e N e
VS FORTRAN Version 2 Licensed

Interactive Debug Program
Guide and Reference

Order Number Program Numbers Release 2
SC26-4223-1 5668-805
5668-806

]
VS FORTRAN Version 2 Licensed
Interactive Debug Program
Guide and Reference

Order Number Program Numbers Release 2
SC26-4223-1 5668-805

5668-806

Second Edition (June 1987)
This edition replaces and makes obsolete the previous edition, SC26-4223-0.

This edition applies to Release 2 of VS FORTRAN Version 2, Licensed Programs
5668-805 and 5668-806, and to any subsequent releases until otherwise indicated in new
editions or technical newsletters. The changes for this edition are summarized under
*“Summary of Changes” following the preface. Specific changes are indicated by a vertical
bar to the left of the change. These bars will be deleted at any subsequent publication of
the page affected. Editorial changes that have no technical significance are not noted.

Changes are made periodically to this publication; before using this publication in
connection with the operation of IBM systems, consulit the latest IBM System/370, 30xx,
and 4300 Processors Bibliography, GC20-0001, for the editions that are applicable and
current.

References in this publication to IBM products, programs, or services do not imply that
IBM intends to make these available in all countries in which IBM operates. Any
reference to an IBM licensed program in this publication is not intended to state or imply
that only IBM’s program may be used. Any functionally equivalent program may be used
instead.

Requests for IBM publications should be made to your IBM representative or to the IBM
branch office serving your locality. If you request publications from the address given
below, your order will be delayed because publications are not stocked there.

A form for readers’ comments is provided at the back of this publication. If the form has
been removed, comments may be addressed to IBM Corporation, P.O. Box 50020,
Programming Publishing, San Jose, California, U.S.A. 95150. IBM may use or distribute
whatever information you supply in any way it believes appropriate without incurring any
obligation to you.

© Copyright International Business Machines Corporation 1986, 1987

Preface

About This Book

Part 1. VS FORTRAN Version 2 Interactive Debug Guide

The guide contains the following information on how to use Interactive Debug:

How to set up and use Interactive Debug in your environment
A sample debugging session
How to use some common commands

Special considerations when using Interactive Debug

Part 2. VS FORTRAN Version 2 Interactive Debug Reference

The reference section contains:

L

An explanation of syntax and statement identifier conventions

A table listing the Interactive Debug commands according to the functions they
perform

Detailed descriptions of all the Interactive Debug commands

Appendixes

The appendixes include:

Information on using the Interactive Debug HELP facility
A summary of Interactive Debug commands, illustrating syntax and function

A listing of Interactive Debug messages

Preface 1il

Summary of Changes

Release 2, June 1987

Major Changes to the Product

» Support for 31-character symbolic names, including the underscore (__)
character.

« Addition of a program sampling capability, to assist in identifying areas of a
program that use the most CPU time.

« Addition of four new commands:
1. ANNOTATE, to support program sampling.
2. LISTSAMP, to support program sampling.

3. LISTINGS, to display the listings data set specification panel when using
ISPF Version 2.

4. RECONNECT, to allow a CLOSED unit to be reset to its original
(preconnected) state so that it can be implicitly opened again.

» Capability of providing substring notation for character variables.

« Capability of referencing array subscripts outside the range of the declared
dimensions.

e Reduced dependency on TSO, including removal of the TSOLIB requirement
under CMS batch.

o Capability to debug programs invoked under TSO LOADGO.

» Support for debugging CMS MODULE files under ISPF.

iV VS FORTRAN Version 2: Interactive Debug Guide and Reference

Contents

Part 1. VS FORTRAN Version 2 Interactive Debug Guide 1

Chapter 1. Introducing VS FORTRAN Version 2 Interactive Debug 3
Interactive Debug Featurescooiiuininiininnnnnan.n, 3
Interactive Debug Programming Requirementscioiunvennnn S
System ReqUIrementsouviniieiniennneneeneernneneanens 5
Compiler Requirementsc.ccuotiintiiemneennnennannenannns 5
Library Requirementsc.otiitiiitoneenurenoonassonsonss 6
REStICHONS ... v it ettt ittt it e ineenteetoensensnesnrosensanns 6
Performance Considerationsttt iinienennneannnn 7
Discovering Program Bugscc0iriiiiiiiiiiiii i 7
Invoking Interactive Debugcoiiiiiiiii i i 8
Chapter 2. Using Interactive Debug with ISPF cciviss 9
Invoking Interactive Debug o 9
Under CMS ... it it e i e 10
UNder TSO . i vttt i ittt ittt 17
Using the Execution Panel i iiiiiiiiiinnenan.. 21
Entering Commandsccittinininirnenranntnennnnnnns 22
Using Program Function Keys to Enter Commands 22
Entering Input to a VS FORTRAN Version 2 Program 23
Viewing the Scrollable Log, 23
Error MesSagesvvvvnvnnvneninennenrneneanenannsnsonnanss 24
Breaks Initiated by Interactive Debug e, 24
Using Interactive Debug Features under ISPF Version2 24
Setting or Changing the Defaults for Your Debugging Sessions 25
Displaying Your Source Listingina Window 26
Using Cursor-Oriented Commands coiviiennnn., 30
Searching the Source Listing or the Log for Character Strings 31
Animating the Execution of Your Program 32
Changing the Color Attributes of Your Panel 33
Splitting the Screen Using ISPFand PDFl 33
Recompiling a Program while Using a Split Screen (TSO Only) 33
After Ending the Debugging Session i, 34
Bypassingthe BROWSE Stepottt 35
Using Optional Debugging Filesor DataSetsot .. 36
Specifying an Output Log File or Data Set (AFFOUT) 36
Specifying a Print File or Data Set (AFFPRINT) 36
Specifying Program Units to be Debugged (AFFON) 37
Specifying a Restart File or Data Set (AFFIN) 39
Chapter 3. Using Interactive Debugin LineModec00inceeenne. 41
Invoking Interactive Debugottt 41
Under CMS oot et e i ettt e 41

Contents V

vi

Under TSSO .o i ittt e ettt e et e e e 45

Entering Commandsciiitinntiitinnernerenrenonaaennns 46
Entering Input to a VSFORTRAN Programcovievniennnnn 47
Using a Listing File while Debugging 48
Using Optional Debugging FilesorDataSets00 ut. 48
Specifying Program Units to Be Debugged (AFFON) 48
Specifying a Print File or Data Set (AFFPRINT) 50
Chapter 4. Using Interactive Debugin BatchModec000veennn 51
Invoking Interactive Debug i 51
Under CMS ... i i i e i e e e e 52
Under MV S .. i i ittt it e 53
Running a Batch Debugging Session it 55
Specifying the Input File or DataSet (AFFIN)c.cvvvnvnvnnn. 56
Including Program Input in AFFIN iiiiniennnnnnn 57
Specifying an Qutput File or Data Set (AFFOUT) 58
After Ending a Debugging Sessioncciiiiiiiiiiiiiiine, 58
Using Optional Debugging FilesorDataSets 58
Specifying a Print File or Data Set (AFFPRINT) 58
Specifying Program Units to be Debugged (AFFON) 59
Chapter 5. A Sample Debugging Sessionccciiviititttnrsnrcccasns 61
Sample Programc.iiitiiittntin it iasanns 61
Sample Debugging Session it i e 64
Chapter 6. Using Some Common Interactive Debug Commands 69
Displaying Information about Debuggable Program Units 69
Referring to Statements or Variables in Other Program Units 70
Displaying the Current Program Qualification 71
Changing the Current Program Qualification 71
Explicit Qualification of Individual Variables 72
Setting Breakpoints at Debugging Hooksccviiina... 72
Controlling Program Execution0 iiiiiniiiinnennen 74
UsingCommand Listso0iittiiiennennrrenrnnenneeannnn 76
Displaying the Data Types of Scalar Variables and Arrays 77
Determining Statement Execution Frequency 78
Program Samplingottt i i it i 79
Initiating Program Sampling tiitiiirnnnnnnn 79
Displaying Program Sampling Statistics 80
Limitations Using Program Sampling0 e, 82
Displaying Timing Information iiiieann.. 82
Tracing Program Execution iiiiiiininnnnn.. 83
Displaying Formatted Variable and Array Values 85
Handling Execution-Time Errors0, 86
Identifying EITOrsottt ittt intenrnenonnans 86
Performing Corrective Actioncitiiiivnrinnrnnnennnnns 87
Processing External Files iiiiuiiiiinninnninennnns 89
Using System Commandsc.ciiiiiinenennennenenennans 20
Entering Terminal Input ittt it inneinerannas 91
Continuing Execution without Further Debugging 93
Chapter 7. Special Considerations When Using Interactive Debug 95
Issuing Commands after Termination of a VS FORTRAN Program 96
Handling Loops in Nondebuggable Program Units 96

VS FORTRAN Version 2: Interactive Debug Guide and Reference

Specifying Default Execution-Time Optionscoovenin..n 96

Monitoring Floating-Point Equalitiesc.c.0iiiaen, 97
Referring to Unused VS FORTRAN Variables 97
Entering Commands in an Attention-Interrupt Exit 97
Debugging Optimized and Vectorized Codecoooun 98
Optimization Levels and Functionsoioeivnven.n. 99
Vectorization Levels and Functionso 102
Some Practical Examples: Optimization 103
Some Practical Examples: Vectorization0... 105
Commands Affected by Optimization and Vectorization 107
Improving Performance when Using Interactive Debug 109

Recognizing Some Common Errors when Setting up a Debugging Session ... 109

Part 2. VS FORTRAN Version 2 Interactive Debug Reference . 111

Chapter 8. Interactive Debug Commandsccc00uee ceeeens 113
Syntax Conventionsc.uventenietaenaeroenstasiornsaioanns 113
Statement Identifier Conventionsc.c ottt ittt vioneeaanns 114
(0003111 17:1 + Vo -3t 115
*0r " (COMMENES) ..ot vvvnreeesseseeeeeeunnennnaeeanseennnnnans 117
ANNOTATE Commandciuueenonneenoernenanoseannnnnns 118
AT Commandovviiienreeneeeesesoansonsoeeooesesannans 121
AUTOLISTCommandviuiiiuieenneneennsonnneneanaconns 125
BACKSPACE Command .. .c.....c.vieeeennennornnennoennsnnennas 131
CLOSECOmMMANndciuiititineeeeeeneaannanassoanseeneesoanns 132
COLOR Commandvvevueennoeecenosannnneeranessnnnass 134
DESCRIBE Commandcccurtreerncenesnneinnonasnnennns 136
ENDDEBUG Commandoeuterennccnnactonannesennnnses 138
ENDFILE Commandc..vuteereenoonronreeneonarnnannasnes 141
ERROR CommANdoviitiiinnnneeeerosssssnnenssasansaness 142
FIXUP Commandovvuriiuernenneroneeeraasasnsssennneanas 144
GO COMMANA ...t i ittt ettt ittt aa e 146
HALT Commandcviuviueetenmnecnnoeesonnsetonansanasssnns 148
HELP Command (ISPF Version)coitiiiinnnineensnenns 150
HELP Command (CMS Version)ccottiemmiiineaeinennnns 151
HELP Command (TSO Version)cccoeuiiieuenieernnenannsas 153
IFECOMMANAttt iiennneaeatsoeeronennnennannnsasesasss 155
LISTCOMMANA ...t vit ittt eiieeneaneaeneaneenesssesansnnsanns 158
LISTBRKS Commandoiiuurennoeennioennoesosenssaannns 164
LISTFREQ Commandc.courerrocntnroncneasenaassnsons 165
LISTINGS Commandcvvueeneeenrooneeonnanssoonnssssnns 168
LISTSAMP Commandviiueereeneocnacessansosonansnnns 170
LISTSUBS Commandovveetiieeneeacenusonneenosnannnns 174
LISTTIME Commandcuuoureeecetosernnnnnanonnasssessens 176
MOVECURS Commandciiiiuiutrioreeennneeiaonseannns 177
NEXTCommandc.vuteiiieneereeenaannansessassonassses 178
OFF Commandcuovvinmeeeennncenoeeetnnneesenansanaassoss 180
OFFWN Commandoiiiiirinreeeeeesesnsnnnnsnsnanenssnesss 182
POSITION Commandouovivereeenotiarenecsosroeenasnnns 183
PREVDISP Commandcciiirentenonnnnnnecsosnanonsassns 185
PROFILE Commandovvtiriieeeneeeesnseeronessananssonns 186
PURGE Commandcevvreenerenennerecanseanacessnnsanns 188
QUALIFY Commandcovveeretnenenenenronsiserosnenensos 189
QUITComMAndvvvvveernneinirostnntsntsoasonsoassassonss 191

Contents Vil

RECONNECT Commandc.iiiiiiiininnneeeneeneoaasonns 192

REFRESH Commandiuiniiiiiiittiereeronnnaeaananan 193
RESTART Commandiitiiimniiiiiiieeteraernnnnnnnns 194
REWIND Commandooutiiiiiiernnreonnneneanaoasornesss 195
SEARCH Commandoiutiintnnerneeruosnnonneranennn 197
SET Commandoiiiiniminnniunneeeoeerenennonsonsnnnns 199
STEP Commandviriitriimnneennneenneossonnossanneenns 203
SYSCMD Commandoutiniriiieintenneronnnseanesnnsans 205
TERMIO Commanduittiiiniteennrnennnnsernoanseennnnns 207
TIMER Commanduouutinneeeinneernnnneroeanaeanaenns 209
TRACE Commandouuitiinininmtienneeennnseaenneenannens 211
WHENCommandcouiiiiinnnnnnnnnnneeneesoosoeesnnns 213
WHERE Commandc.c.uitiiiinmniiiininnnnenoneeeenennas 216
WINDOW Commandvitriinneeraneinennarennneeeanenns 217
Appendix A. Using the Interactive Debug HELP Facility 219
Helpatthe Terminal it iiiiinnnennnnn 219
ISPF Proceduresoitiiinnnnnnnnenenoeneeeenneaannananns 222
CM S ProcedUreSttt ettt ettt eetereee ettt tennennanaanenns 222
TSSO Proceduresivvii ittt ienineanneseennaseeanaoeranns 223
Appendix B. Interactive Debug Command Summaryccc0eeeeane 225
Appendix C. Interactive Debug Messagesccovveeverenscencrenns 231
GloSSATY o . viviieiriinsesneoronsnsasessosestossnoscssnsanannnns 269
INndeXcciiiiiriioiootoseseancanossscssassascsssssssonnses 275

viii VS FORTRAN Version 2: Interactive Debug Guide and Reference

Figures

The FOREGROUND VS FORTRAN Version 2 Interactive Debug Panel

0] g 3. 1 J 10
A Sample Modification of the ISPF Invocation EXEC 14
Sample Modifications to ISPF Master Application Menu 14
Sample Application Panel (USERISP) to Prompt for the Text File Name 15
Sample EXEC (USERDBG) to Invoke the Program without PDF 16
The FOREGROUND VS FORTRAN Version 2 Interactive Debug Panel

03 o - © U PP 17
Sample Modifications to the ISPF Invocation CLIST 18
Sample Modifications to ISPF Master Application Menu 19
Sample Application Panel (USERISP) to Prompt for the Text File Name 20
Sample CLIST (USERDBG) to Invoke the Program without PDF 20
VS FORTRAN Version 2 Interactive Debug Execution Panel 21
Modifying the PROFILE Command Panel 25
The Listings Data Set Specification Panelin CMS 28
Example of Debugging Using a Source Window 29
Modifying the STEP DELAY Fieldooiiinnntn 32
The Foreground Print Options Panel under ISPFin CMS 34
Sample CMS EXEC to Invoke a VS FORTRAN Program 45
Sample TSO CLIST to Invoke a VS FORTRAN Program 46
Sample Commands for a Batch Debugging Session under CMS 52
Sample JCL for a Batch Debugging Session under MVS with TSO 54
Sample JCL for a Batch Debugging Session under MVS without TSO .. 55
Program Source File for SAMPLE Program 61
Program Source Listing for SAMPLE Program 63
Example of WHERE FLOW Outputc.coooviennaaanan, 84
Functional Summary of Interactive Debug Commands 115
DUMP and FORMAT Codes for the AUTOLIST Command 127
Color and Attribute Selection Panel under ISPF Version2 135
DUMP and FORMAT Codes for the LIST Command 160
The Listings Data Set Specification PanelinCMS 168
Valid SET Command Assignmentsccvuieencenevons 199
Main Menu for the Help Facility (under ISPF) 220
Help Facility Task Menu (under ISPF)0oe 221
Sample HelpScreenottt 221

Figures iX

Part 1. VS FORTRAN Version 2 Interactive Debug Guide

VS FORTRAN Version 2 Interactive Debug provides a set of commands to help
you locate and diagnose problems in your VS FORTRAN Version 1 or VS
FORTRAN Version 2 programs. (“VS FORTRAN?” is used in this book as a
common term to refer to programs written with either product.)

This section of the book contains instructional material to guide you through the
process of learning those commands.

For a summary of VS FORTRAN Version 2 Interactive Debug commands,
including descriptions, keywords, and abbreviations, see Appendix B, “Interactive
Debug Command Summary” on page 225.

If you already know how to use Interactive Debug, you may want to go directly to

the reference section in “Part 2. VS FORTRAN Version 2 Interactive Debug
Reference” on page 111.

Part 1. VS FORTRAN Version 2 Interactive Debug Guide 1

Chapter 1. Introducing VS FORTRAN Version 2 Interactive Debug

VS FORTRAN Version 2 Interactive Debug is a flexible, efficient tool that assists
you in monitoring the execution of VS FORTRAN Version 1 and VS FORTRAN
Version 2 programs. (For convenience, we refer to both kinds of programs as V'S
FORTRAN programs, unless special information applies to only one product.)

With VS FORTRAN Interactive Debug, you can suspend program execution,
analyze program performance, continue execution, skip sections of code, correct
errors, display and set variables, set up expected input, and display output.

You can debug your programs in full screen mode, line mode, or batch mode. For
full screen mode, the Interactive System Productivity Facility (ISPF) is required.
With ISPF Version 2, you can view your source listing in a portion of the screen
called a source listing window. You can control the pace of execution, and
highlight the command currently executing.

VS FORTRAN Interactive Debug can be used easily and effectively by scientists,
engineers, other professionals, and students—all those who use VS FORTRAN for
engineering and scientific problem solving.

Application programmers using VS FORTRAN will also find VS FORTRAN
Interactive Debug to be an essential aid to increased: productivity. Through
improved tracing, reduced dump analysis, and fewer recompilations, measurable
savings in time and effort can be realized.

Interactive Debug Features

VS FORTRAN Version 2 Interactive Debug offers versatile capabilities for VS
FORTRAN Version 1 or VS FORTRAN Version 2 program debugging.

VS FORTRAN Version 2 Interactive Debug provides the following features:

An easy invocation procedure: Usually, you simply specify the DEBUG option
when you invoke the program to be debugged. This reduces the need for advance
planning, and also allows you to debug previously compiled programs with minimal
effort.

31-character names: You can use symbolic names up to 31 characters in length,
including the underscore (__) character, for both local and global names.

Online HELP information: Information is provided for all VS FORTRAN Version

2 Interactive Debug commands and functions and is available under Time Sharing
Option (TSO), Conversational Monitor System (CMS), and ISPF. By entering

Chapter 1. Introducing VS FORTRAN Version 2 Interactive Debug 3

HELP (or by using an equivalent PF key), you will be presented with the first of a
set of screens containing HELP information.

Full screen display: VS FORTRAN Version 2 Interactive Debug offers full screen
support. Using the facilities of ISPF and the Program Development Facility (PDF),
you can split your screen to perform debugging on one section of the screen, while
editing or browsing your program or files on the other section.

Source listing window and animation: Using ISPF Version 2, you can view your
source listing in an area of the screen called a source listing window. You can
highlight the command currently executing, and control the pace of execution. This
capability is called program animation.

Ability to issue AT, OFF, and LIST with PF keys: When you use a source listing
window, you can assign the AT, LIST, and OFF commands to a PF key, and then
perform many tasks by “pointing” with the cursor, instead of typing identifiers on
the command line. This allows you to use Interactive Debug without knowing
complex syntax or remembering command names.

Selective debugging of program units: An optional execution-time control file lets
you specify which program units will be debugged, and which statements in those
program units will have debugging hooks. Those not selected for debugging will
run at normal speed.

Manipulation of external files while debugging: Commands that are similar to VS
FORTRAN Version 2 I/0 statements (for example, ENDFILE, BACKSPACE,
CLOSE, and REWIND) allow you to manipulate external sequential files. Also,
while remaining in debug mode, you can browse or edit external sequential files
used by the program being debugged.

Ability to issue system commands while debugging: Without terminating your debug
session, you can issue commands at the system level.

On MVS/XA, ability to debug programs in either addressing mode: Programs that
run in 31-bit addressing mode and reside either above or below the 16-megabyte
line can be debugged.

Debugging of optimized code: Programs compiled at any optimization level can be
debugged (with restrictions).

Debugging of vectorized code: Programs compiled at any vectorization level can be
debugged (with restrictions).

Debugging of reentrant code: Programs compiled with the RENT option and run in
reentrant mode can be debugged. (For full debugging function, the TEST option is
also required.)

Using sequence numbers instead of ISNs for source statements: Programs compiled
with the SDUMP (SEQ) option will generate the SDUMP statement table using
the sequence numbers you supply in columns 73 through 80. This makes it possible
for you to debug programs using those numbers instead of ISNs.

Program sampling: This capability enables you to obtain an activity analysis of an
application program, identifying areas that take the most CPU time to execute.

4 VS FORTRAN Version 2: Interactive Debug Guide and Reference

This information can assist you in directing your performance improvement
activities to where they can provide the most gain in efficiency.

Interactive Debug Programming Requirements

The operating system, compiler, and library requirements for Interactive Debug are
listed in the following sections.

System Requirements

Execution with VS FORTRAN Version 2 Interactive Debug is supported under the
following operating systems:

MVS/SP Version 1—All Releases (with or without TSO/E)

MVS/SP Version 2 (MVS/XA)—All Releases

MVS/XA DFP—Version 1 or Version 2 (with or without TSO/E)
VM/SP—Release 4 and later (with or without VM/SP HPO Release 4 or
later)

VM/XA System Facility—Release 2 and later

VS FORTRAN Version 2 Interactive Debug operates in line or batch mode. It also
operates in full screen mode with the Interactive System Productivity Facility
(ISPF), and optionally, the Program Development Facility (PDF). Use of
Interactive Debug in full screen mode, including support for the source listing
window, animation, and color, requires the following:

ISPF Version 2 Release 1 or later

If your installation does not have PDF, you must follow special invocation
procedures, as described in “Invoking IAD without PDF” on page 13, or
“Invoking IAD for TSO without PDF”’ on page 18.

Note that VS FORTRAN Version 2 Release 2 will run in the VM/SP operating
system only with the OS simulation facility. It cannot run with the DOS simulation
capability of VM/CMS active.

Interactive debug supports the same operating systems as the compiler; however,

TSO/E is required when running interactively on MVS or MVS/XA, or if TSO
commands are issued in batch mode.

Compiler Requirements

VS FORTRAN Version 2 Interactive Debug is designed for use with programs
compiled by VS FORTRAN Version 2, and by VS FORTRAN Version 1 Release
2 or later.

The TEST compiler option is required for program units compiled by VS
FORTRAN Version 1 Release 2, and for those that are compiled by VS

Chapter 1. Introducing VS FORTRAN Version 2 Interactive Debug 5

FORTRAN Version 1 Release 3 if running on MVS/XA. It is also required for
RENT program units in protected storage. e

To be eligible for deugging, program units must be compiled with the SDUMP
option in effect.

Library Requirements

Restrictions

All programs to be debugged with VS FORTRAN Version 2 Interactive Debug
must be link-edited (or, under CMS, loaded) with the VS FORTRAN Version 2
Library, or with the Release 3.1, 4, or 4.1 VS FORTRAN Version 1 Library
(5748-LM3).

VS FORTRAN modules link-edited with the Release 3.1 VS FORTRAN Library
will be debuggable in the MVS/XA environment only when linked (or re-linked)
to override the addressing and residency modes to 24/24.

Batch-mode debugging is only available if the program is using the VS FORTRAN
Version 2 library.

In general, the VS FORTRAN library must be at least at the same release level as
the compiler used for the program units. In addition, VS FORTRAN Version 2
Interactive Debug requires at least the VS FORTRAN Version 1 Release 3.1
library.

m

MVS/XA: On an MVS/XA system, using VS FORTRAN Version 2 Interactive
Debug to debug VS FORTRAN programs running in 31-bit addressing mode
requires that those programs be linked with Release 4 or 4.1 of the VS FORTRAN
Version 1 Library, or any release of the VS FORTRAN Version 2 Library.
Programs linked with the VS FORTRAN Version 1 Release 3.1 Library must
specify an AMODE and RMODE of 24 in order to be debugged.

Shared Storage: VS FORTRAN reentrant programs that will reside in a shared
area (DCSS or LPA) must have been compiled with the TEST option in order to be
debuggable. Reentrant VS FORTRAN Version 2 programs can be debugged in
user storage with or without the TEST option.

Overlays: VS FORTRAN Version 2 Interactive Debug cannot debug programs
that use overlays.

Muiti Tasking Facilities: 1If you are using the Multitasking Facility (MTF), only the
main task can be debugged.

6 VS FORTRAN Version 2: Interactive Debug Guide and Reference

‘)

Performance Considerations

For programs compiled with VS FORTRAN Version 1 Release 3 or later, or with
any release of VS FORTRAN Version 2, VS FORTRAN Version 2 Interactive
Debug can be invoked merely by specifying the DEBUG option at execution time
(so long as SDUMP was in effect for the compilation). There is no need to have
compiled with the TEST option.

However, there are two exceptions:

« A reentrant program in a shared area (DCSS or LPA) requires the TEST
option in order to be debuggable; and

« Onan MVS/XA system, programs compiled by Release 3 of VS FORTRAN
Version 1 without TEST will need to be recompiled with Release 3.1 or 4, or
with VS FORTRAN Version 2, in order to be debuggable. (Programs
compiled by VS FORTRAN Version 1 Release 3 with TEST, however, can be
debugged under MVS/XA.)

VS FORTRAN Version 2 Interactive Debug permits debugging of optimized and
vectorized code, but you need to be aware of the effects of optimization and
vectorization to correctly interpret the debugging results. Whenever a program unit
has been compiled with an optimization or vectorization level other than O,
Interactive Debug will issue a warning message indicating that the results of some
debugging commands are unpredictable.

VS FORTRAN Version 2 Interactive Debug requires about 300K bytes of storage
to begin execution (plus the storage required to load the program that will be
debugged). Interactive Debug also acquires additional dynamic storage during
execution. The amount varies according to the nature of the program being
debugged, and the type and quantity of debugging commands issued.

Discovering Program Bugs

VS FORTRAN Version 2 Interactive Debug helps find program bugs by giving you
control over program execution. You can use it to debug VS FORTRAN programs
in an easy-to-use, conversational manner. You can:

o Start and stop the program

« Examine and change values of variables, arrays, and array elements

« Trace program transfers

« Track execution frequency of statements

» Control the action taken for execution errors

« Receive online help at the terminal

» Manipulate external files

Chapter 1. Introducing VS FORTRAN Version 2 Interactive Debug 7

» Locate errors, fix the problem, and continue debugging

VS FORTRAN Version 2 Interactive Debug allows you to place the output from
some of the commands in a print data set for later examination. In addition, when
executing under ISPF or in batch mode, a log of the debug session is placed in a
data set. This data set can subsequently be used as input to Interactive Debug to
re-create a previous debugging session.

Invoking Interactive Debug

The DEBUG execution-time option causes the VS FORTRAN Version 2 library
initialization routines to load VS FORTRAN Version 2 Interactive Debug.

The format of the execution command depends on the particular environment in
which the program is being run.

» In ISPF with PDF (under either CMS or TSO), a panel is provided for
executing a VS FORTRAN program and passing it the DEBUG option.

* In CMS, there are several ways to invoke Interactive Debug. For example,
entering the following commands will execute the program with the DEBUG
option:

LOAD progname
START * DEBUG

» InTSO, the format for invoking VS FORTRAN Version 2 Interactive Debug
is:

CALL progname 'DEBUG'

or

LOADGO progname 'DEBUG'
In these examples, progname is the name of the program to be executed.
When a VS FORTRAN program is dynamically invoked from another program, the
VS FORTRAN program can be debugged by passing DEBUG as the

execution-time parameter, or by including a special object module. This is
explained more fully in “Specifying Default Execution-Time Options” on page 96.

8 VS FORTRAN Version 2: Interactive Debug Guide and Reference

Chapter 2. Using Interactive Debug with ISPF

When VS FORTRAN Version 2 Interactive Debug runs with ISPF in either a CMS
or a TSO environment, we say it is executing in full screen mode because the entire
screen is available. In contrast, when Interactive Debug reads and writes one line
at a time, we say it is executing in line mode.

When executing in an ISPF environment, VS FORTRAN Version 2 Interactive
Debug will run in full screen mode using ISPF panels and services. You can enter
Interactive Debug commands, and view both the commands and output on your
terminal in the scrollable log.

Using ISPF Version 2, you can view your source listing in an area of the screen
called the source listing window. You can also choose to look at the source file by
splitting the physical screen into two logical screens. Using a split screen, you can
browse or edit the source file (or, under MVS, even recompile) while debugging.
The IBM Program Development Facility (PDF) is required for the browse and edit
functions in split-screen mode.

Invoking Interactive Debug

During installation of VS FORTRAN Version 2 Interactive Debug, modifications
should have been made to allow you to debug a VS FORTRAN program under
ISPF using standard procedures. PDF is required for the foreground invocation
panel supplied with Interactive Debug.

After you invoke ISPF/PDF, you will be presented with the Primary Option Menu.
Select option 4, FOREGROUND PROCESSING. When the next panel appears,
select the number of the option associated with VS FORTRAN Version 2
Interactive Debug. (This is likely to be option 11.)

You can also proceed directly to the Interactive Debug panel by typing 4.11 on
the command line of the Primary Option Menu.

You will then be presented with the FOREGROUND VS FORTRAN Version 2

Interactive Debug panel. See Figure 1 on page 10 for CMS, and Figure 6 on
page 17 for TSO.

Chapter 2. Using Interactive Debug with ISPF 9

Under CMS

If you are using CMS, you will see the panel shown in Figure 1. This panel is
similar to other invocation panels accessible from the FOREGROUND
PROCESSING panel under CMS.

COMMAND ===>

ISPF LIBRARY:
PROJECT ===
LIBRARY ===
TYPE ===
MEMBER ===

CMS FILE:
FILE ID

IF NOT LINKED,

DEBUG
OTHER

SYSLIB TXTLIB:

EXECUTION TIME OPTIONS:

------- FOREGROUND VS FORTRAN VERSION 2.2.0 INTERACTIVE DEBUG ———————-

(Blank for member selection list)

(TEXT or MODULE file or LOADLIB)

===>
MEMBER ===> (If member of a LOADLIB)

SPECIFY:

OWNER'S ID ===> DEVICE ADDR. ===> LINK ACCESS MODE ===>

READ PASSWORD ===>

(Enter DEBUG or NODEBUG)

(VSF2FORT, TSOLIB and CMSLIB already specified)

===> === ===>

Figure 1. The FOREGROUND VS FORTRAN Version 2 Interactive Debug Panel for CMS

Fill in either the ISPF LIBRARY fields or the CMS FILE fields (and, if necessary,
the READ PASSWORD field) before pressing the ENTER key. (If you are not
already familiar with ISPF libraries, you should probably use the CMS FILE
fields.) If both fields are filled in, the CMS FILE fields will be read and the ISPF
LIBRARY fields will be ignored.

You can process programs that have been loaded as TEXT files, MODULE files,
or as members of a LOAD LIBRARY, as follows:

» For a TEXT file, fill-in the FILE ID line with the filename optionally followed
by a filetype of TEXT. Leave the MEMBER line blank.

» For a MODULE file, fill-in the FILE ID line with the filename followed by a
filetype of MODULE. Leave the MEMBER line blank.

+ For a LOAD LIBRARY member, fill-in the FILE ID line with the filename
and do not specify a filetype. Fill-in the MEMBER line with the library
member name of your program.,

The FILE ID or MEMBER line is also used to build file names for several
Interactive Debug files described later in this chapter. These file names are:

10 VS FORTRAN Version 2: Interactive Debug Guide and Reference

fname INCLUDE * (for AFFON)

fname LIST A (for AFFPRINT)
fname LOG A (for AFFOUT)
fname RESTART * (for AFFIN)

fname LISTING * (default listing name)

If you do not provide the file ID, the ISPF library member name will be used. Use
the READ PASSWORD field to specify a required password for the disk access.

In all cases, you must enter DEBUG under EXECUTION OPTIONS to invoke
Interactive Debug. If you specify NODEBUG, Interactive Debug will not be
invoked unless you include a special object module to override the default. For
further information about overriding the default options, see ““Specifying Default
Execution-Time Options” on page 96.

In addition to the DEBUG parameter, you can also specify other execution-time
parameters in the OTHER field. You can wrap the list of other parameters onto
the second line if necessary. Use commas with no embedded blanks to separate
parameters. You must also use commas with no embedded blanks within individual
parameters, such as the DEBUNIT option.

For an explanation of the possible parameters, enter HELP. From the main HELP
panel, select option 2 for a description of the parameters and the IBM supplied
default values. For more detailed information about the parameters, see VS
FORTRAN Version 2: Programming Guide.

The SYSLIB TXTLIB fields allow you to enter up to four CMS TXTLIBs. These
may be accessed in addition to VSF2FORT whenever CMS determines that it
needs to search a TXTLIB (for example, when loading a TEXT file and resolving
all the external references).

The VS FORTRAN Version 2 Library is capable of running in either of two
“modes.” If you choose to have the necessary library routines included within your
executable program, you are operating in /ink mode. If, on the other hand, you
choose to have the library routines loaded during execution of your program, you
are operating in load mode. You make the choice of link mode or load mode by
making the appropriate combination of libraries available when you create your
executable program from your TEXT files.

VS FORTRAN Version 2 Interactive Debug’s ISPF invocation EXEC is set up to

execute TEXT files using load mode. If you want your program to operate in link

mode, you should specify VSF2LINK as an additional TXTLIB on the bottom line
of this invocation panel.

For more information on using link and load mode with the VS FORTRAN
Version 2 Library, see ¥S FORTRAN Version 2: Programming Guide.

Chapter 2. Using Interactive Debug with ISPF 11

Loading Multiple Text Files

When you use the ISPF panel to start debugging a TEXT file, you can specify only
a single TEXT file (program name). Should you be debugging a program that calls
other programs, the calls will be automatically resolved for you — provided the
called programs are either in a TXTLIB (specified on the panel as a SYSLIB
TXTLIB) or referenced in the calling program by their file names. (The file names
must be the same as the SUBROUTINE or FUNCTION names.) If your called
programs are not in a SYSLIB TXTLIB or referenced by their file names, you will
need to follow a different procedure. Here are three alternative methods:

Loading from a LOADLIB

Before invoking ISPF, place your main program and all its called programs in a
LOADLIB. You can use the CMS LKED command to build a LOADLIB.

The input to LKED is a file containing any combination of text files and LKED
control statements. (LKED control statements are the same as those accepted by
the MVS linkage editor.) For example, you could create a file of control
statements such as:

INCLUDE MYPROG
INCLUDE SUBI1
INCLUDE MYMATH
ENTRY MAIN
NAME MYPROG (R)

Assume this file is named “MYFILE TEXT.” Each control statement must be /‘“\
preceded by at least one blank.

Now, enter the FILEDEF and LKED commands for your LOADLIB; for example:

FILEDEF SYSLIB DISK VSF2FORT TXTLIB fm
LKED MYFILE (MAP

This produces a file named “MYFILE LOADLIB,” which contains a link-edited
program named MYPROG. It also produces a listing file named “MYFILE
LKEDIT,” which contains a map of your link-edited program.

Specify the LOADLIB name and member name in the FOREGROUND VS
FORTRAN Version 2 Interactive Debug panel.

Loading a concatenated TEXT file

Alternatively, you can concatenate all the TEXT files into a single TEXT file. Use
the CMS CcOPYFILE command with the APPEND option, or an editor such as
XEDIT or the ISPF/PDF editor, to create a composite TEXT file. Then, specify
this composite TEXT file in the FOREGROUND VS FORTRAN Version 2
Interactive Debug Panel.

12 VS FORTRAN Version 2: Interactive Debug Guide and Reference

Invoking IAD without PDF

Loading a module file

If you have generated a MODULE file containing your VS FORTRAN program,
you can specify the module filename and filetype on the ISPF panel. However, the
module must be generated with a higher origin than the default in order to leave
room for the invocation program. (ORIGIN 22000 will probably be high enough.)
If the module origin is too low, the message

MODULE ORIGIN TOO LOW

will appear at the upper right of the panel.

If you want to use Interactive Debug without PDF on VM/SP, you must complete
the following steps:

1. Modify the ISPF invocation EXEC to include FILEDEF statements for
VSF2PLIB and VSF2MLIB.

2. Modify the ISPF Master Application Menu to include an option for Interactive
Debug. The panel must also be modified to call an application panel created
by your installation (see step 3).

3. Create an application panel that prompts for the name of your text file and
then invokes an EXEC created by your installation (see step 4).

4, Create an EXEC to execute the VS FORTRAN program and pass the DEBUG
parameter, and any other parameters you need. (Note: EXEC2 or REXX is
recommended for writing the EXEC to avoid tokenization problems.)

Each of these steps is described in more detail in the following sections.

Modify the ISPF Invocation EXEC: Figure 2 on page 14 shows how you might
modify the ISPF invocation EXEC to include FILEDEF information for
VSF2PLIB, VSF2MLIB, and IADCMDS table.

Before you invoke this EXEC, you must issue FILEDEFs for any additional panel,

message, table, or skeleton libraries from which you plan to operate. You must
also issue a FILEDEF for the MACLIB to be used for ISPPROF.

Chapter 2. Using Interactive Debug with ISPF 13

*

§TRACE
*
FILEDEF
FILEDEF
FILEDEF
FILEDEF
*
FILEDEF
FILEDEF
*

| FILEDEF
FILEDEF
%*

FILEDEF
*

ISPDCS

OFF

ISPPLIB
ISPMLIB
ISPPLIB
ISPPLIB

ISPMLIB
ISPMLIB

ISPTLIB
ISPTLIB

ISPPROF

ISPDCSS

CLEAR
CLEAR
DISK VSF2PLIB MACLIB * (PERM CONCAT
DISK ISPPLIB MACLIB * (PERM CONCAT

DISK VSF2MLIB MACLIB * (PERM CONCAT
DISK ISPMLIB MACLIB * (PERM CONCAT

DISK IADCMDS TABLE * (PERM CONCAT
DISK ISPTLIB MACLIB * (PERM CONCAT

DISK DEFAULTS MACLIB A

ISPVM PANEL(ISPaMSTR) &ARGSTRING

Figure 2. A Sample Modification of the ISPF Invocation EXEC

Modify the ISPF Master Application Menu: Figure 3 shows how you might modify
the ISPF master application menu to provide an option for Interactive Debug (here,
option 2) and invoke a prompt panel (here, called USERISP).

R———m e ISPF MASTER APPLICATION MENU --———--=====--
ROPTION ===> ZMCD % +USERID ~ &ZUSER
% 1 +SAMPLE1 - Sample application 1 +TIME - EZTIME
2 +VSF IAD - VS FORTRAN Interactive Debug +TERMINAL - &ZTERM
% 3+, - (Description for option 3) +PF KEYS - &ZKEYS
% 4 +. - (Description for option 4)
% S +. - (Description for option 5)
% X +EXIT - Terminate ISPF using list/log defaults
%
+Enter%END+command to terminate ISPF.
%
YINIT
.HELP = ISP00005 /* Help for this master menu */
§ZPRIM = YES /% This is a primary option menu */
) PROC
§ZSEL = TRANS(TRUNC (€&zZCMD,'.")
1, 'PANEL (ISPAPRIM) ' /* Sample primary option menu */
| 2, 'PANEL(USERISP) ' /* SAMPLE PANEL TO INVOKE IAD */
JEEEEEREERREERREEREE R RRA KRR AR RRKRRERERRRRRR Rk /
/* */
/* Add other applications here */
/% */
P T L T L L
1]] 1
14
X, 'EXIT'
*¥,'21)
) END
Figure 3. Sample Modifications to ISPF Master Application Menu

14 VS FORTRAN Version 2: Interactive Debug Guide and Reference

Create an Application Panel: You must create an application panel at your
installation similar to the one shown in Figure 4. The sample prompts the user for
the name of the text file, and then invokes an EXEC called USERDBG.

)ATTR DEFAULT (%+_)

/* % TYPE(TEXT) INTENS(HIGH) defaults displayed for */
/* + TYPE(TEXT) INTENS (LOW) information only */
/* _ TYPE(INPUT) INTENS(HIGH) CAPS (ON) JUST(LEFT) */
$ TYPE(INPUT) INTENS(LOW) PAD(_) /* input field padded with '_' */
! TYPE(INPUT) INTENS(LOW) PAD(' ') /* input field padded with ' ' */
) BODY
F-—————— e SAMPLE VSF IAD PANEL ----------c--rmrmmmmmmm e
%COMMAND ===>_ZCMD %
+ ENTER THE NAME OF YOUR TEXT FILE BELOW...
+ FILE ID f===>_ NAME + (TEXT or MODULE file or LOADLIB)
+ MEMBER §===>IMEMBER + (if a member of LOADLIB)
+ ENTER THE EXECUTION TIME OPTIONS BELOW...
+

OPTIONS ===>!FDEBUG

) PROC

VPUT (NAME,MEMBER,FDEBUG) PROFILE
§ZSEL="'CMD (USERDBG) '

)END

Figure 4. Sample Application Panel (USERISP) to Prompt for the Text File Name

Create an EXEC to Pass the DEBUG Parameter: We recommend that you use
EXEC2 or REXX when creating the EXEC to avoid tokenization problems. The
sample EXEC in Figure 5 on page 16 uses EXEC2 to invoke AFFLOADF, which
in turn loads the VS FORTRAN program with the DEBUG parameter. For this
example, we have called the EXEC “USERDBG.”

Chapter 2. Using Interactive Debug with ISPF 15

§TRACE OFF
MAKEBUF
EPRESUME &SUBCOMMAND ISPEXEC
§COMMAND GLOBAL TXTLIB VSF2FORT
EUSRLDLIB = &BLANK
E§TYPE = EBLANK
ISPEXEC VGET (NAME,MEMBER,FDEBUG)
§IF /EMEMBER = /&BLANK &GOTQC -PARSE
EUSRLDLIB = &NAME
E§NAME = EMEMBER
§COMMAND STATE EUSRLDLIB LOADLIB *
EIF &RETCODE —= 0 &GOTO -EXIT
ECOMMAND FILEDEF USRLB DISK &USRLDLIB LOADLIB *
§GOTO -AFFFILE
-PARSE
EIF /ENAME = /&BLANK &GOTO -EXIT
&L = ELOCATION OF MODULE &NAME
EIF &L = 0 &GOTO -TXTSTATE
ELL = &L - 2
ENAME = ELEFT OF &NAME ELL
§TYPE = MODULE
§GOTO -AFFFILE
~TXTSTATE
ECOMMAND STATE E&ENAME TEXT *
§IF ERETCODE —-= 0 &GOTO -EXIT
-AFFFILE
ECOMMAND ERASE &NAME LOG A
E§COMMAND ERASE &NAME LIST A
§COMMAND STATE &NAME RESTART *
§IF ERETCODE = 0 &§COMMAND FILEDEF AFFIN DISK &ENAME RESTART *
EIF ERETCODE —-= 0O &COMMAND FILEDEF AFFIN DUMMY
E§COMMAND STATE ENAME INCLUDE *
§IF ERETCODE = O &COMMAND FILEDEF AFFON DISK ENAME INCLUDE *
EIF &ERETCODE —-= O &COMMAND FILEDEF AFFON DUMMY
§COMMAND FILEDEF AFFOUT DISK &NAME LOG A (DISP MOD
&COMMAND FILEDEF AFFPRINT DISK &NAME LIST A (DISP MOD
—-RESTART
§COMMAND LOAD DMSZIT (CLEAR
§COMMAND LOADMOD MOVEFILE
§STACK GLOBAL TXTLIB VSF2LINK VSF2FORT CMSLIB TSOLIB
ESTACK GLOBAL LOADLIB &USRLDLIB VSF2LOAD
ESTACK &USRLDLIB
§STACK ENAME ETYPE
ISPEXEC SELECT PGM(AFFLOADF) PARM(&FDEBUG) NEWPOOL NEWAPPL (IAD)
§COMMAND SENTRIES
§IF ERETCODE = 1 &READ VARS &RST
§IF .&RST —= .RESTART &GOTO -EXIT
E§GOTO -RESTART
-EXIT
§COMMAND DROPBUF
EEXIT

| Figure 5. Sample EXEC (USERDBG) to Invoke the Program without PDF

16 VS FORTRAN Version 2: Interactive Debug Guide and Reference

~

/ﬂ.\

Under TSO

TSO users will see the ISPF/PDF panel shown in Figure 6. This panel is similar to
other invocation panels accessible from the FOREGROUND panel under TSO.
Fill in either the ISPF LIBRARY fields or the OTHER PARTITIONED DATA
SET fields before pressing the ENTER key. If both fields are filled in, the OTHER
PARTITIONED DATA SET fields will be read and the ISPF LIBRARY fields will
be ignored.

If the OTHER PARTITIONED DATA SET line is filled in, you should specify
both the data set and member names. If you do not specify the member name, you
will see a panel with a list of member names. You then choose the member name
you need. Specify the data set and member names as follows:

'data.set.name (member) '’

Note: If you omit the quotation marks, ISPF will supply the data set prefix
specified as the default in your TSO profile.

COMMAND ===

ISPF LIBRARY:
PROJECT ===>
LIBRARY ===
TYPE ===
MEMBER ===

DATASET NAME

(Blank for member selection list)

OTHER PARTITIONED DATA SET:
===>

FILE ID FOR DEBUG FILES

PASSWORD ===>

(Enter DEBUG or NODEBUG)

===>

EXECUTION TIME OPTIONS:
DEBUG ===
OTHER ===>

Figure 6. The FOREGROUND VS FORTRAN Version 2 Interactive Debug Panel for TSO

Use the FILE ID FOR DEBUG FILES line to specify a file ID to be used to build
data set names for the Interactive Debug data sets described later in this chapter.
These data set names are:

userid.fileid.INCLUDE (for AFFON)
userid.fileid. PRINT (for AFFPRINT)
userid.fileid. LOG (for AFFOUT)
userid.fileid. RESTART (for AFFIN)
userid.fileid. LIST (default listing name)

If you do not provide the file ID, the ISPF library member name will be used. Use
the PASSWORD field to specify a password for any password-protected data sets.

Chapter 2. Using Interactive Debug with ISPF 17

In all cases, you must enter DEBUG under EXECUTION OPTIONS to invoke
Interactive Debug.

If you do not specify DEBUG, Interactive Debug will not be invoked unless you
include a special object module to override the default. (For further information
about overriding the default options, see “Specifying Default Execution-Time
Options” on page 96.)

In addition to the DEBUG parameter, you can also specify other execution-time
parameters in the OTHER field. You can wrap the list of other parameters onto
the second line if necessary. Use a comma to separate consecutive parameters.
For an explanation of the possible parameters, enter HELP. From the main HELP
panel, select option 2 for a description of the parameters and the IBM supplied
default values. For more detailed explanations of the parameters, see VS
FORTRAN Version 2: Programming Guide.

Invoking IAD for TSO without PDF

If you want to use Interactive Debug without PDF under TSO, you must complete
the following steps:

1. Define the necessary data sets for running ISPF and IAD.
2. Modify the ISPF Master Application Menu to include an option for Interactive
Debug. The panel must also be modified to call an application panel created

by your installation (see step 3).

3. Create an application panel that prompts for the name of your load module and
then invokes a CLIST created by your installation (see step 4).

4, Create a CLIST to execute the VS FORTRAN program and pass the
execution-time options.

Each of these steps is described in more detail in the following sections.
Defining the Necessary Data Sets: Modify your allocations for the ISPF data sets to

include allocations for the IAD panel library, message library and command table.
Examples of lines which could be included in a CLIST are shown in Figure 7.

FREE

ALLOC
ALLOC
ALLOC
ALLOC
ALLOC
ALLOC
ALLOC
ALLOC

| Figure 7.

FI(ISPPLIB ISPMLIB ISPSLIB ISPLLIB ISPTLIB ISPPROF)

FI(ISPPROF)
FI (SYSPROC)
FI (ISPMLIB)
FI (ISPPLIB)
FI(ISPTLIB)
FI(ISPLLIB)

DA('userid.ISPF.PROFILE') SHR REUSE

DA('SYS1.VSF2CLIB' 'SYS1.ISPCLIB') SHR REUSE
DA('SYS1.VSF2MLIB' 'SYS1.ISPMLIB') SHR REUSE
DA('SYS1.VSF2PLIB' 'SYS1.ISPPLIB') SHR REUSE
DA('SYS1.VSF2TLIB' 'SYS1.ISPTLIB') SHR REUSE
DA('SYS1.VSF2LOAD' 'SYS1.ISPLOAD') SHR REUSE

FI(FTO5F001) DA(*)
FI(FTO6F001) DA(*)

Sample Modifications to the ISPF Invocation CLIST

18 VS FORTRAN Version 2: Interactive Debug Guide and Reference

Modify the ISPF Master Application Menu: Figure 8 shows how you might modify
the ISPF master application menu to provide an option for Interactive Debug (here,
option 2) and invoke a prompt panel (here, called USERISP).

e —————— e ISPF MASTER APPLICATION MENU ----- ———
%OPTION ===> ZCMD % +USERID - §ZUSER
% 1 +SAMPLE1 - Sample application 1 +TIME - EZTIME
% 2 +VSF IAD - VS FORTRAN Interactive Debug +TERMINAL - §ZTERM
£ 3 +. - (Description for option 3) +PF KEYS - &ZKEYS
% 4 4+, - (Description for option 4)
% 5 +. - {(Description for option 5)
% X +EXIT - Terminate ISPF using list/log defaults
%
+Enter¥END+command to terminate ISPF.
%
YINIT
.HELP = ISP00005 /* Help for this master menu */
§ZPRIM = YES /* This is a primary option menu */
) PROC
EZSEL = TRANS(TRUNC (&ZCMD,'.')
1, 'PANEL(ISPQPRIM)' /* Sample primary option menu */
2, 'PANEL (USERISP) ' /* SAMPLE PANEL TO INVOKE IAD */
it A T L T
/* */
/* Add other applications here. */
/% */
P L Ty
1] 1 L})
’
X, '"EXI1IT'
x,'2')
YEND

Figure 8. Sample Modifications to ISPF Master Application Menu

Create an Application Panel: You must create an application panel at your
installation similar to the one shown in Figure 9 on page 20. The sample prompts
the user for the name of the text file, and then invokes a CLIST called USERDBG.

Chapter 2. Using Interactive Debug with ISPF 19

)ATTR DEFAULT (%+_)

/*¥ % TYPE(TEXT) INTENS(HIGH) defaults displayed for */
/*¥ + TYPE(TEXT) INTENS (LOW) information only */
/* _ TYPE(INPUT) INTENS (HIGH) CAPS (ON) JUST (LEFT) */
! TYPE(INPUT) INTENS(LOW) PAD(' ') /* input field padded with ' ' */
) BODY
b e bl Ll SAMPLE VSF IAD PANEL -—-—-—--——-—————--—=—--———————eoo————————
®COMMAND ===>_ZCMD %
+ ENTER THE NAME OF YOUR PROGRAM BELOW...
+ %===>IMEM
+ ENTER THE NAME OF YOUR LIBRARY BELOW...
+ %===>!LIB
+ ENTER THE LIST OF YOUR EXECUTION TIME OPTIONS BELOW...
+ %===>1FDEBUG

) PROC

VER (EMEM, NB, NAME)

VPUT (MEM,LIB,FDEBUG) PROFILE
§ZSEL="'CMD (#USERDEG) '
)END

Figure 9. Sample Application Panel (USERISP) to Prompt for the Text File Name

Create a CLIST to Pass the Execution-Time Options: The sample CLIST in
Figure 10 invokes AFFLOAD which in turn loads the VS FORTRAN program
with the DEBUG parameter. For this example, we have called the CLIST

“USERDBG.”
PROC O
CONTROL NOLIST MAIN NOFLUSH NOMSG
/* MEM - MEMBER NAME */
/* LIB - LIBRARY NAME */
/* FDEBUG - EXECUTION TIME OPTIONS */
ISPEXEC VGET (MEM,LIB,FDEBUG,ZPREFIX)
SET &FAFFID = &MEM /* DEFAULT TO MEMBER NAME */

SET &ZFAFFIN
SET &ZFAFFOU

E§STR(' €ZPREFIX..§FAFFID. .RESTART')

ESTR(' €ZPREFIX. . EFAFFID. .LOG")

SET &ZFAFFON ESTR(' §ZPREFIX. . EFAFFID. .INCLUDE')

SET &ZFAFFPR ESTR (' §ZPREFIX. . &§FAFFID..PRINT')

FREE FI (AFFPRINT AFFIN AFFOUT AFFON AFFLOAD)

ALLOC FI(AFFIN) DA(&ZFAFFIN) SHR

IF ELASTCC —= O THEN ALLOC FI (AFFIN) DUMMY RECFM(F)

ALLOC FI (AFFON) DA (&ZFAFFON) SHR

IF ELASTCC —= O THEN ALLOC FI (AFFON) DUMMY RECFM(F)

DELETE &ZFAFFOU

ALLOC FI(AFFOUT) DA(&ZFAFFOU) MOD CATALOG SPACE (1) CYLINDERS
DELETE &ZFAFFPR

ALLOC FI (AFFPRINT) DA(&ZFAFFPR) MOD CATALOG SPACE(1) CYLINDERS
ALLOC FI(AFFLOAD) DA(ELIB) SHR

ISPEXEC SELECT PGM(AFFLINKF) PARM(EMEM/&FDEBUG) NEWAPPL(AFF) NEWPOOL
FREE FI(AFFPRINT AFFIN AFFOUT AFFON AFFLOAD)

wnnun

Figure 10. Sample CLIST (USERDBG) to Invoke the Program without PDF

20 VS FORTRAN Version 2: Interactive Debug Guide and Reference

‘ﬂt\

Using the Execution Panel

After you have filled in the FOREGROUND VS FORTRAN Version 2 Interactive
Debug panel and pressed the ENTER key, you will be presented with the
Interactive Debug execution panel. This panel is used for almost all communication
with Interactive Debug. See Figure 11.

Note: You may initially be presented with the listings data set specification panel if
every debuggable program routine does not have a listing defined. See “Modifying
the Listings Data Set Specification Panel” on page 27.

©® ®

ONN©) ®

IAaD Q: SAMPLE_PROGRAM W: SAMPLE_PROGRAM. 3
COMMAND === . SCROLL===> 10
LOG 0-———+----l-—m—tmem =3 b e —— 5o ~—-LLINE: 1 OF 5
000001 VS FORTRAN VERSION 2.2.0 INTERACTIVE DEBUG

000002 (C) COPYRIGHT IBM CORP 1985, 1987

000003 ALL RIGHTS RESERVED

000004 LICENSED MATERIALS-PROPERTY OF IBM

000005 WHERE: SAMPLE PROGRAM. 3

Figure 11. VS FORTRAN Version 2 Interactive Debug Execution Panel

The labels and fields in the execution panel include the following: (The numbers to
the left of each item refer to the circled numbers in Figure 11.)

@ IAD — Indicates Interactive Debug status. May be coupled with a /R
(read), /E (error), /W (write), or /F (finished).

@ Q: — The name of the currently qualified program unit. Normally, the name
is that of the program unit executing. In this example, the unit is
SAMPLE__ PROGRAM

@ W: — The statement in the VS FORTRAN program at which execution has
been suspended. Also displayed is the name of the program unit where the
statement is located. In our sample panel, this is statement 3 in
SAMPLE__ PROGRAM (SAMPLE__ PROGRAM.3)

COMMAND ===> — The input area for the next debug command.

© ®

The numbered list is the log of debug commands and responses.

Chapter 2. Using Interactive Debug with ISPF 21

Entering Commands

Commands are entered on the command line near the top of the panel.

To enter an Interactive Debug command, you may either type the complete
command, or move the cursor into the scrollable log, modify the command in the
log (removing the asterisk is sufficient), and press the Enter key. This will cause
the command to be copied to the command line. You may modify the command
further before pressing the Enter key.

Certain keywords (such as UP or SPLIT) have special meaning to ISPF and will
not be passed to Interactive Debug.

It may be necessary to enter a command that will not fit on the command line. In
this case, you may enter some portion of the command, then the continuation
character (-) to indicate that the command is not yet complete. Then enter the
remainder of the command.

The continuation character (-) must be the last character entered on the command

line. You may enter up to 252 characters, including blanks, in one command. If a

continuation segment requires leading blanks, type a quotation mark (") first, then

the required leading blanks. Interactive Debug will remove the quotation mark and
recognize the leading blanks.

While Interactive Debug is awaiting the continuation of a command, COMMAND will
be replaced on the panel by MORE. ... If, after entering a portion of a command,
you decide that you don’t want to complete the command, you may enter END (or
press a PF key that has been assigned the character string END) and the entire
command will be ignored.

The following commands cannot be used with the continuation character:

COLOR
LISTINGS
MOVECURS
POSITION
PREVDISP
PROFILE
SEARCH
WINDOW

Using Program Function Keys to Enter Commands

Under ISPF, you can use program function keys (PF keys) to enter commands on
the command line. This saves you time because you can merely press a PF key
instead of typing in a long command.

To define PF keys when running Interactive Debug under ISPF, enter the
command KEYS on the execution panel command line. This is an ISPF command,
not an Interactive Debug command, but it should be entered from the execution
panel to define Interactive Debug PF keys.

ISPF immediately presents you with a panel that displays the current PF key
definitions and allows you to change them. Move the cursor to the definition you

22 VS FORTRAN Version 2: Interactive Debug Guide and Reference

want to change, and type over it with the new definition. For example, you can
assign any Interactive Debug command or a stack of commands to any PF key.
There are certain keys you may want to avoid changing, because they have
standard ISPF meanings. When you have made all the changes you want, press the
END key.

You can use the ISPF command PFSHOW to display your PF key settings across
the bottom of the screen.

Entering Input to a VS FORTRAN Version 2 Program

Note: The discussion below assumes that the TERMIO setting is IAD, which
causes Interactive Debug routines to be used for terminal I/O0. (TERMIO IAD is
the default, so you may not need to issue the command.) If TERMIO IAD is not in
effect, you do not have the ability to enter Interactive Debug commands while a VS
FORTRAN READ is pending, and the discussion is not applicable. The TERMIO
command is described in “TERMIO Command” on page 207. For additional
information, see ‘Entering Terminal Input” on page 91.

VS FORTRAN Version 2 Interactive Debug will issue a message before attempting
to read input for your program from the terminal. You can enter Interactive Debug
commands (except GO, STEP, or ENDDEBUG) prior to responding to the
program’s request for input.

