

--------- ----- - -- - --- MVS/370 GC26-4074-2

- ----------
c

---·- VSAM Administration:
Macro Instruction Reference

Release 1.2

Third Edition (May 1990)

This is a major revision of, and makes obsolete, GC26-4074-1.

This edition applies to Release 1.2 and Release 1.3 (available only in Brazil) of MVS/370 Data Facility
Product, Licensed Program 5665-295, and to any subsequent releases until otherwise indicated in new
editions or technical newsletters.

The changes for this edition are summarized under "Summary of Changes" following the preface.
Specific changes are indicated by a vertical bar to the left of the change. These bars will be deleted at
any subsequent republication of the page affected. Editorial changes that have no technical signif
icance are not noted.

Changes are made periodically to this publication; before using this publication in connection with the
operation of IBM systems. consult the latest IBM System/370, 30xx, 4300, and 9370 Processors Bibli
ography, GC20-0001, for the editions that are applicable and current.

References in this publication to IBM products, programs, or services do not imply that IBM intends to
make these available in all countries in which IBM operates. Any reference to an IBM licensed
program in this publication is not intended to state or imply that only IBM's licensed program may be
used. Any functionally equivalent program may be used instead.

Requests for IBM publications should be made to your IBM representative or to the IBM branch office
serving your locality. If you request publications from the address given below, your order will be
delayed because publications are not stocked there.

A form for readers' comments is provided at the back of this publication. If the form has been removed,
comments may be addressed to IBM Corporation, P.O. Box 49023, Programming Publishing, San Jose,
California, U.S.A. 95161-9023. IBM may use or distribute whatever information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1983, 1990. All rights reserved.
Note to US Government Users - Documentation related to restricted rights - Use, duplication or dis
closure is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

J

Preface

This book is intended to help you use VSAM macro instructions to process data.

Prerequisite Knowledge
Readers of this publication are assumed to have a programming background
that includes:

• VSAM data management

• Catalog administration

• Job control language

You should be familiar with the information presented in the following publica
tions:

• MVS/370 VSAM Administration Guide, GC26-4066, describes how to use
VSAM. You should understand the information in the VSAM Administration
Guide before you use this manual.

• MVS/370 Catalog Administration Guide, GC26-4053, describes the adminis
tration of tasks for catalogs and how to use the access method services com
mands to manipulate catalogs, and the objects cataloged in them.

• MVS/370 JCL User's Guide, GC28-1349, and MVS/370 JCL Reference,
GC28-1350, describe the JCL parameters referred to in this publication and
describes dynamic allocation.

• MVS/370 Message Library: System Messages, GC28-1374 and GC28-1375, pro
vides a complete listing of the messages issued by VSAM.

Referenced Publications
Within the text, references are made to the publications listed in the following
table:

Short Title Publication Title Order Number

Access Method Ser- MVS/370 Integrated Catalog GC26-4051
vices Reference Administration: Access Method

Services Reference

MVS/370 VSAM Catalog Admin-
istration: Access Method Ser- GC26-4059
vices Reference

Catalog Adminis- MVS/370 Catalog Administration GC26-4053
tration Guide Guide

Checkpoint/ Restart MVS/370 Checkpoint/Restart GC26-4054
Users Guide

Data Areas OSIVS2 Data Areas SYBS-0606

Data Facility MVS/370 Data Facility Product: GC26-4062
Product: Master Master Index
Index

~ Copyright IB~ Corp. 1983, 1990 Ill

Short THle

Data Facility
Product: Planning
Guide

Debugging Hand
book

Introduction to the
IBM 3850 Mass
Storage System

JCL User's Guide

JCL Reference

Job Management

OS/VS Mass
Storage System
Services: Reference
Information

RACF General
Information

TSO Command Lan
guage Reference

TSO Terminal
User's Guide

Supervisor Services
and Macro
Instructions

System Messages

VSAM Adminis
tration Guide

VSAM Logic

Notational Conventions

Publication THle

MVS/370 Data Facility Product:
Planning Guide

MVS/370 System Programming
Library: Debugging Handbook
Volumes 1 through 5

Introduction to the IBM 3850
Mass Storage System (MSS)

MVS/370 JCL User's Guide

MVS/370 JCL Reference

OSIVS2 MVS System Program
ming Library: Job Management

OS/VS Mass Storage System
(MSS) Services: Reference Infor
mation

Resource Access Control Facility
(RACF): General Information

OSIVS2 TSO Command Lan
guage Reference

OSIVS2 TSO Terminal User's
Guide

OSIVS2 MVS System Program
ming Library: Supervisor Ser
vices and Macro Instructions

MVS/370 Message Library:
System Messages
Volumes 1 and 2

MVS/370 VSAM Administration
Guide

MVS/370 VSAM Logic

Order Number

GC26-4052

LC28-1385
through
LC28-1389

GA32-0038

GC28-1349

GC28-1350

GC28-0627

GC35-0017

GC28-0722

GC28-0646

GC28-0645

GC28-0683

GC28-1374
and
GC28-1375

GC26-4066

LY26-3928

A uniform system of notation describes the syntax of VSAM macro instructions.
This notation is not part of the language; it merely provides a basis for
describing the structure of the macros.

The macro syntax illustrations in this book use the following conventions:

• Brackets [] indicate optional parameters.

• Braces { } indicate a choice of entry; unless a default is indicated, you must
choose one of the entries.

• Items separated by a vertical bar (I) represent alternative items. No more
than one of the items may be selected.

• An ellipsis (.. .) indicates that multiple entries of the type immediately pre
ceding the ellipsis are allowed.

• Other punctuation (parentheses, commas, etc.) must be entered as shown.

Iv MVS/370 VSAM Administration: Macro Instruction Reference

J

• BOLDFACE type indicates the exact characters to be entered. Such items
must be entered exactly as illustrated (in uppercase, except in TSO).

• Italics type specifies fields to be supplied by the user.

• BOLDFACE UNDERSCORED type indicates a default option. If the parameter
is omitted, the underscored boldface value is assumed.

• A ' ' in the macro syntax indicates that a blank (an empty space) must be
present before the next parameter.

Preface V

Summary of Changes

Library Refresh, May 1990
The list of GENCB, MODCB, SHOWCB, and TESTCB reason codes returned in
register 0 has been updated. See Figure 5 on page 8.

The list of logical error reason codes in the feedback field of the request param
eter list has been updated. See Figure 8 on page 13.

Enhancements have been added which enable you to process a linear data set
(LDS) on MVS/370 DFP. The recognition of an LDS on the MVS/370 DFP system
provides compatibility of LDS usage with MVS/XA ™ DFP Version 2 Release 3.0.
The enhancements added to MVS/370 DFP enable you to do the following:

• Process an LDS in control interval mode.

• Receive return and reason codes for logical errors that may occur while
processing an LDS.

Information has been added to reflect service changes.

Release 1.1 Library Update, December 1985

Service Changes
The title of this publication has been changed from MVS/370 VSAM Reference to
MVS/370 VSAM Administration: Macro Instruction Reference.

Many MVS/370 titles referred to in this publication have been changed.

Information has been added to reflect technical service changes.

MVS/XA is a trademark of the International Business Machines Corporation.

Cl Copyright IBM Corp. 1983, 1990 vii

Contents

Chapter 1. Macro Instruction Return Codes and Reason Codes 1
Return Codes and Reason Codes from OPEN 1
Return Codes and Reason Codes from CLOSE 4
OPEN/CLOSE Message Area for Multiple Reason or Warning Messages 5

Message Area Header . 6
Message List . 6

Control Block Manipulation Macro Return Codes and Reason Codes 8
Record Management Return Codes and Reason Codes 10

Return Codes 10
Asynchronous Request 10
Synchronous Request 10

Component Codes 11
Reason Codes 11

Reason Code (Successful Request) 12
Reason Code (Logical Errors) . . . 12
Reason Code (Physical Errors) 19

Return Codes from Macros Used to Share Resources among Data Sets 21
Return Codes from BLDVRP 22
Return Codes from DLVRP 22

Return Codes from End-of-Volume 22

Chapter 2. VSAM Macro Formats and Examples
ACB Macro (Generate an Access Method Control Block)

Example 1: ACB Macro
ACQRANGE Macro (Stage Data)
BLDVRP Macro (Build V.SAM Resource Pool)
CHECK Macro (Wait for Completion of Request)

Example 1: Check Return Codes after an Asynchronous Request
Example 2: Check Return Codes after a Synchronous Request
Example 3: Overlap Processing
Example 4: Suspend a Request for Many Records

CLOSE Macro (Disconnect Program and Data)
CNVTAD Macro (Convert Address)
DLVRP Macro (Delete VSAM Resource Pool) .
ENDREQ Macro (Terminate a Request)

Example: Release Positioning for Another Request
ERASE Macro (Delete a Record)

Example 1: Keyed-Direct Deletion
Example 2: Addressed-Sequential Deletion

EXLST Macro (Generate an Exit List)
Example: EXLST Macro

GENCB Macro (Generate an Access Method Control Block)
Example: GENCB Macro (Generate an Access Method Control Block)

GENCB Macro (Generate an Exit List)
Example: GENCB Macro (Generate an Exit List)

GENCB Macro (Generate a Request Parameter List)
Building a Chain of Request Parameter Lists
Example: GENCB Macro (Generate a Request Parameter List)

GET Macro (Retrieve a Record)
Example 1: Keyed-Sequential Retrieval (Forward)
Example 2: Keyed-Sequential Retrieval (Backward)

23
24
30
31
33
35
35
36
36
37
38
39
41
42
42
44
44
45
47
48
49
53
54
56
57
60
61
62
62
63

Cl Copyright IBM Corp. 1983, 1990 Ix

Example 3: Skip-Sequential Retrieval
Example 4: Addressed-Sequential Retrieval
Example 5: Sequential Retrieval for a Relative Record Data Set
Example 6: Keyed-Direct Retrieval
Example 7: Addressed-Direct Retrieval
Example 8: Switch from Direct to Sequential Retrieval

GETIX Macro (Retrieve an Index Record)
MNTACQ Macro (Mount Acquire)
MODCB Macro (Modify an Access Method Control Block)

Example: MODCB Macro (Modify an Access Method Control Block)
MODCB Macro (Modify an Exit List)

Example: MODCB Macro (Modify an Exit List)
MODCB Macro (Modify a Request Parameter List)

Example: MODCB Macro (Modify a Request Parameter List) .. .
MRKBFR Macro (Mark Buffer)
OPEN Macro (Connect Program and Data)

Example: OPEN Macro
POINT Macro (Position for Access)

Example: Position with POINT
PUT Macro (Store a Record)

Example 1: Keyed-Sequential Insertion
Example 2: Recording RBAs When Loading
Example 3: Loading a Relative Record Data Set (Skip-Sequential and

Direct Processing)
Example 4: Keyed-Sequential Insertion (Relative Record Data Set)
Example 5: Skip-Sequential Insertion
Example 6: Keyed-Direct Insertion
Example 7: Addressed-Sequential Addition

63
65
66
67
68
68
71
72
74
75
76
76
77
78
79
80
80
81
81
82
82
83

83
84
85
87
87

Example 8: Keyed-Sequential Update .. .
Example 9: Keyed-Direct Update
Example 10: Addressed-Sequential Update
Example 11: Marking Records Inactive .. .

PUTIX Macro (Store an Index Record)
RPL Macro (Generate a Request Parameter List)

Example: RPL Macro

. 88
89
90
90
92
93
97

SCHBFR Macro (Search Buffer)
SHOWCB Macro (Display Fields of an Access Method Control Block)

Example 1: SHOWCB Macro (Display an Access Method Control Block)
Example 2: SHOWCB Macro (Display an Exit List Address) . .

SHOWCB Macro (Display Fields of an Exit List)
Example: SHOWCB Macro (Display the Length of an Exit List)

SHOWCB Macro (Display Fields of a Request Parameter List)
Example: SHOWCB Macro (Display a Physical Error Message)

TESTCB Macro (Test Fields of an Access Method Control Block) ..
Example: TESTCB Macro (Test for Data Set Attributes)

TESTCB Macro (Test Fields of an Exit List)
Example: TESTCB Macro (Use a Branch Table)

TESTCB Macro (Test Fields of a Request Parameter List)
Example: TESTCB Macro (Test a Request Parameter List)

VERIFY Macro (Synchronize End of Data)
WRTBFR Macro (Write Buffer)

Appendix A. List, Execute, and Generate Forms of Macros
List-Form Keyword
Execute-Form Keyword .

X MVS/370 VSAM Administration: Macro Instruction Reference

98
99

102
103
104
105
106
108
109
112
113
114
115
117
118
119

121
121
122

J

Generate-Form Keyword
List, Execute and Generate Formats

List Form of BLDVRP ..
Execute Form of BLDVRP
Execute Form of DLVRP
List Form of GENCB ...
Execute Form of GENCB
Generate Form of GENCB
List Form of MODCB
Execute Form of MODCB . .
Generate Form of MODCB .
List Form of SHOWCB
Execute Form of SHOWCB .
Generate Form of SHOWCB
List Form of TESTCB
Execute Form of TESTCB . . .
Generate Form of TESTCB ..

Use of List, Execute, and Generate Forms
Examples of Generate, List, and Execute Forms in Reentrant

Environments
Example: Generate Form (Reentrant)
Example: Remote-List Form (Reentrant)
Example: Execute Form (Reentrant)

Appendix B. Operand Notation
Operands with GENCB, MODCB, SHOWCB, and TESTCB

Appendix C. Building Parameter Lists
The Format of the Parameter Lists .
Building Header and Element Entries
Passing Control Directly to VSAM

Modifying and Displaying the RECLEN Field of an RPL Directly

Glossary of Terms and Abbreviations

Index

123
123
123
123
124
124
124
125
125
125
125
125
126
126
126
126
127
127

127
127
128
128

129
129

131
131
131
134
135

137

143

Contents xi

Figures

1. OPEN Reason Codes in the ERROR Field of the Access Method Control
Block . 2

2. CLOSE Reason Codes in the ERROR Field of the Access Method Control
Block . 5

3. Format of the Message Area Header . 6
4. Format of Individual Messages in Message List 7
5. GENCB, MODCB, SHOWCB, and TESTCB Reason Codes Returned in

Register 0 . 8
6. Component Codes Provided in the RPL 11
7. Successful Completion Reason Codes in the Feedback Field of the

Request Parameter List . 12
8. Logical Error Reason Codes in the Feedback Field of the Request

Parameter List . 13
9. Physical Error Reason Codes in the Feedback Field of the Request

Parameter List . 19
10. Physical Error Message Format 20
11. MACRF Options . 27
12. OPTCD Options . 95
13. FIELDS Operand Keywords for an Access Method Control Block 100
14. FIELDS Operand Keywords for a Display Request Parameter List . . . 107
15. Reentrant Programming . 127
16. Format of Header and Element Entries for GENCB, MODCB, SHOWCB,

and TESTCB Parameter Lists . 132

C Copyright IBM Corp. 1983, 1990 xiii

L

Chapter 1. Macro Instruction Return Codes and Reason
Codes

This chapter describes the return codes you may get from the macro instructions
that are used to open and close a data set, manage VSAM control blocks, and
issue data processing requests.

VSAM sets reason codes in the ACB and the RPL. These reason codes are
paired with return codes in register 15. (Register usage conventions are
doumented in the Data Administration: Macro Instruction Reference.) Codes set
in the ACB indicate open or close errors. Codes set in the RPL indicate record
management errors.

The return codes and reason codes in this manual are listed in decimal and
hexadecimal values. The decimal value is shown first, followed by the
hexadecimal value in parentheses. Format descriptions and examples of each
macro are in Chapter 2, "VSAM Macro Formats and Examples" on page 23.

Return Codes and Reason Codes from OPEN
When your program receives control after it has issued an OPEN macro, the
return code in register 15 indicates whether all of the VSAM data sets were
opened successfully.

Return
Code

0(0)

4(4)

8(8)

12(C)

Condition

All data ·sets were opened successfully.

All data sets were opened successfully, but one or more warning
messages were issued (reason codes less than X '80').

At least one data set (VSAM or non-VSAM) was not opened
successfully; the access method control block was restored to
the contents it had before OPEN was issued; or, if the data set was
already open, the access method control block
remains open and usable and is not changed.

A non-VSAM data set was not opened successfully
when a non-VSAM and a VSAM data set were being opened at the same
time; the non-VSAM data control block
was not restored to the contents it had before OPEN was issued (and
the data set cannot be opened
without restoring the control block).

If register 15 contains 4, 8, or 12, you can find out whether a VSAM data set had
a warning message, or wasn't opened successfully and why, by issuing
SHOWCB to display the ERROR field in each access method control block speci
fied in OPEN. (See "SHOWCB Macro (Display Fields of an Access Method
Control Block)" on page 99.) Figure 1 shows the possible reason codes that you
may get from OPEN in the ERROR field in the access method control block. In
addition to these reason codes, VSAM writes a message to the operator console
and the programmer's listing to further explain the error. For a listing of VSAM
messages, see System Messages.

!Cl Copyright IBM Corp. 1983, 1990 1

Reason
Code

0(0)

76(4C)

92(5C)

96(60)

100(64)

104(68)

108(6C)

116(74)

118(76)

128(80)

132(84)

136(88)

140(8C)

144(90)

Condition

One of the following conditions exists:

• VSAM is processing the access method control block for some
other request.

• The access method control block address is invalid.

Warning message: The interrupt recognition flag (IRF) was detected for
a data set opened for input processing.

Warning message: Inconsistent use of CBUF processing. Sharing
options differ between index and data components.

Warning message: An unusable data set was opened for input.

Warning message: OPEN encountered an empty alternate index that is
part of an upgrade set.

Warning message: The time stamp of the volume on which a data set is
stored doesn't match the system time stamp in the data set's catalog
record; this indicates that extent information in the catalog record may
not agree with the extents indicated in the volume's VTOC.

Warning message: The time stamps of a data component and an index
component do not match; this indicates that either the data or the
index has been updated separately from the other.

Warning message: The data set was not properly closed and either
OPEN's implicit verify was unsuccessful or the user specified that
OPEN's implicit verify should not be executed.

A previous VSAM program may have abnormally terminated. Data may
be lost if processing continues; the access method services VERIFY
command may be used to cause the data set to be properly closed.
For a description of the VERIFY command, see Access Method Services
Reference. In a cross-system shared DASO environment, a return
code of 116 can have two meanings: (1) the data set was not properly
closed, or (2) the data set is opened for output on another processor.

Warning message: The data set was not properly closed but OPEN's
implicit verify was successfully executed.

DD statement for this access method control block is missing or
invalid.

One of the following errors occurred:

• Not enough storage was available for work areas.
• The required volume could not be mounted.
• An uncorrectable 1/0 error occurred while VSAM was reading the

job file control block (JFCB).
• The format-1 DSCB or the catalog cluster record is invalid.
• The user-supplied catalog name does not match the name on the

entry.
• The user is not authorized to open the catalog as a catalog.

Not enough virtual storage space is available in your program's
address space for work areas, control blocks, or buffers.

The catalog indicates this data set has an invalid physical record size.

An uncorrectable 1/0 error occurred while VSAM was reading or writing
a catalog record.

Figure 1 (Part 1 of 3). OPEN Reason Codes in the ERROR Field of the Access Method
Control Block

2 MVS/370 VSAM Administration: Macro Instruction Reference

l

145(91)

148(94)

152(98)

160(AO)

164(A4)

168(A8)

176(80)

180(84)

184(88)

188(BC)

192(CO)

193(C1)

196(C4)

200(C8)

An uncorrectable error occurred in the VSAM volume data set (WDS).

No record for the data set to be opened was found in the available
catalog(s), or an unidentified error occurred while VSAM was searching
the catalog. For the catalog return code, see system message
IDC30091 in System Messages.

Authorization checking has failed for the following reasons:

• The password specified in the access method control block for a
specified level of access doesn't match the password in the catalog
of that level of access.

• RACF failure. For the catalog return code, see system message
IDC30091 in System Messages.

The operands specified in the ACB or GENCB macro are inconsistent
with each other or with the information in the catalog record.

With shared resources, this code can mean:

MACRF options are inconsistent: LSR or GSR is specified with ICI,
CBIC, or UBF (see "Using Control Interval Access with Shared
Resources" in VSAM Administration Guide), or DFR is specified
without LSR or GSR (see "Deferring Write Requests" in VSAM
Administration Guide.)
MACRF DFR is specified for a data set that was defined with
SHAREOPTIONS 4 (see "Deferring Write Requests" in VSAM
Administration Guide.)

An uncorrectable 1/0 error occurred while VSAM was reading the
volume label.

The data set was not available for the type of processing you specified,
or an attempt was made to open a reusable data set with the reset
option while another user had the data set open. The data set may
have the INHIBIT attribute specified.

The data set cannot be opened for CBUF processing because it was
already opened for non-CBUF processing. Or the data set has con
flicting CBUF attributes for the data and index components of the ACB.

An error occurred while VSAM was attempting to fix a page of virtual
storage in real storage.

A VSAM catalog specified in JCL either does not exist or is not open,
and no record for the data set to be opened was found in any other
catalog.

An uncorrectable 1/0 error occurred while VSAM was completing an 1/0
request.

The data set indicated by the access method control block is not of the
type that may be specified by an access method control block.

An unusable data set was opened for output.

The interrupt recognition flag (IRF) was detected for a data set opened
for output processing.

Access to data was requested via an empty path.

The Format-4 DSCB indicates that the volume is unusable. There was
an error in CONVERTV to convert the volume from either real to virtual
or virtual to real.

Figure 1 (Part 2 of 3). OPEN Reason Codes in the ERROR Field of the Access Method
Control Block

Chapter 1. Macro Instruction Return Codes and Reason Codes 3

204(CC)

205(CO)

208(00)

212(04)

216(08)

220(0C)

224(EO)

228(E4)

232(E8)

236(EC)

240(FO)

244(F4)

The ACB MACRF specification is GSR and caller is not operating in
supervisor protect key 0 to 7, or ACB MACRF specification is CBIC
(Control Blocks in Common) and caller is not operating in supervisor
state with protect key 0 to 7.

The ACBCATX option or VSAM volume data set OPEN was specified
and the calling program was not authorized.

The ACB MACRF specification is GSR and caller is using an OSNS1
system.

The ACB MACRF specification is GSR or LSR and the data set requires
load mode processing.

The ACS MACRF specification is GSR or LSR and the key length of the
data set exceeds the maximum key length specified in BLOVRP.

The ACB MACRF specification is GSR or LSR and the data set's control
interval size exceeds the size of the largest buffer specified in BLDVRP.

Improved control interval processing is specified and the data set
requires load mode processing.

The ACB MACRF specification is GSR or LSR and the VSAM shared
resource table (VSRT) does not exist (no buffer pool is available).

Reset was specified for a nonreusable data set and the data set is not
empty.

A permanent staging error occurred in MSS (ACQUIRE).

Format-4 OSCB and volume timestamp verification failed during
volume mount processing for output processing.

The volume containing the catalog recovery area was not mounted and
not verified for output processing.

Figure 1 (Part 3 of 3). OPEN Reason Codes in the ERROR Field of the Access Method
Control Block

Return Codes and Reason Codes from CLOSE
When your program receives control after it has issued a CLOSE macro, a return
code in register 15 indicates whether all the VSAM data sets were closed suc
cessfully.

Return
Code
0(0)
4(4)

Condition
All data sets were closed successfully.
At least one data set (VSAM or non-VSAM) was not closed success
fully.

If register 15 contains 4, you can use SHOWCB to display the ERROR field in
each access method control block to find out whether a VSAM data set wasn't
closed successfully and why not. (See "SHOWCB Macro (Display Fields of an
Access Method Control Block)" on page 99.) Figure 2 on page 5 gives the
reason codes that the ERROR field may contain following CLOSE. In addition to
these reason codes, VSAM writes a message to the operator's console and the
programmer's listing to further explain the error. For a listing of these mes
sages, see System Messages.

4 MVS/370 VSAM Administration: Macro Instruction Reference

Return
Code

0(0)

4(4)

129(81)

132(84)

136(88)

144(90)

145(91)

148(94)

184(88)

236(EC)

Condition

No error (set when register 15 contains 0).

The data set indicated by the access method control
block is already closed.

TCLOSE was issued against a media manager's structure.

An uncorrectable 1/0 error occurred while VSAM was
reading the job file control block (JFCB).

Not enough virtual storage was available in your
program's address space for a work area for CLOSE.

An uncorrectable 1/0 error occurred while VSAM was
reading or writing a catalog record.

An uncorrectable error occurred in the VSAM
volume data set (WDS).

An unidentified error occurred while VSAM was
searching the catalog.

An uncorrectable 1/0 error occurred while VSAM was
completing outstanding 1/0 requests.

A permanent destaging error occurred in MSS
(RELINQUISH). With temporary CLOSE, a destaging
error or a staging error (ACQUIRE) occurred.

Figure 2. CLOSE Reason Codes in the ERROR Field of the Access Method Control Block

OPEN/CLOSE Message Area for Multiple Reason or Warning
Messages

During the execution of an OPEN, CLOSE, or TYPE =T option of CLOSE, more
than one error condition may be detected. However, the ACS error flag field can
only accommodate one warning or error condition. In order to receive multiple
error or warning conditions, you may specify an optional message area. VSAM
will accumulate error messages from an OPEN, CLOSE, or TYPE =T option in
this message area.

Multiple messages will be supplied when you specify nonzero values in the
MAREA and MLEN parameters of the ACS. If MAREA or MLEN is not specified
or is zero, no error or warning information is stored into the message area. The
ACS error flag field is then the only indication for errors or warnings. If MAREA
and MLEN are specified and if the message area is too small to accommodate
all messages, the last incoming messages are dropped. However, you will be
given an indication of the number of warnings and messages that occurred.

The message area provided by VSAM is subdivided into two parts:

• The message area header
• The message list

Chapter 1. Macro Instruction Return Codes and Reason Codes 5

Message Area Header

Message List

The message area header contains statistical, pointer, and general information.
Its contents are unrelated to the individual messages. The format of the
message area header is shown in Figure 3.

Byte 0

Bytes 1-2

Byte 3

Bytes 4-11
Bytes 12-13

Bytes 14-15

Bytes 16-19

Flag Byte
bit 0-1

bit o-o

Full message area header has
been stored.
Only flag byte of message area
header has been stored.
(Implies that no messages
have been stored.)

bits 1-7 Reserved (set to binary zeros)
Length of message area header (includes flag byte
and length byte)
Request type code:
X '01' OPEN
X'02' CLOSE
X'03' TCLOSE
ddname used for ACB
Total number of messages (error or warning
conditions) issued by OPEN/CLOSEfTCLOSE
Number of messages stored by OPEN/CLOSEfTCLOSE
into message ar~a
Address of message list, for example, of first
message in message area

Figure 3. Format of the Message Area Header

The function of the ACB error nag field remains unchanged regardless of
whether or not this optional message area is specified. It contains, at the end of
an OPEN, CLOSE, or TCLOSE, either X 100 1 (indicating no error or warning condi
tion occurred) or a nonzero code. The nonzero code stored into the ACB error
nag byte is the OPEN/CLOSE/TCLOSE reason code corresponding to the error or
warning condition that occurred with the highest severity.

Message area header information is only stored when a warning or error condi
tion is detected; that is, the ACB error nag field is set to a nonzero value. Fur
thermore, the header information will consist of the nag byte only, if the length of
the message area (MLEN) is not large enough to accommodate the full message
area header. In this case, bit 0 of the nag byte will be zero. Before accessing
the message header information (bytes 1 through 19), you must test byte 0 to see
whether further information is stored or not. If MLEN =O, no header information
is stored at all, not even the nag byte. If the full message area header is stored,
bytes 1 and 2 contain the actual length of the message area header; your
program should be sensitive to this length when interrogating the message area
header.

The message list contains individual messages corresponding to detected
warning or error conditions. Bytes 16 through 19 of the message area header
point to the location of the message list within the message area. If the
message area header is not stored completely (bit 0 of byte 0 is 0), the location
of the message list is not provided. Within the message list, individual mes
sages are stored as a contiguous string of variable-length records. Bytes 14 and
15 of the message area header contain the number of messages stored. Check

6 MVS/370 VSAM Administration: Macro Instruction Reference

for a nonzero stored message count before investigating the message list.
However, messages may not be stored even if the ACS error flag contains a
nonzero value and the message area header bit 0 of byte 0 is 1. For example,
no messages will be stored if MLEN is not large enough to allow at least one
message to be stored.

The format of the individual messages is given in Figure 4.

Bytes 0-1
Byte 2

Byte 3

Bytes 4-47

Length of message including these two bytes.
ACB error Hag code corresponding to the error or warning condition
represented by this message.
Function type code:

Specifies whether and which dsname is stored in bytes 4 through 47 of
the message.
X' 00' No dsname stored. Bytes 4-47 of the message contain binary

zeros. The error warning condition is not clearly related to a
component, or VSAM was unable to identify or obtain the
cluster name of the component in error. This code is used
only if, in addition, the ddname of the ACB does not identify a
valid DD statement or VSAM was unable to obtain the
dsname contained in the DD statement.

X'01' dsname contained in DD statement is stored. The error or
warning condition is not clearly related to a component, or
VSAM was unable to identify or obtain the cluster name of
the component in error.

X'02' dsname (cluster name) of base cluster stored. Error occurred
during OPEN/CLOSE/TCLOSE for base cluster.

X '03' dsname (cluster name) of alternate index component stored.
Error occurred during OPEN/CLOSE/TCLOSE for alternate
index component.

X'04' dsname (cluster name) of member of upgrade set stored.
Error occurred during OPEN/CLOSE/TCLOSE for this member
of the upgrade set.

Binary zeros (function type code= X '00 ') or a dsname as described by
byte 3.

Figure 4. Format of Individual Messages in Message List

Bytes 0 and 1 of each message specify the actual length of the individual
message. You must inspect the length so that you can take the variable-length
nature of the message into account in your processing.

Byte 2 of the message contains the ACB error flag code; it does not indicate that
a dsname has been stored. Depending on the condition that raised the ACB
error flag code, either no dsname or different types of dsnames (DD, base
cluster, alternate index, or upgrade set member) may be stored. (The same con
dition may be detected both when opening the base cluster and when opening a
member of the upgrade set. For example, an 110 error may occur when trying to
obtain the dsname for the component in error.) Bytes 4 through 47 of the
message can contain a dsname, but do not specify its type. Only byte 3 of the
message specifies whether a dsname has been stored, and if so, its type.

Chapter 1. Macro Instruction Return Codes and Reason Codes 7

Control Block Manipulation Macro Return Codes and Reason Codes
The GENCB, MODCB, SHOWCB, and TESTCB macros are executable (unlike the
ACB, EXLST, and RPL macros). They cause control to be given to VSAM to
perform the indicated task. VSAM indicates the task was completed by a return
code in register 15:

Return
Code
0(0)
4(4)
8(8)

Condition
Task completed.
Task not completed.
An attempt was made to use the execute form of a macro
to modify a keyword that isn't in the parameter list.
(See Appendix A, "List, Execute, and Generate Forms of Macros" on page 121.)

An error can occur because you specified the operands incorrectly or, if you con
structed a parameter list yourself, because the parameter list was coded incor
rectly. See Appendix C, "Building Parameter Lists" on page 131, for an
explanation of how to construct parameter lists for GENCB, MODCB, SHOWCB,
and TESTCB.

When register 15 contains 4, register 0 contains a reason code indicating the
reason VSAM couldn't perform the task. If you construct the parameter list your
self, you can get in register 0 reason codes 1, 2, 3, 10, 14, 20, and 21. Figure 5
describes each reason code that can be returned in register 0.

Figure 5 (Page 1 of 2). GENCB, MODCB, SHOWCB, and TESTCB Reason Codes
Returned in Register 0

Reason
Code
1 (1)

2(2)

3(3)

4(4)

5(5)

6(6)

7(7)

8(8)

Applicable
Macros'
G,M,S,T

G,M,S,T

G,M,S,T

M,S,T

S,T

S,T

M,S

G

Reason VSAM Couldn't Perform the Task
The request type (generate, modify, show, or test) is invalid.

The block type (access method control block, exit list, or
request parameter list) is invalid.

One of the keyword codes in the parameter list is invalid.

The block at the address indicated is not of the type you
indicated (access method control block, exit list, or request
parameter list).

Access method control block fields were to be shown or
tested, but the data set is not open or it is not a VSAM data
set.

Access method control block information about an index
was to be shown or tested, but no index was opened with
the data set.

An exit list was to be modified, but the list was not large
enough to contain the new entry; or an exit was to be modi
fied or shown but the specified exit wasn't in the exit list.
(With TESTCB, if the specified exit address isn't present,
you get an unequal condition when you test for it.)

There isn't enough virtual storage in your program's
address space to generate the access method control
block(s), exit list(s), or request parameter list(s) and no
work area outside your address space was specified.

8 MVS/370 VSAM Administration: Macro Instruction Reference

Figure 5 (Page 2 of 2). GENCB, MODCB, SHOWCB, and TESTCB Reason Codes
Returned in Register 0

Reason
Code
9(9)

10(A)

11 (B)

12(C)

13(0)

14(E)

15(F)

16(10)

19(13)

20(14)

21 (15)

22(16)

23(17)

Note:

Applicable
Macros•
G,S

G,M

M

M

M

G,M,T

G,S

G,M,S,T

M,S,T

s

S,T

s

G

Reason VSAM Couldn't Perform the Task
The work area specified was too small for generation or
display of the indicated control block or fields.

With GENCB, exit list control block type was specified and
you specified an exit without without giving an address.
With MODCB, exit list control block type was specified and
you specified an exit without giving an address; in this case,
either active or inactive must be specified, but load cannot
be specified.

Either (1) a request parameter list was to be modified, but
the request parameter list defines an asynchronous request
that is active (that is, no CHECK or ENDREQ has been
issued on the request) and thus cannot be modified; or (2)
MODCB is already issued for the control block, but hasn't
yet completed.

An access method control block was to be modified, but the
data set identified by the access method control block is
open and thus cannot be modified.

An exit list was to be modified, and you attempted to acti
vate an exit without providing a new exit address. Because
the exit list indicated does not contain an address for that
exit, your request cannot be honored.

One of the option codes (for MAC RF, ATRB, or OPTCD) has
an invalid combination of option codes specified (for
example, OPTCD = (ADR, SKP)).

The work area specified did not begin on a fullword
boundary.

A VTAM keyword or subparameter was specified but the
AM =VTAM parameter was not specified. AM = VTAM
must be specified in order to process a VTAM version of the
control block. AM = VTAM was specified but the control
blocksubtype was not VTAM.

A keyword was specified which refers to a field beyond the
length of the control block located at the address indicated.
(For example, a VTAM keyword was specified, but the
control block pointed to was a shorter, non-VTAM block.)

Keywords were specified which apply only if MACRF- LSR
or GSR.

The block to be displayed or tested does not exist because
the data set is a dummy data set.

AM =VTAM was specified and the RPL FIELDS parameter
conflicts with the RPLNIB bit status. Either RPL
FIELDS=NIB was specified and the RPLNIB bit was off, or
RPL FIELDS=ARG was specified and the RPLNIB bit was
on.

The value specified in the length parameter exceeds the
65,535 byte limit.

