
L

GC26-3842-1
File No. S370-30

•

Planning for Enhanced
Systems VSAM under OSjVS

VS1Release5
VS2 Release 3.7

•

•

Second Edition (March 1976)

This edition replaces the previous edition (numbered GC26-3842-0) and makes that edition
obsolete.

This edition applies to Release 5 of OS/VS1 and to Release 3.7 of OS/VS2 and to
subsequent releases of both systems unless otherwise indicated in new editions or technical
newsletters.

Significant technical changes are summarized under "Summary of Amendments"
following the list of illustrations. In addition, miscellaneous editorial and technical changes
have been made throughout the publication. Each technical change is marked by a vertical
line to the left of the change.

Information in this publication is subject to significant change. Any such changes will be
published in new editions or technical newsletters. Before using the publication, consult the

I latest IBM System/370 Bibliography, GC20-000 I, and associated technical newsletters to
learn which editions and technical newsletters are applicable and current.

Requests for copies of IBM publications should be made to the IBM branch office that

serves you.

Forms for readers' comments are provided at the back of the publication. If the forms have

been removed, comments may be addressed to IBM Corporation, Programming

Publishing-Department 157, 1501 California Avenue, Palo Alto, California 94304.

All comments and suggestions become the property of IBM.

© Copyright International Business Machines Corporation 1975,1976

•

•

•

•

USING TIllS PUBIJCATION

VSAM (virtual storage access method) is an access method of OS/VS
(operating system/virtual storage). This planning guide enables prospective
users to prepare for using VSAM and describes for current users the
enhanced functions and capabilities that improve VSAM's performance and
make it a more versatile access method for a wider range of applications. The
intended audience is data-processing managers whose decisions will influence
the use of VSAM, system and application programmers who will use VSAM
in both new and existing programs, and others seeking an introduction to
VSAM.

This planning guide has six chapters:

• 	 "Introducing VSAM," which outlines how VSAM meets the requirements
of an access method in today's data-processing environment.

• 	 "Getting to Know What VSAM Is and Does," which explains the concepts
and functions of VSAM and is required reading for the following chapters.

• 	 "Communicating with VSAM," which discusses, primarily for
programmers, the multifunction service program Access Method Services,
the macros of VSAM, and the use of JCL (job control language) with
VSAM.

• 	 "Preparing for VSAM," which indicates, for the planners, the
programming languages and optional features of OS/VS that VSAM can
be used with.

• 	 "Optimizing the Performance of VSAM," which outlines, for application
and system programmers, ways to achieve the best throughput of which
VSAM is capable.

• 	 "Protecting Data with VSAM," which describes, for managers and system
programmers, VSAM's standard and optional features for data integrity
and security.

This publication also has a glossary and an index.

The reader is expected to be familiar with basic concepts such as access
method, direct-access storage, and the distinction between data-set
organization and data-set processing. The sections dealing with those
concepts in OS/VS Data Management Services Guide, GC26-3783, are
suitable for preparatory reading.

In the chapter "Preparing for VSAM," the section "How Can Existing
Programs That Use ISAM Be Used with VSAM?" is intended for those who
use ISAM (indexed sequential access method). Other readers may ignore this
section and any other references to ISAM. The section of the Data
Management Services Guide that discusses ISAM is suitable for reference.

The discussion on JCL in the chapter "Communicating with VSAM"
presupposes the reader's familiarity with the sections of OS/VSI JCL

I Reference, GC24-5099, or OS/VS2 JCL, GC28-0692, that discuss the JCL
parameters described in this planning guide.

Other publications referred to in this publication are:

• 	 Introduction to Virtual Storage in System/370, GR20-4260

• 	 OS/VS Checkpoint/Restart, GC26-3784

Using This Publication 3

• 	 OS/VS Virtual Storage Access Method (VSAM) Options for Advanced
Applications, GC26-3819

• 	 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide,
GC26-3838

• 	 OS/VSl Access Method Services, GC26-3840

• 	 OS/VSl Master Index GC24-5104

• 	 OS/VSl Service Aids, GC28-0665

• 	 OS/VSI System Management Facilities (SMF), GC24-5115

• 	 OS/VSI VSAM Cross Reference, SYB6-3844

• 	 OS/VS2 Access Method Services, GC26-3841 •
• 	 OS/VS2 Master Index, GC28-0693

• 	 OS/VS2 System Programming Library: Service Aids, GC28-0674

• 	 OS/VS2 System Programming Library: System Management Facilities
(SMF), GC28-0706

• 	 OS/VS2 Catalog Management Logic, SY26-3826

• 	 OS/VS2 VSAM Cross Reference, SYB6-3842

• 	 OS/VS2 Catalog Management Cross Reference, SYB6-3843

• 	 OS/VS2 TSO Command Language Reference, GC28-0646

• 	 OS/VS2 TSO Guide, GC28-0644

• 	 OS/VS2 TSO Terminal User's Guide, GC28-0645

•

•

4 Planning for Enhanced VSAM under OS/VS

CONTENTS

•

•

•

Using This Publication ... 3

Figures ... 9

I Summary of Amendments .. 11

Introducing VSAM '" .. 13

What is VSAM? .. 13

What Are the Requirements for an Access Method? 14

How Does VSAM Meet These Requirements? .. 14

High Performance .. 15

Applicability to Different Types of Processing .. 15

Simplicity of Use .. 15

Protection of Data .. 16

Recovery of Data ... 16

Central Control .. 16

Portability of Data Between Systems ... 16

Device Independence ... 16

Ease of Conversion .. 17

What Machines Can VSAM Be Used With? .. 17

Getting to Know What VSAM Is and Does .. 19

What Are VSAM's Three Types of Data Sets? .. 19

The Use of Control Intervals ... 19

The Control Interval in Perspective ... 20

The Method of Storing a Record in a Control Interval 21

Key-Sequenced, Entry-Sequenced, and Relative Record Data Sets 22

Key-Sequenced Data Sets .. 22

Entry-Sequenced Data Sets ... 27

Relative Record Data Sets ... 27

How Are Alternate Indexes Used with Key-Sequenced and

Entry-Sequenced Data Sets? ... 28

Base Clusters and Alternate-Index Clusters ... 29

Alternate-Index Paths .. 29

Alternate-Index Records .. 29

System Header Information ... 29

Alternate Keys ... 30

Alternate-Index Pointers .. 31

Alternate-Index Maintenance .. 31

How Are VSAM Data Sets Created? ... 32

In What Ways Can VSAM Data Sets Be Processed? 32

Keyed Access for Key-Sequenced and Relative Record Data Sets 33

Keyed Retrieval ... 34

Keyed Storage .. 35

Keyed Deletion .. 36

Addressed Access for Key-Sequenced and Entry-Sequenced Data Sets .. 36

Addressed Retrieval ... 37

Addressed Storage ... 37

Addressed Deletion .. 38

What Are the Master Catalog and User Catalogs For? 38

A VSAM Catalog's Use in Data and Space Management 38

Information Contained in the Records of a Catalog 38

Information in a Data Set Record .. 39

Information in a Volume Record ... 39

Contents 5

The Special Uses of User Catalogs ... 39

Improving Reliability ... 39

Moving Volumes from One Operating System to Another 40

Ho'Y., Does the VS 1 Master Catalog Differ from the

MVS Release 3 Master Catalog? ... 40

The VS 1 VSAM Master Catalog .. 40

The MVS Release 3 Master Catalog .. 41

How Is the VSAM Catalog Structured? ... 43

The Data Component ... 44

The Index Component ... 44

Size of a Control Area and Location of the Sequence Set 45

Allocation of Catalog Space ... 45

Utilization of Catalog Space ... 47

Communicating with VSAM ... 51

How Is Access Method Services Used? .. 51

Defining and Deleting Data Sets and Listing Catalog Entries 52

DEFINE: Defining a Data Set and Allocating Space 52

ALTER: Modifying a Catalog Entry ... 52

DELETE: Removing a Catalog Entry and Freeing Space 53

LISTCAT: Listing Catalog Entries .. 54

Building an Alternate Index ... 54

BLDINDEX: Building an Alternate Index .. 54

Copying and Listing Data Sets ... 54

REPRO: Converting and Reorganizing Data Sets 54

PRINT: Listing Data Records ... 55

Moving Data Sets from One Operating System to Another 55

EXPORT: Extracting Catalog Information and Making a Data

Set Portable ... 55

IMPORT: Loading a Portable Data Set and Its

Catalog Information .. 57

Recovering Data ... 57

VERIFY: Testing and Reestablishing a Data Set's Integrity 57

EXPORTRA: Exporting Objects Using the CRA 58

IMPORTRA: Reestablishing Objects in the Catalog 58

LISTCRA: Listing a Catalog Recovery Area 58

Converting an OS Catalog into a VSAM Catalog 58

CNVTCAT: Converting an OS Catalog into a VSAM Catalog 58

What Are the Macros for Processing a VSAM Data Set? 59

Connecting and Disconnecting a Processing Program and a Data Set 59

OPEN: Connecting a Processing Program to a Data Set 59

CLOSE: Disconnecting a Processing Program from a Data Set 59

Specifying Parameters That Relate the Program and the Data 60

ACB: Defining the Access-Method Control Block 60

EXLST: Defining the Exit List .. 61

RPL: Defining the Request Parameter List ... 61

GENCB: Generating Control Blocks and Lists 63

Manipulating the Information Relating the Program and the Data 63

MODCB: Modifying the Contents of Control Blocks and Lists 63

SHOWCAT: Displaying Fields of the VSAM Catalog 63

SHOWCB: Displaying Fields of Control Blocks and Lists 63

TESTCB: Testing the Contents of Control Blocks and Lists 63

Requesting Access to a Data Set .. 64

Requesting Access to Index Records ... 64

GETIX and PUTIX: Retrieving and Storing Index Records 64

..

..

•

6 Planning for Enhanced VSAM under OS!VS

•

•

•

Using Shared Resources ... 64

BLDVRP: Building a VSAM Resource Pool 64

DLVRP: Deleting a VSAM Resource Pool ... 65

WRTBFR: Writing a Buffer .. 65

SCHBFR: Searching a Buffer Pool .. 65

MRKBFR: Marking a Buffer for Output ... 65

How is JCL Used? .. 65

Defining a VSAM Data Set .. 65

Processing a VSAM Data Set ... 66

Specifying VSAM Catalogs .. 66

Using Other JCL Parameters ... 66

JCL Parameters Not Used with VSAM ... 66

VSAM's Special DD Parameter: AMP .. 67

Preparing for VSAM ... 69

What Programming Languages Can VSAM Be Used With? 69

How Can the Time Sharing Option (TSO) Be Used with VSAM? 69

How Can System Management Facilities (SMF) Be Used with VSAM? 70

How Can Existing Programs That Use ISAM Be Used with VSAM? 70

Comparison of VSAM and ISAM .. 71

Comparison of VSAM and ISAM in Common Areas 71

VSAM Functions That Go Beyond ISAM ... 72

How to Convert an Indexed Sequential Data Set to a Key-Sequenced

Data Set ... 73

What the ISAM Interface Does .. 73

Restrictions in the Use of the ISAM Interface ... 74

Optimizing the Performance of VSAM .. 77

How Can Control-Interval Size Be Used to Influence Performance? 77

How Does Distributed Free Space Improve Performance? 77

What Index Options Are There to Improve Performance? 78

Index-Set Records in Virtual Storage ... 78

Index and Data Set on Separate Volumes .. 79

Sequence-Set Records Adjacent to the Data Set 79

Size of Index Control Interval .. 79

Replication of Index Records ... : 79

How Can VSAM Catalogs Affect Performance? ... 80

Sharing Services with User Catalogs .. 80

Improving Catalog Performance in MVS ... 80

Protecting Data with VSAM .. 81

How Does VSAM Achieve Data Integrity? .. 81

Method of Inserting Records into a Key-Sequenced Data Set 81

Control-Interval Principle .. 82

Method of Indicating the End of a Data Set .. 82

Preformatting a Data Set ... 82

Updating the Catalog ... 82

Verifying Write Operations .. 83

How Are Data Sets and Catalogs Protected? ... 83

Secondary Allocations for Data Sets .. 84

User Catalogs ... 85

Data Set Backup and Recovery .. 85

Catalog Backup and Recovery ... 86

Catalog Unload and Reload ... 86

Automatic Catalog Backup .. 87

Contents 7

Data Recovery .. 88

Data Set Not Properly Closed ... 90

Inaccessible Data Set ... 91

Unusable Catalog ... 92

Inaccessible Volume .. 93

How Is the Integrity of Shared Data Protected? ... 95

Subtask Sharing .. 96

Cross-Region Sharing ... 97

Cross-System Sharing ... 97

Sharing a Catalog Among Systems ... 98

How Can Passwords Be Used to Authorize Access? 98

How Are Programs Restarted Following a Failure? 99

Recording Checkpoint Information .. 99

Restarting the Processing Program ... 99 •

Restrictions and Options for Restarting a Program 99

How Can the Causes of Problems Be Determined? 100

Exits to Your Error-Analysis Routines .. 100

VSAM Messages .. 100

Generalized Trace Facility (GTF) ... 100

VSAM Debug Switches .. 100

VSAM SNAP Dump Facility (MVS Release 3 Only) 100

Cross-Reference Aids .. 100

Glossary ... 103

Index ... 107

•

8 Planning for Enhanced VSAM under OS/VS

FIGURES

L 	 IFigure 1. Relationship of VSAM, OS/VS, User's Processing Program,
and Staged Data ... 13

Figure 2. Control Intervals Are Independent of Physical Record Size 20

Figure 3. Relationship Among Storage Volumes, Data Spaces, and

Data Sets .. 21

Figure 4. Placement of Data Records and Control Information in a

Control Interval .. 21

Figure 5. Control Intervals That Contain Spanned Records 22

Figure 6. Comparison of Key-Sequenced, Entry-Sequenced, and

Relative Record DataSets .. 23

• 	 Figure 7. Relationship Among the Levels of a Prime Index and a

Data Set .. 24

Figure 8. Distribution of Free Space in a Key-Sequenced Data Set 25

Figure 9. Splitting a Control Interval for Record Insertion 26

Figure 10. The First Control Interval Within a Relative Record

Data Set .. 28

Figure 11. Two Alternate Indexes Over a Single Key-Sequenced

Data Set .. 30

Figure 12. Nonunique Alternate Keys ... 31

Figure 13. Cataloging VSAM and NonVSAM Data Sets in a

VSAM Catalog ... 41

Figure 14. Comparison of the OS System Catalog and the MVS

Master Catalog ... 42

Figure 15. Cataloging VSAM and NonVSAM Data Sets in the

MVS Master Catalog ... 42

Figure 16. Catalog Structure ... 43

Figure 17. Physical Relationship of a Sequence-Set Record and the

Control Area It Governs (on a 2314 Direct-Access Storage

Device) ... 46

Figure 18. Space Allocation for the Catalog ... 46

Figure 19. Allocation of a One-Cylinder Catalog on a 3330

Direct-Access Storage Device .. 48

Figure 20. Comparison of Volume Portability and Data-Set Portability 56

Figure 21. Use of IS AM Programs to Process VSAM Data Sets 74

Figure 22. Replication of a Sequence-Set Index Record Adjacent to Its

Control Area .. 80

•

•

Figures 9

•

•

SUM~YOFAMENDMffiNTS

The following changes have been made to this publication:

• 	 Add a new section to describe how VSAM data sets and catalogs are
protected. This section describes all the recovery tools available through
Access Method Services and VSAM and tells how they are most effectively
used to back up data sets and catalogs and to recover from unusable
catalogs and inaccessible data sets and volumes .

•
• 	 Add information about control interval sizes and control interval and

control area split strategy relative to freespace specifications.

• • 	 Clarify the use of the AMORG subparameter in the VSAM DD AMP
parameter.

• 	 Describe the VSAM SNAP Dump Facility (MVS Release 3), which
provides a dump of VSAM-owned control blocks in CSA (common service
area).

• 	 Add a new section that describes the structure of the VSAM catalog,
discusses the data and index components of the catalog, lists catalog
control area sizes relative to device types, and describes how catalog space
is allocated and utilized.

• 	 Expand the discussion of the cross-region share options .

•

Summary of Amendments 11

•

•

•

•

INTRODUCING VSAM

What Is VSAM?
,.

•

•

This chapter is intended for all readers new to VSAM (virtual storage access
method). It introduces VSAM, outlines the access-method capabilities that
are required in today's data-processing environment, shows how VSAM has
those capabilities by describing its area of applicability and summarizing its
basic features, and indicates the CPUs (central processing units) and
auxiliary-storage devices that VSAM can be used with.

VSAM is a high-performance access method of OS/VS (operating
system/virtual storage), option 1 or 2, for use with direct-access storage.

VSAM resides in virtual storage along with the processing program using it.

IFigure 1 illustrates VSAM's relationship to OS/VS, the processing program,
and the data stored on a direct-access storage device and in mass storage.

Virtual Storage

Direct-AccessOS/VS Storage

Logical
Data

Staged
Data

I Processing Program _____ L ______ _
MassProgram's Address Space
Storage

I Figure 1. Relationship of VSAM, OS/VS, User's Processing Program, and Staged Data

Introducing VSAM 13

What Are the Requirements for an Access Method?
In data processing today, it is common for a computer installation to do a
number of different types of processing. An installation must provide for one
combination or another of data-base processing, online processing, batch
processing, inquiry and transaction processing, communications, and multiple
CPUs under the control of different operating systems. This variety requires
an access method that provides:

• 	 High performance of retrieval and storage-independent of previous
insertions of records into data sets and uninterrupted by requirements to
reorganize data sets or copy them for backup

• 	 Applicability to different types of processing that require different kinds of
access and different levels of performance (such as online and batch •
processing)

• 	 Simplicity of use by means of a common set of instructions for different
types of access, simplified JCL (job control language), and optimization of
the use of space in auxiliary storage

• 	 Protection of data: security against unauthorized access and integrity
through prevention of intentional or accidental loss of data

• 	 Recovery of data: the ability to recover catalogs and data sets in the event
of failure or damage

•. Central control over the creation, access, and deletion of data sets and over
the management of space by keeping data-set and storage information in
one place and making it independent of JCL and processing programs

• 	 Ability to move data from one operating system to another in a format that
is common to both systems

• 	 Independence from type of storage device: freedom from physical record
size, control information, and record deblocking

• 	 Ease of conversion of data and programs from other access methods to the
new access method

How Does VSAM Meet These Requirements?
VSAM provides an approach to meeting these requirements through:

• 	 A format for storing data independently of type of storage device

• 	 Routines for sequential or direct access and for access by key or by relative
address

•• 	 Options for optimizing performance

• 	 A comprehensive catalog for defining data sets and auxiliary-storage space

• 	 A multifunction service program (Access Method Services) for setting up
catalog records and maintaining data sets

14 Planning for Enhanced VSAM under OS/VS

High Performa"ce

VSAM's high performance is due to an efficiently organized index,
performance options for reducing disk-arm movement and rotational delay,
and distributed free space for fast insertion of records and minimal
reorganization. The size of the index is reduced by compressing keys to
eliminate redundant information. The type of index used for a data set is also
used for VSAM catalogs.

VSAM's method of inserting records into a data set provides access whose
speed following a large number of insertions is equivalent to the speed of
access without previous insertions. Free space is used for efficient automatic
reorganization of data sets: inserted records are stored and addressed in the
same way as original records, and space given up by deletions is reclaimed as

• 	 free space within the control interval.

Applicability to Differe"t Types of Processi"g

VSAM is designed to meet most of the common data-organization needs of
both batch and online processing. Batch processing requires the efficiency of
sequential and indexed data; online processing requires efficient direct access
for random requests. VSAM permits both direct and sequential access access
can be by key or by relative address. Different types of processing can be
intermixed in the processing of a common data base. You can select the type
of access or the combination of types that best suits your application.

I	TSO (Time Sharing Option), a subsystem of MVS, can execute Access
Method Services commands as TSO commands, dynamically allocate a VSAM
data set, and execute a program that uses VSAM macros to process the data

L 	 set.

VSAM also provides options and macros for sharing a pool of I/O-related
control blocks, channel programs, and buffers among several VSAM data sets
open at the same time.

Simplicity of Use

There is a common way of requesting the different types of access (sequential
or direct, by key or by relative address), so that the same instructions are
learned and used for achieving different results.

All VSAM data sets are cataloged, so JCL is simplified. Minimal JCL
parameters are required for describing data sets. •
VSAM uses default values to establish the size of control intervals and control
areas in which data is stored and to manage virtual storage space for I/O

• 	 (input/output) buffers. Programmers can think in terms of the application,
not in terms of the internal workings of VSAM.

Individual data records are passed to a processing program without any
system control information: application data alone is processed by the
program. Application programmers do not need to know the format of control
blocks. They need not be concerned either with storage devices and device
addresses or with different formats for fixed-length or variable-length records.

•

Introducing VSAM 15

L

Protection of Data

Recovery of Data

VSAM protects data by means of its design and its integrity and security
options. Integrity means the safety of data from inadvertent destruction or
alteration; security means the protection of data from unauthorized use or
purposeful destruction or alteration. VSAM writes records in a way that does
not expose data to loss, even if an I/O error occurs. You can specify optional
passwords for levels of protection (read-only, update, control, control
interval, and full access) and include your own routine to check a requester's
authority to gain access to data. You can select options for formatting data
sets before data is stored in them and for verifying write operations for data
integrity. VSAM also provides various levels of exclusive control for data to
be shared between subtasks, regions, and operating systems.

•
VSAM catalogs that are defined with the optional recovery attribute allow
data to be recovered. Recovery is based on information recorded on the
volumes controlled by the catalog as well as in the catalog itself.

Access Method Services provides commands you can use to test and
reestablish a data set's integrity, recover a cataloged object, reestablish
objects in the catalog, and list the contents of a catalog recovery area.

Central Control

The VSAM catalog brings together extensive information about data sets and
storage space. Access Method Services controls the definition and deletion of
data sets and the alteration of information about them in the catalog. Its use is
authorized by passwords assigned to the data sets or to the catalog itself.
Consequently, the management of your inventory of data sets is centralized
and made independent of the use of JCL or the actions of processing
programs. Space for data sets can be allocated or deallocated without
mounting volumes, because the information describing the contents of VSAM
spaces on those volumes is contained in the catalog. You can assign a data set
to volumes by ranges of keys that are controlled by the catalog.

Portability of Data Between Systems

VSAM's technique for storing records uses a format that is common to
OS/VS and DOS/VS (disk operating system/virtual storage).
Communication with VSAM is very similar for both operating systems, except
for JCL. Access Method Services includes functions that facilitate moving
data sets and volumes from one operating system to another.

•
Device Independence

VSAM is independent of particular types of storage devices, because it
addresses a record in a data set without respect to the physical attributes of
auxiliary storage, but with respect to the displacement of the record from the
beginning of the data set. The unit in which data is transmitted between
virtual and auxiliary storage does not depend on the size of the physical
records in which data is stored physically on a volume .

•
16 Planning for Enhanced VSAM under OS/VS

Ease of Conversion

VSAM provides for easy conversion of indexed sequential data sets to VSAM
format and the continued use of your existing ISAM (indexed sequential
access method) programs to process converted data sets and new VSAM data
sets. Access Method Services converts a sequential or an indexed sequential
data set to VSAM format. To process the converted data set with the ISAM
program, a set of interface routines within VSAM interpret each ISAM
request and issue the appropriate VSAM request.

In MVS Release 3 systems, the OS catalog has been replaced by a VSAM
master catalog. Access Method Services is used to convert entries in an OS
catalog to entries in an existing VSAM master catalog or a VSAM user
catalog.

•
What Machines Can YSAM Be Used With?

You can use VSAM on the following mM System/370 CPUs:

OS/VSl OS/VS2

Model 135
Model 145 Model 145
Model 155 (Model 2) Model 155 (Model 2)
Model 158 Model 158

Model 158 (Model 3)
Model 165 (Model 2) Model 165 (Model 2)
Model 168 Model 168

Model 168 (Model 3)

Each of these CPUs must have the dynamic address translator that is required
by OS/VSl and OS/VS2 and either the advanced control program support
feature or the conditional swapping feature. VSAM is designed to take full
advantage of the benefits of virtual storage. See Introduction to Virtual
Storage in System/3 70 for a discussion of virtual storage.

IVSAM can be used with all the IBM direct-access storage devices that are
supported by OS/VSl and OS/VS2.

•

•

Introducing VSAM 17

•

•

•

•

•

•

GETTING TO KNOW WHAT VSAM IS AND DOES

Familiarity with the VSAM concepts and terminology introduced in this
chapter is presupposed in the following chapters. The concepts are especially
important for application programmers who will design and code programs to
process data with VSAM, and to system programmers who will maintain the
VSAM installation.

This chapter explains the three types of VSAM data sets, discusses how to
create and gain access to them, and describes the master catalog and user
catalogs .

What Are VSAM's Three Types of Data Sets?
VSAM has key-sequenced, entry-sequenced, and relative record data sets.
The primary difference among the three is the order in which data records are
loaded into them.

Records are loaded into a key-sequenced data set in key sequence: that is, in
the order defined by the collating sequence of the contents of the key field in
each of the records. Each record has a unique value in the key field, such as
employee number or invoice number. VSAM uses an index and optional free
space to insert a new record into the data set in key sequence.

Records are loaded into an entry-sequenced data set without respect to the
contents of the records. Their sequence is determined by the order in which
they are physically arranged in the data set: their entry sequence. New
records are stored at the end of the data set.

Records are loaded into a relative record data set in relative record number
sequence. The data set is a string of fixed-length slots, each of which is
identified by a relative record number. When a record is inserted, you can
assign the relative record number or allow VSAM to assign the record the
next available number in sequence. No index is used.

When you create a data set, you define it, together with its index, if any, in a
cluster. A cluster may be a key-sequenced data set, which consists of a data
component and an index component, or an entry-sequenced or relative record
data set, which consists of only a data component.

VSAM stores the records of each type of data set in the same way in a
fixed-length area of auxiliary storage called a control interval. We can better
discuss the three types of data sets if we first look at the control interval in
perspective with the other logical divisions of a data set and see how and why
VSAM uses it for storing records .

The Use of Control Intervals

A control interval is a continuous area of auxiliary storage that VSAM uses
for storing data records and control information describing them. It is the unit
of information that VSAM transfers between virtual and auxiliary storage. Its
size may vary from one data set to another, but for a given data set the size of
each control interval in it is fixed, either by VSAM or by you, within limits
acceptable to VSAM. VSAM chooses the size based on the type of
direct-access storage device used to store the data set, the size of your data
records, and the smallest amount of virtual-storage space your processing
program will provide for VSAM's I/O buffers.

Getting to Know What VSAM Is and Does 19

The information recorded on a track is divided into physical records that are
limited by the capacity of a track. The physical-record sizes that VSAM uses
begin at 512 bytes and increase by powers of 2 up to 4096 bytes: 512, 1024,
2048, 4096. (The physical-record size of 4096 does not apply to the IBM
2314 Disk Storage.) Control-interval size is limited by the requirements that
it be a whole number of physical records (1, 2, 3, ... , up to 64, or a maximum
size of 32,768 bytes) and that, if it is greater than 8192 bytes, it be a multiple
of 2048. A data set whose control intervals correspond with the tracks of one
device might have more or less than one control interval per track if it were
stored on a different device. Figure 2 illustrates the independence of control
intervals from physical records.

VSAM uses track allocation when you define a data set, if you specify track
allocation or specify record allocation requiring less than one cylinder. •

The Control Interval in Perspective

How does a data set relate to the physical attributes of auxiliary storage? And
how does a control interval relate to a data set?

A volume can contain areas for VSAM's use and areas for the use of other
access methods or the operating system. A storage area defined in the volume
table of contents for VSAM's exclusive use is called a data space. It can be
extended beyond its original size to include up to 16 areas (extents) that need
not be adjacent to one another on the volume.

A data set is stored in a data space or data spaces on one or more volumes on
direct-access devices of the same type. When you define a data set, you can
allocate enough space to have some left at the end of the data set for

I	additions. For new data sets, the amount requested must be available, or
DEFINE will terminate. Otherwise, when additional space is needed, VSAM
automatically extends the data set by the amount of space indicated in the
definition of the data set in the catalog. It can be extended beyonq. its original
size to include up to 123 extents, or to a maximum size of 232 (approximately
4,290,000,000) bytes. Figure 3 illustrates the relationships among volumes,
data spaces, and data sets. The figure shows portions of data sets A and C
stored in different data spaces on different volumes.

A data set is made up of control intervals. A group of control intervals makes
up a control area. It is the unit of a data set that VSAM preformats for data

PhysiL'al •
Control Interval Control Interval 	 Control IntervalRecurds

"'r- I I I 1 I I I I I 	 •
Track I 	 Track 2 Track 3

Control Interval 	 Control Interval Control Interval

I I I I 	 I I

Track I 	 Track 2 Track 3 Track 4

Figure 2. Control Intervals Are Independent of Physical Record Size

20 Planning for Enhanced VSAM under OS/VS

Data
Data Set A3 Data Set D Spa!;e 3

Data Set A I
Data Set CI Data Set C3

Data

Data Set B

Data
Space 2 Space I

\
NonVSAM NonVSAM

Data Set A2

DataData Set C2

•
Space 4

Available Available

Available

Figure 3. Relationship Among Storage Volumes, Data Spaces, and Data Sets

integrity as records are added to the data set. (See the section "Method of
Indicating the End of a Data Set" in the chapter "Protecting Data with
VSAM.") In a key-sequenced data set, control areas are also used for
distributing free space throughout the data set as a percent of control intervals
per control area and for placing portions of the index adjacent to the data set.

