Program Product

SY28-1133-2
File No. S370-37

MVS Diagnostic
Techniques

MVS/System Product
JES3 5740-XYN
MVS/System Product
JES2 5740-XYS

o
IRIKL
1] |
II||||||

<'I|
||||||||

TNL SN28-5095 (December27, 1985) to SY28-1133-2

Third Edition (July, 1985)

This is a major revision of, and obsoletes, SY28-1133-1 and Technical Newsletter
SN28-0875. See the Summary of Amendments following the Contents for a summary of
the changes made to this manual. Technical changes or additions to the text and
illustrations are indicated by a vertical line to the left of the change.

This edition with Technical Newsletter SN28-5095 applies to Version 1 Release 3.6 of
MYVS/System Product 5740-XYN or 5740-XYS and to all subsequent releases until
otherwise indicated in new editions or Technical Newsletters. Changes are made
periodically to the information herein; before using this publication in connection with
the operation of IBM systems, consult the latest IBM System/370 Bibliography,
GC20-0001, for the editions that are applicable and current.

References in this publication to IBM products, programs, or services do not imply that
IBM intends to make these available in all countries in which IBM operates. Any
reference to an IBM program product in this publication is not intended to state or imply
that only IBM'’s program product may be used. Any functionally equivalent program
may be used instead.)

Publications are not stocked at the address given below; requests for IBM publications
should be made to your IBM representative or the IBM branch office serving your
locality.

A form for reader’s comments is provided at the back of this publication. If the form has
been removed, comments may be addressed to IBM Corporation, Information
Development, Department D58, Building 921-2, PO Box 390, Poughkeepsie, NY 12602.
IBM may use or distribute whatever information you supply in any way it believes
appropriate without incurring any obligation to $ou.

© Copyright International Business Machines Corporation 1981, 1985

Guide for Using This Publication

The following is a list of guidelines for using this publication.

This publication contains information from OS/VS2 System Programming
Library: MV'S Diagnostic Techniques, GC28-0725-2. 1t also includes all
information from the Newsletters and Supplements issued for GC28-0725-2
through September 15, 1981.

This publication contains information for OS/VS2 MVS Release 3.8 plus the
following:

— OS/VS2 MVS Processor Support 2

— OS/VS2 MVS/System Product Release 1 ~

— OS/VS2 MVS/System Product Release 1 Enhancements

— OS8/VS2 MVS/System Product Release 2

— OS/VS2 MVS/System Product Release 3

— OS/VS2 MVS/System Product Release 3.2 (TNL, SN28-5014)

—. OS/VS2 MVS/System Product Release 3.3

— 0OS/VS2 MVS/System Product Release 3.4 (TNL, SN28-0875)

— 0OS8/VS2 MVS/System Product Release 3.5 8

Do not use this publication unless you have installed MVS/System Product
Version 1 Release 3.5.

The implied date of this publication, for the purpose of inserting new
Newsletters and Supplements, is July 1, 1985. When you are adding pages
from different Newsletters and Supplements, always use the page with the’
latest date (shown at the top of the page).

Guide for Using This Publication ili

iv MVS Diagnostic Techniques

Preface

This publication describes diagnostic techniques and guidelines for isolating
problems on MVS systems. It is intended for the use of system programmers and
analysts who understand MVS internal logic and who are involved in resolving
MYVS system problems.

This publication is intended for use only in debugging. None of the information
contained herein should be construed as defining a programming interface.

Note: For JES3 diagnostic information, refer to JES3 SPL: Diagnosis.
Organization and Contents

This publication stresses a three-step debugging approach:

1. Identifying the external symptom of the problem.

2. Gathering relevant data from system data areas in order to isolate the
problem to the component level.

3. Analyzing the component to determine the cause of the problem.

In support of this approach, the publication has been reorganized into three basic
parts consisting of five sections and three appendixes as follows:

Part 1

“Section 1. General Introduction” describes the debugging approach that is used
and defines the external symptoms that are used to identify a system problem.

“Section 2. Important Considerations Unique to MVS” describes concepts and
functions that should be understood prior to undertaking system diagnosis.
Included are: global system analysis, system execution modes and status saving,
locking, use of recovery work areas, effects of MP, trace analysis, debugging
hints, and general data gathering techniques.

“Section 3. Diagnostic Materials Approach” provides guidelines for obtaining and
analyzing storage dumps of data areas affected by the problem.

Preface V

vi

Part 2

“Section 4. Symptom Analysis Approach” describes how to identify an external
symptom (loop, wait state, TP problem, performance degradation, or incorrect
output), and provides an analysis procedure for what kind of problem is causing
the symptom.

“Section 5. Component Analysis” describes the operating characteristics and
recovery procedures of selected system components and provides debugging
techniques for determining the cause of a problem that has been isolated to a
particular component.

Part 3

Appendixes

A - describes the flow of various MVS processes.

B - provides a step-by-step approach to analyzing a stand-alone dump.

C - provides diagnostic information for SVC dump titles.

D - contains definitions of abbreviations used throughout the publication.

Referenced Publications

The following publications either are referenced in this publication or provide
related reading:

System{370 Principles of Operation GA22-7000
Synchronous Data Link Control General Information GA27-3093
MVS Interactive Problem Control System (IPCS)
User’s Guide and Reference : GC28-1183
Environmental Record Editing and Printing (EREP) Program
User’s Guide and Reference GC28-1378
OS|VS2 System Programming Library:
Initialization and Tuning Guide GC28-1029
Supervisor GC28-1046
Job Management GC28-1303
Service Aids GC28-0674
SYS1.LOGREC Error Recording GC28-0677
Debugging Handbook (5 volumes) LC28-1385 through ~ LC28-1389
JES3 System Programming Library: Diagnosis SC23-0043
OS|VS2 TCAM System Programmer’s Guide, TCAM Level 10 GC30-2051
OS/VS2 TCAM Debugging Guide, TCAM Level 10 GC30-3040
OS/VS2 MVS VTAM Debugging Guide GC27-0023
ACF|VTAM Diagnosis Guide SC27-0615.
ACF|VTAM Diagnosis Reference SC27-0621
Operator’s Library:
OS/VS2 MVS System Commands GC28-1031
0S/VS2 MVS JES2 Commiands SC23-0048
VTAM Network Operating Procedures GC27-6997
ACF|VTAM Operation S$C27-0612
OS/VS TCAM Level 10 GC30-3037
JES/3 Operator’s Library SC23-0045

MYVS Diagnostic Techniques

TNL SN28-5095 (December 27, 1985) to SY28-1133-2

MVS/370 Message Library:
JES2 Messages

System Messages (2 volumes) GC38-1374,

System Codes
OS/VS2 System Logic Library (11 volumes) - Volume 1
OS/VS2 IO Supervisor Logic
OS/VS2 System Initialization Logic
OS/VS2 MVS Service Aids Logic
OS/VS2 MVS Global Resource Serialization Logic
JES2 Logic
0OS/VS2 MVS JES3 Logic
Resource Access Control Facility (RACF): Program Logic Manual
OS/VS2 MVS Programmed Cryptographic Facility: Program Logic Manual
OS/VS2 MV'S Resource Measurement Facility (RMF)
Version 2 Program Logic Manual
MVS Input/Output Configuration Program Logic
OS/VS2 VTAM Data Areas
ACF|VTAM Data Areas
OS/VS2 VTAM Logic
ACF|VTAM Logic
OS/VS2 VSAM Logic
0S/VS2 Catalog Management Logic
OS/VS2 Access Method Services Logic
OS/VS2 MVS Mass Storage System Communication (MSSC) Logic
OS|VS2 SAM Logic
OS/VS2 BDAM Logic
OS/VS2 MVS VTIOC and TCAS Logic
OS/VS2 TSO Command Processor Logic, Volume IV
OS/VS2 Open/Close/ EOV Logic
OS/VS2 CVOL Processor Logic
0S/VS2 VIO Logic
OS/VS2 TCAM Level 10 Logic
IBM 3704 and 3705 Communications Controllers NCP[VS Logic
3704/3705 Communications Controllers Principles of Operation
IBM 37043705 Communications Controllers Emulation Program
Generation and Utilities Guide and Reference Manual
IBM 37043705 Communications Controller NCP|V'S
Generation and Ultilities Guide and Reference Manual

GC28-1354
GC28-1375
GC38-1008
SY28-0713

SY26-3823

LY28-1050
SY28-0643

LY28-1059
LY24-6006
LY24-6005
LY28-0730
LY28-0958

LY28-0923
LY28-1033
SY27-7267
LY38-3054
SY28-0621
LY27-8034
SY26-3825
SY26-3826
$Y35-0010
SY35-0013
SY26-3832
SY26-3831
SY27-7269
SY28-0652
SY26-3827
SY35-0011
SY26-3834
SY30-3032
SY30-3013
GC30-3004

GC30-3008

GC30-3007

Preface

vii

December 27, 1985

vii MVS Diagnostic Techniques

Contents

Section 1. General Introduction 1-1
Basic MVS Problem Analysis Techniques 1-1
IPCS - Interactive Problem Control System 1-4

Section 2. Important Considerations Unique to MVS ~ 2-1
Global System Analysis = 2-2
Global Indicators that Determine the Current System State 2-2
Work Queues, TCBs and Address Space Analysis 2-5
TCB Summary 2-5
SRB Dispatching Queues 2-5
Address Space Analysis 2-6
Task Analysis 2-7
Summary 2-9
System Execution Modes and Status Saving 2-10
System Execution Modes 2-10
 Task Mode 2-10
SRB Mode 2-11
Physically Disabled Mode 2-12
Locked Mode 2-13
Determining Execution Mode From a Stand-alone Dump 2-13
LCCA Indicators 2-13
PSA Indicators 2-13
ASCB Indicators 2-14
Locating Status Information in a Storage Dump 2-15
Task and SRB Mode Interruptions 2-15
Locally Locked Task Suspension 2-17
SRB Suspension 2-17
SMF Suspension 2-19
Locking 2-21
Categories of Locks 2-21
Types of Locks 2-22
Locking Hierarchy 2-23
Determining Which Locks Are Held On a Processor 2-24
Content of Lockwords 2-25
Global Spin Lockword 2-25
Global Suspend Lockword (Cross Memory Services Locks) 2-25
Local Suspend Lockword (Local Lock) 2-25
How To Find Lockwords 2-26
Results of Requests For Unavailable Locks 2-26
Global Spin Locks 2-26
Local Locks 2-27
Cross Memory Services Locks ~ 2-28
Intersect 2-31

Contents ix

Determining if Intersects are Held on a Processor 2-31
Requesting the Intersect 2-32
Use of Recovery Work Areas For Problem Analysis 2-33
SYS1.LOGREC Analysis 2-34
Listing the SYS1I.LOGREC Data Set 2-34
SDWAVRA Key-Length-Data Format = 2-35
Important Considerations About SYSI.LOGREC Records 2-36
SYS1.LOGREC Recording Control Buffer 2-38
Formatting the LOGREC Buffer 2-38
Finding the LOGREC Recording Control Buffer = 2-38
Format of the LOGREC Recording Control Buffer 2-38
FRR Stacks 2-40
Extended Error Descriptor (EED) 2-41
RTM2 Work Area (RTM2WA) 241
Formatted RTM Control Blocks 2-42
System Diagnostic Work Area (SDWA) Use in RTM2 2-42
Effects of Multiprocessing On Problem Analysis = 2-43
Features of an MP Environment 2-43
MP Dump Analysis 2-45
Data Areas Associated With the MP Environment 2-45
Parallelism 2-46
General Hints For MP Dump Analysis 2-48
Inter-Processor Communication 2-49
Direct Services 2-50
Remote Pendable Services 2-51
Remote Immediate Services 2-52
MP Debugging Hints 2-58
MVS Trace Analysis 2-61
Trace Entries 2-61
Trace Entry for Service Processor Call SVC 2-64
Trace Examples 2-64
Notes For Traces 2-66
Tracing Procedure 2-66
Bypassing GTF Lost Events 2-68
Cautionary Notes 2-69
Master Trace 2-71
Master Trace Table 2-72
The Message Processing Facility Table (MPFT) 2-74
Miscellaneous Debugging Hints 2-75
Alternate CPU Recovery (ACR) Problem Analysis 2-75
Pattern Recognition 2-77
Low Storage Overlays 2-78
Common Bad Addresses 2-80
OPEN/CLOSE/EOV ABENDs 2-80
Debugging Machine Checks 2-81
Debugging Problem Program Abend Dumps 2-86
Debugging From Summary SVC Dumps 2-89
SUMDUMP Output For SVC-Entry SDUMP 2-90
SUMDUMP Output For Branch-Entry SDUMP 2-91
Started Task Control ABEND and Reason Codes 2-93
SWA Manager Reason Codes 2-94
Additional Data Gathering Techniques 2-95
Using the CHNGDUMP, DISPLAY DUMP and DUMP Operator
Commands 2-95

X MVS Diagnostic Techniques

How to Print Dumps 2-97
How to Automatically Establish System Options For SVC Dump
How to Copy PRDMP Tapes 2-99
How to Rebuild SYS1.UADS 2-100
How to Print SYSI.DUMPxx 2-101
How to Clear SYS1.DUMPxx Without Printing 2-102
How to Print the SYSIL.COMWRITE Data Set 2-103
How to Print an LMOD Map of a Module 2-103
How to Re-Create SYS1.STGINDEX™ 2-103
Software LOGREC Recording 2-104
Using the PSA as a Patch Area 2-104
Using the SLIP Command 2-105
SLIP Event Qualifier Keywords 2-105
Using the ACTION Keyword = 2-112
Dump Tailoring 2-117
Examples of Using the SLIP Command 2-118
Example of SLIP Command From TSO Terminal 2-124
Designing an Effective SLIP Trap 2-125
Controlling SLIP Traps 2-125
Placement of PER Traps 2-127
SLIP Command Keyword Summary 2-129
System Stop Routine 2-133
How to Expand the Trace Table 2-133

Section 3. Diagnostic Materials Approach 3-1
Stand-alone Dumps 3-2
SVC Dumps 3-4

2-99

How to Change the Contents of an SVC Dump Issued by an Individual

Recovery Routine 3-5
SDUMP Parameter List 3-5
SYSABENDs, SYSMDUMPs, and SYSUDUMPs 3-7
Software-Detected Errors 3-7
Hardware-Detected Errors 3-8

Section 4. Symptom Analysis Approach 4-1
Waits 4-2
Characteristics of Disabled Waits 4-2
Analysis Approach For Disabled Waits 4-3
Characteristics of Enabled Waits 4-4
Analysis Approach For Enabled Waits 4-5
Stage 1: Preliminary Global System Analysis 4-6
Stage 2: Key Subsystem Analysis = 4-8
Stage 3: System Analysis 4-14
Loops 4-15
Common Loop Situations 4-15
Analysis Procedure 4-16
TP Problems 4-20:
Message Flow Through the System 4-20
Types of Traces 4-21
GTF Traces 4-21
ACF/VTAM Traces 4-22
ACF/TCAM Traces 4-22
NCP and EP Traces 4-22
Performance Degradation 4-23

Contents

Xi

Operator Commands 4-23

Dump Analysis Areas 4-24
Incorrect Output 4-29

Initial Analysis Steps 4-29

Isolating the Component 4-29

Analyzing System Functions 4-30

Summary 4-31

Section 5. Component Analysis 5-1
Supervisor Control ~ 5-2
Dispatcher 5-2
Important Dispatcher Entry Points 5-2
Dispatchable Units and Sequence of Dispatching 5-4
Dispatchability Tests 5-13
Miscellaneous Notes About the Dispatcher 5-14
Dispatcher Recovery Considerations 5-15
Dispatcher Error Conditions 5-16
SRB/SSRB Pool Manager 5-17
SRB/SSRB Pool Manager Entry Points 5-17
SRB/SSRB Pool Manager Recovery Considerations 5-18
SRB/SSRB Pool Manager Error Conditions 5-19
Stop/Reset Services 5-19
Stop/Reset Entry Points 5-19
Stop/Reset Recovery Considerations 5-20
Stop/Reset Error Conditions 5-21
SUSPEND/RESUME/TCTL Services 5-22
SUSPEND/RESUME/TCTL Entry Points 5-22
RESUME/TCTL Recovery Considerations 5-23
SUSPEND/RESUME/TCTL Error Conditions 5-24
I0S 525
Front-End Processing 5-25
Back-End Processing 5-25
IOS Problem Analysis 5-25
IOS ABEND Codes 5-28
Loops 5-28
IOS WAIT States 5-29
General Hints For IOS Problem Analysis 5-30
IOS Diagnostic Aids 5-32
Table of EXCP Abend Codes = 5-32
EXCP Debugging Area (XDBA) 5-33
‘SDWA Variable Recording Area 5-34
OQutput of IOS Recovery Procedures 5-34
Informative IOSB Fields 5-43
Table of IOS Messages 5-46
IOS Wait State Codes 5-47
Table of IOS Return Codes 5:47
Error Recovery Procedures (ERPs) 5-48
I0S and ERP Processing 5-48
Identifying ERP Module Names 5-49
How ERP Transfers Control 5-49
Abnormal End Appendages ~ 5-49
Retry/Restart the Channel Program 5-50
Error Interpreter 5-50
ERP Messages and Logging 5-51

Xii MVS Diagnostic Techniques

Intercept Conditions 5-51
Unit Check on Sense Command 5-52
Compound Errors 5-52.
Diagnostic Approach 5-52
Program Manager 5-55
Functional Description 5-55
Program Manager Organization 5-55
Program Manager Control Blocks 5-55
Program Manager Queues 5-55
Queue Validation 5-58
System Initialization 5-58
Basic Functional Flow 5-60
LINK 5-60
ATTACH 5-61
XCTL 5-61
LOAD 5-64
DELETE 5-64
Exit Resource Manager 5-64
SYNCH 5-65
IDENTIFY 5-65
ABEND Resource Manager 5-66
806 Abend 5-66
APF Authorization 5-70
Module Subpools 5-71
FETCH/Program Manager Work Area (FETWK) 5-72
RB Extended Save Area (RBEXSAVE) 5-72
CDE Pool Control 5-72
Virtual Fetch 5-74
Functional Description 5-74
Module Organization 5-74
Functional Flow 5-75
Control Blocks 5-78
Recovery Processing 5-79
Error During Initialization Processing ~ 5-79
Errors During Build, Find, and Get Processing 5-79
Debugging Hints 5-80
VSM 5-82
Address Space Initialization 5-84
Step Initialization/Termination (IEAVPRTO -
GETPART/FREEPART) 5-86
Virtual Storage Allocation (GETMAIN/FREEMAIN) 5-87
GETMAIN’s Functional Recovery Routine - IEAVGFRR 5-90
VSM Cell Pool Management 5-92
Miscellaneous Debugging Hints 5-92
Real Storage Manager (RSM) 5-97
Major RSM Control Blocks 597
PCB (Page Control Block) 5-99
SPCT (Swap Control Table) 5-100
PFTE (Page Frame Table Entry) 5-101
Page Stealing 5-101
Reclaim 5-102
Relate 5-103
RSM Recovery 5-104
Real Storage Management ABEND Reason Codes 5-105

Contents

RSM Debugging Tips 5-107
Converting a Virtual Address to a Real Address 5-108
Example: Converting a Virtual Address to a Real Address
PCB Trace Facility 5-111
Auxiliary Storage Manager (ASM) 5-112
Component Functional Flow 5-113
Saving an LG 5-113
Requesting I/O 5-114
Requesting Swap /O 5-115
Component Operating Characteristics 5-117
System Mode 5-117
Address Space, Task, and SRB Structure 5-117
Storage Considerations 5-117
Interfaces With Other Components 5-118
Register Conventions 5-118
Footprints and Traces 5-118
General Debugging Approach 5-119
Paging Interlocks 5-119
Incorrect Pages 5-120
Unusable Paging Data Sets 5-125
Page/Swap Data Set Errérs 5-127
Error Analysis Suggestions 5-127
Validity Checking 5-128
ASM Serialization 5-129
Recovery Considerations 5-131
Recovery Traces 5-132
Recovery Structure 5-132
Recovery As a Debugging Tool 5-133
Recovery Footprints 5-133
ASM Diagnostic Aids 5-134
COD ABEND Meanings for ASM 5-134
ASM Recovery Control Blocks 5-135
Additional ASM Data Areas 5-139
System Resources Manager (SRM) 5-141
SRM Objectives 5-141
Address Space States 5-142
SRM Indicators 5-143
System Indicators 5-143
Individual User Indicators 5-147
Other Indicators 5-148
SRM Error Recovery 5-148
SRM SDWA Data 5-149
Module Entry Point Summaries 5-149
VTAM 5-150
Note to Readers 5-150
VSAM 5-151
Record Management 5-151
RPL 5-151
PLH 5-152
BUFC 5-152
Record Management Debugging Aids 5-153
Open/Close/End-Of-Volume 5-155
O/C/EOV Debugging Aids 5-155
I/O Manager 5-157

Xiv MVS Diagnostic Techniques

5-110

I/O Manager Debugging 5-157
Catalog Management 5-158
Major Registers and Control Blocks 5-158
How to Find Registers 5-158
Major Registers 5-159
Major Control Blocks 5-159
Module Structure 5-164
VSAM Catalog Recovery Logic 5-165
Establishing/Releasing a Recovery Environment 5-165
Maintaining a Pushdown List End Mark 5-166
Tracking GETMAIN/FREEMAIN Activity 5-166
CMS Function Gate 5-167
Recovery Routine Functions 5-167
Diagnostic Output (Function 4) 5-167
Backout (Function 7) 5-168
Drop Catalog Orientation (Function 9) 5-168
Storage Freeup (Function 10) 5-168
DEFINE/DELETE Backout (Function 12) 5-169
Debugging Aids 5-170
Allocation/Unallocation 5-172
Functional Description 5-172
Allocation 5-172
Unallocation 5-173
Batch Initialization and Control 5-173
Dynamic Initialization and Control 5-173
JFCB Housekeeping 5-174
Common Allocation 5-174
Common Unallocation 5-175
Volume Mount and Verify 5-176
General Debugging Aids 5-176
Allocation Module Naming Conventions 5-176
Registers and Save Areas 5-177
Common Allocation Control Block Processing 5-177
ESTAE Processing 5-180
Unit Allocation Status Recording 5-180
ALLOCAS Recovery Considerations 5-183
ALLOCAS Debugging Hints 5-183
Debugging Hints 5-192 v
Allocation Serialization 5-192
Subsystem Allocation Serialization 5-193
Device Selection Problems (Non-Abend) 5-193
Address Space Termination 5-194
0B0 Abend 5-194
0C4 Abend in IEFAB4FC 5-195
Volume Mount and Verify (VM&V) Waiting Mechanism 5-195
Allocation/Unallocation Reason Codes 5-197
Common and Batch Allocation and JFCB Housekeeping Reason
Codes 5-197
Common and Batch Unallocation Reason Codes 5-200
Dynamic Allocation Reason Codes 5-200
JES2 5-201
Note to Readers 5-201
Subsystem Interface (SSI) 5-202
System Initialization Processing 5-202

Contents

XV

Subsystem Interface Major Control Blocks 5-203
Requesting Subsystem Services 5-206
Invoking the Subsystem Interface 5-206
Logic Flow Examples 5-208
Notifying a Single Subsystem 5-208
Notifying All Active Subsystems 5-210
Debugging Hints 5-211
Event Notification Facility (ENF) 5-212
Requests for ENF Services 5-212
Listen and Signal Exit Routines 5-214
ENF Control Blocks 5-215
ENF Initialization 5-216
ENF Processing 5-217
ENF Return Codes 5-217
ENF Logic Flow Examples 5-217
ENF Recovery Routines 5-220
Recovery Termination Manager (RTM) 5-221
Functional Description 5-221
Work Areas 5-221
Major RTM Modules 5-221
Process Flow 5-222
Hardware Error Processing ~ 5-222
Normal Task Termination 5-224
Abnormal Task Termination 5-225
Retry 5-226
Cancel 5-227
Address-Space Termination 5-229
PER Activation/Deactivation 5-230
Error ID 5-232
SVC Dump Debugging Aids 5-233
Important SVC Dump Entry Points 5-233
SVC Dump Error Conditions 5-234
SYS1.LOGREC Entries Produced for SVC Dump Errors 5-234
Control Blocks Used to Debug SVC Dump Errors 5-237
Resource Cleanup for SVC Dump 5-238
SLIP Processor Debugging Aids 5-238
SLIP Command Processor Recovery 5-239
SLIP Processor Recovery 5-239
PER Activation/Deactivation Recovery 5-240
Control Blocks Used by SLIP 5-242
Communications Task 5-244
Functional Description 5-244
Communications Task Control Blocks 5-246
Debugging Hints 5-248
Console Not Responding to Attention 5-248
Enabled Wait State 5-248
Disabled Wait State 5-249
Messages or Replies Lost 5-249
No Messages on One Console 5-250
Messages Routed to Wrong Console 5-250
Truncated Messages 5-250
‘Console Switching 5-251
Action Message Retention Facility Debugging Aids 5-251
DIDOCS Trace Table 5-252

Xvi MVS Diagnostic Techniques

DIDOCS-In-Operation Indicator 5-252
DIDOCS Locking 5-252
K Q Command Debugging Aids 5-253
Master Trace Debugging Aids 5-254
Recovery Management Support (RMS) 5-256
MCH Diagnostic Aids 5-256
MCH Return Codes 5-256
Processor Work Area (PWA) 5-257
PWF Diagnostic Aids 5-257
PWF Return Codes 5-257
PWF Data Areas 5-257
Dump Footprint Table 5-265
Appendage (ICFBDF00) Footprint Table 5-265
LOGREC Recording 5-266
CCH Diagnostic Aids 5-266
Message IGF002I 5-266
PCCA Fields Showing CCH Footprints 5-267
DDR Diagnostic Aids 5-268
DDR Tasks 5-268
DDR Communication Table (DDRCOM) 5-268
DDR Error Recovery Parameter List (DERPLIST) 5-269
DDR Return Codes 5-272
Software Recording 5-272
DDR Storage Dumps 5-272
MIH Diagnostic Aids 5-273
MIH Process 5-273
MIH Work Area 5-273
Software Recording 5-276
MIH Storage Dumps 5-276
Service Processor Call SVC and MSSFCALL DIAGNOSE Instruction 5-277
Service Processor Call SVC (SVC 122) Used With the MSSF 5-277
MSSFCALL Data Block 5-278
SVC Abend and Return Codes With the MSSF 5-279
SVC Processing and Control Blocks With the MSSF 5-279
SVC Control Blocks Used with the MSSF 5-280
MSSFCALL DIAGNOSE Instruction 5-281
MSSFCALL DIAGNOSE Instruction Condition Codes 5-282
Service Processor Call SVC and SERVICE CALL Instruction 5-283
Service Processor Call SVC (SVC 122) Used With the Service Processor
Architecture 5-283
Service Call Control Block (SCCB) 5-284
SVC Abend and Return Codes With the Service Processor
Architecture 5-284
SVC Processing With the Service Processor Architecture 5-285
SVC Control Blocks Used With the Service Processor Architecture 5-286
SERVICE CALL Instruction 5-287
SERVICE CALL Instruction Condition Codes 5-287
Cross Memory Services 5-288
PC/AUTH Services 5-288
Module Structure 5-289
Process Flow 5-290
Control Block Structure 5-291
Control Block Formats 5-293
Recovery Considerations 5-296

Contents XVil

Xviii

Debugging Hints 5-299
SLIP Traps 5-301

PCLINK Services 5-302
STKE Control Block 5-302
Module Structure 5-304
Debugging Hints 5-304

Global Resource Serialization 5-305

Functional Overview 5-306
Ring Processing 5-306
Command Processing 5-306
Dump Support 5-307

Resource Request Processing (Mainline and Fast Path)

CTC Processing 5-307
WTO/WTOR Message Processing 5-307
Initialization §-307
Queue Scanning Services 5-308
Storage Management 5-308

Control Blocks 5-308
~Control Block Overviews 5-310

Module Flow Diagrams 5-320

Diagnostic Aids 5-343
Check on Enabled Wait During IPL 5-343
System Indicators 5-343
Probe Points 5-344
CTC Processing Debugging Hints 5-344
Ring Processing Debugging Hints ~ 5-345
ENQ/DEQ/RESERVE Processing Debugging Hints
Storage Management Debugging Hints 5-348
Serialization 5-350
Recovery Routines 5-351
SYS1.LOGREC Recording 5-351

Appendix A. Process Flows A-1

RSM Processing for Page Faults A-2
IEAVPIX Tests A-2
IEAVGFA Tests A-2
IEAVPIOP Tests A-3
IEAVIOCP Tests A-6

Swapping A-7
Swap-In Process A-7
Swap-Out Process A-9

EXCP/IOS A-12

GETMAIN/FREEMAIN A-15
GETMAIN Processing A-15
FREEMAIN Processing A-16

VTAM Process A-18

TSO A-21
Time Sharing Initialization = A-21
LOGON Processing A-24

LOGON Scheduling Diagnostic Aids A-32

TSO Line Drop Processing A-34
TMP and Command Processor Interface A-37
TSO Command Processor Recovery A-41
TSO Terminal I/O Overview A-42

MYVS Diagnostic Techniques

5-307

5-345

~ =

Terminal Output Flow A-43

Terminal Input Flow A-44
TSO/TIOC Terminal I/O Diagnostic Techniques: A-45
TSO Attention Processing A-46

Appendix B. Stand-Alone Dump Analysis B-1
Overview B-1
Analysis Procedure B-6

Appendix C. SVC DUMP Title Directory C-1
System-Defined SVC Dump Titles C-2

Operator- and Caller-Defined SVC Dump Titles C-82
SVC Dumps Without Titles C-83

Module to SVC Dump Title Cross-Reference C-85

Appendix D. Abbreviations D-1

Index X-1

Contents

XiX

XX MVS Diagnostic Techniques

Figures

2-2.
2-3.
2-4.
2-5.
2-6.
2-1.

2-8.
2-9.
2-10.
2-11.
2-12.
2-13.

2-14.
2-15.
2-16.
2-17.
4-1.
4-2.
5-1.
5-2.
5-3.
5-4.
5-5.
5-6.
5-7.
5-8.
5-9.
5-10.
5-11.
5-12.
5-13.
5-14.

5-15.
5-16.
5-17.
5-18.
5-19.
5-20.
5-21.
5-22.

Definition and Hierarchy of MVS Locks 2-22

Bit Map to Show Locks Held on a Processor 2-24
Classification and Location of Locks 2-26 -

Cross Memory Services Lock Suspend Queues 2-30
Example of SDWAVRA in Key-Length-Data Format 2-35
Format of the LOGREC Recording Control Buffer 2-39
Format of Records Within the LOGREC Recording Control
Buffer 2-39

SIGP Return Codes 2-50

External Call (XC) Process Flow 2-54

Emergency Signal (EMS) Process Flow 2-56

How to Locate the Trace Table 2-62

Types of Trace Entries 2-63

MVS Trace of a Page Fault Without I/O (Formatted by SNAP in
SYSUDUMP/SYSABEND) 2-65

MYVS Trace of a Page Fault With I/O (Unformatted) 2-65
GTF Trace of a Page Fault Without I/O 2-66

GTF Trace of a Page Fault With /O 2-66

SLIP Command Summary 2-130

JES2 Commands for Status Information 4-24

System Use of Hardware Components 4-26

SRB Queue Structure and Control Block Relationships 5-6
Local SRB Queue Structure and Control Block Relationships 5-7
Dispatcher Processing Overview 5-10

I/O Processing Overview 5-26

Major IOS and EXCP Control Block Relationships 5-27
Program Manager Modules 5-56

Program Manager Control Blocks and Work Areas 5-57
Program Manager Queues 5-57

IEAVNPOS Initialization 5-59

New PRB Initialization - LINK 5-61

New RB Initialization - XCTL 5-62

XCTL RB Manipulation 5-63

CDE Initialization by IDENTIFY 5-66

Module Search Sequence for LINK, ATTACH, XCTL and
LOAD 5-68

Module Search Sequence of Private Libraries 5-69.

CDE Allocation 5-70

Virtual Fetch Modules 5-75

Virtual Fetch Control Blocks 5-78

Virtual Storage Management’s View of MVS Storage 5-83.
Virtual Storage Management’s Control Block Usage 5-85
Virtual Storage Management’s Global Data Area (GDA) 5-89
SDWAVRA Error Indicators 591

Figures

Xxi

5-23. VSM Cell Pool Management 5-93

5-24. Major RSM Control Blocks and Their Functions 5-97

5-25. Relationship of Critical RSM Control Blocks 5-98

5-26. Page Stealing Process Flow 5-102

5-27. Converting Virtual Addresses to Real Addresses 5-109

5-28. Relationship of Important ASM Control Blocks 5-116

5-29. Locating An LSID From An LPID 5-122

5-30. Relating the Virtual Address to the PART and PAT 5-124

5-31. Page/Swap Data Set Error Action Matrix 5-127

5-32. SRM Control Block Overview 5-145

5-33. Relationship of the Six Major Functions of
Allocation/Unallocation 5-172

5-34. Common Allocation Input 5-178

5-35. Common Allocation Control Blocks After Construction of Volunit Table
and EDLs 5-179

5-36. ALLOCAS Control Block Structure 5-182

5-37. ALLOCAS Dump 5-187

5-38. VM&V Control Block Structure 5-196

5-39. Subsystem Interface Control Block Usage 5-205

5-40. Control Block Usage With Synonyms 5-206

5-41. Control Block Structure for Invoking Subsystem Interface 5-207

5-42. Finding the SSIB for a Job When SSOB Pointer is Zero 5-208

5-43. ENF Event Parameter List (ENFPM) 5-213

5-44, ENF Control Block Summary 5-215

5-45. ENF Control Block Structure 5-216

5-46. Sequence of Communications Task Processing 5-245

5-47. Communications Task Control Block Structure 5-247

5-48. Typical DDRCOM Chains 5-269

5-49. DDR Error Recovery Parameter List 5-270

5-50. MIH Work Area 5-275

5-51. Overview of SVC Processing With the MSSF 5-280

5-52. SVC Control Block Structure With the MSSF 5-281

5-53. Overview of SVC Processing With the Service Processor
Architecture 5-286

5-54. SVC Control Block Structure With the Service Processor
Architecture 5-287

5-55. PC/AUTH Control Block Structure = 5-292

5-56. PC/AUTH Recovery Areas 5-297

5-57. PCLINK Control Block Structure 5-303

5-58. TCBs in the Global Resource Serialization Address Space 5-311

5-59. CTC Processing - Control Block Overview 5-312

5-60. Ring Processing - Control Block Overview 5-313

5-61. Command Processing - Control Block Overview 5-314

5-62. ENQ/DEQ Processing - Local Resources - Control Block
Overview 5-314

5-63. ENQ/DEQ Processing - Global Resources - Control Block
Overview 5-315 ’

5-64. Queue Scanning Services - Local Resources - Control Block
Overview 5-316

5-65. Queue Scanning Services - Global Resources - Control Block
Overview 5-317

5-66. Storage Management - Control Block Overview 5-318

5-67. WTO/WTOR Message Processing - Control Block Overview 5-319

5-68. Module Flow Overview and Directory 5-321

XXii MVS Diagnostic Techniques

5-69.

5-70.

5-71.
5-72.
5-73.

5-74.

5-75.

5-76.
5-717.

5-78.

5-79.
5-80.
5-81.
5-82.
5-83.

5-84.

5-85.

5-86.

5-87.
5-88.

5-89.

5-90.
5-91.
5-92.
A-1.
A-2.
A-3.
A-4,
A-S.
A-6.
A-7.
A-8.
A-9.

A-10.
A-11.
A-12.
A-13.

B-1.

Module Flow for CTC Processing - Handle Arrival of
Immediate-CCW 5-322

Module Flow for CTC Processing - Handle Arrival of RSA or
RSAIRCD 5-322

Module Flow for CTC Processing - Send a RSA or RSAIRCD 5-323
Module Flow for Ring Processing - Send/Receive a RSA 5-324
Module Flow for Ring Processing - Send a RSAIRCD or
Immediate-CCW (Requested by ISGBCI) 5-325 ,

Module Flow for Ring Processing - Send a RSAIRCD (Requested by
ISGBTC) 5-326

Module Flow for Ring Processing - Handle Arrival of RSAIRCD (Not
Requested by This System) 5-327

Module Flow for Ring Processing - SNAPSHOT Function 5-328
Module Flow for Ring Processing - SENDCMD (RSCRADDS)
Function 5-329

Module Flow for Ring Processing - SENDCMD (RSCRSNAD)
Function 5-330

Module Flow for Command Initialization and Cleanup 5-331
Module Flow for DISPLAY GRS 5-332

Module Flow for VARY GRS(x), PURGE 5-332

Module Flow for VARY GRS(x), QUIESCE to Another System 5-333
Module Flow for VARY GRS(x), QUIESCE by a System to Quiesce
Itself 5-334

Module Flow for VARY GRS(x), RESTART to Restart Another
System 5-335

Module Flow for VARY GRS(ALL), RESTART to Restart All
Systems 5-336

Module Flow for VARY GRS(x), RESTART by a System Not in the
Main Ring 5-337

Module Flow for Join Processing at Initialization Time 5-338
Module Flow for ENQ/DEQ Mainline - Local Resource

Request 5-339

Module Flow for ENQ/DEQ Mainline - Global Resource

Request 5-340

Module Flow for the Termination Resource Manager 5-341
Module Flow for Queue Scanning Services 5-342

Module Flow for Dump Support - SVC Dump 5-342

Page Fault Process Flow A-4

Swap-In Process Flow A-§8

Swap-out Process Flow A-10

IOS/EXCP Process Flow A-13

VTAM SEND Process Flow A-19

Overview of Logon Processing A-22

TCAM Organization After a TSO Logon A-26

Logon Work Area A-28

LOGON Work Area Bits That Indicate the Currently Executing
Module A-32

LOGON Scheduling Post Codes A-33

Overview of TSO Line Drop Process A-35

Summary of Command Processor Recovery Activity — A-42

TSO Attention Flow A-47

Stand-alone Dump Analysis Flowchart B-5

Figures XX1il

XXiV MVS Diagnostic Techniques

TNL SN28-5095 (December 27, 1985) to SY28-1133-2

Summary of Amendments

Summary of Amendments

for SY28-1133-2

as Updated December 27, 1985

by Technical Newsletter SN28-5095

This Technical Newsletter, which supports Version 1 Release 3.6 of MVS/System
Product, includes HASPRAS as the issuing module of a $SDUMP macro
instruction for JES2.

Additionally, several technical corrections were made.

Summary of Amendments

for SY28-1133-2

MYVS/System Product Version 1 Release 3.5

This major revision consists of maintenance changes and changes to support
MVS/System Product 1.3.5.

The changes include:
® The Service Processor Call SVC (SVC 122), which provides MVS support for:

— Processor complexes with the Service Processor Architecture. For these
processors, MVS issues the SERVICE CALL instruction to communicate
with the service processor.

— Processor complexes with the monitoring and system support facility
(MSSF). (The Service Processor Call SVC was formerly called the
MSSFCALL SVC.) For these processors, MVS issues the MSSFCALL
DIAGNOSE instruction to communicate with the MSSF.

@ Bit 19 in the machine check interruption code (MCIC).
® SVC dump titles for the scheduler, master scheduler, and TSO.

@® Minor technical and editorial changes throughout.

Summary of Amendments XXV

TNL SN28-5095 (December 27, 1985) to SY28-1133-2

® Information in “Section 5. Component Analysis” for the following
components is deleted from this book because the information is obsolete or
duplicated in other books.

~ JES2 - see the JES2 Logic book for diagnostic information.

— VTAM - see the ACF/VTAM Diagnosis Guide and ACF/VTAM Diagnosis
Reference for diagnostic information.

Summary of Amendments

for SY28-1133-1

as Updated December 30, 1983

by Technical Newsletter SN28-0875

This Technical Newsletter, which supports Version 1 Release 3.4 of MVS/System
Product, contains information for the functional subsystem interface (FSI).

Also, changes have been made throughout this publication to reflect maintenance
changes.

XXVi MVS Diagnostic Techniques

—~—

Section 1. General Introduction

This section introduces basic MVS problem analysis and provides an overview of
the interactive problem control system (IPCS).

Basic MVS Problem Analysis Techniques

Problem isolation and determination are significantly more complex in MVS than
in previous operating systems because of:

Enabled System Design which has made the internal and environmental
status-saving functions more extensive than those of previous systems.

Multiprocessing (MP) which potentially allows the execution of code in
sequences not encountered in a uniprocessing (UP) environment. MP can.
also cause contention for serially reusable resources. (In this manual, MP
refers to multiprocessing on both multiprocessors and attached processors.)

Locking Mechanism which facilitates enabled system design and
multiprocessing functions and maintains data integrity.

Subsystems which are responsible for processing work requested from the
system. They maintain their own work queues, control block structures and
dispatching mechanisms - all of which must be understood in order to
effectively pursue problems in the MVS operating system.

Software Recovery which attempts to keep the system available despite errors.

The number of components which provide new functions and whose internal
logic must be understood for effective problem determination.

As a result of this complexity, MVS problem solvers have made two adjustments
in their diagnostic outlook:

Rather than learning the system logic at an instruction or module level, they
have learned the system in terms of component interactions at the interface
level. '

They have learned that the most effective problem analysis at a system level is
obtained from a disciplined, almost formal, diagnostic approach.

Section 1. General Introduction 1-1

This publication contains those debugging techniques and guidelines that have
proven the most useful to problem solvers with several years experience in
analyzing MVS system problems. These techniques are presented in terms of a
debugging “approach” that can be summarized in three steps:

1. Identifying the external symptom of the problem.

2. Gathering relevant data from system data areas in order to isolate the
problem to a component.

3. Analyzing the component to determine the cause of the problem.

The most important step in this approach is often the first - correctly identifying
the external symptom of a problem. To do this, it is best to get a description of
the problem as it was perceived by an eyewitness. You will want a description
that provides a context from which to start, such as: ‘

“System is looping; can’t get in from console.”
“Job abended with 213.”

“I/O error on 251.”

“Console locked out.”

“Terminal hung, keyboard locked.”
“System in wait, nothing running.”
“Bad output.”

“Job won’t cancel.”

“System degrading. Very slow.”
“System died.”

“0C4 in component abc.”

The list is endless, of course. Your objective is to fit one (or more) of these
descriptions to one of the following external symptoms.

® Enabled wait - The system is not executing any work and when it takes
interrupts, nothing happens. Something appears to be stuck.

® Disabled wait - The system freezes with a disabled PSW that has the wait bit
on. This can be either an explicit and intentional disabled wait or a situation
that occurs because the PSW area has been overlaid.

® Disabled Loop - This is normally a small (fewer than 50 instructions) loop in
disabled code.

® Enabled loop - This is normally a large loop in enabled code (and may include
disabled portions - loops as a result of interrupts).

® Program check - The program is automatically cancelled by the system,
usually because of improper specification or incorrect use of instructions or
data in the program. If a SYSABEND, SYSMDUMP, or SYSUDUMP DD
statement was included in the JCL for the job, a dump of the problem
program will be taken.

@® ABEND - The system issues an SVC 13 with a specific code from 1 to 4095 to
indicate an abnormal situation.

1-2 MVS Diagnostic Techniques

@ Incorrect output - The system is not producing expected output. Incorrect
output can be categorized as: missing records, duplicate records or invalid
data that has sequence errors, incorrect values, format errors, or meaningless
data. If a program has apparently executed successfully, incorrect results will
not be detected until the data is used at some future time.