When execution is suspended for terminal input, the IAD heading will change to
IAD /R and the following message will appear:

FTO5F001 INPUT: PRECEDE INPUT WITH % OR ENTER IAD COMMAND

When entering input to a VS FORTRAN program, you must precede it with a
percent sign (%); the leading percent sign will not be passed to the program. If
you need to precede your input with one or more leading blanks, you may do so
following the percent sign and your program will receive the leading blanks.
Similarly, you can include trailing blanks in your input by typing a percent sign at
the end of the blanks. To simulate entering a null line to indicate end-of-data set,
enter:

%%

Viewing the Scrollable Log

Interactive Debug commands and output sent to the terminal will appear on the
execution panel below the command line. This output is called the scrollable log.
Space for this output is limited, especially if the screen is split into two portions. If
you have not changed the default settings, you can use the PF7 and PF8 keys to
move the scrollable log up and down. You may also use the standard ISPF
commands, such as UP and DOWN, for positioning the scrollable log vertically. To
position the scrollable log horizontally, use the standard ISPF commands LEFT
and RIGHT.

The last 1000 lines are retained for viewing in the scrollable log.

Chapter 2. Using Interactive Debug with ISPF 23

Error Messages

If Interactive Debug detects an error, a general message, ERROR DETECTED BY
IAD, will overlay the upper right corner of the screen, and an alarm will sound. In
addition, a specific error message will usually appear in the scrollable log.
Interactive Debug messages are described in Appendix C, “Interactive Debug
Messages” on page 231

If you need help at the terminal, see Appendix A, “Using the Interactive Debug
HELP Facility” on page 219.

Breaks Initiated by Interactive Debug

ISPF does not display results until all output is completed. Using the PROFILE
panel, you can specify how often Interactive Debug should suspend its production
of output so you can examine the information produced. The “Output halt value”
field on the PROFILE panel allows you to specify the number of lines after which
Interactive Debug should initiate a break. The halt value is described in “Setting or
Changing the Defaults for Your Debugging Sessions” on page 25.

The default value of 50 indicates that Interactive Debug suspends the output after
every 50 lines produced. For example, if a program produces more than 50 lines of
output to the terminal without an intervening breakpoint, Interactive Debug forces
a break in execution and displays the message HALTED FOR OUTPUT. If
Interactive Debug, in response to a command, produces more than the designated
number of lines of output without breaking, execution is suspended at the next
statement boundary and the message "NEXT" FORCED FOR OUTPUT is
displayed. Issuing the GO command will resume execution until the next break.

Using Interactive Debug Features under ISPF Version 2

The following features are available with Interactive Debug under ISPF Version 2,
and are described in this section:

« Setting or changing the defaults for your debugging sessions

« Displaying your source listing in a window, including an optional overlay of
program sampling statistics in the form of a bar chart

« Using cursor-oriented commands

« Searching the source listing or the log for variable strings

« Animating the execution of your program

« Changing the color attributes of your panel

Running Interactive Debug with ISPF Version 2, you can view your source listing

in one area of the screen without splitting the screen. This area is called the source
listing window.

24 VS FORTRAN Version 2: Interactive Debug Guide and Reference

You can also highlight the command currently executing, and control the pace of
execution when using the STEP command. This capability is called program
animation, because it creates an animated picture of your program’s execution. The
screen is automatically rewritten at every statement hook. In addition, you can
change the color attributes of the execution panel.

The following commands are valid if you are using Interactive Debug with ISPF
Version 2:

COLOR PREVDISP
LISTINGS PROFILE
MOVECURS SEARCH
POSITION WINDOW

These commands are referred to in this manual as the full screen display commands.

Setting or Changing the Defaults for Your Debugging Sessions

When you begin a debugging session under ISPF Version 2, you may want to
display the default settings for various parameters that affect the way IAD runs.
To see these parameters, enter the command PROFILE. A display panel will then
appear on your screen. You can modify this display any time during a debugging
session. Initially, the current setting for any of the parameters displayed will be the
same as your profile setting. However, if you want to modify a parameter for the
current session, you can type over that field on the display panel with a new value.
If you modify the profile settings, the new values are saved and used whenever you
begin a new debugging session.

After you have modified some of your current settings, the profile panel might look
like this:

VS FORTRAN INTERACTIVE DEBUG (CURRENT & PROFILE Settings)
COMMAND ===>
CURRENT SETTING PROFILE SETTING

Step delay (.01 sec) 10 50
Frequency count display NO YES
Window columns 60 40
Window rows 10 10
Window ON NO YES
Log line numbers YES YES
Output halt value 50 50

Enter END or RETURN to go back to IAD panel.

Figure 12. Modifying the PROFILE Command Panel

Chapter 2. Using Interactive Debug with ISPF 25

Initially, the profile settings have the values displayed in Figure 12. However, you
can modify these values (in addition to modifying the current settings).

The parameters are:

Step delay Initially set to 50. This value controls the pace of animation, measured
in hundredths of a second. For more information, see Figure 15 on
page 32.

Frequency count display
Initially set to YES. YES indicates that the statement frequency
counts or sampling percentages are shown within the source listing
window.

Window columns
Initially set to 40. This value specifies the width of the source window
listing, measured in characters. To make the window wider, increase
this value.

Window rows
Initially set to 10. This value specifies how deep the source listing
window will be, measured in lines. To see more than 10 lines at a time
in the window, increase this value.

Window ON
Initially set to YES. This value indicates that a source listing window
automatically appears on your screen, provided that its dimensions
have been defined and the listing data set is known for the current
program unit. Setting this value to YES is equivalent to entering the
WINDOW or WINDOW ON command.

Log line numbers
Initially set to YES. This value indicates that the log line numbers are
displayed in your scrollable log. Enter NO to inhibit the display of
these numbers.

Output halt value
Initially set to 50. This value indicates how often Interactive Debug
should suspend its production of output so you can examine the
information produced. The value is specified as the number of lines
after which Interactive Debug should initiate a break.

Displaying Your Source Listing in a Window

You can use a window to display the source listing for a selected program unit.

The source listing window overlays the log display, without splitting the screen.
One way to define a window is by changing the “window rows” and “window
columns” values on the profile panel, as described in the previous section. Another
way is to use the WINDOW command.

26 VS FORTRAN Version 2: Interactive Debug Guide and Reference

~

~

Defining the Window with the WINDOW Command

To define the dimensions of your source listing window, first type WINDOW on the
command line, then position your cursor at the place where you would like to have
the lower left corner of the source display. By moving the cursor downward or to
the left, you can expand the dimensions of the window. (The upper right corner of
the window is fixed at the upper right of the screen.) When you have the
dimensions you want, press ENTER.

Note: If you have not yet modified the listings data set specification panel
(described below), you may not immediately see the source listing window, but the
dimensions will be saved and the window is defined.

If you have a PF key assigned to the WINDOW command, move your cursor to the
position where you want the lower left corner and press the PF key.

You can change the dimensions of the window at any time during a debugging
session to take advantage of your terminal or your special debugging needs. You
can save the window definition on the PROFILE panel, so it will be used the next
time you debug a program with Interactive Debug.

To temporarily turn the window off, use the command WINDOW OFF. The window
returns when you enter WINDOW or WINDOW ON (or when you press the equivalent
PF key), provided that the listings data set is known to Interactive Debug for the
current program unit.

| Displaying Program Sampling Bar Charts

As an option, you can have the source listing window overlaid with bar charts that
display program sampling statistics for each statement in the listing. For a
description of this feature and of program sampling, see “Program Sampling”’ on
page 79.

Modifying the Listings Data Set Specification Panel

If there is at least one debuggable program routine that has no listing defined, the
listings data set specification panel is automatically displayed at IAD initialization.
This can occur if these routines are not all specified in AFFON, described on page
37, or subsequently not found in an attempt made by Interactive Debug to search a
file or data set whose name is generated by IAD from the given application
program name. You can enter missing data set definitions on the listings data set
specification panel. Press the END key when you are done.

Note: If arestart file is present, this automatic display of the listings data set
specification panel is deferred until the end of the restart file is reached. If a QUIT
command is executed from the restart file, the automatic intervention is bypassed.

You can also request the listings data set specification panel from the debugging
session by entering the LISTINGS command or by typing over the first character
of the Q: field in the header with a question mark (?). A sample CMS panel is
shown in Figure 13 on page 28

Chapter 2. Using Interactive Debug with ISPF 27

COMMAND ===>

VS FORTRAN INTERACTIVE DEBUG ROW 1 OF 4
SCROLL ===> HALF

PROGRAM UNIT NAME CMs FILE ID SOURCE
MAIN_PROGRAM FORTPROG LISTING *_ NO FILE NOT FOUND
SUB1 SUB1 LISTING *_ YES
SUB2 SUB2 LISTING *_ NO FILE NOT USABLE
SUBROUTINE3 SUB1 LISTING *_ NO PROGRAM NOT FOUND
*kEREEEERRKR R KA KRR KR RKRRRR Rk kkk BOTTOM OF DATA *kkokokokokskok okok o o ok e s o o o ok ok ok sk ok ok ok ok

| Figure 13. The Listings Data Set Specification Panel in CMS

The TSC panel is similar. The CMS FILE ID column is replaced by the DATA
SET NAME column. Under TSO, the top line of the panel looks like this:

PROGRAM UNIT DATA SET NAME SOURCE

If the source listing you want does not appear on the panel, you must specify the
file ID or data set name for the program unit source listing. To fill in the listings
data set specification panel, enter the name of the program unit source listing in the
“CMS FILE ID” or “DATA SET NAME” column. Interactive Debug then
automatically fills in the names of all program units found in that listing, and
changes the “SOURCE” column to YES. If the listing is in a PDS member, include
the member name in parentheses at the end of the data set name.

To display a listing in the source listing window, the “SOURCE” column for that
listing must specify YES. You may want to change some of these values to NO if
you do not want particular program units to be displayed.

In Figure 13, the CMS message FILE NOT FOUND indicates that the specified
file was not found on any of your accessible disks. Under TSO, the equivalent
message is DATA SET NOT FOUND. To correct the problem, make sure the file
ID for the listing containing the program unit is correctly spelled and is accessible.
If it is necessary to use system commands (CMS or TSO) to make the listing
accessible, you can enter them on the command line prefixed by “CMS” or “TSO,”
as appropriate.

The message PROGRAM NOT FOUND indicates that the listing file was found,
but did not contain the named program (in this example, SUBROUTINE3). To
correct the problem, make sure the file ID for the listing containing the program
unit is correctly spelled and is accessible.

If you receive the message FILE NOT USABLE, it indicates that the data set was
found but cannot be used as a listing in the source window. Under TSO, the
message will be DATA SET NOT USABLE. In either case, check for an invalid
record length (it should not be greater than 137 bytes). If operating under CMS,
insure that the file is not in PACKED format. If under TSO, insure that the file is
not security protected by another user.

After filling in the listings data set specification panel, you return to the execution
panel by entering END, usually PF key 3.

28 VS FORTRAN Version 2: Interactive Debug Guide and Reference

A Sample Source Listing Window

A debugging session using a source window might look like that in Figure 14.

IAD/F Q: SUBI

COMMAND === SCROLL ===> HALF
TOP TOP OF SUB1
sk ok ook ok ok ok ok o ok ok 6 ok oK o ok o oK o o o K o o o ook koK ok ook ko ok ok o 3 ok ok ok o o o 3 ok o ok ok ok ok ok Kk ok ok ok
C * SUBROUTINE SUB1 e
© sk ok ok ok sk ok ok ok ok ok ok ok ok ok o o ok o o ok ok ok Kk Sk Kk o ok kR o ok kR ok sk ok ok sk sk ok ok kR ek Kk ok ok Rk
1 SUBROUTINE SUB1 ceen
2 INTEGER I ceen
3 DO 10 I =1, 2 * 0017
4 IF (I.EQ.1) THEN *** 0039
5 CALL SUB3 KkEERRERRKRERKRRRRRE 0206
6 ENDIF 0006
7 IF (I.EQ.2) THEN ***x* 0056
8 CALL SUB2 REREKRERRKEEEX 0218
9 ENDIF * 0017
10 10 CONTINUE **x*x% 0073
11 END ** 0034
END BOTTOM OF SUB1 cees
LOG O-———4———=]-———t-———2=—m—fm===3mmm—pm—mm=fmmmmh==m==Gmmeet-=-LINE: 1 OF 12
000001 VS FORTRAN VERSION 2.2.0 INTERACTIVE DEBUG
000002 (C) COPYRIGHT IBM CORP 1985, 1987
000003 ALL RIGHTS RESERVED
000004 LICENSED MATERIALS-PROPERTY OF IBM
000005 WHERE: TDYNCM.3
000006 * list i
000007 TDYNCM.I = 0
000008 * g sub3
000009 * enddebug sample(5) called
000010 PROGRAM HAS TERMINATED; RC (0)
000011 * g subl
000012 * annotate on all
Figure 14. Example of Debugging Using a Source Window

Note: The border below the source listing window is not displayed on 7-color
terminals. However, you can choose a contrasting color for the window to make it
distinct and more visible.

When program sampling bar charts are shown, the column at the far right of the
source window shows sampling percentages relative to the displayed program unit.
One decimal place is implied, for example, 0218 means 21.8%.

The source listing window displays the source listing for the current program unit
(if possible). Whenever execution is suspended, you can change the Q: field on the
panel heading to tell Interactive Debug to temporarily display the source listing for
another program unit. When you resume execution, the display automatically
returns to the source listing for the current program unit (if possible). To change
the Q: field in the panel heading, merely type over the qualification field with a
new valid unit name.

Chapter 2. Using Interactive Debug with ISPF 29

Scrolling the Listing

Moving the Cursor

If the following conditions are met, Interactive Debug automatically displays the
source listing for the currently executing program unit:

« The data set must be accessible to Interactive Debug, and defined on the
Listings Data Set Specification Panel.

« The program unit must be debuggable, and must have been compiled with VS
FORTRAN Version 2, or with VS FORTRAN Version 1 Release 3.1 or later.
If compiled with VS FORTRAN Version 1, the options TEST and NOSDUMP
must not have been specified together.

o The “Source” column of the Listings Data Set Specification panel must specify
YES for this program unit.

You can scroll the source listing vertically or horizontally, just as you scroll the
session log. Use the same ISPF commands (UP and DOWN, LEFT and RIGHT)
or function keys. The position of the cursor determines which information is
scrolled. If the cursor is within the source window, the source listing is scrolled. If
the cursor is anywhere else on the execution panel, the log is scrolled.

To quickly move the cursor back and forth between the source window and the
command line, use the MOVECURS command. If the cursor is not on the
command line when you enter the MOVECURS command, it is placed at the
command line. If the cursor is on the command line when you enter the
MOVECURS command, the cursor is moved to its previous position in the
window, or to the upper left corner of the window if the previous position is not
known.

You can assign the MOVECURS function to a PF key by issuing the ISPF KEYS
command. You might want to assign it to the PF key normally used for the PDF
CURSOR function.

Using Cursor-Oriented Commands

When you use a source window, you can perform many tasks by “pointing” with
the cursor, instead of typing operands on the command line. The commands that
can be issued this way are called cursor-oriented commands. The AT, LIST, and
OFF commands are cursor-oriented commands.

AT You can issue an AT command (with no command list) using your
cursor. If the AT command is already assigned to a PF key, place the
cursor at an ISN or sequence number field in the source window, and
press the PF key for AT.

Instead of assigning a PF key to the AT command, you can type the AT
command over the ISN or sequence number, or you can type AT on the
command line and move the cursor to the target statement number
before pressing ENTER.

30 VS FORTRAN Version 2: Interactive Debug Guide and Reference

LIST You can issue a simple LIST command using your cursor. If the LIST
command is already assigned to a PF key, place the cursor at a variable
name in the source window, and press the PF key for LIST. The variable
may include either subscript or substring notation. If both are present,
only the subscript will be included in the command.

Instead of assigning a PF key to the LIST command, you can type LIST
on the command line and move the cursor to a variable name before
pressing ENTER.

OFF You can issue an OFF command using your cursor. If the OFF
command (with no parameters) is already assigned to a PF key, place the
cursor at an ISN or sequence number field in the source window, and
press the PF key for OFF.

Instead of assigning a PF key to the OFF command, you can type the
OFF command over the ISN or sequence number, or you can type OFF
on the command line and move the cursor to the target statement
number before pressing ENTER.

Cursor-oriented commands are recorded in your session log as if the equivalent
command had been typed on the command line. For example, if you type AT over
ISN 12 in the source window while program unit SUBI is displayed, the command
AT 12 is recorded in the session log.

If the command line contains a command when you press a PF key for a
cursor-oriented command, the command on the command line is not executed. If
you type over multiple ISN or sequence number fields with AT or OFF commands,
only the first command is executed.

Searching the Source Listing or the Log for Character Strings

You can use the SEARCH command to search the source listing or the log for a
string up to 64 characters long, depending on your terminal type. For the syntax of
the search command, see “SEARCH Command” on page 197.

If you issue the SEARCH command while the cursor is in the source listing
window, the source listing is searched; otherwise, the log information is searched.
The search argument is translated to uppercase, and the entire listing is treated as
uppercase. (That is, the target will be found regardless of case.) The most recent
search argument issued on a SEARCH command is always saved, so if you later
issue the SEARCH command without an argument, the saved argument is assumed.

You can position at a log line number, or an ISN or sequence number, by using the
POSITION command. (For the syntax of the POSITION command, see
“POSITION Command” on page 183.) If you issue the POSITION command
while the cursor is in the source listing window, an ISN or sequence number is
searched for; otherwise, a log line is searched for.

Chapter 2. Using Interactive Debug with ISPF 31

Animating the Execution of Your Program

When you use the STEP command with the source listing window, Interactive
Debug “animates’” the execution of your program so you can watch the execution
progress. The currently executing line is highlighted in the source listing.

The source, as well as the log and a display generated by the AUTOLIST command
(if such a display exists), is redisplayed after each step of the program has been
executed. When the STEP command terminates, or when execution is halted by
some other means (such as breakpoints), animation ends. For more detail, see
“STEP Command” on page 203.

Controlling the Pace of Execution

You can control the timing of animation by modifying the STEP DELAY field in
the profile panel. To change the value, enter the command PROFILE.

When the profile panel appears, type over the existing value in the “Step delay”
field. The delay time is specified in hundredths of a second. The default is set to
50 hundredths of a second. Figure 15 shows that the current setting for the delay
time has been changed to 10 hundredths of a second, although the setting for the
profile is still 50 (the default).

VS FORTRAN INTERACTIVE DEBUG (CURRENT & PROFILE Settings)
COMMAND ===
CURRENT SETTING PROFILE SETTING

Step delay (.01 sec) 10 50

Frequency count display YES NO

Window columns 60 40

Window rows 10 10

Window ON NO YES

Log line numbers YES YES

Output halt value 50 50

Enter END or RETURN to go back to the IAD panel.

Figure 15. Modifying the STEP DELAY Field

When the source display is inhibited, the program steps with the minimum
processing time between steps (in other words, no delay).

32 VS FORTRAN Version 2: Interactive Debug Guide and Reference

/Jﬁ\

Using HALT/GO Animation

Another way of “animating” your program is to issue repeated GO commands in
conjunction with a HALT statement. To do this, assign the GO command to a PF
key. Next issue a HALT statement to specify the conditions under which the
program will be halted and the source listing redisplayed. If you now repeatediy
press the PF key for the GO command, you can watch the flow of control in the
program by observing the highlighted line in the source window.

Changing the Color Attributes of Your Panel

You will probably find debugging more convenient if you highlight certain parts of
the Interactive Debug Execution Panel, such as the current statement in the source
window, and the statement identifiers at which breakpoints have been set. You can
change the color, highlighting, or intensity of various fields on the panel, using the
COLOR command. For more information, see “COLOR Command” on

page 134.

Splitting the Screen Using ISPF and PDF

With ISPF and PDF, you can look at a compiler listing file (or the source file) by
splitting the physical screen into two logical screens. With a split screen, a source
or listing file may be browsed or edited (or even recompiled under TSO) while
debugging. This assumes the presence of IBM Program Development Facility
(PDF), which provides the browse and edit functions.

To split the screen, use the SPLIT command (or a PF key assigned the SPLIT
function, normally PF2), and then use BROWSE or EDIT to look at the
appropriate file or data set.

Note: The second screen in split-screen mode cannot be used to run a second
session of Interactive Debug (or any other debugging product). You cannot run

any program in the second screen that would intercept attentions, unless you let
that program terminate before trying to continue with Interactive Debug.

Recompiling a Program while Using a Split Screen (TSO Only)
You can use the split screen to perform a number of tasks. For example, under
TSO, you might want to split the screen, recompile a program, and then restart the
debugging session using the new compilation. You would need to complete the
following steps:
1. Split the screen into two portions.
2. Go into edit mode on the lower half of the screen (usually panel 2).

3. Make changes to the source program in the lower half of your screen.

4. Request the VS FORTRAN compilation panel (usually 4.3), and specify the
member name to be compiled.

Chapter 2. Using Interactive Debug with ISPF 33

5. When the program has compiled, request the link-edit panel (usually 4.7), and o~
specify the member name to be link-edited.

6. When the program has been link-edited, end the split-screen mode and issue
the RESTART command on the command line of the execution panel.

You can now debug the newly-compiled program. If you want, you can display the
new source listing by splitting the screen, or by issuing the WINDOW command
under ISPF Version 2.

After Ending the Debugging Session

When you enter the QUIT command to end Interactive Debug activity, ISPF
automatically enters BROWSE so you can examine the complete output log
(AFFOUT). If you have used the PRINT keyword on any Interactive Debug
commands that allow it, ISPF first enters BROWSE for the AFFPRINT file.

After browsing these files, enter the END command, or use the PF key assigned to
END (usually PF 3). You will then be presented with the standard ISPF
FOREGROUND PRINT OPTIONS panel, allowing you to print each file and then
to keep or delete the file. A sample panel is shown in Figure 16.

OPTION ===

PK - Print file
PD - Print file

If END command i

SPOOL OPTIONS:
NUMBER OF COPIES
BIN NUMBER
3800 KEYWORDS

USER / MACHINE I
NODE / LINK ID
TAG TEXT

FILE ID: MAIN ILOG A

FOR SPOOLING TO ANOTHER USER OR MACHINE:

----------- FOREGROUND PRINT OPTIONS ====m==mm=m===—=m————— e A
and keep K - Keep file (without printing)
and delete D - Delete (erase) file (without printing)

s entered, file is kept without printing.

===> 1 SPOOL CLASS =
===> 'FOR' USER =
===>

D ===>

Figure 16. The Foreground Print Options Panel under ISPF in CMS

34 VS FORTRAN Version

You can fill in the file ID field and any spooling options, and then enter one of the
four options listed at the top of the panel. To leave this panel without printing your
log file, enter the END command or use the PF key assigned to END.

2: Interactive Debug Guide and Reference

-~ Bypassing the BROWSE Step

It is possible to bypass the BROWSE step by modifying the AFFFX11 EXEC
under CMS, or the AFFFC11 CLIST in TSO.

Under CMS, follow these steps:
| 1. Edit the AFFFX11 EXEC.

| 2. Add the lines zfbrows = '' and zfprint = '’ to the EXEC as follows:

| zfbrows v

| zfprint '

| /* Browse print file if it exists, set message if not */

| afftype = 'PRINT' /* afftype is used in message AFFS006 */

| 3. Alternatively, you can use ' /*' and '*/' to comment out the lines

| If zfbrows == '' then 'ISPEXEC BROWSE FILE('lid')'
| If zfprint == '' then
| ' ISPEXEC SELECT CMD (ISRFXPRT ISRFPPRT' 1id')’

| These lines occurs twice--once for displaying the print file and once for
| displaying the log file. For example, after you comment out the lines for
| displaying the log file, the EXEC should look like this:

/* Browse log file if it exists, set message if not */
formsg = '’
Vo afftype = 'LOG'
1lid = zfname 'LOG A’
'STATE' 1lid
If rc <= 0 then Do
Address 'ISPEXEC'
/* If zfbrows —-= '' then 'ISPEXEC BROWSE FILE('lid’')'
If zfprint == '' then
' ISPEXEC SELECT CMD (ISRFXPRT ISRFPPRT' 1id')'*/
Address CMS
End
Else formsg = 'AFFS006'

| If you want to bypass browsing the print menu, search for the first occurrence
| of these lines and comment them out also.

Under TSO, follow these steps:
1. Edit the AFFFC11 CLIST.

2. Search for the following line:

SET ZFBROWS = BROWSE /* ASK FOR BROWSE */

3. Change the line to read as follows:

SET ZFBROWS = &2 /* BYPASS BROWSE */

You can also bypass the print menu by setting ZFPRINT to a null string, as

,A;\ follows:

SET ZFPRINT = &2 /* BYPASS PRINT */

Chapter 2. Using Interactive Debug with ISPF 35

Using Optional Debugging Files or Data Sets

The following sections discuss the output log file, and three optional files (or data
sets). It describes how to define each file when invoking Interactive Debug with
ISPF.

Specifying an Output Log File or Data Set (AFFOUT)

When running under ISPF, Interactive Debug creates a log of its activity for you to
examine; this log can be viewed after completion of the debugging session. The log
information is contained in the AFFOUT data set or the AFFOUT file.

The AFFOUT file does not need to exist prior to execution of the VS FORTRAN
program. Under CMS, the invocation procedures define a file named fname LOG
(where fname is the name specified on the FILE ID line of the invocation panel).
Under TSO, the invocation procedures define a data set named userid. fnrame.LOG
(where fname is the name specified on the MEMBER line or on the FILE ID FOR
DEBUG FILES line on the invocation panel).

Note: To prevent an existing file from being overwritten, you must rename it
before executing a program.

The log file has the following characteristics:

» All Interactive Debug 1/0 is logged (except for a small number of commands
associated with functions available under ISPF Version 2: COLOR,
LISTINGS, MOVECURS, POSITION, PREVDISP, PROFILE, SEARCH,
WINDOW). Unless TERMIO LIBRARY has been specified, all
program-initiated terminal I/0 is also logged.

o The file is created with a RECFM of FB and an LRECL of 80 (and a
BLKSIZE of 800 for TSO).

« Each line is preceded with an equal sign (=).
» Each line of input is preceded by an asterisk (*) following the equal sign.

» Input and output occurring within an attention exit are not logged; however,
the entering of an attention exit is logged.

Specifying a Print File or Data Set (AFFPRINT)

Certain VS FORTRAN Version 2 Interactive Debug commands allow you to
specify a PRINT keyword, causing command output to be sent to a print data set
rather than to your terminal. This may prove useful, for example, when you are
listing the contents of a large array and want to keep this output separate from the
normal log. This print data set is referred to as the AFFPRINT data set or the
AFFPRINT file.

AFFPRINT does not need to exist prior to executing a VS FORTRAN program.
Under CMS, the invocation procedures will define a file named fname LIST A
(where fname is the name specified on the FILE ID line of the invocation panel).
Under TSO, the invocation procedures will define a data set named

36 VS FORTRAN Version 2: Interactive Debug Guide and Reference

userid.fname. PRINT (where fname is the name specified on the MEMBER line or
on the FILE ID FOR DEBUG FILES line on the invocation panel).

Note: To prevent an existing AFFPRINT file from being overwritten, you must
rename it before executing a program with the same name.

Specifying Program Units to be Debugged (AFFON)

When Interactive Debug is invoked, you can set breakpoints in any debuggable
program units. Because there is some overhead associated with this ability, it is
more efficient to exclude from debugging those program units that are known to be
error free. You can also exclude part of a program unit, which may be helpful if
there are heavily-executed sections that are error free.

The AFFON file or AFFON data set is a sequential file containing a list of
program unit names, up to 31 characters in length, to be debugged. The AFFON
file is read by Interactive Debug; it must exist before execution of the VS
FORTRAN program. (Using the RESTART command, you can change the
allocation or the content of the existing file prior to restarting.) Using the
information in the AFFON file entries, Interactive Debug will attempt to
automatically identify the data sets containing the program listings for use in the
source window and with the ANNOTATE command.

The invocation procedures must include a correct FILEDEEF statement (CMS) or
ALLOCATE statement (TSO) to define the AFFON file or data set. The
invocation procedure supplied by IBM for use with ISPF/PDF under CMS assumes
that the AFFON file is called fname INCLUDE (where fname is the name specified
on the FILE ID line of the invocation panel). Under TSO, it is called
userid.fname.INCLUDE (where fname is the name specified on the MEMBER line
or on the FILE ID FOR DEBUG FILES line on the invocation panel).

The file contains a list of program unit names to be selected for debugging, and
may contain comment entries identified by an asterisk (*) in the first record
position. Program unit names are assumed to be the first character string in the
record (terminated by a blank), and may appear after initial leading blanks.

Each program unit name can be followed by the data set name containing the
source listing for a program unit as well as a list of statement numbers (ISNs or
sequence numbers), or statement number ranges. (ISNs are the default, unless you
specified SDUMP(SEQ) when you compiled the program unit.) If any statement
numbers are specified, only statements falling within the specified ranges, or
included in the list of statement numbers, are selected for debugging. If no
statement numbers are specified, all executable statements are selected. Note that
statement labels are not allowed.

The syntax of each entry in the AFFON file is as follows:

unitname ['dataset[(member)}'}{n[:n}]...

or

unitname ['dataset[(member)]'] [ENTRY]

or

Chapter 2. Using Interactive Debug with ISPF 37

unitname ['dataset[(member)]'] [NONE]

Blanks or commas separate entries in the list of statement number ranges. The
program unit name and the list of statement number ranges must all fit within one
record. The ENTRY parameter specifies that only ENTRY and EXIT hooks are to
be placed in the program unit. This is helpful if you want to increase the accuracy
of timing information. The NONE parameter allows data set names to be
specified, but by passes inclusion of debugging hooks.

For example, to place debugging hooks between statements 6 and 16 and at
statement 18 of SUB1, you could make the following entry, under CMS, in your
AFFON file:

Sub1 'SUB1 Listing *' 6:16 18

In the above example, SUB1 Listing * is defined as the default listing. ENTRY and
EXIT hooks are always placed in the program unit whenever any statement number
ranges are specified.

An equivalent example for TSO would be:

Sub1 'userid.subl1.list' 6:16 18

Note that there may be executable statements in the specified ranges that cannot
have debugging hooks placed on them because of optimization or vectorization. To
find out which statements have had hooks placed on them, you can use the
LISTFREQ command.

Program units that do not meet the requirements for debugging will not have
program hooks inserted, even though they may be in the AFFON list.

One way to create an AFFON file is to edit the map produced when the module to
be executed is built. Normally, this is the linkage editor map or the CMS load map.
The map can be edited by placing an asterisk before any program unit name that is
not to be debugged, nominating the other program units for debugging. You can
then add in a list of statement numbers or statement number range specifications.

Note: Because the CMS load map truncates long names to 7 characters, you will
have to replace truncated names with complete names as required by Interactive
Debug.

AFFON can have any record format; entries can be in lower case. The logical
record length can be any value up to 255 bytes. If the file exists but has incorrect
attributes, you will receive an error message stating that the AFFON file cannot be
read. AFFON can contain references to sequence numbers for VS FORTRAN
programs compiled with SDUMP(SEQ), but AFFON itself cannot be sequenced.

If the AFFON data set is found and contains at least one entry that is not a
comment, only the valid program unit names found in the data set or the program
unit compiled with the test option will be considered for debugging. Otherwise, all
VS FORTRAN program units will be considered for debugging.

For compiler and library restrictions that may make a program unit nondebuggable,
see “Interactive Debug Programming Requirements’’ on page 5.

38 VS FORTRAN Version 2: Interactive Debug Guide and Reference

7

Specifying a Restart File or Data Set (AFFIN)

When running under ISPF, Interactive Debug commands can be read from the
AFFIN input file. AFFIN is a file of debugging commands, initially created either
with an editor or obtained by editing the output from a previous debugging session.
This file is optional under ISPF.

The AFFIN file must exist prior to executing the VS FORTRAN program. (If you
use the RESTART command, you can change the allocation or the content of the
existing file prior to restarting.)

Under CMS, the ISPF invocation procedures supplied by IBM assume that the
AFFIN file is called fname RESTART (where fname is the name specified on the
FILE ID line or MEMBER line of the invocation panel). Under TSO, it is assumed
to be userid.fname. RESTART (where fname is the name specified on the
MEMBER line or on the FILE ID FOR DEBUG FILES line on the invocation
panel).

The AFFIN file must have a RECFM of F or FB and an LRECL of 80. The file
will be read until end-of-file is encountered. After the commands in the file have
been executed, additional input can be entered from the terminal.

Note: Sequence numbers are not allowed in columns 73 through 80.

You may want to use the log file (AFFOUT) as input to a subsequent debugging
session if, for example, you had to discontinue a debugging session but had not yet
solved the problem. To do this, follow these steps:

1. Use the QUIT command to stop debugging.

2. Keep the AFFOUT log file, and edit it to remove the QUIT command.

3. Prior to using the AFFOUT file as input to Interactive Debug, you must
rename it, as described above.

4, The log file can now be used as input to retrace the steps taken in the previous
session.

After the log file has been executed, you should be at the same position as when
you stopped the previous session.

Interactive Debug recognizes a saved log file by the presence of leading equal signs
(=). Lines in the input file beginning with an equal sign and an asterisk (=*), and
lines not beginning with an equal sign, are assumed to be debugging commands.
Lines beginning with an equal sign not followed by an asterisk are assumed to be
output and are ignored.

Chapter 2. Using Interactive Debug with ISPF 39

Chapter 3. Using Interactive Debug in Line Mode

Interactive Debug may be executed in line mode in either a CMS or a TSO
environment. It is referred to as line mode because input and output are presented
sequentially, one line at a time. This is in contrast to executing in full screen
mode, when the entire screen is controlled and used by Interactive Debug. Use of
Interactive Debug in line mode is intended primarily for users with access to only a
typewriter-like terminal or when ISPF is not installed.

Invoking Interactive Debug

Under CMS

The DEBUG execution-time option causes the VS FORTRAN library initialization
routines to load Interactive Debug. The program will be suspended at the first
statement with a debugging hook, so you can issue Interactive Debug commands
before execution proceeds.

The invocation procedure varies depending on whether you are using CMS or TSO.
Both procedures are described below.

When you are executing under CMS without ISPF, you can build your executable
program and invoke Interactive Debug in one of three ways:

1. Use the LOAD command to load your VS FORTRAN program. You execute
the program using the START command with the DEBUG option. No
permanent copy of the executable program is made.

2. Use the LOAD and GENMOD commands to generate 2 module. You can
invoke the program later by issuing a CMS command with the same name as
the MODULE file, and the DEBUG operand.

3. Use the LKED command to link-edit your VS FORTRAN program into a load
library. You execute the program later, using the OSRUN command with the
PARM=DEBUG parameter.

The steps to invoke Interactive Debug under each of these methods are described
in the following sections. The steps include instructions to invoke Interactive
Debug under both link mode and load mode with VS FORTRAN Version 1 or VS
FORTRAN Version 2. The steps also include instructions for executing programs
created prior to Version 1 Release 4 of VS FORTRAN.

Chapter 3. Using Interactive Debug in Line Mode 41

Link Mode and Load Mede /ﬂ\

If you are running under the VS FORTRAN Version 1 Release 4, 4.1, or VS
FORTRAN Version 2 Library, you should be aware of the distinction between two
modes of operation.

If you choose to have the necessary library routines included within your
executable program, you are operating in link mode. If, on the other hand, you
choose to have the library routines loaded during execution of your program, you
are operating in load mode. You make the choice of link mode or load mode by
making the appropriate combination of libraries available when you create your
executable program from your TEXT files.

For more information on link versus load mode, see V'S FORTRAN Version 2:
Programming Guide.

Using the LOAD and START Commands

The LOAD command creates a temporary copy of your executable program in
virtual storage. The object code from which the executable program is built is
either in TEXT files or in text libraries, or both.

1. You must make the appropriate VS FORTRAN Version 2 Library text libraries
as well as your own text libraries, if any, available using a GLOBAL command.

a. If you want your program to execute in link mode, use this command:

~

GLOBAL TXTLIB VSF2LINK VSF2FORT CMSLIB TSOLIB userlib...

b. If you want your program to execute in load mode, use this command:

GLOBAL TXTLIB VSF2FORT CMSLIB TSOLIB userlib...

2. To create the temporary copy of your executable program in virtual storage,
issue the LOAD command, as follows:

LOAD myprog...

3. Next issue the following command:

GLOBAL LOADLIB VSF2LOAD

4. Finally, to execute the temporary copy of your program that has been built in
virtual storage and invoke Interactive Debug, issue the following command:

START * DEBUG

Using the LOAD and GENMOD Commands

The LOAD and GENMOD commands create an executable program that is stored
as a nonrelocatable file on your CMS disk. The object code from which the
executable program is built is either in a TEXT file or in a member of a text library.

Note: 1If you have created a nonrelocatable file with a file type of MODULE for 7~

your program in the past, you can execute the program by completing steps 4
through 6 under the ‘“Executing the Program” section that follows.

42 VS FORTRAN Version 2: Interactive Debug Guide and Reference

Creating the MODULE File

1. You must make the appropriate VS FORTRAN Version 2 Library text libraries
as well as your own text libraries, if any, available using a GLOBAL command.

a. If you want your program to execute in link mode, use this command:

GLOBAL TXTLIB VSF2LINK VSF2FORT userlib...

b. If you want your program to execute in load mode, use this command:

GLOBAL TXTLIB VSF2FORT userlib...

2. Next, create the temporary copy of your executable program in virtual storage
by issuing the LOAD command, as follows:

LOAD myprogd...

3. To create the nonrelocatable file on your CMS disk, issue the following
GENMOD command:

GENMOD modname

This command builds a file with the file name assigned as modname, and a file
type of MODULE. This program can be executed at any time.

Executing the Program

4. You may need to issue one or more GLOBAL commands before executing
your program. Issue the following command if the simulation of extended
precision floating-point instructions is required on the machine you are using:

GLOBAL TXTLIB CMSLIB TSOLIB

5. Next issue the following command:

GLOBAL LOADLIB VSF2LOAD

6. Finally, to execute your program that is stored as a nonrelocatable file and to
invoke Interactive Debug, issue the following command:

modname DEBUG

where modname is the file name of your MODULE file, as originally specified
in the GENMOD command.

Using the LKED Command

Use the LKED command to link-edit your program and store it as a relocatable
load module in a member of a CMS LOADLIB.

Note: If you have created a load module from your program in the past, you can

execute the program by completing steps 3 through S under the “Executing the
Program’ section that follows.

Chapter 3. Using Interactive Debug in Line Mode 43

Creating a Load Module

1. Prior to issuing the LKED command, issue the following FILEDEF command:

FILEDEF SYSLIB DISK VSF2FORT TXTLIB fm

where fm is either the file mode of the CMS disk that contains the library
VSF2FORT, or an asterisk (*).

2. Then issue the following LKED command:

LKED myprog (LIBE libname NAME membname
where:
myprog is the file name of the TEXT file that contains your object code.

libname is the file name of the LOADLIB file into which the resulting load
module is to be placed as a member.

membname is the name of the member in the LOADLIB file designated by
libname above, into which the resulting load module is to be
placed.

Executing the Program

3. Next issue the following GLOBAL command:

GLOBAL LOADLIB VSF2LOAD libname

where 1libname is the file name of the LOADLIB file into which your load
module was placed as a member by the LKED command.

4. Issue the following command if the simulation of extended precision
floating-point instructions is required on the machine you are using:

GLOBAL TXTLIB CMSLIB TSOLIB

5. Issue FILEDEEF statements for the AFFON and AFFPRINT files. For
example,

FILEDEF AFFON DISK progname AFFON A
FILEDEF AFFPRINT DISK progname AFFPRINT A

6. Finally, issue the following command to execute your program and invoke
Interactive Debug:

OSRUN membname PARM=DEBUG

where membname is the name of the member that contains the load module
created with the LKED command.

44 VS FORTRAN Version 2: Interactive Debug Guide and Reference

A Sample Invocation EXEC: To invoke VS FORTRAN programs, you may find it
convenient to create a CMS EXEC. If you already have one, you will probably
want to modify it to invoke Interactive Debug.

Figure 17 is an example of a simple EXEC that invokes the VS FORTRAN
program with the DEBUG option. The EXEC allocates an AFFPRINT file, and
does not allocate an AFFON file. (The AFFPRINT and AFFON files are
described later in this chapter.) If DEBUG is not specified (or defaulted by the
EXEC), Interactive Debug will not be invoked unless you have included a special
object module to override the default. For further information about how to
override the default, see “Specifying Default Execution-Time Options”’ on

page 96.

This sample EXEC assumes you are running with a previously-linked VS
FORTRAN module, or are starting with TEXT files you want to link with the VS
FORTRAN Version 2 Library to run in load mode. On the other hand, if you are
starting with TEXT files and want to link with the VS FORTRAN Version 2
Library to run in link mode, you need to alter the sample EXEC: Add VSF2LINK
as the first GLOBAL TXTLIB (see the examples above under “Link Mode and
Load Mode” on page 42).

ETRACE

GLOBAL TXTLIB VSF2FORT CMSLIB TSOLIB

* THE ABOVE STATEMENT ASSUMES YOU WILL RUN IN LOAD

* MODE. IF YOU WISH TO RUN IN LINK MODE, REPLACE THE
* ABOVE STATEMENT WITH THE FOLLOWING GLOBAL STATEMENT:
* GLOBAL TXTLIB VSF2LINK VSF2FORT CMSLIB TSOLIB

*

GLOBAL LOADLIB VSF2LOAD

FILEDEF AFFON DUMMY

FILEDEF AFFPRINT DISK &1 AFFPRINT A

EPARM = &2

§IF .E6PARM = . §PARM = DEBUG

LOAD &1 (CLEAR

START * EPARM &3 &4 §5 §6 &7 &8

SEXIT ERETCODE

Figure 17. Sample CMS EXEC to Invoke a VS FORTRAN Program

If the EXEC in this example is invoked without specifying a second parameter,
DEBUG will be the default option. If the EXEC were named FORTIAD,
specifying

FORTIAD MYPROG

would cause MYPROG to be invoked with the DEBUG option.

Under TSO

When you are executing under TSO without ISPF, VS FORTRAN Version 2
Interactive Debug can be invoked with the CALL command:

CALL progname 'DEBUG'

or with the LOADGO command:

Chapter 3. Using Interactive Debug in Line Mode 45

LOADGO progname 'DEBUG'

To invoke VS FORTRAN programs, you may find it convenient to create a TSO
CLIST. If you already have one, you will probably want to modify it to invoke
Interactive Debug.

Figure 18 is an example of a simple CLIST that allocates an AFFPRINT file
(described later in this chapter), and a dummy AFFON file. It invokes the VS
FORTRAN program with or without the DEBUG option. Unless you specify
NODEBUG when invoking the CLIST, Interactive Debug will be invoked.

In this example, if the CLIST is invoked without specifying an OPTION parameter,
the VS FORTRAN program will be invoked with the DEBUG execution-time
parameter. If the CLIST were named FORTIAD, specifying

FORTIAD MYPROG DSN(MYLIB.LOAD)

would cause program MYPROG, contained in library userid MYLIB, to be invoked
with the DEBUG option specified.

PROC 1 MEMBER DSN{(FORTRAN.LOAD) OPTION (DEBUG)
CONTROL NOMSG NOFLUSH NOLIST NOSYMLIST NOCONLIST
IF EOPTION = DEBUG THEN DO
FREE FI (AFFPRINT AFFON)
ALLOC FI(AFFON) DUMMY
ALLOC FI (AFFPRINT) DA (&MEMBER..PRINT) SHR
IF &LASTCC —= O THEN +
ALLOC FI(AFFPRINT) DA (&MEMBER..PRINT) NEW CATALOG SPACE(5 5) TRACKS

END
SET RCODE = §&LASTCC
CALL '&SYSUID..&DSN. (SMEMBER) ' '&OPTION'’

FREE FI (AFFPRINT AFFON)
WRITE RETURN CODE: ERCODE
EXIT

END

Figure 18. Sample TSO CLIST to Invoke a VS FORTRAN Program

Entering Commands

In both CMS and TSO, after invoking a VS FORTRAN program with the DEBUG
option, you will receive the informational message VS FORTRAN VERSION

2.2.0 Interactive Debug, and several lines of copyright information,
followed by a WHERE message identifying the statement about to be executed.
This is followed by the Interactive Debug prompt FORTIAD, indicating that the
VS FORTRAN program has reached the first debugging hook. At this point,
execution is temporarily suspended to allow you to enter debugging commands.

Commands are normally entered following the Interactive Debug prompt.
Commands may also be issued when execution is suspended because of an input

request originating in the VS FORTRAN program while TERMIO IAD is in effect.

46 VS FORTRAN Version 2: Interactive Debug Guide and Reference

This is described further in “Entering Input to a VS FORTRAN Program” on
page 47.

When executing Interactive Debug in line mode, a command is limited to 131
characters, including blanks. You may choose not to enter an entire command on
one line of the terminal. In this case, you may enter some portion of the command,
follow it with the continuation character (-), and then start a new line to enter the
remainder of the command. The continuation character is a hyphen (-) and must
be the last character entered on the command line before pressing the RETURN
key.

When Interactive Debug is awaiting the continuation of a command, you will not
receive another prompt until the command has been completely entered and
processed.

Using Program Function Keys to Enter Commands

If you are using a 3270-type terminal on VM/SP, you can use program function
keys (PF keys) to enter commands in line mode. (It is not possible to define PF
keys under TSO in line mode.)

To define PF keys when running Interactive Debug under CMS in line mode, enter
the CP command SET PF on the command line. You can use this command to
change any current PF key value. For example, you might want to set certain PF
keys to Interactive Debug commands that you issue frequently. To set PF key 4 to
the NEXT command, enter this on the command line:

SYSCMD SET PF4 NEXT

Entering Input to a VS FORTRAN Program

Note: This discussion assumes that TERMIO IAD is in effect. If not, then you do
not have the ability to enter Interactive Debug commands while a read is pending,
and the discussion below is not applicable. For additional information, see
“Entering Terminal Input” on page 91.

VS FORTRAN Version 2 Interactive Debug will issue a message before attempting
to read input from the terminal. You can enter Interactive Debug commands prior
to responding to the program’s request for input.

When execution is suspended for terminal input, the FORTIAD prompt will appear
following the message:

FTO5F001 INPUT: PRECEDE INPUT WITH % OR ENTER IAD COMMAND

When entering input to a VS FORTRAN program, you must precede it with a
percent sign (%). The leading percent sign will not be passed to the VS
FORTRAN program. If you need to precede your input with one or more leading
blanks, you may do so following the percent sign and your program will receive the
leading blanks. To simulate entering a null line, enter % %.

Chapter 3. Using Interactive Debug in Line Mode 47

Using a Listing File while Debugging

To view a compiler listing file (or the source file) while debugging, use the
SYSCMD command. You can use the SYSCMD command to list the file, to edit
the file, or to execute other system commands. For more information, see
“SYSCMD Command” on page 205.

Using Optional Debugging Files or Data Sets

The following sections discuss two optional files (or data sets), and how to define
them when invoking Interactive Debug in line mode.

Specifying Program Units to Be Debugged (AFFON)

When Interactive Debug is invoked, you can set breakpoints in any debuggable
program units. Because there is some overhead associated with this ability, it will
be more efficient to exclude from debugging those program units that are known to
be error free. You can also exclude part of a program unit, which may be helpful if
there are heavily-executed sections that are error free.

The AFFON file or AFFON data set is a sequential file containing a list of
program unit names, up to 31 characters in length, to be debugged. AFFON is
read by Interactive Debug; it must be defined prior to execution of the VS
FORTRAN program.

In a CMS environment, the EXEC used to execute VS FORTRAN programs
should contain a FILEDEF statement for the AFFON file; for example:

FILEDEF AFFON DISK progname INCLUDE A

In a TSO environment, the CLIST used to execute VS FORTRAN programs,
should contain an ALLOCATE command for the AFFON data set; for example:

ALLOCATE FI (AFFON) DA (progname.INCLUDE)
where progname is the name of the program you want to debug.

The AFFON file contains a list of program unit names to be selected for
debugging, and may contain comment entries identified by an asterisk (*) in the
first record position. Program unit names are assumed to be the first character
string in the record (terminated by a blank), and may appear after initial leading
blanks.

Each program unit name can be followed by the data set name containing the
source listing for a program unit, as well as a list of statement numbers (ISNs or
sequence numbers) and statement number ranges. (ISNs are the default, unless
you specified SDUMP(SEQ) when you compiled the program unit.) If any
statement numbers are specified, only statements falling within the specified
ranges, or included in the list of statement numbers, are selected for debugging. If
no statement numbers are specified, all executable statements are selected. Note
that statement labels are not allowed.

48 VS FORTRAN Version 2: Interactive Debug Guide and Reference

The syntax of each entry in the AFFON file is as follows:

unitname ['dataset[(member)]'])[n{:n]]...

or

unitname ['dataset|[(member)]'] [ENTRY]

or

unitname ['dataset[(member)]'] [NONE]

Blanks or commas separate entries in the list of statement number ranges. The
program unit name and the list of statement number ranges must all fit within one
record. The ENTRY parameter specifies that only ENTRY and EXIT hooks are to
be placed in the program unit. This is especially helpful if you want to increase the
accuracy of timing information. The NONE parameter allows data set names to be
specified, but bypasses inclusion of debugging hooks.

For example, to place debugging hooks between statements 6 and 16 and at
statement 18 of SUB1, you could make the following entry, under CMS, in your
AFFON file:

Sub1 'SUB1 Listing *' 6:16 18

In the above example, SUB1 LISTING * is defined as the default listing. ENTRY
and EXIT hooks are always placed in the program unit whenever any statement
number ranges are specified.

An equivalent example for TSO would be:

Sub1 'userid.subl.list’ 6:16 18

Note that there may be executable statements in the specified ranges that cannot
have debugging hooks placed on them because of optimization or vectorization. To
find out which statements have had hooks placed on them, you can use the
LISTFREQ command.

Program units that do not meet the requirements for debugging will not have
program hooks inserted, even though they may be in the AFFON list.

One way to create an AFFON file is to edit the map produced when the module to
be executed is built. Normally, this is the linkage editor map or the CMS load map.
The map can be edited by placing an asterisk before any program unit name that is
not to be debugged, nominating the other program units for debugging. You can
then add in a list of statement numbers or statement number range specifications.

Note: Because the CMS load map truncates long names to 7 characters, you will
have to replace truncated names with complete names as required by Interactive
Debug.

AFFON can have any record format, and entries can be in lower case. The logical
record length can be any value up to 255 bytes. If the file exists but has incorrect
attributes, you will receive an error message stating that the AFFON file cannot be
found. AFFON can contain references to sequence numbers for VS FORTRAN
programs compiled with SDUMP(SEQ), but AFFON itself cannot be sequenced.

Chapter 3. Using Interactive Debug in Line Mode 49

If the AFFON data set is found and contains at least one entry that is not a
comment, only the valid program unit names or ranges found in the data set or the
program unit compiled with the test option will be considered for debugging.
Otherwise, all VS FORTRAN program units will be considered for debugging.

For compiler and library restrictions that may make a program unit nondebuggable,
see “Interactive Debug Programming Requirements” on page 5.

Specifying a Print File or Data Set (AFFPRINT)

Certain VS FORTRAN Version 2 Interactive Debug commands allow you to
specify a PRINT keyword causing command output to be sent to a print data set
rather than to your terminal. This may prove useful, for example, when you are
listing the contents of a large array and want to keep this output separate from the
normal log. This print data set is referred to as the AFFPRINT data set or the
AFFPRINT file.

AFFPRINT must be defined prior to executing a VS FORTRAN program.

In a CMS environment, the EXEC used to execute VS FORTRAN programs
should contain a FILEDEF statement for the AFFPRINT file.

FILEDEF AFFPRINT DISK progname LIST A

In a TSO environment, the CLIST used to execute VS FORTRAN programs
should contain an ALLOCATE command for the AFFPRINT data set.

ALLOCATE FI (AFFPRINT) DA(progname.PRINT)

Note: To prevent an existing AFFPRINT file from being overwritten, you must
rename it before executing a program with the same name.

50 VS FORTRAN Version 2: Interactive Debug Guide and Reference

Chapter 4. Using Interactive Debug in Batch Mode

VS FORTRAN Version 2 Interactive Debug can be run in batch mode, which
creates a noninteractive debugging session. Batch mode can be run in either a
CMS or a TSO environment.

In batch mode, Interactive Debug takes its input from a file or data set with the DD
name AFFIN, and writes its normal output to one with the DD name AFFOUT.
During a batch session, you cannot interact with the batch job from your terminal.
Commands that require user interaction (such as prompt panels) cannot be used.

You might want to run a debugging session in batch mode if:

» You want to restrict the resources used. Batch mode generally uses fewer
resources than interactive mode.

* You have a program that might tie up your terminal for long periods of time. If
you use batch mode, you can continue to use your terminal for other work
while the batch job runs.

» You are using Interactive Debug to collect performance or execution data
about your program. For example, batch mode might be helpful if you want to
use LISTFREQ to get statement frequency information, but you do not want
to do any debugging.

Be aware that the following Interactive Debug commands are NOT AVAILABLE
in batch mode:

AUTOLIST PREVDISP
COLOR PROFILE
HELP REFRESH
LISTINGS RESTART
MOVECURS SEARCH
POSITION WINDOW

Invoking Interactive Debug

The invocation procedure you use to start a batch session will depend on the batch
procedures set up for you by your installation. Be sure you understand how batch
mode is invoked on your system before running Interactive Debug in batch mode.

Chapter 4. Using Interactive Debug in Batch Mode 51

Under CMS

There are many batch facilities that can be run on CMS (CMSBATCH,
BATCHMON, VMBATCH, and so on). Interactive Debug considers batch mode
to occur whenever there is no physical terminal attached to the console, which is
true of all the batch facilities listed above. The following gives an overview of an
EXEC or job file for a batch job to be run on CMS:

1. The first part of the job is usually a set of control statements for the batch
machine, such as a job statement, accounting information, console routing
control, and resource limit specifications.

2. The job probably needs CMS commands to link and access the disks
containing the application program, the Interactive Debug product, input files,
and any other EXECs or programs needed.

3. Next, the job needs commands to run your application with the DEBUG
option. These are similar to the commands in the sample EXEC to invoke
Interactive Debug in line mode (FORTIAD EXEC), but must include
definitions for the AFFIN and AFFOUT files. The sample FORTIAD EXEC
is described in Chapter 3, *“Using Interactive Debug in Line Mode” on
page 41.

If you have a FORTIAD EXEC, modify it as above if necessary, and then
enter the following in your job file:

EXEC FORTIAD myprog

If you want to include the information contained in FORTIAD directly in your
job file, it might look like that shown in Figure 19.

GLOBAL TXTLIB VSF2FORT CMSLIB

GLOBAL LOADLIB VSF2LOAD

FILEDEF AFFIN DISK myprog AFFIN *
FILEDEF AFFOUT DISK myprog AFFOUT A
FILEDEF AFFON DUMMY

FILEDEF AFFPRINT DISK myprog AFFPRINT A
LOAD myprog {(CLEAR

START * DEBUG

Figure 19. Sample Commands for a Batch Debugging Session under CMS

These sample statements invoke the program with the DEBUG option. They
allocate an AFFPRINT file, but not an AFFON file. They assume you are
starting with TEXT files you want to link with the VS FORTRAN Version 2
Library to run in load mode.

4. Finally, you need CMS commands to send back any output files that were
written to disk.

For example, to send the AFFOUT file to your reader, you might use these
commands:

52 VS FORTRAN Version 2: Interactive Debug Guide and Reference

| Under MVS

CP SPOOL PUN TO userid NOCONT
PUNCH myprog AFFOUT

To send the AFFPRINT file to the printer, you might use these commands:

CP SPOOL PRT FOR userid
PRINT myprog AFFPRINT

When the EXEC or job file is complete, submit it to the batch machine using the
procedures set up for your installation.

In MVS, Interactive Debug considers batch mode to occur whenever no physical
terminal is attached. There are two ways to run Interactive Debug under MVS:
with TSO and without TSO.

To set up the batch job using TSO, you might use JCL that looks like that shown in

Figure 20 on page 54.

Chapter 4. Using Interactive Debug in Batch Mode

53

//SAMPLE JOB (accounting-information), 'programmer-name',
// MSGLEVEL=1,MSGCLASS=Z,USER=userid,

// TIME=(0,5),NOTIFY=userid,CLASS=A,

// PASSWORD=password

//*
//************************************##************************#***#**
//* INVOKE THE TMP.. *

J/REE R AR KR Ak k KRR KRR KRR R AR kR R KRR RR R AR R KRR KRR R Rk
// EXEC PGM=IKJEFTO1,DYNAMNBR=100,REGION=2048K

//*
S/ REEEERAR AR RR AR R R RE AR IR R R R KRR R R RRRERREREERRRRR R RN IR R R RS
//* DESCRIPTION OF FORTRAN PROGRAM DATA SETS *

//****************************#*********************************#******
//FTO6F001 DD SYSOUT=%*
//SYSUDUMP DD SYSOUT=*

£
;;**********************************#******#**************************#
//* DESCRIPTION OF DEBUGGER DATA SETS *
//***
//BFFON DD DUMMY /* INCLUDE FILE */
//AFFPRINT DD SYSOUT=* /* PRINT FILE */
//AFFOUT DD DSN=log-name,DISP=OLD /* OUTPUT FROM IAD */
//AFFIN DD DSN=restart-name,DISP=SHR /* DEBUG SCRIPT */

*
;;***
//%* LOCATION OF FORTRAN PROGRAM AND LIBRARIES *
//******************#**
//STEPLIB DD DSN=SYS1.VSF2FORT,DISP=SHR /* FORTRAN LIB */

*
5;***
//* DESCRIPTION OF TSO SESSION INPUT AND OUTPUT *

J/FEEREE AR KRR AR RO R KRR R R R R RRRRR kR kAR AR R RS
//SYSTSPRT DD SYSOUT=%*,
// DCB=({RECFM=F,LRECL=255,BLKSIZE=255)
//SYSTSIN DD *
/* INVOKE FORTRAN PROGRAM AND PASS DEBUG PARAMETER */
CALL 'userid.TESTCASE.LOAD(program)' 'DEBUG'
/*

Figure 20. Sample JCL for a Batch Debugging Session under MVS with TSO

If you are not running under TSO, your JCL for the batch job would be similar to

the sample shown in Figure 21 on page 55.

