOLE STACK

When you write an edit macro, you want to be sure that there are no EDIT
subcommands in the stack that could interfere with the execution of the
subcommands stacked by the macro file. Your macro should check whether
there are any lines in the stack, and if there are, it should clear them
from the stack. For example, you might use the lines:

SIP SREADPLAG EQ CONSOLE SSKIP 2
DESBUF
STYPE STACKED LINES CLEARED BY 0

The message "STACKED LINES CLEARED BY macro name" is issued by the edit
macros distributed with the VM/SP system. You may also want to use
this convention in your macros, to alert a user that the console stack
has been cleared.

When an edit macro is invoked and the current line pointer is positioned
at the top of the file or at the end of the file, the editor stacks a
token in the console stack. If the line pointer is at the top of the
file, the token stacked is "TOP"; if the line pointer is at the end of
the file the token stacked is "EOF". If you write an edit macro that
does not check the status of the console stack, and the macro is invoked
from the top or the end of the file, you receive the message:

?EDIT: TOP

or:

?EDIT: EOP

The editor does not recognize these tokens as valid subcommands.

You may want to use these tokens to test whether the EXEC is invoked
from the top or end of the file. If you want to clear these tokens in
case the macro has been invoked from the top or end of the file, you
might use the statement:

&IF &READFLAG EQ STACK &READ VARS

which clears the token from the stack.

If you do not want to clear the console stack when you execute an edit
macro, you can stack all of the subcommands using the LIFO (last-in
first-out) operand of the &STACK and SBEGSTACK control statements. For
example, suppose $FORMAT is the name of the following edit macro:

SBEGSTACK LIPO
TABSET 3 10 71
TRUNC 71
PRESERVE
SEND

Section 17. Writing eMS Edit Macros 339

When this edit macro is executed, the subcommands are placed in the
console stack in front of any existing lines. For example, if this macro
were invoked:

$formatiinput

the subcommands would execute in the following order: PRESERVE, TRUNC,
TABSET, INPUT. If the subcommands were stacked FIFO (first-in
first-out), the default, the INPUT subcommand would be the first to
execute (since it is the first command in the stack) and the remaining
subcommands would be read into the file as input lines.

If a CMS EXEC processing error occurs during the execution of an edit
macro, the editor clears the console stack and issues the "STACKED LINES
CLEARED" message. A CMS EXEC processing error is one that caUSES the
error message DMSEXT072E:

ERROR IN EXEC FILE filename, LINE nnnn - description

These errors cause the CMS EXEC interpreter to terminate processing. Any
stacked subcommands are cleared before the editor regains control, so
that none of the subcommands are executed, and the file remains
unchanged.

You should also ensure that any error handling routines in your edit
macros clear the stack if an error occurs. Otherwise, the editor may
begin reading invalid data lines from the stack and attempt to execute
them as EDIT subcommands.

You should not interrupt the execution of an edit macro by using the
Attention or Enter key, and then entering a command or data line.
Results are unpredictable, and you may inadvertently place unwanted
lines in the stack.

If your edit macro contains a CMS command that is invalid in the CMS
subset environment, you receive a return code of -2.

The maximum number of lines that
varies according to the amount of free
at the time of the stacking request.
editor terminates abnormally.

you can stack in an edit macro
storage that is available to CMS

If you stack too many lines, the

Notes on Using EDIT Subcommands

You can use any EDIT subcommand in a macro file, and there is one
special subcommand whose use only has meaning in a macro: the STACK
subcommand. For the most part, there is not any difference between
executing an EDIT subcommand from the edit environment, or from an EXEC
edit ~~crc_ You de ha~e to re~e~ber, hc~e~er, that if yc~ ~a~t a
variable symbol on a subcommand line, you must stack that subcommand
using the &STACK control statement rather than following an &BEGSTACK
control statement.

Listed below are some notes on using various EDIT subcommands in your
macro files. You may find these notes useful when you design your own
macros.

340 IBM VM/SP CMS User's Guide

PRE~]~!~, VERII!, !!~ ~ESTQil: Often, you may want to create an edit
macro that alters the characteristics of a file (format, tab settings,
and so on). To ensure that the original characteristics are retained
when the macro has finished executing, you can stack the PRESERVE
subcommand as the first subcommand in the stack, and the RESTORE
subcommand as the last subcommand in the stack:

&BEGSTACK
PRESERVE
CASE M
I A lowercase line
RESTORE
SEND

The PRESERVE and RESTORE subcommands save and reinitialize the settings
for the CASE, FMODE, FNAME, IMAGE, LINEMODE, LONG, RECFM, SERIAL, SHORT,
TABSET, TRUNC, VERIFY, and ZONE subcommands.

In an edit macro that issues many subcommands that display lines in
response to CHANGE or LOCATE subcommands, you may want to turn the
verification setting to OFF to suppress displays during the execution of
the edit macro:

SBEGSTACK
PRESERVE
VERIFY OFF

RESTORE
SEND

You would particularly want to turn verification off for a macro that
executes in a loop or that issues a global request. If you want a line
or series of lines displayed, you can use the TYPE subcommand.

If you have verification set off in an edit macro, then when you
execute it you may not receive any indication that the edit macro
completed execution. The keyboard unlocks to accept your next EDIT
subcommand from the terminal. To indicate that the macro is finished,
you can stack, as the last subcommand in the procedure, a TYPE
subcommand, to display the current line. Or, if you write an edit macro
that terminates when an end-of-file condition occurs the EOF: message
issued by the editor may indicate the completion of the macro.

INg~!, REP1!£]: To change from edit mode to input mode in an edit macro,
you can use the INPUT and REPLACE subcommands. In a fixed-length EXEC
file, you must stack these subcommands using the &STACK control
statement:

SSTACK INPUT

-- or --

&STACK REPLACE

If you use either of these subcommands following an SBEGSTACK control
statement, the subcommand line is padded with blanks to the line length
and the result is a line of blanks inserted into the file.

In a variable-length EXEC file, lines are not padded with blanks, so
the INPUT and REPLACE subcommands with no data line execute the same
following an &BEGSTACK control statement as they do when stacked with
the SSTACK control statement.

Section 17. Writing eMS Edit Macros 341

Going FrQ! !n~Y! ~2de!2 !gi! ~ode: To stack a null line in an edit
macro, to .cause the editor to leave input mode, you must use the &STACK
control statement with no other tokens, as follows:

&STACK

CHA!~j, ~~~1!2' LO~AT~: If you want to use the CHANGE, DSTRING, or
LOCATE subcommands in an EXEC, you must take into account that when you
stack any of these subcommands using the &STACK control statement, all
of the character strings on the line are truncated or padded to eight
characters. Also, if you want to use a variable value for a character
string, you are limited to eight characters, all uppercase.

For example,
delete the line
var iable symbol:

if a macro is used to locate a character string and
on which it appears, the LOCATE subcommand has a

&STACK LOCATE /&1
&STACK DEL

IMA~~, IAB~]!, Q!1~1Al: The TABSET and OVERLAY subcommands allow you to
set margins and column stops for records in a file and to overlay
character strings in particular positions. For example, the following
macro places a vertical bar in columns 1, 15, 40, and 60 for all records
in the file from the current line to the end of the file:

&BEGSTACK
PRESERVE
IMAGE ON
TABSET 1 15 40 60
REPEAT *
o 1-)1-)1-)1
RESTORE
&END

In the
(X' 05') .

above example, the n_)n symbol represents a tab character
To create this EXEC, you can either issue the EDIT subcommand:

image off

and use the Tab key (or equivalent) on your terminal when you enter the
line, or you can enter some other character and use the ALTER subcommand
to alter that character to a X'05'.

If you want to overlay only one character string in a particular
position in a file, you can use the TABSET subcommand to set that column
position as the left margin, and then use the OVERLAY subcommand, as
follows:

&CONTROL OFF
&BEGSTACK
PRESERVE
VERIFY OFF
TRUNC *
TABS 72
&END
&STACK REPEAT &1
&BEGSTACK
OVERLAY C
RESTORE
&END

342 IBM VM/SP CMS User's Guide

If you name this file $CONT EXEC, and if you invoke it with the line:

$cont 3

then the OVERLAY subcommand is executed on three successive lines, to
place the continuation character "C" in column 72.

THE STACK SUBCOMMAND

The STACK subcommand allows you to stack up to 25 lines from a file in
the console stack. The lines are not deleted from the file, but the line
pointer is moved to point to the last line stacked.

You can also use the STACK subcommand to stack EDIT subcommands. You
might do this if there were subcommands that you wanted to place in the
stack to execute after all the subcommands stacked by the EXEC had
executed.

These techniques are used in the two edit macros that are distributed
with the VM/SP system: $MOVE and $DUP. If you want to examine these
files for examples of how to use the STACK subcommand, you can display
the files by entering, from the CMS environment:

type $move exec *
type $dup exec *

An additional use of the STACK subcommand is shown in "An Annotated
Edit Macro."

Section 17. Writing C~S Edit Macros 343

An Annotated Edit Macro

The edit macro,"shown below, $DOUBLE, can be used to double space a C~S
file. Regardless of where the current line pointer is, a blank line is
inserted in the file following every existing line. The statements in
the edit macro are separated into groups; the number to the left of a
statement or group of statements indicates an explanatory note. The
numbers are not part of the EXEC file.

SCONTROL OFF

2 SIF SINDEX = SIF S1 = 1 SGOTO -TELL

3 SIF SINDEX = SIF S1 = TWO SGOTO -LOOP

4 SIP SINDEX NE o SGOTO -TELL

5 SIP SREADFLAG EQ STACK SREAD VARS SGARB

6 SSTACK
SSTACK PRESERVE
SSTACK VERIFY OFF

7 SSTACK BOTTOM
SSTACK I XXXXXXXX
SSTACK TOP

Notes:
-1---The SCONTROL statement suppresses the display of C~S commands, in

this case, the DESBUF command.
_ 2 The first SIF checks that there is only one operand passed in the

$DOUBLE command. The second SIP checks whether $DOUBLE has been
invoked with a question mark (1). If both SIPs are true, control
is passed to the statement at the label -TELL. STYPE control
statements at -TELL explains what the macro does.

3 The second SIP statement checks whether $DOUELE has been invoked
with the argument TWO, which indicates that the macro has executed
itself, so the subcommands that initialize the file are stacked
only once.

4 There are three ways to properly invoke this edit macro: with a 1,
with the argument TWO, or with no arguments. The third SIF
statement checks for the (no arguments) condition; if the macro is
invoked any other way, control is passed to the label -TELL, which
explains the macro usage.

5 The SREADFLAG special variable is checked. If $DOUBLE is executed
at the top or at the end of the file, the token TOP or EOP is in
the stack, and should be read out.

6 A null line is placed in the console stack fer loop control (see
Note 9.) The PRESERVE and VERIFY subcommands are stacked so that
the editor does not display each line in the file as it executes
the stacked subcommands.

7 The ~UTTU~, ~NPUT, and TOP subcommands initialize the file by
placing a marker at the bottom of the file, and then positioning
the current line pointer at the top of the file.

344 IBM VM/SP CMS User's Guide

\ ,
8

9

10

11

12

13

-LOOP
&BEGSTACK
NEXT
STACK
INPUT
&END

&READ ARGS
&IF .&1 = • &SKIP
&IF &1 EQ XIXIXXXX &SKIP 2

-ENDLOOP &STACK $DOUBLE TWO

&EIIT

DESBUF
&BEGSTACK
UP 2
DEL 3
TYPE
RESTORE
&END

&EXIT

-TELL
&IF &READFLAG EQ STACK &READ VARS
&BEGTYPE
CORRECT FORM IS: $DOUBLE

THIS EXEC DOUBLE SPACES A FILE BY INSERTING
A BLANK LINE FOLLOWING EVERY LINE IN THE FILE
EXCEPT THE LAST.
&END

8 The NEXT, STACK, and INPUT subcommands are going to be repeated for
each line in the file. The INPUT subcommand with no data line
stacks a null line. Note that in order for $DOUBLE to execute this
subcommand properly, $DOUBLE EXEC must have fixed-length records.
Each line is stacked, with the STACK subcommand; this stacked line
is checked in the read loop (Note 9). When the stacked line is
equal to the marker, XIIIXXXI, it indicates that the end of the
file has bEen reached.

q These lines check for an end of file, which occurs when the line
containing the marker is read. The first time this loop is
executed, the stack contains the null line (statement 6), so the
check for the marker is skipped.

10 The last subcommand stacked is $DOUBLE TWO, which re-invokes
$DOUBLE, but causes it to skip the first sequence of subcommands.

11 The &EXIT statement causes an exit from $DOUBLE, so that all the
EDIT subcommand stacked thus far are executed.

12 When the marker is read in, the EXEC clears the stack, moves the
current line pointer to point to the null line added above the
marker, and deletes that line, the marker, and the null line that
was inserted following the marker. The RESTORE subcommand restores
editor settings.

13 This edit macro is self-documenting. If $DOUBLE is invoked with a
question mark, or invoked with an argument, information regarding
its proper use is displayed.

Section 11. Writing eMS ~dit Macros 345

User-Written Edit Macros

You can create the edit macros shown below, for your own use in CMS.
You may want to refer to them as examples when you are learning to write
your own macros. The macros have not been formally tested by IBM; they
are presented for your convenience only.

$MACROS

The $MACROS edit macro verifies the existence of and describes the usage
of edit macros. If you enter:

$macros

it lists the filenames of all the edit macros on Jour accessed disks.
If you enter:

$macros namel name2

it displays, for each valid
usage. (This macro assumes
respond to a ? request.)
instruction is:

.-

macro name entered, the macro format and
that all macros have been designed to
The format of the $MACROS edit macro

, $MACROS [filename1 [filename2 [filenamen]]] L-____ _

filename is the filename(s) of macro files whose usage is to be
displayed. If filename is omitted, the filenames of all
available macro files are listed.

To create $MACROS, enter:

edit $macros exec

and in input mode, enter the following:

346 IBM VM/SP CMS User's Guide

$MARK

&CONTROL OFF
&IF &INDEX EQ 1 &IF &1 EQ ? &GOTO -TELL
&IF &INDEX GT 0 &GOTO -PARTIC

* &BEGTYPE ALL
EXEC FILES STARTING WITH A DOLLAR-SIGN ARE AS FOLLOWS.
FOR INFORMATION ON ONE OR MORE OF THEM, TYPE:
$MACROS FILENAME1 (FILENAME2)
&END
LISTF $* EXEC * (NOHEADER FNAME)
&EXIT

* -PARTIC &TRIP = 0
&INDEX1 = 0

* &LOOP -ENDLOOP &INDEX
&INDEXl = &INDEXl + 1
&SUB = &SUBSTR &&INDEX1 1 1
&IF &SUB EQ $ &GOTO -STATIT

&TYPE &&INDEX1 IS INVALID
&TRIP = 1
&GOTO -ENDLOOP
-STATIT STATE &&INDEX1 EXEC *
&IF &RETCODE EQ 0 &GOTO -CALLIT
&TYPE &&INDEX1 NOT FOUND
&TRIP = 1
&GOTO - ENDLOOP
-CALLIT EXEC &&INDEXl ?
-ENDLOOP

* &EXIT &TRIP

* -TELL &BEGTYPE
'$MACROS' HANDLES THE '$MACROS' REQUEST.
TYPE '$MACROS' ALONE FOR MORE INFORMATION.
&END
&EXIT

The $MARK edit macro inserts from one to six characters, starting with
the current line and in the column specified, for a specified number of
records. If there is data already in the columns specified, it is
overlayed. If you enter:

$mark

the macro places an asterisk (*) in column 72 of the current line. If
you enter:

$mark 10 30 abc

the macro places the string ABC beginning in column 30 in each of ten
records, beginning with the current record. The format of the $MARK
edit macro instruction is:

,.---, r r r ",
t $MARK , n I col I char III
I I 1 I 11 I * III -
I L L L .J.J.J

L--

Section 17. Writing eMS Edit Macros 347

n indicates the number of consecutive lines, starting with the
record currently being pointed to, that will be marked. If n is
not specified, 1 is assumed, and the other default values are
also assumed.

col indicates the starting column in each record where the character
string is to be inserted. The default is column 72.

char indicates from one to six characters to be inserted in each
record. The default is an asterisk (*).

To create SMARK~ enter:

edit Smark exec

and in input mode, enter the following:

&CONTROL OFF
&IF &INDEX EQ 1 &IF &1 EQ ? &GOTO -TELL
&IF &INDEX GT 3 &GOTO -BADPARM
&INDEX 1 = 1
&IF &INDEX GT 0 &INDEX1 = &1

·&IF &INDEX1 LT 0 &GOTO -BADPARM
&INDEX2 = 72
&IF &INDEX GT 1 &INDEX2 = &2
&IF &INDEX2 LT 0 &GOTO -BADPARM
&IF &INDEX2 GT 133 &GOTO -BADPARM
&CHAR = *
&IF &INDEX EQ 3 &CHAR = &3
&LEN3 = &LENGTH &CHAR
&IF &LEN3 GT 6 &GOTO -BADPARM
&STACK LIFO RESTORE
&STACK LIFO OVERLAY &CHAR
&STACK LIFO REPEAT &INDEX1
&STACK LIFO TABS &INDEX2
&BEGSTACK LIFO
IMAGE ON
TRUNC *
VERIFY OFF
LONG
PRESERVE
&END
&EXIT

* -BADPARM &BEGTYPE
INVALID $MARK OPERANDS
&END
&EXIT

* -TELL &BEGTYPE
CORRECT FORM IS: $MARK <N <COL <CHAR»>
PUTS A 1-6 CHARACTER STRING IN COLUMN 'COL' OF 'N' LINES, STARTING
WITH THE CURRENT LINE. THE NEW CURRENT LINE IS THE LAST LINE
lI! !RKED.
&END
&EXIT

D!F!tULTS ~RE: 1.1-1. f"nT-""'l.
.... '. "'",.,., -r&'ol'

348 IBM VM/SP CMS User's Guide

$POINT

The $POINT edit macro positions the current line pointer at the
specified line number. The line numbers must be in columns 73 through 80
and padded with zeros. For example, if you enter:

$point 800

the current line pointer is positioned at the line that has the serial
number 00000800 in columns 73 through 80. The format of the $POINT
macro instruction is:

r
,$POINT key
I

key is a one- to eight-character line number. If the specified key
is less than eight characters long, it is padded with leading
zeros.

To create $POINT, enter:

edit $point exec

and in input mode, enter the following:

&CONTROL OFF
&IF &INDEX EQ 0 &GOTO -TELL
&IF &INDEX EQ 1 &IF &1 EQ ? &GOTO -TELL
&IF &INDEX GT 1 &GOTO -BADPARM
&KEYL = &LENGTH &1
&INDEX1 = 8 - &KEYL
&Z = &SUBSTR 00000000 1 &INDEX1
&1 = &CONCAT &Z &1
&STACK LIFO RESTORE
&STACK LIFO FIND &1
&BEGSTACK LIFO
TOP
TABS 73
IMAGE ON
LONG
PRESERVE
&END
&EXIT

* -EADPARM &BEGTYPE ALL
INVALID $PCINT OPERANDS
&END
&EXIT
*
-TELL &BEGTYPE ALL
CORRECT FORM IS: $POINT KEY
IF 'KEY' CONTAINS LESS THAN 8 CHARACTERS, IT IS PADDED WITH LEADING
ZEROS. THE FILE IS THEN SEARCHED FROM THE TOP FOR IKEY' IN COLUMNS
73-80.
&END
&EXIT

Section 17. Writing eMS Edit Macros 349

$COL

The $COL edit macro inserts, after the current record in the file, a
line containing column numbers (that is, 1, 6, 11, ••• , 76). The format
of the $COL macro instruction is:

,.--
I SCOL
L--

No operands are used with SCOL. If any arguments are entered, the macro
usage is explained.

To create SCOL, enter:

edit Scol exec

and in input mode, enter the following:

SCONTROL OFF
SIF SINDEX NE 0 SGOTO -TELL
&STACK LIFO RESTORE
&STACK LIFO
&BEGSTACK LIFO ALL
1 6 11 16 21 26 31 36 41 46 51 56 61 66
&END
&STACK LIFO INPUT
&BEGSTACK LIFO
TRUNC *
VERIFY OFF
LONG
PRESERVE
&END
&EXIT

* -TELL &BEGTYPE
CORRECT FORM IS: SCOL
INSERTS A LINE INTO THE FILE SHOWING COLUMN NUMBERS.
&END
&EXIT

350 IBM VM/SP CMS User's Guide

71 76

Part 4. The HELP Facility

The CMS HELP facility provides an on-line display of documentation
for CP and CMS messages and commands, EXEC and EXEC 2 statements, and
EDIT, XEDIT, and DEBUG subcommands. (The V"/SP System Product Editor
is invoked by the CMS XEDIT command.)

"Sect ion 18.
detail.

Using the HELP Facility" describes the HELP Facility in

"Section 19. How the HELP Facility Works" describes the workings of the
HELP Facility.

"Section 20. Tailoring the HELP Facility" describes ways in which you
can tailor the HELP facility to your needs.

"Section 21. HELP File Naming Conventions" describes the naming
conventions for HELP facility files.

"Section 22. Creating HELP Files" describes the techniques that the
HELP facility provides for creating user HELP description files.

Part 4. The HELP Facility 351

352 IBM VM/SP eMS User's Guide

,.
\

,i

Section 18. Using the HELP Facility

The HELP facility uses the System Product Editor to display HELP files.
The HELP facility is designed for use by 3270-type video terminals in
full-screen mode. It can also be used by line-mode terminals.

!Q1§: In some installations, lowercase characters are reserved for
display of special alphabets. In such installations, HELP files should
be displayed in uppercase representation only. For details, see the
Y~L~~ Rlanning ~ng ~I2!~ ~§n~~~!!2n ~uide.

The documentation presented by the HELP facility is the same as given
in the VM/SP publications. HELP displays the message text, explanation,
system action and user action for messages. For commands, HELP will
display the description, format, and parameters" or optionally any of
these. HELP displays the format and description for EXEC statement.

HELP allows you to issue CP or CMS command directly from the
displayed HELP file. Thus, you may issue a command on the command line
while viewing the HELP file for that command. The specified command
will remain in the command line until you press Enter, even if you
scroll the screen. This feature assists you in remembering what you
must specify and how you must specify it.

The HELP facility uses format words similar to those used by the IBM
text processor SCRIPT/VS, to build and display files and menus. You
must use these format words if you build or alter HELP files. The HELP
format words are described in the section "HELP File Creation" which
follows:

SCRIPT/VS would help you if you wanted to print formatted copies of
HELP files and menus. See the section "Printing HELP Files" for
information on printing methods.

The HELP facility consists of eight components:

1 • CP Commands

2. CP and CMS Messages

3. CP and CMS Messages

4. EDIT Subcommands

5. XEDIT Subcommands

6. DEBUG Subcommands

7 • EXEC Statements

8. EXEC 2 Statements

Each of these components (except CP and CMS messages) has a menu that
lists all the HELP files available for that component. You may call a
HELP file directly or you may call a menu and then select the HELP file
from the menu.

If you wish to take advantage of the flexibility of the HELP Facility
to tailor the HELP files to fit your own needs, you should also read
"Section 19. How the HELP Facility Works" and "Section 20. Tailoring
the HELP Facility".

Section 18. Using the HELP Facility 353

Issuing the HELP Command

To use the HELP facility, you issue the CMS HELP command. The format of
the HELP command is:

r--
I
I
, Help
I
I ,
L-

HELP

Menu

message

component

HELP
11~.n.Y
message
component MENU

{
COMPONENT} {name {(option [)] }} {
£~~

specify HELP HELP if you want information about using the
CMS HELP facility. The systems will display the HELP file
for the CMS HELP command. This explains how to call HELP
menus or files.

This is the default parameter. If you specify HELP or HELP
MENU, the system will display a list of the component menus
available. You may then display any of these menus by
specifying

HELP component MENU

and then display the HELP file for any command listed
therein directly from the MENU display.

HQ1~: If you want further information about how to use the
HELP facility, specify HELP HELP.

The 7-character message id you issue to display the HELP
file for a message. For example, specify HELP DMS003E to
display the HELP file for CMS message DMS003E or specify
HELP DMK006E to display the HELP file for CP message
DMK006E. Note that you issue the 7-character message id,
not the lO-character id that also identifies the issuing
module.

The name of the component you want information about. The
help facility has the following components:

r
, Component Description of Contents
, Name ,
1--------1----
, CMS ,Conversational Monitor System commands
I CP ,Control Program commands
,DEBUG ,CMS DEBUG subcommands
, EDIT ,CMS EDIT text processor subcommands
I EXEC ,CMS EXEC statements
I EXEC2 I EXEC2 statements
,XEDIT I XEDIT subcommands
'--

354 IBM VM/SP CMS User's Guide

name

option

The default component for commands is CMS; if you want to
display a HELP file for a CMS command, you need only specify
HELP name. There is no default component for MENUs; if you
want to display the menu of CMS commands, you must issue
HELP CMS MENU.

The name of the command or statement whose HELP file you
want displayed. This name is ana1agous to a CMS file name.
There are commands whose name is a special character. Since
the characters themselves are illegal as CMS filenames, the
HELP facility recognizes special-character filenames and
translates them to appropriate CMS file names. They are;

? - translates to file name QUESMARK
= - translates to file name EQUAL
/ - translates to file name SLASH

" - translates to file name DBLQUATE
& - translates to file name AMPRSAND

* - translates to file name ASTERISK
- translates to file name PERIOD

is valid only for CMS and CP commands and subcommands. You
may specify DESC, FORM, PARM, or ALL. ALL is the default.
DESC displays the file starting with the description, FORM
displays the file starting with the format specification,
PARM displays the file starting with the paramet~r
description, while ALL displays the file starting at the
beginning.

!Q1~: with each of these options, the entire file is
available for display. The option controls what part of the
file is shown on your screen when the file is first
displayed. You may then scroll the display backwards or
forward as you wish to view the rest of the file.

The following are examples of HELP calls issued as eMS commands.
Remember that you may also call HELP files directly from menus or from
the XEDIT command.. To request a HELP file for CP message DMK006I, you
issue:

HELP DMK0061

To request a menu of CP commands, you issue:

HELP CP MENU

To request a HELP file for the XEDIT LOCATE subcommand, you issue:

HELP XEDIT LOCATE

To 'request display of the HELP file for the CMS TAPE command beginning
with the description part, you issue:

HELP CMS TAPE (DESC or HELP TAPE (DESC

section 18. Using the HELP Facility 355

Menus

Menus are alphabetical lists of all HELP files for a· component. On
terminals having both upper and lower case capability, menus show the
minimum abbreviation of a file name you can issue in upper case
ch~racters with the remainder of the name in lower case characters (for
example, ACcess}. You can get a list of all the menus available to you
by issuing:

HELP or HELP MENU

You get a menu by issuing:

HELP component MENU.

see Figure 28 for an example of a displayed menu.

You can request display of a particular HELP file directly from
a menu by positioning the cursor at any part of the name and
pressing the PFl key. After the HELP file is displayed, you may return
the menu by pressing PFl again.

You can position the cursor at the file name you want by using the cursor
keys on your terminal, or by using the TAB key (PF4} provided by HELP
(type the name wanted and press PF5). When the cursor
is positioned at the file name you want, press the PFl key to
display the HELP file for that name.

If a name in a displayed menu file is preceded by an asterisk (*), this
indicates that the named file is itself a menu file.

line 1
line 2
line 3

line X
line y

r--, =======> CMS MENU <======> HELP INFORMATION <=======
===>-
A file may be selected for viewing by placing the curser under any
character of the file name wanted and pressing the PF 1 key. A MENU
file is indicated when a name is preceded by an asterisk (*).

*DEBUG
*Edit
*EXec
*EXEC2
*Xedit

ACcess
AMserv
Assemble
ASSGN
CMSBATCH
COMpare
COPYfile
CP

DDR
DEBUG
DISK
DLBL
DOSLIB
DOSLKED
DSERV
Edit
ERASE
ESERV
EXec
EXEC2
FF.'T'~h

FILedef
FORMAT
GENDIRT
Genmod
GLobal
HB
Help
HO
HT
HX
INclude
lAbeldef
!.!S'!'DS

Listfile
LISTIe
LOAD
LOADMod
MACLib
MOtmap
MOVEfile
CPTION
PRint
PSFBV
PUnch
Ouery
P.!~!)c:!=a.

RELease
Rename
RO
RSFRV
RT
RUN
SET
SO
SORT
SSERV
START
STATE
r-'tT,..~ ___ _
o.,J.""'''-40.Q,,-,'I;'

SYNonym
TAPE
TAPEMAC
TAPPDS
TXTlil:
Type
UpdatE
Xedit

PF1=HELP PF2=TOP PF3=QUIT PF7=UP PF8=DOWN PF9=PF Keys
PF4=TAB PF5=LOCATE PF6=PREV CMD PF10=UP1/2 PF11=DOWN 1/2 PF12=CANCFl L- ___ ~

Figure 28. CMS Menu

356 IBM VM/SP CMS User~~ Guide

\ ,
The System Product Editor

The System Product Editor is a full-screen CMS text editor. The HELP
facility uses this editor to display HELP files. Many of the features
of XEDIT subcommand are available for use on the displayed files. Two
of the available features are:

Locate - Locate a specified character string in the file

Scrolling - Move the display up or down

See the publication !~L~R ~Y§1~ID ~~ody£! ~gi1~ Comm~nd ~ng ~~~Q
]~!~~~n~~ for complete explanations of these features.

Not all features of System Product Editor are available for use on
the displayed help files. The excluded features are: ADD, COMMAND,
CURSOR, FILE, INPUT, MACRO, MODIFY, MSG, READ, REPLACE, SAVE, SET, SOS,
AND STACK. These are excluded to prevent unnecessary copying of HELP
files and to avoid any inadvertent changes to the help files.

While these features will not work on files displayed by the HELP
facility, all the System Product Editor features are available if you
wish to use the XEDIT subcommand to edit the files (calling file by
XEDIT filename filetype, not through HELP) •

When you issue an XEDIT subcommand to reposition the display of the
file on the screen, HELP ensures that a full screen of data is displayed
(if there is one). This is done to eliminate blank, or nearly blank,
screens.

Printing HELP Files

When displaying HELP files, you can get a printed copy of any screen by
pressing the PF4 key while the screen is displayed. CMS sends a copy of
the displayed screen to the currently spooled printer. This is true for
all HELP files, except menus.

