Program Product

“Restricted M aterials of IBM”

All Rights Reserved

Licensed M aterials - Property of IBM
©Copyright IBM Comp. 1987

LY28-1685-0

File No. S370-36

M VS/Extended Architecture
S%stem Logic Library:
EXCP Processor

M VS/System Product:

JES3 Version 2 5665-291
JES2 Version 2 5740-XC6

[jonif]
IKIH
(A
II|||||I

4'l|
||||||||

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

This publication supports MVS/System Product

Version 2 Release 2.0, and contains information
that was formerly presented in

MVS/ ended Architecture System Logic Librar
olume 7, LY28-1230-4, which applies to

MVS/System Product Version 2 Release 1.7.

See the Summary of Amendments for more information.

First Edition (June, 1987)

This edition applies to Version 2 Release 2.0 of MVS/System
Product 5665-291 or 5740-XC6 and to all subsequent releases
until otherwise indicated in new editions or technical
newsletters. Changes are made periodically to the information
herein; before using this publication in connection with the
operation of IBM systems, consult the latest IBM System/370
Bibliography, GC20-0001, for the editions that are applicable
and current.

References in this publication to IBM products, programs or
services do not imply that IBM intends to make these available
in all countries in which IBM operates. Any reference to an IBM
program product in this publication is not intended to state or
imply that only IBM's program product may be used. Any
functionally equivalent program may be used instead.

Publications are not stocked at the address given below.

Requests for IBM publications should be made to your IBM
;eprgg:ntative or to the IBM branch office serving your
ocality.

A form for readers' comments is provided at the back of this
publication. If the form has been removed, comments may be

- addressed to IBM Corporation, Information Development,
Department D58, Building 921-2, PO Box 390, Poughkeepsie, N.Y.
12602. IBM may use or distribute whatever information you
supply in any way it believes appropriate without incurring any
obligation to you.

(c) Copyright International Business Machines Corporation 1987

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

PREFACE

The MVS/Extended Architecture System lLogic Library is intended
for people who debug or modify the MVS control program.
describes the logic of most MVS control program functions that
are performed after master scheduler initialization completes.
For detailed information about the MVS control program prior to
this po1nt; refer to MVS/Extended Architecture System
Initialization lLogic For general information about the MVS
control program and the relationships among the components that
make up the MVS control program, refer to the S/Extende

IBRA S ORG

SET OF BOOKS

ORGANIZATION OF THE

itecture O vie To obtain the names of publications that
descr;be some of the components not in the ste ogic Lib »
refer to the section Corequisite Read:ng in the Master Preface
in MVS/Extended Arch1tecture System Logic Library: Master Table
o ntents a Ind
The System logic Library consists of a set of books. Two of the

toots provide information that is relevant to the entire set of
ooks:

1. The MVS/Extended Architecture System Logic Library: Master

Jable of Contents and Index contains the master preface, the
master table of contents, and the master index for the other

books in the set.

2. The MVS/Extended ture Syste c Libr dul
Descriptions contazns module descr;pt;ons for all of the
modules in the components documented in the System Logic
Library and an index.

Each of the other books (referred to as component books) in the
set contains its own table of contents and index, and describes
the logic of one of the components in the MVS control program.

COMPONENTS

Most component books contain information about one component in
the MVS control program. However, some component books (such as
Svystem logic Library: Initiator/Terminator) contain more than
one component if the components are closely related, frequently
referenced at the same time, and not so large that they require
a book of their own.

A three or four character mnemonic is associated with each
component book and is used in all dxagram and page numbers in
that book. For example, the mnemonic ASM is associated with the
book MVS/ ended Architecture stem Logic ary: iar
Storage Maggggmenj All diagrams in this book are identified as
Diagram ASM-n, and all pages as ASM-n, where n represents the
specific diagram or page number. Whenever possible, the
existing component acronym is used as the mnemonic for the
component book. The Table of Book Titles in the Master Preface
in MVS/Extended_Architecture System L¥gic Library: Master Table
of Contents and Index lists the book titles, the components
included in each book (if a book contains more than one
component), the mnemonics for the books, and the order number
for each book.

LY28-1685-0 (c) Copyright IBM Corp. 1987 Preface iii

oW_TO US

FINDING INFORMATION

FINDING INFORMATION

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Y

To help vou use this library efficiently, the following topics
cover

[Ho: to find information using book titles and the master
index
° What types of information are provided for each component
. How to obtain further information about other books in the
System L ¢ librar

USING THE BOOK TITLES

As vyou become familiar with the book titles, MVS component names

and mnemonics, and the book contents, you will be able to use
the S ic Library as you would an encyclopedia and go
directly to the book that you need. We recommend that you group
the books in alphabetical order for easy reference, or, if you

:re Igmiliar with MVS, that you to group the books by related
unctions.

The Table of Book Titles in the Master Preface in MVS/Extended
chitecture System Logic lLibrary: Master Table of Contents and
Index contains a list of book titles and mnemonics. 1t provides

a quick reference to all the books, and their corresponding

components, in the System lLogic Library.

USING THE MASTER INDEX

If you are not sure which book contains the information you are
looking for, you can locate the book and the page on which the
1nformat1on appears by using the master index in System lLogic
Libra aster Table of Contents a Inde For the component
books, the page number in an index entry cons:sts of the
mnemonic for the component and the page number; for System lLogic
Library: Module Descriptions, the page number consists of the

mnemonic "MODY and the page number.

For example:

ASM-12 refers to MVS/Extended Architecture System lLogic
Library: Auxiliary Storage Management, page ASM-12.

MOD-245 refers to MVS/Extended Architecture System logic
Library: Module Descriptions, page MOD-245.

INFORMATION PROVIDED FOR MOST COMPONENTS

The following information is provided for most of the components
described in the Syste oqgic Libra

1. An introduction that summarizes the component's function

2. Control block overview figures that show significant fields
and the chaining structure of the component’s control blocks

3. Process flow figures that show control flow between the
component's object modules

4. Module information that describes the functional
grganiﬁation of a program. This information can be in the
orm of:

L Method-of-Operation diagrams and extended descriptions.

] Automatically-generated prose. The automated module
information is generated from the module prologue and
the code itself. It consists of three parts: module
dgjcription, module operation summary, and diagnostic
aids.

iv MVS/XA SLL: EXCP Processor LY28-1685-0 (c¢) Copyright IBM Corp. 1987

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

5. Module descriptions that describe the operation of the
modules (the module descr;pt:ons are contained in System
rary: scri

Some component books also include diagnostic techniques
information following the Introduction.

FURTHER INFORMATION

For more information about the System logic Library, 1nc1ud1ng
the order numbers of the books 1n the System lLoqic » see
the Master Preface in MVS/Extended A;gbggecguce Syst gm Logic
Library: Master Table of Contents and Index.

LY28-1685-0 (c¢) Copyright IBM Corp. 1987 Preface v

"Restricted Materials of IBNM"
Licensed Materials - Property of IBM

vi MVS/XA SLL: EXCP Processor LY28-1685-0 (c) Copyright IBM Corp. 1987

"Restricted Materials of IBM"
Licensed Materials = Property of IBM

CONTENTS

EXCP Processor EXCP-1

Introduction EXCP-3

Programs That Qualify as Access Methods EXCP-3

The Access-Method Interface EXCP-3

Related Requests EXCP-5

Addressing and Residency Mode of EXCP Modules EXCP-6

Diagnostic Techniques EXCP-7

EXCP ABEND Codes EXCP-7

EXCP Debugging Area (XDBA) EXCP-7

CCHW Translation Operation Table EXCP-8
Miscellaneous Hints EXCP-8

Control Block Overview EXCP-11
Process Flow EXCP-13

Method of Operation EXCP-21

IECVEXCP - EXCP Processor for SVC 0(EXCP) and SVC
114(EXCPVR) EXCP-24

IECVEXFR - EXCP Functional Recovery Routine (FRR) EXCP-86
IECVEXPR - Processor's Purge and Restore Routines EXCP-98

Channel Command Word (CCH) Translation Operation Table
Modules EXCP-120

IECVTCCW - CCW Translator EXCP-121

Index 1I-1

LY28-1685-0 (c¢) Copyright IBM Corp. 1987 Contents vii

Il

e

Jado

MVS/XA SLL: EXCP Processor

"Restricted Materials of IBM"
Licensed Materials = Property of IBM

LY28-1685-0 (c) Copyright IBM Corp. 1987

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

IGU

Locating RQE Pool Areas EXCP-9
IECVEXCP Process Flow EXCP-14
IECVEXFR Process Flow EXCP-18
IECVEXPR Process Flow EXCP-19
Key to the Logic Diagrams EXCP-22

UIDHUWN -

LY28-1685-0 (c) Copyright IBM Corp. 1987 Figures ix

YRestricted Materials of IBM"
Licensed Materials — Property of IBM

x MVS/XA SLL: EXCP Processor LY28-1685-0 (c) Copyright IBM Corp. 1987

YRestricted Materials of IBM"
Licensed Materials — Property of IBM

SUMMARY OF AMENDMENTS

LY28~1685-0

Summary of Amendments
for LY28-1685-0
for MVS/System Product Version 2 Release 2.0

This publication is new for MVS System Product Version 2 Release
2.0. It contains 1nformat1on that was reorganized from the EXCP
Processor section in MVS/XA System lLogic lLibrary Volume 7,
LY28-1230-4, which applies to MVS/XA System Product Version 2
Release 1.7.

This publication contains changes to support MVS/System Product
Version 2 Release 2.0. The changes include:

° The CCW Translation Operation Tables module, IECVOTBL, was
deleted. Each table that IECVOTBL contained is now in a
separate module.

° Method of Operation information for the following new

modules:
IECVOPTB IECVOPTH IECVOPTM
IECVOPTC IECVOPTI IECVOPTN
IECVOPTD IECVOPTJ IECVOPTT
IECVOPTE TECVOPTK IECVOPTU
IECVOPTG IECVOPTL

. Minor technical and editorial changes throughout the
publication.

(c) Copyright IBM Corp. 1987 Summary of Amendments xi

vRestricted Materials of IBM"
Licensed Materials = Property of IBM

xii MVS/XA SLL: EXCP Processor LY28-1685-0 (c¢) Copyright IBM Corp. 1987

- "Restricted Materials of IBM"
Licensed Materials — Property of IBM

EXCP_PROCESSOR

LY28-1685-0 (c¢) Copyright IBM Corp. 1987 EXCP Processor EXCP-1

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

EXCP-2 MVS/XA SLL: EXCP Processor LY28-1685-0 (c¢) Copyright IBM Corp. 1987

"Restricted Materials of 1BM"
Licensed Materials = Property of IBM

INTRODUCTION

LY28-1685-0

EXCP communicates information between access methods (including
VTAM, JES2, and JES3) and the input/output supervisor (I0S).

I0S is described in the I0S section of the System Logic Library.
EXCP's role as a communication function includes these
responsibilities:

. Communicating an access—-method request for an 170 operation
to I0S by (a) gathering information from the "access-method
interface” (defined below), (b) consolidating the
information into a single control block, and (¢) passing the
address of the control block to IOS.

. Communicating the status of an I/0 operation to channel-end,
abnormal-end, and PCI (program-controlled interrupt)
appendages by (a) gaining control at the I0S exits and (b)
ggvizg I0S-collected information to access~-method control

ocks.

. Telling the access method what the final disposition of its
I/0 request is by posting its ECB (event control block).

As one of the callers of I0S, EXCP takes part in purging and
restoring 1/0 requests. Its role is complementary to the I/0
supervisor's: if I0S halts certain EXCP-initiated requests (all
those initiated from a certain address space, for instance),
EXCP deletes the control information it has kept for them; if
I0S quiesces certain EXCP-initiated requests, EXCP saves a block
of control information for each such request not yvet sent to
I0S, chains the blocks together, and gives I0S the address of
the chain. When a restore operation is subsequently requested,
I0S returns the address of the chain to EXCP, and EXCP resumes
the processing of those requests.

S _ACCESS METHODS

In the discussion of EXCP, the term Maccess method™ means any
program that builds channel programs and passes them to EXCP for
execution. This definition includes some of the IBM access
methods (such as SAM, BDAM, ISAM, BTAM, TCAM, VTAM, GAM, and
PAM), JES2 and JES3, and any user program, utility program, or
SVC routine that builds a channel program and gives it to EXCP
for execution (even though building a channel program may not be
its main purpose).

C
To give control to EXCP, an access method issues an EXCP or
EXCPVR macro instruction, which expands into an SVYC 0 or SVC 114
instruction, respectively. The SVC interrupt handler then gives
control to EXCP.

On acquiring control, EXCP finds:

(c) Copyright IBM Corp. 1987 Introduction EXCP-3

register 1

I0B (input/output block)

Partial contents:

e DCB address.

¢ channel program
address.

¢ seek address, if
using a direct-
access device.

DCB (data control block)

Partial contents
e DEB address.
format of records.

YRestricted Materials of IBM"
Licensed Materials - Property of IBM

register 4§

—2>

TCB (task control block)

Partial contents:
address of the
request block
representing the
access method.

request block

Partial contents:
address of the in-~
struction following
SvC 0, SVC 92, or
SVC 114.

[J

¢ appendage identifier

¢ selection of access-
method options

> DEB (data extent block)

Partial contents:

¢ DCB address.

¢ UCB address.

¢ data set extents, if
on direct-access
device.

¢ appendage addresses.

UCB
> (unit control block)

Control information
about the I/0

resources allocated
to the I70 request.

The control blocks illustrated above constitute the
gcgfgs-method interface. They contain everything EXCP needs to
uild:

U An interface that I0S will use to start the I/0 operation.

] An internal frecord, called an RQE (request queue element),
that ;gpresents the access-method request for an 170
operation.

Communicating an 1I/0 request to IOS

Preparing to go to I0S with an I/0 request requires the
following steps:

1. EXCP verifies the access method interface.

Some of the errors EXCP checks for are conflicting DCB

pointers, an invalid UCB, an invalid DEB, or an IO0B, ECB, or
DCB that is not in the protection key of the caller.

2. EXCP makes a record of the request and puts it in a related
request queue (RRQ) if it is a related request. (The next
topic describes related requestsf)

EXCP builds a request queue element (RQE), containing
information such as the addresses of the TCB, UCB, I0B, and
DEB, which are needed for later processing.

If the IOB indicates that the I/0 request is a related
requestﬁRs§CP puts the RQE at the end of a related request
queue .

EXCP-4 MVS/XA SLL: EXCP Processor LY28-1685-0 (c) Copyright IBM Corp. 1987

“Restricted Materials of IBM"
Licensed Materials = Property of IBM

LY28-1685-0

3.

EXCP finds out if a VIO (virtual input/output) data set will
be used and, if so, does not go to I0S with the request but
to the VIO component instead.

EXCP goes to the VIO component via the WIEXCP macro. The
VIO component either simulates the transfer of data or uses
another caller of 10S, the auxiliary storage manager, to
read or write data. See VIO Logic for more information
about VIO processing.

EXCP puts all the information I0S needs to process the
request into an SRB (service request block) and I0SB
(input/output supervisor block).

If necessary, EXCP calls the access method's PGFX (page fix)
and EOE (end-of-extent) appendages.

EXCP gives a PGFX appendage control if the access method
either issued an EXCPVR macro or a virtual EXCP. Pages in
the list returned by the PGFX appendage are fixed if EXCP
was entered by an EXCPVR macro.

For requests from a V=R address space, EXCP checks whether
the DEB has been fixed. If not, EXCP does a TCB-associated
pagefix, using the TCB address in the DEB. The PGFX
appendage is not entered.

EXCP enters the EOE appendage if a direct access device was
allocated and the seek address in the I0B does not fall
within the extent boundaries recorded in the DEB.

EXCP also invokes the EOE appendage if, after I0S tries to
start an 170 operation, the direct access ERP alters the
seek address and wants the new seek address verified.

EXCP calls the access method's SI0O (start I/0) appendage.

If the access method is not running in a V=R address space
and did not issue an EXCPVR macro, EXCP calls:

. IECVTCCW to copy the channel program in fixed storage
and substitute real storage addresses for virtual ones

o A system routine that fixes buffers

EXCP passes the 170 request to IO0S.

EXCP calls the I0S code that starts 1I/0 operations. This
call is made by issuing a STARTIO macro or by a direct

branch from EXCP's DIE procedure. (I0S enters the DIE
procedure of its caller after a solicited 170 event occurs.)

Related requests are I/0 requests with these characteristics:

ngy are directed to the same data set and share the same

They are processed by EXCP in the order received, but with
some overlap; that is, request n in a group of related
requests need not be completely processed before some
processing, short of channel-program execution, can be done
on request ntl.

If a related request returns from I0S with an I/0 error,
none of the related requests remaining to be sent can be
successful. The subsequent requests depend on the success
of the earlier request.

By examining the I0OB, EXCP can tell if the access method has
given it a related request and, if the access method has, what
type of related request it is - type denoting the amount of

(¢c) Copyright IBM Corp. 1987 Introduction EXCP-5

YRestricted Materials of IBM"
Licensed Materials — Property of 1BM

overlap permissible between a given related request, n, and ptl.
Three types exist:

Type 1. The I/0 operation for this type must complete, and the
channel-end appendages must look at the status of the operation,
befor: the next related request can be handled by the SIO
appendage.

Type 2. The 1/0 operation for this type must complete, and the
channel-end-appendage must look at the status of the operation,
before the next related request can be sent to I0S. EXCP will
havg :ro;ggsed the next related request so that it is ready to
sen o .

Type 3. The I/0 operation for this type must complete before
the next related request can be sent to I0S. The EXCP disabled
interrupt exit (DIE) examines the subchannel status word (SCSW)
for device-end or channel-end. For either condition, the DIE
passes the next related request to I0S. (EXCP will have
processed the next related request so it is ready to send to
I0S.) 1If the SCSW for the 1/0 operation shows anything other
than a device-end or channel—-end indication, the next related
request cannot be sent to I0S until the channel-end or
abnormal-end appendage has executed.

DDRESSING Al RESIDENCY MO OF EXCP MODULES
The four modules comprising EXCP (IECVEXCP, IECVEXPR, IECVEXFR,

and IECVTCCHW) execute in 24-bit addressing mode and reside below
16 megabytes. This forces certain restrictions on users of the

EXCP macro:
L Control blocks passed to EXCP must reside below the 16
megabytes.

U] Appendages must execute in 24-bit addressing mode.

. The CCH translation operation tables must reside below 16
megabytes.

Also, EXCP can use only format-0 CCHs. (Format-0 CCHs use only
269-bit addresses; format-1 CCHs use 31-bit addresses.)

Virtual addresses above 16 megabytes are supported through

virtual IDAWs. For each data transfer CCH to a location above
16 megabytes, a single virtual IDAW is required.

EXCP-6 MVS/XA SLL: EXCP Processor LY28-1685-0 (c) Copyright IBM Corp. 1987

YRestricted Materials of IBM"
Licensed Materials — Property of IBM

AGNOSTIC UES

EXCP ABEND _CODES

The following table lists abend codes with the EXCP module and
symbolic names of the EXCP procedures that issue them. For the

meanings of the abend codes, refer to Message library: System

Codes.
Code Module Procedure - Name
X'15C?* IECVEXCP XCP000 - Validity check
X1172* IECVEXCP XCP000 - Validity check
Xt1200°* IECVEXFR Functional recovery
X*300°" IECVEXCP XCP000 - Validity check
X'400°* IECVEXCP XCP000 - Validity check
X*'500°" IECVEXCP XCP000 - Validity check
X'700°" TECVEXCP XCPTERM - Termination
IECVEXFR Functional recovery
X*800°* IECVEXCP XCP090 - PGFX interface
IECVEXCP XCPTERM - Termination
TECVEXCP XCP115 - Translation interface
X'A00? TECVEXCP XCPTERM - Termination
JECVEXFR Functional recovery
X*B0O* IECVEXFR Functional recovery
X1C22"* IECVEXCP XCP036 - Building RQE
X'EQO" IECVEXCP XCPTERM - Termination
C UGGING E DBA)

EXCP's functional recovery procedure, I1ECVEXFR, does not put
diagnostic data in the SDUMP buffer. Instead, it gets storage
for its own debugging area (the XDBA) and puts diagnostic data
there. (Note that an XDBA is not provided for E00 abend codes.)

To locate the debugging area (XDBA) in a SYSABEND, SYSMDUMP, or
SYSUDUMP dump, you must:

1. Get the address of the CVT from location X'4C' (PSA field
FLCCVT2) in the dump.

2. Get the address of the TCB from the first word of the CVT
(CVTTCBP).

3. Look X'CO0' bytes into the TCB (TCBEXCPD) and get the address
of the debugging area. If the address of the debugging area
is zero then no debugging area is available.

The format and contents of the EXCP debugging area (XDBA) are as

follows:

Hex

Offset Contents

0 XDBA identifier

10 XDBA chain pointer or zero

14 EXCP abend completion code

16 SDWA original abend code

18 SDWA PSW at time of error

20 Translation exception address
26 Reserved

30 SDWA registers at time of error
70 FRR parameter area identifier
78 EXCP FRR parameter area

90 RQE block identifier

94 RQE block size and 8-byte storage manager header

LY28-1685-0 (c) Copyright IBM Corp. 1987 Diagnostic Techniques EXCP-7

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

B9 A byte that shows where the error occurred. (This byte
is in byte 37 (X'25') of the RQE.) The possible bit
settings and their meanings are:

X'80': The error occurred while EXCP was preparing to
send an 170 request to 10S.

X'40"': The error occurred while EXCP was processing an
I/0 request that I0S was finished with.

X'21': The error occurred in a PCI appendage.

X'11': The error occurred in a channel end (CHE)

appendage.

X'09': The error occurred in an abnormal end (ABE)
appendage.

X'05': The error occurred in an end-of-extent (EOE)
appendage.

X'03*': The error occurred in a PGFX appendage.
X'01': The error occurred in a SI0 appendage.

D4 Reserved.

EC Number of large blocks in the XDBA. The large blocks are
moved into the remaining XDBA area starting at offset
X*'100' in the following sequence (if present): SRB/IO0SB,
ERP work area (EWA), translation control block (TCCHW),
indirect data address list (IDAL), list of fixed pages
(FIX), beginning~end block (BEB), and channel program
scandparameter list (CPS). Only valid large blocks are
moved.

Fo Large block area identifier

100 Start of large blocks.

Note: For errors that occur in the PCI appendage during
disabled interruption exit (DIE) processing, the I0S module
JOSVIRBA provides a SYS1.LOGREC record and an SVC dump. The
register contents and PSH at the time of the original error are
contained in the SYS1.LOGREC record and the dump. EXCP uses the

DIE exit when processing type 3 related requests, V=R requests,
and EXCPVR requests.

cc! NS ON OPERATION_TABL

The CCW translation operation tables communicate to IECVTCCH,
the CCH trynslator, information about how each CCH should be
handled for a given device. IECVTCCHW obtains the pointer to the
appropriate CCH operation table from the device descriptor table
(DDT) associated with the device.

A CCH translation operation table is 256 bytes in length, one
byte per possible channel command. Normal processing is for
IECVTCCH to treat a CCH as a data transfer command, translate
the data address from a virtual address to a real address, and
fix the data area.

For more information about the CCH translation operation tables,
the device classes, and the specific devices with their
corresponding CSECT names, see Channel Command Word (CCHW)
Translation Operation Tables Modules in this book.

SC 0 INTS

. During abend processing, the EXCP debugging areas are not
freed. When you find the area pointed to by the TCB, scan
that area for previously-obtained areas to help with EXCP
analysis.

o IECVEXCP processing does all the interfacing to the EXCP
appendages. Appendages are entered in SRB mode, physically
enabled, and with the address of a save area in register 13.

. IECVEXCP maps the I0SB to the I0OB before interfacing with an
appendage. On return from the appendage, IECVEXCP re-maps
the I0B to the IOSB.

. All the RQE blocks are maintained in an RQE pool. To
determine the current RQE status, scan the RQE pool areas.

EXCP-8 MVS/XA SLL: EXCP Processor LY28-1685~-0 (c¢) Copyright IBM Corp. 1987

"Restricted Materials of IBM"

Licensed Materials — Property of IBM

These areas can be located as shown in Figure EXCP-1. An
RQE block is 66 (X'40') bytes in length; at offset X'3A' is

a two-byte allocation indication.

Xt0075°,
request.

identifier associated with the request.

If the two bytes contain
the RQE is allocated and represents an active EXCP
Offset X'38' contains the two-byte address space

CvVT I0COM
Xt7¢C! XTAO* —> JOSVSHDR
/
I0Q pool header
data and constants
X*70°* <
bytes X156"*
\ Next 4K bytes
/ of RQE pool
RQE header
data and constants
Xt70' < |] >
bytes X'54* First 4K bytes
N of RQE pool
/ Xtoc?
Large blocks header
data and constants
X'70' <
bytes X154
\ >
First 6K bytes
of large pool
X'oC?

Figure 1. Locating RQE Pool Areas

LY28-1685-0 (c) Copyright IBM Corp. 1987

Next 6K bytes

of large pool

<

Diagnostic Techniques EXCP-9

YRestricted Materials of IBM"
Licensed Materials = Property of IBM

EXCP-10 MVS/XA SLL: EXCP Processor LY28-1685-0 (c) Copyright IBM Corp. 1987

YRestricted Materials of IBM"
Licensed Materials — Property of IBM

c OL_BLOCK OVERVI

ucB
TC8B
UCBIOQF
8! tceDEB
10Q ucslioaL
10Q10SB 10Q
RQE
DEB 10SB o| RQEUCB
-8 4| RQEIOB
0| DEBTCBAD 20 IOSUSE 8| RQEDEB
DEBDEBAD C| RQETCB
10| RQETCCW
18} besDCBAD
20| DEBSUCBA |-
TCCW
0] TCCwTCB
41 TCCwucCB BEB BEB
8| TCCwWBEB " l I
Start of
C| TCCWFIX I FiXx 28| joal CCWs
DCB
1C| TCCWINDA Start of FIX
8 list entries FiXx
2C| DCBDEBAD
IDAL
44| DCBSQND IDAL
{ ‘ 108-8) 8| IDAW entries | |
Acronym Control Block Name
BEB Beginning-end block
DCB Data control block
DEB Data event control block
ECB Event control block
10B ECB FIX List of fixed pages
-8 IDAL Indirect data address list
10B Input/output block
4 10SB 1/0 supervisor block
10| I0BSTART |— Viraal 10Q 10S queue element
14| 10BDCBPT Channel RQE Request queue element
Proaram TCB Task control block
9 TCCW Translation control block
LY28-1685-0 (c) Copyright IBM Corp. 1987

Control Block Overview EXCP-11

YRestricted Materials of IBM"
Licensed Materials — Property of IBM

EXCP-12 MVS/XA SLL: EXCP Processor LY28-1685-0 (c¢) Copyright IBM Corp. 1987

YRestricted Materials of IBM"
Licensed Materials — Property of IBM

PROCESS FLOW

The figures in this section show control flow within EXCP
modules. In the figure for IECVEXCP, calls to procedures within
IECVEXCP appear as external references. They can be
distinguished from external references by the word "procedure®
in the title and by the appearance of the label, for example,
VIO Interface Procedure (XCPVAM).

LY28-1685-0 (c) Copyright IBM Corp. 1987 Process Flow EXCP-13

"Restricted Materials of IBM"
Licensed Materials = Property of IBM

From an access method
that wants an 1/O operation
to be started

SVC 0,SVC 92, or SVC 114
instruction.

IECVEXCP—EXCP Processor
for SVC O and SVC 114,

Validity Check Procedure (XCP000)

e Verifies the access method
interface.

Get—RQE Procedure (XCP036)

o Decreases the EXCP counter.

@ Gets and initializes an RQE
from the RQE pool.

———=! VIO Interface Procedure (XCPVAM)

o |If thisis a VIO data set, calls
the V10 interface procedure. o fa VIO data set exists, calls VIO. - To VIO
o |f processing must be delayed .

b If not, returns to caller.

ecause of a dependency on a

related request, exits. e On return from VIO, ensures that
the ECB is posted and/or the RQE
is freed if VIO directs.

e Exits,

XCPEXIT
Get—-SRB Procedure (XCP050)

e Gets and initializes an SRB/IOSB
and TCCW from the large pool.

XCPEXIT
o [f needed, gets a BEB, channel

program scan paramster list/
workarea, and FIX list from the
large pool.

——= EOE Interface Procedure (IECVEXTC)

PGFX Interface Procedure (XCP090)

o If app;opriate, calls the PGFX the specified extent, calls the CPS
appencage, or exitand returns 1o the caller. wgj— g Channel Program
o |f a DASD was allocated for the Scan (CPS) exit

i e Otherwise, maps I0OSB to 108,
1/O oparation, checks for end-of- calls the EOE appendage, then

o If the seek address falls within

extent. exits as the EOE appendage e
directs. B E—— O
Appendage
To enter ABE appendage. —t———p= XCPABE
To post ECB. —}————= XCPTERM
To CPS exit, then return - Channel Progr'am
to caller. Scan (CPS) exit

Figure 2 (Part 1 of 4). IECVEXCP Process Flow

EXCP-14 MVS/XA SLL: EXCP Processor LY28-1685-0 (c) Copyright IBM Corp. 1987

YRestricted

Materials of IBM"

Licensed Materials = Property of IBM

From 108 after
an 1/0 event
solicited by
EXCP.

From 108 during
1/0 event proces-
sing if a PCI inter-
rupt occurred.

SI0 Interface Procedure {(XCP110)
o Calls the SIO appendage.

® |f the request is not to be sent to
108, exits,

Translator Interface Procedure (XCP115)

o |f appropriate, calls the CCW
translator module, which makes a
fixed, translated copy of the
channel program.

STARTIO Procedure {(XCP150)

o Puts the address of the channel
program in the 10SB.

o Invokes the channel program scan _g

b mamme—

sio
Appeandage

—f—»= XCPTERM

JECVTCCW

CCW Translator

exit if one exists.
Issues a STARTIO macro.

Exits.

DIE Procedure (XCPDIE)

e |f a PCl interruption occurred for
a V=R user, or a user who issued
EXCPVR, maps the 10S8 to 10B,
then calls the PCI appendage. -

e Returns to 108, with a related
request if the 1/0 event makes
possible the submission of the
request.

PCI Interface Procedure {XCPPCI)

o Maps the |OSB 10 108, then

calls the PCI appendage. -

Channel Program

| scan (CPS) Exit

—f—® XCPEXIT

Figure 2 (Part 2 of 4).

LY28-1685-0

JECVEXCP Process Flow

(¢c) Copyright IBM Corp. 1987

. PCl
Appendage
To I0S
> PCI
Appendage
To 10S

PGSER

Process Flow EXCP-15

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

From 108 during
1/0 event processing
if a channel end or
abnormal end inter-
rupt occurred.

CHE/ABE Interface Procedure
{XCPCHE, XCPABE)

e Transfers data on the status of
the 1/0 operation from the |OSB
to the 10B.

e |f the ABE appendage is to be
executed, first invokes the
channel program scan exit if
one exists. 3 ——

Channel Program
Scan (CPS) exit

o Depending on where it was
entered, calls either the CHE or

ABE appendage. CHE
=P
Appendage
ABE
B S
Appendage

® At the direction of the appendage,
sets RQE bits that ensure that
the RQE is freed or not freed,
that the ECB is posted or not
posted, that the access-method
interface is reused or discarded.

o If normal condition or permanent
error, exits from EXCP. —t—= XCPEXIT

e |f abnormal condition other than
permanent error, returns to 10S.

