SY26-3832-1
File No. S370-30

Systems OS/VS2 SAM Logic

Release 3.8

_ a— == ——
_— == ==
_— ——— — =
= —_—— ————
e
- = = S ==

Page of SY26-3832-1
As Updated 30 Nov 1979
By TNL SN26-0956

Second Edition (February 1975)

This edition, as amended by technical newsletters SN26-0917, SN26-0931, SN26-0934, and
SN26-0956, applies to Release 3.8 of IBM OS/VS2, and to any subsequent releases until
otherwise indicated in new editions or technical newsletters.

The changes for this edition are summarized under *‘Summary of Amendments” following
the list of diagrams. Specific changes are indicated by a vertical bar to the left of the
change. These bars will be deleted at any subsequent republication of the page affected.
Editorial changes that have no technical significance are not noted.

Changes are periodically made to the information herein; before using this publication in
connection with the operation of IBM systems, consult the latest IBM System/370
Bibliography, GC20-0001, for the editions that are applicable and current.

It is possible that this material may contain reference to, or information about, IBM
products (machines and programs), programming or services which are not announced in
your country. Such references or information must not be construed to mean that IBM
intends to announce such IBM products, programming or services in your country.

Publications are not stocked at the address given below; requests for IBM publications
should be made to your IBM representative or to the IBM branch office serving your
locality.

A form for reader’s comments is provided at the back of this publication. If the form has
been removed, comments may be addressed to IBM Corporation, P.O. Box 50020,
Programming Publishing, San Jose, California, U.S.A. 95150. IBM may use or distribute
any of the information you supply in any way it believes appropriate without incurring any
obligation whatever. You may, of course, continue to use the information you supply.

© Copyright International Business Machines Corporation 1974, 1975

&

PREFACE

Page of SY26-3832-1
As Updated 30 Nov 1979
By TNL SN26-0956

The information in this manual is intended for programming-support customer
engineers and programmers who require specific information about queued
sequential access method (QSAM), basic sequential access method (BSAM),
and basic partitioned access method (BPAM) routines.

A general understanding of data management is prerequisite knowledge for
understanding the information in this book. See OS/VS2 Data Management
Services Guide, GC26-3875, for background information on data
management.

The manual is organized into the following sections:

“Introduction.” This section contains a brief description of the sequential
access method (SAM) routines and a reference to Diagram A, Sequential
Access Method—Overview. This diagram lists the macro statements used
with SAM programming techniques and directs the reader to appropriate

diagrams and figures in other parts of the manual.

“Method of Operation.” The SAM routines are described in the following
categories:

1. Queued sequential access method (QSAM) routines that cause storage
and retrieval of data records arranged in sequential order.

2. Basic sequential access method (BSAM) routines that cause storage and
retrieval of data blocks arranged in sequential order.

3. Basic partitioned access method (BPAM) routines that cause storage
and retrieval of data blocks in a member of a partitioned data set. They
can also construct entries and search for entries in the directory of a
partitioned data set.

4. Executors that operate with input/output support routines.

5. Buffer-pool management routines that furnish buffer space in virtual
storage. Figure numbers appear as a running head in this section. The
running heads identify figures that list functionally related groups of
modules, appendages, or executors.

6. Problem Determination that assists the user in determining the causes of
ABEND:s by providing more information on the reason for the
termination.

7. SVC routines that provide Supervisor state operation for functions that
cannot be done in the problem state or in the user’s key.

8. Task Recovery Routines that provide explicit validity checking for SVC
routines that experience program checks or other ABEND conditions.

‘“Program Organization and Flow of Control.” This section contains diagrams
that describe the organization and flow of control of the SAM routines.

“Directory.” The directory lists the names of the sequential access method
modules in alphabetic order. Each entry contains the module name, type,
CSECT name, SVC entry (if any), and references to figures and appendixes
in other parts of the manual that contain information about the module.

“Data Areas.” This section shows how various control blocks are used in
QSAM and BSAM. The access method save area for user totaling and the JES
compatibility interface control block are also described. This section does not

Preface 3

Page of SY26-3832-1
As Updated 30 Nov 1979
By TNL SN26-0956

Prerequisite Reading

Related Reading

4 OS/VS2 SAM Logic

describe in detail all fields of the system control blocks referred to in this
manual. For information about system control blocks not included, see
OS/VS2 Data Areas.

“Diagnostic Aids.” This section contains diagrams of control blocks and an
ABEND codes cross-reference table.

‘“Appendixes.”” These sections describe code conversion routines,
BSAM/QSAM channel programs, update channel programs, chained
scheduling channel programs, and BSAM channel programs.

For information about processing sequential and partitioned data sets:

e« OS/VS2 Data Management Services Guide, GC26-3875

For specific information about the macro instructions required to process
sequential and partitioned data sets:

e« OS/VS2 Data Management Macro Instructions, GC26-3873

For specific information about Open, Close, and End-of-Volume routines:
e OS/VS2 Open/Close/ EOV Logic, SY26-3827

For information about system control blocks:

e OS/VS2 Data Areas, SYB8-0606

e« OS/VS2 System Programming Library: Debugging Handbook,
GC28-0632

For information about the Job Entry Subsystem:
o OS/VS2 JES2 Logic, SY28-0622

For information about EXCP, EXCP appendages, DEVITYPE, DEBCHK,
UCS images, FCB images, and IMGLIB:

e« OS/VS2 System Programming Library: Data Management, GC26-3830

For information on the sequential access method routines used by the IBM
1287 and 1288 Optical Character Readers:

o OS Data Management Macro Logic for IBM 1285/1287/1288,
GY21-0013

For information on the sequential access method routines used by the IBM
1419 Magnetic Character Reader:

e OS BSAM Logic for IBM 1419/1275, GY21-0012

For information about the IBM 3800 Printing Subsystem, character
arrangement tables, writeable character generation modules, character sets,
translate tables, graphic modification modules, copy modification modules,
FCB images, and forms overlay negatives:

e« IBM 3800 Printing Subsystem Programmer’s Guide, GC26-3846

Page of SY26-3832-1
* As Updated 30 Nov 1979
By TNL SN26-0956

For information about the sequential access method routines used by the IBM
3886 Optical Character Reader:

o« OS/VS IBM 3886 Optical Character Reader Model 1 Logic,
SY24-5162

For information on system codes and messages:

+ OS/VS Message Library: VS2 System Messages, GC38-1002

« OS/VS Message Library: VS2 System Codes, GC38-1008

For information on I/O Supervisor routines:

o OS/VS2 I/O Supervisor Logic, SY26-3823

For information on SAM and BPAM records written to SYS1.LOGREC:
« OS/VS2 SYSI.LOGREC Error Recording Logic, SY28-0678

For information on utilities used for problem determination and diagnosis:
» OS/VS2 Service Aids Logic, SY28-0643

For information on the sequential access method routines to support the IBM
3890 Document Processor:

e« OS/VS Logic for IBM 3890 Document Processor, SY24-5163

Preface 5

CONTENTS

| 3 {5 7T 3
Prerequisite Reading............ccooviiieviiiiiieeiiennteeeeteeeee et e 4
Related Readingcoccueeevuieriiieiniieeeiieeecee s steeeee st cee e e s see e e aeeneen 4

IHUSHTRLODSc..eoeiineieieece ettt e e e ee st e s e e e e st e e e et e e san e e aaaaas 9

FIBUTES ...ttt e te et a e s s se e e saae e s st e e aaansanaeas 9

DHAGIAMScoiiiiiiiiiiiei ettt st s s n 10

Summary of Amendmentscooooiiiiiiieiiiieeeere et 11

REIEASE 3.ttt st e et ettt s 11

REIEASE 2.ttt et e s e s e aa e s an e e st a e raes 12

INtrOdUCHION.......c.ooeiiiiiiiceeereee et e e e e e e s e eearaee s s e s nrraan e ee e s nnnneeeans 15

Method of OPeration..............ccoooiiiiiiiiiiiiiieiieiiieieeereeeeeesreeseseeseesseessarssearanes 17

Queued Sequential Access Method Routinescccceeeevveeeerieeeenrverennnens 17
Gt ROULINEScceiiiiieeeee e ceececrreeeeeeeee s s eeetrereeeesse e nnraeeesessssnnseensansans 17

Simple-Buffering Get Routines..........ccccceveeeiiviieeeciieeeeiiieesceeeeveeeennns 17
Parallel Input Processing Routine..........ccccccceeiiiereinnniieienniciiereeenennnee 32
Update Mode Get ROULINEccccvieeerrreeriieieeicceereeneeee e eiaeseeeeeeas 52
Put ROULINES ...ttt e eee e ereee e s e s see e ae e e e e 40
Simple Buffering Put ROUINES.......c...ccceeveeeriieennieenseennieeceeeneeeeeeennee 40
Update Mode PUTX RoUtIne.........ccceeveiieeeecieeeeieteeeeceee e e sveeeennes 52
End-of-Block ROULINES.......ccccooetiiniiiiieiiteeenceee e ssee e seneeessne e e 53
Ordinary End-of-Block ROULINES.........ccocveriieniiiiriiienieceeeeccieeeesreeaenne 54
Chained Channel-Program Scheduling End-of-Block Routines........... 64
Track-Overflow and User-Totaling Save Routines..........c.cc.ccceeeeuvennnen 74
Synchronizing-and-Error-Processing Routinescccceoveeeviveeenieenenns 77
APPENAAZESooeiiiiiiieiiicieeeeecteeee ettt e et e s e aae s s srae e e e raeeseanaesenns 87
End-of-Extent Appendagescccevueeerureeeriennieeesnseeinneeseeeesieessessnes 88
Start I/O (SIO) AppPendages.........cc.eecueeeeeereenreeereereeeeeereseesreeseeesnenns 93
Channel-End Appendagescccceeeeeeeierrereiniiennieeeerenseeeesneeeseeseeens 94
Program Controlled Interruption (PCI) Appendage (Execution of

Channel Programs Scheduled by Chaining)cccceceeeeeveceeecunennne. 106
Abnormal-End Appendagesccccceeeeeuveerneineerieneeeneeeiesseieeseenneas 108
QSAM Control ROULINES.......cccceeeriieireiienierereteneeeiereeeereeseressaeeseeessaes 111
Basic Sequential Access Method Routinesccceeeieiivencenecceieccerecneenn, 114
Read and Write ROULINEScccoeuumimiiiiiiiiiiiiiceiereee e eeeeeree e 114
Check ROULINEScoeuiieiiiiiicecirteieee e eeecreene e e s seees s eraeees e e s nnaaesssennns 123
BSAM Control ROULINEScccveeiieceeeeiieiireeeeeeieeeescreeeeeeseeesessneessnsnees 128
Basic Partitioned Access Method Routinescccccceevveeerrenicincieeeennenennn, 134
BPAM ROULINESc.ccuniiiiiiiieiieieeeeeseteeeseeieeeeseeneeesessneensssssessessesssssarees 134
Dummy Data Set..........ccovieiriiiiiiiieerieerree et 135
Sequential Access Method EXECULOrS.....c.cccecceeirienreeerreninenecineneesnnneneesneeesones 135
DCB Relocation to Protected Work Area..........ccceeeveeevreeiennecnenenenn, 135
OPEN EXECULOTScieiiiueieiiieienieinieretneieseeeeseannseeeseessnsssesseeserereeensessnsnnnes 136
Stage 1 Open EXECULOrS......cceuiiiiiiiiiiiiieceereceee e e e eeee e seeeaes 136
Stage 2 Open EXECULOTS......cccuuieriririeeeieetenentereeeseeereeeseneeseeeseneesne 148
Stage 3 Open EXECULOLS.uuueieriiiiiirierienineeerteeereeerrnnneesesessnneeesennnne 163
ClOSE EXECULOTS.......eeieieinreeeeearreeeresineeesesieeessaseeeesanneassesssesassnsasssasennes 172
Force Close EXECULOTScccccitiiiiiiiririiiireeeeeieereecienrneeeeeeeseeeresanesssnnenenas 177
Buffer-Pool Managementcccoooviiieieiineeiiiieiieeiniesnsteesnteseeeseneesseees 178

Problem Determinaiion.......ccccceereiierieieriiieerenieeereeseeeeesrneeeresseeessesseesssseesans 183

SVC ROULIMES ...ccceevneiiieeiieiieeeieeeeiteeeeeereiaeeeeeerrassseseesseressssssssssssesssesssssssnans 184

Contents 7

Page of SY26-3832-1
As Updated 30 Nov 1979
By TNL SN26-0956

8 OS/VS2 SAM Logic

DEVTYPE ROULINE.cccceiiiiiiiiiireeeeeesecceseee et sees et senessneessnee e 185
IMGLIB ROULINE.....c..euriiiiiiieieeciieececireeceaeeeeeecrieeeesaiee e e saneae st ee s sneas 185
Track Balance, Track Overflow Erase Routines...........cccceeeeeeveieeecnnnnnes 186
BSP ROULINEcuvviiiiiiiiieeciiireescciereseerteessetve e e e s e seeseesseesesssnsasessasanssnsns 187
STOW ROULINESccovriiiiiiiieteneeiieereerreeeeesree e sssaeaesssaeeesssseaesesseessnvenas 188
BLDL or FIND ROULINESeeeiieiiriiieieieieiin ittt csiee e seeeeseneeeaeanne 190
SYNADAF and SYNADRLS ROULINESccccoverriiecieeiiecieeerie e 192
SETPRT and SETDEV ROULINES........ccceeiiiiiiieiiirireccieeecriie s eeceee e 197
Task Recovery Routines (TRR)coociereviiinienciienirineeeiteee e 200.6
Program Organization and Flow of Control.................cocceiiinniiinnnienieennee. 207
Diagram A: Sequential Access Methods—Overviewccccceeeveenrennnen. 207
Diagram B: QSAM Get and Put Routines............cccecovurerviierirenneececeeeer e, 209
Diagram C: BSAM/BPAM Read/Write and Check Routines.................... 211
Diagram D: Sequential Access Method Open Executors............couvveenneen.. 213
Diagram E: SAM Flow of Control for Open Executors...........c...ccocevrneunnn. 215
Diagram F: QSAM Flow of Control...........cccccovviiiiiiieeeeniieecieee e 217
Diagram G: BSAM/BPAM Flow of Control..........cccceeceecimveennnenieesneineenens 219
Diagram H: QSAM Flow of Control with EOV Routines 221
Diagram I: BSAM Flow of Control with EOV Routines.............c.cccoeuunnen. 223
Diagram J: QSAM Operation with FEOV Routine.............ccccceevcvireeunnnnnn. 225
Diagram K: Open Processing for SAM Subsystem Interface Executors 227
Diagram L: Close Processing for SAM Subsystem Interface Executors...... 229
Diagram M: SAM Subsystem Interface Flow of Control
for SYSIN/SYSOUT Data Sets.......c.coceeeeveeeeeeieeeeeeeee e 231
Diagram N: Force Close Processing.........ccccceecvuuerreicectinsininecnnreeeeeecrieeeennes 233
Diagram O: SYNADAF Flow of Processingcccccervnieireicieneniicecnennnn, 235
DHFECLOTY ...ttt et st s e 237
DAt AT@AS........ooiiininiiiiiiiieieerececettee e e e e s se e eeerae e e esaeeaseatasaeeeeeeessnnnraneeeaeeanns 243
Message CSECT—IGGMSGooiiiiiiiiiiitieneeecetereee e 243
SETPRT Work Area (SPW)—IGGSPW........cooviiiiiiiieinieeeeeceee e 244
BLDL Work Area—SPWSttt cre e e ae e e 244.2
Buffer Pool Control Block—IGGBCB...........cccciiiiiiiiiiiiiiniieceeee e, 245
Parameter List—IGGPARMLccoiiiiiiiiiiiiiir e eveee e 246
SAM OPEN/CLOSE Work Area—IGGSCW..........c.cccceevmrcireviecenieeee 247
SAM/PAM/DAM GTRACE Buffer—IGGSPDcccooeevmeieiieeeeenne. 248
STOW Work Area—IGGSTWoooioiiiiiiiniieeiiecceteeieesveeee e seaessaee s 248
SYNADAF General Registers Save Area and Message Buffer
ATEa—IGGSYN ..ottt ettt ettt a e ean 252
SETPRT Parameter List—IHASPPccoocoiimiiiiiiereeeeecteeeeeee e, 254
Access Method Save Area for User Totaling..........c.ccooceerieiniienneenneennne 254.2
DiIagnostic AQdS............eeviiiiiiiiiieeiree ettt 255
QSAM Control BIOCKS......c.cutrrireeiiiniiieiniieeeeeeeseeesetest e s e seeesreeesseesaneas 255
BSAM Control BIOCKScceveieeriiieiiiiieeesiteeeeeeseeesee e ste e caee e e eaeesneas 256
JES Compatibility Interface Control Block (CICB)ccccoevvrreeveeeennnn. 258
ABEND Codes and Cross-Reference Table............ccccceeeiieiiiivenieiiccnnennn. 259
SETPRT Executor Return Codes and Messages (For 3800 Only) 262
SAM Register Saving COnVeNtionccccveeeecieieericiiereceeecsnieeeecneeeeeanes 262.4
Appendix A: Paper Tape Code Conversion Routines...................cccocuveerennnnn. 263
Appendix B: BSAM/QSAM Channel Programs...............c..c..cccoveeuureennnnnnen. 265
Appendix C: Update Channel Programs..................c.ccoovvemeeeeeneeeeeeeeereeennenn. 275
Appendix D: Chained Scheduling Channel Programs..................................... 281
Appendix E: BSAM (BDAM Create) Channel Programs.............................. 289
INAEX ...ttt erae s e e e te e e e eeeeeeanes 295

C

ILLUSTRATIONS

Figures

Figure
Figure

Figure
Figure

Figure
Figure
Figure
Figure
Figure

Figure

Figure
Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure
Figure
Figure
Figure

b

0 %o

10.

11.
12.
13.

14.
15.
16.
17.
18.
19.
20.

21.
22.
23.
24.
25.
26.
27.
28.
29,
30.
31.
32.
33.
34,
Figure34.1
35.
36.
37.
38.

Page of SY26-3832-1
As Updated 30 Nov 1979

By TNL SN26-0956

Module Selector—Simple Buffering Get Modules 19
Order of Records Using Get Routines for Data Sets

Opened for RDBACK (IGG019AM, IGGO019AN) 25
The Two Parts of an Update Channel Program

(Empty, Refill).....ccooiviiiiiiiiiiiiiiieeccereeceeereeeeiere st ee e 34
Relation of Seek Addresses in Three Successive

QSAM Update Channel Programsccoeeeeeeivervieenereneenenen 35
Module Selector—Update-Mode Get Modules......................... 36
Module Selector—Simple Buffering Put Modules..................... 42
Module Selector—Ordinary End-of-Block Modules................. 55

IOB SAM Prefixes for Normal and for Chained Scheduling..... 65
Module Selector—Chained Channel-Program Scheduling,

End-of-Block Modulescccccooriiiiiiiiiiniiiinice st sieee e 66
Comparison of the IOB SAM Prefixes for Normal and for

Chained Schedulingccoovviiiiiiiiiiieririe e ecre e 66
Track-Overflow Recordscccccovvieeeiniiniieenenniieniecieeeeenae 74

Module Selector—Track-Overflow,75 End-of-Block Modules. 75
Module Selector—QSAM Synchronizing-and-Error-Processing

MOQUIEScoiieieeee e e e e 79
Module Selector—Error-Processing Modulesccccceceeenne 85
Module Selector—Appendages ettt eeene 89
Module Selector—Control Modules..........cccceeeevveeenieeeeerieenns 112
Control Routines that Are Expansions of Macro Instructions 112
Module Selector—Read and Write Modules..............cccuveenees 115
Module Selector—Check Modules..........cccceeeevvieeeriiieenneeenns 124
Module Selector—Control Modules Selected and Loaded

by the Open EXecutor.........cccovvuiiiiiiiiiiiiiiiieeeeeeeseseeee e 129
Control Routines that are Expansions of Macro Instructions . 129
BPAM Routines Residence...........ccccceeeeviiiiiciiieeeei e, 134
Sequential Access Method Executors—Control Sequence...... 135
Open Executor Selector—Stage 1........cccocceeeiiiiiecesccenenniennnns 138
Open Executor Selector—=Stage 2cccooeeeeevivieerereeeesiinennnns 149
Open Executor Selector—Stage 3cc.oocceveivivienicicennniennnns 165
Cl10S€ EXECULOTr SEIECTOT.........vveveeet e et 172
Buffer-Pool Management Routines.............ccocceeevieevveeiiieesnnnn, 178
Buffer-Pool Control BIOCKccoeevvuiieiiiiieeeivieeeieeeeeeveeenns 179
GETPOOL Buffer-Pool Structurescccceeveeeenveeeeniveennnnns 179
Build Buffer-Structuring Tableccccocvveeciiiniieie e, 180
Build Buffer-Pool Structure...........ccceceveeiiieeceeesieecieeciee e 180
Logical Record Buffer-Pool Control Blockcccceeevveenn. 181
ReECOTd AT€a......cooiiiiiiiiiiieeeeccree e cearar e ne e eeeaee e 182
SETPRT EXecutor SElECLOrccoceuvevievirvreeieireeeenrreeeereeeenns 198
Access Method Save Area for User Totaling.............cc......... 254.2
QSAM Control BIOCKS.......cccuvreiuiiireriiieeeectreeeecteeeeeiresessaeesenns 255
BSAM Control BIOCKScceieiiiiiiiiiiiececiieee e e eeneaeeene 257

Illustrations 9

Diagrams

10 OS/VS2 SAM Logic

Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram

Diagram
Diagram

Diagram
Diagram

RECZOmMmMOQWp

=

cz X

Sequential Access Methods—Overview.........ccccccceeveveeeunenne
QSAM Get and Put Routines.........cccecceeeeveeereeecseersnseeeenenns
BSAM/BPAM Read/Write and Check Routines................
Sequential Access Method Open Executors............cccceeeun.e.
SAM Flow of Control for Open Executors..........cccccceeuueenn..
QSAM Flow of Controlccceceveeereeeieceenecieeesseerssseessnanens
BSAM/BPAM Flow of Control............ccccecvevereevververueruennes
QSAM Flow of Control with EOV Routines............c..........
BSAM Flow of Control with EOV Routines
QSAM Operation with FEOV Routine...........cccceeevveereennnns
Open Processing for SAM Subsystem Interface

I 25 (0111 70) & T OTPPPRRRRRt
Close Processing for SAM Subsystem Interface

EXECULOTS.....coiiiiiiiiiiceieteerciee et eseeaete e csnee e s aneneseens
SAM Subsystem Interface Flow of Control for

SYSIN/SYSOUT Data Setsceeevuvererereerveeenneeeesveesaseeeessenens
Force Close Processing.........cccceeevereueerissneerecsrneersssseneasssnens
SYNADAF Flow of Processing.........c..ccoerveervvirveereunecuennne

L.

Page of SY26-3832-1
As Updated 30 Nov 1979
By TNL SN26-0956

SUMMARY OF AMENDMENTS

November 1979

OS/VS2 MVS 3800 Printing Subsystem Enhancements

. This programming enhancement, applicable to OS/VS2 MVS Release 3.8,
supports new 3800 Printing Subsystem installed changes and improved
software support:

« Improved paper repositioning operator control

o Load command changes

« Enhanced SETPRT messages and return codes

o Support for paper jam and cancel key during SETPRT

« Common interface to user for schedule for print and setup of SYSOUT
data sets

« User control of WCGM management

o Multiple extents for SYS1.IMAGELIB

July 1979

Device Support Enhancements

Provides a routine, invoked by a new system macro, TRKCALC, to perform
track capacity calculations. Using this macro will allow track capacity
algorithm independence.

June 1979

New Devices

The IBM 3203 Printer, Model 5, is supported as a Model 4.

0OS/VS2 Data Management Support for Mass Storage
System (MSS) Extensions Program Product

New Programming Support
MSS Extensions program product is supported with this programming
support.

August 1978
This technical newsletter incorporates and replaces all previous SU
information in this publication.

New Devices

IBM 3203 Printer, Model 4

Summary of Amendments 11

[©

INTRODUCTION

Sequential access methods (SAM) are programming techniques for
transferring data arranged in sequential order between virtual storage and an
input/output device. This manual describes five groups of sequential access
method routines. They are:

¢ Queued sequential access method (QSAM) routines
« Basic sequential access method (BSAM) routines

Basic partitioned access method (BPAM) routines

Sequential access method executors

Buffer-pool management routines

A processing program using QSAM routines works with records. For input,
QSAM routines turn the blocks of data of the channel programs into a stream
of input records for the processing program; for output, QSAM routines
collect the successive output records of the processing program into blocks of
data to be written by channel programs. See Diagram F for information about
the flow of control for QSAM routines.

A processing program using BSAM routines works with blocks of data. For
input, BSAM routines cause a channel program to read a block of data for the
processing program; for output, BSAM routines cause a channel program to
write a block of data for the processing program. BSAM routines are also
used to read and write blocks of data for members of a partitioned data set.
See Diagram G for flow of control information about BSAM routines.

A processing program that uses BSAM or QSAM to access SYSIN or
SYSOUT data sets invokes a special subset of SAM routines called SAM-SI
(SAM Subsystem Interface). These routines operate as a compatibility
interface to job entry subsystems, such as JES2, that control these data sets.
See Diagram M in “Program Organization and Flow of Control” section for
information about the flow of control in SAM-SI routines for BSAM and
QSAM.

A processing program using BPAM routines also works with blocks of data.
For output, BPAM routines construct and cause writing of entries in the
directory; for input, BPAM routines search for and read entries from the
directory. To read and write the blocks of the members, a processing program
uses the BSAM routines. Flow of control for the BPAM routines is shown in
Diagram G.

Sequential access method executors are modules that operate with the Open
and Close routines. When a data control block is opened, an executor
constructs control blocks and loads the access method routines. The access
method routines reside in the link pack area.

When the end of a data set or volume is reached, an EOV SVC is issued to
process the pending input/output blocks. The executors described are:

¢ Open executors
¢ Close executors

Buffer-pool management routines form buffers in virtual storage and return
virtual storage space (for buffers no longer needed) to available status. A
buffer-pool management routine is entered when a GETPOOL, BUILD,

Introduction 15

16 OS/VS2 SAM Logic

GETBUF, FREEBUF, or FREEPOOL macro instruction is encountered in a
program.

The GETPOOL and Build routines both form a pool of buffers in virtual
storage. However, the GETPOOL routine also obtains the virtual storage
space for the buffer pool. Virtual storage space must be provided by the
processing program when the Build routine is used.

The GETBUF and FREEBUF routines handle individual buffers. GETBUF
obtains a buffer from a buffer pool and FREEBUF returns a buffer to a
buffer pool.

The FREEPOOL routine returns the virtual-storage space used for a buffer
pool.

Diagram A in “Program Organization and Flow of Control” section lists the
macro statements that are used with sequential access method programming
techniques. The chart also refers to figures in other portions of the manual
that describe the SAM routines, appendages, and executors associated with
each macro statement.

(@

METHOD OF OPERATION

Queued Sequential Access Method Routines

Get Routines

Simple-Buffering Get Routines

Queued sequential access method (QSAM) routines cause storage and
retrieval of records and furnish buffering and blocking facilities. There are
seven types of QSAM routines:

« Get routines
« Put routines
« End-of-block routines

« Synchronizing-and-error-processing routines (including the track-overflow
and 3211 Printer retry asynchronous-error-processing routines)

o Appendage routines
« Control routines
o SVC Routines

Diagram F, QSAM Flow of Control, shows the relationship of QSAM
routines to other portions of the operating system and the processing
program.

Get routines determine the address of the next input record by referring to
the DCB. In update mode the next output record is the last input record.

If the American National Standard Code for Information Interchange
(ASCII) is used, the Get routine (providing it is specified in the DCB) will
accept a record with a block prefix. The Get routines do not present the block
prefix to the processing program. The block prefix is specified by the
BUFOFF option in the DCB. For more information on block prefix and
record formats for ASCII, see OS/VS Data Management Services Guide.

The Get routine descriptions that follow are accordingly grouped as:
o Simple-Buffering Get Routines
o Update-Mode Get Routine

Simple-buffering Get routines use buffers whose beginning and ending
addresses are in the data control block (DCB). The beginning address is in
the DCBRECAD field (address of the next record); the ending address is in
the DCBEOBAD field (address of the end of the buffer). In each pass
through a routine, it determines:

o The address of the next record
o Whether an input buffer is empty and ready to be scheduled for refilling
o Whether a new full input buffer is needed

If the records are unblocked, the address of the next record is always that of
the next buffer.

If the records are blocked, a Get routine determines the address of the next
record by adding the length of the last record to the address of the last record.

Method of Operation 17

18 OS/VS2 SAM Logic

The address of the last record is in the DCBRECAD field of the data control
block (DCB). If the records are fixed-length blocked records, the length of
each record is in the DCBLRECL field. If the records are variable-length
blocked records, the length of each record is in the length field of the record
itself.

A Get routine determines whether a buffer is empty and ready for refilling
and whether a new full buffer is needed by testing for an end-of-block (EOB)
condition.

When a buffer is empty, a Get routine passes control to an end-of-block
routine to refill the buffer. The buffers are filled for the first time by Open
executor IGG01911. Thus, the buffers are primed for the first entry into a
Get routine.

When a new full buffer is needed, a Get routine obtains it by passing control
to the input-synchronizing-and-error-processing routine, module IGG019AQ.
The synchronizing routine updates the DCBIOBA field, thus pointing to the
new buffer, and returns control to the Get routine. A Get routine updates the
DCBRECAD field by inserting in it the starting address of the buffer from
the channel program associated with the new IOB. To update the
DCBEOBAD field, a Get routine adds the actual length of the block read to
the buffer starting address. These two fields, DCBRECAD and
DCBEOBAD, define the available buffer.

For unblocked records, an EOB condition exists after every entry into the
Get routine. For blocked records, an EOB condition exists when the values in
the DCBRECAD and DCBEOBAD fields are equal. In the move operating
mode, the buffer can be scheduled for refilling as soon as the last record is
moved out; thus, an EOB test is made after moving each record, so that the
buffer can be scheduled for refilling as soon as possible. Another EOB test is
made on the next entry to the routine to determine whether a new full buffer
is needed. In the locate mode, the empty buffer is scheduled when the routine
is entered, if the last record was presented in the preceding entry; thus, an
EOB test is made on entry into the routine to determine whether a buffer is
empty and ready for refilling and also whether a new full buffer is needed.

When the processing program determines that the balance of the present
buffer is to be ignored and the first record of the next buffer is desired, the
processing program issues a RELSE macro instruction. Control passes to a
RELSE routine which sets an EOB condition. When records are spanned, one
or more blocks can be skipped to find the first record in a new block.

The Open executor primes (that is, schedules for filling) the buffers if QSAM
is used with a DCB opened for input, update, or readback. For the locate
mode, all buffers except one are primed; for the move mode, all buffers are
primed. The Open executor also sets an end-of-block condition; the first time
that a Get routine gains control, it processes this condition in the usual way.

Upon return from the synchronizing-and-error-processing routine, the Get
routines, which may be loaded for tape data sets, tests to determine if the
buffer contains a DOS checkpoint record. If a DOS checkpoint record is
indicated, ECB posted X‘50’, the Get routine branches to the end-of-block
routine to reschedule the buffer for refilling and then branches back to the
synchronizing routine to test the next buffer.

Figure 1 lists the simple buffering Get routines and the conditions that cause a

particular routine to be used. The Open executor selects one of the routines,
loads it, and puts its address into the DCBGET field. Figure 1 shows, for

J.

example, that when the Open parameter list specifies input and the DCB
specifies the GET macro instruction, simple buffering, the locate mode, and
the fixed-length record format, routine IGG019AA is selected and loaded.

Get Module IGG019AA: Module IGG019AA presents the processing
program with the address of the next fixed-length or undefined-length record.
The Open executor selects and loads this module if the Open parameter list
specifies:

N Input

Access Method Options Selections

INPUT, Get X X X |X X X X X X X X |[X X X
RDBACK, Get X IX X X
Locate operating mode X X X X |X X X
Move operating mode X X X |X X X X |X X
Data operating mode X
Fixed-length record format X X X X X
Undefined-length record format X X X X X
Variable-length or record format-D X X X X [X X
Spanned records X X [X X

* or DATA specified X
on DD statement

Card reader, only a single, buffer
CNTRL X X

Character conversion for paper tape X
Logical record interface X
Get modules

IGGO019AA AA AA
IGGO19AB AB
IGGO019AC AC AC
IGG019AD AD
IGGO19AG AG AG
IGGO19AM AM| AM
IGGO019AN AN AN
IGGO19AT! AT
IGG019BO BO
IGG019DJ DJ
IGGO019FB FB
IGGO019FD FD

IGGO19FF FF
1. This module also includes the character-conversion and synchronizing-and-error-processing routine for paper-tape devices.
Figure 1. Module Selector—Simple Buffering Get Modules

Method of Operation 19

and the DCB specifies:
Get
Simple buffering J
Locate operating mode

Fixed-length (unblocked, blocked, or blocked standard) or
undefined-length record format

The module consists of a Get routine and a RELSE routine.
The Get routine operates as follows:

« It receives control when a GET macro instruction is encountered in a
processing program.

o It tests for an EOB condition to determine whether a buffer is empty and
ready for refilling and if a new buffer is needed. When the Open executor
primes the buffers, it schedules all buffers except one and sets an EOB
condition.

o If no EOB condition exists, the Get routine determines the address of the
next record, and then presents the address to the processing program and
returns control to the processing program.

« If an EOB condition exists, the Get routine issues a BALR instruction to
pass the present buffer to the end-of-block routine to be scheduled for
refilling. The Get routine issues another BALR instruction to obtain a new
full buffer through the input-synchronizing-and-error-processing routine,
module IGG019AQ. The Get routine then presents the address of the first
record of the new buffer to the processing program and returns control to
the processing program.

The RELSE routine causes an EOB condition by setting the DCBRECAD J
and DCBEOBAD fields so that they are equal; it then returns control to the
processing program.

Get Module IGG019AB: Module IGG019AB presents the processing program
with the address of the next variable-length or format-D record. The Open
executor selects and loads this module if the Open parameter list specifies:

Input
and the DCB specifies:

Get

Simple buffering

Locate operating mode

Variable-length or record format-D (unblocked or blocked), unspanned
The module consists of a Get routine and a RELSE routine.
The Get routine operates as follows:

« It receives control when a GET macro instruction is encountered in a
processing program.

o It determines the address of the next record and tests for an EOB
condition to determine whether a buffer is empty and ready for refilling
and if a new buffer is needed. When the Open executor primes the buffers,
it schedules all buffers except one and sets an EOB condition. J

20 OS/VS2 SAM Logic

« If no EOB condition exists, it presents the address of the next record to the
processing program and returns control to the processing program.

« If an EOB condition exists, it issues a BALR instruction to pass the present
buffer to the end-of-block routine to be scheduled for refilling. The Get
routine issues another BALR instruction to obtain a new buffer through
the input-synchronizing-and-error-processing routine, module IGG019AQ.
The Get routine then presents the address of the first record of the new
buffer to the processing program and returns control to the processing
program.

The RELSE routine causes an EOB condition by setting the DCBRECAD
and DCBEOBAD fields so that they are equal; it then returns control to the
processing program.

Get Module IGG019AC: Module IGG019AC moves the next fixed-length or
undefined-length record to the work area. The Open executor selects and
loads this module if the Open parameter list specifies:

Input

and the DCB specifies:
Get
Simple buffering
Move operating mode

Fixed-length (unblocked, blocked, or blocked standard) or
undefined-length record format

The DCB does not, however, specify the CNTRL macro instruction. The
module consists of a Get routine and a RELSE routine.

The Get routine operates as follows:

« It receives control when a GET macro instruction is encountered in a
processing program.

o It tests for an EOB condition to determine whether a new full buffer is
needed. When the Open executor primes the buffers, it sets this EOB
condition for the first GET macro instruction.

« If no EOB condition exists, the routine moves the next record to the work
area.

« If an EOB condition exists, the routine issues a BALR instruction to obtain
a new buffer through the input-synchronizing-and-error-processing
routine, module IGG019AQ, and moves the first record of the new buffer
to the work area.

« It tests for a new EOB condition to determine whether a buffer is empty
and ready for refilling. For unblocked records, this condition exists at every
entry into the routine.

« If no new EOB condition exists, the routine returns control to the
processing program.

« If a new EOB condition exists, the routine issues a BALR instruction to
pass the present buffer to the end-of-block routine to be scheduled for
refilling and returns control to the processing program.

Method of Operation 21

The RELSE routine sets a bit in the DCB so that the Get routine passes the
buffer for refilling and obtains a new full buffer the next time the routine is
entered. ‘

Get Module IGG019AD: Module IGG019AD moves the next variable-length
or format-D record to the work area. The Open executor selects and loads
this module if the Open parameter list specifies:

Input
and the DCB specifies:
Get
Simple buffering
Move operating mode
Variable-length or record format-D (unblocked or blocked), unspanned

The DCB does not, however, specify the CNTRL macro instruction. The
module consists of a Get and a RELSE routine.

The Get routine operates as follows:

« It receives control when a GET macro instruction is encountered in a
processing program.

o It tests for an EOB condition to determine whether a new full buffer is
needed. When the Open executor primes the buffers, it also sets an
end-of-block condition for the first GET macro instruction.

« If an EOB condition exists, the routine issues a BALR instruction to obtain
a new buffer through the input-synchronizing-and-error-processing
routine, module IGG019AQ, and moves the first record to the work area.

« If no EOB condition exists, the routine moves the next record to the work
area.

o It tests for a new EOB condition to determine whether a buffer is empty
and ready for refilling. For unblocked records, the condition exists after
every entry to this routine.

« If no new EOB condition exists, the routine returns control to the
processing program.

« If a new EOB condition exists, the routine issues a BALR instruction to
pass the present buffer to the end-of-block routine to be scheduled for
refilling and returns control to the processing program.

The RELSE routine sets a bit in the DCB so that the Get routine passes the
buffer for refilling and obtains a new full buffer the next time the routine is
entered.

22 OS/VS2 SAM Logic

Get Module IGG019AG (CNTRL—Card Reader): Module IGG019AG moves
the next fixed-length or undefined-length record to the work area without
scheduling the buffer for refilling. To refill the buffer, the processing program
issues a CNTRL macro instruction. The Open executor selects and loads this
module if the Open parameter list specifies:

Input

and the DCB specifies:
Get
Simple buffering
Move operating mode

Fixed-length (unblocked, blocked, or blocked standard) or
undefined-length record format

CNTRL (card reader)
The module consists of a Get routine and a RELSE routine.
The Get routine operates as follows:

« It receives control when a GET macro instruction is encountered in a
processing program.

« If an EOB condition exists, it resets the DCBRECAD and DCBEOBAD
fields for the new buffer, issues a BALR to the input-synchronizing—
and-error-processing routine, module IGG019AQ, and then tests for
blocked records.

« If no EOB condition exists, it tests immediately for blocked records.

« For blocked records, it updates the DCBRECAD field, moves the present
record to the work area, and returns control to the processing program.

o For unblocked records, it sets the DCBRECAD and DCBEOBAD fields so
that they are equal, moves the present record to the work area, and returns
control to the processing program.

The RELSE routine sets the value of the DCBEOBAD field equal to that of
the DCBRECAD field to establish an EOB condition. Control then returns to
the processing program.

Get Module IGG019AM (RDBACK): Module IGG019AM presents the
processing program with the address of the next record when the data set is
opened for backward reading. The Open executor selects and loads this
module if the Open parameter list specifies:

RDBACK

and the DCB specifies:
Get
Simple buffering
Locate operating mode

Fixed-length (unblocked, blocked, or blocked standard) or
undefined-length record format

The module consists of a Get routine and a RELSE routine.

Method of Operation 23

24 OS/VS2 SAM Logic

The Get routine operates as follows:

« It receives control when a GET macro instruction is encountered in a
processing program.

« It tests for an EOB condition.

« If no EOB condition exists, it determines the address of the next record by
subtracting the DCBLRECL value from the DCBRECAD value. The
routine presents the result to the processing program, and returns control
to the processing program.

« If an EOB condition exists, it issues a BALR instruction to pass the present
buffer to the end-of-block routine. The Get routine issues another BALR
instruction to obtain a new buffer through the
input-synchronizing-and-error-processing routine, module IGG019AQ.
The Get routine then presents the address of the last record of the new
buffer to the processing program, and returns control to the processing
program.

The RELSE routine causes an EOB condition by setting the DCBRECAD
and DCBEOBAD fields so that they are equal,; it then returns control to the
processing program.

Figure 2 illustrates the ordering of records using this module. When reading
backwards under QSAM, each block is read from the tape from the end of the
block to the beginning, each buffer is filled from the end of the buffer to the
beginning, and the records are presented to the processing program in order
of the record in the last segment of the buffer first, and the record in the first
one last. In this manner of reading, buffering, and presenting, each record
follows in backward sequence, from the record presented last out of one
buffer to the record presented first out of the next buffer.

Get Module IGG019AN (RDBACK): Module IGG019AN moves the next
record to the work area when the data set is opened for backward reading.
The Open executor selects and loads this module if the Open parameter list
specifies:

RDBACK

and the DCB specifies:
Get
Simple buffering
Move operating mode

Fixed-length (unblocked, blocked, or blocked standard) or
undefined-length record format

The module consists of a Get routine and a RELSE routine.
The Get routine operates as follows:

« It receives control when a GET maero instruction is encountered in a
processing program.
o It tests for an EOB condition.

« If no EOB condition exists, it moves the next record to the work area, and
updates the DCBRECAD field by reducing it by the value of the
DCBLRECL field.

‘ } 21817 6 |5 | 4 3 2|1

% Direction of Tape Direction of Tape ™
When Reading Backward When Writing
. Last GET for this block A 7
addresses this segment
M First channel program
First GET for this block 9 fills this buffer
addresses this segment =4— beginning here
: A
Last GET for this block 4
addresses this segment
2|5
Next channel program
First GET for this block 6 fills this buffer
addresses this segment < beginning here

addresses this segment

Last GET for this block T

2
3 Next channel program
. . fills this buffer
First GET for this block < .
addresses this segment 3 beginning here
‘. Figure 2. Order of Records Using Get Routines for Data Sets Opened for RDBACK

(IGGO19AM, IGGO19AN)

« If an EOB condition exists, it issues a BALR instruction to obtain a new
buffer through the input-synchronizing-and-error-processing routine,
module IGG019AQ. The Get routine then moves the last record of the
new buffer to the work area.

o It tests for a new EOB condition.

e If no new EOB condition exists, it returns control to the processing
program.

o If a new EOB condition exists, it issues a BALR instruction to pass the
present buffer to the end-of-block routine and then returns control to the
processing program.

The RELSE routine issues a BALR instruction to pass the present buffer to
the end-of-block routine and then returns control to the processing program.

Figure 2, described for Get module IGG019AM, also illustrates the ordering
of records using this module.

Method of Operation 25

26 OS/VS2 SAM Logic

Get Module IGG019AT (Paper Tape): Module IGG019AT converts paper

tape characters into EBCDIC characters and moves them to the work area.

The Open executor selects and loads this module and one of the code

conversion modules (see “Appendix A: Paper Tape Code Conversion

Routines”’) if the Open parameter list specifies: J,

Input
and the DCB specifies:
Get
Simple buffering
Move operating mode
Paper-tape-character-conversion

The module consists of a Get routine and a character-conversion and
synchronizing-and-error-processing routine.

The Get routine operates as follows:

o It receives control when a GET macro instruction is encountered in a
processing program.

« It converts the next character and moves it to the work area.

« It continues converting and moving until one of the following conditions is
met, resulting in stated effect:

The number of characters specified in the DCBBLKSI field of the DCB
have been moved: The routine returns control to the processing program.

An EOB condition is encountered: The routine passes control to the

end-of-block routine to refill the buffer, and then enters the

character-conversion and synchronizing-and-error-processing routine to J
obtain a new buffer.

An end-of-record character is encountered (undefined-length records
only): The routine returns control to the processing program.

The tape is exhausted: The routine returns control to the processing
program.

A paper tape reader-detected error character is encountered: The routine
moves the character to the work area without conversion and enters the
character-conversion and synchronizing-and-error-processing routine.

« If one of the characters in the buffer is an undefined character, the module
converts it to the hexadecimal character FF, moves it to the work area, and
continues conversion. When one of the previous conditions is met, control
passes to the character-conversion and synchronizing-and-error-processing
routine.

The character-conversion and synchronizing-and-error-processing routine
operates as follows:

« For an EOB condition, the routine finds the next buffer and returns
control to the Get routine to resume converting and moving.

« For a reader-detected error character and for an undefined character, the *
routine passes control to the processing program’s SYNAD routine. When
control returns from the SYNAD routine, or if there is no SYNAD routine
present, one of the error options is implemented.

For the Accept-error option, the routine returns control to the processing
program.
For the Skip-error option, the routine fills the work area again.

For the ABE-error option, or if no error option is specified, the routine
issues the ABEND macro instruction.

The modules containing the tables used for code conversion are listed in
“Appendix A: Paper Tape Code Conversion Routines.”

Get Module IGG019BO: Module IGG019BO presents the processing
program with the address of the next variable-length record. The Open
executor selects and loads this module if the Open parameter list specifies:

Input

and the DCB specifies:

Get

Simple buffering

Locate operating mode

Variable-length spanned (unblocked or blocked) record format
Logical record interface

The module consists of a Get routine and a RELSE routine.

The Get routine operates as follows:

It receives control when a GET macro instruction is encountered in the
processing program.

It determines the address of the next record and tests for an EOB
condition to determine whether a buffer is empty and ready for refilling
and if new buffer is needed. When the Open executor primes the buffers, it
schedules all buffers except one and sets an EOB condition.

If no EOB condition exists, it tests whether the next record segment
contains a complete record.

If it is a complete record, the routine presents the address of the next
record to the processing program and returns control to the processing
program.

If it is the first segment of a spanned record, the routine moves the
segment to the record area with the proper alignment, sets the EOB
condition, and determines the address of the next record and whether a
buffer is ready for refilling.

If it is a segment that follows another segment of a spanned record, the
routine moves the segment (without the segment descriptor word) next to
the previous segment in the record area, and updates the count in the
record area. This step continues until the entire logical record has been
assembled in the record area. If an EOB condition occurs during this
process, the routine determines the address of the next record and whether
a buffer is ready for refilling. When the entire logical record is assembled,
the routine sets the spanned record flag in the IOB, presents the address of
the assembled record, and returns control to the processing program.

If an EOB condition exists, it issues a BALR instruction to pass the present
buffer to the EOB routine to be scheduled for refilling. The Get routine

Method of Operation 27

28 OS/VS2 SAM Logic

issues another BALR instruction to obtain a new buffer through the
input-synchronizing-and-error-processing routine (module IGG019A0).
The routine then obtains and interrogates the first record segment of the
new buffer. If it is a complete record, the routine presents the address of
the next record to the processing program and returns control to the
processing program.

The RELSE routine operates as follows:

« It receives control when a RELSE macro instruction is encountered in the
processing program.

o It sets an EOB condition.
o It sets a release bit in the DCBRECAD of the DCB.
« It returns control to the processing program.

The RELSE routine sets a release bit in the DCB so that the Get routine
passes the buffer for refilling and obtains a new full buffer the next time the
routine is entered. After obtaining the new buffer as a result of RELSE, the
Get routine interrogates the SDW of the first segment to determine if it is the
first segment of a record (bit 6 in third byte of SDW must be 0); if not, the
routine skips to the next SDW and checks it. This continues until an
acceptable segment is found. The routine then processes the Get request in
the usual way. The procedure may result in one or more additional blocks
being passed.

Get Module IGG019DJ (SYSIN/SYSOUT): Module IGG019D]J interfaces
with a job entry subsystem to provide the next record from the system input
stream to the processing program.

The open executor selects and loads this module if the open parameter list
specifies:

Input (* or DATA specified on the DD statement)
and the DCB specifies:

Get

Simple buffering

Locate or move operating mode

Fixed, undefined, or variable-length record format

The module consists of a get routine and a RELSE routine. See Diagram M
for an overview of the SAM-SI processing for QSAM.

This module also contains a Put routine that is described in the section,
“Simple Buffering Put Routines” (see Figure 6). The Get routine operates as
follows:

« It receives control when a GET macro instruction is encountered in the
processing program.

« It determines the type of get request and initializes the input area address
in the RPL (request parameter list). For move mode RPLAREA contains -
the address of the processing program work area (the contents of register 0
on entry); for locate mode RPLAREA contains the address of a buffer
from the DCB buffer pool.

« If the get request is for variable-length records RPLAREA is adjusted to
allow space for a RDW (record descriptor word) in the first four bytes of
the work area.

o It passes control to the JES (job entry subsystem) for data transfer by
issuing a GET macro instruction against the RPL. The return code in
register 15 is tested upon return from the JES.

o For an exceptional condition the RPLRTNCD and RPLERRCD are
examined to determine the type of failure.

« If end-of-data is detected, the appropriate registers are loaded and saved,
then an unconditional branch is taken to the synchronizing module,
IGG019AQ, (see Figure 13) for EODAD and concatenation processing

« If an error condition is detected, control is passed to the error-processing
module, IGG019AH (see Figure 14). If control is returned to this routine,
the GET request is reissued if DCB EROPT is SKIP. Otherwise, control is
returned to the processing program.

« For normal completion, it places the record address from the RPLAREA
field into register 1. If the SAM request was for a variable-length record,
the record descriptor word field is created, by using the value returned in
the RPLRLEN field. Registers are restored and control is returned to the
processing program.

The RELSE routine receives control when a RELSE macro instruction is
issued. Module IGG019DJ does not do any processing for this macro
instruction. Control is returned to the processing program by IGG019DJ.

Get Module IGG019FB: Module IGG019FB presents the processing program
with the address of the next variable-length record. The Open executor selects
and loads this module if the Open parameter list specifies:

Input
and the DCB specifies:

Get

Simple buffering

Locate operating mode

Variable-length format (unblocked or blocked) record, spanned
The module consists of a Get routine and a RELSE routine.
The Get routine operates as follows:

o It receives control when the processing program issues a GET macro
instruction.

« It determines the address of the next record segment and tests for an EOB
condition to determine whether a buffer is ready for refilling and also
whether a new buffer is needed. When the Open executor primes the
buffers, the executor schedules all buffers except one and sets an EOB
condition.

« If no EOB condition exists, the routine presents the address of the next
record segment to the processing program.

« If an EOB condition exists or if a DOS-type null segment (where the
high-order bit of the record descriptor word is on) is encountered, the
routine issues a BALR instruction to pass the current buffer to the EOB

Method of Operation 29

30 OS/VS2 SAM Logic

routine. The EOB routine schedules the buffer for refilling. The Get
routine issues another BALR instruction to obtain a new buffer through

the input-synchronizing-and-error-processing routine, module IGG019AQ.

The Get routine then determines if the EOB routine was entered because
of a RELSE macro instruction. If so, the Get routine checks the first
record segment to determine if it is a member of a previous logical record.
If it is, the Get routine continues to look for a record segment that is not a
member of a previous record. Such a segment is considered the first record
of the new buffer. (Note, however, that this could cause reentry into the
EOB routine and result in one or more entire blocks being skipped.) The
Get routine then presents the address of the first record segment of the
new buffer to the processing program and returns control to the processing
program.

The RELSE routine causes an EOB condition by setting the DCBRECAD
and DCBEOBAD fields so that they are equal. It then sets the high-order 4
bits of DCBRECAD to 1s and returns control to the processing program.

Get Module IGG019FD: Module IGG019FD moves the next variable-length
record to the work area. The Open executor selects and loads this module if
the Open parameter list specifies:

Input
and the DCB specifies:
Get
Simple buffering
Move operating mode
Variable-length (unblocked or blocked) record format, spanned

The DCB does not, however, specify the CNTRL macro instruction. The
module consists of a Get and a RELSE routine.

The Get routine operates as follows:

« It receives control when the processing program issues a GET macro
instruction.

« It tests for an EOB condition to determine whether a new full buffer is
needed. When the Open executor primes the buffers, the executor also sets
an EOB condition for the first GET macro instruction.

« If an EOB condition exists, the routine issues a BALR instruction to obtain
a new buffer through the input-synchronizing-and-error-processing
routine, module IGG019AQ, and moves the first record segment to the
user’s work area.

« If no EOB condition exists, the routine moves the first record segment to
the user’s work area.

o If a DOS-type null segment (where the high-order bit of the record
descriptor word is on) is encountered, that buffer is rescheduled by passing
control to the EOB routine. Processing continues as if an EOB condition -
exists as described above.

o If more record segments are required, the routine moves them, without the
segment descriptor words, to the part of the user’s work area that is
contiguous with the previous record segment. The routine also updates the
DCBLRECL field and the logical-record-length field in the record

descriptor word (RDW) in the user’s work area. These fields then reflect
the total logical-record length after additional record segments have been
moved. This procedure continues until the routine has moved the entire
logical record. An EOB condition can occur during this procedure.

o The routine tests for a new EOB condition to determine whether a buffer
is empty and ready for refilling. For unblocked records, the EOB condition
exists after every entry to the Get routine.

