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Preface

This publication describes diagnostic techniques and guidelines for isolating
problems on MVS systems. It is intended for the use of system programmers and
analysts who understand MVS internal logic and who are involved in resolving MVS
system problems.

This publication is intended for use only in debugging. None of the information
contained herein should be construed as defining a programming interface.
Organization and Contents

This publication stresses a three-step debugging approach:

1. Identifying the external symptom of the problem.

2. Gathering relevant data from system data areas in order to isolate the problem
to the component level.
3. Analyzing the comporient to determine the cause of the problem.

In support of this approach, the publication has been reorganized into three
basic parts consisting of five sections and three appendixes as follows:

~Part 1

Section 1. General Introduction — Describes the debugging approach that is used
and defines the external symptoms that are used to identify a system problem.

Section 2. Important Considerations Unique to MVS - describes concepts and
functions that should be understood prior to undertaking system diagnosis.
Included are: global system analysis, system execution modes and status saving,
locking, use of recovery work areas, effects of MP, trace analysis, debugging hints,
and general data gathering techniques.

Section 3. Diagnostic Materials Approach — provides guidelines for obtaining and
analyzing storage dumps of data areas affected by the problem.
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Part 2

Section 4. Symptom Analysis Approach — describes how to identify an external
symptom (loop, wait state, TP problem, performance degradation, or incorrect
output), and provides an analysis procedure for what kind of problem is causing the
symptom.

Section'5. Component Analysis — describes the operating characteristics and
. recovery procedures of selected system components and provides debugging
techniques for determining the cause of a problem that has been isolated to a
particular component. ’

Part 3

Appendixes _

A. — describes the flow of various MVS processes.

B. — provides a step-by-step approach to analyzing a stand-alone dump.

C. — contains definitions of abbreviations used throughout the publication.
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Summary of Amendments
for GC28-0725-2
VS2 Release 3.7

Changes have been made throughout this publication to reflect a Service Update to
0S/VS2 Release 3.7 and to include the following topics:

Diagnostic Aids Information

Information from OS/VS2 System Logic Library, Volume 7, SY28-0719, was
added in the following topics:

Started task control (STC) abend and reason codes.

Scheduler work area (SWA) manager reason codes.

Auxiliary storage manager (ASM) diagnostic aids and serialization information.
Allocation/unallocation reason codes.

TSO logon scheduling.

Communications task overview and diagnostic aids.

DIDOCS diagnostic aids.

Also, diagnostic aids information was added for:

o Error recovery procedures (ERPs).
e Converting virtual addresses to real addresses.
e JES2 miscellaneous hints.

Interactive Problem Control System (IPCS), SU57

Overview infbrmation was added for IPCS.

Miscellaneous Changes

Throughout the text:

e Minor technical and editorial changes were made.

o References to DSS (dynamic support system) were removed.

e References to EREPO were changed to EREP1 (environmental recording editing
and printing).

Summary of Amendments Xix



xx 0S8/VS2 System Programming Library: MVS Diagnostic Techniques

P



Section 1. General Introduction

This section introduces basic MVS problem analysis and provides an overview of the
interactive problem control system (IPCS).

| Basic MVS Problem Analysis Techniques

Problem isolation and determination are significantly more complex in MVS than
. in previous operating systems because of:

Enabled System Design which has made the internal and environmental status-
saving functions more extensive than those of previous system.

Multiprocessing (MP) which potentially allows the execution of code in
sequences not encountered in a uniprocessing (UP) environment. MP can also
cause contention for serially reuseable resources. (In this manual, MP refers to
multiprocessing on both multiprocessors and attached processors.)

Locking Mechanism which facilitates Enabled System Design and Multi-
processing functions and maintains data integrity.

Subsystems which are responsible for processing work requested from the
system. They maintain their own work queues, control block structures and
dispatching mechanisms — all of which must be understood in order to
effectively pursue problems in the MVS operating system.

Software Recovery which attempts to keep the system available despite errors.

The large number of new components which provide new functions and whose
internal logic must be understood for effective problem determination.

As a result of this complexity, MVS problem solvers have made two adjustments

in their diagnostic outlook:

Rather than learning the system logic at an instruction or module level, they
have learned the system in terms of component interactions at the interface
level.

They have learned that the most effective problem analysis at a system level is
obtained from a disciplined, almost formal, diagnostic approach.

Section 1. General Introduction  1.1.1



Section 1:- General Introduction (continued) -

This publication contains those debugging techniques and guidelines that have
proven the most useful to problem solvers with several years experience in
analyzing MVS system problems. These techniques are presented in terms of a
debugging “approach” that can be summarized in three steps:

1. Identifying the external symptom of the problem.

2. Gathering relevant data from system data areas in order to isolate the problem
to a component.

3. Analyzing the component to determine the cause of the problem.

The most important step in this approach is often the first — correctly
identifying the external symptom of a problem. To do this, it is best to get a
description of the problem as it was perceived by an eyewitness. You will want a
description that provides a context from which to start, such as:

“System is looping; can’t get in from console.”
““Job abended with 213”

“1/O error on 251.”

“Console locked out.”

“Terminal hung, keyboard locked.”

“System in wait, nothing running.”

“Bad output.”

“Job won’t cancel.”

“System degrading. Very slow.”

“System died.”

