
File No. S370-36
Order No. GC20-1818- 2

Systems

--- ------ - ---- ---- -- ---- - - ------------_.-
I t

Systems

File No. 8370-36
Order No. GC20·1818- 2

I BM Virtual Machine
Facility /370:
CMS Command and Macro
Reference

Release 6 PLC 1

This publication provides users of the
Conversational Monitor System (CMS) component of
I BM Virtual Machine Facility/370 with detailed

reference information concerning command syntax
and usage notes for:

• CMS commands

• EDIT subcommands
• DEBUG subcommands
• EXEC control statements, special variables, and

built-in functions
• CMS assembler language macro instructions

PREREQUISITE PUBLICATIONS

IBM Virtual Machine Facility/370:

Terminal User's Guide, Order No. GC20-1810

eMS User's Guide, Order No. GC20·1819

-~- ------ ----- ----- -. ---- - - -------.,----- _.-
®

This is a major revision of, and obsoletes, GC20-1818-1 with Technical
Newsletter GN25-0416.

This edition applies to Rel~~ §. f1f 1 (program Level Change) of the
lEft Virtual ftachine Facility/370, and to all subsequent releases unless
otherwise indicated in new editions or Technical Newsletters (TNts).

Technical changes and additions to text and illustrations are indicated
by a vertical bar to the left of the change .•

Changes are periodically made to the information herein; before using
this publication in connection with the operation of IBM systems,
consult the latest !~~ ~§1~~L~IQ ~!~l!ggf!RhI, Order No. GC20-0001, for
the editions that are applicable and current.

Publications are not stocked at the address given below; requests for
copies of IBM publications should be made to your IBM representative or
to the IBM branch office serving your locality.

A form for readers' comments is provided at the back of this
publication. If t~e form has been removed, comments may be addressed to
IEM Corporation, VM/370 Publications, Dept. D58, Bldg. 706-2, P.O. Box
390, ~oughkeepsie, New York 12602. IBft may use or distribute any of the
information you supply in any way it believes appropriate without
incurring any obligation whatever. You may, of course, continue to use
the information you supply.

© Copyright International Business Machines co~poration 1976, 1977,
1979

Use this publication as a reference manual;
it contains all of the command formats,
syntax rules, and operand and option
descriptions for CftS commands, subcommands,
and macro instructions for general users.

The !~~ !!£~yal ~§~h!D~ l§f!l!~ILllQ:
£~2 Q§~~§ §y!de, GC20-1819, contains
tutorial information and functional
descriptions of CftS commands, as well as
information on using the editor,-EXEc, and
debugging facilities of CftS. You should be
familiar with the contents of the' !~L11Q
£~2 y§~£~ §y!g~ before you attempt to use
this reference manual. For most of the CftS
commands described in this publication, you
may find additional useful notes in the
!~L11Q CftS y§~£!§ §y!de.

This publication bas six sections:

"Section 1. Introduction and General
Concepts" describes the components of the
Vft/370 system and tells you how to enter
CftS commands. It lists the notational
conventions used in this manual, so that
you can interpret the command format
descriptions in Section 2.. Section 1 also
contains information about the CftS command
search order and a summary of all the CftS
commands available under Vft/370, including
those not for general users.

"Section 2. CftS Commands" contains
complete format descriptions, and operand
and option lists, for the CftS commands
available to general users. Each co.mand
description contains usage notes, and lists
responses and error messages (with
associated return codes) produced by the
command.

"Section 3. EDIT Subcommands and ftacros"
describes the subcommands and macros
available in the environment of the CftS
editor, which you can invoke with the EDIT
command. Each subcommand description
contains usage notes and summarizes the
types of responses you might receive.
Where applicable, additional information is
provided for users of display terminals.

"Section 4. DEBUG Subcommands" describes
the subcommands available in the debug
environment of CftS. Each subcommand
description contains usage notes and, where
applicable, lists the responses to the
subcommand.

Preface

"Section 5. EXEC Control Statements"
describes the control statements, special
variables, and built-in functions you can
use when you create EXEC procedures to
execute in CftS. The control statement
descriptions contain usage notes, wh.re
aPFlicable.

"Section 6. CftS ftacro Instructions"
lists the formats and operands of the CftS
assembler language macro instructions you
can use when you write programs to execute
in CftS.

This publication
appendixes:

also has three

"Appendix A: Reserved Fi1etype Defaults"
lists the filetypes that are recognized by
the CftS editor and indicates the default
settings that the editor supplies for
logical tabs, truncation, verification,
logical record length, and so on.

"Appendix B: DOS/VS Access ftethod
Services and VSAft Functions Not Supported
in CftS" lists the restrictions on the use
of access method services and VSAft in the
CftS/DOS environment of CftS.

"Appendix C: OS/VS Access ftethod
Services and VSAft Functions Not Supported
in CMS" lists the restrictions for OS
programmers using access method services
and VSAft in CftS.

Some of the following convenience terms are
used throughout this publication:

• The term "CMS/DOS" refers to the
functions of CftS that become available
when you issue the command:

set dos on

CMS/DOS is a part of the normal CftS
system, and is not a separate system.
Users who do not use CMS/DOS are
sometimes referred to as OS users, since
they use the OS simulation functions of
CftS.

• The term "CftS files" refers exclusively
to files that are in the BOO-byte block
format used by CMS file system commands.
VSAM and OS data sets and DOS files are

Preface iii

not compatible with the CMS file format,
and cannot be manipulated using CMS file
system co.mands.

The terms "disk" and "virtual disk" are
used interchangeably to indicate disks
that are in your CMS virtual machine
configuration. Where necessary, a
distinction is made between the
CftS-formatted disks and disks in OS or
DOS format.

The following terms in this publication
refer to the indicated support devices:

• "2305" refers to IBM 2305 Fixed Head
Storage, Models 1 and 2.

• "270x" refers to IBM 2701, 2702, and
2703 Transmission Control Units or the
Integrated Communications Adapter (ICA)
on the System/370 ftodel 135.

• "3270" refers to a series of display
devices, namely, the IBM 3275, 3276,
3277, and 3278 Display Stations. A
specific device type is used only when a
distinction is required between device
types.

Information about display terminal ttsage
also applies to the IBft 3138, 3148, and
3158 DisplaY Consoles when used in
display mode, unless otherwise noted~

Any information pertaining to the IBft
3284 or 3286 Printer also pertains to
the IBM 3287, 3288, and 3289 printers,
unless otherwise noted.

• "3330" refers to the IBM 3330 Disk
Storage Models 1, 2, or 11; and the 3350
Direct Access Storage operating in
3330/3333 Model 1 or 3330/3333 Model 11
compatibility mode.

• "3340" refers to the IBM 3340 Disk
Storage, Models A2, B1, and B2, and the
3344 Direct Access Storage Model B2.

• "3350" refers to the IBM 3350 Direct
Access Storage Models A2 and B2 in
native mode.

• "3704", "3705", or "3704/3705" refers to
IBft 3704 and 3705 Communications
Controllers.

• "3705" refers to the 3705 I and the 3705
II unless otherwise noted.

• "2741" refers to the IBM 2741 and the
3767, unless otherwise specified.

I • "3066" refers to the IBM 3066 system
Console.

iv VM/370 CftS Command and ftacro Reference

PREREQUISITE PUBLICATIONS

In addition to the !~LJ1~ ~~~ Us~~~§ §uig~,
prerequisite information 1S contained in
the following publications:

• For information about the terminal that
you are using, including procedures for
gaining access to the Vft/370 system and
logging on, see the 1~~ !irtua! ~~hiA!
l~£!!!!Inl.Q: 1fiming!]~~§ §!!ig~,
GC20-1810.

• If you are using an IBft 3767
Communications Terminal, the IBft 37~1
Ql!!!~~!Q~!§ Gu!de, GA18-2000, is a
prerequisite.

• The CP commands that are available to
you as a general user are described in
IBM Virtual Agchi~ 19£!li!IL37.Q: £R
Command--aeference !gI §~~~g!]§~~§,
GC20=182 0:--------
For additional tutorial information on

using CftS, you may want to use £A~ !2I
R!~g~ •• !!I§ - ! pr!.fi, SR20-4438.

If you are going to use an IBft Program
Product compiler under CftS, you should have
available the appropriate program product
documentation. These publications are
listed in IBft Virtyal A~£h!~ Fac!!itYL31.Q:
!A!!odY£!!2!l ~£~~-180~.

COREQUISITE PUBLICATIONS

The !~~ ViI!yal fta£h!A~ Fac!litILJ1.Q:
~l§!!!m A!!§§~!!§, GC20-1808, describes all
of the error messages and system responses
produced by the CftS commands and EDIT and
DEBUG subcommands referenced in this
publication. It also lists the error
messages issued by the EXEC processor
during execution of your EXEC procedures.

If you are alternating between CftS and
other operating systems in virtual machines
running under Vft/370, you should consult
!~~ !!I!Y!! A!£hin~ l!£!!!!lLJ70: Q~!~!iAg
~1§!!!1!§ !ll ~ !!Itu~! fta£h!n~, GC20-1821.

SUPPLEftENTAL PUBLICATIONS

For general information about the Vft/310
system, see the publications !~~ Y!I!Y2!
~gch!n~ !g£!!itILJ1~: !n!I~gY£!!~n,
GC20-1800, and Y~LJ1~ ~~g!YI~~ ~YEEle!~n!,
GC20-1757.

Additional descriptions of various CftS
functions and commands which are normally
used by system support personnel are
described in

!~~ Y!I!Yg! ~g£h!~ !2£~1!!ILJIQ:

~l~!~! ~I~gIg!~I~2 §y!g~, GC20-1801

QE~IgtoI~2 Quide, GC20-1806

Information on IPCS commands, which are
invoked under CftS, is contained in !~A
y!rtYgl ~g£h!n~ Fa£!l!!ILJIQ: !~!~£2£ti~~
~fobl~! COn!I~! ~~!~! (!~£~) Y~~f~~ Guid~,
GC20-1823.

Details on the CftS CPEREP, a command
used to generate output reports from Vft/370
error recording records, are contained in:

For more details on the operands used
with CPEREP, refer to:

For messages issued by CftS CPEREP, see:

There are three publications available as
ready reference material when you use
Vft/310 and CMS. They are:

!]~ !!I!yal ~g£h!~ 19£!l!!ILJIQ:

2Y!£~ Qy!g~ !~f Y~~I~, GX20-1926

£~!!gnds (Q~~fgl Y~~I), GX20-1961.

If you are going to use the
spooling Communications Subsystem,
!~A !!I!Y2! A2£hin~ !g£!!!!ILJIQ:
~Ef~!!ng £~!!YnicgtioD~ ~y~~yst~!
Y2~f~~ 2y!de, GC20-1816.

Remote
see the

Remote
(i~£~)

Assembler language programmers may find
information about the Vft/370 assembler in
Q~L!~, ~QaL!~, 2Dg !ALJIQ A~2~!!~1~
LgDgygg~, Order No. GC33-4010, and Q~LVS

2ng !ALJIQ A~2~mb!~I ~I~gI~!~I~~ Qy!g~,
GC33-4021.

CftS support of Access ftethod Services is
based on DOS/VS Access ftethod Services. The
control statements that you can use are
described in ~Q~L!~ A££~22 A~thog SeIX!£~~
Y~~f~~ 2yide, GC33-5382. The !ALJ70:, £~~
User's Guide contains details on how to use
thIs-support. Error messages produced by
the Access ftethod Services program, and
return codes and reason codes are listed in
~Q~LY~ ~~222g~~, GC33-5379.

Fora detail~d description of DOS/VS
VSAft macros and macro parameters, refer to
the ~Q~L!~ ~YE~Ixisor ~Dg !LQ ~~£I~~,
GC33-5373. For information on OS/VS VSAft
macros, refer to OSL!~ !!Itu~! ~!~I~g~
A££~~~ ~~!h2g (VSAft) ~f2gI~!~I~~ QY!~~,
GC26-3818.

The CftS ESERV command invokes the DOS/VS
ESERV program, and uses, as input, the
control statements that yeu would use in
DOS/VS. These control statements are
described in 2y!de to !h~ ~Q~L!~ A~~~!~l~f,
GC33-4024.

Linkage editor control statements, used
when invoking the DOS/VS linkage editor
under CftS/DOS, are described in ~Q~L!~
~Y2!~! £~D!I2! ~ta!~~!§, GC33-5376.

Batch DL/I application programs can be
written and tested in the CftS/DOS
environment. See !ALJ1Q £~~ Y~I~~ §y!~~,
GC20-1819, and DLL! ~OSL!~ §~n~!al
!D!~I!2!!~D' GH20-1246, for details.

Preface v

vi Vft/370 CftS Command andftacro Reference

SECTION 1. INTRODUCTION AND GENERAL
CONCEPTS.

The CMS Environment.
Entering CMS Commands.
Character Set Usage.
Notational Conventions •
CMS Command Search Order •
CMS Command Summary.

SECTION 2. CMS COMMANDS.
ACCESS
AMSERV
ASSEMBLE •
ASSGN.
CMSBATCH •
COMPARE.
COpy FILE

Using the COPYFILE Command •
CP •
DDR.

DDR Control Statements •
I/O Definition Statements.

DEBUG.
DISK
DLBL
DOSLIB
DOSLKED.
DSERV.
EDIT •
ERASE.
ESERV.
EXEC •
FETCH.
FILEDEF.
FORMAT
GENDIRT.
GENMOD
GLOBAL
INCLUDE.
LISTDS
LISTDS (2I~!!::.!~J).
LISTFILE
LISTIO
LOAD •

Loader Control Statements.
LOADMOD.
MACLIB
MODMAP
MOVEFILE
OPTION
PRINT.
PSERV.
PUNCH.
QUERY.
READCARD
RELEASE.
RENAME
RSERV.
RUN.
SET.
SORT •
SSERV.

• 1
.1
.2
.3
.4
.7
.7

15
16
20
23
29
32
33
35
38
45
46
46
47
57
58
60
72
74
77
79
81
83
85
87
89
97

.100

.101

.104

.106

.110

.110

.114

.118

.120

.124
• 129
.130
.133
.134
.137
.139
.142
.144
.147
.155
.158
.160
.162
.164
,.166
• t11
• 173

Contents

START.
STATE/STATEW
SVCTRACE
SYNONYM.

The User Synonym Table
TAPE
TAPEMAC.
TAPPDS
TXTLIE
TXTLIB (21~~=1!1).
TYPE
UPIATE

Update Control Statements.
Summary of Files Used by the UPDATE

Command
Immediate Commands

HE
HO
HT
HX
RO
RT
SO

SECTION 3. EDIT SUBCOMMANDS AND MACROS
EDIT Subcommands
ALTER.
AUTOSAVE •
EACKWARD (Primarily 3270).
BO'ITOM
CASE
CHANGE
CMS.
DELETE
DOWN
DS'lRING.
FILE
FIND
FMODE.
FNAME.
FORMAT (3270 only)
FORWARD (primarily 3270)
GE'IFILE.
IMAGE.
INPUT •
LINEMODE
LOCATE
LONG
NEXT
OVERLAY.
PRESERVE •
PROMPT
QUIT
RECFM.
RENUM.
REPEAT
REPLACE.
RESTORE.
RE'IURN
REUSE (=).
SAVE
SCROLL/SCROLL UP (3270 only) •

.175

.176

.178

.182

.183

.186

.191

.193

.196

.196

.198

.200

.202

.• 205

.212

.212

.. 212

.213

.213

.213

.214

.214

.• 215
.215
.216
.217
.218
.218
.219
.219
.222
,.224
.224
.225
.226
.226
.227
.228
.228
.229
.230
.231
.232
.233
.235
.236
.236
.237
.238
.238
.239
.239
.240
.241
.242
.242
.243
.243
.245
.245

Contents vii

SERIAL
SHORT.
STACK.
TABSET
TOP.
.TRUNC.
TYPE •
UP •
VERIFY
X or Y
ZONE
?(QUESTION MARK)
nnnnn.
EDIT Macros.

$DUP
$MOVE.

..
..

..

SECTION 4. DEBUG SUBCOMMANDS
BREAK.
CAW.
CSW.
DEFINE
DUMP
GO •
GPR.
HX
ORIGIN
PSW.
RETURN
SET.
STORE.

SECTION 5. EXEC CONTROL STATEMENTS
The Assignment Statement •
&ARGS.
&BEGEMSG •
&BEGPUNCH.
&BEGSTACK.
&BEGTYPE
&CONTINUE ..
&CONTROL
&EMSG.
&END
&ERROR
&EXIT.
&GOTO.
&HEX
&IF.
&LOOP.
&PUNCH
&READ.
&SKIP.
&SPACE
&STACK
&TIME.
&TYPE,.
Built-in Functions •
&CONCAT.
&DATATYPE.
&LENGTH.

.

.

,.246
• 248
• 248
.249
.250
.250
.251
.252
.253
.254
.255
.256
.257
• 258
.258
.259

.261
• 262
.263
• 264
.265
• 266
• 267
.268
.268
.269
• 270
• 270
• 271
• 272

,.275
.276
.277
.278
.279
.280
.280
.281
• 282
• 283
.284
• 284
.285
.286
.286
.287
.288
.289
.289
.290
.291
.292
.293
.294
.295
• 295
.296
• 296

&LITERAL •
&SUESTR.
Special Variables •
&n
&* and &$.
&DISKx
&DISK*
&DISK?
&DOS
&EXlC.
&GLOBAL.
&GLOBALn
&INDEX
&LINENUM
&READFLAG •
&RETCODE
&TYPEFLAG.

SECTION 6. CMS MAC~O INSTRUCTIONS •
COMPSWT •
FSCE
FSeED •
FSCLOSE •
FSERASE.
FSOPEN
FSREAD
FSSTATE •
FSWRITE •
HNtEXT •
HNtINT •
HNtSVC
LINEDIT.

LINEDIT Macro Operands.
PRINTL
PUNCHC
RDCARD
Rt'IAPE
RDTERM
REGEQU
TAPECTL •
WAITD •
WAITD (~1!!!!=1~1)
WAITT •
WR'IAPE
WRTERM

APPENDIXES

, . . .

APPENDIX A: RESERVED FILETYFE DEFAULTS

APPENDIX B: DOS/VS ACCESS ~ETHOD
SERVICES AND VSAM FUNCTIONS NOT
SUPPORTED IN CMS.

APPENDIX C: OS/VS ACCESS METHOD
SERVICES AND VSAM FUNCTICNS NCT
SUPPORTED IN CMS •

INtEX •

viii IBM VM/370 CMS Command and Macro Reference

.297
..297
.298
.298
.298
.298
.299
.299
.299
.299
.299
.300
.300
.300
.300
.300
.300

.301

.302

.302

.303

.304

.305

.306

.307

.309

.310

.313

.314

.315

.317

.319

.328

.329

.331

.332

.333

.334

.335

.337

.337

.338

.338

.339

.341

.343

.345

.347

.349

Figure 1.

Figure 2.

Figure 3.
Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.
Figure 10.

Character sets and Their
Contents ••• ~, •••••• ~ •••••• ~.~.q
How CftS Searches for the
Co •• and to Bxecute •••••••••••• 8
CftS Co •• and Sum.ary ••••••••••• 10
CftS Co.mands for System
Progra •• ers ••••••••••••••••••• 14
COPYFILB Option
Inco.patibilities ••••• ~ ••••••• 38
An Annotated Sa.ple of
Output Fro. the TYPE and
PRINT Functions of the DDR
progra •••• ~~~.~ ••• ~ ••••••• ~ ••• 54
Determining Which VSAft .
Catalog to Use.~ •••••••••••••• 67
Valid File Characteristics
for Bach Device Type of
the FILEDBF Command •••••••• ~ •• 90
Loader Search Order •••••••••• 123
BNTRY Statement For.at •••••• ~124

Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 11.

Figure 18.
Figure 19.

Figure 20.

Figure 21.

Figure 22.

LIBRARY Statement Format ••••• 124
LDT State.ent Format ••••• ~.~.125
ICS Statement Format ••• ~ •• ~.~125
SLC Statement Format ••••• ~~.~126
REP Statement Format •••• ~ •••• 127
SPB Statement Format ••••••••• 128
Default Device Attributes for
the ftOVEFILE Com.and ••••••••• 135
Header Card For.at ••••••• ~ ••• 145
Summary of SVC Trace Output
Lines ••••••••••••••••••• ~~.~~181
System and User-Defined
Truncations •••••••••••••••••• 185
Default EDIT Subcommand
Settings for the CMS
Reserved Filetypes •••• ~ •••••• 343
OS Access Method Services
Operands Not Supported in
c~s •••••••••••••••••••.•••• ,.348

Contents ix

X IBMVM/370 CMS Command and Macro Reference

1-2A DISPLAY CONSOLE

lew: Program Feature

~he CftS editor now supports the 3278
lodel 2A Display Console which is a
~O-line display console~ "Section 3."
tDIT Subcommands and ftacros" is modified
;0 reflect this support.

Su •• ary of Amend.ents
for GC20-1818-2
Release 6 PLC 1

ftISCELLANEOUS

~h~Dg~£: Documentation

Technical corrections
changes have been made
publication.

and editorial
throughout this

Summary of Amendments xi

Summary of Amendments
for GC20-1818-1
as updated by GN25-0416
Release 5 PLC 1

DOS/VS RELEASE 34 SUPPORTED

!§!: Program Feature

CMS/DOS supports DOS/VS Release 34.
This support includes a new operand of
the SET command and a new operand of the
QUERY command. SET DOSLNCNT allows the
user to set the number of SYSLST lines
per page. QUERY DOSLNCNT displays the
current number of SYSLST lines per page.

xii VM/310 CMS Command and Macro Reference

These new operands are described in
"Section 2. CftS Commands."

ftISCELLANEOUS

£h§ng§g: Programming and Documentation

ftinor technical and editorial changes
have been made to clarify the text.

IEM VM/370 ATTACHED PROCESSOR SUPPORT

!~!: Programaing and Hardware Changes

VM/370 support for the IBft System/370
Attached Processor is now available for
the System/370 ftodel 158 and 168
processors. Modifications to the
program are documented, such as the use
of hardware prefixing, which allows each
processor to have its own PSA, and a
series of locks, which provide the
necessary controls.

IEM VM/370 SUPPORT FOR THE DEDICATED 3850
MASS STORAGE SYSTEM

!~!: Programming

VM/370 supports the 3850 Mass Storage
System as a dedicated device. As many
as four virtual machines may be
concurrently running OS/VS1 or OS/VS2,
each of which (with MSS support) can
control an interface with a common 3850
Mass Storage System.

Dedicated MSS support permits an
installation to generate the system,
test, and convert to an ftSS environment
while concurrently running non-MSS
production.

VM/370 SUPPORTS THE 3270 DISPLAY DEVICES

~hgng~g: programming and Documentation

VM/370 now supports 3270 display
devices. The term 3270 now refers to
the IBft 3275, 3276, 3277, and 3278
Display Stations. It also applies to
the IEM 3138, 3148, and 3158 Display
Consoles, when used in display mode.
Information pertaining to the IBM 3284
or 3286 Printers also pertains to the
IBft 3287, 3288, and 3289 Printers.

Summary of Amendments
as updated for

for GC2o-1818-1
VM/370 Release 4 PLC 1

VM/370 SUPPORTS OS/VS EREP (IFCEREP1)

~hgng~g: programming and Documentation

The CPEREP command now uses all edit and
format operands that are available to
as/vs EREP. Because of V8/370's
compatibility with OS/VS EREP, VM/370
relies on existing OS/VS EREP
documentation. Therefore, VM/370 no
longer publishes the following:

Documentation of the interface to OS/VS
EREP and the interface to the VM/370
error recording cylinders is contained
in:

VM/370 publications contain referrals to
as/vs publications where required.

The following areas in this publication
reflect the changes to EREP
documentation:

Preface
Section 1. Introduction and General
Concepts

MISCELLANEOUS

~hgng~g: programming and Documentation

Minor technical and editorial changes
have been made to clarify the text.

summary of Amendments xiii

xiv .~VM/370 CMS .. Command; and Ma.c.ro Referenc.e

Section 1. Introduction and General Concepts

Virtual Machine Facility/310 (VM/310) is a system control program (SCP)
that controls "virtual machines." A virtual machine is the functional
equivalent of a real machine, but where the real machine has lights to
show status, and buttons and switches on the real system console to
control it, the virtual machine has a virtual system console to display
status and a command language to start operations and control them. The
virtual system console is your terminal; there are three command
languages, which correspond roughly to the four components of the VM/370
system:

• The Control Program (CP) controls the resources of the real machine;
that is, the physical machine in your computer room. The CP comm~nds
are described in !~Ll1Q £~ £~~JgDg n~!~~~D£~ !~~ ~~D~~al g~~§. '

• The Remote Spooling Communications subsystem (RSCS) is a subsystem
designed to supervise transmission of files across a teleprocessing
network controlled by CP. For information abcut RSCS, see the !~Ll1.Q
~~~Qi~ ~QQ!!Dg £~~~~!~g!!~D§ §Y~§I§!~! (R§f~) Q§~~~§ ~y~g~. 

• The Conversational Monitor System (CMS) is a conversational operating 
system designed to run under CP. All of the CMS commands for general 
use, and the subcommands and macros that you can use in the CMS 
environment, are described in this publication. 

• The Interactive Problem Control System (IPCS) provides 
programmers and installation support personnel with VM/370 
analysis and management facilities, including problem 
creation, problem tracking, and CP abend dumF analysis. IPCS 
the CMS command environment; for details, see !~170 !~CS 

Qy!g~. 

system 
problem 
report 

runs in 
!!2~£~ 

Except for IPCS, each of the components of VM/370 has a unique 
"coamand environment" which must be active in order for a command to be 
accepted. For CMS users, the two basic command environments are the CP 
command environment and the CMS command environment. By default, CP 
commands are acceptable input in the CMS command environment; if you 
enter a CP command, it is executed by CP, but control returns to the CMS 
environment. 

The eMS Environment 

The CMS command language allows you to create, modify, debug, and, in 
general, manipulate a system of files~ 

The OS/VS Assembler and many OS/VS and DOS/VS language processors can 
be executed under CMS. For example, the OS VS EASIC, FORTRAN IV (G1), 
COBOL/ and PL/I compilers, as well as the DOS PL/I and COBOL compilers, 
can execute under CMS. You can find a comFlete list of language 
processors that can be executed under CMS in the !~Ll1Q I~!~Qgy£tiQD. 
CMS invokes the assembler and the compilers when you issue the 
appropriate CMS commands. The ASSEMBLE command is described in this 
manual; the supported compiler commands are described in the appropriate 
program product publications. 

section 1. Introduction and General Concepts 1 



CMS commands allow you to read cards fro. a virtual card reader, 
punch cards to a virtual card punch, and print records on a virtual 
printer. Many commands are provided to help you manipulate your virtual 
disks and files. The CMS commands are descrited in "Section 2. CftS 
Commands." 

A special set of CMS commands becomes available to you when you issue 
the command: 

set dos on 

These commands, called CMS/DOS commands, simulate various functions of 
the Disk Operating System (DOS) in your CMS virtual machine. When the 
CMS/DOS environment is active, the CMS/DOS commands are an integral part 
of the CMS command language; they are listed alphabetically a.ong the 
other CMS commands in "Section 2. CMS Commands." 

The EDIT command places your virtual machine in the EDIT subcommand 
environment. In this environment you can use the CMS editor to create 
and modify files. In the EDIT subcommand environment, you can place 
your virtual machine in either of twa modes, edit mode or input mode. 
Edit mode lets you modify a file; input mode lets you create or add to a 
file. The subcommands avai1able to you in the EDIT subcom.and 
environment are described in "Section 3. EDIT Sutcommands and Macros." 

The DEBUG com. and places your virtual machine in the DEBUG subcoamand 
environment. In this environment you can issue commands to display 
registers and storage, specify breakpoints (address instruction stops), 
display the contents of control words, and so on. The .DEBUG subcommands 
are described in "Section 4~ DEBUG Subcommands." 

The EXEC command executes CMS command procedures, called EXEC files. 
You can create EXEC files consisting of CMS and CP commands and EXEC 
control statements. The EXEC facility also has a symbolic capability; ty 
manipulating variable symbols within an EXEC file, you can control the 
execution of the procedure. These procedures are usually created in the 
edit environment. The EXEC control statements, variable symbols, and 
built-in functions are described in ~Section 5. EXEC Control 
Statements,. " 

You can use the CMS assembler language macros when you write 
assembler language programs to execute in the CMS environment. 
Descriptions of these macros are contained in "Section 6. CMS Macro 
Instructions,. " 

Entering CMS Commands 

A CMS command consists of a command name, usually followed by one or 
more positional operands and, in many cases, by an option list~ CMS 
commands and EDIT and DEBUG subcommands described in this publication 
are shown in the format: 

command name (o,perands., •• ] (options ••• ()]] 

You must use one or more blanks to separate each entry in the com.a~d 
line unless otherwise indicated,. For an explanation of the special 
symbols used to describe the command syntax, see "Notational 
Conven tions,. " 

2 IBM VM/370 CMS Command and Macro Reference 



The command name is an alphameric symbol of one to eight characters. In 
general, the names are based on verbs that describe the function yeu 
want the system to perform. For example, you may want to find out 
information concerning your CMS files. In this case, you would use the 
LISTFILE command. 

The command operands are keywords and/or positional operands of one to 
eight, and in a few cases, one to seven alphameric characters each. The 
operands specify the information on which the system operates when it 
performs the command function. 

You must write the operands in the order in which they appear in the 
command formats in "section 2. CMS Commands," unless otherwise 
specified. When, you are using CMS, blanks may optionally be used to 
separate the last operand from the option list. CMS recognizes a left 
parenthesis "("as the beginning of an option list; it does not have to 
be preceded by a blank. 

The command options are keywords used to contrel the execution of the 
command. The command formats in "section 2. CMS Commands" show all the 
options for each CMS command. 

The option list must be preceded by a left Iarenthesis; the closing 
parenthesis is not necessary. 

For most commands, if conflicting or duplicate options are entered, 
the last option entered is the option in effect for the command. 
Exceptions to this rule are noted where applicable. 

If you want to write comments with CMS commands, you enter them 
following the closing parenthesis of the oFtion list. The only 
exception to this rule is the ERASE command, for which comments are not 
allowed. 

You can also enter comments on your conscle by using the CP * 
command. 

Character Set Usage 

eMS commands may be entered using a combination of characters from six 
different character sets. The contents of each cf the character sets is 
shown in Figure 1. 

Section 1~ Introduction and General Concepts 3 



Character Set I 

Separator 

National 

Alphabetic 

Numeric 

Alphameric 

Special 

Names 

Blank 

Dollar Sign 
Pound Sign 
At Sign 

Uppercase 
Lowercase 

Numeric 

National 
Alphabetic 

Numeric 

Figure 1. Character Sets and Their Contents 

Notational Conventions 

Symbols 

$ 
I 
iB 

A Z 
a - z 

o 9 

$, I, iB 
A Z 
a 
o 

z 
9 

All other 
characters 

The notation used to define the command syntax in this publication is: 

• Truncations and Abbreviations of Commands 

Where truncation of a command name is permitted, the shortest 
acceptable version of the command is reFresented by uppercase 
letters~ (Remember, however, that CMS commands can be entered with 
any combination of uppercase and lowercase letters.) The following 
example shows the format specification for the FILEDEF command. 

FIledef 

This format means that FI, FIL, FILE, FILED, FILEDE, and FILEDEF are 
all valid specifications for this command name. 

Operands and options are specified in the same manner., Where 
truncation is permitted, the shortest acceptable version of the 
operand or option is represented by uppercase letters in the command 
format box. If no minimum truncation is noted, the entire word 
(represented by all uppercase letters) must be entered. 

Abbreviations are shorter forms of command operands and options. 
Abbreviations for operands and options are shown in the description 
of the individual operands and options that follow the format box. 
For example, the abbreviation for MEMBER in the PRINT command is MEM. 
Only these two forms are valid and no truncations are allowed. The 
format box contains 

MEMBER { n:me } 

and the description that follows the format box is 

4 IBM VM/370 CMS Command and Macro Reference 



• The following symbols are used to define the command format and 
should never be typed when the actual command is entered. 

underscore 
braces { } 
brackets [ ] 
ellipsis 

• Uppercase letters and words, and the following symbols, should be 
entered as specified in the format box. 

asterisk * 
comma 
hyphen 
equal sign = 
parentheses () 
period 
colon 

• The abbreviations "fn", "ft", and "fm" refer to filename, filetype, 
and filemode, respectively. The combination "fn ft [fm]" is also 
called the file identifier or fileid. 

When a command format box shows the characters, fn ft fm or fileid 
and they are not enclosed by brackets or braces, it indicates that a 
CMS file identifier must be entered. If an asterisk (*) appears 
beneath fn, ft, or fm, it indicates that an asterisk may be coded in 
that position of the fileid. The operand description describes the 
usage of the *. 

• Lowercase letters, words, and symbols that appear in the command 
format box represent variables for which specific information should 
be substituted. For example, "fn ft fm" indicates that file 
identifiers such as "MYFILE EXEC A1" should be entered~ 

• Choices are represented in the command format boxes by stacking. 

A 
B 
C 

• An underscore indicates an assumed default option. If an underscored 
choice is selected, it need not be specified when the command is 
entered~ 

~!g!Ele 
The representation 

A 
~ 
C 

indicates that either A, 
selected, it need not be 
assumed. 

B, or C may be selected. However, if B is 
specified. Or, if none is entered, B is 

Section 1. Introduction and General Concepts 5 



• The use of braces denotes choices, one of which l!Y§! be selected. 

~xa!!.Ele 
The representation 

{ ~ } 
indicates that you l!Y2! specify either A, or B, or C. 
choices is enclosed by neither brackets or braces, 
treated as if enclosed by braces .• 

If a "list of 
it is to be 

• The use of brackets denotes choices, one of which may be selected. 

• 

~~g!!Ele: 
The representation 

r , 
I A I 
I B I 
I C I 
L .J 

indicates that you may enter A, B, or C, or you may omit the field. 

In instances where there are nested 
lines, the following rule applies: 
dependent upon the selection of the 
nesting,. 

Level 1 Level 2 Level 3 
[filename [filetype [filemode]]] 

braces or brackets on the text 
nested operand selection is 
operand of a higher level of 

where the highest level of nesting is the operand that is enclosed in 
only one pair of brackets and the lowest level of nesting is the 
operand that is enclosed by the maximum number of brackets. Thus, in 
the previous example, the user has the option of selecting a file by 
filename only or filename filetype only or by filename filetype 
filemode. The user cannot select filetype alone because filetype is 
nested within filename and our rule states: the higher level of 
nesting must be selected in order to select the next level (lower 
level) operand. The same is true if the user wants to select 
filemode; filename and filetype must also be selected. 

• An ellipsis indicates ,that the preceding item or group of items may 
be repeated more than once in succession. 

~~gl!E!~ 
The representation 

(options ••• ) 

indicates that more th~n one option may be coded within t~e 
parentheses. 

6 IBM VM/370 CMS Command and Macro Reference 



CMS Command Search Order 

When you enter a command name at the terminal, CMS begins searching for 
the command of that name. Once a match is found, the search stops. The 
search order is: 

1. EXEC file on any currently accessed disk. CMS uses the standard 
search order (A through G, S, Y, and Z.) 

2. Valid abbreviation or truncation for an EXEC file on any currently 
accessed disk, according to current SYNONYM file definitions in 
effect. 

3. CMS command that has already been loaded into the transient area. 

The commands that execute in the transient area are: 

ACCESS LISTFILE RELEASE 
ASSGN MODMAP RENAME 
COMPARE OPTION SET 
DISK PRINT SVCTRACE 
DLBL PUNCH SYNONYM 
FILEDEF QUERY TAPE 
GENDIRT READCARD TYPE 
GLOBAL 

4. CMS nucleus-resident command. The nucleus-resident CMS commands 
are: 

CP GENMOD START 
DEBUG INCLUDE STATE 
ERASE LOAD STATEW 
FETCH LOADMOD 

5. Command module on any currently accessed disk. (All the rema1n1ng 
CMS commands are disk-resident and execute in the user area.) 

6. Valid abbreviation or truncation for nucleus-resident or transient 
area com.and module. 

7~ Valid abbreviation or truncation for disk-resident command. 

Figure 2 shows a basic description of the command search order; you 
can find complete details in the !~LJIQ ~I2!~~ g!gg!~!~~!~2 ~uig~. 

CMS Command Summary 

Figures 3 and 4 contain alphabetical lists of the CMS commands and the 
functions performed by each. Figure 3 lists those commands that are 
available for general use; Figure 4 lists the commands used by system 
programmers and system support personnel who are responsible for 
generating, maintaining, and updating VM/370. Unless otherwise noted, 
CMS commands are described in this manual. In these figures, the "Code" 
column indicates, for those commands not described in this manual, the 
reference source for that command: 

Section 1. Introduction and General Concepts 7 



I 
CMS 

EXEC 
SEARCH 

L 
CMS 

MODULE 
SEARCH 

CP 
SEARCH 

~ 

Figure 2. 

KEY IN A 
COMMAND NAME 

ISSUE 
AN ERROR 
MESSAGE 

YES 

YES 

YES 

YES 

YES 

How CMS Searches for the Command to Execute 

CMS ~c..o.mman.d .. and Macro Reference 

EXECUTE 
THE FILE 
AND RETURN 
CONTROL TO 
CMS. 

EXPAND THE 
NAME TOTHE 
FULL REAL 
NAME, EXECUTE 
IT, AND RETURN 
CONTROL TO CMS. 

EXECUTE THE 
FILE AND 
RETURN CONTROL 
TO CMS. 

EXPAND THE 
NAME TO THE FULL 
REAL NAME, EXECUTE 
IT, AND RETURN 
CONTROL TO CMS. 

EXECUTE THE 
COMMAND 
AND RETURN 
CONTROL TO 
CMS. 



£Q.Q~ 
DOS PP 

EREP 

IPCS 

Op Gd 

OS PP 

SCRIPT 

!1~~.!!l:.!!g 
indicates that this command invokes a DOS Program Product, 
available from IBM for a license fee. 

indicates that this command is described in the !~Ll1Q Q112~~ 
~'!!.Q~ffQf R~£Qfgi.!!g §Yig~; further details on the operands 
used by this command are contained in the Q2L!2, RQ2L!2~' 
!!1L1ZQ En!ifg.!!~~.!!!~! R~£Qfgi.!!g, ~gi!i.!!g, ~'!!.Q ffi.!!!l:.!!g (~~~E) 
ffggf~~· 

indicates that this command is a part of the Interactive 
Problem Control System (IPCS), and is invoked under CMS. It 
is described in the !!1L11Q !.!!!~f§£!i~~ ffQ~!~~ ~g.!!!fQ! 2I§!~~ 
(!f~2) Q§~f~§ §Yig~· 

indicates that this command is described in the !~Ll1~ 

QE~f~!Qf~2 §Yig~· 

indicates that this command invokes an OS program Product, 
available from IBM for a license fee. 

indicates that this command invokes a text 
an IBM Installed User Program, available 
license fee. 

processor that is 
from IBM for a 

SPG indicates that this command is described in the !~Ll1Q 2Y§!~~ 
ff~gf~~mef~§ §Yig~· 

SYSGEN indicates that this command is described in the VM/11~ 

f!~.!!.!!i.!!g ~.!!g 2Y§!~~ §~.!!~f§!ig.!! §y!g~. 

!Qte: If a CMS command is described in this manual, but is also repeated 
in other VM/370 publications, the chart does not refer to those other 
publications. 

You can enter CMS commands when you are running CMS in your virtual 
machine, the terminal is idle, and the virtual machine is receptive for 
input. However, if eMS is processing a previously entered command and 
your typewriter terminal keyboard is locked, you must signal your 
virtual machine via an attention interruption. The system acknowledges 
the interruption by unlocking the keyboard. Now you can enter commands. 

If your terminal is a display device, there is no problem of entering 
commands while the virtual machine is busy as its keyboard remains 
unlocked for additional command input. Note that in these circumstances 
the command you enter is stacked and is not executed until the command 
that is currently being executed completes. If more commands are 
entered than can be handled by CP, a NOT ACCEPTED message is displayed 
at the display terminal. 

In addition to the commands listed in Figures 3 and 4, there are 
seven commands called Immediate commands which are handled in a 
different manner from the others. They may be entered while another 
command is being executed by pressing the Attention key (or its 
equivalent), and they are executed immediately. The Immediate commands 
are: 

• HB - Halt batch execution 
• HO - Halt tracing 
• HT - Halt typing 
• HI - Halt execution 
• RO - Resume tracing 
• RT - Resume typing 
• SO - Suspend tracing 

,Section 1. Introductian.,an.dGeneral Conce.p.ts 9 



Command 

ACCESS 

AMSERV 

ASSEMBLE 

ASSGN 

CMSBATCH 

COBOL 

COMPARE 

CONVERT 

COPYFILE 

CP 

CPEREP 

DDR 

DEBUG 

DISK 

DLBL 

DOSLIB 

DOSLKED 

DOSPLI 

I Code 

as PP 

as PP 

EREP 

Usage 

IIdentify direct access space to a CMS virtual 
I machine, create extensions and relate the disk 
I space to a logical directory. 
I 
IInvoke access method services utility functions to 
I create, alter, list, copy, delete, import, or 

export VSAM catalogs and data sets. 

Assemble assembler language source code. 

Assign or unassign a CMS/DOS system or programmer 
logical unit for a virtual I/O device. 

Invoke the CMS batch facility. 

Compile as ANS Version 4 or OS/VS COBOL source 
code. 

Compare records in CMS disk files. 

convert free form FORTRAN statements to fixed form. 

Copy CMS disk files according to specifications. 

Enter CP commands from the CMS environment. 

Format and edit system error records for output. 

Perform backup, restore, and copy operations for 
disks. 

Enter DEBUG subcommand environment. 

Perform disk-to-card and card-to-disk operations 
for CMS files. 

Define a DOS filename or VSAM ddname and relate 
that name to a disk file. 

Delete, compact, or list information about the 
phases of a CMS/DOS phase library. 

Link-edit CMS text decks or object modules from a 
DOS/VS relocatable library and place them in 
executable form in a CMS/DOS phase library. 

DOS PP Compile DOS PL/I source code under CMS/DOS. 

TISERV Display information contained in the DOS/VS core 
image, relocatable, source, procedure, and 
transient directories. 

Figure 3. CMS Command Summary (Part 1 of 4) 

10 IBM VM/370 CMS Command and Macro Reference 



COllmand 

EDIT 

ERASE 

ISERV 

EXEC 

FCOBOL 

FETCH 

FILEDBF 

FORMAT 

FORTGI 

FORTHX 

GENDIRT 

GENMOD 

GLOBAL 

GOFORT 

ICode Usage 

Invoke the CMS editor to create or modify a disk 
file,. 

Delete CMS disk files. 

D~splay, punch or print an edited (compressed) 
macro froll a DOS/VS source statellent library 
(E sublibrary). 

Execute special procedures made up of frequently 
used sequences of commands. 

DOS PP Compile DOS/VS COBOL source code under CftS/DOS. 

OS PP 

OS PP 

as PP 

Fetch a CMS/DOS or DOS/VS executable phase. 

Define an OS ddname and relate that ddna.e to any 
device supported by CMS. 

Prepare disks in CMS SOO-byte block format. 

Compile FORTRAN source code using the G1 compiler. 

Compile FORTRAN source code using the H-extended 
compiler. 

Fill in auxiliary module directories. 

Generate nonrelocatable CMS files (MODULE files)~ 

Identify specific CftS libraries to be searched for 
macros, copy files, missiDg subroutines, or DOS 
executable phases. 

Compile FORTIIN source code and execute the program 
using the FORTRIN Code-ana Go compiler. 

INCLUDB Bring additional TEXT files into storage and 
establish linkaqes~ 

LISTDS List inforaation about data sets and space 
allocation on OS, DOS, and lSAft disks. 

LISTFILB List information about CMS disk files. 

LISTIO Display information concerning CftS/DOS system and 
programmer logical units. 

LOAD Bring TEXT files into storage for execution. 

LOADftOD Bring a single ftODULE file into storage. 

MACLIB Create or modify CftS macro libraries. 

Figure 3. CMS Com.and Summary (Part 2 of _) 

"1 

Section 1. Introduction ~nd General Concepts 11 



PUNCH 

QUERY 

READCARD 

RELEASE 

RENAME 

RSERV 

RUN 

SCRIPT 

Usage 

Display the load map of a MODULE file. 

Move data from one device to another device of the 
same or a different type. 

Change the DOS COBOL compiler (FCOBOL) options that 
are in effect for the current terminal session. 

Compile and execute PL/I source code using the 
PL/I Checkout Compiler. 

Execute the PL/I object code generated by the as 
PL/I Checkout Compiler. 

Compile PL/I source code using the as PL/I 
Optimizing Compiler. 

Spool a specified CMS file tc the virtual printer. 

Copy a procedure from the DOS/VS procedure library 
onto a CMS disk, display the procedure at the 
terminal, or spool the procedure to the virtual 
punch or printer. 

Spool a copy of a CMS file tc the virtual punch. 

Request information about a CMS virtual machine. 

Read data from spooled card input device. 

Make a disk and its directory inaccessible to a CMS 
virtual machine. 

Change the name of a CMS file or files. 

Copy a DOS/VS relocatable module onto a CMS disk, 
display it at the terminal, or spool a copy to 
the virtual punch or printer. 

Initiate series of functions to be performed on a 
source, MODULE, TEXT, or EXEC file. 

SCRIPT Format and print documents according to embedded 
SCRIPT control words in the document file. 

SET Establish, set, or reset CMS virtual machine 
characteristics. 

Figure 3. CMS Command Summary (Part 3 of 4) 

12 IBM':'1IM/370 eMS Command and Macro, Reference 



Command ICode 

SORT 

SSERV 

START 

STATE 

STATEW 

SVCTRACE 

SYNONYM 

TAPE 
I-

TAPEMAC 

TAPPDS 

TESTCOB OS PP 

TESTFORT OS PP 

TXTLIB 

TYPE 

UPDATE 

VSAPL OS PP 

VSBASIC as PP 

VSBUTIL as PP 

Usage 

Arrange a specified file in ascending order 
according to sort fields in the data records. 

Copy a DOS/VS source statement book onto a CMS 
disk, display it at the terminal, or spool a copy 
to the virtual punch or printer. 

Begin execution of programs Freviously loaded (aS 
and CMS) or fetched (CMS/DOS). 

Verify the existence of a CMS disk file. 

Verify a file on a read/write CMS disk. 

Record information about supervisor calls. 

Invoke a table containing synonyms you have created 
for CMS and user-written commands. 

Perform tape-to-disk and disk-to-tape operations 
for CMS files, and position tapes. 

Create CMS MACLIB libraries directly from an 
IEHMOVE-created partitioned data set on tape. 

Load as partitioned data set (PDS) files or card 
image files from tape to disk. 

Invoke the OS COBOL Interactive Debug Program. 

Invoke the FORTRAN Interactive Debug program. 

Generate and modify text libraries. 

Display all or part of a CMS file at the terminal. 

Make changes in a program source file as defined 
by control cards in a control file. 

Invoke VS APL interface in CMS. 

Compile and execute VS BASIC Frograms under CMS. 

Convert BASIC 1.2 data files to VS BASIC format. 

Figure 3. CMS Command Summary (Part 4 of 4) 

Section 1. ,Introduction apd General Concepts 13 



Command 

ASM3705 

ASMGEND 

CMSGEND 

CMSXGEN 

CPEREP 

DIRECT 

DOSGEN 

DUMPS CAN 

GEN3705 

GENERATE 

LKED 

NCPDUMP 

PRB 

PROB 

SAVENCP 

SETKEY 

STAT 

VMFBLD 
I 
IVMFDUMP 
I 
I 
IVMFLOAD 
I 
IVSAMGEN 
I 
IZAP 
I 

I Code 

SYSGEN 

SYSGEN 

SYSGEN 

SYSGEN 

EREP 

Op Gd 

SYSGEN 

IPCS 

SYSGEN 

SYSGEN 

Usage 

Assemble 370x source code. 

Regenerate the VM/370 assembler command modules. 

Generate a new CMS disk-resident module from 
updated TEXT files. 

Generate the CMSSEG discontiguous saved segment~ 

Format and edit system error records for output. 

Set up VM/370 directory entries. 

Load and save the CMSDOS shared segment. 

Provide interactive analysis of CP abend dumps. 

Generate an EIEC file that assembles and link-edits 
the 370x control program. 

Update VM/370 or the VM/310 directory, or generate 
a new standalone copy of a service program. 

SYSGEN Link-edit the 310x control program. 

OP Gd, Process CP spool reader files created by 310x 
SPG dumping operations. 

IPCS Update IPCS problem status. 

IPCS Enter a problem report in IPCS. 

SYSGEN, Read 310x control program load into virtual 
SPG storage and save an image on a CP-owned disk. 

SPG 

IPCS 

SYSGEN 

Op Gd, 
IPCS 

SYSGEN 

SYSGEN 

Op Gd, 
SPG 

Assign storage protect keys to storage assigned to 
named systems. 

Display the status of reported system problems. 

Generate and/or update VM/310 using the PLC tape. 

Format and print system abend dumps; under IPCS, 
create a problem report. 

Generate a new CP, CMS or RSCS module. 

Load and save the CMSVSAM and CMSAMS segments. 

Modify or dump LOADLIB, TITLIE, or MODULE files. 

Figure 4. CMS Commands for System Programmers 

14 IBM VM/310 CMS Command and Macro Reference 



Section 2. CMS Commands 

This section contains reference information for the CMS commands used by 
general users. Each command description indicates the format, operands 
and options, and error messages and return codes issued by the command. 
Usage notes are provided, where applicable. 

The formats of the DEBUG, EDIT, and EXEC commands are also listed; 
for details on the EDIT or DEBUG subcommands or EXEC control statements, 
see: 

• "Section 3~ EDIT Subcommands and Macros" 
• "Section 4. DEBUG Subcommands" 
• "Section 5. EXEC Control Statements" 

For more detailed usage information on CMS commands, see the !~L]l~ ~~~ 
!!§~f~§ Q!!.!g~. 

sect~on 2. CMS Commands 15 
• 



ACCESS 

ACCESS 

Use the ACCESS command to identify a disk to CMS, establish a filemode 
letter for the files on the disk, and set up a file directory in 
storage. The specifications of the ACCESS command determine the entries 
in the user file directory. The format of the ACCESS command is: 

cuu makes the disk at the specified virtual device address 
available. The default value is 191. 

Valid addresses are 001 through 5FF for a virtual machine in 
basic control mode, and 001 through FFF for a virtual machine 
in extended control mode. 

mode assigns a one-character file mode letter to all files on the 
disk being accessed. This field must be specified if cuu is 
specified. The default value is A. 

ext indicates the mode of the parent disk. Files on the disk 
being accessed (cuu) are logically associated with files on 
the parent disk; the disk at cuu is considered a read-only 
extension. A blank must not precede or follow the diagonal 
(I) • 

fn [ft [fm]] 

NOPROF 

ERASE 

NODISK 

defines a subset of the files on the specified disk. Only the 
specified files are included in the user file directory and 
only those files can be read. An asterisk coded in any of 
these fields indicates all filenames, filetypes, or filemode 
numbers (except 0) are ~o be included. (See Usage Notes 3 and 
4.) If a filemode is specified, it must be specified as a 
letter and a number. For OS and DOS disk access restrictions, 
see Usage Note 9. 

suppresses execution of a PROFILE EXEC file. This option 
is valid only if the ACCESS command is the first command 
entered after you IPL CMS. On subsequent ACCESS 
commands, the NOPROF option is ignored. 

specifies that you want to erase all of the files on the 
specified disk. This option is only valid for read/write 
disks. (See Usage Note 7.) 

lets you gain access to the CMS operating system with no 
disks accessed except the system disk (S-disk) and its 
extensions. This option is only valid if the ACCESS 
command is the first command you enter after you IPL CMS. 

16 IBM VM/370 CMS Command and Macro Reference 



ACCESS 

1. If you have disk addresses 190, 191, 192, and 19E defined in the 
VM/370 directory, or if they are defined before you IPL CMS, these 
disks are accessed as the S-, A-, D-, and Y-disks respectively. 
You must issue explicit ACCESS commands to access any other disks 
you wish to use following an IPL of the CMS system. ordinarily, 
you have access only to files with a file mode number of 2 on the 
system disk. 

When ACCESS is the first command issued after an IPL of the CMS 
system, the A-disk is not automatically defined. Another ACCESS 
command must be issued to define the A-disk. 

2. Each CMS disk has associated with it a master file directory, which 
contains an entry for every CMS file on the disk. The user file 
directory created in storage by the ACCESS command contains entries 
for only those files that you can reference. 

You should issue an ACCESS command every time you link to a new 
minidisk with the CP LINK command, to obtain the appropriate file 
directory. 

3. The filename, filetype, and filemode fields can only be specified 
for disks that are accessed as read-only extensions. For example: 

access 195 b/a * assemble 

gives you read-only access to all the files with a filetype of 
ASSEMBLE on the disk at virtual address 195. The command: 

access 190 z/a * * z1 

gives you access to all files on the system disk (190) that have a 
filemode number of 1. 

When you access any disk in read-only status, files with a filemode 
number of 0 are not accessed. 

4. You can also identify a set of files on a disk by referring to a 
filename or filetype prefix. For example: 

access 192 cia abc* 

accesses only those files in the disk at virtual address 192 whose 
filenames begin with the characters ABC. The command line: 

access 192 cia * a* c2 

gives you access to all files whose filetYFes begin with an A and 
which have a filemode number of 2. 

5. You can force a read/write disk into read-only status by accessing 
it as an extension of another disk or of itself; for example: 

access 191 a/a 

forces your A-disk into read-only status. 

6. When a disk is made a read-only extension of another disk, commands 
that typically require or allow you to specify a filemode may 
search extensions of the specified disk. The exceptions to this 
are the LISTFILE and DISK DUMP commands. For a detailed 
description of read-only extensions, see the !~LllQ £~2 ~§~£~§ 
§y!g~. 

Sec~ion 2. CMS Commands 17 

• 



ACCESS 

7. If you enter the ERASE option by mistake you can recover from the 
error as long as you have not yet written any new files onto the 
disk. (That is, you have not yet caused CMS to rewrite the master 
file directory.) Reissue. the ACCESS command without the ERASE 
option. 

8. You should never attempt to access a disk in read/write status if 
another user already has it in read/write status; the results are 
unpredictable. 

9. When accessing OS and DOS disks: 

a. You cannot specify filename, filetyp~and filemode whenycu 
access as or DOS disks, nor can you specify any options. 

b. In order to see as and DOS disks, you must have a read/write 
CMS A-disk available if you are going to use the LOAD command 
with the MAP option. (MAP is a default option.) 

10. If two or more disks have been accessed in CMS, and CP DEFINE 
commands are executed that swap virtual addresses, then a 
subsequent RELEASE command may write the master file directory on 
the wrong disk; for example: 

(CMS) 
(CMS) 
(CP) 
(CP) 
(CMS) 

ACCESS 193 C 
ACCESS 198 E 
DEFINE 193 293 
DEFINE 198 193 
RELEASE C 

This sequence of commands will write the master file directory frcm 
193 to 198 since the CP definitions are unknown to CMS. 

r , 
DMSACC7231 mode (cuu) {R/O} I-OS I 

R/ll I-DOS I 
L .J 

If the specified disk is a CMS disk, ~hi~ message is displayed if 
the disk is read-only. If the disk 1S 1n OS or DOS format, the 
message indicates the format, as well as whether it is a read/write 
or read-cnly disk. 

DMSACC7241 cuu1 REPLACES mode(cuu2) 

Before execution of the command, the disk represented by cuu2 was 
the "mode" disk. The disk, cuu1, is now assigned that filemode 
letter. This message is followed by message DMSACC726I. 

r , 
DMSACC7251 cuu ALSO = 'mode' I-OS I DISK 

I·-DOS I 
L .J 

The disk specified by cuu is the mode disk and an ACCESS command 
was issued to assign it another filemode letter. 

DMSACC7261 'cuu mode' RELEASED 

The disk being accessed at virtual address cuu as a read/write disk 
is already accessed at a different mode. It is released from that 
mode. Or, a disk currently accessed at mode is being replaced. 

18 IBM. Y~l370 CMS Command and Macro Reference 



Q:t!t!! !!~§§~.9~§ ~1!g !!!.!lID £,gS!§ 

DMSACC002E FILE 'DMSROS TEXT' BOT FOUND RC=28 
DMSACC003E INVALID OPTION 'option' RC=24 
DMSACC017E INVALID DEVICE ADDRESS 'cuu' RC=24 
DMSACC048E INVALID MODE 'mode' RC=24 

ACCESS 

DMSACC059E 'cuu' ALREADY ACCESSED AS READ/WRITE 'mode' DISK RC=36 
DMSACC060E FILE(S) 'fn eft [fm]]' NOT FOUND. DISK "mode(cuu)' WILL NeT 

BE ACCESSED RC=28 
DMSACC070E INVALID PARAMETER 'parameter' RC=24 
DMSACC109S VIRTUAL STORAGE CAPACITY EXCEEDED RC=104 
DMSACC112S DISK 'mode (cuu), DEVICE ERROR RC=100 
DMSACC113S mode (cuu) NOT ATTACHED RC=100 
DMSACC230i OS DISK - FILEID AND/OR OPTIONS SPECIFIED ARE IGNORED RC=4 
DMSACC240S ERROR LOADING READ OS ROUTINE 'DMSROS TEXT' 

sect~on 2. CMS Commands 19 



AftSER' 

AMSERV 

Use the AftSER' command to invoke access method services to: 

• Define 'SAft catalogs. data spaces. or clusters 
• Alter. list, copy. delete. export or import 'SA! catalogs and data 

sets 

The format of the AftSER' command is: 

Aftserv fnl 
r , 
Ifn21 
Ifn!1 
L .J 

( (options ••• [) ]] 

.2.E.!:!.2.!!§: 
[PRINT] 
r , 

I TAPIN {18n } I 
I TAPn I 
L .J 

r , 
ITAPOUT {18n } I 
I TAPn I 
L .J 

fnl specifies the fi1enam~ of ~ efts file with a fi1etype of A"SER' that 
contains the access method services control statements to be 
executed. eftS searches all of your accessed disks. using the 
standard search order. to locate the file. 

fn2 specifies the filename of the efts file that is to contain the 
access method services listing; the filetYFe is always LISTING. If 
fn2 is not specified. the LISTING file will have the same name as 
the ,ftSER' input file (fn1). 

The LISTING file is written to the first read/write disk in the 
standard search order. usually your A-disk. If a LISTING file with 
the same name already exists. it is replaced. 

PRINT spools the output listing to the virtual printer. instead of 
writing it to disk. If PRINT is specified. fn2 cannot be 
specified. 

TAPIN {18n } 
TAPn 
specifies that tape input is on the ta~e drive at the addresss 
indicated by 18n or TAPn. n may be 1. 2, 3. or 4. indicating 
virtual addresses 181 through 184. respectively. 

TAPOUT {18n } 
TAPn 

specifies that tape output should be written to the tape drive 
at the address indicated by 18n or TAPn. n may be 1, 2. 3, or 
4, indicating virtual addresses 181 through 184. respectively_ 

Note: If both TAPIN and TAPOUT are specified. their virtual device 
i~~~esses must be different~ 

20 IBft ,"/370 CMS Command and Macro Reference 



AMSERV 

1. To create a job stream for access method services, you can use the 
CMS Editor to create a file with . the filetype of AMSERV. The 
editor automatically sets input margins at columns 2 and 72. 

2.. Refer to the QQ~L!~ !££~§§ 11~!l!Qg ~~EX!f~§ !!§~E~§ QI!ig~ for a 
description of access method services control statements format and 
syntax. Restrictions placed on VSAM usage in CMS are listed in this 
publication in "Appendix B: DOS/VS Access Method Services and VS!M 
Functions Not supported in CMS" and "Appendix C: as/vs Access 
Method Services and VSAM Functions Not Supported in CMS." 

3. You must use the DLBL command to identify the master catalog and 
all disk input and output files for access method services; the 
ddname operand of the DLBL command corresponds to the dname 
parameter following a FILE, INFILE, or OUTFILE keyword in an access 
method services statement. 

4. When you use tape input and/or output with the AMSERV command, you 
are prompted to enter the ddnames; a maximum of 16 ddnames are 
al10wed for either input and output. The ddnames can each have a 
maximum of seven characters and must be separated by blanks. 

Since only one tape can be attached at a time for either input or 
output while using AMSERV, if you you enter more than one tale 
ddname, the tape files must be in the sequence they are used in the 
input s.tream. 

5. A CMS format variable file cannot be used directly as input to 
AMSERV functions as a variable (V) or variable blocked (VB) file 
because the standard variable CMS record does not contain the BL 
and RL headers needed by the variable record modules. If these 
headers are not included in the record, errors will result. 

6. If you are using Release 34 of access method services, the 
"NOLABEL" keyword is available in the environment section of access 
method services control statements. This keyword is necessary when 
using AMSERV to read nonlabeled tapes~ Tapes created using AMSERV 
default to nonlabeled tapes. 

A11 files placed on the CMS disk by AKSERV will show a RECFM of V, 
even if the true format is fixed (F), fixed blocked (FB), undefined 
(U), variable or variable blocked. The programmer must know the 
true format of the file he is trying to use with the AMSERV command 
and access it properly, or errors will result. 

1. You must assign a logical unit to be associated with each ddname 
named in a DLBL command when you use the AMSERV command in the 
CMS/DOS environment. 

2. AMSERV internally' issue.s an ASSGN command for SYSIPT and locates 
the source file; therefore, you do not need to assign it. If you 
use the TAPIN or TAPOUT options, AMSERV also issues ASSGN commands 
for the tape drives (assigning logical units SYS004 and SYS005). 

Any other assignments and DLBL definitions that are in -effect when 
you invoke the AMSERV command are saved and restored when the 
command completes executing. 

S~~tion .2 .. CMS. G.ommq.n,ds 21 



AMSERV 

~~2E2~2~2 

The CMS ready message indicates that access method services has 
completed processing. If access method services completed with a nonzero 
return code, the return code is shown in the ready message. You should 
examine the LISTING file created by AMSERV to determine the results of 
access method services processing. 

The publication ~Q~!~ ~~§§gg~ lists and explains all of 
messages generated by access method services together with 
associated reason codes. 

DMSAMS367R ENTER TAPE {INPUTIOUTPUT} DDNAMES: 

the 
the 

This message prompts you to enter the ddnames associated with the 
tape files. 

DMSAMS7221 FILE 'fn2 LISTING fm' WILL HOLD AMSERV OUTPUT 

This message is displayed when you enter a fn2 operand or when the 
listing is not being written on your A-disk; it tells you the file 
identifier of the output listing. 

DMSAMS001E NO FILENAME SPECIFIED RC=24 
DMSAMS002E FILE 'fnl AMSERV' NOT FOUND RC=28 
DMSAMS003E INVALID OPTION 'option' RC=24 
DMSAMS006E NO READ/WRITE DISK ACCESSED FOR 'fn2 LISTING' RC=36 
DMSAMS007E FILE 'fnl AMSERV fm' NOT FIXED, 80-CHAR. RECORDS RC=32 
DMSAMS065E 'option' OPTION SPECIFIED TWICE RC=24 
DMSAMS066E 'option' AND 'option' ARE CONFLICTING OPTIONS RC=24 
DMSAMS070E INVALID PARAMETER 'parameter' RC=24 
DMSAMS109S VIRTUAL STORAGE CAPACITY EXCEEDED RC=104 
DMSAMS113E {TAPINITAPOUT} (addr) NOT ATTACHED RC=100 
DMSAMS136S UNABLE TO LOAD 'IDCAMS' RC=104 
DMSAMS228E NO DDNAME ENTERED RC=24 
DMSSTT062E INVALID CHARACTER 'char' IN FILEID {'fn1 AKSERV'I'fn2 

LISTING'} RC=20 

22 IBM/VM/370 CMS Command and Macro Reference 



ASSEMBLE 

ASSEMBLE 

Use the ASSEMBLE command to invoke the assembler to assemble a file 
containing source statements. Assembler processing and output is 
controlled by the options selected. The format of the ASSEMBLE command 
is: 

r.------------------------------------------------------------------------, 
I Assemble 
1 
I, 

fn 

fn [(options ••• [) ]] 

r , 
IALOGIC 1 
I NOALOGICI 

r , 
IESD I 
INOisDI 

r , 
I FLAG (nnn) I 
l1:t!Q tQ) I 

r , 
ILINECOUN (nn) I 
111!t~~Q!!!! (22) I 

L .J L .J L .J L 

r , 

Ib'!~! I 
INOLISTI 

r , 
IMCALL 1 
I!fQl1~!1bl 

r , 
IMLOGIC I 
I!fQl1tQQ!£1 

r , 

1!!1J2 I 
INORLDI 

r , 
ILIBMAC I 
I!fQ1!BM!£1 

L .J L .J L .J L .J L 

r , 
IIREF (FULL) I 
I!!!~~ (~!!Q!!!) 1 
INOIREF I 

r , 
IPRINT 1 
INOPRINTI 
I!!.!~JS I 

L 

r , 
IDECK I 
I!iQ!!~£~1 
L .J 

r , 

1!!!!11~~!!1 
INONUM I 
L .J 

r 
I!b.!~!i 

, 
I 

.J L 

r , 

IQlh!~~! I 
INOOBJECTI 
L .J 

r , 
1~!11! I 
INOSTMTI 
L .J 

r 
IBUFSIZE 

r , 
ITEST I 
I!!QI~~II 
L .J 

r , 
1!~!!MI!i!11 
INOTERM I 
L .J 

, r 
(MIN) I IRENT 

, 
I 

INOALIGNI I§!!~~.!~~ (~TD) I I!!Q!!!!iII 
L .J L .J L .J 

r , r , 
IIFLAG I ISISPARM (string) I 
IJ!Q!~b!QI ISISPARM n I 
L .J ISISPARM (1) I 

L .J 

is the filename of the source file to be assembled and/or the 
filename of assembler output files. The file must have 
fixed-length, SO-character records. Ey default, the assembler 
expects a CMS file with a filetype of ASSEMBLE. 

Section 2. CMS Commands 23 



ASSEMBLE 

1i§~i~g ££~~!£1 QE~iQ~§: The 
options you can use to control 
values are underscored~ 

list below describes the 
the assembler listing. 

assembler 
The default 

!1Q§J£ 

NOALOGIC 

l!~12 

NOESD 

FLAG (nnn) 
X1!§ jQl 

lists conditional assembly statements in open code. 

suppresses the ALOGle option. 

lists the external symbol dictionary (ESD). 

suppresses the printing of the ESD listing. 

does not include diagnostic messages and MNOTE 
messages below severity codennn 1n the listi,ng. 
Diagnostic messages can have severity codes of 4, 8, 
12, 16, or 20 (20 is the most severe); and MNOTE 
message severity codes can be between 0 and 255., For 
example, FLAG (8) suppresses diagnostic messages with a 
severity code of 4 and MNOTE messages with severity 
codes of 0 through 1. 

LINECOUN (nn) nn specifies, the number of lines to be listed per 
1J!l!£QQ! j~~l page. 

NOLIST 

MCALL 

!Q~£!11 

MLOGIC 

!Q~1Q§J£ 

!!112 

NORLD 

LIBMAC 

produces an assembler listing. Any previous listing is 
erased. 

does not produce an assembler listing. However, any 
previous listing is still erased. This option overrides 
ESD, RLD, and IREF. 

lists the inner macro instructions encountered during 
macro generation following their respective outer macro 
instructions. The assemble;r assigns statement numbers 
to these instructions. The MCALL option is implied by 
the MLOGIC option; NOMCALL has no effect if MLOGIC is 
specified. 

suppresse~ the MCALL option. 

lists all statements of a macro definition processed 
during macro generation after the macro instruction. 
The assembler assigns statement numbers to them. 

suppresses the MLOGIC option. 

pr.oduces the ,relocation dictionary (RLD) as part of the 
list'ing. 

does not print the relocation directory. 

lists the macro definitions read from the macro 
libraries and any assembler statements following the 
logical END statement. The logical END statement is 
the first END statement processed during macro 
generation. It may appear in a macro or ~n open code; 
it may even be created by substitution. The assembler 
assigns statement numbers to the statements that follow 
the logical END statement. 

suppresses th,e'LIBMAC option.' 

24 IBM VM/310 :CMS Command and Macro Reference 



ASSEftBLE 

XREF (FULL) includes in the assembler listing a cross-reference 
table of all symbols used in the assembly. This 
includes symbols that are defined but never refeienced. 
The assembler listing also contains a cross-reference 
table of literals used in the assembly. 

!~~I (a~QB~) includes in the assembler listing a cross-reference 
table of all symbols that are referenced in the 
assembly. Any symbols defined but not referenced are 
not included in the table. The assembler listing 
contains a cross-reference table of literals used in 
the assembly. 

NOXREF does not print the cross-reference tables. 

PRINT writes the LISTING file to the printer. 
PR 

NOPRINT suppresses the printing of the LISTING file. 
NOPR 

~!a! places the LISTING file on a virtual disk. 
DI 

QY!~Y! ~B~!!B! Q~!!Bns: The output control options are used to 
control the object module output of the assembler. 

DECK 

l!Q~~~! 

OB~~~~ 
Q!l~ 

NOOBJECT 
NOOBJ 

TEST 

writes the object module on the device specified on the 
FILEDEF statement for PUNCH. If this option is 
specified with the OBJECT option, the object module is 
written both on the PUNCH and TEXT files. 

suppresses the DECK option. 

writes the object module on the device, which is 
specified by the FILEDEF statement for TEXT, and erases 
any previous object modules. If this option is 
specified with the DECK option, the object module is 
written on the two devices specified in the FILEDEF 
statement for TEXT and PUNCH. 

does not create the object .odule. However, any previous 
object module is still erased. 

includes the special source symbol table (SYM cards) in 
the object module. Thi·s option should not be used for 
programs to be run under CMS because the SYft cards are 
not acceptable to the CMS LOAD and INCLUDE commands. 

Does not produce SYM cards. 

2Ia11!H Q~!!BD§: The SYSTERM options are used to control the SISTERft 
file associated with your asseably. 

NONUM 

writes the line number field (columns 73-80 of the 
input records) in the SISTERft listing for statements 
for which diagnostic information ~s given. This option 
is valid only if TERMINAL is specified. 

suppresses the BUMBER option. 

Section 2. CftS Commands 25 



ASSE!!BLE 

BOST!!T 

BOTER!! 

writes the statement number assigned by the asse_bler 
in the SYSTER!! listing for statements for which 
diagnostic information is given. This option is valid 
only if TERKINAL is specified. 

suppresses the ST!!T option. 

writes the diagnostic information on the 
SYSTER!! data set. The diagnostic information consists 
of the diagnosed statement followed by the error 
message issued. 

• 
suppresses the TERMINAL option. 

Qlh~! !§§~!Rl~! QR1!QD§: The following options allow you to specify 
various functio~s and values for the assembler. 

NOALIGN 
NOALGN 

ali~ns all data on the proper boundary in the 
object module~ for example, an l-type constant is 
aligned on a fullword boundary. In addition, the 
assembler checks storage addresses used in machine 
instructions for alignment violations. 

do~s not align data areas other than those 
specified in CCW instructions. The~ssembler doe~ not 
skip bytes to align constants aD proper boundaries. 
Alignment violations in machine instructions are not 
diagnosed. 

BUlSIZE (!!IN) uses the minimum buffer sizes (790 bytes) for each of 
the utility data sets (SYSUT1~ SYSUT2, and SYSUT3). 
Storage normally used for buffer~ is allocated ~o .ork 
space. Because more work space is· available, more 
complex programs can be asse.bled in a given virtual 
stora~e size; but the speed of the assembly is 
su~stantially reduced. 

lH!I~!!1 j~lRl chooses the buffer size that gives optimum 
The buffer size depends on the amount 
storage. Of the assembler working storage 
minimum requirements, 371 is allocated to 
data set buffers and the rest to macro 
dictionaries. 

performance. 
of virtual 

in excess of 
the utility 
generation 

RENT 

!l2!!!!1 

YlLAG 

!!2!11!Q 

SYSP1R!! 

checks your program for a possible violation of program 
reenterability. Code that makes your program 
nonreenterable is identified by an error message. 

suppresses the RENT optiOn~ 

does not suppress the warning messages that indicate 
that relocatable Y-type address constants have been 
declared .• 

suppresses the warning messages that indicate 
relocatable Y-type constants have been declared. 

{ 
~ftring) t 
(1) S 

passes a character value to the system variable symbol, 
SYSPAR!!. The variable (string) cannot be greater than 
eight Characters. If you want to enter a string of 

26 IB!! .• M/370 C!!S Command and !acroReference 



!!§gg~ !!Q.t~§ 

ASSEMBLE 

more than eight characters, use the SYSPARM (1) format. 
With the SYSPARM (1) format, CMS prompts you with the 
message: 

ENTER SYSPARM: 

You can enter up to 100 characters. You can also enter 
parentheses and embedded blanks from the terminal. 
SYSPA~M () enters a null string of characters. 

1. When you issue the ASSEMBLE command, default FILEDEF commands are 
issued for assembler data sets. You may want to override these 
with explic1t FILEDEF commands. The ddnames used by the assembler 
are: 

ASSEMBLE 
TEXT 
LISTING 
PUNCH 
CMSLIB 
SYSUT1 
SYSUT2 
SYSUT3 

(SYSIN input to the assembler) 
(SYSLIN output of the assembler) 
(SYSPRINT output of the assembler) 
(SYSPUNCH output of the assembler) 
(SYSLIB input to the assembler) 
(workfile of the assembler) 
(workfile of the assembler) 
(wo~kfile of the assembler) 

The default FILEDEF commands issued by the assembler for these 
ddnames are: 

FILEPEF ASSEMBLE DISK fn ASSEMBLE fm (RECFM FB LRECL 80 BLOCK 800 
FILEDEF TEXT DISK fn TEXT fm 
FILEDEF LISTING DISK fn LISTING fm (RECFM FEA BLOCK 1210 
FILEDEF PUNCH PUNCH 
FILEDEF CMSLIB DISK CMSLIB MACLIB * (RECFM FB LRECL 80 BLOCK 800 
FILEDEF SYSUT1 DISK fn SYSUT1 fm4 (BLOCK 7294 AUXPROC asmproc 
FILEDEF SYSUT2 DISK fn SYSUT2 fm4 (BLOCK 7294 AUXPROC asmproc 
FILEDEF SYSUT3 DISK fn SYSUT3 fm4 (BLOCK 7294 AUXPROC asmproc 

At the completion of the ASSEMBLE command, all FILEDEFs that do not 
have the PERM option are erased. 

2. If you want to use any CMS macro or copy libraries during an 
assembly, you must issue the GLOBAL command to identify the macro 
libraries before ~ssuing the ASSEMBLE command. For example: 

global maclib cmslib osmacro testlib 

identifies the MACLIB files named CMSLIB, OSMACRO, and TESTLIB. 

3. In order to use OS macro libraries during an assembly, you must 
issue the FILEDEF command for the OS data set using a ddname of 
CMSLIB and assigning a CMS file identifier; the filetype must be 
MACLIB, and you must use the filename on the GLOBAL command line. 
For example: 

filedef cmslib disk oldtest maclib c dsn oldtest macros 
global maclib oldtest 

assigns the OS data set OLDTEST.MACROS, on 'the disk accessed as 
mode C, a CMS fileid of OLDTEST MACLIB and identifies it as the 
macro library to be used during assembly. 

Section 2. CMS Commands 27 



ASSEMBLE 

4. You cannot assemble programs using DOS macros from the DOS/VS 
source statement libraries under CMS/DOS. You should use the 
SSERV, ESERV, and MACLlB commands to create CMS MACLlBs to contain 
DOS macros for assembly under CMS/DOS. See the !~LJIQ ~~~ ~§~E~§ 
Qy!g~ for examples. 

5~ You do not need to make any logical assignments for input or output 
files when you use the assembler under CMS/DOS. File definitions 
are assigned by default under CMS, as described in Usage Note 1. 

6. Usage information about the VM/370 Assembler Language and assembler 
options can be found in Q~L!~ ~~g !~LJIQ !§§~mbl~E gE2gE~~~~E~§ 
Qy!g~ and Q~L!~, QQ2L!2, ~~g !~Ll1Q !§§~!~l~E 1~~gy~g~· 

For the messages and return codes associated with the ASSEMBLE command, 
see the Q~L!~ ~~g !~LJIQ !§§~!~!~E gE2gE~!!~E~§ Qy!g~. 

28 IBM VM/370 CMS Command and Macro Reference 



ASSEMBLE 

ASSGN 

Use the ASSGN command in CMS/DOS to assign or un assign a system or 
programmer logical unit for a virtual I/O device. The format of the 
ASSGN command is: 

ASSGN 

SYSxxx 

READER 

SYSxxx Reader [ (options ••• [) ]] 
PUnch 

·PRinter 
Terminal gE1igD§: 

r , 
TAPlnl 

111 
L .J 

mode 
IGN 
UA 

r , 
I!!f£!~~ I 
ILOWCASEI 
L .J 

r , 
17TRACKI 
19TRACKI 
L .J 

[TRTCH a] 

[DEN den] 

, 

specifies the system or programmer logical unit to be assigned 
to a particular physical device. SY5000 through SYS241 are 
valid programmer logical units in CMS/DOS; they may be 
assigned to any valid device. The system logical units you 
may assign, and the devices to which they may be assigned, 
are: 

~!~~~ 
SYSRDR 
SYSIPT 
SYSIN 
SYSPCH 
SYSLST 
SYSLOG 
SYSOUT 
SYSSLB 
SYSRLB 
SYSCLB 
SYSCAT 

!~!ig ~§§igDm~D!§ 
Reader,disk,tape 
Reader,disk,tape 
Reader,disk,tape 
Punch, disk, tape 
Printer, disk, tape 
Terminal, printer 
Tape 
Disk 
Disk 
Disk 
Disk 

The assignment of a system logical unit to a particular device 
type must be consistent with the device type definition for 
the file in your program. 

is the spooled card reader (card reader I/O must not be 
blocked). 

PUNCH is the spooled punch. 

PRINTER is the spooled printer. 

TERMINAL is your terminal (terminal I/O must not be blocked) • 

TAP[n] is a magnetic tape. n is the symbolic number of the tape 
drive. It is either 1, 2, 3, or 4, representing virtual 
addresses 181, 182, 183, and 184, respectively. If n is 
omitted, TAP1 is assumed. 

Blode specifies the one-character mode letter 
assigned to the logical unit (SYSxxx). 
accessed when the ASSGN command is issued. 

of the disk being 
The disk must be 

Section 2. CMS Commands 29 



A55GN 

IGN (ignore) specifies that any attempt to read from the specified 
device results in an end-of-file indication; any attempt to 
write to the device is ignored. IGN is not valid when 
associated with 5Y5RDR, 5YSIPT, SYSIN, or SYSCLB. 

UA indicates that the logical unit is to be unassigned. When you 
release a disk for which an assignment is active, it is 
automatically unassigned. 

!!R£!~~ 

LOWCASE 

7TRACK 
9TRACK 

TRTCH a 

DEN den 

translates all terminal input data to uppercase. 

retains all terminal input data as keyed in. 

is the tape setting. 

refers to the tape recording technique 'for 1-track tapes. 
Use the following chart to determine the value of a. 

--, 
a 'Parity converter Translator I 

I 
a odd off off I 

OC odd on off I 
aT odd off on I 

E even off off I 
ET even off on I 

is tape density: den can be 200, 556, 800, 1600, or 6250 
bits per inch (bpi). If 200 or 556 are specified, 7TRACK 
is assumed. If 800, 1600, or 6250 are specified, 9TRACK is 
assumed. (See Usage Note 8.) 

!!§~~ !21~§ 

1. When you enter the CMS/DOS environment with the command SET DOS ON, 
5YSLOG is assigned by default to TERMINAL. If you specify the mode 
letter of the DOS/VS system residence on the SET DOS ON command 
line, SYSRES is assigned to that disk mode. 

2. You cannot assign any of the following DOS/VS system logical units 
with the ASSGN command: 

5YSRES 
SY5USE 

SYSLNK 
SYSREC 

SYSVIS 

3~ If you assign the logical unit SYSIN to a virtual device, SYSRDR 
and SYSIPT are also assigned to that device. If you make a logical 
assignment for SYSOUT, both SYSLST and SYSPCH are assigned. 

4. To obtain a list of current assignments, use the LISTIO command. 

5. To cancel all current assignments (that is, to unassign them}, you 
can enter, in succession, the commands: 

set dos off 
set dos on [mode] 

6. If you want to access DOS/VS private libraries, you must assign the 
logical units SYSSLB (source statement library) # SISRLB 
(relocatable library), and SYSCLB (core image library), and you 
must issue the DLBL command to establish a file definition. 

30 IBM VM/310 CMS Command and Macro Reference 



ASSGN 

7. An assignment to disk (mode) should be accompanied by a DLEL 
command that provides the disk file identification. 

You cannot make an assignment to a 3350 disk in native mode. 

8. If no tape options are specified on the command line, the default 
for a 7-track tape is 800.bpi, data converter off, translator off 
and odd parity. If the tape is 9-track, the density defaults to 
the density of the tape drive. 1600 bpi is the reset condition for 
9-track dual-density tapes. If the tape drive is phase-encoded, 
density defaults to the density of the tape. If the tape drive is 
NRZI, the reset condition is 800 bpi. 

None. 

DMSASN003E INVALID OPTION 'option' RC=24 
DMSASN027E INVALID DEVICE 'device' RC=24 
DMSASN028E NO LOGICAL UNIT SPECIFIED RC=24 
DMSASN029E INVALID PARAMETER 'parameter' IN THE OPTION 'option' 

FIELD RC=24 
DMSASN035E INVALID TAPE MODE RC=24 
DMSASN050E PARAMETER MISSING AFTER SYSxxx RC=24 
DMSASN065E 'option' OPTION SPECIFIED TWICE RC=24 
DMSASN066E 'option' AND 'option' ARE CONFLICTING OPTIONS RC=24 
DMSASN069E DISK 'mode' NOT ACCESSED RC=36 
DMSASN070E INVALID PARAMETER 'parameter' RC=24 
DMSASN087E INVALlP ASSIGNMENT of 'SYSxxx' TO DEVICE 'device' RC=24 
DMSASN090E INVALID DEVICE CLASS 'deviceclass' FOR 'device' RC=36 
DMSASN099E CMS/DOS ENVIRONMENT NOT ACTIVE RC=40 
DMSASN113S '{TAPnlmodeIREADERIPUNCHIPRINTER} (cuu) , NOT ATTACHED RC=100 
DMSASN366E NO CMS/DOS SUPPORT FOR NATIVE 3350 DISK RC=36 

Section 2. CMS Commands 31 



CMSBATCH 

CMSBATCH 

The system operator uses the CMSBATCH command to invoke the CMS batch 
facility. Instead of compiling or executing a program interactively, 
virtual machine users can transfer jobs to the virtual card reader of an 
active CMS batch virtual machine and thus free up their terminals fer 
other work. The format of the CMSBATCH command is: 

CMSBATCH [sysname] 

sysname is the eight-character identification of the saved system that 
is specifically generated for CMS batch operations via the CP 
SAVESYS com.and and the NAMESYS macro. Refer to the !~Ll1Q 
~y§!~~ ~~Qg~s~~~~§ ~Yide for details on SAVESYS and NAMESYS 
use. 

!21~: If sysname is not supplied on the command line, then the 
system that the system operator is currently logged onto 
becomes the CMS batch virtual machine. 

Q~sg~ !Q!~§ 

1. The CMSBATCH command may be invoked immediately after an IPL of the 
CMS system. Alternatively, BATCH may be specified following the 
PARM operand on the IPL command line. . 

2. You should not issue the CMSBATCH command if you use a virtual disk 
at address 195; the CMS batch virtual machine erases all files cn 
the disk at address 195. 

3. For a description of how to send jobs to 
machine, see the !~Ll1Q ~~~ Q§~~~§ ~yig~. 
setting up a batch virtual machine, see 
§Yig~· 

the CMS batch virtual 
For an explanation of 
the !~Ll1Q QE~~at2f~§ 

4. The CMS batch virtual machine can be utilized by personnel who do 
not have access to a terminal or a virtual machine. This is 
accomplished by submitting jobs via the real card reader. For 
details on this, see the !~Ll1Q ~~~ Q~!~§ §Yig~. 

5. If the CMSBATCH command encounters recursive abends, the message 
"CMSBATCH system ABEND" appears on the system operator's console. 

DMSBTB100E NO BATCH PROCESSOR AVAILABLE RC=40 
DMSBTB101E BATCH NOT LOADED RC= 88 
DMSBTP105E NO JOB CARD PROVIDED RC=None 
DMSBTP106E JOB CARD FORMAT INVALID RC=None 
DMSBTP107E CP/CMS COMMAND 'command, (device) I NOT ALLOWED RC=88 
DMSBTP108E ISET CARD FORMAT INVALID RC=None 
DMSBTP109E {CPUIPRINTERIPUNCH} LIMIT EXCEEDED RC=None 

• 32 IBM VM/370 CMS Command and Macro Reference 



COMPARE 

COMPARE 

Use the COMPARE command to compare two CMS disk files of fixed- or 
variable-length format on a record-for-record basis· and to display 
dissimilar records at the terminal. The format of the COMPARE command 
is: 

COMpare 

fileid 

r , 
fileid 1 fileid2 [(COL mm[ -] I nn I [)]] 

1 11~~£11 
L J 

is the file identifier of a file 
identifiers (filename, filetype, 
specified for each fileid. 

to be compared. 
and filemode) 

All three 
must be 

(COL mm-nn) 
defines specific columns to be compared. The comparison 
begins at position mm of each record. The comparison proceeds 
up to and including column nne The hyphen (-) may be used in 
place of a blank if the total number of characters required 
for mm-nn is not more than eight (maximum parameter field 
size). If column nn is specified, the hyphen may not follcw 
or precede a blank. If column nn is not specified, the 
default ending position is the last character of each record 
(the logical record length). 

1. To find out whether two files are identical, enter both file 
identifications, as follows: 

compare test1 assemble a test1 assemble b 

Any records that do not match are displayed at the terminal. 

2. To stop the display of dissimilar records, use the CMS Immediate 
command HT. 

3. If a file does not exist on a specified disk, that disk's read-only 
extensions are also searched. The complete fileids of the files 
being compared are displayed in message DMSCMP179I. 

DMSCMP179I COMPARING 'fn ft fm' WITH 'fn ft fm' 

This message identifies the files being comFared. If the files are 
the same (in the columns indicated), this message is followed by 
the CMS ready message. If any records do not match, the recbrds 
are displayed. When all dissimilar records have been displayed the 
message DMSCMP209W is issued. 

Section 2. CMS Commands 33 



COMPARE 

Q!be! ~~2§jg~§ ~»~ !!!~I ~!g~§ 

DMSCMP002! FILE 'fn ft fa' NOT POUND RC=28 
DMSCMP003E INVALID OPTION 'option' RC=24 
DMSCMP005E NO COLUMN SPECIFIED RC=24 
DMSCMP009! COLUMI 'col' EXCEEDS RICaRD LENGTH RC=24 
D!SCMP010E PREIATOIE 10F 01 FILE 'fn ft fm' RC=40 
D!SCKP011E CONPLICTIBG PILE FORMATS RC=32 
DKSCMP019E IDEITICAL PILEIDS !C=2_ 
DMSCKP029E INV1LID PIIIMETER 'parameter' IN THE OPTION 'COL' FIELD 

RC=24 
DKSCMP054E IJCOI.LITI lILIIO SPECIFIED RC=24 
DMSC!P0621 II'lLID • II PILIID IC=20 
D!SCKP104S 11101 'a.' 111DIIG PILE 'f. ft fa' FROK DISK RC=100 
DKSCKP209W lILIS DO JOT COI.111 IC=4 
DMSCKP211E COLUIJ lII1DS OIT or SEQUIBCE IC=2Q 

34 IBM YM/310. CftS Coamand and Macro Reference 



COPYPILE 

COPYFILE 

Use the COPYPILE command to copy and/or modify CMS disk files. The 
manner in which the file identifiers are entered determines whether or 
not one or more output files are created. The format of the COPYPILE 
command is: 

COPYfile 

fileidi1 

f:ileidi2 

fileido 

fileidi 1 [fileidi2 ••• ] [fileido] [ (options ••• [) ]] 

.QEti.Q'!!'§: 
r , 
IType I 
INOIIE~I 
L .J 

r , 
I!!~!Q§!~I 
IOLDDate I 
L .J 

r , 
IFRom recno I 
IFRLabel xxxxxxxxi 
L .J 

r , r 

r , 
INEiPilel 
I REPlace I 
L .J 

r . , 
I~!!Q!!E! I 
INOPRomptl 
L .J 

r , r , 
I SPecs I 
I!Q.§~~£.§I 

IFOR numrec I 
ITOLabel xxxxxxxxi 
L .J L .J 

, 
10Vly I 
IAPpendl 

I RECfa {F}I 
I V I 

[LRecl nnnnn] 
r , 
ITRUnc I 
I!Q!~yru:1 

L .J L 

r , r 
IPAck I IPIll 
IUNPackl IPIll 
L .J I~!!! 
[SIngle] L 

, 
c I 
hhl 
~QI 

.J 

.J 

[EBcdic] 

L .J 

r , 
I UPcase I [ TRans] 
ILOwcasel 
L .J 

is the first (or only) input file. Each file identifier 
(filename, filetype, and filemode) must be specified either 
by indicating the specific identifier or by coding an 
asterisk. 

is one or aore additional input files. Each file identifier 
(filename, filetype, and filemode) must be specified. In 
single output mode, any of the three input file identifiers 
may be specified either by indicating the specific 
identifier or by coding an asterisk. However, all three 
file identifiers of fileidi2 cannot be specified by 
asterisks. In multiple output mode, an asterisk (*1 is an 
invalid file identifier. An equal sign (=) may be coded for 
any of the file identifiers, indicating that it is the same 
as the correspond.ing identifier in fileidi 1. 

is the output file(s) to be created. Each file identifier 
(filename, filetype, and filemode) must be specified. To 
create multiple output files, an equal sign (=) must be 
coded in one or more of the identifier fields. If there is 
only one input file, fileido may be omitted, in which case 
it defaults to - - - (the input file represented by fileidi1 
is replaced). 

The COPYPILE command options are 
notes and examples, see "Using the 
option descriptions •. 

listed below, briefly. Por usage 
COPYFILE Command" following the 

Section 2 •. CMS Commands 35 



COPYPILE 

TYPE 

OLD DATE 

REPLACE 

NOPROMPT 

displays, at the terminal, the names of the files being 
copied. 

suppresses the display of the names of the files being 
copied. 

uses the current date as the creation date of the new 
file(s). 

uses the date on the first input file as the creation 
date of the new file(s). 

checks that files with the same fileid as the output file 
do not already exist. If one or more output files do 
exist, an error aessage is displayed and the COPYFILE 
command terminates. This option is the default so that 
existing files are not inadvertently destroyed. 

causes the output file to replace an existing file with 
the same file identifier. REPLACE is the default option 
when only one fileid is entered or when the output fileid 
is specified as "= = =." 
displays the messages that request specification or 
translation lists. 

suppresses the display of prompting messages 
specification and translation lists. 

£or 

~BEY !~!~~! QEtiB~§: 

FROM recno is the starting record number for each input file in tbe 
copy operation. 

FRLABEL xxxxxxxx 
xxxxxxxx is a character string that appears at the 
beginning of the first record to be copied from each 
input file. Up to eight nonblank characters may be 
specified. 

FOR numrec is the number of records to be copied from each input 
file. 

TOLABEL xxxxxxxx 

SPECS 

!Q~R!~~ 

OVLY 

xxxxxxxx is a character string which, if at the beginning 
of a record, stops the copy operation for that input 
file. The record containing the given character is not 
copied. Up to eight nonblank characters may be specified. 

indicates that you are going to enter a specification 
list to define how records should be copied. See 
"Entering a COPYFILE Specification List" for information 
on how you can define output records in a specification 
list. 

indicates that no specification list is to be entered~ 

overlays the data in an existing output file 
from the input file. You can use aVLY with 
option to overlay data in particular columns. 

with data 
the SPECS 

36 IBM VM/370 CMS Command and Macro Reference 



APPEND 

COPYFILE 

appends the data from the input file at the end of the 
output file. 

Data .Modification QE!!B~§: The following options can be used to 
cbange-t:be-recOrd- format of a file. See "Modifying Record Formats" 
for more details. 

RECFM { vF } is the record format 
specified, the output 

of the output files. If not 
record format is the same as that 

of the input file. 

LRECL nnnnn is the logical record length of the output file(s) if it 
is to be different from that of the input file (s·). The 
maximum value of nnnnn is 65535. 

TRUNC 

PACK 

UNPACK 

FILL c 
FILL hh 
£:1!!!! 9.Q 

EBCDIC 

UPCASE 

LOWCASE 

TRANS 

removes trailing blanks (or fill characters) when 
converting fixed-length files to variable-length format. 

suppresses the removal of trailing blanks (or fill 
characters) when converting fixed-length files to 
variable-length format. . 

compresses records in a file so that they can be stored 
in packed format. 

~sut!B~: A file in packed format should not be mOdified 
in any way. If such a file is modified, the UNPACK 
routines are unable to reconstruct the original file. 

reverses the PACK operation. If a file is inadvertently 
packed twice, you can restore the file to its original 
unpacked form by issuing the COPYFILE command twice. 

is the padding and truncation character for the TRUNC 
option or the principal packing character for the PACK 
option. The fill character may be specified as a single 
character, c, or by entering a two-digit hexadecimal 
representation of a character. The default is 40 (the 
hexadecimal representation for a blank in EBCDIC). 

converts a file that was created with 026 
characters (BCD), to 029 keypunch characters 
The following conversions are made: 

{ to ) 
& to ,. 
I to 
I to = 
m to ' 
, to 

keypunch 
(EBCDIC) • 

converts all lowercase c·haracters in each record to 
uppercase before writing the record to the output file. 

converts all uppercase characters in each record to 
lowercase before writing the record to the output file. 

indicates that you are going to enter a list of character 
translations to be made as the file is copied. See 
"Entering Translation Specifications" for details on 
entering a list of characters to be translated. 

Section 2.CMS Commands 37 



COPYFILE 

SINGLE suppresses multiple output mode regardless of the manner 
in which the file identifiers are specified. 

Figure 5 shows combinations of options 
together in the same COPYFILE command. 
column is specified, none of the options 
coded. 

that should not be specified 
If the option in the first 

in the second column should be 

r---------------------------------------~-------------------------------, 
option 

APPEND 

EBCDIC 
FOR 
FRLABEL 
FROM 
LOWCASE 
LRECL 
NEWDATE 
NEWFILE 
NOPROMPT 
NOSPECS 
NOTRUNC 
NOTYPE 
OLDDATE 
OVLY 
PACK 

PROMPT 
RECFM 
REPLACE 
SPECS 
TOLABEL 
TRANS 
TRUNC 
TYPE 
UNPACK 

UPCASE 

Figure 5. 

Incompatible Options 

LRECL, NEWDATE, NEWFILE, OLDDATE, OVLY, PACK, RECFft, 
REPLACE, UNPACK 

PACK, UNPACK 
PACK, TOLABEL, UNPACK 
FROM, PACK, UNPACK 
FRLABEL, PACK, UNPACK 
PACK, UNPACK 
APPEND, PACK, UNPACK 
APPEND, OLDDATE 
APPEND, OVLY, REPLACE 
PROMPT 
PACK, SPECS, UNPACK 
PACK, TRUNC, UNPACK 
TYPE 
APPEND, NEWDATE 
APPEND, NEWFILE, PACK, REPLACE, UNPACK 
APPEND, EBCDIC, FOR, FRLABEL, FROM, LOWCASE, LRECL7 

OVLY, RECFM, SPECS, TOLABEL, TRANS, TRUNC, UNPACK~ 

UPCASE 
NOPROMPT 
APPEND, PACK, UNPACK 
APPEND, NEWFILE, OVLY 
NOSPECS, PACK, UNPACK 
FOR, PACK, UNPACK 
PACK, UNPACK 
NOTRUNC, PACK, UNPACK 
NOTYPE 
APPEND, EBCDIC, FOR, FRLABEL, FROM, LOWCASE, LRECL, 

OVLY, PACK, RECFM, SPECS, TOLAEEL, TRANS, TRUNC, 
UPCASE 

PACK, UNPACK 

COPYFILE Option Incompatibilities 

USING THE COPYFILE COMMAND 

The simplest use of the COPYFILE command is for copying a single CftS 
file from one disk to another, or making a duplicate copy of the file cn 
the same disk. For example: 

copy file test1 assemble a test2 assemble a 

makes a copy of the file TEST1 ASSEMBLE A and names it TEST2 ASSEMBLE A. 

38 IBM VM/370 CMS Command and Macro Reference 



For those portions of the file identifier that you want 
same, you may code an equal sign in the out~ut fileid. 
command line above can be entered: 

copyfile testl assemble a test2 = 

COpy FILE 

to stay the 
Thus, the 

The equal sign may be used as a prefix or suffix of a file 
identifier. For example, the command: 

copyfile abc file= type= = 

creates an output file called FILEA TYPEB C. 

When you copy a file from one 
the old and new filemodes, and any 
to make; for example: 

virtual disk to another, you specify 
filename or filetype change you want 

copyfile test3 assemble c good = a 

This command makes a copy of the file TEST3 ASSEftBLE C, and names it 
GOOD ASSEMBLE A. 

If you want to copy only particular records in a file, you can use 
the FROM/FOR FRLABEL/TOLABEL options. For example: 

copyfile old test a new test a (frlabel start for 41 

copies 41 records from the file OLD TEST Al, beginning with the record 
beginning with the character string START into the file NEW TEST Al. 

~yltiEl~ InEY1 An~ QY1Eut !il~2 

You can combine two or more files into a single file with the COPYFILE 
command. For example: 

copy file test datal a test data2 = test data3 b 

copies the files TEST DATAl and TEST DATA2 from your A-disk and co.bines 
them into a file, TEST DATA3, on your B-disk. 

Note that if any input file has a filemode number of 3, it is 
possible that the file will be copied in a sequence different from its 
order on the disk. 

If you want to combine two more files without creating a new file: 
use the APPEND option. For example: 

copy file new list a old list a (append 

appends the file NEW LIST A to the bottom of the existing file labeled 
OLD LIST A. 

Note: If the file NEW LIST A has a different LRECL from the file OLD 
LIST A, the appended data is padded, or,truncated, to the LRECL of the 
file OLD LIST A. 

Whenever you code an asterisk (*) in an input fileid, you may cause 
one or more files to be copied, depending upon the nu.ber of files that 
satisfy the remaining conditions. For example: 

copyfile * test a combined test a 

copies all files with a filetype of TEST on your A-disk into a single 
file named COMBINED TEST. If only one file with a filetype of TEST 
exists, only that file is copied. 

Section 2. CftS Commands 39 



COPYFILE 

If you want to copy all the files on a particular disk to another 
disk, you could enter: 

copy file * * b = = a 

All the files on the B-disk are copied to the A-disk. The filenames and 
filetypes remain unchanged. 

You can also copy a group of files and change all. the filenames or 
all the filetypes. F~r example: 

copy file * assemble b = test a 

copies all ASSEMBLE 
TEST on the A-disk. 

files in the B-disk into files with a 
The filenames are not changed. 

fil~~ype of 

You can use the SINGLE option to override multiple output mode. For 
example: 

copy file * test a = = B (single 

copies all files on the A-disk with a filetype of TEST to the B-disk as 
one combined file, with the filename and filetype equal to the first 
input file found. 

Whenever an asterisk appears, it indicates that all files are to be 
copied; whenever an equal sign (=) appears, it indicates that the same 
files are to be copied. For example: 

copyfile x * al = file = 
combines all files with a filename of X on the A-disk into a single file 
named X FILE A1. 

Whenever an equal sign appears in the output fileid in a position 
corresponding to an asterisk in an input fileid, multiple input files 
produce multiple output files. When you perform copy operations of this 
nature you might wish to use the TYPE option, which displays the names 
of files being copied. For examFle: 

copy file * test a = output a = summary = (type 

might result in the display: 

COpy 'ALPHA TEST Al' TO 'ALPHA SUMMARY Al' (NEW FILE) 
COpy 'ALPHA OUTPUT " 
COpy 'BETA TEST Al' TO 'BJTA SUMMARY Al' (NEW FILE) 
COpy 'BETA OUTPUT A.' 

which indicates that files ALPHA TEST A and ALPHA OUTPUT A were copied 
into a file named ALPHA SUMMARY 'and that files BETA TEST 'and gETA 
OUTPUT A were copied i~to a file named BETA SUMMARY A. 

You can use the RECFM and LRECL options to change the record format of a 
file as you copy it. F;or example: 

copyfile data file a (recfm f lrecl 130 

converts the file DATA FILE Al to fixed-length 130-character records. 

40 IBM VM/310 CMS Command and Macro Reference 



COPYFILE 

If you specify an output fileid, for example: 

copy file data file a fixdata file a (recfm f lrecl 130 

the original file remains unchanged. The file FIXDATA FILE A contains 
the converted records. 

If the records in a file being copied are variable-length, each 
output record is padded with blanks to the specified record length. If 
any records are longer than the record length, they are truncated. 

When you convert files from fixed-length records to variable-length 
records, you can specify the TRUNC option to ensure that all trailing 
blanks are truncated: 

copy file data file a (recfm y trunc 

If you specify the LRECL option and RECFft V, the LRECL option is 
ignored and the output record length is taken from the longest record in 
the input file. 

When you convert a file from variable-length to fixed-length records, 
you may also specify a fill character to be used for padding instead cf 
a blank. If you specify: 

copyfile short recs a (recfa f fill * 
then each record 
record length. 
variable-length 
existing record. 
not altered. 

in the file SHORT RECS is padded with asterisks to the 
Assuaing that SHORT RECS was originally a 

file, the record length is taken from the longest 
Note that if SHORT RECS is already fixed-length, it is 

Similarly, when you are converting back to variable-length a file 
that was padded with a character other than a blank, you must specify 
the FILL option to indicate the pad character, : so that character is 
truncated. 

The FILL option can also be used to specify the packing character 
used with the PACK option. When you use the PACK option, a file is 
co.pressed as follows: all occurrences of tvo or more blanks are 
encoded as one character, and four or more occurrences of any other 
character are written as three characters. If you use the FILL option 
to specify a fill character, then that character is treated as a blank 
when records are co.pressed. You must, of course, specify the FILL 
option to unpack any files packed in this way •. Since most fixed-length 
files are blank-padded to the record length~ you do not need to specify 
the FILL option unless you know that some other character appears more 
frequently. 

When you convert record formats on packed files with the COPYFILE 
co •• and you can specify single or multiple output files, in accordance 
with the procedures outlined under "ftodifying Record Formats." For 
example: 

copyfile * assemble a (pack 

co.presses all ASSEftBLE files in the A-disk without changing any file 
identifiers. The com.and: 

copy file * assemble a = script = (recfm trunc 

converts all ASSEftBLE files to variable-length, and changes their 
filetypes to SCRIPT. 

Section 2. CftS Commands 41 



COPYFILE 

~~tefiDg g ~Q~!!11~ ~E~£i!!£~!!g~ 1!§! 

When you use the COpy FILE command, you can specify particular columns of 
data to be manipulated or particular characters to be translated. 
Again, how you specify the file identifier determines how many files are 
copied or modified. 

When you use the SPECS option on the COPYFILE command, you receive 
the message: 

DMSCPY601R ENTER SPECIFICATION LIST: 

and a read is presented to your virtual machine and you may enter a 
specification list. If you do not wish to receive this message, use the 
NOPROMPT option. The specification list you enter may consist of one or 
more pairs of operands in the following format: 

{

nn-mm } 
Istringl 
hxx ••• 

col 

nn-mm specifies the start and end columns of the input file that are to 
be copied to the output file,. If mm exceeds the length of the 
input record, the end of the record is the assumed ending 
position. 

string is any string of uppercase and lowercase characters or numbers 
delimited by any non-alphameric character. 

hxx •• ~ is an even number of hexadecimal digits prefixed with an h. 

col is the column in the output file at which the copy operation is 
to begin. 

You can enter as many pairs of specifications as you wish. If you 
want to enter more.than one line of specifications, enter two plus signs 
(++) as continuation indicators. 

A specification list may contain any combination of specification 
pairs; for example: 

copy file sorted list a (specs 
DMSCPY601R ENTER SPECIFICATION LIST: 
III 1 1-8 3 III 12 1***1 14 +~ 
.9-80 18 

After this command is executed, each record in the file SORTED LIST 
will look like the following: 

I 00000000 I *** oooo.~~~ 
where the o's in columns 3 through 10 indicate information origi~ally in 
columns 1 through 8; the o's following the asterisks indicate the 
remainder of each record, columns 9 through 80. 

When you enter a specification list, you are actually constructing a 
file column by column. If you specify multiple input or output files, 
the same copy operation is performed for each record in each output 
file. 

42 IBM VM/370 CMS Command and Macro Reference 



COPYPILE 

Those columns for which you do not specify any data are filled with 
blanks or, if you use the FILL option, the fill character of your 
choice. For example: 

copy file sorted list a (specs noprompt lrecl 20 fill $ 
1-15 6 

copies columns 1 through 15 beginning in column 6 and writes dollar 
signs($)in columns 1 through 5. 

If you do want to modify data in particular columns of a file but 
want to leave all of the rest of each record unchanged, you can use the 
OILY (overlay) option. For examFle, the sequence: 

COpy FILE * bracket a (specs ovly noprompt 
had 1 hbd 80 

overlays the characters [ (X'AD') and ] (X'BD') in columns 1 and 80 of 
all the files with a filetype of BRACKET on your A-disk. 

When you copy fixed-length files, records 
the record length; variable-length files 
specified. 

~~tefi~g !f~D§lg!iBD ~Eg£i!i£~!iBD§ 

are padded or truncated to 
are always written as 

You can perform conversion on particular characters in CMS files or 
groups of files with the TRANS option of the COPYFILE command. 

When you enter the TRANS option, you receive the message: 

DMSCPY602R ENTER TRANSLATION LIST: 

and a read is presented to your virtual machine. You may enter the 
translation list. If you do not wish to receive this message, use the 
NOPROMPT option. 

A translation list consists of one or more pairs of characters or hex 
digits, each pair representing the character you want to translate and 
the character you want to translate it to, respectively. For example: 

copy test file a (trans 
DMSCPY602R ENTER TRANSLATION LIST: 
* - A fO 00 ff 

specifies that all occurrences of the character * are to be translated 
to -, all character A's are to be translated ~o X'FO' and all X'OO's are 
to be translated to X'FF's. 

If any translation specifications you enter conflict with the 
LOWCASE, EBCDIC, or UPCASE options specified on the same command line, 
the translation list takes precedence. In the preceding example, if 
LOWCASE had also been specified, all A's would be translated to X'FO's, 
not to a's. 

You can enter translation pairs on more than one line if you enter a 
++ as a continuation indicator. 

Section 2 •. CMS Commands 43 



COPYFILE 

DMSCPY601R ENTER SPECIFICATION LIST: 

This message prompts you to enter a specification list when you use 
the SPECS option. 

DMSCPY602R ENTER TRANSLATION LIST: 

This message prompts you to enter a translation list when you use 
the TRANS option. 

DMSCPY721I COpy 'fn ft fm' [TO IAPPENDI OVLY] 'fn ft fm' [OLDINEW] FILE 

This message appears for each file copied with the TYPE option. It 
indicates the names of the input file and output file. When you 
have multiple input files, the output fileid is displayed only 
once. 

DMSCPY002E {INPUTIOVERLAY} FILE 'fn ft fm' NOT FOUND RC=28 
DMSCPY003E INVALID OPTION 'option' RC=24 
DMSCPY024E FILE 'fn ft fm' ALREADY EXISTS -- SPECIFY 'REPLACE' RC=28 
DMSCPY029E INVALID PARAMETER 'parameter' IN THE OPTION 'option' FIELD 

RC=24 
DMSCPY030E FILE 'fn ft fm' ALREADY ACTIVE RC=28 
DMSCPY037E DISK 'mode' IS READ/ONLY RC=36 
DMSCPY042E NO FILEID(S) SPECIFIED RC=24 
DMSCPY048E INVALID MODE 'mode' RC=24 
DMSCPY054E INCOMPLETE FILEID 'fn [ft'] SPECIFIED RC=24 
DMSCPY062E INVALID CHAR '[=I*lchar]' IN FILEID '[fn ft fm]' RC=20 
DMSCPY063E NO {TRANSLATIONISPECIFICATION} LIST ENTERED RC=40 
DMSCPY064E INVALID [TRANSLATE] SPECIFICATION AT OR NEAR •••••••• 

RC=24 
DMSCPY065E 'option' 
DMSCPY066E 'option' 
DMSCPY067E COMBINED 

RC=24 

OPTION SPECIFIED TWICE RC=24 
AND 'option' ARE CONFLICTING OPTIONS RC=24 

INPUT FILES ILLEGAL WITH PACK OR UNPACK 

INPUT FILE 'fn ft fm' NOT IN PACKED FORMAT RC=32 

OPTIONS 

DMSCPY068E 
DMSCPY101S 
DMSCPY102S 
DMSCPY103S 
DMSCPY156E 

'SPECS' TEMP STRING STORAGE EXHAUSTED AT.' •••••••• , RC=88 
TOO MANY FILEIDS RC=88 
NUMBER OF SPECS EXCEEDS MAX 20 RC=88 
'FROM nnn' NOT FOUND --FILE 'fn ft fm' HAS ONLY 'nnn' RECORDS 
RC=32 

DMSCPY157E LABEL 'label' NOT FOUND IN FILE 'fn ft fm' RC=32 
DMSCPY172E TO LABEL 'label' {EQUALSI IS AN INITIAL SUBSTRING OF} FRLABEL 

'label' RC=24 
DMSCPY173E NO RECORDS WERE COPIED TO OUTPUT FILE 'fn ft fm' RC=40 
DMSCPY901T UNEXPECTED ERROR AT 'addr': PLIST 'plist' AT 'addr', BASE 

'addr', RC Inn' RC=256 
DMSCPY903T IMPOSSIBLE PHASE CODE 'xx' RC=256 
DMSCPY904T UNEXPECTED UNPACK ERROR AT 'addr', BASE 'addr' RC=256 

44 IBM VM/370 CMS Command and Macro Reference 



CP 

CP 

Use the CP command to transmit commands to the VM/370 control program 
environment without leaving the CMS environment. The format of the CP 
command is: 

CP [ commandline ] 

!.h~!!: 

commandline is any CP command valid for your CP command privilege class. 

.Y§A9!! !!Q!!!§ 

If this field is omitted, you are placed in the CP 
environment and may enter CP commands without preceding each 
command with CP. To return to CMS, issue the CP command 
BEGIN • 

1~ You must use the CP command to invoke a CP command: 

• Within an EXEC procedure 

• If the implied CP (IMPCP) function is set to OFF for your 
virtual machine 

• In a job you send to the CMS batch facility 

2. To enter a CP command from the CftS environment without C~S 
processing the command line, use the ICP function. 

3. When you enter an invalid CP command following the CP command, you 
receive a return code of -1. In an EXEC, this return code is +1. 

All responses are from the CP command that was issued, and are followed 
by the CMS ready message. 

Section 2.CftS Co.mands 45 



DDR 

DDR 

Use the DASD Dump Restore (DDR) program to dump, restore, copy, or print 
VM/370 user minidisks. The DDR program may run as a standalone program, 
or under CMS via the DDR command. 

The DDR program has five functions: 

1. Dumps part or all of the data from a DASD device to tape. 

2. Transfers data from tapes created by the tDR dump function to a 
direct access device. The direct access device must be the same as 
that which originally contained the data. 

3. Copies data from one device to another of the same type. Data may 
be reordered, by cylinder, when copied from disk to disk. In order 
to copy one tape to another, the original tape must have been 
created by the DDR DUMP function. 

4~ Prints selected parts ofDASD and tape records in hexadecimal and 
EBCDIC on the virtual printer. 

S. Displays selected parts of DASD and tape records in hexadecimal and 
EBCDIC on the terminal. 

The format of the DDR command is: 

r , 
DDR [ fn ft I fm I ] 

r , 
fn ft Ifml 

1* I 
L .J 

I! I 
L .J 

is the identification of the file containing 
statements for the DDR program. If 
identification is provided, the DtR program 
obtain control statements from the console. 
defaults to * if a value is not provided. 

the control 
no file 

attempts to 
The filemode 