' G = GENCB, M = MODCB, S = SHOWCB, T = TESTCB

Chapter 1. Macro Instruction Return Codes and Reason Codes 9

Record Management Return Codes and Reason Codes

Return Codes

The following record management macros give return codes and reason codes
in the feedback field of the RPL: GET, PUT, POINT, ERASE, CHECK, ENDREQ,
GETIX, PUTIX, ACQRANGE, CNVTAD, MNTACQ, MRKBFR, SCHBFR, and
WRTBFR.

The feedback field in the RPL consists of four bytes.

Return Code
(Register 15)

Function Code
(FTNCD Code)

FDBK Code

For more information on the RPL feedback word, see VSAM Logic.

The meaning of the return code depends on whether processing is asynchronous
or synchronous.

Asynchronous Request
After you issue an asynchronous request for access to a data set, VSAM issues
a return code in register 15 to indicate whether the request was accepted, as
follows:

Return
Code
0(0)
4(4)

Condition
Request was accepted.
Request was not accepted because the request parameter list
indicated by the request (RPL =address)
was active for another request.

If the asynchronous request was accepted, issue a CHECK after doing your other
processing so VSAM can indicate in register 15 whether the request was com
pleted successfully, set a return code in the feedback field , and exit to any
appropriate exit routine. If the request was not accepted, you should either wait
until the other request is complete (for example, by issuing a CHECK on the
request parameter list) or terminate the other request (using ENDREQ). Then
you can reissue the rejected request.

Synchronous Request
After a synchronous request, or a CHECK or ENDREQ macro, the return code in
register 15 indicates whether the request was completed successfully, as follows:

10 MVS/370 VSAM Admini stration: Macro Instruction Reference

Return
Code
0(0)
4(4)

8(8)

12(C)

Condition
Request completed successfully.
Request was not accepted because the request parameter list
indicated by the request (RPL= address) was
active for another request.
Logical error; specific error is indicated in the feedback field
in the RPL.
Physical error; specific error is indicated in the feedback field
in the RPL.

Component Codes

Reason Codes

When a logical or physical error occurs, VSAM uses the component code field of
the RPL to identify the component being processed when the error occurred and
indicates whether the alternate index upgrade set is correct following the
request that failed. The component code can be displayed and tested by using
the SHOWCB and TESTCB macros. The codes and their meanings are given in
Figure 6.

Figure 6. Component Codes Provided in the RPL
Component What Was Being
Code Processed
0(0) Base cluster

1 (1)

2(2)

3(3)

4(4)
5(5)

Base cluster

Alternate index

Alternate index

Upgrade set

Upgrade set

Upgrade Set Status
Correct

May be incorrect

Correct

May be incorrect

Correct

May be incorrect

Paired with the 0, 8, and 12 return codes in register 15 are reason codes in the
feedback field of the request parameter list.

You can examine the reason codes of the feedback field of the request param
eter list with the SHOWCB or TESTCB macro. You may code your examination
routine immediately following the request macro. However, logical errors, phys
ical errors, and reaching the end of the data set all cause VSAM to exit to the
appropriate exit routine, if you provide it.

Coordinate error checking in your program with your error-analysis exit routines.
If they terminate the program, for instance, you would not need to code a check
for an error after a request. But if a routine returns to VSAM to continue proc
essing, you might check register 15 after a request to determine whether there
was an error. Even though the error was handled by an exit routine, you may
want to modify processing because of the error.

Chapter 1. Macro Instruction Return Codes and Reason Codes 11

Reason Code (Successful Request)
Successful completion of a VSAM request is defined as register 15 =O when the
request is completed. The reason code field in the feedback word of the RPL
may not be zero for a variety of reasons. Figure 7 lists these codes and the
reasons they are set.

Reason Code
When
Register
15=0(0)

0(0)

4(4)

8(8)

12(C)

16(10)

20(14)

24(18)

28(1C)

32(20)

36(24)

40(28)

Condition

Request completed successfully.

Request completed successfully. For retrieval, VSAM mounted another
volume to locate the record; for storage, VSAM allocated additional
space or mounted another volume.

For GET requests, indicates a duplicate alternate key exists (applies
only when accessing a data set using an alternate index that allows
nonunique keys); for PUT requests, indicates that a duplicate key was
created in an alternate index with the nonunique attribute.

Write-buffer suggested (shared resources only).

The sequence-set record does not have enough space to allow it to
address all of the control intervals in the control area that should
contain the record. The record was written into a new control area.

Data set is not on virtual DASO for CNVTAD/MNTACQ/ACQRANGE
request.

Buffer found but not modified; no buffer writes performed.

Control interval split indicator was detected during an addressed GET
NUP request.

Request deferred for a resource held by the terminated RPL is asyn
chronous and cannot be restarted by TERMRPL.

Possible data set error condition was detected by TERMRPL:

• The request was abnormally terminated in the middle of its 1/0
operation.

• One of the data/index BUFCs of the string contains data that needs
to be written (BUFCMW-ON) but it was invalidated by TERMRPL.

Error in PLH data BUFC pointer was detected by TERMRPL.

Figure 7. Successful Completion Reason Codes in the Feedback Field of the Request
Parameter List

Reason Code (Logical Errors)
If a logical error occurs and you have no LERAD routine (or the LERAD exit is
inactive), VSAM returns control to your program following the last executed
instruction. ("User-Written-Exit Routines" in VSAM Administration Guide
describes the LERAD routine.) The return code in register 15 indicates a logical
error (8), and the feedback field in the request parameter list contains a reason
code identifying the error. Register 1 points to the request parameter list.
Figure 8 on page 13 gives the reason codes in the feedback field and explains \.
the meaning of each. ~

12 MVS/370 VSAM Administration: Macro Instruction Reference

Reason Code
When
Register
15=8(8)

4(4)

8(8)

12(C)

16(10)

20(14)

Condition

End of data set encountered (during sequential or skip sequential
retrieval), or the search argument is greater than the high key of the
data set. Either no EODAD routine is provided, or one is provided,
returned to VSAM, and the processing program issued another GET.
("User-Written-Exit Routines" in VSAM Administration Guide describes
the EODAD routine.)

You attempted to store a record with a duplicate key, or there is a
duplicate record for an alternate index with the unique key option.

A key sequence check was performed and an error was detected in
one of the following processing conditions:

• For a key-sequenced data set

PUT sequential or skip-sequential processing
GET sequential, single string input only
GET skip-sequential processing and the previous request is
not a POINT

• For a relative record data set

- GET skip-sequential processing
- PUT skip-sequential processing

Record not found, or the RBA is not found in the buffer pool.

The RBA is found, but the buffer is under the exclusive control of
another request. With this condition, it is possible to also have
buffers invalidated. Or, the control interval is for a record already
held in exclusive control by another requester.

Note: If the RPL message area is correctly specified, the following
information is returned:

Offset Length
0 4
4 1

Discussion
Address of RPL in exclusive control
Flag Byte:
X '00' neither RPL is doing a control area split
X '01 ' current RPL is attempting a control

area split
X '02' other RPL is doing a control area split

Figure 8 (Part 1 of 5) . Logical Error Reason Codes in the Feedback Field of the Request
Parameter List

Chapter 1. Macro Instruction Return Codes and Reason Codes 13

Reason Code
When
Register
15=8(8)

24(18)

28(1C)

32(20)

36(24)

40(28)

44(2C)

48(30)

52(34)

64(40)

68(44)

72(48)

76(4C)

80(50)

Condition

Record resides on a volume that can't be mounted.

Data set cannot be extended because VSAM can't allocate additional
direct access storage space. Either there is not enough space left to
make the secondary allocation request or you attempted to increase
the size of a data set while processing with SHAREOPTIONS-4 and
DISP-SHR.

You specified an RBA that doesn't give the address of any data
record in the data set.

Key ranges were specified for the data set when it was defined, but
no range was specified that includes the record to be inserted.

Insufficient virtual storage in your address space to complete the
request.

Work area not large enough for the data record or for the buffer (GET
with OPTCD - MVE).

Invalid options, data set attributes, or processing conditions specified
for TERMRPL request:

• CNV processing
• The specified RPL is asynchronous
• Chained RPLs
• Path processing
• Shared resources (LSR/GSR)
• Load mode
• Relative record data set
• Data set contains spanned records
• User not in key 0 and supervisor state
• End-of-volume in process (secondary allocation)

The previous request was TERMRPL.

There is insufficient storage available to dynamically add another
string. Or, the maximum number of placeholders that may be allo
cated to the request has been allocated, and a placeholder is not
available.

You attempted to use a type of processing (output or control interval
processing) that was not specified when the data set was opened.

You made a keyed request for access to an entry-sequenced data set,
or you issued a GETIX or PUTIX to an entry-sequenced or relative
record data set.

You issued an addressed or control interval PUT to add to a key
sequenced data set, or you issued a control interval PUT to a relative
record data set.

You issued an ERASE request in one of the following situations:

• For access to an entry-sequenced data set.
• For access to an entry-sequenced data set via a path.
• With control interval access.

Figure B (Part 2 of 5) . Logical Error Reason Codes in the Feedback Field of the Request
Parameter List

14 MVS/370 VSAM Administration: Macro Instruction Reference

Reason Code
When
Register
15=8(8)

84(54)

88(58)

92(5C)

96(60)

100(64)

104(68)

108(6C)

Condition

You specified OPTCD - LOC in one of the following situations:

• For a PUT request.
• In the previous request parameter list in a chain of parameter

lists.
• For UBF processing.

You issued a sequential GET request without having caused VSAM to
be positioned for it, or you changed from addressed access to keyed
access without causing VSAM to be positioned for keyed-sequential
retrieval; there was no positioning established for sequential PUT
insert for a relative record data set, or you attempted an illegal switch
between forward and backward processing.

You issued a PUT for update or an ERASE without a previous GET for
update, or a PUTIX without a previous GETIX.

You attempted to change the prime key or key of reference while
making an update.

You attempted to change the length of a record while making an
addressed update.

The RPL options are either invalid or conflicting in one of the following
ways:

• SKP was specified and either KEY was not specified or BWD was
specified.

• BWD was specified for CNV processing.
• FWD and LRD were specified.
• Neither ADR, CNV, nor KEY was specified in the RPL.
• BFRNO is invalid (less than 1 or greater than the number of

buffers in the pool).
• WRTBFR, MRKBFR, or SCHBFR was issued, but either TRANSID

was greater than 31 or the shared resource option was not speci
fied.

• ICI processing was specified, but a request other than a GET or a
PUT was issued.

• MRKBFR MARK= OUT or MARK= RLS was issued but the RPL
did not have a data buffer associated with it.

• The RPL specified WAITX, but the ACB did not specify LSR or
GSR.

RECLEN specified was larger than the maximum allowed, equal to 0,
or smaller than the sum of the length and the displacement of the key
field; RECLEN was not equal to record (slot) size specified for a rela
tive record data set. The automatic increase in the record size of an
upgrade index for the base cluster may cause an incorrect RECLEN
specification.

Figure 8 (Part 3 of 5) . Logical Error Reason Codes in the Feedback Field of the Request
Parameter List

Chapter 1. Macro Instruction Return Codes and Reason Codes 15

Reason Code
When
Register
15=8(8)

112(70)

116(74)

120(78)

124(7C)

128(80)

132(84)

136(88)

140(8C)

144(90)

148(94)

152(98)

156(9C)

160(AO)

164(A4)

Condition

KEYLEN specified was too large or equal to 0.

During initial data set loading (that is, when records are being stored
in the data set the first time it's opened), GET, POINT, ERASE, direct
PUT, skip-sequential PUT, or PUT with OPTCD = UPD is not allowed.
For initial loading of a relative record data set, the request was other
than a PUT insert.

The request was operating under an incorrect TCB. For example, an
end-of-volume call or a GETMAIN would have been necessary to com
plete the request, but the request was issued from a job step other
than the one that opened the data set. The request can be resub
mitted from the correct task, if the new request reestablishes posi
tioning.

A request was cancelled for a user JRNAD exit.

A loop exists in the index horizontal pointer chain during index search
processing.

An attempt was made in locate mode to retrieve a spanned record.

You attempted an addressed GET of a spanned record in a key
sequenced data set.

The spanned record segment update number is inconsistent.

Invalid pointer (no associated base record) in an alternate index.

The maximum number of pointers in the alternate index has been
exceeded.

Not enough buffers are available to process your request (shared
resources only).

An invalid control interval or invalid record definition field was
detected during keyed processing, or an addressed GET UPD request
failed because the control interval flag was on. The RPL contains the
invalid control interval's RBA.

One or more candidates were found that have a modified buffer
marked to be written. The buffer was left in write status with valid
contents. With this condition, it is possible to have other buffers
invalidated or found under exclusive control.

One of the following invalid options was specified for a
CNVTAD/MNTACO/ACORANGE request:

• Generic key (GEN)
• Load mode
• Path processing
• User buffers (UBF) with LSR/GSR
• Key-sequenced data set, but not key processing (KEY)
• Entry-sequenced data set, but not address processing (ADR)
• Relative record data set, but not key processing (KEY)
• RPL is chained
• Key-sequenced data set has single-level imbedded index

Figure 8 (Part 4 of 5). Logical Error Reason Codes in the Feedback Field of the Request
Parameter List

16 MVS/370 VSAM Administration: Macro Instruction Reference

(._

Reason Code
When
Register
15=8(8)

168(A8)

172(AC)

176(80)

180(84)

184(88)

188(BC)

192(CO)

196(C4)

200(C8)

204(CC)

208(00)

212(04)

224(EO)

228(E4)

232(E8)

236(EC)

240(FO)

252(FC)

253(FD)

Condition

One of the following user parameter list errors was detected for
CNVTAD/MNTACQ/ACQRANGE request:

• No user parameter list is specified (RPLARG-0)
• Argument count is zero for CNVTAD/MNTACQ request
• Ending argument is less than starting argument for ACQRANGE

request
• Parameter list not on word boundary

ACQUIRE error returned by SVC 126 for MNTACQ/ACQRANGE
request.

Staging failure for MNTACQ/ACQRANGE request.

RSA/volume error for MNTACQ/ACQRANGE request.
(Required volume not mounted or specified RBA(s) not on mounted
volume.)

Catalog errors returned from SVC 126 for CNVTAD request.

Storage for ACQUIRE ECBs (subpool 241) is not available.

Invalid relative record number.

You issued an addressed request to a relative record data set.

You attempted addressed or control interval access through a path.

PUT insert requests are not allowed in backward mode.

The user has issued an ENDREQ macro instruction against an RPL
that has an outstanding WAIT against the ECB associated with the
RPL. This can occur when an ENDREQ is issued from a STAE or
ESTAE routine routine against an RPL that was started before the
abend. No ENDREQ processing has been done.

During control area split processing, a condition exists that prevents
the split of the index record. Index and/or Data control interval size
may need to be increased.

MRKBFR OUT was issued for a buffer with invalid contents.

Caller in cross-memory mode is not in supervisor state or RPL of
caller in SRB or cross-memory mode does not specify SYN proc
essing.

UPAD error; ECB was not posted by user in cross-memory mode.

Validity check error for SHAREOPTIONS 3 or 4.

For shared resources, one of the following is being performed: (a) an
attempt is being made to obtain a buffer in exclusive control, (b) a
buffer is being invalidated, or (c) the buffer use chain is changing. For
more detailed feedback, reissue the request.

Record mode access not valid for an LOS.

VERIFY function not valid for an LOS.

Figure 8 (Part 5 of 5). Logical Error Reason Codes in the Feedback Field of the Request
Parameter List

When the search argument you supply for a POINT or GET request is greater
than the highest key in the data set, the reason code in the feedback field
depends on the RPL's OPTCD values, as shown in the following table:

Chapter 1. Macro Instruction Return Codes and Reason Codes 17

18

Request
Type

POINT
POINT
POINT
POINT
GET
GET
GET
GET
GET
GET
GET
GET

RPLs OPTCD
Options

GEN.KEO
GEN.KGE
FKS,KEQ
FKS,KGE
GEN,KEQ,DIR
GEN,KGE,DIR
FKS,KEQ,DIR
FKS,KGE,DIR
GEN,KEQ,SKP
GEN,KGE,SKP
FKS,KEQ,SKP
FKS,KGE,SKP

Reason Code When
Register 15=8(8)

16(10)
4(4)
16(10)
4(4)
16(10)
16(10)
16(10)
16(10)
16(10)
4(4)
16(10)
4(4)

Positioning Following Logical Errors

VSAM is unable to maintain positioning after every logical error. Whenever posi
tioning is not maintained following an error request, you must reestablish it
before processing resumes.

Positioning may be in one of four states following a POINT or a direct request
that encountered a logical error:

Yes VSAM is positioned at the position in effect before the request in error
was issued.

No VSAM is not positioned, because no positioning was established at the
time the request in error was issued.

New VSAM is positioned at a new position.

U VSAM is positioned at an unpredictable position.

The following table shows which positioning state applies to each reason code
listed for sequential, direct, and skip-sequential processing. "N/A" indicates that
the reason code is not applicable to the type of processing indicated.

Reason Code
When Register
15=8(8) Sequential Direct Skip-Sequential

4(4) Yes N/A Yes
8(8)' Yes No New
12(C) Yes NIA Yes
16(10) No No No
20(14) u No2 No2

24(18) Yes No No
28(1C) Yes No Yes
32(20) No No N/A
36(24) Yes No New
40(28) Yes No No
44(2C) Yes New Yes
64(40) No No No
68(44) Yes Yes Yes
72(48) Yes Yes Yes
76(4C) Yes Yes Yes
80(50) Yes Yes Yes
84(54) Yes Yes Yes
88(58) Yes Yes Yes
92(5C) Yes Yes Yes

MVS/370 VSAM Administration: Macro Instruction Reference

96(60) Yes Yes Yes
100(64) Yes Yes Yes
104(68) Yes New Yes
108(6C) Yes New Yes
112(70) Yes Yes Yes
116(74) Yes Yes Yes
120(78) Yes No No
124(7C) No No No
132(84) Yes New Yes
136(88) No No NIA
140(8C) Yes New Yes
144(90) Yes Yes Yes
148(94) Yes Yes Yes
152(98) Yes No No
156(9C) Yes No No
160(AO) NIA No NIA
192(CO) Yes Yes Yes
196(C4) Yes Yes Yes
200(C8) Yes Yes Yes
204(CC) Yes Yes Yes
208(00) Yes Yes Yes
224(EO) NIA No NIA
228(E4) No No No
232(E8) No No No
236(EC) No No No
240(FO) Yes Yes Yes

1 A subsequent GET SEQ will retrieve the duplicate record; however, a subse-
quent GET SKP for the same key will get a sequence error. In a relative
record data set, a subsequent PUT SEQ positions to the next slot (whether the
slot is empty or not).

2 PUT UPD, DIR or UPD, SKP retains positioning. The RPL contains an RBA that
could not be obtained for exclusive control.

Reason Code (Physical Errors)
If a physical error occurs and you have no SYNAD routine (or the SYNAD exit is
inactive), VSAM returns control to your program following the last executed
instruction. The return code in register 15 indicates a physical error (12), and
the feedback field in the request parameter list contains an reason code identi
fying the error; the RPL message area contains more details about the error.
Register 1 points to the request parameter list. The RBA field in the request
parameter list gives the relative byte address of the control interval in which the
physical error occurred. Figure 9 gives the reason codes in the feedback field
and explains what each indicates.

Reason Code
When Register
15=12(0C) Condition
4(4) Read error occurred for a data set.
8(8) Read error occurred for an index set.
12(C) Read error occurred for a sequence set.
16(10) Write error occurred for a data set.
20(14) Write error occurred for an index set.
24(18) Write error occurred for a sequence set.

Figure 9. Physical Error Reason Codes in the Feedback Field of the Request Parameter
List

Chapter 1. Macro Instruction Return Codes and Reason Codes 19

Figure 10 on page 20 gives the format of a physical error message. The format
and some of the contents of the message are purposely similar to the format and
contents of the SYNADAF message, which is described in Data Administration:
Macro Instruction Reference.

Field Bytes Length Discussion

Message 0-1 2 Binary value of 128
Length

2-3 2 Unused (0)
Message 4-5 2 Binary value of 124 (provided for
Length-4 compatibility with SYNADAF Message)

6-7 2 Unused (0)
Address of 8-11 4 The 110 buffer associated with the
110 Buffer data where the error occurred

The rest of the message is in printable format
Date 12-16 5 YYDDD (year and day)

17 1 Comma(,)
Time 18-25 8 HHMMSSTH (hour, minute, second,

and tenths and hundredths of a second
26 1 Comma(,)

RBA 27-34 8 Relative byte address of the record
where the error occurred

35 1 Comma(,)
Component 36-41 6 "DATA" or "INDEX"
Type

42 1 Comma(,)
Volume Serial 43-48 6 Volume serial number of the
Number volume where the error occurred

49 1 Comma(,)
Job Name 50-57 8 Name of the job where error occurred

58 1 Comma(,)
Step Name 59-66 8 Name of the job step in which

error occurred
67 1 Comma(,)

Unit 68-70 3 The unit, CUU (channel and unit),
where the error occurred

71 1 Comma(,)
Device Type 72.73 2 The type of device where the error

occurred (always DA for direct access)
74 1 Comma(,)

ddname 75-82 8 The ddname of the DD statement
defining the data set where the error
occurred

83 1 Comma(,)
Channel 84-89 6 The channel command that caused

the error in the first two bytes,
followed by "_OP"

90 1 Comma(,)
Message 91-105 15 Messages are divided according

to ECB condition codes:
X'41' "INCORR LENGTH"
"UNIT EXCEPTION"
"PROGRAM CHECK"
"PROTECTION CHK"
"CHAN DATA CHK"

Figure 10 (Part 1 of 2). Physical Error Message Format

20 MVS/370 VSAM Administration: Macro Instruction Reference

J

Field

Physical
Direct Access
Address

Access
Method

Bytes Length Discussion

"CHAN CTRL CHK"
"INTFCE CTRL CHK"
"CHAINING CHK"
"UNIT CHECK"

If the type of unit check can be determined,
the 'UNIT CHECK' message is replaced
by one of the following:

106 1
107- 14
120

121 1
122- 6
127

"CMD REJECT"
"INT REQ"
"BUS OUT CK"
"EQP CHECK"
"DATA CHECK"
"OVER RUN"
"TRACK COND CK"
"SEEK CHECK"
"COUNT DATA CHK"
"TRACK OVERRUN"
"CYLINDER END"
"NO RECORD FOUND"
"FILE PROTECT"
"MISSING A.M."
"OVERFL INCP"

X'48' "PURGED REQUEST"
X'4F' "R.HA.RO. ERROR"
For any other ECB condition code:
"UNKNOWN COND."
Comma(,)
BBCCHHR (bin, cylinder, head, and
record)

Comma(,)
"VSAM"

Figure 10 (Part 2 of 2). Physical Error Message Format

Return Codes from Macros Used to Share Resources among Data
Sets

VSAM has a set of macros that enables you to share 1/0 buffers, 1/0 related
control blocks, and channel programs among VSAM data sets.

Chapter 1. Macro Instruction Return Codes and Reason Codes 21

Return Codes from BLDVRP
VSAM returns a code in register 15 that indicates whether the BLDVRP request
was successful:

Return
Code
0(0)
4(4)

8(8)

12(C)

16(10)

20(14)
24(18)

Condition
VSAM completed the request.
A resource pool already exists in the partition or address space
(LSR) or in the system (GSR).
There is not enough virtual storage space to satisfy the request.
GETMAIN or ESTAE failed.
Buffers cannot be fixed in real storage.
PAGEFIX failed.
TYPE- GSR is specified but the program that issued BLDVRP
is not in supervisor state with protection key 0 to 7.
STRNO is less than 1 or greater than 255.
BUFFERS is specified incorrectly.
A size or number is invalid.

Return Codes from DLVRP
VSAM returns a code in register 15 that indicates whether the DLVRP request
was successful :

Return
Code
0(0)
4(4)
8(8)

12(C)

16(10)

Condition
VSAM completed the request.
There is no resource pool to delete.
There is not enough virtual storage space to satisfy the request.
GETMAIN or ESTAE failed.
There is at least one open data set using
the resource pool.
TYPE= GSR is specified, but the program that issued DLVRP
is not in supervisor state
with protection key 0 to 7.

Return Codes from End-of-Volume
End-of-volume returns the following codes in register 15:

Return
Code
0(0)
4(4)
8(8)
12(C)

16(10)

Condition
Successful.
The requested volume could not be mounted.
The requested amount of space could not be allocated.
1/0 operations were in progress when end-of-volume
was requested.
The catalog could not be updated.

22 MVS/370 VSAM Administration: Macro Instruction Reference

Chapter 2. VSAM Macro Formats and Examples

This chapter contains the macro instruction formats and examples for the macro
instructions.

The macros that work at assembly time allow you to specify values for subpa
rameters as absolute numeric expressions, as character strings, as codes, and
as expressions that generate valid relocatable A-type address constants. The
macros that work at execution allow you to specify them in those ways and also
in:

• Register notation, where the expression designating a register from 2
through 12 is enclosed in parentheses; for example, (2) and (REG), where
REG is a label equated to a number from 2 through 12

• An expression of the form (S,scon), where scan is an expression valid for an
S-type address constant, including the base-displacement form

• An expression of the form (*,scan), where scan is an expression valid for an
S-type address constant, including the base-displacement form, and the
address specified by scan is indirect-that is, it gives the location of the area
that contains the value for the subparameter.

For most programming applications, you can conveniently use register notation
or absolute numeric expressions for numbers, character strings for names, and
register notation or expressions that generate valid A-type address constants for
addresses. Appendix B, "Operand Notation" on page 129, gives all the ways of
coding each parameter for the macros that work at execution time.

You can write a reentrant program only with execution-time macros.
Appendix A, "List, Execute, and Generate Forms of Macros" on page 121,
describes alternative ways of coding these macros for reentrant programs. The
standard form of these macros is described in this chapter.

C> Copyright IBM Corp. 1983, 1990 23

ACB

ACB Macro (Generate an Access Method Control Block)
The syntax of the ACB macro is:

[label] ACB [AM=VSAM]
[,BSTRNO =number]
[,BUFND =number]
[,BUFNI =number]
[,BUFSP =number]
[,CATALOG=YESINO]
[,CRA = SCRAIUCRA]
[,DDNAME = ddname]
[,EXLST =address]
[,MACRF = ([ADR] [,CNV] [,KEY]

[,CFXINFX]
[,DDNIDSN]
[,DFRINDF]
[,DIR][,~[,SKP]

[,ICllNCI]
[,lli][,OUT]
[,NISISIS]
[,NRMIAIX]
[,NRSIRST]
[,NSRILSRIGSR]
[,NUBIUBF])]

[,MAREA=address]
[,MLEN =number]
[,PASSWD =address]
[,STRNO =number]

Values for ACB macro subparameters can be specified as absolute numeric
expressions, character strings, codes, and expressions that generate valid relo
catable A-type address constants .

label
is 1 to 8 characters that provide a symbolic address for the access method
control block that is assembled and also, if you omit the DDNAME parameter,
serves as the ddname.

AM=VSAM
specifies that the access method using this control block is VSAM.

BSTRNO =number
specifies the number of strings initially allocated for access to the base
cluster of a path. The default is STRNO. BSTRNO is ignored if the object
being opened is not a path. If the number specified for BSTRNO is insuffi
cient, VSAM will dynamically extend the number of strings as needed for the
access to the base cluster. BSTRNO can influence performance. The VSAM
control blocks for the set of strings specified by BSTRNO are allocated on
contiguous virtual storage, whereas this is not guaranteed for the strings
allocated by dynamic extension.

BUFND =number
specifies the number of 1/0 buffers VSAM is to use for transmitting data
between virtual and auxiliary storage. A buffer is the size of a control

24 MVS/370 VSAM Administration: Macro Instruction Reference

ACB

interval in the data component. The minimum number you may specify is 1
plus the number specified for STRNO (if you omit STRNO, BUFND must be at
least 2, because the default for STRNO is 1). The number can be supplied by
way of the JCL DD AMP parameter as well as by way of the macro. The
default is the minimum number required. Note, however, that minimum
buffer specification does not provide optimum sequential processing per
formance. Generally, the more data buffers specified, the better the perform
ance. Note also that additional data buffers will benefit direct inserts or
updates during control area splits and will benefit spanned record
accessing. For more information, see "Optimizing Performance" in VSAM
Administration Guide.

BUFNI =number
specifies the number of 1/0 buffers VSAM is to use for transmitting the con
tents of index entries between virtual and auxiliary storage for keyed access.
A buffer is the size of a control interval in the index. The minimum number
is the number specified for STRNO (if you omit STRNO, BUFNI must be at
least 1, because the default for STRNO is 1). You can supply the number by
way of the JCL DD AMP parameter as well as by way of the macro. The
default is the minimum number required.

Additional index buffers will improve performance by providing for the resi
dency of some or all of the high-level index, thereby minimizing the number
of high-level index records to be retrieved from DASO for key-direct proc
essing. For more information, see "Optimizing Performance" in VSAM
Administration Guide.

BUFSP =number
specifies the maximum number of bytes of virtual storage to be used for the
data and index 1/0 buffers. VSAM gets the storage in your program's
address space. If you specify less than the amount of space that was speci
fied in the BUFFERS PACE parameter of the DEFINE command when the data
set was defined, VSAM overrides your BUFSP specification upward to the
value specified in BUFFERSPACE. (BUFFERSPACE, by definition, is the least
amount of virtual storage that will ever be provided for 1/0 buffers.) You can
supply BUFSP by way of the JCL DD AMP parameter as well as by way of
the macro. If you don't specify BUFSP in either place, the amount of storage
used for buffer allocation is the largest of:

• The amount specified in the catalog (BUFFERSPACE),

• The amount determined from BUFND and BUFNI, or

• The minimum storage required to process the data set with its specified
processing options

If BUFSP is specified and the amount is smaller than the minimum amount of
storage required to process the data set, VSAM cannot open the data set.

A valid BUFSP amount takes precedence over the amount called for by
BUFND and BUFNI. If the BUFSP amount is greater than the amount called
for by BUFND and BUFNI, the extra space is allocated as follows:

• When MACRF indicates direct access only, additional index buffers are
allocated.

• When MACRF indicates sequential access, one additional index buffer
and as many data buffers as possible are allocated.

Chapter 2. VSAM Macro Formats and Examples 25

ACB

Option Meaning

SKP Skip-sequential access to a key-sequenced or a relative record data set; used
only with keyed access in a forward direction.

ICI Processing is limited to improved control interval processing; access is faster
because fewer processor instructions are executed.

NCI Processing other than improved control interval processing.

!.!! Retrieval of records of a key-sequenced, entry-sequenced, or a relative
record data set; (not allowed for an empty data set). If the data set is pass
word protected, you must supply the address of the read or higher-level
password in the ACB PASSWD parameter.

OUT Storage of new records in a key-sequenced, entry-sequenced, or relative
record data set (not allowed with addressed access to a key-sequenced data
set); update of records in a key-sequenced, entry-sequenced, or relative
record data set; deletion of records from a key-sequenced data set or rela
tive record data set.

If the data set is password protected, you must supply the address of the
update or higher-level password in the ACB PArSWD parameter.

NIS Normal insert strategy.

SIS Sequential insert strategy (split control intervals and control areas at the
insert point rather than at the midpoint when doing direct PUTs); although
positioning is lost and writes are done after each direct PUT request, SIS
allows more efficient space usage when direct inserts are clustered around
certain keys.

NRM The object to be processed is the one named in the specified ddname.

AIX The object to be processed is the alternate index of the path specified by
ddname, rather than the base cluster via the alternate index.

NRS Data set is not reusable.

RST Data set is reusable (high-used RBA is reset to 0 during OPEN). If the data
set is password protected, you must supply the address of the update or
higher-level password in the ACB PASSWORD parameter.

NSR Nonshared resources.

LSR

GSR

Local shared resources; each partition or address space may have one
resource pool independently of other partitions or address spaces.

Global shared resources; all address spaces may have local and global
resources pools, where tasks in an address space with a local resource pool
may use either the local resource pool or the global resource pool.

NUB Management of 110 buffers is left up to VSAM.

UBF Management of 1/0 buffers is left up to the user; the work area specified by
the RPL (or GENCB) AREA parameter is, in effect, the 110 buffer-VSAM
transmits the contents of a control interval directly between the work area
and direct access storage; valid when OPTCD - MVE and MACRF-CNV are
specified; when ICI is specified, UBF is assumed.

Figure 11 (Part 2 of 2). MACRF Options

MAREA =address
specifies the address of an optional OPEN/CLOSE or TYPE =T option (CLOSE
macro) message area. See "OPEN/CLOSE Message Area for Multiple
Reason or Warning Messages" on page 5 for more information.

28 MVS/370 VSAM Administration: Macro Instruction Reference

ACB

MLEN =number
specifies the length of an optional OPEN/CLOSE or TYPE= T option (CLOSE
macro) message area. Default =O; maximum= 32K. See "OPEN/CLOSE
Message Area for Multiple Reason or Warning Messages" on page 5 for
more information.

PASSWD =address
specifies the address of a field that contains the highest-level password
required for the type(s) of access indicated by the MACRF parameter. The
first byte of the field pointed to contains the length (in binary) of the pass
word (maximum of 8 bytes). Zero indicates that no password is supplied. If
the data set is password protected and you don't supply a required pass
word in the access method control block, VSAM will give the console oper
ator the opportunity to supply it when you open the data set.

STRNO =number
specifies the number of requests requiring concurrent data set positioning
VSAM is to be prepared to handle. The default is 1. A request is defined by
a given request parameter list or chain of request parameter lists. See "RPL
Macro (Generate a Request Parameter List)" on page 93 and "GENCB
Macro (Generate a Request Parameter List)" on page 57 for information on
request parameter lists. When records are loaded into an empty data set,
the STRNO value in the access method control block must be 1.

VSAM dynamically extends the number of strings as needed by concurrent
requests for this ACB, and this automatic extension can influence perform
ance. The VSAM control blocks for the set of strings specified by STRNO are
allocated on contiguous virtual storage, but this is not guaranteed for the
strings allocated by dynamic extension. Dynamic string addition cannot be
done when using the following options:

• Load mode
• ICI
• LSR or GSR

For STRNO, you could specify the total number of request parameter lists or
chains of request parameter lists that you are using to define requests.
(VSAM needs to remember only one position for a chain of request param
eter lists.) However, each position beyond the minimum number that VSAM
needs to be able to remember requires additional virtual storage space for:

• A minimum of one data 1/0 buffer and, for keyed access, one index 1/0
buffer (the size of an 1/0 buffer is the control interval size of a data set)

• Internal control blocks and other areas

Chapter 2. VSAM Macro Formats and Examples 29

ACB

Example 1: ACB Macro
In this example, the ACB macro is used to identify a data set to be opened and
to specify the types of processing to be performed. The access method control
block generated by this example is built when the program is assembled.

BLOCK ACB

FIELD DC

AM=VSAM,BUFND=4,
BUFNI=J,

BLOCK gives symbolic
address of the access
method control block. BUFSP=l9456,

DDNAME=DATASETS,
EXLST=EXITS,
MACRF=(KEV,DIR,SEQ,OUT),
PASSWD=FIELD,
STRN0=2
FL1'6',C ' CHANGE ' The update password:

CHANGE has 6 characters.