“0C4 in component abc.”

The list is endless, of course. Your objective is to fit one (or more) of these
descriptions to one of the following external symptoms.

o Enabled wait — The system is not executing any work and when it takes
interrupts, nothing happens. Something appears to be stuck.

- o Disabled wait — The system freezes with a disabled PSW that has the wait bit
on. This can be either an explicit and intentional disabled wait or a situation
that occurs because the PSW area has been overlaid. Unfortunately, the latter
is more often the case.

o Disabled loop — This is normally a small (fewer than 50 instructions) loop in
disabled code. o

e Enabled loop — This is normally a large loop in enabled code (and may
‘ include disabled portions — loops as a result of interrupts).
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Section 1. General Introduction (continued)

®  Program check — The program is automatically cancelled by the system,
usually because of improper specification or incorrect use of instructions or
data in the program. The program check message gives the location of the
failing operation and the condition code. If a SYSABEND, SYSMDUMP, or
SYSUDUMP DD statement was included in the JCL for the job, a dump of
the problem program will be taken.

| « ABEND — The system issues an SVC 13 with a specific code from 1 to 4095
to indicate an abnormal situation.

o Incorrect outpur — The system is not producing expected output. Incorrect
output can be categorized as: missing records, duplicate records or invalid
data that has sequence errors, incorrect values, format errors, or meaningless
data. If a program has apparently executed successfully, incorrect results will
not be detected until the data is used at some future time.

o  Performance degradation — A bottleneck or system failure (hardware or
software) has severely degraded job execution and throughput.

e TPproblem — A problem, usually detected by the operator or terminal user,
that indicates malfunctions are affecting one or more terminals, lines, etc.

The chapters in Section 4 (Symptom Analysis Approach) will help you identify
these symptoms. The main rule at this stage of your analysis is to proceed
carefully. When first screening a problem, do not assume too much. Don’t even
assume that the original eye witness description was correct. Keep all initial
information about the problem as a reference for your later analysis.

In the course of identifying the correct external symptom, you will begin
gathering data that will lead you to other sections of the publication. Specific data
gathering techniques are contained in Sections 2 and 3. Section 2 describes the
major MVS debugging areas such as LOGREC records and recovery work areas,
Section 3 describes how to use a storage dump effectively as your main source of
diagnostic material.

Eventually you should have gathered enough data to isolate the problem to a
particular component or process. Section 5 and Appendix A provide techniques
for analyzing system components and processes so that you can determine the
cause of the problem. Appendix B contains a step-by-step procedure that can be
used as a guide for analyzing a stand-alone dump.

Note: Before you begin using this publication for problem analysis, scan
through it to find out where the various types of information are located.
Depending on your current debugging skill level, various sections will be more
important than others.

Always keep in mind that trouble-shooting a system of the internal complexity
of MVS is not always an “If A, then B” procedure. The guidelines and techniques
presented in this publication define “generally” what the analyst will discover. The
nature of the debugging process is such that the problem solver does not perform
the same analysis for every problem.
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 Section 1: General Introduction (continued)
IPCS — Interactive Problem Control System

The interactive problem control system (IPCS) provides MVS installations with
expanded capabilities for diagnosing software failures and facilities for managing
problem information and status.

IPCS includes facilities for:

e Online examination of storage dumps.
o Analysis of key MVS system components and control blocks.

e Online management of a directory of software problems that have occurred in
the user’s system.

e Online management of a directory of problem-related data, such as dumps or
the output of service aids.

IPCS runs as a command processor under TSO, allowing the user to make use
of existing TSO facilities from IPCS, including the ability to create and execute
command procedures (CLISTs) containing the IPCS command and its sub-
commands. :

IPCS supports three forms of MVS storage dumps:

I e High-speed stand-alone dumps produced by AMDSADMP.
o Virtual dumps produced by MVS SDUMP on SYS1.DUMP data sets.

- e Virtual dumps produced by MVS SDUMP on data sets specified by the
| SYSMDUMP DD statement.

Dumps on data sets specified by the SYSABEND or SYSUDUMP DD state-
ments cannot be analyzed using the IPCS facilities.

For information about IPCS, refer to the OS/VS2 MVS Interactive Problem
I Control System (IPCS) User’s Guide and Reference.
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Section 2. Important Considerations Unique to MVS

This section describes concepts and functions that are unique to the MVS environ-
ment and useful to problem analysis. It also contains miscellaneous debugging
hints and general data gathering techniques.
SEC-
The chapters in this section are: TION 2

o Global System Analysis

o System Execution Modes and Status Saving

e Locking

e Use of Recovery Work Areas in Problem Analysis
o Effects of Multi-Processing on Problem Analysis
o MVS Trace Analysis

e Miscellaneous Debugging Hints

o Additional Data Gathering Techniques
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Global System Analysis

In trying to isolate a problem to an internal symptom, a global system analysis
often uncovers enough data to provide a starting point for the actual problem
isolation and debugging. This chapter discusses the main considerations the analyst
should be aware of when analyzing a stand-alone dump, including:

The system areas that should be inspected to understand the current system
state at the time of a dump

The system areas that should be examined to understand the current state of
the work in the system and the current disposition of storage and tasks

Global Indicators That Determine the Current System State

The following areas should be examined to help determine the current state of the
system:

1.