« If no new EOB condition exists, the routine returns control to the
processing program.

« If a new EOB condition exists, the routine issues a BALR instruction to
pass the present buffer to the EOB routine. The EOB routine then
schedules the buffer for refilling and returns control to the processing
program.

The RELSE routine sets the high-order 4 bits in the DCBRECAD field to 1s
so that the Get routine passes the buffer for refilling and so that the next time
the Get routine is entered, it obtains a new full buffer. After obtaining the
new buffer, the Get routine interrogates the segment descriptor word (SDW)
of the first record segment. The routine thus determines if the segment is the
first segment of a record. If it is, bit 6 of the third byte of the SDW will be 0.
If not, the Get routine skips to the next SDW and checks it. This procedure
continues until an acceptable segment is found. Then the Get routine
processes the GET macro instruction in the usual way. The procedure on
result in one or more additional blocks being passed.

Get Module IGG019FF: Module IGG019FF moves the data portion of the
next variable-length record to the work area. The Open executor selects and
loads this module if the Open parameter list specifies:

Input
and the DCB specifies:
Get
Simple buffering
Data operating mode
Variable-length (unblocked or blocked) record format, spanned

The DCB does not, however, specify the CNTRL macro instruction. The
module consists of Get and RELSE routines.

The Get routine operates as follows:

o It receives control when the processing program issues a GET macro
instruction.

« It tests for an EOB condition to determine whether a new full buffer is
needed. When the Open executor primes the buffers, the executor also sets
an EOB condition for the first GET macro instruction.

« If an EOB condition exists, the routine issues a BALR instruction to obtain
a new buffer through the input-synchronizing-and-error-processing
routine, module IGG019AQ, and moves the data portion of the first record
segment to the work area.

« If no EOB condition exists, the routine moves the data portion of the first
record segment to the user’s work area.

Method of Operation 31

Parallel Input Processing Routine

32 0S/VS2 SAM Logic

o If more segments are required, the routine moves them, without the
segment descriptor word, to the part of the user’s work area that is
contiguous with the previous record segment. The routine also updates the
DCBLRECL field to reflect the current total logical record length. This
procedure continues until the routine has moved the entire logical record.
An EOB condition can occur during this procedure. ‘

o The routine tests for a new EOB condition to determine whether a buffer
is ready for refilling. For unblocked records, the condition exists after
every entry to this routine.

« If no new EOB condition exists, the routine returns control to the
processing program.

o If a new EOB condition exists, the routine issues a BALR instruction to
pass the present buffer to the EOB routine. The EOB routine then
schedules the buffer for refilling and returns control to the processing
program.

The RELSE routine sets the high-order 4 bits in the DCBRECAD field to 1s
so that the Get routine passes the buffer for refilling and so that the next time
the Get routine is entered, it obtains a new full buffer. After obtaining the
new buffer, the Get routine interrogates the segment descriptor word (SDW)
of the first record segment. The routine thus determines if the segment is the
first segment of a record. If it is, bit 6 of the third byte of the SDW will be 0.
If not, the Get routine skips to the next SDW and checks it. This procedure
continues until an acceptable segment is found. Then the Get routine
processes the GET macro instruction in the usual manner. The procedure can
result in one or more additional blocks being passed.

The QSAM parallel input processing routine provides to the user an input
record from a queue of equal priority, sequential data sets. The routine
supports input processing; simple buffering; locate or move mode; and
fixed-length, variable-length, or undefined-length records. Track overflow
and spanned records are not supported.

Parallel Input Processing Module IGG019JD: Module IGG019JD uses the
PDAB (parallel data address block) to maintain a list of data control blocks,
addresses, and a corresponding wait parameter list of ECB addresses. DCB
addresses are added to the PDAB by the open routines and are removed by
the close routines. A count of the maximum number of DCB entries allowable
is assembled in the PDAB.

The address of the DCB entry from which the previous record was provided is
obtained from the PDAB, and each succeeding DCB entry is processed until
an available logical record is found; or until each data set is found to have
reached an EOB condition, and the next block of data is not available.

An EOB condition is detected when DCBEOBAD is greater than or equal to
DCBREGAD for the move mode, when DCBEOBAD is greater than or equal
to DCBECAD plus DCBLRECL for the locate mode, or when the first fou.r
bits of the DCBIOBA are set to ones for the RELSE function.

The next block is not available when the ECB for the next IOB is not posted’
as complete. The location of the next IOB is obtained from the current
IOB-8, and the location of its corresponding ECB is obtained from IOB+4.

J.

Update Mode Get Routine

When the ECB is not posted as complete its address is stored in the wait
parameter list in the PDAB. When no record is available from the queue of
data sets a WAIT is issued for the list of ECB addresses in the PDAB. When
control is returned the completed event is located from the list of ECB
addresses.

When a record is available, the DCB address and the user’s data area address
are passed to the DCB get routine.

The update mode Get routine differs from other Get routines in that it shares
its buffers, as well as the DCB and the IOBs, with the update mode Put
routine. The QSAM update mode of access uses simple buffering in which the
buffer is defined by the start and end addresses of the buffer.

If a PUTX macro instruction addresses a record in a block, the update mode
Get routine determines, when the end of the block is reached, that that buffer
is to be emptied (that is, that the block is to be updated) before being filled
with a new block of data. If no PUTX macro instruction addresses a record in
a block, the update mode Get routine determines, when the end of the block
is reached, that the buffer is to be refilled only; that is, that the last block
need not be updated and the buffer can be filled with a new block of data.
These characteristics of the buffer—simple buffering, sharing the buffer with
the Put routine, and emptying the buffer before refilling—influence the
manner in which the update mode Get routine determines:

« The address of the next record.

« Whether the buffer can be scheduled.

« Whether a new buffer is needed.

« Whether to schedule the buffer for empty-and-refill or for refill-only.

The first three of these determinations are made at every pass through the
routine. The last determination is made after the routine establishes that the
buffer can be scheduled.

If the records are unblocked, the address of the next record is the address of
the next buffer.

If the records are blocked, the address of the next record is found by adding
the record length, found in the DCBLRECL field, to the value in the
DCBRECAD field.

Whether the buffer can be scheduled and whether a new buffer is needed is
determined by whether an end-of-block condition exists. In the update mode,
one determination that an end-of-block condition exists causes both the last
buffer to be scheduled and a new buffer to be sought. An end-of-block
condition exists for unblocked records at every pass through the routine; for
blocked records it exists if the values in the DCBRECAD (the address of the
current record) and the DCBEOBAD (the address of the end of the block)
fields are equal. To cause scheduling of the buffer, the Get routine passes
control to the end-of-block routine. To obtain a new buffer, the Get routine
passes control to the update-synchronizing-and-error-processing routine,
module IGG019AF.

To cause scheduling of the buffer for either empty-and-refill or refill-only, the
update mode Get routine sets the IOB to point to the beginning of either one
of two parts (empty and refill) of the QSAM update channel program. Empty

Method of Operation 33

34 0S/VS2 SAM Logic

Channel Program
MBBCCHHR

A SEARCH The Empty portion of an
e Update Channel Program

WRITE (Data)

SEEK
B F_ 3

SEARCH

TIC The Refill portion of an
READ (Count) Update Channel Program

READ (Data)
MBBCCHHR J

Buffer

—L_

108

CPAD

Legend:

A - Address of channel program (CPAD) used to empty and refill the buffer.
(A PUTX macro-instruction was addressed to a record in this buffer.)

B - Address of channel program (CPAD) used only to refill the buffer.
(No PUTX macro-instruction was addressed to any record in this buffer.)

Figure 3. The Two Parts of an Update Channel Program (Empty, Refill)

writes out of the buffer and reads into that same buffer (see Figure 3). If
execution of a QSAM update channel program begins with the empty part,
execution of the refill part always follows. Each part of the QSAM update
channel program addresses a different location in auxiliary storage: the empty
part addresses the location from which the block to be updated was read; the
refill part addresses the location from which the last block was read.
Addressing the last known block and skipping over its data field leads to the
beginning of the next block, regardless of its address. This method of
addressing a Search command to the block read previously to address a Read
(count, key, and data) command to the next block is known as the
search-previous technique. It makes the count field of the present block being
read the Seek address of the refill portion of the next channel program. When
a buffer is to be emptied (back to the original location of the block in
auxiliary storage), the update mode Get routine obtains the block address
from the Seek address of the refill part of the next channel program. It copies
the address so that it becomes the Seek address for the empty part of the
present channel program (see Figure 4). For a description of the processing
for a refill-only QSAM update channel program, refer to the description of
the update SIO appendage. i

Whether to schedule the buffer for empty-and-refill or for refill-only depend%
on whether the block is to be updated. If the block is to be updated, the
PUTX routine will have set the update flag on in the IOB; otherwise, the flag
is off. To schedule the buffer for empty-and-refill, the Get routine sets the
IOB to point to the empty portion of the channel program and obtains the

9

¢

Channel Program for the Buffer

Scheduled to be Emptied and Refilled

1-1

SEARCH

WRITE (Data)

.

SEARCH

READ (Count)

A

(Data)

® LL

1+1

-

Channel Program for the Buffer

To be Processed Next

E 1-3 C
SEARCH

WRITE (Data)

SEARCH

READ (Count)

]

(Data)

L

[Data of Block 1-1

i

Legend:

Buffer Contents

:

|
|
|

Channel Program for the Buffer
Just Emptied and Refilled

I Data of Block |

Buffer Contents

1-2 C fer—-—r
1
SEARCH ‘
WRITE (Data) | 1
]
SEARCH ‘ é}
I
READ (Count) A
(Data) I
. j' |
Y

I Data of Block I+1

Buffer Contents

A - The Refill portion reads the count field of the block being read into the search argument of the next Refill portion.

B - To empty the buffer, the search argument of the next Refill portion is used as the search argument of this Empty portion.

C - To empty the buffer, the search argument of the next Refill portion was copied before the last time this buffer was scheduled.

D - To empty the buffer, the search argument of the next Refill portion will be copied before the next time this buffer is scheduled.

Present entries
—-————— Future entries

Figure 4. Relation of Seek Addresses in Three Successive QSAM Update Channel Programs

Seek address of the block to be updated from the refill portion of the next
channel program. To schedule the buffer for refill-only, the Get routine sets
the IOB to point to the refill portion of the channel program. The
end-of-block condition which triggers this processing also causes control to
pass to the end-of-block routine, module IGG019CC, for issuing the EXCP
macro instruction and to the update-synchronizing-and-error-processing
routine, module IGGO019AF, for obtaining the next buffer.

The PUTX routine sets the update flag in the IOB and returns control to the
processing program. The RELSE routine sets an end-of-block condition and

returns control to the processing program.

The Open executor primes (that is, schedules for filling) all the buffers except
one if QSAM is used with a DCB opened for update. The Open executor also
sets an end-of-block condition; the first time that the update mode Get
routine gains control, it processes this condition in its normal manner.

Figure 5 shows the update mode Get routines and the access conditions that
must be specified in the DCB to select a particular routine. The Open

executor loads the selected routine and places its address into the DCBGET
field of the DCB.

Method of Operation 35

36 OS/VS2 SAM Logic

Access Method Options Selections
Update, Get X X X X X X X

Fixed-length record X X
format

Variable-length record X X X X
format

Undefined-length record X
format

Blocked record format X X X
Unblocked record format X X X X
Locate operating mode X

Logical record X X
interface

Get Modules
IGGO19AE! AE AE AE AE AE

IGGO19BN BN BN
1. This module also carries the Update-Mode PUTX routine.
Figure 5. Module Selector—Update-Mode Get Modules

>

Get Module IGG019AE: Module IGG0O19AE presents the processing program
with the next input record, flags the IOB if the block is to be updated
(emptied and refilled), and sets the IOB to address a QSAM update channel
program for either empty-and-refill or refill-only. The Open executor selects
and loads this module if the Open parameter list specifies:

Update
and the DCB specifies:
Get

With the rotational position sensing (RPS) feature, the new CCWs are
bypassed when necessary.

The module consists of a Get routine, a RELSE routine, and a PUTX routine.
The Get routine operates as follows:

« It receives control when a GET macro instruction is encountered in a
processing program.

o It tests for an end-of-block condition to determine whether the buffer can
be scheduled and if a new buffer is needed. When the Open executor
primes the buffers, it schedules all buffers except one and sets an
end-of-block condition.

o If no end-of-block condition exists, it presents the address of the next
record, and returns control to the processing program. For variable-length,
format-D, and undefined-length records, it also determines the length of
the record and places it in the DCBLRECL field in the DCB.

« If an end-of-block condition exists, it tests whether the buffer is to be
emptied and refilled or is to be refilled only.

« Ifitis to be refilled only, it sets the IOB to point to the start of the Read
portion of the update channel program and passes control to the
end-of-block routine to cause scheduling of the buffer.

« If it is to be emptied and refilled, it sets the IOB to point to the start of the
update channel program. The routine obtains the auxiliary storage address
to be used by the Write portion of the channel program by copying the
address used by the Read portion of the channel program associated with
the next IOB. The routine then passes control to the end-of-block routine
to cause scheduling of the buffer.

e On return of control from the end-of-block routine, the Get routine passes
control to the update-synchronizing-and-error-processing routine, module
IGGO19AF, to obtain a new full buffer.

e On return of control from the synchronizing routine, the Get routine
updates the DCBLRECL field, presents the address of the next record, and
returns control to the processing program.

The RELSE routine operates as follows:

o It receives control when a RELSE macro instruction is encountered in the
processing program.

« It sets an end-of-block condition.
« It returns control to the processing program.
The PUTX routine operates as follows:

o It receives control when a PUTX macro instruction is encountered in the
processing program.

o It sets the update flag in the IOB to show that the buffer is to be emptied
before being refilled.

« It returns control to the processing program.

Get Update Module IGG019BN: Module IGG019BN presents the processing
program with the next input record, flags the IOB if the block or a spanned
record is to be updated (that is, emptied and refilled), and sets the IOB to
address a QSAM update channel program for either empty-and-refill or
refill-only. The Open executor selects and loads this module if the Open
parameter list specifies:

Update
and the DCB specifies:

Get

Locate operating mode

Variable-length spanned (blocked or unblocked) record format

Logical record interface
The module consists of a Get routine, a RELSE routine, and a Put routine.
The Get routine operates as follows:

« It receives control when a GET macro instruction is encountered in a
processing program.

o It tests whether EOV has occurred while processing a spanned record.

o If the record is not to be updated, it sets a bit in the DCBIOBAD field of
the DCB to indicate that the old DEB, whose address was saved by the
EOV routine, can be freed. It then issues an FEOV macro instruction to
free the virtual storage assigned to this DEB.

Method of Operation 37

38 OS/VS2 SAM Logic

If the record is to be updated, it restores the address to read back the block

that contains the beginning segment of the record. The current IOB is

modified to function as if only one IOB exists. It then issues an FEOV

macro instruction to cause the previous volume to be mounted and the data J
management count to be reset. A

On return of control from the FEOV routines, it operates as if no EOV has
occurred.

If EOV has not occurred, it continues on to the next step.
It tests whether a spanned record is to be updated.

If it is not to be updated, it obtains the length of the previous record
segment from the DCBLRECL field in the DCB or the SDW if it was a
spanned record.

It determines the address of the next record segment and tests for an EOB
condition to determine whether the buffer can be scheduled and if a new
buffer is needed. (When the Open executor primes the buffers, it schedules
all buffers except one and sets an EOB condition.)

If no EOB condition exists, it tests the next record segment for a complete
record.

If it is a complete record, the routine presents the address of the next
record, determines the length of the record, places it in the DCBLRECL
field, and returns control to the processing program.

If it is the first segment of a spanned record, the routine saves the track
address of the block that contains this segment, the position of the segment
in the block, and the alignment of the segment in the record area. The
routine obtains the track address of the block by copying the address used
by the Read portion of the channel program associated with the next IOB, J
the position of the segment by subtracting the buffer address from the
current record address, and the alignment of the segment by using the
low-order byte of the current record address. The routine then moves the
first segment to the record area and sets the EOB condition. It determines
the address of the next record, whether a new buffer can be scheduled, and
if a new buffer is needed.

If it is a segment that follows another segment of a spanned record, the
routine combines the segment (without the SDW) contiguous with the
previous segment in the record area. The count in the record descriptor
word (RDW) in the record area is updated to include the total count. This
process continues until the entire logical record has been assembled. An
EOB condition may occur during this process, in which case the routine
determines the address of the next record, whether a new buffer can be
scheduled, and if a new buffer is needed. When the entire logical record
has been assembled, the routine sets the spanned-record flag in the IOB,
presents the address of the assembled record in the record area, places the
length of the record (which is obtained from the RDW in the record area)
in the DCBLRECL field, and returns control to the processing program.

If an EOB condition exists, it tests whether the buffer is to be emptied and
refilled or is to be refilled only. .

If it is to be refilled only, it sets the IOB to point to the start of the read
portion of the update channel program and passes control to the EOB
routine to cause scheduling of the buffer.

« If it is to be emptied and refilled, it sets the IOB to point to the start of the
update channel program. The routine obtains the auxiliary storage address
to be used by the Write portion of the channel program by copying the
address used by the Read portion of the channel program associated with
the next IOB. The routine then passes control to the EOB routine to cause
scheduling of the buffer.

e On return of control from the EOB routine, the routine passes control to
the update-synchronizing-and-error-processing routine, module
IGGO019BQ, to obtain a new full buffer.

e On return of control from the synchronizing routine, the routine
interrogates the next record segment and saves the track address of the
block that contains the record, the position of the segment in the block,
and the alignment of the segment in the record area. The routine then
moves the first segment to the record area and sets the EOB condition.

« If a spanned record is to be updated, the routine restores the track address
to read back the block that contains the beginning segment of the record.
The current IOB is modified to function as if only one IOB exists.

o It sets the IOB to point to the start of the read portion of the update
channel program and passes control to the EOB routine to cause
scheduling of the buffer.

o On return of control from the EOB routine, the routine passes control to
the update-synchronizing-and-error-processing routine, module
IGG019BQ, to obtain a new full buffer.

¢ On return of control from the synchronizing routine, the routine
repositions the pointers to the beginning segment of the record and moves
that portion of the record from the record area to the segment in the
buffer. (A count is kept of the number of bytes of data moved.)

o If more segments are to be updated, the routine moves that portion of the
record from the record area to the succeeding segments in the buffer. (The
total count of the data moved is updated with each move.) This process
continues until the entire logical record has been segmented. If an EOB
condition occurs during this process, the routine tests whether a spanned
record is to be updated. When the entire logical record has been
segmented, the routine turns off the spanned-record flag in the IOB,
restores the link field in the IOB, obtains the address of the next record
segment, and determines whether a new buffer can be scheduled and is
needed.

The RELSE routine operates as follows:

o It receives control when a RELSE macro instruction is encountered in the
processing program.

o It sets an EOB condition.
o It sets a release bit in the DCBRECAD field of the DCB.
o It returns control to the processing program.

The RELSE routine sets a release bit in the DCB so that the Get routine
passes the buffer for refilling and obtains a new full buffer the next time the
routine is entered. After obtaining the new buffer as a result of RELSE, the
Get routine interrogates the SDW of the first segment to determine if it is the
first segment of a record (bit 6 in the third byte of the SDW must be 0); if
not, the routine skips to the next SDW and checks it. This continues until an

Method of Operation 39

Put Routines

Simple Buffering Put Routines

40 OS/VS2 SAM Logic

acceptable segment is found. The routine then processes the Get in the usual
way. This procedure may result in one or more additional blocks being passed.

The PUTX routine operates as follows:

« It receives control when a PUTX macro instruction is encountered in the
processing program.

o It sets the update flag in the IOB to show that the buffer is to be emptied
before being refilled.

o It returns control to the processing program.

Note: When a RELSE macro instruction is issued after a spanned record is
written with a PUTX macro instruction, this routine branches to the Get
routine to write the last record (the spanned record) and then releases the
block that contains the last segment of that spanned record.

Some of the general characteristics of the Put routines are described in
Diagram B, QSAM Get and Put Routines. A specific Put routine is selected
for each data set on the basis of access method options specified by the
processing program. The options examined are in the Open statement
parameter list and the data set attributes described in the DCB.

The Open executors (see Diagram D, SAM Open Executors) select and load
the modules that are required for a particular data set.

The access method options that determine which Put modules are selected
when Simple buffering is used are described in Figure 6. For update mode,
the PUTX routine resides in the Get module for update mode. See Figure 5
(under “Update Mode Get Routine’’) for information about the update mode
PUTX routine.

For information about the flow of control through the QSAM routines, see
Diagram F, QSAM Flow of Control.

Simple buffering Put routines use buffers whose ending address and the
address of the next or current record is pointed to by the DCB. The address
of the next record is in the DCBRECAD field (address of the next record);
the ending address is in the DCBEOBAD field (address of the end of the
buffer). In each pass through a routine, it determines:

« The address of the next buffer segment

« Whether an output buffer is to be scheduled for emptying

e« Whether a new empty buffer is needed

These three determinations are made at every pass through a Put routine.

If the records are unblocked, the address of the next available buffer segment
is always that of the next buffer.

If the records are blocked, a Put routine determines the address of the next
available buffer segment by adding the length of the last record to the address
of the last buffer segment. The address of the last buffer segment is in the
DCBRECAD field of the data control block (DCB). If the records are
fixed-length blocked records, the length of each record is in the DCBLRECL

field. If the records are variable-length blocked records, the length of each
record is in the length field of the record itself.

A Put routine determines that a buffer is ready for emptying and a new empty
buffer is needed by establishing that an end-of-block (EOB) condition exists.

If an output buffer is to be scheduled for emptying, a Put routine passes
control to an end-of-block routine, to cause the present buffer to be
scheduled for output.

If a new empty buffer is needed, a Put routine obtains a new buffer by
passing control to the output-synchronizing-and-error-processing routine,
module IGG019AR. For a buffer that was emptied without error, the
synchronizing routine updates the DCBIOBA field (thus pointing to the new
buffer) and returns control to the Put routine. The Put routine updates the
DCBRECAD field by inserting the starting address of the buffer from the
channel program associated with the new IOB. To update the DCBEOBAD
field, the routine adds the length of the block stated in the DCBBLKSI field
to the buffer starting address. These two fields, DCBRECAD and
DCBEOBAD, define the available buffer.

An EOB condition is established by different criteria for different record
formats and operating modes.

For unblocked records, an EOB condition exists after each record is placed in
the buffer. If the move operating mode is used, a Put routine establishes that
an EOB condition exists for the present buffer after the routine has moved
the record into the buffer. If the locate operating mode is used, a Put routine
establishes that an EOB condition exists for the present buffer on the next
entry to the routine, after the processing program has moved the record into
the buffer.

For blocked records, the time that an EOB condition occurs depends on the
record format.

For fixed-length blocked records, an EOB condition occurs when the
DCBRECAD field equals the DCBEOBAD field. The DCBRECAD field
shows the address of the segment for the next record. The DCBEOBAD field
shows a value equal to one more than the address of the end of the buffer. If
the move operating mode is used, the Put routine moves the last fixed-length
record into the buffer, updates the DCBRECAD field, and establishes that an
EOB condition exists for the present buffer. If the locate operating mode is
used, the processing program moves the last fixed-length record into the
buffer. On the next entry to the Put routine, the routine updates the
DCBRECAD field and establishes that an EOB condition exists for the
present buffer.

For variable-length blocked records, unspanned, an EOB condition occurs
when the length of the next record exceeds the buffer balance; that is, when
the record length exceeds the space remaining in the buffer. If the user has
specified move mode for unspanned records, the Put routine establishes that
an EOB condition exists when the record length stated in the first word of the
record exceeds the buffer balance. If the user has specified locate mode for
unspanned records, the Put routine establishes that an EOB condition exists
when the value stated in the DCBLRECL field exceeds the buffer balance.

For variable-length blocked records, spanned, the next record is segmented.
The first record segment is used to fill the buffer when five or more bytes
remain in the buffer. When fewer than five bytes remain in the buffer, an
EOB condition occurs.

Method of Operation 41

42 OS/VS2 SAM Logic

A TRUNC routine sets an end-of-block condition to empty the buffer. This
end-of-block condition is processed so that the next entry to the Put routine
permits it to operate as usual. Successive entries to a TRUNC routine without
intervening entries to a Put routine cause the TRUNC routine to return
control without performing any processing.

To permit a Put routine to operate normally when it is entered for the first
time, the Open executor initializes the DCB fields DCBRECAD and
DCBEOBAD. For an output data set using QSAM and simple buffering, the
values entered in these fields depend on the operating mode. For locate mode
routines, it sets them to show the beginning and end of the first buffer; for
move mode routines, it sets an end-of-block condition.

Figure 6 lists the Put routines and the conditions that cause a particular
routine to be read. The Open executor selects one of the routines, loads it,
and places its address into the DCBPUT fields.

Access Method Options Selections

Output, Put/PUTX X X X X X X X X X X X
Locate operating mode X X X X X

Move operating mode X X X

Data operating mode X X

Fixed-length record X X
format

Undefined-length X X
record format

Variable-length or X X X X X X
record format-D

Spanned records X X X

Logical record X
interface

SYSOUT specified X
on DD statement

Put Modules

IGGO19AI Al AI

IGGO19AJ Al

IGG019AK AK AK

IGGO19AL AL

IGGO19BP BP

IGGO19DJ DJ
IGGO019FG FG

IGGO19FJ . FJ
IGGO19FL FL

Figure 6. Module Selector—Simple Buffering Put Modules

>)

Put Module IGG019AI: Module IGG019AI presents the processing program
with the address of the next available buffer segment for a fixed-length or
undefined-length record. The Open executor selects and loads this module if
the Open parameter list specifies:

Output

and the DCB specifies:
Put
Simple buffering
Locate operating mode

Fixed-length (unblocked, blocked or blocked standard) or
undefined-length record format

The module consists of a Put routine and a TRUNC routine.
The Put routine operates as follows:

o It receives control when a PUT macro instruction is encountered in a
processing program.

o It determines the address of the next buffer segment using the value in the
DCBLRECL field.

o It tests for an EOB condition to determine whether a buffer is full and
ready for emptying and if a new empty buffer is needed.

« If no EOB condition exists, it presents the address of the next buffer
segment to the processing program and returns control to the processing
program.

« If an EOB condition exists, it issues a BALR instruction to pass the present
buffer to the end-of-block routine. The Put routine issues another BALR
instruction to obtain a new buffer through the
output-synchronizing-and-error-processing routine, module IGG019AR,
and determines the address of the first segment of the new buffer. The Put
routine then presents this address and returns control to the processing
program.

The TRUNC routine causes an EOB condition by setting the DCBRECAD
and DCBEODAD fields so that they are equal; it then returns control to the
processing program.

Put Module IGG019AJ: Module IGG019AJ presents the processing program
with the address of the next available buffer segment for a variable-length or
format-D record. The Open executor selects and loads this module if the
Open parameter list specifies:

Output
and the DCB specifies:
Put
Simple buffering
Locate operating mode
Variable-length or record format D (unblocked or blocked), unspanned

The module consists of a Put routine and a TRUNC routine.

Method of Operation 43

44 OS/VS2 SAM Logic

The Put routine operates as follows:

« It receives control when a PUT macro instruction is encountered in a
processing program.

o It determines the address of the next buffer segment using the length field
of the record moved by the processing program into the buffer segment
located last.

o It tests for an EOB condition to determine whether a buffer is ready for
emptying and if a new empty buffer is needed, by using the value placed
into the DCBLRECL field by the processing program.

« If no EOB condition exists, it tests for blocked records.

« If blocked records are specified, it presents the address of the next buffer
segment to the processing program and returns control to the processing
program.

o If an EOB condition exists or if unblocked records are specified, it issues a
BALR instruction to pass the present buffer to the end-of-block routine.
The Put routine issues another BALR instruction to obtain a new buffer
through the output-synchronizing-and-error-processing routine, module
IGGO019AR, and determines the address of the first segment of the new
buffer. The Put routine then presents this address to the processing
program and returns control to the processing program.

The TRUNC routine causes an EOB condition by setting the DCBRECAD
and DCBEOBAD fields so that they are equal; it then returns control to the
processing program.

Put Module IGG019AK: Module IGG019AK moves the present fixed-length
or undefined-length record into the next available buffer segment. The Open
executor selects and loads this module if the Open parameter list specifies:

Output

and the DCB specifies:
Put
Simple buffering
Move operating mode

Fixed-length (unblocked, blocked, blocked standard) or undefined-length
record format

The module consists of a Put routine, a PUTX routine, and a TRUNC
routine.

The Put routine operates as follows:

o It receives control when a PUT macro instruction is encountered in a
processing program.

« If an EOB condition exists, it issues a BALR instruction to obtain a new
buffer through the output-synchronizing-and-error-processing routine,
module IGG019AR, and then moves the record from the work area into -
the first buffer segment. N

« If no EOB condition exists, it moves the record from the work area into the
next buffer segment.

« It tests for blocked records.

o~

« If blocked records are specified, it determines the address of the next
segment and tests for a new EOB condition.

o If unblocked records are specified or if a new EOB condition exists, it
issues a BALR instruction to pass the present buffer to the end-of-block
routine and then returns control to the processing program.

o If no new EOB condition exists, it returns control to the processing
program.

The PUTX routine operates as follows:

« It receives control when a PUTX macro instruction is encountered in a
processing program.

o It obtains the DCBRECAD value of the input DCB, which points to the
present record in the input buffer.

o It enters the Put routine at the start. The Put routine then uses the input
DCBRECAD value in place of the work area address.

The TRUNC routine operates as follows:

« It receives control when a TRUNC macro instruction is encountered in a
processing program.

« It simulates an EOB condition.

o It issues a BALR instruction to pass the present buffer to the end-of-block
routine.

¢ On return of control from the end-of-block routine it returns control to the
processing program.

Put Module IGG019AL: Module IGG019AL moves the present
variable-length or format-D record into the next available buffer segment.
The Open executor selects and loads this module if the Open parameter list
specifies:

Output
and the DCB specifies:
Put
Simple buffering
Move operating mode
Variable-length or record format-D (unblocked or blocked), unspanned

The module consists of a Put routine, a PUTX routine, and a TRUNC
routine.

The Put routine operates as follows:

« It receives control when a PUT macro instruction is encountered in a
processing program.

o It determines the address of the next buffer segment and compares the
length of the next record with the remaining buffer capacity.

« If the record fits into the buffer, it moves the record, updates the length
field of the block, and tests for blocked records.

« If blocked records-are specified, it returns control to the processing
program.

\(

Method of Operation 45

46 0S/VS2 SAM Logic

If the record does not fit into the buffer or if unblocked records are
specified, it issues a BALR instruction to pass the present buffer to the
end-of-block routine. It issues another BALR instruction to obtain a new
buffer through the output-synchronizing-and-error-processing routine,
module IGG019AR. The Put routine then moves the record from the work
area to the buffer, updates the block-length field, and returns control to the

processing program.

The PUTX routine operates as follows:

It receives control when a PUTX macro instruction is encountered in a
processing program.

It obtains the DCBRECAD value of the input DCB, which points to the
present record in the input buffer.

It enters the Put routine at the start. The Put routine then uses the input
DCBRECAD value instead of the work area address.

The TRUNC routine operates as follows:

It receives control when a TRUNC macro instruction is encountered in a
processing program.

It issues a BALR instruction to pass control of the present buffer to the
end-of-block routine.

It issues another BALR instruction to obtain a new buffer through the
output-synchronzing-and-error-processing routine, module IGG019AR.

It determines the address of the first segment of the new buffer and then
returns control to the processing program.

Put Module IGG019BP: Module IGG019BP presents the processing program
with the address of the next available buffer segment for a variable-length
record. The Open executor selects and loads this module if the Open
parameter list specifies:

Output

and the DCB specifies:

Put

Simple buffering

Locate operating mode

Variable-length spanned (unblocked or blocked) record format

Logical record interface

The module consists of a Put routine and a TRUNC routine.

The Put routine operates as follows:

It receives control when a PUT macro instruction is encountered in a
processing program.

It tests whether a spanned record was to have been written.

If the last record written was not a spanned record, it determines the N
address of the next buffer segment using the length field of the last record
segment moved by the processing program.

« It checks the value placed into the DCBLRECL field to determine if a

buffer is ready for emptying and if a new empty buffer is needed.

9

<9

If no EOB condition exists, it tests for blocked records.

If blocked records are specified, it presents the address of the next buffer
segment to the processing program and returns control to the processing
program.

If unblocked records are specified, it issues a BALR instruction to pass the
present buffer to the EOB routine. The Put routine issues another BALR
instruction to obtain a new buffer through the
output-synchronizing-and-error-processing routine, module IGG019AR,
and determines the address of the first segment of the new buffer. The Put
routine tests whether the present record to be written can fit entirely in the
new buffer.

If the record fits, the Put routine then presents this address to the
processing program and returns control to the processing program.

If the record does not fit, the routine saves the record address in the record
area, obtains the address within the record area with the proper alignment,
sets the spanned-record flag in the IOB, presents the address in the record
area to the processing program, and returns control to the processing
program.

If an EOB condition exists, it tests whether a minimum record segment (at
least 5 bytes) can fit in the present buffer.

If it fits, the routine saves the record address, obtains the address within
the record area, sets the spanned-record flag in the IOB. presents the
address to the processing program, and returns control to the processing
program.

If it does not fit, the routine issues a BALR instruction to pass the present
buffer to the EOB routine. The routine then issues another BALR
instruction to obtain a new buffer through the
output-synchronizing-and-error-processing routine, IGGO19AR, and
determines the address of the first segment of the new buffer. The routine
tests whether the present record can fit entirely in the new buffer.

If a spanned record was to be written out, it restores the record address,
determines the length of the segment that can fit in this buffer, moves the
segment from the record area to the buffer, and sets the proper flags for
the segment.

If more segments are required, the routine issues a BALR instruction to
pass the present buffer to the EOB routine. The Put routine issues another
BALR instruction to obtain a new buffer through the
output-synchronizing-and-error-processing routine, module IGG019AR,
and determines the address of the first segment of the new buffer. It moves
the remaining bytes of data from the record area to the buffer and sets the
proper flags for the segment. This step continues until the entire spanned
record has been segmented. The routine then turns off the spanned-record
flag and determines the address of the next buffer segment.

The TRUNC routine causes an EOB condition by setting the DCBRECAD
and DCBEOBAD fields so that they are equal. It then returns control to the
processing program.

When a TRUNC macro instruction is issued after a spanned record was
written, this routine branches to the Put routine to write out the last record
(the spanned record) and then truncates the block that contains the last
segment of that spanned record.

Method of Operation 47

48 OS/VS2 SAM Logic

Put Module IGG019DJ (SYSIN/SYSOUT): Module IGG019DJ interfaces
with a JES to pass the present record into the system output stream. For
locate mode it presents the processing program with the address of the next
available buffer segment.

The Open executor selects and loads this module if the open parameter list
specifies:

Output (SYSOUT specified on the DD statement)
and the DCB specifies:

Put, PUTX

Simple buffering

Locate, move, or data operating mode

Fixed, undefined, or variable-length record format

Spanned records

Logical record interface

The module consists of PUT, PUTX, and TRUNC macro instructions. See
Diagram M for an overview of the SAM-SI processing for QSAM. The Get
routine is also in this module. It is described in the section on simple-buffering
Get routine (see Figure 1).

The Put routine operates as follows:

« It receives control when a PUT macro instruction is encountered in the
processing program.

« It determines the type of PUT request and performs the RPL initialization
necessary to make the translation to a JES PUT request.

e The record address is placed in RPLAREA and the length of the record is
placed in RPLRLEN.

For move mode the record address is obtained from register 0 on entry to
the put routine. For locate mode RPLAREA was set up on the previous
invocation of the put routine.

For all record formats other than variable-type, record length is determined
by DCBLRECL. For variable format, the current RDW specifies the
record size, unless data mode for variable-length spanned records is
requested, in which case DCBPRECL contains the record length. Also for
variable format, the RDW is excluded from the output record by adjusting
RPLAREA past the RDW and decrementing the record length by four.

Record Format Value of RPLRLEN
Variable-length record format RDW length -4
(move or locate mode)
Variable-length record format value equals total length
(spanned records, locate mode) of all segmentsin a
logical record
Variable-length Spanned record format RDW length -4
(move mode) .
Variable-length Spanned record format DCBPRECL
(data mode)
Fixed and undefined-length DCBLRECL

record format (move or locate mode)

« If processing is in locate mode with variable-length spanned record format,
the present segment is moved to the record area. If the SDW indicates the
logical record is not complete, the address for the next segment is loaded
into register 1 and control is returned to the processing program.

« It passes control to the job entry subsystem for data transfer by issuing a
PUT macro instruction against the RPL. The return code in register 15 is
tested upon return from the JES.

« If a control character is indicated in the DCBRECFM field of the DCB,
the RPLAREA pointer to the record will be adjusted to point past the
control character and the RPLRLEN will be reduced by 1. The address of
the control character is placed in the RPLCCHAR field.

Upon return, register 15 and the RPLRTNCD and RPLCNDCD fields are
tested.

o If an error condition is detected, control is passed to the error-processing
routine, IGG0O19AH. (See Figure 14).

o For normal completion, the address in the RPLAREA field is placed in
register 1 for locate mode. The RPLAREA field contains the address of
the next available buffer. Registers are restored and control is returned to
the processing program.

The PUTX routine operates as follows:

o It receives control when a PUTX macro instruction is encountered in the
processing program. This routine processes only the output mode of the
PUTX macro instruction.

o The address of the input buffer to be written is located through the
DCBRECAD field of the input DCB.

o After having located the output record, the request is then processed by
the Put routine as a PUT, move mode request.

The TRUNC routine receives control when a CNTRL or TRUNC macro
instruction is issued. Module IGG019DJ does not do any processing for these

macro instructions. Control is returned to the processing program by
IGG019D]J.

Put Module IGG019FG: Module IGG019FG moves the data portion of the
variable-length record into the next available buffer segment. The Open
executor selects and loads this module if the Open parameter list specifies:

Output
and the DCB specifies:
Put
Simple buffering
Data operating mode
Variable-length (unblocked or blocked) record format, spanned
" The module consists of a Put routine and a TRUNC routine.
The Put routine operates as follows:

o It receives control when the processing program issues a PUT macro
instruction.

Method of Operation 49

« It determines the possible location of the next buffer segment by adding
the length of the previous record or record segment to the previous buffer
segment address. This address is in the DCBRECAD field.

o It then comfiares the length of the next record with the remaining buffer
capacity.

« If the record will fit, the routine moves the record, updates the length field
of the block descriptor word (BDW), and checks for blocked records.

« If blocked records are specified, the routine returns control to the
processing program. If unblocked records are specified, the routine issues a
BALR instruction to pass the current buffer to the EOB routine. The Put
routine issues another BALR instruction to obtain a new buffer through
the output-synchronizing-and-error-processing routine, module
IGGO19AR. The Put routine then builds a new block descriptor word
(BDW) and returns control to the processing program.

« If the record will not fit, the routine determines whether there are 5 or
more unused bytes remaining in the buffer. If there are, the Put routine
breaks the current record so that the first segment fills the buffer. The
remaining segment will be placed in subsequent buffers. The length field in
the segment descriptor word (SDW) of the first segment is updated to
reflect the length of the segment. The third byte of this SDW is set to
X‘01’ to indicate that this segment is the first of a multisegment record.
After writing the buffer, the Put routine does not return control to the
processing program until the entire record has been processed. The routine
forms the remainder of the current record into a new segment. The new
segment is constructed in a new buffer; the third byte of the SDW of the
newly created segment is set to X‘02’ if this segment is the last of a
multisegment record. If there are other segments, the third byte is set to
X‘03’ to indicate that this segment is neither the first nor the last of a
multisegment record. Newly created segments are processed as any other
record.

The TRUNC routine operates as follows:

« It receives control when a TRUNC macro instruction is encountered in a
processing program.

« It issues a BALR instruction to pass control of the present buffer to the
end-of-block routine.

o It issues another BALR instruction to obtain a new buffer through the
output-synchronizing-and-error-processing routine, module IGG019AR.

o It determines the address of the first segment of the new buffer and then
returns control to the processing program.

50 OS/VS2 SAM Logic

Put Module IGG019FJ: Module IGG019F] presents the processing program
with the address of the next available buffer segment for a variable-length
record. The Open executor selects and loads this module if the Open
parameter list specifies:

Output
and the DCB specifies:
Put
Simple buffering
Locate operating mode
Variable-length (unblocked or blocked) record format, spanned

The module consists of a Put routine and a TRUNC routine.

)

The Put routine operates as follows:

It receives control when the processing program issues a PUT macro
instruction.

o It determines the address of the next buffer segment by adding the address
of the last record or record segment moved to the buffer and the length of
that record or record segment. The length of the record segment is in the
SDW.

o It checks the buffer to see if there are five or more unused bytes.

o If there are 5 or more unused bytes remaining in the buffer, the Put routine
places their address into register 1 for the processing program. The Put
routine places the exact number of bytes left in the buffer into register 0
for the processing program. The Put routine then returns control to the
processing program.

o If the buffer contains fewer than 5 unused bytes, the routine issues a
BALR to the EOB routine. The Put routine issues another BALR
instruction to obtain a new buffer through the
output-synchronizing-and-error-processing routine, module IGG019AR,
and determines the address of the first segment of the new buffer. The Put
routine then builds a new block descriptor word (BDW) and returns
control to the processing program.

The TRUNC routine causes an EOB condition by setting the DCBRECAD
and DCBEOBAD fields so that they are equal. It then returns control to the
processing program.

Put Module IGG019FL: Module IGG019FL moves the current
variable-length record into the next available buffer segment. The Open
executor selects and loads this module if the Open parameter list specifies:

Output

and the DCB specifies:
Put
Simple buffering
Move operating mode

Variable-length (unblocked or blocked) record format, spanned

Method of Operation 51

The module consists of a Put routine and a TRUNC routine.
The Put routine operates as follows:

o It receives control when the processing program issues a PUT macro '
instruction.]

« It determines the possible location of the next buffer segment by adding
the length of the previous record or record segment to the previous buffer
segment address. This address is in the DCBRECAD field.

« It then compares the length of the next record with the remaining buffer
capacity.

« If the record will fit, the routine moves the record, updates the length field
of the block descriptor word (BDW), and checks for blocked records.

o If blocked records are specified, the routine returns control to the
processing program. If unblocked records are specified, the routine issues a
BALR instruction to pass the current buffer to the EOB routine. The Put
routine issues another BALR instruction to obtain a new buffer through
the output-synchronizing-and-error-processing routine, module
IGGO019AR. The Put routine then builds a new block descriptor word
(BDW) and returns control to the processing program.

o If the record will not fit, the routine determines whether there are five or
more unused bytes remaining in the buffer. If there are, the Put routine
breaks the current record so that the first segment fills the buffer. The
remaining segment is placed in subsequent buffers. The length field in the
segment descriptor word (SDW) of the first segment is updated to reflect
the length of the segment. The third byte of this SDW is set to X‘01’ to
indicate that this segment is the first of a multisegment record. After
writing the buffer, the Put routine does not return control to the processing J
program until the entire record has been processed. The routine forms the
remainder of the current record into a new segment, which is constructed
in a new buffer. The third byte of the SDW of the newly created segment
is set to X‘02’ if this segment is the last of a multisegment record. If there
are other segments, the third byte is set to X‘03’ to indicate that this
segment is neither the first nor the last of a multisegment record. Newly
created segments are processed as any other record.

The TRUNC routine operates as follows:

« It receives control when a TRUNC macro instruction is encountered in a
processing program.

« It issues a BALR instruction to pass control of the present buffer to the
end-of-block routine.

« It issues another BALR instruction to obtain a new buffer through the
output-synchronizing-and-error-processing routine, module IGG019AR.

o It determines the address of the first segment of the new buffer and then
returns control to the processing program.

Update Mode PUTX Routine

The update mode PUTX routine differs from other Put routines in that it *

shares its buffers (as well as the DCB and the IOBs) with the update mode

Get routine. It is the update mode Get routine that determines the address of

the segment, when the end of the buffer is reached and a new buffer is

needed. Thus, all that remains for the PUTX routine is to flag the block for J .
output.

52 OS/VS2 SAM Logic

<

End-of-Block Routines

There is one update mode Put routine; it is part of module IGGO19AE, which
is described under “Update Mode Get Routine” (see Figure 5).

The end-of-block routines are selected for use with a particular data set on
the basis of the access conditions specified by the processing program for that
data set.

Unless INOUT or OUTIN is specified in the Open parameter list, one
end-of-block routine is selected. If INOUT or OUTIN are specified, two
end-of-block routines may be required. When user-totaling is specified, a
special user-totaling routine is executed in conjunction with one of the
end-of-block routines.

An end-of-block routine receives control from a Get or a Put routi.t‘(when
using QSAM), or from a Read or Write routine (when using BSAM).

End-of-block routines are shared by BSAM and QSAM. QSAM flow of
control is shown in Diagram F; BSAM flow is shown in Diagram G. Register
usage at entry to and exit from end-of-block routines is as follows:

Registers Entry Value Exit Value

0-1 N/A Not restored

2 DCB+4 Unchanged

3 I0B-8 (or ICB) Unchanged

4-6 N/A Not restored

7 Read or Write CCW Unchanged
offset

8 Caller’s base Unchanged
address

9-10 User’s registers Restored*

11-12 User’s registers Unchanged

13 Save area Unchanged

14 Caller’s return Unchanged
address

15 Entry point Not restored
address

*These registers are saved by end-of-block in the last two words of the save area,

and are restored before returning to caller.

Control passes from an end-of-block routine to the I/0 supervisor, except
when a channel program is chained to another one not yet executed.
End-of-block routines provide device-oriented entries for the channel
program, such as control characters and auxiliary storage addresses.

If the American National Standard Code for Information Interchange
(ASCI) is used, routines IGG019CC and IGG019CW issue an XLLATE
macro instruction which translates the entire buffer from EBCDIC to ASCII
before writing the buffer. If format-D records are specified, the record
descriptor words are converted from binary form to decimal form prior to
translation.

End-of-block routine descriptions are grouped as follows:

¢ Ordinary end-of-block routines. These routines perform device-oriented
processing when normal channel-program scheduling is used, except when
it is used with an output data set with track overflow.

Method of Operation 53

Ordinary End-of-Block Routines

54 OS/VS2 SAM Logic

o Chained channel-program scheduling end-of-block routines. These routines
perform device-oriented processing and attempt to chain channel programs
when chained channel-program scheduling is used.

o Track-overflow, end-of-block routine. This routine performs
device-oriented processing. It computes segment lengths and constructs
count fields when track overflow, which uses normal channel-program
scheduling, is used with an output data set.

o User-totaling routine. This routine moves the contents of the user’s totaling
area to the user-totaling save area pointed to by the DEB.

Ordinary end-of-block routines process channel programs for all devices. This
processing is independent of the progress of a previous channel program and
causes access to proceed one channel program at a time. In the case of output
data sets on direct-access devices, the routines limit the size of the block to
the track capacity. For direct-access devices, an ordinary end-of-block routine
computes auxiliary storage addresses for output data sets and input data sets
with fixed-length standard record format to avoid end-of-track interruptions.
For unit-record devices, these routines process control characters and
PRTOYV macro instructions. For an input data set with track overflow,
progression from track to track is controlled by the track-overflow bit in the
overflowing segment, not by computation of the end-of-block routine nor by
an entry in the channel program.

Figure 7 lists the routines available and the For conditions that cause a
particular routine to be used. For QSAM, the Open executor selects one of
the routines, loads it and places its address into the DCBEOB field. For
BSAM and BPAM, the Open executor selects one of the routines, loads it,
and places its address into both the DCBEOBR and DCBEOBW fields. If
INOUT or OUTIN is specified, a second end-of-block routine may be
selected and loaded. Its address replaces one of the duplicate addresses in the
DCB. Figure 7, for example, shows that when normal channel-program
scheduling is used and the device type is magnetic tape, routine IGG019CC is
selected and loaded for use as the end-of-block routine for that DCB.

End-of -Block Module IGG019CC: Module IGG019CC causes a channel
program to be scheduled.

If ASCII coding is used, the entire output buffer is translated from EBCDIC
to ASCIIL.

The Open executor selects and loads this module if one of the following
conditions exists:

The DCB specifies normal channel-program scheduling and magnetic tape,
card reader, or paper tape as the device type.

The data set is opened for Input, and the DCB specifies normal
channel-program scheduling, direct-access storage device, and a record
format other than fixed-length standard.

The data set is opened for INOUT or OUTIN, and the DCB specifies
normal channel-program scheduling, direct-access storage deviceanda
record format other than fixed-length standard. The address of this module
is placed in the DCBEOBR field.

The data set is opened for Update.

Access Method Options Selections
Normal channel program X X XX X X |X X XX X X [X X X [X X X |X X X|X X X
scheduling
Input, or X X X X
Update X X
_Output, or
INOUT, OUTIN X X |X X X |X X

Card reader or paper X X
tape reader

Printer or Card Punch X X |IX X X [X X
Print (3525) X X
Interpret Punch (3525) X

Data Protection Image X
(3525)

Magnetic tape X X
Direct-access storage X X (X X X [X
Track Overflow X

Record format not X X
fixed-length standard

Record format is X X
fixed-length standard

No control character X X

Machine control X X
character

ANS control character X | X
PRTOV-No user exit X X

label=(...IN) or X
LABEL=(,,0UT)
on DD card!

User totaling facility X X X X X
Associated Data Set (3525) X X X X X X

1IGGO19AX? AX AX AX AX[AX
1GG0O19CC CC CC CC|CC cC cC
1IGGOI9CD CDb CD
IGGO19CE CE CE|CE CE
IGGOI9CF CF|CF
IGGOI9CT! CcT
IGGOI9FK FK
1IGGOI9FQ FQ FQ
IGGOI9FU FU
1GGO19TC TC TC TC
1IGGOI9TD TD|TD

1. When either of these LABEL subparameters is specified and the data set is opened for INOUT or OUTIN, the OPEN executor loads module IGGOI9CT. in addition to onc of the other
end-of-block routines.

2. This module is described later in (his section under “Track-Overflow and User-Totaling Save Save Routines.”

Figure 7. Module Selector—Ordinary End-of-Block Modules

Method of Operation 55

Page of SY26-3832-1
As Updated March 30, 1979
By TNL SN26-0934

56 OS/VS2 SAM Logic

The module operates as follows:

o It receives control when a Get or Put routine finds that a buffer is ready to

be scheduled, or at the conclusion of the processing performed by a Read
or Write routine.

If the device type is magnetic tape, record format is variable, control is
received from a Put or Write routine, and a check is made to see if at least
18 bytes are to be written. If not, the record is padded with binary zeros up
to 18 bytes or blocksize, whichever is less; however, with the ASCII
feature, format-D records are padded with the ASCII padding character,
X‘5F’, instead of the zeros. An EXCP macro instruction is issued and
control is returned to the Put or Write routine.

If the device type is magnetic tape and either the record format is not
variable or control is not gained from a Put or Write routine, an EXCP
macro instruction is issued and control is returned to the Get, Put, Read, or
Write routine.

If the device type is direct access and more than one IOB is associated with
the DCB, the module does the following:

a. It checks for a cylinder change in the IOBSEEK field in the next IOB by
comparing it to the cylinder value in the DCBFDAD field in the DCB.

b. It copies the IOBSEEK field in the next IOB into the DCBFDAD field
in the DCB.

c. If a change in cylinder value was found and the new cylinder value is on
a page boundary (evenly divisible by 8), the DEBXFLG1 field in the
DEB extension is checked for an MSS window processing request. If
such processing is indicated, the ICBCHKAR macro is issued to invoke
SVC 126, which will relinquish the processed window and acquire the
next one. A GETMAIN for a 12-byte SVC 126 parameter list is issued
before ICBCHKAR is issued. A related FREEMAIN is issued upon
return from SVC 126.

d. It issues an EXCP macro instruction and returns control to the GET or
READ routine.

If a 3525 associated data set is being used, a test is made to determine the
status of the Read-sequence flag.

a. If the Read-sequence flag (DCBQSWS field) is on and the associated
data set is not Read and Print, a WTP message is issued, which indicates
that either the Get or Read sequence is invalid. An ABEND (003) is
issued with a return code of 01. If the Read-sequence flag is off, the
macro sequence is assumed to be valid and the Read-sequence flag is
turned on.

b. Tests are made to determine if the associated data set is either Read,
Punch, and Print, or Read and Punch.

c. If either Read, Punch, and Print, or Read and Punch is specified in the
FUNC parameter, a test is made to determine the status of the
Punch-sequence flag. If the Punch-sequence flag (DCBQSWS field) is
on, it is turned off. (This indicates to modules IGG019CE and
IGGO19CEF that their calling routine is in the proper sequence.)

d. If the associated data set is not Read, Punch, and Print, or Read and
Punch, it is assumed that Read and Print is being used.

