Systems

GC28-0725-2
File No. S370-37

0S/VS2 System
Programming Library:
MVS Diagnostic Techniques

Release 3.7

Includes Selectable Units:

Scheduler Improvements

Supervisor Performance *1

Supervisor Performance #2

Service Data Improvements

JES2 Release 4.1

3838 Vector Processing Subsystem Support
Dumping Improvements

Attached Processor System for Models 158/168
Hardware Recovery Enhancements

Interactive Problem Control System (IPCS)

VS§2.03.804
VS§2.03.805
VS§2.03.807
VS2.03.817
5752-825
5752-829
5752-833
5752-847
5752-855
5752-857

"qu“’i’u‘m'% E

Third Edition (September, 1978)

This is a major revision of, and obsoletes, GC28-0725-1 incorporating changes released in the
following System Library Supplement:

Interactive Problem Control 5752-857 GD23-0095-0 (dated March 31, 1978)
System (IPCS)

See the Summary of Amendments following the Contents for a summary of the changes that
have been made to this manual. A vertical line to the left of the text or illustration indicates

a technical change made in this edition; revision bars are not used, however, to indicate changes
made in previous editions, technical newsletters, or supplements.

This edition applies to release 3.7 of OS/VS2 and to all subsequent releases of OS/VS2 until
otherwise indicated in new editions or Technical Newsletters. Changes are continually made
to the information herein; before using this publication in connection with the operation of
IBM systems, consult the latest IBM System/370 Bibliography , GC20-0001, for the editions
that are applicable and current.

Publications are not stocked at the address given below; requests for IBM publications
should be made to your IBM representative or to the IBM branch office serving your
locality.

A form for reader’s comments is provided at the back of this publication. If the form has
been removed, comments may be addressed to IBM Corporation, Publications Development,
Department D58, Building 706-2, PO Box 390, Poughkeepsie, NY 12602. IBM may use

or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation whatever. You may, of course, continue to use the information
you supply. '

©Copyright International Business Machines Corporation 1976, 1977, 1978

o~

Guide for Using This Publication

Thé following is a list of the requirements for using this publication.

o This publication contains information for the following Selectable Units:

Scheduler Improvements — SU4

Supervisor Performance # 1 — SUS

Supervisor Performance # 2 — SU7

Service Data Improvements — SU17

JES2 Release 4.1 — SU25

3838 Vector Processing Subsystem Support — SU29
Dumping Improvements — SU33

Attached Processor System for Models 158/168 — SU47
Hardware Recovery Enhancements — SUSS

Interactive Problem Control System (IPCS) — SU57

e To use this publication, you must have installed at least SUs 4, 5, 7, 17, 25,
(if you are a JES2 user), 33, and 55.

e The implied date of this publication, for the purpose of adding new
supplements/TNLs, is September 30, 1978. Always use the page with the latest
date (shown at the top of the page) when adding pages from different supple-
ments/TNLs.

Guide for Using This Publication iii

iv OS/VS2 System Programming Library: MVS Diagnostic Techniques

Preface

This publication describes diagnostic techniques and guidelines for isolating
problems on MVS systems. It is intended for the use of system programmers and
analysts who understand MVS internal logic and who are involved in resolving MVS
system problems.

This publication is intended for use only in debugging. None of the information
contained herein should be construed as defining a programming interface.
Organization and Contents

This publication stresses a three-step debugging approach:

1. Identifying the external symptom of the problem.

2. Gathering relevant data from system data areas in order to isolate the problem
to the component level.
3. Analyzing the comporient to determine the cause of the problem.

In support of this approach, the publication has been reorganized into three
basic parts consisting of five sections and three appendixes as follows:

~Part 1

Section 1. General Introduction — Describes the debugging approach that is used
and defines the external symptoms that are used to identify a system problem.

Section 2. Important Considerations Unique to MVS - describes concepts and
functions that should be understood prior to undertaking system diagnosis.
Included are: global system analysis, system execution modes and status saving,
locking, use of recovery work areas, effects of MP, trace analysis, debugging hints,
and general data gathering techniques.

Section 3. Diagnostic Materials Approach — provides guidelines for obtaining and
analyzing storage dumps of data areas affected by the problem.

Preface v

Part 2

Section 4. Symptom Analysis Approach — describes how to identify an external
symptom (loop, wait state, TP problem, performance degradation, or incorrect
output), and provides an analysis procedure for what kind of problem is causing the
symptom.

Section'5. Component Analysis — describes the operating characteristics and
. recovery procedures of selected system components and provides debugging
techniques for determining the cause of a problem that has been isolated to a
particular component. ’

Part 3

Appendixes _

A. — describes the flow of various MVS processes.

B. — provides a step-by-step approach to analyzing a stand-alone dump.

C. — contains definitions of abbreviations used throughout the publication.

vi OS/VS2 System Programming Library: MVS Diagnostic Techniques

Referenced Publications

The following publications either are referenced in this publication or provide
related reading:

System/370 Principles of Operation GA22-7000
Synchronous Data Link Control General Information GA27-3093
0OS/VS2 MVS Interactive Problem Control System (IPCS) User’s
Guide and Reference GC34-2006
O0S/VS Environmental Recording Editing and Printing (EREP)
Program GC28-0772
0OS/VS2 System Programming Library:
Initialization and Tuning Guide GC28-0681
Supervisor GC28-0628
Job Management G(C28-0627
Service Aids GC28-0674
SYS1.LOGREC Error Recording GC28-0677
Debugging Handbook (2 volumes) GC28-0751 and GC28-0752
JES3 Debugging Guide GC28-0703
OS/VS2 TCAM System Programmer’s Guide, TCAM Level 10 GC30-2051
OS/VS TCAM Debugging Guide, TCAM Level 10 GC30-3040
OS/VS2 MVS VTAM Debugging Guide GC27-0023
Operator’s Library.
OS/VS82 MVS System Commands GC38-0229
0S/VS2 MVS JES2 Commands GC23-0007
OS/VS2 MVS JES3 Commands G(C23-0008
VTAM Network Operating Procedures GC27-6997
' OS/VS TCAM Level 10 GC30-3037
OS/VS Message Library:
V82 System Messages GC38-1002
VS2 System Codes GC38-1008
3704/3705 Program Reference Handbook GY30-3012
0S/VS2 I/O Supervisor Logic SY26-3823
| 0S/VS2 System itialization Logic SY28-0623
0S/VS2 VSAM Logic SY26-3825
OS/VS2 Catalog Management Logic SY26-3826
0OS/VS2 VTAM Data Areas SY27-7267
| 0S/VS2 Access Method Services Logic SY35-0010
OS/VS2 VTAM Logic SY28-0621

OS/VS2 System Logic Library (7 volumes) SY28-0713 through SY28-0719

Preface vii

viii

0S/VS2 CVOL Processor Logic
OS/VS2 MVS JES2 Logic
0OS/VS2 VIO Logic
OS/VS2 MVS JES3 Logic
OS/VS2 TCAM Level 10 Logic
- IBM 3704 and 3705 Communications Controllers NCB/VS Logic

0S/VS2 Data Areas (microfiche)

" 3704/3705 Communications Controllers Principles of Operation

IBM 3704/3705 Communications Controllers Emulation
Program Generation and Utilities Guide and Reference Manual

IBM 3704/3705 Communications Controllers NCP/VS Generation
and Utilities Guide and Reference Manual

0S/VS2 System Programming Library: MVS Diagnostic Techniques

SY35-0011
SY24-6000
SY26-3834
SY28-0612
SY30-3032
SY30-3013
SYB8-0606
GC30-3004

GC30-3008

GC30-3007

Contents

Section 1. General Introduction 111
|~ Basic MVS Problem Analysis Techniqueso oo evnennnnn.. 1.1.1
IPCS — Interactive Problem Control System. 1.1.4
Section 2. Important Considerations UniquetoMVS 2.11
Global System Analysiso o ittt it it ettt e e e e e 2.1.3
Global Indicators that Determine the Current System State. 2.1.3
Work Queues, TCBs and Address Space Analysis 2.1.6
TCB SUMIMATY. « . v v v v et e e ot e et et et o ettt ettt teeane s 2.1.6
SRB DispatchingQueues.o v i ittt ittt 2.1.7
Address Space Analysis. oo e 2.1.7
Task Analysis o . oottt i e e e e e e e e e e e 2.1.8
SUMMALY. o ittt e e e e e e e e e e e e e e 2.1.10
System Execution Modes and Status Saving. 0L 2.2.1
System ExecutionModes i ittt e e e e 2.2.1
TaskMode. it e e e e e 221
SRBMode. F o e et e e e ettt 2.2.2
Physically DisabledMode it ittt ittt e 2.2.2
LockedMode e e e e e e e e 2.2.3
Determining Execution Mode From a Stand-aloneDump 224
Locating Status Informationina StorageDump 2.2.5
Task/SRB Mode INterruptions. « . « . o v v v oo v v oo vt et on e enns 2.2.5
Locally Locked Task Suspension« c vt v v v it it e v onnn. 2.2.6
SRB SUSPENSION. . . & v vt v it st et e e s e e 227
Locking e e e e e e et e e e e e e e 2.3.1
Classes Of LoCKS. « . v v vt it vt it i e e e e e e e et ettt e 2.3.1
Typesof Locks v v it it i i e e e e e e e e 2.3.2
Locking Hierarchy i vt i i it it tie e e e e e ettt aeeean 2.3.3
Determining Which Locks Are Held OnaProcessor 2.3.4
Content of Lockwords o v ittt et et e e e e e e e e e e 235
How to FInd LockWords. v vt vt vt et e e e e e et e e aee e vs 2.3.5
Results of Requests for Unavailable Locks. 2.3.7
Use of Recovery Work Areas for Problem Analysis. 2.4.1
SYSI.LOGREC Analysis.t o it it ettt e e e et e e e 24.2
Listing the SYSI.LOGREC Data Set v v v v v v v v i 24.2
SYSI.LOGREC RECOIAS. . v v v v v vt et v es oot emeeeanae e 24.3
Important Considerations About SYSI.LOGREC Records 2.4.13
SYS1.LOGREC Recording Control Buffer. 24.14
Formatting the LOGRECBuffer, 2.4.15
Finding the LOGREC Recording ControlBuffer 24.15
Format of the LOGREC Recording Control Buffer. 2.4.15
FRR SIACKS « . o it ittt it it it ettt et es s o nnennas 2.4.17
Extended Error Descriptor (EED)0t i i v ii i, 24.19
RTM2 Work Area (RTM2WA).ottt i it it it et e et et ans 2.4.19
Formatted RTM Control Blocks . . .« ¢« o e v v e v i i e i e oo e e 2.4.19
System Diagnostic Work Area (SDWA) UseinRTM2 2.4.20
Effects of Multi-Processing On Problem Analysis 2.5.1
Featuresof an MP Environment. ittt erennns 2.5.1
MPDump AnalysiS o v v v it e it et e e e e e e 2.5.2
Data Areas Associated With the MP Environment. 2.5.3
Parallelism vttt it i it e et e e e 2.5.4
General Hints for MP Dump Analysis. 2.5.6
Inter-Processor Communication. i ittt et e e e 2.5.7
Direct Services. . - . v v i v vt i it it et e e e e s, 2.5.8
Remote Pendable Services.o v it ittt i i e e 2.5.9
Remote Immediate Servicesot vttt it e 2.5.10
MPDebugging Hints i ittt i it ettt noneeernssnns 2.5.16