PSA — occupies the first 4K bytes of real storage for each processor. Note that
absolute 0 is not used during normal system operation on a machine with the
MP feature — this is true whether the system is operating in MP or UP. (The
one exception is a control program that is system generated with
ACRCODE=NOQ.) During NIP processing the PSA(s) for the processor(s) are
initialized and the prefix register(s) are initialized to point to them.

Special Notes About Standalone Dumps:

® Before taking a stand-alone dump, it is necessary to perform a STORE
STATUS operation. This hardware facility does not use prefixing;
instead it stores values such as the current PSW, registers, CPU timer, and
clock comparator in the unprefixed PSA (the one used before NIP
initialized the prefix register) at absolute address 100. The dump program
subsequently saves these values and, in an MP environment, issues a
SIGP instruction to the other processor requesting a STORE STATUS
operation. As a result, these values in the unprefixed PSA are overlaid
by the second processor’s values.

Therefore, in an MP environment the status in the unprefixed PSA is
always that of the non-IPLed processor, not the one on which the stand-
alone dump was IPLed.

e In a machine not equipped with the MP feature and therefore without
prefixing, the IPLing of the stand-alone dump program causes low storage
(0-X18’) to be overlaid with CCWs. You should be aware of this and not
consider it as a low storage overlay.
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Global System Analysis (continued)

| o Inan MP environment, the STORE STATUS operation must be pérformed
only from the processor to be IPLed for the stand-alone dump program.

o [PLing the stand-alone dump program twice causes the storaée dump to
contain a dump of itself because it was read in for the first IPL. This
causes the dump program to overlay a certain portion of the nucleus
(generally starting at X*7000”) and the general purpose registers to con-
tain values associated with the stand-alone dump program and not MVS.

o If the operator does not issue the STORE STATUS instruction before
IPLing a stand-alone dump, the message “ONLY GENERAL PURPOSE
REGS VALID” appears on the formatted dump. The PSW, control
registers, etc., are not included. This greatly hampers the debugger’s
task.

2. Registers and PSW — The print dump program formats the current PSW and
the general, floating point, and control registers associated with each processor.
From these, you can determine the program executing on each processor.

If the current PSW is 070E0000 00000000 and the GPRs are all 0, you are
in the no:-work wait condition, which indicates no ready work is available
- for this processor to execute. -

If there is or should be work remaining, an invalid wait condition results.
(Refer to the chapter on “Waits” in Section 4.)

If the registers are not equal to zero and the PSW does not contain the wait
bit (X°0002°), there is an active program. If the wait task is dispatched, the
system is in the no-work wait condition,

3. ' ILC/CC — location X‘84’ for external interrupts; location X‘88’ for SVC
interrupts; location X‘8C’ for program interrupts. These fields'indicate the
last type of interrupt associated with each interrupt class for each processor.
The work active when each interrupt occurs is represented by the old PSWs
at locations: X‘18” (external); X‘20’ (SVC); X‘28’ (program). Common con-
tents of these fields are:

00001004 clock comparator
00001005 . CPU timer

00001201 SIGP-emergency signal
00001202  SIGP-external call

X84’

|
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Global System Analysis (continued)

X‘88" — 000200xx - where xx is the SVC number. This field should be
inspected for unusual SVCs such as:

—
|

WAIT: can indicate an enabled wait situation

D — ABEND: can indicate program error processing

F — ERREXCP: can indicate-a problem in I/O error processing
10 — PURGE:  can indicate a problem in the swap process
38 — ENQ: can indicate a resource contention problem
4F — STATUS: canindicate a non-dispatchability problem

X‘8C’ — 000X0011 indicates a'page fault interrupt. Anything other than
‘ a code of 11 is highly suspect and must be inspected
further. Also with a code of 11, the program check
old PSW (location X‘28”) must be enabled (mask =
X‘07’) because disabled page faults are not allowed in
MVS and it is an error if one occurs.

4. PSA + X204’ (CPU ID)

5. PSA + X210’ (address of LCCA — 1 per processor) — The LCCA contains many
of the status-saving areas that were located in low storage in previous systems.
It is used for software environment saving and indications. The registers
associated with each of the interrupts you find in the PSA are saved in this
area. In addition, the system mode indicators for each processor are
maintained in the LCCA.

6. PSA +X224° (PSAAOLD) — This is the address of the ASCB of the work:last
dispatched on each processor. This field indicates the address space that is
currently executing. ’

7. PSA +X°21C’ (PSATOLD) — This is the address of the TCB of the work last
dispatched on each processor. This field in conjunction with PSAAOLD isolates to
a task within an address space. Note: PSATOLD=0 when SRBs are dispatched.

8. PSA +X228’ (PSASUPER) — This is a field of bits that represent various
supervisory functions in the system. If a loop is suspected, these blts should
be checked in an attempt to 1solate the looping process.

Note: Because of SRM timer processing in MVS, the external first level
interrupt handler bit (X‘20”) or the dispatcher bit (X‘04’) may be set in this
field even in the enabled wait situation.