The ACB macro's parameters are:

• BUFND specifies four 1/0 buffers for data; BUFNI specifies three 1/0 buffers
for index entries; and BUFSP specifies 19456 bytes of buffer space, enough
space to accommodate control intervals of data that are 4096 bytes and
control intervals of index entries that are 1024 bytes.

• DDNAME specifies that this access method control block is associated with a
DD statement named DATASETS.

• EXLST specifies that the exit list associated with this access method control
block is named EXITS.

• MACRF specifies keyed-direct and keyed-sequential processing for both
insertion and update.

• PASSWD specifies the location, FIELD, of the password provided. FIELD con
tains the length of the password as well as the password itself.

• STRNO specifies that two requests will require concurrent positioning.

30 MVS/370 VSAM Administration: Macro Instruction Reference

L

ACQRANGE

ACQRANGE Macro (Stage Data)
The syntax of the ACQRANGE macro is:

I [label] I ACQRANGE I RPL =address

RPL=address
specifies the address of the RPL that identifies your open data set and your
argument range. RPL parameters that have meaning for ACQRANGE are as
follows:

• ACB =address
identifies your VSAM data set.

• ARG =address
identifies your starting and ending arguments. Address points to a
parameter list, aligned on a fullword boundary as follows:

Key-sequenced data set:

Offset Length Contents

0 4 Feedback area: Address
of an ECB WAIT list

4 K Starting full argument
(K = key length)

4+K K Ending full argument
(K = key length)

Entry-sequenced data set or relative record data set:

Offset Length Contents

0 4 Feedback area: Address
of an ECB WAIT list

4 4 Starting RBA/RRN
8 4 Ending RBA/RRN

The maximum number of argument pairs you may specify is one.

• OPTCD=({ADRIKEY}
,{ASYISYN}
,{KEQIKGE}
,FKS)

ADR is valid for an entry-sequenced data set, error for key-sequenced
data set or relative record data set.

KEY is valid for key-sequenced data set and relative record data set,
error for entry-sequenced data set.

If ASY is specified, you cannot WAIT on the RPLECB field for MNTACQ or
ACQRANGE. You use the address placed in the parameter list feedback
area. This address points to a list of ECBs (in standard WAIT list format)
which you may use in place of the RPLECB field.

GEN is not supported; if specified, it will give an error indication.

Chapter 2. VSAM Macro Formats and Examples 31

ACQRANGE

All other OPTCD subparameters are not applicable, and, if specified, are
ignored with no error indication.

Because your request may result in the staging of numerous cylinders, a single
ECB is not sufficient for an asynchronous ACQRANGE request. The RPLECB
field is inoperative for the ACQRANGE interface. Upon return from an asynchro
nous ACQRANGE, the feedback area of the ACQRANGE parameter contains the
address of a standard ECB WAIT list. You must then use this list in conjunction
with the WAIT macro or you may use the list in conjunction with the EVENTS
macro of MVS. An asynchronous request must conclude with either CHECK,
ENDREQ, or CLOSE. The parameter list cannot be reused until the CHECK,
ENDREQ, or CLOSE is completed.

At the conclusion of this macro, the RPL is disconnected. Any positioning in
effect prior to execution of ACQRANGE will be lost. You may have to reposition.
Chained RPLs are not supported by this macro.

32 MVS/370 VSAM Administration: Macro Instruction Reference

L
BLDVRP Macro (Build VSAM Resource Pool)

The syntax of the BLDVRP macro is:

BLDVRP BUFFERS= (size(number),size(number), ...)
[,FIX= {BFRI IOBl(BFR,IOB)}]
[,KEYLEN =length]
,STRNO =number
[,TYPE= {LSRIGSR}]

BLDVRP

The BLDVRP macro has a standard form and list and execute forms. The
standard form builds a parameter list and passes control to VSAM to build the
resource pool. The list and execute forms are described in Appendix A, "List,
Execute, and Generate Forms of Macros" on page 121.

BUFFERS= (size(number),size(number), ...)
specifies the size and number of buffers in each buffer pool in the resource
pool. The number of buffer pools in the resource pool is implied by the
number of size(number) pairs you specify.

When you process a key-sequenced data set, the index component. as well
as the data component, shares the buffers of a buffer pool. When you use an
alternate index to process a base cluster, the components of the alternate
index and the base cluster share buffers. The components of alternate
indexes in an upgrade set share buffers. Buffers of the appropriate size and
number must be provided for all these components, each of which uses the
buffer pool whose buffers are exactly the right size or the next larger size.

Note: LSR/GSR users can ensure buffer pool selection by explicitly defining
data and index control interval size(s) .

size
is 512, 1024, 2048, 4096, and then in increments of 4096 to a maximum of
32K bytes.

number
is at least 3.

The size of the buffers multiplied by the number of buffers (size x number)
must be less than 16 megabytes.

FIX= {BFRI IOBl(BFR,108)}
specifies that 1/0 buffers (BFR), or 1/0-related control blocks (108), or both,
are to be fixed in real storage. With GSR, 108 includes channel programs. If
the program that issues BLDVRP with FIX specified is not authorized to fix
areas in real storage, FIX is ignored. A program is authorized if it is in
supervisor state with protection key 0 to 7, or has been link-edited with
authorization (the authorized program facility is described in Supervisor Ser
vices and Macro Instructions).

Note: If FIX is specified, DLVRP must be issued by the same task that issues
BLDVRP.

KEYLEN = length
specifies the maximum key length of the data sets that are to share the
resource pool. The default is 255. The keys whose lengths must be provided
for are the prime key of each key-sequenced data set and the alternate key

Chapter 2. VSAM Macro Formats and Examples 33

BLDVRP

of each alternate index that is used for processing or is being upgraded. If
none of the data sets is keyed, specify 0.

STRNO =number
specifies the total number of placeholders required for all the data sets that
are to share the resource pool. 1 is minimum; 255 is maximum.

The number should equal the potential number of requests that may be
issued concurrently for all the data sets that will share the resource pool. If
a request fails because the number of placeholders is insufficient (logical
return code 64 (X 140 1)), you may retry the request; it will be assigned a
placeholder if one has been released.

TYPE={LSRIGSR}
specifies whether a local (LSR) or a global (GSR) resource pool is to be built.
Only one BLDVRP TYPE= LSR may be issued for each partition or address
space. Only one BLDVRP TYPE=GSR may be issued for the system for
each of the protection keys 0 through 7. The program that issues BLDVRP .,
TYPE= GSR must be in supervisor state with protection key 0 to 7. ~

J

34 MVS/370 VSAM Administration: Macro Instruction Reference

CHECK

CHECK Macro {Wait for Completion of Request)
The syntax of the CHECK macro is:

I [label] I CHECK I RPL =address

where:

label
is 1 to 8 characters that provide a symbolic address for the CHECK macro.

RPL =address
specifies the address of the request parameter list that defines the request.
You may specify the address in register notation (using a register from 1
through 12, enclosed in parentheses) or specify it with an expression that
generates a valid relocatable A-type address constant.

Example 1: Check Return Codes after an Asynchronous Request
In this example, return codes are checked after an asynchronous request. The
CHECK macro is used to cause an exit to be taken if there is a logical or phys
ical error or if the end of the data set is reached.

REQPARMS RPL OPTCD=ASY

REJECTED
FAILURE

GET RPL=REQPARMS
LTR 15,15
BNZ REJECTED

CHECK RPL=REQPARMS

LTR 15,15
BNZ FA! LURE

Was the request completed successfully?
Zero indicates the request was accepted.
If it was not accepted, register 15
contains 4: REQPARMS is active fo r another
request. Continue to work on something
that i s not dependent on the request.
CHECK would cause one of the three exits to
be taken if there was a logical or physical
error or if the end of the data set was
reached and an active exit list exists.
Test return ind ication is register 15.
Zero indicates the request completed
successfully. If it failed, register 15
contains 8 or 12: there was a logical or
a physical error.

Unless you provide exit routines that terminate processing, always test register
15 after the CHECK. If a routine returns to VSAM, register 15 is reset and control
is passed back to your program immediately after the CHECK. An error analysis
routine normally issues SHOWCB or TESTCB to examine the feedback field in
the request parameter list, so that, when your processing program gets control
back, it doesn't have to analyze the errors-but it may alter its processing if
there was an error. If you don't provide an error analysis routine, your program
can issue SHOWCB or TESTCB to analyze an error when it gets control back fol
lowing the CHECK.

Chapter 2. VSAM Macro Formats and Examples 35

CHECK

Example 2: Check Return Codes after a Synchronous Request
With synchronous processing, you should test register 15 after the request
because the request may not have been accepted (register 15 contains 4) or
because an error might have occurred (8 or 12):

GET RPL=REQPARMS
LTR 15,15 Was the request completed successfully?
BNZ REJFAIL If branch is not taken, was the request

accepted and completed successfully?

REJFAIL

Example 3: Overlap Processing
In this example, the CHECK macro is used to wait for completion of a request
before continuing to other processing. Access is asynchronous.

BLOCK ACB
LIST RPL ACB=BLOCK, Asynchronous access.

LOOP GET
LTR
BNZ

AREA=WORK,
AREALEN=50,
OPTCD=ASY

RPL=LIST
15,15
NOTACCEP

Do other processing.

CHECK RPL=LIST

LTR 15,15
BNZ ERROR

Process the record .

B
NOTACCEP
ERROR

WORK OS

LOOP

CL50

Suspends your processing to
wait for completion of GET
if necessary and to cause VSAM
to indicate return codes.

Request was not accepted.
Request failed.

Work area.

After issuing the request, make sure that VSAM accepted it before you go on to
other processing. When you have done as much other processing as you can,
issue the CHECK macro. VSAM will not give you back control now until the
request is complete. If you don't want to issue CHECK until you know the
request is complete, use the ECB parameter of the RPL macro or the
10 =COMPLETE parameter of the TESTCB macro. After you issue the CHECK,
VSAM immediately returns a code and takes an exit, if necessary. See "RPL
Macro (Generate a Request Parameter List)" on page 93 and "GENCB Macro
(Generate a Request Parameter List)" on page 57 for information on the ECB
parameter.

36 MVS/370 VSAM Administration: Macro Instruction Reference

J

L

CHECK

Example 4: Suspend a Request for Many Records
In this example, a CHECK macro is issued for the first request parameter list in a
chain of parameter lists. If an error occurred for one of the request parameter
lists in the chain and you have supplied error analysis routines, VSAM takes a
LERAD or SYNAD exit before it returns control to your program after the CHECK.

FIRST RPL ACB=BLOCK,
AREA=AREAl,
AREALEN=50,
NXTRPL=SECOND,
OPTCD=ASY

SECOND RPL ACB=BLOCK,
AREA=AREA2,
AREALEN=5El,
NXTRPL=THIRD,
OPTCD=ASY

THIRD RPL ACB=BLOCK, Last list does not indicate a
AREA=AREA3, next list.
AREALEN=5El,
OPTCD=ASY

LOOP GET RPL=FIRST

LTR 15,15
BNZ NOTACCEP

Do other processing.

CHECK RPL=FIRST
LTR 15,15
BNZ ERROR

Request gives the address of the
first request parameter list.

Process the three records retrieved by the GET.

B
NOTACCEP
ERROR

ARE Al DS

AREA2
AREA3

DS
DS

LOOP

CL5El

CL5El
CL5El

Request wasn't accepted.
Display the feedback field
(FIELDS=FDBK) of each request
parameter list to find
out which one had an error.
A single GET request causes VSAM
to put a record in each of AREAl,
AREAl, and AREA3.

After the CHECK, register 15 is set to indicate the status of the request. A code
of 0 indicates that no error was associated with any of the request parameter
lists. Any other code indicates that an error occurred for one of the request
parameter lists. You should issue a SHOWCB macro for each request parameter
list in the chain to find out which one had an error. VSAM doesn't process any
of the request parameter lists beyond the one with an error.

Chapter 2. VSAM Macro Formats and Examples 37

CLOSE

CLOSE Macro (Disconnect Program and Data)
The syntax of the CLOSE macro is:

[label] CLOSE (address[,(options)], ...)
[,TYPE=T]

where:

label
is 1 to 8 characters that provide a symbolic address for the CLOSE macro.

address
specifies the address of the access method control block or DCB for each
data set to be closed. You may specify the address in register notation
(using a register from 2 through 12-in parentheses) or specify it with an
expression that generates a valid relocatable A-type address constant. If
you specify only one address with a register, you must enclose the
expression identifying the register in two sets of parentheses: for example,
CLOSE ((2)).

options
are options parameters for use only in closing non-VSAM data sets. If any
options are specified with the address of an access method control block,
VSAM ignores them.

Note: Because the CLOSE parameters are positional, include a comma for
options (even if you don't specify options) before a subsequent parameter.

TYPE=T
specifies that VSAM is to complete outstanding 1/0 operations and update
the catalog, but not disconnect the program from the data.

You can issue a temporary CLOSE macro to cause VSAM to complete out
standing 1/0 operations, put back into the catalog the updated information
that was brought into virtual storage when the data set was opened, and
write records in the SMF data set if you are using SMF. A temporary CLOSE
doesn't disconnect the program from the data set, so your program can con- J
tinue to process the data set without issuing an OPEN macro again.

You must close and reopen a newly created VSAM data set before you can
issue noncreate requests. A temporary close is not adequate for this
purpose.

Note: If you are sharing subtasks or if you have issued an asynchronous
request for access to a data set, you must issue a CHECK or an ENDREQ on all
RP Ls before you issue a CLOSE or CLOSE TYPE = T; otherwise, concurrent data
set 1/0 activity will cause unpredictable results during a close.

38 MVS/370 VSAM Administration: Macro Instruction Reference

L

L

CNVTAD

CNVT AD Macro (Convert Address)
The syntax of the CNVT AD macro is:

I [label] I CNVTAD I RPL=address

RPL =address
specifies the address of the request parameter list (RPL). The RPL identifies
your opened VSAM data set and your arguments. The following RPL param
eters and subparameters have meaning for the CNVTAD macro:

• ACB =address
identifies your VSAM data set.

• ARG =address
identifies your arguments. The address points to a parameter list.
aligned on a fullword boundary as follows:

Key-sequenced data set:

Offset Length Contents

0 3
3 1

4+(N-1)(10+K) 4

8+(N-1)(10+K) 4

14+(N-1)(10+K) K

Reserved; unused
Number of arguments (N)
(N = 1 to 255)
Feed back RBA
(K = key length)
Feedback volume serial number
(K = key length)
Full key argument
(K = key length)

Entry-sequenced data set or relative record data set:

Offset

0
3
4+(N-1)(14)
S+(N-1)(14)
18 +(N-1)(14)

Length Contents

3
1
4
6
6

Reserved; unused
Number of arguments (N)
Feedback RBA
Feedback volume serial number
RBA/RRN argument

The value for K is always 4 in an entry-sequenced or relative record data
set. Therefore, 10 + K is always 14 for these two types of data sets. The
maximum number of arguments allowed is 255.

• ECB =address
specifies the address of an event control block (ECB) which you may
specify. VSAM indicates in the ECB whether or not a request is com
plete. This parameter is optional.

Chapter 2. VSAM Macro Formats and Examples 39

CNVTAD

• OPTCD=({ADRIKEY}
,{ASYISYN}
,{KEQIKGE}
,FKS)

ADR is only valid for entry-sequenced data sets.

KEY is only valid for key-sequenced data sets and relative record dat a
sets.

If ASY is specified, you cannot WAIT on the RPLECB field for MNTACQ or
ACQRANGE. You use the address placed in the parameter list feedback
area. This address points to a list of ECBs (in standard WAIT list format)
which you may use in place of the RPLECB field.

GEN is not supported; if specified, it will give an error indication.

All other OPTCD subparameters are not applicable, and, if specified, are
ignored with no error indications.

For a given list of discrete arguments, CNVTAD returns the volume serial
number (volser) and the RBA corresponding to each argument in the parameter
list feedback area. The data portion of your VSAM data set is not referenced
and need not be mounted even if the sequence set is embedded.

For an entry-sequenced data set, the volser is returned, and the same RBA
specified in the argument field is also returned.

Note: The RBA returned by CNVTAD in the case of a key-sequenced data set is
not the exact RBA of the record. It is, in fact, an approximate value. (For data
sets with the IMBED option, it is the RBA of the beginning of the sequence set for
the record's control area: for data sets with NOIMBED, it is the RBA of the
record's control interval.) When passed to MNTACQ, these RBA values cause
MNTACQ to stage the appropriate cylinders corresponding to the requested
arguments originally passed to CNVTAD. You should therefore use caution if
you are planning to use the RBAs obtained from CNVTAD for any purpose other
than as input to MNTACQ.

At the conclusion of this macro, the RPL is disconnected. Any positioning in
effect prior to execution of this macro will be lost. You may have to reposition.
Chained RPLs are not supported by CNVTAD.

40 MVS/370 VSAM Administration: Macro Instruction Reference

DLVRP

DLVRP Macro (Delete VSAM Resource Pool)
The DLVRP macro has a standard form and an execute form. The standard form
builds a parameter list and passes control to VSAM to delete the resource pool.
The execute form is described in Appendix A, "List, Execute, and Generate
Forms of Macros" on page 121.

The syntax of the DLVRP macro is:

I DLVRP I TYPE={LSRIGSR}

TYPE= {LSRIGSR}
specifies the type of resource pool to be deleted: local (LSR) or global
(GSR). The local resource pool is the one in the partition or address space
in which DLVRP is issued. The program that issues DLVRP TYPE=GSR
must be in supervisor state with protection key 0 to 7.

Chapter 2. VSAM Macro Formats and Examples 41

ENDREQ

ENDREQ Macro (Terminate a Request)
The syntax of the ENDREQ macro is:

I [label] I ENDREQ I RPL =address

where:

label
is 1 to 8 characters that provide a symbolic address for the ENDREQ macro.

RPL =address
specifies the address of the request parameter list that defines the request.
You may specify the address in register notation (using a register from 1
through 12, enclosed in parentheses) or specify it with an expression that
generates a valid relocatable A-type address constant.

Note: The ENDREQ macro must not be issued when records are being loaded
into a VSAM data set (load mode). ENDREQs issued while in load mode are
ignored.

Example: Release Positioning for Another Request
In this example, the ENDREQ macro is used to cause VSAM to release exclusive
control of a control interval containing a record. There are two request param
eter lists, both of which require VSAM to have the ability to remember its posi
tion until VSAM is explicitly requested to forget its position.

BLOCK ACB MACRF=(SEQ, ~
DIR),STRN0=2

SEQ RPL ACB=BLOCK, VSAM must remember its
OPTCD=SEQ position.

DIRUPD RPL ACB=BLOCK, VSAM must remember its

LOOP GET

LTR
BNZ
GET

LTR
BNZ

OPTCD=(DIR,UPD) position and maintain
exclusive control until
explicitly requested to
forget it by PUT or
ENDREQ.

RPL=SEQ VSAM now remembers its
position for this request
only while it is processing
the request.

15,15
ERROR
RPL=DIRUPD VSAM can remember its

position for this request.
The control interval will
be placed in exclusive
control until either ENDREQ
OR PUT UPD IS ISSUED.

15,15
ERROR

42 MVS/370 VSAM Administration: Macro Instruction Reference

L

ENDREQ

Decide whether to update the record.

FORGET

ERROR

B FORGET No; do not update the record Yes; update
PUT RPL=DIRUPD the record, causing VSAM to forget its

position for DIRUP.
LTR 15,15
BNZ ERROR
B LOOP
ENDREQ RPL=DIRUPD

LTR 15,15
BNZ ERROR
B LOOP
xxx

Cause VSAM to forget its position for
DIRUPD. Release exclusive control.

Request wasn't accepted or failed.

The use of ENDREQ illustrated here causes VSAM to release exclusive control of
the control interval for a record. When PUT is issued after a DIRUPD GET
request, ENDREQ need not be issued, because PUT causes VSAM to release
exclusive control (the next DIRUPD GET doesn't depend on VSAM's remem
bering its position). Another result of ENDREQ is that current buffers are written
if they have been modified.

To cause VSAM to give up its position associated with a chain of request param
eter lists, specify the first request parameter list in the chain in your ENDREQ
macro.

ENDREQ can also be used to cancel an asynchronous request, rather than sus
pending processing with CHECK.

Note: If you are sharing subtasks or if you have issued an asynchronous
request for access to a data set, you must issue a CHECK or an ENDREQ on all
RPLs before you issue a CLOSE TYPE =T; otherwise, concurrent data set 110
activity will cause unpredictable results during a close.

Because VSAM remembers its position after a direct GET with OPTCD = UPD or
LOC, if no PUT or ENDREQ follows, you can switch to sequential access and use
the positioning for a GET.

Chapter 2. VSAM Macro Formats and Examples 43

ERASE

ERASE Macro (Delete a Record)
The syntax of the ERASE macro is:

I [label] I ERASE I RPL =address

where:

label
is 1 to 8 characters that provide a symbolic address for the ERASE macro.

RPL =address
specifies the address of a request parameter list that defines the request.
You may specify the address in register notation (using a register from 1
through 12, enclosed in parentheses) or specify it with an expression that
generates a valid relocatable A-type address constant.

With ERASE processing of key-sequenced data sets, VSAM attempts to make the
control interval available to the control area when the last record in the control
interval is erased. Thus, key-sequenced data set control intervals can be reused
for new records whose keys fall anywhere within the control area's range of
keys. You may suppress the process of reclaiming the control interval by setting
the RPLNOCIR bit directly in the RPL used for ERASE. The format of an RPL is
discussed in VSAM Logic. The high key control interval of a control area is
never reclaimed.

Example 1: Keyed-Direct Deletlon
In this example, GET and ERASE macros are used to retrieve and delete records.
Not every record retrieved for deletion is deleted. The search argument is a full
key (5 bytes), compared equal.

DELETE ACB MACRF=(KEY,DIR,
OUT)

LIST RPL ACB=DELETE,
AREA=WORK,
AREALEN=50,
ARG=KEYFI ELD,
OPTCD=(KEY,DIR,
SYN,UPD, UPD indicates deletion.
MVE,FKS,
KEQ)

LOOP MVC KEYFIELD,source Search argument for retrieval, from a
table or transaction record.

GET RPL•LIST
LTR 15,15
BNZ ERROR

44 MVS/370 VSAM Administration: Macro Instruction Reference

Decide whether to delete the record.

ERROR

BE
ERASE
LTR
BNZ
B

WORK DS
KEYFIELD DS

LOOP
RPL=LIST
15,15
ERROR
LOOP

CL5El
CL5

No; retrieve the next record.
Yes; delete the record.

Request was not accepted, or failed
Examine the data record here.
Search argument.

ERASE

When you retrieve a record for deletion (OPTCD = UPD, same as retrieval for
update), VSAM is positioned at the record retrieved, in anticipation of a suc
ceeding ERASE (or PUT) request for that record. You are not required to issue
such a request, though. Another GET request nullifies any previous positioning
for deletion or update.

Keyed-sequential retrieval for deletion varies from direct in not using a search
argument (except for possible use of the POINT macro). Skip-sequential
retrieval for deletion (OPTCD =(SKP,UPD)) has the same effect as direct, but it is
faster or slower depending on the number of control intervals separating the
records being retrieved.

Example 2: Addressed-Sequential Deletion
In this example, the ERASE macro is used to delete records from a key
sequenced data set. Not every record retrieved for deletion is deleted. Skipping
is effected by the POINT macro.

DELETE ACB MACRF=(ADR,SEQ,OUT)
REQUEST RPL ACB=DELETE,

LOOP

AREA=WORK,
AREALEN=lEJEl,
ARG=ADOR,
OPTCO=(ADR,SEQ,ASY,
UPD,MVE) UPO indicates deletion.

Decide whether you need to skip to another
position (forward or backward)

B RETRIEVE No; bypass the POINT.
MVC ADDR,source

POINT RPL=REQUEST

LTR
BNZ
CHECK
LTR
BNZ

RETRIEVE GET
LTR
BNZ
CHECK
LTR
BNZ

15,15
ERROR
RPL=REQUEST
15,15
ERROR
RPL,.REQUEST
15,15
ERROR
RPL,.REQUEST
15,15
ERROR

Yes; move search argument for
POINT into search-argument field.
Position VSAM to the record to
be retrieved next.

Chapter 2. VSAM Macro Formats and Examples 45

ERASE

Decide whether to delete the record.

BE LOOP No; skip ERASE and CHECK.
ERASE RPL=REQUEST Yes; delete the record.
LTR 15,15
BNZ ERROR
CHECK RPL=REQUEST
LTR 15,15
BNZ ERROR
B LOOP

ERROR Request was not accepted, or
failed .

ADOR OS F RBA search argument for POINT.
WORK OS CLHl0 Work area.

Addressed deletion is allowed only for a key-sequenced data set. The records of
an entry-sequenced data set are fixed. When records are deleted using
addressed deletion from a key-sequenced data set, the index is not updated.

46 MVS/370 VSAM Administration: Macro Instruction Reference

EXLST

EXLST Macro (Generate an Exit List)
The syntax of the EXLST macro is:

[label] EXLST [AM=VSAM]
[,EODAD = (address[,AI N][,L])]
[,JRNAD = (address[,AINJ[,L])]
[,LERAD = (address[,AINJ[,L])]
[,SYNAD = (address[,AIN][,L])]
[,UPAD = (address[,AINJ[,L])]

Values for EXLST macro subparameters can be specified as absolute numeric
expressions, character strings, codes, and expressions that generate valid relo
catable A-type address constants.

label
is 1 to 8 characters that provide a symbolic address for the exit list that is
established.

AM=VSAM
specifies that the access method using the control block is VSAM.

EODAD = (address[,AINJ[,L])
JRNAD = (address[,AI N][,L])
LERAD =(address[,AIN](,L])
SYNAD = (address[,!INJ(,L])
UPAD = (address(,AIN][,A])

specify that you are supplying a routine for the exit specified. The exits and
values that can be specified for them are:

EODAD
specifies that an exit is provided for special processing when the end of
a data set is reached by sequential access.

JRNAD
specifies that an exit is provided for journalizing transactions as you
process data records.

LE RAD
specifies that an exit is provided for analyzing logical errors.

SYNAD
specifies that an exit is provided for analyzing physical errors.

UPAD
specifies that an exit is provided for user processing during a VSAM
request. The GENCB, MODCB, SHOWCB, and TESTCB macros do not
support the UPAD user exit routine.

address

AIN

is the address of a user-supplied exit routine. The address must imme
diately follow the equal sign.

specifies that the exit routine is active (A) or not active (N). VSAM does
not enter a routine whose exit is marked not active.

Chapter 2. VSAM Macro Formats and Examples 47

EXLST

L specifies that the address is that of an 8-byte field that contains the name
of an exit routine in a partitioned data set that is identified by a JOBLIB
or STEPLIB DD statement or in SYS1.LINKLIB. VSAM is to load the exit
routine for exit processing. If Lis omitted, the address gives the entry
point of the exit routine in virtual storage.

Example: EXLST Macro
In this example, an EXLST macro is used to identify exit routines that are pro
vided for analyzing logical and physical errors. The label, EXITS, of the EXLST
macro is used in an ACB or GENCB macro that generates an access method
control block to associate the exit list with an access method control block. The
exit list generated by this example is built when the program is assembled.

EXITS EXLST EODAD=(ENDUP,N), EXITS gives symbolic

ENDUP
LOGICAL
ROUTNAME DC

LERAD=LOGICAL, address of the exit
SYNAD=(ROUTNAME,L) list.

EODAD routine.
LERAD routine.

C'PHYSICAL' Pad shorter names with blanks:
C'SYN' or CLB'SYN'.

The EXLST macro's parameters are:

• EODAD specifies that the end-of-data routine is located at ENDUP and is not
active.

• LERAD specifies that the logical error routine is located at LOGICAL and is
active.

• SYNAD specifies that the physical error routine's name is located at
ROUTNAME.

48 MVS/370 VSAM Administration: Macro Instruction Reference

GENCB-ACB

GENCB Macro (Generate an Access Method Control Block)
The syntax of the GENCB macro used to generate an access method control
block is:

[label] GENCB BLK=ACB
[,AM=VSAM]
[,BSTRNO =number]
[,BUFND =number]
[,BUFNI =number]
[,BUFSP =number]
[,CATALOG=YESINOJ
[,COPIES= number]
[,CRA=SCRAIUCRA]
[,DDNAME = ddname]
[,EXLST= address]
[,LENGTH= number]
[,MACRF = ([ADR][,CNV][,KEY]

[,CFXINFX]
[,DDNIDSN]
[,DFRINDF]
[,DIR][,~[,SKP]

[,ICllNCI]
[,1'£1[,0UT]
[,NISISIS]
[,NRMIAIX]
[,NRSIRST]
[,NSRI LSRI GSR]
[,NUBIUBF])]

[,MAREA =address]
[,MLEN =number]
[,PASSWD=address]
[,STRNO =number]
[,WAREA=address]

The subparameters of the GEN CB macro can be expressed as absolute numeric
expressions, as character strings, as codes, as expressions that generate valid
relocatable A-type address constants, in register notation, as S-type address
constants, and as indirect S-type address constants. Appendix B, "Operand
Notation" on page 129, gives all the ways of coding each subparameter for the
macros that work at execution.

label
is 1 to 8 characters that provide a symbolic address for the GENCB macro.

BLK=ACB
specifies that you are generating an access method control block.

AM=VSAM
specifies that the access method using this control block is VSAM.

BSTRNO =number
specifies the number of strings initially allocated for access to the base
cluster of a path. The default is STRNO. BSTRNO is ignored if the object
being opened is not a path. If the number specified for BSTRNO is insuffi-

Chapter 2. VSAM Macro Formats and Examples 49

GENCB-ACB

cient, VSAM will dynamically ex1end the number of strings as needed for the
access to the base cluster. BSTRNO can also influence performance. The
VSAM control blocks for the set of strings specified by BSTRNO are allocated
on contiguous virtual storage, whereas this is not guaranteed for the strings
allocated by dynamic ex1ension.

BUFND =number
specifies the number of 1/0 buffers VSAM is to use for transmitting data
between virtual and auxiliary storage. A buffer is the size of a control
interval in the data component. The minimum number you may specify is 1
plus the number specified for STRNO (if you omit STRNO, BUFND must be at
least 2, because the default for STRNO is 1). The number can be supplied by
way of the JCL DD AMP parameter as well as by way of the macro. The
default is the minimum number required. A larger number for BUFND can
improve the performance of sequential access.

BUFNI =number
specifies the number of 1/0 buffers VSAM is to use for transmitting index
entries between virtual and auxiliary storage for keyed access. A buffer is
the size of a control interval in the index. The minimum number is the
number specified for STRNO (if you omit STRNO, BUFNI must be at least 1,
because the default for STRNO is 1). You can supply the number by way of
the JCL DD AMP parameter as well as by way of the macro. The default is
the minimum number required. A larger number for BUFNI can improve the
performance of keyed-direct retrieval.

BUFSP =number
specifies the maximum number of bytes of virtual storage to be used for the \
data and index 1/0 buffers. VSAM gets the storage in your program's ""fflllfl
address space. If you specify less than the amount of space that was speci-
fied in the BUFFERS PACE parameter of the DEFINE command when the data
set was defined, VSAM overrides your BUFSP specification upward to the
value specified in BUFFERSPACE. (BUFFERSPACE, by definition, is the least
amount of virtual storage that will ever be provided for 1/0 buffers.) You can
supply BUFSP by way of the JCL DD AMP parameter as well as by way of
the macro. If you don't specify BUFSP in either place, the amount of storage
used for buffer allocation is the largest of:

• The amount specified in the catalog (BUFFERSPACE),

• The amount determined from BUFND and BUFNI, or

• The minimum storage required to process the data set with its specified
processing options

If BUFSP is specified and the amount is smaller than the minimum amount of
storage required to process the data set, VSAM cannot open the data set.

A valid BUFSP amount takes precedence over the amount called for by
BUFND and BUFNI. If the BUFSP amount is greater than the amount called
for by BUFND and BUFNI, the ex1ra space is allocated as follows:

• When MACRF indicates direct access only, additional index buffers are
allocated.

• When MACRF indicates sequential access, one additional index buffer
and as many data buffers as possible are allocated.

If the BUFSP amount is less than the amount called for by BUFND and
BUFNI, the number of data and index buffers is decreased as follows:

50 MVS/370 VSAM Administration: Macro Instruction Reference

GENCB-ACB

• When MACRF indicates direct access only, the number of data buffers is
decreased to not less than the minimum number. Then, if required, the
number of index buffers is decreased until the amount called for by
BUFND and BUFNI complies with the BUFSP amount.

• When MACRF indicates sequential access, the number of index buffers is
decreased to not less than 1 more than the minimum number. Then, if
required, the number of data buffers is decreased to not less than the
minimum number. If still required, 1 more is subtracted from the number
of index buffers.

• Neither the number of data buffers nor the number of index buffers is
decreased to less than the minimum number.

If the index doesn't exist or isn't being opened, only BUFND, and not BUFNI,
enters into these calculations.

CATALOG=YESINO
specifies whether a catalog is being opened as a catalog (YES) or as a data
set (NO). When NO is coded (or taken as the default), you can process the
catalog with request macros (GET, PUT, etc.). To open a password-protected
catalog for processing with VSAM macros, you must supply its master pass
word . When CATALOG=YES is coded, the catalog must be processed with
an SVC designed for that purpose. (Access method services, for example,
processes catalogs with SVC 26.) The request macros are invalid for proc
essing a catalog " as a catalog." VSAM users should alter the contents of a
catalog only by access method services commands.

COPIES= number
specifies the number of copies of the access method control block VSAM is
to generate. All the copies are identical. You can use MODCB to tailor each
one for the data set and processing you want for it. MODCB is described
later in this chapter.

CRA = SCRAI UCRA
specifies that a catalog recovery area is to be opened and that the control
blocks are to be built in either system storage (SCRA) or user storage
(UCRA). If you specify SCRA and issue record management requests, you
must operate in key 0. If you specify UCRA, you must be authorized by the
system and you must supply the master password of the master catalog.

DDNAME = ddname
is 1 to 8 characters that identify the data set that you want to process by
specifying the JCL DD statement for the data set. You may omit DDNAME
and provide it by way of the MODCB macro before opening the data set.
MODCB is described later in this chapter.

EXLST =address
specifies the address of a list of addresses of exit routines that you are pro
viding. The list is established by the EXLST or GENCB macro. If you use the
EXLST macro, you can specify its label here as the address of the exit list. If
you use GENCB, you can specify the address returned by GENCB in register
1. Omitting this parameter indicates that you have no exit routines. Exit rou
tines are described in the chapter "User-Written Exit Routines" in VSAM
Administration Guide.

Chapter 2. VSAM Macro Formats and Examples 51

GENCB-ACB

LENGTH= number
specifies the length, in bytes, of the area, if any, that you are supplying for
VSAM to generate the access method control block(s) . (See the WAREA
parameter.) The LENGTH value cannot exceed 65535 (X 1FFFF 1).