Contents ix

MVS Trace Analysis0cuv0..n. e e i e e et e e e e e 2.6.1

Trace Entries e e e e e e e e i e e e e 2.6.1
Trace EXamples i v vt vt it e e i e i e e e e e 2.6.3
NOteS fOr TIACES. &+ o v v v v v v v e e vieie v st e n e anoe oo man e 2.6.5
Tracing Procedure. e e e e et e e e 2.6.5
Cautionary NOtes . . o o v it it it e e et e e e e e e e e e 2.6.7
Miscellaneous DebuggingHints e e 271
Alternate CPU Recovery (ACR) Problem Analysis 271
Pattern Recognitionttt inennnennnns 2.7.3
Low Storage Overlays et e et e e e 2.7.4
CommonBad Addresses v oo it i it it i e e e 2.5
OPEN/CLOSE/EOV ABENDS. & . v v v vttt v e e et ettt e e ineee e 2.7.5
DebuggingMachineCheckso v v v it i i e e e e 2.7.6
Debugging Problem Program Abend Dumps. 2.7.11
Debugging from Summary SVCDumps oo it i v v v, 2.7.14
SUMDUMP Output for SVC-Entry SDUMP. 2.7.14
SUMDUMP .Output for Branch-Entry SDUMP 2.7.16
I Started Task Control ABEND and ReasonCodes.o v. ... 2.7.18
SWA Manager Reason Codes. o v it i it i et e e e 2.7.19
Additional Data Gathering Techniques.o iv i 2.8.1
Using the CHNGDUMP, DISPLAY DUMP, and DUMP Commands. 2.8.2
HowtoPrint Dumps v v ii et ittt e e e it e e e s onoenns 2.8.2
I How to Automatically Establish System Options for SVCDump 2.8.5
How to Copy PRDMP Tapes. v o v i vt vttt i it i i i i s eneans 2.8.5
Howto Rebuild SYSLLUADSottt it ettt e et i nn s 2.8.6
How to Print SYSI.DUMPXX vt ittt it it ittt en et e e ee e 2.8.7
How to Clear SYS1.DUMPxx WithoutPrinting. 2.8.7
How to Print the SYSI.COMWRITE DataSet.0.v.... 2.8.8
How to Printan LMOD MapofaModule 2.8.8
How to Re-create SYS1.STGINDEX ittt it ittt ee e nns 2.8.9
Software LOGREC Recording. v o et it ittt i e e i enean 2.8.9
Usingthe PSAasaPatch Area. v ittt i ittt e enne e 2.8.10
Usingthe SLIPCommand v v vttt it v et e et e e e ee e eee e 2.8.10
Designing an Effective SLIP Trap. e e 2.8.12
Enabling the PER Hardware to Monitor Storage Locations 2.8.15
System StopRoutine. 4 e e e 2.8.17
Using the MVS Trace to Monitor Storageot i v v v e v 2.8.18
How To Expand the Trace Table . « v v v v v v v v v e v e ot e eee e e 2.8.18
Section 3. Diagnostic Materials Approach. B e dae e e e 3.1.1
Standalone DUmPs ot v it i e e e e e e e e e e e e 3.1.3
SVCDUMPS « & . vt it et e e e e e e e e e e e e e e e e 3.1.5
How to Change the Contents of an SVC Dump Issued by an Individual
Recovery Routine. i ittt it i e et e e en e 3.1.6
SDUMP Parameter List. v o o v v e v i it ie e e v et e enan... 317
SYSABENDs, SYSMDUMPs,and SYSUDUMPS.o v v v e e e e nn . 3.1.9
“Software-Detected EIrors . . . ¢ . .o oot it it e e e e e e e 3.1.9
Hardware-Detected Errors e e e e e et e e e e 3.1.10
Section 4. Symptom Analysis Approach00vuuuu... 4.1.1
12N 4.1.3
Characteristics of Enabled Waitst vt v in e nensnen.. 4.1.3
Characteristics of DisabledWaits 4.1.4
Analysis Approach for Disabled Waits 4.1.5
Analysis Approach for EnabledWaits 4.1.7
Stage 1: Preliminary Global System Analysis. 4.1.8
Stage 2: Key Subsystem Analysis00 i et nn... 4.1.10
Stage 3: System Analysis v v it ittt e e e e e e .. 4.1.15
0T+ o T 421
Common Loop Situations ittt 4.2.1
AnalysisProcedure i e e et e, 422

x O0S/VS2 Systefn Programming Library: MVS Diagnostic Techniques

==

TP Problems. it i e e e e e e e e e e e e et 4.3.1

Message Flow Through the System 4.3.1
Typesof Traces v i ittt i i e et ettt e e ... 433
EPMOde Traces. « & v v v v vt ettt v ie e et e ot e an e 434
NCPMoOde Traces. o v v v v v i e o e it e e e e et et e et et et ie e 4.3.5
Trace Output Under Normal Conditions. 4.3.7
Example 1: VIAMI/OTrace. i vt it it e it e et it e ee e 4.3.7
Example 2: VTAMand GTF Traces.o v ii v e, 4.3.12
NotesonExamples 1and 2 . .« « v v v et vt it vttt vt et e e saean 4.3.27
SUMMALY. & . it e ittt e et e et it te e o s e an s snnsnsas 4.3.28
VTAM Buffer Trace Modification. 4.3.29
VTAM I/O Trace (RNIO) Modification 4.3.29
Other TracingMethods. 4.3.30
Performance Degradationo v it it ittt e 4.4.1
OperatorCommands oo v v vt o it it bt et e e e e 4.4.1
Dump Analysis Areas. . . . v v v v v i v e e e e e e e e e e e 442
IncorrectOutput e e e e e e e e e 4.5.1
Initial Analysis Steps e e 4.5.1
Isolating the Component.ot v v ittt ittt et et e e e 45.1
Analyzing System Functions i, 4.5.2
SUMMALIY. « v v v it e et et et e ettt i e ettt aee oo 453
Section 5. Component Analysiso vt i in it 5.1.1
Dispatcher.o i it e e e e e e e 5.1.3
Important Dispatcher Entry Points. 5.1.3
Dispatchable Units and Sequencing of Dispatching. 5.14
Dispatchability Tests v v v vt v vttt e e it ettt 5.1.10
Miscellaneous Notes About the Dispatcher 5.1.12
Dispatcher Recovery Considerations« v v v v v v v vt e v o ve e e 5.1.13
Dispatcher Error Conditions.o vv v iin ittt 5.1.14
JOS . e e e e e e e e e e e 5.2.1
Front-End Processing.o oo v i ittt ittt it e e e 5.2.1
Back-End Processing o v v v v it it e e e e e e e 5.2.1
IOS Problem Analysis . . . c v v v vt v vt et e et i et ettt e 5.2.1
IOS Abend Codes. . . . v o v vt vttt e e e e e e e 5.2.4
) 0T SO 5.24
TOSWait States .« v v v v v it i ettt et et s e e e 5.2.5
General Hints for IOS Problem Analysiso viv .. 5.2.6
Error Recovery Procedures (ERPs) i i i ... 5.2.8
JIOSand ERPProcessingo v o v v oo oot o s vt te o neaeoennas 5.2.8
Identifying ERP Module Names. . . v . .o v v v v v vt i e e i ee e e 5.2.9
How ERP TransfersControl. v i vttt v it i et ian e enn 5.29
Abnormal End Appendages v v it ittt e e e e 5.2.10
Retry/Restart the Channel Program0..... 5.2.11
ErrorInterpreter v v o v v v it e e e e 5.2.11
ERP Messagesand Logging. oo o vt it vt it in et ieee e 5.2.12
InterceptConditions it e e e 5.2.13
Unit Checkon SenseCommand. vt v vt vt v vt e . 5.2.13
Compound Errors. et et e e 5.2.13
Diagnostic Approach v v v vii vt i i it i e e e 5.2.14
Program Manager . . « . v v vt vttt e e e e e e e e e 5.3.1
Functional Description. ¢ v i v v v v vttt vt e i i e s 53.1
Program Manager Organization, 5.3.1
Program Manager Control Blocks 5.3.1
Program Manager Queues 5.3.2
Queue Validation. i vt it ittt i e e 534
System Initialization i e 5.3.5

Contents xi.

Xii

LINK . .o i e e e e e e e e e e e 5.3.5
ATTACH. . . oo e e et e e e e e e ae e e e 5.3.8
D4 ¥ 5.3.8
LOAD . .. i e e e e e e e e 5.3.11
DELETE. . it v ittt it i et i e e e e e e e e e e e e 5.3.11
Exit Resource Manager. o v v v v v v vt oo ot ot e, 5.3.11
SYNCH. . i it e i e e e e e e e e e e 5.3.12
IDENTIEY. . o i i e e e e e e e e e e e e e e e 5.3.12
Abend ResourceManager v v v it vttt e i e e e 5.3.13
806 Abend. L. e e e e e et e e e 5.3.14
APF Authorization i it it e i e e e e e e e e 5.3.14
Module SUbPOOIS . .« ccv i i e i e e e e e e e e e e e e e 5.3.19
Fetch/Program Manager Work Area (FETWK) 5.3.19
RB Extended Save Area (RBEXSAVE) 5.3.20
VM L e e e e e e e e e e e e e 54.1
Address Space Initialization. i . 543
Step Initialization/Termination 0ttt i, 5.4.5
Virtual Storage Allocation. O 5.4.6
GETMAIN’s Functional Recovery Routme 5.4.8
VSM Cell Pool Management e e e e e e e 54.10
Miscellaneous DebuggingHintst 5.4.10
Real Storage Manager (RSM) e i e e e e e 5.5.1
Major RSM Control BIOCKS .. © v v v vie v v n e ... e 5.5.1
PCB. . .. e e e e e e e e e e e e e 5.5.3
R3] 1 5.5.5
PFTE. S e e e e e e e e e 5.5.6
Page Stealing. e e e e e e 5.5.6
Reclaim T 5.5.8
Relate e e e e e e e e e e e e 5.5.8
RSM RECOVEIY . & o vt i it it i e e it e et it e et e e it e e en e 559
RSM Debugging Tips. oo oo ti i i it e e e e e 5.5.12
Converting a Virtual AddresstoaReal Address. 5.5.13
Example: Converting a Virtual Address to a Real Address. 5.5.15
Auxiliary Storage Manager (ASM)« o i it ittt i e 5.6.1
Component Functional Flow 5.6.2
Savingan LG L i e e e e e e 5.6.2
RequestingI/O . . .« . oo ittt e e 5.6.3
Requesting Swap I/O. L ittt e e 5.6.4
Component Operating Characteristicso 5.6.4
SystemMode . . . oo i i e e e e e e e e e e e e e e e e 5.6.4
Address Space, Task,and SRB Structure. 5.6.6
Storage Considerations. I 5.6.6
MP Considerations o v v v v v vt vt it e e e e 5.6.6
Interfaces With Other Components.ot ti i, 5.6.7
Register Conventions.o o v v vttt ittt it e it et e 5.6.7
Footprintsand Traces« i ¢ v v v it v it ittt et et e 5.6.7
General Debugging Approacho i i i e 5.6.8
PagingInterlocks e e e e 5.6.8
IncorrectPages e 5.6.9
Finding the LSID foraGivenPage 56.10
Finding LSIDsof VIO Data Sets 5.6.10.
Locate PART and PAT Bit. oo v it i oot 5.6.12
Converting a Slot Number to a Full Seek Address 5.6.14
Unusable Paging Data Sets. v vv v e v v vt it v o e e eeeten e 5.6.15
Page/Swap Data SEt EITOIS. & v 4 v v v v v o v v v et v e e e ee o e nneee e 5.6.17
Error Analysis Suggestions. e e 5.6.18
Validity Checking.o v v v i ittt it e it e et ettt e et 5.6.19