The number of control intervals per control area of a data set is fixed by
VSAM, with a minimum of two. If 50 were the number chosen, for example,
the first 50 control intervals would be the first control area; the next 50 would
be the second control area, and so on. Whenever the space for a data set is
extended, it is extended by a whole number of control areas. For a
key-sequenced data set, the size of a control area is determined on the basis
of the space-allocation request, user-specified or default index and data
control-interval size, and available buffer space.

The Method of Storing a Record in a Control Interval

The records of a key-sequenced or entry-sequenced data set may be either
fixed or variable in length; the records of a relative record data set are always
fixed in length. VSAM treats them all the same. It puts control information at
the end of a control interval to describe the data records stored in the control
interval: the combination of a data record and its control information, though
they are not physically adjacent, is called a stored record. When adjacent
records are the same length, they share control information. Figure 4 shows
how data records and control information are stored in a control interval. The
data records are stored at the beginning of a control interval, and control
information at the end.

Control Interval

Data Data Data Data Data Data Control
Record Record Record Record Record Record Information

Figure 4. Placement of Data Records and Control Information in a Control Interval

Getting to Know What VSAM Is and Does 21

Unused
Space

When you define a data set, you can specify enough buffer space for the
control intervals in the data set to be large enough for your largest stored
record.

Key-sequenced and entry-sequenced data set records whose lengths exceed
control interval size may cross, or span, one or more control interval
boundaries. Such records are called spanned records. A spanned record
always begins on a control interval boundary and fills one or more control
intervals within a single control area. As shown in Figure 5, the control
interval that contains the last segment of a spanned record can contain unused
space. This free space can be used only to extend the spanned record; it
cannot contain all or part of any other record. You must specify your intent to
use spanned records when you define the data set.

•
...-41------------ Control Area -------------1/

Control

Interval (CI)

Unused
Space

Figure 5. Control Intervals That Contain Spanned Records

A data record is addressed not by its location in terms of the physical
attributes of the storage device (such as the number of tracks per cylinder),
but by its displacement, in bytes, from the beginning of the data set, called its
RBA (relative byte address). The RBA does not depend on how many
extents belong to the data set or on whether they are in different data spaces
or on different volumes. For relative byte addressing, VSAM considers the
control intervals in the data set to be contiguous, as though the data set were
stored in virtual storage beginning at address O. For example, the first record
in a data set has RBA O. The second record has an RBA equal to the length
of the first record, and so on. The bytes required for intervening control
information and free space are included in the RBA value.

Key-Sequenced, Entry-Sequenced, and Relative Record Data Sets

The purpose of this section is to describe VSAM's three types of data sets in
detail, to discuss how free space can be distributed in a key-sequenced data
set, and to explain further how VSAM uses the control interval for data
storage. Figure 6 contrasts the three types by listing the attributes of each.

Key-Sequenced Data Sets

A key-sequenced data set is always defined with an index that relates key
values to the relative locations of the data records in a data set. (This index is
the prime index, in contrast to alternate indexes, which are discussed later.)
The prime index and distributed free space used to insert a new record in key
sequence are discussed in the paragraphs that follow.

22 Planning for Enhanced VSAM under OS/VS

•

Key-Sequenced Data Set Entry-Sequenced Data Set 	 Relative Record Data Set

Records are in collating sequence Records are in the order in which Records are in relative record number
by key field they are entered order

Access is by key through an Access is by RBA 	 Access is by relative record number,
index or by RBA 	 which is treated like a key

May have one May have one May not have alternate indexes

or more alternate indexes or more alternate indexes

A record's RBA can change A record's RBA cannot change 	 A record's relative record number

cannot change

Distributed free space is used Space at the end of the data Empty slots in the data set

for inserting records and set is used for adding records are used for adding records

changing their length in place

Space given up by a deleted or A record cannot be deleted, but Space given up by a deleted record

shortened record is automatically you can reuse its space for a can be reused

reclaimed within a control interval record of the same length

Can have spanned records Can have spanned records 	 Cannot have spanned records

Can be reused as a work file Can be reused as a work file 	 Can be reused as a work file
unless it has an alternate 	 unless it has an alternate

I	index, is associated with index, is associated with
key ranges, is unique, or key ranges, is unique, or
exceeds 16 extents per volume exceeds 16 extents per volume

Figure 6. Comparison of Key-Sequenced, Entry-Sequenced, and Relative Record Data Sets

An index relates key values to the relative locations of the data records. A key
in the index is taken from a record's key field, whose size and position are the
same for every record in the data set, and whose value cannot be altered.
VSAM uses an index to locate a record for retrieval and to locate the collating
position for insertion.

An index has one or more levels, each of which is a set of records that
contains entries giving the location of the records in the next lower level. The
index records in the lowest level are collectively called the sequence set; they
give the location of control intervals containing the data records. The records
in all the higher levels are collectively called the index set; they give the
location of index records. The highest level always has only a single record.
The index of a data set with few enough control intervals for a single
sequence-set record has only one level: the sequence set itself.

Figure 7 illustrates the levels of a prime index and shows the relationship
between a sequence-set index record and a control area. The figure shows
that the highest-level index record (A) controls the entire next level (records
B through Z); each sequence-set index record controls a control area.

An entry in an index-set record consists of the highest key that an index
record in the next lower level contains, paired with a pointer to the beginning
of that index record. An entry in a sequence-set record consists of the highest
key in a control interval of the data component, paired with a pointer to the
beginning of that control interval. Not all data records have sequence-set
entries, for there is only one entry for each control interval in the data set.

For direct access by key, VSAM follows vertical pointers from the highest
level down to the sequence set to find a vertical pointer to data; for sequential
access by key, VSAM refers only to the sequence set. It uses a horizontal
pointer in a sequence-set record to get from that sequence-set record to the
one containing the next key in collating sequence so it can find a vertical
pointer to data. Figure 7 shows both vertical pointers and horizontal pointers.

Getting to Know What VSAM Is and Does 23

L

Index

} '"d" Sci

· · · ---""GJ } Scq","" Se.

CJ···CJ CJ LJ···CJ··· 	
•

",," Se. {

('antral Intervals of First Control Area ('antral Intervals of Second Control Area

Figure 7. Relationship Among the Levels of a Prime Index and a Data Set

VSAM increases the number of entries that an index record of a given size
can hold by a method of key compression: it eliminates from the front and
the back of a key those characters that aren't necessary to distinguish it from
the adjacent keys. Compression helps achieve a physically smaller index by
reducing the size of keys in index entries. Key compression, in an index of a
particular physical size, allows you to gain access to many more records than
you could otherwise.

The number of control intervals in a control area equals the number of entries
in a sequence-set index record. This equality has important uses in:

• 	 Placing the sequence-set index record adjacent to the control area on a
single cylinder (see "Sequence-Set Records Adjacent to the Data Set" in
the chapter "Optimizing the Performance of VSAM")

• 	 Distributing free space throughout a data set as a percent of free control
intervals in each control area

When you define a key-sequenced data set, you can specify that free space is
to be distributed throughout it in two ways: by leaving some space at the end ..
of all the used control intervals and by leaving some control intervals
completely empty. The amount of free space in a used control interval and the
number of free control intervals in a control area are independent of each

Iother. The selection of optimum free space values depends on whether your
program does direct processing, sequential processing, or both. Figure 8
shows how free space might be set aside in each control area of a data set.
The sequence-set record for a control area contains an entry for each free
control interval, as well as for each of those that contain data.

Besides the space that you distribute when you create a key-sequenced data
set, space that becomes available within a control interval when a record is
shortened or deleted from the data set is automatically reclaimed by VSAM
and can be used when a record is lengthened in place or directly inserted into
the control interval.

24 Planning for Enhanced VSAM under OS/VS

Sequence-Set Index Record

Highest-Key
Free

Entry in Each
Space

Control
Entries

Interval

Data Free Data Free

• Records Space Records Space

Controllnforrnation
Control Intervals of a Control Area

Figure 8. Distribution of Free Space in a Key-Sequenced Data Set

Reclaiming space and using distributed free space may cause RBAs of some
records to change. As Figure 8 illustrates, free space within a used control
interval is between the data in the front and the control information in the
back. If a record is deleted or shortened, any succeeding records in the control
interval are moved to the left and their RBAs are changed so that the space
vacated can be combined with the free space already in the control interval.
Conversely, an insertion or a lengthening causes any succeeding records in the
control interval to be moved to the right into free space and their RBAs to be
changed.

The discussion thus far has assumed that there is enough free space in the
control interval for a new or lengthened record. The following paragraphs
describe what VSAM does when there is not enough free space in the control
interval to contain the record. For simplicity, only insertion is referred to
explicitly.

If the record to be inserted will not fit in the control interval, there is a
control interval split: VSAM moves stored records in the control interval to
an empty control interval in the same control area, and inserts the new record
in its proper key sequence. The number of records moved depends on the
position of insertion of the new record and on the type of insertion . •
For sequential insertion, records are inserted in the control interval leaving
any specified free space; when the next record to be inserted will not fit in the .. 	
control interval, the records with keys greater than the key of the record to be
inserted are moved to a new control interval. The new record is inserted in the
old control interval, if space permits; otherwise, the new record is moved to a
third control interval. If there are no records in the control interval with a key
greater than the new record, the new record is placed in a new control
interval.

For direct insertion, approximately half of the records in a control interval are
moved when a control-interval split is required.

Figure 9 illustrates a control-interval split caused by a sequential insert and
shows the resulting free space available in the two affected control intervals.
Some of the records in the control interval that is too full for insertion are

Getting to Know What VSAM Is and Does 25

Data Free
Free Space Free Space • • • Records Space

moved to a free control interval, and the new record is inserted into the
control interval according to key sequence. Because the number of records in
the first control interval is reduced, subsequent insertions revert to the simpler
case, instead of becoming more complex.

If the control intervals involved in a split are not adjacent, the physical
sequence of data records is no longer the same as their key sequence. In
Figure 9, the entry sequence of the records in the last three control intervals
on the right is: 55,56, 57,60,61, 58, 59. But the sequence-set index record
reflects the key sequence, so that, for keyed sequential requests, the data
records are retrieved in the order: 55,56,57,58,59,60,61.

For a listing of the sequence in which VSAM performs write and update
operations for a control-interval split, see "Method of Inserting Records into
a Key-Sequenced Data Set" in the chapter "Protecting Data with VSAM."

Should there not be a free control interval in the control area, an insertion
requiring a free control interval causes a control area split: VSAM
establishes a new control area, either by using space already allocated or by
extending the data set, if the initially allocated spac~ is full and you provided
for extensions when you defined the data set. VSAM moves the contents of
approximately half of the control intervals in the full control area to free
control intervals in the new control area and inserts the new record into one
of the two control areas, as its key dictates. Since about half of the control
intervals of each of these control areas are now free for a direct or
skip-sequential insert, subsequent insertions won't require control-area
splitting. Likewise, subsequent sequential inserts will be added to the end of
the control area, and additional splits will not be required. Splitting should be
an infrequent occurrence for data sets with sufficient distributed free space;
splitting a control area does make it possible, however, to insert records into a
key-sequenced data set without previously distributed free space.

IGenerally speaking, direct or skip sequential inserts cause control intervals
and control areas to be split at the mid-point. Also, when processing direct or

Control Information

Free01 04 07 01 04 07I~;:,IY Space II
••
•

Free Space
•••

Free
55 56 57 59 55 56 57

SpaceIt II
II

Insertion of
Record 58 60 61 Free Space 60 61 F,,, Sp~, IISplits a
Control Interval

Free Space 58 59 Fre, Sp.re IIII
Control Intervals in Control Area

Before Insertion

Figure 9. Splitting a Control Interval for Record Insertion

26 Planning for Enhanced VSAM under OS/VS

Control Intervals in Control Area
After Insertion

..
Entry-Sequenced Data Sets

Relative Record Data Sets

skip sequential inserts, VSAM attempts to use all the free space available in
the control interval or control area. Sequential inserts, on the other hand,
cause control intervals and control areas to split at the point of insertion.
Furthermore, during sequential inserts, VSAM attempts to reserve the free
space quantity defined for the data set.

Key-sequenced data sets are appropriate for most applications. You can use
the full range of VSAM's processing options to gain "access to your data by a
key field rather than some location-dependent manner. A simplified approach
to planning is to assume that you will store your records in key-sequenced
data sets and handle as exceptions those applications that are more suited to
entry-sequenced or relative record data sets.

For additional information about processing key-sequenced data sets, see the
section "In What Ways Can VSAM Data Sets Be Processed?" in this chapter.

No prime index is associated with an entry-sequenced data set. When a record
is loaded or subsequently added, VSAM indicates its RBA to you. You must
keep track of the RBAs of the records yourself to gain access to them by
direct processing. One way to keep track is to build your own index.

Sequential access with an entry-sequenced data set is similar to that of QSAM
(queued sequential access method).

You can use direct access with an entry-sequenced data set in a way similar to
BDAM (basic direct access method) by preformatting the data set with
records of your choice (filled with blanks, for instance) and providing a
routine that randomly associates an RBA with the key field of a record in the
data set and thus distributes records throughout the data set. To store a
record initially, you convert its key field to an RBA, retrieve the preformatted
record at that RBA, and store the new record back at that RBA. The routine
must have a procedure for determining an alternate RBA when two or more
keys are converted to the same RBA. To retrieve a record subsequently, you
convert its key field to its RBA and determine the alternate RBA, if one is
required.

An entry-sequenced data set is appropriate for applications that require no
particular ordering of data by the contents of a record. Thus, it is well-suited
for a log or a journal in which the order corresponds to a sequence of events.

For additional information about processing entry-sequenced data sets, see
the section "In What Ways Can VSAM Data Sets Be Processed?" in this
chapter.

A relative record data set has no index. It has a string of fixed-length slots,
each of which has a relative record number from 1 to n, the maximum number
of records that can be stored in the data set. Each record occupies a slot and
is stored and retrieved by the relative record number of the slot. Relative
record number 9 in Figure 10, for example, occupies the ninth slot; whether
slots 1 through 8 are filled makes no difference.

Records in a relative record data set are grouped together in control intervals,
just as they are in a key-sequenced or an entry-sequenced data set. Each
control interval contains the same number of slots, the size of which is the
record length you specified when you defined the data set. The number of

Getting to Know What VSAM Is and Does 27

.......1----------------- Control Interval

Control
Relative Relative Relative Relative Relative

Informa-
Record 1 Record 3 Record 5 Record 6 Record 9

tion

Slot 1 Slot 2 Slot 3 Slot 4 Slot 5 Slot 6 Slot 7 Slot 8 Slot 9

Figure 10. The First Control Interval Within a Relative Record Data Set

slots in a control interval is determined by the control interval size and the
record length.

Because the slot can contain data or be empty, a data record can be inserted,
deleted, or moved without affecting the position of other data records in the
relative record cluster. Records can be retrieved sequentially. They can also
be retrieved directly, based on relative record number. You cannot retrieve a
relative record based on its RBA.

A relative record data set is appropriate for many applications that use
fixed-length records. Each record could be processed to yield a unique
relative record number (an employee's serial number, for example). Each
record could be located as though it were in a key-sequenced cluster, but
without the time it takes to search the key-sequenced cluster's index.

Additional information about processing relative record data sets appears in
the section "In What Ways Can VSAM Data Sets Be Processed?" in this
chapter.

How Are Alternate Indexes Used with Key-Sequenced and
Entry-Sequenced Data Sets?

An alternate index provides a unique way to gain access to a related base data
set, so that you need not keep multiple copies of the same information
organized in different ways for different applications. For example, a payroll
data set indexed by employee number can also be indexed by other fields such
as employee name or department number.

You use Access Method Services to define and build one or more alternate
indexes over a key-sequenced or an entry-sequenced data set. See "How is
Access Method Services Used?" in the chapter "Communicating with
VSAM."

This section describes the components of an alternate index and explains how
they are related to the base data set. It defines new terms associated with
alternate indexes, describes alternate-index records, keys, and pointers and
describes how alternate indexes are maintained.

•

28 Planning for Enhanced VSAM under OS/VS

Base Clusters alld Altemate-Illdex Clusters

..

Altemate-Illdex Paths

Alternate-Index Records

•
System Header Information

In terms of access, an alternate index performs the same function as the prime
index of a key-sequenced data set. The data set over which the alternate
index is built is the base cluster. It can be a key-sequenced or an
entry-sequenced data set, but not a relative record or a reusable data set.

In structure, the alternate index is similar to a cluster. It consists of an index
component and a data component. The index component is identical in
structure, format, and function to the prime index of a key-sequenced cluster.
Likewise, the format of the alternate-index data component is identical to the
format of the data portion of a key-sequenced data set. Therefore, each entry
in the sequence set of an alternate-index index component points to a control
interval in the alternate-index data component.

When building an alternate index, you can use as the alternate key any field
in the base data set's records having a fixed length and a fixed position within
each record. The alternate key must be in the first segment of a spanned
record. For each alternate key, the data component of the alternate index
contains a unique record. This record consists of the alternate key itself,
followed by a pointer that is the prime key or RBA of the base data record
that contains the alternate key. If more than one base data record contains
the alternate key then the alternate index record contains a pointer to each
base data record. These duplicate, or nonunique keys are discussed in the
section "Alternate Keys" in this chapter.

A path logically relates a base cluster and each of its alternate indexes. It
provides a way to gain access to the base data through a specific alternate
index. You define a path through Access Method Services. You must name it
and you can give it a password, if you choose. The path name subsequently
refers to the base cluster/alternate-index pair. This means that when you
refer to a path (by way of the OPEN macro, for example), both the base
cluster and the alternate index are affected (opened). Figure 11 shows how
two paths can relate two alternate indexes to a single base cluster.

Each record in the data component of an alternate index is of variable length
and contains system header information, the alternate key, and at least one
pointer to a base data record .

System header information is fixed length and indicates:

• 	 Whether the alternate index record contains (1) prime keys or RBA
pointers and (2) unique or nonunique keys

• 	 The length of each pointer

• 	 The length of the alternate key

• 	 The number of pointers

Getting to Know What VSAM Is and Does 29

L

Alternate Key I

Record in { Owner's Policy
Alternate

Name Number
Index 1

Path I

Data Record { Policy Owner's Billing Risk
m Address

Number Name Date Code
Base Cluster

Path 2

Record in { Policy
Alternate Address

Number
Index 2

'Alternate Key 2

Figure 11. Two Alternate Indexes Over a Single Key-Sequenced Data Set

Alternate Keys

Unless the base data records span control intervals, any field in the base data
records that has a fixed length and a fixed position within the record can be
an alternate key. The alternate key must be in the first control interval of a
spanned record. When an alternate index is created, the alternate keys are
extracted from the base data records and ordered in collating sequence. If you
build several alternate indexes over a base cluster, the alternate key fields of
the different alternate indexes may overlap each other in the base data
records. They can also overlap the prime key.

Keys in the index component of an alternate index or of a key-sequenced
base cluster are compressed. Keys in the data component of an alternate
index are not compressed. That is, the entire key is represented in the It

alternate-index data record.

An alternate key may refer to more than one record in the base cluster. For
example, if an alternate index is established by department number over a
payroll data set organized by employee number, there will be several
employees with the same department number, as shown in Figure 12. In other
words, there will be several prime-key pointers (employee numbers) in the
alternate-index record: one for each occurrence of the alternate key
(department number) in the base data set. When multiple pointers are
associated with a given alternate key value, the alternate key is said to be
nonunique; if only one pointer is associated with the alternate key, it is
unique.

30 Planning for Enhanced VSAM under OS/VS

L Employee Department Other
Number Name Number Information

Base Data
Records Where
Prime Kcy=
Employee Number

Alternate-Index {
Records Where
Alternate Key=
Department
Number

463871
488797
514329
561777
568597
674182

4618

Martin, AB 4618
Downs, CD 1201
Michaels, EF 4618
Price, GH 4618
Sonders, IJ 2436
West, KL 4618

463871 514329 561777 674182

Prime-Key Pointers
to Base Data Records

Figure 12. Nonunique Alternate Keys

Alternate-Index Pointers

An alternate index uses prime keys if the base cluster is a key-sequenced data
set and RBAs if the base cluster is an entry-sequenced data set.

For a nonunique key, like department number in Figure 12, multiple pointers
are associated with it. The pointers are ordered by their arrival times. That is,
if a base data record is updated with a key change (for example, an employee
number in Figure 12 is changed), or if a new record is inserted with the same
alternate key value (department number in Figure 12), the new prime-key
pointer is added to the end of the alternate-index record. In the case of a key
change, the old pointer is deleted.

A prime-key pointer has the same length as the prime key field of the base
data record it points to. The maximum number of pointers that can be •
associated with a given alternate key is 32767, provided the maximum
possible record length for spanned records is not exceeded.

A/temate-Index Maintenance

VSAM assumes alternate indexes are synchronized with the base cluster at all
times and makes no synchronization checks during open processing;
therefore, all structural changes made to a base cluster must be reflected in its
alternate index or indexes. This maintenance is called index upgrade. You
can maintain your own alternate indexes or you can have VSAM maintain
them. When the alternate index is defined with the UPGRADE attribute,
VSAM updates the alternate index immediately when there is a change to the
associated base data cluster. VSAM opens all the UPGRADE alternate
indexes for a base cluster whenever the base cluster is opened for output (but
not control interval processing).

Getting to Know What VSAM Is and Does 31

All the alternate indexes of a given base cluster that have the UPGRADE
attribute belong to the upgrade set. The upgrade set is updated whenever a
base data record is inserted, erased, or updated. The upgrading is part of a
request and VSAM completes it before returning control to your program. If
the upgrade fails because of a logical error, VSAM attempts to nullify any
modifications made to the base data or to other alternate indexes, and the
request that caused the upgrade is rejected.

If you specify NOUPGRADE when the alternate index is defined, you must
provide a way to reflect insertions, deletions, and changes made to the base
cluster in the associated alternate index.

When a path is opened for update, JCL allocates the base cluster and all the
alternate indexes in the upgrade set. If allocating the alternate indexes is
unnecessary, you can specify NOUPDATE and cause JCL to allocate only
the base cluster. VSAM, in that case, does no automatic upgrading.

How Are VSAM Data Sets Created?
This short discussion on creating data sets is intended merely to introduce the
following description of data access and VSAM catalogs. See "How Is Access
Method Services Used?" in the chapter "Communicating with VSAM" for a
more detailed discussion of defining data sets and loading records into them.

To define a VSAM data set, you use Access Method Services to allocate
storage space for it and catalog it in either the master catalog or a user
catalog. You can load data records into a data set by having Access Method
Services copy them from a sequential, an indexed sequential, or another
VSAM data set, or you can load them with your· own processing program.

In What Ways Can VSAM Data Sets Be Processed?
VSAM allows both sequential and direct access for each of its three types of
data sets. Sequential access of a record depends on the position, with respect
to the key, the relative byte address of the previously processed record, or the
relative record number; direct access does not. During sequential access,
records retrieved by key are in key sequence, records retrieved by RBA are in
entry sequence, and records retrieved by relative record number are in
relative record number sequence. To retrieve records after initial positioning,
you don't need to specify a key, an RBA, or a relative record number. VSAM
automatically retrieves or stores the next record in order, either next in key
sequence, next in entry sequence, or next in relative record number sequence,
depending on whether you're processing by key, by RBA, or by relative
record number.

With direct access, the retrieval or storage of a record is not dependent on the
key, the RBA, or the relative record number of any previously retrieved
record. You must fully identify the record to be retrieved or stored by key, by
RBA, or by relative record number.

GET-previous processing is a variation of normal keyed or addressed
sequential processing. Instead of retrieving or updating the next record in
ascending sequence (relative to current positioning in the data set),
GET-previous processing returns or updates the next record in descending
sequence.

VSAM allows a processing program or its subtasks to process a data set with
mUltiple concurrent sequential and/or direct requests, each requiring that

32 Planning for Enhanced VSAM under OS/VS

..

VSAM keep track of a position in the data set, with a single opening of the
data set. Access can be to the same part or to different parts of a data set. See
"How Is Shared Data Protected?" in "Protecting Data with VSAM" for
information about how VSAM provides for the protection of shared data.

A VSAM data set that does not have an alternate index can be used as a work
file. That is, you can treat a filled data set as if it were empty and use it again
and again, regardless of its old contents. To reuse a data set, you need only to
define it as reusable and specify that it be reset when you open it.

VSAM provides programmers of utilities and systems with control-interval
access. It retrieves and stores the contents of a control interval, rather than a
single data record. With control-interval access, access is gained sequentially
or directly by RBA and you can manage your own buffers or let VSAM do .. that for you, unless you select the high-performance option. This option
reduces the number of instructions that must be executed in systems that
demand greater speed. With this option, you must manage your own buffers
and issue only direct-access requests. Detailed information about
control-interval access is included in OS/VS Virtual Storage Access Method
(VSAM) Options for Advanced Applications. The control format of the
information may change in future releases of VSAM.

For a key-sequenced data set, the primary form of access is keyed access,
using an index. For an entry-sequenced data set without an alternate index,
the only forms of access are addressed and control interval access, using the
RBA determined for a record when it was stored in the data set. For a relative
record data set, the only forms of access are keyed and control interval
access, using the relative record number as a key.

You can also use addressed access to process the data or index component of
a key-sequenced data set. This may be useful when recovering from an index
failure. Keyed insertion and deletion may change the RBAs of records, so you
should provide a routine to record those changes during processing. VSAM
will exit to that routine at the appropriate time.

When your processing program retrieves a record, VSAM reads the contents
of the record into virtual storage (unless the contents have been read in
previously). VSAM does not require the processing program to deblock
records. VSAM indicates the length of the data record to your program and
either places the record in your program's work area or gives your program
the record's address in VSAM's I/O buffer. You need not concern yourself
with any physical attributes of stored records .

• If you must manage your own I/O buffers, you may. For additional
information, see "RPL: Defining the Request Parameter List" in the chapter
"Communicating with VSAM." Detailed information on how to manage your
own I/O buffers is in OS/VS Virtual Storage Access Method (VSAM)
Options for Advanced Applications.

Keyed Access for Key-Sequenced and Relative Record Data Sets

Keyed access is for key-sequenced and relative record data sets. The relative
record numbers of the records in a relative record data set are treated as keys.
Keys or relative record numbers are specified and returned in the area pointed
to by the ARG field of the RPL.

Keyed access provides for retrieval, update, insertion, addition, and deletion.
Each of these actions can be sequential, skip sequential, or direct when you

Getting to Know What VSAM Is and Does 33

Keyed Retrieval

are processing records in ascending key sequence. The actions can be
sequential or direct when you are processing in descending key sequence.

In forward-sequential processing, records are retrieved or stored in ascending
key or relative record sequence, starting from the beginning of the data set or
another position that you select. You do not have to supply a search argument
for VSAM to process the records. With direct processing, records are
retrieved or stored by the search argument (key or relative record number)
you supply. Records can be processed in any order, without regard to the
sequence of records processed before or after. During skip-sequential
processing, you can retrieve or store a group of records sequentially (in
ascending sequence) and then skip to a different part of the data set and
process another group of records sequentially. Skip sequential combines
features of both sequential and direct processing.

When you specify GET-previous processing, VSAM will return the previous
record relative to current positioning rather than the next record in the data
set. You can select previous processing for POINT, GET, PUT (update only),
and ERASE operations. GET-previous processing is not permitted with
control-interval or skip-sequential processing.

Keyed sequential access for a key-sequenced data set depends on where the
previous macro request positioned VSAM with respect to the key sequence
defined by the index. When your program opens the data set for keyed access,
VSAM is positioned at the first record in the data set in key sequence to begin
keyed sequential processing. The POINT macro instruction positions VSAM
at the record whose key you specify. If the key is a leading portion of the key
field, a generic key, the record positioned to is the first of the records having
the same generic key. A subsequent GET macro retrieves the record VSAM is
positioned at. The GET then positions VSAM at the next record in key
sequence. The POINT macro can position either forward or backward in the
data set, depending on whether FWD or BWD was specified for the OPTeD
operand.

When you are processing by way of a path, records from the base cluster are
returned according to ascending or, if you are retrieving the previous record,
descending alternate key values. If there are several records with a nonunique
alternate key, the records are returned in the order in which they were
entered into the alternate index. VSAM sets a return code in the RPL when
there is at least one more record with the same alternate key. For example, if
there are three data records with the alternate key 1234, the return code
would be set during the retrieval of records one and two and would be reset
during retrieval of the third record.