@ Performance degradation - A bottleneck or system failure (hardware or
software) has severely degraded job execution and throughput.

® TP problem - A problem, usually detected by the operator or terminal user,
that indicates malfunctions are affecting one or more terminals, lines, etc.

The chapters in Section 4 (Symptom Analysis Approach) will help you identify
these symptoms. The main rule at this stage of your analysis is to proceed
carefully. When first screening a problem, do not assume too much. Don’t even
assume that the original eye witness description was correct. Keep all initial
information about the problem as a reference for your later analysis.

In the course of identifying the correct external symptom, you will begin gathering
data that will lead you to other sections of the publication. Specific data
gathering techniques are contained in Sections 2 and 3. Section 2 describes the
major MVS debugging areas such as LOGREC records and recovery work areas.
Section 3 describes how to use a storage dump effectively as your main source of
diagnostic material.

Eventually you should have gathered enough data to isolate the problem to a
particular component or process. Section 5 and Appendix A provide techniques
for analyzing system components and processes so that you can determine the
cause of the problem. Appendix B contains a step-by-step procedure that can be
used as a guide for analyzing a stand-alone dump.

Note: Before you begin using this publication for problem analysis, scan through
it to find out where the various types of information are located. Depending on
your current debugging skill level, various sections will be more important than
others.

Always keep in mind that trouble-shooting a system of the internal complexity of
MYVS is not always an “If A, then B” procedure. The guidelines and techniques
presented in this publication define “generally” what the analyst will discover.
The nature of the debugging process is such that the problem solver does not
perform the same analysis for every problem.

Section 1. General Introduction 1-3

IPCS - Interactive Problem Control System

The Interactive Problem Control System (IPCS) provides MVS installations with
expanded capabilities for diagnosing software failures and facilities for managing
problem information and status.

IPCS includes facilities for:

@ Online examination of storage dumps.

@® Analysis of key MVS system components and control blocks.

® Online management of a directory of software problems that have occurred in
the user’s system.

® Online management of a directory of problem-related data, such as dumps or
the output of service aids.

IPCS runs as a command processor under TSO, allowing the user to make use of
existing TSO facilities from IPCS, including the ability to create and execute
command procedures (CLISTs) containing the IPCS command and its
subcommands.

IPCS supports three forms of MVS storage dumps:

@ High-speed stand-alone dumps produced by AMDSADMP.

@ Virtual dumps produced by MVS SDUMP on SYS1.DUMP data sets.

@ Virtual dumps produced by MVS SDUMP on data sets specified by the
SYSMDUMP DD statement.

Dumps on data sets specified by the SYSABEND or SYSUDUMP DD
statements cannot be analyzed using the IPCS facilities.

For information about IPCS, refer to the MV'S Interactive Problem Control
System (IPCS) User's Guide and Reference.

1-4 MVS Diagnostic Techniques

Section 2. Important Considerations Unique to MVS

This section describes concepts and functions that are unique to the MVS
environment and useful to problem analysis. It also contains miscellaneous
debugging hints and general data gathering techniques.

The chapters in this section are:

Global System Analysis

System Execution Modes and Status Saving
Locking

Use of Recovery Work Areas in Problem Analysis
Effects of Multiprocessing on Problem Analysis
MYVS Trace Analysis

Miscellaneous Debugging Hints

Additional Data Gathering Techniques

Section 2. Important Considerations Unique to MVS ~ 2-1

Global System Analysis

In trying to isolate a problem to an internal symptom, a global system analysis
often uncovers enough data to provide a starting point for the actual problem
isolation and debugging. This chapter discusses the main considerations the
analyst should be aware of when analyzing a stand-alone dump, including:

The system areas that should be inspected to understand the current system
state at the time of a dump

The system areas that should be examined to understand the current state of
the work in the system and the current disposition of storage and tasks

Global Indicators that Determine the Current System State

The following areas should be examined to help determine the current state of the
system:

1.

PSA - occupies the first 4K bytes of real storage for each processor. Note
that absolute 0 is not used during normal system operation on a machine with
the MP feature - this is true whether the system is operating in MP or UP.
(The one exception is a control program that is system generated with
ACRCODE=NO.) During NIP processing the PSA(s) for the processor(s)
are initialized and the prefix register(s) are initialized to point to them.

Special Notes About Stand-alone Dumps:

® If you IPL the stand-alone dump program from the system control (SC)
frame on the 3033 or the CC012 frame of the 3081, it is not necessary to
perform the STORE STATUS operation as notéd in the foliowing
paragraphs. Status is automatically stored when stand-alone dump is
invoked from either of these frames and automatic store status is on.

@ Before taking a stand-alone dump, it is necessary to perform a STORE
STATUS operation. This hardware facility does not use prefixing; instead
it stores values such as the current PSW, registers, CPU timer, and clock
comparator in the unprefixed PSA (the one used before NIP initialized
the prefix register) at absolute address 100. The dump program
subsequently saves these values and, in an MP environment, issues a
SIGP instruction to other processors requesting a STORE STATUS
operation. As a result, these values in the unprefixed PSA are overlaid by
another processor’s values.

Therefore, in an MP environment the status in the unprefixed PSA is
always that of a non-IPLed processor, not the one on which the
stand-alone dump was IPLed. '

@ In a machine not equipped with the MP feature and therefore without
prefixing, the IPLing of the stand-alone dump program causes low
storage (0-X‘18’) to be overlaid with CCWs. You should be aware of this
and not consider it as a low storage overlay.

2-2 MVS Diagnostic Techniques

® In an MP environment, the STORE STATUS operation must be
performed only from the processor to be IPLed for the stand-alone dump
program.

@® IPLing the stand-alone dump program twice causes the storage dump to
contain a dump of the dump program itself because it was read in for the
first IPL. This causes the dump program to overlay a certain portion of
the nucleus (generally starting at X‘7000”) and the general purpose
registers to contain values associated with the stand-alone dump program
and not MVS.

@ If the operator does not issue the STORE STATUS instruction before
IPLing a stand-alone dump, the message “ONLY GENERAL PURPOSE
REGS VALID” might appear on the formatted dump. The PSW, control
registers, etc., are not included. This greatly hampers the debugger’s task.

Registers and PSW - The print dump program formats the current PSW and
the general, floating point, and control registers associated with each
processor. From these, you can determine the program executing on each
processor.

If the current PSW is 070E0000 00000000 and the GPRs are all 0, you are in
the no-work wait condition, which indicates no ready work is available for
this processor to execute.

If there is or should be work remaining, an invalid wait condition results.
(Refer to the chapter on “Waits” in Section 4.)

If the registers are not equal to zero and the PSW does not contain the wait
bit (X‘0002%), there is an active program. If the wait task is dispatched, the
system is in the no-work wait condition.

ILC/CC - location X‘84’ for external interrupts; location X‘88” for SVC
interrupts; location X‘8C’ for program interrupts. These fields indicate the
last type of interrupt associated with each interrupt class for each processor.
The work active when each interrupt occurs is represented by the old PSWs at
locations: X‘18’ (external); X‘20° (SVC); X‘28’ (program). Common contents
of these fields are:

X‘84 00001004 clock comparator
00001005 CPU timer
000x1201 SIGP-emergency signal
000x1202 SIGP-external call
Where x indicates the processor issuing the SIGP instruction.

X‘88’ 000200xx- where xx is the SVC number. This field should be inspected for unusual SVCs

such as:
1 - WAIT: can indicate an enabled wait situation
D - ABEND: . can indicate program error processing

F - ERREXCP: can indicate a problem in I/O error processing
10 - PURGE: can indicate a problem in the swap process
38 - ENQ: can indicate a resource contention problem
4F - STATUS: can indicate a non-dispatchability problem

X‘8C’ 000X0011 indicates a page fault interrupt. Anything other than a code of 11 is highly
suspect and must be inspected further. Also with a code of 11, the program check old
PSW (location X‘28°) must be enabled (mask = X‘07°) because disabled page faults are
not allowed in MVS and it is an error if one occurs.

Section 2. important Considerations Unique to MVS ~ 2-3

4. PSA+X°204’ (CPU ID)

5. PSA+X‘208 (address of PCCA - 1 per processor) - The PCCA contains
information about the physical facilities of each processor.

6. PSA+X210’ (address of LCCA - 1 per processor) - The LCCA contains many
of the status-saving areas that were located in low storage in previous
systems. It is used for software environment saving and indications. The
registers associated with each of the interrupts you find in the PSA are saved

in this area. In addition, the system mode indicators for each processor are
maintained in the LCCA.

7. PSA+X224’ (PSAAOLD) - This is the address of the ASCB of the work last
dispatched on each processor. This field indicates the address space that is
currently executing.

8. PSA+X21C’ (PSATOLD) - This is the address of the TCB of the work last
dispatched on each processor. This field in conjunction with PSAAOLD
isolates to a task within an address space. Note: PSATOLD =0 when SRBs
are dispatched.

9. PSA +X228 (PSASUPER) - This is a field of bits that represent various
supervisory functions in the system. If a loop is suspected, these bits should
be checked in an attempt to isolate the looping process.

Note: Because of SRM timer processing in MVS, the external first level
interrupt handler bit (X‘20’) or the dispatcher bit (X‘04’) may be set in this
field even in the enabled wait situation.

10. PSA +X“2F8’ (PSACLHS) - This field indicates the current locks held on
each processor. Knowing which locks are held helps isolate the problem,
especially in a loop situation. By determining the lock holders you can isolate
the current process. (See the chapter on “Locking” later in this section.)

11. PSA +X*380° (PSACSTK) - This is the address of the active recovery stack
which contains the address of the recovery routines to be routed control in
case of an error. If the address is other than X‘C00’ (normal stack), the type
of stack (for example, program check FLIH or restart FLIH) is meaningful,
especially in the loop situation.

By searching the normal stack (X‘C00°) and associating the recovery routine
to active mainline routines you may get an idea of the current process. This
is true only if the pointer to the current entry is not X‘CE0,” which would
indicate an empty recovery stack.

Note: If a loop is suspected, the first word following each routine address in
the current stack should be scanned. A X‘80’ indicates that routine is in
control. A X‘40’ indicates that routine is in control and that it is a nested
recovery routine.

If X28’ into the stack is non-zero, also check for an SDWA address at X‘5C’
into the active stack. This block is mapped by the SDWA DSECT and is
described in the Debugging Handbook (RTCA and SDWA are different names
for the same control block). If an SDWA address is present, an error has

2-4 MVS Diagnostic Techniques

occurred and it can be related to the problem you are analyzing. If trapping
via RTM’s SLIP facility, the registers at entry to RTM are contained in this
area.

12. PSA +X‘414’ (PSACSID) - This is the ID of the channel set that is currently
connected to this processor.

Work Queues, TCBs and Address Space Analysis

TCB Summary

SRB Dispatching Queues

Examine the following areas to help determine the current state of work in the
system.

The TCB summary report, produced by AMDPRDMP (print dump program),
contains a summary of the address spaces and their associated tasks. A quick
scan of the completion (CMP) field for each task reveals any abnormal
terminations that have occurred. Discovery of an error completion code warrants
further investigation as to the cause. Remember, however, that these codes are
residual and the job or task might have recovered from the problem.

Also investigate multiple abnormal completion codes which all relate to the same
area of the system, or many tasks that all have the same completion code. These
completion codes can all relate to one area of the system and perhaps to the
problem you are investigating. Again, LOGREC should provide further
documentation in an error situation such as this.

The print dump program formats the SRB dispatching queues. Elements on any
of these queues should be investigated, especially in cases where no work appears
to be progressing through the system.

Elements on the global, SVT, or address space local services management queues

- (SVTGSMQ, SVTLSMQ, or ASCBLSMQ) can indicate that the dispatcher has

not received control since these SRBs were scheduled. This is an unusual
condition that should be investigated to determine why the SRBs have not been
dispatched.

Elements on the global/local service priority lists (GSPLs/LSPLs) should be
explained. It is possible the dump was taken before the SRB routines were able
to execute. But it more likely indicates some other system problem such as an
enabled wait or disabled loop. If there are SRBs on an LSMQ/LSPL, you should
determine if the associated address space is swapped into storage and if it is not,
why not. (Possible causes are real frame shortage or a problem in the
paging/swapping mechanism.) Again this is an indication of a potential system
problem. The chapter on “Waits™ in Section 4 and the chapter on “Dispatcher”
in Section 5 contain additional information on the dispatching queues.

If, at this point, you can isolate the problem to a component, refer to the

“Component Analysis” for that component in Section 5. The chapter on “Waits”
in Section 4 should prove helpful if you have isolated to a problem in the system.

Section 2. Important Considérations Unique to MVS 2-5

Address Space Analysis

If you have isolated the error to a given address space or want to determine the
state of a given address space, analyze the ASCB.

Important indicators in the ASCB are:

ASCBLOCK (ASCB + X‘80") - to determine the specific state of the local
lock. If it contains 7TFFFFFFF, FFFFFFFF, or 4FFFFFFF (the lock
suspend/interrupt/ready-to-run IDs), refer to the chapter on “Locking” later
in this section for an explanation.

Note: When holding a suspend lock, a routine can only be suspended
because it attempts to obtain an unavailable cross memory services lock or
because of a page fauit, synchronous page fix, or if the SMF buffers are full
when SMF is entered, or the routine specifies SUSPEND =YES on the
SDUMP macro. To find the reason for the suspension, refer to the discussion
of Task Analysis later in this chapter and to the chapter on “Locking” later in
this section.

ASCBEWST (ASCB+X48’) - to determine the TOD clock value when the
address space last executed. This field helps you determine how long an
address space has been swapped-out. By subtracting this field (bytes 3-6
which repeat approximately every 15 minutes) from the last timer value in the
MYVS trace table and converting to seconds, you can discover the approximate
swap-out time. (See the chapter “MVS Trace Analysis” later in this section.)

ASCBTNEW (ASCB+X‘1C’) - identifies highest-priority TCB that is
dispatchable. Explicit wait sets a non-dispatchability flag
(TCBFLGS4 =X'04").

ASCBCPUS (ASCB +X20’) - number of processors running tasks in this
address space.

ASCBSEQN (ASCB +X*26’) - indicates the address space’s position on the
dispatching queue. If its value is X‘7FFF’ the ASCB is not on the
dispatching queue.

ASCBRCTF (ASCB +X‘66”), ASCBFLG1 (ASCB+X‘67’) - current status of
the address space.

ASCBASXB (ASCB+X‘6C’) - pointer to the ASXB that anchors the TCBs.

- ASCBDSP1 (ASCB + X‘72°) - address space non-dispatching flags.

ASCBSRBS (ASCB +X*76) - number of SRBs currently suspended in the
address space.

ASCBOUCB (ASCB +X‘90’) - pointer to the OUCB, which is helpful when
determining why an address space is swapped-out.

ASCBFMCT (ASCB+X‘98’) - number of real frames currently occupied by
the address space.

2-6 MVS Diagnostic Techniques

Task Analysis

@® ASCBTCBS (ASCB +X‘Dg’) - number of ready TCBs not requiring the local
lock.

® ASCBTCBL (ASCB+ X‘DC’) - number of ready TCBs requiring the local
lock. -

® ASCBLOCI (ASCB+ X‘ES8’) - contains either the ASCB address of the
address space holding this ASCB’s local lock as a CML lock, or zero.

@® ASCBCMLH (ASCB+X‘EC’) - contains either the address of the suspended
TCB or SSRB holding this ASCB’s local lock, or zero. The high-order bit on
in field ASCBCMLH indicates an SSRB.

Once you understand the ASCB you should analyze the associated task structure.
Once again, scan the TCBs associated with your address space and look for an
abnormal completion field. While doing so, check the RB structure for each task.
Remember that the region control task, dump task, and STC/LOGON are
represented by the first three TCBs. “Normally” they will be waiting during task
execution. If one of them is not, you should determine why.

Assuming the first three TCBs are not obvious problem areas, continue inspecting
the remaining TCBs. You are trying to explain each RB. Starting with the last
RB created (the first RB, pointed to by the TCB +0), determine what work is
represented. If work is waiting, find out why.

Note: The master scheduler address space has system task TCBs that differ from
other address spaces. Refer to the diagrams for Master Scheduler Initialization,
Start Initiator, and Job Execution in the topic “General System Flow” in the
Debugging Handbook, Volume 1 for details of the TCB structures.

The RBOPSW indicates the issuer of an explicit WAIT. TCBFLGS4 indicates an
explicit WAIT. If it is not an explicit WAIT, consider the following suspension
possibilities and their associated key indicators:

1. If ASCBLOCK =X‘7TFFFFFFF’, X‘'FFFFFFFF’, or X‘4FFFFFFF’, the
status (registers and PSW) of the suspended, interrupted, or ready-to-run task
is saved in the JHSA of the locally locked address space (ASCB +X‘6C’
points to ASXB; ASXB +X‘20’ points to IHSA). The IHSA is serialized by
the address space’s local lock. The reason for suspension is important. If it is
for a lock, find out what address space or task owns that lock and what the
owners’ state is. (The chapter on “Locking” later in this section shows how
to determine lock owners.)- If it is for a page fault or synchronous page fix,
determine the state of that page fault or synchronous page fix. Ifit is for an
SMF suspension, the field at SMCA +X‘8C’ points to an SMF suspend block
(SSB). (For additional information on SMF suspension, see the topic “SMF
Suspension” later in this section.) Note also that while the RBTRANS field
points to the page fault causing address, the RBWCF is 0.

Note: If a task owned the local lock at the time of the suspension or

interruption, TCBACTIV is left on. If no TCB in the task structure has an
active indicator set, you can assume an SRB owned the lock. If no SRBs are

“Section 2. Important Considerations Unique to MVS 2-7

on either of the cross memory services lock suspend queue, the suspension is
probably the result of a page fault or a synchronous page fix.

An SRB can be suspended requesting an unavailable suspend lock (local or
cross memory services), or because of a page fault or a page fix. Once an
executing SRB is suspended for any of the above reasons, an SSRB (see the
Debugging Handbook) is constructed. Also, an SRB can be delayed by the
dispatcher if the local lock is unavailable and the SRB is to receive control
with the local lock held. No status is saved for a delayed SRB; instead the
SRB is placed on the local lock suspend queue. If suspended for page fault
processing, the SSRB is pointed to by the corresponding PCB +X‘1C’
(PCBSRB). PCBs are generally chained together and anchored in two
locations: (1) the RSMHDR for local address space page faults; (2) the PVT
for page faults caused by referencing commonly addressable storage. Note
that if real frames were not available when the page fault occurred, even local
page faults are queued from the PVT on the defer queue (PVTGFADF,
PVT +X‘754).

For a cross memory services lock request, the SSRB is on the requested cross
memory services lock’s suspend queue. See the chapter on “Waits” in Section
4 for details on how to locate the SSRB. For Local lock suspensions, the
‘SRBs and SSRBs are chained together on a queue anchored in the ASCB
field ASCBLSQH (ASCB +X‘84’).

A locked TCB can be suspended for the same reasons as an SRB. The save
area is the IHSA of the locally locked address space (described in the
Debugging Handbook). The IHSA is valid during a page fault if the
corresponding PCB +X‘08 flag is on, indicating the lock was held at the time
of the page fault. Also, the TCBLLH (TCB+X‘114’) is set to X‘01’ if the
task was locally locked at the time of the page fault.

The IHSA is valid for a cross memory services lock suspension if the ASCB is
on the cross memory services lock’s suspend queue. The CMSSMF lock
suspend queue header is at label CMSFRSQH, the ENQ/DEQ cross memory
services lock suspend queue is at label CMSEDLK +X‘4’, and the general
cross memory services lock suspend queue is at label CMSSQH in CSECT
IEAVESLA. If there is a page fault, the TCB could be suspended while
holding both the local lock and at least one cross memory services lock. An’
indication of this is that the flag for cross memory services locks

(ASCB +X*2A’) is turned on, and the ASCB address is in at least one of the’
cross memory services locks. The cross memory services lockword contains
the ASCB address of the locally locked address space. The requester of the
cross memory services lock can own a cross memory local (CML) lock.

Note: The local and cross memory services lock bits in ASCBHLHI are set
at suspend and are never reset.

2. If ASCBLOCK =X‘00000000" and the memory/task is waiting, the status is
saved in the RB/TCB. (See the chapter on “System Execution Modes and
Status Saving” later in this section.)

A task can issue the SUSPEND macro to cause the wait count of an RB to

be non-zero. The RBOPSW indicates the issuer of a SUSPEND
RB=CURRENT request. However, an RB can also issue SUSPEND

2-8 MYVS Diagnostic Techniques

Summary

RB=PREVIOUS. In this case, the only clue to the issuer is the interrupt
code in the RB. If the interrupt code indicates a type 2, 3, or 4 SVC, then
this SVC routine could have issued the suspend for this RB; but it is also
possible that some IRB had executed on behalf of the task and issued a
suspend for its previous RB.

If the RBOPSW does not indicate the issuer of a WAIT or SUSPEND, and
the RB is not in either page fault wait or page fix wait, then a SUSPEND
RB=PREVIOUS might have been issued.

Note: The explicit wait flag in the TCB (in TCBFLGS4) will not be on for a
suspended RB.

3. Suspended SRBs can cause bottlenecks. The chapter on “System Execution
Modes and Status Saving” can aid in locating any suspended SRBs that relate
to the address space. Note: Do not spend time looking for them unless other
facts about the problem indicate a potential problem in this area.

By far the most important consideration in task analysis is the RB structure of
each task. Generally if you have isolated the problem to an address space, RB
analysis shows a potential problem in the way of:

Long RB chains

Contention caused by an ENQ (SVC 38) request
SMF suspension

Page fault or synchronous page fix waits

I/O waits

Abnormal termination processing, that is, SVC D RB

Once you have analyzed the RB structure you might want to go back and further
analyze the TCBs. Following are additional important fields in the TCB:

1. TCBFLGS (TCB+X‘1D’) - indicators of how the system currently considers
this task.

2. TCBGRS (TCB+X‘30’) - general purpose registers (0-15) saved when a
TYPE 1 SVC is issued or for an interruption for a non-locked task.

3. TCBSCNDY (TCB +X‘AC’) - additional system indicators for this task that
help to determine why this task is not executing.

4. TCBRTWA (TCB+XE(Q’) - pointer to the RTM2 work area (mapped in the
Debugging Handbook) which contains information similar to the SDWA but
also data for RTM processing.

This chapter contains major considerations you must be aware of when analyzing
a stand-alone dump in MVS. A disciplined approach is important; resist the
tendency to go off on tangents upon finding the first unexplainable condition.
After gathering all the facts, try to resolve the “cause and effect” situations you
are bound to uncover. Generally, at this point you will have isolated the error
and can start a detailed component/process analysis.

Section 2. Important Considerations Unique to MVS ~ 2-9

System Execution Modes and Status Saving

MYVS differs significantly from previous operating systems by having multiple
execution modes. Status is saved and restored from many different locations
depending upon the execution mode at the time control was lost. This chapter
explains those modes and how they affect problem analysis.

System Execution Modes

Task Mode

MYVS has four execution modes:

@® Task mode

@® SRB mode

@® Physically disabled mode
@® Locked mode

Code always executes in one of these modes or, in certain cases, in a combination

of modes. For instance, code running in task or SRB mode can also be either
locally locked or physically disabled.

In general, the supervisor dispatches units of work according to the following
priority: SRB, locked, and task mode. Because a unit of work that is disabled is
already executing, disabled mode work is not dispatched as such.

When a unit of work is running, the locally locked ASCB is found through
PSALOCAL or PSAAOLD. If PSALOCAL =0 and PSACLHS indicates that a
local lock is held, then PSAAOLD points to the locked ASCB. If PSALOCAL”0
then PSALOCAL points to the CML locked address space.

In conjunction with the four execution modes, a unit of work can execute in cross
memory mode. Cross memory mode is defined by control registers 3 and 4 and
the PSW S-bit. The S-bit (bit 16 of the PSW) indicates whether current
addressability is to the primary address space (S-bit=0) or the secondary address
space (S-bit=1). The primary and secondary address spaces are defined by the
ASIDs in control registers 3 and 4. The home address space is the address space
in which the unit of work resides (indicated by PSAAOLD) when that unit of
work is executing. ‘When primary and secondary addressability is to the home
address space and the S-bit=0, then the unit of work is not in cross memory
mode.

Task mode describes code that is executing in the system because the dispatcher
selected work from the task control block (TCB) chain or from the interrupt
handler save area (if the interrupted TCB held a local lock). To start execution,
the dispatcher sets up the environment (registers, PSW, cross memory state,
PCLINK stack, and FRR stack) and then passes control to the code to be
executed. '

2-10 MVS Diagnostic Techniques

1. Information for an unlocked task dispatch environment is found as follows:

TCB+X‘30’ (TCBGRS) - General purpose registers.
TCB+X‘0’ (TCBRBP) - Address of the RB.
RB+X‘10’ (RBOPSW) - Old PSW.

RB-X‘20’ (RBXSB) - Address of the XSB.
XSB + X8’ (XSBXMCRS) - Cross memory status.
XSB+X‘18’ (XSBSTKE) - PCLINK stack header.
TCB +X‘E4’ (TCBNSSP) - Address of the NSSA.

NSSA +X°C’ (NSSAFRRS) - FRR stack for an enabled unlocked task mode FRR.

2. Information for a locally locked or a CML locked task dispatch environment
is found in the locally locked address space as follows:

® From the ASCB of the locally locked address space:
ASCB+X'E8’ (ASCBLOCI) Contains either the address of the ASCB holding this
ASCB’s local lock as a CML lock, or zero if this ASCB’s
local lock is held as a LOCAL lock.

ASCB +X‘EC’ (ASCBCMLH) Address of the TCB holding this ASCB’s local lock.

@® From the task holding a local lock:

TCB+XE8’ (TCBXLAS) Contains either the address of the ASCB of the locally
locked address space, or zero if holding the LOCAL lock.

ASCB+X‘6C’ (ASCBASXB) Address of the ASXB.
ASXB+X20’ (ASXBIHSA) Address of the IHSA.

IHSA +X‘38° (JHSAGPRS) General purpose registers.
THSA +X‘10° (IHSACPSW) PSW for the redispatched task.
THSA +X‘80° (IHSAXSB) Address of the XSB.

XSB+ X8’ (XSBXMCRS) Cross memory status.
XSB+X‘18’ (XSBSTKE) PCLINK stack header.

IHSA +X‘8C’ (IHSAFRRS) FRR stack.

Task mode is probably the most common execution mode. All programs given
control via ATTACH, LINK, and XCTL operate in this mode.

SRB Mode

SRB (service request block) mode describes code that is executing in the system
because the dispatcher found an SRB on one of the SRB queues. SRB set-up is
started by the SCHEDULE macro. SCHEDULE is a macro that places the
requestor-furnished SRB directly on the queue or, alternatively, calls a routine to
do so. SRBs are generally placed on the service management queue (SMQ),
unless both the SMQ and the service priority list (SPL) are empty, in which case
the SRB is placed on the SPL. The global services management queue (GSMQ) is
located at SVTGSMQ (SVT +X20%). It is also pointed to by CVTGSMQ

(CVT +X264"). The global service priority list (GSPL) is located at SVIGSPL
(SVT +X‘24’) and can also be found from CVTGSPL (CVT+X26C*). The SVT
local service management queue (LSMQ) is located at SVTLSMQ (SVT +X‘28"),
and can be found from CVTLSMQ (CVT +X°268’). Finally, there is one local

Section 2. Important Considerations Unique to MVS 2-11

Physically Disabled Mode

SMQ and one local SPL per address space. ASCBLSMQ is located at
ASCB+X‘D(’, and ASCBLSPL is located at ASCB+X‘D4’. An SRB scheduled
globally for a swapped-out address space is moved to one of the local queues.

SRBs are selected from the SPLs by the dispatcher in order to start execution.
The dispatcher loads registers 0, 1, 14, and 15 from information in the SRB and
builds the PSW. The PSW key and address are the responsibility of the scheduler
of the SRB and are specified in the SRB. SRB mode has the characteristics of
being enabled, supervisor state, key requested and non-preemptable.
Non-preemptable means that the interrupt handler should return control to the
interrupted service routine (code running under SRB mode). However, service
routines can be suspended because of a page fault or because a lock (cross
memory services or local) is unavailable.

SRB is interrupted. SRBs are non-preemptable. The registers, PSW, and cross
memory status are saved in the PSA during interrupt processing. When the

system has handled the interrupt, the SLIHs return to the FLIHs, the status is
restored from the PSA, and control is returned to the interrupted SRB routine.

SRB is suspended. SRBs that are suspended must have their status saved in a
unique area. The process that suspends an SRB is responsible for obtaining an
SSRB (suspended SRB) and XSB (extended status block), which will contain the
interrupted status used to reschedule the service routine once the reason for
suspension has been resolved. See “Locating Status Information in a Storage
Dump” later in this chapter for a detailed description of how to find these SSRBs
and XSBs.

Disabled mode is reserved for high-priority system code whose function is the
manipulation of critical system queues and data areas. It is usually combined
with supervisor state and key 0 in the PSW, and assures that the routine running
disabled is able to complete its function before losing control. It is restricted to
just a few modules in MVS (for example, interrupt handlers, the dispatcher, and
programs holding a global spin lock).

Physically disabled mode is used for one of two reasons:

1. To assure that data remains static while the code is referencing or updating
the data.

2. To assure that non-reentrant code does not lose control while performing
critical system functions. For example, IOS must run disabled while
enqueueing and dequeueing requests to UCBs and while updating UCBs at
the start and end of I/O operations.

In the MVS system, physical disablement on a system basis because of MP must
be accompanied by locking in order to guarantee serialization. MVS disabled
code is usually accompanied by either a global spin lock or code executing under
a “super bit.” The “super bits” are located in each processor's PSA (X228).
They are used primarily for recovery reasons - they allow RTM to recognize that
a disabled supervisory function was in control at the time of error even though
global locks were not held. This indicates that FRR recovery processing should
be initiated by RTM.

2-12 MVS Diagnostic Techniques

Locked Mode

Note that type 1 SVCs do not execute disabled in MVS. Instead they are entered
with the local lock. Thus they are considered to be task mode physically enabled,
holding the local lock.

Type 6 SVCs execute disabled. They are considered to be logical extensions of
the SVC FLIH and execute with all the restrictions (that is, cannot page fault,
etc.) of a disabled function.

Locked mode describes code executing in the system while owning a lock. (See
the chapter on “Locking” later in this section.) A lock can be requested during
any execution mode (SRB, TCB, physically disabled).

Status saving while in a locked mode requires unique considerations from the
system. An example is a program that invokes a type 1 SVC, such as EXCP or
WALIT, that executes in locked mode. When a type 1 SVC is enabled, it can be
interrupted. However, if the SVC is interrupted, the registers cannot be saved in
the TCB because it is being used to save registers active at the time of the SVC
request for return to the requestor. Therefore, status must be saved elsewhere.

Status saving while in locked mode is described under the previous topics “Task
Mode” and “SRB Mode.”

Determining Execution Mode From a Stand-alone Dump

LCCA Indicators

PSA Indicators

Knowing the system’s execution mode at the time a stand-alone dump was taken
is important in analyzing a disabled coded wait state or a loop. The following
areas may help determine the mode of execution:

There is an important dispatcher flag byte at LCCA+X‘21D’. For a global SRB,
the LCCAGSRB and LCCASRBM flags are set on. For a local SRB, only the
LCCASRBM flag is set on.

@ Super Bits - Flags in the supervisor control field located at PSA +X‘228’
(PSASUPER) indicate whether the dump was taken while in one of the
interrupt handlers or dispatcher. The dispatcher’s super bit is left on when
the wait task is dispatched.

® PSAMODE - PSA +X‘49F indicates the mode of the system:

X‘00° - Task mode

X‘04’ - SRB mode

X‘08" - Wait mode

X0C* - 1/O recursion mode

X‘10’ - Dispatcher mode

X‘20 - Non-preemptive bit (can be on with any of the above bits)

@® Recovery Stack - If the first two words of the RTM stack vector table

(PSA +X‘380) are not equal, then control is in one of the interrupt handlers
or the dispatcher. The dispatcher stack is current when the wait task is

Section 2. Important Considerations Unique to MVS 2-13

ASCB Indicators

X‘76’

dispatched. Compare the address at PSA + X‘380° with each entry in the
FRR stack vector table starting at PSA + X384’ to determine the owner of
the active stack. (See the chapter on “Use of Recovery Work Areas for
Problem Analysis” later in this section for stack vector table analysis.)

Current Work - PSA +X‘218’ contains the addresses of the new TCB, old
TCB, new ASCB and old ASCB consecutively in a four-word area. If the
system is in SRB mode, the address of the old TCB equals 0. If the addresses
of the new and old ASCBs are not equal, then the stand-alone dump was
taken between the time that an address space switch was requested and the
time that the dispatcher dispatched an address space, a global SRB, or the
wait task. In all cases, the old TCB and ASCB indicate the current work.

Locks - The PSA also contains the lock indicators. (See the chapter on
“Locking” later in this section for a description of how to determine the lock
mode.)

The following ASCB locations help determine execution mode:
X*26’ Set to X‘7FFF indicates that the address space is not on the dispatching queue.
X‘66-67" RCT flags.

X“72-73° Non-dispatchability flags.

Count of SRBs suspended in this address space.

X80’ Local lock (see “Locking” later in this section for how to interpret this field when "0).

X84 Address of the SRB suspend queue for local lock requestors.

XD0o Local service management queue (contains SRBs that have not been staged). When the
high-order bit of this field is 1, it indicates that a “user-ready” SYSEVENT is required to
swap in the address space.

XD# Local service priority list (contains SRBs that have been staged).

X‘D§’ Number of ready TCBs that do not require the local lock.

XDC Number of ready TCBs that require the local lock.

X‘E®’ Contains either the ASCB address of the address space holding this ASCB’s local lock as a

CML lock, or zero. If nonzero, then the lock is owned by a unit of work in the address
space pointed to by this field. If zero, then the lock is not owned or is owned by a unit of
work within this address space.

X‘EC Contains either the address of the suspended TCB or SSRB that is holding this ASCB’s

local lock, or zero. The high-order bit (bit 0) on indicates an SSRB.

Keep in mind that mixed modes frequently occur. For example, a local SRB can
obtain a lock, be interrupted, and the stand-alone dump taken while disabled in
the I/O supervisor. Depending on the system mode at the time of the interrupt, a
task’s status (registers, PSW, etc.) can be saved in one of several places.

2-14 MVS Diagnostic Techniques

~z=

Locating Status Information in a Storage Dump

Status information is located in a storage dump depending on the conditions
under which it was saved.

Task and SRB Mode Interruptions
Status saving is required whenever the code gives up control, whether voluntarily
or involuntarily. Initial status is saved by the first level interrupt handler (FLIH)
as follows:
SVC FLIH - Initially:
® Registers 7-9 saved at PSA +X22C’ (PSAGPREG)
® If an error condition is found, registers saved at LCCA + X380’
(LCCASGPR).
Then for all SVCs, status is saved in the TCB and the requestor’s RB and XSB:
® Registers 0-15 saved at TCB +X‘30° (TCBGRS)
® PSW saved at requestor’'s RB+X'10’ (RBOPSW)
® Cross memory status saved at XSB+X‘8” (XSBXMCRS)
@® PCLINK stack header saved at XSB+X‘18* (XSBSTKE).
Then for Type 2, 3, and 4 SVCs:
@® Registers 0-15 saved at SVRB +X20’ (RBGRSAVE).
1/O FLIH - Initially:
® Register 1 saved at PSA + X‘22C’ (PSAGPREG).
Then for unlocked tasks, status is saved in the TCB, RB, and XSB:
@® Registers 0-15 saved in TCB +X‘30° (TCBGRS)
@® PSW saved at RB+X‘10° (RBOPSW)
® Cross memory status saved at XSB +X‘8’ (XSBXMCRS).

For locally locked tasks, status is saved in the IHSA and XSB of the locked
address space:

@® Registers 0-15 saved at IHSA +X‘38° (IHSAGPRS)

® PSW saved at IHSA+X*'10° (IHSACPSW)

® Cross memory status saved at XSB+ X‘8’ (XSBXMCRS).

For SRBs and non-preemptive TCBs:

® Register 0-15 saved at PSA +X'678" (PSAGGRSYV)

® PSW saved at PSA +X‘300° (PSASVPSW)

® Cross memory status saved at PSA+X‘SA8 (PGSAGXMSV).
External FLIH - Initially:

® Registers 14 and 15 saved at PSA+X230’ (PSAGPREG).

Section 2. Important Considerations Unique to MVS ~ 2-15

Then for locally locked tasks, status is saved in the IHSA and XSB of the locked
address space:

® Registers 0-15 saved at IHSA +X‘38° (IHSAGPRS)
® PSW saved at IHSA +X‘10° JHSACPSW). ‘
@® Cross memory status saved at XSB+X‘8’ (XSBXMCRS).

For unlocked tasks, status is saved in the TCB, RB, and XSB:

® Registers 0-15 saved at TCB+X‘30° (TCBGRS)

@® PSW saved at RB+X°10° (RBOPSW)

® Cross memory status saved at XSB+ X8’ (XSBXMCRS).
For SRBs and non-preemptive TCBs:

® Registers 0-15 saved at PSA + X678’ (PSAGGRSYV)

@® PSW saved at PSA +X°240° (PSAEXPS1)

® Cross memory status saved at PSA+X‘5A8 (PSAGXMSV).

If first recursion:

@ Registers 0-15 saved at LCCA +X‘E0’ (LCCAXGR2)
® PSW saved at PSA +X248° (PSAEXPS2).

If second recursion:

@ Registers 0-15 saved at LCCA +X°120° (LCCAXGR3)
@® PSW remains at PSA +X‘18’ (FLCEOPSW).

Program check - Initially:

@ Registers saved at LCCA +X‘08’ (LCCAPGR1) for recursive program
interruptions.

® Registers saved at LCCA +X‘48’ (LCCAPGR?2) for nonrecursive program
interruptions.

@ Registers saved at LCCA +X‘A0’ (LCCAPGR3) for monitor call interrupts
that occur while processing a page fault

@® PSW saved at PSA + X400’ (PSAPCPSW).
For page faults that require I/O the following occurs:
® Unlocked tasks:

— Registers moved to TCB
— PSW moved to RB

2-16 MVS Diagnostic Techniques

® Locked tasks:

— Registers moved to ITHSA
— PSW moved to IHSA

® SRBs:

— Are suspended: see “SRB Suspension” later in this chapter.

Locally Locked Task Suspension

SRB Suspension

Status saving is the same as for locked task interruptions (described earlier under
“I/O FLIH") except that IHSA of the locally locked address space also contains
the floating point registers, the FRR stacks, and the PSW. The ASCBLOCK
field is updated to contain X‘7FFFFFFF’. The XSB contains cross memory
status, which includes control registers 3 and 4.

An SRB can be suspended in four cases. If a service routine encounters a page
fault and a page-in is required, then the SRB routine must give up control. In
that event, an SSRB (suspended SRB) must be obtained and the status saved in
that control block. Then the SSRB is queued from the page control block (PCB)
in the real storage manager. When the paging I/O completes, the SSRB is
scheduled to the local service priority list (LSPL) where it is found later by the
dispatcher. The SSRB must be obtained because the original SRB was not
retained after the dispatch. Status saved in an SSRB must include the current.
FRR stack.

In the second case, a service routine requests a page fix and a page-in is required.
This suspension is handled as in case one, except that the SSRB is queued from
the page control block root (PCRB).

The third case of SRB suspension is an unconditional request for-an unavailable
lock. Status saving for SRB suspension for a lock differs from the page fault
where the SSRB is queued and where control returns after the redispatch of the
SSRB. For a request for the LOCAL lock when it is unavailable, the SSRB is
queued from the ASCB. For a request for an unavailable CML lock, the SSRB is
queued from the ASCB whose lock is requested. For a request for an unavailable
cross memory services lock, the SSRB is queued on that cross memory service
lock’s suspend queue. (For more detail see the chapter on “Locking” later in this
section.) In the cross memory services case of SRB suspension, resumption is at
the appropriate entry in the lock manager to try to acquire the lock. Upon
release of the cross memory services lock by the holder, any SSRBs are
rescheduled. Upén release of the local lock by the holder, and if all suspended
elements are for LOCAL lock requests rather than CML lock requests, then the
first SSRB that was suspended is given the local lock and rescheduled. The SRB
is given control at the next sequential instruction following the lock manager call.
If any one of the elements on the local lock suspend queue is suspended as a
result of a CML lock request, then all queue elements are dequeued and -
rescheduled to retry the lock request.

The fourth case of SRB suspension is SMF suspension. See the topic “SMF
Suspension” later in this chapter for details of SMF suspension.

Section 2. Important Considerations Unique to MVS 2-17

Suspend SRB queues can be summarized:
Page Faults

® PCB is chained from PVTCIOQF (at PVT +X‘75C’) for a common area page
and from RSMLIOQ (at RSMHD +X‘1C’) for a private area page.

® PCB+X‘1C points to SSRB.

Page Fix

@® PCB is chained as for page fault.

® PCB+X‘09 points to PCBR.

@® PCBR+X‘18 points to SSRB.

Local Lock Requests

@® SSRB is queued from ASCBLSQH(ASCB +X‘84).

CML Lock Requests

@® SSRB is queued from ASCBLSQH of the ASCB whose lock is requested.

Cross Memory Services Lock Requests

@® The SSRB is queued from a cross memory services lock’s suspend queue in
IEAVESLA as shown:

2-18 MVS Diagnostic Techniques

SMF Sauspension

PSALITA
(PSA+X'2FC")

IEAVESLA
DISP LOCK
C'DISP’

/ C'SALC’
SRM LOCK
/

+

LIT (lock interface table)
*0 | 4 pisP LoCK

).
A\
b}

+180 | A saLioc Lock

A%}

C'SRM’
SMF CMS LOCK

SMF CMS
SUSPEND QUEUE

HIGHEST PRIORITY
ASCB SUSPENDED

C' CSMF*

ENQ/DEQ
CMS LOCK

ENQ/DEQ CMS
SUSPEND QUEUE

HIGHEST PRIORITY
ASCB SUSPENDED

C'CEDQ’

GENERAL
CMS LOCK

GENERAL CMS
SUSPEND QUEUE

HIGHEST PRIORITY
ASCB SUSPENDED

22
D))

+1E0 [A srm Lock

L
"3
L
v
s

22
AN
22

+0
+8
10
18
1C
+20

+210

'GENERAL
CMS LOCK

+24
+28

b}
ASY
2

+264 ENQ/DEQ

CMS LOCK

*2hC SMF CMS /

LOCK

2
)

+3C

+40

+44

C'CMS*

A task or SRB can be suspended if it tries to write a record to SMF (via SVC 83,
or branch entry to the SVC routine) and there are no SMF buffers available.
Normally, when tasks and SRBs pass records to SMF, SMF places them into
buffers located in CSA. When a buffer is full, SMF schedules an SRB to the
master scheduler address space which writes the buffers to the SMF data set.

If records are passed to SMF faster than they can be written to the SMF data set,
the buffers will fill up. When this happens, the next unit of work which tries to
write a record is suspended by SMF until a buffer is available. Other units of
work which attempt to write SMF records will be suspended when they attempt to
obtain the CMSSMF lock. Note that the master scheduler address space is not
suspended by SMF. If the master scheduler address space attempts to write a
record when the buffers are full, SMF queues the records in a different chain.

When SMF suspends a unit of work, SMF creates an SSB (SMF suspend block),

The SSB contains information needed to reset the unit of work when buffers are
available.