0S/VS2 System Programming Library: MVS Diagnostic Techniques

ASM Serialization. it i e e e e e e e e e e e 5.6.19

SALLOCLOCK . . v ittt ittt e it e e et e e e et e i e 5.6.19
ASMClass Locks . . . v v v v i ittt i e et e e e e e e e e 5.6.20
Local Lock of Current Address Spaceo v v vt vn v e 5.6.21
Compare and Swap (CS) Serialization 5.6.21
Serialization via Control Block Queues. 5.6.22
Recovery Considerations. v i ittt it e it et e 5.6.22
Recovery Traces. o v o v it ottt et e e e e e e e e e 5.6.23
Recovery Structure. o v v it i it i e et et e e e e e 5.6.23
Recovery asa DebuggingTool., 5.6.24
Recovery Footprints v o v ittt it e e e e e e e e e 5.6.24
FRR/ESTAE WOIK AT€aS « + v o v v v e ot oot e oot e e e e eane e 5.6.24
‘SDWA Variable Recording Area.0uuuireuee... 5.6.25
ASM Diagnostic Aids. 0 it ittt e e e e e e e e 5.6.25
COD ABEND Meaningsfor ASM e 5.6.26
ASM Recovery Control Blockso v v ittt it it i 5.6.26
ASM Tracking Area (ATA) i i 5.6.26
Recovery Audit Trail Path (EPATH) 5.6.29
Additional ASM Data ATeaS. .« « v v v v v v ettt e e e 5.6.32
BSHEADER. o i e e e e e e e e 5.6.32
BUFCONBK. . . .t e ittt e e e e e e e e et 5.6.33
DSNLIST . .ttt it e e et e e e e e e e 5.6.33
MSGBUFER. ittt e i et i et it eae e 5.6.34
System Resources Manager (SRM) i, 5.7.1
SRM Objectives e e e e e e e 5.7.1
Address Space States. @ e e e e e e e e e 5.7.2
SRMIndicatorso it it i e e e e e e e e 5.7.3
System Indicators. o v it i e e e e e e e e e e 5.7.3
Individual User Indicators ittt i it ittt e in e, 5.7.6
Other Indicators. v vt vt v it e it e et e e e e et et e e e 5.7.8
SRMError Recovery o o o ittt e e e e e e e e e e e e e e e 5.7.8
Module Entry Point Summaries. it 5.7.8
IRARMINT — SRM Interface Routine 5.7.9
IRARMEVT — SRM SYSEVENTRoutero vv v v iiin . 5.7.9
IRARMSTM — Storage ManagementRoutine.u0on... 5.7.9
IRARMSRV — SRM Service Routine. oo v v v ve e enn. 5.7.10
IRARMERR - SRM’s Functional Recovery Routine. 5.7.10
IRARMCPM — Processor Managementcuoveuoeunon 5.7.11
IRARMIOM — I/OManagementcuouuvuuueneeennenn 5.7.12
IRARMRMR - ReSOUrCE MANager "« . v v v v v v v e e e e eeae e s s 5.7.13
IRARMCTL — SRM Control Algorithms 5.7.13
IRARMWAR- Workload Activity Recording 5.7.15
IRARMWLM- SRM Workload Manager. oo v v i i i v v s on 5.7.16
VIAM e e e e e e e e e e e e e 5.8.1
VTAM’s Relationship WithMVS e e 5.8.1
Processing Work Through VTAM\t e it et e e et eeae e 5.8.2
VTAM Function Management Control Block (FMCB) 5.8.5
VTAM Operating Characteristics oo v v i v v v v it i e e e 5.8.6
Module Naming Convention. . . '\ oo v v e iit e ennn 5.8.6
Address Space Usage v v vt it i e e e e e e 5.8.6
LOoCKING . ot i i it i e e e e e e e e e e e e e 5.8.7
VTAM Recovery/Termination. -« v ovvininieeeeenennn . 5.8.8
VTAM Debugging. e e e e e e e e e e 5.8.10
Waitso i e e ettt e e . 5.8.11
Program Checks. . v v v v v v it v it et it et e e et e e e 5.8.15
Miscellaneous Hintson VTAM 0t i it ittt ittt eeenonn 5.8.15
VS AM L e e e e e e e e e e e e e e e e e e, 5.9.1
Record Managementttt it i i in it s et e i e 5.9.1
RPL. .. e e e e e e e e 5.9.1
50 5 59.2
BUFC. . . it e e e e e e e e e e e e e 593

Contents xiii

Record Management Debuggihg Aids. . . . o i e e e 5.9.3

Open/Close/End-of-Volume e e et e et a i e 5.9.6
O/C/EOV Debugging Aids v o v vt vttt et it eeaen e 5.9.7
JJOManager. . .o v it vt e e e e e e e e e e 59.8
I/OManager Debuggingo i ittt i e e 5.9.9
Catalog Management e e e et e e e e e 5.10.1
Major Registersand Control Blocks. v oo oo v m v vt e s e s e ee e 5.10.1
HowtoFindRegistersttt neenen. §.10.1
Major Registers - . . .o v v v it it it it ittt teteeeann e 5.10.2
Major Control Blocks. e e e e e 5.10.2
Module Structure. o et e e et e e e e e 5.10.9
VSAM Catalog Recovery Logic e e e e e 5.10.10
Establishing/Releasing a Recovery Environment 5.10.10
Maintaining a Pushdown List EndMarko e e 5.10.10
Tracking GETMAIN/FREEMAIN Activityo vnn s 5.10.11
CMSFunctionGate. v o v v i i e vttt e eaeesanen ... 5.10.11
Recovery RoutineFunctions 5.10.12
DiagnosticOutput o i i ittt it e e r e s e 5.10.12
Backout e e e e 5.10.13
Drop Catalog Orientation s 5.10.13
Storage FIeeup . o v v v v vt vt it it it e e e e e e e e 5.10.13
DEFINE/DELETE BacKOUt . + v v+ v v v e v oo e e oo e aemneeaans 5.10.14
Debugging Aids e e e e e e e e e e e e e e 5.10.15
Allocation/Unallocation« v vt v ettt i ettt ettt i 5.11.1
Functional Description. i, 5.11.1
Allocation i v it it e i e e e e e et e e e, 5.11.2
Unallocation. . . . o v v v v v it vt vt e s o bt o s ae oo n e 5.11.2
Batch InitializationandContiol.o it it 5.11.2
Dynamic InitializationandControl. oot i e v 5.11.3
JFCBHousekeepingo i i it vt i it ittt et 5.11.3
Common Allocationo v it ittt in ittt it e 5114
Fixed Device Allocation . . . v . . v v v v vt v i vt vt in e o nnn e 5.114
TP Allocationt vt ittt it ettt et it e e 5114
Generic Allocation e e e e e e e e e 5.11.5
Recovery Allocation v v v ittt it ittt s s aeononn 5.11.5
CommonUnallocation v vt vt vt e ettt ie e nenennn 5.11.5
Volume Mountand Verify.ttt 5.11.5
General Debugging Aids i i e 5.11.6
Allocation Module Naming Conventions. AR 5.11.6
Registersand Save Areas.ottt ittt 5.11.6
Common Allocation Control Block Processing 5.11.7
ESTAE Processing P e et e .. 5.11.10
Debugging Hints. it ittt ittt ittt een e 5.11.11
Allocation Serialization o, 5.11.11
Subsystem Allocation Serialization. 5.11.12
Device Selection Problems (Non-Abend). 5.11.12
Address Space Termination ¢ it v vt et et e e e 5.11.13
OBOAbend.uvveeuenn s e e et e 5.11.13
0C4 Abend in IEFAB4FC, or LoopinIEFDB413 5.11.13
~ Volume Mount and Verify (VM&V) Waiting Mechanism. 5.11.14
Allocation/Unallocation Reason Codes. . o v v v v v v o v v v v v neneennn 5.11.16
Common and Batch Allocation and JFCB Housekeeping Reason Codes 5.11.16
Common and Batch Unallocation ReasonCodes 5.11.19
Dynamic Allocation ReasonCodes. L. 5.11.19
JES2 . . e e e e e et e et e e 5.12.1
JobProcessing Through JES2 5.12.1
3 2 5.12.1
Conversion. e e e e e e e e et et e e e e 5.12.1
EXecution vt ittt it et e et e 5.12.1
OUEPUL . & o ot it et e e e e e e e et et e e, 5.12.1
g T L 5.12.2