To 10S
Figure 2 (Part 3 of 4). IECVEXCP Process Flow

EXCP-16 MVS/XA SLL: EXCP Processor LY28-1685-0 (c) Copyright IBM Corp. 1987

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

From 10S after
1/0O event proces-

sing is completed.

Termination Procedure (XCPTERM)

o If RQE is to be freed, increases
the EXCP counter.,

o If the access-method interface is
to be reused, exits.

o Unfixes the pages that other
procedures caused to be fixed.

Exit Procedure (XCPEXIT)

e Freesall SRB/10SB, TCCW, BEB,
and FIX blocks on the large block
free chain, and channel program
scan parameter list/workarea.

o If the processing of a request was
delayed, and if the processing can
resume, do so.

o Otherwise, exits from EXCP.

= [ECVEXTC

-4

. IECVTCCW

CCW Translator

e —

—————— XCP050

Figure 2 (Part ¢ of 4).

LY28-1685-0

SVC Interrupt
Handler

IECVEXCP Process Flow

(¢c) Copyright IBM Corp. 1987

PGSER

Process Flow EXCP-17

EXCP-18 MVS/XA SLL:

RTM

Figure 3.

EXCP Processor

"Restricted Materials of IBM"

Licensed Materials — Property of IBM

From RTM

IECVEXCP—EXCP
Functional Recovery Routine

¢ If the storage manager was in con-
trol at the time of the error,
invokes the storage manager'’s
FRR.

e If the storage manager requested
percolation, continues.

If the storage manager requested
retry, returns to RTM with retry
address [ECVXTRY.

IECVXTRY:
Invokes the storage manager’s
retry routine in 31-bit addressing
mode.

EXFR200:

e Provides debugging data in the
SDWA,

e |f the error occurred while
IECVEXCP or IECVTCCW was
pagefixing, returns to RTM with
the address of the IECVTCCW
retry routine.

Otherwise percolates the error.

IOSVSMGR

108 Storage
Manager

—= EXFR200

RTM

IOSVSMGR

10S Storage
Manager

RTM

LY28-1685-0

IECVEXFR Process Flow

(c) Copyright IBM Corp. 1987

"Restricted Materials of IBM™
Licensed Materials — Property of IBM

LY28-1685-0

SVC 16 or SVC 33

IECVEXPR—EXCP Purge and
Restore Routines

1ECVXPUR:

o Obtains a large block from the
storage manager for use as a
workarea.

o |f the driver id is not EXCP,
returns to caller.

e Interfaces with IECVXTRM in
IECVEXCP to purge the 1/O
request.

IOSVSMGR

10S Storage

IECVEXCP

EXCP Processor

Figure 6. IECVEXPR Process Flow

(c) Copyright IBM Corp. 1987

Process Flow EXCP-19

YRestricted Materials of IBM"
Licensed Materials = Property of IBM

EXCP-20 MVS/XA SLL: EXCP Processor LY28-1685-0 (c) Copyright IBM Corp. 1987

"Rastricted Materials of IBM"
Licensed Materials — Property of IBM

METHOD OF OPERATION

This section has detailed information for modules in this
component. These modules are in alphabetic order. This
detailed information is broken down into four different
headings. The four headings and the topics they document are:

Module Description, which includes:

. Descriptive name

U Function (of the entire module)

. Entry point names, which includes:
- Purpose (of the entry point)
Linkage
Callers
Input
Output
Exit normal
Exit error, if any

xternal references, which includes:
Routines
Data areas, if any
- Control blocks

. Tables

. Serialization

.
I1ml |

Note: Brief EXCP module descriptions are also included in
MVS/Extended Architecture System lLogic Library: Module
Descriptions, which contains module descriptions for all the
MVS/Extended Architecture components described in the System

Logic Library.
Module Operation, which includes:

) Operation, which explains how the module performs its
function.

. Recovery operation, which explains how the module
performs any recovery.

Diagnostic aids, which provide information useful for
debugging program problems; this includes:

Entry point names

Messages

Abend codes

Wait state codes

Return codes for each entry point. Within each entry
point, return codes might be further categorized by
exit-normal and exit-error.

. Entry register contents for each entry point

. Exit register contents for each entry point

Logic Diagram, which illustrates the processing of the
module, the input it uses, the output it produces, and the
flow of control. Some modules do not have a logic diagram
because the processing is sufficiently explained in the
module description, the module operation, and the diagnostic
aids sections. Figure 5 on page EXCP-22 illustrates the
graphic symbols and format used in the logic diagrams.

LY28-1685-0 (c¢) Copyright IBM Corp. 1987 Method of Operation EXCP-21

LOGICKEY - Key to the Logic Diagrams

Figure 5 (Part 1 of 2).

EXCP-22 MVS/XA SLL:

"Restricted Materials of IBM"
Licensed Materials ~ Property of IBM

STEP 01

page.

This paragraph describes what this module
\ does. The same text appears under the
> | | FUNCTION heading on the Module Description

modified.

/

01| Numbered steps describe the
processing at a high level.

A. Lettered steps describe the processing
at a lower level.

02| Input and output fields.

The control block acronym or data area name
appears above the input and output boxes,
and the field names appear within the
boxes. A dotted arrow means the data is
referenced, a solid arrow means the data is

03| External call graphic
pass}nglthe parameter, TROB.
\

\r——7

/ I\

ITRFBR

TROB

04| Internal call graphic (at
the step indicated) passing
Fwo parameters.

\Nr—/

SUBROUTN: 12

EFMSG1, TFWAPMSG

05| Macro instruction graphic
with these keywords,
parameters, and options.

POST

ERRET(CVTBRET)

(EAERIMWT, RCO) ASCB(TOBAASCB->ASCB)

06| Internal branch to the label
and step indicated.

\
>BRLABEL: 08
/

EXCP Processor

Key to the Logic Diagrams

LY28-1685-0 (c) Copyright IBM Corp. 1987

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

LOGICKEY - Key to the Logic Diagrams

STEP 07

07| SvVC graphic.
< > sve TSOTEST
] \
08 >||08| Step 06 branches here. A
7 program call (PC) graphic
BRLABEL shows an exit.
\
/ PC
Callers
\
>|]09| Secondary entry point.
PARAMETERS 17
SECONDEP| This paragraph describes the function of
TROB THISLINE L--————--J\ this entry point. Four parameters (to the
MAXLINES ETPBOPTS -1-----1/ left) are passed an input.
TTE pOILABEL||10] This is the beginning of an
> iterative DO group.
TTEMBZ1
A. Iterate graphic of the DO 10
instruction to the specified step —l
number.
B. Leave graphic of the DO instruction —
to the specified step number. 11
11| External return graphic, to
the calling routine. | |
\N 7/
I\
12 >|112| This is an internal
/ subroutine.
SUBROUTN
This paragraph describes tha function
of this subroutine.
13{ Internal return graphic, to .
a step within this module. -5—1
\/
Figure 5 (Part 2 of 2). Key to the Logic Diagrams

LY28-1685-0

(¢c) Copyright IBM Corp.

1987

Method of Operation

EXCP-23

IECVEXCP - MODULE DESCRIPTION
DESCRIPTIVE NAME: EXCP Processor for SVC 0 (EXCP)
and SVC114 (EXCPVR)
FUNCTION:
This module processes EXCP and EXCPVR I/0 requests.
As a driver of 10S, this module handles the initiation
of a caller's request to I0S, handles the I/0
interruption from IO0S, and passes the results back
to the caller through its appendages.
ENTRY POINT: IGCOOO
PURPOSE: To process EXCP (SVC 0) requests.
LINKAGE: SVC
CALLERS: Issuers of SVC O
INPUT: I0B, TCB
OUTFUT: EXCP request readied for I/0 initiation.
EXIT HORMAL: Return to SVC type 1 exit
-EXIT ERROR: To RTM
ENTRY POINT: IGCl1i4
PURPOSE: To process EXCPVR (SVC 114) requests.
LINKAGE: SVC
CALLERS: Issuers of SVC 114
INPUT: IOB, TCB
OUTPUT: EXCPVR request readied for I/0 initiation.
EXIT NORMAL: Return to SVC type 1 exit
EXIT ERROR: To RTM
ENTRY POINT: IGC092
PURPOSE :
To process EXCP or EXCPVR requests for TSO
restore (SVC 92).
LINKAGE: SVC
CALLERS: Issuers of SVC 92
INPUT: I0B, TCB
OUTPUT: EXCP or EXCPVR request readied for I/0 initiation
EXIT NORMAL: Return to SVC type 1 exit
EXIT ERROR: To RTM
ENTRY POINT: XCPCHE - Normal-end Exit
PURPOSE :
To interface with the requestor's channel-end
appendage.

LINKAGE: Branch and link

EXCP-24 MVS/XA SLL: EXCP Processor LY28-1685-0

YRestricted Materials of IBM"
Licensed Materials — Property of IBM

IECVEXCP - EXCP PROCESSOR FOR SVC O(EXCP) AND SVC 114(EXCPVR)

(¢) Copyright IBM Corp.

1987

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

IECVEXCP - MODULE DESCRIPTION (Continued)

CALLERS:
IECVPST (I0S Post Status),
IECVEXCP front-end and back-end (termination)
processing routines

INPUT: I0SB
OUTPUT:
108 updated to reflect the completed request.
ECB posted with one of the following completion codes:
7F - Normal corpletion
41 - Permanent error

42 - Extent violation
48 - Request purged

EXIT NORMAL: Return to caller
EXIT ERROR: To RTM
ENTRY POINT: XCPABE - Abnormal-end Exit

PURPOSE :
To interface with the EXCP requestor's
abnormal-end appendage.

LINKAGE: Branch and Link

CALLERS:
IECVPST (I0S Post Status),
IECVEXCP front-end and back-end (termination)
processing routines
INPUT: I0SB
CUTPUT:
I03 updated to reflect the completed request.
ECB posted with one of the following completion codes:
7F - Normal completion
41 - Permanent error

42 - Extent violation
48 ~ Request purged

EXIT NORMAL: Return to caller

EXIT ERROR: To RTM

ENTRY POINT: XCPDIE - Disabled Interrupt Exit (DIE)

PURPOSE :
To initiate a type 3 related request and
interface with a caller's program controlled
interrupt (PCI) appendage.

LINKAGE: Branch and Link

CALLERS:
10S Disabled Interruption Routine that
interfaces with the driver's DIE exits.

INPUT: I0SB

OUTPUT: None

EXIT NORMAL: Return to caller

ENTRY POINT: XCPPCI - PCI Exit

PURPOSE: To interface with the caller's PCI appendage.

LY28-1685-0 (c) Copyright IBM Corp. 1987

Method of Operation

EXCP-25

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

IECVEXCP - MODULE DESCRIPTION (Continued)

LINKAGE: Branch and Link
CALLERS: IECVPST (IOS Post Status)
INPUT: IOSB
OUTPUT: None
EXIT NORMAL: Return to caller
EXIT ERROR: To RTM
ENTRY POINT: IECVEXTC
PURPOSE: To perform extent check for DASD devices.
LINKAGE: BALR
CALLERS: IECVDERP (DASD error recovery procedure (ERP})
INPUT: I0SB
OQUTPUT: None
EXIT NORMAL: Return to caller
EXIT ERROR: To RTM
ENTRY POINT: IECVX025
PURPOSE: To free the request queue element (RQE).
LINKAGE: BASR, BASSM
CALLERS:
SVC 3 exit routine,
IECVEXPR purge routine - Purge halt for
RB and AEQ purging.
INPUT: RQE block to be fread
OUTPUT: RQE block returned to the storage manager
EXIT NORMAL: Return to caller
EXIT ERROR: To RTM
ENTRY POINT: IECVXTRM
PURPOSE: To process a purge or FRR termination request.
LINKAGE: BALR
CALLERS:
IECVEXPR - EXCP purge routine,
IECVEXFR - FRR termination request
INPUT: RQE block
OUTPUT: RQE and large blocks returncd to the storages manager.
EXIT NORMAL: Return to caller
EXIT ERROR: To RTM

EXIT ERROR: ABEND

EXCP-26 MVS/XA SLL: EXCP Processor LY28-1685-0 (c) Copyright IBM Corp. 1987

YRestricted Materials of IBM"
Licensed Materials = Property of IBM

IECVEXCP - MODULE DESCRIPTION (Continued)

EXTERNAL REFERENCES:

ROUTINES:
IARPSIV
IEAOPTO2
JEASMFEX

IECVQCNT
IECVRCHN
IECVSMGR
IECVTCCH
IECVEXFR
IFGDEBVR

Perform page fix services

Post with validity check

Count the EXCP request and accumulate the
device connect time (DCTI)

Decrease quiesce count

Add an I03 to the quiesce chain

Obtain and return RQZ and largz blocks
Translate a caller's virtual channel program
Perform functional recovery processing
Perform DEB check

CONTROL BLOCKS:
ASCB -- Address space control block
ASXB -- Address space extension block

CVT -~ Communications vector table

DCB -- Data control block

DEB ~- Data extent block

ECB -~ Event control block

FRRS -- Functional recovery routine setrp
ICQE -- Interrupt control queus block
ICB =~-- 1/0 block

IOCOM - I/0 communication area

JOS8 -~ I/0 supervisor block

IPIB -- IOS purge interface block

JSCB -- Job siep control block

PIRL -- Purgzd I/0 restore list
PSA -- Prefixed save area

RD -- Region descriptor

RRQ ~=- Reclated request queue
RQE =-- Request gqueue element
SRBE =-- Service request block

TCB =-- Task control block
TCCW -- Translate CCH control block
Uc8 =-- Unit control block

LY28-1685-0

Work save area vector table

(¢) Copyright IBM Corp. 1987

Method of Operation EXCP-27

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

IECVEXCP - MODULE CPERATION

This module processes EXCP and EXCPVR I/0 requests
(Also handles the SVC 92 recquest).

It accepts the caller's 103, DCB, DEB, and ECB

and maps them into an I0S driver SR3/I0SB interface
for initiation and I/0 interrupt processing.

To perform this driver interface between the EXCP or
EXCPVR callers and IOS, this module providss

three functions: front-end precessing (see label
XCP00O), normal-end and abnormal-end exit processing
(see label XCP203A), and back-end (termination)
processing (see label XCPTERM).

Also, this module provides a disabled interrupt
routine (DIE), PCI exit routine and an exient
checking routine for the DASD ERP.

The portion that maps the caller's control block to
the SRB/IOSB interface is called EXCP front-end
processing, which includes the following:

. Validity checking the user's control blocks
and issuing abends for inconsistencies.

. Issuing a C22 zbend if the number of allowable
outstanding EXCP/EXCPVR requests has been
excecded., The maximum per address space is 500,

. Obtaining and initializing an EXCP request queue
elencnt (RQE) control block as the EXCP anchor
for the caller's request.

. If the UCB indicates the request is for a VIO data
set (UCBURDEV), interfacing with VIO for the
request.

. If the caller's IOB indicates that this is a related
request, chaining the RQE block to the related
request queue (RRQ) in the DEB and datermining
whether to process the request now or to wait
for the completion of a previous request on the
RRQ.

. Cbtaining large blocks necded to process the
caller's I/0 request. These include blocks for the
SRB/IOSB, TCCH, CPS (optional), BEB, and FIX (the
last two are required for a virtual EXCP request).

. Initializing the I0S3 and SRB.

. Creating a CPS block when the DDT indicates that
the device supports channel program scan.

. Determining if the DEB block needs to be fixed for
an EXCP V=R request that provides a PCI appendage.

. For EYCPVR and virtual EXCP requests, entering the
caller's page-fix appendage.

. For EXCPVR requests, interfacing with the system
paging services(PGSER) to fix the caller's fix list.

. For DASD devices, performing extent checking.

. Interfacing with the caller's SIO appendage.

. For virtual EXCP requests, interfacing with the EXCP
module IECVTCCH to translate the caller's virtual
channel program to a real channel progran.

. If a device channel program scan (CPS) exit is
provided, interfacing with it with the STARTIO
indication.

. Issuing the STARTIO macro to pass the caller's
request to I0S for execution.

. Returning to the caller via the exit for type 1
SVCs.

Upon completion of an I/0 request, the I0S post
status module (IECVPST) passes control bzck to this
module for normal-end or abnormal-end exit processing.
This module in turn interfaces with the requestor's
channel-end or abnormal-end zppendages.

EXCP'S normal~end and abnormal-end exit

EXCP-28 MVS/XA SLL: EXCP Processor LY28~-1685-0 (c) Copyright IBM Corp. 1987

"pestricted Materials of IBM"
Licensed Materials — Property of IBM

IECVEXCP - MODULE OPERATION (Continued)

processing consists of the following:

Validity checking the caller’s control blocks.

Interfacing with the SMF routine to accumulate

the device connect time and/or tha EXCP count.

Mapping the results of the I/0 request from the

I0SB to the caller's IOB.

If a channel program scan (CPS) exit exists,

interfacing with the CPS exit routine. If entry

is to the normal-end appendage, the CPS function

code is set to the normal function code.

Otherwise, for the sbnormal-end appendage call,

enters the CPS routine with the I/0 error function

code,

Interfacing with the caller's normal-ond or

abnormal-end appendage.

Handling the possible return conditions from the

caller's appendages, as follows:

a) Normal completion - two conditions can exist,
depending on the setting of the IOB exception
bit (IOBIOERR):

. If the exception bit is off in the 103,

the I/0 request has completed successfully and

EXCP proceeds to its back-end processing to

terminate the request.

. If the excention bit is on in the 108, the

I/0 operation did not complete successfully

and the appendage requests the following error

recovery procedure (ERP) processing:

- Mapping bits and fields from the IC3
to the I0SB.

- If this is a related request and the IOBECBCC
field indicates a permanent error, setting
the DCB permanent bit in the caller's DCB.

~ If a channel program scan (CPS) exit exists,
interfacing with the device channgl program
scan (CPS) exit with the STARTIO condition
(the virtual and real starting addresses in
the IOSB have been updated from the IOB).

- If the IOS completion code is not a permanent
error codza, returning to I0S post status.
This is done to allow the I0S post status
routine to interface with ERP processing.

- If the IOSB completion code indicates a
permanent error, proceeding to EXCP back-
end processing to terminate the request.

b) Do not post - The appendage indicates that the
I/0 request is complete but that the caller's
ECB is not to be posted.

EXCP proceeds to its back-end processing to
terminate the request without posting the
caller's ECB.

c) Retry request - The appendage indicates that
the I/0 request is to be retried (normally this
means that the I/0 request completed successfully
and that the driver wanis to start another 1/0
request). EXCP proceeds to its back-end
processing to terminate the request without
posting the caller's ECB and then returns to
the EXCP front-end processing to perform the
retry request.

d) Retry request from the top of the related request
queue (RRQ) - The appendage indicates that the
I/0 request at the top of the RRQ is to be
retried.

EXCP proceeds to its back-end processing to
terminate the request without posting the
caller's ECB and then returns to the EXCP
front-end processing to perform the retry

LY28-1685-0 (c) Copyright IBM Corp. 1987

Method of Operation

EXCP-29

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

IECVEXCP - MCDULE OPERATION (Continued)

request.

EXCP back-end processing terminates the caller's
request. Normally, EXCP back-end processing
rcceives control from the EXCP normal/abnormal-end
exit, as indicated above. The I0S post status module
enters back-end processing when error reccvery
processing (ERP) indicates that the caller's request
is in pormanent error.

The I0S post status module also enters back-end
processing when the I0S3 completicn

coda indicates abnormal cempletion (X'45'),

EXCP back-end processing includes:

. If the I0SB completion code indicates abnormal
completion (X'G5'), issuing a CALLRTM macro with
type=ABTERM with a completion code of E00.

. For tape devices, increasing the DCB block count
from the I0OB block count.

. If the caller's appendage requested retry,
performing the retry request.

. If page fixing was done for the request, performing
the unfix processing.

. If the request is to be posted, interfacing with
the systoem post routine to post the caller's ECB.

. Returning the control blocks (RQE and large
blocks) obtained for the caller's request to
the IOS storage manager.

. If this is a related request and EXCP has readied
the caller's rext I/0 request, issuing the STARTIO
macro to send the next request to I0S for
initiation.

. Raturning to IOS post status with roturn code 16
to indicate that back-end processing is
complete, or returning to the EXCP front-end
processing to perform the retry request.

IECVEXCP provides a DIE (disabled interrupt

exit) for ths following situations:

. Hhen the caller specifies related request type
3 (se2 explanation below) in the IOB

. For EXCPVR or EXCP (V=R) requests when
the caller has spzaecified a PCI appendage.

The EXCP DIE routine is entered from IOS when 10S

is performing 1/0 diszbled interruption handling.

IECVEXCP provides a PCI (program controlled

interrupt) exit to support thz virtual EXCP request
that provides a valid PCI appendage (not just a

BR 14 instruction).

Upon completion of an 1/0 requast, the IO0S post
status module (IECVPST) passes control to th2 EXCP PCI
exit routine when the PCI bit is set in the subchannel
ctatus’‘and EXCP has set an address in the IOSPCI

field of the I0OSB. The EYCP PCI exit routine
interfaces with the requestor's PCI zppendage.

EXCP provides a special facility knosn as related
request processing. Related request processing is
indicated by the caller in his IC3 block. Related
requests are directed to the care data set and share
th2 same DCB. Handling of related requests is as
follows:

. EXCP chains related requests on the associated
DEB related rcquest quaue (RRR) in the order that
they are received.

. They are processed by EXCP in the order received,
with some overlop. The amcunt of overlap is
dependent on the related request type.

EXCP-30 MVS/XA SLL: EXCP Processor LY28-1685-0 (c) Copyright IBM Corp. 1987

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

IECVEXCP - MODULE OPERATION (Continued)

If a related request is considered in permanent
error (1/0 request did not complete sucessfully),
none of the remaining related requests are
processed. They are purgzd and returned to the
caller bafore the request with the permanent error
is posted to the caller.

There are three typas of related requests. These
threa types tell EXCP when to proceed with the
next EXCP requast upon completion of this EXCP
request. The three types are:
1) Related request lype 1:
The I/0 operation for request 'n' must
complete and the callers channel-end or abnormal-
end appendage must look at the status of the
operation before EXCP starts processing
request 'n+l' on the related request queue.
For this type, EXCP bzck-end processing
returns to EXCP frent-end processing at the
point where large blocks are cbtained to begin
handling ithe request.
2) Related request type 2:
The I/0 opzration for request 'n’ must
conplete and th2 caller's channel-end or abnormal-
end zppendage must look at the status of the
operation before EXCP can issue the STARTIO macro
to sand request ‘n+l' to I0S for initiation.
The diffarence between type 1 and 2 is that,
for type 2, EXCP has processed request 'n+l’
up to the point of issuing tha STARTIO macro to
send the request to I0OS for initiation. The
STARTIO macro is issucd in EXCP back-end
processing.
In fact, EXCP will process up to four requests
to the point where they are ready for 1/0
initiation.
3) Relatad request type 3:
The I/0 operation for request 'n' must
corplete and the EXCP DIE routine must examine
the I0S8 subchannel status (SCSW) for normal
completion (channel end bit set without any
any error condition bits set). If the SCSW
indicates normal status, the EXCP DIE requests
that I0S issue the STARTIO macro for request
‘n+l'. If the SCSH indicates other thzn normal
completion, or if the request is being purged or
being retried out of the ERP, the EXCP DIE does
not initiate requast 'n+l'. In this case, it
will be handled like type 2.
The difference beiwecen type 1 and 3 is that, for
type 3, EXCP has processcd requost ‘n+l’
up to the point of issuing the STARTIO macro to
send the request to I0S for initiation.
In fact, EXCP will precess up to four requects
to the point where they are ready for I/0
initiation.

LY28-1685-0 (c) Copyright IBM Corp. 1987

Method of Operation

EXCP~31

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

IECVEXCP - DIAGNOSTIC AIDS

ENTRY POINT NAMES: 1GC000
I6C114
1G6C092
XCPCHE
XCPABE
XCPDIE
XCPPCI
IECVEXTC
IECVX025
IECVXTRM

Normal-end Exit

Abnormal-end Exit

Disabled Interrupt Exit (DIE)
PCI Exit

MESSAGES: None

ABEND CODES:

The following abends are generated in IECVEXCP (via SVC 13)
and are processed by IECVEXFR (EXCP functional recovery
routins).
15C - Issuer of SVC 92 is not in supervisor state.
172 - SVC 114 was issued and:
- Protect key is not 0, or
- Request was not issued in supervisor state, or
~ Authorization bit is not set in JSCB.
On2 of the following:
- DEB not found on the DEB chain (validity check failure).
- DE8S is not an EXCP or ISAM DEB.
- The ICBM index is larger than the DEBNMEXT index or
both indexes are not zero.
DCB pointers in tha 103 and DEB do not match.
Cne of the following:
- DEB does not point to a valid UCB.
- An ISAM I03 ICBM field specified extent 0.
One of the follewing:
- Error attempting to fix pages for the request.
- Error attempting to unfix pages for the request.

300

400
500

800

The following completion codes are set by IECVEXFR (EXCP
functional recovery routine) as a result of a program check
or indeterminate error during EXCP processing:
200 - 108, DCB, or ECB protect key is not
the same as the user's Key.
700 - A program check occurred while in a supervisor service
routine invoked by EXCP.
A00 - A program check occurred in a user appendage.
B00 - Indeterminate error.

The following abends are generated and processed in IECVEXCP

via CALLRTM:

C22 - Address space exceeded the maximum number of
outstanding EXCPs.

EOO0 - A program check occurred in IOS and no EXCP debug area
is available.

WAIT STATE CODES: None

RETURM CODES:
ENTRY POINT IGCOCO: None
ENTRY POINT IGCl1l4: None

ENTRY POINT IGC092: None

EXCP-32 MVS/XA SLL: EXCP Processor LY28-1685-0 (c) Copyright IBM Corp. 1987

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

IECVEXCP - DIAGNOSTIC AIDS (Continued)

ENTRY POINT XCPCHE:
EXIT NORMAL:
Register 15 contains a decimal value:
0 =~ Normal completion with the IOSEX bit set
in the I0SB

16 - Indicate to IOS post status that EXCP
has performed its termination processing

ENTRY POINT XCPABE:
EXIT NORMAL:
Register 15 contains a decimal value:
0 - Normal completion with the IOSEX bit set
in the I0S8
16 - Indicate to IOS post stalus that EXCP
has performed its termination processing
ENTRY POINT XCPDIE:
EXIT NORMAL:
In register 15
0 - Normal return
G =~ Initiate a new IOSB request
(handle a type 3 related request)
8 =~ Ighore return
ENTRY POINT XCPPCI: None
ENTRY POINT IECVEXTC:
EXIT NORMAL:
Register 15 contains the following:
0 - Retry the requast
4 = post the requestor

ENTRY POINT IECVX025: None

ENTRY POINT IECVXTRM: None

REGISTER CONTEMTS OM EMNTRY:
ENTRY POINT IGCO000:

Irrelevant

Sava area address
Return address
Irrelevant

Registers 8-12
Register 13
Register 14
Register 15

Register 0O - Irrelevant
Register 1 - I08 address
Registor 2 - Irrelevant
Register 3 - CVT address
Register 4 - TC8 address
Register 5 - Current R3S pointer
Register 6 - Entry address
Register 7 - ASC3 address

ENTRY POINT IGCll4:

Register 0 - Irrelevant

Register 1 - ICB address, with byt2 0 set to X'S6¢°.
Rzgister 2 - Irrelevant

Register 3 - CVT address

LY28-1685-0 (c) Copyright IBM Corp. 1987

Method of Operation

EXCP-33

“Restricted Materials of IBM"
Licensed Materials = Property of IBM

IECVEXCP - DIAGNOSTIC AIDS (Continued)

Register 4 - TCB address
Register 5 - Current RB pointer
Registor 6 - Entry address
Register 7 - ASCB address
Registers 8~12 - Irrelevant
Register 13 - Save area address
Register 1% - Return address
Register 15 - Irrelevant

ENTRY POINT IGC092

Register 0 - TCB address

Register 1 - IOB address, with byte 0 set to
X'00' (EXCP) or to X'F4' (EXCPVR)

Register 2 - Irrelevant

Register 3 - CVT address

Register 4 ~ TCB address

Register 5 « Current R3 pointer

Register 6 - Entry address

Register 7 ASCB address

Irrelevant
Save area address
Return address

Registers 8-12
Rzgister 13
Register 14

Register 15 Irrelevant
ENTRY POINT XCPCHE:
Register 0 Irrelevant

I0SB address

Irrelevant, but must not be destroyed
Irrelevant, and are available to the exit
if a save area is not available.

Address of the local lock save area
Return address

Entry point address

Register 1
Registers 2-5
Registers 6-12

t 1 50

Register 13
Register 14
Register 15

ENTRY POINT XCPABE:

Irrelevant

10S3 address

Irrelevant, but must not be destroyed
Irrelevant, and are available to the exit
if a save area is not available.