Remember that all HELP files are CMS files and, as such, can be
printed. If you want to print the files formatted, that is, looking as
they do when displayed on your screen, you need SCRIPT/VS. If you have
this product, you can change the filetype of any file to script and then
print it like any other script file. Without SCRIPT/VS you can only
print the HELP files unformatted.

NQ1~: Some special characters used in the HELP files may vary when
printed, depending upon the printer used, and the printed output will be
continuous with no page breaks.

Section 18. Using the HELP Facility 357

Using the PF Keys

The PF keys have the following meanings when using the HELP facility:

PFl - HELP - is used to access HELP files from a menu after the cursor
is positioned at the name of the desired file.

KENU - is used to return to a menu from a displayed HELP file.
(See Figure 29.)

PF2 - TOP - moves the display to the top (front) of the HELP file.

PF3 - QUIT - returns to the previous file displayed. (See Figure 29.)

PF4 - TAB - is used to tab through a menu. Pressing PF4 while a menu
is displayed causes the cursor to move to the first
character of the next file name.

PRINT - is used with HELP files other than menus. PF4 gives a
hardcopy capability. pressing PF4 while the HELP file is
displayed causes a copy of the current screen to be sent
to the currently spooled printer.

PF5 - LOCATE - is used with the XEDIT subcommand LOCATE on HELP files.
You enter th~ string to be searched for on the command
line. Then press PF5 to tell HELP to LOCATE the first
occurrence of the string, starting with the current
line. If you press PF5 again, HELP will LOCATE the next
occurrence of the string, and so on. HELP highlights
the line located.

For detailed information about how to use the LOCATE
subcommand, see the description in the publication,
VML..§g ~yst~.!!! .f~.Q,gy£! ~dito~ Com.!!!~nd g!lg Ma£~Q Re!~~.!!~.

PF6 - PREV.CMD. - retrieves the last user command issued from the
command input area.

PF7 - UP - moves the display towards the top of file one screen. If
your screen is 24 lines, the display is moved up 20 lines.

PF8 - NEXT - moves the display towards the bottom of file one screen If
your screen is 24 lines, the display, is moved down 20
lines.

PF9 - PF Key - displays a file containing
meanings for displayed files.
displayed files.

explana tion
of PF key

of PF key
meanings for

PF10 - UP1/2 - moves the display towards the top of file one-half a
screen. If your screen is 24 lines, the display is
moved up 10 lines.

P~11 - NEXT1/2 - ~0~es the display tc~a~ds the
a screen. If your screen is
moved down 10 lines.

24 lines, the display is

PF12 - CANCEL - exits from displayed HELP file. PF12 will quit all
HELP files currently in storage. For example, if you
called a menu, then called a HELP file from that menu,
PF12 will quit both the file and the menu and return
control to the originating environment (See Figure 29).

358 IBM VM/SP CMS User's Guide

r---,
r -----------,
I YOUR , Step 1: XEDIT a file. Then you
I FILE , want HELP for XEDIT subcommands.
L -----------.J

r-----------,
I XEDIT ,
I Menu I
L-----------.J

r ------ -----,
I SET I
I Menu I
L ---- -- -- ---.J

r-----------,
I 1st sub- I
I command I
L-----------.J

r-----------,
, 2nd sub- I
, command ,
L -----------.J

Step 2: Specify 'HELP XEDIT MENU'
to get the XEDIT !tenu displayed.

Step 3: Select the *SET file from
the XEDIT menu and the SET !tenu is displayed.

Step q: Select a subcommand file from
the SET Menu and the file is displayed.

step 5: you specify 'HELP XEDIT name' to
display the file of another subcommand.

Assume you have followed the sequence given above and the
HELP file for the 2nd subcommand is being displayed.

If you were to press:

PFl - you would return to the last !tenu file displayed
(in this case step 3).

PF3 - you would return to the previous file displayed
(in this case step 4).

PF12 - you would quit all HELP files called and return
to your pre-HELP location (in this case step 1).

L---.J
Figure 29. Example of Using PF1, PF3, and PF12.

Section 18. Using the HELP Facility 359

360 IB~ V!/sp eMS User's Guide

"".

)I

Section 19. How the HELP Facility Works

The filename of a HELP file is the name
message, or statement. The HELP facility
identify files as HELP files.

HELP Facility Filetypes

of th~ command, subcommand,
uses reserved fi1etypes to

The fi1etype of the HELP file is HELPxxxx where xxxx is the name of the
component the file belongs to. If the component name is shorter than 4
characters, the fi1etype is shortened (for example, HELPCP is the
fi1etype for CP commands). If the component name is longer than 4
characters, only the first 4 characters are used (for example, HELPDEBU
is the fil~type for DEBUG subcommand~.

The only exception to the above rule is for EXEC 2 HELP files. Since
EXEC and EXEC 2 have the same first four characters, CMS examines the
fifth character to determine .if the request is for EXEC or EXEC 2.
Similarly, since filetypes are limited to 8 characters, CMS assigns-the
filetype HELPEXEC to EXEC files, and the filetype HELPEXC2 to EXEC 2
files.

The reserved fi1etypes for HELP are:

HELPCP for CP commands

HELPCMS for CMS commands

HELPDEBU for DEBUG subcommands

HELPEDIT for EDIT subcommands

HELPEXEC for EXEC statements

HELPEXC2 for EXEC 2 statements

HELPHELP HELP files for HELP

HELPMENU. for menus of HELP components

HELPMSG for CMS and CP commands

HELPXEDI --- for XEDIT subcommands

HELPSET for XEDIT SET Subcommands

HELPPREF for XEDIT PREFIX subcommands

Section 19. How the Help Facility Works 361

362 IBM Vft/SP efts User's Guide

Section 20. Tailoring the HELP Facility

One of the most useful features of the HELP facility is its flexibility.
You can take full advantage of the CMS file system format used in the
HELP facility to tailor it as best suits you.

If you have your own set of HELP files, you can do as you wish with
them However, if you share a set of HELP files with other system users,
you will have to get authority from the System Administrator to alter
the HELP facility.

HELP Files

since all HELP files are CMS files, you can add
menus, or change any existing file or menu.
restrictions you must follow when tailoring HELP
discussed in the following sections.

or delete files or
There are a few
files; they are

!Ql~: If you tailor your HELP files, you should retain documentation of
the changes you've made. You can use that documentation to help you
update your files when IBM issues update to the HELP facility files.

One way you could do this would be to use the format control word
".cm" indicating that what follows is a comment. (.cm HELP format
work.) HELP will not display any lines in a HELP file that begin with
the command .cm. Thus you could include information about any
alterations you have made to your HELP files in the file itself.

ADDING HELP FILES

You can either add HELP files to existing components or create a new
component with its own HELP files.

If you add HELP files to an existing component, you should follow the
formatting rules given in "Section 21. HELP File Naming Conventions"
and "Section 22. Creating HELP Files".

If you update a component you should update its menu also. You do
this by calling the menu file with the System Product Editor, or any
other text editor, and adding the new names anywhere in the list of
names. Remember that the filenames; start in column 1, are one to a
line, and are limited to 8 characters.

DELETING HELP FILES

You delete HELP files just as you delete any CMS file. Specify ERASE
filename filetype to delete a file. If you delete a file, you should
delete the filename from the menu tor that component also.

Section 20. Tailoring the HELP Facility 363

ALTERING EXISTING HELP FILES

To alter a HELP file, first call the file with a text processing editor.
Then add or delete as you wish, making sure that you follow the
instructions given in "Section 21. "HELP File Naming conventions" and
"Section 22. Creating HELP Files".

Creating Menus

Menus for the HELP facility have the filetype HELPMENU. The filename is
the component name they serve (for example, EXEC 2 HELPMENU is the
filename filetype for the EXEC 2 menu). Menus contain a list of the
HELP files for component. There are only a few restriction you must
follow when creating menu files. You may precede the list of names with
any amount of information for the user. Between this information and
the list of names, you must include two lines with the following HELP
format words:

.sp 2

.fo off

Following these commands, you enter the filenames in any order, but they
must begin in column 1 of the file and be one to a line. When creating
a menu file in this format the HELP facility will sort the file~ames
alphabetically and columnize them based on the physical screen width
characteristics, when the Menu is called.

EXAMPLE OF MENU CREATION

Assume you want to add HELP files concerning your internal system
procedures to the HELP facility. Chose the component name of SYS4
System 4) for these procedures. Then create the HELP files for these
procedures, giving them a filename and filetype (HELPSYS4). Following
the rules given in "Section 21. Help File Naming Conventions". Thus
the procedures CLASS8 (a class identifying the type of printing desire~
would be a CMS HELPq file named 'c1ass8 helpsys4'.

The menu file for this component would have the filename SYS4 and the
filetype HELPMENU and would be set up like below. This menu lists HELP
files available for system 4 procedures. You may view a file by placing
the cursor under any character of the filename and pressing the PFl key •

. sp 2

.fo off
CLASS8
CL ASS7
CLASSO
CLASSC
MOUNT
lJEl'luUN'I'

When you specify 'help sys4 menu', the HELP facility will alphabetize
and columnize the filenames and display this file. You may then work
with this menu as you would with any other HELP menu.

364 IBM VM/SP CMS User's Guide

)
CHANGING ftENUS

If you add or delete or change filenames, you should change the
associated menu. Call the menu file (filename is component name,
filetype is HELP MENU) with a text editor and make the necessary changes.
Remember that there is an eight-character limit on filenames, only one
filename goes on a line, and you can insert filenames anywhere in the
list. If you delete a filename, you should delete the line that the
filename is on.

Section 20. Tailoring the HELP Facilit~ 365

366 IBM VM/SP eMS User's Guide

Section 21. HELP File Naming Conventions

Naming Conventions

When you extend the HELP text files provided, you must use the following
naming conventions for the HELP files:

• The filename for components, commands, subcommands, or EXECs must be
the exact full name of the component, command, subcommand, or EXEC.

• The filename for messages has the form xxxnnnt where:

•

xxx is the component code prefix (for example, DftS for CMS
messages). See VM/SP 2ll.!:!!!! !1!t§g~.§ ru!~ ~Qg~ for a. list of
the component code prefixes.

nnn is the messagE number.

t is the message type code (for example, E for error messages in
CMS) •

For example, the filename for the CMS message

NO FILENAME SPECIFIED

would be DMS001E.

The filetype for components, commands, or EXECs
xxxx identifies the system associated with this
or EXEC.

is 'HELPxxxx' where
component, command,

For example, the filetype for a CMS command would be 'HELPCMS'.

• The filetype for subccmmands is 'HELPxxxx' where xxxx identifies the
command name associated with this subcommand; for example, DEBU for
the DEBUG command.

• The filetype for messages is 'HELPMSG'.

• The filety pe for a list of all supported commands for a given
function is 'HELPMENU'.

For example, the filename for the CMS message NO FILENAME SPECIFIED
would be DMS001E.

The following examples illustrate the naming conventions required to
interface with the HELP command:

~ilenA!~
ACCESS
EDIT
CHANGE
DMS186W
CMS

!i!~!.I.E~
HELPCMS
HELPCP.lS
HELPEDIT
HELPMSG
HELPMENU

12~!iEti.Q1!
A CMS command description
A CP.lS command description
An EDIT subcommand description
A CMS message description
A list of the CMS command and/or EXEC

names supported by the HELP facility

Section 21. HELP File Naming Conventions 361

368 IBM VM/SP eMS User's Guide

Section 22. Creating HELP Files

The HELP facility enables the user to:

• Extend the command and message description files IB! provides with
additional description files of the user's choice

• Produce a formatted terminal display by using the HELP format words
when creating the HELP description file.

Creating Additional HELP Files

Users creating additional files for the HELP facility
own file or use the format words the HELP facility
format words do the following:

• Draw boxes to enclose tables, illustrations or text

• Place comments within a file

can format their
supports,. These

• Indicate that certain input lines are to be included in the formatted
output only under certain conditions

• Cause concatenation of input lines and left- and right-justification
of output

"\ f • Indent only the next input line the specified number of spaces

• Indent a series of input lines the specified number of spaces

• Indent the specified number of spaces all but the first line in a
series of input lines

• Insert blank lines between output lines

• Change the final output representation of any input character

The HELP format words are summarized in Figure 30 Descriptions and
examples of their use follow.

section 22. Creating HELP Piles 369

..
I Format Word I Operand Format
------ -----'----

• EX (BOX)

.CM
(COMMENT)

.CS
(CONDI
TIONAL
SECTION)

I

Vl V2 ••• Vn
OFF

Comments

nON/OFF

.FO ION/OFF
(FORMAT I
-MODE) I

I
I

.IL (IN- I nl+nl-n
DENT LINES) I

I
I

.IN (IN- nl+nl-n
DENT)

.OF (OFF- nl+nl-n
SET)

.SP
(SPACE)

.TR (TRANS
LATE)

n

s t

Function

Draws horizontal and
vertical lines around
subsequent output text.
in blank columns.

Places comments in a file
for future reference.

Allows conditional
inclusion of input in
the formatted output.

Causes concatenation of
input lines. and left and
right justification of
output.

Indents only the next
line the specified
number of spaces.

Specifies the number
of spaces subsequent
text is to be indented.

Provides a technique
for indenting all but the
first line of a section.

Specifies the number of
blank lines to be inserted
before the next output line.

Specifies the final output
representation of any input
character.

Figure 30. HELP Format Word Summary

ENCLOSING TEXT (.BX FORMAT WORD)

Break

Yes

No

No

Yes

Yes

Yes

Yes

Yes

No

Default Value

Draws a
horizcntal
line.

On

o

o

o

The HELP facility can insert vertical and horizontal lines in the
formatted output to enclose text, illustrations, or tables. You use the
.BX format word to specify when you want the horizontal lines to appear
and in which columns the vertical lines should appear.

The .BX format word is used in three steps tc completely enclose
text:

1 • The first time you issue the .BX format word,
in which you want the vertical lines to appear.

. bx 10 20 30

results in the following output:

r

specify the colum~s
For example:

Note that this first occurrence of the .BX format word causes a
horizontal line to appear between the first and last column you
specified.

370 IBM VM/SP eMS User's Guide

,

2. After the first issuance of .BI, begin entering the text that is to
be enclosed. As HELP formats these lines, vertical lines are
-placed in the columns tha t you specified on. BI,. However, if a
column already has a data character in it, it is not overlaid with
the vertical line. Note that whenever you want just a horizontal
line to appear (for example, to separate lines in a table), enter
the .BX format work without operands. For exa-mple:

.bx

results in the following output:

1--------1---------1---------1
3. When you have finished entering the text that is to be enclosed,

issue:

.bx off

to cause another horizontal line to appear and to prevent any more
vertical lines from appearing. This output is:

L--------I----_----I--_______ 3

The following example illustrates this technique of enclosing text~

• fo off
• bx 1 10 50
.in 2
.of 8
Item 1 put Item1 text here.

", The second line can be written here.
v • bx

.of 8
Item 2 Then ~ut Item2 text here •
• hx off

When these input lines are processed, the result is:

i
Item1 IPut Item1 text here.

IThe second line can be written here.
I

Item2 IThen put Item2 text here.

This example shows how you can change the vertical structure several
times in succession. The control words:

• bx 10 20
.sp
• bx 5 25
.sp
.bx 10 20
• sp
.hx 5 25
.sp
.bx 10 20
.sp
• bx off

section 22. Creating HELP Files 371

result in:

r -,
I I .----L--____________ ~ ,

L----r--------__ ----~
I

r----L--------~----~

I ,

L

PLACING COMMENTS IN HELP FILES (.CM FORMAT WORD)

In addition to text and format words, HELP files can contain comments.
Comments are useful for:

• Tracking files. You can include comments that give your name, the
date and reason you created a file, and a future date at which the
file may be erased.

• Documenting formats. If you use a special format in a HELP fil~ that
may be accessed by other people, you may want to place notes within
the file explaining how to update the file.

• Place-holders. If a file is incomplete, you may want to put comments
in the file where information should be added later.

You can place comments in a HELP file with the .eM format word:

.cm Created 12/21/75

.cm Updated 3/3/76

HELP ignores all .CM format words when processing.

CONDITIONAL DISPLAY OF TEXT (.CS FORMAT WORD)

You can indicate to HELP that certain sections of the file are to be
displayed as output only if the appropriate HELP command options are
specified. These options are PARM, FORM, DESC, and ALL. (See VMLSP CMS
Com~~Dg gnd H~~~Q ~~~~~~£~ for. information on the use of these
options.)

In order for HELP command processing to display the appropriate
information, you must use the .CS format word in the following manner:

.cs 1 on
!t_~1[t for DF.sr opt ion)

.cs 1 off

.cs 2 on
(text for FORM option)

.cs 2 off

.cs 3 on
(text for PARM option)

.cs 3 off

312 IBM VM/SP CMS User's Guide

)
USE OF FORMAT MODE (.FO FORMAT WORD)

Format-mode processing means that the HELP facility displays the output
lines without breaks, unless specifically requested, and
right-justified. You may not want this type of formatting in all cases;
you may want certain output to appear exactly as it appears in the HELP
file. For this, use the .FO format word to turn off format-mode
processing as follows:

.fo off

When you want to resume format-mode processing, enter:

.fo on

Format-mode processing is the default.

INDENTING TEXT (.IN AND .IL FORMAT WORDS)

When you are creating documents, you may want to set off paragraphs or
portions of text by indenting them. This often improves the readability
by emphasizing certain text. You can cause paragraphs to be indented
using the .IN format word. For example, the lines:

This line is not indented •
• in 5
This line is indented.

result in:

This line is not indented.
This line is indented.

The .IN format word causes a break so that text accumulated before
the .IN format word is processed and displayed, then the next text is
processed.

The .IN format word effectively sets a
text so that when you want text indented you

. in front of the input lines (as you would
continues to concatenate and justify input
column 1, but displays the output indented
specify.

Here's another example:

These few lines of text
are formatted
with enough words
.in 5
so that you can
see how HELP's formatting
process
.in +3
continues and may
.in -6
even be reversed, by using a
negative value.

new left margin for output
do not have to enter blanks
for normal typing). HELP
text lines that begin to
the number of spaces you

Section 22. Creating HELP Files 373

These lines may result in:

These few lines of
text are formatted
with enough words

so that you can
see how HELP's
formatting
process

continues and
may

even be reversed,
by using a negative
value.

In this example, the first .IN format word shifts output to the right
five spaces so that text begins in column 6. The second .IN format word
requests that the current indentation increase by three spaces so the
left margin is now in column 9. When you supply a negative value with
the .IN format word, the margin is shifted to the left.

To cancel an indentation that is in effect, you can use a negative
value, or you can use the format word:

.in 0

Because 0 is the default value, you need not specify it when you want to
restore the left margin to column 1. You can specify simply:

.in

When you want to indent only a single line of text (that is, the next'
output line), use the .IL format word. For example:

This line begins in column 1 •
• in 5
This line begins in column 6,
which is now the left margin •
• il -3
This line is shifted 3 spaces
to the left of the current margin •
. il 3
This line is shifted 3 spaces to
the right of the current margin.

Help processes these lines as follows:

This line begins in column 1.
This line begins in
column 6, which is now
the left margin.

This line is shifted 3
spaces to the left of
the current margin.

This line is shifted
3 spaces to the riqht
of the current margin.

Because the .IL format word causes a break in text, you may find it
useful to indicate the beginning of a new paragraph. For example:

.il 3
This line begins a paragraph •
• il 3
This line begins another.

374 IBM VM/SP eMS User's Guide

These lines result in:

This line begins
a paragraph.

This line begins
another.

USE OF OFFSETS (.OF FORMAT WORD)

In HELP formatting, an offset differs from an indentation in that
offsets do not affect the first line immediately following the format
word; the second and subsequent input lines are indented the specified
number of characters. This is useful, for example, when formatting
numbered lists where text is blocked to the right of the number.

When a .OF format word is processed, the next text line is printed at
the current left margin and subsequent lines (until the next .OF or .IN
format word) are offset the specified number of characters. For
example, the lines:

.of 5
-----This line begins
a 5-character offset •
• of 5
-----This is another line offset
5 characters •
• in 5
An indent changes the left
margin and cancels the offset •
• of 3
---This paragraph begins
at the new left margin •
• of 3
---Here's one more line.

result in:
-----This line begins a

5-character offset.
-----This is another line

offset 5 characters.
An indent changes
the left margin and
cancels the offset.
---This paragraph

begins at the new
left margin.

---Here's one more
line.

An offset can be canceled with the format word •

• of 0

This format word causes a break; subsequent text is printed at the
current left margin, that is, whatever the indention is (0, if no .IN
format word is in effect).

Anv INDENT format word cancels a current offset and resets the left
marg~n. If you specify a positive or negative increment with the INDENT
format word and an offset is in effect, the offset is canceled and the
new left margin is computed from the current indent value.

Section 22. Creating HELP Files 375

The .IL (INDENT-LINE) format word uses the current margin (the indent
value plus the offset value) when computing the margin for the next
line.

To achieve a format that has several levels of offsetting, you can
combine the .IN and .OF format words.

When you use blank space following the item indicator (for example,
the number in a numbered list), HELP may add extra blanks when it
justifies the line; if so, the first line may not be aligned with the
remainder of the offset item.

SPACING BETWEEN LINES OF TEXT (.SP FORMAT WORD)

If you do not want an input line to be concatenated with the line above
it, you must cause a break. To cause a break in a HELP file, begin a
line with one or more blank characters (by using the space bar on your
terminal keyboard). When HELP reads an input line that begins with a
blank character, the formatting process is interrupted; all of the text
that has accumulated for the current line is displayed as is, even if
more words would have fit on the line; the next input line begins a new
output line.

To create paragraphs in text, then, all you have to do is to enter
spaces at the beginning of each line that is to begin a new paragraph.
For example, the input lines:

The quick brown
fox
came over to greet the lazy poodle.

But the poodle was frightened
and ran away.

may be displayed by HELP as:

The quick brown fox
came over to greet the
lazy poodle.

But the poodle was
frightened and ran
away.

If you want to place blank lines between lines of text, you can press
the space bar at least once on a line that has no other text, then press
the Return or Enter key.

Instead of entering a blank line, you can use the .SP format word.
Thus the input lines:

The quick brown fox came over to
greet the lazy poodle •
• sp
~g~ ~hp poodle was frightened
and ran away.

are formatted as follows by HELP:

The quick brown fox
came over to greet the
lazy poodle.

376 IBM VM/SP CMS User's Guide

But the
frightened
away.

poodle
and

was
ran

The .SP format
indicating how many
example:

.sp 5

word allows you
spaces you want to

to enter a numeric parameter
leave on the text output. For

indicates that you want to leave five lines of space in the text output.
You can use multiple spaces when you want a heading or a title to stand
out, for example the lines:

A Love story
.sp 3
The quick brown fox
was eager
to meet the pretty poodle.

will result in:

A Love Story

The quick brown fox
was eager to meet the
pretty poodle.

TRANSLATING OUTPUT CHARACTERS (.TR FORBAT WORD)

After HELP has formatted an output line but before it displays that
line, HELP may translate 'any of the characters in that line to a
different character representation. You use the .TR format word to
request that this translation be done. For example, to request that all
blanks (x'40') in the file be displayed as question marks, enter:

.tr 40 ?

To stop the translation of the question mark as a blank, enter:

.tr ? ?

Note that when the .TR format word is used without operands, the
translation of all characters is stopped.

Section 22. Creating HELP Files 377

378 IBM VM/SP eMS User's Guide

Appendixes

This publication contains the following appendixes:

A. Summary of CMS Commands

B. Summary of CP Commands

C. Considerations for 3210 Display Terminal Users

D. Sample Terminal Sessions

Appendixes 319

380 IB~ va/sp c~s User's Guide

Appendix A. Summary of CMS Commands

Figures 31 and 32 contain alphabetical lists of the CMS commands and the
functions performed by each. Figure 31 lists those commands that are
available for general use; Figure 32 lists the commands used by system
programmers and system support personnel who are responsible for
generating, maintaining, and updating VM/SP. Unless otherwise noted,
CMS commands are described in !~L2~ ~~~ ~Qm~an~ ~nd Ma~Q ~~fe~n~~.

£Q~~
DOS PP

l1~~i1!g
Indicates that this command invokes a DOS Program Product,
available from IBM for a license fee.

EREP Indicates that this command is described in !l1LSP OL~~~ ~g
~B~Q~ ~~QQ!~ing QYi~~. Further details on the operands used
by this command are contained in Q~!~ lnvi!Q1!~n~~! R~£Q!ding
]~ili1!g ~~ Printing (~!!~f) ~!~g!!.

IPCS Indicates that this command is a part of the Interactive
Problem Control System (IPCS) and is described in !11LJ1~ !PC~
Us~!.!..§ Gui~~.

Op Gd

os PP

SCRIPT

Indicates that this command is
Q~~atQ!.!..§ Gui~~.

described in the !~~~

Indicates that this command invokes an OS program product,
available from IBM for a license fee.

Indicates that this command invokes a text processor that is
an IBM Installed User Prog~am, available from IBM for a
license fee.

SPG Indicates that this command is described in the VMLSP ~§tem
R~Qg~~m~!.!..§ Gui~~·

SYSGEN Indicates that this command is described in the !11L~g g!~ning
~1!g ~I§!~ Qen~ra!iQn QYig~·

In addition to the commands listed in Figure 31 and 32, there are
seven commands called Immediate commands that are handled in a different
manner from the others. They may be entered while another command is
executing by pressing the Attention key (or its equivalent) and are
executed immediately. The Immediate commands are:

• HE - Halt batch execution
• HO - Halt tracing
• HT - Halt typing
• HX - Halt execution
• RO - Resume tracing
• RT - Resume typing
• SO - Suspen d tracing

Appendix A. Summary of CMS Commands 381

.--------
ICommand I Code
I
I ACCESS
I ,
I
, AMSERV
I
I ,
, ASSEMBLE
I
I ASSGN
I
I
ICMSBATCH
I
I COBOL OS PP
I
I
,COMPARE

CONVERT OS PP

COPYFILE

CP

CPEREP

DDR

DEBUG

DISK

DLBL

DOSLIB

DOSLKED

DOSPLI

, ,
I ,
I
I
I
I

EREP

IDOS PP
'-------

Usage

Identify direct access space to a CMS virtual
machine, create extensions and relate the disk
space to a logical directory.

Invoke access method services utility functions to
create, alter, list, copy, delete, import, or
export VSAM catalogs and data sets.

Assemble assembler language source code.

Assign or unassign a CMS/DOS system or programmer
logical unit for a virtual I/O device.

Invoke the CMS batch facility.

Compile OS ANS Version 4 or OS/VS COBOL source
code.

Compare records in CMS disk files.

Convert free form FORTRAN statements to fixed form.

Copy CMS disk files according to specifications.

Enter CP commands from the CMS environment.

Formats and edits system error records for output.

Perform backup, restore, and copy operations for
disks.

Enter DEBUG subcommand environment, debug mode.

,Perform disk-to-card and card-to-disk operations
for CMS files.

Define a DOS filename or VSAM ddname and relate
that name to a disk file.

Delete, compact, or list information about the
phases of a CMS/DOS phase library.

Link-edit CMS text decks or object modules from a
VSE/AF relocatable library and place them in
executable form in a CMS/DOS phase library.

Compile DOS PL/I source code under CMS/DOS.

Figure 31. CMS Command Summary (Part I of 5)

382 IBM VM/SP CMS User's Guide

r
ICommand
I
I DSERV
I ,
I
IEDIT
I
I
IERASE ,
IESERV
I
I
I
!EXEC
I
I
I FCOEOL
I
I FETCH
I
IFILEDEF
I
I
IFORMAT
I
I
I FORTGI
I
I FORTHX
I
I
IGENDIRT
I
IGENMOD
I
IGLOBAL
I
I
I
I GOFORT , ,
,HELP ,
I
I INCLUDE ,
L-

ICode Usage

I

Display information contained in the VSE/AF
core image, relocatable, source,
procedure, and transient directories.

Invoke the CMS editor to create or modify a disk
file.

Delete CMS disk files.

Display, punch or print an edited (compressed)
macro from a VSE/AF source statement library
(E sublibrary).

Execute special procedures made up of frequently
used sequences of commands.

DOS PP Compile DOS/VS COBOL source code under CMS/DOS.

Fetch a CMS/DOS or VSE/AF executable phase.

Define an OS ddname and relate that ddname to any
device supported by CMS.

Prepare disks in 800-, 1024-, 2048-, or 4096-byte
block format.

OS PP Compile FORTRAN source code using the G1 compiler.

OS PP ICompile FORTRAN source code using the H-extended
I compiler.
I
IFill in auxiliary module directories.
I
IGenerate nonrelocatable eMS files (MODULE files).
I
IIdentify specific eMS libraries to be searched for
I macros, copy files, missing subroutines, or DOS
I executable phases.
I

OS PP ICompile FORTRAN source code and execute the program
1 using the FORTRAN Code and Go compiler. ,
IDisplay information regarding CP, CMS, or user
I supplied commands and messages.
I
IBring additional TEXT files into storage and
1 establish linkages.

Figure 31. CMS Command Summary (Part 2 of 5)

Appendix A. Summary of CMS Commands 383

r-
ICommand ICode
I
I
I LABELDEF
I
I
I
LISTDS

LISTFILE

LISTIO

LOAD

La ADri0D

MACLIE

MODMAP

MOVEFILE

OPTION

PLIC

PLICR

PLIOPT

IPRINT
I
IPSERV
I
I
I
I
IPUNCH ,
I QUERY ,
, READCARD
L--

as PP

as PP

as PP

Usage

I
ISpecify standard HDR1 and EOFl tape label descrip
I tion information for CMS, CMS/DOS, and as
, simulation.
I
IList information about data sets and space
I allocation on as, DOS, and VSAM disks. ,
List information about CMS disk files.

Display information concerning CMS/DOS system and
programmer logical units.

Bring TEXT files into storage for execution.

Bring a single MODULE file into storage.

Create or modify CMS macro libraries.

Display the load map of a MODULE file.

Move data from one device to another device of the
same or a different type.

Change the DOS COBOL compiler (FCOBOL) options that
are in effect for the current terminal session.

Compile and execute PL/I source code using the
PL/I Checkout Compiler.