9. PSA + X2F8’ (PSAHLHI) — This field indicates the current locks held on
each processor. Knowing which locks are held helps isolate the problem,
especially in a loop situation. -By determining the lock holders you can
isolate the current process. (See the chapter on “Locking” later in this
section.)
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Global System Analysis (continued)

£

Srereor T s 0100 PSA 4+ X380°. (PSACSTK) — This is the address of the active recovery stack |
: ¥ o which contains the addresses of the recovery routines to be routed control in
case of an error. If the address is other than X‘C00’ (normal stack), the type
" of stack (for example, program check FLIH or restart FLIH) is meaningful,
especially in-theloop situation.

- By searching the normal stack (X°C00’) and associating the recovery
routine to active mainline routines you may get an idea of the current process.
This is true only if the pointer to the current entry is not X'C34,” which would
indicate an’empty recovery stack.

Note: If aloop is suspected, the first word following each routine address in
the current stack should be scanned. A X‘80’ indicates that routine is in

~ control. A X440’ mdlcates that routine is in control and that it is a nested
recovery. routine.

I If X‘10” into the stack is non-zero, also check for an SDWA address at X‘44°
into the active stack. This block is mapped by the SDWA DSECT and is
described in the Debugging Handbook, (RTCA and SDWA are different names

| for the same control block.) If an SDWA address is present, an error has

. occurred and it can be related to the problem you are analyzing. If trapping
via RTM’s SLIP facility, the registers at entry to RTM are contained in this area.

At this pbi(nt' you should understand each processor’s current activity, any
possible errors that have been detected by recovery, and the current system
state or mode.

Work Qﬁeues,_ TCBs and AddréSQ:Space Analysis

Examine the following areas to help determine the current state of work in the
system.

TCB'Summary

The TCB summary report, produced by AMDPRDMP (print dump program),
contains a summary of the address spaces and their associated tasks. A quick scan
of the completion (CMP) field for each task reveals any abnormal terminations

- that have occurred. Discovery of an error completion code warrants further
investigation as.to the cause. Remember, however, that these codes are residual
and the job or task might have recovered from the problem.

- Also investigate multiple abnormal completion codes which all relate to the same
area of the system, or many tasks that all have the same completion code. These
“completion codes can all relate to one area of the system and perhaps to the problem
you are investigating. "Again, LOGREC should provide further documentation in an
error situation such as this.
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Global System Analysis (continued)

Once you understand the system’s history from a trace, LOGREC, and error
viewpoint, you should examine the work to be done as your next step to under-
standing the problem. :

SRB Dispatching Queues

The print dump program formats the SRB dispatching queues. Elements on any of
these queues should be investigated, especially in cases where no work appears to
be progressing through the system.

Elements on the global or local service manager queues (GSMQ/LSMQ) can
indicate that the dispatcher has not received control since these SRBs were
scheduled. This is an unusual condition that should be investigated. It can also
indicate that the CVT anchors for these queues have been inadvertently altered.
This again is an error condition.

Elements on the GSPLs/LSPLs should be explained. It is possible the dump was
taken before the SRB routines were able to execute. But it more likely indicates
some other system problem such as an enabled wait or disabled loop. If there
are SRBs on an LSPL, you should determine if the associated address space
is swapped-into storage and if it is not, why not. (Possible causes are real frame
shortage or a problem in the paging/swapping mechanism.) Again this is an indica-
tion of a potential system problem. The chapter on “Waits” in Section 4 and the
chapter on “Dispatcher” in Section 5 contain additional information on the
dispatching queues.

If, at this point, you can isolate the problem to a component, refer to the
“Component Analysis” for that component in Section 5. The chapter on “Waits”
in Section 4 should prove helpful if you have isolated to a problem in the system,

Address Space Analysis

If you have isolated the error to a given address space or wish to determine the
state of a given address space, analyze the ASCB.

Important indicators in the ASCB are:

e ASCBLOCK (ASCB +X‘80") —to determine the specific state of the local lock.
If it.contains 7FFFFFFF or FFFFFFFF (the lock suspend/interrupt IDs),
refer to the chapter on “Locking” later in this section for an explanation.

Note: When holding a suspend lock, code can only be suspended because it
attempts to obtain an unavailable higher suspend lock or because of a page fault.
To find the reason for the suspension, refer to the discussion of Task Analysis
later in this chapter and to the chapter on “Locking” later in this section.
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Global System Analysis (continued) .-

e ASCBEWST (ASCB + X‘48’) — to determine the TOD clock value when the
address'space last executed. This field helps you determine how long an
address space has been swapped-out. By subtracting this field (middle four
digits) from the last timer value in the MVS trace table and converting to
seconds, you can discover the approximate swap-out time. (See the
chapter “MVS Trace Analysis” later in this section.)

o ASCBRCTF (ASCB +:X‘66”), — current status of the address space.
ASCBFLG1 (ASCB +X‘67’)

e ASCBASXB (ASCB + X‘6C’) — pointer to the ASXB that anchors the TCBs.

e ASCBSRBS (ASCB + X“76”) — number of SRBs active (currently executing or
: : suspended) in the address space. :

e ASCBOUCB (ASCB + X‘90’) — 'pointer to the OUCB, which is helpful when
determining why an address space is swapped-
out.

° ASCBFMCT (ASCB +X98’) — n‘umvberv of real frames currently occupied by
. R the address space.

e ASCBTCBS (ASCB + X‘7C’) — number of ready TCBs.

ASCBCPUS (ASCB + X‘ZO’) .— number of processors running tasks in this
address space.