Section 2. Important Considerations Unique to MVS 2-19

Field CVTSMCA (CVT +X‘C4’) points to the SMCA. Field SMCASSB

(SMCA +X‘BC’) points to the SSB. The field at SSB+ X‘8C’ points to the SSRB
created for the suspended task or SRB. The field at SSB+ X‘90° points to the
associated RB if a TCB was suspended. (This field is zero if an SRB was
suspended.) The field at SSB+X‘98’ points to the ASCB for the suspended work.

Normally, work is suspended only for a short time. If the address space holding
the CMSSMF lock is suspended (indicated by ASCBLOCK = X‘7FFFFFFF’, and
SMCASSB is not X‘00000000’), other address spaces might get backed up on the
CMSSMF lock.

2-20 MVS Diagnostic Techniqués

Locking

Categories of Locks

Serialization of resources to provide data integrity and protection is a necessary
function of operating systems. In pre-MVS systems, resource serialization was
accomplished by physical disablement and by the ENQ/DEQ component.
Physical disablement controls only one processor and thus, in MP systems, does
not guarantee serialization.

To achieve these requirements the locking facility provides:

@ Serialization in a tightly-coupled MP system
@ Serialization across address spaces for common resources
@ Serialization within address spaces

A lock manager function acquires and maintains all locks. Use of the lock
manager is restricted to key 0 programs running in supervisor state, which
prevents unauthorized problem programs from interfering with the serialization
process. The lock manager is located in the nucleus in CSECT IEAVELK.

MYVS locks are divided into two categories:

® Global Locks, which protect serially reusable resources related to more than
one address space. These resources provide system-wide services or use
control information in the common area. Examples of resources protected by
global locks are UCBs and RSM control blocks.

® Local Locks, which protect serially reusable resources assigned to a particular
address space. When a task or SRB holds a local lock, the queues and
control blocks serialized by that lock can be used only by the task or SRB
holding the lock.

Figure 2-1 defines the MVS locks. All MVS locks, except the LOCAL and CML
locks, are global locks.

Section 2. Important Considerations Unique to MVS 2-21

Name Description

DISP Global dispatcher lock - serializes functions on a global level.
ASM Auxiliary storage management lock - serializes the auxiliary storage resources.
SALLOC Space allocation lock - serializes real storage management (RSM) resources, virtual

storage management (VSM) global resources, and some auxiliary storage
management (ASM) resources.

IOSYNCH 1/0 supervisor synchronization lock - serializes the IOS purge function and other
IOS resources..

IOSCAT IOS channel availability table lock - serializes the IOS processor-related save area.

I0SUCB IOS unit control block lock - serializes access and updates to the unit control
blocks. There is one lock per UCB.

IOSLCH 108 logical channel queue lock - serializes access and updates to the IOS logical
chanpel queues. There is one lock per channel queue.

SRM System resources manager lock - serializes use of the SRM control blocks and
associated data.

CMSSMF SMF cross memory services lock - serialize SMF functions and use of SMF control
blocks.

CMSEQDQ ENQ/DEQ cross memory services lock - serializes ENQ/DEQ functions and use of
ENQ/DEQ control blocks.

CMS Cross memory services lock - serializes on more than one address space where this

serialization is not provided by one or more of the other global locks. Provides
global serialization when enablement is required.

CML Local storage lock - serializes functions and storage within an address space other
than the home address space. There is one cross memory local (CML) lock per
address space.

LOCAL Local storage lock - serializes functions and storage within a local address space.
There is one LOCAL lock per address space.

Note: Locks are listed in hierarchical order, with DISP being the highest lock in the hierarchy. An
exception is the cross-memory services locks (CMSSMF, CMSEQDQ, and CMS) which are equal to
each other in the hierarchy. Also, the LOCAL and CML locks are equal to each other in the
hierarchy.

Figure 2-1. Definition and Hierarchy of MVS Locks

Types of Locks

Two types of locks exist. The type determines what happens when a processor
makes an unconditional request for a lock that is unavailable. The types are:

@ Spin locks - prevent the requesting processor from doing any work until the
lock is released by the owning processor. The requesting processor enters a
loop in the lock manager (IEAVELK) that keeps testing the lock until the
owning processor releases it. As soon as the resource is free, the spinning
processor can obtain the resource and continue processing.

@ Suspend locks - prevent the requesting unit of work from doing work until the
lock is available, but allow the processor to continue doing other work. The
request is queued by suspending the requesting task or SRB, and the
requesting processor is dispatched to do other work. Upon release of the

2-22 MVS Diagnostic Techniques

Locking Hierarchy

lock, all of the queued requesters are made dispatchable to retry the lock
request, except in the case of the local lock. Upon release of the local lock,
the first SSRB will be given the lock and rescheduled; unless there are CML
lock requesters on the suspend queue, in which case, all requesters are
rescheduled to retry the lock request.

Combining categories and types of locks provide the following:

Global Spin Lock, which is used primarily to provide serialization in MP systems.
While code is executing under a global spin lock, it is physically disabled for 1/O
and external interruptions. An unconditional request for an unavailable lock will
cause the processor to spin in the lock manager. Upon release of the global spin
lock, the looping processor acquires ownership and returns control to the
requestor.

The global spin locks supported by MVS are: DISP, SALLOC, ASM, IOSYNCH,
IOSCAT, IOSUCB, IOSLCH, and SRM.

Local Suspend Lock, which is used to serialize resources within an address space.
There is one local suspend lock per address space and it is located in the ASCB.
An unconditional request for the LOCAL or CML lock when it is not available
causes the suspension of the requesting task or SRB until the lock is released.

Global Suspend Lock, which is used to serialize resources that are commonly
addressable from any address space. The requestor remains physically enabled
while owning the lock. The general cross memory services lock (CMS), the
ENQ/DEQ cross memory services lock (CMSEQDQ), and the SMF cross memory
services lock (CMSSMF) are the only supported global suspend locks. A local
lock must be held in order to obtain a cross memory services lock. An
unconditional request for any cross memory services lock when it is unavailable
causes suspension of the requesting task or SRB.

To prevent a deadlock between processors, MVS locks are arranged in a
hierarchy, and a processor may unconditionally request only locks higher in the
hierarchy than locks that it currently holds. The locking hierarchy is the order in
which the locks are listed in Figure 2-1 with DISP being the highest lock in the
hierarchy.

Some locks are single system locks (for example, DISP), and some locks are
multiple locks in which there is more than one lock within the lock level (for
example, IOSUCB). For those global lock levels that have more than one lock, a
processor may only hold one lock of each level. For example, if a processor holds
an IOSUCB lock, it may not request a different IOSUCB lock.

A unit of work can hold only one local lock at a time. A unit of work cannot
hold both its own LOCAL lock and CML lock of another address space. Note
that the CML lock of an address space, obtained from another address space, is
the same as the LOCAL lock of the address space.

A local lock must be held by the caller when requesting any cross memory

services lock. Also, a local lock cannot be released while holding any cross
memory services lock.

Section 2. Important Considerations Unique to MVS ~ 2-23

It is not necessary to obtain all locks in the hierarchy ﬁp to the highest lock
needed. Only the needed locks have to be obtained, but in hierarchical sequence.

The caller may obtain the three cross memory services locks (CMSSMF,
CMSEQDQ, and CMS) only by requesting all of them in a single lock manager
request. If a caller holds any one and requests another, an abend will result.

 Determining Which Locks Are Held On a Processor

To diagnose certain MVS problems, such as wait states and performance
degradation, it is necessary to determine the lock status of the system as well as
the back-up of work caused by lock contention.

Locks held by a particular processor are indicated in the processors PSA (prefixed
save area). There is a bit map in the PSA which the lock manager checks when a
request is made for a lock. This map is called PSACLHS (PSA current locks held
string). Each bit corresponds to a particular lock in the hierarchy. The bits are
in the same order as the hierarchy so that the low-order bit corresponds to the
lowest lock in the lock hierarchy. When a bit is on, it means that lock is held by
the current unit of work executing on the corresponding processor. Figure 2-2
shows the bit assignments.

When the local lock bit is on in the PSACLHS, either the LOCAL lock or a
CML lock is held. To determine which lock is held by the current unit of work,
check the contents of PSALOCAL. If PSALOCAL is zero, then the LOCAL lock
of the home address space (pointed to by PSAAOLD) is held. If PSALOCAL is
nonzero, the local lock of the address space pointed to by PSALOCAL is held as
a CML lock.

(Note: When a holder of the local lock or a cross memory services lock is
suspended, the corresponding bit in the PSACLHS field is copied to the
ASCBHLHI and the PSACLHS is set to 0 even though the lock is still held.)

PSACLHS (location X‘2F8’ in PSA)

2F8 2F9 2FA 2FB

00 00 10 00 DISP

00 00 08 00 ASM

00 00 04 00 SALLOC

- 00 00 02 00 IOSYNCH

00 00 01 00 I0SCAT

00 00 00 80 10SUCB

00 00 00 40 IOSLCH

00 00 00 20 Reserved

00 00 00 10 Reserved

00 00 00 08 Reserved

00 00 00 04 SRM

00 00 00 02 CMS/CMSEQDQ/
CMSSMF

00 00 00 01 LOCAL/CML

Figure 2-2. Bit Map to Show Locks Held on a Processor

2-24 MVS Diagnostic Techniques

Content of Lockwords

Each lock is represented by a lockword that defines the availability and status of
the lock. The contents of lockwords differ according to the category and type of
lock they describe:

Global Spin Lockword

X‘00000000° - Lock is available.

@® X‘0000004n’ - Lock is held on processor n.

Global Suspend Lockword (Cross Memory Services Locks)

® X‘00000000° - Lock is available.

® X‘00xxxxxx’ - ASCB address of the locally locked address space. If an

address space holds a cross memory services lock but is interrupted or
suspended, ASCBHLHI of the locally locked address space will be set and the
cross memory services lock-held bit in PSACLHS is turned off until the
address space is redispatched. The ASCB address remains in the cross
memory services lock until the lock is released.

Local Suspend Lockword (Local Lock)

X“00000000” - Lock is available.
X‘0000004n’ - Lock is held on processor n.

X‘4FFFFFFF’ - Task holding a CML lock is now dispatchable or an SSRB
holding either the LOCAL or a CML lock is now dispatchable.

X“IFFFFFFF’ - Task or SRB suspended while holding the lock. The reason
for suspension is:

— A page fault.
— Waiting for a synchronous page fix to complete.

— An unconditional request for a cross memory services lock while it was
unavailable.

— SMF suspension.
— SUSPEND =YES was specified on the SDUMP macro.

X‘FFFFFFFF’ - Task holding the LOCAL lock was suspended or interrupted
but is now dispatchable. The reasons for this state are:

— A page fault or page fix has been resolved for a locked task.

— The cross memory services lock, at one time unavailable, is now available.
— A task holding the LOCAL lock has been preempted. ‘

Section 2. Important Considerations Unique to MVS ~ 2-25

How To Find Lockwords

Lockwords for single system locks are located in a system lock area called
IEAVESLA. PSA+X2FC’, PSALITA, points to the lock interface table (LIT);
LIT+0 points to IEAVESLA. Lockwords for single system locks can also be

located at the label IEAVESLA in a NUCMAP.

Lockwords for multiple system locks are supplied by the requestor of the lock.
The addresses of these are placed in the PSA for each processor at locations
X284 to X298°.

The locations of lockwords are shown in Figure 2-3. Note that all lockwords
must reside in fixed common storage.

Location of
Address of Lock |
Lock Name | Category | Type Number of Locks | Location of Lock (when actually held);
DISP Global Spin 1 IEAVESLA +0
ASM Global Spin 1 per ASID ASMHD +X‘14’ PSA +X284’
SALLOC Global Spin 1 IEAVESLA +8
IOSYNCH | Global Spin 1 IOCOM +X‘38 PSA +X28C’
IOSCAT Global Spin 1 I0COM + X3¢’ PSA +X290°
I0SUCB Global Spin 1 per UCB UCB-8 PSA +X294°
IOSLCH Global Spin 1 per LCH LCH+8 PSA +X 298
SRM Global Spin 1 IEAVESLA +X'10°
CMSSMF Global Suspend | 1 IEAVESLA +X‘18
CMSEQDQ | Global Suspend | 1 IEAVESLA +X28
CMS Global Suspend | 1 IEAVESLA +X‘38
CML Local Suspend | 1 per address ASCB+X‘80° PSA + 2EC’
space
LOCAL Local. Suspend | 1 per address ASCB + X80’
space
*PSA +X‘2FC’ points to the lock interface table; the lock interfacetable +0 points to IEAVESLA.

Figure 2-3.

Classification and Location of Locks

Results of Requests For Unavailable Locks

The results of requests for unavailable locks are described in the following topics.

Global Spin Locks

_ An unconditional request for an unavailable global spin lock results in a disabled
loop in the lock manager (IEAVELK). While in the disabled spin loop, the lock
manager will periodically enable for EMS or MFA interrupts. The lock manager
spins until the global lock is released by the owning processor. In this case,
register 11 contains the address of the requested lock and PSALKR14 contains
the address of the requestor.

If the lock manager spins for an excessive period of time, then message IEE331A
is issued to the operator when the lock manager invokes the excessive spin
notification routine, IEEVEXSN. If the operator does not initiate an ACR
condition, the lock manager continues to spin until the lock becomes available.

2-26 MVS Diagnostic Techniques

Local Locks

Tasks requesting an unavailable LOCAL lock are suspended. In each case, the
request block old PSW (RBOPSW) is set to re-enter the lock manager, and the
registers are saved in the TCB. A flag is set in the TCB (TCBLLREQ) to indicate
to the dispatcher that the task should not be dispatched until the LOCAL lock is
available.

SRBs requesting an unavailable LOCAL lock are suspended. In each case, the
lock manager calls the STOP/RESET service {EAVESRT) to have an SSRB
obtained and status saved. The lock manager then queues the SSRB on the
LOCAL lock suspend queue.

If the SRB was scheduled with the LOCAL lock option, the LOCAL lock will be
obtained for the SRB by the dispatcher. The SRB will get control with the
LOCAL lock held. If the LOCAL lock is unavailable, the dispatcher will delay
the SRB, that is, the SRB will be queued to the LOCAL lock suspend queue and
will not be dispatched until the LOCAL lock is available.

Tasks that request an unavailable CML lock are stopped via a call by the lock
manager to the STOP/RESET service (IEAVESRT). The registers, PSW, and
cross memory status are saved by IEAVESRT in the TCB, RB, and XSB. The
lock manager obtains an SRB, initializes it to run in the requester’s address space,
and queues it to the local lock suspend queue header (ASCBLSQH) of the address
space whose CML lock was requested. This SRB has the SRBCMLRQ bit set on
to indicate that a CML request was made for this ASCB’s local lock.

SRBs that request an unavailable CML lock are suspended. The lock manager
calls the STOP/RESET service (IEAVESRT) to have an SSRB obtained and
status saved. The registers, PSW, and cross memory status are saved in this
SSRB and its XSB. The lock manager then queues the SSRB to the CML address
space’s local lock suspend queue header (ASCBLSQH). This SSRB has the
SRBCMLRQ bit set on to indicate that this address space’s lock was requested as
a CML lock.

Notes:

1. The FRR stack can be used to help recreate the process leading up to the point
of suspension by interpreting the recovery routines that are currently active.
SSRBs for local lock suspensions can be found by inspecting the local lock
suspend queue anchored in the ASCB from field ASCBLSQH (ASCB+X'84°).
SSRBs are obtained from SQA (SP 245). SSRBs and delayed SRBs on the
local lock suspend queue are chained together at SRB+ X04°.

2. When interrogating a given address space, if the ASCBLOCK field is not
X00000000°, check the ASCBLSQH to determine the SRB work being delayed
in this address space because of lock contention.

3. If the ASCBLOCK field is not X‘00000000’, check the ASCBLOCI field

(ASCB+X‘E8’). If ASCBLOCI is X‘00000000°, then the address space’s lock
is held as a LOCAL lock and not a CML lock.

Section 2. Important Considerations Unique to MVS ~ 2-27

4. If the ASCBLOCK field is not X‘00000000° and not a processor ID, then the
ASCBCMLH field (ASCB+ X'EC’) contains the address of the unit of work
that was suspended while holding the address space’s local lock.

For a unit of work that is suspended and holds the address space’s local lock as
a CML lock, the ASCBLOCI field (ASCB+ X'ES8’) points to the ASCB where
the lock owner resides, and the ASCBCMLH field (ASCB+ X'EC’) points to
the owning unit of work. When the high-order bit of ASCBCMLH is on, the
unit of work is an SSRB.

When the local lock is released, the suspend queue is scanned until the first
suspended (oldest) element is found or until an element representing a CML
lock request is found. If no requesters for a CML lock exist on the suspend
queue, the first suspended (oldest) element is dequeued, the ready-to-run ID is
placed in the lockword (ASCBLOCK = X4FFFFFFF’), the SRB/SSRB is given
the lock by turning on the SRB local lock held flag (SRBLLHLD), and the
SRB is scheduled locally. If a requester for the CML lock exists on the suspend
queue, then all suspended elements (SRBs and SSRBs) are dequeued and
rescheduled so that the obtain request is retried. The SRBs on the suspend
queue that represent the CML lock requester cause the task to be resumed so
that the lock request is retried.

Cross Memory Services Locks

Tasks unconditionally requesting a cross memory services lock when it is
unavailable are suspended. For each task:

@ GPRs are saved in the IHSA which is pointed to from ASXB+X‘20’ of the
locally locked address space.

@ The resume PSW in the IHSA is set to re-enter the lock manager.
@ The cross memory status is saved in the XSB pointed to by IHSA +X‘80°.

@ The locally locked ASCB is queued on that cross memory services lock’s
suspend queue. The suspend queue header for the SMF cross memory
services lock follows the lockword in CSECT IEAVESLA at offset X‘1C’, the
suspend queue header for the ENQ/DEQ cross memory services lock follows
the lockword at offset X‘2C°, and the suspend queue header for the general
cross memory services lock follows the lockword at offset X‘3C’. Note: When
a NUCMATP is not available, locate the IEAVESLA through PSA + X 2FC’
which contains the address of the lock interface table, the lock interface
table + X‘0’ contains the address of IEAVESLA.

The tasks suspended on a cross memory services lock suspend queue are
represented by the ASCBs whose local locks they own. For example, if task A in
address space A owned the CML lock of address space B and was suspended on
the cross memory services lock suspend queue, then the cross memory services
suspend queue header would contain the ASCB address of address space B. The
ASCBLOCI field of address space B would point to address space A and the
ASCBCMLH field of address space B would point to task A. The ASCBs are
chained together at field ASCBCMSF (forward pointer).

2-28 MVS Diagnostic Techniques

Note: When an ASCB is on the cross memory services lock suspend queue, the
local lock (ASCBLOCK) contains X“7/FFFFFFF,

When the cross memory services lock is released, the ASCBLOCK field of the
locally locked address spaces on the suspend queue is changed to one of the
following values:

® X‘FFFFFFFF’ - the LOCAL lock was held by a task that is now ready to
run.

® X‘4FFFFFFF’ - the lock was held by either (1) a task holding the lock as a
CML lock and the task is now ready to run, or (2) an SSRB holding a CML
or LOCAL lock and the SSRB is now ready to run.

SRBs unconditionally requesting a cross memory services lock when it is
unavailable, are suspended. For each SRB, the lock manager calls the
STOP/RESET service (IEAVESRT) which:

® Obtains an SSRB from SQA

® Saves GPRs and the FRR stack in the SSRB

@ Sets the local lock (ASCBLOCK) to X‘7FFFFFFF’
@ Saves cross memory status in the XSB of the SSRB.

Then the lock manager chains the SSRB on that cross memory services
lock-suspend queue located in IEAVESLA.

The offsets for the cross memory services lock suspend queues are:

® CMSSMF - IEAVESLA +X'1C
® CMSEQDQ - IEAVESLA +X2C’
® general - IEAVESLA +X3C

There is one suspend queue per cross memory services lock and the requestor is
chained on the queue associated with the unavailable lock.

The SSRBs and ASCBs are chained on the respective suspend queues using either
ASCBCMSF (ASCB +X‘C’) or SRBFLNK (SSRB +X‘4’). There are no
backward pointers. . Thus the cross memory services lock suspend queues could
appear as shown in Figure 2-4.

Section 2. Important Considerations Unique to MVS ~2-29

PSALITA
(PSA + X*'2FC")

LIT (lock interface table)
4 bisp Lock >

$ satLoc Lock @)

fsruiock >

GENERAL | 5
CMS LOCK ®

ENQ/DEQ >
CMS LOCK @

SMF CMS |5
LOCK ®

IEAVESLA

DISP LOCK
'DISP' ASCB SSRB

| SALLOC LOCK /+4
"SALC' +C]

SRM LOCK

'SRM'*

SMF
CMS LOCK SSRB . SSRB ASCB

R

SMF CMS - " "
SUSPEND QUEUE +4 i /+4

' CSMF*

ENQ/DEQ
CMS LOCK

ENQ/DEQ CMS
SUSPEND QUEUE SSRB _ ASCB ASCB

1

"CEDQ"' 7 >
GENERAL +4]

7

CMS LOCK +C] +C

GENERAL CMS

SUSPEND QUEUE

'CMS’

When the cross memory services lock is released,
all the SRBs suspended on this lock are
rescheduled locally.

Figure 2-4. Cross Memory Services Lock Suspend Queues

2-30 MVS Diagnostic Techniques

Intersect

Locking serializes resources between routines. The intersect function is used in
conjunction with locking to serialize dispatcher control blocks between specific
routines and the dispatcher.

There are two levels of intersection:

1. Global intersect, which serializes the ASCB dispatching queue and address
space dispatchability flags, first requires that the dispatcher lock be held (the
lock serializes between routines, the intersect serializes only with the
dispatcher).

2. Local intersect, which serializes the TCB dispatching queue and TCB
dispatchability flags, first requires that the local lock of the target address
space be held.

Note: The lock associated with each intersect must be obtained before the
intersect is requested and the intersect must be reset before releasing the lock to
ensure proper serialization.

Determining if Intersects are Held on a Processor

Intersect contention can exist just like locking contention. To check for this
condition it is necessary to know where the intersect words are and what they
should look like. The global intersect word is in the SVT. PSA +X‘B4C’
(PSASVT) contains the address of the SVT. If any bits are on in the SVTDSREQ
word (SVT +X*'1C’), then the global intersect is held. Refer to the SVT mapping
in the Debugging Handbook to determine who holds the intersect.

A local intersect word exists at X*B4’ into each ASCB. Bits in this word are

defined in the same way as the global intersect. Refer to the ASCB mapping in
the Debugging Handbook to determine who holds the local intersect.

The dispatcher has a four-word field of its own which it sets when processing.
The dispatcher active field (SVTDACTV) is at offset X‘6C” into the SVT. The
first byte of the field corresponds to CPUO, the second to CPU1, and so forth.
Each byte should have one of the following settings:

@® X‘00° - Dispatcher not active on the corresponding processor

® Logical CPUID with high order bit off - Dispatcher is executing on this
processor '

® Logical CPUID with high order bit on - Dispatcher is in recursion mode on
this processor.

Section 2. Important Considerations Unique to MVS ~ 2-31

Requesting the Intersect

A routine requests the intersect via the INTSECT macro. The macro turns on the
requestor’s intersect bit, then, if the dispatcher active field is not zero, the macro
passes control to the intersect service routine (IEAVEINT) which spins, waiting
for all dispatcher active bytes to go to zero.

This intersect spin can be detected by examining the registers:

R15 - address of IEAVEINT

R1 - address of SVT

R2 - physical CPU ID of processor on which dispatcher is active
R3 - contents of dispatcher active byte

R14 - return address of caller

Ensure that the contents of R3 are valid (that is, that SVTDACTYV has not been
overlaid). If the caller was disabled, then intersect would set LCCASPNI1 with its
spin bit (X‘02’).

2-32 MVS Diagnostic Techniques

Use of Recovery Work Areas For Problem Analysis

Recovery processing enhances the reliability of the MVS operating system. When
an error occurs, “active recovery” is given control, one routine at a time, in an
attempt to isolate the error to a unit of work. Recovery terminates that work
instead of the entire operating system and then continues normal system
operation. This process occurs whether the error is in the system or an
application.

Because system operation is not halted at the point of error, the resulting storage
dumps represent system status sometime after the original error(s). Often the
system can encounter numerous errors, fully recover, and continue. At other
times it can be a recovery failure that causes the system to cease operations. In
either case, the obvious problem and its associated tracks have been covered over.
This makes the back-tracking process extremely difficult.

However, experience has shown that although recovery causes this difficulty, it
can very often provide valuable clues for the problem analyst. This chapter
points out important recovery areas and explains how they can be used in the
debugging process.

CAUTION: Recovery is not designed to aid the problem solver; it is designed as a
means by which the system can prevent total loss. Because recovery maintains
system status information, its work areas often provide the same information to
the analyst. However, once recovery is invoked, the system is in a tenuous
position; it is attempting to maintain operation despite an error. It is possible
that the recovery process itself can encounter the same error or bad data. Most
often this is not the case; the system does recover and continues normal operation.
But the possibility of recursive errors in the recovery process does exist, in which
case the new error becomes of prime consideration. If you are dependent on
internal recovery control blocks and queues, be aware of this possibility. Don’t
get caught following a chain of blocks for some subsequent or unrelated problem
that will hinder your own error-finding efforts. This danger is most prevalent
when you use recovery work areas without following the normal work-related
debugging techniques. Do not immediately use the RTM2 work area without
analyzing the Task/RB structure and associated indicators.

The following work areas should be used carefully and only after traditional
techniques have failed. The exceptions to this rule are:

@ When the dump is taken as a result of a trap (for example, SLIP) and the
analyst understands that the current status at the time of error can only be
found by using the recovery save areas.

® When there are problems in the recovery process itself.

In other instances, be aware of the total environment so that what you discover in

these areas bears some relationship to the problem you are analyzing. These
areas are of great importance if used with understanding.

Section 2. Important Considerations Unique to MVS 2-33

'SYS1.LOGREC Analysis

For effective problem analysis, use the information in SYS1.LOGREC to
understand the error history of the system. Because of recovery processing, MVS
does not halt operation when an error occurs. Dump analysis must be performed
using a snapshot of storage as it appears sometime after the error and recovery
have occurred; therefore, some type of recording mechanism is needed in order to
trace the error. ‘

The entries in SYS1.LOGREC provide information about a potential problem.
This is the most informative data about the error that you receive. The
SYS1.LOGREC entries serve as a diagnostic trace of the problem encountered by
the operating system; they usually provide a history of events leading up to a
system incident. Use this information to understand system problems, the
recovery actions that are taken as a result of these problems, and the outcome of
the recovery attempt. The entries in SYSI.LOGREC are described in SPL:
SYS1.LOGREC Error Recording.

Often more than one record exists for the same software incident. You must be
able to relate these records in the proper sequence and understand the progress of
recovery the various records indicate. Knowing the errors that have occurred
since the last IPL helps you understand the system behavior and explains your
findings at dump analysis time.

In stand-alone dump analysis you should always inspect the in-storage LOGREC
buffer for entries that recovery routines have'made but which were not written to
the SYS1.LOGREC data set because of a system problem. Very often it is these
records that are the key to the problem solution. (There is a discussion of
LOGREC buffer analysis later in this chapter.)

Information that is written by recovery routines-to the SYSI.LOGREC data set is
used primarily to monitor incidents both when retry is attempted and when
percolation to the next recovery routine takes place.

Generally, functional recovery routines (FRRs) will write a SYSI.LOGREC
record (via RECORD=YES on the SETRP macro) when they are entered as the
first recovery routine for the abend. The default for ESTAE routines, however, is
to not write a record. This means that unless the ESTAE routine specifically
requests recording, no SYS1.LOGREC record will be built.

Listing the SYS1.LOGREC Data Set

To get a listing of the SYS1.LOGREC data set, use EREP as described in
Environment Record Editing and Printing (EREP) User’s Guide. (The JCL
required to print the SYS1.LOGREC data set is contained in the chapter
“Additional Data Gathering” later in this section. It is important to obtain both
an event history and a full report. The event history (EVENT =Y parameter on .
the EXEC statement) prints an abstract for all records in chronological order.
This allows the analyst to recreate the sequence of events.) EREP formats the
standard area, the first X‘194° bytes of each SDWA, into a series of titles, each
followed by pertinent data found in the standard area. EREP will put the
variable area, the last X‘'FF bytes of each SDWA, after the standard area. This
variable recording area (SDWAVRA) is used by the recovery routines to construct
messages and to provide data that often contains valuable debugging information.

2-34 MVS Diagnostic Techniques

SDWAVRA Key-Length-Data Format

The SDWA variable recording area (SDWAVRA) can optionally be mapped in a
key-length-data format. Some MVS recovery routines use this format to provide
standardized diagnostic information for software incidents. This formatted
information allows you to more easily screen duplicate errors.

Constants for the key field have been defined to describe data such as:
component ID, subcomponent name, module ID, assembly date, return and/or
reason codes, parameter lists, registers, and control block information. For
example, a key of X‘10” indicates a recovery routine parameter area. The
SDWAVRAM bit (in the fixed portion of the SDWA) indicates that the
SDWAVRA has been mapped in the key-length-data format as described by the
THAVRA mapping macro. (SDWAVRAM is the third bit in field SDWADPVA
at X‘192’.) Refer to the Debugging Handbook, for the format of the SDWA,
which includes the SDWAVRA, and the format of the VRAMAP, which includes
a list of key values.

Some MVS components have assigned specific meanings to key fields for use by
their recovery routines. Refer to the module listings of the individual recovery
routines that use the key-length-data format for detailed information. “Section 5:
Component Analysis” also has details about key fields for some components.

Figure 2-5 shows an example of the SDWAVRA formatted in the key-length-data
format. The example starts at offset X‘190” in a hexadecimal dump of the

SDWA.
a bec d e f g h i
— T —— A Q
0190 006C2027 0105E2C3 F1C2F603 07D1C2C2
ik b
pE— D ™~
01A0 F1F1F2F6 EEOACGDG D6E3D7D9 C9DSE3E2
mn o
’_—N'_ﬂ
0180 EOSEOOO 00000000 00000000 00000000

a - length of varioble recording area (108 bytes)

b - X'20"' indicates VRA is formatted in key-iength-data
¢ - length of user data in the VRA (33 bytes)

d - key (X'01' -~ component ID)
e - length (5 bytes)

f - data (SC1B6)

g - key (X'03"' - product level)
h - length (7 bytes)

i - data (JBB1126) \ SDWAVRA in
j - key (X'22' - header) (key-length-data
k - length (10 bytes) format

| - data (FOOTPRINTS)

m - key (X'23' - footprint bytes)

n - length (3 bytes)

o - data (EO0000) J

Figure 2-5. Example of SDWAVRA in Key-Length-Data Format

Section 2. Important Considerations Unique to MVS ~ 2-35

Important Considerations About SYS1.LOGREC Records

The LOGREC records are mostly SDWASs the system supplies, plus variable user
data areas the individual recovery routines supply.

Following are some special considerations pertaining to specific portions of
LOGREC entries:

Compare the time stamp at the top of the incident records with those in
adjacent records. If the system is percolating through FRRs, these times are
either identical or just a fraction of a second apart.

Abend Reason Code - If this field is zero, check System Codes to see if a
register contains a reason code for the system abend code.

Jobname - If the jobname is “NONE-FRR,” this indicates that the record is
generated by an SRB’s FRR (Functional Recovery Routine) or the current
ASCB was invalid.

Comp ID Involved - If the component ID is not formatted, you can
determine the ID of the failing component by using the name of the module
involved in the error and checking the “Module Summary” topic in the
Debugging Handbook.

“EC PSW from ESTAE RB (0 for ESTAI)” - This field has the following
possible meanings:

— If the ESTAE is associated with an RB level other than the one
encountering the error, this is the PSW at the time that the RB level
associated with the ESTAE last gave up control. Note: If this is the case,
the “RB of ESTAE Not in Control” flag should also be set.

If the ESTAE is associated with the RB level in error, the PSW is equal
to the “EC PSW at Time of ABEND” because the last time the RB level
gave up control was when the error occurred.

If the error occurred locked, disabled, or in SRB mode and is covered by
an ESTAE, the two PSWs might not match even for the top RB. “At
Abend” is the locked PSW, and “ESTAE RB” is the PSW for the last
unlocked interruption.

— If the record was generated by an FRR, this is the PSW used to pass
control to the FRR and is therefore the address of the FRR.

— If the record was generated by an FRR (that is, a locked/disabled routine
is in control, or the system is in SRB mode), and the “EC PSW at Time
of ABEND” is equal to the EC PSW from ESTAE RB, this is a
system-generated record.

“Regs of RB Level of ESTAE Exit or Zero for ESTAI”:

— If the ESTAE exit is associated with the RB level that encountered the
error, these registers are the same as “Regs at Time of Error.”

2-36 MVS Diagnostic Techniques

== g

~z

— If the ESTAE is associated with an RB level other than the one
encountering the error, then these are the registers at the time that RB
last gave up control.

— If this is an FRR-generated record, the two sets of registers are identical.
However, if the FRR or ESTAE has updated the registers for retry, these
registers are the new, updated registers.

@® “SVC by Locked or SRB Routine” - This indicator can be misleading. A
forced SVC 13, which is often the way FRR-protected code passes control to
recovery, also causes this flag to be set if the SVC occurred in locked,
disabled, or SRB mode. Although the flag is set, this situation is not a key
error indication in itself. The analyst must investigate why the issuing routine
invoked SVC 13.

® Error Identifier - This field, as described in recovery termination management
(Section 5), contains pertinent information regarding the error described by
this SYS1.LOGREC entry, and provides a correlation to other
SYS1.LOGREC entries. Related software and MCH records have the same
sequence (SEQ) number that allows the correlation of records written in a
particular recovery path (that is, FRR and/or ESTAE percolation, or MCH
and subsequent software entries). For locked, disabled, or SRB routines, the
processor identifier (CPU) indicates the processor on which the routine was
running when it encountered an error. A zero processor identifier indicates
that the record was written by an ESTAE routine (that is, the processor
identifier is not uniquely identifiable). ASID indicates the current ASID at
the time of the error. TIME indicates the time that the ERROR ID was
generated. It is normally very close to the time that the record was written,
as indicated in the first line of the record. TIME can be used to
chronologically order related SYS1.LOGREC entries that contain the same
SEQ number. This ordering is useful in reconstructing the environment as it
was at the time of the error. Note that TIME changes only during recursion;
percolation does not change TIME.

If an SVC dump is taken, the ERROR ID as it appears in the
SYS1.LOGREC record, will also appear in the SVC dump output and
associated IEA9111 message. Do not be concerned if the ERROR ID
sequence numbers seem to have an increment of more than one. Although
the RTM adds one to the sequence number of each unique entry (not
percolation or recursion), there may be no associated recording of the error,
thus, the sequence number is updated internally but is not always externally
written. In particular, SDUMP and SNAP might get many expected program
checks (which are not recorded) when determining which storage areas can be
dumped.

As shown above, the SYS1.LOGREC data set is a vital tool in debugging. At
times, the information in the LOGREC printout can be used to describe the entire
problem situation. A search of the APAR data base on Retain for the CSECT,
recovery routine, and abend code will often identify the problem as a known one.

Section 2. Important Considerations Unique to MVS ~ 2-37

SYS1.LOGREC Recording Control Buffer

This is one of the most important areas to be used when analyzing problems in
MYVS. The previous discussion of LOGREC records analysis generally applies to
the in-storage LOGREC buffer as well.

This buffer serves as the intermediate storage location for data that the recovery
process uses after it has completed but before the data reaches SYSI.LOGREC.
The physical I/O is done from this buffer. Its real significance is in the error
history it displays. Also, any records in the buffer that have not reached
SYS1.LOGREC are almost certainly related to the problem you are trying to
solve.

Formatting the LOGREC Buffer

The in-storage LOGREC buffer can be formatted by specifying the LOGDATA
verb under AMDPRDMP. This verb causes the entries still in the buffer to be
formatted in the same manner as those printed from SYS1.LOGREC. For
detailed information on how to invoke the AMDPRDMP service aid, see OS/V'S2
SPL: Service Aids.

Finding the LOGREC Recording Control Buffer

There are two 4K recording buffers in the SQA - one for LOGREC messages, and
one for WTO messages.

The CVT +X23C’ (CVTRTMCT) points to the RTCT (recovery termination
control table); and RTCT +X20° (RTCTRCB) points to the RTMRCB
(LOGREC recording control buffer). The LOGREC recording control buffer
resides in fetch-protected SQA on a page boundary and is 4K bytes in length. On
the next page boundary is the 4K buffer that contains WTO messages. By adding
X‘1000” to the address in RTCT + X‘20’, you can obtain the address of the WTO
message buffer. The WTO message buffer also uses the RCB mapping format.

Format of the LOGREC Recording Control Buffer

The LOGREC recording control buffer is a “wrap-table” similar to the MVS
trace table. The entries are variable in size. The latest entries are the most
significant especially if they have not yet been written to SYSI.LOGREC.
Knowing the areas of the system that have encountered errors and the actions of
their associated recovery routines, information obtained from SYSI.LOGREC
and the LOGREC recording control buffer, helps provide an overall
understanding of the environment you are about to investigate. Figure 2-6 shows
the format of the buffer and Figure 2-7 shows the format of individual records
within the buffer.

2-38 MVS Diagnostic Techniques

0 4 8 c E 10
RCBBUFB | RCBBUFE | RCBFREE | RCBFLNG | RCBDUM | SRB used to post
start of end of next number Dummy | Recording Task in Master
T record T record Tovcilable of bytes Displace-| Address Space in order to
area area space available | ment write record to
SYS1.LOGREC
X'40" X'50'
Missing Record Header ~ This Processor serial number
record shows the number of times
space was requested but was not
available.
X'58"* X'59° X'5E"
LCNT FLGS
Missing SRB in use RCBTLNG
record flag Total buffer tength
count

If the record contains a counter or is present in SYS1.LOGREC, you have a good
indication of a recovery loop.

X'60"' = first possible record header

Figure 2-6. Format of the LOGREC Recording Control Buffer

Record Header
0 2 3 4 6 8 C 10
Length Record Options ASID ECB Reserved | Actual
of Types for | Record
Record POST

|

Record Type - X'80"

Options

Note:

back through the beginning.

X'40'
X'20°'

- X'08'

X'04"
X'01' -

constructed.

This record is a WTO.

Record is ready to be written.

This record is to go to SYS1.LOGREC.

This record wraps around from the end of the buffer space

Record not buffered; the address of the record exists at X' 10" .
The recording requestor is to be posted when the record is written.

If not set, the record is still being

The beginning of the actual record + X'20" is the start of the SDWA for software

records. The SDWA contains software diagnostic informotion at the time of the
error and is mapped in the Debugging Handbook.

Figure 2-7.

Format of Records Within the LOGREC Recording Control Buffer

Section 2. Important Considerations Unique to MVS - 2-39

FRR Stacks

The FRR (functional recovery routines) stacks are often useful for understanding
the latest processes on the processors. Entries are added and deleted dynamically
as processing occurs. The PSA + X380’ contains the pointer to the current stack.
The format is described in Data Areas section of the Debugging Handbook under
FRRS. Experience has shown that the normal stack (located at X‘C00’ in each
PSA) is perhaps the most useful, although all stacks have been beneficial on
occasion.

The FRR stack +X‘C’ (FRRSCURR) points to the current recovery stack entry.
(Unless the FRRSCURR matches FRR stack +0 (FRRSEMP), in which case no
recovery is present on the stack.) This entry +0 (FRRSFRRA pointed to by
FRRSCURR) points to the recovery routine that is to gain control in case of
error. The entry +4 (FRRSFLGS) contains flags used for RTM processing; a
X‘80 indicates this FRR is currently in control, a X‘40’ indicates a nested FRR is
currently in control. The next 24 bytes (FRRSPARM) serve as a work area for
the mainline function associated with the FRR pointed to by this entry. This
parameter area may contain footprints useful to your debugging efforts. The
previous entry in the stack (X‘20° bytes in front of the current) represents the next
most current recovery routine. Only the current and previous entries are valid.
The stacks do contain residual information associated with recovery that was
previously active but is no longer valid. You should not rely on any information
beyond the current entry.

Also consider the case where:

gains control and establishes recovery;

passes control to B;

establishes recovery, performs its function, deletes recovery, and passes control to C;
establishes recovery and subsequently encounters an error.

aw»p»

The FRR stack will contain entries for module A’s and C’s recovery routines.
There is no indication from the FRR stack that B was ever involved in the
process although it might have contributed to or even caused the error. The
debugger gains an insight into the process but is not presented with the exact
flow. Although you can get an idea of the general process or flow, do not make
assumptions based solely on the FRR stack contents.

If you have trapped a specific problem, the stacks often contain valuable
information. The same is true of a stand-alone dump taken because of a
suspected loop. If RTIW+0 (RTITLPN) at FRR stack +X‘28’ is not zero, the
FRR stack contains current, valid data. Following are some of the more valuable
fields in the FRR stacks from a debugging viewpoint:

1. FRR stack +X28" (FRRSRTMW) - RTM 1 work area (RT1W)

In the case of an error, the RTIW +2 (RTITENPT) field indicates the error
type as follows:

X‘01” - program check

X2’ - restart key

X03 - SVC error (SVC was issued while in locked, disabled, or SRB mode)
X094 - DAT error

X095’ - machine check

X‘0OA’ - paging I/O error

X‘0B’ - abnormal termination

X‘0C’ - branch entry to abnormal termination (compatibility interface)

2-40 MVS Diagnostic Techniques

X‘0D’ - cross memory abnormal termination reentry

X‘OE’ - abnormal termination of current TCB
X'0F’ - memory termination
X‘10° - cross memory abnormal termination

X‘14" - MCH (machine check handler)

2. RTIW+X‘34 (RTIWRTCA) - address of system diagnostic work area
(SDWA)

If no pointers can be found, the global SDWA for the super stacks is located
at the respective super stack + X‘410°. For the normal stack, the global
SDWA immediately follows the RESTART super stack SDWA at + X‘3F0’.
(PSA +X‘3B8’ points to the restart stack.)

3. RTIW+X40’ (RTIWMODE) - mode at entry to RTM1

X‘80° - supervisor control mode (PSASUPER"0)
X‘40" - physically disabled mode

X220’ - global spin lock held

X‘10° - global suspend lock held

X‘08" - local lock held

X‘04" - Type 1 SVC mode

X'02 - SRB mode

X‘'01’ - unlocked task mode

This is the system mode at the time of entry to RTM1. The mode may
change as processing continues through recovery; the current mode is at
RTIW +X‘41” (FRR stack +X‘69").

Extended Error Descriptor (EED)

The extended error descriptor (EED) passes error information between RTM1
and RTM2 and also between successive schedules of RTM1. The EED address is
found at RTIW +X‘3C’ (RTIWEED), at TCBRTM 12 (TCB +X*104), or in the
RTM2 SVRB at X‘7C’. The EED, pointed to by RTM’s SVRB, is generally not
valid because RTM2 releases it early in its processing. The EED is described in
the Debugging Handbook. Important EED fields are:

EED +0 (EEDFWRDP) pointer to the next EED on the chain, or zero
EED +4 (EEDID) description of contents of the rest of the EED
BYTE 0 1 - software EED

2 - dump parameters
3 - hardware EED
4 - errorid EED

For a software EED:
EED + X‘C’ (EEDREGS) registers 0-15 at the time of the error

EED + X‘4C’ (EEDPSW) PSW/Instruction Length Code (ILC)/Translation Exception Address
(TEA) at time of error

EED +X‘5C’ (EEDXM) control registers 3 and 4 at the time of the error

RTM2 Work Area (RTM2WA)

This is the work area used by RTM2 to control abend processing. Registers,
PSW, abend code, etc. at the time of the error are recorded in the RTM2WA.
This area is often useful for debugging purposes and is described in the Debugging
Handbook by RTM2WA. This work area can be found through TCB+X‘E(’
(TCBRTWA), or RTM2 SVRB +X‘80’.

