MVS/Extended Architecture Program
Linkage Editor Logic Product

a1
“bit

Order No. LY26-3963-0 Contains Restricted Materials of IBM Data Facility Product 5665-XA2
File No. S370-31 Licensed Materials—Property of IBM Version 2
© Copyright IBM Corp. 1972, 1985 Release 1.0

Contains Restricted Materials of IBM
Licensed Materials—Property of IBM

MVS/Extended Architecture
Linkage Editor Logic

Data Facility Product 5665-XA2
Version 2 Release 1.0

LY26-3963-0

© Copyright IBM Corp. 1972, 1985

Contains Restricted Materials of IBM
Licensed Materials = Property of IBM

First Edition (April 1985)

This edition applies to Version 2 Release 1.0 of MVS/Extended
Architecture Data Facility Product, Program Product 5665-XA2,"
and to any subsequent releases until otherwise indicated in new
editions or technical newsletters.)

The changes for Version 2 support are summarized under "Summary
of Amendments™ following the preface. Specific changes are
indicated by a vertical bar to the left of the change. These
bars will be deleted at any subsequent republication of the page
affected. Editorial changes that have no technical significance
are not noted.

Changes are made periodically to this publication; before using
this publication in connection with the operation of IBM
systems, consult the latest IBM System/370 and 4300 Processors
Bibliography, GC20-0001, for the editions that are applicable
and current.

References in this publication to IBM products, programs, or
services do not imply that IBM intends to make these available
in all countries in which IBM operates. Any reference to an IBM
program product in this publication is not intended to state or
imply that only IBM's program product may be used. Any
functionally equivalent program may be used instead.

Publications are not stocked at the address given below;
requests for IBM publications should be made to your IBM
;epr§§:ntative or to the IBM branch office serving your

ocality.

A form for readers' comments is provided at the back of this
publication. If the form has been removed, comments may be
addressed to IBM Corporation, P.0. Box 50020, Programming
Publishing, San Jose, California, U.S.A. 95150. IBM may use or
distribute whatever information you supply in any way it
believes appropriate without incurring any obligation to you.

This is a licensed document that contains restricted materials
of International Business Machines Corporation. ® Copyright
International Business Machines Corporation 1972, 1982, 1985.
‘All rights reserved. :

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

PREFACE
This book describes the internal organization and logic of the
linkage editor. The linkage editor is a processing program that
combines and edits modules to produce a load module; this load
module can then be loaded into virtual storage by the control
program.

ORGANIZATION

This publication contains the following:

. "Introduction™ on page 1, describes the linkage editor as a
whole, and its relationship to the operating system. This
section also discusses the major divisions of the program
and how they work together.

. "Method of Operation™ on page 15, provides an overview of
the logic of the linkage editor, and a detailed description
of specific operations.

. "Program Organization™ on page 89, describes the
organization of the linkage editor. The function and
interrelationship of program components (modules, control
sections, and routines) are also discussed.

. "Microfiche Directory™ on page 146, helps the reader find
the named areas of code in the program listing. Microfiche
cards contain the program listing.

. "Table Layouts™ on page 151, which are used to analyze
storage dumps, are illustrated in this section. .

["Diagnostic Aiqs“ on page 183, includes general register
contents at major entry points to modules, and an error
message—module cross—reference table.

U "Appendix. Conventions/Formats™ on page 194, includes input
conventions and record formats.

An index is also included.

PREREQUISITE KNOWLEDGE

To use this book efficiently, you should be familiar with the
following topics:

. Assembler language functions and specifications available
with Assembler H

. Job control language

U General concepts of the linkage editor and loader

LY26~3963-0 ®© Copyright IBM Corp. 1972,1985 Preface iii

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

REQUIRED PUBLICATIONS

You should be familiar with the information in the following
publications:

. Assembler H Version 2
Reference, GC26-49037,
language functions

[MVS/Extended Architecture JCL, GC28-1148, for background

information on job control language

lication Programming: lLa aqe
for a description of assembler

U MVS/Extended Architecture lLinkage Editor and lLoader User's
Guide, GC26-6163, for a description of the linkage editor

RELATED PUBLICATIONS

and loader

Within the text,

references are made to the publications listed

below.

order

Short Title Publication Title Number

Assembler H V2 Assembler H Version 2 GC26-4037

Application A ication Programming:

Programming: Language Reference

Language

Reference

Data MVS/Extended Architecture GC26-4140

Administration ata Administration Guide

Guide

Data MVS/Extended Architecture GC26-4141

Administration: Data_ Administration: Macro

Macro Instruction Reference

Instruction

Reference

Debugging MVS/Extended Architecture LC28-11642

Handbook Debugging Handbook, Volumes LC28-1165

L through 5 LC28-1166

LC28-1167
LC28-1168

JCL MVS/Extended Architectur GC28-1148

JCL

Linkage Editor MVS/Extended Architecture GC26-4143

and Loader Linkage Fditor and lLoader

User's Guide User's Guide

Note:

1

All five volumes may be ordered under one order number,

LBOF-1015.

iv MVS/XA Linkage Editor Logic

LY26-3963-0 ® Copyright IBM Corp.

1972,1985

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

SUMMARY_ OF AMENDMENTS

RELEASE 1.0, APRIL 1985

ENHANCEMENTS AND NEW SUPPORT

VERSION 2 PUBLICATIONS

Maximum block size has been increased from 18632 to 32760.
PCI support for overlay modules has been added to IEWFETCH.

Error messages IEW06646, IEW0801, and IEN0813 have been added
to Figure 68 on page 189 under "Diagnostic Aids."”

Figure 67 on page 188 under "Diagnostic Aids"™ has been
updated to reflect changes in table allocation.

Offsets have been adjusted in Figure 36 on page 152 under
"Table Layouts.™

The Preface includes new order numbers for Version 2.

LY26-3963~-0 & Copyright IBM Corp. 1972,1985 Summary of Amendments v

tontains Restricted Materials of IBM
ticensed Materials — Property of IBM

CONTENTS

Introduction .o e o e o o v
Purpose of Linkage Ed1tor .
Relationship to the 0perat1ng System
General Description . . .
Module Structure . .
External Symbol Dxctxonary
Relocation Dictionary . . .
Composite Dictionaries . .« . .
Linkage Editor Options e e e e e e .
Module Attributes . .
Linkage Editor Process;ng for Attr;butes
Input/Output Flow e e e e e e e e e e

Method of Operation . . .« o o
Logic of the Linkage Edltor . .
Initialization e e e e e e
Input Processing . e e e
Intermediate Process;ng .
Second Pass Processing PN
Final Processing . . .
Initialization .
Preparing the A11 Purpose Table (AP
Analyzing Control Information .
Opening Data Sets . .
Allocating Virtual Storage .
Buffer Allocation e e e
Table Allocation e e e e e
Input Processing . e e
Reading Blocked Input .
Record Lengths for SYSPRINT
Record Lengths for SYSTERM .
Control Statement . .
Control Statement Processors
Object Module Processing .
Load Module Processing . .
ESD Record Types e e e e
CESD Record Types e e e e
ESD Processing e e e .
IDR Processing .
Psogessxng Object Module END Records
ata . . .
Processing Load Module IDRs

. .

.

. .

e o o o
® o o o o o o o O

e o o o o o @
.

e o o o o O

® e o o o o o O

)

e o o o .
.
.

e s s o e o s s e e s o e
e e e e s o o s s s s s e e e o e oo s o e
.

.
.
.
.
.
.
.
.
.
.
.
.

® o o o o o o o O

® o o o o o o o o o o

e o o o o v o

e e 8 o ¢ o e o o o o @

e ® o e o & & ° e & ¢ o s e e o o+ & e ° o e O

onta

Processing IDENTIFY Control Statement Data

TXT Processing v e e e
Processing Object Module Text . .
Processing Load Module Text e e e
Writing Text on SYSUT1 e e e e e e e
RLD Processing e e e e e e e e e e
END Processing e e e e e e e e e e
Include Processing . .
Automatic Library Call Processxng .
Intermediate Processing e e e e e e e s
Address Assignment e e e e e e
ENTAB Size Determlnatxon . . . e
Entry Processing . e e e e
Intermediate Output Processxng e e e e
MAP/XREF Processing e e e e e e e e

Second Pass Processing .
Relocation of Address Constants

® 4 o e o o o s o e .

e o o o o

e o o o o o o o o

" 6 » o o o &
« e o o o o O

AN DLDDUWNNF

e o o o o o o o ¢ o o O

® o e o @ o o e o s o O

e o o o o o o o o o o @
e o o o

e ® o o o o s o s o o O

o 8 o o o

11

* e o o o o o
e o6 @ o ¢ @ o ° o & o ° o & e o O ° ¢ o o v o ©
® ® ® o ® 0 & e e o ° e e @ o e o & o o O

e o o ¢ o o 6 6 o o o 6 6 e e s s e 0 e e e e e s @
N
N

e o @ o o 2 & o ¢ ¢ ¢ e o ¢ o e o o o

¢ o o o o

Q
b=t

e e e e s o o e s ..:...............
* e s o o & s e s e s e
@ & ® © o 6 v e e o ¢ o o o o o 2 o e o o + o s 4 e s o & 0 e o o s e e o s s e s s s 0

s s s o
...................:..

@ o o o o o o o & o o & o e ® o v o o

. 54
t

Relocation of Nonbranch-Type (A-Type) Address Constan S 61
Relocation of Branch-Type (V-Type) Address

ENTAB Creation . . e e e e e e
Relocation Routine . e e e e e e
Final Processing (HENLFFNL) e e e e
Error Logoging s e e e e e e e
Cross—-Reference Table .
Diagram 1. Overview of L;nkage Edltor .

LY26-3963-0 ® Copyright IBM Corp. 1972,1985

o o o o

Constants 66

.
-

~
w

e o o o

.
.
.
.

e o o o o

Contents vii

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

D@agram 2. Detailed Overview of Linkage Editor Processing 76
Diagram 3. Initialization e e e e e e e e e e e e e 77
Diagram 4. Input Processing e e e e e e e e e e e 78
Diagram 5. Intermediate Processing 79
Diagram 6. Second Pass Processing v e e e e e e e e e 80
Diagram 7. Final Processing e e e e e e e e 81
Diagram 8. Control Statement Process:ng e e e e e e e . 82
Diagram 9. ESD Processing e e e e e 83
Diagram 10. Processing Object Module Text . e e e e e 84
Diagram 1ll. Processing Load Module Text Records .« e e . 85
Diagram 12. RLD Processing et e e 4 e 4 e e e e e e e 86
Diagram 13. Address Assignment . e e 87
Diagram 14. Data Movement During Second Pass Process in 88
Program Organization o o . e 6 4 o 0o s s 6 o s o s 89
Initialization and Input Proce551ng e e e e e e e 89
Initial Processor—HEWLFINT (Chart BA) c e e e e e 89
Attributes and Options Processor—HEWLFOPT e e e e e 89
-Allocation Processor—ALLO001 (Chart BA) . e e e e 89
Table Allocation Processor—HEWLFALK (Chart BB) . . 90
Input Processor—HEWLFINP (Chart CA) e e e e e e e . 90
Object Module Processor—HEWLFMDI (Chart CB) e e e . 90
Load Module Processor—INP270 (Chart CC) e e e e e e 91
SYM Processor—HEWLFSYM (Chart CD) e e e e e e e e 91
ESD Processor—HEWLFESD (Chart CE) . o« e e e 92
Text and RLD Processor—HEWLFRAT (Chart CF) . e e e 92
Text Processor—HEWLFTXT (Chart CG) e e e e e e e 92
RLD Processor—RLD001 (Chart CJ) e e e e e e e 92
End Processor—HEWLFEND (Chart CL) . 93
CSECT Identification Record (IDR) Processor——HENLFIDR
(Chart CQ) . 93
Control Statement Scanner——HENLFSCN (Chart CS) . o . 93
Include Processor—HEWLFINC (Chart CU) . 93
Automatic Library Call Processor—HEWLCAUT (Chart CV) 94
Intermediate Processing . 94
Address Assignment Processor——HENLFADA (Chart DA) . 94
Intermediate Output Processor—HEWLFOUT (Chart EA) . 94
Second Pass Processing s e e e e e e 95
Second Pass Processor~—HENLFSCD (Chart FA) e e e e . 95
Final Processing . e e e e e e e e 95
Final Processor——HENLFFNL (Chart GA) e e e e e e e s 95
SYNAD Routine—HEWLCRO1l (Chart GB) e e e e e e e 96
Chart AA. Level Major Divisions e e e e e e e e 99
Chart BA. Initial Processor (HENLFINT) e e e e e e 100
Chart BB. Table Allocation Processor (HENLFALK) e v e s 101
Chart CA. Input Processor (HEWLFINP) . e e e e e e 102
Chart CB. Object Module Processor (HENLFMDI) e e e e e e 103
Chart CC. Load Module Processor (INP270) e e e e e e s e 104
Chart CD. SYM Processor (HEWIFSYM) c e e e e e e e e e 105
Chart CE. ESD Processor (NEWLFESD)
Chart CF. TXT and RLD Processor (HENLFRAT) e e e e . . 109
Chart CG. TXT Processor (HEWLFTXT) .« e e e 110
Chart CH. TXT Write Routine (on SYSUTl) (TXTBUF) e e e e 111
Chart CJ. RLD Processor (RLD001)
Chart CK. RLD Write Routine (RLDBUF) e e e e e e e e e 114
Chart CL. END Processor (HEWLFEND) . 115
Chart CM. CSECT Identification Record Processor (HENLFIDR) 116
Chart CN. IDR Translator Data Processor (HEWLFIDR) . . . 117
Chart CP. IDRSPZAP Data Processor (HEWLFIDR) e e . . 118
Chart CQ. IDR Identify Data Processor (HEWLFIDR) e e e 119
Chart CR. IDR User Data Processor (HEWLFIDR) e e e e e e 120
Chart CS. Control Statement Scanner (HEWLFSCN)
Chart CT. READ8 Routine e e e e e e “ . 123
Chart CU. Include Processor (HENLFINC) . . 124
Chart CV. Automatic Library Call Processor (HENLCAUT)
Chart DA. Address Assignment Processor (HEWLFADA) . . 127
Chart DB. ENTAB Size Determination Routine (HEWLFENS) 128
Chart DC. Entry Processor (HEWLFENT)
Chart EA. Intermediate Output Processor (HEWLFOUT) I 131
Chart EB. MAP/REF Processor (HEWLFMAP) . 132
Chart EC. IDR WRITE Routine (HEWLFOUT) Chart FA Second Pass
Processor (HEWLFSCD)
Chart FB. GETIDMUL Routine e e e e e e e e e e e e e e 137
viii 'MVS/XA Linkage Editor Logic LY26-3963-0 © Copyright IBM Corp. 1972,1985

contains Restricted Materials of IBM
Licensed Materials — Property of IBM

Chart FC. TXT Read Routine (RDTXT), RLD Read Routine

(RDRLD)—HEWLFSIO . e e e e e e e 138
Chart FD. Text Write Routlne (on SYSLMOD)
(WRTTXT)—HEWLFSIO . e e e e e e e e 139

Chart FE. Relocation Rout1ne (HENLFREL)
Chart GA. Final Processor (HEWLFFNL) . . 143
Chart GB. SYNAD Routine (HEWLCRO1)

Chart GC. Error Logging Routine (HENLFLOG) e e e e e e e 145

.
.
.
.
.
.
.
.

.
.
[
H
H

Microfiche Directory e o o o o s o o e o o o o o s o o 146

Table Layouts e o o o s s o s o o o e s s e s s e e o o 151

Diagnostic Aids e o o o o s o o s o s e s s s e e e e s 183
Appendix. Conventions/Formats e o o s o o6 s 6 o o o o o 194
Input Conventions e e e e e et e e e e e e e e e e e 194
Record Formats et e e et e e e e e e e e e e e e e e 195
Index * . . L] . . . L] L] L] L d L] L] . L] L] . L] L] L] L] L] L] [] > 207

LY26-3963-0 © Copyright IBM Corp. 1972,1985 . Contents ix

EIGURES

x MVS/XA Linkage Editor Logic

NHOWVRINOWU! N WN=

Pt ot st

61.

Contains Restricted Materials of IBM
Licensed Materials —— Property of IBM

Linkage Editor Processing—Simple Case e e e e e s
Combining Control Dictionaries
Linkage Editor Processing for the Overlay and TEST

Attributes . .
Linkage Editor Process:ng for the Scatter Load and

TEST Attribute e e et e e e e e e Y e e e e e e
Input/Output Flow . . .

Incompatible Module Attrlbutes and Program 0pt1ons
Control Statement Scanner Operation . .

INCLUDE Statement Processing for a Sequentlal Data Set
INCLUDE Statement Processing With Nested Members .
Overlay Statement Processing e e e e e e e e e e
Order and Page Processing e e e e e e e e e e e e
Library Statement Processing

General Register Informatlon——ObJect Module Processxng

Input Record Types—Load Module . . .
General Register Information—Load Module Process1ng
RLD Flag Field Proce551ng e e e e e e e e e e e e
Include Processing e v e e e e s e e
Automatic Library Call Process1ng e e e e e e e e
ENTAB Size Determination . e e o
Processing of Alias Symbols by the Entry Processor

Writing Scatter/Translation Records . . .

Nonbranch-Type Address Constants-Relat:ve Relocatlon
Nonbranch-Type Address Constants—Absolute Relocation
Nonbranch-Type Address Constants—Absolute and

Relative Relocation st e e e e e e e e e e e e s
Example of Delinking e e e e e e e e e e e e e
Entry List Processing . e e e e
Relationship of RLD Flag F1e1d to Relocat1on e e
ENTAB Creation . . s e e e e e e e e e e e e e
Building Error Messages . e e e e e e
Load Module Record Types and Assoclated Processors

Linkage Editor Organization e e e e e e e e e e e
Sample Flowchart Symbols t e e e e e e e e e e e
Microfiche Directory e e e e e e e e
Module/CSECT Cross-— Reference Table e v e e e e e
Table Construction and Usage e e e e e e e e e e s
All-Purpose Table (APT) e e e e e e e e e e e e e
Alias Table . e e e e e e e e
Calls List (As Buzlt by RLD Processor) e e e e e

e

Calls List (As Altered and Used by ENTAB Slz
Determination Routine)
Composite External Symbol D1ct10nary (CESD)—-Internal

Format . . e e e e e
Normal Comb:nat;on of Internal CESD Types . e e
Delink Table e e e e e e e e e e e e e e
Downward Calls Llst e e e e e e e . e .
Entry List e e e e e e e « e e .

e o o

Entry Table (ENTAB) . .
Half External Symbol Symbol chtlonary (HESD)
High ID Table (HIID) . . e .
Virtual Storage Allocatlon Table . v e
Partitioned Organization Directory Record (As
Received from BLDL) C h e e e e e e e e e
Module Attributes

* e o o o o o o

.
.
.
.
.
.
.
.
.

e o o o o o

Partitioned Organlzatlon Dlrectory Record (As Built

by Linkage Editor) e e e e e e e e e e
Relocation Constant Table (RCT) e e e e e e . . e
Renumbering Table (RNT) .. e e e e e e e . .
RLD Input Control Block e e e e e e e e e . e e
RLD Output Control Block e e e e e e e e e e
RLD Note List . e e e e e e P
Second Pass Text Control Block e e e e e e . e

Segment Length Table (SEGLGTH) e e e e e
Segment Table (SEGTAB) . e e
TABLE and LIST (Referred to by HEHLFBTP) .
Text 170 Table . . e e e e e ..

e o o o o o e o o o

169

170
171

173
174
174
175
176
177
178
179
180
180
181

LY26-3963-0 ® Copyright IBM Corp. 1972,1985

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

62. Text Note List e« « e « o 181
63. XAD2CESD Table (Bu11t and Referred to by

Cross-Reference Table Routine) . e e e e e e e 182
66. ORDER Table (Built by HEWLFSCN) . . e e e 182
65. General Register Contents at Ma:or Entry Po;nts . . 183
66. Buffer Allocation e e e e e e e e e e e e e e s 187
67. Table Allocation . e e e e e 188
68. Error Message/lIssuer Cross—Reference Table e e e e 189

69. SYM Input Record (Card Image) C ot e e e e e e e e 195
70. ESD Input Record (Card Image) e e e e e e e e e e e 196
71. Text Input Record (Card Image) e e e e e e e e e e 197
72. RLD Input Record (Card Image) . e e s e e e e e 197
73. END Input Record—Type 1 (Card Image) e e e e e e 198
76. END Input Record—Type 2 (Card Image) e e e e e e 198

75. IDR Data in an Object Module End Record e e e e e e 199
76. SYM Record (Load Module) . . e e e e e e e 199
77. CESD Record (lLoad Module) e e e e e e e e e e e e e 200
78. Scatter/Translation Record e e e s e e e e e e e 201
79. Control Record (Load Module) . e e e s 202
80. Relocation Dictionary Record (Load Module) e e e e 203
81. Control and Relocation Dictionary Record (Load

Module) . et e e e e e e e 204

82. Record Format of Load Module IDRs e e e e e e e e e 204

LY26-3963-0 © Copyright IBM Corp. 1972,1985) Figures xi

Contains Restricted Materials of IBM
Licensed Materials -— Property of IBHM

INTRODUCTION

This section describes the purpose, organization, and internal
operation of the linkage editor and its relationship to the
operating system.

PURPOSE OF LINKAGE EDITOR

The linkage editor is one of the processing programs of the
operating system. It is a service program used in conjunction
with the ianguage translators to prepare machine-language
programs frer symbolic-language programs written in FORTRAN,
COBOL, report program generator, assembler language, or PL/I.
Linkage editor processing is a necessary step that follows
source program assembly or compilation,

Linkage editor processing allows the programmer to divide a
program into several parts, each containing one or more control
sections. Each part may then be coded in the programming
language best suited to it, and may then be separately assembled
or compiled by a language translator (under the rules applicable
to each language translator).

The primary purpose of the linkage editor is to combine and link
object modules (the output of the language translators) into a
load module. In that load module, all cross-references between
control sections are resoclved as though they had been assembled
or compiled as one module. The load module produced by the
linkage editor consists of executable machine-language code in a
format that can be loaded into virtual storage and relocated by
program fetch.

In addition to combining and linking object modules, the linkage
editor performs the following functions:

. Library Calls. Modules (such as standard subroutines) stored
in a library can be placed in the input to the linkage
editor, either automatically or upon request. If unresolved
external references remain after all input to the linkage
editor is processed, an automatic library call routine
retrieves the modules required to resolve the references.
However, unresolved external references marked "weak call®™
or "never call™ are not resolved by this routine.

. Program Modification. Control sections can be replaced,
deleted, or rearranged (in overlay programs) during linkage
editor processing, as directed by linkage editor control
statements. Common control sections generated by the
FORTRAN, PL/I, and assembler language translators are
provided locations within the output load module.

. Order and Page Support. The linkage editor can order control
sections in the sequence specified on the linkage editor
control statements, and can assign control sections to page
boundaries according to the control statements.

. Addressing Mode, Residence Mode, and Read-Only Support. The
linkage editor assigns an addressing mode for the entry

points into a load module, assigns a residence mode for the
load module, and indicates which control sections are
read-only in a nucleus load module.

. Program Processing History. CSECT identification records
built during linkage editor processing contain data
describing the language translators and the linkage editor
that produced the program, any modifications to that program
by AMASPZAP, and, optionally, up to 40 characters of user
data for each control section within the program.

LY26-3963-0 ®© Copyright IBM Corp. 1972,1985 Introduction 1

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

° Overlay Module Processing. The linkage editor prepares
modules for overlay by assigning relative locations within
the module to the overlay segments, and by inserting tables
to be used by the overlay supervisor during execution.

o Options_and Error Messages. The linkage editor can:

- Process special options that override automatic library
calls or the effect of minor errors

- Produce a list of linkage editor control statements that
were processed

— Produce coded diagnostic messages and a directory
describing those diagnostic messages that were printed
out during linkage editor processing

- Produce a module map or cross-reference table of control
sections in the output load module

RELATIONSHIP TO THE OPERATING SYSTEM

GEN ESCRIPTIO

The linkage editor has the same relationship to the operating
system as any other processing program. Control is passed to
the linkage editor in one of three ways:

1. As a job step, when the linkage editor is specified on an
EXEC job control statement in the input stream

2. As a subprogram, via the execution of a CALL macro
instruction (after execution of a LOAD macro instruction), a
LINK macro instruction, or an XCTL macro instruction

3. As a subtask, in multitasking systems, via execution of the
ATTACH macro instruction

Linkage editor input may consist of a combination of object
modules, load modules, and linkage editor control statements.
The prime function of the linkage editor is to combine these
modules, in accordance with requirements stated on control
statements, into a single output load module that can be
relocated and loaded into real storage by program fetch for
execution. Output load modules are placed into partitioned data
sets (libraries).

Each module to be processed by the linkage editor has an origin
that was assigned during assembly, during compilation, or during
a previous execution of the linkage editor. Each module in the
input to the linkage editor may contain symbolic references to
control sections in other modules; such references are called
external references.

To produce an executable output load module, the linkage editor:

1. Assigns relative virtual storage addresses to the control
sections to be included in the output module. Because each
input module has an origin that was assigned independently
by a language translator, the order of the addresses in the
input is unpredictable. (Two input modules, for example,
may have the same origin.) The linkage editor assigns an
origin to the first control section, and then assigns
addresses to all other control sections in the output
relative to either this origin or to the last control
section aligned on a page boundary.

2 MVS/XA Linkage Editor Logic LY26-3963-0 ® Copyright IBM Corp. 1972,1985

contains Restricted Materials of IBM
Licensed Materials — Property of IBM

2. Resolves external references in the input modules.
Cross-references between control sections in different
modules are symbolic, and must be resolved (translated into
relocatable machine addresses) in relation to the contiguous
virtual storage addresses assigned to the output load
module. These symbolic cross-references are made by means
of address constants.

The linkage editor calculates the new address of each
relocatable expression in a control section, and determines the
assigned origin (value) of the item to which it refers.

Linkage editor processing is affected by specified options,
operations requested on control statements, module attributes
contained in partitioned data set directories, and control
information contained within the modules themselves. The
following paragraphs describe the relationship of module
structure, linkage editor options, and module attributes to
linkage editor processing.

MODULE STRUCTURE

Object modules and load modules have the same basic logical
structure (see Figure 1). Each consists of:

. Control dictionaries, containing the information necessary
to resolve symbolic cross-references between control
sections of different modules and to relocate address
constants

. Text, containing the instructions and data of the program

. An end of module (EOM) indicator (END record in object
modules; EOM indication in load modules)

Input Output
Object Module Load Module
ESD _ CESD
IXT 'E';?::?e Control
RLD TXT
END ' EOM/RLD

Figure 1. Linkage Editor Processing—Simple Case

Each language translator usually produces two kinds of control
dictionaries: an external symbol dictionary (ESD) and a
relocation dictionary (RLD). An object module always contains
an ESD; a load module contains an ESD unless it is marked with
the "not editable™ attribute. Object and load modules usually
contain an RLD (unless there are no relocatable address
constants in the module). Control dictionary entries are
generated when external symbols, address constants, or control
sections are processed by a language translator.

1.Y26~3963-0 ®©® Copyright IBM Corp. 1972,1985 . Introduction 3

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

External Symbol Dictionary

An external symbol dictionary contains entries for all external
symbols defined or referred to within a module. (An external
symbol is one that is defined in one module and can be referred
to in another.) Each entry identifies a symbol, or a symbol
reference, and gives its location, if any, within the module.
When combining input modules, the linkage editor resolves
references between different input modules by matching the
referenced symbols to defined symbols; it does this by searching
for the external symbol definitions in each input module's ESD.
There is an ESD entry for each named control section and each
named common area. The ESD also contains entries that identify
unnamed control sections and unnamed common areas.

Relocation Dictionary

The relocation dictionary (RLD) lists all relocatable address
constants that must be modified when the linkage editor produces
an output load module. The linkage editor uses the RLD whenever
it processes a module. The RLD is also used to adjust the value
of address constants after program fetch reads an output load
module from a library and loads it into virtual storage for
execution. The RLD contains at least one entry for every
relocatable address constant in a module. An RLD entry
identifies an address constant by indicating both (1) its
location within a control section, and (2) the external symbol
(in the ESD) whose value must be used to compute the value of
the address constant.

composite Dictionaries

An output load module is composed of all input object modules
and input load modules processed by the linkage editor (except
those that are replaced or deleted). The control dictionaries
of an output module are therefore a composite of all the control
dictionaries in the linkage editor input. The control
dictionaries of a load module are called the composite ESD
(CESD) and the RLD.

Figure 2 on page 5 shows how the control dictionaries of two
input modules are combined into composite dictionaries by the
linkage editor. The control dictionaries and their associated
text are interrelated through a system of line numbers and
pointers. HWithin an input module, each ESD item on which an
address constant may depend has a line number (ESD identifier,
or ESD ID); the line number indicates the position of the item
relative to the other ESD items associated with the text.?

Every item of text in an object or load module has associated
control information that describes it.. This control information
includes the ESD ID of the ESD item for the control section that
contains the text. (In Figure 2, the ESD ID of the text item
that contains X and Y points to line 1 of the ESD for input
module 1. The ESD ID of the text item containing Z points to
line 1 of the ESD for input module 2.)

Each RLD item must point to two ESD items:

1. The ESD item for the symbol on which the address constant
depends. This is referred to by the RLD relocation pointer
(R pointer).

2. The ESD item for the control section that contains the
address constant. This is referred to by the RLD position
pointer (P pointer).

1 In an object module, one type of ESD item (ID) may have
associated text or address constants that depend on it (see
"ESD Processing"™). Such ESD items are excluded from the
numbering systenm.

4 MVS/XA Linkage Editor Logic LY26-3963~0 ® Copyright IBM Corp. 1972,1985

contains Restricted Materials of IBM
Licensed Materials — Property of IBM

Input Module 1 * Output Module
ESD CESD
Symbol Type*| Origin | Length Symbol Type | Origin | Length
CSECT A sD 000 500 [¢—— CSECT A SD 000 500
——>__CSECT C ER 000 0 r———b CSECT C sD 500 2000
CSECT B) 500 1000 —»__CSECT B sD | 2500 | 1000
T 300 (
X r{l_] 400 (T7 0 o
Y]
L) 1 X lﬂ X LoIIII
T L_______ !
X t | | =~ RLD
T | R P Flag Address -
¢ 1 1 F 300 o
RLD -] 1 F 400 o1
R P Flag Address .
L ; T :T : agg N Linkage T 790
L] 4 ; ™~ X Cj Z
T QA) Editor ;
Input Module 2 / RLD
ESD R T P T Flag T Address |
N -
Symbol Type |Origin | Length (J ¢t 2. le2 | F [700
—»___CSECTC | SD 000 2000 T
X
T
T 200
_{ X (" Z
T
RLD
[[R T P [Flag | Address |
C v o 7 of F T 200 [~
\ J)

*See ''ESD Record Types''

Figure 2. Combining Control Dictionaries

In input module 1, X and Y are address constants in the same
control section (CSECT A). X refers to a symbol in CSECT A;
therefore, both pointers of its associated RLD item refer to the
ESD entry for CSECT A (line 1). The value field of Y refers to
a symbol in a different control section (CSECT C); therefore,
the R pointer of its associated RLD points to the ESD entry for
the external reference (line 2), whereas the P pointer refers to
the ESD entry for its control section (line 1).

