
"

~,t/i'

-":>- -

.r: A .Reformed E4¥ecutor
Generol: £lpcu m-Ei1i:rotion

o
Document Number Rex(3.00

}Jikt CO'wli~haw
tvta il Point 182
IBM tlK Lobor.otories
Hursley Park (I

Winchester, 5021 2JN
Unlted: King~Qm

VNEf: 'WlNPA(MFC)
"-".<

jfRjt.ernal Use Only

o

.

(\
: ' ...

Document Humbar REX/3.00

4th July 1982

rtf k-e C~l i shaw

"'.i 1 Po i nt 182

IBN UK··l.aboratories

.Hursley Park

Minchast... , $021 2Jf<I

\. \UnH.d «i ngdom
MFe· at WINPA

.\

t

~.,

. ,
!

. ;) ,

http:REX/3.00

IBn Internal Use only

PREFACE

Major changes and enhancements for REX 3.00.
(since version 2.50.>

Thi 5 manual desert bes the f1 rst release of the REX 3 language. 1'10st of
the new features for REX 3 have been ayai lable for some time, i'n the REX
2.50 releases, however since then there have been some significant
enhancements and (primarily as a result of the REX Internal Techn; cal
Exchange held in San Jose in March 1982) some changes and simplifications.
Hote that REX 3.00 has no "compat i bi! i ty mode". and is therefore not
affected by TRACER TEST.

• 	 The variables access method is now a balanced binary tree, based on
algorithms and code by Laurie Griffiths. This has made it possible to
implement the fol10w1 ng e'xtension5. whi ch have been planned for a very
long time: •

"PROCEDURE EXPOSE namelist" sets UP a new level of variables, but
exposes all thosa named. Individual names can be exposed, or an
entire collection of variables can be exposed if their "stem" is
given. (A "stem" is the first part of the name. up to andinclud
ing the first period.) Example:

PROCEDURE EXPOSE I J X.I Ao B.

Exposes I. J. X. I (whi ch depends on the value of I), and all vari
abIes starting with "A~" or "B.".

Use of a "stem" in a DROP instruction drops all variables starting
with that stem. Use of a stem on the left of an assignment (etc.)
is currently i nval i d.

• 	 DO loop control variables are no longer restricted to integers. Thus
the following i!I now allowed: "DO 1=-1 to 2.5 by 0.33"

• 	 DO clause supports FOR phrase which specifies number of iterations.
e.g: DO 1=1 by 0.1 for 50 /'tIC loop!! 50 times '~E/

• 	 Hew "**11 operator rai ses numbers to an integer power (e. g: 230E3 == 8,
-1**2 == 1, etc.)

• 	 "<>" and "><" operators ar. synonyms for "~=" and "/="

• 	 Variables may be used as triggers in parsing. using the notation
"(var)"

• 	 SIGNAL ON HALT traps use of the "he" external interrupt.

Preface

IB" Inte~nal Use Only

• 	 SIGNAL OFF SYNTAX 19 unaffected by higher-level SIGNAL 'ON SYNTAXs.
i.e. if SIGNAL ON/OFF SYNTAX is currently OFF, then a syntax error
will terminate the Exec with error traceback etc.

• 	 Eleven new error messages have been added to replace the rather vague
message "Syntax Error".

• 	 SIGNAL ON EXIT, and DROP' with no variable-list, are no longer sup
ported.

• 	 CALL can invoke external EXECs and MODULEs with multiple a .. guments.
tIt U!UIS the same in.terface as functions, except that it need not
retu.. n data.) PARSE SOURCE may the..efo.. e now have SUBROUTINE a9the
second token.

• 	 ADDRESS and NUMERIC settings are saved across internal
subroutine/function calls.

• 	 RETURN with no expression after CALL causes RESULT to be dropped (i.e.
become uninitialised) rat~e.. than just being unchanged.

• 	 RETURN no longe.. sets SIGle

• 	 PARSE EXTERNAL accesses data on a system asynch..onous interrupt
queue, and EXTERNAlSO ..etu..ns the cur..ent number of items in that
queue. Unde .. CMS, these both refe.. to the console inp.ut buffer (as
opposed to the p .. og ..am stack): nota that these funct.i ons are only sup
ported under VM/CMS/SP.

• 	 Subt"action is done with co ect ..ounding, and nume.. ic comparisons
are now done by subt..acting the two numbers and compa .. ing the ..esult
with O. (Instead of rounding the two numbers then making a direct
compar i !Ion.) The defaul t FUZZ value is therefore now O.

• 	 Inte..action between external t ..ace bit and internal trace settings
has been improved (again).

• 	 The Exec SOURCE string is traced on ent..y to the prog..am if external
tracing is active.

• 	 The Old-format Plist is translated to upper case if full "Add .. ess CMsn
resolution is in effect. Thus Ii terals for CMS commands may usually
be given in mixed case. e.g: 'e..ase p .. ofile exec a';

There have been a Variety of enhancements to the built-in functions. too:

• 	 INDEX, POS. and lASTPOS allow a third argument which specifies the
start position for the search. Q.g. POSC'a'.'aaaa'.3) -- 3.
lASTPOS(' ','A BCD E'.5) := 4

• 	 DATE('Month') returns full name of current month. e.g. 'March'

• 	 TIMEC'long') returns a timestamp which includes mieroseconds.

Preface 	 iii

IBtI Internal Use Only

• 	 TIME('Elapsed') and TIME('Reset') control an eiapsed real time clock.

'. 	 SIGN(num) returns -1. O. 1 according to the sign of the number.

• 	 C.OPIES(string,n) returns "n" copies of the string. REPEAT has been
moved to REXFNS2.

-
• 	 CENTER is a valid synonym for CENTRE. and RAHDOM is the new name for

RHD. RHD is temporar; ly preserved as a synonym.

• 	 ERRORTEXT<n) . returns the text of the error me5saga associated with
error n.

• 	 SOURCElINE(n) return~ the nth line of the program, or (if n is not
specified) returns the number of line~ in the program.

• 	 ,VALUE(symbol-~ame) returns the value of the symbol specified e.g.
do i=1 to 10; say value<'NAME'i); end;

• 	 Hew BITAND, BITOR. BITXOR functions provide Bit-oriented operations
as in REXFNS2 AND/OR/XOR.'

• 	 MAX and MIN return result in standard REX format. and always'compare
with FUZZ=O.

• 	 OATATYP E is extended such that speci fyi ng a second argumentw; 11 test
whether the first is of that type. e.g: DATATYPE(3.3,'Num') == 1
Supported types are:

A =Alphanumeric <consists of just a-z. A-Z, 0-9)
B = 	Bits (just Its and O's)
l = 	lower case (a-z)
M = 	Mixed case (A-Z. a-z)
H = 	Numeric (i 5 a vall d REX number)
S = only contains characters which would be valid in

REX 	 symbol
U = 	Upper case (A-Z)
W= 	Whole Number (is a valid REX "Whole Number", i.e.

decimal part, and does not require exponent)
X = Hex (A-F, a-f, 0-9)

Optional pad character may be specified on: SUBSTR.
RIGHT, CENTRE. and JUSTIFY.

, J

a

0 	 'I
i
1

!
SPACE, lEFT, I

• 	 The definitions of the conversion functions X2D, C2X, D2C, etc. have
been generalised and enhanced.

• 	 XRAHGE function no longer allows "unpacked" two-byte arguments, and
VERIFY (as docuinanted for some time) no longer permits ' as the
final argument.

'~, ,
• 	 STORAGE now returns the current VM size if called with no arguments,

and has been moved to REXVMFNS.

Preface

.. I
,,.....c..._!

I

IBM Internal Use only

CONTENTS

1.0 Introduction . 1
1.1 What is REX? 1
1.2 Why REX was desi gned 1
1.3 Appl i cat ions fo r REX 3

2.0 The language featUres 5•••• e· •

2.1 structured flow control statements 5
2.2 Ca~e translation 6
2.3 Complex expressions 7
2.4 In-line function calls 7
2.5 Free format: not line-by-lina 8
2.6 Literal shorthand & Blank operator 9
2.1 String parsing •• 9
2.8 No requirement for self-modifying Execs 10
2.9 Peer Exec/Program communication 10

l .. O REX langUage definition ' • e 12•

3.1 Structure and general ~yntax" 12
3.1.1 Tokens . ' . 12
3.1.2 Implied semicolons and continuation~ 15

3.2 Exp.ressi on~ and operators 16
3.3 Clauses and instruct ions 211
3.4 Assignments 21
3.S Commands to the host 22
3.6 Instructions 24

3.6.1 ADDRESS 24
3.6.2 ARG 26
3.6.3 CALL 21
3.6.4 DO 29
3.6.5 DROP 34
3.6.6 EXIT 35
3.6.7 IF 36
3.6.8 INTERPRET 37
3.6.9 ITERATE 38
3.6.10 LEAVE 39
3.6.11 NOP 40
3.6.12 NUMERIC 40
3.6.13 PARSE 41
3.6.14 PROCEDURE 44
3.6.15 PULL 46
3.6.16 PUSH 47
3.6.17 QUEUE 47
3.6.18 RETURN 48
3.6.19 SAY 49
3.6.20 SELECT 49
3.6.21 SIGNAL and labels 50,
3.6.22 TRACE 53
3.6.23 UPPER 57

3.7 Functi'on calls 58
3.8 Built-in Functions 61

Contents vi

II" Internal Use only

3.9 Interactive debugging of REX programs 80

3.10 Parsi ng for ARG. PARSE, and PUll 83

3.10.1 Introduction to parsing •••• 83

3.10.2 Parsing definition •••• 85

3.10.2.1 Parsing with literal patterns •••••••• 86

3.10.2.2 Use of the period as a plaeeholder 87

3.10.2.3 Parsing with positional patterns 87

3.10.2.4 Pars1 ng wi th variable patterns •••• 89

3.10.2.5 Parsing multiple strings 90

3.11 Humeri cs and ReX Ari thmeti c •••••••• 91

3.11.1 Introduetion •••••••• 91

3 • 11 . 2 Def i ni t i on •••••••••• • • • • 92

3.12 Variables and Compound Symbols (array handling) 101

3.13 Rese,.vad Kaywords and languaga axtendabilitv 102

3.14 Special Variables •••• • ••• 103

4.0 The CMS implementation •••• 105• • • • 0 • • •

4.1 Installing REX and executing REX Exacs 105

4.1.1 Installation and Help: the REX EXEC 105

4.1.2 Executing programs written in REX 106

4.2 Standard external functio~ packages 108

4.2.1 REXFHS2 •••••••••••••• 108

4.2.2 REXVMFHS •••••.•••.•• 111

4.3 Using servica programs with REX (lOX. FSX. ate.) 113

4 Jt Interrupting executj on and controll ing Tracing 115

4.5 Systam Interfa<:;es •••••••••• 117

4.5. 1 Extended P! i st intarface ••.•• 118

4.5.2 Direct Intarfaca to REX variables 121

4.5.3 Interfaee to external routi nes 125

4.5.4 Hon-SVC subcommand invocation 128

4.5.5 EXECFLAG external control byte 129

4.6 Wr;ting Bilingual Execs 130

4.7 REX program structure 131

4.8 REX maintenance strategy 133

4.9 Performance considerations 134

5.0 The TSO implementation 135

6.0 Acknowledgements 136

A.O The Subcommand concept • • • 9 • • • • ~ G 0 e _ Q G • $ G • 138

e _ 0 e
• ., G

CeO Er~or numbers and messages 144

~ • • • • 0 • ~ ~ • • • • •Index • • 0 e e e a ~ •. 156

Contents vii

140

IBM Internal Use Only

,~ 	 1.0 INTRODUCTION

1.1 WHAT IS REX?

REX is a command programming ,(macro) language. It can be used as a direct
replacement for or alternative to the CMS EXEC and EXEC 2 languages, and
as a "Macro processor" for editors, languages, etc.

Compared with EXEC 2, REX has superior control structures, string
parsing, arithmetic, and expression evaluation. It also has better trac
ing facilities (including a powerful interactive debug mode), and is very
much easier to learn and use. It seems that both "end users" and program
mers find REX a simple and effective language.

like EXEC 2, it has several advantages over the original CMS EXEC
language: it has considerably enhanced function, it does not tokenise
data, and if the Exec involves loops of any kind, then it is significantly
faster.

Maintaining a program written in REX is much easier than for the other two
languages, since REX is a higher level language and is more readable.

~, 	 The language itself is Pl/I-like, and essentially system independent. In
its eMS implementation it is easily installed as a Nucleus Extension,
either under its own name or more usefully under the name EXEC. In this
mode you may w,.ite Execs or Editor Macros in one of three languages: EXEC
(standardCMS), EXEC 2 (its replacement), or REX.

The REX' interface wi 11 exami ne the fi Ie and pass it on to thea appropri ate
j'nterpreter. (If the f1 Ie begi ns wi th a REX comment it wi 11 be interpreted
by REX, etc.). This means that REX can coexist with both EXEC and EXEC 2
and you may gradually convert to REX wi thout hay; ng to change any of your
exi !lti ng Execs or Macros. (See page 117 for the secti on on System Inter
faces.) You may, too, invoke the REX interpreter from a program wi th the
data to bea interpreted held in storage, so avoiding File System overheads.

REX is also avai lable under MVS CTSO).

1.2 WHY REX WAS DESIGNED

The CMS Exec language (which has since beean extended and improved upon by
EXEC 2) is based on the common macro language principle that variables and
controls should be distinguished (by "I") and literals should exist in
plain text.

When Execs consisted mainly of strings of commands. with very littlea logic
in between, this was a fair and sensiblea choice: however a quick scan

Introduction 1

II" Internal Use only

through the Execs of almost any modern user quickly shows that the majori
ty of words in use are symbolic (that is, they begin wi't:h "&"). This
observation must cast some doubt on the validity of using this syntax.

A further argument is the increasing use of "complicated" strings in
Execs: for example embedded blanks are heavily used in Editor Macros; full
screen di splays; and so on. EXEC 2 handles these only fal rly well! where
as EXEC cannot manipulate them at all - the user ;s reduced to unreadable
man; pulati ons of the underscore charactar or other machinati ons to
achieva the desired rasult.

Thirdly. the necassity of using upper case characters throughout the EXEC
languages makes them awkward to type and difficult to read: it is clear
that programs typed in mixed case are, like this document. easier to fol
low.

Finally, the underlying syntax of the Exec languages makes the efficient
interpretation (and, perhaps, compilation) of modern control structures
extremely difficult. if not impossible. However, such facilities are nec
essary in order to eagi ly enh,ance and mal ntai n Execs and macros once they
have been written.

Therefore there is justification in investigating an alternative macro
language which uses the "more conventional" notation used by the higher
level programming languages such as Pt.lI, Pl/S, Pascal, and so on. Expe
r,ence suggests that a language wi th thi s type of syntax wi 11 be easi er to
learn and use than that whi ch more resembles a programmers' Macro
language. Although REX is especially attractive to those who are used to
programm; ng, many paople who bafore would not learn a command or program
mi ng language now usa REX.

The use of this notation will naturally cause users to draw comparisons
with the normal programming languages. This inevitably will laad them to
expect a corresponding improvement in the facilities available in their
macro language. This in turn would seem to imply that the interpreter
might be larger and probably slower than either EXEC or EXEC 2. Size
(within reason) is not often a problem on modern virtual machines, however
a severe performance penalty would be unacceptable in most environments.
Consi derable effort has tharefore bean made to ensura good performanca.

During implementation it has bean found that REX is rather larger than the
existing interpreters (currently about 31000 bytes, 10% of which are tha
error messages and 30% are the built-in functions). The various versions
oT EXEC 2 vary between 15500 and 19000 bytes.

The REX interpreter is somewhat slower than EXEC 2 for trivial operations.
but for soma tasks it is faster. It is usually vary much faster than EXEC.

Introduction 2

IBM Internal Use only

(\, , ," 1.3 APPLICATIONS FOR REX

REX is adept at manipulating objects which are character strings (but
which may be interpreted in other ways, just as people interpret certain
character stri ngs as numbers>. It is therefore a general purpose macro
language, in the loosest sense of the phrase, and may fi nd appli cati ons in
a variety of areas:

Command procedures

This 15 REX's main application area at the moment , binding
together system commands with logic to tailor a system to indi
viduals or applications.

Ed; tor Macros

This is another major application 'area for REX: the command set
suppl i ed by an Editor can be radi cally extended wi th the aid of
a powerful macro language.

Word ProceSSing Hacros

,,/\'

Word process; ng programs (such as SCRIPT/VS) have thai r own
interpreted language built-in. These languages are less gener
al purpose than' that provided by REX. and in the casCiJ of
SCRIPT/VS has worse performance. Provision of suitable, inter
faces would allow users to write their SCRIPT macros in the same
language that they use for Execs and Editor macros.

Language Processor Hacros

REX is clearly suitable for writing macros for language
processors such as HASM.. Pl/I and so on; and its performance i!l
comparable with that of the HASM macro processor. Again the
benefits of a common language for these applications are obvi
ous.

Protatyping

Since REX is implemented as an interpreted language, it offers
excellent program development and debUgging facilities. It is
therefore especially suitable for prototype code and (together
with device interface programs) for prototyping other applica
tions.

Personal computing

Many people have found that REX is an effective personal lan
guage, being comparable in power and application to the BASIC
language but with the benefits of modern control structures and

"'other advanced facilities.

Introduction 3

ZIH Internal Use only

Education

REX has prov~d to be a us~ful language for educating new users
in the principles of structured pro~ramming and higher-level
IanglAagas. Many users find that REX offers aU they need for
most programs.

The list above is just a selec~ion of the areas in which a modern inte~

preted language can be applied. As the parformanee of processors and the
techniques for efficient interpretation of language~ improve, we shall
cartainiy find that more and mora applica.tions wi 11 be based ansophi sti
cated interpreted languages. REX i 5 just a start in this di "ection.

Introduetion

IBM Internal Use Only

2.0 THE lANGUAGE fEATURES

What are the major desi rable features for a general purpose macro
language! My chot ces included:

1. 	 Structured flow control statements, some equivalent of If-then-else,
Do (Iteration/Until/While/Forever)-end, Select-when-end. being the
most: important.

2. 	 Effective mixed-case support - no requirement that keywords and vari
able names be typed in upper case, etc.

3. 	 "Complex" expressions (i.e. parentheses, multiple operators)

4. 	 In line "function" calls to other Execs, Modules, or internal
routines.

S. 	 Free format, yet not requiring a terminator for every statement.

6. 	 literal shorthand: unknown'"tokens" assumed to be enclosed in quotes,
with a natural concatenation mechanism.

7. 	 Built-in parsing facilities for character strings.

8. 	 No requirement for self-modifying Execs.

9. 	 "Peer" commun; cati on between Execs and programs.

The rest of thi 5 secti on di scusses these topi cs i.n more deta iI, however
the busy (or impatient) reader may prefer to skip to the language defi
nition in section 3.

The following items are not intended to be rigorous definitions of the
language features (which may be found in section 3), they are rather gen
eral descriptions of the syntax and the decisions leading to each choice.
Some implicit assumptions about the language syntax and the host system
will be apparent.

2.1 STRUCTURED FLOIolCONTROL STATEMENTS

The need for structured flow control is accepted by most programmers. The
three main classes of structured flow control are the If-then-else; Do
(iteration/while/until/forever)-End; and Select-when-end. (The use of
IBM (Pt/I) constructions rather than any of the possibly superior alterna~
ti yes descri bed in the 11 terature is purely for. consi stency.)
If-then-else has been implemented for EXEC by using external (and rather
devious) programs, EXEC 2 has Do-While and Do-Until; but neither has any
form of Select (Case) structure, or loop control variables, or structured

The 	language features 5

lin Internal Use only

ways of leaving a loop.

All these features are highly desirable for any modern language. even if
in a simplified form. and it 15 these features of REX that are probably
its greatest advantage over EXEC and EXEC 2.

2.2 CASE TRANSLATION

In the vast majori ty of cases. humans make no di stinction between strings
which differ only by alphabetic case: we all understand "yes" to mean the
same as "Yes". Ideally. the REX language would have been defined such
that the compari son operator was "caseless".

However, few (if any) computer architectures support even a reasonably
efficient way of effect.ing caseless compares, and 50 (with some
reluctance) the language currently achieves tht 5 by instead biassi ng
character manipUlations towards upper case.

The current implementation therefore translates symbols to upper case
before being used. This means that keywords and variable names may be
entered in mixed case (highly desirable), but unfortunately implies that
uninitialised variables (literal shorthand) strings are also translated.
Similarly there 15 a strong but undesirable tendency for users to use the
PUll instruction (for example) so ensuring that a string is in a known
(upper case) state.

Despite the disadvantages, the rules defined do mean that programs may be
entered and edi ted in mt xed case. 1"1; xed ca!le program!l are of cour!le more
readable and less prone to have errors and bugs, since we all are trained
in readi ng lower case characters from chi ldhood. Professi onal studi as
have indicated that we read mixed case data about 12X faster than monocase
data for a given accuracy: this is a significant improvement.

It should be emphasised here, however, that a "correct" definition of. the
l.anguage would differ in two important respects.

1. Uninitialised symbols should nJ!! be translated to upper case.

2.1he normal string comparison operators (and probably al50 the pat
terns in parsing templates. label matches. etc.) should be independ
ent of case.

These two changes would give greatly improved human factor!l; and would
obviate the main need for the PUll and ARG instructions.

The language features 6

II" Internal Use only

2.3 COMPLEX EXPRESSIONS

Compound character and ari thmeti c expressi ons are bei ng used more and more
in current Execs: they unfortunately have to be spread over several H nes.
(Up to ten lines for one logical manipulation is not unknown.) REX there
fore permits "complex" expressions.

There are three popular implementations of compound expressions:

1. simple Left -> Right (or APl Right -> Laft) scanning;

2. Reverse Polish notation (e.g. FORTH);

3. full algebraic, with parentheses and operator priorities.

Option (1) is a considerable improvement on no compound expressions at
all, but is not ideal - especially as logical operations should be treated
as normal operators, rather than special cases.

I

Option (2) is probably unaccep~able to the IBM user, and is also somewhat
outdated as a solution.

Option (3) is preferred, and is not significantly more complicated to
implement than (1). The algorithms and techniques are well understood,
and an Exec interpreter necessarily includes storage management routines
which normally are able to handle stack(s).

I consider the minimum set of primitive dyadic operators to include: + - M

/. II and blank as defined above, together with the logical operators =~=
> < >= <= & I II. Important monadic operators are: ~ - + <Prefix Hot,
Minus, and Plus).

"(" and ")" have special rules affecting their use, since in addition to
forcing priorities within expression evaluation, they are also used for
the invocati on of funct; ons. Therefore blanks immedi ately outs; de of the
parentheses are not ignored, and so the blank operator may act di rectly on
a bracketed sub-expression.

2.4 IN-LINE FUNCTION CALLS

The ability to execute in-expression functions greatly increases the pow
er of a language. REX supports user-written internal functions (identi
fiad by a labeU, a rich set of built-in functions, and external
functions.

For the external functions,'the host system is assumed to include at least
one command executor and some storage allocation routi nes.A sub-class of
commands are those which accept data and/or argu~ents from REX, and return
their result in a storage block which is usable by REX. This subclass can
be termed external functions and ara included in the REX language using

The language features 7

IBn Internal Use only

~\
the c;onventi onal notati on of parentheses. wi th commas to separate the
argument expressions.

For example the eMS function "QOISK" is implemented as an "entry point to
an external module, since it would be inappropriate to include
system-dependent routines as built-in functions.

The syntax description would "therefore be: If a symbol is followed imme
diately by a "(" then it is taken as a constant function name. Each
expression following tha "(It and separated by ft." is evaluated. and the
function is invoked when the final "1" is intarpreted. A string may also
be used for the function name.

This gives a "normal" syntax for function calls. without the need for a
new clause for every command.

The same syntax is used for all types of functi on5, and there are some
external packages of useful additional functions supplied with the eMS
version of REX: these will be loaded automaticallY if any function con
tained in them is invoked.

,
REX also supports a CALL mechanism for subroutines. It uses the same
interfaces as functions, and hence internal, built-in. and external tunc
tions may all be invoked via the CAll instruction.

2.5 FREE FORHAT: NOT LINE-BY-LINE

A free format statement is more flexible and rath.r more general than
fixed (line-by-linel format. The latter option implies a record oriented
fila system, whereas the former 1S applicable both to record and character
stream files or input devices. By the same token. a free format structure
generally permits better self-documentation of Execs. since comments may
occur almost anywhere in the input stream.

Aithough the language is by nature and syntax a stream language, most
users will tend to adhere to a line-by-line format. with only a few
multi-statement lines. Therefore REX terminates each line (except when
within a string or comment, or when inhibited by the continuation charac
ter ",") with an implicit clause delimiter as a service to the user.
Clause delimiters therefore need only be added when there is mora than one
clause on a line. Since REX is awara of line-ends it can indicate the line
number in error messages and diagnostics.

The obvious clause delimiter to use was "in, with .1M. 0 .M,. for comments.

The language features 8

lin Internal Use only

2.' LITERAL SHORTHAND & BLANK OPERATOR

A convenient convention fora command programming language is that of
literal shorthand. My definHion of this is: If a symbol is unknown
(i.e. not a variable, REX keyword, or function call) then it is assumed to
represent a literal str; ng consi sti ng of the characters of the symbol
(translated to upper case, in,the current implementation).

A fUrther convent ence is the concept of the "Blank" operator. Thi smay be
defined verbally thus: If two exprassions ('.a. symbols. literals. atc.)
are separated by ona or more blanks and no other operator then the opera
tion of "concatenat'e with a blank in between" will be performed. Similar
ly, the abuttal of two dissimilar data items (e.g. a string and a symbol)
causes them to be concatenateddiractiy.

The effect of these conventions allows a syntax that combines the advan
tages of both Exec/macro languages and the PL/I like model. Consi der the'
followi ng excerpt from a REX Exec (assume that Fn. Ft, Fm are symbols
representing variables previously set up by assignments etc.):

State fn ft fm'3'

If rc=O then Erase fn ft fm

whi ch is more readable than tha equi valent "Stri ct Pl/t" form:

, S TATE '" fn' " '" ft JI' 'I I fm II '3 ' ;
If rc=O then 'ERASE' Ilfnll' '1Iftll' '1Ifm;

or tha EXEC language form:

&TEMP = &CONCAT &F" 3
STATE &FH &FT &TEMP
&IF &RETCODE = 0 ERASE IFH 1FT &FM

(In REX. an instruction which is an expression on its own is passed to the
host system as a command.)

2,' STRING PARSING

One of the main functions of Execs and editor macros is to break down com
mand strings into component parts. or parse them.

REX provides a simple but powerful string matching mechanism which can be
used to parse any character data. The argument string passed to the Exec
may also be parsed - repeatedly if necessary - in order to break the
string down into useful pieces. For example a eMS-like command string may
trivially be separated into parameters and options.

,~, 	 These facilities are provided by allowing a parsing template to be speci
fied on the instructions which manipUlate the various types of data.

9The language features

11M Internal Use only

2.8 NO REqUIREMENT FOR SELF-MODIFYING EXECS

EXEC and EXEC 2 both permit self-modifying Execs. This is a "nice" facil
ity which however is typically not used. In fact, the only time it
normally occurs is when one edits an "EDIT" Exec: and then it is usually
more of an embarrassment than a help.

REX therefore acts as though all Execs are READ ONLY by tak i og a
"snapshot" of the Exec before execution begins. This implies that: a) the
entire Exec is read initially (inefficient for long files, perhaps); and
b) instructions that might be ra-interpreted (e.g. in loops) need only be
parsed once, for improved performanca.

In addition, it can interpret data directly from storage: 50 avoiding the
overhead of loading programs (Execs) from Disk.

The "read/only" restriction also opens UP the attractive possibility of
compilation or part compilation of the language: a possible implementa
tion might therefore consist'of a "compiler" which produces an "object
fila" which could then be very efficiently interpreted by the REX Exec
processor, wi th real performance improvements (a factor of at least 4
might be expected). However, there is an identifiable need for the "fully
interpretive" method of execution, and this has been implemented first.

A suggestion by M. Hack is that the "object code" of a compiled REX Exec be
appended to the source. with the final record in the file acting as an
Index. This idea at once solves the problems of source/object separation
and avoids the tricky problems associated with search order.

2.9 PEER EXEC/PROGRAM COMMUNICATION

It is often desirable to suspend the execution of an Exec in order to car
ry on a dialogue with another Exec or Program. without having to enter the
Exec "at the top" for each invocation. An obvious example of this is Edi
tor Macros. where the Exec needs to get additional or feedback information
from the caller.

The YKTSVC eMS package implements an effecti ve subcommand handle,., now
also implemented in the VM System Product, 50 REX uses this mechanism.

One REX instruction is used to control the facility: "Address ccc" will
cause any followi ng '. commands to be routed to the enyi ronment named ece.
and "Address" (no name) wi 11 re-route all following commands to the previ
ously selected environment. Similarly "Address ccc expression" will send
ju~t the one command to the identified environment.

REX interfaces are fully compatible with EXEC 2, and programs which suc-

Tha language features 10

XII'I xnternal Use Only

cessfuUy ; nterface wi th EXEC 2 should be able to use REX wi thout any
changes be; n9 necessary. An -example is the new CMS Editor, XEDIT. for
whi ch it is poss; ble to wri te REX macros without any changes to the system
or to XEDIT itself.

'the language features 11

----- ----.'---'----=--=--=--==---=-=-~___'_"_-=-~=-=---=-=---=_--=-----'-'----"--=--=--=-:="-=-=---=-=--=~=---=-=-----'_'________''_''--=--=---=---=--=---C-'

IBn Internal Use only

~ ~3.0 REX LANGUAGE DEFINITION 	
~'

language definition for REX Version 3.00.

Nota: This definition attempts to be a complete
description of the syntax. which is now "frozen" in the
sense that incompatible changes will not be made except
in extra-ordi.nary circumstances. Please bring any
errorSt omissions, or necessary clarifications to the
attention of the Author: see address on the front of
this document.

3.1 STRUCTURE AND GENERAL SYNTAX

A REX program is built up out of a 'series of clausC!s which are composed of:
Zero or more blanks (whichara ignored); a sC!quence of tokens (see below.
page 12); zero or more blanks (again ignored); and the delimiter ";"
(semicolon) which may be implied by line-end, 'certain keywords, or the
colon ":" (if it follows a single symbol). Each clause is scanned before
execution from left to right and the tokens composing it are identified.
Instruction keywords are recognised at this stage. comments are removed.
and multiple blanks (except within strings) are converted to single
blanks. Blanks adjacent to special characters (including operators, see
below on page 14) are also removed.

3.1.1 Tokens

The language is composed of tokens (of any length, up to an i mpl@mentati on
restricted maximum) which are separated by blanks or by the natura of the
tokens themselves. The classes of tokens ara:

Comments: 	 Any sequence of characters on one Of" more Iines whi ch are del i m~
i tad by "I'Jf" and ft"/,,. Comments may be nastad, whi ch is to say
that "I'Jf" and "IV" must pai r correctly. Comments are ignored by
the interpreter (and hence may ba of any length), but do act as
!leparators.

I'JE Thi!!l is a valid comment JE/

Note: Under CMS, REX Execs must start w'i th a comment (whi ch d; 5

t i ngu ishes the language from EXEC and EXEC 2),

REX language definition 12

II" Internal Use only

strings: 	 a string including any characters and delimited by the single
quote character (') or the double-quote en). Use"" to include
a " in a string delimited by", and similarly use two single
quotes t~ include a single quote in a string delimited by single
quotes. A string is a literal constant and its contents will
never be modified by REX. A string with no characters (i.e. a
string of length 0) is called a null string.

These are 	valid strings:

'Fred'
"Don't Panic!"

Implementation maximum: A string may contain up to 250 charac
ters.

Note that if followed immediately by a "(", the string will be
taken to be the name of a function; and if followed immediately
by an "X" symbol then it will be a hexadecimal-defined string•••

Hex str;ngs: any sequence of' pairs of hexadecimal digits (0-9. a-f, A-F)
optionally separated by blanks, delimited by s1ngle- or double
quotes and immediately followed by the character "x" or "X".
(The X may not ba part of a longer symbol.) This represents a
character stri ng constant formed by packing the hexadecimal
codes given. The blanks, wh; ch may on I y be present a t byte

~, 	 boundar; e5,a,-e to ai d readabi Ii ty and are ignored.

These are 	valid hex strings:

'ABCD'x
"ld ec f8"X

Implementation maximum: The packed length of a hex string may
not exceed 250 bytes.

Symbols: 	 groups of any EBCDIC characters, selected from the alphabetic
and numeric characters (A-Z, a-z. 0-9) and/or from the charac
ters ~#$¢.!? and underscore, are called symbols. Any lower case
alphabetic character in a symbol is translated to upper case.

These are 	valid symbols:

Fred

Albert.Hall

HI!

If the symbol is at the beginning of a clause and is not fol
lowed by an "=" or a ":", then if it matches a REX keyword then
it is interpreted SPeCl ally. Otherwi se if it cannot be a number
(I.e. does not begin with a digit, 0-9, or a period) then it is
potentially a variable and may have a value. If it does not
have a value then it 1s interpreted as' the character string con
si sti ng of the characters of the symbol translated to upper

REX language definition

.... -~,-~----,~--.~-"--
-~-

IBn Internal use only

case.

Implementation maximum: A symbol may consist of up to 250 char
acters.

Numbers: 	 These are character strings consisting of one or more decimal
digits optionally prefixed by a plus or minus sign, and
optionally including a single period (".") which then repres
ents a decimal point. A number may also have a power of ten
suff'ixed in conventional exponential notation: an "E" (uppar or
lower case) followed optionally by a plus or minus sign then
followed by ana or mora dacimal digits defining the power of
ten. Whenever REX uses a character str; ng as a number it i!!l
possible that rounding will occur, to a precision specified by
HUMERIC DIGITS instruction (default nine digits). Please see
pages 91-100 for a full definition of numbers.

Humber.s may have leading blanks (before and/or after the sign,
if any) and may have trailing blanks. Embedded blanks are not
permitted. Hota that a symbol (see above) may ba a number and
50 maya !ltri ng con~tant. A number cannot be the name of a var
iable.

These are 	valid numbers:

12

-17.9

127.0650

73e+128

, + 7.9ES •

A Who 1e Humber i 5 a number wh i ch ha5 a zero (0 r no) dec; mal
part. and which would not normally be expre!l!!led by REX in expo
nential notation. i.a. it has no more digits befora the decimal
point than the current setting of HUMERIC DIGITS (the default is
9),

Implementation max;mum: The exponent of a numbar expressed in
exponential notation may have up to nine digits only.

operators: The special characters: + - / %* I &=~ > < and tha sequences
>= <= ~> ~< ~= /= >< <> -- // 1& II MM (which may
have ambedded b.lanks) ara operator tokans (see page 16). One or
mora blank character< 5), where they occur in expressi ons but
are not adjacent to another operator~ also act as an operator.

Special Characters: The characters , ; :) (together with the individ
ual characters from the operators have spec! 211 si gn1 fi cance
when found outs i de of !it,.i ng5. and canst i tute tha set of
"Special" characters. They all act as token delimiters, and
blanks adjacent to any of these are removed, wi th the except; on
that a blank adjacent to the outside of a parenthesis is only
deleted if it 15 also adjacent to anothar special character.

REX language definition 14

11M Internal Use Only

For 	example the clause

'REPEAT' B + 3;

is composed of five tokens: a string, a blank operator, a symbol (which
may have a value), an operator, and a second symbol (which is a number>.
The blanks between the "B" and the "+" and between the "+" and the "3" are
removed. however one of the blanks between the "REPEAT" and the "B"
remains as an operator. Thus this is treated as though it were written:

'REPEAT' 8+3;

Implementation maximum: During parsing of a clause, the internal form of
a clause (whi ch i!l approximately the same length as the vi sible form,
except that extra blanks and comments are removed) may not exceed 500
characters. Note that this does not limit in any way the length of data
which can be manipulated. which is only dependent upon the amount of stor
age (memory) available to the interpreter.

l.1.2 Implied semicolons and continuations

REX will normally assume (imply) a semicolon at the end of each line,
except if:

• 	 the line ends in the middle of a string.

• 	 the line ends in the middle of a comment.

• 	 neither of the above cases hold. but the last non-comment token was a
comma. In this case the comma is functionally replaced by a blank,
and hence acts as a contjnuation character. Hote that the comma will
remain in execution traces.

This means that semicolons need only be included when there is more than
one clause on a line.

Nate: Semi colons are added automatically by REX after colons (when fol
lowing a single symbol) and after certain keywords when in the correct
context. The keywords that may have this effect are: ELSE OTHERWISE
THEH. These special cases reduce typographical errors significantly.

Nate: The two characters forming a double quote within a string, or the
comment delimiters "/*" and "*/" should not be split by a line-end sinca
they could not then ba recognhed correctly: an implied semi colon would be
added.

REX 	 language definition 15

IBn Internal Use only

3.2 EXPRESSIONS AND OPERATORS

Many clauses may include expressions which can consist of Terms (symbols.
strings, or function calls), interspersed with operators and parentheses.

A string, or any symbol which starts with a digit or period (and hence may
be a valid number), is always taken to be a literal constant.

Other symbols may be the name of a vari able, in which case they are
replaced by the' value of that variable as soon as theyar. needed during
evaluation. Otherwise they are translated to upper case and treated as a
literal string. A symbol may also be,compound - see later in this docu
ment.

Evaluation of an expression is left to right. modified by parentheses and
by operator precedence in the usual "algebrai en manner (see below).
Expressions are always wholly evaluated, unless an error occurs during
evaluation.

,
Since all data is in the form of typeless character strings, the result of
any expression evaluation is itself a character string. All terms and
results may be the null string (a string of length ~). Hote that REX
imposes no re.striction on the maximum length of results, though there will
usually be some practical limitation dependent upon the amount of storage
·avai lable to the REX program.

The operators (except the prefix operators) act on two terms, which may be
symbols, strings. function calls, intermediate results, or
sub-expressions in parentheses. Prefix .operators act on the following
term or sub-expressfon. There are four types of operator:

string Concatenation:

The concatenation operators are used to combine two strings
to form one string. The combination may occur with or without
an intervening blank:

(blank) Concatenate terms with one blank in between

II Concatenate without an intervening blank

(abutta!) Concatenate without an intervening blank

Concatenation without a blank may be forced by using the II
operator. but it is useful to know that if a string and a sym
bol are abutted, then they will be concatenated directly.

CI.g: 	 If the variable "FRED" had the value '37.4',
then Fred'%' would evaluate to '37.4%'.