Keyed sequential retrieval for a relative record data set causes the records to
be returned in ascending or, if you are retrieving the previous record,
descending numerical order, based on the current positioning for the data set.
Positioning is established in the same way as for a key-sequenced data set,
and the relative record number is treated as a full key. If a deleted record is
encountered during sequential retrieval, it is skipped over and the next record
is retrieved. The relative record number of the retrieved record is returned in
the ARG field of the RPL.

•

..

34 Planning for Enhanced VSAM under OS/VS

•

Keyed Storage

•

Keyed direct retrieval for a key-sequenced data set does not depend on prior
positioning; VSAM searches the index from the highest level down to the
sequence set to retrieve a record. You can specify the record to be retrieved
by supplying one of the following:

• The exact key of the record

• An approximate key, less than or equal to the key field of the record

• A generic key

You can use approximate specification when you do not know the exact key.
If a record actually has the key specified, VSAM retrieves it; otherwise, it
retrieves the record with the next higher key. Generic key specification for
direct processing causes VSAM to retrieve the first record having that generic
key. If you want to retrieve all the records with the generic key, specify NSP
in your direct request. That causes VSAM to position itself at the next record
in key sequence. You can then retrieve the remaining records sequentially.

When you use direct or skip-sequential access to process a path, a record
from the base data set is returned according to the alternate key you have
specified in the ARG operand of the RPL macro. If the alternate key is not
unique, the record which was first entered with that alternate key is returned
and a return code (duplicate key) is set in the RPL. To retrieve the remaining
records with the same alternate key, specify the NSP option when retrieving
the first record and then switch to sequential processing.

To use direct or skip-sequential access to process a relative record data set,
you must supply the relative record number of the record you want in the
ARG operand of the RPL macro. If you request a deleted record, the request
will cause a no-record-found logical error.

When you indicate the key of the next record to be retrieved during
skip-sequential retrieval, VSAM skips to its index entry by using horizontal
pointers in the sequence set to get to the appropriate sequence-set index
record to scan its entries. The key of the next record must always be higher in
sequence than the key of the preceding record.

A relative record data set has no index; VSAM takes the number of the
record to be retrieved and calculates the control interval that contains it and
its position within the control interval.

To store records in ascending key sequence throughout a data set, you can use
sequential, skip-sequential, or direct access. For sequential or skip-sequential
processing, VSAM scans the sequence set of the index; for direct processing,
VSAM searches the index from top to bottom.

A PUT macro instruction stores a record. A PUT for update following a GET
for update stores the record that the GET retrieved. To update a record, you
must previously have retrieved it for update.

When VSAM detects that two or more records are to be inserted in sequence
into a collating position (between two records) in a data set, VSAM uses a
technique called mass sequential insertion to buffer the records being
inserted, thereby reducing I/O operations. Using sequential instead of direct
access in this case enables you to take advantage of this technique. You can
also extend your data set (resume loading) by using sequential insertion to
add records beyond the highest key or relative record number.

Getting to Know What VSAM Is and Does 35

Keyed Deletion

Mass sequential insertion observes control interval and control area
free-space specifications when the new records are a logical extension of the
control interval or control area (that is, when the new records are added
beyond the highest key or relative record number used in the control interval
or control area).

Sequential insertion in a relative record data set causes a record to be assigned
the next available number in sequence, which is the next available relative
record number greater than the position established by a previous record. The
assigned number is returned in the ARG field of the RPL.

Direct or skip-sequential insertion of a record into a relative record data set
causes the record to be placed as specified by the relative record number in
the ARG field of the RPL. You must insert the record into a slot that does
not contain a record.

You can insert and update data records in the base cluster by way of a path,
provided the PUT request does not result in nonunique alternate keys in an
alternate index which you have defined with the UNIQUE parameter. If the
alternate index is in the upgrade set (that is, you specified UPGRADE when
you defined the alternate index), the alternate index is modified automatically
when you insert or update a data record in the base cluster. If the updating of
the alternate index results in an alternate-index record with no pointers to the
base cluster, the alternate-index record is erased.

An ERASE macro instruction that follows a GET for update deletes the
record that the GET retrieved. A record is physically erased in the data set
when you delete it. The space the record occupied is then available as free
space.

You can erase a record from the base cluster of a path only if the base cluster
is a key-sequenced data set. If the alternate index is in the upgrade set (that
is, UPGRADE was specified when the alternate index was defined), it is
modified automatically when you erase a record. If the alternate key of the
erased record is unique, the alternate index data record with that alternate key
is also deleted.

You can erase a record from a relative record data set after you have
retrieved the record for update. The record is set to binary zeros and the
control information for the record is updated to indicate an empty slot. You
can reuse the slot by inserting another record of the same length into it.

Addressed Access lor Key-Seqllenced and Entry-Sequenced
Data Sets

For an entry-sequenced data set, the only forms of access are addressed and
control interval access, using the RBA determined for a record when it was
stored in the data set. Control-interval access is described in OS/VS Virtual
Storage Access Method (VSAM) Options for Advanced Applications. You
can also use addressed access for both key-sequenced and entry-sequenced
data sets when you want to process the previous record. The previous record
is the one with the next lower RBA. Positioning is established in the same
way it is for keyed retrieval, except that to start processing at the end of the
data set, you issue a POINT macro with OPTCD=LRD. During the
processing of .previous records, you cannot add or insert records.

36 Planning for Enhanced VSAM under OS/VS

•

Addressed Retrieval

..
Addressed Storage

Addressed access can be either sequential or direct for both key-sequenced
and entry-sequenced data sets, but the processing allowed for a
key-sequenced data set is different from that allowed for an entry-sequenced
data set. With a key-sequenced data set, addressed access can be used to
retrieve records, update their contents, and delete records. (The length of a
record and the contents of its key field cannot be changed.) Records cannot
be added because VSAM will not allow changes to the data set which could
cause the index to change. With an entry-sequenced data set, addressed
access can be used to retrieve records, update their contents (but not change
their length), and add new records to the end of the data set. Records cannot
be physically deleted because that would change the entry sequence of the
data set (RBAs of the records).

The discussion of free space in a key-sequenced data set pointed out that
keyed insertion, deletion, or update (length changing) of records can change
their RBAs. Therefore, to use addressed access to process a key-sequenced
data set, you may have to keep track of RBA changes. VSAM passes back the
RBA of each record retrieved, added, updated, or deleted.

Positioning for addressed sequential retrieval is done by RBA rather than by
key. When a processing program opens a data set for addressed access,
VSAM is positioned at the first record in the data set in entry sequence to
begin addressed sequential processing. A POINT positions VSAM for
sequential access beginning at the record whose RBA you have indicated. A
sequential GET causes VSAM to retrieve the data record at which it is
positioned and positions VSAM at the next record in sequence.

With direct processing, you may optionally specify that GET position VSAM
at the next record in either a forward or backward direction. Your program
can then process the following records sequentially in the desired direction.

Addressed sequential access retrieves records in a forward or backward
direction. If addressed sequential retrieval is used for a key-sequenced data
set, records will not be in their key sequence if there have been control
interval or control area splits.

Addressed direct retrieval requires that the RBA of each individual record be
specified, since previous positioning is not applicable. The address specified
for a GET or a POINT must correspond to the beginning of a data record;
otherwise, the request is invalid .

VSAM does not insert new records into an entry-sequenced data set, but adds
them at the end. With addressed access of a key-sequenced data set, VSAM
does not insert or add new records.

A PUT macro instruction stores a record. A PUT for update following a GET
for update stores the record that the GET retrieved. To update a record, you
must previously have retrieved it for update. You can update the contents of a
record with addressed access, but you cannot alter the record's length.
Neither can you alter the prime key field of a record in a key-sequenced data
set.

To change the length of a record in an entry-sequenced data set, you must
store it either at the end of the data set (as a new record) or in the place of an
inactive record of the same length. You are responsible for marking the old
version of the record as inactive.

Getting to Know What VSAM Is and Does 37

Addressed Deletion

The ERASE macro can be used only with a key-sequenced data set to delete
a record that you have previously retrieved for update.

With an entry-sequenced data set, you are responsible for marking a record
you consider to be deleted. As far as VSAM is concerned, the record is not
deleted. You can reuse the space occupied by a record marked as deleted by
retrieving the record for update and storing in its place a new record of the
same length.

What Are the Master Catalog and User Catalogs For?
A master catalog is required with VSAM, and any number of user catalogs are
optional. Almost everything that is true of the master catalog is true of user
catalogs, but user catalogs have special uses and there are significant
differences between the VSl and VS2 catalogs that we will discuss after we
consider the general functions of a VSAM catalog.

A VSAM Catalog's Use ill Datil and Space Ma"tigement

VSAM catalogs are a central information point for all VSAM data sets and
the direct-access storage volumes containing them. The information
describing a volume and the data sets on it is extensive enough to enable
VSAM to allocate and deallocate data sets on the volumes without the
volumes being mounted on a device of the system. The catalogs also provide
VSAM with information needed to authorize access to data sets, compile
usage statistics on them, and relate RBAs to physical locations. Defining a
VSAM data set automatically builds the appropriate catalog entry containing
all the necessary information.

All VSAM data sets on a volume must be cataloged in the same VSAM
catalog, and that catalog must be the one that owns the volume. This may be
either the master catalog or a user catalog. A VSAM data set has an entry in
only one catalog. See "How is Access Method Services Used?" in the chapter
"Communicating with VSAM" for a description of how volume ownership is
relinquished.

Information Contained in the Records of a Catalog

Besides data set records, a VSAM catalog has records describing direct-access
volumes in terms of the allocation of data spaces and the location of available
space. VSAM can allocate and deallocate space on cataloged volumes that are
not mounted. However, when allocating space to a data set, if there is not
sufficient space available in the data space or data spaces on a volume, you
must use the Access Method Services DEFINE space command to get the
additional space the data set needs.

38 Planning for Enhanced VSAM under OS/VS

Information in a Data Set Record

Data set records provide the information required to make the connection
between a data record's RBA and its physical location in terms of a storage
volume's physical attributes. Besides the type of storage device and a list of
volume serial numbers, a VSAM catalog keeps other data set information,
including:

• 	 A pointer to the location of each extent of the data set

• 	 Statistics on the results of operations performed on the data set and its
records, such as the number of insertions and deletions and the amount of
free space remaining

• 	 Attributes of the data set determined when it was defined, such as
• 	 control-interval size, physical record size, number of control intervals in a

control area, and, for a key-sequenced data set, location of the key field

• 	 Password protection information

• 	 An indication of the connection between: the index and the data
components of a key-sequenced data set; the index and data components
of an alternate-index cluster; the alternate index and the base cluster of a
path; and an alternate-index upgrade set and its base cluster

• 	 Information used to determine whether a key-sequenced data or index
component has been processed without the other

• 	 Information about the volume(s) on which the data set is stored

Information in a Volume Record

Volume information in a VSAM catalog provides the information required to
keep track of data spaces and free storage areas. A VSAM catalog contains
this sort of volume information:

• 	 The volume serial number and device characteristics

• 	 The location of data spaces on a volume

• The location and size of free areas available for allocation to data sets

From this information, you can derive:

• 	 The count of data spaces and data sets on a volume

• 	 The location of data sets within data spaces on a volume

," • 	 An indication of the data spaces associated with a data set

.. The Special Uses of User Catalogs

User catalogs can improve VSAM reliability and facilitate volume portability.

Improving Reliability

User catalogs are useful for improving reliability. By putting the catalog
information of some of your data sets and storage volumes into user catalogs,
you decentralize control, allow for the partitioning of applications, and at the
same time achieve increased reliability.

Getting to Know What VSAM Is and Does 39

Moving Volumes from One Operating System to Another

Because all VSAM data sets must be cataloged, moving a volume from one
operating system to another requires that catalog information describing the
volume and the data sets on it be moved along with the volume.

If you want to be able to move a volume or volumes from one OS/VS system
to another, or from an OS/VS system to a DOS/VS system, define a user
catalog on one of the volumes and define the volumes and the VSAM data
sets on them in the user catalog. You can then transport the volumes by
demounting them and removing them from the first system, taking them to
the second system, and remounting them. You use Access Method Services to
disconnect the user catalog from the master catalog of the first system and to
connect a pointer to it in the master catalog of the second system. Any
number of user catalogs can be used in this way.

You can also move individual data sets from one system to another by using
Access Method Services, but the use of user catalogs for single volume
portability is the most convenient way to achieve data set portability. For
additional information, see "Moving Data Sets from One Operating System to
Another" in the chapter "Communicating with VSAM."

How Does the VSl Master Catalog Differ from the MVS
Release 3 Master Catalog?

In OS/VS1, the system contains a VSAM master catalog as well as a system
I catalog. In MVS Release 3, the system catalog is a VSAM catalog that also

serves as the VSAM master catalog. The differences are important,
particularly in the areas of naming conventions and search strategies.

The VSl VSAM Master Catalog

The VS 1 system catalog points to the VSAM master catalog, which can
contain catalog entries for VSAM and nonVSAM data sets (except for those
belonging to generation data groups) and pointer entries for any number of
optional user catalogs. Figure 13 illustrates how data sets can be cataloged
among the system catalog, the master catalog, and user catalogs.

VSAM catalogs are searched before the system catalog, for VSAM data sets
and data sets of other access methods. When you execute a program to
process a data set, the order in which the catalogs are searched is:

1. Any user catalog or catalogs specified for the job step.

2. Any user catalog or catalogs specified for the job when none is specified
for the job step.

3. The master catalog.

4. The system catalog.

Use caution in naming your data sets. Because the VSAM catalog is always
searched first, it is possible to lose access to a data set cataloged in the system
catalog if it has the same name as a data set in the VSAM catalog.

40 Planning for Enhanced VSAM under OS/VS

--

VSl Generation

System Catalog Data Groups

VSAM
Master Catalog ..

Optional
User
Catalog

VSAM VSAM
and Other Data Sets
Data Sets

/
/

/ Data-Set and Volume Entries

/
/

I 	 I

./Data-Set and Volume Entries --- ,/"

,/"/

Optional
User
Catalog

/

VSAM VSAM 	 VSAM
and Other Data Sets Data Sets
Data Sets

Figure 13. Cataloging VSAM and NonVSAM Data Sets in a VSAM Catalog

IThe MVS Reletlse 3 Master Catalog
.. I	In MVS Release 3, the system catalog is the VSAM master catalog. It can

handle both OS and VSAM data sets. As in OS, you can gain access to only
one catalog per system at system initialization, and that catalog, called the
master catalog, must contain entries for all the system data sets. Figure 14 Icompares the OS system catalog and the MVS master catalog.

The master catalog is established at system generation time, and without it,
you can't define user catalogs, data spaces, or data sets. The volume on which
the master catalog is defined must be permanently mounted.

The master catalog can contain pointers to OS catalogs (CVOLs), VSAM and
other data sets, optional VSAM user catalogs, and generation data groups in
non VSAM data sets. Figure 15 illustrates how data sets and catalogs might be

Iarranged within a basic MVS catalog structure.

Getting to Know What VSAM Is and Does 41

OS System Catalog 	 MVS Master Catalog

Contains only OS data set entries 	 Contains entries for OS data sets,
VSAM data sets, VSAM user catalogs,
and OS CVOLS

One catalog during initialization 	 One catalog during initialization

Must be on IPL volume 	 Need not be on IPL volume

System controls the search strategy 	 You control the search strategy

All catalogs named SYSCTLG 	 All catalogs can be named by the user

Figure 14. Comparison of the OS System Catalog and the MVS Master Catalog

You cannot move the master catalog from one system to another by using
Access Method Services commands. You can, however, make a copy of the ..
master catalog, then move the copy to another system. If your master catalog
is recoverable, you can use Access Method Services commands to repair
damaged entries that result from system failure.

A master catalog cannot be used simultaneously as the VSAM master catalog
for two MVS systems (that is, the master catalog cannot be shared between
two systems as each system's master catalog). However, one system's master

MVS

Release 3

Master Catalog

as
Data Set

as
CVOL

Optional
VSAM

Information Information VSAM
and VSAM

User
Catalog(s)

Other Data Sets
Data Sets

VSAM
and VSAM
Other Data Sets
Data Sets

Figure 15. Cataloging VSAM and NonVSAM Data Sets in the MVS Master Catalog

42 Planning for Enhanced VSAM under OS/VS

catalog can be used as a user catalog on another MVS system that includes
VSAM when the catalog is on a shared direct-access device. When a catalog
is used simultaneously by two or more systems, all of the catalog's volumes
must be on shared direct-access devices. If you do this, take care to assign
passwords to each of the catalog's page spaces and system data sets to
prevent their accidental or unauthorized use.

When you define a catalog, you can use JCL to cause the volume on which
the catalog is to reside to be mounted or you can rely on dynamic allocation.
For information and examples of how JCL and dynamic allocation are used to
acquire resources, see OS/VS2 Access Method 	Services and OS/VS2 JCL.

In MVS, alias names can be assigned to anonVSAM data set entry, a catalog
connector entry (CVOL), and a user catalog. Such an entry contains a pointer .. 	 to the beginning of a chain of alias entries. Each alias entry contains three
pointers: one to the nonVSAM or CVOL entry, one to the next alias entry,
and one to the previous alias entry.

When you execute a program to process a data set, the order in which the
catalogs are searched is:

1. 	Any user catalog or catalogs specified for the job step.

2. 	Any user catalog or catalogs specified for the job when none is specified
for the job step.

3. 	The master catalog, unless the data set is qualified (contains periods) and
the qualifier (the characters up to the first period) is the name or the alias
name of a catalog. In that case, that catalog is searched rather that the
master catalog.

Because of this order of search, a qualified data set name and an unqualified
data set name cannot exist in the same catalog, if the unqualified name is the
same as the first qualifier of the qualified data set name. For example, the
master catalog could not contain the data set 'ABC.123' and an alias 'ABC'
for a CVOL or user catalog.

How Is the VSAM Catalog Structured?
A VSAM catalog is structured as a VSAM key-sequenced cluster with two
key ranges. Like a VSAM key-sequenced cluster, the catalog consists of an
index component and a data component. The space the catalog occupies is
divided into fixed-length control intervals of 512 bytes each. Figure 16

• 	 illustrates the parts of the catalog described in the following paragraphs .

I
I Sequence Set Sequence Set

High-

Low-key Range
(catalog entries)

level
Index

High-key
Range
(names)

Figure 16. Catalog Structure

Getting to Know What VSAM Is and Does 43

The Data Component

The Index Component

The catalog's data component is divided into two areas: a high-keyrange and
a low-keyrange. One high-keyrange record and one low-keyrange record
(plus, possibly, one or more extension records in the low key-range) exist for
each cataloged object:

• 	 A high-keyrange record contains the full 44-byte name of the cataloged
object and the 3-byte control interval number of the object's low-keyrange
record. Each high-keyrange record is 47 bytes long; up to 10 records can
exist in a control interval in the high-keyrange.

• 	 A low-keyrange record contains the information necessary to describe and
locate the cataloged object. Each low-keyrange record is 505 bytes long;
only one record exists in a control interval in the low-keyrange.
Low-keyrange records are described in detail in OS/VS2 Catalog
Management Logic.

The high-keyrange and low-keyrange also contain records that describe the
catalog itself.

Control intervals that contain data records are grouped into control areas. A
control area consists of control intervals that contain high-keyrange records
or low-keyrange records; high-keyrange records do not exist in the same
control area with low-keyrange records.

The catalog's index component consists of 50S-byte index records, one per
control interval. Control intervals containing index records are not grouped
into control areas.

Each index record consists of one or more variable-length index entries. Each
entry contains a compressed key value and a pointer to a lower level in the
catalog (that is, a control interval in either a lower index level or in one of the
data-keyranges). A compressed key is the 44-byte cataloged object's
entryname, minus characters from the front and back of the entryname that
are not needed to distinguish the key value (entrymime) from the preceding
and following key values. (See OS/VS Virtual Storage Access Method
(VSAM) Options for Advanced Applications for details on indexes, index
processing, and key compression.)

The index has two parts-an index set and a sequence set:

• 	 The sequence set is the lowest level of the index. A sequence-set record
exists for each control area (that is, for each group of data control
intervals). The sequence-set record contains an entry for each control
interval in the control area. Each entry contains a pointer to a control
interval and the control interval's highest key value (compressed
entryname) .

• 	 The index set i.s all levels of the index higher than the sequence-set level.
An index-set record contains entries that point to lower-level index-set
records, or that point to sequence-set records. Each entry contains a
pointer to the lower-level record and the highest key value (compressed
entryname) of the keys in the lower-level record. Since a sequence-set
record contains the highest key value in each control interval within a
control area, an entry in the next higher level record in the index set
contains the highest key value of objects represented within a control area.

•

44 Planning for Enhanced VSAM under OS/VS

Siu of a Co"trol Area and Locatio" of tlte Sequence Set

Because a sequence-set record contains one entry for each control interval in
the control area, the size of the control area is limited by how many entries
can fit in a sequence-set record. The length of an entry varies (because of the
variable-length compressed entryname), but approximately 40 entries can fit
in a sequence-set record. In addition, a control area exists as a whole number
of contiguous tracks on a direct-access device. A catalog's control interval
does not span tracks. Therefore, the size of a control area depends on the
number of entries that will fit into a sequence-set record, and on the type of
direct-access device:

• 	 For a 3330,3330 Model 11, or 2305 Model 2, a control area is two tracks
and contains 40 data control intervals (20 control intervals per track).

• 	 For a 3350, a control area is two tracks and contains 54 data control
intervals (27 control intervals per track).

• 	 For a 2305 Modell, a control area is three tracks and contains 45 data
control intervals (15 control intervals per track).

• 	 For a 3340/3344, a control area is four tracks and contains 48 data
control intervals (12 control intervals per track).

• 	 For a 2314/2319, a control area is four tracks and contains 44 data
control intervals (11 control intervals per track).

The track preceding each control area contains the control area's sequence-set
record. The sequence-set record's track is also divided into control intervals
(the number of control intervals per track depends on the device type). The
sequence-set record is replicated (that is, it is copied in each control interval
on the track) to improve performance by reducing the amount of rotational
delay required when it is accessed. Figure 17 shows how the control area and
sequence-set record tracks are related.

Allocation of Catalog Space

When a catalog is created, it is built in the first data space on the volume.
When you define the catalog, you can specify an exact amount of space for it
or you can allow Access Method Services to determine the total amount of
catalog space. When Access Method Services determines the total amount of
catalog space, you specify the amount of space necessary for the catalog
entries (shaded part of Figure 18) and Access Method Services determines
how much space is needed for the rest of the catalog. See "How Space Is • Assigned to a Catalog" in the chapter titled "Creating and Cataloging
Objects" for more details.

• 	 Catalog space is allocated as an amount of tracks (even when you specify an
amount of cylinders or records when you define the catalog). The amount of
tracks is a multiple of allocation units. An allocation unit is the size of a data
control area plus one track (the adjacent track for the control area's
sequence-set record). Therefore, the size of an allocation unit is:

• 	 Three tracks for a 3330, 3330 Model 11, 3350, or 2305 Model 2 (two
tracks for the control area and one track for the sequence-set record).

• 	 Four tracks for a 2305 Modell (three tracks for the control area and one
track for the sequence-set record).

• 	 Five tracks for a 2314/2319 or 3340/3344 (four tracks for the control
area plus one track for the sequence-s\~t record).

Getting to Know What VSAM Is and Does 45

2314 Control Area

} Sequence-set Record

Track A

Track B

Track C Control Area

Track D

Track E

Each track (on a 2314) contains 11 control intervals:

• 	 On Track A, the control intervals contain a replicated sequence-set record.

• 	 On Tracks B, C, D, and E, each control interval contains up to ten
bigh-keyrange records or one low-keyrange record.

Figure 17. Physical Relationship of a Sequence-Set Record and the Control Area It
Governs (on a 2314 Direct-Access Storage Device)

Sequence Set Seq uence Set
High
level

High-key
Index

Range
(names)

Amount of space you specify for the
catalog's entries

D Amount of additional space Access

Method Services allocates to the

catalog

Figure 18. Space Allocation for the Catalog

When the amount of space you specify (in the DEFINE command) is not a
mUltiple of the device's allocation unit size, the amount of space is rounded
downward to a multiple and the additional tracks aren't allocated.

One allocation unit is always allocated to the index-set part of the index. Ten
percent of the remaining allocation units (or at least one allocation unit) is
allocated to the high-keyrange and its sequence-set record(s). The remaining
allocation units are allocated to the low-keyrange and its sequence-set
record(s). The minimum catalog size is three allocation units: one allocation
unit each for the index set, the high key-range, and the low-keyrange.

J

46 Planning for Enhanced VSAM under OS/VS

For example, when you define a catalog you specify 1 cylinder of space on a
3330 direct-access device for the entire catalog (1 cylinder = 19 tracks):

• 	 The request is rounded down to 18 tracks, which is six allocation units of
three tracks each (the nineteenth track is not used and not available unless
the catalog's data space is suballocated).

• 	 One allocation unit (three tracks) is assigned to the catalog's index set
(that is, the high-level part of the catalog's index).

• 	 Ten percent of the remaining 15 tracks is to be allocated to the catalog's
high-keyrange. However, since the minimum (one allocation unit, or three
tracks) is larger than ten percent of the remaining tracks, or 1.5 tracks,
three tracks are allocated to the catalog's high-keyrange. The first track
contains a sequence-set record (occupying one control interval) that is
replicated around the track. The next two tracks (one data control area),
containing 40 control intervals, are available for a maximum of 400
high-keyrange records. In other words, the high-keyrange can point to 400
catalog entries before it must be extended (a catalog entry, however, might
include more than one catalog record, or control interval, in the
low-keyrange).

• 	 The remaining space available to the catalog, 12 tracks or four allocation
units, are assigned to the catalog's low-keyrange. Each allocation unit
includes one track for the replicated sequence-set record and one data
control area (two tracks containing 40 control intervals). Therefore, 8
tracks containing 160 control intervals (that is, four data control areas) are
available for low-keyrange records. The catalog's self-describing entries
usually occupy the first 13 catalog records (actually, the number of catalog
records for the catalog's self-describing entries varies from 12 to 15,
depending on the type of device containing the catalog).

The catalog's self-describing entries are pointed to by two high-keyrange
records: one contains the catalog's entryname, the other contains the
catalog volume's serial number.

Figure 19 illustrates the allocation of one cylinder of space for the catalog
described in the above example.

Utiliz.atioll of Catalog Space

Because the index-set, sequence-set, and low-keyrange control intervals each
contain one (and only one) catalog record, the space allocated to these parts
of the catalog can be completely filled before a secondary allocation of space
is required. However, the catalog's high-keyrange control intervals can
contain up to 10 records each, and are subject to control interval splitting and
control area splitting:

• 	 Control interval split: When VSAM Catalog Management (that is, the part
of VSAM that manipulates catalog records) tries to add a record to a
high-keyrange control interval that contains 10 records, the control interval
will be split into two control intervals. Five of the control interval's records
are moved into an unused control interval, so that after the split each
control interval contains five high-keyrange records. The new record is
then added to the appropriate control interval. Each control interval now
has sufficient free space to accept more high-keyrange records, but the free
space might not be used until entries with the appropriate key values are
added to the catalog.

Getting to Know What VSAM Is and Does 47

3330 Cylinder

Low-keyrange and its
Sequence-set Records

} High-keyrange and its
Sequence-set Records

• 	 Each allocation unit = 3 tracks.

• 	 Each sequence-set record occupies one track (the sequence-set record is
contained in one control interval, and is replicated around the track).

Each control area - 2 tracks - 40 control intervals.

Figure 19. Allocation of a One-Cylinder Catalog on a 3330 Direct-Access Storage Device

• 	 Control area split: When all control intervals in one of the high-keyrange's
control areas are in use (that is, the control area no longer contains any
free control intervals to use when a control interval split occurs) and a
control interval must be split, then the control area is split. Note that,
before the control area is split, all of its control intervals except one might
be only half-full. When the control area is split, half of the control intervals
are moved into an unused control area. The appropriate control interval is
split and the high-keyrange record is added in key sequence to the
appropriate control interval. After the control area is split, then, only 25
percent of the two control areas might contain data records (although this
is a worst-case example; it illustrates how space might be under-utilized in
the catalog's high-keyrange).

Whenever a control interval or control area is split, the appropriate
sequence-set and index-set records are updated or split to reflect the new data
structure.

For example, suppose you want to create a VSAM user catalog that contains
the entries from an OS CVOL. On a 3330 direct-access device, two allocation
units are assigned to a catalog'S high-keyrange and its associated sequence-set
records. Since a 3330 track contains 20 control intervals and up to 10
high-keyrange records can exist in a control interval, the high-keyrange can ."
potentially contain 800 records (2 allocation units x 2 tracks per allocation .."
unit x 20 control intervals per track x 10 records per control interval). After

48 Planning for Enhanced VSAM under OS/VS

•

..

the catalog is created, you issue the CNVTCA T command to convert the OS
control volume's (CVOL's) entries to VSAM catalog entries. The CVOL's
entries are converted one at a time and are added to the catalog in ascending
key sequence (the catalog was empty before the CNVTCAT command was
issued). When a control interval must be split, the record causing the split will
be added to the control interval with the higher keys (that is, with the
entrynames of higher key sequence). The following splitting occurs:

• 	 As each control interval in the first control area becomes full and another
entry is added, the control area is split. Since the CNVTCAT command
adds entries to the VSAM catalog in ascending key sequence, each
high-keyrange control interval contains five records after the split. When
the next-to-last control interval is split, there are almost 200 records in a
control area that might contain 400 records .

