
------- ------ ---- - ---

Publication Number
SA22-7125- 2

IBM System/370

Vector Operations

File Number
5370-01

Third Inition (August 1987)

This edition obsoletes and replaces the previous edition, SA22-7125-1. It contains a number of detailed
changes, which are indicated by a vertical line to the left of the change.

Changes are made occasionally to the information herein; before using this publication in connection with
the operation of IBM equipment, refer to the latest IBM System/370, 30xx, and 4300 Processors Bibli
ography, GC20-000I, for the editions that are applicable and current.

IBM may have patents or pending patent applications covering subject matter described herein. Furnishing
this publication does not constitute or imply a grant of any license under any patents, patent applications,
trademarks, copyrights, or other rights of IBM or of any third party, or any right to refer to IBM in any
advertising or other promotional or marketing activities. IBM assumes no responsibility for any infringe
ment of patents or other rights that may result from the use of this publication or from the manufacture, use,
lease, or sale of apparatus described herein.

Licenses under IBM's utility patents are available on reasonable and nondiscriminatory terms and condi
tions. Inquiries relative to licensing should be directed, in writing, to: IBM Corporation, Director of Con
tracts and Licensing, Armonk, NY, USA 10504.

References in this publication to IBM products, programs, or services do not imply that IBM intends to
make these available in all countries in which IBM operates.

Publications are not stocked at the address given below. Requests for IBM publications should be made to
your IBM representative or to the IBM branch office serving your locality.

A form for reader s comments is provided at the back of this publication. If the form has been removed,
comments may be addressed to: IBM Corporation, Central Systems Architecture, Department E57, PO Box
390, Poughkeepsie, NY, USA 12602. IBM may use or distribute whatever information you supply in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1986, 1987

Preface

This publication contains, for reference purposes, a
detailed definition of the machine functions pro
vided by the IBM System/370 vector facility. The
vector facility operates as a compatible extension of
the functions of System/370 as described in one of
the Principles of Operation publications, either the
facilities of the System/370 extended architecture
(370-XA) in IBM 370-XA Principles of Operation,
SA22-7085, or those of the System/370 architecture
in IBM System/370 Principles of Operation,
GA22-7000.

The publication should not be considered an intro
duction or a textbook. It is written as a reference
for use principally by assembler-language program
mers, although anyone concerned with the func
tional details of vector operations may find it
useful. It describes each function at the level of
detail needed to prepare an assembler-language
program which relies on that function.

This publication does not describe all the instruc
tions or other functions needed to write a complete
program using vectors. It includes a description
only of functions which are added to System/370 as
part of the vector facility. The reader is assumed to
be familiar with either the IBM 370-XA Principles of
Operation or IBM System/370 Principles of Opera
tion, as appropriate. Terms and concepts referred
to in this publication but explained in those Princi
ples of Operation publications are not explained
again in this publication.

Writing a program in assembler language requires a
familiarity with the notations and conventions of
that language, as well as with the facilities of the
operating system under which the program is to be
run. The reader should refer to the appropriate
programming publications for such information.

Terminology

As used in this publication, a scalar is a single data
item, which may be a floating-point number, a
binary integer, or a set of logical data. A vector is a
linearly ordered collection of such scalars, where
each scalar is an element of the vector. All ele
ments of a single vector are of the same type:
floating-point numbers (floating-point vector),
binary integers (binary vector), or logical data
(logical vector).

Scalar instructions are instructions which perform
load, store, arithmetic, or logical operations on
scalars that may reside in storage, floating-point
registers, or general registers. Vector instructions
perform similar operations on vectors that may
reside in storage or in registers of the vector facility.
Only vector instructions and related operations are
described in this publication. Scalar instructions
are described in the IBM 370-XA Principles of Oper
ation or IRM System/370 Principles of Operation.

Preface iii

This page is intentionally left blank.

iv IBM System/370 Vector Operations

Contents

Chapter 1. Introduction
Compatibility Considerations

Vector and Scalar Operations
Model-Dependent Vector Functions

Chapter 2. Vector Facility
Vector-Facility Structure

Vector Registers
Vector-Mask Register
Vector Parameters
Vector-Status Register
Vector-Activity Count
Modes of Operation

Vector- Instruction Operands and Results
Arithmetic Vectors in Storage
Arithmetic Vectors in Registers
Bit Vectors
Vector Sectioning
Conditional Arithmetic

Common Instruction Descriptions ..
Instruction Classes
Instruction Formats
Summary of Instructions by Class and

Format
Class-1M and Class-IC Instructions .. .
Class-NC Instructions
Instructions In Other Classes

Vector Interruptions
Interruptible Vector Instructions
Effect of Interruptions during Execution
Pro gram-Interruption Conditions
Priority of Vector Interruptions

Program Switching
Program Use of the Restore and Save

Instructions
Clear Operations
Save-Area Requirements

Relationship to Other Facilities
Program-Event Recording (PER) .
Vector-Store Operations
Resets
Machine-Check Handling

Chapter 3. Vector-Facility Instructions ..
ACCUMULATE.
ADD
AND
ANDTOVMR
CLEAR VR
COMPARE
COMPLEMENT VMR

1-1
1-1
1-1
1-2

2-1
2-2
2-2
2-2
2-2
2-3
2-5
2-6
2-7
2-8

2-10
2-10
2-11
2-11
2-12
2-12
2-13

2-15
2-15
2-18
2-19
2-19
2-19
2-23
2-24
2-26
2-26

2-27
2-28
2-28
2-28
2-28
2-29
2-29
2-29

3-1
3-2
3-3
3-4
3-5
3-5
3-5
3-7

COUNT LEFT ZEROS IN VMR
COUNT ONES IN VMR
DIVIDE
EXCLUSIVE OR
EXCLUSIVE OR TO VMR
EXTRACT ELEMENT .. .
EXTRACT VCT
EXTRACT VECTOR MASK MODE
LOAD
LOAD BIT INDEX
LOAD COMPLEMENT
LOAD ELEMENT
LOAD EXPANDED
LOAD HALFWORD
LOAD INDIRECT
LOAD INTEGER VECTOR
LOAD MATCHED
LOAD NEGATIVE
LOAD POSITIVE
LOAD VCT AND UPDATE
LOAD VCT FROM ADDRESS
LOADVMR
LOAD VMR COMPLEMENT
LOAD ZERO
MAXIMUM ABSOLUTE
MAXIMUM SIGNED
MINIMUM SIGNED
MULTIPLY
MULTIPLY AND ACCUMULATE
MULTIPLY AND ADD
MULTIPLY AND SUBTRACT '"
OR
OR TO VMR
RESTORE VAC
RESTORE VMR ..
RESTORE VR
RESTORE VSR
SAVE CHANGED VR
SAVE VAC
SAVE VMR
SAVE VR
SAVE VSR
SET VECTOR MASK MODE ..
SHIFT LEFT SINGLE LOGICAL
SHIFT RIGHT SINGLE LOGICAL
STORE
STORE COMPRESSED
STORE HALFWORD
STORE INDIRECT
STORE MATCHED
STORE VECTOR PARAMETERS

3-7
3-7
3-8
3-9
3-9
3-9

3-10
3-10
3-10
3-11
3-14
3-14
3-14
3-15
3-16
3-16
3-17
3-18
3-18
3-19
3-19
3-20
3-20
3-20
3-21
3-21
3-21
3-22
3-23
3-24
3-24
3-26
3-26
3-26
3-27
3-27
3-28
3-29
3-30
3-30
3-31
3-31
3-32
3-32
3-32
3-32
3-33
3-33
3-34
3-34
3-35

Contents V

STORE VMR
SUBTRACT
SUM PARTIAL SUMS
TESTVMR
ZERO PARTIAL SUMS

Appendix A. Instruction-Use Examples
Operations on Full Vectors

Contiguous Vectors
Vectors with Stride
Vector and Scalar Operands
Sum of Products
Compare and Swap Vector Elements

Conditional Arithmetic

vi IBM Systemj370 Vector Operations

3-35
3-35
3-36
3-37
3-37

A-I
A-I
A-I
A-2
A-2
A-3
A-3
A-4

Exception Avoidance
Add to Magnitude ..

Operations on Sparse Vectors
Full Added to Sparse to Give Full
Sparse Added to Sparse to Give Sparse

Floating-Point-Vector Conversions
Fixed Point to Floating Point
Floating Point to Fixed Point

Appendix B. Lists Of Instructions

Appendix C. Condition-Code Settings

Index

A-4
A-4
A-4
A-5
A-S
A-6
A-6
A-6

B-1

C-l

X-I

Chapter 1. Introduction

The vector facility is a compatible addition to the
IBM Systemj370 architecture. Use of the facility
may benefit applications in which a great deal of
the time of the central processing unit (cpu) is
spent executing arithmetic or logical instructions on
data which can be treated as vectors. By replacing
loops of scalar instructions with the vector instruc
tions provided by the vector facility, such applica
tions may take advantage of the order inherent in
vector data to improve perfonnance.

When the vector facility is provided on a cPu, it
functions as an integral part of that CPU:

• Standard System/370 instructions can be used
for all scalar operations.

• Data fonnats which are provided for vectors
are the same as the corresponding System/370
scalar fonnats.

• Long-running vector instructions are interrup
tible in the same manner as long-running scalar
instructions; their execution can be resumed
from the point of interruption after appropriate
action has been taken.

• Program interruptions due to arithmetic
exceptions are handled in the same way as for
scalar-arithmetic instructions, and the same
fixup routines can be used with at most some
minor extensions.

• Vector data may reside in virtual storage, with
access exceptions being handled in the cus
tomary manner.

Compatibility Considerations

Compatibility with System/370 scalar operations
has been one of the major objectives of the vector
architecture, so as to provide the same result data
when equivalent functions are programmed on
machines without the vector facility. Some depar
tures from strict compatibility are introduced,
however, for the sake of perfonnance and to
provide implementers of the vector facility more
flexibility in making design choices.

Vector and Scalar Operations

Although operations on vector operands are gener
ally compatible, element by element, with the cor
responding scalar operations, there are certain
differences between the vector and scalar architec
tures:

• Operands of vector-facility instructions must be
aligned on integral boundaries; scalar
instruction operands need not be so aligned.
(See the section "Vector-Instruction Operands
and Results" on page 2-7.)

• Vector divide and multiply operations do not
permit unnormalized floating-point operands;
the corresponding scalar instructions do.
Vector programs may encounter the unnorma
lized operand exception. (See the instruction
descriptions and the section "Unnormalized
Operand Exception" on page 2-26.)

• Because the result of a series of floating-point
additions may depend on their sequence, the
results produced by the vector instructions
ACCUMULATE or MULTIPLY AND ACCUMU

LATE, followed by SUM PARTIAL SUMS, are not
necessarily identical with those produced by
scalar summation loops, unless the scalar loops
are written to perform the additions in exactly
the same sequence as defmed for the vector
instructions. (See the instruction descriptions
and the section "Partial-Sum Number" on
page 2-2.)

• If, during execution of MULTIPLY AND ACCU

MULATE, MULTIPLY AND ADD, or MULTIPLY

AND SUBTRACT, the multiplication of an
element pair results in an exponent underflow,
a true zero is used in place of the product even
when the exponent-underflow mask in the psw
is one. The vector and scalar results are the
same, however, when the mask bit is zero or
when an exponent underflow occurs during the
addition or subtraction. (See the instruction
descriptions and the section "Exponent
Underflow Exception" on page 2-25.)

• Vector-facility instructions cannot safely be
used to store into the current instruction
stream, whereas all other instructions are inter
locked to permit this. (See the section
"Vector-Store Operations" on page 2-29.)

Chapter 1. Introduction t -1

Model-Dependent Vector Functions

Programmers should keep the foHowing restrictions
in mind to ensure that programs will run success
fully regardless of which implementation techniques
have been chosen on a particular model.

The program should not depend on specific values
of the model-dependent vector parameters (section
size and partial-sum number). Likewise, the
program should not depend on the contents of
fields that are described as "reserved" or "unde
fmed." Specifically:

• The section size should not be treated as a
numeric constant. Thus, save-area sizes should
be computed from the section-size value
obtained at execution time. (See the section
"Save-Area Requirements" . on page 2-28.)
The section size may be obtained by executing
the instruction STORE VECTOR PARAMETERS.

• The exact result produced by the vector
instructions ACCUMULATE or MULTIPLY AND

ACCUMULATE, followed by SUM PARTIAL

SUMS, may depend on the partial-sum number
of the model because that number affects the
sequence of performing the floating-point addi
tions.

• The program should not rely on reserved bits
0-14 of the vector-status register being zeros
when placed in a general register by the instruc
tion EXTRACT VECTOR MASK MODE, or on the
bits being stored as zeros by SAVE VSR. (See
the instruction descriptions.)

• The program should not depend on any partic
ular values being stored by the instruction SAVE

VMR in the undefmed part of the save area for
the vector-mask register; nor should the
program depend on the presence or absence of
access exceptions for that portion of the VM R
save area when executing the instruction
RESTORE VMR or SAVE VMR. (See the instruc
tion descriptions.)

1-2 IBM System/370 Vector Operations

• When a program using vector-facility insttuc
tions is interrupted, it cannot be safely resumed
on another machine with a different section size
or partial-sum number, unless the interruption
occurred at a point that is known to be inde
pendent of the section size or partial-sum
number, respectively.

• The program should not depend on the left
most bits of the address of a vector operand in
storage being either set to zero or left
unchanged by a vector instruction when no ele
ments are due to be processed by the instruc
tion. (See the sections "Storage Operands for
QST and VST Formats" on page 2-17 and
"VS-Format Instructions" on page 2-19.)

The program should not rely on receiving a specific
program interruption, either operation exception or
vector-operation exception, to indicate whether the
vector facility is installed in any CPU of the config
uration, since it depends on the model which of the
two exceptions occurs. (See the section "Vector
Operation Control" on page 2-6.)

Problem-state programs should not depend on the
setting of the vector change bits, which may be
altered by actions of the control program that are
unrelated to the actions of a problem-state
program. Supervisor-state programs can depend on
the accuracy of vector change bits that are zeros;
vector change bits may sometimes be set to one,
however, even when the corresponding vector
register pair has not been changed. Note also that
the effect on the vector change bits of executing the
instructions RESTORE VR and RESTORE VSR

depends on whether the CPU is in the problem or
supervisor state. (See the section "Vector Change
Bits" on page 2-5.)

PER events for general-register alteration mayor
may not be recognized for vector-facility instruc
tions.

Chapter 2. Vector Facility

Vector-Facility Structure
Vector Registers
Vector-Mask Register
Vector Parameters ..

Section Size
Partial-Sum Number

Vector-Status Register
Vector-Mask-Mode Bit
Vector Count
Vector Interruption Index
Vector In-Use Bits
Vector Change Bits

Vector-Activity Count
Modes of Operation .

Vector-Operation Control
Vector-Instruction Operands and Results

Arithmetic Vectors in Storage
Access by Sequential Addressing .
Access by Indirect Element Selection

Arithmetic Vectors in Registers
Operands in Vector Registers
Operands in Scalar Registers

Bit Vectors
Vector Sectioning
Conditional Arithmetic

Vector-Mask Mode
Instructions Controlling the

Vector-Mask Mode
Common Instruction Descriptions

Instruction Classes
Instruction Formats

Field Designations
Three-Operand Instruction Formats

Summary of Instructions by Class and
Format

Class-1M and Class-IC Instructions
Class-1M Instructions
Class-IC Instructions
Storage Operands for QST and VST

Formats
Class-NC Instructions

2-2
2-2
2-2
2-2
2-2
2-2
2-3
2-3
2-3
2-4
2-4
2-5
2-5
2-6
2-6
2-7
2-8
2-8
2-9

2-10
2-10
2-10
2-10
2-11
2-11
2-11

2-12
2-12
2-12
2-13
2-13
2-15

2-15
2-15
2-16
2-17

2-17
2-18

VS-Format Instructions
Instructions In Other Classes

Vector Interruptions
Interruptible Vector Instructions

Units of Operation ..
Operand Parameters
Arithmetic Exceptions ..
Exception -Extension Code
Types of Ending for Units of Operation

Effect of Interruptions During Execution
Setting of Instruction Address
Setting of Instruction-Length Code
Setting of Storage Address
Setting of Vector Interruption Index

Program-Interruption Conditions
Access Exceptions for Vector Operands
Exponent -Overflow Exception
Exponent-Underflow Exception
Floating-Point-Divide Exception
Specification Exception
Unnormalized-Operand Exception
Vector-Operation Exception

Priority of Vector Interruptions
Program Switching

Program Use of the Restore and Save
Instructions

Restore Operations
Save Operations

Clear Operations ...
Save-Area Requirements

Relationship to Other Facilities
Program-Event Recording (PER)
Vector-Store Operations

Storage-Operand Consistency
Storing into Instruction Stream

Resets
Machine-Check Handling

Vector-Facility Failure
Vector-Facility Source
Validation of Vector-Facility Registers

2-19
2-19
2-19
2-19
2-20
2-20
2-21
2-21
2-21
2-23
2-23
2-23
2-23
2-24
2-24
2-24
2-25
2-25
2-25
2-25
2-26
2-26
2-26
2-26

2-27
2-27
2-27
2-28
2-28
2-28
2-28
2-29
2-29
2-29
2-29
2-29
2-30
2-30
2-30

Chapter 2. Vector Facility 2-1

Vector-Facility Structure

The vector facility provides:

• The vector-facility registers:

16 vector registers
A vector-mask register
A vector-status register
A vector-activity count

• 171 instructions

• The following exceptions and exception indi
cations:

An unnormalized-operand exception
A vector-operation exception
An exception-extension code for arithmetic
exceptions

• A vector-control bit, bit 14 of control register 0

Figure 2-1 on page 2-3 shows the registers pro
vided by the vector facility.

Vector Registers

There are 16 vector registers, numbered 0-15. They
are used to hold one or more of the vector oper
ands in most arithmetic, comparison, logical, load,
and store operations. Unlike the general and
floating-point registers, the vector registers are
multipurpose in that vectors of floating-point,
binary-integer, and logical data can all be accom
modated.

Each vector register contains a number of element
locations of 32 bits each. Depending on the opera
tion, a vector operand may occupy a single vector
register or an even-odd pair of registers. The
element locations of a vector register are identified
by consecutive element numbers, starting with o.

Vector-Mask Register

There is one vector-mask register (VMR), which is
used as:

• The target of the result of vector-compare
operations,

• The source and target of logical operations on
bit vectors, and

• The source of the mask for mask-controlled
operations.

2-2 IBM Systemj370 Vector Operations

Vector Parameters

The section size and the partial-sum number are
model-dependent parameters which control certain
operations of the vector facility.

Section Size

The number of element locations in a vector reg
ister, which is also the number of bit positions in
the vector-mask register, is called the section size.
The section size is a power of 2; depending on the
model, the section size may be 8, 16, 32, 64, 128,
256, or 512.

The element locations of a vector register, as well
as the bit positions in the vector-mask register, are
numbered from 0 to one less than the section size.

In a multiprocessing configuration, the section size
is the same for each CPU which has the vector
facility installed.

The section size of a model may be obtained by
executing the instruction STORE VECTOR PARAME

TERS, which places the value as a l6-bit binary
integer in the left half of a word in storage.

Partial-Sum Number

The partial-sum number is the number of partial
sums produced when executing the instruction
ACCUMULATE or MULTIPLY AND ACCUMULATE.

It is also the number of vector-register elements set
to zero by the instruction ZERO PARTIAL SUMS, as
well as the number of vector-register elements
summed by the instruction SUM PARTIAL SUMS.

Depending on the model, the partial-sum number
may range from 1 up to and including the section
size.

In a multiprocessing configuration, the partial-sum
number is the same for each CPU which has the
vector facility installed.

The partial-sum number of a model may be
obtained by executing the instruction STORE

VECTOR PARAMETERS, which places the value as a
16-bit binary integer in the right half of a word in
storage.

Vector Registers Vector-Mask
Register

64 bits
1

32 bits bit
I I H

0(0) 1(0) 2(0) 3(0) 4(0) 15(0) 0
t---·-+I+----i I 0(1) 1 (1) 2(1) 3 (1) 4 (1) 15 (1) 1
t----+I-+-----i

0(2) 1(2) 2(2) 3(2) 4(2) 15(2) Z 2
t----+I+----i elements

I / II I 1/ / I I

,--0_" (_Z -_1)-L..-1_(Z_-I---,) <---.2 (_Z -_1)-L..-3_(Z_-I--1) ~~ 115 (Z -1) I tJZ-l

Vector-Status Register Vector-Activity Count

~ 64 bits ---1 ~ 64 bits ---1

Note: Z is the section size (model-dependent).

Figure 2-1. Registers of the Vector Facility

Vector-Status Register

The vector-status register (VSR) is 64 bits long and
contains five fields of infonnation, which describe
the current status of the vector and vector-mask
registers and of a mode of operation. The fields are
arranged as follows:

o 15 32 48 56 63

The contents of the vector-status register as a
whole may be examined by the instruction SAVE

VSR and altered by the instruction RESTORE VSR.

Bits 0-14 of the vector-status register are reserved
for possible future use and are stored as zeros by
SAVE VSR; if the instruction RE..~TORE VSR specifies
other than all zeros for these bit positions, a specifi
cation exception is recognized.

Vector-Mask-Mode Bit

When the vector-mask-mode bit (M), bit 15 of the
vector-status register, is one, the vector-mask mode
is on, and arithmetic and logical instructions are
executed under the control of bits in the vector
mask register. When the bit is zero, the mode is
off. For details, see the section "Conditional
Arithmetic" on page 2-11.

Vector Count

The vector count (veT), bits 16-31 of the vector
status register, is a 16-bit unsigned binary integer.
Together with the vector interruption index, it
determines for most vector operations the number
of element locations to be processed in vector regis
ters or the number of bit positions to be processed
in the vector-mask register.

Elements in register positions with element
numbers less than the vector count are called the
active elements of the vector register. Likewise, bits
in bit positions of the vector-mask register with bit
numbers less than the vector count are called the

Chapter 2. Vector F acUity 2-3

active bits of the vector-mask register. Only the
active elements or bits take part in operations
where the number of elements or bits processed is
determined by the vector count.

The vector count may range in value from zero up
to and including the section size. A specification
exception is recognized if the instruction RESTO RE

VSR attempts to place a value in the vector-count
field which exceeds the section size. The instruc
tion EXTRACT VCT may be used to examine the
vector count.

The following instructions may be used to set the
vector count. If they specify a number greater than
the section size, they set the vector count equal to
the section size.

LOAD BIT INDEX
LOAD VCT AND UPDATE
LOAD VCT FROM ADDRESS

For information on using the vector count with
vectors of any length, see the section "Vector
Sectioning" on page 2-11.

Vector Interruption Index

The vector interruption index (VIX), bits 32-47 of
the vector-status register, is a 16-bit unsigned
binary integer. It specifies the number of the f!fst
element location in any vector register, or of the
f!fst bit position in the vector-mask register, to be
processed by an interruptible vector instruction
which depends on the vector interruption index.
The vector interruption index is used to control
resumption of the operation after such an instruc
tion has been interrupted. It is normally zero at
the start of execution, and it is set to zero at com
pletion.

For details concerning the operation of the vector
interruption index and the effect of an interruption,
see the section "Vector Interruptions" on
page 2-19.

The vector interruption index may range from zero
to the section size. It may be examined by using
the instruction SAVE VSR, and it may be set explic
itly by RESTORE VSR. The instruction CLEAR VR

sets the vector interruption index to zero. A spec
ification exception is recognized if the instruction
RESTORE VSR attempts to place a value in the
vector-interruption-index field which exceeds the
section size.

2-4 IBM System/370 Vector Operations

Programming Notes:

1. Since the vector interruption index is always set
to zero upon completion of any insbuction
which depends on it, the program normally
need not be concerned with setting its value.

2. The vector interruption index may be set to
zero explicitly by use of the instruction CLEAR

VR with a zero operand.

3. If it is desired to operate on a vector in a vector
register starting at other than element location
0, this may be done by frrst setting the vector
interruption index (VIX) to the initial element
number. The VIX may be set by using the
instruction SAVE VSR to place the current con
tents of the vector-status register (VSR) in
storage, placing the initial element number in
the field which corresponds to the VIX, and
then returning the result to the VSR by means
of RESTORE VSR. Such modification of the VSR

can be performed safely when the CPU is in the
problem state. If a program modifying the VSR

is to be executed in the supervisor state,
however, additional precautions may have to
be taken; see the programming notes in the
section "Vector Change Bits" on page 2-5.

Vector In-Use Bits

The eight vector in-use bits (VIU), bits 48-55 of the
vector-status register, correspond to the eight
vector-register pairs 0, 2, 4, 6, 8, 10, 12, and 14.

The vector in-use bits indicate which vector-register
pairs are to be saved and restored by SAVE VR and
RESTO RE V R. These instructions ignore vector
register pairs for which the vector in-use bit is zero.

During execution of instructions which use the
vector registers, the vector in-use bit associated with
a vector-register pair is set to one whenever any
element in either or both of the registers is loaded
or modified. When a register is used as the source
of an operand, its vector in-use bit remains
unchanged.

The vector in-use bits are set by the instruction
RESTORE VSR. If that instruction changes a vector
in-use bit from one to zero, it causes the corre
sponding vector-register pair to be cleared to zeros.
A vector in-use bit is set to zero when the instruc
tion CLEAR VR clears the corresponding vector
register pair to zeros.

See the section "Program Switching" on page 2-26
for a discussion of the vector in-use bits.

Vector Change Bits

The eight vector change bits (VCH), bits 56-63 of
the vector-status register, correspond to the eight
vector-register pairs 0, 2, 4, 6, 8, 10, 12, and 14.

The vector change bits indicate which vector
register pairs are to be saved by the privileged
instruction SAVE CHANGED VR. That instruction
saves a vector-register pair if the corresponding
vector change bit is one; it then sets the vector
change bit to zero.

If the vector in-use bit associated with a vector
register pair is set to zero by the instruction CLEAR

VR or RESTORE VSR, the corresponding vector
change bit is also set to zero.

During execution of an instruction which uses the
vector registers, the vector change bit associated
with a vector-register pair is set to one whenever
any element in either or both of the registers is
loaded or modified. An exception is the instruction
RESTORE VR; when the CPU is in the supervisor
state, execution of RESTORE VR leaves the vector
change bits unchanged.

When a vector register is used as the source of an
operand, its vector change bit remains unchanged.

See the section "Program Switching" on page 2-26
for further discussion of the vector change bits.

Programming Notes:

1. The vector change bit is always zero when the
vector in-use bit is zero. When the vector
change bit is set to one, the vector in-use bit is
also set to one.

2. As pointed out in the section "Program
Switching" on page 2-26, vector change bits
are intended for use by control programs oper
ating in the supervisor state. When the CPU is
in the problem state, the value of the vector
change bits stored by SAVE VSR is undefined;
problem-state programs should, therefore, not
depend on the value of these bits.

A program operating in the problem state
cannot set a vector change bit to zero, except
by also setting the corresponding in-use bit to
zero (clearing the vector-register pair). In the

problem state, the instruction RESTORE VSR

sets the vector change bit to one for every pair
of vector registers whose in-use bit is set to
one.

3. If a program uses the instruction RESTORE VSR

to modify the contents of the vector-status reg
ister while the CPU is in the supervisor state,
and the program is subject to interruptions for
which the interruption handler may cause a
SAVE CflANGED VR instruction to be executed,
care must be taken to ensure that the vector
change bits reflect all modifications of the
active vector registers. A safe procedure is to
supply ones in all bit positions of the operand
of RESTORE VSR which correspond to the
vector change bits. This precaution is unneces
sary in the problem state, because RESTORE

VSR then sets the vector change bits to ones
regardless of the operand.

4. A program operating in the supervisor state can
depend on the accuracy of vector change bits
that are zeros. When the program is a guest in
a virtual-machine environment, however, vector
change bits may be overindicated, so that a bit
may be set to one even when the corresponding
vector-register pair has not been changed.

Vector-Activity Count

The vector-activity count (v AC) provides a means
for measuring and scheduling the machine resources
used in executing instructions of the vector facility.

The vector-activity count has this format:

8 8 63

Bits 8-63 are a 56-bit unsigned binary integer. In
the basic form, this integer is incremented by
adding a one in bit position 5 I every microsecond
while a vector-facility instruction is being executed.
In models having a higher or lower resolution, a
different bit position is incremented at such a fre
quency that the rate of incrementing the vector
activity count is the same as if a one were added in
bit position 51 every microsecond during those
periods. Bits 0-7 are zeros.

The contents of the vector-activity count may be
obtained by executing the privileged instruction

Chapt.er 2. Vector F acilit.y 2-5

SAVE VAC, and they may be set by means of the
privileged instruction RESTORE V AC. Bits 0-7, and
any rightmost bit positions which are not incre
mented, are stored as zeros by SAVE VAC and are
ignored by RESTORE VAC.

When incrementing the vector-activity count causes
a carry to be propagated out of bit position 8, the
carry is ignored, and counting continues from zero.
The program is not alerted, and no interruption
occurs as a result of the overflow. Except for such
wraparound, or an explicit restore or reset opera
tion, the value of the count never decreases.

The vector-activity count is not incremented during
execution of the instructions RESTO RE V AC and
SA VE V AC. In addition, depending on the model,
the count may not be incremented during execution
of some other short, uninterruptible instructions of
the vector facility.

The vector-activity count is incremented only when
the CPU is in the operating state.

Programming Notes:

1. The vector-activity count is not intended to be
a precise measure of vector execution time.
The count mayor may not advance during the
execution of a particular vector-facility instruc
tion. In the aggregate, however, the count
reflects the execution time of the vector portion
of normal application programs.

2. The format of the vector-activity count has
been chosen to permit the use of unnormalized
scalar floating-point instructions to perform fast
addition and subtraction of V AC values.

Modes of Operation

The operation of the vector facility is independent
of the architectural mode, except for the range of
storage addresses which can be specified. The
370-XA architectural mode provides the choice of
operating in either a 31-bit or 24-bit addressing
mode; the System/370 architectural mode does not.

2-6 IBM Systemj370 Vector Operations

On a CPU which provides both the 370-XA and
System/370 modes, vector operations in the
System/370 mode are the same as in the 370-XA
mode when in the 24-bit addressing mode. Thus,
an address size of 24 bits is available in either the
370-XA or System/370 mode, but vector operations
with an address size of 31 bits can be performed
only in the 370-XA mode. In the System/370
mode, instructions of the vector facility may be
executed in both the EC and BC modes.

In both the 370-XA and System/370 modes, vector
operations are governed by the vector-control bit.

Vector-Operation Control

When the vector facility is installed and available
on a CPU, execution of vector-facility instructions
can be completed only if bit 14 of control register
0, the vector-control bit, is one. Executing a
vector-facility instruction when the vector-control
bit is zero causes a vector-operation exception to be
recognized and a program interruption to occur.
The initial value of the vector-control bit is zero.

When the vector facility is not installed or not
available on this CPU but is installed on any other
CPU which is or can be placed in the configuration,
executing a vector-facility instruction causes a
vector-operation exception to be recognized regard
less of the state of the vector-control bit.

If the vector facility is not installed on any CPU

which is or can be placed in the configuration, it
depends on the model whether executing a vector
facility instruction causes a vector-operation excep
tion or an operation exception to be recognized.

A vector facility, though installed, is considered not
available when it is not in the configuration, when
it is in certain maintenance modes, or when its
power is off.

Figure 2- 2 on page 2-7 summarizes the effect of
the vector-control bit according to whether the
vector facility is installed and whether vector
instructions can be executed by the program.

Vector Facility on This CPU

Vector Effect of
Facil ity Vector-
Install ed Facil ity
on Instruction
Another In- Avail-
CPU stalled able VC = 0 VC = 1

Yes or No Yes Yes VOP Exe-
cute

Yes or No Yes No VOP VOP
Yes No (NA) VOP VOP
No No (NA) VOP or VOP or

OP OP

Explanation:

NA Not applicable
OP Operation exception
VC Vector-control bit (control

register 0, bit 14)
VOP Vector-operation exception

Figure 2-2. Vector Control

Programming Notes:

1. The control program may use the vector
control bit to defer enabling of the CPU for
vector operations and to delay allocation of a
vector-save area until a program attempts to
use the facility by executing its frrst vector
instruction. Because the resulting vector
operation exception nullifies the operation, the
instruction address does not need to be
adjusted in order to resume the program.

2. The control program may also keep the vector
control bit set to zero to prevent a program
from examining or changing the contents of the
vector-facility registers. This may be useful
when a program that does not use the vector
facility is to be run after a program that does
use the facility has been interrupted. If the
next program to use the vector registers is the
original program, then running the intervening
program with the vector-control bit set to zero
may eliminate the need for information held in
the vector facility to be saved and later
restored.

A possible exception is the vector-activity
count (VAC). When the vector-control bit is
zero, the v AC mayor may not be incremented

during the brief period of detecting that an
instruction requires the vector-operation excep
tion to be recognized. The number of times
that the V AC might be stepped in this way is
small, however, compared to the counts accu
mulated during execution of a vector
application program.

3. When a machine check indicating vector-facility
failure occurs, the machine has made a previ
ously available vector facility unavailable.
Until the cause of the failure is removed and
the facility is made available again, attempting
to execute a vector instruction causes a vector
operation exception to be recognized even
though the vector-control bit is one. (See the
section "Vector-Facility Failure" on
page 2-30.)

Vector-Instruction Operands and
Results

The vector facility provides for operations on
vectors of short (32-bit) and long (64-bit) floating
point numbers, 32-bit signed binary integers, and
32-bit logical data. A few operations deal with
vectors of 16- and 64-bit signed binary integers.
There are also operations on vectors of individual
bits, which are generally used as mask bits.

All binary-arithmetic vector operations treat ele
ments of 32-bit binary integers as signed; any fixed
point-overflow exceptions are recognized.
Binary-comparison operations also deal with 32-bit
signed binary integers. Logical vector operations,
including shifts, treat elements as 32-bit logical
data.

Most instructions which operate on floating-point,
binary-integer, or logical vectors use a format that
explicitly designates three operands: two source
operands and one target operand. The operands
may be:

• In storage,
• In a vector register, or a pair of vector registers,

or
• In a scalar (general or floating-point) register.

Instructions which use mask bits generally desig
nate an itnpllcit operand in the vector-mask reg
ister, and they also may explicitly designate storage,
vector-register, and scalar-register operands.

Chapter 2. Vector F aciHty 2-7

All vector operands in storage must be aligned on
integral boundaries. When an instruction requires
boundary alignment and the storage operand is not
designated on the appropriate boundary, a specifi
cation exception is recognized.

An instruction which processes operands in vector
or scalar registers must designate a valid register
number for each such operand. If an invalid reg
ister number is designated, a specification exception
is recognized.

Figure 2-3 on page 2-9 summarizes the vector-data
formats, the associated operations, and the
boundary-alignment and register-number require
ments.

Vectors of 16-, 32-, and 64-bit elements containing
arithmetic or logical data are collectively referred to
as arithmetic vectors. Arithmetic vectors in storage
must be on integral boundaries. The elements of
arithmetic vectors have the same formats as scalar
data of the same data type.

Vectors of individual bits are referred to as bit
vectors (see the section "Bit Vectors" on
page 2-10).

Programming Note: Logical-data elements may
also be considered as 32-bit unsigned binary inte
gers, but no arithmetic or comparison operations
are provided to process such vectors.

Arithmetic Vectors in Storage

Arithmetic vectors in storage may be loaded and
stored in one of two ways:

• By sequential addressing (contiguously or with
stride)

• By indirect element selection

Most arithmetic, comparison, and logical instruc
tions may also access one of the vector operands
directly from storage by sequential addressing.
Indirect element selection is available only for load
and store operations.

Access by Sequential Addressing

Vector elements are most often accessed in storage
in a regular sequence of addresses. The instruction
specifies a general register containing the starting
address and, optionally, another general register
containing the stride. The stride, which is a 32-bit

2-8 IBM Systemj370 Vector Operations

signed binary integer, is the number of element
locations by which the operation advances when
proceeding from one element to the next. The
maximum number of elements to be accessed is
specified by the vector count.

A stride of one specifies a contiguous vector, for
which successive elements are in adjacent storage
locations; this stride is the default when no general
register is specified for the stride. A stride of zero
causes the same element to be used repeatedly as
the storage operand. A negative stride causes ele
ments to be accessed in a descending sequence of
addresses.

During the execution of instructions which access
an arithmetic vector in storage sequentially, the
starting address contained in the general register is
updated as successive elements in storage are
accessed. At the end of instruction execution, or at
the time of any interruption, the contents of the
general register have been updated to the storage
address of the next vector element due to be proc
essed if instruction execution had not ended or
been interrupted. Likewise, when instructions
process a bit vector in storage, the starting address
in the general register is updated by the number of
bytes accessed during execution.

Such automatic updating of vector addresses is used
to process a vector in sections when the vector has
more elements than will fit into a vector register. It
also assists in resuming instruction execution after
an interruption.

For more details on sequential addressing, see the
section "Class-1M and Class-IC Instructions" on
page 2-1 S. For more information on sectioning,
see the section "Vector Sectioning" on page 2-11.

Programming Note: A contiguous vector is implied
when zero is specified in the instruction field that
designates the general register containing the stride.
This differs from a zero stride, which is specified by
placing a value of zero in the general register con
taining the stride, and which causes reuse of the
same element in storage. A zero stride is generally
not desired because the scalar form of an instruc
tion is usually faster than repeated use of the same
storage location. (See the section "Operands in
Scalar Registers" on page 2-10.)