MACRF = ([ADRJ[,CNV][,KEY]
[,CFXINFX]
[,DDNIDSN]
[,DFRINDF]
[,DIR][,gg][,SKP]
[,ICl!NCI]
[,lfil[,OUT]
[,NISISIS]
[,NRMIAIX]
[,NRSIRST]
[,NSRILSRIGSR]
[,NUBIUBF])

specifies the kind(s) of processing you will do with the data set. The subpa
rameters must be meaningful for the data set. For example, if you specify
keyed access for an entry-sequenced data set, you cannot open the data set.
You must specify all the types of access you're going to use, whether you
use them concurrently or by switching from one to the other. The subparam
eters are shown in Figure 11 on page 27. They are arranged in groups, and
each group has a default value (indicated by underlining). You may specify
subparameters in any order. You may specify both ADR and KEY to process
a key-sequenced data set. You may specify both DIR and SEQ; with keyed
access, you may specify SKP as well. If you specify OUT and want merely to
retrieve some records as well as update, delete, or insert others, you need
not also specify IN.

MAR EA= address
specifies the address of an optional OPEN/CLOSE or TYPE =T option (CLOSE
macro) message area.

MLEN =number
specifies the length of an optional OPEN/CLOSE or TYPE =T option (CLOSE
macro) message area.

PASSWD =address
specifies the address of a field that contains the highest-level password
required for the type(s) of access indicated by the MACRF parameter. The
first byte of the field contains the length (in binary) of the password
(maximum of 8 bytes). Zero indicates that no password is supplied. If the
data set is password protected and you don't supply a required password in
the access method control block, VSAM may give the console operator the
opportunity to supply it when you open the data set.

STRNO =number
specifies the number of requests requiring concurrent data set positioning
VSAM is to be prepared to handle. A request is defined by a given request
parameter list or chain of request parameter lists. See "RPL Macro (Gen
erate a Request Parameter List)" on page 93 and "GENCB Macro (Generate
a Request Parameter List)" on page 57 for information on request parameter
lists.

52 MVS/370 VSAM Administration: Macro Instruction Reference

J

L

GENCB-ACB

WAR EA= address
specifies the address of an area in which the access method control block(s)
is to be generated. (Otherwise, VSAM obtains virtual storage space for the
area and returns its address to you in register 1 and its length in register 0.)
The area must begin on a fullword boundary. This parameter is paired with
the LENGTH parameter, which must be given if you specify an area address.

If you did not specify an area in which the access method control block was
to be generated, VSAM returns to your program the address of the area con
taining the control block(s) in register 1 and the length of the area in register
0. You can find out the length of each control block by dividing the length of
the area by the number of copies. The address of each control block can
then be calculated by this offset from the address in register 1. You can find
the length of an access method control block with the SHOWCB macro.

If you are generating control blocks by issuing several GENCBs, specifying
an area (WAREA and LENGTH parameters) for them enables you to address
all of them with one base register and to avoid repetitive requests for virtual
storage.

Example: GENCB Macro (Generate an Access Method Control Block)
In this example, a GENCB macro is used to identify a data set to be opened and
to specify the types of processing to be performed. The access method control
block generated by this example is built when the program is executed.

GEN CB GEN CB

ST

ACBADDR DS

FIELD DC

BLK=ACB,AM=VSAM,
BUFND=4,BUFNI=3,
BUFSP=l9456,
DDNAME=DATASETS,
EXLST=EXITS,
MACRF=(KEY,DIR,
SEQ,OUT),
PASSWD=FIELD,
STRN0=2
1,ACBADDR

F

FL1'6',C'CHANGE'

One copy generated; VSAM
gets the 1torage for it,
because the WAREA LENGTH
parameters have been
omitted.

Save the address of the access
method control block.
The address of the access method
control block is saved in ACBADDR.
CHANGE, the password, has 6 characters.

The GENCB macro's parameters are:

• BUFND specifies four 1/0 buffers for data; BUFNI specifies three 1/0 buffers
for index entries; and BUFSP specifies 19456 bytes of buffer space, enough
space to accommodate control intervals of data that are 4096 bytes and of
index entries that are 1024 bytes.

• DDNAME specifies that this access method control block is associated with a
DD statement named DATASETS.

• EXLST specifies that the exit list associated with this access method control
block is named EXITS.

• MACRF specifies keyed direct and keyed sequential processing for both
insertion and update.

• PASSWD specifies the location, FIELD, of the password provided.

• STRNO specifies that two requests will require concurrent positioning.

Chapter 2. VSAM Macro Formats and Examples 53

GENCB-EXLST

GENCB Macro (Generate an Exit List)
The syntax of the GENCB macro used to generate an exit list is:

[label] GENCB BLK=EXLST
[,AM=VSAM]
[,EODAD = (address[,AINJ[,L])]
[,JRNAD=(address[,!INJ[,L])]
[,LERAD =(address[,!! N][,L])]
(,SYNAD = (address[,AI NJ [,L])]
[,COPIES=number]
[,LENGTH= number]
[,WAREA=address]

The parameters of the GENCB macro can be expressed as absolute numeric
expressions. as character strings, as codes, as expressions that generate valid
relocatable A-type address constants, in register notation, as S-type address
constants, and as indirect S-type address constants. Appendix 8, "Operand
Notation" on page 129, gives all the ways of coding each subparameter for the
macros that work at execution.

label
is 1 to 8 characters that provide a symbolic address for the GENCB macro.

BLK=EXLST
specifies that you are generating an exit list.

AM=VSAM
specifies that the access method using this control block is VSAM.

[,EODAD = (address[,AINJ[,L])]
[,JRNAD = (address[,AI N](,L])]
[,LERAD = (address[,AIN][,L])]
[,SYNAD = (address[,AIN][,L])]

specify that you are supplying a routine for the exit named. If none of these
is specified, VSAM generates an exit list with inactive entries for all the exits.
The exits and values that can be specified for them are:

EODAD
specifies that an exit is provided for special processing when the end of
a data set is reached by sequential access.

JRNAD
specifies that an exit is provided for journaling as you process data
records.

LE RAD
specifies that an exit is provided for analyzing logical errors.

SYNAD
specifies that an exit is provided for analyzing physical errors.

address
is the address of a user-supplied exit routine. The address must imme
diately follow the equal sign.

54 MVS/370 VSAM Administration: Macro Instruction Reference

GENCB-EXLST

AIN
specifies that the exit routine is active (A) or not active (N). VSAM does
not enter a routine whose exit is marked not active.

L specifies that the address is that of an 8-byte field that contains the name
of an exit routine in a partitioned data set that is identified by a JOBLIB
or STEPLIB DD statement or in SYS1.LINKLIB. VSAM is to load the exit
routine for exit processing. If L is omitted, the address gives the entry
point of the exit routine in virtual storage. L may precede or follow the A
or N specification.

COPIES= number
specifies the number of copies of the exit list you want generated. GENCB
generates as many copies as you specify (default is 1) when your program is
executed. All copies are the same. You can use MODCB to change some or
all of the addresses in a list. (MODCB is described later in this chapter.)

LENGTH= number
specifies the length, in bytes, of the area, if any, that you are supplying for
VSAM to generate the exit list(s). (See the WAREA parameter.) The
LENGTH value cannot exceed 65535 (X' FFFF ').

WAREA =address
specifies the address of an area in which the exit list(s) is to be generated.
(Otherwise, VSAM obtains virtual storage space for the area and returns its
address in register 1 and its length in register 0.) The area must begin on a
fullword boundary. This parameter is paired with the LENGTH parameter,
which must be given if you specify an area address.

If you do not specify an area in which the exit list is to be generated, VSAM
returns to your program the address of the area in which the exit list(s) is
generated in registe-r 1, and the length of the area in register 0. You can find
the length of each exit list by dividing the length of the area by the number of
copies. The address of each exit list can then be calculated by this offset
from the address in register 1. You can find the length of an exit list with the
SHOWCB macro, described under "SHOWCB Macro (Display Fields of an Exit
List)" on page 104.

If you are generating control blocks by issuing several GENCBs, specifying
an area (WAREA and LENGTH) for them enables you to address all of them
with one base register and to avoid repetitive requests for virtual storage.

Chapter 2. VSAM Macro Formats and Examples 55

GENCB-EXLST

Example: GENCB Macro (Generate an Exit List)
In this example, a GENCB macro is used to generate an exit list when the
program is executed.

EXITS GENCB BLK=EXLST,

LTR
BNZ
ST

EDD EQU
LOGICAL EQU
ERROR DC
EXLSTAOR DS

EODAD=(EOD,N),
LERAD=LOGICAL
SYNAD=(ERROR,
A,L)
15,15
ERRORl
1,EXLSTADR

*
*
C'PHYSICAL'
F

If error, go to the SYNAO routine.
Address of the exit list is
saved.
EODAD routine.
LERAD routine.
Name of the SYNAD module.
Save area for exit-list
address.

The GENCB macro's parameters are:

• BLK specifies that an exit list is to be generated.

• EODAD specifies that the end-of-data routine is located at EOD and is not
active.

• LERAD specifies that the logical error routine is located at LOGICAL;
because neither A nor N is specified, the LERAD routine is marked active by
default.

• SYNAD specifies that the physical error routine's name is located at ERROR.

Because no area was specified in which the exit list was to be generated, VSAM
obtained virtual storage for the exit list and returned the address in register 1.
Immediately after the GENCB macro, the address of the exit list, contained in
register 1, is moved to EXLSTADR. EXLSTADR may be specified in a GENCB
macro that generates an access method control block or in a MODCB, SHOWCB,
or TESTCB macro that modifies, displays, or tests fields in an exit list.

56 MVS/370 VSAM Administration: Macro Instruction Reference

J

GENCB-RPL

GENCB Macro (Generate a Request Parameter List)
The syntax of the GENCB macro used to generate a request parameter list is:

[label] GENCB BLK=RPL
[,ACB=address]
[,AM=VSAM]
[,AREA= address]
[,AREALEN=number]
[,AR G =address]
[,COPIES= number]
[,ECB =address]
[,KEYLEN =number]
[,LENGTH= number]
[,MSGAREA =address]
[,MSGLEN =number]
[,NXTRPL=address]
[,OPTCD =([ADRICNVIKEY]

[,DIRISEQISKP]
[,ARDILRD]
[,FWDIBWD]
[,ASYISYN]
[,NSPINUPIUPD]
[,KEQIKGE]
[,FKSIGEN]
[,LOCIMVE])]

[,RECLEN =number]
[,TRANSi D =number]
[,WAREA=address]

The parameters of the GENCB macro can be expressed as absolute numeric
expressions, as character strings, as codes, as expressions that generate valid
relocatable A-type address constants, in register notation, as S-type address
constants, and as indirect S-type address constants. Appendix B, "Operand
Notation " on page 129 gives all the ways of coding each subparameter for the
macros that work at execution.

The parameters of the GENCB macro to generate a request parameter list are
optional in some cases, but required in others. It is not necessary to omit
parameters that are not required for a request; they are ignored. Thus, for
example, if you switch from direct to sequential retrieval with a request param
eter list, you don't have to zero out the address of the field containing the search
argument (ARG = address) .

label
is 1 to 8 characters that provide a symbolic address for the GENCB macro.
For addressing lists generated by GENCB, see the discussion of the COPIES
parameter.

BLK = RPL
specifies that you are generating a request parameter list.

ACB =address
specifies the address of the access method control block that identifies the
data set to which access will be requested. If you omit this parameter, you

Chapter 2. VSAM Macro Formats and Examples 57

GENCB-RPL

must issue MODCB to specify the address of the access method control
block before you issue a request. (MODCB is described later in this
chapter.)

AM=VSAM
specifies that the access method using this control block is VSAM.

AREA= address
specifies the address of a work area to and from which VSAM moves a data
record if you request it to do so (with the RPL parameter OPTCD = MVE). If
you request that records be processed in the 1/0 buffer (OPTCD = LOC),
VSAM puts into this work area the address of a data record within the 1/0
buffer.

AREALEN =number
specifies the length, in bytes, of the work area whose address is specified by
the AREA parameter. Its minimum for OPTCD = MVE is the size of a data
record (or the largest data record, for a data set with records of variable
length). For OPTCD = LOC, the area should be 4 bytes to contain the
address of a data record within the 1/0 buffer.

ARG =address
specifies the address of a field that contains the search argument for direct
retrieval, skip-sequential retrieval, and positioning. For a relative record
data set, the ARG field must be 4 bytes long. For direct or skip-sequential
processing, this field contains your search argument, a relative record
number. For sequential processing (OPTCD =(KEY.SEQ)), the 4 bytes are
required for VSAM to return the feedback RRN. For keyed access
(OPTCD =KEY), the search argument is a full or generic key; for addressed
access (OPTCD =ADR), it is an RBA. If you specify a generic key
(OPTCD =GEN), you must also specify in the KEY LEN parameter how many
of the bytes of the full key you are using for the generic key.

COPIES= number
specifies the number of copies of the request parameter list you want gener
ated. GENCB generates as many copies as you specify (default is 1) when
your program is executed.

The copies of a request parameter list can be used to:

• Chain lists together to gain access to many records with one request

• Define many requests to gain access to many parts of a data set concur
rently

All copies generated are identical; you must use MODCB to tailor them to
specific requests. MODCB is described in this chapter.

ECB =address
specifies the address of an event control block (ECB) that you may supply.
VSAM indicates in the ECB whether a request is complete or not (using
standard completion codes, which are described in Data Areas). You can
use the ECB to determine that an asynchronous request is complete before
issuing a CHECK macro. This parameter is always optional.

KEYLEN =number
specifies the length, in bytes, of the generic key (OPTCD =GEN) you are
using for a search argument (given in the field addressed by the ARG
parameter). This parameter is required with a search argument that is a

58 MVS/370 VSAM Administration: Macro Instruction Reference

GENCB-RPL

generic key. The number can be 1 through 255. For full-key searches, VSAM
knows the key length, which is taken from the catalog definition of the data
set when you open the data set.

LENGTH= number
specifies the length, in bytes, of the area, if any, that you are supplying for
VSAM to generate the request parameter list(s). (See the WAREA param
eter.) The LENGTH value cannot exceed 65535 (X 1 FFFF 1). You can find out
how long a request parameter list is with the SHOWCB macro, described
later in this chapter.

MSGAREA =address
specifies the address of an area that you are supplying for VSAM to send
you a message in case of a physical error. (The format of a physical error
message is given under "Physical Errors" in the chapter "Request Macros.")
This parameter is always optional.

MS GLEN= number
specifies the size, in bytes, of the message area indicated in the MSGAREA
parameter. The size of a message is 128 bytes; if you provide less than 128
bytes, no message is returned to your program. This parameter is required
when MSGAREA is coded.

NXTRPL=address
specifies the address of the next request parameter list in a chain. Omit this
parameter from the macro that generates the only or last list in the chain .
When you issue a request that is defined by a chain of request parameter
lists, indicate in the request macro the address of the first parameter list in
the chain. A single request macro can be defined by multiple request
parameter lists, such that a GET, for example, can cause VSAM to retrieve
two or more records.

OPTCD =([ADRICNVIKEY]
[,DIRISEQISKP]
[,ARDILRD]
[,FWDIBWD]
[,ASYISYN]
[,NSPINUPIUPD]
[,KEQIKGE]
[,FKSIGEN]
[,LOCIMVE])

specifies the subparameters that govern the request defined by the request
parameter list. Each group of subparameters has a default; subparameters
are shown in Figure 12 on page 95 with defaults underlined. Only one sub
parameter from each group is effective for a request. Some requests do not
require an subparameter from all of the groups to be specified. The groups
that are not required are ignored; thus, you can use the same request
parameter list for a combination of requests (GET, PUT, POINT. for example)
without zeroing out the inapplicable subparameters each time you go from
one request to another.

RECLEN =number
specifies the length, in bytes. of a data record being stored. If the records
you are storing are all the same length, you will not need to change RECLEN
after you set it. This parameter is required for PUT requests. For GET
requests, VSAM puts the length of the record retrieved in this field in the
request parameter list. It will be there if you update and store the record.

Chapter 2. VSAM Macro Formats and Examples 59

GENCB-RPL

TRANS ID= number
specifies a number that relates modified buffers in a buffer pool. Use in \.
shared resource applications and a description are in "Sharing Resources" '111
in VSAM Administration Guide.

WAREA =address
specifies the address of an area in which the request parameter list(s) is to
be generated. (Otherwise, VSAM obtains virtual storage space for the area
and returns its address to you in register 1 and its length in register 0.) The
area must begin on a fullword boundary. This parameter is paired with the
LENGTH parameter, which must be given if you specify an area address.

If you do not specify an area in which the request parameter list is to be
generated, VSAM returns to your program the address of the area in which
the request parameter list(s) was generated in register 1, and the length of
the area in register 0. You can find the length of each list by dividing the
length of the area by the number of copies. You can then calculate the
address of each list by using the length of each list as an offset.

If you are generating control blocks by issuing several GENCBs, specifying
an area (WAREA and LENGTH parameters) for them enables you to address
all of them with one base register and to avoid repetitive requests for virtual
storage.

Building a Chain of Request Parameter Lists
When GENCB is used to build a chain of request parameter lists, the request
parameter lists may be chained using only GENCB macros or using GENCB and
MODCB macros together. When only GENCB is used, the request parameter
lists are created in reverse order, as follows:

SECOND GENCB BLK=RPL
LR 2,1

FIRST GENCB BLK=RPL,NXTRPL=(2)

SECOND GENCB creates the second request parameter list, which makes its
address available for the first request parameter list. The address of the request
parameter list is returned in register 1 and is loaded into register 2. FIRST
GENCB creates the first request parameter list and supplies the address of the
next request parameter list using register notation. GENCB and MODCB macros
may be used together to create a chain of request parameter lists, as follows:

GENCB BLK=RPL,COPIES=2
LR 2,0
SRL 2, 1
LR 3, 1
LA 4,0(2,3)
MODCB RPL=(3),NXTRPL=(4)

The GEN CB macro creates two request parameter lists. The length of the
parameter lists is returned in register 0 and loaded into register 2. The address
of the area in which the lists were created (and, therefore, the address of the
first one) is returned in register 1 and loaded into register 3. The SRL statement
divides the total length of the area (register 2) by 2. The LA statement loads the
address of the second request parameter list into register 4. The MODCB macro
modifies the first request parameter list (register 3) by supplying the address of
the second request parameter list (register 4) in the NXTRPL parameter.

Each request parameter list in a chain should have the same OPTCD subparam
eters. Having different subparameters may cause logical errors. You can't

60 MVS/370 VSAM Administration: Macro Instruction Reference

L

GENCB-RPL

chain request parameter lists for updating or deleting records-only for retrieving
records or storing new records. You can't process records in the 1/0 buffer with
chained request parameter lists. (OPTCD = UPD and LOC are invalid for chained
request parameter lists.)

With chained request parameter lists, a POINT, a sequential or skip-sequential
GET, or a direct GET with positioning requested (OPTCD = NSP) causes VSAM to
position itself at the record following the record identified by the last request
parameter list in the chain.

Example: GENCB Macro (Generate a Request Parameter List)
In this example, a GENCB macro is used to generate a request parameter list.

ACCESS GENCB BLK=RPL,

ACCESS ACB
WORK OS
SEARCH DS
MESSAGE DS

ACB=ACCESS,
AM=VSAM,
AREA=WORK
AREALEN=125,
ARG=SEARCH,
MSGAREA=MESSAGE,
MSGLEN=128,
OPTCD=(SKP,UPD)

MAC RF= (SKP, OUT)
CL125
CLB
CL128

The GENCB macro's parameters are:

• BLK specifies that a request parameter list is to be generated.

• ACB specifies that the request parameter list is associated with a data set
and processing options identified by ACCESS.

• AREA and AREALEN specify a 125-byte work area to be used for processing
records.

• ARG specifies the address of the search argument.

• MSGAREA and MSGLEN specify a 128-byte area to be used for physical-error
messages.

• OPTCD specifies the subparameters that govern the request defined by the
request parameter list identified by SKP and UPD.

Chapter 2. VSAM Macro Formats and Examples 61

GET

GET Macro {Retrieve a Record)
The syntax of the GET macro is:

I [label] I GET I RPL =address

where:

label
is 1 to 8 characters that provide a symbolic address for the GET macro.

RPL=address
specifies the address of the request parameter list that defines this GET
request. You may specify the address in register notation (using a register
from 1 through 12, enclosed in parentheses) or specify It with an expression
that generates a valid relocatable A-type address constant.

Example 1: Keyed-Sequential Retrieval (Forward)
In this example, a GET macro is used to sequentially retrieve records by key.
Retrieval is in a forward direction. Fixed-length, 100-byte records are moved to a
work area. Processing is synchronous.

INPUT ACB MACRF=(KEY, All MACRF and OPTCD subparameters specified
SEQ,IN} are defaults and could have been omitted.

RETRVE RPL ACB=INPUT,
AREA= IN,
AREALEN=l88,
OPTCD=(KEY,SEQ,
SYN,NUP,MVE}

LOOP GET RPL=RETRVE

LTR 15,15
BNZ ERROR

B LOOP
ERROR

IN OS CLHl0

This GET or identical GETs can be issued,
with no change in the request parameter
list, to retrieve subsequent records in
key sequence.

Request was not accepted, or failed.

IN contains a data record after
GET is completed.

The records are retrieved in key sequence in a forward direction. No search
argument has to be specified; VSAM is positioned at the first. record in key
sequence when the data set is opened, and the next record is retrieved automat
ically as each GET is issued. The branch to ERROR could also be taken if the
end of the data set is reached.

82 MVS/370 VSAM Administration: Macro Instruction Reference

L

Example 2: Keyed-Sequential Retrieval (Backward)
This example is the same as the previous one, except that a POINT macro
instruction is issued to the last record in the data set and the records are
retrieved in a backward direction.

INPUT ACB

RETRVE RPL

EXLSTl EXLST
POINT
LTR
BNZ

LOOP GET
LTR
BNZ

B
EDD EQU
ERROR

IN OS

DDNAME=INPUT,
EXLST=EXLSTl
ACB=INPUT,
AREA= IN,
AREALEN=100,
OPTCD=(KEY,SEQ,
LRD,BWD)
EODAD=EOD
RPL=RETRVE
15,15
ERROR
RPL=RETRVE
15,15
ERROR

LOOP
*

CL100

Example 3: Sklp·Sequentlal Retrieval

Define RPL for last record
positioning and backward
processing.

Define end of data. Position to last
record (no argument is required).

Get previous record.

Come here for end of data.
Request failed.

Area for retrieved record.

GET

In this example, a GET macro is used to retrieve variable-length records syn
chronously. Records are to be processed in the 1/0 buffer. The search argu
ment is full key, compared greater-than-or-equal; key length is eight bytes.

The records are retrieved in key sequence, but some records are skipped. Skip
sequential retrieval is similar to keyed-direct retrieval, except that you must
retrieve records in ascending sequence (with skips) rather than in a random
sequence.

LOOP

GEN CB

LTR
BNZ
LR
GENCB

LTR
BNZ
LR

BLK=ACB,
DDNAME=INPUT,
MACRF=(KEY,
SKP,IN)
15,15
CHECK0
2,1
BLK=RPL,
ACB=(2),
AREA=RCDADDR,
AREALEN=4,
ARG=SRCHKEY,
OPTCD=(KEY ,SKP,
SYN,NUP,KGE,
FKS, LDC)
15,15
CHECK0
3,1

VSAM gets an area in virtual
storage to generate the access
method control block and
returns the address in register 1.

Address of the request parameter
1 i st.

MVC SRCHKEY,source Search argument for retrieval, moved in
in from a table or a transaction record.

GET RPL=(3)
LTR 15,15

Chapter 2. VSAM Macro Formats and Examples 83

GET

BNZ ERROR
SHOWCB AREA=RCDLEN, Display the length of the record.

FIELDS=RECLEN,
LENGTH=4,
RPL=(J)

LTR 15,15
BNZ CHECKe

ERROR
CH EC Ke

B

RCDADDR OS

SRCHKEY OS
RCDLEN OS

LOOP

F

CLB
F

Request was not accepted, or failed.
Generation or display failed.

WorK area into which VSAM puts the address
of a data record within the 1/0 buffer
(OPTCD=LOC). Search argument for retrieval.
For displaying variable record lengths.

The macros and instructions are as follows:

• The first GENCB generates an access method control block, which specifies
keyed, skip-sequential, and input processing. The address of the access
method control block is stored in register 2.

• The second GENCB generates a request parameter list. The address of the
request parameter list is stored in register 3.

• MVC moves the search argument into SRCHKEY, the area defined for the
search argument.

• GET specifies that the record pointed at by the request parameter list whose
address is in register 3 is to be retrieved. Records are retrieved by a skip
sequential search through the sequence set of the index.

64 MVS/370 VSAM Administration: Macro Instruction Reference

GET

Example 4: Addressed-Sequential Retrleval
In this example, one GET macro is used to retrieve multiple fixed-length, 20-byte
records. The records are moved to a work area (only option).

BLOCK ACB DDNAME=INPUT,
MACRF=(ADR,SEQ,IN)

GEN CB BLK=RPL,
COPIES= HI,
ACB=BLOCK,
OPTCD=(ADR,SEQ,
SYN,NUP,MVE)

LTR 15,15
BNZ CHECKS
LA 3,10 Number of lists(lS).
LR 2,1 Address of the first list.
LR 1,e Length of all the lists.

Registers e and 1 contain length and
address of the generated control blocks
when VSAM returns control after GENCB.

SR e,e Prepare for following division.
DR e,3 Divide number of lists into length

of all the 1 i sts.
LR 3,1 Save the resulting length of a

single list for an offset.
LR 4,2 Save address of the first list.
LA 5,RECAREA Address of the first work area.

Do the following 6 instructions le times
to set up all the request parameter lists.
The 18th time, register 4 must be set
to e to indicate the last request
parameter list in the chain.

AR 4,3 Address the next list.
MO DCB RPL=(2), In each request parameter list,

NXTRPL=(4), indicate the address of the next
AREA=(5), list and the address and length
AREALEN=2S of the work area.

LTR 15,15
BNZ CHECKS
AR 2,3 Address the next list.
LA 5,28(5) Address the next work area.

Restore register 2 to address the
first list before continuing to
process.

LOOP GET RPL=(2)
LTR 15,15
BNZ ERROR

Process the le records that have
been retrieved by the GET.

B LOOP

CHECKS
ERROR Display the feedback field (FIELDS~FDBK)

of each request parameter list to find out
which one had an error.

RECAREA DS CL2ee Space for a work area for each of
the le request parameter lists.

The GENCB macro generates 10 request parameter lists; the lists are subse
quently chained together by using the MODCB macro to modify the NXTRPL
parameter in each copy. Because SEQ is specified in each request parameter
list and no previous request has been issued against the access method control
block since it was opened, retrieval begins at the beginning of the data set.

Chapter 2. VSAM Macro Formats and Examples 65

GET

Each time the GET macro is executed, VSAM is positioned at the next record in
RBA sequence. VSAM moves each record into the work area provided for the '\
request parameter list that identifies the record. ...,,,,,,

If an error occurred for one of the request parameter lists in the chain and you
have supplied error-analysis routines, VSAM takes a LERAD or SYNAD exit
before returning to your program. Register 15 is set to indicate the status of the
request. A code of 0 indicates that no error was associated with any of the
request parameter lists. Any other code indicates that an error occurred for one
of the request parameter lists. You should issue a SHOWCB macro for each
request parameter list in the chain to find out which had an error. VSAM doesn't
process any of the request parameter lists except the one with an error.

Example 5: Sequential Retrieval for a Relative Record Data Set
In this example, a GET macro is used to sequentially retrieve records by relative
record number. Fixed-length, 100-byte records are moved to a work area. Proc
essing is synchronous.

INPUT ACB MACRF=(KEY,SEQ, All MACRF and OPTCD subparameters specified
IN) are defaults and could have been omitted.

RETRVE RPL ACB=INPUT,
AREA= IN,
AREALEN=l00,
ARG=RCDNO,
OPTCD=(KEY,SEQ,
SNY,NUP,MVE)

LOOP GET RPL=RETRVE

LTR 15 , 15
BNZ ERROR

B LOOP
ERROR

IN DS CLHJEJ

RCDNO OS CL4

This GET or identical GETs can be issued, with
no change in the RPL, to retrieve subsequent
records in relat i ve record number sequence.

Request was not accepted or it failed.

IN contains a data record after GET
is completed.
VSAM returns relative record number
of retrieved record in this field.

The records are retrieved in relative record number sequence. Empty records
are bypassed for sequential retrieval. A 4-byte search argument must be speci
fied. The relative record number of each record retrieved is stored in the search
argument. VSAM is positioned at the first relative record when the data set is
opened, and the next nonempty record is retrieved automatically as each GET is
issued. The branch to ERROR would also be taken if the end of the data set is
reached.

66 MVS/370 VSAM Administration: Macro Instruction Reference

GET

Example 6: Keyed-Direct Retrieval
In this example, a GET macro is used to retrieve fixed-length, 100-byte records
directly by key. The key length is 15 bytes; the search argument is a 5-byte
generic key, compared equal. The control blocks are generated at assembly.

INPUT ACB MACRF=(KEY,
OIR,IN)

RETRVE RPL ACB=INPUT, You specify all parameters for the request
AREA=IN, in the RPL macro.
AREALEN=4,
OPTCO=(KEY,
OIR,SYN,NUP,
KEQ,GEN,LOC),
ARG=KEYAREA,
KEYLEN=5

LOOP MVC KEYAREA,SOURCE Search argument for retrieval, moved in
from a table or a transaction record.

GET RPL=RETRVE This GET or identical GETs can be issued
with no change in the RPL: Specify each
new search argument in the field KEYAREA.

LTR 15,15
BNZ ERROR

Process the record.

B LOOP
ERROR Request was not accepted, or failed.

IN OS CL4 VSAM puts here the address of the record
within the I/0 buffer.

KEYAREA OS CL5 You specify the search argument here.

The generic key specifies a class of records. For example, if you search on the
first third of employee number, VSAM positions at and retrieves the first of pre
sumably several records that start with the specified characters. To retrieve all
the records in that class, either switch to sequential access or to a full-key
search with a greater-than-or-equal comparison.

Chapter 2. VSAM Macro Formats and Examples 67

GET

Example 7: Addressed-Direct Retrieval
In this example, a GET macro is used to retrieve fixed-length 20-byte records.
The records are to be moved to a work area.

BLOCK ACB DDNAME=INPUT, Access method control block
MACRF=(ADR, DIR, generated at assembly .
IN)

GEN CB BLK=RPL, ARG=SRCHADR, AREA=IN, AREALEN=2S
COPIES=l, Request parameter list generated
ACB=BLOCK, at execution.
OPTCD=(ADR , DIR,
SYN, NUP, MVE)

LTR 15,15
BNZ CHECKS
LR 2, 1 Address of the list.

LOOP MVC SRCHAOR, Search argument for retrieval;
calculated or moved in from a table
or a transaction record.

GET RPL=(2)
LTR 15, 15
BNZ ERROR

Process the record.

B LOOP
CHECKS Generation failed.
ERROR Request was not accepted, or failed.

IN OS CL2S VSAM puts a record here for each GET
request.

SRCHAOR OS CL4 You specify the RBA search argument
here for each request.

The RBA provided for a search argument must match the RBA of a record.
Keyed insertion and deletion of records in a key-sequenced data set will prob
ably cause the RBAs of some records to change. Therefore, if you process a
key-sequenced data set by addressed-direct access (or by addressed-sequential
access using POINT), you need to keep track of changes. You can use the
.IRNAD exit for this purpose. See "EXLST Macro (Generate an Exit List)" on
page 47.

Example 8: Switch from Direct to Sequential Retrieval
In this example, GET macros are used to retrieve fixed-length, 100-byte records.
The retrieval is via an alternate index path defined with the nonunique key
option. Every time a nonunique key is retrieved, the program switches to
sequential processing to retrieve the other records with the same key. The
control blocks were generated at assembly, but the MODCB macro is used to
modify the request parameter list to permit switching from keyed-direct to keyed
sequential retrieval. For the direct request preceding sequential requests, the
search argument is an 8-byte, generic key, compared equal. Positioning is
requested for direct requests.

68 MVS/370 VSA M Administration: Macro Instruction Reference

~

GET

INPUT ACB MACRF=(KEY,DIR, Both direct and sequential
SEQ,IN) access specified.

RETRVE RPL ACB=INPUT, NSP specifies that VSAM is
AREA= IN, to remember its position.
AREALEN=100,
OPTCD=(KEY ,DIR,
SYN,NSP,KEQ,
GEN,MVE),
ARG=KEYAREA,
KEYLEN=8

LOOP MVC KEYAREA,source Search argument for direct retrieval;
moved in from a table or a transaction
record.

LOOPl GET RPL=RETRVE
LTR 15,15
BNZ ERROR

SHOWCB RPL=RETRVE, Extract feedback information.
AREA=FDBAREA,
FIELDS=FDBK

L TR 15,15
BNZ ERROR
CLI ERRCD,8 Does a duplicate key follow?
BE SEQ Yes; retrieve duplicates sequentially
B LOOP No; retrieve next record in direct mode.

SEQ MOD CB RPL=RETRVE, Alter request parameter list for
OPTCD=SEQ sequential access.

LTR 15,15
BNZ CHECKO

SEQ GET GET RPL=RETRVE Do sequential retrieval.
LTR 15,15 Test for error.
BNZ ERROR

SHOW CB RPL=RETRVE, Extract feedback information.
AREA=FDBAREA,
FIELDS=FDBK

LTR 15,15
BNZ ERROR
CLI ERRCD,8 Does a duplicate key follow?
BE SEQGET Yes; retrieve sequentially.

DIR MOD CB RPL=RETRVE, Alter request parameter list
OPTCD=DIR for direct access.

LTR 15,15
BNZ CHECKO
B LOOP Prepare new search argument.

ERROR Request was not accepted, or
failed.

CHECKO Modification failed.

IN DS CL100 VSAM puts retrieved records
here.

KEY AREA DS CLB Specify the generic key for
a direct request here.

FOB AREA DS OF Feedback area for SHOWCB.
DS lC Reserved.

c TYPE CD DS lC Error type code.
CMPCD DS lC Component code.
ERR CD DS lC Reason code.

Chapter 2. VSAM Macro Formats and Examples 69

MNTACQ

MNTACQ Macro (Mount Acquire)
The syntax of the MNTACQ macro is:

I [label] I MNTACQ I RPL=address

RPL=address
specifies the address of the RPL that identifies your opened VSAM data set
and your arguments. The following RPL parameters have meaning for
MNTACQ:

• ACB =address
identifies your VSAM data set.

• ARG =address
identifies your arguments. address points to a parameter list, aligned on a
fullword boundary as follows:

Offset Length Contents

0 4 Feedback area: address of an
ECB WAIT list

4 6 VOLSER, target volume
10 1 Reserved
11 Argument entry count (N)

(N = 1 to 255)
12 4N Argument entries
12 +4(N -1) 4 RBA for which an ACQUIRE is

requested.

The maximum number of arguments is 255.

For the specified list, MNTACQ will acquire (stage) the data cylinders corre
sponding to each RBA for the one given volume. The volume will be mounted if
necessary.

• OPTCD = ({ ADR I KEY}
,{ASYISYN}
,{KEQIKGE}
,FKS)

ADR is valid for entry-sequenced data set, error for key-sequenced data set
or relative record data set.

KEY is valid for key-sequenced data set and relative record data set. error
for entry-sequenced data set.

If ASY is specified, you cannot WAIT on the RPLECB field for MNTACQ or
ACQRANGE. You use the address placed in the parameter list feedback
area. This address points to a list of ECBs (in standard WAIT list format)
which you may use in place of the RPLECB field.