• 	 When the last control interval in the first control area becomes full and
another entry is added, the first control area must be split. Half of the
control intervals in the first control area are moved into the second control
area. The first control area now contains 100 records and, because the OS
CVOL's entries are converted and added to the user catalog in ascending
key sequence, no further records are added to the first control area.

• 	 When control intervals in the second control area become full, they are
split as entries are added. Each control interval in the second control area
thus contains five high-keyrange records (except the current control
interval, which might contain more than five until it is split). The second
control area can contain a maximum of 205 records before it must be split
(that is, 5 records in all control intervals except the last one (50 percent
utilization), and 10 records in the last control interval (100 percent
utilization» .

In this example, 305 entries were converted from the OS CVOL and added to
the VSAM catalog. The catalog's high-keyrange must be extended to allow
any further OS CVOL entries to be converted and added in ascending key
sequence. If the catalog was defined without a secondary space allocation
amount specified, the CNVTCAT command will terminate with a message to
the user that indicates the catalog is full. However, the catalog's
high-keyrange now contains ample free space to allow you to add entries to it
in a random sequence (that is, entries that are added to the catalog as a result
of DEFINE commands).

This example illustrates the importance of specifying a secondary space
allocation amount when you define your catalog, especially when you intend
to use the catalog to receive converted entries from an OS CVOL.

Getting to Know What VSAM Is and Does 49

•

•

COMMUNICATING WITH VSAM

This chapter introduces programmers to communicating with VSAM by using
the commands of Access Method Services, the macros for connecting a
processing program to a data set and gaining access to it, the macros used in
data base/data communication (DB/DC) applications, and the JCL
parameters affected by VSAM. An application programmer doesn't need to
know the format of control blocks, as he does with some other access
methods: he just specifies the name of the action he wants.

How is Access Method Services Used?
Access Method Services is a multifunction service program that you use to
define a VSAM data set and load records into it, build an alternate index,
convert OS catalogs to VSAM master or user catalogs, convert a sequential or
an indexed sequential data set to the VSAM format, list VSAM catalog
records or records of a data set, copy a data set for reorganization, create a
backup version of a data set, recover from certain types of damage to a data
set, and make a data set portable from one operating system to another.

You tell Access Method Services what to do by giving a command and
descriptive parameters through an input job stream or by calling it in a
processing program and passing it a command statement. In OS/VS2 you can
also execute Access Method Services from a TSO (Time Sharing Option)
terminal, either by executing a program that calls it, by executing it directly
and giving commands and parameters through an input data set, which can
come from a TSO terminal, or by entering one of the TSO commands that is
identical to Access Method Services commands. For more information about
the use of TSO with VSAM, see "How Can the Time Sharing Option (TSO)
Be Used with VSAM?" in the chapter "Preparing for VSAM."

A set of conditional statements (IF, ELSE, DO, END, SET) allows you to
alter the sequence of execution of a series of commands by testing or resetting
codes that Access Method Services sets to indicate the completion status of
each command.

There are commands and groups of commands in Access Method Services
for:

• Defining and deleting data sets and listing catalog records

• Building alternate indexes

• Copying and listing data sets

• Moving data sets from one operating system to another

• Recovering data

• Converting OS catalogs to VSAM catalogs

Complete descriptions of all the Access Method Services commands are in
OS/VSl Access Method Services and OS/VS2 Access Method Services.

Communicating with VSAM 51

De/ining and Deleting /)(Ita Sets and Listing Catalog Entries

You must use Access Method Services to define all VSAM data spaces, data
sets, indexes, and catalogs. It makes entries for them in a VSAM catalog and
allocates space for them. Four commands enable you to define data sets, alter
the definitions, allocate and free auxiliary-storage space, and list catalog
records: DEFINE, ALTER, DELETE, and LISTCAT.

DEFINE: Denning a Data Set and Allocating Space

To define a catalog, data space, key-sequenced data set, entry-sequenced data
set, relative record data set, reusable data set, alternate index, path, and (in
VS2) a generation data group and an alias, you specify the DEFINE
command, the object to be defined, and, optionally, the catalog that is to
contain an entry defining it. You also use DEFINE to catalog data sets of t

other access methods in a VSAM catalog.

There are parameters for specifying initial auxiliary-storage allocation,
amount of space for extensions, erasure of data in a deleted data set,
passwords and other authorization information, size and other attributes of
data records, minimum amount of virtual-storage space for I/O buffers,
percentages of free space in control intervals and control areas of a
key-sequenced data set and other performance options, retention period,
name of module to receive control if processing error occurs, identification of
the owner of the data set defined in the entry, how a data set can be shared
across regions or systems, data-set pre formatting options, and whether write
operations are to be verified.

You specify the amount of auxiliary-storage space for the object you are
defining as the number of data records that the object is to contain or as a,
number of physical units, such as tracks or cylinders. Specifying the number ...",
of records, independent of type of storage device, leaves the calculation of the
number of physical units of space up to VSAM. It calculates the size of the
control interval and control area to be used. You may specify the

. control-interval size, and VSAM will use it so long as the size falls within the
acceptable limits that VSAM calculates.

You can define a catalog with a recovery attribute that makes it possible to
recover from certain types of catalog damage. See the chapter "Protecting
Data with VSAM" for further information.

When you define a key-sequenced data set, you may specify that its space is
to be allocated on volumes according to ranges of key values. The space for
each range is extended separately on the same volume when additional space
is required; otherwise on a candidate volume.

For convenience, you may specify an existing catalog entry as a model for a
new entry, so long as they are of the same type (entry-sequenced data set,
key-sequenced data set, alternate index, path, or user catalog). The
information in the model will be used in the new entry unless you override it.

ALTER: Modifying a Catalog Entry

Many of the attributes that you define, either explicitly or by default, when
you create a catalog record may be modified subsequently by way of the
ALTER command, most of whose parameters are the same as the DEFINE
parameters. You can change the name of a data set, the key position and,~..
record size of an empty VSAM data set, the indication of whether to erase the ..."

52 Planning for Enhanced VSAM under OS/VS

•

data in a deleted data set, passwords and other authorization information,
minimum amount of virtual-storage space for I/O buffers (which you may
increase, but not decrease), percents of free space in new control intervals
and control areas of a key-sequenced data set, retention period, name of the
owner of a data set, the indication of how to share a data set, the indication of
whether to verify write operations, and the indication of whether VSAM is to
maintain an alternate index. Only empty alternate indexes can be changed to
UPGRADE.

Certain attributes of the data set, such as control-interval size and placement
of the index in auxiliary storage relative to a key-sequenced data set, cannot
be modified. Changing these attributes amounts to a reorganization of the
data set and requires that you define a new data set and copy the old data set
into it .

You can use the ALTER command to remove a damaged volume. VSAM
removes all VSAM data spaces from the volume, rewrites the volume's
VTOC, and relinquishes ownership of the volume. NonVSAM data sets on
the volume and the catalog that owns the volume are not affected. This
function should be used only when you can't gain access to the catalog that
owns the volume.

DELETE: Removing a Catalog Entry and Freeing Space

The DELETE command enables you to remove the entry for any previously
defined object and, in effect, cause it to cease to exist. The space is freed for
use by new objects and, if the erase option is specified in the entry or in the
command, overwritten with binary Os.

You must use Access Method Services to delete data spaces, data sets,
indexes, and catalogs: you cannot delete them by way of the JCL disposition
parameter or operating-system utilities. Deletion of an alternate index causes
its data and index component and the related path to be deleted, deletion of a
base cluster causes all related alternate indexes and paths to be deleted, and
deletion of a path causes no other object to be deleted.

You can also use the DELETE command to force the deletion of VSAM
volumes and catalogs, regardless of their contents. When a volume is
specified, all VSAM data spaces are removed from the VTOC and VSAM
relinquishes ownership of the volume. In addition, all catalog entries that refer
to this volume are marked unusable for all purposes except deletion. You
cannot force the deletion of a volume that contains a VSAM catalog. When a
VSAM catalog is specified, all the VSAM data spaces are removed from all
the volumes owned by the catalog. An active master catalog cannot be
deleted this way.

The catalog relinquishes ownership of a volume when no nonempty data
spaces remain on the volume following a DELETE SPACE command. In the
case of data sets with the unique attribute, the catalog does not relinquish
ownership until each data set has been deleted, followed by a deletion of the
data spaces.

In VS2 systems only, the DELETE command can be used to remove VSAM
entries from a VSAM catalog when a volume owned by the catalog has lost its
VSAM space or is inaccessible. Loss of data can be caused by physical
damage to the volume, an improper restore, or a volume cleanup operation
(see ALTER command, above). This function should be used only when you
cannot gain access to the volume.

Communicating with VSAM 53

LISTCAT: Listing Catalog Entries

The LIST CAT command enables you to list individual entries, all entries of a
particular type (cluster, alternate index, path, etc.), or all entries of a given
catalog. You see the entire entry, except that passwords in an entry are not
listed unless you specify the master password for the data set defined by the
entry or the master password for the catalog itself.

Building an Altemate Index

The BLDINDEX command is used to build an alternate index over a single
base cluster. A base cluster can have more than one alternate index.

BLDINDEX: BuDding an Alternate Index
•

One or more alternate indexes can be built over a defined, nonempty
key-sequenced or entry-sequenced data set. The alternate index must have
been previously defined. If the data set is non empty and defined with the
reusable attribute, BLDINDEX will reuse it.

There are parameters for specifying the names and passwords of the base
cluster and alternate index, job control statements to be used when external
sorts are performed, and the name and password of the catalog in which sort
work files will be defined.

You can supply more than one alternate index name and build additional
alternate indexes at the same time.

Copying and Listing Data Sets

The REPRO and PRINT commands enable you to copy and list sequential,
indexed sequential, and VSAM data sets.

REPRO: Converting and Reorganizing Data Sets

The REPRO command instructs Access Method Services to get records from
a sequential, indexed sequential, or VSAM data set and put them into a
sequential or VSAM data set. You may use it to convert an indexed sequential
data set to a key-sequenced data set with an index. First, define a new
key-sequenced data set and its index. Then copy the indexed sequential data
set into the key-sequenced data set. Access Method Services converts data
records to the VSAM format and builds an index.

You can reorganize an old data set by copying it into a newly defined data set
of the same type. With key-sequenced data sets, you can optionally specify
different percents of distributed free space and different performance options
for the new data set when you define it. Copying the old key-sequenced data
set into the new one redistributes free space, makes the entry sequence of the
data records the same as their key sequence, and builds a new index.

The data set into which records are copied may either be newly allocated (by
way of the DEFINE command) or contain records already. Records copied
into a key-sequenced data set are merged with any existing records; records
are added at the end of an entry-sequenced data set. When copying into a
relative record data set from a relative record data set, the records are placed
in the same relative position as they were in the input data set. You may
specify a range of records to be copied by number of records, by key or
address in an indexed sequential or a key-sequenced data set, or by relative
record number in a relative record data set.

54 Planning for Enhanced VSAM under OS/VS

The REPRO command also provides the catalog unload/reload function that
is used to backup catalogs and recover from failures that make them
inaccessible.

Catalog backup (unload) allows you to copy a VSAM catalog to a SAM
(sequential access method) data set or to a VSAM key-sequenced or
entry-sequenced data set. The copy, which preserves the contents of the
catalog, cannot be used as a catalog. To recover (reload) a catalog, copy the
unloaded version into an existing VSAM catalog. An existing catalog can be
one you defined for this purpose, or it can be an earlier or later version of the
unloaded catalog.

The greater the difference between the backup catalog and the active catalog,
the more difficult it will be to regain access to all of your data. Therefore, you .. should make backup copies frequently. The closer your backup copy comes to
matching the active catalog, the more successful any recovery operation will
be. For additional information, see "Protecting the Catalog" in the chapter
"Protecting Data with VSAM."

In OS/VS2, you can also use REPRO to copy one VSAM catalog to another.

PRINT: Listing Data Records

The PRINT command instructs Access Method Services to list some or all of
the records of a sequential, indexed sequential, or VSAM data set or catalog
in one of three formats: each byte as 2 hexadecimal digits, each byte as a
single character, or a combination of these two, side-by-side. You may specify
a range of records for listing as you do for copying.

Moving Data Sets from One Operating System to Another

We discussed volume portability between OS/VS systems and between
OS/VS and DOS/VS systems in "The Special Uses of User Catalogs" in the
chapter "Getting to Know What VSAM Is and Does." The EXPORT and
IMPORT commands allow you to transport individual data sets between
OS/VS systems or between OS/VS and DOS/VS systems. Figure 20
compares volume and data-set portability. Data portability is achieved by
moving volumes or by moving individual data sets.

EXPORT: Extracting Catalog Information and Making a Data Set Portable

The EXPORT command instructs Access Method Services to copy an
entry-sequenced data set, a relative record data set, or a key-sequenced data
set and its index (other than a VSAM catalog) in the format of a sequential
data set onto a storage volume to be transported to another operating system.
The transporting volume may be magnetic tape or disk. Access Method
Services also extracts information from the catalog entry that defines the
object to be transported and copies it onto the transporting volume. The
information is used to define the object automatically in a VSAM catalog in
the other operating system.

EXPORT can be used to make a backup copy of a data set. Should that data
set become inaccessible, you can use the IMPORT command to introduce the
exported copy back into the system.

Exportation is either permanent or temporary. In permanent exportation,
Access Method Services deletes the catalog record and frees the storage
space; in temporary exportation of an object, both the sending and the
receiving operating systems have a copy of it, and you may specify that one or

Communicating with VSAM 55

both of the copies are not to be modified. A copy so protected can only be
read. You may free the copy for full access with the ALTER command.

Volume Portability with a User Catalog Data-Set Portability with Access Method Services

I~====1I First System

I I
I I
l ___-)

I
Disconnect User Catalog Demount Ex tract Catalog Information Copy in Sequential Format

Export Export

Second System Import Import

Connect User Catalog Mount Define the Data Set Copy in Original Format

--+-
F----1
I I

I I

I I

l)
---- ---'

I Figure 20. Comparison of Volume Portability and Data-Set Portability

56 Planning for Enhanced VSAM under OS/VS

11

L

•

..

You use EXPORT to disconnect a user catalog from a master catalog when
you are moving the user catalog to another system. The user catalog is not
copied, but remains on its original volume in its original form.

Paths are not exportable by themselves but are included in exports of
alternate indexes or clusters; alternate indexes are exported as key-sequenced
data sets. To permanently export a cluster and the alternate indexes
associated with it, first export the alternate indexes and then the cluster.

IMPORT: Loading a Portable Data Set and Its Catalog Information

The IMPORT command instructs Access Method Services to define the
entry-sequenced data set, the relative record data set, or the key-sequenced
data set and its index on the transporting volume in the catalog that you
specify, using the catalog information extracted in exportation. The object
itself is stored in its VSAM format in a data space that is defined in the
specified catalog.

You use IMPORT to define a pointer to a user catalog in the master catalog.
The user catalog is not copied, but remains on its original volume in its
original form.

You can use the EXPORT and IMPORT commands to prepare a backup
version of an entry-sequenced data set and its catalog record, a
key-sequenced data set, its index, and their catalog records, or a relative
record data set and to load the backup copy if it is needed. When you import
a backup copy, the catalog record is regenerated.

To import a cluster and the alternate indexes associated with it, first import
the cluster and then the alternate indexes. IMPORT will automatically
reestablish all the paths that existed when the data sets were exported.

Use the IMPORT command to introduce back into the system the backup
data sets produced by the EXPORT command.

When exporting data sets from one device type and importing them to
another device type, you can delete and redefine your data set with space
parameters that are appropriate to the new device. The new data set must be
empty. Also, it must be the same type of data set, and if indexed, it must have
the same key length and position as the old data set. IMPORT uses this empty
data set rather than defining a new one based on exported catalog
information.

Recovering Data

Access Method Services provides the VERIFY, EXPORTRA, IMPORTRA,
and LISTCRA commands to test and reestablish a data set's integrity, recover
a cataloged object, reestablish objects in the catalog, and list the contents of a
catalog recovery area.

VERIFY: Testing and Reestablishing a Data Set's Integrity

The end of a data set is indicated by an end-of-file indicator at the end of the
data set and by information in the data set's catalog record. The end may be
improperly indicated in the catalog if an error prevented VSAM from closing
the data set. You can instruct Access Method Services to close the data set. It
modifies the catalog information, if necessary, to correspond with the data
set.

Communicating with VSAM 57

EXPORTRA: Exportiog Objects Using the CRA

For data sets cataloged in a catalog that was defined with the recoverable
attribute, critical catalog information is recorded in CRAs (catalog recovery
areas) that are present on each owned volume. If the VSAM or nonVSAM
data is not addressable via the catalog, the EXPORTRA command can be
used to gain access to both the recovery area data and the VSAM data to
create a copy of the data. The recovered information can be introduced back

Iinto the system by the IMPORTRA command.

The EXPORTRA command can be used to recover objects on the basis of
multiple recovery areas (volumes), a single volume, or sets of individual data
sets. EXPORTRA can also be used to recover nonVSAM objects and all
VSAM objects except page spaces. To do a selective recovery, use the
LISTCRA command to determine data set names and their associated
volumes.

IMPORTRA: Reestablishing Objects in the Catalog

The IMPORTRA command can be used to reestablish in a VSAM catalog all
the nonVSAM and VSAM objects (except page spaces) rendered portable by
EXPORTRA.

Before you begin, you must provide a stable base in which IMPORTRA can
operate. In particular, you should have available either a new or restored
VSAM catalog. IMPORTRA requires that the volumes occupied by the
exported VSAM data sets be available for mounting.

LISTCRA: Listing a Catalog Recovery Area

The LISTCRA command can be used to list the entire contents of a given
I catalog recovery area or to list those entries that differ from those in their

associated catalog. The content of the list is either the data set names and
volumes or a dump of the records.

LISTCRA can be used to determine what corrective actions are required.

ICollverting all OS Catalog illto a VSAM Catalog

Access Method Services provides a command that converts entries in an OS
catalog into entries in an existing VSAM master or user catalog.

CNVTCAT: Converting an OS Catalog into a VSAM Catalog

After the VSAM catalog that is to receive the converted entries has been
defined, you issue the CNVTCAT command to convert OS catalog entries
into VSAM catalog entries.

There are parameters that enable you to specify the names of the OS catalog
to be converted, the VSAM catalog that is to receive the converted entries,
and the master catalog into which any aliases for user catalogs are to be
placed. If any of the catalogs that are to receive entries are protected by
passwords, you must supply the update or higher level password. You can also
indicate whether entries are to be listed after they are converted.

For additional information and coded examples of the CNVTCAT command,
see OS/VSI Access Method Services or OS/VS2 Access Method Services.

•

58 Planning for Enhanced VSAM under OS/VS

•

What Are the Macros for Processing a VSAM Data Set?
You code the VSAM macros in a processing program to gain access to your
data. There are macros for:

• 	 Connecting and disconnecting a processing program and a data set. These
prepare a bridge for VSAM between the program and the data.

• 	 Specifying parameters that relate the program and the data. These identify
the data set and describe the kind of processing to be done.

• 	 Manipulating the information relating the program and the data. These are
used to specify changes in processing.

• 	 Requesting access to a data set. These initiate the transfer of data between
auxiliary and virtual storage .

• 	 Gaining access to index control intervals.

• 	 Sharing resources.

Connecting and Disconnecting a Processing Program and a Data Set

You use the OPEN macro to connect a processing program to a data set, so
VSAM can satisfy the program's requests for data; you use CLOSE to
complete processing and free resources that were obtained by the Open
routine.

OPEN: Connecting a Processing Program to a Data Set

VSAM uses its own authorization routine and one that you have provided to
verify a program's authority to process a data set.

Open constructs VSAM control blocks and, by examining the DD statement
indicated by the ACB macro and the volume information in the catalog, calls
for the necessary volumes to be mounted and checks whether each volume
matches its catalog information. If you are opening a key-sequenced data set,
an alternate index, or a path, Open checks for consistency of updates of
primary index and data components. If the data set and its index have been
updated separately, a warning message is issued to indicate a timestamp
discrepancy.

CLOSE: Disconnecting a Processing Program from a Data Set

The Close routine completes any operations that are outstanding when a
processing program issues a CLOSE macro for a data set. For instance,
VSAM buffers index records and data records, so the contents of a control
interval may need to be stored or an index record updated and stored.

Close updates the catalog for any changes in the attributes of a data set. The
addition of records to a data set may cause its end-of-file indicator to change,
in which case Close updates the end-of-file indicator in the catalog. These
end-of-file indicators help ensure that the entire data set is accessible. If an
error prevents VSAM from updating the indicators, the data set is flagged as
not properly closed. When a processing program subsequently issues an
OPEN macro, it is given an error code indicating the failure. For more
information on correcting this condition, see the discussion of the Access
Method Services VERIFY command and "Method of Indicating the End of a
Data Set" in the chapter "Protecting Data with VSAM."

Communicating with VSAM 59

Close restores control blocks to the status that they had before the data set
was opened and frees the virtual-storage space that Open used to construct
VSAM control blocks.

You can issue a CLOSE macro (TYPE=T) to update the catalog. Processing
may continue without reopening the data set.

Specifying Parameters That Relate the Program and the Data

To open a data set for processing, you must identify the data set and the types
of processing to be done. You use the ACB macro to specify a data set you
want to process and the types of access you want to use. The GENCB macro
can be used in place of the ACB, EXLST, or RPL macro to generate
processing specifications during the execution of a processing program, rather ...
than during assembly or compilation of the program.

ACB: DerIDing the Access-Method Control Block

You use the ACB macro to define a control block for each data set that your
processing program will gain access to. You give the name of the JCL DD
statement that describes the data set, so the Open routine can connect the
program to the data. If you use more than one ACB for a given cluster,
VSAM optionally uses the same set of control blocks for all requests to the
specified data set.

You can share control block structures among multiple ACBs by specifying
the same ddname or by processing the same base data set and specifying the
DSN option in the ACB macros.

The other information that you specify enables Open to prepare for the kind
of processing to be done by your program:

• 	 The address of a list of exit-routine addresses that you supply. You use the
EXLST macro, described next, to construct the list.

• 	 For processing concurrent requests, the number of requests that are
defined for processing the data set. The control blocks for the set of
concurrent strings you specify are allocated on contiguous virtual storage.
If the number you specify is not sufficient, OS/VS will dynamically extend
the number of strings as needed by concurrent requests for this ACB.
Strings allocated by dynamic extension are not necessarily on contiguous
storage.

• 	 The size of the virtual-storage space for I/O buffers and the number of
I/O buffers that you are supplying for VSAM to process data and index
records. A minimum of two buffers is required for data control intervals for
a single request for an entry-sequenced data set. A minimum of three •.
buffers is required for a key-sequenced data set, two for data control
intervals and one for index records. For concurrent requests that require
VSAM to keep track of multiple positions in a data set, each additional
request requires a minimum of one buffer for control intervals and one
buffer for index records. For example, three concurrent requests requires a
minimum of four buffers for control intervals and three buffers for index
records. (These numbers do not apply to the shared resources option
because those buffers are handled via buffer subpools.)

• 	 The password that is required for the type of processing desired.

60 Planning for Enhanced VSAM under OS!VS

• 	 The processing options to be used: keyed, addressed, or control interval, or
a combination; sequential, direct, or skip sequential access, or a
combination; retrieval, storage, or update (including deletion), or a
combination; shared or nonshared resources.

• 	 Address and length of an area for error messages from VSAM.

EXLST: Denning the Exit List

You use the EXLST macro to specify the addresses of optional exit routines
that you may supply for analyzing physical and logical errors, end-of-data-set
processing, noting RBA changes, and writing a journal. Any number of ACB
macros in a program may indicate the same exit list for the same exit routines
to do all the special processing for them, or they may indicate different exit

• 	 lists .

You can use exit routines for:

Analyzing physical errors. When VSAM encounters an error in an I/O
operation that the operating system's error routine cannot correct, the error
routine formats a message for your physical-error analysis routine to act on.

Analyzing logical errors. Errors not directly associated with an 1/0 operation,
such as an invalid request, cause VSAM to exit to your logical-error analysis
routine.

End-of-data-set processing. When your program requests a record beyond
the last record in the data set, your end-of-data-set routine is given control.
The end of the data set is beyond either the highest-addressed or the
highest-keyed record, depending on whether your program is using addressed
or keyed access.

Writing a journal. To journalize the transactions against a data set, you may
specify a journal routine, which VSAM exits to before moving your data to
the control-interval buffer. To process a key-sequenced data set by way of
addressed access, you need to know whether any RBAs changed during keyed
processing. When you're processing by key, VSAM exits to your routine for
noting RBA changes before transmitting to auxiliary storage the contents of a
control interval in which there is an RBA change.

RPL: Defining the Request Parameter List

The RPL macro defines the request parameter list, or the list of parameters
required for a particular request for access. It identifies the data set to which , the request is directed by naming the ACB macro that defines the data set.

You can use a single RPL macro to define parameters that apply to all of the
requests (GET, PUT, POINT, and ERASE, described under "Requesting
Access to a Data Set") for access to a data set. You use the MODCB macro
(described following GENCB) to modify some of the parameters to change
the type of processing. For example, you can change from direct to sequential
or from update to nonupdate processing.

For concurrent requests that require VSAM to keep track of more than one
position in a data set, you may use up to 255 RPL macros to specify requests
that your processing program or its subtasks can issue asynchronously to gain
access to the same data set concurrently. The requests can be sequential or
direct or both, and they can be for records in the same or different parts of
the data set.

Communicating with VSAM 61

You need specify only the RPL parameters appropriate to a given request, as
follows:

Address of the next request parameter list in a cbain. You can chain request
parameter lists together to define a series of actions for a single GET or PUT.
For example, each request parameter list in the chain could contain a unique
search argument and point to a unique work area. A single GET macro would
retrieve a record for each request parameter list in the chain. A chain of
request parameter lists is processed as a single request (chaining request
parameter lists is not the same as processing concurrent requests that require
VSAM to keep track of multiple positions in a data set). ..
Processing options for a request. A request is to gain access to a data record
or a control interval. Access may be gained by address (RBA) or by key.
Addressed access may be sequential or direct; keyed access may be
sequential, skip sequential, or direct. Access may be forward or backward.
Access may be for updating or not updating. A nonupdate direct request to
retrieve a record can optionally cause positioning at the following record for
subsequent sequential access. The characteristics that may be specified are
summarized, as follows:

•

• A request (including a request defined by a chain of request parameter
lists) is either synchronous, so that VSAM does not give control back to
your program until the request is completed, or asynchronous, so that your
program may continue to process or issue other requests while the request
is active and later use the CHECK macro to suspend processing until the
request has been completed.

• For a keyed request, you specify either a generic key or a full key to which
the key field of the record is to be matched. A generic search argument is.;;'c

matched for a less-than-or-equal comparison to the key field, and a full ..",

argument is matched for either an equal or a less-than-or-equal comparison

to the key field.

• 	 For retrieval, a request is either for a data record to be placed in a work
area in the processing program or for the address of the record within
VSAM's I/O buffer to be passed to the processing program. For all other
requests (requests that involve updating or inserting) the work area
contains the data record.

• 	 For a request to gain direct access to a control interval, you specify the
RBA of a control-interval. With control-interval access, you are
responsible for maintaining the control information in the control interval.
If VSAM's buffers are used, VSAM allows control-interval and f

stored-record operations to be intermixed. If you provide your own
buffers, intermixing is not allowed.

Address and size of the work area to contain a data record. You must provide a
work area. It contains a data record or the address of the record within
VSAM's I/O buffer. Having a work area that is too small is considered a
logical error.

Length of the data record being processed. For storage, your processing
program indicates the length to VSAM; for retrieval, VSAM indicates it to
your program.

Length of the key. This parameter is required only for processing by generic
key. For ordinary keyed access, the full key length is available to the Open
routine from the catalog.

62 Planning for Enhanced VSAM under OS/VS

...

Address of the area containing the search argument. The search argument is
either a key value or an RBA.

Address and length of an area for error messages from VSAM. Your routine for
analyzing physical errors receives messages in this area.

GENCB: Generating Control Blocks and Usts

You use the GENCB macro in place of an ACB, EXLST, or RPL macro to
generate an access-method control block, exit list, or request parameter list
during the execution of your processing program, rather than producing it
with the corresponding macro. You code GENCB the same as the other
macros, but it enables you to generate one or more copies of a control block
or list, and with GENCB, you can code parameter values in more ways-such
as by putting a value in a register.

Manipulating the InfOl7lUltion Relating tile Program and tile Datil

The MODCB, SHOWCB, and TESTCB macros are for modifying, displaying,
and testing the contents of an access-method control block, exit list, or
request parameter list. The SHOWCAT macro is for displaying selected fields
of the VSAM catalog.