Valid Register Numbers
Width in Bits Alignment

Required In Scalar Vector
Data Type 1 16 32 64 Storage Register Register

Floating point
Short A Word Even FR Any VR
Long A Doubleword Even FR Even VR

Binary integer
16-bit signed S Halfword -- Any VR
32-bit signed B Word Any GR Any VR
54-bit signed P -- -- Even VR

Logical L Word Any GR Any VR
Bit M Byte -- --

Explanation:

-- Does not apply
All arithmetic, load, and store operations A

B Some arithmetic and all load and store operations
FR Floating-point register
GR General register
L Logical and shift operations
M Logical operations on bits in storage and in vector-mask

register; comparison results
p 64-bit binary integers, which occur only as the result of

a binary multiply operation
S Only load and store operations, which convert between 16 bits

in storage and 32 bits in a vector register
VR Vector register

Figure 2-3. Types of Vector Data

Access by Indirect Element Selection

Indirect element selection pennits vector elements
to be loaded or stored in an arbitrary sequence.
With the instructions used for indirect element
selection, LOAD INDIRECT and STORE INDIRECT,

the locations of the individual operand elements to
be loaded or stored are designated by a vector of
element numbers in a vector register. Each such
element number indicates the position of the corre
sponding operand element relative to the start of
the operand vector. The number of operand ele
ments accessed, which is also the number of
element nUInbers used for indirect element
selection, is equal to or less than the vector count.

The element numbers used for indirect element
selection are 32-bit signed binary integers. They
may be positive, negative, repeated, and in any
order. Successive operand elements are located in
storage at addresses A + wx£(O), A + wxE(l),

A + wxE(2), ... , where A is the ongm of the
operand vector in storage, w is the width in bytes (4
or 8) of each element, and E(O) , £(1), £(2), ... are
the successive element numbers in a vector register.

General-register address updating does not apply to
the instructions LOAD INDIRECT and STORE INDI

RECT.

Programming Notes:

1. For a discussion of address updating, see the
programming notes under "Vector Sectioning"
on page 2-11.

2. Vectors of element numbers may be stored as
16-bit signed binary integers when the element
numbers remain within the range of such inte
gers. The vector instructions LOAD

HALFWORD and STORE HALFWORD perform
the conversion between the 16-bit and 32-bit
formats.

Chapter 2. Vector Facility 2-9

3. Accessing vectors in storage in the arbitrary
sequence pennitted by indirect element
selection may be significantly slower than
accessing contiguous vector elements.

Arithmetic Vectors in Registers

Operands In Vector Registers

Any vector register can be designated for a vector
of short floating-point numbers, 32-bit signed
binary integers, or 32-bit logical data. Even-odd
vector-register pairs are coupled to hold long
floating-point numbers or the 64-bit signed binary
integers which result from binary multiplication.

When a vector register is modified, those elements
in the vector register beyond the last element to be
modified are left unchanged.

Most operations on floating-point, binary, or
logical vectors which may be performed with one
vector operand in storage and one operand in a
vector register may also be performed with both
operands in vector registers. When both operands
are in vector registers, the corresponding pairs of
elements from each vector-register operand gener
ally have the same element number (but see the
descriptions of ACCUMULATE and MULTIPLY AND

ACCUMULATE for an exception to this rule).

Operands in Scalar Registers

Operations on floating-point, binary, or logical
vectors may specify as one source operand the con
tents of a scalar register, that is, of a floating-point
or general register, the other operand being a
vector. This scalar operand is used repeatedly and
treated as a vector of identical elements of the same
length as the vector operand.

Some vector instructions which obtain one of the
source operands from a scalar register also produce
a scalar result, which replaces the contents of the
same scalar register.

Bit Vectors

A group of bits in contiguous bit positions is called
a bit vector. Bit vectors are the operands of logical
operations where one of the operands is in the
vector-mask register. They are used in operations
on arithmetic vectors under mask control.

2-10 IBM System/370 Vector Operations

A bit vector in storage must begin on a byte
boundary, but it may end at any bit position, the
remaining bits of the rightmost byte being ignored.
When the instruction STORE VMR stores a bit
vector with the vector count specifying a number of
bits that is not a multiple of 8, the fmal byte stored
is padded on the right with zeros.

When used for the control of load and store oper
ations or for arithmetic and logical operations in
the vector-mask mode, the appropriate bit vector
must fIrst be placed in the vector-mask register.
Each bit in the vector-mask register corresponds
sequentially, one for one, to an element of one or
both of the vector-register operands.

Bit vectors in the vector-mask register are generated
or altered by the following vector instructions:

AND TO VMR
COMPARE
COMPLEMENT VMR
EXCLUSIVE OR TO VMR
LOAD VMR
LOAD VMR COMPLEMENT
OR TO VMR

Programming Notes:

1. Examples of the use of bit vectors for mask
control are shown in Appendix A.

2. Since the section size is a multiple of 8 and bit
vectors start on a byte boundary, every section
of a bit vector also starts on a byte boundary.
Thus, after an instruction has completed proc
essing a full section of bits, the next bit is
always the leftmost bit of the byte specified by
the updated address.

3. When a bit vector is used as a mask to identify
selected elements of an arithmetic vector with
one bits and the remaining elements with zero
bits, the bit vector is logically equivalent to a
vector containing a set of element numbers in
ascending sequence, which may be used for
indirect selection of the arithmetic-vector ele
ments. The vector of element numbers consists
merely of the bit indexes (bit numbers) of the
one bits in the bit vector.

A bit vector may be converted to a vector of
element numbers by the instruction LOAD BIT

INDEX. This instruction operates directly on a
bit vector in storage and produces a vector of
element numbers in a vector register; the
vector-mask register is not used.

Vector Sectioning

Vector sectioning is a programming technique for
processing vectors the length of which may exceed
the section size. Such vectors are processed by
dividing them into smaller sections and using a
loop of instructions, referred to as a sectioning
loop, which repeats the appropriate sequence of
instructions for all consecutive sections of the speci
fied vectors. To assist with such sectioning,
addresses of vector operands in storage and bit
vector parameters are automatically updated, and
the instruction LOAD VCT AND UPDATE is provided.

The LOAD VCT AND UPDATE instruction specifies a
general register that has initially been loaded with
the total number of vector elements to be proc
essed. The instruction sets the vector count to the
lesser of the section size and the general-register
contents. It also subtracts this value from the
current contents of the general register, which then
contains the number of elements remaining to be
processed during subsequent passes through the
sectioning loop.

LOAD VCT AND UPDATE sets the condition code to
provide the program with an indication of whether
a complete vector has been processed. The
program may use the instruction BRANCH ON CON

DITION for loop control to repeat the sequence of
instructions for each section. A sectioning loop
may also be closed by testing the residual count in
the general register for zero and branching back to
the start of the loop if not zero.

For most vector operations, the program can be
written such that sectioning is independent of the
section size. There are occasions, however, when
knowledge of the actual section size is desirable;
this value is available to the program by executing
the instruction STORE VECTOR PARAMETERS.

Programming Notes:

1. Examples of sectioning are shown in Appendix
A.

2. One method of controlling the vector count for
sectioning is to place the instruction LOAD VCT

AND UPDATE at the beginning of the loop and
an appropriate BRANCH ON CONDITION

instruction at the end of the loop. This is
usually sufficient because most vector-facility
instructions do not set the condition code. If
the sectioning loop does contain an instruction

that modifies the condition code, the fmal
BRANCH ON CONDITION instruction could be
preceded by a LOAD AND TEST instruction to
test the general register containing the residual
vector count.

Appendix A also illustrates other techniques.

3. If a sectioning loop contains more than one
reference to the same vector in storage, such as
a load followed later by a store, the program
must ensure, by retaining a copy of the current
address, that all addresses within the loop
which specify the same vector refer to the same
section.

4. The instructions which provide indirect element
selection, LOAD INDIRECT and STORE INDI

RECT, progress one section of element numbers
at a time. But sectioning of the vector of
element numbers used for addressing is per
formed by a preceding instruction which loaded
or generated the element numbers by means of
sequential addressing. The indirect-selection
instructions themselves do not provide for
address updating. Each element address is
computed separately from an element number
and from the specified starting address, which
remains unchanged.

Conditional Arithmetic

Vector-Mask Mode

The vector-mask mode allows for conditional exe
cution of arithmetic and logical instructions,
depending on the mask bits in the vector-mask reg
ister.

When the vector-mask mode is in effect, operand
elements are processed if they are in positions
which correspond to mask bits that are ones. In
positions which correspond to zero mask bits, the
target locations remain unchanged, no arithmetic or
operand-access exceptions are recognized for those
positions, the corresponding change bits in storage
remain unchanged, and no PER event for storage
alteration is indicated. When the vector-mask
mode is not in effect, the mask bits are ignored,
and all active elements are processed.

The arithmetic and logical vector instructions
which are under the control of the vector-mask
mode are:

Chapter 2. Vector Facility 2-11

ACCUMULATE
ADD
AND
DIVIDE
EXCLUSIVE OR
LOAD COMPLEMENT
LOAD NEGATIVE
LOAD POSITIVE
MAXIMUM ABSOLUTE
MAXIMUM SIGNED
MINIMUM SIGNED
MULTIPLY
MULTIPLY AND ACCUMULATE
MULTIPLY AND ADD
MULTIPLY AND SUBTRACT
OR
SHIFT LEFT SINGLE LOGICAL
SHIFT RIGHT SINGLE LOGICAL
SUBTRACT

Except for LOAD COMPLEMENT, LOAD NEGATIVE,

and LOAD POSITIVE, which are considered arith
metic instructions for this purpose, load and store
instructions are not controlled by the vector-mask
mode; neither are instructions which modify the
vector-mask register, such as COMPARE. The
instructions LOAD EXPANDED, LOAD MATCHED,

STORE COMPRESSED, and STORE MATCHED do
depend on the vector-mask register for their exe
cution, but this is independent of the mode setting.

For more details, see the section "Class-1M and
Class-IC Instructions" on page 2-15.

Instructions Controlling the Vector-Mask
Mode

The instruction SET VECTOR MASK MODE turns the
vector-mask mode on or off. EXTRACT VECTOR

MASK MODE places the current value of the mode
in a general register.

Programming Notes:

1. The vector-mask mode is useful when arith
metic vector operations depend on the result of
a vector comparison. Only elements which are
to be processed are subject to arithmetic and
access exceptions.

2. Since loading, comparing, and storing are oper
ations which are not subject to the vector-mask

2-12 IBM System/370 Vector Operations

mode, it is frequently possible to leave the
vector-mask mode in effect while performing
the arithmetic for an entire sectioning loop.

Common Instruction Descriptions

Many vector-facility instructions have common
characteristics and obey common rules for accessing
the elements of their vector operands. This section
describes the common aspects, which are not
repeated in individual instruction descriptions.

Some instructions contain fields that vary slightly
from the basic format, and in some instructions,
the operation performed does not follow the
general rules stated in this section. Any exceptions
to these rules are noted in the individual instruction
descriptions, as are the rules for instruction formats
and types not covered in this section.

The rules are grouped according to instruction
classes and formats.

Programming Note: Many load and all store oper
ations on vectors are the same for binary and short
floating-point operands, so that only a single set of
operation codes is provided for them. However,
for programming convenience, both binary and
short floating-point mnemonics are assigned to
these operation codes.

Separate operation codes are provided for short
floating-point and binary operands when the opera
tion must distinguish between floating-point and
general registers, as in loading or extracting an
element, or when the operation depends on the
data type, such as LOAD COMPLEMENT.

Instruction Classes

Vector-facility instructions are classified into one of
nine classes: 1M, IC, IG, IP, IZ, NC, NZ, Nt, and NO.

The properties of these nine instruction classes are
summarized in Figure 2-4 on page 2-13.

Instruc- Number of Execution Vector-
tion Elements Inter- Mask-Mode
Class or Bits ruptible? Control?

1M VCT - VIX Yes Yes
IC VCT - VIX Yes No
IG GR and Yes No

VIX
IP P5N - VIX Yes No
IZ 5S Yes No

NC VCT No No
NZ SS No No
Nl One No No
N0 None No No

Explanation:

GR Number of bits determined by
contents of a general register

P5N Number of elements determined by
partial-sum number

55 Section size
VCT Vector count
VIX Vector interruption index

Figure 2-4. Vector-Facility Instruction Classes

The instruction classes distinguish:

• Whether the instruction is interruptible (1_) or
not interruptible (NJ,

• Whether instruction execution depends on the
vector interruption index (1M, Ie, 10, IP),

• Whether element selection depends on the
setting of the vector-mask mode (1M),

• Whether the number of vector elements or bits
processed is variable and is controlled by the
vector count (1M, Ie, NC) or by a general reg
ister (IG),

• Whether the number of vector elements or bits
processed is fixed and is the partial-sum
number (JP) or the section size (IZ, NZ),

• Whether just one vector element is processed
(Nt) or none (NO).

Instruction Formats

The instruction formats used by vector-facility
instructions are shown in Figure 2-5 on page 2-14.
The fITst four are the base formats - QST, QV, VST,

and VV, where Q indicates that the format provides
for a scalar-register operand, ST indicates a storage
operand (with stride), and v indicates a vector
register operand. Most of the arithmetic instruc
tions are available in all four of these base formats.
For the vector-comparison instructions, the VR 1

field of the base formats is interpreted as a modifier
(Ml).

Bit positions which are shown in instruction
formats as shaded (III/) are unassigned.

Field Designations

The field designations in the instruction formats
indicate the use of the field and the type of opera
tion in which the field participates.

B2 and 02 Fields: B2 designates a base register,
and D 2 is a displacement. They are used for
addressing in the same way as with scalar instruc
tions.

FR3 Field: FR3 designates a (scalar) floating-point
register. It is a more specific description of the
QR3 field used in some instruction descriptions,
and the same rules and restrictions apply as for
QR3.

GR Field: GR designates a (scalar) general register
or a pair of general registers. Unless otherwise indi
cated in the individual instruction descriptions, the
contents of the general registers designated by the
GR 1 and GR2 fields are called the fITst operand
and second operand, respectively. When desig
nating the third operand (GR3), it is a more spe
cific indication of the QR3 field used in some
instruction descriptions, and the same rules and
restrictions apply as for Q R 3 •

QR3 Field: QR3 designates a scalar register, with
the operation code determining whether it is a
floating-point or general register. In the QST

format, the QR3 field must not designate a general
register which is the same as that designated by the
RS2 field; otherwise, a specification exception is
recognized. For instructions in the QV or VR

formats with only two operands, one a vector and

Chapter 2. Vector F acUity 2- t 3

Base Formats

QST Format

0

QV Format

0

VST Format

0

VV Format

0

Other Formats

RRE Format

0

RSE Format

0

S Format

0

VR Format

0

VS Format

0

First
Halfword

Op Code

Op Code

Op Code

Op Code

Op Code

Op Code

Op Code

Op Code

Op Code

Second
Halfword

16 20 24 28 31

16 20 24 28 31

16 20 24 28 31

16 20 24 28 31

11/1111/1/1 GR'II///I

16 24 28 31

Third
Halfword

I R, 1////1 VR,I///II B, I 02

16 20 24 28 32 36

I B, I 02

16 20 31

I QR'I//I/I VR,I GR,I

16 20 24 28 31

1//1////1////111 Rs,l

16 28 31

Figure 2-5. Vector-Facility Instruction Formats

47

one a scalar, the scalar operand is called the second
operand and is designated by a Q R 2 field.

designate the same general register as the R T 2 field
or, in the QST format, as the QRJ field.

R3 Field: R3 is shown in individual instruction
descriptions as either VRJ, to designate a vector
register, or GR3, to designate a general register.

RS2 Field: RS2 designates a general register con
taining a storage-operand address. The address is
updated during execution. The RS2 field must not

2-14 IBM System/370 Vector Operations

RTz Field: RT2 designates a general register con
taining a stride. The field cannot designate general
register 0; if the RT2 field is zero, a stride of 1 is
specified. It also must not designate the same
general register as the RS 2 field.

VR Field: VR designates a vector register or a pair
of vector registers. The VRl, VR2, and VRJ fields
designate the first, second, and third operands,
respectively, in vector registers or pairs of vector
registers, as required for the data type specified by
the operation code.

Three-Operand Instruction Formats

An nonstore vector instructions which explicitly
specify three operands in the QST, QV, RSE, VST, and
vv formats use the first-operand location as the
target for the result and the second- and third
operand locations for the source operands. These
three-operand operations may be shown symbol
ically as:

Operand 1 = Operand 3 • Operand 2

where • represents an arithmetic or logical opera
tion. Operand I is always in vector registers.
Operand 2 is in storage or in vector registers.
Operand 3 is either in vector registers or in a scalar
register. An instruction may specify the same or
different vector registers for the target and source
operands.

Vector-comparison instructions are sitnilar to these
three-operand instructions, except that they desig
nate a modifier (M 1) instead of a fITst operand
(VR 1), and they place the result in the vector-mask
register.

Programming Note: The base address of a storage
operand is placed in a general register designated by
the following: the RS2 field in the QST, VS, and VST

formats; the GR 1 field in the RRE format; and the
B2 field in the RSE and s formats. The RS2 and
GRl fields may designate general register 0; but the
B 2 field cannot, since a zero B 2 field specifies that
the base address itself is zero. Use of general reg
ister 0 for storage addresses should, in general, be
avoided to keep storage addressing consistent
among all instruction formats for both vector and
scalar instructions.

Summary of Instructions by Class
and Format

Figure 2-6 on page 2-16 briefly lists all instructions
of the vector facility according to class and format
within the class.

Class-1M and Class-IC Instructions

Most vector instructions are in either class 1M or IC.

Instructions in both classes are interruptible, the
number of elements processed is determined by the
vector count, and they depend on the vector inter
ruption index. ClaSS-1M instructions are also under
the control of the vector-mask mode; class-Ic
instructions are independent of the vector-mask
mode.

For both classes, the elements of each operand are
processed in sequence from element X, where X is
the initial value of the vector interruption index
(normally zero), to C-I, where C is the vector
count.

The number of elements that are processed for each
operand is called the net count. If C is greater than
X, then the net count is C-X; otherwise the net
count is zero. For vector instructions which
combine vector operands with a scalar operand, the
scalar operand is considered to be replicated as
many times as indicated by the net count.

If the net count is zero at the start of instruction
execution, the vector interruption index is set to
zero, and execution is completed immediately. No
elements are processed, no operand-access
exceptions occur, the change bits for any storage
operand remain unchanged, and no PER event for
storage alteration is indicated. Operands in vector,
floating-point, and general registers that are due to
be modified, the vector in-use bits, and the vector
change bits remain unchanged.

If the instruction is interrupted during execution,
y - X pairs of elements have been processed, where
X and Yare the values of the vector interruption
index at the beginning of execution and at the time
of interruption, respectively. Y is then the element
number of the next element, if any, to be processed
for each operand.

When a claSS-1M or class-Ic instruction designates a
scalar register as the location of the third operand
(in the QST or QV format), and the scalar register is
a floating-point register, the instruction must desig
nate register 0, 2, 4, or 6 in the third-operand field;
otherwise, a specification exception is recognized.

Chapter 2. Vector Facility 2-15

Instruction Formats When Operands Are

Instructions Class Long Short Binary Other Total

ADD, SUBTRACT 1M Four! Four l Four! 24
AND, EXCLUSIVE OR, OR 1M Four l 12
DIVIDE 1M Four! Four l 8
MUL TIPLY 1M Four l Four l2 Four! 12

MULTIPLY AND ADD 1M QST/QV/VST QST /QV /VS 12 6
MULTIPLY AND SUBTRACT 1M QST/QV/VST QST/QV/VS12 6
MULTIPLY AND ACCUMULATE 1M VST/VV VST/VV2 4
ACCUMULATE 1M VST/VV VST/VV2 4

LOAD COMPLEMENT 1M VV VV VV 3
LOAD NEGATIVE, LOAD POSITIVE 1M VV VV VV 6
SHIFT LEFT SINGLE LOGICAL 1M RSE 1
SHIFT RIGHT SINGLE LOGICAL 1M RSE 1
MAXIMUM ABSOLUTE 1M VR VR 2
MAXIMUM SIGNED, MINIMUM SIGNED 1M VR VR 4

COMPARE IC Four l Four! Four! 12
LOAD, LOAD MATCHED IC QV/VST/VV QV/VSP/VV3 QV 14
STORE, STORE MATCHED IC VST VSP 4
LOAD EXPANDED, STORE COMPRESSED IC VST VSP 4
LOAD INTEGER VECTOR IC VST 1
LOAD HALFWORD, STORE HALFWORD IC VST 2
LOAD ZERO IC VV VV3 2
LOAD INDIRECT, STORE INDIRECT IC RSE RSE3 4

LOAD B IT INDEX IG RSE 1

SUM PARTIAL SUMS IP VR 1
ZERO PARTIAL SUMS IP VR 1

RESTORE VR IZ RRE 1
SAVE VR, SAVE CHANGED VR IZ RRE 2
RESTORE VSR IZ S 1
CLEAR VR IZ S 1

Figure 2-6 (Part 1 of 2). Summary of Vector-Facility Instructions by Class and Format

Class-1M Instructions

For instructions in class 1M, all elements are proc
essed as described above when the vector-mask
mode is off. When the vector-mask mode is on,
however, operand elements are fetched from storage
or from operand registers, and result elements are
placed in the target register, only for those elements
which correspond to ones in the vector-mask reg
ister. Element positions in the target register corre
sponding to zeros remain unchanged; no arithmetic
or operand-access exceptions are recognized for
those positions, the corresponding change bits in

2-t 6 IBM System/370 Vector Operations

storage remain unchanged, and no PER event for
storage alteration is indicated.

The frrst mask bit used, when the vector-mask
mode is on, is bit X of the vector-mask register,
which corresponds to vector-register element X.
The last mask bit and vector-register element proc
essed are numbered C-I, if the instruction is com
pleted, or Y - 1, if the instruction is interrupted
during execution.

Class-1M instructions in the QST and VST formats
have the storage address in the RS 2 register
updated during execution for every element posi-

Instruction Formats When Operands Are

Instructions Class Long Short Binary Other Total

COUNT LEFT ZEROS IN VMR NC RRE 1
COUNT ONES IN VMR NC RRE 1
COMPLEMENT VMR, TEST VMR NC RRE 2
AND TO VMR, EXCLUSIVE OR TO VMR NC VS 2
LOAD VMR, LOAD COMPLEMENT VMR NC VS 2
OR TO VMR, STORE VMR NC VS 2

RESTORE VMR, SAVE VMR NZ S 2

EXTRACT ELEMENT, LOAD ELEMENT Nl VR VR VR 6

EXTRACT VCT N0 RRE 1
EXTRACT VECTOR MASK MODE N0 RRE 1
LOAD VCT AND UPDATE N0 RRE 1
LOAD VCT FROM ADDRESS N0 S 1
RESTORE VAC, SAVE VAC, SAVE VSR N0 S 3
SET VECTOR MASK MODE N0 S 1
STORE VECTOR PARAMETERS N0 S 1

Totals 53 51 41 26 171

Explanation:

1 Four instruction formats are provided: QST, QV, VST, and VV.
2 Operand 1 is in the long format; operands 2 and 3 are in the short format.
3 Instruction in this format may be used for both short and binary operands.

Figure 2-6 (Part 2 of 2). Summary of Vector-Facility Instructions by Class and Format

tion, regardless of whether the corresponding mask
bit is one or zero (see the section "Storage Oper
ands for QST and VST Formats" on page 2-17).

Class-IC Instructions

Execution of instructions in class IC is independent
of the vector-mask mode. The following instruc
tions depend on mask bits in the vector-mask reg
ister, but their execution is the same whether the
vector-mask mode is on or off: LOAD EXPANDED,

LOAD MATCHED, STORE COMPRESSED, and STORE

MATCHED. The fust mask bit used for those
instructions is bit X, corresponding to vector
register element X. The last mask bit and vector
register element processed are numbered c- 1, if
the instruction is completed, or Y - 1, if the instruc
tion is interrupted during execution.

Storage Operands for QST and VST
Formats

In the QST and VST formats, the RS2 field desig
nates a general register containing the starting
address, that is, the address of the fust element of
the vector operand in storage which is to be proc
essed. The RT2 field, if not zero, designates a
general register containing the stride; if the R T 2
field is zero, general register 0 is not used, and a
stride of one is assumed.

The addresses of successive vector elements in
storage are A, A+wT, A+2wT, ... , where A is the
starting address, T is the stride, and w is the size of
each element in bytes. The value of w is 2, 4, or 8,
depending on whether the operation code specifies
the storage-operand elements to be half words ,
words, or doublewords.

Each address may be obtained by adding to the
previous address the value wT, which is the stride T

Chapter 2. Vector Facility 2-17

shifted to the left by one, two, or three bit posi
tions. Any carries or ones shifted out of bit posi
tion 0 are ignored. Depending on whether the
address size is 31 or 24 bits, the rightmost 31 or 24
bits of the sum are used as the storage address,
which is also returned to the general register con
taining the initial address; the leftmost one or eight
bit positions, respectively, of the register are set to
zeros. The register is thus updated after each unit
of operation to hold the address of the next
element, whether an element of the storage operand
has been accessed or not. All bits in the general
register containing the stride take part in the opera
tion' with the contents of the stride register
remaining unchanged.

A stride of zero (T = 0) means that the same
element location is used repeatedly. When storing
with a zero stride, only the last element stored is
retained in the addressed location.

A nonzero R T 2 field must not designate the same
general register as the RS2 field; likewise, the third
operand field of a QST-fonnat instruction must not
designate the same general register as the RS 2 field.
Otherwise, a specification exception is recognized,
and the operation is suppressed.

When the net count is not zero and one or more
elements have been accessed, the address is
updated. The leftmost bits of the RS2 register,
depending on the address size, are set to zeros; this
is done even when the address remains unchanged
because the stride is zero. No storage accesses are
made for elements that are skipped when the stride
is greater than one.

If no elements are processed because the net count
is zero at the start of instruction execution, no
access exceptions are recognized for the storage
operand. The storage address in the RS 2 register
and the change bits for the operand remain
unchanged, and no PER event for storage alteration
is indicated.

When the net count is not zero for the instructions
LOAD EXPANDED and STORE COMPRESSED, but no
elements are processed because the bits of the
vector-mask register which correspond to vector
register element locations to be loaded or stored are
all zeros, no operand storage accesses are made,
and the storage address in the RS 2 register remains
unchanged.

2-18 IBM Systemj370 Vector Operations

In either of these two cases where no elements are
processed, it is undefmed whether the leftmost n bit
positions of the RS2 register, where n is 1 or 8
depending on whether the address size is 31 or 24
bits, are set to zeros or remain unchanged.

When claSS-1M instructions are executed with the
vector-mask mode on, no access exceptions are
recognized for elements corresponding to zeros in
the vector-mask register.

Programming Notes:

1. For instructions which produce a vector result,
result elements corresponding to ones in the
vector-mask register are the same whether the
vector-mask mode is on or off. The vector
mask mode does affect the results produced by
instructions which reduce vector operands to a
partial sum (ACCUMULATE and MULTIPLY
AND ACCUMULATE) or to a single scalar result,
because those results may depend on the pres
ence or absence of each operand element.

2. The address-updating operation consists of
unsigned shifts and additions of binary integers
without overflow. Nevertheless, it is useful to
consider the stride as a signed quantity, because
adding the two's complement of an integer to
an unsigned binary number is the same as sub
tracting that integer.

Class-NC Instructions

Class-Nc instructions process a variable number of
bits in the vector-mask register but do not process
any arithmetic-vector elements. The number of
bits processed is determined by the vector count.
The instructions are not interruptible and do not
depend on the vector interruption index.

Class- NC instructions use the R RE or vs fonnat.
Class-NC instructions in the RRE format operate on
bits in the vector-mask register. Class-Nc instruc
tions in the vs format operate on bits in the vector
mask register and on a bit vector in storage.

When instruction execution is completed for an
operation that modifies the contents of the vector
mask register, any remaining rightmost bits of the
register are set to zeros.

When the vector count is zero, execution of the
instruction is completed without any bits being
processed. For an instruction of a type that modi-

fies bits in the vector-mask register when the vector
count is not zero, a vector count of zero causes all
bits of the vector-mask register to be set to zeros.
Any general register due to be modified remains
unchanged.

VS-Format Instructions

The vs format is used for instructions which
operate on bit vectors in storage and in the vector
mask register. All vs-format instructions are in
class NC.

The RS2 field designates a general register that con
tains the storage address of the frrst byte of the
second operand, the leftmost bit of which is the
frrst bit of the storage operand to be processed.
The frrst bit in the vector-mask register is the left
most bit, bit O. The operation proceeds with suc
cessive bits in contiguous bit locations of the
second operand and in the vector-mask register.

When instruction execution is completed, the
address of what would have been the next byte of
the second operand is placed in the general register
designated by RS 2; that address is the integral part
of the expression A + (C+ 7)/8, where A is the
starting address in the RS 2 register and C is the
vector count. The updated address occupies the
rightmost 31 or 24 bit positions of the RS2 register,
depending on the address size; the leftmost bit or
eight bits, respectively, are set to zeros.

If the vector count is not a multiple of 8, the
remaining bits in the last byte used in storage are
ignored on fetching and set to zeros on storing.

If no bits are processed because the vector count is
zero, no access exceptions are recognized for the
storage operand, the storage address in the general
register designated by the RS 2 field and the change
bits for the operand remain unchanged, and no PER

event for storage alteration is indicated. It is unde
fmed whether the leftmost n bit positions of the
RS 2 register, where n is I or 8 depending on
whether the address size is 31 or 24 bits, are set to
zeros or remain unchanged.

Programming Note: Only class-Nc instructions
which modify the vector-mask register set bits
beyond the active bits to zeros. This contrasts with
COMPARE (class Ie), which leaves bits in the
vector-mask register beyond the active bits

~nchanged, and RESTORE VMR (class NZ), which
19nores the vector count and replaces all the bits.

Instructions In Other Classes

Details of instructions in classes IG, IP, IZ, NZ, Nt,

and NO are contained in the individual instruction
descriptions.

Vector Interruptions

Interruptible Vector Instructions

All instructions which can operate on multiple ele
ments of arithmetic vectors in storage or in vector
registers are interruptible. Their execution generally
consists of multiple units of operation with inter
ruptions being permitted between these units of
operation.

Vector instructions which can operate on only one
arithmetic-vector element, or on none at all, are not
interruptible; that is, the entire execution consists of
one unit of operation. They include instructions
which operate on multiple bits in the vector-mask
register but not on elements of arithmetic vectors.

Conceptually, vector instructions are executed
sequentially, elements of the vector operands of a
single vector instruction are processed sequentially,
and any resulting exceptions are recognized sequen
tially. Any program interruption is due to the frrst
exception which is recognized and for which inter
ruptions are allowed.

At the time of an interruption, changes to register
contents, which are due to be made by an interrup
tible vector instruction beyond the point of inter
ruption, have not yet been made. Changes to
storage locations, however, which are due to be
made by an interruptible vector instruction beyond
the point of interruption, may have occurred for
one or more storage locations beyond the location
containing the element identified by the inter
ruption parameters, but not for any location
beyond the last element specified by the instruction
and not for any locations for which access
exceptions exist. Changes to storage locations or
register contents which are due to be made by
instructions following the interrupted instruction
have not yet been made at the time of interruption.

Chapter 2. Vector Facility 2-t 9

If an instruction is due to cause more than one
program interruption other than for PER events,
only the fITst one is indicated.

Units of Operation

The execution of an interruptible vector instruction
is considered to be divided into units of operation,
such that an interruption is permitted between
these units of operation.

The unit of operation for program interruptions,
other than for PER events alone, is one vector
element. After the last vector element has been
processed without a program interruption, the
instruction is completed in a fmal unit of operation.
This final unit of operation consists in advancing
the instruction address to the next instruction,
setting the vector interruption index to zero if the
instruction depends on the vector interruption
index, and, for some instructions, setting the condi
tion code.

Performing the fmal unit of operation cannot create
any program-interruption conditions. If a program
interruption occurs while processing the last
element of a vector, the instruction remains par
tially completed, because the fmal unit of operation
has not yet been performed. Thus, all elements of
a vector are processed alike, including the recogni
tion of any program exceptions.

Only the final unit of operation of advancing the
instruction address, setting the vector interruption
index to zero, and possibly setting the condition
code is performed without processing any elements,
when an interruptible instruction which depends on
the vector interruption index is executed in the fol
lowing situations:

• For claSS-1M and claSS-Ie instructions, the
vector interruption index equals or exceeds the
vector count.

• For the class-Ip instructiuns SUM PARTIAL
SUMS and ZERO PARTIAL SUMS, the vector
interruption index equals or exceeds the
partial-sum number.

• For the claSS-IG instruction LOAD BIT INDEX,
the specified bit count is zero, or the vector
interruption index equals the section size.

2-20 IBM System/370 Vector Operations

For interruptions due to an asynchronous condi
tion (external, I/0, repressible machine-check, or
restart), the unit of operation may be one or more
elements, depending on the model, the particular
instruction, and the condition causing the inter
ruption. If a PER event is held pending at the time
an instruction is due to be interrupted by such an
asynchronous condition, a program interruption for
the PER event occurs fITst, and the other inter
ruptions occur subsequently (subject to the mask
bits in the new psw) in the normal priority order.

PER events alone do not normally cause execution
of a vector instruction to be interrupted prema
turely. For possible exceptions, see the subsection
"Priority of Indication" of the section "Program
Event Recording" in Chapter 4, "Control," of IBM

370-XA Principles of Operation and IBM System/370
Principles of Operation.

Operand Parameters

Execution of interruptible vector instructions
involves the updating of information referred to as
the operand parameters. The operand parameters
include:

• The vector interruption index, for instructions
which depend on that index,

• The storage address in a general register, for
instructions in the QST and VST formats,

• The bit index and bit count in a general reg
ister, for LOAD BIT INDEX,

• The floating-point scalar operand, for
MAXIMUM ABSOLUTE, MAXIMUM SIGNED,
MINIMUM SIGNED, and SUM PARTIAL SUMS,

• The element numbers in a general-register pair,
if specified, for MAXIMUM ABSOLUTE,
MAXIMUM SIGNED, and MINIMUM SIGNED,

• The vector in-use bits, for CLEAR VR and
RESTORE VSR, and

• The save-area address and element number in
general registers, for RESTORE VR, SAVE
CHANGED VR, and SAVE YR.

Upon interruption, the operand parameters are
adjusted so as to indicate the extent to which
instruction execution has been completed. If the
instruction is reexecuted after the interruption, exe
cution resumes from the point of interruption.

Arithmetic Exceptions

The arithmetic exceptions which may be caused by
interruptible vector instructions are:

Exponent overflow
Exponent underflow
Fixed-point overflow
Floating-point divide
Significance
Unnonnalized operand

In the following respects, the arithmetic exceptions
are the same for vector instructions as for the corre
sponding scalar instructions: the program mask in
the psw controls the occurrence of a program inter
ruption for fixed-point overflow, exponent under
flow, or significance; the result for the current target
element is the same as the result for the corre
sponding scalar operation; and bits 8-15 of the
program-interruption code indicate the type of
exception.

The binary ADD, LOAD COMPLEMENT, LOAD POSI

TIVE, and SUBTRACT instructions for vectors do not
indicate fixed-point overflow when a program inter
ruption is disallowed by the fixed-point-overflow
mask in the PSW, unlike the corresponding scalar
instructions which can indicate overflow by setting
the condition code. Other differences, including the
definition of the unnonnalized-operand exception,
which does not apply to scalar instructions, are
described in the following sections.

Exception-Extension Code

When an arithmetic exception is recognized during
execution of an interruptible vector instruction, a
nonzero exception -extension code is stored in bits
0-7 of the program-interruption code. The
exception -extension code indicates whether the
interruption was due to a noninterruptible scalar
instruction or an interruptible vector instruction,
whether the result, if any, was placed in a scalar or
vector register, the width of the result, and the
number of the register.

The arithmetic-partial-completion bit, bit 0 of the
program-interruption code, indicates that the
exception -extension code has been stored. If the
arithmetic exception is due to an interruptible
vector instruction and causes an interruption which
leaves instruction execution partially completed, bit
o is set to one, and bits 1-7 contain further infor-

mation. If a scalar instruction was executed, bits
0-7 are set to all zeros.

If not all zeros, the information in the exception
extension code is as follows:

I avwrrrr I
e 7

Bit 0 (a) is the arithmetic-partial-completion bit;
when one, it indicates that the interrupted instruc
tion was partially completed and that bits 1-7 have
the meaning shown below. If bit 0 is zero, bits 1-7
are also zeros.

Bit J (v), when one, indicates that the arithmetic
result is in vector registers. When bit 1 is zero, the
arithmetic result is in a scalar register.

Bits 2-3 (ww) contain the width of the arithmetic
result:

01 4-byte result (short or binary)
10 8-byte result (long)

Bits 4-7 ("") contain the register number of the
result register designated by the interrupted instruc
tion.

Types of Ending for Units of Operation

When execution of an interruptible vector instruc
tion is interrupted, the current unit of operation
may end in one of five ways: completion, inhibi
tion, nullification, suppression, or termination.
Termination of a unit of operation of a vector
instruction causes termination of the instruction; it
can occur only as the result of an exigent machine
check and will not be discussed further.