54 VS FORTRAN Version 2: Interactive Debug Guide and Reference

//SAMPLE JOB (accounting-information), 'programmer-name',
// MSGLEVEL=1,MSGCLASS=Z,USER=userid,

// TIME=(0,5),NOTIFY=userid,CLASS=A,

// PASSWORD=password

//*
J/FER Aok ko ok ok ok ok ok ok kR ko kR Rk Rk kR Rk kR Rk Rk kR kKR
//* INVOKE THE APPLICATION PROGRAM *

J/FEREA AR A A sk Rk ok ko oK R KRR KRR R R R KRR R KRR KRR KRR KRR
// EXEC PGM=member,PARM='DEBUG', REGION=2048K

/7%
S/ EREEERRAAR AR KRR AR AR KRR RERRERRRKRRRERR R RRE R R R R R KR RRR R R KRR RE SR LR EE
//* DESCRIPTION OF FORTRAN PROGRAM DATA SETS *

//***

//FTO6F001 DD SYSOUT=#
//SYSUDUMP DD SYSOUT=*

//*
//************#**
//* DESCRIPTION OF DEBUGGER DATA SETS *
//**************#**
//AFFON DD DUMMY /* INCLUDE FILE */
//AFFPRINT DD SYSOUT=* /* PRINT FILE */
//AFFOUT DD DSN=log-name,DISP=QLD /* OUTPUT FROM IAD */
//AFFIN DD DSN=restart-name,DISP=SHR /* DEBUG SCRIPT */
/7%
//***
//* LOCATION OF FORTRAN PROGRAM AND LIBRARIES *
//***
//STEPLIB DD DSN=SYS1.VSF2FORT,DISP=SHR /* FORTRAN LIB */
// DD DSN=userid.TESTCASE.LOAD,DISP=SHR

/7%

Figure 21. Sample JCL for a Batch Debugging Session under MVS without TSO

The JCL in Figure 20 on page 54 and in Figure 21 define AFFPRINT,
AFFOUT, and AFFIN data sets. No AFFON data set is used. You can modify

these DD cards for the combination of data sets you need.

Wherever lowercase variables, such as programmer-name or log-name are
shown, you need to substitute the appropriate information. (You can usually
substitute an asterisk (*) for your user ID and password if you prefer.) You will
need to set up your own accounting information, and DD cards with appropriate
names for your program data sets. You also need to designate the location and

name of your program, and the libraries needed.

If AFFIN contains any SYSCMD or TSO commands, you must run the TSO

terminal monitor program.

Running a Batch Debugging Session

In batch mode, all Interactive Debug prompts are suppressed. Whenever a

simulated terminal input line is read, it is echoed to the simulated terminal output,
prefixed with an equal sign and asterisk (=*). If the AFFIN file does not exist or

the AFFOUT file is not defined, the program is terminated.

Chapter 4. Using Interactive Debug in Batch Mode

55

Standard corrective action is taken for all VS FORTRAN errors (unless the VS
FORTRAN program calls ERRSET to change them). This will cause the program
to terminate for unrecoverable errors.

Note: Interactive Debug avoids any real terminal interaction in batch mode.
However, it cannot guard against interactions required by the application program
or by SYSCMD commands. It is your responsibility to restrict the use of
interactive commands during batch sessions.

Specifying the Input File or Data Set (AFFIN)

When running Interactive Debug in batch mode, all commands to be executed
during the batch debugging session must be entered in a single input file. The input
file or data set must be defined as AFFIN. It must exist prior to executing the VS
FORTRAN program.

Remember that you cannot enter any interactive commands, such as HELP.
SYSCMD and CMS or TSO commands are not permitted without operands. You
must specify the command and any required operands on a single line; you will not
be prompted interactively for command operands. Also, do not specify any
commands that require interaction.

Under MVS, SYSCMD or TSO commands are permitted only if the TSO Terminal
Monitor Program is running.

The file will be read until end-of-file or a QUIT command is encountered. (If
end-of-file is reached, a QUIT command is forced.)

The AFFIN file must have a RECFM of F or FB and an LRECL of 80. It has the
same format as an output file, and may even be a previous output file. If it is a
previous output file, Interactive Debug will ignore any output contained in the file
(anything preceded by only an equal sign, or only an asterisk.) It accepts any line
preceded by =* , or by nothing, as input.

Note: Sequence numbers are not allowed in columns 73 through 80.

Although it is possible in principle to use the log file from a full screen debugging
session as AFFIN input for a batch debugging session, you should be aware that
there are some differences.

« TERMIO is likely to have different effects in batch. Under MVS it is not
possible to connect a data set to a terminal device in batch. However, you can
use the DEBUNIT execution-time option to specify one or more units that will
be treated as terminals. It is then possible, for example, for you to use your
output from a full screen session as a restart file, with TERMIO set to IAD.

In CMS, you can still use TERMINAL in a FILEDEF command, but you
should be careful not to issue TERMIO LIBRARY if there will be any terminal
input, because your program would then attempt to actually get terminal input
and the batch job would stall.

56 VS FORTRAN Version 2: Interactive Debug Guide and Reference

You may want to add TERMIO MSG and NOMSG commands in order to get
some notification as the job progresses. (This should normally be used with
restraint.)

» Error handling is different in batch. In order to avoid unplanned interactions,
the debugger always forces standard fixup for errors in batch mode. Thus
ERROR EXIT will never cause an exit to be taken. Error limits are in effect as
if Interactive Debug were not present.

o SYSCMD commands with no system command specified are considered an
error in batch mode (but cause no harm otherwise). You should also avoid any
system commands that might themselves require interaction.

« Prompts are suppressed in batch. For example, GO with a statement identifier
does not prompt for confirmation in batch mode, even if an optimized program
unit is being debugged.

| Including Program Input in AFFIN

| When TERMIO IAD is in effect, all terminal input is obtained from AFFIN,
| preceded with 9%, and interspersed with the IAD comments.

In batch mode under MVS, you do not have a terminal available, so it is therefore
impossible to connect VS FORTRAN files to a terminal. However, by specifying
the DEBUNIT execution-time option, which specifies a device to be treated as a
terminal, you can use the TERMIO command with MVS batch.

The DEBUNIT option may already be set up for you as a local default whenever
you specify the DEBUG option, or you may need to specify it at execution-time
when you run your program. If you need to specify it, the format is as follows:

DEBUNIT(S1[,S2,...])

where S is a unit number (such as 5), or an inclusive range of unit numbers (such
as 35-40).

Note that in CMS, the commas must be replaced by blanks, unless the program will
be invoked by an EXEC2 or REXX EXEC and uses the extended PLIST facilities.
If I/O is to be issued to the units, the job stream must also include a FILEDEF (in
CMS) or a DD card (in TSO) for each unit.

Remember that, when running in batch, the program must get its input from real
data sets, and must send its output to real data sets. In CMS batch, you should not
specify TERMIO LIBRARY if there will be any terminal input, because this
requests interaction and will cause the batch job to fail.

For more information on TERMIO, see “Entering Terminal Input” on page 91
and “TERMIO Command” on page 207.

Chapter 4. Using Interactive Debug in Batch Mode 57

Specifying an Output File or Data Set (AFFOUT)

Interactive Debug creates a log of its activity for you to examine; you can view this
output after the batch debugging session has completed. The output data set is
referred to as the AFFOUT data set or the AFFOUT file. AFFOUT does not have
to exist prior to executing the VS FORTRAN program, but must be defined. The
DD name identifies the file to Interactive Debug.

The output file has the following characteristics:

o All Interactive Debug I/0 is logged, along with all VS FORTRAN terminal
1/0 that occurs while TERMIO IAD is in effect.

« The file is created with a RECFM of FB and an LRECL of 80 (and a
BLKSIZE of 800 for TSO).

o Each line is preceded with an equal sign (=).

+ Each line of input is preceded by an asterisk (*) following the equal sign.

After Ending a Debugging Session

It is your responsibility to make sure that AFFOUT and any other batch output
files are returned to you or sent to an appropriate printer. The batch output files
are:

« AFFOUT for debug output
« AFFPRINT for debug print output
e Any output files that your VS FORTRAN program writes.

Using Optional Debugging Files or Data Sets

The following sections discuss two optional files (or data sets), and how to define
them when invoking Interactive Debug in batch mode.

Specifying a Print File or Data Set (AFFPRINT)

Certain VS FORTRAN Version 2 Interactive Debug commands allow you to
specify a PRINT keyword. You can use the PRINT keyword to send output to a
print data set rather than AFFOUT. This may prove useful, for example, when you
are listing the contents of a large array and want to keep that output separate from
normal debug output. This print data set is referred to as the AFFPRINT data set
or the AFFPRINT file.

Because AFFPRINT is an output file, it does not need to exist prior to executing

your VS FORTRAN program. However, it must be defined with a FILEDEF or
DD statement. The DD name identifies the file to Interactive Debug.

58 VS FORTRAN Version 2: Interactive Debug Guide and Reference

N

Specifying Program Units to be Debugged (AFFON)

When Interactive Debug is invoked, you can set breakpoints in any debuggable
program units. Because there is some overhead associated with this ability, it will
be more efficient to exclude from debugging those program units that are known to
be error free. You can also exclude part of a program unit, which may be helpful if
there are heavily-executed sections that are error free.

The AFFON file or AFFON data set is a sequential file containing a list of
program unit names, up to 31 characters in length, to be debugged. AFFON is
read by Interactive Debug; it must exist before execution of the VS FORTRAN
program, and must be accessible to the batch job.

AFFON contains a list of program unit names to be selected for debugging, and
may contain comment entries identified by an asterisk (*) in the first record
position. Program unit names are assumed to be the first character string in the
record (terminated by a blank), and may appear after initial leading blanks.

Each program unit name can be followed by the data set name containing the
source listing for a program unit as well as a list of statement numbers (ISNs or
sequence numbers), or statement number ranges. (ISNs are the default, unless you
specified SDUMP(SEQ) when you compiled the program unit.) If any statement
numbers are specified, only statements falling within the specified ranges, or
included in the list of statement numbers, are selected for debugging. If no
statement numbers are specified, all executable statements are selected. Note that
statement labels are not allowed.

The syntax of each entry in the AFFON file is as follows:

unitname ['dataset|[(member)]'][n[:n]]...

or

unitname ['dataset[(member)]'] [ENTRY]

or

unitname ['dataset[(member)]'] [NONE]

Blanks or commas separate entries in the list of statement number ranges. The
program unit name and the list of statement number ranges must all fit within one
record. The ENTRY form indicates that only entry and exit hooks are to be placed
in the program unit. This is especially helpful if you want to increase the accuracy
of timing information. The NONE parameter allows data set names to be
specified, but by passes inclusion of debugging hooks.

For example, to specify that you want to place debugging hooks at the ENTRY and
EXIT, on the statements in SUB1 whose statement numbers fall between 6 and 16,
and at statement 18, you could make the following entry, under CMS, in your
AFFON file:

Sub1 'SUB1 Listing *' 6:16 18
In the above example, SUB1 LISTING * is defined as the default listing. ENTRY

and EXIT hooks are always placed in the program unit whenever any statement
number ranges are specified.

Chapter 4. Using Interactive Debug in Batch Mode 59

An equivalent example for TSO would be:

Sub1 'userid.subl.list' 6:16 18

Note that there may be executable statements in the specified ranges that cannot
have debugging hooks placed on them because of optimization or vectorization. To
find out which statements have had hooks placed on them, you can use the
LISTFREQ command.

Program units that do not meet the requirements for debugging will not have
program hooks inserted, even though they may be in the AFFON list.

AFFON can have any record format; entries can be in lower case. The logical
record length can be any value up to 255 bytes. If the file exists but has incorrect
attributes, you will receive an error message stating that the AFFON file cannot be
read. AFFON can contain references to sequence numbers for VS FORTRAN
programs compiled with SDUMP(SEQ), but AFFON itself cannot be sequenced.

If the AFFON data set is found and contains at least one entry that is not a
comment, only the valid program unit names found in the data set or the program
unit compiled with the test option will be considered for debugging. Otherwise, all
VS FORTRAN program units will be considered for debugging.

For compiler and library restrictions that may make a program unit nondebuggable,
see “Interactive Debug Programming Requirements’ on page 5.

60 VS FORTRAN Version 2: Interactive Debug Guide and Reference

Chapter 5. A Sample Debugging Session

Sample Program

This section is intended for those who are unfamiliar with VS FORTRAN Version
2 Interactive Debug. Through a sample debugging session, it introduces you to
some basic concepts and several commands.

Assume you want to debug the VS FORTRAN program shown in Figure 22. The
program includes a subroutine, DIVIDE, which divides an array used as the
dividend by a second array used as the divisor, and returns the result back to the
main program in a third array. The three integer arrays each have 10 elements.
The main program, named SAMPLE, uses a DO loop to assign values to the arrays
for the dividend and divisor, named A1 and A2 respectively.

If you would like to follow this sample session on your terminal, enter the program
as shown in Figure 22.

aPROCESS
PROGRAM SAMPLE
INTEGER A1(10),A2(10),A3(10)
DO 20 I=1,10
A1(I)=I+1
A2(I)=I-1
20 CONTINUE
CALL DIVIDE (A1,A2,A3)
WRITE (6,30) (A3(I),I=1,10)
30 FORMAT (' ',I5)
STOP
END
?PROCESS
SUBROUTINE DIVIDE (DIVEND, DIV, RES)
INTEGER DIVEND(10),DIV(10),RES(10)
Do 10 1=1,10
RES(I)=DIVEND(I)/DIV(I)
10 CONTINUE
RETURN
END

Figure 22. Program Source File for SAMPLE Program

Now compile the program with the SDUMP and OPT(0) options, and execute the
program under the control of Interactive Debug by specifying the execution-time
option, DEBUG. If you are using ISPF, refer to Chapter 2, “Using Interactive
Debug with ISPF” on page 9, for more detail. If you are operating in line mode,
refer to Chapter 3, ‘“Using Interactive Debug in Line Mode” on page 41.

Chapter 5. A Sample Debugging Session 61

VS FORTRAN Version 2 Interactive Debug will be invoked, allowing you to begin

a debugging session. Figure 23 on page 63 shows how the compiler listing for the 7
SAMPLE program might appear. During the debugging session, this listing will be

useful for determining statement identifiers for breakpoints. A statement identifier

can be an ISN, a sequence number in columns 73 through 80, or a statement label.

The compiler assigns a number known as the internal statement number (ISN) to
each statement in the program. For example, the first executable statement in
Figure 23 has an ISN of 3. To reference that statement in a VS FORTRAN
Version 2 Interactive Debug command, you would normally use this ISN. You can
use a qualifier to distinguish ISNs with the same number in different program units.

If you specify SDUMP (SEQ) when you compile your program, you must always
refer to the sequence numbers in columns 73 through 80 instead of the
compiler-generated ISNs. However, for this sample program, we will assume you
are using ISNs as your statement numbers.

Statements that have a user-specified statement label in columns 1 through 5, such
as the CONTINUE statement in Figure 22 on page 61, can also be referenced by
that statement label. When a statement label is used, the number must be preceded
by a slash (/). The CONTINUE statement in SAMPLE may be referenced as

/20 as well as 6.

62 VS FORTRAN Version 2: Interactive Debug Guide and Reference

LEVEL 2.2.0 (JUNE 1987) VS FORTRAN OCT 09, 1987 10:42:15
REQUESTED OPTIONS (PROCESS) :

OPTIONS IN EFFECT: NOLIST NOMAP NOXREF NOGOSTMT NODECK SOURCE TERM OBJECT FIXED

TRMFLG SRCFLG NOSYM NORENT SDUMP (ISN) AUTODBL (NONE) NOSXM

NOVECTOR II, NOTEST NODC NOICA NODIRECTIVE OPT(0) LANGLVL(77)

NOFIPS FLAG(I) NAME(MAIN) LINECOUNT(60) CHARLEN (500)

IF DO ISN o 2 B - T N
1 PROGRAM SAMPLE
2 INTEGER A1(10),A2(10),A3(10)
3 DO 20 I=1,10
1 4 A1(I)=I+1
1) A2(I)=I-1
1 6 20 CONTINUE
7 CALL DIVIDE (A1,A2,A3)
8 WRITE (6,30) (A3(I),I=1,10)
9 30 FORMAT (' ',I5)
10 STOP
11 END
STATISTICS SOURCE STATEMENTS = 11, PROGRAM SIZE = 964 BYTES,

PROGRAM NAME = SAMPLE PAGE: 1.
STATISTICS NO DIAGNOSTICS GENERATED.
SAMPLE END OF COMPILATION 1 *¥%¥*x*
LEVEL 2.2.0 (xxxx 1987) VS FORTRAN JAN 09, 1987 10:42:15
REQUESTED OPTIONS (PROCESS):

OPTIONS IN EFFECT: NOLIST NOMAP NOXREF NOGOSTMT NODECK SOURCE TERM OBJECT FIXED

TRMFLG SRCFLG NOSYM NORENT SDUMP(ISN) AUTODBL{NONE) NOSXM

NOVECTOR IL NOTEST NODC NOICA NODIRECTIVE OPT{(0) LANGLVL(77)

NOFIPS FLAG(I) NAME(MAIN) LINECOUNT(60) CHARLEN(500)

IF DO ISN L 2, C Y S 6.....
1 SUBROUTINE DIVIDE (DIVEND,DIV,RES)
2 INTEGER DIVEND(10),DIV(10),RES(10)
3 DO 10 I=1,10
1 4 RES (I)=DIVEND(I)/DIV(I)
1 5 10 CONTINUE
6 RETURN
7 END
STATISTICS SOURCE STATEMENTS = 7, PROGRAM SIZE = 828 BYTES,
PROGRAM NAME = DIVIDE PAGE: 2.

STATISTICS# NO DIAGNOSTICS GENERATED.

**DIVIDE#* END OF COMPILATION 2 *#%%*#%x*

LEVEL 2.2.0 (xxxx 1987) VS FORTRAN JAN 09, 1987 10:42:15

SUMMARY OF MESSAGES AND STATISTICS FOR ALL COMPILATIONS

STATISTICS SOURCE STATEMENTS = 11, PROGRAM SIZE = 964 BYTES,
PROGRAM NAME = SAMPLE PAGE: 1.

STATISTICS NO DIAGNOSTICS GENERATED.

SAMPLE END OF COMPILATION 1 d**kkk*

STATISTICS SOURCE STATEMENTS = 7, PROGRAM SIZE = 828 BYTES,
PROGRAM NAME = DIVIDE PAGE: 2.

STATISTICS NO DIAGNOSTICS GENERATED.

DIVIDE END OF COMPILATION 2 **¥¥**

kkkkk* SUMMARY STATISTICS ****% 0 DIAGNOSTICS GENERATED.

HIGHEST SEVERITY CODE IS O.

Figure 23. Program Source Listing for SAMPLE Program

Chapter 5. A Sample Debugging Session

63

Sample Debugging Session

Now that you have compiled the program and invoked Interactive Debug, you are
ready to begin the debugging session. Before executing the first statement, VS
FORTRAN Version 2 Interactive Debug suspends execution and allows you to
enter commands. The log tells you that execution is suspended at ISN 3:

WHERE: SAMPLE.3

Interactive Debug will prompt you for commands wherever execution is suspended.
You can enter commands in upper- or lowercase letters, but all system responses
will appear in uppercase letters.

To begin our debugging session, let’s list the program units available for debugging:

listsubs

The response to LISTSUBS should look like this:

PROGRAM UNIT COMPILER OPT HOOKED TIMING
SAMPLE VSF 2.2.0 0 YES OFF
DIVIDE VSF 2.2.0 0 YES OFF

Now let’s try executing the program. The GO command begins execution at the
next executable statement. Because we are not aware of any errors in the program,
let’s try executing it without setting any breakpoints.

go

Unfortunately, there is an error in the program. You should receive an error
message that looks like this:

ERRMSG=> AFB209I VFNTH : PROGRAM INTERRUPT - FIXED-POINT DIVIDE EXCEP
ERRMSG=> TION

ERRMSG=> VFNTH : PSW 4009A20205DC

ERRMSG=> VFNTH : LAST EXECUTED FORTRAN STATEMENT IN PROGRAM D
ERRMSG=> IVIDE AT ISN 4 (OFFSET 000214).

INFMSG=> USER ERROR CORRECTIVE ROUTINE ENTERED.

ERROR EXIT: ERROR 209 AT DIVIDE.4

Now we know that there is a problem at ISN 4 in program unit DIVIDE. You may
want to look at ISN 4 in the source listing while continuing to debug.

There are several ways to look at the source listing without exiting the debugging
session, depending on your operating environment. Under ISPF Version 2, the
source listing will automatically be shown in a window if you have defined the
window size (using the WINDOW command) and have identified the source listing
file on the listings data set specification panel. To see the listings data set
specification panel, enter the LISTINGS command or type a question mark (?) in
the first character of the Q field of the execution panel header.

If you are using ISPF with PDF, you can split the screen with the SPLIT function

of ISPF, and use PDF’s BROWSE or EDIT facilities. For those not running under
ISPF and PDF, the VS FORTRAN Version 2 Interactive Debug SYSCMD

64 VS FORTRAN Version 2: Interactive Debug Guide and Reference

command can be used to invoke an editor. For example:
syscmd edit sample.for (TSO)
syscmd xedit sample fortran a (CMS)

Because ISN 4 contains several variables, it might help to look at the values of the
variables there. We can do this using the LIST command. (We are already in
program unit DIVIDE, so we do not need to qualify any of the variables.)

list (i,divend(i),div(i),res(i))

In the log file, we see the value of I, and the first elements of DIVEND, DIV, and
RES:

DIVIDE.I
DIVIDE.DIVEND(1)
DIVIDE.DIV(1)
DIVIDE.RES (1)

Bonnn
CON -

Look at the value of our divisor, DIV. At this point in the program, DIV is 0, an
invalid value for a division operation. But how did the value become 0? To find
out, we need to restart the program and check what it does at earlier points. Under
ISPF Version 2, you can simply type RESTART, but let’s use a longer method that
will also work in line mode. We will tell Interactive Debug to go back to ISN 3 in
the main program, SAMPLE.

Because the GO command cannot switch from one program unit to another, we
must first get back to SAMPLE before we can GO to ISN 3. On our listing, we see
that ISN 8 is the first statement in SAMPLE after returning from the call to
DIVIDE. Let’s set a breakpoint there. To suspend execution of the program just
before the WRITE statement is executed, use the AT command. We need to

qualify the ISN with the name of the main program because the currently qualified
unit is still DIVIDE:

at sample.8

Now resume execution:
go

At the WRITE statement, execution will be suspended and you will receive the
following messages:

INFMSG=> STANDARD CORRECTIVE ACTION TAKEN. EXECUTION CONTINUING.
AT: SAMPLE.S8

The error in DIVIDE has been temporarily corrected, and execution has resumed
up to ISN 8. The AT message indicates where execution is now suspended by
displaying the ISN of the statement and the name of its program unit (in this case,
SAMPLE, the main program).

By using the GO command with a statement identifier, the initialization loop can be
executed again. We can check the values in the three arrays just before DIVIDE is
called. To do this, we should set a breakpoint at the statement labeled 20, and use
a command list to list the values of the variables at this point:

at /20 (list (i,al(i),a2(i),a3(i)))

Chapter 5. A Sample Debugging Session 65

Before resuming execution, we can verify that we set the correct breakpoints by
listing them:

listbrks

The output from LISTBRKS should be:

CURRENT BREAKPOINTS:
SAMPLE.6/20
SAMPLE. 8

CURRENT WHEN CONDITIONS:
NONE

CURRENT HALT STATUS: OFF

We see that a breakpoint is indeed set at ISN 6, which is also statement label 20, in
SAMPLE. So we are ready to resume execution at the beginning of the array
initialization loop, ISN 3.

go 3

Execution will be suspended at ISN 6, and the values of the variables listed:

AT: SAMPLE.6/20
SAMPLE.I

SAMPLE.A1(1)
SAMPLE.A2(1)
SAMPLE.A3(1)

nnnan

NON =

Again, we can see that the value in the second array, A2, which is referenced
indirectly by subroutine DIVIDE as DIV, is 0. For now, let’s temporarily correct
this value. We can use the SET command to change the value for the rest of the
debugging session, but later we will need to modify the actual program.

set a2(1) =1

To execute the rest of the program with the new value and end the debugging
session, enter:

off *
go

Now the SAMPLE program will produce the following output to the terminal:

FTO6F001
FTO6F001
FTO6F001
FTO6F001
FTO6F001
FTO6F001
FTO6F001
FTO6F001
FTO6F001
FTO6F001
PROGRAM HAS TERMINATED; RC = (0)

_eed N W

The last message indicates that the program has completed execution, in this case
as the result of the STOP statement. Because the arrays are integer, the values are
truncated. The output is correct up to the truncated value, so you can assume that
the value of A2 was the bug in the program.

66 VS FORTRAN Version 2: Interactive Debug Guide and Reference

~

You can terminate the debugging session by entering the QUIT command, which
will return you to the system (ISPF, CMS or TSO) from which you initiated
debugging. You may terminate the debugging session at any time by entering the
QUIT command.

To correct the problem, you must edit the source program so that no value of A2
(or DIV) is ever 0. Then save the new version of the program. To run the edited
version, you must terminate the current debug session, recompile the program, and
then reexecute it.

Chapter 5. A Sample Debugging Session 67

Chapter 6. Using Some Common Interactive Debug Commands

This section describes some of the common debugging tasks you may need to
perform, and explains the Interactive Debug commands that will help you perform

them.

Examples of the following commands are used in this chapter:

| ANNOTATE LISTSAMP
AT LISTSUBS
BACKSPACE LISTTIME
CLOSE NEXT
DESCRIBE OFFWN
ENDDEBUG QUALIFY

| ENDFILE RECONNECT
ERROR REWIND
FIXUP SYSCMD
HALT TERMIO
LIST TIMER
LISTBRKS TRACE
LISTFREQ WHEN

WHERE

For the complete syntax of all commands and more detail, see
Chapter 8, “Interactive Debug Commands” on page 113.

Displaying Information about Debuggable Program Units

Most debugging activities, such as displaying variables, can only be performed on
program units that are considered debuggable by Interactive Debug. To be
debuggable, a program unit must be compiled with the SDUMP option. In

addition, it must be in storage at the time the VS FORTRAN Library is initialized.

Note: The reentrant part of a program unit compiled with the RENT option need
not be in storage at this time.

If you want to see which program units are debuggable, you can use the LISTSUBS
command.

Chapter 6. Using Some Common Interactive Debug Commands 69

The following is a sample of the output produced by LISTSUBS:

PROGRAM UNIT COMPILER OPT HCOKED TIMING

MAINLINE VSF 2.2.0 Ve YES ON

SUBBUILD VSF 1.4.0 3 NO OFF RENT NOT LOADED
SUBDOWN VSF (TEST) 0 YES OFF

SUBREFIT VSF 1.3.1 1 NO ON

In this example, we see that the program unit MAINLINE was compiled using VS
FORTRAN Version 2, Release 2, identified as VSF 2.2.0. SUBBUILD was
compiled with Release 4 of VS FORTRAN Version 1, and SUBREFIT with
Release 3.1 of VS FORTRAN Version 1. VSF (TEST) tells us that SUBDOWN
was compiled prior to VS FORTRAN Version 1 Release 4, and the TEST option
was specified. In this case, it is not possible to determine the VS FORTRAN
release level.

Notice that, for MAINLINE, the OPT column specifies v2. This indicates
vectorization level 2. When the OPT column shows a vectorization level (V1 or
V2), the optimization level is always 3.

In the HOOKED column, "YES' means that hooks are installed at entry and exit
points and possibly at some or all statement boundaries as well. You can set
breakpoints only in program units that have hooks. The hook settings are
controlled by the AFFON file. "NO" in the HOOKED column indicates that no
hooks are installed in the program unit. The TIMING column indicates whether
the TIMER command has been activated for each program unit listed. This column
may also be followed by an indication of the load status for reentrant programs. In
our example, SUBBUILD indicates RENT NOT LOADED, meaning that the
program unit has not yet been called, and has not been located (although it may
actually be in storage).

Referring to Statements or Variables in Other Program Units

Programs often contain more than one program unit. A program unit is defined as
a main program, a function subprogram, or a subroutine subprogram. Each of
these units has its own set of variables, but variables in different program units may
have the same names.

A similar situation exists with statement identification; two statements in different
program units may have the same statement label or be assigned the same ISN by
the VS FORTRAN compiler. On Interactive Debug commands that refer to
statements or variables, you can specify the program unit as a qualifier (in the form
of the program unit name followed by a period). If no qualifier is specified in a
command that references statements or variables, Interactive Debug resolves these
references using the current program qualification.

The current program qualification is normally the program unit that is executing (or
in which execution is suspended). However, you can change the current
qualification by issuing the QUALIFY command.

Note: Each time execution is resumed, Interactive Debug will reset the
qualification to the program unit currently executing.

70 VS FORTRAN Version 2: Interactive Debug Guide and Reference

-~

Displaying the Current Program Qualification

To see which program unit is currently qualified, enter the QUALIFY command
with no arguments:

qualify

The response will be something like:

QUALIFICATION IS MAIN

Changing the Current Program Qualification

If the current qualification is MAIN, unqualified statement identifiers and variable
names will refer to statements and variables in MAIN. Issuing the command AT
/10 will set a breakpoint at the statement labeled 10 in MAIN. If your program
has a subroutine (or function) named SUB1 and you wanted to set a breakpoint in
that subroutine, you could do so by using an explicit qualifier. For example:

AT sub1./10

You could also change the current qualification. For example:

qualify subi

Now entering:

at /10

sets a breakpoint at the statement labeled 10 in your subroutine SUB1. To check
current breakpoint settings, entering the LISTBRKS command:

listbrks

would produce output similar to that shown below.

CURRENT BREAKPOINTS:
MAIN.25/10
SUB1.32/10

CURRENT WHEN CONDITIONS:
NONE

CURRENT HALT STATUS: OFF

Breakpoint settings are displayed for both the main program and the subroutine
SUBI.

You can display all the variables in the currently qualified program unit with the
LIST command by entering:

list *

To issue commands without explicit qualification that reference statements or
variables in MAIN, change the currently qualified program unit back to the main
program by entering:

qualify main

Chapter 6. Using Some Common Interactive Debug Commands 71

Now enter LIST * again to display all the variables in MAIN. If, on resuming :
execution, the breakpoint you set in SUB1 was reached, the currently qualified 7N
program unit would be set to SUB1. For example:

go
AT SUB1.32/10
list *

would list all the variables in SUB1.

Explicit Qualification of Individual Variables

You can qualify individual variables without a QUALIFY command by preceding
the variable name with the name of the program unit that it belongs to and a
period. For example, you can refer to variable x from MAIN as:

main.x

You can refer to an array element data(10) from sub2 as:

sub2.data(10)

When qualifying an array element with a symbolic subscript, remember to also
qualify the subscript. For example, to display array element data(I) from sub2
while execution is suspended in MAIN, enter:

list sub2.data(sub2.i)

If you omit the second SUB2, and the current qualification is MAIN, Interactive a
Debug will look for a value of I in MAIN. If it finds one, it will give you that
element of DATA instead of the one you want in SUB2. You must qualify each

variable that is not in the currently qualified program unit.

You can reference variables outside the currently executing program unit in any
command dealing with VS FORTRAN variables. For example:

list (a,b,subl.alpha,sub2.beta,x,y,z)
set a=subl.value
when over (subl.rchg=5.)

Setting Breakpoints at Debugging Hooks

The AT command sets breakpoints at specific statements. Breakpoints can be set
only at statements that have debugging hooks. A hook gives temporary control to

Interactive Debug at a specific point within a program (usually at the beginning of
an executable statement).

For VS FORTRAN code compiled with the TEST option, hooks are placed in the
object code by the compiler. For VS FORTRAN code compiled with the NOTEST
and SDUMP options, hooks can be inserted into the object code by IAD at
execution time.

When using the AT command, you can identify the statement either by its N\
statement number or by the statement label, if it has one. Normally, the statement

72 VS FORTRAN Version 2: Interactive Debug Guide and Reference

number refers to the Internal Statement Number (ISN) generated by the compiler
(see “Statement Identifier Conventions” on page 114 for more details). However,
you can specify at compile time that you want to use the sequence numbers in
columns 73 through 80 as the statement numbers for your debugging session
instead of the ISNs.

As an example, assume that your main program has a write statement labeled 10
and that the compiler has assigned an ISN of 6 to this statement. The listing might
show:

ISN 6 10 WRITE(*,*) 'Example Program'

You can set a breakpoint at this statement by issuing either of the following two
commands:

at 6

or

at /10

Statement labels are preceded with a slash to distinguish them from ISNs or
sequence numbers. Remember that, if no qualifier is specified, Interactive Debug
uses the current qualification to determine which program unit this statement is
located in. (MAIN is assumed here.) When the statement is reached, execution is
suspended and the following message is displayed:

AT: MAIN.6/10

You may specify a list of statements or a range of statements with the AT
command. For example, the following command:

at (6 /15 14 3)

sets breakpoints at statement numbers 6, 14, and 3, and also at statement label 15,
providing they are all executable statements and have debugging hooks.

at (6:/15)

sets breakpoints at every hooked executable statement between the statement
whose ISN is 6 and the statement labeled 15. Both statements specified in a range
must be executable, and the statement on the left must appear in the program
before the statement on the right.

Breakpoints cannot be set if optimization or vectorization causes the statement to
be collapsed. A collapsed statement is an executable source statement that occupies
no object code because of the effects of optimization or vectorization. (The code
was either moved to a new location, or eliminated.) For further explanation, see
“Debugging Optimized and Vectorized Code” on page 98.

If the statement is nonexecutable, you cannot set a breakpoint.

If you have specified statement ranges for one or more program units in the
AFFON control file, breakpoints can only be set in the specified statement ranges
for those program units. Multiple units and ranges can be specified. See Chapters
on ISPF, line mode, or batch mode for more information about specifying
statement ranges in your environment.

Chapter 6. Using Some Common Interactive Debug Commands 73

You cannot suspend execution at the “trailer” statement following a logical IF
under any of these conditions:

o The program was compiled prior to VS FORTRAN Version 1 Release 3.1.
o The trailer statement is a GOTO statement.
« Sequence numbers were used instead of ISNs.

Controlling Program Execution

Note: The following section refers only to statements that have hooks. You
cannot suspend execution at a statement that does not have a hook.

The HALT, NEXT, and WHEN commands provide a number of different ways to
control program execution. These commands allow you to suspend execution:

« At every executable statement

« At the next executable statement (without knowing which it is)
« At every apparent program branch

e At every entry to and exit from a program unit

e Whenever a user-defined condition is met

+ Whenever a specific variable is modified

The HALT command allows you to suspend execution under certain specified
conditions. For example:

halt stmt

suspends execution at every executable statement. This allows you to single step
through your program, which can be helpful in finding errors related to the
processing flow.

halt goto

suspends execution at every apparent program branch. Halting can occur for
several reasons, including a GOTO, a DO group, and an IF statement.

halt entry
suspends execution at every entry to or exit from a debuggable program unit.

The HALT command remains in effect until you cancel it with:

halt off

The NEXT command requests that execution be suspended at the next executable
statement. It is similar to the HALT STMT command, except that the NEXT
command is temporary and does not remain in effect after execution is suspended.

74 VS FORTRAN Version 2: Interactive Debug Guide and Reference

The WHEN command allows you to suspend execution every time a particular
condition is met. You define the condition and supply its name. Later you can
refer to the condition by name without redefining it. With WHEN, you can
monitor:

« An arithmetic relationship between two variables or between a variable and a
constant

» The status of a logical variable
o A change in the value of a variable

For example, to cause execution to be suspended when variable SMITH equals 30,
define a condition, such as the one below named RDS. (The name can be one to
four alphameric characters, the first character alphabetic.)

when rds (smith = 30)

Execution is suspended at the first possible statement following the point at which
the condition becomes true. For example, if condition RDS was found to be
satisfied at the beginning of statement 46 in program unit MAIN, you would
receive the following:

WHEN: "RDS" SATISFIED;
CURRENTLY AT MAIN.46

The first line tells you which condition was satisfied; the second tells you where
execution is suspended. To detect when SMITH changes value, enter:

when rds smith

Notice that when you want to define a condition that monitors any change in the
value of a variable, the variable name is not enclosed in parentheses.

If the value of SMITH is continually being changed, and SMITH changes initially
from 2 to 3, you are notified. If SMITH changes to 4, you are notified again.

Examples:
when rds1 (smith = md)
when rds2 (smith .1lt. 4.7)

when rds3 (rich)

In the final example, RICH is a logical variable. In this case, you get control when
RICH is true. If the parentheses were omitted, you would get control whenever
RICH was modified.

Note: Interactive Debug cannot tell you exactly which statement changed the
variable being monitored. (It might have occurred in a section of code that has no
debugging hooks.) However, you can get a list of the last ten branches known to
the debugger by entering WHERE FLOW. This should help you deduce which
statement actually caused the change.

To turn off WHEN condition monitoring, use the OFFWN command. For
example, to turn off condition RDS, enter:

Chapter 6. Using Some Common Interactive Debug Commands 735

offwn rds

To turn off condition DJV along with condition RDS, enter:

offwn (djv,xrds)

To stop all condition monitoring, enter:

offwn *

WHEN condition monitoring is not automatically turned off when a condition is
satisfied. If you do not want Interactive Debug to continue monitoring the same
condition, you must issue the OFFWN command after the condition has been
satisfied. If you want to reactivate a condition after it has been deactivated by an
OFFWN command, enter WHEN with the condition name. For example:

when rds

Using Command Lists

As part of an AT command, you can specify a list of commands to be executed
whenever a breakpoint is reached. This allows you to conditionally suspend
execution at a specific statement or to specify a list of commands to be executed
there. When you specify a command list, you can control whether Interactive
Debug will wait for a command, or whether it will continue execution without the
need for intervention.

In this example, the value of variable A will be displayed each time sequence
number 10 is reached, and execution will then continue.

at 10 (list a %go)

This is useful for observing how the value of a variable changes in a loop. Here,
sequence number 10 could be at the end of a loop and the value of variable A
would be displayed at each iteration of the loop.

Note: The percent sign (%) is used to separate commands within the list.

To conditionally suspend execution at a particular statement, you can use the IF
and HALT commands within an AT command list. The HALT command will
suspend the execution of the command list. For example, entering:

at 10 (list (a,b) %if (a.lt.b) halt %go)

will cause execution to be suspended at sequence number 10 only if A is less than
B. Otherwise, the GO command will cause execution to continue. In either case,
the values of A and B will be displayed.

A command in an AT command list that causes execution to resume or halt will
cause the remainder of the command list to be ignored. In this example:

at /200 (if (a=0) go /10 %if (b=0) go /10 %go /300)

if the value of A or B is equal to 0, execution will resume at the statement labeled
10; otherwise, execution will resume at the statement labeled 300.

76 VS FORTRAN Version 2: Interactive Debug Guide and Reference

The following commands cannot be used in a command list:

COLOR POSITION
FIXUP PREVDISP
HELP PROFILE
LISTINGS SEARCH
MOVECURS WINDOW

Displaying the Data Types of Scalar Variables and Arrays

To display the data types of scalar variables and arrays, use the DESCRIBE
command. DESCRIBE also displays dimension information for arrays. This
command can be useful for checking the attributes of variables and arrays when it
is inconvenient to search the source listing for their declarations. It is particularly
useful for displaying the dimensions that were passed for dummy array arguments.

For example, to see the data type of the variable “a” in program unit “subl,” enter
this command:

describe subl.a

By entering an asterisk (*), you can request a display of the type of every variable
in the currently qualified program unit. To see a list of all the names in the current
program unit, with their data types, enter this:

describe *

Let’s say you have a program that uses a mixture of scalars and arrays, and you
would like to display the type of a specific group of them. You can specify the
scalars and arrays in a name list, for example:

describe (i,k,sub2.dumchr,r8ary,sub2.r4dumy,llaymn)

The output might look like this:
SUB3.I: INTEGER*4
SUB3.K: INTEGER*4 DUMMY
SUB2.DUMCHR: CHARACTER* (*) DUMMY
SUB3.R8ARY: REAL*8

RANK = 2, SIZE = 49 ELEMENTS

DIM 1: EXTENT = 7, LBOUND = (1), UBOUND = (7)

DIM 2: EXTENT = 7, LBOUND = (1), UBOUND = (7)
SUB2.R4DUMY : REAL*4 DUMMY

RANK = 3; DUMMY ARRAY ARGUMENT OF INACTIVE SUBPROGRAM OR
ALTERNATE ENTRY POINT;
DIMENSION INFORMATION NOT AVAILABLE

SUB3.L1AYMN: LOGICAL*1 DUMMY
RANK = 2, SIZE = * ELEMENTS
DIM 1: EXTENT = 5, LBOUND =(-2), UBOUND (2)

DIM 2: EXTENT = *, LBOUND = (1), UBOUND = (¥)
Dummy arguments are identified by DUMMY in the right-hand column. The length
of DUMCHR could not be determined because it is a dummy argument in an

inactive program unit, so the length is displayed as CHARACTER* (*).

Chapter 6. Using Some Common Interactive Debug Commands 77

Dimension information is not available for R4DUMY. This information is never
displayed for arrays that are dummy arguments in an inactive program unit, or that
are defined only when entered by some other entry point.

L1AYMN is an assumed-size array. The upper bound for the last dimension of
such arrays is displayed as an asterisk (*), and the size is indicated as follows:

* ELEMENTS

Determining Statement Execution Frequency

The LISTFREQ command displays the number of times each statement has been
executed. For example, to see how often the statement whose statement number is
100 has been executed, enter:

listfreq 100

You can specify a statement label or a statement number (an ISN or sequence
number), a list of statement labels or statement numbers (in parentheses), or a
range of statements. For example, to see how often each statement between
sequence numbers 45 and 52 has been executed, enter:

listfreq 45:52

To list the number of times every statement in the currently qualified program unit
has been executed, enter:

listfreq

This produces output similar to the following:

STATEMENT FREQUENCY
MAIN.ENTRY NO HOOK
MAIN.EXIT NO HOOK
MAIN. 14/80 6
MAIN.15 6
MAIN.16 90
MAIN.17 90
MAIN.18 12
MAIN. 19 20
MAIN.20/50 920
MAIN. 21 6
MAIN.22 5

The LISTFREQ output tells you which statements have debugging hooks. Those
that do will have an execution count in the FREQUENCY column. Those that do
not will be identified as either COLLAPSED STMT or NO HOOK. COLLAPSED
STMT indicates that, because of optimization or vectorization, there is no code at
this location. NO HOOK indicates that the statement was not in the AFFON
statement range list, or that it is an ENTRY/EXIT to the main program unit.

You can also use LISTFREQ to list statements that have never been executed. The
ZEROFREQ keyword is used to create such a list. The PRINT keyword can be
added to obtain a listing file or a print data set.

listfreq 11:74 zerofreq print

78 VS FORTRAN Version 2: Interactive Debug Guide and Reference

Interactive Debug will list to the print file all the statements between statement
numbers 11 and 74 that have never been executed.

| Program Sampling

Program sampling can help you identify the portions of your program that are using
the most CPU time, without using the resources required when using debugging
hooks. The information developed by program sampling can be displayed at your
terminal using the LISTSAMP command, or reported as printed output using the
ANNOTATE command. '

Initiating Program Sampling

You can initiate program sampling by issuing the ENDDEBUG command with the
SAMPLE option. (See “ENDDEBUG Command” on page 138.) This will cause
interactive debug to interrupt your program’s execution periodically to collect
sampling data. Data is collected for each statement of every debuggable program
unit and for each entry point in every nondebuggable program unit. The sampling
data is recorded in two counters for each of the statements and entry points, as
follows:

« DIRECT counter

If the interruption occurs in the code of a debuggable program unit, the
DIRECT counter for the interrupted statement is incremented. If the
interruption occurs while the VS FORTRAN Iibrary is active, the DIRECT
counter for the library entry point is also incremented.

« CALLED counter

If sampling is initiated with the CALLED option of ENDDEBUG, the
CALLED counter is incremented for each statement (or entry) included in the
sequence of calling program units that lead to the interrupted statement. This
is done by tracing the register save area chain back to the main program. In
addition, if an I/O operation is in process when an interruption occurs, the
CALLED counter is incremented for the statement (or entry) that requested
the operation.

All interruptions that cannot be associated with any statement or entry are
recorded in the *UNKNOWN DIRECT counter.! This count is incremented if an
interruption occurs in a program that has no entry identifier or in system code
servicing an asynchronous interrupt. The *UNKNOWN CALLED counter is
incremented when the save area chain cannot be successfully traced back to the
main program.

An additional counter, *LIBRARY DIRECT, shows the sampling count for all VS
FORTRAN library modules, other than the mathematical functions and the Error

1 In order to be properly identified, nondebuggable modules must follow standard MVS
linkage conventions.

Chapter 6. Using Some Common Interactive Debug Commands 79

Monitor. This includes lower-level calls to system services. The *LIBRARY
CALLED counter is never incremented.

Displaying Program Sampling Statistics

When your program has completed, you can report the program sampling statistics
in three ways:

1. Terminal display: Using LISTSAMP, you can show information either for
selected statement ranges or summarized by program unit. Additionally,
LISTSAMP allows you to list only those statements or program units having
the highest sampling counts, using the TOP(n) option.

2. Printout: Using ANNOTATE, you can copy the VS FORTRAN source listings
to AFFPRINT. Sampling data is added to the right of each statement and is
summarized by program unit. All program units and nondebuggable entries
that were encountered are included in the summary. Page number references
are shown for program units whose listings were annotated.

3. Bar chart: Under ISPF Version 2, you can have the source listing window
overlaid with a bar chart that displays the frequency or sampling data for each
statement in the listing. You control this feature by your choice of options for
the ANNOTATE command, specifying whether you want the bar chart to be
in terms of “frequency” (total executions) or “sample” (timer interrupts).

The bar chart adjusts to the size of the window so that 100% would cover the
full width. On a seven color terminal, the bar charts are shown by simply
changing the color (reverse video is assumed). Otherwise, asterisks (*) are
displayed.

The ANNOTATE and LISTSAMP commands provide options to let you display
the DIRECT counts, the CALLED counts, or the sum of the two (ALL) in your
terminal or printed output.

The following examples illustrate some forms of the ANNOTATE and LISTSAMP
commands.

Example 1

Copy the source listing for SUB2 to AFFPRINT, annotating it with sampling
information.

annotate sub2
Example 2

Overlay the source listing window with a bar chart showing the sum of the
DIRECT and CALLED counters.

annotate on all

80 VS FORTRAN Version 2: Interactive Debug Guide and Reference

Example 3

Display a summary of the sampling counts for all program units

listsamp * summary

PROGRAM SAMPLING INTERVAL WAS 10 MS; TOTAL NUMBER OF SAMPLES

WAS 2698,

DIRECT SAMPLES:

PROGRAM UNIT SAMPLES #TOTAL

MAIN 90 3.34 *

INIT 0 0.00

FUN1 177 6.56 *

SUB1 752 27.87 **xkkk
S#QRT 61 2.26

SH#IN 4 0.15

A#LOG 5 0.19
*LIBRARY 1609 59.64 **kxkkkxkkkx

(MAIN, INIT, FUN1, and SUB1 are VS FORTRAN program units; S#QRT, S#IN,
and A#LOG are VS FORTRAN math library entry points; *LIBRARY contains
the counts of sampling occurrences in VS FORTRAN non-math library routines.)

Example 4

Display the sampling counts for SUB1, including the CALLED counts (Sampling
counts will include interruptions which occurred in the code of a statement as well
as in any lower-level routines called by the statement.)

listsamp subil.* all

PROGRAM SAMPLING INTERVAL WAS 10 MS; TOTAL NUMBER OF SAMPLES

WAS 2698.

SUM OF DIRECT AND CALLED SAMPLES:

STATEMENT SAMPLES AUNIT £TOTAL
SUB1.ENTRY/EXIT 52 6.47 1.93
SUB1.8 7 0.87 0.26
SUB1.9 34 4.23 1.26
SUB1.10 561 69.78 20.79 *xxx
SUB1.11/10 146 18.16 5.41 *
SUB1.12 4 0.50 0.15
SUB1.13 0 0.00 0.00

Chapter 6. Using Some Common Interactive Debug Commands 81

| Limitations Using Program Sampling

There are some limitations that you should keep in mind with regard to program
sampling:

1. Use of sampling will cancel any active timer interval at the start of execution.
2. In CMS, the BLIP will be turned off during sampling.

3. Program performance will be slightly degraded due to the execution of
sampling code at each interrupt.2 Use of the CALLED option executes
additional code in order to trace back through the call chain.

4. Code generated by VS FORTRAN currently does not follow MVS standard
linkage conventions. Specifically, it loads register 13 with the address of the
new SAVE area before chaining the new SAVE area to the old SAVE area. In
rare situations, this can cause errors in the CALLED counts.

5. Interruptions that occur in math library routines called by program units
compiled with NOSDUMP will be attributed to the program unit instead of the
library routine. You can eliminate this inaccuracy by recompiling with the
SDUMP option.

6. The accuracy of the STIMER macro, used to provide periodic interruptions on
VM and MVS, is sensitive to system activity. Thus, sampling may occur less
often than the interval you specified in ENDDEBUG. If your CPU has the
virtual interval timer assist facility, and you are using CMS, you may be able to
improve the timing values. You can turn on this facility by issuing:

SYSCMD CP SET ASSIST ON TMR

7. If you use the STIMER macro in your program, sampling will be discontinued.

Displaying Timing Information

If you want to time one or more program units and then see the timing information
produced by Interactive Debug, use the TIMER and LISTTIME commands.

The TIMER command turns timing on and off, or resets the activation count and
time to zero for a specified program unit. When you want to turn timing on for a
program unit named LOOP, for example, you must issue the command:

TIMER LOOP

After your program has executed, you can issue the LISTTIME command to see
both the cumulative values and the percent of total execution time for each timed
program unit and for each entry point. (The timing information is presented by
entry point, although timing is controlled by the program unit name:) LISTTIME
shows values only for those program units for which timing has been turned on

2 On the order of one millisecond per timer interruption.

82 VS FORTRAN Version 2: Interactive Debug Guide and Reference

(using TIMER). To get a printed listing of the LISTTIME information, enter the
command:

LISTTIME PRINT
To see the information at your terminal, omit the PRINT keyword.

If you want to increase the accuracy of timing information for subroutines, you
must minimize the overhead caused by debugging hooks in your program. To do
this, use the AFFON selection file to specify hooks only on entry and exit points.
Your entry in the AFFON file might look like this for the program unit LOOP:

LOOP ENTRY

Next use the TIMER command to turn timing on for the subroutine you are
interested in. If the subroutine calls any other routines, be sure to turn timing on
for them also. If you do not, the time spent in any called routines is included in the
measurement for the calling routine.

When you ask for your LISTTIME display, you should see a fairly accurate
execution time for that subroutine.

Tracing Program Execution

Two commands provide trace information: TRACE and WHERE.

The TRACE command traces control transfers within your program as it executes.
To trace each entry to and exit from any subprogram as it occurs, enter:

trace entry

This produces output similar to the following:

TRACE: FROM MAIN.14 TO SUB1.ENTRY

To trace the origin and destination of every apparent branch within the program
(including entry to and exit from subprograms) listed by statement identifier, enter:

trace goto

This produces output similar to the following:

TRACE: FROM SUB1.150/20 TO SUB1.210/40

If you don’t need to examine your TRACE output right away, you can add PRINT
to the TRACE command and send the output to the print data set.

trace goto print

To stop tracing, enter:

trace off

The WHERE command shows you the number of the statement at which execution
is suspended. This statement will normally be the one executed next. For example,

Chapter 6. Using Some Common Interactive Debug Commands 83

if MAIN calls subroutine TAD at sequence number 150, but a breakpoint is set at
sequence number 20 in TAD, a WHERE command produces:

WHERE: TAD.20

WHERE has a TRBACK keyword that gives you a trace of the calls that got you to
your current location. For example, if your program MAIN calls subroutine TAD
and execution is suspended, entering:

where trback

might produce the following:

WHERE: TAD.20
TAD CALLED AT MAIN.150

TRBACK output is limited to the transfers between debuggable program units.

WHERE also has a FLOW keyword that gives you a trace of the last ten program
transfers executed. For example, if you specify the FLOW keyword:

where flow

you will receive output similar to that in Figure 24.

WHERE: MAIN.92 (WHERE response)

TO: MAIN.80 FROM: MAIN.85 (FLOW response, prev. branch)
TO: MAIN.65 FROM: MAIN.70 (Next most recent branch)
TO: MAIN.51 FROM: MAIN.S53

TO: MAIN.49 FROM: MAIN.53 (Loop in MAIN)

TO: MAIN.49 FROM: MAIN.53

TO: MAIN.47 FROM: MAIN.40

TO: MAIN.38 FROM: MAIN.20

TO: MAIN.15 FROM: MAIN.10

TO: MAIN.3 FROM: MAIN.10 (Loop in MAIN)

TO: MAIN.3 FROM: MAIN.10

Figure 24. Example of WHERE FLOW Output

Note that Interactive Debug can only keep track of statements that have debugging
hooks. If there is a block of code that has no hooks, it appears to Interactive
Debug as if there was a branch from the statement before the block to the
statement after it.

The PRINT keyword can be used to send WHERE information to the print data
set. For example, you can record the contents of a 100-element array, “ar,” at
several points in your program by issuing the following sequence of commands
each time you want “ar” recorded:

where print
list ar(1):ar(100) print

This produces a record on your print data set both of the array “ar”” and of the
exact program location where “ar’” had that particular content.

84 VS FORTRAN Version 2: Interactive Debug Guide and Reference

-~ Displaying Formatted Variable and Array Values

To display values, use the LIST command. To display the value of variable A,
enter:

list a

To display the values of variables A, B, C, D, enter:

list (a,b,c,d)

Similarly, to display array elements ARY(1,1) through ARY(3,4), enter:

list ary(1,1):ary(3,4)

Output from the LIST command can be very long and you may not want it
displayed at the terminal. The LIST command has a PRINT keyword that sends its
output to a print data set.

list a(1):a(100) print

The value of each variable in a LIST command is normally displayed in its correct
VS FORTRAN data type and precision: integer, real, complex, and so on. If you
want to display the values in a different format, you can use the FORMAT or
DUMP keyword. To display the hexadecimal values of some variables, enter:

list (a,i,n,x) format(x)

! \ To display the values as if they were character strings, enter:

list (a,i,n,r) format(a)

The DUMP keyword is similar to the FORMAT keyword, but shows the
hexadecimal storage location instead of the name. For example, to display the
storage location and the hexadecimal value of variable A, enter:

list (a) dump(x)

The FORMAT and DUMP keywords and codes are described in the reference
section in Figure 26 on page 127.

| Note: For the LIST command and other commands that allow array element

| references, the subscripts must use simple arithmetic expressions no more complex
| than the form “variable plus (or minus) a constant.” For example,

| A(I), A(3), ARY(I+3) or ARY (I-3)

| are valid.

Chapter 6. Using Some Common Interactive Debug Commands 85

Handling Execution-Time Errors

Identifying Errors

VS FORTRAN Version 2 Interactive Debug allows you to control the action taken
when execution errors are encountered. The ERROR command allows you to
specify whether to take corrective action or to suspend execution when an error
occurs. If you choose the latter, corrective action can be specified by the FIXUP
command. It also allows you to suppress the VS FORTRAN library execution-time
error messages for specific errors.

Initially, whenever an execution-time error occurs, execution is suspended and VS
FORTRAN library execution-time error messages are displayed. The ERROR
command allows you to change these initial error settings. There are two pairs of
keywords for the ERROR command:

MSG/NOMSG — specifies whether or not the VS FORTRAN library
execution-time messages are to be displayed.

EXIT/NOEXIT — specifies whether execution is to be suspended or
corrective action is to be performed. If you specify that corrective action is to
be taken (NOEXIT), standard corrective action will normally be taken.
However, if you have specified your own corrective action by calling ERRSET
in your program, whatever action you specified will be taken.

Note: Calling ERRSET in your program will cause the NOEXIT and MSG
settings to be in effect for the specified errors. You can issue the ERROR
command afterward to change this if you want.

The MSG and EXIT keywords are the defaults.

The ERROR command uses the identification numbers from the VS FORTRAN
library to identify execution-time errors. (You can find these error numbers in VS
FORTRAN Version 2: Language and Library Reference.)

The following examples illustrate the use of the ERROR command.

error 215 noexit msg

causes corrective action to be taken and a full diagnostic message to be displayed
for error AFB2151.

error 215 noexit

has the same effect as the previous command, because MSG is the default.

error 215 noexit nomsg

causes corrective action to be taken and will suppresses the diagnostic message.

86 VS FORTRAN Version 2: Interactive Debug Guide and Reference

After entering this command you will not be notified if error AFB215I occurs
again. You can change the error settings back to their original settings by entering
any one of the following commands:

error 215

error 215 exit
error 215 msg
error 215 msg exit

All these commands have the same effect because of keyword defaults.

You may also specify a list of errors or a range of errors. For example:

error (215 243 247 289) noexit

will cause corrective action to be taken, and full diagnostic messages to be
displayed for errors AFB215I, AFB2431, AFB2471, and AFB289I.

error (215:218 290) nomsg

will cause execution to be suspended and suppress diagnostic messages for errors
AFB2151, AFB216I, AFB2171, AFB218I, and AFB290I.

Note: When executing under VS FORTRAN Version 2 Interactive Debug (except
in batch mode), the VS FORTRAN library does not update the execution-time
error occurrence counts; therefore, settings in the VS FORTRAN Version 2 error
option table that depend on these counts have no effect. This permits unlimited
occurrences of errors and messages regardless of the settings in the error option
table.

In batch mode, the error counts are updated and tested just as if running without
Interactive Debug.

Performing Corrective Action

When execution is suspended because of an error, Interactive Debug displays a
message like this:

ERROR EXIT: ERROR 243 AT MAIN.6/15

and waits for you to enter a command. You may not enter a GO command with a
statement identifier. Entering the FIXUP command with no arguments, or a GO
command with no statement identification, will cause standard corrective action to
be taken and execution to resume. If the error is caused by an incorrect value
passed to a VS FORTRAN library mathematical routine, you may use the FIXUP
command to specify corrected values to be used to recalculate the function.

Chapter 6. Using Some Common Interactive Debug Commands 87

With FIXUP, you can assign values to the first, second, or both arguments of a
function. The following examples illustrate some of the uses of the FIXUP
command:

ERRMSG=> AFB241I FIXPI : INTEGER BASE=0, INTEGER EXPONENT=0, LESS THAN
ERRMSG=> OR EQUAL TO ZERO

ERRMSG=> FIXPI : LAST EXECUTED FORTRAN STATEMENT IN PROGRAM
ERRMSG=> MAIN AT ISN 44 (OFFSET 000954).

INFMSG=> USER ERROR CORRECTIVE ROUTINE ENTERED.

ERROR EXIT: ERROR 241 AT MAIN.44

IAD/E

fixup argl1(2) arg2(2)

INFMSG=> USER CORRECTIVE ACTION TAKEN. EXECUTION CONTINUING.

The function has been reevaluated using both arguments, and execution continues.

ERRMSG=> AFB2421 FRXPI : REAL*4 BASE=0.0, INTEGER EXPONENT = 0, LESS
ERRMSG=> THAN OR EQUAL TO ZERO

ERRMSG=> FRXPI : LAST EXECUTED FORTRAN STATEMENT IN PROGRAM
ERRMSG=> MAIN AT ISN 51 (OFFSET 00099E).

INFMSG=> USER ERROR CORRECTIVE ROUTINE ENTERED.

ERROR EXIT: ERROR 242 AT MAIN.51

IAD/E

fixup arg1(2.0)

INFMSG=> USER CORRECTIVE ACTION TAKEN. EXECUTION CONTINUING.

A new value is given for the first argument (base) only; the second argument
(exponent) remains unchanged.

ERRMSG=> AFB2441 FRXPR : REAL*4 BASE=0.0, REAL*4 EXPONENT= 0.0000000E
ERRMSG=> +00,LESS THAN OR EQUAL TO ZERO

ERRMSG=> FRXPR : LAST EXECUTED FORTRAN STATEMENT IN PROGRAM MAIN
ERRMSG=> AT ISN 61 (OFFSET OOOAOE).