MODCB: Modifying the Contents of Control Blocks and Lists

You use the MODCB macro to specify a new value for fields in an
access-method control block, exit list, or request parameter list in the same
way you defined them originally. For example, to use a single request
parameter list to directly retrieve the first record having a certain generic key
and then to sequentially retrieve the rest of the records having that generic
key, you would use MODCB to alter the request parameter list to change
from direct to sequential access.

SHOWCAT: Displaying Fields of the VSAM Catalog

Your program can use the SHOWCA T macro to retrieve selected data from
the VSAM catalog. The information, which is based on a specified object
(cluster, alternate index, path, etc.), is returned in a work area that you must
supply. SHOWCAT is described in OS/VS Virtual Storage Access Method
(VSAM) Options for Advanced Applications.

SHOWCB: Displaying Fields of Control Blocks and Lists

SHOWCB allows you to examine the contents of fields in an access-method
control block, exit list, or request parameter list. VSAM gives the contents to
you in an area you provide and in the order you specify the fields. You may
display the contents of fields additional to those that you define in the
macros. For example, when a data set is open, you can display various counts,
such as number of control-interval splits, number of deleted records, and
number of index levels.

TESTCB: Testing the Contents of Control Blocks and Lists

The TESTCB macro enables you to test the contents of a field or
combination of fields in an access-method control block, exit list, or request
parameter list for a particular value and alter the sequence of your processing
steps as a result of the test.

Communicating with VSAM 63

Requesting Access to a Data Set

All of the preceding macros are for preparing to process a data set. The
request macros, GET, PUT, POINT, and ERASE, initiate an access to data.
Each use of one of these macros requires a request parameter list (or chain of
request parameter lists) that fully defines the request: the only parameter that
is specified with a request macro is the identity of the request parameter list.

The CHECK macro synchronizes a request initiated by a macro in the
asynchronous form. In asynchronous processing, VSAM gives control back to
your program before completion of the request. You use CHECK to suspend
processing, if necessary, until the request has been completed and to schedule
any routines to handle unusual conditions. You use the ENDREQ macro to
terminate a request that is not required to be completed or to free VSAM
from keeping track of a position in a data set.

The options for using GET, PUT, POINT, and ERASE are outlined in the
discussion of the RPL macro, and the use of each macro is discussed in the
section "In What Ways Can VSAM Data Sets Be Processed?" in the chapter
"Getting to Know What VSAM Is and Does."

Requesting Access to Index Records

Two macros enable you to gain access to the contents of records in the index
component of a key-sequenced data set.

GETIX and PUTIX: Retrieving and Storing Index Records

To issue the GETIX and PUTIX macros you supply only the address of the
RPL. A PUTIX must be preceded by a successful GETIX.

These macros are described in OS/VS Virtual Storage Access Method
(VSAM) Options for Advanced Applications.

Using Shared Resources
VSAM provides macros that build and delete a pool of shared channel
program areas, buffers, and control blocks; write a buffer; search a buffer
pool for a range of RBAs; and mark a given buffer for output.

Complete descriptions of these macros are in OS/VS Virtual Storage
Access Method (VSAM) Options for Advanced Applications.

BLDVRP: Building a VSAM Resource Pool

To build a shared resource pool, you issue the BLDVRP macro before you
open any ACB in which the shared resources option is specified. There are
two sharing options: local shared resources (LSR) specifies that the pool is to
be shared within a single region and global shared resources (GSR) means
that the pool is to be shared across the entire system. LSR is valid in both

I	VSl and MVS Release 3; GSR, which requires system authorization, is valid
in MVS Release 3 only. These options are especially useful when many
VSAM data sets are open, when the amount of activity in a given data set is
difficult to predict, and when a single transaction requires access to several
data sets.

64 Planning for Enhanced VSAM under OS/VS

DLVRP: Deleting a VSAM Resource Pool

After all the data sets having access to shared resources are closed, the
DLVRP macro is used to delete the shared pool. The shared pool cannot be
released if any such data sets are still open.

WRTBFR: Writing a Buffer

VSAM normally performs write operations immediately after a direct request
for storage. To improve performance, those writes can be deferred by so
specifying in the ACB. You can specify the WRTBFR macro any time you
want those previously deferred write operations to be done. Thus, you can
synchronize your processing at any point you choose .

.. SCHBFR: Searching a Buffer Pool

The SCHBFR macro enables you to search the buffer pool for a particular
range of RBAs. You can specify at which buffer in the pool the search is to
begin. The RPL is assumed to specify control-interval access.

MRKBFR: Marking a Buffer for Output

You can issue the MRKBFR macro to identify a buffer to be marked for
output and then either be retained or released for reuse.

How is JCL Used?
VSAM uses a minimum number of JCL parameters. It has two optional DD
statements, JOBCAT and STEPCAT, for specifying catalogs and an optional
JCL DD parameter, AMP, for overriding parameters specified by a processing
program.

I	JCL is used in MVS to catalog, uncatalog, and delete nonVSAM data sets in a
VSAM catalog. Also in MVS, you can invoke dynamic allocation of auxiliary
storage. Although this publication does not describe this function, you can
dynamically allocate VSAM data sets and user catalogs. Access Method
Services also provides for the dynamic allocation of data sets. For
information, see OS/VS2 Access Method Services and OS/VS2 JCL.

Defining II VSAM Dlltll Set

When you define a data set, no DD statement is required if Access Method .. Services can allocate space for the data set from an existing data space. If a
data space must be created to allocate space for the data set that you're
defining. you need a DD statement (in OS/VSl) for OS/VS job management
to provide device allocation: you specify storage unit, volume, and a
disposition of OLD. You never specify space parameters (SPACE, SPLIT,
SUBALLOC) or a disposition of NEW, DELETE, CATLG, or UNCATLG,
since you use Access Method Services to define and delete all VSAM data
sets.

Communicating with VSAM 65

Processing a YSAM Data Set

Specifying VSAM Catalogs

The catalog contains most of the information required by VSAM to process a
data set, so VSAM requires minimal information from JCL. Data-set name
and disposition are sufficient to describe the data set. A key-sequenced data
set is defined by a single DD statement.

To limit a data set to access by a single job step, you use a disposition of
OLD. You use a disposition of SHR in the JCL of separate jobs to enable two
or more job steps to share a data set, provided the data set's definition in the
catalog specifies that sharing is permitted.

The master catalog is always available, without JCL specification. You make
user catalogs available by describing them in DD statements with special
names for a job or a job step: JOBCAT and STEPCAT. You describe a
catalog sufficiently by giving its data-set name and a disposition of SHR. A
user catalog may be either a STEPCAT or JOBCAT catalog; if both
STEPCAT and JOBCAT user catalogs are specified, the STEPCAT catalog is
available for the step for which it is specified, and the JOBCAT catalog is
available for all steps for which no STEPCAT was specified. VSAM uses a
data set's name as a search argument to search a catalog.

In VS2, you can minimize the use of JOBCAT and STEPCAT DD statements
for your jobs when you name your data set with a qualified entryname whose
first qualifier is the name or alias of the catalog in which the data set is
defined. When the catalog is not identified with a DD statement or explicitly
named (that is, with an Access Method Services command's CATALOG
parameter), the OS/VS scheduler searches the master catalog for the data
set's entryname. If the entryname is not found, the system uses the
entryname's first qualifier as a search argument and attempts to locate either
a user-catalog connector entry or a user catalog's alias entry. If the system
finds a user-catalog connector entry (that is, an entry whose name or alias is
the same as the entryname's first qualifier), the system searches that user
catalog for the data set's entry, using the data set's full entryname. (If the
system does this search, its pedormance will be affected.)

• I

•

Usu.g Othe, JCL Parameters

Some JCL parameters are ignored, are invalid, or bring about the wrong
results if used with VSAM, and VSAM has a special JCL DD parameter,
AMP.

JCL Parameters Not Used with VSAM

VSAM ignores parameters for defining tape data sets: data-set sequence
number, NSL, NL, BLP, and AL. You may not use the parameters for a
sequential data set, DATA, SYSOUT, and·, for specifying a VSAM data set.
These DD names are invalid for VSAM data sets: JOBLm, STEPLm,
SYSABEND, SYSUDUMP, and SYSCHK.

These DD parameters are also invalid: UCS, QNAME, DYNAM, TERM, and
the forms of DSNAME for ISAM, PAM (partitioned access method), and
generation data groups. VSAM does not use temporary data sets or
concatenated data sets. VSAM does use concatenated STEPCATs and
JOBCATs.

66 Planning for Enhanced VSAM under OS/VS

•

VSAM's Special DD Parameter: AMP

The VSAM DD parameter, AMP, has subparameters for specifying attributes
that you can also specify by way of the ACB or the EXLST macros: size of
virtual-storage space for I/O buffers, number of I/O buffers for data and
index records, number of concurrent requests to be processed, and name of
an exit routine for analyzing physical errors. AMP values override any values
specified by way of the macros or any defaults supplied by the catalog.

To mount only some of the volumes on which a VSAM data set is stored, you
must specify the DD parameters VOLUME and UNIT. Specifying those
parameters to open a DCB (to be processed through the ISAM interface
program) prevents a reference to the catalog and requires you to use another
AMP subparameter (AMORG) to identify the data set as a VSAM data set.
If you specify those parameters to open a VSAM ACB, AMORG is not
required.

Another subparameter is used for specifying checkpoint/restart options. They
are described in "How Are Programs Restarted Following a Failure?" in the
chapter "Protecting Data with VSAM."

Communicating with VSAM 67

) ,

..

PREPARING FOR VSAM

This chapter indicates, for all prospective users of VSAM, the programming
languages in which you can write programs to use VSAM, and the use of TSO
(Time Sharing Option) and SMF (System Management Facilities) with
VSAM.

The topic "How Can Existing Programs That Use ISAM Be Used with
VSAM?" is for users of ISAM and may be ignored by other readers. It
contains detailed information for programmers to decide whether existing
programs that use ISAM can use the ISAM interface to process new
key-sequenced data sets with indexes or key-sequenced data sets with indexes
into which indexed sequential data sets have been converted .

What Programming Languages Can VSAM Be
Used With?

I	You can use the OS/VS assembler, PL/I, COBOL, and VS BASIC COBOL
languages to gain direct access to VSAM data sets.

You can also code programs in PL/I and COBOL, using ISAM, to process
VSAM data sets by way of the ISAM interface.

How Can the Time Sharing Option (TSO) Be Used
with VSAM?

TSO is a subsystem of OS/VS2 that provides conversational time sharing
from remote terminals. You can use TSO with VSAM and Access Method
Services to:

• 	 Execute Access Method Services commands directly as TSO commands

• 	 Execute a program to process a VSAM data set

• 	 Execute a program to call Access Method Services

• 	 Dynamically allocate a VSAM data set and execute a program that uses
VSAM macros to process the data set

• 	 Allocate a VSAM data set by way of a LOGON procedure and execute a
program that uses either VSAM or ISAM macros to process the data set

VSAM data sets must be cataloged in the master catalog or in a user catalog.
The master catalog is allocated when the system is initialized; you can allocate
and gain access to a user catalog by making it the STEP CAT of a LOGON
procedure or by using the naming conventions.

For details about writing and executing programs and allocating data sets with
TSO, see OS/VS2 TSO Terminal User's Guide and OS/VS2 TSO
Command Language Reference.

Preparing for VSAM 69

How Can System Management Facilities (SMF) Be Used
with VSAM?

SMF is an optional program of OS/VS that provides the means for gathering
and recording information that can be used to evaluate system usage. VSAM
supplies volume and data-set information to SMF.

The following records are written to the SMF data set to support VSAM:

• 	 Record type 62, VSAM cluster or component opened, is written at the
successful or unsuccessful opening of a VSAM data set, index, or cluster. It
identifies the catalog in which the object is defined and the volumes on
which the catalog and object are stored.

• 	 Record type 63, VSAM cluster or component cataloged, is written after a
data set or cluster is cataloged or its entry is altered with new space
allocation information (that is, the entry's object is extended). It gives the
catalog record for a newly defined object and the old and new versions of
an altered catalog record.

• 	 Record type 64, VSAM component status upon closing or reaching end of
space on a volume, is written when a VSAM data set, index, or cluster is
closed, when it becomes necessary to switch to another volume to continue
processing, or when no more space is available on a volume. It indicates
what condition occurred, identifies the volume(s) on which the object is
stored, gives the extents of the object on the volume(s), and gives statistics
about processing events that have occurred since the object was defined.

• 	 Record type 67, VSAM entry deleted, is written when a data set or cluster
is deleted. It identifies the VSAM catalog in which the object was defined
and gives the catalog record.

• 	 Record type 68, VSAM entry renamed, is written when a data set, index,
or cluster is renamed. It identifies the VSAM catalog in which the object is
defined and gives the old and new names.

• 	 Record type 69, VSAM data space defined or deleted, is written when a
data space is defined or deleted. It identifies the catalog in which the data
space is defined and the volume on which it is (or was) allocated. It also
gives the number of data spaces on that volume and the amount of space
available in them.

For additional information about SMF, see OS/VSl System Management
Facilities (SMF) or OS/VS2 System Programming Library: System
Management Facilities (SMF).

How Can Existing Programs That Use ISAM Be Used
with VSAM?

This section is intended for users of ISAM who are converting to VSAM.
VSAM's ISAM interface minimizes your conversion costs and scheduling
problems by permitting programs coded to use ISAM to process VSAM data
sets. To use the interface, you must convert indexed sequential data sets to
VSAM data sets (for which you can use Access Method Services), convert
ISAM JCL to VSAM JCL, and ensure that your existing ISAM programs
meet the restrictions for using the interface.

..

70 Planning for Enhanced VSAM under OS/VS

L

•

•

ComparisOll 0/ VSAM aulSAM

In most cases, if you use the pedormance options described in the chapter
"Optimizing the Pedormance of VSAM," you can get better pedormance
with VSAM while achieving essentially the same results that you can achieve
with ISAM; you can also achieve results that you can't achieve with ISAM.
The use of your existing ISAM processing programs to process key-sequenced
data sets depends upon the extent to which VSAM and ISAM are similar in
what they do, as well as upon the limitations of the ISAM intedace itself. This
subsection describes the similarities and differences between VSAM and
ISAM in the areas that you are familiar with from using ISAM and indicates
the functions of VSAM that have no counterpart in ISAM.

Comparison of VSAM and ISAM in Common Areas

A number of things that ISAM does are done differently or not at all by
VSAM, even though the same practical results are achieved. The areas in
which VSAM and ISAM differ are:

• Index structure

• Relation of index to data

• Deleting records

• Defining and loading a data set

These differences are described in the paragraphs that follow.

Index structure. Both a VSAM key-sequenced data set and an indexed
sequential data set have an index that consists of levels, with a higher level
controlling a lower level. In ISAM, either all or none of the index records of a
higher level are kept in virtual storage. VSAM keeps individual index records
in virtual storage, the number depending on the amount of buffer space you
provide. It optimizes the use of the space by keeping those records it judges to
be most useful at a particular time.

Relation of index to data. The relation of a VSAM index to the
auxiliary-storage space whose records it controls is quite different from the
corresponding relation for ISAM, with regard to overflow areas for record
insertion. ISAM keeps a two-part index entry for each primary track that a
data set is stored on. The first part of the entry indicates the highest-keyed
record on the primary track. The second part indicates the highest-keyed
record from that primary track that is in the overflow area for all the primary
tracks on the cylinder and gives the physical location in the overflow area of
the lowest-keyed record from that primary track. All the records in the
overflow area from a primary track are chained together, from the
lowest-keyed to the highest-keyed, by pointers that ISAM follows to locate an
overflow record. Overflow records are unblocked, even if primary records are
blocked. VSAM does not distinguish between primary and overflow areas. A
control interval, whether used or free, has an entry in the sequence set, and
after records are stored in a free control interval, it is processed exactly the
same as other used control intervals. Data records are blocked in all control
intervals and addressed, without chaining, by way of an index entry that
contains the key (in compressed form) of the highest-keyed record in a
control interval.

Deleting records. With ISAM, you mark records you want to delete, either for
you to erase subsequently or for ISAM to drop, should they be moved into
the overflow area; VSAM automatically reclaims the space in a

Preparing for VSAM 71

key-sequenced data set and combines it with any existing free ~pace in the
affected control interval. Because of its use of distributed free space for
insertions and deletions, VSAM requires less data-set reorganization than
ISAM does. The ISAM interface allows you the option of marking records for
deletion or erasing records.

Def"lning and loading a data set. You define all VSAM data sets in a catalog
and allocate space for them by way of Access Method Services, rather than
by way of JCL. You can load records into a data set with your own
processing program or with Access Method Services, in one execution or in
stages.

VSAM Functions That Go Beyond ISAM

VSAM has capabilities that ISAM doesn't have:

Skip sequential access. You can process a key-sequenced data set sequentially
and skip records automatically, as though you were using direct access.

Concurrent request processing. Processing is extended by concurrent
sequential or direct requests, or both, each requiring that VSAM keep track of
a position in the data set, by means of a single access-method control block
and without closing and reopening a data set.

Addressed sequential access. You can retrieve and store the records of a
key-sequenced data set by RBA, as well as by key. With ISAM, you can
position by physical address, but you must retrieve in a separate request.

Direct retrieval by generic key. With VSAM, you can retrieve a record
directly, not only with a full-key search argument, but also with a generic
search argument. ISAM enables you only to position at a record by generic
argument: you must retrieve the record separately.

Alternate indexes. Rather than keep multiple copies of the same information
organized in different ways for different applications, you can build one or
more alternate indexes over key-sequenced and entry-sequenced data sets.
Each alternate index provides a unique way to gain access to the same base
data set.

Key-range allocation. With a multi-volume key-sequenced data set, you can
assign data to various volumes according to the ranges of key values in the
data records. For a data set that resides on three volumes, you might assign
records with key A-E to the first volume, F-M to the second, and N-Z to the
third. Because you know which volume contains what records, you can
specify that only the volume(s) containing the records you want to process be
mounted.

Secondary allocation of storage space. When you define a VSAM data set,
you can specify the amount of auxiliary-storage space that is to be allocated
automatically, when required, beyond the primary space allocation. You can
specify the amount in terms of a number of data records or in terms of a
number of tracks or cylinders.

Automatic data-set reorganization. VSAM partially reorganizes a
key-sequenced data set by splitting a control area when it has no more free
control intervals and one is needed to insert a record.

No abnormal terminations by Open. The VSAM Open routine does not
abnormally end, but returns an explanatory message in all cases where it
cannot carry out a request to open a data set.

•

72 Planning for Enhanced VSAM under OS/VS

How to Co"vert a" I"dexed Seque"tial Data Set to a

Key-Sequenced Data Set

To convert an indexed sequential data set to a VSAM data set that you can
process either with an ISAM program by way of the ISAM interface or with a
VSAM program, you must convert the ISAM JCL to VSAM JCL and use
Access Method Services to define a key-sequenced data set in a VSAM
catalog and allocate space for it. You may use your ISAM load program by
way of the ISAM interface to convert the data set, or you may use Access.
Method Services REPRO. If your ISAM program loads records in descending
sequence, you might want to change it to ascending sequence (or use
REPRO), since descending sequence causes more control-interval splits. You
can also build alternate indexes for the data set after converting it. For more

• 	 details about the procedure, see the discussion of the Access Method Services
DEFINE and REPRO commands in the section "How Is Access Method
Services Used?" in the chapter "Communicating with VSAM."

IFigure 21 summarizes converting indexed sequential data sets to
key-sequenced data sets and processing them either with programs that have
been converted from ISAM to VSAM, with programs that still use ISAM, or
with new VSAM programs. Most existing programs that use ISAM require
little or no modification to use the ISAM interface to process VSAM data
sets.

What the ISAM I"ter/ace Does

When a processing program that uses ISAM issues an OPEN that specifies a
DCB describing an indexed-sequential data set that has been converted to or
replaced by a key-sequenced data set, the Open routine detects the need for
the ISAM interface and calls the interface's Open routine to:

• Construct control blocks and parameter lists that are required by VSAM

• Load the appropriate interface routines into virtual storage

• Initialize the ISAM DCB for the interface to intercept ISAM requests

• Take any DCB exit requested by the processing program

The interface intercepts each subsequent ISAM request, analyzes it to
determine the equivalent keyed VSAM request, defines the keyed VSAM
request in the request parameter list constructed by Open, and initiates the
request .

•
All VSAM requests are handled synchronously; no VSAM CHECK macro is
used. The ISAM CHECK macro merely causes exception codes in the DECB
(data event control block) to be tested.

For processing programs that use locate processing, the interface constructs
buffers to simulate locate processing.

For blocked-record processing, the ISAM interface simulates
unblocked-record processing by setting the overflow-record indicator for each
record. (In ISAM, an overflow record is never blocked with other records.)
The ISAM RELSE instruction causes no action to take place.

The interface receives return codes and exception codes for logical and
physical errors from VSAM, translates them to ISAM codes, and routes them
to the processing program or error-analysis (SYNAD) routine by way of the
ISAM DCB or DECB.

Preparing for VSAM 73

Existing ISAM Programs

L /'

.ISAM Access., Unmodified
Interface

LL
./ "/

Modified to
Meet Restrictions

Interpret Each Request

1/

1
ISAM Programs

Access 	 AccessVSAM Converted to
VSAM Programs

New Data Sets

(To take advantage of addi
tional functions of VSAM)

New VSAM
Programs

Figure 21. Use of ISAM Programs to Process VSAM Data Sets

When the processing program closes the data set, the interface's Close routine
issues a VSAM PUT macro for ISAM PUT locate requests (in load mode),
deletes from virtual storage the interface routines loaded by Open, frees
virtual-storage space that was obtained by Open, and gives control to VSAM
Close.

Restrictions ill the Use 0/ the lSA.M llllerface

The ISAM interface enables programs that use ISAM to issue only those
requests that VSAM or the interface can simulate. These are the restrictions
for using the interface:

• 	 The program must run successfully under ISAM. The ISAM interface does
not check for parameters that are invalid for ISAM. See VSAM restrictions
(e.g. OPEN macro (TYPE=J); temporary data sets) .

• The program must use standard ISAM interfaces.

• 	 If your program counts overflow records to determine reorganization
needs, the count will be meaningless with VSAM data sets.

• 	 You may share data among subtasks that specify the same DD statement in
their DCB(s). But among subtasks that specify different DD statements for
the data, you are responsible for data integrity. The ISAM interface doesn't

74 Planning for Enhanced VSAM under OS!VS

ensure DCB integrity when two or more DCBs are opened for a data set.
Not all of the fields in a DCB can be counted on to contain valid
information.

• 	 The work area into which data records are read cannot be shorter than a
record. If your processing program is designed to read a portion of a record
into a work area, you must change the design. The record length in the
DECB is assumed to be the actual length of the record.

• 	 If your processing program issues the SETL I or SETL ID instruction, you
must modify the instruction to some other form of the SETL or remove it.
The ISAM interface cannot translate a request that depends on a specific
block or device address.

• 	 If the RECFM parameter is not specified in a processing program's DCB,
you must specify it in the AMP parameter in the DD statement for the data
set.

• 	 A SYNAD routine must not issue VSAM macros or check for VSAM
return codes. The ISAM interface translates all VSAM codes to
appropriate ISAM codes. If your processing program already indicates a
SYNAD routine, the routine specified in the AMP SYNAD parameter
replaces it. You need not modify or replace a SYNAD routine that issues
only a CLOSE, ABEND, SYNADAF, or SYNADRLS macro or examines
DCB or DECB exception codes .

•

•

Preparing for YSAM 75

•

•

..

OPTIMIZING THE PERFORMANCE OF VSAM

This chapter is intended for programmers who will choose and implement the
VSAM data set options that affect performance through the size of the
control interval, the percents of distributed free space, and the handling of
indexes and VSAM catalogs.

IFor more detailed information about options that affect VSAM performance,
see OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide.

How Can Control-Interval Size Be Used to Influence
Performance?

A data set's control-interval size affects performance. As a general rule the
larger the control interval, the better the sequential performance-for a
number of reasons:

• 	 Fewer index records required for a key-sequenced data set

• 	 Fewer control-interval accesses, which is significant only for sequential or
skip sequential access

• 	 More efficient distribution of free space in a key-sequenced data set

You can request a particular control-interval size, but it must fall within the
acceptable limits determined by VSAM, depending on the smallest amount of
virtual-storage space you'll ever provide for I/O buffers and the size of your
data records.

I/O-buffer size is important because VSAM transmits the contents of a
control interval, and the amount of virtual-storage space for I/O buffers
limits the size of a control interval. The amount of space for I/O buffers is
the most flexible variable you have for influencing performance through
control-interval size. The size and other attributes of your data records
generally depend on the needs of your application.

How Does Distributed Free Space Improve Performance?
In the section "Key-Sequenced Data Sets" in the chapter "Getting to Know
What VSAM Is and Does," we discussed the way VSAM uses distributed free
space for the insertion of a record into a key-sequenced data set. It was
pointed out that insertion can be achieved in a data set that hasn't any
distributed free space, by means of a control-area split. Therefore, the
decision to provide free space throughout the control intervals and control
areas of a data set rests on considerations of performance. Free space in the
immediate area into which a record is inserted speeds up the insertion and
avoids control-area splitting, which may move a group of records to a
different cylinder, away from the preceding and following records in key
sequence.

The question that arises is: How much space do I provide? There is no one
answer; the decision depends on how much inserting or lengthening of
records you plan to do. Of course, if the data set will be for reference only, it
will need no free space. If insertions into the data set are numerous, you
might get the best performance by leaving half of the space free when you
create the data set. In general, you should estimate the percent of growth and

Optimizing the Perfonnance of VSAM 77

leave a proportionate amount of free space. For example, if you calculated
25 % growth spread throughout the data set, you might leave 1/5 of the total
space free, because the data set is now at 4/5 of its eventual size.

You may estimate that the growth of a data set will continue indefinitely. But
if you attempted to leave enough free space for indefinite growth, you would
end up with almost nothing but free space. So you have to decide how long a
period of growth you want to provide for and count on reorganizing the data
set at the end of that period to redistribute free space.

When you estimate data-set growth, remember that if records in a
key-sequenced data set are deleted or shortened, VSAM makes the space thus
freed available as free space within the control interval.

,.
What Index Options Are There to Improve Performance?

Five options influence performance through the use of the index of a
key-sequenced data set. Each option improves performance, but some of
them require that you provide additional virtual- or auxiliary-storage space.
The options are:

• Index-set records in virtual storage

• Index and data set on separate volumes

• Sequence-set records adjacent to the data set

• Size of index control interval

• Replication of index records

Index-Set Records in Virtual Storage

To retrieve a record from a key-sequenced data set or store a record in it
using keyed access, VSAM needs to examine the index of that data set.
Before your processing program begins to process the data set, it must specify
the amount of virtual-storage space it is providing for VSAM to buffer index
records. Enough space for one I/O buffer for index records is the minimum,
but a serious performance problem with a space large enough for only one or
two index records is that an index record may be continually deleted from
virtual storage to make room for another and then retrieved again later when
it is required. Ample space to buffer index records can improve performance
by preventing this situation.

You ensure that index-set records will be in virtual storage by specifying
enough virtual-storage space for I/O buffers for index records when you
begin to process a data set. VSAM keeps as many index-set records in virtual •
storage as the space will hold. Whenever an index record must be retrieved to
locate a record, VSAM makes room for it by deleting from the space the
index record that VSAM judges to be the least useful under the circumstances
then prevailing. It is generally the index record that belongs to the lowest
index level then represented in the space and that has been in the space the
longest.

78 Planning for Enhanced VSAM under OS!VS

Index IIIId Datil Set on Separate Vol"mes

You may place the index component of a key-sequenced data set on a
separate volume from the data component, either on the same or on a
different type of storage device.

Using different volumes eliminates the contention between gaining access to
index records and gaining access to data records when you are using keyed
access. The smaller amount of auxiliary-storage space required for an index
makes it economical to use a faster storage device for it than for the data
component.

Seq"ence-Set Records Adjacent to the Data Set
• In using disk storage, you should minimize disk-arm movement. Having the

sequence set accompany the data set is one way to reduce the movement for a
key-sequenced data set. When you define the data set, you can specify that
the sequence-set index record for each control area is to be on the track
adjacent to each control area. This avoids two separate seeks when access to a
data record requires VSAM to examine the sequence-set index record of the
control area in which the data record is stored. One arm movement enables
VSAM to retrieve or store both the index record and the contents of the
control interval in which the data record is stored. When this option is taken,
sequence-set records are replicated, as described next.

Siu of Index Control Interval

The fourth option you might consider is ensuring that the index-set control
interval is large enough to cover a full control area. Thus, the index-set
control intervals may be larger than is actually required to contain the
pointers to the sequence-set level; however, this option also keeps to a
minimum the number of index levels required, thereby reducing search time
and improving performance. This option does increase rotational delay and
transfer time; therefore, you have to weigh the advantages and decide
according to your own needs.

Replication of Index Records

The last option is the replication of an index record on a track of a
direct-access storage volume as many times as it will fit. The object of
replication is to reduce the time lost waiting for the record to come around to

• 	 be read (rotational delay). Rotational delay is, on the average, half the time it
takes for the volume to rotate. Replication of a record reduces this time. For
instance, if ten copies of an index record fit on a track, rotational delay is, on
the average, only one-twentieth of the time it takes for the volume to rotate.