When an interruption occurs after completion, inhi
bition, nullification, or suppression of a unit of
operation, all prior units of operation have been
completed. The effect of the interruption on the
instruction address in the old psw stored during the
interruption, on the operand parameters, and on
the result location for the current unit of operation
is as follows:

Completion: The instruction address in the old
psw designates the interrupted instruction or an
EXECUTE instruction, as appropriate. The result
location for the current unit of operation contains

Chapter 2. Vector Facility 2-21

the new result, as dermed for the type of exception.
The operand parameters are adjusted such that, if
the instruction is reexecuted, execution of the inter
rupted instruction is resumed with the next unit of
operation.

Inhibition: Same as completion, except that the
result location for the current unit of operation
remains unchanged. The exception-extension code
is stored the same as if a result had been placed in
that location.

Nullification: The instruction address in the old
psw designates the interrupted instruction or an
EXECUTE instruction, as appropriate. The result
location for the current unit of operation remains
unchanged. The operand parameters are adjusted
such that, if the instruction is reexecuted, execution
of the interrupted instruction is resumed with the
current unit of operation. Interruption occurs
before any arithmetic operation on the current
element has started. Because access exceptions
which nullify execution may be recognized for ele
ments beyond the current unit of operation, access
to the current element mayor may not be the
cause of the exception.

Suppression: Same as nullification, except that the
instruction address in the old psw designates the
next sequential instruction. Because access
exceptions which suppress execution may be recog
nized for elements beyond the current unit of oper
ation, access to the current element mayor may
not be the cause of the exception.

The following chart summarizes the differences
between the four types of ending for a unit of oper
ation:

Unit of Instruction Operand Current
Operation Address Parameters Result
Is at Location

Completed Current Next Changed
Instruction Element

Inhibited Current Next Unchanged
Instruction Element

Null i fi ed Current Current Unchanged
Instruction Element

Suppressed Next Current Unchanged
Instruction Element

2-22 IBM Systcm/370 Vector Operations

Programming Notes:

1. Mter a program interruption due to an arith
metic exception, an interruption handler may
perfonn any desired fixup of the result before
resuming execution of the program.

2. When an instruction which depends on the
vector interruption index is interrupted because
of an arithmetic exception for the last element
to be processed by the instruction, and the
instruction is later reexecuted, it is completed
by advancing the instruction address, setting
the vector interruption index to zero, and pos
sibly setting the condition code, without further
processing or program interruptions for this
instruction. The same may happen after the
vector interruption index has been set to too
high a value by the instruction RESTORE VSR.

If the last element processed before an inter
ruption due to an arithmetic exception is the
last element of the vector register, then the
vector interruption index contains the section
size.

3. The floating-point-divide and unnonnalized
operand exceptions are dermed to inhibit exe
cution of the current unit of operation.
Inhibition differs from completion only in that
no result is dermed for these exceptions, and
that the result location for the current element
remains unchanged. Inhibition differs from
nullification in that an arithmetic operation has
been performed for the current element and the
operand parameters have been adjusted to
point to the next element.

4. When an arithmetic exception is recognized
and bit I of the exception-extension code is
one, the number of the associated result
element in the vector registers is always one less
than the current vector interruption index, since
all arithmetic exceptions cause either com
pletion or inhibition of the current unit of
operation.

Effect of Interruptions during
Execution

Interruptions occurring before instruction execution
has begun, or after completion of the entire instruc
tion, are the same as for nonvector instructions.

The effect of interruptions which occur during exe
cution of vector-facility instructions depends on the
type of ending. Figure 2-7 shows the effect for
each interruption type that can occur during exe
cution.

Setting of Instruction Address

The instruction address in the old psw designates
the interrupted vector-facility instruction or an
EXECUTE instruction, as appropriate, after com
pletion, inhibition, or nuIlification of a unit of
operation. The instruction address designates the
next sequential instruction after suppression of a
unit of operation.

Setting of Instruction-Length Code

When a program interruption occurs during the
execution of an interruptible vector instruction, the
instruction-length code (ILC) that is stored is 2 or 3,
depending on whether the instruction length is two
or three halfwords, respectively. When the vector
instruction is executed under the control of an
EXECUTE instruction, the ILC is always 2.

The ILC is stored as described regardless of whether
the instruction address is advanced to the next
instruction (the unit of operation is suppressed) or
the instruction address designates the interrupted
instruction (the unit of operation is completed,
inhibited, or nullified).

For information on the ILC setting for a program
interruption that occurs while fetching the instruc
tion, see the section "Instruction-Length Code" in
Chapter 6, "Interruptions," of IBM 370-XA Princi
ples of Operation and IBM System/370 Principles of
Operation.

Programming Note: Unless an interruption occurs
during instruction fetching and prevents interpreta
tion of the instruction, the instruction-length code
is determined entirely by the leftmost two bits of
the operation code. The ILC value does not depend
on whether the operation code is assigned, or
whether the instruction is installed or executed.

Exception-
Type Extension
of Code

Type of Interruption Ending Stored?

Program

Addressing S No
Exponent overflow C Yes
Exponent underflow C Yes
Fixed-point overflow C Yes
Floating-point divide I Yes
Page translation N No
Protection S No
Segment translation N No
Significance C Yes
Translation specification S No
Unnormalized operand I Yes
PER event alone C No
PER event with another
exception E E

External. ILO. Re~ressible
Machine Check l and Restart

~

All C No

Ex~lanation:

C Completed unit of operation
E Action determined by the exception

reported with the PER event
I Inhibited unit of operation
N Nullified unit of operation
S Suppressed unit of operation

Figure 2-7. Interruptions during Execution of Inter-
ruptible Vector-Facility Instructions

Thus, the ILC is set to 2 or 3 for a vector instruc
tion, depending on the instruction length, even
when a vector-operation exception or an operation
exception is recognized.

Setting of Storage Address

When a vector-facility instruction which updates a
vector-operand address in a general register is inter
rupted, the address in the general register has been
updated to the point of interruption.

Mter completion or inhibition of a unit of opera
tion, the updated address designates the next

Chapter 2. Vector Facility 2-23

operand element in storage following the one
causing the interruption.

After nullification or suppression of a unit of oper
ation, the updated address designates the current
operand element; this mayor may not be the same
as the element that caused the interruption, because
of access exceptions which may be recognized for
elements beyond the last one processed. If the
exception occurs before the frrst element has been
processed, the entire instruction is nullified or sup
pressed, and the general register containing the
storage address remains unchanged.

When the entire instruction has been completed
before an interruption takes place, the updated
address designates the operand element following
the last element processed.

Setting of Vector Interruption Index

At the start of execution of an interruptible vector
instruction which depends on the vector inter
ruption index, the vector interruption index con
tains the number of the next element to be
processed in the designated vector registers or the
vector-mask register. When such an instruction is
interrupted, the vector interruption index is set to
indicate the element within the registers at which
execution may subsequently be resumed.

After completion or inhibition of a unit of opera
tion, the vector interruption index identifies the
next element, if any, to be processed after the one
causing the interruption.

After nullification or suppression of a unit" of oper
ation, the vector interruption index identifies the
current element; this mayor may not be the
element which caused the interruption, because of
access exceptions which may be recognized for ele
ments beyond the last one processed.

During the fmal step of completing the entire
instruction, the vector interruption index is set to
zero. This fmal step cannot cause any further inter
ruptions.

When the entire instruction is nullified or sup
pressed, the vector interruption index remains
unchanged. It also remains unaffected by the inter
ruption of interruptible vector-facility instructions
which do not depend on the vector interruption
index and which do not set it explicitly. The vector

2-24 IBM System/370 Vector Operations

interruption index is explicitly set to zero by CLEAR

VR and to a specified value by RFSTORE VSR.

Programming Notes:

1. Proper resumption of an interrupted instruction
depends on the vector interruption index and
the appropriate general registers being left
unchanged.

2. If it is desired not to resume a program that
was interrupted during execution of a vector
facility instruction but, instead, to store the
current vector-register contents by means of
vector-store instructions, or to load different
data using vector-load instructions, care must
be taken to set the vector interruption index to
zero explicitly. This may be done with a
CLEAR VR instruction; specifying a second
operand of zeros leaves the vector-register con
tents urtchanged.

Program-Interruption Conditions

When the vector facility is installed, two additional
program exceptions can occur: unnormalized
operand and vector operation. A vector-operation
exception may also occur on cpus without the
vector facility. All arithmetic exceptions for vector
instructions cause an exception -extension code to
be stored as part of the program-interruption code.
There are also modifications to access exceptions
and to some of the arithmetic exceptions, and addi
tional causes for the specification exception.

Access Exceptions for Vector Operands

When a vector-facility instruction specifies an arith
metic or bit vector in storage, access exceptions
may be recognized for one or more storage
locations beyond the location containing the
element being processed, but not for any location
beyond the last element specified by the instruction.

For contiguous operands, that is, for arithmetic
vectors which are addressed sequentially with a
stride of one and for bit vectors, access exceptions
are not recognized more than 2K bytes beyond the
current location. For noncontiguous operands,
that is, for vectors which are addressed sequentially
with a stride not equal to one and those which are
loaded or stored by indirect element selection,
access exceptions are not recognized more than
seven element locations beyond the current one.

No access exceptions are recognized for the storage
location of an operand when:

• No vector elements are to be processed because
the net count is zero,

• The instruction operates under the control of
the vector-mask register and the location of a
vector element in storage corresponds to a zero
mask bit,

• For the instruction LOAQ_ BIT INDEX, the speci
fied bit count is zero or the vector interruption
index equals the section size,

• For the instructions RESTORE VR and SAVE VR,

the vector in-use bit associated with the speci
fied vector-register pair is zero, or

• For the instruction SAVE CHANGED VR, the
vector change bit associated with the specified
vector-register pair is zero.

Programming Note: Interruptible nonvector
instructions, such as MOVE LONG, permit access
exceptions to be recognized no more than 2K byte
locations beyond the location of the byte being
processed, which permits access exceptions for a
maximum of four operand pages, two for each
operand. This is in addition to access exceptions
during instruction fetching of up to four pages
when the instruction is the target of EXECUTE.

Interruptible vector instructions permit access
exceptions to be recognized for up to eight operand
pages, in addition to a possible four instruction
pages. The eight operand pages are not necessarily
contiguous.

Exponent-Overflow Exception

If, during execution of a MULTIPLY AND ACCUMU

LATE, MULTIPLY AND ADD, or MULTIPLY AND

SUBTRACT instruction, the multiplication of an
element pair results in an exponent overflow, only
the multiplication part of the unit of operation is
completed, and the addition or subtraction part is
not performed. The unit of operation is completed
by placing the overflowed product, as defmed for
the corresponding scalar floating-point multiply
instruction, in the result location.

Exponent-Underflow Exception

If, during execution of a MULTIPLY AND ACCUMU

LATE, MULTIPLY AND ADD, or MULTIPLY AND

SUBTRACT instruction, the multiplication of an
element pair results in an exponent underflow, no
interruption occurs, regardless of the value of the

exponent-underflow mask in the psw. In this case,
a true zero is added in place of the product, and the
operation continues.

Floating-Point-Divide Exception

When a floating-point-divide exception is recog
nized during execution of a vector floating-point
DIVIDE instruction, the unit of operation is inhib
ited.

Specification Exception

Specification exceptions are recognized for the fol
lowing causes in addition to the causes listed in the
section "Specification Exception" of Chapter 6,
"Interruptions," of IBM 370-XA Principles of Opera
tion and IBM System/370 Principles of Operation.

• An invalid vector-register number is designated
by a VR field of a vector instruction.

• The stride of an instruction in the QST or VST

format is specified to be in the same general
register as the storage address.

• The third operand of an instruction in the QST

format is specified to be in the same general
register as the storage address.

• The instruction RESTORE VSR attempts to load
values into the vector-status register that are

Other than all zeros in bits 0-14,

Greater than the section size in the vector
count field (bits 16-31), or

Greater than the section size in the vector
interruption-index field (bits 32-47).

• The instruction RESTORE VR, SAVE CHANGED

VR, or SAVE VR specifies a number in the
element-number field that is equal to or greater
than the section size, or a number in the
VR -pair field that is other than an even
number from 0 to 14.

• The instruction EXTRACT ELEMENT or LOAD

ELEMENT specifies an element number in the
second operand that is equal to or greater than
the section size.

Chapter 2. Vector Facility 2-25

Unnormalized-Operand Exception

An unnormalized-operand exception is recognized
when, in a vector floating-point divide or multiply
operation, a source-operand element has a nonzero
fraction with a leftmost hexadecimal digit of zero.
The vector floating-point instructions which may
cause an unnormalized-operand exception to be
recognized are DIVIDE, MULTIPLY , MULTIPLY AND

ACCUMULATE, MULTIPLY AND ADD, and MUL

TIPLY AND SUBTRACT.

The unnormalized-operand exception is recognized
for one operand element even when there is
another operand that is zero, except that the
floating-point-divide exception, which takes preced
ence, is recognized instead when the zero element is
the divisor of a vector DIVIDE instruction.

The unit of operation is inhibited.

The instruction-length code is 2.

The unnormalized-operand exception is indicated
by a program -interruption code of XX I E hex (or
XX9E hex if a concurrent PER event is indicated),
where XX is the exception-extension code.

Vector-Operation Exception

A vector-operation exception is recognized when a
vector-facility instruction is executed while bit 14 of
control register 0 is zero on a CPU which has the
vector facility installed and available. The vector
operation exception is also recognized when a
vector-facility instruction is executed and the vector
facility is not installed or available on this CPU, but
the facility can be made available to the program
either on this CPU or on another CPU in the config
uration.

When a vector-facility instruction is executed, and
the vector facility is not installed on any CPU which
is or can be placed in the configuration, it depends
on the. model whether a vector-operation exception
or an operation exception is recognized.

The operation is nullified when the vector
operation exception is recognized.

The instruction-length code is 2 or 3.

2-26 IBM System/370 Vector Operations

The vector-operation exception is indicated by a
program-interruption code of 0019 hex (or 0099
hex if a concurrent PER event is indicated).

Programming Note: The defmition permits a
vector-operation exception to occur even when no
CPU in the configuration has the vector facility
installed. See the section "Vector-Operation
Control" on page 2-6 for more information.

Priority of Vector Interruptions

Multiple program-interruption conditions for
vector-facility instructions are recognized, one after
another, according to the same priority rules as
apply to other instructions, together with the fol
lowing rules:

• The unnormalized-operand exception has the
same priority with respect to the nonarithmetic
exceptions as the other arithmetic exceptions
which can occur for vector instructions (expo
nent overflow, exponent underflow, fixed-point
overflow, floating-point divide, and signif
icance).

When more than one arithmetic-exception con
dition is recognized at the same time, unnorma
lized operand takes precedence over the
exponent-overflow and exponent-underflow
exceptions; the floating-point-divide exception
takes precedence over the unnormalized
operand exception.

• The vector-operation exception has the same
priority as the operation exception; the two
exceptions are mutually exclusive.

• An access exception caused by the operand of
RESTORE VSR takes precedence over a specifica
tion exception caused by the same operand.

See also the section "Multiple Program
Interruption Conditions" in Chapter 6, "Inter
ruptions," of IBM 370-XA Principles of Operation
and IBM System/370 Principles of Operation.

Program Switching

The following instructions are provided to save,
restore, and clear the vector-facility registers when
switching from one program to another. The
instructions marked "privileged" are restricted to
programs operating in the supervisor state.

CLEAR VR
RFSTORE VAC (privileged)
RFSTORE VMR
RFSTORE VR
RFSTORE VSR
SAVE CHANGED VR (privileged)
SAVE V AC (privileged)
SAVE VMR
SAVE VR
SAVE VSR

Saving and restoring of the vector registers is
further assisted by their associated vector in-use bits
and vector change bits. When the vector in-use bit
for a vector-register pair is zero, the saving and sub
sequent restoring of those registers are eliminated,
thus reducing the program-switching time, because
the registers are known to contain all zeros.

For programs operating in the supervisor state, the
vector change bits may serve to reduce switching
time still further by permitting the saving of a
vector-register pair to be eliminated when its vector
in-use bit is one but its vector change bit is zero.
Although such a vector-register pair is in use, its
contents are known not to have been changed if its
vector change bit has remained zero since it was
last restored from its save area; consequently, the
previously saved information is still valid.

The vector change bits do not affect the restoring
of vector registers and, therefore, do not help to
reduce the restore time. When an interruption
handling portion of the control program restores
previously saved registers, restoring the contents of
a pair of vector registers is not considered a change.
Hence, executing RESTORE VR in the supervisor
state is defmed not to alter the vector change bits.
Executing RESTORE VR in the problem state,
however, sets the vector change bit of the affected
vector-register pair to one, so as to protect the
integrity of its use by the control program.

Program Use of the Restore and
Save Instructions

The instructions RESTORE VR, SAVE CHANGED VR,
and SAVE V Rare defmed to be interruptible and to
restore or save only a single pair of vector registers
each time they are executed. When more than one
vector-register pair is to be restored or saved, the
appropriate instruction must be used in a program
ming loop as follows.

First, the even general register to be specified by the
instruction should be set to the beginning of the

save area for the vector registers, and the odd
general register should be set to zeros. Then the
restore or save instruction should be executed. It
should be followed by a BRANCH ON CONDITION
with a mask of 5 back to the restore or save
instruction. This causes each vector-register pair, in
tum, to be restored or saved if its vector in-use bit
(or vector change bit for SAVE CHANGED VR) is
one, or to be skipped if the bit is zero.

Restore Operations

To restore the vector-status register and the vector
registers, the instruction RESTORE VSR should be
executed before the above programming loop for
RESTORE YR. A complete set of restore operations
also includes RESTORE- VMR and RFSTORE V AC.
RESTORE V AC should be the last restore instruction
executed to avoid having the others advance the
vector-activity count unnecessarily.

Save Operations

A complete set of save operations consists of the
instruction SAVE VAC, followed by a loop that uses
either SAVE VR or SAVE CHANGED VR, and then the
instructions SAVE VMR and SAVE VSR.

SAVE V AC is executed frrst, so as to avoid having
the vector-activity count advanced by the other
save operations, especially at a time when no vector
operations were performed since the last time that
the registers were restored.

Programs running in either the problem state or the
supervisor state may use the instruction SAVE VR in
the loop to save the entire contents of all vector
register pairs for which the vettor in-use bits are
ones.

Alternatively, when a program using vector-facility
instructions is interrupted and the vector registers
are to be placed back into an area from which they
were previously restored, an interruption handler in
the supervisor state may use the privileged instruc
tion SAVE CHANGED VR in the loop. SAVE VSR
should be executed only after the vector registers
have been saved, so that the vector change bits,
which SAVE CHANGED VR sets to zeros, are saved
as zeros.

SAVE VR should be used instead of SAVE CHANGED
VR when the vector information is to be saved in
an area which may not be the one from which the

Chapter 2. Vector Facility 2-27

vector registers were last restored. Thus, SAVE VR

is the appropriate instruction for a machine-check
interruption handler.

Clear Operations

The instruction CLEAR VR may be used to clear all
or selected pairs of vector registers and to make
sure that the vector interruption index is set to
zero.

CLEAR VR may be executed by the control program
to ensure that all vector registers are cleared before
turning over the vector facility to a new program
requesting vector operations. It should also be exe
cuted by the vector program to clear a vector
register pair that is not needed again soon. Both
measures serve to avoid unnecessary saving and
restoring.

When a vector-register pair has been cleared by
means of CLEAR VR, and the corresponding vector
in-use bit is zero, all elements in those registers
contain zeros. The zero elements in a cleared reg
ister are valid operands. Such use of a cleared
vector register or register pair as a source of all
zeros does not set the associated vector in-use bit
to one. One or more individual elements of a
cleared vector-register pair may be replaced by an
instruction such as LOAD ELEMENT, but as soon as
any element in either or both registers of the pair
has been changed, its vector in-use bit and vector
change bit are set to ones, and the register pair is
no longer considered cleared. The vector registers
are considered to have been changed even when the
value loaded is all zeros.

The instruction RESTO RE VS R also clears a vector
register pair when it fmds that the associated vector
in-use bit is one and must be set to zero.

When either CLEAR VR or RESTORE VSR fmds a
vector in-use bit that is already zero, the instruction
does not clear the vector-register pair again. If
either instruction is interrupted and later reexe
cuted, instruction execution is resumed from the
beginning, but the instruction skips over registers
that were cleared before the interruption and have
remained cleared.

2-28 IBM System/370 Vector Operations

Save-Area Requirements

To make programs that save and restore registers of
the vector facility model-independent, the sizes and
addresses of the save areas should be computed at
execution time using the current section size, as
obtained by the instruction STORE VECTOR PARAM

ETERS.

Figure 2-8 shows the save-area SIZes and the
boundary alignment for RESTORE VR, SAVE

CHANGED VR, and SAVE VR as a function of the
section size. Boundary alignment requires that the
address of a vector-register save area be a multiple
of the integral boundary shown in the second
column (8 times the section size). The save-area
size is given as the number of bytes required to
save all 16 vector registers; when fewer consecutive
vector registers are to be saved, this area may be
reduced correspondingly. The figure also shows the
vector-mask register (VMR), which requires 4Z bits
(2/2 bytes), where Z is the section size; the VMR

save area has no alignment requirement.

Vector Registers Bytes for
Vector-

Section Integral Bytes for Mask
Size Boundary 16 VRs Register

(Z) (8Z) (64Z) (Z/2)

8 64 512 4
16 128 1,O24 8
32 256 2,O48 16
64 512 4,O96 32

128 1,O24 8,192 64
256 2,O48 16,384 128
512 4,O96 32,768 256

Figure 2-8. Save-Area Requirements

Relationship to Other Facilities

Program-Event Recording (PER)

The following PER events are recognized for
instructions of the vector facility:

Instruction fetching
Storage alteration

Whether PER general-register-alteration events are
recognized for vector-facility instructions is unde
fined.

When the net count is zero for IC- or 1M -class
instructions, when the vector count is zero for
Nc-class instructions, or when all active bits in the
vector-mask registers are zeros for the STO RE
MATCHED instruction, no PER storage-alteration
events are recognized.

When an interruptible vector instruction is inter
rupted and PER storage alteration applies to storage
locations corresponding to vector elements that are
due to be changed by the instruction beyond the
point of interruption, PER storage alteration is indi
cated if any such storage change actually occurred
and may be indicated even if such a change did not
occur. PER storage alteration is only recognized if
no access exception exists for such locations at the
time that the instruction is executed.

Vector-Store Operations

As for nonvector instructions, the processmg of
vector-facility instructions generally appears to a
program running on the same CPU to follow the
conceptual sequence: The execution of one
instruction appears to precede the execution of the
following instruction, the processing of one vector
element appears to precede the processing of the
following vector element, and an interruption takes
place between instructions or between units of
operation of interruptible instructions. As dis
cussed below, however, this conceptual sequence is
not necessarily observed by programs on other
CPus, by channel programs, or when vector-facility
instructions are used to store into the instruction
stream.

Storage-Operand Consistency

For all vector-facility instructions, multiple accesses
may be made to all or SOlne of the bytes of a
storage operand.

Thus, unlike instructions which make only single
access references, intermediate results of a vector
facility store instruction may be observed by
channel programs and by other CPU programs
accessing the same storage location concurrently.

When an interruptible store-type vector instruction
is interrupted and its execution is later resumed, a
store performed by the instruction before its inter
ruption may be repeated when execution is
resumed.

(See the section "Storage-Operand Consistency" in
Chapter 5, "Program Execution," of IBM 370-XA
Principles of Operation and IBM System/370 Princi
ples of Operation.)

Storing into Instruction Stream

When a vector-facility instruction is executed that
causes storing into a location from which subse
quent instructions have been prefetched, the copies
of the prefetched instructions are not necessarily
changed. (See the section "Instruction Fetching" in
Chapter 5, "Program Execution," of IBM 370-XA
Principles of Operation and IBM System/370 Princi
ples of Operation for a complete list of functions
which cause all copies of prefetched instructions to
be discarded.)

Resets

In regard to the operation of the vector facility,
CPU reset terminates execution of the current vector
instruction and any manual operation. Pending
machine-check -interruption conditions affecting the
vector facility and check-stop states are cleared. All
copies of prefetched vector-facility instructions or
operands are discarded.

Initial CPU reset performs the functions of CPU
reset mentioned above and initializes the vector
control bit, bit 14 of control register 0, to zero.

The registers of the vector facility (vector-status
register, vector-mask register, vector-activity count,
and all vector registers) are cleared to zero by clear
reset and power-on reset.

Machine-Check Handling

Two bits of the machine-check-interruption code
are associated with the vector facility: vector
facility failure and vector-facility source. The
vector-facility-failure bit indicates to the program
that vector-facility instructions should no longer be
used. The vector-facility-source bit is a modifier to
instruction-processing damage, which indicates that
the vector facility is the error source.

These bits may be set to ones regardless of whether
the vector-control bit, bit 14 of control register 0, is
one or zero.

Chapter 2. Vector Facility 2-29

Vector-Facility Failure

Bit 6 (VF) of the machine-check-interruption code,
when one, indicates that the vector facility has
failed to such an extent that the service processor
has m:;tde the facility not available.

This bit is not meaningful when system damage, bit
o of the machine-check-interruption code, is one.

Vector-facility failure is a repressible condition,
which has no subclass mask.

Vector-Facility Source

Bit 13 (vs) of the machine-check-interruption code,
when one, indicates that the vector facility is the
source of. the reported machine-check condition.
Vector-facility source is reported together with
instruction-processing damage. When this bit is
one, the contents of vector-facility registers may
have been damaged or may contain incorrect infor
mation with no preserved error.

This bit is not meaningful when vector-facility
failure, bit 6, is one.

Validation of Vector-Facility Registers

The following procedure can be used to validate the
registers associated with the vector facility. The
program should ftrst execute RESTORE VSR, speci
fying all vector in-use bits as ones. This validates
the vector-status register by setting it without ftrst
inspecting the previous contents. The program
should then execute RESTORE VAe, RESTORE VMR,

and RESTORE VR to load and validate the vector
activity count, the vector-mask register, and the
vector registers.

2-30 IBM System/370 Vector Operations

Programming Notes:

1. When a vector-facility-failure condition is indi
cated, the program should stop using any func
tions associated with the vector facility. Thus,
no vector-facility instructions should be exe
cuted; the vector-control bit, bit 14 of control
register 0, should be set or remain set to zero' ,
and the registers associated with the vector
facility should not be validated or saved.

2. Although the purpose of the vector-facility
source bit is to indicate that the vector facility
is the source of the instruction-processing
damage, it is possible in some situations that
the bit may be ~~t to one when failures have
occurred both in the vector facility and in other
parts of the CPU.

3. ~ince a vector-facility-source condition may
tmply that vector-facility registers have been
damaged, the registers should be validated
before further use is attempted. If the vector
control bit is zero, it must be set to one to
perform the validation.

4. The instruction RESTORE VR is the only
instruction which validates the vector registers,
and then only if their vector in-use bits are
ones. In particular, the instruction CLEAR VR

should not be used for validation, because this
instruction may be implemented for perform
ance reasons such that the registers are not
actually cleared unless the program subse
quently attempts to load or modify them.
With this design, when the program next loads
the vector register following a CLEAR VR

instruction, only those elements which are not
loaded, if any, are actually cleared at that time.
Except for the possible effect on machine-check
handling, this implementation gives the same
results as if the instruction actually cleared the
registers.

Chapter 3. Vector-Facility Instructions

ACCUMULATE 3-2
ADD 3-3
AND 3-4
AND TO VMR 3-5
CLEAR VR 3-5
COMPARE 3-5
COMPLEMENT VMR 3-7
COUNT LEFT ZEROS IN VMR 3-7
COUNT ONES IN VMR 3-7
DIVIDE 3-8
EXCLUSIVE OR 3-9
EXCLUSIVE OR TO VMR 3-9
EXTRACT ELEMENT 3-9
EXTRACT VCT 3-10
EXTRACT VECTOR MASK MODE 3-10
LOAD 3-10
LOAD BIT INDEX 3-11
LOAD COMPLEMENT 3-14
LOAD ELEMENT 3-14
LOAD EXPANDED 3-14
LOAD HALFWORD 3-15
LOAD INDIRECT 3-16
LOAD INTEGER VECTOR 3-16
LOAD MATCHED 3-17
LOAD NEGATIVE 3-18
LOAD POSITIVE 3-18
LOAD VCT AND UPDATE 3-19
LOAD VCT FROM ADDRESS 3-19
LOAD VMR 3-20
LOAD VMR COMPLEMENT 3-20
LOAD ZERO 3-20
MAXIMUM ABSOLUTE 3-21

This chapter describes the instructions of the vector
facility. When the operation on each element of a
vector is the same as for a counterpart scalar
instruction, the vector-instruction description does
not repeat these details. The complete defmition in
these cases can be obtained from the description of
the scalar instruction in IBM 370-XA Principles of
Operation and IBM System/370 Principles of Opera
tion.

Summary lists of the vector-facility instructions and
their mnemonics, formats, and operation codes are
contained in Appendix B. These lists also indicate
the exceptional conditions in operand designations,
data, or results that cause a program interruption.

MAXIMUM SIGNED 3-21
MINIMUM SIGNED 3-21
MULTIPLY 3-22
MULTIPLY AND ACCUMULATE 3-23
MULTIPLY AND ADD 3-24
MULTIPLY AND SUBTRACT 3-24
OR 3-26
OR TO VMR 3-26
RESTORE VAC 3-26
RESTORE VMR 3-27
RESTORE VR 3-27
RESTORE VSR 3-28
SAVE CHANGED VR 3-29
SAVE VAC 3-30
SAVE VMR 3-30
SAVE VR 3-31
SAVE VSR 3-31
SET VECTOR MASK MODE ... 3-32
SHIFT LEFT SINGLE LOGICAL 3-32
SHIFT RIGHT SINGLE LOGICAL 3-32
STORE 3-32
STORE COMPRESSED 3-33
STORE HALFWORD 3-33
STORE INDIRECT 3-34
STORE MATCHED 3-34
STORE VECTOR PARAMETERS ... 3-35
STORE VMR 3-35
SUBTRACT 3-35
SUM PARTIAL SUMS 3-36
TEST VMR 3-37
ZERO PARTIAL SUMS 3-37

Condition-code settings are summarized in
Appendix C.

In many cases, several related vector operations are
described under a single name. For example, MUL

TIPL Y in the QST format is described as follows:

Mnemonic VRl,QRJ,RS2(RT2) [QST]

Op Code I QR'i RT2i VR1i RS2i

o
Mnemonic Op Code
VMS 'A4A2'
VMDS 'A492'
VMES 'A482'

16 20 24 28 31
Operands
Binary
Long
Short multiplier and
multiplicand, long product

Chapter 3. Vector-Facility Instructions 3-1

This figure is a "shorthand" representation for three
different instructions, one binary and two floating
point multiply instructions. It replaces the fol
lowing set of three figures:

VMS VRl,GR3,RS2(RT2)
[OST, Binary operands]

o 16 20 24 28 31

VMDS VRl,FR3,RS2(RT2)
[OST, Long operands]

'A492' I FR31 RT21 VR,I RS21

0 16 20 24 28 31

VMES VRl,FR3,RS2(RT2)
[OST, Short multiplier and
multiplicand, long product]

'A482' I FR31 RT21 VR,I RS21

0 16 20 24 28 31

Thus, the term "Binary" under the heading "Oper
ands" for the frrst instruction indicates that the
vector elements are 32-bit signed binary integers,
that the scalar operand is taken from a general reg
ister, and that the operation on each element pair is
performed in the same manner as the scalar MUL

TIPLY instruction described in Chapter 7, "General
Instructions," of IBM 370-XA Principles of Opera
tion and IBM System/370 Principles of Operation.

Likewise, the terms "Short" or "Long" under the
heading "Operands" for the second and third
instructions indicate that the vector elements are
floating-point numbers in the short or long
floating-point format, respectively, that the scalar
operand is taken from a floating-point register, and
that the operation on each element pair is per
formed in the same manner as the corresponding
scalar MULTIPLY instruction described in Chapter 9,
"Ploating-Point Instructions," of IBM 370-XA Prin
ciples of Operation and IBM System/370 Principles
of Operation.

Except for the fteW suffixes Q and s, which indicate
scalar-vector operations, each mnemonic for a
vector instruction is generally the same as the mne
monic for the counterpart scalar instruction pre
fixed with a v.

3-2 IBM System/370 Vector Operations

For several of the load and store instructions, the
same instruction is used for vectors in the short
floating-point format and in the 32-bit binary
integer or logical format. Separate mnemonics are
assigned to the short and binary-logical formats for
programming convenience, but the op codes for the
two mnemonics are the same when the function is
the same.

Programming Note: Programming notes in this
section, as well as the examples in Appendix A,
assume normal execution of vector instructions. In
particular, they assume that the program does not
alter the vector interruption index, so that each
interruptible vector instruction begins its operation
on the first element or element pair with the vector
interruption index set to zero. If the instruction is
interrupted for a cause other than an arithmetic
exception, and if its execution is subsequently
resumed, the vector interruption index and all other
parameters are assumed to have been restored to
the value they had at the time of interruption, so
that the result is the same as if the interruption had
not occurred.

ACCUMULATE

Mnemonic VRl,RS2(RT2) [VST]

Op Code 1////1 RT21 VR,I RS21

o
Mnemonic
VACD
VACE

Op Code
'A417'
'A407'

16 20 24 28 31
Operands
Long operand and sum
Short operand, long sum

Mnemonic VRl,VR2 [VV]

Op Code j////////j VR,j VR2j

o
Mnemonic
VACDR
VACER

Op Code
'A517'
'A507'

16 24 28 31
Operands
Long operand and sum
Short operand, long sum

Partial sums of the elements of the second-operand
vector are accumulated by adding the second
operand elements to the contents of element posi
tions 0 to p-l of the frrst operand. The partial-sum
number p depends on the model.

The operation proceeds in an ascending sequence
of element numbers. The J-th element of the
second operand is added to the frrst -operand
element at a position which is the remainder of
dividing I by p, where I varies from X to C-I, X is

the initial vector interruption index (normally zero),
and C is the vector count. The operation accumu
lates C-X elements of the second operand.

Thus, second-operand elements 0, p, 2p, ... are
accumulated into position 0 of the frrst operand;
second-operand elements 1, p+ 1, 2p+ 1, ... are
accumulated into position 1; and so forth. The
contents of first-operand element positions above
p-l remain unchanged.

Every addition is performed in the same manner as
for the scalar ADD NORMALIZED (ADR) instruction,
where the second-operand elements for v ACE and
v ACER are extended on the right with 32 zeros,
except that the condition code is not set.

A specification exception is recognized when the
VR 1 field designates an invalid register number. In
the VST format, a specification exception is also
recognized when the second operand is not desig
nated on an integral boundary, or when the RT2
field is nonzero and designates the same general
register as the RS 2 field.

ACCUMULATE is a class-1M instruction. It is inter
ruptible, the vector count and vector interruption
index determine the number of elements processed,
and element selection is affected by both the
vector-mask mode and the vector-mask register.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2 in VST format)
• Exponent overflow (with exception-extension

code)
• Exponent underflow (with exception-extension

code)
• Operation
• Significance (with exception-extension code)
• Specification
• Vector operation

Programming Notes:

1. ACCUMULATE is used, together with ZERO
PARTIAL SUMS and SUM PARTIAL SUMS, to
produce the scalar sum of the elements of a
vector in a manner similar to the example in
Appendix A ("Sum of Products" on page A-3)
of using MULTIPLY AND ACCUMULATE to
produce a sum of products.

2. The short-format ACCUMULATE instructions
(v ACE and VACER) add floating-point vector
elements in the short format to produce a
floating-point sum in the long format. This
creates a result of higher precision than would
an equivalent loop with the scalar short-format
ADD instructions (AE or AER, respectively),
which produces a sum in the short format.

ADD

Mnemonic VRl,QR3,RS2(RT2) [QST]

Op Code I QRJI RT21 VR,I RS21

0 16 20 24 28 31
Mnemonic Op Code Operands
VAS 'A4A0' Binary
VADS 'A490' Long
VAES 'A480' Short

Mnemonic VRl,QR3,VR2 [QV]

Op Code I QRJIIIIII VR,I VR21

0 16 20 24 28 31
Mnemonic Op Code Operands
VAQ 'ASA0' Binary
VADQ 'AS90' Long
VAEQ 'AS80' Short

Mnemonic VRl,VR3,RS2(RT2) [VST]

Op Code I VRJI RT21 VR,I Rs·1

0 16 20 24 28 31
Mnemonic Op Code Operands
VA 'A420' Binary
VAD 'A410' Long
VAE 'A400' Short

Mnemonic VRl,VR3,VR2 [VV]

Op Code I VR,IIIIII VR,I VR·I

0 16 20 24 28 31
Mnemonic Op Code Operands
VAR 'A520' Bi nary
VADR 'A510' Long
VAER 'A500' Short

Element by element, the second-operand vector is
added to the third operand, and the result is placed
in the first-operand location.

The operation is performed on each pair of ele
ments in the same manner as the corresponding

Chapter 3. Vector-Facility Instructions 3-3

scalar operation, except that the condition code is
not set. For floating-point operands, the scalar
equivalent is ADD NORMALIZED.

A specification exception is recognized when a VR
or QR field designates an invalid register number.
In the QST and VST formats, a specification excep
tion is recognized when the second operand is not
designated on an integral boundary, or when the
R T 2 field is nonzero and designates the same
general register as the RS 2 field. For the V AS

instruction, a specification exception is also recog
nized when the Q R 3 field designates the same
general register as the RS 2 field.