Address of the local lock save area
Return address

Entry point address

Register 0
Register 1
Registers 2-5
Registers 6-12

Register 13
Register 14
Register 15

ENTRY POINT XCPDIE

Register 0-1 Irrelevant
Register 2 10SB address
Registers 2-12 - Irrelevant

Address of a save area
Return address
Entry point address

Register 13
sgister 14
Register 15

ENTRY POINT XCPPCI:

Irrelevant

10S3 address

Irrelevant, but must not be destroyed
Irrelevant

Address of the local lock save area
when entered from IECVPST

Address of a save area in the TCCW
block when entercd from IECVEXCP DIE
routine

Return address

Register 0
Register 1
Register 2-5
Registers 6-12
Register 13

Register 14

EXCP-34 MVS/XA SLL: EXCP Processor LY28-1685-0 (c¢) Copyright IBM Corp. 1987

YRestricted Materials of IBM"
Licensed Materials — Property of IBM

IECVEXCP - DIAGNOSTIC AIDS (Continued)

Register 15 - Entry point address
ENTRY POINT IECVEXTC:

Register 0 - Irrelevant
Register 1 - IOSB address
Registers 2-12 - Irrelevant
Register 13 - Irrclevant

Return address
Entry address

Register 14
Register 15

ENTRY POINT IECVX025:

RQE address
Irrelevant

Save area address
Return address
Entry address

Register 1
Registars 2-12
Register 13
Register 14
Register 15

ENTRY POINT IECVXTRM:

Register 1 - RQE address
Registers 2-12 - Irrelevant
Register 13 -~ Save arca address
Register 14 =~ Return address

Register 15 ~ Entry acdress

REGISTER CONTENTS OM EXIT:
ENTRY POINT IGCO00:
EXIT NORMAL:

Register © - Unpredictable

Register 1 - IC3 address

Registers 2-15 - Unpredictzsble

ENTRY POINT IGC1l14:
EXIT NORMAL:

Register 0 - Unpredictable

Register 1 - IC3 address

Registers 2-15 - Unpredictable

ENTRY POINT IGC092:
EXIT NORMAL:

Register 0 - Unpredictable

Register 1 - 103 adcdress

Registers 2-15 - Unpredictable

ENTRY POINT XCPCHE:
EXIT NORMAL:

With return code in register 15 = 0
Registers 0~13 - Same as on entry
Register 14 - Return address
Register 15 - Return cods = 0

With return code in register 15 = 16
Registers 0-3 =~ Unpredictable
Register ¢ Sanz as on entry

Register 5 Same as on entry
Registers 6-12 - Unpredictable

LY28-1685-0 (c) Copyright IBM Corp. 1987

Method of Operation EXCP-35

IECVEXCP - DIAGNOSTIC AIDS (Continued)

Register 13 - Same as on entry
Register 14 - Return address
Register 15 - Return code = 16

ENTRY POINT XCPABE:
EXIT NORMAL:

Hith return code in register 15 = 0
Registers 0-13 - Same as on entry
Register 14 - Return address
Register 15 - Return code = 0

With return code in register 15 = 16
Registers 0-3 - Unpredictable

Register ¢ - Same as on entry
Register 5§ - Same as on entry
Registers 6-12 - Unpredictable
Register 13 - Same as on entry
Register 14 - Return address
Register 15 - Return code = 16

ENTRY POINT XCPDIE:
EXIT NORMAL:

Registers 0-14 - Same as on entry
Register 15 - Return code

ENTRY POINT XCPPCI:
EXIT NORMAL:
Registers 0-15 - Same as on entry
ENTRY POINT IECVEXTC:
EXIT NORMAL:
Registers 0-3 - Unpredictable
Registers 6-16 - Same as on input
Register 15 - Return code

ENTRY POINT IECVX025:

EXIT NORMAL:

Register 0 - Same as on entry
Register 1 - Unpredictable
Registers 2-9 =~ Same as on entry
Register 10 - Unpredictable
Registers 11-13 - Same as on entry
Registers 14-15 - Unpradictable

ENTRY POINT IECVXTRM:
EXIT NORMAL:

Registers 0-12 - Unpredictable
Register 13 Same as on entry
Register 14 - Same as on entry
Register 15 - Unpredictable

EXCP-36 MVS/XA SLL: EXCP Processor

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

LY28-1685-0 (c¢) Copyright IBM Corp. 1987

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

IECVEXCP - EXCP Processor ¥or SVC 0 (EXCP) and SVC11l4 (EXCPVR)

\
>

/
IECVEXCP

Issuers of SVC 92

\
>
/
16c092
RQE S ->
RQRE114
IGC114A

This module processes EXCP and EXCPVR 1/0
requests. As a driver of I0S, this module
handles the initiation of a caller’'s
recuest to 10S, handles the I/0
interruption frem I0S, and passes the
results back to the caller through its
appendages.

01] This entry point handles the

SVC 92 (5C) recuest.

The TCB address proviced in register 0 is
set in register 4, overlaying the
environmental TCB address.

A. Xf the caller is not in supervisor
state, issues ABEND 15C to abend the

task.
\
>ABEND00O: 72
/7

B. If the ICB parameter register is
positive, handles the request as an SVC
0 (EXCP).

C. If the ICB parameter register is
negative, handles the request as an SVC
114 (EXCPVR).

02| This entry point handles the

SVC 114(72) EXCPVR regquest.

A. If the requestor is not authorized (not
in system key 0-7, not in supervisor
state, or not authorized in the JSCB),
sets an indicator that further validity
checks are required in the EXCP mainline
for the EXCPVR request.

B. If the requestor is authorized, goes to
IECVEXCP front-end processing.
\

>XCP000: 04
/

LY28~1685-0 (c¢) Copyright 1BM Corp. 1987 Method

STEP 01

of Operation EXCP-37

YRestricted Materials of IBM"
Licensed Materials — Property of IBM

IECVEXCP - EXCP Processor for SVC 0 (EXCP) and SVC1ll4 (EXCPVR) STEP 03

Issuers of SVC 0 -
l——L 03§ This entry point handles the

\ SVC 0 (EXCP) request.

/ Determinas if the EMCP request is a

TCB IGcéOO virtual EXCP or virtual=real (V=R) EXCP
-r >| | request.
TCEFLGS6 TCBRY : N\
: ——1/|] If the bit in the TCB (TCBRV) is set
RQE : indicating a V=R request, does the
~ following V=R validity checks:
RREVIRT RQE1TO1 . If the first CCA of the channel program
is not in the real region, treats the
TC8 request as a virtual EXCP request.
. If the first CCH is in the real region,
TCBRD — checks if tha CVT authorizes V=R requests.
If not, treats the request as a virtual

EXCP request.
. Otherwice, determines if the V=R request
is authorized to bz a V=R user, in the
following order: 1) Rumning in system Kkey
(0-7)3 2) Running in supervicor states; or
3) JSCB indicates authorization. If the
V=R request is not authorized, the V=R
request is treated as a virtual EXCP
recquast.

If the bit in the TCB (TCBRV) is off, the
request is treated as # virtual EXCP

request.
—
04 >{ | 04| Performs IECVEXCP frent-end
—/ processing.
XCP00O

Receives control from the EXCP or EXCPVR
SVC entry point. WKKREG6 indicates the type
of entry and whether further EXCPVR
validity checking is required.

A. Establishes module addressability, a
functional recovery environment, and the
I03 register.

B. Indicates that front-end processing is L—————— I\XFRR

active and sets the type 1 SVC exit v/
address in the FRR parameter area as the XFRRFLAG
return address. XFRRRETR

05| validity checks the caller's L———I\XFRR
control blocks. 1/

XFRRMORK

In general, the validity check consists of
accaessing the caller's control block in the
caller's key (key obtained from the R3 old
pswi). If a protection cheek occurs, the
functional recovery routine (IECVEXFR) will
abend the requastor. If accessing the
control bleck does not result in a
protection check, then unique testing is
donz on the caller’s control blocks and the
appropriate zbend is issucd if an error is
found.

The validity check is performed on the
following blocks.

EXCP-38 MVS/XA SLL: EXCP Processor LY28-1685-0 (c¢) Copyright IBM Corp. 1987

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

IECVEXCP - EXCP Processor for SVC 0 (EXCP) and SVC11l4 (EXCPVR)

XCcPoO1l0

XFRR [>
XFRRIWORK

] \,

05D >

/

ACPO13

XCPO14

RQE _j ---------- >
RQEKO3YP

LY28-1685-0

(c) Copyright IBM Corp. 1987

A. In caller's key, the DCB pointer is
loaded from tha IC3 and the DEB address
is obtained from the DCB. The EC3
address is obtained from the I0B and the
ECB field is set to zero.

B. If the DCB pointers from the I0B and DEB
blocks do not match, issues abend 400 to

abend thz task.
[::\
>ABENDCOO: 72
/

C. If the caller is in problem program key,
calls the DZB validity check routine to
check if the DEB is on thz DE3 chain.

/l—IN\

\—7/ REGISTER APBSRG

RETURN REGISTER: LNXREG

D. Other EXCP front-end routines that
perform DEB validity chacks enter at

this point when the validity checks
fail.

E. If the DEB was not found on the DEB
chain, issues abend 300 to abend the

task.
\
>ABENDOCO: 72
/

STEP 05A

F. Porforms additional EXCPVR validity = b————J\XFRR

checking, as follews:

If the DEB (DEBESMVR) shouws
authorization, sets a bit in the FRR
param=ter area (RQEKCZYP) to indicate
that this is a SAM request and that the
I0B is in protected storzge.

The DCBIOBAD field contains a pointer to
a SAM control block (ICQ) which contains
the IC3 address. If the IC3 address in
the ICQ does not match the input ICB
address, issuxzs an abend 172 to abond
the task.

If the DEB does not show authorization,
issues an abend 172 to abend the task.

7

XFRRKORK

Method of Operation EXCP-39

YRestricted Materials of IBM"
Licensed Materials — Property of IBM

IZCVEXCP - EXCP Processor for SVC 0 (EXCP) and SVC1l4 (EXCPVR) STEP 056

6. If the EXCPVR request fails the validity
check, issues abend 172 to sbend the

task.
\
>ABENDOQO: 72
/

XcPo16{|06| For problem program callers,
XFRR N > performs additional validity
checking, as follows.
XFRRWORK
D=3 I >| A. In the key of the problem program
caller, accaesses the 103 and DCB and
DEB3ASIC references the ECB. (For SAM requests,

EXCP-40 MVS/XA SLL: EXCP Processor LY28-1685-0 (c) Copyright IBM Corp. 1987

bypasses accessing the X03.)

If a protection check occurs, the
functional recovery routine (IECVEXFR)
will issue abond 200 to abend the task.

B. If the DEB is not intended to be used by

EXCP and the DEB type (DEBAMTYP) is not .

ISAM (DEBAMTYP), censidzrs the DEB
invalid and issues abend 300 to abend

the task.
\
>XCP0O13: 05D
/

C. If this is a valid ISAM DEB and the IOBM
field is zero, issues abend 500 to abend

the task.
\
[::: >ABENDOOO: 72
/

"Restricted Materials of IBM"
Licensed Materials -~ Property of IBM

IECVEXCP - EXCP Processor for SVC 0 (EXCP) and SVC1l1l4 (EXCPVR) STEP 07

Xcpo20[107| Performs I0BM and DEBNMEXT

DEB r > validity checking for direct
- I\ access, graphic, and

DEBBASND : — teleprocessing davices.

ucs : The I0BM field must be less than the DEB
-J extent (DEBNMEXT) field. The ICBM is

UCBTBYT3 indexed from 0-n while the DEBNMEXT is

indexed from 1-n (except that system-built

XFRR DEBS may have an index of 0).

XFRRIRORK r——-—ﬂ A. If the IOBM is larger than the DEBNMEXT
or both indexes are not zero, issues
abend 300 to abend the task.

\
>XCPO13: 0SD
/
Xcrozs| | 08| For a valid IOBM extent,
DEB > indexes into the DEB extent
4 N tadle to cbtain the UCB
DEBBASND —/ address.
DEB

DEBEXSCL —

%xcP0o30) [09] Checks if the UCB is valid

ucs J > (byte 3 not X'FF').

ucaIb UCBSTND

A. If the UCB is not valid, issuss abend
500 to abend the task.
\
>ABENDOOO: 72
/

Xcpozs| 10| Performs the following IOB
initialization. (All of the
caller's control blecks are
valid at this point.)

Zeroes the 103 error count.

Zeroes the CSH field.

Resets 108 flags.

Sets the ECB completion code to normal
completion (X'7F').

LY28-1685-0 (c) Copyright IBM Corp. 1987

Method of Operation EXCP-41

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

IECVEXCP - EXCP Processor for SVC 0 (EXCP) and SVC11l4 (EXCPVR) STEP 11

PSA

]
PSAAOLD J'—J

11| Determines if the maximum

A count of outstanding EXCP requests is
kept in the ASCB. If the maximum number of
outstanding EXCP requasts has been
exceeded, does the following.

A. Issues CALLRTM ABTERM to abend the
active TCB with an abend codz of C22.
After issuing the CALLRTM, IECVEXCP does
no more procaessing and returns to the
caller. The abending task will clean up
all outstanding EXCP requests.

number of outstanding EXCP
requests has bzen excezded.

[:::\
>XCPEXIT: 35
/

%XcPo36||12| Calls the storage manager to 4L ————I\RQE
RQE [I\ obtain a requast quzue /
—7 2lenent (RQE) and RQEIOB
RQETCCH initializes it. RQETCB
RQETCCH
XFRR The RGE initialization consists of: RQEPRT
RQETYPE
XFRRINORK . Storing the caller's I0B, DEB and TCB
pointers. \XFRR
. Saving the caller's protection key from ey /
the RB old PSK. XFRRCRQE
. Storing the type of entry (virtual EXCP, XFRRMORK
EXCPVR, or V=R EXCP).
. Storing the UCB address.
. Zeroing tha other save area fields.
xcpvami 113| Deterinines if VIO processing L—— —I\RQE
uce N > is reguired. 14
RQEIPIB
UCSJUBNR UCSVRDEV If the UCBVRDEV bit is set in the UCB, VIO RQETYPE

EXCP-62 MVS/XA SLL:

processing is required and IECVEXCP invokes
the ViO window intercept routine.

A. Call the window intercept routine.

7N
\N—/

HIEXCP

EXCP Processor

LY28-1685-0 (c) Copyright IBM Corp. 1987

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

IECVEXCP - EXCP Processor for SVC 0 (EXCP) and SVC114 (EXCPVR)

RQE

XCPVAMD
\

RQEIPIB

RQE

—
———

XCP038

XCPO50

STEP 13B

B. Upon return to IECVEXCP, the window
intercept routine must at least restore
the RQE pointer and the IECVEXCP base
register (register 5).

The possible addresses returned to from
the VAM window intercept routine are:

. Register 14+0 - Posts the caller's ECB
and returns the RQE block to the storage
manager.

. Register 14+¢ - Does not post the
caller's ECB and returns the RQE block
to the storage manager.

. Register 14+8 - Doezs not post the
caller's ECB and does not return the RQE
block to the storage manager.

C. Goes to exit from IECVEXCP.
\

>XCPEXIT: 35
/

L I\RQE

14} I the caller's reguest is a

related reguest, chains the
RQE ofFT thz RR{.

The related request handling routine
(XCPRRQOO) determines whether to
precess the request or return to
caller.

A. Goes to related request handling routins
(XCPRRG00).

15] obtains from the storage

>

RQETYPE RQEVIRT
RQEXCPS

ucs

UCBEXTPT

—

XFRR

XFRRSTRG XFRRFCNT

I\
—/

manager th2 nusber of large
blocks requirzad for the
caller's request.

Two blocks are always obtained to be used
as the SR3/I0SB and the TCCH blocks. For a
virtual EXCP, two additional blocks are
obtainad for the BEB and FIX blocks. If a
channel program scan (CPS) DDT exit exists,
an additional block is obtained to contain
the exit parameter list and exit work area
(XCPS).

3/
RQEIPIB

I\RQE

/
E RREFLAG3

\XFRR
/

XFRRSTRG
XFRRFCNT

PSA The storage manager returns the large
blocks by chainirng them together by the

PSAAOLD — first word of cach block. The chain field
in the last block is zero.

LY28-1685-0 .(c) Copyright IBM Corp. 1987 Method

of Operation EXCP-43

IECVEXCP - EXCP Processor for SVC 0 (EXCP) and SVC114 (EXCPVR)

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

STEP 16

xcroes|| 16| Establishes the first large
I0SB I -> block as the SRB/IO0SB block.
\
IOSEND ——/| Zeroes the SRB and I0SB fields, sets the

SRB identifier, sets the SRBPARM field to

RQE the address of the IOSB, and sets the

I0SSRB field to the address of the SRB.

RQETCB l__
RQE N >|{17] If a CPS exit exists,
initializes the second large
RQEFLAG3 RQEXCPS block for the channel
ongram scan exit parameter
list and woirk area.
XcPo66(18] Establishes the pointer to
RQE N -> the TCCH block.
\
RQEKOBYP —
RQE
RQEPRT I___
Xcpo67|{19| For a virtual request,
RQE N > establishes the last two
bleocks as tha BEB and FIX
RQETYPE RQEVIRT blocks.
xcpoes|f20] Initializes the SRB/I0SB
blocks.
I0SB ,———-‘\ A. If the I08 requested condition code 3
1/ posting (IO3CC3WE), sets the IOSCC3WE
I0SXCPID ,—-l bit in the I0SB.

B. Establishes a pointer to the termination
exit routine (IECVXTRM).

C. Sets the RQE address in the IOSUSE
field.

D. Establishes pointers to the IECVEXCP
normal-end and sbnormal- end exit
routines (XCPCHE and XCPABE),

E. If the DCB requested that IBM ERPs are
to be bypassed (DCBIFIOE), cets the
IOSNER? bit (in byte IOSOPT) in the
I0S8.

XCP0O71]| F. Sets the IOSDIE field to the address of
RQE N > entry point XCPDIEZ for tha following
conditions:

RGETYPE RQEVIRT
RGETYP3

EXCP-44 MVS/XA SLL:

. Type 3 related request, so that the
DIE can initiate the next ready request
if this I/0 completed succassfully.

. A non-virtual request (EXCPVR or V=z=R)
when the requestor spzcifies a valid PCI
appendage.

-—————I\RQE

4
RQESRB

'————I\RQE

RQETCCH

I\IOSB

7
IOSDVRID

I\IOSB

—7
IOSDIE

EXCP Processor

LY28-1685-0

(¢c) Copyright IBM Corp.

1987

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

IECVEXCP - EXCP Processor for SVC 0 (EXCP) and SVC114 (EXCPVR)

RQE

RQRETYPE RQEVIRT

DEB

DEBBASIC DEBXTN

RQE

RQETYPE RQE1TOl

TCCH

XCP0O90

STEP 206

G. If this is a virtual EXCP request with a L—— I\TOSB

valid PCY appendage, sets the IOSPCI

field to the address of entry point
XCPPCI.

H. Sets the I0S8 IOSLEVEL field to the
noriral level.

I. If the DEB contains an 1/0 prevention
identifier {IOPID), moves the IOPID from
the DEB to the IOSB.

21| Determines if the DEB block

n2ads to be fixed for an
EXCP V=R requast with a
valid PCI appendagz.

A. If the DEB has not already been \
fixed, goes to the EXCP DEB fix
routine (XCFDEBFX) to fix the DEB.
The DEB fix routinme returns to
XCP105 to continue processing.

/

>COo

v/

IOSPCI

22| For virtual EXCP and EXCPVR — —I\XFRR

| R

RQE

—/

RQETCCH

RQE

RQETYPE RQE11l4

LY28-1685-0 (c) Copyright IBM Corp. 1987

recquasts, enters the

caller's page=-fix appendage.

If a page-fix appendage is provided, does
the following set-up before entering the
caller's page-fix appendagz:

. Sets MKREGA to the address of the fix
list area in the TCCW control block for a
virtual EXCP request (for a dummy list)

. Zeroes register 9

. Sets flags in the FRR parameter area to
indicate that the page-fix appendage is
active

For an EXCPVR request, the page-fix
appendage returns the starting address of
the page-fix list in register 10 and the
number of page-fix entries in register 11.

A. If this is an EXCPVR request, interfaces
with the fix list routine (XCPLSTFX) to
page-fix the caller's fix list.

XCPLSTFX returns to XCP105 to continue
processing.

e

‘l/

XFRRFLAG

Method of Operation EXCP-45

YRestricted Materials of IBM"
Licensed Materials - Property of IBM

IECVEXCP - EXCP Processor for SVC 0 (EXCP) and SVC114 (EXCPVR) STEP 23
N
23 >{{23| For DASD devices, handles
— the interface to the extent
uce XCP105 check routine.
>
UCBTBYT3 A. Moves the I03 seek address (IOBSEEK) to t—————I\IOSB
the I0S3 (IOSEEKA). V4
TOSEEKA
B. Calls the IECVEXCP extent check routine

(XCPEXT) to sce if the seck address is
within the DEB low and high extents. If
not, XCPEXT interfaces with the caller's
end-of-extent appendage.

7—\

\N\r——y/ REGISTER WKREGB

RETURN REGISTER: LNKREG

RQE -I- --------- >

C. If the extent is not within bounds
RQEFLAG (register 15 = 4), and the end-of-extent
appendage has indicated to skip this
operation, goes to IECVEXCP back-end
processing at XCP508 to terminate the

request.
N\
>XCP508: 86
/
XFRR S > L \XFRR
-t 4
XFRRABE : D. If the extent is not within bounds XFRRFLAG
: (register 18 = 4) and this is not a
RQE : related request, goes to interface with
-~ the caller's zbnormal-end appendage at
RQETYPE Xcp2ozC.
\
>XCP202C: 50
/
RRQ _I' ---------- >

E. If the extent is not within bounds
RRQFIRST (register 15 = 4}, and this is a related
request, and the RQE is at top of the
related request queue (RRQ), goes to
interface with the caller's abnormal-end
appendage at XCP203AA.

[:::\
>XCP203AA: 52
/

F. If the extent is not within bounds RQETYPE
(register 15 = 4), and this is a related
request, and the RQE is not at the top
of the related requast qucue (RRQ), sets
a flag (RQEEOZE) in this RGE and exits
from IECVEXCP processing.

——————I\RQE

EXCP-646 MVS/XA SLL: EXCP Processor LY28-1685-0 (c) Copyright IBM Corp. 1987

YRestricted Materials of IBM"
Licensed Materials — Property of IBM

IECVEXCP - EXCP Processor for SVC 0 (EXCP) and SVC114 (EXCPVR)

STEP 24

[::\
>XCPEXIT: 35
/

24| Handles the interface with

%XCP110
I0SB >
|
IOSEEKA

e \
24E >

—/

RQE XCP113
>

RQENOPST

LY28-1685-0

(¢c) Copyright IBM Corp. 1987

the caller's S10 appendage.

The address returned to by the SIO
appendage indicates the next action.

A. Goes to ih? SI0 appendage.
\

L——I\XFRR

XFRRFLAG

/l
\—/ REGISTER APBSRG

RETURN REGISTER: LNKREG

B. If return is to register 14 + 0,
continues processing.
[::\s
>XCP11l5: 26
/

C. If return is to register 14 + 4, does
not post the caller's ECB, returns the
RQE to the storage manager, and
terminates the request.

\
>XCP113: 24E
/

D. If return is to register 14 + 8,
continues processing.
\
>XCP115: 26
/

25| Goes to return the RRE and

large blocks.
[::\
: >XCP515: 86
/

L I\XFRR

/

XFRRFLAG

/
E\RQE

RQEFLAG

Method of Operation EXCP-47

"Restricted Materials of IBM"

Licensed Materials — Property of IBM

IECVEXCP ~ EXCP Processor for SVC 0 (EXCP) and SVC114 (EXCPVR) STEP 26
I\
26 >[{26] Handles the SIO appendage b I\XFRR
—/ request to centinue 1/
RQE XCPI]l.S processing. XFRRFLAG
\
RQETCCH —
ucs pr-——————-- >|{27] Sets the set file mask
-2 I\ to the I0SFHEK Fiald of the
ucsTBYT3 : e / I0SB.
CZE : .
- 28| sets the virtual start
DEBBASND address (IOBSTART) in
register VKREGS.
DEB
DEBEXSCL
RQZ N >[129{ For virtual EXCP recuests, ———I\RQE
I\ performs CCW translation. 1/
RRETYPE RREVIRT —/ RQEFLAG
RREFIXST Initializes the TCCW control block for the
call to IECVTCCH to translate the virtual
RAE channel program to a real channz2l program.
RQETCB — The address returned to by IECVTCCN
indicatas the next action.
—d\
29A >| A.
—
XCP120
B. Calls ¥ECV¥CCN to tronslate CCWs.
/ \
\—/ REGISTER AP3SRG
RETURN REGISTER: LMAREG
XCP125| €. If return is to register 14 + 0, stores
the real CCH address.
\
>XCP160: 32
L
D. If return is to register 14 + &, issues
an 800 abend.
—J\
>XCP135: 31
7
E. If return is to register 14 + 8, issues

EXCP-48 MVS/XA SLL:

an 800 abend.

\
>XCP135: 31
/

EXCP Processor

LY28-1685-0

(¢) Copyright IBM Corp. 1987

YRestricted Materials of IBM"
Licensed Materials — Property of IBM

IECVEXCP -~ EXCP Processor for SVC 0 (EXCP) and SVC11l4 (EXCPVR) STEP 29F
F. If return is to register 14 + X'C’,
IECVTCCH requests a large block.
%xcP130| 30| Handles IECVTCCW's request
XFRR I AN for another large block.
/
XFRRSTRG r—-' '
XFRR l——-‘\ A. If there are any blocks on the free ———I\XFRR
7/ chain, uses [them. 4/
XFRRFCNT r-Ii XFRRSTRG
B. Otherwise, invokes the storage manager XFRRFCNT
(IOSVSMGR) to obtain one large block.
7—I\
\r— %CPSMEGRG: 73
RETURN REGISTER: WKREGY
C. Returns to IECVTCCH
\
>XCP120: 29A
/
—
31 >[|31| Handles IECVTCCW's error L——————\RQE
v/ return ccndition. -—7
RQE XCP135 RQEFLAG
\
RQEFIXST I————-_ll
A. Sets abend code 800.
\
>ABENDSET: 71
/
LY28-1685-0 (c) Copyright IBM Corp. 1987 Method of Operation EXCP-49

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

IECVEXCP - EXCP Processor for SVC 0 (EXCP) and SVC114 (EXCPVR) STEP 32
I\
32 >[132]| With a successful IECVTCCW -~ \I0SB
v/ translation of the virtual 14
RQE XCP140 channel program, updates the IOSRST
> I0SB virtual and real start I0SVST
RQETYPE RQE1TOl channel program addresses.
xcp1so| | 33| If the device provides a
RQE r > channel program scan exit
-2 N (CPS), invokes the CPS exit
RQEFLAG3 RQEXCPS | : —/ with th2 STARTIO function.
I0SB : A. Invokes the CPS exit.
-3 s—IN\
: \N—/ REGISTER APBSRG
TCCH _J RETURN REGISTER: LNKREG
RQE
RQETCCH r——
XcpP152| | 34| Determines if the request ————I\RQE
RQE I > can be sent to I0S for N/
AN initiation. RQEFLAG
RQRETYPE RQESTBL —/ RQEFLAG3
RQESRBS Sets a flag in the RQE (RQESTBL} to
RRQ indicate that the request is startable.
If this is a type 2 or 3 related request
RRQFIRST — and this RQE is not the first RQE on the
RRQ, bypasses starting the request and
exits from IECVEXCP processing (goes to
XCPEXIT).
Otherwise, performs the following:
. Saves all the IECVEXCP registers in the
local lock save area.
. Sets a flag in th2 RQE (RQESRES) to
indicate that the call to IOS is in
progress for initiating the request.
. Issues the STARTIO macro passing the IOSB
as the parameter.
. Upon return, restores all the IECVEXCP
registers.
. Sets a flag in the RQE (RQEINIOS) to
indicate that the request is in I0S.
I\
35 >||35] Exits from EXCP processing.
7/
1
XCPEXIT
XFRR — >| A. If exit processing (XCPE¥IT) was entered ——————J\XFRR
I\ from back-end processing, determines, T4
XFRRCRQE XFRRFLAG —/ for type 2 and 3 related requests, XFRRCRQE
XFRR3KE XFRRKORK whether further translation of requests XFRRPRGE
is required.
RQE
- If the BCB is marked in permanent
RQRETCB — error, further translation is not
required.
EXCP-50 MVS/XA SLL: EXCP Processor LY28-1685-0 (c) Copyright IBM Corp.

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

IECVEXCP - EXCP Processor for SVC 9 (EXCP) and SVC114 (EXCPVR)

XFRR

XCPEXITB
\

XFRRSTRG

—
y

XFRR

XCPEXITC

B. Otherwise, goes to determine if there
are RQEs to be processed.
\
>XCPEXITK: 42
/

36| Returns all free large

hlocks to the storage
manager.

If the FRR large block chain pointer is not
zero, calls the storage manager to return
all large blocks chained on the large block
free chain.

7=\
\—/ XCPSMGR: 73A

RETURN REGISTER: WKREG9

37| If 10S post status called

_[>

XFRRFLAG XFRRBKE
XFRRAORK

XFRR

XFRRRETR

I—

LY28-1685-0

(c) Copyright IBM Corp. 1987

baclt-end processing, coss to
XCREXITD to -ree the laocal

lock.
\
>XCPEXITD: 39
/

[q]
(%]

IT¥ chann2l~-end or

abnormal-end exit processing
called back-end precessing,
doas the follewing:

. Restores post status registers

. Sots a return ccde of 16 in register 15
. Restores the post status return address
. Deletes the FRR

. Issues thz BSM instruction to return to

I0S post status
\
SXCPEXITF: 41
/

STEP 35B

Method of Operation EXCP-51

YRestricted Materials of IBM"
Licensed Materials = Property of IBM

IECVEXCP - EXCP Processor for SVC 0 (EXCP) and SVC114 (EXCPVR) STEP 39
I\
39 >1139| If I0S post status called
V4 back-end processing,
XCPEXITD releases the local lock.
XFRR XCPEXITE| A. Restores the caller's return address.
r———l\
-7
XFRRRETR I——' B. Sets a return code of zero in register
15,
XFRR i >||40| If IECVEXPR purge or
IECVEXFR routines called
XFRRFLAG IECVEXCP to terminate a
requast, sets the return
cod2 in register 15 to zero.
I\
41 >[|41] Deletes the functional
V4 recovary envirconment and
XFRR XCPEXITF determines whether to return
> to tha caller via a BR or
XFRRWORK BSM instruction.
A. If entry was not from the IOS post b
status routine, returns using the BR -]_l
instruction.
\7/
B. If entry was from the I0S post status
routine, returns using the BSM
instruction.
\ 7
——
42 >||42] If exit processing was L—————I\XFRR
—/ entered from back-end V/
RQE XCPEXITK processing, deternines for XFRRCRQE
-r > type 2 and 3 related XFRRPRQE
RQETYPE RQEFLAG | : A requaests if furthepr
RQESTBL : | — translation is required.
RRQ : For these related request types, up to
-4 ‘four requests are made ready for I/0
initiation.
RQE
43| EXCP Normal-end and
RQENRQE I Abnortal-end exit
processing.
RRQ
RRQFIRST —

EXCP-52 MVS/XA SLL: EXCP Processor LY28-1685-0 (c¢) Copyright IBM Corp. 1987

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

IECVEXCP = EXCP Processor for SVC 0 (EXCP) and SVCl1l4 (EXCPVR) STEP 44

XFRR [remmm————— >{|44] I¥ exit processing was L \IO0SB
- entered from the IECVEXCP v/
: abnormal- end exit entry IOSFLA
: point (XCPABE) via ICS post

: status, does the following.

XFRRABE
RQZ

RREFLAG Saves post status registers in the local
lock save area.

Indicates abnormal-end entry.

Establishes the RQE and DEB pointers from
the IOSB.

If the RQE indicates that purge is active
(RQEPURGE), bypasses the abnormal-end
appendage and continues processing as if a
return code of 0 was returned from the
appendage.

A. Goes to the common IECVEXCP exit

processing.
l:\
>XCP200: 46
/

45| If exit processing was
entered from the IECVEXCP
normal-end exit entry point
(XCFCiiE) via I0S post
status, doss the following.

Saves post status registers in the
local lock save area.

Indicates channel-end entry.

Establishes the DEB pointer from the
I0sB.

1

\
46 > |%6] Perforns ccmnon IECVEXCP 4———I\XFRR

V/ exit processing. /
RQE XCP200 XFRRCRQE
>| Establishes a functional recovery routine. XFRRFLAG
RQEPRT XFRRHORK
Indicates a return to post status via a BSM XFRRRETR
instruction.

\RQE

Establishes the RQE pointer from the IOSB. —/

RQEFLAG3

Resets the request-in-I0S flag (RQEINIOS).

Establishes pointers to the IOB, DCB and
UcB from the RQE.

For problem program callers, validates the
caller's blocks.