Execute the PL/I object code generated by the as
PL/I Checkout Compiler.

Compile PL/I source code using the as PL/I
Optimizing Compiler.

Spool a specified CMS file to the virtual printer.

Copy a procedure from the VSE/AF procedure library
onto a CMS disk, display the procedure at the
terminal, or spool the procedure to the virtual
punch or printer.

Spool a copy of a CMS file to the virtual punch.

Request information about a CMS virtual machine.

Read data from spooled card input device.

Figure 31. CMS Command Summary (Part 3 of 5)

384 IBM VM/SP CMS User's Guide

I

ICommand

RELEASE

RENAME

RSERV

RUN

SCRIPT

(Code Usage

I
IMake a disk and its directory inaccessible to a CMS
I virtual machine.
I
IChange the name of a CMS file or files.
I
ICopy a VSE/AF relocatable module onto a CMS disk,
I display it at the terminal, or spool a copy to
, the virtual punch or printer.
I -
IInitiate series of functions to be performed on a
I source, MODULE, TEXT, or EXEC file.
1

SCRIPT Format and print documents according to embedded
SCRIPT control words in the document file.

SET Establish, set, or reset CMS virtual machine
characteristics.

SETPRT Establish, set, or reset virtual 3800 printer
characteristics.

SORT Arrange a specified file in ascending order
according to sort fields in the data records. ,

SSERV Copy a VSE/AF source statement book onto a CMS
disk, display it at the terminal, or spool a copy
to the virtual punch or printer.

START Begin execution of programs previously loaded (OS
and CMS) or fetched (CMS/DOS).

STATE Verify the existence of a CMS disk file.

STATEW Verify a file on a read/write CMS disk.

SVCTRACE Record information about supervisor calls.

SYNONYM Invoke a table containing synonyms you have created
for CMS and user-written commands.

TAPE Perform tape-to-disk and disk-to-tape operations
for CMS files and position tapes.

L---

Figure 31. CMS Command Summary (Part 4 of 5)

Appendix A. Summary of CMS Commands 385

r----
,Command , ,
,TAPE , , ,
ITAPEMAC , ,
TAPPDS

TESTCOB

TESTFORT

TXTLIB

TYPE

UPDATE

VSAPL

VSBASIC

,VSBUTIL ,
< IXEDIT ,

,Code

OS PP

OS PP

OS PP

OS PP

OS PP

Usage

Perform tape-t~disk and disk-to-tape operations
for CMS files, position tapes, and display or
write VOL1 labels.

Create CMS MACLIB libraries directly from an
IEHMOVE-created partitioned data set on tape.

Load OS partitioned data set (PDS) files or card
image files from tape to disk.

Invoke the OS COBOL Interactive Debug Program.

Invoke the FORTRAN Interactive Debug Program.

Generate and modify text libraries.

Display all or part of a CMS file at the terminal.

Make changes in a program source file as defined
by control cards in a control file.

Invoke VS APL interface in CMS.

Compile and execute VS BASIC programs under CMS.

Convert BASIC 1.2 data files to VS BASIC format.

Invoke the System Product editor to create or
modify a disk file.

Figure 31. eMS Command Summary (Part 5 of 5)

386 IBM VM/SP CMS User's Guide

r
, Command ,
, ASM310S ,
, ASMGEND ,
,CMSGIN D , ,
,CMSXGEN ,

CPEREP

DIRECT

DOSGEN

DUMPSCAN

GEN370S

GENFRATE

LKED

NCPDUMP

PRB

PROB

SAMGEN

SAVENCP

SETKEY

STAT

VMFBLD

VMFDOS

VMFDUMP

VMFLOAD

,VSAMGEN ,
,ZAP ,
L-

, Code Usage

SYSGEN Assemble 370x source code.

SYSGEN Regenerate the VM/SP assembler command modules.

SYSGEN Generate a new CMS disk-resident module from
updated TEXT files.

SYSGEN Generate the CMSSEG discontiguous saved segment.

EREP Formats and edits system error records for output.

Op Gd Set up VM/SP directory entries.

SYSGEN Load and save the CMSDOS shared segment.

IPCS Provide interactive analysis of CP abend dumps.

SYSGEN Generate an EXEC file that assembles and link-edits
the 310x control program.

SYSGEN Update VM/SP or the VM/SP directory, or generate
a new standalone copy of a service program.

SYSGEN Link-edit the 310x control program.

OP Gd, Process CP spool reader files created by 370x
SPG dumping operations.

IPCS Update IPCS problem status.

IPCS Enter a problem report in IPCS.

SYSGEN Save the CMSBAM discontiguous saved segment.

SYSGEN, Read 370x control program load into virtual
SPG ,storage and save an image on a CP-owned disk.

SPG

IPCS

SYSGEN

SYSGEN

Op Gd,
IPCS

SYSGEN

SYSGEN

Op Gd,
SPG

Assign storage protect keys to storage assigned to
named systems.

Display the status of reported system problems.

Generate and/or update VM/SP using the PLC tape.

Create CMS files for DOS modules from DOS library
distribution tape or SYSIN tape.

Format and print system abend dumps; under IPCS,
create a problem report.

Generate a new CP, CMS or RSCS module.

Load and save the CMSVSAM and CMSAMS segments.

Modify or dump LOADLIB, TXTLIB, or MODULE files.

Figure 32. CMS Commands for System Programmers

Appendix A. Summary of CMS Commands 381

388 IBM VM/SP eMS User's Guide

Appendix B . Summary of CP Commands'

Figure 33 describes the CP command privilege classes.

r
'Class User and Function

Al f.Ii!!!gU ~Y.§!~.m ~~lQ.I: The class A user controls the

, Bl

Cl

Dl

El

Fl

G2

Any2

H

VM/SP system. Class A is assigned to the user at the VM/SP
system console during IPL. The primary system operator is
responsible for the availability of the VM/SP system and its
communication lines and resources. In addition, the class A
user controls system accounting, broadcast messages, virtual
machine performance options and other command operands that
affect the overall performance of VK/SP.

l!.Ql!p The class A system ope ra tor who is automatically logged
on during CP initialization is desiqnated as the primary
system operator.

~Y.§!~~ !~Q~~~ Q~~~l.Q.I: The class B user controls all the
real resources of the VM/SP system, except those controlled
by the primary system operator and spooling operator.

~~.§!~~ ~~g~~~~: The class C user updates certain
functions of the VM/SP system.

~~QQling QR~!Al.Q.I: The class D user controls spool data
files and specific functions of the system's unit record
equipment.

~y.§!~!!! !~glY'§!: The class E user examines and saves certain
data in the VM/SP storage area.

~~rvice R~R.I~.§~ntati~~: The class F user obtains, and
examines, in detail, certain data about input and output
devices connected to the VM/SP system.

General User: The class G user controls functions associated
with-the-execution of his virtual machine.

The Any classification is given to certain CP commands that
are available to any user. These are primarily for the
purpose of gaining and relinquishinq access to the VM/SP
system.

Reserved for IBM use.

IDescribed in the !~L~f-2~~.I~lQ~.§_~uide.
2Described in the !~L~f~L~~.m~g_!!ef~£~~_!or~Ge!lfial_Use~.

'----
Figure 33. CP Privilege Class Descriptions

Appendix B. Summary of CP Commands 389

Figure 34 contains an alphabetical list of the
privilege classes which may execute the command, and
about the.use of each ccmmand.

CP commands, the
a brief statement

,

Command

*
iCP

ACNT

Privilege
Class

any

any

ADSTOP G

ATTACH B
B
B

ATTN G

AUTOLOG A,B

I BACKSPAC D
I
I
I BEGIN , G
I
I ,
I CHANGE D,G
I
I
I CLOSE G ,
I
, COUPLE G
I
, CP any
I
'--

Usage

Annotate the console sheet.

Execute a CP command while remaining in the
virtual machine environment.

Create acccunting records for logged on users
and reset accounting data, and close the
spool file that is accumulating accounting
records. '

Halt execution at a specific virtual machine
instruction address.

Attach a real device to a virtual machine.
Attach a DASD for CP control.
Dedicate all devices on a particular channel

to a virtual machine.

Make an attention interruption pending for the
virtual machine console.

Automatically log on a virtual machine and
I have it operate in disconnect mode.

Restart or reposition the output of a unit
record spooling device.'

Continue or resume execution of the virtual
machine at either a specific storage location
or at the address in the current PSi.

Alter one or more attributes of a closed spool
file.

Terminate sFooling operations on a virtual card
reader, punch, printer, or console.

Connect channel-to-channel adapters.

Execute a CP command while ·remaining in the eMS
virtual machine environment.

Figure 34. CP Command Summary (Part 1 of 5)

3QO IBM VM/SP CMS User's Guide

\
;

r
I
I Command

DCP

DEFINE

DETACH

DIAL

DISABLE

DISCONN

DISPLAY

DMCP

DRAIN

DUMP

ECHO

ENABLE

EXTERNAL

FLUSH

FORCE

FREE
L--

IPrivilege
, Class

C,E

G
B

B
B
B
G
G

Usage

Display real storage at terminal.

Reconfigure your virtual machine.
Redefine the usage of SYSVIRT and VIRTUAL 3330V

devices.

Disconnect a real device from a virtual machine.
Detach a DASD volume from CP.
Detach a channel from a specific user.
Detach a virtual device from a virtual machine.
Detach a channel from your virtual machine.

any Connect a terminal or display device to the
virtual machine's virtual communication line.

A,B Disable 2701/2702/2703, 370X in EP mode,
and 3270 local communication lines.

any Disconnect your terminal from your virtual
machine.

G Display virtual storage on your terminal.

C,E Dump the specified real storage location on your
virtual printer.

D Halt operations of specified spool devices upon
completion of current operation.

G Print the following on the virtual printer:

G

A,B

G

D

A

D

virtual PSW, general registers, floating-point
registers, storage keys, and contents of
specified virtual storage locations.

Test terminal hardware by redisplaying data
entered at the terminal.

Enable communication lines.
1
,Simulate an external interruption for a virtual
, machine and return control to that machine. ,
,Cancel the current file being printed or punched
, on a specific real unit record device. ,
,Cause logoff of a specific user. ,
,Remove spool HOLD status.

Figure 34. CP Command Summary (Part 2 of 5)

Appendix B. Summary of CP Commands 391

I Pri vile.ge,
Command , Class , Usage

-------1--------------·--------------------------------------
HALT A ,Terminate the active channel program on

, specified real device. ,
HOLD D ,Defer real spooled output of a particular user. ,
INDICATE A,E,G ,Indicate resource utilization and contention. ,
IPL G ,Simulate IPL for a virtual machine. ,
LINK G ,Provide access to a specific DASD by a

, virtual machine. ,
LOADBUF D Load real UCS/UCSB or FCB printer buffers.

LOADVFCB

LOCATE

LOCK

LOGOFF

LOGON

MESSAGE

MIGRATE

MONITOR

MSGNOH

NETWORK

, NOTREADY ,
L--

G Load virtual forms control buffer for a virtual
3203 or 3211 printer.

C,E Find CP control blocks.

A Bring virtual pages into real storage and lock
them; thus, excluding them from future paging-

any Disable access to CP.

any Provide access to CP.

A,B,any Transmit messages to ether users.

A Allows the operator to migrate pages either for
the entire system or just one user.

A,E Trace events of the real machine and record
system performance data.

B Send a specified message, without the standard
message header, from one virtual machine to
another.

A,B,F Load, dump, trace, and control the operation of
the 370X control program. Control the
operation of 3270 remote devices. Attach
or detach remote devices to or from a
virtual machine.

G Simulate "not ready" for a device to a virtual
machine.

Figure 34. CP Command Summary (Part 3 of 5)

30 2 IBM VM/SP CMS User's Guide

r
, ,privilege
,Command , Class Usage ,------
I ORDER
I
I
I PURGE
I
, QUERY , ,
, QVM

READY

REPEAT

REQUEST

RESET

REWIND

SAVESYS

SCREEN

SET

SHUTDOWN

SLEEP

SMSG

SPACE

SPMODE

D,G

D,G

Rearrange closed spool files in a specific
order.

Remove closed spool file from system.

A,B,C,D, Request information about machine configuration
E,F,G and system status.

A Request the transition from VM/SP to the V=R
virtual machine running in native mode.

G ,Simulate device end interruption for a virtual
device.

D Repeat (a specified number of times) printing or
punching of a specific real spool output file.

G Make an attention interruption pending for the
virtual machine console.

G Clear and reset all pending interruptions for a
specified virtual device and reset all error
condi tions.

G Rewind (to load point) a tape and ready a tape
unit.

E Save virtual machine storage contents, registers
and PSW.

G Control color and extended highlight attributes
of the screen.

A,B,E,F, Operator-establish system parameters.
G User-control various functions within the

, virtual machine. ,
A ,Terminate all VM/SP functions and checkpoint CP

I system for warm start. ,
any IPlace virtual machine in dormant state.

I
G ISend special message to appropriate virtual

I machine. ,
D ,Force single spacing on printer.

I
A ,Establish or reset the single processor mode

I environment.

Figure 34. CP Command Summary (Part 4 of 5)

Appendix B. Summary of CP Commands 393

r--
, 'Privilege
,Command , Class Usage

,
1
1

1------1 ------------------------------------1 , SPOOL ,G Alter spooling control options; direct a file
another virtual machine or to a remote
location via the RSCS virtual machine.

tol
, I
, I , ,
I SPTAPE D , ,
1 START D

STCP C

STORE G

SYSTEM G

TAG G

TERMINAL G

TRACE G

TRANSFER D,G

UNLOCK A

VARY B

VMDUMP G

WARNING A,B

L--

Dump output spool files
spool files from tape.

on tape or load output

Start spooling device after draining or changing
output classes.

Change the contents of real storage.

Alter specified virtual storage locations and
registers.

Simulate RESET, CLEAR STORAGE, and RESTART
buttons on a real system console.

Specify variable information to be associated
with a spool file or output unit record
device.

Interrogate the current TAG text setting of a
given spool file or output unit record device.

Define or redefine the input and attention
handling characteristics of your virtual
console.

Trace specified virtual machine activity at your
terminal, spooled printer, or both.

Transfer input files to or reclaim input files
from a specified user's virtual card reader.

Unlock previously locked page frames.

Mark a device unavailable or available.

Dump virtual machine when issued with the
VM/IPCS Extension program product.

Transmit a high priority message to a specified
user or to all users.

Figure 34. CP Command Summary (Part 5 of 5)

394 IBM VM/SP CMS User's Guide

1
1
1

Appendix C. Considerations for 3270 Display
Terminal Users

The IBM 3270 display terminal. commo,nly referred to as a 3270. functions
somewhat differently from a typewriter-style terminal when you use it as
a virtual machine console under VM/SP. Apart from the obvious
difference in the way output is displayed. there are special techniques
you can use with a 3270 that you cannot use on a 274' or other
typewriter terminal. This appendix describes how to use a 3270 and
provides additional notes to supplement discussions in the first part of
this publication.

Entering Commands

Since the keyboard on a 3270 is never locked during the execution of a
command or program. you can enter successive command lines without
waiting for the completion of the previous command. This stacking
function can be combined with the other methods of stacking 1ines. such
as using the logical line end symbol (I) to stack several command lines.
If you try to enter more lines than the terminal buffer can accommodate.
however. you receive the status message NOT ACCEPTED and you must wait
until the buffer is cleared before you can enter the line.

You will find, as you become accustomed to using a 3270. that the #CP
function is very useful. The ICP function. remember. is a function that
allows you to pass a command line to the control program immediately,
bypassing any processing by the virtual machine (CMS). The #CP function
can be used in any VM/SP environment. and you can enter it even when a
program is executing. You do not have to interrupt a program's execution
to enter a command line such as:

ICP display psw

to display the current PSi. or:

Icp spool printer class s

to spool your virtual printer.

Setting Program Function Keys

If there are CP and CMS commands that you use frequently. you can set
the program function (PF) keys on your terminal to execute them. Some
examples of commands you might wish to catalog on PF keys are:

ICP DISPLAY PSi
#CP QUERY PRINTER ALL
QUERY SEARCH

To set functions keys 1. 2. and 3 to perform these command functions.
ent er:

cp set pfl immed "#cp display psw
cp set pf2 immed "#cp query printer all
cp set pf3 immed query search

Appendix C. Considerations for 3270 Display Terminal Users 395

When you want to execute a #CP function with a PF key, or you want a PF'
key to execute a series of commands, you must use the logical escape
symbol (") when you enter the SET command. For example:

cp set pf5 immed edit test file"#bo"#input line"#file

sets the PF5 key as:

EDIT TEST FILE#BO#INPUT LINE#FILE

The above examples use the IKKED operand of the SET command, which
specifies that the function is performed as soon as you press the PF
key. You can also set a key so that it is delayed; that is, the command
or data line is placed in the user input area. Then, you must press the
Enter key to execute the command. You may modify the line before you
enter it. This is the default setting (DELAY) for program function keys.
For example, you might set a key as:

QUERY DISK XO>

When you press this PF key, the command line is placed in the user input
area, with the cursor positioned following the "0>" logical character
delete symbol; you can enter the mode letter of the disk you are
querying before you press the Enter key to execute the command. If you
enter 'A', the resulting command as seen by CMS is 'QUERY DISK A'.

You can set all of your program function keys in your PROFILE EXEC,
so they are set each time you load CMS. You can change a PF key setting
any time during a terminal session, according to your needs. If, for
example, you discover that you are repeating several procedures a number
of times, and the procedure does not lend itself to being written into
an EXEC, you could use your program function keys.

All the lines in an EXEC procedure are scanned, and
strings are truncated to eight characters, so if you
command line, insert spaces where possible:

CP SET PF5 IKMED EDIT TEST FILE #BO# INPUT

all character
enter a long

To change PF settings within the edit
filename that begins with a dollar sign
macro.

environment, give the EXEC a
($), so it functions as an edit

For more details on setting PF keys, see the !~L~R 1~rmins! Us~~§

2Yig~·

Controlling t,he Display Screen

During a CP or CMS session (other than an EDIT session) messages and
warnings from the system operator or other users are highlighted. This
distinguishes these messages from other output and lessens the
possibility of important messag~s being lost or ignored.

A major feature of a 3270 display screen is the screen status area,
which indicates, at all times that you are logged on, the current
operating condition your virtual machine ~s in. Understanding the
status conditions can help you use CMS on a 3270 more effectively. The
screen status area indicates one of seven conditions:

~R ~!!~: After you log. on, this is the first status message you see; it
indicates that the terminal is waiting for a line to be read by the
control program. you can enter only CP commands when the screen status
area indicates a CP READ.

3q6 IBM VM/SP CMS User's Guide

YH]]!~: This status indicates that your terminal is waiting for a line
to be issued to your virtual machine; you may be in the CMS environment,
in the edit or debug environments, or you m~y be executing a program or
an EXEC that has issued a read to the console.

~Q!!lB~: This status means that your virtual machine is operating. Once
you have loaded CMS and are using the CMS environment, this status is
almost continually in effect, even when you are not currently executing
a command or proqram.

You can alter the way this works by using the AUTOREAD function of
the SET command. When the AUTOREAD setting is OFF, (the default for
display terminals), your terminal displays a RUNNING status after the
execution of each CMS command. If you want the terminal to be in a VM
READ status following each command, issue:

set autoread on

The ON setting is the default for typewriter terminals, since a read on
a typewriter terminal must be accompanied by the unlocking of the
keyboard.

The advantage of keeping your virtual machine in a running status
even when it is not actually executing a program is that it makes your
terminal ready to receive messages. If your terminal is waiting for a
read, either from CP or from the virtual machine, and if a user or a
program sends a message to your virtual console, then the message is not
displayed until you use the Enter key to enter a command or null line.
When your machine is in a running status, the terminal console is always
ready to accept messages.

\ If your virtual machine is in the CP environment, and you want your
~ terminal to be in a running status, you can use the command:

cp sleep

To return to the CP READ status, you must press the PAl key or the Enter
key.

HQ]~ ... : This status indicates that your display screen is full, but
that there is more data to be displayed. This message, in addition to
indicating that there is more data, gives you a chance to freeze your
screen's current display so you can continue to examine it, if
necessary.

When you see the screen is in a MORE ••• status, you can either (1)
press the Clear, Cancel, or PA2 keys to clear the screen and see the
next screen, or (2) press the Enter key to hold the screen in its
present status. If you do not do either, then after 60 seconds, the
screen is cleared and the next screen is displayed.

]Q1~lB~: This indicates that you have
the screen. You must use the Cancel,
screen and go on to the next display.

pressed the Enter key to freeze
Clear, or PA2 keys to erase this

Appendix C. Considerations for 3270 Display Terminal Users 397

A holding status also results if you have received a message that
appeared on this screen. When the screen becomes full, it does not
automatically pass to the next display after 60 seconds, but waits until
you specifically clear the screen. (This feature ensures.that any
important messages you receive are not lost.)

!Q~]~~E~!]~: Indicates that you are t~ying to enter a command line but
the terminal buffer is full and cannot accept it. This message is also
issued when you attempt to use the 3270 COpy function and a printer is
either not available or not ready.

ADDITIONAL DISPLAY SCREEN CAPABILITIES

The Extended Highlight feature and the Seven-Color feature are two added
capabilities available for your use. Both features are available on the
3279 Models 2 and 3. If you are using 3278 Model 2, 3, 4, or 5, the
options for both features will be accepted. However, only the highlight
feature will be operable.

The CP SCREEN command (with its operands) allows you to chose one of
three highlighting features (blinking, underscore, or reverse video) and
one of seven different colors (read, green, blue, pink, turguois,
yellow, or white) for each screen area.

If you want the input area to be read without highlighted, you should
enter:

CP SCREEN INAREA RED

Or, if you want the input area read and the status area green with the
blinking highlight, you should enter:

CP SCREEN INAREA RED STATUS GREEN BLINK

For more details on the CP SCREEN command,
~~£~Q~, and more details on the terminal
!~~mjn~l y~~~~~ Gui~~·

CONSOLE OUTPUT

see !11L.§f ~11'§ ~om.m.snd ~~
display areas, see !!L.§f

When you use a 3270 terminal as your virtual machine console, you do not
ordinarily retain a console log, as you do on typewriter terminal.
There may be many circumstances in which you need a printed record of
your console output, whether it be to obtain a copy of program-generated
output, or to retain a record of CP and/or CMS commands that resulted in
an error condition. There are two technigues you can use in VM/SP to
obtain hardcopy representations of display terminal sessions: spooling
console output and the 3270 copy function.

The CP SPOOL command provides the CONSOLE operand, which allows you to
begin and end console spooling. You enter:

398 IBM VM/SP CMS User's Guide

)

•

cp spool console start

when you want to begin recording your terminal session, and:

cp spool console stop

when you have finished. In between, you can periodically close the
console file to release for printing whatever has been spooled thus far:

cp spool console close

other operands that you can enter are the same as you might specify for
any printer file, such as CLASS, COpy, CaNT, and HOLD.

An alternate technique is to spocl your console to your own virtual
reader:

cp spool console start * class a

Then, when you close the console file, instead of being released to the
CP printer spool file queue, it is routed to your virtual card reader,
and you can load it onto your A-disk as a CMS disk file:

readcard console file

You can then use the editor to examine it (or to delete sections you
don't need) and use the PRINT command to spool it to the printer.

If you are using a 3270 display terminal, and you have available
3286, 3287 , 3288, or 3289 printer, you can copy the full screen
currently appearing on the screen. To copy the screen, you
assign the copying function to a program function key, with
command:

cp set pf9 copy

a 3284,
display
have to
the SET

!Qi~: The PF key copy function is not available if the printers are
dedicated.

Then, whenever you want to copy a screen display, you can press the PF9
key (or whichever key you set). The display is printed on any 3270
display printer that is attached to the same remote control unit as the
display terminal. If, when you press the PF key, the screen status area
indicates NOT ACCEPTED, it means that the printer is either not ready or
not available. When you press the PF key and receive no response, it
means that the screen has been copied.

There is a print matrix available to the 3274 and 3276 user that
allows contro~ of the display to printer operations. In addition, a
local print key is provided on the 3274 that can be used for copy
operations.

Figure 35 is an example of a 3270 screen display that could be copied
on the printer. When you use the copy function to copy a screen, all 24
lines of the display screen are copied; the screen status area
(indicated as RUNNING in Figure 35) is blank if the 3270 is locally
attached. If the 3270 is remotely attached, the entire screen including
the screen status area, is copied. You can use the user input area of
your screen to key in comments, or your name or userid, if several users
are spooling copy files.

Appendix C. Considerations for 3270 Display Terminal Users 399

DEFINE STORAGE 16384K
STORAGE = 16384K
IPL 190
VM/SP CMS -- 01/30/80 10:00

testl ... t. jones

Figure 35. 3270 Screen Display

Signaling Interruptions

RUNNING

The two keys on your 3270 keyboard that signal interruptions are the PA1
key -- REQ key on a 3278 Model 2A -- and the Enter key. Throughout this
publication, interruption signaling has been described in terms of the
Attention key, which is the interruption signaling key on a 2741.

On a typewriter terminal, the Attention key, pressed once, causes a
virtual machine interruption (if the terminal mode is set to VM); you
must use it when you want to enter an Immediate command, such as HT or
HX. On a display terminal, you can enter these commands whenever your
virtual machine is in a running status, without having to signal an
interruption before you enter the command.

Sometimes, however, if your terminal is displaying output very
rapidly, you must wait until the screen is full and the screen status
area indicates a MORE ••• status before you attempt to enter the HT or HX
command.

The Enter key can also be used as an interruption signaling key. If
you press it once when your virtual machine is running, you will place
your virtual machine in the VM READ status, so you can enter a command
line.

An easier way to enter the CP environment is by pressing the PA1 key.
Whenever you press this key, your virtual machine is placed in a CP READ
status, and you can enter any CP command. From the CP environment, you
must use the CP command BEGIN to resume execution of your virtual
machine.

400 IBM VM/SP CMS User's Guide

HALTING SCREEN DISPLAYS

When your terminal is displaying successive screens of output from a
program or a CMS command, you can use the HT or HI Immediate commands to
halt the display or the execution of the command, respectively. If your
terminal is writing the information at a very rapid rate, you may have
difficulty entering the HT or HX command. In these circumstances, you
can use the PAl key -- REQ key on a 3278 Model 2A -- or press the Enter
key twice to force your terminal to a CP READ status. Then, you can use
the CP command ATTN or REQUEST to signal a virtual machine read. When
the screen status area indicates VM READ, you can enter HX or HT.

Using the eMS Editor with a 3270

The CMS Editor has a special format and operation, called display mode,
that makes editing CMS disk files with a 3270 more convenient than on a
typewriter terminal. It uses most of the display screen, and depending
on the terminal type and model, displays, depending upon the terminal
type and model, up to 20 lines of a file at once. It uses most of the
display screen, and, depending on the terminal type and model, displays,
depending upon the terminal type and model, up to 38 lines of a file at
once. In addition to displaying data lines of the file, the editor also
indicates, on the topmost line of the screen, the filename, filetype,
record format, and logical record length of the file being edited, as
well as showing your current mode: input or edit. The format of the
screen is shown in Figure 36.

The screen lines that you are most concerned with while editing are
the current line, the user input area (the bottom two lines), and the
editor's message line (the second line from the top) in which the
editor's responses and error messages are displayed. The current line
and the editor's message line are highlighted.

When you first invoke the editor to edit a file, whatever is
currently on the screen (including your EDIT command line) is erased and
the full screen is controlled by the editor. The current line pointer
is positioned at the top of the file, the top part of the display screen
appears blank. The editor displays the characters "TOF:" and "EOF:" to
indicate the top and end of the file, respectively.

ENTERING EDIT SUBCOMMANDS

When you enter an EDIT subcommand into the user input area and press the
Enter key the subcommand is not displayed on the screen, but the change
(or line pointer movement) is reflected in the screen display. If you
enter a subcommand that moves the current line pointer, all of the lines
on the screen are shifted up or down, according to the action taken by
the subcommand.

If you use the INPUT subcommand to enter input lines, the edit status
field indicates INPUT; all of the lines that you enter are placed in the
file and appear on the screen as the current line. (Entering input
lines from a remote 3270 is somewhat different. The following "Editing
on a Remote 3270" discusses the differences.)

If you enter an invalid EDIT subcommand, or if you enter a subcommand
that requests information, the edit response appears in the message
field of the screen. For example, if you enter:

trunc

Appendix C. Considerations for 3270 Display Terminal Users 401

.-
I EDIT" DISPLAY SCREEN A 1 fJ F 80 11
I »»> 80 II
I
I
I
I
I
I TOF: II
I THIS IS THE FIRST LINE OF THE FILE. (CURRENT LINE). II []
I THIS IS THE SECOND LINE OF THE FILE.
I THIS IS THE THIRD LINE OF THE FILE.
I EOF:
I
I
I
I
I
I VM READ
I
,Notes:
'--ii-Edit session status. This indicates EDIT, INPUT, or NEW FILE.
I The NEW FILE message appears when you edit a new file; it is
I replaced with INPUT when you enter input mode and thereafter is
, EDIT or INPUT.
, fJ The filename, filetype, and filemode of the file.
, II Record format and logical record length. .
, II Editor reponse area. The response shown may be the response to
, a VERIFY subcommand entered with no operands.
, liThe symbols TOF: and EOF: indicate top of file and end of file,
, respectively.
, miThe current line is located in the approximate center of the
I output area of the screen.

Figure 36. How the CMS Editor Formats a 3270 Screen

the editor responds by displaying the current truncation setting, which
might be:

»»> 8 1

If you enter:

copyfile my file edit (trunc

the editor would respond:

»»> 1EDIT: copyfile myfile edit (trunc

to indicate that it does not recognize the entered line (COPYFILE is not
an EDIT subcommand). When you use line-number editing, the prompting
message appears in this area; after you enter text in the user input
area, the text line is written in the output display area, at the
current line position.

Two EDIT subcommands, CHANGE and 1, result in lines being copied in
the user input area. In the case of the CHANGE subcommand, the line that
is displayed is the current line. Once in the user input area, you can
modify it and re-enter it. While you are changing it, the original line
appears unchanged in the output display area. If you decide that you do
not want changes entered, you must press the Erase Input key and then
press the Enter key before you enter any other EDIT subcommands.