ADD is a class-1M instruction. It is interruptible,
the vector count and vector interruption index
determine the number of elements processed, and
element selection is affected by both the vector
mask mode and the vector-mask register.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2 in QST and VST

formats)
• Exponent overflow (with exception-extension

code; floating-point operands only)
• Exponent underflow (with exception -extension

code; floating-point operands only)
• Fixed-point overflow (with exception-extension

code; binary operands only)
• Operation
• Significance (with exception-extension code;

floating-point operands only)
• Specification
• Vector operation

AND

VNS VRl,GR3,RS2(RT2) [QST]

'MM' ! GR'! RT'! VR'! RS'!
o 16 20 24 28 31

3-4 IBM System/370 Vector Operations

VNQ VRl,GR3,VR2 [QV]

'ASA4' I GR,I;;;;I VR,I YR,I

0 16 20 24 28 31

VN VRl,VR3,RS2(RT2) [VST]

'A424' I YR,I RT,I VR,I Rs,l

0 16 20 24 28 31

VNR VRl,VR3,VR2 [VV]

'AS24' I YR,I;I;;I VR,I YR,I

0 16 20 24 28 31

Element by element, the AND of the second and
third operands is placed in the frrst-operand
location.

The operation is performed on each pair of 32-bit
elements in the same manner as the corresponding
scalar operation, except that the condition code is
not set.

For the VN and VNS instructions, a specification
exception is recognized when the second operand is
not designated on an integral boundary, or when
the R T 2 field is nonzero and designates the same
general register as the RS2 field. For the VNS

instruction, a specification exception is also recog
nized when the G R3 field designates the same
general register as the RS 2 field.

AND is a class-1M instruction. It is interruptible,
the vector count and vector interruption index
determine the number of elements processed, and
element selection is affected by both the vector
mask mode and the vector-mask register.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2 m QST and VST

formats)
• Operation
• Specification
• Vector operation

AND TO VMR

VNVM RS2 [VS]

'A684'

(:) 16 28 31

The AND of the second-operand bit vector and of
the active bits of the vector-mask register (VMR) is
placed in the vector-mask register. Bits beyond the
active bits are set to zeros.

AND TO VMR is a class-Nc instruction. It is not
interruptible, the vector count detennines the
number of bits processed, and bit selection is
affected by neither the vector-mask mode nor the
vector-mask register. The vector interruption index
is not used and remains unchanged.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2)
• Operation
• Vector operation

CLEAR VR

[S]

'A6e5'

(:) 16 2(:) 31

The specified pairs of vector registers are cleared,
the associated vector in-use bits and vector change
bits are set to zeros, and the vector interruption
index is set to zero.

The second-operand address is not used to address
storage. Instead, bits 24-31 of the second-operand
address, called the second-operand bits, control
which vector registers are cleared. The eight
second-operand bits are associated with the eight
even-numbered vector-register pairs from 0 to 14,
and with the corresponding vector in-use bits and
vector change bits. The leftmost bits of the address
are ignored.

The vector interruption index is set to zero first,
after which the eight second-operand bits are exam
ined in any order. If a second-operand bit and the

corresponding vector in-use bit are both ones, all
element positions of the associated pair of vector
registers are cleared to zeros; the corresponding
vector in-use bits and vector change bits are then
set to zeros. If a second-operand bit or the corre
sponding vector in-use bit is zero, the associated
registers and bits remain unchanged.

If the instruction is interrupted before the operation
is completed, the instruction address in the current
psw identifies this instruction. If the interrupted
instruction is then reexecuted, vector-register pairs,
which were cleared and had their vector in-use bits
and vector change bits set to zeros, are not cleared
again, provided that their vector in-use bits are still
zeros.

CLEAR VR is a class-Iz instruction. It is interrup
tible, the section size determines the number of ele
ments processed, and element selection is affected
by neither the vector-mask mode nor the vector
mask register. The vector count is not used and
remains unchanged. The vector interruption index
is set.

Condition Code: The code remains unchanged.

Program Exceptions:

• Operation
• Vector operation

Programming Notes:

1. When a vector in-use bit is zero, execution
time of CLEAR VR is saved because the corre
sponding vector-register pair is already cleared,
and the instruction does not clear those regis
ters again.

2. CLEAR VR with a zero operand (VRCL 0)
merely sets the vector interruption index to
zero.

COMPARE

Mnemonic Ml,QR3,RS2(RT2) [QST]

Op Code I QR,I Rhl Ml I RS21
(:) 16 2(:) 24 28 31
Mnemonic Op Code Operands
VCS 'A4A8' Binary
VCDS 'A498' Long
VCES 'A488' Short

Chapter 3. Vector-Facility Instructions 3-5

Mnemonic Ml,QRJ,VR2 [QV]

Op Code ! QR,!IIII! Ml ! VR2!
0 16 20 24 28 31
Mnemonic Op Code Operands
VCQ 'A5A8' Binary
VCDQ 'A598' Long
VCEQ 'A588' Short

Mnemonic Ml,VRJ,RS2(RT2) [VST]

Op Code ! VR'! Rr.! Ml ! RS2!
0 16 20 24 28 31
Mnemonic Op Code Operands
VC 'A428' Binary
VCD 'A418' Long
VCE 'A408' Short

Mnemonic M 1, VR3, VR2 [VV]

Op Code ! VR,!I/I/! Ml ! VR2!
0 16 20 24 28 31
Mnemonic Op Code Operands
VCR 'A528' Binary
VCDR 'A518' Long
VCER 'A508' Short

The third operand is compared with the second
operand vector, element by element. The corre
sponding bit in the vector-mask register is set to
one or zero, depending on the comparison result

. and on the value of a modifier in bits 24-26 of the
instruction.

The comparison is algebraic and is performed on
each element pair in the same manner as the corre
sponding scalar operation, except for the way in
which the result is indicated. The condition code is
not set; instead, a single result bit is set in the
vector-mask register for each element pair. The
value of the result bit is selected from one of the
modifier bits according to the comparison of the
third-operand element with the second-operand
element, as follows:

Result of Modifier Bit Whose
Comparison Value Is Selected

Operands equal M0 (bi t 24)
Operand 3 low M1 (bi t 25)
Operand 3 high M2 (bi t 26)

3-6 IBM System/370 Vector Operations

Modifier bit M3, bit 27 of the instruction, IS

ignored.

Bits in the vector-mask register which do not corre
spond to elements being compared remam
unchanged.

A specification exception is recognjzed when a VR
or QR field designates an invalid register number.
In the QST and VST formats, a specification excep
tion is recognized when the second operand is not
designated on an integral boundary, or when the
R T 2 field is nonzero and designates the same
general register as the RS2 field. For the vcs
instruction, a specification exception is also recog
nized when the QRJ field designates the same
general register as the RS 2 field.

COMPARE is a class-Ic instruction. It is interrup
tible, the vector count and vector interruption index
determine the number of elements processed, and
element selection is affected by neither the vector
mask mode nor the vector-mask register.

Condition Code: The code remains unchanged.

Program Exceptions:

Access (fetch, operand 2 m QST and VST

formats)
• Operation
• Specification
• Vector operation

Programming Notes:

1. To obtain ones in the resultant bit vector when
a desired comparison condition is found for an
element of operand 3, the modifier bits should
be specified as follows:

Modifier Bits Result Is One
If Operand-3

M0 Ml M2 M3 Comparison Is

0 0 0 - - (always 0)
0 0 1 - High
0 1 0 - Low
0 1 1 - Not equal
1 0 0 - Equal
1 0 1 - Not low
1 1 0 - Not high
1 1 1 - Any (always 1)

2. The modifier bits of the vector COMPARE
instruction correspond to the condition codes
of the scalar COMPARE instruction when an
element of vector operand 3 is the same as the
scalar operand 1 and the corresponding element
of vector operand 2 is the same as the scalar
operand 2. Thus, the value of the leftmost
three bits of the mask field of the BRANCH ON
CONDITION instruction, which causes
branching when used to test the condition code
of the scalar COMPARE, is the same as the mod
ifier value of the vector COMPARE instruction,
which sets a vector-mask bit to one for the
same comparison condition.

3. The comparison instructions are the only ones
which both modify the vector-mask register
and are interruptible. They do not change
those bits in the vector-mask register which lie
beyond the last bit processed. This contrasts
with the noninterruptible instructions which
load or perform logical operations on the
vector-mask register; they set to zeros all bits
which lie beyond the last bit processed.

4. Unlike the related arithmetic and logical vector
instructions, the comparison instructions are
not executed under control of the vector-mask
mode.

COMPLEMENT VMR

VCVM [RRE]

'A641 1 I11111111111111111
o 16 31

The active bits of the vector-mask register (VMR)
are complemented. Bits beyond the active bits of
the vector-mask register are set to zeros.

COMPLEMENT VMR is a claSS-NC instruction. It is
not interruptible, the vector count determines the
number of bits processed, and bit selection is
affected by neither the vector-mask mode nor the
vector-mask register. The vector interruption index
is not used and remains unchanged.

Condition Code: The code remains unchanged.

Program Exceptions:

• Operation
• Vector operation

COUNT LEFT ZEROS IN VMR

VCZVM GR 1 [RRE]

'A642' 1111111111 GR,IIIIII
o 16 24 28 31

COUNT ONES IN VMR

VCOVM GRI [RRE]

'A643' 1111111111 GR,IIIIII
o 16 24 28 31

Selected bits among the active bits of the vector
mask register (VMR) are counted, and the count is
added to the contents of the general register desig
nated by GRl. For the COUNT LEFT ZEROS IN
VMR instruction, the selected bits are the zero bits
to the left of the leftmost one bit. For the COUNT
ONES IN VMR instruction, the selected bits are the
one bits.

The general-register contents are treated as a 32-bit
unsigned binary integer. Any carry out of the left
most bit of the sum is ignored; there is no overflow
indication.

Condition code 0, I, or 3 is set according to
whether the active bits are all zeros, mixed zeros
and ones, or all ones. When the vector count is
zero, the general register is not altered, and condi
tion code 0 is set.

COUNT LEFT ZEROS IN VMR and COUNT ONES IN
VMR are class-Nc instructions. They are not inter
ruptible, the vector count determines the number of
bits processed, and bit selection is affected by
neither the vector-mask mode nor the vector-mask
register. The vector interruption index is not used
and remains unchanged.

Resulting Condition Code:

o Active bits all zeros
1 Active bits mixed zeros and ones
2
3 Active bits all ones

Chapter 3. Vector-Facility Instructions 3-7

Program Exceptions:

• Operation
• Vector operation

Programming Note: When only the condition-code
result of COUNT LEFT ZEROS IN VMR or COUNT
ONES IN VMR is required, but not the actual bit
counts, the instruction TEST VMR may be used
instead.

DIVIDE

Mnemonic VRl,FRJ,RS2(RT2) [QST]

Op Code I FR.I RT,I VR11 Rs,l

6 16
Mnemonic Op Code
VOOS 'A493'
VOES 'A483'

26 24
Operands
Long
Short

28 31

Mnemonic VRl,FRJ,VR2 [QV]

Op Code I FR. 1////1 VR11 VR,I

6 16
Mnemonic Op Code
VOOQ 'AS93'
VOEQ 'AS83'

26 24
Operands
Long
Short

28 31

Mnemonic VRl,VRJ,RS2(RT2) [VST]

Op Code I VR.I RT,I VR11 Rs,l

6 16
Mnemonic Op Code
VOO 'A413'
VOE 'A463'

26 24
Operands
Long
Short

28 31

Mnemonic VRl,VRJ,VR2 [VV]

Op Code I VR.I////I VR11 VR,I

6 16
Mnemonic Op Code
VODR 'A513'
VOER 'AS63'

26 24
Operands
Long
Short

28 31

Element by element, the third operand is divided
by the second-operand vector, and the result is
placed in the frrst-operand location.

The operation is performed on each pair of ele
ments in the same manner as the corresponding
scalar operation, except for two changes. When the
fraction part of a divisor element is zero, so that a

3-8 IBM System/370 Vector Operations

floating-point-divide exception is recognized, the
unit of operation is inhibited. Also, the operands
are not frrst normalized; when one or both of the
source-operand elements have a nonzero fraction
with a leftmost hexadecimal digit of zero, an
unnormalized-operand exception is recognized, and
the unit of operation is inhibited.

The floating-point-divide exception takes preced
ence over the unnormalized-operand exception, and
both take precedence over the exponent overflow
and exponent underflow exceptions.

A specification exception is recognized when a VR
or QR field designates an invalid register number.
In the QST and VST formats, a specification excep
tion is recognized when the second operand is not
designated on an integral boundary, or when the
R T 2 field is nonzero and designates the same
general register as the RS2 field.

DIVIDE is a class-1M instruction. It is interruptible,
the vector count and vector interruption index
determine the number of elements processed, and
element selection is affected by both the vector
mask mode and the vector-mask register.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2 in QST and VST
formats)

• Exponent overflow (with exception-extension
code)

• Exponent underflow (with exception-extension
code)

• Floating-point divide (with exception-extension
code)

• Operation
• Specification
• Unnormalized operand (with exception-

extension code)
• Vector operation

Programming Notes:

1. The QST and QV formats provide for dividing a
scalar operand by a vector. The operation of
dividing a vector by a scalar can usually be
replaced by the (generally faster) operation of
multiplying the vector operand by the recip
rocal of the scalar operand.

2. An unnormalized-operand exception is recog
nized whenever a divisor element is unnorma-

lized, even if the corresponding dividend
element is zero.

EXCLUSIVE OR

VXS VRl,GRJ,RS2(RT2) [QST]

'MA6' I GR,I RT21 VR11 Rs,l

6 16 26 24 28 31

VXQ VRl,GRJ,VR2 [QV]

6 16 26 24 28 31

VX VRl,VRJ,RS2(RT2) [VST]

'M26' I VR,I Rl21 VR11 Rs,l

6 16 26 24 28 31

VXR VRl,VRJ,VR2 [VV]

'A526' I VR,I////I VR11 VR,I

6 16 26 24 28 31

Element by element, the EXCLUSIVE OR of the
second and third operands is placed in the first
operand location.

The operation is performed on each pair of 32-bit
elements in the same manner as the corresponding
scalar operation, except that the condition code is
not set.

For the vx and vxs instructions, a specification
exception is recognized when the second operand is
not designated on an integral boundary, or when
the R T 2 field is nonzero and designates the same
general register as the RS2 field. For the vxs
instruction, a specification exception is also recog
nized when the GRJ field designates the same
general register as the RS 2 field.

EXCLUSIVE OR is a class-1M instruction. It is inter
ruptible, the vector count and vector interruption
index determine the number of elements processed,
and element selection is affected by both the
vector-mask mode and the vector-mask register.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2 m QST and VST
formats)

• Operation
• Specification
• Vector operation

EXCLUSIVE OR TO VMR

VXVM RS2 [VS]

'A686 1

o 16 28 31

The EXCLUSIVE OR of the second-operand bit
vector and of the active bits of the vector-mask reg
ister (VMR) is placed in the vector-mask register.
Bits beyond the active bits are set to zeros.

EXCLUSIVE OR TO VMR is a class-Nc instruction. It
is not interruptible, the vector count determines the
number of bits processed, and bit selection is
affected by neither the vector-mask mode nor the
vector-mask register. The vector interruption index
is not used and remains unchanged.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2)
• Operation
• Vector operation

EXTRACT ELEMENT

Mnemonic VRl,QRJ,GR2 [VR]

Op Code I QR'I////I VR11 GR,I

0 16 20 24 28 31
Mnemonic Op Code Operands
VXEL 'A629 1 Binary or logical
VXELD 'A619 1 Long
VXELE 'A609 1 Short

The element from the vector register or vector
register pair designated by VR 1 , which has the
element number contained in the general register
designated by GR2, is placed in the general or
floating-point register designated by QRJ.

Chapter 3. Vector-Facility Instructions 3-9'

The element number is a 32-bit unsigned binary
integer which must be less than the section size.

For VXELE, the rightmost 32 bits of the floating
point register designated by Q R 3 remain
unchanged.

For VXEL, if the GR2 and QR3 fields designate the
same general register, the element number is
obtained from that register before it is replaced by
the specified vector element.

A specification exception is recognized when the
VR 1 or Q R 3 field designates an invalid register
number, or when the element number is equal to
or greater than the section size.

EXTRACT ELEMENT is a class-Nt instruction. It is
not interruptible, one element is processed, and its
execution is affected by neither the vector-mask
mode nor the vector-mask register. The vector
count and vector interruption index are not used
and remain unchanged.

Condition Code: The code remains unchanged.

Program Exceptions:

• Operation
• Specification
• Vector operation

EXTRACT VCT

VXVC GRI [RRE]

'A644' IIIIIIIIII GRIIIIIII

o 16 24 28 31

The vector count, with 16 zeros appended on the
left, is placed in the general register designated by
GRlo

EXTRACT VCT is a class-No instruction. It is not
interruptible, no elements are processed, and its
execution is affected by neither the vector-mask
mode nor the vector-mask register. The vector
count remains unchanged. The vector interruption
index is not used and remains unchanged.

Condition Code: The code remains unchanged.

3-to IBM System/370 Vector Operations

Program Exceptions:

• Operation
• Vector operation

EXTRACT VECTOR MASK MODE

VXVMM GRI [RRE]

'A646' IIIIIIIIII GRIIIIIII

o 16 24 28 31

Bits 16-31 of the general register designated by
GRI are set to the value of bits 0-15 of the vector
status register. Thus, bit 31 of the general register
indicates the current setting of the vector-mask
mode. Bits 0-15 of the general register are set to
zeros.

EXTRACT VECTOR MASK MODE is a class-No
instruction. It is not interruptible, no elements are
processed, and its execution is affected by the
vector-mask mode but not by the vector-mask reg
ister. The vector count and vector interruption
index are not used and remain unchanged.

Condition Code: The code remains unchanged.

Program Exceptions:

• Operation
• Vector operation

Programming Note: The program should not rely
on bits 16-30 of the general register being set to
zeros. Those bits correspond to unassigned bits of
the vector-status register, which are reserved for
possible future use.

LOAD

Mnemonic VRl,QR2 [QV]

Op Code I QR,IIIIII VRIIIIIII

0 16 20 24 28 31
Mnemonic Op Code Operands
VLQ 'ASA9 1 Binary or logical
VLDQ 'AS99 1 Long
VLEQ 'ASS9 1 Short

Mnemonic VRl,RS2(RT2) [VST]

Op Code I1111I RT21 VR.I RS21

9 16 29 24 28 31
Mnemonic Op Code Operands
VL 'A499 , Binary or logical
VLD 'A419' Long
VLE 'A499' Short

Mnemonic VRl,VR2 [V V]

Op Code 1//11/1111 VR.I VR21

9 16 24 28 31
Mnemonic Op Code Operands
VLR 'AS99 , Binary or logical
VLDR 'AS19' Long
VLER 'AS09 , Short

Element by element, the second operand is placed
unchanged in consecutive ftrst-operand locations.

A specillcation exception is recognized when a VR
or QR fteld designates an invalid register number.
In the VST fonnat, a specifIcation exception is also
recognized when the second operand is not desig
nated on an integral boundary, or when the R T 2

fteld is nonzero and designates the same general
register as the RS 2 fteld.

LOAD is a claSS-Ie instruction. It is interruptible,
the vector count and vector interruption index
determine the number of elements processed, and
element selection is affected by neither the vector
mask mode nor the vector-mask register.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2 in VST format)
• Operation
• SpecifIcation
• Vector operation

LOAD BIT INDEX

VLBIX VRl,GRJ,D2(B2) [RSE]

E~_81 -1--1_GRJ-L-k_1 I--L../I_VR--L' k_II-...J..I I_B 2~1_~;]
9 16 29 24 28 32 36 47

Bit by bit, the second operand is converted from a
bit vector to a vector of element numbers, the
result vector is placed in the ftrst-operand location,
and the number of elements in the result vector is
placed in the vector count.

The result-vector elements are 32-bit signed binary
integers, which give the positions of the one bits in
the second operand, relative to the starting address
of the second operand and in sequence from left to
right. No result-vector elements are generated for
zero 'bits.

The GRJ fteld must designate an even register
number to specify an even-odd pair of general reg
isters. The registers contain a bit index and a bit
count, as follows:

Bit Index

Bit Count

31

Both are treated as 32-bit signed binary integers.
The bit index identiftes the fust bit of the second
operand to be processed. The bit count gives the
number of bits to he processed. If the bit count is
zero or less than zero, no bits are processed. Upon
completion or interruption of the instruction, the
bit index identiftes the next bit to be processed, and
the bit count, if greater than zero, gives the number
of bits remaining.

The address of the byte location containing the
current bit to be processed is the sum, modulo the
address size, of the second-operand address and of a
number obtained by shifting bits 0-28 of the
current bit index right by three bit positions, with
bits equal to bit 0 being shifted into the leftmost
three bit positions (without changing the contents
of the general register). The rightmost three bits of
the current bit index designate the bit within the
byte.

Chapter 3. Vector-Facility Instructions 3-11

Execution of the instruction consists of a repetition
of the following procedure:

The current value of the vector interruption index
is placed in the vector count. Then, if the vector
count is equal to the section size, or if the bit count
is zero or less than zero, the vector interruption
index is set to zero, and instruction execution is
completed. Otherwise, the second-operand bit des
ignated by the current bit index is selected. If the
selected bit is one, the value of the bit index is
placed in the first-operand element location desig
nated by the vector interruption index, and the
vector interruption index is then incremented by
one. Next, regardless of the value of the selected
bit, one is added algebraically to the bit index, and
one is subtracted from the bit count. The proce
dure is then repeated.

Execution of the instruction may be interrupted,
but only upon return to the starting point of the
repetitive procedure.

When 31-bit addressing IS ill effect, incrementing
the bit index beyond the value 231_1 may cause an
overflow, which is not signaled to the program.
The result of incrementing the bit index beyond
231_1 is undefined.

A specification exception is recognized when the
GRJ field designates an invalid register number.

The B 2 field should not designate the same general
register as either of the pair of registers designated
by the GR3 field. The result fields (bit count, bit
index, condition code, vector count, vector inter
ruption index, and vector register) are undefmed if
B2 is nonzero and B2 = GRJ or B2 = GRJ+ 1.

LOAD BIT INDEX is a class- IG instruction. It is
interruptible, a general register and the vector inter
ruption index determine the number of elements
processed, and element selection is affected by
neither the vector-mask mode nor the vector-mask
register. The vector count is set by the instruction.

Resulting Condition Code:

o Vector count zero; bit count zero
1 Vector count zero; bit count less than zero
2 Vector count equal to section size; bit count

greater than zero
3 Vector count greater than zero; bit count zero

or less than zero

3-12 IBM System/370 Vector Operations

Program Exceptions:

• Access (fetch, operand 2)
• Operation
• Specification
• Vector operation

Programming Notes:

1. Example of LOAD BIT INDEX:

Bit Positions: B12345678

Bit Vector: 010001101
Result Vector: 1 5 6 8

2. The bit index in the even register should
normally be set to zero by the program before
entering a sectioning loop that contains the
instruction. An initial nonzero value may be
useful to shorten a bit vector that would other
wise contain a large number of leading zeros.

3. Assuming normal use of the instruction with
the vector interruption index initially set to
zero, LOAD BIT INDEX sets the vector count to
the number of result elements generated. The
vector count is then available to control subse
quent vector instructions.

If condition code 2 is set, the vector count has
been set to the section size; a full section of
element numbers has been loaded by the
instruction, and more bits remain to be proc
essed. If condition code 3 is set, the vector
count has been set to a value equal to or less
than the section size; the last or only section of
element numbers has been loaded, and no
more bits remain to be processed. If condition
code 0 or 1 is set, the vector count is zero, and
there were no bits to be processed and no
element numbers to be loaded.

4. If all bits in the second operand are zeros, no
result elements are generated, and the vector
count is set to the initial vector interruption
index, which normally is zero. This may also
occur for the last pass through a sectioning
loop using this instruction, if the number of
one bits in the second operand happens to be a
multiple of the section size, thus generating one
or more full sections, with the remainder of the
second operand containing only zero bits.
Subsequent vector instructions will still func
tion correctly, because no elements are proc
essed when the vector count is zero.

5. The effect on the result fields of specifying the
same general register for the base register of the
second operand and for the bit index or bit

count is unpredictable; it may depend on the
model, on the occurrence of asynchronous
interruptions such as 110, or on other events
that are not under the direct control of the
program.

6. Programs using extremely large values of the
bit index when 31-bit addressing is in effect
must limit those values so that they cannot
exceed 231-1, which corresponds to a byte
location of 228_1 relative to the second
operand address. Allowing the instruction to
increment the bit index to the next value· may
or may not cause overflow; the next byte
location might be either 228 or - 22 8 relative to
the second-operand address. The result may
not be repeatable from one instruction exe
cution to the next.

When 24-bit addressing is in effect, byte
addresses in storage are computed modulo 224

,

so that the possibility of overflow at a bit index
of 231 -1 does not affect the resultant address.

7. Figure 3-1 is a summary of the operation.

L-__ ---r--__ ~--'I Yes _ VCT = SS :

INa

BC:
BX:

VRI ~ BX
VIX ~ VIX + 1

BX ~ BX + 1
BC ~ BC - 1

Interruption

Bit count in
Bit index in

GR3+1
GR3

CC: Condition code
SS: Section size
VCT: Vector count
VIX: Vector interruption

End

index

Figure 3-1. Execution of LOAD BIT INDEX

Chapter 3. Vect.or-Facility Instructions 3-13

LOAD COMPLEMENT

Mnemonic VRl, VR2 [VV]

Op Code I11111111I VR,I VR21

0 16 24 28 31
Mnemonic Op Code Operands
VLCR 'A562' Binary
VLCDR 'A552' Long
VLCER 'A542' Short

Element by element, the second-operand vector is
placed in the first-operand location with the oppo
site sign. For VLCR, each result element is the
two's complement of the corresponding source
element. For VLCDR and VLCER, each result
element is the corresponding source element with
the sign bit inverted.

The operation is performed on each element in the
same manner as the corresponding scalar operation,
except that the condition code is not set.

A specification exception is recognized when a VR
field designates an invalid register number.

LOAD COMPLEMENT is a claSS-1M instruction. It is
interruptible, the vector count and vector inter
ruption index determine the number of elements
processed, and element selection is affected by both
the vector-mask mode and the vector-mask register.

Condition Code: The code remains unchanged.

Program Exceptions:

• Fixed-point overflow (with exception-extension
code; VLCR only)

• Operation
• Specification
• Vector operation

3-14 IBM System/370 Vector Operations

LOAD ELEMENT

Mnemonic VRl,QR3,GR2 [VR]

Op Code I QR,IIIIII VR'! GR21

0 16 20 24 28 31
Mnemonic Op Code Operands
VLEL 'A628' Binary or logical
VLELD 'A618' Long
VLELE 'A608' Short

The element in the vector register or vector-register
pair designated by VR 1 , which has the element
number contained in the general register designated
by GR2, is replaced by the scalar operand in the
general or floating-point register designated by
QR3.

The element number is a 32-bit unsigned binary
integer which must be less than the section size.

A specification exception is recognized when the
VRI or QRJ field designates an invalid register
number, or when the element number is equal to
or greater than the section size.

LOAD ELEMENT is a class-Nt instruction. It is not
interruptible, one element is processed, and its exe
cution is affected by neither the vector-mask mode
nor the vector-mask register. The vector count and
vector interruption index are not used and remain
unchanged.

Condition Code: The code remains unchanged.

Program Exceptions:

• Operation
• Specification
• Vector operation

LOAD EXPANDED

Mnemonic VRl,RS2(RT2) [VST]

Op Code I1111I RT2! VR'! RS21

0 16 20 24 28 31
Mnemonic Op Code Operands
VLY 'A40B ' Binary or 1 ogi cal
VLYD 'A41B' Long
VLYE 'A40B ' Short

Element by element, successive elements of the
second-operand vector are placed unchanged in the
element locations of the frrst operand that corre
spond to ones in the active bits of the vector-mask
register. Element locations of the frrst operand that
correspond to zeros in the active bits of the vector
mask register remain unchanged, and there are no
corresponding second-operand locations in storage.

A specification exception is recognized when the
VR 1 field designates· an invalid register number,
when the second operand is not designated on an
integral boundary, or when the R T 2 field is
nonzero and designates the same general register as
the RS 2 field.

When the active bits of the vector-mask register are
all zeros, no access exceptions are recognized for
the storage location specified by the second
operand.

LOAD EXPANDED is a class-Ic instruction. It is
interruptible, the vector count and vector inter
ruption index determine the number of elements
processed, and element selection is affected by the
vector-mask register but not by the vector-mask
mode.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2)
• Operation
• Specification
• Vector operation

Programming Notes:

1. The number of vector elements which are
loaded from storage and the amount by which
the address in the general register designated by
RS2 is updated correspond to the number of
ones among the active bits of the vector-mask
register.

2. The operation performed by LOAD EXPANDED

is the opposite of STORE COMPRESSED.

LOAD HALFWORD

VlH VRl,RS2(RT2) [VST]

'A429' I1111I RT21 VRII RS21

16 20 24 28 31

Element by element, the second operand is
extended from a vector of 16-bit signed binary inte
gers to a vector of 32-bit signed binary integers, and
the result is placed in consecutive frrst-operand
locations.

Each second-operand element is two bytes in
length. The element is extended upon loading to
32 bits by setting each of the 16 leftmost bit posi
tions of the frrst-operand element equal to the sign
bit of the second -operand clement.

A specification exception is recognized when the
second operand is not designated on a halfword
boundary, or when the R T 2 field is nonzero and
designates the same general register as the RS 2
field.

LOAD HALFWORD is a class-Ic instruction. It is
interruptible, the vector count and vector inter
ruption index determine the number of elements
processed, and element selection is affected by
neither the vector-mask mode nor the vector-mask
register.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2)
• Operation
• Specification
• Vector operation

Chapter 3. Vector-Facility Instructions 3-15

LOAD INDIRECT

Mnemonic

o 16 20 24 28 32 36 47
Mnemonic Op Code Operands
VLI 'E400' Binary or logical
VLID 'E410' Long
VLIE 'E400' Short

Elelnent by element, the third operand is used to
select elements of the second-operand vector in
storage and place them unchanged in the element
positions of the frrst operand which correspond to
those of the third operand.

The third operand is a vector of 32-bit signed
binary integers. The address of each second
operand element is computed as the sum of the
second-operand origin and the offset obtained from
each element of the third operand, as follows.

The second-operand origin is generated from the
base-address (B2) and displacement (D2) fields
using the normal rules of address generation. The
offset is obtained by shifting the current third
operand element to the left by two bits (for vu or
VUE) or three bits (for VUD), with zeros appended
on the right. The origin and offset are added. The
rightmost 31 or 24 bits of the sum, depending on
the address size, are used as the storage address.
The second-operand element is fetched from that
address and loaded into the first-operand location
at the same element position as that from which
the third-operand element was obtained.

During the shift and addition operations, any
carries or shifts into or out of the unused bit posi
tions on the left are ignored.

A specification exception is recognized when the
VR 1 field designates an invalid register number, or
when the second operand is not designated on an
integral boundary.

LOAD INDIRECT is a class-Ic instruction. It is
interruptible, the vector count and vector inter
ruption index determine the number of elements
processed, and element selection is affected by
neither the vector-mask mode nor the vector-mask
register.

Condition Code: 1be code remains unchanged.

3-16 IBM System/370 Vector Operations

Program Exceptions:

• Access (fetch, operand 2)
• Operation
• Specification
• Vector operation

Programming Note: LOAD INDIRECT is used to
load a vector by indirect element selection. The
instruction fetches eleInents from storage in the fol
lowing sequence of addresses: A + wxE(O),
A + wxE(l), A + wxR(2), ... , where A is the
origin of the vector in storage, w is the width of
each element, and £(0), E(I), E(2), ... are the
element numbers contained in positions 0, 1, 2, ...
of the vector register designated by the VR3 field of
the instruction.

The origin is A = (B2)+D2, where (B2) represents
the contents of the base register designated by the
B 2 field, and D 2 is the displacement designated by
the D2 field.

The element width w is 4 for vu or VUE and 8 for
VUD. The storage elements are loaded successively
into element positions 0, 1, 2, ... of the target reg
ister designated by VR 1 •

LOAD INTEGER VECTOR

VLINT VRl,RS2(RT2) [VST]

L 'A42A' 111111 R121 VR11 Rs,l
o 16 20 24 28 31

Element by element, a vector of uniformly spaced
integers, as spccified by the second-operand desig
nation, is placed in consecutive frrst-operand
locations.

If the vector interruption index X is less than the
vector count, the contcnts of the general register
designated by RS 2 replace clement X of the first
operand (nonnally X = 0 at the start). Then, the
contents of that general register are incremented by
adding the contents of the general register desig
nated by RT2 (the stride), both being treated as
32-bit binary integers. Any overflow during the
addition is ignored. The vector interruption index
X is then incremented by one.

These steps are repeated for each successive frrst
operand element until incrementing X causes it to

equal the vector count. The vector interruption
index is then set to zero.

The general register designated by R T 2 remains
unchanged. If the R T 2 field of the instruction is
zero, general register 0 is not used for the incre
ment; instead, the increment is + I, so that consec
utive integers are loaded.

A specification exception is recognized when the
R T 2 field is nonzero and designates the same
general register as the RS 2 field.

LOAD INTEGER VECTOR is a class-Ic instruction. It
is interruptible, the vector count and vector inter
ruption index determine the number of elements
processed, and element selection is affected by
neither the vector-mask mode nor the vector-mask
register.

Condition Code: The code remains unchanged.

Program Exceptions:

• Operation
• Specification
• Vector operation

Programming Note: The operation resembles the
generation of storage addresses for QST- and
vST-format instructions, except that the element
size w is I, no storage references for operands take
place, no access exceptions for operands are recog
nized, and all 32 bits of both general registers par
ticipate in the operation. The result is independent
of the address size.

Performing a LOAD INTEGER VECTOR operation
also resembles the execution of a loop using the
nonvector instruction LOAD ADDRESS. They differ
in that LOAD INTEGER VECTOR does not depend on
the address size; it does not set to zeros the leftmost
one or eight bit positions. LOAD INTEGER VECTOR
can generate negative numbers, which LOAD
ADDRESS cannot.

LOAD MATCHED

Mnemonic VRl,QR2 [QV]

Op Code I QR2111111 VR,IIIIII

0 16 20 24 28 31
Mnemonic Op Code Operands
VLMQ 'ASAA' Binary or logical
VLMDQ 'AS9A' Long
VLMEQ 'AS8A' Short

Mnemonic VRl,RS2(RT2) [VST]

Op Code I1111I RT21 VR,I RS21

0 16 20 24 28 31
Mnemonic Op Code Operands
VLM 'A40A' Binary or logical
VLMD 'A41A' Long
VLME 'A40A' Short

Mnemonic VRl,VR2 [VV]

Op Code I11111111I VR,I VR21

0 16 24 28 31
Mnemonic Op Code Operands
VLMR 'AS0A' Binary or logical
VLMDR 'ASIA' Long
VLMER 'AS0A' Short

Element by element, elements of the second
operand corresponding to ones in the active bits of
the vector-mask register are placed unchanged in
the corresponding element locations of the rust
operand. Elements of the second operand corre
sponding to zeros in the active bits of the vector
mask register are not loaded, and the corresponding
element locations of the rust operand remain
unchanged.

A specification exception is recognized when a VR
or QR field designates an invalid register number.
In the VST format, a specification exception is also
recognized when the second operand is not desig
nated on an integral boundary, or when the R T 2

field is nonzero and designates the same general
register as the RS 2 field.

No access exceptions are recognized for elements of
the second operand which correspond to zeros in
the active bits of the vector-mask register; however,
the general register designated by the RS 2 field is
updated for each of those elements.

Chapter 3. Vector-Facility Instructions 3-17

LOAD MATCHED is a class-Ic instruction. It is
interruptible, the vector count and vector inter
ruption index detennine the number of elements
processed, and element selection is affected by the
vector-mask register but not by the vector-mask
mode.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2 in VST format)
• Operation
• Specification
• Vector operation

Programming Notes:

1. The instructions LOAD and LOAD MATCHED, in
corresponding formats, perform the same func
tion on those elements which correspond to
ones in the active bits of the vector-mask reg
ister; that is, each such element is loaded from
the same storage location into the same vector
register position. LOAD MATCHED differs in
that elements in storage corresponding to zeros
in the active bits of the vector-mask register are
skipped.

2. LOAD, LOAD EXPANDED, and LOAD MATCHED,
in corresponding formats, perform the same
function when all active bit positions of the
vector-mask register contain ones.

LOAD NEGATIVE

Mnemoni c VRl, VR2 [VV]

Op Code I11111111I VR,I VR,I

e 16 24 28 31
Mnemonic Op Code Operands
VLNR 'A561 1 Binary
VLNOR 'A551 1 Long
VLNER 'A541 1 Short

Element by element, the negative of the absolute
value of the second-operand vector is placed in the
frrst-operand location.

The operation is performed on each element in the
same manner as the corresponding scalar operation,
except that the condition code is not set.

3-18 IBM System/370 Vector Operations

A specification exception is recognized when a VR
field designates an invalid register number.

LOAD NEGATIVE is a class-1M instruction. It is
interruptible, the vector count and vector inter
ruption index determine the number of elements
processed, and element selection is affected by both
the vector-mask mode and the vector-mask register.

