
r
f

'.

Program Product

GC28-1295-0
File No, 5370-39

Property of Systems
Development LibraiY ...

MVS/Extended Architecture . .
TSO Guide to Writing a .. '
Terminal Monitor Program. or
a Command Processor'

MVS/System Product - JES2'Version 2 5740-XC6
MVS/System Product - JES3 Version 2 5665-291
Data Facility Product .. 5665-284

"

, .

--...-------- - ------- -. ---- -- -~-----------_. -

First Edition (Januaiy, 1983)

This edition applies to Version 2 of MVS/System Product 5665-291 or 5740-XC6 until
otherwise indicated in new editions or technical newsletters. Changes are continually made
to the information herein; before using this publication in connection with the operation of
IBM systems, consult the latest/BM System!370 Bibliography, GC2D-000l, for the editions
that are applicable and current.

References in this pUblication to IBM products, programs, or services do not imply that IBM
intends to make these available in all countries in which IBM· operates. Any reference to an
IBM program product in this publication is not intended to state or imply that only IBM's
program product may be used. Any functionally equivalent program may be used instead.

Publications are not stocked at the address given below. Requests for IBM publications should
be made to your IBM representative or to the IBM branch office serving your locality.

A form for readers' comments is provided at the back of this publication. If the form has been
removed, comments may be addressed to IBM Corporation, Information Development,
Department 058, Building 920-2, PO Box 390, Poughkeepsie, N.Y. 12602. IBM may use or
distribute whatever information you supply in any way it believes appropriate without incurring
any obligation to you.

© Copyright International Business Machines Corporation 1982

~ .
, '~.

Preface

This publication describes features of TSO that can be replaced, modified,
or added to by each installation, to adapt the command system to the
installation's particular needs. The manual is intended for programmers who
are responsible for modifying portions of TSO.

The publication discusses the terminal monitor program and the
command processors from the viewpoint of their replaceability, and
describes the programming features provided within TSO for user-written
terminal monitor programs, command processors, and application programs.
These features include:

• Service routines
• Macro instructions
• SVCs

This publication contains information required by a programmer writing a
terminal monitor program or a command processor for TSO. It discusses the
functions that a terminal monitor program or a command processor should
provide, and it describes the macro instructions and service routines that
can be used to provide these functions.

The book is divided into fifteen sections:

• Introduction
• Terminal Monitor Program
• Command Processors
• MVS/Extended Architecture Considerations
• Processing Terminal Requests -- The TSO Service Routines
• Message Handling
• Attention Interruption Handling -- The ST AX Service Routine
• Dynamic Allocation of Data Sets -- The Dynamic Allocation Interface

Routine (DAIR)
• Using BSAM or QSAM for Terminal I/O
• Using the TSO I/O Service Routines for Terminal I/O
• Using the TGET /TPUT /TPG SVC for TerminalI/O
• Using Terminal Control Macro Instructions
• Command Scan and Parse -- Determining the Validity of Commands
• Catalog Information Routine (IKJEHCIR) .
• Default Service Routine (IKJEHDEF)

The first three sections describe the functions performed by terminal
monitor programs and command processors. The fourth section describes
programming considerations for MVS/Extended Architecture systems thai
affect the tasks documented in this manual. The fifth section describes how
to interface with the TSO service routines to process terminal requests.

The next ten sections describe the macro instructions and service routines
that a programmer can use to provide the required functions. The macro
instructions and service routines can be used to:

• Issue messages
• Schedule and process attention interruptions

Preface iii

• Allocate, free, concatenate, and deconcatenate data sets during
program execution

• Provide I/O between a program and a terminal
• Control terminal functions and attributes
• Determine the validity of commands, subcommands, and operands

entering the system
• Retrieve information from the system catalog
• Construct a fully-qualified data set name

The packaging of the TSO library for MVS/Extended Architecture
(MVS/XA) is as follows:

• A base book as updated by an MVS/System Product Version 2
System Library Supplement,

• A new book (System Programming Library: TSO, TSO Terminal
User's Guide, TSO Guide to Writing a TMP or a CP).

Note that the titles for the TSO library for MVS/XA begin with the
"MVS/Extended Architecture" system prefix.

Prerequisite and Reference Publications

The reader of this publication should have a knowledge of the structure of
TSO.

In addition, the reader should have the following publications available
for reference:

iv TSO Guide to Writing a TMP or a CP

Principles of Operation

MVSjExtended Architecture Data Management Macro Instructions,
GC26-4014

MVSjExtended Architecture Data Management Services, GC26-4013

MVSjExtended Architecture VSAM Programmer's Guide, GC26-4015

MVSjExtended Architecture System Programming Library: Data
Management, GC26-4010

MVSjExtended Architecture System Programming Library: Initialization
and Tuning, GC28-1149

MVSjExtended Architecture JCL, GC28-1148

MVSjExtended Architecture System Programming Library: Supervisor
Services and Macro Instructions, GC28-1154

MVSjExtended Architecture System Programming Library: TSO,
GC28-1173 .

MVSjExtended Architecture System Programming Library: System
Modifications, GC28-11S2

MVSjExtended Architecture System Programming Library: System
Macros and Facilities

Vol. I, GC28-11S0

Vol. II, GC28-11S1

r

Data Areas

(for MVS/System Product Version 2 JES2) L YB8-1191

(for MVS/System Product Version 2 JES3) LYB8-1195

Data Area Usage Table

(for MVS/System Product Version 2 JES2) LYB8-1l93"

(for MVS/System Product Version 2 JES3) LYB8-1l97

Symbol Usage Table

(for MVS/System Product Version 2 JES2) LYB8-1192

(for MVS/System Product Version 2 JES3) L YB8-1196

OSjVS2 Directory. SYB8-0743

MVSjExtended Architecture TSO Command Language Reference

(OSjVS2 TSO Command Language Reference. GC28-0646, as
amended by GD23-0259)

MVSjExtended Architecture TSO Command Processor Logic. Volume 1-
ACCOUNT

(OSjVS2 TSO Command Processor Logic. Volume 1- ACCOUNT.
SY28-0651, as amended by LD23-0270)

MVSjExtended Architecture TSO Command Processor Logic. Volume II
- EDIT.

(OSjVS2 TSO Command Processor Logic. Volume II - EDIT.
SY33-8548, as amended by LD23-0272)

MVSjExtended Architecture TSO Command Processor Logic. Volume IV.

(OSjVS2 TSO Command Processor Logic. Volume IV. SY28-0652, as
amended by LD23-0265)

MVSjExtended Architecture TSO Terminal Monitor Program and
Serl'ice Routines Logic

(OSjVS2 TSO Terminal Monitor Program and Service Routines Logic.
SY28-0650, as amended by LD23-0262)

MVSjExtended Architecture TSO Terminal User's Guide. GC28-1274

MVSjExtended Architecture Message Library: TSO Terminal Messages

(OSjVS Message Library: TSO Terminal Messages. GC38-1046, as
amended by GD23-0269)

MVSjExtended Architecture System Programming Library: 31-Bit
Addressing. GC28-1158

Prefaee v

Referenced Products

vi TSO Guide to Writing a TMP or a CP

1. All references to MVS/Extended Architecture (or to MVS/XA)
indicate Data Facility Product (5665-284) and MVS/System Product
Version 2 - JES2 (5740-XC6) or MVS/System Product Version 2 -
JES3 (5665-290.

2. All references to VTAM. TSO/VTAM. and ACF/VTAM indicate
the program product ACF/VTAM Version 2 (5665-280).

3. All references to TCAM and TSO/TCAM indicate the program
product ACF/TCAM Version 2 Release 4 (573S-RC3).

4. All references to TSO /E indicate the program product TSO
Extensions (5665-293).

Summary of Amendments

Introduction.
The Terminal Monitor Program (TMP) and Command Processors
Basic Functions of Terminal Monitor Programs and Command Processors

Communicating with the User
Passing Control to Command and Subcommand Processors
Responding to Abnormal Terminations
Responding to Attention Interruptions
The Dynamic Allocation of Data Sets .

Summary

The Terminal Monitor Program
Terminal Monitor Program Initialization
Requesting a Command
Intercepting an ABEND

Intercepting a Subtask ABEND
Intercepting a TMP Task ABEND

Processing an .Attention Interruption .
Parameters Received by Attention Handling Routines .

The Attention Exit Parameter List.
The Terminal Attention Interrupt Element (TAlE)

Processing a STOP Command

Command Processors.
Adding Commands to TSO
Command Processor Coding Conventions
Command Processor Use of the TSO Service Routines

ST ACK Service Routine
Catalog Information Routine
Default Service Routine . .
GETLINE Service Routine
PUTLINE Service Routine
PUTGET Service Routine .
IKJEFF02 Message Issuer Service Routine
DAIR Service Routine
Command Scan Service Routine
Parse Service Routine.

ESTAE/EST AI Exit Routines -- Intercepting an ABEND
Linkage Considerations
Command Processor Functions that Rely on Exit Routine Support
Guidelines for ESTAE and ESTAI Exit Routines

Attention Exit Routines
The HELP Data Set

Attributes of SYSI.HELP .
Format of HELP Members
Private HELP Data Sets
Updating SYS l.HELP

Writing HELP Members

MVS/Extended Architecture Considerations
Testing a Program.
31-Bit Addressing -- General Interface Considerations

AMODE=24,RMODE=24 .
AMODE=ANY,RMODE=24
AMODE=31

Specific Interfaces and Functions
Control Program Interfaces
Service Routine Interfaces
Macro Interfaces . .
Notes on Figure 12 .

Contents

xiii

I
1
2
2
3
3
4
4
4

5
6
7
8
9

10
II
12
14
14
15

17
17
18
18
18
19
19
19
20
20
20
20
21
21
22
22
22
23
23
24
25
25
25
25
26

29
29
29
30
30
30
31
31
31
32
34

Contents vii

Processing Terminal Requests -- The TSO Service Routines
Interfacing with the TSO Service Routines .

The Command Processor Parameter List
Passing Control to the TSO Service Routines
The CALL TSSR Macro Instruction

Message Handling
Message Levels.
Effects of the Input Source on Message Processing
TSO Message Issuer Routine (IKJEFF02) . .

IKJTSMSG -- Describes Text and Insert Locations

Attention Interruption Handling - The STAX Service Routine
Specifying a Terminal Attention Exit - The STAX Macro Instruction
The ST AX Parameter List
Coding Example of the ST AX Macro Instruction
Return Codes from the ST AX Service Routine .