Section 2. Important Considerations Unique to MVS ~ 2-41

Formatted RTM Control Blocks

RTM control blocks are formatted either by AMDPRDMP as a TCB exit with
the FORMAT, PRINT CURRENT, and PRINT JOBNAMES control
statements, or with the ERR option under SNAP/ABEND. With the exception of
the RTCT, the formatted control blocks are all TCB-related, and are formatted
only when they are associated with the TCB. The formatted control blocks are:

RTCT (recovery termination control table) - formatted with the first TCB of
the current address space on the processor on which the dump was initiated.
(This control block is formatted only by AMDPRDMP.)

FRRS (functional recovery routine stack) - has the RT1W embedded within it
and is formatted with the current TCB if the local lock is held. (This control
block is formatted only by AMDPRDMP and it is mutually exclusive of the
IHSA).

THSA (interrupt handler save area) - has the normal FRR stack saved within
it and is formatted with the TCB pointed to by the IHSA, if the address space
was interrupted or suspended while the TCB was holding the local lock.

(This control block is formatted only by AMDPRDMP and it is mutually
exclusive of the FRRS.)

RTM2WA (RTM2 work area) - formatted if the TCB pointer to it is not
zZero.

ESA (extended save area of the SVRB) bit summary - formatted only if the
RTM2WA formatted successfully and the related SVRB could be located.

SDWA (system diagnostic work area) - formats the registers at the time of
error only if the ESA formatted successfully and the SDWA could be located.

EED (extended error descriptor block) - formatted if the TCB or RTIW
pointer to it is not zero.

SCB (STAE control block) - formatted under AMDPRDMP for abend tasks
only. It is formatted under SNAP/ABEND whenever the TCB pointer to it is
not zero.

System Diagnostic Work Area (SDWA) Use in RTM2

This work area is used to pass information to ESTAE recovery routines. It is
found by: SVRB + X‘80° points to RTM2WA; RTM2WA + X‘D4’ points to
SDWA. Also, register 1 contains the address of the SDWA when the recovery
routines are entered.

2-42 MVS Diagnostic Techniques

Effects of Multiprocessing On Problem Analysis

The multiprocessing (MP) capability of MVS allows multiple processors to share
real storage using one control program. (MP refers to multiprocessing on both
multiprocessors and attached processors.) MVS also functions on a uniprocessor
configuration, which may be only one processor configured out of what is
otherwise an MP system. In MP mode, each processor has addressability to all of
main storage and executes under the control of one set of supervisor routines.

Because various queue structures must be processed in a serial fashion,
interlocking facilities are implemented in both the hardware and software to allow
serialization of portions of the control program where conflicts may arise. Queue
structures that don’t require serialization are processed in parallel, that is, without
regard to other processors.

Features of an MP Environment
The main features of a multiprocessing configuration are:

PSA - Each processor has a unique real storage frame, called a prefixed save area
(PSA), referenced with addresses from 0 to 4K. Its location in real storage is in
the processor’s prefix register.

Inter-Processor Communication - Malfunction alerts (MFA) are automatically
generated by failing processors before entering the check-stop state. Other
inter-processor signaling is accomplished with the SIGP instruction. (This feature
is discussed in detail later in this chapter.)

VARY Command - Performs three functions: (1) dynamically add or remove a
processor from the configuration; (2) dynamically increase or decrease the amount
of useable real storage; (3) control the availability of channels and devices.

QUIESCE Command - Quiesces the system so that I/O pools or two channel
switches or both can be reconfigured.

Locking - Access to various supervisory services is serialized by means of a
software locking structure.

Dispatching - Assures that highest-priority ready work is processed by available
processors.

PTLB (purge translation lookaside buffer) - When an entry is to be invalidated in
a page or segment table, the translation lookaside buffer (TLB) on every
processor must be purged before permitting subsequent references to the
corresponding virtual address.

Timing - The TOD clocks must be synchronized among the configured processors.
RMS - When components of the hardware operating system fail, it becomes the

responsibility of the recovery management support (RMS) to help define the
extent of the damage.

Section 2. Important Considerations Unique to MVS ~ 2-43

Compare and Swap - Two instructions assure interlocked update operations. They
are Compare and Swap (CS) and Compare Double and Swap (CDS). References
to storage for these instructions are interlocked the same way as the Test and Set
(TS) instruction.

I0S - has the ability to initiate I/O activity to a device from whichever processor
has an available path.

ACR - When one processor fails in an MP configuration, the alternate CPU
recovery (ACR) function takes the failing processor offline and attempts to release
the global system resources held on that processor so that system operation can
continue with the remaining processors. (See Miscellaneous Debugging Hints.)

CPU Affinity - The ability to force a job step to execute on a particular processor
is a feature of MVS. (For example, because an emulator feature is generally
installed on only one of the processors in an MP environment, processor affinity
will force the execution of programs that require this feature to the proper
processor.)

MP Storage Usage - The following diagram shows storage relationships.

Processor 1
Virtual Storage Virtual Storage
FFFFFF [pLEX PSA FFFFFE[QUPLEX PSA
FFFO00 FFFO00
Absolute Main
Storage
ABSOLUTE PREFIX PSA FOR
REGISTER .
LOW STORAGE PSA FOR -7 PROCESSOR 0
B PROCESSOR 1
PSA FOR ABSOLUTE
A PROCESSOR 1 T LOW STORAGE
PREFIX
REGISTER PSA FOR
PROCESSOR O
1000
PSA FOR j ABSOLUTE LOW PSA FOR
o PROCESSOR 0 STORAGE 0 PROCESSOR 1

Note that a processor’s virtual PSA and the duplex PSA map to the same real
address (0). A processor can access the other processor’s PSA by using the virtual
address of the other processor’s PSA. A processor can access absolute low
storage by using the virtual address of its own PSA. The duplex PSA is used only
by IOS.

2-44 MVS Diagnostic Techniques

MP Dump Analysis

Experience with MVS has shown that there are comparatively few bugs unique to
MP. Usually, problems encountered in an MP environment could also be
discovered in a UP environment. The increased interaction (parallelism) between
software components in an MP environment tends to increase the probability of
hitting bugs that are not unique to MP. Thus, the odds are that the dump you
are trying to debug could also occur on a UP configuration.

The first step of MP dump analysis is to determine conclusively that it is an MP
dump. To do this, you must find the common system data area (CSD). The
CSD address is located at offset X294’ in the CVT. The halfword CSDCPUOL,
at offset X‘A’ in the CSD, gives the number of processors currently active. If this
number is more than one, you are looking at an MP dump. For the rest of this
discussion, we will assume that CSDCPUOL =2.

Several other fields in the CSD are informative. For example, the byte CSDACR
at offset X‘16’, indicates whether or not ACR is in progress. ACR in progress
(X‘FF’ in CSDACR) indicates that one of the processors in the configuration is
becoming inactive. If this is the case, the problem may be the result of a failure
during ACR processing, and the MP dump will probably present at least two
problems:

1. A failure causing ACR to be invoked.

2. A failure during ACR processing. (See the discussion on ACR processing in
the “Miscellaneous Debugging Hints” chapter later in this section.)

Data Areas Associated With the MP Environment
There are several processor-related areas with which you should be familiar:

1. The PCCA (physical configuration communication area)
2. The LCCA (logical configuration communication area)
3. The PSA (prefixed save area)

There is a set of these control blocks for each processor located as follows:

CVT +X2FC’ points to the PCCAVT (contains the address of a PCCA for
each processor)

CVT +X300° points to the LCCAVT (contains the address of an LCCA for
each processor)

PCCA +X°18’ is the virtual address of the PSA for that processor
PCCA +X‘1C’ is the real address of the PSA for that processor |
PSA + X208’ is the virtual address of the PCCA for that processor
PSA +X20C’ is the real address of the PCCA for that processor
PSA +X*210’ is the virtual address of the LCCA for that processor
PSA +X*214’ is the real address of the LCCA for that processor

The PSA is the “low storage area” (first 4K bytes of storage) and it contains,

among other things, the hardware-assigned storage locations. System/370
Principles of Operation details the prefixing mechanism the hardware uses to

Section 2. Important Considerations Unique to MVS 2-45

Parallelism

reassign a block of real storage for each processor to a different block in absolute
main storage. Prefixing permits processors to share main storage and operate
concurrently.

The PCCA contains information about the physical facilities associated with its
processor, the LCCA contains save areas for use by the first level interrupt
handlers (FLIHs). The need for processor unique areas arises, for example,
because external interrupts could occur simultaneously on each processor, and
therefore a processor-related area must exist for status saving by the external
FLIH. Such areas are in the processor’s PSA and LCCA. After locating these
control blocks, you can determine several things about the status of each
processor.

@® The PSWs at the time of the last program, I/O, SVC, external, and machine
check interrupts for each processor (PSA)

@ The general purpose registers at each program check and machine check
interrupt (LCCA)

® The mode (SRB or task) of each processor (LCCA or PSA)

® The address of the device causing the last I/O interrupt on each processor

(PSA)

In addition, a work/save area vector table (WSAVTC) pointed to at

LCCA +X218’ is associated with each processor. This vector table contains
pointers to processor-related work/save areas. For example, there is a large save
area for use by ACR, which is pointed to in the processor’s WSAVTC. It is
important to be aware of the existence of these processor-related areas because
GTF, SRM, ACR, IOS, etc., use them; but you must narrow your problem to one
of these processes (such as GTF, SRM, etc.) before the information in the
associated work/save areas become helpful.

The most important characteristic of the MVS MP capability is parallelism. In
looking at MP dumps, you must always remember that several processes might
run in parallel and reference the same main storage locations. As a result, queue
structures and common data areas are vulnerable. In order to preserve their
integrity, the system must insure that they are accessed serially. The resources
that must be serialized in order to guarantee their integrity are called serially
reusable resources (SRRs). The use of shared resources is the key item to be kept
in mind in debugging an MP dump. There are various mechanisms available for
serializing SRRs:

ENQ/DEQ

WAIT/POST

Disablement

Locking ,
Compare and Swap (CS) instructions (CS and CDS)
Nondispatchability

Test and Set (TS) instruction
RESERVE/RELEASE

Intersect

2-46 MVS Diagnostic Techniques

Obviously all users of a particular SRR must use the same serialization
mechanism. The integrity of an SRR is reduced if one user uses locking and
another uses ENQ/DEQ. You need to understand the processes going on in all
processors at the time of the failure. The processor on which the failure occurred
might not be the one that caused the problem.

Use of the work/save areas pointed to from the ASXB is a good example. These
areas are serialized with the local lock. The following diagram shows what could
happen if the same address space is running on two processors and one of the
processes involved fails to serialize properly.

PROCESSOR 0 PROCESSOR 1
® [)
[[
® ®
o Gets local lock
Branch enters validity check routine Branch enters validity check routine
(]
[Releases local lock
®
[]

In this example, assume that the process executing on processor 0 fails to get the
local lock before it branch enters the system validity check routine. The validity
check routine uses the local lock to serialize one of the save areas mentioned
above in order to save the caller’s registers. The registers saved by the validity
check routine on processor ! can be overlaid by the registers saved by the validity
check routine on processor 0. Thus, the failure would be encountered on
processor 1, but the processor 0 process would be the one that caused the failure.

OI/NI (OR Immediate and AND Immediate) instructions also illustrate this
phenomenon. These instructions take more than one machine cycle to complete
(that is, the operand is fetched, altered, and then stored). In previous operating
systems, physical disablement and UP environments were enough to insure the
completion of one instruction before another was executed. In MVS, with
multiple processors, this is no longer true.

For example, suppose processor 0 issues Ol and the operand has been fetched.
Before processor 0 stores the changed byte, processor 1 executes the fetch cycle of
an NI instruction to change a different bit in the same byte. Now, processor 0
stores the original status plus the OI change; subsequently the NI instruction
completes, which erases the effect of the Ol on the same byte. In MVS, locking is
used to solve some of the problems arising from such multi-cycle instructions.
When locking is not an appropriate solution, the Compare and Swap instructions
could be the appropriate solution. CS serializes the word containing the byte
against other processors. CDS serializes a doubleword. The point is that in
debugging an MP dump, all processors must be considered because interaction
between processes and shared resources is generally the key to solving the
problem.

When a program serializes a resource incorrectly, other programs can alter the
resource before the first program completes its update. The other programs may
be running on other processors, or they may have received control on the same
processor because the first program was preempted (for example, SRB suspension
because of a page fault) before completing its update. Proving that a problem

Section 2. Important Considerations Unique to MVS ~ 2-47

resulted from incorrect serialization is accomplished by finding both the “other”
program and the interval in which a program opens a serialization exposure.

The system trace table can sometimes be used to find potential “other” programs.
If the occurrence of the error has not been overlaid in the trace table, it may be
possible to reconstruct the series of events leading up to the failure by:

1.

Listing all events on that processor, in order, using the logical processor
address field in each event’s trace entry

Making a similar list of all of the events on the other processor(s)

Comparing the lists to see if the processes executing in parallel on the
processors are altering a common resource

Try to relate these processes that are executing in parallel to the serialization
problem that caused the dump.

General Hints For MP Dump Analysis

The following is a list of general hints to help you analyze an MP dump.

L

The use of PRIORITY and DPRTY parameters no longer ensures the order
in which tasks are dispatched. First, the SRM, when attempting to handle
resources, can allow a task or job with a lower DPRTY to run prior to a job
with a higher priority. Second, as the dispatcher dispatches tasks on other
processors, tasks of different priority may be executing on multiple processors
simultaneously.

The CHAP (change priority) SVC does not ensure that tasks are dispatched in
the expected order when dispatching on other processors.

Attached tasks can execute at the same time as the mother task on different
processors. Therefore, if both tasks reference the same data, serialization of
the data is required.

Any references made to system control blocks that change dynamically after
IPL must be serialized to preserve the integrity of the data. The serialization
technique for the data item must match that employed by the system.

Tasks can be redispatched on a different processor from the one on which
they were previously operating. Therefore, do not use the LCCA, PCCA,
WSA, or PSA when enabled for interrupts, because redispatch on a different
processor results in different data being referenced.

If subpools are shared between tasks, users must serialize the use of any data
in the subpools common to the two tasks.

SRBs can be dispatched on any processor unless they are scheduled with
affinity for a particular processor.

Asynchronous appendages on one processor can operate simultaneously with
the task on another processor.

2-48 MVS Diagnostic Techniques

10.

11.

Enabled recovery routines can run on any processor, not necessarily the one
on which the error was detected.

STATUS STOP SRB request does not prevent SRBs from being added to the
local queue; it merely quiesces the address space after any currently executing
or suspended SRBs have completed.

When access methods allow sharing of data sets between tasks in the same
address space, access to the data sets must be serialized between the tasks.

Inter-Processor Communication

MYVS uses the inter-processor communication (IPC) function in doing its
inter-processor related work. The IPC function uses the SIGP (Signal Processor)
instruction to provide the necessary hardware interface between the
MP-configured processors. This instruction provides twelve distinct functions.
Two of these functions are augmented by the control program to request services
of the other processor; external call (XC) and emergency signal (EMS) which are
SIGP codes 02 and 03, respectively. Thus, there are two classes of IPC services:

L.

Direct - These services are defined for those control program functions that
require the modification or sensing of the physical state of one of the
processors. Ten of the twelve SIGP functions are defined as IPC direct
services:

Function Function Code
sense 01
start 04
stop 05
restart 06
initial program reset 07
program reset 08
stop and store status 09
initial microprogram load 0A
initial processor reset 0B
processor reset 0C

Note: Codes 0A, 0B, and 0C are not valid on a Model 158.

Remote - These services are defined for those control program functions that
require the execution of a software function on one of the processors. The
two remaining SIGP functions, external call (XC) and emergency signal
(EMS), provide the hardware interface and interruption mechanism to initiate
the desired program on the proper processor. The remote service function is
provided in two categories:

® Pendable service - use the XC function of SIGP
@® Immediate service - use the EMS function of SIGP

When processor A issues a SIGP (XC or EMS) instruction to processor B, a
request for an interrupt becomes pending in processor B for the external class.
If external interrupts are disabled in the current PSW for processor B, the
interrupt is not taken. If the PSW for processor B is enabled. then separate
mask bits for XC and EMS are interrogated in control register 0. Interrupts
are taken one at a time for those requests enabled in the control register. If

Section 2. Important Considerations Unique to MVS ~ 2-49

processor B is disabled, processor B keeps pending at most one XC and one
EMS request. XC requests can pend simultaneously. Each specific XC
request is encoded in a physical configuration communication area (PCCA)
buffer associated with the receiving processor.

Both the direct and remote services may be used to initiate the desired
function on any of the processors physically attached via the MP feature,
including the processor the request is initiated on.

Direct Services

The direct service function consists of a macro instruction (DSGNL) and a SIGP
issuing routine (IEAVEDR). The DSGNL macro generates an in-line sequence of
instructions that:

1. Loads general register 0 with one of the ten SIGP function codes used to
perform the desired hardware action

2. Loads general register 1 with the address of the specified processor’s physical
configuration communication area (PCCA)

3. Loads general register 15 with the address of IEAVEDR
4. BALRs 14, 15
Upon return from IEAVEDR, register 15 contains a return code indicating the

status of the request. If the return code is 8, register 0 contains sense information
about the receiving processor as shown in Figure 2-8.

Return Code of 8: Register 0 Meaning
Bit
0 Equipment check
1-23 Reserved
24 External call pending
25 Stopped
26 Operator intervening
27 Check stop
28 Not ready
29 Reserved
30 Invalid order
31 Receiver check

The other return codes are:

0 - SIGP instruction successfully initiated. The function is not necessarily completed upon
return to the caller.

4 - SIGP function not completed because path to the addressed processor was busy or the
addressed processor was in a state where it could not accept and respond to the function
code.

12 - Not operational, that is, the specified processor is either not installed or is not configured
into the system or is powered off.

16 - SIGP unsuccessful. Processor is a uniprocessor and does not have SIGP sending and
receiving capabilities.

Figure 2-8. SIGP Return Codes

2-50 MVS Diagnostic Techniques

Remote Pendable Services

The remote pendable services function (external call) consists of a macro
instruction (RPSGNL) and a routine (IEAVERP) which are used to invoke the
execution of a specified program on a specific processor. This service is used by
supervisor state, zero protection key functions that are not despendent upon the
completion of the specified service in order to continue their processing. The
RPSGNL macro generates an in-line instruction sequence that:

{. Loads register 0 with a code identifying one of the services to be initiated

2. Loads register 1 with the address of the PCCA of the processor on which the
service is to be initiated

3. Loads register 15 with the address of [EAVERP
4. BALRs 14, 15

Upon return, register 15 contains a return code. If the return code is 8, register 0
contains sense information (see Figure 2-8). There are currently six functions that
can be initiated via external call:

1. Switch specifies that the task execution on the other processor is to be
preempted.

2. SIO - specifies that the [0S start I/O routine (IECIPC) is to be executed on
the specified processor.

3. RQCHECK - specifies that the timer supervisor TQE check service routine
(IEAPRQCK) is to be executed. This routine ensures that the top TQE on
the real-time queue is being timed.

4. GTFCRM - specifies the GTF service routine (AHLSTCLS) that modifies the
Monitor Call (MC) control registers is to be executed.

5. MODE - specifies the recovery management services (RMS) service routine
(IGFPEXI2) that modifies the RMS oriented control registers is to be
executed.

6. MEMSWT - specifies that the memory switch service routine (IEAVEMS3) is
to be executed, either to force the signaled processor to master’s address
space, or to initiate work on a waiting processor.

The remote pendable services routine (IEAVERP) sets the appropriate code in the
external call buffer of the receiving processor’'s PCCA (offset X‘84°) as follows:

SWITCH X80
SIO X40°
RQCHECK X220
GTFCRM X10
MODE X004
MEMSWT X0

Then IEAVERP sets the external call (XC) function code (X‘02) in register 0 and

uses the DSGNL service routine instruction to cause the SIGP instruction to be
issued. If a busy condition is indicated by the DSGNL service routine, IEAVERP

Section 2. Important Considerations Unique to MVS 2-51

calls the excessive spin notification routine IEEVEXSN) which issues message
IEE331A. The receiving processor will take an external interrupt when it becomes
enabled for such interrupts. The external FLLIH determines that the interrupt was
an XC and passes control to the XC SLIH. The XC SLIH locates the XC buffer
(X‘84’) in his PCCA, determines the function requested, and branches (BAL) to
the appropriate routine. Refer to Figure 2-9 for the XC process flow.

Remote Immediate Services

The remote immediate services function consists of a macro instruction, RISGNL,
and a routine, IEAVERI, which are used, like the remote pendable services, to
cause the execution of a specified program on any of the online MP-configured
processors. However, the immediate service differs from the pendable service in
two important ways:

@ The processors in an MP configuration are enabled for the emergency signal
(EMS) interrupt at times when the processors are not enabled for the external
call interrupt. In particular, EMS interrupts are enabled when the processor
is in the “window spin” state in which all other asynchronous interrupts
(except machine check and malfunction alerts) are disabled. This “window
spin” state is entered by a routine, such as the lock manager, when a point is
reached in its processing that requires an action on the other processor in
order for processing to continue. The “window spin” state specifically allows
either the malfunction alert or EMS interrupts that are used to trigger the
alternate CPU recovery (ACR) function to be accepted and processed.

® An immediate service routine can be requested to execute serially or in
parallel with the function requesting the service. That is, IEAVERI will spin
while waiting for the designated processor to signal either that the receiving
routine has completed execution (serial) or that the receiving routine has been
given control (parallel).

Some of the functions that can be initiated via EMS are:

® HIO - A Halt 1/O command is issued to the designated device by the
receiving processor.

® ACR Function - The receiving processor helps the sending processor from a
failure by alternate CPU recovery procedures.

® Clock Synchronization - TOD clocks are adjusted so the same value is in each
clock.

@ PTLB - The receiving processor purges its translation-lookaside buffer (TLB).

The remote immediate services macro, RISGNL, generates an in-line sequence of
instructions that:

1. Loads register 0 with the PARALLEL/SERIAL indication

2. Loads register 1 with the address of the PCCA of the processor on which the
service is to be executed

2-52 MVS Diagnostic Techniques

3. Loads register 11 with the address of a parameter list to be passed to the
service routine

4. Loads register 12 with the entry point address of the service routine to be
executed

5. Loads register 15 with the address of IEAVERI
6. BALRs 14, 15

As for direct and remote pendable services, upon return register 15 contains a
return code. Register 0 contains sense information in case the return code was
eight. (See Figure 2-8.)

IEAVERI builds the emergency signal buffer in the sending processor’s own
PCCA at offset X‘88’, sets the EMS function code X‘03’ in register 0, and uses the
DSGNL service routine to cause the SIGP to be issued. The receiving processor
will take an external interrupt when it becomes enabled. The external FLIH
determines that the interrupt is an EMS and routes control to the EMS SLIH.
The SLIH locates the EMS buffer of the sender and, for a parailel request, the
SLIH turns off the parallel bit and calls the receiving routine. For a serial
request, the receiving routine is given control, and, upon completion, the serial bit
is turned off. During this interrupt handling process, the sending processor was in
the window spin state until the serial or parailel bit was turned off. Figure 2-10
shows the EMS process flow.

If the receiving routine does not acknowledge the serial request within a certain
period of time, the EMS SIGP is reissued. If the spinning processor does not
receive acknowledgement of the serial or parallel request after a certain time
period, the excessive spin notification routine (IEEVEXSN) is called to issue
message JEE331A.

Section 2. Important Considerations Unique to MVS ~ 2-53

SENDING PROCESSOR

Invoked via Macro
(See Below)

IEAVERP

Input Registers

RO | Function Code

R1| Receiving ;
Processor's PCC,

Return Address
[EAVERP EP

R14
R15

1. Disables (STNSM)
External and 10 Interrupt
Set up (see Note 1.)

H .

2. Is Receiving Proceesor

Online?
RC=4 ﬁ@

Yes No
3. Turns on External Call's
- Sub-Function Code in
External Call's Buffer in
Receiving Processor's
PCCA. (Compare and
Swap On)

4. Sets External Catl
Function Code, X'02"* in
Reg O

|5. BALRs to IEAVEDR. |

6. Checks return codes:
® [f RC=8 and status is
an external call
pending, set return
code=8
e If RC'= 4 or 8 (not an
external call pending)

7. Call IEEVEXSN with the
appropriate MSGID for
message [EE331A

(See Note 5.) .
» @

9. Restores caller's status
and returns to caller.

8. Is ACR active?
Yes (RC=4) No
5

Return Registers l

RO

Status Bits

R14
R15

Return Address
Return Code

Inpuf Registers

External Call Buffer (In
Receiving Processor's PCCA)

l Code T

Code: SWITCH X'80"
SIO X*'40"
RQCHECK:- X'20°
GTFCRM X'10'
MODE X'04'
MEMSWT X'o1’
IEAVEDR

. Disables (STNSM)
External and 1/0 interrupts
Set up ~ see Note 1.

. Establishes SIGP Registers

a. Physcial Processor Address
R2 = PCCACPUA baseed on R1
b. gstcb(l)ishes Parameter Register
1=
c. Establishes Function Code
R3=R0O
SIG R1, R2, 0 (R3)

, . Checks Condition Code

CC2 -~ Busy - Retry (See Note 2)
CC1 - Eq. Chk, Operator
Intervention
Receiver Check - Retry
Within Limits
CC1 - All Others ~ R.C. 8
CC3 -~ R.C. 12 (See Note 3.)
CCO-R.C. O

4. Restores Caller's Status and

Returns to Caller

(To Part 2)

i

Note: R.C. 8 means
—:> status bits are set in

H IEAVERP

Return Registers
rStotus Bits]|
Return Address
Return Code

RO
R14
R15

Returns to

Register 0
RO} Function Code
=X'02'
R1| Receiving
Processor's PCCA IEAVERP Invoked via RPSGNL Macro Expansion:
R14 | Return Address
R15 [TAVEDR EP SWITCH
Entry Point] FSQI(?CHECK .
RPSGNL{ GTFCRM - PROCESSOR - {FCCA Entry Address
MODE
MEMSWT
(0)

Figure 2-9 (Part 1 of 2). External Call (XC) Process Flow

2-54 MVS Diagnostic Techniques

RECEIVING PROCESSOR

(From Part 1) External FLIH

A

Determine If
Interrupt Is An
External Call

Input Registers External Call SLIH

R2 FLIH Return 1. Turns On Active Bit
Address
2. Locates External Call Buffer
Ext. Call SLIH
R10 Entry Address PSA > PCCA

3. If Buffer Equals O,
Returns to FLIH

4. Determines Subfunction
Requested, Compare and Swap Appropriate
Bit Off, BAL 14 to Appropriate Routine
Routine.

X'80' SWITCH (Note 4)
X'40* SIO IECIPC
X'20' RQCHECK IEAPRQCK
X'10' GTFCRM AHLSTCLS
X*'04'MODE IGFPEX12
X'01' MEMSWT IEAVEMS3

5. Turns Off Active Indicator and
Returns Control to the Address
Established by the External
FLIH (BR2)

Notes:

1. Turns on active indicator
Saves callers registers
Establishes addressability

2. Retry for o period of time because the processor
is temporarily busy.

3. If CC = 3 and yet the processor is logically online, a SIGP
hardware failure may exist. A "Soft ACR" option is
available to the system operator to reconfigure to a
UP system.

4. Returns to the dispatcher forcing the interrupted task to
be preempted.

5. MSGIDs are determined by the status bits in register O if
RC = 9 is indicated.

Figure 2-9 (Part 2 of 2). External Call (XC) Process Flow

Section 2. Important Considerations Unique to MVS 2-55

SENDING PROCESSOR

See Macro Below

Input Registers
Parallel/Serial
Receiving
Processor's PCCA
Parameter Address
Receiving Routine
EP

Return Address

IEAVERI, EP

RO
R

pire

R11
R12

R14
R15

IEAVERI

. Disables (STNSM)

External and IO Interrupts
Sets up (see Note 1.)

. Is Receiving Processor Online?

Yes No —» RC=4

) @

. Builds Emergency Signal Buffer

in Own PCCA.
a) Turn On Parallel or Serial
Indicator
b) Place Receiving
1) Routines's EP
2) Routine's Parameter Address
3) Processor's Address
In The Buffer

. Sets Emergency Signal Function

Code, X'03' in Reg 0.
BALRs to IFAVEDR.

. Checks Return Codes:
. Unsuccessful

) @

Successful

. Spin until the Request is

Answered (See Note 4)

Serial Bits Off

’ Parallel Bit Off
(See Note 6))

:>

Emergency Signal Buffer
(In Sending Processor's PCCA)

Bit O-Parallel
Bit 1-Serial
Bit 31-RMS indicator

(To Part 2)

Receiving Routine's
Parameter Address

Receiving Routine's
Entry Point

Receiving Processor's

Physical Processor ID

IEAVEDR

|

Figure 2-10 (Part 1 of 2).

7. RC=4 or RC=87?
Yes No ‘
8. Call IEEVEXSN with the
appropriate MSGID for
message [EE331A.
(See Note 5.)
9. Is ACR active?
Yes (RC=n) No mmmp (2
10. Restores caller's status and
returns to caller.
Return Registers
RO|x'03' | Status Bits
R14 | Return Address
R15! Return Code

Input Registers

1. Disables (STNSM)
External and 1/0
Interrupts Sets up
(See Note 1.)

2. Establishes SIGP

Registers

a. Physical Processor
Address R2=PCCACPUA
based on R1

b. Establishes Parameter
Register
R1=0

c. Establishes Function
Code
R3=RO
SIGP R1, R2, 0 (R3)

(To Part 2)

>

3. Checks Condition Code
CC2 - Busy - Retry

(See Note 2)

CC1 - Eq. Chk, Operator

Check - Retries
Within Limits
CC1 - All Others - R.C.8
CC3 - R.C. 12
(See Note 3)
CCO - R.C.O

Intervention Receiver

. Restores Callers Status

and Returns To Caller

RQ|Function Code =

X'03*

R

pre

Receiving
Processor's PCCA

R14|Return Address

R15[IEAVEDR

Emergency Signal (EMS) Process Flow

2-56 Mvs Diagnostic Techniques

Return Registers

Return
IEAVERI

to

RO | Status Bits

R14| Return Address

R15| Return Code

Status Bits Are
Set in Reg O

Note: RC 8 Means

RECEIVING PROCESSOR

(From Part 1)
External FLIH

A
Determines
Interrupt
Is An
Emergency
Signal
Input Registers
FLIH Return Emergency Signal SLIH
R2 | Address
R10 EMS SLIH |1 Turns On Active Bit |
Entry Address| | [27 Locates EMS Buffer of Sender ACR
@ CVT—»PCCAVT (Processor ID)—3»PCCA

|3. If RMS Indicator On, Calls ACR I

(From Part 1)

4. If Receiving Processor ID Equals
This Processor ID, Returns to FLIH.

Receiving Routine
5. Determines If This Is

Serial or Parallel: Receiving Routine
Clears Serial Turns Off Parallel Bit.
Pending Bit
and Calls
Receiving
Routine.
. Turns Off Calls Receiving :
Input Registers Serial Bit. Routine . Input Registers
R1 |Parometer Address : R1 |Parameter Address
R14|Return Address [6. Turns Off Active Indicator] R14{Return Address
Receiving Routine's Receiving Routine's
R15Entry Address [7. Returns to FLIH 1| rig Entry Address
IEAVERI Invoked via RISGNL Macro Expansion: Output Register
RISGNL {Pcrclle!} cPU = [PCCA Entry Address} R2{FLIH Return Address
Serial ’ M

- {Address - { Address
ep - {Mse) [paru - {Arese}]

Notes:

1. Turns on active indicator
Saves Callers registers
Establishes addressability)
2. Retry for a period of time because the processor is temporarily busy.
3. If CC=3 and yet the processor is logically online, a SIGP hardware
failure moy exist. A "Soft ACF" option is available to the system
operator to reconfigure to a UP system.
4. Disables/Enables Spin
1. Turns on SPIN indiator
2. Enables for MFA and emergency signal interrupts
3. Disables
4. Turns off SPIN indicator
5. MSGIDs are determined by the status bits in register 0 if RC=8 is indicated.
6. If the serial request is not acknowledged within a certain time period, reissue the SIGP.

Figure 2-10 (Part 2 of 2). Emergency Signal (EMS) Process Flow

Section 2. Important Considerations Unique to MVS

2-57

MP Debugging Hints

Apparent disabled loop in IEAVERI on processor A

This is probably caused when processor A sends an EMS to processor B, but
the receiving routine on processor B has not yet turned off the serial or
parallel bit in processor A’s PCCA. Thus, processor A is in the “window
spin” state in IEAVERI.

To find what processor A wanted processor B to do, locate processor A’s’
PCCA using one of the following:

® Field PSAPCCAV (PSA +X‘208’) in processor A’s PSA contains the
virtual address of the PCCA for processor A.

® Field CVTPCCAT (CVT +X2FC’) points to the PCCAVT. The virtual
address of the PCCA for processor A is found by indexing into the
PCCAVT using four times the CPUID in PSACPUPA (PSA +X'204’).

PROCESSOR A’s PCCA

x8¢ | RSP |EMS2 |

X8C’ Receiving Routine PARM address
X90° Receiving Routine EP address

X94’ Receiving Processor’s PCCA address
RISP field

X‘80° - Parallel Request
X*40’ - Serial Request

EMS? field

X80’ - Serial Pending

By locating the proper PCCA (in this case processor A’s), you can determine
whether the EMS request was parallel or serial, the entry point, and therefore,
the name of the receiving routine. The serial pending bit indicates whether or
not the receiving processor has taken the external interrupt. If the serial
pending bit is on (PCCAEMS2 =X‘80’), the interrupt has not been received.
Although this information tells quite a bit about the current process on
processor A, the real problem, however, is most likely on processor B.

The following are possible situations that can cause a disabled loop:
@ Processor B, if disabled for EMS interrupts, would never take the EMS
interrupt; therefore the receiving routine would never get control and the

parallel or serial bit would never get turned off.

@® There could be a hardware problem with the SIGP circuitry. For
example, if IEAVERI got condition code 0 as a result of issuing the SIGP

2-58 MVS Diagnostic Techniques

instruction on processor A, but the SIGP was never received on processor
B, there would be a loop in IEAVERL

@ If the receiving routine loops or hangs for a serial request, IEAVERI will
also loop with the serial bit on and the serial pending bit off.

2. Locate External Call buffers

The external call buffer is located at offset X‘84’ in the PCCA. Normally, the
buffer is clear, but it is worthwhile to check to make sure that there is no
external call work to process, as indicated by the request codes below:

Request Code (PCCA +X'84"):

X‘80° - SWITCH
X40 -SIO

X20' - RQCHECK
X'10" - GTFCRM
X004 - MODE
XO0I' - MEMSWT

The code is set in the receiving processor's PCCA so that a bit on in processor
B’s PCCA, for example, means that another processor initiated the request.
(Note that multiple bits can be on at the same time.)
Note: If the external call or EMS events are available in the trace table,
those table entries contain event-related information (for example, the
external call buffer). For details see TTE in the Debugging Handbook.

3. Determining Which Processor Has 1/O Capability
The processor attribute bits, PCCAATTR, are located at offset X‘178 in the
PCCA. If bit 1 (PCCAIQ) is 1, then this processor has I/O capability, which
means that this processor has at least one channel logically online.
Bit 1 is set to 0 by:
IEAVNIPO: For each processor that has no channels physically online. (Note:
For Model 158 and Model 168 AP systems, PCCAIO=0 for the attached
processing unit.)
IEEVCPRL: When the last channel of a processor is varied offline.
Bit] is set to 1 by:
IEAVNIPO: For each processor that has channels physically online.

IEEVWKUP: When a processor is varied online and it has channels
physically online, or when the first channel of a processor is varied online.

Bit 1 is referenced by:

IGFPTERM: When searching for a live processor, if that processor has I/O
capability (PCCAIO=1), a SIGP EMS is issued to that processor.

Section 2. Important Considerations Unique to MVS 2-59

IGFPTSIG: When processing an EMS received from a failing processor.
When invoked during system termination, if executing on a processor with
I/O capability, IGFPTSIG writes to LOGREC and the console.

IGFPXMFA: When processing an MFA received from a failing processor. If
executing on a processor that has I/O capability, IGFPXMFA invokes ACR.

IEAVTACR: If PCCAIO=1 for the failing processor, IEAVTACR invokes
I/O restart to handle outstanding I/O.

2-60 Mvs Diagnostic Techniques

~ =

MYVS Trace Analysis

Trace Entries

This chapter reviews the MVS trace, GTF trace, and master trace functions. The
MYVS trace (similar to the OS trace) and the GTF trace are available in both
system-initiated dumps (SNAP) and in stand-alone dumps. There are formatting
routines for most combinations. The trace table entry format can be found in the
“Data Area” section (see TTE-Trace Entry) and the “Dump and Trace Formats”
section of the Debugging Handbook.

The information in this chapter is provided to assist you in reviewing the various
formats as you will see them in a storage dump. The page fault path is used as
the vehicle for describing the MVS trace and GTF trace formats in the following
examples and descriptions.

The master trace function and the message processing facility table (MPFT) are
described later in this chapter.

To have these entries formatted in a SYSUDUMP/SYSABEND/SYSMDUMP,
the installation must specify SDATA =(TRT) in the SYSI.PARMLIB members or
use the CHNGDMP command.

Note: SYSMDUMP produces a machine-readable dump; AMDPRDMP must be
used to print it. AMDPRDMP does not format the system trace table.

For unformatted trace table entries, the system queue area (SQA) must have been
printed. Use location X‘54° as shown in Figure 2-11 to locate the trace table.
Remember that ‘TRACE ON’ was required at IPL time. (Note that if GTF is
active, the system trace is turned off.)

Section 2. Important Considerations Unique to MVS ~ 2-61

Loc X'54', Current
FD9DCO
FD9DEO
FD9EOO
FDYE20
FDYEU0
FD9E60
FD9YES80
FD9EAQ
FDYECO
FDYSEEO
FD9F00
FD9F20
FD9FU40
FD9F60
FD9F80
FDYFAOD
FDIFCO
FDYFEQ

070Cc8024
070C2001

A

00FDA000" 00FDIDEO
070C2048
070C200A
070C800A
070C8048
070C2024
070C200A
070C800A
070C203C
070C803C
070C2077
070C8077
070C203C
070C803C
070C200A
070C800A

070E7000
.

First Last

O0E9FAGE
00D70742
00D70742
Q0E9FAGE
Q0EA00CS8
00DEDBUE
00DEDS4E
00DED9CO
00DED9CO
00DEDES8U

00E9F8F0
00D707E8
00000000
00D707E8
00000000
40DEDB2A
00000000
00000000
00009000
00000000
00

00FDCFEQ

Entry Pointers

F5003240
00000001
E7000060
00B2BC38
00B2BC38
FA000082
000000EE
000000EE
00000000
00000000
00000000

00000000
00031E08
00B2BBD8
00B2BBDS
00B2BBD8
00091F78
80DFD84C
00092F10
00092F98
00092F98
000B0000

00000000
40000001
40000001
40000001
40000001
40000001
40000001
40000001
60000001
60000001
60000001

QODEDES8UY
00DEDACE
OO0DEDACE
OQ0DED944
OCDED94 4

00000000
00000000
00000000
00000000
00EA00C8 00000000
00EA0320 00000000
00000009 90000000

00000084
00000084
000000EE
00093000
00093000
00000001
00000000

60000001
50000001
50000001
40000001
40000001

00B15830
00815890
00092F10
00092F10
00092F10 40000001
FFFCE088 50000001
00000000, 00000000

J S~ S———

FDA0OO
Nbiphd
a

where:
a —
b._
c —
d—
e —

f -
g-—

h-—

v

b

g

c

address column in SQA
PSW or device address/CAW if an SIO operation
variable, see TTE in Debugging Handbook

ILC/CC/PM from the PSW
Channet set ID for an SIO or 1/O interrupt entry. (This field is zero for 1/O interrupt
entries when channel set switching is not installed.)
CPU ID: 0 for processor 0; 1 for processor 1

ASID: 0001 is master scheduler; 0002 is usually JES;

def g

0000 is dummy task or N/A

TCB address
Timer value

00000000
00013F50
00013F50
00013F50
00013F50
00013F50
00013F50
00013F50
00013F50
00013F50
00013F50
00013F50
00013F50
00013F50
00013F50
00013F50
00013FP50
00013F50

00014248
———

h

00000000
66FD5FCO
66FE22C0
66FEUESO
66FE6510
66FF2930
66FF5030
66FF7E00
66FFDF90
66FFF830
67001BEO
6700CODO
6700F4B0O
67010D00
67013020 *
6701F880 *
67020EAQ0 *
67032260 *

36F30, *

LI AN A Y

AR R R

i
~ 1 second

Figure 2-11.

If low address storage is overlaid and the trace table pointer (X‘54’) is lost, you
can locate the trace table (which is in the SQA) by searching through the high
address range of common storage. Each trace entry is X‘20" bytes in length and
begins in the extreme left-hand column of a storage dump. Once you locate a
pattern of X‘07° and X‘04’ combinations, you have found the trace table.

How to Locate the Trace Table

If location X‘54’ has not been overlaid, then it will point to the control

information for the trace; this information is directly in front of the actual table.

The trace routine places an entry (record) type indicator in the fifth position of
the PSW and moves the interrupt code in to make the PSW appear as BC mode.

Figure 2-12 explains each of the trace entry types.

2-62 MVS Diagnostic Techniques

Position §

C}—-OOO 1D1 00009FD8 00000000 00000000 OOFDABD8 00010001 00000000 AB57A140
078D7000 0009C1A2 00000000 00000001 0017C2BE 60010011 007C40D8 AB57AA30
(:}—-07802012 00096CEO 00095288 000955E8 00096F80 40010011 007C40D8 ABS8A680
070C203C 0001EBD8 00095288 00000000 007FD69C 60010011 007C40D8 ABSBAAUO
070C803C 0001EBD8 00000000 00000000 007FD69C 60010011 007C40D8 AB58B190
078C2078 0001EC94 0000E500 00000178 00000000 40010011 007C40D8 ABS58B3DO
078C8078 0001EC94 00000000 00000178 007A2E88 40010011 007C40D8 AB58C350
078C3011 0001ECB8 00000000 007A2FFO 0O07A2E8D C0010011 007C40D8 AB58C610
070C6000 OO0OUAFFO 00000011 0QFEC760 OOFEC78C 00010011 007C40D8 AB5D8130
078C1004 000TEE18 00000000 31000163 40000005 60010000 000115A8 AB58D800
078C7078 O0001EE18 00000000 31000163 40000005 40010011 007C40D8 ABSA1BEO
078C51D1 0001EE18 0007D740 0C000001 00000000 00010011 007C40D8 ABSATEOQ0
060C5582 00018424 8000B1A8 0C000001 00000000 30010017 007CLOD8 ABSA3DO0
060C5950 00018424 0007E6B8 0C006001 00000000 30010011 007C40D8 ABS5A4300
070C4000 0004AF98 00000012 O0FA3F4U0 OOFA3F60 00010012 007CDEB8 ABS5ASA30
® 078D700A 00F5136A 00000003 0000002A O00105F71 4001003B 007FA930 AB5A6220
07803011 00F5136A 00000003 00107000 00106F71 80010038 007FA930 ABSACS40
070C7003 0001F360 0001F360 00000001 OOFA3F40 40010012 007FEQ80 ABSAFB70

=]
Bo
©

0 X000
<
mx
o
VOOORKOOOOOOOO

LR R R R 2 IR RN IR N O
oPrma
2RI R SR R RE T O 2 I R N R 2

w
™

where:

() — Fifth digit= 0. Thisisan SIO entry. The CAW addressis ‘9FD8’. The 10SB address is X'FDABDS." The
channel set id is 0.