~~~: If you use the CMS DDR command, CMS ignores the SYSPRINT control 
statement and directs the output to the CMS printer OOE •.

Note: Be aware that DDR when run as a standalone
error recovery support. However, when DDR is
virtual machine environment, the I/O operation
has better error recovery facilities).

DDR CONTROL STATEMENTS

program does not have
invoked in CMS, in a

is performed by CP (CP

DDR control statements describe the intended processing and the ueeded
I/O devices. I/O definition statements must be specified first.

All control statements may be entered from either the console or the
card reader. Only columns 1 to 71 are inspected by the program. All
data after the last operand in a statement is ignored. An output tape
must have the DASD cylinder header records in ascending sequences;
therefore, the extents must be entered in sequence by cylinder. Only

46 IBM VM/370 eMS Command and Macro Reference

DDR

one type of function - dump, restore l, or copy - may be performed in
one execution, but up to 20 sta~ements describing cylinder extents may
be entered. The function statements are delimited by an INPUT or OUTPUT
statement, or by a null line if the console is used for input. If
additional functions are to be performed, the sequence of control cards
must be repeated. If you do not use INPUT or OUTPUT control statements
to separate the functions you specify when the input is read from a card
reader or CMS file, an error message (DMKDDR702E) is displayed. The
remainder of the input stream will be checked for proper syntax, but no
further DDR operations will be performed. Only those statements needed
to redefine the I/O devices are necessary for subsequent steps. All
other I/O definition remain the same.

To return to CMS, enter a null line (carriage return) in response to
the prompting message (ENTER:). To return directly to CP, key in tcP.

The PRINT and TYPE statements work differently from other DDR control
statements in that they operate on only one data extent at a time. If
the input is from a tape created by the dump function, it must be
positioned at the header record for each step. The PRINT and TYFE
statements have an implied output of either the console (TYPE) or system
printer (PRINT). Therefore, PRINT and TYPE statements need not be
delimited by an INPUT or OUTPUT statement.

I/O DEFINITION STATEMENTS

The I/O definition statements describe the tape, DASD, and printer
devices used while executing the DASD Dump Restore program.

An INPUT or OUTPUT statement describes each tape and DASD unit used.
The format of the INPUT/OUTPUT statement is:

INput
OUTput

INPUT

OUTPUT

r ,
cuu type Ivolserl [(options •••)]

laltapel
L ..J

QE!!.Q1!§:
r
ISKip
I~!!E
L

, r
nn I I MOde
Q I I MOde

.JI I MOde
L

, r ,
6250 I IREWindl
1600 I 1.Y!!Q~g I

800 I I Llave I

indicates that the device described is an input device.

indicates that the device described is an output device.

!~!~: If the output device is a DASD device and DDR is running
under CMS, the device is released using the CMS RELEASE
command function and DDR processing continues.

Section 2. CMS Commands 47

DDR

cuu

type

is the unit address of the device.

is the device type (2314, 2319, 3330, 3330-11, 3340-35,
3340-10, 3350, 2305-1, 2305-2, 2400, 2420, or 3420) (no
1-track support for any tape devices). specify a 3410 as a
3420. Specify a 3340-10F as a 3340-10, and a 3333 as a 3330.
Specify a 3350 that is in 3330-1 or 3330-11 compatibility mode
as a 3330 or 3330-11. Specify a 3344 as a 3340-10, and
specify 3350 for a 3350 operating in native mode (as opposed
to compatibility mode) •

!~1~: The DASD Dump Restore (DDR) program, executing in a
virtual machine, uses I/O DIAGNOSI 20 to perform I/O
operations on tape and DASD devices. DDR under CMS requires
that the device type entered agree with the device type of the
real device as recognized by VM/370. If there is a conflict
with device types, the following message is issued:

DMKDDR708E INVALID OPTION

However, if DDR executes standalone in a virtual machine, DDR
uses DIAGNOSE 20 to perform the I/O operation if the device
types agree. If the device types do not agree, error message
DMKDDR708E is issued.

volser is the volume serial number of a DASD device. If the keyword
"SCRATCH" is specified instead of the volume serial number, no
label verification is performed.

altape is the address of an alternate tape drive.

!~1~: If multiple reels of tape are required and "altape" is
not specified, DDR types the following at the end of the reel:

END OF VOLUME CIL xxx HD xxx, MOUNT NEXT TAPE

After the new tape is mounted, DDR continues automatically.

SKIP nn
o

forward spaces nn files on the tape. nn is any number
up to 255. The SKIP option is reset to zero after the
tape has been positioned.

r ,
MODE 162501 causes all output tapes that are opened for the first

116001 time and at the load point to be written or read in
1 8001 the specified density. All subsequent tapes mounted
L ~ are also set to the specified density. If no mode

REWIND

UNLOAD

LEAVE

option is specified, then no mode set is performed and
the density setting remains as it previously was.

rewinds the tape at the end of a function.

rewinds and unloads the tape at the end of a function.

leaves the tape positioned at the end of the file at
the end of a function.

1. When the wrong input tape is mounted, the message DMKDDR709E is
displayed and the tape will rewind and unload regardless of options
REWIND, UNLOAD, or LEAVE being specified.

48 IBM VM/370 CMS Command and Macro Reference

DDR

2. If DDR is executed from CMS, failure to attach the tape drive or
the disk device (or both) to your virtual machine prior to invoking
the input/output statement causes the following response to be
displayed:

INVALID INPUT OR OUTPUT DEFINITION

~!SPB!!I ~~~!!~! ~!g!~~~~!

Use the SYSPRINT control statement (in the standalone DDR virtual
machine only) to describe the printer that is to print data extents
specified by the PRINT statement. It also can print a map of the
cylinder extents from the DUMP, RESTORE, or COpy statement. If the
SYSPRINT statement is not provided, the printer assignment defaults to
OOE. CMS ignores the SYSPRINT statement when you invoke DDR as a
command under CMS, and CMS always directs the output to OOE. The format
of the SYSPRINT control statement is:

,
SYsprint cuu I ~___J

cuu specifies the unit address of the device.

Xync!~~~ ~!g!~~~~!§

The function statements tell the DDR program what action to perform.
The function commands also describe the extents to be dumped, copied, cr
restored. The format of the DUMP/COPY/RESTORE control statement is:

~---,

DUmp
COpy
REstore

I ...
I Icy11 [To]
I ICPvol
I IALL
I I NUcleus
I L

,
[cy12 [Reorder] [To] [cy13]] I

I
I
I

J

I
I
I
I
I
I

DUMP requests the program to move data from a direct access volume
onto a magnetic tape or tapes. The data is moved cylinder by
cylinder~ Any number of cylinders may be moved. The format
of the resulting tape is:

Record 1: a volume header
descrIbIng the volumes.

record, consisting of data

Record 2: a track header record, consisting of a list of count
fIelds-to restore the track, and the number of data records
written on tape. After the last count field the record
contains key and data records to fill the 4K buffer.

Record 3: track data records, consisting of key and data
records-packed into 4K blocks, with the last record truncated.

!!~£~!g_!: either the end-of-volume (EOV) or end-of-job (EOJ)
trailer label. The end-of-volume label contains the same
information as the next volume header record, except that .the
ID field contains EOV. The end-of-job trailer label contains

Section 2~ CMS Commands 49

DDR

the same information as record 1 except that the cylinder
number field contains the disk address of the last record on
tape and the ID field contains EOJ.

COpy requests the program to copy data from one device to another
device of the same or equivalent type. Pata may be recorded
on a cylinder basis from input device to output device. A
tape-to-tape copy can be accomplished only with data dumped by
this program.

RESTORE requests the program to return data that has been dumped by
this program. Data can be restored only to a DASD volume of
the same ~r equivalent device type from which it was dumped.
It is possible to dump from a real disk and restore to a
minidisk as long as the device types are the same.

cyl1 [TO] [cyl2 [REORDER] [TO] [cyI3]]
Only those cylinders specified are moved, starting with the
first track of the first cylinder (cyI1), and ending with the
last track of the second cylinder (cyI2). The REORDER operand
causes the output to be reordered, that is, moved to different
cylinders, starting at the specified cylinder (cyI3) or at the
starting cylinder (cyI1) if cyl3 is not specified. The
REORDER operand must not be specified unless specified limits
are defined for the operation; the starting and, if required,
ending cylinders (cyl1 and cyl2) must be specified. Note that
if the input device cylinder extents exceed the number of
cylinders specified on the output device, an error message
results.

CPVOL specifies that cylinder 0 and all active directory and
permanent disk space are to be copied, dumped, or restored.
This indicates that both source and target disk must be in CP
format; that is, the CP Format/Allocate program must have
formatted them.

ALL specifies that the operation is to be performed on all
cylinders.

NUCLEUS

Note: The occurrence of message D8KDDR705E (issued upon
completion of the copy, restore, or dump operation) indicates
that an attempt was made to copy, restore, or dump the
contents of cylinders beyond the extents of the designated
minidisk.

specifies that record 2 on cylinder 0, track 0 and the nucleus
cylinders are dumped, copied, or restored.

• Each track must contain a valid home address, containing the real
cylinder and track location.

• Record zero must not contain more than eight key and/or data
characters.

• Flagged tracks are treated just as any other track for all 2314,
2319, 3340, and 2305 devices. That is, no attempt is made to
substitute the alternate ~rack data when a defective primary track is
read. In addition, tracks are not inspected to determine whether
they were previously flagged when written. Therefore~ volumes

50 IBM VM/370 CMS Command and Macro Reference

DDR

containing flagged tracks should be restored to the same cylinders of
the volume from which they were dumped. The message DMKDDR115E occurs
each time a defective track is dumped, copied or restored, and the
operation continues.

• Flagged tracks on 3330, and 3350 devices are handled automatically by
the control unit and may never be detected by the program. The
program may detect a flagged track if, for example, no alternate
track is assigned to the defective primary track. If a flagged track
is detected by the program, the message DMKDDR115E occurs and the
operation terminates.

INPUT 191 3330 SYSRES
OUTPUT 180 2400 181 (MODE 800
SYSPRINT OOF
DUMP CPVOL
INPUT 130 3330 MIUI01
DUMP 1 TO 50 REORDER 51
60 10 101

This example sets the density to 800 bpi, then dumps all pertinent
data from the volume labeled SYSRES onto the tape that is mounted on
unit 180. If the program runs out of space on the first tape, it
continues dumping onto the alternate device (181). A map of the dumped
cylinders is printed on unit OOF while the program is dumping. When the
first function is complete, the volume labeled MIUI01 is dumped onto a
new tape. Its cylinder header records are labeled 51 to 100. A map of
the dumped cylinders is printed on unit OOF. Next, cylinders 60 to 10
are dumped and labeled 101 to 111. This extent is added to the cylinder
map on unit OOF. When the DDR processing is complete, the tapes are
unloaded and the program stops.

If cylinder extents are being defined from the console, the user need
only enter DUMP, COpy or RESTORE on the command line. The following is
displayed:

ENTER CYLINDER EXTENTS
ENTER:

For any extent after the first extent, the message:

ENTER NEXT EXTENT OR NULL LINE
ENTER:

is displayed.

You may then enter additional extents to be dumped, restored, or
copied. A null line causes the job step to start.

!~te§:

1. When a cylinder map is printed on the virtual printer (OOF as in
the previous example) a heading precedes the map information.
Module DMKDDRcontrols the disk, time and zone printed in the
heading. Your installation must apply a local modification to
DMKDDR to ensure that local time, rather than GMT (Greenwich
Meridian Time), is printed in the heading.

2. Attempts to restore cylinders beyond the capacity that had been
recorded on the tape produces a successful EOJ, but the printout
only indicates the last cylinder found on the tape.

Section 2. CMS Commands 51

DDR

~BINIL!I~~ ly~£!i~ ~!g!~~~»!

Use the PRINT and TYPE function statement to print or type (display) a
hexadecimal and EBCDIC translation of each record specified. The input
device must be defined as direct access tape. The output is directed to
the system console for the TYPE function, or to the SYSPRINT device for
the PRINT function. (This does not cause redefinition ~f the output unit
definition.) The format of the PRINT/TYPE control statement is:

PRint
TYpe

cyll [hhl [rr1]] [To cyl2 [hh2 [rr2]]] [(options ••• [)]]

2.E!!2»§:
[Hex] [Graphic] [Count]

cyll is the starting cylinder.

hb1 is the starting track. If present, it must follow the cyll
operand. The default is track zero.

rrl is the starting record. If present, it must follow the hhl
operand. The default is home address and record zero.

TO cyl2 is the ending cylinder. If more than one cylinder is to be
printed or typed, "TO cyl2" must be specified.

hb2 is the ending
operand. The
cylinder.

track. If present~ it must
default is the last track

follow the
on the

cyl2
ending

rr2 is the record ID of the last record to print. The default is
the last record on the ending track.

Q.E!io.D§:

HEX prints or displays a hexadecimal representation of each
record specified.

GRAPHIC

COUNT

prints or displays an EBCDIC translation of each record
specified.

prints or displays only the count field for each record
specified.

If.the TYPE statement follows the occurrence of error message DftKDDR105E
and specifies the same cylinder, track, and record extents indicated in
the error message, the contents of the printed record must be
interpreted in the context of the I/O error information given in the
initial message.

PRINT 0 TO 3

Prints all of the records fro. cylinders 0, 1, 2, and 3.

PRINT 0 1 3

Prints only one record, from cylinder 0, track 1, record 3.

52 IBft Vft/310 CftS Command and ftacro Reference

DDR

PRINT 1 10 3 TO 1 15 4

Prints all records starting with cylinder 1, track 10, record 3, and
ending with cylinder 1, track 15, record 4.

The example in Figure 6 shows the information displayed at the
console (TYPE function) or system printer (PRINT function) by the DDR
program. The listing is annotated to describe some of the data fields.

DMKDDR711R VOLID READ IS volid2 [NOT vOlid1]

volid2

volid1

DO YOU WISH TO CONTINUE? RESPOND YES NO OR REREAD:

is the volume serial number from the VOLl label on the
DASD unit.

is the volume serial number from the INPUT or OUTPUT
control card.

The volume serial number read from the device at cuu is not the
same as that specified on the INPUT or OUTPUT control card.

DMKDDR7l6R NO VOL1 LABEL FOUND FOR volser

volser

DO YOU WISH TO CONTINUE? RESPOND YES NO OR REREAD:

is the volume serial number of the DASD device from the
INPUT or the OUTPUT control card.

The DASD device at cuu contains no volume serial number.

DMKDDR717R DATA DUMPED FROM volid1 TO BE RESTORED TO volid2
DO YOU WISH TO CONTINUE? RESPOND YES NO OR REREAD:

volid1

volid2

is the volume serial number from the input tape header
record (volume dumped).

is the-volume serial number from the output DASD device.

The above message is printed to verify the input parameters.

ENTER CYLINDER EXTENTS
ENTER:

This message is received only if you are entering input from your
terminal.

END OF VOLUME CYL xxx HD xx, MOUNT NEXT TAPE

DDR continues processing, after the mounting of the next tape reel.

Section 2. CMS Commands 53

DDR

Home Address
. Record 0

Home Address of track
in hexadecimal format

Record 0 ID from the
count field

Record 1 --+--_- CYL 019 HD 00 REC 001 re If the data length fleW is :C;ze;-,.4-_-__ _
Cylinder, head, and Record ID
record numbers in (hexadecimal)

I • A heading is printed containing the I
data length from the count field first in

decimal I
decimal, then in hexadecimal

• The data is then printed in hexadecimal I

J
with graphic interpretation at the right

_ ~ts~nhere). ___ J

04096 1000 DATA LENGTH _,-----------

00000 0000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
SUPPRESSED CHARACTERS SAME AS ABOVE ...

1st Halfof-+---_ CYL 019. HD 00 REC 002 COUNT 0013000002 009A8
Record 2

Note: Data Length field repeated
.in heading.

02472 09A8 DATA LENGTH

00000 0000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
SUPPRESSED CHARACTERS SAME AS ABOVE ...

ABOVE RECORD WRITTEN USING RECORD OVERFLOW e
r:::;--------,

Ie This statement indicates that this portion I
of Record 2 was written using the Write

I
Special Count, Key, and Data command. The
remainder of Record 2 is found on the next I
track as the first record after Record O. L-.- _____ .J

Home Address+---_ CYL 019 HD 01 HOME ADDRESS 0000130001 RECORD ZERO 0013000100 00 0008 00000000 00000000
Record 0

2nd Half of CYL 019 H D 01 R EC 002 COUNT 0013000102 00 0658

Record 2 01624 0658 DATA LENGTH

00000 0000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
SUPPRESSED CHARACTERS SAME AS ABOVE ...

~----------,
• If the key length field is not zero

I • A heading is printed containing tht: key length' I

~
first in decimal, then in hexadecimal. I • The key is then printed in hexadecimal with . I

G ---------' ;Y
graphic interpretation at the right (not shown here).

Record 3 --+---- CYL 019 HD 01 REC 003 COUNT 0013000103 800F80

001280080 KEY LENGTH-'---------

00000 0000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
SUPPRESSED CHARACTERS SAMIi AS ABOVE ...

03968 OF80 DATA LENGTH

00000 0000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
SUPPRESSED CHARACTERS SAME AS ABOVE ...

Record4--t---- CYL 019 HD 01 REC 004 COUNT 0013000104 000000

Figure 6.

END OF FILE RECORD

r:::;--------,
~ . I I Whenever the data length field is zero
I an end-of-file prints next. I
L _______J

An Annotated Sample of output from
Functions of the DDR Program

the TYPE and PRINT

54 IBM VM/310 CMS Com.and and Macro Reference

RESTORING volser

!l!~!:~:

volser is the volume serial number of the disk dumped.

The RESTORE operation has begun.

COPYING volser

!.h~!:~:

volser is the volume serial number described by the input unit.

The COpy operation has begun.

DUMPING volser

!l!~!:~:

volser is the volume serial number described by the input unit.

The DUMP operation has begun.

PRINTING volser

!l!~!:~:

volser is the volume serial number described by the input unit.

The PRINT operation has begun.

END OF DUMP

The DUMP operation has ended.

END OF RESTORE

The RESTORE operation has ended.

END OF COpy

The COpy operation has ended.

FND OF PRINT

The PRINT operation has ended.

END OF JOB

All specified operations have completed.

DDR

Section 2. CMS Commands 55

DDR

ENTER:

Prompts for input from the terminal. A null line (that is.
press~ng the Enter key or equivalent) causes control to return to
CMS if the virtual machine is in the CMS environment.

DMKDDR725R ORIGINAL INPUT DEVICE WAS (IS) LARGER THAN OUTPUT DEVICE.
DO YOU WISH TO CONTINUE? RESPONSE YES OR NO:

~~ElgDg!!~~:
RESTORE function - The number of cylinders on the
input unit is compared with the number of cylinders
device.

original DASD
on the output

COpy function - The input device contains more cylinders than the
output device.

QE~~g!~~ !f!!Q~: The operator must determine if the COpy or RESTORE
function is to continue. The response is either yes or no.

Q!he~ ~~22gg~2 ~~~ R~!Y£n £2~~2

!~te: Except as shown, there is no return code returned for the
following messages.

DMKDDR700E INPUT UNIT IS NOT A CPVOL
DMKDDR701E INVALID OPERAND - operand
DMKDDR702E CONTROL STATEMENT SEQUENCE ERROR
DMKDDR703E OPERAND MISSING
DMKDDR704E DEV cuu NOT OPERATIONAL
DMKDDR705E 10 ERROR cuu CSW csw SENSE sense INPUT bbcchh OUTPUT bbcchh

CCW ccw
DMKDDR707E MACHINE CHECK RUN SEREP AND SAVE OUTPUT FOR CE
DMKDDR708E INVALID INPUT OR OUTPUT DEFINITION
DMKDDR709E WRONG INPUT TAPE MOUNTED
DMKDDR710A DEV cuu INTERVENTION REQUIRED
DMKDDR712E NUMBER OF EXTENTS EXCEEDS 20
DMKDDR713E OVERLAPPING OR INVALID EXTENTS
DMKDDR714E RECORD bbcchh NOT FOUND ON TAPE
DMKDDR715E LOCATION bbcchh IS A FLAGGED TRACK Re=3
DMKDDR718E OUTPUT UNIT IS FILE PROTECTED RC=1
DMKDDR719E INVALID FILENAME OR FILE NOT FOUND
DMKDDR720E ERROR IN routine RC=varies
DMKDDR721E RECORD cchhr NOT FOUND
DMKDDR722E OUTPUT UNIT NOT PROPERLY FORMATTED FOR THE CP NUCLEUS
DMKDDR723E NO VALID CP NUCLEUS ON THE INPUT UNIT
DMKDDR724E INPUT TAPE CONTAINS A CP NUCLEUS DUMP
DMKDDR756E PROGRAM CHECK PSW=psw

56 IBM VM/370 CMS Command and Macro Reference

DEBUG

DEBUG

Use the DEBUG command to enter the debug environment from the c~S
environment. In the debug environment you can use a variety of DEBUG
subcommands that allow you to test and debug your programs. The DEBUG
subcommands are described in "Section 4. DEfUG Subcommands." For
tutorial information, including examples, see the !~L]l~ ~~~]§~~~§
§yid~,. The format of the DEBUG command is:

DEBUG I
~---~

1. The debug environment is also entered
interruption or the result of a
encountered during program execution.

as a result of an external
breakpoint (address stop)

2. Once you are in the debug environment, you can enter only DEBUG
subcommands and CP commands via the #CP function.

3. To return to the eMS environment, enter the DEBUG subcommand
RETURN.

DMSDBG7281 DEBUG ENTERED

This message indicates that you are in the debug environment.

Section 2. CMS Commands 57

DISK

DISK

Use the DISK command to:

• Punch CMS disk files to the virtual spooled card punch in a special
format which allows the punched deck to be restored to disk in the
form of the original disk file.

• Restore punched decks created by the DISK £UMP command to a disk
file.

The format of the DISK command is:

DISK
{

DUMP
LOAD

fn ft [fm] }

DUMP fn ft fm
punches the specified file (fn ft fm). The file may have
either fixed- or variable-length records. After all data is
punched, an end-of-file card is created with an N in column 5.
This card contains directory information and must remain in
the deck. The original disk file is retained.

LOAD loads a file or files from the spooled card reader and writes
them as CMS files on your A-disk. The filename and filetype
are obtained from the card stream. If a file exists with the
same filename and file type as one of those in the card stream,
it is replaced.

Note: DISK LOAD file identifiers are those of the specified
iII~ i~sued by the DISK DUMP command.

y§g,g~ !!.Q!~§

1. To read files with the DISK LOAD command, they must have been
created by the DISK DUMP command. To load spooled reader files
created in any other manner, you should use the READCARD command.

2. To load reader files created by DISK DUMP, you must issue the DISK
LOAD command for each spool file. For examFle, if you enter:

disk dump source1 assemble
disk dump source2 assemble

the virtual machine that receives the files must issue the DISK
LOAD command twice to read the files onto disk. If you use the CP
SPOOL command to spool continuous, for example:

cp spool punch cont
disk dump source1 assemble
disk dump source2 assemble
cp spool punch nocont close

then you only need to issue the DISK LOAD command once to read both
files.

58 IBM VM/370 CMS Command and Macro Reference

DISK

There is no response to the DISK DUMP command. The file identifiers of
each file loaded are displayed when you issue the DISK LOAD command:

fn ft fm

DMSDSK002E FILE 'fn ft fm' NOT FOUND RC=28
DMSDSK014E INVALID FUNCTION 'function' RC=24
DMSDSK037E DISK 'A' IS READ/ONLY RC=36
DMSDSK047E NO FUNCTION SPECIFIED RC=24
DMSDSK048E INVALID MODE 'mode' RC=24
DMSDSK054E INCOMPLETE FILEID SPECIFIED RC=24
DMSDSK062E INVALID * IN FILEID ['fn ft fm'] RC=20
DMSDSK070E INVALID PARAMETER 'parameter' RC=24
DMSDSK077E END CARD MISSING FROM INPUT DECK RC=32
DMSDSK078E INVALID CARD IN INPUT DECK RC=32
DMSDSK104S ERROR Inn' READING FILE 'fn ft fm' FROM DISK RC=100
DMSDSK105S ERROR Inn' WRITING FILE 'fn ft fm' ON DISK RC=100
DMSDSK118S ERROR PUNCHING FILE RC=100
DMSDSK124S ERROR READING CARD FILE RC=100
DMSDSK205W READER EMPTY OR NOT READY RC=8

Section 2. CMS Commands 59

DLBL

DLBL

Use the DLBL command:

• In CMS/DOS, to define DOS and CMS sequential disk files for program
input/output; to identify DOS files and libraries; to define and
identify YSAM catalogs, clusters, and data spaces; and to identify
YSAM, DOS, or CMS files used for VSAM program input/output and access
method services functions.

• In CMS, to define and identify VSAM catalogs, clusters, and data
spaces; to identify VSAM files used for program input/output; and to
identify input/output files for AMSERV.

The format of the DLBL command is:

DLBL
r r ,
I ddname {mOde }
I DUMMY

I CMS fn ft I [(optionA optionB [)]]
I~~~ ~I1~ ggn~~~ I

I L J

I
I r ,

qual1 [quaI2 ••• qualn] I I ddname {mOde }' DSN
I DUMMY IDSN ? I
I L

I
I
Iddname CLEAR
I *
L

.Q12!.!.Q.!!!:
[SYSxxx]

Q12!.!~H!!! :
[PERM]
r ,
I~!!!H~~ I
I NOCHANGE I
L J

J

[(optionA optionB optionC [)]]

QE!iQ!!~:
[VSAM]
r ,
IEXTENTI
IMULT I
L J

[CAT catdd]
[BUFSP nnnnnn]

,

!.Qte: The operands and options of the DLBL command are described below.
Usage notes are provided for general usage, followed by additional notes
for CMS/DOS users, and then additional notes for OS VSAM users.

ddname

mode

DUMMY

specifies a one- to seven-character Frogram ddname (OS) or
filename (DOS), or dname (as specified in the FILE parameter
of an access method services control statement). An asterisk
(*) entered with the CLEAR operand indicates that all DLEL
definitions, except those that are entered with the PEBM
option, are to be cleared.

specifies a valid CMS disk mode letter and
filemode number. A letter must be specified; if
not specified, it defaults to 1. The disk must
when the DLBL command is issued.

optionally,
a number is
be accessed

specifies that no real I/O is to be performed. A read
operation results in an end-of-file condition and a write
operation results in a successful return code. DUMMY should
not be used for OS VSAM data sets (see Usage Note 3).

60 IBM VM/370 CMS Command and Macro Reference

CLEAR

DLEL

removes any existing definitions for the specified ddname.
Clearing a ddname before defining it ensures that a file
definition does not exist and that any options previously
defined with that ddname no longer have any effect.

CMS fn ft indicates that this is a CMS file, and the file identifier (fn
ft) that follows is a CMS filename and filetype.

FILE ddname is the default CMS file identifier associated with
all non-CMS data sets. (See Usage Note 3 for CMS/DOS users.)

DSN indicates that this is a non-CMS file.

? indicates that you are going to enter the data set name
interactively. When prompted, you enter the data set name or
,fileid in its exact form, including embedded blanks, hyphens,
or periods.

quaIl [qua12 ••• qualn]

SYSxxx

PERM

is an OS data set name or DOS file-ide Only data sets named
according to standard OS conventions may be entered this way;
you must omit the periods between qualifiers. (See Usage Note
2.)

(CMS/DOS only.) indicates the system or programmer logical
unit that is associated with the disk on which the disk
file resides. The logical unit must have been previously
assigned with the ASSGN command. If a DLBL definition is
already in effect for the specified ddname, SYSxxx may be
omitted; otherwise, it is required.

indicates that this DLBL definition can be cleared only
with an explicit CLEAR request. It will not be cleared
when the DLBL * CLEAR command line is entered.

All DLBL definitions, including those entered with the PEN!
option, are cleared as a result of a program abend or HX
(halt execution) Immediate command.

~]!!g~ indicates that any existing DLBL for this ddname is not to
be canceled, but that conflicting options are to be
overridden and new options merged into the old definition.
Both the ddname and the file identifier must be the same in
order for the definitions to be merged.

NOCHANGE does not alter any existing DLEL definition for the
specified ddname, but creates a definition if none existed.

VSAM indicates that the file is a VSAM data set. This opticn
must be specified for VSAM functions unless the EXTENT,
MULT, CAT, or BUFSP options are entered or the ddnames
IJSYSCT or IJSYSUC are used.

EXTENT indicates that you are going to use access method services
to define a VSAM catalog, data space, or unique cluster and
you want to enter extent information.

MULT indicates that you are going to reference an existing
multivolume data set and you want to en~er the volume
specifications.

Section 2. CMS Commands 61

DL'BL

CAT catdd identifies the VSAM catalog (defined by a previous DLEL
definition) which contains the en,try for this data set. You
must use the CAT option when the VSAM data set you are
creating or identifying is not cataloged in the current job
catalog. catdd is the ddname in the DLBL definition for
theca talog.

BUFSP nnnnnn
specifies the number of bytes (in decimal) to be used for
I/O buffers by VSAM data management during program
execution, overriding the BUFSP value in the ACB for the
file. The maximum value fornnnnnn is 999999; embedded
commas are not permitted.

1. To display all of the disk file definitions in effect, enter:

dlbl

The response will be:

ddname DISK fn ft

If no DLBL definitions are in effect, the following message is
displayed:

DMSDLB3241 NO USER DEFINED DLBL'S IN EFFECT

2. To enter an OS or DOS file identification on the DLBL command line,
it must consist of 1- to a-character qualifiers separated by
periods, with a maximum length of 44 characters, including periods.
For example, the file TEST.INPUT.SOURCE.D could be identified as
follows:

dlbl ddl c dsn test input source d (options •••

Or, it may be entered interactively, as follows:

dlbl ddl c dsn ? (options
DMSDLB220R ENTER DATA SET NAME:
test.input.sQurce.d

Note that when the data set name is entered interactively, the data
set name must be entered in its exact form; when entered on the
DLBL command line, the periods must be omitted.

You must use the interactive form to enter a DOS file-id that
contains embedded blanks or hyphens.

3. In DOS/VS, a VSAM data set that has been defined as DUMMY is opened
with an error code of 1'11'. CMS supports the DUMMY operand of the
DLBL command in the same manner. OS users should not use the DUM~Y
operand in CMS, since a dummy data set does not return, on open, an
end-of-file indication.

62 IBM .VM/370 CMS Command and Macro Reference

DLEL

1. Each DLBL definition must be associated with a system or programmer
logical unit assignment, previously made with an ISSGB command.
Specify the SYSxxx option on the first, or only, DLBL definition
for a particular ddname. Many DLBL definitions may be associated
with the same logical unit. For example:

assgn sys100 b
dlbl dd1 b cms test file1 (sys100
dlbl dd2 b cms test file2 (sys100
dlbl dd1 cms test file3

is a valid command sequence.

2. The following special ddnames must be used to define DOS private
libraries, and must be associated with the iidicated logical units:

gg~g~~
IJSYSSL
IJSYSRL
IJSYSCL

Logical
y~!!--
SYSSLB
SYSRLB
SYSCLB

~!Qf~fI
Source statement
Relocatable
Core image

These libraries must be identified in order to perform librarian
functions (with the SSERV, ESERV, DSERV, or RSERV commands) for
private libraries; or to link-edit or fetch modules or phases from
private relocatable or core image libraries (with the DOSLKED and
FETCH commands).

3. Each DOS file has a CMS file identifier associated with it by
default; the filename is always FILE and the filetype is always the
same as the ddname. For example, if you enter a DLBL command for a
DOS file MOD.TEST.STREIM as follows:

dlbl test c dsn mod test stream

then you can refer to this as data set as FILE TEST when you use
the STITE command:

state file test

When you enter a DLBL command specifying only a ddname and mode, as
follows:

dlbl junk a

CMS assigns a file identifier of FILE JUNK A1 to the ddname JUNK.

4. The FILEDEF command performs a function similar to that of the DLEL
command; you need to use the FILEDEF command in CMS/DOS only:

• When you want to override a default ddname for an assembler
input or output file.

• When you want to use the MOVEFILE command to process a file.

5. If you use the DUMMY operand, you must have issued an ISSGN command
specifying a device type of IGN, or ignore, for the SYSxxx unit
specified in the DLBL command, for example,

Section 2. CMS Commands 63

DLBL

assgn sys003 ign
dlbl test dummy (sys003

~~EC1!I!!§ !~!~ I!II!I !![QR~!I!QB: You must specify extent informatien
when you use the access method services control statements DEFINE SPACE,
DEFINE MASTERCATALOG, DEFINE USERCATALOG, DEFINE CLUSTER (UNIQUE); or
when you use the IMPORT or IMPORTRA functions for a unique file.

When you enter the EXTENT option of the DLBL command, you are
prompted to enter the disk extents for the specified file. You must
enter extent information in accordance with the following rules:

• You must specify the starting track number and number of tracks fer
each extent, as follows:

19 38

This extent allocates 38 tracks, beginning with the 19th track, on a
3330 device.

• All extents must begin and end on cylinder boundaries, regardless cf
whether the AMSERV file contains extent information in terms cf
cylinders, tracks, or records.

• Multiple extent entries may be entered
commas or on different lines. Commas
ignored.

on a single line separated by
at the end of a line are

• Multiple extents for the same volume must be eritered in numerically
ascending order; for example:

20 400, 600 80

These extents are valid for a 2314 device.

• When you enter multivolume extents, you must specify the mode letter
and logical unit associated with each disk that contains extents;
extents for each disk must be entered consecutively. For example:

assgn sys001 b
assgn sys002 c
assgn sys003 d
dlbl file1 b (extent sys001
DMSDLB331R ENTER EXTENT SPECIFICATIONS:
100 60, 400 80, 60 40 d sys003
200 100 c sys002
400 100 c sys002

(null line)

specifies extents on disks accessed at modes B, C, and D. These
disks are assigned to the logical units SYS001, SYS002, and SYS003.
Since B is the mode specified on the DLBL command line, it does not
need to be respecified along with the extent information.

• A DASD volume must be mounted, accessed, and assigned for each disk
mode referenced in an extent.

When you are finished entering extent information, you must enter a
null line to terminate the DLBL command sequence. If you do not, an
error may result and you will have to reenter the DLBL command. If you
make any error entering the extents, you must reenter all the extent
information.

64 IBM VM/370 CMS Command and Macro Reference

DLEL

The DLBL command does not check the extents to see whether they are
on cylinder boundaries or whether they are entered in the proper
sequence. If you do not enter them correctly, the access method services
DEFINE function will terminate with an error.

CMS assigns sequence numbers to the extents according to the order in
which they were entered. These sequence numbers are listed when you use
the LISTDS command with the EXTENT option.

In order to display the actual extents that were entered for a VSAM
data set at DLBL definition time, the following commands may be entered:

DLBL (EXTENT) or QUERY DLBL EXTENT

Either of these commands will provide the following information to
the user:

DDNAME The DOS filename or OS ddname.

MODE The CMS disk mode identifying the disk on which the extent
resides.

LOGUNIT The DOS logical unit specification (SYSxxx). This operand
will be blank for a data set defined while in CMS/CS
environment; that is, the SET DOS ON command had not been
issued at DLBL definition time.

EXTENT Specifies the relative starting track number and number of
tracks for each extent entered for the given dataset ddname.

If no DLBL definitions with extent information are active, the
following message is issued:

DMSDLB324I NO USER DEFINED EXTENTS IN EFFECT

l~EN~l~!l!Q ~~~~!!Q~~~~ !2!~ ~!!~!!2: When you want to execute a program
or use access method services to reference an existing multivolume VSAM
data set, you must use the MULT option on the DLBL command that
identifies the file.

When you use the MULT option, you are prompted to enter additional
disk mode letters, as follows:

assgn sys001 c
assgn sys002 d
assgn sys003 e
assgn sys004 f
assgn sys005 g
dlbl infile c (mult sys001
DMSDLB330R ENTER VOLUME SPECIFICATIONS:
d sys002, e sys003 , f sys004
g sys005

(null line)

The above identifies a file that has extents on disks accessed at modes
C, D, E, F, and G. These disks have been assigned to the logical units
SYS001~ SYS002, SYS003, SYS004, and 5YS005. The rules for entering
multiple extents are:

• All disks must be mounted, accessed, and assigned when you issue the
DLBL command.

• You must not repeat the mode letter and logical unit of the disk that
is entered on the DLBL command line (C in the above example) •

Section 2. CMS Commands 65

DLBL

• If you enter
they must be
ignored.

more ,than one mode letter and logical unit
separated by commas; trailing commas on

on a line,
a line are

• A maximum of nine disks may be specified; you do not need to specify
them in alphabetical order.

You must enter a null line to terminate the
finished entering extents; if not, an error may
reenter the entire command sequence.

command when you are·
result and you must

In order to display the volumes on which all multivolume data sets
reside, the following commands are issued:

DLBL (MULT) or QUERY DLBL MULT

The following information concerning multiple volume datasets is
provided:

DDNAME

MODE

LOGUNIT

The DOS filename or as ddname.

The CMS disk mode identifying one of the disks on which the
dataset resides.

The DOS logical unit specification (SYSxxx). This operand
will be blank for a data set defined while in CMS/OS
environment; that is, the SET DOS ON command had not been
issued at DLBL definition time.

If no DLBL definitions with multiple volume ~pecifications are
active, the following message is issued:

DMSDLB324I NO USER DEFINED MULTS IN EFFECT

USING VSAM CATALOGS: There are two special ddnames you must use to
Identify-i-vsii-iaster catalog and job catalog:

IJSYSCT

IJSYSUC

identifies the master catalog when you initially define it
(using AMSERV), and when you begin a terminal session. You
should use the PERM option when you define it.

You must assign the logical unit SYSCAT to the disk on which
the master catalog resides. If you are redefining a master
catalog that has already been identified, you may omit the
SYSCAT option on the DLBL command line.

identifies a job catalog to be used for subsequent AMSERV jobs
or VSAM programs.

Any programmer logical unit may be used to assign a job
catalog.

Only one VSAM catalog is ever searched when a VSAM function is
performed. If a job catalog is defined, you may override it by using
the CAT option on the DLBL command for a data set. The following DLEL
command sequence illustrates the use of catalogs:

assgn syscat c
dlbl ijsysct c dsn mastcat (perm syscat

identifies the master catalog, MASTCAT, for the terminal session.

66 IBM VM/310 CMS Command and Macro Reference

DLEL

assgn sys010 d
dlbl ijsysuc d dsn mycat (perm sys010

identifies the job (user) catalog, MYCAT, for the terminal session.

assgn sys100 e
dlbl intest1 e dsn test case (vsam sys100

identifies a VSAM file to be used in a program. It is cataloged in the
job catalog, MYCAT.

assgn sys101 f
dlbl cat3 f dsn testcat (cat ijsysct sys101

identifies an additional user catalog, which has. an entry in the master
catalog. Since a job catalog is in use, you must use the CAT option to
indicate that another catalog, in this case the master catalog, should
be used.

dlbl infile f dsn test input (cat cat3 sys101

identifies an input file cataloged in the user catalog TESTCAT, which
was identified with a ddname of CAT3 on the DLBL command.

The selection of a VSAM catalog for AMSERV jobs and VSAM programs
running in CMS is summarized in Figure 1.

NO

USE THE
MASTER

CATALOG

YES

YES

USE THE
CATALOG

DEFINED BY
THAT DDNAME

USE THE
JOB CATALOG

Figure 7. Determining Which VSAM Catalog to Use

Section 2. CMS Commands 61

DLBL

y§~~ !Q!§§ !~! Q~ !~!~ y§~!§

1. You must use the DLBL command to identify all access m9thod
services input and output files, and to identify all VSAM input and
output files referenced in programs.

For all other file definitions, including os or CMS disk files
referenced in programs that use VSAM data management, you must use
the FILEDEF command.

2. A DLBL ddname may have a maximum of seven characters. If you have
ddnames in your programs that are eight characters long, only the
first seven characters are processed when the programs are executed
in CMS. If you have two ddnames with the same first seven
characters and you attempt to execute this program in CMS, you will
receive an open error when the second file is opened. You should
recompile these programs providing unique seven-character ddnames.

3. If you release a disk for which you have a DLBL definition in
effect, you should clear the DLBL definition before you execute a
VSAM program or an AMSERV command. CMS checks that all disks fer
which there are DLBL definitions are accessed, and issues error
message DMSSTT069E if any are not.

~REC1~!!!~ !~!~ ~lII!I !!~Q!~!IIQ!: You must specify extent information
when you use the access method services control statements DEFINE SPACE,
DEFINE MASTERCATALOG, DEFINE USERCATALOG, DEFINE CLUSTER (UNIQUE); er
when you use the IMPORT or IMPORTRA functions for a unique file. Space
allocation is made only for primary allocation amounts.

When you enter the EXTENT option of the DLBL command, you are
prompted to enter the disk extents for the specified file. You must
enter extent information in accordance with the following rules:

• You must specify the, starting track number and number of tracks fer
each extent, as follows:

19 38

This extent allocates 38 tracks, beginning with the 19th track, on a
3330 device.

• All extents must begin and end on cylinder boundaries, regardless of
whether the AMSERV file contains extent information in terms of
cylinders, tracks, or records.

• Multiple extent entries may be entered
commas or on different lines. Commas
ignored.

on a single line separated by
at the end of a line are

• Multiple extents for the same volume must be entered in numerically
ascending order; for example:

20 400, 600 80

These extents are valid for a 2314 device.

• When you enter multivolume extents, you must specify the mode letter
for extents on additional disks; extents for each disk must be
entered consecutively. For example:

dlbl file1 b (extent
DMSDLB331R ENTER EXTENT SPECIFICATIONS:
100 60, 400 80, 60 40 d
200 100 c
400 100 c

(null line)

DLBL

specifies extents on disks accessed at modes E, C, and D. Since B is
the mode specified on the DLBL command line, it does not need to be
respecified along with the extent information.

• A DASD volume must be mounted and accessed for each mode referenced
in an extent.

When you are finished entering extent information, you must enter a
null line to terminate the DLBL command sequence. If you do not, an
error may result and you will have to reenter the entire DLBL command.
If you make any error entering the extents, you must reenter all the
extent information.

The DLBL command does not check the extents to see if they are cn
cylinder boundaries or that they are entered in the proper sequence. If
you do not enter them correctly, the access method services DEFINE
function terminates with an error.

CMS assigns sequence numbers to the extents according to the order in
which they were entered. These sequence numbers are listed when you use
the LISTDS command with the EXTENT option.

l~ENllX!l!§ ~]~I!!Q~]~~ !~!~ ~!I~!I~: When you want to execute a program
or use access method services to reference an existing multivolume VSA~
data set, you must use the MULT option on the DLBL command that
identifies the file.

When you use the MULT option, you are prompted to enter additional
disk mode letters, as follows:

dlbl infile c (mult
DMSDLB330R ENTER VOLUME SPECIFICATIONS:
d, e, f
g

(null line)

The above example identifies a file that has extents on disks accessed
at modes C# D, E, F, and G. The rules for ent~ring multiple extents are:

• All disks must be mounted and accessed when you issue the DLEL
command.

• You must not repeat the mode letter of the disk that is entered on
the DLBL command line (C in the above example) •

• If you enter more than one mode letter on a line, they must be
separated by commas; trailing commas on a line are ignored.

• A maximum of nine disks may be specified; you do not need to specify
them in alphabetical order.

You must enter a null line to terminate the
finished entering extents; if not, an error may
re-enter the entire command sequence.

command when
result and

you are
you must

Section 2. CMS Comman~s 69

DLBL

USING VSAM CATALOGS: There are two special ddnames you must use to
Identify-;-vsii-m;ster catalog and job catalog:

IJSYSCT

IJSYSUC

identifies the master catalog, both when you initially define
it (using AMSERV) and when you begin a terminal session. You
should use the PERM option when you define it.

identifies a job catalog to be used for subsequent AMSERV jobs
or VSAM programs.

Only one VSAM catalog is ever searched when a iSAM function is
performed. If a job catalog is defined, you may override it by using
the CAT option on the DLBL command for a data set. The following DLEL
command sequence illustrates the use of catalogs:

dlbl ijsysct c dsn mastcat (perm

identifi~s the master catalog. MASTCAT, for the terminal session.

dlbl ijsysuc d dsn mycat (perm

identifies the job (user) catalog, MYCAT, for the terminal session.

dlbl intestl e dsn test case (vsam

identifies a iSAM file to be used in a program. It is cataloged in the
job catalog, MYCAT.

dlbl cat3 dsn testcat (cat ijsysct

identifies an additional user catalog, which has an entry in the master
catalog. Since a job catalog is in use, you Rust use the CAT option to
indicate that another catalog, in this case the master catalog, should
be used.

dlbl infile e dsn test input (cat cat3

identifies an input file cataloged in the user catalog TESTCAT, which
was identified with a ddname of CAT3 on the DLBL command.

The selection of a VSAM catalog for AMSERV jobs and iSAM programs
running in CMS is summarized in Figure 7.

If the DLBL command is issued with no operands, the current DLEL
definitions are displayed at your terminal:

ddname1 devicel [fnl ftl fml [datasetname1]]

.
ddnamen devicen [fnn ftn fmn [datasetnamen]]

DMSDLB220R ENTER DATA SET NAME:

This message is displayed when you use the DSN? form of the DLEL
command. Enter the exact DOS or OS data set name.

DMSDLB3201 MAXIMUM NUMBER OF DISK ENTRIES RECORDEE

This message indicates that nine volumes have been specified for a
VSAM data set, which is the maximum allowed under eMS.

70 IBM YM/370 CMS Command and Macro Reference

DLBL

DMSDLB3211 MAXIMU~ NUMBER OF EITENTS RECORDED

This message indicates that 16 extents on a single disk or minidisk
have been specified for a VSAM data space, catalog, or unique data
set. This is the maximum number of extents allowed on a minidisk
or disk.

DMSDLB3221 DDNAME 'ddname' NOT FOUND; NO CLEAR EXECUT!D

This message indicates that the clear function was not performed
because no DLBL definition is in effect for the ddname.

DMSDLB3231 {MASTERIJOB} CATALOG DLBL CLEARED

This message indicates that either the master catalog or job
catalog has been cleared as a result of a clear request.

You also receive this message if you issue a DLBL * CLEAR command,
and any DLBL definition is in effect for IJSYSCT or IJSYSUC that
was not entered with the PERM option.

DMSDLB330R ENTER VOLUME SPECIFICATIONS:

This message prompts you to enter volume specifications fer
existing multivolume VSAM files. (See "Identifying Multivolume VSAM
Extents" in the appropriate usage section.)

DMSDLB331R ENTER EXTENT SPECIFICATIONS:

This message prompts you to enter the data set extent or extents of
a new VSAM data space, catalog or unique data set. (See
"Specifying VSAM Extent Information" in the appropriate usage
section.)

DMSDLB001E NO FILENAME SPECIFIED RC=24
DMSDLB003E INVALID OPTION 'option' RC=24
DMSDLB005E NO '{CATIBUFSP}' SPECIFIED RC=24
DMSDLB023E NO ~ILETYPE SPECIFIED RC=24
DMSDLB048E INVALID MODE 'mode' RC=24
DMSDLB050E PARAMETER MISSING AFTER DDNAME RC=24
DMSDLB065E 'option' OPTION SPECIFIED TWICE RC=24
DMSDLB066E 'option' AND 'option' ARE CONFLICTING OPTIONS RC=24
DMSDLB070E INVALID PARAMETER 'parameter' RC=24
DMSDLB086E INVALID DDNAME 'ddname' RC=24
DMSDLB109S VIRTUAL STORAGE CAPACITY EXCEEDED RC=104
DMSDLB221E INVALID DATA SET NAME RC=24
DMSDLB301E 'SYSxxx' NOT ASSIGNED FOR DISK 'fm' RC=36
DMSDLB302E NO SYSIIX OPERAND ENTERED RC=24
DMSDLB304E INVALID OPERAND VALUE 'value' RC=24
DMSDLB305E INCOMPLETE EITENT RANGE RC=24
DMSDLB306E SYSIII NOT ASSIGNED FOR 'IGNORE' RC=36
DMSDLB307E CATALOG DDNAME 'ddname' NOT FOUND RC=24
DMSDLB308E 'mode' DISK IN {CMSINON-CMS} FORMAT; INVALID FCR

{NON-CKSICKS} DATASET RC=24

Section 2. CMS Commands 71

DOSLIB

DOSLIB

Use the DOSLIB co.mand to delete, compact, or list information about the
executable phases in a CMS/DOS phase library. Th~ format of the DOSLIB
command is:

DOSLIB

I
DEL libname phasename1 [••• phasenamen]

COMP libname

MAP libname [(options ••• [)]]

QE!!Q!l§:
r ,
ITERM I
I~I~K I
IPRINT I
L .I

DEL deletes phases from a CMS/DOSphase library. The library is
not erased when the, last phase is deleted fr~m the library.

COMP compacts a CMS/DOS phase library.

MAP lists certain information about the phases of
Available information provided is phase name,
relative location in the library.

a DOSLIB.
size, and

libname is the filename of a CMS/DOS phase library. The filetype must
be DOSLIB.

phasename1 ••• phasenamen
is the name of one or more phases that exist in the CMS/DCS
phase library.

~Ag QE!igD§: The following options specify the output device for the
MAP function. If more than one option is specified, only the first
option is used.

TERM displays the MAP output at the terminal.

writes the MAP output to a CMS disk file
identifier of 'libname MAP A5'. If a file
already exists, the old file is erased.

PRINT spools the MAP output to the virtual printer.

Q§.9.9~ !!g:!::~§

with the
with that

file
name

1. The CMS/DOS environment does not have to be active when you issue
the DOSLIB command.

2. Phases may only be added to a DOSLIB by the CMS/DOS linkage editor
as a result of the DOSLKED command.

72 IBM VM/370 CMS Command and Macro Reference

DOSLIB

3. In order to fetch a program phase from a DOSLIB for execution, you
must issue the GLOBAL command to identify the DOSLIB. When a FETCH
command or dynamic fetch from a prograa 1S issued, all current
DOSLIBs are searched for the specified phases.

4~ If DOSLIBs are very large, or there are many of thea to search,
prograa execution is slowed down accordingly. To avoid excessive
execution time, you should keep your DOSLIBs small and issue a
GLOBAL command specifying only those libraries that you need.

~~2E~~2~2

When you use the TERM option on ~he DOStIB MAP command line, the
following is displayed:

PHASE
name1

INDEX BLOCKS
lac size

DMSDSL002E FILE 'fn DOSLIB' NOT FOUND RC=28
DMSDSL003E INVALID OPTION 'option' RC=24
DMSDSL013W PHASE 'phase' NOT FOUND IN LIBRARY 'fn DOSLIB fm' RC=4
DKSDSL014E INVALID FUNCTION 'function' RC=24
DMSDSL037E DISK 'mode' IS READ/ONLY RC=36
DMSDSL046E NO LIBRARY NAME SPECIFIED RC=24
DMSDSL047E NO FUNCTION SPECIFIED RC=24
DMSDSL069E DISK '.ode' NOT ACCESSED RC=36
DMSDSL070E INVALID PARAMETER 'parameter' RC=24
DMSDSL098E NO PHASE NAME SPECIFIED RC=24
DMSDSL104S ERROR Inn' READING FILE 'fn DOSLIB fa' FROM DISK RC=100
DMSDSL105S ERROR Inn' WRITING FILE 'fn DOStIE fm' ON DISK RC=100
DMSDSL213W LIBRARY 'fn DOSLIB fm' NOT CREATED RC=4

Section 2. CMS Commands 73

DOSLKED

DOSLKED

Use the DOSLKED command in CMS/DOS to link-edit
disks or object modules from DOS/VS private or
libraries and place them in executable form in a

TEXT files from C!S
system relocatable

CMS phase libr~ry
(DOSLIB). The format of the DOSLKED command is:

DOSLKED

fn

r ,
fn Ilibnam'e I [(options ••• [)]]

I!ll I
L J

r ,
I~!~!i I
IPRINTI
ITERM I
L J

specifies the name of the source file or module to be
link-edited. CMS searches for:

1. A CMS file with a filetype of DOSLNK

2. A module in a private relocatable library (if IJSYSRL has
been defined) ,

3. A CMS ,file with a filetype of TEXT

4. A module in the system relocatable 1ibrary(if a mode was
specified on the SET DOS ON command line)

libname designates the name of the DOSLIB where the link-edited phase
is to be written. The filetype is DOSLIB. If libnam~ is not
specified, the default is fn. The output filemode of the
DOSLIB is determined as follows:

• If libname DOSLIB exists on a read/write disk, that
filemode is used and the output is appended to it.

• If fn DOSLNK exists on a read/write disk, libname DOSLIB is
written to that disk.

• If fn DOSLNK exists on a read-only extension of a,
read/write disk, libname DOSLIB is written to the parent
disk.

• If none of the above apply, libname DOSLIB is written to
your A-disk.

QE1!Qll§: Only one of the following options should be specified. If
more than one is specified, only the first entry is used.

~1~! writes the DOS/VS linkage editor map produced by the DOSLKED
command on your A-disk into a file with the filename of fn and
a filetype of MAP. This is the default option.

PRINT spools the linkage editor map to the virtual printer.

74 IB~VM/370 CMS Command and Macro Reference

DOSLKED

TERM displays the linkage editor map at your terminal.

Note: All error messages are sent to the terminal as well as to the
specified device.

!I2M~ !!.Q!~2

1. You can create a CMS file with a filetype of DOSLNK to contain
DOS/VS linkage editor control statements and, optionally, eMS text
files.

2. If you want to link-edit a module from a private relocatable
library, you must issue an ASSGN command for the logical unit
SYSRLB and enter a DLBL command using a ddname of IJSYSRL to
identify the library:

assgn sysrlb c
dlbl ijsysrl c dsn reloc lib (sysrlb

If you have defined a private relocatable library but do not want
it to be searched, enter:

assgn sysrlb ign

to temporarily bypass it.

3. CMS TEXT files may also contain linkage editor control statements
INCLUDE, PHASE, and ENTRY. The ACTION statement is ignored when a
TEXT file is link-edited.

4. To access modules on the DOS/VS system residence volume, you must
have specified the mode letter of the system residence on the SET
DOS ON command line:

set dos on z

5. The search order that CMS uses to locate object modules to be
link-edited is:

a. The specified object module on the DOS/VS private relocatable
lihrary, if one is available

b. CMS disks for a file with the specified filename and with a
filetype of TEXT

c. The specified object module on the DOS/VS system relocatable
lihrary, if it is available

6. When a phase is added to an existing DOSLIE, it is always written
at the end of the library. If a phase that is being added has the
same name as an existing phase, the DOSLIE directory is updated to
point to the new phase. The old phase is not deleted, however; you
should issue the DOSLIB command with the COMP option to compress
the space.

If you run out of space in a DOSLIB while you are executing the
DOSLKED command, you should reissue the DOSLKED command specifying
a different DOSLIB, or compress the DOSLIE before attempting to
reissue the DOSLKED command.

11NKA~~ ~R!IQ~ ~Q!!IRQ1 ~~!~~~~!!~~: The eMS/DOS linkage editor recognizes
and supports the DOS/VS linkage editor control statements ACTION, PHASE,
ENTRY, and INCLUDE. These control statements are described in RQ2L!2
2Ist~m ~2~!!21 2!g!gmg~!2. The CMS/DOS linkage editor ignores: ~

Section 2. CMS Commands 75

DOSLKED

• The SVA cperand of the PHASE statement
• The F+address form for specifying origin on the PHASE statement
• The BG and Fn operands of the ACTION statement

The S-form of specifying the origin on the PHASE statement corresponds
to the CMS user area under CMS/DOS. If a default PHASE statement is
required, the origin is assumed to be S. The PEEY operand of the PHASE
statement indicates that the phase is link-edited on a 4K page boundary
under CMS/DOS as opposed to a 2K page boundary for DOS/VS.

In DOS/VS, an ACTION CLEAR control statement clears the unused
portion of the core image library to binary zeros. In DOS/VS the core
image library has a defined size, while in CMS/DOS the CMS phase library
varies in size, depending on the number of phases cataloged. Therefore,
in CMS/DOS an ACTION CLEAR control statement clears the current buffers
to binary zeros before loading them; CMS/DOS cannot clear the entire
unused portion of the CMS phase library because that portion varies as
phases are added to and deleted from the CMS phase library. In CMS/DeS
if you want your phases cleared you must issue an ACTION CLEAR control
statement each time you add a phase to the CMS phase library.

LINKAGE EDITOR CARD I!f~~: The input to the linkage editor can consist
of-sii- card-types: produced by a language translator or a programmer.
These cards appear in the following order:

£~£g IIE§
ESD
SYM
TXT
RLD
REP
~D

Definition
External-symbol dictionary
Ignored by linkage editor
Text
Relocation list dictionary
Replacement of text made by the programmer
End of module

CMS/DOS supports these six card types
does. These card types are described
~!at§~§~!§.

in the same manner that DOS/VS
in the ~Q~LVS ~I§!~~ £Q~!£Ql

When you use the TERM option of the DOSLKED command, the linkage editcr
map is displayed at the terminal.

21011 INVALID OPERATION IN CONTROL STATEMENT

This message indicates that a blank card was encountered in the
process of link-editing a relocatable module. This message also
appears 1n the MAP file. The invalid card is ignored and
processing continues.

DMSDLK001E NO FILENAME SPECIFIED RC=24
DMSDLK003E INVALID OPTION 'option' RC=24
DMSDLK006E NO READ/WRITE DISK ACCESSED RC=36
DMSDLK007E FILE 'fn ft fm' IS NOT FIXED, 80-CHAR. RECORDS RC=32
DMSDLK070E INVALID PARAMETER 'parameter' RC=24
DMSDLK099E CMS/DOS ENVIRONMENT NOT ACTIVE RC=40
DMSDLK104S ERROR Inn' READING FILE 'fn ft fm' FROM DISK RC=100
DMSDLK105S ERROR Inn' WRITING FILE 'fn ft fm' ON DISK RC=100
DMSDLK210E LIBRARY 'library' IS ON READ-ONLY DISK RC=36
DMSDLK245S ERROR 'nnn'ON PRINTER RC=100

76 IBM VM/370 CMS Cammand and Macro Reference

DSEBV

DSERV

Use the DSERV command in CMS/DOS to obtain information that is contained
in DOS/VS private or system libraries. The format of the DSERV command
is:

r--,
r
I

DSERV CD IPHASE {name

r , ,
Innl I
11~1} I [d2 ••• dn] [(options ••• [)]]

CD
RD
SD
PD
TD
ALL

RD
SD
PD
TD
ALL

L L .J .JI

QE!1:Qn§:
r ,
112!~!s I
ITERM I
IPRINTI
L .J

[SORT]

specifies that information concerning one or more types of
directorie~ is to be displayed or printed. The directory
types that can be specified are: ct (core image library),
RD (relocatable librarn, SD (source statement library),
PD (procedure library), TD (transient directory), and
ALL (all directories).

There is no default value. The private libraries take
precedence over system libraries.

PHASE naQle

nn

specifies the name of the phase to be listed. If the
phasename ends with an asterisk, all phases that start with
the letters preceding the asterisk are listed. This operand
is valid only for CD.

is the displacement within the phase where the version and
level are to be found (the default is 12).

[d2 ••• dn] indicates additional libraries whose directories are to be
listed. (See Usage Note 1.)

12!~!s writes the output on your CMS A-disk to a file named DSERV MAF
AS. This is the default value if TERM or FRINT is not
specified.

TERM displays the output at your terminal.

PRINT spools the output to the system printer.

SORT sorts the entries for each library alphamerically; otherwise,
the order is the order in which the entries were cataloged.

Section 2. CMS Commands 77

DSERV

1. You may specify more than one directory on DSERV command line; for
example:

dserv rd sd cd phase $$bopen (term

displays the directories of the relocatable and source statement
libraries, as well as the entry for the phase $$EOPEN from the core
image directory.

You can specify only one phasename or phasename* at a time,
however. If you specify more than one PHASE operand, only the last
one entered is listed. For example, if you enter:

dserv cd phase cor* phase idc*

the file DSERV MAP contains a list of all phases that begin with
the characters IDC. The first phasename specification is ignored.

2. If you want to obtain information from the directories of private
source statement library directories, relocatable library
directories, or core image library directories, the libraries must
be assigned and 'identified (via ASSGN and DLBL commands) when the
DSERV command is issued. Otherwise, the system library directories
are used. System directories are made available when you specify a
mode letter on the SET DOS ON command line.

3. The current assignments for logical units are ignored by the DSERV
co~mand; output is directed only to the output device indicated by
the option list.

~~2E~~2~2

When you use the TERM option of the riSERV command, the contents of the
specified directory are displayed at your terminal.

DMSDSV003E INVALID OPTION 'option' RC=24
DMSDSV021W NO TRANSIENT DIRECTORY RC=4
DMSDSV022W NO CORE IMAGE DIRECTORY RC=4
DMSDSV023W NO RELOCATABLE DIRECTORY RC=4
DMSDSV024W NO PROCEDURE DIRECTORY RC=4
DMSDSV025W NO SOURCE STATEMENT DIRECTORY RC=4
DMSDSV026W 'phase' NOT IN LIBRARY RC=4
DMSDSV027E INVALID DEVICE 'nn' RC=24
DMSDSV027W NO PRIVATE CORE IMAGE LIBRARY RC=4
DMSDSV028W NO {PRIVATEISYSTEM} TRANSIENT DIRECTORY ENTRIES RC=4
DMSDSV047E NO FUNCTION SPECIFIED RC=24
DMSDSV065E 'option' OPTION SPECIFIED TWICE RC=24
DMSDSV066E 'option' AND 'option' ARE CONFLICTING OPTIONS RC=24
DMSDSV070E INVALID PARAMETER 'parameter' RC=24
DMSDSV095E INVALID ADDRESS 'address' RC=24
DMSDSV099E CMS/DOS ENVIRONMENT NOT ACTIVE RC=40
DMSDSV105S ERROR 'nnw WRITING FILE 'DSERV MAP AS' ON DISK RC=24
DMSDSV245S ERROR 'nnn' ON PRINTER RC=100·

78 IBM VM/370 CMS Command and Macro Reference

EDIT

EDIT

Use the EDIT command to invoke the CMS editor to create, modify, and
manipulate CMS disk files. Once the editor has been invoked, you may
only execute EDIT subcommands and EDIT macro requests, and enter data
lines into the disk file. A limited number of CMS commands may be
executed in the CMS subset mode, entered from the edit environment.

You can return control to the CMS environment by issuing the EDIT
subcommands FILE or QUIT.

For complete details on the EDIT subcommand formats and usage, see
"Section 3. EDIT Subcommands and Macros." For tutorial information cn
using the CMS editor, including examples, see the !~Ll1~ ~~~ ~§~~~§
gyid~. The format of the EDIT command is:

r--,
Edit fn ft [fm] [(options ••• [)]]

* £.E!i£ll§:
[LRECL nn]
[NODISP]

I
I
I
I
I

~---~

fn ft

fm

is the filename and filetype of the file to be created or
edited. If a file with the specified filenne and filetype
does not exist, the CMS editor assumes that you want to create
a new file, and after you issue the INPUT subcommand, all data
lines you enter become input to the file. If a file with the
specified filename and file type exists, you may issue EDIT
subcommands to modify the specified file.

is the file mode of the file to be edited, indicating the disk
on which the file resides. The editor determines the filemode
of the edited file as follows:

~.Qi!illg ~~!§!i1!g fi!~§: If the file does not reside. on your
A-disk or its extensions, you must specify fm.

When you specify fm, the specified disk and its extensions are
searched. If a file is found on a read-only extension, the
filemode of the parent disk is saved; when you issue a FILE or
SAVE subcommand, the modified file is written to the parent
disk.