REX language definition 16

IBn Internal Use Only

Arithmet;c:

comparative:

Character strings which are valid numbers (see above) may be
combined using the arithmetic operators:

+ 	 Add

Subtract

* Multiply

/ Divide

" Div i de and return tha integer part of the result

// Divide and raturn the ramainder (NOT Modulo, since
the result may be negative)

•• Rai Se a number to a whole power

Pref; X - Negata tha fa 11 ow; ng term (must be numer; e)

Prefix + Take following term (must be numeric> as is.

See the section on "Numerics" (page 91) for details of aCcura
cy, tha format of valid numbers, and the combination rulas for
arithmatic. Hote that if an arH:hmatic result is shown in
exponential notati on, it is likaly that roundi ng has
occurred.

The comparatiVe oparators return the valua '1' if tha result
of the compar, son is true, or '0' otharwi sa. If both the
terms i nvo I ved are numer i c, then a numer; c compar i son (i n
which leading zeros are ignored, etc.) is effected; otherwise
both terms are treated as character strings Cleadi ng and
trailing blanks are ignored, and then the shorter string is
padded wi th blanks on the r; ght). The "==" operator may be
used to test for an exact match between two str; ngs - in thi 5

case tha two strings must be both the same length and identi'"
cal for a result of '1' to be givan.

True if terms are exactly equal (identical)

: 	 True if the terms are equal (numari cally or whan
padded etc.)

Not equal (inverse of =)

> Greate,. than

< Less than

REX language definition 17

lB" Internal Use Only

~
><, <> 	 Greater than or less than (same as "Hot equal")

~

>=, ..< Greater than or equal to, Hot less than

<=, ..> less than or equal to, Not greater than

Log;ca1 (Boolean):

A character str1 ng 1 s taken to have the value "false" if it is
'0 t and "true" if it i sa '1'. Th. 10gi cal operators takeI

one or two such values (values other than '0' or '1' are not
allowed) and return '0' or '1' as appropriate:

AND. Returns '1' if both terms are "true"

Inclusive OR. Returns 'I' if either term is "true"

a& Exclusive OR. Returns '1' if either (but not both)
is "true"

.
Prefix.. 	 logical. NOT. Negates:' l' becomes '0' and

vice-versa.

Operator pr;orities:

Express; on evaluati on is from left to right and modi f1 ed by parentheses
and by operator precedence. For example, "*" (multi ply) has a hi gher pri
01"'i ty than "+" (add), so 3+2*5 wi 11 evaluate to "13" (rather than the "25"
which would result if strict left to right evaluation occurred). The
order of precedence of the ope..ators is (highest at the top):

Prefix .. , - and + 	 (prefix operators)

(exponentiation) . / ~ // (multiply and divide)

'+ - (add and subtract)

"", II, abuttal (concatenation, with/without blank)

=== ..: /:) < ())(>= <= ..) ..< (compari son operators)

(and)

a& (or, exclusive or)

REX language definition 	 18

-- -------~

18" Internal Use Only

,/\ Examples: Suppose'. that
values as shown:

the followi ng symbols represent vari abIes; wi th

A
DAY

has the value '3'
has the value 'Monday'

Then:

A+5
A-4112
AI'2
0.511312

. CA+!»7
f '=="
(A+l)lf3=12
Today is Day
'If it is' day
SubstrC Day, 2,3)
, ! 'xxx' ! '

=>
=>
=>
=>
=>
=>
=>
=>
=>
=>
=>

'8'
'-5'
'1.5'
'0.25'
'0'
'0 '
'1'
'TODAY
'If it
'ond'
'!XXX! '

IS Monday'
i !5 Monday'

/M Substr

I'*,
I'M
I'*,

i5

i.a. False *.1'

i.a. False MI'
i.a. True JEI'

a function M/

./\r .

". '\

..

REX language definition

II" Internal Use only··

3.3 CLAUSES AND INSTRUCTIONS

The clauses may be subdi vi ded into fi ve types:

Hull clauses:

A clause consi sti rig of only blanks and/or comments. or the
keyword "THEN" (in valid context) alone, is completely ignored
by REX (except that if it includas a comment or "THEN" it will
be traced. if appropri ate) •

Nate: A null clause is not an instruction. so (for example) put
ting an extra semicolon aftar the THEH or ELSE in an IF instruc
tion is not equivalent to putting a dummy instruction (as it
would be in Pl/I). The HOP instruction is provided for t~is
purpose.

Labels:

A clause whi ch coms'i ;sts of a 5i ngle symbol followed by a colon
is a label. The colon acts as an impl iei t clause termi nato,.. so
no semicolon is required. labels are used to identify the tar
gets of CALL instructions. SIGNAL instruct-ions. and internal
fUnction calls. They may be traced selectively to aid
debugging.

Assignments:

Single clauses with the form symbol=expression are assignments.
An assignment gjves a variable a (new) value.

Instructions:

An i nstructi on is one or more clauses. the f1 rst of whi ch starts
with a keyword which identifies the instruction. These control
the external interfaces. the flow of control, etc. Some
i nstructi ons can include nested i n5tructi ons.

Colftlftands:

Single clauses consisting of just an expression are Commands.
o 	 The express; oni 5 evaluated and passed as a command string to

soma external environment.

REX language definition 20

IB" Internal Use Only

3.4 ASSIGNMENTS

Any clause of the form:

symbol=[exr-~essionJ;

15 takan to be an assignment.

The symbol is any symbol that is valid as a variabla name (as described
abova on paga 13) i.e. excluding those beginning with a digit (0-9) or a
period. It may be compound (see below. page 101). By baing the target of
an assignment in this manner. it is contextually declared as a variable:
in other words, in succeeding instructions this particular collection of
characters within an expression represents the string in storage result
ing from the evaluation of the expression in tha assignment.

Example:

/* Next line gives "FRED" the value "Frederic" */

Fred='Frederic'

If no axprassion is given. the variable is set to the null string.

Nate: Without the restriction on the first character. it would be possible
to redefine a numbar. in that for axample 3=4; would give a variable
called "3" the value "4".

Nate: Since an expression may include the oparator "=", and an instruction
may consist purely of an expression (see next section>. there is a possi
ble ambiguity here. REX therefore takes any clause which starts with a
symbol and whose second token is "=" to be an assignment, rather than an
expression (or an instruction). This is not a restriction, since the
clause may be executed as a command in several ways. such as by putting a
null string before the first name, or by enclosing the first part of the
expression in parentheses.

Si"Harly. if a programmer unintentionally uses a REX keyword as the vari
able name in an assignment, this should not cause confusion - for example
the clause:

Address='lO Downing Street~;

would ba an assi gnment. not an ADDRESS instructi on.

Nate: Tha target of tha assignment may not ba a stem: i.a. it may not be a
symbol which has only ona period. as tha last character.

REX language def i nit ion 21

IBn Internal use only

3.S COMMANDS TO THE HOST

The Host System for REX is assumed to include at least one active environ
ment for executing commands. One of these is selected by default on entry
to a REX program, and may be changed using the ADDRESS instruction.

Executi ng commands usi ng the currently add...essed env; ronment may be
achieved using an inst ...uction of the fo ...m:

expression;

The exp...ession is evaluated, ...esulting in a character string (which may be
the null st ... ing) which is then p...epared as app...opriate and submitted to
the host.

The host will then execute the command (which may have side-effects such
as plaCing data on the system ,data queue, or altering REXva ... iables). It
wi 11 eventually retu ...n control to REX, after setting a "return code" (usu
ally an integer, passed in an implementation dependent way). REX will
place this return code in the special va ... iable called "RC".

For example, if the host were eMS, then both an 8-byte tokenised Plist and
an Extended Plist would be built f ...om the st ... ing. e.g. the sequence:

fn=Jacki ft=Rabbiti fm=Al
State fn ft fm

would result in the Extended Plist: "STATE JACK RABBIT AI" being submitted
to CMS. Of cou ...Se, the simpler expression

'STATE JACK RABBIT Al'

would have the same effect in this case.

On ...etu ...n, the retu ...n code would be placed in "RC" which would probably
then have the value '0' if the file JACK RABBIT Al existed, or '28' if it
did not. By convention, a return code of 0 normally means successful com
pletion. and a negativeeturn code indicates a seve.... error (such as a
command not be; ng found). POSt ti ve return codes may i ndi cate e ... ro ...s or
convey othe... information. depending upon the command and environment.

Tha default anvironment will depend on the caller of REX: for example if
an Exec is called from CMS, then the default environment would be eMS. if
called properly from an editor. then the default environment would be that
editor. A discussion of this mechanism is included below in an Appendix.

REX language definition 22

IB" Internal Use only

Nate far C"5 users: When the environment selected is "CMS" (i.e. as is
default for EXECs) REX wi 11 translate the "old-form" (tokeni sed) Pli st to
upper case. and then ask eMS to execute the command. The search order
used 1 s the same as that prov 1ded for a command entered from the CMS
interactive command environment, i.e. the first token of the command is
taken as the name. and then:

1. 	 If the name matches the name of an Exec then that Exec is invoked.

2. 	 If the name is a synonym or abbreviation for the name of an Exec then
that Exec is invoked.

3. 	 SVC 202 is invoked: i.e. CMS now tries for:

a. 	 a transi ent already loaded wi th the gi ven name.

b. 	 a nucleus extension.

c. 	 a nucleus function.

d. 	 a user MODULE.

e. 	 if none of these, then try for "a synonym or abbrevia.tion again,
and if one is found then retry the last four steps (a through d).

4. 	 If the command is not known to CMS (i .e. all the above fails) then try
and execute it ':'5 a CP command.

Since Execs are often used as "covers" or extensions to existing modules.
REX makes one exception to thi s order. A command issued from wi thi n an
Exec will not implicitly invoke that same Exec and hence cause a possible
recursion loop. If self recursion is desired then you must explicitly
request it by precedi ng the command name wi th the token 'EXEC' (or the
abbreviation 'EX' or 'EXE'). To invoke an Exec or a CP command
explicitly. use the prefixes 'EXEC' or 'CP' respectively (but note that
these may be issued via an Exec of that name, should one exist).

If you wi sh to issue commands wi thout the search for Execs or CP commands.
and without the tokenised Plist being translated (; .e. in the way EXEC and
EXEC 2 issue commands). then you may use the environment called "COMMAND"
which is provided by REX. Simply include the instruction "Address
Command" at the start of your Exec (see page 25).

The COMMAND anv ironment" name is recommended for use in "system" Execs
whi ch make heavy use of MODULEs and nucleus functi ons. Thi s makes such
Execs more predictable (commands cannot be usurped by user Execs, and
operations can be independent of the user's setting of IMPCP and IMPEX).
and faster (the EXEC and first abbreviation searches are avoided).

Nate: The searches for Execs, Synonyms, and CP commands are all affected
by the CMS SET command ClMPEX, ABBREV, and IMPCP options). The fuli
search order given above assumes these are all ON.

REX 	 language definition

---""--~---"-~"-"-~"------"------"---"---~-~---,--j-- -----------'~-.- -"

23

IBM Internal Use only

3.6 INSTRUCTIONS 	
.~.

Savaral of the mora powerful features of tha languaga (notably functions)

reduce the number of primitive REX instructions neaded.

In the following diagrams, symbols (words) in capitals denote keywords.

other words (such as "expr~ssion") denote a collection of symbols as

defined above. Hote however that the keywords are not case dependent: the

symbols "if" "If" and "iF" would all invoke the instruction shown below

as "IF". Note also that most of the delimiters shown may usuallY be omit

ted as they wi 11 be i mpl i ed by the end of a I; ne. A "THEN" 1n the context .;

of a clause (i .e. as the fi rst and only symbol) acts as a semi colon and is.

therefore ignored, providing that it is in a valid context (i.a. follows

an IF or WHEN clause).

The brackets [and J del i mi t opti onal parts of the i nstructi ons.

3.6.1 ADDRESS

ADDRESS 	 [environment [expression]];

[VALUE] expression;

where "environment" is a single symbol or string, which

is taken as a constant.

This instruction is used to effect a temporary or permanent change to the
destination of command(s). The concept of alternative subcommand envi
ronments is described in an Appendix.

To send a single command to a specified environment, an environment name
followed by an expression is given. The expression is evaluated, and the
resulting command string is routed to the given environment. After exe
cution of the command, the environment will be set back to whatever it was
before, thus giving a temporary change of destination for a single
command.

Example:

Address 	CMS 'STATE PROFILE EXEC'

If only an environment nama is specifhtd, then a lasting change of desti
nation occurs: all following command!! (expression!! not preceded by a REX
keyword) will be routed to th. given command environment, until the next
ADDRESS instruction is executed. The previously selected environment 1S
saved.

REX language definition 	 24

II" Internal Use only

Example:

address eMS
'STATE PROFILE EXEC'
if rc=O then 'COPY PROFILE EXEC A TEMP = ='
address XEDn

Similarly, the VALUE form may be used to make a lasting change to the
environment - here the e.xpression (whi ch of course may be just a vari able
name) is evaluated, and the result. forms the name of the environment. The
keyword "VALUE" may be omitted if the. expression do.e5 not begin with a
symbol or string.

If no arguments are gi ven, commands will be routed back to the envi ronment
that was selected before the previous lasting change of environment was
made, and the current environment name is saved. Repeated execution of
just "ADORESSw wi 11 therefore "toggle" the command desti nati on between
two environments.

The two envi ranment namas mal n'tai ned by REX are automat; cally saved across
5ubrout·ine and internal functi'On calls. See under the CALL instruction
(page 27> for more deta; 15.

If the null string or a bla.nk string is given as the environment name then
a deTault environment, whlchdepends upon the implementation. is implied.

The current ADDRESS setting may be retrieved using the ADDRESS bui It-in
funct ion. See page 62.

Note for c"S users: In the CMS implement-at ion, three any ironment names
have a special meaning:

Ct1S 	 Th15 environftlent name, which is the default for Execs. implies
full command resolution just as provided in normal interactive
command (terminai) mode. (See page 23 for details.)

COMMAND 	 This implies basic CMS SVC 202 command resolution. To invoke an
Exec. the word "EXEC" must pref i x the command. and to issue a
command to CP, the prefix "CP"must be used (see page 23).

" (null) 	Same as "COMMAND". Note that this 1S not the sama as ADDRESS
wi th no arguments. whi ch wi 11 toggle the anvi ronment.

REX language definition 25

IBM Internal use only

3.6.2 ARG

ARG [template];

Where "template" is a list of symbols separated by
blanks and/or "patterns"

ARG 1s used to ret,.; ave the argument str' ngs prov; ded to a program or
; ntarnal rout; na. and is just a short form of the i nstructi on

PARSE UPPER ARG [template];

Unless a subroutine or internal function is being executed. the input
parameters to the program will be read as one string, translated to upper
case, and then parsed into variables according to the rules described in
the section on parsing (page 83). Use the PARSE ARG instruction if upper
case translation is not desired.

If a subroutine or internal function is baing executed, then the data used
will be the argument string(s) passed to the routine.

The ARG (and PARSE ARG) instructions may be executed as often as desired
(typicallY with different templates) and will always parse the samacur
rant input string(s). There are no restrictions on the length or content
of the data parsed except those imposed by the caller.

Example:

/* String passed to FRED EXEC is "Easy Rider" */

Arg adverb noun .
/* Now: "ADVERB" contains 'EASY' M/

.1M "NOUN" contains 'RIDER' M/

If more than one string is expected to be available to the program or rou
tine, then each may be selected in turn by using a comma in the parsing
template.

Example:

.1M function i s invoked .by FREDC'data X',l.S) • .1

Fred: Arg string, num!, num2
.I. Now: "STRING" contains 'DATA X' tV

.I. "HUMI" contains '1' M/

.I. "HUM2" contains '5' ./

Hate: The source of the data being interpreted is also made available on
entry to the program. Sea the PARSE instruction (SOURCE option) on page
42 for detai Is.

Note for EXEC users: Unli ke EXEC and EXEC 2, tha arguments passed to REX
Execs can only be used after executing either the ARG or PARSE ARG com-

REX language definition 26

IBn Internal Use Only

,~ 	 mands. They are not immediately available 1n predefined variables as 1n
the other languages.

Nate for eMS users: A string passed from CMS command level is restricted
to 130 characters, and prior to VM/SP Release 2 will be wholly translated
to upper case by eMS.

3.6.3 CALL

CALL name [expression] [,[expression]] •.. ;

CALL may be used to invoke an int~rnal, built-in, or external routine,
which may optionally return a result. It is functionally identical to the
clause:

result=name([expressionl [,[expressionll •••);

where the variable RESULT will become uninitialised if no result is
returned by the routine invoked.

Up to ten expressions, separated by commas. may be specified. These are
~. 	 evaluated in order from left to right, and form the argument string(s)

during execution of the routine (Le. the ARG and PARSE ARG instructions
wi 11 access these stri ngs rather than those acti ve prey; ouslyL
Expressions may be omitted if desired.

The CALL then causes a branch to the routi ne called !l.S!!!!!I usi ng aXactly the
same mechanism as function calls. Therefore the CALL instruction may be
used to invoke internal routines. external routines and programs, or even
built-in functions. The order in which these are searched for is
described in the section on functions (page 58), but briefly is as
follows:

. Internal routines (unless the routine name is specified in quotes) These
are sequences of REX i nstructi ons i nsi de the same program,
whi ch start at the label wh; ch matches the name in the CALL
instruction.

Built-;n routines These are routines built in to the interpreter for pra
v; ding various functi ons. They always return some result. (See
page 61.)

External rout;nes These are routines which are external to the program and
the interpreter. They may be written in REX (i.e. a REX program
may be invoked as a subroutine by tha CALL instruction, and i~

this case may be passed more than one argument string - see page
125.)

Duri n9 executi on of an internal routine, all variables previously known

REX language definition 27

lin Internal use Only

are normally accessible. However. the PROCEDURE instruction may be used
to set UP a local variables environment to protect the subroutine and
caller from each other. The EXPOSE option on the PROCEDURE instruction
may further be used to expose selected variables to a routine.

When control reaches the internal routine. the line number of the CAll
instruction is available in the variable "SIGL" (in the caller's variable
environment). This may be used as a debug aid. as it is therefore possi
ble to find out how control reached a routine.

Eventually the subroutine should execute a RETURN instruction, and at that
poi nt control wHI return to the clause follow; ng the ori ginal CALL. If
the RETURN 'instruction specified an expression, then the variable
"RESULT" will be set. to the value of that expression. Otherwise the vari
able "RESULT" is dropped (becomes uninitialised).

Internal routines may include calls to other internal routines.

Example:

/* Recursive subroutine ex.cutton ••• */
arg 	x
call factorial x
say 	x'! =' result
exit

factorial: procedure /* calculate factorial by.. */

arg n /* •• recursive invocation. */

if n=O then return 1

call factorial n-1

return result * n

During internal subroutine (and function) execution all important pieces
of information are automatically saved and are then restored upon return
from the routine. These are:

• 	 The status of DO-loops and other structures - executing a SIGNAL while
within a subroutine is "safe" in that DO-loops etc. that were active
when the subroutine was called are not deactivated (but those current
ly active will be).

• 	 Trace and debug mode settings - once a subroutine is debugged. you may
insert a "Trace Off" at the beginning of it. and this will not afTect
the tracing of the caller. Conversely, if you only wish to debug a
subroutine, you could insert a "Trace Results" at the start - tracing
will automatically be restored to the conditions at entry (e.g. "Off")
upon return. Similarly~ debug mode and command inhibition are saved
across routines.

• 	 NUMERIC settings (the DIGITS, FUZZ, and FORM of ari thmeti c operati ons
- see page 40) are saved and are then restored on RETURN. A subrou
tine may therefore set the precision ete. that it needs to use without
fear of affecting the caller.

REX 	 language definition 28

18" Internal Use only

• 	 ADDRESS settings (the current and secondary destinations fQr.~ommands
- see the ADDRESS instruction on page 24) are saved and 'are then
restored on RETURN.

• 	 Exception conditions (SIGNAL ON xxx) are saved and are then restored
on RETURN. This means that SIGNAL ON and SIGNAL OFF may be used in a
subroutine without affecting the conditions set up by the caller.

• 	 Elapsed time clocks A subroutine inherits the elapsed time clock from
its caller (see the TIME function on page 74)~ but since the time
clock is saved across routine calls a subroutine or internal function
may independently restart and use the clock wi thout affecting its
caller. For the same reason. a clock started within an internal rou
tine is not available to the caller.

Note: The name 91 ven in the CAll instruct i on must be a vali d symbol, whi ch
is treated literally, or'a literal string. If a string is used for the
name (i.e. the name is specified in quotes) then the search for internal
labels is bypassed. and only built-in or external routines will be
invoked. Note that the names of built-in functions (and generally the
names of external routines too) are in upper case. and hence the name in
the literal string should be in upper case.

Implementation maximum: The total nesting of control structures, which
includes internal rout i ne calls. may not exceed a depth of 250.

3.6.4 DO

DO 	 [repetitor] [conditional]; [instruction-list]
END (symbol];

where repetitor is one of:
name = expr; [TO exprt] [BY exprbl [FOR exprfl
FOREVER
exprr

and 	conditional is either of:
WHILE exprw
UNTIL expru

and instruction-list is: any sequence of instructions

Notes:
3

• 	 ~. expri, exprb. exprt~ and exprf (i f present) may be any
expression which evaluates to a number. exprr and ~ are further
restricted to result in a non-n.gative whole number. If necessary.
the numbers wi 11 be rounded according to the setting of NUMERIC
DIGITS.

• 	 exprw or expru (if present) may be any expression which evaluates to

REX 	 language definition 29

., . -- - "'"- ..- ~." ~ ~ . 	 . ' ..~ =..~.-=-.~-=-..... :::.':': ~.-:- -- -- '- --. -- ..---~----.- -----1

18" Internal Use only

'1' 	or '0'.

• 	 the TO. BY. and FOR phrases may be in any order, if used.

• 	 the instruction(s) in instruction-list may include any of the more
complex constructions such as IF, SELECT, or the DO instruction
itself.

• 	 the sub-keywords TO, BY, FOR, WHILE, and UNTIL are reserved within a
DO instruction, in that they cannot name variabl@s in the
expression(s) but thay may be used as the name of the control
variable. FOREVER is similarly reserved, but only if it immediately
follows the keyword DO.

• 	 exprb defaults to '1'. if relevant.

The DO instruction is used to group instructions together and optionally
to execute them repetitively. During repetitive execution, a control var
iable may be stepped through some range of values.

Simple DO group.

If neither repetitor nor conditional is given. then the construct merely
groups a number of instructions together: these are executed once.

Example:

/M The two instructions between DO and END will both M/

/M be executed if A has the value 3. 	 M/

If a=3 theen Do
a=a+2
Say 	 'Smi Ie!'
End

otherwise the group of instructions is a repetitive DO loop, and the
instruction-list is executed according to the repetitor phrase,
optionally modified by the conditional phrase.

Simple Repetit;va LOOPS9

If no repetitor is givenCso there is only a conditional, see below) or
the rep.titor is "FOREVER", then the instruction-list will nominally be
executed "forever" i.e. until the condition is satisfied or a LEAVE or
SIGNAL instruction is executed.

In the simple form of the repetitor. the expression exprr is evaluated
immediately (and must result in a whole number which is zero or positiye)~
and the loop i is then aXCI!cuted that many t: i mas:

REX 	 language definition 30

IBn Internal Use Only

Example:

/* This types "Hello" five times */

Do 5
say 'Hello'
end

Note that. similar to the distinction between a command and an assignment.
if the first token of exerr is a symbol and the second token is an "=".
then the controlled form of repetitor will be expected:

Controlled Repetitive Loops.

The controlled form specifies a control variable, ~. which is given an
initial value (the result of expr;). and which is then stepped (by adding
the result of exprb) each time the instruction-list is executed. whUe the
end condition (the result of exprt) is not exceeded. If exprb is
POSt ti ve, then the loop wi 11 be terminated when M!!!!l is greater than
exprt. If negative, then the loop will be terminated when name is less
than exert.

The expressions expri, exprt, and exprb must result in numbers. They are
evaluated once only. before the loop begins and before the control vari
able is set to its initial value. The default value for exprb is 1. If no
UPd is given then the loop will execute indefinitaly unless some other
condition terminates it.

Example:

Do 1=3 to -2 by -1
say i
end

/* Would type out: 3, 2. 1. 0, -1, -2 *"
Hote that the numbers do not have to be whole numbers;

Example:

X=O.l
Do Y=X to X+4 by O~7

say Y
end

"* Would type out: 0.3, 1.0, 1.7, 2.4. 3.1, 3.~ */

The control variable may be altered within the loop, and this may affect
the iteration of the loop. Altering the value of tha control variable is
not normally considered good programming practice, though it may be appro
priate in certain circumstances. Note also that the control variable is
referenced by name. If (for example) the compound nama "A.I" was used fo~
the control variable, then altering "I" within the loop will cause a
change in the control variable.

The executi on of a controllad loop may further be bounded by a FOR phrase.

REX language definition 31

IIH Internal Use Only

In thi 5 case, exprf must be gi ven and must evaluate to a non-negati ve
whole number. This acts just like the repetition count in a simple repet
itive loop, and sets a limit to the number of iterations around the loop
if no other condition terminates it. Like the TO and BY expressions, it
is evaluated once only when the DO i nstructi on is fi rst executed and
before the control variable is given its initial value. like the TO con
dition, the FOR count is checked at the start of each iteration.

Example:

Do Y=O.3 to 4.3 by 0.7 for 3
say Y
end

/* Would type out: 0.3. 1.0., 1.7 M/

In a controlled loop, the symbol descri bi ng the control vari able may be
specified on the END instruction. REX will then check that the symbol
exactly matches the symbol in the DO clause (note that no substitution for
compound variables is carried out), and will raise an error if the symbols
do not-match. This enables the nesting of loops to be checked automat
ically. with minimal overhead•

.Example:

Do K=1 to 10

End k /M Checks that this is the END for K loop M/

Note: The values taken by the control vari able may be affected by the
NUMERIC settings. since normal REX arithmatic rules apply to the computa
tion of stepping the control variable.

Condit i anal Phrases (WHILE and UNTIL).

Any of the forms of repetitor (none, FOREVER, simple, or controlled) may
be followed by a conditional phrase, which may cause termination of the
loop. If "WHILE" or "UNTIL" is specified, the expression following it is
evaluated each tim~ around the loop using the latest values of all vari
ables (and must evaluate to either '0' or '1'), and the instruction-list
will be repeatedly executed either while the result is '1', or until the
resul tis '1'.

For a "WHILE" loop, the condition is evaluated at the top of the instruc
tion list~ and for an "UNTIL" loop the condition is evaluated at the bot
tom - before the control variable has been stepped.

Example:

Do 1=1 to 10 by 2 until i>6
say i
and

/W Would type out: 1, 3, 5, 7 M/

REX language definition 32

IBM.Internal Use Only

Note that the execution of repetitive loops may also be modified by using

the LEAVE or ITERATE instructions.

Programmer's model - how a typical DO loop ;s executed:

For the following DO:

DO name=expri TO exprt BY exprb·WHIlE exprw

instruction-list

End

REX wi 11 execute the following:

$tempi =expr-i .lIE ($variables are internal and
$tempt=exprt ,IE are not accessible.)
Steampb=exprb
name=$tempi

$loop:
if name > $tempt then leave /9E leave :: "qui t loap" lid

.1M A FOR count would hay. been checked here ~E/

if ~exprw then leave

instruction-list

. If"\,
'.1M An UNTIL expressi"on would haVe! betltn teste!d heN! "",
nam.=name + $tempb
Tr-ansfer control to label $loop

Note: 	This example is for exprb >= O. For negative
exprb, the test at the star-t of the loop would be
"<,, rather than ft>".

, ,

,, "

,
.' ,

;

,
. I

I ,

I

I

I

I

REX language definition 33

. -.. --"...~ - --- .- --- ~- ...-." --	 --~"-' ~----,--~-::::-,-=-,--::..--,---.- -- -.
~-------. '".--'- --'-'---"""--~-----

lin Internal Use only

3.6.5 DROl»

DROP variable-list;

Where variable-lis.t ;s a list of symbols separated by
blanks.

DROP 15 used to "unassign" variables i.e. to restore them to thei r or;
ginal unhiitialhed state.

Each variable in the list wi 11 be dropped from the 1 i 5t of known
variables. The variables are dropped in sequence from left to right. It
is not an error to specify a name more than once. or to DROP a variable
that is not known. If an EXPOSEd variable is named (see the PROCEDURE
instruction), then the variable i t5e1f in the older generation wi 11 be
dropped.

Example~

:i =4
Drop a x.3 x.j
/M would reset the variables: "A", "X. 3ft , and "X.4ft M;'

If a variable hi specifieda5 the stem of a compound variable (Le. it is a
symbol whi ch contai n5 only one peri od. as the last character). then all
varl abIes start jng wi th that stem are dropped.

Example:

Drop x.
/M would reset aU with names starting with "X.ft M/

I
/

i

I
/

REX language dafi nit ion

----~---~-..~._.~.~.--~----------------------------'-----~

34

II" Internal Use Only

3.6.6 EXIT

eXIT [expression];

EXIT is used to unconditionally leave a program, and optionally return a
data string to the caller. The program is terminated immediately, even if
an internal routine is currently being executed. If no internal routine
is active. then RETURN (seepage 48) and EXIT have the same function.

If an expression is given, it is evaluated and the string resulting from
the evaluation is then passed back to the caller when the program termi
nates.

Example:

;=3
Exit j*4
1* Would ex; t w; th the stri'ng '12' ?U

If no eXpression is given, no data is passed back to the caller. If the
program was called as an external function this will be detected as an
error - either immediately (if RETURN was used), or on return to the caU
er Cif EXIT was used).

"Runni ng off the end" of the program is always equi valent to the i nstruc
ti on "EXIT;", ; n that it termi nates the whole program and returns no
result string.

Nate: Under CMS. REX does not distinguish between invocation as·a command
on the one hand, and invocation as a subroutine or function on the other.
If in fact the program was invoked via the more primitive command inter
face (which only allows a numeric return code), an attempt is made to con
vert the returned value to a return code acceptable by the host. The
returned stri ng must then be a whole number whose value will fit ina
5/370 regi ster Ci. e. must be in the range -(2**31> through 2**31-1). If
the conversion fails, it is deemed to be a failure of the REX host inter
face and i5 thus not subject to trapping by SIGNAL OH SYNTAX. Note also
that only the last four or five digits of the return code will be dis
played by the standard CMS "Ready message".

REX htnguage definition 35

IBM Internal Use only

3.6.7 IF

IF 	expression[;] THEM[;] instruction

[ElSE[;] instruction]

The IF construct is used to conditionally executa an instruction or group
of instructions.

The express10n is evaluated and must result in' 0' or ~ l' • The fi rst
instruction is executed only if the result was '1'. If an ELSE was given.
then the instruction after the ELSE is executed only if the result was
'0' .

Example:

if answer='YES' 	 then say 'OK!'

else say 'Why not?'
.

Remember that if the ELSE clause is on the same line as the last clause of
the THEN part. then you need a semicolon to terminate that clause:

Example:

if 	answer='YES' then say 'OK!'; else say 'Why not?'

The ELSE bi nds, to the nearest IF at the same level. Thi s means that any IF
which 1s used a5 the instruction following the THEN in an IF construct
which has an ELSE clausa, must itself have an ELSE clause (which may be
followed by the dummy instruction. MOP).

Example:

if answer='YES' then if name='FRED' then say 'OK, Fred.'

else say 'OK.'

elsa say 'Why not?'

Nate: An instruction includes all the mora complex constructions such as
DO groups and SELECT groups, as well as the simpler ones and the "IF"
instruction itself. A null clause is not an instruction however. 50 put
tingan extra semicolon after the THEM or ELSE is not equivalent to put
ting a dummy instruction (as it would be in PL/I). The NOP instruction is
provided for this purpose.

Nate: The keyword "THEN" is treated spec; ally, in that it need not start a
clause. This allows the expression on the IF clause to be terminated by
the THEN, without a "iff being required ~ were this not so. people used to
other computer languages would experience considerabl@ difficult'ies~

Hence a variable called ftTHEN" cannot be used within the expression.

Nate: In tha CMS implamantation. the presence of "the keyword "THEM" is not
enforced. provided that an explicit semicolon or line end is present at

REX language definition 36

IIH Internal use only

that position in the construct.

3.6.8 INTERPRET

INTERPRET expression;

INTERPRET is used to execute instructions which have been built dynam
i cally by evaluat i ng an expressi on (rather than whi ch exi st permanently in
tha progral'll).

The expression is evaluated. and will then be executed (interpreted) just
as though the resulting string were a line inserted into the input file
(and bracketed by a DO; and an END;), Any i nstructi ons (i ncluding INTER
PRET instructions) are allowed, but note that constructions such as DO •.•
END and SELECT ..• END must be complete.

A 5emicolon is implied at the end of the expression during execution. &5 a
service to the user.

Example:

data='FRED'

interpret data '= 4'

/lE Wi 11 a) build the string "FRED :: 4" lEI'

/lE b) execute "FRED = 4;" lEI'

/If Thus the variable "FRED" will be set to "4" If/

Example:

data='do 3; say "Hello there!"; end'

interpret data

/lE Will type out "Hello there!" three times If/

Note: For many purposes, the VALUE functi on (see page 77) may be used
instead of the INTERPRET instruction.

Note: label s wi thi n the interpreted stri n9 are not persi stent and are
a therefore ignored. Hence executing a SIGNAL instruction 'from within an ..

interpreted string will cause immediate exit from that string before the
label search begins.

REX language de'finition 37

II" Internal Use only

3.6.9 ITERATE

ITERATE [symbol);

Iterate alters the flow within a repetitive DO loop (, .e. any DO construct
other than that with a plain DO).

Execution of the instruction list stops, and control is passad back up to
the DO clause just as though the END clause had been encountered. The
control variable Ci f any) is then stepped (i terated) as normal and the
instruction list is executed again, unless the loop is terminated by the
DO clause.

If no symbol is specified, then ITERATE will step the innermost active
repetitive loop. If a symbol is specified. then it must be the name of the
control variable of a currently active loop (which may be the innermost),
and this is the loop that is stapped. Any active loops inside the ana
selected for iteration are terminated (as though by a LEAVE instruction).

Example: .

do i=1 to 4
if ;=2 then iterate
say i
end

/* Would type out the numbers: 1, 3. ~ */

Note: The symbo1, if spec; fi ad. must match that on the DO ; nstruct; on
exactly in that no substitution for compound variables 15 carried out.

Hate: A loop is active if it 15 currently being executed. If a subroutine
is called (or an INTERPRET instruction is executed) during execution of a
loop, then the loop becomes inactive until the subroutine has returned or
the INTERPRET instruction has completed. ITERATE cannot be used to step
an inactive loop.

Note: If more than one activa loop uses the same control variable9 then
the innermost wi 11 be tha on. sel.ctad by the ITERATE.

REX language definition 38

II" Internal Use only

~\. 3.6.10 LEAVE

LEAVE [symboll;

Leave causes immediate exit from one or more repetitive DO loops (i .e. any
DO construct other than that with a plain DO).

Execution of the ,,,struction l15t 15 terminatad. and control is passed to
the instruction following the END clause, just as though the END clause
had been encountered and th. termination condition had been met normally,
except that on exit the control variable (if any) wHI contain the value
it had when the LEAVE instruction was executed.

If no symbol ;s specified, then LEAVE will terminate the innermost active
repetitive loop. If a symbol is specified, then it must be the name of the
control variable of a currently active loop (which may be the innermost),
and that loop (and any active loops inside it) is then terminated. Con
trol then· passes to the clause following the END that matches th@ DO
clause of the selected loop.

Example:

do i=1 to 5

say i

if i=3then leave

end

/* Would type out the numbers: 1, 2, 3 */

Note: The symbol, if specified, must match that on the DO instruction
exactly in that no !!ubstitution for compound variables is carried out.

Nate: A loop is active if it is currently being executed. If a subroutine
is called (or an INTERPRET instruct 1on i!!I executed) duri ng execut i on of a
loop, then the loop becomes inactive until the subroutine has returned or
the INTERPRET instruction has completed. LEAVE cannot be used to termi
nate an inactive loop.

Note: If more than one active loop uses the same control variabl@, th@n
the innermost will be the one selected by the LEAVE.

REX language definition 39

18H Internal Use only

3.6.11 HOP

NOP;

NOP is a dummy instruction which has no effect. It can be useful as the
target of an ELSE, WHEN, or THEN clause:

Example:

Select

when a=b then nop /M Do nothing Yt/

when a>b then say 'A > B'

otherwise say 'A < B'

end

Note: Putting an extra semicolon instead of the NOP would merely insert a
null clause, which would just be ignored by REX. The second WHEN clause
would then immediately follow the first, and hence would be treated as a
syntax error. NOP is a true instruction, however, and 15 therefore a val
id target for the WHEN clause.

3.6.12 HUMERIC .~.

NUMERIC DIGITS [expression];

FORM [SCIENTIFIC];

[ENGINEERING];

FUZZ (expression];

The NUMERIC i nstructi on is used to change the way in whi ch ari thmeti c
operations are carried out. The options of this instruction are described
in detai 1 on pages 91-100, but in summary:

NUMERIC DIGITS controls the precis; on to whi ch ari thmeti c operati ons wi 11
be carried out. The expression (if specified) should evaluate
to a posi~ive whole number, and the default is 9. This number
must be larger than the FUZZ setting.

There is no 11m; t to the value for DIGITS (except the amount of
storage available) but note that high precisions are likely to
be very expensi ve in CPU time. It is recommended that the
default value be used wherever possible.

NUI1ERIC FOR" controls which form of exponential notation is to be used by
REX. This may be either SCIENTIFIC (in which case only one.
non-zero. digit will appear before thadecimal point), or ENGI~
HEERING (i n whi ch case the power of ten wi 11 always be a multi"

REX language definition 40

II" Internal Use only

pie of three). The default is SCIENTIFIC.

NUMERIC FUZZ controls how many digits, at full precision, will be ignored
during a comparison operation. The expr~ssion (if specified)
must result in zero or a positive whole number which must be
less than the DIGITS setting. The default value for FUZZ is O.

The effect of FUZZ .1 s to temporari Iy reduce the value of DIGITS
by the FUZZ value before every comparison operation, so that the
numbers are subtracted under a precision of DIGITS-FUZZ digits

,during the comparison and are then compared with O.

Note: The three numeric settings are automaticallY saved across subrou
tine and internal function calls. See under the CAll instruction (page
27) for more details.