Dynamic Allocation of Data Sets -- The Dynamic Allocation Interface Routine (DAIR)
Considerations

Using DAIR
The DAIR Parameter List (DAPL) .
The DAIR Parameter Block (DAPB)

Code X'OO' - Determine if DDNAME or DSNAME Allocated
Code X'04' - Determine if DSNAME Allocated or in System Catalog
Code X'OW - Allocate a Data Set by DSNAME. . .
Code X'OC' - Concatenate the Specified DDNAMES . . .
Code X' 10' - Deconcatenate the Indicated DDNAME . . .
Code X' I 4' - Return Qualifiers for the Specified DSNAME
Code X'l R' - Free the Specified Data Set
Code X' I C' - Allocate the Specified DDNAME to the Terminal
Code X'24' - Allocate a Data Set by DDNAME
Code X'2R' - Perform a List of DAIR Operations.
Code X'2C' - Mark Data Sets as Not in Use
Code X'30' - Allocate a SYSOUT Data Set to the Message Class
Code X'34' - Associate DCB Parameters with a Specified Name
DAIRACB - DAIR Attribute Control Block

Return Codes from DAIR
Return Codes from Dynamic Allocation . , .
DAIRFAIL Routine (IKJEFFI8)
GNRLFAIL/VSAMFAIL Routine (IKJEFFI9)

Using BSAM or QSAM for Terminal I/O
BSAM/QSAM Macro Instructions.

SAM Terminal Routines
GET
PUT and PUTX
READ.
WRITE
CHECK

Record Formats, Buffering Techniques, and Processing Modes
Specifying Terminal Line Size.
End of File (EOF) for Input Processing
Modifying DD Statements for Batch or TSO Processing

Using the TSO I/O Service Routines for Terminal I/O
The Input/Output Parameter List

Passing Control to the I/O Service Routines
The I/O Service Routine Macro Instructions

,iii TSO Guide to Writing a TMP or a CP

STACK - Changing the Source of Input
The STACK Macro Instruction - List Form
The STACK Macro Instruction - Execute Form
Sources of Input
Building the STACK Parameter Block ..
Building the List Source Descriptor (LSD)
Return Codes from STACK ...' . .

GETLINE - Getting a Line of Input
The GETLINE Macro Instruction - List Form

37
38
38
39
40

43
43
44
45
47

49
51
55
56
58

59
59
59
61
61
62
63
65
69
69
70
71
73
74
78
79
80
83
84
86
87
88
89

91
91
92
93
93
93
93
94
94
94
94
95

97
97
99

100
100
101
103
106
107
111
116
117
117

The GETLINE Macro Instruction - Execute Form 119
Sources of Input 122
End of Data Processing 122
Building the GETLINE Parameter Block 123
Input Line Format - The Input Buffer 125
Examples of GETLINE 126
Return Codes from GETLINE 129

PUTLINE - Putting a Line Out to the Terminal 129
The PUTLINE Macro Instruction - List Form 129
The PUTLINE Macro Instruction - Execute Form. 132
Building the PUTLINE Parameter Block 137
Types and Formats of Output Lines 138
PUTLINE Message Line Processing . . 146
Return Codes from PUTLINE 154

PUTGET - Putting a Message Out to the Terminal and Obtaining a Line of Input in
Response 154

The PUTGET Macro Instruction - List Form . . 155
The PUTGET Macro Instruction - Execute Form 159
Building the PUTGET Parameter Block (PGPB) 164
Types and Formats of the Output Line 167
Passing the Message Lines to PUTGET 167
PUTGET Processing. 170
Input Line Format - the Input Buffer 171
An Example of PUTGET 173
Return Codes from PUTGET. . . . 177

Using the TGET /TPUT /TPG SVC for Terminal I/O . 179
The TPUT Macro Instruction - Writing a Line to the Terminal 179

Return Codes from TPUT. 185
The TPG Macro Instruction - Writing a Line Causing Immediate Response. 185

Return Codes from TPG 187
The TGET Macro Instruction - Getting a Line from the Terminal 188

Return Codes from TGET 190
TGET /TPUT /TPG Parameter Formats 191
Coding Examples of TGET and TPUT Macro Instructions . . . 196

Examples of Both TPUT and TGET Using the Default Values. 196
Example of TPUT Macro Instruction - Buffer Address and

Buffer Length in Registers 198
Example of the TGET Macro Instruction - Register Format 199

Using Terminal Control Macro Instructions 201
GTSIZE - Get Terminal Line Size. 202
GTTERM - Get Terminal Attributes. .. 202
RT AUTOPT - Restart Automatic Line Numbering or Character Prompting. 203
SPAUTOPT - Stop Automatic Line Numbering or Character Prompting 204
ST ATTN - Set Attention Simulation 205
STAUTOCP - Start Automatic Character Prompting 206
STAUTOLN - Start Automatic Line Numbering 207
STBREAK - Set Break 209
STCC - Specify Terminal Control Characters. . 210
STCLEAR - Set Display Clear Character String 212
STCOM - Set Inter-Terminal Communication. 213
STFSMODE - Set Full Screen Mode 213
STLINENO - Set Line Number. . . 215
STSIZE - Set Terminal Line Size . . 216
STTIMEOU - Set Time Out Feature. 217
STTMPMD - Set Terminal Display Manager Options 219
STTRAN - Set Character Translation 220
TCLEARQ - Clear Buffers. 221

Command Scan and Parse - Determining the Validity of Commands
Sequence of Operations

Using the Command Scan Service Routine (IKJSCAN)
Command Name Syntax
The Parameter List Structure Required by Command Scan

The Command Scan Parameter List
Flags Passed to Command Scan
The Commar.d Scan Output Area

The Operation of the Command Scan Service Routine

223
223
224
224
225
225
226
226
227

Contents ix

Results of the Command Scan
Return Codes from Command Scan

Using the Parse Service Routine (IKJPARS)
Command Parameter Syntax

Positional Parameters
Keyword Parameters

Using the Parse Macro Instructions to Define Command Syntax
IKJPARM - Beginning the PCL and the PDL
IKJPOSIT - Describing a Delimiter-Dependent Positional Parameter
IKJTERM - Describing a Delimiter-Dependent Positional Parameter
IKJOPER - Describing a Delimiter-Dependent Positional Parameter
IKJRSVWD - Describing a Delimiter-Dependent Positional Parameter
IKJIDENT - Describing a Non-Delimiter Dependent Positional Parameter.
IKJKEYWD - Describing a Keyword Parameter
IKJNAME - Listing the Keyword or Reserved Word Parameter Names
IKJSUBF - Describing a Keyword Subfield
IKJENDP - Ending the Parameter Control List
IKJRLSA - Releasing Real Storage Allocated by Parse

Passing Control to the Parse Service Routine
The Parse Parameter List
Formats of the PDEs Returned by Parse

The PDL Header
PDEs Created for Positional Parameters
Effect of List and Range Options on PDE Formats
The PDE Created for a Keyword Parameter

Additional Facilities Provided by Parse
Translation to Uppercase

Insertion of Default Values
Passing Control to a Validity Checking Routine
Insertion of Keywords
Issuing Second Level Messages

Prompting
Examples of Using the Parse Service Routine

Example 1
Example 2
Example 3
Example 4

Return Codes from the Parse Service Routine

Catalog Information Routine (IKJEHCIR)
Return Codes from IKJEHCIR
Return Codes from LOCATE

Default Service Routine (IKJEHDEF)

Appendix A: Notation for Defining Macro Instructions

Appendix B: Using VTAM Full-Screen Mode (STFSMODE and STLINENO)
Protection of Screen Contents

Use of TGET
Screen Content Restoration. .
NOEDIT Mode
Full-Screen Protection Responsibilities of Attention Exit Routines
Determining Screen Protection in Full-Screen Mode
Exiting and Reentering Full-Screen Mode
Full-Screen Command Processor Termination

Use of Terminal Break.

Index

x TSO Guide to Writing a TMP or a CP

229
229
230
233
B3
244
245
246
247
252
258
262
265
271
272
276
277
277
278
279
279
2RO
280
293
300
300
300
300
301
302
303
303
306
306
310
313
316
319

321
323
323

325

327

329
329
330
330
331
331
331
335
335
336

337

Figures
Figure 1. A LOGON Procedure 5
Figure 2. Requesting a Command 7
Figure 3. The TSEVENT Macro Instruction Specifying PPM ODE 8
Figure 4. ABEND, EST AI, EST AE Relationship . 9
Figure 5. Parameters Passed to the Attention Exit Routine 13
Figure 6. The Attention Exit Parameter List . 14
Figure 7. The Terminal Attention Interrupt Element 14
Figure 8. Format of a HELP Data Set 26
Figure 9. An Example of a User's SAMPLE Command Format 27
Figure 10. An Example of a User's EXAMPLE Subcommand Format 27
Figure II. Coding Example - Including the SAMPLE Command and EXAMPLE

Subcommand in the HELP Data Set 28
Figure 12. MVS/XA Interface Rules for Macro Instructions 33
Figure 13. Control Block Interface Between the TMP and CP 38
Figure 14. The Command Processor Parameter List (CPPL) 39
Figure IS. The CALL TSSR Macro Instruction 40
Figure 16. The IKJTSMSG Macro Instruction 47
Figure 17. An Example of an IKJTSMSG Macro Instruction 48
Figure 18. The STAX Macro Instruction - List and Execute Forms 52
Figure 19. Using Registers in the ST AX Macro Instruction 54
Figure 20. The ST AX Parameter List 55
Figure 21. Coding Example - ST AX Macro Instruction 57
Figure 22. Control Blocks Passed to DAIR . 60
Figure 23. Format of the DAIR Parameter List (DAPL) 61
Figure 24. DAIR Entry Codes and Their Functions 62
Figure 25. DAIR Parameter Block - Entry Code X'OO' 62
Figure 26. DAIR Parameter Block - Entry Code X'04' 64
Figure 27. DAIR Parameter Block - Entry Code X'08' 66
Figure 28. DAIR Parameter Block - Entry Code X'OC' 69
Figure 29. DAIR Parameter Block - Entry Code X'IO' 70
Figure 30. DAIR Parameter Block - Entry Code X'14' 71
Figure 31. DAIR Parameter Block - Entry Code X'18' 72
Figure 32. DAIR Parameter Block - Entry Code X' I C' 74
Figure 33. DAIR Parameter Block - Entry Code X'24' 75
Figure 34. DAIR Parameter Block - Entry Code X'28' 79
Figure 35. DAIR Parameter Block - Entry Code X'2C' 80
Figure 36. DAIR Parameter Block - Entry Code X'30' 81
Figure 37. DAIR Parameter Block - Entry Code X'34' 84
Figure 38. DAIR Attribute Control Block (DAIRACB) 85
Figure 39. BSAM/QSAM Macro Functions under TSO 92
Figure 40. The Input/Output Parameter List 98
Figure 41. Control Block Interface Between TMP and I/O Service Routine 99
Figure 42. The List Form of the STACK Macro Instruction 101
Figure 43. The Execute Form of the STACK Macro Instruction 103
Figure 44. The STACK Parameter Block. ' .. 109
Figure 45. STACK Control Blocks: No In-Storage List 110
Figure 46. Coding Example - STACK Specifying the Terminal as the Input