When the linkage editor combines the input modules, it must
maintain this system of pointers by renumbering the ESD items to
reflect their relative positions in the CESD of the output
module. It must also update the RLD pointers and control
information for the text so that they refer to the renumbered
EESD itgms; the resulting CESD and RLD items are shown in

igure 2.

LINKAGE EDITOR OPTIONS

Options for error diagnostics, processing, and space allocation
may be specified by parameters listed on the EXEC card, or they
may be passed internally by a program requesting the linkage
editor via LINK, LOAD, ATTACH, or XCTL macro instructions.Z2 1If
the options are passed internally, the user can also provide

2 For more information, see Data Administration Guide and Data
Administration: Macro Instruction Reference.

LY26-3963-0 ®© Copyright IBM Corp. 1972,1985 - Introduction 5

MODULE ATTRIBUTES

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

alternates for the standard ddnames.®* If the options are not
user-specified, the defaults are used. The options that may be
specified are as follows:

. LIST. A list of all linkage editor control statements is
written on the diagnostic output data set.

. MAP. A module map, which lists external names and their
stgrage addresses, is written on the diagnostic output data
set.

. Cross-reference table (XREF). A cross-reference table,
which includes a module map and a list of all address
constants that refer to other control sections, is written
on the diagnostic output data set.

. TERM. Error messages are directed to the terminal data set
as well as to the diagnostic output data set.

o LET. The output module is marked as executable even though
a severity 2 error condition was found during processing.

[Exclusive call (XCAL). The output module is marked as
executable even though valid exclusive references between
overlay segments have been made.

. No automatic library call (NCAL). The automatic library
call mechanism is not to be invoked to resolve external
references.

] SIZE (value 1, value 2). The user can supply two values to
specify (1) the maximum amount of storage to be obtained for
linkage editor processing and (2) what amount of the gotten
storage is to be used as the load module buffer.

. DCBS. The linkage editor initialization routine examines
the SYSLMOD DD statement for a DCB BLKSIZE parameter and
uses that value, if it is acceptable, for its block size
limit. If the DEVTYPE capacity is less than the specified
block size, the DEVTYPE value is used.

When the linkage editor generates a load module in a library
partitioned data set (PDS), it places an entry for the module in
the PDS directory. This entry contains “attributes™ describing
the structure, content, and logical format of the load module.
The control program uses these attributes to determine how a
module is to be loaded, what it contains, whether or not it is
executable, whether it is executable more than once without
reloading, and whether it can be executed by concurrent tasks.

Some options for module attributes can be specified by the user;
others are specified by the linkage editor as a result of
information gathered during processing. In the following list,
:ﬁtributes marked with an asterisk (%) cannot be specified by

e user:

U Reenterable (RENT). A reenterable module can be executed by
more than one task at a time, and cannot be modified by
itself or by any other module during execution; that is, a
task may begin executing a reenterable module before a
previous task has finished executing it.

. Refreshable (REFR). A refreshable module cannot be modified
by itself or by any other module during execution. A
refreshable module can be replaced by a new copy during
execution by a recovery management routine, without changing
either the sequence or results of processing.

3 For more information, see JCL.

6 MVS/XA Linkage Editor Logic LY26~-3963-0 & Copyright IBM Corp. 1972,1985

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

Serially reusable (REUS). A serially reusable module will
be executed by only one task at a time, and will either
initialize itself and/or will restore any instructions or
any data in the module that it alters during its execution.

Overlay format (OVLY). A load module structured for overlay
includes a segment table (SEGTAB) to enable the overlay
supervisor to load the proper segments, and at least one
ENTAB to assist in passing control from one segment to
another. If a load module has the overlay format attribute,
the reenterable, reusable, refreshable, hierarchy, scatter,
addresiing mode, and residence mode attributes cannot be
present.

Hierarchy format (HIAR). When a HIARCHY statement is

detected, the "“number"™ and "name™ operand values are used in
building the scatter table and the translation table. The
high-order byte of each CSECT address entry contains the
hierarchy number that is included in the GETMAIN request for
main storage for program loading. Hierarchy information is
used only when the program is loaded under the 0S system.

Test (TEST). If this module is an assembler language
program and testing by the test translator or the TS0 TEST
command is desired, this attribute can be specified. Test
will cause SYM records to be written. Note that modules
using TESTRAN should not be marked with the RENT, REUS, or
REFR attribute.

Only loadable (OL). This attribute indicates that the
control program may load this module only through the
execution of the LOAD macro instruction.

Scatter format (SCTR). In the 0S environment, a load module
in scatter format is suitable for block or scatter loading.
The scatter table, translation table, and the relocation
dictionary maintain logical linkage between scattered
control sections when program fetch loads them into storage.
In the virtual storage environment, the scatter format is
ignored by program fetch. The SCTR attribute is, however,
relevant in the link-editing of a nucleus for a virtual
storage system, which requires the scatter and translate
tables for its proper initialization.

ALIGN2. If the ALIGNZ2 attribute is present, all control
sections or named common areas specified on the PAGE control
statements are placed in storage on 2K-byte page boundaries.
The ALIGN2 attribute also aligns, on 2K-byte page
boundaries, those control sections or named common areas
associated with the "P" operand on the ORDER control
statement.

%XBlock format. If neither the overlay nor scatter
attributes are specified, it is implied that the module can
only be block loaded. The control program will load the
module only if enough contiguous storage is available for
the entire module.

XExecutable. This attribute indicates that linkage editor
did not find any errors that would prevent successful
execution. If this attribute is not present, the control
program will not load the module.

XModule contains one text record and no relocation
dictionary records. This attribute indicates that the
control program does not have to allocate storage for
relocation dictionary items when loading the module. It
also indicates that the first text record is the last one;
there is no control record following it. The entire module
can be read by program fetch in a single read operation.

Downward compatible (DC). This attribute indicates that the
module can be processed by either the level E or level F
linkage editor. The downward-compatible attribute is

LY26-3963-0 © Copyright IBM Corp. 1972,1985 Introduction 7

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

assumed by the level E linkage editor. Modules processed by
the level F linkage editor that are not marked "downward
cgyzatible" cannot be processed by the level E linkage
editor.

U ¥Linkage editor assigned origin of first text record is
zero. 1f this attribute is present, the first byte of
instruction or data in the first text record is assigned to
location zero.

o XEntry point assigned by linkage editor is zero. This
attribute indicates that the entry point is at the first
byte of the module.

. ¥No relocation dictionary items_present. This attribute
indicates to the control program that no allocation of
storage is necessary to receive relocation dictionary items
when program fetch loads them into virtual storage.

. Not editable (NE). This attribute indicates that the load
module cannot be accepted by the linkage editor for
subsequent processing. The CESD from an output load module
is dropped to conserve space on the library.

. ¥Symbol statements present. If a module produced by the
assembler language translator is to be tested by the test
translator (TESTRAN) or the TSO TEST command, it may contain
a testing symbol dictionary. 1In a load module, this
dictionary contains the information from the SYM statement
images that were in the input to the linkage editor.

* Authorization Code (AC). The output load module is assigned
an authorization code that determines whether or not the
load module may use restricted system services and
resources.

. Addressing Mode (AMODE). The entry points—either main,
true alias, or alternate—into the output load module are
assigned the addressing mode that is to be in effect when
the load module is entered at those entry points.

o Residence Mode (RMODE). The output load module is assigned
the residence mode that applies to that load module when it
is loaded into virtual storage for execution.

o XRead-0Only Control Section. "Read-only" is an attribute of
a control section deliberately created as such by
specification of the control section as an RSECT to the
language translator. The attribute is effective only when
the control section is included in the nucleus load module
for an MVS/XA system; otherwise it is ignored. The
attribute is obtained from the ESD entries for the read-only
control sections, and is reflected in the scatter table
ensries for those control sections in the nucleus load
module.

LINKAGE EDITOR PROCESSING FOR ATTRIBUTES

Several examples are given here of how linkage editor processing
is affected by attributes specified by the user. Figure 1 on
page 3 shows a simple case in which a single object module,
containing only one control section, is processed by the linkage
editor for block loading.

Figure 3 on page 9 shows the processing of an object module and
a load module, each containing several control sections. In
this example, test translator macro instructions were included
in an assembler language source program, and test symbol (SYM)
records were produced by the assembler language translator. The
TEST and OVLY attributes were specified in the control
information passed to the linkage editor, and overlay control
statements were included in the input to the linkage editor.

8 MVS/XA Linkage Editor Logic LY26-3963-0 ®©® Copyright IBM Corp. 1972,1985

contains Restricted Materials of IBM
Licensed Materials — Property of IBM

With these attributes, the output load module produced by the
linkage editor contains:

SYM records to be used by the test translator. (If the TEST
attribute is not specified, input SYM records are not
included in the output load module.) These records contain
blocked SYM and ESD statements created during a previous
execution of the linkage editor. SYM records in load
modules are passed unmodified through the linkage editor to
the output load module.

A composite ESD. CESD records contain the ESD items for the
module. There is a maximum of 15 ESD items per record on
the output record. The first 8 bytes of the CESD record
contain control information pertaining to the ESD items in
the record. This information consists of the ESD ID of the
firstdESD item and the number of bytes of ESD items in the
record.

Object
Modules

SYM

ESD

IXT

END

ESD

™XT
END

ESD

IXT

.

RLD
END

Legend:

Output
Lood
Module
Input
Lood
SYM
‘ Module <E<D
k\\\\ 1OR
Control
%%%—__ 1 \\\\jﬁﬂL
DR SEGTAB
Control
Control Record
Record —
[SEGTAB | T
Control Control/
\Bﬂ"’— RLD Record Segment 1
™t Entap | Roo
\ £EOS/ Segment)
Control/RLD RLD Record
\ Record %.:;:Iﬁf—'
ENTAB \ Record
EOS/ IxT
RLD Record Linkage
Control Editor f:l')mR:':{ord Segment 2 *
Record 'NTAB___|
T EOS/
Control/RLD RLD Record
Racerd Control
ENTAB Record
EOS/ 1 X7
RLD Record !
\ Control
Record Control/
IXT RLD Record
Eom/ ENTAB
RLD Record EOS/
Note " RLD Record
List J Control/
EOM
™T Segment N
* RLD items exist for previous TXT records; therefore, EOM/RLD follows TXT record.
** No RLD items for last TXT record; thercfore, EOM precedes TXT record. \ Note
List

Note -- Any overlay tables in the input locd module are ignored.

Figure 3.

Linkage Editor Processing for the Overlay and TEST Attributes

LY26-3963-0 ® Copyright IBM Corp. 1972,1985

Introduction 9

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

. CSECT Identification Records (IDR). The IDRs are input from
either an input load module, an END record, or the linkage
editor IDENTIFY control statement. IDRs may contain data:

- Identifying the language translator creating the control
section, its level, and the translation date

- Describing the most recent processing by the linkage
editor

- Describing any modification to the executable code of a
control section

- Supplied by a user and associated with the executable
code of a control section

Note: The user-supplied data is specified on the IDENTIFY
control statement.

. A control record, or a composite control/RLD record,
preceding each text record. The RLD portion, if present,
contains the RLD items used to relocate the previous text.*
The control portion may contain:

- An end of segment (EO0S) indication, if the following
text record is the last text record of an overlay
segment?

- An end of module (EOM) indication, if the following text
record is the last text record of the module?

- The number of bytes of RLD information that follow, if
it is a composite control/RLD record

- The number of bytes of control information

The control portion also contains the IDs and lengths (in
bytes) of all the control sections in the following text, to
a maximum of 60, and a channel command word (CCW). The
channel command word contains the address assigned by the
linkage editor to the first byte of that record, plus the
total length of the record. This information is used by
program fetch to read the following text.

Note: The control portion contains as many IDs and lengths
as there are control sections in the following text record.

. Text for each control section. Text records contain the
instructions and data for the module. In overlay, the
linkage editor produces two special types of text records,
the segment table (SEGTAB) and entry table (ENTAB).

SEGTAB, located in the root segment, is used by the overlay
supervisor to keep track of the relationship of segments
during execution. ENTAB is a separate control section that
may be created by the linkage editor for each overlay
segment. ENTAB is used by the overlay supervisor to
determine the segment to be loaded when a segment not in the
current path is referred to.

. A note list. A note list gives the location of each overlay
segment in the output module library.

4 If there are many RLD items for the previous text, there may
be several RLD records preceding the next text record. The
last of these is a control/RLD record.

5 If there are no RLD items for the last text record, the
control record that precedes the text contains the EOS or
EOM indication. If there are RLD items, the EOS or EOM
follows the text record (see Figure 3 on page 9).

10 MVS/XA Linkage Editor Logic LY26-3963-0 © Copyright IBM Corp. 1972,1985

contains Restricted Materials of IBM
Licensed Materials — Property of IBM

ESD
™7
Object END
Modules 30
XT
RLD
END

Load
Module

Ovutput
Input
SYM
~N CESD
SYM DR
CESD Scatter
IDR Load Translation
Scatter Module Record
Translation Control
Record -
Control Linkage
T Editor Control /RLD
TXT
Control /RLD
T
Control /RLD Comal/AID
™XT TXT
EOM/RLD J EOM/RLD

Figure 4. Linkage Editor Processing for the Scatter Load and TEST Attribute

INPUT/0UTPUT FLOY

Figure 4 shows the module structure when the scatter load and
TEST attributes are requested. With these attributes, the
output load module contains:

SYM records.
A composite ESD.
IDR records.

A scatter/translation record used by program fetch to
compute the relocated addresses required for scatter loading
the module into storazge. The record contains a scatter
table and a translation table. The scatter table is a list
of control section addresses; the translation table
correlates the CESD entry for each control section with the
address indicated in the scatter table. (When a load module
in scatter format is processed again by the linkage editor,
this information is ignored.)

Text for each control section, preceded by a control or
control/RLD record describing it.

RLD or control/RLD records containing any RLDs pertaining to
the preceding text record.

An EOM indication that marks the end of the module.

The appendix "Input Conventions and Record Formats™ contains
the format of each record type.

Four data sets must be specified for linkage editor processing;

thei
1.

r ddnames and functions are:

SYSLIN. This is the "primary input data set"™ containing

object modules and control statements. All input from
SYSLIN must be in 80-column card image format, unblocked or
blocked, from 1 to 40 records per block. The SYSLIN source
may be a card reader, magnetic tape, a direct access device,
or a concatenation of data sets from different types of
input devices.

LY26-3963-0 @ Copyright IBM Corp. 1972,1985 Introduction 11

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

2. SYSPRINT. This is the "diagnostic output data set.”
Diagnostic messages as well as any diagnostic options
requested, such as a module map or cross-reference table,
are written on SYSPRINT. It is a sequential data set and
may be partitioned. The SYSPRINT device may be a printer,
magnetic tape, terminal, or a direct access device.

3. SYSUT1. This is the "intermediate data set.” The linkage
editor uses this data set for temporary storage of text and
RLD items being processed. SYSUT1 must be on a
direct-access volume.

Note: SYSUT]l is opened only when twopass processing is in
effect.

4., SYSLMOD. This is the "output module data set." It is a
partitioned data set on a direct~access volume. SYSLMOD
contains load modules; their attributes are described in the
user's portion of the directory entry for the member.

Two additional data sets may be specified for linkage editor
processing; their ddnames and functions are:

) SYSTERM. This is the "terminal data set."™ Diagnostic
messages are written on SYSTERM if the TERM option was
specified. When the linkage editor is being executed in the
time-sharing foreground, the SYSTERM device is always the
terminal; when the linkage editor is being executed in the
background, the SYSTERM device may be a printer, magnetic
tape, or a direct-access device.

. SYSLIB. This data set is used by the linkage editor if
there are any automatic library calls to be processed.
SYSLIB can be defined only as a partitioned data set (PDS).
The members of SYSLIB can be either load modules or object
modules (but object modules and load modules cannot be
contained in the same PDS, and a data set containing load
modules cannot be concatenated with a data set containing
object modules).

When SYSLIB is opened, the linkage editor determines whether
the PDS contains object or load modules by checking the
record format field (RECEM) in the data control block (DCB).
(The format is fixed (F) for object modules and undefined
(U) for load modules. Load module records are of variable
length.) If SYSLIB contains object modules, the linkage
editor ignores the user's portion of the PDS directory
entries for the object modules.

Other data sets may be read by linkage editor when it processes
INCLUDE or LIBRARY statements specifying ddnames. Data sets
referenced with INCLUDE statements may be either sequential or
partitioned. SYSLIB, and any data sets specified in LIBRARY
statements for use by automatic library call, must be
partitioned.

The attributes for the "execute linkage editor™ job step are the
attributes specified on the EXEC statement. These attributes.
may be mgdified if a load module having different attributes is
processed.

Figure 5 on page 13 shows the input/output flow. During the
initial processing, SYSLIN, SYSPRINT, SYSLMOD, and SYSTERM (if
the TERM option was specified) are opened. During input
processing, the primary input is read from SYSLIN. If an
INCLUDE statement is read in the primary input, the data set
whose ddname is specified on the statement is opened and
processed. At the end of all SYSLIN input, SYSLIB and any other
data sets whose ddnames are specified on LIBRARY statements are
processed through automatic library calls.

12 MVS/XA Linkage Editor Logic LY26-3963-0 ®© Copyright IBM Corp. 1972,1985

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

SYSPRINT
SYSLIN
n Diagnostic
:’rlmory Initial | Outgpuv
nput B Processing "| Data Set
Da \/
Additionol i SYSTERM
|npu' : /
Sources ! Terminal
; 3 Data Set
/ ’ Input
Processing .
|
|
|
sysLis l
> f
Call |nterme.dicre
Library r Processing
|7)
|
|
I
SYSUT!) SYSLMOD
|
Inter- Second Pass Output
mediote) | Processing L
Dota Set Library
|
|
|
{
)
Final
Processing

Figure 5. Input/Output Flow

If the TEST attribute has been selected, SYM records are written
during input processing; text and RLD items are written
sequentially on SYSUT1l, except during single pass processing.
The location of each text record on SYSUTl is entered in a text
note list. The location of each RLD record on SYSUT]1l is entered
in a RLD note list. If either note list overflows, a table
overflow message (IEW0364) will be issued.

In intermediate processing, the CESD is written on SYSLMOD. If
a scatter table, translation table, or SEGTAB is required, it is
also written on SYSLMOD. The note list for the text and RLD
items on SYSUT]1l are read into storage. If a module map was
required, the CESD is used in producing the map. If a
cross-reference table was requested and all RLDs are in storage,
the table is produced during intermediate processing.

During second pass processing, text and RLD records are read
into storage from SYSUT1l in the order of assigned addresses
within each segment (using the note lists to find the records),
and are written out on SYSLMOD.

LY26-3963-0 ® Copyright IBM Corp. 1972,1985 Introduction 13

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

In final processing, the member name and any alias names are
entered into the PDS directory entry for the output load module
through the execution of the STOW macro instruction. If any
coded diagnostic messages were written on SYSPRINT during
linkage editor processing, a diagnostic message directory
containing error message text is written out on SYSPRINT. 1If a
cross-reference table was requested and was not produced during
intermediate processing, SYSLMOD is opened for input, RLDs are
read, and the cross-reference table is produced. At the end of
final processing, SYSLMOD is closed (if it was opened for
input). All other data sets are then closed and control is
returned to the calling program, unless the SYSLIN input during
input processing was terminated by a NAME statement. If a NAME
statement terminated the primary input, control is returned to
initial processing, and SYSLMOD is opened for output if it had
been closed during final processing.

When multiple load modules are produced in a single execution of
the linkage editor, SYSLIN, SYSPRINT, and SYSUT1l remain open for
the entire execution. (A pointer in the BCB for SYSUT] is
repositioned to the beginning of the extent of SYSUT1l after each
load module is produced.) If neither a module map nor a
cross-reference table is requested, or if a cross-reference
table is requested and all RLDs are in storage, SYSLMOD remains
open for output for the entire linkage editor execution.

16 MVS/XA Linkage Editor Logic LY26-3963-0 ® Copyright IBM Corp. 1972,1985

Contains Restricted

Materials of IBM

Licensed Materials — Property of IBM

ETHOD OF OPERATION

This section contains an introduction to the logic of the
linkage editor, emphasizing the flow of primary data and control
information through tables and buffers, and providing functional
descriptions of its phases.

LOGIC OF THE LINKAGE EDITOR

Initialization

Input Processing

The linkage editor can be functionally divided into five phases:
o Initialization

o Input (first pass) processing

o Intermediate (first pass) processing

° Second pass processing

o Final processing

Operation diagrams at the end of this section illustrate the
functional operation of the linkage editor. The shaded areas of
the diagrams correspond to operations described in the text.

When the linkage editor receives control from the job scheduler
or a calling program, it performs initialization functions in
preparation for all subsequent processing (see "Diagram 3.
Initialization™ on page 77). The operations included in
initialization are:

. Build the all-purpose table (APT) and enter addresses and
descriptions of all other tables and buffers into it.

. Analyze the attributes and options passed by the calling
program (specified by the programmer), and save them in the
all-purpose table.

] Initialize DCBs and open data sets to be used during linkage
editor processing.

J Allocate storage for all tables, buffers, and work areas to
be used by linkage editor processing.

When all initialization functions are completed, the linkage
editor is ready to accept input.

All linkage editor input is processed initially during the first
pass (see "Diagram 4. Input Processing™ on page 78). Object
modules from SYSLIN (primary input data set) are read into the

SYSLIN buffer. Object modules from SYSLIB or a specified user's

library (secondary input data sets) are read into the object
module buffer. Text records in load modules from SYSLIB or a
user's library are read into the input text buffer; all other
load module records are read into the first pass RLD buffer.
Thefv?;ious records that constitute these modules are processed
as follows.

Control Statements: These records, which may precede or follow

object modules, contain information that is later used in symbol
resolution and that specify libraries containing secondary
input. Depending on the type of control statement, entries are

LY26-3963-0 ® Copyright IBM Corp. 1972,1985 Method of Operation 15

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

made in either the all-purpose table (APT) or the composite
external symbol dictionary (CESD).

ESD Records: These records from object modules, and CESD
records from load modules, describe symbols that have been
defined for external use. Entries for the symbols are made in
the CESD. Entries are made in the renumbering table to allow
the translation of the input ESD identifiers (IDs) into new CESD
IDs. Entries are made in the delink table for symbols that are
to be deleted or replaced.

IXT_Records: These records, containing the instructions and
data of the program, are moved from the SYSLIN buffer and object
module buffer to the input text buffer (text records from load
modules are read directly into the input text buffer). They are
arranged in the proper sequence and recorded in the text I1/0
table and the text note list. HWhen the input text buffer is
filled, its contents are written onto SYSUT1l; if it does not
become filled, text records are retained in the buffer and
“single pass™ processing is in effect. Text note list entries
contain the location of text records (SYSUT1l address or buffer
address) and other descriptive information. Text I/0 table
entries contain information identifying text records by ESD ID.

RLD Records: These records, to be used later in relocating
address constants, are moved from the SYSLIN buffer and object
module buffer to the RLD buffer. The relocation and position
pointers (R and P pointers) are updated, using control
information from the renumbering table and the delink table.
RLD items are examined and marked for future processing. If
V-type (branch-type) address constants are found in overlay
programs, entries are made in the call list for use during
intermediate processing. Mhen the RLD buffer is full, RLD
records are written on SYSUT1l, and control information
identifying RLD records by size (byte count), P pointer, and
location on SYSUT]1 is entered in the RLD note list. If the RLD
buffer does not become filled, RLD records are retained in the
buffer and single pass processing is in effect.

SYM Records: These records, which are not involved in linkage
editor processing, are gathered in the RLD buffer and are
written directly on SYSLMOD if the TEST attribute has been
§pecif§ed. If TEST has not been specified, SYM records are
ignored.

IDR Records: These records, which contain data either from an
input load module, an END record, or the linkage editor IDENTIFY
control statement, supply information concerning the processing
history of the modules in which the IDRs occur. If the data is
from an input load module, control is passed to the IDR
processor HEWLFIDR. If the data is from an END record, the data
refers to the compiler that created the object module. The
compiler or translator data is passed in a parameter list to the
IDR processor. The user data, supplied via the linkage editor
IDENTIFY control statement, is converted into a parameter list
and passed to the IDR processor.

Hhen all input records have been processed (all external symbols
have been entered into the CESD), control is passed to
intermediate processing.

Intermediate Processing

The operations included in intermediate processing (see "Diagram
5. Intermediate Processing® on page 79) have two primary
objectives: (1) to assign relative storage addresses to symbols
in the CESD and (2) to write some of the records to be included
in the output load module on the SYSLMOD data set. The MAP and
XREF options may also be processed during intermediate
processing.

16 MVS/XA Linkage Editor Logic LY26-3963-0 © Copyright IBM Corp. 1972,1985

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

Address Assignment: Entries that require no further processing
are deleted from the CESD; all other CESD symbols are assigned
temporary linked addresses. Relocation constants are determined
for all control sections, and the relocation constant table
(RCT) is built.

For all programs in overlay, additional processing is required.
The calls list is used to determine ENTAB entries to be placed
in the CESD, and the downward calls list is built. The segment
length _table (SEGLGTH) is built, and segment relocation
constants are computed. Temporary linked addresses in the CESD
and entries in the relocation constants are computed. Temporary
linked addresses in the CESD and entries in the relocation
constant table are adjusted for overlay by adding to them the
segment relocation constants.

Temporary linked addresses and relocation constants are combined
to determine final linked addresses for symbols, and the results
are placed in the CESD. The alias table is built from alias
symbols in the CESD. At this point, CESD processing is
complete.

MAP/XREF Processing: If the MAP option has been specified, and
enough table space is available, a module map containing sorted
CESD items is built and written on SYSPRINT. If the XREF option
has been specified and all RLDs are in storag

cross-reference table is built from RLDs (in the RLD buffer) and
written on SYSPRINT. 1If all RLDs are not in storage, or the MAP
table size is insufficient, the cross-reference table is not
built but is deferred until final processing.

Intermediate Qutput: The principal function of this section of
intermediate processing is to write the CESD on the output load
module data set (SYSLMOD). The half ESD (HESD), containing
control information from CESD entries, is built and held in
storage for use during second pass processing. The text I/0
table is reorganized according to the sequence in the order
table, and scanned to determine the ID of the last control
section containing text in the program (or in each segment of an
overlay program); this information is placed in the high ID
table (HIID), and noted in the HESD for use during second pass

processing.

For a program in overlay, the seament table (SEGTAB), which
defines the relationships among segments, is built and written
(with a control record) on SYSLMOD.

For a program that is to be scatter loaded in the 0S environment
(MFT or MVT), a scatter table and a translation table are built
from information in the CESD, and scatter/translation records
are written on SYSLMOD.

The IDRs are written out on the output load module data set
(SYSLMOD).

Second Pass Processing

The objectives of second pass processing (see "Diagram 6. Second
Pass Processing™ on page 80) are (1) relocating address
constants in the text and (2) writing on the SYSLMOD data set
the remaining records that constitute the output load module.

Text records are read from SYSUT]l (intermediate data set) into
the second pass text buffer, using the text 1/0 table and the
text note list to locate the records on SYSUT1l. The . text I/0
table is also used to determine the order in which text records
are to be processed. RLD records associated with the text being
processed are read into the second pass RLD input buffer, using
the RLD note list to locate the required records.

LY26-3963-0 @ Copyright IBM Corp. 1972,1985 Method of Operation 17

Final Processing

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

Single Pass Processing: If the linkage editor did not write
text or RLD records on SYSUT]1, single pass processing is in
effect for these records. The records are accessed directly in
the input text buffer and the RLD buffer, which are physically
the same storage areas as the second pass RLD input buffer. If
text records or RLD records were written on SYSUT1, they are
read back into the same locations.

Relocation: Address constants described by RLD items are moved
from the second pass text buffer to a work area, where
relocation is performed. The manner in which each address
constant is relocated depends on whether it is a V-type
(branch-type) or an A-type (nonbranch-type) address constant, or
a pseudo register (type 1 or type 2).

The V-type address constant can refer to a named location in
some other control section (branch type address constant). The
value field of such a V-type address constant always contains a
zero because the address was not known at compilation time.
During second pass processing, the linkage editor address
(absolute relocation factor) that was assigned to the symbol and
saved in the HESD is inserted in the value field. This is
called absolute relocation.

If the V-type address constant is in an overlay program, the
address of an ENTAB entry for the symbol and the segment number
of the current text is inserted in the value field. (ENTABs are
created in the second pass RLD buffer from information in the
HESD and the entry list, which contains an entry for each V-type
address constant in the path of a referred-to symbol.)

The value field of an A-type address constant that refers to a
named location in the same input module (nonbranch-type address
constant) contains an address assigned by the language
translator. During second pass processing, this address is
modified by adding or subtracting the relative relocation factor
that was determined for the symbol referred to by the address
constant. Relative relocation factors are saved in the
reiocat@on constant table. This process is called relative
relocation.

When each address constant is relocated, it is placed back in
the text, and the address field of the associated RLD item is
updated. The RLD item is then moved to the second pass RLD
output buffer. When all address constants in the text buffer
are relocated, the text is written on SYSLMOD, followed by the
associated RLD items. A control record pertaining to the next
text record is written on SYSLMOD following the RLD records. 1If
the output load module is structured for overlays, a ITR list,
containing the address of the first control record of each
segment (for the first segment, the list contains the address of
tge first text record) is also created and retained in virtual
storage.

Second pass processing continues until all segments in the
output module are processed. The last control record contains
end-of-module indicators. Control is then passed to final
processing.

The objectives of final processing (see "Diagram 7. Final
Processing™ on page 81) include writing remaining output to

2YSLQQD, producing certain optional output, and "cleanup®
unctions.

The partitioned data set directory for SYSLMOD is completed,
including modifications for ALIAS symbols (found in the ALIAS
table), and a STOW macro is issued. The TTR list, containing
the address of the first text record in each segment, is written
on SYSLMOD for overlay programs.

18 MVS/XA Linkage Editor Logic LY26-3963-0 ®© Copyright IBM Corp. 1972,1985‘

contains Raestricted Materials of IEM
Licensed Materials — Property of IBM

INITIALIZATION

The error loaging map, produced as errors are encountered
throughout linkage editor processing, is scanned and an error
diagnostic_directory is built and written on SYSPRINT. 1If the
TERM option was specified, the error diagnostic directory is
also written on SYSTERM. Storage allocated to the linkage
editor is released.

If the MAP or XREF option is specified and was not processed
during intermediate processing, RLD records are read from
SYSLMOD, and a cross-reference_table is built and written on

SYSPRINT. If the alternate MAP table is too small, warning
message IEW080]1 will be issued.

At the completion of linkage editor processing, control is
returned to the calling program.

The initialization phase comprises modules HEWLFINT, HEWLFOPT,
and HEWLFDEF.

When the linkage editor begins processing, it readies the
all-purpose table, analyzes control information, opens necessary
data sets, and allocates space to buffers and tables.

PREPARING THE ALL-PURPOSE TABLE (APT)

The linkage editor maintains the all-purpose table as the common
communication area for all internal functions (see Figure 27 on
page 68 for the contents of the all-purpose table). The basic
information in the all-purpose table is added to during
initialization as operating conditions are learned. This
information includes the results of the control information
analysis and descriptions of the tables and buffers built by the
linkage editor.