3.6.13 PARSE

PARSE [UPPER] 	 ARG [template] ;
EXTERNAL "
NUMERIC "
PUll' "
SOURCE "
VALUE [expression] WITH "
VAR name "
VERSION 	 "

Where "template" is a list of symbols separated by
blanks and/or "patterns" _

The PARSE instruction is used to parse data into variables according to
the rules described in the section on parsing (page 83). If the UPPER
option is specified, then the data to be parsed is first translated to
upper case. Otherwise no upper case translation takes place during the
pars; ng.

If no template is spec; fi ed, then no val"; abies wi 11 be set but acti on wi 11
be taken to get the data ready for parsing if necessary. Thus for PARSE
EXTERNAL and PARSE PULL I a data stri ng wi 11 be removed from the appropri
ate queue; and for PARSE VALUE the expression will be evaluated.

The data used for each variant of the PARSE instruction is:

REX language definition 41

18" Internal Use only

For PARSE ARG

The stringCs) passed to the program, subroutine, or function as
the input parameter list are parsed. (See the ARG instruction
for details and examples.) Note that under versions of CMS pri
or to VM/SP release 2, the ARG string passed from the command
level is irrevocably translated to upper case by eMS. though
XEDIT correctly pas'ses mixed ease data.

For PARSE EXTERNAL

The next string from the system external event queue is parsed.
This queue is system defined. and may contain data that ;s the
result of external asynchronous events - such as usar console
input, or messages.

The number of lines currently in the external event queue may be
found with the EXTERNALS built-in function. See page 67.

Under eMS/SP, PARSE EXTERNAL will read directly from the con
sole input queue (~s opposed to the program queue which PULL
accesses). If that queue is empty, then a console read results.
Hote that this mechanism should not be used for "normal" console
input, for which PULL is more general, but rather it could be
used for special applications <such 85 debugging) when the pro
gram queue cannot be disturbed.

For PARSE NUMERIC

The current numeric controls (as set by the NUMERIC instruction
- see page 40) in the order DIGITS FUZZ FORM are made available.

e.g: 9 a SCIENTIFIC

See also page 99.

For PARSE PUU.

The next string from the system provided data queue is parsed.
This queue is implementation defined. but will at least support
the abi Ii ty to save a seri es of data stri n9S of reasonable
length. Data can be added to the head or tai I of the queue
using the PUSH and QUEUE instructions respectively. The queue
may also be altered by other programs in the system, and may be
usable as a means of communication between programs.

The number of lines currently in the data queue may be found
with the QUEUED built-in function. See page 11.

Under eMS, PULL and PARSE PUll read from the program "stack"~
If that is empty, they read from the console input queue, and if
that too is empty then a console read results. (See the PULL
instruction. on page 46, for further datails.)

REX language definition 42

.~.

11M Inte~nal Use Only

,~, Fa~ PARSE SOURCE

The data parsed describes the source of the program being exe
cuted in some implementation dependent way.

Under eMS, the string contains the characters "eMS", followed
by either "COMMAND", "FUNCTION", or "SUBROUTINE" depending on
whether the program was invoked as some kind of host command
(e.g. Exec or Macro), or from a function call in an expression,
or via the CAll instruction. These two tokens are followed by
the program. fi lename, fi letype. and fi lemade; each separated
from the previous token by one or more blanks. (The filetype
and f i 1 emode may be blank if the program i s be i ng executed from
storage. in which case the SOURCE string will have one or two
"*"5 as place holders.) Following the filemode is the name by
which the program was invoked (due to synonyming, this may not
be the same as the filename). It may be in mixed case when
called from some versi ons of CMS. and will be truncated to 8
characters if necessary. The final word is the initial
(default) address for commands.

If the interpreter wills called from a program that set up a sub
command environment. then the filetype is usually the name of
the default address for commands - see page U8 for details.

The str i ng parsed mi ght therefore look like this:

eMS COMMAND REXTRY XEDIT * rext XEDIT

Fo~PARSE VALUE

The expression is evaluated. and the result is the data that is
parsed. Note that "WITH" is a keyword in this context and 50

cannot be used as a symbol within the expression.

Thus. for example:

Parse VALUE time() WITH hours ':' mins ':' sees

will get the current time and split it up into its constituent
parts.

Far PARSE VAR name

The value of the variable specified by !U!!!!!.!! is par!led. Hate
that the variable name may be included in the template. so that
for example:

PARSE YAR string word! string

will remove the first word from STRING and put it in the vari
able WORDl, and

PARSE UPPER YAR string word! string

REX language definition 43

--.-...;.:.._ .. -..•.- -- .. ~ ...-,..~.---.-..:-,.. ,".- "- ---_ ...-.- -~~.---.-' . _. -- -----.--.--- ._._;--._.--..,--- .---.--,~- ---,..-.----~-.

IBM Internal Use Only

will also translate the data in STRING to upper case before the
parsing.

f"ar PARSE VERSION

Information describing the language level and the data of the
interpreter is parsed. This consists of five words: first the
string "Rex", then ,the language level description, e.g. "3.00".
and fi nally the interpreter release data 89: "4 Jul 1982".

3.6.14 PROCEDURE

PROCEDURE [EXPOSE name-list];

Where name-list is a list of symbols separated by blanks

The PROCEDURE instruction may be used within an internal routine (subrou
tine or function) to protect all the existing variables by making them
unknown to following instructions. Selected variables or groups of vari
ables may be exposed to the internal routine by using the EXPOSE option.
On executing a RETURN instruction, the original variables environment is
restored, and any variables used in the routine and which were not EXPOSEd
are dropped.

A routine need not include a PROCEDURE instruction, in which case the var
iables it is manipulating are those "owned" by the caller.

If the EXPOSE option i!I used, then the specified variables of the caller
are exposed. so that any references to them (including setting them and
dropping them) refer to the variables environment owned by the caller.
Hence the values of existing varjables are accessible. and any changes are
persistent even on RETURN from the routine.

The variables are exposed in sequence from left to right. It is not an
error to spec; fy a name more than once, or to spec; fy a name that has not
bean used as a variable by the caller.

EXalllPle:

/* This is main program -./

j=l; x.l='a'

call to'ft

say j k m /* would type "1 7 M"*/

exit

toft: procedure expose j k x.j

say j k x.j /-. would type "1 K a" */

k=7; m=3 /* nota "M" is not exposed -./

return

REX language definition 44

--

IBK Internal Use Only

.~ 	 Note that if the "X. J" in the EXPOSE 11 5t had been placed before the "J",
then the caller's value of "J" would not have been visible at that time,
so "X.l" would not have been exposed.

An entire collection of compound variables (see page 101) may be exposed
by specifying their stem in the name-list. (The stem is that part of the
name up to and including the first period.) Again, the variables are
exposed for all operations.

Example:

Procedure Expose i j a. b.

/* This exposes "I", ."J", and all variables whose M,

/* name starts with "A." or "B." M/

A.l:'7' /M This will set "A.l" in the caller's M/

/M environment, even if it did not M/

/* previously exist. M/

Vari abIes 	 may be exposed through several generat; ons of routi nes, if
desi red. by ensuring that they are included on all intermediate PROCEDURE
instructions.

Hote: The PROCEDURE instruction should be the first instruction executed
after the CAll or function invocation - i.e. it should be the first
instruction following the label. This restriction has an important effect
on the compi labi Ii ty of a REX program, but is not anforcad in the current
interpreter implementation.

Only one PROCEDURE instruction in each level of routine call is allowed,
all others (and those met outside of internal routines) are in arror.

Please see the CAll instruction and Function descriptions on pagas 27 and
58 for deta; Is and examples of how routi "es are invoked.

REX language definition

. ---.-~-".---~.-.---".

45

18" Internal Use Only

3.6.15 PUll

PULL [templatel;

Where "template" is a list of symbols separated by
blanks and/or "patterns"

PU,"," is used toraad a stri n9 from the system p.rovi dad data queue. It is
just a short ~orm of the instruction

PARSE UPPER PULL [templatel;

The current head-of-queue will be read as one string. I~ no template is
specified, no further action is taken (and the data is thus effectively
di scar-ded). Other-wi se, the data is translated to upper case and then
parsed into yari~bles according to the rules described in the section on
parsing (page 83). Use the PARSE PUll instruction if upper case trans
lation is not desired.

Example:

Say 'Do you want to eras. the ~ile? Answer Yes or No:'
Pull answer •
~f answer:'YES' then Erase filename filetype filemode

Hera the dummy placeholder "." is used on the template so the first word
typed by tha user is isolated ready for tha comparison.

The number of Ii nas currently in the data queue may b. found wi th the
QUEUED built-in fUnction. See page 71.

Nate: Under eMS. the program "stack" is used. If that ;s empty~ then tha
console input buffer is used. If that is empty too. then a console read
will occur. Conversely. if you "type-ahead" before an Exec asks for your
input. then your input data is added to the end of the console input buff
er and will be read at the appropriate time. The length of data in the
stack is restricted to 130 or 255 characters. depending on eMS release.

REX language dafinition 46

II" Internal Usa Only

3.6.16 PUSH

PUSH [expression];

The string resulting from expression will be stacked LIFO (last In, First
Out) onto the system data queue. If no expression is specified, a null
string is stacked.

Example:

a='Fred'
push /M Puts a null line onto the stack M/

push a 2 /M Puts "Fred 2" onto the stack M/

The number of 1 i nes currently in the data queue may be found wi th the
QUEUeD built-in function. See page 71.

Note: Under eMS, the program 'queue ("stack") is used. This is limited to
255 characters per entry.

3.6.17 QUEUE

QUeUE [expression];

The string resulting from expression will be queued onto the system data
queue. ("stacked" FIFO - First In, First Out). If no expression is spec
ified, a null string is queued.

Example:

a='Toft'
queue a 2 /M Enqueues "Toft 2" M/

queue /M Enqueues a null line behind the last M/

The number of lines currently in the data queue may be found with the
QUeUeD bui 1t-j n function •. See page 71.

Nate: Under eMS, the program queue ("stack") is used. This 1S limited to
255 characters per entry.

Rex language definition 47

18K Internal Use only

3.6.18 RETURN

RETURN [expression];

RETURN is used to return control (and possibly a result) from a REX pro
gram or intern~l routine to the point of its invocation.

If no lnternal routine (subroutine Or function) is active, then RETURN 15
essentially ident; cal to EXIT. Please see page 35 for detai Is.

If a subrout;ne is being executed (see the CALL instruction) then the
expression (if any) 15 evaluated. control passes back to the caller, and
the variable "RESULT" is set to the value of the expression. If no
expression is specified, the variable "RESULT" 'is dropped (bacomas
uninitialised>. The various settings savad at the ti.me of tha CAll (trac
ing, Addrasses. etc.) are also restored - saa under the CALL instruction,
on page 21, for details of these. ,

If a -function 15 being executad, then the action taken is identical.
except that an express; on must be spec i fi ed on the RETURN instruct ion.
The result of the expression is then used in the original expression at
the point where the function was invoked. See the description of func
ti ons on page S8 for more detai Is.

If a PROCEDURE i nstructi on was executed with; n the routi ne (subrouti ne or
internal function). then all local variables are dropped (and the previous
generation 1S exposed) after the expression ;s evaluated and before the
resultis used or assi gned to "RESULT".

REX language definition 43

IBM Inte~nal Use only

3.6.19· SAY

SAY [expression];

The result of evaluating the expression is displayed (or spokan. or typed.
etc.) to the user via whatever channel is implemented. The rasult of the
expression may be of any length.

Example:

data=100

Say data 'divided by 4 =>' data/4

/* Would type: "100 dividad by 4 => 25" */

Nate: In the eMS implementation, tha data will be formatted (split up into
shorter lengths, if necessary) to fit the tarminal linesize (which may be
datermined using the LINESIZE function). The line splitting is done by
REX. hence allowing any length data to ba displayed. lines are typad on a
typewriter terminal, or "Displayed" on a VDU. If you are disconnected
(i • e. LIHESIZE=O). then SAY wi 11 use a default 1 i nesi ze of 80 <as there is
no "real" console. but data can still be written to the console log).

3.6.20. SELECT

SELECT; whan-li st [OTHERWISE[; I Ci nstruction-li stIl END;

where when-list is:

one or more when-constructs

and when-construct is:
WHEN expression[;] THEN[;] instruction

and instruction-list is any sequence of instructions

SELECT is used to condi ti onally axecute one of several al ternati 'Ie
instructions.

Each expression following a WHEN is evaluated in turn and must result in
'0' or '1'. If the result is '1', the following instruction (which may be
e complex instruction such as IF, DO, or SELECT) is executed and control
will then pass to the END. If the result is '0', control will pass to the
next WHEN clause.

If none of the WHEN expressions succeed, control will pass to the instruc
tion-list (if any) following OTHERWISE. In this situation, the absence of

(~'- an OTHERWISE will cause an error.

REX language definition 49

- .- - --.--.-:-.. '.'- - -:-'~-F'---""'- - -----,....-- ...----.. -.....-...--..--,.....------ -.

IS" Internal Use Only

Example:

State Fn Ft Fm

Select

when rc=O then 	do

erase Fn Ft Fm

say 'File existed. Now erased'

end

when rc=28 I rc=36 then say 'File does not exist'
otherwise

say 'Unexpected return code from STATE'

exit '9

End /'jf 	Select */

Note: A null clause is not an instruction. so putting an extra semicolon
after a WHEN clause is not equivalent to putting a dummy instruction (as
it would be in Pl/I). The HOP instruction is provided for this purpose.

Note: The keyword "THEN" is treated specially, in that it need not start a
clause. Thi 5 allows the expressi on on the WHEN clause to be termi nated by
the THEN. without a "i" be'jng required - this is consistent with the
treatmant of "THEN" following an IF clause. Hence a variable called
"THEN" cannot be used within the expression.

Note: In the CMS implementation. the presence of the keyword "THEN" is not
enforced, provided that an explicit semicolon or line end is present at
that position in the construct.

3.6.21 SIGNAL 	and Labels

SIGNAL 	 labelname;

[VALUE] expression;

ON condition;

OFF condition;

where "condition" and "labelname" are single symbols or
strings which are taken as constants.

The SIGNAL instruction causes an abnormal change in the flow of control.
Of" (i f ON or OFF is speci 1'1 ad) controls the trapp; ng of except; ons.

In the case of nei ther ON nor OFF be; ng spec i f1 ed:

The labelname is used directly, or is the result of the expression if
VALUE 1s specified (the keyword "VALUE" may be omitted if the
expression does not begin with a symbol or string). All active pend
ing DO 100PS6 DO groups, IF constructs, SELECT constructs, and INTER
PRET instructions in the current routine ara then terminated (i.e.
they cannot be reactivated). Control then passes to the first label

REX language definition 50

IBH Internal Use Only

in the program that matches the required string, as though the search
had started from the top of the program. The match is done independ
ently of alphabetic case, but otherwise the label must match exactly.

Example:

Signal fred: 1M Jump to label "FRED" below M/

Fred: say 'Hi!'

Since the search effectively starts at the top o~ the program, control
will always pass to the first label in the data if duplicates are
present. i.e, duplicate labels are ignored and there are no scoping
rules for labels. An implementation mayor may not warn of the pres
ence of a duplicate label.

In the Case of ON or OFF being specified:

A parti cular excepti on trap is either enabled or di sabled. The speci
fied condition must be one of the symbols:

ERROR rai sed if any host command returns a non-zero return code.

HALT ra i sed if an external attempt is made to interrupt exe
cution o~ the program. (e.g., under CMS, by using the "he"
immediate command - see page 115.)

NOVALUE raised if an uninitialised variable is used in an evaluated
expression, or following the VAR keyword of the PARSE
instruction, or in an UPPER instruction. HOVAlUE is raised
if SYMBOLC'name') would return 'LIT'.

SYNTAX raised if an interpretation error is detected.

If ON is specified. the given condition is enabled; and if OFF is giv
en, the condition is disabled. The initial setting of all conditions
is OFF.

When a condition is currently enabled and the specified event occurs,
then instead of the usual action at that point execution of the cur
rent instruction will immediately cease. A "SIGNAL xxx" (where xxx
is ERROR, HALT, HOVAlUE, or SYNTAX) is then executed automatically.
The condition will be disabled before the signal takes place, and a
new SIGNAL ON instruction is required to re-enable it. There~ore, for
example, if the required label is not found. a normal Syntax Error
ex; t will be taken, whi ch traces the name of that label and the clause
in which the event occurred.

For ERROR and SYNTAX the varhlble "RC" is set to the error return code
or syntax error number respectively before control is transferred to
the condition label.

The condi ti ons are saved on entry to a subrouti ne and are then

REX language definition 51

IBM Internal Use only

restored on RETURN. This means that SIGNAL ON~a~d SIGNAL OFF may be
used in a subroutine without affecting the conditions set up by the
caller. See under the CAll instruction (page 27) for more details.

Nate: In all cases, the condition will be raised (and the current
instruction terminated) immediately the error is detected. Therefore
the instruction during which an event occurs may be only partly exe
cuted (a.g. if SYNTAX is raised during the evaluation of the
expression in an assignment, the assignment will not take placeL
Note that HALT and ERROR can only occur at clause boundari as, but
could arisa in thea middle of an INTERPRET instruction.

Note: During interactive debug, all conditions are set OFF so that
unexpected transfer of control does not occur should (for example) the
user acc; dentally use an uni ni ti al i sed vari able while SIGNAL ON
NOVAlUE is active. For the same reason, a syntax error during inter
active debug will not'cause exit from the program, but is trapped spe
cially and then ignored after a message is given.

Nate: Certai n executi on . errors are detected by the host inter-face
either before execution of ' the program starts or after the program has
Exited. These errors cannot be trapped by SIGNAL ON SYNTAX, and are
listed on page 144.

Following the execution of any jump due to a signal, the line number of
the instruction causing the jump is stored in the special variable "SIGl".
This is especially useful for "Signal On Syntax" (see above) when the num
ber of the line in error can be used, for example, to control an editor.
Typically code following the SYNTAX label may PARSE SOURCE to find the
source of the data, then invoke an editor to edit the source fila, posi
tioned at the line in error. Note that in this case the Exec has to be
re-invoked before any changes made in the editor can take effect.

Alternatively SIGl may be used to help determine the cause of an error.
(such as the occasional failure of a function call), using the following
section of code (or something similar):

/* Standard handler for SIGNAL ON SYNTAX */

syntax:

$error:'REX error' rc 'in line' sigl':' errortext(rc)

say $e,.ror

say sourceline(sigl)

traca '1r'; nop

Thi 5 code types out the error message and 1 i ne number, then types the 1 i ne
in error, and finally drops into debug mode to allow you to inspect the
values of the variables used at the line in error (for instance). This
may be followed, under eMS, by the following lines, so that by pressing
ENTER you wi 11 be placed in XEDIT as suggested· above g

REX language dafinition 52

18" Internal use only

call trace 'Off'
address command 'Dropbuf 0'
parse source • • $fn $ft $fm •
push 'Command: 's1g1; push 'C'ommand EMSG' $error
address cms 'Xedlt' $fn $ft $fm
exit rc

Labels are clauses con9isti~g of a single symbol, followed by a eolon.
The colon in this context implies a semicolon (clause separator), and so a
label is a clause in its own right and multiple labels may therefore pre
cede an executable clause. Except when following a symbol at the begin
ning of a clause, the colon is treated like any other special character,
and is therefore not permi tted outsi da of a stri ng or comment.

Note: 	If a SIGNAL instruction or condition 1s issued as a result of an
INTERPRET instruction. the remainder of the string(s) being interpreted
will not be searched for the given label. In effect, labels within inter
preted strings are ignored.

3.6.22 TRACE

TRACE 	 [trace-setting];
[VAlUe] expression;

where "trace-setting" is a symbol or string which is
taken as a constant.

The TRACe instruct ion is used to control the traci ng of execut i on of a REX
program, and is primarily used for debugging. Its syntax is more concise
than other REX instructions. since it is commonly typed manually during
interactive debugging. For this use economy of keystrokes is considered
to be more important than readability.

The trace-setting is either specified immediately, or is taken from the
result of evaluating the expression.. The keyword "VALUE" may be omitted
if tha expression does not begin with a symbol or a string (i.a. if it
starts with a special character or operator).

If tha satting isa positive number, then (if debug mode is active) that
number of debug pauses are skipped (see the section on interactive debug
ging, page 80, for further information). If tha setting is a negative
number, then all tracing (including debug pauses) is temporarily inhibit
ed for that numbar of clauses that would otherwi se be traced. e.g.
"Trace -100" means that the next 100 clauses that would normally be traced
will not 1n fact ba di splayed. but then tracing wi 11 resume as before.

If the setting is not a number, then it may be prefixed by a "?", a "I", or
both. If so, these cause special actions to be. taken (see below>. TRACE
will then take action according to the first character of the remainder of

REX language definition

..---....-------- .~--.----~-,.-~ -- -- - -~. -... -'-

53

IBH Internal Use only

the 	setting:

N 	 (e.g: "Negative") any host command resulting ;n a negative return code
is traced (after execution>. This is the default setting.

E 	 (e.g: "Error") any host command resulting in non-zero return code is
traced (after execution).

C 	 (e.g: "Commands") all host commands ara tracad befora axecution; and
any non-zero return coda is shown.

A 	 (a.g: "All") all clausas ara traced befora' execution.

R 	 (e.g: "Results") all clauses are traced before execution, .together
with the final result of any expression evaluated. Values assigned
dUring PUll, ARG, and PARSE instructions are also displayed. This
setting is recommended for general debugging.

I 	 (e.g: "Ints") as "R" except that all terms and intermediate results
duri ng express; on evaluation (and substi tuted names) are also traced.

L 	 (e.g: "labels") trace only labels passed during execution. This is
especially use"ul wi th debug mode, when the interpreter wi 11 pause
after each label; or if one wishes to note all subroutine calls and
signals.

s 	 (e.g: "Scan") all remaining clauses in the data will be traced without .~

being executed. Basic checking (for missing END's etc) is carried
out. and the traca is formatted as usual. This is only valid if the
"TRACE Scan" clause is not itself nested in any other instruction or
internal routine.

o 	 (e.g: "O.,f") nothing 1S traced, and the special pre.,ix actions (see
below) are reset to OFF.

If no setting was specified. or if the result was null. then the same
action is taken as for "Trace Of.,".

Example:

Trace ?R

/M Results of expressions will now be traced. and M/

/M debug mode 1S switched on i., it was of., before M/

The current trace-setting may be retrieved by using the TRACE bui It-in
function. See pagQ 16.

Comments associated with a traced clause are included in tha trace. as are
comments in a null clause if Trace "A"# "R", "1". or "S" 15 specified.

Commands traced before execution always have the final value 0" the com
mand (i .a. the stri ng passed to the envi ronment) traced as well as the
clause generating it.

REX 	 language definition 54

.. ----~, ~.-----.---.--~-.... --'-.-,-'--~-=.-=-===--"--"-"'" -.-.-~ "===~===~ ...-:"'~..... 	 -.
~~.~-= -~-~~~=~~.=.-.~--~.~-=

18" Internal Use only

Note: The trace action is automati cally saved across subrouti ne and
internal function calls. See under the CAll instruction (page 27) for
more detai Is.

The 	prefixe~ "!" and "I" modify tracing and execution as follows:

! 	 is used to inhibit comma~d execution. During normal execution. exe
cuting a TRACE instruction with a "!" setting prefix causes all fol
lowi ng commands to be ignored - as each command is bypassed. the
special variable "RC" is set to O. This may be used for debugging
potentially destructive. programs. As an example, "Trace !Commands"
will cause commands to be traced but not executed. CHote that this
does not inhibit any commands issued manually while in debug mode.
whi ch are always executed.) Command i nhi bi t mode is saved and
restored across internal routine calls.

Command inhibition may be switched off by executing a TRACE instruc
tion with a prefix "!" while it is on. or by executing "Trace Off" at
any time. Using the "!" prefix therefore toggles you in or out of
command i nhi bi ti on mode ..

'! 	 is used to control the interactive debug mode. During normal exe
cution. executing a TRACE instruction with a "?" setting prefix causes
debug mode to be switched on (see separate section on page 89 for full
details of this facility). While debug mode is on. interpretation
will pause after most clauses which are traced; and TRACE instructions
in the fi Ie are ignored Cthi sis so you are not taken out of debug mode
unexpectedly). The state of debug mode (i.e. whether it is on or off)
is saved and restored across internal routine calls.

As an example. the instruction: "Trace ?Errors" will makea thea inter
preter pause for input after executing any host command that returns a
non-zero'return code.

Debug mode may be switched off by executing a TRACE instruction with a
prefix "?" while in debug execution mode, or by executing "Trace Off".
Using the "I" prefix therefore toggles you in or out of debug mode.

Both prefixes may be specified on one TRACE instruction if desired. in any
order.

Format of TRACE output:

Every clause traced wi 11 be di splayed with automatic formatting (indenta
tion) according to its logical depth of nesting etc., and any control
codes (defined as EBCDIC values less than X'40') are replaced by a ques
tion mark ("?") to avoid console interference. Results (if requested) are
indented an extra two spaces and have a double quote prefixed and suff;xe~
so leading and trailing blanks are apparent.

The first clause traced on any line will be preceded by its line number.
If the line number is greater than 99999. it is truncated on the left and

REX 	 language definition 55

IB" Internal Use Only

the truncation is indicated by a prefix of "?". For example the line num
ber 100354 would be shown as "100354".

All lines displayed during tracing have a three character prefix to iden
tify the type of data being traced. These may be:

.-. 	 identifies the source of a single clause, i .a. the data actually in
the program.

+++ 	 i denti fi es a trace messaga. Thi s may ba the non-zero return code
from a command, tha prompt message when debug mode is entered, an
indication of a syntax error when in debug mode, or the tracaback
clauses after a syntax error in the program (sa. below).

»> 	 identifies the result of an expression (for Trace Results) or the
value assigned to a variable during parsing.

>.> 	 identifies the value "assigned" to a placeholder dUring parsing.

The following prefixes are only used if "TRACE Intermediates" is in
effect:

>V) 	 The data traced is the contents of a vari abla.

)\.) 	 Tha data traced is a Litaral (st.. ing or uninitialised variable).

>F> 	 The data traced is the result of a function call.

>P> 	 The data traced is the result of a prefix operation.

)0> 	 The data traced is the...esult of an operat i on on two terms.

)C> 	 The data traced is tha nama of a compound variabla, tracad after
substitution and before usa.

Following a syntax error which is not trapped by SIGNAL ON SYNTAX, the
clause in error will always be traced, as will any CALL or INTERPRET or
function invocation clauses active at the time of the error. If the error
was caused by an attempted jump to a label that could not be found, that
label is also traced. These traceback linas are identified by the special
traca prefix "+++".

Note: Undar CMS traci ng may ba swi tched on, wi thout raqu i ri ng modi f1 ca
tion to an Exac, by using the TRACER module (which will turn tha system
tracing bit on or off). Tracing may b. also turned on 0 .. off
asynchronously, (i .e.whil. an Exec 15 running) using the "ts" and "ten
immediate commands. : See below on page 115 for the description of these
facilities.

REX language definition

--- ------'------- ----------- -------------

56

II" Internal Use Only

3.6.23 UPPER

UPPER [variable-list];

Where variable-lht is a list of symbols separated by
blanks.

UPPER may be u!u!!d to translate the contents of on. or mora vari abIes to
upper case. The variables are translated in sequence from left to right.

It i!l more conveni ent (and faster) than usi ng repeated i nyocations of the
TRANSLATE function.

Example:

a='Hello'; b='there'
Upper a b
say a b /Yc would type "HEllO THERE" Yc/

Note: Only symbols that are valid as individual variables may be specified
(see p.age 21), Using.an uniniti.alised v.arhble is not an error, and has
no effect, except that the NOVAlUE condition will be raised if SIGNAL ON
NOVALUE i's set.

REX language dafinition 57

http:Using.an

IBn Internal Use Only

3.7 FUNCTION CALLS

Calls to certain internal and externa~ routines (called functions) may be
included in an expression anywhere that a data term (such as a string)
would be valid. using the notation:

function-name([expressi~n[,(expression]] ••• l)

where "function-name" is a string, or a symbol which is
taken as a constant.

There may be up to. ten expressi ons, separated by commas. between the
parentheses. These are called the arguments to the function. Each argu
ment expression may include further function calls.

Hote that the name of the function must be adjacent to the "(", with no
blank in between, or there will be a blank operator assumed at this point
and the construct will not be recognised as a function call.

The arguments are evaluated in turn from left to right and they are all
then passed to the function. This then executes some operation (usually
dependent on the argument stri.ngs passed, though arguments are not manda
tory) and will eventually return a single character string. This string
is then included in the original expression just as though the entire
function reference had been replaced by the name of a vari able whi ch con
tained that data.

For example, the function SUBSTR is built-in to the REX interpreter (see
below. page 73) and could be used as:

c='abcdefghijk'

a='Part of Cis:' SubstrCc,2,7)

/* would set A to 'Part of Cis: bcdefgh' */

A function may have a variable number of arguments: only those required
need be specified. Substr('ABCDEF',41 would return "DEF" for example.

The function calling mechanism 15 identical to that for subroutines. and
indeed the only difference between functions and subroutines 15 that func
tions must return data, whereas subroutines· need not. The various types
of routines that can be called as functions may ba~

Internal 	 If the routine nama exists as a label in the program, then the
current state of interpretation is saved, 50 that it will later
be possible to return to the point of invocation to resume axe
cution. Control is then passed to the label found. As with
routines invoked by the CALL instructions, various other state
i nformati on <TRACE and NUMERIC setti ngs, etc.) is saved too.
Please see ude,. the CALL instruction' (page 27) for details of
this. If an internal routine is to be called as a function,

REX language definition 	 58

IBH Internal Use only

then any RETURN instruction executed to return from it ~ have
'/\ 	 an expression specified. This is not necessary if ~t is to be

called a~ a subroutine.

Bui It-in 	 A rich set of functions are built-in to the REX interpreter:
these are always available~ and are defined in the next section
of thi s manual.

External 	 Users may write or make use "of functions which are external to
REX. An external function may ba written in any language.
including REX, which supports the system dependent interfaces
used by REX to invoke it. Again,whan callad as a function it
must return data to the caller.

Example:

/* Recursive internal function execution ••• */

arg x

say x'! =' factorlal(x)

exit

factorial: procadure /* calculate factorial by .. */

arg n /* recursive invocation. */

if n=O then return 1

return factorial(n-l) * n

REX searchas for functions in tha order given above. i.e. internal labals
take precadance. than built-in functions, and finally extarnal functions
(the latter may have their own search order in turn, however this is a
systam dependent matter and is dascri bed on page 125). However, internal
labels are not used if the function name is given as a string (i .e. 1s
spacifiad in quotes) in this case the function must be built-in or
external. This lets you usurp the name of (say) a built-in function to
extend its capabilities, yet still be able to invoke the built-in function
when needed.

Example:
· '

I

/* Modified DATE to return sorted date by default */

date: 	procedure

arg in

if in=" then in='Sorted'

return 'DATE'ein)

Hate that the but I t-i n functi ons have uppar Case names, and 50 the name in
the literal string must be in upper case, 85 in the axample. The 5ame will
usually apply to external functi ons.

If an external or built-in function detects an error of any kind, then REX
is informed, and a syntax error would be rai sed. Executi on of the clause
that .included tha function call is therefore terminated. Similarly, if an
external function fai Is to return data correctly, th; s wi 11 be detected by
REX and reported as an error.

REX language definition
.'

59

II" Internal Use only

If a syntax error occurs dUring the execution of an internal function, it
may be trapped (US1 ng SIGNAL ON SYNTAX) and recovery may then be pass; bIe;
If the error is not trapped. then executi on of the whole program is term;
nated 1n the ~sual way.

Note: Under eMS. other REX Exec's may be called as functions. with up to
ten argument ~tri ngs. Detal Is are g1 ven 1na later secti on of thi s manual
an page 125. Ei ther EXIT or RETURN may be used to leave the other REX pro
gram, and in either ease an expression must be specified. Thera is no
,.astriction on the cc,ntent or length oftha returned characta" string.

Nate: Execution of a functi on wi th a vari able functi on name may be
achieved by careful use of the INTERPRET instruction, however this is
should be avoided if possible as it reduces the clarity of the program.

REX language definition 60

IBM Internal Use Only

~ 3.8 BUILT-IN FUNCTIONS

There is a rich set of built-in functions available for REX. These
include character manipulation. conversion, and information functions.

General notes on the bui It-in functions:

• 	 The bu i It- in funct ions work internally wi th HUMERIC DIGITS <} and
HUMERIC FUZZ 0 and are unaffected by changes to the HUMERIC settings.
except where stated.

• 	 Where a stti ng is referenced. a null str; ng may be suppl i ed.

• 	 pad charactar. if specifiad. must be only one byte long.

• 	 If a function has a sub-option selected by the first character of a
keyword. that charactar maybe in uppar or lower case.

• 	 Conversion between characters and hexadecimal involves the machine
representati on of charact'er str; ngs. and haneG wi 11 return appropri
ately diffarent results for an ASCII machine. The examples below
assume an EBCDIc implementation.

ABBREV(strins.teststrinst,lengthl)

/'-, 	 returns '1' if teststring is a valid abbreviation of string, or
'0' otherwise. The third argument (length) specifies the mini
mum length that the test string must be for a match. The
default length is the length of the test string supplied.

e.g. 	ABBREV('Print','Pri') -- I
ABBREV{'PRIHT','Pri') -- 0
ABBREV('PRIHT','PRI',4) -- 0
ABBREVC'PRIHT','PRY') -- 0
ABBREV('PRIHT'.") -- I
ABBREV('PRIHT',",l) -- 0

Note: A null string will always match if a length of 0 (the
defaul t) is used. Thi 5 allows a default keyword to be selacted
automatically if desired:

e.g. say 'Enter option:'; pull option.
select 	 1* Keyword-l is to be the default */

when abbrev('Keyword-l',option) then
when abbrev('Keyword-2'.option) then •••

otherwise nop;
end;

REX 	 language definition 61

IB" Internal Use only

ABS(number)

returns the absolute value of numbQr. The result 1S formatted
according to the current setting of HUMERIC DIGITS.

e.g. 	ABSC'12.3') -- 12.3

ABS(' -0.307') -- 0.307

ADDRESS()

returns the name of the environment to which host commands are
currently be; ng submi tted. Trai ling blanks are removed from
the result.

e.g. 	ADDRESSC) -- 'eMS' /* perhaps M/

ADDRESS() -- 'XEDIT'

BITAND(stringl,string2[,padl)

returns a string composed of the two input strings logically
AND'ed together. tiit by bit. If no pad character is provided
the operation terminates when the shorter of the two strings
runs out. If a pad character is provided, it is used to extend
the shorter of the two strings or the right •. before carrying out
the logical operation.

e.g. 	BITANDC'1111'x,'222222'x) -- '000022'x.
BITANDC'3311'x,'222222'x,' ') -- '220000'x.
BITAHD('1111'x,'444444'x) -- '000044'x.
BITAHDC'1111'x,'444444'x,'40'x) -- '000040"x.

/

BITOR(stringl,string2[,padl) ,/

returns a string composed of the two input strings logically
OR'ed together, bit by bit. If no pad character is provided the
operation terminates when the shorter of the two strings runs
out. If a pad character 1S provided, it is used to extend the
shorter of the two stri ngs on the ri ght, before carryi ng out the
logical operation.

e.g. 	BITOR('1111'x,'222222'x) '333322'x"
BITORC'CSl1'x,'222222'x,' ') -- 'E73362'x.
BITOR('1111'x,'444444'x) -- '555544'x.
BITORC'1111'x,'444444'x,'40'x) -- '555544'x.

I!TXOR(stl"ingl.stl"ing2[.padl)

returns a string composed of the two input strings logically
eXclusive OR'ed together, bit by bit. If no pad character 15
provided the operation terminates when the shorter of the two
str; ngs runs out. If a pad character is proy; ded. it is used to
extend the shorter of the two strings on the ri ght, before car
rying out the logical operation.

REX language definition 62

18t1 Internal Use Only

e.g. 	BITXORC'1111'x,'222222'x) -- '333322'x.
BITXOR('C711'x,'222222'x,' ') -- 'E53362'x.
BITXORC'1111'x,'444444'x) -- '555544'x.
BITXORC'1111'x.'444444'x,'40'x) -- '555504'x.

CENTRECstringpk[ppadll CENTER(string,k[,padlJ

returns a stri ng OT length k wi th string centre~ in it, wi th pad
characters (the default pad character is a blank) added as nec
essary to make up tha langth. If the st,.ing is longer than k.
then it wi 11 ba truncated at both ends to fi t. If an odd number
of characters are truncatad or added. than tha right hand end
loses or gains ona more character than tha left hand end.

,e.g. 	CENTRECabc.n -- ABC
CENTRECabc,8,'-') -- '--ABC---'
CENTER('The true REX',8) -- 'e true R' ,CENTER('The true REX',7) -- 'e true

Nate: This functi on may be called ei ther CENTRE or CENTER.
which avoids error.s due to the difference between the British
and American spellings.

COtlPAREtstringl,str;ng2[,padll

returns '0' if the strings are identical, or non-zero if they
are not. In this case the returned number is the index of the
f1 rst character that does not match. The shorter stri ng is pad
ded on the right if necessary, and the default pad character ;s
blank.

a.g. 	COMPARE('abc'p'abc') -- 0
COMPARE('abc','ak') -- 2
COMPAREC'ab ','ab') -- 0
COMPARE('ab , ,'ab'.' ,) -- 0
COMPARE('ab , ,'ab','x') -- 3
COMPARE('ab-- , ,'ab','-') -- 5

COPIES(string,n)

returns .!lconcatenated copie!! of tha string.

e.g. COPIES('abc',3) -- 'abcabcabc'
~- COPIES{'abc',O) -- "

C2DCstringE,nl)

Character to Decimal. Returns the decimal value of the binary
representation of string. If the result cannot be expressed as
a whole number, an erro,. results. i.e. the result must have no
more than NUMERIC DIGITS digits. See also the X2D function.

If.!l 	is not specified, string is taken.to be an unsigned number:

REX language definition

- -~.-- -.. .. _--- -- - --.--" -., .,...• -.

63

http:taken.to

IIH Internal Use only

e.g. 	C2DC'09'x) -- 9

C2D('81'x) -- 129

C2D('a') -- 129

C20C'FF81'x) -- '65409

If !l is specified. the binary value of the string is taken to be
a two's complement number expressed in !l characters. and is con
verted to a REX whole number whi ch may therefore be negati vee

The string is padded on the left with characters of 'OO'X (nota.
not "sign-extended") or truncated to length !l characters, if
nacessary. (La. as though RIGHTCstring,n,'OO'x) had been exe
cuted.)

e.g. 	C2DC'81'x,1) -- -127

C2DC'81'x,2) -- 129

C2DC'FF81'x,2) -- -127

C20C'FF81'x,1) -- -127

C2D(' FF7F'x, 1) -- 127

Implementation restriction: This functi on is not yet fully
implemented. At present, string is limited to four characters.
and the result must be less than 10 digits. A second argument
may not be specified. Please refer to REXDOC level 2.50 for
examples.