Page of SY26-3832-1
As Updated March 30, 1979
By TNL SN26-0934

e. A test is made to determine the status of the Print-sequence flag
(DCBQSWS).

f. If the Print-sequence flag is on, it is assumed that the Print command
has been issued. It is turned off so that proper sequencing may continue.
If the Print-sequence flag is off, it is assumed that the Print command
has not been issued.

« If the device type is direct access and only one IOB is associated with the
DCB, the module does the following:

a. It checks for a cylinder change by comparing the cylinder value in the
IOBSEEK field in the IOB with the cylinder value in the DCBFDAD
field in the DCB.

b. It copies the CCHHR portion of the DCBFDAD field in the DCB into
the CCHHR portion of the IOBSEEK field in the IOB.

c. If a change in cylinder value was found and the new cylinder value is on
a page boundary (evenly divisible by 8), the DEBFLGS?2 field in the
DEB extension is checked for an MSS window processing request. If
such processing is indicated, the ICBCHKAR macro is issued to invoke
SVC 126, which will relinquish the processed window and acquire the
next one. A GETMAIN for a 12-byte SVC 126 parameter list is issued
before ICBCHKAR is issued. A related FREEMAIN is issued upon
return from SVC 126.

d. It issues an EXCP macro instruction and returns control to the GET or
READ routine.

End-of-Block Module IGG019CD: Module IGG019CD schedules a channel
program after determining that the next block fits on a track within the
allocated extents.

The Open executor selects and loads this module if one of the following
conditions exists:

The data set is opened for output and the DCB specifies normal
channel-program scheduling, no track-overflow, and direct-access storage
as the device type.

The data set is opened for input and the DCB specifies normal
channel-program scheduling with direct-access storage as the device type.

The data set is opened for INOUT or OUTIN and the DCB specifies
direct-access device storage. If the record format (also specified in the
DCB) is other than fixed-length standard, the address of this module is
placed in the DCBEOBW field.

If the record format is fixed-length standard, the address of this module is
placed in both the DCBEOBR and DCBEOBW fields.

The module operates as follows:

« It receives control when a Get or Put routine finds that a buffer is ready to
be scheduled, or at the conclusion of the processing performed by a Read
or Write routine.

o It calculates the block length using the overhead value for the last record.
(This value is found in the resident I/O device table. The address of the
table is in the DCBDVTBL field.) It compares the calculated block length
with the value in the DCBTRBAL field of the DCB.

Method of Operation 57

Page of SY26-3832-1
As Updated March 30, 1979
By TNL SN26-0934

58 OS/VS2 SAM Logic

If the block length is equal to or less than the DCBTRBAL field value, the
module determines that the block fits on the track.

If the block length exceeds the DCBTRBAL field value, the module finds
the next track as follows:

It converts the full device address (MBBCCHHR) of the present track
into a relative address (TTR) by passing control to the [IECPRLTV
routine.

It adds 1 to the value of TT.

It passes control to the IECPCNVT routine, which converts the relative
address of the next track into the full device address.

If there is another track in the allocated extents, its full address has been
entered in the DCBFDAD field and the block fits on the track.

If there is no other track in the allocated extents (as shown by the error
return code from IECPCNVT routine), an EOV condition exists. The
module sets the DCBCINDI field in the DCB and the CSW field in the
IOB to show this, and returns control to the Get, Put, Read, or Write
routine without issuing an EXCP macro instruction. The EOV condition is
eventually recognized and processed in QSAM by the synchronizing
routine and in BSAM by the Check routine.

When the module determines that the block fits on the track, the module
calculates the actual block length, using the overhead value for other than
the last record. (This value is found in the resident I/0 device table.) It
adjusts the value in the DCBTRBAL field by this amount and updates the
DCBFDAD field and the ID field of the count area of the block which is
located immediately after the channel program. If the updated DCBFDAD
value indicates record 1 on track O of a cylinder on a page boundary
(evenly divisible by 8), a test is made for MSS window processing. If such
processing is indicated in the DEBXFLG1 field of the DEB extension, the
ICBCHKAR macro is issued to invoke SVC 126, which will relinquish the
processed window and acquire the next one. A GETMAIN for a 12-byte
SVC 126 parameter list is issued before ICBCHKAR is issued. A related
FREEMAIN is issued upon return from SVC 126. The module then issues
an EXCP macro instruction and returns control to the Get, Put, Read, or
Write module.

End-of-Block Module IGG019CE: Module IGG019CE, if necessary, modifies
channel programs for unit record output devices when ANS control characters

are not used. The module then causes scheduling of the channel program,
whether it was modified or not. The Open executor selects and loads this
module if the DCB specifies:

Normal channel-program scheduling

Punch, or printer

Machine control character, or no control character
The module operates as follows:

« It receives control when a Put routine finds that a buffer is ready to be
scheduled, or at the conclusion of the processing performed by a Write
routine.

« It adjusts, in the channel program, the length and starting address either for

the length field of variable-length records or for a control character. If

J.

Page of SY26-3832-1
Added March 30, 1979
By TNL SN26-0934

there are variable-length records and a control character, the module
adjusts for both.

If a control character is present, it inserts it as the command byte of the
Write channel command word (CCW).

If the device is a 3800 printer and OPTCD=] is specified, the module
determines if the Table Reference Character in the current record refers to
the translate table presently active in the device. If so, the Select Translate
Table CCW which precedes the Write CCW is altered to a NOP.
Otherwise, the Select CCW is modified to select the appropriate translate
table. (If OPTCD=] is not specified, the common printer channel program
is used.)

It tests the DCB field at location DCBDEVT+1 for a PRTOV mask. If a
PRTOV mask is present, the module temporarily inserts it into the length
field of the NOP CCW and sets the first bit in the [OB. The PRTOV
appendage IGG019CL tests for the presence of the IOB bit and the CCW
mask.

If an associated data set is being used, a test is made to determine the
status of the Punch-sequence flag.

a. If the Punch-sequence flag (DCBQSWS) is on and the associated data
set is not Punch and Print, a WTP message is issued which indicates that
either the Put or Write sequence is invalid. An ABEND (003) is issued
with a return code of 02. If the Punch-sequence flag is off, the macro
sequence is assumed to be valid and the Punch-sequence flag is turned
on.

b. A test is made to determine if the associated data set is Read, Punch,
and Print. If Read, Punch, and Print is specified in the FUNC
parameter, a test is made to determine the status of the Read-sequence
flag.

c. If the Read-sequence flag is on, it is turned off. This allows proper
sequencing to continue. If the Read-sequence flag is off, an ABEND is
issued.

d. A test is made to determine the status of the Print-sequence flag.

Method of Operation 58.1

Page of SY26-3832-1
As Updated Aug. 31, 1978
By TNl SN26-0917

e. If the Print-sequence flag is on, proper scquencing continues. If it is off,
modules IGGO19CE and IGGO19CF continue with their normal
functions.

f. If the associated data set is Punch and Print, the status of the
Print-sequence flag is determined as previously explained for module
IGGOI9CC.

It issues an EXCP macro instruction and returns control to the Put or
Write routinc.

End-of-Block Module IGG019CF: Module IGGO19CF modifies channel
programs for unit record output devices when an American National Standard
(ANS) control character is present. The module then causes scheduling of the
channel program, whether it was modified or not. The Open executor selecets
and loads this module if the DCB specifies:

Normal channel-program scheduling
Punch or printer

ANS control character

The module operates as follows:

It receives control when a Put routine finds that a buffer is ready to be
scheduled, or at the conclusion of the processing performed by a Write
routine.

It adjusts, in the channel program, the length and starting address for the
control character, and for the length field of variable-length records.

It translates the control character and inserts it as the command byte of the
control channel command word (CCW) which precedes the Write CCW
(or the Select CCW, if the device is a 3800 printer with OPTCD =]
specified).

If the device is a 3800 printer and OPTCD=1 is specified. the module
determines if the Table Reference Character in the current record refers to
the translate table presently active in the device. If so, the Select Translate
Table CCW which precedes the Write CCW is altered to a NOP.
Otherwise, the Select CCW is modified to select the appropriate translate
table. (If OPTCD=1 is not specified, the common printer channel program
is used.) ’

It tests the DCB field at location DCBDEVT+1 for a PRTOV mask. If a
PRTOV mask is present, the module inserts it into the length field of the
control CCW and sets the first bit in the IOB. The PRTOV appendage
IGGO19CL tests for the presence of the 1OB bit and the CCW mask.

If an associated data set is being used, a test is made to determine the
status of the Punch-sequence flag.

a. If the Punch-sequence flag (DCBQSWS) is on and the associated data

"~ set is not Punch and Print, a WTP message is issued which indicates that
cither the Put or Write sequence is invalid. An ABEND (003) is issucd
with a return code of 02. If the Punch-sequence flag is off, the macro
sequence is assumed to be valid and the Punch-sequence flag is turned
on.

b. A test is made to determine if the associated data sct is Read. Punch,
and Print. If Read, Punch. and Print is specified in the FUNC

Mcthod of Operation 9

60 OS/VS2 SAM Logic

parameter, a test is made to determine the status of the Read-sequence
flag. :

c. If the Read-sequence flag (DCBQSWS) is on, it is turned off. This
allows proper sequencing to continue. If the Read-sequence flag is off,
an ABEND is issued.

d. A test is made to determine the status of the Print-sequence flag
(DCBQSWS).

e. If the Print-sequence flag is on, proper sequencing continues. If it is off,
modules IGGO19CE and IGGO19CF continue with their normal
functions.

f. If the associated data set is Punch and Print. the status of the
Print-sequence flag is determined, as previously explained for module
1IGGO19CC.

o Jtissues an EXCP macro instruction and returns control to the Put or
Write routine.

End-of -Block Module IGGO19CT: Module IGGOI9CT sets error indicators in
the user’s DCB and 10B. The Open exccutor selects and loads this module if
the following conditions exist:

The data set is opened for INOUT and the DD card specifies

1. ABEL.=(...IN)

or

The data set is opened for OUTIN and the DD card specified
LABEL=(,..OUT)

The module operates as follows:

o |t receives control and sets error indicators in the user’'s DCB and 10B
when cither of the following conditions exists:

The DD card specifics LABEL =(.,.IN), the data sct is opened for
INOUT. and a WRITE macro instruction is issued,

The DD card specifies LABEL=(.,,OUT). the data set is opened for
OUTIN, and a READ macro instruction is issucd.

End-of-Block Module IGG019FK: Module IGGO19FK causes a channel
program to be scheduled. The Open executor selects and loads this module, if
the following conditions are described in the DCB:

Data protection image (DPI) is specified for the 3525 with a Read and
Punch, or Read, Punch, and Print file with normal channel-program
scheduling.

The module operates as follows:

e It receives control when a Put routine finds that a buffer is ready to be
scheduled, or at the conclusion of the processing performed by a Write
routine.

o If the Read associated data set has been opened. a test is made to
determine the status of the Read-sequence flag.

o If the Read associated data set has not been opened. or if the
Read-scquence flag is off, a WTP message is issued which indicates that
the sequence is invalid. An ABEND (003) is then issued with a return code

Page of SY26-3832-1
As Updated Aug. 31, 1978
By TNL SN26-0917

of 02. If the Read-sequence flag is on (indicating proper sequencing), it is
turned off.

« A test is then made to determine the status of the Punch-scquence flag
(DCBQSWS field). If the Punch-sequence flag is on. a WTP message is
issued, followed by an ABEND (003). If the Punch-sequence flag is off, it
is turned on so that proper sequencing may continue.

« It then establishes the buffer area (for the punch operation) according to
the format of the data protection image. If a byte in the DPI is blank
(X*40'), the module blanks out the corresponding byte in the output punch
buffer. If the byte is not blank, the output buffer is not altered. Both arcas
are 80 bytes in length.

o [t returns control to either the Put or Write routine that called it.

Mcthod of Opcration 66 |

e,

End-of-Block Module IGG019FQ: Module IGG019FQ causes a channel
program to be scheduled to the 3525 Printer. The Open executor selects and
loads this module, if the following conditions exist:

A Print; Read, Punch, and Print; Read and Print; or Punch and Print file is
specified for the 3525 with either a machine control character, an ANS
control character, or no control character at all with normal
channel-program scheduling.

The module operates as follows:

It receives control when a Put routine finds that a buffer is ready to be
scheduled, or at the conclusion of the processing performed by a Write
routine.

If either a Read, Punch, and Print or Punch and Print associated data set
has been specified, a test is made to determine the status of the Print
sequence flag. If the Print-sequence flag is on, the CCW pointer is
modified to point to the Print CCW.

If both the Print- and Punch-sequence flags are off, a WTP message is
issued which indicates that the sequence is invalid. An ABEND (003) is
then issued with a return code of 03.

If the Print-sequence flag is off, but the Punch-sequence flag is on, the
module locates the Punch DCB and turns off the Punch-sequence flag. The
CCW pointer is then modified to point to the Print CCW and the
Print-sequence flag is turned on.

If a Read and Print associated data set is specified and the Print-sequence
flag is on, the CCW pointer is modified to point to the Print CCW.

If the Print-sequence flag is off, but the Read-sequence flag is on, the Read
DCB is located and the Read-sequence flag is turned off. The CCW
pointer is then modified to point to the Print CCW and the Print-sequence
flag is turned on.

After sequence checking is completed, the module tests for ANS and
machine control characters. If ANS is specified, the control character is
analyzed to determine which line the data is to be printed on. An OR
operation is then performed on that line number and the Print CCW.

If ANS control characters are not specified, the module tests for record
format and machine control characters. If machine control characters are
specified, they are inserted into the CCW and the buffer address is
increased by one.

If no control character is specified, and two-line printing is specified in the
FUNC parameter, the module tests to determine line positioning on the
card. This is reflected in the operation code of the Print CCW.

If no control character is specified, and multiline printing is specified, tests
are again made to determine line positioning. (Output lines are printed on
successive lines.)

If no control characters are specified, or if they are specified and have been
processed, or if either two-line or multiline positioning is complete, the
module establishes the Write CCW and stores the Start address of the
CCW for the input/output supervisor (I0S).

If the PRTOV macro instruction is specified, a check is made for either
channel 9 or 12 (depending on which channel is specified in the PRTOV
macro instruction).

Method of Operation 61

The channel program is then executed and a Wait command is issued. It
returns control (via register 14) to either the Put or Write routine that
called it.

End-of-Block Module IGG019FU: Module IGG019FU causes a channel
program to be scheduled. The Open executor selects and loads this module if
one of the following conditions exists:

INTERPRET PUNCH is specified for the 3525 with normal
channel-program scheduling.

INTERPRET PUNCH is specified for the 3525 with first control character
for stacker selection or with no control character at all.

The module operates as follows:

It retrieves the data address from the Write CCW.

It tests for record format to determine if machine control characters or
ANS control characters are being used.

If either machine or ANS control characters are being used, the data
address is increased by one and the control character is inserted into the
command byte of the Write CCW.

If machine control characters are not specified, the data address remains
unchanged.

The module blanks out a print buffer. (The print buffer is a 64-byte area
located 64 bytes past the beginning of the IOB.) It then moves the final 16
characters of the output punch buffer into the last 16 bytes of the print
buffer.

The channel program start address is stored in the IOB.
The channel program is then scheduled for execution.

It returns control (via register 14) to either the Put or Write routine that
called it.

End-of-Block Module IGG019TC: The Open executor selects and loads this
module if the user specified the user-totaling facility (that is, if bit 6 is 1 in
DCBOPTCD) for his data set and if one of the following conditions exists:

The DCB specifies normal channel-program scheduling and magnetic tape
as the device type.

The data set is opened for Output, and the DCB specifies normal
channel-program scheduling, direct-access storage device, and a record
format other than fixed-length standard.

The data set is opened for INOUT or OUTIN, and the DCB specifies
normal channel-program scheduling, direct-access storage device and a
record format other than fixed-length standard. The address of this module
is placed in the DCBEOBR field.

The data set is opened for Update.

The module operates as follows:

« It receives control when a Put routine finds that a buffer is ready to be

scheduled, or at the conclusion of the processing performed by a Write
routine.

« If the device type is magnetic tape, the module issues an EXCP macro

62 OS/VS2 SAM Logic

instruction and returns control to the Put or Write routine.

o

Page of SY26-3832-1
As Updated March 30, 1979
By TNL SN26-0934

| It issues a BALR instruction to the user-totaling save routine, IGG019AX,

to place the user’s total in the user-totaling save area, which is pointed to
by the DEB.

« If the device type is direct access and more than one IOB is associated with
the DCB, the module does the following:

a. It checks for a cylinder change in the IOBSEEK field in the next IOB by
comparing it to the cylinder value in the DCBFDAD field in the DCB.

b. It copies the IOBSEEK field in the next IOB into the DCBFDAD field
in the DCB.

c. If a change in cylinder value was found and the new cylinder value is on
a page boundary (evenly divisible by 8), the DEBXFLG1 field in the
DEB extension is checked for an MSS window processing request. If
such processing is indicated, the ICBCHKAR macro is issued to invoke
SVC 126, which will relinquish the processed window and acquire the
next one. A GETMAIN for a 12-byte SVC 126 parameter list is issued
before ICBCHKAR is issued. A related FREEMALIN is issued upon
return from SVC 126.

d. It issues an EXCP macro instruction and returns control to the GET or
READ routine.

« If the device type is direct access and only one I0B is associated with the
DCB, the module does the following:

a. It checks for a cylinder change by comparing the cylinder value in the
IOBSEEK field in the IOB with the cylinder value in the DCBFDAD
field in the DCB.

b. It copies the CCHHR portion of the DCBFDAD field in the DCB into
the CCHHR portion of the IOBSEEK field in the IOB.

c. If a change in cylinder value was found and the new cylinder value is on
a page boundary (evenly divisible by 8), the DEBFLGS?2 field in the
DEB extension is checked for an MSS window processing request. If
such processing is indicated, the ICBCHKAR macro is issued to invoke
SVC 126, which will relinquish the processed window and acquire the
next one. A GETMAIN for a 12-byte SVC 126 parameter list is issued
before ICBCHKAR is issued. A related FREEMALIN is issued upon
return from SVC 126.

d. It issues an EXCP macro instruction and returns control to the GET or
READ routine.

End-of-Block Module IGG019TD: Module IGG019TD schedules a channel
program after determining that the next block fits on a track within the
allocated extents.

The Open executor selects and loads this module if the user specified the user
totaling facility (that is, if bit 6 is 1 in DCBOPTCD) for his data set and if
one of the following conditions exists:

The data set is opened for Output, and the DCB specifies normal
channel-program scheduling, no track-overflow, and direct-access storage
as the device type.

The data set is opened for Input, and the DCB specifies normal
channel-program scheduling with direct-access storage as the device type.

Method of Operation 63

Page of SY26-3832-1
As Updated March 30, 1979
By TNL SN26-0934

64 OS/VS2 SAM Logic

The data set is opened for INOUT or OUTIN, and the DCB specifies
direct-access storage device. If the record format (also specified in the
DCB) is other than fixed-length standard, the address of this module is
placed in the DCBEOBW field. If the record format is fixed-length
standard, the address of this module is placed in both the DCBEOBR and
the DCBEOBW fields.

The module operates as follows:

« It receives control when a Get or a Put routine finds that a buffer is ready

to be scheduled, or at the conclusion of the processing performed by a
Read or Write routine.

It issues a BALR instruction to the user-totaling save routine, [IGG019AX,
to place the user’s total in the user-totaling save area, which is pointed to
by the DEB.

It calculates the block length using the overhead value for the last record.
(This value is found in the resident I/O device table. The address of the
table is in the DCBDVTBL FIELD.) It compares the calculated block
length with the value in the DCBTRBAL field of the DCB.

If the block length is equal to or less than the DCBTRBAL field value, the
module determines that the block fits on the track.

If the block length exceeds the DCBTRBAL field value, the module finds
the next track as follows:

It converts the full device address (MBBCCHHR) of the present track
into a relative address (TTR) by passing control to the IECPRLTV
routine.

It adds 1 to the value of TT.

It passes control to the IECPCNVT routine, which converts the relative
address of the next track into the full device address.

If there is another track in the allocated extents, its full address has been
entered in the field DCBFDAD and the block fits on the track.

If there is no other track in the allocated extents (as shown by the error
return code from routine IECPCNVT), an EOV condition exists. The
module sets the DCBCINDI1 field in the DCB and the CSW field in the
IOB to show this, and returns control to the Get, Put, Read, or Write
routine without issuing an EXCP macro instruction. The EOV condition is
eventually recognized and processed—in QSAM by the synchronizing
routine and in BSAM by the Check routine.

When the module determines that the block fits on the track, the module
calculates the actual block length, using the overhead value for other than
the last record. (This value is found in the resident I/0 device table.) It
adjusts the value in the DCBTRBAL field by this amount, and updates the
DCBFDAD field and the ID field of the count area of the block (located
immediately after the channel program). If the updated DCBFDAD value
indicates record 1 on track O of a cylinder on a page boundary (evenly
divisible by 8), a test is made for MSS window processing. If such
processing is indicated in the DEBXFLGI field of the DEB extension, the
ICBCHKAR macro is issued to invoke SVC 126, which will relinquish the
processed window and acquire the next one. A GETMAIN for a 12-byte
SVC 126 parameter list is issued before ICBCHKAR is issued. A related
FREEMAIN is issued upon return from SVC 126. The module then issues

9

Page of SY26-3832-1
Added March 30, 1979
By TNL SN26-0934

an EXCP macro instruction and returns control to the Get, Put, Read, or
Write module.

Chained Channel-Program Scheduling End-of-Block Routines

Chained channel-program scheduling consists of joining the channel programs
before execution and disconnecting and posting the channel programs after
execution. Joining is performed by the end-of-block routines and mainly uses
the input/output block (IOB); disconnecting and posting is performed by
appendages and uses the interruption control block (ICB). (For a description
of the disconnecting process, refer to the program controlled interruption
(PCI) appendages.) The IOB constructed by the Open executor when chained
channel-program scheduling is used differs from the IOB used in normal
channel-program scheduling. These differences are illustrated in Figure 8 and
tabulated in Figure 10.

These routines join channel programs so that the channel executes successive
channel programs without interruption as if they were one continuous channel
program. To join the present channel program to one already scheduled, the
end-of-block routine finds the last CCW of the preceding channel program by
referring to the IOB and changes that CCW from a NOP command to a TIC
command. If this joining is performed before the channel attempts to execute
(more precisely, before it fetches) that CCW, the joining process is
successful. If the execution of the preceding channel program is completed
while the routine is operating, the joining is unsuccessful.

The routine tests the success or failure of the joining by testing whether the
10B has been posted as completed. If the IOB is not posted as completed,
control is returned to the calling program. If the IOB is posted, the routine
tests the ICB for the current channel program. If completed, control returns
to the calling program; if not completed, the routine resets the IOB for the
EXCP macro instruction and passes control to the I/O supervisor.

Method of Operation 64.1

(a) (b)
SAM Prefix to IOB when SAM Prefix to IOB when

‘ normal channel-program chained channel-program
i scheduling is used scheduling is used
Flags | Offsets | Event Control Block
Next |OB Event Control Block First ICB Last NOP CCW
| Standard 108 Standard 108
i
ECB Address * ECB Address **
|
; <«—2 Words > - 2 Words ——m8M8M8M
* When QSAM is used, the address ** Always shows the address of
is that of the ECB in the the ECB in the SAM prefix,
SAM prefix; when BSAM is used irrespective of whether QSAM
the address is that of the ECB or BSAM is used.
in the data event control block
(DECB).

Figure 8. IOB SAM Prefixes for Normal and for Chained Scheduling

i
The chained scheduling end-of-block routines, like the ordinary end-of-block
routines, provide device-oriented entries for channel programs. For
direct-access devices they compute auxiliary storage addresses; for
unit-record devices they process control characters. (No processing is
- performed for the PRTOV macro instruction since it and chained scheduling
' are mutually exclusive.) There are six chained scheduling end-of-block
routines, each of which performs joining and channel program entry
processing for a different set of access condition options. Figure 9 lists the
available routines and the conditions that cause a particular routine to be
used.

For QSAM, the Open executor selects one of the routines, loads it, and places
its address into the DCBEOB field. For BSAM and BPAM, the Open
executor selects one of the routines, loads it, and places its address into both
the DCBEOBR and DCBEOBW fields. If INOUT or OUTIN is specified, a
second end-of-block routine may be selected and loaded. Its address replaces
one of the duplicate addresses in the DCB.

Figure 9 shows that when chained scheduling is used, the open mode is Input,
the device type is magnetic tape, and routine IGG019CW is selected and
loaded for use as the end-of-block routine for the DCB.

Method of Operation 65

66 OS/VS2 SAM Logic

Access Method Options

Chained channel program
scheduling

Input, or

Output

Card reader
Printer or card punch
Magnetic tape

Direct-access storage

No control character
Machine control character
ANS control character
User-totaling facility

End-of -Block Modules
IGGO19AX!
IGGO019CV
IGG019CW
IGG019CX
IGGO19CY
IGGO19TV
IGG019TW

CW CW CwW

™

CcvV

Ccw

CX CX
CY
TV

1. This module is described later in this section under “Track-Overflow and User-Totaling Save Routines.”
Figure 9. Module Selector—Chained Channel-Program Sche'guling, End-of-Block
M |

odules

Prefix Parameter
Number of IOBs

Size of SAM prefix

Contents of link
address field

Use of ECB field

Contents of
IOBFICB field

Contents of
IOBLNOP field

Normal Scheduling

As many as there are
buffers or channel
programs

2 words

Address of the next
I0OB

Used in QSAM to post
channel program
execution (in BSAM,
the ECB in the DECB
is used)

Field does not exist

Field does not exist

Chained Scheduling

Only 1 (there are as
many ICBs as there are
buffers or channel programs)

4 words

Flags
Offsets

Used in QSAM and BSAM to
post a channel program
execution that is

terminated by channel-end
interruption (that is,

channel program chaining
has been broken)

Adderess of the first ICB

Address of NOP CCW of last
scheduled channel program

Figure 10. Comparison of the IOB SAM Prefixes for Normal and for Chained Scheduling

»

Page of SY26-3832-1
As Updated March 30, 1979
By TNL SN26-0934

End-of -Block Module IGG019CV: Module IGG019CV computes from the
track balance (and from further allocated extents on this volume, if
necessary) a valid storage address for a channel program for an output data
set on a direct-access device and attempts to join the channel program to the
preceding one. The Open executor selects and loads this module if the Open
parameter list specifies:

Output

and the DCB specifies:
Chained channel-program scheduling
Direct-access storage

The module operates as follows:

« It receives control from a Put routine when that routine finds that a buffer
is ready to be scheduled, or from a Write routine at the conclusion of its
processing.

« It calculates the block length using the overhead value for a last block on a
track. (This value is found in the resident I/O device table. The address of
the table is in the DCBDVTBL field.) It compares the calculated block
length with the value in the DCBTRBAL field of the DCB.

« If the block is equal to or less than the DCBTRBAL field value, the
module determines that the block fits on the track.

« If the block length exceeds the DCBTRBAL field value, the module
calculates the next sequential track address and compares it with the end
address of the current extent shown in the data extent block (DEB).

o If no end-of-extent condition exists, it determines that the block fits on the
track.

« If an end-of-extent condition exists, it seeks a new extent in the DEB.

« If a new extent exists, it updates the DCBFDAD and DCBTRBAL fields
and determines that the block fits on the track.

o If there is no further extent, an EOV condition exists. The module sets the
DCBCINDI1 field in the DCB and the CSW field in the IOB to show
end-of-volume, and returns control to the Get, Put, Read, or Write routine
without issuing an EXCP macro instruction. The EOV condition is
eventually recognized and processed—in QSAM by the synchronizing

"routine, and in BSAM by the Check routine.

« If the module determines that the block fits on the track, the module
calculates the actual block length using the overhead value for a block that
is not the last on a track. (This value is found in the resident I/O device
table.) It adjusts the value in the DCBTRBAL field by this amount and
updates the DCBFDAD field and the ID field of the count area of the
block located immediately after the channel program.

« If the ICBSEEK value indicates record 1 on track O of a cylinder on a page
boundary (evenly divisible by 8), a test is made for MSS window
processing. If such processing is indicated in the DEBXFLG1 field of the
DEB extension, the ICBCHKAR macro is issued to invoke SVC 126,
which will relinquish the processed window and acquire the next one. A
GETMAIN for a 12-byte SVC 126 parameter list is issued before
ICBCHKAR is issued. A related FREEMAIN is issued upon return from
SVC 126.

Method of Operation 67

68 OS/VS2 SAM Logic

« If the block fits on the track, the module next attempts to join the channel
program for the current buffer to the preceding channel program (that is, ’
chain schedule) by: . :

Setting the ICB to hot-complete.

Inserting the address of either the Write or the Search CCW of this
channel program into the NOP CCW of the preceding channel program.
The address of the Write CCW is inserted if the present and the
preceding channel programs address the same track. The address of the
Search CCW is inserted if the present and the preceding channel
programs address different tracks. In this case, the Search CCW
addresses record zero of the next track.

Changing the NOP CCW in the preceding channel Program to a TIC
CCw.

Updating the SAM IOB prefix block to point to the end of the current
channel program.

« It determines whether the joining was successful by testing the ECB
(pointed to by the IOB) to see if the I/O supervisor has posted the I/O
event as completed.

« If the I/O supervisor did not post the event as completed, the joining was
successful and the routine returns control to the calling routine.

« If the I/O supervisor did post the event as completed, the routine tests the
ICB for the present channel program to find whether the joining was
successful or not.

« If the present ICB remains unposted, the present channel program was not J
joined to the preceding one. The routine prepares to cause restart of the
channel by copying the Seek address and the channel program start address
from the current ICB into the IOB and uses the EXCP macro instruction
to schedule the channel program. It then returns control to the calling
routine.

« If the present ICB is posted as completed, the present channel program
was joined successfully. (The routine was interrupted long enough,
between the joining and the testing, for the channel program to be
executed and for the channel-end appendage to post the ICB.) The routine
returns control to the calling routine.

End-of-Block Module IGG019CW: Module IGG019CW attempts to join the
present channel program to the last one in the chain of scheduled channel
programs. If ASCII is used, the entire output buffer is translated from
EBCDIC to ASCII. The Open executor selects and loads this module if one
of the following conditions exists:

The Open parameter list specifies Input and the DCB specifies chained
channel-program scheduling and any device.

The Open parameter list specifies Output and the DCB specifies chained
channel program scheduling and magnetic tape. .

The module operates as follows:

« It receives control from a Get or Put routine when the routine finds that a
buffer is ready to be scheduled, or from a Read or Write routine at the
conclusion of its processing. J

Page of SY26-3832-1
As Updated March 30, 1979
By TNL SN26-0934

If the device type is magnetic tape, the routine determines the increment
value and stores it in the ICB.

If the device is magnetic tape, the record format is variable, and control is
received from a Put or Write routine, a check is made to see if at least 18
bytes are to be written. If not, the record is padded with binary zeros up to
18 bytes or blocksize, whichever is less; however, with the ASCII feature,
format-D records are padded with the ASCII padding character, X‘SF’,
instead of zeros.

If the device type is direct access, the module does the following:

a. It checks for a cylinder change in the ICBSEEK field in the next ICB by
comparing it to the cylinder value in the DCBFDAD field in the DCB.

b. It copies the ICBSEEK field in the next ICB into the DCBFDAD field
in the DCB.

c. If a change in cylinder value was found and the new cylinder value is on
a page boundary (evenly divisible by 8), the DEBXFLG1 field in the
DEB extension is checked for an MSS window processing request. If
such processing is indicated, the ICBCHKAR macro is issued to invoke
SVC 126, which will relinquish the processed window and acquire the
next one. A GETMAIN for a 12-byte SVC 126 parameter list is issued
before ICBCHKAR is issued. A related FREEMAIN is issued upon
return from SVC 126.

The module attempts to join the channel program for the current buffer to
the preceding channel program (that is, chain schedule) by:

Setting the ICB to not-complete.

Inserting the address of the current channel program into the NOP
CCW of the preceding channel program.

Changing the NOP CCW in the preceding channel program to a TIC
CCwW.

Updating the SAM 10B prefix block to point to the end of the current
channel program.

It determines whether the joining was successful by testing the ECB
(pointed to by the IOB) for a completion posting by the I/O supervisor.

If the I/0 supervisor did not post the event as completed, the joining was
successful and the routine returns control to the calling routine.

If the I/0O supervisor did post the event as completed, the routine tests the
ICB for the present channel program to find whether the joining was
successful or not.

If the present ICB remains unposted, the present channel program was not
joined to the preceding one. The routine prepares to cause restart of the
channel by copying the channel program Start address (and the Seek
address, if direct-access storage) from the current ICB into the IOB, and
uses the EXCP macro instruction to cause scheduling of the channel
program. It then returns control to the calling routine.

If the present ICB is posted as completed, the present channel program
was joined successfully. (The routine was interrupted long enough,
between the joining and the testing, for the channel program to be
executed and for the channel-end appendage to post the ICB.) The routine
returns control to the calling routine.

Method of Operation 69

Page of SY26-3832-1
As Updated March 30, 1979
By TNL SN26-0934

End-of-Block Module IGG019CX: Module IGG019CX, if necessary,

modifies channel programs for unit-record output devices when ANS control J
characters are not used. The module then attempts to join the current channel

program to the preceding one. The Open executor selects and loads this

module if the DCB specifies:

Chained channel-program scheduling

Printer or card punch

No control character, machine control character
The module operates as follows:

« It receives control from a Put routine when the routine finds that a buffer
is ready for scheduling, or from a Write routine at the conclusion of its
processing.

« It adjusts the length entry and the start address entry in the channel
program for either a control character or a variable-length block length
field or for both, if both are present.

« It inserts the control character, if present, as the command byte of the
Write channel command word (CCW).

« If the device is a 3800 printer and OPTCD=] is specified, the module
determines if the Table Reference Character in the current record refers to
the translate table presently active in the device. If so, the Select Translate
Table CCW which precedes the Write CCW is altered to a NOP.
Otherwise, the Select CCW is modified to select the appropriate translate
table. (If OPTCD=1] is not specified, the common printer channel program

is used.) J

« It attempts to join the channel program for the current buffer to the
preceding channel program (that is, chain schedule) by:

Setting the ICB to not-complete.

Inserting the address of the current channel program into the NOP
CCW of the preceding channel program.

Changing the NOP CCW in the preceding channel program to a TIC
CCw.

Updating the SAM IOB prefix block to point to the end of the current
channel program.

« It determines whether the joining was successful by testing the ECB
(pointed to by the IOB) to see if the 1/O supervisor has posted the I/O
event as completed.

« If the I/O supervisor did not post the event as completed, the joining was
successful and the routine returns control to the calling routine.

« If the I/0 supervisor did post the event as completed, the routine tests the
ICB for the present channel program to find whether the joining was
successful or not.

o If the present ICB remains unposted, the present channel program was not
joined to the preceding one. The routine prepares to cause restart of the
channel by copying the channel program Start address from the current
ICB into the IOB, and uses the EXCP macro instruction to cause J
scheduling of the channel program. It then returns control to the calling '
routine.

70 OS/VS2 SAM Logic

Page of SY26-3832-1
As Updated March 30, 1979
By TNL SN26-0934

End-of -Block Module IGG019CY: Module IGG019CY modifies channel
programs for unit record output devices when ANS control characters are
used. The module then attempts to join the current channel program to the
preceding one. The Open executor selects and loads this module if the DCB
specifies:

Chained channel-program scheduling
Printer or card punch

ANS control character

The module operates as follows:

It receives control from a Put routine that finds a buffer is to be scheduled,
or from a Write routine at the conclusion of its processing.

It adjusts the length entry and the Start-address entry in the channel
program for either the control character or a variable-length block length
field or for both, if both are present.

It translates the control character and inserts it as the command byte of the
Control CCW which precedes the Write CCW (or the Select CCW, if the
device is a 3800 printer with OPTCD=] specified).

If the device is a 3800 printer and OPTCD=] is specified, the module
determines if the Table Reference Character in the current record refers to
the translate table presently active in the device. If so, the Select Translate
Table CCW which precedes the Write CCW is altered to a NOP.
Otherwise, the Select CCW is modified to select the appropriate translate
table. (If OPTCD=] is not specified, the common printer channel program
is used.)

It attempts to join the current channel program to the preceding one (that
is, chain schedule) by:

Setting the ICB to not-complete.

Inserting the address of the current channel program into the NOP
CCW of the preceding channel program.

Changing the NOP CCW in the preceding channel program to a TIC
CCw.

Updating the SAM I0B prefix block to point to the end of the current
channel program.

It determines whether the joining was successful by testing the ECB
(pointed to by the IOB) to see if the I/O supervisor has posted the 1/0
event as completed.

If the I/O supervisor did not post the event as completed, the joining was
successful and the routine returns control to the calling routine.

If the I/O supervisor did post the event as completed, the routine tests the
ICB for the present channel program to find whether the joining was
successful or not.

If the present ICB remains unposted, the present channel program was not
joined to the preceding one. The routine prepares to cause restart of the
channel by copying the channel program Start address from the current
ICB into the IOB, and uses the EXCP macro instruction to cause
scheduling of the channel program. It then returns control to the calling
routine.

Method of Operation 71

Page of SY26-3832-1
As Updated March 30, 1979
By TNL SN26-0934

« If the present ICB is posted as completed, the present channel program
was joined successfully. (The routine was interrupted long enough, J
between the joining and the testing, for the channel program to be '
executed and for the channel-end appendage to post the ICB.) The routine
returns control to the calling routine.

End-of-Block Module IGG019TV: Module IGG019TV computes from the
track balance (and from further allocated extents on this volume, if
necessary) a valid storage address for a channel program for an output data
set on a direct-access device and attempts to join the channel program to the
preceding one. The Open executor selects and loads this module if the user
specified the user-totaling option (that is, if bit 6 is 1 in DCBOPTCD) for his
data set and if the Open parameter list specifies:

Output

and the DCB specifies:
Chained channel-program scheduling
Direct-access storage

The module operates as follows:

« It receives control from a Put routine that finds a buffer is ready to be
scheduled, or from a Write routine at the conclusion of its processing.

« Itissues a BALR instruction to the user-totaling save routine, IGG019AX,
to place the user’s total in the user-totaling save area, which is pointed to
by the DEB.

« It calculates the block length using the overhead value for a last block on a J
track. (This value is found in the resident I/O device table. The address of
the table is in the DCBDVTBL field.) It compares the calculated block
length with the value in the DCBTRBAL field of the DCB.

« If the block length is equal to or less than the DCBTRBAL field value, the
module determines that the block fits on the track.

« If the block length exceeds the DCBTRBAL field value, the module
calculates the next sequential track address and compares it with the end
address of the current extent shown in the data extent block (DEB).

« If no end-of-extent condition exists, it determines that the block fits on the
track.

« If an end-of-extent condition exists, it seeks a new extent in the DEB.

« If a new extent exists, it updates the DCBFDAD and the DCBTRBAL
fields and determines that the block fits on the track.

« If there is no further extent, an EOV condition exists. The module sets the
DCBCINDI1 field in the DCB and the CSW field in the IOB to show
end-of-volume, and returns control to the Put or Write routine without
issuing an EXCP macro instruction. The EOV condition is eventually
recognized and processed—in QSAM by the synchronizing routine and in
BSAM by the Check routine. *

« If the module determines that the block fits on the track, the module
calculates the actual block length using the overhead value for a block that
is not the last on a track. (This value is found in the resident I/O device J
table.) It adjusts the value in the DCBTRBAL field by this amount and

72 OS/VS2 SAM Logic

Page of SY26-3832-1
As Updated March 30, 1979
By TNL SN26-0934

updates the DCBFDAD field and the ID field of the count area of the
block located immediately after the channel program.

If the ICBSEEK value indicates record 1 on track 0 of a cylinder on a page
boundary (evenly divisible by 8), a test is made for MSS window
processing. If such processing is indicated in the DEBXFLG1 field of the
DEB extension, the ICBCHKAR macro is issued to invoke SVC 126,
which will relinquish the processed window and acquire the next one. A
GETMAIN for a 12-byte SVC 126 parameter list is issued before
ICBCHKAR is issued. A related FREEMAIN is issued upon return from
SVC 126.

If the block fits on the track, the module next attempts to join the channel
program for the current buffer to the preceding channel program (that is,
chain schedule) by:

Setting the ICB to not-complete.

Inserting the address of either the Write or the Search CCW of this
channel program into the NOP CCW of the preceding channel program.
The address of the Write CCW is inserted if the present and the
preceding channel programs address the same track. The address of the
Search CCW is inserted if the present and the preceding channel
programs address different tracks. In this case, the Search CCW
addresses record zero of the next track.

Changing the NOP CCW in the preceding channel program to a TIC
CCw.

Updating the SAM I0B prefix block to point to the end of the current
channel program.

It determines whether the joining was successful by testing the ECB
(pointed to by the IOB) to see if the I/O supervisor posted the I/O event
as completed.

If the I/O supervisor did not post the event as completed, the joining was
successful and the routine returns control to the calling routine.

If the I/0 supervisor did post the event as completed, the routine tests the
ICB for the present channel program to find whether the joining was
successful or not.

If the present ICB remains unposted, the present channel program was not
joined to the preceding one. The routine prepares to cause restart of the
channel by copying the Seek address and the channel program Start
address from the current ICB into the IOB, and uses the EXCP macro
instruction to schedule the channel program. It then returns control to the
calling routine.

If the present ICB is posted as completed, the present channel program
was joined successfully. (The routine was interrupted long enough,
between the joining and the testing, for the channel program to be
executed and for the channel-end appendage to post the ICB.) The routine
returns control to the calling routine.

Method of Operation 73

Page of SY26-3832-1
As Updated March 30, 1979
By TNL SN26-0934

End-of-Block Module IGG019TW: Module IGG019TW attempts to join the

present channel program to the last one in the chain of scheduled channel J
programs. The Open executor selects and loads this module if the user

specifies the user-totaling option (that is, if bit 6 is 1 in DCBOPTCD) for his

data set and if either of the following conditions exists:

The Open parameter list specifies Output and the DCB specifies chained
channel-program scheduling and a direct-access device.

The Open parameter list specifies Output and the DCB specifies chained
channel program scheduling and magnetic tape.

The module operates as follows:

« It receives control from a Put routine when the routine finds that a buffer
is ready to be scheduled, or from a Write routine at the conclusion of its
processing.

o It issues a BALR instruction to the user-totaling save routine, IGG019AX,
to place the user’s total in the user-totaling save area, which is pointed to
by the DEB.

« If the device type is magnetic tape, the routine determines the increment
value and stores it in the ICB.

« If the device type is direct access, the module does the following:

a. It checks for a cylinder change in the ICBSEEK field in the next ICB by
comparing it to the cylinder value in the DCBFDAD field in the DCB.

b. It copies the ICBSEEK field in the next ICB into the DCBFDAD field

in the DCB. J

c. If a change in cylinder value was found and the new cylinder value is on
a page boundary (evenly divisible by 8), the DEBXFLGI1 field in the
DEB extension is checked for an MSS window processing request. If
such processing is indicated, the ICBCHKAR macro is issued to invoke
SVC 126, which will relinquish the processed window and acquire the
next one. A GETMAIN for a 12-byte SVC 126 parameter list is issued
before ICBCHKAR is issued. A related FREEMAIN is issued upon
return from SVC 126.

« The module attempts to join the channel program for the current buffer to
the preceding channel program (that is, chain schedule) by:

Setting the ICB to not-complete.

Inserting the address of the current channel program into the NOP
CCW of the preceding channel program.

Changing the NOP CCW in the preceding channel program to a TIC
CCW.

Updating the SAM IOB prefix block to point to the end of the current
channel program.

o It determines whether the joining was successful by testing the ECB .
(pointed to by the IOB) to see if the I/O supervisor posted the I/O event
as completed.

« If the I/0 supervisor did not post the event as completed, the joining was
successful and the routine returns control to the calling routine. J

74 OS/VS2 SAM Logic

‘ Page of SY26-3832-1
‘ As Updated 30 Nov 1979
| By TNL SN26-0956

« If the I/O supervisor did post the event as completed, the routine tests the
ICB for the present channel program to find whether the joining was

‘ successful or not.

o If the present ICB remains unposted, the present channel program was not
joined to the preceding one. The routine prepares to cause restart of the
channel by copying the channel program Start address (and the Seek
address, if direct-access storage) from the current ICB into the IOB and

. uses the EXCP macro instruction to cause scheduling of the channel
program. It then returns control to the calling routine.

| « If the present ICB is posted as completed, the present channel program

‘ was joined successfully. (The routine was interrupted long enough,
between the joining and the testing, for the channel program to be

‘ executed and for the channel-end appendage to post the ICB.) The routine

‘ returns control to the calling routine.

Track-Overflow and User-Totaling Save Routines

The track-overflow, end-of-block routine processes channel programs for
output data sets whose blocks may overflow from one track onto another (see
Figure 11). Such a block is written by a channel program consisting of a
channel program segment for each track to be occupied by a segment of the
block. The track-overflow, end-of-block routine computes the address of each
track written on; to progress from track to track (to continue writing
successive segments of one block), the channel program uses the Search
command with the multiple-track (M/T) mode.

The track-overflow and end-of-block modules, IGG019C2 and IGG019T2,
‘ are used with output data sets if the access conditions shown in Figure 12 are
L specified for a DCB. The Open executor selects one of these modules, loads
it, and places its address into the DCBEOB or DCBEOBW field. (For an
‘ input data set with track-overflow, end-of-block module IGG019CC is used.)

The user-totaling save module is also shown in Figure 12. This module saves
an image of the user’s totaling area in the sequential access method totaling
save area.

User-Totaling Save Module IGG019AX: Module IGG019AX saves an image
of the user’s totaling area in the sequential access method totaling save area.

The Open executor selects and loads this module if the user-totaling option is
specified in the DCB (that is, if bit 6 is 1 in the DCBOPTCD field).

The module operates as follows:

« It receives control from one of the end-of-block routines—IGGO019TC,
| IGG019TD, IGG019TV, IGG019TW, or IGG019T2.

« It retrieves the address of the sequential access method totaling save area
from the access method portion of the DEB.

‘ « The sequential access method totaling save area contains a pointer to the
user’s totaling area. An image of the user’s total is saved in the next
available segment of the sequential access method totaling save area. Then
the save area control block is updated so that the pointer identifies the
current entry.

« It returns control to the end-of-block routine that called it.

Method of Operation 75

a - Block Length is Less Than Track Balance
(No Overflowing Segment)

Data

b - Block Length is Greater Than Track Balance
(First Segment Overflows Track)

Data

[Data (Continued) I

¢ - Block Length is Greater Than Track Capacity
(Several Overflowing Segments)

Data (Continued)

Data (Continued)

Data (Continued)

IDcfc (Continued) |

Figure 11. Track-Overflow Records

76 OS/VS2 SAM Logic

Access Method Options
Track Overflow
Output or,

INOUT or OUTIN
User Totaling Facility

LABEL=(,,,IN) or LABEL=(,,,OUT)
on DD Statement

Selections

X
X

X
X

X

X

>

>

End-of-Block Modules
IGGO019AX
1GGO019C2
IGG019T2
1IGGO19CT!

C2

T2

C2

T2

C2

CT

T2
CT

1. This module is described in the previous section, “Ordinary End-of-Block Routines.” (See Figure 7)

Figure 12. Module Selector—Track-Overfiow, End-of-Block Modules

Page of SY26-3832-1
As Updated March 30, 1979
By TNL SN26-0934

End-of-Block Module IGG019C2: Module IGG019C2 performs
device-oriented processing when track overflow is permitted with an output
data set. The Open executor selects and loads this module if the Open
parameter list specifies:

Output, INOUT, or OUTIN
and the DCB specifies:
Track overflow

« If the entire block fits on this track, the module completes a channel
program (consisting of one channel program segment) for writing the
block, updates the track balance, and passes control to the 1/O supervisor.
Before the module builds the channel program, tests are made to determine
if MSS window processing is needed. If record 1 on track O of a cylinder on
a page boundary (evenly divisible by 8) is indicated, the DEBXFLG1 field
in the DEB extension is checked for an MSS window processing request. If
such processing is indicated, the ICBCHKAR macro is issued to invoke
SVC 126, which will relinquish the processed window and acquire the next
one. A GETMAIN for a 12-byte SVC 126 parameter list is issued before
ICBCHKAR is issued. A related FREEMALIN is issued upon return from
SVC 126.

« If at least a 1-byte data field fits on this track, the module completes a
channel program segment for the segment of the block that fits on the
track (by entering the Seek address, storage address, and count field for
the channel program segment) and tests if there is another track in the
same extent.

« If the next track is in this extent, it compares the remaining block length
with the track capacity.

« If the remainder of the block exceeds track capacity, tests are made to
determine if MSS window processing is needed. If record 1 on track 0 of a
cylinder on a page boundary (evenly divisible by 8) is indicated, the
DEBXFLGI field in the DEB extension is checked for an MSS window
processing request. If such processing is indicated, the ICBCHKAR macro
is issued to invoke SVC 126, which will relinquish the processed window
and acquire the next one. A GETMAIN for a 12-byte SVC 126 parameter
list is issued before ICBCHKAR is issued. A related FREEMAIN is issued
upon return from SVC 126. The module then proceeds as it does when at
least one byte fits on the track.

« If the remainder of the block is less than the track capacity, the module
completes the final channel program segment for the final segment of the
block, updates the track balance, and passes control to the I/O supervisor.

« If the next track is not in this extent, the module passes control to the track
balance routine using an SVC 25 instruction. That routine erases all tracks
in the current extent that were found insufficient for the block to be
written. On return of control from the track balance routine, the module
tests for another extent.

« If there is another allocated extent on this volume, the module reconstructs
the channel program by proceeding as it does when at least one byte fits on
a track.

« If there is no other allocated extent on this volume, an end-of-volume
condition exists. The module sets the DCBCIND1 field in the DCB and the
CSW field in the IOB to show end-of-volume, and returns control to the

Method of Operation 77

Page of SY26-3832-1
As Updated March 30, 1979
By TNL SN26-0934

Put or Write routine without issuing an EXCP macro instruction. The EOV
condition is eventually recognized and processed in QSAM by the
synchronizing routine, and in BSAM by the Check routine. J

End-of-Block Module IGG019T2: Module IGG019T2 performs
device-oriented processing when track overflow is permitted with an output
data set. The Open executor selects and loads this module if the user specifies
the user-totaling option (that is, if bit 6 in DCBOPTCD is 1) for his data set
and if the Open parameter list specifies:

Output, INOUT, or OUTIN
and the DCB specifies:

Track overflow
The module operates as follows:

« It receives control from a Put routine when the routine finds that a buffer
is to be scheduled, or from a Write routine at the conclusion of its
processing.

o Itissues a BALR instruction to the user-totaling save routine, IGG019AX,
to place the user’s total in the user-totaling save area, which is pointed to
by the DEB.

« It compares the block length with the space remaining on the track last
written on.

« If the entire block fits on this track, the module completes a channel
program (consisting of one channel program segment) for writing the
block, updates the track balance, and passes control to the I/O supervisor.
Before the module builds the channel program, tests are made to determine J
if MSS window processing is needed. If record 1 on track O of a cylinder on
a page boundary (evenly divisible by 8) is indicated, the DEBXFLG]1 field
in the DEB extension is checked for an MSS window processing request. If
such processing is indicated, the ICBCHKAR macro is issued to invoke
SVC 126, which will relinquish the processed window and acquire the next
one. A GETMAIN for a 12-byte SVC 126 parameter list is issued before
ICBCHKAR is issued. A related FREEMAIN is issued upon return from
SVC 126.

« If at least a 1-byte data field fits on this track, the module completes a
channel program segment for the segment of the block that fits on the
track (by entering the Seek address, storage address, and count field for
the channel program segment) and tests for another track in the same
extent.

o If the next track is in this extent, the module compares the remaining block
length with the track capacity.

« If the remainder of the block exceeds track capacity, tests are made to
determine if MSS window processing is needed. If record 1 on track O of a
cylinder on a page boundary (evenly divisible by 8) is indicated, the
DEBXFLGT1 field in the DEB extension is checked for an MSS window
processing request. If such processing is indicated, the ICBCHKAR macro *
is issued to invoke SVC 126, which will relinquish the processed window
and acquire the next one. A GETMAIN for a 12-byte SVC 126 parameter
list is issued before ICBCHKAR is issued. A related FREEMAIN is issued
upon return from SVC 126. The module then proceeds as it does when at J
least one byte fits on the track.

78 OS/VS2 SAM Logic

Page of SY26-3832-1
Added March 30, 1979
By TNL SN26-0934

o If the remainder of the block is less than the track capacity, the module
completes the final channel program segment for the final segment of the
block, updates the track balance, and passes control to the 1/0 supervisor.