LY28-1685-0 (c¢) Copyright IBM Corp. 1987 Method of Operation EXCP-53

YRestricted Materials of IBM"
Licensed Materials - Property of IBM

IECVEXCP - EXCP Processor for SVC 0 (EXCP) and SVC114 (EXCPVR) STEP 47
7—a\
\—/ XCPVAL: 69

RETURN REGISTER: LNKREG

XFRR __[Jz
XFRRFLAG XFRRABE W/
RRE
RQEIOB —
%xcp2018{ |47| Interfaces with the SMF I\RQE
RQE g > routinz to accumulate the V4
I\ EXCP count and increase the RQEFLAG3
RQEPRT RQEKOBYP —/ device connect time (DCTI).
RQEFLAG3 RQESMFCT
RQEACDCT If this request has been previously counted
(RQESMFCT), does the following:
RQE
. If the DASD ERP EOE check routine
RQETCB [requasts accumulation of DCTI (RQEACDT),
does the following:
I0SB - For a SAM rcgquest, adds the DCTI to the
accunulated time in the RRE. For non-SAM
I0SDCTI — requests, calls SIF, via the SMFIOCNT
macro, to accumulate the DCTI.

. Otherwise, bypasses SMF counting.

If this request has not been previously
counted (RRESMFCT), does the following:

. Sets a flag to indicate that the request
has been counted (RQESIFCT).

. If this is a SAM request, sets a flag
(RQEPSDCT) to indicate to pass the device
connect time to SAM.

. Otherwise, interfaces with SMF, via the
SMFIOCNT macro, to accumulate the EXCP
count and the DCTI count. For problem
program callers, requests control block
check.

Xcpz02| | 48] Maps the 10SB to the 10B.

A. G?es }o map the I0S8 to the IO0B.
/ \
\N—/ XCPMAP: 68

RETURN REGISTER: LNKREG

EXCP-54 MVS/XA SLL: EXCP Processor LY28-1685-0 (c) Copyright IBM Corp. 1987

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

IECVEXCP - EXCP Processor for SVC 0 (EXCP) and SVC1l4 (EXCPVR) STEP 49
RQE [m-====-=-= >11491 If the device provides a
-3 AN channel program scan exit
RQEFLAG3 RQEXCPS | : |r—/ (CPS), performs the
: following:
I0SB :
- If the entry is to the normal-end
: appendage, invokes the CPS exit with the
: normal-end function.
TCCH :
~2 Otherwise for the abnormal-end appendage,
: invokes the CPS exit with the I/0 function.
XFRR : 7N
- \N—/ REGISTER APBSRG
XFRRFLAG XFRRABE
RETURN REGISTER: LNKREG
RQE
RQETCCH —
—\
50 >{150] This is the entry point from
v the front-end end-of-extent
TCCW Xcp202C appendace processing vhen
> tne extent is not within
—\ bounds and this is not a
V4 related request.
RQE
REETCCH
%xcpP203(|51(If IECVEXCP was entered at
XFRR r -> the abnormal-end exit entry
-1 IN point (XCPABE), if the IOSB
XFRRFLAG XFRRABE | : |r——/ completicn code indicates
: pernanznt error, and if this
ICSB : is a type 2 or type 3
- related request, purges all
I0SCOD related requests bzfore
entering the abnormal-end
I0S3 appendage.
IOSERP ——
—J\
52 > |52 This is the entry point from
/ the front-end cnd-of-extent
RQE XCP203AA agpandange procassing when
-— -—> the extent is not within
RQETYPE RQETYP3 bounds and this is a related
requast.

LY28-1685-0 (c¢) Copyright IBM Corp. 1987 Method of Operation EXCP-55

YRestricted Materials of IBM"
Licensed Materials = Property of IBM

IECVEXCP - EXCP Processor for SVC 0 (EXCP) and SVC114 (EXCPVR) STEP 53
Xcp203A| | 53| Prepares to enter the d—o—JI\XFRR
RQE r > caller's channel-end or /
-3 I\ abnormal-end appendage. XFRRPRGE
RQEFLAG3 RQEACDCT| ——/ XFRRFLAG
: If the device connect time (DCTI) is to be
I0SB : passed to the SAM appendage, sets the DCTI \RQE -
-4 saved in the RQE in register 9. Otherwise, /
IOSFLA sats register 9 to zero. RQEFLAG3
RQE Issues a TM instruction on the IO0SEX bit in
order to set the condition code for the
RQENRQE appendage.
I0SB A. Invokes the appendage.
7—\
10SDCTI T \— REGISTER APBSRG

EXCP-56 MVS/XA SLL:

RETURN REGISTER: LNXREG

B4] Handles the return vectors

from the appendage.

The address the appendage returns to
indicates the next action.

A. If return is to register 14 + 0,
continues processing.
\
>XCP220: 59
[::/

B. If return is to register 14+4, does not
post the caller's ECB; terminates the

request.
\
>XCP215: 58
/

C. If return is to register 1448, retries
the EXCP request. (Goes to the IECVEXCP
ternmination routine to clean up, then
goes to front-end processing to retry.)

\

>XCP207: 56
/

D. If return is to register 14 + X'C', does
not post the caller's ECB and does not
return the RQE. Terminates the request.

\

>XCP208: 57
/

EXCP Processor LY28-1685-0 (c) Copyright IBM Corp. 1987

"pestricted Materials of IBM"
tLicensed Materials — Property of IBM

IECVEXCP - EXCP Processor for SVC 0 (EXCP) and SVC114 (EXCPVR) STEP 55
xcp208{ B8 IF return is to register e———J\RQE
RQE I > 164+X'10', retries from the "/
top of the RRQ. RQEFLAG
RQENOPST
The setting of the RQENOPST flag and the
RQERETRY flag indicates to the retry
routine in the EXCP tormination routine
that the retry is to top of the RRQ.
—I\
56 >||5%] If return is to register 14 s————\RQE
T4 + 8, re-issues (retries) the /
RQE XCP207 caller's request. E RQEFLAG
-[>
RQERETRY : The setting of the RQERETRY flag indicates \IOSB
: to the retry routine in the EXCP /
XFRR : termination routina that this request is to IOSFLA
— retriad.
XFRREXCP \XFRR
—7
XFRRFLAG
A. For returns to register 14+8 and
register 14+¢X'10', goes to prepare to
exit from the normal- end/abnormal-end
exit processing.
\
: >XCP250: 66
/
—I\
57 >|157{ Indicates that the RQE is e——I\RQE
—_— not to ke freed. /
RQE XCP208 RIENRQE
-r >| . Sets the no-free-RQE flag (RRENOFRE) in RIEFLAG
RQETYPE RQETYP3 | : ———1I\| the RGE.
RGENOFRE H —/ \RRQ
: . For a related request RQE, removes the / ——
XFRR : RQE from the chain. RRQFIRST;
-t RRQLAST |
XFRREXCP H !
RR :
nQ 3
RQE
RQENRGE -
XFRR
XFRRPRQE o
RRQ
RRQFIRST —

LY28-1685-0 (c) Copyright IBM Corp. 1987 Method of Operation EXCP-57

IECVEXCP - EXCP Processor for SVC 0 (EXCP) and SVC1l1l4 (EXCPVR)

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

STEP 58

B3| Indicates that the caller's

ECB is not to be posted.

. Sets the no-post-ECB flag {(RRENOPST) in
the RQE.

. Resets the exception flag (IOSEX) in the

A. For returns to register 14+4¢ and
register 14+X'0C’', goes to prepare to
exit from normal-end/ abnormal~end exit

processing.
\
I >XCP250: 66
/

d—————I\RQE

RQEFLAG

[:/
\IOSB

IOSFLA

[/
\XFRR

—/

XFRRFLAG

59| continues normal processing.

80| If entry was not from the

I10S post status routine,
goss to prepare to enter the
IECVEXCP termination
routina.

[::\
>XCP251: 66A
/

61) Resats the I0SB exception

and error flags.

62| If the IOB exception flag is

off (implying successtul
ccoletion), goes to prepare

<o enter IECVEXCP
\
>XCP250: 66
/

termination.
63| otherwise, with the 1038

excaption bit set on, does
tie following:

A. Maps the 103 flags to the IOSB.

B. For DASD, moves the IOB seck address to
the I0SB.

I\
58 >
v/
RQE XCP215
>
RQENOPST
I0SB.
I\
59 >
</
XFRR XCp220
>
XFRRFLAG —l\
V4
XFRR
XFRRBKE
UCB J ---------- >
UCBTBYT3

EXCP-58 MVS/XA SLL:

I\ XFRR

XFRRFLAG

e I\IOSB

IOSFLA

————I\I0SB

EXCP Processor

LY28-1685-0

IOSEEKA

(c) Copyright IBM Corp. 1987

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

IECVEXCP - EXCP Processor for SVC 0 (EXCP) and SVC114 (EXCFVR)

XcP221
RQE | Satudiatatetedatetet >
RQEPRT RQETYPE | :
ucs :
i
UCBTBYT3
XCP225
RQE - >

RQETYPE RQEVIRT

LY28-1685-0

(c) Copyright IBM Corp. 1987

STEP 63C

€. If this is » related request and the I03

ECB completion code field indicates a
permanent error (X'40' to X'4F'), sets
the DCB-in-permanent-error flag
(DCBIFEC).

Otherwise, for related requests,
bypasses mzpping the I0B to the I0SB and
goes to XCP235 to chack the I0SB
completion code to determine return
processing.

If this is a 3525 device with associated
data sets and the access method is not
EXCP, sets the DCB-in-permanent-error
flag in all the associated DC8s and
continues to map the IC3 to the IOS3.

. Maps the following fields from the IOB

to the ICS3:

The ICB CSH status and residual count
fields.

The IOB two bytes of sense data.

The I03 start address (IOBSTART) to the
10S8 virtual and real address fields.

The IOB CSHW address field.
For a virtual EXCP request, calls

IECVTCCH to translate the CSH address to
tha caller’s virtual channel progranm.

[::\
>XCP228: 63F
/

. For an EXCPVR request, translation is

not required. Returns to post status.
\
>XCP233: 6%
/7

——I\IOSB

IOSTATUS
IOSSNS

——————I\I0SB

IOSRST
10SVST

Method of Operation EXCP-59

“Raestricted Materials of IBM"
Licensed Materials = Preoperty of IBM

IECVEXCP - EXCP Processor for SVC 0 (EXCP) and SVC11l4 (EXCPVR) STEP 63F
e \
63F >! F. Calls IECVTCCH to translate the CSW
ey / address to the caller's virtual channel
RQE XCPZ?B program.
\
RQETCCHW — / , I\
\p——y/ REGISTER APBSRG

RETURN REGISTER: LNKREG

XFRR I——l\ e \10S8B
"/ V4
XFRRCRQE ,—' JOSRST
' IOSVST
\
66 >||164| If the device providas a
— channel program scan exit
RQE XCP233 (CPS), invokes tha CPS exit
-r > with ths STARTIO function.
RQEFLAG3 RQEXCPS | : I\
: /
10SB : I A. Invokes the CPS exit.
- 7
: \—/ REGISTER APBSRG
H
TCcCW K RETURN REGISTER: LNXRES
RQE
RQETCCH —
xcpz3s5i 65| If the CPS exit returned on
the norinal complstion return
code with the I0B exception
bit set (IOBIOERR), prepares
to exit the
normalsaonarmal-end
processing.
I0SB N >} A. If the I0SB completion code indicates a
permanent error condition (X'40* to
10scoD X'4F'), goos to XCP252 to preparo to
enter the EXCP termination routina.

\
I:: >XCP252: 66C
/

B. Otherwise, prepares to return to 10S
post status to allow ERP processing, as
follows:

Deletes the functional recovery
environment,

Restores caller's registers.

Sets a return code of zero in register
15.

EXCP-60 MVS/XA SLL: EXCP Processor LY28-1685-0 (c) Copyright IBM Corp. 1987

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

IECVEXCP - EXCP Processor for SVC 0 (EXCP) and SVC1l4 (EXCPVR)

C. Returns to post status {IECVPST).

66| Prepares to exit from
normal-end or abnormal-end

exit processing, as follows.

I\

66 >

v/

XFRR XCP250

>

XFRRFLAG e\,

/

l

XFRR —\
66A >| a.

XFRRBKE e/

XCcP251

LY28-1685-0

B. If entry was from IECVEXCP front-end or
back-end processing, enters IECVEXCP
back-end processing at XCP508 to
terminate the request.

\
>XCP508: 84
/

e
66C >
T4
XCp252

D. Otherwise, enters IECVEXCP back-cnd
processing at XCPTERM to terminate the

request.
\
>XCPTERM: 80B
/

(¢) Copyright

IBM Corp. 1987

O

Method of Operation

STEP 65C

EXCP=61

YRestricted Materials of IBM"
Licensed Materials = Property of IBM

IECVEXCP - EXCP Processor for SVC 0 (EXCP) and SVC114 (EXCPVR) STEP 67
XCPPUR| 67| Purgas requests that are —————I\XFRR
XFRR I > related to the current /
recuast. XFRRKORK
XFRRRRP

If the current request is considered in
permanent error, purges all related
requests up to the current related request.

Sets an FRR flag (XFRRRRP) to indicate that
related request purging is active.

If a request on the related request queue
(RRQ) has been sent to I0S, the request is
left on the RRQ.

Otherwise, doas tha following:

. Sets the IOBECBCC code to purge, X'48'.

. Ensures that ths request is posted and
the QS returned.

. Goes to IECVEXCP back-end processing to
purge the request (XCP510). Upon
completicn, the back-end processing returns
to this routine at XCP260.

then the last RGE on the RRQ chain has been
handled, returns to XCP203A to continue
processing the current RQE.

]\
67A >| A I——I\RQE
e/ Tuld
RRQ XCP260 E RQEFLAG
-r >
i \XFRR
H 7/ /
RAE : XFRRIKORK
-
RQZFLAG RQESRBS
RRQ
RRQFIRST 1
RAQZ=
RQEIO3 RQENRQE
RRESRB RQERETRY
RQENOPST RQENOFRE
XFRR

XFRRCRQE XFRRRRP .

EXCP-62 MVS/XA SLL: EXCP Processor LY28-1685-0 (c) Copyright IBM Corp. 1987

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

IECVEXCP =~ EXCP Processor for SVC 0 (EXCPJ) and SVC114 (EXCPVR) STEP 68
I\
68 > |68] Maps the contents of fields L— I\Tcew
—_— in th2 1083 to th= I0B. 7/
RQE XCPMAP TCCHRRGSY
-r >| This mapping is done on completion of an
RQETYPE RQEVIRT : ——I\] 1/0 request. The I/0 request results need
RQE1TOL : ~———/| to be mapped to the IOB before IECVEXCP
: enters any of the appendages or DIE
TCCHW : routines.
-4

Maps the following fields:
. The IOSFLA field to the IOBFLAGl

1083 . The IOSCSH to the ICSCSW
. The YO3SNS (two bytes of sense data) to

I0SFLA I0SCOD IOBSENSO

IOSCSW IOSSNS . The IOSCC (condition code) to IOBCC.
. If the I0SB completion code is X'74°

RQE (unknown to caller), leaves IORECBCC set to
X' 7F¢

RQETCCH - . If the IOSB completion code is X'Sl’' (new
error code), sets ICBECBCC to X'41'

TCCH (permanent error).
. Otherwise; the I0SB completion code

TCCHRGSY —— (X0SCOD} is moved to ICRECBCC
. If the DIE (XCPDIE) routire was in

control and the request was not an EXCP V=R
requast, translates the real CCH address to
virtual and stores it in the IC3 CSW
address.

. If this is a virtual EXCP request, goes
to IECVTCCH to translate the virtual
address of the real channel program to the
virtual address of the caller's virtual

prog:am.
A. Returns to caller. m
\ 7/
RQE r——-—-—-J\
V4
RGEIOB — I]
69 >|169| Validates a preblem program
-7 caller's control blocks.

ACPVAL
If a protection check occurs while
accessing the caller's control blocks, tha
functional recovery retitine IECVEXFR will
issue abend 200 to abend the task.

Issues a MODESET macro to get in the
caller's Kkey.

If the caller is not SAM, then accesses the
beginning to the end of the normal ICS.

Accesses the DCB.

Accesses the ECB.

LY28-1685-0 (c) Copyright IBM Corp. 1987 Method of Operation EXCP-63

"Restricted Materials of IBM"

Licensed Materials = Property of IBM

IEZECVEXCP - EXCP Processor for SVC 0 (EXCP) and SVC114 (EXCPVR) STEP 69A

RQE

A. Returns to the caller.

O]

AN
70 >

70| Interfaces with the system

1/
XCPPOST

RREPRT

EXCP-64 MVS/XA SLL:

e\

XCPPOST1

70D >

—
XCPPOSTS

If a protection check occurs while
accessing the caller's ECB, the functional
recovery routine IECVEXFR will issue abend

post routine.

200 to abend the task.

A. Issues a MODESET macro to get in ths
caller's key to access the ECB.

B. If the wait bit is on, then calls the
post routine to post the ECB with the

ICSECBCC code.

[::\
>XCPPOST5: 70D
/

C. Otherwise, issuas a CS instruction in
the caller’'s key to set ths I0BECBCC

code to the ECB.

E. Invokes the post routine IEACPTO2.

7N\
\Ne—1/

REGISTER APBSRG

RETURN REGISTER: LNXREG

F. Returns to the caller.

EXCP Processor

LY28-1685-0

{c) Copyright IBM Corp. 1987

YRestricted Materials of IBM"
Licensed Materials — Property of IBM

IECVEXCP - EXCP Processor for SVC 0 (EXCP) and SVC114 (EXCPVR)

STEP 71

PSA

I\
71 >

71| Sets register 1 to abend

4
ABENDSET

e \,
72 >
14
ABENDOOO

e \,
73 >
e T
XCPSMQ?G

PSAAOLD

—

LY28-1685-0

e \
73A >
A
XCPSHGER

(c) Copyright IBM Corp.

coda 800 for page fix and
untix errors.

72| Issuzs the ABEMND macro to

aband the task.

The aband code to be issued has been set in
register 1.

The functional recovery routine IECVEXFR
receives control as a result of the SVC 13
and abends the task.

A. Issues ihelABEND macro.

—,

SEND

(REG1), DUM?, , SYSTEM

751 InterTeces with the I0S

storaee manzzar 9 gat and
frae larg2 clecks.

For ISCVEXCP requests for large blocks, the
storags menager does not establish a
functional recovery routine. Instead,
IECVEXCP estodlishos a storage manager FRR
parangter area in ihe lccal lock arca and
places the address of this paramcter area
in register 4 (storzge managar FRR
parametar register).

If the storace manager is in control when
RTM gats control as a result of an
unexgecied error, tha functional recovery
routine IECVEXFR must call thoe storage
manager's functional recovery routine.

On a get reguas?t, register 6 contains the
ASIG of the request and register 11
contains the count of large blocks
requasted. Cn return from the storage
managar, register 11 contains the pointer
to the first large block.

Cn a free request, register 11 contains the
pointer to the first block to be freed. The
firet word of each bleck contains a chain
pointer to the next block to ke 7reed. The
last block chain pointer wust be zero.

A.

1987

Method of Operation EXCP-65

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

IECVEXCP? - EXCP Processor for SVC 0 (EXCR) and SVC114 (EXCPVR) STEP 73B

B. Invoke? th? storage manager (IOSVSMGR).
/ \
\N—/ BASSM

LNKREG, APBSRS

C. Returns to the caller. e
n |

N/

XFRR N e > L i\Rree

/
XFRRFCNT RQETYPE
XCPRRQOO| | 74| Performs IECVEXCP front-end
related reguest handling. \10S3
/

This routine is called from the IECVEXCP IOSFLA
front-end processing to handle a caller's
related request. If necessary, this routine
obtains a related request queue elemznt
(RQE) and cueues this RQE to the RRQ.

uce e >| A. Determines if a related request queue
({RRQ) element block is available.

UCBTBYT3

If the DEEBRRQ field is zero and this is
not a 3525 device, obtains a related
request queuz (RRQ) and anchors it off
the DEBRRQ field.

If the DESRRR field is zero and this is
a 3525 davice, does the following:

. If the 3525 is Lke2ing handled by an
EXCP access method, does not check for
associaied data sets; obtains a related
recusst queue (RRR) element.

. If there are no associated data sets,
obtains a related request queue elemant.
. If there is a2n asscciated data set
with an RRQ, the RRQ is used. The
associated DCB and DZB are validity
checked.

. If thare is an associated data set but
without an RRQ, obtains a related
recuest queue element.

XCPRRQ10} B. Scans thz 3525 DCBs for an available DEB '— ——I\DEB
---------- > to deternine if an RRQ element is V4
¢ —l available. DEBECBB

RQE

RQEPRT

r
: For problem program callers, all new
DEB : DC3s =re validity checked. If a
-d protection cheek occurs, the EXCP
DEBBASIC functional recovery routine will abend
the task with abend code 300.
RGE

RIETCB —

EXCP-66 MVS/XA SLL: EXCP Processor LY28-1685-0 (c) Copyright IBM Corp. 1987

YRestricted Materials of IBM"
Licensed Materials = Property of IBM

IECVEXCP - EXCP Processor for SVC 0 (EXCP) and SVC114 (EXCPVR) STEP 74C
RQE XCPRRQ30| C. If an RRQ is not available, issuas a
r——'\ GETHMAIN to obtain an RRQ from subpool
4 256 and anchor it off the DEBRRAQ.
RQETCB
PSA r1
PSAACOLD
XCPRRQ40| D. Determines where in the chain to add the i————————I\RRQ
RRE J ---------- > RQE block. -/
I\ RRQFIRST
—/ If the RRQ element is new, then the RRQLAST
first and last entry contain this RQE
RRQ block address. LU\RQE
7/

RRQLAST o If the RRQ element is null, the last RQENRQE
entry address field points to the first RQERRQ
cntry address. For this case, the first
and last point to this RQE address. LU\XFRR

—/
If RQE blocks exists on the R2Q, then XFRRPRQZ
this RQE block is stored at the end of
the RRQ chain and the last entry address
points to this RGE block.
RQE _I ---------- >| E. Determines if related request processing
I\ is requirad.
RRETYPE ~—/

If the DCB indicates permanent error
RRQ {DCSIFEC flag), then the ICSECBCC field
is set to the purg2 condition and this

RRAFIRST — routine passes control to the IECVEXCP
abnormal-cnd exit processing (XCPABE) to

RQZ interface with the caller's zsbrormal-end
appendaga.

RQENRQE r——
If this RQE is the first RIE on the RRQ

or this RQE is for a tyme 1 related
requast, continuss processing to prevare
thz request for 1/0 initiation.

For related request types 2 and 3,
datermines if the maximum number of
requests has bozn readied. For type 2
and 3 requests, up to feur requests can
be made ready for I/0 initiation.

F. Processing is complete; the maximum
nurker of RQEs, if any, have been

readicd.
\
>XCPEXIT: 35
/

LY28-1685-0 (c¢) Copyright IBM Corp. 1987 Method of Operation EXCP-67

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

IECVEXCP - EXCP Processor for SVC 0 (EXCP) and SVC11l4 (EXCPVR) STEP 75
IECVDERP (DASD error recovery
procedure (ERP)) 75| Performs the DPASD ERP extent
\ checks. ———ounu\XFRR
> /
/ This routine is called by the DASD ERP to XFRRCRQE
IECVEXTC||check if the seek field in the 0SB is
I0SE [ro=me————> within the DEB extent limits. \RQE
-3 \ /
: | 7| |The DASD ERP return codes are set in RQEFLAG3
H register 15:
RGQE : . 0 = Perform retry on the request.
- + 4 - Post the request (thea DASD ERP
RQEPRT RQEXDERP| : returns to the I0S post status routine
H indicating no retry).
TCCY 3
~ A. If not within the DEB extent, calls the
end-of-exter,t (EOE) appendage for
furthar analysis.
RQE
The EOE apsendage returns to the EXCP
RQETCCH | processor with register 14 updated to
one of three branch vectors: +0 - Set
the I03 and IOSB to extent violation
post codas +4¢ - Post the requestor; +8 -
Recheck the DEB extents.
7—\
\N——/ REGISTER WKREGB
RETURN REGISTER: LNKREG
ROE r---------;> o JI\RQE
-2 \ /
RQEFLAG3 RGEXCPS H —/ ' RQEFLAG3
: B. Invokes the channel program scan (CPS}
I0SB : exit for the end-of- extent function.
-: 7—\
: \N—/ REGISTER APBSRG
TCCH _J RETURN REGISTER: LNKREG
RQE
RQETCCH RQEXDERPl——

EXCP-68 MVS/XA SLL: EXCP Processor LY28-1685-0 (c¢) Copyright IBM Corp. 1987

"Restricted Materials of IBM"
ticensed Materials — Property of IBM

IECVEXCP ~ EXCP Processor for SVC 0 (EXCP) and SVC114 (EXCPVR) STEP 76
TCCW f“'""""‘:> L——'>RQB
- \
v [—7 " |rqEFLAG
H
RQE s
-3
RQEFLAG3 RQEACDCT| :
$
I0SB :
J
I0SB
10SDCTI —

xcpext|176| Performs common extent
checks.

This routine is called from IECVEXCP
front-end processing to check the caller's
extents.

This routina is also called by the DASD ERP
routine via entry point IECVEXTC (in this
modulae) to check extents.

———-—l\
76A >| A. This is the entry from the end-of-extent
e V4 appendsge te check the extents again.
DEB XCPEXT1
>
DEBBASND e
/
1088 ' B. If the I0SB seck address is not between
tho DEB low and high extents, invokes
IOSEEKA M the end-of- extent appendaga.
\
DB >XCPEXTA: 79
/
DEBEXSCL
I0S3 J ---------- >
. C. If the seek and DEB BIN numbers are not
IOSEEKA the same, invokes the end-of-extent

appendage.

\
: >XCPEXTA: 79
/

0. If the seek address is within bounds and
this is not a split data set, returns to

caller with register 15 set to zero.
\|REGISTER
>LNKREG
/

RQE J-----4---->

RQEFLAG3 RQEXDERP

LY28-1685-0 (c) Copyright IBM Corp. 1987 Method of Operation EXCP-69

YRestricted Materials of IBM"
Licensed Materials — Property of IBM

IECVEXCP - EXCP Processor for SVC 0 (EXCP) and SVC114 (EXCPVR) STEP 77
Ics3 i S— >[177| 1If the caller is not a DASD ———————I\IO0SB
i\ ERP, performs split cylinder V4
ICSEEKA —/ oparaticns. IOSEEKA
DEB
CEBSTRHH ‘———
A. Then returns to caller. ;—I'
\N/
XcPexTs3| | 78| Performs split cylinder L — __I\1I0SB
I0sB [I\ opcerations for DASD ERP /
—/ callers. I0SEEKA
ICSEEKA l_'
I\
79 >|{79| If the seek address is not L————I\XFRR
4 within the DEB limits, V4
RQE XCPEXTA prepares to entar the XFRRFLAG
-7 > caller's end-of-extent
RQEFLAG3 RQEXDERP| : ——I\ appendage.
H /
TCCH : ' A, Invoke? en?—of—exten'l appendage.
- / \
TCCHRGSY H \N——/ REGISTER APSSRG
ICSB _l RETURN REGISTER: LNXREG
TOSEEKA
B. For an extent error condition, enters
RQE the abnormal-end appendags.
\
REETCCH | >XCPEXTE: 79F
=2 | ’
DESEOCEA —
XCPEXTB| C. If the end-of-extent appendage requests ———onJ\XFRR
RQE 4,-———'\ that the extent check be performed W/
4 again, returns to check the I0S8 seek XFRRFLAG
RQETCCH l_l address against the updated extent
limits.
\
>XCPEXT1: 76A
/

EXCP-70 MVS/XA SLL: EXCP Processor LY28-1685-0 (c) Copyright IBM Corp. 1987

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

IECVEXCP - EXCP Processor for SVC 0 (EXCP) and SVCl1l1l4 (EXCPVR) STEP 79D
XCPEXTC| D. If the end-of-extent appendage indicate?L———J\RQE
that this I/0 request is to ke skipped, =14
sets the REQPURGE bit to purgs this RQEFLAG
requast.
E. Prepare to return to caller.
N\
>XCPEXTF: 796
/
—\
79F >} F. If the end-of-extent appendage indicates L~————I\I0SB
——/ that this is an extent violation, sets 1/
XCPEXTE the extent violation code (X'42') in 10ScCch
both the I0B and the IOSB.
—\
796 >| G. Prepares to return to the caller. 11— I\I0SB
. /
RQE XCPEXTF Moves the I0B CSH status and residual IOSTATUS
I\ count fields to the I0SB.
RRETCCH v \XFRR
Restores the environment to return to /
the caller. XFRRFLAG
H. Resets the error flag in both the 108 L——\I0S8
and the I0SB. 1/
IOSFLA

Sets a return code of 4 in register 15.

XI. Returns to the caller. :l

LY28-1685-0 (c¢) Copyright IBM Corp. 1987 Method of Operation EXCP-71

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

IECVEXCP - EXCP Processor for SVC 0 (EXCP) and SVC11l4 (EXCPVR) STEP 80

requaest.

requests.

80| Performs IECVEXCP
termination precessing (also
referred to as ISCVEXCP
back-end procassing).

IECVEXCP termination processing performs
all the functions for terminating an I/0

The major IECVEXCP termination processing
entry points are as follows:

. XCPTERMA - Entry point set in the IOSPGAD
field of the IOSB. Thes I0S post status
routine enters at this point as a result of
the I0SB completion code set to abnormal
completion (X'45') or as a result of the
error recovery routine (ERP) indicating
that the request is in permanent error.

« XCPTERM - Entry from the normal-end and
channel-end exit routines to complete
termination of a successful request.

+ XCP510 - Entry from ths normal-end and
abnormal-end exits to purge related

. XCP515 - Entry from the SIO appendage in
front-end processing to return an RGE.

XCPTERMA| A. Entry point from the IOS post status —————I\XFRR
XFRR e > routina. - V4
-2 I\ XFRRCRQE
XFRRBKE H [y / XFRRFLAG
: XFRRHORK
RGE : XFRRRETR
-d
RQEPRT
PSA
PSAAOLD —
e\
808 >| B. Entry point from normal-cnd and e———I\XFRR
—_— abnormal-end exits on o successful 14
XFRR XCPTERM completion of an I/0 request. XFRRFLAG
-r > XFRRIMORK
XFRRBEXE :
RQE s
-J
RQETYPE

EXCP-72

MVS/XA SLL: EXCP Processor

LY28-1685-0 (c) Copyright IBM Corp. 1987

"Restricted Materials of IBM"
Licensed Materials = Property of IBM

IECVEXCP - EXCP Processor for SVC 0 (EXCP) and SVC1l1l4 (EXCPVR) STEP 81
XCcPTERMD| | 81| I the 10SB completion code ————J\RQE
I0SB r > has been set to abnormal 14
-t -\ completion (X'45'), does the RQEFLAG
10SCOD IOSABNC | : |p——/ following.
RQE : If the abnormal completion occurred in the
-t PCI appendage out of the IECVEXCP DIE
RQETYPE. RQENOPST| : routine (XCPDIE), sets tho abend code to
$ A00. If the abnormal completion did not
TCB : occur in the PCI appendage, cdatermines if
-4 an XDBA is availables; if so, uses the abend
code that is in the XDBA. Otharwise, uses
abend EO0O.
RQE
Issues a CALLRTM macro with TYPE= ABTERM.
RQETCB r————‘
XFRR Sets the no-post bit (RRENOPST) in the RQE.