C2X(string)

Character to Hexadecimal. Converts a character string to its
hexadecimal representation. i.e. Unpacks. The data to be
un.,acked may ba of any length.

e.g. 	C2X('725') 'F7F2A2'

C2XC'G123'x) '0123'

DATATVPE(str;ngE,typel)

If ~ is omitted then returns 'HUM' if the string is a valid
REX number (any format) otherwi se returns 'CHAR'.

If ~ is specified then the returned result will be '1' if
string matches the type, or '0' otherwise. The valid types (of
which only the first character is significant) are:

Number returns' l' if the input 15 a valid REX number.

Whole-number returns '1' if the input is a REX whole number
under the current setting of NUMERIC DIGITS.

Alphanumeric returns '1' if the input @nly conta;ns characters
1rom the ranges "a-z", "A-loW, and "0-9",.

t··

"ixed-case returns '1 'i f the input 'only contai ns characters
from the ranges "a-z" and "A-loft.

REX language definition 64

IBM Internal Use Only

Upper-case returns '1' if the input only contains c~ar.acters
from the range "A-Z".

Lower-case returns '1' if the input only contains characters
from the ran·ge "a-z".

symbol 	 returns '1' if the input only contains characters
which are valid in REX symbols (see page 13). Hote
that lower case alphabeticsare permitted.

Bits 	 returns '1' if the input only contains '0'5 and '1'5.

x 	 (heXadecimal) returns '1' if the input only contains
characters from the ranges "a-f", "A-F", and "0-9".

e.g. 	DATATYPE(, 12 ') -- 'HUM'
DATATYPE(") ..- 'CHAR'
DATATYPE('123lE') -- 'CHAR'
DATATYPf('12.3','H') -- '1'
DATATYPE('12.3','W') -- '0'
DATATYPEC'Fred'.'M') -- '1 '
DATATYPEC", 'M') -- '0'
DATATYPE(' Fred',' l') -- '0 '
DATATYPEC'$20K'.'S') -- 'I'
DATATYPEC fBCd3' ,'X') ---- '1 '

~. 	 DATEUoptionlJ

returns the local date in the default format e.g. '27 Aug 1982'.
The following options (first letter significant) may be sup
plied to obtain alternative formats:

century 	 Returns number of days so far in this century in the
format: ddddd.

Days 	 Returns number of days so far in thi s vear in the for
mat: ddd.

European 	 Returns date in the format: dd/mm/yy.

Julian-OS 	Returns date in "OS" format: yyddd.

Month 	 Returns full nama of the current month. e.g:
, August'-.

Ordered 	 Returns date in the format: yv/mm/dd (suitable for
sorting etc.).

sorted 	 Returns date in the format: yvyymmdd (suitable for
sorting etc.).

USA 	 Returns date in the format: mm/dd/yy.

weekday 	 Returns day of the week. e. g: 'Tuesday'.

REX language definition

..
65

lin Internal Use only

Nate: The first call to DATE or TIME in one expression causes a
time stamp to be made which is then used for all calls to these
functions in that expression. Hence if multiple calls to any of
the DATE and/or TIME functions are made in a single expression,
they are guaranteed to be consistent with each other .

.> DELSTRCstring,nC,kl)

deletes the substring of string which begins at the nth charac
ter, and is of length t. If K is not specified, the rest of the
!ltri ng is deleted. If n is greater then tha length of strj nq,
than the string is returned unchanged.

e.g. 	DELSTR('abcd',3) -- 'ab'

DElSTR('abcde'.3,2) -- 'abe'

DElSTR('abcde',6) -- 'abcda'

DELWORD(string,nC,k])

deletes the substri ng of strj n9 whi ch starts at the nth word,
and is of length k blank-delimited words. If k is omitted it
defaults to ba the' remaining words in the string. If n 15
greater then the number of words in string. then the string is
returned unchanged. Tha stri ng daleted includes any blanks

. following the final word involved.

e.g. 	DElWORD('How is the time',2,2) -- 'Now time'
DElWORO('Now is the time ',3) -- 'Now is '
DElWORO('Now is tha time',S) -- 'How 15 the time'

D2C(whole-numberC,nl)

Decimal to Character. Returns a character string of length as
needed. or of length n. which is the binary representation of
the decimal number. See also the 02X function.

If n is not spec; fi ed then whole-number must be zero or
positive. an error results if it is not. The result is returned
such that there are no leading 'OO'x characters.

If n is specified it is the length of the final result in char
acters, i.a. after convarsion the input string will be
sign-extended to the required length. If the number is too big .'<

to fit into n characters~ it will be truncated on the left.

e.g. 	D2C(9) -- '09'x

D2C(129) -- '81 'x

D2C(129~ 1) -- '81 'x

D2C<129.2) -- 'OO81'x

D2C(257.1) ..- 'Ol'x

D2C(-121,1) -- '81'x

02CC-127,2) -- 'FF81'x

02C(-1,4) -- 'FFFFFFFF'x

REX language definition 66

IBn Internal Use Only

Implementation restr~ction: Thi s functi on is not. yet fully
implemented. Except for the simple cases where number is posi
tive and less than 10 digits, results may differ from those
shown above. Please refer to REXDOC level 2.50 for examples.

D2X(whole-numbert,r.3J

Decimal to Hexadec,i mal. Returns a stri ng of hexadeci mal char
acters of length as needed~ or of length 111 whi ch is the
unpacked representation of the dec'imal number. Se8also the D2e
function.

If !l is not speci fi ed then whole-number must be zero or
positive, an error results if it is not. The result 15 returned
such that there are no leading '0' characters.

If !l is specified it is the length of the final result in char
acters~ i.e.•fter conversion the iriput string will be
5i gn-extended to the requi red length. If the number is too bi g
to fi t into !l characters. it wi 11 be truncated on the left.

e.g. 	D2X(9) 1== -,.
D2X(129) -- '81'
D2XC129,1) -- , 1 '
D2XC129,2) -- '81'
D2XC129,4) == '0081'

./\ 	 D2X(257.2) -- '01'
D2X(-127,2) -- '81'
D2X(-127,4) -- 'FF81 '

Implementation restriction: This functi on is not yat fully
implemented. Except for the simple cases where number isposi
tive and less than 10 digits, results may differ from those
shown above. Please refer to REXDOC level 2.50 for example!l.

ERRORTEXT(nl

returns the error message associated wi th error number!l. !l
must be in the range 0-99. If!l is not a defined REX error num
ber, then the null stri ng is returned.

e.g. 	ERRORTEXT(16) -- 'Label not found'
ERRORTEXT(60) __ 'f

EXTERNALS ()

returns the number of elements on the external event queue. See
PARSE EXTERNAL on page 42 	 for a descripti on of the external
queue.

Under CMS/SP, the console input buffer is used a~ the external
queUQ. and so EXTERNAlS() 	 wi 11 return the number of logical
typed-ahead lines. if any.

REX language definition 67

http:D2X(whole-numbert,r.3J

IBn Internal Use only

e.g. 	EXTERNALS() -- '0' /* Usually */

FIND(str;ng,phrase)

searches !ltri n9 for the fi rst occurrence of the sequence of
blank-delimited words phrase, and returns the word number of
the first word of the phrase in the string. Multiple blanks
between words are treated as a single blank for the comparison.
Returns '0' if the phrase is not found.

e.g. 	FIHDPnow is the tilnet,'is the time') -- '2'
FIHDC'now is the time','is the') -- '2' .
FIND('now is the timet,'is time ') -- '0'

FORttAT(number[, [beforel[, [afterl]l)
~

rounds and- formats a number. before and ill.!!..!: descri be how many
characters are to be used for the integer part and decimal part
of the result respectively. If either of these is omitted then
as many characters as are needed wi 11 be used for that part.,

If before is not large enough to contain the integer part of the
number, an error is rai sed. If after is not the same 5i ze as
the decimal part of the number, the number will be rounded (or
extended with zero.s) to fit. Specifying 0 will cause the number
to be rounded to an integer.

If only the number is given. then the number will be rounded and
feu"matted to standard REX rules, just as though the operati on
finumber+O" had been carried out.

e.g. 	FORMAT('3',4) ==' 3 t

FORMATC'1.73',4,0) ==' 2·

FORMATC'1.73'.4,3) ==' 1.130'

FORMATC'-.76',4,1) ==' -0.8'

FORMAT('3.03',4) ==' 3.03'

FORMAT(' - 12.73',,4) -- '-12.7300'

FORMAT(' - 12.73') -- '-12.73'

FORMATe '0.000') -- '0'

A further two arguments may be speci fi ed on the FORMAT functi on
to control the use of exponential notation. The full syntax of
the function is. therefore:

FORnAT(numberE, [beforelt, tafterH, [expplt ,exptll ll)

The first three arguments are as described above, and in addi
tion 	~ and expt control the exponent part of the result:
~	sets the number of places to be used for the exponent part.
the default bei ngto use as many as are needed. expt: !leb:! the
trigger point for use of exponential notation. If the numb4l!r of
places needed for the integer or decimal part exceeds ~ or
twice expt respect; vely, then exporiential notati on wi 11 be
used. The default is the current setting of NUMERIC DIGITS. If

REX language definition 68

IB" Internal Use only

o is specified for expt, then exponential notation is always
used unless the exponent would be O. If ~ is not large
enough to contain the exponent, an error is raised. ~ must
be less than 10, but there is no limit on the other numbers. If
o is specified for the ~ field then no exponent will be sup
plied, and the number will be expressed in "simple" form with
added zeros as necessary.

e.g. 	FORMATC'12345.73'",2,2) -- '1.234573E+04'
FORMATC'12345.73'"3,,O) -- '1.235E+4'
FORMAT('1.234573',,3,,0) -- '1.235'
FORMAT('12345.73',.,3,6) -- '12345.73'
FORMAT(' 1234567e5' .. 3.0) -- '123456700000.000'

INDEX(haystack.needleE,startl)

returns the character position of one string in another (same
format as Pl/I - see also the POS function). If the string
needle is not found. then '0' is returned. By default the
search starts at the fi rst character of haystack (start=1) •
This can be overridden by giving a different start point.

e.g. 	INDEX(' abcdef' , 'cd') -- 3

INDEXC'abcdef','xd') -- 0

INDEX('abcdef','bc',3) -- 0

IhDEXC'abcabc','bc',3) ---- 5

INDEX('abcabc','bc',6) -- 0

INSERT(new,target[,[nJ[.Ekl[,padlJl)

inserts the string ~, padded to length k. into the string tar
u1 after the nth character. k and !l must ba zero or positive.
If .!l is greater than the length of the target str; ng, paddi ng is
added there also. The default pad character is the blank. The
default value for !l is 0, which means insert before the begin
ning of the string.

e.g. 	INSERT< ' ','abcdef',3) -- 'abc def'
INSERTC'123','abc',5,6) -- 'abc 123
INSERT('123','abe',S.6,'+') .- 'abe++123+++'
IHSERTC'123','abe'> -- '123abe'
IHSERTC'123','abc',5a.'-') -- '123--abe'

formats blank-delimited words in string, by adding pad charac
ters between words to justify to both margins. i.e. to width.l1
<11 must be zero or positive). The default pad character is a
blank.

The string 1s first normalised as though SPACE(str;ng) had been
executed (i.a. multiple blanks are converted to single blanks,
and leading and trailing blanks are removed). If.l1 is less than
the width of the normalised string, the string is then truncated

REX language definition 69

http:width.l1
http:12345.73

un Internal Use only

on the right and any trailing blank is removed. Extra pad char
acters are then added evenly fl"'om left to right to provide the
required length, and the blanks between words are replaced with
a pad character.

a.g. 	JUSTIFY('The true REX',14) -- 'The true REX'
JUSTIFY('The true REX' ,8) -- 'The true'
JUSTIFY('The true REX' ,9) -- 'The true'
JUSTIFY('The true REX',9,'+') -- 'The++true'

LAST'OS(needle,haystackE,sta~tJ)

returns the position of the last occurrence of one string in
another. (See also POS.) If the string needle is not found,
then '0' is returned. By default the search starts at the last
cliaracter of hay!!tack (Le. start=lENGTH(string» and scans
backwards. This may be overridden by specifying the point at
which, to start the backwards scan.

e.g. 	lASTPOS(' ','abc def ghi') -- 8
lASTPOSC' ';',bcdefghi') -- 0
lASTPOSC' '.'abc def ghi',1) -- 4

LEFT(string,kE,padll

returns a string of length 11 containing the left-most Is, charac
ters of !ltd ng. i.e. padded wi th pad characters (or truncated)
on the right as needed. The default pad 'character is a blank.
11 must be zero or positive. Exactly equivalent to
SUBSTR(string,l,k(,padl).

e.g. 	lEFTC'abc d',S) -- 'abc d '
LEFT('abc d'.8,'.') -- 'abc d ••• '
lEFT(' abc def', 1) --'abc de'

LENGTH(str;ng)

returns the length of string.

e.9. 	lENGTH('abcdefgh') -- 8

lENGTH(") == 0

LINESIZE()

returns the current termi nal 11 ne wi dth <the poi nt at whi eh REX
will 	break lines displayed using the SAY instruction). If this
1S indeterminate, then 0 will be returned.

Note: Under VMI'310 this i 5 the termi nal wi dth as set by the CP
TERM 	 lINESIZE command; 0 implies that the virtual machine is
DISCONNECTed.

REX language definition 70

II" Internal Use only

,~, "AX(numberl,number] •••)

returns the largest number out of the list specified, formatted
according to the current setting of NUMERIC DIGITS. Up to ten
numbers may be speci fi ed, although calls to MAX may be nested if
more are needed.

e.g. 	MAX(12,6,7,9) -- 12
MAX(17.3,19,17.03) -- 19
MAX(-7,-3,-4.l) -- '-3'
MAXCl ,2,3, ~,5,6, 7,8, 9,MAXUO, 11,12,13» -- 13

"IN(numberC,number] •••)

returns the smallest number out of the list specified, format
ted according to the current setting of HUMERIC DIGITS. Up to
ten numbers may be spec; fi ed, although .calls to MIN may be
nested if more are needed.

e.g. 	MIN(12,6,7,9) -- 6
MIN(17.3,19J17.03) -- 17 .03
MIN(-7,-3,-4.;'S) -- '-7'

OVERLAY(new, target[. CnH, tkl[,pad]]])

overlays the string ~, padded to length hI onto the string
ta,.get starti ng at the nth character. 11 must be zero or posi
ti vee If n is greater than the length of the target stri ng,
padd,j n9 is added there al so. The defaul t pad character ; s the
blank, and the default value for n is 1. Jl must be greater than
o.

e.g. 	OVERlAY(, ','abcdef',3) -- 'ab def'
OVERLAY('.','abcdef'.3,2) -- 'abo ef'
OVERLAY('qq','abcd') -- 'qqcd'
OVERlAY('qq','abcd',4) -- 'abcqq'
OVERlAY('123','abc',5,6,v+,) -- 'abc+123+++'

POS(needle,haystack[,start])

returns the position of the first string in the second string.
Sea also the lASTPOS and INDEX functions. If the string needle
is not· found, then '0' is returned. By dafaul t the search
starts at ·the f'l rst character of haystack (i. e. start=1). Thi 5

may be overridden by specifying the point at which to start the
search.

e.g. 	pose' '.'abc def ghi') -- 4
POSC'x','abc def ghi') -- 0
POS(' ','abc def ghi',5) -- 8

REX language definition 71

http:MIN(17.3,19J17.03
http:MAX(17.3,19,17.03

IBM Internal .Use only

QUEUED()

returns the number of lines remalnlng in the system data queue
at the time when the function is invoked.

Under CMS/$P, the number of lines in the program "stack" is
returned. Therefore if QUEUED()=Q then a PULL or PARSE PUll
will read from the'console input buffer and will cause a console
read ("VM READ") if there is no user;nput waiting.

a.g. 	QUEUEDC) -- '5' /tE Perhaps 'A/

RANDoMttminlt,tmaxlt,seedJlJ

returns a pseudo-random non-negative whole number in the range
min to max inclusive. If only one argument is specified then 	 :

the range will be from 0 to-that number. Otherwise the default
values for min and max are 0 and 999 respectively. A specific
seed (which must be a whole number) for the random number may be
~pecified as the third argument if repeatable results are
des1 red. Note, tho~gh, that the generator may di f1er from
implementation to implementation since an entirely satisfactory
algori thm has not yet been di scovered.

The magnitude of the range (i.e. ~ minus min) may not exceed
100000.

e.g. 	Possible results might be::

RANDOMC) = 305

RANDOMCS,8) = 7
RANDOM(,.1982) = 279 /tE always IV

RANDOM(2) = 0

Note: The random number generator 15 global for an entire pro
gram 	 - the current seed ;s not saved across internal routine
calls.

REVERSE(string)

returns string. swapped end for end.

e.g. 	REVERSEC'ABc.')-- '.cBA'

RIGHTtstl"in!hkt,padl)

r.turns a string of length ~ containing the right-most ~charac
ters 0'" ,trot ng. i.e. padded wi th pad characters (01" truncated)
on the left as needed. The default pad character is a blank. k
must be zero or positive.

8.g. 	RIGHTC'abc d'.a) ==' abc d'

RIGHTC·abc def';5) - 'c def'

RIGHTC'12',5,'O') -- '00012'

72REX language definition

IBn Internal Use Only

SIGN(numberJ

returns the sign of number. The number is rounded according to
the current setting of NUMERIC DIGITS. and then its sign (re
presented as '-1', '0', or '1') is returned.

e.g. 	SIGNC'12.3') -- '1'
SIGN(' -~.3q7') -- '-1'
SIGN(O.G) -- '0'

SOURCELINE([nIJ

If 11 is omi tted. returns the line numbar of the f1 nal line in
the source f1 le~

If 11 	 is given, then the nth line in the source file is returned.
!l must be positive and must not exceed the number of the final
line in the source file.

e.g. 	SOURCElIHE() -- 10
SOURCElIHECl) -- ". This is a 10-line program ."

SPACE(string[,tnlt,padl]l

formats the blank-delimited words in string- with 11 pad charac
ters between each word. 11 should be positive, but may be O. to
remove ail spaces. leading and trai 11ng blanks are removed.
The default for .11 is 1. and the defaul t pad character is a
blank.

a.g. 	SPACEC'abc def ') -- 'abc daf'
SPACE(' abc def',3) -- 'abc daf'
SPACE('abc def ' ,1) -- 'abc da1"
SPACE('abc def ',0) -- 'abcdef'
SPACE('abc def '.2,'+') -- 'abc++def'

STRIP(str;ngt.toptionlt.charlJ)

removes leading. Trailing, or Both leading and trailing charac
ters from string when option is 'L'. 'T', or 'B' respectively.
The default is 'B'. The third argument specifies the character
to be removed, with tha default being a blank. If given, tha
third argument must ba axactly one character long.

~

a.g. 	STRIP(' ab c ') -- 'ab c' ,STRlP(' ab c ','L') -- 'ab c ,STRIP(' ab c . ','t') -- ab e'
STRIPC'12.7000',.O) -- '12.1'
STRIPC'OO12.700' •• O) _.. '12.7'

REX language definition 73

II" Internal Use only

SUISTR(string,nt.[kJ[,padlJ)

returns the substring of string which begins at the nth charac
ter, and is of length k. padded with blanks or the specified
character if necessary. If k is omitted it defaults to be the
rest of the string, and the default pad character is a blank.

e.g. 	SU8STR('abc'~2) -- 'bc'
SUBSTR('abc',2,4) -- 'bc
SUBSTR('abc',2,6,'.') -- 'bc•••• '

Nata: In some situations the positional (numeric) patterns of
parsing templates are more convenient for selecting substrings.
especially if more than one substring is to be extracted from a
string.

SUIWORD(string,nE,kJ)

returns the substring of ,tring which starts at the nth word.
and is of length k blank-delimited words. If k is omitted it
defaults to be the remaining words in the string. Tha returned
string will never have leading or trailing blanks. but will
include aU blanks between the selected word!!.

e.g. SUBWORDC'How is the time'.2.2) - 'is the'
SUBWORDC'How is the time' ,3) - 'the time'
SUBWORD('How is the time' ,5) - "

SYttIOL(name)

If ~ is not a valid REX symbol. then 'BAD' is returned. If
it is the name of a vari able (i. e. a symbol whi ch has been
assigned a value) then 'VAR' is returned. Otherwise 'lIT' is
returned. which indicates that it is a symbol which has not yet
been assigned a value (i.e. a Literal).

like symbols appearing normally in REX expressions, lower case
characters in the name will be translated to upper case and sub
stitution in a compound name will occur if possible.

Hate: Hormally name should be specified in quotes (or derived
from an expressi on). to prevent substi tuti on by its value
before it is passed to the function.

e.g. 	/IE following: Drop A.3; J=3 IE/

SYMBOLC'J') -- 'VAR'
SYMBOlCJ) -- 'llT' /* has tested ft3ft IE/

SYMBOl('a. j ,) -- YlIT' /IE has tested "A.3 ft IE/

SYMBOL< ' IE ') -- 'BAD' /* not a valid symbol IE/

REX language definition

-----.- --.~--.-------"'~=~

74

IBM Internal Use Only

/~ 	. TIME([opt;onlJ

by default returns the local time in the 24-hour clock format
'hh:mm:ss' (hours, minutes, and seconds>. e.g. '04:41:37'.

The following options (first letter significant) may be sup
plied to obta.in alternative formats. or to gain access to the
elapsed time calculator.

Long 	 Returns time in the format: hh:mm:ss.uuuuuu (uuuuuu
is the fraction of seconds. in microseconds).

Hours 	 Returns number of Hours since midnight in the format:
hh

Minutes 	 Returns number of Minutes since midnight . in the
format: mmmm

Seconds 	 Returns number of Seconds since midnight in the
format: sssss

Elapsed 	 Returns ~sssssssss.uuuuuu', the number of
seconds.microseconds since the elapsed time clock was
started or reset.

Reset 	 Returns·· , 555555555. UUUUUU' • the number of
second5.microseconds since the elapsed time clock was
started or reset, and also resets the elapsed time
clock to zero.

e.g. 	time('L') -- '16:54:22.123456' .1M Perhaps *.1

timeO -- '16: 54:22'
time('H') -- '16'
time('M') -- , 1014' .1* 54 + 60*16 '1<.1

time('s') -- '60862' .1* 22 + 60*(54+60*16) '1<.1

The elapsed time clock:

The elapsed time clock may be used for measuring real time
intervals. It is not affected by the time-of-day or by date
changes. On the first call to the elapsed time clock, the clock
is started, and both TIME('E') and TIMEC'R'l will return '0'.

The clock is saved across internal routi ne calls, whi ch is to
say that an internal routine will inherit the time clock started
by its caller, but if it should reset the clock any timing being
done by the caller wi 11 not be affected. Should the number of
seconds in the elapsed time exceed nina digits (a little over
31.6 years) then an error will result in the current implementa
tion.

REX language definition

. '-,>--- --- --........~
 ,-~
~-----------------

75

II" Internal Use Only

An example of the elapsed time calculator:
time('E') -- 0 I'M The first call MI'
1'* pause of one second here *1'
time('E') -- 1.002345 1'* or thereabo·uts *1'
1'* pause of one second here *1'
ti me('R') == 2.004690 1'* or thereabouts *1'
1'* pause of one second here *1'
time('R') -- 1. 0.02345 I'M or thereabouts *1'

Nate: See note under DATE about consistency of times within a
single expressi.on. The elapsed time clocki s synchronised to
the other calls to TIME and DATE, 50 multiple calls to the
elapsed time clock in a single expression will always return the
same result. For the same reason, the interval between two
normal TIME/DATE results may be calculated exactly usi ng the
elapsed time clock.

TRACE([setting])

Returns the current setting of TRACEf and optionally may be used
to set a new value: See the TRACE instruction. on page 53, for
full details. Unlike the TRACE instruction, the setting will be
altered even if debug mode is active.

e. g. TRACEO - '?R' I'M maybe MI'
TRACE('Off') - '?R' I'M also sets TRACE OFF MI'
TRACE('?I') - '0' I'M now in debug mode again MI'

TRANSLATE(stringE,[tableo][,[tablei][,padJ]])

Translates characters in a string to be other characters, or may
be used to permute the order of characters ina !ltri ngo If nei
ther translate table is given. then st,.;n9 is simply translated
to upper case. Tablei is the input translate table (the default
is XRAHGE(' 00 'x, 'FF'x» and tableo is the output tabla. The
output table defaults to the null string, and is padded with
blanks (or with the pad character if specified) or truncated as
necessary. The tables may be of any length: the first occur
rence of a character in the input table is the one that is used
if there ara duplicates.

a.g. 	TRAHSlATE('abcdaf') ..- 'ABCDEF'
TRAHSlATEC'abbc','&','b') -- 'a&&c'
TRANSLATE('abcdef','12'6'ec') -- 'ab2dlf'
TRAHSlATE('abcdef','12','abcd'.'.') -- '12 .• af'
TRAHSLATE('4123','abcd','1234') -- 'dabe'

Note: The last example shows how the TRAHSlATE functi on may ~a
used to reorder the characters in a string. In the example any
4-character str;ng could be specified as the second argument
and its last character would be moved to the beginning of the
string.

REX language definition 76

http:expressi.on

IB" Internal Use only

.~ TRUNC(numberE,n]J

returns the integer part of the number, and n decimal places
(default n=O). The number is truncated to n decimal places (or
trai ling zeros are added ; f needed to make up the spec; fi ed
length), Exponential form will not be used.

e.g. TRUHC(12.3), - '12'
TRUHC(127.09782,3) - '121.091'
TRUHC(l21 .1.3) - '127.100'
TRUHCCl27.2) - '127.00'

Nate: The number will be rounded to HUMERIC DIGITS digits if
necessary before be i ng processed by the funct jon.

USERID()

returns the sYstem-defined User Identifier.

Under VM/370 thi!! is the Virtual Machine Userid which is
returned without t~ajling blanks.

e.g. 	USERIDC) == 'ARTHUR' /* Maybe */

VALUE(name)

The value of tha symbol name ; S returned. Like symbols appear
i ng nor.mally ; n REX expressi ons. lower case characters in the
name wi 11 be translated 'to upper case and substi tuti on ina com
pound name will occur if possible. name must be a valid REX
symbol, or an error 15 raised.

e.g. 	/* following: Drop A3; A33=7; J=3; fred='J' M/

VALUEC'fred') -- 'J' /H looks up "fRED" */

VALUECfred) -- '3' /* looks up "J" */

VALUE('a'j) -- 'A3'
VALUE('a'jllj) -- '7'

Note: The VALUE funct ion ; s typi cally used when a var; able con
tains the name of another variable, or a name is constructed
dynamically. It is not useful to wholly specify the ~ as a
quoted str; n9, 5i nee the symbol is then constant and 50 the
whole functi on call could be replaced di rectly by the data
between the quotes. (i.e. "fred=VALUE('j')i" is alway!! identi
cal to the assignment "fred=j;".)

VERIFY(str;ng,referencet,'"atch'lJ

VQri~ies that the string 15 composed onlv of character!! from
ref@rence, by returning the position oT the first character iJ:1
string which 15 not also in reTerence. If all the characters
were found in reference, then 0 is returned. If 'Match' is
specified. the position of the firstpharacter in string which
is in reference is returned. or 0 if none of the characters were

REX language definition 77

IBM Internal Use Only

found.

The reference string must be non-null. The third argument may
be any expression which results in a string starting with 'M' or
'm' .

e:g. 	VERIFYC'123'.'1234567890'> -- 0
VERIFYC'lZ3','1234567890') -- 2
VERIFYC'AB3'.'1234567890','M') -- 3

WORD(string,n)

returns the nth blank-del i mHed word in st,., "g. n must be zero
or positive. If n is 0, or there are less than n words in
string. then the null string is returned. Exactly equivalent to
SUBWORDC stri ng, n.1> •

e.g. 	WORD('How is the time',3) -- 'the'
WORDC'How is the time',5) -- "

WQRDINDEX{str;ng,nl

returns the position of the nth blank-dalimited word 1n string.
n must be zero or positive. If there are not n words in the
string. or n is 0, then 0 is returned.

e.g. 	WORDIHDEXC'How is the time',3) -- 8
WORDIHDEXC'How is the time',6) -- 0

IIORDLEHGTH(str;ng,nJ

returns the length of the nth blank-delimited word in string_ n
must be zero or positive. If there are not n words in the
string. or n is 0, then 0 is returned.

e.g. 	WORDlEHGTH('How is the time'.2) -- 2
WORDlEHGTHC'How comes the time',2) -- 5
WORDlEMGTHC'How is the time'.6) -- 0

WORD$(str;ng)

returns the number o~ blank-delimited words in string.

e.g. 	WORDS('How IS the time') -- 4

WORDS(' ')-- 0

XRAHGE{[start][pend])

returns a string of all one byte codes between and including the
values start and end. start defaults to 'OtPx~ and end defaults
to 'FF'x. If 5tart. is greater than end then the values will
wrap from X'FF' to X'OO'. start and end must be single charac
ters.

REX language definition 78

II" Internal Use Only

..~. e.g. 	XRAHGE('a', 'f') -- 'abcdef'
XRAHGE('03'x.'07'x) -- '0304050607'x
XRAHGE(,'04'x) -- 'OOO1020304'x
XRANGE (, i ' , , j ,) -- 'S9SASBSC8D8E8F9091'x
XRAHGE('FE'x,'02'x) -- 'FEFFOOOI02'x

X2C{hex-string)

Hexadecimal to Character. Converts from hexadecimal to charac
ter (pack), hex-string will be paddad with a leading '0' if
necessary to make an even number of hexadacimal di g;ts. Blanks
may optionally be added in the data to aid readability, and are
ignored.

e.g. 	X2CC'F7F2 A2') '725'
X2C('F7f2a2') '125'
X2C('F') 'OF'x

X2D{hex-stringt,nl)

Hexadecimal to Decimal. Converts hex-~tr;nq (a ~tl"ingof

hexadecimal characte'l"'s) to decimal. If the result cannot be
expressed as a whole number, an error results. i.e. the result
must have no more than NUMERIC DIGITS digits. See also the C2D
function.

If n is not specified, hex-string is taken to be an unsigned
number.

e.g. 	X2DC'OE') ---- 14
X2D('81') -- 129
X2D('F81') -- 3969
X2DC'FF81') -- 65409

If n is specified, the hex-string is then taken to represent a
two's complement number expressed as n hexadecimal characters.
and is converted to a REX whole number which may therefore be
negative.

If necessary, tha hex-string is padded on the left with '0'
characters (note. not "si gn-extended") • or truncated on the
left, to length !1. characters. (i.a. as though
RIGHT(string.n~'O') had been executed.)

a.g. 	X2D('81',2) -- -127
X2D('81',4) -- 129
X2DC'FF81',4) -- -127
X21H 'FrS1' .3) -- -127
X2D(' FF81' ,2) -- -:-127
X2D(' FF81' , 1) -- I

/~
Implementation restriction: Thi s function 15 not yet fully
implemented. At present, string. is limited to eight
characters. and the result 	must be less than 10 digits•. A sec-

REX language defi nit ion 79

./~.

IBH Internal Use only

ond 	argument may not be specified. Please refer to REXDOC level
2.50 for examples.

3.9 INTERACTIVE DEBUGCING OF REX PROGRAMS

REX possesses a debug facH i ty whi ch permi ts i ntaractively controlled
execution of a program.

Changing the TRACE setting to one with a prefix "?" (e.g. "Trace 1AIl"~
or using the TRACE built-in function) turns on the interactive debug mode,
and indicates to the user that debug mode is active. The REX interpreter
will then ignore further TRACE instructions in the program, and will pausa
after nearly all instructions which ara traced at the console (see below
for exceptions). When the interpreter has paused (indicated under VM by a
"VM READ" or unlocking of the keyboard) then three debug actions are
ava; lable: .

1. 	 Entering a null line (no 'blanks aven) will make the interpreter con
tinue eXCilcution until the next pause for debug input. Repeatedly
entering a null line will therefore step from pause point to pause
point. For "TRACE tAll", for example, this is equivalent to
single-stepping through the program.

2. 	 Entering an equal sign ("=") will make the interpreter re-execute the
clause last tracCild. For example: if an IF clause is about to take the
wrong branch, one can change the value of the variable(s) on which it
depends. and then re-executeit.

Once the clause has been re-executed. the interpreter wi 11 pause
again. The equal sign may not have leading or trailing blanks.

;5. 	 Anyth;ng else entered wi 11 be treated as a stri ng of one or more
clauses. which are interpreted immediately. They are executed by the
same mechanism as the INTERPRET instruction, and the same rules apply
(e.g. DO-END constructs must be complete. etc.). If an instruction
has a syntax error in it, a standard message will be displayed and you
wi 11 be prompted for input aga i n - the error wi 11 not be trapped by
SIGNAL ON SYNTAX or cause exit from the program. SimilarlY all the
other conditions are disabled while the string 1s interpreted. to pre=
vent unintentional transfer of control.

During execution of the string, no tracing takas plac•• except that
non-Z8ro return codes from host commands ara di splayed. Host commands
are alway!! executed (i .e. are not affected by the prefix "!" on TRACE
instructions) but the variable "RC" 15 not set.

Once the string has been interpreted. the interpreter pauses again for
fUrther debug input unless a TRACE instruction was entered. Execution
of a TRACE instruction· immediately affects the tracing mode, as usual.
Debug mode will be turned off only if a TRACE instruction uses a "1"
prefix (or is "Trace Off").

REX 	 language definition 80

II" Internal Use Only

The numeric form of the TRACe .instruction may be used to allow
sections of the program to be executed without pause for debug input.
TRACE n, (i .e. positive result) wi 11 allow execution to continue,
with the next "n" pauses being skipped. TRACE -n, <i.e. negative
result) will allow execution to continue without pause and with trac
ing inhibited for "n" clauses that would otherwise be traced. /

The trace action selected by a TRACe Instruction is saved and restored
across subroutine calls: This means that if you are stepping through a
program (say aftar using "TRACE ?Results-) then enter a subroutine in
whi ch you haya no interest, you can anter -TRACE OFF-. Ho further
instructions in the subroutine wi 11 ba traced, but on return to the caller
tracing will be restored.

Similarly, if you are interested only in a subroutine. you can put a . I:

"TRACe ?R" instruction at its start. Having traced the routine, the ori

ginal status of tracing will be restored and hence (if tracing was off on

entry to the subroutine) tracing (and debug mode) will be turned off until

the next entry to the subroutine.

Under eMS tracing may be !!wHched on, wHhout requiring modification to an
Exec. by using the TRACER module (which will turn the system tracing bit
on or off), Tracing may be also turned on asynchronously, (Le.whi Ie an
Exec is running) using the "ts" immediate command. See below on page 115
for the description of these facilities.

Since any instructions may be executed in interac.tiva debug mode one has
cons; derable control over executi on. Some examples:

sayexpr 	 will display the result of evaluating the expression.

name=expr will alter the value of a variable.

Trace Off (or just Trace) wi 11 turn off debug mode and all tracing.

,,Trace ?AII wi 11 turn off debug mode but conti nue tract ng all clauses. 	 . I

Trace L 	 will make the interpreter pause at labels only. This is similar
to the traditional "breakpoint- function, except that you don't
have to know the "exact name and spelling of the labels in the
Exec •

•., exit 	 wi 11 terminate execution of the p.rogram.

Do ;=1 to 10. say stem. i; end; would di splay tan elements of the a,.ray
"Stem.".

REXDUHP 	 (in CMS) will display the values of all variables.

etc. atc •.•

REX language definition .81

18" Internal Use only

Exceptions: Some clauses may not be safely ra-executad, and therefora the
; ntarpratar wi 11 not pause after tham, evan; f thay ara traced. Thasa
arE!:

• 	 Any repatitiva DO clause, on tha second or subsequent time around the
loop.

• 	 All END clausas (not a useful place to pause in any casa).

• All THEN. ELSE. OTHERWISE, or null clauses.

• All RETURHandEXIT clauses •

• 	 All SIGNAL and CALL clauses (the interpreter pauses after the target
label has been traced).

• 	 Any clause that causes a Syntax error. (These may be trapped by SIGNAL
ON SYNTAX, but cannot be re-executed.)

REX 	 language defini tion 82

rB" Inte~nal Use only

3.10 PARSING FOR ARG. PARSE, AND PULL

Three instructions (ARG. PARSE. and PUll) allow a selected string to be
parsed (spli t up) into vari ables. under the control of a template. The
various mechanisms in the template allow a string to be split up by words
(delimited by blanks). or by explicit matching of strings (called
patterns). or by selecting absolute columns - for example to extract data
from particular columns of a record read from a file.

Th1 s sect ion fi rst :gives some i nformalexamples of how the parsi ng tam
plate can be used. then describes in more detail the mechanisms used.

3.10.1 Introduction to pars;n,

The simplest form of parsing template consi sts of a 11 st of variable
names. The data being parsed,is split up into words (characters delimited
by blanks). and each word from the data is ass1 gned to a vari able in
seqUence. The final variable is treated specially in that it will be
assigned whatever is left of the original data and may therefore contain
several words.

Parse value 'This is a sentence.' with vI v2 v3

In this example, VI would get the value "This". V2 would get the value
"is". and V3 would get "a sentence.".

leadi ng blanks are removed from each word in the stri ng before it is
assigned to a variable. as is the blank that delimits the end of the word.
Thus variables set in this manner (VI and V2 in the example) will never
have leading or trailing blanks. though V3 could have both leading and
trailing blanks. In addition, if PARSE UPPER (or the ARG or PUll instruc
tion) 15 used. the whole string is translated into upper case before pars
ing begins.

Hate that all variables mentioned in a template are always given a new
value and so if there are fewer words in the data than variables in the
template then the unused variables will be set to null.

A string may be used in a template to split up the data:

Parse value 'To be. or not to be!' with wI '.' w2

would cause the data to be scanned for the comma, and then split at that
point: thus WI would be set to "To be", and W2 is set to " or not to be!"~
Hate that the pattern itsel~ (and only the pattern) is removed from the
data. In fact each section is treated in just the' same way as the whole
!itringwas in the previous example, and so either section may be split up
into words. Thus. in:

REX language definition

• --.,--;:,,_._""" ____. __ .'--:._'.:"_.. -'-. ,~'- ______ ,a__'_,,'~,_"""'. -~'.:~

83

IIH Internal Use only

Parse value 'To be, or not to be?' with wi '.' w2 w3 w4

W2 and W3 get the values "or" and "not", and W4 would get the remainder:
"to be?". If UPPER was specified on the instruction, then all the vari
ables would be translated to upper case.