« If the next track is not in this extent, the module passes control to the track
balance routine using an SVC 25 instruction. That routine erases all tracks
in the current extent that were found insufficient for the block to be
written. On return of control from the track balance routine, the module
tests for another extent.

« If there is another allocated extent on this volume, the module reconstructs
the channel program by proceeding as it does when at least one byte fits on
a track.

o If there is no other allocated extent on this volume, an end-of-volume
condition exists. The module sets the DCBCINDI1 field in the DCB and the
CSW field in the IOB to show end-of-volume, and returns control to the
Put or the Write routine without issuing an EXCP macro instruction. The
EOV condition is eventually recognized and processed—in QSAM by the
synchronizing routine, and in BSAM by the Check routine.

Synchronizing-and-Error-Processing Routines

A synchronizing-and-error-processing routine (1) synchronizes execution of
the processing program with execution of the channel programs and (2)
performs error-processing to permit continued access to the data set after an
error is encountered during the execution of a channel program. An
error-processing routine performs only the latter function.

There are five synchronizing-and-error-processing routines. (See Figure 13.)
These routines:

Are unique to QSAM
Both synchronize and process errors
Receive control from a Get or a Put routine
Are pointed to by an address in the DCB
There are three error-processing routines. (See Figure 14.) These routines:
Are shared by QSAM and BSAM
Only process errors
May be either synchronous or asynchronous

The track-overflow and 3211 Printer Retry error-processing routines are
asynchronous. They receive control by being scheduled by an abnormal-end
appendage. The SYSIN/SYSOUT error-processing routine is synchronous
and receives control directly from a Get or Put routine (QSAM) or from a
Check routine BSAM).

In some cases the QSAM synchronizing routines issue an SVC 55 (EOV) to
distinguish between permanent error and end-of-volume conditions. For a
permanent error, the EOV routine returns control to the synchronizing
routine, which in turn passes control to the user’s SYNAD routine. If the
SYNAD routine returns, the synchronizing routine again invokes EOV to
implement error options. For Accept and Skip, control returns once more to
the synchronizing routine. It now operates as when it is first entered.

Method of Operation 78.1

Page of SY26-3832-1
Added March 30, 1979
By TNL SN26-0934

78.2 OS/VS2 SAM Logic

For an end-of-volume condition (unit exception), EOV takes one of the
following actions: -

1. It may return to the synchronizing routine with a new DEB, after restarting
channel programs. The synchronizing routine then operates as when it is
first entered. A new volume is being processed, possibly due to a data set
concatenation with like or unlike attributes.

2. It may exit to the user’s EODAD routine if the condition should be treated
as end-of-file.

3. It will ABEND if unable to take the appropriate action above.

QSAM synchronizing routines have a standardized register usage allowing
them to be used interchangeably by GET/PUT routines. This register usage is
shown as follows:

Registers Entry Value Exit Value

0-1 N/A Not restored

2 DCB pointer Unchanged

3 Previous [OB-8 New [OB-8 (or
(or ICB) ICB)!

4 N/A Unchanged

5 N/A New buffer address

6 N/A Unchanged

7 Read or Write Unchanged
CCW Offset .

8 N/A Caller’s base

address2

9-12 User’s registers Unchanged

13 Save area? Unchanged

14 Caller’s return Unchanged
address

15 Entry point Not restored
address

1 This value also stored in DCBIOBA.
2 Obtained from save area.
3 Registers 15-8 must be stored beginning at offset 24 (decimal).

This offset is not the standard one used by the system.
The routines described in Figure 13 are unique to QSAM. One of these
routines gains control when a Get or a Put routine finds that it needs a new
buffer. Figure 13 lists the routines available and the conditions that cause a
particular routine to be used. The Open executor selects one of the routines,
loads it, and puts its address into the DCBGERR/PERR field.

Access Method Options Selections

Get X X X X X
Put X

Input, Readback X

Output X

Update X X
Paper-tape X

character conversion

Variable-length X
record format

>

Spanned records
Locate operating mode X

* or DATA specified
on DD statement 1 X

Modules

IGGO19AF AF

IGGO019AQ AQ AQ
IGGO19AR AR

IGGO19AT? AT

IGGO019BQ BQ

1. If SYSOUT is specified on the DD statement, none of the synchronizing and error-processing modules are
required. The necessary routines are contained within the compatibility interface processing module
1GGO019DJ (see Figure 1).

2. This module includes both the paper-tape-synchronizing-and-error-p ing routine and the paper tape
Get routine. Both routines are described in “Simple Buffering Get Routines” (see Figure 1).

Figure 13. Module Selector—QSAM Synchronizing-and-Error-Processing Modules

Synchronizing Module IGG019AF (Update): Module IGG019AF finds the
next buffer and ensures that it has been refilled. If a unit status prevented
refilling the buffer, the module processes the pending channel programs
according to whether they are empty-and-refill or refill-only channel
programs. The Open executor selects and loads this module if the Open
parameter list specifies:

Update
and the DCB specifies:
Get
The module operates as follows if no error occurred:

« It receives control when the update Get routine finds that a new buffer is
needed. It also receives control after the FEOV (force-end-of-volume)
macro instruction is encountered in a processing program, once from the
update Get routine (when the FEOV routine schedules the last buffer) and
once directly from the FEOV routine (when it awaits execution of the
scheduled buffers.)

« If the next buffer has been refilled, the module returns control to the
update Get routine.

o If the channel program for the next buffer has not yet completed
processing, the module issues a WAIT macro instruction.

Method of Operation 79

80 OS/VS2 SAM Logic

The module operates as follows if an end-of-volume condition is encountered:

It receives control when the update Get routine finds that a new buffer is
needed or when the FEOV routine awaits execution of the scheduled
buffers.

If the channel program for the next buffer encountered an end-of-volume
condition, or if this module has control due to an FEOV macro instruction,
the module finds the IOBs flagged for output. It then turns off the
command-chain flag at the end of the write portion of the channel
program, and schedules the write channel programs for execution by means
of an EXCP macro instruction.

When all write channel programs have been executed, or if none are
pending, the module passes control to the EOV routine by way of an SVC
55 instruction. If this module has control due to an FEOV macro
instruction, control returns to the routine that passed control.

If a permanent error is encountered during execution of empty channel
programs for an end-of-volume condition or for an FEOV macro
instruction, control passes to the SYNAD routine, if one is present. The
SYNAD routine returns control to this module.

The module then processes the error option as follows:

Accept or Skip option: The pending empty channel programs are
rescheduled for execution using an EXCP macro instructions.

Terminate option: Control passes to the EOV routine to request an
ABEND macro instruction.

The module operates as follows if a permanent error was encountered:

It receives control when the Update Get routine finds a new buffer is
needed.

If the channel program for the next buffer encountered a permanent error
and a SYNAD routine is present, the module passes control to the SYNAD
routine.

If control returns from the SYNAD routine, or if there is no SYNAD
routine, the module processes the error option in the following manner:

Accept Option: If the error occurred in the empty portion of a channel
program, the module resets the IOB to point to the refill portion of the
channel program and issues an EXCP macro instruction for it and all
following IOBs.

If the error occurred in the refill portion of a channel program, the module
posts the current IOB as complete without error and issues an EXCP
macro instruction for all the IOBs except the present one.

The module ensures refilling of the buffer associated with the first IOB and
then returns control to the update Get routine.

Skip Option: If the error occurred in the empty portion of a channel
program, the module operates as it does for the Accept option.

If the error occurred in the refill portion of a channel program, the module,
issues an EXCP macro instruction for all IOBs.

The module ensures refilling of the buffer associated with the first IOB and
then returns control to the update Get routine.

Terminate Option: If the error occurred in the empty portion of a channel
program, the module passes control to the ABEND routine.

If the error occurred in the refill portion of a channel program, the module
finds the end of the empty portion of any pending empty-and-refill channel
programs, turns off the commmand-chain flag, and issues an EXCP macro
instruction for these empty channel programs. On execution of all the
channel programs, the module passes control to the EOV routine to
request an ABEND.

Synchronizing Module IGG019AQ (Input): Module IGG019AQ finds the next
input buffer, determines its status, and passes a full buffer to the Get routine.
If ASCII is used, the entire input buffer is translated from ASCII to EBCDIC.

The Open executor selects and loads this module if the Open parameter list
specifies:

INPUT or RDBACK
or,

INPUT for SYSIN (* or DATA specified on the DD statement)
and the DCB specifies:

Get
The module operates as follows for SYSIN data sets:

« It receives control when the SAM Subsystem interface, QSAM processing
module IGG019DJ, detects an end-of-data condition.

« It loads the DCB address into register 1 and issues an EOV SVC 55
instruction. Control is returned to this module only if the SYSIN data set is
concatenated to another input data set.

« If control is returned to this module, the EQV close bit is set in the
DCBOFLGS field. A test is made to determine if the unlike attribute bit
(DCBOFLGS) is set. If it is, control is returned to the processing program.
If not, a branch is taken to the Get routine to reschedule the last Get
request before returning to the processing program.

If a SYSIN data set was not specified, the module operates as follows:

« It receives control when a Get routine determines that a new buffer is
needed.

« It finds the next IOB and tests the status of the channel program associated
with that IOB.

« If the channel program has not yet completed processing, the module issues
a WAIT macro instruction.

« If the channel program has been executed normally, the module uses
XIATE if necessary to convert ASCII records to EBCDIC, then updates
the DCBIOBA field to point to this IOB, and returns control to the Get
routine. If format-D records are being read, the record descriptor words
are first converted from deciaml to binary code.

« If the channel program has been completed normally, and if the buffer
contains a DOS checkpoint record, tape files only, the module returns
control to the Get routine.

o If an error occurred during the execution of the channel program, the
module issues an SVC 55 instruction to pass control to the EOV routine.
EOV returns with a new DEB only if another volume is allocated to the
data set or if another input data set is concatenated with it. In that case
EOV has rescheduled the purged channel programs. If EOV returns with a

Method of Operation 81

Page of SY26-3832-1
As Updated July 2, 1979
By TNL SN26-0931

82 0S/VS2 SAM Logic

non-zero value in register 15, the DEB has not been changed and the
SYNAD routine is to be entered.

Synchronizing Module IGG019AR (Output): Module IGG0O19AR finds the
next output buffer, determines its status, and passes an empty buffer to the
Put routine. The Open executor selects and loads this module if the Open
parameter list specifies:

Output
and the DCB specifies:
Put
The module operates as follows:

« It receives control when a Put routine determines that a new buffer is
needed.

« It finds the next IOB and tests the status of the channel program associated
with that IOB.

« If the channel program is not yet executed, the module issues a WAIT
macro instruction.

« If the channel program has been executed normally, the module updates
the DCBIOBA field to point to this IOB and returns control to the Put
routine.

« If the output device is a 3203 or 3211 Printer and three or more buffers
are being used, the synchronizing module waits for two channel programs
to be completed before updating the DCBIOBA field.

« If an error occurred during the execution of the channel program, the
module issues an SVC 55 instruction to pass control to the EOV routine.
EOV returns with a new DEB only if it is able to allocate another extent or
volume to the data set. In that case EOV has rescheduled the purged
channel programs. If EOV returns with a non-zero value in register 15, the
DEB has not been changed and the SYNAD routine is to be entered.

Synchronizing Module Module IGG019BQ (Update): Module IGG019BQ
finds the next buffer and ensures that it has been refilled. If a unit status
prevented refilling of the buffer, the module processes the pending channel
programs according to whether they are empty-and-refill or refill-only
channel programs. The Open executor selects and loads this module if the
Open parameter list specifies:

Update

Locate operating mode
and the DCB specifies:

Get

Variable-length spanned (blocked or unblocked) record format
The module operates as follows if no error occurred:

« It receives control when the update Get routine finds that a new buffer is
needed. It also receives control after an FEOV macro instruction is N
encountered in a processing program, once from the update Get routine
(when the FEOV routine schedules the last buffer) and once directly from
the FEOV routine (when it awaits execution of the scheduled buffers).

9’

¢ :

If the next buffer has been refilled, the module returns control to the
update Get routine.

If the channel program for the next buffer has not yet executed, the
module awaits its execution.

The module operates as follows if an EOV condition is encountered:

It receives control when the update Get routine finds that a new buffer is
needed or when the FEOV routine awaits execution of the scheduled
buffers.

If the channel program for the next buffer encountered an EOV condition,
the module tests whether assembling or updating of a spanned record is in
process.

If updating is in process, the module delays the normal EOV processing by
turning off the error flags in the DCB and then returns control to the
update Get routine.

If assembling is in process, the module sets the spanned record flag in the
IOB and continues to the next step.

If assembling is in process or if this module has control due to an FEOV
macro instruction, the module finds the IOBs flagged for output. It then
resets the command-chain flag at the end of the empty portion of the
channel program and schedules the empty channel programs for execution
by means of an EXCP macro instruction.

If all empty channel programs have been executed, or if none are pending,
the module issues an SVC 55 instruction. If this module has control due to
an FEOV macro instruction, control returns to the routine that passed
control.

If a permanent error is encountered during execution of empty channel
programs for an EOV condition or for an FEOV macro instruction, control
passes to a SYNAD routine if one is present. The SYNAD routine returns
control to this module.

The module then processes the error option as follows:

Accept or Skip: The pending empty channel programs are rescheduled for
execution using EXCP macro instructions.

Terminate: Control passes to the ABEND routine.

On return of control from the EOV routine module tests whether
assembling of a spanned record is in process. If it is being processed, the
module turns off the spanned spanned-record flag in the IOB and returns
control to the update Get routine.

The module operates as follows if a permanent error is encountered:

It receives control when the update Get routine finds that a new buffer is
needed.

If the channel program for the next buffer encountered a permanent error
and a SYNAD routine is present, the module passes control to the SYNAD
routine.

Method of Operation 83

84 OS/VS2 SAM Logic

« If control returns from the SYNAD routine, or if there is no SYNAD
routine, the module processes the error option in the following manner:

Accept: If the error occurred in the empty portion of a channel program,
the module resets the IOB to point to the refill portion of the channel
program and issues an EXCP macro instruction for it and all following
IOBs.

If the error occurred in the refill portion of a channel program, the module
posts the current IOB as complete without error and issues an EXCP
macro instruction for all the IOBs except the present one.

The module ensures refilling of the buffer associated with the first IOB and
then returns control to the update Get routine.

Skip: If the error occurred in the empty portion of a channel program, the
module operates as it does for the Accept option.

If the error occurred in the refill portion of a channel program, the module
treats this as a RELSE condition and issues an EXCP macro instruction for
all IOBs.

The module ensures refilling of the buffer associated with the first IOB and
then returns control to the update Get routine.

Terminate: If the error option occurred in the empty portion of a channel
program, the module passes control to the ABEND routine.

If the error occurred in the refill portion of a channel program, the module
finds the end of the empty portion of any pending empty-and-refill channel
programs, resets the command-chain flag, and issues an EXCP macro
instruction for these empty channel programs. On the execution of all the
channel programs, the module passes control to the ABEND routine.

SYSIN/SYSOUT Synchronous-Error-Processing Module IGG019AH: Module
IGGO19AH is used in both BSAM and QSAM. It processes permanent error
conditions detected during the processing of requests for a SYSIN/SYSOUT
data set. This routine is loaded by the SAM-SI Get or Put routine or by a
Check module when the error is detected, and is entered with a BALR
instruction. When IGG019AH returns control to the calling program, the
module is deleted.

The module contains an exit routine that is entered from SYNADAF. This
routine formats the SYNADAF message. The routine is entered by SYNCH
and its address is found in the SVC exit list. It returns control to SYNADAF.

The module also contains a SYNAD control routine. Upon entry, it first
checks to see if the user has provided the address of a SYNAD routine in the
DCB. If no routine is specified, control is returned to the calling routine
(QSAM EROPT=ACC or SKP) or issues an ABEND (BSAM or QSAM
EROPT=ABE).

If a SYNAD routine is specified, IGG019AH operates as follows:
« The entry point to the SYNADAF exit is stored in the SVC exit list.

o A dummy IOB is formatted. Parameter registers 0 and 1 are loaded with
the IOB address (QSAM) or the DECB address (BSAM), the DCB »
address, and error flags.

« The user’s registers are saved in a new save area which is obtained with a
GETMAIN macro instruction.

9

o The current registers are saved in the user’s save area and the user’s
registers are loaded and the SYNAD routine is entered with a BALR
instruction.

If DCB EROPT is ACC or SKP, the user SYNAD routine returns control to
IGG019AH, the register save sequence is reversed, the new save area is freed,
and control is returned to the calling routine. If EROPT is ABE, Problem
Determination message IEC020 is issued followed by a 001 ABEND.

See Figure 14 for error-processing module selection.

Access Method Options Selections
Input, INOUT, OUTIN X

Track Overflow X

3211 Printer X

* DATA, or X
SYSOUT specified
on DD statement

Modules

IGGO019AH AH
IGG019C1 C1

IGGO19FS FS

Figure 14. Module Selector—Error-Processing Modules

Track-Overflow, Asynchronous-Error-Processing Module IGG019C1:
IGGO019C1, used in both QSAM and BSAM, processes error conditions that
are encountered in the execution of a channel program for an input data set
with track overflow. It processes error conditions asynchronously with the
execution of the channel program, the 1/O supervisor, or the processing
program. It receives control by being scheduled for execution by the
track-overflow abnormal-end appendage IGG019C3. It passes control to the
processing program through the supervisor. The module determines the Seek
address for reading the segments and blocks beyond the segment in error and
inserts it in the IOBSEEK field. If the error occurred in a segment of the
block being read into the buffer, the segment following the segment in error is
read, if the processing program chooses the Accept option in the SYNAD
routine. If the error occurred in a segment in the block preceding the block to
be read into the buffer (that is, the error occurred in the block being skipped
over to find the block to be read into the buffer), the desired block is in the
buffer when the processing program obtains the buffer.

The Open executor selects and loads this module and places its address in an
IRB pointed to in the DEB if the Open parameter list specifies:

Input, INOUT, or OUTIN
and the DCB specifies:

Track overflow

Get or Read

The module operates as follows if the error occurred in a CCW other than a
Read-data CCW:

« It receives control from the supervisor.

« It increases the tracx address in the IOB by 1, posts the ECB with the error
code, and causes control to return to the processing program.

Method of Operation 85

The module operates as follows if the error occurred in a Read-data CCW
without a Skip bit on:

« It receives control from the supervisor. ’

o If the segment in error is the last or the only segment of the block, the
module posts the ECB with the error code and causes control to be
returned to the processing program.

« If the segment in error is not the last segment and is not on an alternate
track, the module sets the IOB to address the track following the track in
error, posts the ECB with the error code, and causes control to return to
the processing program.

o If the segment in error is not the last segment and is on an alternate track,
the module increases the track address in the IOB by 1, posts the ECB
with the error code, and causes control to be returned to the processing
program.

The module operates as follows if the error occurred in a Read-data CCW
with the Skip bit on:

o It receives control from the supervisor.

o If the segment in error is the final or only segment of a block amd is not on
an alternate track, the module sets the IOB to address the track in error,
changes the Read-data command to a NOP command, and issues an EXCP
macro instruction for the changed channel program.

« If the segment in error is the final or only segment of a block and is on an
alternate track, the module sets the IOB to address the track following the
one originally addressed, posts the ECB with the error code, and causes
control to be returned to the processing program. (In case of an error in a J
final or only segment on an alternate track, the remaining blocks on thet
track are not read.)

o If the segment in error is not the last one and is not on an alternate track,
the module sets the IOB to address the track following the one in error,
and issues an EXCP macro instruction for the readdressed channel
program.

o If the segment in error is not the last one and is on an alternate track, the
module successively increases the track address in the IOB by 1 and issues
an EXCP macro instruction for the readdressed channel program.

o When control returns from the I/O supervisor, this module awaits
execution of the channel program by using a WAIT macro instruction. On
channel program execution, the module restores the purged IOBs (and the
Read-Skip command, if it was changed to a NOP command) and causes
control to be returned to the processing program.

See Figure 14 for error-processing module selection.

IBM 3211 Printer Asychronous-Error-Processing Module IGG019FS (Print
Line Buffer Error—Retry): Module IGGO019FS is device-dependent and is
scheduled asynchronously by the 3211 abnormal-end appendage

| IGGO19FR, IGG019CU, or IGG019Vé6). The module retries operations that
result in print line buffer parity errors or UCS buffer parity errors, whenever
possible. When an operation cannot be retried, the printer is reset and control
is returned to the calling program.

86 OS/VS2 SAM Logic

Appendages

The module operates as follows:

« It initializes registers to point to the DCB, ECB, and IOB. It then examines
sense bytes in the IOB to determine if one of the error conditions for
which a retry is possible occurred.

o If a UCS buffer parity error is indicated (ECB posted in error with an
X‘41’ or X‘44’ and the command retry bit is on in sense byte 1), the UCS
image ID is obtained from the UCB located in SYS1.IMAGELIB and
loaded into storage. (Failure to locate the UCS image in the
SYS1.IMAGELIB causes a skip to channel 0 command to be issued. This
resets the printer and the module returns control to the calling program.)
An IOB and channel program to load the UCS image into the UCS buffer
on the 3211 are constructed and executed. If a permanent I/O error occurs
during an attempt to load the UCS buffer, a skip to channel 0 command is
issued to reset the printer. The UCS field in the UCB is also set to 0 and
control is returned to the calling program. If the UCS buffer is loaded
successfully, a check is made to determine the access method (BSAM or
QSAM) being used.

o When QSAM is being used, a check is made to determine if three or more
buffers were specified in the BUFNO field of the DCB macro instruction.
(This is a condition necessary to retry a print line.) After either UCS buffer
parity errors or print line buffer parity errors, the type of scheduling is
determined. For normal scheduling, the IOB associated with the failing
print line is located and the channel program for that IOB is reissued once.
If the Channel program is not successful, the next IOB is rescheduled if
necessary and control is returned to the problem program, as though no
error occurred. If the channel program is not successful, a skip to channel 0
command is issued to reset the control unit and the module returns control
to the calling program. For chained channel scheduling, the portion of the
channel program associated with the failing print line is reissued. If it is
successful, a check is made to determine if another chain needs to be
started before the return to the problem program. If the retry is
unsuccessful, a skip to channel 0 command is issued and the module
returns control to the calling program.

o For BSAM, or for QSAM with fewer than three buffers specified, a skip to
channel 0 command is issued and the module returns control to the calling
program.

See Figure 14 for error-processing module selection.

Appendages are access method routines that receive control from and return
control to the I/0 supervisor. They operate in the supervisor state. The same
appendages are used in QSAM as in BSAM.

An appendage receives control from the 1/O supervisor and tests and may
alter the channel status word (IOBCSW). The 1/0O supervisor uses the
IOBCSW to post the event control block (ECB). If the SIO appendage
receives control from the I/0 supervisor before the latter starts execution of
the channel program, it may alter channel commands just before channel
program execution. The relationship of the I1/O supervisor and the
appendages are shown in Diagram F.

The 1/0 supervisor permits an appendage to gain control at certain exit
points. At that time the I/0 supervisor refers to the entry associated with that

Method of Operation 87

End-of-Extent Appendages

88 OS/VS2 SAM Logic

exit in the appendage vector table, whose address is in the data extent block
(DEB). If an entry contains the address of an appendage, control passes to it;
otherwise, control remains with the 1/O supervisor.

The 1/0 supervisor exits where appendages receive control are:
o End-of-extent

o SIO

o Channel end

« PCI

e Abnormal end

The 1/0 supervisor unconditionally schedules the routine at the address
associated with the exit in the Appendage Vector Table. If no appendage is
present, the entry points to an instruction that causes immediate return to the
I/0 supervisor.

Appendages differ from other sequential access method routines that are
loaded by the Open executor into processing program virtual storage. They
differ because they operate asychronously with the processing program. The
events that cause appendages to gain control depend on the progress of the
channel program, not on the progress of the processing program. Other
appendages operate by running enabled under an SRB.

The Open executor selects and loads all the appendages to be used with a
DCB. No appendage, one appendage, or several appendages may be used
with one DCB. The Open executor places the addresses of the required
appendages into the various fields of the appendage vector table. Figure 15
lists the appendages and the conditions that cause the different appendages to
be used. The appendages are grouped according to the condition detected by
the I/O supervisor before control is passed to the appendage. Note that some
appendages have entry points for more than one of the conditions checked by
the I/O supervisor.

End-of-extent appendages gain control of the central processing unit (CPU)
if the EXCP supervisor finds an end-of-extent condition. This condition exists
if the direct-access device storage address associated with a channel program
is outside of the extent currently pointed to in the data extent block (DEB).

Five end-of-extent appendages are provided for use with sequential access
method routines:

o IGG0O19AW processes an end-of-extent condition for QSAM update mode
- channel programs.

+ IGGO019BM processes an end-of-extent condition for BSAM update mode
channel programs.

+ IGGO019CH processes an end-of-extent condition when neither the update
mode nor chained channel-program scheduling is specified.

o IGG019CZ processes end-of-extent conditions when chained
channel-program scheduling is used.

o IGGO019C4 is loaded in for standard format-F records and verifies whether
an extent violation is valid. It is also the end-of-extent appendage for the
search-direct option.

9

Access Method Options*

Input, INOUT, OUTIN

Readback

Update

Get

Read

Offset Read (BDAM)

Create BDAM

Record format is fixed-length

Record format is fixed-length blocked
Record format is variable-length
Record format is variable-length spanned
Record format is not fixed-length standard
Record format-U

Direct-access storage

Printer

Paper tape

Chained Scheduling

Track-overflow

3211 Printer

Magnetic Tape (OPTCD=H)

Search Direct (OPTCD=2Z)

RPS

V=R

X X X

Appendages entered from End-of-Extent Exit
IGGO19AW

IGGO19BM

IGGO19CH

1IGG019CZ

1GG019C4

AW
BM

CH

C4

cz

Appendages entered from S10 Exit
IGGO19CG
1GGO19CL

CG

CL

Append d from Channel-End Exit
IGGO19BT
1GGO19BV
1GGO19CI
1GG019C)
1GG019CS
1GGO19CU
1GG019C0o
1GG019C32
IGGO19EI
IGGO19E]
IGGO19FP
1GGO19V6!

BT

BV

c3

co

CI

Cl

cs

CuU

E)

El

FP
3

Appendage entered from PCI Exit
IGG019Ve6

Vé

Appendages entered from Abnormal End Exit
1GGO19CU?

1GG019CI3

1GGO019CJ3

1GG019C0o3

1GGO019C3

IGGOI9E!

1GGO19EJ

IGGO19FR

1IGGO19V6!

1. Module has multiple entry points. Description appears in Program Controlled Interruption Appendages.
2. Module has multiple entry points. Description appears in Abnormal-End Appendages.

Co)

Cl

3. Module has multiple entry points. Description appears in Channel-End Appendages.

4. If *, DATA, or SYSOUT are ified on the DD

no

Figure 15. Module Selector—Appendages

are loaded.

Ccl

Cu

C3

FR

El

Ve

Method of Operation 89

90 OS/VS2 SAM Logic

Appendage IGG019AW (End-of-Extent—Update—QSAM):

Appendage IGG019AW readdresses the refill portions of all QSAM update
channel programs to a new extent. The Open executor selects and loads this
module for use as the end-of-extent appendage if the Open parameter list
specifies: .

Update
and the DCB specifies:
Get
The appendage operates as follows:

« It receives control from the EXCP supervisor under one of the following
conditions:

A refill portion of QSAM update channel program attempts to read the
first block beyond the present extent.

The remaining channel programs attempt to refill their buffers from the
new extent.

« It tests to see if the EXCP was issued from an SVC routine. If so, it effects
a normal return to EXCP.

« If the interruption occurred in a Seek CCW, the appendage copies the Seek
address from the refill portion of the present channel program into the
DCB and proceeds to check to determine if there is another extent.

« If there is no other extent, the appendage sets error indications in the IOB
and returns control to the EXCP supervisor. The EXCP supervisor then
issues a PURGE macro instruction for that channel program. The update
synchronizing routine ensures writing out of the empty portions of pending
channel programs.

o If the interruption occurred in a Read-count CCW and there is a new
extent, the appendage builds a Seek address for the new extent using the
starting address from the DEB. It then copies this new Seek address into
the DCB and IOSEEKA and updates the M value in the refill portion of
each channel program.

o When using the rotational position sensing (RPS) feature and when the
Seek address is updated to reflect the beginning of the next extent, the
Set-sector byte is reset to 0.

« It resets the IOB to address the next track and its channel program and
returns control to the I/O supervisor.

Appendage IGG019BM (End-of-Extent—Update—BSAM): Appendage
IGGO019BM readdresses channel programs to a new extent for a DCB opened
for Update and using BSAM. The Open executor selects and loads this
appendage for use as the end-of-extent appendage if the Open parameter list
specifies:

Update
and the DCB specifies:

Read *

The appendage operates as follows:

It receives control from the EXCP supervisor when a channel program to
refill a buffer attempts to read the first block beyond the present extent.

It tests to see if the EXCP was issued from an SVC routine. If so, it effects
a normal return to EXCP.

If there is no other extent for a Refill channel program, the appendage sets
error indications in the IOB and returns control to the EXCP supervisor.

If there is a new extent for a Refill channel program, the appendage adds 1
to the value of M in the DCBFDAD field and in the Seek address of each
refill channel program for the DCB. It places the new Seek address into the
current IOB and returns control to the EXCP supervisor. The supervisor
restarts the channel program.

When the Seek address is updated to reflect the beginning of the next
extent and the rotational position sensing (RPS) feature has been specified,
the Set-sector byte is reset to zero.

Appendage IGG019CH (End-of-Extent—Ordinary): Appendage IGG019CH
finds a new extent when the EXCP supervisor finds an end-of-extent
condition. The Open executor selects and loads this appendage for use as the
end-of-extent appendage if the Open parameter list specifies:

Input, INOUT, or OUTIN

and the DCB specifies:

Direct-access storage device
Record format other than fixed-length standard
Normal channel-program scheduling

The appendage operates as follows:

It receives control when a channel program attempts to read a block
beyond the present extent.

It tests to see if the EXCP was issued from an SVC routine. If so, it effects
a normal return to EXCP.

The appendage examines the DEB for another extent.

If tnere is another extent, the appendage enters the new full device address
in the DCB, IOSEEKA, the IOBs, and returns control to the EXCP
supervisor. The EXCP supervisor restarts the channel program.

When the SEEK address is updated to reflect the beginning of the next
extent and RPS was specified, the set-sector byte is set to zero.

If there is no other extent, the appendage sets error indications in the IOB
and the DCB to show an end-of-volume condition and returns control to
the EXCP supervisor. The EXCP supervisor then issues a PURGE macro
instruction for that channel program.

Method of Operation 91

92 OS/VS2 SAM Logic

Appendage IGG019CZ (End-of-Extent—Chained Channel-Program
Scheduling): Appendage IGG019CZ readdresses the chain of channel
programs to a new extent when the EXCP supervisor finds an end-of-extent
condition. The Open executor selects and loads this appendage for use as the
end-of-extent appendage if the DCB specifies:

Chained channel-program scheduling
Direct-access storage device
The appendage operates as follows:

o It tests to see if the EXCP was issued from an SVC routine. If so, it effects
a normal return to EXCP.

o It receives control when an end-of-track condition interrupts the chained
scheduling and the I/O supervisor finds that the next track is not in the
current extent.

o If there is another extent, the appendage enters the new Seek address in
the DCB, IOB,IOSEEKA, updates the Seek addresses of the remaining
ICBs, resets the error indications in the first ICB, resets the sector value to
zero when RPS is specified, and returns control to the I/O supervisor to
reschedule the channel program for execution.

 If there is no other extent, the appendage sets a volume-full indication in
the DCB, IOB, and ICB and returns control to the I/O supervisor to skip
further scheduling for this DCB.

Appendage IGG019C4 (End-of-Extent for Search Direct): Appendage
IGGO019C4 finds a new extent when the EXCP supervisor finds an
end-of-extent condition. The Open executor selects and loads this appendage
for use as the end-of-extent appendage if the Open parameter list specifies:

Input, INOUT, or OUTIN
and the DCB specifies:
Direct-access storage device
Record format other than fixed-length standard
Normal channel-program scheduling
Search direct
The appendage operates as follows:

o It receives control when a channel program attempts to read a block
beyond the present extent.

o It tests to see if the EXCP was issued from an SVC routine. If so, it effects
a normal return to EXCP.

» If another extent is not available and all of the following conditions exist:
the Seek is not on cylinder FFnn and

M/T Read-count command caused the Seek beyond the current extent
and

unit check is on

Start I/0 (SIO) Appendages

IGG019C4 does the following:
clears all error and status flags in the IOB,
sets CHAN and DEV END in the IOBCSW,
sets 7F in the IOB completion code,
clears the DCB flags, and

sets FF in the HI cylinder byte of the next IOBSEEK field (multiple
IOBs) or the DCBFDAD field (one IOB).

It then performs normal channel-end processing (because the channel-end
appendage is bypassed) and sets register 14 code to “skip”’ (because the
required I/O has been completed).

If any of the following conditions exist:
M/T Read-count did not cause the Seek or
cylinder FFnn is found or
unit check is off

the appendage does the following:
sets the volume-full list in the DCBCINDI1 field,
sets the unit-exception bit in the CSW,

sets the register 14 code to “extent error,” which is interpreted as an
end of file condition, and returns.

If there is another extent, the appendage enters the new full disk address in
the DCB, IOSEEKA, and the IOBs. It resets the sector value to zero when
RPS is specified.

For seeks on record 0, it changes the second TIC in the search direct

channel program to an M/T Read Count to make it a search previous
channel program. It then sets the register 14 code to “try again,” and
returns.

Start I/0 (SIO) appendages, if present, gain CPU control when the start I/O
subroutine of the EXCP supervisor reaches the start I/O appendage exit. The
following appendages set channel program entries:

IGGO019CG. This appendage makes the Seek address accessible to the I/0O
supervisor for QSAM and BSAM update channel programs that refill
buffers. (This is necessary because the Seek address for such a channel
program is read by the preceding channel program into a location unknown
to the I/O supervisor.)

IGGO019CL. This appendage causes the next line to print at the top of a
new page if a printer overflow condition was encountered in the execution
of the last channel program.

All control blocks and data areas used by the 1/0 interruption supervisor and
appendage modules must be mapped into real storage. If they are not and the
I/0 interruption supervisor encounters a page exception, the task that
requested the I/0O is abnormally terminated. The EXCP portion of the 1/O
supervisor determines that certain control blocks and data areas will be
referred to during later processing.

Method of Operation 93

Appendage IGG019CG (SIO—Update): Appendage IGG019CG resets the

IOB to the Seek address and channel program for refilling for a refill-only

update channel program. The Open executor selects and loads this appendage J
for use as the SIO appendage if the Open parameter list specifies:

Update
The appendage operates as follows:

o It tests to see if the EXCP was issued from an SVC routine. If so, it effects
a normal return to EXCP.

o It tests the IOB to determine whether the buffer is to be emptied and
refilled or to be refilled only.

o It performs new extent checking and moves the new extent address into
IOSEEKA.

o With the rotational position sensing (RPS) feature, the offset to the special
FDAD from the Read CCW is not the same for record-ready. A test is
made for record-ready and the correct offset used. When the special
FDAD has been partially or completely destroyed, the channel program
Start address is set to point to a TIC so the IOB will ultimately be marked
in error. The offset of the TIC is different for record-ready.

Appendage IGG019CL (SIO—PRTOV): Appendage IGG019CL causes a
skip to the top of a new page with the first channel program following a
printer overflow condition. The Open executor selects and loads this
appendage for use as the SIO appendage if the DCB specifies:

Printer
The appendage operates as follows: J

o It tests to see if the EXCP was issued from an SVC routine. If so, it effects
a normal return to EXCP.

o The appendage tests the IOB to determine whether a PRTOV macro
instruction was issued with this PUT or WRITE macro instruction.

o If a PRTOV macro instruction was not issued, the appendage returns
control to the EXCP supervisor immediately.

o If the PRTOV macro instruction was issued, the appendage resets the
PRTOV bit in the IOB and tests the DCBIFLGS field to determine
whether a printer-overflow condition has occurred.

o If printer-overflow has not occurred, the appendage returns control to the
EXCP supervisor.

« If printer-overflow has occurred, the appendage resets the DCBIFLGS
field, inserts the “skip-to-1"’ command byte into the channel program,
updates the IOB channel program start-address field and returns control to
the EXCP supervisor.

Channel-End Appendages

Channel-end appendages, if present, gain CPU control when the I/0O
interruption supervisor reaches the channel-end appendage exit. For data sets,
appendages distinguish between valid and invalid block lengths by
computation.

When the rotational position sensing (RPS) function is implemented in the '

94 0S/VS2 SAM Logic

channel programs, the Read-sector follows the Read-data command and
wipes out the Residual count for the Read. The implementation of RPS
requires reading in the full 8 bytes of the count field of the record to use the
DLDL plus the K of the count for checking the number of bytes read. The
count is read into an 8-byte area following the channel program. In the
channel-end appendages, it is necessary to move the CCHHR into the next
search argument or DCBFDAD+3 depending on the number of IOBs.

The channel-end appendages are:

o IGGO19BT. This appendage schedules the writing of successive blocks
when a record has to be segmented.

o IGGO19BYV. This appendage distinguishes between valid wrong-length
blocks and variable-length blocks.

o IGGO19CI. This appendage distinguishes between wrong-length and
truncated blocks when fixed-length blocked records are being read using
normal channel program scheduling.

« IGGO019C]J. This appendage distinguishes between wrong-length and
variable-length blocks when variable-length records are being read using
normal channel program scheduling.

o IGGO19CS. This appendage distinguishes between valid and invalid
wrong-length indications when paper tape is being read.

o IGGO019C0. This appendage distinguishes between wrong-length and
undefined-length blocks when format-U records are being read from RPS
direct-access-devices.

o IGGO19EI This appendage distinguishes between fixed, fixed-blocked,
and undefined user blocks and embedded DOS checkpoint records. In the
case of fixed-length blocked records it also distinguishes between
wrong-length and truncated blocks.

o IGGO19E]J. This appendage distinguishes between wrong-length and
variable-length blocks and embedded DOS checkpoint records.

o IGGO19FP. This appendage does length checking for all formats supported
by the search-direct feature.

Appendage IGG019BT (Channel End—Create BDAM): Module IGG019BT
schedules the writing of successive blocks when a record has to be segmented.
The Open executor selects and loads this module if the DCB specifies: and
loads this module if the DCB specifies:

Write (Load)
Variable-length spanned record
The module operates as follows for a channel-end condition:
« It receives control when the I/O supervisor arrives at the channel-end exit.

o It determines whether the WRITE was WRITE-SZ. If it was WRITE-SZ,
the routine returns control to the 1/0 supervisor.

+ When the WRITE-SF is issued, it determines whether the block was
spanned record. If not, the routine returns control to the I/O supervisor.

« When a spanned record is being processed, the routine determines whether
the entire record has been written. If the record has been written, the
routine returns control to the I/O supervisor. When the entire record has

Method of Operation 95

not been written, the routine schedules the asynchronous exit routine. The
asynchronous exit routine will schedule an EXCP to write a middle
segment or the last segment of the record. ,)

Channel-End Appendage IGG019BV (Offset Read): Appendage IGG019BV
distinguishes between valid wrong-length blocks and variable-length blocks. It
also performs an offset read function when necessitated by spanned records.
The Open executor selects and loads this appendage and the associated Read
module (IGG019BU), if the Open parameter list specifies:

Input
and the DCB specifies:
BFTEK=R
Variable-length spanned record format for a BDAM data set with keys
(Under these conditions, the SLI flag is off in the Read CCW.)
The appendage operates as follows:
« It receives control from the I/O supervisor at the channel-end exit.

« If the appendage finds a unit exception bit on in the CSW, it returns to the
1/0 supervisor immediately.

o If the unit check bit is on, the Abnormal routine is branched too. The
abnormal channel-end appendage returns to the I/O supervisor
immediately if it finds a cylinder-end or file-protect condition. Otherwise,
the current channel program is changed back to Read-key-and-data, and
control is returned to the I/O supervisor.

o If a key was not read (Read-data CCW), the command is changed back to -
Read-key and data. J

« If a key was expected (Read-key-and-data CCW) and there was no key to
read (key length=0 in count just read), then the Read CCW must be
rescheduled with an offset.

« The appendage calculates the length of the block and compares it to the
block length field.

« If the lengths are equal, it resets error indicators in the ECB.

o If the lengths are unequal and the current channel program is changed to
Read-key-and-data, control is returned to the I/O supervisor. The I/O
supervisor then sets the ECB to show that the channel program executed
with an error condition.

+ The appendage checks the SDW to see if another segment is to follow. If
" there is, the next channel program is changed to Read-data.

Appendage IGG019CI (Channel End, Abnormal End—Fixed-Length Blocked
Record Format): Appendage IGG019CI distinguishes between valid
wrong-length blocks and truncated blocks. The Open executor selects and
loads this appendage if the Open parameter list specifies:

Input, Readback, INOUT, OUTIN, or UPDAT
and the DCB specifies:
Fixed-length blocked records

96 OS/VS2 SAM Logic

The channel-end appendage operates as follows:

» It tests to see if the EXCP was issued from an SVC routine. If so, it effects
a normal return to EXCP.

o If the IOBUPERR flag is off (abnormal-end not entered before for this
I/0 request), it transfers control to the common channel-end routine.

« If the IOBUPERR flag is on (abnormal-end entered before for this I/O
request), the channel-end appendage does the following:

Turns off the IOBUPERR flag.

Turns back on the command chain for the last CCW of the current
segment, which is the last CCW executed.

Changes the IOBSEEK argument to the same seek argument pointed to
by the seek CCW that follows the current segment.

Changes the IOBSTART address so that it points to the CCW after the
seek CCW that follows the current segment. The CCW pointed to is
either set sector or search ID.

o The channel program is then restarted from that point.
The abnormal-end appendage operates as follows:

o It tests to see if the EXCP was issued from an SVC routine. If so, it effects
a normal return to EXCP.

o If the error is not yet a permanent error, the abnormal-end appendage does
the following:

If the IOBUPERR flag is on (prior abnormal-end entry into this
section), it gives control to the ERPs, via EXCP, for retry.

If the IOBUPERR flag is off, it branches to the scan routine to get the
address of the last CCW in the current segment.

If the last CCW in the segment is the last CCW in the channel program
and IOBSTART pointed to the beginning of the segment on entry, the
appendage gives control to the ERPs, via EXCP, for retry.

If the last CCW in the segment is not the last CCW in the channel
program, the appendage turns off the command chain on the last CCW.
The IOBSTART and IOBSEEK have been updated to the current
segment. The appendage turns on the IOBUPERR flag and returns
control to EXCP for restart.

o If the error is a permanent error, the abnormal-end appendage does the
following:

If the IOBUPERR flag is off, it transfers control to the common
channel-end routine.

If the IOBUPERR flag is on, it turns on the command chain of the
failing segment, turns off the IOBUPERR flag, and transfers control to
the common channel-end routine.

The scan routine operates as follows:

« It establishes the address of the last CCW in the current segment and
passes it back to the calling routine.

o It assumes that the current segment begins with the CCW pointed to by
IOBSTART. 5

Method of Operation 97

98 OS/VS2 SAM Logic

o It searches from the beginning of the segment until it finds a seek, NOP, or
CCW without a command chaip (other than TIC).

o It passes the end-of-segment address to the caller. The address is either the
first CCW without a command chain or the seek address minus eight,
whichever comes first.

The common channel-end routine operates as follows:

o It performs length checking for fixed-length records. If the record format is
fixed standard or the track-overflow feature is used with record-ready, the
SLI bit is left off in the Read-data CCW. If a wrong length record is read,
the command chaining bit is turned off and the CSW reflects channel end
and wrong length indication. The channel-end appendage determines
whether the record is a valid short block. For standard format-F records
with a valid short block, the module turns on the EOV bit in the DCB and
ECB.

« For nonstandard format-F records with the track-overflow feature, a short
block is treated as a valid record and the sector value for this last record is
used for the next READ.

o Length checking for nonstandard format-F records without the
track-overflow feature is performed in the following manner.

The module searches the channel program for a Read-count command, picks
up the address of the count to locate the data length and key length, and adds
them together. The appendage then compares this value to the block size to
determine whether a short block was read. (The SLI bit is on so the channel
program will not be terminated with the Read-data CCW.) If a short block
has been read, the appendage divides the data length plus key length by the
LRECL to determine whether the record is a multiple of the LRECL. If it is,
the appendage continues processing using code common to non-RPS. If the
DD is not a multiple of the LRECL, the incorrect length bit in the CSW is
turned on and processing continues with code common to both RPS and
non-RPS.

o For record-ready channel programs, if there is only one IOB, the CCHHR
of the count is moved into the DCBFDAD?3. If there is more than one
IOB, the CCHHR of the count is moved into the IOBSEEK +3 of the next
IOB or, in the case of update, into the next special FDAD+3.

Appendage IGG019CJ (Channel End, Abnormal End—Variable-Length Record
Format): Appendage IGG019C]J distinguishes between valid wrong-length
blocks and variable-length blocks. The Open executor selects and loads this
appendage if the Open parameter list specifies:

Input, INOUT, OUTIN, or UPDAT
and the DCB specifies:
Variable-length records
(Under these conditions, the SLI flag is off in the Read CCW.)

The module performs a length check for variable-length records. When the
track-overflow option is used with rotational position sensing (RPS), no .
length checking is performed because the count that would be read in is the
count of the first segment only. When the record-ready feature is used
without track-overflow, all 8 bytes of the count of the record are read into
virtual storage. The DLDL plus the K of the count is compared with the LL
of the record. If they are equal, the module branches via the return register. If

they are not equal, it turns on the wrong-length indicator, dummies up the

residual count, and continues processing with code common to both RPS and

non-RPS.
For record-ready, if there is only one IOB, the CCHHR of the count is

moved into the DCBFDAD+3. If there is more than one IOB, the CCHHR
of the count is moved into the IOBSEEK +3 of the next IOB or, in the case of

update, into the next special FDAD+3.
The channel-end appendage operates as follows:

« It receives control when the I/0 interruption supervisor arrives at the
channel-end exit.

o It tests to see if the EXCP was issued from an SVC routine. If so, it effects

a normal return to EXCP.

o If the IOBUPERR flag is off (abnormal-end not entered before for this
I/0 request), it transfers control to the common channel-end routine.

« If the IOBUPERR flag is on (abnormal-end entered before for this I/0
request), the channel-end appendage does the following:

Turns off the IOBUPERR flag.

Turns back on the command chain for the last CCW of the current
segment, which is the last CCW executed.

Changes the IOBSEEK argument to the same seek argument pointed to
by the seek CCW that follows the current segment.

Changes the IOBSTART address so that it points to the CCW after the
seek CCW that follows the current segment. The CCW pointed to is
either set sector or search ID.

o The channel program is then restarted from that point.

The abnormal-end appendage operates as follows:

« It tests to see if the EXCP was issued from an SVC routine. If so, it effects

a normal return to EXCP.

« If the error is not yet a permanent error, the abnormal-end appendage does

the following:

If the IOBUPERR flag is on (prior abnormal-end entry into this
section), it gives control to the ERPs, via EXCP, for retry.

If the IOBUPERR flag is off, it branches to the scan routine to get the
address of the last CCW in the current segment.

If the last CCW in the segment is the last CCW in the channel program
and IOBSTART pointed to the beginning of the segment on entry, the
appendage gives control to the ERPs, via EXCP, for retry.

If the last CCW in the segment is not the last CCW in the channel
program, the appendage turns off the command chain on the last CCW.
The IOBSTART and IOBSEEK have been updated to the current
segment. The appendage turns on the IOBUPERR flag and returns
control to EXCP for restart.

Method of Operation 99

100 OS/VS2 SAM Logic

If the error is a permanent error, the abnormal-end appendage does the
following:

If the IOBUPERR flag is off, it transfers control to the common
channel-end routine.

If the IOBUPERR flag is on, it turns on the command chain of the
failing segment, turns off the IOBUPERR flag, and transfers control to
the common channel-end routine.

The scan routine operates as follows:

It establishes the address of the last CCW in the current segment and
passes it back to the calling routine.

It assumes that the current segment begins with the CCW pointed to by
IOBSTART.

It searches from the beginning of the segment until it finds a seek, NOP, or
CCW without a command chain (other than TIC).

It passes the end-of-segment address to the caller. The address is either the
first CCW without a command chain or the seek address minus eight,
whichever comes first.

The common channel-end routine operates as follows:

If the appendage finds a unit-exception bit on in the channel status word, it
returns control to the I/0O interruption supervisor immediately.

The appendage calculates the length of the block and compares it to that in
the block length field.

If the lengths are equal, the appendage turns off error indications in the
ECB and DCB and returns control to I/O interruption supervisor.

If the lengths are not equal and the device is magnetic tape, a check is
made to see if the block has been padded up to 18 bytes or blocksize,
whichever is less. If so, the appendage turns off the error indicators in the
ECB and DCB and returns control to the I/0 supervisor. If the device is
not magnetic tape or the block is not padded, control is returned to the I/O
interruption supervisor immediately. The I/0O interruption supervisor then
sets the ECB to show that the channel program executed with an error
condition.

Appendage IGG019CS (Channel End—Paper Tape): Appendage IGG019CS
distinguishes between valid wrong-length blocks and the wrong-length
indication characteristic when paper tape is being read. The Open executor
selects and loads this appendage if the DCB specifies:

Fixed-length record format

Paper tape

The appendage operates as follows:

It receives control when the I/O interruption supervisor arrives at the
channel-end exit.

It tests to see if the EXCP was issued from an SVC routine. If so, it effect.;
a normal return to EXCP.

If the channel status word (IOSCSW) residual count is zero, the appendage
turns off error indications in the IOB and then returns control to the I/0O
supervisor.

9

« If the channel status word (IOSCSW) residual count is not zero, the
appendage returns control to the I/O supervisor immediately.

Appendage IGG019CO (Channel End, Abnormal End—Format-U and RPS
Direct Access): This appendage updates the residual count field of the IOB
CSW with the length of a variable-length block when format-U records are
being read from RPS devices. The Open executor selects and loads this
appendage if the Open parameter list specifies:

Input, Output, Update, INOUT, or OUTIN
and the DCB specifies:

Undefined-length records

no track-overflow
and the device is a direct-access with RPS.
The channel-end appendage operates as follows:

o It tests to see if the EXCP was issued from an SVC routine. If so, it effects
a normal return to EXCP.

o If the IOBUPERR flag is off (abnormal-end not entered before for this
I/0 request), it transfers control to the common channel-end routine.

« If the IOBUPERR flag is on (abnormal-end entered before for this I/O
request), the channel-end appendage does the following:

Turns off the IOBUPERR flag.

Turns back on the command chain for the last CCW of the current
segment, which is the last CCW executed.

Changes the IOBSEEK argument to the same seek argument pointed to
by the seek CCW that follows the current segment.

Changes the IOBSTART address so that it points to the CCW after the
seek CCW that follows the current segment. The CCW pointed to is
either set sector or search ID.

The channel program is then restarted from that point.
The abnormal-end appendage operates as follows:

o It tests to see if the EXCP was issued from an SVC routine. If so, it effects
a normal return to EXCP.

« If the error is not yet a permanent error, the abnormal-end appendage does
the following:

If the IOBUPERR flag is on (prior abnormal-end entry into this
section), it gives control to the ERPs, via EXCP, for retry.

If the IOBUPERR flag is off, it branches to the scan routine to get the
address of the last CCW in the current segment.

If the last CCW in the segment is the last CCW in the channel program
and IOBSTART pointed to the beginning of the segment on entry, the
appendage gives control to the ERPs, via EXCP, for retry.

If the last CCW in the segment is not the last CCW in the channel
program, the appendage turns off the command chain on the last CCW.
The IOBSTART and IOBSEEK have been updated to the current

Method of Operation 101

102 OS/VS2 SAM Logic

segment. The appendage turns on the IOBUPERR flag and returns
control to EXCP for restart.

o If the error is a permanent error, the abnormal-end appendage does the
following:

If the IOBUPERR flag is off, it transfers control to the common
channel-end routine.

If the IOBUPERR flag is on, it turns on the command chain of the
failing segment, turns off the IOBUPERR flag, and transfers control to
the common channel-end routine.

The scan routine operates as follows:

« It establishes the address of the last CCW in the current segment and
passes it back to the calling routine.

« It assumes that the current segment begins with the CCW pointed to by
IOBSTART.

« It searches from the beginning of the segment until it finds a seek, NOP, or
CCW without a command chain (other than TIC).

o It passes the end-of-segment address to the caller. The address is either the
first CCW without a command chain or the seek address minus eight,
whichever comes first.

The common channel-end routine operates as follows:

« If processing a partitioned data set, it returns immediately to the I/O
supervisor.