GEN is not supported; If specified, it will give an error indication.

All other OPTCD parameters are not applicable, and, if specified, are ignored
with no error indication.

72 MVS/370 VSAM Administration: Macro Instruction Reference

·~

MNTACQ

Because your request may result in the staging of numerous cylinders, a single
ECB is not sufficient for an asynchronous MNTACQ request. The RPLECB field is
inoperative for the MNTACQ interface. Upon return from an asynchronous
MNTACQ, the feedback area of the MNTACQ parameter list will contain the
address of a standard ECB WAIT list. You must then use this list in conjunction
with the WAIT macro or you may use the list in conjunction with the EVENTS
macro of MVS. An asynchronous request must conclude with either CHECK,
ENDREQ, or CLOSE.

At the conclusion of this macro, the RPL is disconnected in a manner similar to
that of a direct VSAM request. Any positioning in effect prior to execution of this
macro will be lost. You may have to reposition. Chained RPLs are not sup
ported by MNTACQ.

Chapter 2. VSAM Macro Formats and Examples 73

MODCB-ACB

MODCB Macro (Modify an Access Method Control Block)
The syntax of the MO DCB macro used to modify an access method control block
is:

[label] MO DCB ACB =address
[BSTRNO =number]
[,BUFND =number]
[,BUFNI =number]
[,BUFSP =number]
[,CATALOG=YESINOJ
[,CRA=SCRAIUCRA]
[,DDNAME = ddname]
[,EXLST =address]
[,MACRF = ([ADR][,CNV][,KEY]

[,CFXINFX]
[,DDNIDSN]
[,DFRINDF]
[,DIR][,SEQ][,SKP]
[,ICllNCI]
[,IN][,OUT]
[,NISISIS]
[,NRMIAIX]
[,NRSIRST]
[,NSRILSRIGSR]
[,NUBIUBF])]

[,MAREA=address]
[,MLEN =number]
[,PASSWD=address]
[,STRNO =number]

The parameters of the MO DCB macro can be expressed as absolute numeric
expressions, as character strings, as codes, as expressions that generate valid
relocatable A-type address constants, in register notation, as S-type address
constants, and as indirect S-type address constants. Appendix B, "Operand
Notation" on page 129, gives all the ways of coding each parameter for the
macros that work at execution.

label
is 1 to 8 characters that provide a symbolic address for the MODCB macro.

ACB =address
specifies the address of the access method control block to be modified.
The data set identified by the access method control block must not be
opened. A request to modify the access method control block of an open
data set will fail.

Note: The remaining parameters represent parameters of the ACB macro that
can be modified. The value specified replaces the value, if any, presently in the
access method control block. There are no defaults. For an explanation of these
parameters, see "ACB Macro (Generate an Access Method Control Block)" on
page 24.

If MODCB is used to modify a MACRF subparameter, other subparameters are
unaffected, except when they are mutually exclusive. For example, if you specify

74 MVS/370 VSAM Administration: Macro Instruction Reference

.J

MODCB-ACB

MACRF =ADR in the MODCB and MACRF =KEY is already indicated in the
control block, both ADR and KEY will now be indicated. But, if you specify
MACRF = UBF in the MODCB and NUB is indicated, only UBF will now be indi
cated.

If MODCB RPL is used to change the address of an ACB, you must first issue an
ENDREQ macro.

Note: If a user issues a MODCB for a non-VSAM and non-VTAM ACB, unpredict
able results will occur.

Example: MODCB Macro (Modify an Access Method Control Block)
In this example, a MODCB macro is used to modify the name of the exit list in an
access method control block.

MODCB ACB=BLOCK,
EXLST=EGRESS

BLOCK was generated at
assembly.

Chapter 2. VSAM Macro Formats and Examples 75

MODCB-EXLST

MODCB Macro (Modify an Exit List)
The syntax of the MODCB macro used to modify an exit list is:

[label] MO DCB EXLST =address
[,EODAD = ([address][,AINJ[,L])]
[,JRNAD =([address][,AINJ[,L])]
[,LERAD = ([address][,AINJ[,L])]
[,SYNAD = ([address][,Al N][,L])]

The subparameters of the MODCB macro can be expressed as absolute numeric
expressions, as character strings, as codes, as expressions that generate valid
relocatable A-type address constants, in register notation, as S-type address
constants, and as indirect S-type address constants. Appendix B, "Operand
Notation" on page 129, gives all the ways of coding each parameter for the
macros that work at execution.

label
is 1 to 8 characters that provide a symbolic address for the MODCB macro.

EXLST =address
specifies the address of the exit list to be modified. You can modify an exit
list at any time-that is, before or after opening the data set(s) for which the
list indicates exit routines. You cannot, however, add an entry to the exit list
if it will change the exit list's length; the exit list must already be large ...,,
enough to contain the new exit address. The order in which addresses are
stored in the EXLST control block is: EODAD, SYNAD, LERAD, JRNAD, and
UPAD. For example, if you generate an exit list with only the LERAD exit,
you can add entries for EODAD and SYNAD later; you cannot add the JRNAD
exit address, because doing so would increase the size of the EXLST control
block. The MODCB macro does not support the UPAD user exit.

The remaining parameters represent parameters of the EXLST macro that can
be modified or added to an exit list. For an explanation of these parameters, see
"EXLST Macro (Generate an Exit List)" on page 47.

Note: If the JRNAD exit is changed for an OPEN ACB, then the ACB must be
closed and reopened in order to use the modified JRNAD exit.

Example: MODCB Macro (Modify an Exit List)
In this example, a MODCB macro is used to activate an exit in an exit list.

MODCB EXLST=(*, Indirect notation is used to

EDD DC
EXLSTADR OS

EXLSTADR), specify the address of the
EODAD 2 (EOD,L,A) exit list, which was generated

at execution.

C'ENDUP'
F When the exit list was generated,

its address was saved here.

The MODCB macro's parameters are EXLST, which specifies that the address of
the exit list to be modified is located at EXLSTADR, and EODAD, which specifies
that the entry for the end-of-data routine is to be marked active in the exit list
whose address resides at EXLSTADR. The name of the end-of-data routine,
ENDUP, is located at EOD.

78 MVS/370 VSAM Administration: Macro Instruction Reference

MODCB-RPL

MODCB Macro (Modify a Request Parameter List)
The syntax of a MODCB macro used to modify a request parameter list is:

[label] MO DCB RPL =address
[,ACB=address]
[,AREA=address]
[,AREALEN =number]
[,ARG =address]
[,ECB =address]
[,KEY LEN= number]
[,MSGAREA =address]
[,MSGLEN =number]
[,NXTRPL=addressJ
[,OPTCD = ([ADRICNVIKEY]

[,DIRISEQISKP]
[,ARDILRD]
[,FWDIBWD]
[,ASYISYN]
[,NSPINUPIUPD]
[,KEQIKGE]
[,FKSIGEN]
[,LOCIMVE])]

[,RECLEN =number]
[,TRANSID =number]

The parameters of the MO DCB macro can be expressed as absolute numeric
expressions, as character strings, as codes, as expressions that generate valid
relocatable A-type address constants, in register notation, as S-type address
constants, and as indirect S-type address constants. Appendix B, "Operand
Notation" on page 129, gives all the ways of coding each parameter for the
macros that work at execution.

label
is 1 to 8 characters that provide a symbolic address for the MODCB macro.

RPL=address
specifies the address of the request parameter list to be modified. You may
not modify an active request parameter list; that is, one that defines a
request that has been issued but not completed . To modify such a request
parameter list, you must first issue a CHECK or an ENDREQ macro.

Note: The remaining parameters represent parameters of the RPL macro that
can be modified. The value specified replaces the value, if any, presently in the
request parameter list. There are no defaults. For an explanation of these
parameters, see "GENCB Macro (Generate a Request Parameter List)" on
page 57.

If MODCB is used to modify an OPTCD subparameter within a group of subpa
rameters, the current subparameter for that group is changed, because only one
subparameter in a group is effective at a time. Only the OPTCD subparameter
specified is changed; all other OPTCD subparameters remain unchanged.

Chapter 2. VSAM Macro Formats and Examples 77

MODCB-RPL

Example: MODCB Macro (Modify a Request Parameter List)
In this example, a MODCB macro is used to modify the record length field in a
request parameter list.

Note: This example also shows the one exception to GENCB, MODCB,
SHOWCB, and TESTCB building a parameter list and passing it to the control
block manipulation module in register 1. In this example, the RPL address (in
register 2) would be loaded into register 1 and the RECLEN value (in register 3)
would be loaded into register 0. These registers would be passed to the control
block manipulation macro. This will occur if the LIST, EXECUTE, or GENERATE
form of the MODCB macro is not used and the only parameter specified, besides
RPL, is RECLEN.

L 3,length
MODCB RPL=(2),

RECLEN=(3)

Load the new record length.
Register 2 contains the address
of the request parameter list.
Register 3 contains the record
length.

The MODCB macro's parameters are:

• RPL specifies that register 2 contains the address of the request parameter
list to be modified.

• RECLEN specifies that the record length field is to be modified. The contents
of register 3 will replace any current value in the RECLEN field.

78 MVS/370 VSAM Administration: Macro Instruction Reference

MRKBFR Macro (Mark Buffer)
The syntax of the MRKBFR macro is:

MRKBFR MARK= {DINVALIDIXINVALIDIOUTIRLS}
,RPL=address

MARK= {DINVALIDIXINVALIDIOUTIRLS}

MRKBFR

specifies whether to mark for output or to release from exclusive control or
shared status the buffer identified in the RPL. To do both, issue MRKBFR
twice, once with MARK=OUT, again with MARK=RLS.

DINVALIDIXINVALID
specifies whether to mark the data component or index component
buffers invalid. The buffers to be invalidated are identified as those
which contain records, whose RBA values are within the RBA range
pointed to by the RPL ARG address. DINVALID specifies that the data
component buffers are to be marked invalid; XINVALID specifies that the
index component buffers are to be marked invalid.

OUT
indicates that the buffer is to be marked for output. The buffer is kept
under exclusive control or in shared status.

RLS
indicates that the buffer is to be released from exclusive control or
shared status.

RPL =address
specifies the addreH of the request parameter list that defines the MRKBFR
request. Use the RPL used by SCHBFR or GET to locate the buffer being
marked or released. These RPL parameters have meaning for MRKBFR:

• ACB =address
• ARG =address

The address of the 8-byte field that contains the beginning and ending
RBAs of the range to be searched on.

• ECB =address
• TRANSID=number

All other RPL parameters are ignored. RPLs are assumed not to be chained.
OPTCD = LOC is assumed.

If the ACB to which the RPL is related has MACRF = GSR, the program that
issues MRKBFR must be in supervisor state with protection key 0 to 7.

Chapter 2. VSAM Macro Formats and Examples 79

OPEN

OPEN Macro {Connect Program and Data)
The syntax of the OPEN macro is:

[label] OPEN (address,[(options)], ...)

label
is 1 to 8 characters that provide a symbolic address for the OPEN macro.

address
specifies the address of the ACB or DCB for the data set(s) to be opened.
You may specify the address in register notation (using a register from 2
through 12, in parentheses) or specify it with an expression that generates a
valid relocatable A-type address constant. If you use register notation to
open only one data set, you must enclose the expression identifying the reg
ister in two sets of parentheses: for example, OPEN ((2)).

options
are options parameters for use only in opening non-VSAM data sets. If any
options are specified with the address of an access method control block,
VSAM ignores them.

Because the OPEN parameters are positional, include a comma for options (even
if you don't specify options) before a subsequent parameter.

Example: OPEN Macro
In this example, an OPEN macro is used to open two data sets. The access
method control block for one data set was generated at execution; the other was
generated at assembly.

GENCB BLK=ACB, An access method control block.
DDNAME=DATA

LTR 15,15
BNZ ERROR
LR 2, l
OPEN (BLOCK,,(2))

BLOCK ACB

Address of the control block.
A label is used for the access
method control block generated
by ACB; register notation is
used for the one generated by
GENCB. The two comnas indicate
the omission of options.
Another access method control
block.

80 MVS/370 VSAM Administration: Macro Instruction Reference

POINT

POINT Macro (Position for Access)
The syntax of the POINT macro is:

I [label] I POINT I RPL=address

label
is 1 to 8 characters that provide a symbolic address for the POINT macro.

RPL =address
specifies the address of the request parameter list that defines the request.
You may specify the address in register notation (using a register from 1
through 12, enclosed in parentheses) or specify it with an expression that
generates a valid relocatable A-type address constant.

Example: Position with POINT
In this example, the POINT macro is used to position at a record identified by a
full key (5-byte) search argument, compared equal.

BLOCK ACB
POSITION RPL

LOOP MVC

POINT
LTR
BNZ

LOOPl GET
LTR
BNZ

DDNAME=IO
ACB=BLOCK,
AREA=WORK,
AREALEN=5B,
ARG=SRCHKEY,
OPTCD=(KEY,SEQ,
SYN, KEQ, FKS)

Default MACRF subparameters sufficient.
ARG parameter and KEQ and FKS
OPTCD subparameters define the
POINT request.

SRCHKEY,source Search argument for positioning, moved
in from a table or a transaction record.

RPL=POSITION
15,15
ERROR
RPL=POSITION
15,15
ERROR

Process the record. Decide whether to skip to another position (forward or back
ward).

BE
B

ERROR
SRCHKEY OS
WORK OS

LOOP
LOOPl

CL5
CL5B

Yes; skip.
No; continue in consecutive sequence.
Request was not accepted, or failed.
Search argument for positioning.
VSAM puts a record here for each GET request.

Chapter 2. VSAM Macro Formats and Examples 81

PUT

PUT Macro {Store a Record)
The syntax of the PUT macro is:

I [label] I PUT I RPL=address

label
is 1 to 8 characters that provide a symbolic address for the PUT macro.

RPL=address
specifies the address of the request parameter list that defines the request.
You may specify the address in register notation (using a register from 1
through 12, enclosed in parentheses) or specify it with an expression that
generates a valid relocatable A-type address constant.

Note: If the PUT macro is being used to load records into an empty data set, the
STRNO value in the access method control block must be 1, and RPL
OPTCD =DIR must not be specified. However, for an empty relative record data
set, DIR is allowed.

Example 1: Keyed-Sequential Insertion
In this example, a PUT macro is used to perform keyed-sequential insertion.
Variable-length records with a key length of 15 bytes are to be moved from a
work area. Some records will be inserted between existing records; other
records will be added at the end of the data set.

BLOCK ACB DDNAME=OUTPUT,
MACRF=(KEY,SEQ,OUT)

LIST RPL ACB=BLOCK,AREA=BUILDRCD,

LOOP L

MO DCB

LTR
BNZ
PUT
LTR
BNZ
B

CH EC KO
ERROR

BUILDRCD OS

AREALEN=250,0PTCD=(KEY,SEQ,
SYN,NUP,MVE)

2,source

RPL=LI ST,
RECLEN=(2)
15,15
CHECKO
RPL=LIST
15,15
ERROR
LOOP

CL250

Put length of record to be
inserted into register.
Indicate record length in
request parameter list.

Modification failed.
Request was not accepted, or failed.

Work area for building records.

The request parameter list, LIST, is associated with the access method control
block, BLOCK. The length of each record to be inserted is put into register 2,
which is subsequently used by MODCB to change the record length in the
request parameter list. The record length is, therefore, correctly indicated in the
request parameter list before the PUT macro is issued. The execution of the
PUT macro causes VSAM to skip ahead (never back) to the next record.

82 MVS/370 VSAM Administration: Macro Instruction Reference

PUT

Example 2: Recording RBAs When Loading
In this example, a PUT macro is used to record the RBAs of records as they are
loaded into a key-sequenced data set. The RBAs are recorded in a table with
20-byte entries (4 bytes for RBA, 15 bytes for associated key, and 1 byte of
padding so the next entry begins on a fullword boundary).

LA 3,RBATABLE

LOOP L 2,source

MOO CB RPL=LIST I
RECLEN=(2)

LTR 15,15
BNZ CHECKO
PUT RPL=LIST
LTR 15,15
BNZ ERROR
SHOWCB AREA=(3),

FIELOS=RBA,
LENGTH=4,
RPL=LIST

LTR 15,15
BNZ CHECKO
MVC 4(15,3) 1

keyfield
LA 3,20(3)
B LOOP

ERROR
CHECKO

OSECT

RBATABLE OS OF
RBA OS CL4
KEY OS CL15

OS CLl

Address of the beginning of the table.

Put length of record to be
inserted into register 2.
Indicate record length in
request parameter list.

Each SHOWCB puts a record's
RBA into the table.

Put the record's key field in
the table.
Point to the next entry.

Request was not accepted, or failed.
Modification or display failed.

Get enough virtual storage for
as many table entries as there
are records in the data set.

Padding to keep each RBA entry
on a fullword boundary: SHOWCB's
display area must be on a
fullword boundary.

The need to process a key-sequenced data set by address should be unusual,
but by recording the RBA of each record in a key-sequenced data set, you have
search arguments for possible processing of the data set by addressed-direct
retrieval and by addressed-sequential retrieval using the POINT macro. (You
don't need to know RBAs to process a key-sequenced data set by simple
addressed-sequential retrieval, since you go from the beginning without any
skips.)

You can display the RBA of a record after you issue a GET or a POINT, as well
as after you issue a PUT.

Example 3: Loading a Relatlve Record Data Set (Skip-Sequential and Direct
Proceaalng)

In this example, a PUT macro is used to store twenty 100-byte records in slots 5,
10, 15, ... ,100 of the data set. MODCB is used to switch to direct processing, and
a PUT is used to store records in slots 26 and 51 of the data set.

Chapter 2. VSAM Macro Formats and Examples 83

PUT

OUTPUT ACB MACRF= (KEY, SKP,
OUT)

GENCB BLK=RPL, Generate 5 request parameter
COPIES=5, lists at execution.
ACB=OUTPUT,
AREALEN=100,
OPT CD= (KEY, S KP,
ASY,NUP,MVE),
RECLEN=100

LTR 15,15
BNZ CHECKO

Calculate length of each list and use register notation with the MODCB macro to
complete each list.

MODCB RPL=(2),
AREA=(3),
NXTRPL=(4)

LTR 15,15
BNZ CHECKO

Increase the value in each register and repeat the MODCB until all five request
parameter lists have been completed. The last time, register 4 must be set to 0.

LOOP Restore address of first list
in register 2.
Build 5 records in WORK.

PUT RPL=(2) Register 2 points to the first
request parameter list in the chain.
The five records in WORK are
stored with this one PUT request.

LTR 15,15
BNZ NOTACCEP

CHECK RPL=(2)
LTR 15,15
BNZ ERRO
B LOOP

CHECKO Generation or modification failed.
NOTACCEP
ERROR Display the feedback field in

each request parameter list to
find out which one had an error.

WORK as CL500 Contains five 100-byte work areas.

You give no search argument for storage: VSAM knows the position of the key
field in each record and extracts the key from it. Skip-sequential insertion differs
from keyed-direct insertion in the sequence in which records may be inserted
(ascending nonconsecutive sequence versus random sequence) and In perform
ance.

With skip-sequential insertion, if you insert two or more records into a control
interval, VSAM doesn't write the contents of the buffer to direct-access storage
until you have inserted all the records. With direct insertion, VSAM writes the
contents of the buffer after you have inserted each record.

88 MVS/370 VSAM Administration: Macro Instruction Reference

~

L

Example 6: Keyed-Direct Insertion
In this example, a PUT macro is used to move fixed-lengih, 100-byte records
from a work area.

OUTPUT
DIRECT

LOOP

NOTACCEP
ERROR

WORK

ACB
RPL

PUT
LTR
BNZ

CHECK
LTR
BNZ
B

OS

MACRF=(KEY,DIR,OUT)
ACB=OUTPUT,AREA=WORK,
AREALEN=l00,0PTCD=(KEY,
DIR,ASY,NUP,MVE),
RECLEN=l00

RPL=DIRECT
15,15
NOTACCEP

RPL=DIRECT
15,15
ERROR
LOOP

CL100

Request was not accepted.
Request failed.

Work area.

The macros are as follows:

• ACB specifies that the data set, OUTPUT, into which records are to be
inserted, is opened for keyed-direct, output processing.

• RPL specifies that the record to be inserted into the OUTPUT data set
resides in a 100-byte area, WORK.

PUT

VSAM extracts the key from the key field of each record found at WORK. Using
keyed-direct access is similar to using skip-sequential access.

Example 7: Addressed-Sequential Addition
In this example, a PUT macro is used to add variable-length records to a data
set. The data set is assumed to be an entry-sequenced data set, because
records cannot be inserted into or added to a key-sequenced data set with
addressed access.

BLOCK ACB MACRF=(ADR,SEQ,OUT)
LIST RPL ACB=BLOCK,AREA=NEWRCD,

LOOP
L

MODCB

LTR
BNZ
PUT
LTR
BNZ
B

CHECKO

AREALEN=l00,0PTCD=(ADR,
SEQ,SYN,MVE)

3,source

RPL=LIST,
RECLEN=(3)
15,15
CHECKO
RPL=LIST
15,15
ERROR
LOOP

Build the record.
Put the length of the record
into register 3.
Indicate length of new
record.

Modification failed.

Chapter 2. VSAM Macro Formats and Examples 87

PUT

ERROR
NEWRCD OS CL100

Request was not accepted, or failed.
Build record in this work area.

Each record is stored in the next position after the last record in the data set.
You do not have to specify an RBA or do any explicit positioning (with the POINT
macro). Addressed addition of records is always identical to loading a data set:
When additional space is required, VSAM extends the data set.

The only difference between addressed-sequential and addressed-direct addition
is when the buffers are written to external storage. The buffer is written to
external storage only when it is full for sequential addition; it is written after
each record for direct addition. You cannot use direct storage to load records
into a data set for the first time; you must use sequential storage.

Example 8: Keyed-Sequential Update
In this example, GET and PUT macros are used to retrieve and update fixed
length, 50-byte records. Records are updated synchronously in a work area.
This example requires the use of a work area because you cannot update a
record in the 1/0 buffer.

UPDATA ACB MACRF=(KEY,SEQ,OUT)
LIST RPL ACB=UPDATA, UPD indicates the record may be

AREA=WORK, stored back (or deleted).

LOOP GET
LTR
BNZ

AREALEN=50,
OPTCD=(KEY,SEQ,
SYN,UPD,MVE)

RPL=LIST
15,15
ERROR

Decide whether to update the record.

BE LOOP Do not update it; retrieve another.

Do update the record.

PUT RPL=LIST Store the record back.
LTR 15,15
BNZ ERROR
B LOOP

ERROR Request was not accepted, or failed.

WORK OS CL50 VSAM puts the retrieved record here.

A GET for update (OPTCD=UPD) must precede a PUT for update. Besides
retrieving the record to be updated, GET positions VSAM at the record retrieved,
in anticipation of the succeeding update (or deletion). It is not necessary for you
to store back (or delete) the record that you retrieved for update. VSAM's posi
tion at the record previously retrieved allows you to issue another GET to
retrieve the following record. You cannot then, however, store back the previous
record: The position for update has been forgotten because of the following GET.

88 MVS/370 VSAM Administration: Macro Instruction Reference

J

J

PUT

Example 9: Keyed-Direct Update
In this example, GET and PUT macros are used to retrieve and update records.
The MODCB macro is used to modify record length (RECLEN) in the request
parameter list when an update causes the record length to change. The
maximum record length is 120 bytes. The search argument is a full key (5
bytes), compared equal.

INPUT ACB MACRF=(KEY,DIR,
OUT)

UPDTE RPL ACB=INPUT, UPDTE indicates the record may
AREA=IN, be stored back (or deleted).
AREALEN=120,
OPTDC=(KEY,DIR,
SYN, UPD, KEQ,
FKS,MVE),
ARG=KEYAREA,
KEYLEN=5

Process input and get search argument into KEYAREA; proceed to retrieve a
record.

LOOP GET RPL=UPDTE
LTR 15,15
BNZ ERROR
SHOWCB RPL=UPDTE, Display the length of the

AREA=RLNGTH, record.
FIE LDS=REC LEN,
LENGTH=4

LTR 15,15
BNZ CHECKO

Update the record. Does the update change the record's length?

BE STORE No; length not changed.
L 5,length Yes; load new length into register 5.
MOD CB RPL=UPDTE, Modify length indication in

RECLEN=(5) the request parameter list.
LTR 15,15
BNZ CHECKO

STORE PUT RPL=UPDTE
LTR 15,15
BNZ ERROR
B LOOP

ERROR Request was not accepted, or failed.
CHECKO Display or modification failed.

IN DS CL120 Work area for retrieving, updating,
and storing a record.

KEYAREA DS CL5 Search argument for
retrieving a record.

RLNGTH DS F Area for displaying the
length of a retrieved record.

You cannot update records m the 1/0 buffer. A direct GET for update positions
VSAM at the record retrieved, in anticipation of storing back (or deleting) the
record. This positioning also allows you to switch to sequential access to
retrieve the next record. When PUT is issued after a DIRUPD GET request, PUT
causes VSAM to release exclusive control.

Chapter 2. VSAM Macro Formats and Examples 89

PUT

You do not have to store back a record that you retrieve for update, but, if you
do not store it back before another retrieval, the current updates are lost.

Example 1 O: Addressed-Sequential Update
In this example, GET and PUT macros are used to retrieve and update records in
an entry-sequenced data set. The records are variable in length, a maximum of
200 bytes. The lengths of the records are not changed by update (the length of a
record can never be changed by addressed access).

ENTRY ACB MACRF=(ADR,SEQ,OUT)
ADRUPD RPL ACB=ENTRV, UPDTE indicates update (or deletion).

LOOP

ERROR
CHECKO
WORK
RLNGTH

GET
LTR
BNZ

AREA=WORK,
AREALEN=200,
OPTCD=(ADR,SEQ,
SVN,UPD,MVE)

RPL=ADRUPD
15,15
ERROR

SHOWCB RPL=ADRUPD,
AREA=RECLEN,
FIELDS=RECLEN,
LENGTH=4

LTR 15,15
BNZ CHECKO

PUT RPL=ADRUPD
LTR 15,15
BNZ ERROR
B LOOP

OS CL200
OS F

Find out how long the record is.

Request was not accepted, or failed.
Display failed.
Record-processing work area.
Display area for length of records.

If you have inactive records in your entry-sequenced data set, you may reuse the
space they occupy by retrieving the records for update and restoring a new
record in their place.

With a key-sequenced data set. it is not possible to change the length of records
by addressed update because the index is not used and VSAM could not split a
control interval if required because of changing record length.

Addressed-direct update varies from sequential update in the specification of an
RBA for a search argument.

Example 11: Marking Records Inactive
In this example, GET and PUT macros are used to retrieve a record from an
entry-sequenced data set and to mark it as inactive. (The record is marked as
inactive by putting a hexadecimal 1FF 1 in the first byte of a record.) The inactive
record will not be sequentially retrieved except for update.

90 MVS/370 VSAM Administration: Macro tnstruction Reference

ENTRYSEQ ACB MACRF=(ADR,DIR,
OUT)

LIST RPL ACB=ENTRYSEQ, UPD indicates update;
AREA=RECORD, storing the record back
AREA LEN= me. marked inactive.
OPTCD=(ADR,DIR,
SYN,UPD,MVE),
ARG=RBAAREA

LOOP GET RPL=LIST
LTR 15,15
BNZ ERROR

Decide whether you still want the data in the record.

BE LOOP Yes; retrieve the next record.
MVI RECORD,X'FF' No; flag the record inactive.
PUT RPL=LIST Storing the record with an inactive

indicator is equivalent to deletion
for an entry-sequenced data set.

LTR 15,15
BNZ ERROR
B LOOP

ERROR
RECORD OS
RBAAREA DS

cuee
F

Request was not accepted, or failed.
Work area for marking records.
Search argument for retrieving
the record.

PUT

Records of an entry-sequenced data set can't be deleted. If a record loses its
usefulness for your application, your program can mark it inactive by placing a
unique flag in some conventional part of the record so that when your programs
retrieve the record thereafter they can recognize and bypass it. You can use the
space occupied by an inactive record by retrieving it for update and storing a
new record in its place.

Chapter 2. VSAM Macro Formats and Examples 91

PUTIX

PUTIX Macro (Store an Index Record)
The syntax of the PUTIX macro is:

I [label] I PUTIX I RPL =address

where:

label
is 1 to 8 characters that provide a symbolic address for the PUTIX macro.

RPL =address
specifies the address of the request parameter list that defines this PUTIX
request. You may specify the address in register notation (using a register
from 1 through 12, enclosed in parentheses) or specify it with an expression
that generates a valid relocatable A-type address constant.

The following RPL parameters and subparameters are required for PUTIX: J
• OPTCD = (CNV

,DIR
,UPD
,MVE)

The contents of a control interval must previously have been retrieved
for update by way of GETIX.

OPTCD = LOC is not allowed.

• AREALEN
must be at least index control interval size.

To process the index of a key-sequenced data set with GETIX, you must open the
cluster with:

• ACB MACRF=(CNV, ...)

92 MVS/370 VSAM Administration: Macro Instruction Reference

J

L

RPL

RPL Macro (Generate a Request Parameter List)
The syntax of the RPL macro is:

[label] RPL [ACB=address]
[,AM=VSAM]
[,AREA=address]
[,AREALEN =number]
[,ARG =address]
[,ECB =address]
[,KEYLEN =number]
[,MSGAREA =address]
[,MSGLEN =number]
[,NXTRPL =address]
[,OPTCD = ([ADRICNVI KEY]

[,DIRISEQISKP]
[,ARDILRD]
[,FWDIBWD]
[,ASYISYN]
[,NSPINUPIUPD]
[,KEQIKGE]
[,FKSIGEN]
[,NWAITXIWAITX]
[,LOCIMVE])]

[,RECLEN =number]
[,TRANSID =number]

Values for RPL macro parameters can be specified as absolute numeric
expressions, character strings, codes, and expressions that generate valid relo
catable A-type address constants.

label
is 1 to 8 characters that provide a symbolic address for the request param
eter list that is generated. You can use it in the request macros to give the
address of the list. You can use it in the NXTRPL parameter of the RPL
macro, when you are chaining request parameter lists, to indicate the next
list.

ACB =address
specifies the address of the access method control block that identifies the
data set to which access will be requested. If you used the ACB macro to
generate the control block, you may specify the label of that macro for the
address. If the ACB parameter is not coded, you must specify the address
before issuing the request.

AM=VSAM
specifies that the access method using the control block is VSAM.

AREA= address
specifies the address of a work area to and from which VSAM moves a data
record if you request it to do so (with the RPL parameter OPTCD = MVE). If
your request is to process records in the 1/0 buffer (OPTCD = LOC), VSAM
puts into this work area the address of a data record within the 1/0 buffer.

Chapter 2. VSAM Macro Formats and Examples 93

RPL

AREALEN =number
specifies the length, in bytes, of the work area whose address is specified by
the AREA parameter. Its minimum for OPTCD=MVE is the size of a data
record (of the largest data record, for a data set with records of variable
length). For OPTCD=LOC, the area should be 4 bytes to contain the
address of a data record within the 1/0 buffer.

ARG =address
specifies the address of a field that contains the search argument for direct
retrieval, skip-sequential retrieval, and positioning. For a relative record
data set, the ARG field must be 4 bytes long. For direct or skip-sequential
processing, this field contains your search argument, a relative record
number. For sequential processing (OPTCD =(KEY.SEQ)), the 4 bytes are
required for VSAM to return the feedback RRN. For keyed access
(OPTCD =KEY), the search argument is a full or generic key or relative
record number; for addressed access (OPTCD =ADR), it is an RBA. If you
specify a generic key (OPTCD =GEN), you must also specify in the KEY LEN
parameter how many of the bytes of the full key you are using for the
generic key. ARG is also used with WRTBFR and MRKBFR. Its usage with
these macros is described in "Sharing Resources" in VSAM Administration
Guide.

ECB =address
specifies the address of an event control block (ECB) that you may supply.
VSAM indicates in the ECB whether a request is complete or not (using
standard completion codes, which are described in Data Areas). You can
use the ECB to determine that an asynchronous request is complete before
issuing a CHECK macro. (If you issue a CHECK before a request is com
plete, you give up control and must wait for completion.) The ECB param
eter is always optional.

KEYLEN =number
specifies the length, in bytes, of the generic key (OPTCD =GEN) you are
using for a search argument (given in the field addressed by the ARG
parameter). This parameter is specified as a number from 1 through 255; it
is required when the search argument is a generic key. For full-key
searches, VSAM knows the key length, which is taken from the catalog defi
nition of the data set when you open the data set.

MSGAREA =address
specifies the address of an area that you may, optionally, supply for VSAM to
send you a message in case of a physical error. The format of a physical
error message is given in "Reason Code (Physical Errors)" on page 19.

MS GLEN= number
specifies the size, in bytes, of the message area indicated in the MSGAREA
parameter. If MSGAREA is specified, MSGLEN is required. The minimum
size of a message is 128 bytes; if you provide less than 128 bytes, no
message is returned to your program.

NXTRPL =address
specifies the address of the next request parameter list in a chain. Omit this
parameter from the macro that generates the last list in the chain. When
you issue a request that is defined by a chain of request parameter lists,
indicate in the request macro the address of the first parameter list in the
chain.

94 MVS/370 VSAM Administration: Macro Instruction Reference

L

OPTCD=([ADRICNVIKEYJ
[,DIRISEOISKP]
[,ARDILRD]
[,FWDIBWD]
[,ASYISYN]
[,NSPINUPIUPD]
[,KEOIKGE]
[,FKSIGEN]
[,NWAITXIWAITX]
[,LOCIMVE])

RPL

specifies the subparameters that govern the request defined by the request
parameter list. Each group of subparameters has a default; subparameters
are shown in Figure 12 with defaults underlined. Only one subparameter
from each group can be specified. Some requests do not require an subpa
rameter from all of the groups to be specified. The groups that aren't
required are ignored; thus, you can use the same request parameter list for
a combination of requests (GET, PUT, POINT, for example) without zeroing
out the inapplicable subparameters each time you go from one request to
another.

Option

ADR

Meaning

Addressed access to a key-sequenced or an entry-sequenced data set: RBAs
are used as search arguments and sequential access is done by entry
sequence.

CNV Control interval access (this type of access is described in VSAM Adminis
tration Guide).

KEY Keyed access to a key-sequenced or relative record data set: keys or relative
record numbers are used as search arguments and sequential access is done
by key or relative record number sequence.

DIR Direct access to a key-sequenced, entry-sequenced, or relative record data
set.

SEQ Sequential access to a key-sequenced, entry-sequenced, or relative record
data set.

SKP Skip sequential access to a key-sequenced or a relative record data set: used
with keyed access only.

ARD User's argument determines the record to be located, retrieved, or stored.

LRD Last record in the data set is to be located (POINT) or retrieved (GET direct);
requires OPTCD - BWD.

FWD Processing to proceed in a forward direction.

BWD Processing to proceed in a backward direction; for keyed (KEY) or addressed
(ADR) sequential (SEQ) or direct (DIR) requests; valid for POINT, GET, PUT,
and ERASE operations; establish positioning by a POINT with OPTCD- BWD
or by a GET direct with OPTCD-(NSP,BWD). When OPTCD- BWD is speci
fied, subparameters KGE and GEN are ignored; subparameters KEO and FKS
are assumed.