If the data in these examples did not contain a comma, then the pattern
would effectively "match" the end of the string, 50 the variable to the
left of the pattern would get the entire input string, and the variables
to the right would be set to null.

The string may be specified as a variable, by putting the variable name in
parenthes.s. Tha following i nstructi ons thorefore have the sama effect as
tha last example:

comma=','
Parse value 'To be, or not to be?' with wI (comma) w2 w3 w4

The third type of parsing machan;sm is the numeric pattern. This works in
the same way as the string pattern except that it specifies a column num,
berG So:

Parse value 'Flying pigs have wings' with xl 5 x2

would split the data at column 5~ so Xl would be "Flyi" and X2 would start
at column 5 and so be "ng pigs have wings".

More than one pattern is allowed, so for example:

Parsa value r Flyi.ng pi 9S have wi ngs r wi th xl 5 x2 10 x3

would split tho data at columns 5 and 10, so X2 would be "ng pi" and X3
would be "g5 have wings".

The numbers can be relati ve to the last numbar usad, 50

Parsa value 'Flying pigs hava wings' with xl 5 x2 +5 x3

would have exactly the same effect as the last example: here the "+5" may
be thought of as specifying tha length of the data to be assigned to X2.

String patterns and numeric patterns can be mixed (in affect the beginning0" a string pattarn just ,pacifies a variable column number) and some very
powerful thi ngs can be done wi th templates. The next sect ion descr i bes in
more detail how the various mechanisms interact.

Finally~ it is possible to parse more than one string. For example. an
internal function may have more than ona argument string. To get at each
string in turn. you just put a comma in the parsing template. so (fo~

example) if the invocation of the function "FRED" was:

fred('This is the first string'#2)

REX language definition 84

.~.

IBM Internal Use Only

then then instruction

ARG·first, second

would put the string 'This is the first string' into the variable
"FIRST", and the string '2' into the variable "SECOND". Between the com
mas you can put a normal template with patterns etc., to do more complex
parsing on each of the argument strings.

3.10.2 pars;n, def;n;t;on

This section describes the rules which govern parsing.

In its most general form, a template consists of alternating pattern spec
ifications and variable names. The pattern specifications and variable
names are used strictly in sequence from left to right, and are used once
only. In practice, various simpler forms are used in which either vari
able names or patterns may 'be omi tted: we can therefore have vari able
names wi thout patterns in betwilen, and patterns without i nterven i ng var;
able names.

In general, the value assigned to a variable is that sequence of charac
ters in the input string between the point which is matched by the pattern
on its left and the po i ntwhi ch is matched by the pattern on its ri ght.

If the first item in a template is a variable, then there is an implicit
pattern on the left which matches the start of the string, and similarly
if the last item in a template is a variable then there is an implicit pat
tern on the right that matches the end of the string. Hence the simplest
tew-plate consists of a single variable name which in this case is assigned
the entire input string.

The same restrictions apply to the names of variables changed by use in a
parsing template as to those used as the target of assignments (see page
21 >.

The constructs which may appear as patterns fall into two categories, pat
terns which act by searching for a matching string (literal and variable
patterns), and numeric patterns which specify an position in the data (po
sitional and relative patterns).

For the followi ng examples, assume that the followi ng st,., ng is bei ng
parsed (note that all blanks are significant):

'Th;s is the data which. I think, is scanned.'

REX language definition 85

II" Internal Use only

3.10.2.1 Parsing with literal patterns

literal patterns cause scanni ng of the input data stri ng to fi nd a
sequence which matches the value of the literal. Literals are expressed
as a quoted string.

The template:

w1 ',' w2 ',' rest

whan parsing the example string, results in:

"WI" has the value "This is the data which"
"W2" has the value " I think"
"REST" has the value" ;s scanned."

Here the stri ng is parsed usi ng a template which asks that each of the
variables receive a value corresponding to a portion of the original
string between commas; the commas are given as quoted strings. Hote that
the patterns themselves are rem~ved from the data being parsed.

A different parse would resul t wi th the template:

wI v,, w2 ',' w3 ',' rest

which would result in:

"WI" has the value "This is the data which"
"W2" has the value" I think"
"W3" has the value" 15 scanned."
"REST" has the value"" (null)

This illustrates an important rule. When a match for a pattern cannot be
found in the input string, it instead "matches" the end of the string.
Thus, no match was found for the third ,,, in the template, and and so W3
was assigned the rest of the string. REST was assigned a null value
because the pattern on its left had already reached the end of the string.

Hote that s1l variables which appear in a template ara assigned a new val
ue.

If a variable is followed by another variable, a special action is taken.
Thi 5 i 5 similar to there bel ng the pattern ' , (a si ngle blank) between
them, except that leading blanks at the current position in the input data
are skipped over before the search for the new blank takas place. Thi 5

means that the value assigned to the left-hand variable will be the next
word in the 5tring~ and will have neither leading nor trailing blanks.

Thus the template:

w1 w2 w3 rest ','

REX language definition 86

---------------------------------- ---~

IBM Internal Use Only

would result in:

"WI" has the value "This'

"W2" has the value "is"

"W3" has the value "the"

"REST" has the value "data which"

Note that the fi nal variable. (REST in thj 5 example) could have had both
leading blanks and trailing blanks. since only the blank that delimits the
prev i ous word is removed from the data.

Also observe that thi s example is not the sam. as spec; fyi ng expl i ci t
blanks as patterns. as the template:

wI ' , w2 ' , w3 ' , rest 't'

would;n fact result in:

"W1" has the value "This'

"W2" has the value "is"

"W3" has the value ""

"REST" has the value "the data which"

since the third pattern would match the third blank in the data.

In general then, when a varhble is followed by another vari able, parsing
i~ of the input by token i sat ion into words is i mpl i ed.

3.10.2.2 Use of the period as a placeholder

The symbol consisting of a single period acts as a placeholder in a tem
plate. It has exactly the same! effect as a variable name, except that no
variable is set. It is especially useful as a "dummy variable" in a list
of variables or to collect unwanted information at the end of a string.
Thus the template:

word4 .

would extract the fourth word (' data') from the stri ng and place it in the
variable WORD4.

3.10.2.3 parsing Nith positional patterns

Positional patterns may be used to cause the parsing to occur on the basi 5

of position within the string, rather than on it~ contents. They take the
form of signed or unsigned whole numbers. and may cause the matching oper-

REX language definition 87

IS" Internal Use Only

ation to "back up" to an earlier position in the data string. The latter
cannot occur except when 1'051 ti onal patterns are used.

Unsigned numbers in a template refer to a particular character column in
the input. For example, the template

51 10 s2 20 53

results in

"51" has the value "This is "
"52".has the value "the data w"
"53" has the value "hich. I' think, is scanned."

Here 51 is assigned characters from input through the ninth character, and
52 receives input characters 10 through 19. A5 usual the final variable,
53, is assigned the remainder of the input.

Signed numbers may be used as patterns to indicate movement relative to
the character posi ti on at whi ch' the prev; ous pattern match occurred.

If a signed number is specified. then the position used for the next match
is calculated by addi ng (or subtracti ng) the number given to the last
matched position. The la!lt- matched position i!I the position of the first
character of the last match, whether specified numericallY or by a string.
For example, the instructions:

a = '123456789'
parsa var a :5 wi +3 w2 :5 w3

result in

"WI" has the value "345"
"WZ" has the value "6789"
"W3" has the value "3456789"

The +3 in this case is equivalent to the absolute number 6 in the same
position. and indeed may be considered as specifying the length of the
data to be assi gned to the vari able WI.

This example also illustrates the effects 0" a pattern which implies move
ment to a character position to the left of, Or to, the point at which
matching has already occurred. The variable on the left is assigned char
acters through the and of the input, and the variable on the right is. as
usual, assigned characters starting at the position dictated by the pat~
tern.

A useful effect of this is that multiple assignments can be made:

parse va,. x 1 wl 1 w2 1 w3

REX language definition 88

~.-
, \

IBM Internal Use only

.~ 	 results in assigning the (entire) value of X to W1, W2, and W3. (The first
"1" here could be omitted as it is effectively the same as the implicit
starting pattern described at the beginning of this section.)

If a positional pattern specifies a column which is greater than the
length of the data, it is equivalent to specifying the end 0'1 the data
(i.e. no padding takes place)~ Similarly, if a pattern specifies a column
to the left of the first column of the data. this is not an error but
instead 15 taken to specify the first column of the data.

Any pattern mat'ch sets. the "last posit; on" ; n a string to whi ch a relative
positional pattern can refer. The "last position" set by a literal pat
tern ;s the position at which the match occurred, i.e. the position in the
data of the first character in the pattern. Thus the template:

',' 	-1 x +1

Wi 11:

1. 	 Find the first comma in the input (or the end of the string if there is
no comma).

2. 	 Back up one position.

3. Assign one character (the character immediately preceding the comma
/~ or end of stri ng) to the vari able X.

A possible application of this is looking for abbreviations in a string.
Thus the instruction:

/)f Ensure options have leading blank and are uppercase)f/

parse upper value' ·opts with' PR' +1 prword • ,

will set the variable PRWORD to the first word in OPTS which starts with
"PR" or will set it to null if no such word exists. Note that +0 is a val
id trigger.

Note: If a number in a template is preceded by a "+" or a "-", this is tak
en to be a signed positional pattern. There may be blanks between the
sign and the numbar, since REX initial scanning removes blanks adjacent to
special characters.

3.10.2.4 ParSing with variable patterns

It is sometimes desirable to be able to specify a matching pattern by'
using a variable instead of a literal string. This may be achieved by
placing the name of the variable to be used as the pattern i'n parentheses.
The variable may be ona which has been set earlier in the parsing process.
50 for example:

REX 	 language definition 89

IBn Internal use only

input="l/look for/I 10"

parse var input verb 2 delim +1 string (delim) rest

wi 11 set:

verb
delim
string
rest

3.. 10.2~S

-- 'l'-- '/'
-- 'look for'
-- 'I 10'

parsing multiple strings

A parsing template can parse multiple strings. This is effected by using
the special character "," (comma) in the template - each comma is an
instruction to the parser to move on to the next string. For each string a
normal template (with patterns etc.) may be specified. The only time mul
tiple strings are available is in the ARG (or PARSE ARO) instruction: When
an internal function or subroutine is invoked it may have several argument
strings. and a comma is used to 'access eaeh in turn. Thus the tem~late:

word! string!, string2. num

would put the first word of the first argument string into "WORD1", the
rest of that string into "STRING1", and the next two strings into
"STRING2" and "HUM". If insufficent strings were specified ;n the invoca
tion. unused variables are set to null, as usual.

, I

~

REX language definition 90

I

II" Internal Use only

3.11 NUMERICS AND REXARtTHMETIC

REX arithmetic attempts to carry ou·t the usual operations <addition, sub
traction, multipli~ation, and division) in as "natural" a way as possible.
What this really means is the rules followed are those which are conven
tionally taught in schools and colleges.

During the design of these facilities. however, it was found that unfortu
nately the rules used vary considerably <indeed much more than generally
appreciated) from person to person and from application to application and
in ways which are not always predictable. The REX arithmetic described
here is therefore a compromise which (although not the simplest) should
provide acceptable results in most applications.

3.11.1 Introduction

Numbers can be expressed in REX very flexibly <leading and trailing blanks
are permi tted, exponential notati on may be used) and follow the conven
tional rulas. Some valid numbers are:

12 /JE an integer. If.!

-76 /JE signed integer JE.I

12.76 /JE decimal places 	 JE/ , ,+ 0.003 /JE blanks around the sign etc JE/

17. 	 /JE same as "17" JE/

.S /* same as "0.5" JE/

4E9 	 /JE exponential notation IV

0.73e-7 /JE exponential notation JE/

(Exponential notation means that the number includes a power of ten fol
lowing an "E" which indicates how the decimal point should be shifted.
Thus 4E9 above is just a short way of writing 4000000000. and 0.73e-7 is
short for 0.000000073.)

The Arithmetic operators include addition C"+"l. subtraction ("-"), mul
tiplication ("JE"), exponentiation ("JE*"), and division (".I"). In addi
tion there are two further division operators: integer divide .("%") which
divides and returns the integer part. and remainder ("//") which divides
and returns the rema i nder;

When two numbers are combined by an operation, REX uses a set of rules to
define what the result should be~ and how the result is to be represented
as a character string. These rules are defined in the next section. but
briefly:

• 	 A number will be displayed with up to some maximum number of signif
icant digits (the default is 9, but this.may be altered with the
NUMERIC instruction to give whatever accuracy you need). Thus if a

REX 	 language definition 91

IBn Internal Use only

result requires more than 9 digits it would normally be rounded to 9
digits. For example# the division of 2 by 3 would result in
0.666666667 Cit would require an infinite number of digits for perfect
accuracy) .

• 	 Except for division and exponentiation~ trailing zeros are preserved
(this is in contrast to most popular calculators which remove all
trailing zeros). So, for,example:

2.40 + 1 => 3.40
2.40 ... 2 => O~ltO

2.5 	Jf 2 => 5.0

This behaviour is desirable for most calculations (especially finan
cial calculations).

If necessary, trail jng zeros may be easily removed wi th the STRIP
function (see page 73), or by division by 1.

• 	 A zero result is always e>,Cpressed as the single digit '0'.

• 	 Exponenti a1 form is used for a result deptmdi ng on the setti n9 of
HUMERIC DIGITS (.the default is 9): If the number of places needed
before the decimal point exceeds DIGITS, or the number of places after
the point exceeds twice DIGITS, then the number will be expressed in
exponential notation:

186 Jf le6 => lE+12

/Jf not 1000000000000 Jf/

I / 3EIO => 3.33333333E-l1

/M not 0.0000000000333333333 M/

3.11.2 Definition

This definition should unambiguously describe the arithmetic facilities
of the REX language.

Numbers

A number in REX is a character string which ineludes ona Gr more
decimal digits_ with an optional decimal point. The decimal
po i nt may be embedded 1n the number P Gr may be preft xed or suf
fixed to it. The group of digits Cand optional point) thus con
structed may have leading OIl' trailing blanks. and an optiGnal
sign ("+" or "-") which must come befora any digits or decimal,
poi nt. Thus:

REX 	 language definiti on 92

X8" Internal Use Only

sign : : = + I
digit : : = 0111213141516171819
digits : : = digit [digitsl •••
numeric : : = digits. [digits]

L] dig; ts
number : : = [blank]. •• [si gn [blank]. •• 1 numeric [blank]. ••

Note that a single.period alone is not a valid number.

Precision

Th. maximum number of significant digits that can result from an
operati on is controlled by the language i nstructi on:

NUMERIC DIGITS [expression]

The expressi on is evaluated and should result ina post ti ve
whole number. This defines the precision (number of signif
icant digits) to which calculations will be carried out:
results will be rounded to that precision.

If no expression 15" specified, then t"e default preC1510n 15
used. The default precision is 9, i.e. all implementations must
support at least nine digits of precision. An implementation
dependent maximum (larger than 9) may apply: an attempt to
exceed thi 5 should cause executi on to termi nate wi th an error
message. Thus if an algori thm is defi ned to use a gi ven number
of digits then if the NUMERIC DIGITS instruction succeeds then
the computation will proceed and produce identical results to
any other implementation.

Arithmetic operators·

The four basic operators "+", "_", "JE", and "/ft (add, subtract.
multiply~ and divide) prodUCe results that are rounded if nec
essary to the precision specified by the NUMERIC DIGITS
instruction.

Every operation is carried out in such a way that no errors will
be introduced except during the final rounding to the specified
significance for the result. (i.e. input data is first trun
cated to the appropriate significance (DIGITS+!) before being
used in the computation, and then divisions and multiplications
are carried out to double that preci 5i on, as needed.)

Rounding is done in the "traditional" manner, in that the guard
di gi tis i nspacted and values of 5 through 9 ar. rounded up, and
values of 0 through 4 are rounded down. Even/odd roundi ng would
require the ability to calculate to arbitrary precisi~n at all
times and is therefore not the mechanism defined for REX.

A conventional zero is supplied previous to a decimal point if
otherwi se th.re would be no di gl t precedi ng it. Sign i f1 cant
trailing zeros are retained for addition. subtraction, and mul-

REX language definition 93

4 __ j_

IBn Internal Use only

tiplication. according to the rules given below. except that a
result of zero is always expressed as the single digit '0'. For
division. trailing zeros are removed after rounding.

The FORMAT built-in function is supplied (see page 68) to allow
a number to be represented in a particular format if the stand
ard result provided by REX does not meet requirements.

The precise rules for the operations are described below. but
the following examples illustrate the main implications of the
rules:

ric With: Numeric digits 5 JV

12+7.00 -- 19.00

1.3-1. 07 -- 0.23

1.3-2.01 -- -0.11

1.20*3 -- 3.60

7*3 -- 21

0.9*0.8 -- 0.72

113 -- 0.33333

2/3 -- 0.,66667

5/2 -- 2.5

1/10 -- 0.1
12/12 -- I
8.0/2 -- 4

Exponentiation ("*M"), integer divide ("""), and remainder
("//") operators are also defined:

The "**" (exponentiation) operator raises a number to a whole
power, which may be positive or negative. If negative, the
absolute value of the power is used. and then the result is
inverted (divided into 1). For calculating the result. the num
ber is effectively multiplied by itself for the number of times
expressed by the power, and finally trailing zeros are removed
(as though the result were divided by one), In practice (see
note below for rationale), the result is calculated by the proc
ess of left-to-right binary reduction. For "x**n": "n" is con
verted to binary, and a temporary accumulator is set to '1'. If
"n" = 0 then the calculation is complete. Otherwise each bit
(starting at the first non-zero bit) is inspected from left to
right. If the current bit is '1' then the accumulator is multi
plied by "x". If all bits have now been inspected then the cal
culation 1-5 complete, otherwise the accumulator is squared and
the next bit is inspected for multiplication. When the calcu
lation is complete~ the temporary result is ready for division
by or into 1 to provide the final answer. The multiplications
and division are done under the normal REX arithmetic combina
tion rules. detailed below.

The """ (i nteger di v i de) operator di v i des two numbers and
returns the integer part of the result, which will be unrounded
unless the integer has more digits than the current DIGITS set
ting. The result returned 15 defined to be that which would

REX language definition 94

http:1.3-2.01

II" Internal Use Only

resu~:t:.f"'om repeatedly subtracting the divisor from the divi
dend ~hile the dividend is larger than the divisor. During this
subtraction, the absolute values of both the dividend and the
divisor are used: the sign of the final result is the same as
that which would result if normal division were used. Note that
this operator may not give the same result as truncating normal
division (which could be affected by rounding).

The "//" (remainder) operator will return the remainder from
integer division, and is defined such that:

a//b == a-(a~b).b
Thus:

/IE Again with: Numeric digits 5 *.1

2**3 -- 8

2lUE-3 -- 0.125

1. 7MM8 -- 69.758

2~3 -- 0

2.1//3 -- 2.1

1O~3 -- 3 '

10//3 -- I

-10//3 ---- -I

10.2//1 -- 0.2

10//0.3 -_ .. 0.1

Note: A particular algorithm for calculating exponentiation is
described, since it is efficient (though not optimal) and con
siderably reduces the number 01 actual multiplications per
formed. It therefor. gives better performance and can give
higher accuracy than the simpler dafinition 01 repeated multi
plication. Since results may di1far from those of rapaated mul
tiplication, the algorithm must be defined here so that
diffarant implamentations will give idantical results for the
same operation on the same values.

ArHhmetic comb;nation rules

The rules for combination of two numbers by the four basic oper
ators are as follows. All numbers have insignificant leading
zeros ramovad before being used in computation.

Addition and subtraction

The numbers are extended on the right and left as necessary
and then added or subtracted as appropriate.

e.g: xxx.xxx + yy.yyyyy

becomes: xxx.xxxOO
+ Oyy~yyyyy

zzz.zzzzz

REX language definition 95

IB" Internal Use only

The result is then rounded to DIGITS digits if necessary,
,~.

and then any insignificant leading zeros are removed.

Multi pI icati en

The numbers are multiplied together ("long multiplication")
resulting in a number which may be as long 8S the sum of the
lengths of the two operands.

e.g: xxx.xxx * yy.yyyyy

becomes: zzzzz.zzzzzzzz

and the result is then rounded to DIGITS digits.

Div;sion

For the division:

yyy / xxxxx

the following steps are taken: First the number "yyy" is
extended to be at least as long as the number "xxxxx" (with
note bei ng taken of the change in the power of ten that thi s
implies). Thus in this example, "yyy" becomes "yyyOO".
Traditional long division then takes place, which might be
written:

zzzz

xxxxx) yyyOO . I
t

The length of the result ("zzzz") is such that ther; ghtmost
"zIt wi lIbe at least as far r1 ght as the r1 ghtmost digit of
the (extended) "v" number in the example. During the divi
sion. the "v" number will be extended further as necessary,
and the "z" number may increase up to DIGITS+l digits. at
which point the division stops and the result is rounded.
Following completion of the division (and rounding if nec
essary), insignificant trailing zeros are removed.

Nota: In the above examples, the position of the decimal point
is arbi trary. In fact the operati ons may be carr; ad out as
integer operations with the exponent being calculated and
applied after. Therefore none of the op.rat10ns are in any way
dependent on the position of the decimal point and hence results
ara completely independent of the number of decimal places.

compa~isan operators

The same comparati ve operators are supported as. for character
strings (saa page 17), Numeric comparison 15 effected by sub
tracting the two numbers (calculating .the difference) and then
comparing the result with '0'. i.e. the operation

REX language definiti on 96

11" Internal Use Only

A ? B

where "1" ;s any comparison operator. ;s identical to:

(A - B) ? '0'

It is therefore the difference between two numbers. when sub
tracted under REX subtracti on rules, that determi nes thei r
equality.

Compar, son of two numbers i:5 affected by a quanti ty called
"fuzz", whi ch is set by the instruct ion:

NUMERIC FUZZ [expression]

Here the expression must result in a whole number which is zero
or positive. This FUZZ number controls the amount by which two
numbers may differ before being considered equal for the pur
pose of compar, son. The default is O.

The effect of FUZZ ,is to temporarily reduce the value of DIGITS
by the FUZZ value for each comparison operation. ; .e. the num
bers are subtracted under a prec; si on of DIGITS-FUZZ di gi ts
dur; ng the compari son. Clearly FUZZ must be less than DIGITS.

Thus if DIGITS = 9, and FUZZ = 1, then the comparhon wi 11 be
carried out to 8 significant digits, just as though "NUMERIC
DIGITS 8" had been put in effect for the durat; on of the opera
tion. Example:

Numeric digits 5
Numeric fuzz 0
say 4.9999 .1M would type 0 Mi'= 5
say 4.9999 < 5 .1M would type 1 M.I

Numeric fuzz 1
say 4.9999 = 5 .1M would type 1 *.1

say 4.9999 < 5 .1M would type 0 M.I

An implementation dependent maximum value for FUZZ (which could
be 0) may apply: an attempt to exceed this should cause exe
cution to terminate with an error message. Thus if an algorithm
is defi ned to requi re II non-zero value of FUZZ then if the
NUMERIC FUZZ i nstructi on succeeds then the computati on wi 11
proceed and produce identical results to any other implementa
tion.

Exponential notation

.
The description above decr-ibes "pure" numbers, in the sense
that the character stri ngs whi ch dascri be numbers can be very
long. e.g.

REX language definition

-------------_._---._-----_.

97

18" Internal Use Only

say 100000toooO * 10000000000

/* would type: 100000000000000000000 */

say .00000000001 * .00000000001

/* would type: 0.000000000000000000001 M/

For both large and small numbers some form of exponential nota
tion 1S useful, both to make numbers more readable, and to
reduce execution time storage requirements. In addition. expo
nential notation is used whenever the "simple" form would give
misleading information. For example

numeric digits 5
say 54321*54321

would type w29S0800000" jf long form were to be used. This is
clearly mi slead; ng, and so REX would express the result as
"2.9S0SE+9".

The definition of "numbers" (see above) 'is therefore extended
as follows:

numeric ::= 	 digits. [digits]
t. J di gi ts
numeric E [sign] digits

where the integer following the "E" represents a power of ten
that is to be applied to the number; and the "E" may be in upper
or lower case. e.g.

12E11 = 1200000000000
12E-S = 0.00012
-1284 = -120000

The above numbers are valid for input data at all times. The
results of calculations will be returned in exponential form
depending on the setting of DIGITS. If the number of places
needed before the decimal point exceeds DIGITS, or the number of
places after the point exceeds twice DIGITS. then exponential
form wi 11 be used. The exponenti al form generatec;f by REX always
has a sign following the "E" in order to improve readability.
An exponential part of "E+O" will never be generated •

. Numbers may be explicitly converted to exponential form. or
forced to be displayed in "long" form. by using the FORMAT
built-in function, see page 68.

The user may control whether Scientific or Engineering notation
i::5 to be used by uSl ng the i n5tructi on:

NUMERIC FORM 	 SCIENTIFIC
ENGINEERING

REX language definition 98

II" Internal Use only

The default setting of FORM is SCIEHTIFIC.

Scientific notation adjusts the powe~ of ten so the~e is a sin
gle non-ze~o digit to the left of the decimal point. Engineer
ing notation causes powers of ten to always be expressed as a
mul t i pIe of 3: the i nteger pa~t may the~efore range f~om 1
through 999.

Humeric form scientific

say 123.45 * 1el1

I'M would typal 1.2345E+13· *1'

. Humeric form engineering

say 123.45 * 1811

/* would type: 12.345E+12 *1'

".

Numer;c information

The current setti ngs of the HUMERIC opti ons may be found by
using the NUMERIC option of the PARSE instruction:

. ,
PARSE NUMERIC n:emplatel

thi s wi 11 pa~se the cu~rent setti ngs of the numeric parameters,
in the order: Digits, Fuzz. Form. e.g. if the defaults applied.
then thi 5 would cause the st,-; ng

'9 0 SCIENTIFIC'

toba parsed.

Hote: like all informational PARSE options, new options may be
addcad to the string at a later data.

Use of numbers by REX

Whenever REX uses a charaeter stri ng as a number (for example as
an argument to a built-in function, or the expressions on a DO
clause) then ~oundi ng may occur acco~di ng to the setti ng of
NUMERIC DIGITS.

Implementation independence

The REX arithmetic rules are defined in detail. 50 that when a
given program is run the results of all computations are defined
sufficiently that the same answer will result for All implemen
tations. Vagaries of underlying mach;naarchitecturas cannot
affect the results achieved.

This contrasts with other languages. such as APl and most com
piled languages, whe~e the result obtained may depend on the'
i mplementat ion - as the preci si on of the internal represen
tat i on is i mpl ementat ion dafi ned rather than language defi n'ed.
REX avoi ds thi 9 problem.

REX language definition 99

IBH Internal Use Only

Errars

Various types of errors may occur in computation:

• Overflow.tUnderflow

This error will occur if the exponential part of a result
exceeds the range that may be handled by the 1nterpreter.
The language defines a minimum capability for the exponen
tial part. namely the largest number that can be expressed
as an exact intQgar ,1 n default prQcl S1 on. Thus si nce thea
dafaul t preci sion is 9, then i mp!ementati on!! must support
exponents at least as large as 999999999.

Since this allows for (very) large exponents. an implemen"
tation maV treat overflow or underflow as a terminating
"syntax" error.

• Storage exception

Storage is needed for calculations and intermediate
resul ts, and on 'occasion an ari thmati c operati on may fail
due to lack of storage. This is considered a terminating
error as usual. rather than an ari thmet i cal error.

REX language definition

- -----'---:;...::-=-=--_,'_-'_---_-'_-_---___----.e:-:::..-..::.--,=-:::..c-~--'"'---_-_--_-___.-.- -.- •.

100

11" Internal use only

.....
3.12 VARIABLES AND COMPOUND SYMBOLS (ARRAY HANDLING)

A symbol which has been given a new value (by an assignment, or a PUll,
ARG, or PARSE instruction) is called a Variable. The value of a symbol is
either the string assigned to it (if a variable) or its derived name. The
derived name of a simple symbol is the upper case form of the symbol, as
described earlier.

A symbol which does not start with a digit (0-9) or a period. yet includes
at least one peri od. is compound: Thi s means that its nama may i nelude,
tha valug of one or more other symbols.

The derived name of a compound variable of the form:

SO.S1.52. --- .sn

i 5 then" gi van by:

dO.vI.v2. --- .vn
,

where dO is the uppe,r caseforlq of the symbol sO, and vI to vn are the val
ues of the simple symbols 51 to sn. Any of the symbols sl-sn and values
vI-vn may be null.

Compound symbols may therefore be used to set UP arrays and lists of Yari
abIes. in which the subscript is not necessarily numeric. and thus offer
great scope for the creative programmer. A useful application is to sat
up an array in whi ch the 5ubscri pts are taken from the value of one or more
vari abIes. 50 effect; ng a form of associati ve memory ("content
addressable").

Some examples follow in the form of a small extract from a fictitious REX
exec:

a=3 /M assigns '3' to the variable with name 'A' ~u

b=4 /lE '4 ' to var named 'B' ~E/

c='Fred' /lE 'Fred' to var named 'e' lE/

a.b='Fred' /lE 'Fred' to var named 'A.4' lE/

a.fred=5 /lE '5' to var named 'A.FRED' lE/

a.c='Bill' /'A 'Bill' to var named 'A.Fred' lE/

c.c=a.fred /'A '5' to var named 'C. Fred' lE/

x.a.b='Annie' /lE 'Annie' to var named 'X.3.ft' 'A/

!.

say abc a.a a.b a,c c.a a.fred x.a.4 ?a

/'A will type the string:
/'A '3 4 Fred A.3 Fred Bill C.3 S Annie ?3'

For certain operations (DROP and PROCEDURE EXPOSE), a whola collection of
variables which share a common stem may be referenced by specifying the
stem alona. The stem is that part of the name up to and-including the

.~ f1 rst pari ode

REX language definition 101

http:dO.vI.v2
http:SO.S1.52

11" Internal Use Only

Implementation maximum: The length of a vari able name, after
substitution. may not exceed 250 characters.

3.13 RESERVED KEYWORDS AND LANGUAGE EXTENDABlury

The free syntax of REX implies that some symbols are reserved for use by
the interpreter in certain contexts.

Within particular instructions# some symbols may be reserved to separate
the parts of the instruction: for example the WHILE in a DO instruction.
or the THEN (which acts as a clause terminator in this case) following an
IF or WHEN clause.

Only no.n-compound symbols that are the fi rst in a clause and that are not
followed by an "=" or ":" are chacked to see if they are instruction
keywords: the symbols may be freely used elsewhere in clauses without
be; ng taken to be keywords.

Therefore keywords can only adversely affect the user if it is desired to
execute a host command or subcommand with the same name (e.g. "QUEUE") as
a REX keyword.

Thi sis potent i ally a problem for any programmer whose REX programs mi ght
be usad for some time and in circumstances outside his or her control, and
who wishes to make the programs absolutely "watertight".

In this case a REX program may be written with (at least) the first words
in command lines enclosed in quotas.

e.g: 'ERASE' Fn Ft Fm

This also has an advantage in that it is more efficient; and with this
style. the SIGNAL ON NOVALUE condition may be used to check the integrity
of an Exec.

An alternative strategy is to precede such command strings with two adja
cent quotes. which will have the effect of concatenating the null string
on to the front.

e.g: "Erase Fn Ft Fm

A third but more ugly option 15 to enclose the entire expression (or the
first symbol) in parentheses.

e.g: (Erase Fn Ft Fm)

Importantly, the choice of stratagy (if it is to be dona at all) 15 a par:
sona! one by the programmer, and is not imposed by the REX language.

The poss; bi Ii ty of i denti fyi ng all REX keywords by start1 ng them w;th a

REX language definition

---.- --.- -......-.-~-.-.

102

11" Internal Use only

.~ uni que character (e. g. ". WI) was mo.st seri ously consi dered, however thi s:

• 	 does not solve the problem should one in the future be allowed com
mands starting with that same letter (for example, SCRIPT commands
begin with a period).

• 	 destroys the natural look of the language which was one of the prime
reasons for its inception.

In addi ti on to thi s, it was felt that the problem is much less severe than
that of changes to the host commands invoked by the program: these ara
often far less controlled and may aven have totally different affects in
different locations and environments. (This problem is eased by REX's
pol i cy of standard external functi ons starti ng wi th ftRX" - these at least
MAY have some integrity).

3.1~ SPECIAL VARIAILES

There are three Special Variables which may be set automatically by the
REX interpreter:

"RC" 	 thi sis set to the re~urn code from any executed host command
(or subcommand).: Following the SIGNAL events SYNTAX and ERROR,
it is set to the code appropriate to the event, i.e. the syntax
error number (1-49) or the Command return code. "RC" is
unchanged following a NOVAlUE or HALT ev~nt.

Note: Host commands executed manually from. debug mode do not
cause the value of RC to change.

"RESULT" 	 thi sis set by a RETURN i nstructi on ina subrouti ne that has
been CALted if the RETURN instruction specifies an expression.
If the RETURN instruction has no expression on it then "RESULT"
1S dropped (becomes uninitialised).

"SIGL" 	 contains the line number of the last instruction that caused a
jump to a label (i.e. a SIGNAL. CALL. internal function invoca
tion, or trapped error condition).

None of these variables has an initial value. They may be altered by the
user, just like any other variable. and they may be accessed, under CMS,
vi a the di rect interface to REX vari abies. Tha PROCEDURE and DROP
instructions also affect these variables in the usual way.

Certain other information is always available to a REX program. Thh
includes the nama by whi ch the program was ; nvoked·,· and the source of the
program (which is availabla using the PARSE SOURCE instruction, see pag~
42>' Under CMS, this latter consists of tha string "CMS" ~ollowed by tha
call type and then tha name, typa, and di sk moda 0" the file bei ng exe
cuted; these are followed by tha call nama and the initial (default) com-

REX language definition 103

18" Internal use only

I~
m~nd environment.

In addition, PARSE VERSION (see page 44) makes available the version and
date of the interpreter code that is running; and the built-in functions
TRACE and ADDRESS return the current trace setting and environment name
respectively.

Philosophical Note: The exi·stence of these three special variables is
believed to be an undesirable feature of the language, and they should be
considered to be implementation dependant rather than strictly part of the
language. At some futur·. t 1/11a it i IS hoped that the language wi 11 proy ide
a more formal way of accessing these values, probably via built-in func,,;
tions. However it is expected that these special variables wHI be sup"
ported i ndef;ni tell' in the 5/370 implementation of REX.

.~.

104REX language definition

IBn Internal Use Only

4~O THE CHSIMPLEHENTATION

4.1 INSTALLING REX AND EXECUTING REX EXECS

To run a program wri tten in REX, you 1'; rst have to acti vate REX in your CMS
machine by executing the command "EXEC REX I". If the REX MODULE (and
possibly other modules required) are not availabla, this will fail with an
appropri ate error message and you should contact your systems support
department to find out where they are.

Once REX is activated (by "EXEC REX I", see below) then you can normally
run REX Execs (which must be in files with a filetvpe of "EXEC") just by
typing the name of the Exec when in the CMS command environment - CMS wHI
find the file of that name, and pass it to the REX interpreter for exe
cuti on. REX then checks the fi rst 1 i na of the program: if the fi rst
non-blank characters are "/*" then the program will ba processed by REX:
otherwise it is assumed to be written in EXEC or EXEC 2 and the appropri
ate interpreter is called•

. Execs may also ba invoked from XEDIT - see below.

4.1.1 tnstaUati12n and Help: the REX EXEC

The basic REX packaga includes a (eMS) Exec which performs savaral func
tions:

Installation:

The command "REX 1ft will install REX as an extension to CMS (and
will also install EXEC 2 if it is available and is not alreadY
active). Once this has executed successfully, you may run any
REX Execs on your system (and continue to run EXEC or EXEC 2
Execs). The external function packages (REXVMFHS and REXFHS2)
will be loaded automatically by REX as and if required.

You wi 11 probably want to put tha. Ii na "EXEC REX I" into your
PROFILE EXEC so REX will be installed automatically when you
logon.

General Information:

The command "REX 1" wi 11 tall you about REX EXEC and how to usa
the Tutorial/Halp facility. and will also display the version
(level) of REX currently active and displayed.

The CMS implementation

---.---.----....----- - ~.- -- ---- -- -.-....- - ~-.. . --.- .. --..- -~-------,- .-.---.-.•.,. ,.,.-.---"

105

18" Internal Use Only

Error Return Code Information:

You can get axtra i nformati on and hi nts on tha 1 i ke1y causes of
REX errors by typi n9 "REX nnnnn" (where nnnnn is the error
return coda, a.g. 20006). It is strongly recommended that new
users make use of this facility

Tutorial/Online help facility:

The command "REX", wi 11 taka you di raetly to tha Indax of the
Tutorial/Help facility - you may than salect the topic you wish
to raad about by number, kayword, by hi tting PF Keys, or by
u5ing tha lightpan.

A main indax is prasanted: thare Is a sub-index for each of lOX,
FSX, and tha function packagas.

The command "REX XXXx" (whera xxxx is any REX kayword, function
nama. ate.) will take you diractly to the part of the online
documentation describing that instruction.

4.1..2 Executing programs WI'; Hen in REX

Execs (f,las with filetypa EXEC) may be axecutad from a variaty of envi
ronments running under CMS (eg XEDIT, FULIST), or directly from tha CMS
command environment itself.

In the CMS command environment, Execs are invoked when you enter tha
filename of the Exac file. You may optionally praeede tha filename on the
command line with "ex", "exe", or ".xac" •.

Example:

myexec fred b10ggs

- OR

exeC myexec fred bloggs

where "myexec" is the filename of the EXEC file, and "fred bloggs" is the
argument stri ng to be passad to the Exac (thi 5 can be retri eyed by the ARG
or PARSe ARG instructions).

Normally you do not nead the Pf"efixed "exac"as CMS will add it for you.
However, U an internal flag of eMS called IMPEX CImpliedExee execution)
is set OFF. then the prefix 1!! raquired to explicitly invoke the Exec
processors. More information is available in the CMS Use,.'s Guide
(SC19-6210).

Executing REX programs from other environments will depend on the partic
ular environment, but most {such as FULISn provide the usual eMS search

The eMS implementation

--=-~.- ---~-~-=~~~

106

.~.

II" Internal Use only

order and 50 REX Execs may be invoked just like any other command •

When editing an Exec with XEDIT, it is very often convenient to invoke the
. Exec to test it without leaving XEDIT. To do this, first issue the XEDIT

"SAVE" command to ensure that your latest changes are saved on di sk (which
is whare CMS wi 11 look for the data). Then just type the command on
XED!T' 5 command I ine just as descrt bed above. but wi th "CMS" prefi xed.