Task Analysis

Once you understand the ASCB you should analyze the associated task structure.
Once again, scan the TCBs associated with your address space and look for an
abnormal completion field. While doingso, check the RB structure for each task.
Remember that the region control task, dump task, and started task control are
represented by the first three TCBs. “Normally” they will be waiting during

task execution. If one of them is not, you should determine why.

Assuming the first three TCBs are not obvious problem areas, continue
inspecting the remaining TCBs. You are trying to explain each RB. Starting with
~ the last RB created (the first RB, pointed to by the TCB + 0), determine what work
- is represented. If work is waiting, find out.why.

Note: The master scheduler address space has system task TCBs that differ from
other address spaces. Referto the diagrams for Master Scheduler Initialization, Start
Initiator, and Job Execution in the topic “General System Flow’’ in the Debugging
Handbook, Volume 1 for details of the TCB structures.
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Global System Analysis (continued)

The RBOPSW indicates the issuer of an explicit WAIT. If an explicit WAIT

is not obvious, consider the following suspension possibilities and their associated
key indicators:

1.

If ASCBLOCK = X‘7FFFFFFF’ or X‘FFFFFFFF’, the status (registers and
PSW) of the suspended or interrupted task is saved in the IHSA (ASCB + X‘6C’
points to ASXB; ASXB + X‘20’ points to IHSA). The reason for suspension

is important. If it is for a lock, find out what address space or task owns that
lock and what the owners’ state is. (The chapter on “Locking” later in this
section shows how to determine lock owners.) If it is for a page fault, find

out of the state of that page fault. Note also that while the RBTRANS field
points to the page fault causing address, the RBWCF is 0.

Note: If atask owned the local lock at the time of the suspension or interrupt,
the TCB active indicators and the TCBCPUID (last processor on which this task
was dispatched) is set on. If no TCB in the task structure has these indicators
set, you can assume an SRB owned the lock. If no SRBs are on the CMS
suspend queue, the suspension is probably the result of a page fault.

An SRB can be suspended because of a page fault or a request for an
unavailable suspend lock. The save area for the suspended SRB is the SSRB
(see the Debugging Handbook). If suspended for page fault processing, the
SSRB is pointed to by the corresponding PCB+1C. PCBs are generally chained
together and anchored in two locations: (1) the RSMHDR for local address
space page faults; (2) the PVT for page faults caused by referencing commonly
addressable storage. Note that if real frames were not available when the page
fault occurred, even local page faults are queued from the PVT on the defer
queue (PVTGFADF, PVT + X‘754%). For a CMS lock request, the SSRB is on
the CMS lock suspended queue. Se¢ the chapter on “Waits” in Section 4 for
details on how to locate the SSRB. For Local lock suspensions, the SSRBs are
chained together on a queue anchored in the ASCB (ASCB + X‘84”).

A locked TCB can be suspended for the same reasons as an SRB. The save
area is the IHSA (described in the Debugging Handbook). The THSA is valid
during a page fault if the corresponding PCB+8 flag is on, indicating the lock
‘was held at the time of the page fault. Also, the TCBLLH (TCB + X‘114°)
is set to X‘01if the task was locally locked at the time of the page fault.

The THSA is valid for a CMS lock suspension if the ASCB is on the CMS
lock suspend queue at label CMSASBF in IEANUCO1. The TCB can be
suspended because of a page fault while holding both the local and CMS locks.
One way to tell is that the ASCB+X67’ flag for the CMS lock is turned on and
the ASCB address is in the CMS lockword.
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Global System Analysis (continued)

2. If ASCBLOCK = X‘00000000" and the memory/task is waiting, the status
is saved in the RB/TCB. (See the chapter on “System Execution Modes and
Status Saving™ later in this section.)

3. Suspended SRBs can cause bottlenecks. The chapter on “‘System Execution
Modes and Status Saving” can aid in locating any suspended SRBs that relate to
the address space. Note: Do not spend time looking for them unless other facts
about the problem indicate a potential problem in this area.

By far the most important consideration in task analysis is the RB structure of
each task. Generally if you have isolated the problem to an address space, RB
analysis shows a potential problem in the way of:

Long RB chains

Contention caused by an ENQ (SVC 38) request
Page fault waits

1/O waits

Abnormal termination processing, that is, SVC D RB

Once you have analyzed the RB structure you might want to go back and further
analyze the TCBs. Following are additional important fields in the TCB:

1. TCBFLGS (TCB + X‘1D’) — indicators of how the system currently considers
this task.

2. TCBGRS (TCB + X*30°) — -general purpose registers (0-15) saved when a
TYPE 1 SVC is issued or for an interruption for a non-locked task.

3. TCBSCNDY (TCB + X‘AC’) — additional system indicators for this task that
help to determine why this task is not executing.

4. TCBRTWA (TCB + X‘EQ’) — pointer to the RTM2 work area (mapped in the
Debugging Handbook) which contains information similar to the SDWA but
also data for RTM processing.

Summary

This chapter contains major considerations you must be aware of when

analyzing a stand-alone dump in MVS. A disciplined approach is important; resist
the tendency to go off on tangents upon finding the first unexplainable condition.
After gathering all the facts, try to resolve the “cause and effect” situations you are
bound to uncover. Generally, at this point you will have isolated the error and can
start a detailed component/process analysis.
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System Execution Modes and Status Saving

MV differs significantly from previous operating systems by having multiple
execution modes. Status is saved and-restored from many different locations
depending upon the execution mode at the time control was lost. This chapter
explains those modes and how they affect problem analysis.