ANALYZING CONTROL INFORMATION

When the linkage editor receives control from the job scheduler,
or from another program via a CALL macro instruction, control
information may be passed to it. This information includes the
options that control linkage editor processing, and the

attributes to be assigned to the output load module. A calling

program may also provide a substitute list of ddnames to be used
in place of the standard names, and a PDS directory name for the
output load module.

During initialization, the specified attributes and options are
interpreted, checked for validity against an attribute-option
table, and recorded in the all-purpose table. When options with
associated values are recognized, the linkage editor also saves
the value in the all-purpose table. (For example, the SIZE
option gives user-chosen values to be used instead of the
default values.)

Besides being checked for valid specification, the attributes
and options are also checked to ensure that they are requested
only in allowable combinations. Hhen mutually exclusive
attributes or options are noted, the dominant attribute or
optiog is retained; the other is ignored (see Figure 6 on

page 20).

IDR Records: These records, which contain data either from an
input load module, from an END record, or from the linkage
editor IDENTIFY control statement, supply information concerning
the processing history of the modules in which they occur. If
the data is from an input load module, control is passed to the
IDR processor, HEWLFIDR. If the data is from an END record, the
data refers to the compiler that created the object module. The
compiler or translator data is passed in a parameter list to the
IDR processor. The user data supplied via the linkage editor

LY26-3963-0 © Copyright IBM Corp..1972.1985 Method of Operation 19

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

IDENTIFY control statement is converted into a parameter list
and passed to the IDR processor.

A\
&
+
K
M <
N
&
< &
S
Q~
Q.
¥
X e
&
)
«
™ ovy
+
A
\% A\
B
0\/
&
2~
/&
&
Q~
g
&
O
<&
P
O
/&

)
O
(&

Note: An X indicates incompatible attributes; the attribute that appears lower on the list is
ignored. For example, to check the compatibility of XREF and NE, follow the XREF column
down and the NE row across until they intersect. Because an X appears where they intersect,
they are incompatible attributes. NE is ignored.

Figure 6. Incompatible Module Attributes and Program Options

OPENING DATA SETS

After the standard ddnames (or passed ddnames) have been entered
into the proper DCBs, the data sets always required for linkage
editor operation are opened. These are the SYSLIN, SYSPRINT,
and SYSLMOD data sets. If the TERM option was specified, the
SYSTERM data set is also opened.

Note: SYSLIB is opened during input processing if automatic
library calls or INCLUDE statements are recognized. SYSUT1 is
opened only for twopass processing.

When SYSLIN is opened, the "unlike attributes®™ indicator in the
associated DCB is set to signify that SYSLIN may be a
concatenation of data sets with varying blocking factors.

In preparation for the opening of the SYSLMOD data set, the
linkage editor obtains storage for the JFCB for the data set and
reads the JFCB into that storage. From the JFCB, the linkage
editor obtains the data set disposition and the block size, in
case the DCBS option is specified. The block size in the JFCB
is zeroed in order to obtain the DSCB block size when the data
set is opened.

20 MVS/XA Linkage Editor Logic LY26-3963-0 ® Copyright IBM Corp. 1972,1985

contains Restricted Materials of IBM
Licensed Materials — Property of IBM

In addition, a DEVTYPE macro instruction is issued to obtain the
maximum block size for the type of device on which the SYSLMOD
data set resides. The value obtained will be used subsequently
in determining the output block size.

If the SYSLMOD data set resides on a shared device and if the
data set is not a temporary data set, the linkage editor
reserves the shared device for the duration of the job step. If
the SYSLMOD data set does not reside on a shared device but a
disposition of SHR was specified for it on the SYSLMOD DD
statement, the linkage editor enqueues the SYSLMOD data set for
the duration of the job step.

The SYSLMOD data set is opened with an OPENJ macro instruction,
specifying the JFCB previously read and modified.

During the opening of the SYSLMOD data set, the block size to be
used for output to the data set is determined in the open exit
routine. The appropriate block size is selected considering the
following factors: The value obtained from the DEVTYPE macro
instruction, establishing the absolute maximum block size; the
block size in the DSCB for an existing data set, which can be
increased but not decreased; the block size from the SYSLMOD DD
statement, when the DCBS option is used; the implied maximum
block size of 1024, when the DC option is used; the implied
minimum block size of 1024, when the SCTR option is used; the
absolute minimum block size of 256.

ALLOCATING VIRTUAL STORAGE

Buffer Allocation

To obtain storage for buffers and tables, the linkage editor
issues the GETMAIN macro instruction specifying the minimum
amount of additional virtual storage required for operation.
The minimum provides for overlay or hierarchy tables if these
options are selected, and, for an area, a 12K-byte block of
storage that is returned by means of a FREEMAIN macro
instruction for use by system and data management functions.
The minimum also includes the added space required for the
primary input buffer when the SYSLIN data set contains blocked
records. If the minimum is not available, control is not
returned to the linkage editor; instead, a system abnormal
termination occurs. i

When the supervisor returns virtual storage space, the linkage
editor determines whether the area is sufficient to use maximum
lengths for the SYSLIN, SYSPRINT, and object module buffers. If
the space is not sufficient, intermediate or, when necessary,
minimum buffer lengths are used.

The RLD and text buffers are then assigned storage. The default
text buffer length (48K bytes) is used unless a specific
allocation was requested via the SIZE parameter. The RLD buffer
is also assigned the minimum length, unless the SIZE parameter
allows it to be given additional space. In this case, the
increased length depends on the amount of storage remaining
after the text buffer has been allocated.

Note: Space allocated for buffers is not released until linkage
editor processing is completed.

LY26-3963-0 ®& Copyright IBM Corp. 1972,1985 Method of Operation 21

Table Allocation

INPUT PROCESSING

Contains Restricted Materials of IBY
Licensed Materials — Property of IBM

Following buffer allocation, the linkage editor assigns storage
to its fixed-length and variable-length tables. In initial
allocation, the linkage editor determines the minimum storage
required by each table. The size of each table and the number
of entries in each table are saved in the all-purpose table.

Storage is then reallocated. The storage in excess of the
minimum required for all the tables is determined. The excess
is used to expand proportionately the variable-length tables.
Then, the size of each table and the number of entries per table
are calculated. This information and the newly assigned table
addresses are saved in the all-purpose table. MWhen all linkage
editor processing is completed, all table space is released.

The input processing phase comprises modules HEWLFINP, HEWLFINC,
Hgntgggg; HEWLFESD, HEWLFSYM, HEWLFRAT, HEWLFEND, HEWLFIDR, and

The operations performed during input processing depend on the
nature of the input; special processing is required for each
input record type. Each input record is read, using one of two
read blocks. The first read control block contains the address
of the SYSLIN buffer, the address of the SYSLIN DCB, and the
block size and logical record length. The second read control
block contains the address of the buffer for library records
(object module buffer or load module buffers), the address of
the library DCB, and the block size and logical record length.
A pointer is used to indicate which read control block is to be
used for the input record. Initially, the pointer is set to the
SYSLIN read control block.

The type of input processing required is determined by the
following conditions:

[For all object module records whose first column character
is a blank, control statement scanning is required, provided
that the record is not encountered "in module.®" (Control
statements encountered within a module cause an error
indication.)

. Either object module processing or load module processing is
required, depending on the type of input module. Only
object modules are read from SYSLIN. Input modules from
libraries are identified by record format. (Fixed format
(F) indicates object modules; undefined format (U) indicates
load modules.)

. When an INCLUDE control statement is detected during normal
processing, "include™ processing is initiated. At
end-of-input from the_specified include library, normal
processing resumes. If an INCLUDE control statement is
detected during "include®™ processing, "include™ processing
is reinitiated for the new include library.

. At end-of-input from SYSLIN, automatic library call
processing is required if the NCAL option (no automatic
library calls) was not selected. If the NCAL option was
selected, input processing is complete.

[At end-of-input from SYSLIB during automatic library call
processing, automatic library call processing is
reinitiated.

] If a NAME statement, which may indicate a multiple execution
of the linkage editor, is detected during control statement
scanning, processing proceeds as if an end-of—:nput has
occurred on SYSLIN (automatic library call processing is
performed). .

22 MVS/XA Linkage Editor Logic LY26-3963-0 ® Copyright IBM Corp. 1972,1985

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

. If an end-of-input occurs on SYSLIN but no valid input was
received, linkage editor processing is terminated.

Reading Blocked Input

The linkage editor can accept blocked card image input from the
SYSLIN data set and blocked object module records from the
SYSLIB data set (or from a user's library). Generally, the
record format, block size, and logical record length are
established either when the data set is created, or when they
are specified on the DD statement for the data set in an
execution of the linkage editor. If the BLKSIZE field is not
specified, the linkage editor assumes a block size of 80. The
logical record length (LRECL) is fixed at 80.

If the block size specified on primary input exceeds the
allowable maximum or is not a multiple of the logical record
length, an error message (IEW0594) is issued and linkage editor
processing is terminated; if the invalid block size is specified
on input from a library, the data set is ignored, but processing
is not terminated. The block size specified by the user is used
as the read count; if a short block is read, the linkage editor
determines (via an exit at SYNAD) whether the length of the
short block is valid (a multiple of the logical record length),
and the number of the logical records it contains.

If SYSLIN is a concatenation of data sets, the input processor
reexamines the block size fields whenever a data set boundary is
crossed to determine whether their values have changed.

Record Lengths for SYSPRINT

In determining record lengths for SYSPRINT, the linkage editor
first checks the block size unless time sharing is in effect.

If the BLKSIZE is not specified by the user, it is set equal to
121. If the block size exceeds the allowable maximum or is not
an integral multiple of 121, linkage editor processing is
terminated and a condition code of 16 is returned. If the block
size is a multiple of 121, it is not changed and the logical
record length for output to SYSPRINT is set equal to 121.

If time sharing is in effect, both the block size and the
logical record length for SYSPRINT are set equal to 8l1. Hhen
the linkage editor is being executed in the time-sharing
foreground, header messages are printed only once and all
line-counting functions are ignored.

Note: If SYSPRINT is a member of a partitioned data set and the
DSCB is changed (by setting the logical record length or
changing the block size), it may be impossible to use the
information in the other members of the PDS.

Record Lengths for SYSTERM

The block size and the logical record length for output to
SYSTERM are set equal to 121 unless time sharing is in effect.
If time sharing is in effect, the block size and the logical
record length are set equal to 81.

Note: If SYSTERM is a member of a partitioned data set and the
DSCB is changed (by setting the logical record length or
changing the block size), it may be impossible to use the
information in the other members of the PDS.

LY26-3963-0 ©® Copyright IBM Corp. 1972,1985 Method of Operation 23

Control Statement

26 MVS/XA Linkage Editor Logic

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

When an input record is found to be a control statement (a blank
in column 1), it is scanned to detect format errors and
continuation of comments or operands. A vector table is scanned
to determine the appropriate processor; separate processing is
required for each type of control statement (INCLUDE, REPLACE,
LIBRARY, CHANGE, INSERT, OVERLAY, ENTRY, ALIAS, NAME, SETSSI,
IDENTIFY, HIARCHY, ORDER, PAGE, SETCODE, EXPAND, and MODE).
"Diagram 8. Control Statement Processing™ on page 82 illustrates
general processing of each control statement type.

The general format for linkage editor control statements is
shown in Figure 7. The control statement scanner interprets
symbols enclosed in parentheses as "level 1" symbols; symbols
not enclosed within parentheses are "level 0..7 ENTRY, ALIAS,
INSERT, HIARCHY, SETSSI, and PAGE control statement operands
contain only level 0 symbols. CHANGE, IDENTIFY, SETCODE,
EXPAND, and MODE statement operands always contain both a level
0 symbol and a level 1 symbol.

Operation Operand

OPRTIONX a,.e., ble,d,...), (e,..),..

T

Pl P1 P1 P) Pl Before Read8
______ }_JWL_____EQH_
— After Recd8
l— Processing
{
Le I
OPDO OPDI

OPDO OPD1

OPDO OPD1

F——————-— —
P2
v
L—’ ;’e
OPDO OPDI
Figure 7. Control Statement Scanner Operation

The operands of REPLACE, INCLUDE, OVERLAY, NAME, and ORDER
control statements contain level 0 symbols, or both level 0 and
level 1 symbols. LIBRARY statement operands may contain level
1, or both level 0 and level 1 symbols. The operation to be
performed depends on the operand format.

The control statement scanner searches a vector table for the
operation symbol to determine the associated control statement
processor. It then analyzes the operands using two work areas,
"OPD1Y and "OPDO™, and two pointers, "P1l"™ and "P2". OPDl is
used for level 1 operand symbols; OPD0 is for level 0 operand

LY26-3963-0 © Copyright IBM Corp. 1972,1985

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

symbols. Pl points to the operand symbol being analyzed; P2
points to either OPD0 or OPDl, depending on the level of the
operand symbol referred to by Pl.

An operand symbol referred to by Pl is placed by the READS
routine into the work area referred to by P2. Parentheses and
commas control the switching of pointer P2 between the work
areas. For example, when a left parenthesis is encountered, P2
moves to OPDl1 because a level 1 operand symbol will follow.
Hhen a comma, blank, or right parenthesis is detected, the
PROCENTY routine passes control to the control statement
processor that was previously found during the search of the
vector table.

When an IDENTIFY control statement is read by the control
statement processor, a switch is set on for the special string
option utilized by IDENTIFY. MWhen the switch in the control
statement processor is picked up by the READ8 routine, it sets
another switch, permitting up to 40 characters to appear in the
IDENTIFY operand. This allows any character, including embedded
blanks, to appear between single quotation marks.

Control Statement Processors

When the operand symbols have been read into work areas 0PD0 and
0OPDl, control is passed to the control statement processor at
the saved entry point. Scanning of the control statement
resumes when the control statement processor returns control.
The individual control statement processors are described in the
following paragraphs.

CESD

Include M

——— Chn Addr Chn
Seg|Sub |Pointer

Symbol Type| /Reverse 1 Choin

Choin 1D [No [1YPe[- !

Length. 1D
Register 2 All Purpose Table
8A00 4 - . »8A00 "M 02 | 00000000 Co

My L1
OPDO oPD1

* ddnome

Figure 8. INCLUDE Statement Processing for a Sequential Data Set

INCLUDE STATEMENT PROCESSOR: The INCLUDE statement processor
builds a chain in the CESD of items to be included. Each item
in the chain contains the address of the next item in the chain
(in the chain/address field—bytes 9, 10, and 11). The last
item in the chain contains zeros in this field.

Chained include items have two kinds of subtypes: %include with
pointer™ and "include without pointer."® In Figure 8, the
statement INCLUDE M defines M as a sequential data set. The
INCLUDE statement processor creates an entry for the ddname M in
the CESD, with the subtype "include without pointer.w

In the statement INCLUDE LIBX (A), A is defined as a member of a
PDS. The INCLUDE statement processor creates an entry for A in
the CESD, with the subtype "include with pointer." The pointer
is in the chain pointer/chain ID field (bytes 14 and 15); it

LY26-3963-0. ® Copyright IBM Corp. 1972,1985 Method of Operation 25

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

contains the CESD line number of the ddname LIBX. A single
ddname, such as LIBX, may be referred to by several pointers.

Figure 9 describes INCLUDE statement processing with nested

members.
Library
P
g E TEMP (A B I_Mernber B of Temp
- INCLUDE
[LIBx
Register 2
i CESD
| Chn Addr Reverse | Seg | Sub |Chn Pointer Chain|
L All Purpose Table Symbol | Type Chain 1D No | Type|Length/1D
_ﬂ Current 1 .
Include 2 .
Pointer 3 .
4 | *TEMP | 02 80
7CD0 .
!)
e — .
Include Choin t———- 7CD0 8 8 02 007D10 Do 04
Breaking Point :
Pointer .
700 T —— ——————— = 10 12| U |o2 007D30 00 19
I L]
— —— - 7D30 14 v 02 007 D60 0o 19
*
L d
.
LLBX] LV 7D60 17 c | 000000 00 04
OPDO OPD1 :
19 |*uBx | 02 80
L]
*
* ddname

Figure 9. INCLUDE Statement Processing With Nested Members

L The statement INCLUDE TEMP (A, B, C) indicates that A, B,
and C are members to be included from library TEMP.

. Member B contains the nested statement INCLUDE LIBX (U, V,
W); this is the last statement processed in member B.

. The CESD is shown at the time when the control statement
scanner has read operand V, but not W. The INCLUDE
statement processor has created a CESD line for operand V in
the LIBX include chain. C is currently the last item in the
TEMP include chain. When the control statement scanner
reads operand W, the INCLUDE statement processor enters a
CESD line for W between V and C; this process is distinct
from the one that actually searches the members U, V, and C
on the library (see "INCLUDE Processing”™).

At the time chosen for this example, the data set member B is
being read; data set member A has been read and therefore is no
longer in the CESD as a member name, but data set members U, V,
and C have not vet been read.

The chained CESD entries created by the INCLUDE statement
processor are later processed by the include processor.

26 MVS/XA Linkage Editor logic LY26-3963-0 ® Copyright IBM Corp. 1972,1985

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

OVERLAY STATEMENT PROCESSOR: The OVERLAY statement processor
maintains a record of the current segment number and updates it
by one each time a new OVERLAY statement is encountered. The
relationship of segments in an overlay tree structure is kept in
the segment path table (SEGTAl) (see Figure 10). Entry n in
SEGTAl contains the number of the segment that precedes the nth
segment of the overlay tree structure (the next higher segment
in its path). The OVERLAY statement processor creates a chain
of overlay items in the CESD and updates SEGTAl. If the level 1
operand (REGION) is detected, the current region number is
incremented by one, and a zero is entered as the previous
segment number in SEGTAL.

If an OVERLAY statement is encountered that refers to a node
point higher in the overlay tree structure, all symbols
identifying node points higher in the path are removed from the
chain; their CESD lines are marked "null.™ For example, in
Figure 10, when the statement OVERLAY A is encountered after
segment 6, the CESD entry for symbol B is marked null and is no
longer in the chain. If an OVERLAY B statement was encountered
at the end of segment 5, a new node point would be established
for B, and symbol B would again be entered in the CESD.

AETIIIIIN !
cobrRay]
Lm=bx=== b3 '
Al ecceea T : :__ 3 OVERLAY A | OVERLAY A
* (OVERL] = 2 s
_i- OVeRLAY cjoveRtAY € *
L)
VERLAY A OVERLA RLAY 8 17
SEGTAI 3 !
OVERLAY B (4 !
: 1 0
p 2 1
GVERLAY B '3l 2
14 2
's|
| .
1 []
1 [)
l
Register 2 :
1
|
'\ > All Purpose Toble :
1
|
:gg;:'d b CESD
Chn Addr/ Seg | Sub Chn Pointer
Symbol | Type | Reverse No | Type Choin
Starting Address of Chain 1D Length/1D
Overloy Chein °
N |
—— — — — A 02 | Addrof C |01 | 90
] I
° |
. |
LC | | T e -1
OFDO OFDI { .
\
Legend: ~» C 02 | 000000 05 | 90
g i .
* In this example, cord OVERLAY C has just been read. Name B is L4
no longer in the chain, e

Figure 10. Overlay Statement Processing

LY26-3963-0 @& Copyright IBM Corp. 1972,1985 Method of Operation 27

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

HIARCHY STATEMENT PROCESSOR: The HIARCHY routine first
determines if the hierarchy number is valid. If it is invalid,
the statement is printed; an error message is written and the
remainder of the statement is ignored. If the number is valid,
it is converted to binary and saved for the SCAN routine.

Processing of the statement continues with the collection of the
next symbol, up to a comma or a blank. The CESD is searched for
this symbol; the location in the hierarchy table corresponding
to this CESD item is set to the hierarchy number specified.

(The hierarchy table is built during initialization if HIAR was
specified. The hierarchy table consists of 1 byte per entry in
a one~to-one correspondence with the number of items allocated
to the CESD. The address of this table is kept in a fullword in
the all-purpose table.)

If the symbol does not appear in the CESD, the symbol is entered
in an unused entry in the CESD, marked external reference, and
the hierarchy number is stored in the corresponding entry in the
hierarchy table. This procedure is repeated for each additional
symbol in the HIARCHY statement.

The intermediate output routine uses the hierarchy table to
place the hierarchy number associated with each CESD item in the
scatter/translation table.

INSERT STATEMENT PROCESSOR: The insert statement processor
scans the CESD for the symbol indicated in the INSERT statement.
If the symbol is found, the segment number field is changed to
the number of the segment that contains the INSERT statement.

If the symbol is not found in the CESD, a new ER entry in the
CESD is created. In either case, the CESD entry is marked
Tinsert” in the subtype field, and the segment number of the
INSERT statement is placed in the segment number field.

REPLACE AND CHANGE STATEMENT PROCESSORS: The REPLACE and CHANGE
statement processors build a chain of CESD entries. Each entry
to be replaced, changed, or deleted is so marked in the subtype
field. The ESD processor examines the replace/change chain
before processing any ESD item. Because a REPLACE or CHANGE
statement applies only to the module that immediately follows it
in the input, the replace/change chain is removed from the CESD
at the end of the module.

When a REPLACE statement or a CHANGE statement operand contains
two symbols, such as CHANGE A (B), A and B are entered in
consecutive lines of the CESD. Only the first line of the pair
(the line for A) contains the address (in the chain address
field) of the next item in the replace/change chain.

NAME STATEMENT PROCESSOR: The NAME statement processor places
an entry in the all-purpose table containing the name under
which the output load module is to be stowed in the PDS
directory. If the operand contains the level 1 symbol (R), a
bit is set to indicate that the module is to be stowed as a
replacement for a module of the same name. Another bit is set
to indicate that a NAME statement was encountered; the input
processor tests this indicator and terminates input operations
if it is set. If a NAME statement is received from any input
source other than SYSLIN, the error routine is entered; NAME
statements are accepted only if they are in the primary input.

SETSSI STATEMENT PROCESSOR: The SETSSI statement processor
converts the 8 bytes of hexadecimal information specified on a
SETSSI statement to a G-byte field, and enters it into the
all-purpose table. During final processing, this information is
entered into the system status _index, a G-byte extension of the
user data area in the PDS directory. The index contains
information describing the status of members in the library and
is used for maintenance purposes.

28 MVS/XA Linkage Editor Logic LY26~3963-0 ® Copyright IBM Corp. 1972,1985

contains Restricted Materials of IBM
Licensed Materials — Property of IBM

ORDER AND PAGE STATEMENT PROCESSOR: The ORDER and PAGE .
statement processor builds the ORDER table. First, the CESD is
searched for a match to the symbol specified in the ORDER or
PAGE statement. If the symbol is not found in the CESD, the
symbol is entered into the CESD as a "weak external™ reference
(WX). The ESD identifier of the CESD line is entered into the
ORDER table. MWhen a matching symbol is found in the CESD, and
the entry is not a control type ER, the ID of the CESD line is
entered into the ORDER table.

The appropriate flags are set in the ORDER. table entry to
indicate if the specified request is either an ORDER or a PAGE
statement. The ORDER flags are set when text ordering during
output processing is requested. The PAGE flags specify that the
linkage editor is to perform page alignment during address
assignment. The ORDER flags can be set only when an ORDER
control statement is present. The PAGE flags can be set in one
of two ways: (1) if P is specified on an ORDER control statement
or (2) if the PAGE control statement is present. See Figure 11
for an example of order and page processing.

CESD
Chn Addr/ Seg | Sub | Chn Pointer
Symbol |[Type| Reverse No | Type| Chain
Chain ID Length/ID
PAGE CSECTB Entry Created o1 °
02| CSECTA | 02 | 0000 00 ™
g:g CETR A Match Found I—‘gi . :
CSECTC?P) Entry Created —05| CSECTC 0A | 0000 00 L —|— -
L——06] CSECTB | OA | 0000 00 I
07 °

ORDER TABLE
[FLAG|ESDID
A0 |0002 &~ T —————————— - ————————
0 _ 0005 j+---———————————— ——— — —— —— ——— '
1 |oc06 |+—-—"—"-"-""-"""""""""""———————————

Figure 11. Order and Page Processing

Note: 1In this example, CSECTB must follow CSECTA and CSECTC in
the order table. Ordering was not specified for CSECTB.

IDENTIFY STATEMENT PROCESSOR: The IDENTIFY statement processor
picks up the CSECT name from OPDO, the length of the special
string SPECSTR extracted by the READ8 routine, and the identify
data placed in SPECSTR by the READ8 routine. This information
is placed in storage, and parameters and control are passed to
the IDR processor HEWLMIDR at the entry point HEWLCIDR.

ENTRY STATEMENT PROCESSOR: The ENTRY statement processor places
the symbol specified in an ENTRY statement in the all-purpose
table. The symbol will override any symbol specified in an END
statement as the entry point for the module.

ALIAS STATEMENT PROCESSOR: The ALIAS statement processor
creates chained CESD entries for a maximum of 16 alias names
specified in ALIAS statements. During address assignment, these
entries are used to build the alias table.

LY26-3963-0 © Copyright IBM Corp. 1972,1985 Method of Operation 29

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

LIBRARY STATEMENT PROCESSOR: The LIBRARY statement processor
creates chained CESD entries for the operands specified in
LIBRARY statements; a chain is created for each distinct
library. Each chain begins with a library ddname and contains
all member names specified for the library (see Figure 12).

A member name specified in a LIBRARY statement can result in one
of two kinds of ER subtypes: "matched library member®™ or
“unmatched library member.® If a CESD entry is created for a
member name specified in an input ER and also specified in a
LIBRARY statement, it is called a "matched library member.®
However, if the member name was specified only in a LIBRARY
statement, the entry subtype is "unmatched library member.™

Register 2 All Purpose Teble
TeRARY Bl warvy_ | L F——*]
LIBRARY LIB2 (SAM, PETE,
(LIBRARY LIB1 (JOE) |:]
]
|
et —
] ¢ hn Point
Chn Addr Chn Pointer/ Chn Addr/ b [€ n Fointer
! Sybol | Type |/ Reverse :fg ?“b Chain Symbol | Type |Reverse ::3 .? Choin
1 Chain 1D © |lype Length/ID Choin 1D YP€ | Length/ID
kOI 01
02 02
03 03
04 JOE 02 00 04 JOE 02 0c 03 0A
05 05
06 06 LiB2 02 00 80 07
07 07 SAM 02 06 02 08
08 PETE 02 00 08| PETE 02 07 03 00
09 09
0A 0A] MARY 02 04 02 00
[+/:} 08
ocC oc| usl 02 00 B0 | o4
Diogram A Diogram 8
Legend:
® The CESD shown in dicgrom B results from the CESD shown in diagrem A ofter
Chn Addr ‘|Chn Pointer reading in three library cards. A chain with direct ond reverse pointers is
Symbo! | Type | /Reverse ?:9 ,?"b Chain created for LIB] ond also for L1B2.
Chain 10 | ©{'YP®|Length/ID
® JOE ond PETE were ERs (subtype 00) ond b “matched library ber"
o (subtype 03).
g§ ® SAM and MARY were not previously in the CESD, They cre created as "unmatched
o4 JOE 0 library member"” (subtype 02).
356 L82 02 00 80 ® The CESD shown in diogram C results from the CESD shown in dicgrom 8 after
o7 SAM po 06 02 g; reading in an input module containing the ER MARY and the SD JOE. (Only the
08 PETE pes P 03 00 library choins are shown).
09 © IO i from the chole tn di I €
oal meary 02 oc 03 00 JOE is removed from the choin in diogram C, and the chain pointers are medified.
08 ® MARY becomes o "matched” sub i i
. type ond will be called by the automatic
oc| Ll 02 00 80 0A library coll pr {unless resolved by other input),
® SAM remains "unmatched"” ond will be ignored by the automatic librery coll
Dicgram C processor (unless motched in other input).
Figure 12. Library Statement Processing

EXPAND STATEMENT PROCESSOR: The EXPAND statement processor
accumulates the expansion length specified and, if necessary,
limits that length to 4095 bytes. If the name specified matches
the name of a named control section or common section, the
length of that control section or common section is updated by
the expansion length in the matching CESD entry. A special
entry is then made to the text processor to create and save text
of the expansion length to be added to the control section or
common section.

30 MVS/XA Linkage Editor Logic LY26-3963-0 ©® Copyright IBM Corp. 1972,1985

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

MODE STATEMENT PROCESSOR:

that the valid mode keywords,
that the valid mode specifications are used—24,
Appropriate values are set in the

AMODE; 26 or ANY for RMODE.
all-purpose table to indicate the mode(s) specified.

The SETCODE statement processor

SETCODE STATEMENT PROCESSOR:

accumulates the authorization code specified.

digits specifying a value of 0 to 255 is imposed.
the authorization code is saved in the all-purpose

verified,
table.

Object Module Processing

The MODE statement processor verifies
AMODE and RMODE, are specified and

31, or ANY for

A limit of 8

Once

If input to be read by the linkage editor consists of object
modules (fixed (F) record format indicates object modules), the
following operations are performed:

L Determine record type

. Set up general registers

L Perform special event processing

The record type is determined by examining columns 2 through 4§
of each logical input record. For each record type (SYM, ESD,
TXT, RLD, IDR, END), special processing is required.

The general registers are loaded with input record information

to be used in the required processing, as described in
Figure 13.

Input
Record Type 3 4 5 6
SYM SYM record byte Address of SYM
count record in
buffer
ESD Number of bytes ESD ID of first Address of
of ESD ESD item on first byte of
information record ESD in buffer
TXT Assigned Number of bytes ESD ID of CSECT Address of
address of of text to which text first byte of
first byte of information belongs text in buffer
text
RLD Number of bytes Address of
of RLD first byte of
information RLD in buffer
END Absolute Length of CSECT ESD ID CSECT
address of for which no containing
entry point length was entry point
on END record given in ESD
item
Figure 13. General Register Information—O0Object Module Processing

LY26-3963-0 ®© Copyright IBM Corp. 1972,1985

Method of Operation 31

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

Following is a description of special event processing:

Load Module Processing

When end-of-input is detected, any data still contained in
the input RLD buffer or the input text buffer is written out
on SYSUT1l, if necessary.

See the Appendix, "Input Convention and Record Formats.™

If the TEST attribute is selected, the SYM records from the
object module are blocked 3-to-1 in the input RLD buffer and
written out on SYSLMOD. When the first TXT record in a
module is encountered (or, if no text record has been
encountered when the END record is detected), remaining SYM
records in the input RLD buffer are written out on SYSLMOD.

When processing of an ESD record is completed, indicators in
the all-purpose table are examined to determine if:

- A control section (SD, PC, or common) was indicated on
the ESD record

- The TEST attribute was specified

If both conditions are met, the ESD record is blocked 3-to-1
in the input RLD buffer and written out on SYSLMOD.

If a control statement continuation is expected and an
object module record is read, an error condition occurs and
a coded diagnostic message is produced. Normal object
module processing is then performed on the record.

If, durlng obJect module processing, a record is encountered
that is not one of the six acceptable types (SYM, ESD, TXT,
RLD, IDR, or END), an error condition occurs and a
giagn03tic message is produced. The input record is then
i1gnoreaq.

Load modules included as input to the linkage editor are
processed in the following manner:

The input record type is determined by an identification
field (byte 1 of the record), as shown in Figure 16 on
page 33. Special processing is performed for each record
type.