If you specify fm as an asterisk (*) all accessed disks are
searched for the specified file.

~~~~!i1!g 1!~! !!1~§: If you do not specify fm, the new file is 
written on your A-disk when you issue the FILE or SAVE 
subcommands. 

section 2. CMS Commands 79 



EDIT 

QR!i2~§: 

LRECL nn is the record length of the file to be created or edited. 
Use this option to override the default values supplied by 
the editor, which are determined as follows: 

~gi!i~g ~~i§!i~g Files: Existing record length is keFt 
regardless of format:- If the file has variable-length 
records and the existing record length is less than the 
default record length, the default record length is used. 

£!~!ti~g !~! Files: All new files have a record length of 
80, with the following exceptions: 

r!l~!I~ 
LISTING 
SCRIPT,VSBDATA 
FREEFORT 

LRECL -'2'-
132 

81 

The maximum record length supported by the editor is 160 
characters. 

NODISP forces a 3210 display terminal into line (typewriter) mode. 
When the NODISP option is in effect, all subcommands that 
control the display as a 3210 terminal such as SCROLL, 
SCROLLUP, and FORMAT (and CHANGE with no operands) are made 
invalid for the edit session. 

Note: It is recommended that the NODISP option always be 
used when editing on a 3066. 

NEW FILE: 

EDIT: 

The specified file does not exist. 

The edit environment is entered. You may issue any valid EDIT 
subcommand or macro request. 

INPUT: 

The input environment is entered 
REPLACE or INPUT with no operands. 
accepted as input to the file. 

by issuing the EDIT subcommands 
All subsequent input lines are 

DMSEDr003E INVALID OPTION 'option' RC=24 
DMSEDI024E FILE 'EDIT CftSUT1 fm' ALREADY EXISTS RC=28 
DMSEDI029E INVALID PARAMETER 'parameter' IN THE OPTION 'LRECL' FIELD RC=24 
DMSEDI044E RECORD LENGTH EXCEEDS ALLOWABLE MAXIMUM RC=32 
DMSEDI054E INCOMPLETE FILEID SPECIFIED RC=24 
DMSEDI016E ACTUAL RECORD LENGTH EXCEEDS THAT SPECIFIED RC=40 
DMSEDI104S ERROR Inn' READING FILE 'fn ft fm' FROM DISK RC=100 
DMSEDI105S ERROR 'nne WRITING FILE 'fn ft fm' ON DISK RC=100 
DMSEDI111S ERROR WRITING TO DISPLAY TERMINAL RC=100 
DMSEDI132S FILE 'fn ft fml TOO LARGE RC=88 
DMSEDI143S UNABLE TO LOAD SAVED SYSTEM OR LOAD MODULE RC=40 
DMSEDI144S REQUESTED FILE IS IN ACTIVE STATUS 

80 IBM VM/310 CMS Command and Macro Reference 



ERASE 

ERASE 

Use the ERASE command to delete one or more CMS files from a read/write 
disk. The format of the ERASE command is: 

r 
I ERASE I fn ft fm [(options ••• [) ]] QE!!Q!!§: 
I I * * * 
I I r , 
I I IType I 
I I I!iQ!IE~1 
I I L .J ~ _________________________________________________________________________ .J 

\ 
fn is the filename of the file(s) to be erased. An asterisk coded 

in this position indicates that all filenames are to be used. 
fn must be specified, either with a name or an asterisk. 

ft is the filetype of the file(s) to be erased. An asterisk coded 
in this position indicates that all filetypes are to be used. 
This field must be specified, either with a name or an asterisk. 

fm is the filemode of the files to be erased. If this field is 
omitted, only the A-disk is searched. An asterisk coded in this 
position indicates that files with the specified filename and/or 
filetype are to be erased from all read/write disks. 

TYPE displays at the terminal the file identifier of each file 
erased. 

!iQ!IR~ file identifiers are not displayed at the terminal. 

!!§A.9~ !!Q!~§ 

1. If you specify an asterisk for both filename and filetype you must 
specify both a filemode letter and number; for example: 

erase * * a5 

2. To erase all files on a particular disk, you can use the FORMAT 
command to reformat it or access the disk using the ACCESS command 
with the ERASE option. 

3. If an asterisk is entered as the filemode, then either the filename 
or the filetype or both must be specified by name. 

Section 2. eMS Commands 81 



ERASE 

~!§E~D§~§ 

If you specify the TYPE option, the file identification of each file 
erased is disFlayed. For example: 

erase oldfile temp (type 

results in the display:' 

OLDFILE TEMP A1 
B; 

DKSERS002E FILE ['fn eft [fm]]'] NOT FOUND RC=28 
DMSERS003E INVALID OPTION 'option' RC=24 
DKSERS037E DISK -.ode' IS READ/ONLY ·RC=36 
DMSERS048E INVALID MODE 'mode' RC=24 
DKSERS054E INCOMPLETE FILEID SPECIFIED RC=24 
DKSERS069E DISK 'mode' NOT ACCESSED RC~36 
DMSERS070E INVALID PARAMETER 'parameter' RC=24 
DKSERS071E ERASE * * [*Imode] NOT ALLOWED RC=24 
DKSERS109T VIRTUAL STORAGE CAPACITY EXCEEDED 

Note: You can invoke the ERASE command fro. the terminal, from an EXEC 
fIle, or as a function from a program. If ERASE is invoked as a function 
or from an EXEC file that has the SCONTROL NOMSG option in effect, no 
error message is issued. 

82 IBM VM/370 CMS Command and Macro Reference 



ESERV 

ESERV 

Use the ESERV EXEC procedure in CMS/DOS to copy edited DOS/VS macros 
from system or private source statement E sutlibraries to CMS disk 
files, or to list de-edited macros. The format of the ESERV command is: 

ESERV I fn L-__________________________________________________________________________ J 

fri specifies the filename of the CMS file that contains the ESERV 
control statements; it must have a filetype of ESERV. The logical 
unit SYSIPT must be assigned to the disk on which the ESERV file 
resides. fn is also the filename of the LISTING and MACRO files 
produced by the ESERV program4 

Y~~~ !Q1~~ 

1. The input file can contain any or all of the ESERV control 
statements as defined in ~yig~ 1Q 1h~ ~Q~L!~ A§§~mb!~~. 

2~ You must have a read/write A-disk accessed when you use the ESERV 
command. 

3. To copy macros from the system source statement library, you must 
have entered the CMS/DOS environment specifying the mode letter of 
the DOS/VS system residence. To copy from a private source 
statement library, you must assign the logical unit SYSSLB and 
issue a DLBL command for the ddname IJSYSSL. 

4. The output of the ESERV program is directed (as in DOS/VS) to 
devices assigned to the logical units SYSLST and/or SYSPCH. If 
either SYSLST or SYSPCH is not assigned, the following files are 
created: 

Y]!1 
SYSLST 
SYSPCH 

Qy1EY1 ~i!~ 
fn LISTING mode 
fn MACRO mode 

where mode is the mode letter of the disk on which the source file, 
fn ESERV resides. If fn ESERV is on a read-only disk, the files are 
written to your A-disk. 

You can override default assignments made by the ESERV EXEC as 
follows: 

• If you assign SYSIPT to TAPE or READER, the source statements 
are read from that device. 

• If you assign SYSLST or SYSPCH to another device, the SYSLST or 
SYSPCH files are written to that device. 

5. The ESERV EXEC procedure clears all DLBL definitions, except those 
entered ~ith the PERM option. 

6. If you v~t to use the ESERV command in an EXEC procedure, you must 
use the EXEC command (because ESERV is also an EXEC). 

Section 2. CMS Commands 83 



ESERV 

7. When you use the ESERV control statements PUNCH or DSPCH, the ESEBV 
program may generate CATAL.S, END, or /* records in the output 
file. When you add a MACRO file containing these statements to a 
CMS macro library using the MACLIB command, the statements are 
ignored and are not read into the MACLIB member. 

None. The CMS ready message indicates that the ESERV program completed 
execution successfully. You may examine the SYSLST output to verify the 
results of the ESERV program execution. 

DMSERV001E NO FILENAME SPECIFIED RC=24 
DMSERV002E FILE 'fn ESERV' NOT FOUND RC=28 
DMSERV006E NO READ / WRITE DISK ACCESSED RC=36 
DMSERV027E INVALID DEVICE ' device ' FOB SYSxxx RC=28 
DMSERV037E DISK 'mode' IS READ ONLY RC=36 
DMSERV070E INVALID ARGUMENT • argument' RC=24 
DMSERV099E CMS/DOS ENVIRONMENT NOT ACTIVE RC=40 

Note: The ESERV EXEC calls other CMS commands to perform certain 
functions, and so you may, on occasion, receive error messages that 
occur as a result of those commands. 

Non-CMS error messages produced by the DOS/VS ESERV program are 
described in the ~yig~ 1Q 1h~ ~Q~L!~ !22~~~!~E· 

84 IBM VM/310 CMS Command and Macro Reference 



EXEC 

EXEC 

Use the EXEC command to execute one or more CMS commands or EXEC control 
statements contained in a specified EXEC file. The format of the EXEC 
command is: 

r --------------------------.------------------.------', 
I [EXec] fn [args ••• ] I 

~ 

[EXec] indicates that the EXEC command may be omitted if you are 
executing the EXEC procedure from the eMS command environment 
and have not issued the command SET IMPEX OFF. 

fn is the filename of a file containing one or more CMS commands 
and/or EXEC control statements to be executed. The filetype of 
the file must be EXEC and the file can have either fixed- or 
variable-length records with a logical record length not 
exceeding 130 characters. EXEC files can be created with the 
EDIT command or by a user program. EXEC files created by the 
CMS editor have, by default, variable-length, 80-character 
records. 

args are any arguments you wish to pass to the EXEC. The arguments 
are assigned to the special variables &1 through &30 in the 
order in which they appear in the argument list. 

"Section 5. EXEC Control Statements" contains complete descriptions 
of EXEC control statements, special variables, and built-in functions. 
For information on designing EXEC procedures and examples of control 
word usage, see the !~LJIQ ~~~ ~§~~~§ ~y!g~. 

The amount of information displayed during the execution of an EXEC 
depends on the setting of the &CONTROL control statement, which by 
default displays all CMS commands, responses, and error messages. In 
addition, it displays nonzero return codes from CMS in the format: 

.++ R(nnnnn) +++ 

where nnnnn is the return code from the CMS command. 

For details, see the description of the &CONTROL control statement in 
"Section 5. EXEC Control Statements." 

Section 2. CMS Commands 85 



EXEC 

If the EXEC interpreter finds an error, it displays the message: 

DMSEXT072E ERROR IN EXEC FILE filename, LINE nnnn - description 

The possible errors, and the associated return codes, are: 

12~§£'£.!l!:t.!~1! 
FILE NOT FOUND 
&SKIP OR &GOTO ERROR 
BAD FILE FORMAT 
TOO MANY ARGUMENTS 
MAX DEPTH OF LOOP NESTING EXCEEDED 
ERROR READING FILE 
INVALID SYNTAX 
INVALID FORM OF CONDITION 
INVALID ASSIGNMENT 
MISUSE OF SPECIAL VARIABLE 
ERROR IN &ERROR ACTION 
CONVERSION ERROR 
TOO MANY TOKENS IN STATEMENT 
MISUSE OF BUILT-IN FUNCTION 
EOF FOUND IN LOOP 
INVALID CONTROL WORD 
EXEC ARITHMETIC UNDERFLOW 
EXEC ARITHMETIC OVERFLOW 

DMSEXC001E NO FILENAME SPECIFIED RC=24 

Return 
Code 
8()"'---
802 
803 
804 
805 
806 
807 
808 
809 
810 
811 
812 
813 
814 
815 
816 
817 
818 

86 IBM VM/370 CMS Command and Macro Reference 



FETCH 

FETCH 

Use the FETCH command in CMS/DOS to load an executable phase into 
storage for execution. The format of the FETCH command is: 

FETch phasename [(options ••• [) ]] 
.Q~!i.Q.!H? : 
[ START] 
[COMP] 
[ORIGIN hexloc] 

I 

I 
I 
I 
I 
I 

~------------------------------------------------------------------~-----~ 

phasename is the name of the phase to be loaded into virtual storage. 
CMS searches for the phase: 

• In a DOS/VS private core image library, if IJSYSCL has been 
defined 

• In CMS DOSLIBs that have been identified with the GLOBAL 
cOlIlRand 

• In the DOS/VS system core image library, if you specified 
the mode letter of the DOS/VS system residence on the SET 
DOS ON command line 

START specifies that once the phase is loaded into storage, 
execution should begin immediately. 

COMP specifies that 
should contain 
Note 5.) 

when the phase is to be executed, 
the address of its entry point. 

register 1 
(See Usage 

ORIGIN hexloc 
fetches the program and loads it at the location specified by 
hexloc; this location must be in the CMS user area. The 
location, hexloc, is a hexadecimal number of, up to eight 
characters. (See Usage Note 6.) 

1. If you do not use the START option, FETCH displays a message at 
your terminal indicating the name of the phase and the storage 
lo~ation of its entry point. At this time, you can set address 
instruction stops for testing. To continue, issue the START 
command to initiate execution of the phase just loaded. 

2. The fetch routine is also invoked by supervisor call (SVC) 
instructions 1, 2, 4, or 65. The search order for executable 
phases is the same as listed above. 

3. If you want to fetch a phase from a private core image library, you 
must issue an ASSGN command for the logical unit SYSCLB and define 
the library in a DLBL command using the ddname IJSSYCL. For 
example: 

assgn sysclb c 
dlbl ijsyscl c dsn core image lib (sysclb perm 

Section 2. CMS Commands 87 



FETCH 

4. Phases fetched from DOS core image libraries must have been 
link-edited with ACTION REL. 

5. CMS uses the COMP option when it fetches the DOS PL/I compile~ 
because that compiler expects register 1 t,o contain its entry ,point 
address. This option is not required jheri you issue the FETCH 
command to load your own programs. 

6. 

When CMS starts executing a phase that has COMP specified, the 
DMSLI07401 EXECUTION BEGINS ••• message is not displayed. 

The ORIGIN option is used 
procedure to load nonsharable 
not required when you issue 
programs, unless you want to 
20000. 

by the CMS/VSAB installation EXEC 
modules on a segment boundary. It is 
the FETCH command to load your own 
load them at a location other than 

7. The FETCH command should only be used with the START command to 
execute a DOS program. It should not be used with GENMOD to 
attempt to create an executable CMS module file. 

DMSFET7101 PHASE 'phase' ENTRY POINT AT LOCATION xxx,xxx 

This message is issued when the 
indicates the v1rtual storage 
loaded. 

DMSLI07401 EXECUTION BEGINS ••• 

START option is not specified. It 
address at which the phase was 

This message is issued when the START option is specified; it 
indicates that program execution has begun. 

DMSFCH104S ERROR Inn' READING FILE 'fn ft fm' FROM DISK RC=100 
DMSFCH109S VIRTUAL STORAGE CAPACITY EXCEEDED RC=104 
DMSFCH113S DISK (cuu) NOT ATTACHED RC=100 
DMSFCH115E PHASE LOAD POINT LESS THAN 'address' RC=40 
DMSFCH411S INPUT ERROR CODE "nn" ON '{SYSRESISYSCLB}' RC=100 
DMSFCH777S DOS PARTITION TOO SMALL TO ACCOMMODATE FETCH REQUEST RC=104 
DMSFET003E INVAtID OPTION 'option' RC=24 
DMSFET004E PHASE 'phase' NOT FOUND RC=28 
DMSFET029E INVALID PARAMETER 'parameter' IN THE OPTION 'ORIGIN' FIELD 

.RC=24 
DMSFET070E INVALID PARAMETER 'parameter' RC=24 
DMSFET098E NO PHASE NAME SPECIFIED RC=24 
DMSFET099E CMS/DOS ENVIRONMENT NOT ACTIVE RC=40 
DMSLI0055E NO ENTRY POINT DEFINED RC=40 

88 I~M VM/370 CMS Command and Macro Reference 



FILEDEF 

FILEDEF 

Use the FILEDEF command to establish data definitions for OS ddnames, to 
define files to be copied with the MOVEFILE command, or to override 
default file definitions made by the assembler and the OS language 
processors. The format of the FILEDEF command is: 

FIledef 

!l!.!!~: 

ddnalle 
nn 

* 

I{ ddnalle } 
I nn 
I * 

~.E!i~Jl!: 
[PERM] 
r , 
I~!!!!§~ I 
I NOCHANGE I 
L .J 

Terminal [ (optionl optionD[) ]] 

PRinter 
PUnch 
Reader 

[ (optionl[) ]] 

r r " 
DISK Ifn ft Ifmll [(optionl optionB[)]] 

I~I1~ gg~gm~ IA111 
L L .J.J 

rr , r " 
IIDISK fn ft Ilfmll {tSN ? } 
II ~I1~ gg~~!~11!111 DSN qua11 qua12 ••• 
LL .JL .J.J 

DUMMY 

TAP[ n] 

CLEIR 

[ (optionA optionB[) ]] 

[ (optionl[) ]] 

[ (option! optionC[) ]] 

~.E!i~~~: 
[KEYLEN nnn] 
r , 
IXTENT nnnnni 
1!!~1!1.2.Q I 
L .J 

... , 
17TRACKI 
19TRACKI 
L .J 

Q£1i~!!Jl: 
r , 
I.Y~~!.§] I 
ILOWCISEI 
L .J 

[RECFM a] 
[LRECL nnnnn] 

[LIMCT nnn] 
[OPTCD a] 
[DISP MOD] 

[TRTCB a] 
[DEN den] 

r , 
IBLOCK nnnnn I 
IBLKSIZE nnnnni 
L .J 

[MEMBER membername] 
[CONCAT] 
r , 

I DSORG { PS}I 
I PO I 
I DA I 
L .J 

, 

.J 

is the name by which the file is referred to in your 
program. The ddname may be from one to eight alphameric 
characters, but the first character must be alphabetic or 
national. If a number nn is specified, it is translated to a 
FORTRAN data definition name of FTnnF001. An asterisk (*) may 
be specifi~d with the CLEAR operand to ipdicate that all file 
definitions not entered with the PERt option should be 
cleared. 

Section 2. CMS Commands 89 



FILEDEF 

TERMINAL is your terminal (terminal I/O must not be blocked). 

PRINTER is the spooled printer. 

PONCH is the spooled punch. 

READER 

DISK 

DOMMY 

TAP[ n ] 

CLEAR 

is the spooled card reader (card reader I/O must not be 
tlocked). 

specifies that the virtual I/O device is a disk. As shown in 
the format, you can choose one of two forms for specifying the 
DISK operand. Both foras are described in nOsing the FILEDEF 
DISK Operand." 

indicates that no real I/O takes place for a data set. 

is a magnetic tape. The symbolic number of the tape drive, n, 
can be 1, 2, 3, or 4, representing virtual units 181, 182, 
183, and 184, respectively. If n is not specified, TAP2 is 
the default. 

removes any existing definition for the specified ddname. 
Clearing a ddname before defining it ensures that a file 
definition does not exist and that any options previously 
defined with the ddname no longer have effect. 

QE1i2Q§: Whenever an invalid option is specified for a particular 
device type, an error message is issued. Figure 8 shows valid 
options for each device type. 

t OPERANDS t 
Options tREADER, POliCHt DISK 

t PRINTER I TERMINAL TAPn 

BLOCK, BLKSIZE X X X 
CHANGE, NOCHANGE X X X 
CONCAT 
DEN X 
DISP MOD 
DSORG 
KEYLEN 
LIMCT 
LOWCASE, OPCASE X 
LRECL X X X 
MEMBER 
OPTCD 
PERM X X X 
RECFM X X X 
TRTCH X3 
XTENT 
7TRACK, 9TRACK X 

INa options may be necessary but all disk options are accepted. 
2This option is meaningful only for BDAM files. 
3This option is for 7-track tapes only. 

DOMMYl 

X 
X 
X 

X 
X 
X2 
X2 

X 
X 
X2 
X 
X 

X2 

Figure 8. Valid File Characteristics for Each Device Type of the 
FILEDEF COII.and 

90 IBM VM/370 CMS Co.mand and Macro Reference 



PERM 

NOCBANGE 

RECFM a 

FILEDEF 

retains the current definition until it either is 
explicitly cleared or is changed with a new FILEDEF 
comlland with the CHANGE option. If PERM is not 
specified, the definition is cleared when a FILEDEF * CLEAR command is executed. 

merges the file definitions whenever a file definition 
already exists for a ddna.e and a new FILEDEF command 
specifying the saae ddnaae is issued; the options 
associated with the two definitions are aerged. Options 
from the original definition rellain in effect unless 
duplicated in the new definition. New options are added 
to the option list. 

retains the current file definition, if one exists, fer 
the specified ddna.e. 

is the record format of the file, where "a" can be one of 
the following: 

F 
FB 
V 
VB 
U 
FS,FBS 
VS,VBS 
A 
M 

fixed length 
'fixed blocked' 
variable length 
variable blocked' 
undefined 
fixed length, standard blocks 
variable length, spanned records 
ASA print control characters 2 

machine print control codes 2 

LRECL nnnnn is the logical record length (nnnnn) of the file, in 
bytes. LRECL should not exceed 32760 bytes because of CS 
restrictions. 

BLOCK nnnnn 
BLKSIZE nnnnn 

is the logical block size (nnnnn) of the file, in bytes. 
BLOCK should not exceed 32760 bytes because of CS 
restrictions. If both BLOCK and ELKSIZE options are 
specified, the value of nnnnn for ELOCK is used and 
BLKSIZE is ignored. 

If a CMS file is fixed and has 80-byte CMS records, yeu 
should specify RECFM FB BLOCK 800 LRBCL 80. Performance 
can be improved for CMS fixed files if the block size is 
a multiple of 800. 

KElLEN nnn is the size (nnn) of the key (in bytes). 
value accepted is 256. 

The maxi.um 

XTENT nnnnn is the number of records (nnnnn) in the extent for the 
file. The default is 50. The maximu. value is 65535. 

LIMCT nnn is the .axisum nusber of extra tracks or blocks (nnn) to 
be searched. The maximu. value is 256. 

'FB and VB should not be used with TERMINAL or READER devices. 
2A and M .ay be used with any of the valid RECFM settings (for example, 

FA, FBA, VA, VBA, etc.) M should not be used with TERMINAL devices. 

Section 2. CMS Com.ands 91 



FILEDEF 

OPTCD a is the direct access search processing desired. The 
variable "a" .ay be any co.bination of up to three of the 
following: (A and Rare .utually exclusive.) 

DASD Search 
Actual-devIce addressing 
Extended search 
Feedback addressing 
Relative block addressing 

Note: The KElLEN, ITENT, LIMCT, and OPTeD options should only be used 
wIth BDAM files. 

DISP MOD positions the read/write pointer after the last record in 
the disk file. This option should only be used for 
output files. 

MEMBER .ellberna.e 

CONCAT 

DSORG {H} 
r , 

allows you to specify the naae of a .e.ber of an CS 
partitioned data set; Beabernaae is the na.e of the PDS 
lIellber. 

allows you to assign the salle ddnaae to two or aore CS 
.acro libraries so that you can refer to thea in a single 
GLOBAL cOllmand. 

Any file for.at options you specify in the first FILEDEF 
co •• and line reaain in effect for subsequently 
concatenated libraries. For a detailed description of 
concatenated .acro libraries, see "Using OS Macro 
Libraries" in !~L11Q ~~~ Q2~~2 Q~!Q~. 

is the data set organization: physical sequential (PS), 
partitioned (PO), or direct access (DA). 

f 7TRACK f is the tape setting. 
I 9TRACK I 
L .J 

TRTCH a is the tape recording technique for 7-track tapes. Use 
the following chart to deteraine the value of t1a" fer 
7-track tapes. 

DEN den 

Q.f~!~~ 

LOiCASE 

a Parity Converter Translator 

0 odd off off 
OC odd on off 
OT odd off on 

E even off off 
ET even off on 

The default value of TRTCH is OC. 

is tape density: den can be 200, 556, 800, 1600, or 6250 
bpi (bits per inch). If 200 or 556 are specified, 7TRACK 
is assumed. If 800, 1600, or 6250 are specified 9TRACK is 
assulled. 

translates all terainal input data to uppercase. 

retains all ter.inal input data as typed in. 

92 IBM VM/370 CMS Co.mand and Macro Reference 



FILEDEF 

1. If you do not issue a FILEDEF command for an os input or output 
file, CMS uses the ddname on the DCB macro to issue the following 
default file definition: 

FILEDEF ddname DISK FILE ddname A1 

See "Usage Notes" under the discussion of the ASSEMBLE command fer 
information on the default file definitions made by the assemtler. 

2. To identify DOS files for DOS program execution or to identify VSAM 
data sets for either OS or DOS program execution, you must use the 
DLBL co •• and. 

3. A file definition established with the FILEtEF command remains in 
effect until explicitly changed or cleared. The system clears file 
definiticns under the following circumstances: 

• When the assembler or any of the language processors are 
invoked. (Note that FILEDEF definitions entered with the PEBM 
option are not cleared.) 

• When a program abends or when you issue the Immediate command ax 
to halt com.and or program execution. 

4. The FILEDEF co •• and does not supply default values for LRECL and 
BLKSIZE. As under OS, if DCB information is unavailable when a 
file is opened, an open error is issued for the file. The 
following chart sum.arizes the results of specifying LRECL and 
BLKSIZE eptions. 

BLKSIZE 

Not 
Specified 

Specified 

Net 
Specified 

Specified 

LRECL Resul ts 

Not IIf the input file exists on disk, the 
SFecified litem length (or item length +4 for vari

lable-length records) becomes the BLKSIZE. 

Not ILRECL=BLKSIZE (or LRECL=BLKSIZE-4, for 
Specified I variable-length records) • 

Specified IBLKSIZE=LBECL (or ELKSIZE=LRECL+4, for 
I variable-length records) • 

Specified IThe values specified are used. 

If V or VB is specified for RECFM, LRECL must be at least 4 bytes 
less than BLKSIZE. 

DOS sequential (SAM) files do not contain ELK SIZE, LRECL, or RECFM 
specifications. These options lust be specified by a FILEDEF 
command or DCB statement if OS macros are used to access DOS files. 
Otherwise the defaults, BLKSIZE=32760 and RECFM=U, are assumed. 
LRECL is not used for RECFM=U files. 

5. There is an auxiliary processing option for FILEDEF that is only 
valid when FILEDEF is executed by an internal program call: this 
option cannot be entered as a terminal co •• and. The option, 
AUXPROC addr, allows an auxiliary processing routine to receive 
control during I/O operations. For details on how to use this 
option of the FILEDEF command, see !~11~ ~Ist~~ Prog£~~£~§ 
Qyi.Q~. 

Section 2. CftS Commands 93 



FILEDEF 

6. If a FILEDEF command is issued with a DDNAME that matches a current 
DDNAME defined by a previous FILEDEF command and the devices are 
the same, the filename, fi1etype, filemode, and options previously 
specified remain in effect, unless respecified by the new FILEDEF 
command. If the devices are not the same, all previous 
specifications are removed. 

7. If the FILEDEF command is entered with no operands, a list of 
current definitions is displayed. 

Q§in~ 1he l!b!R~1 RI~! QE~£~n~ 

There are two general formi for specifying the DISK operand in a FILEDEF 
command. If you specify the first form: 

FILEDEF ddname DISK fn ft [fm] 

fn and ft (filename and filetype) are assumed to be a CMS fileid. If fm 
is the filemode of an OS disk, fn and ft are assumed to be the only two 
qualifiers of an OS data set name. If fm is specified as an asterisk, 
(*) then the A-disk is assumed. 

You cannot use this form unless the as data set name or DOS file-id 
conforms to the OS naming convention (1- to 8-byte qualifiers separated 
by periods, to a maximum of 44 characters, including periods). Also, 
the data set name can have only two qualifiers; otherwise, you must use 
the DSN ? or DSN quaIl ••• form. For example, if the OS data set name 
or DOS file-id is TEST.SAMPLE.MAY, you enter: 

FILEDEF MINE Bl DSN TEST SAMPLE MAY 

-- or --

FILEDEF MINE Bl DSN ? 
TEST.SAMPLE.MAY 

If the OS data set name or DOS file-id is TEST.SAMPLE~ then you may 
enter: 

FILEDEF MINE DISK TEST SAMPLE Bl 

The second form of the DISK operand is used only with OS data sets 
and DOS files: 

r , r , 
FILEDEF ddname IDISK fn ft I Ifml {DSN ? } 

I 1!1~ ~gn~!~1 1111 DSN quaIl [qua12 ••• ] 
L .J L .J 

This form allows you to to enter OS and DOS file identifications that do 
not conform to OS data set naming conventions. The DSN operand 
corresponds to the DSN parameter on the OS DD (data definition) 
statement. There are three ways you can specify this form: 

• FILEDEF ddname DISK fn ft fm DSN quaIl [qua12 ••• ] 

This form of the FILEDEF command associates theCMS filename and 
filetype you specify with the OS data set name or DOS file-id 
specified following the DSN operand. Once it is defined, you can 
refer to the OS data set name or DOS file-id by using the CMS 
filename and filetype. If you omit DISK, filename, filetype, and 
filemode, the default values are FILE ddname Al. 

94 IBM VM/370 CMS Command and Macro Reference 



FILEDEF 

• FILEDEF ddname DSN l' 

This form of the FILEDEF command allows you to specify the os data 
set name or DOS file-id interactively. Using this form, you can 
enter an OS data set name or DOS file-id containing embedded special 
characters such as blanks and hyphens. If you use this fora, the 
default filename and filetype for your file, FILE ddname, is the C~S 
filename and filetype associated with the OS data set name or Des 
file-ide The filemode for this form is always the default, A1. 

To use the interactive DSN operand, you key in DSN 1; CMS then 
requests that you enter the OS data set name or DOS file-id exactly 
as it appears in the data set or file. Do not omit the periods that 
separate the qualifiers of an OS data set name, but do not insert 
per~ods where they do not appear. 

qua11[.qua12 ••• ] 

where quaI1.qua12 ••• are the qualifiers of the OS data set name or 
DOS file-ide When you use this form~ you must code the periods 
separating the qualifiers • 

• FILEDEF ddname mode DSN qua11 [qua12 ••• ] 

This form allows you to specify the OS data set name or DOS file-id 
explicitly. (This form can be used for DOS file-ids only if they 
comply with the OS naming convention of 1- to a-byte qualifiers 
separated by periods, to a maximum of 44 characters, including 
periods.) Again, the default value for the filename and filetype is 
FILE ddname. When you use this form, you must omit the periods that 
separate the qualifiers of the OS data set name. For example, for an 
OS data set or DOS file named MY.FILE.IN, you enter: 

FILEDEF ddname B1 DSN MY FILE IN 

All of these forms have many variations, as is apparent from the 
command format. 

ddname1 device1 [filename1 filetype1 filemode1 [datasetname]] 

ddna.eN deviceN [filenameN filetypeN filemoden [datasetname]] 

A list of current definitions is displayed if the FILEDEF command 
is entered with no operands. 

DMSFLD069I DISK 'mode' NOT ACCESSED 

The specified disk is not accessed; the file definition remains in 
effect. You should access the disk before you attempt to read or 
write the file. 

DMSFLD220R ENTER DATA SET NAME: 

A FILEDEF command with the DSN 1 operand was entered. Enter the 
exact OS or DOS file identification, including embedded periods and 
blanks. 

Section 2. CMS Commands 95 



FILEDEF 

DMSFLD7041 INVALID CLEAR REQUEST 

A CLEAR request was entered for a file definition that does net 
exist; no action is taken. 

DMSSTT2281 USER LABELS BYPASSED ON DATA SET 'data set name' 

This message is displayed when you issue a FILEDEF command for an 
OS data set that contains user labels. The message is displayed the 
first time you issue the FILEDEF command after accessing the disk 
on which the data set resides. 

DMSFLD003E INVALID OPTION 'option' RC=24 
DMSFLD023E NO FILETYPE SPECIFIED RC=24 
DMSFLD027E INVALID DEVICE 'device name' RC=24 
DMSFLD029E INVALID PARAMETER 'parameter' IN THE OPTION 'option' FIELD 

RC=24 
DMSFLD03SE INVALID TAPE MODE RC=24 
DMSFLDOSOE PARAMETER MISSING AFTER DDNAME RC=24 
DMSFLD06SE 'option' OPTION SPECIFIED TWICE RC=24 
DMSFLD066E 'option' AND 'option' ARE CONFLICTING OPTIONS RC=24 
DMSFLD070E INVALID PARAMETER 'parameter' RC=24 
DMSFLD221E INVALID DATA SET NAME 'data set name' RC=24 
DMSFLD224E FILEID ALREADY IN USE RC=24 

96 IBM YM/370 CMS,Com,lD~nd and Macro Reference 



FORMAT 

FORMAT 

Use "the FORMAT command to: 

• Initialize a virtual disk (minidisk) for use with CMS files 
• Count or reset the number of cylinders on a virtual disk 
• Write a label on a virtual disk 

The format of the FORMAT command is: 

FORMAT cuu mode [nocyl] [ (options ••• [) ]] 

QEliQ1!.§: 
r , 
ILabel I 
IRecomPI 
L ~ 

---------------------, 
I 
I 
I 
I 
I 
I 
I 
I 

~-------------------------------------------------------------------------~ 

cuu is the virtual device address of the virtual disk to be 
formatted. 

mode 

nocyl 

Valid addresses are 001 through 5FF for a virtual machine in 
basic control mode and 001 through FFF for a virtual machine in 
extended control mode. 

is the filemode letter to be assigned to the specified device 
address. Valid filemode letters are A, E, C, D, E, F, G, Y, and 
z. This field must be specified. If any other disk is accessed 
at mode, it is released. 

is the number of cylinders to be made available for use. All 
available cylinders on the disk are used if the number specified 
exceeds the actual number available. 

QE1.!.Q1!.§: 

LABEL writes a label on the disk without formatting the disk. A 
six-character label is written on cylinder 0, track 0, record 
3 of the virtual disk. A prompting message requests a 
six-character disk label (fewer than six characters are 
left-justified and blanks padded). 

RECOMP changes the number of cylinders on the disk that are available 
to the user to the actual number of minidisk cylinders or to 
the number specified by nocyl, whichever is less. If nocyl is 
not specified, all cylinders" are used. 

!!.§~~ !!Ql~.§ 

1. You can use the FORMAT command with any virtual 3330, 3340, 3350, 
or 2319 device. 

2. When you do not specify either the RECOKP or LABEL option, the disk 
area is initialized by writing a device-dependent number of records 
(containing binary zeros) on each track. Any previous data on the 

Section 2. CKS Commands 97 



FORMAT 

disk is erased. A read after write check is made as the disk is 
formatted. For example: 

format 191 a 25 

initializes 25 cylinders of the disk located at virtual address 191 
in CMS format. The command: 

format 192 b 25 (recomp) 

changes the number of cylinders available at virtual address 192 to 
25 cylinders, but does not erase any existing data. To change only 
the label on a disk, you can enter: 

format 193 c (label) 

Respond to the prompting message with a six-character label. 

3. If you want to format a minidisk for VSAM files, you must use the 
IBCDASDI program. If you want to format an entire disk, you may 
use any OS or DOS disk initialization program. 

4. Because the FORMAT command requires heavy processor utilization and 
is heavily I/O bound, system performance may be degraded if there 
are many users on the system when you use FORMAT. 

DMSFOR603R FORMAT WILL ERASE ALL FILES ON DISK 'mode (cuu) '. DO YOU WISH 
TO CONTINUE? (YESINO): 

You have indicated that a disk area is to be initialized: all 
existing files are erased. This message gives you the option of 
canceling the execution of the FORMAT command. Reply yes or no. 

DMSFOR605R ENTER DISK LABEL: 

You have requested that a label be written on the disk. 
one- to six-character label. 

DMSFOR7051 DISK REMAINS UNCHANGED. 

Enter a 

The response to message DMSFOR603R was NO or a null line was 
entered. 

DMSFOR7321 'nnn' CYLINDERS FORMATTED ON DISK 'mode(cuu)' 

The format operation is complete. 

DMSFOR7331 FORMATTING DISK 'mode' 

The disk represented by mode letter 'mode' is being formatted. 

mode (cuu): nnnn FILES, nnnnn REC IN USE, nnnnn LEFT (of nnnnn), nn~ 
FULL (nnn CYL), type, R/W 

This message provides the status of a disk when you use the RECOMP 
option. The response is the same as when you issue the QUERY 
command with the DISK operand. 

98 IBM VM/370 CMS Command and Macro Reference 



DMSFOR003E INVALID OPTION 'option' RC=24 
DMSFOR017E INVALID DEVICE ADDRESS 'cuu' RC=24 
DMSFOR028E NO DEVICE SPECIFIED RC=24 
DMSFOR037E DISK 'mode[ (cuu)]' IS READ/ONLY RC=36 
DMSFOR048E INVALID MODE 'mode' RC=24 
DMSFOR069E DISK 'mode' NOT ACCESSED RC=36 
DMSFOR070E INVALID PARAMETER 'parameter' RC=24 
DMSFOR113S DEVICE 'cuu' NOT ATTACHED RC=100 
DMSFOR114S 'cuu' IS AN UNSUPPORTED DEVICE TYPE RC=88 
DMSFOR125S PERMANENT UNIT CHECK ON DISK 'mode (cuu) , RC=100 
DMSFOR126S ERROR {READIWRIT}ING LABEL ON DISK 'mode (cuu) , RC=100 
DMSFOR214W CANNOT RECOMPUTE WITHOUT LOSS OF DATA. NO CHANGE RC=8 

FORMAT 

Section 2. CMS Commands 99 



GBNDIRT 

GENDIRT 

Use the GBNDIRT co •• and to fill in a CftS auxiliary directory. The 
auxiliary directory contains the name and location of modules that would 
otherwise significantly increase the size of the resident directory, 
thus increasing search time and storage requirements. By using GENDIBT 
to fill in an auxiliary directory, the file entries for the given 
command are loaded only when the command is invoked. The format of the 
GENDIRT command is: 

GBNDIRT directorynalle [ target.ode] 

~1l§!~: 

directorynaae 

targetmode 

is the entry point of the auxiliary directory. 

is the file.ode letter of the disk containing the modules 
referred to in the directory. The letter is the file.ode of 
the disk containing the modules at execution time, not the 
filemode of the disk at creation of the directory. It 
directory creation time, all modules named in the directory 
being created must be on either the I-disk or a read-only 
extension; that is, not all disks are searched. The default 
value for targetmode is S (system disk). It is your 
responsibility to determine the usefulness of this operand at 
your installation, and to inform all users whose programs are 
in auxiliary directories exactly what filemode to specify on 
the ACCESS command. 

Note: For information on creating auxiliary directories and for further 
requirements for using the targetmode option, see the !~LJ1~ ~I§!~~ 
f!~~!~~~~!~§ §y~~~. 

DMSGND002i FILE 'fn ft fm' NOT FOUND RC=4 
DMSGND021B ENTRY POINT 'name' NOT FOUND RC=40 
DMSGND022E NO DIRECTORY NAME SPECIFIED RC=24 
DMSGND070E INVALID PARAMETER 'parameter' RC=24 

100 IBM VM/370 CMS Command and Macro Reference 



GENMeD 

GENMOD 

Use the GENMOD command to generate a nonrelocatable (MODULE) file on a 
CMS disk. The format of the GENMOD command is: 

fn 

r , 
Genmod [fn [ MODULE I fm I ]] [(options ••• [) ]] 

I 11 I 
L .J 

~.E!!~!l§: [ FROM entry1 ] [ TO entry2 ] 
r , r , r , 
11!!~ I ISTR I IQ~ I 
INOMAPI INOSTRI IDOSI 
L .J L .J IALLI 
[SYSTEM] L .J 

is the fileD.ame of the MODULE file being created. If fn 
specified, the file created has a filename equal to that 
first entry point in the LOAD MAP. 

is not 
of tbe 

fm is the file.ode of the MODULE file being created. If fm is not 
specified, A1 is assumed~ 

Q.E!i2!l§: If conflicting options are specified, the last one entered 
is used. 

FROM entry1 specifies an entry point or a control section name that 
represents the starting virtual storage location from 
which the nonrelocatable copy is generated. 

TO entry2 

NOMAP 

STR 

specifies an entry point or a control section name that 
represents the ending virtual storage location from which 
the nonrelocatable copy is generated. 

includes a load map in the MODULE file. The load map is 
a variable-length record placed at the end of the load 
module. 

specifies that a load map is not to be contained in tbe 
MODULE file. 

Note: If a module is generated with the NOMAP option, 
that module cannot later be loaded and started with tbe 
CMS LOADMOD and START commands. When NOMAP is specified, 
the information produced is not sufficient for the START 
command to execute properly. However, a module generated 
with the NOMAP option can later be invoked as a command; 
that is, it can be invoked if its filename is entered. 

invokes the CMS storage initialization routine when tbe 
MODULE file is subsequently loaded (see the LOADMCD 
command description). This routine frees any storage 
remaining from a previous program. STR is the default 
setting if the MODULE is to be loaded at the beginning of 
available user storage. 

Section 2. CMS Commands 101 



GERMOD 

NOSTR 

SYSTEM 

DOS 

ALL 

H2!~: If a program running in the user area calls a 
transient routine that was generated with the STR option, 
the user area storage pointers will be reset. This reset 
condition could cause errors upon return to th~ original 
program (for example, when OS GETMAIR/FREEMAIR macros are 
issued in the user program). ' 

indicates that, when the BODULE is loaded, free storage 
pointers are not reset for any storage currently in use. 
NOSTR is the default setting if the BODULE file is to be 
loaded at a location other than the default load address. 

indicates that when the MODULE file is subsequently 
loaded, it is to have a storage protect key of zero. 

indicates that the program may contain OS macros and, 
therefore, should be executed only when CMS/DOS is not 
active. 

indicates that the program contains DOS macros; CMS/DCS 
must be active '(that is, SET DOS OR must have been 
previously invoked) in order for this program to execute. 
(See Usage Note 2). 

indicates that the program: 

• Contains CMS macros and must be capable of running 
regardless of whether CMS/DOS is active or not 

• Contains no DOS or OS macros 

• Preserves and resets the DOS flag in the CMSnucleus 

• Does its own setting of the DOS flags 

!2!~:' The ALL option is primarily for use by CBS system 
programmers. CMS system routines are aware of which 
environment is active and will preserve and reset the DCS 
flag in the CMS nucleus. 

Q§~~ !2!~§ 

1. The GERMOD command is usually invoked following the LOAD command, 
and possibly the IRCLUDE command. For examFle, the sequence: 

load myprog 
genmod testprog 

loads the file MYPROG ~EXT into virtual storage and creates a 
nonrelocatable load module named TESTPROG MODULE. TESTPROG may now 
be invoked as a user-written command from the CMS environment. 

2. The execution of MODULE files created from DOS programs is not 
supported and may give unpredictable results,. GENMOD is intended 
for use with the LOAD command, not the FETCH command. Storage 
initialization for FETCH is different from that for LOAD. 

3. Before the file is written, undefined symbols are set to locaticn 
zero and the common reference control section is initialized. The 
undefined symbols are not retained as unresolved symbols in the 
MODULE file. Therefore, once the BODULE file is generated, those 
references cannot be resolved and may cause unpredictable results 
during execution. 

102 IBM VM/370 CMS Command and Macro Reference 



GENMCD 

4. If you load a program into the transient area you should issue the 
GENMOD command with the STR option. Be careful if the program uses 
OS GETMAIN or FREEMAIN macros because your program, plus the amount 
of storage obtained via GETMAIN, cannot exceed two pages (8192 
bytes). It is recommended that you do not use GETMAIN macros in 
programs that execute in the transient area. 

5. A transient module (loaded with the ORIGIN TRANS option] that was 
generated with the SYSTEM option is written on disk as a 
fixed-length record with a maximum length of 8192 bytes. 

6. If you are using FORTRAN under CMS, use FROM MAIN as an option to 
avoid unFredictable results. 

7. If FROM is not specified on the GENMOD command, the starting 
virtual storage location (entry point) of the module is either the 
address of fn (if it is an external name) or the entry point 
determined according to the hierarchy discussed in Usage Note 4 of 
the LOAD command. This is not necessarily the lowest address 
loaded. If you have any external references before your START or 
CSECT instructions, you must specify the 'FROM entry1' operand on 
the GENMOD command to load your program properly. 

None. 

DMSMOD003E INVALID OPTION 'option' RC=24 
DMSMOD005E NO {FROMITO} ENTRY SPECIFIED RC=24 
DMSMOD021E ENTRY POINT 'name' NOT FOUND RC=40 
DMSMOD032E INVALID FILETYPE eft' RC=24 
DMSMOD031E DISK 'mode' IS READ/ONLY RC=36 
DMSMOD040E NO FILES LOADED RC=40 
DMSMOD070E INVALID PARAMETER 'parameter~ RC=24 
DMSMOD084E INVALID USE OF 'FROM' AND 'TO' OPTIONS RC=24 
DMSMOD105S ERROR 'nne WRITING FILE 'fn ft f.' ON DISK RC=100 
DMSSTT048E INVALID MODE ~mode' RC=24 
DMSSTT069E DISK 'mode' NOT ACCESSED RC=36 

Section 2. CMS Commands 103 



GLOBAL 

GLOBAL 

Use the GLOBAL co •• and to identify which CftS or CMS/DOS libraries are to 
be searched for macros, copy files, subroutines, or DOS executable 
phases when processing subsequent CMS commands. The format of the 
GLOBAL command is: 

GLobal I: { MACLIB } [libnalle 1 ••• libname8] 
TXTLIB 
DOSLIB 

"ACLIB precedes the specification of macro libraries that are to be 
searched for macros and copy files during the execution of 
language processor cOllmands. The macro libraries may be CMS 
files or OS data sets. If you specify an OS data set, a 
FILEDEF command must be issued for the data set before you 
issue the GLOBAL command. 

TXTLIB precedes the specification of text libraries to be searched 
for missing subroutines when the LOAt or INCLUDE command is 
issued, or when a dynamic load occurs (that is, when an CS 
SVC 8 is issued]. 

Note: subroutines that are called by dynamic load should (1) 
contain only VCOls that are resolved within the same text 
library member or (2) be resident in storage throughout the 
processing of the original CMS LOAt or INCLUDE command. 
Otherwise, the entry point is unpredictable. 

DOSLIB precedes the specification of DOS simulated core image 
libraries (that is, CMS/DOS phase libraries) to be searched 
for missing phases. This operand does not apply to system 
or private core image libraries residing on DOS/VS disks. 
DOSLIB can be specified regardless of whether the CMS/DCS 
environment is active or not. 

libname1 ••• are the filenames of up to eight libraries. Filetypes must 
be MACLIB" TXTLIB, and DOSLIB, accordingly. The libraries 
are searched in the order in which they are named. If no 
library names are specified, the command cancels the effect 
of any previous GLOBAL command. 

1. A GLOBAL command remains in effect for an entire eMS session unless 
it is explicitly canceled or reissued. If a program failure forces 
you to IPL CMS again, you must reissue the GLOBAL command. 

2. There are no default libraries; 
libraries during every terminal 
command(s) in your PROFILE EXEC. 

if you wish to use the same 
session, place the GLOBAL 

104 IBK VM/370 CMS Command and Macro Reference 



GLOBAL 

3. If you want to use an OS library during the execution of a language 
processor, you can issue a GLOBAL command to access the library, as 
long as you have defined the library via the FILEDEF command. If 
you want to use that library for more than one job, however, you 
should use the PERM option on the FILEEEF command, since the 
language processors clear nonpermanent file definitions. 

4. You can find out what libraries have been specified by issuing the 
QUERY command with the MACLIB, TITLIB~ DOSLIE, or LIBRARY operands. 
(The LIBRARY operand requests a display of all libraries.) 

5. For information on creating and/or manipulating CMS libraries, see 
the discussion of the MACLIB, TITLIB, and DOSLIB commands. 

None. 

DMSGLB002W FILE 'fn ft' NOT FOUND RC=28 
DMSGLB014E INVALID FUNCTION 'function' RC=24 
DMSGLB047E NO FUNCTION SPECIFIED RC=24 
DMSGLB108S MORE THAN 8 LIBRARIES SPECIFIED RC=88 

S~~tion .~~ CMS ~ommands 105 



INCLUDE 

INCLUDE 

Use the INCLUDE command to read one or more TEXT files (containing 
relocatable object code) from disk and to load them into virtual 
storage, establishing the proper linkages between the files. A LOID 
command must have been previously issued for the INCLUDE command to 
produce desirable results. For information on the CftS loader and the 
handling of unresolved references, see the description of the LOID 
command. The format of the INCLUDE command is: 

r 
INclude fn... [(options ••• [) ]] 

.Q.E!!.Ql!§ :... ,... , 

r , 
IftAP I 

ICLEAR I ,'RESET {en*try}" 
I!Q~!!I!!!I 
L J L J 

... , r , ... 
ITYPE I II!!! I I!!]g 

... , 
10RIGIN { heXlOC}' 
I TRANS I 
L J 

, ... , 
I 1!!llQ I 

INOMAPI I!Ql:!~~1 INOINVI INOREPI INOAUTOI 
L J L :J L J L J L .J 

... , ... , 
I!!I~I I [START] [SAME] IDUP I 
INOLIBEI I NO.I:UP I 
L J L .J 

fn ••• are the names of the files to be loaded into storage. Files 
must have a filetype of TEXT and consist of reloca'table object 
code such as that produced by the OS language processor. If a 
GLOBAL TXTLIB command has identified one ·or more TXTLIBs, fn may 
indicate the name of a TXTLIB member. 

Q.E!ions: If options were specified with a previous LOAD or INCLUDE 
command, these options (with the exception of CLEAR and ORIGIN) 
remain set if SAME is specified when INCLUDE is issued. Otherwise, 
the options assume their default settings. If conflicting options 
are specified, the last one entered is in effect. 

CLEAR clears the load area in storage to binary zeros before the 
files are loaded. 

!Q~!!I!S does not clear the load area before loading. 

RESET {,en;ry} 

resets the execution starting point previously set by a LOAD 
or INCLUDE command. If entry is specified, the starting 
execution address is reset to the specified location. If an 
asterisk (*) is specified or if the RESET option is omitted, 
the loader input is searched for control statements. The 
entry point is selected from the last ENTRY statement 
encountered or from an assembler- or compiler-produced END 
statement. If none is found, a default entry point is 
selected as follows: if an asterisk was specified, the first 
byte of the first control section loaded by the INCLUDE 
command becomes the default entry point; if the RESET option 
was omitted, the entry point defaults to the execution 
starting point previously set by a LOAI or INCLUDE command. 

106 IBM VM/370 CMS Command and ftacro Reference 



ORIGIN 

!1!f 

NOMAP 

TYPE 

{ 
hexloc } 
TRANS 

INCLUDE 

begins loading the program. at the location specified by 
hexloc. The variable, hexloc, is a hexadecimal number of up 
to six characters. If this option is not specified, loading 
begins at the next available storage location. INCLUDE does 
not overlay any previously loaded files unless this option is 
specified and the address given indicates a location within a 
previously loaded object module. TRANS indicates that the 
file is loaded into the transient area. 

adds information to the load map. 

does not add any information to the load map. 

displays the load map of the files at the terminal, as well as 
writing it on the A-disk. This option is valid only if MAP is 
specified or implied. 

IQ~I~~ does not display the load map at the terminal. 

11! writes invalid card images in the LOAD MAP file. 

NOINV does not write invalid card images in the LOAt MAP file. 

~~f writes Replace (REP) statement images in the LOAD MAP file. 
See the explanation of the CMS LOAD command for a description 
of the Replace (REP) statement. 

NOREP suppresses the writing of Replace (REP) statements in the LOAD 
J!AP file. 

searches your disks for TEXT files to resolve undefined 
references. 

NOAUTO suppresses automatic searching for TEXT files. 

searches the text libraries defined by the GLOBAL command for 
missing subroutines. 

NOLIBE does not search any text libraries for unresolved references. 

START begins execution after loading is completed. 

SAME retains the same options (except ORIGIN and CLEARl that were 
used by a previous INCLUDE or LOAD command. Otherwise, the 
default setting of unspecified options is assumed. If other 
options are specified with SAME, they ove~ride previously 
specified options.. (see Usage Note 1.) 

~Yf displays warning messages at. your virtual console when a 
duplicate CSECT is encountered during processing. The 
duplicate CSECT is not loaded. 

NODUP does not display warning .essages at your virtual console when 
duplicate CSECTs are encountered during processing. The 
duplicate CSECT is not loaded. 

Section 2. CMS Commands 107 



INCLUDE 

!!'§A9~ !!2!~.§ 

1. If you have specified several nondefault options on the LOAD 
command, and you want those options to remain in effect, you should 
use the SAME option when you issue the INCLUDE command; fer 
example: 

include main subi data (reset main map start) 

brings the files named MAIN TEXT, SUBI TEXT, and DATA TEXT into 
virtual storage and appends them to files that were prev~ously 

,loaded. Information about these loaded files is added to the LOAD 
MAP file. Execution begins at entry point MAIN. 

load myprog (nomap nolibe norep) 

include mysub (map same) 

During execution of the LOAD command, the file named ~YPROG TE~T is 
brought into real storage. The following options are in effect: 
NOMAP, NOLIBE, NOREP, NOTYPE, INV, and AUTO." During execution of 
the INCLUDE command, the file named MYSUE TEXT is appended to 
MYPROG TEXT. The following options are in effect: 

MAP, NOLIBE, NOREP, NOTYPE, INV, AUTO 

2. When the INCLUDE command is issued, the loader tables are not 
reset. 

3. For additional information on the CMS loader, see the discussion of 
the LOAD command, or consult !~Ll1~ £~~ !!.§~!~.§ gy!g~. 

DMSLI07401 EXECUTION BEGINS ••• 

START was specified with INCLUDE and the loaded program has begun 
execution. Any further responses are from the program. 

INVALID CARD - xxx ••• xxx 

INV was specified with LOAD and an invalid card has been found. 
The message and the contents of the invalid card (xxx ••• xxx) are 
listed in the LOAD MAP file. The invalid card is ignored and 
loading continues. 

108 IaH_JM/310 eMS Command and Macro Reference 



DMSLGT0021 FILE 'fn' TXTLIB NOT FOUND RC=O 
DMSLIO~01E NO FILENAME SPECIFIED RC=24 
DMSLI0002E FILE 'fn ft' NOT FOUND RC=28 
DMSLI0003E INVALID OPTION 'option' RC=24 
DMSLI0005E NO 'option' SPECIFIED RC=24 
DMSLI0021E ENTRY POINT 'na.e' NOT FOUND RC=40 

INCLUDE 

DMSLI0029E INVALID PARAMETER 'parameter' IN THE OPTION 'option' FIELD 
RC=24 

DMSLI0055E NO ENTRY POINT DEFINED RC=40 
DMSLI0056E FILE 'fn ft' CONTAINS INVALID [NAMEIALIASIENTRYIESD] RECOBD 

'FORMATS RC=32 
tMSLI0099E CMS/DOS ENVIRONMENT ACTIVE RC=40 
DMSLI0104S ERROR Inn' READING FILE 'fn ft fa' FROM DISK RC=100 
DMSLI0105S ERROR Inn' WRITING FILE 'fn ft fa' ON DISK RC=100 
DMSLI0109S VIRTUAL STORAG~ CAPACITY EXCEEDED RC=104 
DMSLI0116S LOADER TABLE OVERFLOW RC~104 
DMSLI0168S PSEUDO REGISTER ~ABLE OVERFLOW RC=104 
DMSLI0169S ESDID TABLE OVERFLOW" RC=104 
DMSLI0201W THE FOLLOWING NA~ES ARE UNDEFINED: RC=4 
DMSLI0202W DUPLICATE IDENTlFIER'id~ntifier' RC=4 
DMSLI0203W "SET LOCATION COUkT~R" BAME 'name' UNt~FINED RC=4 
DMSLI0206W PSEUDO REGISTER"ALlGNMENT ERROR RC=4 
DMSLI0907T I/O ERROR ON'FIL~ 'fil ft f,' RC=256 

Section 2. CMS Co •• ands 109 



LISTDS 

LISTDS 

Use the LISTDS command to list, at your terminal, information about the 
data sets or files residing on accessed OS or DOS disks~ or to display 
extent or free space information when you· want to allocate space for 
VSAM files. The format of the LISTDS command is: 

I 
I 

LISTDS I 
I 
I 
I 

? 

r , 
I ? I { ;m } [ (options ••• [) ]] ~:tions: 
Idsnamel [FORMAT] 
L .J [ PDS ] 
{ ! II} (FREE) [ EXTENT] 

indicates that you want to enter the OS data set name, Des 
file-id, or VSAM' data space name interactively. When you 
enter a question mark (~, CMS prompts you to enter the CS 
data set name, DO~ file-id~ or VSAM data space name exactly 
as it appears on the disk. This form allows you to enter 
names that contain embedded blanks or hyphens. 

dsname is the OS data set name or DOS file-id or VSAM data space 
name and takes the form: 

quaIl [qual2 qualn] 

where quaIl, qual2, through qualn are one- to eight-character 
qualifiers normally separated by periods. Each qualifier 
must be separated from other qualifiers by blanks when yeu 
enter them this way. (See Usage Note 1.) 

fm is the filellode of the disk to be searched for the specified 
file. Ifa dsname is not specified, a list of all the files 
or data sets on the specified disk is displayed. 

* indicates that you want all of your accessed DOS or OS disks 
searched for the specified data set or file. If a dsname is 
not specified, a list of all files on all accessed OS and Des 
disks is displayed. 

QE1iQ~§: The FREE and EXTENT options are mutually exclusive; the 
FORMAT and PDS options cannot be specified with either FREE or 
EXTENT. 

FREE requests a display of all free space extents on 
minidisk or on all accessed DOS and OS disks. If 
the FREE option, you cannot specify a dsname. 

a specific 
you enter 

EXTENT requests a display of allocated extents for a single file 
EX or for an entire disk or minidisk. If a dsname is specified, 

only the extents for that particular file or data set are 
listed; if fm is specified as *, all disks are searched for 
extents occupied by that file. 

If a dsname is not specified, then a list of all currently 
allocated extents on the specified disk, or on all disks, is 
displayed. 

110 IBM VM/370' CMS Commabd and Macro Reference 



LISTDS 

FORMAT requests a display of the date, disk label, filemode, and 
FO data set name for an 05 data set as well as RECF!, LRECL, 

BLKSIZE, and DSORG information. For a DOS file, LISTDS 
d~splays the date, disk label, filemode, and file-id, but 
g1ves no information about the RECFM, LRECL, and BLKSIZE (two 
blanks appear for each); DSORG is always Ps. 

PDS displays the member names of referenced 05 partitioned data 
sets. 

For examples of the displays produced as a result of each of these 
options, see the "Responses" section, below. 

Q§gg~·!2!~§ 

1. If you want to enter an 05 or DOS file identification on the LISTDS 
command line, it must consist of one- to eight-character qualifiers 
separated by periods. For example, the file TEST.INPUT.SOURCE.D 
could be listed as follows: 

2. 

listds test input source d * 
Or, you can enter the name interactively, as follows: 

listds ? * 
DMSLDS220R ENTER DATA SET NAME: 
test.input.source.d 

Note that when the data set name is entered interactively, it must 
be entered in its exact form; when entered on the LISTDS command 
line, the periods must be omitted. 

You must use the interactive form to enter a DOS file-id that 
contains embedded blanks or hyphens. 

You should use the FREE option to determine 
available for allocation by VSAM when you are 
services. For example: 

listds * (free 

what free space is 
using access method 

requests a display of unallocated extents on all accessed 05 or DeS 
disks. You can then use the EXTENT option on the DLBL command when 
you define the file for AMSERV. 

3. Full disk displays using the FREE option will display free 
alternate tracks as well as free space extents. 

DMSLDS220R ENTER DATA SET NAME: 

This message prompts you to enter the data set name when you use 
the? operand on the LISTDS command. Enter the file identificaticn 
in its exact form. A sample sequence might be: 

listds ? c 
DMSLDS220R ENTER DATA SET NAME: 
my.file.test 
FM DATA SET NAME 
C MY.FILE.TEST 
R; 

section 2. eMS Commands 111 



LISTDS 

The response shown above following the entry of the data set name 
is the same as the response given when you enter a data set name cn 
the LISTDS command line. 

DMSLDS2291 NO MEMBERS FOUND 

This message is display.d when you use the PDS option and the data 
set has no members. 

DMSLDS2331 NO FREE SPACE AVAILABLE ON 'fm' DISK 

This message is displayed when you use the FREE option and there is 
no free space available on the specified disk. 

i~§R~~§~§ !~ !h~ ~!~~!I Q~!!2n: A sample response to the EXTENT option 
is shown below. The headers and the type of information supplied are the 
sa.e when you request information for a specific file only, or for all 
disks. 

listds g (extent 

EXTENT INFORMATION FOR 'VTOC' ON 'G' DISK: 
SEQ TYPE CYL-HD(RELTRK) TO·CYL-HD(RELTRK) 
000 VTOC 099 00 1881 099 18 1899 

TRACKS 
19 

EXTENT INFORMATION FOR 'PRIVAT.CORE.IMAGE.LIE' ON 'G' DISK: 
SEQ TYPE CYL-HD(RELTRK) TO CYL-HD(RELTRK) TRACKS 
000 DATA 000 01 1 049 18 949 949 

EXTENT INFORMATION FOR 'SYSTEM.WORK.FILE.NO.6'ON 'G' DISK: 
SEQ TYPE CYL-HD(RELTRK) TO CYL-HD(RELTRK) TRACKS 
000 DATA 050 00 950 051 18 987 38 

EXTENT INFORMATION FOR 'COBOL TEST PROGRAM' ON 'G' DISK: 
SEQ TYPE CYL-HD(RELTRK) TO CYL-HD(RELTRK) TRACKS 
000 DATA 052 02 990 054 01 1027 38 

EXTENT INFORMATION FOR 'DKSQ01A' ON 'G' DISK: 
SEQ TYPE CYL-HD(RELTRK) TO CYL-HD(RELTRK) TRACKS 
000 DATA 080 01 1521 081 00 1539 19 

SEQ indicates the sequence number assigned this extent when the 
extents were defined via the DLBL command. CMS assigns the 
sequence numbers for VSAM data sets; the first extent set has a 
sequence of 000., the second extent has a sequence· of 001, and so 
on. 

TYPE can have the following designations: 

II~~ 
DATA 
VTOC 
SPLIT 
LABEL 
INDEX 
OVFLO 
MODEL 

~~g~!~g 
Data area extent 
VTOC extent of the disk 
Split cylinder extent 
User label extent 
ISAM index area extent 
ISAM independent overflow area extent 
Model data set label in the VTOC. Does not define an extent 

CYL-HD(RELTRK) TO CYL-HD(RELTRK) 

TRACKS 

indicates the cylinder, head, and relative track numbers of the 
start and end t~acks of this extent. 

indicates the number of tracks in the extent. 

112 IBM VM/370 CMS Command and Macro Reference 



LISTDS 

~~2EQD§~ 1Q 1h~ ~R~~ QE1iQD: A sample nesponse to the FREE option is 
shown below. The same headers and type of information is shown when you 
request free information for all accessed disks. 

listds g (free 
PREESPACE EXTENTS 
CYL-HD(RELTRK) TO 
052 00 988 
054 02 1028 
081 01 1540 

POR 'G' DISK: 
CYL-HD (RELTRK) 
052 01 989 
080 00 1520 
098 18 1880 

CYL-HD(RELTRK) TO CYL-HD(RELTRK) 

TRACKS 
2 

493 
341 

indicates the cylinder, head and relative track numbers of tbe 
starting and ending track in the free extent. 

TRACKS indicates the total number of free tracks in the extent. 

~~2EQD§~ 1Q 1h~ ~OR~!I ~ng ~~~ Q£1!2n§: If you enter the PORMAT and PDS 
options, you receive information similar to the following: 

listds d (fo pds) 

RECPM LRECL BLKSI DSORG DATE LABEL 
PB 80 800 PO 01/31/75 OSSYS1 

MEMBER NAMES: 
ABEND ATTACH BLDL BSP CLOSE 
PIND PUT READ WRITE XDAP 
RECPM LRECL BLKSI DSORG DATE LABEL 

P 80 80 PS 01/10/75 OSSYS1 

DMSLDS002E DATA SET NOT POUND RC=28 
DMSLDS003E INVALID OPTION 'option' RC=24 
DMSLDS048E INVALID MODE 'mode' RC=24 
DMSLDS069E DISK 'mode' NOT ACCESSED RC=36 

PM DA'IA SET NAME 
D SYS1.MACLIB 

DCE DlTACH DEVTYPE 

PM DA'IA SET NAME 
D SAMPLE 

DMSLDS111E INVALID EXTENT P/OUND POR 'data set name' ON 'fm' DISK RC=24 
DMSLDS221E INVALID DATA SET NAME RC=24 
DMSLDS222E 1/0 ERROR READING 'data set name' PROM {fmIOSIDOS} DISK 

RC=28 
DMSLDS223E NO PILEMODE SPECIPIED RC=24 
DMSLDS226E NO DATA SET NAME ALLOWED WITH PREE OP'IION RC=24 
DMSLDS221W INVALID EXTENT POUND POR 'datasetname' ON {fmIOSIDOS} DISK 

RC=4 
DMSLDS231E I/O ERROR READING VTOC PROM {fmIOSIDOS} DISK RC=28 

Section 2. CMS Commands 113 



LISTFILE 

LISTFILE 

Use the LISTFILE command to obtain specified information about CftS files 
residing on accessed disks. The format of the LISTFILE command is: 

Listfile 
r r r ", 
I fn I ft I fml I I [(options ••• [) ]] 
1* 1* 1* III 
L L L .1.1.1 

2R!io~§: r , 
IHeader I 
I NOHeader I 
L .I 

r , 
IExec I 
IAPpendl 
L .I 

r , 
IFName I 
IFType I 
IIllQg!! I 
IFOrmatl 
IALloc I 
IDate I 
ILabel I 
L .I 

fn is the filename of the files for which information is to be 
collected. If an asterisk is coded in this field, all filenames 
are used. If you code an asterisk preceded by any number of 
characters, then files that begin with the specified characters are 
listed. 

ft is the filetype of the files for which information is to be 
collected. If an asterisk is coded in this field, all filetypes 
are used. If you code an asterisk preceded by any number of 
characters, then files that begin with the specified characters are 
listed. 

fm is the file mode of the files for which information is to be 
collected. If this field is omitted, only the A-disk is searched. 
If an asterisk is coded, all disks are searched. 

HEADER includes column headings in the listing. HEADER is the 
default if any of the supplemental information options 
(FORMAT, ALLOCATE, DATEI or LABEL) are specified. The 
format of the heading is: 

FILENAME FILETYPE FM FORMAT RECS fLOCKS DATE TIME LABEL 

NOHEADER does not include column headings in the list. NOHEADER is 
the default if only filename, filetype, or filemode 
information is requested. 

114 IBft VM/370 CftS Command and Macro Reference 



EXEC 

APPEND 

LISTFILE 

creates a CMS EXEC file of SO-character records (one record 
for each of the files that satisfies the given file 
identifier) on your A-disk. If a CMS EXEC already exists, 
it is replaced. The header is not included in the file. 

creates a CMS EXEC and appends it to the existing CMS EXEC 
file. If no CMS EXEC file exists, one is created. 

Information g~y~§! Q£!!£~§: Only one of these options need be speci1ied:- If one is specified, any options with a higher priority 
are also in effect. If none of the following options are. specified, 
the default information request options are in effect. 

FNAME 

FTYPE 

FMODE 

FORMAT 

ALLOC 

DATE 

LABEL 

creates a list containing only filenames. Option priority 
is 7. 

creates a list containing only filenames and filetypes. 
Option priority is 6. 

creates a list containing filenames, 
filemodes. Option priority is 5. 

filetypes, and 

includes the record format and logical record length of the 
of each file in the list. Option priority is 4. 

includes the amount of disk space that CMS has allocated to 
the specified file in the list. The quantities given are 
the number of SOO-byte blocks and the number of logical 
records in the file. Opt~on priority is 3. 

includes the date the file was last written in the list. 
The form of the date is: 

month/day/year hour:minute 

Option priority is 2. 

includes the label of the disk on which the file resides in 
the list. Option priority is 1. 

y§~~ !Q!~§ 

1. If you enter the LISTFILE command with no operands, a list of all 
files on your A-disk is displayed at the terminal. If you enter: 

listfile a* f* c 

you might see the display: 

AARDVARK 
ANNA 
AUTHOR 

FILE 
FILEDATA 
FLINDEX 

C5 
C1 
C1 

Section 2. CMS Commands 115 



LISTPILE 

2. If you request any additional inforaation with the supplemental 
information options, that inforaationis also displayed, along with 
the header. 

3. When you use the EXEC or APPEND option, the CMS EXEC A1 that is 
created is in the format: 

&1 &2 filename filetype fll ••• 

where coluan 1 is blank. 

If you use any 9f the supplemental information options, that 
inforaation is included in the EXEC file. For information on using 
CMS EXEC files, see the !~LllQ £~~ Q§!~~2 Qy!g~. 

4. You can invoke the LISTPILE command from the terminal, from an EXEC 
file, or as a function from a program. If LISTPILE is invoked as a 
function or from an EXEC file that has the SCONTROL NOMSG option in 
effect, the DMSLST002E PILE NOT POUND error message is not issued. 

If the EXEC or APPEND option is not specified, the requested informaticn 
is displayed at the terminal. Depending on the options specified, or 
discussed above, the information displayed is: . 

PILENAME FILETYPE 

fn ASSEMBLE 

FM PORMAT RECS BLOCKS DATE TIME LABEL 

fm { ~ } lrecl norecs noblks mm/dd/yy hh: 1111 volid 

fn 

ft 

fll 

{~} 
lrecl 

norecs 

noblks 

is the filename of the file. 

is the filetype of the file .• 

is the file mode of the file 

is the file format: F is fixed-length, V is variablE-
length. 

is the logical record length of the largest record in the 
file. 

is the number of logical records in the file. 

is the number of physical blocks that the file occupies 
on disk. 

mm/dd/yy is the date (llonth/day/year) that the file was created. 

hh:m. is the time (hours:llinutes) that the file was created. 

volid is the volume serial number of the virtual disk on which 
the file resides. 

One entry is displayed for each file listed. 

116 IBM VM/370 CMS Com.and and Macro Reference 



DMSLST002E FILE NOT FOUND RC=28 
DMSLST003E INVALID OPTION 'option' RC=24 
DMSLST037E DISK 'mode" IS ~EAD/ONLY RC=36 
DMSLST048E INVALID MODE 'mode' RC=24 
DMSLST066E 'option' and 'option' ARE CONFLICTING OPTIONS RC=24 
DMSLST069E DISK 'mode' NOT ACCESSED RC=36 
DMSLST070E INVALID PARAMETER 'parameter' RC=24 
DMSLST105S ERROR Inn' WRITING FILE 'fn ft fm' ON DISK RC=100 

LISTFltE 



LISTIO 

LISTIO 

Use the LISTIO command in CMS/DOS to display a list of current 
assignments for system and/or programmer logical units in your virtual 
machine. The format of the LISTIO command is: 

LISTIO 
SYS 
PROG 
SYSxxx 
A 

[ (options .• I. ~ [) ]] 

UA 
111 

2l!!.!21l§: 
r , 
IEXEC I 
IAPPENDI 
L .J 

[ STAT] 

SYS requests a list of the physical devices assigned to all system 
logical units. 

PROG requests a list of the physical devices assigned to programmer 
logical units SY5000 throughSYS241~ 

SY5xxx requests a display of the physical device assigned to the 
particular logical unit specified. 

A requests a list of only those logical units that have been 
assigned to physical devices. 

UA requests a list of only those logical units that hav. not been 
assigned to physical devices; that is, that are unassigned. 

111 requests a list of the physical units assigned to all system and 
programmer logical units. If no operand is specified l ALL is the 
default. 

QE!!2~§: The EXEC and APPEND options are mutually exclusive; if both 
are entered on the command line, the last one entered is in effect. 

EXEC erases the existing $LISTIO EXEC file, if one exists, and 
creates a new one. 

APPEND adds new entries to the end of an existing $LISTIO EXEC file. 

STAT 

If no $LISTIO EXEC file exists, a new one is created. 

lists the status (read-only or read/write) of all disk devices 
currently assigned. 

!!§~.9~ !!2te§ 

1. Logical units are assigned and unassigned with the ASSGN command. 
For a list of logical units and valid device types, see the 
discussion of the A5SGN command. 

2. The $LISTIO EXEC contains one record for each logical unit listed. 
The format is: 

& 1 &2 SYSxxx { device } 
mode [sta tus] 

where column 1 is blank. 

118 IBM VM/370 CMS Command and Macro Reference 



LISTIO 

!!!2R~.n§~§ 

Depending on the operands specified, the following is displayed for each 
unit requested in the LISTIO command: 

SYSxxx {deVice } 
.ode (status] 

where device is the device type (READER, PRINTER, PUNCH, TERMINAL, TAPn, 
1GN, or UA). If the ~evice is a disk, the one-character mode letter is 
displayed. If the STAT option is specified, the status (R/O or R/V) is 
also displayed. 

DMSLLU003E INVALID OPTION 'option' RC=24 
DMSLLU006E NO READ/WRITE 'A' DISK ACCESSED RC=36 
DMSLLU070E INVALID PARAMETER 'parameter' RC=24 
DMSLLU099E CMS/DOS ENVIRONMENT NOT ACTIVE RC=40 
DMSLLU105S ERROR Inn' WRITING FILE '$LISTIO EXEC 11' ON DISK RC=100 

section 2. CMS Commands 119 



LOAD 

LOAD 

Use the LOAD command to read one or more CMS or OS TEXT files 
(containing relocatable object code) from disk and to load them into 
virtual storage, establishing the proper linkages between the files. 
The format of the LOAD command is: 

LOAD 

fn ••• 

fn ••• [ (options., •• [) ]] 
r , 
ICLEAR I 
I!Q~1~!!!1 
L ..I 

r , 
111!~ I 
INOMAPI 
L ..I 

r , 
1111l~ I 
INOLIBEI 
L ..I 

r , 
ITYPE I 
I!QI!~~I 
L ..I 

[START] 

r , 
I RESET {entrY}1 
I * I 
L ..I 

r , 
10RIGIN { hexloc}, 
I TRANS . I 
L ~ 

r , r , r , 
II!! I 
INOINVI 
L ..J 

r , 
IQQ~ I 
INODUPt 
L ..J 

I!~~ I 
INOREPI 
L ~ 

I AUIQ I 
INOAUTOI 
L ~ 

specifies the names of the files to be loaded into storage. The 
files must have a filetype of TEXT and consist of relocatable 
object code such as that produced by the OS language processors. 
If a GLOBAL TXTLIB command has been issu~d, fn may indicate tbe 
name of a TXTLIB member. 

QR!i2~§: If conflicting options are specified, the last one entered 
is in effect. options may b. overridden br added when you use tbe 
INCLUDE command to load additional TEXT files. 

CLEAR clears the load area in storage before the object files are 
loaded. Whole page frames are released; the remainder of 
storage that is not on a page boundary is set to binary 
zeros. 

!Q£1~!!! does not clear the load area before loading. 

RESET {en!ry } 

ORIGIN 

sets the starting location f6r the programs currently loaded. 
The operand, entry, must be an external name (for example, 
CSECT or ENTRY) in the loaded programs. If RESET is not 
specified, the default entry point . is used. (See Usage Note 
4.) If* is entered the results are the same as if the RESET 
option were omitted. 

!2!~: The RESET option should not be used when loading TEXT 
files created by any of the following OS/VS language 
processors under CMS: OS Code and Go FORTRAN, OS FORTRAN IV 
(G1), OS ,ORTRAN IV (E) Extended, OS/VS COBOL Compiler and 
Library, oS·Ful1 American National Standard COBOL Version 4 
Compiler and L~brary. 

{ 
hexloc } 
TRANS 
loads the program beginning at the location specified by 
hexloc; this location must be in the eMS nucleus transient 
area or in the user area~ The location~ hexloc, is a 

1io IBM VM/370 CMS Command and Macro Reference 



LOAD 

hexadecimal number of up to six characters. If TRANS is 
specified, the file is loaded into the eMS nucleus transient 
area. If ORIGIN is not specified, loading begins at the 
first available storage location in the user program area. 

!2!~: Any program loaded into the transient area must have a 
starting address of X'EOOO'. See the discussion of the 
GENMOD command for information on loading programs in the 
transient area. 

~!~ writes a load map on your A-disk~ named LOAD MAP A5. 

NOMAP does not create the LOAD MAP file. 

TYPE displays the load map at your terminal, as well as writing it 
on the A-disk. This option is valid only if the MAP option 
is in effect. 

!QI!f~ does not display the load map at the terminal. 

111 includes invalid card i.ages in the load map. 

NOIBV does not include invalid card images in the load map. 

!~f includes Replace (REP) statements in the load map. 

NOREP does not include the Replace (REP) statements in the load 
Jlap. 

searches your virtual disks for TEXT files to resolve 
undefined references. 

BOAUTO suppresses automatic searching for TEXT files. 

11~~ searches the text libraries for missing subroutines. If text 
libraries are to be searched for TEXT files, they must 
previously have been defined by a GLOEAL command. 

NOLIBE does not search the text libraries for unresolved references. 

START executes the program being loaded when loading is completed. 
LOAD does not normally begin execution of the loaded files. 
TO begin execution immediately upon successful completion of 
loading, specify START. ,Execution begins at the default 
entry point. (See Usage Note 4.) 

~Yf displays warning messages at your terminal when a duplicate 
eSEeT is encountered during processing. The duplicate CSEeT 
is not loaded. (See Usage Note 3.) 

BODUP 

!!'§A9~ !!Q!~'§ 

does not display warning messages at your terminal 
duplicate CSECTs are encountered during processing. 
duplicate CSECTis not loaded. 

when 
The 

1. You must have a read/write CMS A-disk accessed when you issue the 
LOAD command; the loader creates a temporary workfile named DMSLDR 
SISUT1 and writes it on the A-disk. 

Section 2. eMS Commanes 121 



LOAD 

2. Unless the NOMAP option is specified, a load map is created on the 
A~disk each time the LOAD command is issued. A load map is a file 
that contains the location of control sections and entry points ef 
files loaded into storage. This load map is named LOAD MAP AS. 
Each time LOAD is issued, a new LOAD MAP file replaces any previous 
LOAD MAP file. 

If invalid card images exist in the file or files that are being 
loaded, they are listed with the message INVALID CARD in the LOID 
MAP file. To suppress this listing in the load map, use the NOINV 
option. 

If Replace (REP) statements exist in the file being loaded, they 
are included in the LOAD MIP file. To suppress this listing of REP 
statements, specify the NOREP optio~~ 

If the ENTRY or LIBRARY control cards are encountered in the 
file, the load map contains an entry: 

CONTROL CARD-

listing the card that was read. 

Mapping of ant common areas that exist in the loaded files will 
occur when the program is Frepared for execution by the START or 
GENMOD cammand or by the START option of the LOAD or INCLU£E 
command. An updated load map may be displayed prior to program 
execution if the START command is issued with the NO option to 
suppress execution. 

3. Duplicate CSECTs (control sections) are bypassed by the loader. 
Only the firstCSECT encountered is physically loaded. The 
duplibates are riot loaded. A warning message is displayed at your 
terminal if you· specified the DUP option. If a section contains an 
ADCON that references a duplicate CSECT that has not been loaded, 
that ADCON maybe resolved incorrectly. 

4. The loader selects the entry point for the loaded program according 
to the following hierarchy: 

• Frem the parameter list on the STIRT command 

• From the last RESET operand in a LOAD ot INCLUDE command 

• From the last ENTRY statement in the input 

• From the last LDT statement in the input 

• From the first 
that specifies 
input 

assembler- or compiler-produced END statement 
an en.try point if no EN'IRY statement is in the 

• From the first byte of the first control section of the loaded 
program if there is no ENTRY statement and no assembler- or 
compiler-produced END statement specifying an entry point 

5. The LOAD command should not be used to execute programs containing 
DOS macros. To link-edit and execute programs in the CMS/DeS 
environment, use the DOSLKED and FETCH commands. 

6. See Figure 9 for an illustration of the loader search order. The 
loader uses this search order to locate the filename on the LOID 
and INCLUDE command lines, as well as in the handling of unresolved 
references. 

122 IBM VM/310 CMS Command and Macro Reference 



Use standard order of search to 
locate files with a file type of 
TEXT and a filename correspond
ing to the unresolved reference 

1< 
I 

· * .• . * Any * 
* unresolved * NO 

r 

Search 
complete 

I Search 

* references * ------I complete 

* ? * 
* · . * 

* IYES 
I 

· * . 
* Is * 

* NOLIBE * YES 

* specified * 
* ? * * . * 

* 
INO 
I 

Search active text libraries 
(those that were previously 
sFecified by a GLOBAL command). 
Files are searched in the order I 
they are entered in the command. I 

Search complete 

Figure 9. Loader Search Order 

Search 
complete 

LOID 

Section 2. CftS Commands 123 



LOAD 

7. The CMS loader also loads routines called dynamically by OS LINK, 
LOAD, and XCTL macros. Under certain circumstances, an incorrect 
entry point may be returned to the calling program. See the .!l1Ll1.Q 
~~~ Q§~~~§ ~y!g~ for more details. 

LOADER CONTROL STAT~MENTS

You can add loader control statements to TEXT files either by editing
them or by punching real cards and adding them to a punched text deck
before reading it into your virtual machine. The seven control cards
recognized by the CKS loader are discussed below.

The ENTRY and LIBRARY cards, which are discussed firsti are similar
to the as linkage editor control statements ENTRY and LIBRARY. The C~S
ENTRY and LIBRARY statements must be entered beginning in column 1.

ENTRY Statement: The ENTRY statement specifies the first instruction to
be-execnted:--It can be placed before, between, or after object modules
or other control statements. The format of the ENTRY statement is shown
in Figure 10. The external name is the name of a control section or an
entry name in the input deck. It must be the name of an instruction,
not of data.

ENTRY I external name

Figure 10. ENTRY statement Format

11BR!!I ~!g!~!~~!: The LIBRARY statement can be used to specify tbe
never-call function. The never-call function (indicated by an asterisk
(*) as the first operand) specifies those external references that are
not to be resolved by the automatic library call during any loader step.
It is negated when a deck containing the external name referred to is
included as part of the input to the loader. The format of the LIBRABY
statement is shown in Figure 11. The external reference refers to an
external reference that maybe unresolved after input processing. It is
not to be resolved. Multiple external references within the parentheses
must be separated by commas. The LIBRARY statement can be placed
before, between, or after object decks or other control statements.

LIBRARY * (external reference)

Figure 11. LIBRARY Statement Format

!d~ad~I !~I!!!!1!g!~ (~~~J §.!~!~!!!~1!!: The LDT statement is used in a text
library as the last record of a member. It indicates to the loader that
all records for that member were processed. The LnT statement can
contain a name to be used as the entry point for the loaded member. The
LDT statement has the format shown in Figure 12.

124 IBMVM/370 CMS Command and Macro Reference

LOID

r---,
Column Contents

1 X'02' (12-2-9 punch).
Identifies this as a loader control statement.

2-4 LDT -- identifies type of statement.

5-16 Not used.

17-24 Blank or entry name (left-justified and padded with
blanks to eight characters) •

25 Blank.

26-33 May contain informa tion' specified on a SE'ISSI card
processed by the TXTLIB command.

34-80 Not used.

Figure 12~ LDT Statement Format

!.!!clyg~ ~.Q.!!.!:~.2J: .§ec.!:!.2.!! (!~~) ~.!:~!~!!~!!!: The IeS statement changes the
length of a specified control section or defines a new control section.
It should be used only when REP statements cause a control section to be
increased in length. The format of an ICS statement is shown in Figure
13. An ICS statement must be placed at the front of the file or TEXT
file.

Column

1

2-4

5-16

17-22

23

24

Contents

X'02' (12-2-9 punch).
Identifies this as a loader control statement.

ICS -- identifies the type of load statement.

Blank.

Control section name -- left-justified in these columns.

Blank.

, (comma) •

25-28 Hexadecimal length in bytes of the control section. This
must not be less than the actual length of the previously
specified control section. It must be right-justified in
columns with unused leading columns filled with zeros.

29 Blank.

30-72 May be used for comments or left blank.

73-80 Not used by the loader. You may leave these columns blank
or insert program identification for your own convenience.

Figure 13. ICS Statement Format

Section 2. CMS Commands 125

LOAD

Set Location counter (21~) 2!~!~!~n!: The SLC statement sets tbe
locatlon-counter--used with the loader. The file loaded after the SLC
statement is placed in virtual storage beginning at the address set by
this SLC statement. The SLC statement has the format shown in Figure
1q. It sets the locati~n counter in One of three ways:

1. With the absolute virtual address specified: as a hexadecimal number
in co-lumns 7-12.

2. With the symbolic address already defined as a program name or
entry point. This is specified by a symbolic name punched in
columns 17-22.

3. If both a hexadecimal address and a symbolic name are specified,
the absolute virtual address is converted to binary and added to
the address assigned to the symbolic name; the resulting sum is
the address to which the loader's location counter is "set. For
example, if 0000F8 was specified in columns 7-12 of the SLC card
image and GAMMA was specified in columns 17-22, where GAMMA has an
assigned address of 006100 (hex~decimal), the absolute address in
columns 7-12 is added to the address assigned to GAftMA giving a
total of 0061F8. Thus, the location counter would be set to
0061F8.

Column

1

2-4

5-6

7-12

13-16

17-22

23

24-72

73-80

Contents

X'02' (12-2-9 punch).
Identifies this as a loader control statement.

SLC - identifies the type of loa"d statement.

Blank.

Hexadecimal address to be added to the ~alue of the symbol,
if any, in columns 17-22. It must be right-justified in
these columns, with unused leading columns filled with
ze"ros.

Blank.

Symbolic name whose assigned location is used by the
leader. Must be left-justified in these columns. If blank,
the address in the absolute field is used.

Blank.

May be used for comments or left blank.

Net used by the loader. You may leave these columns
blank or insert program identification for your own
convenience.

Figure 14. SLC Statement Format

126 IBM VM/370 CMS Command and Macro Reference

LOAD

~~£!~£~ (~~f) ~!g!~!~n!: A REP statement allows instructions and
constants to be changed and additions made. The REP statement must be
punched in hexadecimal code. The format of a REP statement is shown in
Figure 15. The data in columns 17-70 (excluding the commas) replaces
what has already been loaded into virtual stQrage, beginning at the
address specified in columns 7-12. REP statements are placed in the
file either (1) immediately preceding the last statement (END statement)
if the text deck does not contain relocatable data such as address
constants, or (2) immediately preceding the first RLD (relocatable
dictionary) statement if there is relocatable data in the text deck. If
additions made by REP statements increase the length of a control
section, an ICS statement, which defines the total length of.the control
section, must be placed at the front of the deck.

Column

1

2-4

5-6

7-12

contents

X' 02' (12-2-9 punch).
Identifies this as a loader control statement.

REP -- identifies the type of load statement.

Blank.

Hexadecimal starting address of the area to be replaced as
assigned by the assembler. It must te right-justified
in these colu~ns with unused leading columns filled with
zeros.

13-14 Blank.

15-16· ESID (External Symbol Identification) -- the hexadecimal
number assigned to the control section in which replacement
is to be made. The LISTING file produced by the compiler
or assembler indicates this number.

17-70 A maximum of 11 four-digit hexadecimal fields, separated by
commas, each replacing one previously loaded halfword (two
bytes). The last field must not be followed by a comma.

71-72 Blank.

73-80 Not used by the loader~ This field may be left blank or
program identification may be inserted.

Figure 15. REP Statement Format

~~! f~.9~ Jl2J!n.Qg!I (~fl!) ~!g!~!~n!: An SPB statement instructs the loader
to update the location counter to point to the next page boundary. The
SPB statement has the format shown in Figure 16.

Section 2. CftS Commands 127

LOAD

Coluan Contents

1 X'02' (12-2-9 punch).
Identifies this as a loader control statement.

2-4 SPB -- identifies the type of load statement.

5-80 May be used for co.ments or left blank.

Figure 16. SPB Statement For.at

DMSLI0740I EXECUTION BEGIIS •••

START was specified with LOAD and the loaded program starts
execution. Any further responses are from the program.

INVALID CARD - xxx ••• xxx

IIV was specified with LOAD and an invalid statement was found.
The message and the contents of the invalid statement (xxx ••• xxx)
are listed in the file LOAD MAP. The invalid statement is ignored
and loading continues.