XFRRCRQE r——-J

xceso0|122| I the request is to a tape

ucs r > d2vica, insreaszs the BCB
-2 Block count with the amount
UCBTBYT3 UCS3TAPE{ : specitied in the I0B.
RGE : For problem program rcquestors, does
-4 the updating in the caller’s key.
RQEPRT

Toss %XCcP505) |83 {fog}% IIBO-SFB]iil keing pur]gsd
\ I0s ield non-zzro
] gnes to XCP900 to handle the

/
I0SIPIB J—J ' purging.

Return is to label XCP508.

\
>XCP900: 93
/

A. Handles the purging.

—\
84 >||18%] If the appendage requested
s V4 ratry, coas to XCP570 to
RQE XCP508 handle the retry requast.
>
RGEFLAG RQERETRY A. Handles the retry request.
\
>XCP570: 92
/
—d \
85 >||85] If this is an unrelated L—— 804 I\XFRR
— requast, sets an unrelated L
RQE %XCP510 flag in the FRR paramester XFRRWORK
> area.

RRETYPE

LY28-1685-0 (c) Copyright IBM Corp. 1987 Method of Operation EXCP-73

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

IECVEXCP - EXCP Processor for SVC 0 (EXCP) and SVC114 (EXCPVR) STEP 86

]
\
86 >[|86| If IECVEXCP performed
v/ page-fixing for the request,
RQE XCP515 unvixes tha pages.
-r >
RRETYPE RQEVIRT | : —I\
RQEFLAG RQEFIXST| : |——/
: A. For virtual EXCP requests, calls
TCCH : IECVTCCH to unfix the pages and builds a
~J free chain of the large blocks used in
the fix process.
RQE 7—\
\—/ REGISTER APBSRG
RQETCCH —
RETURN REGISTER: LNXREG
RQE [o———————- >
-2 I\
RQETYPE RQE1ll4 : —/
: B. For EXCPVR requests, issues PGSER to
TCCUW _‘ unfix the caller's pages.
7—I\
\Np—/ PGSER
RQS
L, FREE, LA=({1), ASCB=(3),
RQETCCH - BRANCH=SPECIAL
PSA
PSAAOLD —
Xcps25(87| If the request is to be t————I\RQE
RQE I > posted, interfaces with the 14
I\ cystem post routine RQEFLAG
RQEFLAG RQENOPST —7 (IZAQPT02) to post the
caller's ECB.
RQZ
A. Post ECB with IOSECBCC.
RQEFIXST RQESTBL 70—\
RQESRCS RQECHEAC \N—/ XCPPOST: 70
RETURN REGISTER: MKXREG6
xcp530(83| Builds a free chain of the +————I\RQE
RQE r > large blocks associated with /
-2 —J\ the request to ke returnad RQEFLAG3
RQETYPE RGEVIRT | : —/ %o th2 storazz managsr.
RGZFLAG3 : \I0SB
: For virtual EXCP requests, IECVTCCH has /
ICs3 : chained the BEB, FIX and IDAL blocks IOSERP
-4 off the TCCW control block.
RQE
RRETCCN RRESR3
RREXCPS
I0sS3
ICSERP —

EXCP-76 MVS/XA SLL: EXCP Processor LY28-1685-0 (c) Copyright IBM Corp. 1987

Restricted Materials of IBM"
Licensed Materials — Property of IBM

IECVEXCP - EXCP Processor for SVC 0 (EXCP) and SVC1l1l4 (EXCPVR) STEP 89

xcps45((89| If this is a related

RQE > requsst, dequeuss the RQE
4 frca the related request
RQETYPE RQETYP3 quaue (RRQJ.

Xcp560| {90 If the appendage did not

RQE > request otherwise, returns
4 the RQE block to the storage

RQEFLAG RQENOFRE manager.

A. Calls IOSVSMGR to free the RQE.
72—\
\Np—/ REGISTER APBSRG

RETURN REGISTER: LNKREG

Xcpse5| 191 Performs EXCP termination
exit processing, as follows:

XFRR o >| A. If this is an unrelated request,
performs EXCP exit processing at
XKFRRYORK XCPEXIT.

[::\
>XCPEXIT: 35
/

XFRR N >| B. If related request purging (XFRRRRP) was
in control, continues purging RQEs on
XFRRWORK XFRRRRP the RRQ at XCP260.

[:::\
>XCP260: 67A
/

LY28-1685-0 (c) Copyright IBM Corp. 1987 Method of Operation EXCP-75

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

IECVEXCP -~ EXCP Processor for SVC 0 (EXCP) and SVC114 (EXCPVR) STEP 91C

C. For related requasts, determines the
processing to be dona, as follows:

+ If requestor's DCB indicates a
permanent error, performs EXCP exit
processing at XCPEXIT.

. If EXCP termination was entered from
post status or from EXCP channasl-end and
normal-end exit routine (back-end bit is
on - XFRRBKE), goes to XCPEXIT to
perform exit processing.

. If the DEB RRQ field is zero (no RRQ)
or there are no RQEs on the RRQ, goes to
XCPEXIT to perform exit processing.

. Otherwise, establishes a pointer to
the next RQE on the RRQ and doas the
following:

~ If the new RQE indicates an
end-of-extent error, goes to EXCP
front-end processing at XCP105A to
process the end-of-extent error.

=~ If the new RRE indicates that the RQE
has been sent to I0S, goes to XCPEXIT to
perform exit processing.

- If the new RQE indicates that the RQE
is startable, goes to EXCP front-end
processing at XCP155 to issue the
STARTIO macro to send the request to
I0s.

- If the new RQE indicates a retry
requast, goes to EXCP front-end
processing at XCP105 to prepare the
caller's request for initiation.

- Otherwise, goes to EXCP front-end

processing at XCP050 to obtain large
blocks and prepare thz caller's request

for initiation.
\
>XCPEXIT: 35
/

EXCP-76 MVS/XA SLL: EXCP Processor LY28-1685-0 (c) Copyright IBM Corp. 1987

"Restricted Materials of IBM"
Licensed Materials — Property of IBHM

IECVEXCP - EXCP Processor for SVC 0 (EXCP) and SVC114 (EXCPVR) STEP 92
XFRR S—— > j N
-t I\ /
XFRRFLAG XFRRBKE H —/ P XFRRCRQE
XFRRABE H XFRRFLAG
RRQ : LI\RQE
- ald
RRQLAST H RQEFLAG
H RQEFLAG3
RQE :
- LI\IOSB
RQETYPE RQEFLAG —/
IOSSNS
RRQ
RRQFIRST ‘——
RQE
RQESRB RQERETRY
RQENOPST RQESTBL
RQESRES RQECHEAC
RQEPCEDE RQESMFCT
RGEACDCT
I0SB
IOSSNS |
]
N\
92 >{192} Performs the appendage retry ———————I\RQE
v/ request. V/
RQE XCP570 RQEFLAG
~-r >| This routine unfixes pages and builds a
RRETYPE RQEVIRT | : ———JI\| chain of free blocks. The free blocks are
RQEFLAG s /] not returned to the storage manager but are
: used by front-end processing to handle the
TCCu -J retry request.
A. Invoke|IEC\lchcw to unfix the pages.
/ \
RQE \N——/ REGISTER APBSRG
RQETCCH RQEFIXST — RETURN REGISTER: LNKXREG

LY28-1685-0 (c) Copyright IBM Corp. 1987 Method of Operation EXCP-77

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

IECVEXCP - EXCP Processor for SVC 0 (EXCP) and SVC11l4 (EXCPVR) STEP 92B
Tccw — > l _ \RQE
-t ——\ V4
H v RQENRQE
H RQEFLAG
RQE : RQEFLAG3
RGEKOBYP RQETYPE | : L\RRQ
RQEFLAG RQERETRY| : V4
: RRQLAST
REQ :
-~ LI\XFRR
RRQFIRST L/
XFRRPRQE
RQE
RQEPRT RQENOPST
RRESTBL RQESRBS
RQECHEAC RQEPCEDE
RRQ
RRQLAST l————
XFRR XCP700| B. Chains freed large blocks. ——————I\XFRR
r——-'\ /
—/ This routine chains largz blocks off the ' XFRRSTRG
XFRRSTRG XFRRFCN’I’,—-l FRR free chain pointer. XFRRFCNT
The caller provides in register 11 the
pointer to ths first block to be freed
in the chain of blocks.
This routines scans to the end of the
chain counting the number of free
elemants so that it can update the free
count in thae FRR.
The FRR free chain pointer is stored in
the chain field of the last free block
in the chain.
XCP800] C. Dequeues an RQE block from the related +—————JI\RQE
RQE [rmm——————— > request queue (RRQ). /
-2 AN RQENRQE
RQEFLAG RQENOFRE| : —7 If the RQE has already been dequeued
: (RQENOFRE), returns to caller. \RRQ
RRQ 3 /
- The caller provides the pointer to the RRQLAST
RRQ in register 1l1.
RQE If the first field in the RRQ indicates
end of chain, rcturns to caller.
RGENRGE ‘ Otherwise, scarches the RRQ to find the
N RQE in the RRQ chain. If the RQE is
found on the RRQ chain, the RQE is
dequeued frem the RRQ.

EXCP-78 MVS/XA SLL: EXCP Processor LY28-1685-0 (c) Copyright IBM Corp. 1987

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

IECVEXCP - EXCP Processor for SVC 0 (EXCP) and SVCl14 (EXCPVR) STEP 93
—I\
93 >|123| petermines how to handle the L I\RQE
e/ request that is being purged V4
RQE XCP900 (I0SIPI3 field points to an RQEIPIB
— IPIB). RQEFLAG

RIEFLAG "—-———'\
/

RQE '

RQRERETRY RQENOPST —
RQENOFRE

XFRR
XFRRCRQE r—d

LY28-1685-0 (c) Copyright IBM Corp. 1987

Sets the RQEIPIB field to the IPIB address.

If the RRE is to be freed (RQENOFRE) and
retry is not recucsted, returns to IECVEXCP
termination processing (XCP510) to continue
termination processing. lihen the
termination routine frees the RQRE, the IPIB
purge wait count is decreased.

If the RQE is to be freed {RQENOFRE) and
retry is requested, calls the IECVRCHN
routine in IECVEXPR to chain the caller’'s
request on the EXCP PIRL data fields (IOB
restore chain and the EPCB). The IPIB
address is passed in register 0. If the
caller's request is to be chained at the
top of the I03 restore chain, the
high-order bit of register 0 is set.
Otherwise, the IOB associated with the
caller's request is chained at the end of
the IC3 restore chain. Upon return from
IECVRCHN, resets the retry (RQERETRY) and
no-free (RRENIOFRE) bits and sets the
no-post (REENOPST) bit and returns to
IECVEXCP exit processing at XCP515,

If thz appendage requests that the RQE not
be freed (RQENOFRE) and the IPIB indicates
an RB purge, returns to IECVEXCP
termination processing (XCP508) to continue
termination processing. When the requestor
calls IZCVEXCP at IECVX025 to free the RQE,
the IPIB purge wait count will be
decreased.

If tha appendage requests that the RGE not
be freed (RQENOFRE) and the IPIB does not
indicate R3 purging, calls IECVAQCNT to
dacreasa the purge wait count and zeroes
the IOSIPIB field, =nd returns to IECVEXCP
terminaticn proceszsing (XCP508) to continue
termination processing.

Method of Operation EXCP-79

IECVEXCP - EXCP Processor for SVC 0 (EXCP) and SVC1l14 (EXCPVR)

I0S Disabled Interruption
Routine that interfaces with
the driver's DIE exits.

\
>
/

10SE XCPDIE

-r -
IOSFLA IOSTSA : p—\
I0STS3 IOSIPIB | : ——/
RQZ s

-J
RQEPRT RQETYPE
RQEVIRT RQE1TOL
RGETYP3 RQEFLAG
RQESR2S RQEFLAG3
1033
IOSTATUS I
zdnid
D3
RETCCK RQENRGE
REESRB RGESTBL
RREPCEDE

EXCP-80 MVS/XA SLL: EXCP Processor LY28-1685-0 (c¢) Copyright IBM Corp. 1987

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

STEP 94

94| Handles thez IECVEXCP DIE

rrocessing.

The IECVEXCP DIE routine is entered from
I0S post status after an I/0 interrupt has
occurred for an EXCP or EXCPVR request.

If the recuest was an EXCP V=R or EXCPVR
and the PCI bit was set in the IOSB status
field, does the follewing:

. If the PCI bit was sct with ending
status (chaznnel and dovice end bits set in
the dovice status), doos not call the PCI
appendage; goes to check for a type 3
related request.

. Otharwise, prepares to enter the PCI
appendage:

- Lozds pointers to the I08, DCB, DEB and
ucs.

~ For problem program callers, validates
the caller's 103, DCB and ECb blouks.

- Maprs the ICSS to the I03.

- Calls tha FCI appgendage.

- Uncates the IOSB real and virtual CCW
start addresses from the IC3.

- Continuzs to check for type 3 related
requasts.

For type 3 related requasts, when channel
end status is indicdated in tha ICSB device
status fi2ld, does the following:

. If the ERP is in control (IOSERR bit set
on) or there is nen-normal status, does
not start the next rcady I/0 reguest.

Returns to the caller.

—I\RQE

/
RQETYPE
RQEFLAG
RREFLAG3

\10sB

/
IOSRST
I0osvsT

L—-——;> BSM

0, LMNXREG

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

IECVEXCP - EXCP Processor for SVC 0 (EXCP) and SVC1l4 (EXCPVR) STEP 95
IECYPST (I0S Post Status)
95| Handles the IECVEXCP PCI
\ exit processing. —————I\XFRR
> /
/ The IECVEXCP PCI routine is entered from ' XFRRCRQE
RQE XCPPCI|]the 10S post status routine when the PCI XFRRRETR
>|ibit is set in the subchannel status field
RQEPRT and the IOSPCI exit address exists.
{IECVEXCP sets the IOSPCI field to the
XCPPCI address.)
TCCW I >| A. Prepares to enter the caller's PCI L————I\XFRR
AN appendage. 4
e V4 XFRRFLAG
B. Invokes the PCI appendage.
RQE s7—\
Ne——/ REGISTER APBSRG
RRETCCR r—
RETURN REGISTER: LMKREG
XFRR [rm———————- > +————JI\XFRR
- /
XFRREXCP : ' XFRRFLAG
ROE :
-
RAEPRT RQEKO3YP
RQZ N — >[{96] If caller is not a SAM
I\ reguest, interfaces with the
RQEPRT —/ SHF routinz (via the
SHFICSHNT macro) to
REE accurivlate the EXCP count.
ROETCB | For a precblem program caller, requests
a control block check.
XFRR
XFRRRETR —
A. Returns to post status. m
\N 7/
LY28-1685-0 (c) Copyright IBM Corp. 1987 Method of Operation EXCP-81

IECVEXCP - EXCP Processor for SVC 0 (EXCP} and SVC1l1l4 (EXCPVR)

IECVEXPR - EXCP purge routine,
IECVEXFR - FRR termination

requast

\
>
/
IECVXTRM
RQE - >
RQEPRT

SVC 3 exit routine, IECVEXPR
purge routine - Purge halt for
RB and AEQ purging.

\
>
/
IECVX025
RRE .I ---------- >
RQEPRT RQEKOBYP
RQEFLAG3 RQESMFCT
11 S ——— >
.J I\
RQEPRT —/
RQE
RQETCB RQSIPIB |

EXCP-82 MVS/XA SLL:

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

STEP 97

97{ Handles the termination

request from IECVEXPR and
IECVEXFR.

This routine is entered from IECVEXPR to
terminate a purge request and from
IECVEXFR (functional recovery routine) to
terminate the request in error.

Sets up the environment to enter the
IECVEXCP termination routine, as follows:
. No functional recovery environment is
established. Builds a pseudo EYCP FRR
parameter area in the area provided by the
caller.

. Sets the EXCP FRR parameter processing
byte to X'3E' to indicate IECVEXPR or
IECVEXFR entry.

. Establishes pointers to the IOB, DCB,
DEB and UCB.

I \XFRR

A. If the caller is in system key, bypasses
the validity checks and goes to the
IECVEXCP termination routine.

\
>XCP510: 85
/

B. Otherwise, validity checks the caller's
control blocks.
s—IN\
\N—/

XCPVAL: 69

RETURN REGISTER: LNXREG

C. Goes to return the RRE and large blocks.
\

>XCP510: 85
/7

4

XFRRCRQE
XFRRPRQE
XFRRSTRG
XFRRFLAG
XFRRRETR

Returns th2 RQE bleck for

SYC 2 callers and the
IECVEXFR purge routine.

This routins is entered from the SVC 3
exit routinz and IECVEXPR purge routine to
return an RRE block to the storage
manager.

The local lock is held by the caller on
entry.

A. If caller is not a SAM request,
interfaces with the SMF routine (via the
SMFICCNT macro) to accumulate the EXCP
count.

For a problem program caller, requests
control block check.

EXCP Processor

LY28-1685-0

(c) Copyright IBM Corp.

1987

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

IECVEXCP - EXCP Processor for SVC 0 (EXCP) and SVC114 (EXCPVR) STEP 98B
B. If the request is undergoing purge 1—————————J\RQE
quiesce, interfaces with the I0S quiesce W/
count routine (IECVRCNT) in the IOS RQENRQE
module IGCOOOLF to decrease the purge
wait count.
PSA r———-————J\ C. Increases the count of outstanding EXCP
1/ requests kept in the ASCB.
PSAAOLD '—I
B. Returns the RGE block to the storage
manager.
Sets the RQE block to be freed in
register 1.
7—\
\—/ BASSM
LNXREG, APBSRG
E. Returns to the caller. —l
\ 7/
XCPFREE||99| IECVEXCP common RQE free
RQE _[> reutine.
RQEPRT RQEKOBYP This routine is entered from the IECVEXCP
RQEFLAG3 RQESMFCT VIO routine and the IECVEXCP termination
routine to return an RRE block to the
storage manager.
RQE [r=——————-- >! A. If caller is not a SAM request, I\XFRR
-t AN interfaces with the SHMF routine (via the 1/
RQEPRT : —/ SMFIGCNT macro) to accumulate the EXCP XFRRCRQE
: count.
XFRR :
- For a problem program caller, requests
XFRRCRQE control block check.
RQE

RQETCB RQEIPIB [—-—-——

RQE r————————J\ B. If the request is undergoing purge l——\RQE
7/ quiesce, interfaces with the ICS quiesce —/

RQEIOB r—-J count routine (IECVQCHT) in the IOS RQEIOB
module IGCO001F to decrease the purge RQENRQE
wait count.

PSA r-———————J\ C. Increases the count of outstanding EXCP
4 requests kept in tha ASCB.
PSAAOLD J-—J
D. Returns the RQE block to the storage
managar.
Sats the RQE block to be freed in
register 1.
LY28-1685-0 (c) Copyright IBM Corp. 1987 Method of Operation EXCP-83

"Restricted Materials of IBM"
Licensed Materials = Property of IBM

IECVEXCP - EXCP Processor for SVC 0 (EXCP) and SVC114 (EXCPVR) STEP 99E
7L\ 1
\—/ BASSM

LNKREG, APBSRG

E. Returns to the caller. _—l

XCPDEBFX| {100 { Performs DEB fixing.

TCCHW r---------;: A. Builds a fix entry for the DEB storage
-3 area.
: | —
DEB _,
DEBAVT
RQz
RQETCCH J-—
DEB o >| B. Interfaces with IARPSIV to fix the DEB
storage area,
DEBAVT . .
/ \
\Npe——/ REGISTER APBSRG
RETURN REGISTER: LNKREG
RQE J---------T>
\
—
C. If the return code from IARPSIV is
RQE non-zero, issues an 800 abend to abend
the task.
RQEICB r——
N\
>ABENDSET: 71
/

EXCP-86 MVS/XA SLL: EXCP Processor LY28-1685-0 (c¢) Copyright IBM Corp. 1987

"Restricted Materials of IBM"
Licensed Materials = Property of IBM

IECVEXCP -~ EXCP Processor for SVC 0 (EXCP) and SVC114 (EXCPVR) STEP 101
XCPLSTFX| 1101 | Performs EXCPVR page fix
TCCW > list processing.
J I\
r—/| This routine is entered from IECVEXCP
front-end processing to fix the list built
RQE by the EXCPVR caller.
RQETCCH — If the caller did not provide a fix list,
no page-fix processing is done.
TCCW N — >| A. Sets the last fix list entry bit in the
I\ second word of the last fix list entry.
—
B. Calls page fix services to fix the
PSA EXCPVR fix list.
PSAAOLD — 7—IN\
\Np——/ PGSER
L, FIX, LA=(1), ASCB=(3),
BACKOUT=Y, BRANCH=SPECIAL
RQE [> - I\RQE
/
RQEFIXST ' RQEFLAG
XCcP1080| | 102 | Returns to IECVEXCP
front-end processing.
A
>XCP105: 23
/

LY28-1685-0 (c) Copyright IBM Corp. 1987 Method of Operation EXCP-85

"Restricted Materials of IBM"
Licensed Materials = Property of IBM

IECVE - _EXC 0 OUTINE (
IECVEXFR - MODULE DESCRIPTION

DESCRIPTIVE NAME: IECVEXCP Functional Recovery Routine (FRR)
FUNCTION:
To recover from an unexpected error that caused exit to
RTM. Also performs abend processing as a result of EXCP
issuing an SVC 13 (D).
ENTRY POINT: IECVEXFR
PURPOSE: See Function.
LINKAGE: RTM linkage to FRR
CALLERS: RTM
INPUT: SDWA address, 200-byte work area address
OUTPUT:
- Serviceability data in the SDWA
- ABEND code set in the SDWA
~ Control blocks copied to the XDBA debugging area.
-~ Indicator set to inform the Post Status FRR to schedule
termination if an error occurred in an appendage.
EXIT NORMAL: Return to caller

EXTERNAL REFERENCES:

ROUTINES:
IECVSMFR -~ The storage manager functional recovery routine
IECVTCFR - CCW translation functional recovery routine.
IECVXTRM - IECVEXCP termination routine
IECVX025 ~ IECVEXCP free RQE routine

DATA AREAS: XDBA - Debugging area
CONTROL BLOCKS:

ASCR - Address space control block

ASXB - Address spaca extension block
CVT - Communication vector table

DCB - Davice control block

DEB - Data extent block

ECB - Event control block

FRRS =~ Functional recovery routine setrp
I0B =~ I/0 block

IOCOM- I/0 communication area
I0SB - I/0 supsrvisor block

JSCB - Job step control block

PSA -~ Prefixed save area

QVPL - Queue verifier paramoter list
RB = Request block

RQE - Request queue element

RRQ - Related request queue

SDWA - System diagnostic work area
SRB = Service request block

TCB =~ Task control block

TCCH - Translate CCH block

VRA -~ Variable recording area
XDBA - EXCP debugging area

SERIALIZATION: Local lock held

EXCP-86 MVS/XA SLL: EXCP Processor LY28-1685-0 (c) Copyright IBM Corp. 1987

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

IECVEXFR - MODULE OPERATION

The EXCP functional recovery routine (FRR) receives
control from the recovery termination manager (RTM)
when unexpected errors occur in IECVEXCP processing
or when IECVEXCP issues an SVC 13 abend.

This functional recovery routine will analyze the
error condition, provide the appropriate recovery,
and request retry or percolation.

Module processing consists of the following:

1. If the storage manager was active with an RQE or
large block request (either get or free request),
prepares to enter the storage manager's functional
recovery routine for handling.

Does the following:

A.

Creates a storage manager FRR parameter area and
puts its address in the SDWAPARM field.

Ensures that register 0 (address of a 200-byte work
area) and register 1 (SDWA pointer) are set correctly.
Issues the BASSM instruction to enter the storage
manager's functional recovery routine.

The storage manager's FRR analyzes the

error, fills in the SDWA serviceability data,
determines whether to retry or percolate, and
returns to this routine.

Upon return from the storage manager‘s FRR,

checks the SDHA to determina if the storage
manager requested retry or percolation.

If the storage manager's FRR requested retry,

sets the retry address to IECVXRTY in IECVEXFR.
(IECVEXCP runs in 24-bit mode and the storage
manager runs in 31-bit mode. RTM gives control to
IECVXRTY, which issues a BSM instruction to enter
the storage manager retry routine in 31-bit mode.)
The storage manager will perform the retry and
continue processing in its mainline.

If the storage manager's FRR requested percolation,
this functional recovery routine continues with its
processing.

2. If the storage manager was not active or the storage
manager indicated percolation, does the following:

A.
B.

c'

Provides the SDWA serviceabilty data.

Provides the following debugging data in the

variable recording area (VRA):

. The original abend code

. The EXCP FRR parameter area

. If an RQE is available, the RQE block

. If a TCCH is available, the first 48 bytes of the
TCCH.

If the PCI appendage was active, sets the SDWA abend

code to A00 and proceeds to step 3 to continue.

If an abend (028, 171 or 18A) or a program check

occurred while page fix services were active (in

IECVEXCP or IECVTCCHW), does the following:

. If IECVTCCH was active at the time of the error,
issues a SETRP macro to indicate retry without
recording. The retry address is the IECVTCCHW
retry routins.

. If IECVEXCP was active with an EXCPVR page fix,
sets the SDWA completion code to 800 and
proceeds to step 3.

If the SDWA indicates percolation, sets the SDWA

completion code to A00 and proceeds to step 3.

If the SDWA completion code indicates protection

check (0C4) and the protection check occurred in

one of thea IECVEXCP validity check routines,

sots the SDWA completion code to 200 and proceeds

LY28-1685-0 (c) Copyright IBM Corp. 1987

Method of

Operation

EXCP-87

IECVEXFR - MODULE OPERATION (Continued)

3.

s'

6.

7.

to step 3.
G. For all other errors, sets the SDWA
completion code to B0O and continues with step 3.

Issues the SETRP macro to update the SDWA completion
code, requasts a dump and indicates recording of ths
error in SYS1.LOGREC.

I1f the functional routine was entered enabled,
obtains and builds the XDBA and chains
it off the abending TCB.

If the RQE indicates a VIO requast, zeroces the
VIO work area fields in the RQE.

Performs the following cleanup functions:
A. If IECVEXCP back-end {termination) was active,
does the following:

. Sets the no-post flag in the RQGE.

. If entry to back-end processing was from the
normal-end or abnormal-end exits, continuas
with step 7. (This routine will
percolate to the 10S post status functional
recovery routine, which will schedule the
IECVEXCP termination routins.)

« If entry to back-end processing was from the IOS
post status routine or from IECVEXCP front-end
processing, calls the IECVEXCP purge termination
routine (IECVXTRM) to return the RQE and large
blocks to the IOS storags manager.

B. If IECVEXCP front-end processing was active,
does the following:

. If the request has been sent to 10S, continues
with step 7.

. Otherwise, sets the no-post flag in the RQE and
calls the IECVEXCP purge routine (IECVXTRM) to
return any RQE and large blocks to the
storags manager.

€. Otherwise, IECVEXCP normal-end or abnormal-end
exit interface processing was active. Doas the
following:

. Sets the I0SB completion code to the
abnormal completion code (X'45').

. Continues with step 7.

I1f IECVEXCP back-end processing was active, freas
the local lock.

Returns to RTM to percolate the error.

RECOVERY OPERATION: Same as module operation

"Restricted Materials of IBM"
Licensed Materials -~ Property of IBM

EXCP-88 MVS/XA SLL: EXCP Processor LY28-1685-0 (c) Copyright IBM Corp. 1987

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

IECVEXFR - DIAGNOSTIC AIDS

ENTRY POINT NAME: IECVEXFR

MESSAGES: None

ABEND CODES:
The following abends are gensrated in this functional

recovery

routine:

200 - I0B, DCB, or ECB protect key is not the sams as the
user Key.

700 - A program check occurred while in a supervisor service
routina invoked by EXCP.

A0O - A program check occurred in a user appendage.

B00 - Indeterminate error.

The following abends are detected and generated in IECVEXCP

(via SVC

13) and are processed in this functional recovery

routine (IECVEXFR):

15C -
172 -
300 -

400
500

800
A00

Issuer of SVC 92 not in supervisor state.

SVC 114 caller not authorized.

DEB validity check failures:

- DEB not an EXCP or ISAM DEB.

= The 10BM index is larger than the DEBNMEXT index
or both indexes are zero.

DCB pointers failed validity check.

DEB does not provide a valid UCB, or

an ISAM IOB I0BM field specified extent 0.

Error in attompting to fix/unfix pages.

A program check occurred in the PCI appendage

when called out of the EXCP DIE routine.

WAIT STATE CODES: None

REFURN CODES:
EXIT NORMAL:

In SDWARCDE:
0- Continue with termination (percolate

the

error).

4%~ Retry to the IECVTCCW retry routine.
The TCCW block address is stored in the
SDWA retry register 11 save area.

Any

roturn code contained in register 15

at the time of the error is in field
SDWASRO6.

REGISTER CONTENTS ON ENTRY:

Register
Register
Register
Register
Register

0 - Address of a 200-byte work area
1 - Address of the SDHA.

2-13- Irrelevant

14 - Return address

15 =~ Entry point of IECVEXFR

REGISTER CONTENTS ON EXIT:
EXIT NORMAL:

Same as on entry.

LY28-1685-0 (c) Copyright IBM Corp. 1987

Method of Operation EXCP-89

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

IECVEXFR - IECVEXCP Functional Recovery Routine (FRR)

RT™
\
>
/
IECVEXFR
s F RR J---- ----- -
SFRRSLEN
EXFR106
SDWA N >
SDHARCDE

EXCP-90 MVS/XA SLL: EXCP Processor

To recover from an unexpected error that
caused exit to RTM. Also performs abend
processing as a result of EXCP issuing an
SVC 13 (D).

01} Determines if the storage

manager (IOSVSMGR) was in
control at the time of the
error.

02] If the storage manager was

active with either an RQE or
large block request (get or
free request), returns to
the IOSVSMGR functional
recovery routine (FRR) to
handle the error.

The IOSVSMGR FRR routine will determine
whether to retry or percolate the request
and then return.

Sets up the registers to simulate entry
from RTM:

« Register 0 - Address of the RTM 200-byte
workarea. Note: The 200-byte work area is
used to contain the queue verification
parameter list (QVPL), the FRR parameter
area passed to ths storaga manager FRR, and
an EXCP FRR save area.

. Register 1 - Address of the SDWA.
SDWAPARM contains the address of the FRR
parameter arca formatted for storage
manager usage.

A. Builds the storage manager FRR parameter
area in the 200-byte work area.

For RQE block requests, builds an FRR
paramater area.

For large block requests, moves the FRR
parameter area that is in the local lock
save area (last six words) to the FRR
parameter area in the 200-byte work
area.

B. Issues BASSM to enter the storage
manager's FRR routine in 31-bit mode.

7\
\Ne—/ BASSM

REGl-+, REG15

03| Upon return from the storage

manager, retries or
percolates the error as
requested by the storage
manager.

STEP 01

LY28-1685-0 (c) Copyright IBM Corp. 1987

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

IECVEXFR - IECVEXCP Functional Recovery Routine (FRR]} STEP 03A

A. If the storage manager FRR routine
requested percolation, continues with
EXCP FRR processing.

\
>EXFR200: 04B
/
SDWA o >| B. If the storage manager FRR routine ———————I\SDWA
requested retry, does the following: 14

SDHARTYA

Stores the IECVEXCP FRR retry address
(IECVXRTY) in the SDHA.