Source. III
Figure 47. The List Source Descriptor ... 112
Figure 48. STACK Control Blocks: In-Storage List Specified. 113
Figure 49. Coding Example - STACK Specifying an In-Storage List

as the Input Source 114
Figure 50. The List Form of the GETLINE Macro Instruction 117
Figure 51. The Execute Form of the GETLINE Macro Instruction 119
Figure 52. The GETLINE Parameter BJpck 124
Figure 53. Format of the GETLINE Input Buffer . 125
Figure 54. GETLINE Control Blocks - Input Line Returned 126
Figure 55. Coding Example - Two Executions of GETLINE 127
Figure 56. The List Form of the PUTLINE Macro Instruction 130
Figure 57. The Execute Form of the PUTLINE Macro Instruction 133
Figure 58. The PUTLINE Parameter Block . 138
Figure 59. PUTLINE Single Line Data Format 139
Figure 60. Coding Example - PUTLINE Single Line Data 140
Figure 61. PUTLINE Multiline Data Format 141
Figure 62. Coding Example - PUTLINE Multiline Data 142
Figure 63. The Output Line Descriptor 144
Figure 64. Control Block Structures for PUTLINE Messages 145
Figure 65. 'PUTLINE Functions and Message Types . 146

Contents xi

Figure 66. Coding Example - PUTLINE Text Insertion 149
Figure 67. Coding Example - PUTLINE Second Level Informational

Chaining. 152
Figure 68. The List Form of the PUTGET Macro Instruction. 155
Figure 69. The Execute Form of the PUTGET Macro Instruction 159
Figure 70. The PUTGET Parameter Block 165
Figure 71. The Output Line Descriptor (OLD) 168
Figure 72. Control Block Structures for PUTGET Output Messages 169
Figure 73. Format of the PUTGET Input Buffer 172
Figure 74. PUTGET Control Block Structure -'lnputLine Returned. 173
Figure 75. Coding Example - PUTGET Multilevel PROMPT Message 174
Figure 76. The TPUT Macro Instruction -' Standard, Register, List, and

Execute Forms . 180
Figure 77. The TPG Macro Instruction - Standard, List,

and Execute Forms 185
Figure 78. The TGET Macro Instruction - Standard, Register, List,

and Execute Forms 188
Figure 79. TPUT Parameter Registers 191
Figure 80. TGET Parameter Registers'. '. 192
Figure 81. Parameter List Expansion for the Execute Form of TPUT 193
Figure 82. Parameter List Expansion for the List Form of TPUT 193
Figure 83. Parameter List Expansion for the Execute Form of TPG 194
Figure 84. Parameter List Expansion for the List Form of TPG . 194
Figure 85. Parameter List Expansion for the Standard, List, and Execute Forms of

TGET 195
Figure 86. Coding Example: TPUT and TGET Macro Instructions Using

. the Default Values 197
Figure 87. Coding Example: TPUT Macro Instruction Buffer Address

and Buffer Length in Registers . 198
Figure 88. Coding Example: TGET Macro Instruction Register Format 199
Figure 89. The GTSIZE Macro Instruction . 202
Figure 90. The GTTERM Macro Instruction 202
Figure 91. Parameter List Expansion for the List Form of GTTERM 203
Figure 92. The RTAUTOPT Macro Instruction 204
Figure 93. The SPAUTOPT Macro Instruction 205

J Figure 94. The ST A TTN Macro Instruction 205
Figure 95. The STAUTOCP Macro Instruction 207
Figure 96. The STAUTOLN Macro Instruction 208
Figure 97. The STBREAK Macro Instruction 210
Figure 98. The STCC Macro Instruction . 211
Figure 99. The STCLEAR Macro Instruction 212
Figure 100. The STCOM Macro Instruction . 213
Figure 101. The STFSMODE Macro Instruction 214
Figure 102. The STLINENO Macro Instruction 215
Figure 103. The STSIZE Macro Instruction 216
Figure 104. The STTIMEOU Macro Instruction 218
Figure 105. The STTMPMD Macro Instruction 219
Figure 106. The STTRAN Macro Instruction 220
Figure 107. The TCLEARQ Macro Instruction 222
Figure 108. The Parameter List Structure Passed to Command Scan 225
Figure 109. The Command Scan Parameter List , 226
Figure 110. The Command Scan Output Area 227
Figure 111. Character Types Recog'nized by Command Scan and Parse 228
Figure 112. Return from Command Scan - CSOA and Command Buffer Settings 229
Figure 113. A Command Processor Using the Parse Service Routine 231
Figure 114. Delimiter-Dependent Parameters 234
Figure 115. Example of an Indirect Address . 236
Figure 116. Example of an Address Expression with Indirect' Addressing 237
Figure 117. The IKJPARM Macro Instruction 246
Figure 118. The Parameter Control Entry Built by IKJP ARM 246
Figure 119. The IKJPOSIT Macro Instruction 248
Figure 120. The Parameter Control Entry Built by IKJPOSIT 251
Figure 121. The IKJTERM Macro Instruction 253
Figure 122. The Parameter Control Entry Built by IKJTERM 256
Figure 123. The IKJOPER Macro Instruction 258
Figure 124. The Paraq1eter Control Entry Built by IKJOPER 261
Figure 125. The IKJRSVWD Macro Instruction 263
Figure 126. The Parameter Control Entry Built by IKJRSVWD 264
Figure 127. ,The IKJIDENT Macro Instruction . 266

xii TSO Guide to Writing a IMP or a CP

Figure 128. The Parameter Control Entry Built by IKJIDENT 269
Figure 129. The IKJKEYWD Macro Instruction 271
Figure 130. The Parameter Control Entry Built by IKJKEYWD 272
Figure 13 I. The IKJNAME Macro Instruction (when used with the

IKJKEYWD Macro Instruction) 273
Figure 132. The IKJNAME Macro Instruction (when used with the

IKJRSVWD Macro Instruction) 273
Figure 133. The Parameter Control Entry Built by IKJNAME 275
Figure 134. The IKJSUBF Macro Instruction 276
Figure 135. The Parameter Control Entry Built by IKJSUBF 276
Figure 136.' The IKJENDP Macro Instruction 277
Figure 137. The Parameter Control Entry Built by IKJENDP 277
Figure 138. The IKJRLSA Macro Instruction 277
Figure 139. Control Flow Between Command Processor and Parse 278
Figure 140. The Parse Parameter List . 279
Figure 141. A PDL Showing PDEs Describing a List . . 294
Figure 142. A PDL Showing PDEs Describing a Range . 295
Figure 143. A PDL Showing PDEs Describing LIST and RANGE Options 296
Figure 144. PDL - LIST and RANGE Acceptable, Single Parameter Entered 297
Figure 145. PDL - LIST and RANGE Acceptable, Single Range Entered 297
Figure 146. PDL - LIST and RANGE Acceptable, List Entered 298
Figure 147. PDL - LIST and RANGE Acceptable, List of Ranges Entered 299
Figure 148. Format of the Validity Check Parameter List 302
Figure 149. Return Codes from a Validity Checking Routine 302
Figure ISO. Coding Example 1 - Using Parse Macros to Describe

Command Parameter Syntax 307
Figure 151. An IKJPARMD DSECT (Example 1) 308
Figure 152. The IKJPARMD DSECT and the PDL (Example 1) . 309
Figure 153. Coding Example 2 - Using Parse Macros to Describe Parameter

Syntax 310
Figure 154. An IKJPARMD DSECT (Example 2) 311
Figure 155. The IKJPARMD DS~CT and the PDL (Example 2) . 312
Figure 156. Coding Example 3 - Using Parse Macros to Describe Parameter

Syntax 313
Figure 157. An IKJPARMD DSECT (Example 3) 314
Figure 158. The IKJPARMD DSECT and the PDL (Example 3) 315
Figure 159. Coding Example 4 - Using Parse Macros to Describe Parameter

Syntax 316
Figure 160. An IKJPARMD DSECT (Example 4) 317
Figure 161. The IKJPARMD DSECT and the PDL (Example 4) . 318
Figure 162. Catalog Information Routine Parameter List (CIRPARM) 321
Figure 163. Data Returned from Valid CIROPT Values. 322
Figure 164. User Work Area for CIRPARM . 323
Figure 165. Volume Information Format 323
Figure 166. Function of RESHOW Code in Full-Screen Message Processing. 329
Figure 167. Function of INITIAL= YES When First Message is Full-Screen . 332
Figure 168. Function of INITIAL=YES When First Message is Non-Full-Screen. 333
Figure 169. Function of INITIAL=NO 334

Contents ·xill.

IBM Confidential, MVS!XA ESP

Introduction

TSO consists of many relatively small, functionally distinct modules of code.
One major benefit of this modular construction is that the installation may
add to or modify TSO to better suit the needs of its users. You can add to
or replace IBM-supplied code with your own, and delete those functions of
TSO which you do not require.

TSO is composed of modules that communicate with the user and
perform the work requested by him. Modifications to the control program
should be made only by system programmers responsible for the proper
functioning of TSO within MVS. Each installation can replace or augment
the terminal monitor program (TMP) and the command processors.

If you choose to write your own terminal monitor program or command
processors, you can use service routines, interface routines, and macro
instructions, supplied with TSO or modified to support TSO, to provide
many of the functions required by a TMP or a command processor.

The Terminal Monitor Program (TMP) and Conimand
Processors

The terminal monitor program is a problem program that accepts and
interprets commands. The TMP causes the appropriate command processors
to be scheduled and executed.

A terminal monitor program must be able to communicate with the user
at the terminal, load and pass control to command processors, respond to
abnormal terminations at its own task level or at lower levels, and respond
to and process attention interruptions.

When a user logs on to TSO, he must either specify the name of a
LOGON procedure via the LOGON command or accept the use of his
default procedure name from the user attribute data set (DADS). In either
case, the program named in the EXEC statement of the LOGON procedure
is attached during the logon as the terminal monitor program. The program
named in the EXEC statement can be either the TMP supplied with TSO,
one provided by the installation, or one you have written yourself.

Once the logon has completed, the terminal monitor program requests
the user at the terminal to enter a command name. The IBM-supplied TMP
writes a READY message to the terminal to indicate that a command
should be entered. The TMP determines if the response entered is a
command. If the response is a command, the TMP attaches the requested
command processor, and the command processor performs the computing
functions requested by the user at the terminal.

When writing your own command processors, keep in mind that you can
add them to the IBM-supplied command library, concatenate your own
command library to the one supplied by IBM, or replace the entire TSO
command library with your own.

Command processors must be able to communicate with the user at the
terminal, respond to abnormal terminations, and process attention
interruptions. If required command processors must be able to load and

Introduction I

pass control to subcommand processors, as well as process abnormal
terminations of those subcommand processors.

Basic Functions of Terminal Monitor Programs and
Command Processors

You can see from the preceding discussion that any terminal monitor
program and any command processor must provide four basic functions:

1. Both the TMP and command processors must be able to
communicate with the user at the terminal.

2. The TMP must be able to load and pass control to a command
processor. If a command processor has subcommand processors, it
must be able to load and pass control to them.