@ — Fifth digit = 1. This is an external type. The interrupt code is X‘1004’ generated by a clock compara-
tor interrupt.

(@ - Fifth digit=2. Thisisan SVC interrupt. An SVC ‘12" was issued from iocation X'96CEQ’ (minus the
ILC). Variable fields are registers 15,0, and 1.

@ — Fifth digit = 3. This is a program interrupt. Interrupt code X’11’ is a page exception. Word 4 is the
referenced translation exception address (TEA).

(® — Fith digit = 4. Thisis an SRB dispatch. The address in the PSW (X'"4AF98')is the entry point address.
Offset X'16' contains the ASID to be dispatched. Word 3 is the purge ASID and word 7 the purge TCB.

@ — Fifth digit = 5. This is an 1/O interrupt. The device address has been moved into the PSW. Words 3 and
4 are the CSW with channel end/device end.

@ — Fifth digit = 6. This is an SRB redispatch. SRBs can be suspended because of lock contention or a page
fault. The address in the PSW is the lock manager return address or the instruction that caused the
page fault.

9 — Fifth digit = 7. This is a task dispatch. The interrupt code is from the last task interrupt. If the inter-
rupt code is 0, it could be the first dispatch of this request block (RB) for the task.

@ — Fifth digit = 8. This is an SVC return. The interrupt code is from the last SVC interrupt for the RB.
Note: Additional trace entry types are:

— Fifth digit = 9. This is 2 Program Call (PC) instruction. Word 3 contains the new PASID (offset X‘8°) and
the new SASID (offset X'A’).

— Fifth digit = A. This is 2 Program Transfer (PT} instruction. Word 3 contains the new PASID (offset
X‘8’). Word 4 contains the old PASID (offset X'C’).

— Fifth digit = B. This is a set secondary ASID (SSAR) instruction. Word 3 contains the new SASID (off-
set X‘A’). Word 4 contains the old SASID (offset X“E’).]

- Figure 2-12. Types of Trace Entries

Note: In previous systems, the program check trace entries had registers 15, 0, 1
in words 3, 4, and 5. Also, the fourth word was the TEA for page fault entries.
This is changed in MVS; the fourth word for any type of program check is now
the TEA.

Section 2. Important Considerations Unique to MVS ~ 2-63

|

— o ———

Trace Entry for Service Processor Call SVC

Trace Examples

The trace entry for the Service Processor Call SVC interruption is represented by
a type 2 entry (SVC interruption), with a 122 (X‘7A’) SVC number, and an ESR
code of 6 in register 185.

The trace entry for the MSSFCALL DIAGNOSE or SERVICE CALL instruction
external (service signal) interruption (interruption code X‘2401°) is represented by
X‘1401’ in the trace table.

Both entries contain the following in the register 0 and 1 fields:
® Register 0 field - contains the service processor command word (four bytes).

@ Register 1 field - contains the two-byte response that the service processor
puts in bytes 6 and 7 of the service processor data block; the one-byte caller
flags that the caller put in byte 2 of the data block; and one byte of zeros
(reserved). '

This information helps you trace Service Processor Call SVC processing. For
additional information, refer to the topic “Service Processor Call SVC and
MSSFCALL DIAGNOSE Instruction” for processors with an MSSF, or the topic
“Service Processor Call SVC and SERVICE CALL Instruction” for processors
with the Service Processor Architecture.

Figure 2-13 through Figure 2-16 illustrate different kinds of MVS and GTF
traces, as follows:

Figure 2-13. MVS Trace of a Page Fault Without 1/O
Figure 2-14. MVS Trace of a Page Fault With I/O
Figure 2-15. GTF Trace of a Page Fault Without I/O
Figure 2-16. GTF Trace of a Page Fault With I/O

While trace tables do not include all system activity, they can be very helpful in
establishing a pattern. Remember that many MVS system services are branch
entered and therefore do not appear in any trace type entry.

2-64 MVS Diagnostic Techniques

Py

Figure 2-13 illustrates a page fault that did not require I/O for completion. Note
that field IDS contains the information described in notes d, e, f, and g in
Figure 2-11.

®

PGM OLD PSW L—071C3011 00E44072 R15/R0 00000000 009F2F50 R1 009F2FS0 IDS 90000003 TCB 00A0C318 TME F09679C0
SVC OLD PSW 070C2013 00BA6B98 R15/R0 00000000 00000198 R1 009FuC78 IDS 60000003 TCB 00A0C318 TME F096D6COQ
PGM OLD PSW 075C3011 GODDA3F6 . R15/R0 00000000 009F1F20 R1 000000E0 IDS 70000003 TCB 00A0C318 TME F09728A0
SVC OLD PSW 075C203C 0O0DDA972 R15/R0 009F1F20 00000000 R1 BO9F1FD8 IDS 50000003 TCB 00A0C318 TME FO97EE70
RET NEW PSW 075C803C 00DDA972 R15/R0 00000000 00000000 R1 809F1FD8 IDS 50000003 TCB 00A0C318 TME F0980A70

@ — Fifth digit = 3 and the interrupt code is X‘'11’.. The faulting instruction is at
X'EA44072' and is referencing X'9F2F50’. Because the next entry for this ASID and TCB
is not a redispatch of the same location, it can be assumed that the page exception was
satisfied by reclamation or the first time reference after a GETMAIN. No I/0 was
required.

Figure 2-13. MYVS Trace of a Page Fault Without I/O (Formatted by SNAP in SYSUDUMP/SYSABEND)

Figure 2-14 illustrates another possible format of a page fault.

(D —— 078c3011 00F685D8 00768008 007CDO0O 007CAO00 40010015 007CTISE ABSFB280 * 6EQ 6 *
000001D2 00009FFO 0007D740 0C000001 OOFDABDS 00010001 00000000 ABSFE470 * K O P Q U *

@rovsmooo 0009D3F0 003F52F0 FF17E980 0C11E1B4 SE010010 007CFCFO ABSFEDAO * 0 0 2 o *
078D5951 0009D3FO 103BCF8 0C000000 00000000 1E010010 00TCFCFO ABSFF000 * L0 H8 0 0 *
070C4000 00O4AF98 00000002 0OFEC178 OOFEC1AL 00010002 007FCS88 ABSFF870 * Q A AU EH 8 *
078D7000 0GO9D3FO 003F52F0 FF17E980 0011E184 SE010010 007CFCF0 AB613350 * 10 0 z o x

@—07BDS1D2 00118F00 0007D740 0CO00001 00000000 OE010010 007CFCFO AB6314600 * K P Q *

@J_omcvooo 00F685D8 0OF68008 007DETCO 007CA000 40010015 007C7958 AB616840 * 6EQ 6 X *

where:

@ — The page exception.

@ — The S10 by 10S after a branch entry from ASM.

(3® — The /O interrupt with channel end/device end.

@ — Redispatch at page faulting location.

Figure 2-14. MVS Trace of a Page Fault With 1/O (Unformatted)

Note that the sequence illustrated for the page fault path is not a mandatory one.
Frequently ASM finds more than one request for paging on the queue and can
satisfy them with one I/O. Also, if RSM queues a request and notes that a
request already exists, it does not interface with ASM. The ASM SRB has been
scheduled previously.

The next two examples are of GTF traces with the following options in effect:

FORMAT=SYS USR=YES

SVC=ALL GTF=NO
SIO=ALL DSP=YES
PI=ALL PCI=YES
I0=ALL RNIO=NO
EXT=YES SRM =YES
RR=YES USERTIME=YES

Note: The fields in GTF trace records are described in Debugging Handbook,
Volume 1.

Section 2. Important Considerations Unique to MVS ~ 2-65

Figure 2-15 illustrates one of two situations:
1. A first reference to a page after a GETMAIN was issued for it.

2. A reclaim; that is, a fault on a page which was stolen but whose real frame
had not yet been reused.

PGM 017 ASCB OOFD5858 CPU 0000 JOBN USRT085 OLD PSW 075C0011 QOD853F6 TCB 008BBEB8 MODN SVC-RES VPA 00885FSF
RC 00885F60 B! Q000D1A0 R2 00000050 R3 0050F602 R4 000000E6 RS 00D85000 R6 AQD85220 R7 C00000050
R8 0008B120 R9 00000003 R10 00D55D20 R11 GO8BE740 R12 000001A0 R13 00000000 R4 O08BSE60 R15 00000000
TIME 84413.312955

Figure 2-15. GTF Trace of a Page Fault Without 1/O

Figure 2-16 shows the steps taken to acquire a new page following a page fault.

PGM 017 ASCB 00FD5858 CPU 0000 JOBN USR1085 OLD PSW 075C0011 00C6B000 TCB 00888FB8 MODN SVC-RES VPA Q0C68000
RO 0000005B R1 0000005B R2 8F8B5B78 R3 40C69002 R4 008BS58F8 RS 01885F2C R6 O008BBSEE4 R7 018B5F20
R8 008BSFO4 R9 00000000 R10 00000008 R11 O0BBSAD4 R12 00000000 R13 0000005SB R14 OO0S8BS8EB8 R15 00C6B000O
TIME 44413.341696
SRB* ASCB 000167F0 CPU 0000 JOBN *MASTER* SRB PSW 070C0000 00061A40 SRB OOFE7400 PARM 00000000 TYPE GLOBAL
TIME 44413.343055
SIO 0353 ASCB 00016780 CPU 0000 JOBN *MASTER* R/V CPA 00078740 00078470 CAW 0000EFBO DSID 00000000
cc o

FLGS 00000010 8801 STAT 0000 S¥. ADDR 00000000 0E000803
TIME 44413.344333

psp ASCB 00017058 CPU 0000 JOBN N/A DSP PSW 070E0000 00000000 TCB 00017158 MODN N/A
TIME 44413,345269

10 0353 ASCB 00016780 CPU 0000 JOBN *MASTER* OLD PSW 070E0000 00000000 TCB N/A USID 00000000
CSW 00078498 0C000001 SNS N/A R/V CPA 00078470 00078470 FLG C0108801 A2000353 00
TIME 44413.372394

DSP ASCB 00FD5858 CPU 0000 JOBN USRTO085 DSP PSW 075C0000 00C6BOCO0 TCB 008BBEB8 MODN SVC-RES

TIME 44413.375033

PGM 017 — The page fault. VPA=address of fault.

SRB — The dispatch of ASM's part monitor routine in master’s address space.
SIO 353 — The Start 1/O to page-in the requested page.

DSP — The dispatch of any ready work while the page-in 1/0 is in progress.

In this case, there is no ready work, so the wait task is dispatched.

10 353 — The 1/O interrupt from the paging device. ASM's disable interrupt exit
(DIE) routine gets control.
DsP — The faulter resumed where he left off.
* Note: This entry appears when ASM is unable to start the 1/O in the page faulter’s
L address space because ASM resources are unavailable.

Figure 2-16. GTF Trace of a Page Fault With 1/O

Notes For Traces

The trace provides a history of some of the events that lead to a storage dump.
Trace interpretation is one of the most important aspects of debugging.

Tracing Procedure
When attempting to recreate the process that was occurring on the processor(s)
when the dump was taken, start at the current entry in the trace table (identified
either by the trace header or by the highest clock value in the last column) and
scan upwards. While scanning, look for unexpected events. These include:

@ Unit check, unit exceptions on I/O devices

® Non-CC=0 on SIOs

2-66 MVS Diagnostic Techniques

@® Non-type 11 program checks

® SVC D, SVC 33, SVC errors - (see number 6 under “Cautionary Notes” later
in this chapter)

® Malfunction alerts (X‘1200° external interrupt)

® Entries that show both processors executing the same code as indicated by the
ICs (instruction counter) in the entries

@® Large time gaps in the TOD clock value
@® MP environment and only one processor doing anything

These entries indicate a potential for errors. Do not be distracted if you discover
an entry of this type. Record the incident for future use. Then continue scanning
back through the trace and try to determine what was happening in the system
that might have caused the failure. Remember to conduct the scan by unique
processor. Separate the processes that occur on each processor and watch for any
obvious interactions in the processes.

You can further subdivide the activity by address space (as depicted by ASID) or
by task (TCB address; remember to stay under the same ASID). As you recreate
the situation, remember that you are relating individual entries to real events that
must occur in order to accomplish work. Do not be distracted. For example, do
not look for an I/O interrupt just because you see an SIO. The two events should
be associated, but you should also determine the following:

® Why the I/O is occurring;

@ If the I/O is related to the process, address space, task, page fault, etc. that
you are concerned with;

@ If the I/O completion should trigger another event. This is the way work is
accomplished in MVS, that is, events triggering more events. As you become
familiar with trace coding you learn to expect this “event causing” sequence.
Certain sequences occur very frequently; you learn to recognize these and to
look for less familiar sequences.

As you are searching trace entries, watch for repeating patterns, which can
indicate a loop in the system. These patterns can appear as constantly repeating
ICs (generally the case in a tight enabled loop), or as a repeating sequence of
entries (often the case in a process loop, such as an ERP constantly retrying an
1/O operation). Note that in the latter case, other entries from other processes
can intervene periodically in the trace table, especially in an MP environment.

If you reach a point in the trace analysis where you are somewhat comfortable
with the processes you are uncovering and recreating, and you feel you have a fair
understanding of the activity in the system, pause. Try to understand what you
have found. Is there any way you can relate your findings to the reason you have
taken the dump in the first place? Do the unexpected events have anything to do
with the problem, or are they unrelated to the problem? It can happen that the
events you have discovered are unrelated to the problem causing the dump and
you have exhausted the scope of the trace. In this case, you probably have to go

Section 2. Important Considerations Unique to MVS 2-67

into the system and study the address space and task structures, queues, and
global data areas in order to zero in on the problem.

However, if the events you have discovered are related to the problem causing the
dump, you must then attempt to isolate the erroneous process. Try to understand
how the unexpected events relate to the process. Look on both sides of the event:
did the event trigger the bad process, or is it a result of the bad process?

It is also necessary in trace analysis in MVS to understand whether you are
looking at the primary error or at some secondary problem. Is this a mainline
failure or a failure because of a problem in the recovery? Also, you must decide if
the problem is caused by a previous error from which the system has recovered.
Always be sure that it was not something several pages earlier in the trace that
caused recovery to be activated and eventually led to the current problem. If this
is the case you must now decide which error to pursue. The original error is
probably more important; however, much of the required information might be
lost because of recovery and the subsequent recovery failure. Also keep in mind
that if you must attack the secondary error condition, your search of the dump
and the recovery areas can often uncover information about the first error.

The trace is one of the most useful tools available for back-tracking through a
problem sequence. You must use it in conjunction with system control blocks and
indicators in order to recreate the error sequence. This is still true in MVS despite
the fact that the trace contains less information than in previous systems. In
MYVS, the SVC calls have been greatly reduced because of branch entry logic for
both transfer of control and supervisor services. This means that trace entries are
not provided as in previous operating systems. Also, many significant events,
such as lock acquisition and release, SRB scheduling, and SIGP issuance, are not
traced. Because of these MVS considerations, you must be able to understand the
processes and interpret the trace table rather than just read it.

Bypassing GTF Lost Events

The following superzap is useful when you need to trace a large number of events
(such as identifying a performance problem during teleprocessing operations). It
increases the number of GTFBLOKSs from 4 to 32.

NAME AHLCWRIT
VER 0194 50AE,CC03
VER 0IBC 58AA,CCO03
VER 0ID2 5899,CCO03
VER 0954 509A,CCO03
VER 147C 587A,CC03
VER 148A 509A,CCO03
VER 1674 0000,0004
REP 0194 S0AE,CCF3
REP 0IBC 58AA,CCF3
REP 0iD2 5899,CCF3
REP 0954 509A,CCF3
REP 147C 587A,CCF3
REP 148A S09A;CCF3
REP 1674 0000,0020

Caution: Extreme care must be used when considering a system alteration in order

to gather additional data about a problem. No superzaps should be applied
before the system programmer has verified the logic being zapped and the trap

2-68 MYVS Diagnostic Techniques

—

Cautionary Notes

logic itself. Remember, if any one location or offset within the module or trap
changes, all offsets and base registers must be verified.

Listed below are some items the problem solver should understand when
analyzing an MVS trace table.

1.

I/O Processing:

® Much I/O is accomplished in MVS by the branch entry interface to I0S
and without the use of SVC 0 (EXCP). Therefore, you often find I/0O
entries (SIO/I/O interrupt) that are not accompanied by SVC 0.

® Back-end I/O processing can result in an SRB schedule of IECVPST.
This trace entry should appear soon after an I/O interrupt. The register 1
slot will contain the IOSB address. The IOSB is the key to tracking the
I/O request.

Timer Value:

The last field of each trace entry contains bytes 3-6 of the eight-byte TOD
clock at the time the entry was made. The second digit (from the left)
represents the value to be increased approximately every second.

The following steps show how to determine the elapsed time between two
trace entries (such as from a SIO to the I/O interruption).

Find the difference between the two hexadecimal timer values.
Convert the difference to a decimal value.

Divide the decimal value by 16 (result is microseconds).
Divide by 1,000,000 (result is seconds).

oo

Enabled Wait State:

Because of recovery, the end symptom of many problems is an enabled wait
state. For tracing, the wait state presents particular problems in MVS. SRM
maintains a timer interval that periodically causes a clock comparator
interrupt (code X‘1004’). These external interrupts are recorded in the trace
table. Also, an SRB is dispatched periodically in the master scheduler’s
address space to run a section of SRM code which updates the page frame
tables unreferenced interval counts (UICs). In addition, in an MP/AP
environment there are external calls (code X‘1202’) issued between the two
processors requesting that the receiver look for ready work. These calls will
be followed by a re-dispatch of the no-work wait on the receiving processor.
In short, the wait state is a combination of dispatches of the no-work wait
task, clock comparator interrupts, and SIGP external calls. The IC
(instruction counter) will always be 0.

All this extraneous activity can cause the trace to wrap around and overlay
the important trace entries of the events that led up to the enabled wait state.

Section 2. Important Considerations Unique to MVS ~ 2-69

4. MP|AP Activity:

The communication between the two processors in the MP/AP environment is
traced as the external interrupts are accepted by the receiving processor. An
external interrupt code of X‘1201° is an emergency signal; and an external
interrupt code of X‘1202’ is an external call. (The previous chapter, “Effects
of MP on Problem Analysis,” explains this communication process.)

5. Trace Currency:

Various processes that occur in MVS turn off the MVS trace. The most
prominent of these are GTF and SVC dump. Determine if the trace was
running when the dump occurred: if you are unaware that the trace was not
running when the dump was taken, you might go off on a fruitless chase and
lose considerable time. The trace was still active when the dump occurred if
the CVT + X‘190’ value =X‘07FA’.

Note: When SVC dump turns off the MVS trace, it sets bit 0 on in the ASID
identifier (offset X‘16°) in the current trace table entry.

6. - SVC D Entries:

SVC D is the means by which termination is invoked. In previous operating
systems, SVC D meant abnormal termination. This is not always true in
MVS. RTM2 is the mechanism for normal end-of-task processing as well as
for abnormal termination, RTM2 is invoked via SVC D. Consequently, SVC
D for normal termination is a valid situation and is traced. You can
determine whether SVC D implies normal or abnormal termination by
inspecting the register 1 slot associated with the SVC D entry. If the first
byte contains a X‘08’, RTM2 is being invoked for normal termination and
this is not an error situation. .

MYVS does not allow SVC routines to be invoked from code in one of the
following states: cross memory mode, non-task mode, any lock held, disabled
for I/O or external interruptions, or with any enabled unlocked task mode
FRR established. However, SVC D issued in one of these states is a common
means to enter RTMI1 to invoke recovery. RTM indicators show the SVC
error, and the system trace entries for the SVC and SVC error show the
issuer’s state, but the real problem is why SVC D was issued.

7. Important events not traced:

Since the enabled nowork wait task dispatch entry is now made while
enabled, the CS to obtain a slot in the trace table may be executed, but the
MYVC that moves the entry from PSAWTENT to that slot may never occur.
This results in residual trace entries occurring among the “current” trace
entries which can be of any type.

8. Unit exception I/O interrupt on a 3705 communications controller:
The presence of unit exception conditions from the 3705 is a common
occurrence while running VTAM. This is a normal situation and should not

be considered erroneous. The host processor has issued a set of read
commands to the 3705, and the channel program has been terminated before

2-70 MVS Diagnostic Techniques

<.

Master Trace

all the reads have completed because the NCP did not have enough data to
satisfy each read CCW.

9. GETMAIN, FREEMAIN - SVC X‘A’, SVC X78’:

For SVC X‘A’, inspect the register 1 slot of the associated trace entry. A
value of X‘80’ in the high-order byte indicates GETMAIN; a value of X‘00°
indicates FREEMAIN. SVC X‘78’ uses a code in register 15 (see the
Debugging Handbook.) If a GETMALIN is indicated, the register 1 slot of the
associated re-dispatch of the SVC issuing code can be used to locate the
storage allocated by the GETMAIN process.

10. A GETMAIN for X‘4D4’ bytes is often seen soon after an SVC D is issued:

This is RTM2's request for storage for an RTM2WA and an SDWA for
RTM2. By locating the re-dispatch of RTM2 and inspecting the register 1
slot, you can locate the RTM2WA.

Master trace is useful for debugging problems when you need to know the content
of recently issued messages. Master trace maintains a wraparcund table of the
messages that are routed to the hardcopy log. When a message becomes eligible
for the hardcopy log; it is entered into the master trace table by the
communications task queuing routines. The trace table resides in pageable virtual
storage in the master scheduler’s private area.

The size of the master trace table is specified by the MT operand of the TRACE
command and by the MT = entries in the COMMNDxx member of '
SYS1.PARMLIB. If a size is not specified, the default size is 24K bytes. The
master trace table is created during master scheduler initialization. After system
initialization, master trace may be activated and deactivated by using the TRACE
command.

The master trace table is included in SVC dumps as a part of thé SDATA =TRT
option. The default size of 24K bytes accommodates approximately 336 messages
(with an average length of 40 characters).

To locate the master trace table: field CVTMSER (at CVT +X‘94’) points to
IEEBASEA (master scheduler resident data area) and field BAMTTBL at offset
X‘8C’ in the IEEBASEA points to the master trace table.

When submitting an APAR, the SVC dump may be submitted for the hardcopy
log if the master trace table contains the required messages. For example:

@® The master trace table has wrapped at 9:00.
® A message related to a problem was issued at 9:20.
® An SVC dump is taken at 9:30.

In the example, the required messages are in the dump because the problem
occurred between the time that the master trace table was wrapped and the dump
was taken.

Section 2. Important Considerations Unique to MVS 2-71

Master Trace Table

Master trace data is maintained in a wraparound table that is anchored in the
master scheduler resident data area. The format of the master trace table and
entries is described in the Debugging Handbook.

The table contains the following header and data areas:

TABLE 1D BCURRENT | BSTART | 8END |)
SP | LENGTH WRAP TIME
@WRAP | PROCFLAG | DATA LEN | reserved | | HEADER
, > AREA
WRKMBBO08
RESERVED J
] DATA
| AREA
CURRENT ENTRY | CURRENT ENTRY-1 | |

Where:

TABLE ID

@CURRENT
@START
@END

SP

LENGTH

WRAP TIME

@WRAP

2-72 MVS Diagnostic Techniques

A fullword field with a constant of ‘MTT’ to identify the beginning of the master
trace table.

Address of the first byte of the current (most recently stored) entry.
Address of the first byte of the data area.

Address of the first byte beyond the end of the data area.

Subpool in which this table resides.

Length of the header and data areas combined - the size specified on the TRACE
command. .

Either the time that the table was initialized or the time at which the last table wrap

occurred. The form is:

XX - where IT indicates initialize time.and WT wrap time
HH - hours

MM - minutes

Ss - seconds

T - tenths of a second

Address of the first byte of the last entry stored before the most recent table wrap.
It is initialized to zero and remains so until the first table wrap.

PNy

Fullword field containing the size of the data area of the table.

Sixteen word work area for IEEMB808 and IEEMB809 -- serialized by CMS and

PROCFLAG Processing flags used by IEEMB808.
DATA LEN
reserved Reserved fullword.
WRKMB808
local locks.
RESERVED Reserved four word area.
Master Trace Table Entry

The master trace table entries (located in the data area of the master trace table)
contain the following fields:

HEADER
s > N
FLAGS | TAG | IMMEDIATE DATA | LENGTH | MESSAGE DATA

Where:

FLAGS Halfword containing the flags set by the caller in the parameter list passed to
IEETRACE.

TAG Halfword value indicating the identity of the caller. Values are defined in
macro IEZMTPRM, which maps the parameter list.

IMMEDIATE DATA Fullword containing 32 bits that are defined by the caller. This area is stored
in the table without validity checking by the trace service routine.

LENGTH Halfword containing the length of the message data.

MESSAGE DATA Variable length field containing message data provided by the caller. The

maximum size is the length of the data area less 10 bytes, or 65,535 bytes,
whichever is less.

The table entries are of variable length. If the length of the data is specified as
zero by the caller, only the 10 byte header is entered in the table and used to store
immediate data. The significance of the immediate data is defined by the caller.

Entries are placed into the table from back to front in the data area. Thus the

current entry immediately precedes the entry stored on the previous call to

IEETRACE.

Section 2. Important Considerations Unique to MVS

2-73

The Message Processing Facility Table (MPFT)

By using the SET MPF (message processing facility) system command, you can
suppress messages from being displayed on the operator’s console.

The message processing facility builds the message processing facility table
(MPFT, mapped by macro IEEZB809), which contains an entry for each message
ID to be suppressed. The table includes the following:

@® Table header:

— Subpool number (where the table resides)

— Size of the table (in number of bytes)

— Number of entries in the table following the header
— PARMLIB suffix from which the table was built

— Address of the first entry in the table

— Length of each entry

@® Table entry (one 10-byte entry for each message to be suppressed):
— Message ID
— Length of the message
— Flag byte

The MPFT is located in the common service area (CSA) and is pointed to by field
UCMFMPFP in the UCM (from the fixed extension base).

2-74 MVS Diagnostic Techniques

Miscellaneous Debugging Hints

This chapter is a collection of miscellaneous debugging hints to aid the problem
solver in specific situations not covered elsewhere in this book. It includes the
following topics:

Alternate CPU Recovery Problem Analysis
Pattern Recognition

OPEN/CLOSE/EOV ABENDs

Debugging Machine Checks

Debugging Problem Program ABEND Dumps
Debugging From Summary SVC Dumps

Started Task Control ABEND and Reason Codes
SWA Manager Reason Codes

Alternate CPU Recovery (ACR) Problem Analysis

Alternate CPU recovery (ACR) is the process by which MVS dynamically adjusts
to the unexpected failure of a processor in a multiprocessing (MP) configuration.
ACR is initiated by the failing processor. If the failing processor’s hardware
detects the failure, it issues a malfunction alert (MFA) external signal to another
processor. If the failing processor generates the severe machine check interrupt
(recursive or invalid logout) type, the machine check interrupt handler will initiate
ACR via the SIGP instruction with the emergency signal (EMS) order code,

which generates an external interrupt on the receiving processor.

When a running processor detects that a failing processor is requesting ACR, it
places X‘FF’ in the CSDACR byte (CSD +X‘16’) in the CSD control block. The
byte will be restored to X‘00’ after ACR is complete.

ACR works in three phases: pre-processing, intermediate, and post-processing
phase. Pre-processing is the initialization phase: the running processor copies the
PSA and normal functional recovery routine (FRR) stacks of both processor’s
and places them in the area pointed to from their respective LCCA’s WSACACR
pointer. The WSACACR pointer is located at X*10* beyond the area pointed to
by LCCACPUS. Additionally, LCCAs are marked so that in both processor’s
LCCAs, LCCADCPU points to the LCCA of the failing processor and
LCCARCPU points to the LCCA of the running processor. By means of the
LCCACPUA field in the LCCA, you can determine which processor has failed
and which are still running.

Note that in a storage dump, the physical PSA of the failed processor is the same
as it was when the processor decided that ACR should be initiated. The normal
FRR stack, pointers to other FRR stacks, locks, PSASUPER bits etc. all reflect
the state of the processor at the time it failed. This will be useful for solving
problems in the recovery initiated for the process on the failed processor.

The ACR intermediate phase gets control from the MVS dispatcher, or lock
manager global spin lock routine. In this phase, ACR switches from the process
on one logical processor to the process on the other logical processor. This
switching continues until the RTM1 recovery (routing to FRRs) completes on
behalf of the process on the failed processor. - At this point, the ACR
post-processing phase is entered.

Section 2. Important Considerations Unique to MVS 2-75

ACR post-processing invokes I/O restart (IECVRSTI) to initialize the channel
reconfiguration hardware (CRH) function on a Model 168, or the channel set
switching function on a processor that supports this function, or to mark
outstanding I/O from the failed processor with a permanent error which then
initiates error recovery processing via error recovery procedures (ERPs). Console
switch is invoked via POST and the system resources manager (SRM) is notified
of the loss of the processor. On a system with an MSSF, post-processing invokes
the Service Processor Call SVC (IEAVMSF) to physically vary the processor
offline. Finally, ACR issues message IEA858E ‘ACR - COMPLETE’, and resets
the CSDACR flag to X‘00°.

Note: The 1/O error processing invoked during the ACR process has caused
many of the problems discovered to date. Of significant importance is EXCP I/O
error processing. The following flow describes the non-CRH situation for an
MVS 158 MP system.

1. I/O restart {ECVRSTI) determines all devices that have outstanding requests
at the time of a machine check.

2. IECVRSTI simulates an I/O interrupt for each device that was active on a
failing channel and sets the channel control check and interface control check
(X*00000000 00060000°) bits in the CSW and the pseudo interrupt bit in the
IRT (IRTPINT bit at X‘02’ in IRTENVR). This prevents I0S from
interfacing with the channel check handler (CCH).

3. IECVRSTI passes control to IOS.

4. IOS sets the IOSCOD field in IOSP to X‘74° and schedules IECVPST.

5. IECVPST routes control to the abnormal exit routine.

6. For an EXCP, the EXCP compatibility interface routine receives control.

7. EXCP converts the X‘74’ to X‘7F’ in the IOB.

8. EXCP branches to abnormal end appendage.

9. Abnormal end appendage returns to EXCP, which returns to IECVPST.

10. IECVPST invokes normal ERP processing.

11. If no path remains to a device, subsequent I/O requests (either ERP retry or
normal new requests) are intercepted by IOS and flagged with
I0SCOD =X‘51" and IECVPST is scheduled.

12. IECVPST routes control to the abnormal exit routine.

13. For EXCP requests, the abnormal exit is again the EXCP compatibility
interface routine.

14. EXCP converts the X‘51° to a X‘41’ (permanent error) in the IOB and enters
the abnormal end appendage.

2-76 MVS Diagnostic Techniques

y

Pattern Recognition

15. The abnormal end appendage returns to EXCP; EXCP returns to IECVPST,
which enters the termination routine.

The important point in the preceding discussion is that EXCP changes the ACR
completion codes to conventional error post codes.

The most frequent I/O problems have been:
@® ERP’s abnormal end appendages not coded for a 0 CCW address in CSW.

@ ERP’s abnormal end appendages not recognizing that the last path to a
~ device has been lost (as with asymmetric I/O) and thus going into an I/O retry
loop. .

When analyzing a dump you should always be aware of the possibility of a
storage overlay. System incidents in MVS are often caused by storage overlays
that destroy data, control blocks, or executable code. The results of such an
overlay vary. For example:

® The system detects the problem and issues an abnormal completion code, yet
the error can be isolated to an address space.

@® Referencing the data or instructions can cause an immediate error such as a
specification or op-code exception.

@ The bad data can be used to reference a second location, which then causes
an evident error.

When you recognize that the contents of a storage location are invalid and
subsequently recognize the bit pattern as a certain control block or piece of data,
you generally can identify the erroneous process/component and start a detailed
analysis. This section discusses pattern recognition and potential causes of
storage overlays, and points out common patterns that aid the debugger.

Once you recognize an overlay, analyze the bit pattern. If you do not recognize
the pattern at all, try to determine the extent of the damaged area. Look at the
data on both sides of the obviously bad areas. See if the length is familiar; that
is, can you relate the length to a known control block length, data size, MVC
length, etc.? If so, check various offsets to determine their contents and, if you
recognize some, try to determine the exact control block/data. Even if you do not
recognize the pattern, take one more step. Can you determine the offset from
some base (X) that would have to be used in order to create the bit pattern? If
so, the fact that there is a certain bit pattern at a certain offset (Y) can be helpful.
For example, a BALR register value (X‘40D21C58’) at an offset X‘C’ can indicate
that a program is using this storage for a register save area (perhaps caused by a
bad register 13). Another field in the same overlaid area might trigger
recognition.

Look at the overlaid area and scan for familiar addresses such as device

addresses, UCB addresses, and BAL/BALR register values (fullword with
high-order byte containing some “1”-bits). If you find any of these, try to

Section 2. Important Considerations Unique to MVS ~ 2-77

Low Storage Overlays

determine what components or modules are involved or what control blocks
contain these addresses.

Repetition of a pattern can indicate a bad process. If you can recognize the bad
data you might be able to relate that data to the component or module that is
causing the error. This provides a starting point for further analysis.

Low storage overlays are generally very difficult problems to solve, primarily
because the error is not detected until some time after the error occurs. In order
to reduce the number of these incidents, a low address protection feature exists.
The feature can be enabled or disabled. When the feature is enabled, any attempt
to store into virtual locations 0 through X‘1FF’ (even with PSW key =0) results in
a protection exception. Any routine using a zero pointer as a control block
address will be caught when it attempts to store into the control block (assuming
the control clock is less than X200’ in size).

Several fields are used to control low address protection. Examine the following
fields.

control register 0, bit 3
CVTPRON
PSACROCB
PSACROSYV bit 3

Hardware uses control register 0 bit 3 to determine if the feature is enabled or
disabled. At IPL time, if CVTPRON=B‘I’ (default value), control register 0 bit
3 is set to B‘1” and PSACROCB is set to X‘01° The control register is then saved
in PSACROSV. If CVTPRON =B‘(’, the corresponding fields are set to 0.
PSACROCB is used as a mask byte by the PROTSPA macro when enabling low
address protection. The macro enables low address protection (when the

byte =X‘01’) by altering the value in PSACROSV and loading control register 0
from that field.

The low address protection feature operates on a logical address (that is: prior to
translation and prefixing being performed). Therefore, if a program uses a virtual
address that translates to an address between 0 and X‘1FF’, a protection
exception may not occur. However, the PSW key must be zero in this case. This
method is used by IOS module IECIOSAM to store the channel address word
(CAW) prior to issuing the SIO instruction. IECIOSAM is the only module that
uses the duplex PSA. It is always at location X'FFF000’.

2-78 MVS Diagnostic Techniques

FFFFFF

DUPLEX PSA | <«

X 'FFFO00’

same real storage location
as viewed from any one processor

X'1000'

PSA <

Note: The page at X‘'FFF000’ is not backed by real storage but translates to real
location 0.

The following is critical data in low storage and may be overlaid only when
protection is disabled:

@® Location X‘10° (CVT pointer) should contain a nucleus address. This
location is refreshed by the program check first level interrupt handler and so
is often valid when adjacent locations are bad.

® Locations X*18’ through X‘3F’ (old PSWs) should always contain valid
PSWs.

@® Location X‘4C’ should be equal to location X‘10’.
® Locations X‘58” through X‘7F’ (new PSWs) should contain valid PSWs.

If any of the above statements is not true, consider a low storage overlay.

Further analysis is required to determine what the cause may be. Also consider
that, on a non-prefixed machine, the low storage locations described above can be
overlaid by CCWs for the stand-alone dump program, starting at location X‘10°.
Do not consider this an error situation.

Two common low storage problems are:

@ A register save area starting at location X‘30’. This can happen when an area
of the system saves register status in a TCB at location 0. Or it can be caused
by a routine using PSATOLD for a TCB address when the system is in SRB
mode; this is indicated by PSATOLD =0.

® An SRB/IOSB combination starting at location X‘)’. This can be caused by a
problem in the IOS storage manager. The contents vary depending upon how
many control blocks the code has initialized. Points to consider are:

1. The two blocks might point to each other (X‘1C’ into each).

2. An ASCB address might be at location 8.
3. Addresses of IECVEXCP routines might be at X‘68° and/or X‘6C’.

Section 2. Important Considerations Unique to MVS 2-79

Common Bad Addresses
Common bad addresses are:

@® X‘C0000’, and this address plus some offset. These are generally the result of
- some code using 0 as the base register for a control block and subsequently
loading a pointer from 0 plus an offset, thereby picking up the first half of a
PSW in the PSA.

Look for storage overlays in code pointed to by an old PSW. These overlays
result when 0 plus an offset cause the second half (IC) of a PSW to be used as
a pointer. »

® X'C00’, X‘CE0’, X‘D00’, X‘D08’, X‘D20’, and other pointers to fields in the
normal FRR stack. Routines often lose the contents of a register during a
SETFRR macro expansion and illegally use the address of the 24-byte work
area returned from the expansion.

@ Register save areas. Storage might be overlaid by code doing an STM (Store
Multiple) instruction with a bad register save area address. In this case, the
registers saved are often useful in determining the component or module at
fault. ‘

OPEN/CLOSE/EOV ABENDs

When a dump shows an abend issued from O/C/EOV, the key area to start your
diagnosis in is the RTM2 work area. The failing TCB has a pointer (at

TCB + X‘EQ’) to this area. This work area contains information current at the
time of the abend, the most important being the register contents. Register 4
points to the current O/C/EOV work area. This work area is built by IFGORROA
during problem determination and contains key information about the problem:
the JFCB, 1I0B, DEB and other pertinent fields are all saved in the work area for
use later by the recovery routines. The O/C/EOV work area is documented on
microfiche in each O/C/EOV module. '

The module in control at the time of the abend can be determined from the
“Where To Go” (WTG) table, which is pointed to by register 6 in the RTM?2
work area. The WTG table is contained within another work area called the O.C.
work area. IFGORROA saves a copy of the current DCB in this work area. If
multiple DCBs are involved, the prefix to the DCB work area points to another
DCB work area. These DCB areas are laid out precisely like a DCB. All these
work areas and their prefixes are documented at the end of every O/C/EOV
modtle in the microfiche.

In an MVS environment, O/C/EOV must build these work areas rather than rely
on what is in real storage at the time of the dump. The main task is to find these
areas and interpret their fields using microfiche. A quick way to find these work
areas is to find subpool 230 in the dump. All O/C/EOV data is in this subpool.

Assuming you have all the pertinent information about the failure, the problem

becomes the same as an O/C/EOV problem in OS. One more point: built into the
code is message IEC9991. This message indicates that there is a problem in the

2-80 MVS Diagnostic Techniques

O/C/EOV code that cannot be determined. While you may be able to circumvent
this problem, you should also submit an APAR for it.

Debugging Machine Checks

The machine check interruption is the hardware’s method of informing the MVS
control program that it has detected a hardware malfunction. Machine checks
vary considerably in their impact on software processing. Some machine checks
notify software that the processor detected and corrected a hardware problem that
required no software recovery action (software calls these errors soft errors).
Hard errors are hardware problems detected by a processor but that require
software-initiated action for damage repair. Hard errors also require software
recovery to verify the integrity of the process that experienced the failure.
Obviously, if there are software problems after a machine check, it is more likely
that the machine check was a hard error. It is important to get a feeling for
which software components are affected by particular hardware failures.

The machine check interrupt code (MCIC), located in the PSA (at X‘E8’),
describes the error causing the interrupt. (Refer to Principles of Operation for a
complete description of the MCIC.) The following discussion shows how to find
MCICs and how to interpret them for subsequent software processing. Machine
checks can be found in a LOGREC buffer (LRB), the SYSI.LOGREC data set,
or in the storage area used as a buffer prior to writing records to SYS1.LOGREC
(see the discussion of SYSI.LOGREC analysis in the “Recovery Work Areas”
chapter earlier in this section). Also, a pointer to the LRB that describes the last
machine check that occurred on a processor can be found in that processor’s
PCCA at

PCCALRBYV (PCCA +X°‘A0’). The LRB contains the machine check interrupt
code (MCIC), except when:

® The machine check old PSW is zero. The MCIC is also zero. The
LRBMTCKS bit (field LRBTERM at LRB +X‘20’) is turned on by software.

® MCIC is zero and the machine check old PSW is non-zero. The LRBMTINV
bit (field LRBTERM at LRB+X‘20) is turned on by software.

The MCIC is the principal driver of software processing after a machine check. It
must be examined to determine the actions that MVS should take. The MCIC
contains bits describing the conditions that caused the interrupt. Note that more
than one failing condition can be described by a machine check at one time.
Software performs repair processing for each condition found; software recovery
processing is initiated if any hard error conditions are found (except in the cases
described on the following pages).

Because hard errors require FRR and ESTAE processing, identifying a hard error
is important. Important MCIC bits follow with a description of their hardware
significance and impact on software. A handy MCIC reference matrix, containing
additional machine check and ensuing action-taken information appears at the
back of this section.

Bit 0 (System damage) - The processor is still useable, but damage occurred while
the processor was in the process of changing PSWs or otherwise changing system
control, and thus has lost the associated process or interrupt. Software recovery
routines (FRRs) are entered for this hard error.

Section 2. Important Considerations Unique to MVS 2-81

Bit 1 (Instruction processing damage) - The processor is still useable, but an
instruction has failed to operate as intended. Software recovery is initiated for
this hard error, unless the backed-up bit is on with storage error or key error
uncorrected on refreshable storage (see Bit 16 description).

Bit 2 (System recovery) - The processor detected and corrected a potential
hardware problem. The interrupted process is completely restored by software for
this soft error; no repair is performed and no recovery routines are entered.

Bit 3 (Timer damage) - The interval timer at PSA location X‘50° has failed.
Because MVS does not use this timer, this failure is ignored (indicated as a soft
error).

Bit 4 (Timing facility damage) - Damage has occurred to the CPU timer, clock
comparator, or time-of-day clock. The particular clock facility that is damaged is
described by MCIC bits 46 and 47. A first failure to a facility results in an
attempt to reuse it. Subsequent failures result in taking the facility offline
(described in the PCCA fields PCCATODE, PCCACCE, or PCCAINTE). If no
clock of a particular type remains in the system, any task which requests timing
using that type of clock is sent through software recovery. This is treated as a
soft error for the process current on the processor at the time of the interrupt.

Bit 5 (External damage) - Damage has occurred to a unit external to the
processor. MVS expects more information in a channel check I/O interrupt. This
is treated as a soft error.