This option costs auxiliary-storage space; it requires a full track of storage for
each index record replicated. You have to weigh the relative values of
auxiliary-storage space and processing speed.

You can replicate index records in these combinations of sequence set and
index set:

• 	 Sequence set separated from index set and only sequence-set records
replicated

• 	 Sequence set separated from index set but all index records replicated

• 	 Sequence set and index set together and all index records replicated

Optimizing the Performance of VSAM 79

•
•
•

•
•
•

Separating the sequence set from the index set is for placing the sequence set
I	adjacent to the data, which is the previous option we discussed. Figure 22
illustrates replication of a sequence-set record that has been placed adjacent
to its control area to avoid moving the arm separately for index and for data;
the index record is replicated to reduce rotational delay.

How Can VSAM Catalogs Affect Performance?

Sharing Services with User Catalogs

A large number of requests for information from a VSAM catalog may result
in some of the requests being answered more slowly than they would be if
several catalogs had parts of the information. You might have the master
catalog primarily contain pointers to user catalogs, which would contain
entries for most data sets, indexes, and volumes. By decentralizing data set
entries, you also reduce the time required to search a given catalog and
minimize the effect of a catalog's being inoperative or unavailable.

Improving Catalog Per/ol7lUlnce in MVS

To improve catalog performance in MVS systems, you can:

• 	 Mount the catalog volume on a nonshared DASD device.

• 	 Preformat and initialize a new catalog before the first DEFINE operation.
Although this takes some time, you realize improved performance on
subsequent DEFINE operations into the catalog.

• 	 Defining entries into a catalog that is not protected at the update level
improves performance. The savings can be significant when you are using
the CNVTCAT command to convert OS catalog entries into VSAM
catalog entries.

Cylinder of Disk

First Track ~ Sequence-Set 11 ___ Co 	 II~ Copy1 ___ Copy
Record PY 	 1--- Copy I1 1

Second Track Control Interval Con trol Interval Control Interval I II II 	 I

Third Track Control Interval Control Interval Con trol Interval Control Area I II II 	 I

Fourth Track Control In terval Control Interval Control Interval I II II 	 I

•

JI Figure 22. Replication of a Sequence-Set Index Record Adjacent to Its Control Area

80 Planning for Enhanced VSAM under OS/VS

PROTECTING DATA WITH VSAM

•

How safe is your data with VSAM? What provisions does VSAM make to
ensure that data is not lost or destroyed by errors in the system, or sabotaged
or pilfered by unauthorized persons? How easy is it to determine what the
cause of a problem is and to do something about it? This chapter is intended
for installation managers and system programmers interested in the answers
to these questions.

The protection of data includes data integrity, or the safety of data from
accidental destruction, and data security, or the safety of data from theft or
intentional destruction. We'll discuss the attributes and options of VSAM that
enhance data integrity, procedures for providing a backup copy of the catalog
to protect data sets in the event of a catalog failure, protection of data shared
by operating systems, regions, and subtasks, use of passwords and various
authorization routines to prevent unauthorized access to your data, and
methods of restart and problem determination.

How Does VSAM Achieve Data Integrity?
The attributes and options of VSAM that affect data integrity are:

• Method of inserting records into a key-sequenced data set

• Control-interval principle

• Method of indicating the end of a data set

• Verifying write operations

Method o/lnsening Records into a Key-Sequenced Data Set

We discussed the method of inserting new records into a key-sequenced data
set with an index in the section "Key-Sequenced Data Sets" in the chapter
"Getting to Know What VSAM Is and Does." Free space distributed
throughout used control intervals allows VSAM to insert a record into a
control interval held in virtual storage by shifting records in it without an I/O
operation. VSAM splits control intervals and control areas, when necessary,
in a way that does not expose any data to loss, even if an I/O error occurs
before the split is completed.

The order of operations for a control-interval split is:

1. Obtain a free (spare) control interval.

2. Move data from the control interval to be split to the new (spare) control
interval.

3. Write the updated (spare) control interval.

4. Update the sequence-set control interval to reflect the use of free space
and the new index entry for the new control interval.

5. Write the updated sequence-set control interval.

6. Update the old control interval and write it.

Protecting Data with VSAM 81

eo"tml-I"tenal Principle

With a key-sequenced data set, the control interval is the unit pointed to by '. '\.
entries in a sequence-set index record. Only a record addition or a record """
insertion that splits a control interval or a control area causes a modification
of the index. For instance, even though a record insertion might change the
RBA of the record with the highest key in the control interval, the index entry
is not altered, since the pointer in it is to the control interval, not to the
record. Minimal index handling and modification lessen the chance of error.

Metlwd of Indicating the E"d of a Data Set

VSAM combines two procedures for achieving data integrity:

• 	 Preformatting the last control area of a data set •
• 	 Updating the catalog to indicate the RBA of the end of the data set and the

highest-keyed record in the data set

Preformatting a Data Set

Preformatting the end of a data set as each control area comes into use

ensures greater data integrity than formatting it only at the end of processing.

VSAM formats a control area before using its control intervals by putting

control information in them and putting an end-of-file indicator in the last

control interval. The end-of-file indicator helps prevent data that has been

added to a data set from being lost.

VSAM optionally preformats control areas when loading records into a data

set and always preformats them when subsequently adding records to the data

set. You have two options when loading records into a data set, whether you '\

use the REPRO command of Access Method Services or your own processing ...,

program:

• 	 The first option is to improve load speed: VSAM does not format the last
control area of a data set until a CLOSE macro instruction is issued. An
error that prevents further processing will result in the loss of all of the
data that has been loaded.

• 	 The second option is to improve the ability to recover from a failure and
complete loading. Each time a control area is filled with records, VSAM
formats the next control area before storing records in it. In this way each
set of new records is protected against loss as it is added to the data set.

t
Updating the Catalog

The addresses kept in the catalog for the end of the data set enable VSAM to
keep track of the physical end and, for a key-sequenced data set, the logical
end of the data set. VSAM updates these addresses at intervals determined by
a processing program's issuance of a temporary CLOSE macro instruction
and at the end of data-set processing, when the data set is fully closed. By
using the VERIFY command of Access Method Services, you can recover
data in cases where VSAM was unable to close a data set properly and update
the end-of -file indicator in the catalog. See the discussion of the VERIFY
command in the chapter "Communicating with VSAM."

82 Planning for Enhanced VSAMunder OS/VS

..

Verifying Write Operat;ollS

To improve the integrity of data written to auxiliary storage, you can request
VSAM to verify each write operation for accuracy. Verification takes
additional time, but it decreases the chance of introducing errors into the data
set.

How Are Data Sets and Catalogs Protected?
Data integrity is not only ensured by standard provisions of VSAM, but can
be improved by using various preventive and corrective measures. Some of
these are Access Method Services facilities, which are described in OS/VSl
Access Method Services and OS/VS2 Access Method Services. These can
be included within the design, use, and backup/recovery procedure of the
VSAM structure.

Suggested preventive and corrective measures are:

• 	 Using the VERIFY command to correct the catalog information in an
attempt to regain access to a data set that was improperly closed.

• 	 Using the optional WRITECHECK parameter of the DEFINE command
to verify each write operation when writing data to auxiliary storage.

• 	 Using the DEFINE SPACE command to dedicate use of volumes for
VSAM data sets in order to segregate VSAM and nonVSAM recovery.
You can dedicate a volume by defining a VSAM data space that occupies
the whole volume.

• 	 Minimizing or eliminating secondary allocations for data sets to overcome
the complexity of using REPRO in catalog recovery stemming from
secondary extents.

• 	 Using the DEFINE USERCATALOG command to maximize the use of
user catalogs and to limit the use of the master catalog. Compare the effect
of the loss of a catalog when 10 data sets are cataloged in each of 10
catalogs, and 50 data sets are cataloged in each of two catalogs. The fewer
the catalogs, the greater the disruption of daily operations in the event of
loss of a catalog.

• 	 Using the EXPORT command to create backup copies of data and
associated catalog entries. The catalog entries can be reestablished in the
catalog from which they were extracted or into a different catalog using the
IMPORT command. The data set is reestablished by IMPORT without
redefining it.

• 	 Using the REPRO command to unload and reload catalogs .

• 	 Using the optional RECOVERABLE parameter of the DEFINE
MASTERCATALOG or DEFINE USER CATALOG command to create
a catalog recovery area on each volume owned by that catalog. Only if a
catalog is recoverable can the EXPORTRA, IMPORTRA, and LISTCRA
commands be issued.

• 	 Using the EXPORTRA command to recover data independent of the
status of the catalog. The recovered data can then be imported into the
system and catalog using IMPORTRA.

• 	 Using the LISTRCRA command to list the contents of a catalog recovery
area (CRA) and, if desired, to compare the contents of the CRA with the
catalog. The COMPARE option is useful in detecting potential catalog

Protecting Data with VSAM 83

L

problems and in checking the validity of a catalog which was reestablished
by means of the REPRO command or a volume restore.

• 	 Using the ALTER REMOVEVOLUMES command to initialize a volume
owned by VSAM when the catalog that owns the volume is inaccessible.
VSAM indicators are reset and the VSAM space is returned to the VTOC
as available space. There is no attempt to update a catalog during
execution of the ALTER REMOVEVOLUMES command. It is assumed
to be inaccessible.

• 	 Using the DELETE SPACE (FORCE) command to remove information
from both the VTOC and the catalog. When space is deleted using the
FORCE option, the VTOC's VSAM volume ownership is given up, VSAM
space is returned to the VTOC, the space definition in the catalog for that
volume is deleted, and VSAM data sets on that volume are marked as •
unusable in the catalog. If you want to redefine the data sets, you must first
delete them.

• 	 Using the IEHDASDR DUMP/RESTORE system utility to create a
backup copy of an entire volume and to restore that copy on a volume. The
use of this utility in a VSAM environment requires special considerations
because both the volume VTOC and the catalog contain space mapping
information about the volume which has to be synchronized to ensure
accessibility and to avoid damage to data. To avoid possible discrepancies
between catalog and data set information, quiesce I/O operations and
dump all related volumes at the same time. (See OS/VS Utilities, for
details on how to use IEHDASDR.)

Your design for recovery should certainly consider all of the above measures.
Most of them are discussed in the following sections.

SecOlldary AUocatiollS of Datil Sets

By eliminating or minimizing secondary allocation, the difficulty of using
REPRO in catalog recovery stemming from secondary extents is overcome.
An entry-sequenced data set is extended only by adding new control areas to
the end of the data set. Thus, the effect of addition is predictable and the
problem is eased. If it is impractical to allocate enough primary space to
accommodate additions, the secondary allocation quantity should be large
enough so that extension is infrequent. Whenever secondary allocation does
occur, a new backup of the catalog or data set (or both) can be made. By
monitoring the data set statistics in the catalog, either by way of a LISTCAT
command or by way of a SHOWCB macro against an open ACB (to inspect ..
the number of bytes of available space), you can predict when secondary
allocation will occur. You can determine when a secondary allocation has
taken place with a SHOWCB or TESTCB for the RPL feedback information
after each PUT request.

For a key-sequenced data set the problem is much more complicated. If
existing records are not lengthened and all additions are made to the logical
end of the data set, then the situation is similar to that of an entry-sequenced
data set except that the index must also be checked. The other patterns of
insert and update activity are limitless. Some of them may be specific and
dictate specific backup strategies, but discussion here assumes a random
distribution of activity against the data set.

There are reasons other than recovery to design a key-sequenced data set to
minimize extensions. A control-area split takes a relatively long time. For
many online systems this can be a serious disruption. A characteristic of

84 Planning for Enhanced VSAM under OS/VS

key-sequenced data sets is that, assuming a random insert pattern, all control
areas tend to split at roughly the same time. Because each split results in two
control areas being created from the original one, the data set's physical size
doubles in a short period of time.

For these reasons it is advisable to design free-space percentages to minimize
the probability of a split for a given insert level rather than to allow extra
primary allocation for expansion. The data set should be reloaded
(reorganized) when its insert level approaches the design point.

User Catalogs

Once a catalog defined without the RECOVERABLE attribute has been
destroyed, the data it controls can no longer be accessed. Thus, if a system

• 	 contains only one (master) catalog and that catalog is destroyed, the
resources of the whole system are lost and must be restored using backup
copies.

With several user catalogs, only the resources controlled by the destroyed user
catalog are affected, and the catalog can be rebuilt while processing on other
data continues. Since user catalogs, like the master catalog, are
self-describing, even with the destruction of the master catalog, only the
master catalog and the resources directly connected to it need be rebuilt. No
data sets in a user catalog connected to that master catalog can be accessed
until the user catalog is again connected to a master catalog.

A large number of requests for information from a VSAM catalog may result
in some of the requests being answered more slowly than they would be if
several catalogs had parts of the information. You might have the master
catalog primarily contain pointers to user catalogs, which would contain
entries for most data sets, indexes, and volumes. By decentralizing data set
entries, you also reduce the time required to search a given catalog and
minimize the effect of a catalog's being inoperative or unavailable.

Data Set Backup and Recovery

Like users of other methods of organizing and storing data, you should
establish backup and recovery procedures for your data sets and catalogs.

Consider first all of the rules governing the relationships of catalogs and
catalog entries to VSAM data sets:

• 	 All VSAM data sets must be cataloged. Because the physical and logical
description of a data set is contained in its catalog entries, VSAM requires
up-to-date catalog entries to access data sets.

.. • 	 A volume containing VSAM data sets or data spaces can be owned by only
one catalog. All VSAM data sets on a volume must be cataloged in the
same VSAM catalog. With multivolume data sets, all current and candidate
volumes must be owned by the same catalog.

• 	 Logical and physical mapping information is contained in the catalog
entries. For data sets defined in suballocated VSAM data spaces, the
catalog contains the only record of the physical extents allocated to the
data set. For unique data sets, entries in the VTOC also contain a record of
physical extents. In both cases only the catalog contains the
logical-to-physical mapping information (the relationship of the RBA
ranges of the data set to the physical extents).

Protecting Data with VSAM 85

Any recovery procedure must match data set and catalog entry status.
Recovery by way of reloading the data set automatically takes care of this
problem: a new catalog entry is built when the data set is reloaded.

Access Method Services has two utility functions for creating backup copies:

• 	 The EXPORT command is used to create an unloaded, portable copy of
the data set. The operation is simple, there are options that offer
protection, and most catalog information is exported along with the data,
easing the problem of redefinition. You can prevent the exported data set
from being updated until the IMPORT command reestablishes its
accessibility.

• 	 The REPRO command is used to create either a SAM or a duplicate
VSAM data set for backup. An advantage over EXPORT is the
accessibility of the backup copy. A DEFINE command is required before
reloading, but this is a relatively minor inconvenience, particularly if the
original DEFINE statements can be used.

You can also write your own backup scheme. For performance reasons, it is
advisable to integrate these into regular processing procedures whenever
possible. For example, many large data sets which are normally accessed
randomly require sequential processing during the regular cycle. A SAM (or
any other) backup data set may easily be created as a by-product of this
procedure without materially affecting performance.

You must keep in mind that any backup procedure that does not involve an
image copy of the data set (such as EXPORT or REPRO) will result in data
reorganization and the re-creation of the index for a key-sequenced data set.
Therefore, any absolute references by way of RBA may become invalid.

Catalog Backup and Recovery

Because of the importance of the VSAM catalog, you should consider backup
for the catalog as well as for the individual data sets. In theory, if all of the
data sets in the catalog are backed up individually, as they should be, it is
possible to recover from destruction of the catalog by carrying out recovery
procedures for each of the data sets. In practice, this may be reasonable. The
probability of losing an entire catalog is very low.

However, to speed recovery or minimize exposure in the case of catalog
damage or destruction, two tools are available: catalog unload and reload
using the REPRO command, and recovery of data and its associated catalog
information (from catalog recovery areas on volumes owned by recoverable
catalogs) using the EXPORTRA/IMPORTRA commands.

Catalog Unload and Reload

You can schedule catalog backups to minimize the exposure for critical data.
Some events that may have changed the catalog since the last backup are the
execution of a DELETE, permanent EXPORT, DEFINE, or IMPORT
command, or the extension of a data set owned by the catalog.

If VSAM data sets or data spaces have been deleted or permanently exported
since the last catalog backup and the catalog is reloaded or restored, then the
deleted data sets or data spaces will still be defined in the restored catalog.
Any attempt to process these entries will yield unpredictable results because
the space reflected in the catalog may no longer be owned by the catalog. The .•~
catalog may be corrected by reissuing the DELETE commands...",

86 Planning for Enhanced VSAM under OS/VS

..

Automatic Catalog Backup

•

If VSAM data sets or data spaces have been defined or imported since the last
catalog backup and the catalog is reloaded or restored, then the defined data
sets or data spaces will not be defined in the reloaded or restored catalog.
Processing these data sets or data spaces by means of the restored catalog is
not possible since they cannot be accessed. The space formerly occupied by
these VSAM data sets or data spaces will not be usable, but may be recovered
by scratching the format-l DSCBs in the VTOC for the data spaces. If any
volumes were added to the catalog (between the backup and the recovery),
they will also be unusable until you use the DELETE space command with
the FORCE option.

If a VSAM data set has been extended since the last catalog backup, the new
extents will not be defined in the restored or reloaded catalog. Any attempt to
process records in the added extents will result in a logical error. If the data
set has been extended within space already allocated to the data set before
the backup but has acquired no new extents, then you can issue the VERIFY
command to update the catalog pointers, and the data set may be accessed
normally.

The data in any extents that have been acquired by the data set since the
catalog was backed up is unrecoverable. For an entry-sequenced data set the
data in any new extents should consist only of records that have been added
to the end of the data set. Therefore, it is possible to recover all of the data in
the old extents by accessing the data set sequentially up to the end of the old
physical space allocation. For a key-sequenced data set, the data in the new
extents may be any portion of the data set because of control-area splits. An
attempt to read the data in logical sequence will fail with an invalid RBA
indication when the data in the new extents is reached. You could access the
key-sequenced data set by means of addressed sequence, but you then have
the problem of identifying the missing records. Individual data set recovery
for those data sets affected will be necessary.

All VSAM catalogs can be defined with the RECOVERABLE attribute that
makes it possible to recover VSAM data sets and their catalog entries should
the catalog be damaged or destroyed. A backup of the catalog is automatically
achieved by recording catalog information about a given volume on that
volume as well as in the catalog itself. Recovery information is recorded on
each volume owned by a catalog. Space for this information is automatically
set aside when you acquire volume ownership on a new volume and also when
you define the catalog itself. There is no separate catalog entry for the
recovery space: VSAM records its physical track address in the volume's
format-4 label.

The recovery information in the volume's catalog recovery area (CRA) is
updated immediately whenever parallel information in the catalog is changed.
The affected volume(s) must be mounted, and the kind of operation to be
performed on an object (data space, cluster, path, etc.) determines which
volume(s) to mount.

To recover a VSAM data set and its catalog entries, you issue the
EXPORTRA command. EXPORTRA uses the information in the CRA
rather than the catalog to gain access to VSAM data sets and produce a copy
of the VSAM data sets. The copy can be introduced back into the system by
means of the IMPORTRA command.

Protecting· Data with VSAM 87

Data Recovery

You can use the LISTCRA command either to list the contents of the CRA
before you do selective recovery or to list the entries in the recovery area that
are different from those in its associated catalog.

Using some of the corrective measures listed below, you can analyze and
recover from the following conditions:

• Data set not properly closed

• Inaccessible data set

• Unusable catalog

• Inaccessible volume

You can use the LISTCRA command with the COMPARE option to identify
the level of recovery that is required for the latter three conditions. (This
command, as well as EXPORTRA and IMPORTRA, is usable only with
recoverable catalogs.) The mismatches detected by LISTCRA vary in their
degree of seriousness. The following list (order by severity) shows the type of
mismatch, why it may have occurred, and how serious it is. Only the most
serious mismatch is identified. Subsequent sections tell how to use corrective
measures to recover.

Catalog Volume Records

Message Type Cause Seriousness

DATA SPACE Mismatched data A difference in the Requires
EXTENTS space group number, size, and/or recovery of the

location of VSAM entire volume.
data spaces.

A difference in the
number and/or
location of extents for
one or more data sets.

Space has been
extended or deleted.

DATASET Mismatched data A difference in the Requires
DIRECTORY set directory names and/or number recovery of the

of data sets associated entire volume.
with this volume.

VSAM Object Ilecords

CATALOG ENTRY Mismatched name The catalog was Requires data set
HAS DIFFERENT restored, or the recovery.
NAME volume containing the

data set was restored.
As a result the record

,.
in the catalog pointed
to by the CRA record
is no longer for the
same object.

VOLUME OR Mismatched The catalog was Requires data set
KEYRANGE volume or key restored, or the recovery.

range. volume containing the
data set was restored.
As a result the object's
volume locations or
keyranges in the CRA
do not match those in
the catalog.

88 Planning for Enhanced VSAM under OS/VS

•

Message Type Cause Seriousness

EXTENTS Mismatched Data set was not Requires data set
extents properly closed, the recovery.

catalog was restored,
or the volume
containing the data set
was restored.

HIGH USED RBA Mismatched high Same as for Requires use of
used Relative Byte mismatched extents. the VERIFY
Address command to

correct the high
RBA.

STATISTICS Mismatched Same as for No recovery
statistics mismatched extents. action is

required;
mismatched
statistics do not
affect the
accessibility of
data.

OTHER Mismatch of Same as for Same as for
something other mismatched extents. mismatched
than the above statistics.
fields, e.g.
passwords.

In general, there are two types of data recovery in terms of the currency of
the recovered data: repair and reset.

The repair type of data recovery operation restores addressibility and access
to the most current version of the data. Repair operations are generally used
to correct problems such as read and write errors associated with the data
itself or with the data description, for example, by assigning alternate tracks.

The reset type of data recovery operation restores addressibility and access to
a version of the data other than the most recent. Reset operations are
generally used to correct logical problems such as a programming error or
faulty transactions. Reset is generally the most common form of recovery,
probably because of the types of problems encountered and the level of data
available for recovery. An example of a reset operation is the dump (copy)
and restore of a volume.

The following list of utility programs, whether Access Method Services,
VSAM, or system, shows the type(s) of data recovery (or analysis) each
program can undertake:

EXPORT/IMPORT Reset
REPRO Reset/repair
EXPORTRA/IMPORTRA Repair (recoverable catalogs only)
COPY AND RESTORE Reset
LISTCRA (COMPARE) Analysis (recoverable catalogs only)
DELETE UCAT(FORCE) Reset/repair
ALTER REMOVEVOLUMES Reset/repair
DELETE SPACE(FORCE)

NOSCRATCH Reset/repair
DELETE CLUSTER

NOSCRATCH Reset/repair
VTOC UTILITY (SUPERZAP) Reset/repair
DELETE SPACE (FORCE) Reset/repair
VERIFY Repair

REPRO can be used to create a backup copy of the catalog. The catalog can
be reloaded (using REPRO) from this backup copy and can be used to

Protecting Data with VSAM 89

Data Set Not Properly Closed

minimize the amount of work required to accomplish recovery. The usefulness
of a backup copy depends on what modifications have been made to the
catalog since the backup was created. The following actions that may have
occurred subsequent to taking a backup copy will affect the usefulness of the
backup catalog:

Altering the amount of space controlled by the catalog. The volume entry in
the backup catalog is no longer valid and will mismatch with the catalog
recovery area.

Defming or deleting data sets. The volume entry and some of the data set
entries in the backup copy are no longer valid.

SubaDocating space to a VSAM data set. The volume space map is
invalidated which, in itself, is not serious. However, the data set entry is
also invalidated, a serious problem.

Several of the following recovery procedures use volume restore. If this is
indicated, one or the other of the following must be true:

• 	 The volume being restored doesn't contain multivolume data sets.

• 	 If a volume does contain a portion of a multivolume data set, all volumes
which contain portions of those multivolume data sets are treated as a
single unit; that is, if a volume restore is required, the entire set is restored.

VSAM data sets are not properly closed if they were opened for output and a
system failure occurred, or if a program that is open for output terminated
abnormally. This condition is reflected in the catalog and is communicated to
the next program which does an OPEN of the data set. It acts as a warning in\
that while the data set may actually have been properly closed, an error"
condition may exist such as an incorrect high RBA in the catalog, an
incomplete write to a direct-access device, or duplicate data.

If an error exists, it is probably an incorrect high RBA in the catalog. The
VERIFY command, which is used to correct this condition, scans a given data
set starting from the catalog-specified high RBA to the end of the data set.
The resultant high RBA is then used to update the catalog.

You can avoid an incomplete write to a direct-access device and duplicate
data either by doing synchronous direct inserts or by using abnormal
termination exits in which you issue a CLOSE or TCLOSE to close the data
set properly.

If you suspect that a write operation is incomplete, you can issue either an
IMPORT or a REPRO command to get an old copy of the data; intermediate
updates or inserts are lost. The use of IMPORT or REPRO requires that you
have a previously exported version of the data set available.

Duplicate data in a key-sequenced data set, the least likely error condition to
occur, can result from a failure during a control interval or control area split.
If the failure occurred before the index was updated, the insert is lost, no
duplicate data exists, and the data set is stable and usable.

If the failure occurred between updating the index and writing the updated
control interval into secondary storage, some data is duplicated. However,
both versions of the data are accessible by using addressed processing. The
condition can be corrected by issuing a REPRO or an IMPORT command. If
you want the current version of the data, you can use the REPRO command

90 Planning for Enhanced VSAM under OS/VS

Inaccessible Data Set

•

to copy the current version to a temporary data set and again to copy it back
into a newly created key-sequenced data set. If you have a backup copy of a
previous version of the data, you can use the IMPORT command to obtain a
reorganized data set without duplicate data.

If the index is replicated and the error occurred between the writes of the
index control intervals but the output was not affected, both versions of the
data can be retrieved. The condition is similar to that described in the
preceding paragraph and the same recovery measures can be taken.

The sequence of operations for a control area split are similar to those for a
control interval split; the possible error conditions and corrective actions are
the same.

Although the likelihood of having duplicate data is rather small, you can
further reduce it by specifying free space for both control intervals and
control areas to reduce the problem of splits. The only warning indication that
VSAM sets for this condition is 'data set not properly closed.' If a more
positive indication is desired, you can obtain it by using the journal exit
(JRNAD) to determine control interval and control area splits and the RBA
range affected.

To summarize, the warning 'data set not properly closed' may indicate an
error in a VSAM data set. This condition can generally be corrected by using
the VERIFY command. If other errors are encountered or suspected, they can
generally be corrected by using either the IMPORT or the REPRO command.

A VSAM data set may become inaccessible due to damage to the data set
itself, to related information in the catalog, or to both. Depending on the
extent of damage and prior actions, it may be possible to get access to either
the current or a previous version of the data. A data set is inaccessible when it
cannot be opened or is either partially or completely unreadable.

If the data set cannot be opened, there is probably damage to the catalog. To
determine the extent of this damage, you can use either the LISTCAT or the
LISTCRA (with the COMPARE option) command, the latter only if the
catalog is recoverable. If as a result of processing one of these commands, you
find only local damage to a small number of data sets and no serious damage
to volume information (that is, either there is no mismatch or a general
mismatch has occurred), you can use one of the following procedures:

• 	 If an exported copy of the data set is available, you can then import it to
gain access to the level of data at the time the backup copy was made. If
the catalog is recoverable and you want to gain access to the current level
of data, you can use the EXPORTRA command to extract the data, and
then you can reestablish it by using the IMPORTRA command. It is not
necessary to do any volume cleanup prior to reestablishing the data
because the volume information was not seriously damaged.

• 	 If the data set can be opened but none of the data can be retrieved, either
the data set has been destroyed or the catalog and volume are not
synchronized. To verify the condition of the catalog, you can use either the
LISTCAT or LISTCRA (with the COMPARE option) command. If the
results indicate catalog damage, you can use the above procedure to gain
access to the data. If no catalog damage is indicated, you can import a
previously exported version of the data. REPRO can also be used to effect
a recovery if a copy of the data set is available.

Protecting Data with VSAM 91

L

Unusable Catalog

If the data set can be opened and partially read, the problem is either
confined to the data set itself or an entire physical extent of the data set is
not readable. If the latter occurs (where the catalog indicates one or more
extents than there are on the volume), it may have been caused by a
restore of a volume independent of the catalog. You can use the LISTCRA
(with the COMPARE option) to verify the mismatch in the number of
extents. If this type of mismatch is not verified, you can then issue either
an IMPORT or a REPRO command to correct the problem, using a
backup copy of the data set. If the problem turns out to have been in the
catalog, you can use either IMPORT or REPRO, or EXPORTRA followed
by an IMPORTRA.

To summarize, the inaccessibility of a VSAM data set can either be a local
problem restricted to a small number of data sets, or it can be a more serious
problem. This can be determined by the use of the LISTCRA command. If
the problem is local, the EXPORTRA, IMPORTRA, IMPORT, and REPRO
commands can be used to correct the problem.