Example:

ems myexec fred bloggs

- OR

cms 	 exec myexec fred bloggs
.......

You 	may omit-the prefix "eMS" if all the following conditions ara met:

1. 	 the fllaname of the Exec is not the same as the name of any XEDIT com
mand

,
2. 	 the fi lename cons i sts of j\,lst alphabet ic characters

3. 	 XEDlT's IMPCMSCP CImplied CMS and CP commands) flag IS ON. (If this
flag is OFF, then XEDIT will not automatically pass unrecognised com
mands on to eMS.)

See the XeDIT User's Guide and Reference manuals (SC24-5220 and SC24-S221>
for further information.

Note: For an Exac written in REX to be run successfully under CMS. there
are two conditions that must both be satisfied first:

1. 	 REX must be activated (see above>. It is possible for an Exec to
automaticallY install REX if it needs it (see page 130).

2. 	 The EXEC interpreter must be told that the Exec is wri tten in REX
(rather than EXEC Or EXEC 2). This is achiavad by ansuring that the
first line of the Exec starts with a REX comment ("/* .•• */"). If the
first non-blank charactars in the file are "/*", then REX will process
the file, otherwise it will be passed on to EXEC 2 or EXEC.

Note: XEDIT macros wri tten in REX are executed inexactly the same way as
those written in Exec 2 •. The conditions for Execs (described in the last
Note) must be satisfied for Macros, too. Take care that no lines in the
macrO start with the character "*". as some versions of XEDIT may delete
these lines before passing them to REX. See page 131.

The 	CMS implementation 107

11" Internal Use Only

4.2 STANDARD EXTERNAL FUNCTtO·N < PACKAGES

REX includes many built-in functions (see page 61) but in addition two
standard packages of external functions are distributed. These are called
REXVMFNS and REXFHS2, and currently are loaded automati cally by REX if and
when needed. or they may be explicitly loaded by issuing their name as a
command. Both "tell" about themselves when invoked with the argument "1"
e.g. "REXFHS2 1"

4; 2. 1 REXFNS2

REXFHS2 includes vari ous string mani pulati on functions. together wi th
additional conversion routines etc. More detailed information is avail
able in the on-l i ne help: type "REX REXFHS2".

Nate: for functions which provide for a "pad" character, the pad character
is optional: if specified. the shorter string is extended on the right
wi th the pad character. otherwi'se. the operati on is performed only on the
portions of the strings which correspond in length.

AHD(stringl,string2t,padlJ

Returns the longer of the two strings. with which the shorter
has been 10g1 cally AHDed.

82C(binaryst... ing)

Converts the !ltr; ng of bi nary characters (' 0' and '1') to III

packed byte string. The length of the binary string must be III

multiple of eight.

e.g. 82CC'10010110') -- '96'X

B2X(binarystring)

Converts the stri ng of bi nary characters (' 0' and '1') to a
string of hex che,recters. The length of the binary str; ng must
be a multiple of four.

e.g. B2X('lOi0010l1111') 'A5F'

CLCL(stringl,string2[,padl)

Compares the strings bit by bit and returns the position of the
first charactars which mi!lcompare (zero i'f the strings are
equal. negat iva i'f 51:1"1 ngl is less than stri ng2)' The longer,

. stri ng ; s truncated to the length of the shorter•.

Note: The built-in COMPARE function provides a very similar
ability.

The CMS implementation 108

- . - --..-~ ..__
--,~ --~-----~--"--' ..-- ---

II" Internal,use Only

CLXL{stringl,str;ng2[,padlJ

Like CL CL except that the compar i son is ari thmet i c, and the
strings are hexadecimal.

COUHTBUF() ,

Returns the total number of records in the console stacks.

C2Blstring)

Converts the charactar string to a string o'f binary character.
(, 0' and '1').

e.g. C2B('AB') -- '1100000111000010'

E2XChexstring)

Same ~s the REX notat: ion "stri ng"X, except that !ltd n9 may be a
variable i.e. Pack.

e.g. E2X(, F7 F2A2') '725'

Hote: The built-in X2C function carries out the same operation.

FETCH(address[,klJ

Returns the contentso'f 11 bytes of the user' smemory start; ng at
address. Both addre!l!l and 11 are packed he-xadecinial values.

e.g. FETCH('0200'x,'03'x) -- 'CMS'

Note: The STORAGE fUnction (in REXVMFHS) provides a similar
ability. together with the option of changing the value of stor
age. Its arguments are expressed in hex characters.

OR(strin91,string2[,padlJ

Returns the longer of the two strings, with which the shorter
has been 10gi cally ORed.

REPEAT(string,n)

returns n+1 concatenated copie!l of the string.

e.g. REPEAH'abc',2), == 'abcabcabc'

Note: The but It-in function COPIES has the same call format,
but returns D concatenated copies of the string.

SUBSET()

I

•
I
I

Returns '1' if in SUBSET, '0' otherwi se.

The CMS implementation 109

" '

XI" Internal Use only

The bits of string are tested byte for byte under the 1 bits of
the mask (only mask may be extended 'with the pad character).
Zero is returned if all bits tested were zero; -1 is returned if
all bits tested were one; otherwise, the position of the first
character in string which caused a mixed ones and zeros condi
tion is returned. ~ote that the string "0" has four bits on,
for example, since it is in fact the EBCDIC code hex FO.

TRTtstrin!J.refal"encet,''''U

Synonym for the but It-in VERIFY function.

TYPEFLAG{[HT or RT1)

Returns 'HT' or 'RT', accord; ng to the setti ng of the eMS
typeflag. It will also halt typing or resume typing if HT or RT
is-spec; fi ed as the argument.

XORtstringl,string2[,padl)

Returns the longer of the two strings, with which the shorter
has been logically XORed.

X2B(hexstring)

Converts the string of hex characters to a string of binary
characters ('0' and '1').

e.g. X2B('AB') -- '10101011'

X2E(stl"ingJ

Returns the EBCDIC character representation (hex characters) of
string. i.e. Unpacks.

e.g. X2EC'12s') -- 'F7F2A2'

Nate: The built-in C2X function carries out the same operation.

The eMS implementation no

.

IBM ~nternal Use only

4.2.2 REXVMFNS

Functions which are only meaningful in a VM/370 (CP. CMS) environment are
included in the REXVMFNS pack. Please refer to the file "REXVMFNS MEMO"
for further details.

DIAGCn[?l [,datal [,datal •••)

issues diagnose X'n' and returns data as a character string.
Sea below for the list of supported codes.

DIAGRC(nUJ [,datal [,datal •••)

identical to the DIAG function, except that tha CP return code
and condition code are prefixed to the returned string.

NEST()

returns the current depth of nesti ng of Execs (j ncludi ng CMS and
EXEC 2 Execs>. If ,1. then the Exec was called from CMS Command
level. possibly via ~n intermediate Module.

QDISK('x['?]')

returns information abo'ut disk 21 (or the R/W disk with most free
space if 21="?", or the first R/W disk if ~="*"). The disk may
be CMS, 0/5, DOS, or PAM.

For CMS di sks, tha string returns the following tokens to
describe the disk: 'CMS', label. number of blocks used, number
of blocks free, blocksize, virtual address, CMS mode letter,
number of fi les on the di sk, number of cyl i nders, di sk type
(3330, etc.), access mode (R/W. etc.), and whether the Extended
File System is available.

READFLAG()

returns 'CONSOLE' or 'STACK' depending on from where the next
"Pull" will read. Note that the built-in functions "QUEUED" and
"EXTERNALS" may be used to find out how many lines are in the
stacks.

STORAGE(Eaddresst,tkl[,datalll)

returns the current VM size if no arguments are specified, or
returns ~ bytes from the user's memory starting at address. k
15 in decimal, the address is a hexadecimal character value. If
data is specified then the ~ bytes addressed are then replaced
wi th the stri ng given as the third argument.

If 11 would imply returning storage beyond the VM size, then only
those bytes UP to the VM size are retUrned; and if an attempt 15
made to alter any byte~ outside the YM:size. they are left unal-

The CMS implementation 111

• -_ - -eO •••.• - _. -- .._----.---_.---.. --------.--~

IB" Internal Use Only

teredo

Warning: The STORAGE function allows any location in your vir
tual machine to be altered. Do not USe this furiction without
due care and knowledge.

e.g. STORAGE(2C8.8) -- 'OSRESET' /M Maybe! */

The following CP Diagnose codes are supported by the DUG and DIAGRC func

ti ons for all CP systems:

'0' Retu,.n vi,.tualmachine identification.

'a' Issue CP command/,.etrieve re!5pon.se. Release 6 of CP is required for

use of thi 5 functi on.

'e' Return timer information.

'24' Return device tYPe and features for specified device or console.

'60' Return vi,.tual storage 'size. ,

'64 S Manipulate named shared segments.

The following CP Diagnose codes are supported by the DUG and DIAGRC fUnc
tions only for some modified CP systems:

'104' Return extended ID and account information.

'244' Retu,.n VMBUSER information.

'248' Alt.,. VMBUSER info,.mation.

'254' Retu,.n VMBlOK data.

The eMS implementation 112

http:re!5pon.se

IBM Internal Use only

--~ 4.3 USING SERVICE PROGRAMS W!TH REX nox. FSX. ETC.)

All commands that may be called from EXEC or EXEC 2 may be used with REX,
except that those which attempt to set "Old EXEC" variables may not work.
Some modules which may be of interest follow. These may usually be
located by checking the VM Hews Quick Index to find the Author or Distrib
utor. Those whi ch are di str; buted wi th the internal REX package are
marked by (lE).

(W) allows copying variables to or from an earlier EXEC invo
cation. and also allows access to the SOURCE, ARG. and VER
SION strings of earlier generations.

CONGET: 	 00 permits a console read without affecting the stack. With
recent releases of CP, also permits a "blind" (non-display)
read.

DRA!HSTK: 	 <*) purges all buffers from the input console stack without
affecting the output stack.

Et1SG: 	 <*) has the same effect as &EMSG in eMS Execs.

EXECIO: 	 General package for disk and unit record I/O, similar to lOX.
Has many useful features and is fully compati ble wi th REX.
It is a part of CMS as from VM/SP release 2. Note that cur
rently its I/O is limited to the width of the stack.

EXSERV: 	 the current version of -EXSERV is not compati ble wi th the REX
variables interface.

FSX: 	 (W) is a REX service program designed to give users complete
control of full SCreen displays (e.g. for modelling future
applications).

GLOBALV: 	 maintains pools of Global Variables for communication
between Execs and programs. There is now a fully
REX-compatible version. A stack-interface version is a part
of eMS as from VM/SP release 2.

HT, RT: 	 (*) Halt/Resume typing. Same as stacking HT, RT in CMS EXEC.
Hate that under VM/SP you should use SET CMSTYPE HT/RT.

1053210: 	 327x display and menu facility as used for REX online help.
A new version is available which is completely compatible
wi th both EXEC and REX, and wi th the latest verst on of
EXEC 2. When called from REX, it allows data and names to be
up to 132 characters wide. Older Modules may fail to run
satisfactorily, since they are not aware of REX variables.
The latest versi on prov; des control of colour di splays.

IDENTIFY 	 provides the userid, node, net machine name, and time infor
mati on for general use. - Thi s command is a part of CMS a5
from VM/SP release 2.

The CMS implementation

..-- - - - - - - - ..-~-_--~---_-__-__-_.-_--C..-_-_-_"_'-"_--_'-_--~-

113

------ ----- ----

18" Internal Use only

INSTANT:

lOX:

MODULES:

OSRESET:

PROMPT:

REQUIRED:

REXTRV:

REXDUMP:

REXIFV:

REXPU:

REXTRAN:

RXCPA:

(*) provides the "he" and "ts"~i~~ediate commands for use
wi th REX. together wi th a general"escape mechani sm.

(*) is a service program which was written especially for use
with REX. It may be used to read. write, update, and search
files; print. punch, or read unit records; set global vari
ables; etc.

checks whether 1 i sted modules exi st on any di sk: a message is
typed fo,. any that could not be found.

Note: This module is superseded by the REQUIR·ED module - see
below.

c*) a module which resets OS simulated storage, and cleans UP

after OS simulation and VSAM if necessary. Should be invoked
between Pl/! module calls. for example. which can otherwise
fail with "VIRTUAL STORAGE SIZE EXCEEDED" or other obscure
messages. (AI so useful wi thi n EXEC 2 Execs for the same pur
pose) .

(*) prompts the ~ser with data in the screen command input
area. A version is available which will use the Extended
Plist provided by REX/EXEC 2.

<*) checks whether specified files exist on any disk: a mes
sage is typed for any that could not be found. Thi sis
intended for use at the start of Execs so dependenci es are
both documented and tested before an Exec starts to run.

It is strongly recommended that Execs "for export" use this
command to protect themselves against missing commands.

C*) an Exec which may be used to tryout REX instructions to
find out how they work. Very useful when learning new fea
tures.

<*) a debug aid which "dumps" up to 53 characters of each
variable. and the length of the variable. to the screen.

an Xedit Macro which can be' used to mechanically translate
EXEC or EXEC 2 Execs and Macros into REX. Usually soma manu
al intervention is required, also.

routi nes to prov; de full interfaces to allow REX programs to
be called frolll PL/I, with the ability to set up subcommand
environmants, ate.

an Xedit Macro which can be used to mechanically translate
REX2 Execs and Macros i "to REX3. Occas; onally some manual
intervention is required, also.

(*) funct ion. i S5uas a CP command and raturns tha Ii nas
normally typed by CP. Raqui res CP Release 6 0,. VM/SP.

The CMS implementation 114

IBn Internal Use Only

RXLOCATE: 	 (*) function, lOCATE(needle,haystack[,n[,'-']]) returns the
position of the n'th occurrence of needle in haystack (or, if
"-" is specified, the n'th occurrence of any string in
haystack which is equal in length to needle but which is not
equal to needle). If n is negative, the search is right to
left.

e.g. lOCATE('~','AHIMAlS',2) 5

RX"DF: 	 RXMDF provides the REX exec writer with a full-screen I/O
capability built on MOF (Menu Display Facility). RXMDF is
especially suited to menus since each menu template bears a
one-for-one spati al relati onshi p to the actual di splayed
screen.

STACXIO: 	 General I/O package, similar to lOX. Has very many useful
features and is fully compatible with REX, however in CMS its
I/O is limited to the width of the stack.

Note: The eMS command EXECIO (VM/SP Release 2) supports much
of the function ~f STACKlO. with the same syntax.

TRACER: 	 Of) may be used to explicitly set, clear, or query the system
Trace bit, or to put the REX interpreter into TEST mode.

4.4 INTERRUPTING EXECUTION AND CONTROLLING TRACING

REX 	may be interrupted during execution in several ways:

• 	 The "he" (halt exec) immediate command may be used to cause all cur
rently executing REX Execs or macros to terminate, as though there has
been a syntax error. This is especially useful when an editor macro
gets into a loop, and it is desirable to halt it without destroying
the whole envi ronment (as "hx" would do). The program stack is
cleared by REX when this interrupt is accepted and causes exit from
the program. This event may be trapped by using "SIGHAL OH HALT"
see page SO.

• 	 The "ts" (trace start) immediate command turns on the external tracing
bit. If it is not already on, this has the effect of executing an
instruction of the form TRACE ?Results. This will put the program
into normal debug mode and you can than execute REX instructions etc.
as normal (e.g. to display variables, EXIT, etc.). This too is useful
when it is suspected that a REX program is loopi ng - "ts" may be
entered, and the program can be inspected and stC!pped before a deci
sion is made whether to allow the program to continue or not.

• 	 The "ten (trace end) immediate command turns off the external tracing
bit. If it is not already off, this has the effect of executing an
i nstructi on of the f·orm TRACE Off. Thi sis useful when a program is
being traced without being in debug mode and it is wished to stop the

The 	CMS implementation 115

II" Internal Use only

tracing.

It is hoped that the i mmedi ate command features desert bed above wi 11

become available in a forthcoming CMS release, but in the meantime the

INSTANT package by this author provides this facility without requiring

any change to standard CMS systems. It may also be used to inhibit the

"he" immediate command if desired as it allows a user command with the

same name to be set up. (It also has several other useful facilities.)

The system (external) trace bit:

Before executing each clause, REX inspects an external trace bit, owned by

CMS (see page 129). It never alters the state of the bit. except that the

bi tis cleared on return to CMS command level. The bi t may be 'turned on by

the "ts" immediate command. turned off by the "ten immediate command. and

also altered by the TRACER command (see below).

REX maintains an internal "shadow" of the external bit, which therefore

allows it ,to detect when th~ external bi t changes from a 0 to aI, or

vice-versa. If REX sees the ~it change from 0 to 1, then debug mode and

TRACE RESULTS are forced on. Similarly, if it is seen to change from 1 to

O. then all tracing is forced off. This means that REX tracing may be con

trolled externally to the Exec: dC!bug mode can be switched on at any time

without making any modifications to the program. The "ten command can be

useful if a program is tracing clauses without being in debug mode - "ten

may be used to switch off the tracing without affecting any othel" output

from the program.

If the external bit is found to be on upon entry to a REX program, the

SOURCE string is traced (see page 42), and debug mode is switched on as

normal - hence with use of the system trace bit, tracing of a program, and

all programs called from·it, can be easily controlled.

The internal "shadow" bit is saved and restored across internal routine

calls. This means that (as with internally controlled tracing), it is

possible to turn tracing on or off locally within a subroutine. It also

means that if a "ts" interrupt occurs during execution of a subroutine,

then tracing will also be switched on on RETURN to the caller. Several

other subtle and beneficial side-effects result from this action.

The command TRACER may be used to test or explicitly alter the setting of

the system Trace bit:

"TRACER QUERY" will display the current setting of the bit.

"TRACER ON" turns on the trace bit. Using "TRACER'nN" before invoking a

REX EXEC wi 11 cause it to be entered with debug traci"g i mme

diately active. If issued from inside an Exec, it has the

eTfaet as "Trace ?R" ~ but is more global ; n that all Execs

called will be traced, too.

"TRACER OFF" turns the trace bit off. Issuing this when the bit is on is

equivalent to the instruction "Trace Off", except that it has a

The CMS implementation 116

--- ._,.,----------- ---_. ----

II" Internal Use only

system (global) effect.

Note: "TRACER OFF" will turn off the system trace bit at any
time. e.g. if it has been set by a "ts" immediate command issued
while not in a REX Exec.

"TRACER HALT" is used to simulate the effect of the "he" immediate
command. for testing. It turns on the Halt Exec system bit
which will normally cause immediate exit from the Exec that
issues the command.

Adding the keyword "qUIET" to any of the above commands suppresses the
usual TRACER typed response.

4.5 SYSTEH INTERFACES

The current REX implementation uses the YKTSVC package. which offers the
neatest way of extending CMS. -REX uses the same interface conventions as
EXEC 2 (Extended Plist. etc.) so it is usable by any program. such as
XEDIT. currently able to interface with EXEC 2 •

REX is normally installed as a nucleus extension called "EXEC" and there
fore intercepts all EXEC calls. It then reads the Exec file (or Fileblock
defined data, see below> until the first non-blank character is met. If
the first non-blank characters are "/*" (i .a. the start of a REX comment),
the file will be assumed to be written in the REX language - otherwise it
is assumed to be an EXEC or EXeC 2 language file and will be passed on as
appropriate:

If a NUCX (or NUCEXT) Nucleus extension called EXEC2 exists, and the
call was an EXEC 2 conventional call (or the first word in the file
was "&TRACE") then the Plist(s) will be passed directly to it for
processing. Otherwise thePlist will be passed directly to the CMS
EXEC processor.

These rather unpleasant CMS dependent rules are described further in the
section on Writing Bilingual Execs (page 130). They allow REX programs to
coexist and be used simultaneously with both EXEC 2 and EXEC programs. and
i~ addition also work if. EXEC 2 is part of the CMS Nucleus.

Internal calls (from REX to a user command or subcommand) follow the same
conventions as EXEC 2 (Extended Plist is generated, etc.), except that
Function calls use only the simple "Old Format" Plist to reduce overhead,
and the default environment for commands implies full resolution (see page
23). Michel Hack's documents "EXEC2SYS MEMO" and "FUTURE MEMO" and are
the best and most authoritative source for fUrther information on the.
deta i Is of these interfaces and how they have changed between eMS
versions. however the Extended Plist and other defined interfaces to REX
are described below.

The CMS implementation

.._---------_.--, ."--' .-- .. . '.- --, .~- ..-..

117

II" Internal Use Only

4.5.1 Extended Pltst ;nterface

REX may be caUed with an "Extended Plist" (in addition to the standard
CMS a-byte tokenised Plist) which allows the following possibilities:

1. 	 An arbitrary parameter string (neither upper case. nor tokenised) may
be passed to REX.

2. 	 A file other than that defined in the "old" Plist may ba used. (i.a.
the filatype need not ba "EXEC").

3. 	 A default target for commands (other than CMS). A fl 1etype other than
"EXEC" or blanks wi 11 cause commands to go to the anvi ronment with the
name that matches the f11etype.

4. 	 A program whi ch ex i !Its in storage may be executed (i nstead of bei ng
read from a fileL This in-storage execution option may be u~ed for
improved performance when a REX program i!5 being executed repeatedly.

5. 	 A defau 1 t target for commands may be speci fi ed whi ch overri des. the
default derived from the fiietype.

6. 	 Passing multiple argument strings to the program.

1. 	 Allowing for the return of data from the REX program.

The 	eMS implementation 118

II" Internal Use only

Calling REX with an Extended Plist:

Byte 0 of Rl =X'Ol' (Signifies Extended Plist exists)

RO points to tha Extended Plist:

~=> The Extended Plist, points to 1) the argument string,

lE 2) an optional File Blo.ck:

NPl DS OF ~UE Extended Plist

DC ACCOMYERB) -> CL5' EXEC'
DC ACBEGARGS) -> start of ARGString
DC A(EHDARGS) -> character after end of

lE the ARGString
DC ACFBL) -> fila block, alsais A(O)

lE=> The file block (only required if REX is to execute a
lE non-EXEC file or is to execute from storage, or is to
lE have a non-default default address environment).
FBl DS OF lElE File block

DC CL8'filename' logical name of program

DC Cl8'filetypa' , defaul t desti nati on for

. 	 commands (blanks.or "EXEC"
causa commands to ba
passed to eMS)

DC CL2'filemode' normally 'lE ' or '

DC H'extlan' length of extension block

in fullwords.
lE=> Extension block starts here.
lE-> In-storage program definition
lE Following two words should ba 0 if extlan >=2 and
lEin-storage program is not supplied.

DC ALtt(PROG) -> Start of program
lE descriptor list.

DC AL4CPGEHD-PROG) Length of same in bytes
lE-> Initial Address environment (overrides default from
* filetype).

lE Should be set to 2F'O' if not used and extlen >=4

DC Cl8'environment' Tha initial environment

lE May be a PSW for non-SYC

lE subcommand call.

lE-> Argument/interface (F'O' if not used)

DC AL4(ARGlIST) Address of argument list
DC AL4(FUHRET) Where return block is put

*lE Descriptor list for in-storage program
PROG 	 DS OF lElE In storage program lElE

DC AClinel),F'lenl' Addr, length of line 1

DC AClina2),F'lan2' Addr, length of line 2

DC AClineN),F'lenH' Addr, length of line N

PGEHD EQU lE

The CMS implementati on

.......... ...-...., -_..
-..-- ---- - - - -- - -- .- . , .

119

http:blanks.or

IS" Internal Use only

Notes:

The in-storage program lines need not be contiguous, since each is sepa
rately defined in the descriptor list.

For in-store execution. Filename and Filetype are still required in the
file block, since these determine the logical program name and the default
eO,mmand env ironment. except that the defaul t env ironment may be expl i ci t
IV overridden by the name 1n the extension.

If the extension length is >= 4 Fullwords, then the 3rd and 4th fullwords
form an 8-character environment address that overrides the default
address set from the Filetype in the file block; and thus forms the ini
tial ADDRESS to which commands will be issued. This new address may be
all characters (eg blank. "CMS". or some other environment name), or it
may be a PSW for non-$VC subcommand execution - see below on page 128.

If the extension length 15 >= 5 Fullwords. then the 5th fullword may be
the address of the list of arguments to the program. This consists of an
Adlen (Address/length) pair for aach argument string. followed by 2F'-I'.
If the argument list is given. the basic argument string (as defined by
BEGARGS and ENDARGS) is not used for the ARG instruct; on.

Nate: The use of this 5th fullword implies that the argument list supplied
is in private (non-static) storage. and hence that REX need not copy the
data strings before using them.

If the. extensi on length is >= 6 FuHwords, then the 6th fullword (i f
non~zero) is a request that the program be considered a function. The
program must end with a RETURN or EXIT instruction with an expression, and
the resulting string is returned in the form of an EYAlBlOK (see below,
page 125). The address of the EVALBlOK. followed immediatelY by a
fullword containing F'-I', must be stored at the address supplied as the
function request.

If the program is to be called as a subroutine, such that the return of
data is to be optional. then this may be indicated by setting the
high-order bit of this 6th fullword. This is reflected to the program
being invoked, in that the second token of the SOURCE string (see page 42)
will be 'SUBROUTINE' rather than 'FUNCTION'. The caller can detect wheth
er an EYALBLOK is 'returned by ensur; ng that the word where the address is
to be stored (or the following word) is cleared before the call. If this
is unchanged on return~ then no data EYALBLOK was returned.

The eMS implementation 120

IBM Internal Use only

4.5.2 Direct In~erface to REX variables

(Hote: this section describes the interface for all REX versions since
2.17, which is compatible with that used by EXEC 2.>

REX (under eMS) provides an i·nterface whereby called Commands may easily
access and manipulate the currant generation of REX variables. Variables
may be inspected, set, or dropped; and if required all active variables
may be inspected in turn. The manipulation of internal REX work areas is
carried out by REX's own routines: user programs do not therefore need to
know anythi ng of the structure of the v'ari ables' access method (whi ch
includes complex binary trees, etc. etc.). Hames are checked for validity
by the interface code, and substitution is carried out according to normal
REX rules.

Hote: A program which wants to use this interface in a general way should
only use names which are passed to it from the caller, or are built up in
some way defined by the caller, or are names containing only alphanumerics
and which start with an alphabetic. If these rules are followed, then the
program should be able to use' the variable pools supported by programs
other than REX (e.g. EXEC 2), i.e. a program using this interface should
not assume that REX substitution rulesaeely.

The interface works as follows:

When REX starts to interpret a new Exec or editor macro it first sets up a
Subcommand entry point called EXECCOMM. When a program (Command or Sub
command)h invoked by REX, it may in turn use the current EXECCOMM entry
point to Set, Fetch, or Drop REX variables using REX's internal routines.

An internal REX routine carries out all changes to pointers, allocation of
storage, substitution of variables in the name, etc. and hence isolates
user programs from the internal mechanisms of REX.

To access variables. the EXECCOMM entry point is invoked using both the
tokenised and the extended Plist (see also page IlS). SVC 202 should be
issued (with Rl pointing to the normal tokenised Plist, and the top (flag)
byte of R1 s'et to hex 02).

The Rl Plist: Register 1 should point to a Plist which consists of the
eight byte string "EXECCOMM".

The RO Plist: RO should point to an extended Plist. The first word of the
Plist should contain the value of R1 (without the flag in the top byte).
Ho argument string should be given, 50 the second and third words must be
identical (e.g. both 0). The fourth word in the Plist should point to the
f;rst of a chain of one or more request blocks, see balow.

On return from the SVC, R1S will contain the return code from tha antire

The CMS implementation

-.... -'.. ,.-~ .-~-,----.'

121

IBM Internal Use only

set of requests. The possIble return codes are:

o (or positive) Entire Plist was processed. R15 is the composite OR-ing
of the SHVRET flags (see below).

-1 	 Invalid entry conditions (e.g. BEGARGS ~= ENDARGS).

-2 	 Insufficient storage w~s available for a requested SET. Processing
was aborted.

-3 	 (frolll SUBCOM) Ho exECCOMM entry point found: i.e. not called from
i nsi de a REX Exec.

The request block: Each request block in the chain must be structured as
follows:

** * SHVBlOCK: layout of shared-variable Plist element

**

SHVBlOCK DSECT

SHVNEXT DS A Chain'~ointer (0 if last block)

SHVUSER DS F Available for privata use, except

during "Fetch Next".* SHVCODE DS Cli Individual function code

SHVRET DS Xl! Individual return code f1ag.s

OS H'O' Hot used. should be zero

SHVBUFL DS F length of 'fetch' value buffer

SHVNAMA DS A Address of variable name

SHVNAMl OS F Length of variable name

SHVVALA DS A Address of value buffer

SHVVALL DS F length of value (set by 'Fetch')

SHVBlEH EQU *-SHVBlOCK (length of this block = 32)

SPACE

* * Function Codes (SHVCODE):

* SHVSET EQU C'S' Set variable from given value

SHVFETCH EQU C'F' Copy value of variable to buffer

SHVDROPV EQU C'D' Drop variable

SHVNEXTV EQU e'N' Fetch "next" variable

SHVPRIV EQU t'P' Fetch private information

SPACE

* * Return Code Flags (SHVRET):

* SHVCLEAH EQU X'OO' Execution was OK

SHVNEWV EQU X' 01' Variebledid not axist

SHVLVAR EQU X'02' Last variable transferred (for "H")

SHVTRUHC EQU X'04' Truncation occurred during "Fetch"

SHYBADH EQU X'08' Invalid variable nama

SHVBADY EQU X'lO' Value too long (EXEC 2 only)

SHYBADF EQU X'SO' Invalid function cQde (SHVCOOE)

*-~----------~~~~--~--~------------------~-~-~----------

The CMS implementation 	 122

IBtI 	 Internal. Use only

/~ 	 A typical calling sequence using fully relocatable (HUCXLOADable) and
read-only code might be:

LA RO,EPlIST -> Extended Plist. as above
LA Rl,=CL8'EXECCOMM' (normal Plist)
ICM Rl.B'lOOO'.=X'02' Insert "subcommand call" flag
SVC 202 Issue SVC
DC AL4(1) Indicate we want control
LTR RlS,RlS Test return code
8M DISASTER Where to go if bad return code

• 	 Execution was OK (RC>=O)

The 	specific actions for each function code are as follows:

"S" 	Set variable. The SHVHAMA.lSHVHAML adlen describe the name of the var
iable to be set. and SHVVAlA/SHVVAll describe the value which is to be
assigned to it. The name (up as far as the first period, if any) is
validated to ensure that it does not contain invalid characters. and
the vari able is then set from the value gi ven. SHVNEWV is set if the
variable did not exist before the operation.

"F" 	Fetch variable. The SHVNAMA/SHVNAMl adlen describe the name of the
vari able to be fetched. SHVVALA speci fi 125 the address of a buffer
into which the data is to be copied, and SHVaUFl contains the length
of the buffer. The nama is val i dated to ansure that it does not con

i~ 	 tain invalid characters. and the variable is then located and copied
to tha buffer. The total length of the variable is put into SHVVAlL.
and if tha value was truncated (because the buffer was not bi g enough)
the SHVTRUNC bit is set. If the variable is shorter than the length
of the buffer, no padding take. place.

SHVHEWV is set if the variable did not exist before the operation, and
in this case the value copied to the buffer is the derived name of the
variable (after substitution etc.) - see page 101

"D" 	 Drop variable. The SHVHAMA/SHVNAML adlen describe the name of the
variabla to be dropped. SHVVALA/SHVVALl are not used. The name is
validated to ensure that it does not contain invalid characters. and
the variable is then dropped. if it exists. If the name given is a
stem, then all variables starting with that stem are dropped. SHVHEWV
is set if no variables were affected by the operation.

"N" 	Fetch Next variable •. This function may be used to search though all
tha vari abIes known by REX (at the current level).

REX maintains poi.nters to its list of variables: these are reset when
ever 1) a host command is issued. or 2) any function other than "H" is
executed via this direct variables interface.

Whenever an "H" (Next) function is executed the name and value of the
next vari able ava ilable are copi ed to two buffers suppl i ed by the
caller.

The 	eMS implementation

-- -- .-------- -- - -- ,_.___ ._,~___._..- -- ~-- -. -.. ._. - _______ e_·· .-~ - -- ~.~ ~-- --~--

123

IBM Internal Use only

SHVHAMA speci fi es the address of a buffer into whi ch the na~e is to be
copied, and SHVUSER contains the length of that buffer. The total
length of the name is put into SHVHAMl, and if the name was truncated
(because the buffer was not big enough) the SHVTRUNC bit is set. If
the name is shorter than the length of the buffer, no padding takes
place. The value of the variable is copied to the users buffer area
using exactly the same protocol as for the "Fetch" operation.

If SHVRET has SHVlVAR set, then the end of the list of known variables
has been found, the internal po i ntars have been reset, and no val i d
data has been copied to the user buffers. If SHVTRUHC is set then
ai ther the name or the value has been truncated.

By repeatedly executing the "H" function (until the SHVlVAR flag is
set) a user program may locate all the currently acti ve REX vari abIes.
In this manner a program (such as the "REXDUMP" debug aid) may inspect
all active variables.

"P" 	Fetch private information. This interface is identical to the"F"
fetch interface, exce.pt that the name refers to certa in fi xed i nforma
tion items that are avaifable. Only the first letter of each nam~ is
checked (though callers should supply the whole name), and three names
are recognised:

ARG Fetch primary argument string. The first argument string
which would be parsed by the ARG instruction is copied to
the user's buffer.

SOURCE Fetch source string. The source string, as described for
PARSE SOURCE on page 42, is copied to the user's buffer.

VERSION Fetch version string. The source string, as described for
PARSE VERSION on page 44, is copi ed to the user's buffer.

Nate: Only the "5" (Set) and "F" (Fetch) functions are also supported by
EXEC 2.

Nate: The interface is only enabled during the execution of commands and
external routines (functions and subroutines). An attempt to call the
EXECCOMM entry point asynchronously will result in a return code of -1
<"Invalid entry conditions").

Nate: While the EXECCOMM request is being serviced, interrupts will be
enabled for most of the time.

The 	CMS implementation 124

IB" Internal Use only

4.5.3 Interface to external routines

REX supports external functions and subroutines (invoked by a function
call in an expression. or by the CAll instruction) whenever the call is
not satisfied by an internal routine or built-in function. Under CMS.
these external routine are called via SVC 202 using a special search order
(see the di agram ~t the end of· thi s sect ion) :

1. 	 The name is prefixed with "RX". and REX attempts to execute the pro
gram of that name.

2. 	 If the routine is not found. then the function packages will be inter
rogated and loaded if necessary (they return RC=O if they contained
the requested routine, or RC=l otherwise). If the load is successful.
step (1) is repeated and will succeed.

3. 	 If still not found. the name is restored to its original form. and all
di sks are checked for an Exec of that name. If found. control is
passed to it. Note that this search is independent of the CMS IMPEX
setting.

4. 	 Finally REX attempts to execute the routine under its original name.
CIf still not found, an error is raised!)

The name prefix mechanism allows new external REX functions and subrou
ti nes to be wri tten wi th little chance of name confli ct wi th exi sti ng
MODULEs.

If the routine being invoked is an Exec. then the normal Extended Plist is
used to convey the parameters etc. Otherwise. when the routine receives
control, Register 1 points to a tokenised CMS Plist. and the top byte of
Rl is hex 00. Reg; ster 0 poi nts to a 11 st o-f argument dascri ptors. being a
seri es of fullword palrs. The fi rst value in each pai I'" is the address of
the argument character string, and the second value is its length (which
may be 0). The final value pail'" is followed by two fullwords containing
"-1" (i.e. hex FFFFFFFF). REX will only provide a maximum of ten argument
strings, but note that the ARG (and PARSE ARG) instructions can handle
more if they are passed to REX. If the routine is being called as a sub
routine, so that it need not return a result. then the top bit of RO will
be set to indicate this. Otherwise the routine should return a result
REX will raise an error if it does not.

During calculation of the result. the routine may use the argument strings
(which reside in User storage owned by REX) as work areas, without fear of
corrupting internal REX values.

The result must be returned to REX in a block of User storage allocated by
DMSFREE and whi ch has the followi ng storage a5s1 gnments and values:

The 	CMS implementation 125

- ------------- --

tBM Internal Use only

--	 OSECT for the returned data block -----------------
EVAlBlOK OSECT
EVBPADI OS F Reserved
EVSIZE DS F Total block size in DW's
EVlEH DS F Length of Data (in bytes)
EVBPAD2 OS F Reserved
EVDATA OS C••• The returned character string

Tha address of this block should ba stored in the first fullword of tha
argument list (i.a. tha location pointad to by Register O,on entry to the
function), and the second fullword in the argument list must be set to
"-1" (hex FFFFFFFF).

This block will only be accepted (and later freed) by REX if the function
also returns a zero return code in Register 15.

This interfaca has several major advantages:

• 	 There is no restriction on, the content of the data returned.
.

• 	 There 15 no restriction (other than your VM size) on the length of
data returned.

• 	 The returned block is immediately usable by REX. without need to copy
the data.

• 	 Using the stack would require two invocations of the stack handling
routines for each argument and result. This overhead is significant
and is avol ded.

When an Exec is called as a func.tion. tha following points are relevant:

• 	 the RETURN or EXIT instruction will pass back a REX EVALBlOK directly.
There is therefore no restriction on the length or content of the data
returned.

• 	 the usual EXEC new-form Pli s1: is used, as descrt bed on page 118.

• 	 the special processing involved in this is transparent to the user.

• 	 calling an external program as a function or subroutine is similar to
calling an internal. routine. The external routine is however an
implicit PROCEDURE in that all the caller's variables are always hid
den. and the internal state values (NUMERIC sattingsw etc.) start wi th
thei r defaults (rather than i nha,.t ti n9 those of the caller>.

Implementation note: The standard external function packages also
respond to a call of the form:

, REXname LOAD RXfnama

if RXfnama is contai ned wi thi n the package REXname. then REXname wi 11
NUCXLOAD itself if necessary, install the HUCX entry point for the func-

The 	CMS implementat~~n 126

IBM Internal Use Only

~, 	 tion" and then return RC=C'; ,otherwise RC=l is returned~ This allows the
function packages and entry points to be automatically loaded by REX when
necess·ary. This autoload facility will probably be removed at some later
da~e.

REX external routine ~esolution and execution:

Start

I,.-___yr___...

Prefix name
with 'RX'

~\ 	 OKfFau
V

Subtract
'RX' prefix

I

V
Does EXEC Prepare

exist? EXEC
invocation

No
I1<

V
Was function

found ?