3. Both the TMP and command processors must be able to intercept
and investigate abnormal terminations.

4. Both the TMP and command processors must be able to respond to
and process attention interruptions entered from the terminal.

You can provide each of these functions for a terminal monitor program
or a command processor by using a service routine or a macro instruction
provided with or modified to support TSO.

Communicating with the User
There are three ways a program running under TSO can communicate with
a user:

2 TSO Guide to Writing a TMP or a CP

1. The BSAM or QSAM access methods.

2. The STACK, GETLINE, PUTLINE, and PUTGET I/O service
routines. These I/O service routines are invoked via the STACK,
GETLINE, PUTLINE, and PUTGET macro instructions respectively.
They provide the following functions:

STACK - The STACK service routine establishes and changes the
source of input by adding elements to, or deleting elements from, an
internally maintained input stack. The top element on the input stack
determines the current source of input.

GETLINE - The GETLINE service routine obtains and returns all
input lines other than commands, subcommands, and responses to
prompting messages. (A prompting message asks the user at the
terminal to supply required information.) The GETLINE service
routine returns these lines of input from the input source designated
by the top element of the input stack.

PUTLINE - The PUTLINE service routine formats output lines,
writes them to the terminal, and chains second level messages to be
written in response to a question mark from the terminal.

PUTGET - The PUTGET service routine writes a message to the
terminal and obtains a response from the terminal. A message written
to the terminal that requires a response is called a conversational
message.

L
3. The TGET, TPUT, and TPG supervisor call. A supervisor call routine,

SVC 93, is invoked via the TGET, TPUT, and TPG macro
instructions. TGET, TPUT, and TPG provide a route for I/O to a
terminal.

Each of these methods performs different functions and is thus suited for
particular I/O situations. The programmer designing his own TMP or
command processor must understand which of the I/O methods best
provides the I/O support required in different programming situations.

Passing Control to Command and Subcommand Processors

A terminal monitor program must be able to recognize a command name
entered into the system, load the requested command processor, and pass
control to it. A command processor must be able to perform similar
functions when a subcommand name is entered.

Your TMP or command processor can use the command scan service
routine to search the input line for a syntactically valid command name or
subcommand name. The ATTACH macro instruction can then be issued to
pass control to the requested routines and to establish EST AI exits. (See
"Responding to Abnormal Terminations" below.)

When you write a command processor or subcommand processor, you
can use the parse macro instructions to describe to the parse service routine
the operands that may be entered with the command name. You can then
use the parse service routine to determine which operands are present in the
input buffer. The parse service routine compares the information you
supplied in the parse macro instructions with the contents of the input
buffer. This syntactical comparison indicates which operands are present in
the input line. The parse service routine returns a list to the calling routine,
indicating which operands were found in the buffer. These operands
indicate to the processing routine the functions the user is requesting.

Responding to Abnormal Terminations

A programmer coding a routine to run under TSO should do all that is
possible to keep that routine from causing an abnormal termination of a
TSO user. If you write your own terminal monitor program or command
processors, you should use the EST AE or FEST AE macro instruction and
the ESTAI operand on the ATTACH macro instruction to provide error
handling exits.

Use the EST AE or FEST AE macro instruction to provide the address of
an error handling routine to be given control if any routine at the same task
level as the error handling routine begins to terminate abnormally.

Use the EST AI operand on the ATTACH macro instruction to provide
the address of an error handling routine to be given control if a routine at a
lower task level begins to terminate abnormally.

Introduction 3

Responding to Attention Interruptions
A terminal monitor program and any command processor that accepts
subcommands must be able to respond to an attention interruption entered
from the terminal. TSO interprets an attention interruption as a signal that
the user wants to halt current program execution, possibly to request a new
command or subcommand. You must provide attention exits that can obtain
a line of input from the terminal and respond to that input.

To build the control blocks and queues necessary for the system to
recognize and schedule your attention handling routines, use the ST AX
service routine, which is invoked via the ST AX macro instruction.

The Dynamic Allocation of Data Sets
Aside from the four basic functions provided by a terminal monitor
program or a command processor, other useful time sharing functions can
be obtained using routines provided by IBM. You can invoke dynamic
allocation routines using the dynamic allocation interface routine (DAIR)
to:

• Obtain the current status of a data set
• Allocate a data set
• Free a data set
• Concatenate data sets
• Deconcatenate data sets
• Build a list of attributes (DCB parameters) to be assigned to data sets
• Delete a list of attributes

It is recommended, however, that you invoke dynamic allocation directly
whenever possible (especially when writing new command processors) to
take advantage of the additional functions available and to decrease system
overhead. For a detailed description of these functions and how to invoke
dynamic allocation directly, refer to SPL: System Macros and Facilities.

The DAIR interface, designed to invoke dynamic allocation· for you, is
maintained so that existing command processors do not have to be modified
to invoke dynamic allocation directly. DAIR acts as a translator; it converts
the DAIR parameter list it receives as input to a dynamic allocation
parameter list, which it then passes to dynamic allocation.

Summary
Most of the functions of terminal monitor programs and command
processors can be provided with macro instructions, service routines, or
supervisor call routines supplied by IBM. The following sections describe
how to use these macros and routines in a TMP or command processor.

4 TSO Guide to Writing a TMP or a CP

II un PR oc EX

The Terminal Monitor Program

The terminal monitor program (TMP) is a problem program that provides
an interface between the terminal user, command processors, and the TSO
control program. TSO LOGON causes the system initiator to attach the
program named on the EXEC statement of the user's LOGON cataloged
procedure. This may be the IBM-supplied TMP or any user-supplied
alternate.

The maximum number of concurrently allocated data sets allowed in a
given TSO session is defined in the user's LOGON procedure. The
LOGON procedure indicated on the LOGON command may contain DD
statements that define data sets to be used during the TSO session, other
DD statements, called DD DYNAM statements, and the DYNAMNBR
parameter of the EXEC statement. These statements are used in
cotnbination to determine the maximum number of data sets that may be
allocated to the user at anyone time during the session. The formula for
determining the maximum is:

Maximum = # DD statements + # DD DYNAM statements + the number supplied on the

DYNAMNBR parameter of the EXEC statement.

The DYNAMNBR parameter obsoletes the DD DYNAM statement as a
way of establishing the maximum number of data sets. While existing DD
DYNAMS continue to be included in the formula for determining the
maximum, use of the DYNAMNBR keyword is recommended because it
involves only one statement (the EXEC statement) and can be modified
easily.

Figure 1 shows an example of the EXEC statement in a user LOGON
procedure. This procedure is equivalent to a LOGON procedure containing
10 DD DYNAM statements and no DYNAMNBR operand. For a complete
discussion of a LOGON procedure, see SPL: TSo.

EC PG 1ft: IK JE FT ¢1 .~ YN AM NIB R= 1 ¢

Figure 1. A LOGON Procedure

The terminal monitor program you use can be the TMP supplied with
TSO, one provided by the installation, or one you have supplied yourself. If
you choose to write your own terminal monitor program, use the TSO
service routines and macro instructions described in this book to help you
code the TMP and fit it into TSO.

The TMP must be able to respond to the following four conditions:

1. Normal completion of a command processor or user program, and the
requesting of another command

2. An error causing termination of the TMP, a command processor, or a
user program

The Terminal Monitor Program 5

3. An attention interruption from the terminal, halting execution of the
current program

4. A STOP operator command, forcing a LOGOFF for the user

This section explains how to respond to these conditions. It describes in
general terms how the IBM-supplied TMP functions, and how it fits
together with the rest of TS.O. For a more specific description of the
IBM-supplied TMP, see TSO Terminal Monitor Program and Service
Routines Logic.

Terminal Monitor Program Initialization.
In a LOGON procedure, the terminal monitor program (TMP) name must
appear as the first operand of the PGM= keyword operand on the EXEC
statement.

When the TMP is attached:

• Register 1 contains the address of the field containing the length and
data of the EXEC parameter. The IBM-supplied TMP uses this
PARM value as the first command requested. The first two bytes of
the P ARM value are on a halfword boundary and contain the length
of the PARM value. (The length value does not include the two
length bytes.)

• Register 13 contains the address of the register save area.

• Register 14 contains the return address of the LOGON/LOGOFF
scheduler.

• Register 15 contains the entry point address of the TMP.

The TMP sets up the tables and control blocks it requires, loads the
TIME command processor, sets up the ESTAE and ESTAI exits to respond
to abnormal terminations, sets up the attention exits, builds the command
buffer, and initializes the input stack to point to the terminal. The TMP
then uses the EXTRACT macro instruction to obtain the addresses of the
STOP /MODIFY ECB and the protected step control block (PSCB) built
by the LOGON/LOGOFF scheduler.

The TMP determines whether it is running in a TSO or a batch
environment by testing the time-sharing bit in the TCB. If the TMP is
running in a batch environment, it will use the DATASET keyword while
invoking the STACK service routine to cause GETLINE and PUTLINE to
be directed to data sets. The TMP must also build the same control blocks
that LOGON would have built.

The IBM-supplied terminal monitor program attaches the command
processor named in the EXEC statement P ARM field. If no command was
named as a PARM operand, the TMP issues a PUTGET macro instruction
to obtain the first command. The TMP shares subpool 78 with the attached
command processor but does not share subpool O. The command processor,
in turn, must share subpool 78 with any lower level tasks.

The TMP should not pass in-line parameter lists to commands or to TSO
service routines. Subpool 251 should not be used for parameter lists. The
command processor parameter list (CPPL), described later in this book,

6 TSO Guide to Wridng a TMP or a CP

L
should be in subpool 1. You may use the IKJTMPW A macro to map the
TMP workarea.