INFMSG=> USER ERROR CORRECTIVE ROUTINE ENTERED.

ERROR EXIT: ERROR 244 AT MAIN.61

IAD/E

fixup arg2(1.0e)

INFMSG=> USER CORRECTIVE ACTION TAKEN. EXECUTION CONTINUING.

The function has been reevaluated by changing the second argument; the first
argument is unchanged.

88 VS FORTRAN Version 2: Interactive Debug Guide and Reference

ERRMSG=> AFB243I FDXPI : REAL*8 BASE=0.0, INTEGER EXPONENT = 0, LESS
ERRMSG=> THAN OR EQUAL TO ZERO

ERRMSG=> FDXPI : LAST EXECUTED FORTRAN STATEMENT IN PROGRAM
ERRMSG=> MAIN AT ISN 56 (OFFSET 0009D6).

INFMSG=> USER ERROR CORRECTIVE ROUTINE ENTERED.

ERROR EXIT: ERROR 243 AT MAIN.56

IAD/E

£

INFMSG=> STANDARD CORRECTIVE ACTION TAKEN. EXECUTION CONTINUING.

The abbreviation F for FIXUP is used with no arguments. Standard corrective
action is taken. The same action would have been taken if GO had been entered
instead.

To determine what standard corrective action is applied for a particular error or for
more information about mathematical functions and their arguments, see VS
FORTRAN Version 2: Language and Library Reference.

Processing External Files

VS FORTRAN Version 2 Interactive Debug allows you to manipulate external files
used by a VS FORTRAN program through a set of commands that are similar to
corresponding VS FORTRAN statements.

The BACKSPACE command positions a sequentially accessed external file at the
beginning of the previous record. For example:

backspace 8

positions the file connected to I/0 unit 8 at the beginning of the last record written
or read, allowing it to be written or read again.

The REWIND command positions a sequentially accessed external file at the
beginning of the first record of the file. For example:

rewind 4

positions the file connected to I/O unit 4 at the beginning. This permits you to
perform I/O operations as though the file had just been opened. VS FORTRAN
supports multiple files under the same 1/0 unit. The REWIND command sets the
VS FORTRAN file name to the first in the sequence of files for the specified 1/0
unit. For example, if you were currently processing file FTO8F003 on I/O unit 8
and entered:

rewind 8

I/0 unit 8 would be connected to file FTO8F001, which would be positioned at the
beginning of the first record.

The ENDFILE command writes an end-of-file record on a sequentially accessed
external file. This causes subsequent I/O operations to be performed on the next

Chapter 6. Using Some Common Interactive Debug Commands 89

file for the specified 1/O unit. For example, if you are currently processing file
FTO05F001 on I/O unit 5, entering:

endfile 5

causes subsequent I/O operations to be performed, using file FTO5F002. If
REWIND were issued for I/O unit 5, the filename would be set back to
FTO5F(001.

The CLOSE command disconnects an external file from an I/O unit. For example:

close 1

disconnects the VS FORTRAN file connected to I/O unit 1, allowing you to
associate a different CMS file or TSO data set with that I/O unit, if desired, or to
examine the file contents using an editor or browser.

The RECONNECT command resets a file to its original (preconnected) condition.
For example, if unit 8 has been closed, you can make it possible for the program to
perform additional I/O on unit 8 (without executing an OPEN) by issuing

reconnect 8

to reconnect unit 8 to file FTO8F001. This is necessary only if the OCSTATUS
run-time option is in effect.

If you neglected to allocate a file that is needed by your program, you will receive
an error message when the program attempts to access that file. If the program is
debuggable and ERROR EXIT is in effect, you can recover from this condition by
issuing the following sequence:

NEXT

GO

SYSCMD ALLOCATE...(or FILEDEF...)
GO n

where n is the statement identifier for the I/O statement. The ALLOCATE or
FILEDEF command must be completed as appropriate for allocating the required

file. This procedure will work whether or not the OCSTATUS run-time option is
in effect.

Using System Commands

Using SYSCMD, you can issue a system command while debugging. For example,
if you wanted to begin processing a different CMS file or TSO data set using I/0O
unit 8, you could enter the following:

CMS Example

close 8
syscmd filedef 8 disk example data a

TSO Example

close 8
syscmd allocate file (ft08f001) da(example.data) reuse

90 VS FORTRAN Version 2: Interactive Debug Guide and Reference

SYSCMD has many uses; the ability to view your VS FORTRAN source or listing
files is particularly useful in the line mode environment. For example:

CMS Example

syscmd xedit example fortran a
syscmd type example listing a

ISO Example

syscmd edit example.fort
syscmd list example.list

Another possible use is to show which CMS files are currently defined or which
TSO data sets are currently allocated. For example:

CMS Example

syscmd filedef

IS O Example

syscmd listalc status

Entering Terminal Input

When a VS FORTRAN program attempts to perform any I/0 to or from the
terminal, either the VS FORTRAN Version 2 Interactive Debug 1/0 routines or
the VS FORTRAN library 1/0 routines can be used. The TERMIO setting
determines which set of routines is used. Using the Interactive Debug routines
gives you the advantage of being told which unit is being read, and you have the
ability to issue Interactive Debug commands while the read is pending. In addition,
when operating in full screen mode, the Interactive Debug routines remain in full
screen mode for the read or write.

When executing under Interactive Debug, the initial TERMIO setting is IAD,
specifying that the Interactive Debug routines should be used for terminal 1/0.
The TERMIO command allows you to change the setting to either IAD or
LIBRARY or to display the current TERMIO setting. When the option selected is
LIBRARY, all terminal I/O is performed in line mode in the same manner as when
Interactive Debug is not active.

When executing in batch mode on MVS, no actual terminal is available. However,
the DEBUNIT execution option may be used to specify that certain I/O units are
to be treated as if they were allocated to the terminal. These units then come
under the control of TERMIO. For details about using DEBUNIT, see VS
FORTRAN Version 2: Programming Guide.

When the TERMIO setting is IAD and your program attempts to read from the
terminal, the following message is displayed:

FTOSF001 INPUT: PRECEDE INPUT WITH % OR ENTER IAD COMMAND

where FTO5F001 indicates the VS FORTRAN file being read. When this message
is displayed, you may either:

Chapter 6. Using Some Common Interactive Debug Commands 91

« Issue a debugging command (other than STEP, GO, or ENDDEBUG).
» Enter the requested input, prefaced with a percent sign (%).

The percent sign is not passed to the VS FORTRAN program. For example:

FTOSF001 INPUT: PRECEDE INPUT WITH % OR ENTER IAD COMMAND
R743

inputs the number 743 to your program. Alternatively, you could have first
determined which statement in your program was issuing the read, as follows:

FTO5F001 INPUT: PRECEDE INPUT WITH % OR ENTER IAD COMMAND
where

WHERE: MAIN.10

FTO5F001 INPUT: PRECEDE INPUT WITH % OR ENTER IAD COMMAND
%743

When the TERMIO setting is IAD:

« The leading and trailing percent signs are removed before the input is sent to
the VS FORTRAN program (the trailing percent sign is not required).
Whenever you want to include a percent sign as part of your input, you must
include a trailing percent sign. For example, to input the string 55% to a VS
FORTRAN program, enter:

%55%%

To enter two percent signs (% %), enter: -
RER%

e To signify an end-of-file from the terminal, use two percent signs. For
example:

%%

¢ All terminal input is padded on the right with blanks to the LRECL of the
terminal file.

» All terminal input is converted to uppercase. To avoid this in environments
that support mixed-case input, use the TERMIO LIBRARY setting.

+ Both VS FORTRAN Version 2 Interactive Debug commands and terminal
input can be continued on succeeding lines by ending each continued line with
a hyphen (-). For example:

FTOS5F001 INPUT: PRECEDE INPUT WITH ¥ OR ENTER IAD COMMAND
% hello, this input line is -
broken across two lines.

o Under ISPF, leading blanks are stripped from the beginning of all continuation
lines. To avoid this, precede the continuation line with a single quotation mark
(""). The quotation mark will not be passed to the program. For example:

FTO5F001 INPUT: PRECEDE INPUT WITH % OR ENTER IAD COMMAND

% hello, this input line is - /"\
" broken across two lines.

92 VS FORTRAN Version 2: Interactive Debug Guide and Reference

+ In CMS line mode, the maximum length of an input line is 131 characters.
Any input longer than this is truncated.

o In TSO line mode, the maximum length of an input line is 251 characters. Any
input longer than this is truncated.

o In ISPF, the maximum length of an input line is 251 characters. When this
limit is exceeded, a message is displayed and the input is ignored.

+ All output written from your program to the terminal is shown in the log,
preceded by the name of the VS FORTRAN file it was written to, and is
broken into lines that are 60 characters long.

Continuing Execution without Further Debugging

When you complete debugging and want to finish execution of the program, use
the ENDDEBUG command. This command discontinues communication between
the program and VS FORTRAN Version 2 Interactive Debug until the program
terminates. Only use ENDDEBUG when you are certain that further debugging is
not required.

Using ENDDEBUG causes the program to execute as if the DEBUG
execution-time option had never been specified, except that attention interrupts are
possible, and Interactive Debug will be reentered at termination.

After ENDDEBUG has been issued, all terminal I/0O is handled by the VS
FORTRAN library I/0 routines (as if TERMIO LIBRARY had been issued).

In addition, the VS FORTRAN library begins updating the occurrence count for
execution-time errors. All error handling is determined by settings in the VS
FORTRAN Version 2 error option table. The error summary displayed when the
program terminates reflects only errors occurring after ENDDEBUG was issued.
WHERE information is not available. '

When the program terminates after issuing an ENDDEBUG command, you may
issue Interactive Debug commands. However, commands such as LISTFREQ and
LISTTIME will display only the information that was current when ENDDEBUG
was issued.

Attention can still be used to interrupt the program after ENDDEBUG is issued;
however, no program information is available at that time. To resume execution

| after an attention interrupt, enter a null line. The only command allowed while in
an attention exit after ENDDEBUG has been issued is QUIT, which terminates the

| program execution. You can then list the values of variables or issue other

| commands that do not require program execution.

Chapter 6. Using Some Common Interactive Debug Commands 93

Chapter 7. Special Considerations When Using Interactive Debug

This section describes various situations you may encounter while using Interactive
Debug, and gives you more detail than the previous chapters. It presents methods
of completing various tasks or handling common problems. The topics discussed
here are:

« Issuing commands after program termination

« Handling loops in nondebuggable program units

« Specifying the default execution-time options

« Monitoring floating-point equalities

o Referring to unused FORTRAN variables

« Entering commands in an attention-interrupt exit

« Debugging optimized and vectorized code

« Improving performance when using Interactive Debug

o Recognizing some common errors when setting up a debugging session

For conventions when using any Interactive Debug command with statement labels
or statement numbers, see “Statement Identifier Conventions” on page 114.

Chapter 7. Special Considerations When Using Interactive Debug 95

Issuing Commands after Termination of a VS FORTRAN Program

You can issue the following Interactive Debug commands after your program
finishes execution:

ANNOTATE LISTFREQ QUIT
AUTOLIST LISTINGS REFRESH
BACKSPACE LISTSAMP RESTART
CLOSE LISTSUBS REWIND
COLOR LISTTIME SEARCH
comment MOVECURS SET
DESCRIBE POSITION SYSCMD
ENDFILE PREVDISP TERMIO
HELP PROFILE WHERE
LIST PURGE WINDOW
LISTBRKS QUALIFY

The following commands cannot be entered after program termination:

AT HALT RECONNECT
ENDDEBUG IF STEP

ERROR NEXT TIMER
FIXUP OFF TRACE

GO OFFWN WHEN

Handling Loops in Nondebuggable Program Units

Many programs may contain units that cannot be debugged. These may be
subroutines coded in some language other than VS FORTRAN Version 1 or VS
FORTRAN Version 2, a VS FORTRAN module that is not debuggable, and so
forth. It is possible for execution to get caught in a loop in such a nondebuggable
program unit. When this happens, the only way to suspend the program is by
issuing an attention interrupt, and the only accepted command that will affect
program execution is QUIT. When QUIT is entered following an attention
interrupt, VS FORTRAN Version 2 Interactive Debug terminates the program and
allows you to list the values of variables or issue other Interactive Debug
commands that do not require further execution. When QUIT is issued again, the
debugging session is terminated.

Specifying Default Execution-Time Options

You may occasionally need to use a program compiled with a compiler other than
VS FORTRAN (COBOL, for example), which then invokes a VS FORTRAN
program. However, when you have no FORTRAN main program to accept a
parameter, there is no way to explicitly specify DEBUG or any other
execution-time option. One way to solve this problem is to override the normal VS
FORTRAN default options by including a local parameter specification module
(AFBVLPRM) when you link-edit your module, or by using a customized library
containing a global parameter specification module (AFBVGPRM). You can

96 VS FORTRAN Version 2: Interactive Debug Guide and Reference

create either a local or a global parameter specification program by assembling a
small program that invokes a macro supplied with the VS FORTRAN Version 2
library. For details, see V'S FORTRAN Version 2: Programming Guide.

Monitoring Floating-Point Equalities

Requesting Interactive Debug to monitor equal conditions for floating-point
numbers requires caution. Equality comparisons are performed on a bit-by-bit
basis. Numbers may appear to be equal in a program designed to be insensitive to
minor differences, but may differ by a single bit and not be considered equal when
compared by Interactive Debug. Because only simple relations are supported, there
is no way to monitor equality to a given precision. See “WHEN Command” on
page 213 for more information.

Referring to Unused VS FORTRAN Variables

If you define a variable in your VS FORTRAN program without assigning an initial
value, and never refer to it in your program, no storage is allocated for the variable
and it does not appear in the symbol table used by Interactive Debug. If you try to
refer to the variable in your debug session, you will get an error message stating
that the variable does not exist.

Therefore, if there are VS FORTRAN variables that you may want to reference in
Interactive Debug but which are not referenced in the VS FORTRAN program,
you should assign initial values to them.

Entering Commands in an Attention-Interrupt Exit

You can interrupt processing in full screen or line mode by issuing an attention
interrupt signal. You can use this signal to gain control if your program appears to
be looping, or if an Interactive Debug command is producing excessive output.

The way you issue an attention interrupt signal varies with the operating system
and with the type of terminal. A line mode terminal typically has a BREAK key, or
one marked ATTN. On a 3270-type terminal, you can use the PA1 key. Under
VM, pressing ENTER may signal attention.

When you enter an attention interrupt, Interactive Debug issues the attention
prompt (1AD/A), and temporarily suspends your program. Your program is now in
an attention exit. You can either:

« Enter a null line, which will cause execution to continue. (You will leave the
attention exit.)

« Enter an Interactive Debug command.
. Enter QUIT, which will terminate your program. (However, you will still have

a chance to issue any Interactive Debug command that is valid after program
termination.)

Chapter 7. Special Considerations When Using Interactive Debug 97

If you issue any of the following commands while in an attention exit, the

command will be executed and you will remain in the attention exit: N
PURGE To terminate excessive output, such as from a LIST

command.
WHERE To identify the last statement that was begun in a

debuggable program unit (parameters are not honored). !

NEXT To request a pause at the next executable statement in a
debuggable program unit. However, if your program is
looping in a nondebuggable program unit, you may never
get back to a debuggable unit.

*or " (comment) To enter a comment. (However, the comment will not be i
logged.)

If you issue a QUIT command while the program is executing, the program will be
terminated and Interactive Debug will accept debugging commands that are not ’
related to execution. !

If you issue any other non-fullscreen Interactive Debug command while the
program is executing, the command will be saved, the attention routine will be
exited, and execution will continue. The saved command is deferred until an
executable statement in a debuggable program unit is reached (which may not
happen). Note that if the program is looping in a nondebuggable routine, the saved %
command will never be executed. Under ISPF Version 2, the full screen commands o
cannot be issued from an attention exit. '

Debugging Optimized and Vectorized Code

VS FORTRAN Version 2 Interactive Debug allows you to debug VS FORTRAN
programs compiled at any optimization level available in the VS FORTRAN
compilers (0, 1, 2, or 3), or at any vectorization level (0, 1, or 2). Vectorization
levels 1 and 2 require optimization level 3, so debugging vectorized code always
involves debugging optimized code.

Debugging is least complicated for programs compiled at optimization level 0 with
no vectorization. Optimization level 0 provides object code that most closely
follows the source code, so a bug found in the executing object code can be most
easily and directly traced to its corresponding source statement.

Debugging optimized or vectorized programs may be necessary, but it requires
careful, informed interpretation of the results. You must recognize certain actions
taken by the compiler for optimization level 1, 2, or 3, and vectorization level 1 or
2. These actions are:

Register optimization
Retaining values in registers instead of in storage.

Common expression elimination /‘l\

Eliminating duplicated instructions by retaining subexpression values
for later use.

98 VS FORTRAN Version 2: Interactive Debug Guide and Reference

Strength reduction

Replacing an operation by a faster one to improve execution of
DO-loops.

Code motion
Altering the placement of calculations, usually by moving instructions
from inside a loop to outside

Vectorization
Executing certain computations in DO-loops with vector instructions
rather than scalar instructions.

Because of these actions, debugging optimized or vectorized programs can
sometimes be difficult and confusing. Interactive Debug will not be able to counter
all the effects of optimization or vectorization, but will issue a warning message to
inform you that optimized or vectorized code is being debugged. These messages
are issued at your first attempt to reference a variable in an optimized or vectorized
program unit. Rather than appearing every time an affected command is used, such
messages appear only once for each program unit.

If you must debug optimized or vectorized code, you can determine how
optimization or vectorization has affected your program by looking at the listing
and vector report.

Optimization Levels and Functions

Optimization Level 0

When debugging optimized code, you should expect to get different results from
Interactive Debug commands than with nonoptimized code. These unexpected
results are actually a result of the optimization process.

Statements that have been eliminated or moved as a result of optimization or
vectorization occupy no storage and consequently cannot have debugging hooks. If
you try to set a breakpoint at such a statement, a message will indicate that it is
“collapsed,” which means no machine code has been generated for the statement.
Setting or listing variables that are carried in registers across statement boundaries
produces unpredictable results because Interactive Debug references the storage
locations for such variables, and the register versions (which are the “real” values)
will not be displayed or set.

Examples of how these possibly misleading results occur and can be recognized are
given in this section.

Optimization level 0 is the recommended level of optimization when a program is
to be debugged, or is being compiled to check syntax. It provides the fastest
compile time, although it has the least efficient execution time.

The compiler may perform some minor optimizations, even at optimization level 0.
However, this is suppressed if the SDUMP option is in effect. Because SDUMP is
required for debugging, you can be sure there was no optimization if you are
debugging a program unit compiled with optimization level 0.

Chapter 7. Special Considerations When Using Interactive Debug 99

Optimization Level 1

Even at optimization level 0, variables that are declared but never used in a
program have no storage allocated to hold their values. If Interactive Debug claims
that a certain variable does not exist, check to see that the variable is actually used
in the program.

This option performs register and branch optimization. Variables are retained in
registers where possible and time is saved by eliminating unnecessary loads and
stores. Branching is improved by the use of RX format branch instructions. This
provides a moderate level of optimization for programs that do not have nested
loops. Loop structure is not considered.

At OPT(1), all the statements in a block are considered when attempting to use a
value already in a register. (Think of a block as a section of code that must always
be executed sequentially.) For purposes of debugging, it can be assumed that
OPT(1) attempts to use variables and constants placed in registers earlier in the
block.

For example:

29 NUM =1

30 10 SUM = SUM + NEXT(NUM)
31 NUM = NUM + 1

32 AVG = SUM / NUM

33 TABLE (NUM) = NEXT(NUM)
34 IF (NUM.LT.100) GOTO 10
36 NUM = NUM * 2

Because the flow of control is sequential in the block of statements from ISN 30 to
ISN 34, the optimizer attempts to retain variables in registers over the entire span
of the block. For example, SUM may be placed in a hardware register at ISN 30
and that register may be used again at ISN 32.

The register used for NUM at ISN 29 might not be used for NUM at ISN 30
because ISN 30 has a label. The label indicates that ISN 30 is a possible target for
a branch. Therefore, the value of NUM must be obtained from storage in ISN 30.

Interactive Debug accesses the storage location associated with a variable whenever
processing a command that refers to the variable. When code is optimized, the
actual value of a variable may be kept in a register; therefore, altering or displaying
variables can result in misleading results. Before altering a variable at a breakpoint,
examine the statements preceding and following the statement at which the
breakpoint was set. Look for a block that has a sequential execution path. In the
example above, you should not alter NUM while stopped at a breakpoint at ISN
32, and then expect the computation at ISN 32 to use the new value.

A label begins a new block. A branch, which may be explicit as in the IF
statement, or implicit as in the DO statement, terminates a block. Altering NUM
while at ISN 30 should produce normal results.

At OPT(1), the results of an assignment statement are always stored. Be careful
about subsequent statements that use the variable again if the variable has been
altered at an intervening breakpoint.

100 VS FORTRAN Version 2: Interactive Debug Guide and Reference

~

Optimization Levels 2 and 3

Optimization levels 2 and 3 are both designed to produce as much optimization as
possible. The algorithms used are sophisticated and effective, but the general
principles are relatively easy to understand.

With levels 2 and 3, control and data flow analysis is done for the entire program.
This analysis allows optimizations such as common expression elimination, strength
reduction, code motion, and global register assignment. Particular attention is paid
to innermost loops.

VS FORTRAN Version 2 performs a very detailed control flow analysis and data
flow analysis at OPT(2) and OPT(3). A control flow graph of the program is
constructed. A data flow analysis is performed based on the flow graph used in
conjunction with the “set and fetch” information for the program’s data.

Optimization Level 2: This option performs full text and register assignment. It is
identical to OPTIMIZE(3) except that certain optimizations are suppressed in
order to provide interruption localizing. The basic rule in interruption localizing is:
Do not move any code out of a loop if it might cause an interruption that would not
occur without optimization. (Note that common expression elimination may result
in apparent code motion within a loop, but if evaluation of the expression could
cause an interruption, it will not be moved outside the loop.)

An example of such an interruption would be a possible division by 0 within a loop.
If the division were to be moved out of the loop by the optimizer, it could be
moved to a position where it is no longer under the control of an IF statement that
checks for the 0 condition.

For example, in the loop

DO 2 J=1,N
IF (K.NE.O)M(J)=N/K
2 CONTINUE

the code to evaluate the expression N/K could be moved outside the loop, because
it is invariant for each iteration of the loop. However, at OPT(2), it will not be
moved.

Invariant computations involving floating point arithmetic or integer division
(including the MOD function), or intrinsic function calls with invariant arguments,
will not be moved out of a loop.

Optimization Level 3: This is the highest level of optimization. Invariant
computations are moved outside loops wherever possible. This may result in
unanticipated interruptions, but incorrect answers will not be generated from a
legal program. The only difference from OPT(2) is that an extra error signal is
possible.

Chapter 7. Special Considerations When Using Interactive Debug 101

If the preceding example were compiled at OPT(3), the invariant computation N/K
would be moved outside the loop as follows:

itemp=N/K
DO 2 J=1,N
IF(K.NE.O)M(J)=1itemp
2 CONTINUE

where itemp is a compiler-generated temporary.
If K is zero, an unanticipated interruption (for integer division by zero) will occur

in calculating itemp. However, the values stored in the elements of the M array
will be the same as if the computation had not been moved outside the loop.

Vectorization Levels and Functions

Vectorization Level 1

When debugging vectorized code, you should expect that you may get different
results from Interactive Debug commands than when debugging nonvectorized
code. These results are caused by the vectorization process. Examples of how
these different results occur and can be recognized are given in this section.

If you must debug fully vectorized programs, keep these points in mind:

* You may not be able to suspend the program inside a vectorized loop because
there may not be any hooks there. This means that you cannot set breakpoints
or examine variables inside a vectorized loop.

o There may be multiple instances of the same ISN if vectorization has split a
loop. In this case, breakpoints can be set only at the first instance.

» Keep in mind that optimization is still in effect even if you set breakpoints
outside the vectorized loop.

This option requests vectorization on a loop-by-loop basis. VS FORTRAN
Version 2 must be able to vectorize every statement in the selected loop with no
reordering; otherwise none of the statements in the loop will be vectorized.
Optimization level 3 must be in effect. If the level is not explicitly specified, it will
be forced to level 3 by the compiler.

When you specify vectorization level 1, the VS FORTRAN Version 2 compiler
attempts to convert complete DO-loops into vector object code. Nests of
DO-loops are analyzed, and loops are marked as vectorizable or not. If any
statement within the loop is not vectorizable, the loop is not selected for
vectorization.

For example, the following nest of loops is vectorizable because all statements
within it can be vectorized.

DO 1 K=1, N
DO 1 J=1, N
DO 1 I=1, N
A(I,J,K)=B(I,J,K)+P(J,K)*Q(J,K)
1 E(K,J,I)=F(K,J,I)+X(I,J)*Y(I,J)

102 VS FORTRAN Version 2: Interactive Debug Guide and Reference

Vectorization Level 2

Vectorization level 1 does not itself cause code motion. However, optimization
level 3, which is required, might.

This option requests vectorization on a statement-by-statement basis. As much of
a loop as possible will be translated into vector object code, and the remainder will
be translated into scalar object code. Optimization level 3 must be in effect. If it is
not explicitly specified, it will be forced to level 3 by the compiler.

When you specify vectorization level 2, the VS FORTRAN Version 2 compiler
attempts to convert as many statements as possible into vector object code. Nests
of DO-loops are analyzed, and certain groups of statements in nests are marked as
vectorizable or not. The compiler selects for vectorization only those statements it
knows will run faster when compiled into vector instructions.

For example, the following DO-loop is not vectorizable under vectorization level 1
because one of the statements (A (I)=A(I+1)+A(I-1)) within the loop is not
vectorizable:

DO 300 1=1,100
A(I)=A(I+1)+A(I-1)
C(I)=D(I)

300 CONTINUE

However, this program can be vectorized at level 2, by statement, by creating a
separate scalar loop for the unvectorizable statement. After vectorization, the loop
will look like this in your vector report listing:

ISN FLAG NESTING *....%...1ceuen.... 2. 3. 4...
0005 SCAL +-—-mm—- DO 300 I=1,100

0006 | A(I) = A(I+1) + A(I-1)

0005 VECT +==-m=mn DO 300 I=1,100

0007 | C(1)=D(I)

0009 STOP

0010 END

Using vectorization level 2, it is possible for duplicate ISN’s to be assigned by the
compiler. If this occurs, you can only assign a breakpoint to the first occurrence.
The LISTFREQ command allows you to list all statements, including any
duplicates.

Some Practical Examples: Optimization

Now that we have discussed optimization and vectorization levels, we can look at a
few simple examples. Remember that vectorized programs are always optimized at
OPT(3), so problems in debugging associated with optimization occur in
vectorization as well. Examples that apply only to vectorization are explained in
“Some Practical Examples: Vectorization” on page 105.

Chapter 7. Special Considerations When Using Interactive Debug 103

Constant Propagation: Constant propagation is a calculation done at compile time.
The precalculated results are used at execution time. For example:

II
JJ

10
II is replaced by JJ = 10

Results may be unexpected when you change the value of II at a breakpoint and
later look at the value of JJ.

Common Expression Elimination: Common expressions are those in which the result
of a calculation is available because of a previous calculation. In the example
below, the calculation J + K is performed twice:

20 I =J+K
21 II = 10
22 JJ =J + K can be replaced by JJ =1

Note the opportunity for unexpected results when you change the value of J or K
while at ISN 21. Because the recalculation of the common expression J+K has
been eliminated, JJ will be equal to I, not the new sum of J + K. If thereis a
breakpoint set at ISN 21 and the value of K is altered, it will have no effect on the
value assigned to JJ.

Backward Movement: 1f the variables involved in an expression are not changed in
a loop, it may be possible to move an expression outside of the loop. In the
example below, A = B could be moved out of the loop:

20 X =Y

21 DO 10 I =1,10

22 ARR(I) = ARR (I) + I
23 A =B

24 10 CONTINUE

25 WRITE(6,*) X,A

The program then becomes:

20 X=X
21 A =B
DO 10 I = 1,10
22 ARR(I) = ARR (I) + I
23
24 10 CONTINUE
25 WRITE(6,*) X,A

The optimizer recognizes that both A and B are loop invariant, and the
computation can therefore be moved outside the loop. Note that ISN 23 is still
there, but is empty, or “collapsed.” An attempt to set a breakpoint at ISN 23 would
result in an Interactive Debug error message.

Strength Reduction: Strength reduction replaces one operation by a faster one to
improve execution of DO loops.

Let’s assume that elements of an array such as ARR, in the example below, are 4

bytes long.
21 DO 10 I = 1,10
22 ARR(I) = ARR(I) + B

23 10 CONTINUE

104 VS FORTRAN Version 2: Interactive Debug Guide and Reference

Since each element is 4 bytes long, the subscript I must be internally multiplied by
4 to obtain the proper offset from the start of the array. The addresses of elements
in this array actually increase in steps of 4, rather than in the steps of 1 implied by
the DO loop. Thus, the offset takes on values of 4, 8, 12, and so on, as the
subscript I takes on values of 1, 2, 3, and so on.

Strength reduction replaces one operation (in this case, the internal multiplication)
by a faster one (in this case, addition). The loop code generated for the loop would
contain instructions to add 4 to each iteration of an internally maintained offset,
rather than keeping the subscript I and multiplying it by 4 on each iteration.

If strength reduction occurred in the example above and you set a breakpoint at the
statement following CONTINUE to display the value of I, the value would be 1.
This is a misleading value. I is never really used in the optimized loop. A
compiler-generated temporary is used instead to calculate the offsets.

Global Register Assignment: Global register assignment is another way to improve
the generated code. The example below illustrates the principle involved.

21 po 10 I = 1,10
22 J=J+ 1
23 10 CONTINUE

results in machine code that performs these actions:

load 1 into a register
store register at I
* add register to J
add 1 to register
compare register contents with 10
branch (to *) if compare is less than or equal
store final value at J

This is not an exact representation of the machine code, but illustrates the principle
of register assignment. Instructions that use registers are faster than instructions
that reference storage. For the duration of this loop, I is assigned to a register.

If you were to set a breakpoint at ISN 22 and display the variable I, the value
would be 1.

If a program works correctly at OPT(0) and fails when optimized at a higher level,
check for variables assigned to registers, or uninitialized variables. Frequently, a
variable kept in storage at OPT(0) is assigned to a register under OPT(3). This is
only one of the effects of debugging an optimized program.

Some Practical Examples: Vectorization

Grouping of Data Elements: When a DO-loop is vectorized, individual loops that
operate on single elements are modified to produce less-frequently executed loops
that operate on groups of elements. When you try to set a breakpoint at a
particular statement in a program unit that has been vectorized, you may find that
the loop index and/or the contents of storage have unexpected values. For
example, examine the following code:

Chapter 7. Special Considerations When Using Interactive Debug 105

1 REAL A{100), B(100)
2 DO 2K-=1, N
3 2 A(K) = B(K)

The single loop in the above example may actually look like this in the vectorized
code:

DO2K =1, N, 2
DO 2 KK = K, K+MIN(N-K,Z-1)
2 A(KK) = B(KK)

where Z is the size of the group, and the inner “loop” is actually performed by
vector instructions.

After vectorization, the single loop over individual elements becomes a loop over
groups of elements. This loop contains a second “conceptual” loop, executed in
vector instructions, over elements in the group.

The original statement labeled “2” (ISN 3) no longer exists. It has been placed
under ISN 2 in a different form. If you try to set a breakpoint there, Interactive
Debug may issue a message saying that it cannot find the statement.

Statement Reordering: To vectorize certain loops, the order of execution of
statements may have to be modified. When you later try to debug a statement in
this loop, you may find that it doesn’t appear where you expected to find it.

For example, you may have coded the following:

DIMENSION A(100),B(100),C(100)
DO 500 I = 2,100
A(I) B(I-1) * 3.0
B(I) C(I) * 3.0
500 CONTINUE

neEwNn =

But your vector report listing after vectorization at level 2 may look like this:

ISN FLAG NESTING *....*...1......... 20 i, K 4....
0001 DIMENSION A(100),B(100),C(100)

0002 VECT +--—---- DO 500 I = 2,100

0004 | B(I) = C(I) * 3.0

0003 | A(I) = B(I-1) * 3.0

0006 END

In this case, ISNs 3, 4, and 5 no longer exist. They have been placed under ISN 2
in a different form. You will not be able to set breakpoints at these statements.

Loop Distribution: During vectorization, statements coded within a single DO loop
are sometimes distributed to separate loops during vectorization.

For example, if you code this loop:

REAL A(200), B(200)
DO 20 I = 2,100,2
A(I) = A(I) + 2
B(I+2) = B(I) + 2
20 CONTINUE

nmeswn -

106 VS FORTRAN Version 2: Interactive Debug Guide and Reference

your vector report listing might look like this after vectorization:

ISN FLAG NESTING *....*...7T......... 2 i, K 4....
+

0001 REAL A(200),B(200)

0002 VECT +------- DO 20 I = 2,100,2

0003 | A(I) = A(I) + 2

0002 SCAL +------- DO 20 I = 2,100,2

0004 | B(I+2) = B(I) + 2

0006 END

You will not be able to set breakpoints inside the original loop. If you attempt to
debug statements within the original loop, you will find that ISNs 3, 4, and 5 have
disappeared. They have been placed under ISN 2 in a different form.

Commands Affected by Optimization and Vectorization

AT Command

AUTOLIST Command

GO Command

A number of Interactive Debug commands are affected by the processes of
optimization and vectorization. These commands may produce unexpected or
inaccurate results when used in debugging optimized or vectorized code. This
section describes the commands that may function differently when used with
optimized or vectorized code.

\

Use of the AT command with optimized or vectorized code can be confusing if
some statements have been relocated or removed. If a statement has been moved
or completely eliminated, Interactive Debug will issue a message telling you that no
breakpoint can be established at that statement.

The AUTOLIST command displays the contents of the storage area that the
compiler assigned to a specified variable. When the program is optimized or
vectorized, it is possible that the current value of a variable, or of an array element,
is only in a register. As a result, what is displayed by the AUTOLIST command
may not be the current value of the variable or variables.

You will receive a message if you issue a GO command that refers to a statement
identifier in a program unit compiled with an optimization level greater than 0
(including vectorization levels 1 or 2). The message indicates that results are
unpredictable, and requires your confirmation before proceeding. The VS
FORTRAN Version 2 optimizer produces code assuming that the possible paths
through a module are known—for example, that a sequence of ten assignment
statements will always be executed in order. Based on this assumption, a register
may be loaded once at the beginning, and used by subsequent statements without
being reloaded. If you issue a GO command referring to a statement in the middle
of that sequence, you may be bypassing code that causes an important register to
be loaded. Results are unpredictable when a statement using that register is
subsequently executed.

Chapter 7. Special Considerations When Using Interactive Debug 107

IF Command

LIST Command

LISTFREQ Command

SET Command

WHEN Command

Warning Messages

IF specifies a condition to be tested. This involves examining the value assigned to
a variable, and may not produce the correct results if the value is being kept in a
register.

The LIST command displays the contents of the storage area that the compiler
assigned to a specified variable. When the program is optimized or vectorized, it is
possible that the current value of a variable, or of an array element, is only in a
register. As a result, what is displayed by the LIST command may not be the
current value of the variable or variables.

The LISTFREQ command lists statements even though they have been moved,
optimized away, or vectorized away, but indicates that these are “collapsed
statements” in the “frequency” field. Execution counts cannot be maintained for
these statements.

Like LIST, the SET command may produce confusing results. The SET command
alters the contents of a storage location assigned to a variable by the compiler.
However, optimized or vectorized code may not be using this storage location to
contain the current value. Even if the optimized or vectorized code has stored the
value in this location, VS FORTRAN Version 2 may use a copy of the register
value or values (without reloading it from storage) for the next use of the variable.
Furthermore, subsequent instructions may store the values from the registers into
storage, thereby overwriting the value just stored by the SET command. Under
either of these circumstances, changing the value in storage will not have the
desired effect.

The WHEN command uses the storage value of a variable, and may not produce
correct results if the value is being kept in a register.

On the first AUTOLIST, IF, LIST, SET, or WHEN command in any program unit
compiled with OPT(1), OPT(2), or OPT(3), or with VECTOR(LEV(1)) or
VECTOR(LEV(2)), a warning message will appear, stating that the program unit
contains optimized or vectorized code. Subsequent commands involving the same
unit will not result in further messages.

108 VS FORTRAN Version 2: Interactive Debug Guide and Reference

o~ Improving Performance when Using Interactive Debug

When you use VS FORTRAN Version 2 Interactive Debug with your program, the
program runs slower. This is typical of high-level language debuggers that get
control at every statement boundary to check for breakpoints or other conditions.

The greatest impact on performance occurs when you are debugging a program
that executes many very simple VS FORTRAN statements, with debugging hooks
| at all (or most) of them. Having very small subroutines will also degrade
| performance.

Techniques to Improve Performance

For normal debugging of typical programs, you may find that performance is
satisfactory. By limiting the amount of input to be processed (which you would
probably do anyway when debugging), you may avoid any problems with
performance. However, if you find performance seriously affected when running
under Interactive Debug, there are a number of things you can do to improve it.

e Try to limit the number of program units being debugged at one time. The
“include” file (AFFON) can be used to tell IAD which program units you want
to debug, allowing the rest to run at full speed. This is especially important if
some subroutines are called often. You can debug some of the program units
in one debugging session, and others in another debugging session.

« If possible, insert only entry/exit hooks in heavily-used subroutines. This may

/‘\ be all you need to decide whether the subroutine is incorrectly changing a
variable, for example. If you find that a such a subroutine is producing errors,
you may be able to use the AT command with a command list to temporarily
generate correct values while you are debugging other subroutines. Later, you
can restart the debugging session with a different AFFON file and concentrate
on the other subroutines that are generating incorrect results.

» If possible, avoid putting hooks in heavily executed code, especially if it
consists of many very simple statements. You can use the “include” file
(AFFON) to specify which parts of each program unit are to have hooks
inserted in them.

Recognizing Some Common Errors when Setting up a Debugging
Session

If you try to begin a debugging session without success, or if you try to debug a
program unit that Interactive Debug considers nondebuggable, look through the
following list of common errors to find a possible solution:

Chapter 7. Special Considerations When Using Interactive Debug 109

Problem

All program units are nondebuggable.

One or more program units are
nondebuggable.

Interactive Debug is not loaded and a
debugging session is not initiatized.

Under ISPF, you receive the message
“LOG FILE NOT FOUND,” and
Interactive Debug never runs.

110 VS FORTRAN Version 2: Interactive Debug Guide and Reference

Solution

Check your AFFON file for incorrectly
coded AFFON entries.

Insure that the AFFON file matches the
program being run. Make necessary
corrections try again.

Check to see whether the program unit
was compiled without SDUMP, or was
compiled with a FORTRAN compiler
level that is not supported. If so,
recompile the program unit.

Be sure you have specified the DEBUG
execution-time option, or have taken steps
to override the default option.

Be sure you are running your program
with a level of the VS FORTRAN library
that supports Interactive Debug. If a
program was link-edited with an older
library, re-link-edit it with the current
library.

Be sure that the VS FORTRAN Version 2
libraries are accessible and that you have
allocated the FT06F001 file, then rerun
the program. Also be sure you have
allocated enough storage.

Part 2. VS FORTRAN Version 2 Interactive Debug Reference

This section contains:

» VS FORTRAN Version 2 Interactive Debug syntax conventions

+« VS FORTRAN Version 2 Interactive Debug statement identifier conventions
« A functional summary of Interactive Debug commands

» Descriptions of all Interactive Debug commands

The commands are in alphabetic order. Each command description includes the
command syntax, function, and examples.

Part 2. VS FORTRAN Version 2 Interactive Debug Reference 111

Chapter 8. Interactive Debug Commands

This chapter summarizes all VS FORTRAN Version 2 Interactive Debug
commands.

Syntax Conventions

Symbols used to describe the syntax of VS FORTRAN Version 2 Interactive
Debug commands are the same as in other VS FORTRAN Version 2 publications.

The syntax for each command is shown in a box, with any allowable
abbreviations for the command name shown above the box.

Lowercase character strings within the box indicate information you must
supply.

Uppercase character strings indicate Interactive Debug keywords.
Square brackets ([]) set off optional portions of a command.

Braces ({ }) indicate a choice. One or more vertical lines (|) within the
braces separate the choices.

If an optional portion consists entirely of a choice ([{...]...]...]...}]), the
braces are omitted.

Where optional keywords are listed, the default is underlined. An explanation
of the default is provided in the text below the box.

Special characters (for example, colons, parentheses, and asterisks), must be
entered as shown.

Keyword operands can be abbreviated to any unique shortened form. For
example, NOTIFY can be abbreviated to NOT (but not to NO, to distinguish it
from NONOTIFY). Command names can be abbreviated only with the explicit
abbreviation shown in this manual for the command.

Chapter 8. Interactive Debug Commands 113

Statement Identifier Conventions

Follow these conventions when using any Interactive Debug command with VS
FORTRAN statement labels, ISNs, or sequence numbers:

« All statement labels (numbers in columns 1 through 5 of the source program)
must be preceded with a slash (for example, /100).

« The type of statement number is determined by the compiler and the options
used when the program was compiled. A statement number is either an ISN or
a sequence number.

— If the program was compiled with VS FORTRAN Version 2, you can use
either the ISN or the sequence number. ISNs are the default; to use
sequence numbers, specify the compiler option SDUMP (SEQ) .

— If the program was compiled with VS FORTRAN Version 1, and if both
TEST and NOSDUMP were in effect or if VS FORTRAN Release 2 was
used, and if the first record has a number in columns 73 through 80, use
the sequence numbers. If the first record does not have a number in
positions 73 through 80, use the internal statement number (ISN) provided
in the compiler listing. VS FORTRAN Version 1 sequence numbers are
not supported in full screen mode.

— For all other combinations of VS FORTRAN Version 1 options, use the
ISN.

114 VS FORTRAN Version 2: Interactive Debug Guide and Reference

N

Commands

Figure 25 lists the commands by function.

Functions
Controlling Program Execution

Monitoring and Modifying Variables

Processing Sequential Files

Controlling Full screen Display

Tracing and Timing

Commands
AT

GO
ENDDEBUG
HALT
LISTBRKS
NEXT
OFF
OFFWN
RESTART
STEP
WHEN

AUTOLIST
DESCRIBE
IF

LIST
QUALIFY
SET

BACKSPACE
CLOSE
ENDFILE
RECONNECT
REWIND

COLOR
LISTINGS
MOVECURS
POSITION
PREVDISP
PROFILE
REFRESH
SEARCH
WINDOW

ANNOTATE
LISTFREQ
LISTSAMP
LISTSUBS
LISTTIME
TIMER
TRACE
WHERE

Figure 25 (Part 1 of 2). Functional Summary of Interactive Debug Commands

Chapter 8. Interactive Debug Commands

115

Correcting Errors ERROR
FIXUP

General * or " (comment)
HELP
PURGE
QUIT
SYSCMD
TERMIO

Figure 25 (Part 2 of 2). Functional Summary of Interactive Debug Commands
The commands are presented below in alphabetic order. A summary of the

commands appears in Appendix B, “Interactive Debug Command Summary” on
page 225.

116 VS FORTRAN Version 2: Interactive Debug Guide and Reference

* or " (Comments)

An asterisk (*) or a quotation mark (") can be used to insert comments into the log
of debugging activity. When running in an ISPF environment or in batch, a log of
debugging activity is maintained. A log is also available in a CMS line-mode
environment, if you specify CP SPOOL CONSOLE START. Comments may then be
used to identify items for later examination.

Abbreviation: None

— Syntax

{* 1"} [comment]

comment
is any character string. This character string will appear in the log of the
debugging session.

Notes:

1. When running in a CMS environment, the use of a quotation mark (*') to identify
a comment command may be inhibited because the ("') mark is normally assigned
to be the CMS escape character. In this case, a double quotation mark is required
to enter a comment. For example:

"" This is a comment.

2. Comments entered in a command list as part of an AT command are ignored.
They are also ignored if entered as the command portion on the IF command, or
if entered in an attention exit.

Example

* This is how comments are inserted into the log.
" A quotation mark also works.

Chapter 8. Interactive Debug Commands 117

| ANNOTATE Command

The ANNOTATE command provides program sampling information in either of
two forms:

1. As a source listing to the AFFPRINT file, showing sampling or frequency data.

2. As a bar chart overlay on the source listing window, showing the sampling or
frequency data

Abbreviation: AN

Format 1

—— Syntax for Copying Source Listings to a Print File
ANNOTATE f{unit | (unitlist) | *}

[SAMPLING [DIRECT | CALLED | ALL] | FREQUENCY]

Format 2

—— Syntax for Providing a Bar Chart on the Source Listing Window
ANNOTATE [ON | OFF | TOGGLE]

[SAMPLING[DIRECT | CALLED | ALL] | FREQUENCY]

specifies the name of a program unit whose listing is to be copied to
AFFPRINT with sampling or frequency information added. The program
unit must be a VS FORTRAN program unit compiled with the SDUMP
option. Listing files must be identified either by specification in AFFON or
on the listings data set specification panel.

unit list
specifies a list of program units whose listings are to be copied to
AFFPRINT with sampling or frequency information added. (See restriction
under unit, above.)

specifies that all available program unit listings are to be copied to
AFFPRINT with sampling or frequency information added. Listings will be
copied only for VS FORTRAN program units compiled with the SDUMP
option. Listing files must be identified either by specification in AFFON or
on the listings data set specification panel.

ON
specifies that the source listing window is to be shown with overlaid sampling
or frequency bar charts (valid in ISPF only). Note that ON cannot be
abbreviated.

118 VS FORTRAN Version 2: Interactive Debug Guide and Reference

~

OFF
specifies that overlaid sampling or frequency charts are NOT to be shown in
the source listing window (valid in ISPF only). Note that OFF cannot be
abbreviated.

TOGGLE
specifies that overlaying of the source listing window with sampling or
frequency bar charts is to be changed to ON if currently OFF, or to OFF if
currently ON (valid in ISPF only). This form is intended for assignment to a
PF key. Note that TOGGLE cannot be abbreviated.

SAMPLING
requests sampling information annotation. For Format 1, SAMPLING is the
default when neither SAMPLING or FREQUENCY is specified.

DIRECT
counts interruptions occurring in the code. DIRECT is the default when
SAMPLING is specified or defaulted.

CALLED
counts interruptions occurring in lower-level routines. This option is valid
only if sampling was initiated with the CALLED option.

ALL
indicates that sampling counts are to be the sum of the DIRECT and
CALLED counts.

FREQUENCY
requests statement frequency annotation information

Notes:

1. Annotated information listings show a summary of all program units and entries
for which sampling counts have been accumulated. This summary includes
non-FORTRAN units, FORTRAN units compiled with NOSDUMP, and
program units not specified in the unit list operand of the command.

2. When SAMPLING is specified along with the ON, OFF, or TOGGLE options,
the current ANNOTATE settings are unchanged if FREQUENCY, DIRECT,
CALLED, or ALL are not specified. The initial ANNOTATE settings are OFF
and FREQUENCY. If SAMPLING is done, the ON and DIRECT options are
turned on, turning off FREQUENCY.

3. If no operands are specified, the current ANNOTATE settings are displayed.

4. Only the first three options (unit, unit list, *) may be used in a restart file or in
batch mode. Annotation is then limited to listings identified in the AFFON file.

5. In the histogram bars that are shown in the annotated source listings, each
asterisk (*) represents 2% (rounded). In order to prevent the lines from getting
too wide, any histogram bar that would exceed 17 characters (34 %) is truncated
to 17 characters, and the rightmost character is shown as a plus sign (+) instead
of an asterisk.

Chapter 8. Interactive Debug Commands 119

Example 1

Overlay the source listing window with bar charts indicating the sum of both
DIRECT and CALLED sampling.

annotate on all
Example 2

Remove the bar chart overlays from the source listing window.

annotate off

Example 3

Query the ANNOTATE settings
annotate

Example 4

Copy the VS FORTRAN source listings (if known) for all program units to
AFFPRINT, annotating them with DIRECT sampling information.

annotate *
Example 5

Copy the VS FORTRAN source listings for MAIN and SUB1 to AFFPRINT,
annotating them with frequency information.

annotate (main,subl1) frequency

120 VS FORTRAN Version 2: Interactive Debug Guide and Reference

-~

AT Command

The AT command sets breakpoints in a VS FORTRAN program at executable
statements, entry points, or exit points. When defining a breakpoint, you may
specify a list of Interactive Debug commands to be executed whenever the
breakpoint is reached. Execution will be suspended before the specified statement
is executed. For examples of how to use the AT command, see “Controlling
Program Execution” on page 74 and “Using Command Lists” on page 76.

The AT command can also be used without parameters as one of the cursor
commands under ISPF Version 2. For more information, see “Using Interactive
Debug Features under ISPF Version 2” on page 24.

Abbreviation: None

—— Syntax
AT [qual.]{number [:[qual.]Jnumber] | ENTRY | EXIT}
| (number/ENTRY/EXIT list)

[(command list)] [COUNT(n)][NOTIFY | NONOTIFY]

qual
specifies a program unit name prefix to temporarily override the current
qualifier for the prefixed operand only.

number
specifies the statement label, ISN, or sequence number of an executable VS
FORTRAN statement. Precede a statement label with a slash to distinguish
it from an ISN or sequence number. The type of statement number used
(ISN or sequence number) is determined by the compiler and the options
used. See “Statement Identifier Conventions™ on page 114.

number:[qual.Jnumber
specifies a range of statement labels and/or statement numbers (either ISNs
or sequence numbers). A breakpoint is set at each executable statement
within the range. Statement labels can be combined with ISNs or sequence
numbers in the range, but the first and last must both be executable
statements. Precede each statement label with a slash.

Statement identifiers can be qualified with a program unit name. The default
program unit for the first identifier is the current qualifier. The default
program unit for the second identifier in a range is the program unit specified
or defaulted for the first identifier. Both identifiers must have the same
program unit in effect.

For example, A.5:6 is the same as A.5:A.6. However, A.5:B.6 is invalid.
ENTRY
specifies that an entry breakpoint is to be set. The breakpoint occurs in the

prolog of the program unit. The subroutine or function is not yet active, so
dummy arguments are not accessible, and a GO with a statement identifier

Chapter 8. Interactive Debug Commands 121

cannot be issued. The breakpoint occurs regardless of which entry point of
the program unit is entered.

EXIT :
specifies that an exit breakpoint is to be set. The breakpoint occurs after the
last FORTRAN statement in the program unit has been executed.

(number/ENTRY/EXIT list)
specifies a list of statement labels, ISNs, sequence numbers, entry
breakpoints, exit breakpoints, and/or ranges of numbers. A breakpoint is
set at each executable statement specified. Enclose the list in parentheses,
and separate entries with commas or blanks. Precede each statement label
with a slash.

Note: If a statement that does not have a debugging hook is specified in the
number list, an error message is issued but breakpoints are still set at the
remaining statements.

(command list)
specifies a list of commands to be executed at the specified statement. If
more than one statement is listed, the command list is executed at every
statement listed. Enclose the command list in parentheses, and separate
commands with percent signs (%).

The qualification in effect when the AT command is issued is used as the
default for any variables and statements referenced in the command list.

COUNT(n)
specifies that a breakpoint occurs only every nth time the specified statement
is reached. Specify n as an integer. If more than one statement is specified,
the iteration count is applied independently to each listed statement.

NOTIFY
specifies that the location of every breakpoint is to be displayed when it is
reached. This includes breakpoints that cause the program to resume
without user intervention. This is the default action.

NONOTIFY .
specifies that no notification is given when the AT command list contains a
command, such as GO, that causes execution to resume.
NOTIFY/NONOTIFY has no effect on the notification that is done when a
breakpoint is reached and execution is suspended. You cannot turn off
notification when execution is suspended.

Notes:

1. Unless you have attached a command list containing a GO, ENDDEBUG, STEP,
RESTART, or QUIT command, execution is always suspended when a breakpoint
is reached.

2. You may include any VS FORTRAN Version 2 Interactive Debug command in

the command list except HELP, FIXUP, LISTSAMP or any full screen display
commands.

122 VS FORTRAN Version 2: Interactive Debug Guide and Reference

A new valid AT command overrides any previous AT command in effect for a
specific statement.

HALT, NEXT, WHEN conditions, and AT breakpoints all cause execution to be
suspended. When execution is suspended for multiple reasons, messages are issued
for all the reasons.

At ENTRY, the following restrictions apply:

e The GO command with a statement ID is not permitted.

e Variables in a dynamic common cannot be referenced.

o Dummy arguments are not accessible.

You can associate a remark with a breakpoint by using the LIST command to
display a quoted string as part of the command list for the breakpoint. For more
information, see “LIST Command’’ on page 158.

You can set a breakpoint only on statements that have a debugging hook. You
cannot set a breakpoint on statements outside the AFFON statement list, on
statements that are collapsed, on the ENTRY of a VS FORTRAN main program,
or on the EXIT of a VS FORTRAN main program. For more information on
debugging hooks, see ‘‘Setting Breakpoints at Debugging Hooks’’ on page 72.

A command in an AT command list that causes execution to resume will cause the
remainder of the command list to be ignored. These commands are GO, STEP,
ENDDEBUG, and RESTART. QUIT and HALT IMMED also cause the

remainder of the command list to be ignored.

AT is not permitted after the VS FORTRAN program has terminated.

Chapter 8. Interactive Debug Commands 123

Example 1

Stop execution every 10th time the program reaches the beginning of a loop that
begins at statement label 65.

at /65 count(10)
Example 2

Set breakpoints at ISNs 180 and 220 in the currently qualified program unit, at
every executable statement in program unit SUB1 between ISN 10 and statement
label 50, and at entry to program unit CHECK. Execution is suspended at each of
these points.

at (180 220 sub1.10:/50 check.entry)
Example 3

AtISN 140, list the value of variable A, set variable I to 10, and continue
execution. Except for listing the value of A, no notification is given.

at 140 (list a%set i=10%go) nonotify
Example 4

At ISN 5 in program unit STUB, set variable ANSWER to 100 and exit the
subroutine.

at stub.5 (set stub.answer=100%go stub.exit)

124 VS FORTRAN Version 2: Interactive Debug Guide and Reference

/A,,\

AUTOLIST Command

You can use the AUTOLIST command in full screen mode to specify up to ten
lines of variable and array information. The information is then displayed at the
top of the screen each time the program is suspended, or when the display is
refreshed during animation.

The containing program unit name is shown with all variable or array names. Array
elements may be displayed outside the defined dimensions. You can remove the
display by issuing the AUTOLIST command with no operands.

You cannot use AUTOLIST in line mode or batch mode. If you try to, Interactive
Debug issues an error message.

Abbreviation: AL

— Syntax
AUTOLIST [{[qual.]Jname[:[qual.Jname] | *
| ’string’ | number | (specification list)}

[FORMAT [(code)] | DUMP [(code)]]]

[qual.Jname
specifies the name of a variable, array, or array element used in the program.
If a qualifier is specified, it overrides the current qualifier for the specified
name. Substring notation may be used with string variables.

[qual.Jname:[qual.Jname
specifies a range of variable, array, or array element names used in the
program. If a qualifier is specified, it overrides the current qualifier for the
specified name.

AUTOLIST displays all storage locations between the two variables. Unless
FORMAT or DUMP is specified, the format of the displayed storage is the
same as the type of the first variable.

specifies that a list of all the variables and arrays in the currently qualified
program unit is desired. Unless FORMAT or DUMP is specified, each is
displayed according to its own type.

‘string’
specifies a character string to be displayed as a remark. You can use this
operand to help identify the AUTOLIST display.

number
specifies an integer or real numeric constant to be displayed as a remark.
This function can be useful in converting numbers, when used in conjunction
with the FORMAT option.

Chapter 8. Interactive Debug Commands 125

specification list
identifies a list of individual specifications. The list must be enclosed in
parentheses. Individual entries must be separated by commas or blanks.

FORMAT [(code)] or DUMP [(code)]
specifies a particular data format:

« FORMAT displays the names listed and their values in the specified
format.

o DUMRP displays the address in storage of the names listed and their
values in the specified format.

o (code) specifies the format or dump code for the names to be listed. The
default format code is X. The default dump code is Z.

« FORMAT and DUMP are mutually exclusive.

FORMAT and DUMP codes for the AUTOLIST command are shown in
Figure 26 on page 127.

126 VS FORTRAN Version 2: Interactive Debug Guide and Reference

Code Output

L1 Logical*1

L4 Logical*4

12 Integer*2

14 Integer*4

R4 Real*4

R8 Real*8

R16 Real*16

C8 Complex*8

Cl6 Complex*16

C32 Complex*32

L Logical with size closest to internal data size

I Integer with size closest to internal data size

R Real with size closest to internal data size

C Complex with size closest to internal data size

X[nnn] Hexadecimal with nnn bytes per data item
(default to internal data size)

Z[nnn] Hexadecimal with nnn bytes per data item
(default to Z4)

Alnnn] Character with nnn bytes per data item
(default to internal data size)

H[nnn] Character with nnn bytes per data item
(default to continuous full line output)

Figure 26. DUMP and FORMAT Codes for the AUTOLIST Command

Notes:

1

Each time you issue the AUTOLIST command, the set of variables to be listed is
redefined. The lists are not cumulative. To turn off the AUTOLIST display,
specify AUTOLIST with no operands.

For example, if you type AL (X,Y), then X and Y are displayed. If you later
type AL Z, only Z will be displayed.

The output is displayed in the first ten lines of the full screen panel. No
AUTOLIST output is shown in the scrollable log. If more than ten lines of
output are requested, the excess is not displayed.

Dummy arguments can only be displayed when the program unit in
which they are defined is active. For example, when executing in MAIN before
calling SUB1, entering:

autolist subi.a

Chapter 8. Interactive Debug Commands 127

10.

128 VS FORTRAN Version 2:

will cause a message to be produced if a is a parameter. Results are unpredictable
if you display a dummy argument that is not defined at the entry point called.
(Note that a program unit is not yet active when suspended at entry.)

Variables in dynamic commons can only be displayed if the program unit used to
qualify the variable has been activated at least once. (If not, you may receive an
error message. However, if a variable has a large displacement in its dynamic
common, Interactive Debug cannot detect that it is not initialized.)

When you request an individual name or list of names, the default format is
determined by the type of each variable being displayed. When you request a
range of names, the formatting of the values is determined by the format of the
first name in the range. The locations of the listed names are not identified in the
output. You may, however, specify a different format using the FORMAT or
DUMP keyword.

VS FORTRAN defines storage layout only within arrays, variables in a common
block (defined in a COMMON statement), and variables in equivalence groups
(defined in an EQUIVALENCE statement). The relative positions of any other
names in storage cannot be predicted. Names that you may expect to be adjacent
in storage may be widely separated by other data. Therefore, a range specification
for names other than array, equivalence, or common variables may produce
unexpected resullts.

The DUMP option is not permitted with constant operands, including strings.

The length specification in a FORMAT or DUMP code may be entered with 1
through 3 digits. Thus, 14, 104, and 1004 are equivalent.

A length specification of 0 in character and hexadecimal FORMAT and DUMP
codes (for example, A0 or Z0) causes the data to be displayed as a continuous
string, rather than split into pieces of some specified length.