DMSLGT002I
DMSLI0001E
DMSLIQ002E
DMSLI0003E
DMSLIOOOSE
DMSLI0021E
DMSLI0029E
DMSLIOOSSE
DMSLIOOS6E

DKSLI0099E
DMSLI0104S
DMSLI010SS
DMSLI0109S
DMSLI0116S
DMSLI016SS
DMSLI0169S
DMSLI0201W
DMSLI0202W
DKSLI0203W

. DMStI0206W
DKSLI0907T
DMSSTT062E

fILE 'fn TXTLIB' NOT FOUND RC=O
NO FILENAME SPECIFIED RC~24
FILE 'fn ft' NOT FOUND RC=28
IIVALID OPTIOI 'option' RC=24
NO 'option' SPECIFIED RC=24
ENTRY POINT 'na.e' lOT FOUND RC=40
I_VALID PARAMETER 'pa~amet~r' II THEOPTIOI 'option' FIELD RC=24
NO EITRY POINT DEFIlED ~C=40
FILE 'fn ft' COITAIIS INVALID [NAMEIALIASIENTRYIESD] RECORD
FORMATS RC=32
CMS/DOS EIVIRONMENT ACTIVE RC=40
ERROR Inn' READIIG FILE 'fn ft f.' FROM DISK RC=100
ERROR Inn' WRITING FILE ,'fn ft fm' ON DISK RC=100
VIRTUAL STORAGE CAPACITY EXCEEDED RC=104
LOADER TABLE OVERFLOW RC=104
PSEUDO REGISTER TABLE OVERFLOW RC=104
ESDID TABLE OVEBFLOW ,RC=104
THE FOLLOWING IAMES.A~E UNDEFIlED: RC=4
DUPLICATE IDEITIFIER 'identifier' RC=4
"SET LOCATIOI COUNTER" lAME 'name' UltEFINED RC=4
PSEUDO REGISTEBALIGIMEIT ERROR RC=4
I/O EBBOR ON FILE 'fn ft f.' RC=256
IIVALID * IN FILEID RC=20

128 IBM VM/370 CMS Command and Macro Reference

LOADMCD;

LOADMOD

Use the LOADMOD command to load a
must be in nonreloc~table format as
format of the LOADMOD command is:

MODULE file into storage. The file
created by the GENMOD command. The

fn

LOADMod fn [MODULE [fm]]
[*]]

is the filename of the file to be loaded into storage.
filetype must be MODULE.

The

fm is the filemode of the module to be loaded. If not specified, cr
specified as an asterisk, all your disks are searched for the file.

1. You can use the LOADMOD command when you want to debug a CMS MODULE
file. After the file is loaded, you may set address stops or
breakpoints before you begin execution with the START command; for
example:

loadmod progl
cp adstop 210ae
start

2. If a MODULE file was created using the DOS option of theGENMCD
command, the CMS/DOS environment must be active when it is loaded.
If it was created using the OS option (the d~fault), -the CMS/Des
environment must not be active when it is loaded.

3. MODULE files created with the ALL option, or with SYSTEM option and
loaded into the transient area, may be lo~ded regardless of "whether
the CMS/DOS environment is active. If the LOADMODcommand is
called from a program, the loading is also done regardless of
whether the CMS/DOS environment is active.

None.

DMSMOD001E NO FILENAME SPECIFIED RC=24
DMSMOD002E FILE 'fn ft' NOT FOUND RC=28
DMSMOD032E INVALID FILETYPE eft' RC=24
DMSMOD070E INYALID PARAMETER 'parameter' RC=24
DMSMOD104S ERROR Inn' READING FILE 'fn ft fm' FROM DISK RC=100
DMSMOD109S VIRTUAL STORAGE CAPACITY EXCEEDED RC=104
DMSMOD114E 'fn ft fm' NOT LOADED; CMS/DOS ENVIRONMENT [NOT] ACTIVE

RC=40 or RC=-0005
DMSMOD116S LOADER TABLE OVERFLOW RC=104
DMSSTT048E INVALID MODE 'mode' RC=24

Section 2. CMS Com$ands 129

MICLIB

MACLIB

Use the MACLIB command to create and modify CMS macro libraries. The
format of the MAC LIS command is:

MAClib I
I
I
I
I
I
I

.1
I
I
I
I
I
I
I
I

ADD
{

GEN} libname fn1[fn2 •••]
REP

DEL libname membername1[membername2 •••]

CaMP libname

MAP libname [(options ••• [)]]

Ql!!!Q!!~:
r ,
ITERM I
Il!I§! I
IPRINTI
L .J

GEN generates a CMS macro library.

ADD adds members to an existing macro library. No checking is
dcne for duplicate names, entry points, or CSECTS.

REP

DEL

CaMP

replaces existing members in a macro library.

deletes members from a macro library. If more than one member
exists with the same name, only the first entry is deleted.

comFacts a macro library.

MAP lists certain information about the members in a macro
library. Available information includes member name, size,
and location relative to the beginning of the library.

libname is the filename of a macro library. If the file
exists, it must have a filetype of MACLIE; if it
created, it is given a filetype of MACLIB.

already
is being

fn 1 [fn2 •••]
are the names of the macro definition files to be used. A
macro definition file must reside on a CMS disk and its
filetype must be either MACRO or COPY. Each file may contain
one or more macros and must contain fixed-length, 80-character
records.

membername1[membername2 •••]
are the names of the macros that exist in a macro library.

!!~ Ql!!i.!2.D~: The following options specify where the output of the
MAP function is sent. Only one option may be ~pecified. If more
than one option is specified, only the first one given is used.

TERM displays the MAP output at the terminal.

130 IBM VM/370 CMS Command and Macro Reference

PRINT

Y§A9~ !2!~§

writes the MAP output on a
identifier of "libname MAP A1".
already exists, the old file is
specified, DISK is the default.

MACLIB

CMS disk with the file
If a file with that name
erased. If no option is

writes the file "libname MAP A1" to your A-disk and
spools a copy to the virtual printer.

1. When a MACRO file is added to a MACLIB, the membername is taken
from the macro prototype statement. If there is more than one
macro definition in the file, each macro is written into a separate
MACLIB member.

If the filetype is COpy and the file contains more than one macro,
each macro must be preceded by a control statement of the following
format:

*COPY membername

The name on the control statement is the name of the macro when it
is placed in the macro library. If there is only one macro in the
COpy file and it is not preceded by a COpy control statement, its
name (in the macro library) is the same as the filename of the COFY
file. If there are several macro definitions in a COpy file and
the first one is not preceded by a COpy control statement, the
entire file is treated as one macro.

2. If any MACRO file contains invalid records between members, the
!lCLIB command displays an error message and terminates. Any
members read before the invalid card is encountered are already in
the MlCLIB. The MACLIB command ignores CATAL.S, END, and 1*
records when it reads MACRO files created by the ESERV program.

3. If you want a macro library searched during an assembly or
compilation, you must identify it using the GLOBAL command before
you begin compiling.

4. The MACLIBs distributed with the CMS system are: CMSLIB, OSMlCRC,
OSMACR01; TSOMAC, and DOSMACRO.

5. The TERM or PRINT options will erase the old MAP file, if one
exists.

When you enter the MAC LIB MAP command with the TERM option, the names of
the library members, their sizes, and their locations in the library are
displayed.

MACRO INDEX SIZE
name Icc size

Section 2. CMS Commands 131

MACLIB

DMSLBM001E NO FILENAME SPECIFIED RC=24
DMSLBM002E FILE 'fn ft' NOT FOUND RC=28
DMSLBM002W FILE 'fn ft [fm]' NOT FOUND RC=4
DMSLBM003E INVALID OPTION 'option' RC=24
DMSLBM013W MEMBER 'name' NOT FOUND IN LIBRARY 'frt ft fm' RC=4
DMSLBM014E INVALID FUNCTION 'function' RC=24
DMSLBM037E DISK 'mode' IS READ/ONLY RC=36
DMSLBM046E NO LIBRARY NAME SPECIFIED RC=24
DMSLBM047E Nd FUNCTION SPECIFIED RC=24
DMSLBM056E FILE 'fn ft fa'CONTAINS INVALID RECORD FORMATS RC=32
DMSLBM069E DISK 'mode' NOT ACCESSED RC=36
DMSLBM070E INVALID PARAMETER 'parameter' RC=24
DMSLBM104S ERROR Inn' READING FILE 'fn ft fm' FROM DISK RC=100
DMSLBM105S ERROR Inn' WRITING FILE 'fn ft fm' ON DISK RC=100
DMSLBM109S VIRTUAL STORAGE CAPACITY EXCEEDED RC=104
DMSLBM157S MACLIB LIMIT EXCEEDED[, LAST MEMEER NAME ADDED WAS

'memherna.e'] RC=88
DMSLBM167S PREVIOUS MACLIB FUNCTION NOT FINISHED RC=88
DMSLBM213W LIBRARY 'fn ft fm' NOT CREATED RC=4
DMSLBM907T I/O ERROR ON FILE 'fn ft fm' RC=256

132 IBM VM/370 CMS Command and Macro Reference

MODMAP

MODMAP

Use the MODMAP command to display the load map associated with the
specified MODULE file. The format of the MODMAP command is:

MODmap fn
~----------------.---~

fn is the filename of the MODULE file whose load map is
displayed. The filetype of the file must be MODULE; all
accessed disks are searched fQr the specified file.

to be
of your

You cannot issue a MODMAP command for
area modules or that have been created
GEHMOD command.

modules that are eMS transient
with the NOMAP option of the

The load map associated with the file is displayed at the terminal, in
the format:

name location

DMSMDP001E NO FILENAME SPECIFIED RC=24
DMSMDP002E FILE 'fn ft' NOT FOUND RC=28
DMSMDP018E NO LOAD MAP AVAILABLE RC=40
DMSMDP070E INVALID PARAMETER 'parameter' RC=24

Section 2. CMS Commands 133

MOYEFILE

MOVEFILE

Use the MOYEFILE command to
YM/370 to any other device
MOYEFILE command is:

move data from any
supported by VM/370.

device supported by
The format of the

MOYEfile

inddname

..
linddname
I
11NMQ!~
L

.. , ,
I outddname I I
I I I
I Q!l!lH~!~ I I
L ..J ..J

[(PD S[)]]

is the ddname representing the input file
ddname is not specified, the default input
is used.

I

I
I
I
I
I,

definition. If
ddname, INf!OVE,

outddname is the ddname representing the output file definition. If
ddname is not specified, the default output ddname, OUTf!OVE,
is used.

PDS moves each of the members of the Cf!S MACLIB or TXTLIB or of
an OS partitioned data set into a separate Cf!S disk file,
with a filename equal to the member name and a filetYFe
equal to the filetype of the output file definition.

Q.§~~ !f2:t~.§

1. Use the FILEDEF command to provide file definitions for the ddnames
used in the MOYEFILE command. If you use the ddnames INMOVE and
OUTMOVE on the tILEDEF commands, then you need not specify them cn
the MOVEFILE command line~ For example:

filedef inmove disk sys1 maclib b (member stow
filedef ~utmove disk stow macro
move file

copies the member STOW from the OS partitioned data set SYS1.f!ACLIB
into the CMS file STOW MACRO.

If you enter:

filedef indd reader
filedef outdd printer
move file indd outdd

a file is moved from your virtual card reader to your virtual
printer.

2. To copy an entire OS partitioned data set into individual Cf!S
files, yeu could enter:

filedef test2 disk sys1 maclib b
filedef macro disk
move file test2 macro (pds

These commands copy members from the as partitioned data set
SYS1.MACLIB or the CMS file SYS1 MACLIB into separate files, each

134 IBM VM/370 CMS Command and Macro Reference

MOVEFILE

with a filename equal to the membername and a filetype of MACRe.
Note that the output ddname was not specified in full, so that C~S
assigned the default file definition (FILE ddname).

3. You cannot copy VSAM data sets with the MOVEFILE command.

4. The MOVEFILE command does not support data
records. Use of spanned records results in
DMSSOP036E and an error code of 7.

containing
the error

spanned
message

5. To copy an entire partitioned data set into another partitioned
data set, use the COPYFILE command. If an attempt is made to use
the MOVEFILE command without the PDS option for a partitioned data
set, only the first member is copied and an end-of-file condition
results. The resultant output file will contain all input records,
including the header, until the end of the first member.

If a record format (RECFM), blocksize (BLOCK), and logical record length
(LRECL) are specified on the FILEDEF command, these values are used in
the data control block (DCB) defining the characteristics of the move
operation. If the FILEDEF was issued without a record format or
blocksize specified, these values are determined according to the
defaults listed in "Figure 17. If the blocksize was not specified, the
default blocksize is used~ If the logical record length was not
specified, the default logical record length is determined as follows:
for an F or U record format~ the logical record length equals the
blocksize; for a V record format, the logical record length equals the
blocksize minus 4.

Input ddname Output ddname

Device RECFM Blocksize RECFM Blocksize

Card Reader F 80 NA2 NA2

Card Punch NA2 NA2 F 80

Printer NA2 NA2 U 132

Terminal U 130 U 130

Tape l U 3600 RECFM of Blocksize of
input ddname input ddnalBe

Disk file IRECFM of Blocksize of RECFM of Blocksize of
I file file input ddname input ddname
I

Dummy I NA2 NA2 RECFM of Blocksize of
I input ddname input ddname

lIf the default record format and blocksize are used in a
tape-to-tape move operation and an input record is greater than 3600
bytes, it is truncated to 3600 bytes on the output tape.

2Not applicable.

Figure 17. Default Device Attributes for MOVEFILE Command

Section 2. CMS Commands 135

MOVEFILE

DMSftVE225I PDS MEMBER 'membername' MOVED

The specified lIember of an OS partitioned data set_ was moved
successfully to a CMS file. This response is issued for each
member moved when you use the PDS option.

DMSMVE226I END OF PDS MOVE

The last member of the partitioned data set was moved successfully
to a CMS file.

DMSMVE7061 TERM INPUT -- TYPE NULL LINE FOR END OF DATA

The input ddname in the MOVEFILE specified
terminal. This message requests the input
terminates input.

a device type of
data; a null line

DMSMVE708I DISK FILE 'FILE ddname Al' ASSUMED FOR DDNAME 'ddname'

No file definition is in effect for - a ddname specified on the
MOVEFILE command. The MOVEFILE issues the default FILEDEF commando:

FILEDEF ddnalle DISK FILE ddname A1

If file ddname does not exist for the input file, MOVEFILE
terminates processing.

DMSMVE002E FILE 'fn ft fm' NOT FOUND RC=28
DMSMVE003E INVALID OPTION 'option' RC=24
DMSMVE037E OUTPUT DISK 'mode'IS READ/ONLY RC=36
DMSMVE041E INPUT AND OUTPUT FILES ARE THE SAftE RC=40
DMSMVE069E OUTPUT DISK 'mode' IS NOT ACCESSED RC~36
DMSMVE070E INVALID PARAMETER 'parameter' RC=24
DMSMVE073E UNABLE TO OPEN FILE ddname RC=28
DMSMVE075E DEVICE 'device name' ILLEGAL FOR {INPUTIOUTPUT} RC=40
DMSMVE086E INVALID DDNAME 'ddname' RC=24
DMSMVE127S UNSUPPORTED DEVICE FOR ddname RC=100
DMSMVE128S I/O ERROR ON INPUTAFTE.R READING nnnn RECORDS: INPUT ERRCR

code ON ddname RC=100
DMSMVE129S I/O ERROR ON OUTPUT WRITING RECORD NUMBER nnnn: OUTPUT, ERRCR

code ON ddname RC=100
DMSMVE130S BLOCKSIZE ON V FORMAT FILE ddname IS LESS ~HAN8 RC=88

136 I~M V~/370 CMS Command and Macro Reference

OPTICN

OPTION

Use the OPTION command to change any or all of the options in effect for
the DOS/VS COBOL compiler in CftS/DOS. The format of the OPTION command
is:

OPTION [options.~.]

~.1:i2n§:
r , r , r ,
IDUMP I
I !!QIH!!1f I
L 3

IQI~! I
INODECKI
L .J

I!!!.§! I
INOLISTI
L .J

r ,
IXREF I
I!!Ql!lll
L .J

r ,
II!!.§ I
INOERRSI
L .J

r ,
148CI
I§.Q~I
L .J

r ,
ILISTX I
I!!Ql!lST11
L .I

r ,
ISYM I
1!2'§1~1
L .J

Q-E.1:i21l§: If an invalid option is specified on the cOllmand line, an
error message is issued for that option; all other valid options are
accepted~ Only those options specified are altered, and all other
options remain unchanged.

DUMP dumps the registers and the virtual partition on the virtual
SYSLST device in the Case of abnormal program end.

!!QRYMP su~presses the DUMP option.

Rl£! punches the resulting object module on the virtual SYSPCH
device. If you do not issue an ASSGN com~and for the logical
uriit SYSPCH before invoking the compiler, the text deck is
written to your CMS A-disk.

NODECK su~presses the DECK option.

writes the output listing of the source module on the SYSLST
device.

NOLIST su~presses the LIST option. This option overrides the XREF
option as it does in DOS/VS.

LISTX produces a procedure division map on the SYSLST device.

!!2!1~11 su~presses the LISTX option.

SYM prints a Data Division map on SYSLST.

!!Q.§I!1 su~presses the SYM option.

IREF writes the output symbolic cross-reference list on SYSLST.

!!Ql!~l su~presses the XREF option.

writes an output listing of all errors in the source program
on SYSLST.

NOERRS suppresses the ERRS option.

4~C Uses the 48-character set.

§~£ Uses the 60-character set.

section 2. CftS Commands 137

OPTION

.!l.§s.g~ !Q.t~.§

1. If you enter the OPTION co.mand with no options, all options are
reset to their default values, that is, the default settings that
are in effect when you enter the CMS/DOS environment. CMS/Des
defaults are not necessarily the same as the defaults generated on
the DOS/VS system being used and do not include additional options
that are available with some DOS compilers.

2. The OPTION command has no effect on the DOS/VS PL/I compiler nor on
any of the OS language compilers in CMS.

None. To disFlay a list of options currently in effect, use the QUERY
command with the OPTION operand.

DMSOPT070E INVALID PARAMETER 'parameter'
DMSOPT099E CMS/DOS ENVIRONMENT NOT ACTIVE

RC=24
RC=40

138 IBM VM/370. CMS C.ommand and Macro Reference

PRINT

PRINT

Use the PRINT command to print a CMS file on the spooled virtual
printer. The format of the PRINT command is:

fn

ft

fm

r ,
PRint fn ft Ifml [(options ••• [)]]

1* I

CC

is the

is the

is the

L .J

filename

filetype

file mode

r ,
gl?!ign§: I cc I

I !!Q££ I [UPCASE]

r ,
I LINECOUN { nn} I
I 2~ I

L .J L .J

r ,

I MEMBER { * } II
I membername [HEX]
L .J

of the file to be printed.

of the file to be printed.

of the file to be printed. If this field is
specified as an asterisk (*) , the standard order of search is
followed and the first file found with the given filename and
filetype is printed. If fm is not specified, the A-disk and its
extensions are searched.

interprets the first character of each record as a carriage
control character. If the filetype is LISTING, the CC
option is assumed. If CC is in effect, the PRINT command
does not perform page ejects nor count the number of lines
per page; these functions.are controlled by the carriage
control characters in the file. The LINECOUN option has no
effect if CC is in effect.

does not interpret the first character of each record as a
carriage control character. In this case, the PRINT
command ejects a new page and prints a heading after the
number of lines specified by LINECOUN are printed. If Noec
is specified, it is in effect even if ec was specified
previously or if the filetype is LISTING.

UPCASE
UP

translates the lowercase
uppercase for printing.

letters in the file to

MEMBER { * }
MEM membername

prints the members of macro or text libraries. This option
may be specified if the file 1S a simulated partitioned
data set (filetype MACLIB or TXTLIE). If an asterisk (*)
is entered, all individual members of that library are
printed. If a membername is specified, only that member is
printed.

HEX pririts the file in graphic hexadecimal format. If HEX is
specified, the options CC and UPCASE are ignored, even if
specified, and even if the filetype is LISTING.

Section 2. CMS Commands 139

PRINT

LINECOUN
LI {~~ }

allows you to set the number of lines to be printed on each
page. nn can be any decimal number from 0 through 99. If a
number is not specified, the default value is 55. If nn is
set to zero, the effect is that of an infinite line count
and page ejection does not occur. This option has no
effect if the CC option is also specified.

1. The file may contain carriage control characters and may have
either fixed- or variable-length records, but no r~cord may exceed
132 characters for a 1403 or 3203 printer or 150 characters for a
3211 printer. There are two exceptions:

• If the CC option is in effect,
character longer (133 or 151) to
character.

the record length can be one
allow for the carriage control

• If the HEX option is in effect, a record of any length can be
printed, up to the CMS file system maximum of 65,535 bytes.

2. If you want the first character of each line to be interpreted as a
carriage control character, you must use the CC option. When you
use the CC option for files that do not contain carriage contrel
characters, the first character of each line is stripped off. An
attempt is made to interpret the first character for carriage
control furposes, and the results are unpredictable.

Files with a filetype of UPDLOG (produced by the UPDATE command)
must be Frinted with the CC option.

3. One spool printer file is produced for each PRINT command; for
example:

print mylib mac lib (member get

prints the member GET from the file MYLIE MICLIE. If you want to
print a number of files as a single file (so that you do not get
output separator pages, for example), use the CP command SPOOL to
spool your virtual printer with the CONT option.

4. The PRINT command has its own forms control buffer load. The
format of the FCB macro used is:

FCB NNNN, 6,66, (1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9~9,10,10,
11 , 6 4, 12, 6 5 I 9)

This FCB macro is always loaded by the PRINT command and must be
taken into account when the CC option is used.

None. The CMS ready message indicates the command completed
without error (that is, the file is written to the spooled
printer). The file is now under the control of CP spooling
functions. If a CP SPOOL command option such as HOLD or COpy is in
effect, you may receive a message from CP.

140 IB~ VM/370, CMS Command and Macro Reference

DMSPRT002E FILE 'fn ft fm' NOT FOUND RC=28
DMSPRT003E INVALID OPTION 'option' RC=24

PRINT

DMSPRT008E DEVICE 'cuu' {INVALID OR NONEXISTENTIUNSUPPORTED DEVICE TYPE}
RC=36

DMSPRT013E MEMBER 'name' NOT FOUND IN LIBRARY RC=32
DMSPRT029E INVALID PARAMETER 'parameter' IN THE OPTION 'option' FIELD

RC=24
DMSPRT033E FILE 'fn ft fm' IS NOT A LIBRARY RC=32
DMSPRT039E NO ENTRIES IN LIBRARY 'fn ft fm' RC=32
DMSPRT044E RECORD LENGTH EXCEEDS ALLOWABLE MAXIMUM RC=32
DMSPRT048E INVALID MODE 'mode' RC=24
DMSPRT054E INCOMPLETE FILEID SPECIFIED RC=24
DMSPRT062E INVALID * IN FILEID RC=20
DMSPRT070E INVALID PARAMETER 'parameter' RC=24
DMSPRT104S ERROR 'nn' READING FILE 'fn ft f.' FROM DISK RC=100
DMSPRT123S ERROR PRINTING FILE 'fn ft fm' RC= leO

Section 2. CMS Commands 141

PSERV

PSERV

Use the PSERV command in CMS/DOS to copy, display, print, or punch a
procedure from the DOS/VS procedure library. The format of the PSERV
command is:

I ,
I
IPSERV

r ,
procedure I ft I [(options •• '" [) J]

If!!Q~1

I
I
I
I
I
I
I

I
I L.J Q121i21l§. :
I [DI.§K] [PRINT]
I
I [PUNCH] [TERM] ,

procedure specifies the name of the procedure in the DOS procedure
library that you wa~t to copy, print, punch, or display.

ft specifies the filetype of the file to be created on your
A-disk. ft defaults to PROC if a filetype is not specified;
the filename is always the same as the procedure name.

QE1i2~: You may enter as many options as you wish, depending on the
functions you want to perform.

copies the procedure to a CMS file. If no qptions are
specified, DISK is the default.

PRINT spools a copy of the procedure to the v1rtual printer.

PUNCH spools a copy of the procedure to the virtual punch.

TERM displays the procedure on your terminal.

1. You cannot execute DOS/VS procedures in CMS/DOS. You can use the
PSERV command to copy an existing DOS/VS procedure onto a CMS disk,
use the CMS Editor to change or add DOS/VS job control statements
to it, and then spool it to the reader of a DOS/VS virtual machine
for execution.

2. The PSERV command ignores current assignments of logical units, and
directs output according .to the option list.

!!~§E.Q1!§~§

When you issue the TERM option, the procedure is displayed at your
terminal.

142 IBM VM/370 CMS Command and Macro Reference

DMSPRV003E INVALID OPTION 'option' RC=24
DMSPRV004E PROCEDURE 'procedure' NOT FOUND RC=28
DMSPRV006E NO READ/WRITE 'A'DISK ACCESSED RC=36
DMSPRV031E DISK 'A' IS READ/ONLY RC=36
DMSPRV010E INVALID PARAMETER 'parameter' RC=24
DMSPRV091E NO 'SYSRES' VOLUME ACTIVE RC=36
DMSPRV098E NO PROCEDURE NAME SPECIFIED RC=24
DMSPRV099E CMSjDOS ENVIRONMENT NOT ACTIVE RC=40
DMSPRV105S ERROR Inn' WRITING FILE 'fn ft fm' TO DISK RC=100
DMSPRVl13S DISK (cuu) NOT ATTACHED RC=100
DMSPRV411S INPUT ERROR CODE Inn' ON 'SYSRES' RC=100

PSERV

Section 2. CMS Commands 143

· PURCH

PUNCH

Use the
punch,.

PUNCH command to punch a CMS disk file
The format of the PUNCH command is:

to your virtual card

PUnch
r ,

fn ft Ifill
1* I
L J

[(options ••• [)]]

r ,
11!!J12.ID! I
IROHEIDERI
L J

r ,

I!:EMBER{* }I
I mellbername I
L J

~J!~~:

fn is the filename of the file to be punched. This field must be
specified.

ft is the filetype of the file to be punched. This field must be
specified.

fll is the filemode of the file to be punched. If you specify it as an
asterisk (*), the standard order of search is followed and the
first file found with the specified filename and filetype is
punched. If fm is not specified, your A-disk and its extensions
are searched.

Q.E!i.Q.Ds:

ROHEADER
NOH

inserts a control card in front of the punched output.
This control card indicates the filename and filetype fer
a subsequent READCARD command to restore the file to a
disk. The control card format is shown in Figure 18.

does not punch a header control card.

MEMBER
MEM { :embername }

punches members of MACLIBs or TXTLIBs. If an asterisk
(*) is entered, all individual members of that macro or
text library are punched. If membername is specified,
only that member is punched. If the filetype is MletIB
and the KEMBER membername option is specified, the header
contains MEMBER as the filetype. If the filetype is
TXTLlB and the MEMBER membername option is specified, the
header card contains TEXT as the filetype.

144 IBM VM/370 CMS Command and Macro Reference

INumber of I I
ColumnlCharacterslContentsl

1

2-5

6-7

8-15

16

17-24

25

26-27

28

29-34

1

2

8

1

8

1

2

1

6

1

READ

blank

fname

blank

ftype

blank

fmode

blank

volid

blank

PUNCH

Meaning

Identifies card as a control card.

Identifies card as a READ control card.

Filename of the file punched.

Filetype of the file punched.

Filemode of the file punched.

Label of the disk from which the file was
read.

35

36-43 8 mm/dd/yy The date that the file was last written.

44-45 2 blank

46-50 5 hh:mm The time of day that the file was written
to disk .•

51-80 30 blank

Figure 18. Header Card Format

1. You can punch fixed- or variable-length records with the PUNCH
command, as long as no record exceeds 80 characters. Records with
less than 80 characters are right-padded with blanks. Records
longer than 80 characters are rejected.

2. If you punch a MACLIB or TXTLIB file specifying the MEMBER * option, a read control card is placed in front of each library
member. If you punch a/library without specifying the MEMBER * option, only one read control card is placed at the front of the
deck. !

3. One spool punch file is produce~ for each PUNCH command; for
example:

punch compute assemble (noh

punches the file COMPUTE ASSEMBLE, without inserting a header card.
To transmit multiple CMS files as a single punch file, use the CP
SPOOL command to spool the punch with the CONT option.

Section 2. CMS Commands 145

PUBCH

Bone. The CMS ready message indicates that the command completed
without error (the file was successfully spooled); the file is now under
~ontrol of CP spooling functions. You may receive a message from CP
indicating that the file is being spooled to a particular user's virtual
card reader.

DMSPUB002E FILE 'fn ft fm' BOT FOUND RC=28
DMSPUN003E INVALID OPTION 'option' RC=24
DMSPUB008E DEVICE 'cuu' {INVALID OR NONEXISTENTIUNSUPPORTED DEVICE TYPE}

RC=36
DMSPUN013E MEMBER 'name' NOT FOUND IN LIBRARY RC=32
DMSPUB033E FILE 'fn ft fm' IS BOT A LIBRARY RC=32
DMSPUN039E NO ENTRIES IN LIBRARY 'fn ft fm' RC=32
DMSPUN044E RECORD LENGTH EXCEEDS ALLOWABLE MAXIMUM RC=32
DMSPUN054E INCOMPLETE FILEID SPECIFIED RC=24
DMSPUN062E INVALID * IN FILEID RC=20
DMSPUN104S ERROR Inn' READING FILE 'fn ft fm' FROM DISK RC=100
DMSPUN118S ERROR PUNCHING FILE 'fn ft fm' RC=100

146 IBM VM/370 CMS Command and Macro Reference

QUERY

QUERY

Use the QUERY command to gather information about your CMS virtual
machine. You can determine:

• The state of virtual machine characteristics that are controlled by
the CMS SET command

• File definitions (set with the FILEDEF and DLEL commands) that are in
effect

• The status of accessed disks

• The status of CMS/DOS functions

- The format of the QUERY command is:

Query BLIP
RDYMSG
LDRTBLS
RELPAGE
IMPCP
IMPEX
ABBREV
REDTYPE
PROTECT
INPUT.
OUTPUT
SYSNAMES
SEARCH

DISK

{
SYSTEM}

SYNONYM USER
ALL

FILEDEF
LABELDEF
MACLIB
TXT LIB
LIBRARY

DLBL
DOS
DOS LIB
DOSPART
DOSLNCNT
OPTION
UPSI

BLIP disFlays the BLIP character(s) •

BLIP = {XXXXXXXX}
OFF

Section 2. CMS Commands 147

QUERY

RDYMSG

LDRTBLS

RELPAGE

IMPCP

IMPEX

ABBREV

displays the RDYMSG message of the CMS Ready format.

R~§I.Q!!§~: RDYMSG = {LMSG}
SMSG

L~SG is the standard CMS Ready message:

Ri T = 0.12/0.33 17:06:20

SMSG is the shortened CMS Ready message:

Ri

displays the number of loader tables.

~~§].Q!!§!: LDRTBLS = nn

indicates whether pages of storage are to be released or
retained after certain commands complete execution.

~~§].Q!!§!: RELPAGE = {ON }
OFF

ON releases pages.
OFF retains pages.

displays the status of implied CP command indicator.

R~§I.Q!!§!: IMPCP = {ON }
OFF

!1l!~!:

ON indicates that CP commands can be entered from the C!S
environment.

OFF indicates that you must use the CP command or the tcp
function to enter CP commands from the C!S
environment.

displays status of implied EXEC indicator~

= {ON }
OFF

ON indicates that EXEC files can be executed by entering
the filename of the file.

OFF indicates that the EXEC command must be expltcitly
entered to execute EXEC files.

displays the status of the minimum truncation indicator.

R~§I.Q!!§!: ABBREV = {ON }
OFF

148 IBMVM/370 CMS Command and Macro Reference

REDTYPE

PROTECT

INPUT

OUTPUT

ON

OFF

indicates that truncations are accepted for
commands.

indicates that truncations are not accepted.

displays the status of the REDTYPE indicator.

g~.§.E.Q!!'§~: REDTYPE = {ON }
OFF

QUERY

C~S

ON types CMS error messages in red, for certain terminals
equipped with the appropriate terminal feature and a
two-color ribbon. supported terminals are described in
the !~11Q I~!!!!!~l Q.§~~.§ Qy!de.

OFF does not type CMS error messages in red.

displays the status of CMS nucleus protection.

ON means CMS nucleus protection is in effect,.
OFF means CMS nucleus protection is not in effect.

displays'the contents of any input translate table in effect.

R~.§£.Q!!'§~: INPUT a1 xx1

an xxn

If you do not have an input translate table in effect, the
response is:

NO USER DEFINED INPUT TRANSLATE TAELE· IN USE

displays the contents of any output translate table in effect.

g~.§£.Q!!'§~: OUTPUT xx1 a1

xxn an

If you do not have an output translate table defined, the
response is:

NO USER DEFINED OUTPUT TRANSLATE TABLE IN USE

SYSNAMES displays the names of the saved system currently being used by
your virtual machine.

Section 2. CMS Com.ands 149

QUERY

SEARCH

R~§£~~§~: SYSNAMES: CMSSEG CMSVSAM CMSAMS CMSDOS
ENTRIES: entry.~~ entry ••• entry ••• entry •• ~

SYSNAMES are the standard names that identify the
discontiguous saved systems.

ENTRIES are the names of the saved systems being used, if
the saved systems exist~

displays the search order of all disks currently accessed.

r ,
mode { R/O} I-OS I

R/i I-DOSI
L .I

label is the label assigned to the disk when it was
formatted; or, if it is an as or DOS disk, the volume
label.

cuu is the virtual device address.

mcde is the filemode letter assigned to the disk when it was
accessed.

r ,

{
R/O } indicates whether read/write or read-only is the status
R/i of the disk.

105 I indicates an as or DOS disk.
10051
L .I

DISK mode displays the status of the single disk represented by "mode".

I~§£~~§~: mode (cuu): nnnn FILES, nnnnn REC IN USE, nnnnn LEFT
(OF nnnnn), nn% FULL (nnn CYL), type { RIO}

R/i

If the disk is an as or DOS disk, the response is:

mode (cuu): .(nnn CYL), type { R/O } - {aS }
R/i DOS

mode (cuu) are the access mode letter and virtual device
address.

nnnn FILES is the number of CMS files on the disk.

nnnnn REC IN USE, nnnnn LEFT (of nnnnn)
indicates the number of CMS aOO-byte blocks in
use •. nnnnn LEFT is a high approximate value du~
to included control blocks.

nn% FULL (nnn CYL)

150 IBM VM/370 CMS Command and Macro Reference

DISK *

QUERY

indicates the percentage of total use and tbe
number of cylinders.

type indicates the model number of the disk.

indicates whether read/write or read-only is the
status of the disk. { RIO}

Rli

{~~S } indicates an os or DOS disk.

If the disk with the specified mode is not accessed, tbe
response is:

DISK 'mode' NOT ACCESSED

displays the status of all CMS disks.

R~§E~~§~: Is the same as for QUERY DISK mode; one line is
displayed for each accessed disk.

SYNONYM SYSTEM
displays the CMS system synonyms in effect.

SYSTEM SHORTEST
COMMAND FORM

command minimum truncation

If no system synonyms are in effect, the following message is
displayed at the terminal:'

NO SYSTEM SYNONYMS IN EFFECT

SYNONYM USER
displays user synonyms in effect.

SYSTEM USER SHORTEST
COMMAND SYNONYM FORM (IF ANY)

command synonym minimum truncation

If no user synonyms are in effect, the following message is
displayed at the terminal:

NO USER SYNONYMS IN EFFECT

SYNONYM ALL
displays all synonyms in effect.

R~§E~~§~: The response to the command QUERY SYNONYM SYSTEM is
followed by the response to QUERY SYNONYM USER.

Section 2. CMS Commands 151

QUERY

FILEDEF

MACLIB

TITLIB

LIBRARY

displays all file definitions in effect.

R~§f~~§~: ddname device [fn [ft]]

If no file ~efinitions are in effect, the following ·message is
displayed at the terminal:

NO USER DEFINED FILEDEF'S IN EFFECT

displays the names of all files, with a filetype of MACLIE,
that are to be searched for macro definitions (that is, all
MACLIBs specified on the last GLOBAL MACLIE command, if any).

R~§f~~§~: MACLIB = libname •••

If no macro libraries are
definitions, the response is:

MACLIB = NONE

to be searched for macro

displays the names of all files, with a filetype of TITLIE,
that are to be searched for unresolved references (that is,
all TITLIBs specified on the last GLOEAL TITLIB command, if
any).

R~§f~~§~: TITLIB = libname •••

If no TITLIBs are to be searched for unresolved references,
the following message is displayed at the terminal:

TITLIB = NONE

displays the names of all library files with filetypes of
MACLIB, TITLIB, and DOSLIB that are to be searched.

R~§I.Q'~§~: MACLIB = { libname., •• }
NONE

TITLIB = {libname ••• }
NONE

DOSLIB = {libname ••• }
NONE

DLBL in order to display the contents of the current data set
definitions, it is necessary only to enter:

DLBL or QUERY DLBL

Entering the command yields the following information:

DDNAME the DOS filename or OS ddname.

152 IBM VM/370 CMS Command and Macro Reference

MODE

QUERY

the CMS disk mode identifying the disk on which the
data set resides.

LOGUNIT the DOS logical unit specification (SYSxxx). This
operand will be blank for a data set defined while
in CMS/OS environment; that is, the SET DOS eN
command had not been issued at DLEL definition time.

TYPE indicates the type of data set defined. This field
may only have the values SEQ (sequential) and VSAM.

CATALOG indicates the ddname of the VSAM catalog to be
searched for the specified data set. This field
will be blank for sequential (SEQ) dataset
definitions.

EXT specifies the number of extents defined for the data
set. The actual extents may be displayed by
entering either the DLBL (EXTENT) or the QUERY DLEL
EXTENT command. This field will be blank if no
extents are active for a VSAM data set or if the
data set is sequential (SEQ).

VOL specifies the number (if greater than one) of
volumes on which the VSAM data set resides. The
actual volumes may be displayed by entering either
the DLBL (MULT) or the QUERY DLBL MULT commands.
This field will be blank if the VSAM data set
resides only on one volume or if the data set is
sequential (SEQ).

BUFSP indicates the size of the VSAM buffer space if
entered at DLBL definition time. This field will be
blank if the dataset is sequential (SEQ).

PERM indicates whether the DLBL definition was made with
the PERM option. The field will contain YES or NO.

DISK indicates whether the data set resided on a CMS or
DOS/OS disk at DLBL definition time. The values for
this field are DOS and CMS.

DATASET.NAME
for a data set residing on a CMS disk, the C!S
filename and filetype are given; for a data set
residing on a DOS/OS disk. the data set name
(maximum 44 characters) is given. This field will
be blank if no DOS/OS data set name is entered at
DLBL definition time.

If no DLBL definitions are active, the following message is
issued:

DMSDLB3241 NO USER DEFINED tLBL'S IN EFFECT

DOS displays whether the CMS/DOS environment is active or not.

~~§I£~§~: DOS = {ON.}
OFF

DOSLIB displays the names of all files with a filetype of DOSLIB that
are to be searched for executable phases (that is, all DOSLIEs
specified on the last GLOBAL DOSLIB command, if any).

Section 2. CMS Commands 153

QUERY

DOSPART

R~§£~~§~: DOSLIB = {libname ••• }
NONE

displays the current setting of the virtual partition size.

R~§.£~~§~: {nnnnnK}
NONE

nnnnnK indicates the size of the virtual partition to be used
at program execution time.

NONE indicates that CMS determines the virtual partiticn
size at program execution time.

DOSLNCNT disFlays the number of SYSLST lines per page.

OPTION

UPSI

R~§£~~§~: DOSLNCNT = nn

nn is an integer from 30 to 99.

displays the compiler options that are currently in effect.

R~§.£~~§~: OPTION = options •••

displays the current setting of the UPSI byte. The eight
individual bits are displayed as zeros or ones depending upcn
whether the corresponding bit is on or off.

R~§£~~§~: UPSI = nnnnnnnn

!!§~~ !!.Q!~§

1. You can specify only one QUERY command function at a time. If the
implied CP function is in effect and you enter an invalid QUERY
command function, you may receive the message DMKCQG045E.

2. If an invalid QUERY command function is specified from an EXEC and
the implied CP function is in effect, then the return code is
- 0003.

3. The DOSPART, OPTION, and UPSI functions are valid only if the
CMS/DOS env~ronment is active.

DMSQRY005E NO 'option' SPECIFIED RC=24
DMSQRY014E INVALID FUNCTION 'function' RC=24
DMSQRY026E INVALID PARAMETER 'parameter' FOR 'function' FUNCTION RC=24
DMSQRY047E NO FUNCTION SPECIFIED RC=24
DMSQRY070E INVALID PARAMETER 'parameter' RC=24
DMSQRY099E CMS/DOS ENVIRONMENT NOT ACTIVE RC=40

154 IBM VM/370 CMS Command and Macro Reference

READCARD

READCARD

Use the READCARD command to read data records from your virtual card
reader and to create CMS disk files containing the data records. The
format of the READCARD command is:

READcard r
fn ft I

I
L

r r

* I * I -I I
L L

fIB
!

fm
!

,
I
I

.J

.... ,
II
II

.J.J

,
I
I
I
I
I
I
I
I

~------------------------.--------~---------------------------------------~

fn

ft

* [*]

fIB

is the filename you want to assign to the file being read.

is the filetype you want to assign to the file being read.

indicates that file identifiers are to be assigned according
to READ control cards in the input deck.

is the file mode of the disk onto which the file is to be read.
If this field is omitted or specified as an asterisk (*), the
A-disk is assumed. Whenever a mode number is specified on the
command line, it is used; otherwise, the mode number on the
READ control card is used to create the disk file.

QEA9~ l!Q~E

1. Data records read by the READCARD command must be fixed-length
records, and may be a minimum of 80 and a maximum of 151 characters
long.

2. CMS disk file identifiers are assigned according to READ control
cards in the input deck (the PUNCH command header card is a valid
READ control card). When you enter the command:

readcard *
CMS reads the first spool reader file in the queue and if there are
READ control cards in the input stream, it names the files as
indicated on the control cards.

If the first card in the deck is not a READ control card, ces
writes a file named READCARD CMSUT1 A1 to contain the data, until a
READ control card is encountered or until the end-of-file is
reached.

3. If you sFecify a filename and filetype on the READCARD command, fer
example:

readcard junk file

CMS does not check the input stream for READ control cards, but
reads the entire spool file onto disk and assigns it the specified
filename and filetype.

Section 2. CMS Commands 155

READCARD

If there were any READ control cards in the deck, they
removed; you must delete them using the CMS Editor if you
want the. in your file. If the file is too large, you can
increase the size of your virtual storage (using the CP
command), Qr use the COPYFILE command to copy all records
the READ control cards (using the FROM and FOR options).

a~e not
do net
either
DEFLNE
except

4. To read a file onto a disk other than your ~disk, you can specify
the filemode letter when you enter the filename and filetype; for
example:

5.

readcard junk file c

Or, if you want READ control card to determine the filenames and
filetyp~s, you can enter:

readcard * * c

When you read a file
that of an existing
replaced.

that has the
file on the

same filename and filetype as
same disk, the old file is

6. If you are preparing real or virtual card decks to send to your own
or another user's virtual card reader, you may insert READ control
cards to designate filenames, filetypes, and optionally, filemode
numbers, to be assigned to the disk file(s).

A READ control card must begin in column 1 and has the format:

:READ filename filetype filemode

Each field must be separated by at least one blank; the second
character of the file~ode field, if specified, must be a valid
filemodenumber (0 through 5). The file mode letter is ignored when
this file is read, since the mode letter is determined by
specifications on the READCARD command line.

7. To send a real card deck to your own or another user's'virtual card
reader, you must punch a CP ID card to precede the deck. The ID
card has the keyword IDor USERID in column 1, followed by the
userid yeu want to receive the file and optionally, spool file
class and name designations; for example:

ID CONCARNE CLASS A NA~E CHILI PEPPER

Each field must be separated from the others by at least one blank.

156 IB~ V~/370 CMS Command and Macro Reference

READCABD

When the READCARD * command is issued, control cards encountered in the
input card stream are displayed at the terminal (see message
DMSRDC702I), to indicate the names assigned to each file.

DMSRDC7011 NULL FILE

The spooled caEd reader contains no records after the control card.

DMSRDC7021 :READ filename filetYFe fn (other information)

A READ control card has been processed; the designated file is
being written on disk.

DMSRDC7021 READ CONTROL CARD IS MISSING. FOLLOWING ASSUMED:
DMSRDC7021 :READ READCARD CMSUT1 A1

The first card in the deck is not a BEAD control card. Therefore,
the file READCARD CMSUT1 A1 is created.

DMSRDC7381 RECORD LENGTH IS 'nnn' BYTES

The records being read are not 80 bytes long; this message gives
the length.

DMSRDC008E DEVICE 'cuu' {INVALID OR NONEXISTENTIUNSUPPORTED DEVICE TYPE}
RC=36

DMSRDC042E NO FILEID SPECIFIED RC=24
DMSRDC054E INCOMPLETE FILEID SPECIFIED RC=24
DMSRDC062E INVALID * IN FILEID RC=20
DMSRDC10SS ERROR Inn' WRITING FILE 'fn ft fm' ON DISK RC=100
DMSRDC124S ERROR READING CARD FILE RC=100
DMSRDC205W READER EMPTY OR NOT READY RC=8

Section 2. eMS Commands 151

RELEAS'E

RELEASE

Use the RELEASE command to free an accessed disk and, make the files on
it unavailable. The format of the RELEASE command is:

RELease
{ cuu }

mode
[(DET[)]]

cuu is the virtual device address of the disk that is to be released.

Valid addresses are 001 through 5FF for a
basic control mode and 001 through FFF for a
extended control mode.

virtual machine in
virtual machine in

mode is the mode letter at which the disk is currently accessed.

DET specifies that the disk is to be detached from your virtual
machine configuration; CMS calls the CP command DETACH.

1!§A9~ !.Q!~,§

1. If a disk is accessed at more than one mode letter, the RELEASE cuu
command releases all modes. If you access a disk specifying the
mode letter of an active disk, the first disk is released.

2. You cannot release the system disk (S-disk).

3. When a disk is released, the user file directory is freed from
storage and that storage becomes available for othe~ CM~ commands
and programs. When you release a read/write CMS disk, either with
the RELEASE command or implicitly with the FORMAT command, the user
file directory is sorted and rewritten on disk; user(s) who may
subsequently access the same disk may have a resultant favorable
decrease in file search time.

4. When a disk is released, any read-only extensions it may have are
not released. The extensions may be referred to by their own mode
letters. If a disk is then accessed with the same mode as the
original parent disk, the original read-only extensions remain
extensions to the new disk at that mode.

5. In CMS/DOS, when you release a disk, any system or programmer
logical unit assignments made for the disk are unassigned.

DASD cuu DETACHED

This is a CP message that is issued when you use the DET option.
It indicates that the disk has been detached.

158 :·IB'M VM/370' C'MS Comma'nd and Macro Reference

DMSARE017E INVALID DEVICE ADDRESS 'cuu' RC=24
DMSARE028E NO DEVICE SPECIPIED RC=24
DMSARE048E INVALID MODE 'mode' RC=24
DMSARE069E DISK {'mode'I'cuu'} NOT ACCESSED RC=36
DMSARE070E INVALID PARAMETER 'parameter' RC=24

RELEASE

SectiQn 2. CMS Co.mands 159

REBAME

RENAME

Use the RENAME command to change the fileid of one or more CftS files on
a read/write CMS disk. The format of the RENAftEcommand is:

Rename

fileid1

fileid2

Q,E!!.Q1!§:

TYPE
T

!!Qllf~
!!21

.!!E121RI

.!!f

NOUPDIRT
NOUP

.!!§A9~ !!.Qte§

fileid 1 fileid2 [(options ••• [)]]

r ,
ITYPE I
IB2IIE~1
L .J

r ,
I!!E121RT I
INOUPDIRTI
L .J

is the file identifier of the original file whose name is to
be changed. All components of the fileid (filename,
filetype, and file.ode) must be coded, with either a name cr
an asterisk. If an asterisk is cod~d in any field~ any file
that satisfies the other qualifications is renamed.

is the new file identifier of the file. All components of
the file (filename, filetype, and filemode) must be code~,
with either a name or an equal sign; if an equal sign (=) is
coded, the corresponding file identifier is unchanged. The
output filemode Can also be specified as an asterisk (*),
indicating that the file mode is not changed.

displays, at the terminal, the new identifiers of all
the files that are renamed. The file identifiers are
displayed only when an asterisk (*) is specified for one
or more of the file identifiers (fn, ft, or fm) in
·fileid 1.

suppresses at the terminal, displaying of the new file
identifiers of all files renamed.

updates the master file directory ,upon completion of this
command •

suppresses the updating of the
upon completion of this command.

master file directory
(See Usage Note 3~)

1. When you code an asterisk (*) in any portion of the input fileid,
any or all of the files that satisfy the other qualifiers may,he
renamed, depending upon how you specify, the output .fileid. For
example:

rename * assemble a test file a

results in the first ASSEMBLE file found on the A-disk being
renamed to TEST FILE. If more than one ASSEMBLE file exists, error
messages are issued to indicate that they cannot be renamed.

160 IBM VM/370 CMS Command and Macro Reference

RENA!E

If you code an equal sign (=) in an output fileid in a position
corresponding to an asterisk in an input fileid, all files that
satisfy the condition are renamed. For example:

rename * assemble a = oldasm =

renames all files
filetype of OLDASM.

with a filetype of ASSEMBLE to
Current filenames are retained.

files with a

You cannot use the
another. You must
filemode letters.

RENAME command to move a file from one disk to
use the COPYfILE command if you want to change

You can use the RENAME command to modify file mode numbers, for
example,

rename * module a1 = = a2

changes the filemode number on all MODULE files that have a mode
numbe~ of 1 to a mode number of 2.

Note: You can invoke the RENAME command from the terminal, from an
iXEC file, or as a function from a program. If RENAME is invoked as
a function or from an EXEC file that has the SCONTROL NOMSG option
in effect, the message DMSRNM002E FILE 'fn ft fm' NOT FOUND is not
issued.

3. Normally, the master file directory for a CMS disk is updated
whenever you issue a command that" affects files on the disk. When
you use the NOUPDIRT option of the RENAME command, the master file
directory is not updated until you issue a command that writes,
updates, or deletes any file on the disk, or until you explicitly
release the disk (with the RELEASE command) •

~~§E~~§~§

newfn newft newf.

The new filename, filetype, and filemode of each file altered is
displayed when the TYPE option is specified and an asterisk was
specified for at least one of the file identifiers (fn, ft or fm)
o~ 'the inputfileid.

DMSRNM002E FILE 'fn ft fm' NOT FOUND RC=28
DMSRNM003E INVALID OPTION 'option' RC=24
DMS~NM019E IDENTICAL FILEIDS RC=24
D~SRNM024E FILE 'fn ft fm' ALREADY EXISTS RC=28
DMSRJM030E FILE 'fn ft fm' ALREADY ACTIVE RC=28
DMSRNM037E DISK 'mode (cuu), IS READ/ONLY RC~36
DMSRNM048E INVALIn FILE MODE 'fm' RC=24
DMSRNM051E INVALID MODE CHANGE RC=24
DMSRNM054E INCOMPLETE FILEID SPECIFIED RC=24
PMSRNM062E INVALID *·IN OUTPUT'FILEID RC=20

Section 2. CMS Comman8s 161

RSERV

RSERV

Use the RSERV command in CMS/DOS to copy, diiplay, print, or punch a
DOS/VS relocatable module from a private or sy~tem library. The format
of the RSERV command is:

r--~
I r ,
I RSERV modname I ft I [(options •• ~[)]]
I
I
I
I ,

II~!a:1
L.J 2£!i21!2 :

[DIS!]
[PUNCH

[PRINT]
[TERM]

modname specifies the name of the module on the DOS/VS private or
system relocatable library. The private library, if any, is
searched before the system library.

ft specifies the filetype of the file to be created on your
A-disk. ft defaults to TEXT if a filetype is not specified.
The filename is always the same as the module name.

Q.E!i21!2: You may specify as many options as you wish on' the RSERV
command, depending on which functions you want ~o perform.

copies the relocatable module onto your A-disk.
options are·specified, DISK is the default.

If no other

PUNCH punches the relocatable module on the virtual punch.

PRINT prints the relocatable module on the virtual printer.

TERM displays the relocatable module at your terminal •

.Y2S,g.§ !i2!.§2

1. If you want to copy modules from a private relocatable library, you
must issue an ASSGN command for the logical unit SYSRLB and
identify the library on a DLBL command line using the ddname
IJSYSRL.

To copy modules from the system relocatable library, you must have
entered the CMS/DOS environment specifying a mode letter on the SET
DOS ON ccmmand line~

2. The RSERV command ignores the assignment of logical units, and
directs output to the devices specified on the option list.

If you use the TERM option, the relocatable module is displayed at the
terminal.

162 IBM VM/370 CMS Command and Macro Reference

DMSRRV003E INVALID OPTION 'option' RC=24
DMSRRV004E MODULE 'module' NOT FOUND RC=28
DMSRRV006E NO READ/WRITE 'A' DISK ACCESSED RC=36
DMSRRV070E INVALID PARAMETER 'parameter' RC=24
DMSRRV097E NO 'SYSRES ,- VOLUME ACTIVE RC=36
DMSRRV098E NO MODULE NAME SPECIFIED RC=24
DMSRRV099E CMS/DOS ENVIRONMENT NOT ACTIVE RC=40
DMSRRV105S ERROR Inn' WRITING FILE 'fn ft fm' ON DISK RC=100
DMSRRV113S DISK (cuu) NOT ATTACHED RC=100
DMSRRV411S INPUT ERROR CODE Inn' ON '{SYSRESISYSRLB}' RC=100

RSERV

Section 2. CMS Commands 163

RUN

RUN

Use the RUN EXEC procedure to initiate a series of functions on a file
depending on the filetype. The RUN command can select or combine the
procedures required to compile, load, or start execution of the
specified file~ The format of the RUN command is:

RUN fn [ft [fm]] [(args ••• [)]]

fn is the filename of the file to be manipulated.

ft is the filetype of the file to be manipulated. If filetype is nct
specified, a search is made for a file with the specified filename
and the filetype of EXEC, MODULE~ or TEXT (the search is performed
in that order). If the filetype of an input file for a language
processor is specified, the language processor is invoked to
compile the source statements and produce a TEXT file. If no
compilation errors are fou,nd, LOAD and START may then be called to
initiate program execution. The valid filetypes and resulting
action for this command are:

l.!le.!~£~ Action
EXEC The-ixEC processor is called to process the file.

MODULE The LOAD MOD command is issued to load the program into
storage and the START command begins execution of the
program at the entry point equal to fn.

TEXT The LOAD command brings the file into storage in an
executable format and' the START command executes the
program beginriing at the entry point named by fn.

PORTRAN The 'FORTRAN processor module that is called is PORTRAI,
FORTGI, GOPORT, or FORTHX, whichever is found first.
Object text successfully compiled by the PORTGI or PORTHI
processors will be ~oaded and executed.

PORTTEST The FORTRAN processor module that is called is either
PORTRAN or PORTGI, whichever is found first. The
processor is called with the TEST option.

TESTFORT The TESTFORT module is called to initiate FORTRAN
Interactive Debug and will process a TEXT file that has
been compiled with'the TEST option.

PREEPORT The GOFORT module is called to process the file.

COBOL The COBOL processor module that is called is COBOL cr
TESTCOB, whichever is found first. After successful
compilation, the program text will be loaded and
executed.

PLI The PLIOPT processor module is called to process
PLIOPT the file. After successful compilation, the program text

will ,be loaded and executed. .

164 IBM VM/370 CMS Co.mand and Macro Reference

RUN

fm is the filemode of the file to be manipulated. If this field is
sp~cified, a filetype must be specified. If fm is not specified,
the default search order is used to search your disks for the file.

args are arguments you want to pass to your program. You can specify up
to 13 arguments in the RUN command, provided they fit on a single
input line. Each argument is left-justified, and any argument more
than eight characters long is truncated on the right.

1. The RUN command is an EXEC file; if you want to execute it from
within an EXEC, you must use the EXEC command.

2. If you are executing an EXEC file, the arguments you
RUN command line are assigned to the varia tIe symbols
so on.

enter on the
&1, &2, and

3. If you are executing a TEXT or MODULE file, or compiling and
executing a program, the arguments are placed in a parameter list
and passed to your program when it executes. The arguments are
placed 1n a series of doublewords in storage, terminated by I'PP'.
If you enter:

run myprog (charlie dog

the arguments *, CHARLIE, and DOG are placed in
parameter list, and the address of the list is in
your program receives control.

doublewords in a
register 1 when

!g!~: You cannot use the argument list to override default options
for the compilers or for the LOAD or START commands.

4. The RUN command is not designed for use with CMS/DeS.

S. The RUN EIEC cannot be used for COBOL and PL/I programs that
require facilities not supported under CMS. Por specific language
support limitations, see !~L~l~ El~n~i~g ~n~ ~Iste~ Ge!~!atis~
Qyide.

!~spo~.2~§

Any responses are from the programs or procedures that executed within
the RUN EXEC.

DMSRUN001E NO PILENAME SPECIFIED RC=24
DMSRUN002E PILE['£n [ft [fm]]'] NOT POUND RC=28
DMSRUN048E INVALID MODE 'fm' RC=24
DMSRUN070E INVALID PARAMETER 'parameter' RC=24
DMSRUN999E NO [ft] PROCESSOR POUND RC=28

Section 2. CMS Commands 165

SET

SET
Use the SET co •• and to establish, turn off, or reset a particular
function in your C~S virtual machine. Only one function may be
specified per SET command. The format of the SET command is:

SET function
r , r ,

!Y~£!i~~§: IBLIP string[(count)]1 11U~1!1'§~ 1!1'§~ I
IRDYMSG SMSGI IBLIP ON I

IBLIP OFF I L .J

[LDRTBLS nn]

r ,
I!!!!!R~! Q!! I
IABBREV OFFI
L .J
r ,
1!11R£R Q!! I
II~PCP OFFI
L .J

L

r ,
IRIl!PA!!1 ON I
IRELPAGE OFF I
L .J

r ,
IREDTYPE ON I
I!!I~~!~I Qlli
L .J
r ,
IR!!QTE£~ Q!! I
IPROTECT OFFI
L .J

r SYSNA~E {~:~~~ili.} entryname 'I
I CMSA~S I
L CliSSEG .J

£l1.§LQQ'§ !Y.!l£!i21l§:
r , .r

.J
r r , ,
IINPU'I I a xxi I
I Ixx yyl I
L L ..I .J
[OUTPUT [xx a]
r ,
1!11f!l ON I
IIMPEX OFFI
L .J
r ,
IAUTOREAD ON I
IAUTOREAD OFFI
L ..I

]

r {CMSDOS }' INONSHARE C~SVSAM I
I CMSAMS I
L CMSSEG.J

,
IDOS ON [mode [(VSA~[)]]]1 IDOSLNCNT nnl
IDOS OFF I L .J
L .J

r , r ,
IUPSI nnnnnnnni IDOSPART nnnnKI
IUPSI OFF I IDOSPART OFF I
L .J L .J

BLIP string[(count)]

BLIP ON

defines the characters that are displayed at the terminal to
indicate every two seconds of virtual interval timer time.
This time is made up of virtual processor t~me plus, if the
REALTIMER option is in effect, self-imposed wait time. B1iFs
may also be caused by the execution of the STIMER macro.

You can define up to eight characters as a blip string; if you
want trailing blanks, you must specify count. ON and OFF must
not be used as BLIP characters.

sets the BLIP character string to its default, which is a
string of nonprintab1e characters. ON is the default for
typewriter devices. The default BLIP character provides no
visual or audio-visual signal on a 3767 terminal.. You must
define a BLIP character for a 3767 if you want the BLIP
function .•

166 IBM VM/370 CMS Command and liacro Reference

SET

ELIP OFF turns off BLIP. OFF is the default for graphics devices.

Note: The BLIP operand will be ignored when issued from the
~ii-batch machine~

~~YM.§g LMSG
---Indicates that the standard CMS

current and elapsed time, is used.
Ready message is:

R; T=s.mm/s.mm hh:mm:ss

ready message, including
The format of the standard

where the virtual processor time, real processor time, and
clock time are listed.

RDYMSG SMSG

LDRTELS nn

ON

indicates that a shortened form of the CMS ready message (R;)
which does not include the time is used.

defines the number (nn) of pages of storage to be used for
loader tables. By default, a virtual machine having up to
384K of addressable real storage has two pages of loader
tables; a larger virtual machine has three pages. Each loader
table page has a capacity of 204 external names. During LOAD
and INCLUDE command processing, each unique external name
encountered in a TEIT deck is entered in the loader table.
The LOAD command clears the table before reading TEIT files;
INCLUDE does not. This number can be changed with the SET
LDRTBLS nn command provided that: (1) nn is a decimal number
between 0 and 128, and (2) the virtual machine has enough
storage available to allow nn pages to be used for loader
tables. If these two conditions are met, nn pages are set
aside for loader tables. If you plan to change the number of
pages allocated for loader tables, you should deallocate
storage at the high end of storage so that the storage for the
loader tables may be obtained from that area. Usually, you
can deallocate storage by releasing one or more of the disks
that were accessed.

--releases page frames of storage and sets them to binary zeros
after the following commands complete execution: ASSEMELE,
COPYFILE, COMPARE, EDIT, MACLIE, SORT, TITLIE, UPDATE, and the
program product language processors supported by VM/310.
These processors are listed in the !~L]l~ In!£Qdu~!!Q~.

RELPAGE OFF

INPUT a xx

does not release pages of storage after the commands listed in
the RELPAGE ON description complete execution. Use the SET
RELPAGE OFF function when debugging or analyzing a problem so
that the storage used is not released and can be examined.

translates the specified character a to the specified
hexadecimal code xx for characters entered from the terminal.

INPUT xx yy

INPUT

allows you to reset the hexadecimal code xx to the specified
hexadecimal code yy in your translate table.

!!.Q!§: If you issue SET INPUT and SET OUTPUT commands for the
same characters, issue the SET OUTPUT command first.

returns all characters to their default translation.

Section 2. CMS Commands 167

SET

OUTPUT xx a

OUTPUT

ABBREV OFF

REDTYPE ON

translates the specified hexadecimal representation xx to the
specified character "a" for all xx characters displayed at the
terllinal.

returns all characters to their default translation.

!g!~: Output translation does not occur for SCRIPT files when
the SCRIPT command output is directed to the terminal, nor
when you use the CMS editor on a display terminal in display
mode.

accepts system and user abbreviations for system commands. The
SYNONYM command makes the system and user abbreviations
available.

accepts only the full system command name or the full user
synonym (if one is available) for system commands.

For a discussion of the relationship of the SET ABBREV and
SYNONYM commands, refer to the SYNONYM command description.

types CMS error messages in red for certain terminals equipped
with the appropriate terminal feature and a two-color ribbon.
Supported terminals are described in the !M/31~ 1~~~1~g1
Q§~~~.§ §y!g!! •

.R]DT!f£l OFF
--suppresses red typing of error messages.

IMPEX OFF

IMPCP OFF

treats EXEC files as commands; an EXEC file is invoked when
the filename of the EXEC file is entered.

does not consider EXEC files as commands. You must issue the
EXEC command to execute an EXEC file.

passes command names that CMS does not recognize to CP; that
is, tinkriown commands are considered to be CP commands.

generates an error message at the terminal if a command is not
recognized by CMS.

PROTECT OFF
does not protect the storage area containing the CMS nucleus.

AUTOREAD ON
specifies that a console read
aft~r command execution. ON is
nonbuffered terminals.

AUTOREAD OFF

is to be issued immediately
the default for nondisplay,

specifies that you do not want a console read to be issued
until you press the Enter key or its equivalent. OFF is the
default for display terminals because the display terminal
does not lock, even when there is no READ active for it.

168 IBM VM/310 CMS Command and Macro Reference

!i.Q!!!: If
reconnect
unchanged.

you
on

SET

disconnect from one type of terminal and
another type, the AUTORE1D status remains

SISNAME ~ '~:~~~iM 1 entryname
CMSAMS
CMSSEG

allows you to replace a saved system name entry in the
SISNAMES table with the name of an alternative, or backup
system. A separate SET SISNAME command must be issued fer
each name entry to be changed. CMSDOS, CMSVSIM, CMSAftS, and
CMSSEG are the default names assigned to the systems when the
CMS system is generated.

NONS HIRE ~ ~:~~~iM l
CMSAMS
CMSSEG
specifies that you want your own nonshared copy of a normally
shared named system.

~~~~Q~ fY~£!i~~§: 

The following functions describe the SET operands that apply to the 
CMS/DOS environment. 

DOS ON 

mode 

VSAM 

places your CMS virtual machine in the CMS/DOS environment. 
The logical unit SISLOG is assigned to your terminal. 

specifies the mode letter at which the DOS/VS system residence 
is accessed; the logical assignment of SISRES is made for the 
indicated mode letter. 

specifies that you are going to use the IftSERV command or you 
are going to execute programs to access VSAM data sets. 

returns your virtual machine to 
All previously assigned system 
are unassigned. 

the normal CMS environment. 
and programmer logical units 

DOSLNCNT nn 
specifies the number of SYSLST lines per page. 
integer from 30 to 99. 

UPSI nnnnnnnn 

nn is an 

sets the UPSI (User Program Switch Indicator) byte to the 
specified bit string of O's and l's. If you enter fewer than 
eight digits, the UPSI byte is filled in from the left and 
zero-padded to the right. If you. enter an "x" for any digit, 
the corresponding bit in the UPSI 'byte is left unchanged. 

Q~SI Qlf resets the UPSI byte to binary zeros. 

DOSPART nnnnnK 
specifies the size of the virtual partition in which you want 
a program to execute. The value, nnnnnK, may not exceed the 
amount of user free storage available in your virtual machine. 
You should use this function only when you can· control the 
performance of a particular program by reducing the amount cf 
available virtual storage. 

Section 2. CftS Commands 169 



SET 

!~!~: In rare circumstances, it may happen that when a program 
isexecuted# the amount of storage available is less than the 
current DOSPART. Then, only the amount of storage available is 
obtained; no message is issued. 

~QSPA!! OFF 
--specifies that you no longer want to control your virtual 

machine partition size. When the DOSPART setting is OFF, CMS 
computes the partition size whenever a program is executed. 

y§~~ !Q!~§ 

1. If you issue the SET command specifying an invalid function and the 
implied CP function is in effect, you may receive message 
DMKCFC003E. 

2. If an invalid SET command function is specified from an EXEC and 
the implied CP function is in effect, then the return code is 
-0003. 

None. To determine or verify the setting of a function, use the QUERY 
command. 

DMSLI00021 FILE IfnI TXTLIB NOT FOUND RC=O 
DMSSET014E INVALID FUNCTION 'function' RC=24 
DMSSET026E INVALID PARAMETER 'parameter' FOR 'function' FUNCTION RC=24 
DMSSET031E LOADER TABLES CANNOT BE MODIFIED RC=40 
DMSSET047E NO FUNCTION SPECIFIED RC=24 
DMSSET048E INVALID MODE 'mode~ RC=24 
DMSSET050E PARAMETER MISSING AFTER 'function' RC=24 
DMSSET061E NO TRANSLATION CHARACTER SPECIFIED RC=24 
DMSSET070E INVALID PARAMETER 'parameter' RC=24 
DMSSET098W CMS OS SIMULATION NOT AVAILABLE RC=4 
DMSSET099E CMSjDOS ENVIRONMENT NOT ACTIVE RC=40 
DMSSET100W SYSTEM NAME 'name' NOT AVAILABLE RC=4 
DMSSET142S SAVED SYSTEM NAME 'name' INVALID RC=24 
DMSSET333E nnnnnK PARTITION TOO LARGE FOR THIS VIRTUAL MACHINE RC=24 
DMSSET400S SYSTEM 'sysname' DOES NOT EXIST RC=44 
DMSSET401S V.M. SIZE (size) CANNOT EXCEED 'DMSDOS' START ADDRESS 

(address) RC=104 
DMSSET410S tONTROL PROGRAM ERROR INDICATION 'retcode' RC=nnn 

!Q!~: In RC=nnn, the nnn represents the actual error code 
generated by CP. 

DMSSET444E VOLUME 'label' IS NOT A DOS SYSRES RC=32 

170 IBM VM/370 CMS Command and Macro Reference 



SORT 

SORT 

Use the SORT command to read fixed-length records from a CMS input file, 
arrange them in ascending EBCDIC order according to specified sort 
fields, and create a new file containing the sorted records. The format 
of the SORT cemmand is: 

SORT 

fileid1 

fileid2 

fileid1 fileid2 

is the file identifier (filename, filetype, filemode) of the 
file centaining the records to be sorted. 

is the file identifier (filename, filetype, filemode) of the 
new output file to contain the sorted records. 

The input and output files must not have the same file identifiers, 
since SORT cannot write the sorted output back into the space occupied 
by the input file. If a file with the same name as the output file 
already exists, the old file is erased. 

~~~~!i~g ~~!! Control Fields: After the SORT command is entered, C~S 
responds with the~oIIowIng-message on the terminal:

DMSSRT604R ENTER SORT FIELDS:

You should respond by entering one or more pairs of numbers of the form
"xx yy" separated by one or more blanks. Each "xx" is the starting
character position of a sort field within each input record and "yy" is
the ending character position. The leftmost pair of numbers denotes the
major sort field. The number of sort fields is limited to the number of
fields you can enter on one line. The records can be sorted on up to a
total of 253 Fositions.

!irtY~l ~~~!~g~ ~~gy!!~~gn~2 !Q! ~Q!~!~g: The sorting operation takes
place with two passes of the input file. The first pass creates an
ordered pointer table in virtual storage. The second pass uses the
pointer table to read the input file 1n a random manner and write the
output file. Therefore, the size of storage and the size and number ef
sort fields are the limiting factors in determining the number of
records that can be sorted at anyone time. An estimate of the maximum
number of records that can be sorted is:

VMSIZE - 132K
NR = -------------

14 + NC

where: NR is the estimated maximum number of input records; NC is the
total number of characters in the defined sort fields; VMSIZE is the
storage size of the virtual machine; and 132K is the size of the
resident CMS nucleus. For example, enter the command and respond to the
prompting message:

Section 2. CMS Commands 171

SORT

sort name address a1 sortedna address bl

DMSSRT604R ENTER SORT FIELDS:

1 10 25 28.

The records in the NAME ADDRESS file are sorted on positions 1-10 and
25-28. The sorted output is written into the newly created file
SORTEDNA ADDRESS. If you have a 320K virtual machine, you can sort a
maximum of 6815 records.

VMSIZE-132K 320K-132K 188K 192,512
NR = ----------- = --------- = = ------- = 6815

14 + NC 14 + 14 28 28

DMSSRT604R ENTER SORT FIELDS:

You are requested
them in the form
Fields."

to enter SORT control fields. You should enter
described previously in "Entering Sort Control

DMSSRT002E
DMSSRT009E
DMSSRT019E
DMSSRT034E
DMSSRT031E
DMSSRT053E
DMSSRT054E
DMSSRT062E
DMSSRT063E
DMSSRT010E
DMSSRT104S
DMSSRT105S
DMSSRT212E

FILE ffm ft fm'-NOT FOUND RC=28
COLUMN 'col' EXCEEDS RECORD LENGTH RC=24
IDENTICAL FILEIDS 'RC=24
FILE 'fn ft fm'.IS NOT. FIXED LENGTH RC=32
DISK 'mode' IS READ/O~LY RC=36
INVALID SO'RT FIELD PAIR DEFINED RC=24
INCOMPLETE FILEID SPECIFIED RC=24
INVALID * IN FILEID RC=20
NO LIST ENTERED RC=40
INVALID PARAMETER 'parameter' RC=24
ERROR Inn' READING FILE 'fn ft fm' FROM DISK RC=100
ERROR Inn' WRITING FILE 'fn ft fm' ON DISK RC=100
MAXIMUM NUMBER OF RECORDS EXCEEDED RC=40

172 IBMVM/370' CMS Command and Macro Reference

SSERV

SSERV

Use the SSERV command in CMS/DOS to copy, display, print, or punch a
book from a DOS/VS source statement library. ihe format of the SSERV
command is:

SSERV
.. ,

sutlib bookname I ft I [(options ••• ()]]
I~Q~!I
L .J

QE!!Q!!§:
(J2I~!]
[PUNCH

[PRINT]
[TERM]

sublib specifies the source statement sublibrary in which the book is
cataloged.

bookname specifies the name of the book in the DOS private or system
source statement sublibrary. The private litrary, if any, is
searched before the system library.

ft specifies the .filetype of the file to be created on your
A-disk. ft defaults to COPY if a filetype is not specified.
The filename is always the same as the bookname.

Q~!iQns: You may enter as many options as you wish, depending upon
the functicns you want to perform.

J21~! copies the book to a CMS file.

PUNCH punches the book on the virtual punch.

PRINT spools a copy of the book to your virtual printer.

TERM displays the book on your terminal.

Q.§.2.9~ !{Q!~'§

1. If you want to copy books from private libraries, you must issue an
ASSGN command for the logical unit SYSSLE and identify the library
on a DLBL command line using a ddname of IJSYSSL.

If you want to copy books from the system library, you Bust have
entered the CftS/DOS environment specifying the mode letter of the
system residence volume.

2. You should not use the SSERV command to copy books from macro (E)
sublibraries, since they are in "edited" (that is, compressed)
form. Use the ESERV command to copy and de-edit macros fro. a
macro (E) sublibrary.

When you use the TERM option, the specified book is displayed at the
ter.inal.

Section 2 •. CftS Commands 1J3

SSERV

DftSSRV003E INVALID OPTION 'option' RC=24
DMSSRY004E BOOK 'subl.book' NOT FOUND RC=28
DMSSRV006E NO READ/WRITE 'A' DISK ACCESSED RC=36
DMSSRV070E INVALID PARAMETER 'parameter' RC=24
DMSSRV097E NO 'SYSRES' VOLUME ACTIVE RC=36
DMSSRV098E NO BOOK NAME SPECIFIED RC=24
DMSSRV099E CMS/DOS ENVIRONMENT NOT ACTIVE RC=40
DMSSRY105S ERROR Inn' iRITING FILE 'fn ft fm' ON DISK RC=100
DMSSRV113S DISK (cuu) NOT ATTACHED RC=100
DMSSRV411S INPUT ERROR CODE Inn' ON '{SYSRESISYSSLB}' RC=100
DMSSRV194S BOOK 'subl.book' CONTAINS BAD RECORDS RC=100

174 IBM'VM/370 CMS Command and Macro Reference

START

START

Use the START command to begin execution of CMS, OS, or DOS ~rograms
that were previously loaded or fetched. The format of the START command
is:

r
START I entry

I *
L

,
[args •••] I

I
.J

[(option[)]]
2:Eli2!!1

NO __ -------.J

entry pas~es control to the control section name or entry point
name at execution time. The operand, entry, may be a
filename only if the filename is identical to a control
section name or an entry point name.

* passes control to the default entry
discussion of the LOAD command for a
default entry point selection.

point. See
discussion of

the
the

args ••• are arguments to be passed to the started program. If user
arguments are specified, the entry or * operands must be
specified; otherwise, the first argument is taken as the
entry point. Arguments are passed to the program via
general register ~. The 'entry operand. and any arguments
become a string of doublewords, one argument per doubleword,
and the address of the list is placed in general register 1.

NO suppresses execution of the program. Linkage editor and
loader functions are performed and the program is in storage
ready to execute, but control is not given to the program.

1. Any undefined names or references specified in the files loaded
into storage are defined as zero. Thus, if there is a call or
branch to a subroutine from a main program, and if the subroutine
has never been loaded, the call or branch transfers control to
location zero of the virtual machine at execution time.

2. Do not use the START command for programs that are generated via
the GENMOD command with the NOMAP option. The START command does
not execute properly for such programs.

DMSLI0740I EXECUTION BEGINS •••

is displayed when the designated entry point is validated.

This message is suppressed if CMS/DOS is active and the COMP option
is specified in the FETCH command.

DMSLI0021E ENTRY POINT 'name' NOT FOUND RC=40
DMSLI0055E NO ENTRY POINT DEFINED RC=40

Section 2. CMS Commands 175

STATE, STATEW

STATE/STATEW

Use the STATE co •• and to verify the existence of a CMS, as, or DOS file
on any accessed di~k; use the STATEW command to verify the existence cf
a CMS, as, or DOS file,on any accessed read/write disk. The formats of
the STATE and STATEi commands are:

l!11~~:

fn is the filename of the file whose existence is to be verified. If
fn is spec~£ied as *, the first file found satisfying the rest of
the fileid is used.

ft is the filetype of the file whose existence is to be .erified. If
ft is specified as *, the first file found satisfying the rest of
the fileid is used.

fm is the file.ode of the file whose existence is to be verified. If
fm is omitted, or specified as *, all your disks are searched.

!!§A.g~ !!Q:!:~§:

1. If you issue the STATEW command specifying a file that exists on a
read-only disk, you receive error message DMSSTT002E.

2. When you code an asterisk in the fn or ft fields, the search for
the file is end~d as soon as any tile satisfies any of the other
conditions. For example, the command:

state * file

executes successfully if any file on any accessed disk (including
the system disk) has a filetype of FILE.

3. To verify the existence of an as or DOS file when DOS is set OFF,
you must issue the FILEDEF command to establish a CMS file
identifier for the file. For example, to verify the existence cf
the as file TEST.DATA on an as C-disk you could enter:

filedef check disk check list c dsn test data
state check list

where CHECK LIST is the CMS filename and filetype associated with
the as data set name.

4~ To verify the existence of an as or DOS file when the CMS/Des
environment is active, you must issue the DLEL command to establish
a CMS file identifier for the file. For example, to verify the
existence of the DOS file TEST.DATA on a DOS C-disk, you could
enter:

dlbl check c dsn test data
state file check

where FILE CHECK is the default CMS filename and filetype (FILE
ddname) associated with the DOS file-ide

116 IBM VM/370 CMS Command and Macro Reference

STATE, STATEW

5. You can invoke the STATE/STATEW command from the terminal, from an
EXEC file, or as a function from a program. If STATE/STATEW is
invoked as a function or from an EXEC file that has the &CONTRCL
NOKSG option in effect, the message DMSSTTC02E FILE 'fn ft fm' NeT
FOUND is not issued.

~~§E~~~~§

The CMS ready message indicates that the specified file exists.

DMSSTT227I PROCESSING VOLUME 'no' IN DATA SET 'data set name'

The specified data set has multiple volumes; the volume being
processed is shown in the message. The STATE command treats
end-of-vo1ume as end-of-fi1e and there is no end-of-volume
switching.

DMSSTT228I USER LABELS BYPASSED ON DATA SET 'data set name'

The specified data set has disk user labels; these labels are
skipped.

DMSSTT002E FILE 'fn ft fm' NOT FOUND RC=28
DMSSTTO~8E INVALID MODE 'mode' RC=2~
DMSSTT05~E INCOMPLETE FILEID SPECIFIED RC=2~
DMSSTT062E INVALID 'char' IN FILEID 'fn ft' RC=20
DMSSTT069E DISK 'mode' NOT ACCESSED RC=36
DMSSTT070E INVALID PARAMETER ~parameter' RC=2~
DMSSTT229E UNSUPPORTED OS DATA SET, ERROR 'code' RC=code

Section 2. tMS Commands 117

SVCTRACE

SVCTRACE

Use the SVCTRACE command
supervisor calls occurring
SVCTRACE command is:

to trace and record
in your virtual machine.

information about
The format of the

SVCTrace

!1!~~:

ON starts tracing all SVC instructions issued within CftS.

OFF stops SVC tracing.

1. The trace information recorded on the printer includes:

,
I
I

• The virtual storage location of the calling SVC instruction and
the name of the called program or routine

• The normal and error return addresses

• The contents of the general registers both before the SVC-called
program is given control and after a return from that program

• The contents of the general registers when the SVC handling
routine is finished processing

• The contents of the floating-point registers before the
SVC-called program is given control and after a r~turn fro. that
program

• The contents of the floating~point registers when the SVC
handling routine is finished processing

• The parameter list passed to the SVC

2. To terminate tracing previously established by the SVCTRICE
command, issue the HO or SVCTRACE OFF commands. SVCTR1CE OFF and
HO cause all trace information recorded, up to the point they are
issued, to be printed on the virtual spooled printer. Cn
typewriter terminals SVCTRACE OFF can be issued only when the
keyboard is unlocked to accept input to the CftS command
environment. To terminate tracing at any other point in system
processing, HO must be issued. To suspend tracing temporarily
during a session, interrupt processing and enter the Immediate
command SO (Suspend Tracing). To resume tracing that was suspended
with the SO command, enter the Immediate command RO (Resume
Tracing).

If you issue the CftS Immediate command HX or you log off the
VM/370 system before termination of tracing previously set by the
SVCTRACE command, the switches are cleared automatically and all
recorded trace information is printed on the virtual spooled
printer.

If a user timer exit is activated while SVCTRICE is
SVCTRACE is disabled for the duration of the timer exit.
issued during the timer exit are not reflected in the
listing.

178 IBft Vft/370 CftS Command a~d ftacro Reference

active,
Any SVCs
SVCTRACE

SVCTRACE

3. When tracing on a virtual machine with only one printer, the trace
data is intermixed with other data sent to the virtual printer.

A variety of information is printed whenever the:

SVCTRACE ON

command is issued.

The first line of trace output starts with a dash or plus sign or an
asterisk (- or + or *). The format of the first line of trace output
is:

{ :} RID =
xxx/dd name FROM loc OLDPSW = psw1 GOPSW = psw2 [RC=rc]

.!1!..~!~:

indicates information recorded before processing the SVC.

+ indicates information recorded after processing the SVC, unless
the asterisk (*) applies.

* indicates information recorded after processing a CMS SVC that
had an error return.

N/D is an abbreviatio~ for SVC number and depth (or l~vel).

xxx

dd

nalle

loc

psw1

psw2

rc

is the number of the SVC call (they are numbered sequentially).

is the nesting Ie vel of the SVC call.

is the macro or routine being called.

is the program location from which the SVC was issued.

is the PSW at the time the SVC was called.

is the PSW with which the routine being called is invoked, if
the first character of this line is a dash (-'). If the first
character of this line is a plus sign or asterisk (+ or *), PSW2
represents the PSi that returns control to the user.

is the return code fro. the SVC handling routine in general
register 15. This field is omitted if the first character of
this line is a dash (-), or if this is an OS SVC call. For a
CMS SVC, this field is 0 if the line begins with a plus sign
(+), and nonzero for an asterisk (*). Also, this field equals
the contents of R15 in the "GPRS AFTER" line.

The next two lines of output are the
registers when control is passed to the SVC
output is identified at the left by ".GPRSB".
is:

contents of the general
handling routine. This
The format of the output

.GPRSB = h h h h h h h h *dddddddd*
= h h h h h h h h *dddddddd*

section 2. CMS Commands 179

SVCTRACE

where h represents the contents of a general register in hexadecimal
format and g represents the EBCDIC translation of the contents of a
general register. The contents of general registers 0 through 1 are
printed on the first line, with the contents of registers 8 through F cn
the second line. The hexadecimal contents of the registers are printed
first, followed by the EBCDIC translation. The EECDIC translation is
preceded and followed by an asterisk(*)~

The next line of output is the contents of general registers 0, 1,
and 15 when control is returned to your program. The output is
identified at the left by ".GPRS AFTER :". The format of the output is:

~GPRS AFTER: RO-R1 = h h *dd* R15 = h *d*

where h represents the hexadecimal contents of a general register and g
is the EBCDIC translation of the contents of a general register. The
only general registers that CMS routines alter are registers 0, 1, and
15 so only those registers are printed when control returns to your
program. The EBCDIC translation is preceded and followed by an asterisk
(*) •

The next two lines of output are the contents of the general
registers when the SVC handling routine is finished processing. This
output is identified at the left by ".GPRSS." The format of the output
is:

.GPRSS = h h h h h h h h *dddddddd*
= h h h h h h h h *dddddddd*

where h represents the hexadecimal contents of a general register and g
represents the EBCDIC translation of the contents of a general register.
General registers 0 through 1 are printed on the first line with
registers 8 through F on the second line. The EECtIC translation is
preceded and followed by an asterisk (*).

The next line of output is the contents of the
floating-point registers. The output is identified
".FPRS". The format of the output is:

~FPRS = f f f f *gggg*

calling routine's
at the left by

where ! represents the hexadecimal contents of a floating-point register
and ~ is the EBCDIC translation of a floating-point register. Each
floating peint register is a doubleword; each f and g represents a
doub1eword of data. The EBCDIC translation is preceded and followed by
an asterisk (*).

The next line of output is the contents of floating-point registers
when the SVC handling routine is finished processing. The output is
identified by ".,PRSS" at the left. The format of the output is:

.FPRSS = f f f f *gggg*

where ! represents the hexadecimal contents of a floating-point register
and ~ is the EBCDIC translation. Each floating-point register is a
doubleword and each f and g represents a doubleword of data. The EBCDIC
translation is preceded and followed by an asterisk (*).

The last two lines of output are printed only if the address in
register 1 is a valid address for the virtual machine. If printed, the
output is the parameter list passed to the SVC. The output is
identified by ".PARM" at the left. The output format is:

~PARM = h h h h h h h h *dddddddd*
= h h h h h h h h *dddddadd*

180 IBM VM/310 CMS Command and Macro Reference

SVCTRACE

where b represents a word of hexadecimal data and ~ is the EBCDIC
translation. The parameter list is found at the address contained in
register 1 before control is passed to the SVC handling program. The
EBCDIC translation is preceded and followed by an asterisk (*).

Figure 19 summarizes the types of SVC trace output.

Identification

.GPRSB

.GPRS AFTER

.GPRSS

,.FPRS

.FPRSS

• PARM

Comments

The SVC and the routine that issued the SVC.

Contents of general registers when control is passed
to the SVC handling routine.

Contents of general registers 0, 1, and 15 when
control is returned to your program.

Contents of the general registers when the SVC
handling routine is finished processing.

Contents of floating-point registers before the
SVC-called program is given control and after
returning from that program.

Contents of the floating-point registers when the
SVC handling routine is finished processing.

The parameter list, when one is passed to the SVC •

Figure 19. Summary of SVC Trace Output Lines

DMSOVR014E INVALID FUNCTION 'function' RC=24
DMSOVR047E NO FUNCTION SPECIFIED RC=24
DMSOVR104S ERROR 'nn' READING FILE 'DMSOVR MODULE' ON DISK RC=100
DMSOVR109S VIRTUAL STORAGE CAPACITY EXCEEDED RC=104

Section 2. CMS Commands 181

SYNONYM

SYNONYM

Use the SYNONYM co~mand to invoke a table of synonyms to be used with,
or in place of, CMS and user-written command names. You create the
table yourself using the CMS editor. The form for specifying the
entries for the table is described under "The User Synonym Table."

The names you define can be used either instead of or in conjunction
with the standard CMS command truncations. However, no matter what
truncations, synonyms, or truncations of the synonyms are in effect, the
full real name of the command is always accepted. The format of tbe
SYNONYM command is:

SYNonym
r r r ",
Ifn I~IEQE!~ Ifmlll [(options ••• [)]]
I I 11..1111
L L 1* I.J.J

L .J
r ,

2E!!2.!!.§: I~I~ I [CLEAR]
INOSTDI
L .J

fn is the filename of the file containing your synonyms table.

fm is the filemode of the file containing your synonyms; if omitted,
your A-disk and its extensions are searched. If you specify fm,
you must enter the keyword, SYNONYM. If you specify fm as an
asterisk (*), all disks are searched for the specified SYNONYM
file.

1.

~!~

NOSTD

CLEAR

specifies that standard CMS abbreviations are accepted.

standard CMS abbreviations are not to be accepted. (The
full CMS command and the synonyms you defined can still
be used.)

removes any synonym table set by a previously entered
SYNONYM command.

If you enter the SYNONYM command with no
synonym table and the user synonym table
listed.

operands, the system
(if one exists) are

2. The SET ABBREV ON or OFF command, in conjunction with the SYNONYM
command, determines which standard and user-defined forms of a
particular CMS command are acceptable.

182 IBM VM/370 CMS Command and Macro Reference

SYNONYM

TBE USER SYNONYM TABLE

You create the synonym table using the CMS editor. The table must be a
file with the filetype SYNONYM. The file consists of 80-byte
fixed-length records in free-form format with columns 73-80 ignored.
The format for each record is:

systemcommand usersynonym count

systemcommand
is the name of the CMS command or KODULE or EXEC file for which you
are creating a synonym.

usersy nonym
is the synonym you are assigning to the command name. When you
create the synonym, you must follow the same syntax rules as for
commands; that is, you must use the character set used to create
commands, the synonym may be no longer than eight characters, and
so on.

count is the minimum number of characters that must be entered for the
synonym to be accepted by CMS. If omitted, the entire synonym must
be entered (see the following example) •

A table of command synonyms is built from the contents of this file.
You may have several synonym files but only one may be active at a time.
For example, if the synonym file named KYSYN contains:

MOVEFILE KVIT

then, after you have issued the command:

synonym mysyn

the synonym MVIT can be entered as a command name to execute the
MOVEFILE command. It cannot be truncated since no count is specified.
If MYSYN SYNONYM contains:

ACCESS GETDISK 3

then, the synonyms GET, GETD, GETDI, GETDIS, or GETDISK can be entered
as the command name instead of ACCESS.