Requesting a Command

Terminal Monitor
Program

IKJPTGT

..../\~~

-""
J'>--"'----"'"'-

~-

IKJSCAN

-""'--~

./\. • oJ

~~~~-

t.J""-.....J'- ___ ~ 

...J'"-.-oJ "--"--~ 

J\-.A.-.J ~ 

ATTACH 

....... ~""---
~ 
J\.....A...-~A.. 

~-~--
.A...o""",o ",---.L......-

DETACH 

--""'-~~~ 

-.A--,,-,,- "'--
-N>. -------. ______ 

--...-,,-~&._\....- -A-

-----..;......-~ 

.,.,.",~-

---~ 

IKJDAIR 
....A....-~ __ 

~"'---

-....I\. ""-- M..o.J\..Att.-

Figure 2 summarizes the steps taken by a terminal monitor program to 
obtain a command, to pass control to the commmand processor, and to 
detach the command processor when it has finished. . 

d'~~ EDIT . 

PUTGET service routine . .. ·1 gets next command from 
terminal or stack • ,;'{ ..... ~.~ 00000000 

0000000 

I . 
Command Buffer . 

SCAN Service Routine 
checks for valid command 

.. 
EDIT ................... 

name syntax. 
~ ~ Command library 

"... ") r-- . 
Stack ..... 

] .... L Command 
F ProcessOr 

'-- .,..I .. 
ATTACH attaches the Virtual Storage 
Command Processor • 

TSO USIII"S 
Pri vate Address 
Spac:e 

DETACH detaches the ..... .. 
Command Processor. 

# 
,,- -.. 

Dynamic allocation marks 
r-- ~ 

""'-- .-/ data sets allocated by the 
r--U.er ¥ Set .......... Command Procesaar available 

to be freed • 
'- £\ 

f'lIpwe 2. Requesting a ColIUMIId 

The Terminal Monitor ProtInun 7 



Use the PUTGET service to request a command from the terminal, 
routine. The PUTGET service routine first writes a line to the terminal to 
inform the user that another command is expected, then returns a line 
entered in response to the request, and places that line into a command 
buffer. 

Use the command scan service routine to determine whether the line of 
input is a syntactically valid command name. 

Use the ATTACH macro instruction (specifying an ESTAI exit routine) 
to pass control to the requested command processor. 

Your TMP must create any parameter lists expected by the command 
processor and pass them to the newly attached command processor. The 
IBM-supplied TMP passes the address of a command processor parameter 
list in register one. See the sections entitled "MVS/Extended Architecture 
Considerations" and "Processing Terminal Requests -- The TSO Service 
Routines" for more information about the interface between the TMP and 
command processors. 

When the command processor completes, the TMP releases it via a 
DETACH macro instruction, uses dynamic allocation to indicate that 
dynamically allocated data sets may be freed, and uses the PUTGET service 
routine to obtain another command. 

The TSEVENT macro facilitates the use of the generalized trace facility 
(GTF) to trace the attaching of a command processor by an 
installation-supplied terminal monitor program. The TSEVENT macro 
results in control being passed to a GTF hook located in the system 
resources manager (SRM) interface program. 

User written TMPs should issue the TSEVENT macro before attaching 
each command processor. 

Issue the TSEVENT macro instruction as follows: 

1. Load register 1 with the first four characters of the command name 
being attached or released. 

2. Load register 15 with the last four characters of the command name. 

3. Code the TSEVENT macro instruction as shown in Figure 3. 

Figure 3. The TSEvENT Macro Instruction Specifying PPM ODE 

Intercepting an ABEND 
The terminal monitor program must be able to recognize and respond to 
two basic types of ABEND situations: 

8 TSO Guide to Writing a TMP or a CP 

.1. An attached subtask (for example, a command processor) is 
terminating abnormally. 

2. The TMP. itself or a program linked to by the TMP (for example, 
command scan) is terminating abnormally. 



Intercepting a Subtask ABEND 

When a subtask of the terminal monitor program begins to terminate 
abnormally, the TMP ESTAI exit, specified by the TMP when it attached 
the subtask, receives control. The TMP EST AI exit receives control under 
the TCB of the abending subtask. The subtask will already have performed 
its own EST AE processing, if any was specified. Figure 4 shows the 
relationship between the ABEND, the ESTAE, and the ESTAI. For 
additional information about expanded recovery facilities available through 
ESTAI, refer to Supervisor Services and Macro Instructions. 

Terminal Monitor Program 

ESTAE Exit - For ABEND ot 
TMP TCB Level. 

ESTAI Exit - For ABEND at 
daughter TCB level. 

Command 
Processor 

ATTACH 
(with ESTAI operand) 

error 
I~-----~ 

ESTAE Exit - For ABEND at 
this TCB level 

Figure 4. ABEND, EST AI, ST AE Relationship 

ABEND 

SVC 13 

The Terminal Monitor Program 9 



The TMP must inform the user at the terminal of the ABEND situation, 
and allow the user to enter another command. Use the PUTGET service 
routine, specifying the TERM operand, to inform the user of the ABEND 
and to return a line of input from the terminal. 

The terminal user has three options: 

1. He can allow the ABEND to continue by entering a null line 
(pressing the ENTER key). 

2. He can terminate processing of the ABEND by entering a command 
name other than TIME. 

3. He can request any second-level messages concerning the terminating 
program by entering a question mark. 

Use the command scan service routine to determine what the user has 
entered at the terminal. 

If he enters a null line, the TMP returns control to the ABEND routine, 
and the task is allowed to terminate abnormally. If he enters a command 
name, other than TIME, the TMP processes the new command name after 
detaching the subtask. 

If the user enters a question mark, the PUTGET service routine causes 
the second-level informational message chain (if one exists) to be written to 
the terminal, again puts out the mode message, and returns the response 
from the terminal. 

When the TIME command is entered, the TMP links to the TIME 
command processor to obtain the time information. Upon completion of the 
TIME command, the user still has the above three options. 

Intercepting a TMP Task ABEND 

When the TMP (or any program linked to by the TMP) causes an ABEND, 
the TMP EST AE exit gains control. The TMP specifies its own EST AE exit 
routine by issuing the ESTAE macro instruction. (See SPL: System Macros 
and Facilities. for a discussion of the ESTAE macro instruction.) 

For a discussion of interface considerations for establishing ESTAE and 
EST AI exit routines, refer to' "EST AEIEST AI Exit Routines -- Intercepting 
an ABEND" in the section on command processors in this manual. 

Your TMP EST AE exit routine can use the contents of the EST AE work 
area created by the STAE macro instruction to determine: 

• The type of error 
• The cause of the error 
• The PSW at the time of the ABEND 
• The last PSW before the program ABEND 
• The contents of the program registers 

If your TMP EST AE exit routine cannot correct the problem, it should 
use the PUTLINE macro instruction to inform the user at the terminal that 
a task running under the TMP's TCB is terminating abnormally. Then, the 
TMP EST AE routine should take a dump of the user's region if a 
SYSABEND or a SYSUDUMP data set was specified in the user's LOGON 
cataloged procedure, clear the user's region, load a fresh copy of the TMP, 

10 TSO Guide to Writing a TMP or a CP 



L 
and begin processing as if the TMP had been invoked by the 
LOGON/LOGOFF scheduler. 

If the error persists and the TMP fails again, the EST AE routine should 
pass control to the PUTLINE service routine to notify the user. A logoff 
should be forced by returning to the LOGON/LOGOFF scheduler. 

For additional information about expanded recovery facilities available 
through ESTAE and EST AI, refer to Supervisor Services and Macro 
Instructions. 

Processing an Attention Interruption 

After having been attached, the TMP must set up its attention handling 
facilities. For this initialization process, you can use the ST AX macro 
instruction to pass the address of your attention handling routine to the 
system. 

For a discussion of interface considerations for attention exit routines, 
refer to "Specifying a Terminal Attention Exit -- The ST AX Macro 
Instruction" later in this book. 

Several attention handling routines may be enqueued at anyone time; 
that is, both the TMP and the currently active command processor may 
have issued ST AX macro instructions. For a description of how the user 
can request different levels of attention exits, see "Attention Interruption 
Handling -- The ST AX Service Routine" later in this book. 

The attention handling routine you specify for the terminal monitor 
program is given control under any of the following conditions: 

1. An attention interruption is entered from the ternlinal while the 
terminal monitor program is in control. 

2. An attention interruption is received from the terminal while a 
program (other than the terminal monitor program), that has not 
provided an attention handling routine, is in control. 

3. A program other than the terminal monitor program is in control. The 
program has provided an attention exit, but the user at the terminal 
has issued sufficient attention interruptions to reach the terminal 
monitor program's attention handling routine. As an example, if a 
command processor that has provided an attention handling routine is 
in control, and a user enters two successive attention interruptions 
from the terminal, the terminal monitor program's attention exit 
receives control. 

You can defer attention interruption processing with the DEFER 
operand of the ST AX macro instruction. If you do use the DEFER option, 
attention interruptions are queued as they are received, and are not 
processed until you request. that the DEFER option be removed. 

The Terminal Monitor Program t t 



Parameters Received by Attention Handling Routines 

When your attention exit routine is entered, the registers contain the 
following information: 

Register Contents 

0,2-12 
1 
13 
14 
15 

Irrelevant 
The address of the attention exit parameter list. 
Save area address. 
Return address. 
Entry point address of the attention handling routine. 

The attention exit parameter list pointed to by register one, contains the 
address of a terminal attention interruption element (TAlE). 

The parameter structure received by your attention exit routine is shown 
in Figure 5. 

12 TSO Guide to Writing a TMP or a CP 



Entry from the ST AX servi ce routi ne 

Register 1 

Attention Exit 
Porometer List 

Figure 5. Parameters Passed to the Attention Exit Routine 

Terminol Attention 
Interrupt Element 

c 

Attention Exit Routine 

The Terminal Monitor Program 13 



The Attention Exit Parameter List 

Figure 6 shows the format of the attention exit parameter list pointed to by 
register one when an attention exit routine receives control. 

Number of 
Bytes Field Contents or Meaning 

4 The address of the terminal attention interrupt 
element (TAlE). 

4 The address of the input buffer you specified 
as the IBUF operand of the STAX macro 
instruction. Zero if you did not include the 
IBUF operand in the STAX macro instruction. 

4 The address of the user parameter information 
you specified as the USADDR operand of the 
STAX macro instruction. 
Zero if you did not include the USADDR 
operand in the STAX macro instruction. 

F"JgUre 6. The Attention Exit Parameter List 

The Terminal Attention Interrupt Element (TAlE) 

The first word of the attention exit parameter list contains the address of an 
eighteen-word terminal attention interrupt element (TAlE). Figure 7 shows 
the format of the TAlE, which is mapped by the HUT AlE macro. 

Number of 
Field Contents or Meaning Bytes 

2 TAIEMSGL The length in bytes of the message placed 
into the input buffer you specified as the IBUF 
operand on the ST AX macro instruction. 
Zero if you did not code the IBUF operand in 
the STAX macro instruction. 

1 TAIETGET The return code from the TGET macro 
instruction issued to get the input line from 
the terminal. 

1 Reserved. 

4 TAIEIAD Interruption address. The right half of the 
interrupted PSW. The address at which the 
program (or a previous attention exit) was 
interrupted. 

64 TAIERSAV The contents of general registers, in the order 
o • 15, of the interrupted program. 

Figure 7. The Tenninal Attention Interrupt Element 

If you did not include the IBUF and the OBUF operands in the ST AX 
macro instruction that set up the attention handling exit, use the PUTGET 
macro instruction, specifying the TERM operand, to send a mode message 
to the terminal identifying the program that was interrupted, and to obtain 
a line of input from the terminal. 

14 TSO Guide to Writing a TMP or a CP 



If you specify the OBUF operand on the ST AX macro instruction 