The parameter registers are loaded with input record
information to be used in the required processing, as
described in Figure 15 on page 33.

If the record is not identified as a TXT, CESD,

IDR, scatter/translation, SYM, or CTL/RLD record, an error
condition occurs and a diagnostic message is printed out.
The input record is otherwise ignored.

If the TEST attribute was not specified, all SYM records are
ignored.

If an end-of-module indication is found in a CTL or RLD
record, cleanup functions are performed.

When a CTL record is detected, the following TXT record is
immediately read into the input text buffer if it is not to
be deleted.

If the TEST attribute was specified and a SYM record is
received, the record is written out as text translation data
from the RLD input buffer.

32 MVS/XA Linkage Editor Logic LY26-3963-0 © Copyright IBM Corp. 1972,1985

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

Identifier

Record Type {in Hexadecimal)

TXT Identified by
preceding control
record

CESD r20°

IDR *'80°

Scatter/Translation rio’

SYM '40°

CTL o1’

CTL/RLD '03

RLD rp2?

If end-of-segment indicator is on:

CTL '05°"
CTL/RLD 07!
RLD 06"

If end-of-module indicator is on:

CTL oD’
CTL/RLD YOF?
RLD '0E?
Figure 14. Input Record Types—Load Module
Load Module
Record Type 3 4 5 6
SYM Zero
CESD Byte count of ESD ID of first Address of
ESD items in CESD item on first byte of
record record CESD item in
buffer
CTL (TXT) Assigned Number of ESD ID CSECT to
address of entries in which text
first byte of ID-length list belongs
text
RLD Byte count of Address of
RLD items in first RLD item
record in buffer
Figure 15. General Register Information—Load Module Processing

LY26-3963-0 ®© Copyright IBM Corp.

1972,1985

Method of Operation

ESD Record Types

| CESD Record Types

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

The following describes the special processing performed during
object and load module processing for the ESD, IDR, TXT, RLD,
and END records.

Every object module in the input to the linkage editor must
contain at least one ESD item. An ESD item is created by a
language translator whenever it finds a symbol that is defined
for external use. An ESD item is created to define the
beginning of each control section, common areas, entry point
names, and external references. Each ESD item has a type
assigned to it that indicates its function. The ESD types are:

. Section Definition (SD). Defines the beginning of a named
control section.

) Private Code (PC). Defines the beginning of an unnamed
control section.

) Label Definition (LD). Defines a label (symbol) whose
location is defined relative to the location of the control
section in which it is contained. An LD type ESD item
:ogt?ins the ESD ID of the control section that contains the

abel.

. Common (CM). Defines a common area for which a virtual
storage address is assigned during linkage editor
processing. The area may be named or unnamed; an unnamed
area is referred to as a "blank common™ area.

. Pseudo Register (PR). Defines an area external to the
output module but referred to by it, for which virtual
storage space is allocated at execution time. The linkage
editor treats PR symbols as a block that is external to the
program. The value assigned to each symbol is a
displacement within this block.

U External Reference (ER). Specifies a symbol that is
referenced but not defined within an input module.

. Weak External Reference (WX). Specifies an external
reference that is not to be resolved by automatic library
call. A HX entry is processed as an ER entry with a "weak
call™ flag.

A load module in the input to the linkage editor contains at
least one CESD record unless the module is marked not editable
(NE). The CESD record types are the same as for ESD records,
with the following additions:

° Null Type. This indicates that the item is to be ignored in
any reprocessing of the module by the linkage editor.

° Label Reference (LR). This defines a label (symbol) within
a control section. An LR type CESD entry is numbered; it
contains the ESD ID of the control section entry in the
ID/length field. An LR may be referenced directly by an RLD
item in the same module, whereas an LD may not. All LD
items are changed to LR items during linkage editor
processing (LDs are contained only in object modules, never
in load modules).

. Private Code (PC) Marked Delete. This is a CESD item
created only for ENTABs and SEGTABs. PC-delete entries are
placed in the renumbering table, indicating that associated
TXT and RLD information is to be deleted.

36 MVS/XA Linkage Editor Logic LY26~-3963~-0 ® Copyright IBM Corp. 1972,1985

Contains Restricted Materials of IBM
Licensed Materials —— Property of IBM

ESD Processing

The main function of ESD processing is symbol resolution.
Individual ESDs in the input to the linkage editor are combined
into a composite ESD, which contains all symbols in the input
that were not changed, deleted, or replaced. A chained
replaces/change list (produced by the control card scanner)
specifies which ESD items are to be changed, deleted, or
replaced. A renumbering table (RNT) is also produced during ESD
processing; it is used during TXT, RLD, and END processing to
translate the ESD IDs of the input ESD items to CESD IDs.
"Diagram 9. ESD Processing™ on page 83 provides a general
illustration of several types of ESD processing.

At the beginning of ESD processing, control information from the
ESD record is saved: the ESD ID of the first ESD item in the
record (other than an LD); the number of bytes of ESD
information; and the type field of the first ESD item.

If the OVLY option has been specified for the output load
module, the following occur:

° The current segment number is placed in the ESD, unless the
entry type is PR (PRs have an alignment value in the segment
number field).

. The RMODE for the load module is forced to 24.

. If automatic library call processing is being performed, the
segment number is forced to 1 (all automatically called
modules are placed in the root segment of the overlay
structure).

If the OVLY option has not been specified for the output load
module:

U If the current ESD item is from a load module in overlay
format, the AMODE/RMODE data is forced to 264/24.

. Otherwise, the content of byte 12 is interpreted as
AMODE/RMODE data.

The ESD item is then processed according to its type, in the
following manner:

. If the ESD item is an ER, bytes 10, 11, and 12 are set to
zero in the input buffer (either the object module buffer,
the SYSLIN buffer, or the first pass RLD input buffer).
Byte 10 must be cleared because automatic library. call
processing uses it to indicate whether automatic library
calls have been processed. Bytes 11 and 12 must be cleared
because any nonzero data (including blanks) will be entered
in the delink table if delinking is required for the symbol.
If the input item is an ER item from an object module, the
CESD subtype field is also reset to zero to indicate that
there are no modifiers in the subtype field.

. If a REPLACE/CHANGE function has been requested for the
input module, the replace/change chain that was built in the
CESD by the control statement scanner is examined and the
appropriate modifications are made. For example, if the
scanner received the statement CHANGE A(B), the CESD
contains a line for A, marked as a change statement item in
the subtype field; the next line contains the symbol B. The
input ESD item symbol is changed from A to B during ESD
processing.

. If the ESD item is a PC, the CESD is not searched because
each PC entry is treated as a unique entry. The PC is
placed in the next available CESD line and is processed in
the same manner as an SD.

LY26-3963-0 ® Copyright IBM Corp. 1972,1985 Method of Operation 35

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

. If the ESD item is a null item, the renumber routine is
entered. (This routine is described under "Nonresolution
Processing.")

. If the ESD item is an LD, it is changed to an LR. The item
is then processed as an LR. (There are some minor
differences in processing LDs that have been changed to LRs;
for this reason, an internal indicator is set when the type
is changed to LR.)

o If the ESD item is a PC or SD, the AMODE/RMODE data is
checked for a valid combination. If an invalid combination
is found, an error message is issued and the RMODE for the
output load module is forced to 26.

After the ESD type is determined, the CESD is scanned for a
matching symbol. If no match is found, nonresolution processing
is performed. If the input ESD symbol matches a symbol in the
CESD, resolution processing is performed. Resolution processing
results in only one CESD entry for each unique input ESD symbol;
multiple occurrences of the same input ESD symbol are listed in
th: renumbering table (RNT), with pointers to the single CESD
entry.

NONRESOLUTION PROCESSING: If no matching symbol is found in the
CESD, the input ESD item is processed as described below.

SD Items: If the input ESD item is an SD (see "Diagram 9. ESD
Processing™ on page 83, area A): ’

[The freeline routine selects an empty line in the CESD. The
line following the current line is chosen unless a previous
CESD line is marked null. (Whenever possible, null lines
are used to save space.)

[If automatic library calls are being processed, an indicator
is set in the type field of the selected CESD line. (If a
module map was requested, this indicator is checked during
module map processing. If the indicator is set, the control
section is marked with an asterisk in the module map or
cross-reference table to indicate that it was obtained from
a library during automatic library call processing.)

J If the load module is in overlay structure, then those
routines brought into the load module via the automatic
ligr?ry call are placed in the root segment of the load
module.

o A "write®” indicator is set in the all-purpose table to note
that SDs, PCs, or CMs were encountered in the input record.
When ESD processing is completed, the write indicator is
tested. If it is on and the TEST attribute was specified,
ESD records containing SDs, PCs, or CMs are saved, blocked
3-to-1 in the input RLD buffer, and written out on SYSLMOD.

U In any input object module, the CESD line number of the
first SD entry whose length is zero is saved. END
processing uses this CESD line number to enter the length
specified on the END card.

U The enter routine creates a CESD entry for the input ESD
item; it moves the symbol length, segment number, ID, and
type into the selected CESD line. In addition, the enter
routine accumulates the residence mode for the output load
module. Initially, the residence mode is ANY. As each
control section (SD or PC) is allocated in the output load
module, its residence mode is included in the accumulation.
If all control sections allocated in the output load module
have a residence mode of ANY, the output load module has a
residence mode of ANY; if any control section allocated in
the output load module has a residence mode of 24, the
output load module has a residence mode of 24. (The
residence mode accumulated from the ESD data may be

36 MVS/XA Linkage Editor Logic LY26-3963-0 © Copyright IBM Corp. 1972,1985

Ccontains Restricted Materials of IBM
Licensed Materials — Property of IBM

overridden by the residence mode specifications in the PARM
field or the MODE control statement.)

] The renumber routine places the line number of the new CESD
entry into the renumbering table to provide a means of
translating the input IDs to the new CESD IDs. For example,
if the input ESD item has a line number (ESD ID) of 3, but
the item is placed into the CESD at line 5, a 5 is placed in
the third line of the renumbering table. (For each input
ESD line, except LD lines, there is a corresponding RNT
line. The RNT contains information for the current module;
it is set to zero at the end of each input module.)

ER Items: If the input ESD item is an ER, it is entered in the
CESD_ang renumbered as described above; no special processing is
required.

WX Items: If the input ESD item is a WX, it is entered in the
CESD_ang renumbered as described above; no special processing is
required.

CM Jtems: If the input ESD item is CM (see "Diagram 9. ESD
Processing™ on page 83, area E), a "common" indicator is set and
the item is treated as a delete item. If the address that was
assigned to the CM item by the language translator is not zero,
it is saved in the delink table for later use. (Two CM items
with the same identifying symbol may have different assigned
addresses; therefore, the assigned address in the input must be
subtracted from all address constants that refer to the CM
items, so that they are returned to their displacement value
before relocation.) The CM item is then renumbered and entered
into the CESD.

LR (or LD) Items: If the input ESD item is an LR or LD (see
®"Diagram 9. ESD Processing™ on page 83, area C):

. When processing an LR, the label routine determines whether
the SD for the control section has been processed. If the
SD has not been received, any LRs that refer to that SD are
chained together in the CESD until the SD is received. (The
SD might be marked replace; therefore, the LR cannot be
processed until the SD is received.) When the SD is
received, all dependent LRs are processed. Each LR ID field
is renumbered, using the renumbering table, so that it
refers to the CESD ID of the SD.

] LDs are not renumbered because they are not referred to by
RLDs and are not numbered in language translator output.
The enter routine places them directly in the CESD. If an
LD is received before the SD to which it belongs, it is
handled as an LR.

PR_Items: If the input ESD item is a pseudo register, the
current segment number is not entered in column 12 of the ESD
item. Column 12 of a PR item contains an alignment value, which
indicates that the PR must be aligned to a halfword, fullword,
or doubleword boundary. The PR is then processed by the
freeline, enter, and renumber routines as described above.

RESOLUTION PROCESSING: If a matching symbol is found in the
CESD, the type fields of the input item and the matching CESD
item are compared and resolution processing is then performed.
The following conventions are observed during resolution
processing:

o Input PR items may match only PR entries in the CESD. If an
input PR item matches a non-PR item in the CESD, it is not
treited as a match; the CESD search for a matching PR item
continues.

. If the matching CESD item is marked "chained," resolution is
performed on the item to which it is chained.

LY26-3963-0 ® Copyright IBM Corp. 1972,1985 Method of Operation 37

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

If the CESD line is marked null, the match is ignored and
the search continues.

If the CESD item is an ER produced from a REPLACE, CHANGE,

OVERLAY, or ALIAS statement, or from the ddname field of an
INCLUDE or LIBRARY statement, the match is ignored and the

search continues.

Matching items are processed in the following manner:

If the input ESD item is CM, SD, or LR and it matches an ER
in the CESD, the input type replaces the type indicated in
the CESD item (see "Diagram 9. ESD Processing™ on page 83,
area B). Nonresolution processing is then performed on the
input item.

If the input ESD item is an LR and it matches a CM, SD, or
LR in the CESD, a "match™ bit is set indicating that a
double symbol definition is possible. If the SD for the
control section has been entered in the CESD and is marked
for deletion, the Label routine deletes the label; if it is
not marked for deletion, a "double symbol definition™
message is produced. If the SD for the control section is
not in the CESD, the LR is chained to the matching LR; when
the SD is received, the LR is deleted or a double symbol
definition message is produced, depending on whether or not
the SD is being deleted.

If an input PR matches a PR in the CESD ("Diagram 9. ESD
Processing” on page 83, area D), the greater length and the
most "constrictive"™ boundary alignment are placed in the
CESD entry. (A doubleword alignment is more constrictive
than fullword alignment; fullword is more constrictive than
halfword; etc.) The input PR entry is then renumbered to
the updated PR entry in the CESD.

If an input SD item matches an SD entry in the CESD,
automatic replacement of the control section occurs. The
input SD item is entered in the CESD as a delete type and is
chained to the matching SD entry. (During second pass
processing, the assigned address of the control section
being replaced will be subtracted ("delinked"™) from the
addresses of any nonbranch-type address constants that refer
to the SD~delete entry.) The SD-delete item remains chained
only while the module is being processed; END processing
will change the chained items to null entries (see
"Delinking Nonbranch-Type Address Constants").

If an input SD item matches a CM entry in the CESD, and the
length of the SD item is greater than or equal to the length
of the CM item, the length of the SD item is entered in the
CESD. If the program is in overlay, the common path routine
scans the segment path table (SEGTAl) to find the segment in
the overlay structure that is common to both items, and
places the segment number in the SD entry. The SD item is
then written over the CM line and renumbered. (This is
referred to as "automatic promotion of common.™)

If an input SD or CM item matches an LR in the CESD, a
Y"double symbol definition®™ message is produced, and the SD
or CM item is entered in the CESD as a delete type and is
chaineddto the matching LR entry, causing the SD or CM to be
replaced.

If the input item is CM, it may be "blank common.™ Blank
common may match a PC item in the CESD because both contain
blanks in the symbol field. In such a case, the match is
ignored and the search continues.

If an input CM item matches a CM item in the CESD ("™Diagram
9. ESD Processing™ on page 83, area F), the greater of the
two lengths is entered in the CESD. If the module is being
processed for overlay, the segment number of the segment

38 MVS/XA Linkage Editor Logic LY26-3963-0 © Copyright IBM Corp. 1972,1985

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

IDR Processing

common to both the input item and the CESD item is also
entered in the CESD item (automatic promotion of common).

. If an input CM item matches an SD item in the CESD, and the
length of the SD item is greater than or equal to the length
of the CM item, the length of the SD item is entered in the
CESD. The CESD type is not changed. If the module is being
processed for overlay, the segment number of the segment
common to both the input item and the CESD item is also
entered in the CESD item (automatic promotion of common).

. Whenever an input ER item matches an ER in the CESD, both
the type and subtype fields are examined; the ER items are
then resolved in the following manner:

- If the subtype fields of both ER items are not marked,
the input item is not entered in the CESD; the matching
ER remains in the CESD and a pointer to it is placed in
the renumbering table entry for the input item.

- If both items are marked "delete,™ the new ER is entered
in the CESD and the old item remains there so that they
can be delinked individually (in this case, the CESD may
contain two ER items for the same symbol). Delinking is
described in "Second Pass Processing."

- If the input ER item is marked for deletion but the ER
item in the CESD is not marked delete, the input ER is
chained to the matching ER in the CESD. The chained ER
item remains in the CESD until end-of-module is
detected; so that the delink value can be saved.

- If the input ER item is not marked for deletion and the
ER item in the CESD is marked "delete™ or "replace,? the
delete bit in the subtype field is cleared (delete is
changed to replace) and the item is renumbered. If the
matching ER item in the CESD is marked "no call®™ or
"library member,"™ it is marked "matched™ before
renumbering.

- If the input ER item is marked in the subtype field but
is not marked "delete™ or "replace,™ it is assumed to be
"never call"; if the matching ER item in the CESD is
Ylibrary member," the CESD item is removed from the
chain of library members and the input ER item is
entered in the CESD and renumbered.

. If an input WX matches a WX in the CESD, no change is made
to the CESD. If the matching entry in the CESD is not a WX
or a control card entry, the input WX is changed to an ER.

. If an input ESD item that is not a WX matches a WX in the
CESD, the CESD item is changed to an ER. In all cases,
processing continues normally.

The manner in which CSECT identification records (IDR) are
processed depends on the type of IDR input records or control
statements being processed. The input records or control
statements are:

. Object module END records

. Load module IDRs

° IDENTIFY control statements

An object module END record contains only translation data;
?Bseze;, load module IDRs may contain four different types of
ata:

o HMASPZAP-supplied data

LY26-3963-0 ®© Copyright IBM Corp. 1972,1985 Method of Operation 39

Contains Restricted Materials of IBM
Licensed Materials -— Property of IBM

. Linkage editor data
* Translator-supplied data
. User-supplied data

Load module IDR processing is dependent upon the type of data
present in the IDR record. The IDENTIFY control statement
contains only user-supplied data.

Before any IDR data processing begins, the type of IDR input is
determined either by the input processor HEWLFINP or, if the
data is from the IDENTIFY control statement, by the control
statement processor HEWLFSCN. HEWLFINP passes control to
HEWLFIDR at the entry point HEWLFIDR. HEWLFSCN passes control
to HEWLFIDR at the entry point HEWLCIDR.

Processing Object Module END Records Containing IDR Data

Hhen byte 33 of an object module END record has an EBCDIC 1 in
it, one IDR item follows in bytes 34 through 52. If an EBCDIC 2
appears in byte 33, two IDR items follow in bytes 346 through 71.
A blank in byte 33 indicates that the record contains no IDR
data. IDR data is present only on an object module END record
if thettranslator that produced the object module contains IDR
support.

The renumbering table is scanned to determine the correct ESD
identifiers of the CSECTs to which the translator data applies.
If any of the CSECTs are marked delete in the renumbering table,
they are not identified in the IDR output. If the input object
module contains at least one CSECT that is not marked delete,
the translator data is removed from the END record and placed in
the IDR translator data table (IDRTRTAB) and the IDR translator
ID table (IDRTITAB). These two tables contain the ESD
identifier of the CSECT to which the translator data applies,
the translator identification, the version and modification
level of the translator, and the date of translation.

A comparison is made with the other entries in the IDRTRTAB for
a dupllcate entry. If a duplicate entry is found, the incoming
data is combined with that of the previous entry to avoid
repetition of data.

Processing Load Module IDRs

The subtype of the load module IDR is scanned for the type of
IDR data. If the subtype is 02, the data is from the linkage
editor; these records are ignored by IDR input processing. HWhen
the input data is from HMASPZAP (subtype 01), bits 2 through 7
of the flags and count field are scanned to determine the number
of HMASPZAP entries in the record (from 1 to 19 entries are
possible).

The entry in the renumbering table corresponding to the ESD
identifier of the CSECT processed by HMASPZAP is examined. If
the entry in the renumbering table is marked delete, then the
IDR data associated with that CSECT is deleted. However, the
data that is not deleted is placed at the end of the IDR
HMASPZAP data table (IDRZPTAB). 1IDRZPTAB contains the ESD
identifier of the CSECT processed by HMASPZAP, the date of the
HMASPZAP processing, the data specified during HMASPZAP
processing (this may be a PTF number or up to 8 bytes of
variable user data specified on an HMASPZAP control statement).
If the IDRZPTAB overflows, an error message is written and
processing is terminated.

When the input data is translator-supplied data (subtype 04),
the renumbering table entry corresponding to each ESD identifier
in the string preceding a translator description is examined.

If the entry is marked delete, the corresponding ESD identifier
is deleted from the string; otherwise, the input ESD identifier

40 MVS/XA Linkage Editor Logic LY26-3963-0 © Copyright IBM Corp. 1972,1985

contains Restricted

Materials of 1BM

Licensed Materials — Property of IBM

Processing IDENTIFY

TXT Processing

is replaced by the renumbered identifier. If at least one ESD
identifier remains on the string, a check is made among the
table entries in the IDR translator data table (IDRTRTAB) to see
whether an identical description has already been entered into
IDRTRTAB. If an identical description does exist in IDRTRTAB,
the CSECTs associated with the incoming translator description
are combined with the existing translator data item to form a
single table entry in order to avoid needless repetition of
gata. If it does not exist, a new entry is added for the input
ata.

When the input data is user data (subtype 08), the renumbering
table entry corresponding to the ESD identifier of each input
user data item is examined. If it is marked delete, the user
data is ignored. If not, the input ESD identifier is replaced
by the renumbered identifier and the user data is entered at the
end of the IDR user data table (IDRUDTAB). The IDRUDTAB entries
contain the ESD identifier of the CSECT to which the user data
applies, the date the data was supplied to the module via the
linkage editor IDENTIFY function, the number of characters in
the user data field, and the user data.

In the case of input load module IDRs containing translator or
user-supplied data, an individual data item may span more than
one record. When this occurs, the incomplete portion of the
item is saved in either IDRTRTAB or IDRUDTAB. The item is
processed after the next input record has been read, and the
continued portion of the item is combined with the saved portion
to form a complete data item.

Control Statement Data

The control statement processor, HEWLFSCN, passes control to the
IDR processor at the entry point, HEWLCIDR. The CESD is
searched for an SD type entry matching the CSECT name to be
identified. If the name is not an SD, an error is logged and
processing is terminated. If the CESD line is an SD marked
delete, the data is ignored. If the CESD line is an SD not
marked delete, the ESD identifier of the matched SD name is
saved. A check is made to see whether there was any
user-supplied data previously associated with the CSECT. 1If
there was, the old data is replaced with the new incoming data.
If no earlier data exists, the incoming data is added to the end
of the table IDRUDTAB.

The manner in which TXT records are processed depends on whether
they are part of either a load module or an object module, or
are added using the EXPAND control statement. A load module
contains records in a specified order. However, in an object
module, the records may not be in the proper sequence because
the language translator may have created them out of order
(EXPAND data is always identified as out of order text). (The
restrictions on linkage editor input are described in Appendix,
"Input Conventions and Record Formats.™) "Diagram 10. Processing
Object Module Text™ on page 84 and "Diagram 1ll. Processing Load
Module Text Records™ on page 85 illustrate processing of TXT
records from object and load modules, respectively.

Before any address constants can be relocated within a control
section of an object module, all TXT records must be placed in
the proper order. This is done in the input text buffer
(TXTBFBEG), which is variable in length, allowing grouping of
data within the buffer.

Each "multiplicity™ of text is assigned a number as it is moved
(or read) into TXTBFBEG. A multiplicity is a portion of text
equal in length to the maximum size of a SYSLMOD output record.
Within each control section, multiplicity numbers are assigned
consecutively, starting at 0.

LY26-3963-0 © Copyright IBM Corp. 1972,1985 Method ofAOPePation Qi'

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

Text records from object modules contain both text data and the
control information needed for processing. Text records from
load modules contain only text, so the associated control record
must also be examined to obtain the required control
information. During object module processing, control
information is placed in registers; this information allows the
object module text to be moved from the object module buffer
into TXTBFBEG. For load module text, the assigned address of
the first byte of text and a pointer to the ID-length list Gin
the control record) is determined during load module processing.
}Q%ﬁF;Egormatxon allows the text record to be read directly into

Processing Object Module Text

When text is received from an object module, the text record ID
is renumbered using the renumbering table, so that it refers to
the CESD entry for the control section that contains the text.
The size of the control section is obtained from the CESD, and a
test is made to determine if the whole control section or a
multiplicity (whichever is smaller) will fit into the space
available in TXTBFBEG. If the control section length was not
specified in the CESD entry, only text for the current ID is
accepted; see "No-length Control Section"™ below.

If there is sufficient space in TXTBFBEG to accommodate the
tabletext I/0 table control section or multiplicity, the text is
moved into the buffer and an entry (containing the ID and
multiplicity number of the text) is made in the text 170 table.
A corresponding entry containing the location of the
multiplicity and the length of the text is made in the text note
list. The text note list entry also contains a displacement
field. When text is in order, or on the first occurrence of
text for a multiplicity, the displacement field is set to 0; for
out-of-order text, the displacement field contains the
displacement from the beginning of the multiplicity of the first
byte of contiguous text.

If the SYSUT1 record size is smaller than the multiplicity size,
each multiplicity is divided into pieces, each piece having a
length equal to the SYSUT1 record size. New text I/0 table and
text note list entries are made for each piece; the displacement
field will contain the displacement of each piece from the
beginning of the multiplicity.

NO-LENGTH CONTROL SECTION: When text is received for a
no-length control section (a control section for which no length
is specified in its CESD item), space for one multiplicity is
allocated in TXTBFBEG. Entries are made in the text I/0 table
and the text note list for the multiplicity, and the text is
moved into TXTBFBEG. This procedure is repeated for each
subsequent multiplicity of text for the no-length control
section. If TXTBFBEG becomes full, its contents are written on
SYSUT1 as described in "Writing Text on SYSUT1." When the length
is received, it is entered in the text note list.

PROCESSING OUT-OF-ORDER TEXT: A load module contains records in
a definite order. However, records in an object module may not
be in the proper sequence because the language translator may
have created them out of order (records resulting from the
EXPAND control statement are marked out of order). Such records
may contain discontinuities in addresses (because of a reorigin
or a disjointed control section), or they may not be contiguous
(that is, text of a given ID and multiplicity may be
interspersed with text of other IDs or multiplicities). Records
of contiguous text must be built on SYSUT1l, so that during
second pass processing the text can be placed into its proper
position, within its ID and multiplicity, in the second pass
text buffer.

The first occurrence of a given ID and multiplicity is read into

the input text buffer as it is received. Discontinuities and
noncontiguous text are of no consequence at the first occurrence

42 MVS/XA Linkage Editor Logic LY26-3963-0 © Copyright IBM Corp. 1972,1985

contains Restricted Materials of IEM
Licensed Materials — Property of IBM

of an ID and multiplicity. However, once text of a given ID and
multiplicity has been written out on SYSUT1l, any subsequent text
of that ID and multiplicity must be contiguous to be written out
on SYSUT1 within each text record.

Text of a previously written ID and multiplicity is read into
the input text buffer until a discontinuity, or text of a
different ID or multiplicity, is encountered. The contiguous
text in the buffer is then written out on SYSUT1l. The
discontinuous (or noncontiguous) text is then placed in the
buffer. If this text represents the first occurrence of an ID
and multiplicity, the buffer is loaded without regard for
discontinuities or noncontiguous text. If the text belongs to a
previously written ID and multiplicity, the text processor will
2ﬁaig géace only continuous text of that ID and multiplicity in
e buffer.

A record that contains noncontiguous text is called a loose
record; a record that contains contiguous text is called dense.
The text note list entry for a dense record usually has a
nonzero value in the displacement field. When the text is read
back from SYSUT1 into the second pass text buffer during second
pass processing, this displacement is used to place the text in
its proper position within its ID and multiplicity.

Processing Load Module Text

Because text records from load modules are ordered and
well-defined, they require little further processing by the text
processor. The information in the ID-length list (in the
control record) is scanned, and each ID is renumbered and
checked to determine whether it is to be deleted. If all IDs
are to be deleted, the record is ignored and control is returned
to the input processor.

When an ID that is to be processed is found, the text record
containing the ID must be read into TXTBFBEG. The text record
length is obtained from the associated control record and
compared against the free space available in TXTBFBEG. If
sufficient space is available, the text record is read into the
buffer; otherwise, the contents of the buffer are written on
SYSUT1 to ensure sufficient space, and the record is read.

Text is processed in the buffer in the order specified by the
ID-length list. IDs that are to be deleted are overlaid by IDs
that are to be processed. The text is divided into
multiplicities, and entries are made in the text I/0 table and
the text note list. MWhen all text identified by the ID-length
list is processed, text processing is completed.

Writing Text on SYSUT1

When no more control sections can be accommodated in TXTBFBEG,
the contents of the buffer must be written on the intermediate
data set (SYSUT1). The text 1/0 table is scanned to determine
the order in which control sections are to be written. The
length of the first control section (that is, corresponding to
the first text 1/0 table entry) is obtained from its
corresponding ESD ID; if the length is less than the size of the
SYSUT1 record, the text I/0 table entry for the control section
is marked "written." Each subsequent control section is
similarly processed, and its length added to the sum of the
lengths of previously processed control sections.

When the sum of control section lengths reach the limit of a
SYSUT1 record, the entire group of control sections is written
on SYSUT1l. The relative track address (TTR) is placed in the
text note list entry corresponding to the last text I/0 table
entry that was processed.

When a single control section is larger than a SYSUT1 record,
the multiplicities of the control section are grouped up to the

LY26-3963-0 © Copyright IBM Corp. 1972,1985 Method of Operation 63

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

limit of the SYSUT] record size, and written.® When control
sections or multiplicities are grouped on SYSUT1, the
multiplicities must be in ascending, consecutive order. If the
overlay attribute has been specified, no grouped control
sections are permitted on SYSUTL.

Note: Each time an entry is made in the text note list during
text processing, a check is made to determine whether the list
is fugl If it is full, an error message (IEW0364) will be
issued. .

If neither TXTBFBEG nor the text note list becomes full during
text processing, no text is written on SYSUT1l. The text is
retained in the buffer, and single pass processing is in effect
for text records.

RLD Processing
RLD processing baSically consists of:

U Updating each set of relocation and position pointers (R and
P Pointers)

[Processing each flag and address (FA) in the input item
until the end of the record or the next item with an R and P
pointer is detected

RLD records from object modules and load modules are processed
in the same manner.

RLD information is grouped in the RLD buffer by P pointer. Each
P pointer of an input RLD record refers to the ESD entry in the
input module for the control section that contains the address
constant. Each time a new P pointer (one referring to a
different ESD ID) is detected, an entry is made in the RLD note
list for the RLD set (a set being an unbroken sequence of RLD
items having the same P pointer). The RLD note list entry
contains the following information for each set:

. The renumbered P pointer to which these RLDs refer.
* The lougét,multiplicity of text to which these RLDs refer.
. The number of bytes of RLDs.

U The storage address of the first byte of RLD data if all
RLDs remain in virtual storage. If RLDs are written on
SYSUT1, this field contains the accumulated byte count for
intermediate chains or the TTR of the record on SYSUTL.

All adjacent RLD items containing the same P pointer are
referred to by only one RLD note list entry. Adjacent RLD items
containing the same R and P pointers are chained, with the R and
P pointers appearing only once, at the beginning of the chain.
The remaining RLDs in the chain are compressed by setting the
flag indicating continuation, and discarding the & bytes
containing the R and P pointers.