System Execution Modes

MYVS has four execution modes:

1. Task mode

2. SRB mode

3. Physically disabled mode
4. Locked mode

Code always executes in one of these modes or, in certain cases, in a combination
of modes. For instance, code running in task or SRB mode can also be either
locally locked or physically disabled.

Task Mode

Task mode describes code that is executing in the system because the dispatcher
selected work from the task control block (TCB) chain. To start execution, the
dispatcher sets up the environment (registers and PSW) and then passes control to
the code to be executed. The registers and PSW are found in one of two places:

1. Inthe TCB at TCBGRS (TCB+X30’), which is a register save area used when
unlocked, enabled TCB mode work is interrupted. The PSW is obtained from
the request block (RB) that is found through the TCB+0.

2. In the IHSA (interrupt handler save area), which is used to save registers when
locally locked task mode code is interrupted. IHSA is found through
ASXB+X20’; ASXB is found through ASCB+X‘6C’. The PSW for locally
locked tasks is obtained from the IHSA.

Task mode is probably the most common execution mode. All programs given
control via ATTACH, LINK, and XCTL operate in this mode.
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System Execution Modes and Status Saving (continued)

SRB Mode

SRB (service request block) mode describes code that is executing in the system

. because the dispatcher finds an SRB on one of the SRB queues. SRB set-up is
started by the SCHEDULE macro. SCHEDULE is an in-line macro that places the
requestor-furnished SRB on one of two service queues, local or global, depending
on the requestor’s speclﬁcatlon .These queues can be found from the CVT at
CVTGSMQ (CVT+X‘264°), which contains the address of the global service
manager queue, or at CVTLSMQ (CVT+X‘268’), which contains the address of the
local service manager queue. Whenever the dispatcher finds work on either queue,
the SRBs are moved to the corresponding system priority list queue. The global
system priority list queue (GSPL), which contains globally scheduled SRBs, is
found from the CVT at CVTGSPL (CVT+X26C).

There is also one local system priority list queue (LSPL) per address space.
Each LSPL, which is found from the ASCB at ASCBSPL (+X‘1C’), contains all
SRBs locally scheduled by the requestor and also those SRBs that were globally
scheduled when the targeted address space was swapped out.

SRBs are selected from these LSPLs by the dispatcher in order to start execution.
The dispatcher loads registers 0, 1, 14, and 15 from information in the SRB and
builds the PSW. The PSW key and address are the responsibility of the scheduler
of the SRB and are specified in the SRB. SRB mode has the characteristics of
being enabled, supervisor state, key requested and non-preemptable. Non-
preemptable means that the interrupt handler should return control to the
interrupted service routine (code running under SRB mode). However, service
routines can be suspended because of a page fault or because a lock (CMS or local)
is unavailable.

Physically Disabled Mode

Disabled mode is reserved for high-priority system code whose function is the
mampulatlon of critical system queues and data areas. It is usually combined with
supervisor state and key 0 in the PSW, and assures that the routine running disabled
is able to complete its function before losing control. It is restricted to just a

few modules in MVS (for example, interrupt handlers, the dispatcher, and
programs holding a global spin lock).

Physically disabled mode is used for one of two reasons:

1. To assure that data remains static while the code is referencing or updating the
data.

2. To assure that non-reentrant code does not lose control while performing
critical system functions. For example, JOS must run disabled while enqueueing
and dequeueing requests to UCBs and while updating UCBs at the start and end
of 1/O operations.
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In the MVS system, physical disablement on a system basis because of MP must
be accompanied by locking in order to guarantee serialization. MVS disabled code
is also always accompanied by either a global spin lock or code executing under a
“super bit”. The “super bits” are located in each processor’s PSA (X‘228").

They are used primarily for recovery reasons — they allow RTM to recognize that
a disabled supervisory function was in control at the time of error even though
global locks were not held. This indicates that FRR recovery processing should
be initiated by RTM.

Note that type 1 SVCs do not execute disabled in MVS. Instead they are
entered with the local lock. Thus they are considered to be task mode physically
enabled, holding the local lock.

Locked Mode

Locked mode describes code executing in the system while owning a lock. (See
the chapter on “Locking” later in this section.) A lock can be requested during any
execution mode (SRB, TCB, physically disabled).

Status saving while in a locked mode requires unique considerations from the
system. An example is a program that invokes a type 1 SVC, such as EXCP
or WAIT, that executes in locked mode. When a type 1 SVC is enabled, it
can be interrupted. However, if the SVC is interrupted, the registers cannot be
saved in the TCB because it is being used to save registers active at the time of the
SVC request for return to the requestor. Therefore, status must be saved else-
where.

For programs executing in locked mode, status is saved according to the
condition surrounding the programs, as follows:

Locdlly locked task is interrupted. A new area, the IHSA interrupt handler save
area (IHSA), has been defined in MVS to contain the status when a locally locked
task is interrupted. The IHSA is found from the ASCB + X‘6C,” which points to
the ASXB; the ASXB + X‘20’ points to the IHSA.