without an IBUF operand, or with an IBUF length of 0, you can then u&e 
the PUTGET macro instruction, specifying the A TIN operand. This causes 
the PUTGET service routine to inhibit the writing of the mode message, 
since a message was already written to the terminal from the output buffer 
specified in the ST AX macro instruction. The PUTGET s~rvice routine 
merely returns a logical line of input from the terminal. 

In either of the above cases, if the user enters a question mark, the 
PUTGET service routine automatically causes the second-level 
informational message chain (if one exists) to be written to the terminal, . 
puts out the mode message again, and returns a line from the terminal. 

If you used the IBUF operand on the ST AX macro instruction, note that 
no logical line processing or question mark processing is performed. If the 
user returns a question mark, you will have to use the PUTLlNE macro 
instruction to write the second-level informational message chain to the 
terminal. Then issue a PUTGET macro instruction, specifying the TERM 
operand, to write a mode message to· the terminal and to return a line of 
input from the terminal. 

Use the command scan service routine to determine that the line of input 
is syntactically correct in the input buffer returned by the PUTGET service 
routine, or in the attention input buffer (pointed to by the second word of 
the attention exit parameter list). 

Special functions such as the TIME function should be performed 
immediately by the attention handling routine, and a new READY message 
should then be put out to the terminal, so that the terminal user may enter 
another command. Any other command should be passed to the TMP 
mainline routine for processing as if it were a newly entered command. 

Note that the TGET and TPUT buffers are flushed when an attention 
interruption is entered. If the user enters an attention interruption from the 
terminal and then enters a null line to continue processing, the contents, if 
any, of the TGET and TPUT buffers are lost. 

Processing a STOP Command 
A STOP/MODIFY ECB is created by the time sharing system and can be 
obtained by your TMP by use of the EXTRACT macro instruction. During 
TMP processing, if a STOP command is indicated by a post to the STOP 
ECB, return to the LOGON/LOGOFF scheduler so that the user may be 
logged off the system. 

The Tennlnal Monitor Protnm 15 



t 6 TSO Guide to Writing a IMP or a CP 



L 

Command Processors 

A command processor is a problem program invoked by the TMP when a 
user at a terminal enters a command name. It may be link-edited into any 
library in the system link library list (LNKLSTxx) or SYS 1.LPALIB. The 
command processor may be placed in a date set that is specified on the 
STEPLIB DD statement in a LOGON procedure. Execution should 
normally not be handled from a STEPLIB because of a decrease in 
performance during a system and TSO session. Refer to "Adding 
Commands to TSO" for a description of when a STEPLIB should be used. 

The internal logic of the IBM-supplied command processors is described 
in TSO Command Processor Logic, Volumes I, II, and IV. The command 
language used to request each of these command processors is described in 
TSO Command Language Reference. 

If you choose to write your own command processors, you should be 
familiar with the service routines described in this book. 

This section discusses the relationships between the command processors 
and the rest of TSO, and provides guidelines for coding your own command 
processors. 

This section is divided into the following topics: 

• Adding Commands to TSO - Describes how to add a new command 
processor to TSO 

• Command Processor Coding Conventions - Describes normal interface 
conventions 

• Command Processor Use of the TSO Service Routines - Briefly 
discusses each of the TSO service routines and the situations in which 
they should be used 

• The EST AE and EST AI Exit Routines - Discusses the functions your 
error routines should provide 

• Attention Exit Routines - Discusses the need for attention handling 
exits and the functions those exits should p~rform 

• The HELP Data Set - Discusses the HELP data set, how to write 
HELP members, and how to update existing HELP members 

Adding Commands to TSO 
There are three methods you can use to add a new command processor to 
TSO. 

1. You can enter your command processor as a member of the 
partitioned data set SYS1.CMDLIB, via the linkage editor. 

2. You can create your own command library and concatenate it to the 
SYS1.CMDLIB data set. In this case, use the utility IEBUPDTE to 
create new statements in the link list (LNKLSTOO or LNKLSTxx) in 
SYS1.PARMLIB. 

3. Generally, unauthorized users can request that a LOGON procedure 
be created that specifies, on the STEPLIB DD statement, the name 
of the partitioned data set containing the command. 

Command Processors 17 



Command Processor Coding Conventions 
The TMP uses standard linkage conventions in passing control to a 
command processor. The command processor parameter list (CPPL) is the 
input parameter list to all command processors. For more information on 
the CPPL, see the section called "Interfacing with the TSO Service 
Routines" later in this book. 

Command processors should contain logic that issues error messages. 
These messages should handle all error codes, expected or unexpected, from 
any routine or SVC they invoke. Whenever possible, generalized routines 
such as DAIRFAIL should be used. Use of these routines allows the 
issuance of meaningful error messages for return codes. 

When returning control to the TMP, the command processor should use 
standard linkage and set a return code in general register 15. Command 
procedures (CLISTs) may then check this code for the following 
conventions: 

O-normal execution 

12-termination error during execution (no error exists if a command processor is able to 

obtain required information by prompting) 

Command Processor Use of the TSO Service Routines 
Use the IBM-provided service routines described in this manual when 
coding your own command processors. Read the sections on the various 
service routines, macro instructions, and "Interfacing with the TSO Service 
Routines" for an understanding of the services they perform and how to 
use them. The following topics provide information on when to use each of 
the service routines. 

Note: "MVS/Extended Architecture Considerations" lists the linkage 
attributes for the TSO service routines. Additional descriptions of 
considerations caused by 31-bit addressing are provided in the sections 
describing the routines and macros. 

STA eK Service Routine 

Use the STACK service routine to change the source of input by adding an 
element to the input stack or to reset the input stack to the terminal 
element originally specified by the terminal monitor program. 

A command processor should issue the STACK macro instruction in the 
following circumstances: 

18 TSO Guide to Writing a TMP or a CP 

1. Your command processor has created a series of commands to be 
executed after the command processor terminates. The command 
processor should build an in-storage list containing the commands to 
be executed and issue the STACK macro instruction to place a 
pointer to the list on the input stack. 

2. You may w'ant to pass data from one of your command processors to 
another command processor. This data may be passed in storage via 
the input stack. Issue the STACK macro instruction to place a pointer 
to the in-storage data on the input stack. 

J 



3. Your command processor performs functions similar to those 
performed by the IBM-supplied EXEC command (that is, it executes 
a command procedure). Your command processor should issue the 
STACK macro instruction to place a pointer on the input stack to the 
command procedure to be executed. 

4. Whenever one of your command processors terminates with an error 
condition, its error handling routine should issue the STACK macro 
instruction to clear the input stack, before returning control to the 
TMP. The input stack must be cleared or command procedure 
(CLIST) processing will not be handled correctly. Commands such as 
DELETE and FREE do not flush the stack if the module requested 
was not found. 

Catalog Information Routine 

The catalog information routine (IKJEHCIR) retrieves information from the 
system catalog. This information may include a data set name, index name, 
control volume address, or volume ID. The information may be requested 
from a specific user catalog. If you do not specify a specific catalog, 
IKJEHCIR searches the system default catalog. An entry code indicates 
what kind of information is being requested. 

Use the CALL, CALL TSSR, or LINK macro instruction to invoke the 
catalog information routine. 

Note: For additional information concerning the catalog information routine, 
see "Catalog Information Routine (IKJEHCIR)" later in this book. 

Default Service Routine 

The default service routine (IKJEHDEF) constructs a fully-qualified data 
set name when the calling routine provides a partially-qualified data set 
name. A fully-qualified data set name has three fields: a userid, a data set 
name, and a descriptive quo.: lifier. 

Use the CALL, CALL TSSR or LINK macro instruction to invoke the 
default service routine. At entry, general register 1 must point to the default 
parameter list (DFPL). IKJEHDEF then invokes the catalog information 
routine (IKJEHCIR) to search the system catalog for the required 
qualifiers. When the search argument is satisfied, the default service routine 
returns to the calling control program. All of the general registers are 
restored except for register 15 which contains the return code. 

Note: For additional information concerning the default service routine, see 
TSO Terminal Monitor Program and Service Routines Logic. 

GETLINE Service Routine 

Your command processors should use the GETLINE service routine to 
obtain data. The buffer returned by GETLINE is in subpooll, and is 
owned by your command processor. For efficient execution, issue 
FREEMAIN macro instructions within each command processor, or within 
each subtask created by the command processor, to free the GETLINE 
buffers it obtains. 

Command Processors 19 



PUTLINE Service Routine 

Your command processors should use the PUTLINE service routine to write 
informational messages or data to the terminal and to chain second level 
informational messages. PUTLINE writes the output lines to the terminal 
regardless of the source of input. TPUT should not be used under these 
circumstances. The GNRLFAIL service routine should be used to issue 
meaningful error messages for return codes from PUTLINE. 

PUTGET Service Routine 

Your command processors should use the PUT GET service routine for 
prompting and for subcommand requests. Use the operands on the 
PUTGET macro instruction to specify logical line processing with editing 
and the WAIT option. 

If the user enters a question mark in response to a message issued with a 
PUTGET macro instruction, the PUTGET service routine displays the 
second level messages chained by previous PUTLINE macro instructions. If 
the user responds with a subcommand name, the second level messages are 
deleted and the storage they occupied is freed. See "PUTGET Processing" 
for exceptions to this usual method of processing. 

As with the GET LINE service routine, the buffers returned by the 
PUTGET service routine belong to, and should be freed by, the command 
processor. 

IKJEFF02 Message Issuer Service Routine 

If you make numerous insertions into messages, you should use this service 
routine instead of PUTLINE and PUTGET. Also, when you use IKJEFF02, 
all of your messages can be placed in a single CSECT or a single module. 

DAIR Service Routine 

You may use the DAIR service routine to obtain information about a data 
set and, if necessary, to invoke dynamic allocation routines to perform the 
requested function. However, additional functions are available if you 
invoke dynamic allocation (SVC 99) directly. Another drawback to using 
DAIR is that DAIR, which normally invokes SVC 99, increases system 
overhead. For a discussion of how to invoke dynamic allocation directly, 
refer to SPL: System Macros and Facilities. 

2() TSO Guide to Writing a TMP or a CP 



If you are going to use DAIR, you should read the section called 
"Dynamic Allocation of Data Sets - The Dynamic Allocation Interface 
Routine (DAIR)" later in this book and adhere to the following guidelines: 

• Command processors should allocate data sets by DSNAME and use 
the DDNAMES returned by DAIR to open the data sets. If necessary, 