If you have an EXEC file named TDISK, you might have a synonym entry:

TDISK TDISK 2

so that you can invoke the EXEC procedure by sFecifying the truncation
TD .•

The default values of the SET and SYNONYK commands are such
system synonym abbreviation table is available unless
sFecified.

that the
otherwise

for the FILEDEF command states
Therefore, the acceptable

FILE, FILED, FILEDE, and
table is available whenever
effect.

The system synonym abbreviation table
that FI is the minimum truncation.
abbreviations for FILEDEF are: FI, FIL,
FILEDEF. The system synomym abbreviation
both SET ABBREV ON and SYNONYM (STD) are in

Section 2. CKS Commands 183

SYNONYM

If you have a synonym table with the file identification USERTAB
SYNONYM A, that has the entry:

FILEDEF USENAME 3

then, USENAME is a synonym for FILEDEF, and acceptable truncations ef
USENAME are: USE, USEN, USENA, USENAM, and USENAME. The user synonym
abbreviation table is available whenever both SET ABBREV ON and SYNONle
USERTAB are specified.

No matter what synonyms and truncations are defined, the full real
name of the command is always in effect.

Figure 20 lists the forms of the system command and user synonyms
available for the various combinations of the SET ABBREV and SlNONle
commands.

When you enter the SYNONYM command with no operands, the synonym
table(s) currently "in effect are displayed.

SYSTEM
COMMAND

USER
SYNONYM

SHORTEST
FORM (IF ANY)

This response is the same as the response to the command QUERl
SYNONYM ALL.

DMSSYN7111 NO SYSTEM SYNONYMS IN EFFECT

This response is displayed when you issue the SYNONYM command with
no operands after the command SYNONYM (NOSTI) has been issu~d."

DMSSYN7121 NO SYNONYMS (DMSINA NOT IN NUCLEUS)

The system routine which handles SYNONYM command processing is net
in the system.

DMSSYN002E FILE 'fn ft fm' NOT FOUND RC=28
DMSSYN003E INVALID OPTION 'option' RC=24
DMSSYN007E FILE 'fn ft fm' NOT FIlED, 80 CHAR RECORDS RC=32
DMSSYN032E INVALID FILETYPE eft' RC=24
DMSSYN056E FILE 'fn ft fm' CONTAINS INVALID REtaRD FORMATS RC=32
DMSSYN066E 'option AND 'option' ARE CONFLICTING OPTIONS RC=24
DMSSYN104S ERROR Inn' READING FILE 'fn ft fm' FROM DISK RC=100

184 IBM VM/370 CMS Command and Macro Reference

SYNCNYM

Options

Acceptable I
Command I
Forms , Comments

SET ABBREV ON
SYN USERTAB (STD

SET ABBREV OFF
SYN USERTAB (STD

SET ABBREV ON I
SYN USERTAB (NOSTDI

I ,
I , ,
I
I
I

FI
PIL

FILEDEF
USE
USEN

USENAME

FILEDEF
USENAME

PILEDEP
USE.
US EN

USENAME

SET ABBREV OFP I PILEDEF
SYN USERTAB (HOSTDI USENAME

SET IBBREV ON
SYN (CLEAR STD

I
I ,
I , , ,
I
I

PI
FIL

FILEDEF

SET ABBREV OFF I FILEDEF
SYN (CLEAR STD I

I
SET ABBREV ON I
SYN (CLEAR NOSTD I

I
SET ABBREV OFF ,
SYN (CLEAR NOSTDI

The ABBREV ON option of the SET
command and the STD option of the
SYNONYM command make the system
table available. The user synonym,
USENAME, is available
because the synonym table
(USERTAB) is specified on the
SYNONYM command. The truncations
for USENAME are available because
SET ABBREV ON was specified with
the USERTAB also available.

IThe user-defined synonym, USENAME,
, is permitted tecause the user
I synonym table (USERTAB) is speci
I fied on the SYNONYM command. No
I system or user truncations are
I permitted.

IThe system synonym table is un-
I available because the NOSTD option
I is specified on the SYNONYM com-
I mand. The user synonym, USENAME,
I is available tecause the user syno
I nym table (USERTAB) is specified on
I the SYNONYM command and the trunca
I tions of USENAME are permitted
I because SET AEEREV ON is specified
I with USERTAB also availatle.

IThe system synonym table is made
I unavailable either by the SET
I ABBREV OFP command or by the SYN
, (NOSTD command. The synonym,
, USENAME, is permitted because the
, user-defined synonym table
1 (USERTAm is specified on the
, SYNONYM command. The truncations
, for USENAME are not permitted
I because the SET AEBREV OFF option
I is in effect.

,The user-defined table is now un
available. The system synonym
table is available because both
the ABBREV ON option of the SET
command and the STD option of the
SYNONYM command are specified.

IBecause CLEAR is specified on the
SYNONYM command, the synonym and
its truncations are no longer
available. Either the SET ABBREV
OFF co.mand or the SYNONYM (NOSTD
command make the system synonym
table unavailable.

Figure 20. System and User-Defined Truncations

Section 2. CMS Commands 185

TAPE

TAPE

Use the TAPE command to dump CMS-formatted files from disk to tape, load
previously dumped files from .tape to disk, and perform various control
operations on a specified tape drive. Files processed by the TAFE
command must be in a unique CMS format. The TlPE command does not
process multivolume files. Disk files to be dumped can contain either
fixed- or variable-length records. The format of the TAPE command is:

TAPE DUMP

LOAD

SCAN

SKIP

r ,
I fill
1* I [(optionA optionB optionD[)]]
L ..J

r r "
'{ fn} {ft} I fm I I
I * * IA I I
L L ..J.J

r
I
I
L

r ,

: {;n} {;t} :
L ..J

,
I
I

.J

[(optionE optionC optionD[)]]

[(optionE optionC optionD[)]]

[(optionE optionC optionD[)]]

MODESET [(optionD[)]]

[(optionD[)]]
r ,

tapcmd Inl
1.11
L .J

r ,
IWTM I
I!Q!l:l1I
L .J

r ,
I NOPRint I
IPRint I
Il:~~ I
IDISK I
L ..J

r ,
IEOT I
lEaF nl
I~Q~ 11
L ..J

rr "
IITAPn II
11l:!f1 II
I L .J I
I r , I
Ilcuu II
111!!1 II
LL .J..J

r ,
17TRACKI [DEN den] [TRTCH a]
19TRACKI
L .J

186 IBM VM/370 CMS COllmand and Macro Reference

TAFE

DUMP { fD}{ ft}[fm]
* * [*]

LOAD

SCAN

SKIP

dumps one or more disk files to
specified as an asterisk (*) all
file identifier are dumped.

tape. If fn and/or ft is
files that satisfy the other

If fm is coded as a letter, that disk and its extensions are
searched for the specified file(s). If fm is coded as a
letter and number, only files with that mode number and letter
(and the extensions of the disk referenced by that f~ letter)
are dumped. . If fm is coded as asterisk (*), all accessed
disks are searched for the specified file(s). If fm is net
specified, only the A-disk and its 'extensions are searched.

[{ fn}{ ft}[fm]]
[* * [A]]

reads tape files onto disk. If a file identifier is
specified, only that one file is loaded. If the option EOF n
is specified and no file identifier is entered, n tape files
are written to disk. If an asterisk (*) is specified for fn
or ft, all files within EOF n that satisfy the other file
identifier are loaded.

The files are written to the disk indicated by the filemode
letter. The filemode number, if entered, indicates that only
files with that filemode number are to be loaded.

[{ fnU ft}]
[* n *]

positions the tape at a specified point, and lists the
identifiers of the files it scans. Scanning occurs over n
tape marks, as specified by the option EOF n (the default is 1
tape file). However, if a file identifier (fn and ft) is
specified, scanning stops upon encountering that file; the
tape remains positioned ahea~ of the file.

~{ ;n}{;t}~
positions the tape at a specified point and lists the
identifiers of the files it skips. Skipping occurs over n
tape marks, as specified by the option EOF n (the default is 1
tape mark). However, if a file identifier (fn and ft) is
specified, skipping stops after encountering that file; the
tape remains positioned immediately following the file.

MODESET sets the values specified by the IEN, TRACK, and TRTCH
options. After initial specification in a TAPE command, these
values remain in effect for the virtual tape device until they
are changed in a subsequent TAPE command.

.. ,
tapcmdlnl specifies a tape control function (tapcmd) to be executed n

111 times (default is 1 if n is not specified). These functions
L J alse work on tapes in a non-CMS format.

!sE£!g
BSF
BSR
ERG
FSF
FSR
REW

Action
Backspace ~ tape marks
Backspace ~ tape records
Erase gap
Forward-space ~ tape marks
Forward-space ~ tape records
Rewind tape to load point

Section 2. CftS Commands 187

TAPE

19Ef!!g
RUN
WTM

Action
RewInd tape and unload
Write ~ tape marks

QE!i21!§:
If conflicting options are specified, the last one entered
is in effect.

WTM writes a tape mark on the tape after each file is dumped.

writes a tape mark after each file is dumped, then backspaces over
the tape mark so that subsequent files written on the tape are net separated
by tape marks.

NOPRINT does not spool the list of files dumped, loaded, scanned, or skipped
to the printer.

PRINT

DISK

EOT

EOF n
1!Q! 1

spools the list of files dumped, loaded, scanned, or skipped
to the printer.

displays a list of files dumped, loaded, scanned, or skipped
at the terminal.

creates a disk file containing the list of files dumped, loaded,
scanned, or skipped. The disk file has the file identification
of TAPE MAP AS.

reads the tape until an end-of-tape indication is received.

reads the tape through a maximum of n tape marks. The
default is EOF 1.

TAPn specifies the symbolic tape identification (TAPn) or the
18n actual device address of the tape to be read from or written

to where n is 1, 2, 3, or 4. The default is TAP1 or 181.
The unit specified by cuu must previously have been attached
to your CMS virtual machine before any tape I/O operation can
be attempted. Only symbolic names TAP1 through TAP4 and
virtual device addresses 181 through 184 are supported.

7TRACK specifies a 7-track tape. Odd parity, data convert on, and
translate off are assumed unless TRTCH is specified.

9TRACK specifies a 9-track tape.

DEN den is the tape density where den is 200, 556, 800, 1600, or
6250. If 200 or 556 is specified, 7TRACK is assumed. If
1600 or 6250 is specified, 9TRACK is assumed; if 800 is
specified, 9TRACK is assumed unless 7TRACK is specified. In
the case of either 800/1600 or 1600/6250 dual-density drives,
1600 is the default ~f the 9TRACK option is specified. If
neither the 9TRACK option nor the DEN option is specified l

the drive operates at whatever bpi the tape drive was last
set.

TRTCH a is the tape recording technique for 7-track tape. If TRTCH
is specified, 7TRACK is assumed. One of the following must
be specified as "a":

188 IBMVM/370 CMS Command and Macro Reference

!!§A9~ l!.Q!~§

g l1~gn!.!!g
o Odd parity, data convert off, translate off
OC Odd parity, data convert on, translate off
OT Odd parity, data convert off, translate on
E Even parity, data convert off, translate off
ET Even parity, data convert off, translate on

TAPE

1. Tape records written by the CMS TAPE DUMP command are 805 bytes
long. The first character is a binary 2 (X'02'), followed by the
characters CMS and an EBCDIC blank (X'40'), followed by 800 bytes
of file data packed without regard for logical record length. If a
null block is dumped, the character "0" replaces the blank after
CMS. This causes subsequent loading of null blocks to be ignored.
In the final record, the character N replaces the blank after CMS,
and the data area contains CMS file directory information.

2. If a tape file contains a large number of CMS files that would not
fit on disk, the tape load operation may terminate if there is not
enough disk space to hold the files. To prevent this, when you
dump the files, separate logical files by tape marks, then forward
space to the appropriate file.

3.' Because the CMS file directory is the last record of the file, the
, TAPE command creates a separate workfile so that backspacing and

rereading can be avoided when the disk file is built. If the load
criteria is not satisfied, the workfile is erased; if it is
satisfied, the workfile is renamed. This workfile is named TAPE
CMSUT1, which may exist if a previous TAPE command has abnormally
terminated. If the work file is accidentally dumped to tape and
subsequently loaded, it appears on your disk as TAPE CMSUT2.

4. The RUN option (rewind and unload) indicates completion before the
physical operation is completed. Thus, a subsequent operation to
the same physical device may encounter a device busy situation.

5. For more information on tape file handling, see the !~Ll1~ ~~~
!!§~!:~§ §y!g~.

DMSTPE701I NULL FILE

A final record was encountered and no prior records were read in a
TAPE LOAD operation. No file is created on disk.

If the TERM option is in effect, the following is displayed at the
terminal depending on the operation specified:

LOADING •••••
fn ft fm

SKIPPING •••••
fn ft fm

Section 2. CftS Commands 189

TAPE

DUMPING •••••
fn ft fm

SCANNING.~~ ••
fn ft fm

When a tape mark is encount~red, the following is displayed at the
'terminal if the TERM option is specified:

END-OF~FILE OR END-OF-TAPE

DMSTPE002E FILE 'fn ft fm' NOT FOUND RC=28
DMSTPE003E INVALID OPTION 'option' RC=24
DMSTPE010E PREMATURE EOF ON FILE 'fn ft fm' RC=40
DMSTPE014E INVALID FUNCTION 'function' RC=24
DMSTPE017E INVALID DEVICE ADDRESS 'cuu' RC=24
DMSTPE023E NO FILE TYPE SPECIFIED RC=24
DMSTPE027E INVALID DEVICE 'device name' RC=24
DMSTPE029E INVALID PARAMETER 'parameter' IN THE OPTION 'option' FIELD

RC=24
DMSTPE037E DISK 'mode' IS READ/ONLY RC=36
DMSTPE042E NO FILEID ~PECIFIED RC=24
DMSTPE043E 'TAPn(cuu), IS FILE PROTECTED RC=36
DMSTPE047E NO FUNCTION SPECIFIED RC=24
DMSTPE048E INVALID MODE 'mode' RC=24
DMSTPE057E INVALID RECORD FORMAT RC=32
DMSTPE058E END-OF-FILE OR END-OF-TAPE RC=40
DMSTPE070E INVALID PARAMETER 'parameter'RC=24
DMSTPE096E FILE 'fn ft' DATA BLOCK COUNT INCORRECT RC=32
DMSTPE104S ERROR Inn' READING"FILE 'fn ft fa' FROM DISK RC=100
DMSTPE105S ERROR Inn' WRITING FILE 'fn ft fm' ON DISK RC=100
DMSTPE110S ERROR READING 'TAPn(cuu)' RC=100
DMSTPE111S ERROR WRITING tTAPn(cuu)' RC=100
DMSTPE113S TAPn(cuu) NOT ATTACHED RC=100
DMSTPE115S {CONVERSIONI{719}-TRACKI{800162S0} BPIITRANSLATIONIDUAL

DENSITY} FEATURE NOT SUPPORTED ON DEVICE 'cuu' RC=88

190 IBM VM/370 CMS Command and Macro Reference

TAPE MAC

TAPEMAC
Use the TAPEMAC command to create a CMS MACLIB from an unloadEd
partitioned data set (PDS) from a tape created by the IEHMOVE utility
program under os. The PDS from which the tape was created can be
blocked~ but the logical record length must be 80~ The format of the
TAPEMAC command is:

fn

TAPEMAC fn [(options ••• [)]] Q]2tiQ!!§:
r , r ,
ITAPnllITEMCT yyyyyl
I11R11111~~~1_~~~001
L.JL .J

sFecifies the filename of the first, or only, CMS MAC LIB to be
created on the A-disk. If fn MACLIB already exists on the
A-disk, the old one is erased; no warning message is issued.

TAPn specifies the symbolic address of the tape, where n is a numbEr
between 1 and 4 corresponding to virtual device addresses 181
through 184~ respectively. The default is TAP1.

ITEMCT yyyyy
specifies the item count threshold of each MACLIB to be
created, which is the maximum number of records to be written
into each file. yyyyy is a number between 0 and 62500 (commas
are not allowed). If ITEMCT is not specified, the default is
50000.

!!§~~ l!Q!~§

Tape records are read and placed into fn MACLIB uritil the file size
exceeds the ITEMCT (item count); loading then continues until the
end of the current member is reached. Then another CMS file is
created; its filename consists of the number 2 appended to the end
of the filename specified (fn) if the filename is seven characters
or less. The appended number overlays the last character of the
filename if the name is eight characters long. Loading then
continues with this new name. For example~ if you enter the
command:

tape mac mylib

you may create files named MYLIB MACLIE, MYLIB2 MACLIB, MYLIE3
MACLIB~ and so on.

This process continues until up to nine CMS files have beEn
created. If more data exists on the tape than can fit in nine CMS
files, processing is terminated with the error message DMSTMA139S.
The maximum size of the unloaded PDS which can be loaded into CMS
MACLIBs would be approximately 9 times 62500 or 584,500 records.

Section 2. CMS Commands 191

The TAPEMAC command displays the message:

LOADING fn MACLIB

for each macro library created.

DMSTMA001E NO FILENAME SPECIFIED RC=24
DMSTMA003E INVALID OPTION 'option' RC=24
DMSTMA057E INVALID RECORD FORMAT RC=32
DMSTMA070E INVALID PARAMETER 'parameter' RC=24
DMSTMA105S ERROR nn WRITING FILE fn ft ON DISK RC=100
DMSTMA109S VIRTUAL STORAGE CAPACITY EXCEEDED RC=104
DMSTMA110S ERROR READING TAPn RC=100
DMSTMA137S ERROR nn ON STATE FOR fn ,ft RC=100
DMSTMA138S ERROR nn ERASING 'fn ft' BEFORE LOADING TAPE RC=100
DMSTMA139S TAPE FILE EXCEEDS 9 CMS MACLIBS RC=104

192 IBM VM/370 CMS Command and Macro Reference

TAPPDS

TAPPDS

Use th~ TAPPDS command to create CMS disk files from tapes that are used
as input to or output from the following OS utility programs:

• IEBPTPCH tape files must be the
operation from either a
set in os. The default
have been issued:

result of an IEBPTPCH punch
sequential or partitioned data
attributes (IEBPTPCH DCB) must

DCB=(RECFM=FA,LRECL=81,BLKSIZE=81)

tape files may be blocked or unblocked and must be in the
format accepted by IEBUPDTE as "control data set" (SYSIN)
input with a control statement

./ ADD •••

preceding the records to be placed in each partitioned
data set member (OS) or separate eMS file (CMS».

• IEBUPDTE tape files may be blocked or unblocked.

• IEHMOVE unloaded partitioned data sets are read.

The tape can contain OS standard labels or be unlabeled. The format
of the TAPPDS command is:

TAPPDS
r r r ",
I f n 1ft I f m I I I [(0 P ti 0 n s ••• [)]]
I * I * 111111
I I 1* III
L L L .J.J.J

r ,
~]!i~D§: If~~ I

INOPDS I
IUPDATEI
L .J

r ,
I END I
I !!QIl!~1
L .J

r ,
ICOLl I
1l!.Q£.Q1.11
L .J

r ,
IMAXTEN I
1!!.Q!1!!TE!1
L .J

r ,
l'IAPnl
11!g.11
L .J

fn is the filename of the disk file to be created from the sequential
tape file. If the tape contains members of a partitioned data set
(PDS), fn must be specified as an asterisk (*); one file is created
for each member with a filename the same as the member name. If
NOPDS or UPDATE is specified and you do not specify fn or specify
it as an asterisk (*), the default filename is TAPPDS.

ft is the filetype of the newly created files. The default filetypes
are CMSUTl (for PDS or NOPDS) and ASSEMELE (for UPDATE). The
defaults are used if ft is omitted or specified as *.

f. is the mode of the disk to contain the new files. If this field is
omitted or specified as an asterisk (*), 11 is assumed.

section 2. CMS Commands 193

TAPPDS

Q~!~2~: If conflicting options are specified, the last one entered
is the one that is used. All options, except TAPn, are ignored when
~nloaded (IEHMOVE) PDS tapes are read.

g~~ indicates that the tape contains members of an OS partitioned
data set, each preceded by a MEMBER NAME=name statement. The
tape must have been created by the OS IEBPTPCH service
program if this option is specified.

NOPDS indicates that the contents of the tape will be placed in one
CMS file.

UPDATE indicates that the tape file is in IEEUPDTE control file
format. The filename of each file is taken from the NAME=
parameter in the "./ ADD" record that precedes each member.
(See Usage Note 2.)

COL1 reads data from columns 1-80. You should specify this opticn
when you use the UPDATE option.

!Q~Q11 reads data from columns 2-81; column 1 contains control
character information. This is the format produced by the CS
IEBPTPCH service program.

TAPn

END

is the tape
representing
respectively.

unit number. n can be 1, 2,
virtual units 181, 182, 183,
If not specified, TAP1 is assumed.

3, or 4,
and 184,

considers an END statement (characters 'END' in columns 2-5)
a delimiter for the curre~t member.

specifies that END statements are not to be treated as member
delimiters, but are to be processed as text.

MAXTEN reads up to ten members.
option is selected.

This is valid only if the PDS

NOMAXTEN
--------reads any number of members.

Q~~g~ !2!~~

1~ You can use the TAPE command to position a tape at a particular
tape file before reading it with the TAPPDS command. If the tape
has OS standard labels, TAPDDS will read and display the "VOL1" and
"HDR" records at the terminal. If the file you want to process is
not at the beginning of the tape, the TAPE command must be used to
position the tape at a particular tape file before reading it with
the TAPPDS command. Be aware that each file on an as standard
label taFe is actually three physical files (HDR, D~TA, TRAILER).
If positioning to other than the first file,.the user must skip
more physical tape files (3n-3 if positioning to the header labels,
3n-2 if positioning to the data file, where n is the number of the
file on the tape).

2. If you use the UPDATE option, you must also specify the COL1
option. Each tape record is scanned for a "./ ADD" record
beginning in column 1. When a "./ ADD" record is found, subsequent
records are read onto disk until the next "./ ADD" record is
encountered or until a "./ ENDUP" record is encountered. .

194 IBM VM/310 CMS Command and Macro Reference

TAPPDS

A "./ ENDUP" . ~ecord or a tape mark ends the TAPPDS command
execution; the tape is not repositioned.

"./ label" records are not recognized by CMS and are included in
the file as data records.

If the NAME= parameter is missing on the "./ ADD" record or if it
is followed by a blank, TAPPDS uses the default filename, TAPPDS,
for the CMS disk file.. If this happens more than once during the
execution of the command, only the last unnamed member is contained
in the TAPPDS file.

3. If you are reading a macro library from a tape created by the
IEHMOVE utility, you can create a CMS MACLIB file directly by using
the TAPEMAC command.

DMSTPD7031 FILE 'fn ft (fm]' COPIED

The named file is copied to disk.

DMSTPD7071 TEN FILES COPIED

The MAXTEN option was specified and ten members have been copied.

Note: If the tape being read contains standard OS labels, the labels are
dIsplayed at the terminal.

DMSTPD003E INVALID OPTION 'option' RC=24
DMSTPD058E END-OF-FILE OR END-OF-TAPE RC=40
DMSTPD105S ERROR Inn' WRITING FILE 'fn ft fm' ON DISK RC=100
DMSTPD109S VIRTUAL SiORAGE CAPACITY EXCEEDED RC=104
DMSTPD110S ERROR 'nnA READING 'TAPn(cuu), RC=100

Section 2. CMS Commands 195

TXTLIB

TXTLIB

Use the TXTLIB command to update CMS text libraries. The, format of tbe
TXTLIB command is:

TXT lib GEN libname fn1 [fn2 . -..]

ADD libname fn1 [fn2 ...] 2.2!i21l,§:
r ,

DEL libname membername 1 [membernaae2 •••] ITER! I
IR1~1S I

MAP libname [(options ••• [)]] I PRIRTI
L .I

GEN creates a TXTLIB on your A-disk. If a TXTLIB with the same
name already exists, it'is replaced.

ADD adds TEXT files to the end
read/write disk. No checking
entry points, or CSECTs.

of an existing TXTLIB on a
is done for duplicate names,

DEL deletes members from a TXTLIB on a read/write disk and
compresses the TXTLIB to remove unused space.' If ~ore'th~n
one member exists with the same name, only the first entry is
deleted.

MAP lists the ~ames (entry points) of TXTLIB members, their
locations in the library, and the number of entries.

1ibname specifies the filename of a file with a filetype of TXTLIE,
which is to be created or listed or from which members are to
be deleted or added.

fn1 [fn2 •••]
specifies the name(s) of file(s) with filetype(s) of TEXT,
that you want to add to a TXTLIB.

membername1 [membername2 •••]
specifies the name(s) of TXTLIB member(s) that you want to
delete.

Q:E!i.2!l§:

TERM displays information about the TXTLI~ on your terminal.

writes a CMS file, named libname !AP A5, that contain~ a list
of TXTLIB members.

PRINT spools a copy of the TXTLIB map to the virtual printer •

.2'§A9~ !!2!~§

1. When a TEXT file is added to a library, its membername(s) are taken
from the CSECT names or NAME statements in the TEXT file. Deletions
and LOAD or INCLUDE command references must be made on these names~
For example, a TEXT file with a filename of TESTPROG that contains
CSECTs named CHECK and RECHECK, when added to a TXTLIB, creates
members named CHECK and RECHECK.

196 IBM VM/370 CMS Command and Macro Reference

TXTLIB

2. Members must be deleted by their initial entry in the dictionary
(that is, their "name" or the first ID name). Any attempt to
delete a specific alias or entry point within a member will result
in a "Not found" message.

3. If you want your TXTLIBs to be searched for missing subroutines
during CMS loader processing; you must identify the TXTLIB on a
GLOBAL cemmand; for example:

global txtlib new lib

4~ You may add OS linkage editor control statements NAME, ALIAS,
ENTRY, and SETSSI to a TEXT file before adding it to a TXTLIB. Yeu
must follow OS linkage editor conventions concerning format (column
1 must be blank) and placement within the TEXT file. The specified
entry point must be located within the CSECT.

5. TXTLIB members are not fully link-edited, and may return erroneous
entry points during dynamic loading.

6. The total number of members in the TXTLIB file cannot exceed 1000.
When this number is reached, an error message is displayed. The
total number of entry points in a member cannot exceed 255. When
this number is reached, an error message is displayed and the next
text file (if there is one) is processed. The text litrary created
includes all the text files entered up to (but not including) the
one that caused the overflow.

7. TERM or PRINT options will erase the old MAP file, if one exists.

When the TXTLIB MAP command is issued with the TERM option, the contents
of the directory of the specified text library are displayed at the
terainal. The number of entries in the text library (xxx) is also
displayed.

ENTRY INDEX
name location

xxx ENTRIES IN LIBRARY

DMSLBT001E NO FILENAME SPECIFIED RC=24
DMSLBT002E FILE 'fn ft' NOT FOUND RC=28
DMSLBT002W FILE 'fn ft' NOT FOUND RC=4
DMSLBT003E INVALID OPTION 'option' RC=24
DMSLBT013E MEMBER 'name' NOT FOUND IN LIBRARY 'fn ft fm' RC=32
DMSLBT01.E INVALID FUNCTION tfunction' RC=24
DMSLBT037E DISK 'mode' is READ/ONLY RC=36
DMSLBT046E NO LIBRARY NAME SPECIFIED RC=24
DMSLBT047E NO FUNCTION SPECIFIED RC=24
DMSLBT056E FILE 'fn ft fm' CONTAINS (NAMEIALIASIENTRYIESD] INVALID

RECORD FORMATS RC=32
DMSLBT056W FILE. 'fn ft fm' CONTAINS [{NAMEIALIASIENTRYIESD}] INVALID

RECORD FORMATS RC=4
DMSLBT069E DISK 'model NOT ACCESSED RC=36
DMSLBT104S ERROR 'nn'READING FI.LE 'fn ft fm' FROM DISK RC=100
DMSLBT105S ERROR Inn' WRITING FILE 'fn ft fm' ON DISK RC=100
DMSLBT106S NUMBER OF MEMBER NAMES EXCEEDS MAX 'nnnn' • FILE' fn ft ,. NeT

ADDED RC=88
DMSLBT213W LIBRARY 'fn ft fm' NOT CREATED RC=4

Section 2. CMS Commands 197

TYPE

TYPE

Use the TYPE command to display all or part of a CMS file at the
terminal in either EBCDIC or the hexadecimal representation of the
EBCDIC code. The format of the TYPE command is:

r-------.----------.--------.---,
Type

fn

ft

fm

recl

recn

... ..."
fn ft [fm] I recl I recnll [(options ••• [)]]

* I * 1* II
I 1 I II
L

[HEI]

L .J.J

... ..."
ICOL { XXXXX}-1 yyyyy II
I .1 Il£~clll
L L.iI.J

is the filename of the file to be displayed.

is the filetype of the file to be displayed.

... ,
I MEMBER { * }I
I name I
L .I

is the filemode of the file to be displayed. If this field is
omitted, the A-disk and its extensions are searched to locate
the file. If fm is specified as an asterisk (*), all disks are
searched, and the first file found is displayed.

is the record number of the first record to be displayed. This
field cannot contain special characters. If recl is greater
than the number of records in the file, an error message is
displayed. If this field is omitted or entered as an asterisk
(*), a record number of 1 is assumed.

is the record number of the last record to be displayed. This
value cannot contain embedded commas. If this field is not
specified, is entered as an asterisk (*), or is greater than the
number of records in the file, displaying continues until end of
file is reached.

COL xxxxx-yyyyy
displays only certain columns of each record. XXXXX specifies
the start column and yyyyy the end column of the field within
the record that is to be displayed. The string xxxxx-yyyyy
may have a maximum of eight characters; additional characters
are truncated.

If columns are not specified, the entire record is displayed
unless the filetype is LISTING, in which case the first
position of each record is not displayed, since it is assumed
to he a carriage control character.

HEI displays the file in hexadecimal format.

198 IBM VM/370 CMS Command and Macro Reference

MEMBER
MEM {n:me}

TYFE

displays member(s) of a library. If ft is MACLIB or TXTLIB, a
MEMBER entry can be specified. If an asterisk (*) is
specified, all members of the library are displayed. If a name
is specified, only that particular member is displayed.

!!§~~ !21~§

1. If the HEX option is specified, each record can be displayed in its
entirety; if not, no more than 130 characters of each record can be
displayed.

2. The length of each output line is
current terminal linesize (as
command), whichever is smaller.

limited to 130 characters or the
specified by the CP TERMINAL

The file is
specifications.
a header record:

displayed at the terminal according to the given
When you use the HEX option, each record is preceded by

RECORD nnnnn LENGTH=nnnnn

DMSTYP002E FILE 'fn ft fm' NOT FOUND RC=28
DMSTYP003E INVALID OPTION 'option' RC=24
DMSTYP005E NO 'option' SPECIFIED RC=24
DMSTYP009E COLUMN 'col' EXCEEDS RECORD LENGTH RC=24
DMSTYP013E MEMBER 'name' NOT FOUND IN LIBRARY RC=32
DMSTYP029E INVALID PARAMETER 'parameter' [IN THE OPTION 'option' FIELD]

RC=24
DMSTYP033E FILE 'fn ft fm' IS NOT A LIBRARY RC=32
DMSTYP039E NO ENTRIES IN LIBRARY ~fn ft fm' RC=32
DMSTYP049E INVALID LINE NUMBER 'line number' RC=24
DMSTYP054E INCOMPLETE FILEID SPECIFIED RC=24
DMSTYP062E INVALID * IN FILEID RC=20
DMSTYP104S ERROR 'nn' READING FILE 'fn ft fm' FROM DISK RC=100

Section 2. CMS Commands 199

UPDATE

UPDATE

Use the UPDATE command to modify program source files. The UPDATE
command accepts a source input file and one or more files containing
UPDATE control statements and updated source records; then it creates an
updated source output file, an update log file indicating what changes,
if any, were made, and an update record file if more than a single
update file is applied to the input file. The format of the UPDATE
command is:

Update

fn1 ft1 fm1

fn2 ft2 fm2

REP

... ... " fn1 Ift1 Ifm1 [fn2 [ft2 [fm2]]] I I ((options ••• [)]]
I !'§~~~!!1& IAl II
L L .J.J

... , ... , ... , ... ,
g,Etig1!.§: IREP I I~~.Q!! I IINC I ICTL I

I!!Q!~~ I INOSEQ81 I!!Ql!!~1 I~Q~111
L .J L .J L .J L .J

... , ... , ... , r ,
ISTK I II~!H! I I~.!.§! I ISTOR I
I!!Q~!!SI INOTERMI IPRINTI 1l!.Q'§lQ~1
L .J L .J L .J L .J

is the file identifier of the source input file. The file
must consist of 80-character card image records with
sequence fields in positions 73 through 80 or 76 through 80.
If the filetype or filemode are omitted, ASSEMBLE and A1 are
assumed, respectively.

is the file identifier of the update file. If the NOC~L
option is in effect, this file must contain UPDATE control
statements and updated source records. The default file
identifier is fn1 UPDATE A1. If the CTL option is
specified, this file must be a control file t~at lists the
update files to be applied; the default file identifier is
fn1 CNTRL A1.

creates an output source file with the same filename as
the input source file. If the output file is placed en
the same disk as the input file, the input file is
erased.

retains the old file in its original form, and assigns a
different filename to the new file, consisting of a
dollar sign ($) plus the first seven characters of the
input filename (fn1).

specifies that the entire sequence field (columns 73
through 80) contains an eight-digit sequence number cn
every record of source input.

200 IBn VM/370 CMS Command and Macro Reference

NOSEQ8

INC

CTL

STK

NOTERM

PRINT

STOR

UPDATE

specifies that columns 73-75 contain a three-character
label field, and that the sequence number is a five-digit
value in columns 76-80.

!2te: Source files sequenced by the CMS editor are
sequenced, by default, with five-digit sequence numbers.

increments sequence numbers in celumns 73 through 80 in
each record inserted into the updated output file,
according to specifications in UPEATE control statements.

puts asterisks (********) in the sequence number field of
each updated record inserted from the update file.

specifies that fn2, ft2, and fm2 describe an update
control file for applying multiple update files to the
source input file •. (See "The CTL Option.")

!2tel The CTL option implies the INC option.

specifies that a single update file is to be applied to
the source input file.

stacks information from the centrol file in the CMS
console stack~ STK is valid only if the CTL option is
also specified and is useful only when the UPDATE command
is executed in an EXEC procedure.

does not stack control file infermation in the console
stack.

displays warning messages at the terminal whenever a
sequence or update control card error is discovered.
(Such warning messages appear in the update log, whether
they are displayed at the terminal or not.)

suppresses the display of warning messages at the
terminal. However, error messages that terminate the
entire update procedure are displayed at the terminal.

places the update log file on disk. This file has a file
identifier "fn UPDLOG", where "fn" is the filename of the
file being updated.

prints the update log file directly on the virtual
printer.

specifies that the source input file is to be read into
storage and the updates performed in storage prior to
placing the updated source file en disk. This option is
meaningful only when used with the CTL option since the
ben~fit of increased processing speed is realized when
processing multiple updates. STCR is the default when
CTL is specified.

specifies that no updating is to take place in storage·.
NOSTOR is the default when single updates are being
applied (CTL is omitted from the command line).

Section 2. CMS Commands 201

UPDATE

UPDATE CONTROL STATE8ENTS

The UPDATE control statements let you insert, delete, and replace source
records, as well as resequence the output file.

All references to the sequence field of an input record refer to the
numeric data in columns 73-80 of the source record, or columns 76-80 if
NOSEQ8 is specified. Leading zeros in sequence fields are not required.
If nO sequence numbers exist in an input file, a preliminary UPDATE with
only the '.1 S' control statement can be used to establish file
sequencing.

Sequence numbers are checked while updates are being applied; an
error condition results if any sequence errors occur in the update
control statements, and warnings are issued if an error is detected in
the sequencing of the input fi'le. Any source input records with a
sequence field of eight blanks are skipped, without any indication of a
sequence error. Such records may b~ replaced or deleted only if they
occur within a range of records that are being replaced or deleted
entirely and if that range has limits with valid sequence numbers.
There is no means provided for specifying a sequence field of blanks on
an UPDATE centrol statement.

All UPDATE control statements are identified by the characters '.1' in
columns 1 and 2 of the 80-byte record, followed by one or more blanks
and additional, blank-delimited fields. Control statement data must net
extend beyond column 50.

~~.QJ!~!!~£! ~Q1!!f:.Q! ~!g!~J!!~n! -- resequences the updated source output file
in columns 73-80 (if SEQ8 is specified), or in columns 76-80 with the
label placed in columns 73-75 (if NOSEQ8 is specified). The format ef
the SEQUENCE control statement is:

r--,
.1 S [seqstrt [seqincr [label]]] I L--___ --J

seqstrt

seqincr

label

is a one- to eight-digit numeric field specifying the
first decimal sequence number to be used. The default
value is 1000 if SEQ8 is specified and 10 if NOSEQ8 is
specified.

is a one- to eight-digit numeric field specifying tbe
decimal increment for resequencing the output file.
The d~fault is the "seqstrt" value.

is a three-character field to be duplicated in columns
73-75 of each source record if NOSEQ8 is specified.
The default value is the first three characters of the
input filename (fn1).

If you use the SEQUENCE statement, it must be the first statement in the
update file. If any valid control statement precedes it, the resequence
operation is suppressed.

202 IBM VM/370 CMS Command and Macro Reference

UPDATE

Each source record is resequenced in columns 73-80 as it is written
onto the output file, including unchanged records from the source file
and records inserted from the update file.

INSERT Control Statement -- inserts all
next-control-statement:-into the output
control statement is:

records following it, up to the
file. The format of the INSERT

./ I seqno ($ (seqstrt (seqincr]]]

seqno

$

seqstrt

seqincr

is the sequence number of the record in the source
input file following which new records are to be added.

is an optional delimiter indicating that the inserted
records are to be sequenced by increments.

is a one- to eight-digit numeric field specifying the
first decimal number to be used for sequencing the
inserted records.

is a one- to eight-digit numeric field specifying the
decimal in~rement for sequencing the inserted records.

All records following the "./ I" statement, up to the next contrel
statement, are inserted in the output file following the record
identified by the "seqno" field. If the NOINC option is specified, each
inserted record is identified with asterisks (********) in columns
73-80. If either the INC or CTL option is specified, the records are
inserted unchanged in the output file, or they are sequenced according
to the "seqstrt" and "seqincr" fields, if the dollar sign ($) key is
specified.

The default sequence increment, if the dollar sign is included, is
determined by using one tenth of the least significant, nonzero digit in
the seqno field, with a maximum of 100. The default seqstrt is computed
as seqno plus the default seqincr. For example, the control statement:

./ I 2600 $ 2610

causes the inserted records to be sequenced XXX02610, XXX02620, and so
forth (NOSEQ8 assumed here). For the control statement:

./ I 240000 $

the defaulted seqincr is the maximum, 100,
number is 240100. SEQ8 is assumed, so
sequenced 00240100, 00240200, and so forth.

and the starting sequence
the inserted records are

If either INC or CTL is sFecified but the dollar sign is net
included, whatever sequence number appears on the inserted records in
the update file is included in the output file.

Section 2. eMS Commands 203

UPDATE

DELETE Control Statement ---deletes one or more records from the source
fIle:- The-format-of-the DELETE control statement is:

r-----------~----------------------------~~~
./ D segn01 [segn02] [$] I

segn01

seCjn02

$

is th~ seguence number identifying the first or only
record to be deleted.

is the seCjuence number of the last record to be
deleted.

is an optional delimiter indicating the end of the
control fields.

;< •

All records of the input file, beginning at seCjno1, up to and
including the segn02 record, are deleted from the output file. If the
segn02 field is omitted, only a single record is deleted.

REPLACE Control ~!g!~~~n! -- replaces one or more input records with
updated records from the update file. The format of the REPLACE control
statement is:

t ----,

I' ~/ R seCjn01 [segn021 [$ [segstrt [seCjincr]]]1

seCjn01

seCjD02

$

segstrt

seCjincr

. is, the seCjuence- number of the first input record to be
replaced.

is the seCjuence number of , the last record to be
replaced.

is an optional delimiter key indicating that the
substituted records are to be seCjuenced incrementally.

is a one- to eight-digit numeric field specifying the
first decimal number to be used for seguencing the
substituted records.

is a one- to eight-digit numeric field specifying the
decimal increment for seCjuencing the substituted
records.

All records of the input file, beginning with the seCjn01 record, up
to and including the seCjn02 record, are replaced in the output file by
the records fcllowing the "./ R" statement in the update file, up to the
next control statement. As with the "./ D" (delete) function, if the
segn02 field is omitted, only a single record is replaced, but it may be
replaced by more thana single inserted record. The "./ R" (replace)
function is performed as a delete followed by an insert: thus, the
number of statements inserted need not match the number deleted. The
dollar sign ($), seCjstrt, and seCjincr processing is identical to that
for the insert function.

204 IBM~VM/370 CMS Command and Macro Reference

UPDATE

~QMM~!£ ~!g!~!~! --allows inserting supplemental information that the
user may want. The format of the COMMENT statement is:

./ * [collment]

* indicates that this is a comment statement and is only
copied into the update log file.

SUMMARY OF FILES USED BY THE UPDATE COMMAND

The following discussion shows input and output files used ty the UPDATE
cOllmand for a:

• Single-level update
• Multilevel update
• Multilevel update with an auxiliary control file

12!.§~ 1!~,g~ ~! Qy!,EY! ~il~.§: If several read/write disks are accessed when
the UPDATE command is invoked, the following steps are taken to
determine the disk upon which the output files are to be placed (the
search stops as soon as one of the following steps is successful) :

1. If the disk on which the original source file resides is
read/write, then the output files are placed on that disk.

2. If that disk is a read-only extension of a read/write disk, then
the output files are placed on that particular read/write disk.

3. If neither of the other steps is. successful, the output files are
placed on the primary read/write disk (the A-disk).~'

SectiQn 2. eMS Commands 205

UPDATE

r---------,
I I fn ASSE8BLE r---------,
I I fn UPDATE I I $fn ASSEMBLE
I I I I fn UPDLOG
L---------..J I I

L---------..J
update fn

!.Qte.§ :

!.n !'§'§lUl~1~ is the source input file.

fn UPDATE contains UPDATE control statements and updated source input
records:-

$fn ASSEMBLE is the updated source file, incorporating changes,
addittons;--and deletions specified in the update file. The output
filetype is always the same as the filetype of the input file. These
default filetypes and filemodes can be overridden on the command line;
for example:

update testprog cobol b fix cobol b (rep

results in a source file' TESTPROG COBOL B being updated with contrel
statements contained in the file FIX COBOL B. The output file replaces
the existing TESTPROG COBOL B.

!.n QfR1Q~ contains a record of updates applied. If you do not want this
file written On disk, specify the PRINT option.

r---------,
I I
I I
I I
I I
I I
L--·-------..J

fn ASSEMBLE
fn CNTRL
fn UPDTABC
fn UPDTXYZ

update fn (ctl

r---------,
I I
I I
I ,
I I
L---------..J

!.n !~~~~~1~ is the source input file.

Slfn ASSEMBLE
fn UPDLOG
fn UPDATES

fn CNTRL is the control file that lists updates to be applied to the
source-file. These default filetypes and filemodes can be overridden en
the command line; for example:

update acct pliopt a test cntrl a (ctl

results in the file TEST CNTRL being used by the UPDATE command to
locate the update files for ACCT PLIOPT.

206 IBM VM/370' C8S Command and Macro Reference

UPDATE

!~ QE~!!~£ and fn QfQ!!!~ are update files containing UPDATE control
statements ai~-n;i source records. These files must have filenames that
are the same as the source input file. The first four characters of the
filetype must be "UPDT." The UPDATE command searches all accessed disks
to locate the update files.

$fn ASSEMBLE is the updated source file, incorporating changes,
additIons~-aid deletions specified in the update files. The filetype is
always the same as the filetype of the source input file.

!~ QgQ1Qg contains a record of updates applied. If you do not want this
file written on disk, specify the PRINT option.

!~ QgQ!!!~ summarizes the updates applied to the source file.

!~~ £Q!!IQ1 1111 (fn CNTRL) may not contain UPIATE control statements.
It may only list the filetypes of the files that contain UPDATE control
statements. This control file contains the records:

TEXT MACS CMSLIB
TWO UPDTABC
ONE UPDTXIZ

where Qg~!!~£ and QgQ!!!~ are the filetypes of the update files. The
UPDATE command applies these updates to the source file beginning with
the last record in the control file. Thus, the updates in fn UPDTX1Z
are applied before the updates in fn UPDTABC.

When you create update files whose filetypes begin with 'UPDT', you
may omit these characters when you list the updates in the control file;
thus, the CNTRL file may be written:

TEXT MACS CMSLIB
TWO ABC
ONE XIZ

TEXT, TWO, ONE: The first column of the control file consists of an
update-level-Identifier, which may be from one to five characters long.
These identifiers are used by VM/370 updating procedures, like the
VMFASM EXEC, to locate and identify text decks produced by multilevel
updates.

MACS: The first record in the control file must be a MACS record which
contains an update level identifier (TEXT) and, optionally, lists up to
eight macro library (MACLIB) filenames.

The information provided in the MACS card and the update level
identifier are not used by the UPDATE command unless the STK option is
specified. They are, however, required in the CNTRL file.

Section 2. CMS Commands 207

UPDATE

r---------,
I I
I I
I I
I I
I I
L-~-------J

fn ASSEMBLE
fn CNTRL
fn UPDTABC
fn UPDTXYZ
fn AUXLIST
fn FIX01
fn FIX02

update fn (ctl

r----------,
I 1
I 1
1 1
I 1
L----------J

Sfn ASSEMBLE
fn UPDLOG
fn UPDATES

!~ A~~]~~~~, !D ~B1R1, ID ~g~~!~~, In UPDTXYZ, Sfn ASSEMBLE, fn UPDLOG,
and fn UPDATES are used as described -above; for- "Multilevel-Update:"
except that-the CNTRL file contains:

TEXT MAes CMSLIB
TWO UPDTABC
ONE UPDTXYZ
TEXT AUXLIST

!Q! in the filetype AUXLIST indicates that this is the filetype of an
auxiliary control file that contains an additional list of updates. The
first three characters of the filetype of an auxiliary control file must
be "AUX"; the remaining character(s) (to ~ maximum of 5) may be
anything. The filename must be the same as the source input file.

An auxiliary file may also be specified as:

xxxxx AUX

in the control file. For example, the record:

FIX TEST AUX

identifies the auxiliary file fn AUXTEST.

Note that if you give an auxiliary control file the filetype AUXPTF, the
UPDATE command assumes that it is a simple update file and does net
treat it as an auxiliary file.

I PREFERRED AUX FILE: A preferred AUX file may be specified. A preferred
1 AUX-1IIe-contains-the version of an update that applies to your version
I of the source file. (There may be more than one version of the same
1 update if there is more than one version of the source file. Fer

.1 example, you need one version for the source file that has a system
1 extension program product installed, and you need another version for
1 the source file that does not have a program product installed.)

When you specify an auxiliary control file, you can specify more than
one filetype. The first filetype indicates a file that UPDATE uses only
on one condition: the files that the second and subsequent filetypes
indicate do not exist. If they do exist, this AUX file entry is ignored
and no updating is done. The files that the second and subsequent
filetypes indicate are preferred because, if they exist, UPDATE does not
use the file that the first filetype indicates. For example, assume
that the file 'fn· ASSEMBLE' does exist. The coritrol file MYMODS CNTRL:

208 IBMVM/370 CMS Command and Macro Reference

UPDATE

TEXT MACS MYMACS CMSLIB OSMACRO

MY2 AUXTEST

MYl AUXMINE AUXTEST

and the command:

UPDATE fn ASSEMBLE * MYMODS CNTRL (CTL

would result in UPDATE finding the preferred auxiliary control file 'tn
AUXTEST', and therefore not using 'fn AUXMINE' to update 'tn ASSEMBLE'.
UPDATE would then proceed to the MY2 AUXTEST entry and update 'tn
ASSEMBLE' with the updates listed in Ifn AUXTEST.' It is assumed that
AUXTEST and AUXMINE list similar but mutually exclusive updates.

The search for a "preferred" auxfile will continue until one is found or
until the token is an invalid filetype; that is, less than four or more
than eight characters. This token and the remainder of the line are
considered a comment.

!~ Il!Ql and fn ~!!Ql are update files containing UPDATE control
statements and -new source records to be incorporated into the input
file. When update files are listed in an auxiliary control file, they
can have any filetype you choose but the filename must be the same as
the source input file.. The update files, as well as the AUX file, may
be on any accessed disk. These are indicated in fn AUXLIST as follows:

FIX02
FIXOl

The updates are applied from the bottom of the auxiliary file. Thus, tn
FIXOl is aPFlied to the source file before fn FIX02. Since tbe
auxiliary file is listed at the bottom of the control file, these
updates are applied before UPDTXYZ and UPDTABC.

ADDITIONAL CONTROL l!1~ R!~QR~~: In addition to the MACS record, tbe
1Iletypes-of-update (UPDT) files, and the filetypes of auxiliary control
(AUX) files, a control file may also contain:

• comments. These records begin with an asterisk (*) in column 1.
Comments are also valid in AUX files.

• PTF records. If the characters PTF appear in the update level
identifier field, the UPDATE command expects the second field to
contain· the filetype of an update file. The filetype may be
anything; the filename must be the same as the source input file.

• Update level identifiers not associated with update files.

The following example of a control file shows all the valid types of
records:

* Example of a control file
ABC MACS MYLIB
TEXT
004 UPDTABC
003 XYZ
002 AUXLIST1
001 LIST2 AUX
PTF TESTFIX

I]~ ~I! Q~I1Q!: The STK (~tack) option is valid only with the CTL opticn
and is meaningful only when the UPDATE command is invoked within an EXEC
procedure.

Section 2. CMS Commands 209

UPDATE

When the STK option is specified, UPDATE stacks the following data
lines in the console stack:

first line: * update level identifier
second line: * library list from MACS record

The update level identifier is the identifier of the most recent update
file that was found and applied. For example, if a control file
contains

TEXT MACS CMSLIB OSMACRO TESTMAC
OFA UPDTOFA
PFA UPDTOFA

and the UPDATE command appears in an EXEC as follows:

UPDATE SAMPLE (CTL STK
&READ VARS &STAR &TEXT
&READ VARS &STAR &LIB1 &LIB2 &LIB3 &LIB4

then the variable symbols set by the SREAD VARS statements have the
following values if the file SAMPLE UPDTOFA is found and applied to the
file SAMPLE ASSEMBLE:

~I.!!!~Bl
&STAR
&TEXT
&LIBl
&LIB2
&LIB3
&LIB4

!glY~

* OFA
CMSLIB
OSMACRO
TESTMAC
null

The library list may be useful to establish macro libraries in a
subsequent GLOBAL command within the EXEC procedure. If no update files
are found, UPDATE stacks the update level identifier on the MACS record.

FILE 'fn ft fm,' REC In = update control statement

This message is displayed when the TERM option is specified and an
error is detected in an update file. It identifies the file and
record number where the error is found.

DMSUPD177I WARNING
IGNORED.]

MESSAGES ISSUED (SEVERITY=nn). ['REP' OPTICN

Warning messages were issued during the updating process. The
severity shown in the error message in the "nn" field is the
highest of the return codes associated with the warning messages
that were generated during the updating process.

The warning return codes have the following meanings:

RC = 4; Sequence errors were detected in the original source file
being updated.

RC = 8; Sequence errors, which did not previously exist in the
source file being updated, were introduced in the output file
during the updating process.

210 IBM VM/370 CMS Command and Macro Reference

UPDATE

RC = 12; Any other nonfatal error detected during the updating
process. Such errors include invalid update file control
statements and missing update or PTF files.

The severity value is passed back as the return code from the
UPDATE com.and. In addition, if the REP option is specified in
the command line~ then it is ignored, and the updated source file
has the fileid "$fn1 ftl", as if the REP option was not specified.

DMSUPD1781 UPDATING ('fn ft fm'] WITH 'fn ft fm'

The specified
This message
command line.

update file is being applied to the source file.
appears only if the CTL option is specified in the

The updating process continues.

DMSUPD304I UPDATE PROCESSING WILL BE DONE USING DISK

An insufficient amount of virtual storage was available to perform
the updating in virtual storage, so a CMS disk must be used. This
message is displayed only if NOSTOR was specified in the UPDATE
command line.

DMSUPD001E NO FILENAME SPECIFIED RC=4
DMSUPD002E FILE 'fn ft fm' NOT FOUND RC=28
DMSUPD003E INVALID OPTION 'option' RC=24
DMSUPD007E FILE 'fn ft fm' IS NOT FIXED, 80 CHAR. RECORDS RC=32
DMSUPD010W PREMATURE EOF OF FILE 'fn ft fm' --SEQ NUMBER , ••••••• ~, NeT

FOUND RC=12
DMSUPD024E FILE 'UPDATE CMSUT1 fm' ALREADY EXISTS RC=28
DMSUPD037E DISK 'mode' IS READ/ONLY RC=36
DMSUPD048E INVALID MODE 'mode' RC=24
DMSUPD065E 'option' OPTION SPECIFIED TWICE RC=24
DMSUPD066E 'option' AND 'option' ARE CONFLICTING OPTIONS RC=24
DMSUPD069E DISK 'mode' NOT ACCESSED RC=36
DMSUPD070E INVALID PARAMETER 'parameter' RC=24
DMSUPD104S ERROR 'nn' READING FILE 'fn ft fm' FROM DISK RC=100
DMSUPD105S ERROR 'nn' WRITING FILE 'fn ft fm' ON DISK RC=100
DMSUPD174W SEQUENCE ERROR INTRODUCED IN OUTPUT FILE: •••••••• TO

•••••••• , RC=8
DMSUPD176W SEQUENCING OVERFLOW FOLLOWING SEQ NUMEER' •••••••• ' RC=8
DMSUPD179E MISSING OR DUPLICATE 'MACS' CARD IN CONTROL FILE 'fn ft fm'

RC=32
DMSUPD180W MISSING PTF FILE lfn ft fm' RC=12
DMSUPD181E NO UPDATE FILES WERE FOUND RC=40
DMSUPD182W SEQUENCE INCREMENT IS ZERO RC=8
DMSUPD183E INVALID {CONTROLIAUX} FILE CONTROL CARt RC=32
DMSUPD184W './S ' NOT FIRST CARD IN INPUT FILE --IGNORED RC=12
DMSUPD185W INVALID CHAR IN SEQUENCE FIELD , •••••••• , RC=12
DMSUPD186W SEQUENCE NUMBER , •••••••• , NOT FOUND RC=12
DMSUPD187E OPTION 'STK' INVALID WITHOUT 'CTL' RC=24
DMSUPD207W INVALID UPDATE FILE CONTROL CARD RC=12
DMSUPD210W INPUT FILE SEQUENCE ERROR: , •••••••••• TO , ••••••••• , RC=4
DMSUPD299E INSUFFICIENT STORAGE TO COMPLETE UPDATE RC=41
DMSUPD300E INSUFFICIENT STORAGE TO BEGIN UPDATE RC=41

Section 2. CMS Commands 211

Immediate Commands

Immediate Commands

You can issue an Immediate command from the terminal only after causing
an attention interruption by pressing the Attention key (or its
equivalent). These commands are processed as soon as they are entered.
The BT and RT Immediate commands are also rec~gnized when they are
stacked in an EXEC procedure, and the BT Immediate command can be
appended to a CMS command preceded by a logical line end symbol (I).
Any program execution in progress is suspended until the Immediate
command is precessed.

None of the I •• ediate commands issue responses.

Use the BB command to stop the
at the end of the current job.
is:

BB

execution of a CMS batch virtual machine
The format of the BE Immediate command

L-__ • _________________________ ~

1. If the batch virtual machine is running disconnected, it must be
reconnected.

2. When the HB command is executed, CMS sets a flag such that at the
end of the current job, the batch processor generates'accounting
information for the current job and then logs off the CMS batch
virtual machine.

]Q

Use the HO command during the execution of a command or one of your
programs to stop the recording of trace information. program execution
continues to its normal completion, and all recorded trace information
is spooled to the printer. The format of the HO command i$:

--,
BO I L-____ . ___ ~

212 IBM VM/310 CMS Command and Macro Reference

Immediate Commands

Use the HT command to suppress all terminal output generated by any ces
command or your program that is currently executing. The format of the
HT command is:

HT
~-----------------.--~

1. program execution continues. When the
normal terminal output resumes. Use
typing or displaying.

ready message is displayed,
the RT command to restore

2. CMS error messages having a suffix letter of W, E, S, or T cannct
be suppressed.

Use the HX command to stop the execution of any CMS or CMS/DOS command
or program, close any open files or I/O devices, and return to the ces
command environment. The format of the HX command is:

HX

Q~~~ H2!~~

1. HX clears all file definitions made via the FILEDEF or DLEL
commands, including those entered with the PERM option.

2. The HX command is executed when the next SVC or I/O interruption
occurs: therefore a delay may occur between keying HX and the
return to CMS. All terminal output generated· before HX is
processed is displayed before the command is executed~

Use the RO command, during the ex~cution of a command or one of your
programs, to resume the recording of trace information that was
temporarily suspended by the SO command. Program execution continues to
its normal completion, and all recorded trace information is spooled to
the printer. The format of the RO command is:

RO
---~

Section 2. CMS Comman~s 213

Immediate Commands

Use the RT command to restore terminal output from an executing C!S
command or one of your programs that was previously suppressed by the HT
command. The format of the RT command is:

RT

Program execution continues, and displaying continues from the current
point of execution in the program. Any terminal output that is
generated after the HT command is issued and up to the time the RT
command is issued is lost. Execution continues to normal program
completion.

Use the SO command during the execution of a command or one of your
programs to temporarily suspend the recording of trace information.
Program execution continues to its normal completion and all recorded
trace information is spooled to the printer. The format of the SO
command is:

r ---,
I so I ~___J

To resume tracing, issue the RO command.

214 IBM VM/370 CMS Command and Macro Reference

EDIT Subcommands

Section 3. EDIT Subcommands and Macros

This section describes the formats and operands of the EDIT subcommands
and macros~ EDIT subcommands are valid only in the environment of the
CMS editor, which is invoked with the EDIT command. The EDIT command
format is described in "Section 2. CMS Commands."

The editor has two modes of operation: edit mode and input mode.
Whenever the EDIT command is issued, edit mode is entered; when the
INPUT or REPLACE subcommands are issued with no operands, input mode is
entered. In input mode, all lines you enter are written into the file
you are editing. To return to edit mode fro~ input mode, you must enter
a null line (one that has no data on it) •

For a functional description of the CMS e~itor and tutorial
information on how to use it, consult the !~LJ1~ ~~~]§~~~ §~ig~.

For a summary of the default settings assumed by the editor for C~S
reserved filetypes, see "Appendix A: Reserved Filetype Defaults."

EDIT Subcommands

The EDIT subcommands are listed in alphabetical order for easy
reference. Each subcommand description includes the format, a list of
operands (if any), usage notes, and responses. For those subcommands
that operate somewhat differently on a 3270 display terminal than on a
typewriter terminal, an additional discussion, "Display Mode
Considerations, " is added.

Subcommands that are valid only with 3270 display terminals, namely
SCROLL, SCROLLUP, and FORMAT have the notation "(3270 only]" next to the
subcommand names. The FORWARD and BACKWARD subcommands, which were
designed for use with 3270 terminals but can be issued at any terminal,
have the notation "(primarily 3270)" next to the subcommand names.

Section 3. EDIT Subcommands and Macros 215

EDIT Subcomllands-ALTER

ALTER

Use the ALTER subcommand to change a specific character to another
character, one that may not be available on your terminal keyboard. Tbe
ALTER subcommand allo~s you to reference characters by their hexadecimal
values~ The format of the ALTER subcommand is:

ALter char1 char2
r r"
In IG II
1* 1* II
11 I II
L L.J.J ~ ___ .J

char1 specifies the character to be
either as a single character or
(00 through FF).

altered. It may be specified
as a pair of hexadecimal digits

cbar2 specifies the character to which char1 is to be altered. It may
be specified either as a single character or as a pair of
hexadecimal digits.

n

G

indicates the number of lines to be searched for the specified
character. If you specify an asterisk (*), all lines in tbe
file, beginning with the current line, are searched. If this
option is omitted, then cnly the current line is searched.

requests the editor to alter every occurrence of char1 in tbe
lines specified. If G or * is not specified, only the first
occurrence of c~ar1 in each line specified is altered.

!!§A~l§ !Q~~§

1. If char2 is a hexadecimal value that cannot be represented on your
terminal, it may appear as a blank, for example:

input XSLC
alter X 02

SLC

Column 1 contains an X'02', which cannot be displayed.

2. Use the ZONE subcommand if you want only particular columns
searched for a specific character.

When verification is on, altered lines are displayed at your terminal.

When you request a global change on a 3270, the display is changed only
once, to reflect the final position of the current line pointer. The
editor displays a message to indic~te the number of lines changed:

{ :gnn } LINE (S) CHANGED

216 IBM VM/370 CMS Command and Macro Reference

EtIT Suhcommands-AUTOSAVE

AUTOSAVE

Use the AUTOSAVE subcommand to set, reset, or display the autoaatic save
function of the editor. When the automatic save function is in effect,
the editor automatically issues the SAVE subcommand each time the
specified numher of changes or insertions are made. The format of the
AUTOSAVE subccmmand is:

AUTOsave
I r ,
I In I
I IOFFI
I L ~

n is a decimal number between 1 and 32767, indicating the frequency
of the automatic save function. One SAVE subcommand is issued fer
every n lines that are changed, deleted, or added to the file.

OFF turns off the automatic save function.
setting.

Y2~~ !Q!~2

This is the initial

1. Each line affected by the $MOVE macro is treated as one update.
However, all changes caused by a single CHANGE, DELETE, DSTRING,
GETFILE, or OVERLAY subcommand are treated as a single update, no
matter how many lines are affected.

2. If you are editing a file on a read-only disk, and an automatic
save request occurs, the message:

SET NEW FILE MODE AND RETRY

is issued. You can enter CMS subset and access the disk in
read/write mode, or use the FMODE subcommand to change the fi1emode
to the mode of a read/write disk. If you were in input mode, you
are placed in edit mode.

3. The message "SAVED" is displayed at the terminal each time the save
operation occurs.

If you issue the AUTOS AVE subcommand with no operands, the editer
displays the current setting of the automatic save function.

Section 3~ EDIT Subcommands ana ftacro3 217

EDIT Subcommands-BACKWARD, BOTTOM

BACKWARD (Primarily 3270)

Use the BACKWARD subcommand to move the current line pointer towards the
beginning of the file you are editing. The format of the BACKWABD
subcommand is:

,
r , I

BAckward I nl I
111 I
L .J I

.J

n is the number of records backward you wish to move the current line
pointer. If n is not specified, the current line pointer is moved
backward one line, toward the top of the file.

The BACKWARD subcommand is equivalent to the UP subcommand; it is
provided for the convenience of 327~ users.

When verification is on, the current line on the screen contains the
record located by the BACKWARD n value. If n exceeds the number cf
records above the current line, TOF is displayed on the current line.

On a typewriter
verification is on.

BOTTOM

terminal the new current line is typed if

Use the BOTTOM subcommand to make the last line of the file the new
current line. The format of the BOTTOM subcommand is:

Bottom

Use the BOTTOM subcommand followed by the INPUT subcommand to begin
entering new lines at the end of a file.

When verification is on, the last line in the file is displayed.

~12El~I ~~£~ ~~~2idg!g11~~§

If the BOTTOM subcommand is issued at a 3270 display terminal 'in display
mode, EOF: is displayed on the line following the current line, preceded
by the last records of the file; the rest of the screen's output area is
blank,.

218 IBM VM/370 CMS Command and Macro Reference

EDIT Subcommands-CASE, CHANGE

CASE

Use the CASE subcommand to indicate how the editor is to process
uppercase and lowercase letters. The format of the CASE subcommand is:

CASE
I r ,
I 1M I
I I U I
I L .I

~---.I

M indicates that the editor is to accept any mixture of uppercase and
lowercase letters for the file as they are entered at the terminal.

U indicates that the editor is to translate all lowercase letters to
uppercase letters before the letters are entered into the file. U
is the default value for all filetypes except MEMO and SCRIPT.

If you enter the CASE subcommand with no operand, the current setting is
displayed at the terminal.

If you specify CASE M when using a 3210 that does not have the lowercase
feature (RPQ), you can key in lowercase characters, but they appear cn
the screen as uppercase characters.

CHANGE

Use the CHANGE subcommand to change a specified group of characters to
another group of characters of the same or a different length. You may
use the CHANGE subcommand to change more than one line at a time. The
format of the CHANGE subcommand is:

r r "
Change [/string1[/string2(/lnIGII]]]

1*1* II
111 II
L L .1.1

/ (diagonal) signifies any unique delimiting character that does not
appear in the character strings involved in the change.

string1

string2

specifies a group of characters to be changed (old data).
string1 may be a null string.

specifies the group of characters that are to replace
string1 (new data) • string2 may be a null string; if
omitted, it is assumed null.

section 3. EDIT Subcommands and Macros 219

EDIT Subcommands-CHANGE

n or * indicates the number of lines to be .searched, starting at
the ~Qrrent line. If * is entered, the search is performed
until the end of the file is reached. If this option is
omitted, then only one line is searched.

G or * requests the editor to change every occurrence of string1
in the lines specified. If G or * is not specified, only
the first occurrence of .string1 in each line specified is
changed. If string1 is null, G or * may not be specified.

1. The first nonblank character following the CHANG!
any of its truncations) is considered the delimiter.

c.VM/370.CMS.*

subcommand (or
For example:

changes the first occurrence of VM/370 to CMS on every line frem
the current line to the end of the file.

2. If string2 is omitted, it is assumed to be a null string. Fer
example:

THIS ISN THE LINE.
change In
THIS IS THE LINE.

A null string causes a character deletion. If string1 is null,
characters are inserted at the beginning of the line. For example:

THIS IS THE LINE.
change //SO /
SO THIS IS THE LINE~

3. To change multiple occurrences of the same string on one line,
enter:

change/string1/string2/ 1 *

4. The CHANGE sUbcommand can be used on typewriter terminals to
display, without changing, any lines that contain the informatien
specified in string1. Enter:

change /string1/string11 * *

5. Use the ZONE subcommand to indicate which columns are to be
searched for string1. If string1 is wider than the current zone,
you receive the message:

ZONE ERROR

and you should either reenter the CHANGE subcommand or chan~e the
zone setting.

6. If the character string inserted causes the data line to extend
beyond the truncation column or the zone column, ·any excess
characters are truncated. (See the description of the TRUNC
subcommand for additional inf~rmation on truncation.)

7. You should use the ALTER
single character to some
available on your keyboard) •

subcommand wh~n you waht
special character (one

220 IBM VM/370 ellS Command and llacro Reference

to change a
that is not

EDIT Subcommands-CHANGE

8. When the IMAGE subcommand is set with the CANON operand, backspace
characters at the beginning or end o~ string1 are ignored.

9. To stack a CHANGE subcommand with no operands from a fixed-length
EXEC, you should use the &STACK control statement •

.§~~.Q!!~~~

When verification is on, every line that is changed is displayed.

If you issue the CHANGE subcommand without operands at a 3270 display
terminal in display mode, the following occurs:

1~ The record pointed to by the current line pointer appears in the
user input area of the display. If the line is longer than the
current truncation setting, it is truncated.

2. You can then alter the record in the user input area by retyping
part or all of the line, or by using the Insert, Delete, or Erase
EOF keys to insert or delete characters.

3. When the line is modified, press the Enter key, which causes the
record in the user input area to replace the old record at the
current line in the output display area.

If you bring a line down
change it, press the Erase
line is not changed.

to the user input area and decide
Input key and then the Enter key,

not to
and the

When a line is moved to the user input area, all nonprintable
characters (including tabs, backspaces, control characters, and so on)
are stripped from,the line. Also, any characters currently assigned to
VM/370 logical line editing symbols (I, ~, ¢, ") are reinterpreted when
the line is reentered. You should issue an explicit CHANGE subcommand
to change lines containing special characters.

The CHANGE subcommand is treated as
issued without operands at a typewriter
terminal that is not in display mode.

an invalid subcommand if it is
terminal or at a 3270 display

When you request a global change on a 3270 terminal, the display is
changed only once, to reflect the final position of the current line
pointer. The editor displays, in the message area of the display
screen:

{ ~gnn } LINE (S) CHANGED

to indicate the
request resulted
displayed as:

number of lines that were
in the truncation of any

updated.
lines,

nnnn LINE(S) CHANGED nnnn LINE(S) TRUNCATED

If the change
the message is

If the change request moves the current line pointer beyond the end
of the file, the word EOF: is displayed on the current line preceded by
the last records of the file. The rest of the output area is blank.

Section 3. EDIT Subcommands and Macros 221

EDIT Subcommands-CMS

eMS

Use the CMS subcommand to caus~ the editor to enter the CMS subset mode,
where you may execute those CMS commands that do not need to use the
.ain storage being used by the editor. The format of the CMS subcommand
is:

CMS L-________________________ ~___~

1. In CMS subset, you can execute
nucleus-resident or that executes
nucleus-resident CMS commands are:

CP
DEBUG
ERASE
FETCH

GENMOD
INCLUDE
LOAD
LOAD MOD

any CMS command that
in the transient area,.

S'I'ART
S'I'ATE
S'IATEW

The commands that execute in the transient area are:

ACCESS
ASSGN
COMPARE
DISK
DLBL
FILEDEF
GENDIRT
GLOBAL

LISTFILE
MODMAP
OPTION
PRINT
PUNCH
QUERY
READCARD

RELEASE
RENAME
SET
SVCTRACE
SYNONYM
TAPE
TYPE

To return to edit mode, use the CMS subset command RETURN.

is
The

2. If you attempt to execute a CMS command that requires main storage,
you receive the message:

INVALID SUBSET COMMAND

Results are unpredictable at this point. You should not attempt to
execute any program that executes in the user program area. using
the LOAD, INCLUDE (RESET), FETCH, START, and RUN commands could
load programs that would overlay the editor's storage area and its
contents. Use these commands only for programs that execute in the
transient area.

3. In an edit macro, if you attempt to use a command that is invalid
in the CMS subset, you receive a return code of -0002.

4. If you attempt to execute a CMS command that fails because cf
insufficient storage, your EDIT session may abnormally terminate.
You should save input you have entered before you enter CMS subset
mode.

222 IBM VM/370 CMS Command and Macro Reference

EDIT SUbcommands-C!S

~~2E~~2~2

After you issue the CMS subcommand, you receive the message:

CMS SUBSET

to indicate that you are in CMS subset mode. On a display terminal, the
screen is cleared before the editor issues this message; the display of
the file is restored when you enter the RETURN command.

Section 3. EDIT Subcommands and Macros 223

EDIT Subcollllands-DELETE, DOWN

DELETE

Use the DELETE subcommand to delete one or more lines
beginning with the current line. The line immediately
last line deleted becomes the riew current line. The
DELETE subcommand is:

r ,
DELete I nl

!!.h.!I~:

1*1
111
L .J

from a file,
following the

format of the

n indicates the number of lines to be deleted, starting at the
current line. if an asterisk (*) is entered, the remainder of the
file is deleted. If n is omitted, only one line is deleted.

!!~.§R.2.n.§~.§

None. If 'you delete the last line in the file, or if you issue the
DELETE subcommand when the current line pointer is already at the end cf
the file, the editor displays the message:

EOF: ,

~i§El~I ~.2g~ ~~~§ig~!~!ig~§

If you ,delete a record when using a display terminal in display mode,
the editor rewrites the output display area with the, records above the
current line pointer unchanged. The record at the current line pointer
and the remaining records on the screen move up ty one, and a new record
(if one exists) moves into the bottom of the output display area.

DOWN

Use the DOWN subCOmmand to advance the current line pointer forward in
the file. The line pointed to becomes the new current line. The format
of the DOWN subcommand is:

r,--,
I r , I
I DOwn Inl I
I 111 I
I L .J I

!.hn:!:

n indicates the .number of lines to advance the pointer, starting at
the current line. If n is not specified, the current line pointer
is advanced one line.

224 IBM VM/310 CMS Command and Macro Reference

EDIT Subco'mmands-DOWN, DSTRING

DOWN is equivalent to the NEXT and FORWARD subcommands.

When verification is on, the new current line is displayed at the
terminal; if the end of the file is reached, the message:

EOF:

is displayed.

DSTRING

Use the DSTRING subcommand to delete one or more lines beginning with
the current line, down to, but not including, the first line containing
a specified character string. The current line is not checked for the
character string. The format of the DSTRING subcommand is:

r-----------~------~--------------------------------~---------------------,
DString I /[string[/]] I L-__ ~ _________________________ J

~.b~~:

/ (diagonal) signifies any unique delimiting character that does not
appear in the string.

string specifies the group of characters for which ~ search is to
he made. If string is not specified, only the current line
is deleted.

The zone set by the ZONE subcommand or the default zone setting is
checked for the presence of the character string. A character string
with a length greater than the current zone setting causes the error
message ZONE ERROR.

If the character string is not found by the end of the file, no
deletions occur, the current line pointer is unchanged~ and the mes~~ge:

STRING NOT FOUND, NO DELETIONS MADE

is displayed.

~i~l~I ~£g~ ~£~§!g~!~!!£n§

If verification is on when the DSTRING sUbcommand'is issued at- a display
terminal in display mode, the screen is changed to reflect the- deletions
from the file.

section 3. EDIT,Subcommands arid Macrbs 225

EDIT Subcommands-FILE, FIND

FILE

Use the FILE subcommand to write the edited file on disk and,
optionally, override the file identifier originally supplied in the EDIT
command. The format of the FILE subcommand is:

r--,

fn

FILE I [fn [ft (fm]]]

indicates the filename for the file. If filename is
filetype and filemode cannot be specified, and the
filename, filetype, and filemode are used.

ft indicates the filetype for the file.

fm indicates the filemode for the file.

I

omitted,
existing

1. When you specify a file identifier, any existing file that has an
identical fileid is replaced. If the file being edited had been
previously written to disk, that copy of the file is not altered.

2. You can change the filename and filemode during the editing session
using the FNAME and FMODE subcommands.

The CMS ready message indicates that the file has been written to disk
and control is returned to the CMS environment.

FIND

Use the FIND subcommand to locate a line based on its initial character
string. The format of the FIND subcomm~nd is:

~------.---,
Find I [line] I

~---~

line is any character string, including blanks and tabs, that you
expect to find beginning in column 1 of an input record. At
least one non-blank character must be specified. If line is not
specified, the current line pointer is moved down one line.

1. Only one blank can be used as a delimiter following the FIND
subcommand; additional blanks are considered part of the character
string.

2. If the image setting is ON, the editor expands tab characters to
the appropriate number of blanks before searching for the line.

226 IBM VM/310 CMS Command and Macro Reference

EDIT Subcommands-FIND, FMODE

3. If the current line pointer is at the bottom of the file when the
FIND subcommand is issued the search begins at the top of the file.

When verification is on, the line is displayed at the terminal. If the
line is not feund, the message:

EOF:

is displayed and you may use the REUSE (=) subcommand to search again,
beginning at the top of the file.

FMODE

Use theFMODE subcommand to display or change the filemode of a file.
The format of the FMODE subcommand is:

~---,
FMode I [fm] I

~---~

fm indicates the filemode that is to replace the current filemode
setting. Iou can specify only a filemode letter (A-G~ S, I, or Z),
or a file mode letter and number (0-5). If you specify a filemode
letter, the existing filemode number is retained.

'y§g.9~ !!2:t~§

1. The specified filemode is used the next time a FILE, SAVE, or
automatic save request is issued. If the file being edited had
been previously filed or saved, that copy of the file remains
unchanged.

2. If the disk specified by filemode already contains a file with the
same filename and filetype, that file is replaced when a FILE,
SAVE, or automatic save request is issued; no warning message is
issued.

3. If the filemode specified is that of a read-only disk, then when an
attempt is made to file or save the file, the editor displays an
error message.

If you enter the FMODE subcommand without specifying fm, the editor
displays the current filemode.

~~2Elgy ~2£~ ~~~§~g~!g:ti2~§

When you specify a new filemode with the FMODE subcommand, the editor
writes the new filemode in the filemode field at the top of the screen.

Section 3. EDIT Subcommands and Macros 227

EDIT Subcommands-FNAME, FORMAT

FNAME

Use the FNAME subcommand to display or change the filename of a file.
The format of the FRAME subcommand is:

r---------------------.~---,
FName I [fn] I

~------------------------.----___ J

fn indicates the filename that is to replace the current filename.

1. The specified filename is used the next time a FILE, SAVE. or
automatic save request is issued. If the file being edited had
been previously filed or saved, that copy of the file remains
unchanged.

2. If a file already exists with the specified filename and the same
filetype and filemode, that file is replaced; no warning message is
issued.

3. You can use the FNAME subcommand when you want to make multiple
copies of a file, with different filenames, without terminating
your edit session.

If you enter the FNAME subcommand without specifying fn, the editor
displays the current filename.

When you issue the FNAME subcommand specifying a new filename, the
editor writes the new name in the filename field at the top of the
screen.

FORMAT (3270 Only)

Use the FORMAT subcommand to change the mode of a local or remote 3270
terminal from display to line or line to display mode. The format cf
the FORMAT subcommand is:

r--,
FORMat

{
DISPLAY}
LINE

I
I ~ ___ J

DISPLAY

LINE

specifies that a full screen display of data is to occur.
Subcommands do not appear as part of the data displayed.

specifies that the display station is to operate as a
typewriter terminal. Every line you enter is displayed on the
screen; the screen looks like a typewriter terminal's console
sheet.

228 IBM VM/370 CMS Command and Macro Reference

EDIT Subcommands-FORMAT, FORWARD

!!§~~ !!Q!~§

1. Line mode is the default for remote 3270s. If you are using a
remote 3270 in display mode, and you enter the INPUT subcommand,
you are placed in line mode while you enter input. When you return
to edit mode, the full screen display is restored.

2. The FORMAT subcommand is treated as invalid under any of the
following conditions:

a. The NODISP option of the EDIT command was used to invoke the
editor.

b. The edit session was initiated on a typewriter terminal. (The
session may optionally be continued on a 3270 after a
reccnnection.)

To obtain a full screen display, you must save your file and
restart your edit session.

3. The column settings for the VERIFY, TRUNe, and ZONE suhcommands
remain unchanged when you issue the FORMAT subcommand.

None.

FORWARD (Primarily 3270)

Use the FORWARD subcommand to move the current line pointer towards the
end of the file you are editing. The format of the FORWARD suhcommand
is:

r--,
FOrward

r ,
1 nt
111
L .J

1
1
1
1

n is the number of records you wish to move forward in the file being
edited~ If n is not specified, 1 is assumed.

!!§~g~ !!Q!~

The FORWARD subcommand is equivalent to the DOWN and NEXT subcommands;
it is provided for the convenience of 3270 users.

~~E.E.Q!!§~§

When verification is on, the new current line is displayed. If the
number specifi~d exceeds the number of lines remaining in the file, the
current line pointer is positioned at EOF:.

Section 3. EDIT Subcommands and Macros 229

EDIT Subcommands-FORMAT, FORWARD

GETFILE

Use the GETFILE subcommand to insert all or part of a specific CMS file
into a file that you are editing. The format of the GETFILE subcommand
is:

r-------------------------.---,
r r r r ... ", I

Getfile fn 1ft Ifm Ifirstrec Inumrecl I II I
I
I

fn

ft

fm

I I 11 I! II11
L L L L .. .J.J.J

is the filename of tha file that contains the data to be
inserted into the file you are editing.

is the filetype of the file that contains the data to be
inserted. If ft is not ~pecified, the filetype of the file you
are editing is assumed.

is the filemode of the file that
inserted. If fm is not specified,
are searched for the file.

contains the data to be
all of your accessed disks

firstrec indicates the record number of the first record you want to
copy.

numrec indicates the number of lines to be inserted, starting with
the line specified by firstrec. If numrec is not specified,
or specified as *, then the remainder of the file between
firstrec and the end of the file is inserted.

1. The GETFILE operand list is positional; if you omit
you cannot specify any operands that follow. Thus, if
specify firstrec and lastrec, you must specify the
filemode of the file.

2. The last line inserted becomes the new current line.

one operand,
you want to

filetype and

3. If the record length of the records in the file containing the data
to be inserted exceeds that of the file being edited, an errcr
message is displayed, and the GETFILE is not executed; if shorter,
the records are padded to the record length of the file being
edited and inserted in the file.

4. If you use the GETFILE subcommand to insert lines into a VSBASIC
file, you must also use the RENU! subcommand to resequence the
file.

5. If the editor fills up available. storage while executing a GETFILE
request, it may not be able to copy all of the file. You should
determine how many records were actually copied, and then write the
current file on disk.

230 IBM 9M/310 CMSCommand and Macro Reference

EDIT Subcommands-GETFILE, I8AGE

When verification is on, the last line inserted into the file is
displayed. If the end of the file has been reached, the message:

EOF REACHED

~s displayed, followed by the display of the last line inserted.

IMAGE

Use the IMAGE subcommand to control how the editor should handle
backspaces and tab characters or to display the current image setting.
The format of the IMAGE subcommand is:

IMAGE
I r ,
I ION I
I 10FF I
I ICANON I
I L .J

ON specifies that any text entered while in input mode or as a line
of data following a FIND, INPUT, OVERLAY, or REPLACE subcommand,
is eXFanded into a line image; backspaces are removed and tabs
are replaced by blanks.

OFF

CANON

Text entered in the form of delimited strings, as in CHANGE,
LOCATE, and ALTER, is not expanded; tabs and backspaces are
treated in the same way as other characters.

IMAGE ON is the default for all filetypes except SCRIPT.

specifies that tabs and backspaces are treated
characters in the same way as other char~cters. They
deleted, translated, expanded, or reordered.

as data
are net

specifies that backspaces may be used to produce compound
characters such as underscored words, headings, or phrases.
Before they are inserted in the file, compound characters are
ordered, with backspaces arranged singly between the characters
that overlay each other; the overlaying characters are arranged
according to their EBCDIC values. Tab characters are handled as
for IMAGE OFF.

CANON is the default for SCRIPT files.

1. When the image setting is ON, tab characters are expanded to an
appropriate number of blanks, according to the current settings of
the TABSET subcommand. The TABSET command has no effect if the
image setting is either OFF or CANON.

Section 3. EDIT Subcommands and Macros 231

EDIT Subcollmands-IMlGE, INPUT

2. When the image setting is on, backspaces a,re .handled as follows:

• Backspace characters act in a similar manner to the logical
character delete symbol, in deleting the previous characters if
a sufficient number of other characters or blanks fo~low the
backspace characters. However, backspace characters that
immediately follow a command name are interpreted as separator
characters and do not delete any part of the comman~name.