Condition Code: The code remains unchanged.

Program Exceptions:

• Operation
• Specification
• Vector operation

LOAD POSITIVE

Mnemonic VRl,VR2 [VV]

Op Code I11111111I VR,I VR,I

0 16 24 28 31
Mnemonic Op Code Operands
VLPR 'A560 1 Binary
VLPOR 'A550 1 Long
VLPER 'A540 1 Short

Element by element, the absolute value of the
second-operand vector is placed in the frrst-operand
location.

The operation is perfonned on each element in the
same manner as the corresponding scalar operation,
except that the condition code is not set.

A specification exception is recognized when a VR
field designates an invalid register number.

LOAD POSITIVE is a class-1M instruction. It is inter
ruptible, the vector count and vector interruption
index determine the number of elements processed,
and element selection is affected by both the
vector-mask mode and the vector-mask register.

Condition Code: The code remains unchanged.

Program Exceptions:

• Fixed-point overflow (with exception-extension
code; binary operand only)

• Operation
• Specification
It Vector operation

LOAD VCT AND UPDATE

VLVCU GRl [RRE]

'A645 , 1///1//111 GR'I/I/II

o 16 24 28 31

If the operand in the general register designated by
the G R 1 field is greater than zero, the vector count
(VCT) is replaced by the lesser of the section size
and the operand. If the operand is zero or less
than zero, the vector count is set to zero. The
general register is then updated by subtracting the
new vector count from the register contents.

The register contents are treated as a 32-bit signed
binary integer. The vector count and section size
are treated as 16-bit unsigned binary integers.

LOAD VCT AND UPDATE is a class-No instruction.
It is not interruptible, no elements are processed,
and its execution is affected by neither the vector
mask mode nor the vector-mask register. The
vector count is set. The vector interruption index
is not used and remains unchanged.

Resulting Condition Code:

o Vector count zero; register result zero
I Vector count zero; register result less than zero
2 Vector count equal to section size; register

result greater than zero
3 Vector count greater than zero; register result

zero

Program Exceptions:

• Operation
• Vector operation

Programming Notes:

1. LOAD VCT AND UPDATE may be used at the
start of a sectioning loop to determine the
number of vector elements to be processed
during each pass through the loop. Before
entering the loop, the program initializes the
general-register operand to the total number of
elements in the vector. The end of the loop
may simply be a BRANCH ON CONDITION
instruction, if the condition code has not been
changed since the start of the loop, or the
branch may be preceded by LOAD AND TEST
specifying the general register as both the fITst
and second operand.

If LOAD VCT AND UPDATE sets condition code
2, the vector count has been set to the section
size; a full section of vector elements are to be
processed, and more remain to be processed. If
it sets condition code 3, the vector count has a
value equal to or less than the section size, and
the last or only section is to be processed. If it
sets condition code 0 or I, the vector count is
zero, and there are no vector elements to be
processed.

2. If LOAD AND TEST is used instead at the end of
the loop, condition code 2 simply indicates that
the general register contents are greater than
zero, and there are more elements to be proc
essed. Any other condition code means that
there are no more elements.

3. The general-register operand remains greater
than zero at the end of instruction execution
only if condition code 2 is set. For the other
condition codes, the final register contents are
zero or negative.

LOAD VCT FROM ADDRESS

VLVCA [S]

'A6C4'

o 16 20 31

If the second-operand-address value is greater than
zero, the vector count (veT) is replaced by the
lesser of the section size and the address value. If
the second-operand-address value is zero or less
than zero, the vector count is set to zero.

If the B2 field of the instruction is not zero, the
second-operand-address value is formed by adding
the contents of the general register designated by
the B2 field and the contents of the 12-bit 02 field
of the instruction. All 32 bits in the general register
designated by the B2 field participate in the addi
tion, which is independent of the address size. The
result of the addition is used as the operand itself
and not to address storage. It is treated as a 32-bit
signed binary integer.

If the B2 field of the instruction is zero, general reg
ister 0 is not used; instead, the address value con
sists of the 02 field with 20 zero bits appended on
the left.

Chapter 3. Vector-Facility Instructions 3- t 9

No storage references for operands take place, and
the address value is not inspected for boundary
alignment or access exceptions.

LOAD VCT FROM ADDRE..C:;S is a claSS-NO instruction.
It is not interruptible, no elements are processed,
and its execution is affected by neither the vector
mask mode nor the vector-mask register. The
vector count is set. The vector interruption index
is not used and remains unchanged.

Resulting Condition Code:

o Vector count zero; second-operand address
zero
Vector count zero; second-operand address less
than zero

2 Vector count equal to section size; second
operand address greater than section size

3 Vector count greater than zero; second
operand address less than or equal to section
size and greater than zero

Program Exceptions:

• Operation
• Vector operation

Programming Note: LOAD VCT FROM ADDRESS
may be used to set the vector count to the section
size by specifying a B 2 field of zero and placing a
value greater than 511 in the D2 field.

LOAD VMR

VLVM [VS]

'A680'

16 28 31

The second-operand bit vector replaces the active
bits of the vector-mask register (VMR). Bits beyond
the active bits are set to zeros.

LOAD VMR is a class-Nc instruction. It is not inter
ruptible, the vector count determines the number of
bits processed, and bit selection is affected by
neither the vector-mask mode nor the vector-mask
register. The vector interruption index is not used
and remains unchanged.

Condition Code: The code remains unchanged.

3-20 IBM System/370 Vector Operations

Program Exceptions:

• Access (fetch, operand 2)
• Operation
• Vector operation

LOAD VMR COMPLEMENT

VLCVM RS2 [VS]

'A681' 11111111111111 Rs,l

16 28 31

The complement of the bits from the second
operand bit vector replaces the active bits of the
vector-mask register (VMR). Bits beyond the active
bits are set to zeros.

LOAD VMR COMPLEMENT is a class-Nc instruction.
It is not interruptible, the vector count determines
the number of bits processed, and bit selection is
affected by neither the vector-mask mode nor the
vector-mask register. The vector interruption index
is not used and remains unchanged.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2)
• Operation
• Vector operation

LOAD ZERO

Mnemonic VRI [VV]

Op Code

0 16 24 28 31
Mnemonic Op Code Operands
VLZR 'AS0B' Binary or logical
VLZDR 'AS1B' Long
VLZER 'AS0B' Short

The first-operand vector is set to zero. Only
element positions numbered less than the vector
count are set to zero. Any element positions num
bered equal to or greater than the vector count
remain unchanged.

A specification exception is recognized when the
VRI field designates an invalid register number.

LOAD ZERO is a class-Ic instruction. It is interrup
tible, the vector count and vector interruption index
detennine the number of element positions set to
zero, and element selection is affected by neither
the vector-mask mode nor the vector-mask register.

Condition Code: The code remains unchanged.

Program Exceptions:

• Operation
• Specification
• Vector operation

Programming Note: The instruction LOAD ZERO is
equivalent to LOAD (VLQ, VLDQ, or VLEQ) with an
implied scalar source operand of zero. It provides
the fastest way to set a vector register to zero.

MAXIMUM ABSOLUTE

Mnemonic VRl,FRJ,GR2 [VR]

Op Code , FR,!////' VR'! GR2!

e
Mnemonic
VMXAD
VMXAE

Op Code
'A612'
'A602'

16 20 24 28 31
Operands
Long
Short

MAXIMUM SIGNED

Mnemonic VRl,FRJ,GR2 [VR]

Op Code ! FR,!////! VR'! GR2!

e
Mnemonic
VMXSD
VMXSE

Op Code
'A610'
'A600'

16 20 24
Operands
Long
Short

28 31

MINIMUM SIGNED

Mnemonic VRl,FRJ,GR2 [VR]

Op Code ! FR,!////! VR'! GR2'

o
Mnemonic
VMNSD
VMNSE

Op Code
'A611'
'A601'

16 20 24 28 31
Operands
Long
Short

The scalar third operand and all frrst-operand
vector elements are compared to determine the
maximum or minimum value, which replaces the
third operand. The instruction MAXIMUM ABSO

LUTE compares absolute values to select the
maximum. The instructions MAXIMUM SIGNED
and MINIMUM SIGNED compare signed values to
select the maximum or minimum, respectively.

The comparison of each pair of absolute or signed
operand values is performed in the same manner as
the scalar floating-point co M PARE instruction for
the same format, except that the result is the
selection of one element of the pair instead of a
condition -code setting.

The scalar third operand is compared with each
element of the frrst operand in tum to determine
the selected (maximum absolute, maximum signed,
or minimum signed) value. If the comparison is
unequal and the frrst-operand element is the
selected value, the frrst-operand element replaces
the third operand; otherwise, no change takes place.
The operation then continues with the next
element of the frrst operand in the sequence of
element numbers.

The G R 2 field must be zero or even. When
nonzero, it designates an even-odd pair of general
registers. The contents of the odd general register
are treated as a 32-bit unsigned binary integer,
which is incremented by one after each frrst
operand element has been processed; any carry out
of bit position 0 is ignored. Each time a new
selected value replaces the third operand, the
current contents of the odd general register, before
it is incremented, are placed in the even general reg
ister.

When the G R 2 field is zero, the action associated
with the general registers is not performed, and
their contents remain unchanged.

For VMXAE, VMXSE, and VMNSE, the rightmost 32
bits of the floating-point register designated by FRJ
remain unchanged.

A specification exception is recognized when the
VRl, GR2, or FRJ field designates an invalid reg
ister number.

MAXIMUM ABSOLUTE, MAXIMUM SIGNED, and
MINIMUM SIGNED are clasS-1M instructions. They
are interruptible, the vector count and vector inter
ruption index determine the number of elements
processed, and element selection is affected by both
the vector-mask mode and the vector-mask register.
When the vector-mask mode is on, no selection

Chapter 3. Vector-Facility Instructions 3-21

takes place for first-operand elements corresponding
to zero mask bits: the third operand and the even
general register remain unchanged. However, when
the G R 2 field is nonzero, the odd general register is
incremented hy one for every first-operand element,
regardless of the mode and mask bits.

Condition Code: The code remains unchanged.

Program Exceptions:

• Operation
• Specification
• Vector operation

Programming Notes:

1. Because the current third operand is compared
with every element of the frrst operand,
including element 0, these instructions can be
used in a sectioning loop to fmd the selected
value of a vector of any length. Before starting
the frrst, or only, section, the program should
initialize the third operand as follows.

MAXIMUM ABSOLUTE: zero
MAXIMUM SIGNED: largest negative value
MINIMUM SIGNED: largest positive value

2. If the G R 2 field is not zero, and the program
initializes both of the specified pair of general
registers to zero before executing the instruc
tion, the even register will contain the number
of the selected element, counting from the start
(element 0) of the frrst section. If no element
was selected, the even register will retain its
initial contents. The odd register will contain
the cumulative number of elements processed.

When the first operand contains two or more
elements that could equally qualify as the
selected element, the instruction selects the frrst
one.

3. Since the element values are floating-point
numbers, the rules for floating-point compar
ison apply, and two or more elements with dif
ferent bit patterns may satisfy the test for
maximum or minimum value. For example,
elements with zero fractions compare equal
even though their sign and characteristic may
differ. (See also the programming notes for the
COMPARE instruction in Chapter 9, "Floating
Point Instructions," of IBM 370-XA Principles
of Operation and IBM System/370 Principles of
Operation.)

3-22 IBM System/370 Vector Operations

MULTIPLY

Mnemonic VRl,QRJ,RS2(RT2) [QST]

Op Code , QR', RT2' VR', RS2'

0
Mnemonic Op Code
VMS 'A4A2'
VMDS 'A492'
VMES 'A482 ,

16 20 24 28 31
Operands
Binary
Long
Short multiplier and
multiplicand, long product

Mnemonic VRl,QRJ,VR2 [QV]

Op Code , QR,IIIIII VR,I VR21

o
Mnemonic
VMQ
VMDQ
VMEQ

Op Code
'A5A2'
'A592'
'A582'

16 20 24 28 31
Operands
Binary
Long
Short multiplier and
multiplicand, long product

Mnemonic VRl,VRJ,RS2(RT2) [VST]

Op Code I VR,I RT21 VR,I RS21

o
Mnemonic
VM
VMD
VME

Op Code
'A422'
'A412'
'A402'

16 20 24 28 31
Operands
Binary
Long
Short multiplier and
multiplicand, long product

Mnemonic VRl,VRJ,VR2 [VV]

Op Code I VR,IIIIII VR,I VR21

0 16
Mnemonic Op Code

20 24 28 31
Operands

VMR 'A522'
VMDR 'A512'
VMER 'A502'

Binary
Long
Short multiplier and
multiplicand, long product

Element by element, the product of the second
operand and the third operand is placed in the first
operand location. The operation is performed on
each pair of elements in the same manner as the
corresponding scalar operation, except for the fol
lowing differences:

• For binary operands, the third-operand desig
nation may be any register number. Each
element of the third operand is a 32-bit signed
binary integer, as is each element of the second
operand. The first-operand location is a

vector-register pair, which receives product ele
ments consisting of 64-bit signed binary inte
gers.

• For floating-point operands, the operands are
not first normalized. When one or both of the
source-operand elements have a nonzero frac
tion with a leftmost hexadecimal digit of zero,
an unnormalized-operand exception is recog
nized, and the unit of operation is inhibited.

A specification exception is recognized when a VR
or Q R field designates an invalid register number.
In the QST and VST formats, a specification excep
tion is recognized when the second operand is not
designated on an integral boundary, or when the
R T 2 field is nonzero and designates the same
general register as the RS2 field. For the VMS

instruction, a specification exception is also recog
nized when the Q R 3 field designates the same
general register as the RS 2 field.

MULTIPLY is a claSS-1M instruction. It is interrup
tible, the vector count and vector interruption index
determine the number of elements processed, and
element selection is affected by both the vector
mask mode and the vector-mask register.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2 in QST and VST

formats)
• Exponent overflow (with exception-extension

code; floating-point operands only)
• Exponent underflow (with exception-extension

code; floating-point operands only)
• Operation
• Specification
• Unnormalized operand (with exception-

extension code; floating-point operands only)
• Vector operation

MULTIPLY AND ACCUMULATE

Mnemonic VRl,VR3,RS2(RT2) [VST]

Op Code I VR,I RT,I VRII Rs,l

o
Mnemonic
VMCD
VMCE

Op Code
'A416 1

'A406 1

16 20 24 28 31
Operands
Long
Short multiplier and
multiplicand; long first
operand, product, and sum

Mnemonic VRl,VR3,VR2 [VV]

Op Code I VR,I////I VRII VR,I

o
Mnemonic
VMCDR
VMCER

Op Code
'A516 1

'A506 1

16 20 24 28 31
Operands
Long
Short multiplier and
multiplicand; long first
operand, product, and sum

Partial sums of the products of corresponding ele
ments of the second and third operands are accu
mulated by adding the products to the contents of
element positions 0 to p- 1 of the fust operand.
The partial-sum number p depends on the model.

The operation proceeds in an ascending sequence
of element numbers. The product of the I-th ele
ments of the second and third operands is added to
the first-operand element at a position which is the
remainder of dividing I by p, where I varies from X
to C-I, X is the initial vector interruption index
(normally zero), and C is the vector count. The
operation accumulates C-X element products.

Thus, the products formed from second- and third
operand elements 0, p, 2p, ... are accumulated into
position 0 of the fust operand; products from ele
ments 1, p+ 1, 2p+ 1, .. , are accumulated into posi
tion 1; etc. The contents of frrst-operand element
positions above p-l remain unchanged.

Every multiplication is performed in the same
manner as the corresponding scalar floating-point,
short or long, MULTIPLY instruction, except that
the operand elements are not fITst normalized.
Every addition is performed in the same manner as
the scalar instruction ADD NORMALIZED (ADR),

except that the condition code is not set.

When one or both of a pair of second- and third
operand elements have a nonzero fraction with a

Chapter 3. Vector-Facility Instructions 3-23

leftmost hexadecimal digit of zero, an
unnormalized-operand exception is recognized, and
the unit of operation is inhibited.

If the multiplication of an element pair results in an
exponent underflow, a true zero is used in place of
the product in the addition operation, and no
exception is recognized. If the multiplication
results in an exponent overflow, the product
replaces the corresponding partial-sum element, and
an exponent overflow is recognized. Exceptions in
the addition are recognized in the same manner as
for the scalar instruction ADD NORMALIZED (ADR).

A specification exception is recognized when a VR
field designates an invalid register number. In the
VST format, a specification exception is also recog
nized when the second operand is not designated
on an integral boundary, or when the R T 2 field is
nonzero and designates the same general register as
the RS 2 field.

MULTIPLY AND ACCUMULATE is a claSS-1M instruc
tion. It is interruptible, the vector count and vector
interruption index determine the number of ele
ments processed, and element selection is affected
by both the vector-mask mode and the vector-mask
register.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2 in VST format)
• Exponent overflow (with exception-extension

code)
• Exponent underflow (with exception-extension

code)
• Operation

Significance (with exception -extension code)
• Specification
• Unnormalized operand (with exception-

extension code)
• Vector operation

3-24 IBM Systemj370 Vector Operations

MULTIPLY AND ADD

Mnemonic VRl,FR3,RS2(RT2) [QST]

Op Code I FR31 RT21 VR11 RS21

o
Mnemonic
VMADS
VMAES

Op Code
'A494'
'A484'

16 20 24 28 31
Operands
Long
Short multiplier and
multiplicand; long first
operand, product, and sum

Mnemonic VRl,FR3,VR2 [QV]

Op Code I FR31;;;;1 VR11 VR21

o
Mnemonic Op Code
VMADQ ' A594 '
VMAEQ ' A584 '

16 20 24 28 31
Operands
Long
Short multiplier and
multiplicand; long first
operand, product, and sum

Mnemonic VRl,VR3,RS2(RT2) [VST]

Op Code I VR31 RT21 VR11 RS21

o 16
Mnemonic Op Code
VMAD 'A414'
VMAE 'A404'

20 24 28 31
Operands
Long
Short multiplier and
multiplicand; long first
operand, product, and sum

MULTIPLY AND SUBTRACT

Mnemonic VRl,FR3,RS2(RT2) [QST]

Op Code I FR31 RT21 VR11 RS21

o
Mnemonic
VMSDS
VMSES

Op Code
'A495'
'A485'

16 20 24 28 31
Operands
Long
Short multiplier and
multiplicand; long first
operand, product and
difference

Mnemonic VRl,FRJ,VR2 [QV]

Op Code I FR,IIIIII VR,I VR·I

o
Mnemonic
VMSDQ
VMSEQ

Op Code
'AS9S'
'AS8S'

16 20 24 28 31
Operands
Long
Short multiplier and
multiplicand; long first
operand, product and
difference

Mnemonic VRl,VRJ,RS2(RT2) [VST]

Op Code I VR,I RT.I VR,I Rs·1

o
Mnemonic
VMSD
VMSE

Op Code
'A41S'
'A40S'

16 20 24 28 31
Operands
Long
Short multiplier and
multiplicand; long first
operand, product and
difference

Element by element, the third operand is multiplied
by the second-operand vector, and the product is
added to, or subtracted from, the frrst-operand
vector. The sum or difference is placed in the frrst
operand location.

Every multiplication is performed in the same
manner as the corresponding scalar floating-point,
short or long, MULTIPLY instruction, except that
the operand elements are not frrst normalized.
Every addition or subtraction is performed in the
same manner as the scalar instruction ADD NOR
MALIZED (ADR) or SUBTRACT NORMALIZED (SDR),
respectively, except that the condition code is not
set.

When one or both of a pair of second- and third
operand elements have a nonzero fraction with a
leftmost hexadecimal digit of zero, an
unnormalized-operand exception is recognized, and
the unit of operation is inhibited.

If the multiplication of an element pair results in an
exponent underflow, a true zero is used in place of
the product in the addition or subtraction opera
tion, and no exception is recognized. If the multi
plication of an element pair results in an exponent

overflow, the corresponding product replaces the
frrst-operand element, and an exponent overflow is
recognized. Exceptions in the addition or sub
traction are recognized in the same manner as for
the scalar instruction ADD NORMALIZED (ADR) or
SUBTRACT NORMALIZED (SDR), respectively.

A specification exception is recognized when a VR
or FR field designates an invalid register number.
In the QST and VST formats, a specification excep
tion is also recognized when the second operand is
not designated on an integral boundary, or when
the R T 2 field is nonzero and designates the same
general register as the RS 2 field.

MULTIPLY AND ADD and MULTIPLY AND SUB
TRACT are claSS-1M instructions. They are interrup
tible, the vector count and vector interruption index
determine the number of elements processed, and
element selection is affected by both the vector
mask mode and the vector-mask register.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2 in QST and VST
formats)

• Exponent overflow (with exception-extension
code)

• Exponent underflow (with exception-extension
code)

• Operation
• Significance (with exception-extension code)
• Specification
• Unnormalized operand (with exception-

extension code)
• Vector operation

Programming Notes:

1. The MULTIPLY AND ADD and MULTIPLY AND
SUBTRACT operations may be summarized as:

0Pl = 0pl ± OPJXOp2

2. If the constant 1.0 is placed in the third
operand location, MULTIPLY AND ADD (VMAPS
or VMAEQ) and MULTIPLY AND SUBTRACT
(VMSES or VMSEQ) may be used to add (sub
tract) a vector in the short format to (from) a
vector in the long format.

Chapter 3. Vector-Facility Instructions 3-25

OR

vos VR1,GRJ,RS2(RT2) [QST]

'A4A5' I GR,I RT21 VR,I RS21

0 16 20 24 28 31

VOQ VR1,GRJ,VR2 [QV]

'A5A5' I GR,IIIIII VR,I VR21

0 16 20 24 28 31

VO VR1,VRJ,RS2(RT2) [VST]

'A425' I VR,I RT21 VR,I RS21

0 16 20 24 28 31

VOR VR1, VRJ, VR2 [VV]

'A525' I VR,IIIIII VR,I VR21

0 16 20 24 28 31

Element by element, the OR of the second and third
operands is placed in the ftrst-operand location.

The operation is performed on each pair of 32-bit
elements in the same manner as the corresponding
scalar operation, except that the condition code is
not set.

For the vo and vos instructions, a specmcation
exception is recognized when the second operand is
not designated on an integral boundary, or when
the R T 2 fteld is nonzero and designates the same
general register as the RS2 field. For the vos
instruction, a specification exception is also recog
nized when the GRJ field designates the same
general register as the RS 2 field.

OR is a claSS-1M instruction. It is interruptible, the
vector count and vector interruption index deter
mine the number of elements processed, and
element selection is affected by both the vector
mask mode and the vector-mask register.

Condition Code: The code remains unchanged.

3-26 IBM System/370 Vector Operations

Program Exceptions:

• Access (fetch, operand 2 in QST and VST
formats)

• Operation
• Specmcation
• Vector operation

OR TO VMR

VOVM RS2 [VS]

'A685 , 11111111111111 RS21

o 16 28 31

The OR of the second-operand bit vector and of the
active bits of the vector-mask register (VMR) is
placed in the vector-mask register. Bits beyond the
active bits are set to zeros.

OR TO VMR is a class-Nc instruction. It is not
interruptible, the vector count determines the
number of bits processed, and bit selection is
affected by neither the vector-mask mode nor the
vector-mask register. The vector interruption index
is not used and remains unchanged.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2)
• Operation
• Vector operation

RESTORE VAC

[S]

'A6eB' B2

o 16 20 31

Bits 8-63 of the vector-activity count (VAC) are
replaced by bits 8-63 of the doubleword designated
by the second-operand address; bits 0-7 of the v AC
are set to zeros. Execution of this instruction does
not increment the vector-activity count and leaves
the loaded value unchanged.

The operand must be designated on a double word
boundary; otherwise, a specification exception is
recognized.

RESTORE VAC is a class-No instruction. It is not
interruptible, no elements are processed, and its
execution is affected by neither the vector-mask
mode nor the vector-mask register. The vector
count and vector interruption index are not used
and remain unchanged.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2)
• Operation
• Privileged operation
• Specification
• Vector operation

RESTORE VMR

[S]

'A6C3' B2

16 20 31

The second operand replaces the entire contents of
the vector-mask register (VMR).

The length of the second operand is 4Z bits (Z/2
bytes), where Z is the section size. The contents of
only the first Z bits are necessarily fetched and
placed in the VMR; additional bits mayor may not
be fetched from the second operand, and access
exceptions mayor may not be recognized for that
portion of the operand.

RESTORE VMR is a claSS-NZ instruction. It is not
interruptible, the section size determines the
number of bits processed, and bit. selection is
affected by neither the vector-mask mode nor the
vector-mask register. The vector count and vector
interruption index are not used and remain
unchanged.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2)
• Operation
• Vector operation

RESTORE VR

VRRS GRI [RRE]

'A648'

16 24 28 31

If the vector in-use bit associated with a specified
pair of vector registers is one, the contents of those
vector registers are replaced by consecutive
doublewords from a storage area called the save
area of the vector-register pair. If the vector in-use
bit is zero, the vector registers remain unchanged.
In either case, the address of the save area is incre
mented to the location of the save area of the next
pair of vector registers.

The G R 1 field must designate an even register
number to specify an even-odd pair of general reg
isters. The odd general register contains two 16-bit
unsigned binary integers as follows: bits 0-15
contain an element number, which designates the
location of the first element pair in the vector
register (VR) pair designated by bits 16-31. The
even general register contains a save-area address,
which identifies the storage location of the element
pair specified by the odd general register.

Graphically, the general-register contents may be
represented as follows:

GRI Save-Area Address
(even) I
GRl+1 Element Number VR Pair
(odd)

16 31

Depending on the address size, the rightmost 31 or
24 bits of the contents of the even general register
are used as the save-area address. When the
general register is updated to the address of the next
location, the leftmost one or eight bit positions,
respectively, of the general register are set to zeros.

If the instruction is interrupted, the save-area
address and element-number fields have been
updated to indicate the next element to be proc
essed in the current save area and vector registers.

At the completion of the instruction, the save-area
address field is updated to the storage location of
the next pair of vector registers, the clement
number field is set to zero, and the VR-pair fie1d is

Chapter 3. Vector-Facility Inst.ructions 3-27

incremented by 2. If vector-register pair 14 was
just restored, the VR -pair field is set to 16, and the
save-area-address field is set to the next address fol
lowing the end of the save area of vector-register
pair 14.

At the start of execution, the VR -pair field must be
an even number from 0 to 14, and the element
number field must be less than the section size;
also, whether or not the storage location will be
accessed, the starting address of the save area for
the current VR pair must be on a boundary which
is a multiple of 8 times the section size.

The starting addresses of the save areas for the
current and next pair of vector registers are given in
the following formulas:

SAC = SAF - 8xENF
SAN = SAC + 8xSS

evaluated modulo the address size, where:

ENF Contents of the element-number field at the
beginning of the operation (normally zero)

SAC Starting address of save area for the current
VR pair

SAF Contents of the save-area-address field at the
beginning of the operation

SAN Starting address of save area for the next VR
pair

SS Section size

If the vector in-use bit examined was associated
with vector-register pair 14 and 15, condition code
o or 2 is set according to whether the bit was zero
or one, respectively. If the vector in-use bit exam
ined was associated with any other register pair,
condition code I or 3 is set according to whether
the bit was zero or one, respectively.

When the CPU is in the problem state, and the
vector in-use bit of the specified pair of vector reg
isters is one, execution of this instruction sets the
vector change bit of the vector-register pair to one;
execution in the supervisor state does not alter the
vector change bits.

A specification exception is recognized when at the
start of execution:

• The G R 1 field designates an odd register
number.

• The starting address of the save area is not a
multiple of 8 times the section size.

J-28 IBM System/370 Vector Operations

• The element number is equal to or greater than
the section size.

• The VR -pair field contains other than an even
number from 0 to 14.

RESTORE VR is a class-Iz instruction. It is interrup
tible, the section size and element-number field
determine the number of elements processed, and
element selection is affected by neither the vector
mask mode nor the vector-mask register. The
vector count and vector interruption index are not
used and remain unchanged.

Resulting Condition Code:

o VRs 14 and 15 examined and not restored
1 VR pair other than 14 and 15 examined and

not restored
2 VRs 14 and IS restored
3 VR pair other than 14 and 15 restored

Program Exceptions:

• Access (fetch, save-area location)
• Operation
• Specification
• Vector operation

Programming Note: See the section "Program Use
of the Restore and Save Instructions" on page 2-27
for a discussion of the use of the instructions
RESTORE VR, SAVE CHANGED VR, and SAVE VR.

RESTORE VSR

[S]

'A6C2 1 B2

o 16 20 31

The contents of the vector-status register (VSR) are
replaced by the doubleword designated by the
second-operand address, and vector registers may
be cleared depending on the vector in-use bits.

The vector in-use bits, bits 48-55 of the vector
status register, and the vector change bits, bits
56-63 of the register, are set in pairs sequentially
from left to right, a vector in-use bit being set
together with the corresponding vector change bit.

If the second operand specifies that a vector in-use
bit is to be set to one, it is set to one. The setting
of the corresponding vector change bit depends on

whether the instruction is executed in the super
visor or problem state. If the vector in-use bit is
set to one while in the supervisor state, the vector
change bit is set to the value specified by the
second operand. If the vector in-use bit is set to
one while in the problem state, the vector change
bit is set to one, ignoring the second operand.

If the second operand specifies that a vector in-use
bit is to be set to zero, the old setting of the vector
in-use bit is fIrst tested before it is changed. If the
old setting was one, all element positions of the
associated pair of vector registers are cleared to
zeros, and both the vector in-use bit and the corre
sponding vector change bit are then set to zeros. If
the old setting was zero, both the vector in-use bit
and the corresponding vector change bit are simply
set to zeros.

If the instruction is interrupted before the operation
is completed, the instruction address in the current
psw identifies this instruction. If the interrupted
instruction is then reexecuted, vector-register pairs,
which were cleared and had their vector in-use bits
and vector change bits set to zeros, are not cleared
again, provided that their vector in-use bits are still
zeros.

A specification exception is recognized if any of the
following is true:

• The second operand is not designated on a
doubleword boundary.

• The value to be placed in bit positions 0-14 of
the vector-status register is not all zeros.

• The value to be placed in the vector count, bits
16-31 of the vector-status register, is greater
than the section size.

• The value to be placed in the vector inter
ruption index, bits 32-47 of the vector-status
register, is greater than the section size.

RESTORE VSR is a class-IZ instruction. It is inter
ruptible, the section size determines the number of
elements processed, and element selection is
affected by neither the vector-mask mode nor the
vector-mask register. The vector-mask mode,
vector count, and vector interruption index are set.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2)
• Operation
• Specification
• Vector operation

SAVE CHANGED VR

VRSVC GRI [RRE]

'A649' I11111111I GR,IIIIII
o 16 24 28 31

If the vector change bit associated with a specified
pair of vector registers is one, the contents of those
vector registers are placed in consecutive
doublewords of a storage area called the save area
of the vector-register pair, and the vector change bit
is then set to zero. If the vector change bit is
already zero, the vector registers are not stored. In
either case, the address of the save area is incre
mented to the location of the save area of the next
pair of vector registers.

If the vector change bit examined was associated
with vector-register pair 14 and 15, condition code
o or 2 is set according to whether the bit was zero
or one, respectively. If the vector change bit exam
ined was associated with any other register pair,
condition code 1 or 3 is set according to whether
the bit was zero or one, respectively.

The operand parameters and their updating are the
same as for the instruction RESTORE YR.

A specification exception is r~cognized when at the
start of execution:

• The G R 1 field designates an odd register
number.

• The starting address of the save area is not a
multiple of 8 times the section size.

• The element number is equal to or greater than
the section size.

• The VR -pair field contains other than an even
number from 0 to 14. .

SAVE CHANGED VR is a claSS-IZ instruction. It is
interruptible, the section size and element-number
field determine the number of elements processed,
and element selection is affected by neither the
vector-mask mode nor the vector-mask register.

Chapter 3. Vector-Facility Instructions 3-29

The vector count and vector interruption index are
not used and reInain unchanged.

Resulting Condition Code:

o VRs 14 and 15 examined and not saved
1 VR pair other than 14 and 15 examined and

not saved
2 VRs 14 and 15 saved
3 VR pair other than 14 and 15 saved

Program Exceptions:

• Access (store, save-area location)
• Operation
• Privileged operation
• Specification
• Vector operation

Programming Notes:

1. The operation is the same as for SAVE VR,
except that the instruction is privileged, the
vector change bit takes the place of the vector
in-use bit, and the vector change bit is set to
zero after a vector-register pair is saved. The
effect is that a vector-register pair is saved only
if it has been loaded or modified since the last
use of SAVE CHANGED VR designating this pair.

If the vector in-use bit is zero, the vector
change bit is also zero, so that neither instruc
tion will perform a save operation.

2. See the section "Program Use of the Restore
and Save Instructions" on page 2-27 for a dis
cussion of the use of the instructions RESTORE
VR, SAVE CHANGED VR, and SAVE YR.

SAVE VAC

[S]

'A6CA' B2

o 16 20 31

The current value of the vector-activity count
(v AC) is stored at the doublewoid designated by the
second-operand address. Execution of this instruc
tion does not increment the vector-activity count
and leaves its value unchanged.

3-30 IBM Systemf370 Vector Operations

The operand must be designated on a doubleword
boundary; otherwise, a specification exception is
recognized.

SAVE VAC is a class-No instruction. It is not inter
ruptible, no elements are processed, and its exe
cution is affected by neither the vector-mask mode
nor the vector-mask register. The vector count and
vector interruption index are not used and remain
unchanged.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (store, operand 2)
• Operation
• Privileged operation
• Specification
• Vector operation

SAVE VMR

VMRSV 02(82) [S]

'A6Cl' 1 82 1 D2

o 16 20 31

The contents of the entire vector-mask register
(VMR) are placed unchanged in storage at the
second-operand location.

The length of the second operand is 4Z bits (Z/2
bytes), where Z is the section size. Only the fi.rst Z
bits of the result are defined to be the VMR con
tents; the remaining 3Z bits of the result are unde
fined, and storing of that part of the result mayor
may not take place.

SAVE VMR is a class-Nz instruction. It is not inter
ruptible, the section size determines the number of
bits processed, and bit selection is affected by
neither the vector-mask mode nor the vector-mask
register. The vector count and vector interruption
index are not used and remain unchanged.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (store, operand 2)
• Operation
• Vector operation

SAVE VR

VRSV GR 1 [RRE]

'A64A' I1111III1I GR,IIIIII
o 16 24 28 31

If the vector in-use bit associated with a specified
pair of vector registers is one, the contents of those
vector registers are placed in consecutive
doublewords of a storage area called the save area
of the vector-register pair. If the vector in-use bit is
zero, the vector registers are not stored. In either
case, the address of the save area is incremented to
the location of the save area of the next pair of
vector registers.

The operand parameters, their updating, and the
condition-code setting are the same as for the
instruction RESTORE YR.

A specification exception is recognized when at the
start of execution:

• The G R 1 field designates an odd register
number.

• The starting address of the save area is not a
multiple of 8 times the section size.

• The element number is equal to or greater than
the section size.

• The VR -pair field contains other than an even
number from 0 to 14.

SAVE VR is a class-Iz instruction. It is interruptible,
the section size and element-number field determine
the number of elements processed, and element
selection is affected by neither the vector-mask
mode nor the vector-mask register. The vector
count and vector interruption index are not used
and remain unchanged.

Resulting Condition Code:

o VRs 14 and 15 examined and not saved
1 VR pair other than 14 and 15 examined and

not saved
2 VRs 14 and 15 saved
3 VR pair other than 14 and 15 saved

Program Exceptions:

• Access (store, save-area location)
• Operation
• Specification
• Vector operation

Programming Note: See the section "Program Use
of the Restore and Save Instructions" on page 2-27
for a discussion of the use of the instructions
RESTORE VR, SAVE CHANGED VR, and SAVE YR.

SAVE VSR

[S]

'A6C0 I B2

o 16 20 31

The contents of the vector-status register (VSR) are
placed in storage at the doubleword location desig
nated by the second-operand address, e~cept that,
when the CPU is in the problem state, the value of
the vector change bits stored by the instruction is
undefmed.

A specification exception is recognized when the
second operand is not designated on a doubleword
boundary.

SAVE VSR is a class-No instruction. It is not inter
ruptible, no elements are processed, and its exe
cution is affected by neither the vector-mask mode
nor the vector-mask register. The vector count and
vector interruption index are not used and remain
unchanged.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (store, operand 2)
• Operation
• Specification
• Vector operation

Chapter 3. Vector-Facility Instructions 3-31

SET VECTOR MASK MODE

[S]

'A6C6' B2

o 16 20 31

The vector-mask mode is set on or off, depending
on whether the rightmost bit, bit 31, of the second
operand address is one or zero, respectively. The
second-operand address is not used to address data,
and all address bits other than bit 31 are ignored.

SET VECTOR MASK MODE is a class-No instruction.
It is not interruptible, no elements are processed,
and its execution is not affected by the vector-mask
register. The vector-mask mode is set. The vector
count and vector interruption index are not used
and remain unchanged.

Condition Code: The code remains unchanged.