Moves the FRR paramater list from the
200-byte work area to the last six words
of the local lock work area (the 200~
byte work area is released by RTM before
entering the retry routine). Only the
word containing the ASID and flags are
moved (bytes 56-59 of the local lock
save area). The rest of this FRR
parameter area must not be changed by
this routine or by the storage manager
retry routine.

C. Returns to RTM with the EXCP FRR retry -
routine address. -5_1

\ 4

1
|

IECVXRTY| | 04| Interfaces with the storage
manager's retry routine.

This routine receives control to switch
addressing mode from 24-bit to 31-bit and
to issue a BSM to the storage manager's FRR
retry routine.

A. Goes to the storage manager's FRR retry
routine. .
\

/ BSM
l""1

0, REG15

LY28-1685-0 (c) Copyright IBM Corp. 1987 Method of Operation EXCP-91

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

IECVEXFR = IECVEXCP Functional Recovery Routine (FRR) STEP 04B

]

048 >{ B.

—yy
EXFR200

05| Performs EXCP mainline
recovery processing.

SDUWA _I-———’\ A. Moves the load module name, module name
v/ and the FRR routine name into the SDKA.
SOHAXPAD somsm'—-l

06} Provides debugging data in
the SDWA variable recording
area (VRA).

SDWA \| A. Saves the original abend code in the
/ SDWA VRA area and provides an area for

SOWACMPC H ' storing the adjusted abend code.

B. Saves the EXCP FRR parameter area.

RQE \| C. 1f an RQE is available, moves the RQE
-/ block into the VRA.
RQEBL —
D. If a TCCH block is available, moves the
first 48 bytes of the TCCK control block
to the VRA.

EXFR202|107| If the RQE pointer is valid,
determines if the PCI
appendage was active.

A. If the error occurred in the PCX
appendage called out of the EXCP DIE
routine, sets the registers in the SDWA
register save area (SDWAGRSV) to zero.

B. Goss to issus the abend.

AY
>EXFR290: 11A
/

EXCP-92 MVS/XA SLL: EXCP Processor LY28-1685-0 (c) Copyright IBM Corp. 1987

"Restricted Materials of IBM"
Licensed Materials = Property of IBM

IECVEXFR = IECVEXCP Functional Recovery Routine (FRR) STEP 08
TCCH ExFR205|| 08| Determines if the abend
> occurred while IECVEXCP or

IECVTCCW was active with a
page fix request.

Checks if system abend coda 028, 171 or 18A
was issued by the page fix services, or if
a program check occurred while page fix
services ware active.

TCCW J---- ----- =>] A. If IECVTCCH was active at the time of

the error, saves the original abend code
in the SDWA VRA area and sets the retry
address to the IECVTCCH FRR retry
routine.

Saves any return code that was in
register 15 at the time of the error in
field SDWASRO6 and establishes the TCCW
block pointer in field SDWASR1l.

Issues the SETRP macro to establish the
IECVTCCH retry address and to indicate
no recording.

B. Returns to RTM to perform the IECVICCH -
retry.]_-l

\N/

EXFR212]| C. If IECVEXCP was active with an EXCPVR
page fix, sets the abend code to 800.

D. Goes to issue the SETRP macro.
\
>EXFR290: 11A
/

EXFR215| | 09| If this FRR received control
as the result of percolation
(SDWAPERC is on), leaves the
abend code set to 700.
Otherwise, sets the abend
code to A00.

SDWA r—-—'\ 10] Determines if entry was a
V4 result of an IECVEXCP
SDWACMPC J—| validity check.

Issues the 200 abend if the SDWA completion
code indicates a protection check (0C6
completion coda) and the error occurred in
an IECVEXCP validity check routine.

LY28-1685-0 (c) Copyright IBM Corp. 1987 Method of Operation EXCP-93

YRestricted Materials of IBM"
Licensed Materials = Property of IBM

IECVEXFR - IECVEXCP Functional Recovery Routine (FRR) STEP 11

EXFR230||11] If the error condition was
not identified by any of the
previous checks, set the
abend code.to BOO.

— |

11A >] A. Issues the SETRP macro to update the
—_—y SDWA completion code, requesting a dump
EXFR290 and indicating a recording in LOGREC.

EXFR300| B. Saves the issuing abend code in the VRA
area next to the original abend code.

EXFR310| | 12{ Determines if XDBA debugging
data is to be provided to
the abending TCB.

A. If the FRR routine was entered enabled,
obtains and builds an XDBA block.
7—I\
\Nr—/ EXFRXDBA: 18

RETURN REGISTER: REG15

EXFR315| | 13| For a VIO request, zeroes
the VIO work area fields in
the RQE control block.

EXFR320(| 14| Determines what clean-up
functions to perform.

A. If IECVEXCP back-end processing was
active, sets the no-post flag in the RQE
(RQENOPST) to bypass posting the ECB.

If back-end processing was entered from
the channel-end or abnormal-end
appendage, continues processing at
EXFR350.

I1f back-end processing was entered from
the I0S post status routine or from
front-end processing, returns all
storage blocks associated with the EXCP
request.

EXFR325| B. If IECVEXCP front-end processing was
active, does the following:

If the EXCP request is in IOS
(RQEINIOS), continues processing at
EXFR350.

Otherwise, sets tha no-post flag
(RQENOPST) in the RQE to indicate that
the ECB is not to be posted and
continuss processing at EXFR350.

EXCP-964 MVS/XA SLL: EXCP Processor LY28-1685-0 (c) Copyright IBM Corp. 1987

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

IECVEXFR - IECVEXCP Functional Recovery Routine (FRR) STEP 14C

EXFR330| C. If channel-end or abnormal-end appendage
I0SB N e > interface processing was active, does
the following:

Saves the IOSB completion code (I0SCOD)
in the SDHA VRA area.

Sets the I0S completion code to IOSABNC
(X'65') to indicate that a processing
error occurred.

EXFR350{|15] If the local lock was
obtained, frees it.

exFR360|| 16| Determines if the error is
to be recorded on
SYS1.LOGREC.

If IECVEXFR was entered enabled and
established an abend code of 700 or less,
issues a SETRP macro to request a dump
without recording on LOGREC.

17| Returns to RTHM. —l
]

\N/

18 >|{118] Obtains storage and
-7/ initializes the XDBA area.
EXFRXDBA

A. Issues a GETMAIN to obtain storage from
subpool 230 for the XDBA data and
initializes it to zeroes.

B. Sets the XDBA pointer in field TCBEXCPD
of the TCB.

Sets any previous TCB XDBA pointer in
field XDBACHAN of the XDBA.

SDWA 4,——‘\ C. If an SDHA is available, moves data from

-—7 the SDHA to the XDBA.
SDNACMPC J—l

Moves the original abend code from the
SDWA.

Sets the SDWA system completion code
(SDWACMPC) fields in the XDBA. This
represents the adjusted abend code.

Moves tha translation exception address
from the SDMA (SDWATRAN) to the XDBA.

If the registers and PSW are valid,
moves these fields from the SDHA to the
XDBA.

LY28-1685-0 (c) Copyright IBM Corp. 1987 Method of Operation EXCP-95

YRestricted Materials of IBM"
Licensed Materials — Property of IBM

IECVEXFR - IECVEXCP Functional Recovery Routine (FRR)

STEP 18D

EXFRXDOS
XDBA J- ------- .-->
XDBAENT

EXFRXD10

RQE [mmmmmmm——= >
10SB :
TCou :

p | I\

18H >

W/

EXFRXDS1

10SB K >

EXFRXD5E5

EXCP-96 MVS/XA SLL:

F.

Moves tho EXCP FRR parameter area to the
XDBA.

If there is a valid RQE, moves the RQE
block and the storage manager header to
the XDBA.

If there are large blocks associated
with tha EXCP request and they are
chained on the FRR free chain queue,
moves the blocks in the order that they
are on tha fres chain.

: \
>EXFRXD51: 18H
/

:.

Otherwise, moves the large blocks in the —————J\XDBA

following order:

. SRB/I0SB

EWAs (error work areas)
TCCW

IDAL

FIX

BEB

CcPS

e o o o o o

Moves blocks into tha XDBA.
7\
\p——/ EXFRXD90: 19

RETURN REGISTER: REGl4

Returns to the caller.

>EXFRXD95: 19C
/

v/
XDBAENT

———————I\XDBA

XDBAENT

EXCP Processor LY28-1685-0 (c¢) Copyright IBM Corp. 1987

"Restricted Materials of IBM"
Licensed Materials = Property of IBM

IECVEXFR ~ IECVEXCP Functional Recovery Routine (FRR)

STEP 19

']
\
19 >{119| Builds the XDBA.
/
EXFRXD90
A. Moves the large blocks that are chained
on the FRR free chain queue to the XDBA
and establishes a pointer to the last
block in the chain.
If the limit of large blocks to be moved
has been reached, continues processing
at EXFRXD95.
B. Exits when the XDBA build is complete.
\
>EXFRXD95: 19C
/
XDBA = peemmmmeeea >
.I I\
XDBAEL 19C >| €. Saves in the XDBA the rmumbar of large
W/ blocks stored.
EXFRXD95
D. Returns to the caller.

LY28-1685-0

(¢) Copyright IBM Corp. 1987

7l

———————I\XDBA

XDBAENT

\N7/

Method of Operation EXCP-97

“Restricted Materials of IBM"

Licensed Materials — Property of IBM

IECVEXPR -~ PROCESSOR'S PURGE AND RESTORE ROUTINES
IECVEXPR - MODULE DESCRIPTION

DESCRIPTIVE NAME: EXCP Processor's Purge and Restore Routines

FUNCTION:

IECVEXPR controls and manages the EXCP processor
purge and restore functions. Four entry points are
provided for callers to interface with the EXCP
processor for purge and restore functions.

ENTRY POINT: IECVXPUR+0 - Purge SVC 16

PURPOSE:
This entry point accepts from the I0S purge function
(IGCOO001F) an IOS purge interface block (IPIB) which
describes the purge function(s) that are to be performed.
The IPIB indicates one of two options, halt or quiesce.

LINKAGE: Branch and link to entry point IECVXPUR
CALLERS: IOS purgs module IGCO001F
INPUT: Address of the purge IPIB block

OUTPUT:
For halt, all associated requests are purged
and, if indicated in the IPIB block,
the callers of all purged requests
are posted with a purge completion cods.
For quiesce, a list of IOBs to be restored with
the associated EPCB blocks are chained off
the I0S PIRL block.

EXIT NORMAL: Return to caller
ENTRY POINT: IECVXPUR+4 - I/0 Halt (SVC 33 for BTAM)

PURPOSE :
This entry point receives control from tha I0S SVC
33 function (IGC0003C) to terminate an active channel
program. This function is provided for BTAM for
teiminating a teleprocessing program. This routine
changes a real channel program CCH operation code to
a NOP command code, so that the channel program will
go 4o completion.

LINKAGE: Branch and link to entry point IECVXPUR+4
CALLERS: 108 i/u rdalt SVC module IGC0003C

INPUI ¢
Offsat to the CCW command that is to be changed to
a NOP operation coda.

OUTPUT:
The: corresponding real channel CCH changed
to a NUf .operation cnda.

EXIT NORMAL: Return to caller
ENTRY POINT: IECVXRES

PURPOSE :
This entry point receives control from the 10S SVC
17 function (IGC0001G) to restore EXCP I/0 requests
that are chained on the I0B restore chain. Register 1
points to the EXCP entry in the IOS PIRL block.

LINKAGE: Branch and link to entry point IECVXRES

EXCP-98 MVS/XA SLL: EXCP Processor LY28-1685-0

(c) Copyright IBM Corp. 1987

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

IECVEXPR - MODULE DESCRIPTION (Continued)

CALLERS: IOS I/0 Restore SVC module IGC0001G

INPUT:
The two words provided by the EXCP processor in the
I0S PIRL block on a purge quiesce request.

OCUTPUT:
All the IOBs on the 108 restore chain have been
re-issued.

EXIT NORMAL: Return to caller

ENTRY POINT: IECVRCHN

PURPOSE: This entry point builds an EXCP restore IOB chain.
LINKAGE: Branch and link to entry point IECVRCHN

CALLERS:
From entry point IECVXPUR in this module or
from IECVEXCP

INPUT:
when provided, register 0 contains the IPIB block
and register 1 the address of the RQE block.

OUTPUT:
The 108 has been put on the 10B restore chain and
informatiun about the I0B is put in the EPCB
block. If an I0S PIRL block is not provided {no
IPIB block or the DEBPIRL pointer is zero), a PIRL
is obtained and a pointer is set in the DEB.

EXIT NORMAL: Return to caller
ENTRY POINT: IECVEXCL
PURPOSE :
This entry point dequeues IOBs from the IOB restore
chain associated with the DCB to be closed.
LINKAGE: Branch and link to entry point IECVEXCL
CALLERS: RTM module IEAVTAS3
INPUT:
Register 1 contains a pointer to a two-word
parameter list which contains the address of the
PIRL and the address of the DCB being closed.
OUTPUT:
All the I0Bs associated with the DCB being closed
are dequeusd from the IOB restore chain.
EXIT NORMAL: Return to caller

EXTERNAL REFERENCES:

ROUTINES:
IEAOPTO02 - Post with validity check
IECVSMLF - Storage manager to free a large block
IECVSMLG - Storage manager to get a large block
IECVXTRM - EXCP termination routine
IECVX025 - Free RQE routine

CONTROL BLOCKS:
ASCB ~ Addrass space control block
ASXB - Addraess space extension block

LY28-1685~-0 (c) Copyright IBM Corp. 1987

Method of Operation EXCP-99

IECVEXPR - MODULE DESCRIPTION

cvT
DcB
DEB
ECB
EPCB
I0B

Communications vector table
Data control block

Data extent block

Event control block

EXCP purge control block
Input/output block

I0COM - I0S communication area

I0SB - I/0 supervisor block

IPIB - IOS purge interface block

JSCB - Job step control block

PIRL - Purge I/0 restore list

PSA - Prefixed save area

RB - Request block

RQE - Request queue element

RRQ - Related request queue

SRB - Service request block

TCB - Task control block

TCCH - Translate CCHW control block
SERIALIZATION: Local lock held

EXCP-100 MVS/XA SLL:

(Continued)

EXCP Processor

"Restricted Materials of IBM"

Licensed Materials = Property of IBM

LY28-1685-0

(c) Copyright IBM Corp.

1987

"Restricted Materials of IBM"
Licensed Materials = Property of IBM

IECVEXPR - MODULE OPERATION

This module controls and manages the EXCP processor
purging and restore functions.

This module consists of four separate entry
points to perform the following functions:
1) IECVXPUR - This entry point provides a table for two
SVC functions.
+0 - SVC 16(10), Purge SVC.
This SVC performs the halt or
quiesce function on EXCP (SVC 0) and
EXCPVR (SVC 114) operations.

+4 - SVC 33(21), I/0 Halt SvC for BTAM.
This SVC performs a request from BTAM
to terminate its active channel
program.

The halt and quiesca functions are handled

as follows:

a. Halt option, DEB purge -- Frees all requests
associated with the DEB. These include ali
requests passed by IGCO001F from the I0S
queues, all related requests (for the 3525,
only the requests associated with this DEB
are freed), and all requests on the
asynchronous exit queues (AEQs). If RB purge
was also specified, the TCB RB chain is
searched for IRBs with RQEs associated with
the DEB. If requested in the IPIB, posts the
caller.

b. Halt option, TCB purge -- Performs the same
function as a DEB purgas for each DEB on tha
TCB chain.

c. Halt option, address space purge -- No
processing is done by IECVXPUR. In the
process of its address space processing, 10S
will issue a purge request to the storage
manager to free all RQE and large blocks
associated with the purged address space.

d. Quiesce option, DEB purge -- Builds an 108
restore chain containing all the I08s that
have not been sent to I0S. In the process of
building the IOB restore chain, builds an
EXCP purge control block (EPCB) in protected
storage which contains, for each IOB, its
corresponding TCB address, the protect Key
of the originator of the request, and type
of I0B (EXCP or EXCPVR).

The pointer to the first IOB on the restore
chain and the pointer to the first EPCB are
stored in the two words for the EXCP driver
in the IOS PIRL block. For all requests that
have been sent to I0S, the IPIB quiesce count
is increased by 1. The EXCP module IECVEXCP
decreases the IPIB count when the I/0
interruption is received for processing.

Only when the count has gone to zero does

10S know that all outstanding I/0 requests
have completed.

e. Quiesce option, TCB purge -- Performs the
same processing as DEB purge for each DEB on
the TCB chain.

f. Quiesce option, address space purge --
Performs the same function as TCB purge for

) each TCB in the address space.
2) IECVXRES - SVC 17(11), RESTORE SVC.

Restores previously quiesced EXCP or EXCPVR

requaests by issuing SVCs 0, 92, or 114.

3) IECVRCHN - Builds a chain of EXCP or EXCPVR requests
to be restored. This routine is called

LY28-1685-0 (c) Copyright IBM Corp. 1987

Method of Operation

EXCP-101

YRestricted Materials of IBM"
Licensed Materials — Property of IBM

IECVEXPR - MODULE OPERATION (Continued)

by this module to build a restore chain for
a caller's purge quiesce request.

4) IECVEXCL - Dequeues I0Bs on the restore chain for DCBs
to be closed during RTM processing.

EXCP-102 MVS/XA SLL: EXCP Processor LY28-1685-0 (c) Copyright IBM Corp. 1987

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

IECVEXPR - DIAGNOSTIC AIDS

ENTRY POINT NAMES: IECVXPUR+0 - Purge SVC 16
IECVXPUR+4 - I/0 Halt (SVC 33 for BTAM)
IECVXRES
IECVRCHN
IECVEXCL

MESSAGES: None
ABEND CODES: None
WAIT STATE CODES: None

RETURN CODES:
ENTRY POINT IECVXPUR+0: None
ENTRY + JINT IECVXPUR+4:

EX21 nwunriAL:

Register 15 contains one of the following decimal values:

0 - Valid request. The specified real CCH command code
was changed to a NOP.

16 - Invalid request. The EXCP 1/0 requast was not a
virtual EXCP request (SVC 0).

20 - Invalid request. IECVEXCP is already in the process
of translating the virtual EXCP request %o a
real channel program.

24 - Invalid request. The corresponding real channel
program CCH associated with the virtual channel CCW
address passed in register 0 could not be found.

ENTRY POINT IECVXRES:
EXIT NORMAL:

Register 15 contains:
0 - Restore processing complate.

ENTRY POINT IECVRCHN: None
ENTRY POINT IECVEXCL: None

REGISTER CONTENTS ON ENTRY:

ENTRY POINT IECVXMUR+0:

Régister 0 Irrelevant
Register 1 Address of the IPIB block
Registers 2-12 Irrelevant

Address of an 18-word savearea
Return address to purge (IGCO001F)
Entry point address

Register 13
Register 14
Register 15

ENTRY POINT IECVXPUR+4:

Register 0 - Offsat to the caller's virtual
channel program CCH that is to be
changed to the NOP command code.

Register 1 = Irrelevant

Register 2 - Address of the EXCP processor 10SB

Registers 3- 5 - Irrelevant

LY28-1685-0 (c) Copyright IBM Corp. 1987

Method of Operation EXCP-103

IECVEXPR = DIAGNOSTIC AIDS (Continued)

Register 6

Registers 7-12
Register 13
Register 14
Register 15

Caller's base register (must be
maintained)

Irrelevant

Address of an 18 word savearea.
Return address to I/0 halt (IGC0003C)
Entry point address

ENTRY POINT IECVXRES:

Register 0
Register 1

Registers 2-5
Register 6

Registers 7-12
Register 13
Register 14

Register 15 -

Irrelevant

Pointer to a two-word area containing
pointers to the IOB restore chain
and EXCP's EPCB block which contains
the TCB/IOB data. These two words
were provided by EXCP in the I0S PIRL
block on a purge-quiesce requost.
Irrelevant

Caller's base register (must be
maintained)

Irrelevant

Address of an 18-word savearea
Return address to I/0 restore module
IGC0001G

Entry point address

ENTRY POINT IECVRCHN:

Register 0 -

Register 1 -

Registers 2-12
Register 13
Register 14
Register 15

Address of an IPIB block or zero.

Khen the ragister contains an IPIB
address and is positive, queues the
108 at the end of the I08 restore
chail‘l.

When the register is negative, queuss
the I08 at ths beginning of the 108
restore chain,

Address of an RQE block which contains
the I0B to be put on the restore chain
Irrelevant

Address of an 18-word savearea
Caller's return address

Entry point address

ENTRY POINT IECVEXCL:

Register 0
Register 1

Registers 2-12
Register 13
Register 14
Register 15

Irraswvant

Pointer to a two-word area:

. Word 1 - Pointer to a fullword which
contains the address of the
PIRL

. Hord 2 - Pointer to a fullword which
contains the address of the
DCB being closed

Irrelevant

Address of an 18-word savearea

Caller's return address

Entry point address

REGISTER CUNTENTS ON EXIT:
ENTRY POINT IECVXPUR+0:

EXIT NORMAL:

Registers 0-15 - Same as on entry.

ENTRY POINT IECVXPUR+G:

YRestricted Materials of IBM"
Licensed Materials — Property of IBM

EXCP-104 MVS/XA SLL: EXCP Processor LY28-1685-0 (c¢) Copyright IBM Corp. 1987

YRestricted Materials of IBM"
Licensed Materials - Property of IBM

IECVEXPR - DIAGNOSTIC AIDS (cContinuad)

EXIT NORMAL:

Registers 0-1¢ - Same as on entry
Register 1S = Return code

ENTRY POINT IECVXRES:
EXIT NORMAL:

Registers 0-1¢ - Same as on entry
Register 15 = Return coda

ENTRY POINT IECVRCHN:
EXIT NORMAL:
Registers 0-15 - Same as on entry
ENTRY POLNs 1ECVEXCL:
EXIT NORMAL:
Registers 0-15 - Same as on entry

LY28-1685-0 (c) Copyright IBM Corp. 1987 Method of Operation EXCP-105

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

IECVEXPR - EXCP Processor's Purge and Restore Routines

\
>
V.
IECVEXPR
I0S I/0 Halt SVC module
1GC0003C
\
>
’
IECVXPUR
SVC16
PUR00O
xoco" J ---------- >
L]
IPIB _I >
IPIBOPT IPIBMEM
IPIBHALT
IPIB .I. ------ ——=>
IPIBOPT IPIBRBP

IECVEXPR controls and manages the EXCP
processor purge and restore functions.
Four entry points are provided for callers
to interface with the EXCP processor for
purge and restore functions.

01] IECVXPUR entry points for
SVC 16(10) and SvVCc33(21).

po

When requesting the block, uses ASID zero
to prevent the I0S purge function from
freeing the large block when it requaests
the storage manager to free all large
blocks in the address space associated with
the address space termination function.

On this entry to the storage manager, the
large block is zeroced by the storage

manager.

;;] For an address space

quiesce, sets the search
argument and search field to

02] saves the caller's registers
and establishes a purge base
register.

03] Obtains the local lock and
uses the local lock save
area as a routine save area

inter.

04| Obtains a large block from
the 10S storage manager for
use as a work area.

7—IN\
\N——/

Zeroes.

Register 0 is the search argument and
HWRKREGB is the search field.

BASSM

REGl4%, REG15

EXCP-106 MVS/XA SLL: EXCP Processor

LY28-1685-0

(c) Copyright IBM Corp. 1987

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

IECVEXPR - EXCP Processor's Purge and Restore Routines

IPIB —"
4

IPIBARG r—J

IPIB

IPIBOPT IPIBTASK

PURGD10
IPIB [Sutatutatedadatadeded >
IPIBARG :
10SB :
J
10SXCPID
1IPIB [— >
IPIBOPT IPIBRBP
ASXB PURGO}7
\
ASXBFRQGE —
PURGO20
IPIB K >

IPYBOPT IPIBTASK

LY28-1685-0

(¢) Copyright IBM Corp. 1987

06| For RB quiesce, sets the

search argument and search
field appropriately.

A. Sets register 0 (search argument) to the
IPIB address.

B. If this is a TCB purge, sets the search
field (WRKREGB) to the TCB address
provided in the RQE (RQETCB).

C. Otherwise, this is a DEB purge. Does the
following:

Sets the search field (WRKREGB) to the
TCB address provided in the RQE
(RQETCB).

D. Checks if the IPIBARG is the EXCP driver
ID. For compatability, an IPIBARG of
zero is also recognized as an EXCP
driver request.

E. If neither, bypasses purge and prepares
to return to the caller.
\
>PURG900: 12
/

07| Checks if there are RQES on

the asynchronous exit queue
(AEQ) to be processed.

A. If the ASCBFRQE field is zero, there are
no more RQEs to process.

—d\
>PURG060: 09
—

B. Otherwise, continue searching the AEQ.
— N

>PURGO35: 08A
—/

Method of Operation

STEP 06

EXCP-107

"Restricted Materials of IBM"
Licensed Materials = Property of IBM

IECVEXPR - EXCP Processor's Purge and Restore Routines

STEP 08

IPIB PURGO30| | 08| Purges applicable RQES on
> the asynchronous exit queue
IPIBOPT IPIBHALT (AEQ).
For a quiesce request, increases the IPIB
count by one to indicata that this request
needs to complate. When the RQE block is
returned to the storage manager, the IPIB
count is decreased to indicate that the I/0
requast has completed.
For a halt requast, removes tha RQE from
the AEQ. If posting is requested in ths
IPIB, posts the ECB associated with the
requast and returns the RQE block to the
storage manager.
I\
ASXB 08A >] A.
= -/
ASXBLRQE H PURG035
s >
IPIB t I\
- ey /
IPIBOPT IPIBPOST
ASXB
ASXBFRQE —
AN
IPIB 09 >1]09] Purges applicable RQEs on
- -/ the RBs.
IPIBOPT IPIBMEM H PURG060
IPIBTASK IPIBPOST| ‘====we==we>| For TCB purgse, chains through the RBs
IPIBHALT ——I\| locking for IRBs that contain RQEs.
—
IPIB For address space purge, scans all the TCBs
in the address space, chaining through each
IPIBARG r TCB RB chain looking for IRBs containing
RQEs.
ASXB
For purga halt, does the following:
ASXBFTCB . If requasted in the IPIB, posts the

EXCP-108 MVS/XA SLL: EXCP Processor

caller's ECB.
« Returns the RQE block to the storage
manager.

For purge quiesce, increases the quiesce
count in the IPIB.

———————I\ASXB

v

ASXBFRQE
ASXBLRQE

LY28-1685-0

(¢c) Copyright IBM Corp.

1987

"rRestricted Materials of IBM"
Licensed Materials — Property of IBM

IECVEXPR - EXCP Processor's Purge and Restore Routines STEP 10
IPIB N i >||10| For DEB requests, purges
I\ applicable RQEs on the

IPIBOPT IPIBTASK —— related request queue (RRQ).
IPIBHALT

For purge halt, removes all requests from
IPIB the RRQ.
IPIBMEM IPIBARG — .| For purge quiesce, places all the IOBs on a

restore chain.

ASXB

If the SVC purge caller has identified
ASXBFTCB e requests that should not be purged, these
RRQ requests are ignored in this routine.

RRQFIRST —

I0SB [om=—=————- >| A. Handles a purgs quiesce for a related e J\I0SB
-3 RQE that has been sent to IOS. —/
s

If EXCP had issued the STARTIO macro to
IPIB initiate the related request, checks if
~ I0S has initiated the I/0 request, has
IPIBOPT IPIBTASK set the IPIB field, and has accordingly
IPIBPOST IPIBHALT increased the IPIB count field.

If 10S has set the IPIB field in the
I0SB (IOSIPIB), there is no need to
increase the count, but IECVXPUR needs
to set the IPIB pointer in the RQEIPIB
field of the RGE.

PURGCNT| B. Increasas the purge quiesce count in the
IPIB.

The IPIB count represents the number of
outstanding 1/0 requests that have to
complete.,

The IPIB address is set in field RQEIPIB
of the RQE to associate it with the
purge quiesce.

Khen the I/0 requast completes, the EXCP
processor decreases the IPIB count just
before returning the RQE block to the
storage manager.

IPIB PURG170| | 11| For purge halt, purges all
> SRB/10SBs on the IPIBSRB
IPIBOPT IPIBHALT chain.

For each I0SB, does the following:

. Sats the IOSIPIB pointer values in the
RQEIPIB field.

. Sets the associatad ECB completion code
to purge (X'48').

. If tha post option was not specified in
the IPIB, sets the RQENOPST flag to
indicate no posting.

. Interfaces with IECVEXCP to purge ths 1/0
requast and return the RQE and large blocks
to the storage manager.

LY28-1685-0 (c¢) Copyright IBM Corp. 1987 Method of Operation EXCP-109

"Restricted Materials of IBM"
Licensed Materials = Property of IBM

IECVEXPR = EXCP Processor's Purge and Restore Routines

PURG175

IPIB N — >

IPIBOPT IPIBPOST

A. If all SRB/I0SBs have been examined,

returns to tha caller.
B. Inter‘lfaces with EXCP.

\
I >PURG900: 12
7
7\

\N—/ PURGINTF: 15

RETURN REGISTER: REGl4%

I\
IocoM 12 >

12| When purge processxng is

b | 1
H PURG900

- cm———d>

PURGPOST

complete, does the
following.

A. Returns the large block used as a work
area to the 10S storage manager
(IOSVSMGR).

7\
\—/ BASSM

REG14, REG15

B. Issuaes the SETLOCK macro to release the
local lock.

C. Restores the caller's registers and
returns.

AN
l—-—-1/ BSM

0, REGl4

13| Sets the ECB with a purge

completion code (X'48') and
interfaces with the system
post routine (IEAOPT02).

1f the caller is in a problem program
key, the call to the system post
routine requests a validity check of
the ECB.

A. Returns to the caller.

STEP 11A

EXCP-110 MVS/XA SLL: EXCP Processor LY28~1685-0 (c) Copyright IBM Corp.

1987

"pestricted Materials of IBM"
Licensed Materials — Property of IBM

IECVEXPR - EXCP Processor's Purge and Restore Routines

PURGFREE | | 14

A. Returns to the caller.

Interfaces with the IECVEXCP
routine IECVX025 to return
the RQE to the 10S storage
manager (IOSVSMGR).

7=\
\—/ REGISTER REG15

RETURN REGISTER: REG14

\ v

]
15 >||15] Interfaces with the IECVEXCP
V4 purge routine IECVXTRM to
PURGINTF purge the I/0 request and to
return the RQE and large
blocks.
7—\
\ —/ REGISTER REG15
RETURN REGISTER: REGl%
A. Return to the caller. :l
\7
purcrosv|| 16| Sets the purge completion
code in the ECB.
For problem program callers, changes to the
caller's key before setting the purge
completion code in the ECB.
A. Returns to the caller.
1L
\ 7/

LY28-1685-0 (c) Copyright IBM Corp. 1987

Method of Operation

STEP 14

EXCP-111

YRestricted Materials of IBM"
Licensed Materials = Property of IBM

STEP 17

IECVEXPR - EXCP Processor's Purge and Restore Routines

From entry point IECVXPUR in
this module or from IECVEXCP

\
>

/7
IECVRCHN

RCHNOOS

RCHNOO8
PIRL

PIRRSTR PIRENTL
10SB
IOSXCPID

PIRL RCHNO10

17

This entry point builds a

restore chain for the
following requests:

A purge quiesce request from this module.