• If a backspace character is the last character in the input
line, it is ignored.

~~~~!!.§~.§ 

When you issue the IMAGE subcommand with no operand, the current IMAGE 
setting is displayed. 

INPUT 

Use the INPUT subcommand to insert a single line into a file, or, if no 
data line is specified, to leave edit mode and enter input mode. The 
format of the INPUT subcommand is: 

Input I [line] 
L-____ . __________________________________________ ~---------------------------J 

line specifies the input line to be entered into the file. 
contain blanks and tabs; if you enter at least two 
following the INPUT subcommand and no additional text, 
line is inserted into the file. 

It can 
blanks 

a bla,nk 

1. Each line that is inserted into the file tecomes the new current 
line. 

2. When you are using line-number editing (LINEMODE LEFT or LINEMODE 
RIGHT) you cannot use the INPUT subcommand to insert a ~ingleline 
of data; use thennnnn subcommand. 

3. To stack an INPUT subcommand in order to enter iipui mode from a 
fixed-length EXEC, you should use the &STACK control stat,ement. 

When you issue the INPUT subcommand without operands, and verification 
is on, the editor displays: 

INPUT: 

All subsequent lines you entered are wri~ten into the file, until yeu 
enter a null line to return to edit mode. 

232 IBM VM/370 CMS Command a:nd Macro Reference 



1. 

EDIT Subcommands-INPUT, LINE!ODE 

When you insert lines while using 
display mode, the editor writes each 
The old current line and all records 
except for the topmost record formerly 
from the screen. 

a local display terminal in 
record on the current line. 
above it move up one line, 

on line 2, which is deleted 

2 •. If you are using a remote display terminal in display mode and you 
issue the INPUT subcommand with no text, the terminal is forced 
into line mode. The display of the file on the screen disappears 
and the word INPUT: appears. As you enter input lines, they appear 
in the output display area. When you leave input mode by entering 
a null line, the remote terminal returns to display mode. The 
display of the file reappears on the screen, with the lines you 
have just entered in their prope~ place in the file. 

3. When you are entering data in input mode at a display terminal that 
is in line mode~ a tab character generated by a program function 
(PF) key only generates one character, and appears as one character 
on the screen. That is, the line does not appear spaced according 
to the tab settings. 

LINEMODE 

Use the LINEMODE subcommand to set, cancel, or display the status cf 
line-number editing. When you use line-number editing, you can input, 
locate, and replace lines by referencing their record numbers. 
Line-number editing is the default for VSBASIC and FREEFORT files. The 
format of the LINEMODEsubcommand is: 

I r , 
LINEmode I ILEFT I 

LEFT 
L 

I IRIGHTI 
I IOFF I 
I L .J 

.J 

initializes line-number editing and plac~s sequence numbers 
on th~ left, in columns 1 through 5, right~justified and padded 
with blanks; the near zone is set to 7. If the filetype is 
FREEFORT, columns 1 through 8 are used for serial nu.bers; the 
near zene is set to 9. 

You should never use left-handed line-number editing for files in 
which data must occupy columns 1 through 6, for example ASSEMBLE 
files. 

RIGHT initializes line-number editing and places sequence numbers 
R on the right, in columns 76 to 80, right-justified and padded 

with zeroes. The end zone and truncation columns are set to 72. 

This operand is valid only 
80-character records. 

for files with fixed-length 

Section 3. EDIT Subcommands and 'Mactos 233 



EDIT Subcommands-LINEMODE 

OFF cancels line-number editing and (if you were using left-handed 
line-number editing) resets the first logical tab setting to 
column 1. The VERIFY, TRUNC, and ZONE sutcommand settings remain 
unchanged. Serialization may still be in effect. OFF is the 
default ,for all filetypes except VSBASIC and FREEFORT. 

1. 

!g!~: If you enter LINEMODE OFF while editing a FREEFORT file, 
line-number editing cannot be resumed for the 'remainder of the 
edit session~ 

When you enter input mode while 
you are prompted with a line 
default prompting increment is 
PROMPT subcommand. 

you are using line-number editing, 
number to enter each line. The 
10; you may chan~e it using the 

If you enter input mode after using the nnnnn subcommand to 
position the current line pointer, the prompted line number is the 
next higher multiple of the cU'rrent prompting increment or an 
adjusted line number, whichever is smaller. The adjusted line 
number is determined according to the following formula: 

pppp = 1 + cccc + _.!Hl!l!l_=_£££c (Any fractional remainder is 
4 dropped .) 

where: 

pppp is the prompt line number. 

cccc is the current line number. 

nnnn is the next sequential line number in the file. 

2. When you are prompted on a typewriter terminal, enter your input 
line on the same line as the prompted line number. If you are 
using right-handed line-number editing, on a typewriter terminal cr 
on a display terminal in line mode, the serial numbers are net 
redisplayed in columns 76 to 80 (unless you use the VERIFY 
subcommand to increase the verification setting). When a line is 
displayed in edit mode, the line numbers always appear on the left 
even though they are on the right in the disk copy of the file. 
Whether or not the line numbers are displayed on the right depends 
on the current verification setting. 

3. You cannot use the INPUT or REPLACE subcommands to input a single 
data line when you are using line-number editing; use the nnnnn 
subcommand instead. 

4. When you initial~ze line-number editing for files that already 
exist, the editor assumes that the records are in the proper format 
and numbered in ascending order. 

5. If you want to place serial numbers in columns 76 
you do not wish to use line-number editing, 
subcommand. 

through 80, but 
use the SERIAL 

When you issue the LINEMODE subcommand with no operands, the current 
setting is displayed. 

234 IBM VM/370 CMS Command and Macro Reference 



EtIT Subcommands-LINEMODE 

~1~1~I ~g£~ ~g~§igg!g!iQ~§ 

When you use line-number editing on a display terminal in display mode. 
the prompting numbers in input mode appear on line 2 of the display 
screen, in the editor message area~ Enter your input lines in the user 
input area. Regardless of whether you are using right- or left-handed 
line-number editing, the line numbers always appear in their true 
position in the file. 

LOCATE 

Use the LOCATE subcommand to scan the file beginning with the next line 
for the first occurrence of a specified character string. The format of 
the LOCATE subcommand is: 

I 

I[Locate] I /[string[/]] 
~---------------------------------------------------------------------------~ 

/ (diagonal) 

string 

Q§gg~ !2!~§ 

signifies any unique delimiting character that does not 
appear in the string. The delimiter may be any nonblank 
character. The closing delimiter is optional. 

specifies any group of characters to be searched for in 
the file. 

1. If the beginning delimiter is I. you can omit the subcommand name 
LOCATE. If you enter only: 

/ 

on a line, the current line pointer is moved down one line. 

2. If string is null or blank, the search is successful on the first 
line encountered. If the line pointer is at the end of the file 
when the LOCATE subcommand is issued, scanning starts from the tcp 
of the file. 

3. Use the ZONE subcommand when you want the editor to search only a 
specific column. If you specify a character string longer than the 
current zone width, the editor issues the message ZONE ERROR. 

When verification is on, the line containing the specified string is 
displayed. If the string is not found~ the messages: 

NOT FOUND 
EOF: 

are displayed, and you may use the REUSE (=) subcommand to request that 
command be repeated, beginning at the top of the file. 

Section 3~ EDIT Subcommands and Macros 235 



EDIT Subcommands-LONG, NEXT 

LONG 

Use the LONG subcommand to cancel a previous SHORT subcommand request. 
The format of the LONG subcommand is: 

r , 
I LONG I L-_________________________________________________________________________ J 

Q.§,g.9~ !!2!~ 

When the LONG subcommand is in effect (it is the default), the editor 
responds to invalid subcommands with the message: 

?EDIT: line ••• 

None. 

NEXT 

Use the NEXT subcommand to advance the line pointer a specified number 
of lines toward the end of the file. The line pointed to hecomes the 
new current line. The format of the NEXT subcommand is: 

, 
r , I 

Next Inl I 
111 I 
L J I 

J 

n indicates the number of lines to move the line pointer. If ~ is 
omitted, then the pointer is moved down only one line. 

NEXT is equivalent to DOWN and FORWARD. 

When verification is on, the new current line is displayed. If the end 
of the file is reached, the message: 

EOF: 

is displayed. 

236 IBM VM/370 CMS Command and Macro Reference 



EDIT Subcommands-OVERLAY 

OVERLAY 

Use the OVERLAY subcommand to selectively replace one or more character 
strings in the current line with the corresponding nonblank characters 
in the line being keyed in. The format of the OVERLAY subcommand is: 

Overlay I [line] ~___________________________________________________________________________J 

line specifies an input line that replaces corresponding character 
positions in the current line. On a typewriter terminal, if yeu 
enter the OVERLAY subcommand with no data line, the input record 
remains unchanged. 

Q§~~ !.Q1~§ 

1. Blank characters in the input line indicate that the corresponding 
characters in the current line are not to be overlaid. Fer 
example: 

CHARMIE 
o L 
CHARLIE 

Blanks in columns 3, 4, 5, and 6 of the OVERLAY line indicate that 
columns 1, 2, 3, and 4 of the current line are not to be changed. 
(At least one blank must follow the OVERLAY subcommand, which can 
be truncated as 0). 

2. This subcommand may be entered at a typewriter terminal by typing 
the letter "0", followed by a backspace, followed by the overlaying 
characters. This sets up the correct alignment on the terminal. 

3. An underscore in the overlaying line must be used to place a blank 
into the corresponding position of the current line. Thus, an 
underscore cannot be placed (or replaced) in a line. 

4. 

OVERLAY should be used with care on lines containing underscored 
words or other compound characters. 

To perform a global overlay 
just prier to issuing the 
you enter: 

operation, issue the REPEAT subcommand 
OVERLAY subcommand. For example. when 

repeat * 
overlay X 

an X is placed 
beginning with 
with the IMAGE 
setting. 

in the leftmost column of each record in the file, 
the current line. The leftmost column, for files 
setting ON, is determi~ed by the first logical tab 

!!~§E~1!§~§ 

When verification is on, the line is displayed at the terminal after it 
has been overlaid. 

Section 3. EDIT Subcommands and ftacros 237 



EDIT Subcommands-OVERLAY, PRESERVE, PROMPT 

~i§El~I ~~~~ £~~§id~!~!!~~§ 

In addition to using the OVERLAY subcommand in the normal way, you may 
also issue the OVERLAY subcommand with nc operands. The next line you 
enter is treated as overlay data. To cancel the overlay request, press 
the Erase Input key and then the Enter key. 

PRESERVE 

Use the PRESERVE subcommand to save the settings of various EDIT 
subcommands until a subsequent RESTORE subcommand is issued. The format 
of the PRESERVE subcommand is: 

PREserve ~ _________________________________________________________________________ J 

Settings are saved for the following subcommands: 

CASE 
FMODE 
FNAME 
IMAGE 
LINEMODE 

None. 

PROMPT 

LONG 
PROMPT 
RECFM 
SERIAL 
SHORT 

TAB SET 
TRUNC 
VERIFY 
ZONE 

Use the PROMPT subcommand to change the. prompting increment for input 
line numbers when you are using line-number editing. The format of the 
PROMPT subcommand is: 

r-----------------------------------------------------------------~-------, 

PROMPT 
I r , 
I I n I 
I 11QI 
I L J 

I 
I 
I 
I _____________________________________________________ J 

n specifies the prompting increment; the default value is 10. The 
value of n should not exceed 32,767. 

!!~§E~~§~§ 

When you issue the PROMPT subcommand with no operands, the current 
setting is displayed. 

238 IBM VI1/370 CMS Command and Macro Reference 



EDIT Subcommands-QUIT, RECFM 

QUIT 

Use the QUIT subcommand to terminate the current editing session and 
leave the previous copy of the file, if any, intact on the disk. The 
format of the QUIT subcommand is: 

QUIT L-__________________________________________________ . _________________________ J 

!!§~~ !Q1~§ 

1. You can use the QUIT subcommand when you have made a global change 
that introduced errors into your f~le; or whenever you discover 
that you have made errors in editing a file and want to cancel your 
editing session. 

If a SAVE subcommand or automatic save request has been issued, the 
file remains as it was when last written. 

2. The QUIT subcommand is a convenient way to terminate an edit 
session when you enter an incorrect filename on the EDIT command 
line, or when you edit a file merely to examine, but not to change, 
its contents. 

The CMS ready message indicates that control has been returned to CMS. 

RECFM 

Use the RECFM subcommand to indicate to the editor whether the record 
format of the file is fixed-length or variable-length, or to display the 
current RECFM setting. The format of the RECFM subcommand is: 

r-------.---------------------------------------------------------------------, 
RECfm 

L 

r , 
1Ft 
IVI 
L J 

I 
I 
I 
I 

F indicates fixed-length records. 

V indicates variable-length records. 

1. V is assumed by default for all new EXEC, LISTING, FREEFORT, 
VSBDATA, and SCRIPT files. Usually, a variable-length format file 
occupies a smaller amount of disk space because trailing blanks are 
deleted from each line before it is written onto disk. When 
variable-length VSBDATA files are written to disk, however, 
trailing blanks are not truncated (to allow VSEDATA file to span 
records). 

Section 3. EDIT Subcommands and Macros 239 



EDIT Subcommands-RECFM, RENUM 

2. When you use the RECFM ~ubcommand to change the format of a file 
from fixed-length to variable-length records, trailing blanks are 
removed when the file is written to disk; when you are changing 
variable-length records to fixed-length. all records are padded to 
the record length. 

When you use the RECFM subcommand without specifying F or V, the current 
setting is displayed. 

~i2El~I ~£g~ ££~§ig~~~!i£~§ 

When you specify a new record format with the RECFM subcommand. tbe 
editor writes the new record format in the format field at the top of 
the screen. 

RENUM 

Use the RENUM subcommand to recompute the line numbers for VSBASIC and 
FREEFORT source files. The format of the RENUM subcommand is: 

r----------------------------------------------------------------------------, 
RENum 

strtno 

incrno 

I r r " 
I Istrtno lincrnol I 
I I 12 I §!!:!n.Q I I 
ILL .J.J 

I 
I 
I 
I 

.J 

indicates the number from which you wish to start renumbering 
your file. Because RENUM renumbers the whole file frem 
beginning to end, the number you specify as strtno becomes tbe 
statement number of the first statement in the newly 
renumbered file. This number may not exceed 99999 for VSBASIC 
files or 99999999 for FREEFORT files. The default start 
number value is 10 and the specified start number must not be 
zero. 

indicates the increment number value by which you wish to 
renumber your file. This value may not exceed 99999 fer 
VSBASIC files or 99999999 for FREEFORT files. The default fer 
incrno is strtno, the first sequence number in the renumbered 
file, and the specified incrno must not be zero. 

1. If you do not specify strtno and incrno, the default value for both 
is 10. If you specify only strtno, incrno defaults to the same 
value as strtno. 

2. The current line pointer remains as it was before you entered the 
RENUM subcommand regardless of whether or not RENUM completes 
successfully. If you are editing a VSBASIC file, the file to be 
renumbered must either originate from a read/write disk or you must 
issue an FMODE subcommand to change the file destination to a 
read/write disk. 

240 IBM VM/310 CMS Command and Macro Reference 



EDIT Subcommands-RENUM, REPEAT 

3. All VSBASIC statements that use statement numbers for operands are 
updated to reflect the new line numbers. The VSBASIC statements 
with line number operands are: 

4. 

CLOSE 
CLOSEFILE 
DELETE 
EXIT 
GET 
GOSUB 
GOTO 

If any error 
terminates the 
unchanged. 

IF 
ON 
OPEN 
OPENFILE 
PRINT USING 
PUT 

occurs during the 
RENUM operation and 

READFILE 
REREADFILE 
RESET 
RESE'IFILE 
REWRITEFILE 
WRI'IEFILE 

RENUM operation, the editcr 
the file being edited remains 

When verification is on, the message EDIT: indicates that the RENUM 
subcommand completed processing. 

REPEAT 

Use the REPEAT subcommand to execute the immediately following OVERLAY 
subcommand (or an X or Y subcommand assigned to invoke OVERLAY) for the 
specified number of lines or to the end of the file. The format of the 
REPEAT subcommand is: 

, 
r , I 

REPEAT I nl I 
1* I I 
111 I 
L .J I 

.J 

!.!!~~: 

n indicates the number of times to repeat the OVERLAY request that 
immediately follows, beginning with the current line. An asterisk 
(*) indicates that the request is to be repeated until the end cf 
the file is reached. If neither n nor * is specified, then only 
one line is handled. The last line processed becomes the new 
current line. 

1. If the next subcommand issued after the REPEAT subcommand is not an 
OVERLAY subcommand, the REPEAT subcommand is ignored. 

2. For an example of a REPEAT subcommand followed by an OVERLAY 
subcommand, see the discussion of the OVERLAY subcommand. 

None. 

Section 3~ EDIT Subcommands and Macros 241 



EDIT Subcommands-REPLACE, RESTORE 

REPLACE 

Use the REPLACE subcommand to replace the current line with a specified 
line or to delete the current line and enter input mode. The format of 
the REPLACE subcommand is: 

r--------------------------~-----------------------------------------------, 
I Replace I [line] I 

I 

line specifies an input line that is to replace the current line. If a 
line is specified, then the editor puts it into the file in place 
of the current line. If no line is specified, the editor deletes 
the current line and enters input mode (see Usage Note 2 for 
exception). 

1. If the LINEMODE subcommand with a LEFT or RIGHT operand is in 
effect, then issuing the REPLACE subcommand specifying a line is 
not valid. If the REPLACE subcommand is used without any operands 
when LINEMODE is set to LEFT or RIGHT, you are prompted for the 
next available line number; the first data line you enter replaces 
the current line number. 

2. If you use the REPLACE subcommand with no operands to enter input 
mode, and the next line you enter is a null line, then the current 
line is not deleted, and you are returned to edit mode. 

3. To stack a REPLACE subcommand in order to enter input mode from a 
fixed-length EXEC, you should use the SSTACK control statement. 

When verification is on and you issue the REPLACE subcommand with no 
data line, the message: 

INPUT: 

indicates that your virtual machine is in input mode. 

RESTORE 

Use the RESTORE subcommand to restore the settings of EDIT subcommands 
to their values when the PRESERVE subcommand was last issued or to their 
default values if a PRESERVE subcommand has not been issued. The format 
of the RESTORE subcommand is: 

r'------------------------------------------------------------------------------, 
I REStore I 
~-----------------.--------.--------------------------------------------------~ 

242 IBM VM/370 CMS Command and Macro Reference 



EDIT Subcommands-RESTORE, RETURN, REUSE (=) 

The settings are restored for the following subcommands: 

None. 

CASE 
FMODE 
FNAME 
IMAGE 
LINEMODE 

RETURN 

LONG 
PROMPT 
RECFM 
SERIAL 
SHORT 

TABSET 
TRUNe 
VERIFY 
ZONE 

Use the RETURN subcommand to return to edit mode from the CMS subset 
environment. RETURN is not an EDIT subcommand, but is listed here as a 
companion to the CMS subcommand. The format of the RETURN command is: 

r-------------------------- ----------------------------------------.-------, 
I RETURN I ~ ______________________________________________________________________ ~_J 

When verification is on, the editor responds: 

EDIT: 

to indicate that your virtual machine is in edit mode. 

REUSE (=) 

Use the REUSE subcommand (which can also be specified as =) to stack 
last in, first out (LIFO) the last EDIT request, except for REUSE or a 
question mark, and then execute the stacked subcommands. The format of 
the REUSE (or =) subcommand is: 

---------------------------------------------------------, 
[ subcommand] I 

I ~ ___________________________________________________________________________ J 

subcommand sFecifies any valid EDIT subcommand. 

1. If the subcommand you enter on the REUSE subcommand line is an 
invalid subcommand, the editor clears the stack. 

Section 3. EDIT Subcommands and Macros 243 



EDIT Subcommands-REUSE (=) 

2. You can use the REUSE subcommand to repeat a subcommand request 
that was not satisfied the first time, for example, a LOCATE 
subcommand that resulted in an end-of-file condition. If you 
enter: 

= 

the LOCATE subcommand is stacked, then read by the editor and 
executed again. This time the search begins from the top of the 
file. 

3. You can also enter more than one equal sign (=) on a single line, 
to stack the last issued subcommand more than once. For example: 

locate /xyz/ 
XYZ IS MY FAVORITE 
- - - -- - - -
I FIRST MET XYZ 
XYZ'S NA~E IS DERIVED 
LAST SAW XYZ 
EOF: 

the LOCATE subcommand is stacked four times, and then the editor, 
reading from the stack, executes the four stacked subcommands. 

4. You can do the following if you issue a CHANGE subcommand before 
positioning your current line pointer: 

c/xx/yy 
NOT FOUND 
= l/x/ 
LINE XXXX 
LINE YYXX 

In this example, the CHANGE request was issued and string1 was not 
found. The REUSE subcommand stacks the CHANGE subcommand and 
stacks a LOCATE subcommand in front of it. The LOCATE subcommand is 
read and executed, followed by the CHANGE subcommand. 

5. You can stack an INPUT or REPLACE subcommand in front of a data 
line you mistakenly entered in edit mode, for example: 

roses are red, violets are blue 
?EDIT: ROSES ARE RED, VIOLETS ARE BLUE 
= input 
INPUT: 
without cms 
i weuld be, too. 

The = subcommand stacks the INPUT subcommand in front of the data 
line. Reading from the stack, the editor executes the INPUT 
subcommand, then reads in, as the first line of data, the line 
beginning with ROSES. The file contains: 

ROSES ARE RED, VIOLETS ARE BLUE 
WITHOUT CMS 
I WOULD BE, TOO. 

Responses are those that are issued to the stacked subcommands. 

244 IBM VM/370 CMS Command and Macro Reference 



EDIT Subcommands-SAVE, SCROLL/SCROLLUP 

SAVE 

Use the SAVE subcommand to write the file that is currently being edited 
onto the disk, without returning control to CMS, and optionally to 
change the file identifier. The format of the SAVE subcommand is: 

r----------------------------------------------------------------------~ 
1 SAVE 1 [fn [ft [fm ))] 
~,------------------------------------------------------------------------~ 

fn indicates the filename of the file to be saved. If you specify 
only fn, then the filetype and filemode are the same. 

ft indicates the filetype of the file to be saved. 

fa indicates the filemode of the file to be saved. " 

!!2.2.9~ !Q1~2 

1. If you specify a new file identifier, any existing file with the 
same file identifier is replaced; no message is issued. The file 
being edited, if previously written to disk, is not altered. 

2. To write a file on disk and terminate the editing session, use the 
FILE subcommand. 

3. If you want to save the contents of a file at regular intervals, 
use the AUTOSAVE subcommand. 

~~~.Q!!2~2 

When verification is on, the editor displays:

EDIT:

to indicate the SAVE request completed successfully and you may continue
to enter EDIT subcommands.

SCROLL/SCROLLUP (3270 Only)

Use the SCROLL and SCROLLUP subcommands to scan the contents of a file
on a-display screen.

SCROLL causes the editor to scan forward through the file; SCROLLUP
causes the editor to scan backward through the file. The format of the
SCROLL and SCROLLUP subcommands is:

{
Scroll }
S[croll]U[1.=]

1 r ,
lin 1
1 1* I
1 11 1
I L ~

,----~~----~-------~------------------~-----------------------~

Section 3. EDIT Subcommands and Macros 245

EDIT Subcommands-SCROLL/SCROLLUP, SERIAL

n is a number from 1 to 255 that specifies the number of successive
screens of data to be displayed. If an asterisk (*) is specified,
the entire file, "from the current line to the end or beginning of
the file, is displayed. If n is not specified, 1 is the default.

1. The SCROLLUP subcommand can be specified by any combination of the
truncation of SCROLL and UP; the minimum truncation is SUe

2. The number of lines shifted forward or backward depends on the
current verification setting. If the verification setting is 80
characters or less, then a scroll request displays a file in
increments equal to the number of lines that can be displayed in
the output display area of the screen. If the verification setting
is more than 80 characters, then a SCROLL request displays a file
in increments equal to half the number of lines that can be
displayed in the output area.

Therefore, a single SCROLL on a 3270 Model 2 display terminal is
the equivalent of DOWN 20 or DOWN 10, depending on the record
length, and SCROLLUP is the equivalent of UP 20 or UP 10.

3. When you use the SCROLL or SCROLLUP subcommands to display more
than one screenful, each display is held for one minute, and the
screen status area indicates MORE •• ~ • To hold the screen display
longer, press the Enter key.

To halt scrolling before all the requested s~reenfuls are
displayed, enter the HT Immediate command and press the Cancel key
twice.

4. When you begin scrolling from the top of the file, the first
screenful contains only the first seven lines. When you scroll to
the end of the file, the last screen may duplicate lines displayed
in the previous screen.

!!~~~1!2~~

The screen display is shifted forward or backward.

SER,IAL

Use the SERIAL subcommand to control the serialization of records in
columns 73 through 80. The format of the SERIAL subcommand is:

SERial
: lOFF r ,
I ON lincrl
I ALL 11Q I
I seq L .J

246 - IBM VM/370 CMS Command and Macro Reference

EDIT Subcommands-SERIAL

OFF indicates that neither serialization numbers nor identifiers are
to be placed in columns 73-80.

ON indicates that the first three characters of the filename are to
be used in columns 73-75 as an identifier.

ALL indicates that columns 73-80 are to be used for serialization
numbers.

seq specifies a three-character identification to be used in columns
73-75.

incr specifies the increment for the line number in columns 76-80 (or
73-80). This number also becomes the first line number. If iner
is not specified, then 10 is assumed.

1. The SERIAL subcommand is valid only for files with fixed-length,
80-character records. To renumber VSBASIC or FREEFORT files, use
the RENUM subcommand.

2. The serialization setting is ON, by default, for the following
filetypes:

ASSEMBLE
COBOL
DIRECT
FORTRAN
MACRO

PLI
PLIOPT
UPDATE
UPDTxxxx

3. When serialization is in effect, records in a file are resequenced
each time a FILE, SAVE, or AUTOS AVE request is issued. If you are
using line~number editing, you must issue the subcommand:

line mode off

before issuing a FILE or SAVE subcommand if you wish the records to
be resequenced.

If you issue the SERIAL subcommand in a file with a zone column greater
than 72, the message:

END ZONE SET TO 72

is displayed, to indicate that the zone has been changed. If the zone
column is 72 or less, but the truncation column is greater than 72, the
message:

TRUNC SET TO 72

is displayed.

Section 3. EDIT Subcommands and Macros 247

EDIT Subcommands-SHORT, STACK

SHORT

Use the SHORT subcommand to request the editor to respond
subcommand lines with the short form of the ?EDIT message.
of the SHORT subcommand is:

to invalid
The format

~----'--'-'
SHORT 1 L-___~

y§gg~ !Q!~§

1. When the SHORT subcommand is in effect, the editor responds:

to an invalid subcommand line, and responds:

to an invalid macro request.

2. To resume displaying the long form of the ?EDIT message, use the
LONG subcommand.

None.

STACK

Use the STACK subcommand to stack data lines or EDIT subcommands in the
console stack for subsequent reading. The format of the STACK
subcommand is:

~----.--,
I
I

STACK 1
I
I
1

r ,
In I
I subcommand I
10 I
11 1
L ~

1
I
1
I
I
1

~---.------------------------~

n indicates the number of lines to be stacked beginning with
the current line. If a number or a subcommand is net
sFecified, then one line is assumed by default. A maximum
of 25 lines can be stacked.

If the current line Fointer is at the top of the file, then
n-1 lines are stacked. If fewer than n lines remain in the
file, only the lines remaining are stacked.

subcommand specifies an EDIT subcommand to be stacked.

o stacks a null line.

248 IBM VM/370 CMS Command and Macro Reference

1 • STACK subcommands are used
from a file so that they
additional subcommands.

EDIT Subcommands-STACK, TABSET

to write edit macros, to stack lines
can be moved around, or to stack

2. All lines stacked with the STACK subcommand are stacked FIFO (first
in, first out).

3. The length of input lines
current TRUNC setting.
characters.

that are stacked is determined
The maximum length, however,

by the
is 130

None. If you issue the STACK subcommand
line, the stacked subcommand is executed
those to the stacked subcommands, if any.

to stack an EDIT subcommand
immediately; responses are

TABSET

Use the TAB SET subcommand to set logical tab stops for a file. The
format of the TAB SET subcommand is:

r--,
TABSet n 1 [n2 ••• nn]

I
I
I

~---~

nl [n2 ••• nn] indicates column positions for logical tab settings. You
may specify up to 25 numbers, separated from each other
by at least one blank. n1 indicates the first column in
the file that may contain data.

1~ The editor assigns the following tab settings by default:

l!!~!Y£~§ ~~!~y!! I~~ ~g!!!ng~
ASM3705, ASSEMBLE, 1, 10, 16, 31, 36, 41, 46, 69, 72, 80

MACRO, UPDATE,
UPDTxxxx

AMSERV 2, 6, 11, 16, 21, 26, 31, 36, 41, 46, 51,
61, 71, 80

FORTRAN 1, 7, 10, 15, 20, 25, 30, 80

FREEFORT 9, 15, 18, 23, 28, 33, 38, 81

BASIC, VSBASIC 7, 10, 15, 20, 25, 30, 80

PLIOPT, 'PLI 2, 4, 7, 10, 13, 16, 19, 22, 25, 31, 37,
43, 49, 55, 79, 80

COBOL 1, 8, 12, 20, 28, 36, 44, 68, 72, 80

Others 1, 6, 11, 16, 21, 26, 31, 36, 41, 46, 51,
61, 71, 81, 91, 101, 111, 121, 131

Section 3. EDIT Subcommands and Macros 249

EDIT Subcommands-TABSET, TOP, TRUNC

2. Tab setting operands have no effect if the IftAGE subcommand's
operand is either OFF or CANON. (CANON is the default for SCRIPT
filetypes). A tab entered into a file under these conditions
appears as X'OS'.

3. The margins set by the TABSET subcommand are used by the INPUT,
REPLACE, OVERLAY, and FIND subcommands.

None.

TOP

Use the TOP subcommand to move the line pointer to the top of the file.
The null top line becomes the current line. The format of the TCP
subcommand is:

r--
I TOP
I

When verification is on, the message:

TOF:

is displayed.

~~§El~I ~gg§ ~~~§~gg!g!ig~§

--------------------------------,
I

When you are using a display terminal, if you specify TOP and
verification is on, the current line contains the characters TCF
(indicating the top of the file), the lines preceding it are blank, and
the rest of the screen's output area contains the first lines of the
file.

TRUNC

Use the TRUNC subcommand to change the truncation column of records or
to display the current truncation column setting. The format of the
TRUNC subcommand is:

n indicates the column at which truncation is to occur. If n is
specified as an asterisk (*), the truncation column is set to the
record length for the filetype.

250 IBM VM/370 CMS Command and ftacro Reference

EDIT Subcommands-TRUNC, TYPE

.Q§,g,g~ !!.Q!:~§

1. The editor assigns the following truncation setting by default:

!.!l~!I.E~§
ASSEMBLE, MACRO, UPDATE, UPDTxxxx
AMSERV, COBOL, DIRECT, FORTRAN,

PLI, PLIOPT
All Others

'Iruncation £.Ql!!.!!l -------'7"1-

72
Record Length

2. The truncation value is used by the INPUT, REPLACE, STACK, and
OVERLAY subcommands also, and, for display terminals in display
mode, the CHANGE subcommand when it is used with no operands.

3. If your virtual machine is in input mode and you enter a line that
is longer than the current truncation setting, the message:

TRUNCATED

is displayed along with a display of the truncated line. Your
virtual machine is still in input mode •

.H~§.E~1!§~§

When you enter the TRUNC subcommand with no operands, the editcr
displays the current setting.

TYPE

Use the TYPE subcommand to display all or any part of a file at the
terminal. The format of the TYPE subcommand is:

I r r " Type I 1m In II
I 1* 1* II
I 11 I II
I L L .J.J

.J

!.!!~~:

m indicates the number of lines to be displayed, beginning with the
current line. An asterisk (*) indicates all lines between the
current line and the end of the file. If m is omitted, only one
line is displayed. If the number of lines specified exceeds the
number remaining in the file, displaying stops at the end of the
file.

n indicates the column at which displaying is to stop, overriding the
current end column for verification. If n is specified as an
asterisk (*), it indicates that displaying is to take place for the
full reccrd length.

!!§,g,g~ !!.Q!~§

1. Use the TYPE subcommand to display lines when you are editing a
file with verification off.

Section 3. EDIT Subcommands and Macros 251

E.DIT Subcommands-TYPE i UP

2. If you display one line, the current line pointer does not move; if
you display more than one line, the current line is positioned at
the last line displayed, or at the end of the file if you specified
an asterisk (*).

3. If you have set an end verification column to a value less than the
record length, and you want to display an entire record, enter:

type 1 *
4. If you do not specify an end column, the length of the line(s)

displayed is dete.rmined by the current end verification setting.
If you are using right-handed line-number editing on a typewriter
terminal or a display terminal in line mode, the line numbers are
displayed on the left.

The requested lines are displayed.

since the TYPE subcommand was designed for printing terminals, it is cf
marginal value on a display terminal, except when you use line mode.
However, if the display screen is interrupted by communication from the
control program (CP), you should use the TYPE subcommand to restore the
full screen display.

UP

Use the UP subcommand to reposition the current line pointer toward the
beginning of the file. The format of the UP subcommand is:

,
I r , I

up 1 In I I
1 11 1 I
I L .J I

-'

!l!~~:

n indicates the number of lines the pointer is to be moved toward the
beginning of the file. If a number is not specified, then the
pointer is moved up only one line. The line pointed to becomes the
new current line.

UP is equivalent to BACKWARD.

When verification is on, the line pointed to is displayed at your
terminal. If the UP subcommand causes the current line pointer to move
beyond the beginning of the file, the following message is displayed:

TOF:

252 IBM VM/310 CMS. Command and Macro Reference

EDIT Subcommands-VERIFY

VERIFY

Use the
setting.

Verify

ON

VERIFY subcommand to set or display the
The format of the VERIFY subcommand is:

current verification

I r , rr , ,
I ION I Iistartcoll endcoll
I I OFF I I I .1 I * I
I L .J LL .J .J

specifies
disFlayed,
indicated.

that lines located, altered,
and changes between edit and
ON is the initial setting.

or changed
input mode

,
I
I
I
I

are
are

OFF specifies that lines that are located, altered, or changed are
not displayed, and changes between edit and input mode are not
indicated.

startcol indicates the column in which verification is to begin, when
verification is on. The default is column 1. startcol must
not be greater than the record length nor greater than endcol.

endcol indicates the last column to be verified, when verification is
on. endcol must not be greater than the record length. If
endcol is specified as an asterisk (*), each record is
disFlayed to the end of the record.

1. If you issue the VERIFY subcommand with only one operand, that
operand is assumed to be the endcol operand. For example, if yeu
issue VERIFY 10, verification occurs in columns 1 through 10.

2. The editor assigns the following settings, ty default:

!.!l~!YE~§
AMSERV, ASSEMBLE, COBOL,

DIRECT, FORTRAN, MACRO,
PLI, PLIOPT, UPDATE, UPDTxxxx

Others (Including FREEFORT) Record Length

If you issue the VERIFY subcommand with no operands, the current
startcol and endcol settings are displayed, regardless of whether
verification is on or off.

Section 3~ EDIT Subcommands and Macros 253

EDIT Subcommands-X, Y

X or Y

Use the X or Y subcommands to assign a given EDIT subcommand to be
executed whenever X or Y is entered, or to execute the previously
assigned subccmmand a specified number of times. The format of the X
and Y subcommands is:

r---,
1 r ,

{~} 1 I subco.mmand 1
lin 1
1 11 I
1 L .J

1
1
1
1
1

subcommand indicates any EDIT subcommand line. The editor assumes that
you have specified a valid EDIT subcommand, and no error
checking is done.

n indicates the number of times the previously assigned
subcommand is to be executed. If X or Y is entered with no
oFerands, 1 is assumed.

1. Advancement of the current line pointer depends upon the EDIT
subcommand that has been assigned to X or Y. If a number or a
subcommand is not specified, the previously assigned subcommand is
executed once.

2. X and Yare initially set to null strings. If you enter X or Y
without having previously assigned a subcommand to it, the editor
issues the 1EDIT error message.

3. You can use the X and Y subcommands in many instances where you
must repeat a subcommand line many times while editing a file, but
the situation does not lend itself to a global request. For
example, if you assign X to a LOCATE and Y to a CHANGE subcommand,
issue:

x

to execute the LOCATE request, and after examining the line, you
can change it and continue searching, by entering the Y subcommand
followed by the X subcommand:

ylx

or just continue searching:

x

!t~§.E.Q1H2~§

Responses are issued for the EDIT subcommands that are assigned to X and
Y, in accordance with the current verification setting.

254 IBM VM/310 CMS· Command and Macro Reference

EDIT Subcommands-ZONE

ZONE

Use the ZONE subcommand to specify the columns of each record (starting
position and ending position) to be scanned when the editor searches for
a character string or to display the current ZONE settings. The format
of the ZONE subcommand is:

-,
1 r r " Zone 1 Ifirstcol Ilastcolll
1 1* 1* II
I 11 I II
I L L .J.J

firstcol indicates the near zone column of each record to be scanned.
If firstcol is specified as an asterisk (*), the default is
column 1.

lastcol indicates the end zone column of each record to be scanned.
If lastcol is specified as an asterisk (*), the default is the
record length.

1. The editor assigns the following settings by default:

ASSEMBLE, MACRO, UPDATE,
UPDTxxxx

AMSERV, PLI, PLIOPT
COBOL, DIRECT, FORTRAN
BASIC, VSBASIC
FREEFORT
Others

Near Zone
(~2!Y!nr-

1

2
1
7
9
1

End Zone
(£21Y!n)

71

72
72

Record Length
Record Length
Record Length

2. The ZONE settings are used by the ALTER, CHANGE, and LOCATE
subcommands to define the columns that will be scanned. If you
specify a character string longer than the zone, you receive the
message:

ZONE ERROR

and the subcommand is not executed.

3. If you issue a CHANGE subcommand that increases the length of a
line beyond the end zone setting, the line is truncated.

Section 3. EDIT Subcommands and Macros 255

1
1
1
I
I

EDIT Subcommands-ZONE, ?

4. Iou can use the ZONE subcommand to protect data in particular
columns, for example:

edit newfile memo
NEW FILE:
EDIT:
zene

1 80
zene 10 20
input the zone is now set for columns 10-20

EDIT:
change 101*1
the zone is n*w set for columns 10-20

Note that the LOCATE and CHANGE
now, not the word zone, because
not in position 1.

subcommands operated on 'the word
scanning started in position 10,

When you enter the ZONE subcommand without specifying zone settings, the
editor displays the current setting.

? (QUESTION MARK)

Use the ? subcommand to display the last EDIT subcommand executed except
for a REUSE (=) or ? (question mark) subcommand. The format of the?
subcommand is:

r-----.----------------------~-----.---,
? I

-------------~------------------------~--~

After an X, I,
subcommand that
subcommand.

or = subcommand,
was executed as a

the last
result

:EDIT subcommand
of issuing the

is
X or

the
y

When you issue the ? subcommand using a 3270 in display mode, the last
EDIT subcommand that vas executed is redisplayed in the user input area.
Press the Enter key to execute it again; you may modify the line before
reentering it.

256 IBM VM/370 eMS Command and Macro Reference

EDIT Subcommands-nnnnn

nnnnn

Use the nnnnn subcommand to enter and locate lines when you are using
line-number editing. The format of the nnnnn subcommand is:

I

I{nnnnn }
I nnnnnnnn

[text]

~------------------------.---~

nnnnn indicates a line number between 0 and 99999 if the filetype is
BASIC or VSBASIC, or a line number between 0 and 99999999 if the
filetYFe is FREEFORT.

text specifies a line of text to be inserted into the file at the
specified line number. If a line with that number already
exists, it is replaced. If no text line is specified, the
current line pointer is positioned at the line number specified.

The nnnnn subcommand
editing; that is, you
RIGHT or LEFT operand.
and FREEFORT files.

is valid only when you are using line-number
have issued the LINEKOtE subcommand using the

Line-number editing is the default for VSBASIC

When you issue the nnnnn subcommand with no operands, the line with the
specified line number is displayed. If the line is not found, the
editor displays the message:

LINE NOT FOUND

and the current line pointer is set at the next line number greater than
nnnnn.

Section 3. EDIT Subcommands and ~acros 251

Edit Macros-$DUP

EDIT Macros

Edit macros are CMS EXEC files that execute sequences of EDIT
subcommands. The following edit macros are supplied with VM/370 for
your convenience. For additional information on creating and invoking
your own edit macros and EXEC files, see the !~L~l~ £~E ~§~f~§ ~y!~~.

Use the $DUP to duplicate the current line. lhe format of the $DUP
macro is:

I r- ,
$DUP I I n I

I 11 1
1 L .J

~-- ------------------------~

n indicates the number of times you want to duplicate the line; tbe
maximum value you can specify is 25. If n is omitted,- the current
line is duplicated once.

1. The last copy of the line duplicated becomes the new current line.

2. If you use the logical line end symbol (I) to stack additional
subcommands on the same line with the $DUP edit macro those
subcommands are cleared from the console stack and the message:

STACKED LINES CLEARED BY $DUP

is issued. The stacked subcommand(s) are not executed.

3. Because it
duplicating
characters.

uses console functions, $DUP cannot
records containing binary. zeros or
Truncated duplicate records will result.

be used when
nonprintable

4. When using line-number editing, you can insert duplicate lines
between existing numbered lines if the interval tetween line
numbers is large enough. Execution of $DUP stops after the last
valid line number has been assigned. You can renumber your file to
increase the interval between line numbers.

The last line duplicated (the new current line) is displayed.

258 IBM VM/370 CMS Command and Macro Reference

Edit Macros-$MOVE

Use the $MOVE edit macro to move one or more lines from one place in a
file to another place. The format of the $MOVE macro is:

r---,
$MOVE

n

n {UP "m } DOWN m
TO label

indicates the number of records you want to move, beginning
with the current line. The maximum number of lines you can
move is 25.

UP m indicates that you want to move the lines toward the top of
the file, m lines above the current line.

DOWN m

TO label

indicates that you want to move the lines toward the end of
the file, m lines below the last line you are going to move.

indicates that you want the lines inserted
specified label. The label must be one to
characters and must start in column 1.

following the
eight uppercase

1. The last line moved becomes the new current line.

2. If the label is not found or if the DOWN value exceeds the number
of lines remaining before end of file, the lines are inserted at
the end of the file~ If the UP value exceeds the number of lines
remaining before top of file, the lines are inserted at the top of
the file.

3. If you 'use the logical line end symbol (I) to stack additional
subcommands on the same line with the $MOVE request, those
subcommands are cleared from the console stack and the message:

STACKED LINES CLEARED BY $MOVE

is displayed. The stacked subcommands are not executed.

4. Because it uses console functions, $MOVE will truncate duplicated
records containing binary zeros or nonprintable characters •

.R.§.§E.Q'!!§~§

When verification is on, the last line moved is displayed.

Section 3. EDIT Subcommands and Macros 259

I
I
I

260 IBM VM/370 CMS Command and Macro Reference

DEBUG Sutcommands

Section 4. DEBUG Subcommands

This section describes the subcommands that
you use the debug environment to test and
debug environment is entered when:

are available to you when
debug your programs. The

• The DEBUG command is issued from the CMS environment.
command is described in "Section 2. CMS Commands.")

(The DEBUG

• An external interruption occurs. (An external interruption is caused
by the CP EXTERNAL command.)

• A breakpoint (instruction address stop) is encountered during program
execution. (Breakpoints are set with the DEEUG subcommand BREAK.)

When the debug environment is entered, the contents of all general
registers, the channel status word (CSW), and the channel address word
(CAW) are saved so they may be examined and changed before being
restored when leaving the debug environment. If debug is entered via an
interruption, the old program status word (PSi) for that interruption is
also saved. If DEBUG is the first command entered after an abnormal
termination (abend) occurs, the contents of all general registers, the
CSW, the CAW, and the old PSi are available from the time of the abend.

For hints on debugging your programs using the CMS debug environment,
consult the !~L1IQ ~~~ ~§~~~§ §y!~~.

Section 4. DEBUG Subcommands 261

DEBUG Subcommands-BREAK

BREAK

Use the BREAK subcommand to stop execution of a program or module at a
specific instruction location called a breakpoint. The format of the
BREAK subcommand is:

BReak

id

symbol

hexloc

id {SymbOl}
hexloc

is a decimal number, from 0 to 15, which identifies the
breakpoint. A max~mum of 16 breakpoints may be in effect at
one time; if you specify an identification number that is
already set for a breakpoint, the previous breakpoint is
cleared and the new one is set.

is a name assigned to the storage location where the
breakpoint is set. symbol, if used, must have previously been
set using the DEFINE subcommand.

is the hexadecimal storage location (relative to the current
origin) where the breakpoint is to occur. hexloc must be on a
halfword boundary and its value added to the current origin
must not exceed your virtual machine size.

1. To set breakpoints before beginning program execution, enter the
debug environment with the DEaUG command ~fter you load the program
into storage. After setting the breakpoints, use the RETURN
subcommand to leave the debug environment and issue the START
command to begin program execution. For example:

load myprog
debug
break 1 20016
break 2 20032
return
start

2. When you assign hexloc to a breakpoint, you must know the current
origin (set with the ORIGIN subcommand). The hexloc you specify is
added to the current origin to determine the breakpoint address.

3. When a breakpoint is found during program execution, the message:

DMSDBG728I DEBUG ENTERED BREAKPOINT yy AT xxxxxx

is displayed at the terminal. To resume program execution, use the
GO subcommand.

4. Breakpoints are cleared after they are encountered; thus, if a
breakpoint is encountered during a program loop you must reset the
breakpoint if you want to interrupt execution the next time that
address is encountered.

5. When you set a breakpoint, the half word at the address specified is
replaced with B2Ex, where x represents the identification number
you assigned. After the breakpoint is encountered during
execution, B2Ex is replaced with the original operation code.

262 IBM VM/370 CMS Command and Macro Reference

DEBUG Subcommands-BREAK, CAW

6. You should set breakpoints only at valid operation code addresses;
the BREAK subcommand does not check to see whether or not the
specified location contains a valid operation code.

7. If you reference a virtual storage
segment, you are given a nonshared
receive the message:

address that is in
copy 6f the segment

SYSTEM sysname REPLACED WITH NON-SHAREt copy

a shared
and yeu

None.

CAW

Use the CAW subcommand to display at the terminal the contents
CAW (channel address word) as it existed at the time the
environment was entered. The format of the CAW subcommand is:

of the
debug

CAW I

1. Issue the CAW subcommand to check that the command address field
contains a valid CCW address, or to find the address of the current
CCW so you can examine it.

2. The three low-order bits of the command address field must be zeros
in order for the CCW to be on a doubleword boundary. If the CCW is
not on a doubleword boundary or .if the command address specifies a
location protected from fetching or outside the storage of a
particular user, the Start I/O instruction causes the status
po~tion cf the csw (channel status word) to be stored with the
program check or protection check bit on. In this event, the I/O
operation is not initiated.

The CAW, located at storage location X'48', is displayed. Its format is:

---,
KEY I 0000 I Command Address I ~ __ . _____________ J

a

Bits
0='3

4-7

8-31

3 4 7 8 31

contents
The-protection key for all commands associated with Start I/C.
The protection key in the CAW is compared to a key in storage
whenever a reference is made to storage.

This field is not used and must contain binary zeros.

The command address field contains the storage address (in
hexadecimal representation) of the first CCW (channel command
word) associated with the next or most recent Start I/O.

Section 4. £EBUG Subcommands 263

DEBUG Subcommands-CSW

csw

Use the CSW subcommand to display at the terminal the contents
CSW (channel status word), as it existed at the time the
environment was entered. The format of the CSW subcommand is:

of the
debug

CSW
~---~

!!§~~ !f.Q1~§

1. The CSW indicates the status of the channel or an input/output
device, or the conditions under which an I/O operation terminated.
The CSW is formed in the channel and stored in storage locaticn
X'40' when an I/O interruption occurs. If I/O interruptions are
suppressed, the CSW is stored when the next start I/O. Test I/O, cr
Halt I/O instruction is executed.

2. Whenever an I/O operation abnormally terminates, issue the
subcommand. The status and residual count information in the
is very useful in debugging. Also, use the CSW to calculate
address of the last executed CCW (subtract eight bytes from
command address to find the address of the last CCW executed)~

CSi
CSW
the
the

The contents of the CSW are displayed at the terminal in hexadecimal
representation. Its format is:

I

I KEY 10000 I Command Address Status Eyte Count

03478 31 32 47 48 63

Bits
0=3

4-7

8-31

32-47

48-63

Contents
The-protection key is moved to the CSW from the CAW. It shows
the protection key at the time the I/O operation started. The
contents of this field are not affected by programming errors
detected by the channel or by the condition causing
termination of the operation.

This field is not used and must contain binary zeros.

The command address contains a storage address (in hexadecimal
representation) that is eight bytes greater than the address
of the last CCW executed.

The status bits indicate the conditions in the device or
channel that caused the CSW to be stored.

The residual count is the difference between the number of
bytes specified in the last executed CCW and the number of
bytes that were actually transferred. When an input operaticn
is terminated, the difference between the original count in
the CCW and the residual count in the CSW is equal to the
number of bytes transferred to storage; on an output
operation, the difference is equal to the number of bytes
transferred to the I/O device.

264 IBM VM/370 CMS Command and Macro Reference

IEBUG Subcommands-DEFINE

DEFINE

Use the DEFINE subcommand to assign a symbolic name to a specific
siorage address. Once a symbolic name is assigned to a storage address,
that symbolic name can be used to refer to that address in any of the
other DEBUG subcommands. The format of the DEFINE subcommand is:

DEFine symbol hexloc
.. ,
Ibytecountl
I ~ I
L .J

~___.J

symbol

hexloc

bytecount

is the name to be assigned to the storage address derived from
the second operand, hexloc. Symbol may be from one to eight
characters long, and must contain at least one nonhexadecimal
character. Any symbolic name longer than eight characters is
left-justified and truncated on the right after the eighth
character.

is the hexadecimal storage location, in relation to the
current origin, to which the name specified in the first
operand (symbol), is assigned.

is a decimal number, between 1 and 56 inclusive, which
specifies the length in bytes of the field whose name is
specifed by the first operand (symbol) and whose starting
location is specified by the second operand (hexloc). When
bytecount is not specified, 4 is assumed.

!!~~.9~ !Q!~~

1. Issuing the DEFINE subcommand creates an entry in the debug symbol
table. The entry consists of the symbol name, the storage address,
and the length of the field. A maximum of 16 symbols can be
defined in the debug symbol table at any given time.

2. When a DEFINE subcomaand specifies a symbol that already exists in
the debug symbol table, the storage address derived from the
current request replaces the previous storage address. Several
symbols may be assigned to the same storage address, but each of
these symbols constitutes one entry in the debug symbol table. The
symbols remain defined until they are redefined or until an 1Ft
subcommand loads a new copy of eMS.

3. When you assign a symbolic name to a storage location, you must
know the current origin (set by the ORIGIN subcommand). The hexloc
you specify is added to the current origin to create the entry in
the symbol table used by DEBUG subcommands. If you change the
current origin, existing entries are not changed.

4. You can use symbolic names to refer to storage locations when you
issue the DEBUG subcommands BREAK, DUMP, GO, ORIGIN, STORE, and X.

None.

Section 4. DEBUG Subcommands 265

DEBUG Subcommands-DUMP

DUMP

Use the DUMP subcommand to print part or all of your virtual storage on
the printer. The requested information is printed offline as soon as
the printer is available. First, a heading:

ident FROM starting location TO ending location

is printed. Next, the general registers 0-7 and 8-15, and the
floating-point registers 0-6 are printed, followed by the PSi, CSi, and
CAW. Then the specified portion of virtual storage is printed with the
storage address 6f the first byte in the line printed at the left,
followed by the alphameric interpretation of 32 bytes of storage. The
format of the DUMP subcommand is:

r r , ,
DUmp I symboll I symbo12 I I

I hexlocl I hexloc2 [ident] I I
I Q I * I I
I I J~ I I
L L J ~

L-__________________ ----------__ ~ ___ ~

symboll

hexloc1

symbol2

hexloc2

*

ident

is the name assigned (via the DEFINE subcommand) to the
storage address that begins the dump.

is the hexadecimal storage location, in relation to current
origin, that begins the dump~

is the name assigned (via the DEF~NE subcommand) to th~
storage address that ends the dump.

is the hexadecimal storage location, in relation to the
current origin, that ends the dump.

indicates that the dump ends at your virtual machine's last
virtual storage address.

is any name (up to eight characters) that identifies the dump.

1. If you issue the DUMP subcommand with no operands, 32 bytes of
storage are dumped, starting at the current origin.

2. The first and second operands must designate storage addresses that
do not exceed your virtual machine storage size. Also, the storage
address derived from the second operand must be greater than the
storage address derived from the first operand.

None.

266 IBM VM/370 CMS Command and Macro Reference

DEBUG Subcommands-GO

GO

Use the GO subcommand to exit from the debug environment and begin
program execution. The format of the GO subcommand is:

~---,

GO
r ,
I symbol I
I hexloc I
L

I
I
I
I

symbol is the symbolic name assigned to the storage location where
you want execution to begin.

hexloc is the hexadecimal location, in relation to the current
origin, where you want execution to begin.

1. When you issue the GO subcommand, the general registers, CAW
(channel address word), and CSW (channel status word) are restored
either to their contents upon entering the debug environment, or,
if they have been modified, to their modified contents. Then the
old PSW is loaded and becomes the current PSW. Execution begins at
the instruction address contained in bits 40-63 of the PSi.

2. When you specify symbol or hexloc with the GO subcommand, the
specified address replaces the instruction address in the old PSW,
so execution will begin at that address. If you entered the debug
environment with the DEBUG command, you must specify an address
with the GO subcommand.

3. The address you specify must be within your virtual machine and it
must contain a valid operation code.

Program execution is resumed.

section 4. DEBUG Subcommands 267

DEBUG Subcommands-GPR, HX

GPR

Use the GPR subcommand to display the contents of one or more general
registers at the terminal. The format of the GPR subcommand is:

GPR I regl [reg2]

~~~~~: 

regl is a decimal number (from 0-15 inclusive) indicating the first 
or only general register whose contents are to be displayed. 

reg2 is a decimal number {from 0-15 inclusive) indicating 
general register whose contents are to be displayed. 
be larger than reg1. 

~~§EB~E~E 

the last 
reg2 must 

The register or registers specified are displayed, in hexadecimal 
representation: 

xxxxxxxx 

HX 

Use the HX subcommand to leave the debug environment, regardless of the 
reason the debug environment was entered. The format of the HX 
subcommand is: 

, 
HX I ~ _________________________________________________________________________ J 

If you entered the debug environment following a program interruption~ 
you receive the message: 

CMS 

to indicate a return to the CMS environment. If you entered the debug 
environment by issuing the DEBUG command, you receive the message: 

DMSABN148T SYSTEM ABEND 2E4 CALLED FROM xxxxxx 

where xxxxxx is the address of the debug routine. 

268 IBM VM/370 CMS Command and Macro Reference 



IEBUG Subcommands-ORIGIN 

ORIGIN 

Use the ORIGIN subcommand to set an origin or base address to be 
the debug environment. The format of th~ ORIGIN subcommand is: 

used in 

, 
ORigin 

{ 
SYllbOl} I 
hexloc I 

Q I 
.J 

symbol is a symbolic name that was previously assigned (via the 
DEFINE subcommand) to a storage address. 

hexloc is a hexadecimal location within 
storage. If you do not explicitly 
a value of O. 

the limits of your virtual 
set an origin, then it bas 

1. When the ORIGIN subcommand specifies a symbol, the debug symbel 
table is searched. If a match is found, the value corresponding to 
the symbol becomes the new origin. When a hexadecimal location is 
specified, that value becomes the or1g1n. In either case, the 
operand cannot specify an address greater than your virtual storage 
size. 

2. Any origin set by an ORIGIN subcommand remains in effect until 
another ORIGIN subcommand is issued, or until you obtain a new co~y 
of CMS. Whenever a new ORIGIN subcommand is issued, the value 
specified in that subcommand overlays the previous origin setting. 
If you obtain a new copy of CMS (via IPL), the origin is set to 0 
until a new ORIGIN subcommand is issued. 

3. 

None. 

You can use the ORIGIN subcommand to set the origin to your 
program's base address, and then refer to actual instructien 
addresses in your program, rather than to virtual storage 
locations. 

section 4. DEBUG Subcommands 269 



DEBUG Subcommands-PSi, RETURN 

PSW 

Use the PSi 
status·word). 

PSi 

!l§A9~ !!2!~§ 

subcommand to display the contents of 
The format of the PSi subcommand is: 

the PSi (program 

1. If the debug environment was entered because of a program 
interruption, the program old PSi is displayed. If the debug 
environment was entered because of an external interruption, the' 
external old PSi is displayed. If the debug environment was 
entered for any other reason, the following is displayed in 
response to the PSi subcomma~d: 

01000000xxxxxxxx 

where the 1 in the first byte means that external interruptions are 
allowed and xxxxxxxx is the hexadecimal storage address of the 
debug program. 

2. The PSi contains some information not contained in storage or 
registers but required for proper program execution. In general, 
the PSi is used to control instruction sequencing and to hold and 
indicate the status of the system in relation to the program 
currently executing. For a description of the PSi, refer to 
"Appendix A: system/370 Information" in the l11Ll1.Q ~!§!'§J!! 
f±2g±gJ!!J!!~±~§ ~y!g~. 

The PSi is displayed in hexadec~mal representation. 

RETURN 

Use the RETURN subcommand to exit from the debug environment and enter 
the CMS command environment. The format of the RETURN subcommand is: 

RETurn 

!l§A9~ !!2!~ 

The RETURN subcommand is valid only when the debug environment was 
entered via the DEBUG command. 

The CMS ready message indicates that control has been returned to the 
CMS environment. 

270 IBM VM/370 CMS Command and Macro Reference 



DEEUG Subcommands-SET 

SET 

Use the SET subcommand to change the contents of the control words and 
general registers. The format of the SET subcommand is: 

SET 

{

CAW 
CSW 
PSW 
GPR 

hex info 
hex info 
hex info 
reg 

(hexinfo] 
hexinfo [hexinfo] 

[hexinfo] } 

L-_________________________ ~ _______________________________________________________________ ~ 

CAW hex info 
stores the specified information (hexinfol in the ClW (cbannel 
address word) that existed at the time the debug environment 
was entered. 

CSW hexinfo (hexinfo] 
stores the specified information (bexinfo (hexinfo]) in tbe 
CSW (channel status word) that existed at the time the debug 
environment was entered. 

PSW hexinfo [hexinfo] 
stores the specified information (hexinfo (hexinfo]) in the 
old PSW (program status word) for tbe interruption that caused 
the debug environment to be entered. 

GPR reg hexinfo (hexinfo] 
stores the specified information (hexinfo [hexinfo]) in tbe 
specified general register (reg). 

1. The SET subcommand can only change the contents of one control word 
at a time. For example, you must issue tbe SET subcommand three 
times: 

set caw hex info 
set csw hexinfo [hexinfo] 
set psw bexinfo [hexinfo] 

to change the contents of the three control words. 

2. The SET subcommand can change the contents of one or two general 
registers each time it is issued. When four or fewer bytes of 
information are specified, only the contents of the specified 
register are changed. When more than four bytes of information are 
specified, the contents of the specified register and the next 
sequential register are changed. For example, the SET subcommand: 

set gpr 2 xxxxxxxx 

changes cnly the contents of general register 2. But, tbe SET 
subcommand: 

set gpr 2 xxxxxxxx xxxxxxxx 

changes the contents of general registers 2 and 3. 

Section 4. DEBUG Subcommands 271 



DEBUG Subcommands-SET, STORE 

3. Each hexinfo operand should be from one to four bytes long. If an 
operand is less than four bytes and contains an uneven number of 
hexadecimal digits (representing half-byte information), the 
information is right-justified and the left half of the uneven byte 
is set to zero. If more than eight hexadecimal digits are 
specified in a single operand, the information is left-justified 
and truncated on the right after the eighth digit. 

4. The number of bytes that can be stored using the SET subcommand 
varies depending on the form of the subcommand. With the CAW form, 
up to four bytes of information may be stored. With the CSW, GPR, 
and PSW forms, up to eight bytes of information may be stored, but 
these bytes must be represented in two operands of four bytes each. 
When two operands of information are specified, the information is 
stored in consecutive locations (or registers), even if one or both 
operands contain less than four bytes of information. 

None. To display the contents of control words or registers after you 
modify them, you must use the CAW, CSW, PSW, and GPR suhcommands. 

STORE 

Use the STORE subcommand to store up 
information in any valid virtual storage 
STORE subcommand is: 

to 12 bytes of hexadecimal 
location. The format of the 

r-----------------------------------------------------------------------------, 
STore 

symbol 

hexloc 

hexinfo 

{
SymbOl} 
hexloc 

hexinfo (hexinfo (hexinfo]] I 
I 

is the symbolic name assigned (via the DEFINE subcommand) to 
the storage address where the first byte of specified 
information is to be stored. 

is the hexadecimal location, relative to the current origin, 
where the first byte of information is to be stored. 

is the hexadecimal information, four tytes or less in length 
(that is, two to eight hexadecimal digits), to be stored. 

1. If an operand is less than four bytes long and contains an uneven 
number of hexadecimal digits (representing half-byte information), 
the information is right-justified and the left half of the uneven 
byte is set to zero. If more than eight hexadecimal digits are 
specified in a single operand, the information is left-justified 
and truncated on the right after the eighth digit. 

2. The STORE subcommand can store a maximum of 12 bytes at one time. 
By specifying all three information operands, each containing four 
bytes of information, the maximum 12 bytes can be stored. If less 
than four bytes are specified in any or all of the operands, the 
information given is arranged into a string of consecutive bytes, 
and that string is stored starting at the location derived from the 
first operand. 

272 IBM VM/370 CMS Command and Macro Reference 



DEfUG Subcommands-STORE, X 

For example, if you have defined a four-byte symbol named FENCE 
that currently contains X'FFFFFFFF' and you enter: 

store fence 0 

FENCE contains X'OOFFFFFF'. 

None. To display the contents of a storage location after you have 
modified it, you must use the X subcommand. 

x 
Use the X subcommand to examine and display the contents of specific 
locations in virtual storage. The format of the X (examine) subcommand 
is: 

r , 
X symbol I n I 

I l~Dg!h I 
L ~ 

r , 
hexloc I n I 

I ~ I 
L ~ 

J 

symbol n is the name assigned (via the DEFINE subcommand) to the 
storage address of the first byte to be displayed. n is a 
decimal number from 1 to 56 inclusive, that specifies the 
number of bytes to be examined. If a symbol is specified 
without a second operand, the length attribute associated with 
that symbol in the debug symbol table specifies the number cf 
bytes to be examined. 

hexloc n is the hexadecimal location, in relation to the current 
or1g1n, of the first byte to be examined. If hexloc is 
specified without a second operand, four bytes are displayed. 

y§~~ !Q!~ 

The address represented by symbol or hexloc must be within your virtual 
machine storage size. 

The requested information is displayed at the terminal in hexadecimal 
format. 

Section 4. DEBUG Subcommands 213 



274 IBM VM/370 CMS Command and Macro Reference 



EXEC Control Statements 

Section 5. EXEC Control Statements 

This section describes the formats, usage rules, and default values for 
EXEC control words, including: 

• Control statements 
• Built-in functions 
• Special variables 

An EXEC procedure is a eMS file that contains a sequence of C!S 
commands and/or EXEC control statements. Control statements determine 
the logic flow for EXEC, provide terminal communications, and may be 
used to manipulate CMS disk files. For an introduction to the EXEC 
facilities, and for complete tutorial information, including examples, 
consult the !~LJIQ ~~a Us~!~§ ~y!g~. 

EXEC procedures may be invoked with the EXEC command, described in 
"Section 2. CMS Com.ands." You may also execute an EXEC procedure by 
specifying its filename, as long as the implied EXEC function is in 
effect. 

Section 5. EXEC Control Statements 275 



EXEC Control Statements-Assignment Statement 

The Assignment Statement 

Use the assignment statement in an EXEC procedure to assign a value to a 
variable symbol. Variable symbols may be tested and manipulated to 
control the execution of an EXEC procedure. The format of the 
assignment statement is: 

r----------------------------------------------------.---------------------------, 
&variable = 

{

string 
ae 
function 
X'xxxxxx 

} 
I 
I 
I 
I 

&variable 

string 

ae 

function 

X'xxxxxx 

indicates the variable symbol which is assigned tbe 
specified value. A variable may contain a maximum of eigbt 
alphameric characters, including the initial ampersand, 
which is required. Except in the EXEC special variables E* 
and &DISK*, a variable must not contain any special 
characters. 

is a data item of up to eight characters. It may also te a 
variable symbol or null. Whether a numeric string is 
treated as numeric or character data depends on how it is 
used in the EXEC. If a string containing variable symbols 
expands to more than eight characters, it is truncated. If 
the string consists of eight X'FF' characters, the variable 
is set to a null string. 

is an arithmetic expression consisting of a sequence of data 
items that possess positive or negative integral values and 
are separated by plus or minus signs: 

&1 - 4 + &CALC - 6 

is an EXEC built-in function followed by at least one token. 

indicates up to six hexadecimal digits to be converted to 
decimal before assignment. For example: 

&A = X'CO 

results in &A having the decimal value 192. 

Hexadecimal conversion is not performed unless you have used 
the &HEX ON control statement. 

All variable symbols occurring in executable statements are substituted 
before the statement is executed. An executable statement is (1) a C~s 
command line, or (2) an EXEC control statement (including assignment 
statements) • 

276 IBM VM/370 CMS Command and Macro Reference 



EXEC Control statements-Assignment statement, &ARGS, &BEGEMSG 

Variable substitution is performed on all symbols on the left-hand 
side of an assignment statement, except the leftmost variable. For 
example: 

&1 = 2 
&X&I = 5 

sets &X2 to 5. 

If a variable on the left-hand side of an assignment statement has 
already been assigned a value, it is replaced by the new value specified 
in the assignment statement. 

If the special form, X'Ssymbol, is 
converted to its hexadecimal equivalent. 

&A = 192 
&TYPE X'&A 

results in the display: 

co 

used, the specified symbol 
For example: 

is 

If a variable symbol that has not been defined is used in an 
executable statement the symbol is set to a null token and ignored. In 
some instances this may cause an EXEC processing error. 

All executable statements in an EXEC are scanned into eight-character 
tokens, and padded or truncated as necessary. Tokens are formed of words 
delimited by blanks and parentheses. If there is no blank before or 
after a parenthesis, one is added in either case. If more than one 
blank separates a word or a parenthesis from another, the extra blanks 
are removed from the line. For example, the line: 

&TYPE THIS IS AN EXAGGERATED (MESSAGE 

scans as: 

&TYPE THIS IS AN EXAGGERA ( MESSAGE 

Variable symbols are substituted after each line is scanned, and each 
token is scanned repeatedly until all symbols in it are substituted. 

In an executable statement, a token beginning with the character 
X'PP' (or a variable to Which such a token is assigned as a value) 
usually prevents the processing of data following it on the same line. 
However, if an assignment statement sets a variable to eight X'PF' 
characters, data following the variable in an executable statement is 
processed. 

&ARGS 

Use the &ARGS control statement to redefine the value of one or more of 
the special variables, S1 through &30. The format of the &ARGS control 
statement is: 

r-----.-----------------------------------------------------------------------, 
SARGS [arg1 [arg2 ••• [arg30] ] ] I 

Section 5. EXEC Control Statements 277 



EXEC Control Statements-&BEGEMSG 

[arg1 [arg2 ••• [arg30]]] 
specify up to 30 tokens to be assigned to the special 
variables &1 through &30. If no arguments are specified, all 
of the variables &1 through &30 are set to blanks. When fewer 
than 30 argu.ents are entered, the remaining arguments are set 
to blanks. An argument is also set to blanks if it is 
specified as a percent sign (~). 

1. To enter an argument list from the terminal, use the &READ IRGS 
control statement. 

2. An &ARGS control statement resets the values of the &INDEX, &*, and 
&$ special variables. 

&BEGEMSG 
Use the &BEGEMSG control statement to introduce one or more unscanned 
lines to be edited as VM/310 error messages. ihe list of lines to be 
displayed must be terminated by an &END control statement, which must 
appear beginning in column 1. The format of the &BEGEMSG contrel 
statement is: 

&BEGEMSG I [ALL] 

ALL specifies~ for fixed-length EXEC files, that the entire line (to a 
maximum of 130 characters) is to be displayed. 

!!§A9~ !Q!~§ 

1. To qualify for error message editing, the first data item on each 
line following the &BEGEMSG control statement must be seven 
characters long, in the format: 

mmmnnns 

mmmnnn is a six-character message identification you can supply 
for tha error message. Standard VM/310 error messages use a 
three-character module code (mmm) and a three-character 
message number (nnn). 

s indicates the severity code. The following codes qualify 
the message for error message editing: 

l1!!§§~g!! II£~ 
Informational 
Error 
Warning 

When the severity code is E, 
displayed in accordance with the 
CODE, or TEXT). You can change 
SET command, described in !~Ll1~ 
Q~1!!!!:sl !!§!!f§· 

I, or W, the message is 
CP EMSG setting (ON, OFF, 
this setting with the CP 
~g £Q~!g1!g ~~i~f~1!£~ iff 

218 IBM VM/310 CMS Command and Macro Reference 



EXEC Control Statements-&BEGEMSG 

2. When you use the &BEGEMSG control statement to display error 
messages, the character string "DMS" is inserted in front of the 
seven-character message identification. For example, if the EMSG 
setting is ON, the lines: 

&BEGEMSG 
TEST01E INSURMOUNTABLE ERROR 
&END 

result in the display: 

DMSTEST01E INSURMOUNTABLE ERROR 

J!.Ql~: Since the maximum length of a line that you can display at 
your terminal is 130 characters, the insertion of the characters 
DMS will cause lines greater than 127 characters long to be 
truncated. 

3. Messages that are displayed as the result of an &BEGEMSG control 
statement are not scanned by the EXEC interpreter. Therefore, no 
variable substitution is performed and no data items are truncated. 
To display variable data, use the &EMSG control statement. 

,&BEGPUNCH 

Use the &BEGPUNCH control statement to delimit the beginning of a list 
of one or more data lines to be spooled to your virtual card punch. The 
list of lines to be punched is terminated by the control statement &END, 
which must occur beginning in column 1. The format of the &BEGPUNCH 
control statement is: 

&BEGPUNCH [ALL] 

ALL specifies that data occupying columns 73 through 80 should be 
punched. If ALL is not specified, input records are truncated 
at column 72 and columns 73 through 80 of the output record 
are padded with blanks. 

!!'§A9~ J!.Q1~.§ 

1. Lines that are punched as the result of an &BEGPUNCH control 
statement are not scanned by the EXEC interp~eter. Therefore, no 
variable substitution is performed and no data items are truncated. 
To punch variable data, you must use the &PUNCH control statement. 

2. When you are finished punching lines in an EXEC procedure, you 
should use the CP CLOSE command to close your virtual punch. 

Section 5. EXEC Control Statements 279 



EXEC Control Statements-SBEGPUNCH, SBEGSTACK 

&BEGSTACK 

Use the SBEGSTACK control statement to delimit the beginning ofa list 
of one or more data lines to be placed in the console input stack. The 
list of lines to be stacked is terminated by the.control statement SEND 
which must occur beginning in column 1. The format of the SBEGSTACK 
control statement is: 

r , r , 
SBEGSTACK IPIPOI 

I LIFO I 
IALLI 
L .J 

L .J 
~ _________________________________________________________________________ . .J 

LIPO 

specifies that the lines that follow are to be stacked on a 
first in, first out basis. This is the default value. 

specifies that the lines that follow are to be stacked on a 
last in, first out basis. 

ALL specifies, for fixed-length EXEC files, that the entire line 
(to a maximum of 130 characters) is to be stacked. If ALL is 
not specified, the lines are truncated in~column 72. 

1. Lines that are stacked as the result of an SBEGSTACK control 
statement are not scanned by the EXEC interpreter. Therefore, no 
variable substitution is performed, and data items are not 
truncated. To stack variable data, you must use the SSTACK control 
statement. 

2. To stack a null line in an EXEC file you must use the SSTACK 
control statement. A null line following an SBEGSTACK control 
statement is interpreted as a line of blanks. To stack an INPUT, 
REPLACE, or CHANGE subcommand to enter input mode from a 
fixed-length EXEC, you should use the SSTACK control statement. 

&BEGTYPE 

Use the SBEGTYPE control statement to delimit the beginning of a list of 
one or more data lines to be displayed at the terminal. The list ef 
lines to be displayed is terminated by the control statement SEND, which 
must occur beginning in column 1. The format of the SBEGTYPE control 
statement is: 

~------.------------------~-----------------------------------------------, 
SBEGTYPE [ALL] I 

ALL specifies, for fixed-length EXEC files, that data occupying 
columns 73 through 130 is to be displayed. If ALL is net 
specified, the lines are truncated at column 72~ 

280 IBM -VM/370 CMS: Command and .MacroReference 



EXEC Control Statements-SBEGSTACK, SBEGTYPE, SCONTINUE 

!!§.!.9.!! !Q:t~ 

Lines that are displayed as the result of an SEIGTYPE control statement 
are n~t scanned by the EXEC interpreter. Therefore, no variable 
substitution is performed, and data items are not truncated. To display 
variable data, you must use the STYPE control statement. 

"CONTINUE 

Use the SCONTINUE control statement to 
process the next statement in the 
SCONTINUE control statement is: 

SCONTINUE 

instruct the EXEC interpreter to 
EXEC file. The format of tbe 

~ __________________________________________________________________________________ J 

SCONTINUE is generally used with an EXEC label (for example, -LAB 
SCONTINUE) to provide a branch address for SERROR, SGOTO, and other 
branching statements. SCONTINUE is the default action taken when an 
error is detected in processing a C~S command. 

Section 5. EXEC Control Statements 281 



EXEC Control Statements-&CONTROL 

&:CONTROL 

Use the &CONTROL control statement to specify the amount of data to be 
displayed in the execution summary of an EXEC. The format of .the 
&CONTROL control statement is: 

r , r , r , r , 
&CONTROL IOFF I 

IERRORI 
1£112 I 
IALL I 

111~§' I 
INOMSGI 
L .J 

ITIME I I~!~!i I 
INOPACKI 
L .J 

OFF 

ERROR 

I!H2II!1~ I 
L .J 

L .J 

sUPFresses the display of CMS commands and EXEC 
statements as they execute and of any return codes 
result from CMS commands. 

contrel 
that may 

displays only those CMS commands that result in an error and 
also displays the error message and the return code. 

~11~ displays each CMS command as it is executed and all nonzero 
return codes. 

ALL 

NOMSG 

TIME 

NOPACK 

displays CMS commands and EXEC executable statements as they 
execute as well as any nonzero return codes from CMS commands. 

does not suppress the "FILE NOT FOUND" message if it is issued 
ty the following commands when they are invoked from an EXEC 
procedure: ERASE, LISTFILE, RENAME, or STATE. 

suppresses the "FILE NOT FOUND" message if it is issued when 
the ERASE, LISTFILE, RENAME, or STATE commands are inVOked 
from an EXEC procedure. 

includes the time-of-day value with each CMS command printed 
in the execution summary; for example: 

14:36:30 TYPE A B 

This operand is effective only if CMS or ALL is also 
specified. 

does not include the time-of-day value with CMS commands 
printed in the execution summary. 

packs the lines of the execution summary so that surplus 
blanks are removed from the displayed lines. 

does not pack the lines of the execution summary. 

1. The execution summary may consist of CMS commands, responses, errcr 
messages, and return codes, as well as EXEC control statements and 
assignment statements. When EXEC statements are displayed, they 
are displayed in their scanned format, with all variable symbols 
substituted. 

282 IBM VM/370 CMS Command and Macro Reference 



EXEC Control Statements-&CONTROL, &EftSG 

2. Each operand remains set until explicitly reset by another &CONTRCL 
statement that specifies a conflicting operand. When &CONTROL is 
used with no operands, all operands are reset to their default 
values. 

3. There is no global setting for &CONTROL. ~hen an EXEC is nested 
within another EXEC, the execution summary is controlled by the 
nested EXEC's &CONTROL setting. When control returns to the outer 
EXEC, the original &CONTROL setting is restored. 

&EMSG 

Use the &EMSG control statement to display a line of tokens to be edited 
as a Vft/370 error message. The format of the &EftSG control statement is: 

r--------------------------------------------------------------------------------, 
&EftSG I mmmnnns [tok1 ••• [tokn]] I 

• 

mmmnnn is a six-character identification you may supply for the error 
message. Standard VM/370 messages are coded using a 
three-character module code (mmm) and a three-character 
message number (nnn). 

s indicates the severity code. The following codes qualify the 
message for error message editing: 

1:!g22gg~ nEg 
Information 
Error 
Warning 

tok1 ••• [tokn] 
is the text of the message to be displayed. 

1. When the severity code is I, E, or W, the message is displayed in 
accordance with the CP EMSG setting (ON, OFF, CODE, or TEXT). You 
can change the setting with the CP SET command, described in !~Ll1Q 
~f ~Q~Jg~g R~!gfg~£g !Qf ~~~~fg! Q2gE§· 

2~ When an &EMSG code is displayed, it is prefixed with DMS. Fer 
example, the statement: 

&EMSG ERROR1E INVALID ARGUMENT 

displays as follows when the EMSG setting is ON: 

DMSERROR1E INVALID ARGUMENT 

3. To display an error message with unsubstituted data, or to display 
a line with words of more than eight characters, use the &BEGEMSG 
control statement. 

Section 5. EXEC Control Statements 283 



EXEC Control Statements-SEND, &ERROR 

&tEND 

Use the &END control statement to terminate a list of one or more lines 
that began with an &BEGEMSG, SBEGPUNCH, &BEGSTACK, or &BEGTYPE contrel 
statement. The format of the SEND control statement is: 

&END L-__ ~ _______________________________________________________________________ ~ 

The word "&END" must be entered beginning in column 1. 

&tERROR 

Use the &ERROR control statement to specify the action to be taken when 
a CMS command results in an error and returns with a nonzero return 
code. The format of the &ERROR control statement is: 

&ERROR 
r , 
I executable-statement I 
I~~Q!II!~! I 
L ~ 

executable-statement 
specifies any executable statement, which may be an EXEC contrel 
statement or assignment statement or a CMS command. If you specify 
an EXEC control statement that transfers control to another line in 
the EXEC, execution continues at the specified line. Otherwise, 
execution continues with the line following the CMS command line that 
caused the error. 

1. If your EXEC does not contain an SERROR control statement, then the 
default is &CONTINUE; that is, EXEC processing is to continue with 
the line following the CMS command that caused the error. You can 
use SERROR &CONTINUE to reset a previous SERROR statement. 

2. The words following an SERROR control statement are not scanned 
until a CMS command returns a nonzero return code. Therefore, if 
you specify an invalid EXEC statement, the error is not detected 
until a CMS command failure triggers the SERROR statement. If the 
&ERROR statement executes a CMS command that also results in an 
error, EXEC processing is terminated. 

284 IBM VM/370 CMS Command and Macro Reference 



EXEC Control Statements-&EXIT 

&EXIT 

Use the &EXIT control statement to terminate processing the EXEC file. 
If the exit is taken from a first-level EXEC procedure, control passes 
to CMS. If the exit is taken from a nested EXEC procedure, control 
passes to the calling EXEC procedure. The format of the &EXIT contrel 
statement is: 

&EXIT 
r , 
I return-code I 
I Q I 
L .J ~ __________________________________________________________________________ .J 

return-code 
specifies a numeric value, which may be a variable symbol, to 
be used as the return code from this EXEC. If the return code 
is not specified, it defaults to O~ 

!!§A9~ !!Q!~§ 

1. If control is returned to CMS, the CMS ready. message indicates the 
return code value. Thus, the statement: 

&EXIT 12 

results in the ready message: 

R(00012);T=O/02 15:32:34 

2. If you sFecify: 

&EXIT &RETCODE 

the return code value displayed is the return code from the most 
recently executed eMS command. 

Section 5. EXEC Control Statements 285 



EXEC Control Statements-&GOTO, &HEX 

&GOTO 

Use the &GOTO control statement to transfer control to a specific
location in the EXEC procedure. Execution then continues at the 
location that is branched to. The format of the &GOTO control statement 
is: 

&GOTO 

TOP 

line-number 

-label 

{
TOP } 
line-number . 
-label 

transfers control to the first line of the EXEC file. 

transfers control to a specific line in the EXEC file. 

transfers control to a specific label in the EXEC file. A 
label must begin with dash (-), and it must be the first 
token on a line. The remainder of the line may contain an 
executable statement or it may be null. 

1. Scanning for an EXEC label starts on the line following the &GOTO 
statement~ goes to the end of the file, then to the top of the 
file, and (if unsuccessful) ends on the line above the SGOTC 
statement. If more than one statement in the file has the same 
label, the first one encountered by these rules satisfies the 
search. 

2. To provide a branch up or down a specific number of lines in the 
EXEC, use the SSKIP control statement. 

&HEX 

Use the &HEX control statement to initiate or inhibit hexadecimal 
conversion in an EXEC procedure. The format of the &HEX control 
statement is: 

r-------------------------.-----------------------------------------------------, 
&HEX I 

I 

ON indicates that tokens beginning with the string X' are to be 
interpreted as hexadecimal notation. 

Ql! indicates that no hexadecimal conversion is to be done by EXEC. 
OFF is the default setting. 

286 IBM VM/370 CMS Command and Macro Reference 



EXEC Control Statements-&GOTO, &HEX 

!!§..ruI.§ !Qte§ 

1. You should use the &HEX control statement when you want to display 
a hexadecimal value. For example: 

&HEX ON 
&TYPE X'40 
&HEX 

results in the display: 

28 

If you did not use the &HEX ON control statement, the &TYFE 
statement would result in the display: 

X'40 

2. To convert a hexadecimal value to its decimal equivalent, use an 
assignment statement. 

3. The !~L11Q CMS User's Guide should be consulted for 
examples of correct--usage-of EXEC control statements 
in effect. 

details and 
with &HEX eN 

&IF 

Use the &IF control statement to test a condition in an EXEC procedure 
and to perform a particular action if the test is valid. If the test is 
invalid, execution continues with the statement following the &IF 
control statement. The format of the &IF statement is: 

&IF 

token1 
token2 

operator {!;ken2} executable-statement 

may be numeric constants, character 
symbols. All variable symbols are 
statement is executed. 

strings, or EXEC variable 
substituted before the &IF 

&$ tests all of the arguments entered when the EXEC was invoked. 
If at least one of the arguments satisfies the specified 
condition, the &IF statement is true. 

&* tests all of the arguments entered when the EXEC was invoked. 
All of the entered arguments must meet the specified condition 
in order for the &IF statement to be true. 

operator indicates the test to be performed on the tokens. If both 
tokens are numeric, an arithmetic test is performed. 
Otherwise, a logical (alphabetic) test is performed. The 
comparison operators, listed below, may be specified either in 
symbolic or mnemonic form: 

.§y.m!201 
or EQ 

,= or NE 
< or LT 
<= or LE 
> or GT 
>= or GE 

Ql!~!~!!Q!! 
equals 
not equal 
less than 
less than or equal to (not greater than) 
greater than 
greater than or equal to (not less than) 

Section 5. EXEC Control Statements 281 



EXEC Control Statements-SIF, SLOOP 

executable-statement 
is any valid EXEC executable statement which may be a C~S 
command, an EXEC control statement, or an assignment 
statement. You may also specify another SIP statement; the 
number of &IF statements that may be nested is limited only by 
the record length of the file. In fixed-length EXEC files, 
only the first 72 characters of the line are scanned • 

.!!'§A5I~ HQte.§ 

1. The values s* and S$ are reset when an &ARGS or &READ ARGS contrel 
statement is executed. They are not changed when you reset a 
specific numeric variable (S1 through S30) • 

2. If a variable symbol used in an &IF control statement is undefined, 
the EXEC interpreter cannot properly compare it. In cases where a 
variable may be null, or to check for a null symbol, you should use 
a concatenation character when you write the SIP statement; for 
example: 

&IP .&1 EQ • &GOTO -NOARGS 

tests for a null symbol S1. 

3~ If the symbols s* or &$ are null because no arguments were entered, 
the entire SIF statement is treated as a null statement. 

&LOOP 

Use the &LOOP control statement to describe a loop in an EXEC procedure, 
including the conditions for exit from the loop. The format of the 
SLOOP control statement is: 

SLOOP 

n 

-label 

m 

condition 

{ ~label } { ~ondi tion } 

, 
I 
I 

.J 

is a positive integer from 0 to 4C95 that indicates the 
number of executable and nonexecutable lines in the loo~. 
These lines must immediately follow the SLOOP statement. 

specifies that all of the lines following the SLeep 
statement down to, and including the line with the specified 
label, are to be executed in the loop. The first character 
of the label must be a hyphen, and it must be the first 
token on a line. The remainder of the line may contain an 
executable statement, or it may be null. 

is a positive integer from 0 to 4C95 that indicates the 
number of times the loop is to be executed. 

specifies the condition that must be met. The syntax of the 
exit condition is the same as that in the SIF statement, 
that is: 

288 IBM VM/370 CMS Command and Macro Reference 



EXEC Control Statements-SLOOP, SPUNCH 

1. When loop execution is complete, control passes to the next 
statement following the end of the loop. 

2. The condition is always tested before the leop is executed. If the 
specified condition is met, then the loop is not executed. For 
example, the statement: 

SLOOP 3 &COUNT = 100 

specifies that the next three lines are interpreted until the value 
of &COUNT is 100. 

3. Loops may be nested up to four levels deep. All nested loops may 
end at the same label. 

&PUNCH 

Use the &PUNCH control statement to punch a line of tokens to the 
virtual card punch. The format of the &PUNCH control statement is: 

&PUNCH [tok1 [tok2 ~ •• [tokn]]] 

tok1 [tok2 ••• [tokn]] 
specifies the tokens to be punched. All tokens are padded or 
truncated to eight characters. The punched line is right-padded 
with blanks to fill an 80-column card. If no tokens are specified, 
a line consisting of 80 blank characters is punched. 

y§~~ !Q!~§ 

1. Lines punched with the &PUNCH control statement are scanned by the 
EXEC interpreter and variable symbols are substituted before the 
line is punched. In fixed-length EXEC files, only the first 72 
characters of the record are scanned. To punch one or more lines 
of unscanned data, use the &BEGPUNCH or &EEGPUNCH ALL contrel 
statement. 

2~ When you have finished punching lines in an EXEC procedure, you can 
use the CP command CLOSE to close the spool punch file and release 
it for processing. 

&READ 

Use the &~EAD control statement to read one or more lines from the 
terminal or console stack. The lines may contain data or executable 
statements. The format of the &READ control statement is: 

section 5. EXEC Control Statements 289 



EXEC Control Statements-&READ, &SKIP 

r------------------------------------------------------------------------------, 
I 
I 
I 
I 
I 
I 

n 

1 

&READ 

ARGS 

r 
I n 
I 1 
IARGS 
IVARS 
L 

, 
I 
I 
I 

[&var1 [&var2 ••• [&varn]]]1 
.J 

reads the nextn lines from the terminal and treats them as if 
they had been in the EXEC file. Reading from the terminal 
stops when n lines have been read, or when an &LOOP statement 
or a statement that transfers control is encountered. If an 
&READ statement is encountered, the number of lines to be read 
by it is added to the number outstanding. 

If n is not specified, the default 1 is assumed, and the EXEC 
continues processing after reading a single line. 

reads a single line, assigns the entered tokens to the special 
variables &1, &2, ~ •• , &n, and resets the special variables 
&INDEX, &*, and &$. 

If any of the tokens is specified as a percent sign (%) or 
begins with the character X'FF', the corresponding argument is 
set to blanks. 

VARS [&var1 [&var2 .~. [&varn]]] 

Q.§1!.9.§ !i2:1.§ 

reads a single line and assigns the tokens entered to the 
variable symbols &var1, &var2, ••• , &varn (up to 17). 

These variables are scanned in the same way as though they 
appeared on the left-hand side of an assignment statement. If 
no variable names are specified, any data read from the 
terminal is lost. 

If any of the tokens is specified as a percent sign (%) or 
begins with the character X'FF', the corresponding variable is 
set to blanks. 

You can . test the special variable &READFLAG to determine whether the 
next &READ statement will result in a physical read to your terminal 
(the value of &READFLAG is CONSOLE) or in reading a line from the 
console stack (the value of &READFLAG is STACK). 

&SKIP 

Use the &SKIP control statement to cause a specified number of lines in 
the EXEC file to be skipped. The format of the &SKIP control statement 
is: 

&SKIP 
r , 
I n I 
111 
L .J 

290 IBM VM/370 CMS Command and Macro Reference 



EXEC Subcommands-SSKIP,' &SPACE 

n specifies the number of lines to be skipped: 

• If n is greater than 0, the specified number of lines are 
skipped. Execution continues on the line following the skipped 
lines. If the value of n surpasses the number of lines 
remaining in the file, the EXEC terminates processing. 

• If n is equal to 0, no lines are skipped, and execution 
continues with the next line. 

• If n is less than 0, execution continues with the line. that is n 
lines above the current line. An attempt to skip beyond the 
beginning of the file results in an error exit from the EXEC. 

• The n may be coded as a variable symbol. 1 is the default value 
that is used when no value is specified for n. 

To pass control to a particular label in an EXEC procedure, use the 
&GOTO control statement. The &GOTO control statement provides more 
flexibility when you want to update your EXEC procedures. The &SKIP 
statement, however, is more efficient, in terms of execution time. 

&SPACE 

Use the &SPACE control statement to display a specified number of blank 
lines at your terminal. The format of the &SPACE control statement is: 

n 

&SPACE 

specifies 
terminal. 
default. 

r , 
I n I 
I 1 I 
L .J 

the number of 
If no number 

blank lines 
is specified, 

to be 
&SPACE 

displayed at 
1 is assumed 

the 
by 

!!.§M,g !H~t e.§ 

1. You may want to use the &SPACE control statement to control the 
format of the execution summary that displays while your EXEC 
executes. 

Section 5. EXEC Control Statements 291 



EXEC Control Statements-SSTACK 

&:STACK 

Use the SSTACK control statement to stack a single data line inthe 
console input stack. Stacked lines may be read by the EXEC~ by CftS, or 
by the CMS editor. The format of the SSTACK control statement is: 

r , r , 
&STACK I~!~QI I tok1 [tok2 ••• [tokn ]]1 

ILIFOI I HT I 
L .J I RT I 

L .J 
~------------, ____________________________________ ~ ________________ ~ ___ .J 

specifies that the line is to be stacked in a first in, first 
out sequence, and is the default if not specified otherwise. 

LIFO specifies that the line is to be stacked in a last in, first 
out sequence. 

tok1 [tok2 ••• [tokn]] 

HT 

RT 

specify the tokens to be stacked. If no tokens are specified, 
a null line is stacked. The tokens are in expanded form. 

stacks the CMS Immediate command HT (halt typing), which is 
executed immediately. All terminal display from the EXEC is 
suppressed until the end of the file or until an RT (resu.e 
typing) command is read. 

stacks the CMS Immediate command RT (resume typing), which is 
executed immediately. If terminal display has been suppressed 
as the result of an HT (halt typing) request, display is 
resumed. 

!!:§ll~ !2te§ 

1. Lines stacked with the SSTACK control statement are scanned by the 
EXEC interpreter and variable symbols are substituted before the 
line is stacked. To stack on~ Or more unscarined lines, use the 
SBEGSTACK or SBEGSTACK ALL control statement. 

2. You must use the SSTACK control statement when yoa want to stack a 
null line .• 

3~ Any CMS Immediate command may be executed in an EXEC, using the 
SSTACK control statement. 

4. A complete discussion of techniques you can use to stack commands 
and data in the console stack is provided in the !~L11~ £~~ ]§!I!§ 
5i,g.!£!. 

292 IBM VM/370, CMSCommand. and Mac·ro Reference 



EXEC Control Statements-&TI!E 

&TIME 

Use the &TIME control statement to 
displayed at the terminal after each 
format of the &TIME control statement 

request timing information to 
CMS command that is executed. 
is: 

be 
The 

, 
r , I 

&TIME ION I I 

ON 

RESET 

TYPE 

IQ!! I I 
IRESETI I 
ITYPE I I 
L .J I 

.I 

'resets the processor's time before every CMS command, and 
prints the timing information on return. If the &CONTRCL 
control statement is set to CMS or ALL, the display of the 
timing information is followed by a blank line. 

does not automatically reset the processor's time before every 
CMS command, nor does it print the timing information on 
return. 

performs an immediate reset of the processor's time. 

displays the current timing information (and resets the 
processor's time)~ 

1. When timing information is displayed, it is in the format: 

T=X.xx/y.yy hh:mm:ss 

where: 

X.xx, 

y.yy 

is the virtual processor's time used since it was last 
reset in the current EXEC file. 

is the total of the processor's time used since it was 
last reset in the current EXEC file. 

hh:mm:ss is the actual time of day in hours:minutes:seconds. 

2. The processor's time is set to zero before the execution of the 
first statement in the EXEC file, and is again set to zero (reset) 
whenever" timing inf:orma tion is printed. 

, Section'S.: EXEC Control, stateaents 293 



EXEC Control Statements-STIPE 

&TYPE 

Use the STIPE control statement to display a line of tokens at the 
terminal. The format of the STIPE control statement is: 

&TIPE I [tok1 [tok2 ••• [tokn]]] 

tok1 [tok2 ••• [tokn]] 

y§gg~ !Q!~ 

specify the tokens to be displayed. 
truncated to eight characters. If 
null line is displayed. 

All tokens are padded cr 
no tokens are specified, ~ 

Lines displayed with the STIPE control statement are scanned by the EXEC 
interpreter and variable symbols are substituted before the line is 
displayed. To display one or more unscanned lines, use the &BEGTIPE or 
SBEGTIPE ALL control statements. 

2g4 IBM VM/370 CMS Command and Macro Reference 



EXEC Built-In Functions-SCONCAT 

B u i It-I n Fu nctions 

You can use the 
variable symbols. 
may be used only 
f.ollows: 

EXEC built-in functions to assign and manipulate 
with the exception of &LITERAL, built-in functions 

on the right-hand side of an assignment statement, as 

SMIX = SCONCAT S1 S2 

Built-in functions may not be combined with arithmetic expressions. 

Each of the built-in functions (SCONCA'I', 
&LITERAL, and SSUBSTR) is described separately. 

&CONCAT 

SDATATYPE, SLENGTH, 

Use the SCONCAT function to concatenate two or more tokens and assign 
the result to a variable symbol. The format of the &CONCAT function is: 

, 
Svariable = SCONCAT tok1 [tok2 ••• [tokn]] I 

&variable is the variable symbol whose value is determined by the 
&CONCAT function. 

tok1 [tok2 ••• [tokn]] 

!l'§M~ l!2i~ 

sFecifies the tokens that are to be concatenated into a 
single token; for example: 

&A = ** 

&B = SCONCAT XX SA 45 
&TYPE &B 

results in the printed line: 

XX**45 

If the concatenated token is longer than eight characters, the data is 
left-justified and truncated on the right. 

Section 5. EXEC Control Statements 295 



EXEC Built-In Functions-DATATYPE, &LENGTH 

&DATATYPE 

Use the &DATATYPE function to determine whether the value of the 
specified token is alphabetic or numeric data. The format of the 
&DATATYPE function is: 

&variable = &DATATYPE token L-_________________________________________________________________________ ~ 

&variable 

token 

is the variable symbol whose value is determined by the 
&DATATYPE function. 

specifies the target token that is to be examined fer 
alphabetic or numeric data. The result of the &DATATYFE 
function has the value NUM or CHAR, depending on the data 
type of the specified token. For example: 

&CHECK = &DATATYPE ABC 
&TYPE &CHECK 

results in the display: 

CHAR 

A null token is considered character data. 

&LENGTH 

Use the &LENGTH function to determine the number of characters in a 
token. The fermat of the &LENGTH function is: 

r--------------------------------------------------------------------------, 
&variable = &LENGTH token I 

L-________________________ • ________________________ ~--------------------__ -~ 

~her~: 

&variable 

token 

is the variable symbol whose value is determined by the 
&LENGTH function. 

specifies the target token that 
nonblank characters. The result of 
the number of nonblank characters 
For example: 

&LEN = &LENGTH ALPHA 
&TYPE &LEN 

results in the display: 

5 

is to be examined fer 
the &LENGTE function is 

in the specified token. 

296 IBM VM/310 CMS Command and Macro Reference 



EXEC Built-in Functions-&LITERAL, &SUBSTR 

&LITERAL 

Use the &LITERAL function to inhibit variable substitution on the 
specified token. The &LITERAL function may appear in any EXEC contrel 
statement, as follows: 

r--------------------------------------------------------------------------, 
[ •• ~] &LITERAL token[ ••• ] I 

token specifies the token whose literal value is to be used without 
substitution. For example: 

&X = ** 
&TYPE &LITERAL &X EQUALS &X 

results in the printed line: 

&X EQUALS ** 

&SUBSTR 

Use the &SUBSTR function to extract a character string from a specified 
token and te assign the substring to a variable symbol. The format ef 
the &SUBSTR function is: 

&variable = &SUBSTR token i [j] _____________________________________________________ J 

&variable is the variable symbol whose value is determined by the 
&SUBSTR function. 

token 

i 

j 

is the token from which the character string is to be 
extracted. 

specifies the character position in the token of the first 
character to be used in the substring. 

specifies the number of characters in the string. 
omitted, the remainder of the token is used. 

If 

The values of i and j (if given) must be positive integers. For 
example: 

&A = &SUBSTR ABCDE 2 3 
&TYPE &A 

results in the printed line: 

BCD 

Section 5. EXEC Control Statements 297 



EXEC Special Variables 

Special Variables 

Special variables are variable symbols that are assigned values by the 
EXEC interpreter, and that you can test or display in your EXEC 
procedures. In some cases, you may assign your own values to EXEC 
special variables; these cases are noted in the variable descriptions. 

&n 

The &n special variable represents the numeric variables &1 through &30. 
When an EXEC is invoked, the numeric variables from &1 through &30 are 
initialized according to the arguments that are passed to the EXEC fil~ 
(if any). 

The numeric variables can be reset by either an &ARGS or &READ ARGS 
control statement; when fewer than 30 arguments are set or reset, the 
remainder of the &n variables ar~ set to blanks. A particular argument 
can be set to blanks by assigning it a percent sign (%) when invoking 
the EXEC procedure, in an &ARGS control statement, or in an &READ ARGS 
control statement. An argument is also set to blanks if it begins with 
the character X'FF' and is specified when invoking the EXEC procedure or 
in an &READ ARGS control statement. 

You may set the values of specific 
statements. Any value of n, however, that 
than 0 is rejected by the EXEC interpreter. 

&* and &$ 

arguments using assignment 
is greater than 30 or less 

These variables can be used to perform a collective test on all of the 
arguments passed to the EXEC procedure. &* and &$ may only be used in 
the &IF and &LOOP control statements and are described under the 
description of the &IF control statement. 

You may not assign values to the special variables &* and &$. 

&0 

The &0 special variable contains the filename of the EXEC file. You may 
test and manipulate this variable. 

&DISKx· 

You can use the &DISKx special variable to determine whether a disk is 
an OS, DOS, or CMS disk. x represents the mode letter at which the disk 
is accessed. For example, if you access an OS disk with a mode letter 
of C, then the special variable &DISKC has a value of as. The possible 
values for the &DISKx special variable are OS (for an as disk), DOS (for 
a DOS disk), CMS (for a CMS disk), and NA (when the disk is not 
accessed). 

You may set or change the values of an &DISKX special variable; if 
you do so, however, you will no longer be able to test the status of the 
disk at mode x. 

298 IBM VM/370 CMS Command and Macro Reference 



&OISK* 

The &DISK* 
the first 
read/write 
NONE. 

EXEC Special Variables 

sFecial variable contains the one-character mode letter of 
read/write disk in the CMS search order. If you have no 

disks accessed, this special variable contains the value 

You may assign a value to the &DISK* special variable for your own 
use; if you do so, however, you will not be able to use it to obtain the 
filemode letter of a read/write disk. 

&OI.SK? 

You can use the &DISK? special variable in an EXEC to determine which 
read/write disk that you have accessed has the most space on it. If you 
have no read/write disks accessed, &DISK? contains the value NONE. 

You may assign a value to the &DISK? special variable for your own 
use; if you do so, however, you will no longer be able to locate the 
read/write disk with the most space. 

&OOS 

The &DOS special variable contains one of the two character values ON or 
OFF, depending on whether the CMS/DOS environment is active. If you 
have issued the command: 

set dos on 

then the &DOS special variable contains the value ON. 

You may set or change the value of the &DOS special variable for your 
own use; if you do so, however, you will not be able to test whether the 
CMS/DOS environment is active. 

&EXEC 

The &EXEC special variable is the filename of the EXEC file. You cannot 
set this variable explicitly but you can examine and test it. 

&GLOBAL 

The &GLOBAL special variable contains the recursion level of the EXEC 
currently executing. Since the EXEC interpreter can handle up to 19 
levels of recursion, the value of &GLOBAL ranges from 1 to 19. You 
cannot set this variable explicitly, but you can examine and test it. 

section 5. EXEC Control Statements 299 



EXEC Special Variables 

&GLOBALn 

The &GLOBALn special variable represents the variables &GLOBALO through 
&GLOBAL9. You can set these variables only to integral numeric values. 
They are all initially set to 1. Unlike other EXEC variables, these can 
be used to communicate between different recursion levels of the EXEC 
interpreter. 

&INDEX 

The &INDEX special variable contains the number of arguments passed to 
the EXEC procedure. Since up to 30 arguments can be passed to an EXEC 
procedure, the value of &INDEX can range from 0 through 30. 

Although you cannot set this variable explicitly, it is reset by an 
&ARGS or &READ ARGS control statement. &INDEX can be examined to 
determine the number of active arguments in the EXEC procedure. 

&LINENUM 

The &LINENUM special variable contains the current line number in the 
EXEC file. You cannot explicitly set this variable but you can examine 
and test it. 

&READFLAG 

The &READFLAG special variable contains one of two literal values: 
CONSOLE or STACK. If there are stacked lines in the terminal input 
buffer (console stack) &READFLAG contains the value STACK and the next 
read request results in a line being read from the stack. If not, then 
the next read request results in a physical read to the terminal, and 
the value of &READFLAG is CONSOLE. You cannot explicitly set this 
variable but you can examine and test it. 

&RETCODE 

The &RETCODE special variable contains the return code from the most 
recently executed CMS command. &RETCODE can contain only integral 
numeric values (positive or negative), and is set after each CMS command 
is executed. You can examine, test, and change this variable but 
changing it is not recommended. 

&TYPEFLAG 

The &TYPEFLAG special variable contains one of two literal values: BT 
(resume typing) or HT (halt typing). It contains the value HT when 
terminal display has been suppressed by the Immediate command HT. It 
contains the value RT when the terminal is displaying output. You 
cannot explicitly set this variable, but you can examine and test it. 

300 IBM VM/370 CMS Command and Macro Reference 



CMS Macros 

Section 6. eMS Macro Instructions 

This section describes the formats of the CMS assembler language macros, 
which you can use when you write assembler language programs to execute 
in the CMS environment. To assemble a program using any of these 
macros, you must issue the GLOBAL command specifying CMSLIB MACLIE, 
which is the macro library (located on the system disk) which contains 
CMS macros. 

For functional descriptions and usage examples of the CMS macros, see 
the !~L11~ ~H~ ~§~~§ ~y!g~. 

Coding conventions for 
assembler language macros. 
operands in the for.at: 

[,operand] 

CMS macros are the same as 
The macro format descriptions 

those for all 
show optional 

indicating that if you are going to use this operand, it must be 
preceded by a comma (unless it is the first operand coded). If a macro 
statement overflows to a second line, you must use a continuation 
character in column 72. No blanks may appear between operands. 
Incorrect coding of any macro results in assembler errors and MNOTEs. 

Where applicable, the end of a macro description contains a list cf 
the possible error conditions that may occur during the execution of the 
macro, and the associated return codes. These return codes are always 
placed in register 15. The macros that produce these return codes have 
ERROR= operands, that allow you to specify the address of an error 
handling routine, so that you can check for particular errors during 
macro processing. If an error occurs during macro processing and no 
error address is provided, execution continues at the next sequential 
instruction following the macro. 

Section 6. CMS ~acro Instructions 301 



COMPSWT, FSCB Macros 

COMPSWT 

Use the COMPSWT macro instruction to turn the compiler switch (CO~PSWT) 
flag on or off. The CO~PSWT flag is in the OSSPLAGS byte of the nucleus 
constant area (NUCON). The format of the COMPSWT macro instruction is: 

[label] COMPSWT 

label 

ON 

FSCB 

is an optional statement label. 

turns the COMPSWT flag on. When this flag is on, any program 
called by a LINK, LOAD, ICTL, or ATTACH macro instruction must 
be a nonrelocatable module in a file with a filetype of MODULE; 
it is loaded via the CMS LOADMOD command. 

turns the COMPSWT flag off. When this flag is off, any program 
called by a LINK, LOAD, ICTL, or ATTACH macro instruction must 
be a relocatable object module residing in a file with a 
filetype of TEIT or TITLIB; it is loaded via the C~S INCLUDE 
command. 

Use the FSCB macro instruction to create a file system control block 
(FSCB) for a CMS input or output disk file. The format of the FSCB 
macro instruction is: 

[label] FSCB [fileid] [,RECFM=format] [,EUFFER=buffer] 
[,BSIZE=size] [,RECNO=number] [,NOREC=numrec] 

----------------------------------------------------------------------------------------~ 

label 

fileid 

RECFM=format 

is an optional statement 'label. 

specifies the CMS file identifier, which must be enclosed 
in single quotation marks and separated by blanks 
('filename filetype filemode'). If filemode is omitted, 

A1 is assumed. 

indicates whether the records are fixed- (F) or variable
(V) length format. The default is F. 

BUFFER=buffer specifies the address of an I/O buffer, from which 
records are to be read or written .• 

BSIZE=size 

RECNO=number 

specifies the number of bytes to be read or written fer 
each read or write request. 

specifies the record number of the next record to be 
accessed, relative to the beginning of the file, record 
1. The default is 0, which indicates that records are to 
be accessed sequentially. 

302 IBM VM/370 CMS Command and Macro Reference 



NOREC=numrec 

Q2~~ !Q!~2 

FSCB, FSCBD ~acros 

specifies the number of records to be read in the next 
read operation. The default is 1. 

1. The options RECFM, BUFFER, BSIZE, RECNO~ and NOREC must all be 
specified as self-defining terms~ 

2~ You can use the same FSCB to reference several different files; you 
can override the fileid, or any of the options, on the FSOPEN, 
FSWRITE, or FSREAD macro instructions when you reference a file via 
its FSCB. However, if the FSOPEN macro instruction is used to 
ready an existing file, the BSIZE and RECF~ fields in the FSCB are 
reset to reflect actual file characteristics. 

3. You can use multiple FSCBs to reference the same file, for example, 
if you wanted one FSCB for writing and a different FSCB for reading 
the file. Keep in mind, however, that the file characteristics are 
inherent to the file and not to the FSCB. If you establish a read 
or write pointer using the RECNO option in one FSCB, that pointer 
remains unchanged unless you specify the RICNO option again on the 
same or any other FSCB for that file. 

FSCBD 

Use the FSCBD macro instruction to generate a DSECT for the file system 
control block (FSCB). The format of the FSCBD macro instruction is: 

[label] I FSCBD I ~ _________________________________________________________________________ J 

label is an optional statement. label. The first statement in the 
FSCBD macro expansion is labeled FSCBD. 

1. You can use the labels established in the FSCB DSECT to modify the 
fields in an FSCB for a particular file. An FSCB is created 
explicitly by the FSCB macro instruction, and implicitly by the 
FSREAD, FSWRITE, and FSOPEN macro instructions. 

2. The FSCBD macro expands as follows: 

FSCBD 
FSCBCOMM 
FSCBFN 
FSCBFT 
FSCBFM 
FSCBITNO 
FSCBBUFF 
FSCBSIZE 
FSCBFV 
FSCBNOIT 
FSCBNORD 

FSCBD 
DSECT 
DS 
DS 
DS 
DS 
DS 
DS 
DS 
DS 
DS 
DS 

CL8 
CL8 
CL8 
CL2 
H 
A 
F 
CL2 
H 
A 

Command 
Filename 
Filetype 
Filemode 
Relative record (item) number 
Address of read/write buffer 
Length of buffer 
Record format (F or V) 
Number of records to be read/written 
Number of bytes actually read 

Section 6. CftS .Macro Instructions 303 



FSCLOSE Macro 

FSCLOSE 

Use the FSCLOSE macro instruction to close an open file and save its 
current status on disk. The format of the FSCLOSE macro instruction is: 

"1 

[label] FSCLOSE 
{ 

fileid[, FSCB=fscb] } [, ERROR=erraddr] 
FSCB=fscb 

I 
I 
I 

label is an optional statement label. 

fileid specifies the CMS file identifier~ It may be: 

, fn ft fm' fileid enclosed in single quotation marks and 
separated by blanks. If fm is omitted, 11 is 
assumed. 

(reg) a register other than 0 or 1 containing the 
address of the fileid ( 18 characters) • When 
register format is used, the fileid must be 
exactly 18 characters in length; 8 for the 
filename, 8 for the filetype, and 2 for the 
filemode,. Shorter names must be filled with 
blanks. 

FSCB=fscb specifies the address of an FSCB. It may be: 

label 
(reg) 

the label on the FSCB macro instruction. 
a register containing the address of an FSCB. 

ERROR=erraddr 

1 • 

specifies the address of an error routine to be given control 
if an error is found. If ERROR= is not coded and an errer 
occurs, control returns to the next sequential instruction in 
the calling program, as it does if no error occurs. 

Although CMS routines close files when a command 
compLetes execution, you must use the FSCLOSE macro 
when you are executing a program from within an EXEC, 
are going to read and write records in the same file. 

or program 
instruction 
or when yeu 

2. If you sFecify both fileid and FSCB, the fileid is used to fill in 
the FSCB. 

If an error occurs, register 15 contains the following error code: 

!1~gll!1!g 
File not open 

304 IBM VM/370 CMS Command and ~acro Reference 



FSERASE Macro 

FSERASE 

Use"the FSERASE macro instruction to delete a CMS disk file. 
of the FSERASE macro instruction is: 

The format 

I~----------------------------------------------------------------------------"' 
I [label] I FSERASE I {fileid[,FSCB=fSCb] } [,ERROR=erraddr] I 
I I I FSCB=fscb I 
• 

label is an optional statement label. 

fileid specifies the'CMS file identifier. It may be: 

'fn ft fm' fileid enclosed in single quotation marks 
separated by blanks. If fm is omitted, A1 
assumed,. 

(reg) a register other than 0 or 1 containing 
address of the fileid ( 18 characters) • 
register format is used, the fileid must 
exactly 18 characters in length; 8 for 
filename, 8 for the filetype, and 2 for 
filemode. Shorter names must be filled 
blanks. 

FSCB=fscb specifies the address of an FSCB. It may be: 

label 
(reg) 

ERROR=erraddr 

the label of an FSCB macro instruction. 
a register containing the address of an FSCB. 

and 
is 

the 
When 

be 
the 
the 

with 

specifies the address of an error routine to be given contrel 
if an error occurs. If ERROR= is not coded and an error 
occurs, control returns to the next sequential instruction in 
the calling program, as it does if no error" occurs. 

!!§~~ !.Q!~'§ 

1. On return from the FSERASE macro, register 1 points to a parameter 
list. The second, third, and fourth words of the list contain the 
filename, filetype, and filemode of the file. 

2. If fileid and FSCB= are both coded, the fileid is used to fill in 
the FSCB. 

£!!:.£.2!: £.Ql!.~J:!J:f.!!'§ 

If an error occurs, register 15 contains one of the following error 
codes: 

~~g.!!J:.!!g 
Parameter list error 
File not found 
Disk not accessed 

Section 6. CMS Macro Instructions 3~5 



FSOPEN Macro 

FSOPEN 

Use the FSOPEN macro instruction to ready a file for either input or 
output. The fo~mat of the FSOPEN macro instruction is: 

.--- I 

I [label] FSOPEN 
{ 

fileid [, FSCB=fscb] } [ , ERROR=erraddr][ ,options] II 
FSCB=fscb I 

label is an optional statement label. 

fileid specifies the CMS file identifier. It may be: 

'fn ft fm' the fileid enclosed in single quotation marks and 
separated by blanks .• If fm is omitted, 11 is 
assumed. 

(reg) a register other than 0 or 1 containing the 
address of the fileid ( 18 characters) • When 
register format is used, the fileid must be 
exactly 18 characters in length; -8 for the 
filename, 8 for the filetype, and 2 for the 
filemode. Shorter names must be filled with 
blanks. 

FSCB=fscb specifies the address of an FSCB. It may be: 

label 
(reg) 

ERROR=erraddr 

the label on an FSCB macro instruction. 
a register containing the address of an FSCB. 

specifies the address of an error routine to be given control 
if an error is found. If ERROR= is not coded and an errer 
occurs, control returns to the next sequential instruction in 
the calling program, as it does if no error occurs. 

Q.Eli.Q!!§ 

You can specify any of the following FSCB macro options on the FSOPEN 
macro instruction: 

BUFFER=buffer 
RECNO=number 
BSIZE=size 
RECFM=format 
NOREC=numrec 

These options may be specified either as the actual value (fer 
example, NOREC=1) or as a register that contains the value (for 
example, NOREC=(3) where register 3 contains the value 1). 

When you use any of these options, the associated field in the 
FSCB is modified. 

1. On return from the FSOPEN macro, register 1 points to the FSCB fer 
the file. If no FSCB exists, one is created in the FSOPEN macro 
expansion. However, if the FSOPEN macro instruction is used to 
ready an existing file, the BSIZE and RECFM fields are reset to 
reflect actual file characteristics. 

306 IBM VM/310 CMS Command and Macro Reference 



FSOPEN Macro 

2. If you code both fileid and FSCB=, the fileid is used to fill in 
the FSCB. 

3. You can use the FSOPEN macro instruction to verify the existence ef 
a file to be opened for reading or writing and to create an PSCB 
for it. 

~~ro~ ~Q~g~1~£~§ 

If an error occurs, register 15 contains one of the following error 
codes: 

~!,!ani!!g 
Invalid file identifier 
Pile does not exist 

FSREAD 

Use the FSREAD macro instruction to read a record from a disk file into 
an I/O buffer. The format of the FSREAD macro instruction is: 

[label] FSREAD 
I • 

{ 
fileid[,FSCB=fscb] }[,ERROR=erraddr] [,opt1ons] 
FSCB=fscb ~ _________________________________________________________________________ J 

label is an optional statement label. 

fileid sFecifies the CMS file identifier. It may be: 

'fn ft fm' the fileid enclosed in single quotation marks and 
separated by blanks. If fm is omitted, 11 is 
assumed. 

(reg) a register other than 0 or 1 containing tbe 
address of the fileid ( 18 characters) • When 
register format is used, the fileid must be 
exactly 18 characters in length; 8 for tbe 
filename, 8 for the filetype, and 2 for the 
filemode. Shorter names must be filled with 
blanks. 

FSCB=fscb sFecifies the address of an FSCB. It may be: 

label 
(reg) 

ERROR=erraddr 

the label of an FSCB macro instruction. 
a register containing the address of an FSCB. 

specifies the address of an error routine to be given contrel 
if an error is found. If ERROR= is not coded and an error 
occurs, control returns to the next sequential instruction in 
the calling program, as it does if no error occurs. 

Section 6~ CMS Macro Instructions 307 



FSOPEN, FSREAD Macros 

1. 

You can specify any of the following FSCB macro options on the FSREAD 
macro instruction: 

BUFFER=buffer 
NOREC=numrec 
BSIZE=size 
RECNO=number 

These options may be specified either as the actual value (for 
example, NOREC=1) or as a register that contains the value (for 
example, NOREC=(3) where register 3 contains the value 1). 

When you use any of these options, the associated field in the 
FSCB is modified. 

If an FSCB macro instruction has not been coded for a file (and 
FSCB= operand is not coded), you must specify the BUFFER= 
BSIZE= options to indicate the address of the buffer and 
length. When reading variable-length records,1 a record that 
longer than the buffer length is truncated. 

the 
and 
its 
is 

2. On return from the FSREAD macro, register 1 points to the FSCB for 
the file. If no FSCB exists, one is created following the FSREAD 
macro instruction. 

3. If you specify both fileid and FSCB=, the fileid is used to fill in 
the FSCB. 

4 .• Register 0 contains, after the read operation 
number of bytes actually read. This information 
in the FSCBNORD field of the FSCB. 

is complete, the 
is also contained 

5. To read records sequentially beginning with a particular record 
number, use the RECNO option to specify the first record to be 
read. On the next FSREAD macro instruction, use RECNO=O so that 
reading continues sequentially following the first record read. 

~!~! £~D.Q!!!.£.D§ 

If an error occurs, register 15 contains one of the following error 
codes: 

£.Q,g~ 
1 
2 
3 
5 

7 

8 
9 

11 
12 

13 

14 
15 

I1~gD!D,g 
File not found 
Invalid buffer address 
Permanent I/O error 
Number of records to be read is less than or equal to zero, 

or greater than 32,768 
Invalid record format (only checked when the file is first 

opened for reading) 
Incorrect length 
File open for output 
Number of records greater than 1 for variable-length file 
End of file, or record number greater than number of records 

in data set (maximu~ number of records is 65,533) 
Variable-length file has invalid displacement in active file 

table 
Invalid character in,filename 
Invalid character in filetype 

308 IBM VM/370 CMS Command and Macro Reference 



FSSTATE Macro 

FSSTATE 

Use the FSSTATE macro instruction to determine whether a particular file 
exists. The format of the FSSTATE macro instruction is: 

[label] 

label 

fileid 

FSSTATE 
{ 

fileid [,FSCB=fscb] } [,ERROR=erraddr] 
FSCB=fsc'b 

is an optional statement label. 

specifies the CMS file identifier. It may be: 

'fn ft fm' the fileid enclosed in single quotation marks 
separated by blanks. If fm is omitted, 11 
assumed. 

(reg) a register other than 0 or 1 containing 
address of the fileid ( 18 characters) • 
register format is used, the fileid must 
exactly 18 characters in length; 8 for 
filename, 8 for the filetype, and 2 for 
filemode .• Shorter names must be filled 
blanks. 

and 
is 

the 
When 

be 
the 
the 

with 

FSCB=fscb specifies the address of an FSCB. It may be: 

label 
(reg) 

ERROR=erraddr 

the label on an FSCB macro instruction. 
a register containing the address of an FSCB. 

specifies the address of an error routine to be given centrel 
if an error is found. If ERROR= is not coded and an error 
occurs, control returns to the next sequential instruction in 
the calling program, as it does if no error occurs. 

1. If the specified file exists, register 15 contains a 0 return code. 

2. When the FSSTATE macro completes execution, register 1 contains the 
address of the file status table (FST) for the specified file. 

The file status table contains the following information: 

Decimal 
Displacement 

o 
8 

16 
18 
20 
22 
24 
26 
28 
30 
32 
36 
38 

Field Description 

Filename 
Filetype 
Date (mmdd) last written 
Time (hhmm) last written 
Write pointer (number of item) 
Read pointer (number of item) 
Filemode 
Number of records in file 
Disk address of first chain link 
Record format (F/V) 
Logical record length 
Number of 800-byte data blocks 
Year (yy) last written 

Section 6. CMS ~acro Instructions 309 



FSSTATE Macro 

~!~! £Q~g!!!£~§ 

If an error occurs, register 15 contains one of the following error 
codes: 

!1~ru!!~g 
Invalid character in fileid 
Invalid filemode 
File not found 
Disk not accessed 

FSWRITE 

Use the FSWRITE macro instruction to write a record from an I/O buffer 
to a CMS disk file. The format of the FSWRITE macro instruction is: 

I 
[label] FSWRITE 

{ 
fileid[, FSCB=fscb] } [ , ERROR=erraddr]( ,options] II 
FSCB=fscb 

label is an optional statement label. 

fileid specifies the CMS file identifier~ It may be: 

'fn ft fm' the fileid enclosed in single quotation marks 
separated by blanks. If fm is omitted. A1 
assumed. 

(reg) a register other than 0 or 1 containing 
address of the fileid ( 18 characters) • 
register format is used, the fileid must 
exactly 18 characters in length; 8 for 
filename; 8 for the filetype, and 2 for 
filemode. Shorter name must be filled 
blanks. 

FSCB=fscb specifies the address ~f an FSCB. It may be: 

label 
(reg) 

ERROR=erraddr 

the label on an FSCB macro instruction. 
a register containing the address of an FSCB. 

I 

and 
is 

the 
When 

be 
the 
the 

with 

specifies the address of an error routine to be given contrel 
if an error is found. If ERROR= is not coded and an error 
occurs, control returns to the next sequential instruction in 
the calling program, as it does if no error occurs. 

Q.E!!Q1!§ 

You can sFecify any of the following FSCB macro options on the 
FSWRITE macro instruction: 

BUFFER=buffer 
RECNO=number 
BSIZE=size 
NOREC=numrec 
RECFM=format 

310 IBM VMj310 CMS Command and Macro Reference 



FSWRITE Macro 

These options may be specified either as the actual value (fer 
example, NOREC=1) or as a register that contains the value (for 
example, NOREC=(3) where register 3 contains the value 1). 

When you use any of these options, the associated field in the FseB 
for the file is-filled in or modified. 

1. If an FSCB macro instruction has not been ceded for a file (and tbe 
FSCB= operand is not coded on the FSWRITE macro instruction), you 
must specify the BUFFER= and BSIZE= options to indicate tbe 
location of the read/write buffer and the length of the record to 
be written. For the filemode, you must specify both a letter and a 
number. If the file is a variable-length file, you must also 
specify RECFM=V. 

2. On return from the FSWRITE macro~ register 1 contains the address 
of the FSCB for the file. If no FSCB exists, one is created 
following the FSWRITE macro instruction. 

3. If you specify both fileid and FSCB=, the fileid is used to fill in 
the FSCB. 

4. If the RECNO option is specified (either on the FSWRITE macro 
instruction or in the FSCB), that specified record is written. 
Otherwise, the next sequential record is written. For new files, 
writing begins with record 1; for eXisting files, writing begins 
with the first record following the end of the file. 

5. To write records sequentially beginning with a particular record 
number, use the RECNO option tq specify the first record to be 
written. On the next FSWRITE macro instruction, use RECNO=O so that 
writing continues sequentially, following the first record written. 

6. To write blocked records (valid for fixed-length files only), use 
the BSIZE and NOREC options to specify the blocksize and number cf 
records per block, respectively. For example, to write 80-byte 
records into 800-byte blocks, you should specify BSIZE=800 and 
NOREC=10. The buffer you use must be at least 800 bytes long. 

If an error occurs, register 15 contains one of the following errcr 
codes: 

Code --2-
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

~~g~!~g 
Invalid buffer address 
First character of filemode is invalid 
Second character of file mode is invalid 
Item number too large (more than 65,533) 
Attempt to skip over unwritten variable~length item 
Buffer size not specified 
File open for input 
Maximum number of files per minidisk reached (3400) 
Record format not F or V 
Attempt to write on read-only disk 
Disk is full 

section 6. CMS Macro Instructions 311 



FSWRITE Macro 

15 
16 
17 
18 
19 
20 
21 
22 
25 

~~an!~g 
Number of bytes to be written is not integrally divisible 

by the number of records to be written 
Length of fixed-length item not the same as previous item 
Record format specified not the same as file 
Variable-length item greater than 65K bytes 
Number of records greater than 1 for variable-length file 
Maximum number of data blocks per file reached (16060) 
Invalid character detected in filename 
Invalid character detected in filetype 
Virtual storage capacity exceeded 
Insufficient free storage availatle for file directory 

buffers 

312 IBM VM/370 CMS C~mmand and Macro Reference 



HNDEXT Macro 

HNDEXT 

Use the HNDEXT macro instruction to trap external interruptions and pass 
control to an internal routine for processing. External interruptions 
are caused, in a virtual machine, by the CP EXTERNAL command. Tbe 
format of the HNDEXT macro instruction is: 

[label] HNDEXT 
{ 

SET, address } 
CLR 

label is an optional statement label. 

SET specifies that you want to trap external interruptions. 

address specifies the address in your program of the routine to be 
given control when an external interruption occurs. 

CLR specifies that 
interruptions. 

you no longer want to trap external 

1. External interruptions (other than timer interruptions) normally 
place your virtual machine in the debug environment. 

2. When your interruption handling routine is given control, all 
virtual interruptions, except multiplexer, are disabled. If you 
are using the CMS blip function, all blips are stacked. 

3. You are responsible for providing proper entry and exit linkage for 
your interruption handling routine. When your routine receives 
control, register 1 points to a save area in the format: 

1911.§1 
GRS 
FRS 
PSW 
UAREA 
END 

Dec ---0-
64 
96 

104 
176 

Hex --0--
40 
60 
68 
BO 

Register 13 points to the user save area at label UAREA. 

Register 15 contains the entry point address of your routine; it 
must return control to the address in register 14. 

Section 6. CMS Macro Instructions 313 



HNDINT Macro 

HNDINT 

Use the HNDINT macro instruction to trap interruptions for a specified 
I/O device. The format of the HNDINT macro instruction is: 

[label] 

label 

SET 

HNDINT 

{ 

SET, (deV1,{a~dr},CUUI{ :i~~P[' (dev2 ••• ) ••• ] t 
C L R, (d e v 1) [ I (d e v 2). [ • ' •• ] ] ~ 

[,ERROR=erraddr] 

is an optional statement label. 

specifies that you want to 
specified device. 

trap interruptions for the 

dev specifies a four-character symbolic name for the device whose 
interruptions are to be trapped. 

addr specifies the address in your program of the routine to be 
given control when the interruption occurs. An address of 0 
indicates that interruptions for the device are to be ignored. 

cuu specifies the virtual device address, in hexadecimal, of the 
device whose interruptions are to be trapped. 

ASAP specifies that the routine at addr is to be given control as 
seon as the interruption occurs. 

WAIT specifies that the routine at addr is to be given contrel 
after the WAITD macro is issued for the device. 

CLR specifies that you no longer want to trap interruptions fer 
the specified device. HNDINT CtR should not be issued frem 
within the interruption handling routine. 

ERROR=erraddr 
specifies the address of an error routine to be given contrel 
if an error is found. If ERROR= is not coded and an error 
occurs, control returns to the next sequential instruction in 
the calling program, as it does if no error occurs. 

1. You can define interruption handling routines for more than one 
device in a single HNDINT macro instruction. The argument list fer 
each device must be enclosed in parentheses and separated from the 
next list by a comma. 

2. If you specify WAIT, then the routine at the specified address in 
your program receives control when a WAITD macro instruction that 
specifies the same symbolic device name is issued. If the WAITD 
macro instruction has already been issued for the device when the 
interruption occurs, then the routine at the specified address 
receives control immediately. 

314 IBM VM/310 CMS Command and Macro Reference 



HNDINT, HNDSVC Macros 

3. You are responsible for establishing proper entry and exit linkage 
for your interruption handling routine. When your routine receives 
control, the significant registers contain: 

!!.§g.!§!~!§ 
0-1 
2-3 

4 
14 
15 

Contents 
I/o-ola-psi 
Channel status word (CSW) 
Address of interrupting device 
Return address 
Entry point address 

Your routine must return control to the address in register 14, and 
indicate, via register 15, whether processing is complete. A 0 in 
register 15 means that you are through handling the interruption; 
any nonzero return code indicates that you expect another 
interruption. 

4. The interruption handling routine that you code should not perform 
any I/O operations. When it is given control, all I/O 
interruptions and external interruptions are disabled. 

If an error condition occurs, register 15 will contain one of the 
following return codes: 

Code -,- 11.§~.!l.!.!l.9 
Invalid device address (cuu) or interruption handling routine 
address (addr). 

2 Trap item replaces another of same device name. 

3 Attempting to clear a nonexisting interruption. 

HNDSVC 

Use the HNDSVC macro 
specific supervisor call 
macro instruction is: 

instruction to trap 
(SVC) instructions. 

interruptions caused by 
The format of the HNDSVC 

[label] HNDSVC 
{

SET, (svcnum,address) [, (svcnum,address) ••• ] } 
CLR,svcnum[,svcnum ••• ] 

[ , ERROR=erraddr] 

, 
I 
I 
I 
I L-_________________________________________________________________________ ~ 

label is an optional statement label. 

SET specifies that you want to trap SVCs of the specified 
number (s) • 

svcnum 

address 

specifies the number of the SVC you want to trap. SVC numbers 
o through 200 and 206 through 255 are valid. 

specifies the address of the routine in your program that 
should receive control whenever the specified SVC is issued. 

section 6. CMS Macro Instructions 315 



HNDSVC, LINEDIT Macros 

CLR specifies that you no longer want to trap the specified 
SVC(s). 

ERROR=erraddr 
specifies the address of an error routine to be given contrel 
if an error is· found. If ERROR= is not coded and an error 
occurs, control returns to the next sequential instruction in 
the calling program, as it does if no error occurs. 

You are responsible for providing the proper entry and exit linkage fer 
your SVC-handling routine. When your program receives control, the 
register contents are as follows: 

R~g~~!~! Contents 
12 Address-of your SVC-handling routine 
13 Address of an 18-fullword save area (for your use) 
14 Return address 

Your routine must return control to the address in register 14. 

If an error occurs, register 15 contains one of the following error 
codes: 

~~g~!~g 
Invalid SVC number or address 
SVC number set replaced previously set number 
SVC number cleared was not set 

316 IBM VM/370 CMS Comm~nd and Macro Reference 



HNDSVC, LINEDIT Macros 

LINEDIT 

Use the LINEDIT macro instruction to convert decimal values into EBCDIC 
or hexadecimal and to display the results at your terminal. The format 
of the LINEDIT macro instruction is: 

[label] LINEDIT 
r , r ,r , 
I,TEXT='messagetext' I I,DOT={I]~}1 I ,COMP={l~~}1 
I,TEXTA=address I I NO II NO I 
L .J L .JL .J 

[,SUB=(substitutionlist) ] 
r , r , 
I,DISP= ~!~! I I,BUFFA=({address}) I 
I NONE I I (reg) I 
I SIO I L .J 

I PRINT I 
I CPCOMM I 
I ERRMSG I 
L .J 

r ,MF= {I } 1 I L I 
I ({E, address}) I 
I (reg) I 

[,MAXSUES=number] 

L .J 

r , 

I ,RENT= {!!2} I 
I NO I 
L .J 

The LINEDIT macro operands are listed below, briefly. For detailed 
formats, descriptions, and examples, refer to the appropriate heading 
following "LINEDIT Macro Operands." 

Section 6. CMS Macro Instructions 317 



LINEDIT Macro 

TEXT='message text' 
specifies the text of the message to be edited. 

TEXTA=address 
specifies the address of the message text. It may be: 

label 
(reg) 

the symbolic address of the message text. 
a register containing the address of the message text. 

DOT specifies whether a period is to be placed at the end of the 
line. 

COMP 

SUB 

DISP 

BUFFA 

MF 

specifies whether multiple blanks are to be removed from the 
line. 

specifies a substitution list describing the conversions to be 
performed on the line. 

specifies how the edited line is to be used. When DISP is not 
coded, the message text is displayed at the terminal. 

specifies the address of the buffer in which the line is to be 
copied. 

specifies the macro format. 

MAXSUBS specifies the maximum number of substitutions (MAXSUBS is used 
with the list form of the macro) • 

RENT specifies whether reentrant code must be generated. 

1. You should never use registers 0, 1, or 15 as address registers 
when you code the LINEDIT macro instruction; these registers are 
used by the macro. 

2. When message text for the LI~EDIT macro instruction contains two or 
more consecutive periods, it indicates that a substitution is to be 
performed on that portion of the message. The number of periods 
you code indicates the number of characters that you want to appear 
as output. To indicate what values are to replace the periods, code 
a substitution list using the SUB operand. 

3. When you use the standard (default) form of the LINEDIT macro 
instruction, reentrant code is produced, except when you specify 
more than one substitution list, or when you use register notation 
to indicate an address on the TEXTA or BUFFA operands. When any of 
these conditions occur, an MNOTE message is produced, indicating 
that the code is not reentrant. 

If you do not care whether the code is reentrant, 
the RENT=NO operand to suppress the MNOTE message. 
can use the list and execute forms of the macro to 
code (see "MF Operand"). 

318 IBM VM/370 CMS Command and Macro Reference 

you can specify 
Otherwise, yeu 

write reentrant 
{ 
) 



LINEDIT Macro 

Use the TEXT opera-nd to specify the exact text of the message on the 
macro instruction. The message text must appear within single quotation 
marks, as fellows: 

TEXT='message text' 

If you want a single quotation mark 
text, you must code two of them. 

Text specified on the LINEDIT macro 
appear as only a single blank, and a 
line, for example: 

to appear within the actual message 

is edited so that multiple blanks 
period is placed at the end of the 

LINEDIT TEXT='IT ISN"T READY' 

results in the display: 

IT ISN'T READY. 

Use the TEXTA operand when you want to display a line that is contained 
in a buffer. You may specify either a symbolic address or use register 
notation, as follows: 

TEXTA={label} 
(reg) 

In either case, the first byte at the address specified must contain the 
length of th~ message text, for example: 

LINEDIT TEXTA=MESSAGE 

MESSAGE DC 
DC 

X'16' 
CL22'THIS IS A LINE OF TEXT' 

If you use register notation with either the standard or list forms of 
the macro, the code generated is not reentrant. To suppress the MNOTE 
that informs you that code is not reentrant, use the RENT=NO operand. 

Use the DOT operand when you do not want a period placed at the end of 
the message text. The format of the DOT operand is: 

For example, if you code: 

Section 6. CMSMacro Instructions 319 



LIBEDIT Macro 

LINEDIT TEXT='HI!',DOT=NO 

the line is displayed as: 

HI! 

Use the COMP operand when you want to display multiple blanks within 
your message text. The format of the COMP operand is: 

COMP={~~~ } 

For example, if you code: 

LIBEDIT TEXT='TOTAL 5' ,CqMP=NO 

the line is displayed as: 

TOTAL 5. 

Use the SUB operand to specify the type of substitution to be performed 
on those portions of the message that contain periods. For each set of 
periods, you must specify the type of substitution and the value to be 
substituted or its address. The format of the SUE operand is: 

r--------------------------------------------------------------------------, 
SUB= ( HEX{, (reg) } 

DEC ,expression 

HEXA{ ,addreSS} 
DECA , (reg) 

HEX4A \,address 
CHARA , (reg) 
CHAR8l , ({address}~ {length}) 

(reg) (reg) 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

~----------------.---------------------------------------------------------~ 

Each of the possible substitution pairs is described below, followed by 
discussions of length specification and multiple substitution lists. 

HEX, (reg) 
converts the value in the specified regist~r to graphic hexadecimal 
format and substitutes it in the message text. If you code fewer 
than eight consecutive periods in the message text, then leading 
digits are truncated; leading zeros are not suppressed. 

For example, if register 3 contains the value C0031FC8, then the 
macro instruction: 

LINEDIT TEXT='VALUE = ••• ·,SUB=(HEX,(3» 

results in the display: 

VALUE = FC8. 

320 IBM VM/370 CMS Com.and and Macro Reference 



LINEDIT Macro 

HEX,expression 
converts the giv~n expression to graphic hexadecimal format and 
substitutes it 1n the message text. The expression may be a 
symbolic address or symbol equate; it is evaluated by means of a 
LOAD ADDRESS (LA) instruction. For example, if your program has a 
label BUFF1, the line: 

LINEDIT TEXT='BUFFER IS LOCATED AT .~ •••• ',SUB=(HEX,BUFF1) 

might result in the display: 

BUFFER IS LOCATED AT 0201AC. 

If you code fewer than eight periods in the message text, leading 
digits are truncated; leading zeros are not suppressed. 

DEC, (reg) 
converts the value in the specified register into graphic decimal 
format and substitutes it in the message text. Leading zeros are 
suppressed. If the number is negative, a leading minus sign is 
inserted. For example, if register 3 contains the decimal value 
10,345, then the macro instruction: 

LINEDIT TEXT='REG 3 = •••••• ',SUB=(DEC,(3) 

results in the line: 

REG 3 = 10345. 

DEC,expression 
converts the given expression to graphic decimal format and 
substitutes it in the message text. The expression may be a 
symbolic label in your program or a symbol equate. For example, if 
your program contains the statement: 

VALUE EQU 2003 

then the macro instruction: 

LINEDIT TEXT='VALUE IS •••••• ',SUB=(DEC,VALUE+5) 

results in the display: 

VALUE IS 2008. 

HEXA,address 
converts the fullword 
hexadecimal format and 
code fewer than eight 
are truncated; leading 
code: 

at the specified address to graphic 
substitutes it in the message text. If you 
periods in the message text, leading digits 
zeros are not removed. For example, if you 

LINEDIT TEXT='HEX VALUE IS ••••• ~,SUE=(HEXA,CODE) 

then the last five hexadecimal digits of the fullword at the label 
CODE are substituted into the message text. 

HEXA, (reg) 
converts the fullword at the address indicated in the specified 
register into graphic hexadecimal format and substitutes it in the 
message text. For example, if you code: 

LINEDIT TEXT='REGISTER 5 -) •••••• ',SUE=(HEXA,(5» 

Section 6. CMS Macro Instructions 321 



L INEDIT Macro 

then the last six hexadecimal digits of the fullword whose address 
is in register 5 are substituted in the message text. 

If you cede fewer than eight digits, leading digits are truncated; 
leading zeros are not suppressed. 

DECA,address 
converts the fullword at the specified address to graphic decimal 
format. Leading zeros are suppressed; if the number is negative, a 
minus sign is inserted. For example, if you code: 

LINEDIT TEXT='COUNT = •••••• ',SUB=(DECA,COUNT) 

then the fullword at the location COUNT is converted to graphic 
decimal format and substituted in the message text. 

DECA,(reg) 
converts the fullword at the address 
register into graphic decimal format 
message text. For example: 

specified in the indicated 
and substitutes it in the 

LINEDIT TEXT='SUM = •••••••• ~.·,SUB=(DECA,(3» 

causes the value in the fullword whose address is in register 3 to 
be displayed in graFhic decimal format. 

HEX4A,address 
converts the data at the specified address into graphic hexadecimal 
format, and inserts a blank character following every four bytes 
(eight characters of outpu~. The data to be converted does net 
have to be on a fullword boundary. 

When you code periods in the message text for substitution, you 
must code sufficient periods to allow for the blanks. Thus to 
display 8 bytes of information (16 hexadecimal digits), you must 
code 17 periods in the message text. 

For example, to display seven bytes of hexadecimal data beginning 
at the location STOR in your program, you could code: 

LINEDIT TEXT='STOR: ~~ •••••• ~ •••••• ·,SUE=(HEX4A,STOR) 

This might result in a display: 

STOR: OA23F115 78ACFE 

Note that 15 periods were coded in the message text, to allow for 
the blank following the first four bytes displayed. 

HEX4A, (reg) 
converts 
register 
character 
output). 

the data at the address indicated in the specified 
into graphic hexadecimal format and inserts a blank 
following every four bytes displayed (eight characters of 

When you code the 
sufficient periods 
inserted. 

message text for substitution, you must code 
to allow for the blank characters to be 

For example, the line: 

LINEDIT TEXT='BUFFER: ••• , •••••••••••••••••• ,SUB= (HEX4A, (6'» 

322 IBM VM/370 CMS Command and Macro Reference 



LINEDIT Macro 

results in the display of the first nine bytes at the address in 
register 6, in the format: 

hhhhhhhh hhhhhhhh hh 

CBARA,address 
substitutes the character data at the specified address into the 
message text. ~or example: 

LINEDIT TEXT='NAME IS •• •••••••••• ···,SUB=(CBARA,NAME) 

causes the 10 characters at location NAME to be substituted into 
the message text. Multiple blanks are removed. 

CBARA, (reg) 
sutstitutes the character data at the address indicated in the 
specified register into the message text. For example: 

LINEDIT TEXT='CODE IS ••• ~·,SUB=(CBARA,(7» 

the first four characters at the address indicated in register 7 
are substituted in the message line. 

CBAR8A,address 
substitutes the character data at the specified address into the 
message text, and inserts a blank character following each eight 
characters of output. 

When you code the message text, you must code enough periods to 
allow for the blanks that will be substituted. 

This substitution list is convenient for displaying CMS parameter 
lists. Fer examFle, to display a fileid in an FSCB, you might code 

LINEDIT TEXT='FILEID IS •••••• ~ •••• ~ •••••••• ', 
SUB=(CHAR8A,OUTFILE+~ 

where OUTFILE is the label on an FSCB 
this file were TEST OUTPUT 11, then the 
would result in the display: 

FILEID IS TEST OUTPUT A1. 

macro. If the fileid for 
LINEDIT macro instruction 

In the final edited line, multiple blanks are reduced to a single 
blank. 

CaIRaA, (reg) 
substitutes the character data at the address indicated in the 
specified register and inserts a blank character following each 
eight characters of output. 

When you code the message text, you must include sufficient periods 
to allow for the blanks. For example: 

LINEDIT TEXT='PLIST: •• ' ••••• ,., •••••••••••• ~ •••••• , •••••••• , 
SUB= (CHAR81, (7) ) 

results in a display of four doublewords of character data, 
beginning at the address indicated in register 7. 

Section 6. CMS Macro Instructions 323 



LIREDIT Macro 

SPECIFYING THE LE!~Ifi lQ~ 1!B~Q!! ~!£~Q SUESTITUTION: In all the 
examples--shown, the length of the argument--being--substituted was 
determined by the number of periods in the message text. The number of 
periods indicated the size of the output field, and indirectly 
determined the size of the input da ta area,. 

For hexadecimal and decimal substitutions, the input data is 
truncated on the left. To ensure that a ~ecimal number will never be 
truncated, you can code 10 periods (11 for negative numbers) in the 
message text where it will be substituted. For hexadecimal data, code 
eight periods to ensure that no characters are truncated when a fullword 
is substituted. 

When you are coding substitution lists with the CHARA, 
HEX4A options, however, you can specify the length of the 
field. You must code the SUB operand as follows: 

SUB=(type, (address,length» 

CHAR81, and 
input data 

Both address and length may be specified using register notation. For 
example: 

SUB=(HEX4A, (LOC,(4)) 

shows that the characters at location 
message text; the number of characters 
contained in register 4, but it cannot 
periods coded in the message text. 

LOC are substituted into the 
is determined by the value 

be larger than the number of 

You can use this method in the special case where only one character 
is to be substituted. Since you must always code at least two periods 
to indicate that substitution is to be performed, you can code two 
periods and specify a length of one, as follows: 

LINEDIT TEXT='INVILID MODE LETTER ~.',SUB=(CHARA,(PLIST+24,1» 

~REClf!!~~ ~Y1I!fLE 2~~2I!IQI!QB 1!~!~: When you want to make several 
substitutions in the same line, you must enter a substitution list for 
each set of periods in the message text. For example: 

LINEDIT TEXT='VALUES ARE ••••• and •••••• ', 
SUB=(DEC, (3) ,HEXA,LOC) 

might generate a line as follows: 

VALUES ARE -45 AND FFE3C2. 

You should remember that if you are using the standard form of the 
macro instruction, and you want to perform more than one substitution in 
a single line, the LINEDIT macro will not generate reentrant code. If 
you code RENT=NO on the macro line, then you will not receive the MNOTE 
message indicating that the code is not reentrant. If you want reentrant 
code, you must use the list and execute forms of the macro instruction. 

324 IBM VM/310 CMS Command and Macro Reference 



LINEDIT Macro 

Use th,e DISP operand to specify the output disposition of the edited 
line. The format of the DISP operand is: 

DISP= I!g~ 

DISP=TIPE 

NONE 
PRINT 
SIO 
CPCOMM 
ERRMSG 

specifies that the message is to be displayed on the terminal. 
This is the default disposition. 

DISP=NONE 
specifies that no output occurs. This option is useful with the 
BUFFA operand. 

DISP=SIO 
specifies that the message is to be displayed, at the terminal, 
using SIO instead of TIPLIN, which is normally used. This option 
is used by CMS routines in cases where free storage pointers may be 
destroyed. Since lines are not stacked in the console huffer, no 
CON WAIT function is performed. 

DISP=PRINT 
specifies that the line is to be printed on the virtual printer. 
The first character of the line is interpreted as a carriage 
control character and as such does not appear on the printed 
output. (See the discussion of the PRINTL macro for a list cf 
valid ASA control characters.) 

DISP=CPCOMM 
specifies that the line is to be passed to CP to be executed as a 
CP command. For example: 

LINEDIT TEXT='QUERI USERS',DOT=NO,DISP=CPCOMM 

results in the CP command line being passed to CP and executed. Cn 
return, register 15 contains the return code from the CP command 
that was executed. 

DISP=ERRMSG 
specifies that the line is to be checked to see if it qualifies for 
error message editing. If it does, it is displayed as an errcr 
message rather than as a regular line. 

The standard format of VM/310 error messages is: 

xxxmmmnnns 

where xxxmmm is the name of the module issuing the message, nnn is 
the mes~age number, and s is the severity code. Iou can code 
whatever you want for the first nine characters of the code when 
you write error messages for your programs, hut the tenth character 
must specify one of the following VM/310 message types: 

!t~§.§ggg !YEg 
Information . 
Warning 
Erro~ 

section 6. CMS Macro Instructions 325 



LIBEDIT Macro 

Then, the line is displayed in accordance with the CP EMSG setting. 
If EMSG is set to ON, then the entire message is displayed; if EMSG 
is set to TEXT, then only the message portion is displayed; if EMSG 
is set to CODE, then only the 10-character code is displayed. 

Use the BUFFA operand to specify the address of a buffer into which the 
edited message is to be wtitten. The message is copied into the 
indicated buffer, as well as being used as specified in the DISP 
operand. The format of the BUFFA operand is: 

BUFFA= {addreSs} 
(reg) 

When the text is copied into the buffer, the length of the message 
text is inserted into the first byte of the buffer, and the remainder of 
the text is inserted in subsequent bytes. 

If you use register notation to indicate the tuffer address, the code 
generated will not be reentrant. To suppress the MNOTE that informs you 
that code is not reentrant, use the RENT=NO operand. 

Use the MF operand to specify the macro format when you want to code 
list and execute forms when you write reentrant programs. The format of 
the MF operand is: 

MF={~E' {addr })} 
(reg) 

MF=I (Standard form) 
generates an inline operand list for the LINEDIT macro instruction, 
and calls the routine that displays the message. This is the 
default. It generates reentrant code, except under the following 
circumstances: 

• When you specify more than one substitution list 
• When you use register notation with the TEXTA or BUFFA operands 

M F=L (List form) 
generates a parameter list to be filled in when the execute form of 
the macre is used. 

The size of the area reserved 
substitutions to be made, which you 
operand. For example: 

LINEDIT MF=L,MAXSUBS=5 

depends upon the number of 
can specify with the MAXSUES 

reserves space for 
sUbstitution lists. 
macro instructions. 

a parameter list 
This same list may 

that may hold up to five 
be used by several LINEDIT 

326 IBM VM/370 CMS Command and Macro Reference 



LINEDIT !!acro 

!! F= (E, address) (Execute form) 
generates code to fill in the parameter list at the specified 
address, and calls the routine that displays the message text. 

The address specified (either a symbolic address or in register 
notation) indicates the location of the 1ist form of the macro. 
The following example shows how you might use the list and execute 
foras of the LINEDIT macro to write reentrant code: 

WRITETOT LINEDIT TEXT='SUBTOTAL ••••• TOTAL ••••• 
SUB=(DEC, (4),DEC, (5» ,!!F=(E,LINELIST) 

LINELIST LINEDIT MF=L,MAXSUBS=6 

When the execute form of the LINEDIT macro instruction is used, the 
parameter list for the message is built at label LINELIST, where 
the list form of the macro was coded. 

111 X S J!!l.§ QE~!!1!g 

Use the MAXSUBS operand when you code the list form (!!F=L) form of the 
LINEDIT macro instruction. The format of the MAXSUBS operand is: 

MAXSUBS=number 

where number specifies the maximum number of substitutions that will be 
made when the execute form of the macro is used. 

Use the RENT operand when you are going to use the standard form of the 
LINEDIT macro instruction and you do not care whether the code that is 
generated is reentrant. The format of the RENT operand is: 

RENT={ ~~.§} 

When RENT=YES (the default) is in effect, the LINEDIT macro expansion 
issues an MNOTE message indicating that nonreentrant code is being 
generated. This occurs when you use the standard form of the macro 
instruction and you specify one of the following: 

• TEXTA= (reg) 
• BUFFA= (reg) 
• More than one substitution pair 

If you do not care whether the code is reentrant, and you do not wish 
to have the !!NOTE appear, code RENT=NO. The RENT=NO coding merely 
suppresses the MNOTE statement; it has no effect on th~ expansion of the 
LINEDIT macro instruction. 

Section 6. CMS MacroInstructions 327 



PRINTL Macro 

PRINTL 

Use the PRINTL macro instruction to write a line to a virtual printer. 
The format of the PRINTL macro instruction is: 

r-------------------------.-------------------------------------------------------, 
[label] PRINTL I line [,length] [,ERROR=erraddr]. I 

~---------------------------------------------------------------------------------~ 

label 

line 

is an optional statement label. 

specifies the line to be printed. It may be: 

, linetext' 
lineaddr 
(reg) 

text enclosed in quotation marks. 
the symbolic address of the line. 
a register containing the address of the line. 

length sFecifies the length of the line to be printed. (See Note 1.) 
It may be: 

(reg) 
n 

a register containing the length. 
a self-defining term indicating the length. 

ERROR=erraddr 
specifies the address of an error routine to be given contrel 
if an error is found. If ERROR= is not coded and an error 
occurs, control returns to the next sequential instruction in 
the calling program, as it does if no error occurs. 

!!§A9~ l!Q!~§ 

1,. The, maximum length allowed is 151 characters on a virtual 3211 or 
133 characters on a virtual 1403 or 3203. If you do not specify 
the length, it defaults to 133 characters, unless 'linetext' is 
specified. In this case, the length is taken from the length of the 
line t€'xt. 

2. The first character of the line is 
control character, which may be either 
The valid ASA control characters are: 

interpreted as a carriage 
AS! (ANS~ or machine ced~. 

~ll.~!g£!~! Hex Code !1~~!li!lg 
)I ---40--- Space 1 line before printing 
0 FO Space 2 lines before printing 

60 Space 3 lines before printing 
+ 4E Suppress space before printing 
1 F1 Skip to channel 1 
2 F2 Skip to channel 2 
3 F3 Skip to channel 3 
4 F4 Skip to channel 4 
5 F5 Skip to channel 5 
6 F6 Skip to channel 6 
7 F7 Skip to channel 7 
8 F8 Skip to channel 8 
9 F9 Skip to channel 9 
A C1 Skip to channel 10 
B C2 Skip to channel 11 
C C3 Skip to channel 12 

328 IBM VM/370 CMS Command and Macro Reference 



PRINTL, PUNCHC Macros 

3. Hex codes X'Cl i and X'C3' are used in both machine code and ASA 
code. CMS recognizes these codes as ASA control characters, not as 
machine control characters. 

4. If the line does not begin with a valid carriage control character, 
the line is printed with a write command to space one line before 
printing (ASA X'40'). 

5~ When the macro completes, register 15 may contain a 2 or a 3, 
indicating that a channel 9 or channel 12 punch was sensed, 
respectively. You can use these codes to determine whether the end 
of the page is near (channel 9), or if the end of the page has been 
reached (channel 12). You might want to check for these codes if 
you want to print particular information at the bottom or at the 
end of each page being printed. 

When the channel 9 or channel 12 punch is sensed, the write 
operation terminates after carriage spacing but before writing the 
line. If you want to write the line without additional space, you 
must modify the carriage control character in the buffer to a code 
that writes without spacing (ASA code + or machine code 01). 

6. You must issue the CP CLOSE command to close the virtual printer 
file. Issue the CLOSE command either from your program (using an 
SVC 202 instruction or a LINEDIT macro instruction) or from the CMS 
environment after your progra~ completes execution. The printer is 
automatically closed when you log off or when you use the CMS PRINT 
command. 

If an error occurs register 15 contains one of the following error 
codes: 

Code --,-
2 
3 
4 
5 

100 

l1~g.!!!.!!g 
Line too long 
Channel 12 punch sensed (virtual 3203 or 3211 only) 
Channel 9 punch sensed (virtual 3203 or 3211 only) 
Intervention ~equired 
Unknown error 
Printer not attached 

PUNCHC 

Use the 
punch. 

PUNCHC macro instruction to write a line to 
The format of the PUNCHC macro instruction is: 

a virtual 

[label] I PUNCHCI line [,ERROR=erraddr] 

label 

line 

is an optional statement label. 

specifies the line to be punched. It may be: 

'linetext • 
lineaddr 
(reg) 

text enclosed in quotation marks. 
the symbolic address of the line. 
a register containing the address of the line. 

card 

Section 6. CMS Macro Instructions 329 



PUNCH Macros 

ERROR=erraddr 
specifies the address of an error routine to be given control 
if an error is found. If ERROR= is not coded and an error 
occurs, control returns to the next sequential instruction in 
the calling program, as it does if no error occurs. 

1. No stacker selecting is allowed. The line length must be 80 
characters. 

2. You must issue the CP CLOSE command to close the virtual punch 
file. Issue the CLOSE command either from your program (using an 
SVC 202 instruction) or from the CMS environment when your program 
completes execution. The punch is closed automatically when you 109, 
off or when you use the CMS PUNCH command. 

If an error occurs, register 15 contains one of the following error 
codes: 

~~g~i~g 
Unit check 
Unknown error 
Punch not attached 

330 IBM VM/370 CMS Command and Macro Reference 



RDCARD ftacro 

RDCARD 

Use the RDCARD macro instruction to read a line from a virtual card 
reader. The format of the RDCARD macro instruction is: 

[label] I RDCARD I buffer[,length][,ERROR=erraddr] 

label 

buffer 

length 

is an optional statement label. 

specifies the buffer address into which the card is to be 
read. It may be: 

bufaddr 
(reg) 

the symbolic address of the buffer. 
a register containing the address of the buffer. 

specifies the length of card to be read. If omitted, 80 is 
assumed. The length may be specified in one of two ways: 

n 
(reg) 

a self-defining term indicating the length. 
a register containing the length. 

ERROR=erraddr 
specifies the address of an error routine to be given 
centrol if an error is found. If ERROR= is not coded and an 
error occurs, control returns to the next sequential 
instruction in the calling program, as it does if no error 
occurs. 

1. No stacker selecting is allowed. 

2. When the macro completes, register 0 contains the length of the 
card that was read. 

3. You may not use the RDCARD macro in jobs that run under the ces 
batch Jlachine. 

If an error occurs, register 15 contains one of the following error 
codes: 

£.Q.9~ 