ASY Asynchronous access; VSAM returns to the processing program after sched
uling a request so the program can do other processing while the request is
being carried out.

Figure 12 (Part 1 of 2) . OPTCD Options

Chapter 2. VSAM Macro Formats and Examples 95

RPL

Option

SYN

NSP

UPD

KGE

FKS

GEN

NWAITX

WAITX

LOC

Meaning

Synchronous access; VSAM returns to the processing program after com
pleting a request.

With OPTCD =DIR only, VSAM is to remember its position (for subsequent
sequential access); that is, the position is not to be forgotten unless an
ENDREO macro is issued.

A data record that is being retrieved will not be updated or deleted; a record
that is being stored is a new record; VSAM doesn't remember its position for
direct requests into a work area.

A data record that is being retrieved may be updated or deleted; a record
that is being stored or deleted was previously retrieved with OPTCD- UPD;
VSAM remembers its position for sequential and direct GET requests. When
PUT is issued after a DIRUPD GET request, PUT causes VSAM to release
exclusive control.

For GET with OPTCD-(KEY,DIR) or (KEY,SKP) and for POINT with
OPTCD =KEY, the key (full or generic) that you provide for a search argu
ment must equal the key or relative record number of a record. For a rela
tive record data set, KEO is assumed except for POINT.

For the same cases as KEO, if the key (full or generic) that you provide for a
search argument doesn't equal that of a record, the request applies to the
record that has the next higher key. For a relative record data set and
POINT, KGE positions to the specified relative record number whether the
slot is empty or not. If the relative record number is greater than the highest
existing record, EOD is returned. A subsequent PUT will insert the record at
this position.

A full key is provided as a search argument.

A generic key is provided as a search argument; give the length in the
KEYLEN parameter.

Never take the user's UPAD exit.

If OPTCD =SYN and the ACB's MACRF- LSR GSR and UPAD exit routing is
specified, VSAM takes the UPAD exit at points when VSAM would normally
issue a WAIT.

For retrieval, VSAM leaves the data record in the 110 buffer for processing;
not valid for PUT or ERASE; valid for GET with OPTCD- UPD. However, to
update the record, you must build a new version of the record in a work area
and modify the request parameter list OPTCD from LOC to MVE before
issuing a PUT. For keyed-sequential retrieval, modifying key fields in the 1/0
buffer may cause incorrect results for subsequent GET requests until the 1/0
record is reread.

For retrieval, VSAM moves the data record to a work area for processing,
and for storage, VSAM moves it from the work area to the 1/0 buffer.

Figure 12 (Part 2 of 2). OPTCD Options

RECLEN =number
specifies the length, in bytes, of a data record being stored. This parameter
is required for a PUT request.

For GET requests, VSAM puts the length of the record retrieved in this field
in the request parameter list. It will be there if you update and store the
record .

96 MVS/370 VSAM Administration: Macro Instruction Reference

TRANSID=number
specifies a number that relates modified buffers in a buffer pool. Used in
shared resource applications and described in the chapter "Sharing
Resources" in VSAM Administration Guide.

Example: RPL Macro
In this example, an RPL macro is used to generate a request parameter list
named PARMLIST.

ACCESS ACB

PARMLIST RPL

MACRF=(SKP,OUT),
OONAME=PAYROLL
ACB=ACCESS,
AM=VSAM,
AREA=WORK,
AREALEN=l25,
ARG=SEARCH,
MSGAREA=MESSAGE,
MSGLEN=l28,
OPTCO=(SKP,UPO)

WORK OS CL125
SEARCH OS CLB
MESSAGE OS CL128

Most OPTCO defaults are
appropriate to assumptions.

RPL

The ACB macro named ACCESS, specifies skip-sequential retrieval for update.
Further details may be provided on a DD statement named PAYROLL.

The RPL macro's parameters are:

• ACB associates the request parameter list with the access method control
block generated by ACCESS.

• AREA and AREALEN specify a work area, WORK, that is 125 bytes long.

• ARG specifies that the search argument is defined at SEARCH. The search
argument is 8 bytes long.

• MSGAREA and MSGLEN specify a message area, MESSAGE, that is 128
bytes long. The message area is provided for physical error messages.

• OPTCD specifies skip-sequential processing and specifies that a retrieved
record may be updated or deleted.

Because KEYLEN is not coded, a full-key search is assumed.

Chapter 2. VSAM Macro Formats and Examples 97

SHOWCB-ACB

OBJECT=DATAllNDEX
specifies whether fields are to be displayed for the data or for the index.

FIELDS= [ACBLEN][,AVSPAC][,BFRFND][,BSTRNO][,BUFND]
[,BUFNl][,BUFNO][,BUFRDS][,BUFSP]
[,CINV][,DDNAME][,ENDRBA]
[,ERROR][,EXLST][,FS][,HALCRBA]
[,KEYLEN][,LRECL][,MAREA][,MLEN][,NCIS]
[,NDELR][,NEXCP][,NEXT]
[,NINSR][,NIXL][,NLOGR]
[,NRETR][,NSSS][,NUIW][,NUPDR]
[,PASSWD][,RKP][,STMST]
[,STRMAX][,STRNO][,UIW])

specifies the fields whose contents are to be displayed. Some of the fields
can be displayed at any time; others only after a data set is opened. The
ones that can be displayed only after a data set is opened can, in the case of
a key-sequenced data set that has been opened for keyed access, pertain
either to the data or to the index. See the OBJECT parameter. Figure 13
explains the keywords you can code in the FIELDS parameter for an access
method control block.

Figure 13 (Page 1 of 3). FIELDS Operand Keywords for an Access Method Control
Block

Keyword Fullwords Description of the Field

ACBLEN

BSTRNO

BUFND

BUFNI

BUFSP

DDNAME

ERROR

EXLST

MA REA

MLEN

PASSWD

STRMAX

2

The following fields can be displayed at any time:

Length of an access method control block (displaying
the length of an access method control block gives
your program independence from changes in the
length that may occur from release to release of
VSAM)

Number of strings initially allocated for access to the
base cluster by a p_ath

Number of 1/0 buffers to be used for data, as specified
in the ACB (or GENCB)

Number of 1/0 buffers to be used for index entries, as
specified in the ACB (or GENCB)

Amount of space specified in the ACB (or GENCB) for
1/0 buffers

Name of the DD statement that identifies the data set

The code returned by VSAM after the opening or
closing of the data set (see "OPEN Macro (Connect
Program and Data)" on page 80 and "CLOSE Macro
(Disconnect Program and Data)" on page 38).

Address of the exit list, if any; 0 if none

Address of the message area, if any; O if none

Length of the message area, if any; 0 if none

Address of the field containing the password; the first
byte of the field contains the length of the password (in
binary)

Maximum number of strings concurrently active

100 MVS/370 VSAM Administration: Macro Instruction Reference

SHOWCB-ACB

Figure 13 (Page 2 of 3). FIELDS Operand Keywords for an Access Method Control
Block

Keyword

STRNO

AVSPAC

BFRFND

BUFNO

BUFRDS

CINV

EN DR BA

FS

HALCRBA

KEYL EN

LRECL

NCIS

NDELR

NEXCP

NEXT

NINSR

NIXL

NLOGR

NRETR

NSSS

NUIW

Fullwords Description of the Field

Number of requests for which VSAM is prepared to
remember its position in the data set

The following fields can be displayed only after the
data set is opened:

Amount of available space in the data component or
index component, in bytes

Number of successful look-asides

Number of 1/0 buffers actually in use for the data com
ponent or index component

Number of buffer reads

Control interval size for the data component or index
component

Ending RBA of the space used by the data component
or index component; not the RBA of any record in the
data set, but of the last used byte in the data set

Number of free control intervals per control area in the
data component (0 for OBJECT- INDEX)

High-allocated RSA; the relative byte address of the
end of the data component (OBJECT- DATA) or the
index component (OBJECT- INDEX)

Length of the key of reference of the key field of data
records in the data component (whether
OBJECT~ DATA or INDEX)

Length of data records in the data component
(maximum length for variable-length data records) or
of index records in the index component (control
interval length minus 7)

Number of control intervals that have been split in the
data component (0 for OBJECT- INDEX)

Number of records that have been deleted from the
data component (0 for OBJECT- INDEX)

Number of EXCP macros that VSAM has issued for
access to the data component or index component.

Number of extents now allocated to the data compo
nent or index component (the maximum that can be
allocated in 123)

Number of records that have been inserted into (or
added to) the data component (0 for OBJECT- INDEX)

Number of levels in the index component (0 for
OBJECT- DATA)

Number of records in the data component or index
component

Number of records that have ever been retrieved from
the data component (0 for OBJECT- INDEX)

Number of control areas that have been split in the
data component (0 for OBJECT- INDEX)

Number of writes not initiated by the user

Chapter 2. VSAM Macro Formats and Examples 101

SHOWCB-ACB

Figure 13 (Page 3 of 3). FIELDS Operand Keywords for an Access Method Control
Block

Keyword

NUPDR

RKP

STMST

UIW

Fullwords

2

DHcrlptlon of the Field

Number of records in the data component or index
component that have ever been updated

Displacement of the key of reference of the key field
from the beginning of a data record (whether
OBJECT-DATA or INDEX)

System time stamp, which gives the time and day of
the last time the data component or index component
was closed, with bit 51 (counting from 0 at the left)
equivalent to one microsecond and bits 52 through 63
unused

Number of user-initiated writes

Note: If a user issues a SHOWCB for a non-VSAM and non-VT AM ACB, unpre
dictable results will occur.

Example 1: SHOWCB Macro (Dlsplay an Access Method Control Block)
In this example, a SHOWCB macro is used to display fields in an access method
control block. The fields displayed (KEYLEN, LRECL, and RKP) permit the
program to modify variables to process any one of a number of data sets that
have different sized key fields and records and different placements of key field
in a record.

SHOWCB ACB•CONTROL,
AREA=DISPLAY,
FIELDS=(KEYLEN,
LRECL,RKP),
LENGTH=l2

DISPLAY DS OF Align on fullword boundary.
KEYLEN DS F
LRECL DS F
RKP OS F

The SHOWCB macro's parameters are:

• ACB specifies the address of the access method control block to be dis
played.

• AREA specifies that the area to be used to display access method control
block fields is to begin on a fullword boundary.

• FIELDS specifies that the KEYLEN, LRECL, and RKP fields are to be dis
played.

• LENGTH specifies that the length of the area to be used for the display is 12
bytes, enough to accommodate the specified fields.

This display enables the program to set up its variables for the particular data
set it has opened.

102 MVS/370 VSAM Administration: Macro Instruction Reference

L

SHOWCB-ACB

Example 2: SHOWCB Macro (Dlsplay an Exit List Address)
In this example, a SHOWCB macro is used to get the address of an exit list by
displaying the address in an access method control block that uses the exit list.

SHOWCB ACB=address,
AREA=address,
FIELDS=EXLST,
LENGTH=4

The SHOWCB macro's parameters are:

• ACB specifies the address of an access method control block from which the
address of an exit list is to be displayed.

• AREA and LENGTH specify an area and length, 4 bytes, to be used to display
the address of the exit list.

• FIELDS specifies that the EXLST field in an access method control block is to
be displayed.

Chapter 2. VSAM Macro Formats and Examples 103

SHOWCB-EXLST

SHOWCB Macro (Display Fields of an Exit List)
The syntax of the SHOWCB macro used to display fields in an exit list is:

[label] SHOWCB EXLST =address
,AREA= address
,LENGTH= number
,FIELDS= ([EODAD] [,EXLLEN] [,JRNAD]

[,LERAD][,SYNAD])

The subparameters of the SHOWCB macro can be expressed as absolute
numeric expressions, as character strings, as codes, as expressions that gen
erate valid relocatable A-type address constants, in register notation, as S-type
address constants, and as indirect S-type address constants. Appendix B,
"Operand Notation" on page 129, gives all the ways of coding each subparam
eter for the macros that work at execution.

label
is 1 to 8 characters that provide a symbolic address for the SHOWCB macro.

EXLST= address
specifies the address of the exit list whose fields are to be displayed. If you
used the EXLST macro with a label, you can specify the label here. The
EXLST parameter is optional only when you want to display the length that
an exit list can have (see FIELDS=EXLLEN below). The SHOWCB macro
does not support the UPAD user exit.

AREA= address
specifies the address of a work area that you are supplying for VSAM to
display the contents of the fields you specify in the FIELDS parameter. The
contents of the fields are displayed in the order you specify them. The area
must begin on a fullword boundary.

LENGTH= number
specifies the length, in bytes, of the work area that you are providing for
VSAM to display the indicated fields in. Each exit-list field requires a
fullword. If the area is not large enough for all the fields, VSAM doesn't
display any of their contents and returns an error code (see "Control Block
Manipulation Macro Return Codes and Reason Codes" on page 8).

FIELDS= ([EODAD][,EXLLEN][,JRNAD]
[,LERAD][,SYNAD])

specifies the values to be displayed, as follows:

EODAD
specifies that the address of the end-of-data-set routine is to be dis
played.

EXLLEN
specifies that the length of the exit list indicated in the EXLST parameter
or if EXLST is omitted, the maximum length an exit length can have, is to
be displayed.

JRNAD
specifies that the address of the journalizing routine is to be displayed.

104 MVS/370 VSAM Administration: Macro Instruction Reference

SHOWCB-EXLST

LE RAD
specifies that the address of the logical error analysis routine is to be
displayed.

SYNAD
specifies that the address of the physical error analysis routine is to be
displayed.

You can use SHOWCB to display the address of an exit routine only if the exit
routine is indicated In the exit list. If it isn't, the SHOWCB request will fail. Use
TESTCB to test whether an entry for a given exit type is present in the exit list
and to find out whether the exit is active and whether the routine is to be loaded.

Example: SHOWCB Macro (Dlaplay the Length of an Exit List)
In this example, a SHOWCB macro is used to display the maximum length of an
exit list. The maximum length of an exit list is subsequently used in a GENCB
macro to get virtual storage for an exit list.

SHOWCB AREA=LENGTH,
FIELDS=EXLLEN,
LENGTH=4

L O,LENGTH Amount of storage for GETMAIN.
GETMAIN R,LV=(e)
LR 2,1 Address of storage for GENCB.
GENCB BLK=EXLST, Indirect notation for length

LENGTH OS

LENGTH=(*, of work area.
LENGTH),
WAREA=(2)

F Contains the length of GENCB's
work area.

The SHOWCB macro's parameters are:

• AREA and LENGTH specify the area, which begins on a fullword boundary,
and its length, four bytes, that is to be used for the display.

• FIELDS specifies that the maximum length of an exit list is to be displayed.
Because only EXLLEN is specified, the EXLST parameter is omitted.

The GENCB macro specifies a work area in which an exit list is to be generated.
The length of the work area is located at LENGTH, where the maximum length of
an exit list was put as a result of the SHOWCB macro.

Chapter 2. VSAM Macro Formats and Examples 105

SHOWCB-RPL

SHOWCB Macro (Display Fields of a Request Parameter List)
The syntax of the SHOWCB macro used to display fields in a request parameter
list is:

[label] SHOWCB RPL =address
,AREA= address
,LENGTH= number
,FIELDS= ([ACB][,AIXPC][,AREA][,AREALEN]

[,ARG][,ECB][,FDBK][,FTNCD]
[,KEYLEN][,MSGAREA]
[,MSGLEN]
[,NXTRPL][,RBA]
[,RECLEN]
[,RPLLEN]
[,TRANS ID])

The parameters of the SHOWCB macro can be expressed as absolute numeric
expressions, as character strings, as codes, as expressions that generate valid
relocatable A-type address constants, in register notation, as S-type address
constants, and as indirect S-type address constants. Appendix B, "Operand
Notation" on page 129, gives all the ways of coding each subparameter for the
macros that work at execution.

label
is 1 to 8 characters that provide a symbolic address for the SHOWCB macro.

RPL=address
specifies the address of the request parameter list whose fields are to be
displayed. If you used the RPL macro with a label, you can specify the label
here. The RPL parameter is optional when you want to display the length of
a request parameter list (FIELDS= RPLLEN). (All VSAM request parameter
lists have the same length, so you need not specify the address of a partic
ular one.)

AREA= address
specifies the address of a work area that you are supplying for VSAM to
display the contents of the fields you specify in the FIELDS parameter. The
contents of the fields are displayed in the order you specify them. The area
must begin on a fullword boundary.

LENGTH= number
specifies the length, in bytes, of the work area that you are providing for
VSAM to display the indicated fields in. Each request parameter list field
requires a fullword. If the area is not large enough for all the fields, VSAM
doesn't display any of their contents and returns an error code (see "Control
Block Manipulation Macro Return Codes and Reason Codes" on page 8).

Fl ELDS = ([ACB] [,AIXPC][,AREA] [,AREALEN][,AR G]
[,ECB][,FDBK][,FTNCD][,KEYLEN]
[,MSGAREA][,MSGLEN]
[,NXTRPL][,RBA][,RECLEN]
[,RPLLEN][,TRANSID])

specifies the fields whose contents are to be displayed. Figure 14 explains
the keywords you can code in the FIELDS parameter for a request parameter

106 MVS/370 VSAM Administration: Macro Instruction Reference

SHOWCB-RPL

list. Some fields (each indicated by an asterisk (*) in Figure 14) are mean
ingful only if the requests have been completed; therefore, you must wait
until the request has completed (for example, by issuing a CHECK ifthe
request is asynchronous) before issuing SHOWCB.

Figure 14 (Page of 2). FIELDS Operand Keywords for a Display Request Parameter

Keyword

ACB

AREA

AREALEN

ARG

KEYL EN

MSGAREA*

MS GLEN

NXTRPL

REC LEN*

List
Fullwords Description of the Field

Address of the access method control block that
relates the request parameter list to the data

Number of alternate index pointers

Address of the work area that the program uses to
process a data record for the access as defined by
the request parameter list

Length of the work area whose address is given in
AREA

Address of the field containing a search argument,
if search arguments are being used

Address of an event control block, if any, in which
VSAM indicates the completion of requests defined
by the request parameter list

Reason code that VSAM puts into the feedback
field to describe the error detected for the pre
ceding request. (The meaning of this code depends
on the contents of register 15, which indicates
whether the request was successful or failed
because of a logical or physical error. See "Record
Management Return Codes and Reason Codes" on
page 10)

Code that describes the function in which a logical
or physical error occurred; indicates whether the
upgrade set may have been modified incorrectly by
the preceding request (The meaning of this code
depends on the contents of register 15, which indi
cates whether the request was successful or failed
because of a logical or physical error. See "Record
Management Return Codes and Reason Codes" on
page 10)

Length of the search argument, if a generic key is
used for a search argument

Address of the area, if any, into which VSAM puts
physical error messages

Length of the message area, if any

Address of the next request parameter list, if
another one is chained to this one

Relative byte address of the most recently proc
essed record; you could use it to record the RBAs
of records that you are retrieving or storing
sequentially or by key

Length of the data record, access to which la
defined by the request parameter list

Chapter 2. VSAM Macro Formats and Examples 107

SHOWCB-RPL

Figure 14 (Page 2 of 2). FIELDS Operand Keywords for a Display Request Parameter
List

Keyword

RPLLEN

TRAN SID

Fullword•

1

DHcrlptlon of the Field

Length of a request parameter list

Number that relates modified buffers in a buffer
pool; described in VSAM Administration Guide

Example: SHOWCB Macro (Dlaplay a Phyalcal Error Message)
In this example, a SHOWCB macro is used to display a physical error message.
This example assumes that there is no SYNAD routine (or the SYNAD exit is
inactive), in which case, VSAM returns control to your program following the last
executable instruction if a physical error occurs. Register 15 indicates a physical
error (12), and the feedback field in the request parameter list contains a code
identifying the error; the message area contains more details about the error.
Register 1 points to the request parameter list.

REQUEST RPL MSGAREA=

CHECKO

MESSAGES,
MSGLEN=l28

SHOWCB AREA•MSGAOOR,
FIELDS=MSGAREA,
LENGTH=4,
RPL=REQUEST

LTR 15,15
BNZ CHECKO

MESSAGES OS CL128

MSGADDR OS F

Display failed.

For VSAM to give you a detailed
message about a physical error.
For displaying the address of
the message area with SHOWCB.

The RPL macro in this example provides for a message area, MESSAGES, of 128
bytes to be used for any physical error message.

The SHOWCB macro's parameters are:

• AREA and LENGTH specify a 4-byte area, MSGADDR, to be used for dis
playing the address of the message area for the associated request param
eter list.

• FIELDS specifies that the address of the message area is to be displayed.

• RPL specifies the name, REQUEST, of the request parameter list for which
the message area address is to be displayed.

108 MVS/370 VSAM Administration: Macro Instruction Reference

L

TESTCB-ACB

TESTCB Macro (Test Fields of an Access Method Control Block}
Only one keyword can be specified each time you issue TESTCB. The syntax of
the TESTCB macro used to test a field in an access method control block is:

[label] TESTCB ACB =address
[,ERET =address]
[,OBJECT= DATA! INDEX]
,{ATRB = ([ESDS][,KSDS][,REPL]

[,RRDS][,SPAN][,SSWD][,WCKJ)I
ATRB=UNQI
CATALOG= {YESINO}I
CRA={SCRAIUCRA}I
MACRF = ([ADR][,AIX][,CFX][,CNV][,DDN]

[,DFR][,DIR][,DSN][,GSR][,ICl][,IN]
[,KEY][,LSR][,NCl][,NDF][,NFX][,NIS]
[,NRM][,NRS][,NSR][,NUB][,OUT][,RST]
[,SEQ][,SIS][,SKP][,UBFJ)I

OFLAGS = OPENI
OPENOBJ = {PATHIBASEIAIX}I
ACBLEN =number!
AVSPAC =number!
BSTRNO =number!
BUFND =number!
BUFNI =number!
BUFNO =number!
BUFSP =number!
CINV =number!
DD NAME= ddnamel
ENDRBA =number!
ERROR= number!
EXLST =address I
FS=numberl
KEYLEN =number!
LRECL = number!
MAREA =address I
MLEN =number!
NCIS =number!
NDELR =number!
NEXCP =number!
NEXT= numberl
NINSR =number!
NIXL =number!
NLOGR =number!
NRETR =number!
NSSS =number!
NUPDR =number!
PASSWD =address I
RKP =number!
STMST =address I
STRNO =number}

Chapter 2. VSAM Macro Formats and Examples 109

TESTCB-ACB

The sub parameters of the TESTCB macro can be expressed as absolute numeric
expressions, as character strings, as codes, as expressions that generate valid
relocatable A-type address constants, in register notation, as S-type address
constants, and as indirect S-type address constants. Appendix B, "Operand
Notation" on page 129, gives all the ways of coding each subparameter for the
macros that work at execution.

ACB =address
specifies the address of the access method control block whose information
you want to test. You may omit it only if you're testing the length of an
access method control block (ACBLEN =number). (All VSAM access method
control blocks have the same length.)

ERET= address
specifies the address of a routine to which VSAM is to give control if,
because of an error, it is unable to test for the condition you specify. For
example, testing AVSPAC in an access method control block for an uno
pened data set would fail. VSAM indicates in register 15 whether it could do
the test and, if not, indicates in register 0 the reason it couldn't. (The
reasons are discussed under "Control Block Manipulation Macro Return
Codes and Reason Codes" on page 8.) A failure trying to execute TESTCB
indicates a basic logical problem in the processing program, so the error
routine would probably issue an ABEND. If it lets the program continue, it
must branch to the continuation point itself, and not return to VSAM.

OBJECT= DATAllNDEX]
specifies whether you want to test a field for data or for index.

ATRB=([ESDS][,KSDS][,REPL]
[,RRDS][,SPAN][,SSWD][,WCK])

specifies, for an open data set, the attribute that is to be tested for, as
follows:

ESDS
entry-sequenced data set

KSDS
key-sequenced data set

REPL
some portion of the index is replicated

RRDS
relative record data set

SPAN
data set contains spanned records

SSWD
sequence set Is adjacent to the data

WCK
write operations for the data set are being verified

ATRB = UNQ
specifies, for an open alternate index or path, that the alternate index
requires unique keys. The test for ATRB=UNQ must be made with a sepa
rate TESTCB macro. VSAM examines the path control blocks for the UNQ
attribute; and also examines the base cluster's control blocks for the other
attributes. If other attributes are tested for, VSAM examines the base cius-

110 MVS/370 VSAM Administration: Macro Instruction Reference

/'

L

TESTCB-ACB

ter's control blocks for all attributes: The test for ATRB = UNQ would give
inaccurate results when applied to the base cluster's control blocks.

CATALOG=YESINO
specifies that a test is to be made to determine, any time, whether or not the
access method control block specifies a catalog data set.

CRA=SCRAIUCRA
specifies that a test is to be made to determine, any time, whether catalog
recovery area control blocks are to be built in system storage or user
storage.

MACRF = ([ADR][,AIX][,CFX][,CNV] [,DDN][,DFR][,DIR]
[,DSN][,GSR][,ICl][,IN][,KEY][,LSR]
[,NCl][,NDF][,NFX][,NIS][,NRM][,NRS][,NSR]
[,NUB][,OUT][,RST][,SEQJ[,SIS][,SKP][,UBF])

specifies that a test is to be made to determine, at any time, what subparam
eter or combination of subparameters is being used for processing.

OFLAGS=OPEN
specifies that a test is to be made to determine, after open, whether the data
set identified by the control block has been opened.

OPENOBJ = PATHIBASEIAIX
specifies that a test is to be made to determine, after open, whether an
opened object is a path, a base cluster, or an alternate index.

The remaining parameters represent fields in an access method control block
that can be compared with the value specified. These fields are the same as
those that can be displayed by using the SHOWCB macro and are described in
Figure 13 on page 100.

If you omit a routine to handle error conditions, you can examine register 15 fol
lowing TESTCB by using a branch table, for example, but don't alter the PSW
condition code that VSAM set to indicate the result of a test until you've had a
chance to test it.

Note: If a user issues a TESTCB for a non-VSAM and non-VT AM ACB, unpredict
able results will occur.

Chapter 2. VSAM Macro Format& and Example& 111

TESTCB-ACB

Example: TESTCB Macro (Test for Data Set Attributes)
In this example, a TESTCB macro is used to determine whether a data set is a
key sequenced or an entry-sequenced data set.

LIST RPL

KEY SEQ

CHECKO

SHOWCB AREA=DATAFACT,
FIELDS=ACB,
LENGTH=4,
RPL=LIST

LTR 15,15
BNZ CH EC KO
TESTCB ACB=(*,

DATAFACT),
ATRB=KSDS,
ERET=CHECKO

BE KEY SEQ

DATAFACT OS F

Is the data set key sequenced?

Yes.

Data set is key sequenced.

Display or test failed.

For displaying address of
access method control block.

The SHOWCB macro's parameters are:

• AREA and LENGTH specify a 4-byte area, DATAFACT, aligned on a fullword
boundary, to be used for the display.

• FIELDS and RPL specify that the address of the access method control block
in the LIST request parameter list is to be displayed.

The TESTCB macro's parameters are:

• ACB specifies that a field in the access method control block, the address of
which is located at DATAFACT, is to be tested. The SHOWCB macro put the
address of the access method control block at DATAFACT.

• ATRB specifies that the access method control block is to be tested to deter
mine whether it is a key-sequenced data set.

• ERET specifies that a routine named CHECKO is to be given control if an
error occurs that makes it impossible to make the test.

There is no need to examine the feedback field in an EODAD routine, because it
can be assumed to contain the end-of-data-set indication.

112 MVS/370 VSAM Administration: Macro Instruction Reference

TESTCB-EXLST

TESTCB Macro (Test Fields of an Exit List)
The syntax of the TESTCB macro used to test fields in an exit list is:

[label] TESTCB EXLST =address
[,ERET=address]
,{EODAD = {Ol([address][,AIN][,L])}I
JRNAD = {Ol([address][,AINJ[,LJ)}I
LERAD = {Ol([address][,AINJ[,LJ)}I
SYNAD = {Ol([address][,AINJ[,L])}}

[,EXLLEN =number]

The parameters of the TESTCB macro can be expressed as absolute numeric
expressions, as character strings, as codes, as expressions that generate valid
relocatable A-type address constants, in register notation, as S-type address
constants, and as indirect S-type address constants. Appendix B, "Operand
Notation" on page 129, gives all the ways of coding each parameter for the
macros that work at execution.

label
is 1 to 8 characters that provide a symbolic address for the TESTCB macro.

EXLST =address
specifies the address of the exit list whose information you want to test. You
may omit it only if you're testing the maximum length of an exit list
(EXLLEN =number). The TESTCB macro does not support the UPAD user
exit.

ERET=address
specifies the address of a routine to which VSAM is to give control if,
because of an error, it is unable to test for the condition you specify. For
example, testing AVSPAC in an access method control block for an uno
pened data set would fail. VSAM indicates in register 15 whether it could do
the test and, if not, indicates in register 0 the reason it couldn 't. (The
reasons are discussed under "Control Block Manipulation Macro Return
Codes and Reason Codes" on page 8.) A failure trying to execute TESTCB
indicates a basic logical problem in the processing program, so the error
routine would probably issue an ABEND. If it lets the program continue, it
must branch to the continuation point itself, and not return to VSAM.

EODAD = {Ol([address][,AINJ[,L])}I
JRNAD = {Ol([address][,AINJ[,L])}I
LERAD = {Ol([address][,AINJ[,LJ)}I
SYNAD = {Ol([address][,Al N][,L])}

specifies the exit about which you are asking a yes-no question. If you code
more than one parameter for an exit name, each must equal the corre
sponding value in the control block for you to get an equal condition. The
values that can be tested are:

0 specifies that a test is to be made to determine whether an entry is pro
vided for the exit in the exit list.

address
specifies that a test is to be made to determine whether this is the
address of the exit. Tests for an address result in an equal, unequal,

Chapter 2. VSAM Macro Formats and Examples 113

TESTCB-EXLST

AIN

high, low, not-high, or not-low condition. Tests for a combination of an
address and A, N, or L result in an equal or unequal condition.

specifies that a test is to be made to determine whether an exit is active
(A) or not active (N). Tests for A or N result in an equal or unequal con
dition.

L specifies that a test is to be made to determine whether the address is
the location of an 8-byte field containing the name of a module to be
loaded rather than the entry point of the routine. Tests for L result in
either an equal or unequal condition .

EXLLEN =number
specifies either the maximum length that an exit list can have (if you
don't code the EXLST parameter) or the actual length of the exit list indi
cated by the EXLST parameter. If you specify an exit, you may not also
specify EXLLEN; if you specify EXLLEN, you may not also specify an exit.

If you omit a routine to handle error conditions, you can examine register 15 fol
lowing TESTCB by using a branch table, for example, but don't alter the PSW
condition code that VSAM set to indicate the result of a test until you've had a
chance to test it.

Example: TESTCB Macro (Use a Branch Table)
In this example, a TESTCB macro is used to test whether ENDPROC is the
routine supplied for the EODAD exit in the exit list EXITS, and whether the
EODAD exit is active. A branch table is used to determine whether the test is
successful.

TESTCB EODAD=(ENDPROC,A) Is ENDPROC supplied and
EXLST=EXITS is the exit active?

B *+4(15)

If the test was made successfully, register 15 contains 0 and the next instruction
is executed.

B TESTl

If it was unsuccessful, register 15 contains 4 and the next instruction is executed.

TESTl
YES
NO

ABEND 2,DUMP
BNE NO

Yes; ENDPROC is supplied and active.
ENDPROC isn't supplied, or the exit
isn't active.

114 MVS/370 VSAM Administration: Macro Instruction Reference

J

TESTCB-RPL

TESTCB Macro (Test Fields of a Request Parameter List)
The syntax of the TESTCB macro to test fields in a request parameter list is:

[label] TESTCB RPL =address
[,ERET =address]
,{AIXFLAG = AIXPKPI
AIXPC =number!
FTNCD =number!
10 =COMPLETE I
OPTCD =([ADR][,ARD][,ASY][,BWD]

[,CNV][,DIR][,FKS][,FWD]
[,GEN][,KEQJ[,KEY][,KGE][,LOC]
[,LRD][,MVE][,NSP][,NUP][,SEQJ
[,SKP] [,SYN] [,UPD])I

ACB =address!
AREA= address!
AREALEN =number!
ARG=addressl
ECB =address I
FDBK =number!
KEYLEN =number!
MSGAREA =address!
MS GLEN= number!
NXTRPL =address I
RBA =number)
REC LEN= number!
RPLLEN =number!
TRANS ID= number}

The parameters of the TESTCB macro can be expressed as absolute numeric
expressions. as character strings, as codes. as expressions that generate valid
relocatable A-type address constants, in register notation, as S-type address
constants, and as indirect S-type address constants. Appendix B, "Operand
Notation" on page 129, gives all the ways of coding each parameter for the
macros that work at execution.

where:

label
is 1 to 8 characters that provide a symbolic address for the TESTCB macro.

RPL =address
specifies the address of the request parameter list whose information you
want to test. You may omit it only if you're testing the length of a request
parameter list (RPLLEN =number). (All request parameter lists have the
same length.)

ERET =address
specifies the address of a routine to which VSAM is to give control if,
because of an error, it is unable to test for the condition you specify. For
example, testing AVSPAC in an access method control block for an uno
pened data set would fail. VSAM indicates in register 15 whether it could do
the test and, if not, indicates in register 0 the reason it couldn't. (The
reasons are discussed under "Control Block Manipulation Macro Return

Chapter 2. VSAM Macro Formats and Examples 115

TESTCB-RPL

Codes and Reason Codes" on page 8.) A failure trying to execute TESTCB
indicates a basic logical problem in the processing program, so the error
routine would probably issue an abend. If it lets the program continue, it
must branch to the continuation point Itself, and not return to VSAM.

AIXFLAG=AIXPKP
specifies that prime-key pointers are used rather than RBAs.

AIXPC =number
specifies the pointer count.

FTNCD =number
specifies whether the upgrade set is correct or may have been modified by a
request. These codes are described under "Component Codes" on page 11.

10 =COMPLETE
specifies that a test is to be made to determine whether an asynchronous
request has been completed. (When you issue a CHECK macro, you
suspend processing until a request has been completed if it hasn't yet been
completed.)

OPTCD = ([,ADR] [,ARD][,ASY][,BWD][,CNV][,DIR][,FKS]
[,FWD][,GEN][,KEQ][,KEY][,KGE][,LOC][,LRD]
[,MVE][,NSP][,NUP][,SEQ][,SKP][,SYN][,UPD]

specifies that a test is to be made to determine what subparameter or com
bination of subparameters is being used for the request. See Figure 16 on
page 132 for a description of these subparameters.

The remaining parameters specify fields in a request parameter list and values;
the contents of a field are to be compared to the specified value. These fields
are the same as those that can be displayed by using a SHOWCB macro. (See
Figure 14 for an explanation of these fields.) Fields can be tested at the same
time they are displayed.

You may specify only one keyword. If you code a list of option codes (for
example. OPTCD =(KEY.DIR)), each of them must equal the corresponding value
in the control block for you to get an equal condition.

If you omit a routine to handle error conditions, you can examine register 15 fol- ..,J
lowing TESTCB by using a branch table, for example, but don't alter the PSW
condition code that VSAM set to indicate the result of a test until you've had a
chance to test It.