402 IBM VM/SP CMS User's Guide

You can use the? subcommand to request that the last EDIT subcommand
you entered be displayed in the user input area. If, for example, you
enter a CHANGE or LOCATE subcommand that results in a NOT FOUND
condition, or some other error, you can enter:

?

and modify the subcommand line and re-enter it, if you want; otherwise,
use the Erase Input key to delete it.

CONTROLLING THE DISPLAY SCREEN

Usually the editor controls the entire screen display during an edit
session. Occasionally, the screen goes into a MORE... status, and you
must use the Cancel key or PA2 key to clear the screen. There are two
other situations in which the screen must be cleared, either by the
editor, or by you. When you use the CMS subcommand to enter CMS subset
to enter CMS commands, the screen is cleared and the message CMS SUBSET
is displayed at the top of the screen. When you issue the subcommand
RETURN to return to edit mode, the screen display is restored to its
original appearance.

The situation is slightly different, however, whenever you
communicate with the control program (CP), or receive messages from
other users during an edit session. Any CP message or command response
causes your screen to go into a MORE ••• status; you must use the PA2
(Cancel) key to see the response. To restore your screen to its edit
display, you should use the EDIT subcommand TYPE. If you use the PAl
key to place your virtual machine in the CP environment, and the screen
status area indicates CP READ, use the CP command BEGIN to restore edit
mode. Then enter the TYPE subcommand. If you enter a subcommand other
than TYPE, the entire screen is not restored, and the top two lines (the
editor's data and response fields) may contain lines of the CP response.

If your virtual machine was in input mode when you entered the CP
command, you may continue entering lines of input; the third through the
ninth lines of the screen are restored after you enter the next line.

If you entet a CP command that does not produce a response, then
there is no change to the screen.

The VERIFY subcommand allows you to alter the verification columns when
you are editing a file or to cancel verification altogether. If, for
example, you are editing a file with records longer than 80 characters,
each line is displayed on two lines of the display screen. Sometimes,
you may be editing only specific columms in a file, and do not need to
see the lines displayed in their entirety. To see only the first 80
columns, you could enter:

verify 1 80

Or, if you wanted to see the last 80 columns of a file with
120-character records, you could enter:

verify 41 120

Appendix C. Considerations for 3270 Display Terminal Users 403

If you cancel verification entirely by entering:

verify off

then modifications that you make to the file (including movement of the
current line pointer) are not reflected on the disFlal screen until you
use the TYPE subcommand.

THE CURRENT LINE POINTER

There is one aspect of the C"S Editor on a 3270 that is much the same as
on a typewriter terminal: you must still be concerned with the
positioning of the current line pointer, and you can only add or modify
data on the current line, even though you see many lines being
displayed. The current line, on the screen, appears near the middle of
the output area of the screen (see Figure 36).

To move the current line pointer, you can use the subcommands OP and
DOWN: UP indicates movement toward the top of the file and DOWN
indicates movement toward the bottom of the file. When you issue either
of these subcommands, the entire display of the file shifts down the
screen (if you use the UP subcommand) or up the screen (if you use the
DOWN subcommand) .

If you have never used the CMS editor on a typewriter terminal, you
may find the UP and DOWN subcommands confusing to use, so you can use
instead the BACKWARD (UP) and FORWARD or NEXT (tOWN) subcommands to
shift the display backward (toward the top of the file) and forward
(toward the bottom of the file).

You can also use the EDIT subcommand SCROLL, which allows you to
display successive screen displays, and to examine an entire file
quickly. For instance, on a 3210 Model 2 display terminal, you enter
the SCROLL subcommand with no operands, it is the equivalent of entering
the subcommand DOWN(FORWAR~ 20, which results in the screen changing
to display the 20 lines following the lines currently being displayed.
If you enter:

scroll 10

The SCROLL subcommand executes 10 times, placing the screen in a MORE~ ••
state at the end of each display.

If the file you are editing has verification column settings greater
than 80 characters (so each line takes up two display lines), then the
SCROLL subcommand moves the screen 10 lines at once instead of 20.

The UP (or BACKWARD) counterpart of SCROLL is SCROLLOP ,which can be
abbreviated SUe

KEYS

You can enhance the use of the CMS editor on a 3270 by setting the
program function (PF) keys on your terminal to correspond to seme of the
more frequently used EDIT subcommands, such as UP, DOWN, SCROLL, FILE,
SAVE, and so on. You can also set a program function key to contain a
line of data, so that if you are creating a file that has many duplicate
lines in it, you can use the PF key instead of having to key in the
entire line each time.

qOq IBM VM/SP CMS User's Guide

You can set a program function key while you are in edit mode either
by using the PAl key -- REQ key on a 3278 Model 2A to enter the CP
environment or by using the #CP function.

USING THE EDITOR IN LINE MODE

The editor's display mode is the most common format of operation on a
3270. There are, however, instances when it is not possible or not
desirable to use the editor in display mode. For these instances, you
should use the line mode of operation, which is the equivalent to using
a typewriter terminal. When you use line mode, each EDIT subcommand you
enter, and the response (if you have verification on), is displayed, a
line at a time, on the screen in the output display area. There is no
full screen display of the file.

You need only be concerned with using line mode if you are connected
to VM/SP by a remote 3270 line, or if you are editing a file from within
an EXEC and you want to control the screen display. Although it is
possible to use the editor in line mode on a local 3270, it is rarely
necessary for normal editing purposes.

When you invoke the editor from a remote 3270, you are placed in line
mode by the editor. The advantage of using the 3270 in line mode
(particularly on a remote editor) is that the editor can respond more
quickly to display requests. When you use display mode, the editor has
to write out the entire output display area when you move the current
line pointer; in line mode, it has only to write a single line.

If you want to use display mode, you enter the EDIT subcommand:

format display

The editor begins operating in display mode, and you can use the special
editing functions available in display mode.

However, when you are using a remote 3270 in display mode, and you
enter the INPUT subcommand to begin entering input lines, the screen is
cleared, and your input lines are displayed as if you were in line mode,
beginning at the top of the screen. When you enter a null line to return
to edit mode, the editor returns to a full screen display.

You can resume editing in line mode by using the subcommand:

format line

If you invoke the editor from a CMS EXEC, but you do not want the screen
cleared when the editor gets control, you can specify the NODISP option
on the EDIT command line:

edit test file (nodisp

This places the 3270 in line mode, so that the lines already on the
screen are not erased.

Appendix C. Considerations for 3270 Display Terminal Users 405

The 327 0 remains in line mode for the remainder of the edit session,
and you cannot use the FORMAT subcommand to place it in display mode.

USING SPECIAL CHARACTERS ON A 3270

There are two special characters available on a typewriter terminal
whose functions have no meaning on a display terminal. They are the tab
character (X'05') and the backspace character (X'16'). For most file
creation and editing purposes, you will probably not need to use the
backspace, but many CMS filetypes use tab settings to set up the proper
column alignment in files. There are two methods you can use to enter
any special character on a 3270 (including tabs), and an additional
method of using tabs, which involves setting a program function key. In
addition, the tab character can also be set via the CP command TERMINAL
TABCHAR.

To enter any special character (a backspace is used in this example)
you can either: .

1. Enter another character at the appropriate place in the record, and
then use the ALTER subcommand to alter that character to the
hexadecimal value of the character you want to represent (a
backspace character is a X'16'). For example:

input ABC»> __ _
alter> 16 1 *

When you enter backspaces and overstrike characters on a 3270,
however, the characters and backspaces each occupy character
positions, so that a single compound character occupies three
character positions on the screen. If the image setting is CANON,
and you want to use the backspace to enter compound characters, you
must not enter the backspace character first.

2. Before you begin to create the file, use the CMS SET command to
define some other character as the backspace character:

set input > 16

CMS then translates all occurrences of the character> to X'16'.

If you need to correct a line that contains backspaces, you can
reverse the above sequence; alter the X'16' characters to asterisks and
enter the CHANGE subcommand.

You can set up a program function key to operate like a tab key on a
typewriter terminal. You must use the CP SET command as follows:

SET PFnn TAB n1 n2 ••• nn

PFnn is any valid function key from PFl to PF24.

nl n2 ••• nn are the logical tab settings desired, expressed as decimal
numbers. Invalid tab settings are ignored. You can specify
the setting values in any order, but they are normally
specified in ascending order.

406 IBM VM/SP CMS User's Guide

~
;J

You can define different PF keys with different tab settings for
different filetypes. Whenever you press the PF key you have set for a
tab, the cursor moves to the corresponding position in the user input
area, in much the same way that a typing element on a typewriter would
move to the next tab stop.

If you press the PF tab key to a position that already contains a
data character, the data remains intact. If there is no data in that
position, a tab character is entered in the file. The effect of the tab
in the file depends, as in normal usage, on the image setting of the
editor. If the image setting is set to on (the default), the tab expands
to an appropriate number of blanks, to correspond to the settings in
effect for the TAB SET subcommand. When the TABSET settings match the

.tab settings of the PF key, then any lines you enter in the user input
area appear exactly as they will appear in the output display area.

When you edit a file on a 3270 terminal in display mode, you should not
copy a line containing tabs or backspaces into the user input area. The
tabs or backspaces are converted to blanks (X'40'). Similarly, if the
line contains VM/SP logical line editing symbols that have been entered
as data characters, the symbols are reinterpreted when you enter the
line.

If you use the SET OUTPUT function to display nonprintable characters
in CMS, the character translations do not appear when the editor is in
display mode. They are, however, displayed when the editor is in line
mode.

Using APL with a 3270

If you have a 3277 or 3278 display station equipped with an APL
keyboard, you can use APL on a 3270 terminal in CMS. You invoke the APL
virtual machine by issuing the command specified in the VSAPL Program
Product documentation. This command invokes the VSAPL-CMS interface
program. You are then prompted to press the APL On/Off key which is on
your terminal; pressing this key changes the keyboard to APL character
input mode. You are then prompted to press the Enter key to continue.

EBCDIC or APL characters can always be displayed; the APL On/Off key
does not change this. The VSAPL-CMS interface program issues the
TERMINAL APL ON command for you and selects the appropriate translation
tables. The TERMINAL APL ON command automatically forces a TERMINAL
TEXT OFF condition. The interface program then invokes the VSAPL
program. When the VSAPL ready message appears on the screen, you can
use APL.

You can send a copy of your display screen to a locally or remotely
attached printer. Be sure that the printer 'you send your output to has
the APL feature installed; if it does not, the APL characters are not
printed. Most system printers do not have an APL print chain; therefore
you may need to use the copy function to direct your screen output
displays to a 3284, 3286, or 3287 printer.

Appendix C. Considerations for 3270 Display Terminal Users 407

ERROR SITUATIONS

If you do not have the APL hardware feature installed on your 3211 or
3278 but you invoke APL:

• The VSAPL program is invoked and the TERMINAL APL ON command is
issued.

• You cannot communicate with the VSAPL program.

• Any APL characters that are written to the screen appear as blanks.

If you have the APL feature installed on your terminal, but invoke
APL manually without issuing the TERMINAL APL ON command or issue
TERMINAL APL OFF at sometime during APL processing:

• The VSAPL program is activated.

• You cannot ccmmunicate with the VSAPL program.

• Any APL characters written to the screen appear as blanks.

If you attempt to use the APL O/S (overstrike) key when the APL
hardware key is set off, it acts as a backtab key and repositions the
cursor to the beginning of the user input area.

LEAVING THE APL ENVIRONMENT

Issue the APL ccmmand:

) OFF

to log off VM/SP.

Issue the APL command:

) OFF HOLD

to return to CMS.
program, which:

This APL command invokes the VSAPL-CMS interface

• Issues the TERMINAL APL OFF command

• Prompts you to press the APL hardware key

• Returns to CMS

Noi~: The APL hardware feature is a key, not a switch. Each time you
press the APL key you reverse its on/off setting. To determine whether
APL is on or off, press a key that represents a special APL character.
If the character displayed is an APL character, the hardware APL feature
is set on. If the character displayed is a non-APL character, you must
press the APL key once to set the APL feature on.

408 IBM VM/SP eMS User's Guide

Using the 3277 Text Feature

~
~ If you have a 3277 or 3278 display station equipped with the Data

Analysis Text keyboard, you can key in, as well as display, all of the
special text characters. For a description of these characters, see the
!~L~~ T~rminsl yse~§ Guig!. These characters are in addition to those
available with standard EBCDIC 3270 terminals. If you have a suitably
equipped printer attached to your 3270, you can use the SET PFnn COpy
function to obtain a printed copy of the screen.

When you want to activate the text feature, and use the special'
characters, enter the command:

cp terminal text on

The TERMINAL TEXT ON command automatically forces the TERMINAL APL OFF
command. NOw, you can use any of the special characters when you enter,
change, or locate text lines in a file.

ERROR SITUATIONS

If you do not have the appropriate text hardware feature on your 3270,
but attempt to display a file that contains the characters, the
characters appear as blanks on a 3277, and as hyphens on a 3276 and a
3278.

If you inadvertently issue the TERMINAL TEXT ON command while using a
terminal that does not have the text capability, you must do the

~ following to return to normal operating procedures:

1. Press the PAl key to enter the CP environment.

2. Key in, in uppercase letters only, the command line:

TERMINAL TEXT OFF You leave the special text environment by
entering the command:

cp terminal text off

LEAVING THE TEXT ENVIRONMENT

You leave the special text environment by entering the command:

cp terminal text off

1. The 3270 text hardware feature is activated by a key, not a switch.
Each time you press the TEXT dn/Off key, you· reverse its setting.
When the red light on the text keyboard is illuminated, the text
feature is on.

2. Compound characters, such as a character/backspace/character
combination, are still entered and displayed as three characters.
The screen position occupied by the backspace character appears as
a blank because the character (X'16') is nondisplayable.

Appendix C. Considerations for 3270 Display T~rminal Users 409

410 IBM VM/SP CKS User's Guide

Appendix D. Sample Terminal Sessions

This appendix provides sample terminal sessions showing you how to use:

• The CMS Editor (using context editin~ , and the CMS COPYFILE, SORT,
RENAME, and ERASE commands

• The CMS Editor (using line-number editing)

• CMS OS simulation to create, assemble, and execute a program using OS
macros in the CMS environment

• CMS VSE/AF simulation to create, assemble, and execute a program
using macros in the CMS/DOS environment.

• Access method services under CMS, to create VSAM catalogs and data
spaces, and to use the define and repro functions of AMSERV

Appendix D. Sample Terminal Sessions 411

Sample Terminal Session Using the CMS Editor and
CMS File System Commands

This terminal session shows you how to create a CMS file and make changes to it using the
CMS Editor, and then manipulate it using the CMS file system commands, COPYFILE, ERASE,
RENAME, and SORT.

!Qt~: Throughout this terminal session whenever a TYPE subcommand or command is issued
that results in a display of the entire file, the complete display is not shown; omitted
lines are indicated by vertical ellipses (.~.). When you enter the TYPE command or
subcommand, you should see the entire display.

edit command data
NEW FILE:
EDIT:

2 image
ON
tabs 1 12 80
trunc 72

3 input
INPUT:
copyfile copy cms files
sort sort ems files in alphameric order by specific columns
edit create a ems file
edit modify a ems file
rename change the name of a cms file
punch punch a copy of a cms file on cards
print print a ems file
erase erase a cms ~ile
listfile list information on a cms file
state verify the existence of a cms file
statew verify the existence of a ems file on a read/write disk
readcard read a ems file from your card reader onto disk
disk dump punch a ems file in ems disk dump format into your virtual card punch for

4 TRUNCATED

5

DISK DUMP PUNCH A CMS FILE IN CMS DISK DUMP FORMAT INTO YOUR VIRTUAL CA
disk load read a disk dump file onto disk
compare compare the contents of cms disk files
tape dump dump ems files onto tape
tape load read ems files onto disk from tape

EDIT:

Use the EDIT command to invoke the CMS Editcr to create a file with a filename of
COMMAND and a filetype of DATA. Since the file does not exist, the editor issues
the message NEW FILE.

2 Check that the image setting is ON. This is the default for all filetypes except
SCRIPT. Then, set the logical tab stops for this file at 1, 12, and 80, and set a
t~~~catic~ li~it of 72_

3 Enter the subcommand INPUT to enter input mode and begin entering lines in the file.
For these input files, you should press the Tab key (or equivalent) on your terminal
following each CMS command name. If there is a physical tab stop on your terminal
in column 12, the input data appears aligned.

4 The message, TRUNCATED, indicates that the line you just entered exceeded the
truncation limit you set for the file (column 72). The editor displays the line, so
you can see how much of the line was accepted. Your virtual machine is still in
input mode, so continue entering input lines.

5 To get out of input mode, enter a null line (press the Return or Enter key without
entering any data). The editor responds with the message EDIT:.

412 IEM VM/SP CMS User's Guide

6

7

top
TOF:
type *
TOF:
COPYFILE COpy CMS FILES

TAPE LOAD READ CMS FILES ONTO DISK FROM TAPE
A EOF:

locate /disk dump
DISK DUMP PUNCH A CMS FILE IN CMS DISK DUMP FORMAT INTO YOUR VIRTUAL CA

9 replace disk dump punch a cms file onto cards
input
INPUT:
type display the contents of a cms file at your terminal
rename alter the name of a cms file
sort resequence the records in a cms file
copyfile reformat a file, by columns
comprae verify that two files are identical

10
EDIT:
change /rae/are/
COMPARE VERIFY THAT TWO FILES ARE IDENTICAL

11 bo
TAPE LOAD READ CMS PILES ONTO DISK FROM TAPE
input
INPUT:

12
EDIT:

13 file
R;

6 Use the TOP subcommand to position the current line pointer at the top of the file.
The editor responds TOF:.

7 Use the TYPE subcommand to display the entire file. Note that all of your input
lines are translated to uppercase characters, and that the tab characters you
entered have been expanded, so that the first word following each command name
begins in column 12.

8 The message EOF: indicates that the end of the file is reached. You can issue the
LOCATE subcommand to locate a line. Since you are at the bottom of the file, the
editor begins searching from the top of the file. Notice that you can enter the
character string you want to locate in lowercase characters; the editor translates
it to uppercase to locate the line. The editor displays the line.

9 Use the REPLACE subcommand to replace this line, in a shortened form so that it is
not truncated. Remember to enter a tab character after the command name; when you
enter the line, the tab stop does not have to be in column 12. Then, use the INPUT
subcommand again to resume entering input. The lines that you enter next are written
into the file following the DISK DUMP line.

10 When you make a spelling error or other mistake, you may want to correct it
immediately. Enter a null line to· return to edit mode, and use the CHANGE subcommand
to correct the error. In this example, the string RAE is changed to ARE. The
editor displays the line as changed.

11 Use the BOTTOM subcommand to move the cttrrent line pointer to point to the last line
in the file. Enter input mode with the INPUT subcommand.

12 If you enter input mode and decide that you do not want to enter input lines, all
you have to do to return to edit mode is enter a null line.

13 To write the file onto disk, use the FILE subcommand. This writes it onto disk
using the name with which you invoked the editor, COMMAND DATA. The CMS ready
message indic~tes that you are in the CMS command environment.

Appendix D. Sample Terminal Sessions 413

14 type command data

COPYFILE COpy CMS FILES
SORT SORT CMS FILES IN ALPHAMERIC ORDER BY SPECIFIC COLUMNS

TAPE LOAD READ CMS FILES ONTO DISK FROM TAPE
R;

15 edit command data
EDIT:

16

save
EDIT:

17 fname comm2
file
R;

18 copyfile comm2 data a (lowcase
R;

19 copyfile command data a comm2 data a (ovly specs
DMSCPY601R ENTER SPECIFICATION LIST:
1-12 1
R;

20 type comm2 data

21

COPYFILE
SORT
EDIT
EDIT
RENAME
PUNCH
PRINT
ERASE
LISTFILE
ht
R;

Copy ems files
Sort cms files in alphameric order by specific columns
Create a cms file
Modify a cms file
Change the name of a cms file
Punch a copy of a cms file on cards
print a cms file
Erase a cms file
List information on a cms file

14 To display the entire file at your terminal, use the CMS TYPE command. Note any
errors that you made that you might want to correct.

15 Use the EDIT command to edit the file COMMAND DATA again. This time, since the file
exists, the editor d.oes not issue the message, NEW FILE:

16 While you are in edit mode, make any changes that you need to; then issue the SAVE
subcommand to save these changes, and replace the existing copy of the file onto
disk.

17 Use the FNAME subcommand to change the filename of the file to COMM2 (the filetype
remains unchanged). When you 1ssue the FILE subcommand this time, the file is
written onto disk with the name COMM2 DATA.

18 You can rewrite the entire file, COMM2 DATA in lowercase characters, using the
COPYFILE command with the LOWCASE option.

19 The file COMM2 DATA is now all lowercase characters (you can display the file with
the TYPE command if you want to verify it) • However, the command names, and the
first character of the description should be uppercase characters. You can'use the
COPYFILE command again, to overlay the original uppercase characters of COMMAND DATA
in columns 1 through 12 over the lowercase characters in columns 1 through 12 of
COMM2 DATA.

20 Use the TYPE command to verify that the COPYFILE command did, in fact, overlay only
the columns that you wanted.

21 The HT Immediate command suppresses the display of the remainder of the file; you
can see from the first few lines that the format of the file is correct.

414 IBM VM/SP CMSUser's Guide

) 22 listfile * data
COMMAND DATA
COMM2 DATA
R;

Al
A 1

23 sort comm2 data a command sort a
DMSSRT604R ENTER SORT FIELDS:
1 9
R;

24 type command sort

COMPARE
COMPARE

TYPE

R;

Verify that two files are identical
Compare the contents of cms disk files

Display the contents of a cms file at your terminal

25 copyfile comm2 data a function data a (specs
DMSCPY601R ENTER SPECIFICATION LIST:
12-72 1 1-9 70
R;

26 type function data

27

Copy cms files
Sort cms files in alphameric order by specific columns

Read cms files onto disk from tape
R;
sort function data a function sort a
DMSSRT604R ENTER SORT FIELDS:
1 70
R;
type function sort
Alter the name of a cms file
Change the name of a cms file

Verify the existence of a cms file on a read/write disk
R;

COPYFILE
SORT

TAPE LOAD

RENAME
RENAME

STATEW

22 The LISTFILE command .lists your two files with the filetype of DATA. (If you
previously had files with these filetypes, they are also listed.)

23 To sort the file COMM2 DATA into alphabetic order, by command, issue the SORT
command. When you are prompted for the sort fields, enter the columns that contain
the command names, 1 through 9.

24 The output file from the SORT command is named COMMAND SORT. You can use the TYPE
command to verify that the records are now sorted alphabetically by command.

25 To create another copy of the file, this time with the command names on the right
and the functional description on the left, use the COPYFILE command with the SPECS
option again. To create a file this way, you must know the columns in your input
file (COMM2 DATA) and how you want them arranged in your output file (FUNCTION
DAT~. Columns 1 through 9 contain the command names; columns 12 through 72 contain
the descriptions. The specification list entered after the prompting message
indicates that columns 12 through 72 should be copied and placed beginning ~n column
1, and that columns 1 through 9 should be copied beginning in column 70.

26 Verify the COPYFILE operation with the TYPE command.
27 Sort the file FUNCTION DATA so that the functional descriptions appear in alphabetic

order. You may also want to display the output file, FUNCTION SORT.

Appendix D. Sample Terminal Sessions 415

28 listfile
COMMAND DATA A1
COMM2 DATA A1
COMMAND SORT A1
FUNCTION DATA A1
FUNCTION SORT A1
R;

29 erase command data
R;

30 rename comm2 data a command data a
R;
listfile
FILENAM E
FUNCTION
COMMAND
COMMAND
FUNCTION
R;

* * a (label
FILETYPE FM
SORT A1
DATA A1
SORT A1
tATA A1

31 edit function sort
EDIT:

32

33

zone
1 80

zone 60
change I // *

FORMAT
F
F
F
F

Alter the name of a cms file
Change the name of a cms file

LRECL
80
80
80
80

RECS
22
22
22
22

BLOCKS
3
3
3
3

DATE
10/13/15
10/13/15
10/13/15
10/13/15

Verify the existence of a cms file on a read/write disk
EOF:

34

35

top
TOF:
find List
NOT FOUND
EOF:
case

U
case m
find List
List information on a cms file

TIME
1:52:03
7:48:52
7:48:15
1:51:37

LABEL
AB:C 191
ABC191
ABC 191
ABC 191

RENAME
RENAME

STATEi

LISTFILE

28 If these are the only files on your A-disk, the LISTFILE command entered with nc
operands produces a list of the files created so far.

29 The file COMM2 was created for a workfile, in case any errors might have happened.
Since you no longer need the original file, COMMAND DATA, you can erase it.

30 Use the RENAME command to rename the workfile COMM2 DATA to have the name COMMAND
DATA. The LISTFILE command verifies the change.

31 To begin altering the file FUNCTION SORT, invoke the editor again.
32 The ZONE command requests a display of the current zone settings, which are columns

1 and 80. When you issue the command ZONE 60, it changes the settings to columns 60
~-~ on ~_ ~~_~ __ " _____ ~ m_~4~u ~_~_ 4 ___ '"m_~ 1 ~~~_"n~ ~o

-~- vv, _v ~~_~ ~_y ___ ~_~ -----1 __ ~ __ ~ _______ . ~ ____ ~- ~J_

33 The CHANGE subcommand requests that the first appearance of five consecutive blanks
on each line in the file be compressed. The edftor displays the results of this
CHANGE request by displaying each line changed (which is each line in the file). The
net effect is to shift the command column 5 spaces to the left.

34 Position the current line pointer at the top of the file, and then issue a FIND
subcommand to move the line pointer to the line that begins with "List".

35 The editor indicates that the line is not found. Checking the current setting fo~
the CASE subcommand, you can see that it is U, or uppercase, which indicates that
the editor is translating your input data to uppercase. You can issue the CASE M
subcommand to change this setting, then reissue the FIND subcommand.

416 IBM VM/SP CMS User's Guide

,
,1

iJ

37

3A

3q

40

41

42

43

44

36

37

38

39

40

41
42
43

) 44

change Ion a cms/about a CMS
NOT FOUND
= zone 1 *
List information about a CMS file
top
TOF:
change /cms/CMS/ *
Alter the name of a CMS file
Change the name of a CMS file

Verify the existence of a CMS
EOF:
save
EDIT:
top
TOF:
next
Al ter the name of a CMS file
$dup
Alter the name of a CMS file
change /name/filetype/

file

Al ter the filetype of a CMS file
next
Change the name of a CMS file
change /name/filename/
Change the filename of a CMS file
next

on a read/write disk

Compare the contents of CMS disk files
next
Copy CMS files
find M
Modify a CMS file
up
List information about a CMS file
i Make a copy of a CMS disk file
top
TOF:

LISTFILE

RENAME
RENAME

STATEW

RENAME

RENAME

RENAME

RENAME

RENAME

COMPARE

COPYFILE

EDIT

LISTFILE
COPYFILE

The editor locates the line and displays it. You want to change the character string
"on a cms" to "about a CMS". The editor does not find the string you specify because
the zone setting for columns 60 through 80 is still in effect. You can enter the
ZONE subcommand, and reissue the CHANGE subcommand, or you can enter the = (REUSE)
subcommand to stack the CHANGE subcommand, and enter the ZONE subcommand to execute
first.
The ZONE subcommand is executed, then the CHANGE subcommand. The editor displays the
changed line.
At the top of the file, enter another global change request, to change lowercase
occurrences of the string cms to uppercase. The editor displays each line changed.
When the EOF: message indicates that the end of the file is reached, you can save
the changes made during this edit session with the SAVE subcommand before
continuing.
Move the current line pointer to point to the first line in the file. You want to
add an entry that is similar; use the $DUP edit macro to duplicate the line, then
change the copy that you made of the line.
You can change the word name to filename in the next line also.
You can scan a file, a line at a time, by issuing successive NEXT subcommands.
To insert a line beginning with the character M, and to maintain alphabetic
seguencing, use the FIND subcommand to find the first line beginning with an M. The
line to be inserted begins with the characters MA, so you want to move the line
pointer up.
You can insert a single line into a file with the INPUT subcommand. Here, the INPUT
subcommand is truncated to I, so that when you space over to write the command name
in the right column, you can align it (you only have to allow for the two character
spaces use by "i "

Appendix D. Sample Terminal Sessions 417

45

46

47

ICOPYFILE
Copy CMS files
n
Create a CMS file
n
Display the contents of a CMS file at your terminal
n
Dump CMS files onto tape
n
Erase a CMS file
up 3
Create a CMS file
i Delete a file from a CMS disk
file
R;

48 type function sort a

49

50

Alter the name of a CMS file
Alter the filetype of a CMS file
Change the filename of a CMS file

Verify the existence of a CMS file on a read/write disk

R;
edit function sort
zone 58
change I II * *
Alter the name of a CMS file
Alter the filetype of a CMS file
Change the fi~ename of a CMS file

Verify the existence of a CMS file on a read/write disk
EOF:
top
TOF:
change III I *
Alter the name of a CMS file
Alter the filetype of a CMS file
Change the filename of a CMS file

RENAME
RENAME
RENAME

STATEW

COPYFILE

EDIT

TYPE

TAPE DUMP

ERASE

EDIT
ERASE

RENAME
RENAME
RENAME

STATEW

, RENAME
1 RENAME
,; RENAME

Verify the existence of a CMS file on a read/write disk ,STATEW
EOF:

45 Move the line pointer to the top of the file and begin scanning again. A diagonal
(I) is interpreted as a LOCATE subcommand.

46 The NEXT subcommand can be truncated to "N".
47 In front of the line beginning "Display", insert a line beginning with "Delete". If

you want to make any other modifications, do so. otherwise, write this file onto
disk with the FILE sUbcommand.

48 Verify your changes.
49 Edit the file again. To compress unnecessary spaces in right hand columns, change

the zone setting. This time, issue a CHANGE subcommand that will delete all blank
spaces occuring after column 58. Since some changes you made to the file might have
spoiled the alignment in the command column, this CHANGE subcommand should realign
all of the columns.

50 Return the current line pointer to the top of the file. Change a null string to the
string "I " for all lines in the file; since the left zone is still column 58, the
characters are inserted in columns 58 and 59.