A catalog may become unusable due to physical damage to the catalog
volume. Depending on the extent of the damage and prior actions, it may be
possible to either repair or reset the catalog and the data it controls. A catalog
is unusable when many VSAM data sets cannot be opened, the catalog itself
cannot be opened, or the catalog volume is not usable.

If the catalog can be opened, but many VSAM data sets controlled by this
catalog cannot be accessed, a problem with the catalog probably exists. To
determine whether it is a catalog problem, either a LIST CAT or a LISTCRA
(with the COMPARE option) can be used. If I/O errors are encountered or
mismatches are detected, some form of catalog recovery is required. If not,
the problem is confined to the data sets themselves and the procedures given
for unusable data sets can be used.

If the problem is with the catalog, recovery depends on the availability of
backup copies of the catalogs, volumes, and data sets, and whether the
catalog has been defined with the RECOVERABLE attribute. This section
first discusses recovery of catalogs without associated catalog recovery areas
(CRAs), then catalogs with associated CRAs.

Catalogs Without Associated CRAs. Recovery by way of an image copy of the
data set must reestablish usable catalog entries. One way to reestablish
catalog entries is to save a backup copy of the catalog along with the data.
The major drawback to this approach is that other data sets defined in the
catalog may become unusable as a result of the catalog reload. For example,
assume that a backup copy of a data set and its corresponding catalog have
been restored, but other data sets defined in the same catalog have not. To
avoid mismatch problems, you can use the reloaded catalog to unload the
reloaded data set, using the REPRO or EXPORT command. You can then
use the current catalog to reload the data set, using REPRO or IMPORT,
while other data remains unaffected.

This procedure is useful where nonVSAM data sets on the same volumes as
VSAM data sets are routinely backed up. It requires only one backup
operation for multiple VSAM data sets, without a recovery operation for
undamaged data sets. Recovery should be needed infrequently, if at all, so the
extra time required for this procedure would be more than offset by the
saving in routine backup time.

"•

92 Planning for Enhanced VSAM under OS/VS

Cata10p With Associated CRAs. If an unloaded copy of the catalog built by
REPRO or a backup copy of the catalog volume is available, you can do the
following:

•

inaCCessible Volume

• 	 Either reestablish the backup copy of the catalog or restore the backup
copy of the catalog volume.

• 	 Use LISTCRA with the COMPARE option to identify mismatched
volumes and data sets.

• 	 If the catalog volume entry is included as a mismatched volume (that is, a
data set directory or a data space group mismatch), the catalog and its own
volume CRA are out of synchronization. (This condition should not occur
if the catalog volume was restored.) You can do the following steps to
reestablish the catalog and its data sets:

Recover all data sets on all owned volumes using EXPORTRA.

Use the ALTER REMOVEVOLUMES command to clean up all owned
volumes, including the catalog volume.

- If the unusable catalog is a user catalog, use EXPORT
(DISCONNECT) to detach from the master catalog to avoid a conflict
in catalog names.

Define a new catalog and space on all owned volumes, using the
DEFINE command.

Use IMPORTRA to reload the catalog and its data sets.

• 	 If a volume entry other than the catalog entry is included as a mismatched
volume (that is, a data set directory or a data space group mismatch), you
can recover all data sets on the mismatched volumes using the
EXPORTRA command.

• 	 If there are mismatched data sets which are not on volumes which were
mismatched, you can use the VERIFY command for those data sets which
have only mismatched RBAs and EXPORTRA for those with more serious
mismatches.

• 	 For mismatched volumes which require the use of EXPORTRA, use
DELETE with the FORCE option to clean up the volumes and then use a
DEFINE SPACE on the volumes.

• 	 Use IMPORTRA to reestablish the data sets recovered by means of the
EXPORTRA command.

To summarize, an unusable catalog can be reestablished provided that certain
backup procedures made possible by the system copy utility and the REPRO
command are followed. The amount of work required to recover is based on
the currency of the backup data. Factors which affect the currency of the
backup data are activities such as altering the amount of space controlled by
the catalog, defining and deleting data sets, and suballocating space to a
VSAM data set.

A given volume may become wholly or partially unusable because of physical
damage to the volume or because the catalog which owns the volume was
restored to a state which is not synchronized with the volume. If the problem
is due to a catalog restore operation, the procedure outlined under "Unusable
Catalog" can be used to correct the condition. If the problem is due to

Protecting Data with VSAM 93

physical damage to the volume, recovery depends on the availability of
backup copies of the catalogs, volumes, and data sets, and whether the
catalog to which the volume belongs was defined with the RECOVERABLE
attribute. If the catalog was recoverable, then a catalog recovery area (CRA)
on the volume contains duplicate catalog information for each data set on it.
Within this context, this section first discusses recovery.of volumes without
CRAs, then volumes with CRAs.

Volumes Without CRAs

• 	 If a dump of the volume is available and a reset of the entire volume is
desired, you can restore the damaged volume.

• 	 If a dump of the volume is available, reset of nonVSAM data sets is
desired, and the VSAM data sets are accessible (but no reset is desired), •you can do the following:

Recover the accessible VSAM data sets on the volume by using an

EXPORT command.

-	 Restore the volume.

Use a DELETE command with the FORCE option to clean up the

volume and then use a DEFINE SPACE on the volume.

Reestablish the recovered data sets using the IMPORT command.

• 	 If no dump of the volume is available, the volume is damaged only in the
nonVSAM area, and VSAM data sets are accessible, you can do the
following:

- Recover the VSAM data sets on the volume using an EXPORT

command.

-	 Initialize the volume and reestablish nonVSAM data sets.

Use DELETE with the FORCE option to remove the volume from the

catalog and then use a DEFINE SPACE on the initialized volume.

Reestablish the recovered data sets using the IMPORT command.

- If reestablished nonVSAM data sets were cataloged, delete and redefine

the nonVSAM entries.

• 	 If no dump of the volume is available, VSAM data sets are not accessible,
and backup copies of the data sets on the volume exist, you can do the
following: ,.

Initialize the volume and restore nonVSAM data sets.

- Use DELETE with the FORCE option to remove the volume from the

catalog and then use a DEFINE SPACE on the volume.

- If exported copies of VSAM data sets are available, use the IMPORT

command to reestablish them.

If backup copies of the VSAM data sets are available (not, however,

any data sets created by IMPORT), define the data sets using the

DEFINE command, and then use the REPRO command to load the

backup copies onto the volume.

94 Planning for Enhanced VSAM under OS/VS

http:recovery.of

•

Volumes With CRAs

• 	 If a dump of the volume is available and a reset of the entire volume is
desired, you can do the following:

Restore the damaged volume.

- Use LISTCRA with the COMPARE option to see if the volume entry is
mismatched, or if there are data set mismatches.

If there are data set mismatches only, use the VERIFY command for
those data sets which have only mismatched RBAs and EXPORTRA for
those with more serious mismatches.

If there is a volume mismatch other than a general mismatch, all data
sets on the volume must be recovered using the EXPORTRA command.

- If there was a volume mismatch which required the use of EXPORTRA,
use DELETE with the FORCE option to clean up the volume and then
use a DEFINE SPACE on the volume. Keep in mind that a DELETE
FORCE results in the loss of all VSAM data on that volume.

- Use IMPORTRA to reestablish the data sets recovered by means of the
EXPORTRA command.

• 	 If a tape dump of the volume is available and reset of damaged data sets is
desired, you can do the following:

- Recover the accessible VSAM data sets on the volume by using the
EXPORTRA command.

Restore the volume from tape.

- Use an EXPORTRA command to recover the previously inaccessible
VSAM data sets that were restored.

- Use a DELETE command with the FORCE option to clean up the
volume and then use a DEFINE SPACE on the volume.

Reestablish the recovered data sets using the IMPORTRA command.

To summarize, a given volume which is wholly or partially unusable can be
reestablished if backup copies of the data are available. In certain cases, the
current version of the data can be extracted from the unusable volume and
reestablished in the system.

How Is the Integrity of Shared Data Protected?
Data can be shared by different operating systems, by different jobs in a
single system, and by different subtasks in an address space. There are
provisions for controlling data sharing, and, therefore, protecting the integrity
of data.

In determining the level of sharing you intend to allow, you must evaluate the
consequences of a loss of read integrity (reading the correct information) to
the processing program and a loss of write integrity (writing the correct
information) to the data-set owner.

When a read request is issued, VSAM reads an entire control interval into
storage. VSAM forces exclusive control over a control interval when the
control interval is being modified.

Protecting Data with VSAM 95

Sublask Slulring

Data-set sharing is controlled by the interaction of:

• 	 The use of the share option (SHAREOPTIONS parameter) in the Access
Method Services DEFINE command; the share options are specified for
single systems and multiple systems.

• 	 The use of the SHR and OLD parameters in the DD statement that
identifies the data set.

• 	 The type of processing (input or output) for which the data set was
opened.

• 	 The shareability of the DASD device.

• 	 The use of the RESERVE and DEQ macros with shared direct-access
storage devices.

• 	 The use of the ENQ and DEQ macros.

If a data set cannot be shared and is not available when you request to open
it, the request is denied.

When you issue the OPEN macro for an access-method control block, the
Open routine enqueues the names of the components of a cluster. If
DISP=OLD is specified in a DD statement, only the dsname associated with
that DD statement is exclusively reserved by the operating system. That is,
only the cluster name is reserved. To have the cluster component(s) reserved
as well (to avoid having one of them unavailable), you may include DD
statements with DISP=OLD for the component(s) of the cluster. This
practice will ensure that all resources needed to open the data set will be
exclusively reserved before your task is initiated. VSAM .processing of an
open data set is dependent upon actual share options in effect.

Subtasks within a region may share a data set through a sinite DD statement
or through separate DD statements.

When separate DD statements are used and one or more s\lbtasks are to
perform output processing, the DD statements must specify DISP=SHR.
With separate DD statements, several subtasks can share a data set under the
same rules that apply to cross-region sharing: output processing is limited to
update processing and/or add processing that will not change the high-used
RBA.

With a single DD statement, or with multiple DD statements and the ACB
DSN option specified, several subtasks can update a data set concurrently.
This mode of subtask sharing is independent of the DISP specification. If,
however, DISP=SHR is specified, subtask sharing and cross-region sharing
can occur concurrently. To update a record, VSAM forces exclusive control
over the control interval in which the record is stored. A GET macro, issued
for update, gains exclusive control over the control interval in which the
record to be updated is stored. When a subtask has exclusive control of a
control interval, a GET macro, issued for update, against the same control
interval by another subtask is refused, but may be reissued later. Exclusive
control is relinquished when any request is made for data that is outside the
control interval or when an ENDREQ macro is issued.

A read request may be satisfied for a resource that is being shared for both
read and update processing. An update request may be satisfied for a resource
that is being shared for read processing only.

•

•

96 Planning for Enhanced VSAM under OS/VS

•

Cross-Region Suring

Cross-System Suring

Independent job steps in a system may request the use of a data set at the
same time. To share a data set, each job step must specify a disposition of
SHR in its DD statement for the data set. The type of sharing allowed
depends on the share option you specified when the data set was defined.

The following share options apply in a single-system environment:

• 	 Cross-Region SHAREOPTION 1: The data set may be shared by any
number of users for input processing or used by one user for output
processing. With this option, the access method maintains full integrity.

• 	 Cross-Region SHAREOPTION 2: The data set may be used by any
number of users for input processing and by one user for output
processing. With this option, the access method maintains write integrity,
but the user must assume responsibility for read integrity.

• 	 Cross-Region SHAREOPTION 3: The data set may be fully shared. With
this option, the access method does nothing to assure integrity. The user
must assume full responsibility for read and write integrity. Incorrect
write-integrity processing can cause access method program checks, lost or
inaccessible records, uncorrectable data set failures, and other
unpredictable results. This option places very heavy responsibility upon the
user, and it should not be treated lightly.

• 	 Cross-Region SHAREOPTION 4: The data set may be fully shared, and
buffers used for direct processing are refreshed for each request. This
option requires you to use the ENQ and DEQ macros to maintain data
integrity while sharing the data set. Output processing is limited to update
and/or add processing that does not change the high-used RBA if
DISP=SHR is specified. Improper use of ENQ will cause failures similar to
those described under SHAREOPTION 3.

The following sharing options, which you may specify when you define a data
set, apply in a multiple-system environment:

• 	 Cross-System SHARE OPTION 3: The data set may be fully shared. With
this option, the access method does nothing to assure integrity. The user
must assume full responsibility for read and write integrity. Incorrect
write-integrity processing can cause access method program checks, lost or
inaccessible records, uncorrectable data set failures, and other
unpredictable results. This option places very heavy responsibility upon the
user, and it should not be treated lightly.

• 	 Cross-System SHAREOPTION4: The data set may be fully shared, and
buffers used for direct processing are refreshed for each request. The
RESERVE and RELEASE macros are required with this option to
maintain data set integrity. Output processing is limited to update and/or
add processing that does not change the high-used RBA if DISP=SHR is
specified. Data set integrity cannot be maintained unless all jobs having
access to the data set in a cross-system environment specify DISP=SHR.
Improper use of RESERVE will cause failures similar to those described
under SHAREOPTION3.

Job steps of two or more OS/VS systems may gain access to the same data
set regardless of the disposition specified in each step's JCL. To get exclusive
control of a volume, a task in one system must issue a RESERVE macro.

Protecting D!lta with VSAM 97

Note: In a shared-DASD environment, integrity cannot be guaranteed by the
system when users share a data set for output processing. VSAM does,
however, provide assistance in protecting the integrity of the catalog.

Sharillg II Cot/llog AmOllg Synems

A master or user catalog in a VS 1 or VS2 operating system can be shared as a
master or user catalog in a different VS1 or VS2 system. The only exception
to the above is that a master catalog in a VS2 operating system can only be
shared as a user catalog in another VS2 system; it cannot be shared as a
master catalog.

The integrity of data in a catalog shared between systems is completely
controlled by Catalog Management processing routines. The concept of share
options does not apply to catalogs. •

How Can Passwords Be Used to Authorize Access?
Passwords are optional: you do not have to have them to gain access to a data
set. But for added security, you can define passwords for data sets, indexes,
and VSAM catalogs. There are different passwords for various degrees of
data integrity:

• 	 Full access. This is the master password, which allows you to gain access to
a data set and any index and catalog record associated with it for all
operations (retrieving, updating, inserting, deleting). Using this password
to gain access to a catalog record gives you the ability to delete an entire
data set and to alter password information or any other information in the
catalog about a data set, index, or catalog (the master password is required
for the PRINT and REPRO commands).

• 	 Control access. This password authorizes you to use control-interval access
and to correct timestamp mismatches.

• 	 Update access. This password authorizes you to retrieve, update, insert, or
delete records in a data set. It gives you limited access to catalog records:
you can define objects and alter their definitions, but you cannot delete
entries.

• 	 Read access. This is the read-only password, which allows you to examine
data records and catalog records, but not to add, alter, or delete them.

The passwords associated with a data set, index, or catalog are specified
through Access Method Services when you define it. This information is kept
in the catalog, and when a processing program attempts to open a data set,
the security-verification routine checks whether a password is required and ,
whether the correct one is given. Computer operators and communications
terminal users may also be given the opportunity to supply the correct
password, and you can specify how many times they may try to do so.

Besides VSAM password protection, you may also have your own routine to
check a requester's authority. You can define security-authorization records
in the master catalog or in a user catalog to contain whatever special
password information you wish, for use by your authorization routine. VSAM
transfers control to your routine when a requester gives a correct password
other than the master password.

98 Planning for Enhanced VSAM under OS!VS

L

•

•

How Are Programs Restarted FoUowing a Failure?
In general, the checkpoint/restart program for VSAM data sets is similar to
that provided by OS/VS for ISAM and BDAM.

Recording Clleckpoint lll/ormatioll

To restart after a failure that terminated processing, it is necessary to
determine the status of processing programs when the failure occurred. A
processing program defines a checkpoint by issuing a CHKPT macro
instruction. The checkpoint program issues a VSAM temporary CLOSE
macro to update the catalog. It then records information about VSAM data
sets in a checkpoint data set. If a failure occurs, the latest checkpoint record
can be used to reconstruct the situation that prevailed when the checkpoint
was taken.

Restarting the Processing ProgrtUII

Restart is the procedure of processing the checkpoint record and giving
control back to the processing program interrupted by the failure. Different
types of restart are distinguished for VSAM, for:

• 	 Entry-sequenced output data sets. An entry-sequenced output data set is
restored by the elimination of all records that have been added at the end
since the checkpoint.

• 	 Input data sets or key-sequenced data sets. A data set that was open for
input at the checkpoint or a key-sequenced data set is prepared for restart
by the restoration of any statistical information (such as number of records
inserted) to its checkpoint status.

RestrictitJlls alld OptitJIIS lor Restarting a Program

The VSAM DD parameter, AMP, has a subparameter for specifying
checkpoint/restart options that handle two special situations in restarting a
processing program:

• 	 Modifications other than records added sequentially to the end of an
entry-sequenced data set. The restart program cannot restore a data set to
its checkpoint status if there have been internal modifications to it since
the checkpoint, and the restart program will normally not attempt restart
processing .

• 	 Addition of records to the end of a data set by way of a job step other than
the job step that issued the checkpoint. Any records added to the end of an
entry-sequenced data set will normally be erased in restoring the data set
to its checkpoint status.

The AMP options for checkpoint/restart are: to let restart take its normal
action for either situation, to override either one or the other of the two
actions, or to override both. If you override the check for internal
modification, your processing program is restarted, even though the data set it
was processing cannot be restored; if you override the erasure of data at the
end of a data set, your processing program is not restarted, if the catalog has
been updated, unless you also override the check for modification.

For more information about checkpoint/restart with OS/VS, see OS/VS
Checkpoint/ Restart.

Protecting Data with VSAM 99

How Can the Causes of Problems Be Determined?
VSAM offers several diagnostic aids for you to determine what's wrong when
things don't work.

Exits to Yo", Ewor-AlUllysis Ro"tbaes

VSAM provides optional exits to routines you supply to handle error
situations. If you provide the exit routines for analyzing errors, your
processing program can investigate many errors and decide what to do in an
orderly manner. Not only physical errors, but also logical errors that may arise
out of unlikely combinations of events in a complex application can be
handled by exits.

•
YSAM Messages

The messages put out by VSAM for the operator and programmer are
designed to help them understand both the nature of the problem and the
exact steps to take to correct it. Other messages that originate with VSAM are
the diagnostic messages that are made available to your physical-error
analysis routines and the open/close/end-of-volume messages that are
printed in a special message area provided by your processing program.

Gelleralized Tmce FacUity (GTF)

GTF is an optional program of OS/VS that continually records, as they occur,
events of selected classes that are necessary to trace a processing program.
You must weigh the relative values of this diagnostic ability and the added
processing time required. It is a debugging tool and a maintenance aid: it
produces unformatted output. To format and print this output, use the Edit
function of the HMDPRDMP or AMDPRDMP service aid. For information
about GTF or the Edit function, see OS/VSl Service Aids or OS/VS2
System Program Library: Service Aids.

YSAM Debug Switches

The CVT (Communications Vector Table) contains a field that, when set,
allows you to run a VSAM program that contains an error and, when the
error occurs, to issue a problem determination message and to save certain
work areas that would otherwise be destroyed.

YSAM SNAP D"mp Facility (YS2 OIIly)

The VSAM SNAP dump facility in VS2 provides a dump of VSAM-owned
control blocks in CSA (common service area). Control blocks that are built
for GSR (global shared resources) data sets reside in CSA subpools.

Cross-Reference Aids

Cross-reference aids, available on microfiche, provide two types of valuable
information:

• 	 Symbolic name usage table, which lists each symbolic name that appears in
the VSAM code listings, lists each module that refers to the symbolic
name, and specifies how each module refers to the symbolic name.

• 	 Macro instruction usage table, which lists each macro instruction that is
issued in VSAM listings, specifies the total number of times the macro

100 Planning for Enhanced VSAM under OS/VS

instruction is issued, lists each module that issues the macro instruction,
and specifies the number of times the module issues the macro instruction.

The microfiche titles are: OS/VSl VSAM Cross~eference, OS/VS2
VSAM Cross Reference, and OS/VS2 Catalog,Management Cross
Reference.

•

Protecting Data with VSAM 101

..•

f

I

..

•

GLOSSARY

The following terms are defined as they are used in this book.
If you do not find the tenn you are looking for, refer to the
index or to the IBM Data Processing Glossary, GC20-1699.

Access Method Services: A multifunction service program that
defines VSAM data sets and allocates space for them, builds
alternate indexes, converts indexed sequential data sets to
key-sequenced data sets with indexes, modifies data-set
attributes in the catalog, reorganizes data sets, facilitates data
portability between operating systems, creates backup copies
of data sets and indexes, provides for catalog recovery, helps
make inaccessible data sets accessible, and lists data set
records and catalog records .

addressed direct access: The retrieval or storage of a data
record identified by its relative byte address, independent of
the record's location relative to the previously retrieved or
stored record. (See also keyed direct access, addressed
sequential access, and keyed sequential access.)

addressed sequential access: The retrieval or storage of a data
record in RBA sequence relative to the previously retrieved
or stored record. (See also keyed sequential access, addressed
direct access, and keyed direct access.)

alteraate Index: A collection of index entries organized by the
alternate keys of its associated base data records.

alternate iDdex duster: The data and index components of an
alternate index.

alternate key: One or more consecutive characters taken from
a data record and used to build an alternate index or to locate
one or more base data records via an alternate index. (See
also generic key, key, key field, and prime key.)

appIkation: As used in this publication, the use to which an
access method is put or the end result that it serves;
contrasted to the internal operation of the access method.

badlup data set: A copy that can be used to reconstruct a
damaged data set

base duster: A key-sequenced or entry-sequenced cluster over
which one or more alternate indexes are built.

catalog: (See master catalog and user catalog.)

catalog recovery area: (See CRA.)

duster: A named, logical entity comprising one or more
components and defining relationships between them.

coiatiDg sequence: An ordering assigned to a set of items, such
that any two sets in that assigned order can be collated. As
used in this pUblication, the order defined by the System/370
8-bit code for alphabetic, numeric, and special characters.

component: A named, cataloged collection of stored records.
The lowest member in the data structure hierarchy. A data
set contains at least one component, and the component can
contain no named subsets.

compression: (See key compression.)

control area: A group of control intervals used as a unit for
fonnatting a data set before adding records to it. Also, in a
key-sequenced data set, the set of control intervals pointed to
by a sequence-set index record; used by VSAM for
distributing free space and for placing a sequence-set index
record adjacent to its data.

controI-area spit: The movement of the contents of some of
the control intervals in a control area to a newly created
control area, to facilitate the insertion or lengthening of a
data record when there are no remaining free control
intervals in the original control area.

controllnte"a1: A fixed-length area of auxiliary-storage space
in which VSAM stores records and distributes free space. It is
the unit of infonnation transmitted to or from auxiliary
storage by VSAM, independent of physical record size.

coiItroI-lnte"a1 access: The retrieval or storage of the contents
of a control interval.

~e"" spit: The movement of some of the stored
records in a control interval to a free control interval, to
facilitate the insertion or lengthening of a record that won't
fit in the original control interval.

CRA: Catalog recovery area. An entry-sequenced data set
that exists on each volume owned by a recoverable catalog,
including the catalog volume itself. The CRA contains
self-describing records as well as duplicates of catalog records
that describe the volume.

data Integrity: Preservation of data or programs for their
intended purpose. As used in this publication, the safety of
data from inadvertent destruction or alteration.

data record: A collection of items of infonnation from the
standpoint of its use in an application and not from the
standpoint of the manner in which it is stored. (See also
stored record.)

data seedy: Prevention of access to or use of data or
programs without authorization. As used in this publication,
the safety of data from unauthorized use, theft, or purposeful
destruction.

lIata set: The major unit of data storage and retrieval in the
operating system, consisting of data in a prescribed
arrangement and described by control infonnation to which
the system has access. (See also key-sequenced data set and
entry-sequenced data set.)

data s ..ce: A storage area defined in the volume table of
contents of a direct-access volume for the exclusive use of
VSAM to store data sets, indexes, and catalogs.

direct access: The retrieval or storage of data by a reference to
its location in a data set rather than relative to the previously
retrieved or stored data. (See also addressed direct access
and keyed direct access.)

distrlluted free ..,ace: Space reserved within the control
intervals of a key-sequenced data set for inserting new
records into the data set in key sequence; also, whole control
intervals reserved in a control area for the same purpose.

entry sequence: The order in which data records are physically
arranged (according to ascending RBA) in auxiliary storage,
without respect to their contents. (Contrast to key sequence.)

entry-sequenced ... set: A data set whose records are
loaded without respect to their contents, and whose relative
byte addresses cannot change. Records are retrieved and
stored by addressed access, and new records are added at the
end of the data set.

Glossary 103

extent: A continuous space allocated on a direct-access
storage volume, reserved for a particular data space or data
set.

field: In a record or a control block, a specified area used for
a particular category of data or control information.

free space: (See distributed free space.)

generic key: A leading portion of a key, containing characters
that identify those records that are significant for a certain
application. For example, it might be desirable to retrieve all
records whose keys begin with the generic key AB, regardless
of the full key values.

horizontal pointer: A pointer in an index record that gives the
location of another index record in the same level that
contains the next key in collating sequence; used for keyed
sequential access.

Index: As used in this publication, an ordered collection of
pairs, each consisting of a key and a pointer, used by VSAM
to sequence and locate the records of a key-sequenced data
set; organized in levels of index records. (See also alternate
index, index level, index set, and sequence set.)

Index build: The automatic process of creating an alternate
index through the use of Access Method Services.

Index entry: A key and a pointer paired together, where the
key is the highest key (in compressed form) entered in an
index record or contained in a data record in a control
interval, and the pointer gives the location of that index
record or control interval.

index level: A set of index records that order and give the
location of records in the next lower level or of control
intervals in the data set that it controls.

index record: A collection of index entries that are retrieved
and stored as a group.

index replcation: The use of an entire track of direct-access
storage to contain as many copies of a single index record as
possible; reduces rotational delay.

index set: The set of index levels above the sequence set. The
index set and the sequence set together comprise the index.

index upgrade: The process of reflecting changes made to a
base cluster in its associated alternate indexes.

integrity: (See data integrity.)

ISAM interface: A set of routines that allow a processing
program coded to use ISAM (indexed sequential access
method) to gain access to a key-sequenced data set with an
index.

key: As used in this publication, one or more consecutive
characters taken from a data record, used to identify the
record and establish its order with respect to other records.
(See also key field, alternate key, and generic key.)

key compression: The elimination of characters from the front
and the back of a key that VSAM does not need to distinguish
the key from the preceding or following key in an index
record; reduces storage space for an index.

key field: A field, located in the same position in each record
of a data set, whose content is a key of a record.

key sequence: The collating sequence of data records,
determined by the value of the key field in each of the data

records. May be the same as, or different from, the entry
sequence of the records.

key-sequenced data set: A data set whose records are loaded in
key sequence and controlled by an index.

keyed direct access: The retrieval or storage of a data record
by use of an index that relates the record's key to its relative
location in the data set, independent of the record's location
relative to the previously retrieved or stored record. (See also
addressed direct access, keyed sequential access, and
addressed sequential access.)

keyed sequential access: The retrieval or storage of a data
record in its key sequence relative to the previously retrieved
or stored record. (See also addressed sequential access, keyed
direct access, and addressed direct access.)

mass sequentlllllDsertlon: A technique VSAM uses for keyed
sequential insertion of two or more records in sequence into a
collating position in a data set: more efficient than inserting
each record directly.

master catalog: A key-sequenced data set with an index
containing extensive data-set and volume information that
VSAM requires to locate data sets, to allocate and deallocate
storage space, to verify the authorization of a program or
operator to gain access to a data set, and to accumulate usage
statistics for data sets.

password: A unique string of characters stored in a catalog
that a program, a computer operator, or a TSO terminal user
must supply to meet security requirements before a program
gains access to a data set.

path: A named, logical entity composed of one or more
clusters, which defines a means of access to a cluster (an
alternate index and its base cluster, for example).

physical record: A physical unit of recording on a medium, for
example, the physical unit between address markers on a
disk.

pointer: An address or other indication of location. For
example, an RBA is a pointer that gives the relative location
of a data record or a control interval in the data set to which
it belongs. (See also horizontal pointer and vertical pointer.)

portabllty: The ability to use VSAM data sets with different
operating systems. Volumes whose data sets are cataloged in
a user catalog can be demounted from storage devices of one
system, moved to another system, and mounted on storage
devices of that system. Individual data sets can be transported
between operating systems using Access Method Services.

prime index: The index component of a key-sequenced data
set that has one or more alternate indexes. (See also index
and alternate index.)

prime key: The key of reference for a base cluster,
key-sequenced data set when it was loaded. (See also key.)

random access: (See direct access.)

RBA: Relative byte address. The displacement of a data
record or a control interval from the beginning of the data set
to which it belongs; independent of the manner in which the
data set is stored.

record: (See index record, data record, stored record.)

relative byte address: (See RBA.)

relative record data set: A data set whose records are loaded
into fixed-length slots.