Each R pointer of an input RLD record refers to the ESD entry in
the input module upon whose value the address constant depends.
The R and P pointers are updated using the renumbering table.
Before renumbering, the R and P pointers refer to ESD entries of
the input module that contains the RLD items. The pointers are
‘renumbered so that they point to the proper entries in the CESD
being created for the output load module. If the R pointer
refers to a deleted ESD entry, delinking may be performed. 1If
the assigned address of the symbol referred to by the address
constant is zero, the address constant is not delinked. (Normal

6 1f the SYSUT1 record size is smaller than the SYSLMOD record
size, no grouping is permitted.

44 MVS/XA Linkage Editor Logic LY26-3963-0 ®© Copyright IBM Corp. 1972,1985

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

relocation is performed.) MWhen delinking is necessary, an entry
is placed in the delink table (a function of ESD processing).
The delink table entry contains the address {(delink value) of
the symbol being deleted, and the CESD entry number of the
identically named symbol that is to replace the deleted symbol.

The ID of the delink table entry for the deleted symbol is saved
in the renumbering table, and a "delink value saved™ indicator
is set. The ID of the identically named symbol and the ID of
the new delink table entry are saved because they are later used
to complete the delinking operation. The R pointer of the RLD
item must be modified to refer to the delink table entry for the
deleted symbol, but the original R pointer is needed to process
any V-type address constants referred to in the RDL item.
(V-type address constants do not require delinking, but may be
in a FA string with A-type address constants that do require
delinking.) Therefore, the R pointer is not modified until the
string of flag-address (FA) fields following the R and P
pointers has been processed as described below. At that time,
if the module is to be structured for overlay and it contains
V-type address constants that refer to the deleted symbol, the
{p :f the identically named symbol is inserted into the calls
ist.

Each FA field of the RLD record is processed as follows:
° The high-order bit of the flag field is set to zero.

. If the address constant is an A-type, the renumbering table
entry referred to by the R pointer is checked to determine
whether it is marked as a PR type. If it is a PR, the RLD
flag field is also marked PR (because second pass processing
must handle PRs in a special manner). If the renumbering
table entry is not an ER or marked delete, the RLD flag
field is marked for relative relocation. This indicates to
second pass processing that the difference between the
origin of the control section in the input and the origin
assigned by the linkage editor is to be used as a relocation
factor for the value of the address constant. If the RNT
entry is an ER or marked delete, the RLD flag field is not
marked. This indicates to second pass processing that the
address constant is to be relocated by absolute relocation;
second pass processing uses the linkage editor assigned
address of the symbol in the output module as a relocation
factor for the value of the address constant. (This
procedure is described under "Second Pass Processing.™)

. If the address constant is a 4-byte V- type ("branch-type™)
and the program is in overlay, an entry is placed in the
calls list, provided that the address constant refers across
control sections (R noét equal to P). The calls list is used
during address assignment processing to determine which
segments require ENTABs, and the number of entries each
ENTAB must contain. .

. For both A-type and V-type address constants, the text
multiplicity of the address field is determined and is saved
in the RLD note list if it is lower than any previous
multiplicity in the RLD record. If two pass processing is
in effect, the RLD note list is used during second pass
processing to read back RLD data from SYSUT1l (each RLD note
list entry contains the relative track location (TTR) of an
RLD record on SYSUT1). The second pass processor uses the
multiplicity field of the RLD note list entry to determine
whether the associated RLD record should be read back from
SYSUT1l for a given multiplicity of text.

. When the last FA field in the string has been processed, all
items in the string have been checked to determine whether
they require delinking. If any A-type address constants in
the string required delinking, the R pointer for the string
is modified to refer to the associated delink table entry.

LY26-3963-0 . ©® Copyright IBM Corp. 1972,1985 ~ Method of Operation 45

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

Figure 16 shows the actions performed during RLD processing for
each input flag format, and the format of the flags after RLD
processing. (The "output™ column shows the flag formats that
are passed as input to the Relocation routine of second pass
processing; see Figure 27 on page 68.) After all FA fields have
been processed, the next RLD record is processed.

If the RLD buffer becomes full, its contents must be written on
the intermediate data set (SYSUT1). The RLD buffer is allocated
with a maximum length less than or equal to the size of a SYSUT1

record, so the entire buffer may always be written. As many
consecutive RLD sets as possible are grouped in a SYSUT1 record.
Input output
Flagk Type Action Performed Flag Type
0000LIST Egt 55, Marked for relative relocation 1000LIST Relative
CM: or’
delete
0000LIST ER ('02°" Marked for absolute relocation 0000LIST Absolute
in renum-
bering
table)
0000LIST Delete or Marked for absolute relocation 0000LIST Absolute
CM ('05*) if assigned address of input
item is zero
0000LIST PR ('06"') Marked as PR (displacement 0010LIST Pseudo
value) Register
Type 1
0000LIST Delete or Marked "delink value saved" if High-order Delink
CM assigned address of input item bit of P
is not zero pointer
0001LIST Tyze is RLD is marked branch-type 0001LIST Branch
no
checked
0001LIST Delete Marked "delink value saved and High-order Delink
or other FA items in string exist bit of P
1001LIST? that are nonbranch-type™ and pointer.
are being delinked
0010LIST Pseudo None. Remains as a PR 0010LIST Pseudo
Register (displacement value) Register
Type 1 Type 1
0011LIST Type is Marked as PR (cumulative 0011LIST Pseudo
not length) Register
checked Type 2
Figure 16. RLD Flag Field Processing

46 MVS/XA Linkage Editor Logic

Notes to Figure 16:

1 Refer to "RLD Input Record (Card Image)™ and "Relocation
Dictionary Record (Load Module)" in Appendix, "Input
Conventions and Record Formats."

2 Internal types processed during second pass.

LY26-3963-0 © Copyright IBM Corp. 1972,1985

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

END Processing

Include Processing

The RLD note list entry for each RLD set in the group contains a
"grouped™ indicator; the note list entry for the last RLD set in
the group also contains the relative track address (TTR) of the
group.

RLD sets whose lengths exceed that of a SYSUT1 record (reguiring
more than one output record) are not grouped. RLD note list
entries for RLD sets that are not grouped contain the relative
trggk iocation (TTR) of the SYSUT1l record and a "nongrouped"”
indicator.

Each time an entry is made in the RLD note list, a check is made
to determine whether the list is full. If it is full, error
message IEW0364 will be issued.

Note: If neither the RLD buffer nor the RLD note list becomes
full during RLD processing, no RLDs are written on SYSUT1l. The
RLD information is retained in the RLD buffer, and single pass
processing is in effect for RLDs.

When an END record or the end of an input load module is
detected, END processing is required. The functions of END
processing include:

. Resetting tables (such as the renumbering table) that were
involved in the processing of the input module :

. Processing entry point information

. Deleting any CESD lines marked CHAIN or DELETE, and keeping
track of deleted lines

. Entering in the CESD the length of a control section for
which no length was specified in the ESD item (if the length
is contained on the END record)

U Setting flags in the ORDER table for each entry matched by
an entry in the CESD, and resetting the flag for formerly
matched entries

. Placing the data from END records in object modules created

by a translator that supports IDR into the IDR translator ID
and data tables, IDRTRTAB and IDRTITAB

Include processing is required when:

. The control statement scanner has detected an INCLUDE
statement and the INCLUDE statement processor has built an
include chain

. End-of-input has been detected, and the "more includes"™
indicator in the all-purpose table (APT) is on

Include processing consists of preparatory functions (OPEN,
BLDL, FIND) required before the module to be included can be
read. These functions include:

° An input pointer to the library read block is set.

. The SYSLIB DCB is closed (unless it is open for a
partitioned data set currently being used).

U Each entry in the include chain is examined sequentially.

LY26-3963-0 ® Copyright IBM Corp. 1972,1985 Method of Operation 67

Contains Restricted Materials of IEM
Licensed Materials — Property of IBM

SEQUENTIAL DATA SETS: If an include chain entry specifies a
sequential data set, the data set organization field of the DCB
is changed from partitioned to physical sequential, and the

ddname field is updated. The DCB is then opened, and the module
is read in.

PARTITIONED DATA SETS: If an include chain entry specifies a
member of a partitioned data set the member name is entered into
the BLDL list, and the next entry is examined. If the next
entry specifies a different data set name, the partitioned data

set is opened and a BLDL macro instruction is executed for the
single member name.

If the next entry specifies another member of the same
partitioned data set, the member name is added to the BLDL list
and the next entry in the include chain is examined. Member
names are added to the BLDL list until a different data set name
is encountered, the BLDL list becomes full, or the end of the
include chain is reached. Because the BLDL list must be in
collating sequence, each member name is inserted into its proper
position, moving other entries as necessary. Because included
modules must be read in the order in which they appear in the
INCLUDE statement (without regard to the collating sequence), a
separate table indicating the order of processing BLDL list
entries is maintained.

When the BLDL list is completed, the partitioned data set is
opened, and the record format field (RECFM) in the DCB is tested
to determine whether the included modules are load modules
(undefined format) or object modules (fixed format). If they
are load modules, the "load module®™ indicator is set in the APT.
This indicator is tested when each module is read in. A BLDL
macro instruction is then executed for the member names in the
list. The list is then examined in the order specified in the
INCLUDE statement to obtain the attributes of each included
module (if it is a load module); the attributes of the output
load module may be "downgraded" accordingly in the APT.

If the BLDL macro instruction was successful for a particular
member, the member is read in. The FIND macro instruction and
the directory entry obtained from BLDL are used to set a pointer
in the DCB to the first record of the member. If the BLDL was
not iugcessful for a particular member, a diagnostic message is
printed.

The INCLUDE processor checks the PDS directory information
returned by BLDL for an included load module to determine
whether the load module is in overlay format. If it is, an
indicator is set in the all-purpose table, so that the ESD
processor can interpret byte 12 of each ESD item as a segment
number rather than as AMODE/RMODE data.

An example of INCLUDE processing is given in Figure 17 on

page 49. The input pointer is set to the address of the library
read block. The address of the current include item is
contained in the APT.

Assuming that no includes have yet been processed, A will be the
first item examined. The subtype 'D0' indicates that A is a
member of a partitioned data set, so A will be entered into the
BLDL list. The pointer 000D refers to the data set DATASETX.
The next item in the include chain, B, is also a member of
DATASETX, so it is added to the BLDL list. The next item in the
chain, M, is a sequential data set (subtype C0), so the BLDL
list is completed with two entries (A and B). Assuming that
DATASETX is not currently open and the SYSLIB DCB is not opened
for another data set, the SYSLIB DCB is opened for DATASETX.
(The RECFM field of the data set DSCB is merged into the DCB.)
Assuming that the RECFM field indicates undefined (U) format, a
load module indicator is set in the APT, and a pointer to the
load module buffer is placed in the library read block. The
attributes of A and B are obtained using the BLDL macro
instruction, and the attributes previously specified are updated
accordingly. (The attributes of the output load module may be

48 MVS/XA Linkage.Editor Logic LY26-3963-0 ®.Copyright IBM Corp. 1972,1985

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

downgraded as a result.) A pointer in the DCB is then set to
the first record of member A, using the FIND macro instruction,
and the "include initiated™ indicator is set in the APT.

INCLUDE DATASETX
(A,8,Q),M

ID LOC. O 8 12 13
01 9r38
02 9F48 C 000000 2]
9F88
Register 2 Al Purpose Table 03
"MORE INCLUDES" INDR| g‘; 9F68 8 9F88 D0 | 0000
06 9F88 M 9F 48 €0 0000

CRRTINCL 07
Comme o8
S

9FB8 A 9F 68 00} 0000
INCBRKPT |+
[N 08
ocC
OD 9FF8 DATASETX BO
Input Pointer OF
OF
J| F278 l 0
n
Librory Read
Block
F278 77¢C0
750 BLDL List
400 | =
B
SYSLIN
Read Block
F28C 7768
967C
50]
SySLI8 DCB
9400 77€0 RECFM
DONAME SYSLIN DCB
Lood 7768 RECFM
MO:dule BLKSIZE 967¢C SYSLIN
Buffer Buffer DDNAME
BLKSIZE

Figure 17. Include Processing

Member A is read using the input pointer and library read block.
Module A is then processed. HWhen the end of module A is
reached, item A is deleted from the chain and the CESD line is
marked null. Member B is then read and processed.

When the end of module B is reached, item B is deleted from the
chain, the CESD line is marked null, and the remainder of the
chain is processed.

Automatic Library Call Processing

Automatic library call processing is required:

. At the end of SYSLIN input when unresolved ERs still exist
and the NCAL option was not specified

° When a NAME statement has been detected (provided that the

NCAL option was not specified and no more entries in the
include chain are to be processed)

LY26-3963-0 © Copyright IBM Corp. 1972,1985 Method of Operation 49

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

Automatic library call processing consists of two series of CESD
scans. The first series of scans operates on unresolved ERs
specified on LIBRARY statements. It finds the first ddname that
contains a pointer in the chain pointer field (bytes 14 and 15).
Such an entry is the first item in a chain of members associated
with this ddname; there is a distinct chain for each ddname that
was specified on a LIBRARY statement. Chained member names for
a particular ddname are entered into a BLDL list, which is
processed as previously described under "INCLUDE Processing."

The scan of the CESD continues until all ddname chains have been
processed. A second scan of the CESD then searches for ERs not
specified on LIBRARY statements and attempts to resolve them by
calling members of the same name from SYSLIB.7?

An example of automatic library call processing is given in
Figure 18 on page 51. Diagram A shows two library chains that
were built in the CESD by the library statement processor. In
Figure 17 on page 49, Diagram B, an SD item for JOE has been
entered in the CESD, resolving the reference to JOE. (JOE was
removed from the chain by ESD processing, and the LIBl chain ID
now points to the line containing TOM.) Automatic library call
processing operates on the library chains, as modified by ESD
processing (Diagram B).

In the first series of scans, the CESD is searched for a ddname
(type 02, subtype B0) with a chain pointer. The ddname item
LIBl is found; its chain ID points to TOM. Because TOM is
unmatched (subtype 02), it is not called and because TOM is the
last item in the chain (0 in the chain ID field), the scan is
resumed for another ddname with a chain pointer. LIB2 is found;
its chain ID points to SAM. HNo call is issued for SAM, because
it is unmatched. The chain ID of SAM points to PETE, which is
matched (indicating that PETE is an external reference, and not
just an operand of a LIBRARY statement). PETE is entered in the
BLDL list; because PETE is the last item in the chain, the list
is completed with one entry.

LIB2 is opened and the BLDL macro instruction is used to obtain
the attributes of PETE (the attributes of PETE are not obtained
if the format is fixed (F)). A "BLDL attempted™ indicator is
set for the CESD entry for PETE, so that no other search for
PETE will be made in the event of an unsuccessful BLDL, or
nonresolution of the ER for PETE by the member PETE. The FIND
macro instruction is used to set a pointer in the SYSLIB DCB to
the member PETE. PETE is then read in.

When processing for PETE is completed, the scan for ddnames
resumes at the beginning of the CESD rather than at the CESD
line where the scan was interrupted, because additional ddname
items may have been entered at any available line in the CESD.
(Object modules with additional LIBRARY statements may have been
read in.) When the last line of the CESD is reached, the second
series of scans is begun.

7 SYSLIB is the standard library whenever the linkage editor
is executed as a job step. If another program links to the
linkage editor, the ddname of the standard library is passed
in a parameter list.

50 MVS/XA Linkage Editor Logic LY26-3963-0 ®© Copyright IBM Corp. 1972,1985

contains Restricted Materials of IBM
Licensed Materials — Property of IBM

Diaogram A Sub-

CESD Type Type
D 0 8 12 13
0l
02 LIBI 02| 00 80| 04
03)
04 [OE 02| 0 03] oA
gz SIMPLE 02 00

LIB2 02| 00 B0 | 07
07 [sAm 02| 06 02 oe—_*)
08 PETE 02] 07 03| 00 D
09
0A [TOM 02| 04 02| 00
08
oC
oD

Diogrem B

CESD
D 0 8 9 10 12 13 14 15
0l]
02 LBl 02 00 80 A
03
04 E 00 | 06E273 0121E3
05 | SIMPLE 02 00
06 LIB2 02 00 BO 7
07 [SAM 02 06 02 8 j
08 [PETE 02 07 03 0 D
09
oA [TOM 02 02 02 0
08
oC

Figure 18. Automatic Library Call Processing

During the second series of scans, the CEDS is searched for
"unmarked” external references (type 02, subtype 00). These are
ER items not specified on LIBRARY statements. In Diagram B, the
scan finds SIMPLE. Assuming that SYSLIB is the ddname for the
standard library, SIMPLE is called from SYSLIB in the same way
that PETE was called from LIB2. Every time automatic library
call processing is resumed after a module is read, the second
series of scans resumes at the beginning of the CESD (because ER
items from a library member may have been entered in any
available CESD line).

When the second series of scans is finished, input processing is
complete.

INTERMEDIATE PROCESSING

ADDRESS ASSIGNMENT

The intermediate processing comprises modules HEWLFADA,
HEWLFOUT, HEWLFENS, HEWLFENT, and (optionally) HEWLFMAP.

When all input processing is completed, the second phase of the
linkage editor (intermediate processing) begins operation. The
two major functions of the second phase are address assignment
and intermediate output.

"At the conclusion of input processing, address assignment

processing is required (see "Diagram 13. Address Assignment™ on
page 87). Address assignment includes the following operations:

* Deletes CESD entries for ER items marked included, called,
ddname, or overlay in the subtype field. These lines are
marked null and are deleted if the module is processed again
in a subsequent execution of the linkage editor.

LY26-3963-0 © Copyright IBM Corp. 1972,1985 Method of Operation 51

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

. Computes, for programs in overlay, the size of SEGTAB,®
enters the size in the all-purpose table, and places a
private code delete entry for the SEGTAB in the CESD. The
PC-delete entry is deleted from the module if it is
processed again by the linkage editor (see "Diagram 13.
Address Assignment™ on page 87, area A).

. Determipes whether the first text record of a load module is
not assigned to address 0. If it is not assigned to address
0, a private code delete entry of 1 byte is created in the
CESD. The PC-delete entry is deleted from the module if the
module is later reprocessed by the linkage editor.

. Enters segment numbers for label references in the CESD. If
the program is in an overlay structure, the calls list
(built during RLD processing) is also scanned, and pointers
from one chain of calls to the next chain are entered (area
B); the number of ENTAB bytes? for each segment is
determined; and a PC-delete entry is placed in the CESD for
each ENTAB (see "ENTAB Size Determination™).

U Assigns temporary linked addresses to SD, PC, and CM entries
in the CESD (area C). SDs and CMs that have entries in the
ORDER table are addressed first in the order of their
appearance in the table. The remaining control sections are
.then assigned addresses to the SDs, PCs, and CMs that have
no entries either in the ORDER table or the text I/0 table.
To avoid assigning addresses to any SD or CM more than once,
a "processed™ bit (bit 4 of the 'type' byte in the CESD) is
set in each CESD entry when it is first processed. The bit
is reset to zero in the final scan of the CESD. -

. Considers each segment to be at zero origin. The temporary
starting address of each control section is computed with
consideration for its location in the segment relative to
the zero origin (plus any adjustments for boundary
alignment). These addresses are temporary because the
starting addresses of the segments must later be relocated
with respect to their positions in the overlay tree. If the
program is not in overlay (consists of a single segment),
the addresses are final because no further relocation by
address assignment is necessary.

. Performs page alignment while assigning temporary linked
addresses if the program is not in overlay. The ORDER table
is sedarched for a match of the CESD ID of the SD or CM being
processed. When a match is found, and page alignment is
specified, the assigned address is forced to a 4K-byte
boundary. If the ALIGN2 option is taken, the address is
forced to a 2K-byte boundary.

. Computes the temporary relocation constant for each control
section (the difference between the temporary linked address
and the assigned address in the relocation constant table
(RCT) (area D). If the program is not in overlay, these are
¥hetfin?1 relocation constants (relative relocation

actors).

. Accumulates the length of each segment in the leftmost 3
bytes of an entry in the segment length table (SEGLGTH).
The boundary alignment factor of the first control section
in the segment is placed in the fourth byte of the entry.

8 SEGTAB size = 26 + (4 x number of segments).

9 ENTAB size = 12 + (12 x number of unique downward calls per
segment).

52 MVS/XA Linkage Editor Logic LY26-3963-0 © Copyright IBM Corp. 1972,1985

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

*

Determines the address of each PR entry in the CESD, using
the total length of all PRs previously encountered plus the
boundary alignment factor. This address is placed in the
CESD entry for the PR. The length of this PR is then added
to the cumulative PR length.

Processes the SEGLGTH table (if the program is in overlay)
to determine the starting address of each segment relative
to the beginning of the program (area E). SEGTAl is checked
to find the proper location of each segment in the tree.
SEGLGTH at this time contains the length of each segment.

To determine the starting address of a segment, the length
of all previous segments in the same path are added,
together with any adjustments for boundary alignment.
(Boundary alignment adjustment is determined by the last 3
bits of the address of the first control section in a
segment.) This sum, minus the boundary alignment factor for
the segment, is the segment relocation constant (SRC). The
SRC is then placed in the rightmost 3 bytes of the SEGLGTH
table. The sum of the SRC, the boundary alignment factor,
and the segment length is placed in the leftmost 3 bytes of
the SEGLGTH table entry for the segment. It is the length
of the path of the segment (including the segment itself).
At the completion of this process, the entry in SEGLGTH for
each segment contains the cumulative length of its path; the
longest of these lengths is the program length.

Performs a second scan of the CESD if the program is in an
overlay structure. The segment relocation constant in the
SEGLGTH table is added to the temporary linked address in

the CESD entry for the control section; this sum is the

final linked address. The SRC is also added to the

temporary relocation constant table; this sum is the final

relocation constant for the control section.

Assigns final linked addresses in ascending order of
segments if page alignment is specified for any SD or CM
type symbol. For each segment, three cycles of scanning are
performed. First, SDs and CMs having entries in the ORDER
table are processed. The final address is calculated by
adding the SRC and the temporary linked address, and is
aligned on a page boundary, if required. A cumulative count
of any increment within a segment caused by page alignment
is kept, in order to assign correct addresses to the
unprocessed SDs, PCs, and CMs. Next, the text I/0 table is
scanned for the remaining SDs and PCs in the segment. These
SDs and PCs are assigned final addresses. Finally, a scan
of the CESD gives addresses to all unprocessed SDs, PCs, and
CMs in the segment. For every processed SD, its entry in
the relocation constant table is calculated. Before going
on to the next segment, the length of the segment just
processed and the SRC of the next segment are updated.

Makes a final scan of the CESD to assign a final linked
address to each label reference.

The CESD entry for each LR contains a reference to the
control section in which it resides. The relocation
constant for that control section is located in the RCT and
is added to the temporary linked address in the CESD entry
for the LR. This sum, the final linked address for the LR,
is placed in the CESD.

Marks the program as not executable if there are still
unresolved ERs and if neither the NCAL option nor the LET
option has been specified. Unresolved WXs do not inhibit
program execution.

Builds the alias table and compute an entry point for the
program (see "Entry Processing").

LY26-3963-0 ® Copyright IBM Corp. 1972,1985 Method of Operation 53

Contains Restricted Materials of IBH
Licensed Materials — Property of IBM

ENTAB Size Determination

ENTAB size determination consists of computing the size of
ENTABs so that the size of each segment in an overlay program
can be determined, and relative relocation factors can be
computed for use by second pass processing. The size is
determined by the number of downward calls, or calls across
regions, to symbols that are not referred to by segments higher
in the path of the calling segments.

An example of ENTAB size determination is given in Figure 19 on
page 55. The overlay tree structure shown in the illustration
consists of nine segments residing in two regions; all
references between segments are made using V-type address
constants. Functions of ENTAB size determination are:

. Scanning the CESD for LR entries and entering their segment
numbers. In Figure 19, item 6 is an LR item; its ID/length
field points to the CESD entry for the control section in
which it resides (line 3). The segment number contained in
line 3 (segment number 3) is entered in the segment number
field of the LR item.

J Scanning the calls list, inserting chaining values that
point from one group of R and P pointers to the next.

o Scanning the calls list for each segment (starting with
segment 1), and finding symbols referred to by that segment.
For each reference found, the type of call (upward,
downward, or exclusive) is determined. If an ENTAB is
required for the segment, its size is determined and a
PC-delete entry for the ENTAB is made in the CESD.
Referring to Figure 19, the segments are processed in the
following manner:

1. The calls list is scanned for P pointers that refer to
control sections in segment 1. If one is found, the
associated R pointers (which refer to referenced
symbols) are examined to determine the segment in which
each referenced symbol resides. In Figure 19, the fifth
P pointer refers to line 7 of the CESD, which contains
an SD entry for a control section in segment 1. The
associated R pointers refer to line 6 (symbol B in
segment 3) and line 4 (symbol C in segment 5). For each
reference, the type of call (upward, downward, or
exclusive) is determined, using SEGTAl and the segment
numbers of the calling and called segments. 1In
Figure 19, SEGTAl indicates that segment 1 is in the
path of segments 3 and 5; therefore, the calls from
segment 1 to B and C are downward calls. This is noted
in the downward calls list by entering segment number 1
in the lines referred to by the R pointer (lines 6 and
4). Since segment 1 is the root segment, it must have
an ENTAB; the size of the ENTAB is determined and a
PC-delete entry for it is created in the CESD.

2. When the scan for segment 1 is completed, the calls list
is scanned for P pointers that refer to segment 2. In
Figure 19, the third P pointer in the calls list refers
to CESD line 6, which contains segment number 3. In
this case, however, no entry is made in the downward
calls list because it indicates a call to B in segment 3
from segment 1, which is higher in the path of the
calling segment (segment 2). No ENTAB is required for
segment 2 because the reference to symbol B in segment 2
can be resolved through the ENTAB entry in segment 1.

3. The calls list is scanned for P pointers that refer to
segment 3. In Figure 19, the fourth P pointer in the
calls list refers to CESD line 3 (segment 3). The R
pointer refers to CESD line 8 (segment 8). SEGTAl
indicates that the call from 3 to 8 is downward, across
regions, and the call is noted in the downward calls
list. Segment 3 requires an ENTAB, because it contains

‘5 .MVS/XA Linkage Editor Logic LY26-3963-0 ©® Copyright IBM Corp. 1972,1985

Contains Restricted Materials of IBM

Licensed Materials — Property of IBM

a downward call to a symbol not referred to by a segment
in the path of the calling segment; the ENTAB size is
determined, and a PC-delete entry for the ENTAB is
created in the CESD.

4. The calls list is scanned for P pointers that refer to
seament 4. In Figure 19, the first P pointer in the
calls list refers to CESD line 9 (segment 4). The R
pointers refer to line 2 (segment 2) and line 8 {segment
8). SEGTAl indicates that the call from 4 to 2 is
upward, while the call from 4 to 8 is downward, across
regions. The upward call is ignored, because the
address constant can be resolved directly to the
referenced symbol. The downward call from 4 to 8 is
noted in the downward calls list, replacing the previous
entry for segment 3 (because no segment with a segment
number greater than ¢ can have segment 3 in its path).
Because an ENTAB is required, the size is determined and
a PC-delete entry is created in the CESD.

This process continues until all segments have been
processed. The required ENTABs are built during second pass
processing (see "ENTAB Creation"™ and "Relocation of V-Type
Address Constants in Overlay™).

SEGTA!
Ly] 0
—_————— === v@E 4! 2)
‘{ 3 2
| V(Q)--—— 4 2
, . 5 |
| fH— ———~ B c 6 0
po——-— == O K 1 B 7 | e
CESD | | 8 [
Chain Seg|Sub-| Length ! A 43 G-H4 4 9 0 D d
Symbol T |) ownwor
ymoo YP®| Address | No Type| /1D e v (H)- -’ . . Calls List
1 D sD 9 fve----- PV(E)_,_] |
IR PO ASATE | R T
3 A SD 3 Region 2 | : ' K 2
)
4 c) 5 | et —— - T h 3
5 : . 4 |
6 B R 3 3 VO - =~ = - ’ : .
7 | SD 1 7
8 3 SD 8 8 24
9 G sD 4 ?
10 F ™ 6 0
n PC 7
[P v 60 v
t| PC(d)| 1 36 | I
*1PC(d) 3 24 * PC - delete type entry for SEGTAB
t|PCld 4 24 1 PC - delete type entries for ENTABs
CALLS LisST
- I |
e Tefeelele[Jelefelofafofe]rfefelo] |
eV P R R v P R Cv P R v e R cv P R R4
N AN N A\ o~ /'i
SN -7 _// \\h___// \\‘l// ~._ _ - :
* CV = Chaoining Value (gives number of bytes to next CV) ' End of Colls List

Figure 19. ENTAB Size Determination

LY26-3963-0 ®© Copyright IBM Corp. 1972,1985 Method of Operation 55

Entry Processing

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

Entry processing includes the following operations:

Entering in the alias table any alias symbols that were
chained together and saved in the CESD by the ALIAS
statement processor. Each entry in this table consists of
an 8-byte symbol field and a 2-byte ESDID field. For each
saved alias symbol, the entry processor scans the CESD for a
matching SD or LR entry. If no match is found, a zero is
placed in the ESDID field of the alias table entry for the
symbol. If a matching SD or LR entry is found, the ESD ID
of the alias entry in the chain is placed in the ESDID field
of the alias table entry for the symbol (see Figure 20 on
page 57). The address assigned by linkage editor to the
matching SD or LR and the ESD ID of its control section are
placed in the CESD entry for the chained symbol, and the
type of the chained symbol is changed to null.

Determining whether the entry point was specified as an
address on an END record, or as a symbol on an ENTRY
statement or END record:

1. If the entry point was specified as an address on an END
record, the assigned address is determined by either
absolute or relative relocation. If the ID on the END
record referred to an ER which was resolved with an SD
or LR, the address assigned by the linkage editor to the
SD or LR is added to the address from the END record
(absolute relocation). If the ID on the END record
referred directly to an SD or PC, the relocation
constant for the SD or PC is added to the address from
the END record (relative relocation).

2. If a symbolic entry point was specified on an ENTRY
statement or END record, the CESD is scanned for a
matching SD or LR symbol. The address of the matching
symbol is used as the entry point.

3. If no entry point was specified, the starting address of
the SD or PC control section (not marked delete) with
the lowest assigned address is chosen as the entry
point. The entry point associated with the main name
(not an alias) and all alias entry points must be in
segment 1 if the program is in overlay.

Assigning the addressing mode for the main entry point into
the output load module. If the load module is in overlay
format, the addressing mode is 24%; otherwise, the addressing
mode is obtained from the CESD entry that defines the SD or
PC that contains the entry address. The addressing mode,
along with the entry address and the ESDID of the SD or PC,
is saved in the all-purpose table.

56 MVS/XA Linkage Editor Logic LY26-3963-0 ® Copyright IBM Corp. 1972,1985

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

All Purpose Table

Alias Chgin Address
Address X

Figure 20.