418 IBM VM/SP CMS User's Guide

) 51 zone 1 *
top
TOF:
c //1 / *
I Alter the name of a CMS file RENAME
I Alter the filetype of a CMS file RENAME , Change the filename of a CMS file RENAME

, Verify the existence of a CMS file on a read/write disk I STATEW
EOF:

52 top
TOF:
next
I Alter the name of a CMS file
tabset 72
repeat *
overlay ,
, Alter the name of a CMS file
, Alter the filetype of,a CMS file
I Change the filename of a CMS file
I Compare the contents of CMS disk files

I RENAME

RENAME
RENAME
RENAME
COMPARE

, Verify the existence of a CMS file on a read/write disk STATEW
EOF:
bottom
I Verify the existence of a CMS file on a read/write disk I STATEW

53 input
54 zone 1 72

c / I-I 1 *
top
TOF:

55 input
c / I-I 1 *

56 file
R;
print function sort
R;

51 Change the left zone setting to column 1 and let the right zone be equal to the
record length; issue the CHANGE subcommand to insert the "I " ~n columns 1-and 2.
CHANGE can be abbreviated as PC".

52 At the top of the file, change the TABSET subcommand setting to 72. This makes
column 72 the left margin. The REPEAT * subcommand, followed by the OVERLAY
subcommand, indicates that all the lines in the file are to be overlaid with a lin
the leftmost column (column 72).

53 When you enter this INPUT subcommand, enter a number of blank spaces following it;
this places a blank line in the file.

54 Reset the ZONE setting to columns 1 and 72. The CHANGE subcommand indicates that all
blanks on this line should be changed to hyphens (-). Only the blanks within the
specified zone are changed.

55 Insert another blank line at the top of the file and change it to hyphens.
56 Write the file onto disk and use the CMS PRINT command to spool a copy to the

offline printer.

Appendix D. Sample Terminal Sessions 419

-

Sample Terminal Session Using Line-Number Editing

This terminal session shows how a terminal session using right-hand€d line-number editing
might appear on a typewriter terminal. The commands function the same way on a display
terminal, but the display is somewhat different. When you enter these input lines, you
should have physical tab stops set at your terminal at positions 16 and 22 (for assembler
columns 10 and 16; the difference compensates for the line numbers, as you will see). On
a display terminal, tab settings have no significance; once the line is in the output
display area, it has the proper number of spaces.

edit test assemble
NEW FILE:
EDIT:

2 linemode right
input
INPUT:

3 Q0010 * sample of linemode right

4

5

6

7

00020 test csect
00030 balr 12,0
00040 using *,12
00050 st 14,sav14
00060 wrterm testing •••
00070 1 14,sav14
00080 br 14
00090 end
00100

EDIT:
60
00060 WRTERM
c /testing ••• /'testing ••• '
00060 WRTERM
80 .
00080 BR 14
input
INPUT:

TESTING •••

'TESTING ••• •

Use the EDIT command to invoke the eMS Editor. Since this is a new file, the editor
issues the NEW FILE message.

2 Issue the LINEMODE 'subcommand to indicate that you want to begin line-number
editing. For ASSEMBLE flIes, you cannot have line numbers on the left, because the
assembler expects data in columns 1 through 7.

3 As soon as you issue the INPUT subcommand, the editor begins prompting you to enter
input lines. For convenience in entering lines, the line numbers appear on the left,
as they would if you were using left-handed line-number editing. In your ASSEMBLE
file, however, the line numbers are ac~ually on the right.

4 When you are have finished entering these input lines, enter a null line to return
to edit mode from input mode.

5 To locate lines when you are using line-number editing, you can enter the line
number of the line. In this case, enter 60 to position the current line pointer at
the line numbered 00060. The editor displays the line.

6 Issue the CHANGE subcommand to place quotation marks around the text line for the
WRTERM macro. The editcr redisplays the line, with the change.

7 Issue the nnnnn subcommand, specifying line number 80, and use the INPUT subcommand
so you can begin entering more input iines.

420 IBM VM/SP CMS User's Guide

)

'~

,;

8 00083 sav14 ds f
00085 wkarea ds 3d
OOOA? flag ds x
0008A runon equ x'SO'
OOOS<) runoff equ x'40'

<) RENUMBER LINES
EDIT:
linemode off
serial on abc
save

10 EDIT:
11 linemode right

type
00130 RUNOFF EQU X'40'

12 verify 1 * type
00130 RUNOFF EQU X'40' ABCOO130

13 135 runmix egu x'20'
14 50

00050 ST 14,SAV14 ABCOO050
input
INPUT:
00053 tm flag,runon
00055 bcr 1, 14
00057

15 EDIT:
top
TOF:
next
* SAMPLE OF LINEMODE RIGHT ABCOOO10

16 restore

S When you begin entering input lines between two existing lines, the editor uses an
algorithm to assign line numbers.

q The editor ran out of line numbers, since the next line in the file is already
numbered 90. You must renumber the lines. Before you can renumber the lines, you
must turn line-number editing off. Before~iSsuing the SAVE subcommand, which writes
the file and its new line numbers onto disk, you can issue the SERIAL subcommand.
SERIAL ABC indicates that you want the characters ABC to appear as the first three
characters of each serial number.

10 The EDIT message indicates that the SAVE request has completed.
11 Issue the LINEMODE subcommand to restore line-number editing. Use the TYPE

subcommand to verify the position of the current line pointer.
12 If you want to see the serial numbers in columns 12 through SO, issue the VERIFY

subcommand, specifying *, or the record length. Normally, the editor does not
display the columns containing serial numbers while you are editing.

13 You can use the nnnnn subcommand to insert individual lines of text. This subcommand
inserts a line that you want numbered 135, and places it in its proper position in
the f·ile. Note that although, in this example, the curren·t line pointer is
positioned at line 130, it does not need to be at the proper place in the file. When
the subcommand is complete, however, the current line pointer is positioned
following the line just inserted.

14 Position the line pointer at the line numbered 50, and again begin entering the
input lines indicated.

15 Enter a null line to return to edit mode, move the current line pointer to the top
of the file, and display the first line.

~ 16 The RESTORE subcommand restores the default settings of the editor, and the the
~ verification columns are restored to 1 and 72, so that line numbers are not

displayed in columns 12 through SO.

Appendix D. Sample Terminal Sessions 421

17 type *
* SAMPLE OF LINEtiODE RIGHT
TEST CSECT

BALR 12,0
USING *,12
ST 14,SAV14
TM FLAG,RUNON
BCR 1,14
WRTERt1 ·TESTING ••• •
L 14,SAV14
BR 14

SlV14 DS F
WKllREll DS 3D
FLllG DS X
RUNON EQU X'80'
RUNOFF EQU X'40'
RUN!'!IX EQU X'20'

END
EOF:
file

18 RESERIALIZllTION SUPPRESSED
R;

19 type test assemble

* SAMPLE OF LINEMODE RIGHT ABCOO010
TEST START X'20000' ABCOO020

BllLR 12,0 ABCOO030
USING *,12 ABCOO040
ST 14,SAV14 ABCOO050
Tti FLAG,RUNON 00053
BCR 1,14 00055
TYPE 'TESTING ••• ' ABCOOO60
L 14,SllV14 ABCOO070
BR 14 ABCOO080

SAV14 DS F ABCOO090
WKAREA DS 3D ABC00100
FLAG DS .X ABC00110
RUNON EQU X'80' ABCOO120
RUNOFF EQU X'QO' ABCOO130
RUNMIX EQU X'20' 00135

END ABC00140

17 Use the TYPE subcommand to display the file.
18 When you issue the FILE subcommand to write the file onto disk, the editor issues

the message RESERIllLIZllTION SUPPRESSED to indicate that it is not going to update
the line numbers, so that the current line numbers match the line numbers as they
existed when the SAVE subcommand was issued.

19 If you want to see how the file exists on disk, use the CftS TYPE command to display
the file. Note that the lines inserted after the SAVE subcommand do not have the
initial ABC characters, and that they retain the line numbers they had when they
were inserted.

422 IBM VM/SP CftS User's Guide

~

) Sample Terminal Session for OS Programmers

'\
,;

The following terminal session shows how you might create an assembler language program
in eMS, assemble it, correct assembler errors, and execute it. All the lines that appear
in lowercase are lines that you should enter at the terminal. Uppercase data represents
the system response that you should receive when you enter the command.

The input data lines in the example are aligned in the proper columns for the
assembler; if you are using a typewriter terminal, you should set your terminal's tab
stops at columns 10, 16, 31, 36, 41, and 46, and use the Tab, key when you want to enter
text in these columns. If you are using a display terminal, when you use a PF key defined
as a tab, or some input character, the line image is expanded as it is placed in the
screen output area.

There are some errors in the terminal session, so that you can see how to correct
errors in eMS.

edit ostest assemble
NEW FILE:
EDIT:
input
INPUT:
dataproc

rO
r1
r2
rl0
r12
r13
r14
r15

csect
print
space
egu
egu
egu
egu
egu
egu
egu
egu
space
stm
balr
using
st
la
st
lr
space

nogen

0
1
2
10
12
13
14
15

r14,r12,12(r13) save caller's regs
r12,0 establish
*,r12 addressability
r13,savearea+4 store addr of caller's savearea
r15,savearea get the address of my savearea
r15,8(r13) store addr in caller's savearea
r13,r15 save addr of my savearea

*open files and check that they opened okay

checkout

process

space
la
open
using
la
tm
bnz
la
b
la
tm
bnz
la
b
space
egu
get

r3,0 initially set return code
(indata,outdata, (output» open files
ihadcb,rl0 get dsect to check files
r10,indata prepare to check output file
dcboflgs,x'10' everything ok?
checkout ••• continue
r3,100 set return code
exit ••• exit
r10,outdata check output file
dcboflgs,x' 10' is it okay?
process
r3,200 set return code
exit

* indata rea,d a record from input file

The EDIT command is issued to create a file named OSTEST ASSEMBLE. Since the file
does not exist, the editor indicates that it is a new file and you can use the INPUT
subcommand to enter input mode and begin entering the input lines.

Appendix D. Sample Terminal Sessions 423

2

exit

lr
put
b
space
equ
close
1
lr
1
1m
br
space

savearea dc
indata dcb

EDIT:
$mark

3 save# input
EDIT:

4

INPUT:

out data

EDIT:
file
R;

deb
dcbd
space
end

r2,r1
outdata, (2)
process

*

save address of record
move it to output
continue until end-of-file

(indata, , outda tal close files
r13,savearea+4 addr of caller's save area
r15,r3 load return code
r14,12(r13) get return address
rO,r12,20(r13) restore regs
r14 bye •••

18f'0'
ddname=indd,macrf=gl,dsorg=ps,recfm=f,lrecl=80,

eodad=exit
ddname=outdd,macrf=pm,dsorg=ps

5 global mac lib osmacro
R;

6 assemble ostest

*
*
*
*
*
*
*

2 Since the DCB macro statement takes up more than one line, you have to enter a
continuation character in column 7& •• To do this, you can enter a null line to
return to edit mode and execute the $MARK edit macro, which places an asterisk in
column 7&.. If the $MARK edit macro is not on your system, you viII have to enter a
continuation character some other way. (See "Entering a Continuation Character in
column 72" in iiSeci:ion 5. The Edi i:;UL::S. ::i

3 Before continuing to enter input lines, the EDIT subcommand SAVE is issued to write
what has already been written onto disk. The CP logical line end symbol (#)
separates the SAVE and INPUT subcommands.

4 A null line returns you to edit mode. You may wish, at this point, to proofread
your input file before issuing the FILE subcommand to write the ASSEMBLE file onto
disk.

5 Since this assembler program uses OS macros, you must issue the GLOBAL command to
identify the CMS macro library, OSKACRO KACLIB, before you can invoke the assembler.

6 The ASSEMBLE command invokes the VK/SP assembler to assemble the source file; the
asterisks (*) indicate the CMS blip character, which you mayor may not have made
active for your virtual machine.

424 IBM VM/SP CMS User's Guide

..,

8

ASSEMBLER DONE
OST00230 23 LA R3,0 INITIALLY SET RETURN CODE
IF0188 R3 IS AN UNDEFINED SYMBOL
OST00240 24 OPEN (INDATA,OUTDATA,(OUTPUT» OPEN FILES

4000000 27+ 12,*** IHB002 INVALID OPTION OPERAND SPECIFIED-OUTDATA
IF0197 *** MNOTE ***
OST00290 32 LA R3,100 SET RETURN CODE
IF0188 R3 IS AN UNDEFINED SYMBOL
OST00340 37 LA R3,200 SET RETURN CODE
IF0188 R3 IS AN UNDEFINED SYMBOL
OST00460 63 LR R15,R3 LOAD RETURN CODE
IF0188 R3 IS AN UNDEFINED SYMBOL
NUMBER OF STATEMENTS FLAGGED IN THIS ASSEMBLY = 5
R(00012);
edit ostest assemble
locate Ir2
R2 EQU 2
i r3 equ 3
lopen

c 1,1,,1

file
R;

OPEN (INDATA,OUTDATA, (OUTPUT»

OPEN (INDATA, ,OUTDATA, (OUTPUT»

assemble ostest

*
*
*
* *
*

OPEN FILES

OPEN FILES

10 ASSEMBLER DONE
NO STATEMENTS FLAGGED IN THIS ASSEMBLY
R;

11 filedef indd disk test data a
R;

12 filedef outdd punch
R;

13 #cp spool punch to *
14 load ostest

7 The assembler displays errors encountered during assembly. Depending on how
accurately you copied the program in this sample session, you mayor may not receive
some of these messages; you may also have received additional messages.

8 You must edit the file OSTEST ASSEMBLE and correct any errors in it. The errors
placed in the example included a missing comma on the OPEN macro, and the omission
of an EQU statement for a general register. These changes are made as shown. The
CMS Editor accepts a diagonal (I) as a LOCATE subcommand.

9 After all the changes have been made to the ASSEMBLE file, you can issue the FILE
subcommand to replace the existing copy on disk, and then reassemble it.

10 This time, the assembler completes without encountering any errors. If your
ASSYMBLE file still has errors, you should use the editor to correct them.

11 The FILEDEF command is used to define the input and output files used-in this
program. The ddnames INDD and OUTDD, defined in the DCBs in the program, must have a
file definition in CMS. To execute this program, you should have a file on ·your
A-disk name TEST DATA, which must have fixed-length, 80-character records. If you
have no such file, you can make a copy of your ASSEMBLE file as follows:

copy file ostest assemble a test data a
12 The output file is defined as a punch file, so that it will be written to your

virtual card punch.
13 The CP SPOOL command is issued, using the #CP function, to spool your virtual punch

to ,ou~ virtual card reader. When you use the tcp function, you do not receive a
Ready message.

14 The LOAD command loads the TEXT file produced by the assembly into virtual storage.
The START command begins program execution.

Appendix D. Sample Terminal Sessions 425

15

16

R;
start
DKSLI0740I EXECUTION BEGINS •••
DKSSOP036E OPEN ERROR CODE '04' ON 'OUTDD •
R (002 OO) ;
filedef
INDD DISK TEST DATA A1
OUTDD PUNCH
R;

17 filedef eutdd punch (lrecl 80 recfm f
R;

1A #cp query reader all
NO RDR FILES

19 load ostest (start
P~SLI0740I EXECUTION BEGINS •••

20 PUN FILE 6198 TO BILBO COPY 01 NOHOLD
R;

21 fi indd reader
R;
fi outdd disk new osfile a4 (recfm fb block 1600 lrecl 80
R;

22 listfile new osfile a4 (label
DKSLST002E FILE NOT FOUND.
R (00028) ;

23 run ostest

24

EXECUTION BEGINS •••
*
R;
listfile new osfile a4 (label
FILENAME FILETYPE Fft FORMAT LRECL RECS BLOCKS
NEW OSFILE A4 F 1600 5 10
R;

DATE
9/30/75

TIME LABEL
8:26:14 PAT198

15 An open error is encountered during program execution. The CftS ready message
indicates a return code of 200, which is the value placed in it by your program.

16 The FILEDEF command, with no operands, results in a display of the current file
definitions in effect.

17 Error code 4 on an open request means that no RECFft or LRECL information is
available. An examination of the program listing would reveal that the DCB for
OUTDD does not contain any information about the file format; you must supply it on
the FILEtEF command. Re-enter the FILEDEF command.

18 You can use the CP QUERY com.mand to determine whether there are any files in your
card reader. It should be empty; if not, determine whether they might be files you
need, and if so, read them into your virtual machine; otherwise, purge them.

19 Use the LOAD command to execute the program again; this time, use the START option
of the LOAD command to begin the program execution.

20 The PUN FILE message indicates that a file has been transferred to your virtual card
~eaa~~. Th~ ~QdaJ ili~s£~g~ i~dicates that iO~~ program executed successf~lli-

21 For the next execution of this program, you are going to read the file back out of
your card reader and create a newCMS disk file, in OS simulated data set format.
FI is an acceptable system truncation for the command name, FILEDEF.

22 The LISTFILE command is issued to check that the file NEW OSFILE does not exist.
23 The RUN command (which is an EXEC procedure) is used instead of the LOAD and START

commands, to load and execute the program. The ready message indicates that the
program completed execution.

24 The LISTFILE command is issued again, and the file NEW OSFILE is listed. (If you
issue another CP QUERY READER command, you will also see that the file is no longer
in your card reader.)

426 IBM VM/SP CftS User's Guide

~ Sample Terminal Session for DOS Programmers

The following terminal session shows how you might create an "assembler language program
in CMS, assemble it, correct assembler errors, and execute it. All the lines that appear
in lowercase are lines that you should enter at the terminal. Uppercase data represents
the system response that you should receive when you enter the command.

The input data lines in the example are aligned in the proper columns for the
assembler; if you are using a typewriter terminal, you should set your terminal's tab
stops at columns 10, 16, 31, 36, 41, and 46 and use the Tab key when you want to enter
text in these columns. If you are using a display terminal, when you use a PF key or an
input character defined as a tab, the line image is expanded as it is placed i~ the
screen output area.

!Q!~: The assembler, in CMS, cannot read macros from VSE/AF libraries. This sample
terminal session shows how to copy macros from VSE/AF libraries and create CMS MACLIB
files. Ordinarily, the macros you need should already be available in a system MACLIB
file. You do not have to create a MACLIB each time you want to assemble a proqram.

There are some errors in the terminal ses~ion, so that you can see how to correct
errors in CMS.
1 cp link dosres 130 136 rr linkdos

DASD 130 LINKED RIO

2

3

4

R;
access 130 z
Z (130) RIO - DOS
F;
set dos on z
R;
edit dostest
NEW FILE:

assemble

EDIT:
input
INPUT:
begpgm

loop

eodad

buffer
infile

EDIT:

csect
balr
using
la
open
get
put
b
equ
close
eoj
eject
dc
dtfdi

12,0
*,12
13,savearea
infile,outfile
infile
out file
loop

* infile,outfile

CLSO' ,
modname=shrmod,ioarea1=buffer,devaddr=sysipt,

Use the CP LINK command to link to the DOS system residence volume and the ACCESS
command to access it. In this example, the system residence is at virtual address
130 and is accessed as the Z-disk.

2 Enter the CMS/DOS environment, specifying the mode letter at which the DOS/VS
(VSE/AF) system residence is accessed.

3 Use the EDIT command to create a file named DOSTEST ASSEMBLE. Since the file does
not exist, the editor indicates that it is a new file and you can use the INPUT
subcommand to enter input mode and begin entering the input lines.

4 Since the DTFDI macro statement takes up more than one line, you have to· enter a
continuation character in column 72. To do this, you can enter a null line to return
to edit mode and execute the $MARK edit macro, which places an asterisk in column
72. If the $MARK edit macro is not on your system, you will have to enter a
continuation character some other way. (See "Entering a Continuation Character in
Column 72" in "Section 5. The Editors.")

Appendix D. Sample Terminal Sessions 427

5

6

7

$mark
save#input
EDIT:
INPUT:

eOfaddr=eodad,recsi~e=80
outfile dtfdi modname=shrmod,ioarea1=buffer,devaddr=syspch,

EDIT:
$mark
save#input
EDIT:
INPUT:

shrmod
endpgm

EDIT:
file
R;

recsize=81
dimod typefle=output
equ *
end

8 edit getmacs eserv
NEW FILE:
EDIT:
tabs 2 12
input
INPUT:

9 punch open,close,get,put,dimod,dtfdi

EDIT:
file
R-,

10 assgn sysipt a
I R-,

eserv getmacs
R;

5 Before continuing to enter input lines, the EDIT subcommand SAVE is issued to write
what has already been written onto disk. The CP logical line end symbol (#)
separates the SAVE and INPUT subccmmands.

6 Another continuation character is needed.
7 A null line returns you to edit mode. You may want, at this point, to proofread your

input file before issuing the FILE subcommand to write the ASSE!BtE file on disk.
8 To obtain the macros you need to assemble this file, use the editor to create an

ESERV file_ By setting the logical tabs at columns 2 and 12, you can protect
yourself from entering data in column 1.

9 PUNCH is an ESERV program control statement that copies and de-edits macros from
source statement libraries; in this case, the system source statement library. The
output is directed to the SYSPCH device, which the CftS/DOS ESERV EXEC assigns by
default to your A-disk.

10 You must assign the logical uni t SYSIPT before you invoke the ESERV command,. GETMACS
is the filename of the ESERV file containing the ESERV control statements.

428 IBM VM/SP CMS User's Guide

)

v

11 listfile getmacs * GETMACS ESERV Al
GETMACS MACRO Al
GETMACS LISTING A 1 .
R;

12 maclib gen dosmac getmacs
R;
erase getmacs *
R;

13 global maclib dosmac
R;

14 assemble dostest

*
*

15 ASSEMBLER DONE
DOSOOO40 4 LA 13,SAVEAREA
IF0188 SAVEAREA IS AN UNDEFINED SYMBOL
DOSOO 110 35 EOJ
IF0078 UNDEFINED OP CODE
NUMBER OF STATEMENTS FLAGGED IN THIS ASSEMBLY 2
R(OOOO8);

16 edit dotest assemble
EDIT:
locate /buffer/
BUFFER DC CL80' •
input savearea ds 9d
file
R-,

11 edit eoj eserv
NEW FILE:
EDIT:
i punch eoj
file
R;

18 listio sysipt
SYSIPT DISK A

R-.
eserv eoj
R;

11 After the ESERV EXEC completes execution, you have three files. You may want to
examine the LISTING file to check the ESERV program listing. The MACRO file
contains the punch (SYSPCH) output.

12 The MACLIB command creates a macro library named DOSMAC MACLIB. Since the MACLIB
command completed successfully, you can erase the files GETMACS ESERV, GETMACS
LISTING, and GETMACS MACRO; an asterisk in the filetype field of the ERASE command
indicates that all files with the filename of GETMACS should be erased.

13 Before you can invoke the assembler, you have to identify the macro library that
contains the macros; use the GLOBAL command, specifying DOSMAC MACLIB.

14 The ASSEMBLE command invokes the VM/SP assembler to assemble the source file; the
asterisks (*) indicate the CMS blip character, which you mayor may not have made
active for your virtual machine_

15 The assembler displays errors encountered during assembly. Depending on how
accurately you copied the program in this sample session, you mayor may not receive
some of these messages; you may also have received additional messages.

16 To correct the first error, which was the omission of a DS statement for SAVEAREA,
edit the file DOSTEST ASSEMBLE and insert the missing line.

17 The second error indicates that the macro EOJ is not available, since it was not
copied from the source statement library. Create another ESERV file to punch this
macro.

18 Use the LISTIO command to check that SYSIPT is still assigned to your A-disk, so
that you do not have to issue the ASSGN command again. Then issue the ESERV command
again, this time specifying the filename EOJ.

Appendix D. Sample Terminal Sessions 429

19 maclib add dosmac eoj
R;
maclib
MACRO
OPEN
CLOSE
GET
PUT
DIMOD
DTFDI
EOJ
R;

map dosmac (term
INDEX SIZE

2 43
46 43
90 56

147 93
241 647
889 284

1174 6

20 erase eoj *
R;
assemble dostest

*
*
*

21 ASSEMBLER DONE

22

NO STATEMENTS FLAGGED IN THIS ASSEMBLY
R-,
listfile
DOSTEST
DOS TEST
DOSTEST
R;

dostest *
ASSEMBLE A1
LISTING A1
TEXT A1

print dostest listing
R;

23 doslked dostest

24
R;
listfile
DOSTEST
DOSTEST
DOSTEST
DOSTEST
DOSTEST
R;

dostest *
ASSEMBLE A1
DOSLIB A 1
TEXT A1
LISTING A1
MAP A5

19 Use the ADD function of the MACLIB command to add the macro EOJ to DOS!AC MACLIB.
Then, issue the MACLIB command again, using the MAP ·function and the TER!.option to
display a list of the macros in the library.

20 Erase the EOJ files. You should always remember to erase files that yeu do not need
any longer. Reassemble the program.

21 Thi£ ti~e, tha ~~za=~l=: cc~plete~ ~itho~t ~nconntering anv errors. If your
ASSEMBLE file still has errors, you should use the editor to correct them.

22 Use the LISTFILE command to check for DOS TEST files. The assembler created the
files, DOSTEST LISTING and DOSTEST TEXT. The TEXT file contains the object module.
You can print the program listing, if you want a printed copy. Then,- you may want to
erase it.

23 Use the DOSLKED command to link-edit the TEXT file into an executable phase and
write it into a DOSLIB. Since this program has no external references, you do not
need to add any linkage editor control statements.

24 NOW, you have a DOSTEST DOSLIB, containing the link-edited phase, and a ~AP file,
containing the linkage editor map. You can display the linkage editor map with the
TYPE command, or use the PRINT command if you want a printed copy.

430 IBM VM/SP eMS User's Guide

) 25

26

#cp spool punch to *
punch test data a
PUN FILE 0100 TO BILBO
R;
#cp guery reader all
ORIGINID FILE CLASS RECDS
PATTI 5840 A PUN 000097
assgn sysipt reader
R;
assgn syspch a
R;

COpy 01 NOHOLD

CPY HOLD DATE TIME NAME
01 NONE 09/29 15:00:39 TEST

TYPE
DATA

DIST
BI N21 ,

27 dlbl outfile a cms punch output (syspch
R;
state punch output a
DMSSTT002E FILE NOT FOUND.
R (00028) ;

28 qlobal doslib dostest
R;
fetch dostest
DMSFET710I PHASE 'DOSTEST' ENTRY POINT AT LOCATION 020000.
R;

29 start
DMSLI0740I EXECUTION BEGINS •••
R;
listfile punch output a (label
FILENAME FILETYPE FM FORMAT LRECL RECS BLOCKS
PUNCH OUTPUT A1 F 80 97 10
R;
#cp guery reader all
NO RDR FILES

DATE TIME
9/29/79 14:50:55

LABEL
BBB191

25 To execute this program in CMS/DOS, punch a file that has fixed-length 80-character
records into your virtual card punch. If you do not have any files that have
fixed-length, 80-character records, you can create a file named TEST DATA with the
eMS Editor, or by copying your ASSEMBLE source file with the COPYFILE command, as
follows:

copy file dostest assemble a test data a
Use the CP SPOOL command to spool the punch to your own virtual machine, then use
the PUNCH command to punch the file. The PUN FILE message indicates that the file
is in your card reader. Use the CP QUERY command to check that it is the first, or
only file in your reader.

26 Use the ASSGN command to assign SYSIPT to your card reader and SYSPCH to your
A-disk.

21 When you assign a logical unit to a disk mode, you must issue the DLBL command to
identify the disk file to CMS. For this program execution, you are creating a CMS
file named PUNCH OUTPUT. The STATE command ensures that the file does not already
exist. If it does exist, rename it, or else use another filename or filetype on the
DLBL command.

28 Use the GLOBAL command to identify the DOSLIB, DOSTEST, you want to search for
executable phases, then issue the FETCH command specifying the phase name. The
FETCH command loads the executable phase into storage. When the FETCH command is
executed without the START option, a message is displayed indicating the entry point
location of the program loaded.

29 The START command begins program execution. The CMS ready message indicates that
your program completed successfully. You can check the input and output activity by
using the LISTFILE command to list the file PUNCH OUTPUT. If you use the CP QUERY
command, you can see that the file is no longer in your virtual card reader.

Appendix D. Sample Terminal Sessions 431

30 assgn sysipt a
R;
dlbl infile a cms punch output (sysipt
R;
assgn syspch punch
R;

31 fetch dostest (start
DftSLI0740I EXECUTION BEGINS •••

32 PUN FILE 5829 TO BILBO COpy 01 NOHOLD
R;
read punch2 output
R;
listfile punch2 output a (label
FILENAftE FILETYPE Fft FORftAT LRECL RECS BLOCKS
PUNCH2 OUTPUT A1 F 80 97 10
R;

DATE TIftE LABEL
9/29/75 14~50:59 BBB191

30 If you want to execute this program again, you can assign SYSIPT and SYSPCH to
different devices; in this example, the input disk file PUNCH OUTPUT is written to
the virtual punch. You do not need to reissue the GLOBAL DOSLIB command; it remains
in effect until you reissue it or IPL CftS again.

31 This time, the program execution starts immediately, because the START option is
specified on the FETCH command line.

32 Again, the PUN FILE message indicates that a file has been received in your virtual
card reader. You can use the CftS command READCARD to read it onto disk and assign it
a filename and filetype, in this example, PUNCH2 OUTPUT.

432 IBM Vft/SP CMS User's Guide

~ Sample Terminal Session Using Access Method Services'
;I"

This sample terminal session
should have an understanding
terminal session.

shows you how to use access method services under eMS. You
of VSAM and access method services before you use this

The terminal session uses a number of CMS files, which you may create during the
course of the terminal session; or, you may prefer to create all of the files that you
need beforehand. Within the sample terminal session, the file that you should create is
displayed prior to the commands that use it.

This terminal session is for both CMS OS VSAM programmers and eMS/DOS VSAM
programmers; all the ASSGN commands and SYSxxx operands that apply when the eMS/DOS
environment is active are shaded. If you have issued the command SET DOS ON, you must
enter the shaded entries; if not, you must omit the shaded entries.

1. This terminal session assumes that you have, to begin with, a read/write CMS A-disk.
This is the only disk required. Additional disks used in this exercise are temporary
disks, formatted 'with the IBCDASDI disk initialization program under eMS. If you
have OS or DOS disks available, you should use them, and remember to supply the
proper volume and virtual device address information, where appropriate. The number
of cylinders available to users for temporary disk space varies among installations;
if you cannot acquire ample disk space, see your system support personnel for
assistance.