Try
autoloads

I-Yes--·->

V

r-----V'---...
Y Was function
r-Ye5-~____fo_U__n_d__?____~~HO~

cn~~ 	 [&~:rJ

The CMS implementatJon 127

IBM Internal Use only

4.5.4 Non-5VC subc.;mmand ;nvocat;cn

When a command i s issued to an eny ironment. there i 5 an al ternat i ve
non-SVC fast path available for issuing commands. This mechanism may be
used if an environment wishes to support a minimum-overhead subcommand
call, or for applications. where several Execs are running essentially
asynchronously ("concurrently").

The fast path is used if the current eight character environment address
has the form of a PSW (signified by the fourth byte being hex 00). This
address may be set using the extended Plist (see above) or by normal use
of the ADDRESS instruction if the PSW has been made available to the Exec
in some other way. Hate that if a PSW 15 used for the default address,.
then the PARSE SOURCE stri ng wi 11 use "?" as the name of the enYl ronment.

The 	definition of the interface follows:

1. 	 REX will pass control to the routine specified by doing an lPSW of the
eight-byte environment a~dress. On entry to the callee all registers
are undefined, except:

RO 	 -> Extended PH st as per normal subcommand call. Fi .. st word con
tains a pointer to the PSW used, second and third words define
the beginning and end of the command string, and the fourth word
15 O.

Rl 	 => Tokenised Plist. First doubleword will contain the PSW usedt
second doubleword is 2F'-I'. Hote that the top byte af Rl does
not have a flag.

R2 	 15 the original R2 as encountered on the initial entry to the REX
external interface. This register is intended to allow for the
passing of private information to the subcommand entry point~
typically the address of a control block or data area.

R14 	 contains the return address

2. 	 It is the callee's responsibility to save registers R9-R13. and to
restore them before returning to REX. All other registers may be used
as work registers.

3. 	 On return to REX, R9-R13 must be unchanged (see (2», and R15 should
contain the return code which will be placed in the variable "RC" as
normal. Contents 01 other regi sters may be undefined. REX wi 11 set
the storage key and mask that it requires.

Note: If tha execution sequence of Execs is changed while usi ngth; s
interface then the SUBCOM and CMS save area chains may need to be manipu
lated to ensure that the EXECCOMM entry points stay in step with the Exec~
being executed. Alternatively they'may be cleared and restored as appro
priate.

The 	eMS i mplementat i on 128

IBM Internal Use only

.~ 4.5.5. EXECFLAG external control byte

REX is affected by and may alter the global flags held in the EXECFlAG
byte in HUCOH (page 0 of your CMS system). These are used for external
control of REX tracing and also to permit interrupting execution. The
following equates are defined:

*** * Equates for EXECFLAG in HUCOH *
M**
EXECRUH EQU X'80' (reserved for EXEC 1 use)
EXECSTOP EQU X'40' EXECHAlT has been accepted
EXECMASK EQU X'20' Allow EXECHAlT
EXECHAlT EQU X'lO' Halt the Exec if MASK=l
EXECRESV EQU X'08' (reserved for future use)
EXECTEST EQU X'04' (reserved) Special test mode
EXECTMSK EQU X'02' Allow EXECTRAC
EXECTRAC EQU X'OI' Start tracing if TMSK=1

Detai 15 of the use of each fl4'g by REX are as follows:

EXECSTOP 	 This flag is set by the REX interface when an EXECHALT request
is detected and has been honoured. On exit from REX, this bit
indicates that the program stack should be cleared, as REX was
halted (probably asynchronously). On re-entry to REX this bi t
indicates that the EXECHAlT flag has been used previously and
may now be cleared (together with the EXECSTOP bit).

EXECMASK 	 Mask for EXECHALT. EXECHALT takes effect only if this bit is
set. This bit is currently set on entry to any REX program.

EXECHALT 	 Request to halt execution of all active REX programs. Takes
effect only if EXECMASK 1s 1. This bit is cleared on entrY to
REX if EXECSTOP is set, and also if detected normally but SIGNAL
ON HALT is enabled.

EXECTEST 	 Thi 5 bi tis reserved for REX testi ng purposes.

EXECTMSK 	 Mask for EXECTRAC. EXECTRAC takes effect only if thi s bi tis
set. This bit is currently set on entry to any REX program.

EXECTRAC 	 If thi s bi t changes from 0 to 1 or from 1 to O. then REX wi 11
force interacti~e tracing on or all tracing off respectively.
See page 115 for further details. This bit is neither set nor
reset by REX, except that itis cleared on return to CMS command
level.

The CMS implementation 129

18" Internal·Use only

4.6 WRITING BILINGUAL EXECS

In some circumstances it may be desirable to write Execs that will run

whether or not REX is installed.

To permit this, REX allows its programs to start with ~*/*~ rather than

~/*~ - both these alternatives are taken to be the start of a comment if

parsed by REX. If the f1 Ie is executed by EXEC because REX is not

installed. then this first line will be interpreted as a comment by it

, too: subsequent lines may then contain "old" Exec language statements.
.

Example:
~

1' This is a trivial Bilingual Exec
&GOTO -OLD */

Say 'This is executed when REX is installed'

exit

:"OLD
&TYPE This is executed by EXEC when REX is not installed

The technique may be used to allow an Exec to be written in REX which has

statements at the start to install REX and re-i nvoke the Exec if REX is

not alreadY active. The following sequence may be used after the label

-OLD above to achieve this:

&CONTROL OFF

EXEC REX I

IIF IRETCODE EQ 0 EXEC &0 11 12 &3 14 IS 16 17 •••

&EXIT &RETCODE

Similarly, the entire Exec may be preceded with one line starting with

HRACE or &CONTROl. Thi s too wi 11 be taken as a REX Exec if the fi rst

non-blank characters in the second or subsequent lines are "/*" or "*/*"

as above, and REX wi 11 then ignore line one when it executes the data.

This permits EXEC 2/REX bilingual EXECs, and EXEC/REX in the same format.

Example:

&TRACE
*/Jf This is an EXEC2/REX Bilingual Exec •••

IGOTO -OLD M/

Say 'This is executed when REX is installed'

exit

-OLD
* Install REX then ,.e-invoke the Exec •••

EXEC REX I

&IF IRC EQ 0 EXEC &0 &ARGSTRING

&EXIT IRe

The eMS implementation 130

~-'.'------~-~---------.

18" Internal Use Only

./\ 	 Note for" XEDIT users: XEDIT currently di scards all lines whi ch have an
asterisk in column one. When writing bilingual XEDIT macros you should
therefore take care that the bilingual comment line d~es not start in that
column.

Similarly. care should be taken not to end a REX comment in such a way that
the asterisk on the closing ")f/" is at the start of a line: if you do.
XEDIT wi 11 throw the 11 ne away and the comment wi 11 never be closed •••

Also, for XEDIT you should specify "MACRO" instead of "EXEC" to re-invoke
the program after REX has been installed.

4.7 REX PROGRA" STRUCTURE

The following information may be of interest to some readers:

REX 15 implemented as eight CSECTS which together form a Read-Only Module
that is self-relocating and'recursive. All "System dependent" code is
contained in simple macros, so REX may be modified for running under a
di fferent operati ng system by ju.st rewr; ti ng DMSREX ASSEMBLE al1d REXEXT
MACRO, then ra-assembling the other CSECTS. The basic interpreter was
successfully moved to another CMS-I i ke operat i ng system in about three
man-days.

The code never (except in existing external interfaces) uses other than
the top bi t of registers for flags etc •• and so should be sui table for the
5/370 extended 31-bit architecture ("XA").

REX runs enabled for interrupts as soon as the input Plist has been safely
copied, and stays enabled except when it branches to CMS Nucleus service
routines (e.g. DMSFREE/DMSFRET).

REX runs in Nucleus Key for efficiency, however during testing a special
module is used which runs in User Key in order to provide some confidence
of the securi ty of the code.

The CMS implementation 131

11M Internal Use Only

Briefly, the approximate size (in source lines + comments) and function of
each CSECT is: .

DMSREX - 1900 - Reads the EXEC file and calls REX!NT.
Also handles the direct interface
to variables.

DMSRCH - 2620 - Conversion (Character c--> Binary),
console.I/O. general services.
and all arithmetic.

DMSREV - 2200 - The Expression Evaluator.
DMSRFH - 5000 - Built-in functions.
DMSRIH - 2970 -Parses the input data, controls most

execution decisions. and passes
clauses to REXXEC for execution.

DMSRTC 540 - Format and display trace information
DMSRVA - 1620 - Access and maintain REX variables.
DMSRXE - 3270 - Executes individual clauses.

REXMIHT MACRO is about 1280 lines <Internal DSECTs. etc.)
REXEXT MACRO is about 1660 lines (External interfaces)

The REX package includes other fUes and utilities, of course. and tha
approximate size of the more important of these is (aga,in, in lines):

REXFHS2 - 1700 - Extended functions
REXVMFHS - 2470 - VM-related functions
REX EXEC 180 - On-line documentation and installation
IOSLIB - 3890 - On-line documentation data
SCRIPT - 9400 - (This document)

In terms of 11nes of coda, tha REX i ntarpreter is approximately 7800 lOC.
and the CMS interface macros are 600 LOCo The REX language is therefore
fully implemented in 8400 lOC, which assembles to approximately 32000
bytes.

Tha CMS implementation 132

II" Internal Use only

,~ 4.8 REX I1AINTENANCE STRATEGY

The REX language, and the internal use REX interpreter itself (except for
the built-in functions), and the documentation, is maintained by this
author. Please send any problems. suggest; ons. or trouble reports to
REXtfAIL at WINPA, wi th a copy to REXHAIL at GDLS3.

However several modules are now maintai ned by other people who have kindly
agreed to continue to support them - problems with these packages should
be directed to them in the first instance:

CALLER

Bob Marshall. DFESC4 at MSHVM2

FSX

Jim Mehl, MEHl at SJRlVMl

lOX, Built-;n functions

steve Davies, FILES at WINPA

REQUIRED

John Godwi n, GODWIN at SJHV"'l

REXFNS2, HT, RT, RXLOCATE

Reed Bittinger. 2F7RRBIC at FSDSA

REXIFY, REXTRAN

Russ Williams. RUSS at STlVMl

REXVtfFNS

Dick Snow, SHOW at STlVM7

Forrest Garnett, CMSLIVES at lSGVMB

The CMS implementation 133

IBn Internal Use only

4.9 PERFORMANCE CONSIDERATIONS

Rex is unusual in being a structured language which is interpreted, and
because of this has required some fairly complicated coding techniques in
order to achieve good performance. These include:

• 	 Variable names are held in a two-level binary tree to provide fast
lookup and an efficient implementation of the PROCEDURE EXPOSE func
tion.

• 	 The position in the data of all labels is saved in a look-aside buffer
arranged in most~recently-used order: this. considerably improves the
performance of subroutine and internal function calls. Accesses to
built-in and external routines are similarly recorded and reordered
for improved performance.

• 	 The internal form of all clauses 15 saved in a second look-aside buff
er: this obviates the need for parsing each clause each time it is
executed, giving speed improvements of a factor of two in many loops.
This look-aside is not started until the first CAll, INTERPRET, repet
itive DO. or label is found. This look-aside also means that the
overhead of including comments in Execs is negligible except for the
storage they take up and the initial read-in time.

• 	 Special look-aside information is kept for DQ-Ioops to minimise loop
overhead.

e 	 Parsing i~ optimised for mixed case data. PARSE ARG and PARSE PUll
are therefore slightly faster than ARG and PUll.

Where possible. REX Execs should be V-format. This minimises execution
time, ma in storage use (pagi ng), and di sk space.

As much as possible of REX Execs should be written in mixed case (espe
cially comments): this maximises reading speed and minimises human errors
due to misreading data, and so improves the performance of the human side
of the REX programming operation.

There 15 now no particular area in the interpreter that can be described
as a bottleneck. however any external call may incur significant system
overheads. High precision numbers should be avoided unless truly needed.

~\

The 	eMS implementation 134

II" Internal Use only

,~ 	 5.0 THE TSO IMPLEMENTATION

The REX language is system" independent, and as described elsewhere (page
131), the 5/370 implementation was writte.n with all system dependent code
moved ; nto external Macro 11 brar; es. The effecti veness of thi s strategy
has been demonstrated by the T50 implementation of REX by Burn ,Lew;s which
is able to use the REX assembly modules di rectly - hence ensuring an ; den
tical implementation of the language.

In the T50 implementation, Execs are stored in one or more partitioned
datasets (whi ch must be allocated as 5Y5EXEC). The REX interface ; s
i "stalled with the name "EXEC", replaci n9 the T50 eli st interpreter (whi ch
may be explicitly invoked through its alias, "EX").

The interface passes control to the REX interpreter if the command verb
matches a member in the 5Y5EXEC dataset(s), otherwi se it passes control to
the Clist interpreter. REX Execs may call Clists and vice-versa, and like
the CM5 implementation they may be invoked with the program already held
in storage.

Preliminary tests have indicated that the fUnction of a typical CtI5T may
be wri tten in REX and achi eve a performance improvement of an order of
magni tude •.

,~ 	 Further i nformat ion and the T50 versi on of REX may be obta i ned from Burn
lewis (BURN at YKTVS J.

The T50 implementation 135

IB" Internal Use only

~.

6.0 ACKNOWLEDGEMENTS

The inspiration for REX initially came from the standard (CMS) EXEC lan
guages: many of the features follow di rectly on from thi 5. Many languages
have influenced the development of REX - for example the flow-control con
structs are very PL/! like. as is much of the notation; however the con
cept of the Blank operator which both concatenates and inserts a blank is
I believe original. (Please tell me if it is not!>

. .
The main influence, however, on REX development has been the Corporate Job
Network. Without the network, there would have been little incentive to
start a task of this magnitude; and without the constant flow of ideas and
feedback from thoughout the corporation REX would have been a much poorer
language. Much credit for the effectiveness of the network as a communi
cation medium for this sort of work is due to P.G.Capek who edits the V"
Newsletter.

EXEC 2 (by C.J •Stephenson) • together with the Yorktown SYC package
<M.Hack). have strongly i nfl~u~nced the language; parti cula.rly in the area
of host dependenci es and interfaces. The ADDRESS instruct i on system
interface. for example. is similar in effect to the EXEC 2 &PRESUME state
ment. I am especially indebted to Michel Hack for numerous extensive dis
cuss; ons on the phi losophi es and features of both the REX language and its
System/370 interfaces.

Very many (at least three hundred) people have made constructive criti
cisms and comments on the REX language; and several have contributed code
and documentation. Members of the REX Language Committee <coordinated by
Was Christensen) especially were of considerable help in the decisions
leading to major releases o~ the REX package.

There are now far too many to give everybody who has helped the individual
thanks I would like to have included in this document. but all REX users
are indebted to those people from allover the company who have contrib
uted help, suggestions. and time.

I must. however, list those people who have contributed code or documenta
tion to the REX package. and who continue to help with maintenance etc ••
Steve Davie!! deserves special mention for the enormous effort he has put
into the bu i I t-i n funct i on package - whi ch would have been much poorer
without his work. A complete list is:

Chuck Bersharn <part of DRAIHSTK)

Dave Betker (part of REX EXEC# and the sub-indexes in REX IOSlIB)

Reed Bitt i ngar <REXFNS2~ Hr, RT, RXLOCATE~ soma conversion functions)

Peter Capek (part o~ REXDOC)

steve Davies (Most of the built-in functions. recent additions to
lOX, part of TRACER)

136Acknowledgements

IBM Internal Use only

Forrest Garnett

John Godwin

Rob Golden

Laurie Griffiths

"ichel Hack

Ri ckHaeckel

Ray Holland

Ray Mansell

Bob Marshall

Jill Mehl

S1110n Hash

"ike Nicholson

steven Powell

Dick Snow

coyt Ti 11man

Carol Thompson

Russ Wi 11 i alftS

(RXCPA)

(REQUIRED)

(REXSHARE - DCSS support)

(A major extension to the REXVAR variables interface,

to hold variables in a binary tree)

(QEXEC, the original SYH, an impressive collection of

improvement!! to Rex coda and documentation, and of

course YKTSVC and CMS PRY - wi thout whi ch the develop

ment of REX would certai nly not have been attempted)

(parts of REXDOC, REX EXEC, ate.)

(original ABBREV function)

(part of PROMPT>

(CALLER) ,

(FSX Version 2 - Colour and extended data stream sup
port)

(015PI0 - the full-screen interface used by FSX.)

<lOX)

(part o'f the FIND function, and the or1 ginal

SOBWORD/DELWORD 'functions)

(REXVMFNS)

(REXIFY initial version)

(part of REXDOC, and extensive advice on text process·

ing for the REX reference card)

(REXTRAN and REX!Fy)

MFC. 4th July 1982.

Acknowledgements

• ,.+ ••• ~ <... - -., . - .. - ,,~ .-.. _...

137

IB" Internal use only

A.O THE SUBCOMMAND CONCEPT

A subcommand environment usually corresponds to an interactive environ
ment, i.e. an environment in which a user may enter commands to be exe
cuted in that environment. An example is an editor, which accepts
commands to change, insert or delete data in a file, or to change the cur
rent location in a file. To distinguish commands issued to a particular
environment (such as an editor) from commands issued directly to the host
(eMS), the word :subcommand is often used.

Interactive users react to the success or failure of a particular subcom
mand by adapt i ng an intsmded sequence of commands. They enqu ire about
specific attributes of the environment (e.g. length of the current line)
and base subsequent subcommands on the information supplied by the envi
ronment (e.g. displayed in a message area).

The SUBCOM mechanism makes this mode of interaction available to programs
as well as human U5ers. It ,ives programs the ability to issue subcom
mands to the environment, to r,act to the outcome of a subcommand. and to
retrieve information about the environment for subsequent Use.

To use the SUBCOM mechanism, an interactive program sets up a subcommand
environment. This involves declaring the name of the environment, and the
entry point in the interactive program that ;5 prepared to handle subcom
mands issued from other programs to the declared env; ronment.

Programs which issue subcommands to interactive environments are often
written in a convenient interpretive language (such as EXEC 2 Or REX). and
are traditionally called macros. Both REX and EXEC 2 have the convention
that. unless instructed otherwise. they direct commands to a subcommand
environment whose name is the filetype of the macro. Traditionally, edi
tors declare their subcommand environment under thair own name. and also
claim that name as the filetvpe to be used for their macros.

For example. the XEDIT editor ("new CMS edi tor" of VM.lSystem Product,
announced at the end of January 1980) sets up a subcommand environment
named XEDIT, and the filetype for XEDIT macros is also XEDIT.

The macro issues subcommands to the edi tor (e. g. NEXT 4. or TRANSFER
ZONE). The editor "replies" with a return code, and sometimes with fur
ther information, which .1S stacked. and may be read by the macro. A
non-Zero return code from NEXT 4 may indicate that End-of-file has been
reached. and TRANSFER ZONE may stack two numbers, which are the current
setting, of the "zone" in XEDIT. By testing the return code and retrieving
stacked information, the macro has the ability to react appropriately, and
the full flexibility of a programmable inter~aca 15 available.

REX allows the default environment to be altered (between various subcom
mand environments or the host environment) using the Address instruction.
EXEC 2 has a similar mechanism in the &PRESUME statement.

The SUBCOM command is used to declare. query, or cancel subcommand envi-

The Subcommand concept 138

. I

IBM Internal Use only

ronments.

Only the query form of SUBCOM i~ a command, in the sense that it can be
issued from the terminal (or from an EXEC file). The form of thi s command
j s:

SUBCOM name

This yields a return code of 0 if.!!2!!!!! is currently defined, or 1 if it is
not def i ned as a subcommand anvi ronment nama.

Programs may call the SUBCOM functi on wi th an appropri ate pI i st to declare
or cancel an environment, or to obtain complete information about a
declared environment.· The plists are defined in YKTSVC MEMO. (A eMS
funct;on takes a parameter list which may contain binary information, such
as flags or binary addresses, and is thus distinguished from a command.
which takes character string arguments only.)

The command SUBMAP can be used to list currently defined subcommand envi
ronments.

(From SUBCOM MEMO byMi chel Hack, Yorktown Hei ghts, February 1980)

The Subcommand concept

--..,..~.-. ~ -'..

139

IBn Internal Use only

,~.

B.O EXAMPLE EXECS FOR CMS USING REX

These examples show three possible styles of Exec writing (there are many
others): the f1 rst is a "pri vate" Exec, in whi ch full use is made of
literal shorthand etc; in the second. all literals are explicit (quoted);
the third is somewhere between the two, with the emphasis being on read
ability and presentation.

ADDR EXEC

/JE Displays name and address for nicknames specified JE/

Arg rest

If rest=" I rest='?' then signal tell

'REQUIRED MODULE SCANRMSG CPS' ./JE Is he missing anything! M/

Do i=1 to wordsCrest) /M For each word in REST •• JE/

parse varrest nickname rest /JE •• get 1st M/

State Nickname Distrib 'M'

If RC=O then do '

Say nickname 'is a distribution list'
Itarate I; and

/M not a list M/

Scanrmsg nickname

if RC=O then /JE some data was stacked M/ do

Pull nn node uid via n1 n2 n3 n4 n5

if uid='%' then

say Nickname 'is the local user' via'

elS8

say Nickname 'is' n1 n2 '('uid at node'P

Iterate I; end

/M nothing was stacked. might be a local userid JE/

CPS Transfer CL 1 from Nicknama

Pull; pull /M claan stack aftar CPS M/

If RC=O than say Nickname 'is a local VM id'

elsa say Nickname 'is an unknown name'

end /JE I M/

exit

tall: /M tall about the program JE/

say 'Correct form: ADDR namel <name2 <name3 •..•»,

say

say 'ADDR searchas your RMSG file for the specified'

say' nickname.'

say 'If it finds the name, it displays the actual node'

say" and used d of the user. If the nama i sn' t found,"

say' it checks for a local userid with the same name.'

140Example Execs for eMS using REX

IBM Internal Use Only

SEND EXEC (from the EXEC 2 documentation)

/* Send file to a local user */

Arg name fn-ft fm Z

if name=' , I name='?' then do

say 'Use: SEHD User Filename Filetype<Filemode>'
exit 100; end

if ft=" I Z-=" then do . /* Check only 2 or 3 args */

say 'Bad SEND command'
exii: 101 iend

i f fm~" then fm=' *' "* assume ANY if no mode tV
'CP SPOOL PUH' name 'CLASS A'
if rc"'=O then do /* check SPOOL worked

say name 'is not a valid userid'
exit 102; end

'PUHCH' Fn Ft Fm
if rc"=O then do /* check PUHCH worked */

say 'Error' rc 'from "PUHCH" (while in SEND)'
nn=102
end

elsa /* TeU recipient what has been done *"
'CP MSG' Hame 'I have just sent' Fn Ft Fm 'to you.'

'CP SPOOL PUN * CLASS A'
Exit nn

Example Execs for CMS using REX 141

IB" Internal use Only

sample ednor macro: Edi tor subcommands are in upper case for emphas15.

/'IE REX equivalent of CONC XEDIT (EXEC 2) Macro */

/'A Fi rstcomprehensi velv check the operands 'IE/

c='Command' /* for efficient and safe use */

Arg num fill

select
 ,.
when num=" than do; num=1; fi 11=' , and

when fill=" then do

if num='!' then signal tell
,f111='

end

otherwise

<:If fi 11='*' then fill="

end /'J(select */

If datatvpe(num)~='HUM' then do

c EMSG 'Invalid line count "'num'"'
,
signal disaster; end

/M How check if the concatenated line will 1it 1;le */

e TRANSFER LENGTH TRUHC LINE

pull len trune fl;ne

if len>255 then do

e EMSG 'File too wide to use this Macro'
exit; end

c STACK 1 1 Ian; pull curline

string=curline

do num

c NEXT
if rc"=O then do

c EMSG 'EOF hit before concatenating' num 'lines.'

': 'fl ine

signal disaster; end

c TRANSFER LENGTH

pull len

c STACK 1 1 len; pull curli ne

string=5tring I I fill II curline

i=length(string)

if i>trunc then do;

c EMSG 'Concatenated line length', /Jfcontinues•• 'IE/

i 'exceeds TRUHC column' trunc'.'

': 'flina

signal disaster; end

and; /JE num M/

(Continued on next page •••)

EXample Execs for CMS usi ng REX

--" ... ~.-.-~..----------------------------

II" Internal Use only

/* PUT THE CONCATENATED LINE IN THE FILE */
c ':'fline /* go to right place */

c REPLACE string
c NEXT
c DELETE num
c UP
exit

disastar:
arg prompt
parse source ••• axecname •
c REPLY execname prompt
exit

Tall: /* CONC? */
~

c MSG ,+---+,
c MSG , I Corract form is: CONC <N <Fill» I '
c MSG ,+-------------------------~---------------------+,
c MSG

c MSG 'Concatenate the next· N Ii nas usi ng Fi 11 stri ng as'

c MSG 'separator. Defaults are 1 line and single blank'

c MSG 'fill. If Flll="*" the lina5 are to be concatenated'

c MSG 'without any separators.'

Exit; end

~,

Example Execs forCMS us; ng REX 143

IBn Internal use only

(:.0 ERROR NUMBERS AND MESSAGES

The error numbers produced by syntax errors during interpretation of REX
programs are all in the range 1~49 (and this is the value placed in the
variable "RC" when SIGNAL ON SYNTAX is trapped), Under CMS, REX adds
20000 to these error return codes before leaving an Exec in order to pro
vide a different range of codes than those used by EXEC and EXEC 2. When
REX types an error message, it first clears the CMS "HOTYPIHG" flag to
ensura that the message will be seen by the user~ even if "HT" has been
typed during executi on of the program.

Several o~ the error messages are generated by the external inter~aces to
the interpreter either before the interpreter gains control, or after con
trol has left the interpreter. Therefore these errors cannot be trapped
by SIGNAL ON SYNTAX. The error numbers involved are: 1, 2, 3, 5 'if the
initial requirements for storage could not be met), and 26 (if on exit the
returned string could not be converted to form a valid return code).

The PoSS) ble error numbers wi th thei r messages and mean; ngs are as follows
(the error number is contained' in the threa digits following "DMSREX" in
the error code):

DHSREXOOIE Program name not specified

"EXEC" has been invoked without the name of a f1 Ie. REX cannot
therefore proceed with execution.

D"SREX002E Program could not be found

A program has been spec i fi ed whi ch cannot be found on any acces
sible disk.

e.g. "EXEC PPP" would give this arror if no file with filename
and filetype "PPP EXEC" could be found.

D"SREX003E Program ;s unreadable

An error was returned by CMS while the Exec was being read from
disk.

Thi sis almost always due to attempting to execute an Exec on
another persons di sk, which you have accessed Read/Only but
someone else has Read/Write. The other person has altered the
Exec and it no longer exists in the same place on the disk.

The cure for this is to re-access the disk on which the Exec
resides.

Error numbers and massages 144

IBn Internal Use only

DI'ISREX004E Program interrupted

The system interrupted execution of an Exec or Editor macro,
usually due to your having typed in the immediate command "he"
(Halt Exec). Certain utility modules (e.g. FSX) may force this
condition if they detect a disastrous error condition.

Unless trapped by S'IGNAl ON HALT, this causes REX to i mmedi ately
cease executi on wi th th; s message and the system data queue
("program stack") is cleared.

D"SREXOOSE "achine storage exhausted

While attempting to interpret an Exec or REX program, REX was
unable to get the space needed for its work areas, variables,
etc.

This is most likely to occur when REX is invoked from within a
User program (such as an Editor) which 15 already using UP most
of the storage available.

Run the REX program on its own. or deft ne a larger Vi rtual
Machine, as appropriate.

DtsSREX006E unmatched "'..I.'" or quote

On reach i ng the end of f,ile (or end of data in an INTERPRET
instruction), REX is still scanning a literal string or a com
ment.

This is caused by there being an unmatched quote or incomplete
comment in your program •

It can also happen in XEDIT macros if your comment ended at the
beginning of a line thus:

/* This is a comment
*/

The current versi on of XEDIT throws away all Ii nes begi nn i n9
with an asterisk, hence the comment terminator cannot be found
by REX •••

DnSREX007E WHEN or OTHERWISE expected

Within a SELECT construct. REX expects a series of WHEN con
structs and an OTHERWISE. If any other instruction is found~
this message results.

This is commonly caused by forgetting the DO and END around the
11 st of instructi ons followi ng a WHEN.

Error numbers and messages 145

lIM Internal Use only

e.g: Select
When a=b

Say A EQUALS B
exit

Otherwise nop
end

Should be: Select
When a=b then Do

Say A EQUALS B
exit
end

Otherwise nop
end

DHSREX008E unexpected THEN or ELSE

A THEN or an ELSE has been "found which does not match a corre
sponding IF clause.

This error often o~curs because of a missing END or DO END in
the THEN part of a complex IF THEN ELSE construction.

e.g. 	 IF a=b then do

Say EQUALS

exit

else
Say NOT EQUALS

should have an END immediately following the EXIT instruction.

DMSREX009E Unexpected WHEN or OTHERWISE

A WHEN or an OTHERWISE has baen found outside of a SELECT con
struct. You may have unintentionally enclosed it in a DO END
construct by leaving off an END instruction. or you may have
tried to branch to it with a SIGNAL instruction (which cannot
work as the SELECT is then closed).

DMSREXOlOE unexpected or unmatched END

You have put more ENDs in your program than 005 and SELECTs. or
the ENDs are wrongly placed so they do not match the DOs and
SELECTs.

It may ba helpful to use "TRACE Scan" to show the structure of
the program and hence make it more obvious where the error 15.
Putting the name o"f the control variable on ENDs which close
repetitive loops can also help locate this kind of error.

A common mistake which causes this error message is attempting
to jump into the middle of a loop using the SIGNAL instruction.
Si nee the p.ravlous DO wi 11 not hava been exacuted. th. END is
unexpected. Remember, too. that SIGNAL deacthates any current

error numbers and messages 146

IIH Internal Use only

loops. so it may not be used to jump from one place inside a
loop to another.

This error will also be generated if an END immediately follows
a THEN or an ELSE.

Df1SREXOllE control stack Full

You have exceeded the implementation limi t of 250 levels of
nesting of control structures (DO-END, IF-THEN-ELSE, .tc).

This could be due to a looping INTERPRET instruction. for exam
ple:

line='INTERPRET line'
Interpret line

which would otherwise loop forever. Similarly a recursive sub
routine or internal function which does not terminate correctly
could loop forever.

If this is not the cause, complain to the author to increase the
number of levels available. (He will probably refuse.)

Df1SREX012E Clause> sao characters

There is an implementation restriction that limits the length
of the internal representation of a clause to 500 characters
you have exceeded thi s.

If you cannot see why this has happened. it is most likely due
to a missing quote. which has caused a number of lines to be
included in one long string. The error probably occurred at the
start of the data included in the clause traceback (flagged by
"+++" on the console).

The internal representation of a clause does not include com
ments or multi pie blanks whi ch are outsi de of stri ngs. Note
that any symbol ("name") gains two characters in length in the
internal representation.

DHSREX013E Invalid character in data

Your program includes a character outside of a literal (quoted)
string which is not one of the following:

A-Z. a-z. 0-9 (Alphamerics)
a I $ & .? underscore (Name chars)
& * () - + = ~ I " ; : < , > % / (Special chars)

Error numbers and messages

~--- -.~- -. -- -- .. - . . - ~. -"< .- -~ • - _..._... ,"-,.~ . -_. --_.-., ~ - -"--~- ..~-.-~.--,~,- --- ...-,- .. "~~---.- ~

18" Internal Use only ~

D"SREX014E Incomplete DO/SELECT/IF

On reach i ng the end of f i 1e (or end of data in an INTERPRET
i nstructi on), it has been detected that there ; s a D'O or SELECT
without a matching END, or an If which is not followed by a THEN
clause to execute.

It may be helpful to use "TRACE Scan" to show the structure of
the program and hence make it more obvi ous where the mi !lsi ng EHD
should be. Putting the name of the control variable on ENDs
which close repQtitive loops can also help locate this kind of
error.

DHSREXOISE Invalid Hex constant

Hexadecimal constants must include an even number (and at least
two) Hex digits. You have most likely mistyped one of the dig
its (e.g. 0 instead of 0)

The following are all valid Hex constants: (blanks are allowed
at byte boundaries to improve readabi 1 i ty).,

'l3'x

'A3C2 lc34'x

'lde8'X

The error may also be caused by following a string by the
ona-charactar symbol "X" (a.g. tha name of the variable "X")
when' the stri ng is not intended to be taken as a hex spec; f1 ca
tion. Use the explicit concatenation operator, "II", in this
si tuat i on to concatenate the string to the value of the symbol.

D"SREX016E Label not found

A SIGHAl or CAll instruction has been executed (or an event for
which a trap was set has occurred). and the label specified can
not be found in the file. You may have mistyped it. or forgot
ten to include it.

The name of the label for whi ch the search was made i 5 included
in the error traceback.

CI'ISREX017E unexpected PROCEDURE

A PROCEDURE instruction was encountered in an invalid position.
either because no internal routines are active, or because a
PROCEDURE instruction has already been encountered in the
internal routine.

A possible causa of this is "dropping through" into an internal'
routine rather than invoking it via CALL or a function call.

Error numbers and messages 148

IB" Internal use only

~, D"SREX019EStr;ng or symbol expected

Following the keyword CALL or the sequence SIGNAL OH or
SIGNAL OFF, a symbol or string was expected but was not found.

Possibly the symbol or string was entirely omitted, or a special
character (such as a parenthesis) has been inserted.

DMSREX020E symbol expected

In theclausas END, ITERATE, LEAVE, HUMERIC, PARSE, and PROCE
DURE a symbol can ba expected. Either it was not present when
required, or soma other characters were found.

Alternatively, DROP, UPPER, and the EXPOSE option of PROCEDURE,
expect a list of symbols. Some other charactars were found.

DttSREX021E .Junk on end of clause

You have followed a clause, such as SELECT or HOP, by some data
other than a comment.

DMSREX024E Invalid TRACE request

The setti ng speci fi ed on a TRACE instruction (or as the argument
to the TRACE built-in function) starts with a character which
does not match one of the valid TRACE settings (i.e. H, E, C, A,
R, I, L, or S). Thi 5 error is also rai sed if an attempt is made
to request "TRACE Scan" when insi da any kind of control con
struct.

DttSREX02SE Invalid sub-keyword found

A token has been found in the position in an instruction where a
particular sub-keyword was expected.

For example, in a NUMERIC instruction, the second token must be
DIGITS, FUZZ, or FORM, and anything else is in error.

DI1SREX026E lnval i d whole number

An expression in the HUMERIC instruction, or a parsing posi
tional pattern, or in a repetition phrase ofa DO clause, or the
right-hand term' of the exponentiation ("**") operator, did not
evaluate to a whole number (or is greater than the implementa
tion limit, for these uses, of 999999999). This error is also
raised if a negative repetition count is found in a DO clause.

Similarly the return code passed back to CMS with the EXIT or
RETURH instructions (when a REX program is called as a command~
must be a whole number which fits into a S/370 register (see
page 35).

This error is most likelv due to specifying a symbol which is

Er,.or numbers and messages 149

18" Internal Use only

not the name of a variable in the expression on any of these
instructions.

e.g: EXIT CR when you meant to put EXIT RC

DMSREX027E Invalid DO syntax

Some syntax error· has been found in the the DO i nst ruct ion.
Th1!5 mi ght be usi ng BY or TO twi ce, or us; ng BY, TO, or FOR when
there is no control variable specified, etc.

DttSREX028E Invalid LEAVE 0 .. ITERATE

A LEAVE or ITERATE instruction was encountered in an invalid
position: either no loop is active, or the name specified on the
instruction does not match the control variable of any active
loop. Note that since internal routine calls and the INTERPRET
instruction protect DO loops, they become inactive. Therefore,
for example, a LEAVE ina subrouti ne cannot affect a DO loop in
the calling routine.

A common cause for t~is error message is attempting to use the
SIGNAL instruction to transfer control within or into a loop.
Since SIGNAL terminates all active loops, an ITERATE or LEAVE
would then be in error.

DttSREX029E Envi ronment name too long

The envi ronment name spec; fi ed by the ADDRESS i nstructi on i!l
longer than permi tted for the system under whi ch REX is execut
ing. For eMS, environment names may not be mora than 8 charac
ters long.

D"SREX030EHame/string) 250 characte..s

There is an implementation limit on the length of a variable
, or label name, and on the length of a literal (quoted) string.

Following any substitutions, the l~ngth of a name must be less
than or equal to 250 characters. The most likely cause of tht 5

error is the unintentional use of-the "." (period) in a name,
hence causing an unexpected substitution.

Similarly, a litaral string may not exceed 250 charactars.
Leaving off an ending quote (or putting a single quote in a
string) can cause thi 5 error as then several clauses may be
included in the string. e.g: the string

'don't'

should be written

'don"t' or "don't"

Error numbers and messages 150

IBM Internal' Use only'

DMSREX031E Name starts with numeric/ft."

You are not allowed to assign a value to a variable whose name
starts with a numeric digit or a period <since if you were, you
could re-define numeric constants). Similarly the UPPER
instruct i on may not attempt to alter a vari able wi th such a
name.

The best way to start a vari able name is wi th an alphabeti c
character. although some other characters are allowed.

DHSREX032E lnva1i d use of stem

An attempt is being made to change the value of a symbol which
is a stem (i.e. a symbol which contains just one period, as the
last character). Thi s may be ina parsi n9 template, the UPPER
instruction, or as the target of an assignment. The action in
these cases is undefined and is therefore in error.

DMSREX033EInvalid usa of expression

The result of an ex,press! on ; n an i nstructi on was found to be
invalid in the particular context j,n which it was used. This
may be due to an i 11egal FUZZ or DIGITS value in a NUMERIC
instruction (FUZZ may not become larger than DIGITS1,or it may
be trying to SIGNAL a null label (a label whose length 15 0),

In addition. this error is raised if an expression is not speci
fied when it is required (e.g. following the sub-keyword
"VALUE" in certain clauses).

DMSREX034E Lag i ca1 va lua nat 0 or 1

The expression in an IF, WHEN, DO WHILE or DO UNTIL phrase must
result in a "0" or a "1". as must any value operated on by a 10g
i cal operator (1. e." I & &&).

For example:
If rc then exit rc

should be written as:
If rc"=O then exit rc

DHSREX035E Invalid expression

This is due to a grammatical error in an expression, such as
ending it with an operator, or having two operators adjacent
with no data in between.

A common error is to include special characters (such as opera
tors) in an intended charactar exprassion without enclosin~

. them in quotes.