Program Exceptions:

• Operation
• Vector operation

SHIFT LEFT SINGLE LOGICAL

VSLL VRl,VR3,D2(B2) [RSE]

E~_5 ' -,--I_VR-L-+_I I--LI I_VR--1.·1_1 1 1----11 II--B_2 IL---~J
o 16 20 24 28 32 36 47

SHIFT RIGHT SINGLE LOGICAL

VSRL VRl,VR3,02(B2) [RSE]

E~_4'1-1 V_R 3-,--1 11_1/-,---1 V_R 1.L-1 II_II ,--I S---l2 I~~J
o 16 20 24 28 32 36 47

One by one, the elements in the third-operand
vector are shifted left (VSLL) or right (VSRL) by the
number of bits specified by the second-operand
address, and the result is placed in the first-operand
location.

The operation is performed on each element in the
same manner as the corresponding scalar operation.

3-32 IBM System/370 Vector Operations

SHIrT LEFT SINGLE LOGICAL and SHIFT RIGHT
SINGLE LOGICAL are class-1M instructions. They
are interruptible, the vector count and vector inter
ruption index determine the number of elements
processed, and element selection is affected by both
the vector-mask mode and the vector-mask register.

Condition Code: The code remains unchanged.

Program Exceptions:

• Operation
• Vector operation

STORE

Mnemonic VRl,RS2(RT2) CYST]

Op Code 111111 RT21 VR.I RS21

0 16 20 24 28 31
Mnemonic Op Code Operands
VST 'A40D' Binary or logical
VSTD 'A4ID' Long
VSTE 'A40D' Short

Element by element, the first-operand vector is
placed unchanged in storage at the second-operand
location.

A specification exception is recognized when the
VR 1 field designates an invalid register number,
when the second operand is not designated on an
integral boundary, or when the R T 2 field is
nonzero and designates the same general register as
the RS2 field.

STORE is a class-Ic instruction. It is interruptible,
the vector count and vector interruption index
determine the number of elements processed, and
element selection is affected by neither the vector
mask mode nor the vector-mask register.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (store, operand 2)
• Operation
• Specification
• Vector operation

STORE COMPRESSED

Mnemonic VRl,RS2(RT2) [VST]

Op Code I11111 RT,I VR11 Rs,l

0 16 20 24 28 31
Mnemonic Op Code Operands
VSTK 'A40F' Binary or 1 ogi cal
VSTKD 'A41F' Long
VSTKE 'A40F' Short

Element by element, elements of the flfst-operand
vector corresponding to ones in the active bits of
the vector-mask register are placed unchanged in
storage at successive element locations of the
second operand.

First-operand elements corresponding to zeros in
the active bits of the vector-mask register are
skipped, and there are no corresponding element
locations of the second operand. If the active bits
of the vector-mask register are all zeros, no access
exceptions are recognized for the storage location
specified by the second operand, the change bits for
the storage operand remain unchanged, and no PER

event for storage alteration is indicated.

A specification exception is recognized when the
VRI field designates an invalid register number,
when the second operand is not designated on an
integral boundary, or when the R T 2 field is
nonzero and designates the same general register as
the RS 2 field.

STORE COMPRESSED is a class-Ic instruction. It is
interruptible, the vector count and vector inter
ruption index detennine the number of elements
processed, and element selection is affected by the
vector-mask register but not by the vector-mask
mode.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (store, operand 2)
• Operation

• Specification
• Vector operation

Programming Notes:

1. The number of vector elements which are
stored and the amount by which the address in
the general register designated by RS 2 is
updated correspond to the number of ones
among the active bits of the vector-mask reg
ister.

2. The operation performed by STORE COM

PRESSED is the opposite of LOAD EXPANDED.

STORE HALFWORD

VSTH VRl,RS2(RT2) [VST]

'A420' I~/I RT,I VR11 Rs,l

o 16 28 24 28 31

Element by element, the rightmost 16 bits of each
first-operand vector element are placed unchanged
in storage at the second-operand location.

A specification exception is recognized when the
second operand is not designated on a halfword
boundary, or when the R T 2 field is nonzero and
designates the same general register as the RS 2

field.

STORE HALFWORD is a class-Ic instruction. It is
interruptible, the vector count and vector inter
ruption index determine the number of elements
processed, and element selection is affected by
neither the vector-mask mode nor the vector-mask
register.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (store, operand 2)
• Operation
• Specification
• Vector operation

Chapter 3. Vector-Faci1ity Instructions 3-33

STORE INDIRECT

Mnemon;c VR1,VR3,02(B2) [RSE]

E~_ode--,-l_vR-L....' I I_I I--L-I l_vR~ll_ II I--..LI I_B 2---,1_~~
o 16 20 24 28 32 36 47
Mnemon;c
VSTI
VSTID
VSTIE

Op Code
'E401 '
'E411 '
'E401'

Operands
Binary or logical
Long
Short

Element by element, the third operand is used to
select element locations of the second operand in
storage, at which elements of the frrst-operand
vector are placed. The element positions of the
fust operand correspond to those of the third
operand.

The method of selecting elements of each operand
is the same as for LOAD INDIRECT, the amount of
left shift of the third-operand elements being two
bits for VSTI or VSTIE and three bits for VSTID.

The selected frrst-operand elements are stored at the
specified second-operand locations.

A specification exception is recognized when the
VRI field designates an invalid register number, or
when the second operand is not designated on an
integral boundary.

STORE INDIRECT is a class-Ic instruction. It is
interruptible, the vector count and vector inter
ruption index detennine the number of elements
processed, and element selection is affected by
neither the vector-mask mode nor the vector-mask
register.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (store, operand 2)
• Operation
• Specification
• Vector operation

Programming Note: STORE INDIRECT, which is the
opposite of LOAD INDIRECT, is used to store a
vector by indirect element selection. See also the
programming note under LOAD INDIRECT.

3-34 IBM System/370 Vector Operations

STORE MATCHED

Mnemon;c

Op Code
0 16 20 24 28 31
Mnemon;c Op Code Operands
VSTM 'A40E' Binary or logical
VSTMD 'A41E' Long
VSTME 'A40E' Short

Element by element, elements of the frrst-operand
vector corresponding to ones in the active bits of
the vector-mask register are placed unchanged in
storage at the corresponding element locations of
the second operand. Elements of the frrst operand
corresponding to zeros in the active bits of the
vector-mask register are not stored, and the corre
sponding second-operand locations in storage
remain unchanged.

A specification exception is recognized when the
VR 1 field designates an invalid register number,
when the second operand is not designated on an
integral boundary, or when the R T 2 field is
nonzero and designates the same general register as
the RS 2 field.

No access exceptions and PER storage-alteration
events are recognized for elements of the second
operand which correspond to zeros in the active
bits of the vector-mask register, and the corre
sponding change bits remain unchanged; however,
the general register designated by the RS 2 field is
updated for each of those elements.

STORE MATCHED is a class-Ic instruction. It is
interruptible, the vector count and vector inter
ruption index determine the number of elements
processed, and element selection is affected by the
vector-mask register but not by the vector-mask
mode.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (store, operand 2)
• Operation
• Specification
• Vector operation

Programming Notes:

1. The instructions STORE and STORE MATCHED,

in corresponding formats, perform the same
function on those elements which correspond
to ones in the active bits of the vector-mask
register; that is, each such element is copied
from the same vector-register position into the
same storage location. STORE MATCHED differs
in that storage locations remain unchanged for
elements which correspond to zero bits.

2. STORE, STORE COMPRESSED, and STORE

MATCHED, in corresponding formats, perform
the same function when aU active bit positions
of the vector-mask register contain ones.

STORE VECTOR PARAMETERS

[S]

'A6C8' 82

o 16 20 31

The 16-bit section size and the 16-bit partial-sum
number are placed in storage in the left and right
half, respectively, of the word at the location desig
nated by the second-operand address.

A specification exception is recognized when the
second operand is not designated on a word
boundary.

STORE VECTOR PARAMETERS is a claSS-NO instruc
tion. It is not interruptible, no elements are proc
essed, and its execution is affected by neither the
vector-mask mode nor the vector-mask register.
The vector count and vector interruption index are
not used and remain unchanged.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (store, operand 2)
• Operation
• Specification
• Vector operation

STORE VMR

VSTVM RS2 [VS]

'A682 , 1111111111111, RS',
o 16 28 31

The contents of the active-bit positions of the
vector-mask register are stored as a bit vector at the
second-operand location.

When the vector count is not a multiple of 8, zeros
are stored for any bits in the last byte which are to
the right of the last bit specified by the vector
count.

When the vector count is zero, no bits are stored.
No access exceptions are recognized for the second
operand, the change bits for the operand remain
unchanged, and PER storage-alteration events are
not indicated.

STORE VMR is a c1ass-Nc instruction. It is not
interruptible, the vector count determines the
number of bits processed, and bit selection is
affected by neither the vector-mask mode nor the
vector-mask register. The vector interruption index
is not used and remains unchanged.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (store, operand 2)
• Operation
• Vector operation

SUBTRACT

Mnemonic VRl,QRJ,RS2(RT2) [QST]

Op Code , QR', RT2' VRl' RS',
0 16 20 24 28 31
Mnemonic Op Code Operands
VSS 'A4A1 ' Binary
VSDS 'A491' Long
VSES 'A481 ' Short

Chapter 3. Vector-Facility Instructions 3-35

Mnemonic VRl,QR3,VR2 [QV]

Op Code I QR'I~III VR,I VR21

0 16 20 24 28 31
Mnemonic Op Code Operands
VSQ 'A5A1 1 Binary
VSDQ 'A591 1 Long
VSEQ 'A581 1 Short

Mnemonic VRl,VR3,RS2(RT2) [VST]

Lo~code I VR,I RT 2 I VR,I RS2 I

0 16 20 24 28 31
Mnemonic Op Code Operands
VS 'A4211 Binary
VSD 'A4111 Long
VSE 'A401 1 Short

Mnemonic VRl,VR3,VR2 [VV]

Op Code I VR,IIIIII VR,I VR21

0 16 20 24 28 31
Mnemonic Op Code Operands
VSR 'A521 1 Binary
VSDR 'A511 1 Long
VSER 'A501 1 Short

Element by element, the second-operand vector is
subtracted from the third operand, and the result is
placed in the first-operand location.

The operation is performed on each pair of ele
ments in the same manner as the corresponding
scalar operation, except that the condition code is
not set. Por floating-point operands, the scalar
equivalent is SUJHRACT NORMAI,lZED.

A specification exception is recognized when a VR
or QR field designates an invalid register number.
In the QST and VST formats, a specification excep
tion is recognized when the second operand is not
designated on an integral boundary, or when the
R T 2 field is nonzero and designates the same
general register as the RS2 field. Por the VSS
instruction, a specification exception is also recog
nized when the QR3 field designates the same
general register as the RS2 field.

SUBTRACT is a class-1M instruction. It is interrup
tible, the vector count and vector interruption index
determine the number of elements processed, and
element selection is affected by both the vector
mask mode and the vector-mask register.

3-36 IBM Syst.emj370 Veclor Operations

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2 in QST and VST

formats)
• Exponent overflow (with exception-extension

code; floating-point operands only)
• Exponent underflow (with exception-extension

code; floating-point operands only)
• Pixed-point overflow (with exception-extension

code; binary operands only)
• Operation

Significance (with exception-extension code;
floating-point operands only)

• Specification
• Vector operation

Programming Note: The QST and QV formats
provide for subtracting a vector from a scalar
operand. The operation of subtracting a scalar
from a vector can be replaced by adding the nega
tive of the scalar to the vector operand.

SUM PARTIAL SUMS

VSPSD VRl,FR2 [VR, Long Operands]

'A61A ' I FR2111111 VR1IIII11
o 16 20 24 28 31

Partial-sum clements of the first-operand vector are
added to the scalar second operand, the result
replacing the second operand.

The operand elements are floating-point numbers
in the long format, and every addition is performed
in the same manner as for the scalar ADD NORMAL

IZED (ADR) instruction, except that the condition
code is not set. The operation begins with adding
element X of the first operand to the second
operand, where X is the initial vector interruption
index (normally zero). It proceeds in an ascending
sequence of element numbers by successively
adding p-X first-operand elements, where p is the
model-dependent partial-sum number. The last
one to be added is element p- I. The vector inter
ruption index is then set to zero.

If the initial vector interruption index X is equal to
or greater than p, no elements are processed, and
the scalar second operand remains unchanged. The
vector interruption index is set to zero, and instruc
tion execution is completed.

A specification exception is recognized when the
VR 1 or FR 2 field designates an invalid register
number.

SUM PARTIAL SUMS is a class-IP instruction. It is
interruptible, the partial-sum number and vector
interruption index determine the number of ele
ments processed, and element selection is affected
by neither the vector-mask mode nor the vector
mask register. The vector count is not used and
remains unchanged.

Condition Code: The code remains unchanged.

Program Exceptions:

• Exponent overflow (with exception-extension
code)
Exponent underflow (with exception-extension
code)

• Operation
Significance (with exception -extension code)

• Specification
• Vector operation

Programming Note: An example of the use of SUM
PARTIAL SUMS is given in Appendix A (see "Sum
of Products" on page A-3).

TEST VMR

VTVM [RRE]

'A640 1 I11111111111111111
16 31

The active bits of the vector-mask register are
tested, and condition code 0, I, or 3 is set according
to whether those bits are all zeros, mixed zeros and
ones, or all ones.

When the vector count is zero, condition code 0 is
set.

TEST VMR is a class-Nc instruction. It is not inter
ruptible, the vector count determines the number of
bits processed, and bit selection is affected by
neither the vector-mask mode nor the vector-mask
register. The vector interruption index is not used
and remains unchanged.

Resulting Condition Code:

o Active bits all zeros
1 Active bits mixed zeros and ones
2
3 Active bits all ones

Program Exceptions:

• Operation
• Vector operation

Programming Note: The instruction TEST VMR
perfonns the testing portion of the instructions
COUNT LEFT ZEROS IN VMR and COUNT ONES IN
VMR. It may be used to distinguish the all-zeros
and all-ones conditions when the exact count is not
required.

ZERO PARTIAL SUMS

VZPSD VR 1 [VR]

'A61B' I11111111I VR1IIIIII
16 24 28 31

Partial-sum element locations of the vector-register
pair designated by VRI are set to zero.

The operation begins with setting to zero element
X of the frrst operand, where X is the initial vector
interruption index (normally zero). It proceeds in
an ascending sequence of element numbers by suc
cessively setting to zero p-X frrst-operand ele
ments, where p is the model-dependent partial-sum
number. The last one is element p-l. The vector
interruption index is then set to zero.

If the initial vector interruption index X is equal to
or greater than p, the vector-register contents and
the associated vector in-use bit and vector change
bit remain unchanged. The vector in!erruption
index is set to zero, and instruction execution is
completed.

A specification exception is recognized if the VR 1

field designates an invalid register number.

ZERO PARTIAL SUMS is a class-Ip instruction. It is
interruptible, the partial-sum number and vector
interruption index determine the number of ele
ments processed, and element selection is affected
by neither the vector-mask mode nor the vector
mask register. The vector count is not used and
remains unchanged.

Chapter 3. Vector-Facility Instructions 3-37

Condition Code: The code remains unchanged.

Program Exceptions:

• Operation
• Specification

3-38 IBM System/370 Vector Operations

• Vector operation

Programming Note: An example of the use of
ZERO PARTIAL SUMS is given in Appendix A (see
"Sum of Products" on page A-3).

Appendix A. Instruction-Use Examples

Operations on. Full Vectors
Contiguous Vectors
Vectors with Stride
Vector and Scalar Operands
Sum of Products
Compare and Swap Vector Elements

Conditional Arithmetic
Exception Avoidance

A-I
A-I
A-2
A-2
A-3
A-3
A-4
A-4

This appendix contains a number of simple exam
ples of the use of vector instructions.

Every example has a sectioning loop, so that
vectors of any length can be handled, independent
of the section size. The frrst example illustrates sec
tioning in some detail; the others use the same or a
similar technique.

The examples are written in assembler language.
Register operands are indicated symbolically with a
prefix G, F, or V to identify more clearly whether
an operand refers to a general register, floating
point register, or vector register, respectively.

Comments are written to the right of the instruc
tion or on separate lines that begin with an asterisk
(*).

Operations on Full Vectors

The following examples illustrate operations on full
vectors, where both zero and nonzero elements are
represented in storage. Vectors in storage are
accessed by sequential addressing.

The first three examples use three different methods
of controlling the sectioning loop.

Contiguous Vectors

Two contiguous vectors A and B in storage are
added, and the result is stored in contiguous vector
C. The number of elements in each is specified by
N. All vectors are in the long floating-point
format.

Add to Magnitude
Operations on Sparse Vectors

Full Added to Sparse to Give Full
Sparse Added to Sparse to Give Sparse

Floating-Point -Vector Conversions
Fixed Point to Floating Point
Floating Point to Fixed Point

* C = A + B

*
L G0,N Vector length to GR0
LA Gl,A Address of A to GRI
LA G2,B Address of B to GR2
LA G3,C Address of C to GR3

LP VLVCU G0 Load VCT, update GR0
VLD V0,Gl Load section of A
VAD V0,V0,G2 Add section of B
VSTD V0,G3 Store section in C
Be 2,LP Test condition code

* set by VLVCU, branch
* if not last section

A-4
A-4
A-5
A-5
A-6
A-6
A-6

Assuming, for purposes of illustration, a vector
section size of 8 and a vector length of 20, the
above program would process three sections in tum
(two full sections of eight elements and one partial
section of four elements) before ending the loop.
One section of A and one section of B are added in
vector-register pair 0 and I. The result is stored in
a section of C, as iUustrated below:

Storage
Address
C ----+ r-----,

Stored
in
Loop
1

8 elements ~----I
r-- 8 elements

C+64 --- -
2

8 elements +- Vector regis
ters: 0, 1

C+128 ~ 3 Section
4 el ements 1-4-- si ze: 8

C+160 ~l..-___J

Vector C
Length: 20
Elements: 8 bytes

Since all vectors are stored contiguously, the stride
for the three vector instructions VLD, v AD, and

Appendix A. Instruction-Use Examples A-I

VSTD is set to one by specifying a value of zero in
the RT2 subfield. This may be done in the assem
bler language either by placing a zero inside the
parentheses of the stride subfield, as in:

Mnemonic VRl,VR3,RS2(0)

or by omitting the subfield, including the paren
theses, altogether:

Mnemonic

Each of these instructions automatically updates
the storage address in the designated general register
to the value that will be needed for the next time, if
any, around the loop.

The BRANCH ON CONDITION (BC) instruction tests
the condition code set by VLVCU, because none of
the intervening instructions change the condition
code. If an instruction setting the condition code
had intervened, the instruction "LTR GO,GO"
inserted before the BC instruction would test the
contents of GRO; BC would test for condition code
2 in either case.

The following figure shows the condition-code
setting (CC) , the vector count (veT), and the con
tents of the general registers at the start, before exe
cuting the frrst VLVCU instruction, and at the end of
each loop thereafter.

Loop CC VCT GR0 GR1 GR2 GR3

Start - - 20 A B C
End 1 2 8 12 A+64 B+64 C+64
End 2 2 8 4 A+128 B+128 C+128
End 3 3 4 0 A+160 B+160 C+160

Vectors with Stride

This example modifies the previous example in four
ways. All vector elements are in the short floating
point format. The result of the addition is returned
to the storage location of vector B. Vector B is
assumed to be stored with a stride T. Finally, a BC

instruction which tests for the end of the loop is
placed immediately after the VLVCU instruction,
and the loop is closed with an unconditional
branch. This method, which could be used if addi
tional instructions were to change the condition
code later in the loop, allows the loop to be
bypassed when the initial vector count is zero.

A-2 IBM SystemJ370 Vector Operations

(Note, however, that the previous loop control also
works with a vector count of zero, because no ele
ments would be processed if vector instructions
were executed with a zero vector count.)

* B = A + B

*
L G0,N Vector length to GR0
LA G1,A Address of A to GR1
LA G2,B Address of B to GR2
LR G3,G2 Copy address in GR3
L G4,T Stride for B to GR4

LP VLVCU G0 Load VCT, update GR0
BC 12,NXT Exit loop if VCT=0
VLE V0,Gl Load section of A
VAE V0,V0,G2(G4)

* Add section of B
VSTE V0,G3(G4) Return section to B
BC 15,LP Branch to loop start

NXT Next instruction

Two registers, GR2 and GR3, are used to specify
the current address of B, so that the two instruc
tions V AE and VSTE in the sectioning loop will refer
to the same section. Each of the two instructions
updates its separate copy of the address. (If a
vector in storage is referred to more than twice
within a sectioning loop, the address could be
copied inside the loop for each use except the last,
so as to reduce the number of general registers
needed.)

Vector and Scalar Operands

This example illustrates the use of both vector and
scalar operands. It also shows how the three
operand arithmetic vector instructions can some
times be used to avoid a separate vector-load
instruction. A third loop-control method is used
here.

A and B are vectors of length N, and S is a scalar.
All are in the long floating-point format.

* B = A * (S-A)

*
LA Gl,A Address of A to GRl
LR G2,G1 Copy address in GR2
LA G3,B Address of B to GR3
L G4,N Vector length to GR4
LD F0,S Load S into FR0
VLVCU G4 Load VCT, update GR4

LP VSDS V0,F0,G1 Compute S-A
VMD V0,V0,G2 Compute A*(S-A)
VSTD V0,G3 Store result in B
VLVCU G4 Load VCT, update GR4
BC 3,LP Branch back if VCT>0

The VSDS instruction subtracts vector A in storage
from the scalar S. VMD multiplies the result by
vector A, again from its storage location. VSTD
stores the product as B. There are two VLVCU
loop-control instructions, one before entry into the
loop and one at the end.

Note that the QST-format arithmetic instruction
(VSDS) saves a separate load instruction at the
expense of having to access storage twice for the
same vector section A. Depending on the model, a
separate load instruction followed by Qv-format
arithmetic instructions may be more efficient in
some circumstances, particularly when the stride is
greater than one.

Note further that the QST-format instructions are
defmed such that VSDS subtracts a vector from a
scalar (S- V). Subtracting a scalar from a vector
(V-S) can be done conveniently by ftrst changing
the sign of the scalar and then adding, using V ADS.
Similarly, the VDDS instruction divides a scalar by a
vector (SIv). Division of a vector by a scalar
(VI S) can be performed by fust taking the recip
rocal of the scalar and then multiplying, using
VMDS. (The same comment applies to the corre
sponding QV -format instructions.)

Sum of Products

The use of MULTIPLY AND ACCUMULATE and
related instructions is illustrated by computing the
inner product of a row vector A, taken from a
matrix of dimensions I by J, and a column vector
B taken from another matrix of dimensions J by
K~ Each matrix is assumed to be stored in column
order. Therefore, row vector A has a stride I and a
length ./, and column vector B is contiguous and
has the same length J. The inner product of the
two vectors is a scalar value that is the sum of the
element-by-element products of vectors A and B; it
is stored at address C.

*
*

L
LA
L
LA

C = SUM (A * B)

G0,J
Gl,A
G2,I
G3,B

Vector length to GR0
Address of A to GRI
Stride for A to GR2
Address of B to GR3

VZPSD V0
LP VLVCU G0

*

VLD V2,Gl(G2)
VMCD V0,V2,G3

BC 2,LP
SDR F0,F0
VSPSD V0,F0
STD F0,C

Zero partial sums
Load VCT, update GR0
Row A section to VR2
Multiply by column B
partial sums to VR0
Branch back if GR0>0
Clear FR0 to zero
Scalar sum to FR0
Store scalar sum

First the VZPSD instruction clears the partial-sum
locations in VR 0 to zero. Then the sectioning loop
accumulates partial sums: The VLD instruction
loads a section of row A (with stride) into VR2.
The VMCD instruction multiplies the elements of
row A in VR2 by elements of column B in storage
(without stride) and accumulates p partial sums in
VRO; the number p depends on the model.

Mter the sectioning loop is ended and all partial
sums have been accumulated in VRO, FRO is
cleared by means of SDR, and the p partial sums are
then added to FRO by use of the VSPSD instruction.
The scalar sum is stored in C by STD.

Note that the program is independent of the vector
section size and the number of partial sums, both
of which depend on the model, because the instruc
tions VZPSD, VLVCU, VMCD, and VSPSD take care of
these dependencies automatically.

Compare and Swap Vector Elements

Two vectors A and B, both of length N, are to be
compared and their elements swapped so th~t
vector A will have the smaller element of each parr
and vector B the larger. The elements are 32-bit
signed binary integers and stored contiguously.

L G0,N Vector length to GR0
LA Gl,A Address of A to GRI
LR G2,Gl Copy address in GR2
LA G3,B Address of B to GR3
LR G4,G3 Copy address in GR4

LP VLVCU G0 Load VCT, update GR0
VL V0,Gl Section of A to VR0
VL Vl,G3 Section of B to VRI
VCR 2,V0,Vl Check where A>B
VSTM V0,G4 Store greater in B
VSTM Vl,G2 Store lesser in A
Be 2,LP Branch back if GR0>0

Appendix A. Instruction-Use Examples A-3

Conditional Arithmetic

Exception Avoidance

One use of conditional arithmetic in the vector
mask mode is to bypass vector elements which
would cause an exception during the arithmetic
operation and to provide a predetermined alternate
result for those elements. The example divides two
vectors A and B. The divisor B is tested for zeros.
By using the vector-mask mode, no division is per
formed for zero divisor elements, thus avoiding a
disruptive floating-paint-divide exception; the corre
sponding elements in result vector C are set to the
maximum positive value M P. All floating-point
numbers are in the long format.

In this example, performing the arithmetic condi
tionally requires two extra vector instructions inside
the sectioning loop.

* c = A / B
*

L G0,N Vector length to GR0
LA Gl,A Address of A to GRl
LA G2,B Address of B to GR2
LR G3,G2 Copy address in GR3
LA G4,C Address of C to GR4
SDR F0,F0 Clear FR0 to zero
LD F2,MP Load max. positive

* number MP in FR2
VSVMM 1 Vector-mask mode on

LP VLVCU G0 Load VCT, update GR0
VCDS 6,F0,G2 Compare section of B

* not equal to zero
VLDQ V0,F2 Load MP in all elem.

* positions of VR0
VLD V2,Gl Load section of A
VDD V0,V2,G3 Conditionally divide

* A by section of B
VSTD V0,G4 Store section in C
BC 2,LP Branch back if GR0>0
VSVMM 0 Set mask mode off

Add to Magnitude

Another use of conditional arithmetic is to perform
addition to the magnitude of a vector regardless of
signs. This may be illustrated by rounding a vector
V of length N, consisting of floating-point numbers
in the short format, to integer values. First, 0.5 is
added to the magnitude of each element. Then, the
digits to the right of the implied radix point are

A-4 IBM System/370 Vector Operations

truncated. The rounded vector R remains in the
short floating-point format.

Let H and Z be constants with the following
hexadecimal formats and values:

H = 40 80 00 00 = 0.5
Z = 47 00 00 00 = 0 (unnormalized)

H is the value which is to be added to or subtracted
from each vector element, depending on its sign.

The constant Z is an unnormalized zero with such
a characteristic that its addition to a short floating
point number having a smaller characteristic forces
that number to be shifted to the right, placing the
units digit in the guard-digit position. This causes
any digits to the right of the implied radix point to
be truncated and the result to be normalized. Any
number with an equal or larger characteristic has
no significant digits to the right of the implied radix
point and remains unchanged.

*
*

LP

*

R = ROUND(V)

L G0,N Vector length to GR0
LA Gl,V Address of V to GRl
LA G2,R Address of R to GR2
SDR F0,F0 Clear FR0 to zero
LE F2,H Load H into FR2
LNER F4,F2 Load -H into FR4
LE F6,Z Load Z into FR6
VLVCU G0 Load VCT, update GR0
VLE V0,Gl Load section of V
VSVMM 1 Vector-mask mode on
VCEQ 12,F0,V0 Compare; set mask to

one where 0~V
VAEQ V0,F2,V0 Add 0.5 under mask
VCVM Complement mask bits
VAEQ V0,F4,V0 Add -0.5 under mask
VSVMM 0 Vector-mask mode off
VAEQ V0,F6,V0 Add Z
VSTE V0,G2 Store section of R
BC 2,LP Branch back if GR0>0

A variation of this rounding technique is incorpo
rated in a later example of floating-point to fixed
point conversion.

Operations on Sparse Vectors

This section gives some examples of operating on
sparse vectors, where only nonzero elements are
directly represedted in storage.

When many vector elements are zero, considerable-.
storage may be saved by using a dense represen
tation containing only those elements which are
nonzero. The resulting nonzero elements can be
stored in contiguous locations along with a bit
vector indicating the nonzero values in the corre
sponding full vector. A full vector can be con
verted to such a dense vector by performing a
not-equal comparison of the vector to a scalar zero
and using the resulting bit vector as a mask in a
STORE COMPRESSED instruction.

For use in the following examples, assume two
vectors A and B. The full vectors are 10 elements
in length; elements 0, 2, 5, 6, 7, and 9 of vector A
are nonzero; and elements 2, 4, 5, and 7 of vector B
are nonzero. The figures show the full vectors, the
result of a not-equal comparison to zero, and the
dense vectors for A and B.

Full Vector A (AF):

Result of comparing A r a (mask AM):

1 0 1 a 0 1 110 1

Dense Vector A (AD):

IAelA21A51A61A71A91

Full Vector B (BF):

Result of comparing B 1 0 (mask BM):

o 0 1 ell 0 100

Dense Vector B (BD):

1
8++5

1
87

1

Full Added to Sparse to Give Full

This example shows the addition of elements of full
vector BF, which correspond to nonzero elements
of vector A, to dense vector AD. The result ele
ments are replaced in BF. The length of the full
vectors is N, which is also the number of bits in the
mask.

LA Gl,AD
SR G2,G2
L G3,N

LP VLBIX V0,G2,AM

Address of AD to GRI
Clear bit index in GR2
Bit count N to GR3
Convert mask AM to
element numbers in VR0
Load Br indirectly

*
VUD V2, V0 ,BF
VAD V2,V2,Gl
VSTID V2,V0,BF
BC 2,lP

Add AD contiguously
Store indirectly
Branch back if GR3>0

The VLBIX instruction converts the bit mask AM to
a vector of element numbers, using the general
register pair GR2 and GR3 as the bit index and bit
count. This instruction creates up to a full section
of element numbers in VRO and places the corre
sponding vector count in VCT for use by subse
quent vector instructions. GR2 and GR3 are
updated for the next pass through the loop. VLID

uses the generated element numbers to select ele
ments of full BF to correspond to all the elements
of dense AD, which are added together by the
instruction VAD. VSTID then stores the results back
into the same elements of BF. The BC instruction
tests the condition code set by VLBIX and branches
back if there are more bits to be processed.

Sparse Added to Sparse to Give
Sparse

The following example adds dense vectors A D and
BD to obtain dense vector CD. The mask for CD
is obtained by ORing the mask for AD with the
mask for BD, using the instruction OR TO VMR.

L Ga,N Full vector length to GR0
LA Gl,AD Address of AD to GRI
lA G2,BD Address of BD to GR2
LA G3,CD Address of CD to GR3
LA G4,AM Address of AM to GR4
LR G5,G4 Copy address in GR5
LA G6,BM Address of BM to GR6
LA G7,CM Address of CM to GR7

LP VlVCU G0 Load VCT, update GRa
VLVM G4 Load mask AM in VMR
VlZDR V0 Zeros into VR0, VRI
VlYD V0,la load AD expanded
VlVM G6 load mask BM in VMR
VlZDR V2 Zeros into VR2, VR3
VlYD V2,G2 load BD expanded
VADR V0,V0,V2 Add expanded vectors
VOVM G5 OR mask AM into VMR
VSTKD V0,G3 Store compressed as CD
VSTVM G7 Store VMR as mask CM
BC 2,LP Branch back if GR0>0

Appendix A. lnstruction-Use Examples A-5

Floati ng-Poi nt-Vector
Conversions

The conversion techniques illustrated here are
similar to the scalar examples in IBM 370-XA Prin
ciples of Operation and IBM System/370 Principles
of Operation, which maybe consulted for more
details. The methods differ, however, because of
different characteristics of the vector-instruction set.

Fixed Point to Floating Point

Assume a vector K of length N in storage, the ele
ments of which are 32-bit signed binary integers.
The elements are to be converted to floating-point
numbers in the long format, and the result is to be
stored as vector w.

Assume a floating-point constant C in storage with
the following hexadecimal format and value:

C = CE 00 00 00 S0 00 00 00 = -2 31

This is an unnonnalized floating-point number in
the long format with the characteristic 4E, which is
the proper characteristic for a right-aligned, unnor
malized integer.

L G0,N
LA Gl,K
LA G2,W
LD F0, C

LP VLVCU G0
VL Vl,Gl

Vector length to GR0
Address of K to GRl
Address of W to GR2
Load C into FR0
Load VCT, update GR0
Load K into VRl

VLCER Vl,Vl K + 231

VLEQ V0,F0 V = -(K + 231)

VSDQ V0,F0,V0 W = -231 - V
VSTD V0,G2 Store W
BC 2,LP Branch back if GR0>0

Inside the sectioning loop, the VLCER instruction
(LOAD COMPLEMENT in short floating-point
format) inverts the sign bit, bit 0, of each element
in VR1, without altering bits 1-31. Considering
these elements still as signed binary integers, the
operation is equivalent to adding 231 to each,
ignoring overflow, which changes all elements into
positive numbers in the range 0 to 232_1. The
VLEQ instruction places the left half of the constant
C into each element position of VRO, which has
the effect of converting the contents of VR 1 to a
vector V of negative unnormalized floating-point
numbers in the long format, occupying VRO and
VRI.

A-6 IBM System/370 Vector Operations

The next instruction, VSDQ, subtracts V from the
entire constant C, which is equivalent to sub
tracting 231 from the original elements, thus
restoring them to the range _231 to 231_1. The
elements are normalized during this operation.

The next example presents an alternate program,
the loop of which is shorter by one vector instruc
tion.

L G0,N Vector length to GR0
LA Gl,K Address of K to GRl
LA G2,W Address of W to GR2
LD F0,C Load C into FR0

LP VLVCU G0 Load VCT, update GR0
VLDQ V0,F0 Load C into VR0, VRl
VX Vl, Vl,Gl V = -(K+2 31)

VSDQ V0,F0,V0 W = -231 - V
VSTD V0,G2 Store W
BC 2,LP Branch back if GR0>0

The VLDQ instruction loads the entire constant C
into VRO and VR 1. Then, the VX instruction
fetches the elements of K from storage and EXCLU

SIVE ORS them into VR 1, which contained a left
most one followed by 31 zeros. This inverts the
sign bit, as did VLCER in the previous example.
The rest of the program is the same.

Floating Point to Fixed Point

This example combines conversion from floating to
fixed point with a variation of the rounding tech
nique shown in a previous example.

* Start of range test
L G0,N Vector length to GR0
LA Gl,W Address of W to GRl
LR G2,Gl Copy address to GR2
LD F0,L FR0: upper limit L
LNDR F2,F0 FR2: lower limit -L

LPl VLVeU G0 Load VCT, update GR0
veDS l2,F0,G0 Compare Land W; set

* mask bit to one when
*

*
*

VTVM
L is equal or low
Test m~sk bits

Be 5,OVFLO Exit if any ones
VCDS 2,F2,G2 Compare -L and W;

set mask bit to one
when -L is high

VTVM Test mask bits
Be 5,OVFLO Exit if any ones
LTR G0,G0 Test residual count
BC 2,LPl Branch back if GR0>0

* Start of conversion with rounding
L G0,N Vector length to GR0
LA Gl,W Address of W to GRl
LA G2,K Address of K to GR2

LD Fa,G
LD F2,H
LD F4,M

Load G into FRa
Load H into FR2
Load Minto FR4

LP2 VLVCU Ga Load VCT, update GRa
Add a.5 to W section

*

VADS Va,F2,Gl
VSVMM 1 Vector-mask mode on
VCDQ 2,F2,Va Compare; set mask to

one where a.5>W
VADQ Va,F4,Va Add -l.a under mask
VSVMM a Set mask mode off
VADQ va,Fe,va Add 253

VST Vl,G2 Store K from VRI
BC 2,LP2 Branch back if GRa>a

Assume a vector W of length N in storage, the ele
ments of which are floating-point numbers in the
long format. Assume this vector is to be converted
to a vector of signed binary integers, and the result
is to be stored as vector K. Assume floating-point
constants in storage with the following names,
hexadecimal formats, and values:

L = 48 8a aa aa aa ae aa ea = 231

G = 4F a2 aa ae aa ea ae aa = 253

H = 4a 8a aa aa aa ea ae aa = a.5
H = C1 la aa ae aa ea ae aa = -l.a

L is the upper limit of the range of numbers which,
after truncation of the fractional part, are represent
able as signed binary integers. Vector W is com
pared with this limit in a separate sectioning loop
before conversion is started, so that nothing is
stored if any element of W is out of range. This
comparison loop can be omitted if all elements are
known to be within range.

H and M are the constants 0.5 and -1.0, respec
tively. Rounding is accomplished by fITst adding
0.5 unconditionally to vector W, and then adding
-1.0 conditionally where the elements are now less
than 0.5, which is equivalent to subtracting 0.5
from all initially negative elements.

The constant G is chosen such that its addition to a
number within the representable range forces that
number to be shifted to the right, with the units
digit in the guard-digit position, and the result to be
nonnalized to the left by one digit position. This
causes any fraction part to be truncated, leaving the
rounded integer part in the right half of the vector
register pair.

Appendix A. Instruction-Use Examples A-7

Appendix B. Lists Of Instructions

The following figures list the vector instructions by
name, mnemonic, and op code.