2. Output listings created by AMSERV take up disk space, so if your A-disk does not
have a lot of space on it, you may want to erase the LISTING files created after
each AMSERV step.

~ 3. If any of the AMSERV commands that you execute during this sample terminal session
,issue a nonzero return code; for example:

R(00012);

You should edit the LISTING file to examine
messages. The publication !2E/V~!~ ~~§§~~§ sns
reason codes issued by access method services.
the error, examine the DLBL commands and AMSERV
and retry the command.

#cp define t3330 200 10
DASD 200 DEFINED 010 CYL
tcp define t3330 300 10
DASD 300 DEFINED 010 CYL
#cp define t3330 400 10
DASD 400 DEFINED 010 CYL

the access method services error
Codes contains the return codes and
-YOU-should determine the cause of
files you used, correct any errors,

These commands define temporary 3330 mindisks at virtual addresses 200, 300, and
400.

Appendix D. Sample Terminal Sessions 433

2 File: PUNCH IBCDASDI

222222 JOB
MSG TODEV=1052,TOADDR=009
DADEF TODEV=3330,TOADDR=200,VOLID=SCRATCH,CYLNO=10
VLD NEWVOLID=222222
VTOCD STRTADR=10,EXTENT=5
END

333333 JOB
MSG TODEV=1052,TOADDR=009
DADEF TODEV=3330,TOADDR=300,VOLID=SCRATCH,CYLNO=10
VLD NEWVOLID=333333
VTOCD STRTADR=10,EXTENT=5
END

444444 JOB
MSG TODEV=1052,TOADDR=009
DADEF TODEV=3330,TOADDR=400,VOLID=SCRATCH,CYLNO=10
VLD NEWVOLID=444444
VTOCD STRTADR=10,EXTENT=5
END

3 File: IBCDASDI EXEC
&CONTROL OFF
CP CLOSE C
CP PURGE RDR ALL
ACC 190 Z/Z IPL *
CP SPOOL D CONT *
PUNCH IPL IBCDASDI Z (NOH
PUNCH PUNCH IBCDASDI * (NOH
CP SPOOL PUNCH NOCONT
CP CLOSE PUNCH
CP IPL OOC

4 ibcdasdi
NO FILES PURGED
DMSACC723I Z (190) RIO
DMSACC723I 190 ALSO = S-DISK
PUN FILE 1492 TO BILBO COpy 01 NOHOLD
IBC105A DEFINE INPUT DEVICE. DASDI 7.77

5 input=2540,00c

2 This file contains control statements for the IBCDASDI program, which formats and
initializes disks for OS and DOS. These disks are labelled 222222, 333333, ana
444444. Any messages produced by the IBCDASDI program are sent to your terminal.

3 This file contains the commands necessary to use the IBCDASDI program under CMS. You
must punch a copy of the IBCDASDI program, followed by the file containing your
control statements, to your virtual card reader, and then load the IBCDASDI program.
This is all done in the file IBCDASDI EXEC.

4 Execute the IBCDASDI EXEC. The last command in the EXEC is the IPL command, which
passes centrol to the IBCDASDI program. The message IBC105A prompts you to enter
the address of the control statements.

5 Since the control statements are in your card punch, you indicate the device type
(2540) a~d the address (OOC) on the INPUT= statement.

434 IBM VM/SP eMS User's Guide

)

-

6 DASDI 7.77
222222 JOB

MSG TODEV=1052,TOADDR=009
DADEF TODEV=3330,TOADDR=200,VOLID=SCRATCH,CYLNO=10
VLD NEWVOLID=222222
VTOCD STRTADR=10,EXTENT=5
END

IEC163A END OF JOB.
DASDI 7.77

333333 JOB
MSG TODEV=1052,TOADDR=009
DADEF TODEV=3330,TOADDR=300,VOLID=SCRATCH,CYLNO=10
VLD NEWVOLID=333333
VTOCD STRTADR=10,EXTENT=5
END

IEC163A END OF JOB.
DASDI 7.77

444444 JOB
MSG TODEV=1052,TOADDR=009
DADEF TODEV=3330,TOADDR=400,VOLID=SCRATCH,CYLNO=10
VLD NEWVOLID=444444
VTOCD STRTADR=10,EXTENT=5
END

IEC163A END OF JOB.
7 DMKDSP450W CP ENTERED; DISABLED WAIT PSW '00060000 OOOOEEEE'

ipl cms
VM/SP eMS - 01/30/80 10:00

R;

q

B (200) R/li - OS
R· ,
access 300 c
DMSACC723 I C (300) R/W - OS
R;
access 400 d
DMS ACC723 I D (400) R/li - OS
R;

10 query search
BBB191 191 A R/W
222222 200 B R/W - OS
333333 300 C R/W - OS
444444 400 D R/W - OS
CMS190 190 S R/O
JIIIIIII a
F.;

6 These messages are issued by the IBCDASDI program, which displays the statements
executed and indicates the end of each job.

7 When the last IBCDASDI job 1.S complete, your virtual machine is ~n the CP
environment and you must reload the CMS system before you can continue.

S If you are a CMS/DOS user, you must reaccess the VSE/AF system residence volume and
issue the SET DOS ON command line, specifying the VSAM option. If you have not
previously linked to the system residence, you must use the CP LINK command before
you issue the ACCESS command.

q Access tlle three newly formatted disks as your B-, c-, and D-disks.
10 You can issue the QUERY SEARCH command to verify the status of all disks you

currently have accessed.

Appendix D. ,Sample Terminal Sessions 435

11 File: MASTCAT AMSERV
DEFINE MASTERCATALOG -

12

13
R;

(NAME (MASTCAT)
VOLUME (222222) -
CYL (4) -
UPDATEPW (GAZELLE) -
FILE (IJSYSCT))

j sys-ct b dsn mastcat 'WIllI. perm extent
ENTER EXTENT SPECIFICATIONS:

14 amserv mastcat
R;

15 File: CLUSTER AMSERV

16

DEFINE CLUSTER (NAME (BOOK. LIST) -
VOLUMES (222222) -
TRACKS (20) -
KEYS (14,0) -
RECORDSIZE (120,132)) -
DATA (NAME (BOOK.LIST.DATA)) -
INDEX (NAME (BOOK.LIST.INDEX))

amserv cluster
4221A ATTEMPT 1 OF 2. ENTER PASSWORD FOR JOB AMSERV
gazelle
R;

17 File: REPRO AMSERV
REPRO INFILE (BFILE -

ENV (RECORDFORMAT(F) -
ELOCKSIZE(120) -
PDEV (3330))) -
OUTFILE (BOOK)

FILE MASTCAT

11 The file MASTCAT AMSERV defines the VSAM master catalog that you are going to use.
12 Identify the master catalog volume, and use the EXTENT option on the DLBL command so

that you can enter the extents. For this extent, specify 171 tracks (9 cylinders)
for the master catalog. Since 4 cylinders are specified in the AMSERV file, the
remaining 5 cylinders will be used for suballocation by VSAM.

13 You must enter a null line to indicate that you have finished entering extent
iniormatiuu.

14 Issue the AMSERV command, specifying the MASTCAT file. The ready message indicates
that the master catalog is created.

15 Define a suballocated cluster. This cluster is for a key-sequenced data set, named
BOOK.LIST.

16 No DLBL command is necessary when you define a suballocated cluster. Note that
since the password was not provided in the AMSERV file, access method services
prompts you to enter the password of the catalog, which is defined as GA.ZELLE.

11 Use the access method services REPRO command to copy a CMS data file into the
cluster that you just defined.

436 IBMVM/SP CMS User's Guide

)

-.

18

19

ata a (recfm f lrecl
R;
sort test data a book file a
DMSSRT604R ENTER SORT FIELDS:
1 14
R;
dlbl bfile a cms book file
R;

dlbl book b dsn book list (vsam
R;
amserv repro
R;

120

20 File: SPACE AMSERV
DEFINE SPACE -

21

22

R;

R;

(FILE (SPACE) -
TR ACKS (57) -
VOLUME (333333))

amserv space

FICATIONS:

4221A ATTEMPT 1 OF 2. ENTER PASSWORD FOR JOB AMSERV
gazelle
R;

FILE MASTCAT

18 You must identify the dnames for the input and output files for the REPRO function.
BFILE is a CMS file, which must be a fixed-length, 120-character file, and it must
be sorted alphamerically in columns 1 through 14. The COPYFILE command can copy any
existing file that you have to the proper record format; the SORT command sorts the
records on the proper fields.

19 . The output file is the VSAM cluster, so you must use the VSAM option on this DLBL
command.

20 Create an AMSERV file to define ad~itional space for the master catalog on the
volume labelled 333333.

21 Again, use the EXTENT option on the DLBL command so that you can enter extent
information, and a null line to indicate that you have finished entering extents.

22 Issue the AMSERV command. Again, you are prompted to enter the password of the
master catalog.

Appendix D. Sample Terminal Sessions 437

23

24

25

26

File: UNIQUE AMSERV
DEFINE CLUSTER-

(NAME (UNIQUE. FILE) -
UNIQUE) -

DATA
(CYL (3) -

FILE (KDATA) -
RECORDSIZE (100 132) -
KEYS(12,0) -
VOLUMES (333333)) -

INDEX -
(CYL (1)-

FILE (KINDEX) -
VOLUMES (333333)

dlbl kdata c (extent
DMSDLB331R ENTER EXT IFICATIONS:
76 57

R·
dibl kindex c (extent" I
DMSDLB331R ENTER EXTENT SPECIFICATIONS:
133 1 q

R;
amserv unique
4221A ATTEMPT 1 OF 2. ENTER PASSWORD FOR JOB AMSERV
gazelle
R;
File: USERCAT AMSERV

DEFINE USERCATALOG -
(CYL (4) -

FILE (IJSYSUC) -
NAME (PRIVATE. CATALOG) -
VOLUME (444444) -
UPDATEPW (UNICORN) -
ATTEMPTS (2)) -

DATA (CYL (3))-
IN DE X (C YL (1)) -
CATALOG (MASTCAT/GAZELLE

dlbl ijsysuc d dsn private catalog (extent lIP 11111 I perm
DMSDLB331R ENTER EXTENT SPECIFICATIONS:
lc} 152

R;
amserv usercat

* R;

27 TAPE 181 ATTACHED

FILE MASTCAT

23 This AMSERV file defines a unique cluster, with data and index components.
24 You must enter DLBL commands and extent information for both the data and index

components of the unique cluster.
25 Next, define a private (user) catalog for the volume 444444. This catalog is named

PRIVATE. CATALOG and has a password of UNICORN.
26 When you define a user catalog that you are going to use as the job catalog for a

terminal session, you should use the ddname IJSYSUC.
27 You may want to try an EXPORT/IMPORT function, if you can ottain a scratch tape from

the operator. When the tape is attached to your virtual machine, you receive this
message.

438 IBM VK/SP CMS User's Guide

)

I
I

1'1

-

28 File: EXPORT AMSERV
EXPORT BOOK.LIST

INFILE (BOOK) - I

OUTFILE (TEMP ENV (PDEV (2400)
29 dlbl

IJSYSCT DISK FILE IJSYSCT B1 MASTCAT
EFILE DISK BOOK FILE A1
BOOK DISK FILE BOOK B1 Bo'OK.LIST
SPACE DISK FILE SPACE C1
KDATA DISK FILE KDATA C1
KINDEX DISK FILE KINDEX C1
IJSYSUC DISK FILE IJSYSUC D1 PRIVATE. CATALOG
B;

30 dlbl book b dsn book list (cat ijsysct -B;
31 amserv texport {tapout 181

DMSAMS361R ENTER TAPE OUTPUT DDNAMES:
temp
B;

32 File: IMPORT AMSERV

33

IMPORT

tape rew
R;

CATALOG {PRIVATE. CATALOG/UNICORN) -
. INFILE (TEMP ENV (PDEV (2400))) -
OUTFILE (BOOK2)

dlbl book2 d dsn book list {vsam 11l1li
R;
amserv timport {tapin 181
DMSAMS361R ENTER TAPE INPUT DDNAMES:
temp
B;

28 The file that is being exported is the cluster BOOK.LIST created above. If you do
not have access to a tape, you can export the file to your CMS A-disk. Remember to
change the PDEV parameter to reflect the appropriate device type.

29 Before issuing the AMSERV command to perform the export function, you may want to
check the DLBL definitions in effect. Issue the DLBL command with no operands to
obtain a list of current DLBL definitions.

30 You must reissue the DLBL for BOOK.LIST, because there is a job catalog in effect,
and the file is cataloged in the master catalog. Use the CAT option to override the
job catalog.

31 There is no default tape value when you are using tapes with the AMSERV command. You
must specify the TAPIN or TAPOUT option and indicate the virtual address of the
tape. You are prompted to enter the ddname, which for this file is TEMP.

32 The last AMSERV file imports the cluster BOOK.LIST to the user catalog,
PRIVATE. CATALOG.

33 You should rewind the tape before reading it as input.

Appendix D. Sample Terminal Sessions 439

440 IBM VM/SP eMS User's Guide

)

..

¢ loqical line delete symbol

. BX format word 370-371

.CM format word 372

.CS format word 372

.FO format word 373

.IL format word 373-374

.IN format word 373-374

.OF format word 375

.SP format word 376

.TR format word 377

&$ special variable
resetting 301

7

using to test arguments 300
&* special variable

resetting 301
using to test for absence of arguments

300
&ARGS control statement, changing &n
special variables with 297-298

&BEGEMSG control statement, when to use
333

&BEGPUNCH control statement, when to use
324

&BEGSTACK control statement, when to use
317

&BEGTYPE control statement
examples 108
when to use 312

&CMS EXIT control statement
examples 106
passing return code to CMS 310

&CONTINUE control statement
following label 106
used with &ERROR control statement 327

&CONTROL control statement
controlling execution summary of CMS

EXEC procedure 325
examples 110

&DATATYPE built-in function, using to test
arguments 300

&EMSG control statement, examples 327
&ERPOR control statement

examples 106
provide error exit for CMS commands 327

&GLOBAL special variable, testing recursion
level of CMS EXEC 308

&GLOBALn special variable
example 304
passing arauments to nested procedures

30R
&GOTO control statement

examples 106
transferring control in CMS EXEC

procedure 304

Index

&HEX control statement, examples 297
&IF control statement

maximum number allowed in nest 303
testing variable symbols 302

&INDEX special variable 103
testing 299
using to establish loop 299

&LENGTH built-in function, using to test
arguments 300

&LITERAL built-in function
examples 307
examples of substitution 295

&LOOP control statement
example 107
execution summary when &CONTROL ALL is
in effect 334

preparing loops in CMS EXEC procedure
306-307

&n special variable, manipulating 297-298
&PUNCH control statement

punching jobs to CMS batch facility 260
using to create file 323

&READ control statement
ARGS operand 103

changing &n special variables
297-298

examples 108
reading CMS commands 311

&READFLAG special variable
determining if console stack needs to be
cleared 320

using to test console stack 318
&RETCODE special variable

example 106
testing after CMS comman~ execution 327
using with &CMS EXIT control statement

309
&SKIP control statement

examples 107
transferring control in CMS EXEC

procedure 304
&SPACE control statement, example 109
&STACK control statement

stacking CMS EXEC files with 322
using in edit macros 337
using to stack null line 319
when to use, in edit macros 341

&SUBSTR built-in function, examples
307,322

&TIME control statement, example 110
&TRACE statement, in EXEC 2 111
&TYPE control statement

displaying prompting messages in CMS
EXEC procedure 311

examples 108
when to use 312

&TYPEFLAG special variable, testing whether
CMS EXEC is displaying data 314

&1 through &30, special variables 103

Index 441

! (exclamation point), controlling whether
it is displayed 28

$, used as first character of filename for
edit macros 337

$COL edit macro 350
$CONT EXEC 342
$DUP edit macro, example 73
$LISTIO EXEC file 182
$MACROS edit macro 346-347
$MARK edit macro 347-348

used to enter continuation character 80
$MOVE edit macro, how to use 73
$POINT edit macro 349

* (asterisk)
in CMS EDIT subcommands 64
in fileids on command lines 45
in filemode field 53
used to write comments in CMS EXEC

procedure 331
*COpy statement

1*

examples 158
in CMS/DOS 191

CMS batch facility control card, used to
signal end of job 255

end-of-file indicator
in AMSERV file 206
in batch job 263

II record, used as delimiter in MACLIBs
160,193

I (diagonal), as delimiter on CMS EDIT
subcotnmands 64

IJOB control card, description 254
ISET control card, description 255

% (percent symbol), setting CMS EXEC
arguments to blanks 297-298

?
subcommand

usage 88
usaqe, on display terminal 403

usage, as argument for CMS EXEC
procedure 331

?EDIT message 65

t logical line end symbol 7
restriction on stacking in CMS ~XEC

procedure 318
using to enter null line in input mode

62
using when setting program function (PF)

keys 30 6

442 IBM VM/SP CMS User's Guide

#CP function 7,19
using in edit or input mode 84
using on display terminals 395

w logical character delete symbol 7
using when setting program function (PF)
keys 396

(equal sign)
entered in fileids on command lines 45
entered in filemode field 53

subcommand (§~~ REUSE subcommand)

" logical escape symbol 8

A

used when setting program function (PF)
keys 396

abnormal termination (abend), effect on
DLBL definitions 185

ACCESS command
accessing CMS disks 15
response when you access VSAM disks 209
used with OS disks 149

access method services
control statements, executing 206
DOS/VSE, using in CMS/DOS 205
executing in CMS, examples 230-231
functions

DEFINE CLUSTER 232
DEFINE MASTERCATALOG 215-216,224-225
DEFINE USERCATALOG 216-217,225
DELETE 233
EXPORT 233-234
IMPORT 233-234
REPRO 233-234

OSjVS, restriction on using in CMS 205
return codes 207
sample terminal session 434-440
using in CMS 205
using tape input/output 229

in CMS/DOS 220-221
access methods

DOS, supported in CMS 179
OS, supported in CMS 150

accessing
directories of DOS/VSE libraries 188
disks 15

as read-only extensions 52
in CMS batch virtual machine 257

DO s disks 1 ,tj
file directories for CMS disks 57
multiple access systems with DIAL

command 26
OS disks 149
VSE/AF system residence volume 176

ACTION, DOS/VSE linkage editor control
statement 198

)

......

ADD operand
of MACLIB command

usage 158
usage in CMS/DOS 192

adding
members to macro library

example 158
exam~le in CMS/DOS 192

address
stops

sett ing 243
to enter CP environment 23

virtual
calculating for instructions in

program 238
definition 12
for unit record devices 117

A-disk 51
ADS TOP command, how to set address stops

243
ALIAS, OS linkage editor control statement,
supported by TXTLIB command 167

ALL
operand

of &BEGSTACK control statement, when
to use 317

of &BEGTYPE control statement, when
to use 312

of &CONTROL control statement, using
to debug CMS EXECs 334

allocating
space fo~ VSAM files 210-211,212,227

in CMS/DOS 218
VSAM extents on OS disks and minidisks

223
ALTER subcommand

global changes 71
how to use 70

altering
characteristics of spool files 119
characters in CMS file, with ALTER

subcommand 70
multiple occurrences of character in
file 71

AMSERV
command

executing in EXEC procedure 235
how to use 206

files, examples 206
filety~e 206

usage in CMS 47
functions under CMS 230-231
using to read tapes 230

annotated, edit macro 344-345
annotating, CMS EXEC procedure 327
APL, using on display terminal 407
appending, data to existing files, during

program execution 154
arguments

in CMS EXEC procedure 97,103,297-298
checking 299
passing to nested EXECs 308
testing with &$ and &* 300

on RUN command, passing parameter list
267

on START command, parameter list 267
ASM3705 filetype, usage in CMS 47

ASSEMBLE
command

assembling OS programs 164
in CMS/DOS 196

filetype
usage in CMS 47
used as input to assembler 164

assembling
OS programs in CMS 164
programs, using CMS batch facility 262
programs in CMS/DOS 196

sample terminal session 428-433
source files, from OS disks "164
VSAM programs in CMS 205

ASSGN command
entering before program execution 201
using to assign logical units 181

assigning
filemode letters to disks 51
logical units in CMS/DOS

before program execution 201
for VSAM catalogs 217
to disk devices 183
to virtual devices 183

values to variable symbols, in CMS EXEC
procedure 104

assignment statement, examples 104
attention interruption

ca using 22
effect of mode setting 30

automatic
IPL 5-6
save function of CMS Editor 63

AUTOREAD operand of CMS SET command,
display terminals 397

auxiliary control files 286
preferred 287

auxiliary processing routine, receiving
control during I/O operation 155

AUXPROC option, of FILEDEF command 155
AUXxxxx filetype

auxiliary control files 286
usage in CMS 47

B
backspace

characters
changing in file being edited 78
deleted in user input area 407
effect of image setting 78
entering on display terminal 406

batch
facility (§~~ eMS batc~ facility)
jobs for CMS batch facility 253

non-eMS users 262-263
processing, in CMS 253

batch jobs
purging 259
reordering 259
restarting 259

BDAM, access method, eMS support 150
BEGIN command, to return to virtual machine
envi ronment 18

beginning
tracing 243
virtual machine execution 19

Index 443

blanks
as delimiters, on C~S EDIT subcommands

64
in character strings changed with CHANGE

subcommand 69
used on OVERLAY subcommand 70

blip, characters, setting 28
BLOCK option, of FILEDEF command 154
BLP (§~~ bypass label processing)
books, from DOS/VSE source statement
libraries, copying 186
BOTTO~ subcommand, moving current line
pointer to end of file 66

BPAM access method, C~S support 150
bra nching in CMS EXEC procedure

&GOTO control statement 304
&SKIP control statement 304
based on &IF control statement 302

BREAK subcommand, setting program
br eakpoints 239

breakpoints, setting 239
ESAM access method, eMS support 150
buffers, used by FSCB 272
BUFSP option

of DLBL command 222
in CMS/DOS 214

bypass label processing, tapes 129

C
calculating storage available in your
virtual machine 202

caller id, in tape label processing 130
calling HELP files 356

examples 356
canceling

changes made during CMS edit session 63
DLBL definitions 185
FILEDEF definitions 154
verification of changes made by CMS

Editor 69
card punch

used to send jobs to CMS batch facility
253

usinq in C~S EXEC procedure 324
card reader

restriction on use in job for CMS batch
facility 258

spooling punch or printer files to 117
cards

used as input to CMS batch facility
253,262-263

/* as end-of-file indicator 255
CASE subcommand, usage 76
CAT option of DLBL command 222

iaentifying catalogs 226
in CMS/DOS 214,217

cataloged procedures, OS, equivalent in CMS
148

causing breaks in text 376
CAW (channel address word), displaying,
with DISPLAY command 246

444 IBM V~/SP CMS User's Guide

CHANGE
command, changing hold status on spool
files 117

subcommand
global changes 71
how to use 69
using in edit macros 342
using on display terminal 403

changing
characteristics of spool files 117
characteristics of unit record devices

117
file identifier, on SAV~ subcommand 85
filemode numbers 56
filemode of file, FMODE subcommand 85
lines in file being edited 69

that contain backspace characters 78
multiple occurrences of character string
in file 71

changing output representation of a
character 377

changing the HELP facility 362
channel address word (§~~ CAW (channel

address word»
channel status word (§~~ CSW (channel
status word)}

character, strings, changing 69
characters

al tering
with ALTER subcommand 70
with CHANGE subcommand 69

deleting from line 7
special

defining translate table for entering
31

displaying on display terminal 407
entering on display terminal 406

translated to uppercase, in edit macros
337

valid in CMS file identifiers 43
CLASS, operand of SPOOL command 117
classes

CP command privilege 389
of CP spool files 117

clearing
console stack

at top or end of file 339
for edit macro execution 339
in CMS EXEC procedure 320
issuing message after 339

DLBL definitions 185
FILEDEF definitions 154
job catalogs 226
job catalogs in CMS/DOS 217

CLOSE macros, OS simulation 126
closing

CMS files, after reading or writing 275
virtual card punch, after using·&PUNCH
control statement 324

virtual unit record devices 278
clusters, VSAM, defining and deleting 232
CMS

operand of DLBL command 184
saved system name 249

)

-

CMS (Conversational Monitor System)
basic description 3
commands (§~~ CMS commands)
file system 43
file svstem commands, samples 412-419
files (§~§ files, CMS)
loading into your virtual machine 5-6
os simulation 147
understanding it 1
VSE/AF simulation 175

CMS batch facility
control cards 253

/* 255
/JOB 254
/SET 255

controiling spool files 257
description 253
housekeeping done after executing job

256
how jobs are processed 256
;obs for non-CMS users 262-263
using CMS EXEC procedure to submit jobs

261
CMS commands

executing
from programs 267
in CMS EXEC procedure 325
in edit macros 338

general information 5
nucleus-resident 60
processing tape labels 136
stacking in CMS EXEC procedure 318
summary 381-386
that execute in transient area 58
used in CMS/DOS (§~~ CMS/DOS commands)
used with OS data sets 149
using CMS EXEC procedure to modify 328
valid in edit macros 338

CMS EDIT subcommands
delimiters 64
summary 02-95

CMS Editor
envi ronment 19
format of 3270 display screen 402
how +'0 use 61
invoking 61

in CMS EXEC procedure 318
line mode on display terminal 405
sample terminal session 412-419
using on display terminal 401

CMS environment 18-19
CMS EYEC

built-in func+.ions, summary 105
command

using in EXEC procedure 293
wht::on to use 98

control statements, summary 112-114
files

changing record format 98
differences between fixed-length and
variable-le~gth 312,319

record format 98
stacking 322

filetype, for edit macros 337
interoreter, how lines are processed

335

procedures 97
building 291
debugging 333
executable statements 293
nesting 308
opening and closing CMS files 275
setting program function (PF) keys

396
submitting jobs to CMS batch facility

260,261
testing in CMS subset 334
to execute DOS programs 203-204
to execute IBCDASDI disk
initialization program 434-440

to execute OS programs 172-173
used by non-CMS users to submit batch

;obs 262-263
with same names as CMS commands 29

processing errors 332
special variables, summary

CMS EXEC file 100
format 100
modifying 102
sorting 101

CMS files (§~~ files)
CMS macro instructions

examples 276
usage 270

CMS menu, example 356
CMS stacks, example 316
C!"!S subset

environment 20,84
using 91

115

using to test CMS EXEC procedure 334
CMSAMS, saved system name 251
CMS/DOS

commands
ASSGN 181
DOSLIB 199
DOSLKED 197
DSERV 188
entering 21
ESERV 187
FETCH 200
LISTTO 182
PSERV 187
RSERV 186
sample terminal session 428-433
SSERV 186
summary 177

end-of-tape processing 139
environment 21

entering 175
program development using 175
relationship to CMS and to VSE/AP 175
restrictions on executina OS programs

176
CMSDOS, saved system name 251
CMS/DOS

tape label processing 133,134-135
terminology 175

CMSLIB, ddname used to identify OS macro
libraries 161

CMSLIB MACLIB 161,194,270
CMSSEG, saved system name 251
CMSUT1 file, CMS commands that create 50
CMSVSAM, saved system name 251

Index 445

CNTRL filetype
control files 285
usage in CMS 47

command
defaults 25
environments 17
how to enter 3
language 3

CMS 5
CP 5

lines, how scanned in CMS 266
COMMENT statement 281
comments

in CMS EXEC procedure 331
in HELP text files 372

communicating
with CMS and CP during editing session
~4

with VM/SP 3
COMP

operand of MACLIB command
usage 159
usage in CMS/DOS 193

COMPARE command, comparing contents of CMS
files 3q

comparing, variable symbols in CMS EXEC
procedure 107,302 /

compilers, supported in CMS 5
components, of VM/SP 3
compressing

DOSLIE files 199
M ACLIBs 159

in CMS/DOS 193
CONCAT option, of FILEDEF command,exa mple

161
conditional execution, &LOOP control
statement 306-307

conditionally displaying text 372
console

log
creating disk file from 398
printing 398
produced by CMS batch facility 259

output, spooling for display terminal
3g8

console input buffer (~~~ console stack)
console stack

cleared in case of error during edit
macro execution 340

clearing 320
clearing for edit macro execution 339
exchanging data between programs 315
using in CMS EXEC procedure 314
using to write edit macros 337

CONT
operand of SPOOL command 117

using to spool virtual punch in CMS
~x~c procedure j2q

continuation character~ how to ~nter in
column 72 79

continuous spooling 117
control cards, for CMS batch facility (se~

CMS batch facility control cards)
control file update, example 288
controlling

CMS loader 169
execution of CMS EXEC procedure, summary

of control statements 105

_446 IBM VM/SP CMS User's Guide

converting
decimal values to hexadecimal, in CMS

EXEC procedure 296
fixed-length files to variable-length
format 75

hexadecimal values to decimal, in CMS
EXEC procedure 296

CONWAIT function
example 322
using to clear console stack 321

COpy
files

adding to MACLIB 158
adding to MACLIB, in CMS/DOS 191

filetype
usage in CMS 47
usage in CMS/DOS 49

function, on display terminals 399
operand of SPOOL command 117

COPYFILE command
changing filemode numbers 56
changing record format of file 75
copying files from one virtual disk to
another 32

creating small files from large one 90
copying

books from DOS/VSE source statement
libraries 186

contents of display screen 399
DOS files into CMS files 180
files

from one device to another 122
from tape to disk 141

lines in CMS file 73
macros from DOS/VSE libraries to add to

CMS MACLIB 191
members of MACLIBs 160,193
modules from DOS/VSE relocatable
libraries 186

OS data sets into CMS files 155
parts of CMS file, with GETFILE

subcommand 73
spool files 117
VSAM data sets 233-234

into CMS files 235
copying modules from DOS library or SYSin

tapes 180
core image libraries

CM S (§~~ DOSLIB files)
DOS/VSE, using in CMS/DOS 189

correcting, lines as you enter them 6
counters, using in CMS EXEC procedure

306- 307
CP (control program)

basic description 3
commands, general information 5
privilege classes 389
spooling facilities 117

CP (control program) environment, entering
18

CP commands 19
executing from programs 268
summary 390- 394
used for debugging 246

compared with DEBUG subcommands 248
using in CMS EXEC procedure 293
using in job for CMS batch facility 258