Xiv OS[V 82 System Programming Library: MVS Diagnostic Techniques

JES2 StrUCTUIE . v v v v vttt e et o e et et s o et s oo n oo 5.12.2

HASJES20 Program StruCture, . . « v v v v v v v e v v e e e e e e n ... 5122
HASJES20 Module Structure v v v v v v vt e et ittt e e 5.12.3
HASP Control Table (HCT) v v v it e e e et et et e e e e v 5.12.4
HASPSSSM . . .ot e e e e e e e e 5.12.6
Subsystem Interface i i e e e 5.12.7
Dispatcher StruCture v v v vt i i it e et e e e e e e e e e 5.12.9
SWALT . . e e 5.12.9
B POST & . . e e e e e e e e 5.12.10
JES 2 WAIT . . e e e e e e e e e 5.12.10
Dispatcher Queue Structure v v it vt it et e e et e e 5.12.10
JES2 Error Services. & v v v v vt i e e e e e e e e e e e e e e e e e 5.12.11
Disastrous Error Routine., 5.12.11
JES2ESTAEROULING . & . v v v vt it e ettt it et it e e e e ae e as 5.12.13
Catastrophic ErrorRoutine 5.12.13
JES2ExitRoutine ittt i e e e e e e 5.12.13
Input/Output Error Logging Routine. 5.12.14
JES2 $DEBUG Functions In a Multi-Access Spool Configuration 5.12.14
Initialization. e 5.12.15
2 Vs R 5.12.15
Write e e e e e e e e e e e e e e e e e e 5.12.15
Release. . v o vt it it i e e e e 5.12.16
Miscellaneous Hintson JES2 it 5.12.16
Starting JES2 — Enqueue Waiton STCQUE. 5.12.16
Subsystem Interface (SSI). e e e e e e e e e e e e e e 5.13.1
System Initialization Processing. 5.13.1
Subsystem Interface Major Control Blocks 5.13.2
Requesting Subsystem Services v v v v v v i it i e s 5.13.5
Invoking the Subsystem Interface. 5.13.5
Logic Flow Examples. i ittt e 5.13.7
Notifying a Single Subsystemot il e 5.13.7
Notifying All Active Subsystemso, 5.13.8
Debugging Hints.o ittt i i it e e 5.13.9
Recovery Termination Manager (RTM) it nnnn. 5.14.1
Functional Description. . . « v v vt v vt v et s e e e e e e e e 5.14.1
WOIK AT€aS . o . vt i it e e e e et e e e e e e e e e e e 5.14.1
Major RTMModules ittt ittt it et 5.14.1
ProcessFlow. C e e e 5.14.2
Hardware Error Processing. « . o v v v v o v o v v e om oo e eeeen e 5.14.2
Normal Task Termination 5.14.4
Abnormal Task Termination. v, 5.14.5
Retry . & v it i e e e e e e e e 5.14.6
Cancel i e e e e e e e e 5.14.7
FORCECommandttt iiin i nnnnes 5.14.8
Address-Space Termination i ittt ittt 5.14.9
Error ID o v o e e e e e e e e e 5.14.10
SVCDump Debugging Aids« .o v v v it e e 5.14.11
Important SVC Dump Entry Points, 5.14.11
BRANCH=YESOption. i it ie e e 5.14.11
BRANCH=NO OpLION v v it it ittt e et e i oo 5.14.11
SVCDump Error Conditions v v i v ittt e e 5.14.12
SYS1.LOGREC Entries Produced for SVC Dump Errors 5.14.12
Fixed Data. . o o v v v o et e e e e e e e e 5.14.12
Variable Data . . . v v v vt e e e e e e e e e e 5.14.13
Control Blocks Used to Debug SVCDump Errors 5.14.14
Address Space Control Block (ASCB) 5.14.14
Recovery Termination Control Table (RTCT). 5.14.14
SVC Dump Work Area (SDWORK). o vt 5.14.14
Summary Dump Work Area (SMWK). 5.14.14
Resource Cleanup for SVCDump. o o oo v v i v oo e 5.14.15

Contents "xv

Xvi

COmMMUNICAtIONS TASK « + « v v v v v e e e e o et e me ee e e e te e 5.15.1

Functional Description.o v v it i ettt e e nan [P 5.15.2
Communications Task Control Blocks . . . o v v v v v v v i i it i i i i v e vt 5.154
DebuggingHints. ot it it ittt ittt ittt 5.15.6
Console Not Responding to Attention. Y 5.15.6
Enabled Wait State o0 i v it ittt ittt e e 5.15.6
Disabled Wait State.o o i ittt i et i i it 5.15.7
Messages or RepliesLost. e e e e, 5.15.7
No MessagesonOneConsoleo vt it vt in it i eennnas 5.15.8
Messages Routed to WrongConsole. v v vt v v i v e i oo v vnans 5.15.8
Truncated Messages. . . v v v o v v e ot v o vt oot ot e e 5.15.9
Console Switching e et et et e e e 5.159
DIDOCS Trace Table. e e et e e e e 5.159
DIDOCS-In-Operation Indicatort iiv i eaenn. 5.15.10
DIDOCSLOCKING . & v v v vt vt v e e e ettt tnaaneseeenns 5.15.10
Appendix A: Process FIOWs. v . i i it it it it it e et e e e nnasaen A.l.l
RSM Processing forPage Faults. i it ennnn A.l3
JEAVPIX TEStS « v v o oo ot i e e e i s aeme e e teneseenaesenen Al3
IEAVGFATESIS. o o v vt ittt it e it ettt st ancannonoeeneans A.l3
IEAVPIOP TEStS . o v v v vt et ot i ie s e vt s e s o nnansoennnaeans Al.6
IEAVIOCP TestS . . o v v vttt e v te e e et v ae s nnesonenneeean A.l.6
SWapping. i e e e e e e e e e e e A.2.1
SWap-IN Process. . . ¢ v i v i i et e et e e e e e et e e e e A.2.1
SWaP-OUL ProCesS. & « v v v v v ot i ettt ettt s ae et A2.3
00 (01 7] (00 A3l
GETMAIN/FREEMAIN It A4l
GETMAIN Processing . « o v v v v o o v e oot e te e to e easacenneas A4l
FREEMAIN Processing. e e et e Ad4.2
VTAMPIocess. . . v v i vttt it et et e it et ettt e et e e s A5
T80, & i e e e e e e i e e e e, A6.1
Time Sharing Initialization., A6.1
LOGONPIOCESSING . « v v v v v v o vt et e e ottt ie se s aonnns A64
LOGON Scheduling Diagnostic Aids« - v v v v i v v vt e vt v v e e A6.12
TSOLine Drop Processing. . . . o v ot v vttt it ettt v e e naennns A6.14
TMP and Command Processor Interface ettt e e e A6.17
TSO Command Processor Recovery it iiiennnnenns A.6.21
TSO Terminal /O OVerviEW v v vt vt vttt e it v v o eee e A.6.23
Terminal Output Flow it A.6.24
TerminalInput Flow ot ittt it it i et e e A.6.25
TSO/TIOC Terminal I/O Diagnostic Techniques vt e v A.6.26
TSO AttentionProcessing« v v vt vt i it e e A.6.27
Appendix B: Stand-aloneDump Analysis.ttt B.1.1
L0 55 4 T B.1.1
AnalysisProcedure it it e e e e et et et e e B.1.7
Appendix C: Abbreviations. ittt it e e e C.1.1
IndeX . . oo i e e e e e e e i e e i e e e LL.1

0S/VS2 System Programming Library: MVS Diagnostic Techniques

Figure 2-1.
Figure 2-2.
Figure 2-3.
Figure 2-4.
Figure 2-5.
Figure 2-6.
Figure 2-7.
Figure 2-8.
Figure 2-9.
Figure 2-10.
Figure 2-11.
Figure 2-12.
Figure 2-13.
Figure 2-14.
Figure 2-15.

Figure 2-16.
Figure 2-17.
Figure 2-18.

Figure 4-1.
Figure 4-2.
"Figure 4-3.
Figure 4-4.
_Figure 4-5.
Figure 5-1.
Figure 5-2.
Figure 5-3.
Figure 5-4.
Figure 5-5.
Figure 5-6.
Figure 5-7.
Figure 5-8.
Figure 5-9.

Figure 5-10.
Figure 5-11.
Figure 5-12.
Figure 5-13.
Figure 5-14.
Figure 5-15.
Figure 5-16.
Figure 5-17.
Figure 5-18.
Figure 5-19.
Figure 5-20.
Figure 5-21.
Figure 5-22.
Figure 5-23.
Figure 5-24.

Figure 5-25.

Figure 5-26.
Figure 5-27.
Figure 5-28.
Figure 5-29.
Figure 5-30.

Figure 5-31.

Figure 5-32.
Figure 5-33.

Definition and Hierarchy of MVS Locks .

Bit Map to Show Locks Held on a Processor
Classification and Location of Locks . .
SYS1.LOGREC Software Incident Record 1.
SYS1.LOGREC Software Incident Record 2.
SYS1.LOGREC Software Incident Record 3.
Format of the LOGREC Recording Control Buffer

Format of Records Within the LOGREC Recording Control Buffer .

SIGP Return Codes .

External Call (XC) Process Flow

Emergency Signal (EMS) Process Flow

How to Locate the Trace Table

Types of Trace Entries . . i

MVS Trace of a Page Fault Wrthout I/O

MVS Trace of a Page Fault With I/O .

GTF Trace of a Page Fault Without I/O .

GTF Trace of a Page Fault With I/O .

Trace Example of PER Hardware Monitoring

Summary of EP and UCP Mode Traces

VTAM]/O Trace Example .

VTAM and GTF Traces Example .

JES2 Commands for Status Information .

System Use of Hardware Components .

Global SRB Queue Structure and Control Block Relatlonshlps
Local SRB Queue Structure and Control Block Relationships .
Dispatcher Processing Overview ..
10S Processing Overview . . .

Major I0S and EXCP Control Block Relatronshrps .

Program Manager Modules . .

Program Manager Control Blocks and Work Areas .

Program Manager Queues

IEAVNPOS Initialization’

New PRB Initialization — LINK

New RB Initialization — XCTL

XCTL RB Manipulation

CDE Initialization by IDENTIFY .. .
Module Search Sequence for LINK, ATT ACH XCTL and LOAD.
Module Search Sequence of Private Libraries N
CDE Allocation . . .

VSM’s View of MVS Storage

VSM’s Control Block Usage

VSM’s Global Data Area

SDWAVRA Error Indicators

VSM Cell Pool Management . .

Major RSM Control Blocks and Their Functlons
Relationship of Critical RSM Control Blocks

Page Stealing Process Flow .

Converting Virtual Addresses to Real Addresses

Relationship of Important ASM Control Blocks .

Locating an LSID From an LPID . .

Relating the Virtual Address to the PART and PAT
Page/Swap Data Set Error Action Matrix .

SRM Control Block Overview .

SRM Module/Entry Point Cross Reference

VTAM Control Block Structure

Several RPHs Waiting for the Same Lock

Figures

. 232
. 234
- 2.3.6
. 244
. 2.4.7
- 24.11

. 2.4.16
- 2.4.16
- 2.5.8

- 2.5.12
- 2.5.14
- 2.6.1

- 2.6.2
. 263

. 263
. 264
. 264
. 2.8.16
. 433
. 438
. 43.14
. 4.4.2
. 4.4.3
. 5.1.5
. 5.1.7
. 5.1.9
.5.2.2
.5.2.3
.53.2
.5.3.3
533
. 5.3.6
. 5.3.7
.5.3.9
. 5.3.10
. 5.3.13
. 5.3.15
. 5.3.16
.5.3.17
.54.2
. 5.4.4
. 5.4.7
. 5.4.9
L5411
.5.5.1
.5.5.2
. 5.5.7
. 5.5.14
. 5.6.5
. 5.6.11
. 5.6.13
. 5.6.17
574
. 5.7.20
. 583
. 5.89

Figures

xvii

Xviii

Figure 5-37.

Figure A-2.
" Figure A-3.-
Figure A4,
Figure A-S.
- Figure A-6.
Figure A-7.
Figure A-8.
Figure A-9.

Figure A-10.
Figure A-11.
Figure A-12.
Figure A-13.

Figure B-1.