1 
2 
3 
5 

100 

l1~g.!!.!.!!g 
End of file 
unit check 
Unknown error 
Length not equal to requested length 
Device not attached 

Section 6. eftS ftacro Instructions 331 



RDTAPE Macro 

RDTAPE 

Use the RDTAPE macro instruction to read a record from the specified 
tape drive. The format of the RDTAPE macro instruction is: 

[label] 

label 

buffer 

length 

device 

RDTAPE buffer,length [,device] [,SOEE=mode] 
[,ERROR=erradr] 

is an optional statement label. 

specifies the buffer address into which the record is to be 
read. It may be specified in either of two ways: 

lineaddr 
(reg) 

the symbolic address of the buffer. 
a register containing the address of the buffer. 

specifies the length of the largest record to be read. A 
65,535-byte record is the largest record that can be read. It 
may be specified in either of two ways: 

n 
(reg) 

a self-defining term indicating the length. 
a register containing the length. 

specifies the device from which the 
omitted, TAP1 (virtual address 181) 
specified in either of two ways: 

line is to l:e 
is assumed. 

read. If 
It may be 

TAPn 

cuu 

indicates the symbolic tape number (TAP1 through 
TAP4). 
indicates the virtual device address. 

MODE=mode specifies the number of tracks, density, and tape recording 
technique options. It must be in the following form: 

([ track], [ densi ty ], [ trtch ]) 

ERROR=erraddr 

track 7 indicates a 7-track tape (implies density=800 and 
trtch=O) • 

density 

trtch 

9 indicates a 9-track tape (implies density=800). 

200, 556, or 800 for a 7-track tape. 
800, 1600, or 6250 for a 9-track tape. 

indicates the 
7- track tape. 
specified: 

tape recording technique for 
One of the following must be 

o - odd parity, converter off, translator off. 
OC - odd parity, converter on, translator off. 
OT - odd parity, converter off, translator on. 
E - even parity, converter off, translator off. 
ET - even parity, converter off, translator on. 

specifies the address of an error routine to be given contrel 
if an error is found. If ERROR= is not coded and an error 
occurs, control returns to the next sequential instruction in 
the calling program, as it does if no error occurs. 

332 IBM VM/370 CMS Command and Macro Reference 



RDTAPE, RDTERM Macrcs 

1. When the macro completes, register 0 contains the number of bytes 
read. 

2. You need not specify the Mode option when you are reading from a 
9-track tape and using the default density of the tape drive nor 
when you are reading from a 1-track tape with a density of 800 bpi, 
odd parity, with the data converter and translator off. 

If an error occurs, register 15 contains one of the following error 
codes: 

~.Qg~ 
1 
2 
3 
4 
5 
8 

!1~g.n.!.n.9 
Invalid function or parameter 
End of file or end of tape 
Permanent I/O error 
Invalid device address 
Tape not attached 
Incorrect length error 

list 

RDTERM 

Use the RDTERM macro instruction to read a line from the terminal into 
an I/O buffer. The format of the RDTERM macro instruction is: 

r--------------------------------------------------------------------------, 
r , I 

bUffer[,EDIT=code][,LENGTH=length]I,ATTREST={YE~}1 I 
I NO II 

[label] RDTERM 

L ..J I 
~--------_________________________________________________________________ ..J 

label 

buffer 

is an optional statement label. 

specifies the address of a buffer into which the line is to be 
read. The buffer is assumed to be 130 bytes long, unless 
EDIT=PHYS is specified. The address may be specified as: 

lineaddr 
(reg) 

the symbolic address of the buffer. 
a register containing the address of the buffer. 

EDIT=code specifies the type of editing, it any, to be performed on the 
input line. 

NO indicates that a log~cal line is to be read and no 
editing is to be done. 

PAD requests that the input line be padded with blanks 
to the length specified. 

UPCASE requests that the line be translated to uppercase. 

indicates both padding and translation to uppercase. 
YES is the default. 

Section 6. CMS Macro Instructions 333 



BDTEB!, BEGEQU Macros 

PHYS 

LENGTH=length 
specifies 
assumed. 
specified 
specified 

n 

(reg) 

ATTBEST=YESINO 

indicates that a physical line is to ·be read. When 
PHIS is specified, the LENGTH and ITTBEST=IC 
operands may also be entered. This option causes 
the input line to be translated using the user 
translation table. 

the length of the buffer. If not specified, 130 is 
The maximum length is 2030 bytes. The length may be 
only if EDIT=PHYS (see Usage Note 2). It may be 
in either of two forms: 

a. self-defining term indicating the length of the 
buffer 
a register containing the length of the buffer. 

specifies whether an attention interruption during a read 
should result in a restart of the read operation. (See Usage 
Note 2.) 

4 

1. When the macro completes, register 0 contains the number of 
characters read. 

2. Iou can use the ATTBEST=NO and LENGTH operands only when you are 
reading ~hysical lines (EDIT=PHYS).. When ATTBEST=NO, an attenticn 
interruption during a read operation signals the end of the line 
and does not result in a restart of the read. These operands are 
used primarily in writing VS APt programs. 

When an error occurs, register 15 contains one of the following 
error codes: 

l1~s.!!i.!!g 
Invalid parameter 
Read was terminated by an attention signal (possible only when 
ATTREST=NO) 

REGEQU 

Use the REGEQU macro instruction to generate a list of EQU (equate) 
statements to assign symbolic names for the general, floating-point, and 
extended control registers. The format of the RlGEQU macro instruction 
is: 

-----------------------, 
REGEQU I 

~----------~-------------------------------------------------------------~ 

334 IBM VM/370 CMS Command and ~acro Reference 



REGEQU, TAPECTL !acros 

The REGEQU macro instruction causes the following equate statements to 
l:e generated: 

Q~!!~.£g.! 
RO 
R1 
R2 
R3 
R4 
R5 
R6 
R7 
R8 
R9 
R10 
R11 
R12 
R 1"3 
R14 
R15 

!!~g!§!!!.£§ 
EQU 0 
EQU 1 
EQU 2 
EQU 3 
EQU 4 
EQU 5 
EQU 6 
EQU 1 
EQU 8 
EQU 9 
EQU 10 
EQU 11 
EQU 12 
EQU 13 
EQU 14 
EQU 15 

I.!2g!!llg=f2!1l! R~gi§!!!.£§ 
o FO EQU 

F2 EQU 2 
F4 EQU 4 
F6 EQU 6 

~!!~J!~ed 
CO 
C1 
C2 
C3 
C4 
C5 
C6 
C1 
C8 
C9 
C10 
C11 
C12 
C13 
C14 
C15 

£2J!!.£2! !!!!gi§!!!£§ 
EQU 0 
EQU 1 
EQU 2 
EQU 3 
EQU 4 
EOU 5 
EQU 6 
EQU 7 
EQU 8 
EQU 9 
EOU 10 
EQU 1i1 
EQU 12 
EOU 13 
EOU 14 
EQU 15 

TAPECTL 

Use the TAPECTL macro instruction to position the specified tape 
according to the specified function code. The format of the TAPECTL 
macro instruction is: 

[label] TAPECTL I function [,deviceX,!ODE=mode][,ERROR=erraddr] 

label is an optional statement label. 

function specifies the control function to be performed. It must be 
one of the following codes: 

device 

£.Qg§ 
REW 
RUN 
ERG 
BSR 
BSF 
FSR 
FSF 
WTM 

Function 
RewIiid-the tape 
Rewind and unload the tape 
Erase a gap 
Backspace one record 
Backspace one file 
Forward-space one record 
Forward-space one file 
Write a tape mark 

specifies the tape on which the control operation is to be 
performed. If omitted, TAP1 (virtual address 181) is assumed. 
It may be: 

TAPn indicates the symbolic tape number (TAP1 through 

Section 6. eMS Macro Instructions 335 



TAPECTL Macro 

TAP4) • 
cuu indicates the virtual device address. 

MODE=mode specifies the number of tracks, density, and tape recording 
technique options. It must be in the following form: 

([ track ], [ densi ty ], [ trtch ]) 

ERROR=erraddr 

track 7 indicates a 7-track tape (implies density=800 and 
trtch=O) • 

density 

trtch 

9 indicates a 9-track tape (implies density=800). 

200, 556, or 800 for a 7-track tape. 
800, 1600, or 6250 for a 9-track tape. 

indicates the 
7-track tape. 
specified: 

tape recording technique for 
One of the following must be 

o - odd parity, converter off, translator off. 
OC - odd 'parity, converter on, translator off. 
OT - odd parity, converter off, translator on. 
E - even parity, converter off, translator off. 
ET - even parity, converter off, translator on. 

specifies the address of an error routine to be given control 
if an error is found. If ERROR= is not coded and an errcr 
occurs, control returns to the next sequential instruction in 
the calling program, as it does if no error occurs. 

You need not specify the MODE option when you are manipulating a 9-track 
tape and you are using the default density for the tape drive, nor when 
you are writing a 7-track tape with a density of 800 bpi, odd parity, 
with data converter and translator off. 

If an error occurs, register 15 contains one of the following error 
codes: 

l1~g1!i1!g 
Invalid function or parameter list. 
End of file or end of tape 
Permanent I/O error 
Invalid device id 
Tape is not attached 
Tape is file-protected 

336 IBM VM/370 CMS Command and Macro Reference 



WAITD Macro 

WAITD 

Us~ the WAITD macro instruction to cause the program to wait until the 
next interruption occurs on the specified device. The format of the 
WAITD macro instruction is: 

(label] I WAITD I device ••• [,devicen] (,ERROR=erraddr] 

label is an optional statement label. 

devicen specifies the device(s) to be waited for. 
following may be specified: 

One of the 

symn indicates the symbolic device name and number, where: 

sym is CON, DSK, PRT, PUN, RDR, or TAP. 
n indicates a device number. 

user is a four-character symbolic name specified a HNDINT 
macro issued for the same device. 

ERROR=erraddr 
specifies the address of an error routine to be given contrel 
if an error is found. If ERROR= is not coded and an error 
occurs, control returns to the next sequential instruction in 
the calling program, as it does if no error occurs. 

1. Use the WAITD macro instruction to ensure completion of an I/O 
operation. If an interruption has been received and not processed 
from a device specified in the WAITD macro instruction, the 
interruption is processed before program execution continues. 

2. When the interruption has been completely processed, control is 
returned to the caller with the name of the interrupting device in 
register 1. 

3. If an HNDINT macro instruction issued for the same device specified 
ASAP and an interruption has already been processed for the device, 
the wait condition is satisfied. 

4. If an HNDINT macro instruction issued for the same device specified 
WAIT and an interruption for the device has been received, the 
interruption handling routine is given control. 

5. The interruption routine determines if an interruption 
considered processed or if more ~nterruptions are necessary 
satisfy the wait condition. For additional information see 
discussion of the HNDINT macro instruction. 

is 
to 

the 

When an error is detected, register 15 contains a 1 to indicate that an 
invalid device number was specified~ 

Section 6. eMS Macro Instructions 337 



WAITT, WRTAPE Macros 

WAITT 

Use the WAITT macro instruction to cause the program to wait until all 
of the pending terminal I/O is complete. The format of the WAITT macro 
instruction is: 

[label] I WAITT I L-________________________ ~ _______________________________________________ ~ 

label is an optional statement label. 

The WAITT macro instruction synchronizes input and output to the 
terminal; it ensures that the console stack is cleared before the 
program continues execution. Also, you can ensure that a read or write 
operation is finished before you modify an I/O buffer. 

WRTAPE 

Use the WRTAPE macro instruction to write a record on the specified tape 
drive. The format of the WRTAPE macro instruction is: 

----------------------------~---------------------------------------------, 
[label] 

label 

buffer 

length 

device 

WRTAPE buffer,length [,device] (,MODE=mode] 
(,ERROR=erraddr] 

I 
I 
J 

is an optional statement label. 

specifies the address of the record to be written. It may be: 

lineaddr 
(reg) 

the symbolic address of the line. 
a register containing the address of the time. 

specifies the length of the line to be written. It may be 
specified in either of two ways: 

n 
(reg) 

a self-defining term indicating the length. 
a register containing the length. 

specifies the device to which the record is to be written. If 
omitted, TAPl (virtual address 181) is assumed. It may be: 

TAPn 

cuu 

indicates the symbolic tape number (TAP1 through 
TAP4) • 
indicates the virtual device address. 

MODE=mode specifies the number of tracks, density, and tape recording 
technique. It must be in the following form: 

([ track ],[ densi ty ],[ trtch]) 

338 IBM VM/310 CMS Command and Macro Reference 



track 7 

9 

density 

trtch 

WRTAPE Macro 

indica tes a 7-track tape (implies density=800 and 
trtch=O) • 
indicates a 9-track tape (implies density=800). 

200, 556, or 800 for a 7-track tape 
800, 1600, or 

indicates the 
7-track tape. 
specified: 

6250 for a 9-track tape. 

tape recording technique for 
One of the following must be 

o - odd parity, converter off, translator off. 
OC - odd parity, converter on, translator off. 
OT - odd parity, converter off, translator on. 
E - even parity, converter off, translator off. 
ET - even parity, converter off, translator on. 

ERROR=erraddr 
specifies the address of an error routine to be given control 
if an error is found. If ERROR= is not coded and an error 
occurs, control returns to the next sequential instruction in 
the calling program, as it does if no error occurs. 

You need not specify the MODE option when you are writing to a 9-track 
tape and want to use the default density, nor when you are writing to a 
7-track tape with a density of 800 bpi, odd parity, with data converter 
and translator off. 

If an error occurs, register 15 contains one of the following error 
codes: 

Code --1"-
2 
3 
4 
5 
6 

!1~~.n.!]!g 
Invalid function or parameter 
End of file or end of tape 
Permanent I/O error 
Invalid device identification 
Tape not attached 
Tape is file-protected 

list 

WRTERM 

Use the WRTERM macro instruction to display a line at the terminal. The 
format of the WRTERM macro instruction is: 

[label] I WRTERM I line [,length] [,EDIT=code ] [,COLOR=color] 

label. is an optional statement label. 

Section 6. CMS ~acro Instructions 339 



WRTERM Macro 

line 

length 

specifies the line to be displayed. 
forms: 

It may be one of three 

'linetext' 
lineaddr 
(reg) 

the actual text line enclosed in quotation marks. 
the label on the statement containing the line. 
a register containing the address of the line. 

specifies the length of the line. If the line is specified 
within quotation marks in the macro instruction, the length 
operand may be omitted. The length may be specified in either 
of two ways: 

n 
(reg) 

a self-defining term indicating the length. 
a register containing the length. 

EDIT=code specifies whether the line is to be edited: 

!~~ indicates that trailing blanks are to be removed and a 
carriage return added to the end of the line. YES is the 
default value. 

NO indicates that trailing blanks are not to be removed and 
no carriage return is to be added. 

LONG indicates the line may exceed 130 bytes. 
performed·. 

COLOR=color 

No editing is 

indicates the color in which the line is to be typed, if the 
typewriter terminal has a two-color ribbon: 

~ indicates that the line is to be typed in black. This is 
the default. 

R indi~ates that the line is to be typed in red. 

1. The maximum line length is 130 characters for a black line and 126 
characters for a red line. 

2. If EDIT=LONG, COLOR must be specified as "E". In this case, you may 
write as many as 1760 bytes with a single WRTERM macro instruction. 
You are responsible for embedding the proper terminal contrel 
characters in the data. (This operand is for use primarily with VS 
APL programs.) 

3. You may want to use the WAITT macro instruction to ensure that 
terminal I/O is complete before continuing program execution. 

340 IBM VM/370 CMS Command and Macro Reference 



Appendixes 

The following appendixes are provided for your convenience: 

• Appendix A: Reserved Filetype Defaults 

• Appendix B: DOS/VS Access Method 
Functions Not supported in CMS 

Services and VSAM 

• Appendix C: OS/VS Access Method Services and VSAM Functions 
Not Supported in CMS 

Appendixes 341 



342 IBM VM/370 CMS Command and Macro Reference 



Appendix A: Reserved Filetype Defaults 

REPORT 
UPDTPROC 

update report assemble a (etl 

REPORT 
FIXIN 

REPORT 
CNTRL 

TEXT MACS 
UP2 UPDTPROC 
LIST AUXLlST 
UPl UPDTREPl 
TEXT AUXFIX 

REPORT 
FIXOUT 

UPDATING 'REPORT ASSEMBLE Al' WITH 'REPORT RTNA Al', 
UPDATING WITH 'REPORT RTNB Al', 
UPDATING WITH 'REPORT UPDTREPl Al', 
UPDATING WITH 'REPORT FIXOUT Al', 
UPDATING WITH 'REPORT FIXIN Al', 
UPDATING WITH 'REPORT UPDTPROC Al', 
R; 

REPORT 
RTNA 

REPORT 
AUXFIX 

REPORT 
RTNB 

Figure 21. Default EDIT Subcommand Settings for eftS Reserved Filetypes 

Appendix A: Reserved ,iletype Defaults 343 



344 IBM VM/310 CMS Command and Macro Reference 



Appendix B: DOS/VS Access Method Services 
and VSAM Functions Not Supported in eMS 

Refer to the QQ2L!~ Y!i!i!i~§ !££~§§ ~~!h2£ ~~£!!£~§ fOL a description 
of access method services functions available under DOS/VS, and, 
therefore, under CMS. This knowledge of access method services is 
assumed throughout this publication. 

All of the DOS/VS access method services are supported by CMS, except 
for the following: 

• Non-VSAM data sets with data formats that are not supported by 
CMS/DOS (for example, BDAM and ISAM files are not supported). 

• The SHAREOPTIONS operand has no function in eMS. However, you should 
specify SHAREOPTIONS 3 in your DEFINE control statement for more 
efficient operations. When you specify SHAREOPTIONS 3, CMS does not 
execute the code that attempts to reserve and release system 
resources. 

Appendix B: DOS/VS VSAM Functions Not supported 345 



346 IBM VM/370 CMS Command and Macro Reference 



Appendix C: OS/VS Access Method Services 
and VSAM Functions Not Supported in CMS 

In CMS, an OS user is defined as a user that has not issued the command: 

SET DOS ON (VSAM) 

OS users can use all of the access method services functions that are 
supported by DOS/VS, with the following exceptions: 

• Non-VSAM data sets with data formats that are not supported by 
CMS/DOS (for example, BDAM and ISAM files are not supported). 

• The SHAREOPTIONS operand has no function in CMS. However, you should 
specify SHAREOPTIONS 3 in your DEFINE control statement for more 
efficient operation. When you specify SHAREOPTIONS 3, CMS does net 
execute the code that attempts to reserve and release system 
resources. 

• Do not use the AUTHORIZATION (entrypoint) operand in the DEFINE and 
ALTER commands unless your own authorization routine exists on the 
DOS core image library, the private core image library, or in a C~S 
DOSLIB file. In addition, results are unpredictable if your 
authorization routine issues an OS SVC instruction. 

• The secondary space allocation parameter in the following DEFINE 
commands is not used by access method services nor DOS/VS VSA~: 
DEFINE SPACE, DEFINE USERCATALOG, and DEFINE CLUSTER with the UNIQUE 
parameter. However, you may code this parameter to make your control 
statement file compatible with an OS/VS VSAM control file. 

• The OS access method services GRAPHICS TABLE options and the TEST 
option of the PARM command are not supported. 

• The filename in the FILE (filename) operands is limited to seven 
characters. If an eighth character is specified, it is ignored. 

• The OS access method services CNVTCAT and CHKLIST commands are net 
supported in DOS/VS access method services. In addition, all CS 
access method services commands that support the 3850 Mass Storage 
System are not supported in DOS/VS access method services. 

• Figure 22 is a list of OS operands, by control statement, that are 
not supported by the CMS in~erface to DOS/VS access method services. 

If any of the unsupported 
specified, the AMSERV command 
error message. 

operands or commands in Figure 22 are 
terminates and displays an appropriate 

When you use the PRINT, EXPORT, IMPORT, IMPORTRA, EXPORTRA, and REPRO 
control statements for sequential access method (SAM) data sets, you 
must specify the ENVIRONMENT operand with the required DOS options (that 
is, PRIME DATA DEVICE, BLOCKSIZE, RECORDSIZE, or RFCORDFORMAT). Yeu 
.ust have previously issued a DLBL for the SAM file. 

AMSERV can write SAM data sets only to a CMS disk, but can read them 
from DOS, OS, or CMS disks. 

Appendix C: OS/VS VSAM Functions Not supported 347 



OS Access Method Services 
Control Statement 

ALTER 

BLDINDEX 

DEFINE 

DELETE 

EXPORT 

IMPORT 

LISTCAT 

PRINT 

REPRO 

VERIFY 

Operands Not Supported in CMS 

EMPTY/NOEMPTY 
SCRATCH/NO SCRATCH 
DESTAGEWAIT/NODESTAGEWAIT 
STAGE/BIND/CY~INDERFAULT 

INDATASET 
OUTDATASET 

ALIAS 
EMPTY/NOEMPTY 
GENERATIONDATAGROUP 
PAGESPACE 
SCRATCH/NOSCRATCH 
DESTAGEWAIT/NODESTAGEWAIT 
STAGE/BIND/CYLINDERFAULT 
TO/FOR/OWNERt 

ALIAS 
GENERATIONDATAGROUP 
PAGESPACE 
SCRATCH/NO SCRATCH 

OUTDATASET 

INDATASET 
OUTDATASET 
IMPORTA 

ALIAS 
GENERATIONDATAGROUP 
LEVEL 
OUTFILE2 
PAGES PACE 

INDATASET 
OUTFILE2 

INDATASET 
OUTDATASET 

DATASET 
====================================================================== 
lThe TO/FOR/OWNER operands are supported for the access method 
services interface, but are not supported for the DEFINE NONVSAM 
control statement. 

12The OUTFILE operand is supported by the access method services 
I interface, but is not supported for the LISTCAT and PRINT control 
I statements. 

Figure 22. OS Access Method Services Operands Not Supported in CMS 

348 IBM VM/370 CMS Command and Macro Reference 



./ * (comments) UPDATE control statement 
205 

./ D (DELETE) UPDATE control statement 204 

./ I (INSERT) UPDATE control statement 203 

./ R (REPLACE) UPDATE control statement 
204 

./ S (SEQUENCE) UPDATE control statement 
202 

&$ special variable 298 
in &IF control statement 287 
setting 277 

&* special variable 298 
in &IF control statement 287 
setting 277 

&ARGS control statement, description 277 
&BEGEMSG control statement 

ALL operand 278 
description 278 

&BEGPUNCH control statement 
ALL operand 279 
description 279 

&BEGSTACK control statement 
ALL operand 280 
description 280 
FIFO operand 280 
LIFO operand 280 

&BEGTYPE control statement 
ALL operand 280 
description 280 

&CONCAT built-in function, description 295 
&CONTINUE control statement 281 

used with &ERROR control statement 284 
&CONTROL control statement 

ALL operand 282 
CMS operand 282 
description 282 
ERROR operand 282 
MSG operand 282 
NOMSG operand 282 
NOPACK operand 282 
NOTIME operand 282 
OFF operand 282 
PACK operand 282 
TIME operand 282 

&DATATYPE built-in function, description 
296 

&DISK* special variable 299 
&DISK? special variable 299 
&DISKx special variable 298 
&DOS special variable 299 
&EMSG control statement, description 283 

Index 

&END control statement 284 
with &BEGEMSG control statement 278 
with &BEGPUNCH control statement 279 
with &EEGSTACK control statement 280 
with &BEGTYPE control statement 280 

&ERROR control statement, description 284 
&EXEC special variable 299 
&EXIT control statement, description 285 
&GLOBAL special variable 299 
&GLOBALn special variable 300 
&GOTO control statement 

description 286 
TOP operand 286 

&HEX control statement 
description 286 
OFF operand 286 
ON operand 286 

&IF control statement, description 287 
&INDEX special variable 300 

setting 277,290 
&LENGTH built-in function, description 296 
&LINENUM special variable 300 
&LITERAL built-in function, description 

297 
&LOOP control statement, description 288 
&n special variable 298 
&PUNCH control statement, description 289 
&READ control statement 

ARGS operand 290 
description 290 
VARS operand 290 

&READFLAG special variable 300 
testing 290 

&RETCODE special variable 300 
&SKIP control statement, description 290 
&SPACE control statement, description 291 
&STACK control statement 

description 292 
FIFO operand 292 
LIFO operand 292 
stacking CHANGE subcommand 220 
stacking INPUT subcommand 232 
stacking REPLACE subcommand 242 

&SUBSTR built-in function, description 297 
&TIME control statement 

description 293 
OFF operand 293 
ON operand 293 
RESET operand 293 
TYPE operand 293 

&TYPE control statement, description 294 
&TYPEFLAG special variable 300 
&0 special variable 298 

Index 349 



$DOP edit macro 258 
$LISTIO EXEC file 

appending information to 118 
creating 118 
format 118 

$MOVE edit macro 259 
DOWN operand 259 
TO operand 259 
UP operand 259 

* (asterisk) 
entered in fileid 5 
in ACCESS command 16 
in ALTER subcommand 216 
in CHANGE subcommand 220 
in COPYFILE command 35 

examples 39 
in DELETE subcommand 224 
in DLBL command 60 
in DSERV command 77 
in EDIT command 79 
in FILEDEF command 89 
in GETFILE subcommand 230 
in LISTDS command 107 
in LISTFILE command 115 
in PRINT command 139 
in PUNCH command 144 
in READCARD command 156 
in RENAME command 160 
in REPEAT subcommand 241 
in SCROLL/SCROLLUP subcommand 246 
in START command 175 
in STATE and STATEW commands 176 
in TAPPDS command 193 
in TRUNC subcommand 250 
in TYPE subcommand 251 
in VERIFY subcommand 253 
in ZONE subcommand 255 
with DISK option, of CMS QUERY command 

151 
with RESE~ option 

of INCLUDE command 106 
of LOAD command 120 

* (comment) command 3 
*COPY statement 131 

/ (diagonal), used in ACCESS command 16 

~, used to pass null argument to EXEC 
procedure 298 

? 
subcommand, description 256 
used with DSN option of DLBL command 61 
used with FILEDEF DISK option 95 

= (equal sign) 
in COPYFILE command 35 

exallples 39 
in RENAME command 161 

= subcommand (§.~ REUSE subcommand.) 

A 
A option of LISTIO command 118 
ABBREV option 

of CMS QUERY command 148 
of CMS SET command 168 

relationship to SYNONYM command 183 
abbreviation 

of command names 4,168,183 
querying acceptabil~ty of 148 
setting acceptability of 168 

used with synonyms 183 
abnormal termination (abend) 

effect on DLBL definitions 61 
effect on FILEDEF definitions 93 
encountered by CMSBATCH command 32 
entering debug environment after 261 

ACCESS command 
description 16 
ERASE option 16,18 
examples 17 
first command after IPL 16 
NODISK option 17 
NOPROF option 16 
usage with DEFINE command 18 

access method services 
allocating VSAM space 68 

in CMS/DOS 64 
control statements, operands not 

supported in CMS (OS users) 348 
determine free space extents for 111 
invoking in CMS 20 
LISTING file created by 20 
restrictions 

for DOS/VS users 345 
for OS/VS users 341 

ADD option 
of !ACLIB command 130 
of TITLIB command 194 

A-disk, accessed after IPLing CMS 17 
ALIGN option of ASSEMBLE co.mand 26 
alignment of boundaries in assembler 

program statements 26 

350 IBM VM/310 CMS Command and Macro Reference 



ALL 
operand 

of &BEGEMSG control statement 278 
of &BEGPUNCH control statement 279 
of &BEGSTACK control statement 280 
of &BEGTIPE control statement 280 
of &CONTROL control statement 282 
of SERIAL subcommand 247 

option 
of GENMOD com.and 102 
of LISTIO command 118 

ALLOC option of LISTFILE co.mand 115 
ALOGIC Gption of ASSEMBLE command 24 
ALTER subcommand 

description 216 
effect of zone setting 255 

AMSERV 
command 

description 20 
LISTING file 20 
PRINT option 20 
TAPIN option 20 
TAPOUT option 20 

filetype 21 
default editor settings 343 

APPEND option 
of COPIFILE command 37 
of LISTFILE command 115 
of LISTIO command 118 

ARGS operand of &READ control statement 
290 

arguments 
on RUN command 164 
on START command 175 
passed to EXEC procedure 85,277 

initializini 277 
passing to nested EXEC procedures 
300 

reading from terminal or console 
stack 290 

testing how many were passed 300 
ASA carriage control characters 328 
ASAP operand of HNDINT macro 314 
ASSEMBLE 

assembler input ddname 27 
command 1 

ALIGN option 26 
ALOGIC option 24 
BUFSIZE option 26 
DECK option 25 
description 23 
DISK option 25 
ESD option 24 
FLAG option 24 
LIBffAC option 24 
LINECOUN option 24 
LIST option 24 
listing control options for 24 

!!CALL option 24 
!!LOGIC option 24 
ROALIGN option 26 
NOALOGIC option 24 
RODECK option 25 
ROE SD option 24 
ROLIBMAC option 24 
ROLIST option 24 
ROMCALL option 24 
ROMLOGIC option 24 
NONUM option 25 
NOOBJECT option 25 
NOPRINT option 25 
NORENT option 26 
RORLD option 24 
ROSTMT option 26 
ROTER!! option 26 
NOTEST option 25 
NOXREF option 25 
NOIFLAG option 26 
NUMBER option 25 
OBJECT option 25 
PRINT option 25 
RENT option 26 
RLD option 24 
STMT option 26 
SISPARM option 26 
SISTER!! listing 25 
TERMINAL option 26 
TEST option 25 
XREF option 25 
IFLAG option 26 

filetype 
created by TAPPDS command 193 
default editor settings 343 
used as input to assembler 23 

assembler 
conditional assembly statements, listing 

24 
overriding CMS file defaults 27 
using under CMS 1,23 

ASSGN command 
DEN option 30 
description 29 
1GB option 30 
LOWCASE option 30 
PRINTER option 29 
PUNCH option 29 
READER option 29 
SISxxx option 29 
TAPn option 29 
TERMINAL option 29 
TRTCR option 30 
UPCASE option 30 
7TRACK option 30 
9TRACK option 30 

assignment statement 276 

Index 351 



assignments 
logical unit, listing 118 
system and programmer, unassigning 158 

attention interruption, causing 9 
ATTREST operand of RDTERM macro 334 
AUTO option 

of INCLUDE command 101 
of LOAD command 121 

automatic 
read function, setting 168 
save function of CMS editor 

canceling 211 
invoking 211 

AUTOREAD option of CMS SET command 168 
AUTOSAVE subcommand 

description 217 
OFF operand 211 

auxiliary directory, creating 100 
AUXPROC option of FILEDEF command 93 

B 
backspace 

characters, how editor handles 232 
key, used with OVERLAY subcommand 231 

BACKWARD subcommand, description 218 
BASDATA filetype, default editor settings 

343 
base address, for debugging, set with 

ORIGIN subcommand 269 
BASIC filetype, default editor settings 

343 
BCD characters, converting to EBCDIC 31 
BDAM, files, specifying in CMS 91 
blank lines, displaying at terminal during 

EXEC processing 291 
blanks 

as delimiters 2 
FIND subcommand 226 

displaying in LINEDIT message text 320 
overlaying characters with 231 
trailing 

removing with WRTERM macro 340 
truncating from variable-length file 

240 
blip 

characters 
for virtual machine 166 
for virtual machine, displaying 141 

function 
querying setting of 141 
setting 166 

BLIP option 
of CMS QUERY command 141 
of CMS SET command 166 

BLKSIZE option of FILEDEF command 91 
BLOCK option of FILEDEF command 91 

blocksize, specifying with FILEDEF command 
93 

books, from DOS/VS source statement 
libraries, copying 173 

BOTTOM subcommand, description 218 
boundary alignment, of statements in 
assembler program 26 

BREAK subcommand, description 262 
breakpoints, setting 262 
BSF, tape control function 187 
BSIZE operand of FSCB macro 302 
BSR, tape control function 187 
BUFFA operand of LINEDIT macro 325 
buffer 

size 
controlling for assembler 26 
for VSAM programs 62 
specifying with FSCB macro 302 

specifying for RDTERM macro 333 
specifying for read/write operations, 

FSCB macro 302 
to copy LINEDIT message text 325 

BUFFER operand of FSCB macro 302 
BUFSIZE option of ASSEMBLE command 26 
BUFSP option, of DLBL command 62 
BUFSP option of DLBL command 62 
built-in functions, EXEC 295 

C 
CANON operand of IMAGE subcommand 231 
card reader 

reading files from, READCARD command 
155 

reading records from, RDCARD macro 331 
carriage control characters 

ASA, summary 328 
handling by PRINT command 139,140 
machine code 328 

CASE subcommand 
description 219 
M operand 219 
U operand 219 

CAT option 
of DLBL command 62 

example of usage in CMS/DOS 66 
CAT option of DLBL command, example of 
usage 10 

catalogs (~~ VSAM catalogs) 
CAW 

operand of SET subcommand 211 
subcommand, description 263 

CAW (channel address word) 
changing in debug environment 211 
displaying in debug environment 263 
format 263 

352 IBM VM/310 CMS Co.mand and Macro Reference 



CC option of PRINT command 139 
CD option of DSERV command 77 
CHANGE 

option 
of DLBL command 61 
of FILEDEF command 91 

subcommand 
description 219 
effect of zone setting 255 
stacking with &STACK control 
statellent 220 

channel address word (§~~ CAW (channel 
address word» 

channel status word (2~~ CSW (channel 
status word» 

CHAR, result of &DATATYPE built-in function 
296 

character 
altering 

with ALTER subcommand 216 
with CHANGE subcommand 219 
with COPYFILE command 43 

data 
determining if token contains 296 
displaying with LINEDIT macro 323 

determining how many in token 296 
for blip string 

displaying 147 
setting 166 

overlaying, with OVERLAY subcommand 237 
sets, used in CMS 3 
special, changing on 3270 220 
strings 

assigning to variable symbols 276 
changing 219 
copying 41 
extracting in EXEC procedure 297 
locating 235 

valid in CMS command lines 3 
CLEAR option 

of DLBL command 61 
of FILEDEF command 91 
of INCLUDE command 106 
of LOAD command 120 
of SYNONYM command 182 

CLR operand 

CMS 

of HNDEXT macro 313 
of HNDINT macro 314 
of HNDSVC macro 315 

operand of &CONTROL control statement 
282 

option of DLBL command 61 
subcommand, description 222 

CMS (Conversational Monitor System) 1 
accessing with no virtual disks attached 
to virtual machine 17 

basic description of 1 
batch facility (~CMS batch facility) 
command language, basic description 1 
commands (2~ CMS cOllmands) 
editor 2 
files (~file) 
loader (2~~ loader) 
macros (2~~ CMS macro instructions) 
subset (2~~ CMS subset) 

CMS batch facility 32 
halting 212 

CMS commands 
ACCESS 16 
AMSERV 20 
ASSEMBLE 23 
ASSGN 29 
CMSBATCH 32 
COMPARE 33 
COPYFILE 35 
CP 45 
DDR 46 
DEBUG 57 
DISK 58 
displaying during EXEC processing 282 
DLBL 60 
DOSLIB 72 
DOSLKED 74 
DSERV 77 
EDIT 79 
entering 2 
entering by synonym 183 
ERASE 81 
ESERV 83 
EXEC 85 
FETCH 87 
FILEDEF 89 
FORMAT 97 
GENDIRT 100 
GENMOD 101 
GLOBAL 104 
halting execution 213 
INCLUDE 106 
LISTDS 107 
LI STFILE 114 
LISTIO 118 
LOAD 120 
LOADMOD 129 
ftACLIB 130 
MODMAP 133 
MOVEFILE 134 

Index 353 



not for general users 1 
nucleus-resident 1 
OPTION 131 
PRINT 139 
PSERV 142 
PUNCH 144 
QUERY 141 
READCARD 155 
RELEASE 158 
RENAME 160 
RSERV 162 
RUN 164 
search order 1 
SORT 111 
SSERV 113 
START 115 
STATE 116 
STATEW 116 
summary 10 
SVCTRACE 118 
SYNONYM 182 
TAPE 186 
TAPEMAC 191 
TAPPDS 193 
transient area 1 
TXTLIB 194 
TYPE 198 
UPDATE 200 
valid in CMS subset 222 

CMS EXEC file 
appending information to 115 
creating 115 
format 116 

CMS file (egg file) 
CMS Immediate commands (~~ Immediate 

commands) 
CMS macro instructions 301 

COMPSWT 302 
entering operands on 301 
FSCB 302 
FSCBD 303 
FSCLOSE 304 
FSERASE 305 
FSOPEN 306 
FSREAD 301 
FSSTATE 309 
FSWRITE 310 
HNDEXT 313 
HNDINT 314 
HNDSVC 315 
LINEDIT 311 
PRINTL 328 
PUNCHC 329 
RDCARD 331 
RDTAPE 331 
RDTERM 333 
REGEQU 334 

TAPECTL 335 
WAITD 336 
WAITT 338 
WRTAPE 338 
WRTERM 340 

CMS subset 
entering 222 
returning to edit mode 243 

CMSAMS, saved system name 169 
CMSBATCH command 

description 32 
recursive abends encountered by 32 

CMS/DOS 
beginning program execution in 81 
defining files for 60 
environment 

description 2 
initializing 169 
leaving 169 
testing whether it is active 153 
testing whether it is active, in EX 
procedure 299 

CMSDOS, saved system name 169 
CMSLIB, assembler macro library ddname 2 
CMSSEG, saved system name 169 
CMSUT1 file 

created by READCARD command 155 
created by TAPE LOAD command 189 
created by TAPPDS command 193 

CMSVSAM, saved system name 169 
COBOL 

compiler 
querying options in effect for 154 
specifying options for in CMS/DOS 

131 
filetype, default editor settings 343 

COL option 
of COMPARE command 33 
of TYPE command 198 

COLOR operand of WRTERM mac~o 340 
columns 

comparing disk files by 33 
displaying particular 

with TYPE command 198 
with TYPE subcommand 251 

of data, copying 42 
specifying 

for copy operations 41 
for verification setting 253 
for zone setting for edit session 

255 
COL1 option of TAPPDS command 194 
command 

abbreviating 4 
defaults, shown bY underscore in comm2 
format box 5 

entering 2 

354 IBM VM/310 CMS Command and Macro Reference 



environment 
CMS 1 
CP 1 
definition 1 

execution, halting 213 
keyboard differences in entering 9 
language, CMS 1 
languages, VM/370 1 
modules, creating 101 
operands 3 
options 3 
stacking in console buffer 9 
truncating 4 
valid in CMS subset 222 
when to enter 9 

comments, in CMS command lines 3 
COMP 

operand, of LINEDIT macro 320 
option 

of DOSLIB command 72 
of FETCH command 87 
of MACLIB command 130 

COMPARE command 
COL option 33 
description 33 

comparison operators, in EXEC procedure 
287 

compilers, using under CMS 1 
components, of VM/370 1 
COMPSiT macro, description 302 
CONCAT option, of FILEDEF command 92 
conditional execution 

&IF control statement 287 
&LOOP control statement 288 

console 
read, after CMS command execution, 
controlling 168 

stack 
reading data in EXEC procedure 290 
stacking lines, &BEGSTACK control 
statement 280 

stacking lines, &STACK control 
statement 292 

stacking lines, STACK subcommand 248 
testing whether it is empty 300 

CONSOLE, value of &READFLAG special 
variable 300 

constants 
altering 

with LOAD command 127 
with STORE subcommand 272 

continuation character 
on COPYFILE specification list 42 
on COPYFILE translation list 43 

control program (~~ CP (control program)) 
control statements 

for access method services 21 
for DDR command 46 
for UPDATE command 202 

conventions, notational 4 
Conversational Monitor System (~~~ CMS 

(Conversational Monitor System)) 
COpy 

filetype 
adding to MACLIBs 131 
created by SSERV command 173 

function statement, of DDR command 49 
COPYFILE command 

APPEND option 37 
description 35 
EBCDIC option 37 
examples 38 
FILL option 37 
FOR option 36 
FRLABEL option 36 
FROM option 36 
incompatible options 38 
LOiCASE option 37 
LRECL option 37 
NEiDATE option 36 
NEiFILE option 36 
NOPROMPT option 36 
NOSPECS option 36 
NOTRUNC option 37 
NOTYPE option 36 
OLDDATE option 36 
OVLY option 36 
PACK option 37 
PROMPT option 36 
RECFM option 37 
REPLACE option 36 
SINGLE option 38 
specification list 41 
SPECS option 36 
TOLABEL option 36 
TRANS option 37 
TRUNC option 37 
TYPE option 36 
UNPACK option 37 
UPCASE option 37 
usage 38 

core image 
lihraries (DOS/VS), displaying 
directories of 77 

phases, in CMS/DOS 72 
COUNT option of DDR command TYPE/PRINT 

function control statement 52 
CP (control program) 

basic description 1 
commands (~~~ CP commands) 

CP commands 
description 45 
executing 

in CMS command environment 45,168 
in EXEC procedure 45 
in jobs for CMS batch facility 45 
with LINEDIT macro 325 

implied 168 
when to use 45 

Index 355 



cross-reference table, assembler, listing 
25 

CSECTs, duplicate, for LOAD command 122 
CSW 

operand of SET subcommand 271 
subcommand, description 264 

CSW (channel status word) 
changing in debug environment 271 
displaying in debug environment 264 
format 264 

CTL option, of UPDATE command 206 
CTL option of UPDATE command 201 
current line pOinter 

position after deleting lines 224 
positioning 

at top of file 250 
BACKWARD subcommand 218 
based on character string 235 
BOTTOM subcommand 218 
DOWN subcommand 224 
FIND subcommand 226 
FORWARD subcommand 229 
LOCATE subcommand 235 
NEXT subcommand 236 
nnnnn subcommand 257 
UP subcommand 252 

cylinder 

D 

extents for VSAM files 68 
in CMS/DOS 64 

on virtual disk 
counting number of cylinders 97 
resetting number of cylinders 97 

DASD Dump Restore (DDR) program, invoking 
via DDR command 46 

data 
displaying at terminal 

with &BEGTYPE control statement 280 
with &TYPE control statement 294 

overlaying in file 36 
data sets, defining with FILEDEF command 

95 
DATE option of LISTFILE command 115 
DD (data definition), simulating in CMS 89 
D-disk, accessed after IPL of CMS 17 
ddnames 

defining 
with DLBL command 60 
with FILEDEF command 89 

entering tape ddnames for AMSERV 21 
for DLBL command, restrictions for OS 
users 68 

relating to CMS file 89 
to identify VSAM catalogs 69 

in CMS/DOS 66 
used by assembler 27 
used in CMS/DOS, for DOS/VS libraries 

63 
used in MOVEFILE command 134 

DDR command 
control statements, entering 46 
COpy function statement 49 
COUNT option of TYPE/PRINT function 
control statement 52 

description 46 
DUMP function statement 49 
example of TYPE/PRINT output 52 
GRAPHIC option of TYPE/PRINT function 
control statement 52 

HEX option of TYPE/PRINT function 
control statement 52 

INPUT control statement 47 
PRINT function statement 51 
RESTORE function statement 50 
SYSPRINT control statement 49 
TYPE function statement 51 

DEBUG 
command 2 

description 57 
subcommands 

BREAK 262 
CAW 263 
CSW 264 
DEFINE 265 
DUMP 266 
GO 267 
GPR 268 
HX 268 
ORIGIN 269 
PSW 270 
RETURN 270 
SET 271 
STORE 272 
X 273 

debug environment 2,57 
entering 

via breakpoint 261 
via DEBUG command 261 
via external interruption 261 

leaving 
with GO subcommand 267 
with HX subcommand 268 
with RETURN subcommand 270 

setting origin value 269 
decimal 

converting to EBCDIC, LINEDIT macro 321 
converting to hexadecimal, LINEDIT macro 

320 
DECK option 

of ASSEMBLE command 25 
of OPTION command 137 

DEFINE, subcommand, description 265 
DEL option 

of DOSLIB command 72 
of MACLIB command 130 
of TXTLIB command 194 

DELETE 
control statelllent, for UPDATE command I 

204 
subcommand, description 224 

356 IBM VM/370 CMS Command and Macro Reference 



delimiters 
on CHANGE subcommand 220 
on command line 3 
on DSTRING subcommand 225 
on LOCATE subcommand 235 

DEN option 
of ASSGN command 30 
of FILEDEF command 92 
of TAPE command 188 

density of tapes, specifying 188 
DET option of RELEASE command 158 
DETACH command 158 
device types 

default attributes for MOVEFILE command 
135 

valid for FILEDEF command options 91 
devices, waiting for interruptions 336 
DIRECT, filetype, default editor settings 

343 
directories 

CMS auxiliary 100 
CMS file, writing to disk 158 
of DOS/VS libraries 

obtaining information from 77 
sorting 77 

discontiguous, shared segment, saved system 
names 169 

DISK 
command 

DUMP option 58 
LOAD option 58 

option 
of ASSEMBLE command 25 
of CMS QUERY command 150 
of DOSLIB command 72 
of DOSLKED command 74 
of DSERV command 77 
of FILEDEF command 91 
of FILEDEF command, examples 94 
of FILEDEF command, interacti ve use 

disks 

of 95 
of MACLIB command 
of PSERV command 
of RSERV command 
of SSERV command 
of TAPE command 
of TXTLIB command 
of UPDATE command 

accessing 16,17 
A-disk 17 
D-disk 17 
detaching 158 

131 
142 
162 
173 

188 
194 
201 

determining 
if disk is 
procedure 

if disk is 
procedure 

if disk is 
read/write 

accessed, in EXEC 
298 

CMS OS or DOS, in 
298 

full 150 
status of 150 

EXEC 

DOS, accessing 18 
dumping to and restoring from tape 46 
erasing files from 81 
files (~file) 
formatting 97 
OS, accessing 18 
read/write, sharing 18 
releasing 158 

effect on logical unit assignments in 
CMS/DOS 30 

in CMS/DOS 158 
when DLBL definitions are active 68 

S-d.isk 17 
storage capacity, displaying status of 

150 
writing files to 226 
writing labels on 97 
Y-disk 17 

DISP 
operand of LINEDIT macro 325 
option of FILEDEF command 92 

display 
mode, of CMS editor 80 
terminal 

display Bode 228 
line mode 80 

DISPLAY operand of FORMAT subcommand 229 
DLBL 

command 
CAT option 62 
CHANGE option 61 
CLEAR option 61 
CMS option 61 
ddname restrictions (OS users) 68 
description 60 
displaying volumes on which 

multivolume data sets reside 66 
displaying VSAM data set extents 65 
DSN option 61 
DUMMY option 60 
entering SYSxxx operand 63 
establishing file definitions for 

STATE command 176 
EXTENT option 61 
ftULT option 61 
NOCHANGE option 61 
PERM option 61 
SYSxxx option 61 
to identify files for AftSERV 21 
VSAM option 61 
when to use (OS users) 68 

definitions 
cleared by \ESERV EXEC 83 
clearing 61,68 
displaying 62,152 

option, of CMS QUERY command 152 
DMSLDR SYSUT1 file 121 

Index 357 



DOS (Disk Operating System) 
disks, accessing 18 
files 

listing information 107 
specifying FILEDEF options for 93 

DOS option 
of CMS QUERY command 153 
of CMS SET command 169 
of GENMOD command 102 

DOSLIB 
command 

COMP option 72 
DEL option 72 
description 72 
DISK option 72. 
MAP option 72 
PRINT option 72 
TERM option 72 

files 72 
adding phases to 75 
fetching phases from 87 
identifying for fetching 104 
listing information about members 72 
output filemode 74 
size considerations 73 
space considerations 75 
which DOSLIBs will be searched 153 

option 
of CMS QUERY command 153 
of GLOBAL command 104 

DOSLKED command 
description 74 
DISK option 74 
PRINT option 74 
TERM option 75 

DOSLNCNT option 
of CMS QUERY command 154 
of CMS SET command 169 

DOSLNK 
filetype 

CMS/DOS linkage editor input 74 
creating 75 

DOSPART option 
of CMS QUERY command 154 
of CMS SET command 169 

DOT operand of LINEDIT macro 319 
DOWN 

operand of SMOVE edit macro 259 
subcommand, description 224 

DSECT, for file system control block (FSCB) 
303 

DSERV command 
CD option 77 
description 77 
DISK option 77 
PD option 77 
PRINT option 77 
RD option 77 
SD option 77 
SORT option 77 
TD option 77 
TERM option 77 

DSN option of DLBL command 61 
DSORG option of FILEDEF command 92 
DSTRING subcommand, description 225 
DUMMY option 

of DLBL co.mand 60 
restrictions for OS VSAM user 62 
using in CftS/DOS 63 

of FILEDEF command 91 
DUMP 

function statement, of DDR command 49 
option 

of DISK command 58 
of OPTION command 137 
of TAPE command 187 

SUbcommand, description 266 
DUP option 

of INCLUDE command 107 
of LOAD command 121,122 

duplicate CSECTs, for LOAD command 122 

E 
EBCDIC 

display file in 198 
option, of COPYFILE command 37 

EDIT 
command 2 

description 79 
LRECL option 80 
NODISP option 80 

operand 
of RDTERft macro 333 
ofWRTERM macro 340 

subcommand environment 2 
subcommands (~~ EDIT subcommands) 

edit Ilacros 
SDUP 258 
SftOVE 259 

edit mode 2,215 
entering 79 
leaving 

with FILE subcommand 226 
with QUIT subcommand 239 

EDIT subcommands 2 
= 243 
affected by zone setting 255 
ALTER 216 
AUTOSAVE 217 
BACKWARD 218 
BOTTOM 218 
CASE 219 
CHANGE 219 
CftS 222 
DELETE 224 
displaying last one executed 256 
DOWN. 224 
DSTRING 225 
FILE 226 
FIND 226 
FftODE 227 
FBAME 228 

358 IBM VM/370 CMS Command and Macro Reference 



PORMAT 228 
PORWARD 229 
GETPILE 230 
IMAGE 231 
INPUT 232 
LINEMODE 233 
LOCATE 235 
LONG 236 
NEXT 236 
nnnnn 257 
OVERLAY 237 
PRESERVE 238 
PROMPT 238 
QUIT 239 
RECPM 239 
re-executing 243,254 
RENUM 240 
REPEAT 241 
REPLACE 242 
RESTORE 242 
REUSE 243 
SAVE 245 
SCROLL 245 
SCROLLUP 245 
SERIAL 246 
settings saved by PRESERVE subcommand 

238 
SHORT 248 
STACK 248 
TABSET 249 
TOP 250 
TRUNC 250 
TYPE 251 
UP 252 
VERIPY 253 
X 254 
Y 254 
ZONE 255 

edited 
error lIessages 

displaying with LINEDIT macro 325 
in EXEC procedure 278 

macros, DOS/VS copying 83 
editing, lines read with RDTERM macro 333 
editor 

invoking 2,79 
settings 

for reserved filetypes, default 343 
IMAGE subcommand, default 231 
preserving 238 
restoring 242 
TABSET subcommand, default 250 
TRUNC subcommand, default 251 
ZONE subcommand, default 255 

verifying changes made by 253 
end of file 

effect of LOCATE subcommand 235 
position current line pointer at 218 

END option of TAPPDS command 194 
ENTRY, loader control state.ent 124 

entry point 
determined by loader 122 
displayed with PETCH command 87 
specifying 

with ENTRY statement 124 
with GEN!OD co •• and 101 
with INCLUDE com.and 106 
with LOAD command 120 
with START command 175 

environments of C!S 1 
CMS editor 2 
CMS/DOS 2 
debug 2 
EXEC facilities 2 

EOP option of TAPE co.mand 188 
EOT option of TAPE command 188 
EQU statements, generating for registers, 

REGEQU macro 334 
ERASE 

command 
description 81 
NOTYPE option 81 
TYPE option 81 

option 
of ACCESS command 16,18 

ERG, tape control function 187 
error messages 

CMS, determining display during EXEC 
processing 282 

displaying with LINEDIT macro 325 
editor 

long form 236 
short fora 248 

issued in EXEC procedure 
&BEGE!SG control statement 278 
&E!SG control statement 283 

typing in red 168 
V!/370 forllat 278 

ERROR operand 
of &CONTROL control statement 282 
of PSCLOSE macro 304 
of PSERASE macro 305 
of PSOPEN macro 306 
of PSREAD macro 307 
of PSSTATE macro 309 
of PSWRITE macro 310 
of HNDINT macro 314 
of HNDSVC macro 316 
of PRINTL macro 328 
of PUNCHC macro 330 
of RDCARD macro 331 
of RDTAPE macro 331 
of TAPECTL macro 336 
of WAITD macro 336 
of WRTAPE macro 339 

errors 
encountered in macro instruction 
execution 301 

from access method services 20,21 
in EXEC procedure, specifying action to 
be taken 284 

Index 359 



ERRS option of OPTION command 137 
ESD option of ASSEMBLE command 24 
ESERV, .command, description 83 
EXEC 

built-in functions 295 
&CONCAT 295 
&DATATYPE 295 
&LENGTH 296 
&LITERAL 297 
&SUBSTR 297 

command 2 
description 85 
implied 168 

contral statements 275 
&IRGS 277 
&BEGEMSG 278 
&BEGPUNCH 279 
&BEGSTACK 280 
&BEGTYPE 280 
&CONTINUE 281 
&CONTROL 282 
&EMSG 283 
&END 284 
&ERROR 284 
&EXIT 285 
&GOTO 286 
&HEX 286 
&IF 287 
&LOOP 288 
&PUNCH 289 
&READ 290 
&SKIP 290 
&SPACE 291 
&STACK 292 
&TIME 293 
&TYPE 294 
assignment statement 276 
displaying during EXEC processing 

282 
files 

$LISTIO EXEC created by LISTIO 
command 118 

CMS EXEC created by LISTFILE command 
115 

executing with RUN command 164 
filetype 

default editor settings 343 
record format 85 

option 
of LISTFILE command 115 
of LISTIO command 118 

procedures 
branching with &GOTO control 
statement 286 

branching with &SKIP control 
statement 290 

comparing tokens in 287 
concatenating tokens in 295 
defining synonyms for 182 

ESERV 83 
executing 7,85,275 
exiting from 285 
halting terminal output during 292 
passing arguments to nested EXEC 
procedures 300 

reading data from terminal during 
290 

resuming terminal output during 292 
RUN 164 

special variables 298 
&$ 298 
&* 298 
&DISK* 299 
&DISK1 299 
&DISKx 298 
&DOS 299 
&EXEC 299 
&GLOBAL 299 
&GLOBALn 300 
&INDEX 300 
&INDEX, setting 277 
&LINENUM 300 
&n 277,298 
&READFLAG 300 
&RETCODE 300 
&TYPEFLAG 300 
&0 298 
&1 through &30 277 

executable statements 276 
in &ERROR control statement 284 
in &IF control statement 288 

execute form of LINEDIT macro 326 
execution 

entry point, resetting, with INCLUDE 
command 106 

summary of EXEC procedure 282 
packing 282 

extensions 
read-only 16 

accessing 17 
editing files on 79 
releasing 158 

EXTENT option 
of DLBL command 61,68 

in CMS/DOS 64 
of LISTDS command 107 

extents 
for VSAft files 

determining free space for 107 
entering 68 
entering in CftS/DOS 64 

occupied by OS and DOS files, displaying 
107 

EXTERNAL, command 261 
external interruption 

effect in CftS 261 
providing processing routine for 313 

external symbol dictionary (ESD) 24 

360 IBM VM/370 CMS Command and Macro Reference 



F 
FCB macro, loaded by PRINT command 140 
FETCH command 

COMP option 87 
description 87 
ORIGIN option 87 

FIFO operand 
of &BEGSTACK control statement 280 
of &STACK control statement 292 

file 
accessing 

only particular files on disk 17 
with FSREAD macro 307 

appending one file to another 37 
blocking 

with FILEDEF command 91,93 
with FSWRITE macro 311 

calculating logical record length 93 
canceling changes made during edit 
session 239 

closing 304 
comparing one file to another 33 
copying 35 

from one device to another 46 
from one disk to another 39,227 
into file being edited 230 
parts of file 39 
to a file with a different filename 

228 
creating 

from OS partitioned data sets 134 
from tapes created by OS utility 
programs 193 

with CMS editor 79 
with COPYFILE command 35 
with FSWRITE macro 310 
with READCARD command 155 

defining for CMS/DOS 60 
definitions 

displaying DLBL definitions 152 
displaying FILEDEF definitions 152 
for MOVEFILE command 134 
for STATE command 176 

deleting lines in 
with DELETE subcommand 224 
with DSTRING subcommand 225 
with UPDATE command 204 

directories 
auxiliary 100 
set up with ACCESS command 16 

displaying 198 
in hexadecimal format 198 
on 3270 screen 245 
particular columns of file 198,253 
particular records in file 198 
with TYPE subcommand 251 

dumping to tape 187 
editing 215 

erasing 81 
all files on disk 16 
during program execution 305 

format 91 
identifier 

assigned with READCARD command 155 
assigned with TAPPDS command 193 
changing with FILE subcommand 226 
changing with RENAME command 160 
changing with SAVE subcommand 245 
default for DLBL command 63 
default for FILEDEF command 93 
entering on DLBL command 61 
entering on FILEDEF command 95 
entering on LISTDS command 111 
in command syntax 5 

inserting lines in 
with INPUT subcommand 232 
with UPDATE command 203 

listing information about 114 
loading 

from tape to disk 187 
from virtual reader to disk 58 

modifying 35 
moving from device to device 134 
numbering lines in 246 
opening, during program execution 306 
overlaying data in 

specifying number of lines to overlay 
241 

with COPYFILE command 36,42 
with OVERLAY subcommand 237 

packing 37 
specifying fill character 41 

printing 139 
in hexadecimal format 139 
specifying number of lines per page 

140 
processed by TAPE command, listing 188 
protecting data during edit session 256 
punched 

restoring to disk 58,155 
punching to virtual card punch 58,144 
reading 

during program execution 307 
from virtual card reader 58 
sequentially 308 

relating to OS ddname 89 
renaming 160 

displaying new names for 160 
renumbering lines in 240,246 
replacing lines in 

with REPLACE subcommand 242 
with UPDATE command 204 

replacing old file with new copy 36 
serializing lines in 246 

with line-number editing 247 
sorting records in 171 

Index 361' 



tape, writing to disk 181 
transferring, with DISK DUMP command 58 
unpacking 31 
updating, FSWRITE macro 310 
verifying existence of 

with FSOPEN macro 301 
with FSSTATE macro 309 
with STATE and STATEW commands 116 

writing to disk 
with AUTOSAVE subcommand 211 
with FILE subcommand 226 
with FSWRITE macro 310 
with SAVE subcommand 245 

FILE NOT FOUND error message, suppressing 
during EXEC processing 282 

file status table (FST) 309 
FILE subcommand, description 226 
file system control block (FSCB) (2~~ 

FSCB) 
FILEDEF 

command 
AUXPROC option 93 
BLKSIZE option 91 
BLOCK option 91 
CHANGE option 91 
CLEAR option 91 
CON CAT option 92 
default FILEDEF commands issued by 

assembler 21 
definitions for MOVEFILE command 134 
DEN option 92 
description 89 
DISK option 91 
DISP option 92 
DSORG option 92 
DUMMY option 91 
establishing file definitions for 

STATE command 116 
examples 94,95 
KEYLEN option 91 
LIMCT option 91 
LOWCASE option 92 
LRECL option 91 
MEMBER option 92 
NOCHANGE option 91 
OPTCD option 92 
PERM option 91 
positioning read/write pointer 92 
PRINTER option 91 
PUNCH option 91 
READER option 91 
RECFM option 91 
TAPn option 91 
TERMINAL option 91 
TRTCH option 92 
UPCASE option 92 
when to use (OS users) 68 
when to use in CMS/DOS 63 
XTENT option 91 
1TRACK option 92 
9TRACK option 92 

definitions 
clearing 91,93 
displaying 95,152 

option of CMS QUERY command 152 
fileid, in command syntax 5 
file.ode 

changing 
with COPYFILE command 39 
with FMODE subcommand 221 

displaying, FMODE subcommand 221 
letter 

establishing 16 
replacing 158 

numbers, changing 161 
specifying, for FSWRITE macro 310 
specifying on READCARD command 156 

filename 
changing, with FNAME subcommand 228 
of EXEC file 

testing 298,299 
filetypes, reserved, default editor 
settings for 343 

FILL option of COPYFILE command 31 
FIND subcommand 

description 226 
effect of image setting 231 

first-in first-out stacking, in EXEC 
procedure 280,292 

fixed-length files, converting to 
variable-length 40,239 

FLAG option of ASSEMBLE command 24 
FMODE 

option of LISTFILE command 115 
subcommand, description 221 

fn ft fm, used to represent file identifier 
5 

FNAME 
option of LISTFILE command 115 
subcommand, description 228 

FOR option of COpy FILE command 36 
FORMAT 

command 
description 91 
examples 98 
LABEL option 91 
performance consideration 98 
RECOMP option 91 

option 
of LISTDS command 111 
of LISTFILE command 115 

subcommand 
description 228 
DISPLAY operand 229 
LINE operand 229 

FORTRAN filetype, default editor settings 
343 

FORWARD subcommand, description 229 
FREE option of LlSTDS command 101 
FREEFORT 

files, renumbering 240 
filetype, default editor settings 343 

362 IBM VM/310 CMS Command and Macro Reference 



FRLABEL option of COPYFILE command 36 
FROM option 

of COPYFILE command 36 
of GENMOD command 101 

FSCB 
macro 

BUFFER operand 302 
description 302 
NOREC operand 302 
RECNO operand 302 

operand 
of FSCLOSE macro 304 
of FSERASE macro 305 
of FSOPER macro 306 
of FSREAD macro 301 
of FSSTATE macro 309 
of FSWRITE macro 310 

FSCB (file system control block) 
creating 302 
format 303 

FSCBD macro, description 303 
FSCLOSE macro 

description 304 
ERROR operand 304 
FSCB operand 304 

FSERASE macro 
description 305 
ERROR operand 305 
FSCB operand 305 

FSF, tape control function 181 
FSOPEN macro 

description 306 
ERROR operand 306 
FSCB operand 306 

FSR, tape control function 181 
FSREAD macro 

description 301 
ERROR operand 301 
FSCB operand 301 

FSSTATE macro 
description 309 
ERROR operand 309 
FSCB operand 309 

FST (2~~ file status table) 
FSWRITE macro 

description 310 
ERROR operand 310 
FSCB operand 310 

FTYPE option, of LISTFILE command 115 

G 
GEN option 

of MACLIB command 130 
of TITLIB command 194 

GENDIRT command, description 100 
general registers 

changing, in debug environment 211 
displaying, in debug environment 268 
generating list of EQU statements for 

334 
printing contents of 266 

GENMOD command 
ALL option 102 
description 101 
DOS option 102 
FROM option 101 
!!AP option 101 
NOMAP option 101 
NOSTR option 102 
OS option 102 
5TR option 101 
SYSTEM option 102 
TO option 101 

GETFILE subcommand, description 230 
global changes 

with ALTER subcommand 216 
with CHANGE subcommand 220 
with OVERLAY subcommand 231 

GLOBAL command 
description 104 
DOSLIB option 104 
MACLIB option 104 
querying which DOSLIBs were last 
specified 153 

querying which MACLIBs were last 
specified 152 

querying which TITLIBs were last 
specified 152 

TITLIB option 104 
GO subcommand, description 261 
GPR 

operand of SET subcommand 211 
subcommand, description 268 

GRAPHIC option of DDR command TYPE/PRINT 
function control statement 52 

H 
HB Immediate command 212 
header 

card 
as READ control card 155 
punched by PUNCH command 144,145 

for LI5TFILE command output 114 
format 116 

HEADER option 
of LISTFILE command 114 
of PUNCH command 144 

HEI option 
of DDR command TYPE/PRINT function 
control statement 52 

of PRINT command 139 
of TYPE command 198 

hexadecimal 
conversion, in assignment statement 216 
converting to decimal, LINEDIT macro 

320 
converting to EBCDIC, LINEDIT macro 311 
display file in 198 
printing file in 139 
representations of characters, 
translating 161 

Index 363 



substitution 
in EXEC procedure 277 
invoking in EXEC procedure 286 
suppressing in EXEC procedure 286 

values, displaying in EXEC procedure 
287 

HNDEXT macro 
CLR operand 313 
description 313 
SET operand 313 

HNDINT macro 
ASAP operand 314 
CLR operand 314 
description 314 
ERROR operand 314 
SET operand 314 
used with WAITD macro 336 

HNDSVC macro 
CLR operand 315 
description 315 
ERROR operand 316 
SET operand 315 

HO Immediate command 212 
HT Immediate command 213 

HX 

I 

stacking in EXEC procedure 292 

DEBUG subcommand 268 
Immediate command 213 

effect on DLBL definitions 61 
effect on FILEDEF definitions 93 

ICS control statement (2~~ include control 
section (ICS) statement) 

ID card, CP, example 156 
IEBPTPCH utility program, creating CMS 
files from tapes created by 193 

IEBUPDTE utility program, creating CMS 
files from tapes created by 193,194 

IEHMOVE utility program 
creating CMS files from tapes created by 

193 
creating CMS MACLIBs from tapes created 

by 191 
IGN option 

of ASSGN command 30 
with DUMMY data sets 63 

IJSYSCL, defining in CMS/DOS 63 
IJSYSCT 

defining 69 
in CMS/DOS 66 

IJSYSRL, defining in CMS/DOS 63 
IJSYSSL, defining in CMS/DOS 63 
IJSYSUC 

defining 69 
in CMS/DOS 66 

image setting 
effect on FIND subcommand 226 
effect on logical tab settings 250 

IMAGE subcommand 
CANON operand 231 
description 231 
OFF operand 231 
ON operand 231 

Immediate commands 
HB 212 
HO 212 
HT 213 
HX 213 
RO 213 
RT 214 
SO 214 
summary 9 

IMPCP option 
of CMS QUERY command 148 
of eMS SET command 168 

IMPEX option 
of CMS QUERY command 148 
of CMS SET command 168 

implied 
CP function 45 

query status of 148 
setting 168 

EXEC function 85 
query status of 148 
setting 168 

INC option of UPDATE command 201 
INCLUDE command 

AUTO option 107 
called to load files dynamically 302 
CLEAR option 106 
description 106 
DUP option 107 
effect on loader tables 167 
examples 107 
following LOAD command 107 
identify TXTLIBs to be searched 104 
INV option 107 
LIBE option 107 
MAP option 107 
NOAUTO option 107 
NOCLEAR option 106 
NODUP option 107 
NOINV option 107 
NOLIBE option 107 
NOREP option 107 
NOTYPE option 107 
ORIGIN option 107 
REP option 107 
RESET option 106 
SAME option 107 
START option 107 
TYPE option 107 

include control section (ICS), loader 
control statement 125 

364 IBM VM/370 CMS Command and Macro Reference 



increment 
specifying for line-number editing 238 
specifying for sequence numbers in file 

241 
INMOVE, MOVEFILE command ddname 134 
INPUT 

control statement, for DDR command 41 
option 

of CMS QUERY co.mand 149 
of CMS SET command 161 

subcommand 
description 232 
effect of image setting 231 
on = subcommand line 244 
stacking with &STACK control 
statement 232 

input mode 2,215 
during line-number editing 234 
entering 232,242 
leaving 215 

INSERT control statement, for UPDATE 
command 203 

instructions 
addresses, halting program execution at 

262 
altering 

with LOAD command 121 
with STORE subcommand 212 

Interactive Problem Control System (IPCS) 
1 

interruptions 
entering debug environment after 261 
handling 

external 313 
I/O 314 
SVC 315 

I/O, waiting 336 
INV option 

of INCLUDE command 101 
of LOAD command 121 

I/O, devices, handling interruptions for 
314 

IPCS (Interactive Problem Control System) 
1 

ITEMCT option of TAPEMAC command 191 

J 
job catalog 

identifying 10 
in CMS/DOS 66 

K 
keyboard, unlock to enter commands 9 
KEYLEN option of FILEDEF command 91 
keypunch characters, converting 31 

L 
LABEL option 

of FORMAT command 97 
of LISTFILE command 115 

labels 
for file system control block, 
generating 303 

in EXEC procedure 
object of &GOTO control statement 

286 
object of &LOOP control statement 

288 
using &CONTIMUE 281 

o~CMS disks, writing 91 
lang~age processors, using under CMS 1 
last-in first-out stacking, in EXEC 

procedure 280,292 
LDRTBLS option 

of CMS QUERY command 148 
of CMS SET command 161 

LDT statement (~~ loader terminate (LDT) 
statement) 

LEAVE option of DDR command INPUT/OUTPUT 
control statement 48 

LEFT operand of LINEMODE subcommand 233 
length 

of token in EXEC procedure, determining 
296 

specifying for LINEDIT macro 
substitution list 324 

LENGTH operand of RDTERM macro 333 
LIBE option 

of INCLUDE command 101 
of LOAD command 121 

LIB MAC option of ASSEMBLE command 24 
libraries 

CMS (2~ ~!~Q DOSLIB, MACLIB, TXTLIB) 
displaying members of 199 
displaying those to be searched 

during processing 152 
identifying 104 
macro libraries 130 
printing members of 139 
querying 152 
used when processing CMS commands 

104 
DOS/VS 

assigning logical units 30 
obtain information about 11 

DOS/VS core image 
defining IJSYSCL 63 
fetching phases from 87 

DOS/VS procedure 
copying procedures from 142 
displaying directories of 11 
displaying procedures from 142 
printing procedures from 142 
punching procedures from 142 

Index 365 



DOS/VS relocatable 
assigning SYSRLB 162 
copying modules from 162 
defining IJSYSRL 63 
displaying modules from 162 
link-editing modules from 74 
printing modules from 162 
punching modules from 162 

DOS/VS source statement 
assigning SYSSLB 173 
copying books 173 
copying macros from 83 
defining IJSYSSL 63 
displaying books 173 
printing book~ 173 
punching books 173 

OS, macro libraries (2~~ macro 
libraries, OS) 

punching member files in 144 
LIBRARY 

loader control statement 124 
option of CMS QUERY command 152 

LIFO operand 
of &BEGSTACK control statement 280 
of &STACK control statement 292 

LIMCT option of FILEDEF command 91 
line 

duplicating, in CMS file 258 
image, of record 231 
locating by beginning character string 
226 

mode 
of CMS editor 80 
of 3270 229 

moving, within CMS file 259 
number, of EXEC statement, testing 300 
printing 

with LINEDIT macro 325 
with PRINTL macro 328 

punching 
in EXEC procedure 279,289 

punching with PUNCHC macro 329 
reading from console stack 248 

LINE operand of FORMAT subcommand 229 
LINECOUN option 

of ASSEMBLE command 24 
of PRINT command 140 

LINEDIT macro 
BUFFA operand 325 
COMP operand 320 
description 317 
DISP operand 325 
DOT operand 319 
MAXSUBS operand 326 
MF operand 326 
RENT operand 321 
SUB operand 320 
substitution list, specifying 320 
TEXT operand 319 
TEXTA operand 319 

LINEMODE subcommand 
description 233 
LEPT operand 233 
OFP operand 234 
RIGHT operand 233 

line-number editing' 
displaying line numbers 234 
inserting single line 257 
left-handed 233 
reserializing records in file 247 
right-handed 233 
setting prompting increment for 238 

LINK command, accessing disks after 17 
linkage editor control statements 

DOS/VS supported in CBS/DOS 75 
OS 

read by TXTLIB command 197 
required format for TXTL1B command 

197 
. link-editing 

. in CMS/DOS 74 
modules from DOS/VS relocatable 
libraries 75 

TEXT files in storage 120 
TXTLIB members 197 

list form of LINEDIT macro 326 
LIST option 

of ASSEMBLE command 24 
of OPTION command 137 

L1 STD S comBlan d 
description 107 
examples 111 
EXTENT option 107 
FORMAT option 111 
PREE option 107 
PDS option 111 

LISTPILE co •• and 
ALLOC.option 115 
APPEND option 115 
DATE option 115 
description 114 
examples 115 
EXEC option 115 
PMODE option 115 
PNABE option 115 
FORMAT option 115 
PTYPE option 115 
HElDER option 114 
LABEL option 115 
NOHEADER option 114 

LISTING filetype 
created by access method services 20 
created by ASSEMBLE command 24 

controlling 24 
created by ESERV program 83 
default editor settings 343 
printing 139 

366 IBM VM/370 CMS Command and Macro Reference 



LISTIO command 
A option 118 
ALL option 118 
APPEND option 118 
description 118 
EXEC option 118 
PROG option 118 
STAT option 118 
SYS option 118 
SYSxxx option 118 
Ul option 118 

LISTX option, of OPTION command 137 
literal values, using in EXEC procedure 

297 
LOAD 

command 
AUTO option 121 
called to load files dynamically 302 
CLEAR option 120 
description 120 
DUP option 121,122 
duplicate CSECTs 122 
effect on loader tables 167 
executing program using 121 
~dentify TXTLIBs to be searched 104 
INV option 121 
MAP option 121 
NOIUTO option 121 
NOCLEAR option 120 
NODUP option 121 
NOINV option 121 
NOLIBE option 121 
NOMAP option 121 
NOREP option 121 
NOTYPE option 121 
ORIGIN option 120 
REP option 121 
RESET option 120 
START option 121 
TYPE option 121 
used with GENMOD command 102 

option 
of DISK command 58 
of TAPE command 187 

load map 
creating 122 

with INCLUDE command 107 
with LOAD command 121 

displaying 121 
generated by GENMOD command 101 
invalid card images in 122 
of MODULE file, displaying 133 
replace card image in 107 

load point, specifying 107,120 

loader 
CftS 122 
control statements 

BNTRY statement 124 
include control section (ICS) 
statement 125 

LIBRARY statement 124 
loader terminate (tDT) statement 125 
replace (REP) statement 127 
set location counter (stC) statement 

126 
set page boundary (SPB) statement 

127 
search order, for unresolved references 

123 
tables 

defining storage for 167 
displaying number of 148 

loader terminate (LDT), loader control 
statement 125 

LOADtlOD cOllmand 
called to load files dynamically 302 
CMS/DOS considerations 129 
description 129 

LOCATE subcommand 
description 235 
effect of zone setting 255 

logical 
operators, in EXEC procedure 287 
record length, of CftS file, defaults 
used by CMS editor 80 

units 
assigning 29 
ignoring assignments 30 
listing 118 
unassigning 169 
unassigning in CMS/DOS 30 

LONG subcommand, description 236 
looping, in EXEC procedure 288 
LOWCASE option 

of ASSGN command 30 
of COPYFILE command 37 
of FILEDEF command 92 

lowercase letters 
suppressing translation to uppercase 

219 
translating to uppercase 

with CASE subcommand 219 
with COPYFILE command 37 
with PRINT command 139 

LRBCL option 
of COPYFILE command 37 

example 40 
of EDIT command 80 
of FILEDEF command 91 

Index 367 



M 
M operand of CASE subcommand 219 
MICLIB 

command 
ADD option 130 
COMP option 130 
DEL option 130 
description 130 
DISK option 131 
GEN option 130 
MAP option 130 
PRINT option 131 
reading files created by ESERV 

program 84 
REP option 130 
TERM option 130 

files 
creating 130 
displaying names of MACLIBs to be 
searched 152 

distributed with CMS system 131 
specifying for assembly or 

compilation 104 
option 

MACRO 

of CMS QUERY command 152 
of GLOBAL command 104 

files, created by ESERV program 83 
filetype 

adding to MACLIBs 131 
default editor settings 343 
invalid records in, handling by 

MACLIB command 131 
macro definitions 

in assembler listing 24 
in MACRO files 131 

macro libraries 
CMS 

adding to 130 
compacting members of 130 
creating 130 
deleting members of 130 
displaying information about members 
in 130 

reading as macro libraries into 191 
replacing members of 130 

creating 
from OS partitioned data sets on tape 

191 
from tapes created by IEHMOVE utility 

program 191 
DOS/VS, copying macros from 83 
identifying for assembly 21~104 
OS 

concatenating 92 
reading into CMS MACLIBs 191 
using in CMS 21 

MAP 
filetype 

created by DOSLIB command 12 
created by DSERV command 11 
created by LOAD command 122 
created by MACLIB command 130 
created by TAPE command 188 
created by TITLlB command 194 

option 
of DOSLIB command 12 
of GENMOD command 101 
of INCLUDE command 101 
of LOAD command 121 
of MACLIB command 130 
of TITLIB command 194 

maps 
created by DOSLIB command 12 
created by GENMOD command 101 
created by LOAD command 122 
created by MACLIB command 130 
created by TITLIB command 194 
linkage editor, in CMS/DOS 14 

margins, setting left margin for input with 
editor 250 

master catalog (VSAM) 
identifying 10 
identifying in CMS/DOS 66 

master file directory 
contents of 11 
suppressing updating after RENAME 

command 161 
updating entries in 160 
updating on disk 158 

MAISUBS operand of LINED IT macro 326 
MAITEN option of TAPPDS command 194 
MCALL option of ASSEMBLE command 24 
ftEftBER option 

of FILEDEF command q2 
of PRINT command 139 
of PUNCH command 144 
of TYPE command 199 

MEftO filetype, default editor settings 343 
message, text for LINEDlT macro 319 
ftF operand of LINEDIT macro 326 
minidisks (see also disks) 

copying 46- ----
counting cylinders on 91 

MLOGIC option of ASSEftBLE command 24 
ftODE 

operand 
of RDTAPE macro 331 
of TAPECTL macro 336 
of WRTAPE macro 338 

option of DDR command INPUT/OUTPUT 
control statement 48 

mode letter (~~~ filemode letter) 
MODESET option of TAPE command 181 

368 IBM VM/310 CMS Command and Macro Reference 



MODMAP command, description 133 
MODULE files 

creating 101 
debugging 129 
defining synonyms for 182 
DOS/VS, link-editing 14 
executing with RUN command 164 
format 101 
generating 101 
loading dynamically during program 
execution 302 

loading into storage for execution 129 
mapping 133 

MOVEFILE command 
default device attributes 135 
description 134 
examples 134 
PDS option 134 

MSG operand of &CONTROL control statement 
282 

MULT option of DLBL command 61 
multilevel updates using UPDATE command, 

examples 206,208 
multiple 

extents for VSAM files 
specifying 68 
specifying in CMS/DOS 64 

FSCBs 303 
input files 

for UPDATE command 201 
with COPYFILE command 39 

output files 
with COPYFILE command 35,39,41 
with RENAME command 161 

substitution lists, LINEDIT macro 324 
multivolume data sets, displaying volumes 

on which they reside 66 
multivolume VSAM extents 

identifying with DLBL command 69 
in CMS/DOS 65 

maximum number of disks 69 
in CMS/DOS 65 

rules for specifying 69 
in CMS/DOS 65 

N 
nesting 

&IF statements in EXEC procedure 288 
EXEC procedures 

effect on &CONTROL 283 
passing variable data 300 
testing recursion level 299 

loops in EXEC procedure 289 
never-call function, specifying in CMS TEXT 
file 124 

NEWDATE option of COPYFILE command 36 
NEWFILE option of COPYFILE command 36 
NEXT subcommand, description 236 
nnnnn subcommand, description 251 
NO option of START command 115 
NOALIGN option of ASSEMBLE command 26 
NOALOGIC option of ASSEMBLE command 24 
NOAUTO option 

of INCLUDE command 101 
of LOAD command 121 

NOCC option of PRINT command 139 
NOCHANGE option 

of DLBL command 61 
of FILEDEF command 91 

NOCLEAR option 
of INCLUDE command 106 
of LOAD command 120 

NOCOL1 option of TAPPDS command 194 
NOCTL option of UPDATE command 201 
NO DECK option 

of ASSEMBLE command 25 
of OPTION command 131 

NODISK option of ACCESS command 11 
NODISP option 

of EDIT command 80 
effect on FORMAT subcommand 229 

NODUMP option of OPTION command 131 
NODUP option 

of INCLUDE command 101 
of LOAD command 121 

NOEND option of TAPPDS command 194 
NOERRS option of OPTION command 131 
NOESD option of ASSEMBLE command 24 
NOHEADER option 

of LISTFILE command 114 
of PUNCH command 144 

NOINC option of UPDATE command 201 
NOINV option 

of INCLUDE command 101 
of LOAD command 121 

NOLIBE option 
of INCLUDE command 101 
of LOAD command 121 

NOLIBMAC option of ASSEMBLE command 24 
NOLIST option 

of ASSEMBLE command 24 
of OPTION command 131 

NOLISTX option of OPTION command 131 
NOMAP option 

of GENMOD command 101 
of LOAD command 121 

NOMAXTEN option of TAPPDS command 194 
NOMCALL option of ASSEMBLE command 24 
NOMLOGIC option of ASSEMBLE command 24 
NOMSG operand of &CONTROL control statement 

282 
nonreentrant code, writing for LINEDIT 

macro 321 

Index 369 



nonrelocatable modules, in CMS 101 
NONS HARE option of CMS SET command 169 
nonshared copy 

of named system, obtaining 169 
of saved system, obtained during debug 

263 
NONUM option of ASSEMBLE command 25 
NOOBJECT option of ASSEMBLE command 25 
NOPACK operand of SCONTROL control 
statement 282 

NOPDS option of TAPPDS command 194 
NOPRINT option 

of ASSEMBLE command 25 
of TAPE command 188 

NOPROF option of ACCESS command 16 
NOPROMPT option of COPYFILE command 36 
NOREC operand of FSCB macro 302 
NORENT option of ASSEMBLE command 26 
NOREP option 

of INCLUDE command 101 
of LOAD command 121 
of UPDATE command 200 

NORLD option of ASSEMBLE command 24 
NOSEQ8 option of UPDATE command 201 
NOSPECS option of COPYFILE command 36 
NOSTD option of SYNONYM command 182 
NOSTK option of UPDATE command 201 
NOSTMT option of ASSEMBLE command 26 
NOSTOR option of UPDATE command 201 
NOSTR option of GENMOD command 102 
NOSYM option of OPTION command 131 
notational conventions 4 
NOTERM option 

of ASSEMBLE command 26 
of UPDATE command 201 

NOTEST option of ASSEMBLE command 25 
NOTIME operand of SCONTROL control 
statement 282 

NOTRUNC option of COPYFILE command 31 
NOTYPE option 

of COPYFILE command 36 
of ERASE command 81 
of INCLUDE command 101 
of LOAD command 121 
of RENAME command 160 

NOUPDIRT option of RENAME command 160 
NOWTM option of TAPE command 188 
NOXREF option 

of ASSEMBLE command 25 
of OPTION command 131 

NOYFLAG option of ASSEMBLE command 26 
nucleus 

CMS, protected storage 168 
protection feature 

displaying status of 149 
setting 168 

resident commands, list 1 

null 
arguments in EXEC procedure, setting 

with % 298 
block, dumping to tape 189 
line 

stacking in console stack 248 
stacking in EXEC 292 
to return to edit mode from input 

mode 215 
when entering VSAM extents 69 
when entering VSAM extents, in 

CMS/DOS 64 
symbols in EXEC statement 288 

NUM, result of SDATATYPE built-in function 
296 

number 
of characters in token in EXEC 
procedure, determining 296 

of records to be read or written, 
specifying 302 

NUMBER option of ASSEMBLE command 25 
numeric 

o 

data, determining if token contains 296 
variables in EXEC procedure 298 

object deck, assembler, generating 25 
OBJECT option, of ASSEMBLE command 25 
OFF operand 

of SCONTROL control statement 282 
of SHEX control statement 286 
of STIME control statement 293 
of AUTOSAVE subcommand 211 
of IMAGE subcommand 231 
of LINEMODE subcommand 234 
of SERIAL subcommand 241 

OLDDATE option of COPYFILE command 36 
ON operand 

of SHEX control statement 286 
of STIME control statement 293 
of IMAGE subcommand 231 
of SERIAL subcommand 241 

operands, command 3 
operators, comparison, in EXEC procedure 

281 
OPTCD option of FILEDEF command 92 
OPTION 

command 
DECK option 
description 
DUMP option 
ERRS option 
LIST option 
LISTX option 
NODECK option 

131 
131 
131 
131 
131 

131 
131 

310 IBM VM/310 CMS Co.mand and Macro Reference 



NODUMP option 137 
NOERRS option 137 
NOLIST option 137 
NOLISTX option 137 
NOSYM option 137 
NOXREF option 137 
SIM option 137 
XREF option 137 
48C option 137 
60C option 137 

option, of CMS QUERY command 154 
options 

command 3 
for DOS/VS COBOL compiler, specifying 

137 
for DOS/VS COBOL compiler in CMSjDOS, 
querying 154 

LOAD and INCLUDE command, retaining 107 
origin 

for debug environment 
setting 269 
used to compute symbol location 265 

ORIGIN 

os 

option 
of FETCH command 87 
of INCLUDE command 107 
of LOAD command 120 

subcommand, description 269 

data sets 
defining in CMS 89 
listing informa tion 107 

disks, accessing 18 
linkage editor control cards, adding to 

TEXT files 197 
macro libraries 

reading into CMS MACLIBs 191 
used in assembly 27 

option, of GENMOD command 102 
partitioned data sets (2~~ partitioned 
data sets) 

tapes 
containing partitioned data sets 194 
standard-label processing 194 

utility programs 
creating CMS files from tapes created 

by 193 
IEBPTPCH 193 
IEBUPDTE 193 
IEHMOVE 193 

OUTMOVE, MOVEFILE command ddname 134 
OUTPUT 

control statement, for DOR command 47 
option 

of CMS QUERY command 149 
of CMS SET command 168 

OVERLAY subcommand 
description 237 
effect of image setting 231 

OVLY option 
of COPYFILE co.mand 36 

example 42 

P 
PACK 

operand of &CONTROL control statement 
282 

option 
of COPYFILE command 37 
of COPYFILE command, example 41 

parameter list 
displaying with LINEDIT macro 323 
passed by RUN command 165 
passed by START command 175 
passed to SVC instruction, recorded 178 

parent disk, of read-only extension 16 
parentheses 

before option list 3 
scanned by EXEC interpreter 277 

partition size, for CMS/DOS, setting 169 
partitioned data sets 

copying into CMS files 134 
copying into partitioned data sets 135 
displaying member names 111 
listing members of 111 
on tapes, creating CftS files 194 

PD option of DSERV command 77 
PDS (2~~ partitioned data sets) 
PDS option 

of LISTDS command 111 
of ftOVEFILE command 134 
of TAPPDS command 194 

periods 
as concatenation character for EXEC 
variables 288 

indicating message substitution in 
LINEOIT macro 318 

placing at end of message text in 
LINEDIT macro 319 

PERft option 
of DLBL command 61 
of FILEDEF command 91 

permanent file definitions 91 
phase library 

clearing to zeros 76 
CftS/DOS 72 
deleting phases from 72 

phases 
executing in CftS/DOS 87 
in DOS/VS core image libraries, 
obtaining information about 78 

PLI filetype, default editor settings 343 
PLIOPT filetype, default editor settings 

343 
preferred auxiliary files 208 

Index 371 



prefixes 
identifying sets of files 

with ACCESS command 17 
with LISTFILE command 115 

prefixing, error messages issued in EXEC 
with DMS 278 

PRESERVE subcommand, description 238 
PRINT 

command 
CC option 139 
description 139 
HEX option 139 
LINECOUN option 140 
MEMBER option 139 
NOCC option 139 

function statement of DDR command 51 
option 

of AMSERV command 20 
of ASSEMBLE command 25 
of DOSL IB command 72 
of DOSLKED command 74 
of DSERV command 77 
of MACLIB command 131 
of PSERV command 142 
of RSERV command 162 
of SSERV command 173 
of TAPE command 188 
of TXTLIB command 194 
of UPDATE command 201 

PRINT command, FCB macro loaded by 140 
printer, printing records at 46 
PRINTER option 

of ASSGN command 29 
of FILEDEF command 91 

printers, virtual, closing after using 
PRINTL macro 328 

PRINTL macro 
description 328 
ERROR operand 328 

private libraries (~~~ libraries, DOS/VS) 
PROC, files, creating in CMS/DOS 142 
procedures, DOS/VS, copying into CMS files 

142 
processor time, displaying in EXEC 
procedure 293 

PROFILE EXEC, suppressing execution of 16 
PROG option of LISTIO command 118 
program 

compilation and execution, with RUN 
command 164 

entry point 
selection during eMS loader 
processing 122 

specifying 120 
execution 

considerations for closing files in 
EXEC procedures 304 

displayiQg data at terminal 317 

displaying parameter lists 323 
displaying storage 322 
halting 213,262 
handling external interruptions 313 
handling I/O interruptions 314 
handling SVC interruptions 315 
in CMS subset 222 
in CMS/DOS 87 
modifying control words 271 
modifying general registers 271 
modifying storage 272 
resuming after breakpoint 267 
with INCLUDE command 107 
with LOAD command 121 
with START command 175 

loading into storage 
while using editor 222 
with INCLUDE command 106 

program status word (~~ PSi (program 
status word» 

programmer logical units 
for job catalogs 66 
listing assignments for in CMS/DOS 118 
valid assignments in CMS/DOS 29 

PROMPT 
option of COPYFILE command 36 
subcommand, description 238 

prompting 
increment for line-number editing 234 

setting 238 
PROTECT option 

of CMS QUERY command 149 
of CMS SET command 168 

PSERV command 
description 
DISK option 
PRINT option 
PUNCH option 
TERM option 

142 
142 

142 
142 

142 
PSi 

operand of SET subcommand 271 
subcommand, description 270 

PSW (program status word) 
changing, in debug environment 271 
displaying in debug environment 270 

PUNCH 
assembler punch output ddname 27 
command 

description 144 
HEADER card format 145 
HEADER option 144 
MEMBER option 144 
NOHEADER option 144 

option 
of ASSGN command 29 
of FILEDEF command 91 
of PSERV command 142 
of RSERV command 162 
of SSERV command 173 

372 IBM VM/370 CMS Command and Macro Reference 



punch, virtual, closing after PUNCHC macro 
330 

PUNCHC macro 
description 329 
ERROR operand 330 

punched files, restoring to disk 58 

Q 
QUERY command (CMS) 

ABBREV option 148 
BLIP option 147 
description 147 
DISK option 150 
DLBL option 152 
DOS option 153 
DOSLIB option 153 
DOSLNCNT option 154 
DOSPART option 154 
FILEDEF option 152 
IMPCP option 148 
IMPEX option 148 
INPUT option 149 
LDRTBLS option 148 
LIBRARY option 152 
MACLlB option 152 
OPTION option 154 
OUTPUT option 149 
PROTECT option 149 
RDYMSG option 148 
REDTYPE option 149 
RELPAGE option 148 
SEARCH option 150 
SYNONYM ALL option 151 
SYNONYM SYSTEM option 151 
SYNONYM USER option 151 
SYSNAMES option 149 
TXTLlB option 152 
UPSI option 154 

QUIT subcommand, description 239 

R 
RD option of DSERV command 77 
RDCARD macro 

description 331 
ERROR operand 331 

RDTAPE macro 
description 331 
ERROR operand 331 
MODE operand 331 

RDTERM macro 
ATTREST operand 334 
description 333 
EDIT operand 333 
LENGTH operand 333 

RDYMSG option 
of CMS QUERY command 148 
of CMS SET command 167 

read, console read after CMS command 
execution 168 

READ control card 155 
deleting 156 
forlllat 156 

READCARD command, description 155 
reader 

virtual 
reading file from 58,155 

READER option 
of ASSGN command 29 
of FILEDEF command 91 

read-only 
disks, editing files on 217 
extensions 

editing files on 79 
releasing 158 

read/write 
status of disks 

controlling 17 
finding first read/write disk in the 
standard search order 299 

finding read/write disk with the most 
space 299 

listing for disk assignments in 
CMS/DOS 118 

querying 150 
read/write painter, positioning, FSWRITE 

macro 310 
ready message 

displaying return code from EXEC 
processing 285 

format 167 
long form 167 
query settin~ of 148 
setting 167 
short form 167 
special format in EXEC 85 

RECFS 
operand of FSCB macro 302 
option 

of COpy FILE command 37 
of COPYFILE command, examples 40 
of FILEDEF command 91 

subcommand 
description 239 
F operand 239 
V operand 239 

RECNO operand of FSCB macro 302 
RECOMP option of FORMAT command 97 
record format 

of eMS file 
changing 37,40,239 
listing 115 

of file, specifying 91 
records that can be punched 145 
specifying, for FSWRITE macro 310 

Index 373 



record length 
default used by eMS editor 80 
modifying 80 
of CMS file 

changing 37,40 
listing 115 
maximum lengths for PRINT command 

140 
specifying truncation setting for input 

250 
specifying with FILEDEF command 93 

record number, specifying next record to be 
accessed 302 

records 
displaying selected positions of 198 
in file, numbering with UPDATE command 
200 

red type 
display lines with WRTERM macro 340 
for error messages 168 

REDTYPE option 
of CMS QUERY command 149 
of CMS SET command 168 

reentrant code, writing for LINEDIT macro 
326 

references 
unresolved 

resolving with INCLUDE command 107 
resolving with LOAD command 121 

REGEQU macro, description 334 
registers (§gg general registers) 
RELEAS E command 

description 158 
DET option 158 

relocatable 
libraries (DOS/VS), displaying 
directories of 77 

modules, link-editing in CMSjDOS 74 
relocation dictionary, assembler 24 
RELPAGE option 

of CMS QUERY command 148 
of CMS SET command 167 

remote terminals, using CMS editor 229 
RENAME command 

description 160 
NOTYPE option 160 
NOUPDIRT option 160 
TYPE option 160 
UPDIRT option 160 

RENT 
operand of LINEDIT macro 327 
option of ASSEMBLE command 26 

RENUM subcommand, description 240 
REP option 

of INCLUDE command 107 
of LOAD command 121 
of MACLIB command 130 
of UPDATE command 200 

REPEAT subcommand 241 
used with OVERLAY subcommand 237 

REPLACE 
control statement, for UPDATE command 

204 
option of COPYFILE command 36 
subcommand 

description 242 
effect of image setting 231 
restriction while using line-number 
editing 234 . 

stacking with &STACK control 
statement 242 

replace (REP) 
loader control statement 127 

image of in load map 107 
RESET 

operand of &TIME control statement 293 
option 

of INCLUDE command 106 
of LOAD command 120 

responses, eMS editor, controlling format 
of 236 

RESTORE 
function statement, of DDR command 50 
subcommand, description 242 

restrictions 
access method services and VSAM 

DOS/VS users 345 
OS/VS users 347 

RETURN 
command, description 243 
subcommand (DEBUG) 270 

return codes 
CMS, in EXEC procedure 85 
displaying during EXEC processing 282 
from access method services 22 
from CMS commands, testing in EXEC 

procedure 300 
from CMS macro instructions 301 
from EXEC, displaying in ready message 

285 
from EXEC interpreter 86 
specifying in EXEC procedure 285 

REUSE subcommand 
description 243 
examples 243 

REW, tape control function 187 
REWIND option of DDR command INPUT/OUTPUT 
control statement 48 

ribbon, two-color, controlling use of 149 
RIGHT operand of LINEMODE subcommand 233 
RLD option of ASSEMBLE command 24 
RO Immediate command 213 
RSCS (Remote Spooling communications 

Subsystem) 1 

374 IBM VM/370 CMS Command and Macro Reference 



RSERV cOlllland 
description 162 
DISK option 162 
PRINT option 162 
PUNCH option 162 
TERft option 162 

RT Immediate command 214 
stacking in EXEC procedure 292 

RUN 

S 

command, description 164 
tape control function 187 

SAftE option of INCLUDE command 107 
SAVE subcommand, description 245 
saved system 

names 
querying 149 
setting 169 

sharing 169 
SCAN option of TAPE command 187 
scanning 

&ERROR control statement 284 
in EXEC procedure 277 

SCRIPT, filetype, default editor settings 
343 

SCROLL subcommand, description 245 
SCROLLUP subcommand, description 245 
SD option of DSERV command 77 
S-disk, accessed after IPLing CftS 17 
SEARCH option of CftS QUERY command 150 
search order 

for CftS commands 7 
for CMS loader 122,123 
for executable phases in CftS/DOS 87 
for relocatable modules in CftS/DOS 75 
of CftS disks, querying 150 

SEQUENCE control statement, for UPDATE 
command 202 

sequence numbers 
assigned to VSAft extents 69 

in CftS/DOS 65 
SEQ8 option of UPDATE command 200 
SERIAL subcommand 

ALL operand 247 
description 246 
OFF operand 247 
ON operand 247 

SET command (CftS) 
ABBREV option 168 
AUTOREAD option 168 
BLIP option 166 
description 166 
determining status of SET operands for 
virtual machine environment 147 

DOS option 169 
DOSLNCNT option 169 
DOSPART option 169 
IftPCP option 168 
IMPEX option 168 
INPUT option 167 
LDRTBLS option 167 
NORSHARE option 169 
OUTPUT option 168 
PROTECT option 168 
RDYMSG option 167 
REDTYPE option 168 
RELPAGE option 167 
SYSNAftE option 169 
UPSI option 169 

set location counter (SLC), loader control 
statement 126 

SET operand 
of HNDEXT macro 313 
of HNDINT macro 314 
of HNDSVC macro 315 

set page boundary (SPB), loader control 
statement 127 

SET subcommand (DEBUG) 271 
CAW operand 271 
CSW operand 271 
GPR operand 271 
PSW operand 271 

SHORT subcommand, description 248 
SINGLE option of COPYFILE command 38 
SKIP option 

of DDR command INPUT/CUTPUT control 
statement 48 

of TAPE cOBmand 187 
SLC statement (see set location counter 

(SLC) statellentr--
SO Immediate command 214 
SORT 

command 
description 171 
storage requirements 171 

option of DSERV command 77 
sort fields, defining 171 
source file, numbering records with UPDATE 

command 200 
source files 

assembling 
identifying macro libraries 27,104 

for assembler 23 ' 
updating 200 

source statement libraries, DOS/VS, 
displaying directories of 77 

source symbol table, assembler, generating 
25 

space, determine free extents for VSAft 107 
special variables (~~ EXEC special 
variables) 

Index 375 



specification list, for COPYFILE command, 
format 41 

SPECS option 
of COpy FILE command 36 

usage 41 
SPOOL command 

used with DISK DUMP command 58 
used with PRINT command 140 

SSERV command 
description 
DISK option 
PRINT option 
PUNCH option 
TERM option 

STACK 

173 
173 

173 
173 

173 

subcommand, description 248 
value of &READFLAG special variable 300 

stacking 
EDIT subcommands 248 
in EXEC procedure, testing whether there 
are lines in stack 300 

lines in console stack 

START 

&BEGSTACK control statement 280 
SSTACK control statement 292 

command 
description 175 
NO option 175 
passing arguments 175 

option 
of FETCH command 87 
of INCLUDE command 107 
of LOAD command 121 

starting point for execution of module, 
setting 120 

STAT option of LISTIO command 118 
STATE command, description 176 
STATEW command, description 176 
status of virtual machine environment 147 
STD option of SYNONYM command 182 
STK option of UPDATE command 201, 209 
STMT option of ASSEMBLE command 26 
STOR option of UPDATE command 201 
storage 

clearing to zeros 
in eMS/DOS 76 
with INCLUDE command 106 
with LOAD command 120 

displaying with LINEDIT macro 322 
examining in debug environment 273 
initializing for MODULE file execution 

101 
modifying during program execution 272 
printing contents of 266 
releasing pages of after command 
execution 148,167 

requirements for SORT command 171 
specifying storage for CMS/DOS partition 

169 
used by GETFILE subcommand 230 

STORE, subcommand, description 272 
STR option of GENMOD command 101 
SUB operand of LINEDIT macro 320 
sublibraries, of DOS/VS source statement, 
copying books 173 

subset, CMS (~~~ CMS subset) 
substitution 

in EXEC procedure, inhibiting 297 
list for LINEDIT macro 320 

specifying length 324 
of message text in LINEDIT macro 318 

substrings, extracting in EXEC procedure, 
&SUBSTR built-in function 297 

SVC 
instructions 

handling interruptions during program 
execution 315 

tracing 178 
SVCTRACE command 

description 178 
output 182 

SYM option of OPTION command 137 
symbol table, debug 265 
symbolic names, assigning to storage 
locations, in debug environment 265 

symbols 
debug 

defining 265 
modifying 272 
used to set breakpoints 262 

in EXEC procedure 
effect of undefined symbols in SIF 
statement 288 

reading from terminal or console 
stack 290 

substituted in EXEC procedure, 
displaying 282 

variable (~~~ variable symbols) 
SYNONYM 

command 
CLEAR option 182 
description 182 
example 183 
NOSTD option 182 
relationship to SET ABBREV command 

183 
STD option 182 

option, of CMS QUERY command 151 
synonym table 

clearing 182 
defining 183 
format for entries in 183 
invoking 182 

synonyms 
for CMS and user-written commands 182 

defining 183 
displaying 151,183 
examples 183 

system, displaying 151 
SYS option of LISTIO command 118 
SYSCAT, assigning in CMS/DOS 66 

376 IBM VM/370 CMS Command and Macro Reference 



SYSIN 
assembler input 27 
logical unit assignment in CMS/DOS 30 

SYSIPT, assigning for ESERV program 83 
SYSLOG, assigning in CMS/DOS 30 
SYSLST lines per page 

displaying number of 154 
setting number of 169 

SYSNAME option of CMS SET command 169 
SYSNAMES option of CMS QUERY command 149 
SYSPARM option of ASSEMBLE command 26 
SYSPRINT control statement of DDR command 

49 
SYSRES, assigning in CMS/DOS 30 
system and programmer logical units, 
entering on DLBL command 63 

system disk 
files available 17 
releasing 158 

system logical units 
invalid assignments in CMS/DOS 30 
listing assignments for in CMS/DOS 118 
valid assignments in CMS/DOS 29 

SYSTEM option of GENMOD command 102 
system residence volume, DOS/VS, specifying 

169 
SYSTERM option of ASSEMBLE command 25 
SYSxxx option 

T 
tab 

of ASSGN command 29 
of DLBL command 61 
of LISTIO command 118 

characters, how editor handles 231 
settings, used by editor 250 

TABSET subcommand 
affected by IMAGE subcommand 231 
description 249 

tape 
assigning to logical units in CMS/DOS 

30 
backward spacing 187 
control functions 187 

restrictions when using 189 
TAPECTL macro 335 

controlling, TAPECTL macro 335 
creating CMSdisk files 193 
density of, specifying 188 
displaying filenames on 187 
dumping and loading CMS files 187 
dumping and restoring di sk da ta 46 
files 

created by OS utility programs 193 
created by TAPE command 189 
writing to disk 187 

forward spacing 187 

marks 
writing 187,188 

OS, standard-label processing 194 
positioning 187 

at specified file 187 
TAPECTL macro 335 

reading records from, RDTAPE macro 331 
recording technique, specifying 188 
rewinding 187 
used for AMSERV input and output 20 

entering ddnames 21 
in CMS/DOS 21 

writing records to, WRTAPE macro 338 
TAPE command 

control functions 
BSP 187 
BSR 187 
ERG 187 
FSP 187 
FSR 187 
REW 187 
RUN 187 
WTM 187 

DEN option 188 
description 186 
DISK option 188 
DUMP option 187 
dumping null block 189 
EOP option 188 
EOT option 188 
LOAD option 187 
MODE SET option 187 
NOPRINT option 188 
NOWTM option 188 
PRINT option 188 
SCAN option 187 
SKIP option 187 
TAPn option 188 
TERM option 188 
TRTCH option 188 
WTM option 188 
7TRACK option, 188 
9TRACK option 188 

TAPECTL macro 
description 335 
ERROR operand 336 
MODE operand 336 

TAPE MAC command 
description 191 
ITEMCT option 191 
TAPn option 191 

TAPIN option of AMSERV command 20 
TAPn option 

of ASSGN command 29 
of FILEDEP command 91 
of TAPE command 188 
of TAPEMAC command 191 
of TAPPDS command 194 

TAPOUT option of AMSERV command 20 

Index 377 



TAPPDS command 
COL1 option 194 
description 193 
END option 194 
MAXTEN option 194 
NOCOLl option 194 
NOEND option 194 
NOMAXTEN option 194 
NOPDS option 194 
PDS option 194 
processing OS standard-label tapes 194 
TAPn option 194 
UPDATE option 194 

TD option of DSERV command 77 
TERM option 

of DOSLIB command 72 
of DOSLKED command 75 
of DSERV command 77 
of MACLIB command 130 
of PSERV command 142 
of RSERV command 162 
of SSERV command 173 
of TAPE command 188 
of TXTLIB command 194 
of UPDATE command 201 

terminal 
displaying lines at, WRTERM macro 340 
displaying records at 46 
output 

determining if terminal is displaying 
300 

halting 213 
halting in EXEC procedure 292 
restoring 214 
restoring in EXEC procedure 292 

reading data from 
during EXEC procedure 290 
with RDTERM macro 333 

waiting for I/O to complete, WAITT macro 
338 

TERMINAL option 
of ASSEMBLE command 26 
of ASSGN command 29 
of FILEDEF command 91 

TEST option of ASSEMBLE command 25 
TEXT 

assembler output ddname 27 
files 

automatic loading 121 
cards read by loader 122 
creating with assembler 25 
executing with RUN command 164 
link-editing in CMSjDOS 74,75 
linking in storage 120 
loading into storage during program 
execution 302 

loading into virtual storage 120 
resolving unresolved references with 

LOAD command 121 
libraries (§gg TXTLIB) 
operand of LINEDIT macro 319 

TEXT files 
loading into storage for execution 106 
setting starting point for execution 

120 
TEXTA operand of LINEDIT macro 319 
time information, displaying during EXEC 
processing 293 

time of day, displaying during EXEC 
processing 282 

TIME operand of &CONTROL control statement 
282 

timers, virtual interval 166 
TO 

operand of $MOVE edit macro 259 
option of GENMOD command 101 

tokens 
comparing in EXEC procedure 287 
description 277 

TOLABEL option of COPYFILE command 36 
TOP 

operand of &GOTO control statement 286 
subcommand, description 250 

tracing 
resuming after temporarily halting 213 
suspending recording temporarily 214 
SVC instructions 178 

halting 212 
trailing fill characters, removing from 
records 41 

TRANS option of COPYFILE command 31 
transient area 

CMS commands that execute in 7 
creating modules to execute in 103 
loading programs into 121 

transient directories in DOS/VS, displaying 
77 

translate tables 
defining input characters for 
translation 167 

defining output characters for 
translation 168 

displaying 149 
translation list, for COPYFILE command, 
description 43 

TRTCH option 
of ASSGN command 30 
of FILEDEF command 92 
of TAPE command 188 

TRUNC 
option of COPYFILE command 37 

example 40 
subcommand, description 250 

truncation 
column, for input mode 251 
of command names 

querying acceptability of 148 
setting acceptability of 168 

of commands 4 
of input rec~rds with editor, default 
settings 250 

378 IBM VM/370 CMS Command and Macro Reference 



of records in CMS file 37 
during GETFILE subcommand 230 
following CHANGE subcommand 220 

of tokens in EXEC procedure 211 
of trailing blanks from CMS file 31 

two-color ribbon, controlling use of 
149,168 

TXTLIB 
command 

ADD option 194 
DEL option 194 
description 194 
DISK option 194 
GEN option 194 
MAP option 194 
PRINT option 194 
TERM option 194 

file, searching for unresol ved 
references 101 

files 
adding members 194 
creating 194 
deleting members 194 
determining which TXTLIBs are 
searched 152 

identifying for LOAD and INCLUDE 
command processing 104 

listing members in 194 
maximum number of members 191 
search for unresolved references 121 
searched during INCLUDE command 

processing 106 
searched during LOAD command 

processing 120 
option 

of CMS QUERY command 152 
of GLOBAL command 104 

TYPE 
command 

COL option 198 
description 198 
HEX option 198 
MEMBER option 199 

function statement of DDR command 51 
operand of &TIME control statement 293 
option 

of COPY FILE command 36 
of COPYFILE command (example) 40 
of ERASE command 81 
of INCLUDE command 101 
of LOAD command 121 
of RENAME command 160 

subcommand, description 251 
TYPE/PRINT output of DDR command 52 

U 
U operand of CASE subcommand 219 
UA option 

of ASSGN command 30 
of LISTIO command 118 

underscore 
character, on OVERLAY subcommand 231 
data records, using backspaces 232 

UNLOAD option of DDR command INPUT/OUTPUT 
control statement 48 

UNPACK option, of COPYFILE command 37 
unresolved references 

UP 

during MODULE file generation 103 
loader handling of 123 
resolving with INCLUDE command 101 
searching for TEXT files 121 
searching TXTLIBs for 121 

operand of SMOVE edit macro 259 
subcommand, description 252 

UPCASE option 
of ASSGN command 30 
of COPYFILE command 37 
of FILEDEF command 92 
of PRINT command 139 

UPDATE 
command 

control statements 202 
CTL option 201,206 
description 200 
DISK option 201 
error handling for 210 
INC option 201 
input files 205 
multilevel updates, example with 
auxiliary control file 208 

NOCTL option 201 
NOINC option 201 
NOREP option 200 
NOSEQ8 option 201 
NOSTK option 201 
NOTERM option 201 
output files 205 
PRINT option 201 
REP option 200 
SEQ8 option 200 
STK option 201,209 
STOR option 201 
TERM option 201 
warnings by 210 

control statements 
comments 205 
DELETE 204 
INSERT 203 
REPLACE 204 
SEQUENCE 202 

filetype, default editor settings 343 
option of TAPPDS command 194 

update log 
for UPDATE command operations 201 

generating at your terminal 201 
UPDIRT option of RENAME command 160 
uppercase letters 

converting to lowercase, with COpy FILE 
command 37 

suppressing translation of lowercase 
letters with editor 219 

Index 379 



UPSI 
byte 

querying setting of 154 
setting 169 

option 
of CMS QUERY command 154 
of CMS SET command 169 

UPTDxxxx filetype, default editor settings 
343 

user catalog 
identifying 70 

in CMS/DOS 66 
user file directory 16 

contents of 17 
creating 16 
updating on disk 158 

user-defined synonyms, displaying 151 
user-written commands 

v 

assigning synonyms for 182 
creating 102 

variable data 
in EXEC procedure 

displaying 294 
punching 289 
stacking 292 

variable symbols 
assigning values to in EXEC procedures 
276 

reading from terminal or console stack, 
in EXEC procedure 290 

substituting, in EXEC procedure 276 
testing, in EXEC procedure 287 

variable-length files 
converting to fixed-length 40 

using RECFM subcommand 239 
reading and writing with CMS macros 310 

VARS operand of &READ control statement 
290 

verification setting, for editor, changing 
253 

VERIFY subcommand, description 253 
virtual disks (§gg sl§2 disks) 

counting cylinders on 97 
initializing 97 
resetting number of cylinders on 97 
valid addresses for 16 

virtual machines 
components of 1 
console 1 
definition 1 
environment, determining status of 147 

VM/370, basic description 1 
VSAM 

catalogs 
determining which catalog is searched 

67 
identifying 69 
identifying in CMS/DOS 66 

data set extents, displaying 65 
determining free space extents 107 
files 

defining with DLBL command 60 
specifying disk extents 68 
specifying disk extents in CMS/DOS 

64 
master catalog 

identifying 70 
identifying in CMS/DOS 66 

option 
of DLBL command 61 
of SET DOS ON command 169 

restrictions 
for DOS/VS users 345 
for OS/VS users 347 

VSBASIC 
files, renumbering 240 
filetype, default editor settings 343 

VSBDATA filetype, default editor settings 
343 

W 
wait, for terminal I/O to complete, WAITT 

macro 338 
WAITD macro 

description 336 
ERROR operand 336 
used with HNDINT macro 314 

WAITT macro, description 338 
WRTAPE macro 

description 338 
ERROR operand 339 
MODE operand 338 

WRTERM macro 

WTM 

COLOR operand 340 
description 340 
EDIT operand 340 

option of TAPE command 188 
tape control function 187 

380 IBM VM/370 CMS Command and Macro Reference 



x 
x 

DEBUG subcommand 273 
EDIT subcomma nd 

description 254 
example 254 

XREF option 
of ASSEMBLE command 25 
of OPTION command 137 

XTENT option of FILEDEF command 91: 

Y 
Y subcommand 

description 254 
example 254 

Y-disk, accessed after IPLing CMS 17 
YFLAG option of ASSEMBLE command 26 

Z 
zone settings, for edit session 255 
ZONE subcommand, d~scription 255 

1 
19E virtual disk 
Y-disk 17 

190 virtual disk 
S-disk 17 

191 virtual disk 
A-disk 17 

192 virtual disk 
D-disk 17 

195 virtual disk 
batch facility 

address, 

address, 

address, 

address, 

address, 
32 

accessed as 

accessed as 

accessed as 

accessed as 

formatted by CMS 

3 
3350, restriction on use in CMS/DOS 31 

4 
48C option of OPTION command 137 

6 
60C option of OPTION command 137 

7 
7TRACK option 

of A55GN command 30 
of FILEDEF command 92 
of TAPE command 188 

7-track tapes, specifying on TAPE command 
188 

9 
9TRACK option 

of A5SGN command 30 
of FILEDEF command 92 
of TAPE command 188 

9-track tapes, specifying on TAPE command 
188 

Index 381 





· " e: " :;: 
.,." :c: 
1-" 
CI)" 
e: " 
0" 
Ci: 
.5 : 
~: 

Title: IBM Virtual Machine Facility/370: Order No. GC20-1818-2 
CMS Command and Macro Reference 

Please check or fill in the items; adding explanations/comments in the space provided. 

Which of the following terms best describes your job? 

o Customer Engineer o Manager o Programmer 
o Engineer o Mathematician o Sales Representative 
o Instructor o Operator o Student/Trainee 

How did you use this publication? 

READER'S 
COMMENT 
FORM 

o Systems Analyst 
o Systems Engineer 
o Other ( explain below) 

o Introductory text o Reference manual o Student/ 0 Instructor text 
o Other (explain) ___________________________ _ 

Did you find the material easy to read and understand? 0 Yes 

Did you find the material organized for convenient use? 0 Yes 

Specific criticisms (explain below) 
Clarifications on pages 
Additions on pages 
I)eletions on pages 
Errors on pages 

Explanations and other comments: 

o No ( explain below) 

o No (explain below) 

Thank you for your cooperation: No postage necessary if mailed in the U.S.A. 



GC20-1818-2 

Reader's Comment Form 

Fold and tape Please Do Not Staple 

IIII 
Business Reply Mail 
No postage stamp necessary if mailed in the U.S .. A. 

ttn: VM/370 Publicati,ons 

Fold and tape 

--..... -- --
-~--- ....-------- ~ -.--- -.. ------ - ------------------ - .. -
International Business Machines Corporation 
Data Processing Division 

Postage will be paid by: 

International Business Machines Corporation 
Department 058, Building 706-2 
PO Box 390 
Poughkeepsie, New York 12602 

Please Do Not Staple 

1l33Jr~estchester Avenue, White Plains, N.V. 10604 

IBM World Trade Americas/Far East Corporation 
T0'!Vn of Mount Pleasant, Route 9, North Tarrytown, N.V., U.S.A. 10591 

IBM World Trade Europe/Middle East/Africa Corporation 
360 Hamilton Avenue, White Plains, N.V., U.S.A. 10601 

Fold and tape 

First Class 
Permit 40 
Armonk 
New York 

Fold and tape 

(") 

s. 
g 
.." 
0 
0: 
l> 
0" 
::J 
IlQ 

r-
5' 
I'D 

I 
I 
I 
I -

I 
to s: 

I < s: -
I 

w 
-...J 
0 

I (') 

s: 
en 

I 
(') 
0 
3 

I 
3 
Q) 

::::s 
c.. 

I 
Q) 

::::s 
c.. 
s: 
Q) 
(') 

(3 
::0 
CD ..... 
~ 
CD 
::::s 
(') 
CD 

~ 

I ~. .... 
CD 

--I c.. 
~. 

I c: 
en 

I ~ 

I G) 

I 
(') 
N 
9 ..... 

I 00 ..... 
qo 

I N 

I 
I 
I 
I 
I 

I 



GC2~1818-2 

--------
~ ---- - -----_ ... ------ _.-

International Business Machines Corporation 
Data Processing Division 
1133 Westchester Avenue , White Plains , N .Y. 10604 

IBM World Trade Americas/Far East Corporation 
Town of MO \l nt Pleasant , Route 9 , North Tarrytown , N .Y ., U .S .A . 10591 

IBM World Trade Europe/ Middle East/Africa Corporation 
360 Hamilton Avenue , White Plains , N.Y., U.S .A . 10601 

C) 
n 
N 
9 ..... 
00 ..... 
qo 
N 