CP READ status, on display screen 396

creating

)
eMS EXEC file 100
eMS files 31

from DOS disks and tapes 181
from DOS libraries 180
from OS data sets 155,157
in CMS EXEC procedure 323

eMS macro libraries
ex~mple 158
example in CMS/DOS 191
from DOS macro libraries 191

DOStIB files 199
file system control block (FSCB) 270
files with CMS Editor 61
HELP text files 367
modules from DOS library or SYSIN tapes

lAO
one spool file from many files being
printed or punched 111

program modules 170
programs, sample terminal session

424-427 •
reserved filetypes 329
user-written commands 171
user-written edit macros 337

creating buffers
using the DESBUF command 315
using the DROPBUF command 315
using the MAKEBUF command 315
uS1ng the SENTRIES command 315

CSW (channel status wor~, displaying, with
DISPLAY command 246

current line pointer
\ displaying when verification is off 86
; how to use 65

-

position on display terminal screen 401
pOSitioning 68
subcommands for display terminals 404

cylinders

D

extents
en+ering in CMS/DOS 215-216
specifying for as disks 223

on 2314/2319 disk 223
on 3330 disk 223
on 3340 Model 35 disk 223
on 3340 Model 70 disk 223

data control block (DCB), relationship to
FILEDEF command 151

data sets, as, using in CMS 149
ddnames

in as VSAM programs, restricted to 7
characters in CMS 222

specifying with FILEDEF command 151
used bV assembler 164
used with assembler 196

DDR command, used with OS data sets 149
DDR program, dumping to tape 124
DEBUG

command 21
to enter debug environment 238

subcommands
compared with CP debugging commands

248
entering 21
monitoring program execution 239
relationship to CP commands for

debugging 246
summary 241

debug environment 21
debugging

CMS EXEC procedure 333
commands and subcommands used in

relationship 246
summary of differences 248

nonrelocatable MODULE files 247
programs 237

summary of commands 37
using CP commands 245

decimal, and hexadecimal conversion in CMS
EXEC procedure 296

de-editing, DOS/VSE macros 187
default

command 25
DLBL definition 184
FILEDEF definition 153
for filetypes for CMS Editor,
establishing in CMS EXEC procedure 329

logical line editing symbols 6
setting up in CMS EXEC procedure 299

DEFINE
access method services function 232
command

defining temporary disk 13
defining virtual storage 249
to increase virtual storage size 89

subcommand, defining symbols for
debugging session 240

defining
logical line editing symbols 8
program input and output files in CMS

166
space for VSAM files 210-211,227

in CMS/DOS 218
tapes

nonstandard 134
standard labelled 134
unlabelled 134

temporary disks 13
translate tables 31
virtual printer for trace information

244
virtual storage 249
VSAM files

for AMSFRV 222
for AMSFRV, in CMS/DOS 214

VSAM master catalog 224-225
CMS/DOS 215-216

Index 447

DEL operand
of MACLIB command 159

inC M S /D 0 S 19 2
DELETE

access method services function 233
subcommand, how to use 72

DELFTE statement 281
deleting

lines in file being edited 72
to a particular line 72

members of MACLIB
example 159
example in CMS/DOS 192

VSAM clusters and catalogs 233
delimiters, on CMS EDIT subcommand lines

64
density of tapes, when to specify 142
DESBUF command, used to create buffers 315
DESBUF function

example 322
using to clear console stack 320

DETACH, command, after RELEASE command 15
det achinq

disks 15
without releasing them 58

device types
assignments in CMS/DOS 181
specifying with FILEDEF command 152

devices, disks, cylinders and tracks 223
DIAGNOSE instruction, executing CP commands

26A
DIAL command 26
DIRECT, filetype, usage in CMS 47
DISCONN, command 26
disconnecting, your terminal from your
virtual machine 26

discontiguous, saved systems 249
DISK command

LOAD operand, restriction in job for CMS
batch facility 258

usinq 121
disk determination

default for reading files
commands that search all accessed

disks 53
commands that search only A-disk 53
commands that search only A-disk and
its extensions 53

default for writing files
commands for which you must specify

filemode 54
commands that write files onto your

A-disk 54
commands that write output files to
read/write disk 54

filemode selection by CMS Editor 63
disks

defined in VM/SP directory entry 12
defininq temporary disks for terminnl
session 13

definition 12
DOS, accessing 178
full, during CMS edit session 90
linking 13
listing information about 40
master file directory 57

44q IBM VM/SP CMS User's Guide

OS
determining extents for VSAM 223
using in CMS 149

OS and DOS
compatibility 210-211
formatting with IBCDASDI program 213
used with VSAM data sets 209

providing for CMS batch virtual machine
257

queryinq status of 57
read-only, exporting VSAM files from

233-234
search order 15,51
sharing 14 .
VSAM, accessing 209
writing files on, how CMS Editor selects
disk 63

DISP MOD option, of FILEDEF command 154
display

full screen, System Product Editor 91
multiple views, System Product Editor

9 1
DISPLAY command, displaying storage and
registers while debugging 245

display screen, status conditions 396
display terminals

changing editor verification setting
403

controllinq screen, during edit session
403

display mode 405
entering backspace characters 406
entering commands 395
example of display screen 400
how CMS Editor formats screen 402
Ii ne mode 405
signaling interruptions 400
text feature 409
using CMS Editor 401
using tab characters 406

displayinq
CMS files 34

in CMS EXEC procedure 313
column numbers in file being edited,

using $COL edit macro 350
data lines at terminal

in CMS EXEC procedure 311
WRTERM macro 276

directories of DOS/VSE libraries 188
DLBL definitions 185
FILEDEF definitions 166
general registers, in debug environment

238
lines at terminal, in CMS EXEC procedure

108
listings from access method services

208
particular columns of file, during CMS

p.n;+ ~p~~i('\1'l 6q
prompting messages in CMS EXEC procedure

3 11
PSW (program status word), during

program execution 242
screensful of data 404
short form of editor error message 86
special characters on display terminal

407

)

-

timing information in CMS EXEC procedure
110

trace information on terminal 244
virtual storage during program execution

245
displaying commands 351
displaying HELP files 357

XEDIT subcommand 357
displaying message text 351
disposition, of spool files 117
DLBL command

assigning filemode numbers 56
default file definition 184
defining OS data sets 149
entering before program execution 201
EXTENT option, examples 228
how to use in CMS/DOS 183
identifying VSAM data sets 222
identifying VSAM data sets in CMS/DOS

214
relationship to ASSGN command 183
specifying extents 228
specifying extents in CMS/DOS 219

DL/I programs in CMS/DOS 178
DMS, prefixing error messages in CMS EXEC
proc'edure 333

DMSSP MACLIB 194
documenting, CMS EXEC procedure 331
DOS, disks, compatibility with OS disks

210-211
DOS (Disk Operating System)

files
identifying in DLBL command 184
restrictions on reading in CMS 179
using in CMS 178

macros supported in CMS 194
program development, summary of commands

36
simulation in CMS 175

DOSLIB
command, compressing DOSLIBs 199
files 199

executing phases from 201
size considerations 199

filetype, usage in CMS/DOS 49
DOSLKED command, link-editing programs in

CMS/DOS 1 q7
DOSJJNK

files, using in CMS/DOS 198
filetype

usage in CMS/DOS 49
used by DOSLKED command 198

DOSMACRO MACLIB 161
DOSPART operand, of CMS SET command,

example 202
drawing boxes 370-371
DROPBUF command, used to create buffers

315
DSERV command, examples 188
DSN operand of DLBL command 184
DSORG option, of FILEDEF command, when to
specify 154

DSTRIWG subcommand
example 72
using in edit macros 342

dummy data set, specifying with FILEDEF
command 153

DUMP
command, example 247
subcommand, example 247

dumping, virtual storage 247
duplicating

filenames or filetypes 44
lines in CMS file 73

DVOL1 function, in tape processing 137
dynamic loading of TXTLIB members 170

E
E EXEC 329
EDIT command

creating CMS files 31
entering CMS Editor environment 19
executing in CMS EXEC procedure 318
invoking 5
invoking CMS Editor 61

edit macros
$COL 350
$CONT 342
$DOUBLE 344- 345
$DUP 73
$M ACROS 346- 347
$MARK 347-348

entering continuation character in
column 72 80

$MOVE 73
$POINT 349
CMS commands valid in 338
distributed with CMS 343
effect of IMPEX setting 29
examples 338
executing 338
how to write 337
sa mple 344- 3 45
using variable-length EXEC files 341

edit mode, returning from input mode 62.
EDIT subcommands

entering on display terminals 401
executing in edit macros 340
stackin'g in console stack 318

edi ti ng
by line-number 68
CMS files 61
lines as you enter them from terminal 6
on display terminal 401

in eMS EXEC procedure 405
session 61

end of file
executing edit macros 339
indicating for input stream to batch
virtual machine 263

indicating on jobs sent to batch virtual
machine 255

indication in file being edited 66
end-of-tape, processing 139
end-of-volume, processing 139
entering

APL characters on display terminal 407
eMS commands, in eMS subset environment

20
eMS EDIT subcommands 64
eMS Editor environment 19
CM S environment 18-19
CMS/DOS environment 21,175

Index 449

commands 3
more than one command on line 7
on display terminals 395
using synonyms 29
while command or program is executing

23
continuation character in column 72 79
CP commands

from CMS command environment 19
from edit environment 84

CP environment
after program check 246
during program execution 23
from CMS environment 18
from edit mode 84

debug environment
after program abend 238
via breakpoint 21,239
via DEBUG command 21
via EXTERNAL command 21
via external interruption 243

DEBUG subcommands 21
DLBL definitions, in CMS EXEC procedure

203-204
EDIT subcommands, on display terminal

401
extent information when defining VSAM

master catalog 224-225
file identifications

on DLBL command 184
on FILEDEF command 153
on LISTDS command 179

FILEDEF definitions, in CMS EXEC
procedure 172-173

Jmmediate commands 23
on display terminal 401

lines at terminal, during program
execution 276

logical line editing symbols as data 8
multivolume VSAM extents 228

in CMS/DOS 219
null lines 3
special characters

using ALTER subcommand 70
using translate table 31

tab characters on display terminal 406
VSAM extent information, in CMS/DOS

215-216
entry, linkage, for assembler language

programs in CMS 266
ENTRY, OS linkage editor control statement,
supported by TXTLIB command 158

entry point
displayed following FETCH command 200
for program execution, determining 170
specifying, using OS ENTRY statement

167
~p~r.ifyin~ for rro~r~~ ~~e~~ti0n 165

environments, VM/SP 17
EOF, token stacked when edit macro executed
at end of file 339

EOF: message 66
ERASE, command 33
erasing

CMS files 33
to clear disk space during CMS edit
session 90

450 IBM VM/SP CMS User's Guide

error messages
controlling whether you receive them
displayed by CMS editor, short form
displaying in red 27
in CMS EXEC procedure 327

error processing
me ssages 140
NSL routines 140
OS simulation 140
standard label processing 140

errors
during CMS commands, handling in CMS

EXEC procedure 327
during CMS EXEC processing 332
handling in CMS EXEC procedure 328
in edit macros 340

ESERV
command, examples 187
filetype 187

usage in CMS/DOS 49
examining, output listings from access

method services 207
EXEC

filetype
usage in CMS 47
usage in CMS/DOS 49

procedures

EXEC 2

executinq from programs 268
to execute IBCDASDI disk
initialization program 213

using to submit ;obs to CMS batch
facility 254

&TRACE statement 111
comparison to EXEC 111
files 111

attributes 111
format 111
XEDIT 111

invoking 110
language statements 111
parameter lists 267
programs 110,111
used with System Product Editor 91
using 91,97

executable statements, in CMS EXEC
procedure 293

executing
access method services, in EXEC

procedure 235
CM S comman ds

from programs 267
in CMS EXEC procedure 325
in edit macros 338

CMS EXEC procedure 97,98

27
86

in jobs for CMS batch facility 260
CM S EXECs 101
rnmm~n~~ "~4nn nrnnr~m ~"n~+4nn IO~\ ---.. - .. -----" --_._j r--~--- -- ... ---- .. ,-.,

keys 395
CP commands

from programs 268
in CMS EXEC procedure 293

DOS programs
setting UPSI byte 203
specifying virtual partition ,size

202
using CMS EXEC procedure 203-204

DOS/VSE" procedures 187

\
y

edit macros 338
• verifying completion 341

EDIT subcommands
in CMS EXEC procedure 318
using program function (PF) keys 396

EXEC procedure 58
from programs 268

executable statements in CMS EXEC
procedure 293

Immediate commands, in CMS EXEC
procedure 313

MODULF files 60,171
from programs 268

OS programs 165
restrictions 165
using CMS EXEC procedure 172-173

PROFILE EXEC 100
programs, in CMS/DOS 200
TEXT files 165
VSAM programs 205

execution
conditional, using &IF control statement

301
paths in CMS EXEC procedure 301

execution summary of CMS EXEC procedure,
example when &CONTROL ALL is in effect
334

exit linkage, for assembler language
progiams in CMS 266

exiting
from CMS EXEC procedure 106,309

based on &RETCODE special variable
32 7

EXPORT, access method services function
233-234

exporting, VSAM data sets 233-234
extensions, read-only, using 52
EXTENT opt ion

of DLBL command 222
in CMS/DOS 214

extents
determining for VSAM functions 212
for VSAM files

entering in CMS/DOS 215-216
multiple 228
multiple in CMS/DOS 219

EXTERNAL, command, interrupting program
execution 243

external references, how CMS loader
resolves 168

extracting, members of MACLIBs 160, 193

F
FETCH command, executing programs in

CMS/DOS 200
fetching, core image phases for execUtion
in CMS/DOS 200

FIFO, first-in first-out stacking, in CMS
EXEC procedure 317

file
definitions, making with FILEDEF command

151
directories, CMS 57
format, specifying on FILEDEF command

154
identifier

assigned by FILEDEF command 153
changing with SAVE subcommand 85
CMS, rules for assigning 43
coded as asterisk (*) 45
coded as equal sign (=) 45
default assigned by DLBL command 184
specifying for FSCB 270
used in FSCB 272

size, relationship to record length 75
system 43

macro instructions 270
file manipulation, System Product Editor

91
FILE subcommand, writing file onto disk 63
FILEDEF

command
assigning filemode numbers 56
default definition 153
guidelines for entering 151
how to use 151
used to identify OS macro libraries

161
used with OS data sets 149

commands, issued by assembler,
overriding 196

FILEDEF command
os simulation 126
standard labels 127,128

FTLEDEF statement, tape label processing
131-133

filemode
in file identifier 43
letters 44

assigning 51
when to specify, reading files 53
when to specify, writing files 54

numbers
descriptions 55
when to specify 56
4 150

filemode 0 55
filemode 1 55
filemode 2 55
filemode 3 55
filemode 4 56
filemode 5 56
filename 43

for edit macros 337
files (§g~ g!§Q DOS files, OS data sets)

CMS
erasing 33
format 43
iden tifiers 43
identifying on DLBL command 184
maximum number of records 43
renaming 33

Index 451

erased after being read 55
HELP 351
logical grouping 56
manipulating with CMS macro instructions

270
private 55
shared by users 55
too large to edit, what to do 89

filetvpe
created by assembler and language

processors 49
for workfiles 50
HELP facility 361

HELt?CMS 361
HELPCP 361
HELPDEBU 361
HELPEDIT 361
HEL1?EXC2 361
HELPEXEC 361
HELPHElP 361
HELPMENU 361
HELPMSG 361
HElPPREF· 361
HELPSET 361
HELPXEDI 361

in file identifiers 43
reserved 46

establishing your own 329
FIND, subcommand, how to use 67
first-in first-out stacking, in CMS EXEC

procedure 317
fixed-length, CMS EXEC files, difference

between &STACK and &BEGSTACK 319
fixed-length files, converting to
variable-length 75

FMODE, subcommand, used to change filemode
numbers 56

FOR, operand of SPOOL command, usage 117
FORMAT command, formatting CMS disk 13
format of disk files, specifying on FILEDEF

command 154
format words

• BX 37 0-371
.eM 372
.CS 37 2
.FO 37 3
.IL 373-374
.IN 37 3-374
.OF 37 5
.SP 376
.TR 377
functions 370
summary 370

format-mode processing 373
formatting

CMS disks, example 13
FP-512 disks 13
numnered lists j!~
OS and DOS disks, example 213

forming, tokens of words in CMS EXEC
procedure 293

free space on OS and DOS disks, determining
for use with VSAM 212

FR'EELOWE 202
FRERFSPG 202

452 IBM VM/SP CMS User's Guide

FSCB, macro, usage 272
FSCB (file system control block}

creating. 272
fields defined 272
modifying for read/write operations 273
usage 270
using with I/O macros 272

FSCBD macro, generating DSECT for FSCB 273
FSCLOSE macro, example 275
FSERASE macro; usage 276
FSREAD macro, examples 272
FSWRITE macro, examples 272
full disk 57

during CMS edit session 90
full screen display, System Product Editor

91

G
GEN operand

of MACLIB command
usage 158
usage in CMS/DOS 191

general registers
conventions used in CMS 265
displaying in debug environment 238
displaying with DISPLAY command 245
modifying during program execution 238

GENMOD command
creating user-written CMS command 171
regenerating existing MODULEs 247

GETFILE subcommand
how to use 73
used to create small files from large

one 90
alobal changes, using EDIT subcommands 71
GLOBAL command

used to identify DOSLIBs 199
used to identify macro libraries 157

in CMS/DOS 190
used to identify OS macro libraries

149, 161
used to identify TXTLIBs 166

GO subcommand, to resume program execution
239

H
halting

program execution 23
screen displays 401
terminal displays 23

in CMS EXEC procedure 313
HDR1 labels 138
HELP command

C3S component j~~-j~~

CP component 354-355
DEBUG component 354-355
EDIT component 354-355
EXEC component 354-355
EXEC2 component 354-355
how to issue 354-355
XEDIT component 354-355

)
HELP facility

components of 351
displaying

commands 351
EXEC statement 351
messages 351

format words 367
how it works 361
PF keys 358
using 351

the XEDIT subcommand
HELP file 351

how to name 365
using the PF1 key 357
using the PF4 key 357
using the PF5 key 357

HELP files
adding 362
changing 362
creating new files 367
deleting 362
printing ,357
sample requests 356

351

HELPCMS, filetype, usage in CMS 47
HELPCP, filetype, usage in CMS 47
HELPDEBU, filetype, usage in CMS 47
HELPEDIT, filetype, usage in CMS 47
HELPEXC2, filetype, usage in CMS 47
HELPEXEC, filetype, usage in CMS 47
HELPHELP, filetype, usage in CMS 47
HELPMENU, filetype, usage in CMS 47
HELPMSG, filetype, usage in CMS 47
HELPPREF, filetype, usage in CMS 47

\ HELPSET, filetype, usage in CMS 47
.; HEL PXEDI, filetype, usage in CMS 47

hexadecimal, conversion in CMS EXEC
procedure 296

-

HOLD, operand of SPOOL command 117
hold status, placing virtual output devices

in during debugging 237
holding

display on display terminal 397
spool files to keep them from being

processed 117
HOLDING status, on display screen 397
HT Immediate command 23

HX

I

executing in CMS EXEC procedure 313

DEBUG subcommand 239
Immediate command 23

effect in CMS subset 20
effect on DLBL definitions 185
effect on FILEDEF definitions 154

IBCDASDI disk initialization program,
formatting temporary disks, example 213

ID card, to submit jobs to CMS batch
facility 253

identifying
macro libraries to search 157

in CMS/DOS 191
multivolume VSAM files 229

in CMS/DOS 220
VSAM master catalog 224
VSAM master catalog in CMS/DOS 215

IEBPTPCH utility program, creating CMS
files from tapes created by 141

IEBUPDTE utility program, creating CMS
files from tapes created by 141

IEHMOVE utility program, creating CMS files
from tapes created by 123,142

IJSYSCL, defining in CMS/DOS 184
IJSYSCT

defining 224
defining in CMS/DOS 215

IJSYSRL, defining in CMS/DOS 184
IJSYSSL, defining in CMS/DOS 184
IJSYSUC

defining 226
defining in CMS/DOS 217

image setting, effect on tab characters 76
IMAGE subcommand, using in edit macros 342
Immediate commands, entering, on display

terminal 401
IMPCP operand, of CMS SET command, setting

19
implied

CMS EXEC function 99
controlling 29

CP function 19
controlling 29

IMPORT, access method services function
233- 234

importing, VSAM data sets 233-234
INCLUDE

command r entering after LOAD command
168

DOS/VSE linkage editor control
statement, specifying in DOSLNK file
198

increasing, virtual machine storage 89
indenting text 373-374
INPUT

operand, of CMS SET command, defining
input translate table 31

subcommand
inserting single line into file 72
stacking in CMS EXEC procedure 319
using in edit macros 341

input and output files, VSAM, defining 222
input data

left margin while using CMS Editor 77
right margin while using editor 79
translated to uppercase by CMS Editor

62
input mode 20,62

entered after REPLACE subcommand 72
on display terminal 401
on display terminal in line mode 405
returning to edit mode, in edit macros

342
input stack, clearing 320
INSERT statement 280
inserting

lines in file being edited 72
using line-number editing 82

instructions
calculating virtual storage address 238
tracing 243

INTDK utility program 13
Interactive Problem Control System (~~~

IPCS (Interactive Problem Control System))

Index 453

interrupting
execution of edit macros 340
program execution 22

with breakpoint 239
interruptions

CMS macros for handling 278
external 243
signaling on display terminal 400

invoking

I/O

access method services 205
CMS Editor 61
CMS EXEC procedure 98
System Product Editor 61
VSAPL on display terminal 408

device assignments in CMS/DOS 181
manipulating 182

macros used in CMS programs 270
IPCS (Int.eract ive Problem Control System)

3
IPL command

entering CMS environment 5-6,19
loading alternate saved segment 251

ISAM access method
CMS restriction 151
CMS/DOS restriction 179

issuing
CMS commands from a HELP file 351
CP commands from a HELP file 351

issuing the HELP command 354-355

J
-job catalog

usinq 226
using in CMS/DOS 217

lob control language, equivalent in CMS
14R

jobname
for iob sent to CMS batch facility

speci fVi ng 255
used to identify spool files 259

;obs, for CMS batch facility, submitting
253

L
label off processing, tapes 129
label processing, general description 126
LABELDEF command

description 138
in CMS/DOS tape label processing 134
in tape processing 136
standard labels 127,128
use of 138

454 IBM VM/SP CMS User's Guide

labels
DOS VSAM disks, determining for AMSERV

215
in CMS EXEC procedure 106

how &GOTO searches for 304
rules for forming 301
terminating loop 306-307

OS VSAM disks, determining for AMSERV
224

tape
using VSAM tapes 230
using VSAM tapes in CMS/DOS 222

writing on CMS disks 13
L ABOFF (.§~ label off pro cessing)
language statements, in EXEC 2 111
large files, splitting into smaller files

89
LDRTBLS operand, of CMS SET command, usage

249
leaving

CMS edit environment 20
CMS subset environment 20
CMS/DOS environment 21
debug environment 21,239
edit environment 63
input mode 62

length, of lines displayed at your
terminal, controlling 28

libraries
CMS (.§~~ al.§Q DOSLIB, MACLIB, TXTLIB)
CM S 157

distributed with CMS system 161,194
macro libraries (.§~~ macro
libraries, C MS)

TEXT libraries 166
DOS/VSE

identifying in CMS/DOS 184
using directories 188
using in CMS/DOS 185

DOS/VSE core image, executing phases
from 201

DOS/VSE procedure, copying procedures
187

DOS/VSE relocatable
copying modules from 186
link-editing modules from 199

DOS/VSE source statement, using in CMS
186

OS, using in CMS 161
LIFO

last-in first-out stacking

line

in CMS EXEC procedure 317
in edit macros 339

mode, of CMS Editor 405
pointer (se~ current line pointer)

LINEDIT macro, executing CP commands 268 .
LINEMODE subcommand, beginning line-number
~ui tiuy 82

)

i
l

line-number editing 82
sample terminal session 420-423

lines, deleting at terminal before entering
7

LINK c~mmand
format in job for CMS batch facility

258
linking to other user's disks 13

linkage conventions, for programs executing
in CMS 266

linkage editor
DOS/VSE

invoking in CMS/DOS 197
specifying control statements 198

maps, using when debugging 237
OS, control statements supported by

TXTLIB command 166
link-editing

modules from DOS/VSE relocatable
libraries 199

programs in CMS/DOS 197
specifying linkage editor control
statements 198

TEXT files and TXTLIB members 167
TEXT files in CMS/DOS 198

examples 198
linking

to other users' disks 13
to your own disks 14

LISTCAT, access method services function,
output 208

LISTCRA, access method services function,
output 208

LISTDS command
listing DOS files 179
listing extents occupied by VSAM files

212
listing free space extents 212
used with OS data sets 149

LISTING, assembler ddname, overriding
default definition 164

listing
edit macros, with $MACROS edit macro

346-347
information

about CMS files 39,101
about disks 40
about DOS files 179
about MACLIB members 159,193
about OS and DOS di~ks 212
about OS and DOS files 40
about your terminal 38
about your virtual machine 40

logical unit assignments in CMS/DOS 182
listing files

created by AMSERV command
changing filename 208
printing 208

created by assembler, output filemode
164

created by assembler and language
processors 49

created by ESERV command 187
LISTING filetype

created by AMSERV command 207
usage in CMS 47
usage in CMS/DOS 49

LISTIO command, listing device assignments
182

literal values, using in CMS EXEC 295
LKEDIT filetype, usage in CMS 47
LOAD, command, loading and executing TEXT
files 165

load map
produced by LOAD and INCLUDE commands

169
using when debugging 237

LOAD MAP file, created by CMS loader 169
loader

CMS
description 168
entry point determination 170

control statements, summary 169
tables

effect of LOAD and INCLUDE commands
168

usage 249
loader terminate (LD~ loader control

statement, usage 166
loading

alternate saved segment on IPL command
251

CMS into your virtual machine 5-6
specifying virtual device address

250
core image phases into storage for

execution 200
programs into storage, specifying
storage locations 268

TEXT files into storage 165
TXTLIB members

dynamically 170
into storage 166

LOADLIB filetype, usage in CMS 47
LOADMOD command, to debug MODULE file 247
LOCATE subcommand

how to use 67
using in edit macros 342

locating
lines in file being edited 67

using line-number editing 82
location, starting, for loading link-edited

phases 200
locking, terminal keyboard to wait for

communication 30
logging off VM/SP 26
logging on to VM/SP 5-6,25
logical

character delete symbol 7
escape symbol 8
line delete symbol 7
line editing symbols 6

defining 8
overriding 29
used with CMS Editor 62

line end symbol ~~~ sl§Q # logical
1 ine end sym bol)

line end symbol 7
operators, used for comparisons in CMS

EXEC procedure 107
record length of CMS file, overriding
editor defaults 74

units
assigning in CMS/DOS 181

Index 455

LOGOFF command 26
LOGON command 25

contacting VM/SP 5-6
LONG, subcommand, when to use 86
loop

during program execution, debugging 242
in CMS EXEC procedure 107

using &LOOP control statement
306-307

usinq counters 306-307
lowercase letters

suppressing translation to uppercase 76
translated to uppercase by CMS Editor

62
LFECL option

of COPYFILE command, truncating records
in file 74

of EDIT command, when to use 74
of FILEDEF command, when to specify 154

M
MACLIB

command
usaqe 158
usage in CMS/DOS 191

files
adding MACRO files created by ESERV

program 187 '
moving to other files 160,193
queryinq 157
querying, in CMS/DOS 190

filetvpe, usage in CMS 48
~ ACRO

files
addinq to MACLIB
adding to MACLIB
created by ESERV

filetvpe
usage in CMS 48
usage in CMS/DOS

macro 1 ibraries
CMS 157

adding +0 158
creatinq l58

158
in CMS/DOS 192
command 187

49

deletina members of 159
displaying information about members

in 159
distributed with CMS system 161,194
replacing members of 159
using in CMS/DOS 190

DOS/VSE assembler language, restriction
on using in CMS/DOS 190

as, identifying for use in CMS 161
macros

DCS/VSE assembler lanquaqe, supported in
CMS 1 q4

os, supported in CMS 163
MAINHIGH 202
MAKEBUF command, used to create buffers

315

U56 IBM VM/SP C~S User's Guide

MAP ~
filetype

created by DOSLKED command 200
created by DSERV command 188.
created by MACLIB command 159,193
usage in CMS 48
usaqe in CMS/DOS 49

operand
of M A CL IB co m m an d 1 59 , 1 93

option of DOS/VSE ACTION control
statement, effect in CMS/DOS 200

maps
created bV DOS/VSE linkage editor 200
of CMS virtual storage 250

margins
setting left margin for input with CMS
Editor 77

setting right margin for input with
editor 79

master catalogs
VSAM

defininq 224-225
definina in CMS/DOS 215-216
sharing 209

master file directory 57
maximum, number of records in CMS file 43
MEMBER option

CMS commands that have MEMBER option
193

of FILEDEF command 155
to copy member of os partitioned data
set 156

MEMO filetype 51
menu, parameter of the HELP command

344- 345
menus 356

changing 364
creating 363
example 363

MESSAGE command, using before logging on
25

messages
controlling whether you receive them 27
from CMS batch facility 256
from CMS Editor, on display terminal

401
from CP during edit session, effect on
display screen 403

to other virtual machine users 25
minidisks (§~~ al§Q disks)

definition 12
transporting to os system after using

with CMS VSAM 211
using with VSAM data sets 211

EXPORT/IMPORT restriction 233-234
mode

edit and input 62
setting for your terminal 22,30
switching 17

modifying
CM S EXECs 102
CMS files, examples of commands 33
FSCB 273
qroups of CMS files 53
registers during program execution 238

MODULE
) files

creating 170
debugging 247

'\

v

executing from programs 268
generating, to execute in transient
area 269

modifying 247
filetype, usage in CMS 48

modules, DOS/VSE relocatable, copying into
CMS files 186

MORE ..• status, on display screen 397
MOVEFILE command

copying CMS files from tapes created by
123

copying OS data sets 155
copY1ng tape files 141
description 138
extracting member of MACLIB 160,193
reading files from virtual card reader