Figure 5-34.
Figure 5-385.
Figure 5-36.

Figure 5-38.

Figure 5-39.
Figure 5-40,
Figure 5-41.
Figure 5-42.
Figure 5-43.
Figure 5-44.
Figure 5-45.
Figure 5-46.
Figure 5-47.
Figure 5-48.
Figure 5-49.
Figure 5-50.
Figure 5-51.
Figure 5-52.
Figure 5-53.
Figure 5-54.
Figure A-1..

Sample Storage Pool Dump .

Queueing of RPHs While Waiting for Storage

Relationship of the Six Major Functions of Allocatlon/Unallocatlon
Common Allocation Input . .
Common Allocation Control Blocks After Constructlon of Volumt
Table and EDLs . .. ; : :

VM&V Control Block Structure

HASJES20 Module Map .

Locating the JES2 Module Dlrectory in HASPNUC

HCT Major Vector Fields coe e

The Subsystem Vector Table .

HASPSSM - HASJES20 - OS/VS2 Relatlonshlp

Formal Subsystem-Interface Vectors .

JES2 Queue Control Fields. . .

JES2 Processor Control Element Relatlonshlps .

Example Dump of JES2 Processor Queue Chains

Major JES2 Control Blocks. .

Subsystem Interface Control Block Usage

Control Block Structure for Invoking Subsystem lnterface

Finding the SSIB for a Job When SSOB Pointer is Zero

Sequence of Communications Task Processing .

Communications Task Control Block Structure .

Page Fault Process Flow

Swap-In Process Flow

Swap-Out Process Flow. .

I0S/EXCP Process Flow

VTAM SEND Process Flow

Overview of Logon Processing .

TCAM Organization After a TSO Logon

Logon Work Area

LOGON Work Area Bits That Indlcate the Currently Executmg Module .

LOGON Scheduling Post Codes

Overview of TSO Line Drop Process .

Summary of Command Processor Recovery Act1v1ty
TSO Attention Flow

Standalone Dump Analysis Flowchart

0S/VS2 System Programming Library: MVS Diagnostic Techniques

. 5.8.13
. 5.8.14
. 5.11.1
. 5.11.8

.5.11.9
.5.11.15
. 5.123
. 5.124
. 5125
. 5.126
. 5126
. 5.12.8
. 5.12.9
. 51211
. 5.12.12
. 5.12.17
. 5.134
. 5.13.6
. 5.13.6
. 5.153
. 5.15.5
CAl4
. A22
. A24
. A32
. AS52
. A6.2
. A6.7
. A6.9
.A6.12
. A6.13
. A6.15
. A6.22
. A6.28
.B.16

TN

Summary of Amendments
for GC28-0725-2
VS2 Release 3.7

Changes have been made throughout this publication to reflect a Service Update to
0S/VS2 Release 3.7 and to include the following topics:

Diagnostic Aids Information

Information from OS/VS2 System Logic Library, Volume 7, SY28-0719, was
added in the following topics:

Started task control (STC) abend and reason codes.

Scheduler work area (SWA) manager reason codes.

Auxiliary storage manager (ASM) diagnostic aids and serialization information.
Allocation/unallocation reason codes.

TSO logon scheduling.

Communications task overview and diagnostic aids.

DIDOCS diagnostic aids.

Also, diagnostic aids information was added for:

o Error recovery procedures (ERPs).
e Converting virtual addresses to real addresses.
e JES2 miscellaneous hints.

Interactive Problem Control System (IPCS), SU57

Overview infbrmation was added for IPCS.

Miscellaneous Changes

Throughout the text:

e Minor technical and editorial changes were made.

o References to DSS (dynamic support system) were removed.

e References to EREPO were changed to EREP1 (environmental recording editing
and printing).

Summary of Amendments Xix

xx 0S8/VS2 System Programming Library: MVS Diagnostic Techniques

P

Section 1. General Introduction

This section introduces basic MVS problem analysis and provides an overview of the
interactive problem control system (IPCS).

| Basic MVS Problem Analysis Techniques

Problem isolation and determination are significantly more complex in MVS than
. in previous operating systems because of:

Enabled System Design which has made the internal and environmental status-
saving functions more extensive than those of previous system.

Multiprocessing (MP) which potentially allows the execution of code in
sequences not encountered in a uniprocessing (UP) environment. MP can also
cause contention for serially reuseable resources. (In this manual, MP refers to
multiprocessing on both multiprocessors and attached processors.)

Locking Mechanism which facilitates Enabled System Design and Multi-
processing functions and maintains data integrity.

Subsystems which are responsible for processing work requested from the
system. They maintain their own work queues, control block structures and
dispatching mechanisms — all of which must be understood in order to
effectively pursue problems in the MVS operating system.

Software Recovery which attempts to keep the system available despite errors.

The large number of new components which provide new functions and whose
internal logic must be understood for effective problem determination.

As a result of this complexity, MVS problem solvers have made two adjustments

in their diagnostic outlook:

Rather than learning the system logic at an instruction or module level, they
have learned the system in terms of component interactions at the interface
level.

They have learned that the most effective problem analysis at a system level is
obtained from a disciplined, almost formal, diagnostic approach.

Section 1. General Introduction 1.1.1

Section 1:- General Introduction (continued) -

This publication contains those debugging techniques and guidelines that have
proven the most useful to problem solvers with several years experience in
analyzing MVS system problems. These techniques are presented in terms of a
debugging “approach” that can be summarized in three steps:

1. Identifying the external symptom of the problem.

2. Gathering relevant data from system data areas in order to isolate the problem
to a component.

3. Analyzing the component to determine the cause of the problem.

The most important step in this approach is often the first — correctly
identifying the external symptom of a problem. To do this, it is best to get a
description of the problem as it was perceived by an eyewitness. You will want a
description that provides a context from which to start, such as:

“System is looping; can’t get in from console.”
““Job abended with 213”

“1/O error on 251.”

“Console locked out.”

“Terminal hung, keyboard locked.”

“System in wait, nothing running.”

“Bad output.”

“Job won’t cancel.”

“System degrading. Very slow.”

“System died.”

“0C4 in component abc.”

The list is endless, of course. Your objective is to fit one (or more) of these
descriptions to one of the following external symptoms.

o Enabled wait — The system is not executing any work and when it takes
interrupts, nothing happens. Something appears to be stuck.

- o Disabled wait — The system freezes with a disabled PSW that has the wait bit
on. This can be either an explicit and intentional disabled wait or a situation
that occurs because the PSW area has been overlaid. Unfortunately, the latter
is more often the case.

o Disabled loop — This is normally a small (fewer than 50 instructions) loop in
disabled code. o

e Enabled loop — This is normally a large loop in enabled code (and may
‘ include disabled portions — loops as a result of interrupts).

1.1.2 0S/VS2 System Programming Library: MVS Diagnostic Techniques

~

Section 1. General Introduction (continued)

® Program check — The program is automatically cancelled by the system,
usually because of improper specification or incorrect use of instructions or
data in the program. The program check message gives the location of the
failing operation and the condition code. If a SYSABEND, SYSMDUMP, or
SYSUDUMP DD statement was included in the JCL for the job, a dump of
the problem program will be taken.

| « ABEND — The system issues an SVC 13 with a specific code from 1 to 4095
to indicate an abnormal situation.

o Incorrect outpur — The system is not producing expected output. Incorrect
output can be categorized as: missing records, duplicate records or invalid
data that has sequence errors, incorrect values, format errors, or meaningless
data. If a program has apparently executed successfully, incorrect results will
not be detected until the data is used at some future time.

o Performance degradation — A bottleneck or system failure (hardware or
software) has severely degraded job execution and throughput.

e TPproblem — A problem, usually detected by the operator or terminal user,
that indicates malfunctions are affecting one or more terminals, lines, etc.

The chapters in Section 4 (Symptom Analysis Approach) will help you identify
these symptoms. The main rule at this stage of your analysis is to proceed
carefully. When first screening a problem, do not assume too much. Don’t even
assume that the original eye witness description was correct. Keep all initial
information about the problem as a reference for your later analysis.

In the course of identifying the correct external symptom, you will begin
gathering data that will lead you to other sections of the publication. Specific data
gathering techniques are contained in Sections 2 and 3. Section 2 describes the
major MVS debugging areas such as LOGREC records and recovery work areas,
Section 3 describes how to use a storage dump effectively as your main source of
diagnostic material.

Eventually you should have gathered enough data to isolate the problem to a
particular component or process. Section 5 and Appendix A provide techniques
for analyzing system components and processes so that you can determine the
cause of the problem. Appendix B contains a step-by-step procedure that can be
used as a guide for analyzing a stand-alone dump.

Note: Before you begin using this publication for problem analysis, scan
through it to find out where the various types of information are located.
Depending on your current debugging skill level, various sections will be more
important than others.

Always keep in mind that trouble-shooting a system of the internal complexity
of MVS is not always an “If A, then B” procedure. The guidelines and techniques
presented in this publication define “generally” what the analyst will discover. The
nature of the debugging process is such that the problem solver does not perform
the same analysis for every problem.

Section 1. General Introduction 1.1.3

 Section 1: General Introduction (continued)
IPCS — Interactive Problem Control System

The interactive problem control system (IPCS) provides MVS installations with
expanded capabilities for diagnosing software failures and facilities for managing
problem information and status.

IPCS includes facilities for:

e Online examination of storage dumps.
o Analysis of key MVS system components and control blocks.

e Online management of a directory of software problems that have occurred in
the user’s system.

e Online management of a directory of problem-related data, such as dumps or
the output of service aids.

IPCS runs as a command processor under TSO, allowing the user to make use
of existing TSO facilities from IPCS, including the ability to create and execute
command procedures (CLISTs) containing the IPCS command and its sub-
commands. :

IPCS supports three forms of MVS storage dumps:

I e High-speed stand-alone dumps produced by AMDSADMP.
o Virtual dumps produced by MVS SDUMP on SYS1.DUMP data sets.

- e Virtual dumps produced by MVS SDUMP on data sets specified by the
| SYSMDUMP DD statement.

Dumps on data sets specified by the SYSABEND or SYSUDUMP DD state-
ments cannot be analyzed using the IPCS facilities.

For information about IPCS, refer to the OS/VS2 MVS Interactive Problem
I Control System (IPCS) User’s Guide and Reference.

1.14 OS/VS2 System Programming Library: MVS Diagnostic Techniques

PN

Section 2. Important Considerations Unique to MVS

This section describes concepts and functions that are unique to the MVS environ-
ment and useful to problem analysis. It also contains miscellaneous debugging
hints and general data gathering techniques.
SEC-
The chapters in this section are: TION 2

o Global System Analysis

o System Execution Modes and Status Saving

e Locking

e Use of Recovery Work Areas in Problem Analysis
o Effects of Multi-Processing on Problem Analysis
o MVS Trace Analysis

e Miscellaneous Debugging Hints

o Additional Data Gathering Techniques

Section 2: Important Considerations Unique to MVS 2.1.1

2.1.2 0S/VS2 System Programming Library: MVS Diagnostic Techniques

Global System Analysis

In trying to isolate a problem to an internal symptom, a global system analysis
often uncovers enough data to provide a starting point for the actual problem
isolation and debugging. This chapter discusses the main considerations the analyst
should be aware of when analyzing a stand-alone dump, including:

The system areas that should be inspected to understand the current system
state at the time of a dump

The system areas that should be examined to understand the current state of
the work in the system and the current disposition of storage and tasks

Global Indicators That Determine the Current System State

The following areas should be examined to help determine the current state of the
system:

1.