Locally locked SRB is interrupted. When locally locked SRBs are interrupted,
there is no problem because SRBs are non-preemptable. The registers and PSW are
saved in the LCCA. When the system has handled the interrupt, the SLIHs return
to the FLIHs, the status is restored from the LCCA, and control is returned to the
interrupted SRB routine.

Locally locked SRB is suspended. Locally locked SRBs that are suspended must
have their status saved in a unique area. The process that suspends an SRB is
responsible for obtaining an SSRB (suspended SRB), which will contain the
interrupted status and will also serve as the control block used to reschedule the
service routine once the reason for suspension has been resolved. See “Locating
Status Information in a Storage Dump” later in this chapter for a detailed
description of how to find these SSRBs.
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System Execution Modes and Status Saving (continued)

Determining Execution Mode from a Stand-alone Dump

RN KnoWing the system’s execution mode at the time a stand-alone dump was taken is
important in analyzing a disabled coded wait state or a loop. The following areas
may help determine the mode of execution:

LCCA Indicators — There are two bytes of important dispatcher flags in the

PSA Indicators
o Super Bits —

® Recovery —
Stack

o Current —
Work

o Locks —

ASCB Indicators —

LCCA +X21C’.. At location X21D’, the LCCADSRW flag is
turned on just prior to any LPSW (Load PSW) for a global
SRB, a Local SRB, or task dispatch. For a global SRB, the
LCCAGSRB and LCCASRBM f{lags are also set on. For a
Local SRB, only the LCCASRBM flag is set on in addition to
LCCADSRW.

Flags in the supervisor control word located at PSA +
X228’ indicate whether the dump was taken while

‘in one of the interrupt handlers or dispatcher.

If the first two words of the RTM stack vector table

(PSA +X380) are not equal, then control is in one of the
interrupt handlers or the dispatcher. Compare the address
at PSA + X‘380° with each entry in the FRR stack vector
table starting at PSA + X384 to determine the owner of the
active stack. (See the chapter on “Use of Recovery Work
Areas for Problem Analysis™ later in this section for stack
vector table analysis.)

PSA + X218’ contains the addresses of the new TCB, old
TCB, new ASCB and old ASCB consecutively in a four-word
area. If the system is in SRB mode, the address of the old
TCB equals 0. If the addresses of the new and old ASCBs are
not equal, then the stand-alone dump was taken between the
time that an address space switch was requested and the time
the dispatcher dispatched an address space or a global SRB was
dispatched. In all cases, the old TCB and ASCB indicate the
current work.

The PSA also contains the lock indicators. (See the chapter on
“Locking” later in this section for a description of how to
determine the lock mode.)

The following ASCB locations help determine execution
mode:

X1C . —  Address of the local service priority list,
which contains SRBs queued for dispatching.

X‘66-67" — RCT flags.

X“72-73° — Non-dispatchability flags.

2.24 OS/VS2 System Programming Library: MVS Diagnostic Techniques




~——

System Execution Modes and Status Saving (continued)

X176 — Count of SRBs dispatched in this address
space. ‘

X7C — Number of ready TCBs in this address space.

X80 — Local lock (see the chapter on “Locking™
later in this section for how to interpret this
field when #0).

X84’ — Address of the SRB suspend queue for

unavailable local lock requestors.

Keep in mind that mixed modes frequently occur. For
example, a local SRB can obtain a lock, be interrupted, and
the stand-alone dump taken while disabled in the I/O
supervisor. Depending on the system mode at the time of
the interrupt, a task’s status (registers, PSW, etc.) can be saved

I in one of several places.

Locating Status Information in a Storage Dump

Status information is located in a storage dump depending on the conditions
under which it was saved.

o Tusk and SRB Mode Interruptions: Status saving is required whenever the
code gives up control, whether voluntarily or involuntarily. Initial status
is saved by the first level interrupt handler (FLIH) as follows:

SVC FLIH (task mode only) — Initially:
registers saved at LCCA+X ‘380’ (LCCASGPR)

Then for Type 1 and Type 4 SVCs:
registers moved to TCB+X ‘30’ (TCBGRS)
PSW moved from PSA to requestor’s RB
I Then for Type 2, 3, and 4 SVCs: '
Registers moved to SVRB
PSW moved from PSA to requestor’s RB
I/O FLIH — [Initially:
registers saved at LCCA+X‘1C0’ (LCCAGPGR)
PSW saved at LCCA+X‘200’ (LCCAIOPS)
Then for unlocked tasks: _
Registers moved to TCB
PSW moved to RB
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System Execution Modes and Status Saving (continued)

For locked tasks (CMS or local):
registers moved to THSA ASCB+X‘6C’ —»ASXB

ASXB+X20’ —==IHSA
PSW moved to IHSA
For SRBs: registers remain in LCCA
PSW remains in LCCA
External FLIH — Initially:
registers saved at LCCA+X‘A0Q’ (LCCAXGR1)
Then for recursion purposes:
registers moved to LCCA+X‘EQ’ (LCCAXGR2)
PSW is in PSA+X240’ v (PSAEXPS1)
If first recursion:
registers moved from LCCA+X‘AQ’ (LCCAXGR1)
to LCCA+X‘120° (LCCAXGR3)
PSW is in PSA+X248’ (PSAWXPS2)
If second recursion:
registers moved to LCCA+X‘AQ’, (LCCAXGR1)
where they stay
PSW is in PSA+X‘18’ (FLCEOPSW)

Note: Subsequent status manipulation for tasks and SRBs is the same as for the
1/0 FLIH (that is, the movement from LCCA to TCB or IHSA is identical).