Bit 7 (Degradation) - The system has detected that elements of the high-speed
buffer (cache) or translation look-aside buffer have had bit (parity) errors. The
bad elements are automatically reconfigured out of the buffer. Once a predefined
threshold of degradation machine checks is reached, the buffer and the translation
look-aside buffer are reset, thus making the entire buffer available again. This
threshold has a default value of 3 which can be changed by the operator via the
MODE command. Until then, the system might perform at a reduced rate
because of increased storage access time (cache element deletion) or increased time
to translate virtual addresses (because of translation look-aside buffer element
deletion). However, because no damage has been done to any software process or
data, this soft error is merely recorded in SYSI.LOGREC. The system state at
the time of the error is re-established, ignoring the occurrence of the buffer bit
error. It is treated as a soft error and no software recovery is initiated.

Bit 8 (Warning) - Damage is imminent; there is a cooling loss or a power drop,
etc. Software determines if the error is transient or permanent. If it is transient,
the warning interrupt is treated as a soft error. If permanent, an attempt is made
to invoke the power warning feature software, to record the system state at the
time of this hard error.

Bit 16 (Storage error uncorrected) - There is a block in storage with a double bit
error that is located at the real, prefixed address stored in PSA location X‘F8’. If
the frame’s page is refreshable, that is, unchanged, pageable, and in the current
address space, it is marked invalid so a future reference will cause a fresh copy to
be paged into a new frame. (Note: More than one error can occur before the
page goes offline.) In all cases, an attempt is made to take the damaged frame
offline (unless the frame is in the nucleus). For unchanged nucleus frames, the
page is refreshed from a copy paged-out at NIP time. When a storage error

2-82 MVS Diagnostic Techniques

=

uncorrected condition occurs in conjunction with a system recovery or external
damage error, it is treated as a soft error and no recovery routines are entered. If
the storage error occurs in conjunction with instruction processing damage when
the backed-up bit (bit 14) and storage logical validity bit (bit 31) are on, and the
frame’s page is refreshable, the error is treated as soft and no recovery routines
are entered. ‘

Any other occurrences of storage error uncorrected are treated as hard errors and
software recovery is initiated for the error.

Bit 17 (Storage error corrected) - A single-bit storage error was detected and
successfully corrected by hardware. Software treats this error as a soft error.
This error sometimes appears in conjunction with system recovery (bit 2). For a
double bit storage error, see bits 16 and 19.

Bit 18 (Storage key error uncorrected) - Hardware has detected a bit error in a

~ storage key. Software attempts to reset the storage key to its original value. If

the key is successfully reset, and the storage key error occurs in conjunction with
instruction processing damage when the backed-up bit (bit 14) and the storage
logical validity bit (bit 31) are on, the error is treated as soft and no recovery
routines are entered. When the storage key error occurs in conjunction with a
system recovery or external damage error, it is also treated as a soft error and no
recovery routines are entered. Change bits are set to one in case the frames have
been altered. Any other occurrences of storage key error are treated as hard
errors and software recovery is initiated for the error.

Bit 19 (Double bit storage error) - If the storage error corrected bit (bit 17) is also
on, bit 19 indicates that a double bit storage error was detected and successfully
corrected by hardware. If the page containing the data can be paged, software
obtains a new frame, moves the data from the frame that has the indicated double
bit error correction into the new frame, and then marks the frame that had the
double bit error offline. If the page containing the data cannot be paged,

software marks the associated frame as intercepted to go offline, which causes the
frame to be taken offline when the page is freed.

In addition to these error description bits there are other MCIC fields that
describe the time-of-occurrence of the machine check interrupt, or the validity of
the registers, PSW, and other data logged out during the machine check
interruption process.

The two time-of-occurrence bits are bits 14 and 15. The backed-up bit (bit 14),
when set to 1, indicates that the machine check occurred before actual damage
occurred. The delayed bit (bit 15) is set to 1 when the processor has been
disabled for one or more of the interrupt conditions described in the MCIC. The
processor had been processing after damage was detected.

Validity bits describe the validity of the associated field logged out during the
machine check interrupt. If a validity bit is 0, the associated data logged out is
incorrect. Validity bits are:

Bit 20 (PSW EMWP mask validity)

Bit 21 (masks and key validity)

Bit 22 (program mask and condition code validity)

Bit 23 (instruction address of machine check old PSW validity)

Section 2. Important Considerations Unique to MVS 2-83

Bit 24 (failing storage address validity)

Bit 25 (region code validity)

Bit 27 (floating point register validity)

Bit 28 (general purpose register validity)

Bit 29 (control register validity)

Bit 30 (processor model-dependent logout validity)
Bit 46 (CPU-timer validity)

Bit 47 (clock comparator validity)

Additionally, the storage logical validity bit (bit 31 set to 1) indicates that all store
operations (that were to occur before the machine check interrupt) have
completed.

The following chart attempts to show the action taken for each error condition.
For example: In column 6 the condition involves recursive machine checks, or, a
check stop, or, invalid logout. The condition originated on either a Model 158 or
a Model 168 attached processor system, and did not involve the APU. The action
taken resulted in a disabled wait. Where multiple errors do exist, appropriate
repair action is taken for all errors, and recovery action is taken for the most
Severe error.

With the exception of I/O reserve outstanding, the status of each of the conditions
can be determined from examination of MCH SYS1.LOGREC records.

e

2-84 MVS Diagnostic Techniques

CONDITION 2|3|4|5]|6 819 110 (11112 (13(14 |16 (16|17 18|19 | 20| 21|22 23|24 25| 26|27 |28 29 | 30
Recursion NRRRIG
Check Stop XX X0 X} X
Invalid Logout XN XA XN X
Subclass (MCIC) System Damage
Inst. Proc’g. Damage X|X|X][|X
System Recovery X
Timer Damage X
Clock Damage X|X|X|X]|X]|X
External Damage X
Degradation X
Warning X
Time Backed Up X | X [e]
Delayed o0
Type Stor Err Uncorr X X X|X|X|X]|X
Stor Err Corr X
Key Error X XX
Key Err Unresetable X | X
Validity PSW (WP, MS, PM, 1A) X i X o
Failing Stor Addr X [X 0
Registers (FP, GR, CR} XX (o]
Logout
Storage Logical X | X
CPU Timer O|Oo| X[X]|X|X
Clock Comparator X|X]0jOjXx|X
Location Pageable X (XY X X | X X X
Nucleus X X X X
LSQA, SQA X (X X (xJ
Fixed X X X
V=R \X) X
Qutside Curr. Memory 0|0 (o] X
Storage State Changed X
Unchanged X X X X
System V14
MP X{X{X
AP X[X
Processor 158 X | XXX
168 X X)X
APU X! 0
1/0 Reserve Outstanding X
Occurrence st X X X
2nd X X X
ACTION TAKEN
Reset timing component X X X
Mark CPU Timer perm. damaged X
Mark Clock Comp perm. damaged X X
Mark TOD Clock perm. damaged X
* Invoke PWF if available X
Activate CRH X
Take frame offline immed. X X
Take frame offline when avail. X | X X X X
Invalidate Page Tabie Entry X X
Repair SPF ‘Kev X X
Disabled Wait X X
Restartable Wait X
Enter RTM for Recov.” X{X|X|X XX X|X|X]|X]|X XX [{xX{X|X
Record X|X{X]|X X{X [X[XIX]PX]X]X]X[X]X X[XPX[X[X]X]|X{X[X]|X|X
Take Processor offline XX X{X
Resume at MCOPSW X{Xx X{X| X[X[X]X[X X
Refresh the nucleus page X
*Possible loss of Job.
Notes:

o Key. X = Condition must be present
0 = Condition must not be present
©= The action is the same no matter which condition represents the situation

Section 2. Important Considerations Unique to MVS ~ 2-85

Debugging Problem Program Abend Dumps
| The following steps may provide some initial assistance in this debugging process:
1. Locate the RTM2 work area (RTM2WA), which is pointed to by the

TCBRTWA field in the TCB and the ESART2WA field in the abend SVRB.
It provides a summary of the abend as follows:

Name Offset Explanation-

RTM2CC 1D Abend completion code.

RTM2ABNM 8C Abending program name. This is the name of a load module or an
external entry point (ALIAS) in the load module.

RTM2ABEP 94 Abending program address (the beginning of the load module or
an ALIAS in the load module).

RTM2EREG 3C Registers at time of error.

RTM2APSW - 7C EC PSW at time of error.

" RTM2ILCI 85 Instruction length code for PSW at time of error.

RTM2ERAS 36C Error ASID.

" RTM2TRCU 37C Address of current trace entry for saved system trace table.
RTM2TRFS 380 Address of first trace entry for saved system trace table.
RTM2TRLS 384 Address of last trace entry for saved system trace table.
RTM2ERRA B4 Error type.

Notes:

a. The RTM2ABNM and RTM2ABEP fields do not contain informatibn
tibout the abending program if an SVC has abended.

b. In a recursive abend (an abend occurring while the original abend is being
processed by an ESTAE or other recovery routine), more than one
RTM2WA may be created, and the RTM2PREV or RTM2PRW A field
points to other RTM2W As associated with the problem. The system
diagnostic work area (SDWA) is pointed to by the RTM2RTCA field
during recovery routine processing, and has register contents at time of
error stored in the SDWAGRSYV field. These register contents may differ
from those in the RTM2W A after a recursive abend.

2. To find the abend code and its explanation, look at the completion code at
the top of the abend dump. A user completion code is printed as a 4-digit
decimal number and a system completion code is printed as a 3-digit
hexadecimal number.

If the user code is non-zero, a user program has specified the completion code
in an abend macro instruction. Looking up the name of the abending
program in the RTM2WA, and investigating why the program would issue
this completion code, should lead directly to the cause of the error in the user
program. :

2-86 MVS Diagnostic Techniques

Usually the system code is non-zero. This indicates that a system routine
issued the abend but a problem program might indirectly have caused the
abnormal termination. For example, a problem program might have
branched to an invalid storage address, specified an invalid parameter on a
macro instruction, or requested too much storage space.

Often the explanation of the system code gives enough information to
determine the cause of the termination. The explanations of system
completion codes, along with a short description of the action for the
programmer to take to correct the error, are contained in Message Library:
System Codes.

To find the name of the abending program look in the RTM2 work area.
System routines usually start with the letters A or I; and module prefixes for
system routines are listed in the Debugging Handbook Volume 1.

Note: 1If the RTM2 work area is not available, or if the name of the
abending program is not given in the RTM2 work area, the routine name can
be obtained from the contents directory entry (CDE) queued to the program
request block (PRB). If the ABEND dump was taken to a data set (or to
SYSOUT) specified with a SYSABEND, SYSMDUMP, or SYSUDUMP DD
statement, the last two RBs are SVRBs for the SNAP and SYNCH SVCs
used to take the dump. The SVC numbers can be checked by obtaining the
hexadecimal SVC number from the interruption code of the WC-L-IC field in
the RB. The Debugging Handbook contains a list of SVC numbers. The
SNAP SVC is hexadecimal ‘33’, and the SYNCH SVC is hexadecimal ‘0C’.
The RB for the program that caused the abend is immediately before these
two RBs.

CSECTs within load modules in the private area of an address space can be
located using a linkedit map produced by the AMBLIST service aid.
CSECTs in load modules in the nucleus, FLPA, or PLPA can be located
using a nucleus or link pack area map, also produced by AMBLIST.

To find the instruction that caused a program interrupt (program check)
completion code (0Cx) in a problem program, examine the PSW at the time
of error. It is at the top of the abend dump, in the RTM2 work area, and in
the RB for the program that caused the abend. The instruction address field
in the PSW contains the address of the next instruction to be executed.

The length of the abend-causing instruction is printed following the
instruction length code’s title ‘ILC’ at the top of some abend dumps. It is
also located in the RTM2ILCI field (see the RTM2 work area), and is
formatted in the third and fourth digits (00xx0000) of the WC-L-IC field in
the PRB. The address of the instruction that caused the termination can be
found by subtracting the instruction length from the address in the PSW.

Subtract the program address found in the RTM2WA (and in the last PRB)
from the instruction address. The resulting offset can be used to find the
‘matching instruction in the abending program’s assembler listing for this
CSECT.

Section 2. Important Considerations Unique to MVS 2-87

5. To find the cause of a program interrupt, check the explanation of the system
completion code and the instruction that caused the interrupt. Also check the
registers from the time of error which are saved in the RTM2WA and in the
SVRB following the RB for the program that caused the abend. The
formatted save area trace can be used to check the input to the failing
CSECT.

6. To find the cause of an abend code from an SVC or from a system 1/O
routine, check the explanation of the system completion code, then find the
last instruction executed in the failing program and examine the related SVC
and I/O entries in the trace table or GTF trace records.

The last PRB in the formatted RBs has a PSW field containing the address of
the instruction following the instruction that issued the SVC. For I/O
requests, check the entry point address (‘EPA’) field in the last PRB. The
formatted save area trace gives the address of the I/O routine branched to,
and the return address in that save area is the address of the last instruction
executed in the failing program.

The trace information can be checked for SVC entries that match the
formatted SVRBs, or for I/O entries issued from addresses in the failing
program. The trace information is formatted in the dump if the installation
has specified it as a dump option. If the system trace table is not formatted,
look in the RTM2 work area for pointers to the copy of the system trace
table that was saved from the time of the error. Location X‘54°, which is the
FLCTRACE field in the prefixed save area (PSA), points to the system trace
table header. The system trace table is frequently overlaid with entries for
other system activity by the time the dump is produced.

If the dump contains trace records, begin at the most recent entry and
proceed backwards to locate the most recent SVC entry indicating the
problem state. From this entry, proceed forward in the table. Examine each
entry for an error that could have terminated the SVC or I/O system routine.
The format of system trace table entries is described in the Debugging
Handbook under the heading ‘TTE Trace Table Entry.” The format of GTF
trace records is also described in the Debugging Handbook.

7. Ina cross memory environment, many services are requested by use of the
Program Call (PC) instruction rather than by SVCs or SRBs. When an abend
is issued by the PC routine, it can be confusing trying to identify the caller
and exactly where the PC instruction was issued. This is because the RB old
PSW contains the instruction address of the PC routine issuing the abend and
the abend SVRB contains the registers of the PC routine.

To determine if a program is in cross memory mode, examine the SASID and
PASID fields in the XSB control block. If they are not equal, the program is

executing in cross memory mode. To locate the XSB:

® In a formatted dump, the XSB is printed following the RB with which it
is associated.

® In storage, field RBXSB (RB-X‘20°) points to the XSB.

2-88 MVS Diagnostic Techniques

In cross memory mode, you can determine the caller of a PC routine by
examining the PCLINK stack. To locate the PCLINK stack element
(STKE):

® In a formatted dump, the STKEs are printed following all of the RBs. If
there is more than one STKE, the pointer to the one you want is
contained in field XSBSTKE (XSB + X‘18’) of the XSB associated with
your RB.

® In storage, field RBXSB (RB-X20) points to the XSB and field XSBSEL
(XSB + X‘1C’) points to the current STKE.

Important ﬁelds in the STKE are:

® STKERET (STKE+X‘18’) - contains the return address of the caller of
the PCLINK service.

® STKEPRI1S5 (STKE+X‘1C’) - contains parameter register 15 passed to
the PC routine.

@® STKEPRMO (STKE +X‘20’) - contains parameter register 0 passed to the
PC routine.

® STKEPRMI (STKE +X‘24’) - contains parameter register 1 passed to the
PC routine.

® STKESA (STKE +X‘14’) - contains the address of the previous save area
passed by the caller of the PC service.

Debugging From Summary SVC Dumps

The summary dump area formatted by the SUMDUMP option of SDUMP
should contain the most current data relevant to the problem present in the dump.
It is strongly recommended that the SUMDUMP output be reviewed prior to
investigating the usual portions of the dump. The SUMDUMP option provides
different output for SVC and branch entries. For example, branch entries
generally dump PSA, LCCA, and PCCA control blocks, and SVC entries
generally dump RTM2WA control blocks. Each output type is indicated by the
header “----tttt---- RECORD ID X‘nnnn’,” where #t¢t is the title for the type of
SUMDUMP output, and »nnnn is the hexadecimal record identifier assigned to the
type. The record id values are described in the table below. They are also
described by the IHASMDLR mapping macro in the Debugging Handbook.

Section 2. Important Considerations Unique to MVS ~ 2-89

SUMDUMP Output For SVC-Entry SDUMP

The following table summarizes the SUMDUMP output types for an SVC entry

to SDUMP:

SVC-ENTRY TABLE

Record ID Mapping Fields used to Dump
Dec Hex Title Macro PSW or Register Areas
4 4 TRACE TABLE TTE

46 2E SUMLIST RANGE - -

48 30 REGISTER AREA - -

49 31 PSW AREA - -

53 35 NORMAL DATA END - -

57 39 RTM 2 WORK AREA IHARTM2A RTM2NXTI
RTM2EREG
58 3A RTM2WA TRACE TAB TTE -

60 3C ASID INFO -

For an SVC entry to SDUMP, the SUMDUMP output can contain information
that is not available in the remainder of the SVC dump if options such as region,
LSQA, nucleus, and LPA were not specified in the dump parameters.

For each address space that is dumped, the SUMDUMP output is preceded by a
header with the ASID, plus the jobname and stepname for the last task created in
the address space. The SUMDUMP output contains RTM2 work areas for tasks
in address spaces that are dumped. Many of the fields in the RTM2WA provide
valuable debugging information. (See “Debugging Problem Program ABEND
Dumps” for more details.)

Each RTM2WA is followed by ‘RTM2WA TRACE TAB’ output (record id
X*3A%), if there is a copy of the system trace table associated with the RTM2WA
(RTM2TRCU, RTM2TRFS, and RTM2TRLS fields are non-zero). The current
entry in the trace table copy is pointed to by RTM2TCRU (offset 37C) in the
associated RTM2 work area. System trace table entries are mapped by the TTE
(Trace Table Entry) section in the Debugging Handbook.

Each RTM2WA is also followed by ‘PSW AREA’ output (record id X‘31°). A
PSW area, consisting of the instruction pointed to by the RTM2NXT]1 field in the
EC PSW saved in the RTM2WA, and the preceding instruction with length from
the RTM2ILCI1 field, is dumped if the instructions can be accessed.

After information for all RTM2WAs associated with a task is dumped, ‘PSW
AREA’ (record id X‘31°) and ‘REGISTER AREA’ (record id X*30”) output
appears. This consists of 2K of storage before and after each valid unique
address pointed to by the PSW and the registers from the time of the error
(RTM2NXT1 and RTM2EREG fields) from all the RTM2 work areas. Up to 32
unique addresses can be dumped for each task. Register addresses less than 2K
are not dumped because they are considered to be counters. If the storage that is
2K before and after an address cannot be accessed, a length of 300 bytes is tried.
If that amount of storage cannot be accessed, the address’ record entry appears
with a zero length.

‘TRACE TABLE’ output (record id X‘04’) appears if the first address space
dumped has no trace table saved in an RTM2 work area and the system trace was

2-90 MVS Diagnostic Techniques

active. The output includes the header (pointers to the current, first, and last
entries) and the entries in the system trace table. System trace table entries are
mapped by the trace table entry (TTE) described in the Debugging Handbook.

‘SUMLIST RANGE’ output (record id X‘2E’) appears at the beginning of the
SUMDUMP output if the SUMLIST keyword was specified in the SDUMP
macro instruction.

SUMDUMP Output For Branch-Entry SDUMP

The following table summarizes the SUMDUMP output types from a branch
entry to SDUMP:

BRANCH-ENTRY TABLE

Record ID Mapping Fields used to Dump

Dec Hex Title Macro PSW or Register Areas:

1 1 PCCA THAPCCA -

2 2 LCCA IHALCCA -

3 3 PSA IHAPSA FLCIOPSW, FLCPOPSW
FLCEOPSW, FLCROPSW

4 TRACE TABLE TTE -

5 FRR STACK THAYSTAK -

6 GWSA PAGE IO ERR - -

7 GWSA GET/FREEMAIN - -

8 GWSA RSM - -

GWSA RSM SUSPEND
GWSA MEM SWITCH
GWSA STATUS A
GWSA SRM - -
GWSA MEM TERM . -
GWSA ENQ/DEQ
GWSA STOP/RESTRT
16 10 GWSA IEAVESCO - -
17 11 CWSALOW-LVLCMN - -
18 12 CWSAGTF - -
19 13 CWSASRM - -
20 14 CWSA TIMER - -
21 15 CWSA ACR - -
22 16 CWSA RTM/MACHK - -
23 17 CWSAIOS FLIH . -
24 18 CWSA DISPATCHER - -
25 19 CWSA MFI - -
26 1A CWSA ABTERM - -
27 1B CWSA I/O RESTART - -
28 1C CWSA STATUS - -
29 1D CWSA SUPR REPAIR - -
30 1E CWSA RTM-CCH ; .
31 IF LWSALOW@LVLCMN - -
32 20 LWSA VALID'Y CHK - .
33 21 LWSARTM - -
34 22 LWSA SDUMP - -
35 23 LWSA ABTERM - -
36 24 LWSACIRB - -
37 25 LWSA STG2 EXT EF - -
38 26 LWSA EXIT (SVC3) - -
39 27 LWSA POST - .
40 28 LWSA WAIT - -
41 29 LWSA STATUS - -
42 2A LWSA STAE - -
43 2B LWSA EVENTS - -
44 2C LWSARSM - -
45 2D LWSA ASCB CHAP - -
4 2E SUMLIST RANGE - -

[
[

—
=
THOOW» Y ®1aun ks

Section 2. Important Considerations Unique to MVS 2-91

BRANCH-ENTRY TABLE (Continued)-

Record ID Mapping Fields used to Dump

Dec Hex Title Macro PSW or Register Areas:
47 2F INT HANDLER SA IHAIHSA IHSAGPRS

48 30 REGISTER AREA - -
49 31 PSW AREA -
50 32 GBL WSA VEC TABL IHAWSAVT -

(WSAVTG)
51 33 CPUWSAVECTABL IHAWSAVT

(WSAVTC)
52 34 LCLWSAVECTABL IHAWSAVT

(WSAVTL)
53 35 NORMAL DATAEND -

54 3 CWSA ASM DIE -

55 37 CWSA ASM SRB@1/O - -

s6 38 SDWA IHASDWA SDWAGRSV
60 3C ASID INFO - -

The SUMDUMP output for a branch entry to SDUMP might not match the data
that is at the same addresses in the remainder of the dump. The reason for this is
that the SUMDUMP is taken at the entry to SDUMP, and while the processor is
disabled for interrupts. The system data in the remainder of the dump is often
changed because other system activity occurs before the dump is complete. The
SUMDUMP output is preceded by a header with the ASID for the failing address
space.

From a branch entry into SDUMP, the SUMLIST range and trace table output is
handled similarly to that from an SVC entry. However, SUMLIST addresses
must point to areas that are paged-in or they cannot be dumped.

The PSA, LCCA, and PCCA are dumped for each alive processor (record ids
X03’, X‘02’, and X‘01’ respectively).

The interrupt handler save area (IHSA - record id X‘2F’) is dumped for the
current address space. This save area includes the current FRR stack for
suspended address spaces.

The system diagnostic work area (SDWA - record id X‘38’) is dumped for the
current error if the RTM1 work area is currently valid and being used.

Unique register contents are obtained from the IHSA and the current SDWA.
Each unique register value is used as an address and storage is dumped from 2K
plus and minus this address for a total of 4K each. These ‘Register Areas’ are
printed with record id X*30°.

The Super FRR Stack (record id X‘05’), including RTM1 work areas are dumped.
The global, local, and processor work save area vector tables (record id X‘32’,
X‘34’, and X‘33’ respectively) are dumped. The save areas pointed to by these
save area vector tables are also dumped. The branch-entry table at the beginning

of this description lists the record ids for each work save area.

2K of storage on either side of the address portion of the I/O old PSW, the
program check old PSW, the external old PSW, and the restart old PSW saved in

2-92 MVS Diagnostic Techniques

the PSA for all processors, is dumped. These ‘PSW Areas’ are printed with
record id X‘31".

Note: The SUMDUMP output from a branch entry to SDUMP only contains
areas that were already paged-in when the SUMDUMP was taken.

Started Task Control ABEND and Reason Codes

In case of an irreparable error, the started task control (STC) routines issue these
ABEND codes:

0B8 -

0B9 -

OBA -

An error occurred while STC routines were processing a START, MOUNT, or LOGON
command.

In each case, the command task is terminated; for a START or MOUNT command, the STC
routines issue message IEE8241.

The following error codes can appear in register 15 at the time of the ABEND:

04 - Module IEEPRWI2 or IEFJSWT detected an invalid command code in the CSCB; the
command code was incorrect for a START, MOUNT, or LOGON command.

08 - Module IEESB60S5 invoked IEFAB4FC (an Allocation routine) to build a TIOT for
the START, MOUNT, or LOGON task; IEFAB4FC returned control to IEESB605
with a return code indicating failure.

12 - Module IEESB605 invoked IEFJSWT (an STC routine) to write the internal JCL text
for the START, MOUNT, or LOGON command into system data set; IEFJSWT
returned control to IEESB605 with a return code indicating that it failed in its attempt
to open the data set.

16 - Module IEEPRW12 received an undefined return code from the system address space
initialization routine. The defined codes are 0 and 4.

20 - Module IEEPRWI2 requested a SYSEVENT TRANSWAP (via the POST macro)
and received a nonzero completion code in the ECB.- This indicates that the address
space cannot be made nonswappable.

Module IEESB605 invoked the master subsystem via the subsystem interface to determine
whether a START command was issued to start a subsystem; an error occurred during
master subsystem processing.

The command task is terminated; for a START or MOUNT command, IEESB60S issued
message IEE8241.

Module IEESB605 invoked the master subsystem via the subsystem interface to determine
whether a START command was issued to start a subsystem; an error occurred during
subsystem interface processing.

The command task is terminated; for a START or MOUNT command, IEESB60S issues
message IEE824I. :

Section 2. Important Considerations Unique to MVS 2-93

SWA Manager Reason Codes

In case of an irreparable error, the SWA manager routines issue a (B0 ABEND.
Before abending, both object modules IEFQB550 and IEFQBSSS5 place a code in
register 15 indicating the exact cause of the error.

These are the error codes that can appear in register 15.
04 - The routine that called SWA manager requested an invalid function.

08 - The routine that called SWA manager passed an invalid SWA virtual address (SVA). Either the
SVA does not point to the beginning of a SWA prefix or the SWA prefix has been destroyed.

0C - A SWA manager routine has attempted to read a record not yet written into SWA.

10 - Either IEFQBSSO (move mode module) has attempted to read or write a block which is not 176
bytes or IEFQBS555 (locate mode module) has attempted to assign a block with a specified length
of 0 or a negative number.

14 - The routine that called SWA manager has specified an invalid count field. For move mode, an
invalid count is 0 for a READ, WRITE, or ASSIGN function; an invalid count for
WRITE/ASSIGN is 00.

18 - The routine that called SWA manager by issuing the QMNGRIO macro instruction specified
both or neither of the READ or WRITE options.

1C - The routine that called SWA manager was attempting to write into a SWA block for the first
time; it either passed a nonexistent ID or failed to pass one at all.

20 - IEFQBS5SS has attempted to write a block using an invalid pointer to the block.

2-94 MVS Diagnostic Techniques

Additional Data Gathering Techniques

This chapter describes additional techniques for gathering data and circumventing
certain system problems. The superzaps should be checked out before they are
applied to your system. Displacements vary according to release level and PTF
activity.

The examples were deliberately kept simple and are designed to illustrate a
technique rather than to be practical in themselves.

CAUTION: Extreme care must be used when you are considering a system
alternation in order to gather additional data abotit a problem. None of the
Superzaps described in this chapter should be applied before the system
programmer has verified the logic being zapped and the trap logic itself.
Remember if any one location or offset within the module or trap changes, all
offsets and base registers must be verified.

This chapter contains the fdllowing topics:

Using the CHNGDUMP, DISPLAY DUMP, and DUMP Commands
How to Print Dumps

How to Automatically Establish System Options for SVC Dump
How to Copy PRDMP Tapes

How to Rebuild SYS1.UADS

How to Print SYS1.DUMPxx

How to Clear SYS1.DUMPxx Without Printing

How to Print the SYSI.COMWRITE Data Set

How to Print an LMOD Map of a Module

How to Re-create SYS1.STGINDEX

Software LOGREC Recording

Using the PSA as a Patch Area

Using the SLIP Command

System Stop Routine

How to Expand the Trace Table

Using the CHNGDUMP, DISPLAY DUMP and DUMP Operator Commands

A dump obtained from MVS contains those storage areas specified in the dump
request and those defined as system defaults in SYS1.PARMLIB for
SYSABEND, SYSMDUMP, and SYSUDUMP. Normal system defaults are:

SYSABEND: CB, ENQ, TRT, ALLPA, SPLS, LSQA, PSW, REGS, SA, DM, IO, and ERR
SYSMDUMP: LSQA, NUC, RGN, SQA, SWA, and TRT

SYSUDUMP: CB, ENQ, TRT, ALLPA, SPLS, PSW, REGS, SA, DM, IO, and ERR

For an SVC dump, the normal system defaults are SQA, ALLPSA, and
SUMDUMP.

Section 2. Important Considerations Unique to MVS 2-95

The CHNGDUMP command is used to dynamically alter the options specified
originally by SYS1.PARMLIB or by previous CHNGDUMP commands. Dump
mode may be set to ADD, OVER, or NODUMP. System action for each setting
is: ‘

ADD - merges the options specified on the dump request with the options in the system dump
options list.

OVER - ignores the options specified in the dump request and uses only the options in the
dump options list.

NODUMP - ignores the request and does not dump.

To determine the current system dump options, use the DISPLAY DUMP,
OPTIONS command. If an error is made while specifying the CHNGDUMP
command, the system rejects the command and issues an error message.

The topic “How to Automatically Establish System Options For SVC Dump,”
which appears later in this chapter, describes how to issue the CHNGDUMP
command during IPL. See Operator's Library: System Commands for the format
of the CHNGDUMP command.

The DISPLAY DUMP command is used for the following:

@ To display the effects of the CHNGDUMP command or to determine the
current system dump options. (DISPLAY DUMP,OPTIONS)

® To determine which dump data sets are full and which are available.
(DISPLAY DUMP,STATUS)

See Operator’s Library: System Commands for the format of the DISPLAY
DUMP command.

The DUMP command must be used carefully if the desired dump is to be
obtained. For instance, the following typical error can occur when requesting a
dump. The operator enters DUMP COMM = (title). The system responds with
message IEE094 requesting the dump parameters. If the operator replies ‘U’ to
this message, the system dumps the current address space which is the master
scheduler address space. The operator must reply with ASID, Jobname, or
TSOname. See Operator’s Library: System Commands for the format of the
DUMP command.

2-96 MVS Diagnostic Techniques

<

How to Print Dumps

The PRDMP control statements can be used to minimize the size of the output
produced from a stand-alone dump and still keep the number of reruns to a
minimum. This section discusses the DD statemenis and selected control
statements used in the following example:

//ASIDDMP JOB MSGLEVEL=1
// EXEC PGM=AMDPRDMP
//PRINTER DD SYSOUT=A
//SYSPRINT DD SYSOUT=A
//TAPE DD UNIT=TAPE,LABEL=(1,NL),VOL=SER=ABCTPE,DISP=0LD
//SYSUT1 DD UNIT=251,SPACE=(CYL, (20,1)) ,DISP=NEW
//* PRINT STORAGE=ASID(X)=(X,X,X,X,X,X) IS PROPER FORMAT
CVTMAP
CPUDATA
SUMMARY
QCBTRACE
SUMDUMP
LPAMAP
FORMAT
EDIT
PRINT CURRENT, SQA
PRINT STORAGE=ASID(X)=(XXXX,XXXX,XXXX,XXXX)
PRINT JOBNAME=(jobnames)
PRINT REAL=(XXXX,XXXX)
ASMDATA
END

See SPL: Service Aids for a complete description of PRDMP DD and control
statements.

The PRINTER DD statement defines the output data set for the dump itself. It
should be directed to a SYSOUT class as shown.

The SYSPRINT DD statement defines the data set for PRDMP messages, etc.

The TAPE DD statement defines the input data set to PRDMP. It can define
one of the SYS1.DUMPxx data sets, a stand-alone dump tape, or a GTF output
data set on either tape or DASD.

The SYSUT1 DD statement defines work space to PRDMP. It can be used to
define the input data set. It is not required if the input data set is defined by the
TAPE DD statement. It does, however, significantly enhance the performance of
PRDMP when it is used in conjunction with the TAPE DD statement and when
the input is a tape data set.

The SPACE parameter is determined by the size of the dump. Generally 5
cylinders or 95 tracks or 285 4104 records should be specified for each megabyte
of real storage dumped by SADMP.

Control Statements

The placement of the control statements determines the sequence in which the

dump is printed. Refer to the “Dump and Trace Formats” section of the
Debugging Handbook for examples of how these statements format a dump.

Section 2. Important Considerations Unique to MVS ~ 2-97

Note: To reduce the volume of output, select only those PRDMP control
statements that provide the desired control blocks and output.

The following statements can be specified with PRDMP:

CVTMAP - formats the CVT and can be an aid in finding other significant
control blocks in the system.

CPUDATA - formats the CSD, PSA, PCCA and LCCA for each active
Processor.

SUMMARY - defines and prints the dump ranges of the dump, active processor,
active tasks, etc.

QCBTRACE or GRSTRACE - formats the ENQ/DEQ control blocks in use at
the time the dump was taken.

SUMDUMP - locates and prints the summary dump data provided by SVC
dump. It should be used on all SVC dumps.

LPAMAP - provides a listing of the modules on the link pack area list. It
identifies the entry point address of those modules and their length. It does not
identify SVC modules since they are found by the SVC table.

The FORMAT statement can produce voluminous data depending on the number
of address spaces defined at the time the dump is taken.. It produces the .
formatted TCB summary showing the abend completion codes for each TCB in
the system and the global and local SPLs.

The EDIT statement formats and prints the GTF buffers (that is, all internal trace
buffers or those external trace buffers that have not been written to the TRACE
data set) if GTF is active at the time the dump is taken. If GTF is not active,
only an error message is printed.

The PRINT statement can be used several ways:

@® PRINT CURRENT,SQA - should be included in the initial run of PRDMP.
It formats and prints the address space and task-related control blocks of the
address space active at the time the dump is taken. SQA should be printed
for the valuable data it contains such as trace table, and LOGREC buffers.
PRINT CURRENT prints only the current address space of the processor
from which the SADMP program was IPLed; except in cross memory mode,
PRINT CURRENT also includes the home, secondary, primary, and CML
address spaces.

® PRINT NUC,CSA - should not be included in the initial run of PRDMP
because of the volume of data it produces. Once a problem is suspected in
this area, the PRDMP program should be rerun specifying only these
parameters.

® PRINT STORAGE = ASID(x) = (xxxx,xxxx) - should not be included in the
initial run of PRDMP. Once a problem is isolated to an address space or a
range of storage addresses, rerun PRDMP specifying only these parameters.
Several ASIDs and several address ranges can be requested with one run of

2-98 MVS Diagnostic Techniques

_—

PRDMP. PRDMP does not duplicate address ranges for every ASID but
prints all storage dumped (NUC, CSA, SWA, LPA in storage) if only ASIDs
are specified without address ranges. PRINT STORAGE is useful for
printing SVC dumps. See the discussion “How to Print SYS1.DUMPxx”
later in this chapter.

® PRINT JOBNAME =(jobnames) - produces output equivalent to PRINT
CURRENT except it prints the private address space of job(s) requested. It
should not be used for the initial run of PRDMP unless the jobname is
known from another source, such as the system log.

® PRINT REAL = (xxxx,xxxx) - prints real storage in specified address range
pairs. Use this option only when the system cannot find adequate data to
format the dump.

ASMDATA - formats and prints all ASM control blocks. It produces
voluminous data and should not be run until an ASM failure is suspected.

How to Automatically Establish System Options For SVC Dump

A potential problem is that the SVC dumps written to the SYS1.DUMPxx
contains only those address ranges that the FRR or ESTAE routine passes to
SDUMP. When these dumps are subsequently printed by PRDMP, the PRDMP
formatting program might not find sufficient data to format the dump property.
This can make it difficult to find data in an SVC dump and it can provide
erroneous indicators to the problem solver.

The CHNGDUMP command can be used to alter the SVC dump system options
and provide a complete dump. The following job updates the COMMNDO00
member of SYSL.LPARMLIB to issue the CHNGDUMP command automatically
at IPL time. The CHNGDUMP command can also be entered by the operator.
(See Operator’s Library.: System Commands for a description of the CHNGDUMP
command.)

//UPDAT JOB (,,5,5),MSGLEVEL=1,REGION=100K

// EXEC PGM=IEBUPDTE

//SYSPRINT DD SYSOUT=A

//SYSUT1 DD UNIT=SYSDA,VOL=SER=SYSRES,DISP=OLD,
// DSN=SYS1.PARMLIB

//SYSUT2 DD UNIT=SYSDA,VOL=SER=SYSRES,DISP=OLD,
// DSN=SYS1.PARMLIB

//SYSIN DD DATA

./ REPL NAME=COMMNDOO,LIST=ALL

./ NUMBER NEW1=10,INCR=20

COM=‘TRACE ON’

COM=‘CD SET,SDUMP=(PSA,NUC,SQA,LSQA,RGN,TRT) ,Q0=YES,ADD"’
./ ENDUP

How to Copy PRDMP Tapes

It is sometimes necessary to copy dump tapes to supply another location with a
copy of the dump while retaining your own. It is particularly useful to be able to
supply a dump tape with an' APAR.

Section 2. Important Considerations Unique to MVS 2-99

A simple way to do this is to use PRDMP as a copy program. Define the input
tape with the TAPE DD statement and the output tape with the SYSUT2 DD
statement. It is also possible to put several dumps on one tape or take one dump
_from a multiple dump tape by manipulating the file number parameters in the
label parameter. The following example shows how this is done:

//ASIDDMP JOB MSGLEVEL=1
// EXEC PGM=AMDPRDMP
//PRINTER DD SYSOUT=A
//SYSPRINT DD SYSOUT=A
//TAPE DD UNIT=TAPE,LABEL=(2,NL),VOL=SER=DMPIN,DISP=0LD
//SYSUT2 DD UNIT=TAPE,LABEL=(,NL),VOL=SER=DMPOUT,
// DISP=(NEW,KEEP)
//SYSIN DD *
END

/*

After copying a PRDMP tape, a quick run through PRDMP to verify that the
CVT can be formatted and printed. will prove that the copy was successful.

//ADMP JOB MSGLEVEL=1
// EXEC PGM=AMDPRDMP
//PRINTER DD SYSOUT=A
//SYSPRINT DD SYSOUT=A
//TAPE DD UNIT=TAPE,LABEL=(1,NL),VOL=SER=DMPTPE ,DISP=OLD
//SYSUT1 DD UNIT=SYSDA,SPACE=(TRK, (400,20)),DISP=NEW
//SYSIN DD *
CVTMAP
END

/'k

Another, and faster way to copy PRDMP tapes is to use the IEBGENER utility
program. The following example shows how this is done:

//COPYDMP JOB MSGLEVEL=1

// EXEC PGM=IEBGENER

//SYSIN DD DUMMY

//SYSPRINT DD SYSOUT=A

//SYSUT1 DD UNIT=TAPE,LABEL=(2,NL),VOL=SER=DMPIN,
// DCB=(RECFM=FB,LRECL=4104,BLKSIZE=4104)
//SYSUT2 DD UNIT=TAPE,LABEL=(1,NL),VOL=SER=DMPOUT,
// DCB=(RECFM=FB,LRECL=4104,BLKSIZE=4104)

/*

How to Rebuild SYS1.UADS

The loss of the SYS1.UADS data set can significantly impact a TSO environment.
However, it is possible to run the TMP as a batch job and recreate SYSI.UADS
in the background. The following is an example of a job that has been run
successfully to scratch and recreate a SYS1.UADS data set.

2-100 MVS Diagnostic Techniques

//BLDUADS JOB MSGLEVEL=1
// EXEC PGM=IEFBR14
//DD2 DD VOL=SER=SYSRES,DISP=(OLD,DELETE),UNIT=3330,
// DSN=SYS1.UADS
// EXEC PGM=IKJEFTO1

//SYSPRINT DD SYSOUT=A

//SYSUADS DD DSN=SYS1.UADS,DISP=(NEW,KEEP),

// SPACE=(800,(20,9,30)),UNIT=3330,
// VOL=SER=SYSRES,DCB=(RECFM=FB,
// DSORG=PO,LRECL=80,BLKSIZE=800)

//SYSLBC DD DSN=SYS1.BRODCAST,DISP=SHR

//SYSIN DD *

ACCOUNT

SYNC

ADD (USERO1 TSOTEO1l * IKJACCO1l) UNIT(SYSDA) ACCT OPER JCL MOUNT
ADD (USER0O2 TSOTEO2 * IKJACCO2) UNIT(SYSDA) OPER JCL MOUNT
ADD (USERO3 TSOTEO3 * IKJACCO3) UNIT(SYSDA) JCL MOUNT

ADD (USERO4 TSOTEO4 * IKJACCO4) UNIT(SYSDA) JCL MOUNT

ADD (USERO5 TSOTEO5 * IKJACCOS5) UNIT(SYSDA) JCL MOUNT

ADD (USERO6 TSOTEO6 * IKJACCO6) UNIT(SYSDA) JCL MOUNT

ADD (USERO7 TSOTEO7 * IKJACCO7) UNIT(SYSDA) JCL

ADD (USER0O8 TSOTEO8 * IKJACCO8) UNIT(SYSDA) JCL

ADD (USER09 TSOTE09 * IKJACC09) UNIT(SYSDA) OPER

ADD (USEROA TSOTEOCA * IKJACCOA) UNIT(SYSDA)

ADD (USEROB TSOTEOB * IKJACCOB) UNIT(SYSDA)

ADD (USEROC TSOTEOC * IKJACCOC) UNIT(SYSDA)

LIST (*)

END

/*

How to Print SYS1.DUMPxx

See the discussion under “How to Print Dumps” earlier in this chapter to define
the control statements required. The same rules apply except in this case the
TAPE DD statement points to one of the SYS1.DUMPxx data sets. These are
cataloged data sets and require no further definition.

Be aware that the dump data sets contain only those address ranges passed to
SVC dump by the dump requestor and might not contain sufficient data for
PRDMP to properly format all requested control blocks.

g

Because SVC dumps usually contain a limited number of address ranges, printing
the entire SYS1.DUMPxx data set is feasible and assures that all the information
about the problem will be available.

See the next topic “How to Clear SYS1.DUMPxx Without Printing” for a

description of how to clear the dump data sets for reuse. Note: Printing the dump
data sets does not clear them as it did on previous systems.

Section 2. Important Considerations Unique to MVS 2-101

The following example shows how to print SYS1.DUMPO00:

//ASIDDMP JOB MSGLEVEL=1
// ~EXEC PGM=AMDPRDMP
//PRINTER DD SYSOUT=A
//SYSPRINT DD SYSOUT=A
//TAPE DD DSN=SYS1.DUMPOO,DISP=0LD
//SYSUT1 DD UNIT=SYSDA,DISP=NEW,SPACE=(CYL, (10,5))
//SYSIN DD *
SUMMARY
CVTMAP
CPUDATA
SUMDUMP
LPAMAP
PRINT STORAGE

/*

How to Clear SYS1.DUMPxx Without Printing

In previous systems, printing the dump data set also cleared it and made it
available for reuse. In MVS this is no longer true. The dump data sets can be
cleared at ‘SPECIFY SYSTEM PARAMETERS?’ time during IPL. They can also
be cleared and made available for reuse by using PRDMP to copy the data set to
tape with the SYSUT2 DD statement pointing to the output data set. This must
be a separate job step from printing the dump. If it has been determined that the
SYS1.DUMPxx data set need not be saved, it can be cleared and made available
for reuse by running PRDMP with the SYSUT2 DD statement defined as
DUMMY. The following example shows how to clear SYSI.DUMPO00. See the
example in the discussion “How to Copy PRDMP Tapes” earlier in this chapter
for how to define the SYSUT2 DD statement to unload the SYS1.DUMPxx data
sets.