PSA — occupies the first 4K bytes of real storage for each processor. Note that
absolute 0 is not used during normal system operation on a machine with the
MP feature — this is true whether the system is operating in MP or UP. (The
one exception is a control program that is system generated with
ACRCODE=NOQ.) During NIP processing the PSA(s) for the processor(s) are
initialized and the prefix register(s) are initialized to point to them.

Special Notes About Standalone Dumps:

® Before taking a stand-alone dump, it is necessary to perform a STORE
STATUS operation. This hardware facility does not use prefixing;
instead it stores values such as the current PSW, registers, CPU timer, and
clock comparator in the unprefixed PSA (the one used before NIP
initialized the prefix register) at absolute address 100. The dump program
subsequently saves these values and, in an MP environment, issues a
SIGP instruction to the other processor requesting a STORE STATUS
operation. As a result, these values in the unprefixed PSA are overlaid
by the second processor’s values.

Therefore, in an MP environment the status in the unprefixed PSA is
always that of the non-IPLed processor, not the one on which the stand-
alone dump was IPLed.

e In a machine not equipped with the MP feature and therefore without
prefixing, the IPLing of the stand-alone dump program causes low storage
(0-X18’) to be overlaid with CCWs. You should be aware of this and not
consider it as a low storage overlay.

Section 2: Important Considerations Unique to MVS 2.1.3

Global System Analysis (continued)

| o Inan MP environment, the STORE STATUS operation must be pérformed
only from the processor to be IPLed for the stand-alone dump program.

o [PLing the stand-alone dump program twice causes the storaée dump to
contain a dump of itself because it was read in for the first IPL. This
causes the dump program to overlay a certain portion of the nucleus
(generally starting at X*7000”) and the general purpose registers to con-
tain values associated with the stand-alone dump program and not MVS.

o If the operator does not issue the STORE STATUS instruction before
IPLing a stand-alone dump, the message “ONLY GENERAL PURPOSE
REGS VALID” appears on the formatted dump. The PSW, control
registers, etc., are not included. This greatly hampers the debugger’s
task.

2. Registers and PSW — The print dump program formats the current PSW and
the general, floating point, and control registers associated with each processor.
From these, you can determine the program executing on each processor.

If the current PSW is 070E0000 00000000 and the GPRs are all 0, you are
in the no:-work wait condition, which indicates no ready work is available
- for this processor to execute. -

If there is or should be work remaining, an invalid wait condition results.
(Refer to the chapter on “Waits” in Section 4.)

If the registers are not equal to zero and the PSW does not contain the wait
bit (X°0002°), there is an active program. If the wait task is dispatched, the
system is in the no-work wait condition,

3. ' ILC/CC — location X‘84’ for external interrupts; location X‘88’ for SVC
interrupts; location X‘8C’ for program interrupts. These fields'indicate the
last type of interrupt associated with each interrupt class for each processor.
The work active when each interrupt occurs is represented by the old PSWs
at locations: X‘18” (external); X‘20’ (SVC); X‘28’ (program). Common con-
tents of these fields are:

00001004 clock comparator
00001005 . CPU timer

00001201 SIGP-emergency signal
00001202 SIGP-external call

X84’

|

2.14 0S/VS2 System Programming Library: MVS Diagnostic Techniques

Global System Analysis (continued)

X‘88" — 000200xx - where xx is the SVC number. This field should be
inspected for unusual SVCs such as:

—
|

WAIT: can indicate an enabled wait situation

D — ABEND: can indicate program error processing

F — ERREXCP: can indicate-a problem in I/O error processing
10 — PURGE: can indicate a problem in the swap process
38 — ENQ: can indicate a resource contention problem
4F — STATUS: canindicate a non-dispatchability problem

X‘8C’ — 000X0011 indicates a'page fault interrupt. Anything other than
‘ a code of 11 is highly suspect and must be inspected
further. Also with a code of 11, the program check
old PSW (location X‘28”) must be enabled (mask =
X‘07’) because disabled page faults are not allowed in
MVS and it is an error if one occurs.

4. PSA + X204’ (CPU ID)

5. PSA + X210’ (address of LCCA — 1 per processor) — The LCCA contains many
of the status-saving areas that were located in low storage in previous systems.
It is used for software environment saving and indications. The registers
associated with each of the interrupts you find in the PSA are saved in this
area. In addition, the system mode indicators for each processor are
maintained in the LCCA.

6. PSA +X224° (PSAAOLD) — This is the address of the ASCB of the work:last
dispatched on each processor. This field indicates the address space that is
currently executing. ’

7. PSA +X°21C’ (PSATOLD) — This is the address of the TCB of the work last
dispatched on each processor. This field in conjunction with PSAAOLD isolates to
a task within an address space. Note: PSATOLD=0 when SRBs are dispatched.

8. PSA +X228’ (PSASUPER) — This is a field of bits that represent various
supervisory functions in the system. If a loop is suspected, these blts should
be checked in an attempt to 1solate the looping process.

Note: Because of SRM timer processing in MVS, the external first level
interrupt handler bit (X‘20”) or the dispatcher bit (X‘04’) may be set in this
field even in the enabled wait situation.

9. PSA + X2F8’ (PSAHLHI) — This field indicates the current locks held on
each processor. Knowing which locks are held helps isolate the problem,
especially in a loop situation. -By determining the lock holders you can
isolate the current process. (See the chapter on “Locking” later in this
section.)

Section 2: Important Considerations Unique to MVS 2.15

Global System Analysis (continued)

£

Srereor T s 0100 PSA 4+ X380°. (PSACSTK) — This is the address of the active recovery stack |
: ¥ o which contains the addresses of the recovery routines to be routed control in
case of an error. If the address is other than X‘C00’ (normal stack), the type
" of stack (for example, program check FLIH or restart FLIH) is meaningful,
especially in-theloop situation.

- By searching the normal stack (X°C00’) and associating the recovery
routine to active mainline routines you may get an idea of the current process.
This is true only if the pointer to the current entry is not X'C34,” which would
indicate an’empty recovery stack.

Note: If aloop is suspected, the first word following each routine address in
the current stack should be scanned. A X‘80’ indicates that routine is in

~ control. A X440’ mdlcates that routine is in control and that it is a nested
recovery. routine.

I If X‘10” into the stack is non-zero, also check for an SDWA address at X‘44°
into the active stack. This block is mapped by the SDWA DSECT and is
described in the Debugging Handbook, (RTCA and SDWA are different names

| for the same control block.) If an SDWA address is present, an error has

. occurred and it can be related to the problem you are analyzing. If trapping
via RTM’s SLIP facility, the registers at entry to RTM are contained in this area.

At this pbi(nt' you should understand each processor’s current activity, any
possible errors that have been detected by recovery, and the current system
state or mode.

Work Qﬁeues,_ TCBs and AddréSQ:Space Analysis

Examine the following areas to help determine the current state of work in the
system.

TCB'Summary

The TCB summary report, produced by AMDPRDMP (print dump program),
contains a summary of the address spaces and their associated tasks. A quick scan
of the completion (CMP) field for each task reveals any abnormal terminations

- that have occurred. Discovery of an error completion code warrants further
investigation as.to the cause. Remember, however, that these codes are residual
and the job or task might have recovered from the problem.

- Also investigate multiple abnormal completion codes which all relate to the same
area of the system, or many tasks that all have the same completion code. These
“completion codes can all relate to one area of the system and perhaps to the problem
you are investigating. "Again, LOGREC should provide further documentation in an
error situation such as this.

2.1.6 0S/VS2 System Programming Library: MVS Diagnostic Techniques

Global System Analysis (continued)

Once you understand the system’s history from a trace, LOGREC, and error
viewpoint, you should examine the work to be done as your next step to under-
standing the problem. :

SRB Dispatching Queues

The print dump program formats the SRB dispatching queues. Elements on any of
these queues should be investigated, especially in cases where no work appears to
be progressing through the system.

Elements on the global or local service manager queues (GSMQ/LSMQ) can
indicate that the dispatcher has not received control since these SRBs were
scheduled. This is an unusual condition that should be investigated. It can also
indicate that the CVT anchors for these queues have been inadvertently altered.
This again is an error condition.

Elements on the GSPLs/LSPLs should be explained. It is possible the dump was
taken before the SRB routines were able to execute. But it more likely indicates
some other system problem such as an enabled wait or disabled loop. If there
are SRBs on an LSPL, you should determine if the associated address space
is swapped-into storage and if it is not, why not. (Possible causes are real frame
shortage or a problem in the paging/swapping mechanism.) Again this is an indica-
tion of a potential system problem. The chapter on “Waits” in Section 4 and the
chapter on “Dispatcher” in Section 5 contain additional information on the
dispatching queues.

If, at this point, you can isolate the problem to a component, refer to the
“Component Analysis” for that component in Section 5. The chapter on “Waits”
in Section 4 should prove helpful if you have isolated to a problem in the system,

Address Space Analysis

If you have isolated the error to a given address space or wish to determine the
state of a given address space, analyze the ASCB.

Important indicators in the ASCB are:

e ASCBLOCK (ASCB +X‘80") —to determine the specific state of the local lock.
If it.contains 7FFFFFFF or FFFFFFFF (the lock suspend/interrupt IDs),
refer to the chapter on “Locking” later in this section for an explanation.

Note: When holding a suspend lock, code can only be suspended because it
attempts to obtain an unavailable higher suspend lock or because of a page fault.
To find the reason for the suspension, refer to the discussion of Task Analysis
later in this chapter and to the chapter on “Locking” later in this section.

Section 2: “Important Considerations Unique to MVS. ~ 2.1.7

Global System Analysis (continued) .-

e ASCBEWST (ASCB + X‘48’) — to determine the TOD clock value when the
address'space last executed. This field helps you determine how long an
address space has been swapped-out. By subtracting this field (middle four
digits) from the last timer value in the MVS trace table and converting to
seconds, you can discover the approximate swap-out time. (See the
chapter “MVS Trace Analysis” later in this section.)

o ASCBRCTF (ASCB +:X‘66”), — current status of the address space.
ASCBFLG1 (ASCB +X‘67’)

e ASCBASXB (ASCB + X‘6C’) — pointer to the ASXB that anchors the TCBs.

e ASCBSRBS (ASCB + X“76”) — number of SRBs active (currently executing or
: : suspended) in the address space. :

e ASCBOUCB (ASCB + X‘90’) — 'pointer to the OUCB, which is helpful when
determining why an address space is swapped-
out.