104 Planning for Enhanced VSAM under OS/VS

,

relative record Dumber: A number that identifies not only the
slot, or data space, in a relative record data set but also the
record occupying the slot.

repDcatioD: (See index replication.)

reusable data set: A VSAM data set that can be reused as a
work file, regardless of its old contents.

RPL string: A set of chained RPLs (the set may contain one or
more RPLs) used to gain access to a VSAM data set by action
macros (GET, PUT, etc.). Two or more RPL strings may be
used for concurrent direct or sequential requests made from a
processing program or its subtasks.

sec:urtty: (See data security.)

segmeDt: The portion of a stored record contained within a
control interval. A stored record may consist of one or more
segments. (See spanned record.)

sequeDce cheddDg: The process of verifying the order of a set
of records relative to some field's collating sequence.

sequeDce set: The lowest level of the index of a key-sequenced
data set; it gives the locations of the control intervals in the
data set and orders them by the key sequence of the data
records they contain. The sequence set and the index set
together comprise the index.

seqoeotlal access: The retrieval or storage of a data record in

either its entry sequence or its key sequence, relative to the

previously retrieved or stored record. (See also addressed

sequential access and keyed sequential access.)

shared resources: A set of functions that permits the sharing of
a pool of I/O-related control blocks, channel programs, and
buffers among several VSAM data sets open at the same
time.

skip sequeDtial access: Keyed sequential retrieval or storage of
records here and there throughout a data set, skipping
automatically to the desired record or collating position for
insertion: VSAM scans the sequence set to find a record or a
collating position. May not be used to retrieve records in
descending key sequence.

spaIIIIed record: A logical record whose length exceeds control
interval length, and as a result, crosses, or spans, one or more
control interval boundaries within a single control area.

stored record: A data record, together with its control
information, as stored in auxiliary storage.

upgrade set: All the alternate indexes that VSAM has been
instructed to update whenever there is a change to the data
component of the base cluster.

user catalog: An optional catalog used in the same way as the
master catalog and pointed to by the master catalog. It

'lessens contention for the master catalog and facilitates
volume portability.

vertical pointer: A pointer in an index record of a given level
that gives the location of an index record in the next lower
level or the location of a control interval in the data set
controlled by the index.

Glossary 105

•

J

..

•

INDEX

For additional information about any subject listed in this
index, refer to the publications that are listed under the same
subject in either OS/VSl Master Index, GC24-5104, or
OS/VS2 Master Index, GC28-0693.

This index makes no page references to the glossary.

A
ACB macro 60

access (see keyed access and addressed access)

access method, requirements for 14

Access Method Services

ALTER command 52

altering sequence of command execution 51

BLDINDEX command 54

CNVTCAT command 58

conditional statements 51

DEFINE command 52

DELETE command 53

EXPORT command 55

EXPORTRA command 58

how used 51

IMPORT command 57

IMPORTRA command 58

LISTCAT command 54

PRINT command 55

REPRO command 54

summary of functions 51

VERIFY command 33

access-method control block

changing 63

defining with ACB macro 60

more than one with same DD statement 60

accessibility of data, testing 57

addressed access

deletion with key-sequenced data set 38

differences between entry- and key-sequenced data

sets 36

marking records inactive with entry-sequenced data

sets 37

positioning VSAM for subsequent access 37

retrieval 37

storage 37

addressed direct access 37

addressed sequential access 37

addressing data records 21

advanced control program segment feature 17

allocating space

by range of key values 52,72

comparison with ISAM 71

dynamically 65,69

for catalog 45

how specified 45

independently of device 52

on unmounted volumes 39

restriction 39

allocation of track 20

ALTER command of Access Method Services 52

alternate index

components 29-31

definition 29

how it is built 54

how it is defined 52

illustration 30

maintenance 31

pointers 31

records 29

alternate index path

definition 29

illustration 30

keyed processing 34

open for update 32

alternate key

compression 30

definition 29

restriction with spanned records 29

Amendments, Summary of 11

AMDPRDMP service aid 100

AMP JCL DD parameter 66

checkpoint/restart 99

general description 66

arm movement, minimizing 79

assembler language 69

asynchronous processing 62

attributes of a data set, changing 52

authorization to process a data set 98

auxiliary storage devices

minimizing rotational delay 79

space required for index replication 79

VSAM can be used with 17

B
backing up a catalog 55

backing up a data set 57

backup and recovery procedures, establishing 85

base cluster

definition 29

restriction 29

basic direct access method (BDAM) 27

BDAM (basic direct access method) 27

beginning sequential access 33,36

BLDINDEX command of Access Method Services 54

BLDVRP macro 64

buffer, I/O

defining minimum space 52

effect on performance 77

index-set records resident in virtual storage 78

specifying size and number 60

building a VSAM resource pool 64

building an alternate index 54

Index 107

c
catalog (see OS system catalog, user catalog, VSl VSAM

master catalog, MVS master catalog)

catalog control area sizes 45

catalog back-up 55

catalog backup and recovery 86

unload and reload 86

catalog protection 83

catalog record

data set 39

deleting 53

listing 54

modifying 52

using a model to define 52

volume 39

catalog recovery area

defining 52

listing 57

gaining access to 58

catalog space

allocating 45

using 47

catalog structure

data component 43

index component 43

catalog unload/reload function 55

catalog unusable

summary 93

with CRAs 93

without CRAs 93

creating backup copies 86

cataloging nonVSAM data sets 40

cataloging OS data sets 41

causes of problems, determining 99

central processing units (CPUs)

models 17

sharing data among 97

chaining request parameter lists 62

changes in relative byte address

exit routine for recording 61

key-sequenced data set 24

changing a record's length (see shortening a record and

lengthening a record)

changing attributes of a data set

by reorganizing data sets 52

in catalog record 52

changing control blocks and lists 63

character elimination, in keys 24

CHECK macro 64

checking write operations for accuracy 83

checkpoint! restart

recording checkpoint information 98

restarting processing 99

restrictions 99

specifying in AMP JCL DD parameter 99

CHKPT macro 99

CLOSE macro

disconnecting program from data 59

indicating the end of a data set 82

ISAM interface 73

cluster
definition 19

CNVTCAT command of Access Method Services 58

COBOL language 69

collating sequence 19
(see also key sequence)

combining data sets 54

commands of Access Method Services (see Access Method

Services)
(see also macros)

compression, key 24

concatenated data sets, not allowed 66

concurrent request processing

definition 32

number of I/O buffers used in 60

protecting data during 95

specifying the number of requests 61

conditional statements, Access Method Services 51

conditional swapping feature 17

configuration, system 17

connecting a user catalog to the master catalog 57

connecting program to data 59

control area

definition 20

preformatting 82

relation to control interval 19

relation to extent of data set 20

relation to sequence set 23,79

illustration 24,80

size 18,24

split 26

control block

access-method control block 60

changing 63

exit list 61

request parameter list 61

control information in stored record 21

control interval

definition 19

determining size 19

effect of size on performance 79

how it helps protect data 82

number in a control area 19

per control area 21

relation to control area 19

size independent of physical record size 18

spanning 22

split 26

control-interval access

definition 32

specifying in the macros 62

control program support feature 17

conversational time sharing 69
 •
converting data sets to VSAM format

indexed sequential data sets 73

REPRO command of Access Method Services 54

converting an OS catalog to a VSAM catalog 58

copying catalogs 55

copying data sets 54,55

core (see virtual storage)

CPUs (central processing units)

models 17

sharing data among 97

creating a data set 32

cross-region sharing of data 97

cross-system sharing of data 97

108 Planning for Enhanced VSAM under OS/VS

•

D
DASDs (direct-access storage devices)

minimizing rotational delay 79

space required for index replication 79

VSAM can be used with 17

DAT (dynamic address translator) 17

data component, catalog 43

data format 21

data integrity

checkpoint/restart 98

concurrent request processing 32

definition 16

determining the causes of problems 99

options 81

passwords 98

reestablishing 57

shared data 95

data management requirements for access method 14

data portability

data-set 16,55

illustration comparing data-set and volume portability 56

volume 55

data protection 16

~ee also data integrity and data security)

data record

illustration 21

method of addressing 21

(see also relative byte address)

method of storing 19

restriction 21

data recovery 57

data repair 89

data reset 89

data security

authorization routine 98

definition 16

passwords 98

data set

allocation 39,51,52

backup copy 55

catalog record 39

copying 54

defining 52

deleting 53

extents 18

illustration 18

listing 54

maximum size 18

merging data sets 57

organization 19

partial volume mounting 66

preformatting 82

recovery 57

relative record 28

reorganizing 52

reusing 32

sequential 54

sharing 95

transporting 55

data space

allocation 52

definition 18

extents 18

illustration 21

data-set entry in catalog 39

data set inaccessible 88,91

summary 92

data set not properly closed 88,90

summary 91

data-set portability 55

data set protection 83

DD statement 65,66

debugging 99

debugging tool (Generalized Trace Facility) 100

DEFINE. command of Access Method Services 52

DELETE command of Access Method Services 53

deleting a catalog record 53

deleting a data set 53

deleting a record

addressed 38

changing relative byte addresses 24

comparison with ISAM 71

keyed 34

marking record inactive with entry-sequenced data set 38

reclamation of space 24

deleting a VSAM resource pool 64

deleting an alternate index 53

DEQ macro 97

determining causes of problems 99

devices, auxiliary storage

minimizing rotational delay 79

space required for index replication 79

VSAM can be used with 17

diagnostic aids 99

direct access

addressed 36

definition 32

keyed 33

matching search argument to key 33

positioning for subsequent sequential access 33

direct-access storage devices (DASDs)

minimizing rotational delay 79

space required for index replication 79

VSAM can be used with 17

disconnecting a program from data 59

disconnecting a user catalog from the master catalog 55

disk storage

(see also direct-access storage devices)
minimizing arm movement 79

displaying fields of the VSAM catalog 63

distributed free space

distribution 24

effect on performance 77

estimating growth 77

for inserting records 24

protecting data 81

reclamation 24

DLVRP macro 64

DOS/VS and OS/VS

data-set portability 55

volume portability 55

dynamic address translator (DAT) 17

dynamic allocation 65,57

dynamic string allocation 69

Index 109

E
end of data set, method of indicating 57

end-of-data set processing 61

end-of -file indicator

preformatting 82

updated by CLOSE 59

ENDREQ macro 64

enhancements

alternate indexes 29

dynamic string allocation 60

GET-previous processing 32

recovery of data 83

relative record data sets 19

reusable data sets 32

spanned records 22

ENQ macro 97

entry (see catalog entry and index entry)

entry sequence

affected by control-interval split 26

definition 19

entry-sequenced data set

(see also data set)

comparison with other types 22

definition 19

keeping track of relative byte addresses 27

EODAD exit routine 61

ERASE macro

addressed access 38

initiating access 64

keyed access 33,34

erasing a data set 53

erasing a record

addressed 38

changing relative byte addresses 24

comparison with ISAM 71

keyed 34

marking record inactive with entry-sequenced data set 38

reclamation of space 24

error analysis 99,61

error messages 100,61

error-exit routine 99,61

establishing backup and recovering procedures 85

estimating data-set growth 77

evaluating system usage with System Management

Facilities 70

examining control blocks and lists 63

exclusive control for update 96

exit list

changing 63

defining with the EXLST macro 61

exit routines 41,99

EXLST macro 61

EXPORT command of Access Method Services 55

EXPORTRA command of Access Method Services 58

extent

data set 19

data space 19

definition 19

relation to control area 19

extracting catalog information for data portability 55

F
failures, determining cause of 99

features

conditional swapping 17

control program support 17

dynamic address translator 17

fixed-head storage 17

fixed-length records 21

forced deletion of catalogs 53

forced deletion of volumes 53

format of stored data 21

formatting data set before storing records 82

free space (see distributed free space)

functions of VSAM 32

G
GENCB macro 63

Generalized Trace Facility (GTF) 100

generating control blocks and lists 63

generation data group

in VS2 master catalog 40

• defining in VS2 	 52

restriction in VS I 40

generic key (partial key)

definition 33

searching for a match 33,62

GET macro

initiating access 64

positioning 33,36

GETIX macro 64

GET-previous processing

addressed access 36

definition 32

keyed access 33

getting a record

addressed 36

keyed 34

positioning 34,36

skipping 34

global shared resources 64

growth, estimating data-set 77

GTF (Generalized Trace Facility) 100

H
high-key range records 44

high-level languages 69

HMDPRDMP service aid 100

horizontal pointer

definition 24

illustration 24

skip sequential access 34

how Access Method Services is used 51

how existing programs that use ISAM can be used with

VSAM 70

how programs are restarted following a failure 99

how TSO can be used with VSAM 69

110 Planning for Enhanced VSAM under OS/VS

I

IEHDASDR 84

defining minimum space 60,52

effect on performance 78

index-set records resident in virtual storage 78

relation to processing program work area 33,62

specifying size and number 60

I/O errors 61

IMPORT command of Access Method Services 57

IMPORTRA command of Access Method Services 58

improved control interval access (ICIP) 98

inaccessible data set 88,91

summary 92

inaccessible volume 88,93

summary 95

withCRAs 95

without CRAs 94

index

comparison with ISAM index 70

illustration 24

performance options 78

purpose 24

requires minimal updating 81

structure 24

upgrade 31

index component, catalog 43

index entry

description 24

key compression 24

index record

catalog 44

entries 24

kept in virtual storage 78

key compression 24

levels 24

replication 79

retrieval 64

sequence-set record adjacent to control area 79

storage 64

index set

definition 24

description 24

illustration 24

location 44

physical placement in relation to sequence set 79

records resident in virtual storage 78

index upgrade 31

indexed sequential access method (ISAM)

(,see also indexed sequential data set and ISAM interface)

comparison with VSAM 70

• 	 indexed sequential data set

converting to VSAM format 73

listing 54

input/output buffer (see I/O buffer)
inserting a record

changing relative byte addresses 27

control-area split 26

control-interval split 25

mass sequential insertion 35

protecting data 81

without split 24

integrity of data

checkpoint/restart 98

definition 16

determining causes of problems 99

options 81

passwords 98

shared data 95

interface (see ISAM interface)

interpreting ISAM requests 73

intraregion sharing of resources 64

ISAM (indexed sequential access method)

(,ree also indexed sequential data set and ISAM interface)
comparison with VSAM 70

ISAM data set (see indexed sequential data set)

ISAM interface

converting data sets and job control language 73,54

operation 73

purpose 73

restrictions 74

J
JCL (see job control language)
job control language (JCL)

AMP DD parameter 66

defining a VSAM data set 65

invoking dynamic allocation in VS2 65

merging non VSAM data sets 65

processing a VSAM data set 65

restricted parameters 66

specifying VSAM catalogs 66

JOBCAT JCL statement 66

journalizing transactions 61

K
key

allocating space on volumes by range 52

alternate

compression 24

generic (partial) 34

nonunique 29,30

prime 31

use in index 24

key field

description 24

unique value 19

key-range allocation 	 52,73
key sequence

definition 19

sequence set 27

key-sequenced data set

(see also distributed free space, index, and data set)

comparison with entry-sequenced data set 22

definition 19

keeping track of relative byte addresses 33

keyed access

deletion 36

matching search argument to key 24

positioning 34

retrieval 34

skipping 34

space reclamation 35

storage 35

keyed direct access 34

keyed sequential access 34

Index 111

L
languages, programming 69

lengthening a record

changing relative byte addresses 24

control-area split 27

control-interval split 26

entry-sequenced data set 38

without split 26

levels of index

illustration 24

index set 24

sequence set 24

LISTCAT command of Access Method Services 54

LISTCRA mismatches 88

listing

catalog records 54

data sets 54

loading records into a data set

comparison with ISAM 71

preformatting options 82

REPRO command of Access Method Services 54

using a processing program 32,71

local shared resources 64

locate processing

retrieval 34,62
simulation by ISAM interface 73

logical record (see data record)

logical-error analysis exit routine 61

low-key range records 44

M
machines VSAM can be used with

central processing units 17

storage devices 17

macros

(see also Access Method Services for commands)

ACB 60

BLDVRP 64

CHECK 64

CHKPT 99

CLOSE 59

DEQ 96

DLVRP 64

ENDREQ 64

ENQ 96

ERASE 36,38,64

EXLST 61

GENCB 60

GET 34,37,64

GETIX 64

MODCB 63

MRKBFR 65

OPEN 59

POINT 34,37,64

PUT 34,36,64

PUTIX 64

RELEASE 97

RESERVE 97

RPL 61

SCHBFR 65

SHOWCAT 63

SHOWCB 63

summary of VSAM macros 59

TESTCB 63

WRTBFR 65

112 Planning for Enhanced VSAM under OS/VS

main storage (see virtual storage)
maintaining an alternate index 31

making a data set portable 55

marking a buffer for output 65

mass sequential insertion 20,35
master password 98

master catalog, copying 42

maximum size of a control interval 19,35
maximum size of a data set 19

measuring system usage 71

memory (see virtual storage)
merging data sets 54

messages 100,63
method of indicating the end of a data set 82

minimizing secondary allocations 84

mismatches (detected by LISTCRA) 88

MODCB macro 63

modifying a catalog record 52

modifying control blocks and lists 63

mounting only some volumes of a data set 66

moving data sets from one operating system to another 55

MRKBFR macro 65

N
nonunique keys

association with pointers 31

definition 31

illustration 31

nonVSAM data sets

in VSAM catalogs 38

noting RBA changes 61

o
OPEN macro

connecting program to data 59

ISAM interface 73

operator entering passwords 98

optimizing the performance of VSAM 77

options

in defining a data set 52

in preformatting a data set 82

in transporting data 55

performance 77

types of access 32

user catalogs 39

organization of a data set 19

(see also data set)

OS system catalog (see also user catalog, VSl VSAM master

catalog, MVS master catalog)

comparison with MVS master catalog 42

order of search 40
 •
points to VSI VSAM master catalog 40

relation to user catalogs 40

OS/VS and DOS/VS

data-set portability 55

volume portability 55

overflow area

(see also distributed free space)

comparison with ISAM 71

p
parameter list

exit list 61

request parameter list 61

partial key (generic key)

definition 34

searching for a match 34,52

passwords 98

path (see alternate index path)

performance

catalog 80

'l 	 general discussion 77

improved by control-interval size 77,79

improved by distributed free space 77

index options 78

illustration 80

permanent exportation 55

physical record (see stored record)

physical-error analysis

exit routine 61

ISAM interface 73

PL/I language 69

POINT macro

addressed 36

initiating access 64

keyed 33,35

pointer

catalog 39

index 24

portability

data-set 55

illustration 56

volume 55

positioning for sequential access

by entry sequence 36

by key sequence 33

done by PO INT macro 64

for GET-previous 34

for relative record data set 34

with concurrent access 32

preformatting end of data set 82

prime index

prime key

PRINT command of Access Method Services 55

printing

•

catalog entries 55

data sets 55

problem analysis 99

•
processing types

(see also keyed access and addressed access)
specifying 60,61

program residence (VSAM routines)

deleted by the Close routine 59

illustration 13

loaded by the Open routine 59

programming languages 69

protecting data 81,83

protecting catalogs and data sets 83

protective measures 83

(see also data integrity and data security)

PUT macro

addressed 38

initiating access 64

keyed 34,35

PUTIX macro 64

Q
QSAM (queued sequential access method) 27

queued sequential access method (QSAM) 27

R
random access (see direct access)

range of relative record numbers 27

ranges of key values for space allocation 52

RBA (see relative byte address)

reading a record

addressed 36

keyed 34

positioning 34,36

skipping 34

reclamation of space

entry-sequenced data set 37

key-sequenced data set 35

record

catalog high-key range 44

catalog low-key range 44

data record 21

index record 24

maximum size 22

stored record 21

recording RBA changes 61

recoverable catalogs 87,93,95

definition 83

specifying 52

recovering data 57

recovering from catalog failure 55.83

recovery tools 83

reestablishing data integrity 57

regions sharing data 97

relative byte address (RBA)

changeability in key-sequenced data set 24

definition 21,22

keeping track of

entry-sequenced data set 26

key-sequenced data set 24

unchangeability in entry-sequenced data set 22

relative record data set

comparison with other types 23

definiton 19

illustration 28

keyed access 34

processing 27,32

relative record number

definition 27

use as a key 27

relative record sequence 19

RELEASE macro 97

relinquishing volume ownership 53

reload function 55

remote terminals 69

removing damaged volumes 53

reorganizing data sets

automatically through control-area split 73

by copying 54

comparison with ISAM 73

replication of index records 79

REPRO command of Access Method Services 54

request parameter list

changing 63

defining with the RPL macro 61

requesting access to a data set 64

Index 113

requirements

storage (see storage requirements)

system 17

requirements for an access method 14

RESERVE macro 97

residence of VSAM routines

deleted by the Close routine 59

illustration 13

loaded by the Open routine 59

restart 99

resume loading 35

retrieving a record

addressed 37

keyed 34

positioning 34

skipping 34

retrieving an index record 64

reusable data set 34

reusing space in a data set

entry-sequenced data set 38

key-sequenced data set 35

relative record data set 35

rotational delay, minimizing 79

RPLmacro 61

s
SAM data set (see sequential data set)

SCHBFR macro 65

searching a buffer pool 65

searching catalogs

in VSl 40

in VS2 41

performance 80

secondary storage (see auxiliary-storage devices)
security of data

authorization routine 98

definition 16

passwords 98

sequence set

definition 24

description 24

determining key sequence 26

location 45

physical placement in relation to index set 79

relation to control areas 24

sequence-set records adjacent to the data set 79

sequential access

addressed 36

definition 32

keyed 34

positioning 34,36

skipping 34

sequential-access storage devices

(see also sequential data set)

data-set transporting 55

sequential data set

converting 54

listing 54

form in which a VSAM data set is transported between

systems 55

service aids 100

service program (see Access Method Services)

share options 95,97

sharing data

between regions 97

between subtasks 95

between systems 97

sharing resources

across a system 64

restriction 64

within a region 64

shortening a record

changing relative byte addresses 24

entry-sequenced data set 38

reclamation of space 38

SHOWCAT macro 63

SHOWCB macro 63

skip sequential access

definition 34

retrieval 34

storage 35

SMF (System Management Facilities) 70

space reclamation

entry-sequenced data set 38

key-sequenced data set 35

relative record data set 35

spanned records 21

special uses of user catalogs 39

speed (see performance)

split

control-area 26

control-interval 26

STEPCAT JCLstatement 66

storage devices

space required for index replication 79

VSAM can be used with 17

storage requirements

free space 77

I/O buffers 60

index options 78

work areas 61

stored record

definition 21

illustration 21

maximum size 21

storing a record

addressed 38

control information describing a record 21

keyed 34

mass sequential insertion 35

skipping 35

storing index records 64

substituting processing parameters by way of JCL

subtasks sharing data

(see a/so concurrent request processing)
protection 95

Summary of Amendments 11

SYNAD exit routine

specifying the exit 61

using ISAM interface 73,74

synchronizing asynchronous requests 64

synchronous processing 62

System Management Facilities (SMF) 70

system requirements 17

system usage evaluation with System Management

Facilities 70

,
66,75

•

114 Planning for Enhanced VSAM under OS/VS

System/370

models 17

sharing data among central processing units 97

systems sharing data 97

T
tape storage

(,see also sequential data set)

data-set transporting 55

tasks sharing data 95

temporary CLOSE macro

functions 60

indicating end of.data set 82

temporary data sets, not allowed 66

temporary exportation 55

terminals 69

terminating a request before completion 65

TESTCB macro 63

testing control blocks and lists 63

Time Sharing Option (TSO) 69

tracing 100

track allocation 20

translating ISAM requests 73

transporting data between systems

data-set portability 55

illustration 56

volume portability 55

TSO (Time Sharing Option) 69

u
unload function 55

unusable catalogs

Summary 93

with CRAs 93

without CRAs 92

updating a record (see storing a record, lengthening a record,
and shortening a record)

upgrade set 31

usage, evaluating system, with System Management

Facilities 70

use of free space for processing a key-sequenced data set 24

user catalog

connecting to master catalog 57

disconnecting from master catalog 55

job control language 66

order of search 40,43

protecting 83

J 	 reducing contention for master catalog 80

volume portability 55

(see also OS system catalog, VS 1 VSAM master catalog,

• 	 MVS master catalog)
using catalog space 47

control area split 48

control interval split 47

recovery implications 85

using shared resources

across a system 64

within a region 64

utility program (,see Access Method Services)

v

variable-length records 21

verification routine, security 98

VERIFY command of Access Method Services 57

verifying write operations 83

vertical pointer

definition 24

illustration 24

keyed direct access 33

virtual storage

dynamic address translator 17

index records kept resident 78

(see also I/O buffer)

Virtual Storage Access Method (VSAM)

comparison with indexed sequential access method 71

requirements for data processing 14

volume inaccessible

summary 95

with CRAs 95

without CRAs 94

volume ownership 38

volume portability 55

volume record in catalog 39

VSAM (Virtual Storage Access Method)

requirements for data processing 14

VSAM enhancements

alternate indexes 29

dynamic string allocation 60

GET-previous processing 32

recovery 83

relative record data sets 19

reusable data sets 32

spanned records 21

VSI VSAM master catalog

cataloging nonVSAM data sets 38,80

identifying the end of a data set 82

illustration 41

improving reliability of 40

information in catalog records 39

order of search 40

protecting 83

relative to system and user catalogs 38

MVS master catalog

alias names in 42,43

comparison with OS system catalog 42

illustration 42

order of search 43

protecting 83

restriction 42,43

w
work area

relation to I/O buffer 32

specifying 62,63

write operation, verification 83

writing a buffer 65

writing a record

addressed 38

control information describing a record 21

keyed 34-35

mass sequential insertion 35

skipping 35

WRTBFR macro 65

Index 115

•

1,2,3
135 Central Processing Unit 17

145 Central Processing Unit 17

155 Central Processing Unit 17

158 Central Processing Unit 17

165 Central Processing Unit 17

168 Central Processing Unit 17

2305 Fixed Head Storage Models 1 and 2 45

2314 Direct Access Storage Facility 45

2319 Disk Storage 45

3330 Disk Storage 45,47
3330-11 Disk Storage 45

3340 Disk Storage 45

3344 Direct Access Storage 45

3350 Direct Access Storage 45

116 Planning for Enhanced VSAM under OS/VS

L

L

Reader's

Planning for Enhanced VSAM under OSjVS
GC26-3842-1

Your comments about this publication will help us to improve it for you.
Comment in the space below, giving specific page and paragraph references
whenever possible. All comments become the property of IBM.

Please do not use this form to ask technical questions about IBM systems and
programs or to request copies of publications. Rather, direct such questions or
requests to your local IBM representative.

If you would like a reply, please provide your name, job title, and business
address (including ZIP code).

•

Comment
Form

Fold on two lines, staple, and mail. No postage necessary if mailed in the U.S.A. (Elsewhere,
any IBM representative will be happy to forward your comments.) Thank you for your
cooperation.

GC26·3842·1

r

Fold and Staple ."
iii ...
 :::l
:.
:::l

(.Q

0..,
First Class Permit m

:::l
Number 439 ::J

III
Palo Alto, California :::l

n
(I)
c.

Business Reply Mail <
(f)

No postage necessary if mailed in the U.S.A. »
:is:
c
:::l
C.
(I)..,
0
(f)

Postage will be paid by: -.... J
(f)
<

" I BM Corporation CD

General Products Division z
?
(f)Programming Publishing-Department J57 w

1501 California Avenue 0
-.,J

Palo Alto, California 94304 W
.9

~
:::l
~

~ ,Fold and Staple :::l

C
en

•?>
G)
(')
I'.)
0)

w
00
~

~
~

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(I nternationall

L
Reader's

)
•

CommentPlanning for Enhanced VSAM under OS/VS
FormGC26-3842-l

Your comments about this publication will help us to improve it for you.
Comment in the space below, giving specific page and paragraph references
whenever. possible. All comments become the property of IBM.

Please do not use this form to ask technical questions about IBM systems and
programs or to request copies of publications. Rather, direct such questions or
requests to your local IBM representative.

If you would like a reply, please provide your name, job title, and business
address (including ZIP code).

Fold on two lines, staple, and mail. No postage necessary if mailed in the U.S.A. (Elsewhere,
any IBM representative will be happy to forward your comments.) Thank you for your
cooperation.

I

GC26-3842-1

~

Fold and Staple 	
Q)
3!
:J
2.
:J

tC
.....
0
~

First Class Permit m
:J

Number 439 ::T
Q)

Palo Alto, California :J
n
(1)
0.

Business Reply Mail 	 <
(J')

;t>No postage necessary if mailed in the U.S.A. s:
c:
:J
0.
(1)
~

0
(J') ;)

Postage will be paid by: <
(J')

::!!

IBM Corporation c;"

zGeneral Products Division ~
(J')Programming Publishing-Department J57
W

1501 California Avenue 0
-.,J

Palo Alto, California 94304 W

.9
"'0
~.
:J...
~

Fold and Staple :J •
,

C
en
l>

\.
G')
(")
N
(J)

~
.j::oo

I':J...

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
IU.S.A.onlyl

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
II nternationall