Error numbers and messages 151

IBM Internal Use Only

For example:
LISTFILE)E)E IE

should be written as:
lISTFIlE ')E)E lE'

Or even (if LISTFILE Is 	not a variable):
'LISTFILE)E)E IE·

DtlSREX036E UnmatChttd "(" 	in expression

This 15 due to not pairing parentheses correctly within an
expression.

A common error 15 to include a single W(" in a command. without
enclosing it in quotes.

For example:
COPY ABC A B D (REP

should be written' a5: ,
COPY ABC A B D '('REP

Without this restriction, one would not. be able to have
sub-expressions in evaluations and 50 write:

Re5ult=3)E(4+K)

DtlSREX037E unexpected "," or ")"

Either a has been found outside a function invocation. orft.ft

you hay. too many "i ght pa".ntheses in an express ion.

A common error i!ll to include a "," 'i n a charactar express ion,
without enclosing it in quotes.

e.g:
Say Enter A. B. or C

Should be written as:
Say 'Enter A. B. or C'

DMSREXOl8E Invalid template or pattern

Wi thi n a parsing template, a spec; al character that is not
allowed (e.g. "%") has been found, or the syntax of a variable
tri 9ger is; ncorract Ci. a. no symbol was found aftar a left
parenthesis). This error is also raised if the WITH sub-keyword
is omi ttad f n a PARSE VALUE ; nstruction.

Error numbers and messages 152

IBM Internal Use only

DMSREX039E Evaluation stack overflow

The expression is too complex to be evaluated by the REX imple
mentation. There are many nested parentheses, functions, etc.

You will have to break the expression up by assigning
sub-expressions to temporary variables.

DMSREX040E Incorrect call to routine

The specified built-in or external routine does eX1st, but it
has been used incorrectly:

• you passed invalid data (arguments) to the routine

• or: the module invoked was not a REX compatible routine

• or: 	you have used more than 10 arguments

The fi rs~ poss i bi Ii ty is the most common, and is dependent on
the actual routine: if a routine returns a non Zero return code,
this will cause REX to in turn issue this message (and pass back
20040 as its return code).

If you were not aware that you were invokin'g a routine, then it
is probable tha.t you have a symbol or string adjacent to a "("
when you meant it to be separated by a space or operator. Thi s
wi 11 caUSQ it to be understood as a functi on call.

e.g: TIME(4+5) should probably be written TIMEM(4+5)

DttSREX041E Bad arHhmetic conversion

One of the terms involved in an arithmetic operation i5 not a
valid 	number, or its exponent is outside the range:

-999999999 to +999999999

You may have mistyped a variable's name, or more likely included
an arithmetic. operator in a character expression without put
ting it in quotes.

e.g. MSO * Hi!

should be written: 'MSO * Hi!'

as otherwise REX will attempt to multiply "MSG" by "HI!".

DHSREX042E Arithmetic Overflow/Underflow

The result of an ari thmeti C operati on requi res an exponent
which is greater than 999999999, or less than -999999999.

This can happen during evaluation of an expression (commonly an

Error number!! and messages

;~--~":--~ ~-~:- --.._..

153

IBH Internal Use only

attempt to divide a number by 0), or possibly during the step
ping of a DO loop control variable.

REX only supports 9 digits for the exponent of a number.

DMSREX043E Routine not found

A function has been invoked within an expression, or a subrou
tine invoked by CALL, but no label with the specified name
exists in the program, and it is not the name of a built-in
funct; on _ and the host !lystem has been unable to locate 1t
externally. You have probably mistyped the routine'S name, or
possibly one of the standard packages (REXFHS2 or REXVMFHS) is
missing.

If you were not aware that you were invoking a function. then it
is likely that you have a symbol or string adjacent to a "("
when you meant it to be separated by a space or operator. This
will be understood as a function invocation.

e.g: 3(4+5) should be written 3*(4+5),

DI'ISREX044E Function did not return data

An external function has been invoked within an expression, but
even though it appeared to end without error, it did not return
data for use within the expression.

This is most likely due to specifying the name of a CMS MODULE
which is not intended for use as a REX function and which there
fore should have been called as a command or subroutineo

DHSREX04SE A function must return data

The program has been called as a function. but an attempt is
being made (by RETURN;) to return without pa5~ing back any data.

Similarly, if an internal routine is called as a function then
the RETURN instruction which ends it must specify an
expression.

D"SREX048E Failure in system service

Some system service used by REX (such as user input or output.
or manipulation of the system-provi ded data queue) has fai led
to work correctly and hence normal execution cannot continue.

DI'ISREX049E Interpreter error

Tha interpreter carries out numerous internal self-consistency
checks: this massage indicates that some kind of severe error
has been detected within the interpreter.

Please report any occurrence of thi s error message to the

Error numbers and messages 154

author.

IB"Internal Use Only

Special Characters

See Peri od

+++ Tracing flag 56

! prefix on TRACE instruction 55

M-M Tracing flag 56

>0> Tracing flag 56

»> Tracing flag 56

>C> Tracing flag 56

>F> Tracing flag 56

>l> Tracing flag 56

>0> Tracing flag 56

>P> Tracing flag 56

>V> Tracing flag 56

? prefix on TRACE instruction 55

= immediate Debug command 80'

A

ABBREV function 61

using to select a default 61

Abbreviations

testing wi th ABBREV

function 61

ABS function 61

Absolute v·alue

finding using ABS function 61

Activating REX

automaticallY 130

explicitly 105, 107

Active loops 38

Addition 17

definition 93

ADDRESS function 62

ADDRESS instruction 24

ADDRESS settings

saved during subroutioQ
calls 28

Algebraic Precedence 18

Alphabetics

checking with DATATYPE 64

Alphanumerics

checking with DATATYPE 64

AND function 108

AND, logical 18

AND operator 18

AHD'ing character strings
together 62

ARG instruction 26

ARG option of PARSE

instruction 41

Arguments

of Execs 26

of Funct ions 26. 58

of Subroutines 26. 27

passing to Execs 118

passing to functions S8

Arithmetic 91. 100

combination rules 95

comparisons 96

errors 99

NUMERIC settings 40

operators 11. 91. 93

overflow 99

precision 93

underflow 9_9

Arrays 101

Assignments 21

Associative storage 101

B

Bilingual Execs 130

BITAND function 62

BITOR function 62

81 t's

checking with DATATYPE 64

BITXOR function 62

Blank

adjacent to special

character 12

as an operator 16

Blank removal with STRIP

function 73

1:.:". '

Boolean operations 18

Bottom of program

reaching during execution 3S

Built-in functions 58. 61-80

maintenance 133

BY phrase of DO instruction 29

B2e funct ion 108

B2X function 108

Index 156

~____=-=-C:::.:::.:-=--:::c-.,-==-,==~=~==--=-=--~-~.,-,,--'~-,-,-~=~-=-~ __._._~---=.=o...--~._

I

18" Internal Use only

c

CALL inst~uction 21
CAllER

maintenance 133
CALLER, access to previous EXEC

invocations 113
CENTER function 63
Centering a string using CENTER
function 63

CENTRE function 63
Centring a string using CENTRE

function 63
Character removal with STRIP func
tion 13

Clauses 12
as labels 20
assignment 20, 21
continuation of 15
null 20

CLCL function 108
CMS

COMMAND environment 23
environment name 23. 25
issuing commands to 22, 23,
24. 2S
sea~ch order 23
unique functions 111

Codes. error 144-155
Collating sequence, using

XRAHGE 18
Colons

as label terminators 20, 53
Combination. arithmetic 95
COMMAND

environment name 23, 25
Command Envi~onments

See environments
Command errors, trapping

See SIGNAL instruction
Command inhibition

See TRACE instruction
Commands

alternative destinations 22
destination of 24
inhibiting with TRACE instruc
tion 55

i !lsui ng to host 22
Comments 12

identifying REX Execs 117
COMPARE function 63
Comparison

of numbers 1" 96,

of stri ngs 17

using COMPARE 63
Compound Va~iables 101
Concatenation of strings 16
Conditional Loops 29
Conditions

ERROR 50

HALT 50

NOVALUE 50

saved during subrouti"8

calls 28

SYNTAX 50
Conditions, trapping of

See SIGNAL instruction
CONGET, immediate console

read 113
Console

reading from with PULL 46
wri ti ng to wi th SAY 49

Content addressable storage 101
Continuation

eharacter 15
of clauses 15
of data for display 49

Control Variable 31
Controlled Loops 31
Conversion

character to decimal 63
character to hexadecimal 64
decimal to character 66
decimal to hexadecimal 67
EXEC to REX with REXIFY 114
EXEC 2 to REX wi th REXIFY 114
formatting numbers 68
hexadecimal to character 79
hexadecimal to decimal 79
REX2 to REX3 with REXTRAN 114

Conve~sion functions 61-80,
108-110

COPIES function 63
Copying a string using COPIES 63
COUNTBUF function 109
Counting words in a string 78
CP

issuing commands to 23
retrieving responses from 114

CPA function, in RXCPA 114
CXCl function 108
C2B function 109
C2D function 63
C2X function 64

Index ~ 157

. - - ._- -- - - ~ -.~- ..___. - - .0.,,_

II" Internal Use only

D

Data
length of 16

Data terms 16

DATATYPE function 64

Date and Verst on of the

interpreter 44

DATE function 6S

Debug, Interactive 53, 80

Debugging REX programs

See Interactive Debug
See TRACE instruction

Decimal arithmetic 91-100

Deleting part of a string 66

Deleting words from a string 66

Delimiters, clause

See Colons
See Semi colons

DElSTR function 66

DElWORD function 66

Derived names of variables lOt

CIAG function 111

DIAGRC function 111

DIGITS option

of HUMERIC instruction 40, 93

Direct interface to variable!! 1.21

Displaying data

See SAY instruction

Division 17

definition 93

DO instruction 29-33

See also Loops

DROP instruction 34

Dummy instruction

See HOP

D2C function 66

D2X function 67

E

Editor Macros 24, 138

example 142

Elapsed time

saved durino subroutine

calls 28

Elapsed time calculator 74

ELSE keyword

See IF i n~tructi on

EMSG service module 113

EHD clause

See also DO instruction
See also SELECT instruction

Index

specifying control variable 31

Engineering notation 98

Environment

determining current using

ADDRESS function 62

Environments

addressing of 24

default 25, 42, 118, 138

temporary change of 24

Equal i ty, test; ng of 17

Error codes 144, ISS

online information 105

ERROR condition of SIGHAL instruc

tion 50

Error messages

retrieving with ERRORTEXT 67

Error messages and codes 144-155

Error numbers

online information 105

Errors

during execution of

functions 59

from Host Commands 22

syntax 144-155

traceback after S6

Errors, trapping
See SIGHAL instruction

ERRORTEXT function 67

EVALBlOK

format of 125

Evaluation of expressions 16

Examples

of Editor macros 142

of Execs 140

Exception conditions

saved during subroutine

calls 28

Exclusive OR operator 18

Exclusive OR'ing character strings

together 62

EXECCOMM

interface to variables 121

subcommand entry point 121

EXECFlAG byte in HUCOH 12~

EXECIO service command 113

Execs

arguments to 26

calling as functions 60~ 126

examples 140

executing 106

in-store execution of 118

invoking 117

multilingual·

(EXEC/EXEC2/REX) 130

158

II" Internal Use only

PI ist for 117

retrieving name of 42

Executing REX programs 106

Execution of data 37

EXIT instruction 35

Exponential notation 14, 91

definition 97

Exponentiation 17

defi nHi on 94

EXPOSE option of PROCEDURE

instruction 44

Expressions

evaluation 16

examples 19

parsing of 43

results of 16

tracing results of 53

EXSERV, use with REX 113

Extended Plist 118

External functions

interface 125

EXTERNAL option of P,ARSE instruc

tion 42

External subroutine.

interface 125

External trace bit 116

in EXECFLAG 129

EXTERNALS function 67

Extracting a substring 73

Extracting words from a string 74

E2X function 109

F

FETCH function 109

FIFO stacking 47

File name. type, mode of

program 42

FIND function 68

Finding a mis-match using

COMPARE 63

Fi ndi ng a stri ng in another

string 69, 70. 71

Flow control

abnormal. with SI~NAl 50

with CAll/RETURN 21

with DO construct 29

with IF construct 36

with SELECT construct 49

FOR phrase of DO instruction 29

FOREVER repet i tor on DO i nstruc

tio" 29

FORM option

Index

of NUMERIC instruction 40, 98

FORMAT function 68

Formatting

numbers for display 68

numbers wi th TRUHC 16

of output during tracing 55

text centring 63

text justification 69

text left justification 70

text right justification 12

text spacing 73

FSX
maintenance 133

FSX full screen interface 113

Full screen I/O

wi th FSX 113

with 1053270 113

with MDF 115

Function

invoking REX as 118

Function, built-in

ABBREV . 61

ADS 61

ADDRESS 62

BHAND 62

BITOR 62

BITXOR 62

CENTER 63

CENTRE 63

COMPARE 63

COPIES 63

C2D 63

C2X 64

DATATYPE 64

DATE 65

DELSTR 66

DELWORD 66

D2C 66

D2X 67

ERRORTEXT 61

EXTERNALS 67

FIND 68

FORMAT 68

INDEX 69

INSERT 69

JUSTIFY 69

LASTPOS 70

lEFT 70

LENGTH 70

LINESIZE 70

MAX 70

MIN 11

OVERLAY 71

POS 71

159

IBM Internal Use Only

QUEUED 71

RANDOM 72

REVERSE 72

RIGHT 72

SIGN 73

SOURCELINE 73

SPACE 73

STRIP 73

SUBSTR 73

SUBWORO 14

SYMBOl 74

TIME 74

TRACE 76

TRANSLATE 76

TRUNC 76

USERID 77

VALUE 77

VERIFY 77

WORD 78

WOROINDEX 78

WOROlENGTH 78

WORDS 78

XRANGE 78

X2C 79

X2D 79

Functions 58

built-in 58. 61-80

calling Execs as 126

external 58

external interface 125

external packages 108-112

for VM/370 i nformat ion 111

forcing built-in or external

refel"'ence 59

internal 58

invocation of 58

numeri c arguments of '9

• . ':, ~"'i~' .":'return from 48

44 ,.' ;,.variables in

.. (':. i ~

FUZZ
controlling numeric

comparison 97

FUZZ option

of NUMERIC instruction' 40, 97

G

GlOBALV. use with REX 113

GOTO. abnormal

See SIGNAL instruction

Group, DO 30

H

HALT

option of TRACER command 116

HALT condition of SIGNAL instruc

Halt, trapping

tion 50

See SIGNAL instruction

Halting a looping REX program 115

"he'" i mmedi ate command 115

Help. on-line 105

Hexadecimal

See also Conversion
checking with DATATYPE 64

Hexadecimal strings 13

Host commands 22

"HT" flag

cleared before error

massages 144

HT halt: typing module 113.

1

,

Identifying users 77

IF instruction 36

Immediate commands ~,

"he" US

in INSTANT package 115

"taR
"ts" US

115

Implementation details l:U, 134

Implied Semicolons 15

Imprecise numeric comparison 97

In-store execution of Execs 118

InclusiVE! OR operator 18

Indefinite Loops 29

See also Looping programs

Indentation during tracing 55

INDEX function 69

Indirect evaluation of data 37

Inequality, testing of 17

Infinite loops 29

See also loo." ng programs
Inhibition of command~ with TRA~E
instruction 5S

INSERT function 69

Inserting a string into

another 69

Installation of REX

automatic 130

explicit 105

INSTANT ~ ~MS immediate command

support 115

Index 160

IBn Internal Use Only

Instructions

ADDRESS 24

ARG 26

CALL 27

DO 29

DROP 34

EXIT 3S

IF 36

INTERPRET 37

ITERATE 38

LEAVE 39

HOP 40

NUMERIC 40

PARSE 41

PROCEDURE 44

PULL 46

;....

PUSH 47

QUEUE 47

RETURN 48

SAY 49

4',: I
SELECT

SIGNAL 50

TRACE 53

UPPER 57

Integer arithmetic '1-100

Integer division 17# 91

definition 94

Interactive Debug 53. 80

See also TRACE instruction

Interfaces

system 117

to external routines 125

to Pl/I with REXPLI 114

to variables 121

Internal fUnctions

return from 48

variables in 44

INTERPRET instruction 37

Interpreter date and version 44

Interpreti ve executi on of data 31

Interrupting REX execution 115

Interrupts

REX is enabled for 131

1053270, usa with REX 113

lOX

eMS I/O interface 114

maintenance 133

ITERATE instruction 38

Se. also DO construct

use of vari able on 38

Index

JUSTIFY function 69

K

Key, Storage 131

Keywords

conflict with commands 102

mixed case 24

reservation of 102

L

Logical operations 18

Labels 20, 53

as targets of CALL 27

as targets of SIGNAL 50

duplicate 51

in INTERPRET instruction 37

search algorithm 50

LASTPOS function 70

Leading blank removal wi th STRIP

function 73

Lead; ng zeros

adding with the RIGHT

function 72

removal with STRIP function 73

LEAVE instruction 39

Sea also DO construct

use of variable on 39

LEFT function 70

LENGTH function 70

LIFO stacking 47

Lina lengthpC?f t,er."i'},al 70

Li nas from program _. ?'",'

retrieving with SOURCELINE 73

LINESIZE function 70

Lists 101

LOCATE function, in RXLOCATE 114

Locati ng a phrase ina stri ng 68

locating a string in another

string 69, 70

, locating string in another

string 71

look-aside buffering in REX 134

looping programs

halting 115

tracing 115

loops

See also DO instruction

See also looping programs

161

IBH Internal Use only

active 38 Negation
execution model 33 of logical values 18
modification of 38 of numbers 17
repetitive 29 NEST function 111 . ,:,

termination of 39 Network machine
,~

finding name of with
IDENTIFY 113

Network node
finding name of with

Macros . IDENTIFY 113
S~u. Execs Hade, network

Macros, editor 24, 138 finding name of with
Maintenance IDEHTIFY 113

Built-in functions 133 NOP instruction 40

CALlER 133 HOT operator 18

FSX 133 Notation

lOX 133 Engineering 98

REQUIRED 133 Scientific 98

REX 133 NOTYPIHG flag

('!, " -_ "'l. .-;,.

REXFNS2 133 cleared before arro~-r· ~,- r ~; ". :e.. ~;;. (i

REXIFY 133 messages 144 -'. .'
REXTRAH 133 NOVALUE conditiofi
REXVMFNS 133 on SIGNAL in~truction 50
RXCPA 133 use of 102

MAX function 70 NUCCH
MDF funct ion,. in RXMDF 115 holds EXECFLAG byte . 129
MDF Menu Display Facility Null clauses 20

support 115 Null instruction
Memory See NOP

accessing 111 Null strings 13, 16
finding upper limit of 111 Numb.rs 14, 91

Menu support arithmetic on 17. 91, 93
using 1053270 113 checking with DA rATY!' I; 64
using MDF function 115 comparison of 17, 96

Messages, error 144-155 dClTinition 92
MIN function 11 formatting for display 68
MODULES service module 114 in DO instruction 29
Modules, Utility 113-115 truncating 76
Multiple arguments use of by REX CJCJ

passing to REX 118
,",'

NUMERIC instruction 40
Multiple strings NUMERIC option oT PARSE !nstruc

par-51 ng of 90 tion 42# 9CJ
Multiplication 17 NUMERIC settings

deTinition 93 savCld dur, ng sub...ciuti rut" ...
calls 28 ."

N

Names
oT ExClcs 42
of functi ons 58
oT programs 42 ON
OT subroutines 27 option of TRACER command 116
oT variables 13 Operations

Index

---~.----

II" Internal Use only

tracing results of 53".:
Operators

arithmetic 17, 91, 93

as special characters 14

comparitive 17, 96

concatenation 16

logical 13

precedence (priorities) of 13

OR function 109

OR, logical

exclusive 18

i nelusive 13

OR' i ng character stri ng5'

together 62

OSRESET, for clearing PL/I storage

and VSAM 114

OTHERWISE clause

See SELECT instruction

Overflow, arithmetic 99

OVERLAY function 71

Overlayi ng a st'rtr;: 6n'to .'

another 71

p

Packing a s't:ring wrthX2e:3'~i,
Parameters

See Arguments
Parentheses f

adjacent to blanks '~4

in Qxpressi~ns 16

in function,c.alls 53

in pars1 n9 templates '39

PARSE instruction 41:;
Parsing 83-90 '

defi nit i on a's

general rules '83,' ,35

introduction 8}

literal patterns 85

multiple str.ings' ,,90-', '.'

patterns 85

positional patterns 31

selecting words 86" "".

vari able 'pat:tarns 89

Parsing templates

in ARC instruction 26

in PARSe instruction 41

in PULL instruction 46

Patterns

in parsing 85-90,

i:j ;, l 0,' '? q.::,.f'~~i"':: ,;".; ~..- ~·~f ~~.

Peformanca consldarations 134

Period

as placeholder in parsing 87

causing substitution in vari

able n~mes 101

in numbers 93

PUI

interfacing with REXPLI 114

PL/I storage management

Sea OSRESET

Plist

Extended 1US

for accessing variables 121

for invoking Execs 117

for invoking external

routines 125

POS position function 71

Powers of ten in numbers, 14

Precedence of operators 18

Precision

of arithmetic 93

Presumed command destinations 24

PROCEDURE instruction 44

Program

retrieving lines with
SOURCELIHE 73

Programming style 102. 134

Programs

retri evi n9 name of 42

PROMPT service module 114

Pseudorandom number function. RAN

DOM 72

PUll inst'ruction 46

PULL option of PARSE

instruction 42'

PUSH instru~~i~n 47

QDISK function ~11

QUERY

option of TRACER command 116

Queue

counting lines in 71

reading from with PUll 46

writing to with PUSH 47

writing to with QUEUE 47

QUEUE instruction 41

QUEUED function 71

QUIET

option of TRACER command 117

II" Inte~nal Use Only

R

RANDOM function 72
Random number function. RANDOM 72
RC

not set dUring interactive
debug 80

set by Host Commands 22

set to 0 if Commands

inhibited 55

special variable 103
Re-ordering data

with TRANSLATE function 76
Read immediate of console with

CONGET 113
READFlAG function 111
Reading the Stack and Consol. 46
Remainder 17. 91

definition 94
REPEAT function 109

, • • ..\ 1"";1

Repeating a string with COp,IES .63_
Repetitive Loops 30

:¥: ~ ~ --'>:;. 'I 'j -. ;
Request Block. . .

for accessi ng vari abies .~ ,'i22 ~ ~,
REQUIRED .

maintenance 133
REQUIRED service module 114

",~,!1C)~ '- t ""
Reservati on of key.words 102,

~,'., ... t) , ,
RESULT

set by RETURN instruct i o~'{' 28:;;"" .
48 . ~~o~~\

1 C 3 <> ;,. '" ;i ,'" lb q '.' ',jspecial variable
;~,_:;'i-.er ~- \

Results

for other System5
installation 105
interpreter structure 131# 134
maintenance 133
on-line tutorial 105
self-installation 130

REXDUMP debug aid 114
REXFNS2

description 108
maintenance 133

REXIFY
maintenance 133

Index

REXIFY conversion program 114
REXPLI interface package 114 ',' _

_ - 'W: __, t~

REXTRAN
maintenance 133 ,; ,', ,l,(:

REXTRAN cO,nversi,on program:-; 114'-,)I.;'{
REXTRY test. Exec .114 :.' , . . ,
REXVMFNS

deseri pti on_ ",111, '
mainten~nce 133:,~ 'C: b

RIGHT function 72"
RHD function

See RANDOM functi on •.
Rounding 91

definition 93
Routines

See Funet ion=: ; t, _,'

Sae Subrouti nes .
RSCS machi ne

"

... •l.-~ :,~' 9:Jr S
finding nama of wj~h.,: . ',;':'T; ":):~",e

IDENTIFY 113~"..,;". [""",,!'

RT resume typing mod~iQ_;;=if'".·:, If,i:w:c
Runn i ng off the end of a ' '::~;

program 3S -"U:31i
Running REX programs 106. .(,;;:."
RX prefix ~~et~

on external. routi nEls f0'lf" :'i' ,,:J
REX 125 , ','- ; .:l·, , ~

RXCPA ", > • ',.fA:
ma i ntencu';ce, -, ~133 :

RXCPA exte~~~~,l- fj,.~cti,on:,.- -~14 ,$ ~ ~'~'i.;;::
RXLOCATE extern!!l funct!on U4, r. ~"<'~.
RXMDF external t~f.lcti on US

,,'10.. ~ ::~~~:~,'

s . -, ..
" ,

SAY instructi~ri-:' 49'
Scientific notation 598
Screen I/O.

wi th FSX 113,
wi th 1053270 1-13 '"
wi th MDI7 115.-~, ;:\ ~:iV

Search order
for eommall'td!l,;.;: ,23_" ~":: :."
for fun~t i 0n.~;: i ~~.~ ,",', " -1' ,-, <: '"

for s~~roq~~~'!a~~3e .,' n-~
Searching a strine·!or!l.~ '~ta~Q,:.;-~~:
SEL EeT i n~~ru~".t~ on: ,:'7:4,?~,; ;, "-,IT, i .:'£'!:;'t:>:f(fn;
Semicolons 12 t : l:

implied 15,;, ; ~':ijf::J:;::Z")q"H:i,:h:~
ami 5si on of 24 .r.J. :~(l d:t(.?tHH

Service programs 113-1A-P ,U .t ',--'f1

SHVBlOK
format 0" 122

164,

----------- ------'---------------

IBn Internal Use Only

SIGl

set by CALL instruction 28

set by SIGNAl"i nstructi on ", 52

special variabt~l 163

SIGH function 73

SIGNAL ' '

" ,

executi on ofcfn subro\H:ln'~s 28

in I'NTERPRET i "strucHon -, - 37,

53

SIGNAL instruction" 50-53 ~

Signiflcant digit~:'~ ~ • ,\';",'."

f~<; ~ ;' ,;'!.> ~
in arithmetic 93

Single Stepping

~ _ '; .-. .. ~ M "'~f'" ~"" ~

Sea Interactive 'Debug' "":';
Size of REX interpreter codel31
Source of the program

" retrieval of information 42

SOURCE opt i on of PARSE -

instruction 42 e",~ ,.C),","",;

fS.QURCELIHE.function 73 (,"1 Vj - :'

SPACE functi on '1~7:3~: ,,;' "'ir,',,- ,?n;'

Special Characters 14':;:: ';
Special v."'i)abtels+;~\'f t·; ,:'3 """>. '

RC 103 E' ~';;l :,n':, ':'(': ":" 1'1 ~-'

RESULT 103 ~.~ "F'

SIGL 103 {H' : ,,,m""",1,fr"H: /.35' ;

Stack
''''' ,.,,~ _ ~. ' ... ' .-, ,.. .;-- t"t ~. < • ...:. _'.

counti ng'linas'in'" 71' ." " '
readi ng from with PULL ::::(;6 "

writing to with PUSH 47

writing to with-QU:EUE':':>l{'f""r

STACXIO s8rvica"m:;dul.+'l"1S's::; h

Stem O+,,~j va,.;f~bl e"~ 1911'1"1' ';-)(',9 :: ~
usad 1n~ DROP", n~tr-u~t116:n,~g '34 '1

used in PROCEDURE

instruction 44

Stepping through programs

See Interactive Debug

Storage ",::',."':'"

accessing 1'1'1 ".e, ~;,",': ",'; , ~

f1 ndi ng upper limi t: of 1U
..,

," ~ ,;. ,~:'::,:", ("

Storage, execution froln'-11"8> .
STORAGE function 11\: ~,'_2;\ ',I

,~, 0, ~. ,fll~~ ~'): 1

Storage Key used by REX "131''''

" Strings 13 , . '''''')'1q (1" ''>, '. ,"

as 1i taral con!5t-.';i.tr''',~mt.·~~, ~\~~'::-
as nameS of funct i ofta" i 1'3"~\'r~H, 'J

as names of sti&r~t.t':~.St't't2,e.'~ \1 . "'

cli'inpati'f~'ciR 8f·,l,,1bir!tW" :> g, '" t;:"" (!.,:;- " ~i ~
. "hexadeci mal S~~cif.ft cifti'o!fr:; 1';~ 3.... ~

of 13 ~l enoLa> ~~:

interpretati on of 3il
length of 16 ""'. '''t
null 13, 1.\r- t:l! ,'".<;.,:~.:;";~:

quotes in 13

Verifying contents of 77

STRIP function 73

Style, programming 102, 134

SUBCOM command 138-139

Subcommand destinations 24

Subcommands

"

addressing of 24

concept 138

initialisation 138

SUBMAP command 139

Subroutinas

calling of 27

external interface 125

forcing built-in or extarnal

reference 27

naming of 29

passi ng back values from 48~r'~'

r.t'urn' from 48

use of Labels 27

variables in 44

SUBS.ET f"'"cJ:i on 109

Sub~t'i tut1~n "

in expressions 16

invariable names 101

SU8STRfunction 73

Subtraction 17

definition 93 '-:")'.
,.
SUBWORD fU,ncti on 74

SVC, Yorkt"\twn Interface 117" ' ...<

SYMBOL function 74

Symbolf~, 1'3:

. upper case ,t,ranslati on 13"" i ~F
valid namei \i13

Syntax checking
See TRACE instruction

':::~;..:;, c,;;'
SYNTAX conditi on of SIGNAl '

i nstruct~toncr;.50,:m<:, ;l::O~. 'Ie """
Syntax errors ~: r. :;' 1'('" [It. ,:';;

traceback aft~,. (15'6' ;~i.r:!<,- "
('.:tr ? ~, .. ~ "".

trapping with.~IGNAL instruc-
f"IJ' '-'")::::;.~ M :~~ .

tion so "'-.. ""

System Interfaces ;" 117"

System trace bit 116

,1:- A t ~~t~~:.;. ,; .~ ,

"te" immediat~~ommand 115

Templates. parsing

general rules 83

in ARGinstruction 26

in PARSE instruction 41

in PULL instruction 46

Index 165

--------------------------------~--' ----------------------------~

http:S~~cif.ft

II" Internal use Only

Ten, powers of 97 Type-ahead lines
Terminal lINESIZE 70 count; ng wi th EXTERNAlS '67 ;,,~O,'"
Terms and data 16
Text formatting

See Formatting
See Words

THEN
as free standing clause 24

following IF clause 36

following WHEN clause 49

TIME function 74
TM function 10'
TO phrase of DO instruction

J. --:Trace bit, external 116
TRACE function 16
TRACE instruction 53

See also Interactive Debug
: ,"

TRACE setting
altering with TRACE

function 76
a 1tert ng with TRACe· -' : ,;,:', ., ",r-'~ 1; • :' , f\ '. "

instruction 53
querying 76 ,o,.;! ,:""",," :3(1,.,;),,;

, ·-"\l

-. ,
•• '~ .• ',f.1 "'. • I

Trace tags 56 ;':.,~UPPER instructi~oJ'l ,S}" .1 '''~'';:'~ ",."

Traceback. on Syntax error :'56' ~,,.,t'~ , ,,', UPPER opti on O'f P'AR'SE'l'(':(" ,,' ,,",:L '~~' { ., ,

TRACER ','" ,: :,;",," c':;';' instruct'n,~-:;,H.4i:"f'!r 0::' ~:, ><t;tf"'~"':::, :'::J_'';y,

external control of ;':::'USERID func,tio)'l.,:n .. ,',' ~':l(!~t:; 'E'!OI~;".
tracing 115. 116

Tracing
action saved during subroutine'i'

calls 28
data identifiersS6,·:cf)',,\oY, :,'lV!?'(>',

execution of E)(ec5-'~5'3: :';1' I"j:);;-;""~

Type of data
,.. , - .• I'

check i ng with DATATYr,~! ' 6f,: '"
TYPEFlAG function .110- ~, -<-. '. .
Typing control'wi fh ;;Ifran~ if', 'd'S:
Typi ng daU' <...:' • "'~~=,c,;" .';:,7::' :<

See SAY in5truetl~n "'t>';:":!~ ~r.".\'

u

~~ .. C f_"' ;:.' r~ .

Underflow.,ar; thmeti c,9 ".' ,
Unpacking .stri ng' '.kti'"'·C2X·~· 6lt J, ':.,

.-. ...,;, ~1. ~:". -! V' '

UNTIL phrase of DO. i nstructl on '" '29. '
Upper ease t,.ansi:a~·io'o";':z7o,..,.. ·t;,~:"1'

by eMS command leval' 27 .~"
during ARG instructiol'l;:'~~,6::< ;~~,";\i:V
during PULL inst!"uction'~"4'~ 0

of symbols 13
with PARSE UPPER 41
with TRANSLATE function 76 ~
with UPPER instruction, 57

' - .' ~. -::j ~31;.f~~

Uti 1 i ty furictf~~s ~, n-,si; :"108'~ff2 ":~ .. ",
~~-. - - ""~""n~:-+ V,"'/~"

Uti Ii ty Modules and Execs "11'3'~115, • I'
P f"' i ;; 2" ~~ - ..., ~.:; ;,:, "'\ 0 ~~

v
C'

Qxternal control of 115. 116VAlUEfunci:ion ~"7
looping REX programs 115 VALUE option of PARSE

t,.,;~'n:J(.J·

Trailing blank removal with STRIPS, hstruction"'; 4f r ;-:t(' F.. " •• '~ ,".

function 73 "VAR option~of P'A'RS'{' '': 'V "'0' ",:-:

Trailing ze'::os:l"4)S '.:::r:,- "'ti h'~ib:',,; ,fu.... &,' instruc!t)ori' 43;1: r r1<'" f.':L]c" ""
" '. c:'~. . ~-~' f: .", - ~ ~. " "\ "'l: ~ ,~

TRANSLATE function' -76'" ,""\', .. '- ~Variable names 13
Translation {\ <Jt",on,!"

See also Upper case
with TRANSLATE function 76
with UPPER instruction 57

Trapping of conditi~ns
See SIGNAL instruction

Trouble reporting 133
TRT function 110
TRUNC function 76
Truncating numbers 76
ftts" immediate command 115
Tsa

interfaces to 135
REX under 135

Tutor;al~ on-line 105

Index

Variables N'"' \
f::'" -~'!:, ;,,!,-i>,'J ,"?i . '; """"

accessing earlier generations
with CALLER 113

compound 101
controlling loops 31
direct interface to 121
dropping of 34
dumpi ng wi th REXDUMP 114
exposing to caller 44
getting value with VALUE 77
in internal functions 44
in subroutine!! 44
new leY".1l of 44
parsing of 43
resetting of 34

----------------- ---

setting new value , .
:. I

~:",4'Wl-'~l:' --'7' ~

, .
,,;

, -
. >.

IB" ,::~nternal Use,on~y '''CC

in parsing 86
locating in a string 78

. WORDS funct i on 78
Writing to the Stack

wi th PUSH 47
with QUEUE 47

x

xeDn
bil i ngual edi tor macros ~;131·:;:·c

exac'lti ng REX programs. ~, Ii ,<,

from 106 ',' ~ , " , -:;1

macro interface 138 . >, , ••

Runn i n9 macros WI'" i tten J n·, ,,' ";
REX 107..

trap for the unwary 131
XOR function 110
XOR, logical 18
XOR' i n9 character ·str i ng5

together 62
XRAHGE function 78

"X2B function 110
See SElECT i n!5t~'!'~.tt~ Of:; rl!:! "'c,r - < X2C funct~!ln "" ?9, ':.-?-;; ..; .

~:'-'< -,'" : . .., '>~WHILE phrase of DO 1 nst[,~ctr1t:01'7;,\~.9,; X2D functlon 79 . _0._'

Whole numbers 14 \"' i'i", ~!:lt'L~ .~".'~ ::.~ X2E functi on 110
ch.1~i"1!, ;wi,~h .D\~TA~'(r:~ ,j;~~~i" V", <;

WORD Junc,~ lOn ., J~, ,," \;', ('\, ,.",.0:"., lit ./1 "." :.:
Word 1pi-'oci.S51 n~"''' ",~, , ~ "

See Formatti ng
See Words YKTSVC (Yorktow'1,,?V~l, 111 "~.I;; i ~\;!

WORDINDEX function 78 Yorktown SVC I!,~ertSlc:1i! ,1,1 ~,;: C 'ht~£";';
WORDl ENGTH function .;t~ '.'01:;;",,' ;}lr ". ~ .l!"!' ~c ~.t'~""·i· ;:;.~ !~j""'!i: "<
Words 32>lA"': "l',: .;,: i 7"'" t.r i. errH~"~~~'10'~~

counting in a s1:rinstt~ 1~'l"'rj;"i Z~ 9~r:; rlj ~~. jT~:-."h)HtS~

deleting from a s~~\\~~, ,;~6'n') ',; t ~ r.r.i,';;'

extracting from a strJng.. ,. 7-4, Zeros. adding on the teft.",7~:;:~i1;

78 ~ .. " ,,:0,:.:.t" "~'ia, ,~,,:.Zeros removal wit~ST~~P::r,':\: u -', " ,;
finding in a string 68 ~~Jd~" ~~ function 73
finding length o~ , 7~.. ...""··.,,;:

~nu·:_~~~~g ~~;~,e. ~~iCe.0~R ~er..:~. "'9~('!l~ Of[:,;,

t:l ~J~JA~ ~ttw i"'\ "Q':j':>f'il./- STfU?:·:·S'" '"

;; iI .t . r"'''tlJ I:> n lflO:.:'

l, ~ t! ~OQ r ?i~ f. ~ ~ ~,',d,..,'1" ~nOi~~DnQ: ~~ 90i~

~(,-? j~:J-Uc~,:; :::f"" ~ ~)¥;~),1 (~~Sl G~ .~&t'9+"i jo~~:

ilc +0 f?!'I WiO;<;'fI:'",i: .i:;·.t PIfP : -.1 ,'f)~:,~

.;. t. , "lMlmX,3~ tH'~ QIt' !;;jl\itU

~~. ''Y$, f.16;'; oj ~r>l'e:\'j<:"~,,",

t~ 3UJA~ ~fiw .Uls~g"i~'.Q

~, anaf'~nu' 15n,~tn! ~I

~, ~~"ff~o~due n
~~ to £.v~i W~~

Ui "'0 ~\'1 i~"'i"

"'z.t~> t>:>t d.h .

~, ,,~ ; i:,.- '~em 11:'':'' q <;;,;

WHEN clau~e 't,. ":: '''n~':• .t:t:;~·,"l;'U

167

.. --
-- ..--------~--- -~---~ ~-~.-.-.

http:n!5t~'!'~.tt

.~.

	REX_7
	REX_1
	REX
	REX1
	REX1a

	REX_2
	REX_3
	REX_3a
	REX_3b

	REX_4
	REX_5
	REX_6a
	REX_6

	REX_back