command processors should pass the ddnames on to any 
subcommands or problem programs running under them. 

• Command processors should allow DAIR, the default service routine, 
or the parse service routine to prefix an identifier on the data set 
name so the PROFILE command's PREFIX and NOPREFIX options 
are automatically supported. You can use the default service routine to 
add any data set suffix that exists for the data set. (The default 
service routine is documented in TSO Terminal Monitor Program and 
Service Routines Logic). 

• Whenever the user specifies a password for a data set, the command 
processor should send the password to DAIR when allocation is 
requested. 

• Command processors should normally invoke DAIR to free all data 
sets at termination so other TSO users or submitted jobs can have full 
use of the data sets. 

• Before detaching terminated subcommands, command processors that 
accept subcommands should use DAIR to free any data sets allocated 
by the subcommands. 

• Command processors should use the DAIRF AIL service routine to 
issue meaningful error messages for non-zero return codes from 
DAIR. 

Command Scan Service Routine 

Your command processors should use the command scan service routine to 
scan for valid subcommand names. The option of checking the remainder of 
the input line for non-separator characters should be requested. If no 
additional significant characters are found in the line, the command 
processor subroutine need not invoke the parse service routine to scan the 
command operands because none are present. 

Pane Service Routine 

Your command processors and subcommand processors should use the 
parse service routine to scan the operands entered with the command or 
subcommand name. The parse service routine returns a parameter descriptor 
list to the calling routine. The parameter descriptor list describes the 
operands found in the command buffer. 

In the parse macro instructions that define command syntax, command 
processors and subcommand processors can indicate to the parse service 
routine that validity checking exits be taken on certain types of operands. 
Because the parse service routine checks the operands only for syntax 
errors, you should indicate in the parse macro instructions that validity 
checking routines be entered whenever a logical, rather than a syntactical, 
error might occur. 

Command Processors 21 



The GNRLF AIL service routine should be used to issue meaningful error 
messages for non-zero return codes from the parse service routine. 

EST AE/EST AI Exit Routine -- Intercepting an ABEND 
Use the EST AE and EST AI exits in your command processors, if they are 
needed, to keep the system operable if abnormal termination occurs. 
EST ABlEST AI exits should be used in such a way that the command 
processor gets control if a subcommand abnormally terminates. If you issue 
an ESTAE, issue it as early as possible in your command processor. Any 
EST AE should be issued before any ST AX. EST AE provides the command 
processor with the ability to intercept an ABEND so that cleanup, bypass, 
and if possible, execution retry can be accomplished. (See SPL' System 
Macros, and Facilities for a discussion of the ESTAE macro instruction. See 
Supervisor Services and Macro Instructions for a discussion of the ESTAI 
operand of the ATTACH macro instruction and for information about 
ESTAE and ESTAI exit routines.) 

Linkage Considerations 

Programs may issue the EST AE and FEST AE macros, as well as the 
ATTACH macro with the ESTAI operand, in either 24- or 31-bit 
addressing mode. The EST AE, FEST AE, and EST AI recovery routines 
receive control in the same addressing mode in which the EST AE, 
FESTAE, and ATTACH macros are issued. When the macros are issued in 
31-bit addressing mode, EST AE, FEST AE, and EST AI routines may reside 
above the 16-megabyte virtual storage line. 

The ESTAE, FESTAE, and ATTACH macros are downward '\ 
incompatible. The MVS/Extended Architecture versions of these macros do .ttl 
not execute properly in 370 mode. For an explanation of how to select the 
desired macro level, see SPL: System Macros and Facilities. 

While not recommended, the ST AE macro and the ST AI operand of 
ATTACH may be used to provide error handling exits. However, programs 
executing in 31-bit addressing should not establish ST AE or ST AI recovery 
exits. 

Command Processor Functions that Rely on Exit Routine Support 

The following types of command processors should use EST AE exit 
routines: 

• All command processors that process subcommands 

• All command processors that request system resources that are not 
freed by ABEND or DETACH 

• Command processors that process lists, to allow processing of other 
elements in the list if a failure occurs while processing one element in 
the list 

Command processors that attach subcommands should also provide an 
EST AI exit to intercept abnormally terminating subcommand processors. 

Simple command or subcommand processors should not issue an EST AE 
or EST AI if the terminal monitor program or calling command processor 
EST AI exits provide adequate processing. 

22 TSO Guide to Writing a TMP or a CP 



Guidelines for ESTAE and ESTAI Exit Routines 

EST AE and EST AI exit routines should observe the following guidelines: 

1. The error handling exit routine should issue a diagnostic error message 
of the form: 

1st level 

2nd level 

{command-name } ENDED DUE TO ERROR+ 
subcommand-name 

COMPLETION CODE IS xxxx 

The name supplied in the first level message is obtained from the 
environment control table, and the code supplied in the second level 
message is the completion code passed to the EST AE or EST AI exit 
from ABEND. The GNRLFAIL service routine may be used to issue 
the diagnostic error message, although it requires additional storage 
space (see guideline number 4). 

The routine should issue these messages so that the original cause of 
abnormal termination is recorded should the error handling exit 
routine itself terminate abnormally before diagnosing the error. 

When an ABEND is intercepted, the command processor EST AE exit 
routine should determine whether retry is to be attempted. If so, the 
exit routine should issue the diagnostic message and return, indicating 
via a return code that an EST AE retry routine is available. If a retry 
is not to be attempted, the exit routine should return, indicating via a 
return code that no retry is to be attempted. The TMP EST AI exit 
routine will issue the diagnostic message. (For a description of the 
return codes and their meanings, see Supervisor Services and Macro 
Instructions.) 

2. The EST AE or EST AI routine that receives control from ABEND 
should perform all necessary steps to provide system cleanup. This 
cleanup should be performed in the EST AE exit routine rather than in 
the ESTAE retry routine because DETACH with the ESTAE=YES 
operand does not allow the subtask to retry from an EST AEIEST AI 
exit. (The TMP issues DETACH with ESTAE=YES when a 
command processor has been interrupted with an attention.) 

3. The error handling exit routine should attempt to retry program 
execution when possible. If the command processor can circumvent or 
correct the condition that caused the error, the error handling routine 
should attempt to do so. In other cases, however, RETRY has no 
function and the command processor EST AE exit should not specify 
the RETRY option. 

4. Storage might not be available when the EST AE or EST AI routine 
receives control. Any storage the routine requires should be acquired 
before it receives control, and be passed to it. 

Attention Exit Routines 
An attention exit routine should be provided by any command processor 
that accepts subcommands. Use the ST AX macro instruction to specify the 
address of your attention handling routine. See "Attention Interruption 
Handling - The STAX Service Routine" for a complete discussion of the 
ST AX macro instruction. Simple command processors should not issue a 

Command Processors 23 



ST AX if the TMP or the calling command processor ST AX exits provide 
adequate processing. 

If you did not include the IBUF and the OBUF operands in the ST AX 
macro instruction that set up the attention handling exit, use the PUTGET 
macro instruction, specifying the TERM operand, to send a mode message 
to the terminal identifying the program that was interrupted, and to obtain 
a line of input from the terminal. 

If you specify the OBUF operand on the ST AX macro instruction 
without an IBUF operand, or with an IBUF length of 0, you can then use 
the PUTGET macro instruction, specifying the ATTN operand. This causes 
the PUTGET service routine to inhibit the writing of the mode messages, 
since a message was already written to the terminal from the output buffer 
specified in the ST AX macro instruction. The PUTGET service routine 
merely returns a logical line of input from the terminal. 

In either of the above cases, if the user enters a question mark, the 
PUTGET service routine automatically causes the second level 
informational message chain (if one exists) to be written to the terminal, 
puts out the mode message again, and returns a line from the terminal. 

If you used the IBUF operand on the ST AX macro instruction note that 
no logical line processing or question mark processing is performed. If the 
user returns a question mark, you will have to use the PUTLINE macro 
instruction to write the second level informational message chain to the 
terminal. Then issue a PUTGET macro instruction, specifying the TERM 
operand, to write a mode message to the terminal and to return a line of 
input from the terminal. 

Whether you use the IBUF operand on the ST AX macro instruction or 
the PUT GET macro instruction to return a line from the terminal, you can 
use the command scan service routine to determine what the user has 
entered. 

If the user enters a null line, the attention handling routine should return 
to the point of interruption. Note, however, that the TGET and TPUT 
buffers are flushed during attention interruption processing. If any data was 
present in these buffers, it is lost. 

If a new command or subcommand is entered, the attention handling 
routine should: 

• Post the command processor's event control block to cause active 
service routines to return to the command processor. 

• Exit. 
• Reset the input stack in the command processor mainline. (A stack 

flush in an attention routine may cause severe errors.) 

The HELP Data Set 
A terminal user can enter the HELP command to retrieve information 
about commands or subcommands. This information is stored in a data set 
labeled SYSl.HELP (the HELP data set). If you add command processors 
to TSO, you should either add HELP information to the SYSl.HELP data 
set, or to a private HELP data set. 

24 TSO Guide to Writing a TMP or a CP 



L 

Attributes of SYSl.HELP 

SYS I.HELP is a cataloged, partitioned data set consisting of one member 
named COMMANDS and individual members for each command in the 
system. The COMMANDS member contains a list of the commands 
available to the user, and a brief description of each. The individual 
members for each command are named with the command name, and 
contain more specific information about the command and its 
subcommands. The HELP information contained within any member of the 
HELP data set consists of punch-card images. The logical record length is 
therefore 80 characters. 

Format of HELP Members 

Each of the HELP members, other than the COMMANDS member, is 
divided into the following subgroups, each of which can be displayed at the 
terminal: 

• A subcommand list - This appears only if the command has 
subcommands. 

• Functional description - This provides a brief description of the 
function of the command or subcommand. 

• Syntax - This describes the syntax of the command or subcommand. 

• Message identifier description - This provides information pertaining 
to messages issued by the command or its subcommand. 

• Operand description - This provides information on the command 
positional operands, followed by individual sections containing brief 
descriptions of each keyword and its parameters. 

Private HELP Data Sets 

You may concatenate your data set to the SYS I.HELP data set (or vice 
versa). Concatenated data sets need not have the same attributes as the 
SYS I.HELP data set, but the first concatenated data set must have the 
largest blocksize of the concatenated data sets, and it must not specify a 
fixed blocksize. 

Concatenated data sets are searched in the order of concatenation. If 
SYS1.HELP and a private HELP data set have been concatenated, the first 
COMMANDS member encountered by the HELP processor is used as the 