° ASCBFMCT (ASCB +X98’) — n‘umvberv of real frames currently occupied by
. R the address space.

e ASCBTCBS (ASCB + X‘7C’) — number of ready TCBs.

ASCBCPUS (ASCB + X‘ZO’) .— number of processors running tasks in this
address space.

Task Analysis

Once you understand the ASCB you should analyze the associated task structure.
Once again, scan the TCBs associated with your address space and look for an
abnormal completion field. While doingso, check the RB structure for each task.
Remember that the region control task, dump task, and started task control are
represented by the first three TCBs. “Normally” they will be waiting during

task execution. If one of them is not, you should determine why.

Assuming the first three TCBs are not obvious problem areas, continue
inspecting the remaining TCBs. You are trying to explain each RB. Starting with
~ the last RB created (the first RB, pointed to by the TCB + 0), determine what work
- is represented. If work is waiting, find out.why.

Note: The master scheduler address space has system task TCBs that differ from
other address spaces. Referto the diagrams for Master Scheduler Initialization, Start
Initiator, and Job Execution in the topic “General System Flow’’ in the Debugging
Handbook, Volume 1 for details of the TCB structures.

2.1.8. 0S/VS2 System Programming Library:- MVS Diagnostic Techniques

Global System Analysis (continued)

The RBOPSW indicates the issuer of an explicit WAIT. If an explicit WAIT

is not obvious, consider the following suspension possibilities and their associated
key indicators:

1.

If ASCBLOCK = X‘7FFFFFFF’ or X‘FFFFFFFF’, the status (registers and
PSW) of the suspended or interrupted task is saved in the IHSA (ASCB + X‘6C’
points to ASXB; ASXB + X‘20’ points to IHSA). The reason for suspension

is important. If it is for a lock, find out what address space or task owns that
lock and what the owners’ state is. (The chapter on “Locking” later in this
section shows how to determine lock owners.) If it is for a page fault, find

out of the state of that page fault. Note also that while the RBTRANS field
points to the page fault causing address, the RBWCF is 0.

Note: If atask owned the local lock at the time of the suspension or interrupt,
the TCB active indicators and the TCBCPUID (last processor on which this task
was dispatched) is set on. If no TCB in the task structure has these indicators
set, you can assume an SRB owned the lock. If no SRBs are on the CMS
suspend queue, the suspension is probably the result of a page fault.

An SRB can be suspended because of a page fault or a request for an
unavailable suspend lock. The save area for the suspended SRB is the SSRB
(see the Debugging Handbook). If suspended for page fault processing, the
SSRB is pointed to by the corresponding PCB+1C. PCBs are generally chained
together and anchored in two locations: (1) the RSMHDR for local address
space page faults; (2) the PVT for page faults caused by referencing commonly
addressable storage. Note that if real frames were not available when the page
fault occurred, even local page faults are queued from the PVT on the defer
queue (PVTGFADF, PVT + X‘754%). For a CMS lock request, the SSRB is on
the CMS lock suspended queue. Se¢ the chapter on “Waits” in Section 4 for
details on how to locate the SSRB. For Local lock suspensions, the SSRBs are
chained together on a queue anchored in the ASCB (ASCB + X‘84”).

A locked TCB can be suspended for the same reasons as an SRB. The save
area is the IHSA (described in the Debugging Handbook). The THSA is valid
during a page fault if the corresponding PCB+8 flag is on, indicating the lock
‘was held at the time of the page fault. Also, the TCBLLH (TCB + X‘114°)
is set to X‘01if the task was locally locked at the time of the page fault.

The THSA is valid for a CMS lock suspension if the ASCB is on the CMS
lock suspend queue at label CMSASBF in IEANUCO1. The TCB can be
suspended because of a page fault while holding both the local and CMS locks.
One way to tell is that the ASCB+X67’ flag for the CMS lock is turned on and
the ASCB address is in the CMS lockword.

Section 2: Important Considerations Unique to MVS 2.1.9

Global System Analysis (continued)

2. If ASCBLOCK = X‘00000000" and the memory/task is waiting, the status
is saved in the RB/TCB. (See the chapter on “System Execution Modes and
Status Saving™ later in this section.)

3. Suspended SRBs can cause bottlenecks. The chapter on “‘System Execution
Modes and Status Saving” can aid in locating any suspended SRBs that relate to
the address space. Note: Do not spend time looking for them unless other facts
about the problem indicate a potential problem in this area.

By far the most important consideration in task analysis is the RB structure of
each task. Generally if you have isolated the problem to an address space, RB
analysis shows a potential problem in the way of:

Long RB chains

Contention caused by an ENQ (SVC 38) request
Page fault waits

1/O waits

Abnormal termination processing, that is, SVC D RB

Once you have analyzed the RB structure you might want to go back and further
analyze the TCBs. Following are additional important fields in the TCB:

1. TCBFLGS (TCB + X‘1D’) — indicators of how the system currently considers
this task.

2. TCBGRS (TCB + X*30°) — -general purpose registers (0-15) saved when a
TYPE 1 SVC is issued or for an interruption for a non-locked task.

3. TCBSCNDY (TCB + X‘AC’) — additional system indicators for this task that
help to determine why this task is not executing.

4. TCBRTWA (TCB + X‘EQ’) — pointer to the RTM2 work area (mapped in the
Debugging Handbook) which contains information similar to the SDWA but
also data for RTM processing.

Summary

This chapter contains major considerations you must be aware of when

analyzing a stand-alone dump in MVS. A disciplined approach is important; resist
the tendency to go off on tangents upon finding the first unexplainable condition.
After gathering all the facts, try to resolve the “cause and effect” situations you are
bound to uncover. Generally, at this point you will have isolated the error and can
start a detailed component/process analysis.

2.1.10 OS/VS2 System Programming Library: MVS Diagnostic Techniques

System Execution Modes and Status Saving

MV differs significantly from previous operating systems by having multiple
execution modes. Status is saved and-restored from many different locations
depending upon the execution mode at the time control was lost. This chapter
explains those modes and how they affect problem analysis.

System Execution Modes

MYVS has four execution modes:

1. Task mode

2. SRB mode

3. Physically disabled mode
4. Locked mode

Code always executes in one of these modes or, in certain cases, in a combination
of modes. For instance, code running in task or SRB mode can also be either
locally locked or physically disabled.

Task Mode

Task mode describes code that is executing in the system because the dispatcher
selected work from the task control block (TCB) chain. To start execution, the
dispatcher sets up the environment (registers and PSW) and then passes control to
the code to be executed. The registers and PSW are found in one of two places:

1. Inthe TCB at TCBGRS (TCB+X30’), which is a register save area used when
unlocked, enabled TCB mode work is interrupted. The PSW is obtained from
the request block (RB) that is found through the TCB+0.

2. In the IHSA (interrupt handler save area), which is used to save registers when
locally locked task mode code is interrupted. IHSA is found through
ASXB+X20’; ASXB is found through ASCB+X‘6C’. The PSW for locally
locked tasks is obtained from the IHSA.

Task mode is probably the most common execution mode. All programs given
control via ATTACH, LINK, and XCTL operate in this mode.

- Section 2: Important Considerations Unique to MVS ~ 2.2.1

System Execution Modes and Status Saving (continued)

SRB Mode

SRB (service request block) mode describes code that is executing in the system

. because the dispatcher finds an SRB on one of the SRB queues. SRB set-up is
started by the SCHEDULE macro. SCHEDULE is an in-line macro that places the
requestor-furnished SRB on one of two service queues, local or global, depending
on the requestor’s speclﬁcatlon .These queues can be found from the CVT at
CVTGSMQ (CVT+X‘264°), which contains the address of the global service
manager queue, or at CVTLSMQ (CVT+X‘268’), which contains the address of the
local service manager queue. Whenever the dispatcher finds work on either queue,
the SRBs are moved to the corresponding system priority list queue. The global
system priority list queue (GSPL), which contains globally scheduled SRBs, is
found from the CVT at CVTGSPL (CVT+X26C).

There is also one local system priority list queue (LSPL) per address space.
Each LSPL, which is found from the ASCB at ASCBSPL (+X‘1C’), contains all
SRBs locally scheduled by the requestor and also those SRBs that were globally
scheduled when the targeted address space was swapped out.

SRBs are selected from these LSPLs by the dispatcher in order to start execution.
The dispatcher loads registers 0, 1, 14, and 15 from information in the SRB and
builds the PSW. The PSW key and address are the responsibility of the scheduler
of the SRB and are specified in the SRB. SRB mode has the characteristics of
being enabled, supervisor state, key requested and non-preemptable. Non-
preemptable means that the interrupt handler should return control to the
interrupted service routine (code running under SRB mode). However, service
routines can be suspended because of a page fault or because a lock (CMS or local)
is unavailable.

Physically Disabled Mode

Disabled mode is reserved for high-priority system code whose function is the
mampulatlon of critical system queues and data areas. It is usually combined with
supervisor state and key 0 in the PSW, and assures that the routine running disabled
is able to complete its function before losing control. It is restricted to just a

few modules in MVS (for example, interrupt handlers, the dispatcher, and
programs holding a global spin lock).

Physically disabled mode is used for one of two reasons:

1. To assure that data remains static while the code is referencing or updating the
data.

2. To assure that non-reentrant code does not lose control while performing
critical system functions. For example, JOS must run disabled while enqueueing
and dequeueing requests to UCBs and while updating UCBs at the start and end
of 1/O operations.

2.2.2 0S/VS2 System Programming Library: MVS Diagnostic Techniques

System Execution Modes and Status Saving (continued)

In the MVS system, physical disablement on a system basis because of MP must
be accompanied by locking in order to guarantee serialization. MVS disabled code
is also always accompanied by either a global spin lock or code executing under a
“super bit”. The “super bits” are located in each processor’s PSA (X‘228").

They are used primarily for recovery reasons — they allow RTM to recognize that
a disabled supervisory function was in control at the time of error even though
global locks were not held. This indicates that FRR recovery processing should
be initiated by RTM.

Note that type 1 SVCs do not execute disabled in MVS. Instead they are
entered with the local lock. Thus they are considered to be task mode physically
enabled, holding the local lock.

Locked Mode

Locked mode describes code executing in the system while owning a lock. (See
the chapter on “Locking” later in this section.) A lock can be requested during any
execution mode (SRB, TCB, physically disabled).

Status saving while in a locked mode requires unique considerations from the
system. An example is a program that invokes a type 1 SVC, such as EXCP
or WAIT, that executes in locked mode. When a type 1 SVC is enabled, it
can be interrupted. However, if the SVC is interrupted, the registers cannot be
saved in the TCB because it is being used to save registers active at the time of the
SVC request for return to the requestor. Therefore, status must be saved else-
where.

For programs executing in locked mode, status is saved according to the
condition surrounding the programs, as follows:

Locdlly locked task is interrupted. A new area, the IHSA interrupt handler save
area (IHSA), has been defined in MVS to contain the status when a locally locked
task is interrupted. The IHSA is found from the ASCB + X‘6C,” which points to
the ASXB; the ASXB + X‘20’ points to the IHSA.