If a FORMAT or DUMP code with no length specification is given for a range of
variables or array elements, each variable or array element is displayed separately
in the specified format. However, if a length specification is given, Interactive
Debug will consider the entire storage area occupied by all the range of variables
or array elements, or occupied by the entire array, as if it were broken into pieces,
each with a length equal to that specified in the DUMP or FORMAT code, and
will display each piece according to the specified format. For example, if
PRIMES is a 2 x 3 array of INTEGER *4 values, then:

autolist primes format (x)

will cause a display of 6 values, each corresponding to an element of the array.
However:

autolist primes format (x2)

will cause a display of 12 values, each displaying the contents of successive 2-byte
storage areas within the array.

Interactive Debug Guide and Reference

11. An assumed size array cannot be listed by just specifying the array name; the
specific element or range of elements must be specified. (An assumed size array is
an array with the last upper bound specified as an asterisk (*).) This restriction
does not apply to arrays whose last dimension is *‘1”’ even though such arrays are
otherwise treated as assumed size arrays. However, only the elements whose last
subscript is ““1”’ will be displayed if no subscripts are specified.

12. For array elements, subscripts may have values beyond the range of the
corresponding array dimensions. A warning message will be issued except in the
special case where the last dimension is “1”’ or “*” and only the last subscript is
out of range.

13. Array subscripts may contain simple arithmetic expressions no more complex than
the form “‘variable plus (or minus) a constant.” For example,

autolist ARY(I), autolist ARY(3), autolist ARY(I + 3),
or autolist ARY(I - 3)

are valid forms.
Example 1

Display the value of the variable named NCOUNT whenever the program is
suspended or the screen is refreshed during animation.

autolist ncount
Example 2

Obtain a hexadecimal dump (FORMAT(X)) showing values of array variables
A(1,1) through A(2,3). The dump appears whenever the program is suspended or
the screen is refreshed during animation.

autolist a(1,1):a(2,3) format
Example 3

Display several variables in hexadecimal, each with as many bytes as are
appropriate for its data type. The information appears whenever the program is
suspended, or the screen is refreshed during animation.

autolist (i,j,p,q,r) format
Example 4

Display an entire array (CHARAY) containing a series of 30-character alphabetic
strings so that each character string is separated from the others. (If the array is
declared in the program to be a CHARACTER*30 array, then the elements of the
array will be separated from each other when the array is listed.) The information
appears whenever the program is suspended, or the screen is refreshed during
animation.

autolist charay format (a30)

Chapter 8. Interactive Debug Commands 129

Example 5

Display the value of the variable REAL1 in SUB1, ARRAY(1,J) in SUB2, and
STRING,], and J in the currently qualified program unit whenever the program is
suspended, or the screen is refreshed during animation.

autolist (subl.reall,sub2.array(i,j),string,i,j)
Example 6

Display the decimal number 12345 in hex whenever the program is suspended or
the screen is refreshed during animation.

autolist 12345 f(x)

130 VS FORTRAN Version 2: Interactive Debug Guide and Reference

=\

~

BACKSPACE Command

The BACKSPACE command positions a sequentially accessed external file to the
beginning of the previous record. It is similar to the BACKSPACE statement in
the VS FORTRAN Version 2 language. This command allows you to move
backward in the file, for example to rewrite or reread a record.

Abbreviation: BACKSPAC, BACKS

—— Syntax

BACKSPACE {number | [qual.]integer-variable |
[qual.linteger-array-element}

number
is the number of the I/O unit associated with the sequential file on which the
backspace is to be performed.

[qual.]integer-variable
is the name of an integer variable in the VS FORTRAN program. This
variable specifies the number of the I/O unit associated with the sequential
file on which the backspace is to be performed.

[qual.]integer-array-element
is the name of an element of an integer array in the VS FORTRAN program.
This element specifies the number of the I/O unit associated with the
sequential file on which the backspace is to be performed.

Notes:

1. “Number,” “‘integer-variable,”’ or “‘integer-array-element’’ must be specified;
there is no default number.

2. This command may not be issued when 1/0 is currently active.
3. When referring to array elements, the subscripts must use simple arithmetic

expressions no more complex than the form “variable plus (or minus) a constant.”
For example,

A(I), A(3), ARY(I+3) or ARY(I-3)
are valid.
Example

Backspace the sequentially accessed external file associated with I/O unit 8 so that
the last record written can be rewritten.

backspace 8

For additional examples of the BACKSPACE command, see “Processing External
Files” on page 89.

Chapter 8. Interactive Debug Commands 131

CLOSE Command

The CLOSE command disconnects a VS FORTRAN external file from an input or
output unit. Its usage is similar to that of the CLOSE statement in the VS
FORTRAN Version 2 language. This command allows you to close an external
file, for example to assign another file to the input or output unit, or to examine the
contents of the file.

Abbreviation: None

Syntax

CLOSE {number | [qual.]integer-variable | [qual.linteger-array-element}

number
is the number of the I/O unit associated with the file that is to be closed.

[qual.Jinteger-variable
is the name of an integer-variable in the VS FORTRAN program. This
variable specifies the number of the I/O unit associated with the file that is
to be closed.

[qual.Jinteger-array-element
is the name of an element of an integer array in the VS FORTRAN program.
This element specifies the number of the I/0 unit associated with the file
that is to be closed.

Notes:

1. “Number,” “‘integer-variable,” or “integer-array-element’ must be specified;
there is no default number.

2. This command may not be issued when I/ 0O is currently active.

3. Files used in the program but not explicitly closed will still be open when

Interactive Debug gives you control at termination. If you want to examine such a
file, you must CLOSE it first.

4. Under certain conditions, use of the CLOSE command may make it necessary for
Yyou to use the RECONNECT command before your program can perform
additional I/ O operations on the file. This situation occurs when the
OCSTATUS run-time option is in effect, and the program cannot be made to
execute an OPEN statement before doing more 1/0 to the file. (See
“RECONNECT Command’ on page 192.)

5. When referring to array elements, the subscripts must use simple arithmetic

expressions no more complex than the form “variable plus (or minus) a constant.”
For example,

A(I), A(3), ARY(I+3) or ARY(I-3)

are valid.

132 VS FORTRAN Version 2: Interactive Debug Guide and Reference

~

Example under CMS

Reallocate an external output file for I/O unit 8.

close 8
sys filedef 8 disk output file a

Example under TSO

Reallocate an external output file for I/O unit 8.

close 8
sys allocate file(ft08£001) dataset(output.file)

For additional examples of the CLOSE command, see “Processing External Files”
on page 89.

Chapter 8. Interactive Debug Commands 133

COLOR Command

The COLOR command allows you to tailor the color and attribute setting of the
full screen display under ISPF Version 2. This command cannot be issued in a
command list, as the command portion of an IF command, in an attention exit, or a
restart file.

The COLOR command displays a panel that allows you to select the color,
highlighting and intensity of the various parts of the interactive debug panel. The
panel characteristics can be customized for each user.

You can save your color specifications from session to session in the ISPF profile
by entering SAVE on the command line when the color panel is displayed. If you
do not save a color specification, you are assigned the default. To restore the
default if you have changed a color setting, enter DEFAULT on the command line
when the color panel is displayed.

Enter END or use the END PF key to return to the debugging session.

Abbreviation: None

—— Syntax
COLOR

Note: COLOR will operate as usual with a parameter list, but the panel will
include the message “PARAMETERS IGNORED.”

The color and attribute selection panel is shown in Figure 27 on page 135

134 VS FORTRAN Version 2: Interactive Debug Guide and Reference

| VS FORTRAN INTERACTIVE DEBUG (COLOR and ATTRIBUTE settings)

| | COMMAND ===>

| - COLOR HIGHLIGHT INTENSITY

| Title : field headers WHITE NONE HIGH Enter:

| output fields BLUE NONE LOW SAVE to save your

| input fields YELLOW NONE LOW color settings.
| Auto : autolist area TURQ NONE LOW DEFAULT to restore

| Source: listing area WHITE REVERSE LOowW default settings.
| prefix area TURQ REVERSE LOW

| suffix area BLUE REVERSE LOW END to return to

| current line YELLOW REVERSE HIGH debug session with
i breakpoints RED REVERSE HIGH current settings
l TOF & EOF line PINK REVERSE HIGH in effect.

| bar graphs GREEN REVERSE HIGH

| Log : output lines GREEN NONE LOW

| input lines YELLOW NONE HIGH COLOR and HIGHLIGHT
| line numbers TURQ NONE HIGH are valid only with
| Search target TURQ REVERSE LOW color terminals.

| Field ‘headers TURQ NONE HIGH

| valid COLOR : White Yellow Blue Turg Green Pink Red

| Valid HIGHLIGHT : Uscore Blink Reverse None

| Valid INTENSITY : High Low

I

| Figure 27. Color and Attribute Selection Panel under ISPF Version 2

Chapter 8. Interactive Debug Commands 135

DESCRIBE Command

The DESCRIBE command displays the data type of scalar variables or arrays, and
also supplies dimension information for arrays.

Abbreviation: DE

—— Syntax
DESCRIBE {[qual.lname | * | (name list)} [PRINT]

[qual.Jname
specifies the name of a variable, or array used in the program. The name can
be qualified by the name of a program unit.

specifies a list of all the names in the currently qualified program unit. The
type of each is displayed.

(name list)
specifies a list of names. Enclose the list in parentheses and separate
individual names with commas or blanks.

PRINT
specifies that the output be sent to the print data set instead of the terminal.

Notes:

1. In your output, dummy arguments are identified in the last column with the word
DUMMY.

2. Interactive Debug cannot determine the length of character variables that are
dummy arguments in an inactive program unit. The length is displayed as
CHARACTER(*). (Note that at ENTRY, the program unit is not yet active.)

3. Dimension information is not displayed for arrays that are dummy arguments in
an inactive program unit, or that are defined only when entered by some other

entry point. (Note that at ENTRY, the program unit is not yet active.)

4. The upper bound for the last dimension of an assumed-size array is displayed as
an asterisk, and the size is indicated as * ELEMENTS.

136 VS FORTRAN Version 2: Interactive Debug Guide and Reference

Example

Display the data type information for the variables I and R4, for array CM8ARY,
for the dummy array R8ASAR, for the dummy variable WHERE in program unit
SUBI, and for dummy array L1IAYMN in program unit SUB1.

describe (i,r4,cm8ary,r8asar,subl.where,subl.llaymn)

The output from this command should look something like this:

SUB2.I: INTEGER*4
SUB2.R4: REAL*4
SUB2.CM8BARY: COMPLEX*8
RANK = 2, SIZE = 21 ELEMENTS
DIM 1: EXTENT = 3, LBOUND = (1), UBOUND = (3)
DIM 2: EXTENT = 7, LBOUND = (1), UBOUND = (7)
SUB2.R8ASAR: REAL*8 DUMMY
RANK = 1, SIZE = * ELEMENTS
DIM 1: EXTENT = *, LBOUND = (-3), UBOUND = (*)
SUB1.WHERE: CHARACTER* (*) DUMMY
SUB1.L1AYMN: LOGICAL*1 DUMMY

RANK = 1; DUMMY ARRAY ARGUMENT OF INACTIVE SUBPROGRAM OR
ALTERNATE ENTRY POINT
DIMENSION INFORMATION NOT AVAILABLE

For additional examples of the DESCRIBE command, see “Displaying the Data
Types of Scalar Variables and Arrays” on page 77.

Chapter 8. Interactive Debug Commands 137

ENDDEBUG Command

The ENDDEBUG command provides two capabilities:

1. It allows you to discontinue debugging and run the program at full speed.
Except for entering limited commands after the program has terminated, no
debugging is available after using the ENDDEBUG command.

2. Using the SAMPLE option, you can initiate program sampling to obtain an
approximation of relative CPU time.

Abbreviation: None

—— Syntax
ENDDEBUG [SAMPLE[(msecs)[[MAXSAMP(n[,STOP])J[CALLED]]

SAMPLE [(msecs)]
indicates that sampling is to occur during subsequent execution. msecs is the
time interval in milliseconds between sampling interruptions; the default is
10 milliseconds.

MAXSAMP(®n[,STOP})
specifies the maximum number of sampling interruptions (n) that can occur.
If STOP is specified, the program will be terminated when the specified
number of samples is reached. Otherwise, the program will continue
execution without sampling interruptions after the specified number of
samples is reached. If MAXSAMP is not specified, sampling interruptions
will continue until the program terminates. MAXSAMP is valid only if
SAMPLE is specified.

CALLED
specifies that each sampling interruption is to be counted for each caller in
the save chain. This option may cause an appreciable increase in overhead
for the sampling function; however, it makes it much easier to determine
when CPU usage is primarily due to called subroutines. CALLED is valid
only if SAMPLE is specified.

If CALLED is not specified in the ENDDEBUG command, the CALLED
option will not be permitted the ANNOTATE and LISTSAMP commands.

Notes:

1. All breakpoints and WHEN conditions are removed and the HALT command
status is set to OFF.

2. TERMIO is set to LIBRARY.
3. Timing is turned off for all program units.
4. The VS FORTRAN library will begin updating the occurrence count for

execution-time errors. All error handling actions will be determined by the settings
in the VS FORTRAN error option table.

138 VS FORTRAN Version 2: Interactive Debug Guide and Reference

10.

11.

The attention exit will no longer allow entry of Interactive Debug commands. The
only Interactive Debug command allowed from an attention exit is QUIT, which
will terminate the VS FORTRAN program. You will then be prompted for
Sfurther Interactive Debug commands. Entering QUIT a second time will
terminate the debugging session. To resume execution following an attention
interrupt, enter a null line.

At the end of program execution, Interactive Debug will prompt for commands.
LISTTIME and LISTFREQ will show information that was current when the .
ENDDEBUG command was issued. WHERE information cannot be determined
after ENDDEBUG is issued.

Unless the program was compiled with the TEST option, or SAMPLE was
specified, execution will proceed at the same speed at which it would run if the
DEBUG execution-time option had not been specified.

If a program unit was compiled with the TEST option, Interactive Debug will still
be called for each VS FORTRAN statement in that program unit. While this
activity will not be apparent, there will be a slight increase in the time required to
execute your program.

If SAMPLE was specified, program speed will be reduced due to the overhead
involved in recording the sampling information at each interrupt. However, this
overhead should not be greater than 15 %.

If SAMPLE is specified without CALLED, the ANNOTATE settings (for the
source window) are changed to ON. If SAMPLE and CALLED are both
specified, the settings are changed to ON and CALLED.

ENDDEBUG is not permitted after the VS FORTRAN program has terminated
or while a read is pending. If issued in an error exit, standard corrective action is

taken.

The BLIP is turned off when sampling is in operation and restored when sampling
completes.

Chapter 8. Interactive Debug Commands 139

Example 1

Continue executing a program from the current statement to the end of the
program with no further debugging activity.

enddebug
Example 2

End debugging, but continue executing the program with sampling interruptions
every 10 milliseconds.

enddebug sample
Example 3

End debugging, but continue executing the program with sampling interruptions
every 20 milliseconds and CALLED counts accumulated.

enddebug sample(20) called
Example 4

End debugging, but continue executing the program with sampling interruptions
occurring every 40 milliseconds. Continue execution of the program without
interruptions if the number of interruptions exceeds 10,000.

enddebug sample(40) maxsamp(10000)

For additional explanation of the ENDDEBUG command, see ‘“Continuing
Execution without Further Debugging” on page 93.

140 VS FORTRAN Version 2: Interactive Debug Guide and Reference

-~

ENDFILE Command

The ENDFILE command writes an end-of-file record on a sequentially accessed
external file. Its usage is similar to that of the ENDFILE statement in the VS
FORTRAN Version 2 language.

Abbreviation: ENDF

—— Syntax

ENDFILE {number | [qual.]integer-variable |
[qual.Jinteger-array-element}

number
is the number of the I/O unit associated with the sequential file on which the
end-of-file record is to be written.

[qual.]integer-variable
is the name of an integer-variable in the VS FORTRAN program. This
variable specifies the number of the I/O unit associated with the sequential
file on which the end-of-file record is to be written.

[qual.Jinteger-array-element
is the name of an element of an integer array in the VS FORTRAN program.
This element specifies the number of the I/0 unit associated with the
sequential file on which the end-of-file record is to be written.

Notes:

22 &8

1. “number,” “‘integer-variable,” or “‘integer-array-element” must be specified; there
is no default number.

2. This command may not be issued when I/ QO is currently active.
3. Writing an end-of-file record erases all records that may follow.
4. When referring to array elements, the subscripts must use simple arithmetic

expressions no more complex than the form ‘‘variable plus (or minus) a constant.”
For example,

ARY(I), ARY(3), ARY(I+3) or ARY(I-3)
are valid.
Example

Write an end-of-file record on the sequentially accessed external file associated
with I/0 unit 8.

endfile 8

For additional examples of the ENDFILE command, see ‘“Processing External
Files” on page 89.

Chapter 8. Interactive Debug Commands 141

ERROR Command

The ERROR command specifies whether corrective action is to be performed or
execution is to be suspended, and whether messages are to be received for
execution-time errors. If execution is suspended, you may specify the corrective
action to be taken by issuing the FIXUP command. For more information on
library error messages, see VS FORTRAN Version 2: Language and Library
Reference.

Abbreviation: ER

Syntax

ERROR {error | error:error | (error list)}

[MSG | NOMSG] [EXIT | NOEXIT]

error
specifies a single error. It is the identification number of the error as defined
by the VS FORTRAN Version 2 or VS FORTRAN Version 1 library, or as
defined by an auxiliary product.

error:error
specifies a range of error identification numbers to which all specified
keywords apply.

(error list)
specifies a list of error numbers or ranges to which all specified keywords

apply. Enclose the list in parentheses, and separate entries with commas or
blanks.

MSG
specifies that, if an execution-time error occurs among those listed, a full
diagnostic message is to be displayed. This is the default action.

NOMSG
specifies that, if an execution-time error occurs among those listed, no
diagnostic message is to be displayed.

EXIT

specifies that program execution is to be suspended if any of the listed errors
occur. This is the default action.

NOEXIT

specifies that the VS FORTRAN library is to take corrective action and
execution is to continue if any of the listed errors occur.

142 VS FORTRAN Version 2: Interactive Debug Guide and Reference

Notes:

1. The default options at the start of a debugging session are to provide all diagnostic
messages (MSG) and to suspend execution of the program if any execution-time
error occurs (EXIT). If your program calls ERRSET, this will change the settings
for the specified errors to MSG and NOEXIT.

2. If the EXIT keyword is in effect for a particular error, you are notified of the
location and error number when the error occurs. You can then trace the sequence
of control that led to the error location by issuing the WHERE command with the
TRBACK or FLOW keyword. If NOEXIT and NOMSG are both in effect, no
notification of error location or error number is given. If MSG is in effect, the
error number will be contained in the error message.

3. If you specify a large range of error numbers, the ERROR command may
generate a large number of diagnostic messages. You can use the PURGE
command in an attention exit to terminate ERROR if the messages are excessive.

4. If NOEXIT has been specified, standard corrective action will be taken unless you
have defined user corrective action by calling ERRSET from your VS FORTRAN
program. Execution will not be suspended in either case.

5. Not all VS FORTRAN library error numbers may be specified by the ERROR
command. If you specify one that may not, you will receive the following
message:

AFB198I VMOPP : ATTEMPT TO CHANGE UNMODIFIABLE MESSAGE TABLE
ENTRY, MESSAGE NUMBER 240

6. ERROR is not permitted after the VS FORTRAN program has terminated.
Example 1

You have set a variable to a negative value to test a condition but then realize that
the square root of the variable will be taken later. To avoid halting execution when
this occurs, you want the library to perform standard corrective action and continue
with no notification of the error. The error number for the square root of a
negative number is 251.

error 251 nomsg noexit
Example 2

If any single or double precision arithmetic execution errors (logs, trigonometric
functions, exponents) occur, you want Interactive Debug to provide full diagnostics
and to also take standard corrective action. The error numbers are 241 through
285.

error 241:285 noexit

For additional examples of the ERROR command, see “Handling Execution-Time
Errors” on page 86.

Chapter 8. Interactive Debug Commands 143

FIXUP Command

The FIXUP command may be used to specify corrected argument values when
execution has been suspended because of errors in a VS FORTRAN library
mathematical function. This command causes the function to be evaluated with
new arguments and execution to be continued. A FIXUP command with no
arguments causes standard corrective action to be taken.

Abbreviation: F

—— Spyntax

FIXUP [ARG]1(value)] [ARG2(value)]

ARG]1(value)
specifies the value of the first argument of the function. The value can be a
variable, an array element, or a constant.

ARG2(value)

specifies the value of the second argument of the function. The value can be
a variable, an array element, or a constant.

Notes:

1. FIXUP is permitted only when execution is suspended for a library function error.

2. If the library function for which FIXUP is to be performed has two arguments,
you can specify a single value for either of the two arguments, or you can specify
values for both arguments.

3. If you issue GO or FIXUP without arguments after an execution-time error,
standard corrective action is performed and execution is resumed.

4. You cannot change the actual value of the variable in storage by using FIXUP.
5. When referring to array elements, the subscripts must use simple arithmetic

expressions no more complex than the form ‘variable plus (or minus) a constant.”
For example,

A(I), A(3), ARY(I+3), or ARY(I-3)

are valid.

144 VS FORTRAN Version 2: Interactive Debug Guide and Reference

Example 1

Your program stops because of an arithmetic error. You want the library to
perform standard corrective action and to resume execution.

fixup

Example 2

Your program attempts to take the square root of a variable that is set to a negative
value. Instead of taking standard corrective action, you reset the negative variable
to a positive number and resume execution. (The value of the variable in storage
is not changed.)

fixup arg1(36)

For additional examples and a discussion of error correction, see ‘“Handling
Execution-Time Errors” on page 86.

Chapter 8. Interactive Debug Commands 145

GO Command

The GO command resumes program execution.

Abbreviation: None

—— Syntax

GO [[qual.]{number | EXIT}]

qual

specifies a program unit name to temporarily override the current qualifier
for this command. The qualifier must be the program unit that will be in
execution when the GO is executed.

number

specifies the statement identifier of an executable VS FORTRAN statement
at which execution is to be resumed. The statement identifier is a statement
label, an ISN, or a sequence number in columns 73 through 80. The type of
statement number used (ISN or sequence number) is determined by the
compiler and the options used. (See ‘‘Statement Identifier Conventions” on
page 114.) Precede a statement label with a slash. The statement must be
an executable statement with a debugging hook.

EXIT

specifies that Interactive Debug will resume execution of the program unit at
the exit point that corresponds to the entry point used.

Notes:

L

N

The statement identifier or EXIT keyword is optional, and is used if execution is
to resume at a specific point outside of the normal execution sequence. GO
without an operand causes execution to be resumed at the currently suspended
Statement.

If execution has stopped because of an execution-time error, resuming it with GO
produces standard corrective action to fix the error. (GO with an operand is not
allowed in an error exit.)

Execution of the GO command is subject to the same language restrictions as the
GOTO statement in VS FORTRAN. Branches into DO-loops and inner
DO-loops (except from the extended range of the DO loop (LANGLVL(66) only))
will produce unpredictable results.

The number or EXIT operand is not allowed with the GO command:

e In an error exit

o When execution is suspended at the ENTRY point of a program unit

o When execution is suspended for output

o When execution is suspended during a terminal read

146 VS FORTRAN Version 2: Interactive Debug Guide and Reference

J. 1t is not advisable to specify a statement label or statement identifier when
executing in a program unit that has been compiled with an optimization level
higher than zero. (This is because optimized code is highly dependent on register
contents.) Interactive Debug allows the operand, but will warn you (except in
batch mode) that the program unit is optimized and ask if you wish to continue.
If you type YES, the GO will be executed.

6. GO is not permitted after the VS FORTRAN program has terminated. It is also
not permitted if execution is suspended during a terminal read.

Example 1

Your program suspends execution at a breakpoint for debugging, and you now
want to resume execution at the currently suspended statement.

go

Example 2

Your program suspends execution at a breakpoint for debugging, and you now
want to skip ahead and resume execution at sequence number 410.

go 410
Example 3

Your program suspends execution at a breakpoint for debugging, and you have
changed the qualification to display variables in another program unit. You now
want to skip ahead and resume execution at the exit point of the program unit
currently executing, which is SUB1.

go subl.exit
Example 4

You know that program unit BUGGY produces incorrect results past the statement
labeled 100. For now, you want to set RESULT to the value A, and exit whenever
statement 100 is reached.

at buggy./100 (set result = a % go buggy.exit) nonotify

Chapter 8. Interactive Debug Commands 147

HALT Command

The HALT command causes execution to be suspended for every statement of a
given class, or at a specific point in a command list. The classes of statements are:
at the start of every statement, or after every branch, or at entry to and exit from a
debuggable routine.

For more information on use of the HALT command under ISPF Version 2, see
“Using Interactive Debug Features under ISPF Version 2” on page 24.

Abbreviation: None

—— Syntax
HALT [OFF |STMT | GOTO | ENTRY | IMMED]

OFF
specifies that the HALT setting in effect is to be terminated. This is the
setting when Interactive Debug execution begins.

STMT

indicates that execution is to be suspended before every executable
statement that has a debugging hook.

GOTO
indicates that execution is to be suspended whenever two consecutively
executed debugging hooks are not on consecutively stored statements. This
could occur for several reasons, including a GOTO, a DO group, a CALL, or
an IF statement. It also might occur if one or more statements have been
collapsed by optimization or vectorization, or because of hook restrictions
specified for ranges in AFFON, or when debug packets occur in the code.

ENTRY
specifies that execution is to be suspended whenever any debuggable

program unit is entered or exited. This could be as a result of a subroutine or
function call or return from a subroutine or function.

HALT ENTRY causes suspension of execution at the same points as AT
EXIT or AT ENTRY. At an entry breakpoint, the program unit is not yet
active. Thus, dummy arguments or variables in a dynamic common cannot
be accessed, and GO with an operand is not permitted.

IMMED
indicates that execution of an AT command list should be suspended
immediately and a prompt should be issued. This is the default action when
HALT is issued with no operand. In an attention exit, this will terminate the
current AT command list if one is executing.

148 VS FORTRAN Version 2: Interactive Debug Guide and Reference

Notes:

1. You can issue a HALT IMMED command to terminate a command list. You can
also use HALT IMMED in an attention exit to terminate command loops. For
example: AT 5 (GO 5).

2. If a statement at which execution would normally be suspended by the current
HALT setting has an AT breakpoint with a command list that causes execution to
resume, the HALT setting will not suspend that statement.

For example, if HALT STMT is in effect but you have issued the command AT 5
(SET A=10%G0), execution will not be suspended at statement 5.

3. Any statement for which execution would be suspended by HALT GOTO will also
have execution suspended by HALT STMT.

Any statement for which execution would be suspended by HALT ENTRY will
also have execution suspended by HALT GOTO and HALT STMT.

4. HALT is not permitted after the VS FORTRAN program has terminated.
5. To see the current HALT setting, type LISTBRKS.

Example 1

Suspend execution at entry to or exit from all debuggable units.

halt entry

Example 2

Suspend execution prior to executing each statement with a debugging hook in the
program.

halt stmt
Example 3

At statement identifier 10, halt execution if A is greater than B; otherwise,
continue executing with no notification of the breakpoint.

at 10 (if (a .gt. b) halt%go) nonotify

For additional examples of the HALT command, see “Controlling Program
Execution” on page 74.

Chapter 8. Interactive Debug Commands 149

| HELP Command (ISPF Version)

The HELP command provides information about the description, format, and
keywords of all Interactive Debug commands as well as a task-oriented tutorial.

See Appendix A, “Using the Interactive Debug HELP Facility” on page 219 for a
description of HELP capabilities, procedures, and examples. The following form of
the command is intended for use in an ISPF environment.

Abbreviation: H (ISPF Version 2)

r—— Syntax
HELP [command]

command
specifies the name of a command, or one of the keywords TASK or MENU.
If no command is specified, a HELP menu is displayed for further selection.
You cannot use a command abbreviation.

Notes:

1. If HELP is issued with no operand after an error has occurred in an Interactive
Debug command, the HELP panel for that command is shown. Otherwise, the
HELP main menu is displayed for you to select a specific help panel.

2. The HELP command cannot be used as part of an AT command list or with an
IF command.

3. HELP TASK displays a menu of debugging tasks. From this menu, you may
request further information for a specific task.

4. HELP or HELP MENU displays a menu of all commands available in the
Interactive Debug HELP facility. From this menu, you may request further
information for a specific command in the menu.

Example 1

Display a list of all available HELP command topics.

help

Example 2

Display HELP information for the LIST command.

help list

150 VS FORTRAN Version 2: Interactive Debug Guide and Reference

- HELP Command (CMS Version)

1

The HELP command provides information about the description, format, and
keywords of all Interactive Debug commands as well as a task-oriented tutorial.
| See Appendix A, “Using the Interactive Debug HELP Facility” on page 219 for a
[description of HELP capabilities, procedures, and examples. The following form of
| the command is intended for use in a CMS line mode environment.

Abbreviation: H

—— Syntax
HELP [command [(ALL | (DESC | (PARM | (FORM]]

command
specifies the name of a command, or one of the keywords TASK or MENU.
If no command is specified, no other option may be specified; a HELP menu
is displayed for further selection. You cannot specify a command
abbreviation.

requests information about keywords and syntax of the named command.
This is the default action.

DESC
7 requests a description of the named command.

PARM
requests a description of the keywords of the named command.

FORM
requests a description of the syntax of the named command.

Notes:

1. The HELP command cannot be used as part of an AT command list, with an IF
command, or in batch mode.

2. In CMS line mode, HELP TASK displays a menu of debugging tasks. From this
menu, you may request further information for a specific task.

3. In CMS line mode, HELP or HELP MENU displays a menu of all commands
available in the Interactive Debug HELP facility. From this menu, you may
request further information for a specific command in the menu.

4. In CMS line mode, if HELP is issued without any operands after an error has

occurred in an Interactive Debug command, the HELP panel for that command
will appear.

Chapter 8. Interactive Debug Commands 151

Example 1

Display a list of all available HELP command topics.

help
Example 2

Display all HELP information for the IF command.

help if
Example 3

Display HELP information for all ERROR command keywords.

help error (parm

152 VS FORTRAN Version 2: Interactive Debug Guide and Reference

o~ HELP Command (TSO Version)

The HELP command provides information about the function, syntax, and
keywords of all Interactive Debug commands as well as a task-oriented tutorial.
See on Appendix A, “Using the Interactive Debug HELP Facility” on page 219
for a description of HELP capabilities, procedures, and examples. The following
form of the command is intended for use in a TSO line mode environment.

Abbreviation: H

— Syntax
HELP [command][ALLJ{FUNCTION][SYNTAX]

[OPERANDS [(keyword list)]]

command
specifies the name of a command, or one of the keywords TASK or
IADMENU. If no command is specified, no other option may be specified; a
list of commands is displayed for further selection. You cannot specify a
command abbreviation.

requests information about the function, syntax, and operands of the named
command. This is the default action.

FUNCTION
requests information about the function of the named command.

SYNTAX
requests information about the syntax of the named command.

OPERANDS |[(keyword list})]
requests information about keywords for the named command. Enclose the
list in parentheses and separate the keywords in the list with commas or
blanks. If the list is omitted, all keywords, operands, notes, and examples for
the named command are explained.

Notes:

1. The HELP command cannot be used as part of an AT command list, with an IF
command, or in batch mode.

2. InTSO line mode, HELP TASK displays a menu of debugging tasks. You may
then issue another HELP command to request further information for a specific
task.

3. In TSO line mode, HELP IADMENU displays a menu of all topics available in

the Interactive Debug HELP facility. You may then issue another HELP
command for a specific item in the menu.

Chapter 8. Interactive Debug Commands 153

4. In TSO line mode, if HELP is issued without any operands after an error has
occurred in an Interactive Debug command, the HELP panel for that command

appears.

5. In line mode, you can request that notes and examples be shown by specifying
NOTES or EXAMPLES as a keyword with OPERANDS.

Example 1

Display a list of all available HELP topics.

help
Example 2

Display all HELP information for the IF command.

help if
Example 3

Display ERROR command syntax and HELP information for the EXIT keyword.

help error syntax operands(exit)
Example 4

Display the notes and examples for the GO command in addition to the syntax.

help go syntax operands (notes, examples)

154 VS FORTRAN Version 2: Interactive Debug Guide and Reference

-~ IF Command

The IF command is used, usually within an AT command list, to test a relational or
a logical condition when the specified breakpoint is reached. If the condition is
true, the command specified within the IF command is executed.

Abbreviation: None

—— Syntax

IF (condition) command

(condition)
is the condition to be tested. It can be either a relational or a logical
condition.
command
is a single Interactive Debug command that is executed only if the specified
condition is true.
Relational condition: A relational condition is a signed or unsigned variable or array
element or constant, followed by a relational operator, followed by another signed
or unsigned variable or array element or constant.
There are six relational operators that can be used to test relational conditions.
= or .EQ.
-~=or .NE.
> or .GT.
< or LT.
>=or.GE.
<=or.LE.
Logical condition: A logical condition is a logical variable or a logical array
element, optionally preceded by the negation operator (- or NOT.). No other
operators are permitted.

Notes:

1. The following is an example of the relational condition form of the IF command:
IF (A .GT. B) HALT
With the relational condition form of the IF command, the following is true:
o When either variable or constant is a logical or character type, both must be

of that same type, and no sign is permitted preceding either variable or
constant.

Chapter 8. Interactive Debug Commands 155

o When either variable or constant is a logical or complex type, only the -~
relational operators .EQ. and .NE. (or = and ~=) may be used. ’

2. Substring notation is permitted for string variables.

3. For array elements, subscripts may have values beyond the range of the
corresponding array dimensions. A warning message will be issued except in the
special case where the last dimension is “1”’ or “**’ and only the last subscript is
out of range.

4. When referring to array elements, the subscripts must use simple arithmetic
expressions no more complex than the form “variable plus (or minus) a constant.”
For example,

ARY(I), ARY(3), ARY(I+3) or ARY(I-3)
are valid forms.

5. You cannot reference variables that are not currently defined, such as dummy
arguments in an inactive subroutine.

6. Logical variables must have been set to VS FORTRAN logical constants for
condition testing to produce predictable results.

7. Variables in different program units can be referenced by qualifying the variable
names with program unit names; for example:

IF (MAIN.A .LT. SUB1.B) SET SUB1.B = MAIN.A "

8. The command specified with IF cannot be HELP, QUALIFY, or FIXUP. You
also cannot specify any of the full screen display commands.

9. When character variables or constants of unequal length are compared, the shorter
is considered to be extended with blanks during the comparison.

10. IF is not permitted after the VS FORTRAN program has terminated.

Example 1

At the statement labeled 100, determine whether logical variable OVER is true,
and if it is true, reinitialize counter I and resume processing; if OVER is false,
continue processing without resetting I.

at /100 (if (over) set i=0%go)
Example 2

At statement number 10, test if variable A in subroutine SUB is zero; if it is,
suspend execution; if A is not zero, continue processing.

at 10 (if (sub.a = 0.0) halt¥%go)

156 VS FORTRAN Version 2: Interactive Debug Guide and Reference

Example 3

At statement 5, test the following set of logical conditions; if either A or B is true,
go to the statement labeled 10 and continue processing; if neither is true, continue
processing at the next executable statement.

at 5 (if (a) go /10%if (b) go /10 %go)
Example 4

At statement 7, if the first five characters of the variable SOLAR are ABCDE, set
counter I to 2

at 7 (if (solar(1:5)='ABCDE') set I=2)

Chapter 8. Interactive Debug Commands 157

LIST Command

The LIST command displays the values of specified scalar variables, arrays, array
elements, or string constants at the terminal or in a print data set. Values can be
displayed in a variety of formats. The specified or implied qualifier is shown with
all variable or array names and the array elements may be displayed outside the
defined dimensions. For more information on how to use LIST under ISPF
Version 2, see “Using Interactive Debug Features under ISPF Version 2 on
page 24. See also “Displaying Formatted Variable and Array Values” on

page 85.

Abbreviation: L

—— Syntax

LIST {[qual.Jname[:[qual.Jname] | * | *string’ |
number | (specification list)}

[PRINT] [FORMAT [(code)] | DUMP [(code)]]

[qual.]Jname
specifies the name of a variable, array, or array element used in the program.
If a qualifier is specified, it overrides the current qualifier for the specified
name.

[qual.Jname:[qual.Jname
specifies a range of variable, array, or array element names used in the
program. If a qualifier is specified, it overrides the current qualifier for the
specified name.

LIST displays all storage locations between the two variables. Unless
FORMAT or DUMP is specified, the format of the displayed variables is the
same as the type of the first variable.

specifies that a list of all the names in the currently qualified program unit is
desired. Unless FORMAT or DUMP is specified, each is displayed
according to its own type.

‘Stl'ing’
specifies a character string to be displayed as a remark. You can use this
operand to help identify breakpoints.

number
specifies an integer or real numeric constant to be displayed as a remark.
This function is useful for converting numbers, in conjunction with the
FORMAT option.

158 VS FORTRAN Version 2: Interactive Debug Guide and Reference

specification list
specifies a list of individual specifications. Enclose the list in parentheses
and separate entries with commas or blanks.

PRINT

specifies that output is to be sent to the print data set instead of to the
terminal.

FORMAT [(code)] or DUMP [(code)]
specifies a particular data format:

« FORMAT displays the names listed and their values in the specified
format.

« DUMP displays the address in storage of the names listed and their
values in the specified format.

» (code) specifies the format or dump code for the names to be listed. The
default format code is X. The default dump code is Z.

« FORMAT and DUMP are mutually exclusive.
FORMAT and DUMP codes for the LIST command are the same as for

the AUTOLIST command, and are shown again in Figure 28 on
page 160.

Chapter 8. Interactive Debug Commands 159

Code Output

L1 Logical*1

L4 Logical*4

12 Integer*2

I4 Integer*4

R4 Real*4

R8 Real*8

R16 Real*16

C8 Complex*8

Cl16 Complex*16

C32 Complex*32

L Logical with size closest to internal data size

I Integer with size closest to internal data size

R Real with size closest to internal data size

C Complex with size closest to internal data size

X[nnn] Hexadecimal with nnn bytes per data item
(default to internal data size)

Z[nnn] Hexadecimal with nnn bytes per data item
(default to Z4)

A[nnn] Character with nnn bytes per data item
(default to internal data size)

H[nnn] Character with nnn bytes per data item
(default to continuous full line output)

Figure 28. DUMP and FORMAT Codes for the LIST Command

Notes:

1. When you request an individual name or list of names, the default formatting of

values is determined by the type of each name being displayed. When you request
a range of names, the formatting of the values is determined by the format of the
first name in the range. You may, however, specify a different format using the
FORMAT or DUMP keyword. The locations of the listed names are identified in
the output only if DUMP is specified.

VS FORTRAN defines storage layout only for arrays, variables in a common
block (defined in a COMMON statement), and variables in equivalence groups
(defined in an EQUIVALENCE statement). The relative positions of any other
names in storage cannot be predicted. Names that you may expect to be adjacent
in storage may be widely separated by other data. Therefore, a range specification
for names other than array, equivalence, or common variables may produce
unexpected results.

The length specification in a FORMAT or DUMP code may be entered with 1
through 3 digits. Thus, 14, 104, and 1004 are equivalent.

160 VS FORTRAN Version 2: Interactive Debug Guide and Reference

4.

A length specification of 0 in character and hexadecimal FORMAT and DUMP
codes (for example, A0 or Z0) causes the data to be displayed as a continuous
string, rather than split into pieces of some specified length.

If a FORMAT or DUMP code with no length specification is given for a range of
variables or array elements, each variable or array element is displayed separately
in the specified format. However, if a length specification is given, Interactive
Debug will consider the entire storage area occupied by all the range of variables
or array elements, or occupied by the entire array, as if it were broken into pieces,
each with a length equal to that specified in the DUMP or FORMAT code, and
will display each piece according to the specified format. For example, if
PRIMES is a 2 x 3 array of INTEGER *4 values, then:

list primes format (x)

will cause a display of 6 values, each corresponding to an element of the array.
However:

list primes format(x2)

will cause a display of 12 values, each displaying the contents of successive 2-byte
storage areas within the array.

The DUMP option is not permitted with constant operands, including strings;
using it will produce an error message.

An assumed size array cannot be listed by just specifying the array name; the
specific element or range of elements must be specified. (An assumed size array is
an array with the last upper bound declarator specified as an asterisk (*).) This
restriction does not apply to arrays whose last dimension is “1,” even though such
arrays are otherwise treated as assumed size arrays. However, only the elements
whose last subscript is ““1”’ will be displayed if no subscripts are specified.

For array elements, subscripts may have values beyond the range of the
corresponding array dimensions. A warning message will be issued except in the
special case where the last dimension is “1” or “*”’ and only the last subscript is
out of range.

Array subscripts must consist of simple arithmetic expressions no more complex
than the form “‘variable plus (or minus) a constant.” For example,

list ARY(I), list ARY(3), list ARY(I + 3) or list ARY(I - 3)

are valid.

10. Dummy arguments can only be displayed when the program unit in which they are

11.

defined is active. If not, an error message is issued. Results are unpredictable if
you display a dummy argument that is not defined at the entry point called. Note
that a program unit is not yet active when suspended at entry.

Variables in dynamic commons can only be displayed if the program unit used to
qualify the variable has been activated at least once. (If not, an error message
may be issued. However, if a variable has a large displacement in its dynamic
common, Interactive Debug cannot detect that it is not initialized.)

Chapter 8. Interactive Debug Commands 161

12. Although a quoted string can be used as an operand on the LIST command, you
cannot point the cursor at a quoted string in the source listing window (when using
LIST as a cursor-oriented command).

Example 1

Display at the terminal the value of the variable named NCOUNT.

list ncount
Example 2

Obtain a hexadecimal dump (FORMAT (X)) showing values of array variables
A(1,1) through A(7,10). Have the display sent to the print data set.

list a(1,1):a(7,10) print format
Example 3

List the decimal number 12345 in hex.

list 12345 f£(x)

Example 4

Display an entire array (CHARAY) containing a series of 30-character alphabetic
strings so that each character string is separated from the others. (If the array is
declared in the program to be a CHARACTER*30 array, the elements of the array
will be separated from each other when the array is listed.)

list charay format(a30)
Example 5

Display the value of the variable named CTR in subroutine SUBI1.

list subl.ctr
Example 6

Display the message “inside loop” whenever ISN 100 is executed.

at 100 (list 'inside loop'%go)
Example 7

Display variable LONG__NAME__ VAR in program unit SUB1, and variable
SHORT in program unit SUB2. This illustrates the LIST format in support of long
(31 character) names. Note that long names cause a line break to allow alignment
of the “=""s without excessive horizontal spread.

list (subil.long_name_var,sub2.short)
SUB1.LONG_NAME_VAR

10

25

nn

SUB2.SHORT

162 VS FORTRAN Version 2: Interactive Debug Guide and Reference

Example 8

Display values of the second through sixth characters in the character variable
PORT

list PORT(2:6)

For additional examples of the LIST command, see “Displaying Formatted
Variable and Array Values” on page 8S.

Chapter 8. Interactive Debug Commands 163

LISTBRKS Command

The LISTBRKS command provides the following information:

« All breakpoints that are currently set, including entry, exit, and statement
breakpoints

o All WHEN conditions (both on and off) that are currently defined, and the
condition being tested

o The current HALT status (OFF, STMT, GOTO, or ENTRY)

Abbreviation: LB

—— Syntax
LISTBRKS [PRINT]

PRINT
specifies that output is to be sent to the print data set instead of to the
terminal.

Note: LISTBRKS lists breakpoints and WHEN conditions for all program units.
Example

The following is a sample of the output produced by LISTBRKS:

CURRENT BREAKPOINTS:
MAIN.15/30
SUB.ENTRY
SUB.8/10
CURRENT WHEN CONDITIONS:
ABCD ON (SUB.X > 5)
EFGH ON (CH(1:2)='AB')
CURRENT HALT STATUS: OFF

For additional examples of the LISTBRKS command, see ‘“Referring to Statements
or Variables in Other Program Units” on page 70.

164 VS FORTRAN Version 2: Interactive Debug Guide and Reference

LISTFREQ Command

The LISTFREQ command lists the number of times statements in the currently
qualified program unit have been executed. This command can also be used to list
the statements that have not been executed.

Abbreviation: LF

— Syntax
LISTFREQ [[qual.]{number(:[qual.Jnumber] | ENTRY | EXIT} |

(number/ENTRY/EXIT list)]

[ZEROFREQ] [PRINT]

gual
specifies a program unit name prefix to temporarily override the current
qualifier for the prefixed operand only.

number
specifies the statement label, ISN, or sequence number of an executable VS
FORTRAN statement whose execution counts are to be listed or checked for
zero. Precede a statement label with a slash to distinguish it from an ISN or
sequence number.

number:|qual.Jnumber
specifies a range of statement labels or statement numbers (ISNs or sequence
numbers) whose execution counts are to be listed or checked for zero.
Statement labels can be combined with ISNs or sequence numbers in the
range specification, but the first and last must be executable statements.
Precede each statement label with a slash.

Statement identifiers can be qualified with a program unit name. The default
program unit for the first identifier is the current qualifier. The default
program unit for the second identifier is the program unit specified or
defaulted for the first identifier. Both identifiers must have the same
program unit in effect.

ENTRY
specifies entry points. The frequency of entry into the program unit is
specified.

EXIT
specifies exit points. The frequency of exit from the program unit is
specified.

(number/ENTRY/EXIT list)
requests a list of statement labels, ISNs or sequence numbers, entry points,
exit points, and ranges. (Note that ENTRY and EXIT are not permitted in a
range.) The frequency for each specified statement is listed. Enclose the list
in parentheses, with individual entries separated by commas or blanks.
Precede each statement label with a slash.

Chapter 8. Interactive Debug Commands 165

ZEROFREQ

requests a list of statements that have not been executed. All statements
may be tested, or specific statements may be specified using the options
discussed above.

PRINT

requests that the output go to a print data set instead of to the terminal.

Notes:

1

If no operand is specified, the counts are displayed for ENTRY, EXIT, and all
executable statements with debugging hooks in the currently qualified program
unit.

If LISTFREQ is issued after an ENDDEBUG command, the execution counts
displayed are those that existed when ENDDEBUG was issued.

Execution counts of unhooked or collapsed statements are not displayed. Instead,
you will see the phrase “NO HOOK” or “COLLAPSED STMT.”

Before a RENT program unit is first entered, all statements are considered to have
no hook. Statements in a reentrant program unit that are excluded in the AFFON
file will show “COLLAPSED STMT?” on the LISTFREQ display.

After ENDDEBUG is issued, LISTFREQ displays counts for all noncollapsed
Statements.

Statements in a debug packet will be treated as collapsed in VS FORTRAN
programs compiled prior to Version 1 Release 4.0. If the program is compiled
with VS FORTRAN Version 1 Release 4.0 or later, the debug statements are
inserted directly into the code and LISTFREQ will show duplicate statements in
addition to the DEBUG packet code.

7. If you request ZEROFREQ, Interactive Debug displays only hooked statements
that have not been executed.
Example 1

On the print data set, list how many times each executable statement in the
currently qualified program unit has been executed.

listfreq print

Your output might look something like this:

STATEMENT FREQUENCY
MAIN.ENTRY NO HOOK
MAIN.EXIT NO HOOK
MAIN.6 1

MAIN.7 COLLAPSED STMT
MAIN.8 COLLAPSED STMT
MAIN.9 NO HOOK

MAIN. 10 3

MAIN. 11 3

MAIN.12 NO HOOK
MAIN.13/10014 NO HOOK

166 VS FORTRAN Version 2: Interactive Debug Guide and Reference

Example 2

List the statements that have not been executed in the currently qualified program
unit.

listfreq zerofreq
Example 3

List how many times some specific statements have been executed in the currently
qualified program unit.

listfreq (10:/80,300,/95,/105,ENTRY)
listfreq (20:130 ENTRY 250 /1000)

Example 4

List how many times the executable statements 12 through 15 in subroutine SUB1
have been executed.

listfreq subi1.12:subl1.15

For additional examples of the LISTFREQ command, see “Determining Statement
Execution Frequency” on page 78.

Chapter 8. Interactive Debug Commands 167

| LISTINGS Command

The LISTINGS command displays the listings data set specification panel under
ISPF version 2. This provides a command equivalent to typing “?” in the Q: field.

Abbreviation: None

T Syntax
LISTINGS

Notes:

1. LISTINGS cannot be issued in a command list, as the command portion of an IF
command, in an attention exit, or a restart file.

2. LISTINGS will operate as usual with a parameter list, but the panel will indicate
the message “PARAMETERS IGNORED.”

Example

When you issue the LISTINGS command, a Listings Data Set Specification Panel,
similar to Figure 29, will be displayed.

COMMAND ===>

VS FORTRAN INTERACTIVE DEBUG ROW 1 OF 4
SCROLL ===> HALF

PROGRAM UNIT NAME CMS FILE ID SOURCE
MAIN_PROGRAM FORTPROG LISTING *_ NO FILE NOT FOUND
SUB1 SUB1 LISTING *_ YES
SUB2 SUB2 LISTING *_ NO FILE NOT USABLE
SUBROUTINE3 SUB1 LISTING *_ NO PROGRAM NOT FOUND
RRKKRKEEREEERERKRERRRR RN R AkRRkkRX BOTTOM OF DATA HkkkkkkkhkRkk kR kRhkRRKREREXRERKER

Figure 29. The Listings Data Set Specification Panel in CMS

The column labelled “PROGRAM UNIT NAME” identifies the debuggable VS
FORTRAN program units. The second column, “CMS FILE ID,” indicates the
names of files where the listings are to be found. In the column labelled
“SOURCE,” YES indicates that the listing will be displayed in the Source Listing
Window.

In the last column, the CMS message FILE NOT FOUND indicates that the
specified file was not found on any of your accessible disks. The equivalent TSO
message is DATA SET NOT FOUND. The message PROGRAM NOT FOUND
indicates that the listing file was found, but did not contain the named program (in
this case, SUBROUTINE3). The FILE NOT USABLE message indicates that the

168 VS FORTRAN Version 2: Interactive Debug Guide and Reference

~

data set was found but cannot be used as a listing in the source window. Under
TSO, the message is DATA SET NOT USABLE.

After filling in the listings data set specification panel, you return to the execution
panel by entering END, usually PF key 3.

Chapter 8. Interactive Debug Commands 169

| LISTSAMP Command

The LISTSAMP command lists sampling counts by statement or by program unit.
Percentage of program unit samples and percentage of total number of samples are
also listed, along with a bar chart of the sampling counts.

Abbreviation: None

Format 1

——— Syntax for Listing Sampling Counts by Statement
LISTSAMP {[qual. Jnumber[:[qual.Jnumber]

| [qual.JENTRY | [qual.]* | (specification list) | *.*}

[DIRECT][CALLED][ALL] [TOP[(n)]][PRINT]

Format 2

—— Syntax for Listing Sampling Counts by Program Unit
LISTSAMP {unit name | (unitname list) | *} SUMMARY

[DIRECT][CALLED][ALL] [TOP[(n)]][PRINT]

[qual.Jnumber
is the statement label, ISN, or sequence number of an executable statement
whose sampling information is to be listed. Qualification is optional. A
statement label must be prefixed with a slash (/).

[qual.]Jnumber:[qual. Jnumber
specifies a range of statements in the program whose sampling information is
to be listed. Qualification is optional. If the second qualifier is specified, it
must be the same as that specified for the first qualifier.

{qual.JENTRY
indicates that the sampling count for the entry and exit code of the specified
or currently qualified program unit is to be listed. There is only one sampling
count to cover both entry and exit code.

[qual.]*
indicates that all statements in the specified or currently qualified program
unit are to be included.

specification list

specifies a list of individual specifications. Enclose the list in parentheses
and separate entries using commas or blanks.

includes all statements in all programming units.

170 VS FORTRAN Version 2: Interactive Debug Guide and Reference

2

unitname
specifies the name of a program unit whose sampling summary is to be listed.
This must be a VS FORTRAN unit compiled with SDUMP.

unitname list
specifies a list of program unit names separated by commas or blanks.

indicates that all program units, debuggable or not, are to be included. In
addition, there are two special names that are reported when “*” is specified:

*LIBRARY shows the sampling count accumulated for all VS
FORTRAN Library modules other than the mathematical functions and
the Error Monitor. This includes lower-level calls to system services.

*UNKNOWN shows the count of sampling interrupts that could not be
assigned to any program unit.

SUMMARY
indicates that sampling counts are to be summarized by program unit. This
keyword is only allowed in format 2.

DIRECT
indicates that interruptions occurring in the code are to be included in the
sampling counts for that code. DIRECT is the default.

CALLED
indicates that interruptions occurring in lower-level routines are also to be
included in the sampling counts of the code being sampled. This option is
valid only when sampling is initiated with the CALLED option.

indicates that sampling counts are to be the sum of the DIRECT and
CALLED counts.

TOP(n)
indicates that only the number of statements specified by n (or programming
units, if the SUMMARY option was specified) having the highest counts are
to be listed. The output is sorted in descending order by count. The default
for n is “1”’; the maximum value is “9999.”

If TOP is not specified, the output is in the order shown in the specification
list, and within that by statement table order.

PRINT

indicates that output is to be written to the print data set instead of to the
terminal.

Chapter 8. Interactive Debug Commands 171

Notes:
1. The LISTSAMP command is valid only when sampling has been performed.

2. Qualifiers and unit names are restricted to VS FORTRAN program units
compiled with SDUMP.

3. Non-FORTRAN program units (and units compiled with NOSDUMP) are
identified by the entry ID located using the value of GPR 15 saved in the
savearea. Programs that do not follow MVS standards for entry identifiers will
not be correctly identified. Note that the entire ID string is shown, up to 31
characters. This often includes blanks and additional information such as date
and time of compilation.

4. Sampling counts for nondebuggable program units cannot be requested by name;
however, the “*”’ operand with the SUMMARY option will show sampling counts
for both debuggable and nondebuggable program units, including VS FORTRAN
library counts.

Example 1

Display a summary of the sampling counts for all program units

listsamp * summary

PROGRAM SAMPLING INTERVAL WAS 20 MS; TOTAL NUMBER OF SAMPLES

WAS 9745.
DIRECT SAMPLES:
PROGRAM UNIT SAMPLES %TOTAL
MAIN 613 6.35 *
SUB1 15 0.15
SUB2 5763 59,71 *kkkokkkkkkkk
SUB3 1882 19.31 ***
S#IN 1251 12.83 **=*
*LIBRARY 128 1.31
*UNKNOWN 23 1.01
Example 2

Display a summary of the sampling counts for SUB1 and SUB2

listsamp (sub1,sub2) summary

PROGRAM SAMPLING INTERVAL WAS 20 MS; TOTAL NUMBER OF SAMPLES

WAS 9745.
DIRECT SAMPLES:
PROGRAM SAMPLES ¥TOTAL
SUB1 15 0.15
SUB2 5763 59.71 kkkkkkkkkkk*k

172 VS FORTRAN Version 2: Interactive Debug Guide and Reference

Example 3

Display the sampling counts for a range of statements in SUB2. (Sampling counts
will include interruptions which occurred in the code of a statement as well as in
any lower-level routines called by the statement.)

listsamp sub2.10:20 all

PROGRAM SAMPLING INTERVAL WAS 20 MS; TOTAL NUMBER OF SAMPLES

WAS 9745.
SUM OF DIRECT AND CALLED SAMPLES:
STATEMENT SAMPLES ®UNIT &TOTAL
SuB2.10/10 1142 73.15 12.53 **kEXRXRERERXERE
SUB2.11/12 231 15.42 3.02 **x*
SUB2.13 12 1.22 0.15
SUB2.15 COLLAPSED
SUB2.16 22 2.38 0.32
SUB2.18 14 1.24 0.16
SUB2.20 46 5.17 0.77 *

Example 4

Display the four highest counts in SUB2. (Sampling counts will include
interruptions which occurred in the code of a statement as well as in any
lower-level routines called by the statement.)

listsamp sub2.* top(4) all

PROGRAM SAMPLING INTERVAL WAS 20 MS; TOTAL NUMBER OF SAMPLES

WAS 9745.
SUM OF DIRECT AND CALLED SAMPLES:
STATEMENT SAMPLES JUNIT §TOTAL
SUB2.10/920 1142 73.15 12.53 **xkkkkkkkkkekx
SUB2.11/930 231 15.42 3.02 **=*
SUB2.20 46 5.17 0.77 *
SUB2.ENTRY/EXIT 42 4.92 0.72 *

Chapter 8. Interactive Debug Commands 173

LISTSUBS Command

The LISTSUBS command displays a list of all VS FORTRAN program units
compiled with SDUMP, including those not listed in AFFON, with the following
information for each:

o Compiler level used to produce the object code (if it can be determined)

. Opthnization level

+ Vectorization level

» Hook existence
+ Timing status
o Load status for units compiled with RENT

Abbreviation: LS

—— Syntax

LISTSUBS [PRINT]

PRINT

specifies that output is to be sent to the print data set instead of to the

terminal.

Example

The following is a sample of the output produced by LISTSUBS:

PROGRAM UNIT COMPILER OPT HOOKED TIMING

MAINLINE VSF 2.2.0 V2 YES ON

SUBBUILD VSF 1.4.0 3 NO OFF RENT NOT LOADED
SUBDOWN VSF (TEST) 0] YES OFF

SUBREFIT VSF 1.3.1 1 NO ON

In the sample output above, VSF (TEST) means that the program unit was
compiled prior to VS FORTRAN Version 1 Release 4.0, and the TEST option was
specified. In this case, it is not possible to determine the VS FORTRAN release

level.

For nonvectorized programs, the “OPT” column displays the level of optimization:
0, 1, 2, or 3. For vectorized programs, the “OPT” column in the output displays
one of the following values:

V1 VECTOR (LEVEL(1))

V2 VECTOR (LEVEL(2))

If the program unit has been vectorized, the optimization level is always 3, and is

not shown.

174 VS FORTRAN Version 2: Interactive Debug Guide and Reference

YES means that hooks are installed at entry and exit points and possibly at some or
all statement boundaries as well. The hook settings are controlled by the AFFON
file. NO in the “HOOKED” column indicates that no hooks are installed in the
program unit.

ON in the “TIMING” column indicates that timing has been activated for the
program unit. The TIMER command is used to set timing ON or OFF.

The possible load status indications for RENT program units are:

RENT NOT LOADED The program unit has not yet been called, and has not
been located (although it may actually be in storage).

RENT IN USER AREA The program unit has been called and is in user-owned
storage.

RENT IN PROT AREA The program unit has been called and is in protected
storage.

For additional examples of the LISTSUBS command, see “Displaying Information
about Debuggable Program Units” on page 69.

Chapter 8. Interactive Debug Commands 175

LISTTIME Command

The LISTTIME command displays timings for all program units for which timing is
active or was previously active. The TIMER command activates timing for a unit.

See the TIMER command for more information on activating timing.

Abbreviation: LT

[Syntax

LISTTIME [PRINT]

PRINT :

specifies that output is to be sent to the print data set instead of to the
terminal.

Notes:

1. The timing information provided by Interactive Debug may include overhead
caused by the debugging hooks in your program. Thus, the timing information is
not an accurate representation of the time it takes to execute without Interactive
Debug.