« It returns to the I/O supervisor if the operation was either write or
backspace.

¢ Because of the implementation of RPS function in the channel programs,
the Read-sector follows the Read-data command and wipes out the
residual count for the Read. The implementation of RPS requires reading
the full 8-byte count field of the record to use the DLDL plus the K of the
count for checking the number of bytes read. The count field is read into a
8-byte area following the channel program. This appendage moves the
CCHHR into the next search argument or DCBFDAD+ 3 depending on
the number of IOBs. In addition, this routine adds DLDL with K and
stores the result in the Residual Status Word of the IOB.

Appendage IGG019EI (Channel End, Abnormal End—Fixed-Length or
Undefined-Length Record Format): Appendage IGG019EI distinguishes
between fixed, fixed-blocked, and undefined user blocks and embedded DOS
checkpoint records. In the case of fixed-length blocked records it also
distinguishes between wrong-length and truncated blocks. The Open executor
selects and loads this appendage if the Open parameter list specifies:

Input, Readback
and the DCB specifies:
OPTCD=H (specified in JCL)
Magnetic tape
Fixed, fixed-blocked, or undefined-length blocks

9

The appendage operates as follows:

« It receives control from the 1/0 interruption supervisor when the 1/0
interruption supervisor arrives at the channel-end and abnormal-end
appendage exits.

« [t tests to see if the EXCP was issued from an SVC routine. If so, it effects
a normal return to EXCP.

« Upon encountering a checkpoint header record, bit 0 in the DEBTFLGS
field of the DEB is turned on. It is turned off when the checkpoint trailer
record is encountered. This provides the means to differentiate between
the user’s data records and the embedded checkpoint records.

« In the channel-end entry into this appendage the number of bytes read is
tested. If 20 bytes were not read and the bypass-flag bit in the
DEBTFLGS field is off, the appendage takes the normal exit to the I/O
interruption supervisor for fixed-length and undefined-length formats and
performs the necessary record length check for fixed-block records. If 20
bytes were read, the record is tested to determine if it is a checkpoint
header record. If it is not a checkpoint header record, the normal exit to
the I/0 interruption supervisor is taken for fixed-length and
undefined-length formats, and record length checking for fixed-block
formats is performed.

« When a checkpoint header record is encountered, the bypass-flag bit in the
DEBTFLGS field is turned on, the DCBBLKCT field is decremented by
the value in the IOBINCAM field, the ‘‘Flags 1-3” fields of the IOB are
reinitialized, and the IOBERRCT field is set to zero. For QSAM, the IOB
completion code is set to X‘50’ and the normal exit is taken to the I/O
interruption supervisor. The bypassing of the checkpoint records is
performed in the QSAM routines. For BSAM, the re-EXCP exit is taken to
the I/0 interruption supervisor.

« The appendage is reentered when the reexecuted channel program ends for
BSAM or when the rescheduled channel program ends for QSAM and,
finding the bypass flag on, tests for the checkpoint trailer record. If the
record read is not the trailer record, the DCBBLKCT field is decreased,
the IOB-flag fields reinitialized, and the IOBERRCT field is set to zero.
For BSAM, the re-EXCP exit is taken to the I/O interruption supervisor.
For QSAM, the IOB completion code is set to X‘50’, and the normal exit is
taken to the I/O interruption supervisor. This process continues until the
trailer record is read. When the trailer record is read, the bypass flag is
turned off, and the above procedure is followed. The next entry to this
channel-end appendage follows the reading of the record immediately
following the embedded checkpoint records.

« The appendage is entered in the event of an abnormal condition arising. If
this entry is the result of any condition other than a data error, control is
returned to the I/0 interruption supervisor by way of the normal exit.

o Ifitis a data error, a test is then performed to determine if a checkpoint
header/trailer record was read. This test is comprised of an initial 12-byte
comparison of the record’s first 12 bytes with the checkpoint identifier

/// CHKPT //

Should this comparison fail, a byte-by-byte comparison is performed. If 10
or more bytes compare successfully, it is then assumed that a header or

Method of Operation 103

Page of SY26-3832-1
As Updated 30 Nov 1979
By TNL SN26-0956

trailer record has been encountered and the appendage returns control to
the I/0 interruption supervisor.

Appendage IGG019EJ (Channel End, Abnormal End—Variable-Length Record J
Format): Appendage IGG019E]J distinguishes between variable-length and '
wrong-length blocks and embedded DOS checkpoint records. The Open

executor selects and loads this appendage if the Open parameter list specifies:

Input
and the DCB specifies:
OPTCD=H (via JCL)
Magnetic Tape
Variable-length blocks
The appendage operates as follows:

o It tests to determine if the EXCP was issued from an SVC routine. If so, it
effects a normal return to EXCP.

« It receives control from the I/0 interruption supervisor when the I/0
interruption supervisor arrives at the channel-end and abnormal-end
appendage exits.

« Upon encountering a checkpoint header record, bit 0 in the DEBTFLGS
field of the DEB is turned on. It is turned off when the checkpoint trailer
record is encountered. This provides the means to differentiate between
the user’s data records and the embedded checkpoint records.

« In the channel-end entry into this appendage the first two bytes of the
record are tested to determine if it is a valid block. (The first two bytes of a
variable-length physical record specify the block length and are used in J
performing length-checking.) The first 12 bytes of a checkpoint header or
trailer record (which are identical and 20 bytes in length) identify it as a
header/trailer record. These 12 bytes are

/// CHKPT //

The first two bytes of the checkpoint header record do not satisfy the
length check as a variable-length record. If the first two bytes do satisfy
the length check, the appendage takes the normal exit to the I/O
interruption supervisor for variable-length records. If the first two bytes do
not satisfy the length check for a variable-length record, the number of
bytes read is computed. If 20 bytes were not read and the bypass-flag bit in
the DEBTFLGS field is off, the appendage returns to the I/O interruption
supervisor. If 20 bytes are read, the record is tested to determine if it is a
checkpoint header record. If it is not a checkpoint header record, the
normal exit to the I/O interruption supervisor is taken for variable-length
formats.

« When a checkpoint header record is encountered, the bypass-flag bit in the
DEBTFLGS field is turned on, the DCBBLKCT field is decremented by
the value in the IOBINCAM field of the IOB, the “Flags 1-3” fields of the
IOB reinitialized, and the IOBERRCT field set to zero. For QSAM, the
10B completion code is set to X‘50’ and the normal exit is taken to the
I/0 interruption supervisor. The bypassing of the checkpoint records is
performed in the QSAM routines. For BSAM, the re-EXCP exit is taken to
the 1/0 interruption supervisor. J

104 OS/VS2 SAM Logic

The appendage is reentered when the reexecuted channel program ends for
BSAM or when the rescheduled channel program ends for QSAM and,
finding the bypass flag on, tests for the checkpoint trailer record. If the
record read is not the trailer record, the DCBBLKCT field is decremented,
the IOB flag fields re-initialized, and the IOBERRCT field is set to zero.
For BSAM, the re-EXCP exit is taken to the I/O interruption supervisor.
For QSAM, the IOB completion code is set to X‘50’, and the normal exit is
taken to the I/0 interruption supervisor. This process continues until the
trailer record is read. When the trailer record is read, the bypass-flag is
turned off and the above procedure followed. The next entry to this
channel-end appendage follows the reading of the record immediately
following the embedded checkpoint records.

The appendage is also entered in the event that an abnormal condition
arises. If this entry is the result of any condition other than a data error,
control is returned to the 1/0 interruption supervisor by way of the normal
exit.

If it is a data error, a test is then performed to determine if a checkpoint
header/trailer record was read. This test is comprised of an initial 12-byte
comparison of the record’s first 12 bytes with the checkpoint identifier

/// CHKPT //

Should this comparison fail, a byte by byte comparison is performed. If 10
or more bytes compare successfully, it is then assumed that a header or
trailer record has been encountered, and the appendage returns control to
the 1/0 interruption supervisor.

Appendage IGG019FP (Channel End—Search-Direct): Appendage
IGGO19FP receives control at channel-end time or if an incorrect length has
been given.

The appendage operates as follows:

It tests to see if the EXCP was issued from an SVC routine. If so, it effects
a normal return to EXCP.

The appendage does length checking for all formats supported by the
search-direct feature.

If the second TIC in the channel program is a multitrack Read-count
CCW, the appendage moves the 2-byte data length of the count field,
pointed to by the address of the multitrack Read-count CCW, to the right
half of the second TIC location.

For format-V records, it compares the data length to the record descriptor
word that is pointed to by the Read-data command.

For format-U records, no length checking is provided.

It finds the multitrack Read-count CCW following the Read-data and
moves the data length of the count field, pointed to by the Read-count
CCW, to the right half of the second TIC of the next IOB (or to that of
the same I0B, if only one IOB exists).

It moves the CCHHR portion of the count, pointed to by the multitrack
Read-count CCW following the Read-data CCW, to the next IOBSEEK
field (for multiple IOBs) or to the DCBFDAD (for one IOB).

It changes the multitrack Read-count CCW, preceding the Read-data
CCW to a TIC CCW to the Read-data CCW.

Method of Operation 105

« For exchange buffering, the value in the DCBBLKSI field is used instead
of the data length specified in the Read-data command.

« It changes the second TIC in the search direct channel program to a M/T
Read Count to make it a search previous channel program.

Program Controlled Interruption (PCI) Appendage (Execution of Channel

Programs Scheduled by Chaining)

106 OS/VS2 SAM Logic

If chained channel-program scheduling is used in V=R, its address is placed
into the appendage vector table for all three 1/0 interruption supervisor exits:
PCI, channel end, and abnormal end. In V=V, only the channel end and
abnormal end entries are made.

A program controlled interruption (PCI), in the sequential access methods,
signals the normal execution of a channel program that was scheduled by
chaining. The interruption occurs when control of the channel has passed to
the next channel program. If the only channel status is PCI, the I/O
supervisor performs no processing; if other channel conditions are also
present, the I/0 supervisor processes these in the usual way after it regains
CPU control from the PCI appendage.

This appendage performs the following three functions:

o It performs the channel status analysis usually done by the I/0
interruption supervisor. The interruption is caused by a condition in the
logic of the channel program rather than a condition in the channel or the
device. The condition is meaningful only to the processing program (in this
case, the access method routines, or, more specifically, the appendage) and
has no meaning to the I/0 supervisor.

« It repeats this process for preceding channel programs whose PCIs were
lost. PCIs are not stacked. If a channel remains masked from the time of
one PCI until after another PCI, only one PCI occurs.

» It performs processing normally necessary for other interruptions (for
example, channel end). Interruptions other than PCIs may terminate
execution of chained channel programs.

Accordingly, a PCI appendage not only does the processing implicit for the
logical condition that the interruption signals (namely, that the preceding
channel program executed normally), but also extends this processing back to
any preceding channel programs whose PCI may have been masked and,
finally, takes CPU control at other I/0O interruption supervisor appendage
exits if chained channel-program scheduling is used.

Appendage IGG019CU (PCI, Channel End, Abnormal End—Chained
Channel-Program Scheduling): Appendage IGG019CU disconnects (parts)
chained channel programs that have executed and posts their completion; in
addition, it performs normal channel-end and abnormal-end appendage
processing. (For a description of the joining process of chained
channel-program scheduling, refer to the chained channel-program scheduling
end-of-block routines.) The Open executor selects and loads this appendage
for use as the channel end and abnormal-end appendage if the DCB -
specifies: .

Chained channel-program scheduling

5

The appendage operates as follows:

It receives control from the I/O interruption supervisor when the latter
arrives at the channel end and abnormal-end appendage exits.

It tests to see if the EXCP was issued from an SVC routine. If so, it effects
a normal return to EXCP.

It checks the channel program for a rotational position sensing (RPS)
program and, if one is found, moves the ICB’s channel program address to
the main IOB’s TIC, which has been offset by the Set Sector CCW.

It tests to determine if the CSW and the “First ICB” field in the IOB, point
to the same channel program.

If they do, the appendage continues as it would for a channel-end
condition.

If they do not, the appendage disconnects (parts) the channel program
(pointed to by the ICB) from the next channel program in the chain as
follows:

For input, the appendage tests the IOB for an end-of-volume condition.
If it exists, the appendage continues as it would for a channel-end
interruption with a permanent error.

For output, or for input without an associated end-of-volume condition,
the appendage resets the command in the last CCW from TIC to NOP
and the address to the beginning of the next channel program.

If the device is magnetic tape, it updates the DCBBLKCT field in the
DCB.

If a WAIT macro instruction was addressed to this channel program, the
appendage causes the Post routine to perform its processing and to
return control to the appendage.

It posts the ICB with the completion code and with channel end and
updates the IOB SAM prefix to point to the next ICB.

It repeats this disconnecting process until the IOB and the CSW point to
the same channel program.

The appendage continues as follows if channel-end processing occurred
without an error:

It sets the IOB and the ICB to show that the channel program completed

without an error, and resets the IOB to point to the next channel program
and ICB.

If there are more channel programs to be executed, the appendage resets
the IOB to not-complete and passes control to the EXCP supervisor to
schedule these channel programs.

If there are no more channel programs to be executed, the appendage
returns control to the I/0 supervisor.

The appendage continues as follows if the channel-end interruption occurred
with a wrong-length indication:

It determines whether a truncated block has been read.

If a truncated block has been read in a data set with fixed-length blocked
standard record format, it sets:

Method of Operation 107

Abnormal-End Appendages

108 OS/VS2 SAM Logic

The DCB to show an end-of-volume condition

The current ICB to complete-without-error

The next ICB to complete-with-error

The CSW in the next ICB to show channel end and unit exception
It returns control to the I/O interruption supervisor.

« If a truncated block has been read in a data set with fixed-length blocked
record format, the appendage sets the ICB to complete-without-error and
resets the IOB to point to the next ICB and its channel program. The
appendage causes control to pass to the EXCP supervisor to restart the
channel.

« If a block with wrong-length data has been read, the appendage continues
as it would for permanent errors.

The appendage continues as follows if channel-end processing occurred with
an error:

« It isolates the channel program in error by disconnecting it from the next
one.

o It sets the IOB to point to the channel program in error.
o It sets the DCB to show that the channel program is being retried.

« It returns control to the I/O interruption supervisor. That routine then
processes the channel program in the error-retry procedure.

The appendage continues as follows if channel end occurred with a permanent
error:

« It receives control after the I/O supervisor error-retry procedure is found
unsuccessful in correcting the error.

o For a 3211 printer, it tests to see whether further retry is necessary. If the
ECB is posted in error with an X‘41’ or X‘44’ and the command-retry bit
in sense byte 1 is on, then it schedules the asynchronous-error-processing
module, IGGO19FS, and exits.

o It posts the ICB to show that the channel program was completed in error.
o It disconnects the channel program in error from the following one.

« It resets the IOB to point to the channel program after the one in error.

« It returns control to the I/O interruption supervisor.

Appendage IGG019V6 (PCL, Channel End, Abnormal End—Chained
Channel-Program Scheduling): This appendage is the same as IGG019CU,
described above, except that it is loaded into the V=R region instead of LPA
and uses the PCIPOST macro to post ICBs since it does not hold the local
lock.

Abnormal-end appendages receive control from the I/O interruption
supervisor when the latter finds a unit check condition in the channel status .
word (CSW). The appendages for this exit are a track-overflow appendage
and a chained channel-program execution appendage shared with the
channel-end and PCI exits. The shared appendage is described under the PCI
appendage.

A unit check status in a channel addressing an input data set with track
overflow may indicate a permanent error in one segment of a block. If there
are further good segments, or if the segment in error is being skipped over to
find the next block, the sequential access methods attempt to continue access
beyond the segment in error. The processing necessary to accomplish this is
performed by the track-overflow asynchronous-error-processing routine,
(module IGG019C1, described in ‘“‘Synchronizing and
Error-Processing-Routines’’), rather than by the appendage. To permit other
1/0 operations to continue, the appendage suspends further processing of the
condition by the 1/0 supervisor, schedules the asynchronous error-processing
routine and returns control to the I/0 supervisor.

Appendage IGG019C3 (Channel End and Abnormal End—Track Overflow,
QSAM Update): Appendage IGG019C3 schedules the
track-overflow-asynchronous-error-processing routine if a permanent error
occurs in a channel program for an input data set with track overflow. The
Open executor selects and loads this appendage for use as the abnormal-end
appendage if the Open parameter list specifies:

Input, INOUT, OUTIN, or UPDAT
and the DCB specifies:
Track overflow
or if the Open parameter list specifies:
UPDAT
and the DCB specifies:
QSAM
The channel-end appendage operates as follows:

« It receives control from the 1/0 interruption supervisor when the latter
reaches the channel end or abnormal-end appendage exits.

« It tests to see if the EXCP was issued from an SVC routine. If so, it effects
a normal return to EXCP.

« If the IOBUPERR flag is off (abnormal-end not entered before for this
1/0 request), it transfers control to the common channel-end routine.

« If the IOBUPERR flag is on (abnormal-end entered before for this I/O
request), the channel-end appendage does the following:

Turns off the IOBUPERR flag.

Turns back on the command chain for the last CCW of the current
segment, which is the last CCW executed.

Changes the IOBSEEK argument to the same seek argument pointed to
by the seek CCW that follows the current segment.

Changes the IOBSTART address so that it points to the CCW after the
seek CCW that follows the current segment. The CCW pointed to is
either set sector or search ID.

The channel program is then restarted from that point.
The abnormal-end appendage operates as follows:

o It tests to see if the EXCP was issued from an SVC routine. If so, it effects
a normal return to EXCP.

Method of Operation 109

o If the error is not yet a permanent error, the abnormal-end appendage does
the following:

If the IOBUPERR flag is on (prior abnormal-end entry into this ’
section), it gives control to the ERPs, via EXCP, for retry. d

If the IOBUPERR flag is off, it branches to the scan routine to get the
address of the last CCW in the current segment.

If the last CCW in the segment is the last CCW in the channel program
and IOBSTART pointed to the beginning of the segment on entry, the
appendage gives control to the ERPs, via EXCP, for retry.

If the last CCW in the segment is not the last CCW in the channel
program, the appendage turns off the command chain on the last CCW.
The IOBSTART and IOBSEEK have been updated to the current
segment. The appendage turns on the IOBUPERR flag and returns
control to EXCP for restart.

o If the error is a permanent error, the abnormal-end appendage does the
following:

If the IOBUPERR flag is off, it transfers control to the common
channel-end routine.

If the IOBUPERR flag is on, it turns on the command chain of the
failing segment, turns off the IOBUPERR flag, and transfers control to
the common channel-end routine.

The scan routine operates as follows:

o It establishes the address of the last CCW in the current segment and
passes it back to the calling routine.

o It assumes that the current segment begins with the CCW pointed to by J
IOBSTART.

o It searches from the beginning of the segment until it finds a seek, NOP, or
CCW without a command chain (other than TIC).

« It passes the end-of-segment address to the caller. The address is either the
first CCW without a command chain or the seek address minus eight,
whichever comes first.

The common channel-end routine operates as follows:

o If the CSW that caused this appendage to gain control addresses a
Read-Data CCW (without a Skip bit) and shows a unit-exception channel
status, the appendage returns control to the I/0 interruption supervisor
without further processing. After control returns to the processing
program, the synchronizing or Check routine processes this channel status
as an end-of-volume condition.

o If the CSW that caused this appendage to gain control addresses a
Read-Data CCW (with a Skip bit on) and shows a unit exception or a unit
check channel status, the appendage passes control to the exit-effector
routine together with the entry point address of I/O supervisor that causes-
the 1/0 supervisor not to post the ECB-and to retain the request element
for the channel program. The exit-effector routine schedules the
track-overflow, asynchronous-error-processing routine for eventual
execution and passes control to the given entry point.

110 OS/VS2 SAM Logic

OSAM Control Routines

Appendage IGG019FR (Abnormal End—3211 Printer): Appendage
IGGO19FR schedules the asynchronous error-processing routine IGG019FS
when a print line buffer (PLB) parity error or a UCS buffer parity error
occurs.

The appendage operates as follows:

« The module receives control before and after the error recovery procedure
(ERP).

o It tests to see if the EXCP was issued from an SVC routine. If so, it effects
a normal return to EXCP.

o The first time the abnormal-end appendage is entered, it is returned to the
I/0 supervisor to schedule the 3211 ERP.

« The second time the appendage is entered, a return to the I/O supervisor is
made when any of the following occurs:

Command retry bit in sense byte 1 is off.
Error persists after the print line operation was retried.

Otherwise, the abnormal-end appendage obtains the address of the
interruption request block (IRB) from the DEB and the address of the
interruption queue element (IQE) from the IRB. The IQE address is placed
in register 1 in complement form. The address of the stage 2 exit effector is
obtained from the communications vector table (CVT) and a branch is
taken to that address. The stage 2 exit effector schedules the asynchronous
routine, which retries the print line. It is then returned to the I/O
supervisor.

These control routines, shared by QSAM and BSAM, consist of both modules
loaded by the Open executor and macro expansions. The selection and
loading of one of the modules is performed by the Open executor and depend
on the access conditions; the presence of macro expansions depends solely on
the use of the corresponding macro instruction in the processing program and
is independent of the presence or absence of modules.

If a CNTRL macro instruction is encountered in a processing program using
QSAM or BSAM, control passes to a control routine. The PRTOV macro
expansions place the code to be executed inline in the processing program.
CNTRL routines pass control to the I/O supervisor; the macro expansions
return control to the processing program. The CNTRL routine for the card
reader causes execution of a channel program that stacks the card just read
into the selected stacker. The CNTRL routine for the printer causes execution
of a channel program with a command to space or to skip. The printer
overflow macro expansions cause testing for the printer-overflow condition.

There are three CNTRL routines in QSAM; they are load modules. Figure 16
lists the routines available and the conditions that cause a particular routine to
be used. The Open executor selects one of the modules, loads it, and puts its
address into the DCBCNTRL field.

There are two PRTOV routines, which are macro expansions. Whenever the
assembler encounters either of the two macro instructions shown in Figure
17, it substitutes the corresponding macro expansion in the processing
program object module:-

Method of Operation 111

112 OS/VS2 SAM Logic

Access Method Options Selections
CNTRL X X X
Printer X

Card Reader, X
Single Buffer

3525 Printer X

Modules

IGGO19CA CA
IGGO019CB CB

IGGO19FA FA
Figure 16. Module Selector—Control Modules

Number of
Macro Instruction Macro

Expansions
PRTOV—User exit 1
PRTOV—No user exit 1

Figure 17. Control Routines that Are Expansions of Macro Instructions

Control Module IGG019CA (CNTRL—Select Stacker—Card Reader):
Module IGG019CA permits stacker selection on the card reader. The Open
executor selects and loads this module if the DCB specifies:

CNTRL
Card reader
One buffer
The module operates as follows:

« It receives control when the CNTRL macro instruction is encountered in a
processing program.

o For QSAM, the module schedules a channel program that stacks the card
just read, reads the next card into the buffer, forces an EOB condition to
be recognized by the Get routine, and returns control to the processing
program. (Card reader Get module IGG019AG depends on the use of this
routine to refill empty buffers.)

o For BSAM, the module schedules a channel program that stacks the card
just read and then returns control to the processing program. The
Read/Write module IGG019BA causes a channel program to be scheduled
that reads the next card into the buffer.

o If the 3505 or 3525 is specified, processing continues for stacker 1 or 2
(whichever is specified in the CNTRL macro instruction of the user’s
program).

e A test is made to determine if either OMR or RCE is being used.

If either OMR or RCE is specified, the OMR/RCE bit is turned on in the ,
operation codes of the CCWs.

Control Module IGG019CB (CNTRL—Space, Skip—Printer): Module
IGGO019CB causes printer spacing and skipping by use of macro instructions;
the spacing or skipping to be performed are specified as operands of the
macro instruction. The Open executor selects and loads this module if the
DCB specifies:

CNTRL
Printer

The module constructs a channel program to control the device, issues an
EXCP macro instruction and then returns control to the processing program.

Control Module IGG019FA: This module performs line control functions if:
The 3525 is specified.
A print file is specified.
CNTRL is specified.

The module operates as follows:

o The line counter total (DCBLNP) in the DCB is increased, according to
the specifications in the CNTRL instruction.

« 1/0 macro sequencing is performed when using this module and a 3525
associated data set. If an error is detected, an ABEND (003) is issued with
a return code of 03.

o If a skip to a channel on the next card is issued by the user, this module
issues an EXCP to feed the next card, issues a WAIT, and returns control
to the user’s program by way of register 14.

Printer-Overflow Macro Expansions: The PRTOV macro expansions permit
processing program response to printer-overflow conditions.

The following macro expansions are created as inline coding during the
expansion of the macro instruction.

PRTOYV - User Exit: The coding operates as follows:

o A WAIT macro instruction is issued for the IOB pointed to by the
DCBIOBA field.

« The DCBIFLGS field of the DCB is tested for an overflow condition.

« If an overflow condition exists, a BALR instruction is issued to pass
control to the user’s routine.

« If no overflow condition exists, control passes to the next instruction.

PRTOY - No User Exit: The coding creates a test mask in the DCB field
located at DCBDEVT+1 and returns control to the processing program.

Note: The printer end-of-block routine temporarily stores the mask in the
NOP channel command word (CCW) preceding the Write CCW, turns on a
bit in the first byte of the IOB and resets the mask. The PRTOV appendage
tests the IOB bit to determine whether to respond to or ignore an overflow
condition and resets the bit.

Method of Operation 113

Basic Sequential Access Method Routines

Read and Write Routines

114 OS/VS2 SAM Logic

Basic sequential access method (BSAM) routines cause storage and retrieval
of blocks of data. BSAM routines furnish device control, but do not provide
blocking. There are seven types of BSAM routines:

¢ Read routines

o Write routines

o End-of-block routines
o Check routines

o Appendage routines
o Control routines

e SVC Routines

Diagram G, BSAM/BPAM Flow of Control, shows the relationship of the
BSAM routines to other portions of the operating system and to the
processing program.

Control routines (not shown in Diagram G) permit the processing program to
control the positioning of auxiliary storage devices. They receive control when
the CNTRL (printer, tape, card reader), PRTOV, NOTE, POINT or BSP
macro instructions are encountered in a processing program. The track
balance routine receives control from a Write routine or the track-overflow,
end-of-block routine.

The BSAM control routines are described later in this section of the manual.
See Figures 20, 21, and 22 for information about control modules.

A Read or Write routine receives control when the processing program issues
a READ or a WRITE macro instruction. The Read and Write routines used
with data sets organized for the sequential or partitioned access methods pass
control to the end-of-block routines, which in turn pass control to the I/O
supervisor. The Write routines, used to create data sets organized for later
access by basic direct access method (BDAM) routines, include the
end-of-block function within themselves, and so pass control to the I/O
supervisor directly. A Read or Write routine processes parameters set by the
processing program in the DECB to permit scheduling of the next channel
program.

Figure 18 lists the modules available and the conditions that cause a particular
module to be used. The Open executor selects one of these routines, loads it,
and puts its address into the DCBREAD/WRITE field. The figure shows, for
example, that module IGG019BH is selected and loaded if update and the
READ macro instruction are specified.

Read/Write Module IGG019BA: Module IGG019BA completes the channel
program to be scheduled next, and relates control blocks used by the I/O

supervisor to the channel program. The Open executor selects and loads this -
module if the Open parameter list specifies:

Input, Output, INOUT, or OUTIN
and the DCB specifies:
Read or Write

»

€

Access Method Options
Input

Output

INOUT, OUTIN
Update

Read

Offset Read

Write

Write (Load mode)
(Create-BDAM)

Paper-tape character-
conversion

Fixed-length record
format

Undefined-length record
format

Variable-length record
format

Spannca records
Track overflow

*, DATA, or SYSOUT
specified on DD
statement

Read/Write
Modules

IGG019BA
IGGO19BF

1GG019BH
IGGO019BR

1GG019BU
IGGO19DA
1GG019DB
IGG019DD
IGG019DK

BA BA

BF BF

Figure 18. Module Selector—Read and Write Modules

BR

BH

BU

DA
DB
DD
DK

The module operates as follows:

o It receives control when a READ or WRITE macro instruction is

encountered in a processing program.

o It enters the address of the IOB into the DECB to permit the Check
routine to later test execution of the channel program.

.o It completes the channel program by inserting the buffer address from the

DECSB, and the length from either the DECB (for undefined-length
records), the DCB (for fixed-length records, and for input of
variable-length records), or the record itself (for output of variable-length

records).

Method of Operation 115

« If a block is to be written on a direct-access storage device, the module
tests the DCBOFLGS field in the DCB to establish the validity of the
value in the DCBTRBAL field.

o If the DCBTRBAL value is valid, or if a block is to be written on a device J‘
other than direct-access storage, or if a block is to be read from any device,
the module passes control to an end-of-block routine.

« If the DCBTRBAL value is not valid (that is, the preceding operation was
a Read, Point, or Open for MOD), the module issues an SVC 25
instruction to pass control to BSAM contrcl module IGC0002E to obtain a
valid track balance. When control returns to this module, it passes control
to an end-of-block routine.

Read Module IGG019BF (Paper-Tape Character Conversion): Module
IGGO19BF completes a channel program to read paper tape, awaits its
execution, and converts the paper tape characters into EBCDIC characters.
The Open executor selects and loads this module and one of the
code-conversion modules, listed in Appendix A, if the DCB specifies:

Read
Fixed-length or undefined-length record format

Paper tape
The module operates as follows:

o It receives control when a READ macro instruction is encountered in a
processing program.

o It enters the address of the IOB into the DECB to permit the Check
routine to test execution of the channel program.

o It completes the channel program by inserting the buffer address from the J
DECB, and the length value from the DCBBLKSI field (for fixed-length
record format) or the DECB (for undefined-length record format).

« It passes control to the end-of-block routine.

« When control returns from the end-of-block routine, the module issues a
WAIT macro instruction to await execution of the channel program.

o It converts each character in the buffer until one of the following
conditions is met, with the stated effect:

Conversion has provided the number of characters specified in the
length value: The module returns control to the processing program.

All the characters read have been converted, but into a smaller number
of characters. Some input character codes have no corresponding
EBCDIC translation in a specific code-conversion module. Therefore,
after conversion of all characters in the buffer, the number of converted
characters may be less than the length value: The module completes a
channel program for the number of additional characters needed to fill
the buffer, passes control to the end-of-block routine, which issues the
EXCP macro instruction to schedule the channel program, and issues a -
WAIT macro instruction for the channel program. When control returng,
the module resumes converting characters.

116 OS/VS2 SAM Logic

An end-of-record character is encountered (undefined-length record
format only): The module returns control to the processing program.

The tape is exhausted: The module returns control to the processing
program.

A paper tape reader-detected error character is encountered: If
necessary because of compression, the module moves the character to
the left, without conversion, and returns control to the processing
program.

« If one of the characters in the buffer is an undefined character, the module
converts the character to the hexadecimal character FF, sets an indication
of this condition in the IOB for the paper-tape Check routine, and
continues conversion until one of the other conditions is met.

The tables used for code conversion are listed along with the code conversion
routines in Appendix A.

Read/Write Module IGG019BH (Update): Module IGG019BH ascertains
whether a buffer supplied by the processing program is to be written from or
read into, and causes a corresponding BSAM update channel program to be
executed. The Open executor selects and loads this module if the Open
parameter list specifies:

Update
and the DCB specifies:
Read

With the rotational position sensing (RPS) feature, this module bypasses the
new CCWs when necessary.

The module operates as follows:

o It gains control when the processing program uses a READ or WRITE
macro instruction.

« If data is to be read into a buffer, the module flags the IOB for a Read
operation, sets it to point to the Read channel program, and copies the
length and buffer address from the DECB or the DCB into the Read
CCw.

« If data is to be written from a buffer, the module flags the IOB for a Write
operation, sets it to point to the Write channel program, copies the
auxiliary storage address from the DCBFDAD field into the IOBSEEK
field, and completes the length and buffer address entries in the Write
CCwW.

« The module passes control to end-of-block module IGG019CC. On return
of control from that module, it returns control to the processing program.

Write Module IGG019BR (Create BDAM/VRE): Module IGG019BR writes
variable-length spanned blocks and record-zero blocks for a data set that will
later be processed by BDAM. The Open executor selects and loads this
module if the DCB specifies:

Write (Load mode)
Variable-length spanned record
BFTEK=R

Method of Operation 117

118 OS/VS2 SAM Logic

The module consists of three routines: one to write data blocks, one to write
record-zero blocks, and an asynchronous exit routine.

To write a data block for BDAM, the routine operates as follows:

It receives control from the processing program when it encounters a
WRITE-SF macro instruction and from the EOV routine (to write the
block not written into the previous volume) after the EOV routine of I/0
Support has obtained another extent.

It determines whether this block fits on the current track. If it does, the
routine determines whether the new track balance is greater than 8 bytes.
If the new track balance is equal to or less than 8 bytes, the routine adds
Write-capacity-record CCWs to the Write-count-key-and-data CCWs. It
then issues an EXCP.

If the block does not fit on the current track, the routine determines
whether the block fits on the current volume. If it does, this module
constructs a channel program to write the first segment from a segment
area associated with this IOB and to write the capacity record of this track.
It then issues an EXCP. The asynchronous exit routine writes the
successive segments. The DCBFDAD field has the address of the highest
track on which the last segment of this record is written.

If the block does not fit on the track or within the current volume, this
routine constructs a channel program to write the capacity record of the
track. It then issues an EXCP. The asynchronous exit routine writes the
capacity records of all the tracks on this volume. The EOV routine
reschedules the Write request on the same volume spanning the extents, if
the secondary allocation is on the same volume. When the secondary
allocation is on a different volume, the Write request is written on the new
volume.

To write a record-zero block for BDAM, the routine operates as follows:

It receives control when a WRITE-SZ macro instruction is encountered in
the processing program or after the EOV routine has obtained another
extent.

It updates the record-zero area and the channel program to write the
record-zero block and issues as EXCP macro instruction. The routine
returns control to the processing program or to the EOV routine.

If there are no data blocks on the track, the module modifies the channel
program to clear the track after writing the record-zero block.

The asynchronous exit routine operates as follows:

It receives control from the channel-end appendage through the exit
effector when a spanned record is to be processed.

If the record is a spanned record, it constructs a segment from the
remaining part of the record and issues an EXCP macro instruction to
write the segment.

If the record is a spanned volume record, it issues an EXCP macro
instruction to write capacity records up to the end of the extent.

Read Module IGG019BU: This module completes the channel program to
read a direct data set, and relates the control blocks used by the I/O
Supervisor to the channel program. The Open executor selects and loads this
module along with an associated channel-end appendage (IGG019BYV) if the
Open parameter list specifies:

Input
and the DCB specifies:

BFTEK=R

Variable-length spanned record format for a BDAM data set with keys
The module operates as follows:

« It receives control when a READ macro instruction is encountered in the
processing program.

o It enters the address of the IOB into the DECB to permit the Check
routine to later test execution of the channel program.

o It completes the channel program by inserting the buffer address and the
record length. The buffer address is obtained for the DECB. If there is no
key with this segment (this is not the first segment), the buffer address is
offset by the key length. This determination is made by checking to see if
the CCW has been changed by module IGG019BYV to Read-data. The
record length is obtained from the DEB and modified by the key length if
appropriate.

« The module then issues an EXCP macro instruction.

Write Module IGG019DA (Create-BDAM): Module IGG019DA writes
fixed-length data blocks, fixed-length dummy blocks, and record-zero blocks
for a data set to be processed later by BDAM. The Open executor selects and
loads this module if the DCB specifies:

Write (Load mode)
Fixed-length record format

With the rotational position sensing (RPS) feature, this module tests the first
CCW of a channel program created by IGG0199L. It tests for a Set-sector
command to determine whether it should take any RPS CCWs into account
when making modifications to the channel program.

The module operates as follows:

It receives control from the processing program when it encounters a
WRITE macro instruction and also from the EOV routine after the
end-of-volume routine of O/C/EOV has obtained another extent.

« It connects the next available IOB to the DCB and the DECB.

o It determines, in the same manner as end-of-block routine IGG019CD,
whether this block fits on the current track and updates the DCBTRBAL
field.

o If this is neither the first nor the last block of a track, the module updates
the full device address (FDAD) in the DCB and the IOB and issues an
EXCP macro instruction. It then returns control to the processing program
or the EOV routine from which it received control.

« If this is the last block of a track (that is, no other block fits on the track
except the present block), the module updates the full device address

Method of Operation 119

120 OS/VS2 SAM Logic

(FDAD) in the DCB and the IOB, expands the channel program to write
the record-zero block for that track as well as the last data block, and
issues an EXCP macro instruction. The module then returns control to the
routine from which it received control.

« If this is the first block of a new track and there is another track in the
allocated extent, the module finds the next track in the allocated extent,
updates the full device address (FDAD) in the DCB and the IOB, and
issues an EXCP macro instruction. It then returns control to the routine
from which it received control.

o If this is the first block of a new track and there is no other track in the
allocated extent, the module sets an EOV condition indication and returns
control to the processing program.

Write Module IGG019DB (Create-BDAM): Module IGG019DB writes
variable-length and undefined-length blocks and record-zero blocks for a data
set to be processed later by BDAM. The Open executor select and loads this
module if the DCB specifies:

Write (Load mode)
Variable-length or undefined-length record format

The module consists of two routines: one to write data blocks and one to
write record-zero blocks.

With the rotational position sensing (RPS) feature, the module tests for a
Set-sector command in the first CCW of a channel program created by
IGGO199L. If it is an RPS channel program, the module makes the necessary
modifications to the channel program.

To write a data block for BDAM, the routine operates as follows:

« It receives control from the processing program when it encounters a
WRITE-SF macro instruction and from the EOV routine (to write the
block not written into the previous volume) after the end-of-volume
routine of O/C/EOV has obtained another extent.

o It determines whether this block fits on the current track in the same
manner as end-of-block routine IGG019CD and updates the DCBTRBAL
field.

« If one of the following conditions exists, it returns control without any
further processing to the processing program or to the EOV routine from
which it received control:

A block other than the first block on a track is to be written, but it does
not fit on the balance of the track.

The first block is to be written on a track, but the allocated extents are
exhausted. For this condition, the module sets an EOV condition
indication before it returns control.

« If either of the following conditions exists, the module updates the full
device address (FDAD) in the DCB, the IOB, and the channel program,
issues an EXCP .macro instruction and then returns control to the routine
from which control was received:

A block other than the first block on the track is to be written and it fits
on the balance of the track.

The first block is to be written on a track and there is another track in
the allocated extents.

o It returns control to the processing program or the end-of-volume routine.
To write a record-zero block for BDAM, the routine operates as follows:

« It receives control when a WRITE-SZ macro instruction is encountered in
the processing program, or after the end-of-volume routine has obtained
another extent.

o It updates the record-zero area and the channel program to write the
record-zero block and issues an EXCP macro instruction. The routine
returns control to the processing program or to the end-of-volume routine.

« If there are no data blocks on the track, the module modifies the channel
program to clear the track after writing the record-zero block.

Write Module IGG019DD (Create-BDAM—Track Overflow): Module
IGGO019DD creates data sets (with track overflow) of fixed-length data and
fixed-length dummy blocks that are subsequently to be processed by BDAM.
The module segments the block, enters the segment lengths and buffer
segment addresses in the channel program, updates storage addresses for the
channel program, and updates count fields for the block to be written and for
records-zero of the tracks. The Open executor selects and loads this module if
the Open parameter list specifies:

Output

and the DCB specifies:
Write (Load mode)
Fixed-length record format
Track overflow

With the rotational position sensing (RPS) feature, the first CCW of a
channel program created by IGG0191M is tested by this module for a
Set-sector command code. If the code is present, alterations to the channel
program are made accordingly.

The module operates as follows:

o It receives control from the processing program when the program issues a
WRITE macro instruction, or from the end-of-volume routine of I/0
support after that routine has obtained a new volume to write out any
pending channel programs. (The end-of-volume routine receives control
from the Check routine when that routine finds that a channel program did
not execute because of an end-of-volume condition.)

o If no IOB is available, it returns control to the processing program.
o If an IOB is available, it stores its address in the DCB and the DECB.

Method of Operation 121

122 OS/VS2 SAM Logic

« If the block last written was the last one for this extent, the module erases
the balance of the extent.

« If the block last written filled the last track used, the module obtains the
address of the next track.

o It sets the IOB and its channel program to write the block onto the next
available track.

« If the block does not fill the track, the module completes the count field for
this record and issues an EXCP macro instruction.

« If the block fills the track, the module sets the track-full indicator,
completes record zero for this track, links the channel program that writes
record zero to the channel program that writes the data record, and issues
an EXCP macro instruction.

« If the block overflows the track, the module completes record zero for this
track and completes a channel program to write record zero, completes the
count field and channel program for the segment that fits on the track, and
constructs the identification for record one of the next track.

« It repeats the preceding until a segment is left that does not overflow a
track. For the final segment, the module operates as it would for a block
that fits on the track.

o On return of control from the I1/O supervisor, the module returns control
to the routine from which it was received.

READ/WRITE Module IGG019DK: (SYSIN/SYSOUT): Module
IGGO019DK interfaces with a job entry subsystem to obtain records from the
system input stream or to pass records to the system output stream for a
BSAM processing program. The open executor selects and loads this module
if the open parameter list specifies:

Input, output, INOUT, OUTIN (*, DATA, or SYSOUT coded in the DD
statement)

and the DCB specifies:
Read, Write
Fixed, undefined, or variable-length records

The module consists of read and write routines and a check routine (SYSOUT
only). The SAM module, IGG019BB, processes the CHECK macro
instruction for SYSIN (see Figure 19). See Diagram M for an overview of
SAM-SI processing for BSAM.

The Read routine operates as follows:

« It receives control after a READ macro instruction is issued in the
processing program.

o The RPL is initialized and the DCB is examined to determine if blocked
records are specified. If they are, the number of 1/0 operations specified in
the I/O counter field (CIIOCNT) is determined by the DCB blocksize and
record length. If the records are not blocked, the I/O counter field is set to
1. The format of the CICB is shown in OS/VS2 Data Areas, .
SYBS8-0606.

o A JES GET request is issued. The request is issued as many times as is
necessary to satisfy the count in the I/O counter field. The return code

9

Check Routines

passed by the job entry subsystem in register 15 is checked by the Read
routine.

« If an end-of-data condition is detected, the DECSDECSB is posted with
X‘42’ and control is returned to the processing program. The DECSDECB
is posted with X‘41’ for a permanent error.

« If the return code indicates a successful completion, control is returned to
the processing program with the DECSDECB posted with X‘7F.

The Write routine operates as follows:

o It receives control after a WRITE macro instruction is issued in the
processing program.

¢ The RPL is initialized and the number of 1/O operations required to
process the WRITE macro instruction is determined. The number is placed
in the 1/0O counter field (CHHOCNT) of the CICB.

« A JES PUT request is issued. The request is issued as many times as is
necessary to satisfy the count in the I/0 counter field.

« When processing is completed, control is returned to the processing
program. The ECB is set to X‘7F’ for a normal completion and a X‘41’ for
an error.

A Check routine synchronizes the execution of channel programs with that of
the processing program. When the processing program issues a READ or
WRITE macro instruction, control returns to the processing program from the
Read or Write routine. This occurs when the channel program has been
scheduled for execution or, if reading paper tape, when the buffer has been
filled and the data converted. To determine the state of execution of the
channel program, the processing program issues a CHECK macro instruction;
control returns to the processing program from the Check routine if the
channel program was executed successfully, or if it was executed successfully
after the Check routine caused volume-switching. For permanent errors,
control passes to the processing program’s SYNAD routine. Reading or
writing under BSAM, the SYNAD routine may continue processing the data
set by returning control to the Check routine; writing in the create-BDAM
mode, processing cannot be resumed.

If the American National Standard Code for Information Interchange
(ASCI) is used and input is specified, the check module issues an XILATE
macro instruction which translates the entire input buffer from ASCII form to
EBCDIC form. If format-D records are specified, the record descriptor words
are form converted from decimal to binary. For format-D records when
BUFOFF # F, the length of the record read is calculated and placed in the
DCB LRECL field.

Figure 19 lists the available Check routines and the conditions that cause a
particular module to be used. The Open executor selects one of the four
routines, loads it, and places its address into the DCBCHECK field. For
example, Figure 19 shows that module IGG019BG is selected and loaded if
Read and paper-tape character conversion are specified.

Check Module IGG019BB: Module IGG019BB synchronizes the execution of
the channel program to that of the processing program, and responds to any
exceptional condition rcmaining after the 1/O Supervisor has posted
execution of the channel program in the I0B. If ASCII coding is used, the

Method of Operation 123

124 OS/VS2 SAM Logic

Access Method Options
Input

* or DATA specified
on DD statement

Output

SYSOUT specified
on DD statement

INOUT, OUTIN
Update

Read

Write

Write (Load)
(Create-BDAM)
Paper-tape
character-conversion

Variable-length spanned
record format

Check Modules
IGGO019BB
IGGO19BG
IGGO019BI
1GGO019BS
IGG019DC
IGG019DK1

1. The Check routine described in this section is part of the BSAM processing module IGG019DK listed in

Figure 18.

Figure 19. Module Selector—Check Modules

BS
DC

BB

entire input buffer is translated from ASCII to EBCDIC. If a SYSIN data set
is being processed and an error condition is detected, control is passed to the
SAM-SI SYNAD routine, IGG019AH.

The Open executor selects and loads this module if the Open parameter list

specifies:

Input, Output, INOUT, or OUTIN
and the DCB specifies:

Read or Write

The module operates as follows:

o It receives control when a CHECK macro instruction is encountered in a
processing program.

o A test is made to determine if a SYSIN data set is being processed.

« If SYSIN was not specified, processing continues in the normal manner.

« If SYSIN was specified, the completion code in the ECB is tested.

If a completion code of X‘7F’ was returned, control is returned to the
processing program.

If a completion code of X‘42’ was returned, indicating an end-of-data
condition, the EOV SVC (55) is issued. For concatenated data sets,

>

9

control is returned to this routine. If DCBOFLGS specifies ‘‘unlike”
attributes, control is returned to the calling program immediately.
Otherwise, the read routine indicated in DCBREAD is entered to
reschedule the request. Control is returned to the user upon completion
of CHECK processing for this request.

If any other completion code was returned, module IGG019AH is loaded
and entered with a BALR instruction. This is the error-processing module
for SYSIN/SYSOUT. (See Figure 14.) The error-processing module is
deleted if control is returned to the CHECK module. (User SYNAD
routine may not return control.)

It tests the DECB for successful execution of the channel program.

If the channel program was executed normally, the module returns control
to the processing program.

If the channel program is not yet executed, the module issues a WAIT
macro instruction.

If the channel program encountered an error condition in its execution, the
module issues an SVC 55 instruction. Two types of returns from the EOV
routine are possible:

If the EOV routine determines the error condition to be an EOV
condition, the routine passes control to the end-of-volume routine of
0O/C/EOV for volume switching. That routine passes control to the
EOV/new volume routine which reschedules the purged channel
programs, this routine then returns control to the Check module.

If the EOV routine determines the error condition to be a permanent
error, the routine returns control to the Check module immediately.
Control is then passed to the processing program’s SYNAD routine. If
the SYNAD routine returns control to the Check routine, the routine
issues a second SVC 55 instruction. The routine treats this as an
ACCEPT error option, implements it, and returns control to the routine,
which then returns control to the processing program.

Check Module IGG019BG (Paper-Tape Character-Conversion): Module
IGG019BG processes error conditions detected by Read module IGG019BF.

This module is loaded if the DCB specifies the READ macro instruction and
paper-tape character-conversion.

The module operates as follows:

It receives control when a CHECK macro instruction is encountered in a
processing program.

If the Read routine filled the buffer with valid characters, the Check
module returns control to the processing program.

If the Read routine stopped converting because of a reader-detected error
character, or if the Read routine encountered an undefined character, the
Check module passes control to the processing program’s SYNAD routine.

If control returns from the SYNAD routine, the Check module returns
control to the processing program.

If the channel program encountered an EOV condition, the Check module
issues an SVC 55 instruction. Control passes to the end-of-volume routine
of O/C/EOQOV, and finally to the processing program’s EODAD routine.

Method of Operation 125

Check Module IGG019BI (Update): Module IGG019BI synchronizes the

execution of a BSAM update channel program to the progress of the

processing program. A BSAM update channel program either writes data

from a buffer or reads data into a buffer. Ja

The module also processes permanent errors and end-of-volume conditions.
The Open executor selects and loads this module if the Open parameter list
specifies:
Update
and the DCB specifies:
Read
The module operates as follows:
« It receives control when the processing program uses the CHECK macro
instruction.
« It tests the ECB in the DECB for successful execution of the channel
program associated with that DECB.

« If the channel program has not yet completed processing, the module issues
a WAIT macro instruction.

o If the channel program has been executed normally, the module returns
control to the processing program.

« If the channel program encountered an error condition in its execution, the
module tests to determine if the error is an EOV condition.

« If the error is an EOV condition, the module sets an indicator to show that
this entry is from the Check module and passes control to the processing
program’s EODAD routine. J

« If the error is not an EOV condition the module issues an SVC 55
instruction.

« On return of control from the EOQV routine, the Check module passes
control to the processing program’s SYNAD routine. If the SYNAD
routine returns control to the Check routine, the routine issues a second
SVC 55 instruction. The routine treats this as an Accept-error option,
implements it, and returns control to this routine, which then returns
control to the processing program.

Check Module IGG019BS (Create BDAM): Module IGG019BS synchronizes
the execution of the channel program (to write a block for a BDAM data set)
to the progress of the processing program, and responds to exceptional
conditions encountered in the execution of the channel program. The Open
executor selects and loads this module if the DCB specifies:

Write (Load mode)
Variable-length spanned record
BFTEK=R
The module operates as follows:
« It receives control when the processing program uses the CHECK macro
instruction.

o If the channel program is not yet executed, the module issues a WAIT
macro instruction. J ‘

126 OS/VS2 SAM Logic

« If a user specifies WRITE-SFR, the next record address (TTR) is supplied
in the next address field of the DECB.

« If the execution of the channel program encounters a permanent error
condition, the module passes control to the processing program’s SYNAD
routine. If control is returned from the SYNAD routine, or if there is no
SYNAD routine, the module issues a DMABCOND macro instruction to
ABEND.

o If the Write routine encounters an EOV condition and therefore does not
request scheduling of the channel program for execution, this module issues
an SVC 55 instruction. On return of control, this module tests for
completion of the channel program.

Check Module IGG019DC (Create—BDAM): Module IGG019DC
synchronizes the execution of the channel program to write a block for a
BDAM data set to the progress of the processing program, and responds to
exceptional conditions encountered in the execution of the channel program.
The Open executor selects and loads this module if the DCB specifies:

Write (Load mode)
The module operates as follows:

o It receives control when the processing program uses the CHECK macro
instruction.

« If the channel program is not yet executed, the module issues a WAIT
macro instruction.

]
o If the channel program executed without error, the module returns control
to the processing program.

« If the execution of the channel program encountered a permanent error
condition, the module passes control to the processing program’s SYNAD
routine. If control is returned from the SYNAD routine, or if there is no
SYNAD routine, the module issues a DMABCOND macro instruction to
ABEND.

« If the Write routine encountered an EOV condition and therefore did not
request scheduling of the channel program for execution, this module issues
an SVC 55 instruction. On return of control this module tests for
completion of the channel program.

Check Module IGG019DK (SYSOUT): The Check routine in this module
receives control after a CHECK macro instruction is issued in the processing
program for a SYSOUT data set. See Diagram M for an overview of JES
compatibility interface processing for BSAM.

The Check routine operates as follows:
o The return code in the DECSDECB is tested.

If a completion code of X‘7F’ is found, control is passed back to the
processing program.

- If a completion code of X‘41’ is found, indicating an I/O error, module
IGGO019AH (error-processing module for SYSIN/SYSOUT, see
Figure 14) is loaded and entered with a BALR instruction. The
error-processing module is deleted if control is returned to the Check
routine.

o Control is returned to the processing program.

Method of Operation 127

BSAM Control Routines

128 OS/VS2 SAM Logic

A control routine receives control when a control macro instruction (for
example, CNTRL, NOTE, POINT, BSP) is used in a processing program or in
another control routine. BSAM control routines (which include those
available in QSAM) pass control to the I/O supervisor, another control
routine, or return control to the processing program directly. BSAM control
routines cause the physical or logical positioning of 1/O devices.

There are three types of BSAM control routines:

o Routines that are loaded into processing program virtual storage by the
Open executor (CNTRL, Note/Point).

« Routines that are loaded into supervisory transient area by an SVC
instruction in a processing program macro expansion or in another control
routine, such as BSP or Track Balance. See the “SAM/PAM SVC
Routines”’ section.

¢ Routines that are inline macro expansions in the processing program
(PRTOV).

Routines that are loaded by the Open executor are mutually exclusive; that is,
only one of them can be used with one DCB. The PRTOV macro expansions
result in instructions that set or test bits that cause branching in either the
processing program or in an appendage.