A related request purge (RRQ) from
mainline XECVEXCP.

A request to add a request to the restore
chain from the IECVEXCP abnormal-end exit
routine.

18

Determines if an I0S PIRL

block exists.

A. If an IPIB was provided, establishes a
pointer to the PIRL from the IPIBPIRL
field of the IPIB.

Otherwise, if provided in the DEB,
establishes the PIRL pointer from the
DEB.

If there is no PIRL, obtains storage
from subpool 25¢ and initializes it as a
PIRL.

19| Establishes a pointer to the

>
PIRRSTR PIRENTL

I10SB
JOSXCPID

e oo v oy

L

EXCP entry in the PIRL.

20| Establishes a pointer to the

EXCP EPCB block in the PIRL
EXCP entry.

A. If the EXCP entry does contain an EPCB,
goes to search for an available entry.

\

>RCHNO15:
/

B. If the EXCP entry does not contain an
EPCB, obtains an EPCB and initializes
it.

22

7L—IN\

Ne——/ RCHNGTMN: 30

RETURN REGISTER: WKREGC

/

eI\ IOSB

E

EXCP-112 MVS/XA SLL:

EXCP Processor

LY28-1685-0

IOSXCPID

\PIRL

/

PIRRSTR

(¢) Copyright IBM Corp.

1987

YRestricted Materials of IBM"
Licensed Materials — Property of IBM

IECVEXPR - EXCP Processor's Purge and Restore Routines

STEP

—_—]
PIRL - Ja >|{121] Establishes a pointer to the
T -/ IOB chain field in the EXCP
PIRRSTR : RCHNO12 entry.
>
Sats register 0 to all ones (FF-FF).
Go to RCHNOS50 to place the 108 on the IOB
restore chain and in the EPCB.
\
>RCHNOS50: 26
/
AN
22 >|122] Searches the EPCB for an
V4 available entry for storing
RCHNO15 the IOB.
If there are no entries in this EPCB,
checks to see if there is another EPCB
chained to this one that has an available
entry.
pd
EPCB 22A >| A. If thera is an available entry in this
- 1/ EPCB, continues.
EPCBNENT i RCHNO20
>
\
>RCHNO30: 26
7/
EPCB N >| B. If there are no available entries in
this EPCB and there is not another EPCB
EPCBCHN chained to this one, obtains an EPCB.
\
>RCHNO25: 23
/
EPCB r————————J\ C. If there is another EPCB chained to this
14 ong, checks to see if it has any
EPCBCHN r—-J available entries.
\
>RCHNO20: 22A
/

LY28-1685-0 (c) Copyright IBM Corp. 1987 Method

of Operation

21

EXCP-113

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

IECVEXPR - EXCP Processor's Purge and Restore Routines STEP 23

} |

\
23 >1|23] If there are no available o J\EPCB

—/ entries in any EPCB, obtains "/

RCHNO25 and initializes another EPCBCHN
EPCB. The new EPCB is
chained at the end of the
EPCB chain.

PIRL 2% >|126]| with an available entry in
/ an EPCB, determines if there

PIRRSTR RCHNO30 are any I0Bs on the IOB

f I I\ restore chain.
If the I0B restore chain anchor is all ones
(FFFFFFFF) there is no I08 on the restore
chain (an IOB must have been removed from

the I0B restore chain). Goes to RCHNO12 to
store this I0B as first in the chain.

E\
>RCHNO12: 21
/

PIRL RCHNO34| | 25] IF there is at least one

> entry on the I0B chain,
PIRRSTR determines whether to store
the I0B at the beginning or
at the end of chain.

If the IPIB pointer register is
negative, chains the 10B at the
beginning of the 1I0B restore chain.
Otherwise, chains it at the end of the
I0B chain.

]

\
26 >{|26] If this is not a SAM-E

1/ EXCPVR request, validity
RCHNO50 checks the I0B.

RCHNOSOA| 27| Chains the IOB to the
previous IOB or anchors it
in the PIRL if this is the
first I0B. The IOB chain
field in this IOB is set to
all ones.

EXCP-114¢ MVS/XA SLL: EXCP Processor LY28-1685-0 (c) Copyright IBM Corp. 1987

"Restricted Materials of IBM"
Licensed Materials = Property of IBM

IECVEXPR - EXCP Processor's Purge and Restore Routines STEP 28
IPIB _['""”"T’ 28| Fills in an EPCB entnry. L ————I\EPCB
\ /
IPIBOPT r—/] Each EPCB entry is 8 bytes in length and is ' EPCBIOB
filled in as follows: EPCBPKEY
PIRL EPCBTCB
Byte 0 - Contains the request key of the
PIRRSTR — caller, moved from the RQEPRT field of the

RQE. Bits 0-3 contain the caller's key and
bits 4-7 are flags defined by EXCP.

Byte 1-3 - Contains the 10B address.

Byte 4 - Contains X'F4' if this is an
EXCPVR request, otherwise zeroes.

Byte 5-7 - If an IPIB was provided and

requests that the I0B be restored to the
originating TCB, stores the restoring TCB
address. Otherwise, with this field zero,
restores the IOB under the restoring TCB.

With an available IPIB, the EPCB entry is
stored in field IPIBIO of the IPIB,

EPCB RCHNO60| | 29| Performs clean-up and f———I\EPCB
I\ returns to caller. V4
EPCBNENT v EPCBNENT
Increases the count of EPCB entries by 1

and stores the address of the next
available EPCB entry in field EPCBNENT.

Restores the caller's registers and returns
to the caller via register 14.

O]

\ 7
pmemmrered
EPCB 30 >| 30| Obtains and initializes an L—87 —I\EPCB
- v/ EPCB block. v/
EPCBIOB EPCBBL : RCHNGTMN EPCBNENT
L >{ Obtains an EPCB from subpool 230 associated

with the job step TCB.

Sets to zero the EPCB block and initializes
the following fields:

. EPCBRTCB contains the address of the TCB
used in the GETMAIN (used when freeing the
EPCB).

. EPCBENT contains a pointer to the first
EPCB.

Sets the number of available entries to the
maximum.

LY28-1685-0 (c) Copyright IBM Corp. 1987 Method of Operation EXCP-115

YRestricted Materials of IBM"
Licensed Materials — Property of IBM

IECVEXPR - EXCP Processor's Purge and Restore Routines STEP 30A
A. Returns to the main routine. J—l
T
\N/
I0SB sve33z| 31| Interfaces with SVC33 for
> BTAM to terminate its active
channel program.
Changas an active real channal program CCW
operation code to a NOP operation coda, so
that the channel program will go to
completion.
A. Raturns to SVC 33 processing. :I.
\N/
10S I/0 Restore SVC module
IGC0001G 32| Restore I/0 request (IOBs)
\) subroutine.
/ This entry point receives control from the
IECVXRES|{10s svc 17 function (IGC0001G) for the
EXCP processor to restore 1/0 requests
that are chained on the IOB restore chain.
33| saves the caller's
registers, establishes
addressability, and
establishes a pointer to the
first I0B on the restore
chain.
34| If the pointer to the first
I0B on the restore chain is
zero, there are no IOBs to
be restored. Goes to free
associated EXCP EPCB blocks.
\
: >REST903: 37
/
I\
35 >||35} otherwise, removes the IOB
—/ from the I0B restore chain
REST000 and prepares to restore it.
Saves the next 108 on the IOB restore
chain in the EXCP PIRL area.
EXCP-116 MVS/XA SLL: EXCP Processor LY28-1685-0 (c¢) Copyright IBM Corp. 1987

YRestricted Materials of IBM"
Licensed Materials — Property of IBM

IECVEXPR - EXCP Processor's Purge and Restore Routines STEP 35A
REST010]| A. Searches the EPCB block for a matching
EPCB N — > I0B address.
I\
EPCBIOB EPCBBL — If a matching I0B is not found on the
EPCB chain, ignores the 108 on the 108
EPCB restore chain and continues processing
at REST080 for the next I0B on the
EPCBCHN — restore chain.
EPCB r———'\ B. If there is a matching EPCB I0B entry,
7/ performs the following:
EPCBTCB _l—J
Sets register 0 to the restoring TCB or

Zeros.

Issues a MODESET macro to get into the
user's key.

If this is a virtual EXCP request,
issues SVC 0 if there was no associated
TCB indicated in the EPCB entry.

If this is an EXCPVR request, issues SVC
116 if there was no associated TCB
indicated in the EPCB entry. Otherwise,
issuas SVC 92.

REST060| C. After issuing the appropriate SVC,
issues MODESET to return to key 0.

D. Determines if the ECB has been waited
on.

If the ECB associated with the 108 is
zero, the ECB has not been waited on.
Goes to handle the next I10B.

Othaerwise, obtains the local lock, sets
the ECB to zero, then releasaes the local

lock.
E. Gets tho next 108 to be restored.
\
>REST080: 35F
/

‘r—-J\
35F >| F. Prepares to handle the next I0B on the

/ regstore chain.
\
>REST000: 35
/

1
REST080

LY28-1685-0 (c) Copyright IBM Corp. 1987 Method of Operation EXCP-117

"Restricted Materials of IBM"

Licensed HMaterials — Property of IBM

IECVEXPR - EXCP Processor's Purge and Restore Routines STEP 36

REST900

36

return to system key 0.
restore processing is
complete.)

Issues the MODESET macro to

(I0B

)
\
EPCB 37 >|{37| Issues a FREEMAIN macro to
- 14 free all EPCBs.
EPCBBL i REST903
>
EPCB \
pem—
EPCBCHN r——J
38{ Returns to the caller. m
\ 7/
RTM module IEAVTAS3
391 Dequeues from the IOB
\ restore chain I0Bs that are
> associated with the DCB
PIRL / address passed to this
— IECVEXCL routine
PIRENTL tmeceme———— >
t I\| |checks every I0B on the rastore chain to
IOSB : —/| |determine if it is associated with the
- input DCB. If so, attempts to dequeue the
IOSXCPID I0B. If not, examines the next I0B on the
restore chain. When all I0Bs have been
PIRL processed, exits to the caller.
PIRRSTR N
39A >| A.
—/
EXCLO010
40| Performs processing for the
current I0OB
EXCLO015{ A. If the DCB address associated with the
PIRL N > current 10B matches the INPUTDCB
address, attempts to dequeue ths current
PIRRSTR I08.
EPCB N >| B. Dequeues the current IOB by storing the
forward pointer of the current I0B into
EPCBPKEY the forward pointer of the previous 10B.
EXCL0030| C. If the IOB to be dequeued is the first e JI\PIRL
I0B on the IOB restore chain, changes -/
the PIRRSTR field of the PIRL. No PIRRSTR
MODESET is required.
EXCLO040} D. Gats the next I08 on the IOB restore

chain and continues processing.

EXCP-118 MVS/XA SLL: EXCP Processor LY28-1685-0

{c) Copyright IBM Corp. 1987

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

IECVEXPR - EXCP Processor's Purge and Restore Routines

EXCL0060
SUSEE [\
EPCB G2A >
e | —/
EPCBIOB : EXCLOO70
>
EpcE EXCL0080
—
— /

EPCBIOB J—l
EpCE EXCL0090
—N"
j /

EPCBCHN r-J

LY28-1685-0

(c) Copyright IBM Corp. 1987

:\
>EXCLO010: 39A
/

41] Returns to the caller.

AN
l—|/ BSM

0, REG14

42] Loops through the EPCB chain

until an 10B is found that
matches the I0B address in
HOLDIOBR or until all EPCBs
have been examined.

A.

B. Loops through all the entries in the
current EPCB block and, if any entry
contains an I0B address that matches the
passed 10B address, returns to the
caller of this subroutine.

\
/

C. If the passed IOB address is not equal
to the IOB address of any of the entries
in ths current EPCB, updates the current
EPCB pointer to point to the next EPCB
on the chain.

D. Loops through the next EPCB on the

chain.
\
>EXCLO070: 42A
/7

REGISTER
>REG1

STEP 41

Method of Operation EXCP-119

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

Each of the following modules contains a CCW translation
operation table:

IECVOPTB — 370673705 communication device
IECVOPTC — Teleprocessing class devices
IECVOPTD — DASD class devices

JECVOPTE — 3211 printer device
IECVOPTG — Graphic class devices
IECVOPTH — 3890 MICR device

IECVOPTI — 3886 OCR device

IECVOPTJ — 3895 printer

IECVOPTK — 128771288 optical reader
JECVOPTL — 3851 MSS controller
IECVOPTM — 3540 diskette

IECVOPTN — 3838 VPSS

IECVOPTT — Tape class devices
IECVOPTU — Unit record class devices

Channel command word (CCW) translation operation tables indicate
how a device command code is translated. These tables include
device classes (TAPE, TP, DASD, GRAPHICS, and unit record) and
devices that have unique command codes that deviate from the
standard five device class operation tables.

The UCB for a device points to the device dependent table (DDT)
for that device. The DDT entry for that device contains the
address of the CCW translation operation table for that device.
The CCH translator adds the value of the command byte (in the
channel command word) to the address of the CCW translation
operation table to reach the correct entry.

L R BE BX B BN BK BN N BN BN BN BN BN J

Each translation operation table has 256 entries, one for each
channel command word; each entry is one byte long.

The following bits are defined in each byte of a CCH translation
operation table:

X'80' — The CCH provides status modifier (SM) support.
X'40' — The CCW is a non—data transfer type command.
(No data areas to be fixed)
X'20' — IECYTCCH uses this byte, which is always ser, to indicate a
NO-OP TIC command. IECVTCCW copies this byte into
byte 5 of each CCH to be translated and sets a bit
in byte 5 to indicate a NO-OP TIC command.
X*'10*' - Reserved

X*08' — Reserved
X'04* — Reserved
X'02' - Reserved
X'01l' - Reserved

EXCP-120 MVS/XA SLL: EXCP Processor LY28-1685-0 (c¢) Copyright IBM Corp. 1987

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

CCW_ - CCW TRANSLATO

DESCRIPTIVE NAME: CCW Translator

FUNCTION:

This module performs four options involved with the

translation of a caller's virtual channel program to

a real channel program.

These options include:
Translating the caller's virtual channel program to a
real channel program and fixing the program's data areas

o Unfixing the program's data areas

o Translating a virtual real channel address to its
corresponding virtual channel program address

o Translating a virtual channel program address to its
real channel program address

Another option allows IECVICCH to request from the

caller an additional large block when more storage is
required to translate the caller's virtual channel program'
to a real channel program.

ENTRY POINT: IECVTCCHW

PURPOSE :
Performs the translate function specified in the
TCCH control block. The TCCWOPTN byte is used
with a branch table to select the routine that
will handle the caller's option. (HWhile these
routines are not defined as entry points, thay
are documented as such.)

The branch vector table is as follows:

TCCHOPTN Routine Function

X'00°* TCCWIl00 CCH translation

X'04°* TCCWRO00 Address re-translation
X'08* TCCWU100 Unfix caller's data areas
X'oCc* TCCHGOCO Inform IECVTCCH that an

additional block was obtained
X'10° TCCKX000 Single address translation

LINKAGE: BALR

CALLERS:
IECVEXCP and others who require virtual channel
program translation.

INPUT:
TCCHW control block:
TCCHOPTN byte - Function to be performed
TCCWBEB - Address of a BEB block
TCCWFIX - Address of FIX list block
(See tha appropriate entry point in this module for
specific input requirements.)

Register 0 - For TCCH option code X'0C', the address
of the requested large block.

OUTPUT: None
EXIT NORMAL: Return to caller.
EXIT ERROR:

To RTM (XECVTCCH does not establish a
functional recovery routine)

ENTRY POINT: TCCWI100

LY28-1685~-0 (c) Copyright IBM Corp. 1987 Method of Operation EXCP-121

"Restricted Materials of IBM"

Licensed Materials — Property of IBM

IECVTCCW - MODULE DESCRIPTION (Continued)

PURPOSE :
To translate a caller's virtual channel program
to a real channel program and to fix all the
channel program‘'s data areas (TCCKOPTN=X'00').

LINKAGE: BALR
CALLERS: IECVEXCP and others who require this function

INPUT:

TCCH control block:

TCCHOPTN byte - Option coda X'00°

TCCHFVC =~ Address of the virtual channel program

TCCWBEB - Address of a BEB block

TCCHWFIX = Address of FIX list block

TCCWUCB =~ Address of the UCB

TCCWMODB - The TCCWLBLK bit is on when the caller
provided 248-byte blocks for translation.
The rest of the byte must be zero.

OUTPUT:
The virtual channel program has been translated, and data
areas fixed in storaga. Control blocks initialized or
created include the BEB, FIX list, and the IDAL.

EXIT NORMAL: Return to caller.

EXIT ERROR:
To RTM (IECVTCCH doas not establish a
Junctional recovery routine).

ENTRY POINT: TCCWRO00

PURPOSE :
To re-translate a virtual address in the
real channel program to its corresponding virtual
address in the caller's virtual channel program
(TCCHOPTN=X'04'}. Typical use is to translate
the virtual channel status word (CSK) address.

LINKAGE: BALR
CALLERS: IECVEXCP and others who require this function

INPUT:
TCCH control block with the same fields as for entry
point TCCWI100.
TCCHOPTN - Option code X'064°.

OUTPUT: The virtual address of the virtual channel program.
EXIT NORMAL: Return to caller.

EXIT ERROR:
To RTM (IECVTCCK does not establish a
functional recovery routine).

ENTRY POINT: TCCWU100

PURPOSE :
To unfix the data storage associated with
the virtual channel program and to provide a
free chain of all the blocks used in the
translation of the virtual channel program
(TCCHOPTN=X'08").

LINKAGE: BALR

EXCP-122 MVS/XA SLL: EXCP Processor LY28-1685-0

(¢) Copyright IBM Corp. 1987

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

IECVTCCW - MODULE DESCRIPTION (Continued)

CALLERS: IECVEXCP and others who require this function

INPUT:
TCCH control block with the same fields as for entry
point TCCWIl00
TCCHOPTN byte - Option code X'08°.

OUTPUT:
The virtual channel program data areas have been unfixed
and a free chain of the blocks has been built.

EXIT NORMAL: Return to caller.

EXIT ERROR:
To RTM (IECVTCCH does not establish a
functional recovery routine).

ENTRY POINT: TCCWG000

PURPOSE :
To inform IECVTCCHW that the caller has provided
another large block of storage so that
translation can continue (TCCHOPTN=X'0C').
(During its processing, IECVTCCH might discover
that it needs more storage. In this case,
IECVTCCH returns to the caller with a return
code indicating that the caller should obtain
more storage and pass it back to IECVTCCH.)

LINKAGE: BALR

CALLERS:
IECVEXCP and others who require virtual channel
program translation.

INPUT:
TCCHW control block with the same fields as for entry
point TCCWI100
TCCHOPTN byte - Option code X'0OC'.

Register 1 - Address of a large block. If the
flag TCCHLBLK is set in the TCCH
control block, the caller must
provide a 248-byte block.

OUTPUT: None

EXIT NORMAL:
Not applicable. Processing continues
with the entry point that discovered
the need for more storage.

ENTRY POINT: TCCWX000

PURPOSE :
To translate a virtual channel program
address in the caller's virtual channel
program to its corressponding virtual
address in the real channel program
(TCCHOPTN=X'10").

LINKAGE: BALR
CALLERS: IECVEXCP and others who require this function
INPUT:

TCCH control block with the same fields as for entry
point TCCWI100

LY28-1685-0 (c) Copyright IBM Corp. 1987

Method of Operation

EXCP-123

IECVTCCW - MODULE DESCRIPTION (Continued)

TCCWOPTN byte - Option code X'10°.

Register 0 - The virtual address of the virtual
channel program to be translated.

OUTPUT:
The virtual channel program address corresponding
to a virtual address in the caller's virtual channel
program.

EXIT NORMAL: Return to caller.

EXIT ERROR:
To RTM (IECVTCCH does not astablish a
functional recovery routina).

ENTRY POINT: IECVTCFR

PURPOSE :
This IECVTCCH retry routine validity checks
arrors that occur during the translation of
the caller's virtual channel program. IECVTCCW
sets a flag in the TCCH control block
(TCCHPGCK) before performing the validity
check or issuing the call to the PGSER
services for fixing and unfixing pages.
The EXCP processor functional recovery routine,
upon finding this bit set, will set this entry
point as its retry routina.

LINKAGE: BALR

CALLERS: RTM

INPUT: TCCR control block

OUTPUT: None

EXIT NORMAL:
Returns to mainline IECVITCCH processing to
continue processing or to terminate processing
the caller's request

EXTERNAL REFERENCES:

ROUTINES: None

CONTROL BLOCKS:

ASCB - Address space control block
ASXB -~ Address space extension block

BEB - Beginning-end block
CVT - Communications vector table
DDT - Device descriptor table
FIX - Page fix list

IDAL - Indirect address list
PSA -~ Prefixed save area

PVT - Paging vector table

RB = Request block

TCB -~ Task control block
TCCH - TCCHW control block

UCB - Unit control block

RSAVT- Hork save area vector table
TABLES:

Translation operation tables. The spacific table
address is contained in tha device descriptor
table (DDT). See IECVTOBL's module operation for
more information about tha operation tables.

EXCP-124 MVS/XA SLL: EXCP Processor

LY28-1685-0

"Restricted Materials of IBM™
Licensed Materials = Property of IBM

(c) Copyright IBM Corp. 1987

"pestricted Materials of IBM"
Licensed Materials = Property of IBM

IECVTCCW - MODULE OPERATION

This module performs five options involved with the
translation of a caller's virtual channel program to
a real channel program.

The operations performed by IECVTCCH depend on tha
option code specified by the caller.in the TCCW
option field (TCCWOPTN):

TCCHOPTN
(decimal)
0~

16 -

Function

Translatas a virtual chamnel program to a real
channel program and fixes the data area storage.
This module will support a 31-bit virtual storage
interface through virtual IDAKWs.

This module will also support the fixing of
virtual 170 buffers above 16 megabytes real.
Retranslates a real channel program

address to its corresponding virtual channel
program address.

Unfixes the data area storage and creates a free
chain of the blocks used in the translation.
After IECVTCCH informs the caller that another
large block of storage is required for translating
the channel program (via return code), the caller
specifies this option to indicate that a large
block has been provided) IECYTCCH processing
continues.

Translates a single virtual channel program
address to its corresponding virtual address in
the real channsl progran.

LY28-1685-0 (c) Copyright IBM Corp. 1987

Method of Operation EXCP-125

"pestricted Materials of IBM"
Licensed Materials — Property of IBM

IECVTCCW - DIAGNOSTIC AIDS

ENTRY POINT NAMES: IECVTCCHW
TCCWI100
TCCWR000O
TCCKWU100
TCCHG000
TCCHX000
IECVTCFR

MESSAGES: None
ABEND CODES: Nons
WAIT STATE CODES: None

RETURN CODES:
ENTRY POINT IECVTCCK:
EXIT NORMAL:

Ragister 15 contains one of the following decimal values:

0 - Translation option completed successfully.

% - Translation option completed unsuccessfully (See
Return Codes under individual entry points for
the meaning of this return code.)

12 - Caller should obtain a block of storage and pass it
back to this module. The block must be at least
160 ?ytes. Up to 248 bytes is allowed by this
module.

ENTRY POINT TCCWI100:
EXIT NORMAL:

Register 15 contains one of the following decimal values:

0 - Translation option completed successfully.

4% - Translation option completed unsuccessfully as a
result of a translation error or validity check
error. The TCCWOPTN byte has been set to one of
the following values:

X'80*' - Page fix error
X'E0* - Validity check error
12 - Caller should obtain a block of storages and pass it
back to this module. The block must be at least
16gu?y{es. Up to 248 bytes is allowed by this
module.

ENTRY POINT TCCKWROOO:
EXIT NORMAL:

Register 15 contains one of the following decimal values:
0 - Translation option completed successfully:
4% - Translation option completed unsuccessfully.
The virtual address of the real channsl program
was not found in the BEB or the requestor is not in
a system key.
The TCCHOPTN byte has been set to X'E0* if the
requestor is not in a system key.

ENTRY POINT TCCKU100:

EXCP-126 MVS/XA SLL: EXCP Processor LY28-1685-0 (c) Copyright IBM Corp. 1987

"Restricted Materials of IBM"
Licensed Materials = Property of IBM

IECVTCCW = DIAGNOSTIC AIDS (Continued)

EXIT NORMAL:

Register 15 contains ons of the following decimal values:
4 - Translation option completed unsuccessfully.

The TCCWOPTN byte has been set as follows:

X'E0’ - Tha requestor was not in a system key
or a validity check error occurred.

8 - Translation option completed successfully.

Register 1 contains the address of the first block

on the free block chain.

ENTRY POINT TCCWGO000: None
ENTRY POINT TCCWX000:
EXIT NORMAL:

Register 15 contains one of the following decimal values:

4 - Translation option completed unsuccessfully.
The requestor was not in system key.

The TCCHOPTN byte has been set as follows:
X'90° - Translation unsuccessful.
X'E0* - Caller not in a system key.

8 - Translation option completed successfully.
Register 0 contains the virtual address in the
real channel program corressponding to the
virtual address in the caller's virtual channel
program.

ENTRY POINT IECVTCFR: None

REGISTER CONTENTS ON ENTRY:
ENTRY POINT IECVTCCH:

Register 0 - Address of the large block provided by the
caller (TCCHOPTN=X'0C'); otherwise,

irrelevant
Register 1 TCCHW control block address
Registers 2-13 - Irrelevant

Return address
Entry point address

Register 16
Register 15

ENTRY POINT TCCWI100:

Register O = Irrelevant

Register 1 = TCCH control block address
Registers 2-13 - Irrelevant

Register 14 -~ Return address

Register 15 Entry point address

ENTRY POINT TCCWRO00:

Register 0 - A virtual address within the real
channel program

Register 1 - TCCHW control block address
Registrs 2-13 - Irrelevant

Register 14 = Return address

Register 15 - Entry point address

ENTRY POINT TCCWU100:

Return address
Entry point address

Register 14
Register 15

Register 0 = Irrelevant
Register 1 = TCCW control block address
Registers 2-13 - Irrelevant

LY28-1685-0 (c) Copyright IBM Corp. 1987

Method of

Operation

EXCP-127

mRestricted Materials of IBM"
Licensed Materials — Property of IBM

IECVTCCW - DIAGNOSTIC AIDS (Continued)

ENTRY POINT TCCHGO00O:

Register 0 - Address of the large block
Register 1 = TCCH control block address
Register 2-13 - Irrelevant

Register 14 = Return address

Register 15 - Entry point address

ENTRY POINT TCCHWX000:

Register © - The virtual address of the virtual
channel program to ba translated.
TCCH control block address
Irrelevant

Return address

Entry point address

Register 1
Registers 2-13
Register 14
Register 15

LI I |

ENTRY POINT IECVTCFR:

Registers 0-5 - Irrelevant

Register 6 - Caller's return code as set in register 15
on entry to the functional recovery
routine

Irrelevant

On an ABEND 18A with a return code 4,

the address of the first invalid page
Address of the TCCHW control block
Irrelevant

Address of the IECVICCH retry routine

Register 7-9
Register 10

Register 11
Register 12-14
Register 15

REGISTER CONTENTS ON EXIT:
ENTRY POINT IECVTCCW:
EXIT NORMAL:
Register 0 - Real address of the first real CCH
Registers 1-14 - Restored to contents on entry
Register 15 - Return code

ENTRY POINT TCCKWI100:

EXIT NORMAL:
Register O - Real address of first real CCH
Registers 1-14 - Restored to contents on entry
Register 15 = Return code

ENTRY POINT TCCHWROO0O:
EXIT NORMAL:

Register 0 - A virtual address within the virtual
channel progran.

Registers 1-14 - Restored to contents on entry

Register 15 -~ Return code

ENTRY POINT TCCKU100:
EXIT NORMAL:

Register 0 - Unpredictable

Register 1 - Address of the first block on the
free block chain

Restored to contents on entry
Return code

Registers 2-14
Ragister 15

EXCP-128 MVS/XA SLL: EXCP Processor LY28-1685~0 (c¢) Copyright IBM Corp. 1987

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

IECVTCCW - DIAGNOSTIC AIDS (Continued)

ENTRY POINT TCCWG000: Irrelevant
ENTRY POINT TCCWX000:
EXIT NORMAL:

Register O - A virtual address in the real channel
program corressponding to a virtual
address in the caller's virtual
channel program

Register 1 = TCCHK control block address

Registers 2-16 - Restored to contents on entry

Register 15 = Réturn code

ENTRY POINT IECVTCFR: Irrelevant

LY28-1685-0 (c) Copyright IBM Corp. 1987 Method of Operation EXCP-129

IECVTCCW - CCW Translator

IECVEXCP and others who require
virtual channel program

YRestricted Materials of IBM"™
Licensed Materials — Property of IBM

STEP 01

translation.

\
>

/
IECVTCCW
JECVTCCH
TCCHW |—-—' \
T4

TCCHOPTN '—-'

EXCP-130 MVS/XA SLL:

TCCHIO0O00

This module performs four options involved
with the translation of a caller's virtual
channel program to a real channel program.
These options include: o Translating the
caller's virtual channel program to a real
channel program and fixing the program's
data areas o Unfixing the program's data
areas o Translating a virtual real channel
address to its corresponding virtual
channel program address o Translating a
virtual channel program address to its
real channel program address

Another option allows IECVICCH to request
from the caller an additional large block
when more storage is required to translate
the caller's virtual channel program to a
real channel program.

01| Performs module

initialization.

The caller provides a pointer to tha TCCH
control block in register 1. The TCCHW
control block option byte indicates the
function to ba performed.

A. Saves the caller‘'s registers in the TCCHW
control block.

B. Establishes a pointer to the TCCW
control block.

C. Determines if the caller is in a system
key.

Issues an IPK instruction and, if the
caller is not in a system key, returns
to ths caller with a return code of 4.

D. Determines which function is to be
performed by branching on the option
byte.

E. For option coda X'00', translates a CCH.
\

>TCCHWI100: 03
/

F. For option cods X'04', retranslates an
address.
—I\
>TCCHRO00: 20
e 4

G. For option code X'08', unfixes the
caller's data areas.
—'\

>TCCHU100: 22
7

L——I\Tccw

EXCP Processor

LY28-1685-0

TCCHRGSY

(c) Copyright IBM Corp. 1987

YRestricted Materials of IBM"
Licensed Materials — Property of IBM

IECVTCCW - CCW Translator

IECVEXCP and others who require
virtual channel program
translation.
N\
>

/
TCCWG000

IECVEXCP and others who require
this function
\
>

/
TCCWI1l00

LY28-16385-0

H. For option code X*'0C', continues
processing with additional storage.
N\
>TCCKG000: 02
/

I. For option code X'10*, translates a

single address.
\
>TCCWX000: 24
[:::/

02| Handles the second entry

from the caller when
IECVTCCH requested another
large block to be used as a
BEB, FIX or IDAL block
{option code X'0C').

The address of the block provided by

the caller is in register 0.

A. Zeros the first four words of the
obtained block.

B. Restores registers that were saved when
IECVTCCH returned to the caller for the
additional block.

C. Returns to the routine that requested
the additional block.

nl

N7/

03] Handles the caller's request

to translate a virtual
channel program to a real
gpggQ?I program (option code

This routine translates the CCW data
addresses to real addresses and creates a
real CCH string from tha virtual string.
It determines for each CCH whether the
data pages need to be fixed and whether an
indirect address word list (IDAL) is
necessary.