I CESD - Before Entry Processing
Pointer
: Symbol Type a\:"A:dr Seg [Sub | Chn
\ Choin 1D |N© Type| Chn Lgth|
| /1D
N . . ry
I °
v .
Address X 3 SAM ER | Addr Y=[~ [Alias
———_.——...——:_————-————-f’
g .
->-Address Y 7 JOE ER | Addr Z- Alias
. J
R cTTTTTT T
N-p-Address Z 10 BILL ER 000 Alias|
.
.
.
-~=»20 SAM SC| * LAl {Length)
’______o___ N R N S BN
. \
22 JOE R | *LlA2 20-7
.
* Linked oddress CESD - After Entry Processing
Chn
Chn Addr Seg|Sub |Pointer
Symbol Type| Reverse No |Type [Chn
Chain ID Lgth/iD
Alias Table O
Alias Symbol ESDID :
SAM 3 —t — — — — — — »3 SAM Null LAY 20-\|
.
* |
JOE 7—t— — — — —_ 7 JOE Null] LA2 20~1
.
* 1
BILL 0 10 BILL Null| 000 Alios, |
______ e _ L __l_L_4L__J
o0 .
N— 20 SAM SO LAl (Length)
.
)
.
22 JOE LR LA2 20
.

Processing of Alias Symbols by the Entry Processor

INTERMEDIATE OUTPUT PROCESSING

LY26-3963-0 ®© Copyright IBM Corp.

Intermediate output processing includes the following
operations:

Writing out the CESD on SYSLMOD in groups of 15 entries per
record. The last record may consist of less than 15
entries. In writing CESD records on to SYSLMOD, the
intermediate output processor sets a flag in the control
information indicating the content of byte 12 in the CESD
entries in the record. If the CESD entries contain segment
numbers (that is, the load module is in overlay format), the
flag is off; if the CESD entries contain AMODE/RMODE data,
the flag is on.

Building and writing out the IDRs from the IDR tables
(IDRTRTAB, IDRTITAB, IDRUDTAB, and IDRZPTAB) onto SYSLMOD.
gegLééBkage editor IDR is also built and written on to

1972,1985 Method of Operation 57

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

Building a half ESD (HESD), consisting of the last 8 bytes
of each CESD entry. (The symbol is deleted from each CESD
entry to conserve virtual storage space during second pass
processing.) The HESD is not complete at this time. (The
ID of each label reference is used in building the scatter
and translation tables.)

Building and writing out the segment table (SEGTAB),
preceded by a control record describing it if the program is
in overlay. SEGTAB contains information required by the
overlay supervisor.

Building and writing a l-byte text record if the first load
module text record does not begin at address 0. The 1l-byte
text record is preceded by a control record describing it.

Building a scatter table and a translation table for a
program that is to be scatter loaded, and writing out
scatter/translation records in a form acceptable to program
fetch at execution time. The scatter/translation
information is written out on SYSLMOD in 1024-byte records.
The first 4 bytes of each record are used to identify the
records as scatter/translation information. If the length
of scatter/translation information is greater than 1020
bytes, the last 1020 bytes (plus 4 bytes of header
information) are written out as the first
scatter/translation record. The data in the last record may
be 1020 bytes or less (see Figure 21). 1In creating the
scatter table entries, the RMODE/RSECT data is obtained from
the HESD entries (byte 4) and inserted into the flag byte.

Low-Order Position

Beginning of in Virtual Storage
Translation T
Toble D 500 bytes
Beginning of 4-byte header
Scotter ———————— o |- — —C— — 1020 bytes
Table .
——————]]
8 1020 bytes A 8 C D
1024 bytes 1024 byt 1024 4
A 1020 bytes ytes bytes) 50 by.'es
High-Order Position
) in ?/Irtual Storage Sequentiol Order of Records
Figure 21. HWriting Scatter/Translation Records .

Determining the control section containing the last text in
the program (or in each segment if the program is structured
for overlay) and the highest segment number of the segments
that contain text. (This information is necessary so that
second pass processing can determine when to set the
end-of-segment or end-of-module indicator.) The highest ESD
ID is determined by scanning the text I/0 table for the ESD
IDs of control sections that contain text. This ESD ID is
entered into the high_ID (HIID) table along with its
associated segment number.

Determining, via bits in the all-purpose table (APT), if the
MAP option has been specified, or if the XREF option has
been specified and all RLDs are in storage. If either of
these conditions exists, the module map and/or the
cross-reference table are produced. If the XREF option is
specified and all RLDs are not in storage, XREF processing
will be done as part of final processing.

.58 MVS/XA Linkage Editor Logic LY26-3963-0 ®© Copyright IBM Corp. :1972,1985

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

U If the ORDER option has been invoked during input
processing, the text I/0 table and the text note list II
(formed after merging all text note lists from SYSUT1l) are
sorted according to the ORDER table. The sorting, however,
preserves the original order for those control sections that
do not have entries in the ORDER table.

MAP/XREF Processing

When MAP/XREF processing is performed as part of intermediate
output processing, a table address is obtained from the APT, and
a table of 2-byte entries pointing directly to the CESD is
constructed. The CESD records for the current segment are
gathered and sorted by address. The module map is then printed
out; the map lists, in ascending order according to their
assigned origins, all control sections contained in the output
module and the entry points within the control sections.

Controi sections in an overlay output module are grouped by
segment.

If XREF processing is done during intermediate output
processing, RLD items are incompletely relocated; their
addresses are relative to the origins of their respective CSECTs
rather than the origin of the load module, and the address of
each RLD must be added to the linkage editor assigned address of
its corresponding control section before the cross-reference
table is produced. The cross-reference table includes a module
map and a list of all references within a given segment that
refer across control section boundaries. Each entry in the list
contains the address of the reference, the symbol to which it
refers, and the name of the control section in which the symbol
is defined. For overlay programs, each item in the list also
goggaigs the number of the segment in which the symbol is
efined.

If the MAP and XREF options are processed during intermediate
output processing, disposition messages and the diagnostic
message directory are printed after the module map and
cross-reference table. If the cross-reference table is produced
during final processing, the disposition messages and the
diagnostic message directory are printed before the
cross—-reference table.

SECOMND PASS PROCESSING
Second pass processing comprises modules HEWLFSCD and HEWLFREL.

After intermediate processing is completed, the third phase of
the linkage editor (second pass processing) begins operation
(see "Diagram 14. Data Movement During Second Pass Processing®
on gage 88). The major functions of second pass processing
include:

] Relocating address constants contained in the text.
. Creating control/RLD records.

U Writing TXT and control/RLD records on SYSLMOD in a format
that can be loaded by program fetch. Included in the
control information of the control or control/RLD record
that precedes each text record is a count of the RLD and
control/RLD records that follow the text record. This count
is used by program fetch to build optional channel programs
when loading the load module.

. Creating ENTABs and associated RLD items for overlay
modules.

LY26-3963-0 ® Copyright IBM Corp. 1972,1985 Method of Operation 59

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

SINGLE PASS PROCESSING: Indicators residing in virtual storage
in the text 1/0 table and the RLD note list are checked to
determine whether text and RLD records have been written on
SYSUT1, or have been retained in the input text buffer and the
RLD buffer. If either text or RLD records have been retained in
storage, single pass processing is in effect for that record
type. If two pass processing is in effect, the records are read
into the buffers from SYSUT1.

ORDERING OF TEXT: In two pass processing, the ID sequence in
the text I/0 table is used to determine the order in which

CSECTs are to be read into the second pass text buffer (which is
physically the same storage area as the input text buffer). The
text I/0 table entry for each ID and the corresponding text note
list entry are used to locate text on SYSUT1l (see "Diagram 1l46.
Data Movement During Second Pass Processing™ on page 88, area
A). Text is read into the buffer one multiplicity at a time,
using the displacement field in the text note list to determine
where within the buffer the text must be placed. Information
about the text is entered into the second pass text control
table, which is used to control subsequent processing of the
text (area B).

SECOND PASS RLD BUFFERS: When the required text is in the text
buffer, the corresponding RLDs are read into the RLD input
buffer, using the RLD note list to locate the RLD records (area
C). The RLD input buffer can contain two RLD records from
SYSUT1; for each RLD input buffer area, an RLD input control
block is maintained (area D). The RLD output buffer is 768
bytes long and is divided into three buffer areas (the maximum
RLD output record is 256 bytes long); for each RLD output buffer
area, an RLD output control block is maintained (area F). While
text is being relocated, the control record for that portion of
text occupies one of the output buffers; the other two output
buffers contain the relocated RLDs for the text being processed
(area E). If the relocated RLDs exceed two buffers, the control
record is written on SYSLMOD; relocated RLDs may then be moved
into the third output buffer.

When all three RLD output buffers and the RLD input buffers are
filled and additional RLDs are required to relocate the text
currently being processed, the contents of the output buffer
must be written out. However, to maintain the required TXT/RLD
sequence in the output module (area G), the associated text must
precede the RLD record. Space for the text is reserved in the
output module by writing the incompletely relocated text; the
contents of the RLD output buffer may then be written, and
processing can continue. When the text is completely relocated,
it is written over the space reserved for it using the XDAP
("execute direct access program™) macro instruction.

GROUPING SYSLMOD OUTPUT: As many CSECTs as will completely fit
in one SYSLMOD record (up to a maximum of 60) are grouped and
written as one record. RLDs are grouped to correspond to the
grouping of their associated text. If the overlay attribute is
spec1f;ed, only CSECTs belonging to the same segment will be
grouped.

If a CSECT is larger than the SYSLMOD record size, the CSECT is
divided into multiplicities, each multiplicity being equal to
the SYSLMOD record size. The length of the last multiplicity
may be less than the SYSLMOD record size. Each multiplicity is
written as a record, followed by RLDs associated with only that
multiplicity.

Note: If the downward compatible attribute (DC) or the scatter

format attribute (SCTR) is specified, CSECTs will not be
grouped.

60 MVS/XA Linkage Editor Logic LY26-3963-0 ® Copyright IBM Corp. 1972,1985

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

END-OF~-MODULE: When control sections for all segments of the
output load module have been processed (determined via the "high
ID" indicator in the HESD type field and the "last segment with
text"™ field in the all-purpose table), indicators are set in the
last control/RLD record to mark it as the end of the module.

The control/RLD record is written out on SYSLMOD, and second
pass processing is completed.

Note: If the output load module is to be structured for
overlay, a list of relative track addresses (TTR list) is
created to be used by program fetch when it loads the segments
into virtual storage for execution. The TTR list contains one
entry for each segment in the overlay load module. Each entry
contains the relative track address of the first record (control
record) of a segment, except for the first segment, which
contains the relative track address of the first text record. A
PC-delete control section that contains ENTAB entries in each
segment where the text requires them and the RLD records
required by program fetch to relocate address constants
contained in the ENTAB entries are also created. The fourth
byte of each entry contains the number of blocks of the text in
the corresponding segment, or 255 (X'FF') if there are more than
255 blocks of text.

Relocation of Address Constants
There are two types of relocatable address constants:
[Branch-type, such as DC V(X)
. Nonbranch-type, such as DC A(X)

The value of a branch—-type or nonbranch-type address constant
depends on a symbol in the CESD. To adjust an address constant
to its proper value in the output load module, the linkage
editor uses an absolute or relative relocation factor. The
absolute relocation factor is the address assignhed by the
linkage editor to the symbol on which the value of the address
constant depends. The relative relocation factor is the
difference between the address assigned to the symbol by the
linkage editor and the address of the symbol in the input
module. The relative relocation factor may be positive or
negative.l? The absolute and relative relocation factors of
each symbol in the CESD are computed during address assignment
and are saved in the half ESD (HESD).

Relocation of Nonbranch-Type (A-Type) Address Constants

A relative relocation factor is used for a nonbranch-type
address constant if the symbol on which its value depends is in
the same input module as the control section that contains the
address constant. (The address constant and the symbol it
refers to were assembled or compiled together, or were
previously processed together by the linkage editor.) An
example of relative relocation of nonbranch-type address
constants is shown in Figure 22 on page 62. Because the address
of DICK is known, the language translator places it in the value
of the address constant. DICK is a known value prior to linkage
editor processing (not an external reference in the input);
therefore, a relative relocation factor (+1000) is used to
relocate DICK during linkage editor processing.

10 If it is negative, an indicator is set in the HESD to note
that it is in complement form.

LY26-3963-0 © Copyright IBM Corp. 1972,1985 Method of Operation 61

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

input Module 1 Output Module
000 SAV CSECT 0000 ream CSECT
° .
. .
. .
. .
0999 e
Input Module 2 1000 | \omn CSECT
[)
0000 . o #2000
JOHN CSECT Linkage
L4 Editor * 1000
° DC A (DIeKT
(] []
*1000 .
DC A (DIEXT °
®
[]
2000 |pyck .
o
1000 ek . .
° [J
[]
[]
Legend:
+ Known value of DICK is inserted by language translator.
1 Relative relocation factor is +1000; linkage editor assigned address is 2000.
Figure 22. Nonbranch-Type Address Constants—Relative Relocation

An absolute relocation factor is used for a nonbranch-type
address constant 1f the symbol referred to by the address
constant does not have a defined value within the same input
module. (The R pointer of the RLD item refers to an external
reference.) An example of absolute relocation of a
nonbranch-type address constant is shown in Figure 23 on
page 63. In this example, the value of SAM is unknown when
input module 1 is processed by the language translator;
therefore, zeros are placed in the value of the address
constant. During second pass processing, the absolute
relocation factor (the linkage editor assigned address) is used
to relocate the address constant.

62 MVS/XA Linkage Editor Logic LY26-3963-0 © Copyright IBM Corp. 1972,1985

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

Input Module 1
0000 55E e
[)
[]
.
EXTRN SAM
° Qutput Module
L]
e *0000 0000
DC A (SAMT JOE CSECT
L] L]
[] []
[] o
0499 EXTRN SAM
.
L]
® #0500
Linkage 0600
Editor > DC A (SAMY
L]
°
Input Module 2 °
00!
00 SAM CSECT 0500
* SAM CSECT
° [4
° L]
® L]
0249]
0749
Legend:
* Language translator inserts zeros becouse value of SAM is unknown.
Actual address of SAM in the output module (0500) is added to value
of address constant.
Figure 23. Nonbranch-Type Address Constants—Absolute Relocation

Figure 249 on page 64 shows the use of both a relative relocation
factor and an absolute relocation factor in relocating a symbol.
Two input modules are to be processed by the linkage editor.
Input module 1 contains a nonbranch-type address constant whose
value depends on the symbol PETE; PETE is an external reference
in the same module. The language translator has assigned a
value of +10 to the address constant. The R pointer of the RLD
item refers to the ER entry for PETE in the ESD; this entry
contains zeros in the origin and length fields. The P pointer
refers to the SD entry for the control section that contains the
address constant.

Input module 2 contains two control sections, BOB and PETE. BOB
contains a nonbranch-type address constant whose value depends
on PETE; because PETE has a defined value of (300) in the same
module, the language translator has used that value to compute
the value of the address constant (PETE + 10 = 310). The R
pointer of the RLD item refers to the SD entry for PETE in the
ESD; the P pointer refers to the SD entry for BOB (the control
section that contains the address constant).

During linkage editor processing, the ER and SD entries for PETE
are merged into one CESD entry; the R pointers of both RLD items
in the output module will refer to that entry. The RLD P
pointer for the address constant in control section BILL will
refer to the SD entry for BILL; the P pointer for the other
address constant will refer to the SD entry for BOB. In the
output load module, both address constants will contain the same
value. Because the R pointer of the RLD item in input module 1
refers to an ER entry in the ESD in that module, it is marked
for absolute relocation; the absolute relocation factor for PETE
(+500) is added to the value (+10) assigned by the language
translator. Because the R pointer of the RLD item in input
module 2 refers to an SD entry in the ESD in module 2, it is
marked for relative relocation; therefore, the relative

LY26-3963-0 © Copyright IBM Corp. 1972,1985 Method of Operation 63.

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

relocation factor for PETE (+200) is added to the value (+300)
assigned by the language translator. The relocated value for
both address constants is 510.

Relocation of all nonbranch-type address constants requires an

addition or subtraction of the relocation factor to or from the
value of the address constant in the text of the input module.

(Addition or subtraction is specified in the flag field of the

RLD item for the address constant.)

Input Module 1 Output Module
No. Symbol Type Origin Length No. Symbol Type Origin Length
£sD 1 [BILL 5D 0000 500 ESD 1 [BILL) 0000 500
2 | PETE ER 0000 000 2 [PETE sD 0500 400
3 1JOE ER 0000 000 3 [BoB sD 0900 300
0000 BILL CIECT 4 Lok LR 0620 2
[} 0000 BILL CSECT
. .
. .
EXTRN PETE L4
TXT ° TXT EXTRN PETE
EXTRN JOE o
° * 0010 EXTRN JOE
0490 DC A(PETE+O] ® ¥ 0510
e * 0000 0010
0494 DC_A{OEY 0490 DC A(PEFE+TO]
0499 R P FLAG Address ¥ 0620
RLD (2 T v T 10450 0060
(3 t 1 1 [0494 | \ 0494 DC_Ayef]
Input Module 2 Linkage 0500 PETE CSECT
No. Symbo! Type Origin Length / Editor .
! Bgﬂ S| 0000 300 ENTRY JOE
ESD 2 [PETE D 0300 400 0620 A
JOE LD 0420 2 JOE .
0000
808 CSECT
.
. 0800 OB CSECT
.
® 0310
1194 . 1
T | 0294 DC.A(PLIEHW . :nscv:e:i by language . * % B
rgnsigtor DC A M—’
% Determined by linkoge :
editor using absolute .
0300 PETE CSECT relocation factors
A (+500, +620) 1199 *
TRY
EN. JOE % Octermined by linkage R P Flag Address .
° editor using relative RLD 2 1 0490
0420 JOE ° relocation foctor (+200) 4 1 0494
o 2 3 1194
0699 [
R P Flag Address
RLD 2 1 [I [0294_]
Figure 24. Nonbranch-Type Address Constants—Absolute and Relative Relocation
66 MVS/XA Linkage Editor Logic LY26-3963-0 ®© Copyright IBM Corp. 1972,1985

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

DELINKING NONBRANCH-TYPE ADDRESS CONSTANTS: A relative
relocation factor cannot be used to relocate an A-type address
constant that refers to a symbol in a control section being
replaced. Because the address constant has been previously
relocated (by a language translator or by the linkage editor),
it contains the value of a symbol being replaced; therefore, the
value of that symbol must be subtracted from the value of the
address constant. This process is called delinking. In
delinking, an address constant is reduced to the value it would
have contained if it referred to an external reference in the
input module. After delinking, the address constant contains
the value required for proper relocation, should the replaced
symbol appear later in the input in another control section.
Delinked address constants are treated as address constants
whose values depend on external references. (Absolute
relocation factors are used in relocating them.)

Delinking of an A-type address constant is shown in Figure 25.
Input load modules A and B both contain control section SAM.
During linkage editor processing, the first occurrence of
control section SAM is accepted, while the second occurrence is
deleted through automatic control section replacement.

Module A Output Module
JOE SD 0 1000 JOE sDj* 0O 1000
BILL ER 0 0 BILL SD | *1000 800
ESD -
SAM SD| 1000 750 Eso SAM SD| *1800 750
JOHN LR] 1050 3 0 JOHN LR | *1850 3
JOE 0 |JOE ** 1900
1100 TXT 1607
DC A (JOHN~SD) 700 700 DC A (JOHN-+T30)
DC Vv (BHD) 800 800 DC V (BHL] 1000
TXT i — . —— 1000 | BILL
SAM 1000 $1900
JOHN 1050 DC A(JOHN+30}
P Flog Address :;300 SAM
RLD 2 1 1C 800
4 1 0C 700 1850 | JOHN
* Linkage R P Flog Address
Module B Editor RLD 2 1 1C 800
SAM SD 0 720 4 1 oc 700
ESD JOHN LR 70 1 4 2 oC 1350
BILL SD 720 800 0 Legend:
SAM * Values ore derived from HESD.
** 1100 + 800 = 1900.
JOHN 70 $ 120 - 70 + 1850 = 1900.
S A 720 o A relative relocation factor is used to relocate the address constant A(JOHN+50) in
BILL control section JOE, because JOE and SAM are in the same module.
120 ® The address constant A(JOHN + 50) in control section BILL must be delinked because
DC A(IOHN¥50) 1350 it was resolved with the symbol JOHN in the repiaced contro! section SAM. The old
R P Flo Address value of JOHN must be subtracted from the value of the address constant before it
1 can be relocated (using the absolute relocation factor) to the new value of JOHN in
RLD 2 3 oc 1350 the output load module.
Delink Toble
0004 000070
HESD Relocotion Constant Table
Type | Absolute Reloc Foct | Seg No Length 600000
00 000000 o 000280
00 001000 0l
00 001800 o 000800
03 001850 01 000800
Figure 25. Example of Delinking

LY26~3963-0 © Copyright IBM Corp. 1972,1985 Method of Operation 65

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

Control section BILL in module B contains a reference to symbol
JOHN in control section SAM. Because SAM in module B will be
deleted, the address constant A (JOHN+50) in module B must be
delinked so that it may be properly resolved with the symbol
JOHN in module A. In delinking, the old value of JOHN is
subtracted from the value of the address constant in BILL
(120-70=50). The absolute relocation factor for JOHN (1850) is
then added to the delinked value of JOHN (50+1850=1900).

DELINKING COMMON CONTROL SECTIONS: Common control sections
(either blank common or named common) must be "delinked™ by the
linkage editor. All references to common control sections are
made by means of nonbranch-type address constants.

If the assigned address of a common control section in the input
to the linkage editor is not zero, all such references must be
delinked. Delinking is necessary, because during linkage editor
processing all blank common control sections are collected into
a single control section. All identically named common control.
sections are gathered into individual control sections;
references to them from different input modules must be delinked
so that they can be properly relocated with respect to the
locations of the common control sections in the output module.

Delinking adjusts the value of each address constant in a common
control section so that it contains its correct displacement
from the control section origin. The values of such address
constants are then relocated so that they refer to the linkage
editor-assigned addresses, using absolute relocation factors.

Relocation of Branch-Type (V-Type) Address Constants

Only absolute relocation factors are used to relocate
branch-type address constants. Because a displacement is not
allowed in the value of a V-type address constant, the absolute
relocation factor is inserted in the value field during
relocation. (It is not added to or subtracted from in value
assigned by the language translator, as described for A-type
address constants.) Because the value of a V-type address
constant is inserted, delinking is never necessary for such
address constants. Relocation of V-type address constants in an
overlay structure is discussed in the following paragraph.

RELOCATION OF V~TYPE ADDRESS CONSTANTS IN OVERLAY: If the
output of the linkage editor is to be overlay load module, a
G-byte!?! branch-type address constant in the path of the symbol
it refers to (but in a different segment), or in a different
region, will be relocated in a special manner. The value field
of the address constant will contain the address of an ENTAB
entry. The ENTAB entry will contain the address assigned by the
linkage editor to the symbol referred to by the value of the
address constant. An ENTAB entry is created for each V-type
address constant that is in the path of the symbol it refers to
(but is not in the same segment), or located in a different
region, provided that the symbol is not referred to in a segment
higher in the path of the calling segment. (Such address
constants are resolved so that they refer to the ENTAB entry
previously created for the symbol in the higher segment.) ENTAB
entries are not created for address constants that refer to
symbols higher in the path. Whenever an ENTAB entry is created,
it is noted in an entry list; each item in the entry list
contains the entry number of the referenced symbol in the HESD,
the segment number of the calling segment, and the address
assigned to the ENTAB entry by the linkage editor. The ENTAB

11 Apy address constant must be ¢ bytes, because the high-order
byte is used by the overlay supervisor during execution.
The number of the segment containing the address constant
will be placed in the high-order byte of any V-type address
constant resolved to an ENTAB entry. (The high-order byte
must be zero if it is not resolved to an ENTAB entry.)

66 i MVS/XA Linkage Editor Logic LY26-3963-0 ® Copyright IBM Corp. 1972,1985

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

creation routine uses the entry list to build ENTAB entries (see
“ENTAB Creation™).

When second pass processing begins to process a segment, the
entry list is modified so that is contains only entries for
segments higher in the path of the current segment. (In

Figure 26, segment ¢ is being processed; the entry for segment 3
is removed because it is not higher in the path of segment 4.)

5
2 [1 —7_: Entry List
I
3] 61 HESD |
Entry Neg Address
Number °
4
1
Next
2 ovailable
Current line; 4
Segment 3 will bZ
entere
here.,

Figure 26. Entry List Processing

During relocation, each V-type address constant is examined to
determine if an ENTAB entry must be created for it. The R
pointer of the RLD item for the address constant is used to find
the associated HESD entry; this entry contains the segment
number of the symbol referred to by the address constant. The
relationship of this segment to the current segment is then
determined, using SEGTAl. Depending on the relationship in
SEGTAl, the address constant is relocated in one of three ways:

1. If the segment that contains the symbol is higher in the
path of the current segment, the call is upward and the
address constant is resolved directly. (The absolute
relocation factor of the symbol is inserted in the value of
the address constant.)

2. If the current segment is higher in the path of the segment
that contains the symbol, the call is downward. The entry
list is checked to determine if an ENTAB entry was
previously created for the symbol in this segment, or in a
segment higher in the path of this segment. If an ENTAB
entry for the symbol exists, its address (contained in the
entry list) is placed in the value field of the address
constant. If no ENTAB entry exists for the symbol, a new
entry is placed in the entry list, and an ENTAB entry will
be created by the ENTAB creation routine (see "ENTAB
Creation"). The ENTAB entry will contain the address
assigned to the symbol by the linkage editor, and the
address of the ENTAB entry will be placed in the value of
the address constant and in the entry list item.

3. If neither of the two segments is higher in the path of the
other, the call is either exclusive or across regions. If
the two segments are in different regions, and no ENTAB
entry already exists for the symbol in the entry list, an
ENTAB entry will be created and an entry is made in the
entry list; the value field of the address constant is
relocated to the address of the ENTAB entry, which in turn
contains the relocated address of the symbol. If the two
segments are in the same region, the call is exclusive. If
there is an entry in the entry list for the symbol, the
address constant is resolved through its ENTAB entry; if
there is no entry for the symbol in the entry list, the call
is an invalid exclusive call and the address constant is

LY26-3963-0 ®© Copyright IBM Corp. 1972,1985 Method of Operation 67

Contains Restricted Materials of IBM
‘Licensed Materials — Property of IBM

resolved directly to the symbol. <(This usually leads to
incorrect results during execution of the module.)

ENTAB Creation

The ENTAB creation routine uses the size field in the HESD to
determine the number of ENTAB entries to be created for a given
segment. The entry list is scanned for all entries that were
created for the current segment; each of these entries contains
the HESD entry number for the corresponding symbol. The value
and segment number of the symbol are obtained from the HESD and
are entered in the ENTAB entry, along with standard information
shown in the table format (see "Table Layouts™).

ENTAB creation is shown in Figure 28 on page 70. The V-type
address constants referring to SAM and BILL in segment 1 meet
the requirements for building ENTAB entries. The ESD and RLD
input to the second pass processor, and the overlay tree
structure are shown in Diagram A. During relocation, entries
are created for SAM and BILL in the entry list (see Diagram B);
each entry contains the address of the ENTAB entry created for
the address constant.

In segment 1, location 136 of control section JOE contained @
call to control section SAM before relocation. After

relocation, location 136 contains the address of the ENTAB entry
for SAM, and the high-order byte of the address constant
contains the segment number of the calling segment. An ENTAB
entry is created, in like manner, for BILL in segment 1.

In segment 2, the address constant referring to BILL does not
meet the requirements for building an ENTAB entry. (It is not
in the path of the segment containing the symbol.) Therefore,
no ENTAB is created in segment 2. The call for segment 2 to
BILL in segment 3 is an exclusive call. Because a call to the
same symbol appears in a higher segment common to 2 and 3
(segment 1), the address constant may refer to the ENTAB entry
for BILL in segment 1. (This is determined by scanning the
entry list for the HESD entry corresponding to the symbol BILL.)

If a call to BILL was not contained in a common segment, the
address constant DC V (BILL) in segment 2 would be resolved
using the value assigned by the linkage editor to the symbol
BILL, which results in an error.

In segment 3, the address constant is an upward call and is
resolved directly.

Relocation Routine

The relocation of address constants is performed by the
;etocation routine; the routine operates on the following input
ata:

e The address of the RLD input buffers that contain RLD
records

. The address of the RLD note list entry for the RLDs being
processed

U The address of the next available entry in the RLD output
buffer

. The buffer relocation constant (BRC) where:
BRC = starting buffer address of current text + relative
relocation constant of current control section - address

assigned to current control section by the linkage editor -
multiplicity size x current multiplicity number

68 MVS/XA Linkage Editor Logic LY26-3963-0 @ Copyright IBM Corp. 1972,1985

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

Input output
Flag Type Action Performed Flag Type
0000LLST Absolute Absolute relocation 0000LLST A-type
factor is added to
value of address
constant
0001LLST Branch Absolute relocation 0001LLST V-type
: factor is inserted
into value of
address constant _
0010LLST PR displacement Absolute relocation 0010LLST PR displacement
value factor is inserted value
(PR type 1) into value of
address constant
0010LLST PR cumulative PR length from all 0011LLST PR cumulative
displacement purpose table is displacement
value inserted into value value
(PR type 2) of address constant
1000LLST Relative Relative relocation 0000LLST A-type
factor is added to .
value of address
constant

Figure 27.

Relationship of RLD Flag Field to Relocation

Notes to Figure 27 on page 68:

1.

2.

LY26-3963-0 ® Copyright IBM Corp.

If S (sign) in LIST is 1, subtraction is performed, rather
than addition.

In delink type, the delink value is added or subtracted
according to the opposite of the sign; the absolute
relocation factor is added to or subtracted from the address
constant according to the indicated sign.

<

If an RLD item refers to an undefined symbol, the associated
address constant is not relocated. (It may have been
delinked.) The high-order bit of the RLD item flag field is
set to one (1000LLST for an A-type constant, 1001LLST for a
V-type constant), and no relocation will be performed when

the module is loaded into virtual storage for execution.

Delinking is noted in the high-order bit of the'P pointer.

1972,1985 Method of Operation 69

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

Diagrom 4., HESD 036 | JOE
L.E. Relocation 136 | DC V(SAM)* Segment 1
Assigned Constant .
Type Address Seg Length Teble 236 186 | DCV@BILL)
JOE 3% 200
SAM D 72 5
BILL D §72 :200 272 | SAM 272 IBILL
SEGTAB PC 0 6
ENTAB PC 236 5 Segment 2 Segment 3
DC v(BILL) DC V(JOE)
R P Flag Address
RWO [Z T T T IC T 100] Structure with V-type oddress
L3 T] ic_ | 150 | Constants.
Input RLDs - Segment 1 * Zero volue ossigned by the assembler.
Diagrom 8.
Qutput RLD Buffer Entry List Enteb RLD Items
[Z2 T T T ¢ T 13] 2 | 1 T] 0 | 1 [o | 240 1}
L3 1 v J ¥ | 8 } 3 1] T J 1] w [252 |
RLDs and Entry List ofter relocation for control section JOE.
Diagram C.
Seg! 1 ofter pi ing by S d Pass Pr
JOE
01000236
136 DC Vv(Sam]
01000248
186 DC Vv(BKtY
236 47FF 0024 00000 272 02 000000
248 47FF 0012 00000 272 03 000000 ENTAB
260 Stondard Lost ENTAB Entry
Diogram D.
Seg 2 after pr ing by S d Pass Processor.
272 | SAM
02000248 *
752 | OC V(BT
fnput RLD Buffer Output RLD Buffer ENTAB RLD Items Entry List
31T 72 T1T7¢ T &0) 3 T 2 17¢C 1752] (I None | I |
* Same o3 ofter processing segment 1.
Diggram E.
Seg 3 ofter 5 d Poss P ing
BILL
00000036
DC VUOET
Input RLD Buffer Output RLD Buffer ENTAB RLD ltems Entry List
O T3 T7c Te9] Co T 3 The T7e) [None] [)

Figure 28. ENTAB Creation

¢ Same os ofter processing segment 1

70 MVS/XA Linkage Editor Logic

LY26-3963-0 ® Copyright IBM Corp. 1972,1985

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

The relocation routine operates in the following manner:

1. The size of the RLD set!? and the displacement from the
nginning of the buffer are determined from the RLD note
ist.

2. Each RLD item in the current RLD set is scanned to determine
whether:

a. It describes an address constant for the current text
being processed (BRC + address contained in the RLD
address field falls within the text buffer boundaries of
the current text.) ’

b. The address constant is either a valid 2-, 3-, or G-byte
address constant. (The only valid 2-byte address
constants are defined by pseudo register symbols.)