Explanation of Symbols in I(Characteristics" Column

A
C
EO
EU
FK
IC

IF
IG

1M

IP

IZ

J

LS
NC

Access exceptions
Condition code is set
Exponent -overflow exception
Exponent-underflow exception
Floating-point-divide exception
Class-Ic instruction; interruptible; vector
count and vector interruption index deter
mine number' of elements processed; does
not depend on vector-mask mode
Fixed -point -overflow exception
ClaSS-IG instruction; interruptible; general
register, vector interruption index, and
section size determine number of elements
processed; sets vector count; does not
depend on vector-mask mode
Class-1M instruction; interruptible; vector
count and vector interruption index deter
mine number of elements processed;
depends on vector-mask mode
ClaSS-IP instruction; interruptible;
partial-sum number and vector interruption
index determine number of elements proc
essed; does not depend on vector-mask
mode
Class-Iz instruction; interruptible; vector
section size determines number of elements
processed; does not depend on vector-mask
mode
Arithmetic exception; exception -extension
code is stored
Significance exception
Class-Nc instruction; not interruptible;
vector count determines number of elements
processed; does not depend on vector-mask
mode

NZ Class-Nz instruction; not interruptible;
vector-section size determines number of ele
ments processed; does not depend on vector
mask mode

NO

Nl

P
QST
QV
R+

RRE
RSE
S
SP
ST
U
VB
VE

VH
VR
VS
VST
VU
VV

Notes

2

Class-No instruction; not interruptible; no
vector elements processed; does not depend
on vector-mask mode
Class-Nt instruction; not interruptible; one
vector element processed; does not depend
on vector-mask mode
Privileged-operation exception
QST instruction format
QV instruction format
PER general-register-alteration event mayor
may not be recognized
RRE instruction format
RS E instruction format
s instruction format
Specification exception
PER storage-alteration event
Unnormalized -operand exception
Sets vector in-use bit and vector change bit
Vector facility and vector-operatioltl excep
tion
Sets vector change bit
VR instruction format
vs instruction format
VST instruction format
Leaves vector change bit unaltered
vv instruction format

Same op code as for short; separate mne
monic for programming convenience
Execution differs in problem state and super
visor state

Appendix B. Lists Of Instructions 8-1

Mne- Op
Name monic Characteristics Code

ACCUMULATE (long) VACD VST VE A SP J EU EO LS 1M VB R* A4I7
ACCUMULATE (long) VACDR VV VE SP J EU EO LS 1M VB A5I7
ACCUMULATE (short to long) VACE VST VE A SP J EU EO LS 1M VB R* A407
ACCUMULATE (short to long) VACER VV VE SP J EU EO LS 1M VB A507
ADD (binary) VA VST VE A SP J IF 1M VB R* A42{;)

ADD (binary) VAQ QV VE J IF 1M VB A5A0
ADD (binary) VAR VV VE J IF 1M VB A520
ADD (binary) VAS QST VE A SP J IF 1M VB R* A4A0
ADD (long) VAD VST VE A SP J EU EO LS 1M VB R* A4I0
ADD (long) VADQ QV VE SP J EU EO LS 1M VB A590

ADD (long) VADR VV VE SP J EU EO LS 1M VB A5I0
ADD (long) VADS QST VE A SP J EU EO LS 1M VB R* A490
ADD (short) VAE VST VE A SP J EU EO LS 1M VB R* A400
ADD (short) VAEQ QV VE SP J EU EO LS 1M VB A580
ADD (short) VAER VV VE J EU EO LS 1M VB A500

ADD (short) VAES QST VE A SP J EU EO LS 1M VB R* A480
AND VN VST VE A SP 1M VB R* A424
AND VNQ QV VE 1M VB A5A4
AND VNR VV VE 1M VB A524
AND VNS QST VE A SP 1M VB R* A4A4

AND TO VMR VNVM VS VE A NC R* A684
CLEAR VR VRCL S VE IZ VB A6C5
COMPARE (bi nary) VC VST VE A SP IC R* A428
COMPARE (binary) VCQ QV VE IC A5A8
COMPARE (binary) VCR VV VE IC A528

COMPARE (binary) VCS QST VE A SP IC R* A4A8
COMPARE (long) VCD VST VE A SP IC R* A4I8
COMPARE (long) VCDQ QV VE SP IC A598
COMPARE (long) VCDR VV VE SP IC A5I8
COMPARE (long) VCDS QST VE A SP IC R* A498

COMPARE (short) VCE VST VE A SP IC R* A408
COMPARE (short) VCEQ QV VE SP IC A588
COMPARE (short) VCER VV VE IC A508
COMPARE (short) VCES QST VE A SP IC R* A488
COMPLEMENT VMR VCVM RRE VE NC A641

COUNT LEFT ZEROS IN VMR VCZVM RRE C VE NC R* A642
COUNT ONES IN VMR VCOVM RRE C VE NC R* A643
DIVIDE (long) VDD VST VE A SP J U EU EO FK 1M VB R* A413
DIVIDE (long) VDDQ QV VE SP J U EU EO FK 1M VB A593
DIVIDE (long) VDDR VV VE SP J U EU EO FK 1M VB A5I3

Figure B-1 (Part 1 of 5). Instructions Arranged by N arne

8-2 IBM System/370 Vector Operations

Mne- Op
Name monic Characteristics Code

DIVIPE (long) VDDS QST VE A SP J U EU EO FK 1M VB R* A493
DIVIDE (short) VDE VST VE A SP J U EU EO FK 1M VB R* A403
DIVIDE (short) VDEQ QV VE SP J U EU EO FK 1M VB AS83
DIVIDE (short) VDER VV VE J U EU EO FK 1M VB AS03
DIVIDE (short) VDES QST VE A SP J U EU EO FK 1M VB R* A483

EXCLUSIVE OR VX VST VE A SP 1M VB R* A426
EXCLUSIVE OR VXQ QV VE 1M VB ASA6
EXCLUSIVE OR VXR VV VE 1M VB AS26
EXCLUSIVE OR VXS QST VE A SP 1M VB R* A4A6
EXCLUSIVE OR TO VMR VXVM VS VE A NC R* A686

EXTRACT ELEMENT (binary) VXEL VR VE SP Nl R* A629
EXTRACT ELEMENT (long) VXELD VR VE SP Nl A619
EXTRACT ELEMENT (short) VXELE VR VE SP Nl A609
EXTRACT VCT VXVC RRE VE N0 R* A644
EXTRACT VECTOR MASK MODE VXVMM RRE VE N0 R* A646

LOAD (binary)l VL VST VE A SP IC VB R* A409
LOAD (binary) VLQ QV VE IC VB ASA9
LOAD (binary)l VLR VV VE IC VB AS09
LOAD (long) VLD VST VE A SP IC VB R* A419
LOAD (long) VLDQ QV VE SP IC VB AS99

LOAD (long) VLDR VV VE SP IC VB AS19
LOAD (short) VLE VST VE A SP IC VB R* A409
LOAD (short) VLEQ QV VE SP IC VB AS89
LOAD (short) VLER VV VE IC VB AS09
LOAD BIT INDEX VLBIX RSE C VE A SP IG VB R* E428

LOAD COMPLEMENT (binary) VLCR VV VE J IF 1M VB AS62
LOAD COMPLEMENT (long) VLCDR VV VE SP 1M VB A5S2
LOAD COMPLEMENT (short) VLCER VV VE 1M VB A542
LOAD ELEMENT (binary) VLEL VR VE SP N1 VB A628
LOAD ELEMENT (long) VLELD VR VE SP N1 VB A618

LOAD ELEMENT (short) VLELE VR VE SP N1 VB A608
LOAD EXPANDED (binary)l VLY VST VE A SP IC VB R* A40B
LOAD EXPANDED (long) VLYD VST VE A SP IC VB R* A41B
LOAD EXPANDED (short) VLYE VST VE A SP IC VB R* A40B
LOAD HALFWORD VLH VST VE A SP IC VB R* A429

LOAD INDIRECT (binary)l VU RSE VE A SP IC VB' E400
LOAD INDIRECT (long) VUD RSE VE A SP IC VB E410
LOAD INDIRECT (short) VUE RSE VE A SP IC VB E400
LOAD INTEGER VECTOR VUNT VST VE SP IC VB R* A42A
LOAD MATCHED (binary)1 VLM VST VE A SP IC VB R* A40A

Figure B-1 (Part 2 of 5). Instructions Arranged by Name

Appendix B. Lists Of Instructions B-3

Mne- Op
Name monic Characteristics Code

LOAD MATCHED (binary) VLMQ QV VE IC VB A5AA
LOAD MATCHED (binary)1 VLMR VV VE IC VB A50A
LOAD MATCHED (long) VLMD VST VE A SP IC VB R* A41A
LOAD MATCHED (long) VLMDQ QV VE SP IC VB A59A
LOAD MATCHED (long) VLMDR VV VE SP IC VB A51A

LOAD MATCHED (short) VLME VST VE A SP IC VB R* A40A
LOAD MATCHED (short) VLMEQ QV VE SP IC VB A58A
LOAD MATCHED (short) VLMER VV VE IC VB A50A
LOAD NEGATIVE (binary) VLNR VV VE 1M VB A561
LOAD NEGATIVE (long) VLNDR VV VE SP 1M VB A551

LOAD NEGATIVE (short) VLNER VV VE 1M VB A541
LOAD POSITIVE (binary) VLPR VV VE J IF 1M VB A560
LOAD POSITIVE (long) VLPDR VV VE SP 1M VB A550
LOAD POSITIVE (short) VLPER VV VE 1M VB A540
LOAD VCT AND UPDATE VLVCU RRE C VE N0 R* A645

LOAD VCT FROM ADDRESS VLVCA S C VE N0 A6C4
LOAD VMR VLVM VS VE A NC R* A680
LOAD VMR COMPLEMENT VLCVM VS VE A NC R* A681
LOAD ZERO (binary)1 VLZR VV VE IC VB A50B
LOAD ZERO (long) VLZDR VV VE SP IC VB A51B

LOAD ZERO (short) VLZER VV VE IC VB A50B
MAXIMUM ABSOLUTE (long) VMXAD VR VE SP 1M R* A612
MAXIMUM ABSOLUTE (short) VMXAE VR VE SP 1M R* A602
MAXIMUM SIGNED (long) VMXSD VR VE SP 1M R* A610
MAXIMUM SIGNED (short) VMXSE VR VE SP 1M R* A600

MINIMUM SIGNED (long) VMNSD VR VE SP 1M R* A611
MINIMUM SIGNED (short) VMNSE VR VE SP 1M R* A601
MULTIPLY (binary) VM VST VE A SP 1M VB R* A422
MULTIPLY (binary) VMQ QV VE SP 1M VB A5A2
MULTIPLY (binary) VMR VV VE SP 1M VB A522

MUL TIPLY (binary) VMS QST VE A SP 1M VB R* A4A2
MUL TIPLY (long) VMD VST VE A SP J U EU EO 1M VB R* A412
MUL TIPLY (long) VMDQ QV VE SP J U EU EO 1M VB A592
MUL TIPLY (long) VMDR VV VE SP J U EU EO 1M VB A512
MUL TIPLY (long) VMDS QST VE A SP J U EU EO 1M VB R* A492

MULTIPLY (short to long) VME VST VE A SP J U EU EO 1M VB R* A402
MULTIPLY (short to long) VMEQ QV VE SP J U EU EO 1M VB A582
MULTIPLY (short to long) VMER VV VE SP J U EU EO 1M VB A502
MULTIPLY (short to long) VMES QST VE A SP J U EU EO 1M VB R* A482
MULTIPLY AND ACCUMULATE (long) VMCD VST VE A SP J U EU EO LS 1M VB R* A416

Figure B-1 (Part 3 of 5). Instructions Arranged by Name

B-4 IBM System/370 Vector Operations

Mne- Op
Name monic Characteristics Code

MULTIPLY AND ACCUMULATE (long) VMCDR VV VE SP J U EU EO LS 1M VB A516
MULTIPLY AND ACCUMULATE] (short VMCE VST VE A SP J U EU EO LS 1M VB R* A406
MULTIPLY AND ACCUMULATE to long) VMCER VV VE SP J U EU EO LS 1M VB A506
MULTIPLY AND ADD (long) VMAD VST VE A SP J U EU EO LS 1M VB R* A414
MULTIPLY AND ADD (long) VMADQ QV VE SP J U EU EO LS 1M VB A594

MULTIPLY AND ADD (long) VMADS QST VE A SP J U EU EO LS 1M VB R* A494
MULTIPLY AND ADD (short to long) VMAE VST VE A SP J U EU EO LS 1M VB R* A404
MULTIPLY AND ADD (short to long) VMAEQ QV VE SP J U EU EO LS 1M VB A584
MULTIPLY AND ADD (short to long) VMAES QST VE A SP J U EU EO LS 1M VB R* A484
MULTIPLY AND SUBTRACT (long) VMSD VST VE A SP J U EU EO LS 1M VB R* A4l5

MULTIPLY AND SUBTRACT (long) VMSDQ QV VE SP J U EU EO LS 1M VB A595
MULTIPLY AND SUBTRACT (long) VMSDS QST VE A SP J U EU EO LS 1M VB R* A495
MULTIPLY AND SUBTRACT] (short VMSE VST VE A SP J U EU EO LS 1M VB R* A405
MULTIPLY AND SUBTRACT to VMSEQ QV VE SP J U EU EO LS 1M VB A585
MULTIPLY AND SUBTRACT long) VMSES QST VE A SP J U EU EO LS 1M VB R* A485

OR VO VST VE A SP 1M VB R* A425
OR VOQ QV VE 1M VB A5A5
OR VOR VV VE 1M VB A525
OR VOS QST VE A SP 1M VB R* A4A5
OR TO VMR VOVM VS VE A NC R* A685

RESTORE VAC VACRS S VE A SP P N0 A6CB
RESTORE VMR VMRRS S VE A NZ A6C3
RESTORE VR VRRS RRE C VE A SP 2 IZ VU R* A648
RESTORE VSR VSRRS S VE A SP 2 IZ VB A6C2
SAVE CHANGED VR VRSVC RRE C VE A SP P IZ VH R* ST A649

SAVE VAC VACSV S VE A SP P N0 ST A6CA
SAVE VMR VMRSV S VE A NZ ST A6Cl
SAVE VR VRSV RRE C VE A SP IZ R* ST A64A
SAVE VSR VSRSV S VE A SP 2 N0 ST A6C0
SET VECTOR MASK MODE VSVMM S VE N0 A6C6

SHIFT LEFT SINGLE LOGICAL VSLL RSE VE 1M VB E425
SHIFT RIGHT SINGLE LOGICAL VSRL RSE VE 1M VB E424
STORE (binary)l VST VST VE A SP IC R* ST A40D
STORE (long) VSTD VST VE A SP IC R* ST A41D
STORE (short) VSTE VST VE A SP IC R* ST A40D

STORE COMPRESSED (binary)1 VSTK VST VE A SP IC R* ST A40F
STORE COMPRESSED (long) VSTKD VST VE A SP IC R* ST A4lF
STORE COMPRESSED (short) VSTKE VST VE A SP IC R* ST A40F
STORE HALFWORD VSTH VST VE A SP IC R* ST A42D
STORE INDIRECT (binary)l VSTI RSE VE A SP IC ST E401

Figure 8-1 (Part 4 of 5). Instructions Arranged by Name

Appendix B. Lisle; Of Instructions 8-5

Mne- Op
Name monic Characteristics Code

STORE INDIRECT (long) VSTID RSE VE A SP IC ST E411
STORE INDIRECT (short) VSTIE RSE VE A SP IC ST E401
STORE MATCHED (binary)1 VSTM VST VE A SP IC R* ST A40E
STORE MATCHED (long) VSTMD VST VE A SP IC R* ST A41E
STORE MATCHED (short) VSTME VST VE A SP IC R* ST A40E

..

STORE VECTOR PARAMETERS VSTVP S VE A SP N0 ST A5C8
STORE VMR VSTVM VS VE A NC R* ST A582
SUBTRACT (binary) VS VST VE A SP J IF 1M VB R* A421
SUBTRACT (binary) VSQ QV VE J IF 1M VB ASA1
SUBTRACT (binary) VSR VV VE J IF 1M VB AS21

SUBTRACT (binary) VSS QST VE A SP J IF 1M VB R* A4A1
SUBTRACT (long) VSD VST VE A SP J EU EO LS 1M VB R* A411
SUBTRACT (long) VSDQ QV VE SP J EU EO LS 1M VB AS91
SUBTRACT (long) VSDR VV VE SP J EU EO LS 1M VB ASH
SUBTRACT (long) VSDS QST VE A SP J EU EO LS 1M VB R* A491
SUBTRACT (short) VSE VST VE A SP J EU EO LS 1M VB R* A401

SUBTRACT (short) VSEQ QV VE SP J EU EO LS 1M VB AS81
SUBTRACT (short) VSER VV VE J EU EO LS 1M VB AS01
SUBTRACT (short) VSES QST VE A SP J EU EO LS 1M VB R* A481
SUM PARTIAL SUMS (long) VSPSD VR VE SP J EU EO LS IP A51A
TEST VMR VTVM RRE C VE NC A540
ZERO PARTIAL SUMS (long) VZPSD VR VE SP IP VB A51B

Figure B-1 (Part 5 of 5). Instructions Arranged by Name

8-6 IBM System/370 Vector Operations

Mne- Op
monic Name Characteristics Code

VA ADD (binary) VST VE A SP J IF 1M VB R* A420
VACD ACCUMULATE (long) VST VE A SP J EU EO LS 1M VB R* A4I7
VACDR ACCUMULATE (long) VV VE SP J EU EO LS 1M VB A5I7
VACE ACCUMULATE (short to long) VST VE A SP J EU EO LS 1M VB R* A407
VACER ACCUMULATE (short to long) VV VE SP J EU EO LS 1M VB A507

VACRS RESTORE VAC S VE A SP P N0 A6CB
VACSV SAVE VAC S VE A SP P N0 ST A6CA
VAD ADD (long) VST VE A SP J EU EO LS 1M VB R* A410
VADQ ADD (long) QV VE SP J EU EO LS 1M VB A590
VADR ADD (long) VV VE SP J EU EO LS 1M VB A5I0

VADS ADD (long) QST VE A SP J EU EO LS 1M VB R* A490
VAE ADD (short) VST VE A SP J EU EO LS 1M VB R* A400
VAEQ ADD (short) QV VE SP J EU EO LS 1M VB A580
VAER ADD (short) VV VE J EU EO LS 1M VB A500
VAES ADD (short) QST VE A SP J EU EO LS 1M VB R* A480

VAQ ADD (binary) QV VE J IF 1M VB A5A0
VAR ADD (binary) VV VE J IF 1M VB A520
VAS ADD (binary) QST VE A SP J IF 1M VB R* A4A0
VC COMPARE (binary) VST VE A SP IC R* A428
VCD COMPARE (long) VST VE A SP IC R* A4I8

VCDQ COMPARE (long) QV VE SP IC A598
VCDR COMPARE (long) VV VE SP IC A5I8
VCDS COMPARE (long) QST VE A SP IC R* A498
VCE COMPARE (short) VST VE A SP IC R* A408
VCEQ COMPARE (short) QV VE SP IC A588

VCER COMPARE (short) VV VE IC A508
VCES COMPARE (short) QST VE A SP IC R* A488
VCOVM COUNT ONES IN VMR RRE C VE NC R* A643
VCQ COMPARE (binary) QV VE IC A5A8
VCR COMPARE (binary) VV VE IC A528

VCS COMPARE (binary) QST VE A SP IC R* A4A8
VCVM COMPLEMENT VMR RRE VE NC A641
VCZVM COUNT LEFT ZEROS IN VMR RRE C VE NC R* A642
VDD DIVIDE (long) VST VE A SP J U EU EO FK 1M VB R* A413
VDDQ DIVIDE (10ng) QV VE SP J U EU EO FK 1M VB A593

VDDR DIVIDE (10ng) VV VE SP J U EU EO FK 1M VB A5I3
VDDS DIVIDE (long) QST VE A SP J U EU EO FK 1M VB R* A493
VDE DIVIDE (short) VST VE A SP J U EU EO FK 1M VB R* A403
VDEQ DIVIDE (short) QV VE SP J U EU EO FK 1M VB A583
VDER DIVIDE (short) VV VE J U EU EO FK 1M VB A503

Figure B-2 (Part 1 of 5). Instructions Arranged by Mnemonic

Appendix B. Lists Of Instructions 8-7

Mne- Op
monic Name Characteristics Code

VDES DIVIDE (short) QST VE A SP J U EU EO FK 1M VB R* A483
VL LOAD (binary)l VST VE A SP IC VB R* A409
VLBIX LOAD BIT INDEX RSE C VE A SP IG VB R* E428
VLCDR LOAD COMPLEMENT (long) VV VE SP 1M VB A552
VLCER LOAD COMPLEMENT (short) VV VE 1M VB A542

VLCR LOAD COMPLEMENT (binary) VV VE J IF 1M VB A562
VLCVM LOAD VMR COMPLEMENT VS VE A NC R* A681
VLD LOAD (long) VST VE A SP IC VB R* A419
VLDQ LOAD (long) QV VE SP IC VB A599
VLDR LOAD (long) VV VE SP IC VB A519

VLE LOAD (short) VST VE A SP IC VB R* A409
VLEL LOAD ELEMENT (binary) VR VE SP N1 VB A628
VLELD LOAD ELEMENT (long) VR VE SP N1 VB A618
VLELE LOAD ELEMENT (short) VR VE SP N1 VB A608
VLEQ LOAD (short) QV VE SP IC VB A589

VLER LOAD (short) VV VE IC VB A509
VLH LOAD HALFWORD VST VE A SP IC VB R* A429
VU LOAD INDIRECT (bi nary) 1 RSE VE A SP IC VB E400
VUD LOAD INDIRECT (long) RSE VE A SP IC VB E410
VUE LOAD INDIRECT (short) RSE VE A SP IC VB E400

VUNT LOAD INTEGER VECTOR VST VE SP IC VB R* A42A
VLM LOAD MATCHED (binary)l VST VE A SP IC VB R* A40A
VLMD LOAD MATCHED (long) VST VE A SP IC VB R* A41A
VLMDQ LOAD MATCHED (long) QV VE SP IC VB A59A
VLMDR LOAD MATCHED (long) VV VE SP IC VB A51A

VLME LOAD MATCHED (short) VST VE A SP IC VB R* A40A
VLMEQ LOAD MATCHED (short) QV VE SP IC VB A58A
VLMER LOAD MATCHED (short) VV VE IC VB A50A
VLMQ LOAD MATCHED (binary) QV VE IC VB A5AA
VLMR LOAD MATCHED (binary)l VV VE IC VB A50A

VLNDR LOAD NEGATIVE (long) VV VE SP 1M VB A551
VLNER LOAD NEGATIVE (short) VV VE 1M VB A541
VLNR LOAD NEGATIVE (binary) VV VE 1M VB A561
VLPDR LOAD POSITIVE (long) VV VE SP 1M VB A550
VLPER LOAD POSITIVE (short) VV VE 1M VB A540

VLPR LOAD POSITIVE (binary) VV VE J IF 1M VB A560
VLQ LOAD (binary) QV VE IC VB A5A9
VLR LOAD (binary)l VV VE IC VB A509
VLVCA LOAD VCT FROM ADDRESS S C VE N0 A6C4
VLVCU LOAD VCT AND UPDATE RRE C VE N0 R* A645

Figure B-2 (Part 2 of S). Instructions Arranged by Mnemonic

8-8 IBM System/370 Vector Operations

Mne- Op
monic Name Characteristics Code

VLVM LOAD VMR VS VE A NC R* A680
VLY LOAD EXPANDED (binary)l VST VE A SP IC VB R* A40B
VLYD LOAD EXPANDED (long) VST VE A SP IC VB R* A41B
VLYE LOAD EXPANDED (short) VST VE A SP IC VB R* A40B
VLZDR LOAD ZERO (long) VV VE SP IC VB A51B

VLZER LOAD ZERO (short) VV VE IC VB A50B
VLZR LOAD ZERO (binary)1 VV VE IC VB A50B
VM MULTIPLY (binary) VST VE A SP 1M VB R* A422
VMAD MULTIPLY AND ADD (long) VST VE A SP J U EU EO LS 1M VB R* A4l4
VMADQ MULTIPLY AND ADD (long) QV VE SP J U EU EO LS 1M VB A594

VMADS MULTIPLY AND ADD (long) QST VE A SP J U EU EO LS 1M VB R* A494
VMAE MULTIPLY AND ADD (short to long) VST VE A SP J U EU EO LS 1M VB R* A404
VMAEQ MULTIPLY AND ADD (short to long) QV VE SP J U EU EO LS 1M VB A584
VMAES MULTIPLY AND ADD (short to long) QST VE A SP J U EU EO LS 1M VB R* A484
VMCD MULTIPLY AND ACCUMULATE (long) VST VE A SP J U EU EO LS 1M VB R* A416

VMCDR MULTIPLY AND ACCUMULATE (long) VV VE SP J U EU EO LS 1M VB A5l6
VMCE MULTIPLY AND ACCUMULATE] (short VST VE A SP J U EU EO LS 1M VB R* A406
VMCER MULTIPLY AND ACCUMULATE to long) VV VE SP J U EU EO LS 1M VB A506
VMD MULTIPLY (long) VST VE A SP J U EU EO 1M VB R* A412
VMDQ MULTIPLY (long) QV VE SP J U EU EO 1M VB A592

VMDR MULTIPLY (long) VV VE SP J U EU EO 1M VB A512
VMDS MULTIPLY (long) QST VE A SP J U EU EO 1M VB R* A492
VME MULTIPLY (short to long) VST VE A SP J U EU EO 1M VB R* A402
VMEQ MULTIPLY (short to long) QV VE SP J U EU EO 1M VB A582
VMER MULTIPLY (short to long) VV VE SP J U EU EO 1M VB A502

VMES MULTIPLY (short to long) QST VE A SP J U EU EO 1M VB R* A482
VMNSD MINIMUM SIGNED (long) VR VE SP 1M R* A611
VMNSE MINIMUM SIGNED (short) VR VE SP 1M R* A60l
VMQ MULTIPLY (binary) QV VE SP 1M VB A5A2
VMR MULTIPLY (binary) VV VE SP 1M VB A522

VMRRS RESTORE VMR S VE A NZ A6C3
VMRSV SAVE VMR S VE A NZ ST A6Cl
VMS MULTIPLY (binary) QST VE A SP 1M VB R* A4A2
VMSD MULTIPLY AND SUBTRACT (long) VST VE A SP J U EU EO LS 1M VB R* A415
VMSDQ MULTIPLY AND SUBTRACT (long) QV VE SP J U EU EO LS 1M VB A595

VMS OS MULTIPLY AND SUBTRACT (long) QST VE A SP J U EU EO LS 1M VB R* A495
VMSE MULTIPLY AND SUBTRACT] (short VST VE A SP J U EU EO LS 1M VB R* A405
VMSEQ MULTIPLY AND SUBTRACT to QV VE SP J U EU EO LS 1M VB A585
VMSES MULTIPLY AND SUBTRACT long) QST VE A SP J U EU EO LS 1M VB R* A485
VMXAD MAXIMUM ABSOLUTE (long) VR VE SP 1M R* A6l2

Figure B-2 (Part 3 of 5). Instructions Arranged by Mnemonic

Appendix B. List'; Of Instructions 8-9

Mne- Op
monic Name Characteristics Code

VMXAE MAXIMUM ABSOLUTE (short) VR VE SP 1M R* A502
VMXSD MAXIMUM SIGNED (long) VR VE SP 1M R* A510
VMXSE MAXIMUM SIGNED (short) VR VE SP 1M R* A500
VN AND VST VE A SP 1M VB R* A424
VNQ AND QV VE 1M VB A5A4

VNR AND VV VE 1M VB A524
VNS AND QST VE A SP 1M VB R* A4A4
VNVM AND TO VMR VS VE A NC R* A584
VO OR VST VE A SP 1M VB R* A425
VOQ OR QV VE 1M VB A5A5

VOR OR VV VE 1M VB A525
VOS OR QST VE A SP 1M VB R* A4A5
VOVM OR TO VMR VS VE A NC R* A585
VRCL CLEAR VR S VE IZ VB A6C5
VRRS RESTORE VR RRE C VE A SP 2 IZ VU R* A648

VRSV SAVE VR RRE C VE A SP IZ R* ST A64A
VRSVC SAVE CHANGED VR RRE C VE A SP P IZ VH R* ST A649
VS SUBTRACT (binary) VST VE A SP J IF 1M VB R* A421
VSD SUBTRACT (long) VST VE A SP J EU EO LS 1M VB R* A411
VSDQ SUBTRACT (long) QV VE SP J EU EO LS 1M VB A591

VSDR SUBTRACT (long) VV VE SP J EU EO LS 1M VB A511
VSDS SUBTRACT (long) QST VE A SP J EU EO LS 1M VB R* A491
VSE SUBTRACT (short) VST VE A SP J EU EO LS 1M VB R* A401
VSEQ SUBTRACT (short) QV VE SP J EU EO LS 1M VB A581
VSER SUBTRACT (short) VV VE" J EU EO LS 1M VB A501

VSES SUBTRACT (short) QST VE A SP J EU EO LS 1M VB R* A481
VSLL SHIFT LEFT SINGLE LOGICAL RSE VE 1M VB E425
VSPSD SUM PARTIAL SUMS (long) VR VE SP J EU EO LS IP A61A
VSQ SUBTRACT (binary) QV VE J IF 1M VB A5A1
VSRL SHIFT RIGHT SINGLE LOGICAL RSE VE 1M VB E424

VSR SUBTRACT (binary) VV VE J IF 1M VB A521
VSRRS RESTORE VSR S VE A SP 2 IZ VB A5C2
VSRSV SAVE VSR S VE A SP 2 Nt:> ST A6C0
VSS SUBTRACT (binary) QST VE A SP J IF 1M VB R* A4A1
VST STORE (binary)l VST VE A SP IC R* ST A40D

VSTD STORE (long) VST VE A SP IC R* ST A41D
VSTE STORE (short) VST VE A SP IC R* ST A40D
VSTH STORE HALFWORD VST VE A SP IC R* ST A42D
VSTI STORE INDIRECT (binary)l RSE VE A SP IC ST E401
VSTID STORE INDIRECT (long) RSE VE A SP IC ST E411

Figure B-2 (Part 4 of 5). Instructions Arranged by Mnemonic

8-10 IBM Syst.em/370 Vector Operations

Mne- Op
monic Name Characteristics Code

VSTIE STORE INDIRECT (short) RSE VE A SP IC ST E401
VSTK STORE COMPRESSED (binary)l VST VE A SP IC R* ST A40F
VSTKD STORE COMPRESSED (long) VST VE A SP IC R* ST A41F
VSTKE STORE COMPRESSED (short) VST VE A SP IC R* ST A40F
VSTM STORE MATCHED (binary)l VST VE A SP IC R* ST A40E

VSTMD STORE MATCHED (long) VST VE A SP IC R* ST A41E
VSTME STORE MATCHED (short) VST VE A SP IC R* ST A40E
VSTVM STORE VMR VS VE A NC R* ST A682
VSTVP STORE VECTOR PARAMETERS S VE A SP N0 ST A6C8
VSVMM SET VECTOR MASK MODE S VE N0 A6C6

VTVM TEST VMR RRE C VE NC A640
VX EXCLUSIVE OR VST VE A SP 1M VB R* A426
VXEL EXTRACT ELEMENT (binary) VR VE SP Nl R* A629
VXELD EXTRACT ELEMENT (long) VR VE SP N1 A619
VXELE EXTRACT ELEMENT (short) VR VE SP N1 A609
VXQ EXCLUSIVE OR QV VE 1M VB A5A6

VXR EXCLUSIVE OR VV VE 1M VB A525
VXS EXCLUSIVE OR QST VE A SP 1M VB R* A4A5
VXVC EXTRACT VCT RRE VE N0 R* A544
VXVM EXCLUSIVE OR TO VMR VS VE A NC R* A685
VXVMM EXTRACT VECTOR MASK MODE RRE VE N0 R* A645
VZPSD ZERO PARTIAL SUMS (long) VR VE SP IP VB A61B

Figure B-2 (Part 5 of 5). Instructions Arranged by Mnemonic

Appendix B. Lists Of Instructions B-ll

Op Mne-
Code Name monic Characteristics

A400 ADD (short) VAE VST VE A SP J EU EO LS 1M VB R*
A401 SUBTRACT (short) VSE VST VE A SP J EU EO LS 1M VB R*
A402 MULTIPLY (short to long) VME VST VE A SP J U EU EO 1M VB R*
A403 DIVIDE (short) VDE VST VE A SP J U EU EO FK 1M VB R*
A404 MULTIPLY AND ADD (short to long) VMAE VST VE A SP J U EU EO LS 1M VB R*

A405 MULTIPLY AND SUBTRACT] (short VMSE VST VE A SP J U EU EO LS 1M VB R*
A406 MULTIPLY AND ACCUMULATE to long) VMCE VST VE A SP J U EU EO LS 1M VB R*
A407 ACCUMULATE (short to long) VACE VST VE A SP J EU EO LS 1M VB R*
A408 COMPARE (short) VCE VST VE A SP IC R*
A409 LOAD (binary)1 VL VST VE A SP IC VB R*

A409 LOAD (short) VLE VST VE A SP IC VB R*
A40A LOAD MATCHED (binary) 1 VLM VST VE A SP IC VB R*
A40A LOAD MATCHED (short) VLME VST VE A SP IC VB R*
A40B LOAD EXPANDED (binary)1 VLY VST VE A SP IC VB R*
A40B LOAD EXPANDED (short) VLYE VST VE A SP IC VB R*

A40D STORE (binary)1 VST VST VE A SP IC R* ST
A40D STORE (short) VSTE VST VE A SP IC R* ST
A40E STORE MATCHED (binary)1 VSTM VST VE A SP IC R* ST
A40E STORE MATCHED (short) VSTME VST VE A SP IC R* ST
A40F STORE COMPRESSED (binary)1 VSTK VST VE A SP IC R* ST

A40F STORE COMPRESSED (short) VSTKE VST VE A SP IC R* ST
A410 ADD (long) VAD VST VE A SP J EU EO LS 1M VB R*
A411 SUBTRACT (long) VSD VST VE A SP J EU EO LS 1M VB R*
A412 MULTIPLY (long) VMD VST VE A SP J U EU EO 1M VB R*
A413 DIVIDE (long) VDD VST VE A SP J U EU EO FK 1M VB R*

A414 MULTIPLY AND ADD (long) VMAD VST VE A SP J U EU EO LS 1M VB R*
A415 MULTIPLY AND SUBTRACT (long) VMSD VST VE A SP J U EU EO LS 1M VB R*
A416 MULTIPLY AND ACCUMULATE (long) VMCD VST VE A SP J U EU EO LS 1M VB R*
A417 ACCUMULATE (long) VACD VST VE A SP J EU EO LS 1M VB R*
A418 COMPARE (long) VCD VST VE A SP IC R*

A419 LOAD (long) VLD VST VE A SP IC VB R*
A41A LOAD MATCHED (long) VLMD VST VE A SP IC VB R*
A41B LOAD EXPANDED (long) VLYD VST VE A SP IC VB R*
A41D STORE (long) VSTD VST VE A SP IC R* ST
A41E STORE MATCHED (long) VSTMD VST VE A SP IC R* ST

A41F STORE COMPRESSED (long) VSTKD VST VE A SP IC R* ST
A420 ADD (binary) VA VST VE A SP J IF 1M VB R*
A421 SUBTRACT (binary) VS VST VE A SP J IF 1M VB R*
A422 MULTIPLY (binary) VM VST VE A SP 1M VB R*
A424 AND VN VST VE A SP 1M VB R*

Figure 8-3 (Part 1 of 5). Instructions Arranged by Op Code

8-12 IBM System/370 Vector Operations

Op Mne-
Code Name monic Characteristics

A425 OR VO VST VE A SP 1M VB R*
A426 EXCLUSIVE OR VX VST VE A SP 1M VB R*
A428 COMPARE (binary) VC VST VE A SP IC R*
A429 LOAD HALFWORD VLH VST VE A SP IC VB R*
A42A LOAD INTEGER VECTOR VLINT VST VE SP IC VB R*

A42D STORE HALFWORD VSTH VST VE A SP IC R* ST
A480 ADD (short) VAES QST VE A SP J EU EO LS 1M VB R*
A481 SUBTRACT (short) VSES QST VE A SP J EU EO LS 1M VB R*
A482 MULTIPLY (short to long) VMES QST VE -A SP J U EU EO 1M VB R*
A483 DIVIDE (short) VDES QST VE A SP J U EU EO FK 1M VB R*

A484 MULTIPLY AND ADD] (short VMAES QST VE A SP J U EU EO LS 1M VB R*
A485 MULTIPLY AND SUBTRACT to long) VMSES QST VE A SP J U EU EO LS 1M VB R*
A488 COMPARE (short) VCES QST VE A SP IC R*
A490 ADD (long) VADS QST VE A SP J EU EO LS 1M VB R*
A491 SUBTRACT (long) VSDS QST VE A SP J EU EO LS 1M VB R*

A492 MULTIPLY (long) VMDS QST VE A SP J U EU EO 1M VB R*
A493 DIVIDE (long) VDDS QST VE A SP J U EU EO FK 1M VB R*
A494 MULTIPLY AND ADD (long) VMADS QST VE A SP J U EU EO LS 1M VB R*
A495 MULTIPLY AND SUBTRACT (long) VMSDS QST VE A SP J U EU EO LS 1M VB R*
A498 COMPARE (long) VCDS QST VE A SP Ie R*