//ASIDDMP JOB MSGLEVEL=1
// EXEC PGM=AMDPRDMP
//PRINTER DD SYSOUT=A
//SYSPRINT DD SYSOUT=A
//TAPE DD DSN=SYS1.DUMPOO,DISP=0LD
//SYSUT2 DD DUMMY
//SYSIN DD *
END

Another, and faster way to clear a SYS1.DUMPxx data set without printing is to
use the IEBGENER utility program. The following example shows how to clear
SYS1.DUMPO0:

//CLEARDMP JOB MSGLEVEL=1

// EXEC PGM=IEBGENER

//SYSIN DD DUMMY

//SYSPRINT DD SYSOUT=A

//SYSUT1 DD DUMMY,DCB=SYS1.DUMPOO

//SYSUT2 DD DSN=SYS1.DUMPOO,DISP=OLD,DCB=SYS1.DUMPOO
/*

2-102 MVS Diagnostic Techniques

How to Print the SYS1.COMWRITE Data Set

The following job will format and print the TCAM SYS1.COMWRITE data set.
Note that the PARM fields in the EXEC statement define the traces to be
formatted and printed. See OS/VS TCAM Debugging Guide Level 10 for more
information on the use of the SYSI.COMWRITE data set.

//COMWRITE JOB MSGLEVEL=1

//STEP1 EXEC PGM=IEDQXB,PARM=‘STCB,IOTR,BUFF’
//SYSPRINT DD ‘SYSOUT=A

//SYSUT1 DD DSN=SYS1.COMWRITE,DISP=SHR

/*

How to Print an LMOD Map of a Module

The following job produces a module cross-reference of the nucleus, module
IEFW21SD, and a link pack area map. In addition, AMBLIST produces an IDR
listing or a complete hexadecimal dump of an object module. If you include the
RELOC parameter, the cross-reference listing is based at the address the module
is loaded in LPA.

Note that the JCL must contain a DD statement for every data set containing a
module you referenced in the control card section.

For more information about AMBLIST, see SPL: Service Aids.

//BMBLIST JOB MSGLEVEL=1

// EXEC PGM=AMBLIST

//SYSLIB DD DSN=SYS1.LPALIB,DISP=OLD

//LOADLIB DD DSN=SYS1.NUCLEUS,DISP=OLD

//SYSPRINT DD SYSOUT=A

//SYSIN DD *
LISTLOAD OUTPUT=XREF,MEMBER=IEANUCO1,DDN=LOADLIB
LISTLPA
LISTLOAD OUTPUT=XREF,MEMBER=IEFW21SD

/*

How to Re-Create SYS1.STGINDEX

It is possible for the SYSL.STGINDEX data set to be destroyed because of system
failure or operator intervention during an IPL with the cold start (CLPA,CVIO)
option. Loss of this data set prevents warmstarting the system or restarting jobs
using VIO data sets.

Section 2. Important Considerations Unique to MVS 2-103

The following job can recreate this data set. Remember to change the VOLUME
and CYLINDERS parameters to apply to your system.

//STGINDEX JOB MSGLEVEL=1
// EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=A
//VOL DD DISP=0OLD,UNIT=3330,VOL=SER=SYSRES
//SYSIN DD *

DEFINE SPACE(VOL(SYSRES)FILE (VOL)CYL(7))
DEFINE CLUSTER-

(NAME (SYS1.STGINDEX) -

VOLUME (SYSRES) -

CYLINDERS(7)~-

KEYS(128)-

BUFFERSPACE(5120) -

RECORDSIZE (2041 2041)-

REUSE) -

DATA-

(CONTROLINTERVALSIZE (2048))-

INDEX~-

(CONTROLINTERVALSIZE(1024))

Software LOGREC Recording

The following JCL defines a two-step job. The first step prints an event history
report for all SYSL.LOGREC records. The second step formats each software,
IPL, and EOD record individually. The event history report is printed as a result
of the EVENT =Y parameter on the EXEC statement of the first step. It can be
a very useful tool to the problem solver because it prints the records in the same
sequence they were recorded and therefore shows an interaction between hardware
error records and software error records.

//EREP JOB MSGLEVEL=1

//EREPA EXEC PGM=IFCEREP1,PARM=‘EVENT=Y,ACC=N’,
// REGION=128K

//SERLOG DD DSN=SYS1.LOGREC,DISP=SHR

//TOURIST DD SYSOUT=A

//EREPPT DD SYSOUT=A,DCB=BLKSIZE=133

//EREPB, EXEC PGM=IFCEREP1,PARM=’TYPE=SIE,PRINT=PS,ACC=N’,
// REGION=128K

//SERLOG DD DSN=SYS1.LOGREC,DISP=SHR

//TOURIST DD SYSOUT=A

//EREPPT DD SYSOUT=A,DCB=BLKSIZE=133

/*

See the discussion on LOGREC analysis in the “Use of Recovery Work Areas”
chapter earlier in this section for an explanation of its use and for examples of the
output produced.

Using the PSA as a Patch Area

There are areas in the PSA reserved for future expansion. They can be used for
quick implementation of a trap without having to consider base registers. Check
the mapping of the PSA (IHAPSA) for possible areas to be used. Once an area is
chosen, verify that the value of this storage is zero.

CAUTION: Use extreme care when you use this method. Patches should be made
only to disabled code unless the patch is completely reentrant. Saving registers

2-104 MVS Diagnostic Techniques

and data in the PSA while the system is enabled could produce unpredictable
results, especially in an MP environment where more than one PSA exists and the
code could be interrupted and subsequently redispatched on the other processor.
Extreme care must be used when considering a system alteration in order to
gather additional data about a problem. No superzaps should be applied before
the system programmer has verified the logic being zapped and the trap logic
itself. Remember, if any one location or offset within the module or trap changes,
all offsets and base registers must be verified.

Using the SLIP Command

SLIP (serviceability level indication processing) provides a way of getting
information concerning an error prior to ESTAE or FRR recovery processing.
This is in addition to the information ordinarily supplied by dumping services
during abnormal termination. The SLIP command is also used to establish PER
monitoring for instruction fetch, storage alteration, and successful branch PER
events within a range of virtual addresses. When the requested PER event occurs,
a PER interrupt causes control to be given to the SLIP processor. The purpose of
the SLIP command is to establish SLIP traps that describe the system conditions
which must exist at the time of the error or interrupt so that an action will be
taken.

The SLIP command is usually entered by a system programmer, either at the
console or via the input stream. It can also reside in the COMMNDxx
PARMLIB member. The SLIP command can also be entered as a subcommand
of the OPERATOR command from a TSO terminal or TSO CLIST. Information
about SLIP traps can be displayed by using the DISPLAY operator command.

As long as enough system queue area storage is available, SLIP traps may be
established at any time. The recovery termination manager (RTM) compares the
SLIP trap event qualifiers with the dynamic system conditions at the time of the
error or interrupt. If RTM detects a match, the requested action is taken.

SLIP Event Qualifier Keywords
When specified on a trap, an event qualifier keyword is checked against current

system conditions to determine a match or no match condition. The following
keywords are described in this topic.

ADDRESS JSPGM

"~ ASID LPAMOD
ASIDSA MODE
COMP PVTMOD
DATA RANGE
ERRTYP RBLEVEL
JOBNAME

Because the RTM/SLIP processor runs in one of four environments, the checking
done for each event qualifier keyword is described in terms of the applicable
environment. The four environments are:

RTS an error has occurred that will cause routing to FRRs.

RT2 an error has occurred while in enabled unlocked task mode Which will cause routing to
ESTAE:s but not FRRs.

Section 2. Important Considerations Unique to MVS 2-105

RTM an abnormal address space termination has occurred.

PER a PER interrupt has occurred.

Note: The names of these four environments are taken from the names of the
modules that call the RTM/SLIP processor; namely IEAVTRTS, IEAVTRT?2,
IEAVTRTM, and IEAVTPER.

ADDRESS Event Qualifier Keyword

The checking done for the ADDRESS keyword is:
RTS the address from the PSW at the time of the error (SDWANXT]1) is used in the comparison.

RT2 the RBLEVEL keyword determines which RB is used to get the address (RBPSWNXT) used
in the comparison.

RTM the address of the instruction that branched to RTM is used in the comparison.

PER the address of the instruction that caused the PER interrupt (LCCAPERA) is used in the
comparison.

ASID Event Qualifier Keyword

The checking done for the ASID keyword is:
RTS The PASID of the failing address space (field SDWAPRIM) is used in the comparison.

RT2 The PASID in the XSB of the RB located from the RBLEVEL keyword -(field XSBPASID) is
used in the comparison.

RTM The PASID of the address space being terminated is used in the comparison.

PER The PASID at the time of the interruption is used in the comparison.
ASIDSA Event Qualifier Keyword

The ASIDSA keyword associates an address space with a storage alteration (SA).
ASIDSA is only valid when it is specified with SA on the SLIP command. The
PASID, SASID, HASID, and the S-bit at the time of the interruption are used to
determine the address space where the storage alteration occurred.

COMP Event Qualifier Keyword

The checking done for the COMP keyword is:
RTS field SDWACMPC is used in the comparison.
RT2 field RTM2CC is used in the comparison.

RTM the completion code for the address space being terminated (ASCBMCC) is used in the -
comparison.

Because many recovery routines change the abend completion code to make it
more specific, the value supplied on the COMP keyword must be the original

value before a recovery routine changes the code. This is because RTM/SLIP
checking is done before processing by the recovery routines.

For example, a SLIP trap will not match if any of the following completion codes
are specified: 11A, 12E, 15D, 15F (reason codes 12 and 16), 200, 212, 25F, 279,

2-106 MVS Diagnostic Techniques

S5 4

282, 402, 42A, 57D, 6FC, 700, 72A, A00, B0O, and E00. Most of these codes
were originally a program check (0C4) that has been converted to a more specific
value. If you want to specify a program check, use COMP =0C4 or
ERRTYP=PROG. To avoid having the SLIP action occur for all program
checks, you should also specify some other event qualifier such as program name
or module name.

Similarly, specification of 13E or 33E might prevent a trap from matching if these
completion codes occur for any active subtasks associated with a task that is
abending. These secondary abends occur for the purpose of clean-up and
therefore the SLIP processor is not called when they occur.

Note: The SDUMP and ABDUMP dumping programs might cause many 0C4
program checks while taking a dump. Therefore, when you specify COMP =0C4
on a trap, you should avoid these unwanted matches by also specifying another
event qualifier, such as MATCHLIM.

DATA Event Qualifier Keyword

The DATA keyword checks data in the system at the time of the error or
interrupt against the data conditions specified in the SLIP trap. Addressing is
established to the address space specified with the address. Indirect addresses are
resolved by using the registers at the time of the error or interrupt.

For some errors, register contents at the time of error are not valid. In such a
case, if registers are used, the data is considered unavailable and the trap does not
match. Other conditions that can cause the data unavailable situation are: the
address space specified with the address does not exist; data is paged out; or a
pointer.required for an indirect address is paged out.

When data is unavailable, a counter associated with the trap is incremented and
message IEA4131 is sent to the SLIP user. For a PER trap, message IEA4131 is
issued only the first time that the data unavailable situation occurs. However, the
counter is made available by displaying the trap. The data unavailable counter is
also part of the SLIP standard, SLIP standard/user, and SLIP DEBUG GTF
trace records.

The SLIP command processor does not perform any reasonability checking on the
data tests requested. For example, the SLIP command processor would allow the
following DATA keyword specification even though its specification prevents the
trap from ever matching.

DATA =(H.CD300,EQ,00,HASID.CD300,NE,00)

The DATA keyword may be used as a validity check for RANGE addresses or
LPAMOD offsets when used on an IF (instruction fetch) or SB (successful
branch) PER trap. For example, if RANGE = (CD300,CD303) is used to
establish the range of addresses for an IF trap, you can ensure that the expected
instruction is being monitored by specifying DATA = (CD300,EQ,47F0B020)
where 47F0B020 is the expected instruction. If the wrong instruction is being
monitored (for example, due to a typing error or a change in the system), the trap
would not match because the DATA keyword does not match. This technique
can be especially useful on traps that take potentially disruptive actions (for

Section 2. Important Considerations Unique to MVS 2-107

example, WAIT or RECOVERY actions) in order to ensure the action is taken
only when desired.

ERRTYP Event Qualifier Keyword

- The checking done for the ERRTYP keyword is:

RTS the RTITENPT field is used in the comparison. The value field RTITENPT of the RTM1
work area indicates the reason for entry into RTM1:

1=PROG 3=SVCERR 5=MACH
2=REST 4=DAT 10=PGIO

The SLIP processor recognizes an SVC error for SVC 13 as either an ABEND or SVCERR
error and allows a match for the ERRTYP keyword if either is specified.

RT2 the RTM2ERRA field is used in the comparison. The reason for entry into RTM2 is indicated
by flags in the RTM2 work area as follows:

RTM2MCHK = MACH RTM2ABTM =ABEND
RTM2PCHK =PROG RTM2TEXC=DAT
RTM2RKEY =RESTART RTM2PGIO=PGIO
RTM2SVCD =ABEND

RTM an abnormal address space termination (MEMTERM) causes a match.

JOBNAME Event Qualifier Keyword

The checking done for the JOBNAME keyword is:

RTS if the failing address space has been identified by RTM (field SDWAFMID), both the failing
and current address space job names are tested for a match. The job names pointed to by
fields ASCBJBNI and ASCBJBNS are tested and either job name may match the job name
specified in the trap.

if the failing address space has not been identified, then only the current address space is tested
for a job name match.

RT2 if the failing address space has been identified by RTM (field RTM2FMID), both the failing
and current address space job names are tested for a maich. The job names pointed to by
fields ASCBJBNI and ASCBJBNS are tested and either job name may match the job name
specified in the trap.

if the failing address space has not been identified, then only the current address space is tested
for a job name match.

RTM the job names for the address space being terminated are used in the comparison.

PER the job names for the current address space are used in the comparison.

Note: The job, logon, or started task named by JOBNAME need not be active
when the trap is set.

JSPGM Event Qualifier Keyword

The checking done for the JSPGM keyword is:

RTS if a job step program name is available (field JSCBPGMN), it is compared to the job step
program name specified in the trap.

if a job step program name is not available (PSATOLD or TCBJSCBB =0), the trap will not
match.

if the reason for entry is a DAT error, the trap will not match.

2-108 MVS Diagnostic Techniques

RT2

RTM

PER

if a job step program name is available (field JSCBPGMN), it is compared to the job step
program name specified in the trap.

if a job step program name is not available (PSATOLD or TCBJSCBB = 0), the trap will not
match.

the trap will not match because the job step program name in the address space being
terminated is not available.

if a job step program name is available (field JSCBPGMN), it is compared to the job step
program name specified in the trap.

if a job step program name is not available (PSATOLD or TCBJSCBB =0), the trap will not
match.

LPAMOD Event Qualifier Keyword

The checking done for the LPAMOD keyword is:

RTS

RT2

RTM

PER

Note:

the address from the PSW at the time of error (field SDWANXT1) is used in the comparison.

the RBLEVEL keyword determines which RB is used to get the address (field RBPSWNXT)
to be used in the comparison.

the address of the instruction that branched to RTM is used in the comparison.
the address of the instruction that caused the PER interrupt (field LCCAPERA) is used in the

comparison. (For additional information, refer to the note under the description of the
RANGE keyword.)

If the name specified on the LPAMOD keyword is an alias of a load

module name, all monitoring is done by SLIP as though the load module name
was specified.

MODE Event Qualifier Keyword

The system mode at the time of error is indicated in the MODEBYTE as follows:

MODESUPR Supervisor control
MODEDIS Physically disabled
MODEGSPN Global spin lock held
MODEGSUS Global suspend lock held
MODELOC Locally locked
MODETYP1 Type 1 SVC

MODESRB SRB mode

MODETCB Task mode (unlocked)

The checking done for the MODE keyword is:

RTS

RT2

as a part of error processing, RTM determines the mode of the system (MODEBYTE value in
field RTIWMODE). Also, the PSW at the time of the error (field SDWAECH) is examined to
determine key and state. The SDWASTAPF bit indicates if the error occurred while a recovery
routine was in control. The PASID at the time of the error SDWAPRIM) is compared to the
HASID. If they are equal, the instruction executed in home mode.

the system mode, as determined by RTM, is obtained from the ABEND SVRB extended save
area (MODEBYTE value in field ESAMODE). Also, the PSW (field RBOPSW) in the RB (as
determined by RBLEVEL processing) is examined for key and state. The RTM2RECR and
RTM2XIP bits indicate if a recovery routine was in control at the time of error. The PASID
at the time of the error {obtained by the RBLEVEL keyword, field XSBPASID) is compared
to the HASID. If they are equal, the instruction executed in home mode.

Section 2. Important Considerations Unique to MVS 2-109

RTM because RTM has not determined the system mode for an address space termination, various
fields are tested by the RTM/SLIP processor to determine the system mode at the time of the
MEMTERM request. (The mode will always indicate supervisor state and system key because
these are requirements for issuing a MEMTERM request.)

PER various fields are tested to determine the system mode at the time of the interrupt. In the
SLIP trace record (system mode indicators), all bits are filled in. However, no attempt is made
to determine if a recovery routine was in control when the interrupt occurred. Therefore, the
recovery-routine-in-control bit will always be zero for a PER interrupt. Because of this,
MODE=RECYV is invalid for a PER trap and if MODE = ALL is specified for a PER trap,
ALL does not include RECV (recovery-routine-in- control). If the PASID and HASID are
equal at the time of the interruption, the home mode indicator is set.

PVTMOD Event Qualifier Keyword

The checking done for the PVTMOD keyword is:

RTS if RTM has identified a failing address space (field SDWAFMID) and it is not current, the
trap will not match.

to check for a private area module, the local lock must be obtained. If it cannot be obtained,
the trap will not match. If the local lock is already held, the chain that is to be searched for a
private area module may be in the process of being changed. The search is performed, but the
results may not be valid. The address obtained from the PSW at the time of error (field
SDWANXTI) is used in the comparison.

RT2 the RBLEVEL keyword determines which RB is used to get the address (field RBPSWNXT)
used in the comparison.

RTM this keyword test will not match because the private area chain in the failing address space is
not available for searching.

PER the trap will not match for the PVTMOD keyword test if the interrupt occurs in the nucleus or
FLPA because these areas cannot contain private area modules.

to check for a private area module, the local lock must be obtained. If it cannot be obtained,
the trap will not match. If the local lock is already held, the chain that is to be searched for a
private area module may be in the process of being changed. The search is performed, but the
results may not be valid. The address of the instruction that caused the PER interrupt (field
LCCAPERA) is used in the comparison.

If offsets are specified on the PVTMOD keyword, the RTM/SLIP processor does
not check to make sure that the offsets define an area wholly within the private
area module.

RANGE Event Qualifier Keyword

The checking done for the RANGE keyword is:

PER the address of the instruction that caused the PER interrupt (field LCCAPERA) is used in the
comparison. Note that if the first address specified is greater than the second, the monitored
range wraps storage addresses.

Note: For successful branch monitoring, hardware PER processing does not
check the address range specified on the RANGE and LPAMOD keywords. This
means that a branch taken by an instruction anywhere in the system would cause
a successful branch PER interrupt. However, to simulate an address range for
successful branch monitoring, SLIP initially sets up instruction fetch monitoring
for the desired address range. Then when instruction processing enters the
requested range (indicated by an instruction fetch PER interrupt), PER
monitoring is automatically switched to successful branch mode. You should be
aware that the first PER event that occurs when instruction processing enters the

2-110 MVS Diagnostic Techniques

requested range may not be a successful branch event. This “extra” event
(instruction fetch) may affect values supplied for other keywords such as
MATCHLIM. When instruction processing leaves the requested range, PER
monitoring returns to instruction fetch monitoring on the requested range to
avoid unnecessary PER interrupts. If the instructions being monitored are
enabled for I/O and/or external interrupts, control may leave and then re-enter
the monitored range due to normal interrupt processing.

The previous note applies to processing on behalf of a non-IGNORE successful
branch PER trap. Mode switching does not occur for successful branch PER
traps with ACTION =IGNORE specified. This means that if the initial entry into
a monitored area matches an IGNORE trap, the mode remains instruction fetch
and the “extra” event is delayed. Also, output that appears to be a contiguous
successful branch trace may not actually be contiguous if an IGNORE trap
matches intermittently.

For successful branch monitoring, if an EXECUTE instruction has a successful
branch target, the location of the EXECUTE instruction is used to determine
whether or not the branch was within the monitored area without regard to the
location of the executed branch.

RBLEVEL Event Qualifier Keyword

The RBLEVEL keyword applies only to enabled unlocked task mode errors. It is
used to direct the SLIP processor to the registers and PSW of interest for a
particular error. The SLIP processor will use the PSW identified by the
RBLEVEL keyword when processing the LPAMOD, PVTMOD, ADDRESS, and
MODE keywords. The SLIP processor will use the registers identified by the
RBLEVEL keyword when processing the DATA, TRDATA, LIST, and
SUMLIST keywords.

The following diagram shows which RBs are chosen by the three RBLEVEL
keyword options for an example RB chain.

PREVIOUS
A
SVRB r N
TCB (for SVC 13) SVRB SVRB PRB
s T
) .
‘ PSW PSW PSW
REGS REGS REGS
g J N\ _J
' '
ERROR NOTSVRB

The RBLEVEL keyword can be used in an error situation where several nested
services are involved. For example, program A calls service B which calls service
C. If an error occurs in service C, the default RBLEVEL = ERROR can be used
to qualify the error or obtain information concerning the error. However, if the
error in service C is the result of incorrect input supplied by service B or program
A, the RBLEVEL =PREVIOUS or RBLEVEL =NOTSVRB can be used to

Section 2. Important Considerations Unique to MVS 2-111

qualify the error or obtain information concerning the input supplied by service B
or program A respectively.

Using the ACTION Keyword

The ACTION keyword is used to specify the action to be taken when a SLIP trap
matches the specified system conditions. The following ACTION options are

described in this topic:
ACTION=SVCD - schedule an SVC dump.
ACTION=WAIT - put the system in a wait state.

ACTION =TRACE - write a GTF trace record.

ACTION=TRDUMP - write a GTF trace record and then schedule an SVC dump.
ACTION=NODUMP - suppress dump requests.

ACTION=IGNORE - take the IGNORE action.

ACTION Keyword - with RECOVERY option (PER traps only), initiate recovery processing.

ACTION=SVCD Option

ACTION =SVCD indicates that an SVC dump will be scheduled for the failing or
home ASID. This is the default option if ACTION is not specified. If the SVC
dump cannot be taken, message IEA412] is issued and SLIP processing continues.
No attempt is made to reschedule the SVC dump.

One of the advantages of the SVC dump over one taken by a recovery routine is
that nothing has been done to correct the error situation. Although the bulk of
the SVC dump is not taken until later, the summary dump portion preserves as
much volatile data as possible. An SVC dump also contains more data (for
example, more than one address space can be dumped) than a SYSABEND or
SYSUDUMP, and because it is machine readable, it can, if necessary, be copied
onto a tape to accompany an APAR, or used with interactive dump display
programs. SYSMDUMP also provides a machine readable dump. The biggest
advantage is in situations where no dump was occurring.

When ACTION =SVCD is specified or defaulted, the default SDATA parameters
are: SQA, RGN, TRT, LPA, CSA, NUC, ALLPSA, and SUM. These defauilt
SDATA parameters are affected by the current CHNGDUMP command settings
which may add to or override the requested dump options. The SDATA
parameters can be changed by the SLIP user. Refer to “Dump Tailoring” later in
this section.

If an SVC dump is already in progress, another dump cannot be taken and

message IEA4121 is issued. When an SVC dump is scheduled on behalf of a SLIP
trap by the SLIP processor, debugging information is placed in the SDUMP 4K

2-112 MVS Diagnostic Techniques

buffer (if the buffer is available). This buffer is pointed to by field CVTSDBF
and contains:

Offset Length Content
0(0) 4 The characters ‘“TYPE’ to identify the following field. '
4(4) 4 RTM/SLIP processor environment indicator:

X‘00000001° - RTS
X*00000002’ - RT2
X‘00000003* - RTM
X‘00000004’ - PER

8(8) 4 The characters ‘CPU’ to identify the following field.
12(C) 4 Logical CPUID.

16(10) 4 The characters ‘REGS’ to identify the following field.
20(14) 64 Registers at the time of error or interrupt. (R0-R15)
84(54) 4 The characters ‘PSW’ to identify the following field.
88(58) 8 The PSW at the time of error or interrupt.

96(60) 4 The characters ‘PASD’ to identify the following field.
100(64) 2 The primary ASID at time of error or interruption.
102(66) 4 The characters ‘SASD’ to identify the following field.
106(6A) 2 The secondary ASID at time of error or interruption.

108(6C) variable =~ The SDWA if offset 4 is 1 (RTS).
The RTM2WA if offset 4 is 2 (RT2).
The ASCB if offset 4 is 3 (RTM).
The PER interrupt code if offset 4 is 4 (PER).

When a summary dump is requested, the storage on either side of the addresses in
the registers used are from the SDUMP 4K buffer. You can use the SUMLIST
keyword in the form: OR%-800, + 1000,1R %-800, + 1000,2R %-800, + 1000,... to
dump 2K bytes of information on either side of the addresses in the registers at
the time of the error or interrupt.

If ASIDLST is not specified with the SLIP trap, the following information
describes which address space will be dumped depending on the environment of
the RTM/SLIP processor.

RTS the failing address space (field SDWAFMID) or the home address space is dumped.

RT2 the failing address space (field RTM2FMID) or the home address space is dumped.

RTM the master address space is dumped because the address space that is terminating cannot be
used to take the dump. The summary dump information is collected in the home address
space (of the issuer of the CALLRTM TYPE =MEMTERM macro), and the asynchronous

dump runs later in the master address space.

PER the home address space is dumped.

If a dump request for a failing address space fails (such as SDUMP returning a
bad return code), then a second attempt is made to schedule a dump in the home
address space. In the second attempt, no information is put in the SDUMP 4K
buffer. If the second attempt fails, the message IEA4121 is issued.

If a summary dump is requested, it may be suppressed under certain conditions.
Refer to the topic “Placement of PER Traps” later in this section.

The entire dump may be suppressed if the operator has chosen the CHNGDUMP
NODUMP option.

ACTION = WAIT Option

ACTION =WAIT indicates that the system will be placed in an 01B wait state.

Section 2. Important Considerations Unique to MVS 2-113

If a PER trap is used to put the system into the wait state, the time spent in the
wait state is attributed to the PER interrupt that caused the wait state. This
makes it look as though a lot of time has been spent processing PER interrupts.
Therefore, if the trap is intended to be used so that the system is restarted and the
trap is to remain enabled, you may want to use PRCNTLIM =99 on the trap.
Otherwise, the trap may be disabled after the system has been restarted. Use
PRCNTLIM =99 with caution because limit checking is not performed while
waiting for the trap to match.

Once in the wait state, you can use the debugging work area provided by SLIP to

begin debugging a problem. This area is pointed to by PSA +X°‘40C’ and
contains:

Offset Length Content

0(0) 1 RTM/SLIP processor environment indicator:
X017’ - RTS
X‘02’ - RT2
X‘03’ - RTM
X‘04’ - PER
1(1) 2 Logical CPUID.
3(3) 1 System mask (if offset 0 is 2).
4(4) 4 Pointer to registers at the time of error or interrupt. (R0-R15)
8(8) 4 Pointer to PSW at the time of error or interrupt.
12(C) 4 Pointer to SDWA if offset 0 is 1.

Pointer to RTM2WA if offset 0 is 2.
Pointer to ASCB being terminated if offset 0 is 3.
Pointer to PER code if offset 0 is 4.

16(10) 4 Pointer to cross memory information (control registers 3 and 4) at the time of
the error or interruption.

ACTION =TRACE Option

ACTION =TRACE indicates that a GTF SLIP trace record is written each time
that the SLIP trap matches. GTF must be active and the GTF SLIP option
specified in order for the record to be built and recorded. (Use the TRDATA
keyword if you want to tailor the GTF trace records.)

The TRACE option is designed for those situations where a relatively small
amount of data is required each time that a matching event occurs. Such a
situation might occur when you are trying to determine the path through a
module. But the TRACE option can handle a relatively large amount of data
when required. Refer to the TRDATA keyword.

The registers at the time of the error or interrupt are used to resolve indirect
addresses specified for the trace record fields. Under some circumstances,
registers at the time of error may not be available. If this is the case, indirect
addresses that contain a register value cannot be resolved and related fields
cannot be collected. A zero length field is used in the user portion of a SLIP
standard/user or SLIP user record to indicate that the requested field was not
available. Also, a field is not available if it is paged out or if one of the pointers
to it is paged out. When using indirect addresses, use the REGS keyword to get
the contents of the registers used to resolve indirect addresses.

2-114 MVS Diagnostic Techniques

Checking for too much data is done at the time that the GTF SLIP trace record
is built, not at the time the trap is entered. Therefore, you may want to exceed
the trace record size when setting a trap if you expect that some of the data will
not be available. If data is unavailable, trap information takes up only one byte
in the record rather than the amount of space it would take if data were available.
When using this technique, prioritize the fields so that the most important fields
are earliest in the record so that they are collected. If all the data is available,
and the maximum size of the trace record is exceeded, the record is truncated.

Another technique that is useful when using long indirect addresses is to request
the same field twice if there is more than one path to the field. In this way, if a
pointer is bad or is paged out in one path to the data, it may be-available via the
other path.

GTF Considerations: When using ACTION =TRACE, be aware that starting
GTF will suppress the system trace (if it is active). Therefore, you may want to
choose other GTF trace options in addition to SLIP to obtain other valuable
diagnostic data that is available in a trace of system events. GTF options SYS or
SYSM can be used to have GTF collect information similar to that collected by
the normal system trace. Note that using the internal GTF trace instead of the
external trace helps to reduce system overhead. Be sure to stop GTF after the
traps which require the TRACE option are disabled or deleted.

ACTION =TRDUMP Option

ACTION=TRDUMP is a combination of the SVCD and TRACE options.
While the trap remains enabled, a GTF SLIP trace record is written when the
trap matches. When the trap is disabled (automatically by MATCHLIM or
PRCNTLIM or via the SLIP MOD operand) or deleted (via the SLIP DEL

“operand), a dump is scheduled. When you use the SLIP MOD or DEL operand
to disable or delete a trap that has the TRDUMP option specified, the dump does
not contain diagnostic data in the SDUMP 4K buffer.

The default SDATA parameters are TRT, NOSQA, NOALLPSA, and NOSUM.
These default are affected by the current CHNGDUMP command settings which
may add to or override the requested dump options. The SDATA parameters can,
be changed by the SLIP user. Refer to “Dump Tailoring” later in this section.

When used in conjunction with the MATCHLIM keyword, the TRDUMP option
can be useful in getting an idea of what events lead up to an error. For example,
a problem is narrowed to a particular module. You could use a successful branch
PER trap and the TRDUMP option. The trace records that are written could
trace the fields that are critical to the operation of the module. An estimate of
the. number of successful branches that would enable you to determine the path
through the module could be specified on the MATCHLIM keyword in order to
automatically disable the trap and initiate the dump.

The TRDUMP option can also be used to obtain GTF SLIP trace records
without tracing to an external data set (and then using PRDMP to print the data
set). When starting GTF, specify the number of 4K GTF trace buffers (on the
BUF parameter) to be saved for a dump. When the dump is taken, the trace
records are passed to the SVC dump routine and become a part of the dump.

Section 2. Important Considerations Unique to MVS ~ 2-115

ACTION =NODUMP Option

ACTION=NODUMP indicates that SLIP is to set a flag in the RTM work area
which is checked by the dump programs ABEND and SVC dump. If the bit is
on, all dump requests are ignored. Because the bit is in the RTM work area, only
dumps requested during processing of this error by RTM (requested by an FRR
and/or an ESTAE) are suppressed. Should the error involve recursive entry into
RTM, the bit setting is propagated to the next RTM work area.

ACTION =NODUMP applies only to non-PER traps for errors in the RTS and
RT2 environments.

This action is useful for preventing dumps that may not be needed (for example,
X317, etc.) because accompanying messages provide sufficient information. It can
also be used to prevent duplicate dumps for known problems which have already
been documented. ‘

ACTION=]IGNORE Option

ACTION =IGNORE indicates that the SLIP processor is to take the IGNORE
action. The IGNORE action does not result in any specific action being taken
but a match is indicated for the trap and other processing for the trap occurs
normally (such as messages being issued, and processing for the MATCHLIM,
PRCNTLIM, RECOVERY, and DEBUG options).

This option is generally used on a trap to prevent a different, and more general
trap, from matching. (Note that for any event, the SLIP processor stops
examining SLIP traps for a match condition when a matching trap is found.)
Because SLIP traps are tested in last-in-first-out order, IGNORE traps used in
this way must be entered after the more general non-IGNORE trap. Also, the
traps should be specified in the disabled state to prevent the non-IGNORE trap
from matching while the IGNORE traps are being specified. After the
non-IGNORE and all related IGNORE traps have been set, they can be enabled
in a last-in-first-out order by using the MOD operand of the SLIP command.

For PER traps, the IGNORE trap must be of the same type (IF, SA, or SB) as
the non-IGNORE trap or it will not be tested. For IF and SB PER traps,
IGNORE traps can be used to simulate multiple ranges for monitoring as shown
in Example 14 in the following topic “Examples of Using the SLIP Command.”
This technique cannot be used for SA PER traps. The use of the IGNORE trap -
with a more general IF or SB PER trap does not prevent PER interrupts from
occurring in the range specified on the IGNORE trap. You should consider this
when you are selecting a percent limit value.

In general, there is no limit to the number of IGNORE traps that can be set to
work in conjunction with a non-IGNORE trap. You should be aware that
IGNORE traps are considered as independent traps, and the SLIP command
processor does not know when IGNORE traps are being used in conjunction with
a non-IGNORE trap. For example, at the time a trap is being set, no checking is
done between traps to ensure that the range to be ignored falls within the range
specified on the non-IGNORE PER trap. Such checking is the responsibility of
the user.

2-116 MVS Diagnostic Techniques

Dump Tailoring

ACTION Keyword With RECOVERY Option (PER Traps Only)

Normal processing of a PER interrupt causes control to be returned to the next
sequential instruction after the PER interrupt is processed. The RECOVERY
keyword can be used to force recovery processing to be initiated after the PER
interrupt has been processed.

The RECOVERY keyword is used to initiate recovery processing in those
situations when an error is occurring, but the error is not being detected by the
system or it is being detected too late for recovery routines to adequately handle
the error situation. By initiating recovery processing via a SLIP trap, you have a
way to use the error correction function that is built into MVS recovery routines.

To avoid unexpected results when using the RECOVERY keyword, you should be
thoroughly familiar with the MVS recovery concepts and ensure that:

® Recovery is initiated at an appropriate point in the program.

® The recovery routine is designed to handle the error situation that exists at
that point.

The RECOVERY action initially causes an 06F abend code to be generated.

When ACTION =SVCD or ACTION =TRDUMP is specified on a SLIP trap,
the ASIDLST, SDATA, SUMLIST, and LIST keywords can be used to tailor the
dump to the particular problem that is being trapped.

ASIDLST Keyword

The ASIDLST keyword is used to specify the address spaces that are to be
dumped. Note that a specification of zero indicates the home address space
(pointed to by PSAAOLD).

SDATA Keyword

The SDATA keyword is used to specify the system data areas that are to be
dumped. If the default SDATA specification is used, the current system
CHNGDUMP setting can affect (add to or override) the areas requested. The
system CHNGDUMP settings do not affect (add to or override) the areas
specified on SDATA except when CHNGDUMP has been set with the
NODUMP option. In this case, the SLIP trap does not produce a dump when
the trap matches.

When SDATA is specified, the areas specified to be dumped completely replace
the default specification on the dump request. For example, on an

ACTION =SVCD dump, if SDATA =(NOSQA) is specified, the NOSQA
completely replaces the default SDATA specification of SQA, RGN, TRT, LPA,
CSA, NUC, ALLPSA, and SUM. The dump request of NOSQA is presented to
SDUMP which merges it with its own defaults (SQA, SUM, and ALLPSA) and,
in this case, produces a dump that contains only a summary dump and ALLPSAs.

Section 2. Important Considerations Unique to MVS ~ 2-117

Also, the SLIP command processor does not make any reasonability checks on
the SDATA options specified. For example, SDATA =(SQA,NOSQA) is allowed
even though the SQA and NOSQA options are contradictory. In this case, SQA
would not be part of the dump produced.

SUMLIST and LIST Keywords

The SUMLIST and LIST keywords are used to dump user-defined areas of
storage. The storage areas are defined by specifying address space qualifiers
followed by address pairs that specify the beginning and ending addresses of
storage to be dumped. Address space qualifiers can be either explicit or symbolic.
They specify the address space to which the address pairs refer to. If a qualifier is
not specified, the previous qualifier is used as the default. If the first address pair
does not have a qualifier, CURRENT is used as the default. The beginning
address must be less than or equal to the ending address. If the beginning address
is greater, then the characters *Al > A2* are dumped instead of the requested
area. Direct or indirect addresses can be used to specify the address pairs and can
be mixed. Indirect addresses are resolved using the registers at the time of error
or interrupt. If for any reason an indirect address cannot be resolved, the
characters *RC=4* are dumped rather than the requested area.

The difference between SUMLIST and LIST is the point in time when the
requested information is collected. SUMLIST collects information as a part of
SDUMP summary dump processing. This is close to the time of error or PER
interrupt and the information that is collected will probably be unchanged since
the time of error or interrupt. (Note that storage areas must be paged in; and if
not paged in, they are ignored by SDUMP.) LIST collects information when the
scheduled dump is processed. (Note that storage areas are paged in if necessary.)
This is some time after the error or interrupt and the information that is collected
may have been changed since the time of error or interrupt.

Examples of Using the SLIP Command

The following examples briefly describe a system problem and show the SLIP
command that can be used to match on a system event. The resulting dump or
GTF SLIP record can then be used by the debugger to obtain diagnostic
information in order to solve the problem.

Example 1: Match on Storage Alteration

Problem: An unknown program is incorrectly modifying location CD3010 in the
LPA.

Action: The debugger sets the following SLIP trap:

SLIP SET,SA,ENABLE,ACTION=SVCD,
RANGE= (CD3010) ,END

Result: When location CD3010 is altered, a SLIP match occurs and an SVC

dump is scheduled. For this PER trap, MATCHLIM defaults to 1 which
prevents a dump from being taken each time that location CD3010 is altered.

2-118 MVS Diagnostic Techniques

Example 2: Match on Storage Alteration

Problem: Same as Example 1 except.location CD3010 is normally modified by
JES2 (ASID =3) but should not be modified by any other program (in ASIDs 1,
2,4,5,6,7,8, and 9).

Action: The debugger sets the following SLIP trap:

SLIP SET,SA,ENABLE,ACTION=SVCD, B
RANGE=(CD3010) ,AS1iD=(1,2,4,5,6,7,8,9) ,END

Result: When any program in an address space specified on ASID = alters
location CD3010, a SLIP match occurs and an SVC dump is scheduled.

Example 3: Match on Storage Alteration

Problem: Same as Example 2 except there is an unknown number of address
spaces (in addition to JES2 in ASID 3).

Action: An IGNORE trap is used in conjunction with the non-IGNORE PER

trap. The debugger sets the following SLIP traps:

SLIP SET,SA,ID=TRP1,DISABLE,ACTION=SVCD,
RANGE=(CD3010) ,END

SLIP SET,SA,ID=TRP2,DISABLE,ACTION=IGNORE,
ASID=(3) ,END

Then issues the following SLIP commands:

SLIP MOD,ENABLE, ID=TRP2
SLIP MOD,ENABLE, ID=TRP1

Result: Any alterations to location CD3010 by JES2 (ASID =3) are ignored.
Alterations to location CD3010 by programs in any other address space result in
a SLIP match, and an SVC dump is scheduled. Note that the SLIP traps are
inspected in a last-in-first-out (LIFO) order.

Example 4: Match on Storage Alteration

Problem: Location CD3010 contains an address that is normally modified by
many programs. Intermittently, it is set to zero and causes an error.

Action: The debugger sets the following trap:

SLIP SET,SA,ENABLE,ACTION=SVCD,
RANGE=(CD3010) ,DATA=(CD3010,EQ,00000000) ,END

Result: When location CD3010 is set to zero, a SLIP match occurs and an SvC

dump is scheduled.

Section 2. Important Considerations Unique to MVS 2-119

Example 5: Match on Instruction Fetch

Problem: An LPA routine is consistently abending and the debugger does not
know if the routine is in error or it is being passed bad parameters. The LPA
routine entry point is CD3100.

Action: The debugger sets the following SLIP trap:

SLIP SET,IF,ENABLE,ACTION=SVCD,
RANGE=(CD3100) ,END

Result: The routine still abends. However, when entry is made to the routine at
location CD3100, a SLIP match occurs and an SVC dump is scheduled.
Information in the SVC dump allows the debugger to determine the validity of
the parameter data.

Example 6: Match on Successful Branch

Problem: The debugger needs a “branch trace” of the instruction path taken
through module MODO1 starting at offset X‘108” through X‘4FC’ during the
execution of the JOBX.

Action: GTF must be active with the GTF trace option SLIP and MODE =EXT
specified in order to collect the GTF SLIP trace records in an external data set.
The debugger sets the following SLIP trap:

SLIP SET,SB,ENABLE, ID=PER1,ACTION=TRACE,
" LPAMOD=(MODO01,108,4FC) ,JOBNAME=JOBX,
MATCHLIM=20,END

Result: When 20 successful branch events have occurred during the execution of
MODJ1 when JOBX is in control, the trap is automatically disabled because
MATCHLIM =20. The collected GTF SLIP standard trace records may be
printed by the debugger via the EDIT function of the AMDPRDMP service aid.

Example 7: Match on Successful Branch

Problem: For Example 6, if the debugger wants to collect the GTF SLIP
standard trace records in GTF’s address space and obtain these records as a part
of an SVC dump, then GTF must be active with GTF trace option SLIP and
MODE =INT specified.

Action: The debugger sets the following SLIP trap:

SLIP SET,SB,ENABLE,ACTION=TRDUMP,
LPAMOD=(MODO1,108,4FC), JOBNAME JOBX,
MATCHLIM=20,END

Result: When 20 successful branch events have occurred in the range of addresses
from 108 to 4FC in MODO01 while JOBX is in control, an SVC dump is
scheduled. The dump contains the GTF trace buffers (assuming the SDUMP
TRT trace option is in effect). The number of GTF buffers dumped is determined
by the BUF parameter on the GTF START command. Note that if the
CHNGDUMP command has been invoked, then the latest areas defined by
CHNGDUMP are dumped.