118 MVS/370 VSAM Administration: Macro Instruction Reference

Example: TESTCB Macro (Test a Request Parameter List)

CHANGE

TESTCB RPL=(3),
RECLEN=80

BE NOCHNGE

NOCHNGE •••

Because the record length in the
request parameter list was not 80,
the length indicator must be
modified so that it is 80.
Because the record length in the
request parameter list was 80, no
change is required.

The TESTCB macro's parameters are:

TESTCB-RPL

• RPL specifies that the address of the request parameter list to be tested is
contained in register 3.

• RECLEN specifies that the record length indicated in the request parameter
list is to be tested to determine whether it is 80.

Chapter 2. VSAM Macro Formats and Examples 117

VERIFY

VERIFY Macro (Synchronize End of Data)
The syntax of the VERIFY macro is:

I [label] I VERIFY I RPL=address

where:

label
is 1 to 8 characters that provide a symbolic address for the VERIFY macro.

RPL =address
specifies the address of the request parameter list that defines this VERIFY
request. You may specify the address in register notation (using a register
from 1 through 12, enclosed in parentheses) or specify it with an expression
that generates a valid relocatable A-type address constant.

The following parameter and subparameter is required for VERIFY:

• In the RPL, OPTCD=(CNV, ...) must be specified.

Before you can verify a data set that has been extended, you must close it and
reopen it to obtain new extent information.

After verifying a data set, positioning must be established with a POINT macro or
with a GET macro with RPL OPTCD =DIR.

The VERIFY macro is an invalid function for a linear data set (LOS). Because an
LOS has no control information, VSAM cannot examine the contents of the
control interval (Cl) for the LOS being processed. Therefore, VSAM record man
agement fails any request to verify an LOS.

118 MVS/370 VSAM Administration: Macro Instruction Reference

WRTBFR

WRTBFR Macro (Write Buffer)
The syntax of the WRTBFR macro is:

WRTBFR RPL =address
,TYPE= {ALLICHKIDRBAIDSILRU(percent)ITRN}

RPL =address
specifies the address of the request parameter list that defines the WRTBFR
request. An RPL need not be built especially for the WRTBFR-WRTBFR may
use an inactive RPL that defines other request(s) (GET, PUT, and so forth) for
a data set that is using the resource pool. The following RPL parameters
have meaning for WRTBFR:

• ACB =address
• ARG=address

For TYPE= DRBA. the address of a 4-byte field that contains the RBA to
be located and written.

• ECB =address
• OPTCD = {ASYISYN}

WRTBFR can be issued synchronously (SYN) or asynchronously (ASY). A
CHECK or ENDREQ must be issued to synchronize an asynchronous
WRTBFR request.

• TRANSID=number

Specifies a number from 0 to 31.

All other RPL parameters are ignored. RPLs are assumed not to be chained.

If the ACB to which the RPL is related has MACRF = GSR, the program that
issues WRTBFR must be in supervisor state with protection key 0 to 7.

TYPE= { ALLICHKI DRBAI DSI LRU(percent)ITRN}
specifies which buffers are to be written.

Note: Before using WRTBFR TYPE =CHKIDRBAITRN, be sure to release all
buffers. VSAM defers processing until all buffers are released. For details
about releasing buffers, see VSAM Administration.

ALL
specifies that all modified, unwritten index and data buffers in each buffer
pool in the resource pool are to be written. No buffers will be invali
dated. Closing all the data sets that use a resource pool causes the
same buffers to be written.

CHK
is as TRN (below), but, if an error occurs in writing buffers, transaction
IDs continue to be associated with the buffers. WRTBFR TYPE=CHK
could be used by a checkpoint routine to record checkpoint information
and leave buffers for which an error occurred as they were for continued
processing.

Chapter 2. VSAM Macro Formats and Examples 119

DRBA

DS

specifies that one of the data set's data buffers is to be written. The
buffer to be written is identified with the RBA pointed to by the RPL ARG
address.

specifies that, for the data set defined by the ACB to which the
WRTBFR's RPL is related, all modified, unwritten index and data buffers
are to be written and all buffers are marked empty, that is, invalidated.
Therefore, WRTBFR TYPE= DS should be issued only after all VSAM
requests for the data set have been quiesced. Otherwise, unpredictable
results may occur.

LRU(percent)
specifies that some of the modified buffers in each buffer pool in the
resource pool are to be written. The percent is the percentage of buffers
in each pool that are to be examined for possible writing. The least
recently used buffers are examined. (If percent is coded in register nota
tion, only registers 1 and 13 may not be used.)

TYPE= LRU is used for writing some modified buffers, without respect to
a particular data set or transaction ID, to ensure that buffers will be
available for GET requests (without having to wait for buffers to be
written).

TRN
specifies that all buffers in a buffer pool that have been modified by
requests with the transaction ID specified in the WRTBFR's RPL are to be
written. Transaction IDs are no longer associated with these buffers if
WRTBFR completes successfully.

120 MVS/370 VSAM Administration: Macro Instruction Reference

Appendix A. List, Execute, and Generate Forms of Macros

BLDVRP, DLVRP, GENCB, MODCB, SHOWCB, and TESTCB macros build a
parameter list describing in codes the actions indicated by the operands you
specify and pass the list to VSAM to take the indicated action. The list, execute,
and generate forms of BLDVRP, DLVRP, GENCB, MODCB, SHOWCB, and
TESTCB allow you to write reentrant programs, to share parameter lists, and to
modify a parameter list before using it.

Following is a brief description of the list, execute, and generate forms:

• The list form is used to build the parameter list either inline (referred to as a
simple list) or in an area remote from the macro expansion (referred to as a
remote list). Both the simple- and the remote-list forms allow you to build a
single parameter list that can be shared.

• The execute form is used to modify a parameter list and to pass it to VSAM
for action.

• The generate form is used to build the parameter list in a remote area and
to pass it to VSAM for action.

The list, execute, and generate forms of the BLDVRP, DLVRP, GENCB, MODCB,
SHOWCB, and TESTCB macros have the same syntax as the standard forms,
with the exception of:

• An additional keyword, MF

• Keywords that are required In the standard form may be optional in the list,
execute, and generate forms or may not be allowed in the execute form.
The meaning of the keywords, however, and the notation that may be used to
express addresses, names, numbers, and option codes are the same.

The sections that follow describe the syntax of the MF keyword and the use of
list, execute, and generate forms. They also indicate the optional and invalid
operands.

List-Form Keyword
The syntax of the MF keyword for the list form is:

I MF= (Ll(L,address[,/abe/])}

where:

L specifies that this is the list form of the macro.

address
specifies the address of a remote area In which the parameter llst Is to be
built. The area must begin on a fullword boundary. You can specify the
address in register notation or as an expression valid for a relocatable
A-type address constant or a direct or indirect S-type address constant.

C Copyright IBM Corp. 1983, 1990 121

label
is a unique name that is used in an EQU instruction in the expansion of the
macro; label is equated to the length of the parameter list. You do not have
to know the length of the parameter list if you code label; the expansion of
the macro determines the amount of storage required .

Because the MF= L expansion does not include executable code, register nota
tion and expressions that generate S-type address constants cannot be used.

If you code MF= L, the parameter list is built in line, which means that the
program is not reentrant if the parameter list is modified at execution.

If you code MF =(L,address), the parameter list is built in the remote area speci
fied, and the area must be large enough for the parameter list.

The size, in fullwords, of a parameter list is:

• For GENCB, 4, plus 3 times the number of ACB, EXLST, or RPL keywords
specified (plus 1 for DDNAME, EODAD, JRNAD, LERAD, or SYNAD)

• For MODCB, 3, plus 3 times the number of ACB, EXLST, or RPL keywords
specified (plus 1 for DDNAME, EODAD, JRNAD, LERAD, or SYNAD)

• For SHOWCB, 5, plus 2 times the number of fields specified in the FIELDS
operand

• For TESTCB, 8 (plus 1 for either DDNAME, STMST, EODAD, JRNAD, LERAD,
or SYNAD)

If you code MF= (L,address,label), the parameter list is built in the remote area
specified. The expansion of the macro equates label with the length of the
parameter list.

Execute-Form Keyword
The syntax of the MF keyword for the execute form is:

I MF=(E,address}

where:

E specifies that this is the execute form of the macro.

address
is the address of the parameter list.

The expansion of the execute form of the macro results in executable code that
causes:

1. A parameter list to be modified if requested

2. Control to be passed to a routine that satisfies the request

You may not use the execute form to add an entry to a parameter list. If you try
to add an entry, you will receive a return code of 8 in register 15.

122 MVS/370 VSAM Administration: Macro Instruction Reference

J

Generate-Form Keyword
The syntax of the MF keyword for the generate form is:

I MF= (G,address[Jabel])

where:

G specifies that this is the generate form of the macro.

address
specifies the address of a remote area in which the parameter list is to be
built. The area must begin on a fullword boundary.

label
is a unique name that is used in an EQU instruction in the expansion of the
macro; label is equated to the length of the parameter list. You do not have
to know the length of the parameter list if you code label; the expansion of
the macro determines the amount of storage required.

If you code MF =(G,address), the parameter list is built in the remote area speci
fied.

If you code MF= (G,address,label), the parameter list is built in the remote area
specified. The expansion of the macro equates the length of the parameter list
to label.

List, Execute and Generate Formats

List Form of BLDYRP
Note: If FIX is specified, DLVRP must be issued by the same task that issues
BLDVRP. STRNO is optional in the list form of BLDVRP, but, if it is not specified,
it must be specified in the execute form.

The syntax of the list form of BLDVRP is:

BLDVRP BUFFERS= (size(number),size(number), ...)
,MF=L

Execute Form of BLDYRP

[,FIX= {BFRI IOBl(BFR ,IOB)}]
[,KEYLEN =length]
[,STRNO =number]
[,TYPE= {LSRf GSR}]

Note: The address is the address of the parameter list built by a list form of
BLDVRP. If you use register notation, you may use register 1, and a register
between 2 and 12. Register 1 is used to pass the parameter list to VSAM.
BUFFERS may not be specified in the execute form of BLDVRP, because this
operand affects the length of the parameter list.

Appendix A. List, Execute, and Generate Forms of Macros 123

The syntax of the execute form of BLDVRP is:

BLDVRP MF= (E,address)
[,KEYLEN =length]
[,STRNO =number]
[,TYPE={LSRIGSR}]

Execute Form of DLVRP
Note: There is no list form for DLVRP, because DLVRP works with BLDVRP: It
uses the parameter list associated with BLDVRP. The address is the address of
the parameter list built by a list form of BLDVRP. If you use register notation,
use register 1 to pass the address of the parameter list to VSAM.

The syntax of the execute form of DLVRP is:

I DLVRP

List Form of GENCB

I MF= (E,address)
,TYPE={LSRIGSR}

The syntax of the list form of GENCB is:

[label] GENCB BLK = {ACBIEXLSTIRPL}
[,AM=VSAM]
[,COPIES= number]
[,keyword= {address I name I number! option}, ...]
[,LENGTH= number]
,MF= {Ll(L,address[,label])}
[,WAREA=address]

Execute Form of GENCB
The syntax of the execute form of GENCB is:

[label] GENCB BLK = {ACBIEXLSTIRPL}
[,AM=VSAM]
[,COPIES= number]
[,keyword= {address I namelnumberl option}, ...]
[,LENGTH= number]
,MF= (E,address)
[,WAREA=address]

124 MVS/370 VSAM Administration: Macro Instruction Reference

Generate Form of GENCB
The syntax of the generate form of the GEN CB macro is:

[label] GENCB BLK={ACBIEXLSTIRPL}
[,AM=VSAM]
[,COPIES= number]
[,keyword=addresslnamelnumberjoption}. ...]
[,LENGTH =number]
,MF= (G,address[,label])
[,WAREA=address]

List Form of MODCB
The syntax of the list form of MODCB is:

[label] MO DCB { ACB I EX LS Tl RPL{ =address
,keyword= { addresslnamelnumberl option}, ...
,MF= {Ll(L,address[,label])}

Execute Form of MODCB
Note: If the execute form of MODCB is used and EXLST is used as a keyword to
be processed, the block must be identified by ACB =.

The syntax of the execute form of MODCB is:

[label] MO DCB [{ACBIEXLSTIRPL} =address]
[,keyword= { addresslnamelnumberloption }, ...]
,MF= (E,address)

Generate Form of MODCB
The syntax of the generate form of MO DCB Is:

[label] MO DCB {ACBIEXLSTIRPL{=address
,keyword= { addresslnamelnumberloption }, ...
,MF= (G,address[,label])

List Form of SHOWCB
The syntax of the list form of SHOWCB is:

[label] SHOWCB [{ACBIEXLSTIRPL}=address]
,AREA=address
,FIELDS= (keyword[,keyword, ...])
,LENGTH= number
,MF= {Ll(L,address[,label])}
,OBJECT= {DATAllNDEX}]

Appendix A. List, Execute, and Generate Forms of Macros 125

Execute Form of SHOWCB
The syntax of the execute form of SHOWCB is:

[label] SHOWCB [{ACBIEXLSTIRPL} =address
,AREA= address
,MF= (E,address)
[,OBJECT= {DATAllNDEX}]

Generate Form of SHOWCB
The syntax of the generate form of SHOWCB is:

[label] SHOWCB [{ACBIEXLSTIRPL}=address]
,AREA= address
,FIELDS= (keyword[,keyword, ...])
,LENGTH= number
,MF= (G,address[,label])
[,OBJECT= {DATAllNDEX}]

List Form of TESTCB
Note: If the execute form of TESTCB is used and EXLST is used as a keyword to
be processed, the block must be identified by ACB =.

The syntax of the list form of TESTCB is:

[label] TESTCB [{ACBIEXLSTIRPL} =address]
[,ERET=address]
,keyword= { addresslnamelnumberl option}
,MF= {Ll(L,address[,label])}
[,OBJECT= {DATAllNDEX}]

Execute Form of TESTCB
Note: If the execute form of TESTCB is used and EXLST is used as a keyword to
be processed, the block must be identified by ACB =.

The syntax of the execute form of TESTCB is:

[label] TESTCB [{ACBIEXLSTIRPL} =address]
[,ERET=address]
[,keyword= {addresslnamelnumberl

option}]
,MF= (E,address)
[,OBJECT= {DATAllNDEX}]

126 MVS/370 VSAM Administration: Macro Instruction Reference

Generate Form of TESTCB
The syntax of the generate form of TESTCB is:

[label] TESTCB [{ACBIEXLSTIRPL} =address]
[,ERET =address]
,keyword= { addresslnamelnumberloption}
,MF= (G,address[,label])
[,OBJECT= {OATAllNDEX}]

Use of List, Execute, and Generate Forms
Figure 15 indicates which forms of GENCB, MODCB, SHOWCB, and TESTCB
should be used in reentrant/nonreentrant and shared/nonshared environments.

Reentrant

Shared MF-(L,address[,/abe/])
MF-(E,address)

Nonshared MF-(G,address[,/abe/])

Figure 15. Reentrant Programming

The figure shows that:

Non reentrant

MF-L
MF-(E,address)

Standard Form

• To share parameter lists in a reentrant program, the remote-list form should
be used in conjunction with the execute form.

• To share parameter. lists in a nonreentrant program, the simple-list form
should be used in conjunction with the execute form.

• If you do not intend to share parameter lists, the generate form should be
used in reentrant programs and the standard form should be used for
nonreentrant programs.

Examples of Generate, List, and Execute Forms in Reentrant Environments
The examples that follow illustrate how the list, execute, and generate forms
work.

Example: Generate Form (Reentrant)
In this example, the generate form of GENCB is used to create a default request
parameter list (RPL) in a reentrant environment.

LA 10,LENl Get length of the parameter list.
GETMAIN R,LV=(10) Get storage for the area in which

the parameter list is to be built.
LR 2,1 Save address of parameter-list

area.
GENCB BLK=RPL,

MF=(G,(2),LENl)

The macro expansion equates LEN1 to the length of the parameter list, as
follows:

+LENl EQU 16

Appendix A. List, Execute, and Generate Forms of Macros 127

The parameter list will be built in the area acquired by the GETMAIN macro and
pointed to by register 2. This list is used by VSAM to build the RPL. VSAM
returns the RPL address in register 1 and the RPL length in register 0. If the
WAREA and LENGTH parameters are used, the RPL will be built at the WAREA
address.

Example: Remote-List Form (Reentrant)
In this example, the remote-list form of MODCB is used to build a parameter list
that will later be used to modify the MACRF bits in the access method control
block ANYACB.

LA 8,LEN2

GETMAIN R,LV=(B)

LR 3, l

MDDCB ACB=ANYACB,
MACRMF=(L,(3),LEN2)

Get length of the parameter
1 i st.
Get storage for the area in
which the parameter list is to
be built.
Save address of the
parameter-list area.

The macro expansion equates the length of the parameter list to LEN2, as
follows:

+LEN2 EQU 24

This parameter list is built in the remote area pointed to by register 3. The list
will be used by VSAM to modify the ACB when an execute form of MODCB is
issued (see next example). The list form only creates a parameter list; it does
not modify the ACB.

Example: Execute Form (Reentrant)
In this example, the execute form of MODCB is used to modify the address of the
access method control block and MACRF codes in the parameter list created by
the remote-list form of MODCB in the previous example.

MDDCB ACB=MYACB,MACRF=(ADR,SEQ,OUT),MF=(E,(3))

The parameter list pointed to by register 3 is changed so that the ACB and
MACRF parameter values in the execute form override those in the list form.
The access method control block, MYACB, is then modified to
MACRF=ADR,SEQ,OUT). The access method control block at ANYACB is not
changed by either of these examples.

128 MVS/370 VSAM Administration: Macro Instruction Reference

Appendix B. Operand Notation

Operands with GENCB, MODCB, SHOWCB, and TESTCB
The addresses, names, numbers, and options required with operands in GENCB,
MODCB, SHOWCB, and TESTCB can be expressed in a variety of ways:

• An absolute numeric expression, for example, STRN0=3 and COPIES=10.

• A code or a list of codes separated by commas and enclosed In parentheses,
for example, OPTCD=KEY or OPTCD=(KEY,DIR,IN).

• A character string, for example, DDNAME=DATASET.

• A register from 2 through 12 that contains an address or numeric value, for
example, SYNAD = (3) . Equated labels can be used to designate a register,
for example, SYNAD =(ERR), where the following equate statement has been
included in the program: ERR EQU 3.

• An expression of the form (S,scon), where scan is an expression valid for an
S-type address constant, including the base-displacement form. The con
tents of the base register will be added to the displacement to obtain the
value of the keyword. For example, if the value of the keyword being repres
ented is a numeric value (that is, COPIES, LENGTH, RECLEN), the contents of
the base register will be added to the displacement to determine the
numeric value. If the value of the keyword being represented is an address
constant (that is, WAREA, EXLST, EODAD, ACB), the contents of the base
register will be added to the displacement to determine the value of the
address constant.

• An expression of the form (*,scon), where scan is an expression valid for an
S-type address constant, including the base-displacement form. The address
specified by scan is Indirect, that is, it is the address of an area that contains
the value of the keyword. The contents of the base register will be added to
the displacement to determine the address of the fullword of storage that
contains the value of the keyword.

If an indirect S-type address constant is used, the value it points to must
meet the following criteria:

If it is a numeric quantity or an address, it must occupy a fullword of
storage.
If it is an alphameric character string, it must occupy two words of
storage, be left aligned, and be filled on the right with blanks.

• An expression valid for a relocatable A·type address constant, for example,
AREA= MY AREA+ 4.

The specified keyword determines the type of expressions that can be used.
Additionally, register and S-type address constants cannot be used when MF-L is
specified.

The tables containing the individual macro operand notations have been deleted
from this release. This Information may be obtained from the Individual macro
descriptions shown In Chapter 2, "VSAM Macro Formats and Examples".

C Copyright IBM Corp. 1983, 1990 129

Appendix C. Building Parameter Lists

The standard forms of GENCB, MODCB, SHOWCB, and TESTCB build a param
eter list, put its address in register 1, and pass control to a VSAM routine to gen
erate, modify, display, or test an access method control block, exit list, or
request parameter list. Other forms of the macros only build the parameter list
(list forms) or only pass control to VSAM (execute forms).

You can avoid using a macro to build the parameter list by building it yourself
and issuing the execute form of the macro to pass control to VSAM. This
chapter explains how to build the parameter lists for GENCB, MODCB, SHOWCB,
and TESTCB. The rules for combinations of codes in a parameter list are the
same as the rules for combinations of operands in a macro.

You can avoid issuing the execute form of the macro by coding the linkage
instructions that pass control directly to the VSAM control block manipulation
routine. Before passing control, you must build the parameter list yourself.

The Format of the Parameter Lists
A parameter list for GENCB, MODCB, SHOWCB, or TESTCB is a list of fullword
addresses. The first address points to a header entry that identifies the type of
request and type of control block and gives other general information about the
request. Each of the rest of the addresses in the parameter list points to an
element entry that identifies the information you want to generate, modify,
display, or test.

The fullwords in the parameter list must be contiguous, and the last one must
have a 1 in its first bit. The header entry and each element entry may be sepa
rate from each other. Figure 16 on page 132 gives the formats of the header
and element entries for the four request types.

Building Header and Element Entries
Five assembler macros are provided for building entries.
IDAGENC, IDAMODC, IDASHOW, and IDATEST help you build a header entry for
generation, modification, display, or test. IDAELEM helps you build an element
entry.

[label] I DAG ENC [DSECT= {YESINO}]

[label] IDAMODC [DSECT= {YESINO}]

[label] IDASHOW [DSECT= {YES !NO}]

[label] IDATEST [DSECT= {YES !NO}]

[label] IDAELEM [DSECT= ~INO}]

DSECT= {!ESINO}
Indicates whether a DSECT statement is to be generated. If you intend to
build entries in a continuous area, you could have only the first of the
macros generate a DSECT statement and use a single register to address
the whole area.

Cl Copyright IBM Corp. 1983, 1990 131

GENCB

Modification

MO DCB

Display

SHOWCB

()

4

8

()

4

()

4

8

12

()

4

8

12

Header Entry

GFNBTC GLNITC (;J:NCOP

Control- Function NumhL'r of copies
b(OL'k type type of hlock

GFNUSA <optional)

Address of area provided
for !(encration

GENUSL !optional) (reserved)

Len!(th of area

MODBTC MOD FTC (reserved)

Control- Funl'lion
block type type

MODBLAD

Address of L'l>ntrol block
to be modified

SHOWBTC SHOWHC SHOWOBJ
(optional)

function Object type Control-
block type type (data or index)

SHOWBLAD <opti<•nal)

Address of control
bl<Kk to be displayed

SHOWUSA

Address of area provided
for display

SHOWUSL (reserved)

Len!(th of area

TESTBTC TES HTC TES TO BJ
(optional)

Funl'tion Object type Control-
block type type (data or index)

TFSTBLAD !optionalJ

Address of nintrol
hhiL·k to be tested

TESTFRET <optional)

Addrc;s of error-analysis
routine !ERETI

(re,c rvcd)

()

4

()

4

Element Entry

Hl .MKWTC

Keyword
type

Keyword value

(required for
some keywords)*

(reserved)

L-------------J

ELEMKWTC

Keyword
type

Keyword value

!required for
some keywords)*

<reserved)

L-------------J

11 ELEMKWTC (reserved)

0

4

Keyword
type

ELEMKWTC

Keyword
<ype

Keyword value

!required for
somL' keywords)*

(reserved)

L-------------.J
*Scn ind fullword required for

keyword value of DDNAML
STMST. FODAD . . IRNAD.
LERAD, and SYN AD.

Figure 16. Format of Header and Element Entries for GENCB, MODCB, SHOWCB, and TESTCB Parameter Lists

These macros generate labeled OS statements that give the layout of an entry
and EQU statements that equate a label with a numeric code. You can symbol
ically encode an entry with a series of move instructions. The macros are self
documenting- inspect a listing of their expansions and you can see which labels

132 MVS/370 VSAM Administration: Macro Instruction Reference

to code in your move instructions. (You can list the macros as they appear in
the macro library.)

To generate an exit list with LERAD and SYNAD exits, you could code a GENCB
of the standard form:

GENCB BLK = EXLST,LERAD = (LOGERR,L),SYNAD =PHYS ERR

The following example shows how to achieve the same effect by building the
parameter list and entries yourself and issuing a GENCB of the execute form.

LA 5,NTRYAREA Set up base register for the
entries.

USING 5,GENC GENC is the first label in the
work area.

Build the list of addresses that point to the entries.

ST 5,PLIST Address of the header entry.
LA 6,GENLEN(,5) Address of the first element entry.

ST 6,PLIST+4

GENLEN is equated to the length of
a header element for generation.

LA 6,ELEMLLEN(,6) Address of the second element entry.
ELEMLLEN is equated to the length
of an element entry for an exit list.

ST 6,PLIST+B
OI PLIST+8,X'88' End-of-list indicator.

Build the header entry.

MVI GENBTC,GENXLST
MVI GEN FTC, GENFTYP

MVI GENCOP+l,X'81'

MVI E LEMKWTC+ 1,
ELEM LEAD

LA 6,LOGERR

ST 6,ELEMPTR
MVI ELEMXFLG,

ELEMXL+ELEMXADR

Build the second element entry.

LA 5,ELEMLLEN(,5)

MVI ELEMKWTC+l,
ELEMSYAD

LA 6,PHYSERR

ST 6,ELEMPTR
MVI ELEMXFLG,

ELEMXADR

Pass control to VSAM.

Indicate the blocktype-exit list.
Indicate the function
type-generation.
Indicate the number of copies
of the exit list to be generated.
Indicate the keyword
type-LERAD.
Address of the name of the
logical error analysis module.

Indicate the presence of an
address ELEMPTR and that the
exit routine is to be loaded.

Align the DSECT with the
second element entry. ELEMLLEN
is equated to the length of an
element entry for an exit list.
Indicate the keyword
type-SYNAD.
Address of the entry point of the
physical error analysis routine.

Indicate the presence of an
address in ELEMPTR.

Appendix C. Building Parameter Lists 133

GENCB
LTR
BNZ

MF=(E,PLIST)
15,15
CHECKO

Generation successful?
No.

CHECKO ABEND 1,DUMP Register 0 indicates the error.

Physical error analysis exit routine.

PHVSERR ...

Work areas and constants.

LOGE RR DC CL8'LEMOD' Name of the logical error
analysis module to be loaded.
List of entry addresses. PUST DC 3F'9'

NTRVAREA DC 9F'0'

3 addresses are required:
1 for the header and 2 for
the elements (1 for LERAD and
1 for SVNAD).
Work area for header and
element entries. The header
for GENCB is 3 fullwords,
and so are the LERAD
and SVNAD elements.

DSECT with labels for the header and element entries.

IDAGENC

IDAELEM DSECT=NO

Header entry. A DSECT
statement is generated, and
register 5 is used to address
NTRVAREA with these labels.
Element entry. Element labels
are part of the same DSECT as
the header labels.

Passing Control Directly to VSAM
You can avoid using the execute form of GENCB, MODCB, SHOWCB, and
TESTCB by building your own linkage instructions. You first build a parameter
list, as described in the previous section, and put its address in register 1. Then
you pass control to VSAM using the following instructions:

L 15,16 Put the address of the CVT
into register 15.

L 15,256(,15) Put the address of the AMCBS

L 15,12(,15)

BALR 14,15

BAL
or

14,xx(,15)

control block into register 15.
Put the address of the control
block manipulation routine into
register 15.

Branch to the routine

The BALR 14,15 instruction is used when the specific function (GENCB, MODCB,
SHOWCB, or TESTCB) is not known, or when the control block type (ACB, EXLST,
or RPL) is not known. The user·built parameter list contains the function code
and control block type code.

The BAL 14,xx(,15) instruction is used to increase your program's performance. ..J
The "xx" is a decimal value that identifies a function (GENCB, MODCB,
SHOWCB, or TESTCB) and a control block type (ACB, EXLST, or RPL).

134 MVS/370 VSAM Administration: Macro Instruction Reference

Decimal
Value of xx Function Control Block

8 GEN CB ACS
12 GEN CB RPL
16 GEN CB EXLST
20 Reserved
24 MODCB ACS
28 MO DCB RPL
32 MO DCB EXLST
36 Reserved
40 SHOWCB ACS
44 SHOWCB RPL
48 SHOWCB EXLST
52 Reserved
56 TEST CB ACS
60 TEST CB RPL
64 TESTCB EXLST
68 Reserved
72 SHOWCB or Block length

TEST CB keywords only
761 SHOWCB RECLEN field

of an RPL
801 MODCB RECLEN field

of an RPL

1 Register 1 points to an RPL when xx is 76 or 80. See the following section for
details.

When VSAM returns to your program, register 15 contains a completion code.
Register 15 contains a zero value if the task completed successfully. Otherwise,
register 15 and register 0 contain codes that identify the reason VSAM could not
complete the task.

Modifying and Displaying the RECLEN Field of an RPL Directly
You can modify or display the RECLEN field (that is, the record length) of an RPL
without issuing a SHOWCB or MODCB macro, and without building a parameter
list.

To modify a RPL's REC LEN field, you first put the address of the RPL in register
1, and the value to be set in the RECLEN field in register 0. Next, you code the
instructions that put the address of the VSAM control block manipulation routine
into register 15, then branch to the routine:

L 15,16 Put the address of the CVT into
register 15.

L 15,256(, 15) Put the address of the AMCBS
control block into register 15.

L 15,12(,15) Put the address of the control
block manipulation routine
into register 15.

BAL 14,80(,15) Branch to the routine.

When VSAM returns to your program, register 15 contains a completion code.
Register 15 contains a zero value if the field was modified correctly. Otherwise,
register 15 and register 0 contain codes that identify the reason VSAM could not
complete the task.

Appendix C. Building Parameter Lists 135

To display the contents of a RPL's RECLEN field, you first put the address of the
RPL in register 1. Next, you code the instructions that put the address of the
VSAM control block manipulation routine into register 15, and then branch to the
routine:

L 15,16 Put the address of the CVT into
register 15.

L 15,256(,15) Put the address of the AMCBS
control block into register 15.

L 15,12(,15) Put the address of the control
block manipulation routine into
register 15.

BAL 14, 76(, 15) Branch to the routine.

When VSAM returns to your program, register 15 contains a completion code.
Register 15 contains a zero value if the field is displayed correctly, and register 0
contains the value of the RPL's RECLEN field. When register 15 is not zero, reg
ister 15 and register 0 contain codes that identify the reason VSAM could not
complete the task.

138 MVS/370 VSAM Administration: Macro Instruction Reference

J

Glossary of Terms and Abbreviations

The following terms are defined as they are used in
this book. If you do not find the term you are looking
for, see the index or the IBM Dictionary of Computing,
SC20-1699.

access method services. A multifunction service
program that is used to define VSAM data sets and
allocate space for them, convert indexed-sequential
data sets to key-sequenced data sets, modify data set
attributes in the catalog, reorganize data sets, facili
tate data portability between operating systems,
create backup copies of data sets, help make inacces
sible data sets accessible, list the records of data sets
and catalogs, define and build alternate indexes, and
convert OS CVOLs and VSAM catalogs to integrated
catalog facility catalogs.

acquire. To allocate space on a staging drive and to
stage data from an MSS cartridge to the staging
drive.

addressed-direct access. The retrieval or storage of
a data record identified by its RBA, independent of
the record's location relative to the previously
retrieved or stored record. (See also keyed-direct
access, addressed- sequential access, and keyed
sequential access.)

addressed-sequential address. The retrieval or
storage of a data record in its entry sequence relative
to the previously retrieved or stored record. (See
also keyed-sequential access, addressed-direct
access, and keyed-direct access.)

alternate index. A collection of index entries organ
ized by the alternate keys of its associated base data
records. It provides an alternate means of locating
records in the data component of a cluster on which
the alternate index is based.

alternate Index cluster. The data and index compo
nents of an alternate index.

alternate key. One or more consecutive characters
taken from a data record and used to build an alter
nate index or to locate one or more base data records
via an alternate index. (See also generic key, key,
and key field.)

APF. (See authorized program facility.)

application. As used in this publication, the use to
which an access method is put or the end result that
it serves; contrasted to the internal operation of the
access method.

(C) Copyright IBM Corp. 1983, 1990

authorized program facility. A facility that permits
the identification of programs that are authorized to
use restricted functions.

base cluster. A key-sequenced or entry-sequenced
data set over which one or more alternate indexes
are built.

base RBA. The RBA stored in the header of an index
record that is used to calculate the RBAs of data or
index control intervals governed by the index record.

catalog. (See master catalog and user catalog.)

catalog recovery area. An entry-sequenced file that
exists on each volume owned by a recoverable
catalog, including the catalog itself. The CRA con
tains records that are duplicates of the catalog entries
describing the volume and the files it contains.

CBIC. Control blocks in common, a facility that
allows a user to open a VSAM data set so the VSAM
control blocks are placed in the common service area
(CSA) of the MVS operating system. This provides the
capability for multiple memory accesses to a single
VSAM control structure for the same VSAM data set.

chained RPL. (See RPL string.)

Cl. (See control interval.)

CIDF. (See control interval definition field.)

cluster. A named structure consisting of a group of
related components (for example, a data component
with its index component). A cluster may consist of a
single component. (See also base cluster and alter
nate index cluster.)

collating sequence. An ordering assigned to a set of
items, such that any two sets in that assigned order
can be collated.

component. A named, cataloged collection of stored
records. A component, the lowest member of the
hierarchy of data structures that can be cataloged,
contains no named subsets.

control area. A group of control intervals used as a
unit for formatting a data set before adding records to
it. Also, in a key-sequenced data set, the set of
control intervals pointed to by a sequence-set index
record; used by VSAM for distributing free space and
for placing a sequence-set index record adjacent to its
data.

control area split. The movement of the contents of
some of the control intervals in a control area to a

137

newly created control area, to facilitate the insertion
or lengthening of a data record when there are no
remaining free control intervals in the original control
area.

control interval. A fixed-length area of auxiliary
storage space in which VSAM stores records. It is the
unit of information transmitted to or from auxiliary
storage by VSAM.

control Interval access. The retrieval or storage of
the contents of a control interval.

control interval definition field. In VSAM, the 4-byte
control information field at the end of a control
interval that gives the displacement from the begin
ning of the control interval to free space and the
length of the free space. If the length is 0, the dis
placement is to the beginning of the control informa
tion.

control interval split. The movement of some of the
stored records in a control interval to a free control
interval, to facilitate the insertion or lengthening of a
record that won't fit in the original control interval.

control volume. A volume that contains one or more
indexes of the catalog.

CRA. (See catalog recovery area.)

cross memory. A synchronous method of communi
cation between address spaces.

CVOL. (See control volume.)

DASO. (See direct access storage device.)

~ata record. A collection of items of information from
the standpoint of its use in an application, as a user
supplies it to VSAM for storage.

data set. The major unit of data storage and retrieval
in the operating system, consisting of data in a pre
scribed arrangement and described by control infor
mation to which the system has access. As used in
this publication, a collection of fixed- or variable
length records in auxiliary storage, arranged by
VSAM in key sequence or in entry sequence. (See
also key-sequenced data set and entry-sequenced
data set.)

DD statement. data definition statement

direct access. The retrieval or storage of data by a
reference to its location in a data set rather than rela
tive to the previously retrieved or stored data. (See
also addressed-direct access and keyed-direct
access.)

direct access storage device. A device in which the
access time is effectively independent of the location
of the data.