Figure 20 and Figure 21 list the various kinds of control routines and the
conditions that cause them to gain control. Figure 20 shows the access
condition options that cause the Open executor to load a control routine for
use with a DCB.

Figure 21 lists the different macro expansions constructed by the assembler.

Control Module IGG019BC (Note/Point—Direct Access): The Open executor
selects and loads this module if the DCB specifies:

Point

Direct-access storage device
The module consists of two routines: Note and Point.

Note Routine: The Note routine in module IGG019BC converts the full
direct-access device address (FDAD) for the last block read or written to a
relative address of the form TTR, and presents that value to the processing
program.

If the records are standard format without the track-overflow feature, the
record pumber is passed to the resident sector routine to compute the sector

value. If the record format is not standard F or if the track-overflow feature is
used, the value X‘FF’ is placed in the byte used by the Set-sector CCW.

The Note routine operates as follows:

« It receives control when a NOTE macro instruction is encountered in a
processing program.

=]

Access Method Options Selections

Note/Point X X X X
Update, Track Overflow
Chained Scheduling X X

CNTRL X X X X
Direct-Access Storage X X

Magnetic Tape X X X

Card Reader X

Printer X

b

3525 Printer X
Control Modules

IGGO019BC BC

IGG019BD BD

IGGO19BE BE

IGG019BK BK

IGG019BL BL

IGGO19CA! CA
IGG019CB! CB

IGGO19FA! FA

1. These routines are also used in QSAM; see Figure 16 for description of these routines.
Figure 20. Module Selector—Control Modules Selected and Loaded by the Open Executor

Number of

Macro
Macro Instruction Expansions
PRTOV—User exit 1
PRTOV—No user exit 1

1. These routines are also used in QSAM; see the QSAM section for a description of the routines.
2. This table duplicates Figure 17; it is repeated here to identify all control routines available in BSAM.

Figure 21. Control Routines that Are Expansions of Macro Instructions 1.2

« It obtains the FDAD value used by the channel program last executed. The
address is found in either the IOB or the DCB depending on which macro
instruction the last channel program implemented:

If the macro instruction is READ and more than one buffer is used, the
channel program last executed places the FDAD value into the
IOBSEEK field in the I0B.

If the macro instruction is READ and a single buffer is used, the
channel program last executed places the FDAD value into the
DCBFDAD field of the DCB.

If the macro instruction is WRITE, the end-of-block routine places the
FDAD value into the DCBFDAD field.

o It issues a BALR instruction to pass control to the IECPRLTY routine,
which converts full addresses into relative addresses.

o It returns the address and control to the processing program.

Method of Operation 129

130 OS/VS2 SAM Logic

Point Routine: The Point routine in module IGG019BC converts a relative
address (of the form TTRZ) to the full direct-access device address (FDAD)
used by the next channel program to read or write the block noted.

The Point routine operates as follows:

« It receives control when a POINT macro instruction is encountered in a
processing program.

« It issues a BALR instruction to pass control to the [IECPCNVT routine
which converts the relative address to the full address and returns control
to the Point routine. If the processing program passed an invalid relative
address, the routine sets the DCBIFLGS and IOBECBCC fields to show
that an addressing error occurred before returning control. (The Check
routine finds the error and processes accordingly.)

It establishes the actual value to be used by the next channel program by
testing the fourth byte of the relative address TTRZ. If the value of Z is
zero, the full address is decreased by one; if Z is one, the address
calculated by the IECPCNVT routine is left unchanged. For an
explanation of how the value of Z is set, refer to the description of the
POINT macro instruction in OS/VS Data Management Macro
Instructions.

« It inserts the value in the DCBFDAD and IOBSEEK fields, sets the
DCBOFLGS field to show that the contents of the DCBTRBAL field are
no longer valid, and returns control to the processing program.

Control Module IGG019BD (Note/Point—Magnetic Tape): Open executor
selects and loads this module if the DCB specifies:

Point
Magnetic tape
This module consists of two routines: Note and Point.

Note Routine: The Note routine in module IGG019BD presents the contents
of the DCBBLKCT field of the DCB to the processing program and returns
control to the processing program.

Point Routine: The Point routine in module IGG019BD positions the tape at
the block for which the NOTE macro instruction was issued.

The Point routine operates as follows:

o It receives control when a POINT macro instruction is encountered in a
processing program.

» It constructs a channel program to read forward or backward one block.

« It tests for the bypassing embedded DOS checkpoint records option by
testing bit 3 of the DCBOPTCD field. If the option is found to have been
specified, the routine issues a GETMAIN to obtain 20 bytes and modifies
the CCW to read the first 20 bytes of each block into the obtained virtual
storage while performing recording positioning. The
suppress-incorrect-length-indication bit is set in the CCW. The actual
bypassing of any embedded DOS checkpoint records is performed by .
either channel-end appendage IGG019EI or IGG019EJ. Module
IGGO19BD uses the FREEMAIN macro instruction to obtain virtual
storage prior to returning to the user.

o It passes the channel program for execution the number of times required
to position the tape at the desired block.

o It follows the last Read channel program by a NOP channel program to
obtain device end information for the last spacing operation.

o It returns control to the processing program, unless a tapemark, load point,
or permanent error is encountered in one of the executions of the Read
channel program. In that case, the routine sets the DCBIFLGS field to
indicate a permanent error, before returning control to the processing
program. (Subsequent processing by the Read or Write routine to cause
scheduling of channel programs for execution results in their not being
scheduled. On the next entry into the Check routine, it detects and
processes the error condition.)

Control Module IGG019BE (CNTRL: Space to Tapemark, Space Tape
Records): Module IGG019BE positions magnetic tape at a point within the
data set specified by the CNTRL macro instruction. The Open executor
selects and loads this module if the DCB specifies:

CNTRL
Magnetic tape

The module consists essentially of two routines: One for spacing forward or
backward to the tapemark (the FSM/BSM routine), and one for spacing
forward or backward a number of tape records (the FSR/BSR routine).

The FSM/BSM routine operates as follows:

« It receives control when a CNTRL macro instruction is encountered in a
processing program.

o It constructs a channel program to space to the tapemark in the desired
direction.

o It issues an EXCP macro instruction for the FSM or BSM channel
program. Control returns to the routine at channel end for the FSM/BSM
channel program.

o It issues an EXCP macro instruction for a NOP channel program to obtain
device-end information from the FSM/BSM channel program.

o It issues an EXCP macro instruction for a BSR or FSR channel program to
position the tape within the data set after the FSM/BSM channel program
encounters a tapemark.

o It issues an EXCP macro instruction for a NOP channel program again to
obtain device-end information from the BSR/FSR channel program. The
routine then returns control to the processing program.

The FSR/BSR routine operates as follows:

« It receives control when a CNTRL macro instruction is encountered in a
processing program.

o It constructs a channel program to space one record in the desired
direction.

o It tests bit 3 of the DCBOPTCD field for the bypassing embedded DOS
checkpoint records option. If the option is found to have been specified,
the routine issues a GETMAIN to obtain 20 bytes and modifies the CCW
to read the first 20 bytes of each block into the obtained virtual storage
while performing record positioning. The suppress-incorrect-length
indication bit is set in the CCW. The actual bypassing of any embedded
DOS checkpoint records is performed by either channel-end appendage

Method of Operation 131

132 OS/VS2 SAM Logic

IGGO19EI or IGG019EJ. Module IGG019BD uses the FREEMAIN
macro instruction to obtain virtual storage prior to returning to the user.

o It reduces the count passed by the control macro instruction and issues an
EXCP macro instruction for the FSR or BSR channel program.

« When the count is zero, it issues an EXCP macro instruction for a NOP
channel program to obtain the device-end information from the last
FSR/BSR channel program. The routine then returns control to the
processing program.

« If a load point is encountered during spacing, the routine returns control to
the processing program.

o If a tapemark is encountered during spacing, the routine repositions the
tape to a point within the data set by reverse spacing one block and returns
control to the processing program.

 If a permanent error is encountered during spacing, the routine issues a
BALR instruction to pass control to the SYNAD routine, if one is present;
if not, it issues an ABEND macro instruction.

Control Module IGG019BK (Note/Point—Direct Access—Special): This
module contains the Note and Point routines for the special access conditions
of chained scheduling, track overflow, and update. The Open executor selects
and loads this module if the DCB specifies:

Point
Direct-access storage
Chained scheduling, track overflow, or the Open parameter is update.

Note Routine: The Note routine in module IGG019BK finds the full
direct-access device address (FDAD) for the last block read or written,
converts it to a relative address of the form TTR, and presents that value to
the processing program.

If the records are standard F without the track-overflow feature, the record
number is passed to the resident sector routine to compute the sector value. If
the record format is not standard F or if the track-overflow feature is used,
the value 255 is placed in the byte used by the Set-sector CCW.

The Note routine operates as follows:

« It receives control when a NOTE macro instruction is encountered in a
processing program.

o It obtains the FDAD value used by the channel program last executed. The
location of this address depends on which macro instruction the last
channel program implemented:

o If the macro instruction is READ and more than one buffer is used, the
channel program last executed places the FDAD value into the IOBSEEK
field in the IOB if track-overflow or update is being used, and into the
ICBSEEK field if chained scheduling is used.

« If the macro instruction is READ and only a single buffer is used, the
channel program last executed places the FDAD value into the DCBFDAD
field of the DCB.

« If the macro instruction is WRITE, the end-of-block routine places the
FDAD value into the DCBFDAD field.

o It issues a BALR instruction to pass control to the IECPRLTY routine,
which converts full addresses into relative addresses.

« It returns the address and control to the processing program.

Point Routine: The Point routine in module IGG019BK establishes the full
direct-access device address (FDAD) used by the channel program to read or
write the block noted.

The Point routine operates as follows:

« It receives control when a POINT macro instruction is encountered in a
processing program.

« It issues a BALR instruction to pass control to the IECPCNVT routine
which converts the relative address to the full address and returns control
to the Point routine. If the processing program passed an invalid relative
address, the executor sets the DCBIFLGS and the IOBECBCC fields to
show that an addressing error occurred, before returning control. The
Check routine finds the error and processes accordingly.

o It establishes the actual value to be used by the next channel program by
testing the fourth byte of the relative address TTRZ. If the value of Z is
zero, the full address is decreased by one; if Z is one, the address
calculated by the convert routine is left unchanged. For an explanation of
how the value of Z is set, refer to the description of the POINT macro
instruction in OS/VS Data Management Macro Instructions.

« It inserts the value into the DCBFDAD and IOBSEEK fields if track
overflow or update is being used, and also into the ICBSEEK field if
chained scheduling is used. It sets the DCBOFLGS field to show that the
contents of the DCBTRBAL field are no longer valid and returns control
to the processing program.

Control Module IGG019BL (Note/Point—Magnetic Tape—Chained
Scheduling): Module IGG019BL is selected and loaded by the Open executor
if the DCB specifies:

Point
Magnetic tape
Chained scheduling
The module consists of two routines: Note and Point.

Note Routine: The Note routine in module IGG019BL presents the contents
of the DCBBLKCT field of the DCB to the processing program and returns
control to the processing program.

Poinmt Routine: The Point routine in module IGG019BL positions the tape at
the block for which NOTE was issued. It operates as follows:

« It receives control when a POINT macro instruction is encountered in a
processing program.

o A channel program is constructed to read forward or backward one block.

o The channel program is passed for execution the number of times required
to position the tape at the desired block.

« The last spacing channel program is followed by a NOP channel program
to obtain device-end information for the last spacing operation.

Method of Operation 133

o Control is returned to the processing program, unless a tapemark, load
point, or permanent error is encountered in the execution of one of the
channel programs. In that case, the routine sets the DCBOFLGS field to
indicate a permanent error before returning control to the processing J
program. (Subsequent attempts by the Read or Write routine to cause '
scheduling of channel programs for execution results in their not being
scheduled. On the next entry into the Check routine, the condition is
detected and handled.)

Basic Partitioned Access Method Routines

BPAM Routines

134 OS/VS2 SAM Logic

A partitioned data set has a directory and members. The directory is read and
written using BPAM routines, whereas the members are read and written
using BSAM routines. (Refer to the BSAM portion of this publication.) A
processing program using BPAM routines for input from the directory is
presented with the address of a member in a channel program or in a table;
for a processing program using BPAM for output to a directory, the routines
determine the address of the member and record that address in the directory.

BPAM routines store and retrieve entries in the directory and convert
direct-access addresses from relative to absolute. Directory entries are entered
and found by constructing channel programs that search the directory for
appropriate entry blocks and by locating an equal, or higher, entry within the
block. Address conversion routines refer to the data extent block (DEB) to
determine the address value complementary to the given value.

BPAM routines (see Figure 22) differ from BSAM and QSAM routines in]
that BPAM routines are not loaded at Open time; the Stow routine is loaded J
at execution time, all the coding for Find (C option) is a macro expansion,

and the Find (D option)/BLDL routine and the converting routines are in

virtual storage. Figure 22 shows how these routines gain control.

See the “ SVC Routines” section for descriptions of BPAM

routines.
Instruction
BPAM Routines Module Number Residence Passing Control
STOW IGC0002A Link Pack SvC21
Area
STOW IGG0210A Link Pack XCTL from IGC0002A
Area
STOW IGG021AB Link Pack XCTL from IGG0210A
Area
FIND (C option) (Macro Expansion) User Program FIND (C option)
Area
FIND (D option) IGC018 Nucleus SVC 18
BLDL IGC018 Nucleus SVC 18
Convert TTR IGCO018 Nucleus BAL IECPCNVT
Convert MBBCCHRR IGCO018 Nucleus BAL IECPRLTV
Convert Sector IGCO018 Nucleus BAL IECOSCR1

Figure 22. BPAM Routines Residence

Dummy Data Set

Dummy Data Set Module IGG019AV: Dummy data set module IGG019AV
operates as follows:

It receives control when a sequential access method macro instruction refers
to a dummy data set. For a dummy input data set, the module passes control
to the user’s EODAD routine; for a dummy output data set, the module
returns control to the processing program immediately without scheduling any
1/0 operation.

Sequential Access Method Executors

Sequential access method executors are routines that receive control from,
pass control to, or return control to I/O support routines. For a description of
1/0 support routines refer to OS/VS2 Open/Close/EOV Logic. Figure 23
indicates the other figures that describe the Open and Close executors.
Executors perform processing unique to an access method when a data
control block is being opened or closed.

Open executors

Close executors

Receives Control Passes Control
Executor Number From Via To
OPEN See Figures See Diagram E XCTL (WTG See Diagram E
24,25, & 26 Table)
CLOSE See Figure 27 Close Routine XCTL (WTG Close Routine
Table) See Figure 27

Figure 23. Sequential Access Method Executors—Control Sequence

The executors reside in the link pack area. It is the Open executors that load
the access method routines into the processing program area for later use
during processing program execution.

The Open executor is entered from the Open routine of I/O support, and
returns control to that routine. It constructs the data extent block (DEB), the
buffer pool if requested, input/output blocks (IOB), the channel programs,
and, if chained channel-program scheduling is used, interruption control
blocks (ICB). It selects and loads the access method routines to be used with
the data control block (DCB) being opened.

The Close executor is entered from the Close routine of I/O support, and
returns control to it. The executor handles any pending channel programs and
releases the virtual storage used by the IOBs, ICBs, and channel programs.

DCB Relocation to Protected Work Area

Before control is passed to SAM open executors, the DCB is copied to the
OPEN/CLOSE/EOV work area to ensure the integrity of DCB vectors that
could be changed by the user during system open time or system close time.
The DCB copy is updated by SAM executors during open processing and is
used to refresh the user’s DCB prior to the initiation of any I/0 operation.
(The user’s DCB is used for all I/O initiated during open, except in the
validation modules, which use the DCB copy.) All I/O is completed and the
SAM work area, IOB:, and the DEB are updated to reflect the location of the

Method of Operation 135

Open Executors

Stage 1 Open Executors

136 OS/VS2 SAM Logic

user’s DCB within his address space before control is returned to common
open. SAM executors refresh the user’s DCB from the work area copy.

The Open executors are grouped into three stages. Those in the first stage
receive control from the Open routine of 1/0 support. These executors pass
control to one of the stage 2 executors, or the last load of the Open executors.
The stage 2 executors in turn, pass control to the stage 3 executors. Stage 3
executors return control to the Open routine. Before relinquishing control,
each executor specifies the next executor to be called for the data set being
opened, and also examines the where-to-go (WTG) table to determine
whether other data sets being opened at the same time need its services. To
pass control to the next executor that is to process the data set, each executor
issues an IECRES macro with the XCTL and BRANCH=DIRECT
parameters. This macro generates a branch to the Open/Close/EOV service
routine, IFGO19RA, which branches to the next executor. For a description
of the WTG table, refer to OS/VS2 Open/Close/EOV Logic.

When an ABEND is to be issued by an Open or Close executor, it issues a
DMABCOND macro to prepare to pass control to IGG0196M or
IGGO0206M. These two Problem Determination modules are described in
OS/VS2 Open/Close/EOV Logic. A DMABCOND macro is issued instead
of an ABEND macro because the Problem Determination routines write a
message to the user, issue the GTRACE macro to trace pertinent control
blocks, and call the optional DCB ABEND exit routine before possibly
issuing an ABEND macro.

System modules that build, delete, or modify data extent blocks (DEBs), use
DEB validity checking, a separate routine that protects the user’s data from
unauthorized access. The modules must maintain a table of DEB pointers in
protected storage by use of the DEBCHK macro instruction, described in
OS/VS2 System Programming Library: Data Management. The logic of
the DEBCHK routine is in OS/VS2 Open/Close/EOV Logic.

The Open executors maintain an audit trail in the Open work area to indicate
which resources have been acquired. This audit trail is interrogated by the
Force Close executor when a force close situation arises.

The message text for all messages issued by the Open executors are contained
in the message CSECT. Before issuing a message, the executor must extract
the message text from the message CSECT.

When a multivolume data set is opened, the direct-access storage devices with
the rotational position sensing (RPS) feature incorporate this feature into the
channel program only if all of the devices allocated have the record-ready
feature.

Diagram E shows the flow of control among the three stages of Open
Executors.

Stage 1 Open executors construct data extent blocks (DEBs), build buffer
pools, and issue DEBCHK (TYPE=ADD) macros. If a printer with the
universal character set (UCS) feature and/or a forms control buffer is
specified, the executors load the UCS/FCB image specified in the job control
statement.

»

LS

Page of SY26-3832-1
As Updated March 30, 1979
By TNL SN26-0934

IF UCS/FCB images are not specified in the user’s JCL, the executors must
insure that the current images, as specified by the UCB UCS extension, are
loaded.

The Open routines determine which executor is required to begin processing
of each DCB specified in the Open parameter list. For SAM processing, the
entry placed in the WTG table is IGG0191A for an actual data set,
IGGO0191C for a dummy data set, and IGG0199F for a SYSIN or SYSOUT
data set.

The executor for the first entry in the WTG table gets control from the
common Open routines.

As each stage 1 executor completes its processing, the name of the next
executor (for the DCB being processed) is placed in the WTG table. Then a
check is made to determine, for each entry in the Open parameter list, if
another DCB requires the use of the executor now in control. If so, the
executor is reentered as many times as necessary to process all of the entries
in the WTG table requiring this executor. If no other DCBs require this
executor, control is passed to the next executor that is specified in the WTG
table (starting from the top of the list) for a DCB that has not completed its
processing. For a particular DCB, all of the stage 1 executors are executed -
before control is passed to a stage 2 executor.

Figure 24 lists the access method conditions that cause different stage 1
executors to be selected, loaded, and to receive control after loading. The
executors are described in the text that follows. The order of presentation is
the same as that shown in Figure 24 under Executors.

In Figure 24, an X in a column represents a condition that must be satisfied
for the executor marked in that column. A blank in the upper portion of the
table indicates that either the condition is not required for selection or not
examined at this time. The table should be used in conjunction with the flow
of control information in Diagram E, SAM Flow of Control for Open
Executors.

Stage 1 Open Executor IGG0191A: Executor IGG0191A receives control
from the Open routine unless the DD statement is DUMMY. (If the DD
statement is DUMMY, executor IGG0191C receives control from the Open
routine.)

The executor operates as follows:

« It tests the OPEN macro option against the DCBMACREF field. It issues an
013 ABEND via a DMABCOND macro if any of the conditions listed are
found. The conditions are:

For QSAM:
that buffer length is not smaller than blocksize if the buffer length is
specified
that the blocksize is not at least 4 bytes larger than logical-record
length for variable-length records

that logical-record length (if specified) is not equal to blocksize for
fixed-length unblocked data sets

An invalid format of FBS or FS was specified for a partitioned data
set.

Method of Operation 137

Page of SY26-3832-1
As Updated March 30, 1979
By TNL SN26-0934

Access Method Options Selections
Actual Data Set X X X
Dummy Data Set

* DATA, or SYSOUT
specified in DD
statement

3505 (OMR/RCE) or 3525

3886 (OCR)

3800 (Printer Subsystem)

Direct Access Device X

Printer with UCS Feature
(1403, 3203, or 3211)

Printer with forms control
buffer (3203 or 3211)

Buffer Pool Required X
User Totaling Specified

>

Executors
IGGO191A
IGGO191B
IGGO0191C
1IGGO1911
IGGO191IN
IGGO191T
IGGO0191U
1GGO191V
1IGGO191Y
IGGO01931
IGGO196A
1GGO0196B
1IGGO01961

1A
1B

31
6A
6B
61

1A
1B

IN

31
6A
6B
61

1A
1B

1I

31
6A
6B
61

1GG0196Q
IGGO196R
IGGOI197E
IGGO197F
IGGO197L
IGGO197M
IGGO197U
IGGO199F
1GG0199G
IGGO199W
Figure 24. Open Executor Selector—Stage 1

1A
1B

11
IN

31
6A
6B
61

1A
1B

1U
1v

31
6A
6B
61

7U

1B

1T

31
6A
6B
61

7E
7F

1A
1B
1C

1Y
31
6A
6B
61

1A
1B

1Y
31
6A
6B
61

1A
1B

IN

1Y
31
6A
6B
61

1A
1B

11
IN

1Y
31
6A
6B
61

1A
1B

11

31
6A
6B
61

7L
™

1A
1B

11

31
6A
6B
61

6R

9F
9G
Iw

1A
1B

6A
6B
61

6Q

1A
1B

11

31
6A
6B
61

138 OS/VS2 SAM Logic

For BSAM and QSAM:

that blocksize is not an even multiple of logical record length for
fixed-length blocked data sets

« It performs a test to determine if the blocksize is an integral multiple of the
logical record length (LRECL) for QSAM with fixed blocked records or
BSAM data sets. If the blocksize is not an integral multiple of LRECL,
QSAM data sets are abnormally terminated with an ABEND (013).

o If search-direct has been requested (OPTCD=Z in the DCB and a
direct-access device is being used), the executor determines if search-direct
can be supported (that is, not VS, UT, FBS, etc.) and sets the bit in
JFCBMASK +6 to X‘08’ if the request can be honored. For a 3890 MICR
device, it will issue a DMABCOND macro instruction if RECFM, BLKSI,
LRECL, or BUFL are specified incorrectly.

» The executor specifies in the WTG table that module IGG01961 is the next
module required for this DCB.

« It searches the WTG table to pass control to another executor.

Stage 1 Open Executor IGG0191B: Executor IGG0191B is loaded after
executor IGG0196A, IGG0191N or IGG0191Y has completed processing all
entries in the WTG table.

The executor operates as follows:

« If the DCB is not a TSO DCB, this routine fills in the DCBDEVT field
with the device type and number from the UCB. If unit record equipment
is indicated, the routine sets the UR bit in the DCBDEVT field.

« It stores DCBLRECL in the DEB.
o It sets DCBCNTRL to O.

« If the device type is direct-access storage, the address of the device table is
stored in the DCB. From the device table, the key overhead (or O if there
are no keys) and track balance are stored in the DCB.

« If the JFCB indicates a partitioned data set, the DSCB and the DSORG
field of the DCB are checked to be sure they specify partitioned
organization. If not, a DMABCOND macro instruction is issued.

« If partitioned organization is specified:

a. For direct-access OUTPUT or OUTIN, the track balance of the last
Write, from the DSCB, is stored in the DCBTRBAL.

b. For direct-access input, the member name from the JFCB is stored in
the DEB. The routine then issues a BLDL macro instruction to find the
extent. If BLDL returns a non-zero return code, a DMABCOND macro
instruction is issued.

The executor issues a BALR to the convert routine at CVTPCNVT to
convert the TTR to MBBCCHHR and stores it in DCBFDAD.

« If the data set is not partitioned, DCBFDAD is set to DEBBINUM. If a
dummy extent is indicated, the DCBFDAD+3 is set to x‘FF’ to indicate an
illegal FDAD.

"« If unit record equipment is specified, for input only and Note/Point is

requested, DCBCNTRL+1 is set with ID of the dummy routine.
« If LRECL is not specified, DCBLRECL is initialized for QSAM.

« The executor specifies in the WTG table that module IGG0196B is the
next module required for this DCB.

« It then searches the WTG table to pass control to another executor.

Method of Operation 139

Page of SY26-3832-1
As Updated March 30, 1979
By TNL SN26-0934

140 OS/VS2 SAM Logic

Stage 1 Open Executor IGG0191C: Executor IGG0191C operates as follows:

It receives control from the Open routine if the DD statement is DUMMY.
It issues a GETMAIN macro instruction for a DEB.
It does a DEBCHK, ADD, to put the DEB in the DEB table.

It issues a LOAD macro instruction for IGG019AV and stores the
characters ‘AV’ in the subroutine ID section of the DEB.

It issues a GETMAIN macro instruction for buffer space and constructs
the buffers.

It sets various audit trail bits.

It issues a DMAB_COND macro instruction if BUFLEN and BLKSIZE are
not specified for QSAM.

The executor specifies in the WTG table that IGG01911 is the next
executor for this DCB.

Stage 1 Open Executor IGG01911: Executor IGG01911 is loaded after
IGG0196B, unless the Open executors must load UCSB or FCB images. In
this case, it is loaded after IGG0191V, IGG0197U, IGGO0197F, or
IGGO0197M.

The executor operates as follows:

If a buffer pool has already been built, the executor gets virtual storage for
a record area for QSAM logical record interface.

If the values in both the DCBBUFL and DCBBLKSI fields are zero, the
executor issues a DMABCOND macro instruction.

If time sharing (TS) is specified with BSAM and DCBBUFL and
DCBBLKSI fields are zero, it sets the length of the buffer to terminal line
length. When QSAM is specified and DCBBUFL and DCBBLKSI fields
are zero, it sets the length of the buffer to logic record length. If
DCBLRECL field is also zero, it sets the length of the buffer to terminal
line length.

If the value in either the DCBBUFL or DCBBLKSI field is not zero, the
executor uses that value to establish the size of the buffer. The value in the
field DCBBUFNO determines the number of buffers constructed.

If the DCB specifies blocked records, a unit record device, output, and not
undefined RECFM,, it turns off the blocked-records bit in DCBRECFM.
For fixed-length records, it sets DCBBLKSI equal to DCBLRECL.

If logical record interface is required for variable-length spanned records
processed in locate mode, the executor adds a length of 32 bytes plus the
maximum logical-record length, which is specified in the DCBLRECL field
for a record area to the size of virtual storage required. Eight (4 bytes of
padding) more bytes are added to the buffer control block to store the
address of the record area. Flags are set (X‘C0’) to indicate extended
buffer control block and presence of record area.

It issues a DMABCOND macro instruction if BUFTEK= A is specified and
the processing mode is not locate.

It stores the length of the entire record area in the first word of the record
area.

9

9

Page of SY26-3832-1
As Updated 30 Nov 1979
By TNL SN26-0956

« It specifies that executor IGG0193I is required for this DCB in the WTG
table. It then searches the WTG table to pass control to another executor.

Stage 1 Open Executor IGG0191N: Executor IGG0191N receives control
after executor IGG0196A. It supplements executor IGG0196A by building
the device-dependent portion of the DEB for direct-access devices.

For partitioned data sets, it sets the Authorized Library Table bit in the DEB
if the data set is in the Authorized Library table.

If the data set resides on an MSS virtual volume, an ICBACREL macro is
issued to allocate space on and/or stage data to a direct-access device. If MSS
window processing has been requested by the user, a flag is set on in the
DEBXFLG] field in the DEB extension, providing the MSS data set is (a)
physical sequential in organization, (b) allocated in cylinders, and (c) being
processed by QSAM or BSAM for INPUT or OUTPUT only (not INOUT,
OUTIN, nor UPDAT). Any errors result in abnormal termination (see
ABEND code 413, return code 2C, in the “Diagnostic Aids” section of this
manual). If a partitioned data set resides on an MSS virtual volume and will
be opened for INPUT processing, the following options exist at the time the
data set is opened:

« To stage the entire data set to end-of-file, specify OPTCD=H as a DCB
subparameter on the associated DD statement.

« To stage only the directory of the data set, do not specify OPTCD on the
associated DD statement.

Note: The OPTCD option may only be specified on the DD statement; it
cannot be specified with the DCB macro.

The user label extent is not inserted into the DEB. This executor specifies
either IGG0191B or IGG0191Y as the next entry in the WTG table for
processing the DCB, unless the DCB specifies EXCP, in which case
IGGO01911 is the next executor for this DCB. It then searches the WTG table
to pass control to another executor.

Stage 1 Open Executor IGG0191T: Executor IGG0191T is entered after
Open executor IGG0196A or IGG0196B if a printer with the UCS feature is
specified.

The executor operates as follows:

« It uses the EXCP macro instruction to execute block data check or reset
block data check according to the specification in this DCB. If the EXCP
fails, an XCTL to IGG0191V is made to get a DMABCOND macro
issued.

« It issues a LOAD macro instruction for the message CSECT.

« If the task that issued the OPEN is the communications task, it XCTLs to
IGGO0191V to find the appropriate stage 2 executor.

« It examines the UCB and JFCB to determine which FCB image or UCS
image is to be loaded. If the printer is a 3203 or 3211, and no FCB or UCS
activity is required, control is passed to IGG0197F to clean up and pass
control to a stage 2 executor.

« When no UCS imxge is specified in the JFCB and the UCB has no UCS
image ID, or the UCS image ID in the UCB is not a default UCS image,
the executor requests an operator to specify a UCS image. Then it specifies

Method of Operation 141

in the WTG table that executor IGG0191U is the next executor required
for this DCB.

When no UCS image is specified in the JFCB but UCS image ID in the)
UCB is a default UCS image ID, the currently loaded UCS image is used
for this DCB and is ‘force loaded’ for integrity reasons.

« If no FCB image is specified in the JFCB, but the FCB image ID in the
UCB is a default ID, the currently loaded FCB image is ‘force loaded’ for
integrity reasons.

o If no FCB image is named in the JFCB and the UCB has no FCB image
ID, or the FCB image ID in the UCB is not a default image, the executor
issues a console message requesting that an image be specified.

« The message text for all console messages is extracted from the message
CSECT.

« IGGO0191U is specified as the next executor.

« It opens SYS1.IMAGELIB and sets an audit trail bit to indicate that
SYS1.IMAGELIB is open. If the IMGLIB SVC fails, control is passed to
IGG0191V for a DMABCOND macro to be issued.

« It then searches the WTG table to pass control to another executor.

Stage 1 Open Executor IGG0191U: Executor IGG0191U is entered after
executor IGG0191T when the specified UCS image is to be loaded from
SYS1.IMAGELIB.

The executor operates as follows:

« It requests the operator to mount a chain/train cartridge only if the UCS
image specified in the DD statement is different from the currently loaded 3
image. J
« The message text for console messages is extracted from the message
CSECT.

o It uses the BLDL macro instruction to locate the UCS image in the
SYS1.IMAGELIB. If an I/O error occurs during BLDL processing, an
XCTL to IGG0191V is made to get a DMABCOND macro issued.

« If the image is not found in the library, the executor requests the operator
to specify an alternate UCS image to be used.

« If the operator replies ‘“‘cancel,” it sets an ABEND code for IGG0191V to
have a DMABCOND macro instruction issued.

« The executor specifies in the WTG table that IGG0191V is the next
executor required for this DCB.

Stage 1 Open Executor IGG0191V: Executor IGG0191V is entered after
executor IGG0191U to load the UCS image into virtual storage and
subsequently into the UCB buffer. It can also issue a message requesting the
operator to specify an FCB image.

The executor operates as follows:

o It tests to see if it was entered to issue a DMABCOND macro and if so, *
issues the macro.

o It uses the LOAD macro instruction to retrieve the UCS image from
SYS1.IMAGELIB.]

142 OS/VS2 SAM Logic

Page of SY26-3832-1
As Updated 30 Nov 1979
By TNL SN26-0956

« It sets an audit trail bit to indicate that a UCS image was loaded and must
be deleted.

It uses the EXCP macro instruction to load the UCS image into the UCS
buffer. If an I/0 error occurs, a DMABCOND macro instruction is issued.

« When all the following conditions are met, it requests the operator to
specify which FCB image is to be loaded:

The printer is a 3203 or 3211.
The current FCB image is not a default.
An FCB image was not specified in the DD statement.

The UCS image does not have to be verified. (If retrieval of a UCS
image from SYS1.IMAGELIB is not required, IGG0191T issues the
FCB image request.)

o The message text for console messages is extracted from the message
CSECT.

Method of Operation 142.1

The executor updates the entry in the WTG table with one of the
following:

IGGO0197U if the UCS image must be verified.

IGGOI197E if an FCB load and/or verification is required, and UCS
verification is not required.

IGGO1911 if the printer is a 1403 and the buffer control block is specified.
IGGO191G if the printer is a 1403 and normal scheduling is specificd.
IGGO0191Q if the printer is a 1403 and chained scheduling is specified.
1IGGO01911 if the DCB specifies EXCP.

It then searches the WTG table to pass control to another executor,

Stage 1 Open Executor IGG0191Y: Executor IGGO191Y receives control
after executor IGGO196A or executor IGGO191N when the user-totaling
option has been specified in the DCB, that is. when bit 6 of DCBOPTCD is

1.

This executor operates as follows:

It sets bit 7 of DCBOFLGS to 0 to prevent a successtul open and issues a
DMABCOND macro to write a message to the programmer for any of the
following reasons:

—No DCB exit list.
—No totaling entry in DCB exit list.
—Image area address is zero.

It calculates the size of the area required to save the user’s totaling arcas
and issues a GETMAIN to obtain the space.

It constructs control blocks for the work area and places the address of the
save area in the access method portion of the DEB. (Figure 40 describes
the access method save area.)

It loads the resident save routine IGG019AX and places the ID of the save
routine in the DEB and the address in the user-totaling save area.

It specifies in the WTG table that executor IGG0191B is the next executor
required. It then searches the WTG table to determine the next executor o
receive control.

Stage 1 Open Executor IGG01931: This executor receives control from
1GGO1911.

The executor specifies which stage 2 executor is specified in the WTG table.
The module selector table for stage 2 executors. Figure 25, should be used to
determine which stage two executor is required for this DCB.

If chained scheduling can be supported and has been requested (with
OPTCD=C), an appropriate chained scheduling executor is specified in the
WTG table.

If chained scheduling can be supported but has not been requested, tests are
made to see if it can be given anyway without interfering with a dependence
that the issuer of Open may have on normal scheduling. There are two cases
where Open cannot supply chained scheduling unless requested by the
keyword OPTCD=C.

Method of Operation 143

Page of SY26-3832-1
As Updated Aug. 31, 1978
By TNL SN26-917

144 OS/VS2 SAM Logic

1. Printer—The PRTOV macro may be used and it does not operate
properly with chained scheduling.

2. Reading format-U records—With chained scheduling, the actual length
of the record is not available.

It then searches the WTG table to determine which executor receives control.
The IECRES macro instruction is used to pass control to the next executor.

Stage 1 Open Executor IGG0196A: Executor IGGO196A receives control
from and supplements IGG01961.

» The executor issues a DEBCHK (TYPE=ADD) macro to add the newly
created DEB address to a protected area table of DEB addresses.

« It completes the DEB construction initiated in Open executor IGG0196].

« The executor specifies in the WTG table which module is the next one
required for this DCB, as follows:

For direct access—executor IGGO191N.

If the device type is a printer with the UCS or FCB feature—cxecutor
IGGO191T.

If the device type is a 3800 printer and EXCP is specified—executor
1GGO0196Q.

If the device type is other than a printer and EXCP is

specified—executor IGGO1911, the final module of the Open executors.

If the device type is tape, not Input, not EXCP and the user-totaling
facility is specified—exccutor IGGO191Y.

If the device type is other than a printer with UCS feature or direct
access, BSAM or QSAM is specified, and the user-totaling facility is not
specified—executor IGGO191B.

« It then searches the WTG table to pass control to another executor.

Stage 1 Open Executor IGG0196B: Executor IGGO196B receives control
from and supplements IGG0O191B.

The exccutor operates as follows:
+« For QSAM, DCBBUFNO is set to five (three for 2520 or 2540) if not
previously specified.

« Executor issues DMABCOND macro instruction (calls problem
determination module) if the buffer length is less than blocksize or if data
set is for a printer and something other than output (only) is specified.

« Determines the next executor to receive control.

a. For a time sharing (TS) task, control is transferred to IGGO1968S unless
buffers are wanted. If buffers are needed. the Open routine transfers
control to IGGO1911.

b. A test is made to determine if either the 3505 (without OMR or RCE)
or 3525 is being used. just prior to the XCTI. subroutine. If either
device is being used. control is passed to module IGGO197L: otherwise.
normal processing continues.

c. If a buffer pool is required. IGGO01911 receives control.

d. If the allocated device is a 3800 printer, the next executor is
IGG0196Q.

. Otherwise, IGGO1931 receives control to select the stage 2 executor.

o

9

Page of SY26-3832.|
As Updated Aag. 31,1978
By TN SN26-0917

Stage 1 Open Executor IGG01961: Executor IGG01961 receives control from
and supplements IGGO191A.

The executor operates as follows:

« It computes the virtual-storage requirement for the DEB and obtains the
space. The space does not include the user label extent, as it is reflected in
the first extent field of a format-1 DSCB for a physical sequential or direct
data set. If no primary extent has been requested for an output data set, as
shown by the contents of the DSINOEPYV ficld of the DSCB, the executor
sets the DCBCINDI field to show a volume-full condition.

« It specifies in the WTG table that executor IGGO196A is the next executor
required for this DCB.

« It then searches the WTG table to pass control to another exccutor.

Stage 1 Open Executor IGG0196Q: This exccutor initializes the 3800 printer
and is entered only when a data set is allocated to a 3800. It receives control
from IGGO196A (EXCP) and IGG0196B (BSAM/QSAM).

The executor operates as follows:

« It obtains storage for the 3800 ERP work area if one does not exist. Once
obtained, the ERP work area remains until the next system 1P1..

« It obtains storage for a SETPRT parameter list. If the JFCB indicates that
a JFCBE (JFCB extension for the 3800) exists, the SETPRT parameter
list is then completed using the information in the JFCBE and the JEFCB. If
the JFCBE does not exist, the SETPRT list contains zeros in the
device-dependent fields. The module sets the SETPRT initialization bit on.
this causes the SETPRT executors to reset the device to its hardware
defaults before the device is set up with data sct dependent requirements.

« If SETPRT is not successful, message IEC162 with SETPRT rcturn codes
is issued, followed by an ABEND (IEC1411013-CC).

« This executor then indicates in the WTG table the Stage 2 excecutor to
receive control for processing the DCB. The module selector table for
Stage 2 executors, Figure 25, should be used.

Stage 1 Open Executor IGGO196R: See OS/VS IBM 3886 Opiical
Character Reader Model 1 Logic.

Stage 1 Open Executor IGGO197E: Executor IGGO197E locates the FCB
image and loads the FCB buffer. It is entered from IGGO191T, IGGO191V,
or IGGO197U.

The executor operates as follows:

o It checks the DCB exit list to see whether the specified FCB image is
defined in the problem program.

o It uses the BLDL macro instruction to locate the FCB image in
SYS1.IMAGELIB if the image was not defined in the problem program.

o It issues a LOAD macro instruction to bring the FCB image into storage
and sets an audit trail bit to indicate that the FCB image must be deleted.

o If the image is not found in the library, the executor requests the operator
to specify an alternate FCB image.

o If the operator replies “cancel.’ it sets a code for IGGO19TF to issue a
DMABCOND macro instruction.

Method of Operation 148

146 OS/VS2 SAM Logic

The FCB image is loaded into the FCB buffer. If an 1/0 error occurs
during the FCB load, issue a console message.

It resets the FCB-image-loaded audit trail bit if it delctes the FCB image.

The message text for console messages is extracted from the message
CSECT.

It specifies in the WTG table that IGGO197F is the next executor required
for this DCB.

It then searches the WTG table to pass control to another executor.

Stage 1 Open Executor IGG0197F: Executor IGG0197F prints a verification
of the FCB image and issues an *align forms and verify" message to the
operator. It is entered form IGGO191T. IGGO197E, or IGGO197U.

The executor operates as follows:

It checks to see whether an align-forms-only or a verify-only switch is set.
If VERIFY is specified, the FCB image is printed.

If VERIFY or ALIGN is specificd, the operator is instructed to align the
forms.

It resets the audit trail bits for FCB image loaded and SYS1.IMAGELIB
opened after it deletes the FCB image and closes SYSI|.IMAGELIB.

The executor specifies in the WTG table the next module required for this
DCB., as follows:

1IGGO0O1911 if the buffer control block is specificd.
IGGO191G if normal scheduling is specified.
1GGO0191Q if chained scheduling is specified.
IGGO1911 if the DCB specifies EXCP.

It then scarches the WTG table to pass control to another executor.

Stage 1 Open Executor IGG0197L: Executor IGGO197L. receives control
from IGGO196B whenever the 3505 or 3525 is specified.

The executor operates as follows:

It initiates registers with the addresses of the DCB, UCB. ECB. and CVT.
A test is made to determine if either OMR or RCE is being used.

If OMR is specified, a test is made to determine if the device is a 3525. 1f
the device is a 3528, control is transferred to IGG0197M.

If either OMR or RCE is specified, the format descriptor record is loaded
and decoded.

After the Read-only has been executed and the format card has been
translated, an OMR or RCE CCW is constructed and exccuted (writes the
format of the device).

It specifies in the WTG table that IGGO197M is the next executor required
for this DCB. It then scarches the WTG table to pass control to another
executor.

Page of SY26-3832-)
As Added Aug. 3. 1978
By TNL SN26-i917

Stage 1 Open Executor IGG0197M: IGGO197M receives control from
IGGO197L.

The executor operates as follows:

« [f an OMR or RCE format card is invalid, or if an invalid device is
specified for OMR, this module issucs a WTP message and an ABEND
(004) with a return code of 05.

« If no invalid condition exists, the executor specifies in the WTG table the
next module required for this DCB. as follows:

IGGO1911 if QSAM is specificd and no buffer pool control block exists.

IGGO197N if cither BSAM or QSAM is specified and the user has
specified a buffer-pool control block.

IGGO1911 if BSAM is specified and the user has specified a buffer
number but not a buffer buffer-pool control block.

o It then searches the WTG table to pass control to another executor.

Method of Operation 1461

Page of SY26-3832-1
As Updated July 2, 1979
By TNL SN26-0931

Stage 1 Open Executor IGG0197U: Executor IGG0197U is entered from
IGGO0191V to verify a UCS image. It can also issue a message requesting the
operator to specify an FCB image.

The executor operates as follows:
« It prints the UCS image.

o It deletes the UCS image, closes SYS1.IMAGELIB, and resets the
corresponding audit trail lists.

« It asks the operator to specify the FCB image to load, only if all of the
following conditions exist:

The printer is a 3203 or 3211.
The current FCB image is not a defauit.
An FCB image was not specified in the DD statement.

The executor specifies in the WTG table the next module required for this
DCB, as follows:

IGGO197E if an FCB load and/or VERIFY is required.

IGGO01911 if the printer is a 1403 and the buffer control block is
specified.

IGGO0191G if the printer is a 1403 and normal scheduling is specified.
IGGO0191Q if the printer is a 1403, and chained scheduling is specified.
IGGO01911 if the DCB indicates EXCP.

« It then searches the WTG table to pass control to another executor.

Stage 1 Open Executor IGG0199F (SYSIN/SYSOUT): Executor IGG0199F
receives control when the Open routines (see Diagram K) determine that the
SAM-SI executors are required to process a DCB for a SYSIN or SYSOUT
data set (*, DATA, or SYSOUT coded in the DD statement).

The executor operates as follows:

« It issues a GETMAIN macro instruction to obtain virtual storage for a JES
compatibility interface control block (CICB). The format of the CICB is
described in OS/VS2 Data Areas.

« It constructs an ACB and a RPL in the CICB, for communicating with the
JES, and initializes an SVC exit list with entries for BSP and SYNADAF
SVCs.

« It supplies defaults to appropriate DCB fields in the open copy of the
DCB.

« It specifies in the WTG table that executor IGG0199G is the next executor
required for this DCB.

« It then searches the WTG table to pass control to another executor.

Stage 1 Open Executor IGG0199G (SYSIN/SYSOUT): Executor IGG0199G
receives control from the SAM-SI Open executor IGG0199F.

The executor operates as follows:

« The WTG table is scanned and an Open list is constructed to open an ACB
for each SYSIN/SYSOUT entry in the WTG table.

« It issues an OPEN (type J) macro instruction for the ACBs just
constructed.

Method of Operation 147

« It chains the DEB, created by OPEN for the ACB, to the DCB. The
address of the DCB is placed in DEBECBAD, leaving DEBDCBAD
pointing to the ACB (see Figure 38).

« It checks the DCB for invalid combinations of access method options. An)
ABEND (013) is requested (using Problem Determination routines) if any '
invalid combinations are found.

o It specifies in the WTG table that IGG0199W is the next executor required
for this DCB.

« It then searches the WTG table to pass control to another executor.

Stage 1 Open Executor IGG0199W (SYSIN/SYSOUT): Executor
IGGO0199W receives control from the SAM-SI Open executor IGG0199G.

The executor operates as follows:

« It determines the buffer requirements, then obtains and chains buffer (if
necessary).

« The RPL, contained in the CICB, is initialized according to the record
format specified in.the DCB.

« It issues a GETMAIN macro instruction to obtain a work area for
collecting VS segments, if necessary.

« It specifies in the WTG table that IGGO198L is the next executor required
for this DCB.

« It then searches the WTG table to pass control to another executor.

Stage 2 Open Executors

A stage 2 Open executor establishes device-oriented information for the 3
processing described by a DCB, and completes device-oriented control blocks J
or fields. One of the stage 2 executors receives control for each DCB being

opened; the WTG table identifies the executor required for each DCB. On

conclusion of an executor’s processing it enters in the WTG table the

identification of the stage 3 executor required. Figure 25 lists the access

conditions that cause the different stage 2 executors to be loaded and to

receive control.

The device-oriented processing performed by a stage 2 executor primarily
consists of the construction of input/output blocks (IOB), their associated
channel programs, and the identification of the end-of-block routine required
for the processing described by the DCB. For chained channel-program
scheduling, executors also construct interruption control blocks (ICB).

Figure 25 lists the access conditions that cause the different stage 2 executors
to be loaded and to receive control. The executors are described in the text
that follows and are in the same sequence as the list in Figure 25 under
Executors.

In this figure an X in a column represents a condition that must be met for the
executor to be selected. A No in a column indicates that the condition must
not be specified for the executor to be selected. A blank in the upper portion -
of the table indicates that either the condition is not required for selection or ,
not examined at this time. The table should be used in conjunction with the

148 OS/VS2 SAM Logic

Access Method Options! Selections

BSAM or
QSAM
Input or
Output
#nout, Outin X X
Update No No No
.Unit Record or X

Magnetic Tape or

X X X |[X
X X

»x X
X X X
X X X
X X X

b3

>
>

Paper Tape X
Direct-Access Storage X X X X X
Write-Load (Create-BDAM) X
Track Overflow No No No|No No X
Chained Scheduling No No No|No No X
Search Direct X
RPS Device

3505

3525

3890

OMR or

RCE or

Print only and Associated Files

TS terminal

1419 MICR

No

»
»
X X X X

b
XX X X X

Executors

IGGO0191D 1D 1D 1D
1IGGO0191G 1G 1G
IGGO191H 1H
0GGO0191J 1J
IGGO0191K 1K
1GGO191L 1L
1IGGO0191M

1GGO1910 10
IGG0191P

1GGO191Q

IGGO191R

1GGO191S 18
1GGO0191W
1GGO191X
1GG0191Z
1GG019123
1GG0196K
1GGO0196L 6L
1GGO0196P
1GG0196S2
1GG0197C3
1GG0197D3
IGGO197N
1GG0197P
1GG0197Q
1GGO0197V
IGGO199K
1GGO19SL 9L

1GG01990 90
1. ¥ *, DATA, or SYSOUT are specified on the DD no stage 2 are loaded.
2. See OS/VS TCAM Logic, SY30-2059.

3. See OS BSAM Logic for IBM 1419/1275, GY21-0012.

Figure 25. Open Executor Selector—Stage 2

1L
M

6P

1G 1G

1Z
23

7N 7N

N TN
P 7P
7Q 71Q

6K

6S
7C
7D

v
9K

Method of Operation 149

150 OS/VS2 SAM Logic

flow of control information in Diagram E, SAM Flow of Control for Open
Executors.

Stage 2 Open Executor IGG0191D: Executor IGG0191D receives control
after executors IGG0196B, IGG0193I under normal conditions or from
executors IGG0191W, IGG0191K (chained scheduling not supported), under
abnormal conditions if the Open parameter list specifies:

Input or Output
and the DCB specifies:
Direct-access storage device
BSAM or QSAM and simple buffering

However, track overflow, and chained channel-program scheduling are not
specified.

The executor operates as follows:

o It calculates the amount of virtual storage required and issues a GETMAIN
macro instruction to get the space from subpool 0 in the user’s key for
IOBs and associated channel programs. It stores the number of bytes
gotten for the IOBs in the second word of the audit trail for force close.

o When control is returned from GETMAIN, it sets an audit trail bit to
indicate to the Force Close executor that storage should be freed.

« If input is specified with search direct (OPTCD=Z), control is passed to
IGG01990 where the channel program is constructed.

« If input is specified without search-direct, control is passed to IGG01910
where the channel program is constructed.

« For output data sets, the executor constructs IOBs and write-channel
programs. The address of the first IOB is placed in the DCB. See Appendix
B for the format of the channel program constructed by this executor.

« It issues a DMABCOND macro instruction if buffers are not available for
DCBs that specify QSAM.

A test of the non-rotational position sensing (RPS) indicator bit is made to
see whether the channel programs utilize the RPS feature. If the bit is on (1),
standard channel programs are built. If, however, the bit is not on, additional
virtual storage is acquired to employ the RPS feature’s two CCWs (Set-sector
and Read-sector) in the channel programs. The two commands are
incorporated where appropriate.

« If variable-length records are specified, IGG01915 is the next executor
required for this DCB. Otherwise IGG01910 is specified in the WTG table
as the next executor required for this DCB. It then searches the WTG table
to pass control to another executor.

Page ol SY26-3832.
As Updated Aog. 31, 1978
By T'NL SN26-0017

Stage 2 Open Executor IGG0191G: Executor IGGO191G receives control
after executors IGG0196B, IGG01931, IGG0191V, 1GG01960Q, 1GGO19TF,
1GG0197U, IGGO197N under normal conditions or from executors
IGGO191R, IGGO0191Q (chained scheduling not supported), under abnormai
conditions if:

The DCB specifies BSAM or QSAM and cither unit record. magnetic tape,
or paper tape.

The Open macro parameter is INOUT or OUTIN and the DCB specifies
magnetic tape.

The executor operates as follows:

o It computes the amount of virtual storage required for the 1OBs, issues a
GETMAIN macro instruction from subpool 0, in the user’s keyv, and then
sets the virtual storage for the 10Bs to zeros. It stores the number of bytes
gotten for the IOBs in the second word of the audit trail for foree close

¢« When control is returned from GETMAIN, it sets an audit trail bit to
indicate to the Force Close executor that storage should be freed.

« It then tests to see if the device type for this data set is unit record. If so,
IGGO196K is specified in the WTG table for this DCB and lhl. cheek for
other DCBs that need this executor is made.

« If the device is not unit record, processing continues in this module. It
constructs the channel programs in the IOBs and fills in the other ficlds of
the 10Bs. It stores the address of the first IOB in the DCB and scts the
first IOB bit in the first IOB. If there is only onc 10B for this data sct. it
sets the IOB unrelated flag.

The executor specifies in the WTG table the next exccutor required for this
DCB. If the DCB specifies paper tape, the next exccutor is IGGO1912. If the
DCB specifies variable-length record format. the next executor is 1GGO191S,
For the remaining access conditions that cause this exccutor to be used, the
next executor is IGG01910. The executor then scarches the WTG table to
pass control to another executor.