Program check — Initially:

, registers saved at LCCA+8 - (LCCAPGR1)
Then: registers moved to LCCA+X‘48” (LCCAPGR2)
PSW is in LCCA+X‘88’ (LCCAPPSW)

For page faults that require I/O the following occurs:

Unlocked tasks: registers moved to TCB
PSW moved to RB

Locked tasks: registers moved to IHSA
PSW moved to IHSA

SRBs: Are suspended: see “SRB Suspension” later in this
chapter.

- Note: For SRB code, status is not moved from the LCCA save areas. SRBs are
non-preemptable and aré given control back immediately, with the
status being restored from the LCCA.

® Locally Locked Task Suspension: Status saving is the same as for locked task
interruptions (described earlier under “I/O FLIH”) except that IHSA also
contains the floating point registers, the FRR stacks, and the PSW. The
ASCBLOCK field is updated to contain X“7FFFFFFF’.
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® SRB Suspension: An SRB can be suspended in two cases. If a service routine
encounters a page fault and a page-in is required, then the SRB routine must
give up control. In that event, an SSRB (suspended SRB) must be obtained and
the status saved in that control block. Then the SSRB is queued from the page
control block (PCB) in the real storage manager. When the paging I/O
completes, the SSRB is re-queued to the local service priority list (LSPL)

where it is found later by the dispatcher. The SSRB must be obtained
because the original SRB was not retained after the dispatch. Status saved in an

SSRB must include the current FRR stack.

The second case of SRB suspension is an unconditional request for an
unavailable lock. Status saving for SRB suspension for alock differs from the
page fault where the SSRB is queued and where control returns after the
redispatch of the SSRB. For a request for alocal lock that is unavailable, the
SSRB is queued from the ASCB. For a request for an unavailable CMS lock,
the SSRB is queued on the CMS suspend queue header. (For more detail see the
chapter on “Locking” later in this section.) In both cases of SRB suspension,
resumption is at the appropriate entry in the lock manager to try to
acquire the lock. Upon release of the CMS lock by the holder, any SSRBs are
rescheduled. Upon release of the local lock by the holder, the first SSRB that
was suspended is given the local lock and rescheduled.

Suspend SRB queues can be summarized:

Page Faults
PCB is chained from PVTCIOQF (at PVT+X‘“75C’) for a common area page
and from RSMLIOQ (at RSMHD+X‘24") for a private area page.
PCB+X‘1C’ points to SSRB. ‘

Local Lock Requests
SSRB is queued from ASCBLSQH (ASCB+X‘84°).

CMS Locked

SSRB is queued from the CMS SRB suspend queue in IEAVESLA as
shown:

PSALITA
(PSA + X'2FC") ?

LIT

+0| § DISP LOCK IEAVESLA

DISP LOCK

SALLOC LOCK

SRM LOCK

00000000

CMS lockword and | +10°{ CMS LOCK
queue header for
SRBs and ASCBs 14 CMS SUSPEND
suspended for CMS Q HDR
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Locking

Serialization of resources to provide data integrity and protection is a necessary
function of operating systems. In pre-MVS systems, resource serialization was
accomplished by physical disablement and by the ENQ/DEQ component. Physical
disablement controls only one processor and thus, in MP systems, does not
guarantee serialization.

To achieve‘ these requifements the locking facility provides:
e Serialization in a tightly-coupled MP system
o Serialization across address spaces for common resources
e Serialization within address spaces
A central lock manager acquires and maintains all locks. Use of the lock
manager is restricted to key O programs running in supervisor state, which prevents

- unauthorized problem programs from interfering with the serialization process.
The lock manager is located in the nucleus in CSECT IEAVELK.

Classes of Locks
MVS locks are divided into two classes:

e  Global Locks, which protect serially reusable resources related to more than
one address space. These resources provide system-wide services or use
control information in the common area. Examples of resources protected by
global locks are UCBs and dispatcher control blocks.

e Local Locks, which protect serially reusable resources assigned to a particular
address space. When a task or SRB holds a local lock, the queues and control
blocks serialized by that lock can be used only by the task or SRB holding the
lock.

Figure 2-1 defines the MVS locks. All MVS locks, except the local lock, are ‘
global locks. ‘
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Locking (continued)

Name ‘ Description A

DisP Global dispatcher lock — serializes all functions associated with the
dispatching queues.

ASM ‘1 Auxiliary storage management lock — serializes the auxiliary storage
resources.
SALLOC ‘Space allocation lock — serializes real storage management (RSM)

" resources, virtual storage management (VSM) global resources, and
some auxiliary storage management (ASM) resources.

IOSYNCH 1/0 supervisor synchronization lock — serializes the 10S purge function
s : and other 1OS resources.

IOSCAT 10S channel availability table lock — serializes the 10S processor-
. related save area. o

10SUCB 10S unit control block iock — serializes access and updates to the unit
control blocks. There is one lock per UCB.

10SLCH 108 Iogicai channel queue lock — serializes acce