3. Each address constant whose RLD meets the above requirements
is moved from the text into a computation area. The address
constant associated with the RLD item is then relocated
according to the information in the flag field of the RLD
item (see Figure 27 on page 68). In relocating G-byte
address constants (VCONs), the high-order bit in the address
constant before relocation is reproduced in the address
constant after relocation. The relocated address constant
is then placed back into the text.

6. The RLD address field is updated using the relative
relocation factor for the control section being processed.
g{he)control section referred to by the P pointer of the RLD
item).

5. The RLD is moved into the RLD output buffer if space is
available. If space is not available, the contents of the
RLD output buffer are written out on SYSLMOD. See "Second
Pass RLD Buffers"™ under "Second Pass Processing.”

6. Steps 2 through 5 are repeated until all RLD items have been
scanned in the RLD set being processed. The multiplicity
number in the RLD note list is updated if unprocessed RLDs
remain in the set.

7. If there are more RLD sets in the input buffer to be
processed, the address of the next record is determined and
steps 1 through é6 are performed.

Note: To minimize the number of times RLD records are read from
SYSUT1, RLD records for a control section are held in the input
RLD buffer, when possible, until all RLD records in the buffer
have been processed (because each RLD record may pertain to many
multiplicities of text). After each set of RLDs is scanned, the
multiplicity number in the RLD note list is updated to reflect
the multiplicity of the remaining unprocessed RLD records in the
set. An RLD record is removed from the buffer when:

. All RLD items in the record have been processed. (Their
associated address constants have been relocated.)

. Another RLD record must be read into the buffer and space is
not available.

When all records in the input RLD buffer have been scanned, the
relocation routine determines if more RLD records for the
current multiplicity of text are to be read in. (The RLD read
routine sets an indicator when it encounters such a record but
cannot read it into the buffer because the buffer is full.)
When both buffers are full, the second buffer is freed, and a
bit is set in the corresponding RLD note list entries which

12 An RLD set is a group of RLDs referred to by a particular
RLD note list entry.

LY26-3963-0 ®© Copyright IBM Corp. 1972,1985 Method of Operation 71

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

indicates that the RLDs are not in virtual storage. The records
to be read in are then placed in the second RLD buffer; these
records are processed in the same manner as those already
residing in the first buffer. This process is repeated until
all records that contain RLD items pertaining to the current
multiplicity of text have been scanned and processed.

When all RLDs in a buffer are processed, the buffer is marked
"free”™ in the RLD control block. HWhen a new multiplicity of
text is to be relocated, the RLD note list is scanned
sequentially (on ID and multiplicity number) from the first
entry. If an entry indicates that the record is "in virtual
storage™ and the record contains RLD items pertaining to the new
multiplicity of text, it is processed.

INAL PROCESSING (HEWLFFNL

Final processing comprises modules HEWLFFNL, HEWLFBTP, and
(optionally) HEWLFMAP.

The fourth phase of the linkage editor (final processing)
performs Ycleanup” functions, and is the last operation of the
}in?age editor processing. Functions of final processing
include:

. Writing the TTR note list, created during second pass
processing, on SYSLMOD if the output load module is to be
used in overlay. The TTR list contains the relative track
address of the first record of each segment of the overlay
load module. It is used by the overlay supervisor to find
the segments when it loads them into virtual storage for
execution.

. Placing each entry in the proper format for the partitioned
data set directory, modifying it if there are alias symbols,
and issuing a STOW macro instruction!® for the member name
and each alias.

. Checking attributes (reusable, reenterable, and
refreshable). If the attributes have become more
restrictive, a message describing the change in attributes
is printed out. (For example, the input module was
specified as "reusable™ and is now "not reusable.™)

) Printing out a directory of logged errors.

[Producing a MAP or a cross-reference table if the MAP or
XREF option is specified, and the MAP or cross-reference
table was not produced during intermediate output
processing. If the MAP alternate 2-byte table is too small,
warning message IEW0801 is issued.

. Printing a diagnostic message if the module has been marked
"not executablie.™

. Reinitiating linkage editor processing, beginning with
initialization, if a NAME statement terminated SYSLIN input.

L Completing linkage editor processing if end-of-file
terminated SYSLIN input; releasing virtual storage and
returning control to the caller.

12 The STOW macro instruction is not issued if there was no

valid input, if there were no ESDs, if nothing was written
out on SYSLMOD, or if the run was terminated by a severity 6
error.

72 MVS/XA Linkage Editor Logic LY26-3963-0 © Copyright IBM Corp. 1972,1985

Contains Restricted Materials of IBN
Licensed Materials — Property of IBM

Error Logging

Hhenever an error condition is detected during linkage editor
processing, an indicator is set in an error logging map and a
coded diagnostic message is printed out. During final
processing, the error logging map is scanned. MWhen an indicator
is found "on" in the map, an associated list is used to build a
diagnostic message.

Note: An example of error logging is given in Figure 29. Each
entry in the list contains a length indicator and a pointer to a
phrase to be assembled into the message. (Phrases are stored to
save virtual storage space; complete messages would require
additional space because of repetition of identical phrases.)
The diagnostic directory is then printed out, one or two lines
to a message. This directory is normally directed to the
SYSPRINT data set. However, if the TERM option was specified,
diagnostic messages are directed to both the SYSPRINT and
SYSTERM data sets.

Error Logging Map

e e e ——
pe——

Table Y

_————

List

—

s \ N
_____________ - ,1/ ___:_‘——-——_-‘*‘~\\
Phrases jl ‘ - R | \
‘ Phrase P | 1 Phrase R T l Phrase M I Phrase J [
Messoge / / /
| Phrase P] Phrose R | Phrase M ‘ Phrase J 1
Legend:

* This pointer is determined by subtracting the bit number from the length
of the error logging map (64 - 16 = 48),

Figure 29. Building Error Messages

All error messages produced by the linkage ed1tor are identified
by a message ID having the format:

IEWDMMS

where:

IEW identifies the message as a linkage editor error message.
D contains a zero.

MM is the message number.

S is the severity code.

The module in which an error message occurred is identified by
the message number (MM; see Figure 68 on page 189).

LY26-3963-0 © Copyright IBM Corp. 1972,1985 Method of Operation 73

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

Cross-Reference Table

If the XREF option is specified and the cross-reference table
was not produced during intermediate output processing, the RLD
records are read back from SYSLMOD and the cross-reference table
is built, as described in the discussion of intermediate
processing.

76 MVS/XA Linkage Editor Logic LY26-3963-0 ® Copyright IBM Corp. 1972,1985

9861°2.6T °"d40) WAI IYSTJAMO) @ (0-£96E-92A1

uotjedadg 40 poyjay

SL

INITIALIZATION
(DIAGRAM 3)

INPUT
PROCESSING
(DIAGRAM 4)

OVERVIEW OF
LINKAGE EDITOR
PROCESSING
(DIAGRAM 2)

INTERMEDIATE
PROCESSING
(DIAGRAM 5)

SECOND PASS
PROCESSING
(DIAGRAM 6)

ARROWS SHOWING ENTRANCE AND EXIT FROM DIAGRAM

DATA TRANSFER

DATA MODIFIER

CONNECTORS

DECISION BLOCKS

DATA SETS ON
DISKS OR DRUMS

|

MANUAL INPUT

OUTPUT DATA SET

TABLES

FINAL
PROCESSING
(DIAGRAM 7)

*T WVYo9vId

d4OLIA3 3IOWIINIT 40 MIIAUIAO
WII 30 AjJadodd — STETJ33el Pasuasty

WEI 30 STetdale} PSIITJISaY SuTeIU0)

}

’

T 403 TP eBenqury YX/SAW 9L

2160

*duo) WAI IY6TIAdO]) ® 0-£96E-92A1

S86T“2L61

- * FROM JOB SCHEDULER
. OR CALUING PROGRAM

INPUT

——

CONTROL STATEMINTS

FINAL PROCESSING

WRITE REMAINING OUTPUT
ON SYSLMOD AND PRODUCE
OPTIONAL QUTPUT, PERFORM
CLEAN-UP FUNCTIONS

TIR UST

. V’ .
IM!‘H"UZAI'!ON
PREPARE All MFOSE TARE ANO_
“BATA SETS:IN. PAEFARATION FOR
,v-nammuc
" DATA SETS
DWNWARD CALLS,
ourteur ™
From : SELoT
EACH ALL
PROCESS- PURPOSE | ALIAS
ING TABLE (APT) HESD
SEGMENT D
caLs LY b
ORDER TABLE
- ‘
CROSS-REFERENCE CHART
PHASE CSECT FLOWCHART DAYA ssrs H . DMA sas .
Initiglization HE S LFINT BA
Input Processing HESLEING - ca sysutt | Jsvsumon svseRINT | |sysimon
Intermediate Processing HEV.LFADA DA
HEWLFOUT EA
Second Pays Processing HELLFSCD FA TEXT INPUT
wsm
Final Processing HE/LFFNL Ga .
RLD BUFFER
JUIPERS

FINAL QUTPUT

RETURN TO
CALLING
PROGRAM

WEI 30 Ajuadoud — STETJ31BW Pasuast’
WEI 30 STeTJajell PaloTJIIsay surejuod

LL uotjeusdg 40 Poyisy

*dJ40) WEI IYSTIADO) @ 0-£96€-92A1

68612461

INPUT
CONTROL
PASSED FROM
JOB SCHEDULER

//LKED EXEC PGM=HEWL
P,

M.,

CONTROL
PASSED FROM
CALLING
ROUTINE

CALL HEWL

INITIALIZATION (HEWLFFNL)

CAOSS-REFERENCE CHART
CSECT LABEL FLOWCHART
HEWLFINT BA
HEWLFOPT BA
HEWLFINT BA
ALLOO1 BA
HEWLFALK 8B

START

PROCESSING

OPEN DATA SETS

BUILD ALL PURPOSE TABLE

ANALYZE EXEC STATEMENT PARAMETERS AND
CALLING PROGRAM DD NAMES

ALLOCATE STORAGE TO BUFFERS AND TABLES

OuUTPUT

TO INPUT PROCESSING .

‘£ WYHOVIA

NOILVZITVILINI
WEI 40 A3Jadodd — STETJAIBN PasuasTl

WAI 30 STBTJAIRK PAIITJISaY sureuo)

INPUT

SYSLIN BUFFER

RLD BUFFER

TEXT INPUT
BUFFER

OBJECT MOOULE
BUFFER

INPUT PROCESSING {HEWLMINP)

INPUT PROCESSING

CONTROL RECORDS
SCAN EACH CONTROL STATEMENT

(SEE DIAGRAM 8)

—
MAKE ENTRIES IN THE ALL PURPOSE TABLE

{APT) OR IN THE COMPOSITE EXTERNAL
OICTIONARY (CESD)

ESD RECORDS

—
ENTER ESD RECORDS iIN THE CESD

ENTER ESD RECORDS IN RENUMBERING TABLE
FOR TRANSLATION OF ESD IDENTIFIERS INTO
CESD 1Ds

ENTER ESD RECORDS INTO DELINK TABLE IF
SYMBOLS ARE TO BE DELETED OR REPLACED

TEXT RECORDS

ORDER AND PLACE IN TEXT 1’0 TABLE
TEXT NOTE LIST

RENUMBERING TABLE

TWO.PASS
PROCESSING

SINGLE-PASS
PROCESSING

IDR RECORDS

SORT IDRs ACCORDING TO TYPE

SYM RECORDS

WRITE SYM RECORDS ON SYSLMOD IF TEST
ATTRIBUTE WAS SPECIFIED. OTHERWISE,
IGNORE SYM RECORDS

E ALD RECORDS

A, UPDATE R AND P POINTERS
USE CONTROL INFORMATION FROM OELINK
TABLE AND RENUMBERING TABLE

YES

TWO-PASS
PROCESS!:

NO SINGLE.PASS PR

OCESSING

TEXT INPUT BUFFER

CALLS LIST

CROSS.REFERENCE CHART
CSECT LABEL FLOWCHART
HEWLFSCN cs
READS cT
HEWLFALK 88
HEWLFINC cu
B rewewor e ce
INP270 INP281 cc
A HEWLFESD co
c £$043 co
ENTER co
C HEWLCDLK CESPDLIK co
HEWLFMD! INP4D c8
INP270 cc
HEWLFRAT cF
HEWLFTXT BUFFALLOC cG
HEWLFMD! INP340 cB
INP270 INP330 cc
HEWLFIOR
HEWLFMDI INP4D c8
INP270 INP270 cc
HEWLFSYM SYMOD100 €O CO
INP270 INP290 cc
HEWLFRAT CF
RALDOO RLDOOSA cr

BUILD ORDER TABLE FROM ESD 1Ds IN CESD
TABLE AND FROM ORDER AND PAGE CONTROL
STATEMENTS

ORDER TABLE

WGI Jo Ajuadoud — STETJUBIEW PasSUaITT
WAaI 3O STeTdajel pajdTJdisay surejuo)

G86T1°2L6T °"dJ40) WAI IYSTJIAdO) @ (0-£96S-92A1

uotjedadg 40 POy

6L

INPUT

CALLS LIST

ALD BUFFER

TEXT 110 TAB

ORDER TABL

INTERMEDIATE PROCESSING (HEWLFOUT)

CROSS-REFERENCE CHART

START

PROCESSING

. . ADDRESS ASSIGNMENT

N
) A, DELETE ENTRIES REQUIRING NO FURTHER PROCESSING
FROM CESO
8. ASSIGN TEMPORARY LINKED ADDRESSES TO ALL OTHER
CESD SYMBOLS
C. BUILD RELOCATION CONSTANT TABLE (RCT)
_') D. DET ENTAB ENTRIES FOR CESD

LE

CSECT LABEL FLOWCHART
B vewraoa DA
A HEWLFADA ADA00910 DA
8 MEWLFADA ADA00123 DA
C HEWLFADA ADA00120 DA
O HEWLFENS)
G HEWLFADA ADAO1100 DA
J HEWLFENT ENT00150 oC
HEWLFMAP €8
A HEWLFMAP MAP00SS €8
HEWLFMAP PUTLINES €8
B HEWLFMAP XREFS €8
HEWLFMAP PUTLINES €8
HEWLFOUT €A
€ HEWLFOUT 0UT02000 EA
F IDROUT

——
O

o

3 8. BUILD CROSS-REFERENCE TABLE FROM RLDs WRITE ON h—

A. BUILD HALF ESD IMESD) FROM CESD P s—
:> 8. SCANTEXT FOR | O TABLE CESD ID
C. PLACE CESD IN HIGH 1D TABLE. NOTE IN HESD

[€. IF PROGRAM IS SCATTER LOADED, BUILD SCATTER/

€. BUILD DOWNWAROD CALLS LIST '—'—-‘-J"
F. BUILO SEGMENT LENGTH TABLE ISEGLGTH) COMPUTE

SEGMENT RELOCATION CONSTANTS

G ADD SEGMENT RELOCATION CONSTANTS TO TEMPORARY
LINKED ADDRESSES IN CESD AND ENTRIES IN RELOCATION
CONSTANT TABLE TO ADJUST FOR OVERLAY

H COMBINE TEMPORARY LINKED ADORESSES AND RELOCATION
CONSTANTS TO FIND FINAL LINKED ADDRESSES FOR

SYMBOLS PLACED IN CESD

J BUILD ALIAS TABLE FROM ALIAS SYMBOLS IN CESD _W
. MAP XREF PROCESSING

MAR
YES OPTION
SPECIFIED

A BUILD MODULE MAP FROM SORTED CESD ITEMS WRITE ON p—
SYSPRINT

OPTION
SPECIFIED
>

SYSPRINT

- INTERMEDIATE OUTPUT

YES /PROGRAM IN
OVERLAY

O. BUILD SEGMENT TABLE (SEGTAB). PUT ON SYSLMOO

TRANSLATION TABLE FROM CESD. PUT SCATTER/TRANSLATION I
RECORDS ONTQ SYSLMOOD

f
F. WRITE ALL CSECT IDENTIFICATION RECORDS ONTO SYSLMOD l

TO SECOND PASS
PROCESSING

‘S WYY¥ovId

ONISS3J0dd FLVIAIWISLINI

PITL DY YT VN

TJda3e|y pasuadtri

1A SwIaT 1Aaarnn

WEI 30 Ajuadoud — sTE

8

1 403TP3 96ENUTT YX/SAN 0

2160

G261°2L61 "d40) WEI IYBTJIADO] @ 0-£96S-92A1

INPUT

TEXT 1/O TABLE

TEXT NOTE LIST

SYSUT1

HESD
T

RLD NOTE LIST

SECOND
PASS TEXT
BUFFER

SECOND
PASS RLD

INPUT BUFFER I ;
RELOCATION I ;

ENTRY LIST | LLLJ
L T N
[Csecono 1|

START

PROCESSING

11

CREATE ENTABS FROM INFORMATION IN HESO AND ENTRY
LIST 1N SECOND PASS RLD INPUT BUFFER
RELOCATION PERFORMED IN A WORK AREA
IF THE ADDRESS CONSTANT IS A V-TYPE ADDRESS CONSTANT
(BRANCH - TYPE ADDRESS CONSTANT)
A, INSERT ABSOLUTE RELOCATION FACTOR FROM HESD
INTO THE VALUE FIELD OF V-TYPE ADDRESS CONSTANT
8. IF V-TYPE ADDRESS CONSTANT 15 IN OVERLAY PROGRAM
INSERT THE ADDRESS OF THE ENTAB ENTRY AND
SEGMENT NUMBER OF CURRENT TEXT IN VALUE FIELO
OF V-TYPE CONSTANT
A-TYPE ADDRESS CONSTANT (NONBRANCH-IYPE ADDRESS
CONSTANT)
A, MODIFY ADDRESS ASSIGNED BY LANGUAGE TRANSLATOR
USING RELATIVE RELOCATION
FACTOR SECOND

OUTPUT

REPLACE EACH ADDRESS CONSTANT PASS TEXT
FROM THE WORK AREA TO THE SECOND BUFFER
PASS TEXT BUFFER, WRITE CONTENTS OF

SECOND PASS TEXT BUFFER ONTO
SECOND PASS I

SYSLMOD
UPDATE ASSOCIATED RLD ITEM. MOVE | Rrip outPUT

RLO ITEM TO SECOND PASS RLD OUTPUT | aurrer
BUFFER, WRITE SECOND PASS RLD
OUTPUT BUFFER ONTO SYSLMOD

SYSLMOD

1F THE PROGRAM 1S IN OVERLAY, CREATE TTR LIST
CONTAINING THE ADDRESS OF FIRST CONTROL
RECORD OF EACH SEGMENT

CONSTANT
TABLE
SECOND PASS PROCESSING (HEWLFSCD)
CROSS ~REFERENCE CHART
CSECT LABEL FLOWCHART
SCDENTAB SGENDI FA
HEWLFREL * SCOOVLY FE
HEWLFREL RELOC20 FE
HEWLFREL RELOC 100 FE
WRTTXT FO
WRTCRRLD fA
HEWLCPTH FE

TIR LIST

o~

TO FINAL
PROCESSING

‘9 NVY9VId

ONISS300dd SSVd ANOJI3IS

WX JO AjJadodd — STETJajel Pasusati
WAl 30 STeTJajlel PajoTJdisay surejuo)

*dJyol WAI IYSTJAdC) @ (0-£96E-92A1

G86T“2L61

18 uoTjedadg jo poyjay

INPUT

TTR LIST

ERROA
LOGGING MAP

PDS DIRECTORY

FINAL PROCESSING (HEWLFFNL}
CROSS-AEFERENCE CHART

SYSLMOD

START

PROCESSING

CSECT LABEL FC TEXT

H v FNLI00A GA
HEWLFFNL FNLI01A GA
HEWLFFNL FNL100 GA
[4] HEWLFMAP €8

B HEWLFMAP ALDOUTA €8

C HEWLFMAP PUTLINES €8
HEWLFLOG Gc

A HEWLFBTP

8 HEWLFLOG LoG10 oc
16} HEWFLOG [
HEWFENL IEWLCEO! GA

COMPLETE THE PARTITION DATA SET DIRECTORY INCLUDING
MODIFICATIONS FOR ALIAS SYMBOLS

ISSUE STOW MACRO FROM THE PDS TO SYSLMOOD

WRITE THE TTR LIST CONTAINING THE ADDRESS OF THE FIRST
TEXT RECORD IN EACH SEGMENT ONTO SYSLMOD FOR
OVERLAY PROGRAMS

IF XREF WAS SPECIFIED, BUT WAS NOT PROCESSED DURING
INTERMEDIATE PROCESSING ISEE DIAGRAM 5)

A READRLDs FROM SYSLMOD
8 BUILD A CROSS-REFERENCE TABLE FROM SYSLMOD
€ WRITE THE CROSS REFERENCE TABLE ONTO SYSPRINT

CROSS-
REFERENCE
TABLE

SCAN THE ERROR LOGGING MAP

A. BUILD THE ERROR DIAGNOSTIC
DIRECTORY ERROR

8 WRITE THE ERROR DIAGNOSTIC DIAGNQOSTIC
OIRECTORY ON SYSPRINT DIRECTORY

1F THE TERM OPTION WAS SPECIFIED, WRITE THE ERROR
DIAGNOSTIC DIRECTORY ON SYSTERM

RELEASE ALL STORAGE ALLOCATED TO THE LINKAGE EDITOR

QUTPUT

SYSPRINT

RETURN TO
CALLING
PROGRAM

)

L WYY9vIa

ONISS3J0Ud IYNId
WAI 40 Ajuadoud — STETJBIBH Pasuaat]

HEI 30 STeTJajel pajarJ3soy surejuol

contains Restricted Materials of IBM
Licensed Materials — Property of IBM

DIAGRAM 8. CONTROL STATEMENT PROCESSING
SEGTA)
1 0
SEGTA| Updated 2 1 CESD
Overlay DD T cm:; Seg | Sub ?"""‘ /
erla: * Add ointer.
4 . Symbol | Type R%;M No, | Type Cl:oin 1D/
. Chain 1D Length |
7C40 EE 02 7C60 02 90
Include B8 Overlay ltems Added to Overlay Choin in CESD 7¢50 oo 2 7c40 o %0
7C60 FF 02 0000 03 920
Include AA I~ _Include ltems Added to Include Chain tn CESD - 7C70 A 2 7CAD 00
1f S . .
ymbol Found, Seg. No. Replaced - 7C80 GG 2 0000 ‘g‘i‘ 2
Insert GG, HH | If Symbol Not Found, New CESD Entry Mode - 7C90 HH ”2 0000 0% % | —
7CA0 B8 02 7CD0 DO
5 Items Added to Reploce/Change Chain. Operation Noted in Sub! Field
L Reploce I F e Chain Operet: R e 7c80 | 5 |00 | 7cRo 08
_FO
Change JJ (LL) 7CCOo L 00 0000
7CDO [da 02 0000 DO
Alias Symbols Entered into Alics Choin in CESD - 7CE0 MM 02 7000 A0
Alics MM, NN 7cr0 [|2 | oo o8
7000 NN 02 0000 A0
Library Chain Created for Each Library ddnome/Member Nome
Librory - 7010 00 02 0000 80 7030
©O (PP, QQ) 7020
Symbol Entercd in APT, 7030 | pp lo2 | 7DI0 02 | 7050
/] Indicctors Set APT
Nome KK o ; 7D40
System Status KK ress o 7050 QQ 02 7030 02 0000
Index Information SEGTA)
Entered in APT Ai‘j" - 7060 | ss 0a | oooo
ress ol
‘::LS:'" 1 x 1x Vxxxxx l | CES[; 7070
Entry Symbol APT3 CHESD 7D80
) Entered in APT XXX 7090
Entry RR 5] 70A0
RR
EPSM
IDRUDTAB
€SOID DATE | DATA LENGTH DATA
0008 | YYDDDS 09 LEVEL 003
IDENTIFY
JJ('LEVEL003'),
(PAGE GG _If Symbol Found, Get ESDID
ORDER ym! t Found, New niry e
HH,SS(P) | | ORDER TABLE
FLAG| ESDID
A0 0006
30 0013 Band
90 0005

82 MVS/XA Linkage Editor Logic

LY26-3963-0 ® Copyright IBM Corp. 1972,1985

@ @

Object Module Buffer CESD
(ID) ESD SD (Non- 7D30 HH 03 | 7D50
Resolution)
01 |AA |00 | 7CAOQ 089A -3 7D40 AA 00 01 009A
02
SD Matching 7D50 JJ 03 _geogg-
03 (BB 100 |7C40 00AS An ER
\— =7060 | 88 |30 00A6
04
. —-7D70 cC 03 | 0000
¢ 7D80
7D%0
03
RLD Input Buffer LR (Non- 7DA0 DD 06 oF 07A8
(ID) Resolution,
: CESD SD Not 7D80
05 |cc |03 {7cso 04 ——LJR'“’"'“" 70C0
06 PR Matching 7DDO
o PR
07 |DD |06 03 | 06A8 7DEO
08
= 7DF0 EE 05 08 | 00A8
) 1
: ATE00 | FF 05 & e
7E10
SYSLIN Buffer 7E20
D)
o ESD CM (Non- 7630
. Resolution) J
09 | EE }05 | 7CBO 00A8
0A CM Matching
o CM
08 | FF |05 02 | 006A
0oC Legend:
The type of each input ESD item is determined

If no motch is found, nonresolution processing is performed (A, C, E)
If @ match is found, resolution processing is performed (8, D, F)

.
e The CESD is scanned for @ matching symbol
.
D)

(ID)
0l
02
03
04

05

07
08
09
0A

08

0D
OE
OF
10

1

RNT

08

f—OD

Delink Table

™ oD |7c80

*6 Wviavia

ONISS300dd as3a
War - 30 Ajdadoud — STETU3IEW pPasuaat1y

HEI JO STBTJa3el PIJITJIS3Y SUFELIU0)

21607 J40}TPI O6ENUTT YX/SAW b8

G86T“2L6T °"dJ0) WAI IYBTIADO) @ 0-£965-92A1

Object Module Buffer

TXT

Dato A

Text record IDs are renumbered (A)

CSECT lengths obtained (B)

Assuming there is space in TXTBFBEG, text records are moved (C)
Entries made in Text 1/O Table and Text Note List (D)

Contents of TXTBFBEG written onto SYSUT1 (E)

TTR entered into Text Note List (F)

TXTBFBEG
78C0 Dota A

XT

Data €

01
]
ol
02
A

(<) -
u Data B
7F68

CESD

00

01 06AC RNT

00

03 045E
0
: 02

Text I/O Table

SYSUT1

-
—J
~—

01

02

Text Note List

78C0

268

06AC }_/
045€

00
00

TR

WGl 30 Ajuadoud — STETJOIEK Pasuaary
UGT 10 STETJ33eW PajdTJisay suyejuod

Legend:
First Pass RLD Buffer o The 1D in the first control record is renumbered.
The third line of the RNT contains o 4, so the ID

is renumbered to refer to the fourth line of the
CESD (CSECT DD).

)] 0SCA

Control Records

® Assuming CSECT DD (CESD ID = 4) is not to be

ol 0640 deleted, its length (in the control record) is checked.

L R EES

® [f the entire CSECT or a complete multiplicity will
fit in TXTBFBEG, the record containing text for DD
- is read into TXTBFBEG, ond entries are made in the

W text 1/0O table and the text note list*.

® Each subsequent control record is processed. Text
records are read into TXTBFBEG until it becomes full,
at which time its contents are written onto SYSUTI,

i

* In the two text records in this example, the multi-
plicity number is 0, because they are the first text

Input Text Buffer (TXTBFBEG) records for their respective control sections.

7C60 ITXTI 4 I Text Data TXTBFBEG
Text Data | [TXT] 3] Contents Written
Text Records Text Dota When Buffer Is Full

A

Renumbering
Toble (RNT) Text 1/O Table Text Note List CESD

3 4 0 0 7C60 05CA
1y] -0 0 82A 0640

05CA

RIS|8[Z|3
iels|8|a|s
£

. WO D Mult Disp Addr Length

WaI 40 Ajuadoud — STETU3IRW PasuaaTy
WEI 30 STeTJaleH P3JIFJIS3Y SufFeuo)

1 403}TP3 SBEUTT YX/SAW 98

0-£96S£-92A1 o160

*da0) WEI IYBTIAdO] @

S86T°2L61

REG 6

T T Tl ¢

R P
E=[1 [

R P
B e [Te] vere - () Data

RLD Buffer
.RLD 20 112 | Dato
Doto RLD 16 Dato
(RLD 24 | |s]3
Data iRLD l4

R P
.RLDI 42| |2 per (I
R P [rD 30 4[6| Doto
B o] Je]s[oot (
Data
RNT CESD RLD Note List
5 CSECTA |00 2 |, |20 |16
3 RLDA |02 . |24 [82
2 RLDB {02 t
6 |+ |30 [HB
1 CSECTC |00 t
6 CSECTE |00 :
4 RLDC |02 !
ID Mult Length Addr/
Displ
Legend:
e Register 6 initially points to the first RLD input record.
e RLD records are grouped in the RLD buffer by P pointer. In this exomple, the first
and second, and third and fourth RLD records are grouped.
e Rand P pointers are renumbered, using the renumbering table, os RLD records are
moved into the buffer.
o Entries for each RLD set are made in the RLD note list. - Length and displacement
fields refer to the first record of the set.
o When the contents of the RLD buffer are written, the displacement field of the RLD

note list entry for the last set included in the output record is replaced by the relative
track address (TTR) of the SYSUT1 record.