Stage 2 Open Executor IGG0191H: Stage 2 Open exccutor IGGOT191H
receives control after executor IGG0191S. if the DCB specifies:

Track overflow

(but not update). If both track overflow and update are specified, executor
IGGO191P receives control.

The executor operates as follows:

« It constructs IOBs and associated channel programs, using the storage
gotten by IGG0191S.

o It issues a DMABCOND macro instruction if buffers are not available for
DCBs that specify QSAM.

e The module checks the non-rotational position sensing (RPS) indicator
and, if it is off, inserts the RPS CCWs. When RPS channel programs are
built for variable record format. the SL.1 bit is turned on in the Read-data
CCW, thereby eliminating length checking.

« It identifies the end-of-block routine and the direct access Note Point
routine to be used in the processing specified by this DCB.

Mcthaod of Operation 1§51

152 08/VS2 SAM Logic

« It specifies in the WTG table that executor IGG01913 (for IGGO01916, if
the DCB specifies variable-length record format) is the next executor
required for this DCB. It then searches the WTG table to pass control to
another executor. E

Stage 2 Open Executor IGG0191J: Executor IGG0191J receives control after
executor IGGO196B or IGG01931 under normal conditions or IGGO191X if
chained scheduling was requested but could not be honored and if the Open
parameter list specifies:

INOUT or OUTIN

and the DCB specifies:
Direct-access storage

The executor operates as follows:

« It calculates the amount of virtual storage needed to build the IOBs for the
data set and then issues a GETMAIN from subpool 0. in the user’s key, for
the required space. It then sets the area to zeros. It stores the number of
bytes gotten for the IOBs in the second word of the audit trail for force
close.

« In calculating the virtual storage area needed for the 10Bs. the executor
tests for non-rotational position sensing. If the indicator is off, additional
space to implement the RPS CCWs in the channel programs is acquired.

« When contro! is returned from GETMAIN, it sets an audit trail bit to
indicate to the Force Close executor that storage should be freed.

o The executor then begins constructing the channel programs and filling in
fields in the 10Bs. It constructs the search ID equal. the TIC. the READ.
and if RPS is specified, the Set-sector commands. It also includes a portion
for write-check if specified.

o The executor specifies in the WTG table that executor IGGO196L is the
next executor needed for this DCB and then scarches the WTG table to
pass control to another executor

Stage 2 Open Executor IGG0191K: Executor IGGOI91K receives control
after executor IGG0196B or IGGO1931 if the DCB specifies:

Chained channel-program scheduling
Direct-access storage
Open parameter list specifies INPUT

It is loaded and receives control when another executor finds its identification
in the WTG table.

The executor operates as follows:

o If the NOTE/POINT macro instruction is used, the executor identifies
direct access Note/Point module IGG019BK 10 be loaded for use with this
DCB.

« It identifies the end-of-block routine to be loaded and used for the
processing described by this DCB.

« It sets the ID number in DCBCNTRL. field.

« From subpool 0. in the user's key, it obtains space for and constructs one
10B. the required number of 1CBs (that is. one ICB per channel program

Page of SY20-3832-|
As Updated Aug. 31, 1978
By I'NL SIN26-0917

or buffer) and their associated channel programs, and then links them. It
stores the number of bytes gotten for the IOBs in the second word of the
audit trail for force close.

« When control is returned from GETMALIN, it sets an audit trail bit to
indicate to the Force Close executor that storage should be freed.

« A test of the non-rotational-position-sensing (RPS) indicator (bit 2 of
JFCBMASK +6) is made. If this bit is not on, additional virtual storage is
acquired by GETMAIN to incorporate the RPS CCWs. An additional
doubleword is also acquired for the sector values. When the channel
programs are built, the new CCWs are inserted.

o It issues a DMABCOND macro instruction if buffers are not available for
DCBs that specifly QSAM.

« It sets the PCI flag in the Read Count CCW, only if in a real address
environment.

« It sets bit 5 of DCBCIND?2 to one to indicate that chained scheduling is
being supported.

« If the record format is variable length spanned, the executor specifies
IGGO01916 as the next executor to receive control; otherwise, IGG01913 is
specified as the next executor to receive control.

« If the number of channel programs is less than or equal to one
(DCBBUFNO if QSAM or DCBNCP if BSAM); the executor sets bit 5 of
DCBCIND?2 to zero to indicate that chained scheduling is being not
supported. It then specifies IGG0191D as the next executor to receive
control.

o It then searches the WTG table to pass control to another executor.

Stage 2 Open Executor IGG0191L: Executor IGGO191L receives control
after executor IGG0196B or IGG01931 if the DCB specifies:

Create-BDAM (Write-Load)

The executor constructs IOBs and enters the address of the first IOB into the
DCB. Then it loads the Create-BDAM Write, Check, and Channel End
appendages and inserts their addresses into the DCB.

It loads the create-BDAM channel end appendage and places its address in
the DEB appendage vector table (AVT).

With the rotational position sensing (RPS) feature, more virtual storage is
needed for the channel programs. This executor computes the extra bytes
needed for the RPS channel programs and issue a GETMAIN. The sector
bytes are placed at the end of ali the IOBs and channel programs. The last
doubleword of the GETMALIN area is used for sector manipulation. The first
byte is used by Set-sector and by Read Sector. The second byte is used as a
byte of zero on which to issue a Set-sector command in order to position at
the beginning of the track.

If track overflow is specified, the routine specifies that executor IGG0191M
is the next executor required for this DCB. Otherwise, the routine specifies
IGGO199L as the next executor required. It then searches the WTG table to
pass control to another executor.

Mecthod of Operation 1583

154 OS/VS2 SAM Logic

Stage 2 Open Executor IGG0191M: Stage 2 Open executor IGGO191M
constructs channel programs to write track-overflow blocks using BSAM for a
data set to be later processed by BDAM. Executor IGGO191L identifies it in
the WTG table as its successor executor if the DCB specifies:

Create-BDAM (Write-Load)
Track overflow

With the rotational position sensing (RPS) feature, more virtual storage is
needed for the channel programs. This executor computes the extra bytes
needed for the RPS channel programs and issues a GETMAIN. The sector
bytes are placed at the end of all the IOBs and channel programs. The last
doubleword of the GETMALIN area is used for sector manipulation. The first
byte is used by Set-sector and by Read Sector. The second byte is used as a
byte of zero on which to issue a Set-sector command in order to position at
the beginning of the track.

The executor operates as follows:

« If the extents are smaller than the blocks, it issues a DMABCOND macro
instruction to ABEND.

« It constructs channel programs to write the number of segments required
by the size of the block.

« It specifies in the WTG table that Open executor processing is completed
for this DCB. It then searches the WTG table to pass control to another
executor. If the WTG table has no other entries, the executor returns
control to the Open routine.

Stage 2 Open Executor IGG01910: Executor IGG01910 receives control
from IGGO191D if the Open parameter list specifies:

Input
and the DCB does not specify:
Search Direct (OPTCD=2Z)

The executor constructs Read channel programs for the IOBs constructed in
1IGGO0191D.

The module tests the non-rotational position sensing (RPS) indicator. If the
indicator is not on, IGG01910 inserts the RPS CCWs, where appropriate, in
the channel program.

For QSAM DCBs it issues a DMABCOND macro instruction if buffers are
not available.

The Read channel program is modified for offset Read (that is, for reading a
BDAM data set with VS record format and keys using BSAM READ macro
instructions.)

o If the record format is variable, IGG01915 is specified as the next executor
to receive control; otherwise, IGG01910 is specified as the next executor
to receive control.

« It then searches the WTG table to pass control to another executor

Stage 2 Open Executor IGG0191P: Stage 2 Open executor IGGO191P
receives control after executors IGG0O196B or IGG01931 if the Open
parameter list specifies:

Update

Page of SY26-3832-)
As Updated Aug. 31,1978
By TNL SN26-0M17

(whether or not track overflow is also specified). It is loaded and receives
control when another executor finds its identification in the WTG table.

The executor operates as follows:

It receives control after it is loaded.

It identifies module IGGO19CC as the end-of-block routine to be loaded
for use with the DCB.

If the NOTE/POINT macro instruction is specified, it identifics module
IGGO19BK as the NOTE/POINT routine to be loaded for use with this
DCB.

It calculates the amount of storage required and issues a GFTMAIN mucro
instruction to get the space from subpool 0 in the user’s key tor IOBs and
associated channel programs. It stores the number of bytes gotten for the
10Bs in the second word of the audit trail for force close

When control is returned from GETMAIN. it sets an audit trail bit 1o
indicate to the Force Close executor that storage should be freed.

Calculations for the amount of storage needed include one byte for all
Read channel program segments and onc¢ byte for cach Write channel
program segment. The total number of extra bytes is equal to the number
of 10Bs, plus one. This value is rounded up to a multiple of cight and
added to the total.

If RPS, executor IGGO191Z is specified in the WTG table. If non-RPS,
executor IGGO196P is specified in the WTG table. It then scarches the
WTG table to pass control to another executor.

Stage 2 Open Executor IGG0191Q: Exccutor IGGO191Q gains control after
executors IGGO0196B, IGG0191V, IGGO196Q. IGGOI9TU, 1GGO19TE, or
1GGO01931 if the DCB specifies:

Chained channel-program scheduling

Unit record, magnetic tape

The executor operates as follows:

If the DCB specifies the CNTRL macro instruction, this executor identifies
executor IGGO191G in the WTG table as the next executor to receive
control for this DCB. It then searches the WTG table to pass control to
another executor.

If the NOTE/POINT macro instruction is specified and the deviee is
magnetic tape. it identifies module IGGO19BL. to be loaded for use with
the DCB.

If the NOTE/POINT macro instruction is specified. and the deviee is unit
record, it identifies dummy data set module IGGO19AYV to be loaded and
used in place of Note/Point.

It identifies the end-of-block routine to be loaded and used for the
processing described by this DCB.

From subpool (. in the user’s key, it obtains space for and constructs one
10B, the required number of ICBs (one per buffer or channel program)
and channel programs appropriate to the device. and links them 1t stores
the number of bytes gottenfor the 10Bs in the second word of the audit
trail for force close.

Method of Operanion 158

156 OS/VS2 SAM Logic

« When control is returned from GETMALIN, it sets an audit trail bit to
indicate to the Force Close executor that storage should be freed.

o It sets the PCI flag in the Read Count CCW, only if in a real address
environment.

« For QSAM data sets with fixed-blocked record format on a unit record
device, and the buffer pool was not gotten by OPEN, it sets DCBBLKSI
equal to DCBLRECL and turns off the blocked records bit in
DCBRECFM.

« If chained scheduling cannot be supported because of conflicting
specifications, bit 5 of DCBCIND?2 is set to O to indicate that chained
scheduling is not being supported. The executor specifies IGG0191G as
the next executor to receive control; otherwise, bit S of DCBCIND? is set
to 1 to indicate support of chained scheduling and IGG01913 is specified
as the next executor to receive control, unless variable spanned record
format is specified. In this case, IGG01916 is specified as the next executor
for this DCB.

« [t then searches the WTG table to pass control to another executor.

Stage 2 Open Executor IGG0191R: Open exccutor IGGO191R receives
control after executors IGG0196B or IGGO1931 if the Open parameter list
specifies:

INOUT, or OUTIN

and the DCB specifics:
Chained channel-program scheduling
Magnetic tape

The executor operates as follows:

o If the device is dircct-access storage, it identifies Note 'Point module
1GGO19BK to be loaded for use with the DCB.

« If the device is magnetic tape, it identifics Note/Point module IGG0O19BL
to be loaded for use with the DCB.

« It identifies the end-of-block routine to be loaded for use with the DCB.

¢ From subpool 0, in the user’s key, it obtains space for and constructs once
10B, the required number of 1CBs (one per buffer or channel program)
and channel programs for direct-access storage or magnetic tape, and links
them. It stores the number of bytes gotten for the 1OBs in the second word
of the audit trail for force close.

¢« When control is returned from GETMAIN, it sets an audit trail bit to
indicate to the Force Close executor that storage should be freed.

o It sets the PCI flag in the Read Count CCW, only if in a real address
environment.

« If chained scheduling cannot be supported because of conflicting
specifications, bit 5 of DCBCIND?2 is set to 0 to indicate that chained
scheduling is not being supported. the ¢xecutor specifies IGGO191G as the
next executor to receive control, otherwise, bit S of DCBCIND?2 is set to 1
to indicate support of chained scheduling and 1GG01913 is specified as the
next executor to receive control.

« It then searches the WTG table to pass control to another executor.

Stage 2 Open Executor IGG0191S: Stage 2 Open executor IGG0191S
receives control after executor IGG0196B or IGG01931 if the DCB specifies:

Track overflow

(but not update). The executor is loaded and gains control when another
executor finds its identification in the WTG table.

The executor operates as follows:

« It identifies the end-of-block routine and the direct-access NOTE/POINT
routine to be used in processing specified by this DCB.

« From subpool 0, in the user’s key, it obtains space for and constructs IOBs
and channel programs for the maximum number of segments possible. For
RPS devices, it increases the space required by the amount necessary to
implement two RPS CCWs. It links the channel programs to the IOBs and
the IOBs to one another. It stores the number of bytes gotten for the IOBs
in the second word of the audit trail for force close.

« When control is returned from GETMAIN, it sets an audit trail bit to
indicate to the Force Close executor that storage should be freed.

« If search-direct has been requested (OPTCD=Z in the DCB), the executor
specifies IGG0199K as the next executor required for this DCB.

« It specifies in the WTG table that executor IGG0191H is the next executor
required for this DCB. It then searches the WTG table to pass control o
another executor.

Stage 2 Open Executor IGG0191W: Executor IGG0191W receives control
after executor IGG0191B or IGG0193I if the DCB specifies:

Chained channel-program scheduling
Direct-access storage
Output

The executor operates as follows:

« It identifies the end-of-block routine to be loaded and used for the
processing described by this DCB.

« From subpool 0, in the user’s key, it obtains space for and constructs one
10B, the required number of ICBs (that is, one ICB per channel program
or buffer) and their associated channel programs, and then links them. It
stores the number of bytes gotten for the IOBs in the second word of the
audit trail for force close. If the non-rotational position sensing (RPS) bit is
off, the space for the IOB and ICB is increased to incorporate the RPS
CCWs and the space is inserted.

« When control is returned from GETMAIN, it sets an audit trail bit to
indicate to the Force Close executor that storage should be freed.

« It sets the PCI flag in the Read Count CCW, only if in a real address
environment.

« It issues a DMABCOND macro instruction if buffers are not available for
DCBs that specify QSAM.

Method of Operation 157

Page of SY26-3832-1
As Updated 30 Nov 1979
By TNL SN26-0956

« If chained scheduling cannot be supported because of conflicting
specifications, bit 5 of DCBCIND?2 is set to O to indicate that chained
scheduling is not being supported, the executoi specifies IGG0191D as the
next executor to receive control. If bit S of DCBCIND?2 is set to 1 to J
indicate support of chained scheduling and IGG01916 is specified as the
next executor to receive control unless the record format is variable length
spanned, the next executor to receive control is IGG01913.

« It then searches the WTG table to pass control to another executor.

Stage 2 Open Executor IGG0191X: Executor IGG0191X receives control
after executors IGG0191B or IGG0193I if the Open parameter list specifies:

INOUT or OUTIN
and the DCB specifies:

Chained scheduling

Direct-access storage

The executor is loaded and receives control when another executor finds its
identification in the WTG table.

The executor operates as follows:
« It identifies the end-of-block routine to be loaded for use with the DCB.

« From subpool 0, in the user’s key, it obtains space for and constructs one
IOB, the required number of ICBs (one per buffer or channel program)
and channel programs for direct-access storage and links them. It stores the
number of bytes gotten for the IOBs in the second word of the audit trail
for force close. If the rotational position sensing (RPS) indicator is off, the
space acquired for the IOB is incremented to incorporate the RPS CCWs, J
which will then be inserted in the channel program.

o When control is returned from GETMAIN, it sets an audit trail bit to
indicate to the Force Close executor that storage should be freed.

« It sets the PCI flag in the Read Count CCW, only if in a real address
environment.

o If chained scheduling cannot be supported because of conflicting
specifications, bit S of DCBCIND?2 is set to O to indicate that chained
scheduling is not being supported, the executor specifies IGG0191J as the
next executor to receive control; otherwise, bit 5 of DCBCIND?2 is set to 1
and IGGO01913 is specified as the next executor to receive control, unless
variable spanned record format is specified. In this case, IGG01916 is the
next executor for this DCB.

o It then searches the WTG table to pass control to another executor.

Stage 2 Open Executor IGG0191Z: Executor IGG0191Z receives control
after executor IGG0O191P, if the Open parameter list specifies:

Update
and:

Record-ready channel programs are to be generated

158 OS/VS2 SAM Logic

Page of SY26-3832-1
As Updated 30 Nov 1979
By TNL SN26-0956

The executor operates as follows:

« It begins to construct IOBs and channel programs to empty and refill each
buffer.

« It links the IOBs and sets read only bits.
« It sets ECBs to X‘7F’ and initializes IOB DCB pointers.

« It builds the empty portion of the channel program; the write check and
track overflow portion (if user specified), and begins building the refill
portion of the channel program.

« It stores the offset to the write channel program, the write channel program
length, and (for QSAM) the offset to the read CCW into the DCB.

« It saves, in the IOB, the buffer addresses associated with the empty portion
of the channel program. These addresses are required by the next executor
when building the refill portion of the channel program.

« It then saves displacements to indicate to IGG01923 where it is to begin
constructing the remainder of the channel programs and then passes
control to IGG01923.

Stage 2 Open Executor IGG01923: Executor IGG01923 receives control
after executor IGG0191Z has completed constructing its portion of the IOB
and channel programs.

The executor operates as follows:

« It finishes building the channel programs started by IGG0191Z and
completes initialization of the IOBs.

« It then passes control to IGG01915 if the record area indicator is on in the
buffer control block. If the record area indicator is off, it passes control to
1GGO01912.

Stage 2 Open Executor IGG0196K: Executor IGG0196K receives control if
executor IGG0191G determines that the device type is unit record.

« This executor builds channel programs, using the storage gotten in
IGGO0191G.

« For QSAM fixed blocked record format, it sets DCBBLKSI equal to
DCBLRECL and turns off the blocked records bit in DCBRECFM.

The executor specifies in the WTG table the next executor required for this
DCB. If the DCB specifies variable-length record format, the next executor is
IGGO01915. For the remaining access conditions that cause this executor to be
used, the next executor is IGG01910.

The executor then searches the WTG table to pass control to another
executor.

Stage 2 Open Executor IGG0196L: The executor receives control from
executor IGG0191]J to finish building the IOBs assembled in IGG0191J.

‘The executor operates as follows:

« Starting at the end of the last CCW constructed by IGG0191J, it
completes the building of the channel programs. Appendix B,
“BSAM/QSAM Channel Programs,” shows the channel program
constructed by this executor and executor IGG0196L.

Method of Operation 159

160 OS/VS2 SAM Logic

For search direct it alters the channel program to be Search, TIC, Read
Count, Read Data, Read Count instead of Search, TIC, TIC, Read Data,
Read Count, to be positioned correctly to read the first record. This
channel program is the one associated with the first physical IOB. The
channel program is restored to normal by the channel-end appendage at
channel-end time.

The executor specifies in the WTG table that executor IGG01910 (or
IGGO01915, if the DCB specifies variable-length record format) is the next
executor required for this DCB. It then searches the WTG table to pass
control to another executor.

Stage 2 Open Executor IGG0196P: IGG0196P receives control after executor
IGGO0191P, if the OPEN parameter list specifies:

Update

and:

Non-record-ready channel programs are to be generated

The executor operates.as follows:

It constructs IOBs and channel programs to empty and refill each buffer.

For QSAM, the executor links the channel programs so that a buffer may
be either refilled only (by executing only the second half of the channel
program) or emptied and refilled (by executing the channel program from
the beginning).

If record area is present (which indicates that the record format is
variable-length spanned), it specifies in the WTG table that executor
IGGO01915 is the next executor required for this DCB. Otherwise, it
specifies executor IGG01912. It then searches the WTG table to pass
control to another executor.

Stage 2 Open Executor IGG0197N: Executor IGG0197N receives control
from IGG01931 whenever the 3505 or 3525 is specified, or from IGG0197M
whenever the same devices are specified and a buffer pool is not needed.

The executor operates as follows:

It makes a test to determine if the FUNC parameter is being used.

If the FUNC parameter is not being used, and if the file is for Read only
(without OMR or RCE) or Punch only, IGG0191G is specified in the
WTG table as the next executor required for this DCB.

If the FUNC parameter specifies print only or associated files, IGG0197P
is specified in the WTG table as the next executor required for this DCB.

If a specified parameter combination is found to be invalid, a message to
the programmer (WTP) is issued along with a subsequent ABEND (004).

If the FUNC parameter is not being used, but the file is a Read only with
OMR or RCE, IGG0197P is specified in the WTG table as the next
executor required for this DCB.

Once the validity of the FUNC parameter is established, the DCBMACRF)
field is tested to determine if the CNTRL is valid for an input data set. If it
is not valid, a WTP message and an ABEND macro (004) with a return
code of 02 are issued.

9

« If the CNTRL specification is valid, a test is made to determine if the
associated DCBs specify the same access methods.

o If the access methods are not the same, a message is written to the
programmer along with a subsequent ABEND (004).

« It specifies in the WTG table that IGG0197P or IGG0191G is the next
executor required for this DCB. It then searches the WTG table to pass
control to another executor.

Stage 2 Open Executor IGG0197P: IGG0197P receives control from
IGGO197N if neither Read only (without OMR or RCE) nor Punch only is
specified for the 3505 or 3525.

The executor operates as follows:

o It builds the IOB and CCWs and appends a work area to the IOB,
according to the type of data set that is specified.

« It specifies in the WTG table that IGG0197Q is the next executor required
for this DCB. It then searches the WTG table to pass control to another
executor.

Stage 2 Open Executor IGG0197Q: IGG0197Q receives control from
IGGO0197P.

The executor operates as follows:

o A test is made to determine if data protection image (DPI) is specified in
the FUNC parameter.

o If DPI is specified, SVC 105 is issued. This builds a DCB for
SYS1.IMAGELIB and returns its address in register one.

e Both a BLDL and a LOAD macro are issued so that the DPI image can be
built and the image address can be loaded in register zero.

o The address is saved for the image deletion (after the image has been
copied into IOB+64) by the DELETE macro.

« If DPI is not specified, tests are made to determine which EOB and/or
control module ID is to be entered in the DCB. (The same tests are made if
DPI is specified.)

o It specifies in the WTG table that IGG01910 is the next executor required
for this DCB. It then searches the WTG table to pass control to another
executor.

Stage 2 Open Executor IGG0197V: IBM 3890 Document Processor executor,
IGGO0197V, receives control after either executor IGG0196B or IGG01931.
For information about the executor, see OS/VS Logic for IBM 3890
Document Processor.

Stage 2 Open Executor IGG0199K: Executor IGG0199K receives control
after executor 1GG0191S.
The executor operates as follows:

o Using the virtual storage gotten by IGG01918S, it constructs the IOB and
channel programs for direct-access devices with the search-direct feature
(OPTCD=2).

o It issues a DMABCOND macro instruction for QSAM DCB:s if buffers are
not available.

Method of Operation 161

162 OS/VS2 SAM Logic

« It changes the first channel program to be executed (the second physical
IOB) to Search, TIC, Read Count, Read Data, Read Count, from Search,
TIC, TIC, Read Data, Read Count, so that it is positioned correctly to read
the first record. The channel program is changed back to normal by the
channel end appendage.

« Combpletes related fields in DCB.

« It specifies in the WTG table that IGG01916 is the next executor required
for the DCB if variable-length records are specified. Otherwise, IGG01913
is specified in the WTG table.

o It then searches the WTG table to pass control to another executor.

Stage 2 Open Executor IGG0199L: Executor IGG0199L receives control
after executor IGG0191L if the DCB specifies:

Create-BDAM (Write-Load)

The executor constructs channel programs. When the DCB specifies
RECFM=VS and BFTEK=R, the routine constructs a segment work area for
spanned record processing and creates an IRB for the asynchronous exit
routine, which executes writing of the successive segments. It then searches
the WTG table to pass control to another executor. If the WTG table has no
other entries, the executor returns control to the Open routine.

With the rotational position sensing (RPS) feature, more virtual storage is
needed for the record-ready channel programs. This executor computes the
extra bytes needed for the record-ready channel programs and issues a
GETMAIN. The sector bytes are placed at the end of all the IOBs and
channel programs. The last doubleword of the GETMAIN area is used for
sector manipulation. The first byte is used by Set-sector and by Read-sector.
The second byte is used as a byte of zero on which to issue a Set-sector
command in order to position at the beginning of the track.

Note: A user may provide a segment work area by setting a bit in the
DCBMACREF field and placing the address of that area in the DCBEOB field.
In this case, this routine will not construct the segment work area.

Stage 2 Open Executor IGG01990: IGG01990 receives control from
executor IGG0191D if the Open parameter list specifies:

Input
and the DCB specifies:

OPTCD = Z (search-direct)
The executor operates as follows:

« Using the core gotten by IGG0191D, the executor constructs the IOBs and
channel programs required when search direct is specified. The format of
the channel programs constructed by this executor are shown in “Appendix
B: BSAM/QSAM Channel Programs.”

« It changes the channel program to Search, TIC, Read Count, Read Data,
Read Count, from Search, TIC, TIC, Read Data, Read Count, so that it is
positioned correctly to read the first record. (This channel program is the
one associated with the second physical IOB.) The channel program is
restored to normal by the channel end appendage.

« It issues a DMABCOND macro instruction for QSAM DCB:s if buffers are
not available.

o If format-F or -U records are specified, IGG01910 required for this DCB.
Otherwise, (for format-V) executor IGG01915 is specified in the WTG
table as the next executor required for this DCB.

« It then searches the WTG table to pass control to another executor.

Stage 3 Open Executors

Stage 3 executors load the modules needed to perform the processing
. described by the DCB. If QSAM is used, and an input data set is to be
processed, a second stage 3 executor also primes the buffers.

Some of the modules to be loaded are identified by stage 2 executors having
set codes in DCBCNTRL. The four bytes of DCBCNTRL identify these

types of modules:

Byte Module Type

+0 EOB (QSAM) or EOB for read (BSAM)
+1 EOB for write (BSAM)

+2 NOTE/POINT or CNTRL

+3 NOTE/POINT or CNTRL

Note that the first byte is DCBEROPT and is saved at DXCCW6 during
stage 1 and restored by IGG01911. The codes that can be in the four bytes
and the modules they can identify, depending on which stage 3 executor does
the loading, are:

00 No module to load

01 IGGO019CD, IGG019CV End-of-block

02 IGGO019CC, IGG019CW End-of-block

03 IGGO19CE, IGG019CX End-of-block

04 IGGO19CF, IGG019CY End-of-block

05 IGGO019BC, IGG019BK NOTE/POINT, DASD

06 IGGO019BD, IGGO19BL NOTE/POINT, tape

07 IGGO19CA, IGG019BC CNTRL, card reader or
NOTE/POINT, DASD

08 IGGO019CB, IGG019CC CNTRL, printer or End-of-block

09 IGGO19BE, 1IGG019C2 CNTRL, tape or EOB, track overflow

0A IGGO019AV DUMMY or no-op for various
functions

0B IGGO19CT, IGG019TD End-of-block, error or user-totaling

oC IGGO019TD, IGG019TC End-of-block, user-totaling

(1]D) IGGO19TC, IGGO19TV End-of-block, user-totaling

OE IGGO19TV, IGGO19TW End-of-block, user-totaling

OF IGGO19TW, IGG019T2 End-of-block, user-totaling

10 1GGO019T2, IGGO19CT End-of-block, user-totaling or error

In many of the above pairs the first one is for normal scheduing and the
second one is for chained scheduling.

The stage 3 Open executors load in the fixed standard end of extent modules
and the format-U channel end modiile when the rotational position sensing
(RPS) feature is used.

Figure 26 lists the access conditions that cause the different stage 3 executors
to be loaded and to gain control. The executors are described in the text that
follows in a sequence identical to the list under “Executors” in Figure 26.

Method of Operation 163

164 OS/VS2 SAM Logic

In this table an X a column represents a condition that must be satisfied
before the executor is selected. A blank in the upper portion of the table
indicates that either the condition is not required for selection or not
examined at this time. The table should be used in conjunction with the flow
of control informatioa in Diagram E, SAM Flow of Control for Open
Executors.

Stage 3 Open Executor IGG01910: IGG01910 receives control after executor
IGG0191D, IGG01910, 1IGG0197Q, IGG01990 or IGG0O196L. It also
receives control after executor IGG0191G unless the DCB specifies paper

tape.

This executor operates as follows:

o For QSAM it identifies, loads, and puts the address into the DCB of:
A Get or Put routine
A synchronizing routine

« If BSAM is specified it identifies, loads, and places the addresses in the
DCB of the Read/Write routine and the Check routine.

o For 3211 printers it issues a CIRB macro instruction to create an IRB for
an error retry module; it loads an abnormal end appendage and an error
retry module.

o For user-totaling it loads the EOB routine and places its address in the
DCB.

« It enters into the DEBSUBID field of the DEB the identification of each
routine loaded.

« It specifies executor IGG01917 in the WTG table as the next executor to
receive control for this DCB.

Stage 3 Open Executor IGG01911: Executor IGG01911 is entered from
executors IGG0191C, for dummy data sets; IGG0191N, IGG0191V,
IGGO0196A, 1IGG0197U, and IGG0197F for EXCP data sets; and
IGGO01917, IGG01918, IGG01926, 1IGG01993, and IGG01994 for all SAM,
PAM, and BDAM CREATE data sets.

Get or Put
This executor operates as follows:

o It issues the IECRES macro instruction to cause the user’s copy of the
DCB to be updated to reflect the changes and additions made by the Open
executors to the protected copy of the DCB.

o It issues a DELETE macro instruction for the message CSECT if it was
loaded by Stage 1 Open executors.

« It sets an audit trail bit for the SAM/PAM/DAM force close executor to
indicate the data set can be closed by the normal close executor string
during force close processing.

Access Method Options Selections

Paper Tape X
Update

Chained Scheduling

Track Overflow

None of the preceding

* DATA, or SYSOUT
specified on DD statement

Variable-length
Record Format

Spanned Records
Dummy Data Set

Executors

1IGGO01910
1GG01911 11
1GGO01912 12
IGGO01913
1GGO01915
IGGO01916
1GG01917
1IGGO01918 18
IGGO1919
1GG01926
IGGO0198L
1GG01991
1GG01992
1GG01993
IGGO01994

11
12

18

11

13

19
26

Figure 26. Open Executor Selector—Stage 3

11

13

19
26

10
11

17

11 11 1 11

15 15
16

19
26
8L
91
92
93
94

o It sets the request type as follows:

Processing

Required Type 1

ERP Processing

CE Appendage

CE Interrupt

SIO Appendage X
EOE Appendage X

Type Il

>

« For data sets other than QSAM, it returns to common open.

o It completes any remaining DCB fields.

o It completes the IOBs.

« It puts the buffer address in the Read or Write CCWs for unit record and
magnetic tape data sets. If an invalid buffer address is found it issues a

DMABCOND macro instruction.

Method of Operation 165

o For QSAM input:

Chained Scheduling: It chains all channel programs for Move, Data, and
Substitute modes. For Locate mode it chains together all but one. It then J
issues an EXCP macro instruction against the main IOB to prime the }
buffers.

Normal Scheduling: It issues a GETMAIN macro instruction from subpool
230 in the user’s key for a register save area for the access method
routines. It saves the address returned from GETMALIN in the second word
of the audit trail for force close. It then passes control to the EOB routine
(BALR if the key is less than 8, SYNCH if the key is greater than 7) to
prime the user’s buffers (for all but one IOB if Locate mode, all buffers for
other processing modes). Before exiting, it frees the register save area.

« For output it sets a flag, which is used to identify the first entry, into the
Put routine.

o It searches the WTG table to pass control to another executor. If the WTG
table has no other entries, the executor returns control to the Open routine.

Stage 3 Open Executor IGG01912: Executor IGG01912 is entered after
executor IGG01923, IGG0196P, and IGG0191G if the Open parameter is:

Update
or if the DCB specifies:
Paper tape
The executor operates as follows:

« It identifies and loads all the appendages required and places their
addresses in the appendage vector table. J

« If rotational position sensing (RPS) channel programs are constructed and
the record format is fixed, the format-F channel-end appendage will always
be loaded. For RPS with format-U without track overflow, a format-U
channel-end appendage is loaded.

o It issues a CIRB macro to build an IRB for UPDATE with track overflow.
« It loads the device-dependent routines.

« It enters the address of a paper tape conversion routine into the DCB, and
the address of the paper tape appendage into the appendage vector table.

o It issues a DMABCOND macro instruction if paper tape and unlike
attributes are specified.

« It specifies executor IGG01918 in the WTG table as the executor to
receive control next for this DCB.

Stage 3 Open Executor IGG01913: Executor IGG01913 receives control
after executors IGG0191H, IGG0191K, IGG0191Q, IGG0191X,
IGGO0191W, IGG0199K, and IGGO191R if the DCB specifies:

Chained channel-program scheduling, or track overflow.
The executor operates as follows: .

o For 3211 printers it issues a CIRB macro instruction to create an IRB for
an error retry module; it loads an abnormal end appendage and an error
retry module.

9

166 OS/VS2 SAM Logic

« If QSAM is specified, it identifies, loads, and places the address into the
DCB of:

A Get or a Put routine
A synchronizing routine

« If BSAM is specified, it identifies, loads, and places the address into the
DCB of:

A Read or Write routine
A Check routine

o It specifies in the WTG table that Open executor IGG01919 is to receive
control next for this DCB.

Stage 3 Open Executor IGG01915: Executor IGG01915 receives control
after executors IGG0191D, 1GG01910, IGG0191G, IGG0196K,
IGGO0196L, IGG0197Q, and IGG01990, if the DCB specifies:

Variable-length record format

Executor IGG01915 receives control from executor IGG0196P or
IGG019123, if the DCB specifies:

Variable-length spanned record format
The executor operates as follows:

« If QSAM is specified, the executor identifies and loads a Get or Put routine
and a synchronizing routine.

« If BSAM is specified, the executor identifies and loads a Read or Write
routine, a Check routine, and a routine to service the NOTE/POINT
macro instruction if it is specified.

o It issues a DMABCOND macro instruction if LRECL=X is specified and
the processing mode is not Locate.

o It places the identifiers (IDs) of the routine loaded into the DEB
subroutine ID field and the addresses of the routines into the DCB.

o For a 3211 printer:

An abnormal-end appendage is loaded and its address is placed in the
appendage vector table.

An asynchronous error routine is loaded. The IRB used for scheduling
this routine is built and the IRB address placed in the DEB.

o It specifies in the WTG table that executor IGG01991 is the next executor
required for this DCB.

« It searches the WTG table to determine to which executor it should pass
control.

Stage 3 Open Executor IGG01916: Executor IGG01916 receives control
after executors IGG0191H, IGG0191K, IGG01910, IGG0191Q,
IGG0191W, IGG0199K, and IGGO191R if the DCB specifies:

Variable-length record format

Track overflow

Method of Operation 167

168 OS/VS2 SAM Logic

The executor operates as follows:

If QSAM is specified, the executor identifies and loads a Get or Put routine
and a synchronizing routine.)
If BSAM is specified, the executor identifies and loads a Read or Write ;

routine, a Check routine, and a routine to service the NOTE/POINT
macro instruction if it is specified.

It issues a DMABCOND macro instruction if LRECL=X is specified and
the processing mode is not Locate.

It places the IDs of the routine, loaded into the DEB subroutine ID field
and the addresses of the routines into the DCB.

It specifies in the WTG table that executor IGG01992 is the next executor
required for this DCB.

It searches the WTG table to determine to which executor it should pass
control.

Stage 3 Open Executor IGG01917: Executor IGG01917 is entered after
executor IGG01910.

The executor operates as follows:

It identifies and loads all the appendages required and places their
addresses into the appendage vector table.

If rotational position sensing (RPS) channel programs are constructed and
the record format is fixed, the format-F channel-end appendage is always
loaded. It loads in the fixed standard end-of-extent module IGG019C4
where the fixed standard record format is used.

For RPS with format-U without track-overflow, a format-U channel-end J
appendage is loaded.

It loads the end-of-block routine identified by a stage 2 executor and
places its address into the DCB.

If search-direct has been requested (OPTCD=Z in the DCB), the executor
loads in the necessary appendages.

It enters into the DEBSUBID field of the DEB the identification of each
routine loaded.

It specifies in the WTG table that executor IGG01911 is the next.executor
required for this DCB. It then searches the WTG table to pass control to
another executor.

Stage 3 Open Executor IGG01918: Executor IGG01918 is entered after
executor IGG01912. It is loaded and receives control when another executor
finds its identification in the WTG table.

The executor operates as follows:

It receives control after it is loaded.

It loads the end-of-block routine identified by a stage 2 executor and
places its address into the DCB. .

It enters into the DEBSUBID field of the DEB the identification of each
routine loaded.

It specifies in the WTG table that executor IGG01911 is the next executor
required for this DCB. It then searches the WTG table to pass control to
another executor.

Stage 3 Open Executor IGG01919: Executor IGG01919 is entered after
IGG01913.

The executor operates as follows:

It identifies and loads all the appendages required and places their
addresses into the appendage vector table.

If rotational position sensing (RPS) channel programs are constructed and
the record format is fixed, the format-F channel-end appendage is always
loaded. For RPS with format-U without track overflow, a format-U
channel-end appendage is loaded.

For track overflow it issues a CIRB macro instruction to create an IRB for
an asychronous error processing routine.

If search-direct has been requested (OPTCD=Z in the DCB), the executor
loads in the necessary appendages.

It enters into the DEBSUBID field of the DEB the identification of each
routine loaded.

It specifies in the WTG table that executor IGG01926 is the next executor
required for this DCB. It then searches the WTG table to pass control to
another executor.

Stage 3 Open Executor IGG01926: Executor IGG01926 is loaded and
receives control after executor IGG01919.

The executor operates as follows:

It receives control after it is loaded.

It loads the end-of-block routine identified by a stage 2 executor and
places its address into the DCB.

It enters into the DEBSUBID field of the DEB the identification of each
routine loaded.

It specifies in the WTG table that executor IGG01911 is the next executor
required for this DCB. It then searches the WTG table to pass control to
another executor.

Stage 3 Open Executor IGG0198L (SYSIN/SYSOUT): IGG0198L receives
control after the SAM-SI Open executor IGG0199W.

The executor operates as follows:

It determines which processing modules are required to process the SYSIN
or SYSOUT data set.

If BSAM is specified in the DCBMACREF field of the DCB, the BSAM
processing module IGG019DK is loaded into virtual storage. If input is
also specified, module IGG019BB is also loaded to process the CHECK
macro instruction. Otherwise, IGG019DK handles the CHECK macro
instruction also.

If QSAM is specified, the QSAM CI processing module IGG019D]J is
loaded into virtual storage.

Method of Operation 169

« If input is specified, module IGG019AQ is also loaded to process an
end-of-data condition.

« It sets the CI bit in the DCBCINDI field to indicate that this DCB is
processed by the SAM-SI routines. ,)

o It marks the current entry in the WTG table to indicate that no further
executor processing is required for this DCB.

o It refreshes the processing program’s DCB from the copy maintained by
the open routines.

« It then searches the WTG table to determine whether to give control to
another executor, or branch back to itself. If there are no other entries in
the WTG table, the executor returns control to the Open routines.

Stage 3 Open Executor IGG01991: Executor IGG01991 receives control
after, and as a continuation of, executor IGG01915. It completes the loading
of subroutines for a DCB which specifies:

Variable-length or record format-D
The executor operates as follows:

« It identifies and loads all the appendages required and places their
addresses into the appendage vector table.

« If rotational position sensing (RPS) channel programs are constructed and
the record format is variable, the format-V channel-end appendage is
always loaded. It loads in the variable standard end-of-extent module,
IGG019C4, where the variable record format is used.

« For RPS with format-U without track overflow, a format-U channel-end
appendage is loaded.

« For track overflow, it issues a CIRB macro instruction to create an IRB for J
an asychronous error routine.

» If search direct has been requested (OPTCD=Z in the DCB), the executor
loads in the necessary appendages.

o It enters the IDs of the routines loaded into the DEB subroutine ID field.

« The executor specifies in the WTG table that IGG01993 is the next
executor required for this DCB. It then searches the WTG table to
determine the next executor to receive control.

Stage 3 Open Executor IGG01992: Executor IGG01992 receives control
after, and is a continuation of, executor [IGG01916. The executor loads
subroutines for a DCB which specifies:

Variable-length record format
Track overflow
The executor operates as follows:

« It identifies and loads all the appendages required and places their
addresses into the appendage vector table.

« If rotational position sensing (RPS) channel programs are constructed and
the record format is variable, the format-V channel end appendage is
always loaded. It loads in the variable standard end-of-extent module,
IGGO019C4, where the variable-récord format is used.

170 OS/VS2 SAM Logic

« For RPS with format-U without track overflow, a format U channel end
appendage is loaded.

o If search-direct has been requested (OPTCD=Z in the DCB), the executor
loads in the necessary appendages.

« For track overflow, it issues a CIRB macro instruction to create an IRB for
an asynchronous error routine.

« It enters the IDs of the routines loaded into the DEB subroutine ID field.

« It specifies in the WTG table that executor IGG01994 is the next executor
required for this DCB. It then searches the WTG table to determine the
next executor to receive control. If there are no other entries in the WTG
table, the executor returns control to the Open routine.

Stage 3 Open Executor IGG01993: Executor IGG01993 is a continuation of
executor IGG01991. It completes the process of loading subroutines for a
DCB that specifies:

Variable-length record format
The executor operates as follows:

« It identifies and loads all of the appendages required and places their
addresses into the appendage vector table.

« If rotational position sensing (RPS) channel programs are constructed and
the record format is variable, the format-V channel-end appendage is
always loaded. It loads in the variable standard end-of-extent module,
IGGO019C4, where the variable-record format is used.

o It loads the end-of-block routine identified by the stage 2 executor and
places its address into the DCB.

o If search-direct has been requested (OPTCD=Z in the DCB), the executor
loads in the necessary appendages.

« It enters the IDs of the routines loaded into the DEB subroutine ID field.

« It specifies in the WTG table that executor IGG01911 is the next executor
required for this DCB. It then searches the WTG table to determine the
next executor to receive control.

Stage 3 Open Executor IGG01994: Executor IGG01994 is loaded and
receives control from IGG01992. It completes the process of loading
subroutines for a DCB that specifies:

Variable-length record format
Track overflow
The executor operates as follows:

« It loads the end-of-block routine identified by the stage 2 executor and
places its address into the DCB.

« It enters the IDs of the routines loaded into the DEB subroutine ID field.

"o It specifies in the WTG table that executor IGG01911 is the next executor
required for this DCB. It then searches the WTG table to determine the
next executor to receive control.

Method of Operation 171

Close Executors

172 OS/VS2 SAM Logic

Figure 27 shows the conditions that cause the Close executors to gain control.
IGGO0201A or IGG0201Z receives control if one of the sequential access
methods is used. Control goes to IGG0201A if the device type is tape or unit
record. Executor IGG0201X is an extension of IGG0201A. If the device type
is direct-access storage, control is passed to IGG0201Z. Executor IGG0201B
receives control after executors IGG0201A or IGG0201Z if QSAM was used
with an output data set and a channel program encountered an error condition
while one of the other Close executors had CPU control. Executor .
IGGO0201P receives control from IGG0201A whenever the 3525 or the 3505
with OMR or RCE is specified. Executor IGG0201R is an extension of
IGG0201P. Executor IGG0201W receives control whenever a SYSIN or
SYSOUT data set is being processed.

Control returns to the Close routine of I/0 support when Close executor
processing is completed.

Access Method Options Selections
Tape or unit record X X X
Direct-access storage X X

Permanent error or end- X X
of-volume condition when

using QSAM for output

(tape, DA only)

*, DATA, or SYSOUT X
specified on DD
statement

3505 (OMR/RCE) or 3525 X
Executors

1GG0201A 1A 1A 1A
1GG0201B 1B 1B
1GG0201P 1P
IGG0201R IR
1GG0201W 1w
1GG0201X 1X 1X

1GG0201Y 1Y 1Y
1GG0201Z 1Z 12
Figure 27. Close Executor Selector

Close Executor IGG0201A: IGG0201A receives control from the Close
routine of 1/0 support if the DCBDSORG field specifies a value of PS and if
the device type is tape or unit record.

The executor operates as follows:
o It turns on the Close-in-process bit in the DCB.

o If the 3525 or the 3505 with either OMR or RCE is specified, the executor
specifies in the WTG table that executor IGG0201P is required for this
DCB. *

o For QSAM output on 2520 or 2540 devices, it issues EXCP macro
instructions to punch two blank cards to allow the ERPs to gain control
when an error occurred on either of the two last cards punched.

-9

o For QSAM input or BSAM data sets, a PURGE macro instruction is
issued.

« If the Open parameter is output and the DCB specifies QSAM, the
executor issues a TRUNC and, if the processing mode is Locate, a PUT
macro instruction to cause scheduling of the last buffer. On return of
control, the executor awaits execution of the last channel program. The
TRUNC and PUT routines are entered via the SYNCH SVC if the user’s
key is greater than seven.

o If all channel programs were executed without encountering either an
end-of-volume condition or a permanent error, the executor continues
processing.

o For magnetic tape devices, if any of the preceding channel programs
encountered an end-of-volume condition, the executor specifies in the
WTG table that executor IGG0201B is required for this DCB. Depending
on the remaining entries in the WTG table, it then either processes another
DCB, or passes control to executor IGG0201B.

o For printers, it issues EXCP and WAIT macro instructions to clear the
print line buffer.

o It sets an audit trail bit to indicate that a PURGE has been done. These
bits have meaning only during force close processing. The audit trail is
passed to a user’s STAE routine.

o It sets up the WTG table to pass control to IGG0201X.

« It then searches the WTG table to process another DCB or pass control to
another executor.

Close Executor IGG0201B (Error Processing): IGG0201B receives control
after either executor IGG0201A or IGG0201Z if one of the latter finds that a
channel program for an output data set using QSAM encountered a
permanent error or an end-of-volume condition.

The executor operates as follows:

o It determines whether a channel program encountered a permanent error
or an end-of-volume condition.

o If a permanent error occurs for a direct-access device, it enters the track
balance routine to get the bad record erased.

o If a channel program encountered an end-of-volume condition, the
executor finds the IOB associated with that channel program and issues an
EOV. When control returns, the executor performs its remaining
processing, unless one of the channel programs encountered a permanent
error or another end-of-volume condition. In either of those cases, it
resumes processing as it did when it first received control.

« If the DCB specifies either a DCBDSORG field value of PO or POU with a
DD statement of the form (MEMBERNAME) the executor issues a
STOW macro instruction. On completion of the Stow routine, the executor
tests for errors, such as insufficient space in the directory. For any type
of error, the executor issues an DMABCOND macro instruction.

o The executor specifies in the WTG table that the next executor needed for
this DCB is either IGG0201Y for direct-access devices or IGG0201X for
all other devices.

Method of Operation 173

174 OS/VS2 SAM Logic

It then searches the WTG table to either process another DCB or to pass
control to the next module.

Close Executor IGG0201P: This module receives control from IGG0201A J
whenever: ' :

The 3525 is specified or the 3505 is specified with either OMR OR RCE.

The module operates as follows:

It turns on the Close-in-process bit in the DCB.

Tests are made to determine if either OMR or RCE is being used with the
3505.

If either is being used, the module issues a Feed and Stacker-select
command (with the OMR/RCE flag bit off) to return the device to normal
punched mode.

If either an associated data set or PRINT is being used with the 3525, the
following apply:

Flle Type FeedCaused by Close of

Print Print File

Read/Print Read File*

Read/Punch/Print Read File**

Read/Punch Read File**

Punch/Print Punch File

Punch/Interpret Punch File

Read Read File

Punch Punch File)
* A feed is executed if an end-of-file is caused by the hardware; K

a feed is not executed if it is caused by a data delimiter card.

** Punching or printing delimiter cards is not allowed for these
file types since the Close routine always issues a feed command.
If a channel program for an output (QSAM) data set encountered a
permanent error, IGG0201B is specified in the WTG table as the next
executor required for this DCB. Otherwise, executor IGG0201R is
specified in the WTG table.

It then searches the WTG table to pass control to another executor.

Close Executor IGG0201R: This module receives control from IGG0201P.
The module operates as follows:

It frees buffer space from the buffer pool.
It also frees IOB and ICB space.
It clears BSAM and QSAM vectors in the DCB.

It specifies in the WTG table that executor IGG0201B is the next executor
required for this DCB. It then searches the WTG table to pass control to
another executor. -

Close Executor IGG0201W (SYSIN/SYSOUT): Executor IGG0201W
receives control if the Close routine (see Diagram L) determines that the
SAM-SI Close executor is required to process a DCB for a SYSIN or
SYSOUT data set.

The executor operates as follows:

It constructs a Close parameter list for the ACB built by the SAM-SI Open
executor for this DCB.

If QSAM PUT locate mode is specified, a final PUT macro instruction is
issued to clear the 1/0 area.

It deletes the BSAM (IGG019DK and IGG019BB) or QSAM (IGG019DJ
and IGG019AQ) processing modules loaded by the Open executor,
IGGO0198L. The processing modules that handle CI and SAM requests
(IGGO019BB and IGG019AQ) are not deleted if concatenation is in
process.

It issues a CLOSE macro instruction for the ACB.

It issues a FREEMAIN macro instruction for the area occupied by the JES
compatibility interface control block (CICB) and the record area obtained
for collecting BSAM variable spanned segments.

It searches the WTG table to pass control to another executor.

Close Executor IGG0201X: Executor IGG0201X is a continuation of
executor IGG0201A and receives control from that executor or from
IGGO0201B if an EOV condition arose during processing in IGG0201A.

The executor operates as follows:

For QSAM
It frees the record area if it was gotten by the open executors.

It frees the buffers gotten by the Open executors if concatenation of
unlike attributes was specified.

It returns the buffer to the buffer pool for all other conditions.

The executor computes the amount of space occupied by the channel
programs, IOBs (and ICBs, if chained scheduling is used), and returns that
space to the supervisor by using a FREEMAIN macro instruction.

It frees the FCR table for the IBM 3886 Optical Character Reader.

It sets audit trail bits to indicate what processing was done. These bits have
meaning only during force close. The audit trail is passed to a user’s STAE
routine.

The executor specifies in the WTG table that Close executor processing is
completed for this DCB. Depending on the remaining entries in the WTG
table, it then processes another DCB, returns control to the Close routines,
or if Force Close is in control, returns to the SAM Force Close executor,
IGGO020T1, with a return code of O in register 15.

Method of Operation 175

176 OS/VS2 SAM Logic

Close Executor IGG0201Y: IGG0201Y receives control from executor
IGG0201Z or from IGG0201B if an EOV or permanent error was detected
by IGG0201Z...

The executor operates as follows:

When record-ready channel programs are constructed, a GETMAIN macro
instruction is issued for more bytes during Open IOB construction. In the
Close routine, when the IOB and channel program areas are freed, the
number of additional bytes is computed and added to the byte count before
issuing the FREEMAIN macro instruction.

It frees the segment work area for a DCB that specifies BFTEK=R,
RECFM=VS, and MACRF=WL.

It returns buffers to the buffer pool if they were gotten by Open executors.
It frees the buffers if concatenation of unlike attributes was specified.

It frees the record area obtained by an Open operation when a DCB
specifies BFTEK=A, spanned record, and QSAM locate mode.

The executor specifies in the WTG table that processing for this DCB is
completed. Depending on the remaining entries in the WTG table, it then
processes another DCB, returns control to the common close routines or, if
Force Close is in control, returns to the SAM Force Close executor,
IGGO020T1, with a return code of 0 in register 15.

Close Executor IGG0201Z: Executor IGG0201Z receives control from the
Close routine of O/C/EOV if the DCBDSORG field specifies a value of PS
or PO and if device type is direct-access storage.

The executor operates as follows:

If the Open parameter is Output and the DCB specifies QSAM, the
executor issues a TRUNC and, if in Locate processing mode, a PUT macro
instruction to cause scheduling of the last buffer. On return of control, the
executor awaits execution of the last channel program.

For QSAM input or BSAM data sets, a PURGE macro instruction is
issued.

If all channel programs were executed without encountering either an
end-of-volume condition or a permanent error, the executor continues
processing.

If any of the preceding channel programs encountered either a permanent
error or an end-of-volume condition, the executor specifies in the WTG
table that executor IGG0201B is required for this DCB. Depending on the
remaining entries in the WTG table, it then either processes another DCB,
or passes control to executor IGG0201B.