2-120 MVS Diagnostic Techniques

Example 8: Match on Instruction Fetch

Problem: The debugger needs to collect specific data (as a part of a summary
dump) when the instruction at offset X200’ in MODO2 is executed in ASID 27.

Action: The debugger sets the following trap:

SLIP SET,IF,ENABLE,ACTION=SVCD,
LPAMOD=(MOD02,200) ,ASID=(27),
SUMLIST=(2R%%,2R%%+DCF,4R%%+28,4R%%+1C9) ,
SDATA=SUMDUMP ,MATCHLIM=1,END

Result: When the instruction at offset X200’ in module MODO02 is executed in
ASID 27, the selected data (specified on SUMLIST) is gathered. Control will
resume at the next sequential instruction after the point of interrupt.
Additionally, the trap is disabled after a single match occurs because
MATCHLIM =1.

Note: To obtain the same data, the SUMLIST keyword could have been
specified as:

SUMLIST=(2R%%,+DCF,4R%%+28,+1C9),
Example 9: Match on Program Check

Problem: The debugger wishes to take a dump of the current private region when
an 0C7 program check occurs during task mode processing in module MODO03.

Action: The debugger sets the following SLIP trap:
SLIP SET,ENABLE,ERRTYP=PROG,ACTION=SVCD,

COMP=0C7 , PVTMOD=MODO3 ,MODE=TCB,
SDATA=RGN , END

Result: When the 0C7 program check occurs in TCB mode, the trap matches and
an SVC dump is scheduled. Normal recovery processing then takes place.

Example 10: Match on Completion Code

Problem: The debugger wishes to take an SVC dump when a 806 completion
code occurs for a job TEST99 when program PGMS is in control.

Action: The debugger sets the following trap:

SLIP SET,ENABLE,COMP=806,ACTION=SVCD,
JOBNAME=TEST99, JSPGM=PGM5 , END

Result: When the job step that executes program PGMS of job TEST99 is

abended with a completion code of 806, the trap matches and an SVC dump is
scheduled.

Section 2. Important Considerations Unique to MVS ~ 2-121

Example 11: Match on SVC Error

Problem: The debugger wishes to force the system into a wait state when an SVC
error occurs in job TEST98 to take a stand-alone dump.

Action: The debugger sets the following trap:

SLIP SET,ENABLE,ERRTYP=SVCERR,ACTION=WAIT,
JOBNAME=TEST98, END

Result: When job TEST98 encounters an SVC error, all processors in the system
are put into the wait state. The operator may then initiate a Stand-alone dump
(SADMP).

Example 12: Mat¢h on Data

Problem: The debugger wishes to force entry into recovery processing for LPA
module MODX when MODX is processing a specified input (X‘0105°).

Action: The debugger sets the following SLIP trap but does not start GTF:

SLIP SET,IF,ENABLE,ACTION=(TRACE,RECOVERY),
LPAMOD=(MODX,16) ,DATA=(1R%,EQ,0105),
MATCHLIM=1,END

Result: When the input parameter pointed to by general purpose register 1 is
equal to X‘0105°, the trap matches and the SLIP processor forces the recovery
path to be taken. Because GTF is not active, no trace record is written. The trap
is then disabled because MATCHLIM =1.

Example 13: Match on Storage Alteration

Problem: The debugger wants to monitor a common storage location in a
production system for alteration to X‘F1F2F3F4’.

Action: To keep the trap overhead to a minimum, the debugger specifies the
JOBNAME and ASID keywords. Also, because the trap is being set on a
production system, the PRCNTLIM keyword is specified to prevent the

trap from using more than 20% of the available system processing time. The
debugger sets the following trap:

SLIP SET,SA,ENABLE,ACTION=SVCD,
ASID=(7,9),JOBNAME=JOBX,
RANGE=(CD3100,CD3103),
DATA=(CD3100,EQ,F1F2F3F4),
PRCNTLIM=20,END

Result: When the specified area is altered by JOBX in ASID 7 or 9 and the
pattern of data is X‘F1F2F3F4’, then the trap matches and an SVC dump is
scheduled. The processing time used by the PER interrupts is being monitored
and if the time exceeds 20% of the available system time, the trap is disabled and
the debugger is notified.

2-122 MVS Diagnostic Techniques

~c

Example 14: Match on Instruction Fetch

Problem: The debugger wants to monitor a range of instruction addresses in LPA
module MODX but ignore instructions that form an iterative loop within a subset
of this range.

Action: The debugger sets the following traps:

SLIP SET,IF,DISABLE,ID=TRP1,ACTION=TRACE,
LPAMOD= (MODX, 110, 1FB) , JOBNAME=JOB1,
TRDATA= (STD,REGS) ,MATCHLIM=500, END

SLIP SET,IF,DISABLED,ID=TRP2,ACTION=IGNORE,
LPAMOD= (MODX, 1C4, 1D7) ,END

Then the debugger issues the following SLIP commands:

SLIP MOD,ENABLE, ID=TRP2
SLIP MOD,ENABLE, ID=TRP1

Result: PER interrupts are taken for each instruction that is executed within the
range specified on trap TRP1, but those interrupts that fall within the range
specified on trap TRP2 are ignored. Therefore, tracing occurs in MODX for
those instructions that fall in the ranges of X‘110’ to X‘1C3’ and X‘1D§’ to
X‘1FB’. Note that the IGNORE trap must be defined after the non-IGNORE
trap because the traps are processed for match tests in last-in-first-out order.

Note: The use of IGNORE traps with non-IGNORE PER traps effectively
allows you to discard selected events that occur in one or more subsets of the
monitored range. Be aware that PER interrupts occur within the ignored ranges
and cause system degradation.

Example 15: Match on Instruction Fetch

Problem: The debugger wants to force the system into a wait state when JOB1
executes in address space 5, 7, or 10 within a given address range.

Action: The debugger sets the following trap:

SLIP SET,IF,ENABLE,ID=PNK1l,ACTION=WAIT,MODE=(HOME),
JOBNAME=JOB1,ASID=(5,7,10) ,RANGE=(E300,E000) ,END

Result: When job JOBI starts in address space 5, 7, or 10, and an instruction is
fetched within the specified address range, then the trap matches and the system is
put in a wait state.

Note: Because MODE =HOME was specified, if job JOB1 starts in address

space 5, issues a program call to address space 7, and then an instruction is
fetched within the specified address range, the trap will not match.

Section 2. Important Considerations Unique to MVS 2-123

Example of SLIP Command From TSO Terminal

The following example shows the use of the SLIP command from a TSO terminal
and the prompting that can occur.

Problem: A debugger suspects that a module is being passed an improper
parameter list that causes the module ISTAPCI11 to abend during job APPLEL.
By the time the abend occurs, all evidence of the cause has been eliminated by
recovery processing. A history of the caller’s parameter list can be obtained by
using the SLIP IF PER function with ACTION=TRDUMP.

Action: The debugger issues the following commands:
tso user: OPERATOR
system: OPERATOR
tso user: slip set,if,enable,id = perl,action = trdump,
jobname = applel,lpamod = (sstapcl1,16),
trdata = (std,regs, 1r%,1r% + 32),
matchlim = 5,end

system: IEE736D SLIP ID=PER1,SSTAPC11 IS NOT IN THE LPA.
ENTER KEYWORD, NULL LINE, OR ‘CANCEL’

tso user: Ipamod = (istapc11,16)

system: 1IEE7271 SLIP TRAP ID =PER1 SET BUT GTF IS NOT ACTIVE

tso user: send ‘please start gtf with mode =int and trace=slip and notify me when done’
system: OPER GTF IS ACTIVE

tso user: send ‘please start applel’

system: = IEA992I SLIP TRAP ID=PER1 MATCHED

system: IEA4111 SLIP TRAP ID=PER! DISABLED FOR MATCHLIM

system: 1EA911A COMPLETE DUMP ON SYS1.DUMP01 TSO USERID (D10XYZ1)
tso user: send ‘please stop gtf’

Result: The dump has been taken. The debugger may now want to copy the
dump to another data set, clear the SYS1.DUMPOI1 data set, and obtain a
hardcopy of the dump. This additional processing can be accomplished from the
TSO terminal by using TSO commands to execute the print dump
(AMDPRDMP) program.

Note: You may want to establish a cataloged procedure to invoke GTF. This
procedure could specify all of the desired GTF options and keywords for using
GTF with the SLIP command. Using such a procedure would allow you (when
working from a TSO terminal) to pass only the name of the procedure to be
started to the operator instead of the GTF parameters as shown in the example.
This reduces the burden on the operator and is more effective when
communicating with the operator.

2-124 MVS Diagnostic Techniques

PN

Designing an Effective SLIP Trap

Controlling SLIP Traps

The design of a SLIP trap requires knowledge of the error conditions and what
makes the error unique. An effective trap should catch only the intended error.
To do this, the description should be as specific as possible.

Note that SLIP does not detect any events that occur while running in
TRASMODE mode. (Control register 1 points to the segment table origin for an
address space other than the current address space.)

The best way to design a trap is from a dump of the error. In the case of the
NODUMP action, a dump should be available. In other cases, an approximate
dump (one taken near the time of the error) or one without sufficient information
to debug might be available.

It should be understood that for error events (non-PER traps), SLIP operates as a
subroutine within the RTM. SLIP is called from either RTM1 or RTM2,
depending on whether the error environment allowed FRR or only ESTAE
recovery respectively. The level of RTM in control affects the data areas
available. The calls to SLIP are prior to calls to any error recovery routine,
therefore it is possible that the data areas contained in a dump may have been
changed since SLIP examined them. This is especially true of the COMP
keyword value. Many recovery routines change the abend completion code to
make it more specific. For example, a system service that receives a bad address
from a user parameter list will get an 0C4 which it converts to its own completion
code meaning a bad parameter list.

This topic describes how the MATCHLIM and PRCNTLIM keywords are used
to limit the system resources that a SLIP trap is allowed to use. Also, for PER
traps, it includes some performance hints.

MATCHLIM Keyword

The MATCHLIM (match limit) keyword provides a way to set an upper limit on
the number of times that a trap is allowed to match. This keyword can be
specified to ensure that resources are not used unnecessarily (for example, using
dump data sets when ACTION =SVCD is chosen) or to remove the overhead
associated with a PER trap as soon as possible.

The MATCHLIM keyword should always be specified for enabled traps that are
unattended in order to avoid undesirable results, such as filling several dump data
sets for multiple occurrences of the same error.

If MATCHLIM is not specified on a trap, there is no limit to the number of
times the trap can match. However, if MATCHLIM is not specified on a PER
trap with ACTION =SVCD, the trap is disabled after one match.

If a MATCHLIM value has been specified for a trap, you can tell if the trap is

matching and approaching the limit set by displaying the trap via the DISPLAY
command.

Section 2. Important Considerations Unique to MVS 2-125

When the MATCHLIM keyword is used on an IGNORE type trap, it can
provide the effect of ignoring a specified number of events before an action is
taken by the associated non-IGNORE trap.

PRCNTLIM Keyword

The PRCNTLIM (percent limit) keyword provides a way to set a limit on the
amount of system time that is committed to processing on behalf of a PER trap.
The percentage of time that is computed is based on the amount of time spent
processing PER interrupts and space switch interrupts (as compared to the
amount of time elapsed since the first PER interrupt for the trap). The
percentage that is computed is related only to software processing and does not
include any PER hardware processing. The percentage is computed each time
that a PER interrupt is processed and is compared to the percent limit specified
on the PRCNTLIM keyword. :

Percent limit checking is not performed for the first 33 seconds (approximately)
after the first interrupt is taken for the trap. This avoids a high initial percentage
which might disable the trap immediately.

The accuracy of the percent limit calculation is affected by the instructions that
are executed on behalf of the PER interrupt and space switch interrupt but are
not included in the calculation. These instructions include:

@ instructions that are executed before the first timestamp is taken. (For
example, instructions in the program check first level interrupt handler.)

@ instructions that are executed after the last timestamp is taken. (For example,
the percent limit calculation itself.)

@ instructions that are indirectly related to the PER interrupt. (For example,
instructions used for PER trap messages.)

Because these instructions are not accounted for in the percent limit calculation,
the accuracy of the calculation may vary between different traps. For example, if
there are many very explicit traps to be checked and one of them takes an action,
the large number of instructions executed between the timestamps taken will result
in a fairly accurate percentage calculation even though some instructions were not
-accounted for in the calculation. Conversely, if there is one very simple trap that
does not match, the instructions that are not accounted for in the calculation
represent a large portion of the instructions executed and their exclusion makes
the percentage calculation more inaccurate.

Also, the percentage calculation is affected because the calculated percentage is
truncated to an integer.

If you have any doubt as to whether or not a PER trap will work properly in a
system, a conservative value (such as the default PRCNTLIM = 10) should be
chosen. Thus, if the trap should consume large amounts of processing, it will be
quickly disabled. After approximately 33 seconds, you can display the PER trap
(via the DISPLAY command) and obtain the current system percent utilization by
the trap.

2-126 MVS Diagnostic Techniques

Placement of PER Traps

Specifying PRCNTLIM =99 indicates that percent limit checking is not to be
performed. It is intended for non-critical environments (such as testing) and
certain special situations (see the ACTION = WAIT option). In general, all
non-IGNORE PER traps should have a reasonable value specified for percent
limit.

Performance Hints For PER Traps
For PER traps, you can minimize system performance degradation by:

® Choosing values for the RANGE and LPAMOD keywords which will reduce
the range of storage that is monitored by the PER hardware. This will avoid
unnecessary PER interrupt processing.

@ Specifying the ASID and/or JOBNAME event qualifier keywords to avoid
having PER active in all address spaces in the system. When ASID and/or
JOBNAME is specified, PER monitoring is set up in only the requested
address spaces. Performance degradation due to PER monitoring occurs only
when the requested address spaces are in control. Also, when
MODE =HOME is specified, PER monitoring is set up only when the unit of
work is executing in the home address space.

The PER support provided by SLIP is designed to be non-disruptive at the
possible expense of not collecting data or performing a user requested action.
Several aspects of this non-disruptive characteristic are discussed in this topic:

Certain parts of the system cannot tolerate PER interrupts. For those parts, the
PSW PER bit is set off to prevent interrupts. Most notably, the PER bit is set off
in the program check, machine check and restart new PSWs. PER remains off in
such critical paths until processing reaches a point where a PER interrupt is
considered “safe.” For example, if a SLIP IF PER trap is set on for the first
instruction in the program check FLIH, no PER interrupts would occur and the
trap would not match. Note, however, that you are not prevented from setting
such a trap.

Some PER interrupts that occur are not always processed by the SLIP processor.
The SLIP processor ignores (that is, does not process) PER interrupts if the
interrupt:

® occurred while DAT was off (PER support for SLIP applies only to virtual
addresses).

@ is redundant. (Refer to S/370 Principles of Operatzon for a description of
redundant PER interrupts.)

® occurred while an enabled non-IGNORE PER trap does not exist. Note that
this implies that PER interrupts caused by a non-SLIP tool which has set up
the PER control registers is ignored by SLIP and the PER bit is turned off by
SLIP in the resume PSW before returning to the program check FLIH.

Section 2. Important Considerations Unique to MVS ~ 2-127

Because the SLIP processor uses certain system services, SLIP is sensitive to the
recursive use of those services where a recursive entry could cause an error.
Recursive calls to a function may occur in one of two ways; either directly or
indirectly. A direct recursion is the result of placing a PER trap in a function and
then causing SLIP to use that function. For example, suppose a SLIP trap is
placed in GTF entry code and the action specified is TRACE. If the trap
matched and SLIP tried to take the action, a GTF trace record would not be
written because of the recursive checks within GTF. A similar situation exists
with other tracing actions, dump actions, and wait. In general, direct recursions
result in the action not being taken. Such direct recursions can be avoided by the
appropriate choice of another SLIP action. Note that you are not prevented from
setting a trap that can cause a direct recursion.

Indirect recursions are a result of a PER interrupt occurring in a system service
that is called by a service that SLIP uses. For example, suppose a PER interrupt
occurred in the lock manager, the non-IGNORE PER trap matched and the
action was SVCD with a summary dump requested. To produce a summary
dump, SVC dump calls the lock manager to obtain certain locks. If the recursive
call to the lock manager is allowed, an error could result due to information being
overlaid because of the recursive call. In this case, SLIP suppresses the summary
portion of the SVC dump to avoid the recursive call to the lock manager. A
similar situation can occur if a PER interrupt occurred in code where the
SALLOC lock is held (for example, in an RSM module) and a summary dump is
requested (thus causing RSM to be recursively entered). In this situation also, the
summary dump is suppressed. For both of these situations, the debugging
information in the SDUMP 4K buffer and the asynchronous portion of the dump
are available for debugging.

PER Monitoring and Checkpoint/Restart

For PER monitoring, specific PER support is not included in the
checkpoint/restart function. Therefore, two possibilities exist for a checkpointed
program.

Case 1. - A program is running in an address space that has not been selected for PER monitoring and
the program is checkpointed.

Case 2. A program is running in an address space that has been selected for PER monitoring and the
program is checkpointed.

These two cases could result in one of three conditions when the checkpointed
program is restarted.

@ In Case 1, if the program is restarted in an address space that has been
selected for PER monitoring, the restarted program is not monitored.

® In Case 2, if the program is restarted in an address space that has not been
selected for PER monitoring, but other address spaces are being monitored,
unwanted PER interrupts may occur (depending on the PER control register
settings). If unwanted PER interrupts occur in the restarted program, the
PSW PER bit is turned off in the restarted program. This may eventually
remove all possible degradation due to the unwanted PER interrupts from the
restarted program.

2-128 MVS Diagnostic Techniques

® In Case 2, if the program is restarted and PER monitoring is not active in the
system (that is, control register nine is zero), the system may suffer some
degradation due to the PSW PER bit being on in the restarted program as the
restarted program is running.

SLIP Command Keyword Summary

Figure 2-17 is a summary of the SLIP command keywords. The keywords are
shown across the top of the figure and are grouped by the function that they
perform. For each keyword, a brief description is given for the use of the
keyword, the valid options, required and default options, restrictions, comments
and other information.

Section 2. Important Considerations Unique to MVS ~ 2-129

sanbruysa §, onsoudeiq SAN 0€1-T

(€ Jo 1 yed) LI-T oan3iy

Arewnung puewaio)) JI'1S

SLIP Control Keywords

Trap Type Keywords

Trap Control Keywords

Speciatized Keywords

SET

DEL

MOD

IF

SB

SA

ENABLE

DISABLE

1D

END

DEBUG

T
VPER
'

Sut 2 PEF trap

Delete one or more PER
traps.

Enable or disable ane or
:nore PER traps.

Set an iInstruction fetch
PER trap.

Set & successfui branch
PER trap

Set » storage alteration
PER 1rap

Enable a PER trap.

Disable a PER trap.

Provide an identitier for
3 PER trap.

Indicates the trap
definition is complete.

Causes the GTF SLIP
DEBUG record 10 be
written when the rap

l ! is checked.
{hon-PERLSet 8 nonPER trap Delste one or more Enable or disable one or - -—— Eanble a non-PER Disable a non-PER Pravide an identifi Causes the GTF SLIP
N non-PER traps. more non-PER traps. ap. 3 2 non-PEA trap. DEBUG record to be
written when the trap
is checked.
Valid ACTION JSPGM ALL ALL ACTION MODE Same a3 1F. ACTION MATCHLIM R PR Four-character identifier. | — — — .
Options | ADDRESS LIST [DISABLE A$1D PRCNTLIM ADDRESS ~ MODE
ASID LPAMOD ENABLE ASIDLST RANGE ASID PRCNTLIM
ASIDLST ~ MATCHLIM 10 DATA SDATA ASIDLST PVTMOD
ASIDSA MODE DEBUG SUMLIST ASIDSA RANGE
comp PRCNTLIM DISABLE TRDATA DATA SDATA
DATA PVTMOD ENABLE DEBUG SUMLIST
DEBUG RANGE END DISABLE TRDATA
pIsABLE RBLEVEL 10 ENABLE
ENABLE = SA JOBNAME END
END S8 JISPGM o
erRTYP SDATA LIsT JOBNAME v
W SUMLIST LPAMOD SPGM
1 TRDATA MATCHLIM LST
JOBNAME LPAMOD
Required |END IDor ALL 1D or ALL, and RANGE or LPAMOD RANGE or LPAMOD RAANGE (unless - - - - - -
ENABLE or DISABLE ACTION=IGNORE is
spacified)
‘! Dotaulc ENABLE, - - - - - -—- - System supplied. - -
ACTION: SVCD, and
R8LEVEL-ERROR
Restric- | Must follow SLIP Must follow SLIP. Must follow SLIP. Must foliow SET. Must follow SET. Must foliow SET. - - —— Specify at end of the -
tions command.
Com- e - - Qualify with ASID and/or | Same as IF Same as IF. Only one non-IGNORE - Use with SET. GTF must be active
ments JOBNAME to minimize PER trap may be enabled. and with the SLIP
performance degradation. option chosen.
& Minimum |- - -—- - - - -—- - - - - - [
Value
Maximum | - - - -=- - - - - - -
Value
Speciat - ALL indicates all SLIP ALL indicstes all SLIP --— - — - _——— - _——— _———
\alue traps. traps.
Abbrevie- |~ - —~ - - - - i EN o R E .
tioa
Example JSLIP SET, SLIP DEL, SLIP MOD, .. SLIP SET, IF, SLIP SET, SB,. SLIP SET,SA... SLIP.. EN,. SLIP....D, 1D=TRP1 SLIP SET, DEBUG

I€1-C SAN © anbrun suonespisuo) jueyiodwy ‘7 UOHISS

(€ 30 T ueq) Ly-7 23y

Argunang puemmo) JIIS

Trap Event Qualifier Keywords

vuAi

ADDRESS ASID ASIDSA COMP DATA ERRTYP JOBNAME JSPGM LPAMOD MODE PVTMOD
PER For SA, specities the Specifies the ASIDs Specifies the ASIDs - Spacifies condition of - Spacities the job Specifies the job For IF and SB, defines the | Specities system mode. | For SA, specifies private
address renge of the {address paces) 10 be {address spaces) in which $torage O registers 10 be monitored. s1ep program naine nitared. modula that must cause
ion that must i the storage being aftered that must be in control. For SA, specifies the LPA storage alterstion.
cause the storsge resides. module that must causs the|
Jolteration. storage aiterstion 3
Non-PER |Specifies the sddress range | Specifies the ASIOs -=- Specifies » user or system | Specities condition of Specifies system-detected | Spacifies the job that must | Specifies the job step Spacifies the LPA Spacities system mode. Specifies private module
thet must be in control (addrats spaces} that must complation code. Sorge O registers. *rror type. be in controt when the program name that must | module that must be in that must be in control
[when the error occurs. be in control when the error occurs. be in cantrol when the €ontrol when the error when the error occuss.
Frof Occurs. #1101 OCCurS. occurs. 5
Vaiid Start address -——- - Udddd — user code Dirsct address Register ABEND Any valid job name, Any valid job step Name ALL TCc8 Name <
Options | End address hhh — system code Indirect sddress DAT TSO 1D, of started task progrem name Start displacement oIS TYPY Stan dispalcement
MACH nama. End displacement GLOC - End disptacement
Operator — EQ, NE, LT, | MEMTERM GLOCSD With
GT,NG, NL. PGIO GLocse ANYor
PROG EVERY
REST HOME
SVCERR kLoc
LOCK
PKEY
PP
RECV
SKEY
SRB
SUPER
SUPR
N \S
Required §- — — el - -—— -— - - - Noma - Name
Defoutt |- - - . P — - - - - Entire moduls. ANY if EVERY inot | Entire module <
spacitied with an option}.
Rastric: | For PER traps, SA only. Maximum of 16 ASIDscan | — — — - - -——- - - - RECV cannot be specitied | For PER treps. SA only. ¢
tions. Start address must be less | be wpecified. for s PER trap. IfALL i
than or equsl 10 end specified for & PER trap.
addvess RECYV is not included.
Com- Specity virtus! addresses | Limits PER monitoring - Specity user code ss --- Logicet “or” it more than | Limits PER monitoringto | - - - Specify displacement in | HOME is not included Soecity displecoment in |
men in hexadecimal. 10 the ASIDs wecified. four decimal digits. one error is specified. the ASID of the job. hexadecimal when ALL is specified. 1f | hexadecimel.
Specify system code as HOME is specified, the
three hexadecimal digits. unit of work must be
" LS
Minimum 0 o - o -——— - - - - - -
Value ‘|
<
Maximum |OFFFFFF Instaliation-defined Maximum of 16 ASIDs | UBG89 or FFF. - - - - - - _——
Value IASVTMAXU). can be specified.,
Spociat |- - - -—- -—— X means don's care. -—- ALL - indicates alt valid | ~ --- --- EVERY — logicsl “snd” |- - — M
Value options, ANY - logicel “or”
ALL — o) modes
Abbrevie: |AD AS ASA c DA €A 3) L ™ e’
tion
Exampte {AD=(200,300) AS<{1,8,12A} ASA={5,5,3,HASID) C-08F DA-(2R,€0,00) ER=(DAT) J=MYJOB 5=1FOX00 L-MYMOD2 M- {GLOC) P-MYMOD1
14

sonbruyoo, onsoudeid SAWN 7€ [-7

(fmtinued)

RANGE

RBLEVEL

(o v ks ud q-l

Spacities the range of
addresses 10 be monitored.

--- Specifies the source AB
for the registers and
PSW at the time of error.
2 .
Start address ERARCR
End »ad NOTSVAB
PREVIOUS
21
Start sddress ---
- ERROA
).

For SA PER 1rsps, cannot
be wpeciied with
ACTION-<IGNORE.

Specily wirtuat sddresses
in hexadecimal. Stary
‘address may be greater
than, less then, or equal
to end address.

Applies 10 uniocked tesk
mode errors only.

~

OOFFFFFF

RA

¢

AA (600,700

RB=NOTSVRB

<

Figuze 2-17 (Part 2 of 3). SLIP Command Summary

Action Trace
Keyword Dump Tailoring Keywords Tailoring Automatic Control Keywords
ACTION ASIDLST LIST SDATA SUMLIST TRDATA MATCHLIM PRCNTLIM
PER Specifies the action to be | Specities the ASID: Specifi t of storage | Specifies the system Specifies a list of storage Specifies the typs and Spacifies the maximum Spacities the maximum
taken when the trap (address spaces) 10 be ranges to be included information to be ranges 1o be included content of the GTF number of times that amount of system time
matches. dumped. in the dump. included in the dump. in the summary dume. tecords 10 be collected. the trap can match, that PER processing
is aliowed.
Non-PER | Spec the action to be | Specifies the ASIDs Specifies a list of storage | Spacifies the system Specifies the type and Specifies the maximum -
taken when the trap {address spuces) to be ranges 10 be inciuded information to be content of the GTF number of times that
matches. dumped. in the dump. included in the dump. the summary dump. tecards 10 be collected. the trap cen match.
Valid IGNORE Hexgdecimal ASID vatus. | Direct address pairs. . ALLPSA Oirect address pairs. Direct addrass pairs. Decimal integer. Oecimal integer.
Options | NODUMP Indirect address paiss. CSA Indirect addrets pairs. Indirect sddress pairs.
: RECOVERY GRSQ
sveo LPA REGS
TRACE LSQA §TO
TROUMP NOALLPSA/NOALL
wAIT NOSQA
NOSUMDUMP/NOSUM
NUC
PSA
RGN
S
SUMDUMP/SUM
SwA
TAT
Required |- -~ -—- - -——— - - -
Default svco - - For ACTION=SVCD, - 70 1 - for PER traps with 10
SDATA={ALLPSA, CSA, ACTION-SVCD specitied
LPA, NUC, RGN, SQA, or detauited.
SUMDUMP, TRT}.
For ACTION=TRDUMP,
SDATA-TAT.
WAIT — not availsbie to Specity & maximum of Start storage ranges address | ACTION=SVCO or Start storage range address | ACTION=TRACE or - Applies 10 non-IGNORE
TS0 user, 15 ASIDs. must be fess than or squsl | ACTION=TRDUMP must | must be less than or equal | ACTION=TROUMP must PER traps only.
RECOVERY -- PER traps | ACTICN=SVCD ar 10 end 1torage range be specified or defeuired. | 1o end storage range be specified,
only. ACTION: TROUMP must ass, address.
be specified or defaulted. | ACTION=SVCD or SUMDUMP/SUM must be
ACTION=TRDUMP must specified or defeulted.
be specified or defauited. ACTION=8VCO or
ACTION=TRDUMP must
be specitied or defauited.
Com- Choose only one option — | — ~ - - CHNGDUMP settings ars | = = — GTF record is 286 bytes | — ~ - -
ments except RECOVERY which overridden when SDATA maximum. $TD uses 120
must be specified with one is specitied (except tor bytes. REGS uses 68
of the other options. NODUMP option). bytes. GTF must be
active with the SLIP
option.
Minimum f- -~ o - - - - 1 1
Value
Maximum |~ - Instatiation-detined - -—— - - 68538 [
Value {ASVTMAXU).
Speciat - 0 -~ indicates the current | — — - - - STO ~ standerd record - 99 - no checking is
Value ASIO. information. performed
REGS ~ registers,
Abbrevie |A AL L8 S0 sL T0 ML PL
tion
Example | ACTION=(TRACE) ASIDLST=(0,1,LLOC,F) L18T={H.200,300, SDATA+(SQANUC) SUMLIST=(8.400,500, TRADATA={STD,REGS, MATCHLIM=40 PRCNTLIM=20
l 2R%¥, +20) 2R%%420) 20,30,2A%,+40)

Figure 2-17 (Part 3 of 3). SLIP Command Summary

R

System Stop Routine

On occasion it is necessary to stop the system and take a stand-alone dump to
fully document a problem. Loading a wait state PSW is sufficient on a
uniprocessor. Stopping only one processor on an MP system is not adequate.
This routine will stop an MVS MP or UP system. The caller must be supervisor
state and key zero. The wait state code you wish displayed is placed at location
X*“162°. This trap also moves the wait state PSW to storage location zero and
loads the PSW from there to prevent inadvertent restarts when the trap is hit.

NAME IEANUCO1 IEAVFX00

VER 0700 41F00°

REP 0700 ACFC075A DISABLE

REP 0704 B6000764 STORE CRO

REP 0708 94EF0764 TURN OFF PSA PROTECT
REP 070C B7000764 RELOAD CRO

REP 0710 900F0764 SAVE REGISTERS

REP 0714 58F00010 GET CVT POINTER

REP 0718 S8E0F294 GET CSD POINTER

REP 071C 91COE008 TEST IF MP

REP 0720 47E00750 NO JUST LOAD WAIT PSW
REP 0724 41200000 SET REG 2 TO CPU 0

REP 0728 41300001 SET REG3TOCPU 1

REP 072C 48400204 GET CPU ADDRESS

REP 0730 1244 TEST FOR CPU 0

REP 0732 47700748 NO, STOP CPU 0 FIRST

REP 0736 AE030009 YES, STOP CPU 1 FIRST

REP 073A 47600736 ' SPIN TIL CC=0

REP 073E D2070000075C MOVE THE WAIT PSW TO ZERO
REP 0744 82000000 LOAD WAIT STATE ON CPU 0
REP 0748 AE020009 SIGP STOP CPU 0

REP 074C 47600748 SPIN TIL CC=0

REP 0750 D2070000075C MOVE THE WAIT PSW TO ZERO
REP 0756 82000000,0000 LOAD WAIT STATE ON CPU 1
REP 075C 0C0E0000,0000DEAD WAIT PSW

REP 0764 00000000 SAVE AREA

Note: Extreme care must be used when considering a system alteration in order
to gather additional data about a problem. No superzaps should be applied
before the system programmer has verified the logic being zapped and the trap
logic itself. Remember if any one location or offset within the module or trap
changes, all offsets and base registers must be verified.

How to Expand the Trace Table

To increase the size of the trace table, you may zap module IEAVNIPO at label
NVTTRACE to a greater value. It defaults to X‘190’ (400 decimal). Do not
exceed a value of X400’ for the size of the trace table; 806-4 and 0C4 abends can
occur when the link pack area directory is accessed.

NAME IEANUCO01 IEAVNIPO
VER 3BBO 0190
REP 3BBO XXXX WHERE X IS THE NEW VALUE DESIRED.

Note: Extreme care must be used when considering a system alteration in order
to gather additional data about a problem. No superzaps should be applied
before the system programmer has verified the logic being zapped and the trap
logic itself. Remember if any one location or offset within the module or trap
changes, all offsets and base registers must be verified.

Section 2. Important Considerations Unique to MVS 2-133

2-134 MVS Diagnostic Techniques

_—

Section 3. Diagnostic Materials Approach

This section provides guidelines for analyzing storage dumps to find which data
areas were affected by the error and to isolate internal symptoms of the problem.

The three chapters in this section are:

® Stand-alone Dumps
® SVC Dumps
® SYSABENDs, SYSMDUMPs, and SYSUDUMPs

Section 3. Diagnostic Materials Approach 3-1

Stand-alone Dumps

The stand-alone dump provides the problem solver with a larger quantity of data
than system-initiated dumps because it contains areas that belong to the entire
operating system rather than just a single address space or component. One of
the major problems for the analyst is finding the important data for his problem
and then isolating the problem area. Once this isolation is achieved, the debugger
uses unique system/component techniques to gain further insight into the exact
cause of the problem. .

This chapter points out where to look in a stand-alone dump to determine various
problem symptoms. The general approach is to analyze a stand-alone dump to
find out what the system is doing (or not doing). Important areas will be
described and possible reasons for their current state/contents will be explained.
The analysis starts at the global system level and, by gathering data and gaining
an understanding of the environment, works down to the address space and task
level.

The experienced problem solver realizes that under certain conditions it may be
necessary or advantagepus to omit interpreting various areas. For example, if
during system operation you observe that a given segment of the segment (such as
VTAM) is not functioning (other areas appear okay - jobs are executing,
SYSIN/SYSOUT is appearing, etc.), you may decide to take a stand-alone dump.
In this case, the current state of the system is probably not important. You
would not be interested in current PSW, registers, etc.; you would be interested
only in the address spaces that are using VTAM and the state of the TP network.
The dump is not taken for a problem that is “active” .now, but to give you data
with which to determine a problem that appears to have originated some time
ago. The point is that knowing why the dump was taken will often govern which,
if any, of the stand-alone dump areas are of significance for a given problem.

Information contained in the chapter on “Waits” in Section 4 can be used as a
supplement to the following discussions. (Also, a step-by-step approach.to
analyzing a stand-alone dump is contained in Appendix B of this manual.)

To analyze a stand-alone dump, you should always ask the following questions:
1. Why was the dump taken?

Console sheets/logs are very important in stand-alone dump analysis. They
are often the key to solving “enabled wait” situations and may present
valuable information about system activity prior to taking the dump.
Messages concerning I/O errors, condition code =3, SVC dumps, abnormal
job terminations, device mounts, etc. should be thoroughly investigated to
determine if they could possibly contribute to the problem you are tracking.

The dunip title gives an indication of the problem’s external signs or, possibly,

a specific situation that must be investigated, such as “VTAM NOT
FUNCTIONINGT”

3-2 MVS Diagnostic Techniques

What is the current state of the system?

Examine the available global data areas to determine what the system is
currently doing. The “Global System Analysis” chapter in Section 4 aids in
this process. Remember that at this point, you are gathering information and
trying to understand the system environment in order to isolate the internal
symptom; you are not ready yet to debug.

Has your global analysis isolated the problem to an internal symptom?
If so, refer to the discussion of that symptom in Section 4 of this manual.

What previous errors have occurred within the system; could they possibly have
any affect on your current problem?

The interpretation of SYSI.LOGREC and the in-storage LOGREC buffers
are most important in determining error history. See the chapter on “Use of
Recovery Work Areas” in Section 2.

What is the recent system activity?

The chapter on “MVS Trace Analysis” in Section 2 aids in trace table
interpretation.

What is the work status within the system?

Your objective is to determine if the system has for some reason not
completed all scheduled work. Determining what that work is and why it is
not progressing can provide insight into the problem as well as answer some
questions that may have arisen during an earlier analysis. Understanding the
major control block structure and work queue status should aid in
determining the possible source of the error. Refer to the discussion of
“Work Queues and Address Space Status” in the “Global System Analysis”
chapter of Section 2.

At this point, you should have gathered enough data to have a definition of the
internal problem symptom. You should also have considerable information about
the system’s state, error history, and job status. You should refer to the
appropriate chapter in Section 4 “Symptom Analysis Approach” or, if you have
isolated the error to a component or process, Section 5 or Appendix A,

respectively.

- Section 3. Diagnostic Materials Approach 3-3

SVC Dumps

SVC dumps (invoked by the SDUMP macro) are usually taken as a result of an
entry into a functional recovery routine (FRR) or ESTAE routine. The
component recovery routine specifies the addresses that will be dumped.

The “Component Analysis” chapters in Section 5 should help you identify what
areas of the system were dumped and what they contain.

Also, “Appendix C: SDUMP Title Directory” lists the titles of SVC dumps
initiated by system components and provides diagnostic information for the
modules that issue the SDUMP macro.

SDUMP options SQA, ALLPSA, and SUMDUMP are the defaults for all
requests. The SUMDUMP option of SDUMP provides a summary dump within
an SVC dump. There is a twofold purpose for this. First, since dump requests
from disabled, locked, or SRB-mode routines cannot be handled by SVC dump
immediately, system activity destroys much useful diagnostic data. With
SUMDUMP, copies of selected data areas are saved at the time of the request
and then included in the SVC dump when it is taken. Second, SUMDUMP
provides a means of dumping many predefined data areas simply by specifying
one option.

The data areas saved in SUMDUMP can be printed out by using the
AMDPRDMP control statement SUMDUMP. This summary dump data is not
mixed with the SVC dump because in most cases it is chronologically out of step.
Instead, each data area selected in the summary dump is separately formatted and

- identified.

For information on print dump statements needed to print the summary dump,
and multiple address-space output from SVC dump, see SPL: Service Aids.

The RTM2WA pointed to by the TCB upon whose behalf the dump is being
taken is the most valid system status indicator available. The dump task is
usually the current task; the task upon whose behalf the dump is being taken will
contain a completion code in the TCB completion code field. It is possible for the
ESTAE routine to issue SVC D itself, in which case the current task is also the
failing task.

Because of MVS recovery (retry and percolation), the SVC dump may be only
part of the documentation at the problem solver’s disposal. The problem solver

“should attempt to obtain:

1. The system log for the time the dump was taken to ascertain if:

@ Any other SVC dumps were taken before or after the one he is
investigating.

@ Any task subsequently abended. If so, a system dump that displays other
areas of storage that have meaningful data may be available.

3-4 MVS Diagnostic Techniques

2. The LOGREC formatted listing for the time immediately preceding the time
of the SVC dump. If the component analysis procedure fails to determine the
cause of the problem, analyze the dump as you would a stand-alone dump.
Keep in mind that the information obtained via the CPUDATA option on
AMDPRDMP is probably meaningless. Refer to the “Global System
Analysis” chapter in Section 2 for information on how to do a task analysis
of available address-space-related control blocks.

Keep in mind that the system has detected the error and has attempted recovery,
at least on a system basis. Therefore, there will be a good indication of the type
(internal symptom) of error (loop, abend, problem check, etc.) that caused the
problem. (See Section 4, “Symptom Analysis Approach.”)

How to Change the Contents of an SVC Dump Issued by an Individual Recovery Routine

At times, SVC dump contents are not sufficient to solve a problem. The most
convenient way to change the contents is the CHNGDUMP command. It can be
used to establish system options to be added to the options on each SDUMP
request, or to totally override the SDUMP options. See “Using the
CHNGDUMP Command” in Section 2. If you do not want to affect all SVC
dumps or if storage lists are involved, you may want to change the parameter list
in a particular ESTAE exit instead.

You can usually find the name of the recovery routine by looking at the user data
(or title) on the SVC dump printout. If not, search the ESTAE’s PRB for the
virtual address of the SDUMP SVC instruction.

The following description of SDUMP’s parameter list can help you decide which
bits will provide the data you want. The SDUMP macro expansion generates the
parameter list and puts the address of the list in register 1.

SDUMP Parameter List

Offset

0 L. ... user-supplied DCB=
Ao BUFFER =YES
10 PR user-specified STORAGE = or LIST =
o B user-specified HDR= or HDRAD =
e bl user-specified ECB=
RN O user-specified ASID =
el QUIESCE=YES
.1 BRANCH =YES

1 1. ... indicates SDUMP (as opposed to SNAP)
do indicates a SYSMDUMP request
IO R indicates the MVS/SP level of the SDUMP macro expansion
I user-specified ASIDLIST =
e b user-specified SUMLIST =
. ignore the change dump options (used by SLIP)
U dump came from TSO user
....... 1 parameter list applies for MVS/SP

Section 3. Diagnostic Materials Approach 3-5

10
14
16
18
1C
20
24

28

29

2A

2C

2D

2E

3-6 MVS Diagnostic Techniques

others

SDATA options

ALLPSA

PSA

NUC

SQA

LSQA

RGN

LPA

TRT (MVS trace table, master trace table, GTF buffers)

more SDATA options
CSA

SWA

SUMDUMP
NOSUMDUMP
NOALLPSA

NOSQA

reserved

DCB address

address of storage list (STORAGE, LIST, LISTA)

address of header record (HDR, HDRAD)

address of ECB

caller’s ASID

target ASID of scheduled dump

address of ASID list (ASIDLST)

address of summary dump storage list SUMLIST/SUMLSTA)
address of SYSMDUMP 4K SQA area (or TSO USERID if the
DUMP command was from TSO)

address of SYSMDUMP CSA work area

SDUMP control flags

LISTA option specified
SUMLSTA option specified
SUSPEND = YES option specified
reserved

reserved

TYPE = parameter options
TYPE = XMEM specified
TYPE = XMEME specified
reserved

reserved

exit options

GRSQ data requested
reserved

reserved

reserved

SYSABENDs, SYSMDUMPs, and SYSUDUMPs

SYSABENDs, SYSMDUMPs, and SYSUDUMPs are produced by the system
when a job abnormally terminates and a SYSABEND, SYSMDUMP, or
SYSUDUMP DD statement was included in the JCL for the terminating step. In
an MVS system, the output produced is dependent on parameters supplied in the
SYS1.PARMLIB members IEAABDQO, IEADMRO00, and IEADMPOO for
SYSABENDs, SYSMDUMPs, and SYSUDUMPs, respectively. See SPL:
Initialization and Tuning Guide for the IBM-supplied defaults and options that are
available.

If the IBM defaults are used, a hexadecimal dump of LSQA is produced when the
SYSABEND DD statement is specified. MVS systems do not dump the nucleus
or SQA as a default for SYSABEND or SYSUDUMPs. SYSMDUMP defaults
include NUC and SQA.

With a SYSABEND, SYSMDUMP, or SYSUDUMP, the system has detected the
error and therefore provided a starting point (such as a job step completion code)
for analysis. The analyst should always look at the JCL and allocation messages
that accompany the dump. The allocation messages contain error messages that
can sometimes be helpful. There will also be a JES2 job log that shows the
operator messages and responses that relate to the job. The error messages also
contain valuable information about the error and should always be investigated.

SYSABEND, SYSMDUMP, and SYSUDUMP errors can generally be divided
into two categories: software-detected errors and hardware-detected errors.

Software-Detected Errors
Software-detected errors are those in which one or more of the following occurs:
® A module detects an invalid control block queue.
® A called module returns with a bad return code.

® A program check occurs in system code and a recovery routine changes the
program check to a completion cod