Locally locked SRB is interrupted. When locally locked SRBs are interrupted,
there is no problem because SRBs are non-preemptable. The registers and PSW are
saved in the LCCA. When the system has handled the interrupt, the SLIHs return
to the FLIHs, the status is restored from the LCCA, and control is returned to the
interrupted SRB routine.

Locally locked SRB is suspended. Locally locked SRBs that are suspended must
have their status saved in a unique area. The process that suspends an SRB is
responsible for obtaining an SSRB (suspended SRB), which will contain the
interrupted status and will also serve as the control block used to reschedule the
service routine once the reason for suspension has been resolved. See “Locating
Status Information in a Storage Dump” later in this chapter for a detailed
description of how to find these SSRBs.

Section 2: Important Considerations Unique to MVS 2.2.3

System Execution Modes and Status Saving (continued)

Determining Execution Mode from a Stand-alone Dump

RN KnoWing the system’s execution mode at the time a stand-alone dump was taken is
important in analyzing a disabled coded wait state or a loop. The following areas
may help determine the mode of execution:

LCCA Indicators — There are two bytes of important dispatcher flags in the

PSA Indicators
o Super Bits —

® Recovery —
Stack

o Current —
Work

o Locks —

ASCB Indicators —

LCCA +X21C’.. At location X21D’, the LCCADSRW flag is
turned on just prior to any LPSW (Load PSW) for a global
SRB, a Local SRB, or task dispatch. For a global SRB, the
LCCAGSRB and LCCASRBM f{lags are also set on. For a
Local SRB, only the LCCASRBM flag is set on in addition to
LCCADSRW.

Flags in the supervisor control word located at PSA +
X228’ indicate whether the dump was taken while

‘in one of the interrupt handlers or dispatcher.

If the first two words of the RTM stack vector table

(PSA +X380) are not equal, then control is in one of the
interrupt handlers or the dispatcher. Compare the address
at PSA + X‘380° with each entry in the FRR stack vector
table starting at PSA + X384 to determine the owner of the
active stack. (See the chapter on “Use of Recovery Work
Areas for Problem Analysis™ later in this section for stack
vector table analysis.)

PSA + X218’ contains the addresses of the new TCB, old
TCB, new ASCB and old ASCB consecutively in a four-word
area. If the system is in SRB mode, the address of the old
TCB equals 0. If the addresses of the new and old ASCBs are
not equal, then the stand-alone dump was taken between the
time that an address space switch was requested and the time
the dispatcher dispatched an address space or a global SRB was
dispatched. In all cases, the old TCB and ASCB indicate the
current work.

The PSA also contains the lock indicators. (See the chapter on
“Locking” later in this section for a description of how to
determine the lock mode.)

The following ASCB locations help determine execution
mode:

X1C . — Address of the local service priority list,
which contains SRBs queued for dispatching.

X‘66-67" — RCT flags.

X“72-73° — Non-dispatchability flags.

2.24 OS/VS2 System Programming Library: MVS Diagnostic Techniques

~——

System Execution Modes and Status Saving (continued)

X176 — Count of SRBs dispatched in this address
space. ‘

X7C — Number of ready TCBs in this address space.

X80 — Local lock (see the chapter on “Locking™
later in this section for how to interpret this
field when #0).

X84’ — Address of the SRB suspend queue for

unavailable local lock requestors.

Keep in mind that mixed modes frequently occur. For
example, a local SRB can obtain a lock, be interrupted, and
the stand-alone dump taken while disabled in the I/O
supervisor. Depending on the system mode at the time of
the interrupt, a task’s status (registers, PSW, etc.) can be saved

I in one of several places.

Locating Status Information in a Storage Dump

Status information is located in a storage dump depending on the conditions
under which it was saved.

o Tusk and SRB Mode Interruptions: Status saving is required whenever the
code gives up control, whether voluntarily or involuntarily. Initial status
is saved by the first level interrupt handler (FLIH) as follows:

SVC FLIH (task mode only) — Initially:
registers saved at LCCA+X ‘380’ (LCCASGPR)

Then for Type 1 and Type 4 SVCs:
registers moved to TCB+X ‘30’ (TCBGRS)
PSW moved from PSA to requestor’s RB
I Then for Type 2, 3, and 4 SVCs: '
Registers moved to SVRB
PSW moved from PSA to requestor’s RB
I/O FLIH — [Initially:
registers saved at LCCA+X‘1C0’ (LCCAGPGR)
PSW saved at LCCA+X‘200’ (LCCAIOPS)
Then for unlocked tasks: _
Registers moved to TCB
PSW moved to RB

Section 2: Important Considerations Unique to MVS 2.2.5

System Execution Modes and Status Saving (continued)

For locked tasks (CMS or local):
registers moved to THSA ASCB+X‘6C’ —»ASXB

ASXB+X20’ —==IHSA
PSW moved to IHSA
For SRBs: registers remain in LCCA
PSW remains in LCCA
External FLIH — Initially:
registers saved at LCCA+X‘A0Q’ (LCCAXGR1)
Then for recursion purposes:
registers moved to LCCA+X‘EQ’ (LCCAXGR2)
PSW is in PSA+X240’ v (PSAEXPS1)
If first recursion:
registers moved from LCCA+X‘AQ’ (LCCAXGR1)
to LCCA+X‘120° (LCCAXGR3)
PSW is in PSA+X248’ (PSAWXPS2)
If second recursion:
registers moved to LCCA+X‘AQ’, (LCCAXGR1)
where they stay
PSW is in PSA+X‘18’ (FLCEOPSW)

Note: Subsequent status manipulation for tasks and SRBs is the same as for the
1/0 FLIH (that is, the movement from LCCA to TCB or IHSA is identical).

Program check — Initially:

, registers saved at LCCA+8 - (LCCAPGR1)
Then: registers moved to LCCA+X‘48” (LCCAPGR2)
PSW is in LCCA+X‘88’ (LCCAPPSW)

For page faults that require I/O the following occurs:

Unlocked tasks: registers moved to TCB
PSW moved to RB

Locked tasks: registers moved to IHSA
PSW moved to IHSA

SRBs: Are suspended: see “SRB Suspension” later in this
chapter.

- Note: For SRB code, status is not moved from the LCCA save areas. SRBs are
non-preemptable and aré given control back immediately, with the
status being restored from the LCCA.

® Locally Locked Task Suspension: Status saving is the same as for locked task
interruptions (described earlier under “I/O FLIH”) except that IHSA also
contains the floating point registers, the FRR stacks, and the PSW. The
ASCBLOCK field is updated to contain X“7FFFFFFF’.

2.2.6 O0S/VS2 System Programming Library: MVS Diagnostic Techniques

System Execution Modes and Status Saving (continued)

® SRB Suspension: An SRB can be suspended in two cases. If a service routine
encounters a page fault and a page-in is required, then the SRB routine must
give up control. In that event, an SSRB (suspended SRB) must be obtained and
the status saved in that control block. Then the SSRB is queued from the page
control block (PCB) in the real storage manager. When the paging I/O
completes, the SSRB is re-queued to the local service priority list (LSPL)

where it is found later by the dispatcher. The SSRB must be obtained
because the original SRB was not retained after the dispatch. Status saved in an

SSRB must include the current FRR stack.

The second case of SRB suspension is an unconditional request for an
unavailable lock. Status saving for SRB suspension for alock differs from the
page fault where the SSRB is queued and where control returns after the
redispatch of the SSRB. For a request for alocal lock that is unavailable, the
SSRB is queued from the ASCB. For a request for an unavailable CMS lock,
the SSRB is queued on the CMS suspend queue header. (For more detail see the
chapter on “Locking” later in this section.) In both cases of SRB suspension,
resumption is at the appropriate entry in the lock manager to try to
acquire the lock. Upon release of the CMS lock by the holder, any SSRBs are
rescheduled. Upon release of the local lock by the holder, the first SSRB that
was suspended is given the local lock and rescheduled.

Suspend SRB queues can be summarized:

Page Faults
PCB is chained from PVTCIOQF (at PVT+X‘“75C’) for a common area page
and from RSMLIOQ (at RSMHD+X‘24") for a private area page.
PCB+X‘1C’ points to SSRB. ‘

Local Lock Requests
SSRB is queued from ASCBLSQH (ASCB+X‘84°).

CMS Locked

SSRB is queued from the CMS SRB suspend queue in IEAVESLA as
shown:

PSALITA
(PSA + X'2FC") ?

LIT

+0| § DISP LOCK IEAVESLA

DISP LOCK

SALLOC LOCK

SRM LOCK

00000000

CMS lockword and | +10°{ CMS LOCK
queue header for
SRBs and ASCBs 14 CMS SUSPEND
suspended for CMS Q HDR

Section 2: Important Considerations Unique to MVS 2.2.7

2.2.8 0S/VS2 System Prograthing Library:' MYVS Diagnostic Teéhniques

Locking

Serialization of resources to provide data integrity and protection is a necessary
function of operating systems. In pre-MVS systems, resource serialization was
accomplished by physical disablement and by the ENQ/DEQ component. Physical
disablement controls only one processor and thus, in MP systems, does not
guarantee serialization.

To achieve‘ these requifements the locking facility provides:
e Serialization in a tightly-coupled MP system
o Serialization across address spaces for common resources
e Serialization within address spaces
A central lock manager acquires and maintains all locks. Use of the lock
manager is restricted to key O programs running in supervisor state, which prevents

- unauthorized problem programs from interfering with the serialization process.
The lock manager is located in the nucleus in CSECT IEAVELK.

Classes of Locks
MVS locks are divided into two classes:

e Global Locks, which protect serially reusable resources related to more than
one address space. These resources provide system-wide services or use
control information in the common area. Examples of resources protected by
global locks are UCBs and dispatcher control blocks.

e Local Locks, which protect serially reusable resources assigned to a particular
address space. When a task or SRB holds a local lock, the queues and control
blocks serialized by that lock can be used only by the task or SRB holding the
lock.

Figure 2-1 defines the MVS locks. All MVS locks, except the local lock, are ‘
global locks. ‘

Section 2: Important Considerations Unique to MVS 2.3.1 -

Locking (continued)

Name ‘ Description A

DisP Global dispatcher lock — serializes all functions associated with the
dispatching queues.

ASM ‘1 Auxiliary storage management lock — serializes the auxiliary storage
resources.
SALLOC ‘Space allocation lock — serializes real storage management (RSM)

" resources, virtual storage management (VSM) global resources, and
some auxiliary storage management (ASM) resources.

IOSYNCH 1/0 supervisor synchronization lock — serializes the 10S purge function
s : and other 1OS resources.

IOSCAT 10S channel availability table lock — serializes the 10S processor-
. related save area. o

10SUCB 10S unit control block iock — serializes access and updates to the unit
control blocks. There is one lock per UCB.

10SLCH 108 Iogicai channel queue lock — serializes acce