If Output and either a DCBDSORG field value of PO, or WRITE or PUT
with a DD statement of the form (MEMBERNAME) are specified, the
executor issues a STOW macro instruction. On completion of the Stow

routine, the executor tests for I/O errors and for logical errors, such as

insufficient space in the directory. For either type of error, the executor
issues a DMABCOND macro instruction.

The executor specifies in the WTG table that module IGG0201Y is the
next executor for this DCB. Depending on the remaining entries in the
WTG table, it then either processes another DCB or transfers control to
the next module.

o

J._

C

Force Close Executors

SAM-SI Force Close Executor IGG020FC: Executor IGG020FC receives
control from the O/C/EOV Force Close Executor module, IFGORROB,
when it determines that DCBs under JES control must be closed. The
executor frees resources acquired for opened or partially opened SYSIN and
SYSOUT DCB:s that are being forced to a closed status. It provides as much
of the normal close functions as possible in restoring the DCB to its pre-open
condition.

The executor locates the CICB and performs the following operations:
o Issues a CLOSE macro instruction for the ACB contained in the CICB.

Frees the record area for variable-length spanned records.

Deletes any processing modules loaded for this DCB.

Frees the storage obtained for the CICB.
« Returns control to the calling routine.

If the failure occurs during open processing and the CICB was not created, no
further processing is required and control is returned to the calling routine,
with a return code of 0.

If the CICB cannot be located because the error occurred during other than
open processing, control is returned to the calling routine, with a return code
of 4.

Force Close Executor IGG020T1: Executor IGG020T1 receives control from
IFGORROB during force close processing for SAM, PAM, or DAM data sets.
The primary function of the Force Close Executor is to free resources
associated with the DCB.

The executor operates as follows:

If the error occurs during open processing and the user’s copy of the DCB has
not been updated by the open executors, the following actions are taken:

For SAM or PAM
o It frees a logical record area if obtained by Open executors.

« It frees the buffer pool if the users buffers were gotten by the Opeﬁ
executors and concatenation of unlike attributes was specified; otherwise,
it returns the buffers to the buffer pool.

o It frees the IOBs and ICBs and their channel programs if they were gotten
by the Open executors.

« It frees the segment work area if it was gotten by Open executors.

o It deletes the message CSECT if it was loaded by the Open executors.
o It deletes any UCS and FCB images loaded.

o It issues a CLOSE IMGLIB SVC for SYS1.IMAGELIB.

For BDAM

It frees the buffers.

It frees the unscheduled list if it exists.

It frees the segment work area if it was gotten by the Open executors.
It frees the READX list if it was gotten by the Open executors.

Method of Operation 177

The Force Close Executor then returns to common close with a return code
of zero in register 15.

If the error occurs during open processing and the user’s DCB was refreshed
from the protected DCB, the Force Close Executor sets up a retry address at
RRXRETRY and attempts to execute the normal close executor string. It also
issues a FREEMAIN macro instruction for the register save area gotten by
IGGO01911 when priming QSAM input buffers.

 If normal close processing is successful the close executor, upon detecting a
force close entry, returns to this Force Close executor with a return code
of zero in register 15.

« If normal close processing is not successful, the second level Recovery
routine of O/C/EQV gives control to the address specified in
RRXRETRY. The Force Close executor then moves the audit trails to the
Component Recovery Status Area (CRSA) with a return code of eight in
register 15.

If the error occurs during other than open processing, the Force Close
Executor returns to the common close recovery routine with a return code of
eight in register 15.

Buffer-Pool Management

178 OS/VS2 SAM Logic

Buffer-pool management routines form virtual storage space into buffers, and
they return buffers that are no longer needed. Figure 28 lists the buffer-pool
management routines.

Type Module Name Function

GETPOOL IECQBFG1 This routine obtains virtual storage and
forms a buffer pool.

BUILD IECBBFBI1 This routine forms a buffer pool in virtual
storage supplied by the processing program.

GETBUF (Macro Expansion) This routine provides buffers from the buffer
chain.

FREEBUF (Macro Expansion) This routine returns buffers to the buffer
pool.

FREEPOOL (Macro Expansion) This routine returns virtual storage
previously used for a buffer pool.

BUILDRCD IGG019B0 This routine allows a pointer to a record area

to be incorporated in a buffer pool in virtual
storage supplied by the processing program.

Figure 28. Buffer-Pool Management Routines

GETPOOL Module IECQBFG1: Module IECQBFG1 obtains virtual-storage
space and forms it into buffers. It is loaded at execution time by a LINK
macro instruction.

The module operates as follows:

« It rounds the buffer length to the next higher doubleword multiple if the -
specified length is not such a multiple. .

o It determines buffer alignment from the DCBBFALN field value in the
DCB.

o It computes the number of bytes required and issues a GETMAIN macro
instruction.

9

« It constructs a buffer-pool control block in the first eight bytes of storage
obtained.

o If doubleword (not fullword) alignment is specified in the DCBBFALN
field in the DCB, the module starts the first buffer at the byte immediately
following the BUFCB.

o If fullword (not doubleword) alignment is specified in the DCBBFALN
field, the module skips one word after the buffer-pool control block before
starting the first buffer.

» It chains the first buffer to the buffer-pool control block and determines
the start of the next buffer by adding the rounded buffer length value to
the address of the first buffer. The module chains the next buffer to the
preceding buffer and continues until all the buffers have been chained.

o It returns control to the processing program. Figure 29 illustrates the
buffer-pool control block (BUFCB) that describes the buffer pool. Figure
30 illustrates the buffer-pool structures formed by the GETPOOL module.

BUFAD BUFNO BUFL
Address of Number of Length of
BUFCB First Available Buffer Buffers Requested Each Buffer
Byte O 4 6 8

Figure 29. Buffer-Pool Control Block

Doubleword Fullword (Not Doubleword)
Buffer Alignment Specified Buffer Alignment Specified

BUFCB - BUFCB
_____ J (A
T
______ -

Y J
C 0= _g

b = — = — -

4—— 2 Words ————p»

Figure 30. GETPOOL Buffer-Pool Structures

BUILD Module IECBBFB1: Module IECBBFB1 forms virtual storage space
supplied by the processing program into buffers. It is loaded at execution time
by a LINK macro instruction.

The module operates as follows:

o It rounds the buffer length to the next higher fullword multiple if the
specified length is not such a multiple.

o It constructs a buffer-pool control block in the first 8 bytes of the
virtual-storage space provided by the processing program.

Method of Operation 179

o It starts the first buffer at the byte immediately following the buffer-pool
control block.

o It chains the first buffer to the buffer pool control block and determines
the start of the next buffer by adding the rounded buffer-length value to
the address of the first buffer. The module chains the next buffer to the
preceding buffer, and continues until all the buffers are chained.

« It returns control to the processing program.

Figure 31 lists for each possible combination of space alignment and buffer
length parity the illustration that shows the structure of the resulting buffer
chain or pool. Figure 29 illustrates the buffer pool control block (BUFCB),
Figure 32 illustrates the various buffer alignments that the Build module
forms.

Parity of number of words in

Alignment of first byte of buffer length after rounding up
space passed in BUILD length parameter of BUILD macro Buffer pool
macro instruction instraction structure
Doubleword Even A

Odd B
Fullword Even C
(Not doubleword) Odd D

Figure 31. Build Buffer-Structuring Table

GETBUF Macro Expansion: The purpose of this coding is to provide the next
buffer from the buffer pool. The macro expansion produces inline code that
presents the address of the next buffer to the processing program and updates
the buffer-pool control block to point at the following buffer.

FREEBUF Macro Expansion: The purpose of this coding is to return a buffer
to the buffer chain. The macro expansion produces inline code that stores the
address presently in the buffer-pool control block in the first word of the
buffer being returned, and then stores the address of that buffer in the
buffer-pool control block.

i S
g -

Figure 32. Build BufferPool Structure

180 OS/VS2 SAM Logic

Page of SY26-3832-1
As Updated 30 Nov 1979
By TNL SN26-0956

FREEPOOL Macro Expansion: The purpose of this coding is to return the
space previously allotted to the buffer chain to available virtual storage. The
macro expansion produces inline code that computes the total number of
bytes to be returned, issues a FREEMAIN macro instruction, and sets the
DCBBUFCB field in the DCB to show that no buffer pool is associated with
that DCB.

BUILDRCD Routine IGG019B0: This routine forms virtual-storage space
supplied by the processing program into buffers and links the buffer pool to a
record area also supplied by the processing program. It is loaded at execution
time by a LINK macro instruction.

The module operates as follows:

o It rounds the buffer length to the next higher fullword multiple if the
specified length is not such a multiple.

« It constructs a buffer-pool control block (see Figure 33) in the first twelve
bytes of the virtual-storage space provided by the processing program.

« It turns on the high-order bit of the BUFLG byte of the buffer-pool
control block to indicate that a record area address is present.

o It clears the control field (32 bytes) of the record area.

« It stores the record area length in the record area (see Figure 34) provided
by the processing program.

« It chains the first buffer to the buffer-pool control block and determines
the start of the next buffer by adding the rounded buffer length value to
the address of the first buffer. The next buffer is chained to the preceding
buffer until all buffers are built.

« It returns control to the processing program.

Figure 33 illustrates the buffer-pool control block (BUFCB) that describes
the buffer pool when logical record interface is required for variable-length
spanned records processed in the locate mode.

Figure 34 illustrates the record area used to assemble and segment a spanned
record. This record area is either acquired dynamically by data management
at Open time, when the DCB specifies RECFM-VS/VBS, MACRF=GL/PL,
and BFTEK=A, or provided by the problem program by means of a
BUILDRCD macro instruction.

BUFAD BUFLG BUFNO [BUFLTH BUFRECAD
Address of Number of | Length Address of
First Available Flags | Buffers of Each Record
Buffer Requested | Buffer Area
Byte O 4 5 6 8 12

Figure 33. Logical Record Buffer-Pool Control Block

Method of Operation 181

182 OS/VS2 SAM Logic

BUFAD: 4 bytes, contains the address of the first
available buffer in the pool.

BUFLG: 1 byte, set to X'CO’ when a record area
address is present in the buffer control block.

Bit Meaning

0-1 Record area present

1-1 Buffer control block extended
2-7 Reserved

BUFNO: 1 byte, contains the number of buffers
requested.

BUFLTH: 2 bytes, contains the length rounded to the
nearest fullword of each buffer requested.

BUFRECAD: 4 bytes, contains the starting address of
the record area.

Length Index Position | Track
of to of Address to | Next
Record | Flags | Beginning | Record Beginning 10B Cpunt Reserved Data
Area of Data in Block | Segment of | Address | Field
Record
Byte 4 5 6 8 16 20 22 24 32+
0 LRECL

Figure 34. Record Area

A description of the fields contained in the record area follows:

« Length of Record Area. This 4-byte field contains the length of the entire
record area (data field+24 bytes). The length may be determined by the
LRECL of the DCB macro at Open time plus 8 bytes for alignment or
specified in the length of the record area parameter of the BUILDRCD
macro instruction, in which case the BUILDRCD routine places the length
of the record area in this field. The second bit of the first byte of this field
is set on by the COBOL processor to indicate special processing of
variable-length spanned records. If this bit is set, all records (spanned or
nonspanned) are presented to the processing program in the record area.

« Flags. This 1-byte field is used for internal data management control flags.

¢ Index to Beginning of Data. This 1-byte field contains the index value to
the beginning of the data (record descriptor word) in the data field.

« Position of Record in Block. This 2-byte field contains the relative position
of the beginning segment of a record within the block.

o Track Address to Beginning Segment of Record. This 8-byte field is used to
save the track address of that block which has a beginning segment of a
record that is being processed. The low-order three bytes of this field are
used to save the record address of the block that will have the beginning
segment of a record if a spanned record is to be written.

« Next IOB Address. This 4-byte field is used to save the next IOB address if "
a spanned record is to be written.

¢ Count Field. This 2-byte field is used to accumulate the number of bytes of
data moved while segmenting.

<9

J,

Page of SY26-3832-1
As Updated 30 Nov 1979
By TNL SN26-0956

+ Reserved. Not used.

« Data. The assembled logical record is located in this field. The maximum
length of this field is either determined by the LRECL field of the DCB
macro at Open time plus 8 bytes for alignment or equal to 24 bytes less
than the length of the record area parameter of the BUILDRCD macro
instruction.

- Problem Determination

Problem determination assists the user in determining the causes of ABENDS
by providing more information as to the cause of the abnormal termination.
The recording and making available of significant information about the
problem may eliminate the need for a core image dump. Better ABEND
interpretation will be possible with the following problem determination
operations:

e Write-to-programmer giving the ABEND code, a return code that further
describes the ABEND condition, and job environment information.

« Recording of all control blocks relevant to the ABEND condition on a
GTF data set, which will be dumped automatically by ABDUMP, or at the
user’s initiation by AMDPRDMP.

« A user ABEND exit is provided to allow the evaluation of the condition
before the ABEND is taken.

e An ABEND that provides a dump of relevant control blocks.

Problem determination is of particular benefit in the open executors because
having an alternative to an immediate ABEND results in a greater latitude in
the control of the termination of a task. The error can be evaluated and the
need for that data set at the time the error occurred can be determined, with
the option to continue processing without it.

Problem Determination Module IFG0559C: Module IFG0559C traces the data
associated with a particular ABEND.

The module operates as follows:

It receives control through an XCTL macro instruction from the
0O/C/EQOV problem determination module, IFG0559B, when it senses a
SAM problem determination flag.

o Itissuesa MODESET macro instruction to change to the key of the caller.

o It issues a GETMAIN macro instruction for work area core.

Method of Operation 183

SVC Routines

184 OS/VS2 SAM Logic

« If the GETMAIN macro instruction is successful, it issues a GTRACE

macro instruction to record, in the GTF data set, the data associated with
the ABEND designated by the ABEND and condition codes. In addition to
the TIOT DDNAME and the ABEND condition code, which are always
present, one or more of the following data areas is traced:

DCB for BSAM or QSAM.

DECB for BSAM only.

Track capacity - maximum block size.

Current DEB extent entry.

All DEB extent entries.

IOB or ICB seek field.

First 88 bytes of the BDW and the block currently being processed.
First 88 bytes of the RDW and the record currently bring processed.

The following is a list of ABENDS, their associated condition codes, and the
data traced for each.

ABEND Condition

Code Code Areas Traced

002 04 DCB, IOB or ICB seek field, record.

002 08 DCB, DECB, block.

002 0oC DCB, DECB, maximum block size, block.

002 10 DCB, DECB, block.

002 14 DCB, DECB, block.

002 18 DCB and record.

002 1C DCB, DECB, maximum block size, block.

002 20 DCB, DECSB, current DEB extent, maximum block
size, block.

002 24 DCB, DECB, current DEB extent, maximum block
size, block.

008 04 All DEB extents, block.

If the GTRACE macro instruction is successful, a LOAD macro
instruction is issued to load the message CSECT, IGGMSGO01. A WTO
macro instruction is issued to inform the programmer that the GTF data set
contains records associated with this ABEND. Upon return, a DELETE
macro instruction is issued to delete the message CSECT.

It issues a FREEMAIN macro instruction to release the work area storage.

It transfers control to module IFGOSS9E upon successful completion or if
an error occurred in the GETMAIN or GTRACE macro instruction.

SVC routines are used when the process requires operation in the Supervisor
state. The functions provided are ones that cannot be done in the problem
state or in the user’s key.

9

¢

DEVTYPE Routine

IMGLIB Routine

Page of SY26-3832-1
As Updated 30 Nov 1979
By TNL SN26-0956

DEVTYPE SVC Routine IGC0002D: This routine locates and passes to the
requestor the characteristics of the device specified in the DD statement. The
module operates as follows:

o It issues an ESTAE macro instruction to establish a Task Recovery
Routine, IGCT002D, to intercept abnormal terminations.

« It searches the UCB and the Device Characteristics Table for the required
information.

« It places the data in the output area and returns to the calling program.

« For the IBM 3340 Direct Access Disk Storage Facility, it determines the
number of cylinders on the pack.

IMGLIB SVC Routine IGC0010E: The IMGLIB routine IGC0010E builds a
skeleton DCB and DEB for the SYS1.IMAGELIB data set or deletes the
DCB and DEB for the SYS1.IMAGELIB data set, depending on the
parameter passed to it in register 1. The routine is entered from the SVC 105
instruction.

The IMGLIB macro is issued by Open executors and by SETPRT routines
and can be issued by users.

The routine operates as follows:

« It issues an ESTAE macro instruction to establish a TRR, IGCTO010E, to
intercept abnormal terminations.

« It makes a test to determine whether the control blocks for IMAGELIB
need to be built or deleted. If register 1 contains Os, a DCB and DEB are
built.

« It uses a GETMAIN macro instruction to obtain a work area and then uses
a LOCATE macro instruction to determine where the IMAGELIB volume
is residing.

« It takes the address of the UCB table from the CVT and searches for the
corresponding UCB.

« It uses the OBTAIN macro instruction to read in the format-1 DSCB and
uses the information read and the UCB address to construct a skeleton
DCB and DEB for the SYS1.IMAGELIB volume. The format-1 DSCB
describes up to three extents. The SYS1.IMAGELIB data set can reside on
up to 16 extents on a permanently resident volume.

o If there are more than three extents on SYS1.IMAGELIB, the format-3
DSCB seek address is obtained from the format-1 DSCB. It uses the
OBTAIN macro to read in the format-3 DSCB and uses the information
read and the UCB address to construct additional DEB extent descriptions.

o If register 1 contains an address when the routine tests to determine
whether the control blocks for the IMAGELIB volume need to be built or
deleted, the DCB and DEB for IMAGELIB are to be deleted.

« It uses the FREEMAIN macro instruction to delete the control blocks. If
the DEB is not on the DEB chain or it does not point back to the DCB, a
169 ABEND is issued.

« It returns control to the calling routine through a BR 14 instruction.

Method of Operation 185

Track Balance, Track Overflow Erase Routines

186 OS/VS2 SAM Logic

Control Module IGC0002E (SVC 25—Track Balance, Track Overflow Erase):
Module IGCO0002E consists of two routines that erase either a part of one
track or several tracks. The track balance routine determines the available
space by erasing the remainder of the track; the track-overflow erase routine
erases tracks at the end of each extent on which there are no data fields for
blocks of the data set to which the extent belongs. The routine is used when a
block in a data set with track-overflow record format would span extents.

This module is entered if Read/Write module IGG019BA, End-of-Block
module IGG019C2, or Close executor IGG0201B issues an SVC 25
instruction.

« It issues an ESTAE macro instruction to establish a TRR, IGCTO0O2E, to
intercept abnormal terminations.

Track Balance Routine: The track balance routine establishes a valid value for
the DCBTRBAL field of a DCB opened for output to a direct-access device,
when the field value has been invalidated by a preceding READ, POINT, or
OPEN macro instruction.

The routine operates as follows:

« It constructs and issues an EXCP macro instruction for a channel program
with the Erase command and a count exceeding the track capacity. The
erase operation begins following the block just read or on the block
pointed to.

« It determines the approximate track balance by subtracting the residual
count in the channel status word (CSW) from the count used in the
channel program and inserts the difference in the DCBTRBAL field of the
DCB.

« If standard format is specified and the DCB blocksize is equal to the
blocksize saved at Open time, the track balance will be computed
arithmetically (rather than taking the approximation from the ERASE
operation) and stored in the DCBTRBAL field.

Track-Overflow Erase Routine: The track-overflow erase routine erases the
space on a direct-access storage device that lies between the last block to be
written into the current extent and the end of that extent. If the
track-overflow end-of-block routine IGG019C2 finds that the next segment
of a block falls on a track beyond the present extent, that end-of-block
routine uses the SVC 25 instruction to pass control and the channel program
to this routine.

The routine operates as follows:
o It receives control when it is loaded.

o It substitutes Erase commands for the Write commands in the channel
program associated with the present IOB.

« It issues an EXCP macro instruction to cause execution of the channel
program and a WAIT macro instruction for its completion.

-

« It returns control to the track-overflow end-of-block routine, irrespective
of any errors in the execution of the channel program.

9

BSP Routine

Control Module IGC0006I (SVC 69—BSP): Module IGC00061 backspaces
the data set one block whether the data set is on a magnetic-tape or
direct-access device.

The expansion of the macro instruction BSP includes an SVC 69 instruction
which causes the module to be loaded and entered.

The module verifies that the passed DCB describes a magnetic tape or
direct-access device data set, and that the data set is being processed by
BSAM. To accomplish this, the module operates as follows:

It receives control after it is loaded.

It issues an ESTAE macro instruction to establish a TRR, IGCT0069, to
intercept abnormal terminations.

It issues a MODESET macro instruction to change to the key of the caller.

If the DCB is being processed by the CI and if a CI backspace routine
entry point is provided, it gives control to the CI routine. When the CI
routine relinquishes control, or if no CI routine is provided, it returns
control to the processing program.

If the device is a terminal, it returns control to the processing program.

If a dummy data set is being processed, it returns control to the processing
program.

If the device type is not magnetic tape or direct-access, reason and return
codes are put in registers 0 and 15 and control is returned to the caller.

If either a tape mark or a direct-access EOF was read, reason and return
codes are put in registers 0 and 15 and control is returned to the caller.

It issues a GETMAIN macro instruction to obtain storage in which to build
an IOB, an ECB, and a channel program.

It builds and initializes an IOB and an ECB.

From this point on, the control path depends upon the type of I/O device.

For magnetic tape, the module operates as follows:

It constructs and issues an EXCP macro instruction for a channel program
to backspace one block, followed by a NOP to obtain device-end
information from the backspace channel program.

If the backspace channel program executed normally, the module sets
register 15 to zero and returns control to the processing program.

If the channel program executed with an error other than unit exception,
the module sets the DCBIFLGS field to indicate a permanent error. The
CHECK macro instruction, following the next READ or WRITE macro
instruction, causes the Check routine to pass control to the processing
program’s SYNAD routine.

If the backspace channel program executed with a unit exception, the
module constructs and issues an EXCP macro instruction for a channel
program to forward space the tape one block, followed by a NOP to obtain
device-end information from the forward space channel program. When
channel end for the NOP occurs, the module returns control to the
processing program with register 15 set to an error code.

Method of Operation 187

STOW Routines

188 OS/VS2 SAM Logic

It issues a FREEMAIN macro instruction to free the work area.

It issues a MODESET macro instruction to return to KEY 0 and returns
control to the caller.

For direct-ac:ceél‘si devices, the module operates as follows:

It decreases the DCBFDAD field in the DCB to the preceding block
address across tracks, cylinders, or extents.

It sets the DCBOFLGS field to show that the DCBTRBAL field value is
invalid.

If a valid preceding DCBFDAD value has been established, the module
returns control to the processing program with register 15 set to zero.

If there is no valid preceding DCBFDAD value because the processing
program has attempted to backspace beyond the first block, the module
returns control to the processing program with register 15 set to an error
code.

If a permanent error is encountered when reading the count fields (to
establish the preceding DCBFDAD field value), the DCBIFLGS field
value is set to indicate a permanent error. The Check routine, following the
next READ or WRITE macro instruction, causes control to pass to the
processing program’s SYNAD routine.

It issues a FREEMAIN macro instruction to free the work area.

It issues a MODESET macro instruction to return to KEY O and returns
control to the caller.

STOW Module IGC0002A (SVC 21): Module IGC0002A builds the control
blocks, buffers, and channel program required to perform the requested
function and to do the diagnostics to verify the validity of the caller’s request.

The expansion of the STOW macro instruction includes an SVC 21
instruction that causes this module to be loaded and to gain control. The
STOW macro instruction is issued in one of two ways:

Explicitly by a processing program using BPAM for output.

Implicitly by a processing program using BSAM, QSAM, or BPAM for
output, when issuing a CLOSE macro instruction to a DCB opened for a
member of a partitioned data set.

The module operates as follows:

It receives control when it is loaded.

It issues an ESTAE macro instruction to establish a TRR, IGCT0021, to
intercept abnormal terminations.

It issues a MODESET macro instruction to change to the key of the caller.

If the DCB is neither Open nor Open for Input, a MODESET macro
instruction is issued to return to key 0, reason and return codes are put in _
registers 0 and 15, and control is returned to the caller.

It issues a GETMAIN macro instruction to obtain storage for a work area
in which to save information about the function being performed; save the
parameters supplied by the caller; and build an IOB, ECB, channel
program, and three buffers used in reading and writing directory blocks.

 If the GETMAIN macro instruction is not successful, a MODESET macro
instruction is issued to return to key 0, reason and return codes are put into
registers 0 and 15, and control is returned to the caller.

o It initializes the channel program and issues an EXCP macro instruction to
search the directory for an entry block with a key equal to or higher than
the member name. It reads that and the next entry block into the input
buffers. For the change option (C), the search is on the member name that
is the lowest in alphameric sequence.

o It checks the validity of the option requested, as follows:
Add. Verifies that the member name does not already exist.

Replace. Verifies that the member name exists and, if not, sets the
return code and changes the option to Add.

Change. Verifies that the member name to be changed exists and that
the new member name does not duplicate an existing name.

Delete. Verifies that the member name exists.

« If an 1/0 error occurs while directory entry blocks are being read or if the
option requested is invalid, a FREEMAIN macro instruction is issued to
free the work area, a MODESET macro instruction is issued to return to
key 0, reason and return codes are put into registers 0 and 15, and control
is returned to the caller.

« If the option requested is valid, the module transfers control to module
IGGO0210A through an XCTL macro instruction.

STOW Module IGG0210A: Module IGG0210A builds the channel program
used by module IGG021AB and, if required, writes an EOD marker following
the last member written.

The module is loaded and receives control through an XCTL macro
instruction issued by module IGC0002A.

The module operates as follows:

o It writes an EOD marker following the last member written if the following
conditions are met:

The Add or Replace option was specified.

The entry being added or replaced is not an alias.

The DCB was not opened for RDBACK or UPDATE.
The last I/O operation was Write.

« If the data set must be extended to write the EOD marker, the module
issues a MODESET macro instruction to change to key 0, a SETLOCK
macro instruction to obtain the local lock, and branches to DEBCHK to
check the validity of the caller’s DEB. If the DEB is valid, the
DEBVOLSQ is changed for EXCP, a SETLOCK macro instruction is
issued to free the local lock, and a MODESET macro instruction is issued
to return to the caller’s key.

It then changes the MACREF operand in the user’s DCB to EXCP and
issues an EQV that points to that DCB.

Upon return, it restores the M ACRF operand and validates and restores
the DEBVOLSQ field.

Method of Operation 189

If the DEB is not valid, it issues an ABEND macro instruction to terminate
processing.

« If an EOD marker is written after the last member, the FDAD, RELAD,
and TRBAL fields in the caller’s DCB are updated. J

« If an I/0 error occurs while the EOD marker is being written, the module
frees the work area, returns to key 0, sets the reason and return codes in
registers 0 and 15, and returns control to the caller.

o It returns the TTR of the last member written if the following conditions
are met:

The Add or Replace option was specified.
The entry being added or replaced is not an alias.

o It builds the channel program used by module IGG021AB to read and
write directory blocks.

« If no errors are detected, it transfers control to module IGG021AB
through a XCTL macro instruction.

STOW Module IGG021AB: Module IGG021AB maintains partitioned data
set directories in ascending order of the binary values of the names of the
members.

Module IGG021AB is loaded and receives control through an XCTL macro
instruction issued by module IGG0210A.

The module operates as follows:

« If the option requested is add, replace, or change and if there are no
unused directory blocks, a dry run on the directory is made to determine if
sufficient space is available in which to perform the requested function. ’

o It adds, replaces, changes the name of, and deletes directory entries, per
the requested options, by issuing an EXCP macro instruction to write and
read directory blocks.

o It expands or compresses the directory as necessary to accomplish the
requested function.

« If an I/O error occurs while writing or reading directory blocks, or if there
is not sufficient space remaining in the directory, processing in this module
is terminated.

o It issues a FREEMAIN macro instruction to free the work area.

o It issues a MODESET macro instruction to return to key 0.

o It returns control to the calling program.

BLDL or FIND Routines

FIND (C Option) Macro Expansion: The macro expansion moves the relative
address (TTRK) from the BLDL list in virtual storage to the DCBRELAD
field in the requester’s DCB. The FIND macro instruction then does a
branch-and-link to the Point routine.

Resident Module IGC018: At initial program loading (IPL) time, the nucleus

initialization program (NIP) constructs a resident BLDL table from

SYS1.LINKLIB directory entries. That table is the one referred to by the

Find and BLDL routines in this module. J

190 OS/VS2 SAM Logic

The routines comprising the module gain control through an SVC 18
instruction in a processing program. A FIND (D Option) or BLDL macro
instruction expansion generates an SVC 18 instruction which causes control
to pass to CSECT IGCO018, the entry point for the Find (D Option) and
BLDL routines. Control programs may use a BALR instruction and the
address found in the communications vector table (CVT) for entry points
IECPCNVT, IECPRLTYV, and IECOSCRI1 to pass control to the respective
routines.

Find (D Option) Routine—Entry Point and CSECT Name: IGC018 (SVC 18):
The Find (D Option) routine finds the relative address of the member named
in the macro instruction. It then causes the relative address to be converted
into the full direct-access device address (FDAD) and to be loaded into the
DCBFDAD and IOBSEEK fields.

The routine operates as follows:
« It issues an ESTAE macro instruction to establish the TRR, IGCT0018.

« If SYS1.LINKLIB is the referenced library, it scans the resident BLDL
table for an entry that matches the given member name.

« If SYS1.LINKLIB is not the referenced library, or if the name is not in the
table, it searches the directory for an entry block with a key equal to or
higher than the given member name. It reads that entry block into virtual
storage and searches the entry block for the matching entry.

« If the name is in the table, or after finding the matching entry in an entry
block read in, it enters the relative address stated in the entry into the
DCBRELAD field in the DCB.

« It passes control to the Point routine by issuing a BAL instruction for
supervisor key callers or a SYNCH macro instruction for user key callers.

« It returns control to the processing program.

BLDL Routine—Entry Point: IGC018 (SVC 18): The BLDL routine
completes a BLDL table with the directory entry for each of the members
named in the BLDL table.

The routine operates as follows:
« It issues an ESTAE macro instruction to establish the TRR, IGCT0018.

o If SYS1.LINKLIB is the referenced library, it scans the resident BLDL
table for an entry that matches the given member name.

« If SYS1.LINKLIB is not the referenced library, or if the name is not in the
table, it searches the directory for an entry block with a key equal to or
higher than the given member name. It reads that block into virtual storage
and searches the entry block for the matching entry.

« If the name is in the table, or after finding the matching entry in an entry
block read in, it moves the entry into the processing program’s BLDL
table, obtains the next name to be matched, and returns to the beginning of
the routine.

« When the BLDL table has been completed, the routine returns control to
the processing program.

Convert Relative-to-Full Address Routine—Entry Point: IECPCNVT:
Conversion routine IECPCNVT accepts, in register 0, relative addresses of
the form TTR for direct-access devices and presents the corresponding full
device addresses of the form MBBCCHHR at the location shown by

Method of Operation 191

Page of SY26-3832-1
As Updated July 2, 1979
By TNL SN26-0931

192 OS/VS2 SAM Logic

register 2. This routine’s external interface is documented in OS/VS2 System
Programming Library: Data Management.

The routine operates as follows:

« For each extent, the routine reduces the amount TT by the number of
tracks in the extent. When the balance is negative, the proper extent has
been reached.

o It determines the full device address for the specified relative value.

Convert Full-to-Relative Address Routine—Entry Point: IECPRLTYV:
Conversion routine IECPRLTYV accepts, from the location shown by register
2, a full device address of the form MBBCCHHR for direct-access devices
and presents the corresponding relative address of the form TTR in register 0.

The routine totals the number of tracks per extent for the (M-1) extents. For
extent M, it adds the number of tracks entered into the extent. This routine’s
external interface is documented in OS/VS2 System Programming Library:
Data Management.

Convert Record Number to Sector Value Routine—Entry Point: IECOSCR1:
Conversion routine IECOSCR1 converts the record number for a fixed or
variable length record data set to a sector value for use on an RPS device.

For fixed length records, register 0 contains a data length in the two
high-order bytes and a key length in the third byte. The fourth byte contains
the record number for which the sector value is desired.

For variable length records, register 0 contains the number of key and data
bytes already written in the two high-order bytes. The third byte contains a 1
(for keyed records) or a 0 (for non-keyed records). The fourth byte contains
the record number for which the sector value is desired.

For both types of records, registers 2, 14, and 15 contain the following:

Register 2. The high order byte contains the UCB+19. The other three bytes
contain the address at which the sector value is stored.

Register 14. The return address.
Register 15. The entry point address of this routine.

Upon completion, the sector value is stored at the designated address and
registers 0, 9, 10, and 11 are modified.

Calculate Track Balance or Records per Track Routine—Entry Point:
IECOSCR1+12: Within module IGCO18, the conversion routine IECOSCR1
calculates the new track balance or the number of records that can fit on a
DASD track.

The routine input consists of:

» Device table address

« Record number

« Keylength

« Data length

« Track balance (optional)

Register 2 contains the address of this 12 byte parameter list.

Pzge of SY26-3832-1
Added July 2, 1979
By TNL SN26-0931

The routine returns:
« In register O, one of the following values:
— The number of records which will fit on a track
— The new track balance
— The largest record that will fit on a track
. « Inregister 14, the return address
o Inregister 15, the address of IECOSCR1
Registers 9, 10, and 11 are work registers used by the routine.

The conversion routine is invoked via the TRKCALC macro. See OS/VS2
System Programming Library: Data Management for information about the
TRKCALC macro.

SYNADAF and SYNADRLS Routines

See Diagram O for an illustration of the flow of processing through
SYNADAF routines.

The SYNADAF routines pass control between modules by use of V-type
address constants so as to maximize the chances of the next module being on
the same page.

SYNAD Analysis and Format Routine IGC0006H: This routine is the
SYNADAF SVC initial load module and the only load module for the
SYNADRLS SVC. It gets storage for the register save area and the message
buffer area and transfers control to the secondary load for error analysis. For
SYNADRLS, it restores the save area pointers and frees gotten storage.

Method of Operation 192.1

r

The routine operates as follows:

o It issues an ESTAE macro instruction to establish a TRR (task recovery
routine) to intercept abnormal terminations while SYNADAF processing is
in effect.

o It tests to determine whether it was entered for SYNADAF or
SYNADRLS.

o If entered for SYNADAF:

It issues a GETMAIN macro instruction for a general register save area
and a message buffer area from subpool 0, in the user’s key.

It initializes the message buffer area.
It tests for a valid access method. If not valid, it issues an ABEND.
It loads the message CSECT.

It sets up the parameter list for transfer of control to secondary load
routines for further analysis.

For BISAM or QISAM, it tests to determine if the DEB CI

(compatability interface) bit is set. If so, and the CI SYNADAF routine
is provided, it transfers control to the SYNADATF routine via a SYNCH
macro instruction. It returns to the caller when it again receives control.

If no CI SYNADATF routine is provided the routine returns to the caller.

If the DEB CI bit is not on, it branches to IGC0206H for BISAM and
to IGC0306H for QISAM.

It branches to IGC0406H for BTAM, QTAM, or GAM.
It branches to IGC0506H for EXCP.
It branches to IGC0906H for BPAM or BDAM.

For BSAM or QSAM, it tests to determine if the DCB CI bit is on. If
so, and the CI SYNADAF routine is provided, it branches to the
SYNADAF routine via a SYNCH macro instruction. It returns to the
caller when it again receives control.

If the SYNADAF routine is not provided, the routine returns to the
caller.

If the DCB CI bit is not on, it branches to IGC0906H for BSAM or
QSAM. :

o If entered for SYNADRLS:
It restores the caller’s save area pointer.

It releases the storage gotten for the register save area and the message
buffer area.

It returns to the caller.
SYNADAF for BSAM, QSAM, BDAM, EXCP, and BPAM IGC0106H: This

‘routine continues the error analysis for EXCP, BDAM, BPAM, BSAM, and

QSAM and formats the message buffer. It receives control from IGC05S06H
for EXCP and from IGC0906H for the access methods.

Method of Operation 193

194 OS/VS2 SAM Logic

The routine operates as follows:
o It tests to determine if the data set was opened.
o If the data set was opened:

It converts the DCB block count for tape and the IOB last seek address
for disk storage into printable form.

It checks the ECB post codes.

If there is a permanent I/O error, it finds the IOBCSW for a unit check
condition. :

If there is a unit check, it transfers control to IGC0806H for the 3211
Printer and to IGCO706H for all other devices.

If there is no unit check, it deletes the message CSECT and returns to
the caller.

« If the data set was not opened or if there was no permanent I/O error:
It examines the post code and formats the message accordingly.
It deletes the message CSECT and returns to the caller.

SYNADAF Routine for BDAM and BISAM IGC0206H: This routine
completes the formatting of the message buffer for BDAM and BISAM.

It operates as follows:
o For BDAM
It formats the DDNAME.

It searches the completion codes of the DECB and stores the related
message.

If there is an IOB, it translates the Seek address into printable format.
Else, it sets the Seek address field of the message buffer to zeros.

o For BISAM

It searches the completion codes of the DECB and stores the related
message.

It formats the device type and DDNAME and stores them in the
message buffer.

o It deletes the message CSECT when formatting for BDAM or BISAM is
complete.

o It returns to the caller.

SYNADAF for QISAM IGC0306H: This routine analyzes status and sense
bytes and formats the condition portion of the message buffer, for QISAM.

The routine operates as follows:
o It formats the operation type.
o It tests the ECB post code.

« If the I/O event is not completed normally, it tests for an extent violation
or a permanent I/0 error and stores the corresponding error message.

« It analyzes the exceptional condition code and stores the error message.
« It formats the device type, unit ID, Seek address, and DDNAME.

» |

o If there is no pointer to the DCB, it deletes the message CSECT and
returns to the caller with a return code of 8 in register 15.

» Otherwise, it branches to IGC0406H for completion of the formatting.

SYNADAF Routine for TCAM/QISAM IGC0406H: This routine continucs
the error analysis for GAM, BTAM, QTAM, QISAM, and TCAM.

It operates as follows:
o It receives control from IGC0006H for GAM, BTAM, or QTAM.

« It formats the access method type and stores “SYNAD ROUTINE NOT
YET SUPPORTED" in the message buffer and returns to user.

« It receives control from IGC0306H for QISAM.

« If the error is not a permanent 1/0 error, it scarches the CSW status bytes
and the 10B sense bytes and formats the related message text.

o It receives control from IGC0906H for TCAM.
« It stores the access method type in the message buffer.

« It checks to determine if the error is a work area overflow or an invalid
destination. If neither is the cause of the error, the routine assumes a
sequence error and stores the appropriate message text.

« It formats the operation type.
» It deletes the message CSECT and returns to the caller.

SYNADAF SVC IGC0506H: This routine formats the message buffer for
EXCP.

The routine operates as follows:
« It stores the access method type in the message buffer.

It obtains the operation code from the CCW and translates it into printable
form.

« It validity-checks the UCB.

o If the UCB is not valid, it deletes the message CSECT and returns to the
caller with a return code of 8 in register 0.

o It stores the unit ID in the message buffer.
« It branches to IGCO106H for further analysis.

SYNADAF SVC for OCR Load IGC0606H: This routine completes the
formatting of the message buffer for OCR devices. 1GCO606H receives
control from 1IGCO906H.)

It operates as follows:

« It translates the CCW operation codc into printable form and stores it in
the message buffer.

« [t formats the DDNAME and stores it in the message buffer.
o It checks for the ECB completion code and stores it in the message buffer

o It scarches the IOBCSW status bytes and the 1OB sense byvtes and formats
the appropriate text.

Moethod of Operation 193

Page of SY26-3832-1
As Updated Aug. 31,1978
By I'NL SN26-097

« The sense byte settings for the OCR are device-dependent and so the
routine increments the pointer to the appropriate message text and then
stores the pointer in the message buffer.

o It deletes the message CSECT and returns to the caller.

SYNADAF Unit Check Analysis IGCO706H: This routine analyzes the 10B
sense bytes on a unit check condition for direct access, magnetic tape. and
unit record devices, except for the 3203, 3211 and 3800 printers. It receives
control from IGCO106H and formats the message buffer and sets blanks in
the work arca.

It operates as follows:
o It scans the 10B sense bytes for error indications.

o Itanalyzes TOB sense bytes 0 and 1 and stores the corresponding error
message in the message buffer.

e If there is a write-inhibit condition for a 2314 or 3330 device. it stores the
write-inhibit message text.

o If the unit record device type is a TCR (tape cartridge reader). the routine
re-analyzes the sense bytes and stores the appropriate message text.

o It deletes the message CSECT and returns to the caller.

SYNADAF Unit Check Analysis IGCO806H: This routine analyzes the 10B
| sense bytes on unit check conditions for 3203, 3211 and 3800 printer devices.

1GCORO6H receives control through a branch from 1GCOTO6H for 3211
Printers on a unit check condition.,

It operates as follows:
o It scans the 10B sense bytes for error indications.

o If the OB sense bytes do not have the status indicator, it sets the message
text to “unknown condition.™

« It stores the appropriate message for the 10B sense bytes.
o It deletes the message CSECT and returns control to the caller.

SYNADAF Error Analysis IGC0906H: This module continues the generalized
analysis of crrors for BDAM, QSAM, BPAM. BSAM. and TCAM dummy
data sets.

IGCO906H reccives control through a branch from IGCOO06H.
It operates as follows:
« For BDAM

If the DECB does not contain an TOB address, the routine transfers
control to IGC0206H for completion of the message buffer formatting.

If the DECB contains an 10OB address, the routine formats the unit 1D,
device type. and operation type and branches to IGCO106H for further
analysis.

« For BSAM, QSAM. and BPAM

It cheeks to determine if the device is an QOCR. If so, it branches to
1GCOO06H.

It formats the operation type, unit ID, and device type.

196 OS/VS2 SAM |ogic

Page of SY26-3832-1
As Updated 30 Nov 1979
By TNL SN26-0956

It branches to IGCO0106H for further analysis.
¢« For TCAM dummy data sets, it branches to IGC0406H.

SETPRT and SETDEYV Routines

There are 13 routines associated with the SETPRT macro instruction. Routine

. IGCOOO8A receives control when the SVC 81 instruction is issued. Routine
IGGO08101 receives control after routine IGCO008A if a specified UCS image
is to be loaded from the SYS1.IMAGELIB. Routine IGG08102 receives
control after routine IGG08101 to load the UCS image into the UCS buffer
and to print verification lines if required. Routines IGG08103 and
IGGO08104, respectively, locate the FCB image and load it into the forms
control buffer. Routine IGG08104 also verifies the load and/or allows forms
alignment.

When the device for which a SETPRT has been issued is a 3800 printer,
executor IGCO008A gives control to executor IGG08110. Executors
IGGO08111, IGG08112, IGG08113, IGG08114, and IGGO08115 are given
control, depending on the contents of the SETPRT parameter list.

When a SETPRT is issued for a SYSOUT data set, executor IGCO008A gives
control to executor IGG08117.

All messages issued by the SETPRT routines are in a message CSECT. The
SETPRT routines must extract the text from the CSECT before issuing the
message. If the user’s key is greater than or equals 8, the SYNCH macro
instruction is used for all WTO/WTOR:s for integrity reasons, because the
message text is moved to the user’s work area.

Two routines are associated with the SETDEV macro instruction. The
SETPRT routine, IGCO008A, receives control when the SVC 81 instruction
is issued. Routine IGG08108 receives control from routine IGCO008A to
initialize the IBM 3890 Document Processor Control Unit or the IBM 3886
Optical Character Reader.

Figure 34.1 shows the conditions that cause the executors to gain control.
Executor IGCO010E receives control when SVC 105 is issued to build or
delete the DCB and DEB for a SYS1.IMAGELIB data set.

SETPRT Routine IGCO0008A: The macro instruction SETPRT (set-printer)
expands into an SVC 81 instruction that causes this routine to be loaded and
to gain control. Routine IGCO008A determines whether the specified UCS
image is to be loaded from the SYS1.IMAGELIB after processing all
outstanding output requests for the DCB. It also determines if the 3890
Document Processor Control Unit is to be loaded and, if so, gives control to
routine IGG08108. If the 3800 printer is to be set up, control is given to
IGGO08110. If a SYSOUT data set is requested, control is given to routine
1GGO08117.

Input to the SETPRT executors is a 56-byte parameter list pointed to by
register 1. See the “Data Areas’ section for a description of the parameter
list.

| The SETPRT routine operates as follows:

« It issues an ESTAE macro instruction to establish a TRR, IGCT1081, to
intercept abnormal terminations.

« It saves information in the SVRB extended save area for IGCT1081, in
case the SETPRT ESTAE gets control.

Method of Operation 197

Page of SY26-3832-1
As Updated 30 Nov 1979
By TNL SN26-0956

SETPFRT/SETDEV - IMGLIB
SVC 81 SVC 105
Entry Entry
[1GCOCO8BA 1GC0010E
[Imitialization Skeleton DCB and
| and DEB needed for
l Validation SYS1.IMAGELIB
3890 1403 1443, 3203, 3211 Printers 3800 Printer 3800
1‘ 3886) SYSOUT
1GG08108 1GG08101 1IGGU8110 1GGO8117
SETDEV Retrieve UCS Initialize Printer e eneeeenn . SYSOUT
Processing liraae from Locate Translate : Processing
L ! SYS1 INAGELIB Tables
(. 1GG08102 i i
eturn
Loaw UCS 1GG08113
Inaye
Locate and e et
Load FCB
4—J Image 1n Printer
1GG08103 }
Locate FCB 1GG0o8111
Image Format Translate
Tables and Load
; WCGM
r
L 1GG08104
S
| Load FCB “ v
| Iniaye
(I 1GG08112
Load Transiate
Tables, Graphic Char
' Mods and Copy Mods
Reture)
1GGOB114 | t v ¥
PR T L T s — »| 1GG08116
Status Codes for
Paper Threading Process Error
and Forms Overlay Messages
! [}
1GG08115 :
Copy Count e U SOURRURNE

Figure 34.1. SETPRT Executor Selector

Flash Count ana
Starting Copy No

198 OS/VS2 SAM Logic

Page of SY26-3832-1
As Updated 30 Nov 1979
By TNL SN26-0956

« It contains a bootstrap routine that gets control from RTM; issues a LOAD
macro instruction, followed by a DELETE macro instruction, for
IGCT1081 (to get the entry point address of IGCT1081 in LPA); and
branches to that module.

o It issues a LOAD macro instruction for message CSECT (IGGMSGO1).

« It tests the DCB for a SYSOUT data set that is open for output and
bypasses unit record processing.

o If the 3890 or 3886 Document Processor Control Unit is to be loaded, it
passes control to routine IGG08108.

o It uses the GETMAIN macro instruction to obtain two work areas.
1. Key 5, subpool 230, for BLDL parameter list, a general work area.

2. User key, subpool 230, another general work area. (See “SETPRT
Work Area” in the “Data Areas” section.)

« It sets up various fields in the work areas for subsequent loads of SETPRT.

« When EXCEP is specified in the DCB, it builds an IOB in the user key work
area.

« When QSAM is specified for the DCB, the routine causes all outstanding
output requests to quiesce.

o If it is for a SYSOUT data set, control passes to routine IGG08117.

o It uses the EXCP macro instruction to execute block data check or reset
block data check according to the specification in the SETPRT macro
instruction.

« If the user does not specify an image in the SETPRT parameter list,
UCS/FCB images will, for integrity reasons, be ‘force loaded’ with the
current images as specified in the UCB.

o It issues SVC 105 to open SYS1.IMAGELIB.
« When a UCS image is to be loaded, it passes control to routine IGG08101.

« If an FCB load is required but a UCS load is not, routine IGG08103 is
called.

« If the device is a 3800 printer, control is given to executor IGG08110.

« If the caller’s request is invalid, it frees the work area and returns to the
caller with a return code in register 15. See OS/VS2 Data Management
Macro Instructions for a description of the return codes.

SETPRT Routine IGG08101: Routine IGG08101 is entered from routine
IGCO008A when the specified UCS image is to be loaded from the
SYS1.IMAGELIB.

The routine operates as follows:

« It uses the BLDL macro instruction to locate the UCS image in the
SYS1.IMAGELIB.

« If the UCS image is not in the library, the routine requests the operator to
specify an alternate UCS image to be loaded.

1. If the operator cancels the job step, it returns to the caller, with a
nonzero return code in register 15.

2. If the operator replies with a ‘“‘u” the current image is ‘force loaded.’

Method of Operation 199

If an error occurs during BLDL processing, it returns control to the caller
(for non-FCB printers), with a nonzero return code in register 15. For
FCB printers it transfers control to IGG08103.

When the UCS image is in the library, the routine uses the LOAD macro
instruction to retrieve the UCS image from the library.

Before returning to the caller when an error condition exists, it issues
DELETE macro instructions for the message CSECT and for the UCS
image, if it was loaded. It also frees the work areas and issues a CLOSE
macro instruction for SYS1.IMAGELIB.

The routine passes control to routine IGG08102 to load the retrieved UCS
image into the UCS buffer.

SETPRT Routine IGG08102: Routine IGG08102 is entered from routine
IGGO08101 to load the UCS image into the UCS buffer and to print
verification lines if required.

The routine operates as follows:

It uses the EXCP macro instruction to load the UCS image into the UCS
buffer.

If an error occurs during UCS load, it returns control to the caller, with a
non-zero return code for non-FCB printers. For FCB printers, it transfers
control to IGG08103.

Before returning to the caller when an error condition exists, it issues
DELETE macro instructions for the message CSECT and for the UCS
image, if it was loaded. It also frees the work areas and issues a CLOSE
macro instruction for SYS1.IMAGELIB.

When verification of the image is required, the routine uses the EXCP
macro instruction to print the UCS image for verification.

If an error persists during verification, it returns control to the caller, with a
non-zero return code in register 15.

It gets the local lock and updates the UCB to reflect the new image. It then
releases the local lock.

It uses the DELETE macro instruction to release the UCS image. If the
FCB is not to be loaded, FREEMAIN macro instructions release the work
areas, a DELETE macro instruction releases the message CSECT, and
control is returned to the user’s program.

If an FCB image is specified, routine IGG08103 is called; otherwise, control
is given to the user’s program.

SETPRT Routine IGG08103: Routine IGG08103 locates the FCB image in
the problem program’s DCB exit list or in SYS1.IMAGELIB and loads it into
virtual storage. It is entered from IGC0008A, IGG08101, or IGG08102.

The routine operates as follows:

200 OS/VS2 SAM Logic

It checks the DCB exit list to see whether the specified FCB image is
defined in the problem program.

It uses the BLDL macro instruction to locate the FCB image in
SYS1.IMAGELIB if the image is not specified in an exit list.

If an error occurs during BLDL processing, it returns control to the caller,
with a non-zero return code in register 15.

9

« If the image is not found in the library, the routine requests the operator to
specify an alternate FCB image.

1. If the operator cancels the job step, it returns to the caller, with a
non-zero return code in register 15.

2. Hf the operator replies with a “‘u”, the current image is ‘force loaded.’

« Before returning to the caller when an error condition exists, it issues
DELETE macro instructions for the message CSECT and for the FCB
image, if it was loaded. It also frees the work areas and issues a CLOSE
macro instruction for SYS1.IMAGELIB.

« If the FCB image is specified in the problem program or successfully
loaded into virtual storage from SYS1.IMAGELIB, routine IGG08104 is
called to load the image into the forms control buffer and print a
verification, if requested.

SETPRT Routine IGG08104: Routine IGG08104 loads the FCB image into
the forms control buffer and verifies the load and/or allows forms alignment.
It is entered from 1GG08103.

The routine operates as follows:
« It loads the forms control buffer with the specified image.
« If VERIFY is specified, the image is printed for visual verification.

« If an I/O error occurs during verification, control is returned to the caller
with a non-zero return code in register 15.

« If ALIGN is specified, the operator is instructed to align the forms.

e It issues a DELETE macro instruction for the message CSECT and for the
FCB image, if it was loaded from SYS1.IMAGELIB. It also issues a
CLOSE macro instruction for SYS1.IMAGELIB and frees the work area
gotten by IGCO008A.

« The routine always exits to the problem program.

SETDEYV Routine IGG08108: IBM 3890 Document Processor or IBM 3886
Optical Character Reader routine. IGG08108 receives control from routine
IGCO008A.

The routine operates as follows:

o It verifies the SETDEV parameter list.
« It loads the appropriate control unit.

« It exits to the problem program.

SETPRT Executor IGG08110: Executor IGG08110 is entered from executor
IGCO0008A when the UCB device type indicates that SETPRT processing is
being done for a 3800 printer.

The executor operates as follows:

« It builds a SETPRT path table according to the format and content of the
SETPRT parameter list. The path table is used to control the sequence of
execution for subsequent 3800 printer SETPRT executors.

When printer initialization is requested, IGG08110 uses the EXCP macro
to issue the channel command sequence that resets the controls for the
3800.

Method of Operatio<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>