2. Timing for very small subroutines may be erratic.

3. Timing is measured separately for each entry point in the program unit.

4. If LISTTIME is issued after an ENDDEBUG command, the times and
activation counts are those that existed when ENDDEBUG was issued.

Example

The following is a sample of the output produced by LISTTIME:

ENTRY POINT TASK TIME (MIC) PERCENT INVOCATIONS
MAIN 31680 48.48 1
SUBA1 4128 6.32 2
SUBA2 28544 43.68 15
SUBB 942 1.52 1

For additional examples of the LISTTIME command, see “Displaying Timing
Information” on page 82.

176 VS FORTRAN Version 2: Interactive Debug Guide and Reference

P

MOVECURS Command

The MOVECURS command is used under ISPF Version 2 to move the cursor
between the source window and the command line. It can be used only in full
screen mode under ISPF Version 2, and is invalid if used in any other environment.
It cannot be issued in a command list, an IF command, an attention exit, or a
restart file.

See “Using Interactive Debug Features under ISPF Version 2” on page 24 for
more information.

Abbreviation: MC

—— Syntax
MOVECURS

Notes:

1. If the cursor is anywhere outside the command line when you give the
MOVECURS command, the cursor is returned to the command line. If the
cursor is already on the command line, it will be positioned at the most recent
position in the source window (if the position is known and available). Otherwise,
it is positioned at the beginning of the source window.

2. You may find it convenient to redefine the ISPF “CURSOR "’ PF key to issue the
MOVECURS command. To do this, enter the ISPF command KEYS on the
ISPF command line. You will then see a list of all current PF key assignments.
You can change the CURSOR key (usually PF 12) to MOVECURS by typing
MOVECURS next to the appropriate PF key number and pressing ENTER.

Chapter 8. Interactive Debug Commands 177

NEXT Command

The NEXT command suspends program execution at the next statement, entry, or
exit with a debugging hook. Because some statements may not have been included
in the AFFON list or may have been collapsed, execution need not necessarily be
suspended at the next statement to be executed.

Abbreviation: N

—— Syntax
NEXT

Notes:

1. There are no operands for the NEXT command.

2. You are notified of the point where execution is suspended because of NEXT.

3. NEXT suspension is not a breakpoint. 1t is not listed by LISTBRKS.

4. Certain commands are not allowed while 1/0 is active. When execution is
suspended for output, the NEXT command can be issued to cause execution to be
suspended again after the completion of the 1/ O operation. At the next statement
boundary with a debugging hook, execution will be suspended, and you may issue
other commands.

5. Under ISPF, when an Interactive Debug command (or commands in a command
list) produces more lines of output than the output halt value, a NEXT is forced to
ensure that the output is displayed. A message will appear in the ISPF message
area of the terminal, stating:

"NEXT" FORCED FOR OUTPUT
The default for the output halt value is 50 lines, but you can change this value on
the PROFILE panel under ISPF Version 2.

6. If the statement at which execution is to be suspended has a breakpoint set with an
AT command, including a command list that causes execution to resume, the
NEXT command will not cause execution to be suspended at that statement.

7. NEXT is not permitted after the VS FORTRAN program has terminated.

8. The STEP command can be issued to replace NEXT/GO combinations. See

“STEP Command’ on page 203 for more information.

178 VS FORTRAN Version 2: Interactive Debug Guide and Reference

Example 1

Suspend execution after executing one statement.

AT: MAIN.10
next

go

NEXT: MAIN.11
next

go 40

NEXT: MAIN.40

Example 2

You are in an error exit, and want to suspend execution after having performed
corrective action.

ERROR EXIT: ERROR 209 AT MAIN.11

next

fixup

STANDARD CORRECTIVE ACTION TAKEN. EXECUTION CONTINUING.
NEXT: MAIN.12

For additional examples of the NEXT command, see “Controlling Program
Execution’ on page 74.

Chapter 8. Interactive Debug Commands 179

OFF Command

The OFF command removes breakpoints in the currently qualified program unit.
OFF can also be used without parameters as one of the cursor commands under
ISPF Version 2. For more information, see ‘“Using Interactive Debug Features
under ISPF Version 2 on page 24.

Abbreviation: None

—— Syntax
OFF [qual.] {number[:[qual.Jnumber] | ENTRY | EXIT} | * |

(number/ENTRY/EXIT list)

qual :
specifies a program unit name prefix to temporarily override the current
qualifier. The program unit name is used for the prefixed operand only.

number
specifies the statement label, ISN, or sequence number of a single breakpoint

you want to remove. Precede a statement label with a slash to distinguish it
from an ISN or sequence number.

number:[qual.Jnumber /‘\
specifies a range of statement labels and/or statement numbers (ISNs or
sequence numbers). Breakpoints set at any statement within the range are
removed. Statement labels and statement numbers (ISNs or sequence
numbers) can be combined in the range. Precede each statement label with
a slash.

Statement identifiers can be qualified with a program unit name. The default
program unit for the first identifier is the current qualifier. The default
program unit for the second identifier is the program unit specified or
defaulted for the first identifier. Both identifiers must have the same
program unit in effect.

ENTRY
specifies that the entry breakpoint is to be removed.

EXIT
specifies that the exit breakpoint is to be removed.

specifies that all breakpoints will be removed from the qualified program
unit.

(number/ENTRY /EXIT list)
specifies a list of statement labels, ISNs or sequence numbers, entry points,
exit points, and ranges of numbers. Breakpoints set at each specified r—
statement and within each range are removed. Enclose the list in !

180 VS FORTRAN Version 2: Interactive Debug Guide and Reference

parentheses, and separate entries with commas or blanks. Precede each
statement label with a slash.

If the number of a statement that does not have a debugging hook is entered
in the number list, an error message is issued but breakpoints are still
removed from the remaining statements.

Notes:

1. OFF with no operands is only valid when used as a cursor command under ISPF
Version 2.

2. OFF is not permitted after the VS FORTRAN program has terminated.
Example 1

Remove all breakpoints in the currently qualified program unit.

off *
Example 2

Remove breakpoints at statement numbers 120 and 560 in program SUB1.

off (sub1.120 sub1.560)
Example 3

Remove specific breakpoints in the currently qualified program unit.

off (20:80 /100 ENTRY)

Chapter 8. Interactive Debug Commands 181

OFFWN Command

The OFFWN command turns off the monitoring of WHEN conditions.

Abbreviation: None

—— Syntax

OFFWN condition name | * | (condition name list)

condition name
specifies the 1- through 4-character name of a WHEN condition that is
currently being monitored and that you want to stop monitoring.

turns off all WHEN condition monitoring.

(condition name list)
specifies a list of such WHEN condition names. Monitoring is stopped for all
of them. Enclose the list in parentheses, with individual names separated by
commas or blanks.

Notes:

1. Use of OFFWN to turn off monitoring of a condition does not remove the
definition of the condition. Any condition can be reactivated by using the WHEN
command.

2. To see the currently defined conditions, use the LISTBRKS command.

3. OFFWN is not permitted after the VS FORTRAN program has terminated.

Example 1

Stop monitoring all WHEN conditions.

offwn *

Example 2

Stop monitoring a certain WHEN condition called ABS.

offwn abs

For additional examples of the OFFWN command, see ‘“Controlling Program
Execution” on page 74.

182 VS FORTRAN Version 2: Interactive Debug Guide and Reference

POSITION Command

The POSITION command positions the cursor in the log file at a specified log line,
or in the source window at a specified ISN or sequence number. This command is
valid only under ISPF Version 2, and cannot be issued in a command list, an IF
command, an attention exit, or a restart file.

Abbreviation: POS

—— Syntax

POSITION number

number

specifies either a statement number (an ISN or sequence number), or a log
line number to be used as the target. If the cursor is within the source
window, Interactive Debug interprets the number as an ISN or sequence
number. Otherwise, it is interpreted as a log line number.

Notes:

1L

If the search is successful, the cursor is placed at the beginning of the ISN or
sequence number, or at the log line number.

If the search is successful, the log or source listing is scrolled vertically so the
target line is displayed as the first line on the screen (unless it is already displayed
in the current ISPF panel).

If the statement number or log number is not found, you will receive the message
“TARGET NOT FOUND?” in the upper right corner of the screen.

Only the last 1000 lines of the log are available for display during the debugging
session. A target located below the last 1000 lines will cause POSITION to
respond with the message “TARGET NOT FOUND.”

If you issue POSITION without a parameter, you receive the message
“PARAMETER MISSING.”

If you issue POSITION with a nonnumeric parameter, you receive the message
“INVALID PARAMETER(S).”

Sequence numbers (in columns 73 through 80) can be used only for program units
that were compiled with VS FORTRAN Version 2 with the SDUMP(SEQ)
option. In all other cases, ISNs must be used.

If you have MOVECURS assigned to a PF key, you can type the POSITION
command on the command line. Then, without pressing ENTER, press the
MOVECURS PF key to move the cursor to the source window, and finally press
ENTER 1o search the source listing.

Chapter 8. Interactive Debug Commands 183

Example

The following command searches for ISN or log line 100, depending on cursor
position.

position 100

184 VS FORTRAN Version 2: Interactive Debug Guide and Reference

-~

PREVDISP Command

Under ISPF Version 2, the PREVDISP command redisplays the previous panel
displayed by the application program (if ISPF was used). The panels are saved
automatically by ISPF, and are redisplayed with an ISPF message “Saved Panel
Display.”

PREVDISP is valid only under ISPF Version 2, and cannot be issued in a command
list, an IF command, an attention exit, or a restart file.

Warning: The variables in the program are actually reset to the values of the
variables in the previously displayed panel, (unless the application program has
used VDELETE for those variables). The information in a saved panel is
redisplayed exactly as it appeared when the panel was originally displayed, and may
no longer be correct. You will not receive a message to remind you of this, nor will
the change in values be logged.

Abbreviation: PREV

—— Syntax
PREVDISP

Notes:
1. There are no operands for the PREVDISP command.
2. If no previous panel exists, the first PREVDISP Help panel is displayed.

If the HELP panel is displayed, you cannot access the main menu or subsequent
panels.

3. The display of a previous panel is not an active display. For example, if you
redisplay an EDIT session, you cannot edit the panel as if you were in an editing
session.

You can, however, change the values of application variables on a saved panel
display, but this is not recommended. The application program may not be
prepared to have the variables changed at that point.

4. GDDM must still be active to redisplay a panel with a graphic area. If GDDM is
not active (for example, if GRTERM has been invoked), the graphic area will be

emply.

Chapter 8. Interactive Debug Commands 185

PROFILE Command

The PROFILE command displays a panel containing the settings for various
parameters that affect the way your debugging session executes. Both the default
profile settings and your current settings are shown for each parameter. This
command is valid only under ISPF Version 2, and cannot be issued in a command
list, an IF command, an attention exit, or a restart file.

Abbreviation: None

Syntax
PROFILE

Notes:

1.

Initially, the current setting for any of the parameters displayed will be the same
as your profile setting. However, if you want to modify a parameter for the
current session, you can type over that field on the display panel with a new value.
If you modify the profile settings, the new values are saved and will be used
whenever you begin a new debugging session.

Initially, the profile settings will have the values displayed in the example below.
However, you can modify these values (in addition to modifying the current
settings).

The parameters displayed in the PROFILE panel are:

Step delay Initially set to 50. This value controls the pace of animation,
measured in hundredths of a second. For more information, see
Figure 15 on page 32.

Frequency count display
Initially set to YES. YES indicates that the statement execution
counts will be shown within the source listing window.

Window columns
Initially set to 40. This value specifies the width of the source

window listing, measured in characters. To make the window wider,
increase this value.

Window rows
Initially set to 10. This value specifies how deep the source listing
window will be, measured in lines. To see more than 10 lines at a
time in the window, increase this value.

Window on [nitially set to YES. This value indicates that a source listing
window will automatically appear on your screen, provided that its
dimensions have been defined and the listing file is available for the
current program unit. Setting this value to YES is equivalent to
entering the WINDOW or WINDOW ON command.

186 VS FORTRAN Version 2: Interactive Debug Guide and Reference

Log line numbers
Initially set to YES. This value indicates that the log line numbers
will be displayed in your scrollable log. Enter NO to inhibit the
display of these numbers.

Output halt value
Initially set to 50. This is the number of output lines after which
Interactive Debug will initiate a break to be sure output is displayed
periodically. The break causes a NEXT FORCED FOR QUTPUT
or HALTED FOR OUTPUT condition to occur.

Example

Display the PROFILE command to modify the value of some of your current
settings.

PROFILE

The profile panel might look like this after you modify some of the current settings:
VS FORTRAN INTERACTIVE DEBUG (CURRENT AND PROFILE SETTINGS)

COMMAND ===>

CURRENT SETTING PROFILE SETTING
Step delay (.01 sec) 10 50
Frequency count display NO YES
Window columns 60 40
Window rows 10 10
Window on NO YES
Log line numbers YES YES
Output halt value 50 50

Enter END or RETURN to go back to the IAD panel.

Chapter 8. Interactive Debug Commands 187

PURGE Command

The PURGE command terminates the output of a single Interactive Debug
command after the output has been suspended by an attention interrupt.
Subsequent commands in a command list are not affected. Following the PURGE
command, resume execution by entering a null line.

Abbreviation: None

—— Syntax
PURGE

Notes:
1. There are no operands for the PURGE command.

2. PURGE cannot be used to stop output being produced as a result of a VS
FORTRAN WRITE statement or a command in a static DEBUG packet.

3. PURGE cannot be used to stop output from the HELP command.

4. The terminal displays the results of commands more slowly than the processor
produces these results. This may cause the processor to begin processing the
command(s) following the one displayed on the terminal at the same time the null
line (ATTN) was issued. In this case, PURGE may not have the desired results.

5. PURGE has no effect outside an attention exit.

Example

The following AT command list is being executed:

at 100 (list a% set i=0%list b¥ wheref go)

A contains 1000 elements. When A starts to be displayed, stop the display before
its completion.

Press ENTER (or ATTN)
purge

This sequence suppresses the output of A. When a null line is entered, execution
will resume with the next command in the command list (set i=0).

188 VS FORTRAN Version 2: Interactive Debug Guide and Reference

-~ QUALIFY Command

The QUALIFY command changes or displays the current qualification. This
command allows you to change the default qualification that determines which
program unit any unqualified statement or variable references apply to.

Abbreviation: Q

— Syntax
QUALIFY [program]

program

specifies the name of the main program or subroutine, or the name of a
function subprogram.

Notes:

1

The QUALIFY command remains in effect until the next QUALIFY command,
or until execution is resumed. When execution is resumed, the current
qualification is reset to the executing program unit.

If a QUALIFY command is not entered, it is assumed that any Interactive Debug
commands apply to the currently executing program unit (except for individually
qualified operands).

A QUALIFY command without the program unit parameter will display the name
of the currently qualified program unit.

QUALIFY is not permitted as the command specified in an IF command.

To qualify an individual VS FORTRAN variable, place the variable name after
the name of the program unit.

list subil.x

To qualify an individual statement identifier, place the number or statement label
after the name of the program unit. The statement label must be preceded by a
slash.

at subl./50

If you type over the Q: field in ISPF Version 2, a QUALIFY command is
generated and logged.

Chapter 8. Interactive Debug Commands 189

Example 1

Display the value of all the variables in subroutine SUB1 while execution is
suspended at a breakpoint in the main program.

qualify subil
list *

Example 2

Display the name of the currently qualified program unit.

qualify

For additional examples of the QUALIFY command, see ‘“Referring to Statements
or Variables in Other Program Units” on page 70.

190 VS FORTRAN Version 2: Interactive Debug Guide and Reference

-~ QUIT Command

The QUIT command exits Interactive Debug and returns program control to ISPF,
CMS, or TSO.

Abbreviation: None

—— Syntax

QUIT

Notes:

1. If QUIT is issued following an attention interrupt, your program will be
terminated. You may then issue certain Interactive Debug commands (for
example, LIST) before returning to ISPF, CMS, or TSO. You must issue
another QUIT to terminate the session.

2. Commands following QUIT in a command list are ignored.

3. The ISPF END command cannot be used to terminate a debugging session. The
QUIT command must be used. This is designed to avoid accidentally terminating
a debugging session with PF key 3.

Example

Discontinue debugging and return to ISPF, CMS, or TSO.

quit

Chapter 8. Interactive Debug Commands 191

| RECONNECT Command

The RECONNECT command resets a file to its original (preconnected) condition.
This may be necessary if you have used the CLOSE command or your program has
executed a CLOSE, and you wish to make it possible for the program to do
additional I/O to the preconnected file.

Abbreviation: RECONN, RECONNEC

—— Syntax

RECONNECT {number | [qual.Jinteger-variable |
[qual.Jinteger-array-element}

number

is the number of the I/O unit associated with the sequential file on which the
reconnect is to be performed.

[qual.Jinteger~variable
is the name of an integer variable in the VS FORTRAN program. This
variable specifies the number of the I/0 unit associated with the sequential
file on which the reconnect is to be performed.

[qual.]integer-array-element
is the name of an element of an integer array in the VS FORTRAN program.
This element specifies the number of the I/O unit associated with the
sequential file on which the reconnect is to be performed.

Notes:

1. “Number,” “integer-variable,” or “integer-array-element”’ must be specified;
there is no default number.

2. This command may not be issued when 1/ 0 is currently active.

3. RECONNECT is only necessary if the OCSTATUS run-time option is in effect
and you wish to allow your program to perform additional I/0 on a file that has
been closed, without executing another OPEN.

4. When referring to array elements, the subscripts must use simple arithmetic
expressions no more complex than the form ‘variable plus (or minus) a constant.”
For example,

ARY(I), ARY(3), ARY(I+3) or ARY(I-3)
are valid forms.
Example

Reconnect the sequentially accessed external file associated with I/O unit 8.

reconnect 8

192 VS FORTRAN Version 2: Interactive Debug Guide and Reference

~ REFRESH Command

The REFRESH command controls whether or not the Interactive Debug panel is
completely refreshed when Interactive Debug panels are displayed.

If you have applications that do full screen I/O without using ISPF, there may be
changes to the screen contents that ISPF is not aware of, and portions of the
application display may remain on the screen. REFRESH is helpful in these
situations.

REFRESH is not valid in line mode or batch mode.

Abbreviation: None

—— Syntax

REFRESH [ON | OFF]

ON
indicates that every display of an Interactive Debug panel should rewrite the
entire screen.

OFF
indicates that ISPF does not need to rewrite portions of the screen that

-~ already seem to have the proper contents. This is the initial setting for

REFRESH.

Notes:

1. When refresh is on, animation is less smooth because the entire screen is refreshed
for each step. The screen may appear to flash each time.

2. Response time may increase for remote terminals when refresh is on.
3. Entering REFRESH without a parameter queries the status of REFRESH.
Example

Query the current status of REFRESH:

refresh

Chapter 8. Interactive Debug Commands 193

RESTART Command

The RESTART command allows you to restart a debugging session in full screen
mode without clearing the log file. The variable values are all cleared unless they
are in dynamic commons. The VS FORTRAN program restarts at the first
executable statement. Any new log information is appended to the existing log file.

RESTART is not valid in line mode or batch mode. It is also not allowed in a
restart file.

Abbreviation: None

—— Syntax
RESTART

Notes:

1. There are no operands for the RESTART command.

2. Commands following RESTART in a command list are ignored.

3. When RESTART is issued, all Interactive Debug settings such as breakpoints,
WHEN conditions, HALT status, AUTOLIST window, and so on are reset. The
TIMER status is turned off and all times are cleared.

4. Under TSO, you can recompile a program unit using a split screen, then issue
RESTART to restart the debugging session using the new object deck. (This is not
possible under CMS.)

5. The AFFON and AFFIN files are re-read when you issue RESTART. If you
have modified these files (for example, in a split-screen edit session), the new files
are used.

Example

Restart a debugging session in full screen mode, but retain the current log file.

restart

194 VS FORTRAN Version 2: Interactive Debug Guide and Reference

REWIND Command

The REWIND command positions a sequentially accessed external file at the
beginning of the first record. Its usage is similar to that of the REWIND statement
in the VS FORTRAN Version 2 language, allowing you to move to the beginning
of the file.

Abbreviation: REW

—— Syntax

REWIND {number | [qual.]integer-variable | [qual.]integer-array-element}

number
is the number of the I/0 unit associated with the sequential file that is to be
rewound.

[qual. Jinteger-variable
is the name of an integer variable in the VS FORTRAN program. This
variable specifies the number of the I/O unit associated with the sequential
file that is to be rewound.

[qual.]integer-array-element
is the name of an element of an integer array in the VS FORTRAN program.
This element specifies the number of the I/0 unit associated with the
sequential file that is to be rewound.

Notes:

3 <62

1. “number,” “integer-variable,” or “integer-array-element’ must be specified; there
is no default number.

2. When referring to array elements, the subscripts must use simple arithmetic
expressions no more complex than the form “variable plus (or minus) a constant. ”
For example,

ARY (I), ARY(3), ARY(I+3) or ARY(I-3)
are valid forms.

3. This command may not be issued when I1/0 is currently active.

4. VS FORTRAN Version I and VS FORTRAN Version 2 support multiple files
under the same I/0 unit. The REWIND command sets the VS FORTRAN file
name to the first in the sequence of files for the specified I/ O unit. For example,
if you were currently processing file FTO8F003 on 1/0O unit 8, and entered:

rewind 8

1/0 unit 8 would be connected to file FTO8F001, which would be positioned at
the beginning of the first record.

Chapter 8. Interactive Debug Commands 195

Example

Rewind the sequentially accessed external file associated with logical unit 4 so that —
it may be rewritten.

rewind 4

For additional examples of the REWIND command, see “Processing External
Files” on page 89.

196 VS FORTRAN Version 2: Interactive Debug Guide and Reference

o~ SEARCH Command

The SEARCH command searches the source listing window or the scrollable log
for a given character string. SEARCH is valid only under ISPF Version 2, and
| cannot be issued in a command list, an IF command, or a restart file.

Abbreviation: None

—— Syntax
SEARCH /string[/]

string
specifies a character string to be searched for. The search is not case
sensitive, so your string can be found in any combination of upper or lower
case. If the cursor is within the source window, the source listing is
searched; otherwise, the last 1000 lines of the log are searched. The
character string can be up to 64 characters long.

You can use any nonblank character as a delimiter. A slash (/) is shown in
the syntax box above.

The initial and final delimiter must be the same character. The final
delimiter is required if the search string contains trailing blanks. In all other
cases, it is optional.

Notes:

1. If the search is successful, the log or source listing is scrolled vertically and
horizontally so the target line is displayed as the first line on the screen with the
string visible (unless it is contained in the current ISPF panel). The cursor is
placed at the beginning of the string.

2. The source listing search is performed starting at the top line displayed on the
screen. However, if the SEARCH arguments are identical and the last-found
search argument is still on the current screen, the search begins at the location of
the last-found search argument.

3. When searching the log, only the last 1000 lines of the log are available.
4. If the search requires the cursor to return to the beginning of the source listing or
the log, the message “WRAPPED...” is displayed in the upper right corner of the

screen.

5. If the search argument is not found, you will receive the message “TARGET NOT
FOUND?”’ in the upper right corner of the screen.

6. If you search without a parameter, the most recent character string used as a

target is searched for again. If there is no previous string, you will receive the
message “NO SEARCH ARGUMENT.”

Chapter 8. Interactive Debug Commands 197

7. If you have MOVECURS assigned to a PF key, you can type the SEARCH
command on the command line. Then, without pressing ENTER, press the
MOVECURS PF key to move the cursor to the source window, and finally press
ENTER to search the source listing.

Example

Search for the character string VM/CMS, using a question mark as the delimiter.

search ?VM/CMS?

198 VS FORTRAN Version 2: Interactive Debug Guide and Reference

SET Command

The SET command changes the value of a variable, array, array element, or group

of array elements.

Abbreviation: S

—— Syntax

SET [qual.]Jname=value[,value...]

qual

specifies a program unit name to temporarily override the current qualifier
for the prefixed name only.

name

specifies the name of a variable, array, or array clement.

value

is the value to be assigned to a single variable or single array element. A
group of values (separated by commas or blanks) can be assigned to an
entire array or part of an array. A value can also be another qualified
variable name or array element, and can be prefixed by a numeric replication

factor.

Notes:

1. Valid SET command assignments for the different types of names are shown in
Figure 30. All names can be qualified.

Name Set | Type of Value Example

Real, = Another scalar variable ALPHA=BETA

Integer, ALPHA=-BETA

or An array element ALPHA=A(3)

Complex ALPHA=-A(3)

scalar A constant NUM=7

Logical = Another logical variable LOG1=L0OG2
An array element LOG1=LOG(2)
A logical value LOG=.TRUE.

Character = Another character variable CHAR1=CHAR?2
An array element CHAR1=CHAR(2)
A character constant MSG="HELLO’
A substring A(1:3)="ABC’

Figure 30 (Part 1 of

2). Valid SET Command Assignments

Chapter 8. Interactive Debug Commands 199

Name Set | Type of Value Example

Array = Another array element A(4)=B(1)

element AR(2,2)=-AR(5,5)
A scalar variable C(7)=RATE

C(8)=-TIME

A constant D(1,J)=0.0

Contiguous = Value,value,... A=3*1.0,4*0.0,

array (Values can be variables, 7.2,5.,,ACCL,

elements array elements, or 8.5E9
constants; multiple
assignments of a value B(J.K)="C’,
can be entered as 3*Q’2*’X’
n*value.)

Figure 30 (Part 2 of 2). Valid SET Command Assignments

2. When referring to array elements, the subscripts must use simple arithmetic

expressions no more complex than the form ““variable plus (or minus) a constant.”
For example,

ARY(I), ARY(3), ARY(I+3) or ARY(I-3)
are valid forms.

No arithmetic operations (except negation) are allowed in the value assignments;
for example, SET A=B+4 is not allowed.

Upper- and lowercase character constants may be entered at the terminal. They
must be enclosed in single quotation marks when entered, but the enclosing single
quotation marks are removed before the assignment is performed. If a single
quotation mark is to be assigned as part of the character constant, two single
quotation marks must be entered; for example:

set e='"'""!

sets C to a single quotation mark. Character strings are truncated or extended
with blanks to match the length of the receiving character variable or array
element.

In assigning values to contiguous array elements, values may be repeated using the
notation n*value. For example,

set ary=10%4

sets the first 10 elements of the array ARY to 4.

In assigning values to contiguous array elements, elements can be omitted by using
the asterisk notation with no value following the asterisk. For example, a single
omission is entered as 1*, and a multiple omission might be entered as 3* (this

would leave three successive elements of the array unchanged).

Substring notation is permitted with string variables.

200 VS FORTRAN Version 2: Interactive Debug Guide and Reference

On the right side of the “‘="" sign, an array reference can have subscripts that
exceed the bounds of the dimensions. A warning message will be issued except for
the special case where only the last dimension is exceeded, and that dimension is

L1f 244 or (‘1. »”

An assumed size array is not set unless a specific element or range of elements is
specified. An assumed size array is an array with the last upperbound declarator
specified as an asterisk (*). Results are unpredictable if you SET array elements
beyond the end of the original array.

10. Dummy arguments can only be used or set when the program unit in which they

11.

12

are defined is active. (Note that a program unit is not yet active when suspended
at entry.) If this rule is violated, you will get an error message.

Variables in a dynamic common can only be used or set after the program unit
used to qualify the variable has been activated at least once. If this rule is
violated, you will get an error message.

When setting a variable, results are unpredictable if:

o More values are specified than will fit in an assumed-size array or an array
whose last dimension is ““1.”

« The right hand side contains an array reference whose subscripts are not all
within the array dimensions. You will get a warning message in this case.

o The right-hand side of the statement contains an inaccessible variable. You
will get an error message in this case.

Example 1

Change the values of several variables.

set
set
set
set
set
set
set
set

dan=8.9%9e+7

m=-int

a(3)=b(5)

c(i,2)=4.1

d(10)=xray

a(i-1,3)=b(4,j+6)
main.x=subl.x

quote='he said: ''bye, bye.'''

Example 2

Set the ten elements of array ALFIE to 0, 0, 0, .666, .21E-08, 1.0, 0, 0, 0, 0.

set

alfie=3#%0.0,.666,.21e-8,1.0,4%0.0

Example 3

Set the second element of array DATA to 0, leave the third element unchanged, set
the fourth through eighth elements to 1.0, and leave all other elements unchanged.

set

data(2)=0,1%,5%1.0

Chapter 8. Interactive Debug Commands 201

Example 4

Set the third through the fifth characters of character string DATA to "ABC’.

set data(3:5)='ABC'

202 VS FORTRAN Version 2: Interactive Debug Guide and Reference

~

STEP Command

The STEP command executes one or more FORTRAN statements and then gives
control back to you. STEP is similar to a series of NEXT and GO command pairs.

Under ISPF Version 2, STEP execution is automatically animated if the source
listing is available to Interactive Debug. Animated execution means that the source
listing window is refreshed at each statement boundary where a hook exists, and
the current statement is highlighted. Highlighting is determined by the COLOR
settings. If an AUTOLIST display is defined in full screen mode, it will also be
updated, or refreshed as necessary at each debugging hook.

Abbreviation: ST

—— Syntax
STEP [number]

number
specifies the maximum number of hooked statements to be executed before
execution stops. The number must be a positive integer. The default is one.
Notes:

1. The STEP command itself causes your program to resume execution. You do not
need to use a GO command.

2. If any of the following conditions occur, STEP execution will terminate before the
STEP count runs out:

e A breakpoint is encountered.
o A WHEN condition is satisfied.
o The HALT status is satisfied.
» An error condition is detected.
o Terminal input occurs with TERMIO IAD in effect.
o Terminal output exceeds the output halt value in full screen mode.
o An attention is issued.
e The program terminates.
3. If STEP processing ends after finding one of the above conditions or after
reaching the end of the step count, you cannot resume STEP. You must issue a

new STEP command.

4. If a STEP command is terminated because of a terminal READ, a NEXT will be
Jforced at the next hooked statement.

Chapter 8. Interactive Debug Commands 203

5. If STEP is issued within a command list, the remainder of the list is ignored.
6. STEP counts only those statements that have debugging hooks. Thus, STEP may
execute many statements before stopping. Statements that have been collapsed and

statements not included in the AFFON statement list are not counted and
execution does not stop.

7. STEP is not permitted after the VS FORTRAN program has terminated, or while
a READ is pending. If issued in an error exit, standard corrective action is taken.

Example

Execute the next 12 hooked statements before suspending execution:

step 12

204 VS FORTRAN Version 2: Interactive Debug Guide and Reference

-~ SYSCMD Command

The SYSCMD command executes system commands during an Interactive Debug
session. SYSCMD can also be included in a command list and on the IF command.

Abbreviation: SYS, CMS, TSO

—— Syntax
SYSCMD [system—command]

system—command

is a CMS or TSO system command to be executed.

Notes:

1

Under ISPF, the abbreviations CMS and TSO are recognized and executed, but
the command entered will not appear in the session log.

Caution should be observed when issuing commands that would cause the
currently executing program to be overlaid. For example, a CMS LOAD
command with the CLEAR option could cause Interactive Debug and the VS
FORTRAN application program to be erased from storage.

CMS Considerations: If the system command is omitted, the standard CMS
SUBSET will be entered. In this mode, CMS commands may be issued and
Interactive Debug will not regain control until the RETURN command is issued.
CMS commands issued in this mode (or specified with the SYSCMD command)
are limited to those commands allowed in CMS SUBSET mode.

TSO Considerations: If the system command is omitted, a special command entry
mode will be entered. Interactive Debug will produce the message,

ENTER A TSO COMMAND OR A NULL LINE

In this mode, TSO commands may be issued and Interactive Debug will pass them
along to TSO until a null line is entered.

In order to use SYSCMD in batch mode on MV'S, it is necessary to run a TSO
Terminal Monitor Program (TMP).

In batch mode, the system command must be specified, and must not be a
command that requires interaction. Interactive Debug cannot guard against
system commands that require interaction during a batch session; this is your
responsibility.

Chapter 8. Interactive Debug Commands 205

CMS Example

List the files that have been allocated: o

syscmd g filedef
IS0 Example

List the data sets that have been allocated:

syscmd listalc status

For additional examples of the SYSCMD command, see “Using System
Commands” on page 90.

206 VS FORTRAN Version 2: Interactive Debug Guide and Reference

™

TERMIO Command

The TERMIO command allows you to select the I/O routines that you want to use
for terminal I/0 for your VS FORTRAN program. You can select either the VS

FORTRAN Version 2 Interactive Debug I/O routines, or the VS FORTRAN
library routines.

You can also use TERMIO to send a copy of batch mode output to a user as
message text. To query the current settings, enter TERMIO with no operands.

Abbreviation: None

—— Syntax
TERMIO [IAD | LIBRARY] [MSG [(userid)] | NOMSG]

indicates that terminal I/O is to be performed using the VS FORTRAN
Version 2 Interactive Debug I/O routines. The Interactive Debug I/0
routines combine input and output from the VS FORTRAN program with
Interactive Debug input and output. You must precede terminal input with a
percent sign (%) to distinguish it from Interactive Debug commands.

This is the setting when Interactive Debug execution begins.

In full screen mode or batch mode, terminal input and output are included in
the log file. This includes library error messages.

LIBRARY

MSG

userid

indicates that terminal I/Q is to be performed using the VS FORTRAN
library routines. The library I/O routines cause output from the VS
FORTRAN program to be displayed as it would be if the program were not
being debugged.

Terminal input and output are not included in the log file. In full screen
mode, a request for terminal input causes the screen to be cleared and the
keyboard to be unlocked. Terminal output is written on a blank screen.

In batch mode only, this indicates that a copy of each line of Interactive
Debug input and output is to be sent to the specified or defaulted user ID as
message text.

specifies the user ID to which message text is to be sent. If this operand is
omitted, it defaults to the previously established user ID (if one exists), or to
the submitter’s user ID if available. The operand is required if the
submitter’s user ID is not available and no user ID has been previously
established.

The default user ID is obtained from the JOB card information in MVS, if
available. In CMS, no default user ID is available.

Chapter 8. Interactive Debug Commands 207

NOMSG

specifies that Interactive Debug input and output are not to be copied as N
message text. This is the initial setting.

Notes:
1. When no operands are specified, the current TERMIO setting is displayed.

2. This command does not affect 1/ O operations other than those requested by the
VS FORTRAN application program. This implies that, if Interactive Debug is
executing under ISPF, a specification of LIBRARY will cause any application
program terminal 1/0 operation to occur in line mode. At the completion of the
1/0 operation, full screen operation will resume.

3. When running in batch mode on MVS, a VS FORTRAN program has no real
terminal inputs or outputs. You can simulate these terminal inputs and outputs by
specifying one or more units on the DEBUNIT execution-time option for your VS
FORTRAN program. If you do not specify the DEBUNIT option, the
IAD/LIBRARY operand has no effect on program 1/0.

4. Whenever character data is entered, Interactive Debug I/O routines change it to
uppercase. If mixed-case input is required (and supported by the host system), the
library 1/0 routines must be used.

5. If output cannot fit on one line in whatever mode Interactive Debug is operating,
it is split across multiple lines. The lengths of these lines are 60 characters if
Interactive Debug I/ O routines are used. When the library routines are used, 1/0 7~
operations produce the same results as would be produced if the program were
executed without Interactive Debug. -

6. When TERMIO IAD is in effect, any continuation line that begins with leading
blanks must be prefixed with a quotation mark ("'). The quotation mark will not
be passed to the program.

Example 1

Specify that Interactive Debug routines are to be used for subsequent 1/O requests
of the VS FORTRAN program.

termio iad

Example 2

Display the current setting of the terminal 1/0 mode.
termio

Example 3

Specify that Interactive Debug input and output are to be echoed to user ID
“SMITH” (in batch mode).

termio msg(smith)

For additional examples of the TERMIO command, see “Entering Terminal Input”
on page 91.

208 VS FORTRAN Version 2: Interactive Debug Guide and Reference

~

TIMER Command

The TIMER command controls the timing of program units. If timing is activated
for a program unit, that unit will be timed when called. The LISTTIME command
displays the timing information.

Abbreviation: None

—— Syntax

TIMER { * | program-unit-name | (program-unit-name list) }
[ON | OFF | RESET]

specifies that the command applies to all debuggable program units.

program-unit-name
specifies an individual program unit.

program-unit-name list
specifies a list of program unit names. Enclose the list in parentheses and
separate entries with commas or blanks.

ON
specifies that timing is to be activated for the indicated program units. The
program units are timed when called. ON is the default.

OFF
specifies that timing is to be deactivated for the indicated program units.
This does not clear the timing values or activation counts. The program units
are no longer timed. OFF is the initial setting for TIMER.

RESET
specifies that timing information and activation counts are to be reset to zero
for the indicated program units.

Notes:

1. Timing is cumulative. Timing values are only reset by TIMER name RESET.

2. The time for a routine is measured beginning at the entry point and ending at the
exit. If a call is made to another routine for which TIMER is on, the time spent
in the second routine (and lower-level routines) is not included in the measurement
for the first routine. However, time spent in called (and lower-level) nontimed
routines is included in the measurement for the calling routine. For example, if
program A calls program B and you do not want the time in B to be included in
the timing of A, you must specify: TIMER (A,B) ON. Program B must be
debuggable.

Chapter 8. Interactive Debug Commands 209

In MVS, timing measurements will be incorrect if your program uses the
STIMER macro, or if it uses a system service that calls STIMER. This includes
the BTAM OPEN and LINE OPEN operations, and Dynamic Allocation.
Animated execution with the STEP command under ISPF Version 2 also
interferes with timing on MVS.

4. Timing for very small routines may be erratic.

5. The timing information provided by Interactive Debug includes overhead caused by
the debugging hooks in your program. Thus, the timing information is not an
accurate representation of the time it takes to execute without Interactive Debug.
To get the most accurate timing information, there should be hooks only at entry
and exit of the program unit. To set only entry and exit hooks, specify name
ENTRY in the AFFON file. For more information, see “Displaying Timing
Information” on page 82.

6. The ENDDEBUG command turns timing off for all program units.

7. TIMER is not permitted after the VS FORTRAN program has terminated.

8. Timing is measured separately for each entry point in the program unit.

Example 1

Turn timing on for program units MAIN and SUB2:

timer (main,sub2)

Example 2

Reset timing to zero for program unit MAIN:

timer main reset

Example 3

Turn timing off for all debuggable program units:

timer * off

210 VS FORTRAN Version 2: Interactive Debug Guide and Reference

TRACE Command

The TRACE command starts or stops tracing of the flow of the program as it
executes. You can trace each transfer of control in the program, trace just entries
| to and exits from debuggable subroutines, or determine the current trace status.

Abbreviation: T

—— Syntax
| TRACE [GOTO | ENTRY | OFF] [PRINT]

GOTO
specifies that a record of each apparent branch taken within the program is
to be created. GOTO produces a listing showing a statement label or
statement identifier for the origin and destination of each transfer made,
including entries to and exits from debuggable subroutines.

ENTRY
specifies that only a record of entries to and exits from debuggable
subroutines is to be produced.

OFF
turns off tracing that you previously initiated. This is the initial setting.

PRINT
specifies that output is to be written to the print data set instead of to the
terminal.

‘Notes:

1. Tracing continues until turned off, or altered by another TRACE command, or an
ENDDEBUG command is issued.

2. TRACE operations apply to all debuggable program units.

3. TRACE GOTO issues a trace message if two consecutively executed debugging
hooks are not on consecutively stored statements. This also occurs if statements
have been collapsed or vectorized, or have no debugging hooks.

4. TRACE is not permitted after the VS FORTRAN program has terminated.

| 5. If no operand is specified, TRACE issues a message describing the current trace
| status.

Chapter 8. Interactive Debug Commands 211

Example 1

Trace each program transfer, and have the trace output sent to the print data set
instead of to the terminal.

trace goto print
Example 2

Discontinue tracing entirely.

trace off
Example 3

Trace only the calls to and returns from subroutines and functions.

trace entry

For additional examples of the TRACE command, see “Tracing Program
Execution” on page 83.

212 VS FORTRAN Version 2: Interactive Debug Guide and Reference

7

WHEN Command

The WHEN command allows you to suspend execution every time a particular
condition is met. You can define a condition and supply its name, or restart
monitoring of a previously defined condition. The condition is tested at all
statements with debugging hooks.

Abbreviation: WN

— Syntax

WHEN condition-name [(condition) | variable]

condition-name
identifies the condition. The condition name must be 1 through 4 alphameric
characters, with the first character alphabetic. The condition name is only a
name; it is not to be confused with the definition of the condition.

(condition)
defines a condition to be monitored. The condition itself appears only in the
initial WHEN command. The condition must be enclosed in parentheses.

Only scalars and single array elements are allowed in the condition
expressions. They can be explicitly qualified; for example, sub1.x=4.0

variable
specifies the name of a variable or an array element to be monitored for any
change in value. Only the name is specified; no parentheses to enclose the
name are used. The name can be explicitly qualified.
The condition used in the WHEN command can be either relational or logical.
Relational condition: A relational condition is a signed or unsigned variable or array
element or constant, followed by a relational operator, followed by another signed

or unsigned variable or array element or constant.

There are six relational operators that can be used to define test conditions
between scalar variables, array elements or constants.

= or.EQ.
-=or.NE.
> or.GT.
< or.LT.
>=or .GE.

<=or .LE.

Chapter 8. Interactive Debug Commands 213

Logical condition: A logical condition is a logical variable or a logical array
element, optionally preceded by the negation operator (~ or .NOT.). No other
operators are permitted. If the value being tested is a logical variable or a logical
array element, the negation operator can be applied in the condition definition.
For example:

WHEN NTON (- LOGVAR)
Notes:

1. The condition itself is only defined once. At that time, a condition name must be
supplied. Subsequent WHEN commands referring to that condition should
contain only the condition name.

2. Monitoring remains in effect after a condition is satisfied. To turn the condition
off, issue an OFFWN command, naming the condition.

3. After being turned off by an OFFWN, condition monitoring can be reactivated by
reissuing WHEN and specifying only the condition name.

4. WHEN conditions are evaluated at each debugging hook in each debuggable
program unit. If you use a variable subscript, it is reevaluated each time the
condition is tested. The array element actually tested, therefore, depends on the
subscript value at that moment.

5. You can redefine an existing WHEN condition by entering a new WHEN
command with the same condition name and a new condition definition.

6. Variables can be prefixed by a program unit qualifier to override the current
qualification (at the time the WHEN command is issued). For example,

WHEN COND {(MAIN.A .LT. SUB1.B)

7. When referring to array elements, the subscripts must use simple arithmetic
expressions no more complex than the form “variable plus (or minus) a constant.”
For example,

ARY(I), ARY(3), ARY(I+3) or ARY (I-3)
are valid.

8. In the relational condition form of the WHEN command, for example, WHEN
TEST (A .GT. B):

o When either variable or constant is a logical, character, or complex type, both

must be of that same type, and a sign preceding the variable or constant is not
permitted.

o When either variable or constant is a logical or complex type, only the
relational operators .EQ. and .NE. (or = and ~=) may be used.

e When character variables or constants of unequal length are compared, the
shorter is considered to be extended with blanks during the comparison.

214 VS FORTRAN Version 2: Interactive Debug Guide and Reference

9. When an unparenthesized variable name is specified as the condition (for example,
WHEN TEST NAME) and the variable is a character variable:

o The length of the character variable is determined at the time the WHEN
command is issued.

o If the character variable subsequently changes length (perhaps because it is a
paramelter to the subroutine being monitored), the old and new values are
compared by effectively extending the shorter one with blanks.

o If a change in value is found, the new value is preserved, either extended or
truncated, using the size of the variable at the time the WHEN command was
issued.

o The current length and value of the variable can be captured at any time by
issuing the WHEN command with just the condition name (for example,
WHEN TEST). It is not necessary to issue an OFFWN command first or to
state the variable name again. (The WHEN command can be embedded in an
AT command list to automate this process.)

10. When a specified condition is met, messages will be displayed. These indicate the
condition name that was satisfied, and where execution is currently suspended.

11. If you refer to undefined variables (such as dummy arguments in an inactive
subprogram), you will receive an error message at each statement where the
condition is tested. To avoid these messages, you can use OFFWN in an AT
EXIT command list, and WHEN to reactivate it in an AT ENTRY command list.

12. WHEN is not permitted after the VS FORTRAN program has terminated.

Example 1

Start monitoring variable MIKE to see if it changes. Call the condition (the change
to variable MIKE) OLD.

when old mike
Example 2

Define a condition named OVFL as an array element A(1,5) greater than 3.5E10.
Start monitoring it.

when ovfl (a(1,5) .gt. 3.5e+10)
Example 3

If the monitoring from Example 2 has been turned off with an OFFWN command,
restart monitoring condition OVFL.

when ovfl

For additional examples of the WHEN command, see *“Controlling Program
Execution” on page 74.

Chapter 8. Interactive Debug Commands 215

WHERE Command

The WHERE command identifies the statement at which execution is suspended.

Abbreviation: W

—— Syntax
WHERE [TRBACK] [FLOW] [PRINT]

TRBACK
specifies a traceback showing the names of all program units that are
currently active.

FLOW
specifies a trace of the last 10 program transfers that were executed.

PRINT

specifies that output is to be written to the print data set instead of to the
terminal.

Notes:

1. If WHERE is used following an attention interrupt, it can only be used to identify
the current statement. Any paramelers are ignored.

2. If there are no active program units, WHERE TRBACK indicates that no
subroutines have been called.

3. The current statement identified by the WHERE command has not yet been
executed.

4. An automatic WHERE command is forced at the first debugging hook found.
This is usually the first executable statement in the main program.

Example 1

Find out where you are after execution was suspended by an attention interrupt.
where

Example 2

Find out the sequence of control transfers that led to the current breakpoint.
where trback flow

Example 3

Conditionally indicate that a breakpoint has been reached, even though the AT

command list does not cause execution to be suspended. The WHERE command
will only be executed if A is less than or equal to 4.8.

at 120 (if (a .gt. 4.8) go%whereflist a%go) nonotify

For additional examples of the WHERE command, see “Tracing Program
Execution” on page 83.

216 VS FORTRAN Version 2: Interactive Debug Guide and Reference

- WINDOW Command

The WINDOW command opens or closes the source listing display window. The
size of the window can be defined in the PROFILE command panel, or by
positioning the cursor. If the cursor is positioned in the log area or an existing
window and WINDOW is entered with no operand, the current cursor position
determines the lower left corner of the source display window. The upper right
corner is fixed.

| WINDOW is valid only under ISPF Version 2, and cannot be used in a command
| list, an IF command, an attention exit, or a restart file.

Abbreviation: None

Syntax
WINDOW [OFF | ON]

ON
specifies that the source listing window is to be open. This is the initial and
default setting under ISPF Version 2.

If the window size has been defined and “YES” has been specified in the
SOURCE column of the ISPF data set name panel for the currently qualified
program unit, the source listing is displayed in the window.

If a window has previously been defined and the cursor is positioned on the
command line, the previous window dimensions will be restored. The
previous dimensions are also used if the cursor is at an invalid position. In all
other cases, new dimensions will be used.

OFF
temporarily removes the source listing window from the screen. The window
size, if defined, is saved. The window is not displayed again until you enter
WINDOW or WINDOW ON, provided that the listing file is known for the current
program unit.

Notes:

1. If the cursor is positioned on the command line, WINDOW with no parameters
has the same effect as WINDOW ON.

2. When defining the window size by cursor position, WINDOW is easiest to use if
assigned to a PF key.

3. You can turn the window on or off, or define the window’s size, using the
PROFILE command panel. For details, see “PROFILE Command” on
page 186.

4. If you have specified NO in the SOURCE column of the ISPF data set name

,A\ panel for the currently qualified program unit, or if you have not yet specified the
source listing file name, WINDOW has no immediate effect.

Chapter 8. Interactive Debug Commands 217

To specify source listing file names, type a question mark (?) in the first character
of the Q: field of the screen header line, and the data set name panel will be Vo
displayed.

The size of the window is saved in your user profile from one session to the next.
When you later begin a new debugging session, the saved window size will be used
to automatically define the source listing display window at the start of the session.

If the window is too wide for any part of the log to be seen on the left, the first log
line visible below the source window becomes the top line of the log. In this case,
no information is hidden beneath the source. Scrolling to the top of the log file
displays log line 1 as the first line below the source.

It is possible to cover the entire screen with the source display (except for the
header and command lines).

218 VS FORTRAN Version 2: Interactive Debug Guide and Reference

Appendix A. Using the Interactive Debug HELP Facility

Help at the Terminal

The HELP command offers interactive tutorial assistance in learning about or using

VS FORTRAN Version 2 Interactive Debug. The HELP command displays

information about any VS FORTRAN Version 2 Interactive Debug command or

function.

HELP contains:

e A brief introduction to VS FORTRAN Version 2 Interactive Debug, composed
of a general discussion of VS FORTRAN Version 2 Interactive Debug
components

» Individual command descriptions, each of which contains a description of the
command, the syntax, usage notes, and examples

« A task-oriented section offering an explanation of related commands required
to perform various basic debugging tasks

You can invoke help by entering HELP (or using an equivalent PF key). The main
help menu will appear, or, if the last command was in error, a screen will appear
containing an explanation of the specific command.

Alternatively, you can enter HELP with an operand to go directly to the
information for a specific command or task.

Help screens for each command consist of:

o The function of the command

e The syntax of the command

e A description of each component of the syntax

o Usage notes and examples

Figure 31 on page 220 shows the main menu screen for the help facility. This

screen lists all the topics for which help is available. In ISPF or CMS line mode,
you can select additional information from the main menu.

Appendix A. Using the Interactive Debug HELP Facility 219

A tutorial is included in the help facility to familiarize you with VS FORTRAN
Version 2 Interactive Debug by describing a basic debugging session. The tutorial
can only be accessed from the main menu.

Figure 32 on page 221 shows the task menu screen for the help facility,
illustrating which tasks have information available. After selecting a task, another
screen (or set of screens) is presented, describing how the task is accomplished.
The task menu may be accessed from the main menu.

Figure 33 on page 221 is a sample help screen for an individual command. (In
this case, more information about the CLOSE command would appear on
additional screens.)

SELECTION === VS FORTRAN VERSION 2 INTERACTIVE DEBUG
VS FORTRAN VERSION 2 INTERACTIVE DEBUG
Main Menu

These are the topics available for help on VS FORTRAN Version 2
Interactive Debug. Select a topic by number. When finished
reading a topic, enter TOP to redisplay this menu. Note: The
enter key alternates between this menu and the task menu.

1 Task Menu 14 go 26 next 38 rewind
2 tutorial 15 halt 27 off 39 search
3 annotate 16 help 28 offwn 40 set

4 at 17 if 29 position 41 step

5 autolist 18 1list 30 prevdisp 42 syscmd
6 backspace 19 1listbrks 31 profile 43 termio
7 close 20 listfreq 32 purge 44 timer
8 color 21 listings 33 qualify 45 trace
9 describe 22 listsamp 34 quit 46 when
10 enddebug 23 listsubs 35 reconnect 47 where
11 endfile 24 listtime 36 refresh 48 window
12 error 25 movecurs 37 restart 49 * "
13 fixup

TOP for main menu

Figure 31. Main Menu for the Help Facility (under ISPF)

220 VS FORTRAN Version 2: Interactive Debug Guide and Reference

SELECTION ===>

VS FORTRAN VERSION 2 INTERACTIVE DEBUG

VS FORTRAN VERSION 2 INTERACTIVE DEBUG

TASK MENU

The topics below describe debugging tasks.

To request

information for one of the tasks, enter the corresponding number

in the command line.
menu and the main menu.

Note: The enter key alternates between this

1 (Return to main menu) 13 Display variable values
2 Specify files to debug 14 Handle library errors

3 Use full-screen animation 15 Enter program input

4 Enter commands in attention 16 Debug optimized code

5 Debug in batch mode 17 Use program sampling

6 Use command continuation 18 Process external files

7 Use command lists 19 Define LISTING files

8 Control program execution 20 Set breakpoints

9 Use cursor-oriented commands 21 Execute a system command
10 Display statement frequencies 22 Display timing information
11 Display program information 23 Trace program execution

12 Display data types

TOP for main menu

Figure 32. Help Facility Task Menu (under ISPF)

SELECTION ===
CLOSE COMMAND

VS FORTRAN VERSION 2 INTERACTIVE DEBUG

panel 1 of 4

The CLOSE command disconnects a VS FORTRAN external file from an input or

output unit.
FORTRAN Version 2 language.

Its usage is similar to that of the CLOSE statement in the VS
This command‘allows you to close an external

file, for example to assign another file to the input or output unit, or to

examine the contents of the file.

Abbreviation: None

Syntax:
CLOSE <|number | <qual.>integer-variable |
<qual.>integer-array-element|>
NUMBER
is the number of the I/O unit associated with the file that is to be
closed.

TOP for main menu hit ENTER for next page

Figure 33. Sample Help Screen

Appendix A. Using the Interactive Debug HELP Facility 221

ISPF Procedures

CMS Procedures

When using VS FORTRAN Version 2 Interactive Debug under ISPF (in either
CMS or TSO), the HELP command invokes the ISPF HELP facility. If you prefer
to invoke CMS or TSO HELP, precede the HELP command with *“CMS” or
“TS0O.”

When HELP is specified without an operand, you will be presented with either the
main menu or a description of an unsuccessfully executed command.

When you are viewing the main menu, and want to transfer to another panel, you
can:

» Press the Enter key, causing the task menu to be displayed.
o Enter a number corresponding to one of the items listed on the menu.

The task menu operates in the same manner as the main menu. Pressing the Enter
key will return you to the main menu.

If you specify HELP with an operand, the panel for that particular command or
task will be displayed.

When you are viewing HELP information for a particular command or task, use the
following procedures:

+ Use PF3 (or enter QUIT) to terminate viewing of HELP information and
return to Interactive Debug.

+ Press the Enter key to move to the next panel. If you press Enter on the final
panel for a particular command or task, you will be returned to the first panel
of that command or task.

« Enter TOP on the command line of any panel to return to the main menu.

When executing VS FORTRAN Version 2 Interactive Debug in line mode under
CMS, CMS HELP procedures must be used to transfer between panels, When
HELP is entered following an Interactive Debug prompt (FORTIAD), Interactive
Debug invokes the CMS HELP facility, passing along any options that were
specified on the Interactive Debug HELP command.

When HELP is specified without any options, you will be presented with either the
main menu, or a description of an unsuccessfully executed command.

222 VS FORTRAN Version 2: Interactive Debug Guide and Reference

To transfer from the main menu to another panel, you can:

« Position the cursor under one of the names on the menu and press PF1 (or
press the Enter key).

« Enter a complete HELP command of the form:

HELP AFF name (options

The task menu operates in the same manner as the main menu. To view
information about one of the tasks, enter HELP TASK name.

TSO Procedures

When executing VS FORTRAN Version 2 Interactive Debug in line mode under
TSO, TSO HELP procedures are employed. To display the main menu in line
mode, enter:

HELP IADHELP

Information is written to the terminal one line at a time until the screen fills up.
Use the Enter key to display more information. There is no way to go back to
information presented earlier without reentering the command.

If you enter a HELP command without options, you will receive either the main
menu or information about an unsuccessfully executed command.

You will need to issue a separate HELP command for each topic. If you have just

seen the main menu and now want to see the task menu, you must enter HELP
TASK.

Appendix A. Using the Interactive Debug HELP Facility 223

Appendix B. Interactive Debug Command Summary

Symbols used to describe the syntax of VS FORTRAN Version 2 Interactive
Debug commands are the same as are used in other VS FORTRAN Version 2

publications.

« All entries in uppercase letters indicate the minimum abbreviation allowed.

« Square brackets indicate optional entries.

« Braces contain required entries separated by one or more vertical lines 1)

select one.

e Defaults are underlined.

funit | (unit list) | * }
[SAMPLING [DIRECT | CALLED | ALL]

| FREQUENCY]

Format 2

ANnotate
[ON | OFF | TOGGLE]

[SAMPLING [DIRECT | CALLED | ALL]

| FREQUENCY]

Command and Syntax Function
* or " Insert comments in the debug log.
[comment]
Format 1 Format 1 Copy source listings to a print file
with program sampling information.
ANnotate

Format 2 Display a program sampling bar
chart on the source listing window.

AT
[qual.] {number [:[qual.]Jnumber] |

ENTRY | EXIT } | (number/ENTRY/EXIT list)
[(command list)] [Count(n)]

[NOTify | NONotify]

Set breakpoints. Use a percent sign (%) to
separate individual commands in a command
list.

Appendix B. Interactive Debug Command Summary 225

Command and Syntax

Function

AutoList
[{[qual.] name [:[qual.]Jname] |

* | ‘string’ | number | (specification list)}

[Format [(code)] | Dump [(code)]]]

Automatically display values of variables in
full screen mode. Valid only under ISPF.

Note: Check the format and dump codes
table. See Figure 26 on page 127.

BACKSpace
{number | [qual.]integer—variable |

[qual.Jinteger—array—element}

Position a sequentially accessed external file
at the beginning of the previous record.

CLOSE
{number | [qual.]integer—variable |

[qual.]integer—array—element}

Disconnect a sequential external file from an
input or output unit.

[SAMPLE[(msecs)] [MAXSAMP(n[,STOP])]

[CALLED]]

COLOR Allows you to select color, highlighting and
intensity on the debug panel. Valid only
under ISPF Version 2.
DEscribe List data types of variables and dimension
{lqual.] name | * | (name list)} [Print] information for arrays.
ENDDEBUG 1- Terminate debugging and continue

program execution.
2- Initiate program sampling.

ENDFile
{number | [qual.]integer~variable |

[qual.Jinteger—array—element}

Write an end-of-file record on a sequentially
accessed external file.

ERror
ferror | error:error | (error list)}

[Msg | NOMsg] [Exit | NOExit]

Select diagnostic options for execution
errors.

Fixup
[ARG1(value)] [ARG2(value)]

Specify corrective action.

GO
[[qual.] {number | EXIT}]

Resume execution.

HALT
[Off | Stmt | Goto | Entry | Immed]

Continue execution until a specified
condition is reached.

Help (ISPF Version 2)
[command]

Request online information about a
command.

Help (CMS)
[command [(ALL | (DESC | (PARM |

(FORM]]

Request online information about a
command.

226 VS FORTRAN Version 2: Interactive Debug Guide and Reference

Command and Syntax

Function

Help (TSO)
[command] [ALL | FUNCTION | SYNTAX]

[OPERANDS [(keyword list)]]

Request online information about a
command.

IF Test a condition.
(condition) command
Note: Check the accompanying table for
valid conditions.
List Display values of variables.

{[qual.]Jname [:[qual.Jname]| * | ‘string’
| number | specification list)} [Print]

[Format [(code)] | Dump [(code)]]

Note: Check the format and dump codes
table. See Figure 26 on page 127.

ListBrks [Print]

List all breakpoints and WHEN conditions
currently set, and the current HALT status.

ListFreq
[[qual.]{number(:[qual.]number] |

ENTRY | EXIT} | (number/ENTRY/EXIT list)]

[Zerofreq] [Print]

List the number of times statements have
been executed.

LISTINGS Display the listings data set specification
panel under ISPF Version 2.

Format 1 Format 1 List sampling counts by
statement.