(c) Copyright IBM Corp. 1987

Method of Operation

STEP O1H

EXCP-131

YRestricted Materials of IBM"
Licensed Materials — Property of IBM

IECVTCCW - CCW Translator STEP 04
BEB prmm——————— >||04} Establishes pointers to and 4+——_\BEB
-3 I\ initializes the BEB, FIX and -/
BEBSCCH : S T4 TCCW control blocks. BEBCHAIN
: BEBFLAG
TCCHW : i i BEBCLRKY
- 05| Establishes a pointer to the BEBRLST
TCCHMODB : DDT device CCW operation BEBVRST
: table. BEBVREN
FIX s
- The CCH operation table is a 256-byte table LI\FIX
FIXLSTST that indicates how a command cods is to be N/
handled for the device. FIXCHAIN
BEB FIXLSTST
The table indicates whether the command FIXLSTEN
BEBVREN BEBNEL code involves data transfer, provides for
the status modifer, etc. HU\TCCW
TCCH —7
TCCHFRC
TCCWFIX — TCCWPLKR
TCCWTICL
I\ TCCKCCWR
TCCW 06 >/|06] This is the start of a loop TCCHECHL
- —/ to process all CCWs in the TCCHINDL
TCCHCCHL : TCCWS000 virtual channel program. The TCCHCCHA
Toow t > $ng%§°%he loop 1s at label TCCHLOCA
I-—-l\ .
1/
TCCKCCHWA r-J Determines if there is available space
in the BEB block for another real CCH.
BEB J----------> 07| If the virtual channel ————J\TCCW
program is in program key, v
BEBCPKEY accesses the CCW to be TCCHMODB
processed in the caller's
key.
The key of the virtual channel program is
provided by the caller in the BEB control
block.
If a protection check occurs, enters the
caller's functional recovery routine.
TCCW r-—-'\ 08| Moves the virtual CCW to an —\TecwW
14 available CCW area in the 4
TCCWCCHR J—l BEB block and prepares to TCCWMODB
translate the CCW.

09} If this is a

transfer-in-channel (TIC)

command code, establishes

the real TIC address and
oes to TCCWM100 to handle
he TIC command.

: \
>TCCKM100: 16
/

EXCP-132 MVS/XA SLL: EXCP Processor LY28-1685-0 (c) Copyright IBM Corp. 1987

"pestricted Materials of IBM"
Licensed Materials — Property of IBM

IECVTCCW - CCW Translator STEP 10
TCCW Teenwso20] | 10| Obtains the command code
I\ 2y§§ frotg tl;e ccwi%pgraﬁign
TCCHOPBT v able and stores n e
5 of the real CCW. v

If the previous CCH indicated data
chaining, stores the previous command
code saved in field TCCHOPBT as the
command code for this CCH.

11] If this is a non~data
transfer type command code,
2eroes the data address
field and ensures that the
IDA bit is off.

A. Performs setup for the next virtual CCH.
(Processing is complete for this CCH.)
\
>TCCHS260: 14
/

tTeewsoso| |12] For a non-write data
transfer type command code
with the skip bit set in the
CCHW, ensures that the IDA
bit is set off.

A. Performs setup for the next virtual CCH.
(Processing is complete for this CCH.)
\
>TCCKS260: 14
/

Tcens100] | 13| For a data transfer CCW,
establishes a pointer to the
data address.

A. If the IDA bit is set in the virtual
CCH, loads the address contained in the
IDAN.

BEB N >| B. If the channel program is in a user’'s e I\TCCW
key, enters the caller's key to load the —/
oescexey data address. TCCHMODS

TCCWS120| C. Determines the virtual boundaries of the
data area.

I1f this is a read backward CCH, ensures
that the stop address is lower than the
start address.

LY28-1685-0 (c) Copyright IBM Corp. 1987 Method of Operation EXCP-133

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

IECVTCCW - CCW Translator STEP 13D
TCCHS160| D. Determines if this data area range is
TCCW N o > contained in the previous data area
argument as saved in fields TCCWLOCA and
TCCHLOCA TCCWHICA of the TCCH control block.

If this data area is not contained
within the previous fixed area, goes to
TCCWMO00 to determine if this data area
is contained within a previous fix list
entry, If so, returns to continue CCH
processing. If not contained within an
existing fix list, builds a fix list to
fix the data area. The page fix routine
returns here (to TCCHWS200) to continue

CCH processing.
\
>TCCWM000: 15
/

\
13E >| E.
——
TCCKS200

F. Datermines if an IDAL entry is required.

If this data area crosses a page
boundary, enters TCCKM400 to build
IDAWs. Upon completion of building
IDALs, processing is complete for this
CCH and the IDAL routine goas to
TCCRS260 to perform setup for the next

CCHW.
\
>TCCHM400: 19
/

G. If the IDA bit is set in ths CCH, enters
31-bit mode to issue an LRA instruction
on the data address. Otherwise, issues
an LRA instruction in 24-bit mode.

If the real address is above the line,
goes to the IDAL build routine at
TCCKM402 to build IDAWS for the data
above the l6-megabyte line.

Otherwise, stores the 24-bit real data
address in the real CCK data address

field.
\
>TCCKM402: 198
/

EXCP-136¢ MVS/XA SLL: EXCP Processor LY28-1685-0 (c¢) Copyright IBM Corp. 1987

"Restricted Materials of IBH"
Licensed Materials — Property of 1IBM

IECVTCCW - CCW Translator ‘ STEP 14
g \
TCCW 14 >{|14| Prepares to translate the ———I\TCCW
T4 next virtual CCW. 4
TCCHCCHL TCCWCCHWA TCCHS260 (Processing is complete for TCCWCCHR
I I I\ this CCW.) TCCHWCCHL
/ TCCHCCHWA
TcCws280| A. If this CCH does not indicate command or ——I\TCCW
BEB i > data chaining, determines if CCW /
I\ translation is complete: TCCHOPBT
BERVRST —
If a previous CCH exists in this BEB \BEB
TCCW segment and provides for status modifier /
support, does the following: BEBVREN
TCCRCCHR TCCHCCNAI——- . If the pevious CCH was a TIC CCW, goes
to TCCWM200 to check for any unresolved
TICs.
. Otherwise, treats the CCH as a chained
CCH.

If a previous CCH does not exist in the
BEB segment, goes to TCCWM200 to check
for any unresolved TICs. (CCHW
translation is complete.)

l:: \
>TCCWM200: 17
/

TCCHS300| B. Prepares to handle the next virtual CCH. e \TCCH

TCCW = pecccccaaas > /
J I\ " |rceworst
TCCKOPBT I
TCCW
TCCHCCHA —

C. Returns to translate the next virtual

CCH.
\
>TCCKS000: 06
7/

LY28-1685-0 (c¢) Copyright IBM Corp. 1987 Method of Operation EXCP-135

"Restricted Materials of IBM"
Licensed Materials = Property of IBM

IECVTCCW - CCW Translator STEP 15
A
15 >||15| Page-fixes the data area —————I\TCCHW
-7 associated with a data v/
TCCKMO00 transfer type CCW. TCCHWLOCA
TCCW fr==———m——- >| A. Searches the existing fix list to
-2 AN dotermine if the pages associated with
TCCHPLKR : 1/ this data area are already fixed. If a
s fix list entry contains tha pages of
FIX : this data area, returns to TCCWS200 to
-4 continue processing.
FIXEL
\
TCCW E: >TCCWS200: 13E
/
TCCHWFIX —
TCCW e
-3 \
TCCHPLKR H —/
: B. If there is no more space in the FIX - \TCCW
FIX s block for this entry, returns to the v/
- caller to obtain another FIX block. TCCHPLKR
FIXEL FIXNE
7—\
TCCUW \Np—/ TCCWGTMO: 29
TCCHFIX RETURN REGISTER: RTNREG
FIX
FIXCHAIN —
FIX ———eeecaaa > e \FIX
J I\ /
FIXHL FIXEL ey / E FIXCHAIN
FIXNE
\TCCW
TCCW —/
TCCWPLKR
TCCHWPLKR TCCNLOCAI—
FIX
FIXCHAIN —
TCCHMO60| C. If a fix list entry does not contain the L————I\FIX
FIX " > pages of this data area, builds a fix /
I\ list entry in tha FIX block-and calls FIXLSTEN
FIXLSTST — the system page fix services (PGSER) to
fix the pages in the fix list. \TCCKW
TCCHW /
7N\ TCCHMODB
TCCHPLKR — \—v PGSER
PSA R, FIX, A=(1), EA=(2),
ASCB=(3), BACKOUT=N,
PSAAOLD r-— BRANCH=SPECIAL
—
TCCHW 150 >| b. Upon return from page fix services, e I\TCCW
14 returns to TCCWS200 to continue v/
TCCHPLKR TCCWM070 processing. TCCWPLKR
] I I\ TCCHMODB
/

EXCP-136

MVS/XA SLL:

EXCP

Processor

LY28-1685-0

(c) Copyright IBM Corp.

1987

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

IECVTCCW - CCW Translator STEP 16
\
>TCCHS200: 13E
/
I\
BEB 16 >[|16]| Handles the ————\TCCHW
- 14 transfer-in-channel (TIC) /
BEBVRST BEBVREN | : TCCHM100 CCW command. TCCHTICL
L > TCCKCCHR
TCCW J—J\ The address field in the TIC CCW is created TCCHCCHL
| 1/| to indicate the target of the virtual TIC. TCCHCCHA
TCCHWTICL TCCWCCWR
TCCHCCHL TCCWCCHA If a TIC address is not contained within an \BEB
existing BEB segment, puts the TIC on an /
unresolved TIC list. BEBVREN
1f there is not enough space in this BEB
for real CCHs, returns to the caller to get
more storage.
\
>TCCHM300: 18
/
TCCW J---------K
TCCHCCHL ——/
TCCHW
TCCHCCHR l——
e d
TCCW 17 >/ 117} Handles unresolved TICs. ——Y L% %
- / /
TCCHCCHL : TCCNM&OO This routine is entered to process: E TCCHWTICL
H >
BEB 3 I\|] . A TIC that is not a NOP TIC \BEB
/ /
BEBFLAG BEB2INUS ' . A TIC preceded by a status modifier CCHW BEBFLAG
BEB3INUS BEBVREN BEBRLST
. The last virtual CCH in the channsl
TCCW program (no chaining is indicated in the
CCH)
TCCHWTICL TCCNCCKRI——-
A list of unresolved TIC CCHs is created to
BEB indicate the targast of the virtual TIC. The
TCCH control block maintains a pointer to
BEBCHAIN BEBRLST the first unresolved TIC. The other TICS
BEBVRST are chained.

LY28-1685-0 (c) Copyright IBM Corp. 1987 Method of Operation EXCP-137

IECVTCCW - CCW Translator

YRestricted Materials of IBM"
Licensed Materials — Property of IBM

STEP 17A

TCCKHM280

A. If there is insufficient space in the

existing BEB to resolve the TIC, returns

to the caller to obtain another large
block to be used as a BEB block.

On return from the caller, register 15
contains the pointer to the large block.
The large block is initialized as a BEB
block, and processing continues.

7—\
\Np——/

TCCHGTM2: 29A

RETURN REGISTER: RTNREG

eI \BEB

/

BEBCHAIN
BEBRLST

\TCCW
/

TCCHCCHR
TCCHCCHL

—————I\BEB

/

TCCW [ro=——m———=>
-2 I\
TCCHMODB : | ——
:
BEB :
-4
BEBSCCH
BEB
BEBNEL
TCCKHM298| B. Establishes the virtual start address in -
TCCW \ the new BEB segment and sets the TIC
14 real address.
TCCKCCHR r-J
C. Returns to process the next virtual CCW.
(TIC processing is complete.)
N\
>TCCHS000: 06
/
I\
TCCW 18 >||18]| Returns to the caller to
- —_— obtain another large block
TCCWMODB : TCCWM300 to be used as a BEB block.
: >
BEB : r——I\| This routine is called when there is not
- 17| enough spaca in this BEB for real CCHs.
BEBSCCH
On return from the caller, register 15
TCCHW contains the pointer to the large block.
The large block is initialized as a BEB
TCCKCCHR TCCNCCHAr—- block, and processing continues.
BEB Inserts a TIC command at the end of the
current BEB segment of the previous BEB to
BEBNEL point to the first segment of the new BEB.

—

EXCP-138 MVS/XA SLL:

Checks to ensure that the TIC is not to
another TIC or that a TIC CCH is not split
from a status modifier CCH.

BEBVRST

l:/
\TCCW

TCCHCCRA

~————I\BEB

/

/

EXCP Processor

LY28-1685-0

(¢c) Copyright IBM Corp.

BEBCHAIN
BEBRLST
BEBVRST
BEBVREN

\TCCKW

TCCHCCHWR
TCCRCCHL
TCCHCCHA

1987

"Restricted Materials of IBM"

Licensed Materials = Property of IBM

IECVTCCW - CCW Translator

TCCW

A.

When the new BEB block is initialized,
returns to continue virtual CCHW

processing.
[::\)
>TCCWS000: 06
/

-\
19 >

19

Builds indirect address

14
TCChM400

J---------->

TCCHMODB TCCWPC10

TCCW

—ly\
198 >

TCCHWINDL

1/

LY28-1685-0 (c) Copyright IBM Corp. 1987

TCCHMG02
I\
r]_______ﬁ/

AD

words (IDAWs) in an IDAL
block.

Builds an indirect address word list for
each CCH whose data area crosses one or
more page boundaries or whose data area
is fixed above the l6-megabyte lins.

The IDAWs consist of the translated CCH
address plus the address of each
subsequent page referenced by the data
area. The address of the first IDAW in
the list replaces the data address in
the CCKR and the indirect data address
(IDA) flag in the CCW flag byte is set
on.

If an abend condition occurred during
fixing, an additional invalid IDAW is
built. If this IDAW is acted on by the
channel, a chamnel program check (CPC)
occurs., :

If there are not enough IDAR slots
available, returns to the caller to
obtain another large block to be used as
an IDAL block.

On return from the caller, register 15
contains the pointer to the large block.
The large block is initialized as an
IDAL block and processing continues.

7y
\r—/ TCCKGTMO: 29

RETURN REGISTER: RTNREG

STEP 18A

Method of Operation EXCP-139

"Restricted Matorials of IBM"
Licensed Materials = Property of IBM

IECVTCCW - CCW Translator STEP 19D
IDAL premmsneens> L sreew
- \ /
IDALHL : "/ " |recreons
: TCCWINDL
TCCW :
4
TCCHMODB
IDAL
IDALNE —
Toew
TCCHPC10 —

D. Preparos to translate the next virtual
CCH. (Processing is complete for this

CCH.)
\
E >TCCHS260: 14
/
IECVEXCP and others who require
this function 201 Re-translates a virtual
\ address in the real channel
> program to the corresponding
BEB / virtual address in the
TCCWRO00 caller's virtual channel
BEBFLAG BEB2INUS| levececccecaa> prozram (option code =
BEB3INUS BEBPTRLN N X'04').
' /
BEB " |lthe address to be trenslated is provided
by the caller in register 0.
BEBCHAIN BEBRLST
BEBVRST Searches the BEB blocks for a match to the

virtual address provided by tha caller.
¥hen the match is found, calculates the
corresponding caller's virtual channel

program address.

The BEB block provides for three sets of
the caller's virtual channel program (to
support TIC commands). The search requires
chacking these three ranges in each BEB
for a match to the caller's virtual
address.

If the caller-provided virtual address is
not contained in the real channel program,
;etums to the caller with register 15 seot
o a 4.

If a match is found, returns the
corresponding virtual address within the
caller's virtual program to the caller in
register zero and sets register 15 to 0.

EXCP-140 MVS/XA SLL: EXCP Processor LY28-1685-0 (c) Copyright IBM Corp. 1987

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

IECVTCCW ~ CCW Translator STEP 20A
A. Processing is complete; returns to the
caller.
N\
>TCCWEORO: 26B
/
I\
TCCW 21 >||21| Unfixes pages after the —\TCCW
V4 IECVTCCW functional recovery V4
TCCWPC10 TCCWT000 retry routine receives TCCWMODB
' | I\ control.
/
TCCW _J ---------- >| A. If PGSER unfix processing was active
when the error occurred, goes to
TCCHOPTN TCCHU500 to build a free chain of large
blocks. PGSER has unfixed pages up to
when the error occurred.
\
>TCCWU500: 23
/
TCCW [———-’\ B. If an error occurs whila the system page t——————I\TCCW
/ sarvices (PGSER) are handling a fix 14
TCCWPLKR lJ request and the error is not a 18A abend TCCHOPTN
with a return code of 4, does the
following:
. Sats the TCCW option byte (TCCHOPTN)
to X'80*' to indicate a page error.
. Sets the last-entry indicator in the
last valid fix entry.
. Continues with TCCWU100 to unfix any
previous pages and to build a free chain
of large blocks.
AN
TCCW 22 >|]122| Unfixes pages (option code ——I\TCCW
- ~/ X'08'). T4
TCCHPLKR H TCCWU000 TCCWMODB
¢ TCCWUl00| Provides a list in the FIX list block of
FIX femmme————— >| all the pages that were fixed in the
- I\| process of translating the caller's channel
FIXHL FIXEL ——/} program.
FIXNE
Passes a pointer to the fix list to the
TCCHW PGSER sevices to unfix all pages in the fix
list,
TCCWFIX I———
If there is more than one FIX list block,
FIX sats up to pass this set of fix lists to
PGSER. PGSER does not support the chaining
FIXCHAIN (| of fix list entries.
PSA 7\
\N—/ PGSER
PSAAOLD l——‘
L, FREE, LA=(1), ASCB=(3),
BRANCH=SPECIAL

LY28-1685-0 (c) Copyright IBM Corp. 1987 Method of Operation EXCP-141

“Restricted Materials of IBM"
Licensed Materials = Property of IBM

IECVTCCW - CCW Translator STEP 22A
| ST, {7 ¥]
/
1]
A. When all fix lists have been processed, TCCWMODB
goes to build a free chain of blocks.
\
>TCCHWUS500: 23
/
—\
TCCHW 23 >{]123] Builds a free chain of large eI\ TCCW
- W/ blocks. V/
TCCWOPTN TCCWMODB| : TCCWUS00 TCCWMODB
L >| This routine builds a free chain of all
TCCHW _,———-'\ IDAL, FIX and BEB blocks (in this order)
— /| and chains them off the TCCH control block
TCCWFIX]-—J chain word.
IECVEXCP and others who require 24l T Tat inal ad
this function ranslates a single address
\ (option code X'10'). L \Teew
/
BEB / ||Translates a virtual address in the ' TCCWOPTN
1 TCCWX000| jvirtual channel program to its
BEBFLAG BEB2INUS| ‘=eewceeee- >| jcorresponding virtual address in the real
BEB3INUS BEBVREN | m——I\||channel program.
BEBPTRLN /
The caller has provided the virtual
BEB address in register 0.
BEBCHAIN BEBRLST If the translation is successful, sets the
BEBVRST translated address in register 0 and sets
a return code of 0 in register 15.
If tha translation is unsuccessful, sets a
return code of 4 in register 15.
A. Returns to the caller (processing is
complete).
\
l:: >TCCWEORO: 26B
/

EXCP-142 MVS/XA SLL:

EXCP Processor

LY28~1685-0

(¢c) Copyright IBM Corp. 1987

YRestricted Materials of IBM"
Licensed Materials = Property of IBM

IECVTCCW - CCW Translator

TCCW rccmw?o
\

TCCHFRC Aggr——————————1/

—\
26B >
—
TCCHWEORO

—d\

TCCHW 260 >
/

U
TCCHRGSY TCCHEXIT
\
I"____V

TCCHRCGA

LY28-1685-0 (c) Copyright IBM Corp. 1987

25

26

Handles the exits from the
TCCW operations.

When the requested function
completed successfully, does
the following.

A. For option X'00°', sets the real address
to the starting address of the real
channel program in register 0.

B. Zeros the TCCW option byte (TCCWOPTN) to
indicate success.

C. Sets a return cods of 0 in register 15.

E. Returns to the caller.

STEP 25

L——I\TCCW

TCCKOPTN

N\ 7/

27

When the requested function
has not completed
successfully, does the
following.

. If the caller was not in a system Kay,
sots the TCCH option byte (TCCWOPTN) to
X'E0" (TCCWVLER).

. Otherwise, the TCCH option byte error
condition has been previously set.

. Sets a return code of &4 in register 15.

[::\
>TCCHEXIT: 26D
/

——— I\TCCW

TCCHOPTN

Method of Operation EXCP-143

"Restricted Materials of IBM"

Licensed Materials — Property of IBM
IECVTCCW - CCW Translator STEP 28
Tcchres| 128 | When function code X'08'
completed successfully, sets
a return code of 8.
\
>TCCWEXIT: 26D
/
I\
29 >|129| Returns to the caller of
V4 IECVTCCW to request another
TCCHGTMO large block for translating
the caller's virtual channel
program. Does the following.
. Saves registers in the
TCCW block.
. Saves the routine return
address.
. Sets a return code of 12
in register 15.
S L
29A >{ A. ——I\TCCW
1 -7/
TCCHGTM2 TCCHOPTN
B. Returns to the caller of IECVTCCH.
\
>TCCHEXIT: 26D
/
RTM
mP 30] IECVTCCW Retry Recovery
\> Routine.
1/ This retry routine receives control from
IECVTCFR| | the EXCP processor functional recovery

routine (IECVEXFR) when IECVTCCH is active
and has set the TCCWPGCK bit in the TCCHW

control block for the following.

. ABEND 028
. ABEND 171
. ABEND 18A

. The SDWA indicates a program check.

The EXCP processor will specify, in the
SDHWA, this routine as its retry routine,

and return to RTM requesting retry.

Actions taken are as follows:

EXCP-144 MVS/XA SLL:

EXCP Processor

LY28-1685-0

(c) Copyright IBM Corp. 1987

"Restricted Materials of IBN"
Licensed Materials — Property of IBM

IECVTCCW - CCW Translator STEP 30A
TCCW peeme- ~~e==>| A. If the error occurred while performimg a | IS, 7.7,
J I\ validity check (the TCCWVLCK bit is set V4

TCCWMODB —/ in the TCCHW control block), sets the TCCWOPTN

TCCH option byte to the validity check TCCKMODB
TCCH error indication (X'EQ') and returns to

the TCCH mainline at TCCWUGOO to unfix
TCCWPC10 — pages and return to the caller with a

return code of 4.

[::\
>TCCKWU000: 22
/

B. If the abend was not a 18A with a return
code of 4, returns to the TCCH mainline
at TCCWT000 to determine if page fixing
or unfixing was active.

\
[::: >TCCWT000: 21
/
TCCW r—————l\
/

i

TCCWPLKR r——J C. If the abend was a 18A with a return
code of ¢ and if the first page of the

fix request was invalid, returns to the
TCCH mainline at TCCWT000 to set the
TCCH option byte to indicate a fix error
(X'80') and to prepare to unfix any
previous page fix requests.

[:::\
>TCCWT000: 21
/

D. If the abend was a 18A with a return
code of ¢ and if the caller was in
system Key zero, returns to the TCCW
mainline at TCCWT000 to set the TCCHW
option byte to indicate a fix error
(X'80') and to prepare to unfix any
previous page fix requests.

[::\
>TCCWT000: 21
/

TCCW N e >| E. For other errors, does tha following: e\ TCCW
. Indicates in the TCCH control block 1/

TCCKPC10 that an additional invalid IDAW TCCWMODB
(RCCWPC10) is to be provided after the

last valid IDAN.

. Adjusts the fix list entry to the last
valid page.

. Returns to TCCH mainline at TCCWMO70
to continue the virtual channel program

translation.
\
>TCCHMO070: 15D
/

LY28-1685-0 (c) Copyright IBM Corp. 1987 Method of Operation EXCP-145

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

EXCP-146 MVS/XA SLL: EXCP Processor LY28-1685-0 (c) Copyright IBM Corp. 1987

YRestricted Materials of IBM"
Licensed Materials — Property of IBM

INDE

A

abend codes

issued by EXCP EXCP-7
access method

definition EXCP-3

interface EXCP-3

programs that qualify EXCP-3
addressing mode

of EXCP processor modules EXCP-6

c

CCH translation operation table EXCP-8
CCHW translator EXCP-121
channel command word (CCW) translation
operation table modules

IECVOPTB EXCP-120

IECVOPTC EXCP-120

IECVOPTD EXCP-120

IECVOPTE EXCP-120

IECVOPTG EXCP-120

IECVOPTH EXCP-120

IECVOPTI EXCP-120

IECVOPTJ EXCP-120

IECVOPTK EXCP-120

IECVOPTL EXCP-120

JECVOPTM EXCP-120

IECVOPTN EXCP-120

IECVOPTT EXCP-120

IECVOPTU EXCP-120

module operation EXCP-120
communicating and I/0 request to

10S EXCP-4

control block overview

for EXCP processor EXCP-11

D
DDT (device descriptor table) EXCP-8
debugging area (XDBA) EXCP-7
device descriptor table (DDT) EXCP-8

diagnostic techniques
for EXCP EXCP-7

EXCP processor
abend codes EXCP-7
addressing and residency mode of
modules EXCP-6
control block overview EXCP-11
debugging area (XDBA) EXCP-7
function EXCP-3
introduction EXCP-3
process flow EXCP-13

LY28-1685-0 (c) Copyright IBM Corp. 1987

EXCP processor)

method of operation EXCP-21

F

functional recovery routine(FRR)
for IECVEXCP EXCP-86

170 request
communicating with I0S EXCP-4
related requests EXCP-4
IECVEXCL
entry point in IECVEXPR EXCP-99
IECVEXCP
diagnostic aids EXCP-32
logic diagram EXCP-35
module description EXCP-24
module operation EXCP-28
process flow EXCP-14
IECVEXFR
diagnostic aids EXCP-89
logic diagram EXCP-90
module description EXCP-86
module operation EXCP-87
process flow EXCP-18
IECVEXPR
diagnostic aids EXCP-103
logic diagram EXCP-106
module description EXCP-98
module operation EXCP-101
process flow EXCP-19
IECVEXTC
entry point in IECVEXCP EXCP-26
IECVRCHN
entry point in IECVEXPR EXCP-99

IECVTCCH
diagnostic aids EXCP-126
logic diagram EXCP-130

EXCP-121
EXCP-125

IECVTCCW EXCP-124
IECVEXPR EXCP-98
IECVEXPR EXCP-98
IECVEXPR EXCP-98
point in IECVEXCP EXCP-26
IECVEXCP EXCP-26
IECVEXCP EXCP-24
16ciTs IECVEXCP EXCP-24

entry point in IECVEXCP EXCP-24
introduction to EXCP processor

module description

module operation
IECVTCFR

entry point in
IECVXPUR+0

entry point in
IECVXPUR+4

entry point in
IECVXRES

entry point in
IECVXTRM

entry
IECVX025

entry point in
IGC000

entry point in
IGC092

entry point in

EXCP-3

I-1

YRestricted Materials of IBM"
Licensed Materials — Property of IBM

K S
key to the logic diagrams EXCP-21 SVC 0 processor EXCP-24
SVC 114 processor EXCP-24
L
T
logic for EXCP processor EXCP-21
TCCWG000
entry point in IECVTCCW EXCP-123
TCCWI100
M entry point in IECVTCCWH EXCP-121
TCCHRO00
entry point in IECVTCCWH EXCP-122
method of operation TCCWU100
for EXCP EXCP-21 entry point in IECVTCCW EXCP-122
module description TCCWX000
IECVEXCP EXCP-24 entry point in IECVTCCWH EXCP-123
IECVEXFR EXCP-86 translation operation table EXCP-8
IECVEXPR EXCP-98 translation operation table modules
IECVTCCWH EXCP-121 IECVOPTB EXCP-120

IECVOPTC EXCP-120
IECVOPTD EXCP-120
IECVOPTE EXCP-120
P IECVOPTG EXCP-120
IECVOPTH EXCP-120
IECVOPTI EXCP-120

problem analysis IECVOPTJ EXCP-120
for EXCP EXCP-7 IECVOPTK EXCP-120
process flow TECVOPTL EXCP-120
of EXCP processor EXCP-13 IECVOPTM EXCP-120
of IECVEXCP EXCP-16 IECVOPTN EXCP-120
of IECVEXFR EXCP-18 IECVOPTT EXCP-120
of IECVEXPR EXCP-19 IECVOPTU EXCP-120
processor for SVC 0 and SVC 114 EXCP-24 module operation EXCP-120
purge routine for EXCP EXCP-98
X
R
XCPABE
residency mode entry point in IECVEXCP EXCP-25
of EXCP processor modules EXCP-6 XCPCHE
restore routine for EXCP EXCP-98 entry point in IECVEXCP EXCP-24
RQE XCPDIE
blocks EXCP-9 entry point in IECVEXCP EXCP-25
pool areas EXCP-9 XCPPCI
status EXCP-9 entry point in IECVEXCP EXCP-25
XDBA EXCP-7

I-2 MYS/XA SLL: EXCP Processor LY28-1685-0 (c) Copyright IBM Corp. 1987

MVS/Extended Architecture READER'S

System Logic Library: COMMENT
EXCP Processor FORM
LY28-1685-0

This manual is part of a library that serves as a rcference source for systems analysts, programmers,
and operators of IBM systems. You may use this form to communicate your comments about this
publication, its organization, or subject matter, with the understanding that IBM may use or distribute
whatever information you supply in any way it belicves appropriate without incurring any obligation to
you.

Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please
direct any requests for copies of publications, or for assistance in using your IBM system, to your IBM
representative or to the IBM branch office serving your locality.

Possible topics for comment are:

Clarity Accuracy Completeness Organization Coding Retrieval Legibility

If you wish a reply, give your name, company, mailing address, and date:

What is your occupation?

How do you use this publication?

Number of latest Newsletter associated with this publication:

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an
IBM office or representative will be happy to forward your comments or you may mail directly to the
address in the Edition Notice on the back of the title page.)

MVS/Extended Architecture System Logic Library: EXCP Processor

“Restricted M aterials of IBM”
All Rights Reserved

Licensed M aterlals - Property of IBM

(Except for Customer-Originated M aterials)
©Copyright IBM Comp. 1987

LY28-1685-0

Reader's Comment Form

Fold and tape

Please Do Not Slaple

S370-36

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO.40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Department D58, Building 921-2
PO Box 390

Poughkeepsie, New York 12602

|I|I||IIII|IIIIII|II|I|||||I||I‘I||I|HI|IHIII|||I|

Fold and tape

RS GEEREe. el
RS GEEPEER SENR A
- - S R sum—
- SN N AN
- R . -
- W R N - .
I RN R W .-
I A v ——

Please Do Nol Staple

Fold and tape

aun buoly pjog4 4o 1o

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

Fold and tope

Printed in U.S.A.

LY28-1685-00

MR

MVS/Extended Architecture System Logic Library: EXCP Processor

“Restricted M aterials of IBM”

All Rights Reserved

Licensed M aterlals - Property of IBM
©Copyright IBM Com. 1987

LY28-1685-0 §370-36

Printed in U.S.A.

| LLLL ||
1
|
1

!9.

	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	00012
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	I-01
	I-02
	replyA
	replyB
	xBack