EBDIC. Extended binary-coded decimal interchange
code. A coded character set consisting of 8-bit coded
characters.

entry sequence. The order in which data records are
physically arranged (according to ascending RBA) in
auxiliary storage, without respect to their contents.
(Contrast with key sequence.)

entry-sequenced data set. A data set whose records
are loaded without respect to their contents, and
whose RBAs cannot change. Records are retrieved
and stored by addressed access, and new records are
added at the end of the data set.

EOD. end of data

EOKR. end-of-key range

EOV. end of volume

field. In a record or a control block, a specified area
used for a particular category of data or control infor
mation.

free control interval pointer list. In a sequence-set
index record, a vertical pointer that gives the location
of a free control interval in the control area governed
by the record.

free space. Space reserved within the control inter
vals of a key-sequenced data set for inserting new
records into the data set in key sequence; also, whole
control intervals reserved in a control area for the
same purpose.

GENDSP. An option of LOCATE to obtain the control
interval number of the catalog record of each object.

generation data group. A collection of data sets that
are kept in chronological order; each data set is
called a generation data set.

generic key. A high-order portion of a key, con
taining characters that identify those records that are
significant for a certain application. For example, it
might be desirable to retrieve all records whose keys
begin with the generic key AB, regardless of the full
key values.

global shared resources. An option for sharing 1/0
buffers, 1/0-related control blocks, and channel pro
grams among VSAM data sets in a resource pool that
serves all address spaces in the system.

GSR. (See global shared resources.)

138 MVS/370 VSAM Administration: Macro Instruction Reference

J

L

header, Index record. In an index record, the 24-byte
field at the beginning of the record that contains
control information about the record.

header entry. In a parameter list of GENCB, MODCB,
SHOWCB, or TESTCB, the entry that identifies the
type of request and control block and gives other
general information about the request.

horizontal pointer. In the header of an index record,
the RBA of the index record in the same level as this
one that contains keys next in ascending sequence
after the keys in this one.

ICF. (See integrated catalog facility.)

Index. As used In this publication, an ordered col
lection of pairs, each consisting of a key and a
pointer, used by VSAM to sequence and locate the
records of a key-sequenced data set.

Index level. A set of index records that order and
give the location of all the control intervals in the next
lower level or in the data set that it controls.

Index record. A collection of index entries that are
retrieved and stored as a group. (Contrast to data
record.)

Index record header. In an index record, the 24-byte
field at the beginning of the record that contains
control information about the record.

Index repllcatlon. The use of an entire track of direct
access storage to contain as many copies of a single
index record as possible; reduces rotational delay.

Index Mt. The set of index levels above the
sequence set. The index set and the sequence set
together comprise the index.

Integrated catalog facility. The name of the catalog
associated with the Data Facility Licensed program.

ISAM. Indexed sequential access method

ISAM Interface. A set of routines that allow a proc
essing program coded to use ISAM (indexed sequen
tial access method) to gain access to a
key-sequenced data set.

JCL. (See job control language.)

Job e11talog. A catalog made available for a job by
means of the JOBCAT DD statement.

Job control language. A problem-oriented language
designed to express statements in a job that are used
to identify the job or describe its requirements to an
operating system.

Job step catalog. A catalog made available for a job
by means of the STEPCAT DD statement.

key. One or more characters within an item of data
that are used to identify it or control its use. As used
in this publication, one or more consecutive charac
ters taken from a data record, used to identify the
record and establish its order with respect to other
records. (See also key field and generic key.)

key field. A field located in the same position in each
record of a data set, whose contents are used for the
key of a record.

key aequence. The collating sequence of data
records, determined by the value of the key field in
each of the data records. May be the same as, or
different from, the entry sequence of the records.

key-sequenced data set. A VSAM file (data set)
whose records are loaded in key sequence and con
trolled by an index. Records are retrieved and stored
by keyed access or by addressed access, and new
records are inserted in key sequence by means of dis
tributed free space. Relative byte addresses of
records can change because of control interval or
control area splits.

keyed-direct access. The retrieval or storage of a
data record by use of either an index that relates the
record's key to its relative location in the data set or
a relative record number, independent of the record's
location relative to the previously retrieved or stored
record. (See also addressed-direct access, keyed
sequential access, and addressed-sequential access.)

keyed-sequential access. The retrieval or storage of
a data record in its key or relative record sequence
relative to the previously retrieved or stored record,
as defined by the sequence set of an index. (See also
addressed-sequential access, keyed-direct access,
and addressed-direct access.)

LOS. (See linear data set.)

level number. For the index of a key-sequenced data
set, a binary number in the header of an index record
that indicates the index level to which the record
belongs.

linear data aet. a linearly ordered data set whose
order is preserved in storage by using sequential allo
cation.

local shared resources. An option for sharing 1/0
buffers, Ito-related control blocks, and channel pro
grams among VSAM data sets in a resource pool that
serves one partition or address space.

LSR. (See local shared resources.)

Glossary of Terms and Abbreviations 139

master catalog. A catalog that contains extensive
data set and volume information that VSAM requires
to locate data sets, to allocate and deallocate storage
space, to verify the authorization of a program or
operator to gain access to a data set, and to accumu
late usage statistics for data sets.

operating system. Software that controls the exe
cution of programs; an operating system may provide
services such as resource allocation, scheduling,
input/output control, and data management.

password. A unique string of characters stored in a
catalog that a program, a computer operator, or a ter
minal user must supply to meet security requirements
before a program gains access to a data set.

path. A named, logical entity composed of one or
more clusters (an alternate index and its base cluster,
for example).

physical record. A physical unit or recording on a
medium. For example, the physical unit between
address markers on a disk.

pointer. An address or other indication of location.
For example, an RBA is a pointer that gives the rela
tive location of a data record or a control interval in
the data set to which it belongs.

prime index. The index component of a key
sequenced data set that has one or more alternate
indexes. (See also index and alternate index.)

prime key. (See key.)

QSAM. (See queued sequential access method.)

queued sequential access method. An extended
version of the basic sequential access method
(BSAM). When this method is used, a queue is
formed of input data blocks that are awaiting proc
essing or output data blocks that have been proc
essed and are awaiting transfer to auxiliary storage
or to an output device.

RACF. Resource Access Control Facility.

random access. (See direct access.)

RBA. Relative byte address. The displacement
(expressed as a fullword binary integer) of a data
record or a control interval from the beginning of the
data set to which it belongs; independent of the
manner in which the data set is stored.

RDF. (See record definition field.)

record. (See index record, data record.)

record definition field. A field stored as part of a
stored record segment; it contains the control infer-

mation required to manage stored record segments
within a control interval.

relative byte address. (See RBA.)

relative record data set. A data set whose records
are loaded into fixed-length slots.

relative record number. A number that identifies not
only the slot, or data space, in a relative record data
set but also the record occupying the slot. Used as
the key for keyed access to a relative record data set.

replication. (See index replication.)

resource pool, VSAM. (See VSAM resource pool.)

reusable data set. A VSAM data set that can be
reused as a work file, regardless of its old contents.
Must not be a base cluster.

RPL string. A set of chained RPLs (the set may
contain one or more RPLs) used to gain access to a
VSAM data set by action macros (GET, PUT, etc).
Two or more RPL strings may be used for concurrent
direct or sequential requests made from a processing
program or its subtasks.

SAM. (See sequential access method.)

security. (See data security.)

sequence checking. The process of verifying the
order of a set of records relative to some field's col
lating sequence.

sequence set. The lowest level of the index of a key
sequenced data set; it gives the locations of the
control intervals in the data set and orders them by
the key sequence of the data records they contain.
The sequence set and the index set together comprise
the index.

sequential access. The retrieval or storage of a data
record in either its entry sequence, its key sequence,
or its relative record number sequence, relative to
the previously retrieved or stored record. (See also
addressed-sequential access and keyed-sequential
access.)

sequential access method. An access method for
storing or retrieving data blocks in a continuous
sequence, using either a sequential access or a direct
access device.

shared resources. A set of functions that permit the
sharing of a pool of 1/0-related control blocks, channel
programs, and buffers among several VSAM data sets
open at the same time.

sklp-sequentlal access. Keyed-sequential retrieval or
storage of records here and there throughout a data

140 MVS/370 VSAM Administration: Macro Instruction Reference

set, skipping automatically to the desired record or
collating position for insertion: VSAM scans the
sequence set to find a record or a collating position.
Valid for processing in ascending sequences only.

slot. For a relative record data set, the data area
addressed by a relative record number which may
contain a record or be empty.

spanned record. A logical record whose length
exceeds control interval length, and as a result,
crosses, or spans, one or more control interval
boundaries within a single control area.

SRB. Service request block. A system control block
used for dispatching tasks.

step catalog. A catalog made available for a step by
means of the STEPCAT DD statement.

terminal monitor program. In TSO, a program that
accepts and interprets commands from the terminal,
and causes the appropriate command processors to
be scheduled and executed.

time sharing option. An optional configuration of the
operating system that provides conversational time
sharing from remote stations.

TMP. (See terminal monitor program.)

transaction ID. A number associated with each of
several request parameter lists that define requests
belonging to the same data transaction.

TSO. (See time sharing option.)

update number. For a spanned record, a binary
number in the second RDF of a record segment that
indicates how many times the segments of a spanned
record should be equal. An inequality indicates a pos
sible error.

upgrade set. All the alternate indexes that VSAM has
been instructed to update whenever there is a change
to the data component of the base cluster.

user buffering. The use of a work area in the proc
essing program's address space for an 1/0 buffer;
VSAM transmits the contents of a control interval
between the work area and direct access storage
without intermediary buffering.

user catalog. An optional catalog used in the same
way as the master catalog and pointed to by the
master catalog. It also lessens the contention for the
master catalog and facilitates volume portability.

vertical pointer. A pointer in an index record of a
given level that gives the location of an index record
in the next lower level or the location of a control
interval in the data set controlled by the index.

virtual storage access method. An access method for
direct or sequential processing of fixed and variable
length records on direct access devices. The records
in a VSAM data set or file can be organized in logical
sequence by a key field (key sequence), in the phys
ical sequence in which they are written on the data
set or file (entry sequence), or by relative record
number.

VSAM. (See virtual storage access method.)

VSAM resource pool. A virtual storage area that is
used to share 1/0 buffers, 110-related control blocks,
and channel programs among VSAM data sets. A
resource pool is local or global; it serves tasks in one
partition or address space or tasks in all address
spaces in the system.

VSAM shared Information. Blocks that are used for
cross-system sharing.

VSI. (See VSAM shared information.)

Glossary of Terms and Abbreviations 141

J

J

J

Index

A
A-type address constant 23, 49
ACB macro 24-30
ACB parameter

in FIELDS parameter 107
in GENCB macro 57
in MODCB macro 74
in RPL macro 93
in SHOWCB macro 99
in TESTCB macro 110

ACB (access method control block)
generating 24
testing 109-117

ACBLEN parameter
in FIELDS parameter 100

access method control block
See ACB (access method control block)

ACORANGE macro
format 31
return codes and reason codes 10

addition of records
addressed-sequential 87

addition example 87
address

list
in GENCB parameter lists 131
in MODCB parameter lists 131
in SHOWCB parameter lists 131
in TESTCB parameter lists 131

ADR subparameter
in MACRF parameter 27
in OPTCD parameter 95

AIX subparameter
in MACRF parameter 28

AIXFLAG parameter
in TESTCB macro 116

AIXPC parameter
in FIELDS parameter 107
in TESTCB macro 116

alternate index
providing buffers for shared resources

AM parameter
in ACB macro 24
in EXLST macro 47
in GENCB macro 49, 54, 58
in RPL macro 93

APF (authorized program facility)
fixing pages in real storage 33

ARD subparameter
in OPTCD parameter 95

AREA parameter
in FIELDS parameter 107
in GENCB macro 58
in RPL macro 93

©Copyright IBM Corp. 1983, 1990

33

AREA parameter (continued)
in SHOWCB macro 99, 104, 106

AREALEN parameter
in FIELDS parameter 107
in GENCB macro 58
in RPL macro 94

ARG parameter
in Fl ELDS parameter 107
in GENCB macro 58
in RPL macro 94

ASY subparameter
in OPTCD parameter 95

ATRB parameter
in TESTCB macro 110

authorized program facility (APF)
See APF (authorized program facility)

AVSPAC parameter
in FIELDS parameter 101

B
BFRFND parameter

in FIELDS parameter 101
BLDVRP macro

execute form 124
format 33
list form 123
return codes 22

BLK parameter
in GENCB macro 49, 54, 57

boldface, in notation convention v
brackets, in notation convention v
BSTRNO parameter

in ACB macro 24
in FIELDS parameter 100
in GENCB macro 49

BUFND parameter
in ACB macro 24
in FIELDS parameter 100
in GENCB macro 50

BUFNI parameter
in ACB macro 25
in FIELDS parameter 100
in GENCB macro 50

BUFNO parameter
in Fl.ELDS parameter 101

BUFRDS parameter
in FIELDS parameter 101

BUFSP parameter
in ACB macro 25
in FIELDS parameter 100
in GENCB macro 50

building parameter list for GENCB macro
coding example 133

143

BWD subparameter
in OPTCD parameter 95

c
capitalizing, in notation convention v
CATALOG parameter

in ACB macro 26
in GENCB macro 51
in TESTCB macro 111

CFX subparameter
in MACRF parameter 27

chaining request parameter lists
not allowed with

MRKBFR 79
SCHBFR macro 98
WRTBFR 119

CHECK macro 37
return codes and reason codes 10
suspend processing 35
with the WRTBFR macro 119

checking return codes
after a synchronous request 36
after an asynchronous request 35

Cl NV parameter
in FIELDS parameter 101

CLOSE macro 38
return codes 4

closing a data set
writing buffers 119

CNV subparameter
in MACRF parameter 27
in OPTCD parameter 95

CNVTAD macro
format 39
return codes and reason codes 10

connecting program and data (OPEN macro) 80
control information

parameter lists of GENCB, MODCB, SHOWCB, and
TESTCB macros 131

address list 131
element entry 131
header entry 131

COPIES parameter
in GENCB macro 51, 55, 58

CRA parameter

D

in ACB macro 26
in GENCB macro 51
in TESTCB macro 111

DON subparameter
in MACRF parameter 27

DDNAME parameter
in ACB macro 26
in FIELDS parameter 100
in GENCB macro 51

deferring write requests
deleting

record
ERASE macro 44

DFR subparameter
in MACRF parameter 27

DIR subparameter
in MACRF parameter 27
in OPTCD parameter 95

disconnecting your program
CLOSE macro 38

DLVRP macro
execute form 124
format 41
return codes 22

DSN subparameter
in MACRF parameter 27

E
ECB parameter

in FIELDS parameter 107
in GENCB macro 58
in RPL macro 94

element entry
in parameter lists of GENCB, MODCB, SHOWCB,

and TESTCB macros 131
coding example 131
illustration 131

ellipses, in notation convention v
end-of-volume

return codes 22
ENDRBA parameter

in FIELDS parameter 101
ENDREQ macro 42-43

return codes and reason codes 10
used with WRTBFR macro 119

entry
element, in parameter lists of GENCB, MODCB,

SHOWCB, and TESTCB macros 131
header, in parameter lists of GENCB, MODCB,

SHOWCB, and TESTCB macros 131
EODAD parameter

in EXLST macro 47
in GENCB macro 54
in SHOWCB macro 104
in TESTCB macro 113

ERASE macro 44-46
return codes and reason codes 10

ERASE processing 44
ERET parameter

in TESTCB macro 110, 113, 115
ERROR parameter

in FIELDS parameter 100
ESDS parameter

in TESTCB macro 110
execute form

BLDVRP macro 124
DLVRP macro 124

144 MVS/370 VSAM Administration: Macro Instruction Reference

~-

execute form (continued)
use of 127

EXLLEN parameter
in SHOWCB macro 104
in TESTCB macro 114

EXLST macro 48
generating an exit list 47

EXLST parameter

F

in ACB macro 26
in FIELDS parameter 100
in GENCB macro 51
in MODCB macro 76
in SHOWCB macro 104
in TESTCB macro 113

FDBK parameter
in FIELDS parameter 107

FIELDS parameter
in SHOWCB macro 100, 104, 106

fixing pages in real storage
with shared resources 33

FKS subparameter
in OPTCD parameter 96

format
ACQRANGE macro 31
B LDVRP macro 33
CNVTAD macro 39
DLVRP macro 41
execute form

of BLDVRP macro 124
of DLVRP macro 124

list form
of BLDVRP macro 123

MNTACO macro 72
MRKBFR macro 79
parameter lists of GENCB, MODCB, SHOWCB, and

TESTCB macros 131
element entry 131
header entry 131

SCHBFR macro 98
WRTBFR macro 119

FS parameter
in FIELDS parameter 101

FTNCD parameter
in FIELDS parameter 107
in TESTCB macro 116

FWD subparameter
in OPTCD parameter 95

G
GENCB macro

execute form 124
with parameter lists built by user 131 , 133

generate form 125
reentrant example 127

generating a request parameter list 57, 61

GENCB macro (continued)
generating an access method control block 49
generating an exit list 54, 56
linking to VSAM directly 134
list form 124
operand notation 129
return codes 8

generate form
use of 127

generating
access method control block 49
exit list

EXLST macro 47
GENCB macro 54

request parameter list
GENCB macro 57
RPL macro 93

GET macro 62-70
return codes and reason codes 10

GETIX macro 71
return codes and reason codes 10

GSR subparameter
in MACRF parameter 28

H
HALCRBA parameter

in FIELDS parameter 101
header entry

in parameter lists of GENCB, MODCB, SHOWCB,

I

and TESTCB macros 131
coding example 131
illustration 131
using macros to build 131

ICI subparameter
in MACRF parameter 28

IDAELEM macro 131
IDAGENC macro 131
IDAMODC macro 131
IDASHOW macro 131
IDATEST macro 131
IN subparameter

in MACRF parameter 28
index

retrieval (GETIX macro) 71
storing (PUTIX macro) 92

indirect S-type address constant 49
inserting records

keyed-direct 87
keyed-sequential 82, 84
skip sequential 85

10 parameter
in TESTCB macro 116

italics, in notation convention v

Index 145

J
JRNAD parameter

K

in EXLST macro 47
in GENCB macro 54
in SHOWCB macro 104
in TESTCB macro 113

KEO subparameter
in OPTCD parameter 96

KEY subparameter
in MACRF parameter 27
in OPTCD parameter 95

KEYLEN parameter
in FIELDS parameter 101, 107
in GENCB macro 58
in RPL macro 94

keywords
execute form 122
generate form 123
list form 121

KGE subparameter
in OPTCD parameter 96

KSDS parameter
in TESTCB macro 110

L
LOS (linear data set) 17, 118
LENGTH parameter

in GENCB macro 52, 55, 59
in SHOWCB macro 99, 104, 106

LERAD parameter
in EXLST macro 47
in GENCB macro 54
in SHOWCB macro 105
in TESTCB macro 113

linear data set
See LOS (linear data set)

linking to VSAM directly 134
list form

BLDVRP macro 123
use of 127

list, parameter
of GENCB, MODCB, SHOWCB, and TESTCB

macros 131
LOC subparameter

in OPTCD parameter 96
locate mode

with control interval access
with shared resources 98

LRD subparameter
in OPTCD .parameter 95

LRECL parameter
in FIELDS parameter 101

LSR subparameter
in MACRF parameter 28

M
MACRF parameter

in ACB macro 27
in GENCB macro 52
in TESTCB macro 111

macros
descriptions 1

MAREA parameter
in ACB macro 28
in FIELDS parameter 100
in GENCB macro 52

marking records inactive 90
message area

header information 6
OPEN/CLOSE 5
provided by VSAM 5

MLEN parameter
in ACB macro 29
in FIELDS parameter 100
in GENCB macro 52

MNTACQ macro
format 72
return codes and reason codes 10

MODCB macro
execute form 125

reentrant example 128
with parameter lists built by user 131

generate form 125
linking to VSAM directly 134
list form 125
modifying a request parameter list 77
modifying an ACB 74
modifying an exit list

format 76
operand notation 129
remote-list form

reentrant example 128
return codes 8

move mode
control interval access with shared resources 98

MRKBFR macro
format 79
invalidating a buffer 79

parameters for 79
reason codes 79

return codes and reason codes 10
MSGAREA parameter

in FIELDS parameter 107
in GENCB macro 59
in RPL macro 94

MSGLEN parameter
in FIELDS parameter 107
in GENCB macro 59
in RPL macro 94

MVE subparameter
in OPTCD parameter 96

146 MVS/370 VSAM Administration: Macro Instruction Reference

J

N
NCI subparameter

in MACRF parameter 28
NCIS parameter

in FIELDS parameter 101
NDELR parameter

in FIELDS parameter 101
NDF subparameter

in MACRF parameter 27
NEXCP parameter

in FIELDS parameter 101
NEXT parameter

in FIELDS parameter 101
NFX subparameter

in MACRF parameter 27
NINSR parameter

in FIELDS parameter 101
N IS subparameter

in MACRF parameter 28
N IXL parameter

in FIELDS parameter 101
NLOGR parameter

in FIELDS parameter 101
NO subparameter, in CATALOG parameter

in ACB macro 26
in GENCB macro 51
in TESTCB macro 111
restriction 26, 51

NRETR parameter
in FIELDS parameter 101

NRM subparameter
in MACRF parameter 28

NRS subparameter
in MACRF parameter 28

NSP subparameter
in OPTCD parameter 96

NSR subparameter
in MACRF parameter 28

NSSS parameter
in FIELDS parameter 101

NUB subparameter
in MACRF parameter 28

NUIW parameter
in FIELDS parameter 101

NUP subparameter
in OPTCD parameter 96

NUPDR parameter
in FIELDS parameter 102

NWAITX subparameter
in OPTCD parameter 96

NXTRPL parameter
in FIELDS parameter 107
in GENCB macro 59
in RPL macro 94

0
OBJECT parameter

in SHOWCB macro 100
in TESTCB macro 110

OFLAGS parameter
in TESTCB macro 111

OPEN macro 80
return codes 1
shared resources

return codes 1
opening a data set

for processing 80
OPENOBJ parameter

in TESTCB macro 111
operand notation

GENCB 129
MODCB 129
SHOWCB 129
TESTCB 129

operands
optional 123
required 123

OPTCD parameter
in GENCB macro 59
in RPL macro 95
in TESTCB macro 116

OPTCD subparameter
in RPL macro 96

optional operands 123
or sign, in notation convention v
OUT subparameter

in MACRF parameter 28

p
pages, fixing in real storage

with shared resources 33
parameter list

of GENCB, MODCB, SHOWCB, and TESTCB
macros 131

PASSWD parameter
in ACB macro 29
in FIELDS parameter 100
in GENCB macro 52

physical error analysis
with control interval access 19

physical error message
format 21
RBA field 19

POINT macro 81
return codes and reason codes 10

positioning
for access (POINT macro) 81

PUT macro 82
addressed-sequential update example 90
keyed-direct insertion example 87
keyed-direct update example 89
keyed-sequenti al insertion example 82, 84

Index 147

PUT macro (continued)
keyed-sequential update example 88
loading a relative record data set 83
marking records inactive example 90
recording RBAs when loading example 83
return codes and reason codes 10
skip-sequential insertion example 85

PUTIX macro 92
return codes and reason codes 10

R
RBA field

in physical error message 19
RBA parameter

in FIELDS parameter 107
RBA values

CNVTAD macro 40
passed to MNTACQ macro 40

reason codes
ACQRANGE macro 10
CHECK macro 10
CNVTAD macro 10
ENDREQ macro 10
ERASE macro 10
from BLDVRP macro 22
from DLVRP macro 22
from OPEN macro

shared resources 1
from request macros (GET, PUT, etc.)

physical errors, control interval access 19
GET macro 10
GETIX macro 10
logical errors 12
MNTACQ macro 10
MRKBFR macro 10
physical errors 19
POI NT macro 10
PUT macro 10
PUTIX macro 10
SCHBFR macro 10
WRTBFR macro 10

RECLEN field (record length) of an RPL
modifying and displaying 135

RECLEN parameter
in FIELDS parameter 107
in GENCB macro 59
in RPL macro 96

record
retrieval (GET macro) 62

record length
RECLEN field of an RPL

modifying and displaying 135
reentrant program 23
register

notation 23, 49
relative byte address (RBA)

See RBA (relative byte address)

relative record number
used as a key 66

releasing exclusive or shared control
MRKBFR macro 79

REPL parameter
in TESTCB macro 110

request macros
CHECK 35
ENDREQ 42
ERASE 44
GET 62
physical reason codes from 19
POINT 81
PUT 82

request parameter list
chaining 57, 93
chaining not allowed

with MRKBFR macro 79
with SCHBFR macro 98
with WRTBFR macro 119

changing 77
generating

with the RPL macro 93
modifying 77
with the GENCB macro 57
with the RPL macro 93

required operands 123
resource sharing 24
retrieving an index record 10
retrieving records

addressed-direct 68
addressed-sequential 65
direct to sequential 68
for deletion 45
keyed-direct 67
keyed-sequential

backward 63
forward 62

sequential for a relative record data set 66
skip-sequential 63

return codes
ACQRANGE macro 10
CHECK macro 10
checking, example 35
CNVTAD macro 10
ENDREQ macro 10
ERASE macro 10
from alternate index upgrade requests 11
from BLDVRP macro 22
from CLOSE macro 4
from DLVRP macro 22
from end-of-volume 22
from OPEN macro 1

shared resources
GET macro 10
GETIX macro 10
MNTACQ macro 10
MRKBFR macro 10

148 MVS/370 VSAM Administration: Macro Instruction Reference

return codes (continued)
POINT macro 10
PUT macro 10
PUTIX macro 10
SCHBFR macro 10
WRTBFR macro 10

reusable data set
specifying in ACB macro processing 28

RKP parameter
in FIELDS parameter 102

RPL macro 93-97
SCHBFR macro 98
WRTBFR macro 119

RPL operand
RECLEN field (record length)

modifying and displaying 135
RPL parameter

in ACQRANGE macro 31
in BLK parameter in GENCB macro 57
in CHECK macro 35
in CNVTAD macro 39
in ENDREO macro 42
in ERASE macro 44
in GET macro 62
in GETIX macro 71
in MODCB macro 77
in POINT macro 81
in PUT macro 82
in PUTIX macro 92
in SHOWCB macro 106
in TESTCB macro 115
in VERIFY macro 118
MNTACQ macro 72

RPLLEN parameter
in FIELDS parameter 108

RRDS parameter
in TESTCB macro 110

RST subparameter
in MACRF parameter 28

s
S-type address constant 23, 49
SCHBFR macro

return codes and reason codes 10
SCRA subparameter, in CRA parameter

in ACB macro 26
in GENCB macro 51
in TESTCB macro 111
restriction 26, 51

search argument
full key 97
generic (partial) key 96

SEO subparameter
in MACRF parameter 28
in OPTCO parameter 95

sequential insert strategy
specified in ACB 28

service program
See access method services

shared resources 24
SHAREOPTIONS 4 (incompatible with deferring write

requests) 1
sharing

control blocks
based on DDNAME 24
based on DSNAME 24

parameter lists 127
reentrant form 127

sharing parameter lists
among BLDVRP, DLVRP, GENCB, MODCB,

SHOWCB, and TESTCB 121
SHOWCB macro 99

displaying
exit list address example 103
fields of a request parameter list 106
fields of an access method control block 99
fields of an exit list 104
length of an exit example 105
physical error message example 108

execute form 126
with parameter lists built by user 131

generate form 126
linking to VSAM directly 134
list form 125
operand notation 129
return codes 8

SIS subparameter
in MACRF parameter 28

SKP subparameter
in MACRF parameter 28
in OPTCD parameter 95

SPAN parameter
in TESTCB macro 110

SSWD parameter
in TESTCB macro 110

STMST parameter
in FIELDS parameter 102

storage requirements
110 buffers 26, 50

storing a record (PUT macro) 82
storing an index record 10
string extension, dynamic 24, 27
STRMAX parameter

in FIELDS parameter 100
STRNO parameter

example 30
in ACB macro 29
in FIELDS parameter 101
in GENCB macro 52

suspending processing
CHECK macro 35

SYN subparameter
in OPTCD parameter 96

SYNAD exit routine
physical error message 19

Index 149

SYNAD parameter
in EXLST macro 47
in GENCB macro 54
in SHOWCB macro 105
in TESTCB macro 113

synchronizing end of data
(VERIFY macro) 118

synchronous processing

T

specified in MODCB macro 77
specified in RPL macro 96

T (in TYPE operand in CLOSE macro) 5
temporary CLOSE macro 5
terminating a request

before completion 43
ENDREO macro 42

TESTCB macro 117
execute form 126

with parameter lists built by user 131
generate form 127
linking to VSAM directly 134
list form 126
operand notation 129
return codes 8
testing a field of an exit Ii st 113
testing a request parameter list 115
testing fields of an access method control

block 109
testing for data set attributes 112
using a branch table 114

testing a control block
access method control block 110
exit list 113
request parameter list 115

transaction ID
writing related requests 120

TRANSID parameter
in Fl ELDS parameter 108
in GENCB macro 60
in RPL macro 97

TYPE operand
in CLOSE macro 5

TYPE parameter
in CLOSE macro 38

u
UBF subparameter

in MACRF parameter 28
UCRA subparameter, in CRA parameter

in ACB macro 26
in GENCB macro 51
in TESTCB macro 111
restrictions 26, 51

UIW parameter
in FIELDS parameter 102

underlining, in notation convention v
UNO attribute, in ATRB parameter 110
U PAD parameter

in EXLST macro 47
UPD subparameter

in OPTCD parameter 96
updating records

See also storing a record
addressed-sequential 90
example 88
keyed-direct 89
keyed-sequential 88

upgrade set
status following request that fails 11

upper case, in notation convention v
user

buffering 28
utility program

See access method services

v
VERIFY macro 118

w
WAID< subparameter

in OPTCD parameter 96
WAREA parameter

in GENCB
generating request parameter list 60

in GENCB macro
generating access method control block 53
generating exit list 53, 55

WCK parameter
in TESTCB macro 110

work area
processing a record in 60, 93
relation to 1/0 buffer 60, 93
specifying

generating access method control block 53
generating exit list 55
generating request parameter list 60

work data set
specifying in ACB macro 28

WRTBFR macro
format 119
return codes and reason codes 10

y
YES subparameter, in CATALOG parameter

in ACB macro 26
in GENCB macro 51
in TESTCB macro 111
restriction 26, 51

150 MVS/370 VSAM Administration: Macro Instruction Reference

J

L~~ c
~.!!!
.e-:5
:J-
0"0
Q) Q)

Cl'.,

·= .s t: Q)
0 a.
., 0
I...,

·-= 'U 0 Q)

EE
o E

~~

~~o
0

~5
'i ~
OJ :;:i
E ·o;
Q) c
:0 ~ e.
a.~
Q) :J ., .,
:J"'
0 Q)

o~

6~
0 :J
., Q)

Li~
Qi
0 z

MVS/370
VSAM Administration
Macro Instruction Reference

GC26-407 4-2

Reader's
Comment
Form

This manual Is part of a library that serves as a reference source for system analysts, programmers, and operators of IBM systems.
You may use this form to communicate your comments about this publication, its organization, or subject matter, with the under
standing that IBM may use or distribute whatever information you supply in any way it believes appropriate without incurring any
obligation to you. Your comments will be sent to the author's department for whatever review and action, if any, are deemed appro
priate.

Note: Do not un thl1 form to request IBM publlcatlona. II you do, your order wlll be delayed becaun publlcatlon1 are not atocked at
the addre1a printed on th• revere• aide. Instead, you 1hould direct any requHts for coplH of publlcatlona, or for a11l1t1nce In using
your IBM syatem, to your IBM representative or to the IBM branch office nrvlng your locality.

If you have applied any technical newsletters (TNLs) to this book, please list them here:

Comment• (please include specific chapter and page references) :

If you want a reply, please complete the following information:

Name ~------------------------~ Date ------ -------------

Company~------------------------ PhoneNo. (~~-)-------------

Address~---~

Thank you for your cooperation. No postage is necessary if malled In the U.S.A. (Elsewhere, an IBM office or representative will be
happy to forward your comments or you may mall them directly to the address in the Edition Notice on the back of the title page.)

GC26-407 4-2

Reader's Comment Form

Fold end tepe PleaH do not •taple

BUSINESS REPLY MAIL
FIRST CLASS MAIL PERMIT NO. 40 ARMONK, NY

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Department J58
P.O. Box 49023
San Jose, CA 95161-9945

I

11. 1 ... 1.1 11 .11 111.1 .. 1. l111l 11l 1l1l1111l I I

Fold and tepe

NO POSTAGE
NECESSARY
IF MAILED

INTHE
UNITED STATES

................................. \
Fold end tepe PleaH do not staple Fold •nd l•pe

--...- ------ - - ---- - -- ~ -~-- --------- --_ _..._ . -
®

J

J

.; ~
c

~.~
.e--Z
:::J
<T 0
Q) Q)

0\.,

.!: B -'- Q)
0 a.
., 0 ,_
.-= "'O
0 Q)

EE
u E :g 5,

Ug]
-:t()

'_ o

-~ ~
en·~

E 'iii
Q) c
:0 ~
~I
a.~
Q) :J
en en
:Jen
0 Q)

u a.
~ ~
u :::J

en.,

l,!J
Qi
0 z

MVS/370
VSAM Administration
Macro Instruction Reference

GC26-407 4-2

Reader's
Comment
Form

This manual is part of a library that serves as a reference source for system analysts. programmers. and operators of IBM systems.
You may use this form to communicate your comments about this publication. Its organization, or subject matter, with the under
standing that IBM may use or distribute whatever information you supply in any way it believes appropriate without incurring any
obligation to you. Your comments will be sent to the author's department for whatever review and action, if any, are deemed appro
priate.

Note: Do not use this form to request IBM publications. II you do, your order wlll be delayed because publicatlons are not stocked at
the address printed on the reverse side. Instead, you should direct any requests lor copies of publlcatlons, or lor assistance In using
your IBM system, to your IBM representative or to the IBM branch olllce serving your locality.

If you have applied any technical newsletters (TNLs) to this book, please list them here:

Comments (please include specific chapter and page references) :

If you want a reply, please complete the following information:

Name-------------------------~ Date - --------------- ---

Company ________________________ _
Phone No.(~~->-------------

Address---

Thank you for your cooperation. No postage is necessary If malled in the U.S.A. (Elsewhere, an IBM office or representative will be
happy to forward your comments or you may mall them direc'liy to the address In the Edition Notice on the back of the title page.)

GC26-407 4-2

Reader's Comment Form

Fold and tape Please do not staple

BUSINESS REPLY MAIL
FIRST CLASS MAIL PERMIT NO. 40 ARMONK, NY

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Department J58
P .0. Box 49023
San Jose, CA 95161-9945

11.1 ... 1.1 11.11 111.1 .. 1.1 ... 1 •• 1.1.1 111

Fold and tape

NO POSTAGE
NECESSARY
IF MAILED

INTHE
UNITED STATES

I
I
I
I
I

... [
Fold and lape

...._ ------ ----- _.. --- ~ ---- -- ---------_ _..._' -

PleaH do not staple Fold and tape I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

J

J

J