LISTSAMP

{[qual.]Jnumber[:[qual.Jnumber]
| [qual.JENTRY | [qual.]*
| (specification list) | *.*}

[DIRECT][CALLED][ALL] [TOP[(n)]][PRINT]

Format 2

LISTSAMP
{unit name | (unitname list) | *} SUMMARY

[DIRECT][CALLED][ALL] [TOP{(n)]][PRINT]

Format 2 List sampling counts by program
unit.

ListSubs

[Print]

List information about all debuggable
program units in the executing load module.

Appendix B. Interactive Debug Command Summary 227

Command and Syntax Function
ListTime Display timing information for all program
[Print] units.

MoveCurs Move the cursor between the primary
command line and the source window.
Valid only under ISPF Version 2.

Next Set a temporary breakpoint at the next
executable statement that has a debugging
hook.

OFF Turn off breakpoints.

[qual.] {number [:[qual.]Jnumber] |
ENTRY | EXIT} | * |
(number/ENTRY/EXIT list)

OFFWN Turn off WHEN monitoring.

condition name | * | (condition name list)

POSition Position the cursor at a given ISN or

number sequence number. Valid only under ISPF
Version 2.

PREVdisp Redisplay the previous panel displayed by
the application program. Valid only under
ISPF Version 2.

PROFILE Display a profile panel to change current
conditions or profile settings. Valid only
under ISPF Version 2.

PURGE Purge output.

Qualify Change the current default program unit

[program] name.
QUIT End the debugging session.
| | RECONNECT Reconnect a closed external file.
| {number | [qual.]integer—variable |
| [qual.Jinteger—array—element}
REFRESH Control whether the IAD panel is refreshed.
[ON | OFF] Valid only under ISPF.

RESTART Restarts the debugging session while
maintaining the log file. Valid only under
ISPF.

REWind Position a sequentially accessed external file

{fnumber | [qual.]integer—variable | at the beginning of its first record.
| [qual.linteger—array—element}

228 VS FORTRAN Version 2: Interactive Debug Guide and Reference

Command and Syntax Function
SEARCH Search the source listing window or the
[/string[/ 1] scrollable log for a given character string.
Valid only under ISPF Version 2.
Set Assign values to variables.

[qual.Jname=value[,value...]

STep Execute one or more statements, then

[number] suspend execution. Under ISPF Version 2,
execution is animated.

SYScmd Execute system commands during debugger
[system--command] execution.

TERMIO Select I/0 routines for terminal I/0O from
[IAD | Library] [Msg [(userid)] | Nomsg] the VS FORTRAN program.

TIMER Control program unit timing,.

{* | program-unit-name |
(program-unit-name list)}

[ON | OFf | Reset]

Trace Trace statement branches and subprogram
[Goto | Entry | Off] [Print] calls.

WheN Set up monitoring of a condition.
condition-name [(condition) | variable]

Where Display statement at which execution is
[Trback] [Flow] [Print] suspended.

WINDOW Open or close the source listing window, or
[ON | OFF] define the window so the lower left corner is

at the cursor position. Valid only under
ISPF Version 2.

Appendix B. Interactive Debug Command Summary 229

Appendix C. Interactive Debug Messages

All the following VS FORTRAN Version 2 Interactive Debug messages consist of
a message number and text. The message number is composed of three parts:

1. A prefix, AFF
2. A 3-digit number
3. A suffix, which indicates the level of the message:

o I -informational

¢ W - warning

¢ E-error

e A -action required

You can control whether or not the message numbers are displayed. Under CMS,
use the SET EMSG command. Under TSO, use the PROFILE MSGID command.

An Explanation is provided for each message, and, in many cases, a User Response
and System Action are also presented. Generally, the User Response for many of
the messages is to reenter the command, correcting the problem that was identified
in the error message.

Similarly, the System Action for many of the messages is to issue the VS
FORTRAN Version 2 Interactive Debug prompt (FORTIAD) in line mode, or
redisplay the screen in full screen mode, and await entry of another command.

In this appendix, a User Action and/or System Action is shown only if it differs
from the above general actions.

Appendix C. Interactive Debug Messages 231

AFFOO0E THIS MESSAGE IS RESERVED FOR FUTURE USE; INFORM
IBM

Explanation: This message should never occur. If it does, it is the
result of a programming error within VS FORTRAN Version 2
Interactive Debug.
User Response: Contact your IBM representative.

AFF001A FORTIAD
Explanation: This is the standard prompt displayed when executing VS
FORTRAN Version 2 Interactive Debug in line mode (that is, not
under ISPF).

User Response: Enter any VS FORTRAN Version 2 Interactive
Debug command.

AFF002A 1AD/E
Explanation: This is the prompt displayed when execution is
suspended during an error exit for an error detected by the VS
FORTRAN Version 1 or VS FORTRAN Version 2 Library.
User Response: When appropriate, use the FIXUP command to
supply corrected values for invalid arguments. Use the GO command
to cause standard corrective action to be taken.

AFF003A [IAD/A
Explanation: This is the prompt displayed when execution is
suspended because of an attention interrupt. When this prompt is
displayed, processing is within the VS FORTRAN Version 2
Interactive Debug attention exit.
User Response: Enter an Interactive Debug command or a null line.

AFF0101 VS FORTRAN VERSION 2.2 INTERACTIVE DEBUG

Explanation: This message is issued at the first hook in the program to
identify the Interactive Debug product and the release level.

User Response: None required.
AFF0111 (C) COPYRIGHT IBM CORP. 1985, 1987
Explanation: This message is issued at the first hook in the program.

User Response: None required.

232 VS FORTRAN Version 2: Interactive Debug Guide and Reference

AFF0121

AFF0131

AFF020E

AFF100E

AFF101E

AFF102E

AFF103E

ALL RIGHTS RESERVED

Explanation: This message is issued at the first hook in the program.
User Response: None required.

LICENSED MATERIALS - PROPERTY OF IBM

Explanation: This message is issued at the first hook in the program.
User Response: None required.

INTERNAL IAD ERROR number. FORTRAN PROGRAM MAY
HAVE MODIFIED IAD STORAGE

Explanation: This message is issued when an internal error occurs.

User Response: Make sure the application program has not modified
Interactive Debug storage. If it has not, contact your IBM
representative.

“PRINT” OPTION NOT PERMITTED

Explanation: The AUTOLIST command was entered with the PRINT
option.

“name” IS ONLY VALID IN FULLSCREEN MODE UNDER ISPF
VERSION 2 OR HIGHER; COMMAND IGNORED

Explanation: The COLOR, LISTINGS, MOVECURS, POSITION,
PREVDISP, PROFILE, SEARCH, or WINDOW command was
entered using line mode or batch mode.

User Response: Be sure you are running under ISPF Version 2 before
issuing this command.

“name” MUST SPECIFY A COMMAND IN BATCH MODE

Explanation: A SYSCMD, CMS, or TSO command was entered with
no operand while operating in batch mode.

User Response: Correct the problem and resubmit the job. If you
want to issue a sequence of system commands, you must enter
separate SYSCMDs.

“name” 1S SUPPORTED ONLY IN FULLSCREEN MODE;
COMMAND IGNORED

Explanation: AUTOLIST, REFRESH, or RESTART was entered in
line mode or batch mode.

User Response: Be sure you are running under ISPF before entering
this command.

Appendix C. Interactive Debug Messages 233

AFF1111

AFF112E

AFF121E

AFF122E

AFF123E

PROGRAM TERMINATED EARLY BECAUSE MAXIMUM
COUNT WAS REACHED

Explanation: The maximum count value specified in the sublist for the
MAXSAMP keyword of the ENDDEBUG command was reached.
STOP was also specified which caused the program to be terminated.

INTERVAL TIMER WAS RESET BY USER PROGRAM, THUS
CANCELLING SAMPLING

Explanation: A non-VS FORTRAN routine called by a VS
FORTRAN program performed an STIMER macro, resetting the
STIMER set by IAD program sampling.

System Action: Program sampling was discontinued.

THE AFFON STATEMENT RESTRICTION LIST WILL BE

IGNORED FOR “name” BECAUSE IT WAS COMPILED WITH
THE “TEST” OPTION

Explanation: You cannot restrict statement hooks if the program unit
is compiled with “TEST” because the compiler inserts the hooks.

User Response: Remove the statement restriction list, or recompile the
program unit.

System Action: The restriction list is ignored.

THE AFFON STATEMENT RESTRICTION LIST FOR “name”
CONTAINS AN INVALID RANGE, WHICH WILL BE TREATED
AS A SINGLE ISN

Explanation: If an invalid range syntax is specified in the AFFON file,
only the first ISN will be considered.

User Response: Correct the restriction list, and rerun the job.
System Action: The second ISN is ignored.

THE AFFON STATEMENT RESTRICTION LIST FOR “name”
CONTAINS INVALID SYNTAX AND WILL BE IGNORED

Explanation: If invalid syntax such as alphabetic characters are
specified in the AFFON file, the entire list for the associated program
unit will be ignored.

User Response: Correct the restriction list, and rerun the job.

System Action: The restriction list is ignored.

234 VS FORTRAN Version 2: Interactive Debug Guide and Reference

™

AFF124E

AFF190E

AFF191E

AFF1921

AFF194E

THE AFFON STATEMENT RESTRICTION LIST FOR “name”
CONTAINS AN ENTRY THAT EXCEEDS THE MAXIMUM
POSSIBLE ISN; THE MAXIMUM IS ASSUMED

Explanation: An ISN greater than 16777215 was specified in the
AFFON restriction list.

User Response: Correct the restriction list, and rerun the job.
System Action: The entry is treated as 16777215.
ATTEMPT TO REFERENCE INACCESSIBLE STORAGE

Explanation: Interactive Debug tried to examine storage in an area
where it was not allowed to look. This was probably caused by either
an invalid address entered as part of a LIST command, or an invalid
address within a VS FORTRAN module.

User Response: If you specified an invalid address on a LIST
command, reissue the command with valid addresses. If not, try to
determine the cause of the invalid address in the program.

END STATEMENT SAME AS EPILOG IN PROGRAM program;
INTERNAL ERROR

Explanation: This indicates an internal error and should not occur.
The statement table entry in a VS FORTRAN Version 1 program for
an END statement points to the epilog processing routine.

User Response: Contact your IBM representative. Debugging may be
continued, however.

System Action: The statement is treated as a collapsed statement.
CURRENT HALT STATUS: status

Explanation: This message tells you whether HALT has been issued to
indicate when execution is to be suspended. Possible status is STMT,
GOTO, or ENTRY.

User Response: None required. This is an informational message.
1/0 IS ALREADY ACTIVE; COMMAND IGNORED

Explanation: An attempt to issue BACKSPACE, CLOSE, ENDFILE,
RECONNECT or REWIND, has been detected while 1/0 was
already active.

User Response: If you need to issue one of these commands, issue a

NEXT command so that execution will be suspended after the 1/0
event is completed.

Appendix C. Interactive Debug Messages 235

AFF195E NO DEBUGGABLE FORTRAN PROGRAMS WERE FOUND

Explanation: Interactive Debug has not found any programs within the
module to be executed that are debuggable program units. In general,
for a program unit to be considered debuggable, it must have been
compiled with the SDUMP option.

User Response: The problem may be because of an incorrectly
specified AFFON file. If so, you should have received other messages
detailing other errors.

AFF196E THERE IS NO PRINT DATA SET DEFINED

Explanation: An error has occurred while attempting to open the
AFFPRINT data set.

User Response: Correct the cause of the error.

System Action: Processing continues. You will not be able to use the
PRINT keyword on any Interactive Debug command.

AFF198E RELEASE 4.0 LIBRARY TRANSFERRED TO IAD IN 24-BIT
ADDRESSING MODE, CONTACT IBM

Explanation: This indicates an internal library error, or an installation
or system error that should not occur.

User Response: Contact your IBM representative.

AFF199E RELEASE 3.1 LIBRARY TRANSFERRED TO IAD IN 31-BIT
ADDRESSING MODE

Explanation: This indicates a link-edit error, an internal library error,
or an installation or system error.

User Response: Relink-edit your program with
AMODE(24)/RMODE(24). If this does not solve the problem,
contact your IBM representative.

AFF200E STORAGE EXHAUSTED; SIMPLIFY THE COMMAND OR
REMOVE SOME BREAKPOINTS

Explanation: While attempting to build internal control blocks to
represent a command, Interactive Debug used up all available storage.

User Response: If possible, issue a less complicated command, or

reinvoke Interactive Debug with more virtual storage (VM) or a larger
user region (MVS).

236 VS FORTRAN Version 2: Interactive Debug Guide and Reference

AFF210E

AFF2201

AFF2241

AFF225E

AFF226E

STORAGE EXHAUSTED DURING SAMPLING, ENTRY POINT
SAMPLING INFORMATION WILL BE INCOMPLETE

Explanation: IAD was not able to obtain storage for recording the
sampling counts for some entry points of nondebuggable VS
FORTRAN routines, VS FORTRAN math. library routines, or
non-VS FORTRAN routines. Counts that would have normally been
categorized by entry point are grouped together in the *UNKNOWN
count.

User Response: Reinvoke Interactive Debug with more virtual storage
(VM) or a larger user region (MVS).

synad message

Explanation: This is the error message returned by the operating
system when an attempt was made to write to the AFFPRINT data
set.

User Response: Correct the error that caused the message. If printed
output is required, after correcting the problem, reinvoke Interactive
Debug.

“count”” LINES OF OUTPUT WRITTEN TO AFFPRINT BY
“command”

Explanation: Confirms that information was written to the print file,
following a command that was specified with the print option.

ERROR WRITING THE PRINT DATA SET; SUBSEQUENT
OUTPUT WILL BE WRITTEN TO THE TERMINAL

Explanation: An error was detected when attempting to send
“printed” output to the AFFPRINT data set. From this point on,
output that would be destined for the print data set is redirected to the
terminal.

User Response: If you need to have the print output in a print data
set, terminate your debugging session, correct the error, and reinvoke
the program.

System Action: Further print output is sent to the terminal.

ERROR WRITING THE PRINT DATA SET; SUBSEQUENT
OUTPUT WILL BE DISCARDED.

Explanation: An error was detected when attempting to send
“printed”” output to the AFFPRINT data set in batch mode under
TSO. From this point on, output that would be destined for the print
data set is discarded.

User Response: If you must have the print output in a print data set,

terminate your debugging session, correct the error, and reinvoke the
program.

Appendix C. Interactive Debug Messages 237

System Action: Further print output is discarded.
AFF229E INVALID COUNT VALUE SPECIFIED IN “number”

Explanation: A count value larger than 65535 was specified on the AT
command.

User Response: Specify a smaller count value, and reissue the AT
command.

AFF230E NO BREAKPOINTS CAN BE SET AT STATEMENT “number”
BECAUSE IT IS COLLAPSED

Explanation: The indicated statement occupies no storage so a
breakpoint cannot be set.

User Response: Set your breakpoint at a statement before or after the
indicated statement. You can use LISTFREQ to see which statements
have hooks.

AFF231E NO BREAKPOINT CAN BE SET AT STATEMENT “number”
BECAUSE THERE IS NO HOOK THERE

Explanation: The specified statement was not included in the AFFON
file restriction list, or is an ENTRY or EXIT of a main program unit.

User Response: None required. You can use LISTFREQ to see which
statements have hooks.

AFF240W A SUBSCRIPT IS OUT OF RANGE IN “array element”

Explanation: A subscript has been specified for the indicated array
element that exceeds the dimension specified when the array element
was defined.

AFF241W WARNING: A SUBSTRING BOUNDARY IS OUT OF RANGE IN
“string”

Explanation: A substring value has been specified which is outside the
defined variable length.

System Action: The command is executed as normal.

AFF242E “name” CANNOT BE ACCESSED; IT COULD BE IN AN
UNINITIALIZED DYNAMIC COMMON

Explanation: Variables in a dynamic common cannot be accessed until
the common has been initialized and the address has been obtained for
the qualifying VS FORTRAN program unit. This occurs the first time
the program unit is entered.

User Response: Set a breakpoint at some point that will be reached

after the program unit is entered, and access the variables when you
get there. If the dynamic common has been initialized, you may be

238 VS FORTRAN Version 2: Interactive Debug Guide and Reference

AFF245E

AFF292E

AFF293E

AFF294E

AFF295E

AFF296E

able to access it using a different program unit that has already been
entered at least once.

“WHERE” INFORMATION IS NOT AVAILABLE AFTER
“ENDDEBUG” IS ISSUED

Explanation: ENDDEBUG has been issued and WHERE information
cannot be determined.

LISTING FILE “dsname” CANNOT BE READ

Explanation: Issued when a read error occurs while attempting to
annotate a listing. Can occur due to an actual read error or
unexpected file format.

User Response: Insure that the file or data set is sequential or is a PDS
member and that the LRECL is not greater than 151.

AN ARRAY WAS USED WHERE A SCALAR IS REQUIRED IN
“variable” -

Explanation: While scanning the syntax of the previous command, an
array variable was found when a scalar variable was required.

A SIGN WAS SPECIFIED IN “text,” BUT THE VARIABLE IS NOT
A NUMERIC SCALAR

Explanation: While scanning the previous command, a sign (+ or -)
was specified for a nonnumeric variable. Only numeric variables may
have signs.

THERE IS NO ROOM TO INSERT A HOOK IN STATEMENT
“name.number’®; STATEMENT TREATED AS COLLAPSED

Explanation: This is an internal error and should not occur. It
indicates that the VS FORTRAN Version 1 or VS FORTRAN
Version 2 compiler only allocated two bytes for a VS FORTRAN
statement. The compiler should allocate at least four bytes so that an
Interactive Debug hook can be inserted.

User Response: Contact your IBM representative. Debugging may be
continued, however.

System Action: The statement is treated as a collapsed statement, and
you will not be allowed to set a breakpoint at the statement.

THE AFFON FILE CANNOT BE READ; FILE IGNORED
Explanation: An 1/0 error occurred trying to access the AFFON file.

User Response: Correct the cause of the I/0 error if you want the
AFFON file to be read.

System Action: The AFFON file is ignored and processing continues.

Appendix C. Interactive Debug Messages 239

AFF297E AN ATTEMPTED BRANCH TO LOW STORAGE OCCURRED AT
“name.number; IT MAY BE A CALL TO A NONEXISTENT Vo
PROGRAM

Explanation: An attempted branch to low storage has occurred. This
is frequently caused by a call to a missing program unit.

User Response: Determine the cause of the error. Perhaps the
required program unit was not found at link-edit or load time.

System Action: Control is returned to the calling program as if the
called program only contained a RETURN statement.

AFF2981 FORTRAN DEBUG PACKET STATEMENTS IN PROGRAM
“program” WILL BE TREATED AS COLLAPSED

Explanation: For programs compiled prior to VS FORTRAN Version
1 Release 4, Interactive Debug has detected static debug packet
statements within the program. Interactive Debug will operate with
programs containing debug packets, but debugging of the packets
themselves is not supported.

User Response: None required.

System Action: The statements within the debug packet are treated as
collapsed statements, and debugging will not be possible at those
statements.

AFF299E ERROR WRITING AFFOUT FILE; FILE IGNORED

Explanation: An I/0 error has occurred while attempting to write to
the AFFOUT data set. No further attempts will be made to access the
file.

User Response: Correct the problem that caused the message. If the
log is required, reinvoke Interactive Debug after correcting the
problem.

AFF3001 AT: name.number

Explanation: Execution has been suspended at the identified statement
in the identified program unit. It is suspended because a prior AT
command requested a breakpoint at this statement.

User Response: Enter debugging commands, or GO to resume
execution.

AFF3011 NEXT: name.number
Explanation: Execution has been suspended at the identified statement
in the identified program unit. It is suspended because a NEXT or

STEP command was issued.

User Response: Enter debugging commands, or GO to resume
execution.

240 VS FORTRAN Version 2: Interactive Debug Guide and Reference

AFF3031

AFF3041

AFF305W

AFF306I

AFF307W

AFF4001

TRACE STATUS: status

Explanation: Provides the current trace status in response to the
TRACE command with no operands. »

TRACE: FROM name.number TO name.number

Explanation: Execution has passed from the first identified statement
to the second identified statement. The second statement did not
immediately follow the first statement in the VS FORTRAN source.
This message is received because of an earlier TRACE command that
was issued.

User Response: None required.

“ERROR” COMMAND TERMINATED AFTER PROCESSING
ERROR NUMBER rnumber

Explanation: The PURGE command was used to terminate excessive
output from an ERROR command. The last error number processed
was “number.”

User Response: None required.
PROGRAM HAS TERMINATED; RC=(code)

Explanation: The application program being executed has completed.
If a return code was coded on the STOP statement, it is provided.

User Response: None required.

System Action: You will be allowed to continue entering commands
until a QUIT command is entered, at which time the debugging session
will be terminated.

COMMAND OUTPUT REFLECTS THE STATE OF EXECUTION
PRIOR TO ENTERING “ENDDEBUG”

Explanation: The information presented as output for the command
which was just issued, is not necessarily current information. It was
correct when you issued an ENDDEBUG command earlier in the
debugging session, and has not been updated since ENDDEBUG was
issued.

User Response: None required.

THE COMMAND LIST FOR THE BREAKPOINT AT
“name.number’ HAS BEEN TERMINATED BY AN ATTENTION

Explanation: Because of entering an attention exit, the indicated
command list cannot be completed.

User Response: If necessary, enter the commands that were not
completed.

Appendix C. Interactive Debug Messages 241

AFF405E THE NONIMMEDIATE COMMAND “command” WAS IGNORED
DUE TO A PENDING ERROR EXIT

Explanation: The indicated command could not be executed now
because it is not a command that can be immediately processed (that
is, processed easily by issuing a message, like WHERE, or by setting a
flag, like NEXT), and cannot be deferred to later processing because
execution is currently within an error exit.

User Response: Issue a NEXT, and then issue the command after
execution has left the error exit.

AFF410E UNKNOWN COMMAND

Explanation: The syntax of the previous “command” name was not a
valid Interactive Debug command.

User Response: Check your spelling of the command name for
accuracy or insure that you have included the SYSCMD command for
a system command.

AFF450E “name” IS AN ASSUMED SIZE ARRAY; SUBSCRIPTS MUST BE
SPECIFIED FOR “LIST”

Explanation: A LIST or SET command was issued for the specified
array. However, the final dimension of the array is unknown because
it was not defined at compile time. For example, B(*) may have been
specified. Interactive Debug will not LIST or SET values in an
assumed size array unless a specified element (for example, B(3)) is
specified.

AFF454E “GOTO” OR “ENTRY” MUST BE SPECIFIED WITH “PRINT”

Explanation: GOTO or ENTRY was not specified with the PRINT
option on the TRACE command.

User Response: Reissue the TRACE command with either the GOTO
or ENTRY options.

AFF455E INVALID OPERAND SYNTAX SPECIFIED IN “rexr”

Explanation: Invalid syntax has been specified for the indicated
command operand.

AFF456E “word” IS NOT A VALID KEYWORD FOR THE “cmnd”
COMMAND

Explanation: Issued when an invalid keyword option is detected in an
IAD command.

242 VS FORTRAN Version 2: Interactive Debug Guide and Reference

AFF457E

AFF458E

AFF459E

AFF460E

AFF461E

AFF462E

AFF463E

AFF464E

“abbr’ IS AN AMBIGUOUS KEYWORD ABBREVIATION FOR
THE “cmnd> COMMAND

Explanation: Issued when an ambiguous abbreviation is detected in an
IAD command.

User Response: Use a longer abbreviation for the keyword.

KEYWORD “word” WAS SPECIFIED MORE THAN ONCE FOR
THE “cmnd” COMMAND

Explanation: Issued when an option keyword is specified more than
once in an IAD command.

User Response: Specify the option keyword only once.

“word]” AND “word2” CANNOT BOTH BE SPECIFIED ON THE
“cmnd” COMMAND

Explanation: Conflicting keywords are specified.

User Response: Reissue the command with only one of the keywords.
UNBALANCED DELIMITERS SPECIFIED IN “texr”

Explanation: While scanning the syntax of the previous command, an
invalid use of delimiters was detected. Usually, a right or left
parenthesis is missing.

INVALID SUBLIST SYNTAX IN “texr”

Explanation: Issued when incorrect syntax is detected in a
parenthesized sublist following a keyword.

KEYWORD “word” OF THE “cmnd” COMMAND REQUIRES A
SUBLIST

Explanation: Issued when a parenthesized sublist was not specified for
a keyword that requires one.

User Response: Reissue the command with the required sublist.

KEYWORD “word” OF THE “cmnd” COMMAND DOES NOT
ALLOW A SUBLIST

Explanation: Issued when a parenthesized sublist was specified for a
keyword that does not permit one.

SUBLIST VALUE “number’’ IS TOO LARGE FOR KEYWORD
“word”

Explanation: The value specified in the sublist is larger than the
maximum allowed.

Appendix C. Interactive Debug Messages 243

AFF470E

AFF481E

AFF483E

AFF484E

AFF485E

AFF486E

AFF500E

UNKNOWN COMMAND “text”

Explanation: The indicated string was found in a command list, but is
not recognized as a valid Interactive Debug command.

THE DESTINATION CANNOT BE BRANCHED TO IN “fext”

Explanation: A GO command was entered that references a VS
FORTRAN statement that has no hook. This includes a GO EXIT for
a VS FORTRAN Version 1 MAIN program.

User Response: You can use LISTFREQ to see which statements have
hooks.

“GO” WITH A STATEMENT IDENTIFIER CANNOT BE ISSUED
FROM AN ENTRY

Explanation: A GO command with a statement identifier cannot be
issued from the entry point of any VS FORTRAN program unit. At
entry, the unit is not yet active.

User Response: Issue STEP 1 to get to the first statement with a
hook. You should be able to issue the GO command from there.

CONTINUATION IS NOT PERMITTED WITH THE “command”
COMMAND

Explanation: A command valid only under ISPF Version 2 was
entered under ISPF Version 2, but with continuation. Continuation is
not supported for these commands.

“cmnd”® COMMAND CANNOT BE ISSUED FROM AN
ATTENTION EXIT

Explanation: A full screen display command is not allowed from an
attention exit.

User Response: Exit the attention mode and reissue the command.

“cmnd® COMMAND CANNOT BE ISSUED FROM A RESTART
FILE

Explanation: A full screen display command is not allowed in a
RESTART file.

System Action: The command is ignored.

STATEMENT number IS NOT EXECUTABLE

Explanation: The statement reference does not identify an executable
statement. Possibly the current qualification identifies a program unit

that does not contain a statement with the specified number.

User Response: Use the QUALIFY command to set the proper
qualification, or select a different statement.

244 VS FORTRAN Version 2: Interactive Debug Guide and Reference

AFFS10E INVALID RANGE; THE RIGHT SIDE (number) IS LESS THAN
THE LEFT SIDE (number)

Explanation: If a command has been entered with a range of
statements specified, the first statement must appear prior to the
second in the program.

AFFS11E INVALID SUBSTRING RANGE; THE RIGHT SIDE IS LESS THAN
THE LEFT SIDE IN “string”

Explanation: The value specified on the right side of the substring
notation is larger than the value specified on the left side.

AFFS20E program IS NOT A DEBUGGABLE FORTRAN PROGRAM UNIT
Explanation: The indicated program unit cannot be debugged.

1. Ifitis a VS FORTRAN Version 1 or VS FORTRAN Version 2
program, it probably was compiled with the NOSDUMP option.
Either SDUMP or TEST must be specified (or defaulted) for the
program unit to be eligible for debugging.

2. A valid AFFON file was found but did not contain this program
unit.

User Response: If you want to debug the indicated program unit,
terminate the current debugging session, using the QUIT command,
correct the AFFON file or recompile the program unit with the
appropriate compiler options, and reexecute the program.

AFFS530E “texr” IS INVALID “FIXUP” SYNTAX
Explanation: Invalid keyword syntax has been detected for a FIXUP
command. The only valid keywords are ARG1 and ARG?2 and both
must contain a value within parentheses following the keyword.

AFF53SE NONNUMERIC VALUE “fexs”” IS NOT ALLOWED IN FIXUP
Explanation: A logical or character value has been specified in a
FIXUP command as value for either ARG1 or ARG2. Only numeric
values are valid.

AFFS40E FORTRAN TERM “zext” IS NOT ALLOWED IN FIXUP

Explanation: Usually, valid syntax has been detected where it is not
allowed in a FIXUP command (for example, a duplication factor).

AFF545E A NULL FORTRAN TERM IS INVALID

Explanation: One of the sides of a range specification is missing (for
example, "LIST A(1):").

Appendix C. Interactive Debug Messages 245

AFF549E

AFF5501

AFF5511

AFF5521

AFFS53E

AFFS54E

AFF5551

AFF5561

PROGRAM SAMPLING REQUIRES VS FORTRAN VERSION 2
RELEASE 2.0 LIBRARY OR LATER

Explanation: The module being debugged was link-edited with an
older release of the VS FORTRAN library. Interactive Debug needs
Version 2 Release 2.0 in order to perform program sampling.

User Response: Relink-edit the program with the latest release of the
library.

PROGRAM SAMPLING INTERVAL WAS m MS; TOTAL
NUMBER OF SAMPLES WAS n

Explanation: This is the header message for a LISTSAMP display,
where “m” is the sampling time interval used and “n” is the total
number of sampling interruptions that occurred.

“type” SAMPLES:

Explanation: The sampling counts that follow are for sampling
interruptions of the type indicated.

SUM OF DIRECT AND CALLED SAMPLES:

Explanation: The counts that follow are the sum of both DIRECT and
CALLED counts.

“ynitname”® CANNOT BE ANNOTATED BECAUSE ITS LISTING
FILE IS NOT KNOWN

Explanation: Issued when the listing file has not been identified for a
program unit that has had annotation requested for it.

User Response: Specify the file or data set name in the AFFON file,
or use the LISTINGS panel under ISPF Version 2.

“ynitname” CANNOT BE ANNOTATED BECAUSE IT WAS NOT
FOUND IN “dsname”

Explanation: Issued when the listing for a specified program unit
cannot be found in the specified listing data set.

User Response: Be sure the correct file or data set name is specified in
the AFFON file.

STATEMENT SAMPLES %UNIT %TOTAL

Explanation: This is the title line for a LISTSAMP output when
statement information is listed.

PROGRAM UNIT SAMPLES %TOTAL

Explanation: This is the title line for LISTSAMP output when
summary information is listed.

246 VS FORTRAN Version 2: Interactive Debug Guide and Reference

AFFS571

AFFS58I

AFFS559E

AFF560E

AFF5611

AFF5621

AFF5631

statement samples %unit %total histogram

Explanation: This is the program sampling information for a
statement, showing statement number, number of samples, percentage
of total samples for the program unit, percentage of total samples for
the entire program, and a histogram (bar chart) that graphically
displays the size of this value relative to the other sampling values
listed.

program samples %total histogram

Explanation: This is the program sampling information for a program
unit, showing program unit name, number of samples, percent of total
samples, and a histogram (bar chart).

“unitname” CANNOT BE ANNOTATED BECAUSE IT WAS NOT
COMPILED WITH VS FORTRAN V2

Explanation: Issued when annotation is requested for a program unit
that was not compiled with VS FORTRAN VERSION 2. Annotation
is not supported for listings produced by previous versions of the
compiler.

PROGRAM SAMPLING HAS NOT BEEN DONE; ISSUE
“ENDDEBUG” WITH THE “SAMPLE” OPTION TO INITIATE
PROGRAM SAMPLING

Explanation: Issued when LISTSAMP or ANNOTATE with the
SAMPLING option is entered but program sampling has not been
initiated.

ANNOTATING LISTING FOR PROGRAM UNIT “unitname”

Explanation: An informational message indicating the progress of the
ANNOTATE command.

samples %unit %total histogram

Explanation: This is program sampling information for a statement,
showing number of samples, percentage of total samples for the
program unit, percentage of total samples for the entire program, and
a histogram (bar chart) that graphically displays the size of this value
relative to the other sampling values listed. This information will
appear on the line below the statement number, in those cases where
these fields and the statement number are too long to display together
on a single line.

VS FORTRAN INTERACTIVE DEBUG V2 R2.0 ANNOTATED
LISTINGS:

Explanation: This is the heading line for annotated listings.

Appendix C. Interactive Debug Messages 247

AFFS5641

AFF5651

AFF5661

AFF567E

AFF568I

AFF569E

AFFS570E

AFFS71E

AFFST72E

PROGRAM UNIT PAGE %TOTAL DISTRIBUTION

Explanation: This is the heading line for the summary page of annoted
listings.

unitname page percent histogram

Explanation: This is the format of the output of the summary lines
shown on the summary page of annotated listings.

ANNOTATE: status

Explanation: Indicates the current status of the ANNOTATE controls
that are used for displaying bar charts on the source listing window.

“CALLED” IS NOT VALID UNLESS SAMPLING WAS INITIATED
WITH THE “CALLED” OPTION

Explanation: The CALLED keyword must be specified in the

ENDDEBUG command in order for CALLED to be valid in the
ANNOTATE and LISTSAMP commands.

User Response: Reissue the command without the CALLED option,
or restart the debugging and specify the CALLED option, in
ENDDEBUG, when initiating sampling.

FREQUENCIES

Explanation: Heading for annotated listing by program unit when
frequency values are displayed.

“word” KEYWORD IS NOT PERMITTED WITHOUT THE
“SAMPLE” KEYWORD

Explanation: The MAXSAMP or CALLED keywords are only valid if
SAMPLE has been specified for the ENDDEBUG command.

TIMING INTERVAL MUST BE AN INTEGER LARGER THAN
ZERO

Explanation: The sample time specified in the SAMPLE sublist of the
ENDDEBUG command must be an integer value larger than zero.

INVALID STOP PARAMETER SPECIFIED IN “MAXSAMP”
SUBLIST

Explanation: STOP, or an abbreviated form of STOP, was incorrectly
specified in the MAXSAMP sublist of the ENDDEBUG command.

NO SUBLIST SPECIFIED FOR THE “word” KEYWORD

Explanation: A sublist is required with the indicated keyword.

248 VS FORTRAN Version 2: Interactive Debug Guide and Reference

AFFST3E

AFFS574E

AFFSTSE

AFFS76E

AFFSTTE

AFF605E

AFF610E

AFF615E

AFF620E

“number” IS AN INVALID “word” VALUE

Explanation: The numeric value specified in the keyword sublist is too
large.

MAXIMUM NUMBER OF SAMPLING INTERRUPTS MUST BE
AN INTEGER GREATER THAN ZERO

Explanation: The maximum number of sampling interrupts specified in
the MAXSAMP sublist of the ENDDEBUG command must be an
integer value greater than zero.

“text” IS NOT A VALID SUBLIST FOR “word”

Explanation: A sublist after the keyword on a command contains
invalid syntax.

“DUMP” IS NOT PERMITTED WITH A CONSTANT OPERAND

Explanation: LIST or AUTOLIST has been specified with both a
constant operand and the dump option. This combination is not
permitted.

THE MINIMUM SAMPLING INTERVAL ON CMS IS 4
MILLISECONDS.

Explanation: When using CP timer assist, the minimum accuracy of
the interval timer on CMS is about 3.3 milliseconds. To prevent
sampling interruptions from occurring in the operating system code
servicing of the interruption, the interval time is restricted to 4
milliseconds or greater.

ONLY REALS ALLOWED IN COMPLEX CONSTANT “rexs”

Explanation: Integers have been used as part of a complex constant.
Only real numbers are allowed.

REAL AND IMAGINARY PARTS OF “variable’ DIFFER IN
LENGTH

Explanation: One part of a complex constant has been entered as a
REAL*4 number and the other part has been entered as a REAL*8
number. Both parts must be of equal length.

“text” IS INVALID FORTRAN TERM SYNTAX

Explanation: While scanning the previous command, an operand that
must be a VS FORTRAN term had invalid syntax.

SUBSCRIPTS ARE NOT PERMITTED ON “variable’’; THE
VARIABLE IS NOT AN ARRAY

Explanation: Subscripts have been specified for a variable that is not
an array.

Appendix C. Interactive Debug Messages 249

AFF625E THE NUMBER OF SUBSCRIPTS ON “array” DOES NOT MATCH
THE DECLARED NUMBER OF DIMENSIONS

Explanation: There are too many or too few subscripts specified for
the indicated array.

AFF630E “variable” IS AN INVALID FORTRAN VARIABLE NAME

Explanation: The name of a VS FORTRAN variable is invalid. For
example, the name contains more than six characters, or does not
begin with an alphabetic character.

AFF631E PROGRAM UNIT “name” IS NOT ACTIVE; “varname” IS A
DUMMY ARGUMENT AND CANNOT BE ACCESSED

Explanation: An AUTOLIST, LIST, SET, IF, or WHEN command
attempted to access variables that have no storage because the
program unit is not active.

User Response: Set a breakpoint within the program unit and access
the variables when you get there. If the dynamic common has been
initialized, you may be able to access it using a different program unit.

AFF632E “varname” IS A DUMMY ARGUMENT THAT IS NOT DEFINED
AT THE ENTRY POINT BY WHICH “program” WAS ENTERED,
AND CANNOT BE ACCESSED

Explanation: An attempt was made to reference a dummy argument
that is defined only in an alternate entry point.

User Response: Wait until the program unit is entered by an entry
point that defines the dummy variable you want to access.

AFF633E “QUIT” HAS BEEN ISSUED. ENTER “QUIT” AGAIN TO FORCE
AN ABNORMAL TERMINATION

Explanation: This message is issued by the attention interrupt handler.

User Response: Enter QUIT again if you want to terminate
debugging; otherwise, enter any command that is appropriate in an
attention exit.

AFF634E “H” IS NOT A VALID ABBREVIATION UNDER ISPF; USE
“HELP”

Explanation: The only way to request HELP information when
executing VS FORTRAN Version 2 Interactive Debug under ISPF is
to type “HELP” and press the Enter key, or to press a PF key that has
been assigned to HELP (normally PF1).

User Response: If HELP information is desired, request it, using one
of the two techniques described in the Explanation.

250 VS FORTRAN Version 2: Interactive Debug Guide and Reference

AFF635E

AFF636E

AFF640E

AFF645E

AFF650E

AFF655E

AFF660E

AFF665E

VARIABLE “variable” IS NOT IN PROGRAM UNIT program

Explanation: The specified variable was not found in the specified
program unit. The variable may be misspelled, the program
qualification may be missing or incorrect, or the variable may have
been removed by the optimizer.

User Response: Make sure that the variable is defined in the currently
qualified program unit. If not, then either use the QUALIFY
command, or explicitly qualify the variable name in the Interactive
Debug command.

“COMMAND NOT FOUND”

Explanation: The TSO command requested using the SYSCMD
command was not found by TSO.

“text” IS INVALID CONSTANT SYNTAX
Explanation: There is a syntax error in the indicated constant.
CONSTANT “number’’ EXCEEDS THE MACHINE CAPACITY

Explanation: The indicated constant is too large. This may occur if
leading zeros are specified with the constant.

INVALID SUBSCRIPT IN “texr”; A SUBSCRIPT CANNOT BE AN
ARRAY OR ARRAY ELEMENT

Explanation: The subscripts of the indicated array must be scalar
constants or variables.

ONE OR MORE PARTS OF COMPLEX CONSTANT “fex” ARE
MISSING

Explanation: Either the real or the imaginary portion of the indicated
complex constant is missing. Both portions are required.

“text”” HAS INVALID SUBSCRIPT SYNTAX

Explanation: While scanning what appears to be a subscript, invalid
syntax was discovered. Possibly the right parenthesis was missing.

INVALID SUBSCRIPT IN “array’’; A NON-INTEGER VARIABLE
WAS SPECIFIED

Explanation: A logical, real, character, or complex variable has been

used as a subscript for the indicated array. Only integer numbers may
be used as subscripts.

Appendix C. Interactive Debug Messages 251

AFF670E

AFF675SE

AFF680E

AFF690E

AFF691E

AFF700E

AFF715E

AFF720E

AFF725E

“text” IS INVALID ON THE LEFT SIDE OF A SET COMMAND

Explanation: A duplication factor, a minus sign, or a constant appears
on the left side of a SET command. None of these are valid on the left
side.

“text” IS INVALID “SET” SYNTAX

Explanation: Either the equal sign (=) or the right side of the SET
assignment has been omitted.

“text” IS INVALID IN THE “LIST” RANGE

Explanation: An item is specified in a range that is not allowed in a
LIST command.

VARIABLE “variable” IS INVALID IN “command® COMMAND

Explanation: A duplication factor, a minus sign (-), or a constant
appears with a variable in the indicated command.

LITERAL OR NUMERIC CONSTANTS ARE NOT PERMITTED
IN THE “DESCRIBE” COMMAND

Explanation: Only variables and array names can be specified on the
DESCRIBE command.

NULL VARIABLE LIST/RANGE SPECIFIED IN “texs”

Explanation: While scanning the previous command, the end of the
command was found before a list or range specification was
completed.

“variable” IS NOT A LOGICAL VARIABLE

Explanation: While scanning the previous command, a logical variable
was expected, but the indicated variable, which is not a logical
variable, was found instead.

“condition” HAS AN INVALID CONDITION

Explanation: The indicated condition is not syntactically correct. For
example, “.EE.” may have been used instead of “.EQ..”

INVALID COMBINATION OF DATA TYPES IN CONDITION
“condition”

Explanation: While scanning the syntax of the previous command, an
invalid combination of data type was found within the condition
specification. The data types of the variables must be the same or
compatible.

252 VS FORTRAN Version 2: Interactive Debug Guide and Reference

AFF730E

AFF735E

AFF740E

AFF741E

AFF742W

AFF743E

AFF745E

AFF750E

AFF755E

“condition” IS INVALID CONDITION SYNTAX

Explanation: In the specification of an arithmetic condition, either the
right side of the condition has been omitted, or some extraneous data
follows what appears to be a complete condition.

CONDITION *“condition” HAS AN INVALID FORTRAN TERM

Explanation: A duplication factor is specified within a condition
specification. This is not valid.

“text” IS INVALID “IF” SYNTAX

Explanation: Invalid syntax has been detected within an IF command.
For example, parentheses may be missing around the condition
definition.

A USERID MUST BE SPECIFIED WITH THE MSG OPERAND;
NO DEFAULT IS AVAILABLE

Explanation: TERMIO MSG was entered and the default user ID
cannot be determined.

User Response: If the MSG operand is desired, specify the desired
user ID.

“MSG” OPERAND IGNORED; “MSG” IS NOT VALID OUTSIDE
BATCH MODE

Explanation: A TERMIO command containing a MSG operand was
entered while Interactive Debug was being used interactively. The
MSG operand is only for batch mode.

“command” COMMAND IS NOT PERMITTED IN BATCH MODE

Explanation: The indicated command was entered while in batch -
mode, but is not permitted there.

“texr” IS INVALID “WHEN” SYNTAX

Explanation: In the specification of an arithmetic condition, either the
right side of the condition has been omitted, or some extraneous data
follows what appears to be a complete condition.

A COMMAND MUST BE SPECIFIED AFTER “exr”

Explanation: No command was specified after the condition on an IF
statement.

“QUALIFY” IS NOT PERMITTED IN AN “IF” COMMAND

Explanation: QUALIFY cannot be the command specified as the
action to be taken if the condition specified in an IF command is true.

Appendix C. Interactive Debug Messages 253

AFF760E “fext” REQUIRES AN OPERAND; THE COMMAND IS IGNORED

Explanation: An operand must be specified on the indicated
command.

AFF765E “condition” HAS AN INVALID “WHEN” CONDITION NAME
Explanation: The name of the indicated condition has a syntactically
invalid name. Valid names must begin with an alphabetic character
and contain no more than four alphameric characters.

AFF768W “condition” CONDITION IS NOT ON

Explanation: An attempt to turn off the indicated condition has been
detected, but the condition is already off.

AFFTT5E “command® COMMAND IGNORED IN AN IF OR COMMAND
LIST

Explanation: The indicated command was found in an IF command or
a command list specified with an AT command. The command is not

valid in this context and is ignored.

AFF780E “command” IS NOT PERMITTED TO HAVE OPERANDS; THE
COMMAND IS IGNORED

Explanation: A keyword has been specified for a command that has no /A\
keywords. The extra keyword is ignored.

User Response: Determine why the extra keyword was entered.
Possibly the wrong command was issued. If so, issue the right
command.

AFF795E INVALID COMBINATION OF DATA TYPES IN “rexr”
Explanation: In a SET command, the data type of the variables and
constants on the right side of the equal sign is different from the data
type of the variable on the left side of the equal sign.

» A character variable may be assigned only character data items.

¢ A logical variable may be assigned only logical data items.

e An arithmetic variable may be assigned only arithmetic data items.

254 VS FORTRAN Version 2: Interactive Debug Guide and Reference

AFFS800E

AFF8011

AFF802E

AFF805W

INVALID “GO”; THE STATEMENT IDENTIFIER IS NOT IN THE
CURRENT PROGRAM UNIT

Explanation: An attempt has been detected to go to a statement
outside the program unit that was being executed when processing was
suspended.

User Response: Reenter the GO command either without an ISN or
sequence number, or with an ISN or sequence number that is within
the correct program unit.

QUALIFICATION IS program

Explanation: This message is issued in response to a QUALIFY
command, and identifies the currently qualified program unit. Unless
you have issued a QUALIFY command to set a different program
unit, the currently qualified program unit will be the program unit
which is currently being executed.

COMMAND IGNORED; THE PROGRAM HAS FINISHED
EXECUTION

Explanation: The VS FORTRAN program has finished execution.
Interactive Debug will allow you to enter most commands before you
enter the QUIT command, but the last command entered is not one of
those that may be issued at this time.

User Response: Enter a valid command. Valid commands are:

ANNOTATE LISTFREQ QUIT
AUTOLIST LISTINGS RECONNECT
BACKSPACE LISTSAMP REFRESH
CLOSE LISTSUBS RESTART
COLOR LISTTIME REWIND
comment MOVECURS SEARCH
DESCRIBE POSITION SET
ENDFILE PROFILE SYSCMD
HELP PREVDISP TERMIO
LIST PURGE WHERE
LISTBRKS QUALIFY WINDOW

For a list of commands that are not valid, see “Issuing Commands
after Termination of a VS FORTRAN Program” on page 96.

program IS OPTIMIZED; “GO” WITH STATEMENT ID MAY
CAUSE UNPREDICTABLE RESULTS

Explanation: The indicated program unit was compiled with OPT(n)
with n>0. Because the program is optimized, it may depend on values
being kept in registers between some statements. A GO command to
a specific statement may bypass code that is needed to set registers,
and may cause unpredictable results.

System Action: Message AFF806 is issued to confirm whether the
command shouid be executed.

Appendix C. Interactive Debug Messages 255

AFF806A

AFF820E

AFF821E

AFF822E

AFF823E

AFF824E

DO YOU WISH TO EXECUTE THIS COMMAND? (YES OR NO)
Explanation: This message was preceded by message AFF805, which
warned of the possible consequences of executing the GO command.
You must now confirm your desire to issue the command.

User Response: Reply YES or NO.

System Action: If YES is specified, the command is issued. If NO is
specified, the command is not issued. Following either action,
processing continues.

OPEN ERROR ON AFFOUT FILE

Explanation: This message is issued to your SYSMSG file or spooled
console when the OPEN of the AFFOUT file fails while running batch
mode.

User Response: Correct the cause of the I/0 error.

ERROR PROCESSING AFFOUT FILE

Explanation: This message is issued to your SYSMSG file or spooled
console when a PUT to the AFFOUT file fails while running batch
mode.

User Response: Correct the cause of the 1/0 error.

OPEN ERROR ON AFFIN FILE

Explanation: This message is issued when the OPEN of the AFFIN
file fails while running batch mode.

User Response: Correct the cause of the I/0 error.
System Action: Debugging is terminated.
ERROR PROCESSING AFFIN FILE

Explanation: This message is issued if a GET to the AFFIN file fails
while running batch mode.

User Response: Correct the cause of the I/0 error.
System Action: Debugging is terminated.
END-OF-FILE ON AFFIN FILE

Explanation: This message is issued when end-of-file is reached on the
AFFIN file for batch mode.

User Response: Correct the input file and rerun the job if more
commands are desired.

System Action: A QUIT command is forced.

256 VS FORTRAN Version 2: Interactive Debug Guide and Reference

AFF825E

AFF831E

AFF832E

AFF840E

AFF8411

AFF8501

AFF8511

AFF8521

UNABLE TO WRITE DIAGNOSTIC MESSAGE CONCERNING
AFFIN FILE

Explanation: This message is issued to your SYSMSG file or spooled
console when an AFFIN diagnostic cannot be written to the AFFOUT
file in batch mode.

User Response: Correct the cause of the 1/0 error.
“ENTRY” AND “EXIT”’ ARE NOT PERMITTED IN A RANGE

Explanation: An ENTRY or EXIT keyword was issued in a statement
ID range.

User Response: Use ISNs or sequence numbers for ranges. ENTRY
and EXIT are usable only as individual elements.

THE QUALIFIER ON THE RIGHT SIDE OF A RANGE MUST
MATCH THE QUALIFIER ON THE LEFT SIDE

Explanation: A statement ID range was entered where a qualifier was
specified for the right statement ID that does not match the one on the
left side.

User Response: Use a matching qualifier or allow it to default.

LIST RANGE IGNORED; THE SECOND VARIABLE PRECEDES
THE FIRST IN STORAGE

Explanation: A LIST command has been entered with a range of
variables specified. In a range, the first variable must appear in
storage prior to the second variable so that the area between the two
variables may be displayed.

RANK = number; DUMMY ARRAY ARGUMENT OF INACTIVE
SUBPROGRAM OR ALTERNATE ENTRY POINT

Explanation: This message is produced by the DESCRIBE command
for a dummy array argument of an inactive subprogram or alternate
entry point.

variable value

Explanation: This is the output of a LIST command that did not
include the DUMP keyword. The name of the requested variable is
shown along with its current value.

PROGRAM UNIT COMPILER OPT HOOKED TIMING
Explanation: This is the title line for LISTSUBS output.

ENTRY POINT TASK TIME (MIC) PERCENT INVOCATIONS

Explanation: This is the title line for LISTTIME output.

Appendix C. Interactive Debug Messages 257

AFF8531

AFF8541

AFF855I

AFF8561

AFF8371

AFF8591

AFF860E

AFF861E

AFF862E

AFF863E

timing information

Explanation: This is the output line for timing information for program
units that are being timed.

NO TIMING INFORMATION IS AVAILABLE

Explanation: This message is issued if no program units are timing or
have accumulated time.

name datatype
Explanation: This is the DESCRIBE output for a scalar variable.
RANK = number, SIZE = number ELEMENTS

Explanation: This message provides DESCRIBE information about
the size of an array variable.

DIM number, LBOUND = (number), UBOUND = (number)

Explanation: This message provides DESCRIBE information about
the dimensions of an array variable.

DIMENSION INFORMATION NOT AVAILABLE

Explanation: Dimension information is not available for dummy
arguments of an inactive subprogram or for an alternate entry point.

FIXUP IGNORED; SUBSCRIPT ERROR

Explanation: A subscript specified within a FIXUP command was out
of range for the variable it was subscripting.

FIXUP IGNORED; NOT IN ERROR EXIT

Explanation: You can issue a FIXUP command only if an execution
error has occurred in the VS FORTRAN program.

FIXUP IGNORED; NO ARGUMENTS MAY BE MODIFIED
Explanation: A FIXUP command with either ARG1 or ARG2 (or
both) specified was entered for an error that has no modifiable

arguments.

User Response: Enter a corrected FIXUP command or a GO
command.

FIXUP IGNORED; ARG2 MAY NOT BE MODIFIED
Explanation: A FIXUP command has been entered with a value

specified for ARG2, but the VS FORTRAN library subroutine that
detected the error only has one modifiable argument.

258 VS FORTRAN Version 2: Interactive Debug Guide and Reference

AFF8635E

AFF866E

AFF867E

AFF868E

AFF8711

AFF8721

AFF8731

“GO” WITH A STATEMENT ID IS NOT ALLOWED IN AN
ERROR EXIT

Explanation: This type of GO command is not allowed within an error
exit.

User Response: If you want to continue processing at some other
statement, you may issue a NEXT command followed by a GO
command. When execution is suspended because of the NEXT
command, you may issue the GO command with a specific statement
identification.

LAST COMMAND IGNORED DUE TO AN ERROR EXIT

Explanation: The last command entered within an attention exit was
not executed because an error exit occurred.

ERROR EXIT: ERROR number AT name.number

Explanation: This is the notification message that occurs when an
error exit is taken. It is also the response to a WHERE command in
an error exit. The indicated statement and program unit name identify

the last statement that was executing prior to the indicated error.

User Response: None required. Use the FIXUP or GO command to
terminate the error exit processing.

“texr” IS INVALID 1/0 COMMAND SYNTAX

Explanation: The syntax of the previous BACKSPACE, CLOSE,
ENDFILE, or REWIND command is invalid. An integer variable or
constant must be specified.

WHEN: condition SATISFIED

Explanation: The indicated WHEN condition has been satisfied.
System Action: This message will be followed by message AFF872I.
CURRENTLY AT name.number

Explanation: This message is issued after message AFF871I to identify
the current location within the program unit.

PROGRAM TERMINATED BY USER REQUEST
Explanation: This message is issued when you enter the “QUIT”
command in an attention exit to terminate execution of a VS

FORTRAN program.

System Action: Control is returned to Interactive Debug.

Appendix C. Interactive Debug Messages 259

AFF874E

AFF875E

AFFS876E

AFF880E

AFF881E

AFF900E

AFF9101

AFF920E

AFF925E

ERROR ON AFFIN FILE; FILE IGNORED

Explanation: An error has occurred while attempting to open the
AFFIN file. No further attempts to access this file are made.

User Response: Correct the problem that caused the message. If the
file is required, correct the problem and reinvoke Interactive Debug.

WHEN IGNORED; CONDITION “condition” NOT DEFINED
Explanation: A WHEN command has been detected that contains only
a condition name. This is interpreted as a request to “turn the

condition on.” However, no condition with the specified name has
been defined.

WHEN IGNORED; SUBSCRIPT ERROR

Explanation: A subscript error was encountered while processing the
WHEN command.

OFFWN IGNORED; NO WHEN CONDITIONS ARE DEFINED

Explanation: The previous OFFWN command was ignored because
there are no WHEN conditions defined that could be turned off.

OFFWN IGNORED FOR UNDEFINED CONDITION “condition”

Explanation: The previous OFFWN command specified a WHEN
condition that does not exist. The command is ignored.

SYSTEM COMMAND RETURN CODE: code
Explanation: The indicated code was received from processing the

previous system command using Interactive Debug’s SYSCMD
command.

CURRENT TERMIO STATUS: status

Explanation: This message indicates the status of settings that are
controlled by the TERMIO command.

SET COMMAND NOT COMPLETED NORMALLY

Explanation: Because of an error described in the preceding message,
the SET command was unable to be completed; not all values were
assigned.

TOO MANY VALUES; EXCESS IGNORED; SET COMPLETED

Explanation: Too many values for an array have been specified with a
SET command. The extraneous values are ignored.

260 VS FORTRAN Version 2: Interactive Debug Guide and Reference

AFF929E

AFF930E

AFF931E

AFF932E

AFF9331

AFF934E

MULTIPLE FORTRAN MAIN PROGRAMS HAVE BEEN FOUND;
PROGRAM “program-unit-name” IS ALSO A MAIN PROGRAM

Explanation: Multiple main FORTRAN program units were found in
the program being debugged. Only programs with a single main
program unit can be debugged.

System Action: Processing continues. Interactive Debug assumes that
the last main program unit in the load module is the main program that
was invoked. If this is not the case, message AFF937E will be issued.

User Response: Relink-edit the program to contain only one main
program unit.

NAME “name” GREATER THAN 31 CHARACTERS; TRUNCATED

Explanation: A program unit name in the AFFON file is greater than
31 characters. The name is truncated to 31 characters.

User Response: If the name is misspelled, correct the spelling in the
AFFON file and reinvoke the debugger.

THE AFFON SOURCE LISTING DATA SET NAME FOR “name”
CONTAINS INVALID SYNTAX AND WILL BE IGNORED.

Explanation: The syntax of the data set name specified in the AFFON
file for the named program unit is invalid.

System Action: The listing data set name specification and the ISN
restriction list (if any) are ignored.

User Response: Correct the file name. Especially check for a missing
closing quote.

DUPLICATE NAME “name”

Explanation: The indicated program unit name has been found more
than once in the AFFON file.

System Action: The duplicate entry is ignored, and processing
continues.

AFFON FILE PROCESSED

Explanation: This is an informational message informing you that the
AFFON file was processed.

PROGRAM NAME “program” NOT FOUND

Explanation: The indicated program unit name was specified in the
AFFON file, but could not be found in the program to be debugged.

System Action: The program unit name is ignored, and processing
continues.

Appendix C. Interactive Debug Messages 261

AFF935E INTERNAL ERROR IN GENERATED CODE FOR “program”

Explanation: This is an internal error and should never occur. It
indicates that, within the first four bytes generated by the VS
FORTRAN Version 1 or VS FORTRAN Version 2 compiler for a VS
FORTRAN statement, an instruction of the form "BALR x,y" was
detected. Such an instruction is only valid if y=0.

User Response: Contact your IBM representative.
System Action: Debugging is discontinued.

AFF936E CALL STACK OVERFLOW; TOO MANY LEVELS OF CALL IN
“program”

Explanation: Interactive Debug maintains information about each
debuggable program unit involved in execution. It has the ability to
keep information for 512 different program units. This message
indicates that more than 512 debuggable program units are currently
active.

User Response: Use the AFFON file to select fewer program units for
debugging so no more than 512 units will be active at one time.

System Action: An abend is forced.
AFF937E HOOK FOUND AT UNKNOWN LOCATION

Explanation: This is probably an internal error. It indicates that what
appears to be an Interactive Debug hook was found at a location that
Interactive Debug could not recognize.

User Response: Contact your IBM representative.

System Action: Interactive Debug returns control to the VS
FORTRAN Version 2 library for its normal program check handling.

AFF938E ADDRESSING MODE CHANGED IN program unit name

Explanation: An external routine called from a VS FORTRAN
program unit has changed the MVS/XA addressing mode and not
restored it. Unless this is an unusual or intentional situation, an abend
will probably occur. Be aware that there are some situations in which
an abend will occur before Interactive Debug can get control and issue
this message. For example, a program running above the 16-megabyte
line that switches to 24-bit addressing mode will abend immediately.

There are situations, however, where this message will be issued as
informational only. For example, the Release 4 VS FORTRAN
Version 1 library always enters user error exits in 31-bit addressing
mode. If an MVS/XA program is linked to run 24/24, this message
will be issued the first time such a routine is entered. In this case, it
should be treated as informational only, and not regarded as an error
condition.

262 VS FORTRAN Version 2: Interactive Debug Guide and Reference

AFF9391

AFF9401

AFF9421

AFF9431

I AFF945]1

AFF9471

User Response: Unless the change of addressing mode was
intentional, or unless a user exit was taken by a 24/24 program, you
should check and correct the addressing mode logic in any external
routines called by the specified program unit.

RELEASE 3.0 COMPILED PROGRAM UNIT name CANNOT BE
DEBUGGED ON MVS/XA

Explanation: A program unit compiled with the Release 3 VS
FORTRAN Version 1 compiler has been included in the AFFON file.
Such program units are not debuggable in MVS/XA, unless they were
compiled with the TEST option, or are recompiled with Release 3.1 or
later.

System Action: The program unit name is ignored, and processing
continues.