A4A0 ADD (binary) VAS QST VE A SP J IF 1M VB R*
A4Al SUBTRACT (binary) VSS QST VE A SP J IF 1M VB R*
A4A2 MULTIPLY (binary) VMS QST VE A SP 1M VB R*
A4A4 AND VNS QST VE A SP 1M VB R*
A4A5 OR VOS QST VE A SP 1M VB R*

A4A6 EXCLUSIVE OR VXS QST VE A SP 1M VB R*
A4A8 COMPARE (binary) VCS QST VE A SP IC R*
A500 ADD (short) VAER VV VE J EU EO LS 1M VB
A501 SUBTRACT (short) VSER VV VE J EU EO LS 1M VB
A502 MULTIPLY (short to long) VMER VV VE SP J U EU EO 1M VB

A503 DIVIDE (short) VDER VV VE J U EU EO FK 1M VB
A505 MULTIPLY AND ACCUMULATE] (short VMCER VV VE SP J U EU EO LS 1M VB
A50? ACCUMULATE to long) VACER VV VE SP J EU EO LS 1M VB
A508 COMPARE (short) VCER VV VE IC
A509 LOAD (binary)l VLR VV VE IC VB

A509 LOAD (short) VLER vv. VE IC VB
A50A LOAD MATCHED (binary)l VLMR VV VE IC VB
A50A LOAD MATCHED (short) VLMER VV VE IC VB
A50B LOAD ZERO (binary)l VLZR VV VE IC VB
A50B LOAD ZERO (short) VLZER VV VE IC VB

Figure B-3 (Part 2 of 5). Instructions Arranged by Op Code

Appendix B. Lisl.s Of Insfructions 8-13

Op Mne-
Code Name monic Characteristics

A510 ADD (long) VADR VV VE SP J EU EO LS 1M VB
A511 SUBTRACT (long) VSDR VV VE SP J EU EO LS 1M VB
A512 MULTIPLY (long) VMDR VV VE SP J U EU EO 1M VB
A513 DIVIDE (long) VDDR VV VE SP J U EU EO FK 1M VB
A516 MULTIPLY AND ACCUMULATE (iong) VMCDR VV VE SP J U EU EO LS 1M VB

A517 ACCUMULATE (lorig) VACDR VV VE SP J EU EO LS 1M VB
A518 COMPARE (1ong) VCDR VV VE SP IC
A519 LOAD (long) VLDR VV VE SP IC VB
A51A LOAD MATCHED (long) VLMDR VV VE SP IC VB
A51B LOAD ZERO (long) VLZDR VV VE SP IC VB

A520 ADD (binary) VAR VV VE J IF 1M VB
A521 SUBTRACT (binary) VSR VV VE J IF 1M VB
A522 MULTIPLY (binary) VMR VV VE SP 1M VB
A524 AND VNR VV VE 1M VB
A525 OR VOR VV VE 1M VB

A526 EXCLUSIVE OR VXR VV VE 1M VB
A528 COMPARE (binary) VCR VV VE IC
A540 LOAD POSITIVE (short) VLPER VV VE 1M VB
A541 LOAD NEGATIVE (short) VLNER VV VE 1M VB
A542 LOAD COMPLEMENT (short) VLCER VV VE 1M VB

A550 LOAD POSITIVE (long) VLPDR VV VE SP 1M VB
A551 LOAD NEGATIVE (long) VLNDR VV VE SP 1M VB
A552 LOAD COMPLEMENT (long) VLCDR VV VE SP 1M VB
A560 LOAD POSITIVE (binary) VLPR VV VE J IF 1M VB
A561 LOAD NEGATIVE (binary) VLNR VV VE 1M VB

A562 LOAD COMPLEMENT (binary) VLCR VV VE J IF 1M VB
A580 ADD (short) VAEQ QV VE SP J EU EO LS 1M VB
A581 SUBTRACT (short) VSEQ QV VE SP J EU EO LS 1M VB
A582 MULTIPLY (short to long) VMEQ QV VE SP J U EU EO 1M VB
A583 DIVIDE (short) VDEQ QV VE SP J U EU EO FK 1M VB

A584 MULTIPLY AND ADD] (short VMAEQ QV VE SP J U EU EO LS 1M VB
A585 MULTIPLY AND SUBTRACT to long) VMSEQ QV VE SP J U EU EO LS 1M VB
A588 COMPARE (short) VCEQ QV VE SP IC
A589 LOAD (short) VLEQ QV VE SP IC VB
A58A LOAD MATCHED (short) VLMEQ QV VE SP IC VB

A590 ADD (long) VADQ QV VE SP J EU EO LS 1M VB
A591 SUBTRACT (long) VSDQ QV VE SP J EU EO LS 1M VB
A592 MULTI PLY (long) VMDQ QV VE SP J U EU EO 1M VB
A593 DIVIDE (long) VDDQ QV VE SP J U EU EO FK 1M VB
A594 MULTIPLY AND ADD (long) VMADQ QV VE SP J U EU EO LS 1M VB

Figure B-3 (Part 3 of 5). Instructions Arranged by Op Code

B-14 IBM System/370 Vector Operations

Op Mne-
Code Name monic Characteristics

A595 MULTIPLY AND SUBTRACT (long) VMSDQ QV VE SP J U EU EO LS 1M VB
A59B COMPARE (long) VCDQ QV VE SP IC
A599 LOAD (long) VLDQ QV VE SP IC VB
A59A LOAD MATCHED (long) VLMDQ QV VE SP IC VB
A5A0 ADD (binary) VAQ QV VE J IF 1M VB

A5Al SUBTRACT (binary) VSQ QV VE J IF 1M VB
A5A2 MULTIPLY (binary) VMQ QV VE SP 1M VB
A5A4 AND VNQ QV VE 1M VB
A5A5 OR VOQ QV VE 1M VB
A5A6 EXCLUSIVE OR VXQ QV VE 1M VB

A5AB COMPARE (binary) VCQ QV VE IC
A5A9 LOAD (binary) VLQ QV VE IC VB
A5AA LOAD MATCHED (binary) VLMQ QV VE IC VB
A600 MAXIMUM SIGNED (short) VMXSE VR VE SP 1M R*
A601 MINIMUM SIGNED (short) VMNSE VR VE SP 1M R*

A602 MAXIMUM ABSOLUTE (short) VMXAE VR VE SP 1M R*
A608 LOAD ELEMENT (short) VLELE VR VE SP NI VB
A609 EXTRACT ELEMENT (short) VXELE VR VE SP NI
A610 MAXIMUM SIGNED (long) VMXSD VR VE SP 1M R*
A611 MINIMUM SIGNED (long) VMNSD VR VE SP 1M R*

A612 MAXIMUM ABSOLUTE (long) VMXAD VR VE SP 1M R*
A618 LOAD ELEMENT (long) VLELD VR VE SP NI VB
A619 EXTRACT ELEMENT (long) VXELD VR VE SP NI
A61A SUM PARTIAL SUMS (long) VSPSD VR VE SP J EU EO LS IP
A61B ZERO PARTIAL SUMS (long) VZPSD VR VE SP IP VB

A628 LOAD ELEMENT (binary) VLEL VR VE SP NI VB
A629 EXTRACT ELEMENT (binary) VXEL VR VE SP NI R*
A640 TEST VMR VTVM RRE C VE NC
A641 COMPLEMENT VMR VCVM RRE VE NC
A642 COUNT LEFT ZEROS IN VMR VCZVM RRE C VE NC R*

A643 COUNT ONES IN VMR VCOVM RRE C VE NC R*
A644 EXTRACT VCT VXVC RRE VE Ne R*
A645 LOAD VCT AND UPDATE VLVCU RRE C VE Ne R*
A646 EXTRACT VECTOR MASK MODE VXVMM RRE VE Ne R*
A648 RESTORE VR VRRS RRE C VE A SP 2 IZ VU R*

A649 SAVE CHANGED VR VRSVC RRE C VE A SP P IZ VH R* ST
A64A SAVE VR VRSV RRE C VE A SP IZ R* ST
·A680 LOAD VMR VLVM VS VE A NC R*
A681 LOAD VMR COMPLEMENT VLCVM VS VE A NC R*
A682 STORE VMR VSTVM VS VE A NC R* ST

Figure B-3 (Part 4 of 5). Instructions Arranged by Op Code

Appendix n. Lists Of Instructions 8-15

Op Mne-
Code Name monic Characteristics

A684 AND TO VMR VNVM VS VE A NC R*
A685 OR TO VMR VOVM VS VE A NC R*
A686 EXCLUSIVE OR TO VMR VXVM VS VE A NC R*
A6C0 SAVE VSR VSRSV S VE A SP 2 N0 ST
A6C1 SAVE VMR VMRSV S VE A NZ ST

A6C2 RESTORE VSR VSRRS S VE A SP 2 IZ VB
A6C3 RESTORE VMR VMRRS S VE A NZ
A6C4 LOAD VCT FROM ADDRESS VLVCA S C VE N0
A6C5 CLEAR VR VRCL S VE IZ VB
A6C6 SET VECTOR MASK MODE VSVMM S VE N0

A6C8 STORE VECTOR PARAMETERS VSTVP S VE A SP N0 ST
A6CA SAVE VAC VACSV S VE A SP P N0 ST
A6CB RESTORE VAC VACRS S VE A SP P N0
E400 LOAD INDIRECT (binary) 1 VU RSE VE A SP IC VB
E400 LOAD INDIRECT (short) VUE RSE VE A SP IC VB
E401 STORE INDIRECT (binary)1 VSTI RSE VE A SP IC ST

E401 STORE INDIRECT (short) VSTIE RSE VE A SP IC ST
E410 LOAD INDIRECT (long) VUD RSE VE A SP IC VB
E411 STORE INDIRECT (long) VSTID RSE VE A SP IC ST
E424 SHIFT RIGHT SINGLE LOGICAL VSRL RSE VE 1M VB
E425 SHIFT LFFT SINGLE LOGICAL VSLL RSE VE 1M VB
E428 LOAD BIT INDEX VLBIX RSE C VE A SP IG VB R*

Figure B-3 (Part 5 of 5). Instructions Arranged by Op Code

B-16 IBM Systemf370 Vector Operations

Appendix C. Condition-Code Settings

This appendix lists the condition-code setting for
vector instructions which set the condition code.

Condition Code

Instruction o

COUNT LEFT ZEROS IN VMR All zeros
COUNT ONES IN VMR All zeros
LOAD BIT INDEX VeT = 0,

Bit count = 0

LOAD veT AND UPDATE veT = a,
New length = 0

LOAD veT FROM ADDRESS veT = 0,
Address = 0

RESTORE VR VR pair 14-15
not loaded

SAVE CHANGED VR VR pair 14-15
not stored

SAVE VR VR pair 14-15
not stored

TEST VMR All zeros

1

Zeros and ones
Zeros and ones
VCT = 0,
Bit count < 0

veT = 0,
New length < 0
VCT = a,
Address < 0

Other VR pair
not loaded

Other VR pair
not stored

Other VR pair
not stored

Zeros and ones

Figure C-I. Summary of Condition -Code Settings

2 3

-- All ones
-- All ones
VCT = sec.size, VCT > 0,
Bit count> 0 Bit count 5 0

veT = sec.size, VeT> a,
New length> a New length = 0
veT = sec.size, VeT> a,
Address > Address 5

section size section size

VR pair 14-15 Other VR pair
loaded loaded

VR pair 14-15 Other VR pair
stored stored

VR pair 14-15 Other VR pair
stored stored

-- All ones

Appendix C. Condition-Code Settings C-l

Index

o
access exceptions for vector operands 2-24
access of vectors in storage 2-8
ACCUMULATE (VACD, VACDR, VACE. VACER)

vector instructions 3-2
active bits and elements 2-3
activity count for vectors 2-5
ADD (VA, VAD, VADQ, VADR, VADS, VAQ, VAR,

VAS) vector instructions 3-3
examples A-I

address generation 2-17
for LOAD INTEGER VECTOR 3-16
for LOAD/STORE INDIRECT 3-16

address size 2-6
address updating 2-8

in sectioning 2-11
addressing mode (in 370-XA mode) 2-6
alignment on storage boundary 2-8
AND (VN) vector instructions 3-4
AND TO VMR (VNVM) vector instruction 3.:5
architectural mode 2-6
arithmetic (conditional) 2-11

examples A-4
arithmetic exceptions 2-21
arithmetic partial-completion bit 2-21
arithmetic vectors 2-8
availability of vector facility 2-6,2-26

effect of machine check on 2-30

o
binary integers 2-7
bit count 3-11
bitindex 3-11

relation of to element number 2-10
bit vector 2-10
boundary alignment 2-8

o
change bits 2-5

in saving and restoring 2-27
classes of vector instructions 2-12
CLEAR VR (VRCL) vector instruction 3-5
clearing of vector registers 2-28
COMPARE (VC, VCO, VCDQ, VCDR, VCDS, VCE,

VCEQ. VCER. VCES. VCQ, VCR. VCS) vector
instructions 3-5

examples A-3.A-6
compatibility of vector programs 1-1
COMPLEMENT VMR (VCVM) vector instruction 3-7
completion of unit of operation 2-21
conceptual sequence of vector operations 2-19,2-29
condition code

setting of 2-20
summary C-l

use of in sectioning 2-11
conditional vector arithmetic 2-11

examples A -4,A-6
configuration of vector facility 2-6
contiguous vectors 2-8

access exceptions for 2-24
examples A-I

control bit in control register 0 2-6
effect of on machine check 2-29

conversion
of bits to element numbers 2-10
of floating-point vectors A-6

count
bit 3-11
net 2-15
vector 2-3
vector-activity 2-5

COUNT LEFT ZEROS IN VMR (VCZVM) vector
instruction 3-7

COUNT ONES IN VMR (VCOVM) vector instruction
3-7

o
damage to vector facility 2-30
data types 2-7
DIVIDE (VDD. VDDQ. VDDR, VDDS. VDE, VDEQ,

VDER. VDES) vector instructions 3-8
example A-4

element iii
indirect selection of 2-9
vector 2-2

element number 2-2
relation of to bit index 2-10

exception-extension code 2-21
exceptions

access 2-24
arithmetic 2-21
avoidance of A-4
exponent-overflow 2-21.2-25
exponent.-underflow 2-21,2-25
fixed-point-overflow 2-7,2-21
floating-point-divide 2-2] ,2-25
operation 2-6
significance 2-21
specification 2-25
unnormaJized-operand 2-21,2-26
vector-operation 2-6,2-26

EXCLUSIVE OR (VX, VXQ, VXR, VXS) vector
instructions 3-9

EXCLUSIVE OR TO VMR (VXVM) vector instruction
3-9

exponent-overflow exception 2-21,2-25
exponent-underflow exception 2-2] ,2-25

Index X-I

extension code for exceptions 2-21
EXTRACf ELEMENT (VXEL, VXELD, VXELE,

VXELX) vector instructions 3-9
EXTRACf vcr (VXVC) vector instruction 3-10
EXTRACf VECfOR MASK MODE (VXVMM)

vector instruction 3-10

o
failure of vector facility 2-30
fields in vector-instruction formats 2-13
fixed-point-overflow exception 2-7,2-21
floating-point conversion (examples) A-6
floating-point-divide exception 2-21,2-25
floating-point numbers 2-7
floating-point register (in vector operations) 2-10
formats of vector instructions 2-13

general register (in vector operations) 2-10
avoiding G RO for addresses 2-15

CD
I C (vector-instruction class) 2-15
IG (vector-instruction class) 2-12
ILC (instruction-length code) 2-23
I M (vector-instruction class) 2-15
in -use bits 2-4

in saving and restoring 2-27
index

bit 3-11
vector interruption (see vector interruption index)

indirect element selection 2-9
load instruction for 3-16
store instruction for 3-34

inhibition of unit of operation 2-22
initialization 2-28
inner product (example) A-3
instruction-length code (ILC) 2-23
instructions (see vector-facility instructions)
interruptible vector instructions 2-19
interruption

conditions for 2-24
effect of 2-23
of vector instructions 2-19
priority of 2-26

interruption index (see vector interruption index)
invalid vector-register numbers 2-8
IP (vector-instruction class) 2-12
IZ (vector-instruction class) 2-12

length of vectors (see vector count)
LOAD (VL, VLD, VLDQ, VLDR, VLE, VLEQ,

VLER, VLQ, VLR) vector instructions 3-10
LOAD BIT INDEX (VLBIX) vector instruction 3-11

X-2 IBM Systemf370 Vector Operations

example A-5
LOAD COMPLEMENT (VLCDR, VLCER, VLCR)

vector instructions 3 -14
LOAD ELEMENT (VLEL, VLELD, VLELE) vector

instructions 3-14
LOAD EXPANDED (VLY, VLYD, VLYE) vector

instructions 3-14
example A-5

LOAD HALFWORD (VLH) vector instruction 3-15
LOAD INDIRECf (VLI, VLID, VLIE) vector instruc

tions 3-16
example A-5

LOAD INTEGER VECrOR (VLINT) vector instruc
tion 3-16

LOAD MATCHED (VLM, VLMD, VLMDQ,
VLMDR, VLME, VLMEQ, VLMER, VLMQ,
VLMR) vector instructions 3-17

LOAD NEGATIVE (VLNDR, VLNER, VLNR) vector
instructions 3-18

LOAD POSITIVE (VLPDR, VLPER, VLPR) vector
instructions 3-18

LOAD vcr AND UPDATE (VL VCU) vector instruc
tion 3-19

examples A-I
LOAD vcr FROM ADDRESS (VLVCA) vector

instruction 3-19
LOAD VMR (VL VM) vector instruction 3-20
LOAD VMR COMPLEMENT (VLCVM) vector

instruction 3-20
LOAD ZERO (VLZDR, VLZER, VLZR) vector

instructions 3-20
logical data 2-7
loop for sectioning 2-11

o
machine check 2-29
mask bits

bit vector for 2-10
register for 2-2

mask mode (see vector-mask mode)
MAXIMUM ABSOLUTE (VMXAD, VMXAE) vector

instructions 3-21
MAXIMUM SIGNED (VMXSD, VMXSE) vector

instructions 3-21
MINIMUM SIGNED (VMNSD, VMNSE) vector

instructions 3-21
mode

addressing 2-6
architectural 2-6
vector-mask (see vector-mask mode)

model-dependent vector functions 1-2
MULTIPLY (VM, VMD, VMDQ, VMDR, VMDS,

VME, VMEQ, VMER, VMES, VMQ, VMR, VMS)
vector instructions 3-22

examples A-2
MULTIPLY AND ACCUMULATE (VMCD,

VMCDR, VMCE, VMCER) vector instructions 3-23
example A-3

MULTIPLY AND ADD (VMAD, VMADQ, VMADS,
VMAE, VMAEQ, VMAES) vector instructions 3-24

MULTIPLY AND SUBTRACf (VMSD, VMSDQ,
VMSDS, VMSE, VMSEQ, VMSES) vector instruc
tions 3-24

multiprocessing considerations 2-2

o
NC (vector-instruction class) 2-18
net count (of vector elements) 2-15
nullification of unit of operation 2-22
number of vector element 2-2
NZ (vector-instruction class) 2-12
NO (vector-instruction class) 2-12
N 1 (vector-instruction class) 2-12

o
operand parameters (for interruptible vector instruction)

2-20
operands for vector instructions 2-7
operation exception 2-6
OR (VO, VOQ, VOR, VaS) vector instructions 3-26
OR TO VMR (VOVM) vector instruction 3-26
overflow

fixed-point 2-7,2-21
floating-point exponent 2-21,2-25

parameters
operand (for interruptible vector instruction) 2-20
vector 2-2

partial-sum number 2-2
partial sums

for ACCUMULATE 3-2
for MULTIPLY AND ACCUMULATE 3-23
for SUM PARTIAL SUMS 3-36
for ZERO PARTIAL SUMS 3-37

PER (program-event recording) 2-28
prefetching of instructions 2-29
priority of vector interruptions 2-26
program initialization 2-28
program-interruption conditions 2-24
program switching 2-26
PSW (program-status word) after interruption 2-23

IT]
QST instruction format 2-13
QV instruction format 2-13

register
vector-activity count 2-5
vector-mask (see vector-mask register)
vector-status 2-3

registers
floating-point 2-10

general 2-10
saving and restoring of 2-27
scalar 2-10
vector (see vector register)

resets 2-29
RESTORE VAC (V ACRS) vector instruction 3-26
RESTORE VMR (VMRRS) vector instruction 3-27
RESTORE VR (VRRS) vector instruction 3-27
RESTORE VSR (VSRRS) vector instruction 3-28
restoring of registers 2-27
rounding (vector examples) A -4,A-6
RRE instruction format 2-13
RSE instruction format 2-13

o
S instruction format 2-13
SAVE CHANGED VR (VRSVC) vector instruction

3-29
SAVE V AC (V ACSV) vector instruction 3-30
SAVE VMR (VMRSV) vector instruction 3-30
SAVE VR (VRSV) vector instruction 3-31
SAVE VSR (VSRSV) vector instruction 3-31
saving of registers 2-27
scalar iii
scalar operands and registers 2-10
section size 2-2
sectioning 2-11

examples A-I
sequence of vector operations 2-19,2-29
sequential addressing of vector elements 2-8
SET VECTOR MASK MODE (VSVMM) vector

instruction 3-32
examples A-4

SHIFT LEFT SINGLE LOGICAL (VSLL) vector
instruction 3~32

SHIFT RIGHT SINGLE LOGICAL (VSRL) vector
instruction 3-32

signed binary integers 2-7
significance exception 2-21
source of machine check 2-30
specification exception 2-25
storage-operand consistency 2-29
STORE (VST, VSTD, VSTE) vector instructions 3-32
STORE COMPRESSED (VSTK, VSTKD, VSTKE)

vector instructions 3-33
example A-5

STORE IIALFWORD (VSTH) vector instruction 3-33
STORE INDIRECr (VSTI, VSTID, VSTIE) vector

instructions 3-34
example A-5

STORE MATCHED (VSTM, VSTMD, VSTME)
vector instructions 3-34

examples A-3
STORE VECfOR PARAMETERS (VSTVP) vector

instruction 3-35
STORE VMR (VSTVM) vector instruction 3-35
storing into instruction stream 2-29
stride 2-8

examples A-2
in address generation 2-17

Index X-3

SUBTRACT (VS, VSD, VSDQ, VSDR, VSDS, VSE,
VSEQ, VSER, VSES, VSQ, VSR, VSS) vector instruc
tions 3-35

examples A-2
sum of products (example) A-3
SUM PARTIAL SUMS (VSPSD) vector instruction

3-36
example A-3

suppression of unit of operation 2-22

termination 2-21
TEST VMR (VfVM) vector instruction 3-37
three-operand instructions 2-15

units of operation 2-20
unnormalized-operand exception 2-21,2-26
unsigned binary integers 2-7
updating of vector addresses (see address updating)

~
VA (ADD) vector instruction 3-3
VAC (vector-activity count) 2-5
V ACD (ACCUMULATE) vector instruction 3-2
VACDR (ACCUMULATE) vector instruction 3-2
V ACE (ACCUMULATE) vector instruction 3-2
V ACER (ACCUMULATE) vector instruction 3-2
VACRS (RESTORE VAC) vector instruction 3-26
V ACSV (SAVE V AC) vector instruction 3-30
VAD (ADD) vector instruction 3-3
VADQ (ADD) vector instruction 3-3
VADR (ADD) vector instruction 3-3
VADS (ADD) vector instruction 3-3
valid vector-register numbers 2-8
validation of vector-facility registers 2-30
VAQ (ADD) vector instruction 3-3
VAR (ADD) vector instruction 3-3
VAS (ADD) vector instruction 3-3
VC (COMPARE) vector instruction 3-5
VCD (COMPARE) vector instruction 3-5
VCDQ (COMPARE) vector instruction 3-5
VCDR (COMPARE) vector instruction 3-5
VCDS (COMPARE) vector instruction 3-5
VCE (COMPARE) vector instruction 3-5
VCEQ (COMPARE) vector instruction 3-5
VCER (COMPARE) vector instruction 3-5
VCES (COMPARE) vector instruction 3-5
VCOVM (COUNT ONES IN VMR) vector instruction

3-7
VCQ (COMPARE) vector instruction 3-5
VCR (COMPARE) vector instruction 3-5
ves (COMPARE) vector instruction 3-5
vcr (vector count) 2-3
VCVM (COMPLEMENT VMR) vector instruction 3-7
VCZVM (COUNT LEFT ZEROS IN VMR) vector

instruction 3-7

X-4 IBM System/370 Vector Operations

VDD (DIVIDE) vector instruction 3-8
VDDQ (DIVIDE) vector instruction 3-8
VDDR (DIVIDE) vector instruction 3-8
VDDS (DIVIDE) vector instruction 3-8
VDE (DIVIDE) vector instruction 3-8
VDEQ (DIVIDE) vector instruction 3-8
VDER (DIVIDE) vector instruction 3-8
VDES (DIVIDE) vector instruction 3-8
vector iii

of bits 2-10
section size for 2-2

vector-activity count (V AC) 2-5
vector change bits 2-5

for saving and restoring 2-27
vector-control bit 2-6

effect of on machine check 2-29
vector count (Vcr) 2-3
vector element 2-2
vector facility 2-2

availability of 2-6,2-26
configuration of 2-6

vector-facility failure 2-30
vector-facility instructions 3-1

classes of 2-12
effect of interruption on 2-23
fields of 2-13
formats for 2-13
interruptible 2-19
prefetching of 2-29
storing into 2-29
summary of 2-15
three-operand 2-15
units of operation for 2-20

vector-facility registers 2-2
(see also vector-mask register, vector register)
validation of 2-30
vector-activity count 2-5
vector-status register 2-3

vector-facility source (of damage) 2-30
vector in -use bits 2-4

for saving and restoring 2-27
vector interruption index (VIX) 2-4

after interruption 2-24
vector length (see vector count)
vector machine check 2-29
vector-mask mode (VMM) 2-11

bit in vector-status register 2-3
examples of use A -4,A-6

vector-mask register (VMR) 2-2
vector-operation exception 2-6,2-26
vector register (VR) 2-2

valid numbers for 2-8
vector-status register (VSR) 2-3
VIX (see vector interruption index)
VL (LOAD) vector instruction 3-10
VLBIX (LOAD BIT INDEX) vector instruction 3-11
VLCDR (LOAD COMPLEMENT) vector instruction

3-14
VLCER (LOAD COMPLEMENT) vector instruction

3-14
VLCR (LOAD COMPLEMENT) vector instruction

3-14

VLCVM (LOAD VMR COMPLEMENT) vector
instruction 3-20

VLD (LOAD) vector instruction 3-10
VLDQ (LOAD) vector instruction 3-10
VLDR (LOAD) vector instruction 3-10
VLE (LOAD) vector instruction 3-10
VLEL (LOAD ELEMENT) vector instruction 3-14
VLELD (LOAD ELEMENT) vector instruction 3-14
VLELE (LOAD ELEMENT) vector instruction 3-14
VLEQ (LOAD) vector instruction 3-10
VLER (LOAD) vector instruction 3-10
VLH (LOAD HALFWORD) vector instruction 3-15
VLI (LOAD INDIRECT') vector instruction 3-16
VLID (LOAD INDIRECf) vector instruction 3-16
VLIE (LOAD INDIRECf) vector instruction 3-16
VLINT (LOAD INTEGER VECT'OR) vector instruc-

tion 3-16
VLM (LOAD MATCHED) vector instruction 3-17
VLMD (LOAD MATCHED) vector instruction 3-17
VLMDQ (LOAD MATCHED) vector instruction 3-17
VLMDR (LOAD MATCHED) vector instruction 3-17
VLME (LOAD MATCHED) vector instruction 3-17
VLMEQ (LOAD MATCHED) vector instruction 3-17
VLMER (LOAD MATCHED) vector instruction 3-17
VLMQ (LOAD MATCHED) vector instruction 3-17
VLMR (LOAD MATCHED) vector instruction 3-17
VLNDR (LOAD NEGATIVE) vector instruction 3-18
VLNER (LOAD NEGATIVE) vector instruction 3-18
VLNR (LOAD NEGATIVE) vector instruction 3-18
VLPDR (LOAD POSITIVE) vector instruction 3-18
VLPER (LOAD POSITIVE) vector instruction 3-18
VLPR (LOAD POSITIVE) vector instruction 3-18
VLQ (LOAD) vector instruction 3-10
VLR (LOAD) vector instruction 3-10
VLVCA (LOAD Vcf FROM ADDRESS) vector

instruction 3-19
VL VCU (LOAD Vcf AND UPDATE) vector instruc-

tion 3-19
VL VM (LOAD VMR) vector instruction 3-20
VLY (LOAD EXPANDED) vector instruction 3-14
VL YO (LOAD EXPANDED) vector instruction 3-14
VL YE(LOAD EXPANDED) vector instruction 3-14
VLZDR (LOAD ZERO) vector instruction 3-20
VLZER (LOAD ZERO) vector instruction 3-20
VLZR (LOAD ZERO) vector instruction 3-20
VM (MUL TIPL Y) vector instruction 3-22
VMAD (MULTIPLY AND ADD) vector instruction

3-24
VMADQ (MULTIPLY AND ADD) vector instruction

3-24
VMADS (MULTIPLY AND ADD) vector instruction

3-24
VMAE (MULTIPLY AND ADD) vector instruction

3-24
VMAEQ (MULTIPLY AND ADD) vector instruction

3-24
VMAES (MULTIPLY AND ADD) vector instruction

3-24
VMCD (MULTIPLY AND ACCUMULATE) vector

instruction 3-23
VMCDR (MULTIPLY AND ACCUMULATE) vector

instruction 3-23

VMCE (MULTIPLY AND ACCUMULATE) vector
instruction 3-23

VMCER (MULTIPLY AND ACCUMULATE) vector
instruction 3-23

VMD (MULTIPLY) vector instruction 3-22
VMDQ (MULTIPLY) vector instruction 3-22
VMDR (MULTIPLY) vector instruction 3-22
VMDS (MULTIPLY) vector instruction 3-22
VME (MULTIPLY) vector instruction 3-22
VMEQ (MULTIPLY) vector instruction 3-22
VMER (MULTIPLY) vector instruction 3-22
VMES (MULTIPLY) vector instruction 3-22
VMM (see vector-mask mode)
VMNSD (MINIMUM SIGNED) vector instruction

3-21
VMNSE (MINIMUM SIGNED) vector instruction

3-21
VMQ (MULTIPLY) vector instruction 3-22
VMR (see vector-mask register)
VMR (MULTIPLY) vector instruction 3-22
VMRRS (RESTORE VMR) vector instruction 3-27
VMRSV (SAVE VMR) vector instruction 3-30
VMS (MULTIPLY) vector instruction 3-22
VMSD (MULTIPLY AND SUBTRACf) vector

instruction 3-24
VMSDQ (MULTIPLY AND SUBTRACf) vector

instruction 3-24
VMSDS (MULTIPLY AND SUBTRACT) vector

instruction 3-24
VMSE (MULTIPLY AND SUBTRACf) vector

instruction 3-24
VMSEQ (MULTIPLY AND SUBTRACT) vector

instruction 3-24
VMSES (MULTIPLY AND SUBTRACT') vector

instruction 3-24
VMXAD (MAXIMUM ABSOLUTE) vector instruction

3-21
VMXAE (MAXIMUM ABSOLUTE) vector instruction

3-21
VMXSD (MAXIMUM SIGNED) vector instruction

3-21
VMXSE (MAXIMUM SIGNED) vector instruction

3-21
VN (AND) vector instruction 3-4
VNVM (AND TO VMR) vector instruction 3-5
VO (OR) vector instruction 3-26
VOQ (OR) vector instruction 3-26
VOR (OR) vector instruction 3-26
VOS (OR) vector instruction 3-26
VOVM (OR TO VMR) vector instruction 3-26
VR (see vector register)
VR instruction format 2-13
VRCL (CLEAR VR) vector instruction 3-5
VRRS (RESTORE VR) vector instruction 3-27
VRSV (SAVE VR) vector instruction 3-31
VRSVC (SAVE CHANGED VR) vector instruction

3-29
VS (SUBTRACT) vector instruction 3-35
VS instruction format 2-13,2-19
VSD (SUBTRACT) vector instruction 3-35
VSDQ (SUBTRACf) vector instruction 3-35
VSDR (SUBTRACT) vector instruction 3-35

Index X-5

VSDS (SUBTRACf) vector instruction 3-35
VSE (SUBTRACf) vector instruction 3-35
VSEQ (SUBTRACf) vector instruction 3-35
VSER (SUBTRACf) vector instruction 3-35
VSES (SUBTRACf) vector instruction 3-35
VSLL (SHIFT LEFT SINGLE LOGICAL) vector

instruction 3-32
VSPSD (SUM PARTIAL SUMS) vector instruction

3-36
VSQ (SUBTRACT) vector instruction 3-35
VSR (SUBTRACT) vector instruction 3-35
VSR (vector-status register) 2-3
VSRL (SHIFT RIGHT SINGLE LOGICAL) vector

instruction 3-32
VSRRS (RESTORE VSR) vector instruction 3-28
VSRSV (SAVE VSR) vector instruction 3-31
VSS (SUBTRACf) vector instruction 3-35
VSS (vector-section size) (see section size)
VST (STORE) vector instruction 3-32
VST instruction format 2-13
VSTD (STORE) vector instruction 3-32
VSTE (STORE) vector instruction 3-32
VSTH (STORE HALFWORD) vector instruction 3-33
VSTI (STORE INDIRECf) vector instruction 3-34
VSTID (STORE INDIRECT) vector instruction 3-34
VSTIE (STORE INDIRECT) vector instruction 3-34
VSTK (STORE COMPRESSED) vector instruction

3-33
VSTKD (STORE COMPRESSED) vector instruction

3-33
VSTKE (STORE COMPRESSED) vector instruction

3-33
VSTM (STORE MATCHED) vector instruction 3-34

X-6 IBM System/370 Vector Operations

VSTMD (STORE MATCHED) vector instruction 3-34
VSTME (STORE MATCHED) vector instruction 3-34
VSTVM (STORE VMR) vector instruction 3-35
VSTVP (STORE VECfOR PARAMETERS) vector

instruction 3-35
VSVMM (SET VECTOR MASK MODE) vector

instruction 3-32
VTVM (fEST VMR) vector instruction 3-37
VV instruction format 2-13
VX (EXCLUSIVE OR) vector instruction 3-9
VXEL (EXTRACT ELEMENT) vector instruction 3-9
VXELD (EXTRACT ELEMENT) vector instruction

3-9
VXELE (EXTRACT ELEMENT) vector instruction

3-9
VXELX (EXTRACT ELEMENT) vector instruction

3-9
VXQ (EXCLUSIVE OR) vector instruction 3-9
VXR (EXCLUSIVE OR) vector instruction 3-9
VXS (EXCLUSIVE OR) vector instruction 3-9
VXVC (EXTRACT VCT) vector instruction 3-10
VXVM (EXCLUSIVE OR TO VMR) vector instruction

3-9
VXVMM (EXTRACT VECTOR MASK MODE)

vector instruction 3-10
VZPSD (ZERO PARTIAL SUMS) vector instruction

3-37

o
ZERO PARTIAL SUMS (VZPSD) vector instruction

3-37
zero stride 2-8

I

I
I
I
I
I
I
I
I
I
I ,

I
I
I
I
I
I
I
I

IBM System/370
Vector Operations

Order No. SA22-7125-2

READER'S
COMMENT
FORM

This manual is part of a library that serves as a reference source for systems analysts, programmers, and
operators of IBM systems. You may use this form to communicate your comments about this publication,
its organization, or subject matter, with the understanding that IBM may use or distribute whatever
information you supply in any way it believes appropriate without incurring any obligation to you.

Your comments will be sent to the author's department for whatever review and action, if any, are deemed
appropriate.

Note: Copies of IBM publications are not stocked at the location to which this form is addressed.
Please direct any requests for copies of publications, or for assistance in using your IBM system, to
your IBM representative or to the IBM branch office serving your locality.

Possible topics for comment are:

Clarity Accuracy Completeness Organization Coding Retrieval Legibility

If you wish a reply, give your name, company, mailing address, and date:

What is your occupation?

Number of latest Newsletter associated with this publication:

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM
office or representative will be happy to forward your comments or you may mail directly to the address
in the Edition Notice on the back of the front cover or title n::lup.)

SA22-7125-2

Reader's Comment Form

Fold and tape

Fold and tape

--..------- ----- -- -. ---- - - --------
-~-.-(f)

Please Do Not Staple

"""
BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE:

International Business Machines Corporation
Department E57
P.O. Box 390
Poughkeepsie, New York 12602

Please Do Not Staple

FOld and tape

NO POSTAGE
NECESSARY
IF MAILED

INTHE
UNITED STATES

Fold and tape

o
S
g

" o
ii
»
0'
:J
10

[
:J
CD

ttl
~
en
-<
C/l

CD
3 --Co\)
~
o
<
CD
(') -Q
a
-c

CD

~
0"
:::J
C/l

~
5"
CD
Co

:::J

C
C/)

»

------- ------ ---- - - ---==-=':'='i)

	000
	001
	002
	003
	004
	005
	006
	1-01
	1-02
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	C-01
	X-01
	X-02
	X-03
	X-04
	X-05
	X-06
	replyA
	replyB
	xBack