122
use of 138
used with OS data sets 149

moving
. CMS files, examples of commands 33

current line pointer 66
lines in file being edited 73

MULT option of DLBL command 222
in CMS/DOS 214

multiple
extents for VSAM files

specifying 228
specifying in CMS/DOS 219

output devices, restriction in CMS/DOS
183

updates 284
variable symbols in token, examples 295

multivolume VSAM extents
specifying 228
specifying in CMS/DOS 219

N
NAME, OS linkage editor control statement,
supported by TXTLIB command 166

naming
CMS files 43
user commands 58

naminq conventions, HELP files 365
nesting

&IF statements in CMS EXEC procedure
303

CMS EXEC procedure 308
return code passed 328

NL (§~~ no label processing)
nnnnn subcommand, examples 82
no label processing 126
NODISP option of EDIT command, using in CMS

EXEC procedure 405
nonrelocatable modules, creating 170
nonshared copy

of CMS 250
of saved system, obtaining during

debugging 250
nonstandard label processing, tapes 129
nonstandard labelled tapes, defining 134

-

NOPROF option, of ACCESS command,
suppressing execution of PROFILE EXEC 100

NOT ACCEPTED status, on display screen 398
NSL (§~~ nonstandard label processing)
NSL routine, writing 130
NSL tape label processing, routine 130
nucleus-resident CMS commands 60
null

o

line
after IPL 5- 6
at top of file 66
entering to determine environment 17
how to en ter 3
in CMS EXEC procedure 293
stacking in CMS EXEC procedure 319
stacking in EXEC procedure 235
testing for in CMS EXEC procedure

311
to resume program execution after
attention interruption 23

to return to edit mode from input
mode 62

variables in CMS EXEC procedure 105

object files
created by assembler and language

processors 49
loading into storage 165

offsetting text 375
OPEN macros, OS simulation 126
opening, CMS files 275
options, for FILEDEF command 153
ORDER command, selecting files for

processing 117
origin, for debug environment, setting
ORIGIN, subcommand, how to use 240

240

OS
access methods supported in CMS 150
'da ta sets

copying into CMS files 155
restrictions on reading in CMS 151
using in CMS 149

disks
compatibility with DOS disks 210-211
using in CMS 149

linkage editor control statements, read
by TXTLlB command 166

macros supported in CMS 163
partitioned data sets (§~~ partitioned
data sets)

program development
sample terminal session 424-427
summary of commands 35

simulated data sets 150
simulation in CMS 147
utility programs, creating CMS files

from tapes created by 141
OS simulation, end-of-tape processing 139
OSMACRO MACLIB 161,194
OSMACR01 MACLIB 161,194
output records, sequencing records 281
output

files, produced by ASSEMBLE command 196
from CMS batch facility 259
from virtual console, spooling 398

Index 457

OUTPUT, operand, of C~S SET command,
defining output translate table 31

output stack, clearing 320
OVERLAY subcommand

how to use 70
overlay more than one line 71
using in edit macros 342

overlaying
character strings 70

with $MARK edit macro 347-348
virtual storage, during program

execution 268
overriding, logical record length of file

being edited 74

P
parameter lists

detecting absence of 267
EXEC 2 267
passing with START command 165,267
setting up to execute CMS command 267
used by CMS routines 266
using FSCB 272

parent disk, of read-only extension 52
parentheses, scanned by CMS EXEC
interpreter 293

partition size, specifying for program
execution, in CMS/DOS 202

partitioned data sets
copyinq into CMS files 156
specifying member names with FILEDEF

comman d 155
passinq

argumen ts
to CMS EXEC procedure 297-298
to nested CMS EXEC procedure 308

control in CMS EXEC procedure 304
password suppression on command line 14,25
passwords

entering on LOGON command line 25
for VSA~ catalogs 227

in CMS/DOS 218
~or your virtual machine 5-6
supplyinq on LINK command line 14

PAl key, to enter CP environment 401
PDS option, of MOVEFILE command, to copy OS
partitioned data sets 156

periods, used to concatenate CMS EXEC
variable symbols 105

PERM option, of FILEDEF command, when to
specify 154

PF keys (§~~ program function (PF) keys)
PF1 key use, HELP file 357
phases, CMS/DOS core image, writing into

DOSL IBs 1 qo
positioniug

current line pointer 66,68
using $POINT edit macro 349

preferred auxiliary files 287
preferred level updating 287
preparing, ;obs for CMS batch facility 257
PRESERVE subcommand

saving EDIT subcommand settings 87
using in edit macros 340

preserving, editor settings 87

458 IBM VM/SP CMS User's Guide

PRINT
access method services function, output

208
command, printing CMS files 34

printer files
produced by job running in batch virtual

machine 257
querying status of 120

printing
access method services listings 208
CMS files 34
multiple copies 120
trace information on virtual printer

244
PRINTL macro, usage 276
privilege classes, for CP commands 389
PROC filetype 187

usage in CMS/DOS 49
procedures, DOS/VSE, copying into CMS files

187
processing

tapes
BLP 129
LABELOFF 129
NL 129
NSL 129

PROFILE EXEC
sample 99

for CMS/DOS VSAM user 215
for OS VSAM user 224

program
abend, message 237
check, using CP to debug 246
debugging 237
dumps, obtaining 247
execution

entry point determination 170
interrupting 22
resuming with BEGIN command 246
tracing 242

input and output files, identifying 151
in terruptions

address stops 24
breakpoints 23

libraries 166
linkage, in CMS 265
listings, using when debugging 237
loops, debugging 242

program development
DOS programs 175

sample terminal session 428-433
summary of commands 36

OS programs 147
sample terminal session 424-427
summary of commands 35

using CMS 145
program function (PF) key

C~~:CEL 358
HELP 358
LOCATE 358
MENU 358
NEXT 358
NEXT1/2 358
PF key 358
PREV. CMD. 358
PRINT 358
QUIT 358
TAB 358

)

\
.;

TOP 35A
UP 35A
UP1/2 358

program function (PF) keys
setting 395

COpy function 399
for EDIT subcommands 404
in CMS EXEC procedure 396
loaical tab stops 406

using 395
program stack (§~~ console stack)

example of 316
using the ATTN function 316

proqram status word (§~~ PSW (program
st atus word»

programmer logical units, assigning in
CMS/DOS 182

programs
exchanging data 314
in EXEC 2 111

prompting
for line numbers while line-number
editing 82

messages in CMS EXEC procedure 311
protecting, files from being accessed 55
PSERV command, examples 187
PSW, operand of DISPLAY command 242
PSW (program status word)

displaying
in debug environment 238
while program loops 242
with DISPLAY command 246

modifying wait bit 246
PUNCH

command
example 121
punching jobs to batch virtual

machine 254
using with &PUNCH control statement

324
ESERV control statement, executing in

CMS/DOS 187
punch files, produced by job running in

batch virtual machine 257
PUNCHC macro, usage 276
punching

CMS files 34
files to your virtual card punch 121
;obs to batch virtual machine 254

in CMS EXEC procedure 260
lines in CMS EXEC procedure 109
lines to virtual card punch 122
members of MACLIBs 160,193

PURGE, command, purging spool files 120
purging batch jobs 259

Q
QSAM access method, CMS support 150
QUERY

command (CMS), used with OS data sets
14q

command (CP), displaying status of spool
files 120

QUIT subcommand, terminating CMS edit
session 63

R
RDTERM macro, examples 276
read, to virtual console, definition 22
READ control card, punching 121
R~ADCARD command

examples 121
re~triction in CMS batch facility 258
use~ to assign filemode numbers 56
usiri~ with &PUNCH control statement 323

READER dperand
of ASSGN command, restriction in ;ob for

CMS batch facility 258
of FIlEDEF command, restriction in job
for eMS batch facility 258

reading
arguments from terminal during CMS EXEC
processing 302

cards from your virtual card reader 121
CMS commands

from console stack 318
from terminal during CMS EXEC
processing 311

CMS files
from CMS EXEC procedure 322
from console stack 322
with FSREAD macro 274

DOS files in CMS 179
from terminal

in CMS EXEC procedure 108
RDTERM macro 276

lines from console stack, in CMS EXEC
procedure 314

real card decks into your virtual
machine 121

specific records in CMS file 274
variable symbols from terminal during

CMS EXEC processing 311
read-only, extensions, using 52
read/write

pointer, positioning 275
status of disks

displaying 15
in VM/SP directory entry 14

ready message 9
controlling how it is displayed 27
CPU times displayed 265
displaying return code from CMS EXEC

procedure 311
not displayed after #CP function used in

CMS environment 19
RECFM, option, of FILEDEF command, when to

specify 154
record format

of CMS file, changing 75
specifying for DOS files 180
specifying for program input and output
files 154

record length
creating long records with CMS Editor

75
of CMS file

changinq 74
default values set by CMS Editor 74
relationship to file size 75

records, in CMS file, maximum number 43
recursion level of CMS EXEC, testing with

&GLOBAL special variable 308
red type, displaying error messages in 27

Index 459

re-ex€cuting, EDIT subcommands 87
register 15

checking contents after program
execut ion 17 2-173

in CMS/DOS 203-204
contents after CMS command execution

266
testing contents in C~S EXEC procedure

327
registers (§~~ general registers)
relative record number, specified in FSCB

272
RELEASE command 15

updating master file directory 57
used with OS disks 149

releasing
disks 15,57
read-only extensions 52

relocatable
modules, link-editing in CMS/DOS 199
object files, loading into storage for

execut ion 168
remote spooling, general information 142
Remote Spooling Communications Subsystem
(§~~ RSCS (Remote Spooling Communications

Su bsyst em))
Remote Spooling Communications Subsystem

(PSCS) Networking 143
remote terminals, using CMS editor 405
RENAME command

changinq the filemode numbers only 56
renaming CMS files 33

renaming, CMS files 33
PENUM subcommand, usage 83
renumbering, records in fil~, while

line-number editing 83
reordering batch jobs 259
REP

operand
of MACLIB command 159
of MACLIB command in C~S/DOS 192

REPEAT subcommand, used with OVERLAY
subcommand 71

REPL ACE
option of COPYFILE command, used to

change filemode letters 56
subcommand

how to use 72
using in edit macros 341

REPLACE statement 281
replacing

lines in file being edited 72
using line-number editing 82

members in macro library, example in
CMS/DOS 192

REPRO, access method services function
233-234

resolving, unresolved references 168
respondinq

to CMS commands in CMS EXEC procedure
109

to prompting messages from AMSERV, in
EXEC procedure 235

responses
from CMS commands 10-11

suppressing display in CMS EXEC
procedure 313

from CP commands 9-10

460 IBM VM/SP CMS User's Guide

from VM/SP 9
to CMS commands, stacking in CMS EXEC

procedure 317
restarting batch jobs 259
RESTORE

subcommand
usage 87
using in edit macros 340

restoring
editor settings 87
screen display during edit session,
using TYPE subcommand 403

restrictions
on commands used in CMS batch facility

258
on ddnames in OS VSAM programs 222
on executing DL/I programs in CMS/DOS

178
on executing DOS programs in CMS/DOS

200
on executing OS programs in CMS 165
on executing OS programs in CMS/DOS 176
on number of lines that can be stacked
in edit macro 340

on programs executing in transient area
269

on reading DOS files in CMS 179
on reading OS data sets in CMS 151
on using DOS/VSE macro libraries in

CMS/DOS 1'10
on using minidisks with VSAM data sets

211
resume

program execution
after attention interruption 23
after program check 238

terminal displays 23
in CMS EXEC procedure 314

RETURN
CMS subset command, to leave CMS subset

20
DEBUG subcommand, before starting

program execution 239
return codes

displayed in ready message 266
from access method services 207
from CMS commands

displaying during CMS EXEC processing
325

specifying error address following
SVC 202 268

from CMS EXEC procedure 310
in CMS ready message 9
passed by register 15 266
1 325
-2 340
-3 325

REUSE subcommand
after LOCATE or FIND subcommand 67
usage 87

RSCS (Remote Spooling Communications
Subsystem) 3

RSERV command, examples 186
RT Immediate command 23

executing in CMS EXEC procedure 314
RUN, command, specifying arquments 267
RUNNING status, on display screen 397

)

\
~

S
S~M files (§~~ sequential access method
(S~M) files)

sample, terminal sessions 411
S~VE subcommand

changing file identifier 85
writing file onto disk 63

scanning
CMS command lines 266
lines in CMS EXEC procedure 293,335
tokens in CMS EXEC procedure 103

screen
example of 3270 screen display 400
format used by CMS Editor 402
status

SCRIPT

CP RE~D 396
HOLDING 397
MORE. • • 397
NOT ACCEPTED 398
RUNNING 397
VM READ 397

command, restriction on executing in
CMS/DOS 176

files 51
using backspaces 78

filetvpe, usage in CMS 48
SCROLL subcommand, how to use 404
search order

for CMS commands
considerations when naming CMS EXEC

procedure 328
summary 60

for CMS disks 51
displaying 15

for executable phases in CMS/DOS 201
used bV DOSLKED command 197

searching
disks for CMS files (§~~ disk
determination)

for label in CMS EXEC procedure 304
for line in file being edited 67
only particular columns of file being

edited 69
read-only extensions 52

segment
alternate, loading on IPL command 251
shared system loaded into 251

sending messages, to other virtual machine
users 25

SENTRIES command, used to create buffers
315

sequence numbers
specifyino identifier 81
updating 282

SEQUFNCE statement 280
sequential access method (SAM) files,
reading in CMS/DOS 179

serial numbers
changing verification setting to display

A1
in file being edited 81

SERIAL subcommand, examples 81
serializing

records in file 81
while line-number editing 82

•

SET command (CMS)
controllino message displays 27
operands invalid in job for eMS batch
facility 258

setting implied CP and eMS EXEC
functions 29

SET command (CP), controlling message
displays 27

SETSSI, OS linkage editor control
statement, supported by TXTLIB command
167

setting
entry point for program execution 170
limits on system resources during batch

jobs 255
program function (PF) keys 395

in edit macros 396
sharing

CMS system 249
data and master catalog, in CMS VSAM

209
virtual disks 14

SHORT subcommand, when to use 86
simulated data sets

filemode number of 4 56
format 150

size
of CMS file

maximum 43
relationship to record length 75

of virtual storage in your virtual
machine 249

skipping, lines in CMS EXEC procedure 305
SLEEP command

locking terminal keyboard 30
using on display terminals 397

SMSG command (CP) 27
SORT command, specifying filemode numbers

56
sorting

CM S EXEC 101
directories of DOS/VSE libraries 188

source file, using the COPYFILE command
279

source files
adding comments 281
deleting records 281
replacing records 281
sample

using UPDATE command 282,283
sequence numbers 281

spacing between lines of text 376
special characters

CMS editor handling 76
on 3270 terminals 406
3270 Text feature 409

special messages~ controlling whether you
receive them 27

special variables, CMS EXEC (§~~ CMS EXEC
special variables)

specifying
device type for FILEDEF command 152
filemode numbers, on DLBL and FILEDEF

command 56
which records to read or write 274

splitting, CMS files into smaller files 89

Index 461

SPOOL command
changing characteristics of unit record

devices 118
spooling console output 398

spool files 117
controllina in job for CMS batch
facility 257

determining status of 41,117
produced by C~S batch facility,
controlling 259

spoolinq
basic description 117
console output 398
multiple copies 117

SSERV command, examples 186
STACK, subcommand, using in edit macros

343
stackinq

CMS commands, in CMS EXEC procedure 318
CMS EXEC files in console stack 322
command lines, after attention

interruption 23
commands lines, with # (logical line end

symbol) 7
EDIT subcommands 318

in edit macros 337
with REUSE subcommand 87

Immediate commands in eMS EXEC procedure
313

last-in first~out in CMS EXEC procedure
317

lines in CMS EXEC procedure 109
lines in co~sole stack, in CMS EXEC

procedure 314
lines in EXEC procedure

limitations 317,340
null lines

after attention interruption 23
in CMS EXEC procedure 319
in EXEC procedure 235

responses in CMS EXEC procedure 314
DLBL command 203-204
FILEDEF command 172-173
to CMS commands 109

responses in EXEC procedure, AMSERV
command 235

standard label processing, CMS/DOS 134
standard labels, OS simulation 128
START

command
after LOAD command 165
used with FETCH command 200

option
of FETCH command 200
of LOAD ccmmand 165

startinq, program execution in CMS 165
STATE command, used with OS data sets 149
storage available in your virtual machine,
calculated bv CMS 202

STORE
CP command, using to change program
status word (PSW) 242

subcommand, changing storage locations
240

suballocated VSAM cluster, defining 232
submi ttinq

jobs to CMS batch facility 253
non-CMS users 262-263

462 IBM VM/SP CMS User's Guide

substituting, variable symbols in CMS EXEC
procedure 294

summary
of CMS commands 381-386
of CMS EDIT subcommands 92-95
of CMS EXEC built-in functions 105
of CMS EXEC control statements 112-114
of CMS EXEC special variables 115
of CMS/DOS commands 177
of CP com~and privilege classes 389
of CP commands 390-394
of DEBUG subcommands 241
VSE/AF macros 195

suppressing
long form of editor ?EDIT message 86
verification of changes made by CMS
Editor 86

suppression of passwords on the command
line 14,25

SVC
instructions

tracing with CP TRACE command 244
tracing with SVCTRACE command 245

SVC 202, used to call CMS command 267
SVCTRACE command, usage 245
symbols

debug
defininq 240
using with DEBUG subcommands

logical line editing 6
used for comparisons in CMS EXEC

proced ure 107
variable, in CMS EXEC procedure
variable symbols)

SYNONYM
command, invoking synonym tables
filetype, usage in CMS 48

synonyms, for CMS and user-written
commands, defining 29

SYSCAT, assigning in CMS/DOS 215
SYSCL B

assigning in CMS/DOS 182
unassigning 201

SYSIN
assigning in CMS/DOS 182
input for ESERV command 187

SYSIPT, assigning in CMS/DOS 182
SYSLIB, ddname used to identify OS
libraries 162

SYSLOG, assigning in CMS/DOS 182
SYSLST

assigning in CMS/DOS 182
output from ESERV program 187

SYSPCH
assigning in CMS/DOS 182
output from ESERV program 187

SYSRDR, assigning in CMS/DOS 182
5YSRLB, dS8igniuy ill CMS/~CS 182
SYSSLB, assigning in CMS/DOS 182
system disk, files available 55
system logical units 182
System Product Editor

file manipulation 91
full screen display 91
invoking 61,91,357
in voking the 5
multiple displays 91 •

SYSUTl filetype 50

240

29

macro

) SYSUT2 filetype 50
SYSUT3 filetype 50
SYSUT4 filetype 50
SYSxxx

option of DLBL command
programmer logical

SYS001
SYS002
SYS003
SYS004
SYS005
SYSOO6

T
tab

assigning
filetype
filetype
filetype
filetype
filetype
filetype

characters

181
50
50
50
50
50
50

units
183

deleted in user input area 407
entering in file being edited 76
using in edit macros 342
using on display terminals 406

settings, used by editor 77
TABSET subcommand, using in edit macros

342
tape

bypass label, description 129
nonlabeled, description 129
nonstandard label, description 129

TAPE command
creating CMS files from tapes created by

~\ 123
~ sample terminal display 124

using 124
tape file

DCB address 131-133
FCBSECT address 131-133

tape files, in CMS 123
tape handling, options 142
tape label, processing, IBM standard 127
tape label processing

by CMS commands 136
EOT 139
EOV 139
LABELDEF command 138
MOVEFILE command 138
under eMS/DOS 133

DTFMT macro 133
under OS simulation 131-133
under OS/VS simulation 131-133

tape labels
in CMS 126
limitations 126

TAPECTL, used in tape label process 136
TAPEMAC command 137

creating CMS files from tapes created by
123

tapes
considerations for CMS/DOS users 181
density of, when to specify 142
for AMSERV, example 235
label processing 126

labels
processing in CMS 126,181
processing in CMS/DOS 133
processing in OS simulation 126
reading 230
reading in CMS/DOS 222

optional handling 142
special handling 142
used for AMSERV input and output 229

in eMS/DOS 220-221
virtual addresses 123

TAPESL macro, description 136
TAPPDS command 137

copying files from tapes 141
creating eMS files from tapes created by

123
TeLOSE command, in tape label processing

133
temporary disks, using for VSAM data sets

213
TERMINAL, command, setting logical line
editing symbols 8

terminals
characteristics, setting 28
commands to control communications 25
communication in eMS EXEC procedure 311
disconnecting 26
display (§~~ displ~y terminals)
input buffer (§~~ console stack)
macros for communication 276
mode setting 22,30

display terminals 397
sample sessions 411

terminology
eMS/DOS 175
OS 147

terms, OS, equivalents in CMS 148
testing

arguments passed to CMS EXEC procedure
299

CMS EXEe procedure, using CMS subset
334

for null line entered in CMS EXEC
procedure 311

return codes from CMS commands 309
in CMS EXEC procedure 311

variables symbols, using &IF control
statement 302

TEXT
assembler output ddname, overriding
default definition 164

files
created by assembler and language

processors 49
link-editing in eMS/DOS 198
loading into storage 166

filetype
usage in CMS 48
usage in CMS/DOS 49

text feature, 'for 3270 terminals 409
time information, displaying during CMS

EXEC processing 327
TO, operand of SPOOL command 118
TOF, token stacked when edit macro executed
at top of file 339

Index 463

TOF: message 66
tokens 103

with multiple variable symbols 295
TOP r subcommand r moving current line
pointer to top of file 66

top of file
executing edit macros 339
indication in file being edited 66

TRACEr command r usage 243
tracing

output r printing 244
program execution 242

controlling trace 244
tracks

entering extent information in terms of
223

number per cylinder on disk devices 223
TRANSFER command r moving reader files 119
transferring

control in CMS EXEC procedure r using
&GOTri control statement 304

control in EXEC procedure r &ERROR
control statement 327

transient area
CMS ~ommands that execute in 58
creating modules to execute in 26q
location in virtual storage 249
restrictions on modules executing in

269
translate tables

defining input and output characters for
31

using on display terminals 406
translating r virtual storage to EBCDIC 245
translating output characters 377
transporting r VSAM data sets 233-234
TRUNC

option of COPYFILE command r used to
convert record formats 75

subcommand r setting right margin for
input with editor 79

tru ncat ing
data while changing lines with editor

'7q

input data while using CMS Editor 79
trailing blanks from fixed-length

records 75
words in CMS EXEC procedure 293

truncation r settings used by CMS Editor 19
TSOMAC MACLIB 161 r 194
TXTLIB

command
OS linkage editor control statements

supported 166
usage 166

files .
assigning entry point names 166
m~ninnlatina 166

filetype r usage in eMS 48
members r assigning names for 166

TYPE
command r displaying CMS files 34
subcommand

effect on current line pointer 66
using to restore screen display 403

type call r in tape label proceSSing 130

464 IBM VM/SP CMS User's Guide

U
unassigning logical unit assignments in

CKS/DOS 182
underscore

characters in file being edited 78
using on OVERLAY subcommand 70

unique clusters r defining 232
unit record r devices 117
unlabelled tapes, defining 134
unresolved references, how CKS loader
resolves 168

UPDATE
control statement usage 280
filetype

creating update files 279
usage in CKS 48

updating
CMS file directories 57
source files 278-280

UPDLOG filetype, usage in CKS 48
UPDTxxxx filetype, usage in CMS 48
UPSI

byte, setting in CMS/DOS 203
operand, of CKS SET command r example

203
user catalog

VSAM 225
in CKS/DOS 217

user file directory 57
user program area 249

executing programs and CKS commands 269
userid

for your virtual machine 5-6
of CKS batch virtual machine 253
specifying for output spool files 117

user-written
commands r creating 170
edit macros 344-345

using CMS macros r examples 277
using PF1 r example 359
using PF12, example 359
using PF3 r example 359
using the XEDIT subcommand 357

V
variable symbols

compound 295
examples of substitution 294
how scanned 294
in CKS EXEC procedure 103

comparing 107
using as counters 306-307

reading values from terminal 311
stacking in edit macros 338

variable-length EXEC files r considerations
for writing edit macros 341

VARS operand of &READ control statement
311

verification setting
changing in edit macros 341
changing on display terminal 403
columns used by CKS Editor 69

VERIFY subcommand
canceling editor displays 86
how to use 69
using in edit macros 341

) verifying, execution of edit macros 341
virtual

addresses
for disks 12
for unit record devices 117

storage (~~~ virtual storage)
virtual addresses, tapes 123
virtual disks (~~~ sl~Q disks)

definition 12
virtual machines

definition 3
size 24q

Virtual Machine/System Product (VM/SP)
basic description 3
command summaries 387
components 3
environments 17

virtual storage
addresses, calculating 238
CMS utilization 250
displaying 245
examining in debug environment 238
how CMS uses 249
increasing size 89
overlaying during program execution 268
specifying locations for program

execution 268
used by editor, what to do when it is
full B8

VM READ status, on display screen 397
VMFASM EXEC procedure 289-290

~\ VMFDOS command 180
~ VM/SP (~~~ virtual Machine/System Product

(VM/SP)
VM/SP System Product Editor (§~~ System

Product Editor)
vm/3 7 0 online 5-6
VOLID parameter, FILEDEF command 127
VSAM

access method, CMS support 150
catalogs

deleting 233
passwords 227
passwords in CMS/DOS 218
using in eMS/DOS 215

clusters
defining 232
deleting 233
unique 232

data sets, manipulating with AMSERV
command 205

files
allocating space for 210-211
identifying multivolume 229
identifving multivolume in eMS/DOS

220
relationship to CMS files 43

input and output files
defining 222
defining in CMS/DOS 214

m aster catalog
defining 224-225
defining in CMS/DOS 215-216
identifying 224
identifying before executing programs

205
identifying in CMS/DOS 215
sharing 209

multivolume extents
specifying 228
specifying in eMS/DOS 219

option
of DLBL command 222
of DLBL command, in CMS/DOS 214

programs, compiling and executing in eMS
205

user catalogs
defining 225
defining in eMS/DOS 216-217

using in CMS 205
VSAPL program, invoking on display terminal

408
VSE/AF

differences between CMS/DOS 134-135
tape label processing 134-135

VSE/AF macro, summary 195
VSE/AF system residence volume, using in

CMS/DOS 176
VSE/AF TLBL card, in tape label processing

134

W
wait bit, in program new psw, modifying

246
WAITT macro, usage 276
warning messages, controlling whether you
receive them 27

writing
CMS files

in eMS EXEC procedure 323
with FSWRITE macro 274

CMS files onto disk, disk determination
54

edit macros 337
error messages in CMS EXEC procedure

332
labels on CMS disks 13
lines to terminal 276
specific records in CMS file 274

writing CMS files onto disk, how the CMS
Editor selects disk 63

WRTERM macro, examples 276
WVOLl function, in tape processing 137

X
X

DEBUG subcommand, example 240
EDIT subcommand, usage 87

XEDIT command, invoking the System Product
Editor 61

XEDIT LOCATE subcommand 356
XFDIT subcommand, invoking 5

y

Y subcommand, usage 87

Z
ZAP filetype, usage in eMS 48

Index 465

zone setting
columns used by CMS Editor 69
increasing 79

ZONE subcommand
setting truncation columns for CHANGE

subcommand 79
specifying columns for CMS Editor to

search 69

1
1qE virtual disk address, accessed as
Y-disk 51

466 IBM VM/SP CMS User's Guide

190 virtual disk address
accessed as S-disk 51
using to IPL CMS 5-6

191 virtual disk address, accessed as
A-disk 51

192 virtual disk address, accessed as
D-disk 51

3
3270 terminals (§~~ display terminals)

)

IBM Virtual Machine/System Product:
CMS User's Guide
SC1 9-6210-0

This manual is part of a library that serves as a reference source for systems analysts,
programmers, and operators of IBM systems. This form may be used to communicate
your views about this publication. They will be sent to the author's department for
whatever review and action, if any, is deemed appropriate. Comments may be written
in your own language; use of English is not required.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation whatever. You may, of course, continue
to use the information you supply.

Note: Copies of IBM publications are not stocked at the location to which this form is
addressed. Please direct any requests for copies of publications, or for assistance in using
your IBM system, to your IBM representative or to the IBM branch office serving your
locality.

• Does the publication meet your needs?

• Did you find the material:

•

Easy to read and understand?

Organized for convenient use?

Complete?

Well illustrated?

Written for your technical level?

What is your occupation?

• How do you use this publication:

As an introduction to the subject?

For advanced knowledge of the subject?

To learn about operating procedures?

Your comments:

Yes

o

o
o
o
o
o

o
o
o

No

o

o
o
o
o
o

As an instructor in class?

As a student in class?

As a reference manual?

o
o
o

If you would like a reply, please supply your name and address on the reverse side of this
form.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A.
(Elsewhere: an IBM office or representative will be happy to forward your comments.)

READER'S
COMMENT
FORM

SC19-6210-0

Reader's Comment Form

Fold and Tape

Fold

Please Do Not Staple

I" II
BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE:

I nternational Business Machines Corporation
Department G60
P. O. Box 6
Endicott, New York 13760

If you would like a reply, please print:

Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

Fold

YourJVame __ _

Company JVame ___ -------------------- Department ______ _
Street Address ____________________ _
City _____________ ~ _______________________ _

State _____________________ Zip Code __________ _

IBM Branch Office serving you _____________________ _ ------- - --. -----. ----- - _ --------
-~-.-®

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, N. Y. 10604

IBM World Trade Americas/Far East Corporation
Town of Mount Pleasant, Route 9, North Tarrytown, N. V., U. s. A. 10591

IBM World Trade Europe/Middle East/Africa Corporation
360 Hamilton Avenue, White Plains, N. V., U. s. A. 10601

0

~ ~
~
'TI
~
CL

~
0
:s

10

r
:;
It

I OJ
I s:
~ ...
r+
C
!!.

s:
0.1
n
~
::l
CD -(I)
< en
r+
CD
3
." ...
0
0.
C
n
~

n
s:
(I)

C
en
CD ...
en"

C)

E.
0.
CD

_-. ------ ----- .
-~-...... - -. ----- -- -'_.---..... . ------ _.-

International Busi_ Machines Corporation
Data Processing Division ·
1133 Wattchestar Avenue, White Plains, N .V. 10604

taM World Trade Americas/Fa, East Corporation
Town of Mount PIe.ant, .Route 9, North Tarrytown, N.V ., USA .. 10611

IBM World Tr'" EuropelMiddlee.st/Afrlca Corporation
360 Hamilton Avenue, White PIM"" N.V., USA. 10601