ZERO-FREQUENCY STATEMENTS

Explanation: This is the heading of a listing of statements within the
indicated program unit that have not been executed, in response to
LISTFREQ.

System Action: The ISNs or sequence numbers are listed.

name.statement

Explanation: This is the output of the LISTFREQ command when the
ZEROFREQ keyword has been specified.

NONE

Explanation: One of the following is true:

e A LISTFREQ command with the ZEROFREQ keyword was
entered, and all statements in the currently qualified program unit

have been executed at least once.

o A LISTBRKS command was entered, and no breakpoints have
been established using the AT command.

o A LISTBRKS command was entered, and no WHEN conditions
have been established.

STATEMENT FREQUENCY

Explanation: This is the heading for a listing of execution counts, in
response to LISTFREQ.

System Action: The ISNs or sequence numbers are listed.
name.number frequency

Explanation: This is the output of the LISTFREQ command.

Appendix C. Interactive Debug Messages 263

AFF9501

AFF9521

AFF9531

AFF955I

AFF9571

AFF960W

AFF970W

CURRENT BREAKPOINTS:

Explanation: This is the heading for the output of the LISTBRKS
command for breakpoints set by the AT command.

System Action: All active breakpoints are listed.
name.statement

Explanation: This is the output from the LISTBRKS command for AT
commands with a COUNT of 1.

name.statement COUNT (count)

Explanation: This is the output from the LISTBRKS command for AT
commands with a COUNT greater than 1.

CURRENT WHEN CONDITIONS:

Explanation: This is the heading for the output of the LISTBRKS
command for WHEN conditions.

condition name setting condition

Explanation: This is the output from the LISTBRKS command for
WHEN conditions. Each defined condition is shown, along with an
indication of whether the condition is currently being monitored (ON)
or not (OFF).

COMMAND WILL BE ATTEMPTED, BUT PROGRAM HAS
FINISHED EXECUTION

Explanation: The previous command has been accepted and will be
executed normally, but execution of the program has completed and
may not be restarted.

program IS OPTIMIZED; SETS MAY BE INEFFECTIVE AND
REFERENCES MAY GET INVALID VALUES

Explanation: The indicated program unit has been compiled with the
OPT(n) or VECTOR(n) compiler option with n>0. Because the
program unit is optimized, Interactive Debug commands that reference
storage locations may produce unexpected results. For example, LIST
A will report the value in the storage location the compiler established
for variable A, but the compiled code may not be using the storage
location to keep the value of the variable; it may be kept in a register
instead. Interactive Debug cannot detect this situation, but it is likely
to occur in optimized program units.

User Response: Use affected commands with care. See “Debugging
Optimized and Vectorized Code” on page 98, which discusses the
effect of optimized code on VS FORTRAN Version 2 Interactive
Debug.

264 VS FORTRAN Version 2: Interactive Debug Guide and Reference

AFF971E

AFF9721

AFF9731

AFF974E

AFF975E

System Action: Processing continues. This message should only
appear the first time you issue one of the affected commands in a
program unit.

STATEMENT number 1S COLLAPSED AND MAY NOT BE USED
FOR DEBUGGING

Explanation: The indicated statement cannot have a breakpoint
associated with it because it occupies no storage (because of
optimization or vectorization).

User Response: If necessary, set a breakpoint at a statement
immediately before or after the collapsed statement. You can use
LISTFREQ to show which statements are collapsed.

STATEMENT number DOES NOT HAVE AN ESTABLISHED
BREAKPOINT

Explanation: An OFF command specifies that a breakpoint at the
indicated statement is to be removed. There is no breakpoint at this
statement.

“OFF” IGNORED; NO BREAKPOINTS ARE DEFINED

Explanation: An OFF command has been issued, but there are no
breakpoints defined in the currently qualified program unit.

NO FORTRAN MODULE WAS FOUND IN STORAGE

Explanation: Interactive Debug could not determine the storage limits
for searching for debuggable programs. This happens if the
application program was invoked using a load (for example, using the
TSO LOADGO command).

User Response: Be sure your application program is invoked using an
attach or link command.

System Action: Debugging is terminated with ABEND 111.

command COMMAND IGNORED; NO CURRENT
QUALIFICATION

Explanation: There is no program unit serving as the current
qualification. Perhaps execution was suspended before any

debuggable program was executed.

User Response: Set a qualification using the QUALIFY command,
and reenter the command causing the message.

Appendix C. Interactive Debug Messages 265

AFF976E SYNTAX ERROR IN command COMMAND

Explanation: A syntax error was detected in scanning the indicated
command.

User Response: Determine the cause of the error, and reenter the
command with the correct syntax.

AFF977E 1/0 UNIT NUMBER IN “command” MUST BE AN INTEGER

Explanation: While scanning the previous command, where an integer
value or integer variable was expected, a duplication factor or some
other type of data was found.

User Response: Reenter the command with an integer value or the
name of an INTEGER variable.

AFF978E COMMAND IGNORED; “ENDDEBUG” HAS BEEN ISSUED
Explanation: The last command entered is being ignored because of a
previously issued ENDDEBUG command. After ENDDEBUG is

issued, you no longer have the ability to debug.

User Response: You may issue QUIT if you no longer want to execute
the program, or may enter a null line to continue execution.

AFF979E “command” IGNORED; TERMINAL INPUT PENDING

Explanation: A GO, ENDDEBUG, or STEP command was entered,
but is not permitted when a program is waiting for input.

User Response: If you want to enter a GO, ENDDEBUG, or STEP
command, enter a NEXT command now, and, when execution stops
for the NEXT, enter the GO or ENDDEBUG command.

AFF980E THE “STEP” OPERAND MUST BE AN INTEGER GREATER
THAN ZERO

Explanation: STEP was entered with an invalid operand.
AFF9811 ALL BREAKPOINTS IGNORED FOR PROGRAM UNIT “name”

Explanation: A dynamically loaded program unit with pending
breakpoints was found to be loaded in read-only storage.

AFF9821 NO BREAKPOINTS ARE DEFINED WITHIN THE SPECIFIED
RANGE

Explanation: The OFF command specified a range where no
breakpoints were defined.

266 VS FORTRAN Version 2: Interactive Debug Guide and Reference

AFF9901

AFF9911

AFF9921

AFF9951

AFF9961

AFF998E

START OF RUN OR NO DEBUGGABLE PROGRAM EXECUTING

Explanation: A WHERE command has been detected, but either only
the first prompt has been received and execution has not really started,
or execution was interrupted while a nondebuggable program was
executing.

program CALLED AT name.number

Explanation: This message is the output of the WHERE command
with the TRBACK keyword. The message indicates the logic flow
through the program units.

NO SUBROUTINES CALLED

Explanation: This message is issued following a WHERE TRBACK
command when no subroutines have been called. This implies that
execution is currently within the topmost debuggable program unit
(usually the “main” program).

WHERE: name.number

Explanation: This is the output of the WHERE command. It shows
that execution is currently at the indicated statement in the indicated
program unit. If execution is currently within a program unit that is
not debuggable (and execution was suspended because of an attention
interrupt), then the specified statement will be the last statement
executed in a debuggable program unit.

TO: name.number FROM: name.number

Explanation: This message is the output of the WHERE command
with the FLOW keyword. The message indicates the logic flow
through the program units.

INTERNAL ERROR number AT LOCATION number; IAD
STORAGE MAY HAVE BEEN OVERLAID BY PROGRAM

Explanation: This message is issued when an internal Interactive
Debug abend occurs.

User Response: Contact your IBM representative.

System Action: Abend 101 is issued.

Appendix C. Interactive Debug Messages 267

Glossary

This glossary includes definitions developed by the
American National Standards Institute (ANSI), and the
International Organization for Standardization (ISO).

This material is reproduced from the American National
Dictionary for Information Processing, copyright 1977 by
the Computer and Business Equipment Manufacturers
Association, copies of which may be purchased from the
American National Standards Institute, 1430 Broadway,
New York, New York 10018.

An asterisk (*) to the right of an item number indicates an
ANSI definition in an entry that also includes other
definitions.

The symbol “(ISO)” at the beginning of a definition
indicates that it has been discussed and agreed upon at
meetings of the International Organization for
Standardization Technical Committee 97/Subcommittee 1
(Data Processing Vecabulary), and has also been
approved by ANSI and included in the American National
Dictionary for Information Processing.

addressing mode. The length of an address, either 24 bits
or 31 bits, used by the processor. Indicated by the
high-order bit of the PSW in an MVS/XA environment.

alphabetic character. A character of theset A, B, C, ... Z.
See also “letter.” In VS FORTRAN Version 1 and VS
FORTRAN Version 2, the currency symbol ($) is
considered an alphabetic character. In VS FORTRAN
Version 2, lowercase letters (a through z) are also valid.

alphameric. Pertaining to a character set that contains
letters (A through Z) and digits (0 through 9) only. In VS
FORTRAN Version 2, the character set may also contain
lowercase letters (a through z).

alphameric character set. A character set that contains
both letters and digits.

alternate entry. (1) In VS FORTRAN, an entry provided
by means of the ENTRY statement. (2) As used by
Interactive Debug, an entry other than the one by which
the subprogram was actually entered.

animation. Under ISPF with Interactive Debug, the ability
to highlight the command currently executing and control
the pace of execution when using the STEP command.
This creates an “animated” picture of your program’s
execution.

argument. A parameter passed between a calling program
and a SUBROUTINE subprogram, a FUNCTION
subprogram, or a statement function.

arithmetic constant. A constant of type integer, real,
double-precision, or complex.

arithmetic expression. One or more arithmetic operators
and/or arithmetic primaries, the evaluation of which
produces a numeric value. An arithmetic expression can
be an unsigned arithmetic constant, the name of an
arithmetic constant, or a reference to an arithmetic
variable, array element, or function reference, or a
combination of such primaries formed by using arithmetic
operators and parentheses.

arithmetic operator. A symbol that directs VS FORTRAN
to perform an arithmetic operation. The arithmetic
operators are:

+ addition

- subtraction

* multiplication
/ division

** exponentiation

array. An ordered set of data items identified by a single
name.

array declarator. The part of a statement that describes an
array used in a program unit. It indicates the name of the
array, the number of dimensions it contains, and the size
of each dimension. An array declarator may appear in a
DIMENSION, COMMON, or explicit type statement.

array element. A data item in an array, identified by the
array name followed by a subscript indicating its position
in the array.

array name. The name of an ordered set of data items
that make up an array.

Glossary 269

assignment statement. A statement that assigns a value to
a variable or array element. It is made up of a variable or
array element, followed by an equal sign (=), followed by
an expression. The variable, array element, or expression
can be of type character, logical, or arithmetic. When the
assignment statement is executed, the expression to the
right of the equal sign replaces the value of the variable or
array element to the left.

basic real constant. A string of decimal digits containing a
decimal point, and expressing a real value.

blank common. An unnamed common block.

breakpoint. (1) (ISO) A place in a computer program,
usually specified by an instruction, where its execution
may be interrupted by external intervention or by a
monitor program. (2) As used by IAD, a VS FORTRAN
statement where the user has specified that execution is to
be suspended, or that some action is to be taken.

character constant. A string of one or more characters
enclosed in apostrophes. The delimiting apostrophes are
not part of the constant.

character expression. An expression in the form of a
single character constant, variable, array element,
substring, function reference, or another expression
enclosed in parentheses. A character expression is always
of type character.

character type. A data type that can consist of any
characters; in storage, one byte is used for each character.

collapsed statement. A statement for which no machine
code has been generated because of the nature of the
statement, or as a result of optimization or vectorization.

common block. A storage area that may be referred to by
a calling program and one or more subprograms.

complex constant. An ordered pair of real or integer
constants separated by a comma and enclosed in
parentheses. The first real constant of the pair is the real
part of the complex number; the second is the imaginary
part.

complex type. An approximation of the value of a
complex number, consisting of an ordered pair of real data
items separated by a comma and enclosed in parentheses.
The first item represents the real part of the complex
number; the second represents the imaginary part.

connected file. A file that has been connected to a unit
and defined by a FILEDEF command or by job control
statements.

constant. An unvarying quantity. The four classes of
constants specify numbers (arithmetic), truth values
(logical), character data (character), and hexadecimal
data.

control statement. Any of the statements used to alter the
normal sequential execution of FORTRAN statements, or
to terminate the execution of a VS FORTRAN program.
FORTRAN control statements are any of the forms of the
GO TO, IF, and DO statements, or the PAUSE,
CONTINUE, and STOP statements.

data. (1) * (ISO) A representation of facts or instructions
in a form suitable for communication, interpretation, or
processing by human or automatic means. (2) In
FORTRAN, data includes constants, variables, arrays, and
character substrings.

data item. A constant, variable, array element, or
character substring.

data set. The major unit of data storage and retrieval
consisting of data collected in one of several prescribed
arrangements and described by control information to
which the system has access.

data set reference number. A constant or variable in an
input or output statement that identifies a data set to be
processed.

data type. The properties and internal representation that
characterize data and functions. The basic types are
integer, real, complex, logical, double precision, and
character.

debugging hook. See ‘hook.”

* digit. (ISO) A graphic character that represents an
integer. For example, one of the characters 0 through 9.

DO-loop. A range of statements executed repetitively by
a DO statement.

double precision. The standard name for real data of
storage length 8.

DO variable. A variable, specified in a DO statement,
that is initialized or incremented prior to each execution of
the statement or statements within a DO range. It is used
to control the number of times the statements within the
range are executed.

dummy argument. A variable within a subprogram or
statement function definition with which actual arguments
from the calling program or function reference are
positionally associated. Dummy arguments are defined in
a SUBROUTINE or FUNCTION statement, or in a
statement function definition.

270 VS FORTRAN Version 2: Interactive Debug Guide and Reference

dynamic common. A VS FORTRAN named common
which the DC compiler option specifies should be
allocated at execution time.

executable program. A program that can be executed as a
self-contained procedure. It consists of a main program
and, optionally, one or more subprograms or
non-FORTRAN-defined external procedures, or both.

executable statement. A statement that causes an action
to be taken by the program; for example, to calculate, to
test conditions, or is a control statement.

existing file. A file that has been defined by a FILEDEF
command or by job control statements. A valid unit
number in FORTRAN’s internal unit assignment table, as
specified at installation time.

The INQUIRE statement considers a file to exist on the
basis of FORTRAN I/0 statements that have been
processed.

existing unit. A valid unit number in FORTRAN’s
internal unit assignment table, as specified at installation.

expression. A notation that represents a value: a
constant or a reference appearing alone, or combinations
of constants and/or references with operators. An
expression can be arithmetic, character, logical, or
relational.

external file. A set of related external records treated as a
unit; for example, in stock control, an external file would
consist of a set of invoices.

external function. A function defined outside the program
unit that refers to it.

external procedure. A SUBROUTINE OR FUNCTION
subprogram written in FORTRAN.

file. A set of records. If the file is located in internal
storage, it is an internal file; if it is on an input/output
device, it is an external file.

file definition statement. A statement that describes the
characteristics of a file to a user program. For example,
the OS/VS DD statement or the FILEDEF command for
CMS processing.

file reference. A reference within a program to a file. It
is specified by a unit identifier.

formatted record. (1) A record, described in a FORMAT
statement, that is transmitted, when necessary with data
conversion, between internal storage and internal storage
or to an external record. (2) A record transmitted with
list-directed READ or WRITE statements and an
EXTERNAL statement.

FORTRAN-supplied procedure. See “intrinsic function.”

function reference. A source program reference to an
intrinsic function, to an external function, or to a
statement function.

function subprogram. A subprogram invoked through a
function reference, and headed by a FUNCTION
statement. It returns a value to the calling program unit at
the point of reference.

hexadecimal constant. A constant that is made up of the
character Z followed by two or more hexadecimal digits.

hierarchy of operations. The relative priority order used to
evaluate expressions containing arithmetic, logical, or
character operations.

hook. Also, debugging hook. An internal segment of
code that is able to give temporary control to a debugging
program such as Interactive Debug. The code is
independent of the algorithm implemented in the
application program containing the hook. In VS
FORTRAN Version 2 Interactive Debug, breakpoints can
only be set at statements that have hooks.

IAD. An abbreviation for Interactive Debug, used with
VS FORTRAN Version 1 and VS FORTRAN Version 2.

implied DO. An indexing specification, similar to a DO
statement, causing repetition over a range of data
elements. (The word DO is omitted, hence the term
“implied.””)

integer constant. A string of decimal digits containing no
decimal point and expressing a whole number.

integer expression. An arithmetic expression whose values
are of integer type.

integer type. An arithmetic data type, capable of
expressing the value of an integer. It can have a positive,
negative, or zero value; it must not include a decimal
point.

internal file. A set of related internal records treated as a
unit.

internal statement number (ISN). A number assigned to
each statement in a VS FORTRAN program by the VS
FORTRAN compiler. ISNs are assigned sequentially
beginning with 1, and are visible on the listing produced
by the compiler.

ISN is sometimes referred to as ‘““internal sequence
number.” See also “statement identifier” and *“sequence
number.”

interruption localizing. A function that occurs at
optimization level 2. It restricts certain optimizations so
that no code is moved out of a loop if it would cause an
interruption that would not occur without optimization.

Glossary 271

intrinsic function. A function, supplied by VS
FORTRAN, that performs mathematical or character
operations.

*]/0. Pertaining to either input or output, or both.

I/0 list. A list of variables in an input or output
statement specifying which data is to be read or which
data is to be written. An output list may also contain a
constant, an expression involving operators or function
references, or an expression enclosed in parentheses.

labeled common. See “named common.”

length specification. A source language specification of
the number of bytes to be occupied by a variable or an
array element.

letter. A symbol representing a unit of the English
alphabet.

list-directed. An input/output specification that uses a
data list instead of a FORMAT specification.

logical constant. A constant that can have one of two
values: ‘“true” or ‘“‘false.”

logical expression. A combination of logical primaries and
logical operators. A logical operator can have one of two
values: true or false.

logical operator. Any of the set of operators .NOT.
(negation), .AND. (connection: both), or .OR. (inclusion:
either or both), .EQV. (equal), NEQV.(not equal).

logical primary. A primary that can have the value “true”
or “false.” See also “primary.”

logical type. A data type that can have the value “true” or
“false” for VS FORTRAN Version 1 or VS FORTRAN
Version 2. See also “data type.”

looping. Repetitive execution of the same statement or
statements. Usually controlled by a DO statement.

main program. A program unit, required for execution,
that can call other program units but cannot be called by
them.

name. A string of from one through thirty-one alphameric
characters, the first of which must be alphabetic. The
underscore (__) is a valid character. Used to identify a
constant, a variable, an array, a function, a subroutine, or
a common block.

named common. A separate common block consisting of
variables, arrays, and array declarators, and given a name.

nested DO. A DO statement whose range of statements
is entirely contained within the range of another DO
statement.

nonexecutable statement. A statement that describes the
characteristics of the program unit, of data, of editing
information, or of statement functions, but does not cause
an action to be taken by the program.

nonexisting file. A file that has not been defined by a
FILEDEF command or by job control statements.

* numeric character. (ISO) Synonym for digit.

numeric constant. A constant that expresses an integer,
real, or complex number.

preconnected file. A unit that was defined at installation
time. However, a preconnected unit does not exist for a
program if the unit is not defined by a FILEDEF
command or by job control statements.

predefined specification. The implied type and length
specification of a data item, based on the initial character
of its name in the absence of any specification to the
contrary. The initial characters I-N type data items as
integer; the initial characters A-H, O-Z, and $ type data
items as real. No other data types are predefined. For VS
FORTRAN Version 1 and VS FORTRAN Version 2, the
length of both types is 4 bytes.

primary. An irreducible unit of data; a single constant,
variable, array element, function reference, or expression
enclosed in parentheses.

procedure. A sequenced set of statements that may be
used at one or more points in one or more computer
programs, and that usually is given one or more input
parameters and returns one or more output parameters. A
procedure consists of subroutines, function subprograms,
and intrinsic functions.

procedure subprogram. A function or subroutine
subprogram.

program return code. When a program is terminated with
a nonzero return code, the code is available for
interrogation by means of job control language for the
appropriate operating system.

program unit. A sequence of statements constituting a
main program or subprogram.

real constant. A string of decimal digits that expresses a
real number. A real constant must contain either a
decimal point or a decimal exponent and may contain
both.

real type. An arithmetic data type, capable of
approximating the value of a real number. It can have a
positive, negative, or zero value.

272 - VS FORTRAN Version 2: Interactive Debug Guide and Reference

record. A collection of related items of data treated as a
unit.

relational expression. An expression that consists of an
arithmetic expression followed by a relational operator,
followed by another arithmetic expression or a character
expression followed by a relational operator, followed by
another character expression. The result is a value that is
true or false. In Interactive Debug the only arithmetic
expression permitted in a relational expression is a
variable, an array element, or a constant.

relational operator. Any of the set of operators that can
express a comparison between arithmetic expressions, and
that can be either true or false:

.GT. greater than

.GE. greater than or equal to
.LT. lessthan

.LE. less than or equal to
.EQ. equalto

.NE. not equal to

residence mode. Where a program resides in virtual
storage in an MVS/XA environment: above or below 16
megabytes.

scale factor. A specification in a FORMAT statement
that changes the location of the decimal point in a real
number (and, if there is no exponent, the magnitude of the
number).

sequence number. A number found in positions 73
through 80 of records containing source statements for the
VS FORTRAN compiler. Sequence numbers are not
necessarily unique, in sequence, or present in every record.
See “internal statement number” and ‘“statement
identifier.”

specification statement. One of the set of statements that
provides the compiler with information about the data
used in the source program. In addition, the statement
supplies the information required to allocate data storage.

specification subprogram. A subprogram headed by a
BLOCK DATA statement and used to initialize variables
in named common blocks.

statement. The basic unit of a VS FORTRAN program,
that specifies an action to be performed, or the nature and
characteristics of the data to be processed, or information
about the program itself. Statements fall into two broad
classes: executable and nonexecutable.

statement function. A name, followed by a list of dummy
arguments, that is equated to an arithmetic, logical, or
character expression. In the remainder of the program the
name can be used as a substitute for the expression.

statement function definition. A statement that defines a
statement function. Its form is a name, followed by a list
of dummy arguments, followed by an equal sign (=),
followed by an arithmetic, logical, or character expression.

statement function reference. A reference in an
arithmetic, logical, or character expression to the name of
a previously defined statement function.

statement identifier. The statement label, internal
statement number (ISN), or sequence number used by VS
FORTRAN Version 2 Interactive Debug to identify a
statement in a VS FORTRAN program. The options that
existed when the program was compiled determine
whether the ISN or the sequence number is valid. In many
cases, you can also use the statement label, preceded by a
slash, as a valid identifier for a statement.

See also “internal statement number” and “sequence
number.”

statement label. A number of from one through five
decimal digits that is used to identify a statement.
Statement labels can be used to transfer control, to define
the range of a DO statement, or to refer to a FORMAT
statement.

subprogram. A program unit that is invoked by another
program unit in the same program. In FORTRAN, a
subprogram has a FUNCTION, SUBROUTINE, or
BLOCK DATA statement as its first statement.

subroutine subprogram. A subprogram whose first
statement is a SUBROUTINE statement. It optionally
returns one or more parameters to the calling program
unit.

* subscript. A subscript quantity or set of subscript
quantities, enclosed in parentheses and used with an array
name to identify a particular array element.

subscript quantity. A component of a subscript: an
integer constant, an integer variable, or an expression
evaluated as an integer constant.

type specification. The explicit specification of the type of
a constant, variable, array, or function by use of an
explicit type specification statement.

unformatted record. A record that is transmitted
unchanged between internal storage and an external
record.

unit. A means of referring to a file in order to use
input/output statements. A unit can be connected or not
connected to a file. If connected, it refers to a file. The
connection is symmetric: that is, if a unit is connected to a
file, the file is connected to the unit.

Glossary 273

unit identifier. The number that specifies an external unit.

1. An integer expression whose value must be zero or
positive. For VS FORTRAN Version 1 and VS
FORTRAN Version 2, this integer value of length 4
must correspond to a DD name, a FILEDEF name, or
an ASSGN name.

2. An asterisk (*) that corresponds on input to
FTO5F001 and on output to FTO6F001.

3. The name of a character array, character array
element, or character substring for an internal file.

varigble. A data item, identified by a name, that is not a
named constant, array, or array element, and that can
assume different values at different times during program
execution.

vectorization. The process of creating machine
instructions that will execute on the special vector
processing facility of the IBM 3090 Vector Facility.

vectorize. To compile a source program so its eligible DO
loop statements are transformed into vector object code.

274 VS FORTRAN Version 2: Interactive Debug Guide and Reference

f.\

Index

Special Characters

| (vertical lines) 113
* (asterisk), inserting comments into debug log 117
- (hyphen) 92
% (percent sign)
entering input to a VS FORTRAN program 23
leading 92
trailing 92
(quotation mark)
inserting comments into debug log 117
use with continuation lines 92
(double quotation mark) 117
[] (square brackets) 113
{1} (braces) 113

"

A

addressing mode, definition 269
AFFIN

specifying in batch 56

specifying under ISPF 39
AFFON

defining in line mode, requirements for 48

defining under batch, requirements for 58

defining under ISPF, requirements for 37

record format, setting 38, 60

record length 38, 60

selection criteria 38, 60

with TIMER command 82
AFFOUT

for use with AFFIN in batch 56

for use with AFFIN in ISPF 39

output file or data set in batch 58

output file or data set in ISPF 36
AFFPRINT

specifying in batch 58

specifying in line mode 50

specifying under ISPF 36
ALL keyword (HELP CMS) 151
ALL keyword (HELP TSO) 153
alphabetic character, definition 269
alphameric, definition 269
animation

definition 269

program execution 32

specifying step delay 186

using STEP 32

with HALT/GO 33
ANNOTATE command

description of 118

syntax of 118

use in program sampling 80

argument
assigning values to 87
definition 269
ARG1 keyword (FIXUP) 144
ARG?2 keyword (FIXUP) 144
arithmetic expression, definition 269
arithmetic operator, definition 269
array
declarator, definition 269
definition 269
displaying data type of 77, 136
element, definition 269
how to change value of 199
name, definition 269
assigning values 199
assignment statement, definition 269
asterisk (*), inserting comments into debug log 117
AT command
at specific statements 72
conditions, restrictions, and exceptions 123
COUNT keyword 121
description of 121
effects of optimization or vectorization 107
list of statements 121
NOTIFY/NONOTIFY keywords 122
range of statements 121
setting up command lists 76
specifying breakpoints 72
syntax of 121
attention interrupt
attention prompt 97
entering commands 97
exit, entering commands in an 97 .
PURGE, NEXT, WHERE, or * (comment) 98
resuming execution with null line 93, 97
use of QUIT 93,97
AUTOLIST command
arrays, display values of 129
common variables 128
conditions 125
description 125
effects of optimization or vectorization 107
EQUIVALENCE statement 128
equivalence variables 128
hexadecimal, display valuesin 129

syntax 125
B
BACKSPACE command

abbreviations 131
conditions 131
description 131

position external files 89
syntax 131

Index

275

backward movement 101

basic real constant, definition 270

batch mode
and FORTIAD EXEC 51
connecting a data set to a terminal device 56
DEBUNIT execution-time option 56
description of 51
restrictions 55

bit-by-bit comparison 97

blank common, definition 270

blanks, inputting 92

block 100

braces ({}) 113

breakpoint, definition 270

breakpoints
listall 164
qualifying 71
remove 180
set 121
set for the next executable statement 178
setting 62,72

browsing and editing 33

C

character constants

definition 270

enclosed in single quotation marks 200
character data type, definition 270
character expression, definition 270
character string, searching for 197
CLIST, using to invoke VS FORTRAN programs 46
CLOSE command

conditions 132

description 132

disconnect external file 90

syntax 132
CMS

see Conversational Monitor System
collapsed statement

and debugging hooks 72

definition 270
COLOR command

conditions 134

description 134

syntax 134

using ISPF 33
command lists

effects of optimization or vectorization 107

IF command used within AT 155

parameters 121

resuming execution 76

settingup 76

uses 76
command summary 225
commands

*or'" 117

ANNOTATE 118

AT 121

AUTOLIST 125
BACKSPACE 131
CLOSE 132

COLOR 134

continuation of 22, 46
DESCRIBE 136
ENDDEBUG 138
ENDFILE 141

entering in an attention-interrupt exit 97
entering in ISPF 22
entering in line mode 46
ERROR 142

examples of common usage 70
FIXUP 144

functions 61

GO 146

HALT 148

HELP (CMS) 151

HELP (ISPF) 150
HELP(TSO) 153

IF 155

KEYS 177

LIST 158

LISTBRKS 164
LISTFREQ 165
LISTINGS 168
LISTSAMP 170
LISTSUBS 174
LISTTIME 176

maximum length 46
MOVECURS 177

NEXT 178

OFF 180

OFFWN 182

on the ISPF execution panel 23
QUALIFY 189

QUIT 191

RECONNECT 192
REFRESH 193
RESTART 194
restrictions in batch mode 51
REWIND 195

SEARCH 197

SET 199

some common commands with examples 70
STEP 203

summary 225

summary by function 115
syntax 225

SYSCMD 205

TERMIO 207

TIMER 209

TRACE 211

usage, advanced 70

using system 90

valid after program execution, list of 96
WHEN 213

WHERE 216

WINDOW 217

276 VS FORTRAN Version 2: Interactive Debug Guide and Reference

comments into debug log, inserting 117
common block, definition 270
common expression elimination 101
compare floating point numbers 97
compare variables 155
complex constant, definition 270
complex data type, definition 270
connected file, definition 270
constant (WHEN) 213
constant propagation 101
constant, definition 270
continuation character
how to enter 22
restricted commands 22
terminal input 92
control statement, definition 270
conventions
statement identifier 114
syntax 113
Conversational Monitor System (CMS)
AFFON
using in batch mode 60
using in line mode 48
using under ISPF 38
entering system commands 205
invoking interactive debug
in batch mode 52
in line mode 41
overview 8
using ISPF with PDF 10
using ISPF without PDF 13
online help 222
show defined files 91
corrective action 87
CP SET PF command 47
current statement boundary 216
cursor-oriented commands 30

cursor, moving between window and command line 177

D

data item, definition 270
data set reference number, definition 270
data set, definition 270

data type
definition 270
displaying 77

data type, displaying 136
data, definition 270
DEBUG execution-time option 17
debuggable program units
defined 69
display a list of 174
how to list 69
debugging
changing defaults for session 25
data sets required 17
files required 17
functions that affect 98

optimized code 98

restarting 194

using common commands 70

vectorized code 98

warning messages 99
debugging hooks

see hook
DEBUNIT execution-time option 57
default qualification, how to change
default settings for profile panel 186
DESC keyword (HELP CMS) 151
DESCRIBE command

conditions 136

description 136

examples 77

settingup 77

syntax 136
digit, definition 270
display

compiler level 174

current statement boundary 216

data types 77, 136

load status 174

log line numbers 186

nonexecuted statements 165

optimization level 174

previous panel 185

timing status 174

values of variables 85, 158

vectorization level 174
DO variable, definition 270
DO-loop, definition 270
double precision, definition 270
double quotation mark ("''") 117
dummy argument, definition 270
DUMP codes for LIST 127, 160
dynamic common

definition 270

displaying variablesin 128
dynamic invocation

considerations 97

in batch mode 51

in CMS in line mode 41

in CMS with ISPF 9

in TSO in line mode 45

introduced 8

E

end-of-file, entering 92
ENDDEBUG command
conditions 138
description 138

end debugging 93

entering subsequent commands 93

syntax 138
terminal [/O 93
ENDFILE command

Index

277

abbreviation 141
conditions 141
description 141
end-of-file record 90
perform I/O operations 90
syntax 141
entering
commands 22
input to a VS FORTRAN program 23
terminal input 91
ENTRY keyword (TRACE) 211
error
handling 87
messages, list of 231
occurrence counts 87
option table 87
ERROR command
abbreviation 142
conditions 142
corrective action with FIXUP command 86
description 142
EXIT/NOEXIT keywords
definitions 142
display messages 86
initial error settings 86
messages 86
MSG/NOMSG keywords
definitions 142
perform corrective action 86
suspend execution 86
syntax 142
example
of a debugging session 61
of common commands 69
of execution panel 21
of optimization 100
of source listing window 29
of vectorization 102
see also sample
excluding program units 73

EXEC, using to invoke FORTRAN programs 41

executable program, definition 271
executable statement, definition 271
execution
controlling program 72
frequency 165
frequency, determining statement 78
of one or more statements using STEP 203
panel for ISPF 21
tracing program 83
execution-time
error, handling 86
option
DEBUG 61
overriding default value 97
with ISPF 9

existing file, definition of 271
existing unit, definition of 271
expression, definition 271
external files

definition 271

disconnect 89

end-of file record, writing 89

positioning 89

processing 89

sequentially accessed 89
external function, definition 271

F

features, Interactive Debug 3
file definition statement, definition 271
file names
for CMS files under Interactive Debug 10
of optional debugging files 10
file reference, definition 271
file, definition 271
FIXUP command
abbreviation 144
ARG1 keyword 144
ARG2 keyword 144
assign values to arguments 87
conditions 144
description 144
specify corrected values 87
syntax 144
fixup, standard 86
floating-point equalities 97
flow analysis 101
FLOW keyword (WHERE) 216
foreground panel 9
FORM keyword (HELP CMS) 151
FORMAT codes for LIST 127, 160
formatted record, definition 271
FORTIAD EXEC
as a TSO CLIST to invoke line mode 46
modified for batch mode 51
to invoke line mode under CMS 45
frequency count
modifying on profile panel 186
frequency of execution 165
full screen display commands
defined 25
restriction in command list 122
restriction with IF ~ 156
full screen mode 9, 33
FUNCTION keyword (HELP TSO) 153
function reference, definition 271
function subprogram, definition 271

278 VS FORTRAN Version 2: Interactive Debug Guide and Reference

G

global register assignment 104

glossary
ANSI definitions 269
definitions of terms 269-274
ISO definitions 269

GO command
beginning or resuming execution 62
conditions and restrictions 146
description 146

effects of optimization or vectorization

in command lists 78
syntax 146
GOTO keyword (TRACE) 211

H

HALT command
conditions 148
description 148
ENTRY keyword
definition 148
entries or exits to program units
GOTO keyword
definition 148
program branch 74
in command lists 76
OFF keyword
canceling 74
definition 148
STMT keyword
definition 148
single step with 74
stop execution 74
syntax 148
HALTED FOR OUTPUT msg 24
handling errors 87
HELP command (CMS)
ALL keyword 151
conditions and restrictions 151
DESC keyword 151
description 151
FORM keyword 151
PARM keyword 151
syntax 151
HELP command (ISPF)
conditions and restrictions 150
description 150
syntax 150
HELP command (TSO)
ALL keyword 153
conditions and restrictions 153
description 153
FUNCTION keyword 153
OPERANDS keyword 153
syntax 153

74

SYNTAX keyword 153
HELP facility
CMS procedures 222
command syntax under CMS 151
command syntax under ISPF 150
command syntax under TSO 153
HELP menu 220
invoking 219
ISPF procedures 222
overview 219
task menu 221
TSO procedures 222
tutorial 220
hexadecimal constant, definition 271
hierarchy of operations, definition 271
hook, debugging
and compiler options 72
and program animation 25
display list of 78
displaying list of 38
eliminating overhead caused by 83
entry and exit 38
how to insert 72
none 38
suspending executionata 74
use of LISTSUBS command 174
hook, definition 271
horizontal scrolling 30
hyphen, to continue input on succeeding lines 92

[1

1/0 list, definition 272
1/0, definition 272
IAD 271
definition 271
See Interactive Debug
IAD keyword (TERMIO) 23, 91, 207
message to enter 23
IF command
conditions and restrictions 1535
description 155
effects of optimization or vectorization 107
in command lists 76
syntax 155
implied DO, definition 271
INCLUDE files 10
individual variable qualification 70
information about a function 150, 151, 153
informational messages 231
initializing variables 97
input log
in batch 56
using ISPF 39
input, entering terminal 91
integer constant, definition 271
integer expression, definition 271
integer type, definition 271

Index

279

Interactive Debug interruption localizing

batch mode support 51 at optimization level 2 101
batch mode, requirements for 5 definition 271
browsing and editing 33 intrinsic function, definition 271
command summary 115 invoking interactive debug
dynamic invocation of 8,97 at execution time 8
entering terminal input 91 in batch mode
error messages from 24 overview 51
execution panel, contents and use 21 using CMS 52
features 3 using MVS with TSO 53
full screen support . 33 using MVS without TSO 54
HELP command 219 in line mode
introducing 3 overview 41
invoking using CMS 41

at execution time 8 using TSO 45

in batch mode 51 using ISPF

in line mode 41 overview 9

using ISPF 9 using CMS with PDF 10
ISPF and PDF, requirements for 5 using CMS without PDF 13
ISPF, using 9 using TSO with PDF 17
line mode, requirements for 5 using TSO without PDF 18
options to allocate files and control Interactive Debug ISO, identifies ISO glossary definitions 269

I/0 8 ISPF

performance considerations 7 See Interactive System Product Facility

product requirements 5
programming requirements for 5
routines for terminal input 91
source listing window, using 24 K
storage requirements for 7
termination 36, 58
warning messages 99 KEYS command 22, 177
Interactive System Product Facility
changing color attributes of display 134

changing PF key definitions 22 L

CMS file IDs, building 10

commands valid under Version 2 25

defining a source listing window 217 label, statement, definition 273
full screen display 4 length specification, definition 272
full screen support 33 letter, definition 272

invocation panels 9 LIBRARY keyword (TERMIO)
keywords 23 description of command 207
maximum length of an input line 93 relationship to log 36, 58
online help 222 restrictions 23

setting PF key for MOVECURS 177 line mode

TSO data set names, building 17 AFFPRINT, defining 50

use of Interactive Debug with 9

changing PF key definitions 47
Version 2, under

entering input 47

changing profile fettir.lgs 25 listing file, using 48

description of animation 32 maximum length of an input line 93
description of source window 26 use of Interactive Debug with 41
features 24 line number

list of valid commands 25 displaying or inhibiting 186

STEP command 203

on execution panel 21
WINDOW command 217

position at 31

internal file, definition 271 link mode
Internal. S}a}tement Number modifications for batch mode 52
definition 271 specifying as GLOBAL TXTLIB for line mode 42

position at 183 specifying on ISPF invocation panel 11
range in AFFON file 59 LIST command

referencing 61 array elements 85
when touse 114

280 VS FORTRAN Version 2: Interactive Debug Guide and Reference

arrays, display values of 162
common variables 160
conditions and restrictions 158
description 158
display all variables 71
DUMP keyword
conditions 128, 160
definition 158
use of 85
effects of optimization or vectorization 107
EQUIVALENCE statement 160
equivalence variables 160
FORMAT keyword
conditions 128, 160
definition 158
use of 85
hexadecimal, display valuesin 162
series of variables 85
syntax 158
to a print data set 85
variables in different format 85
LIST files 10
list the number of times statements have been
executed 165
list-directed, definition 272
LISTBRKS command
check breakpoint settings 71
description 164
syntax 164
LISTFREQ command
conditions 165
description 165
effects of optimization or vectorization 107
obtain a listing file or a print data set 78
syntax 165
listing file, using while debugging 33
LISTINGS command
conditions and restrictions 168
description 168
syntax 168
listings data set specification panel
display with LISTINGS command 168
modifying 27
Listsamp command
conditions and restrictions 170
description 170
syntax 170
use in program sampling 80
LISTSUBS command
conditions and restrictions 174
description 174
for determining debuggable program units 69
syntax 174
LISTTIME command
conditions and restrictions 176
description 176
syntax 176
to get timing information 82
used with TIMER command 209
load mode
default for Interactive Debug 11

default in line mode 42

load status, displaying 174

location information (WHERE) 83, 216

log
example 21
file at termination of activity {34, 58
file or data set, specifying an output 36, 58
inhibiting display of line numbers 186
input, specifying in batch 56
input, specifying in ISPF 39
restarting a debugging session” 194
searching for character string 197
searching for log line number 183
viewing the scrollable 23

LOG files 10

log number
see line number

logical constant, definition 272

logical expression, definition 272

logical operator
definition 272
used with IF command 155

logical primary, definition 272

logical type, definition 272

looping, definition 272

loops in nondebuggable program units
escaping from 96
using the QUIT command 96

M

main program, definition 272
maximum length of an input line
in CMS or TSO line mode 93
inISPF 93
messages 231
mixed-case input 92
monitor
a condition using WHEN 74
a condition, turn off 182
a condition, turnon 213
across program boundaries (QUALIFY) 71
MOVECURS command
conditions and restrictions 177
description 177 :
move cursor to source listing window 30
syntax 177 .
multiple assignments of a value 199

N

name, definition 272
named common, definition 272
nested DO, definition 272
NEXT command
conditions and restrictions 178

Index

281

description 178

next executable statement 74 P
suspend execution 74
syntax 178
using STEP as NEXT/GO pair 203 panel
NEXT FORCED FOR OUTPUT msg 24,178 display previous 185
NODEBUG option 17 filling in the CMS 10
nonexecutable statement, definition 272 filling in the TSO 17
nonexecuted statements, display 165 refreshing the screen 193
nonexisting file, definition 272 PARM keyword (HELP CMS) 151
null line 93 PDF
numeric character, definition 272 See Program Development Facility (PDF)
numeric constant, definition 272 percent sign
see % (percent sign)
performance
hints for improving 109
0] PF keys

how to change in line mode 47
how to change under ISPF 22
limited number of lines 23
restrictions 23

scrolling with 23

setting up for MOVECURS 177

occurrence count for execution-time errors 93
OFF command

conditions 181

description 180

syntax 180 using with cursor-oriented commands 30
OFFWN command

conditions 183

description 183

positioning at a log number or ISN 31

syntax 183
preconnected file, definition 272
predefined specification, definition 272
PREVDISP command

conditions 185

condition name list 182

conditions 182

description 182

reactivate condition monitoring 75

syntax 182

turn off WHEN condition monitoring 75
one-time testing of conditions (IF) 155

onlir}e HE_LP description 185
invoking 3 .)) syntax 185
to get a set of screens with help information 3 primary option menu 9
using 22

primary, definition 272
PRINT keyword (LISTFREQ)
definition 165
display statement frequency
range of statements 78
single statements 78
PRINT keyword (TRACE) 211
PRINT keyword (WHERE) 216
printing files or data sets
in batch mode 58
in line mode 50
using ISPF 36

using to invoke 3
OPERANDS keyword (HELP TSO) 153
operating procedures, ISPF 21
optimization

commands effected 107

display level for debuggable units 174

effects on debugging 98

execution of DO loops 104

flow analysis 101

levels and functions 98

operational situations 96

OPT(0) 99 procedure subprogram, definition 272
OPT(1) 100 procedure, definition 272

OPT(2) 101 processing flow errors 74

OPT§3) 101 see also HALT

warning messages 108 PROFILE command

warning messages while debugging 99
optimized code, limited debugging of 7
option
DEBUG/NODEBUG 97
overriding execution-time 97
to allocate files and control Interactive Debug I/O 8
output halt value 25, 178
overriding execution default 18

changing settings 25
conditions 186
description 186
syntax 186
Program Development Facility (PDF)
browsing and editing 33

282 VS FORTRAN Version 2: Interactive Debug Guide and Reference

invocation without PDF 13, 18 terminate debugging 67

required for browse and edit 9 terminate execution 93

split-screen browsing and editing 4 while in attention exit 93, 97
program function keys quotation mark (")

See PF keys inserting comments into debug log 117
program return code, definition 272 use with continuation lines 92
program sampling

bar charts in a source listing window 29
bar charts in ISPF version 2 80

initiation 79 R
limitations 82
statistics 80
use of ANNOTATE 118 range of statements (AT) 121
use of CALLED counter 79 reactivate WHEN monitoring 182
use of DIRECT counter 79 real constant, definition 272
use of ENDDEBUG 138 real type, definition 272
use of LISTSAMP 170 recompile in split screen 9
program units RECONNECT Command
activating timing 209 abbreviations 192
changing qualification 189 conditions 192
definition 272 description 192
main, subprogram, subroutine 70 syntax 192
moving between 71 use with CLOSE Command 132
multi-subroutine modules 73 record format, setting in line mode 49
qualifying 70 record length, in line mode 49
see also AFFON record, definition 273
to be debugged, specifying recovery after messages 231
in batch mode 58 reentrant object code, debugging 4
in line mode 48 reference number, data set (definition) 270
under ISPF 37 REFRESH command
transfers 83 conditions 193
programming requirements 5 description 193
PURGE command syntax 193
conditions 188 registers 100
description 188 relational conditions 155
syntax 188 relational expression, definition 273
terminate output of a single command 188 relational operator, definition 273
remove WHEN breakpoints (OFFWN) 182
RENT option
display load status for units compiled with
Q RENT 174

requirement for reentrant code 4
residence mode, definition 273

qualification respond to errors 86
apply commands to another unit 70 RESTART command
in another program 71 conditions 194
individual variables 71 description 194
overriding on AT statement 121 syntax 194
overriding on OFF statement 180 using to start session with new compilation 33
set breakpoints in another program 71 RESTART files 10
QUALIFY command return to system, see also quit 67
conditions and restrictions 189 REWIND command
description 189 conditions 195
qualify variables 70 description 195
syntax 189 perform 1/0 operations 89
QUIT command position external file 89
description 191 syntax 195

Index 283

S

sample
debugging session 64
program 61
scalar variable
and WHEN command 213
displaying data type of 77, 136
scale factor, definition 273
screen support, full 33
scrollable log
see log
scrolling the listing and log 30
SDUMP option
to generate sequence numbers 4
SEARCH command
conditions 197
description 197
searching for a character string 31
syntax 197
search for an ISN or log number 183
select I/O routines 207
sequence number
definition 273
generating instead of ISNs 4, 114
restriction in AFFIN 39, 56
sequence of control, tracing
TRACE 211
WHERE 216
SET command
assignments 199
changing the value of variables 66
description 199

effects of optimization or vectorization 107

syntax 199
valid format 199
slash (/) (statement label) 121
source listing window
and animation 24
and cursor-oriented commands 30
and listings data set specification panel 27
and STEP command for animation 32
changing color or highlighting 33
columns 25
conditions for displaying 30
defining 217
defining defaults 186
defining size of 26
example 29
inhibiting display of source listing 27
introduction 9
moving cursor to command line 30, 177
positioning at ISN or log line 31
rows 25
searching 31
searching for character string 31, 197

searching for ISN or sequence number 183

setting default values 25
turning off oron 186

turning on and off 26

using cursor to define 27
source statement, tracing (TRACE) 211
special characters, entering 113
special considerations

entering commands in an attention-interrupt exit

excluding program units 73

identifying debuggable statements 73
initializing VS FORTRAN variables 97
loops in nondebuggable program units 96

modifying the default value for the execution-time

option 97

monitoring floating-point equalities 97

statement identifier conventions 114
specification statement, definition 273
specification subprogram, definition 273
split screen, debugging in 33
square brackets ([]) 113
standard corrective action 86
statement

definition 273

not executed, displaying 165
statement boundary, displaying 216
statement function definition, definition 273
statement function reference, definition 273
statement function, definition 273
statement identifier

conventions 113

definition 273

internal statement numbers 114

ISNs 114

position at ISN or log number 183

sequence numbers 114

statement labels 114

with TEST and NOSDUMP options 114
statement label

definition 273

preceded with a slash 114

referencing 62
STEP command

abbreviation 203

conditions 203

description 203

syntax 203
step delay value 25
STOP statement 66
storage

effects of optimization on 100

requirements 7
strength reduction 104
subprogram transfers, tracing (TRACE) 83
subprogram, definition 273
subroutine subprogram, definition 273
subroutines, how to exclude 73
subscript

definition 273

for arrays 199
subscript quantity, definition 273
suspend execution at condition (HALT) 148
syntax conventions

284 VS FORTRAN Version 2: Interactive Debug Guide and Reference

Vs

braces ({}) 113

keywords 113

square brackets ([]) 113

vertical lines (|) 113
SYNTAX keyword (HELP TSO) 153
system commands

abbreviation 205

CMS files defined 91

conditions 205

description 205

syntax 205

TSO data sets allocated 91

using 90

view listing files 91

view source files 91

T

terminal input, entering 91
termination
entering commands after 96
in batch mode 58
using ISPF 36
TERMIO command
and DEBUNIT execution-time option 57
conditions 207
default setting 91
description 207
IAD keyword 207
LIBRARY keyword 207
LIBRARY, restrictions in line mode 47
syntax 207
with MVS batch 57
test a condition 155
TEST | NOTEST option 7
Time Sharing Option (TSO)
AFFON
using in batch mode 60
using in line mode 48
using under ISPF 38
connecting a data set to a terminal device in
batch 56
entering system commands 205
full screen mode 9
invoking interactive debug
in batch mode 53
in line mode 45
overview 8
using ISPF with PDF 17
using ISPF without PDF 18
online help 222
show allocated data sets 91
TIMER command
abbreviation 209
conditions 209
description 209
syntax 209
to get timing information 82
timing

activating with TIMER 209

display all program units with timing active 176

display status 174
using the LISTTIME command 176
using TIMER and LISTTIME 82
TRACE command
conditions 211
control transfers 83
description 211
GOTO keyword
branches 83
definition 211
OFF keyword
definition 211
end tracing 83
PRINT keyword
definition 211
print data set 83
source statements 83
syntax 211
trailer statements 73
TRBACK keyword (WHERE) 216
TSO (Time Sharing Option)
see Time Sharing Option
tutorial
a sample debugging session 61
HELP 220
type specification, definition 273

U

unformatted record, definition 273
unit identifier, definition 274

unit, definition 273

unit, program 71

uppercase terminal input 92

Vv

variables
defining 97
definition 274
display value of 85
how to change value of 199
initializing 97
qualifying 70
vectorization
definition 274
display level for debuggable units 174
effects on debugging 98
levels and functions 98
vectorize, definition 274
vertical lines (|) 113
vertical scrolling 30
VS FORTRAN Version 2
assigning initial values 97

Index

285

entering input in ISPF 23
percent sign % 23

entering input in line mode 47

initializing variables 97

listing file 23

scrolling with PF keys 23

source file 23

w

warning messages 99, 231
WHEN command
canceling 75
description 213
effects of optimization or vectorization 107
list conditions 164
logical conditions 213
monitoring a condition 74
naming a condition 74
relational condition 213
resume monitoring 75
see also OFFWN 75
suspend execution at a defined condition 74
syntax 213
WHERE command
conditions 216
description 216
FLOW keyword
definition 216

tracing program unit transfers 83
next executing statement 83 r
PRINT keyword
definition 216
print data set 83
syntax 216
tracing 83
TRBACK keyword
definition 216
tracing program unit transfers 83
window
see source listing window
WINDOW command
description 217
syntax 217

Z

ZEROFREQ keyword (LISTFREQ)
definition 165
never executed statements 78

Numerics

16-megabyte line 4 N
31-bit addressing mode 4

286 VS FORTRAN Version 2: Interactive Debug Guide and Reference

)

Staples can cause problems with automated mail sorting equipment.

Note:

Please use pressure sensitive or other gummed tape to seal this form.

css e e cen e

C et s ersee e e aanean

ceee e

Reader’s

VS FORTRAN Version 2 Comment
Interactive Debug Form
Guide and Reference

SC26-4223-1

This manual is part of a library that serves as a reference source for system analysts, programmers, and operators of IBM
systems. You may use this form to communicate your comments about this publication, its organization, or subject matter,
with the understanding that IBM may use or distribute whatever information you supply in any way it believes appropriate
withourt incurring any obligation to you,

Your comments will be sent to the author’s department for whatever review and action, if any, are deemed appropriate.
Note: Do not use this form to request IBM publications. 1f you do, your order will be delayed because publications are not
stocked at the address printed on the reverse side. Instead, you should direct any requests for copies of publications, or for

assistance in using your IBM system, to your IBM representative or to the {BM branch office serving your locality.

If you have applied any technical newsletters (TN Ls) to this book, please list them here:

Chapter/Section

Page No.
Comments:
If you want a reply, please complete the following information.
Name Phone No. {)
Company
Address

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM office or repre-
sentative will be happy to forward your comments or you may mail directly to the address in the Edition Notice on the
back of the title page.)

5C26-4223-1

Reader’s Comment Form

Fold and tape Please do not staple Fold and tape
| || ” | NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES
]
BUSINESS REPLY MAIL —
]
FIRST CLASS PERMIT NO.40 ARMONK, N.Y.
]
POSTAGE WILL BE PAID BY ADDRESSEE —
]
]
]
]
P.0. Box 50020]
Progfamming Publishing]
San Jose, California 95150 N
.
]
S

..

Fold and tape Please do not staple Fold and tape
NS IR, SR A——
AR SN S A
- - - GE S
- —— R ——
- S L2 4]
- - S S W .
I RSN SRR W S
SN SIS S v -
®

eessesescnsense

L-6227-920S 'V'S'N Ul paiuld (0b-0LES 'ON 2]!d) dduaiagay pue aping BngaQg 3AndeIAlU| 1Z UOISIAA NVHLHOH SA

Staples can cause problems with automated mail sorting equipment,

Note:

Please use pressure sensitive or other gummed tape to seal this form.

EEERE

. RN

tesesesrenean

aer oo e

sesressasean

crecsecne

tee e er s ar s et

“e s s iseear s

ss e e

Reader’s

VS FORTRAN Version 2 Comment
Interactive Debug Form
Guide and Reference

SC26-4223-1

This manual is part of a library that serves as a reference source for system analysts, programmers, and operators of |BM
systems. You may use this form to communicate your comments about this publication, its organization, or subject matter,
with the understanding that IBM may use or distribute whatever information you supply in any way it believes appropriate
without incurring any obligation to you.

Your comments will be sent to the author’s department for whatever review and action, if any, are deemed appropriate.
Note: Do not use this form to request IBM publications. If you do, your order will be delayed because publications are not
stocked at the address printed on the reverse side. Instead, you should direct any requests for copies of publications, or for

assistance in using your IBM system, to your IBM representative or to the IBM branch office serving your locality.

If you have applied any technical newsletters (TNLs) to this book, please list them here:

Chapter/Section

Page No.
Comments:
if you want a reply, please complete the following information.
Name Phone No. {)
Company
Address

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM office or repre-
sentative will be happy to forward your comments or you may mail directly to the address in the Edition Notice on the
back of the title page.)

5C26-4223-1

Reader’s Comment Form

Fold and

... serreerseasns

tape

Fold and tape

.||'
ol"

Please do not staple

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO.40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation

P.O. Box 50020
Programming Publishing
San Jose, California 95150

Please do not staple

Fold and tape

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

L-€225-920S V'S Ul PaluLd (Op-OLES "ON 2)14) 30U31a3aY pue 3pING Bngaq aAORISIU] iZ UOISISA NVHLHOL SA

fFold and tape

sessessaveessencen

Note: Staples can cause problems?i;h automated mail sorting equipment,

Please use pressure sensitive or other gummed tape to seal this form.

cese s s s r e s sa e

“resrevennoe

cirerane

DI T T

ces e

.

Cev et s s e

ceas e R

Reader’s

VS FORTRAN Version 2 Comment
Interactive Debug Form
Guide and Reference

SC26-4223-1

This manual is part of a library that serves as a reference source for system analysts, programmers, and operators of |BM
systems. You may use this form to communicate your comments about this publication, its organization, or subject matter,
with the understanding that IBM may use or distribute whatever information you supply in any way it believes appropriate
withourt incurring any obligation to you.

Your comments will be sent to the author's department for whatever review and action, if any, are deemed appropriate.
Note: Do not use this form to request IBM publications. If you do, your order will be delayed because publications are not
stocked at the address printed on the reverse side. |nstead, you should direct any requests for copies of publications, or for

assistance in using your IBM system, to your |BM representative or to the IBM branch office serving your locality.

If you have applied any technical newsletters (TN Ls) to this book, please list them here:

Chapter/Section

Page No.

Comments:

If you want a reply, please complete the following information.

Name Phone No. {)

Company

Address

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an |BM office or repre-
sentative will be happy to forward your comments or you may mail directly to the address in the Edition Notice on the
back of the title page.)

§C26-4223-1

Reader’s Comment Form

Fold and tape Please do not staple Fold and tape
||| " | NO POSTAGE
NECESSARY
IF MAILED
IN THE

UNITED STATES
]
BUSINESS REPLY MAIL e——
FIRST CLASS PERMITNO.40 ARMONK, N.Y. I
]
POSTAGE WILL BE PAID BY ADDRESSEE EEERRER—
|
|
]
IBM corporation .]
|
P.0. Box 50020 EEE——
Programming Publlshmg S
San Jose, California 95150 R
]
|
]

Fold and tape Please do not staple Fold and tape

Hu
.||l
NI LU

L-€Z2-920S V'S’ Ul palutd (OY-0LES "ON 2I!4) 80uaiajay pue aping BnqaQg aAIlRIAU| (g UOISIBA NVHLHOL SA

Staples can cause problems with automated mail sorting equipment.

Note:

Please use pressure sensitive or other gummed tape to seal this form.

I T

R R R I R R R T

L L R R I I T T S Y S

ce e

Reader’s

VS FORTRAN Version 2 Comment
Interactive Debug Form
Guide and Reference

S5C26-4223-1

This manual is part of a library that serves as a reference source for system analysts, programmers, and operators of |1BM
systems. You may use this form to communicate your comments about this publication, its organization, or subject matter,
with the understanding that IBM may use or distribute whatever information you supply in any way it believes appropriate
withourt incurring any obligation to you.

Your comments will be sent to the author’s department for whatever review and action, if any, are deemed appropriate.
Note: Do not use this form to request IBM publications. If you do, your order will be delayed because publications are not
stocked at the address printed on the reverse side. Instead, you should direct any requests for copies of publications, or for

assistance in using your IBM system, to your IBM representative or to the IBM branch office serving your locality.

If you have applied any technical newsletters (TNLs) to this book, please list them here:

Chapter/Section

Page No.
Comments:
If you want a reply, please complete the following information.
Name Phone No. ()
Company
Address

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM office or repre-
sentative will be happy to forward your comments or you may mail directly to the address in the Edition Notice on the
back of the title page.)

5C26-4223-1

Reader’s Comment Form

Fold and tape Please do not staple Fold and tape
| || || | NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES
.|
BUSINESS REPLY MAIL ———
]
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.
POSTAGE WILL BE PAID BY ADDRESSEE —
.]
]
IBM Corporation -]
|
P.0. Box 50020 L
Programming Publishing .
San Jose, California 95150 ——
.|
]
—

..

Fold and tape Please do not staple Fold and tape

<|||{

L-€220-920S V'S’ Ul palulld (OY-0LES "ON 2114) 8duaiajay pue aping bngaQ aA1deIRIU| 1Z UOISIIA NYHLHOL SA

,"

..['
=[N

VS FORTRAN Version 2 !

File Number S370-40

Interactive Debug
Guide and Reference

The VS FORTRAN Version 2 Library

LY27-9516
GC26-4219
SC26-4340
SC26-4339
SC26-4223
S§C26-4221
GC26-4225
5C26-4222
S§X26-3751

Diagnosis Guide
General Information
Installation and Customization for MVS
Installation and Customization for VM
Interactive Debug Guide and Reference
Language and Library Reference
Licensed Program $Specifications
Programming Guidé

‘

Reference Summary

SC26-4223-01

T

Printed in U.S.A.