*2T Wvdodvida

ONISS330dd a1

fa meteaw tAaaAnil MAANAT IACAN SlITDYIAA

HEI 40 AjJadodd — STETJa3lel pasusat’

contains Restricted Materials of IBM
Licensed Materials — Property of IBM

DIAGRAM 13. ADDRESS ASSIGNMENT

N I
Q =
- 4 l |
lo |
£ %e'N |
9 w I ™
[V]
3 2 # | ©

RCT

C
RSN

l'A

|
—___F

SEGTAI

O,
At
> [

o
vy
w .
(V)
8|3|x(x|=|8 :
™
a
—-gm
v zZ(z|9
v
Urww: «
=
J 5
=(«
o
L i | UQ_N
wo—£ N‘——{m
“]
3 2 ~
g o
o > o=
w P
o x —
6 2| &0 |~ a

LY26-3963-0 © Copyright IBM Corp. 1972,1985 Method of Operation 87

WL MBI F e BL W WP R W s v oy e — _

Licensed Materials — Property of IBM
DIAGRAM 14. DATA MOVEMENT DURING SECOND PASS PROCESSING

o
(o) g Elzl9
/l\\ “ Q| ~|E
>
©n
A A
w
X
M)
9
@™
2
(&)
H
S 5
s (o]
- w o =) Y §
b} 2l = | o o &
- S22 oy
3 38 o~ 1)
x s —_————{ oy L
X o o [a) J
o Q2 (V) - N
-3 s = I -
m.l & ﬁ ﬁ
&3
L 3
m — w
uc r~3 w
v] =
I
+ 6 g)
w o -
| g3 gl e ST
N a % R 2 @
SN —_ .M 2 {w s_ =11
~ . 6 = ... £
[V c
[6 b o4 - -
w = o
. S {RR
: 3 -
% § @ obt-
.ll- -t - -
g oz
] [
-] £
Z 2 a -~ w »
-] llll'\D e
X o z‘\
- z
[a]
7N P.m
U =
T e % = as
3 s F 21
- 3 ml.vi -H.
2 o z 2
2 o = g - Az n
bl e
X e [a) [®)
Ym _ o - /l\-

Sysum

88 MVS/XA Linkage Editor Logic LY26-3963-0 © Copyright IBM Corp. 1972,1985

Contains Restricted Materials of IBM

Licensed Materials
PROGRAM ORGANIZATION

INITIALIZATION AND I

Initial Processor—H

— Property of IBM

The following text and the flowcharts at the end of this section
describe the processors (code modules, control sections, and
routines) that accomplish the functions of the linkage editor.
The organization of this section corresponds to the organization
of the linkage editor; descriptions of all processors that
constitute a phase of the linkage editor are grouped together.
For each processor, the symbolic name is given to facilitate use
of program listing (see "Microfiche Directory"™), and the
descriptive name is given to facilitate reference to "Method of
Operation.™

Figure 31 on page 97 shows the overall organization of the
linkage editor; this illustration is designed to help determine
relationships among the processors described in this section.

MNPUT PROCESSING

EWLFINT (Chart BA)

Entrance: HEWLFINT is entered from HEWLFROU at the beginning of
linkage editor processing.

Operation: HEWLFINT performs initialization functions,
including building the all-purpose table (APT), analyzing
attributes and options passed by the calling program, opening
data sets, and allocating virtual storage for buffers and work
areas.

Routines Called: HEMLFINT calls the attributes and options

processor (HEWLFOPT) and the allocation routine (ALL001). The
HEWLFINT routine is recalled immediately upon returning from the
first call of the allocation routine (ALLOOl).

Exits: When initialization is completed, HEWLFINT passes
control to the input processor (HEWLFINP).

Attributes and Options Processor—HEWLFOPT

Entrance: HEWLFOPT is entered from the initial processor.

Operation: HEWLFOPT analyzes the options requested and the
attributes specified by the calling program, and notes this
information in the APT. 1If a valid authorization code is found,
it is converted to binary and stored in both the default field
and the PDS entry field of the APT.

Routines Called: HNone.

xits: Hhen attribute and option processing is completed,

Ex
HEWLFOPT returns control to the initial processor (HEWLFINT).

Allocation Processor—ALL001 {Chart BA)

Entrance: HEWLFOPT is entered from the initial processor.

Operation: ALLOOl issues the GETMAIN macro instruction and
assigns storage to buffers.

Routines Called: ALLOO1 calls the table allocation processor

(HEWLFALK) to allocate storage for fixed-length and
variable-length tables.

LY26-3963-0 ®© Copyright IBM Corp. 1972,1985 Method of Operation . 89

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

Exits: When allocation processing is completed, ALLO01l returns
control to the initial processor (HEWLFINT).

Table Allocation Processor—HEWLFALK (Chart BB}

Entrance: HEWLFALK is entered from ALLOOl after storage has
been allocated for the buffers.

Operation: HEWLFALK assigns storage to the internal tables.
HEWLFALK checks minimum required to available storage. If
insufficient, an error message (IEW0666) will be issued.
HEWLFALK determines the amount of storage in excess of the
minimum required. This excess is used to expand proportionately
the variable-length tables over the minimum required.

Routines Called: None.

Exits: When table allocation processing is completed, HEWLFALK
returns to the calling routine.

Input Processor—HEWLFINP (Chart CA)

Entrance: HEWLFINP receives control from the initial processor
when all initialization functions are completed.

Operation: HEWLFINP reads and initially processes all linkage
editor input. Input type (object module or load module) and
input conditions are determined, and control is passed to
appropriate processors.

Routines Called: HEWLFINP calls the following processors:

. Control statement scanner (HEWLFSCN) when a control
statement is detected (blank in column 1)

U Object module processor (HEWLFMDI) when object module input
§$Sf§§$cted (SYSLIN input or fixed (F) format input from

. Load module processor (INP270) when load module input is
detected (undefined (U) format input from SYSLIB)

. Include processor (HEWLFINC) at end-of-input if more modules
must be included

o Automatic library call processor (HEWLCAUT) at end-of-input
on SYSLIN if the NCAL option is not specified

Exits: When input processing is completed, HEWLFINP passes
control to the address assignment processor (HEWLFADA), if valid
input was received. If no valid input was received, control is
passed to the final processor (HEWLFENL) to terminate linkage
editor processing.

Object Module Processor—HEWLFMDI (Chart CB)

Entrance: HEWLFMDI is entered from the input processor when
object module input is detected.

Operation: HEWLFMDI determines the input record type (SYM, TXT,
RLD, ESD, END), loads input record information into general
registers, and passes control to the appropriate processors.

Routines Called: Depending on input record type, HEWLFMDI calls
the following processors:

SYM processor (HEWLFSYM)
ESD processor (HEWLFESD)
END processor (HEWLFEND)
Text and RLD processor (HEWLFRAT)
IDR processor (HEWLFIDR)

o o & 00

90 ..MVS/XA Linkage Editor Logic LY26-3963-0 ® Copyright IBM Corp. 1972,1985

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

Exits: Hhen object module processing is completed, HEWLFMDI
returns control to the input processor.

Load Module Processor—INP270 (Chart CC)

Entrance: INP270 is entered from the input processor when load
module input is detected.

Operation: INP270 determines the input record type (TXT, CESD,
scatter/translation, SYM, CCW, CCW/RLD, RLD, IDR), loads input
record information into general registers, and passes control to
the appropriate processors.

Routines _Called: Depending on input record type, INP270 calls
an associated processor, as shown in Figure 30.

Exits: MWhen load module processing is completed, INP270 returns
control to the input processor.

Record Type Processor
TXT HEHLFRAT
CESD HEHLFESD
Scatter/translation (Ignored)
SYM HEWLFSYM
CCH HEWLFRAT
CCH/RLD HEWLFRAT
RLD HEWLFRAT
IDR HEMLFIDR

If end-of-module indicator is on:

CCH HEMLFEND
CCH/RLD HEWLFEND
RLD HEWLFEND

Figure 30. Load Module Record Types and Associated Processors

SYM Processor—HEWLFSYM (Chart CD)

Entrance: HEWLFSYM is entered from the object module processor
when SYM records have been detected and the TEST attribute has
been ssecified. If TEST is not specified, SYM records are
ignored.

Operations: HEWLFSYM gathers SYM records in the RLD input
buffer, and writes the buffer contents on SYSLMOD when the first
TXT record of a module is detected.

Routines Called: None.

Exits: MWhen SYM processing is completed, HEWLFSYM returns
control to the object module processor.

LY26-3963-0 ® Copyright IBM Corp. 1972,1985 Program Organization 91

contains Restricted Materials of IBM
Licensed Materials — Property of IBM

ESD Processor—HEWLFESD (Chart CE)

Entrance: HEWLFESD is entered from the object module processor
when an ESD record is detected, and from the load module
processor when a CESD record is detected.

Operation: HEWLFESD combines ESDs in the linkage editor input
into a composite ESD. Matching input symbols are resolved, and
specified operations (replace, change, delete) are performed on
the symbols. A renumbering table (RNT) is produced to allow
input ESD IDs to be translated into CESD IDs.

Exits: When ESD processing is completed, HEWLFESD returns
control to the routine from which it was entered (object module
processor or load module processor).

Text and RLD Processor—HEWLFRAT (Chart CF)

Entrance: HEWLFRAT is entered from the object or load module
processors when a text or RLD record is detected.

Operation: HEWLFRAT determines record type (TXT or RLD), checks
for error conditions (input record larger than buffer), and
passes control to the appropriate processor.

Routines Called: Depending on the record type, HEWLFRAT passes
control to either the text processor (HEWLFTXT) or the RLD
processor (RLD0OOl).

Exits: MHWhen text and RLD processing is completed, HEWLFRAT
returns control to the object or load module processor.

Text Processor—HEWLFTXT (Chart CG)

Entrance: HEWLFTXT is entered from the text and RLD processor
when a text record is detected.

Operations: HEWLFTXT operation depends on whether text input is
from object or load modules. Object module text is moved from
the object module buffer to the input text buffer, and must be
arranged in the proper order. Load module text input is already
ordered, so HEWLFTXT reads it directly into the input text
buffer. In either case, the input text ID is renumbered to
refer to the CESD ID of the appropriate control section. When
g?SU%TPUt text buffer becomes full, its contents are written on

Routines Called: When the input text buffer is full, HEWLFTXT
calls the text write routine (TXTBUF—Chart CH) to write the
buffer contents on SYSUT1.

Exits: MWhen text processing is completed, HEWLFTXT returns
control to the text and RLD processor.

RLD Processor—RLD001 (Chart CJ)

Entrance: RLDO00Ol is entered from the text and RLD processor
when an RLD record is detected.

Operation: RLDO0l groups RLD items in the RLD buffer and
renumbers the R and P pointers to refer to appropriate CESD
entries. Each RLD item is processed according to its flag and
address (FA) field. RLD00l also creates an RLD note list, with
entries for each set of RLDs (a set being all RLDs having the
same P pointer). If the RLD buffer becomes full, the contents
gf the buffer are written on SYSUT1 and noted in the RLD note
ist.

Routines Called: MWhen the RLD buffer is full, RLD001 calls the

RLD write routine (RLDBUF—Chart CK) to write the buffer
contents on SYSUT1l, and an entry is made in the RLD note list.

92 MVS/XA Linkage Editor Logic LY26-3963-0 © Copyright IBM Corp. 1972,1985

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

Exits: When RLD processing is completed, RLD001 returns control
to the text and RLD processor.

End Processor—HEWLFEND (Chart CL)

Entrance: HEWLFEND is entered from the object or load module
Zr:ceisgr when an END record or the end of a load module is
etected.

Operation: HEWLFEND resets tables involved in input processing,
processes entry point information, deletes CESD lines marked
chain™ or "delete,™ and enters in the CESD the length of
control sections for which no length was previously indicated.

Routines Called: None.

Exits: MWhen end processing is completed, HEWLFEND returns
control to the object or load module processor.

CSECT Identification Record (IDR) Processor—HEWLFIDR (Chart CQ)

Entrance: HEWLFIDR is entered from the input processor,
HEWLFINP, to process object module END records and load module
1dent1f1cat10n records. It is also entered from HEWLFSCN for
processing IDENTIFY control statements.

Operation: HEWLFIDR takes IDR information from the input
records and enters this data in the appropriate IDR table.

Routines Called: Error and informative messages are processed
by calling HEWLFLOG.

Exits: When IDR processing ends, HEWLFIDR returns to the
calling program.

control Statement Scanner—HEWLFSCN (Chart CS)

Entrance: HEWLFSCN is entered from the input processor when a
control statement is detected.

Operation: Depending on the type of control statement being
processed, the control statement scanner makes entries in the
APT, SEGTAl, and/or the CESD. This information is used to
control subsequent linkage editor processing.

Routines Called: HEWLFSCN calls the READ8 routine (Chart CT) to
process control statement operands.

Exits: When control statement processing is completed, HEWLFSCN
passes control to the include processor (HEWLFINC) if an INCLUDE
control statement was processed (include chain built in the
CESD). Otherwise, HEWLFSCN returns control to the input
processor.

Include Processor—HEWLFINC (Chart CU)

Entrance: HEWLFINC is entered from the input processor when
"more includesY are indicated at end-of-input, and from the
control statement scanner when an INCLUDE statement has been
processed.

Operation: HEWLFINC examines the include chain in the CESD and
selects the next module to be included. It opens the data set,
determines the attributes of the module to be included, and
initializes the DCB to allow the module to be read.

Routines Called: If a module for which the REPLACE/CHANGE

function has been requested is not contained in the specified

éégsaiy, HEWLFINC calls HEWLFEND to delete the corresponding
ines.

LY26-3963-0 ©® Copyright IBM Corp. 1972,1985 Program Organization 93

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

Exits: HWHhen include processing is completed, control is
returned to the input processor.

Automatic Library Call Processor—HEWLCAUT (Chart CV)

Entrance: HEWLCAUT is entered from the input processor at the
end of SYSLIN input, or when a NAME statement has been detected
(provided that the NCAL option was not specified).

Operation: HEMHLCAUT first scans the CESD for unresolved ERs
specified on LIBRARY statements. It attempts to resolve these
ERs by searching the PDS directories of ddnames included in
library chains, allowing the members found to be read. A second
CESD scan attempts to resolve ERs not specified on LIBRARY
statements by attempting to call them from SYSLIB.

Routines Called: After the first series of CESD scans, HEWLCAUT
returns control to the input processor to read the members.

Exits: After the second series of CESD scans, HEHLCAUT passes
control to the address assignment processor (HEWLFADA).

INTERMEDIATE PROCESSING

Address Assignment Processor—HEWLFADA (Chart DA)

Intermediate Output

Entrance: HEWLFADA is entered from the input processor when
input processing is completed

Operation: HEWLFADA assigns linked addresses to all CESD
entries, determines the size of SEGTAB if the program is in
overlay, determines if the first text record does not begin at
address 0, determines the number of ENTAB bytes required for
each segment, builds the alias table, and determines an entry
point for the program.

Routines Called: HEWLFADA calls the ENTAB size determination
routine (HEWLFENS—Chart DB) to compute the size of ENTAB, and
calls the entry processor (HEWLFENT—Chart DC) to build the
alias table and determine an entry point.

Exits: MWhen address assignment processing is completed,
?E?hfébﬁ gasses control to the intermediate output processor
ouT).

Processor—HEWLFOUT (Chart EA)

Entrance: HEWLFOUT is entered from HEWLFADA when address
assignment processing is complete.

Operation: HEWLFOUT writes the following on SYSLMOD; CESD,
SEGTAB (for programs in overlay), and scatter/translation
records (for programs to be scatter loaded). If a HIARCHY
statement is specified, storage hierarchy designations are
included in the scatter/translation records. If the MAP option
has been specified and the 2-byte table can contain all
necessary entries, a module map is produced and written on
SYSPRINT; if the XREF option is specified, and the 2-byte table
can contain all necessary entries, and all RLDs are in storage,
a cross-reference table and a module map are produced and
written on SYSPRINT.

HEWLFOUT builds the high ID table (HIID). The half ESD (HESD)
is also built, after the CESD has been written.

Routine Called: HEWLFOUT calls the MAP/XREF processor
(HEWLFMAP) to produce and write the module map and
cross-reference table, if requested.

94 MVS/XA Linkage Editor Logic LY26-3963-0 © Copyright IBM Corp. 1972,1985

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

Exits: When intermediate output processing is completed,
control is passed to the second pass processor (HEWLFSCD).

SECOND_PASS_PROCESSING

Second Pass Processor—HEWLFSCD (Chart FA)

FINAL PROCESSING

Entrance: HEWLFSCD is entered from HEWLFOUT when intermediate
output processing is completed.

Operation: HEWLFSCD performs the following functions:
J Reads text from SYSUT1

. Relocates address constants contained in the text
o Creates control/RLD records

. Writes text and control/RLD records on SYSLMOD in a format
that can be loaded by program fetch

U Creates ENTABs and associated RLD items for overlay modules "

Routines Called: During second pass processing, HEWLFSCD calls
the following routines:

J Control section search routine (GETIDMUL—Chart FB) to
determine the next ID and multiplicity to be processed

. Text and RLD read routines (RDTXT, RDRLD—Chart FC) to read
required text and RLDs from SYSUT1

. Text write routine (WRTTXT—Chart RD) to write text on
SYSLMOD (HEWLMSIO)

U Control/RLD record write routine (WRTCRRLD) to write RLDs
and control records on SYSLMOD (HEWLFSIO)

. Second pass initialization routine (HEWLFREL—Chart FE) to
initialize text and RLD control blocks

. Relocation routine (RELOCATE—Chart FE) to relocate address
constants (branch-type and nonbranch-type) in the text

. Common path routine (HEWLCPTH) to determine common segments
in an overlay path

. ENTAB creation routine (SCDENTAB) to create ENTAB items for:
each segment

Exits: When second pass processing is completed, control is
passed to the final processor (HEWLFFNL).

Final Processor—HEWLFFNL (Chart GA)

Entrance: HEWLFFNL is entered from HEWLFSCD when second pass
processing is completed.

Operation: HEWLFFNL performs the following "cleanup™ functions:
. Writes the TTR list for overlay modules on SYSLMOD

U Places entries in the partitioned data set directory and
issues a STOW macro instruction

. Prints a directory of logged errors

LY26-3963-0" © Copyright IBM Corp. 1972,1985 Program Organization 95

contains Restricted Materials of IBM
Licensed Materials — Property of IBM

. Checks for more restrictive module attributes

U Produces a MAP and a cross-reference table if it was
requested and not produced during intermediate processing,
and if the primary or alternate 2-byte table will contain
the needed entries. MWarning message IEW080]1 is issued if
the alternate 2-byte table is too small.

Routines Called: During final processing, HEWLFFNL calls the
following routines:

J Diagnostic message directory print routine (HEWLFBTP), which
scans the error logging map produced throughout linkage
editor processing by the error logging routine
(HEWLFLOG—Chart GC); HEWLFBTP builds and prints a directory
of error messages.

. MAP/XREF processor (HEWLFMAP—Chart EB), which produces a
cross-reference table if it was not produced during
intermediate processing.

Exits: If end-of-file was not detected on a SYSLIN input,
HEWLFFNL returns control to the initial processor (HEWLFINT),
and linkage editor processing is repeated. Otherwise, linkage
editor processing is terminated and control is returned to the
control progranm.

SYNAD Routine—HEWLCRO1l (Chart GB)

Entrance: The SYNAD routine may be entered from the following
routines:

] From the control program when any input/output error has
been detected

. From the second pass processor if an error is found after
executing the XDAP macro instruction

Osg;ationz Following are SYNAD considerations for the linkage
editor:

. The SYNAD fields of the DCBs in HEWLFROU contain the address
of the appropriate SYNAD entry point for the access method
used with the data set.

. If the SYNAD routine is entered from the input processor
because of incorrect length, the length of the incorrect
input block is checked. If a valid short block (integral
multiple of (LRECL) is found, control is returned to the
supervisor to continue processing; if not, processing is
terminated with an error message and completion code of 16.

. If the SYNAD routine is entered while writing to the
SYSPRINT data set, control is passed to the final processor,
agdlgxecution is abnormally terminated with a condition code
o .

. When the include processor opens the DCB for SYSLIB, the
address of the appropriate SYNAD entry (for either BSAM or
BPAM access methods) is moved into the SYNAD field.

U If the second pass processor finds an error after executing
the XDAP macro instruction, it loads register 1 with the IO0B
address, loads register 15 with the SYNAD entry point for
the EXCP macro instruction, and branches on register 15.

96: MVS/XA Linkage Editor Logic LY26~3963-0 © Copyright IBM Corp. 1972,1985

‘1§ @4n6T14

UOT}EZTUBGUQ JO}IP] IBEHUT]

Initial Poceming
HEWLFROU HEWLEINT
Emry Poine Initiod
Procemor
{Chart AA) (Chare BA)

HEWLFOPT

Artvibutes ond
Owtions
Procomor

(Chart BAY

ALO0Y

HEWLFIN?

Allocation
Routine
(Chory BA}

lnput Focenar| |

{Chorr CA)

HEWLFALK

Teble
Allocation
Routine
(Chors 83)

Inpus Pocewing I Intormediste Proceming
[}
HEWLFMD! HEWLFESD HEWLFOCN | RINUMITR |,
LABEL eNTER '
Object Module ESD Mrocemar REELINE [Tniwicrin | |
~ NXTUINE | IDCESD |
(Chat CB) {Ohae €6 MIWLFRCG | MEWLCOLK | |
HEWLFSYM DLDEF '
SYM Processor :
(Chart CD) :
INP220 HEWLERAT HEWLFTXT : MEWLFACA
Addven Ami HEWLFENS
Lood Module Text and RLO Tent Pocener xeur |) wigre (Ot DY
Pocener fdod Procemor — | ment Pocenar NEWLFENT
{Chart CC) {Chart CF) (Chart CG) {Chare CH) | (Chart DAY {Chat DC)
HEWLFEND £1.0001 :
END Hocenor RLD Procersor RLDBUF | |
|
(Chart CL) Chat C0 (Char CKI|
|
HEWLFING HEWLFIDR | _MEWLFOUT HEWLEMAP
Inchude Proon | wm«. A::: ::.n
Procene: =] (Crom CM, | Processor
(Charr CUY CN,CP.CQ) | [Cronea, €c) (Chart EB)
|
HEwLCAUT '
ic]
Library Coll]
Procewor \
(Chart VI]
|
HEWLFSCN |
Contol READ B)
s {Chor CT) |
Scanner PROCENTY L}
(Chart CS) Chart CH1]
|
HEWLCIDR |
Wentify]
Processor]
(Chat CO) |
'
]
|
|
|
1

Second Pom ocaming

HEWLFSCO

GENDMA

[Control Section;
Search (Ger
~—{ 10/

(Char A)

EDIXT/ARDRLD

Rocd From
SYSuUnl

{Ohart FC)

WRITXT/WRTCRRLD

Secend Paxy
Rrocessor

(Chart FAY

Wrire To
$YSLMOD

(Ohary FO)

HEWLFREL/
RELOCATE

Relocation
[Routine
{Charr FE)

SCOENTAB

ENTAD
Crearion

HEWLCPTH

L] Common Porh
Rovtine

HEWLFFNL

Rnel Precaming

Write TTR Us
On Overley)

Finol Frocenor

(Chart GA)

j=—q XREF Procoscs |

HEWICED!

Finol Cleawp
Terminate ond

SYNAD

SYNAD

(Chart GB)

WEI #0 A3uadoud — STETJIBW Pasuaati
WGI 3O STEefJalel pajaTJdisay suyeiuod

Ccontains Restricted Materials of IBM
Licensed Materials — Property of IBM

FUNCTIOMAL SYKBOLS
TTee L] .il .::
¢ PROCESSING
: BLOCK

0000000

0600000000000 000

oootc)oooo;ooo;
SENTR OR®
oTExMIN 'ubcx

oo.oooooooooooo

seD10ccssse
.
®MODIFICATION ¢
. BLOCK o

. .
sssecessnee

LI AL LTI T T LY T

SINPUT/QUTPUT
BLOCK R

®s00000scsssenes

[III T AR YT Y XY
. .

s_0_s_o_o.0_0o.0¢

SUBROUTINE
BIOSK

9000000000000 0000

see00Glosersevoce
..

PREDEF] NED e
PROCESS

OFF~PAGE
CUHNECTOR

Figure 32.

s000 3000000000
.
: HOURSRTN
s000000s0000000

eTT v
ssecopnlocecesvene
- --SUBNAME---
FIND TABLE
ENWTRY

.
9000s000000000000

00
. .

eCcle
. ~>
YT

00000CI00 00000000
.

EXTYY YT PRI Y YY T)

[1XT)
. .

reerevoe
.

.
.
.

.
ess00000000000000

0 YYAL
eecsoriesessscses
*SyBiM .
eoo 0. 0.0 0 0.0

L SUSRR—

RMINAL BLOC
TO_SHOW ENTRYBANDK2§§TUSSD
"{sb 'sﬁousmuﬂ"gmm
NAMED HOURSRTN.

INSTRUCTION AT
LS A SUBROU’I‘INE ﬁﬂ{b
THAT IS

INED BY THE
XT BLOCK ITSE ."’.xr I THE

ON-PAGE ENTRY CONNECTOR.

ONE OR MORE BRANCHES TO
HIS BLOCK APPEAR ON THIS

PAGE OF THE FLOWCHART.

OFF-PAGE ENTRY CONNECTOR.
A ANCH TO THIS BLOCK
APPEARS ON ANOTHER PAGE(S)
OF THIS FLOWCHART.

LINE JUNCTION

0000 2000000000
: RETURN
(XYY I IY L)

CONﬂOL 1S RETURNED TO
AV ua E POXNI'. TOR

!X TO Tl 1NT
AT IDIICII nus ROUTINE
WAS INVOKED.

Sample Flowchart

L ...
I Gy e,
....Gz...'.'... N - .,
. l «®
. RETURN e feaat, [P,
. < .. . l
0000000 R ., .®
[o, .®
S »
H
I
H >
G
sH3eeeos

EXECUTE oo
UTLXYZ .o

XYY TIY YN

secoKIecssscece
L] .
: GO TO TAXRTN :

XYy essevocce

Symbols

ON-PAGE EXIT CONNECTOR. CONTROL
BRANCHES TO BLOCK D) ON THIS PAGE
OF THE FLOWCHART.

THIS BLOCK REFERS TO A ﬁOUT.{'NB
OR PROGRAY THAT IS DOCUMENTED
IN SOME OTHER PUBLICATION.

OFF-PAGE EXIT LONNECTOR. CONTROL
BRANCHES TO BLOCK Al ON PAGE 2
OF THIG FLOWCHART

CONTROL BRANCHES TO AN ENTRY
POINT ON ANOTHER FLOWCHART.

98 MVS/XA

Linkage Editor Logic

LY26-3963-0 © Copyright IBM

Corp.

1972,1985

Contains Restricted Materials of IBM
Licensed Materials =—— Property of IBM

CHART AA. LEVEL MAJOR DIVISIONS

ssespIescrecene

.
:CONI‘KOL PROGRM: -----

te00ss000000000

essespueesecesee
* HEWLFROU
e_o_e_o_0_eo_e_o_¢

>e .
: ENTRY POINT :

es000s00000s00000

INITIAL PROCESSING

ouoo[g%nocooo'oo
* HEW! NT BAAJe
s_e_e_e_e_o_o_o 0
. INITIAL .
: PROCESSOR .

TR R T T XL Y 1Y

INPUT PROCESSING

. .
:!NPUT PROCFSSOR:
®e00ces000c0sesne

INTERMEDIATE PROCESSING

SECOND PASS PROCESSING

sseseDIes0000 0000
A

.

bd ADDRESS
® ASSIGNMENT o
SOR .
s00ssseisttssciee

$0sesE30000000000
2¢

.
* INTERMEDIATE ¢
. ! OUTPUT .

. PROCESSOR .
eesessessstesnsce
1

Soe.o_b_0.0_%_0_0
* SECOND PASS ¢
: PROCESSOR :

tess00ssscossssee

FINAL PROCESSING

LY26-3963-0 © Copyright IBM Corp. 1972,1985

. .
*FINAL PRWBSSOR:
.

200000 0sssesesere

seeejj3eccccssese

3
:COM’ROL PROGRM:
sesvecsensrciee

Program Organization

99

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

CHART BA. INITIAL PROCESSOR (HEWLFINT)

PROM ROOT SEGMENT (HEWLFROU)
Seeeple0esr00se
. .
. HEWLFINT .
. .

000c00000000000

S600sR30s0N0000 0

9000000008000 0000

ess0eC)os00000000
SHEWLFOPT
e_s_s 0 00 0
*ATTRIBUTES AND
. OPTIONS

. PROCESSOR
s0ss0000s0000000e

%

s000eD200co0scsse D3 ., sseesliessescesoe
.® ., ¢ PLACE PASSED ¢
-* PARAMETER ¢. YES *DDNAMES IN DCBS®
®. LIST PASSED ,%-------->¢ OF ALL DATA ¢
., o . . SETS .
. .
s0000000000000v0e ‘e, Lo s00000s0000000s00

eeseEIeessetsroe
. .
* SAVE DDNAMES o
*FOR SYSUT1 AND *
. SYSLMOD .

eesvceceensescene

*oFJecvense

0
¢ OPEN SYSLIN ¢
. SYSPHINT .
. SYSLMOD .‘

ssssesvenee

esscocsncece

.
ESTABLISH »
$ MULTIPLICITY §

.
eevssetvsvenvree

FROM FINAL PROCESSOR R ALLOOL

G2 ., 000 4(GIse000 000
ss00G1e0eevo0ns . ., . TE .
. . .° SYSLMOD ~¢. YES o INPUT/OUTPYT, *
* HEWLFNAM oo >¢,DATA SET OPEN,®----- * LOAD MO 'e
L] * ., . ® . RLD, .
6000000000000 ., «® BUFFER: .

. 0000000000000

. o ®
*NO

se[2000000s
* .

. .
"OPB‘ SYSLMOD .° ————>

. .
s0ves00crce

ALLO43
s0ee0J3e000000000
SCLEAR REQUIRED
. PARTS OF
* PROCESSING
: ‘TABLES

s0s00esecssenee

.
.
.
.

sseeKIrecsccene
. .
. HEWLFINP :
.

ssessssvessrece

TO 1WPUT PROCESSOR

100 MVS/XA Linkage Editor Logic LY26-3963-0 © Copyright IBM Corp. 1972,1985

contains Restricted Materials of IBM
Licensed Materials — Property of IBM

CHART BB. TABLE ALLOCATION PROCESSOR (HEWLFALK)

osesA2e R
.
¢ HEWLFALX
8000009000000 0
v
%, . ®
B2 ‘e, 83" e,
.,o ., o .,o Is .,. xo ‘ooo
*® IS OVERLAY "+ NO = _,<® HIiERARCHY ** 020 ___
*“s SPECIFIED _** >* . SPECIPIED. " " >3p2
., . ., . oo
., .0 . .
. L]
jYES YES

oo.a.czoyooou.oo
.

 INDICATE OVER-¢ ,**°,
e LAY TABLE TO ¢ +D2
L] .

3
s00ssF20000000000

* CALCULATE .
o TABLE SIZES: o
¢ MINIKUM + :
3 (BYTES/WEIGHT)
o WEIGI

o.ooooool.oo.oolo

X1 GZ.Y....
o
» UPDATE APT I
® FORMATION ON
S TABLE SIZES

o AND LOCATIONS

s0e0000000000000

.
[3
.
3
.
.
.

ooooouzo‘o’.o.oo.oo
. .

* RECORD HIGHEST *
S ADDRESSES USED
oBY TABLES IN
® PIRST PASS ’
SINTERPASS,s ¢
< SECOND PASS |
%.‘O...O‘. ssooe
M
J2ISe,
JOTHIS A e,

TBAL 300y
00000K20000000000
¢MOVE AND CLEAR ¢
STABLES AFTER §_______ o