list of available commands. Thus, if you concatenate your own HELP data 
set to SYSl.HELP, you should make additions to the COMMANDS 
member of SYSl.HELP. 

Private HELP data sets must be allo(;ated with filename SYSHELP, 
either in the LOGON procedure or on an ALLOCATE command. When 
data sets are concatenated, the filename SYSHELP is required. If only 
SYSl.HELP is required, the filename SYSHELP would not have to be 
allocated. (See the DAIR entry code X'24' later in this book.) 

Updating SYSl.HELP 

Use the IEBUPDTE utility program or the EDIT command to update 
SYS1.HELP. SYS1.HELP is a system data set, so it will generally require 
operator intervention when it is updated. 

Command Processors 2S 



Writing HELP Members 

To add a new member to a data set named PRIV ATE. HELP using the 
EDIT command, enter: 

edit 'private.help(mbrname)' data new 

Use the information described in Figure 8 when you add to SYSl.HELP or 
set up your own HELP data set. The control characters, beginning in card 
column 1, divide the data set into the subgroups previously described, and 
thereby permit the HELP command processor to select message text 
according to the operands supplied on the HELP command. (See TSO 
Command Language Reference for a discussion of the HELP command.) 

Control 
Character Purpose of Data Card 

)S This card indicates that a list of commands or subcommands 
follows. 

)F This card indicates that the functional discussion of the command 
or subcommand follows. 

)X This card indicates that the syntax description of the command or 
subcommand follows. 

)M This card indicates that message 10 information follows. The 
information is only printed by the HELP command when the 
MSGlD keyword is specified. 

»messageid This card indicates that information follows describing the named 
messageid. One of these control cards should be present for each 
message issued by the command. Each card contains the identifier 
of the message it describes. Message lOs can be any length and 
the first character must be alphabetic. 

)0 This card indicates that the command operands and their 
descriptions follow. Positional operands must follow immediately 
after the )0 control card and before the »keyword control cards. 

»keyword This card indicates that information follows describing the named 
keyword. One of these control cards must be present for each 
keyword operand within the command. Each card contains the 
name of the keyword it describes. 

= subcommandname This card indicates that information follows concerning the 
subcommand named after the equal sign. One of these cards is 
required for each subcommand accepted by the command being 
described. Note that this card merely names the subcommand; it 
does not describe it. Describe the subcommand in the same manner 
you would describe a command. 
If the subcommand has an alias name, you may include the alias 
name on the control card, i.e. 
=subcommandname=subcommandalias. Note that no blanks may 
appear between the subcommand and the alias. 

Figure 8. Format of a HELP Data Set 

All data cards, except the =subcommandname card, can contain 
additional information. If you include additional information on the cards, 
the control characters )S, )F, )X, and )0 must be followed by at least one 
blank, and the control character ) )keyword by at least one blank or a left 
parenthesis. Use the left parenthesis when the keyword you are describing 
is followed by operands enclosed in parentheses. 

The only restrictions on data cards are that columns 72-80 are reserved 
for sequence numbers, and column one must contain a right parenthesis, an 
equal sign, or a blank. The sequence numbers are not printed when the 
HELP command is executed. 

26 TSO Guide to Writing a TMP or a CP 

• 

J 



L 

The OPERAND cards must be the last section of the HELP member. 
The )0 card may only be followed by the» or = cards. 

For example, information concerning a user's SAMPLE command, shown 
in Figure 9, could be formatted for entry into the HELP data set (or your 
own private help data set). 

SAMPLE posit1 [,(posit2)] [KEYWD1[(posit3,posit4)]] 

Figure 9. An Example of a User's SAMPLE Command Format 

The SAMPLE command has one subcommand, the EXAMPLE 
subcommand (see Figure 11). Both the command and the subcommand can 
issue messages IKJXXllOI and IKJXXlllI. 

EXAMPLE posit10,posit11 ~KEYWD10~ KEYWD11 
KEYWD12 

[KEYWD13 (posit 12)] 

Figure to. An Example of a User's EXAMPLE Subcommand Format 

Command Processors 27 



Figure 11 shows data cards that would present and format information 
about the SAMPLE command and EXAMPLE subcommand for inclusion 
in the HELP data set. 

)~ IHi£ SA~~~£ co~~~WIC /55Iu~~ ITUI~ F~LL~IK/~ ~ES5~1(,£S: 
J)IKJXXI 101 ~ 5CV</~ TfllE. ~~~SI£lIc,1£ /~IJ\X~f 10/ Wl.i~ • 
))/ JXX/l 11 IlF5C~/~F 11~~ ~~SS~~~ /~IJXlxI11/ ~IF~IF. 
)0 17 I~ ~~~~/~ C~ ~ ~ ~~~ 17~~ ~~~ O~/~ p~~~lrv ~kv 

~ilJSITf 

)rJ KI€IY~ /) f 

~~ ~&NCT/O~~L ~E~c~/~IT/bw ~F ITH~ ~K~~~V~ ~y~~h 1M. 

Th~ ~WA~P~~ ~~~Co.~~~W.O /~ ~ ~/Cilr/~~S 
fs~8CI"I • 

1 

)0 ~~/WG ~~S/17Vb~~~ 
1 " I,., : 

Figure ]]. Coding Example - Including the SAMPLE Command and EXAMPLE Subcommand in 

the HELP Data Set 

28 TSO Guide to Writing a TMP or a CP 

I 

J 



L 

MVS/Extended Architecture Considerations 

This section discusses considerations for MVS/Extended Architecture in 
terms of its impact on the tasks documented in this manual. You should be 
familiar with the publications that describe comprehensive programming 
considerations for MVS/Extended Architecture, as well as with those that 
describe the routines and macros discussed in this manual. Henceforth, 
MVS/Extended Architecture is referred to as MVS/XA. 

Note: Interfaces for service routines and macro instructions mentioned in 
this section are covered in more detail in the sections of this manual 
describing the individual service routines and macro instructions. 

Testing a Program 
MVS/XA users cannot use the TEST command to test a program unless 
TSO Extensions (TSO/E 5665-293) is installed. If TSO/E is not installed 
and a user enters the TEST command, he receives a message informing him 
that the command is not recognized. 

31-Bit Addressing - General Interface Considerations 
The interfaces described in this section reflect what is possible on an 
MVS/XA system. When determining the attributes and linkage conventions 
for a program, you should analyze the program's individual interfaces and 
its overall interactions with other programs. This section provides general 
guidelines for making these determinations. 

MVS/XA requires that addressing modes and program residency be 
considered when determining linkage conventions. See "Specific Interfaces 
and Functions" later in this section for brief descriptions of those 
considerations for the service routines and macro instructions described in 
this manual. 

Assuming you are running programs on an MVS/XA system, you may 
wish to take advantage of the added virtual storage provided by extended 
addressing. or you may wish to prepare for doing so in the future. Before 
describing linkage considerations. it is important to note that if a program is 
to be run on MVS/370 systems or on both MVS/370 and MVS/XA 
systems, it cannot perform any functions unique to MVS/XA. 

Some MVS/XA macro instructions are downward incompatible; their 
MVS/XA expansions do not function correctly in MVS/370. Of the 
macros discussed in this manual, ATTACH, ESTAE, FESTAE, and STAX 
are downward incompatible. For a description of how to generate the 
desired level of a macro instruction, refer to SPL: System Macros and 
Facilities. 

Whtm making linkage decisions, you should analyze: 

• Who passes control to whom 
• Whether return is desired 
• AMODE and RMODE attributes 

The first two items are discussed in SPL: 31-Bit Addressing. 

MVS/Extended Architecture Considerations 29 



The following discussion provides a general description of AMODE and 
RMODE attributes; it does not attempt to cover AMODE and RMODE 
considerations in depth. For a detailed discussion of 31-bit addressing, refer 
to SPL: 31-Bit Addressing. 

The following paragraphs pertain to programs running exclusively in 
370-XA mode. 

AMODE=24, RMODE=24 

Programs with these attributes expect to (or are designed to) receive 
control in 24-bit addressing mode, and are loaded below 16 megabytes. 

If you do not assign AMODE and RMODE attributes to a program, the 
attributes default to AMODE=24 and RMODE=24. 

The IBM -supplied terminal monitor program and command processors 
have these attributes, and are loaded below 16 megabytes. 

AMODE=ANY, RMODE=24 

AMODE=ANY indicates that a program expects to (or is designed to) 
receive control in the addressing mode of the program that invoked it. Note 
that a program with the AMODE=ANY attribute may have to switch 
addressing modes for certain processing. However, such a program must 
switch back to the addressing mode in which it received control before 
returning to the caller. 

AMODE=ANY programs must be given the RMODE=24 attribute. 

AMODE=ANY does not indicate whether the program should be passed 
input that resides below 16 megabytes; the particular interfaces should be 
analyzed to determine where input may reside. However, a program should 
meet certain criteria in order to be assigned the AMODE=ANY attribute. 
Refer to SPL:31-Bit Addressing for a description of the criteria. 

A MODE = 31 

AMODE=31 indicates that a program expects to (or is designed to) receive 
control in 31-bit addressing mode. Such a program may have the 
RMODE=24 or RMODE=ANY attribute, depending on its residency 
requirements. Regardless of the program's RMODE attribute, the residency 
of its input depends on the program's requirements. The program may 
require that some of its input reside below 16 megabytes, while other input 
may reside anywhere. 

A program that runs exclusively in 31-bit addressing mode 
(AMODE=31) may do so provided it complies with the restrictions of 
invoking, and being invoked by, programs that run in 24-bit addressing 
mode (AMODE=24 or AMODE=ANY). 

Refer to SPL' 31-Bit Addressing for more information on the 
AMODE=31 attribute. 

30 TSO Guide to Writing a TMP or a CP 



L 

Specific Interfaces and Functions 
The interfaces described in this section reflect what is possible on an 
MVS/XA system. When determining the attributes and linkage conventions 
for a program, you should analyze the program's individual interfaces and 
its overall interactions with other programs. This section provides specific 
guidelines for making these determinations. 

Control Program Interfaces 

The IBM-supplied command processors are loaded below 16 megabytes and 
must receive control in 24-bit addressing mode. 

The command processor parameter list (CPPL) passed by mM-supplied 
control programs resides below 16 megabytes. 

User-written TMPs and CPs may execute in either 24- or 31- bit 
addressing mode provided they honor the restrictions involved in invoking 
programs that have 24-bit dependencies. 

Service Routine Interfaces 

The following routines execute, and must receive control, in 24-bit 
addressing mode. All input passed to these routines must reside below 16 
megabytes: 

IKJEBEPS 
IKJEFF02 
IKJEFF18 
IKJEFF19 
IKJEHSIR 
IKJGETL 
IKJPARS 
IKJPTGT 
IKJPUTL 
IKJSCAN 
IKJSTCK 

data type processor 
TSO message issuer routine 
DAIRFAIL 
GNRLFAIL/VSAMFAIL 
ST A interface routine 
GETLINE 
parse service routine 
PUTGET 
PUTLINE 
command. scan service routine 
STACK 

If a program running in 31-bit addressing mode invokes anyone of these 
routines, the LINK macro should be used to invoke it because LINK does 
not require the invoking program to switch to 24-bit addressing mode. In 
this case, LINK switches to 24-bit mode in behalf of the invoking program. 
If a program is loaded above 16 megabytes, it must use LINK to invoke 
one of these routines. LINK returns control to the invoking program in the 
same mode in which the LINK macro is issued. 

A program that is running in 31-bit addressing mode and is loaded below 
16 megabytes may issue CALLTSSR to invoke IKJEFF02, IKJPARS, or 
IKJSCAN, provided the program switches to 24-bit addressing mode before 
issuing CALLTSSR. Control is returned to the invoking program in 24-bit 
addressing mode. If the requested routine has not been placed in the link 
pack area, CALL TSSR generates a LINK macro to invoke it. In this case, 
the invoking program may issue CALL TSSR in either addressing mode. 
Note that CALL TSSR can be used to invoke only certain routines. 

MVS/Extended Architecture Considerations 31 



A program running in 24-bit addressing mode may invoke these 11 
routines using any of the methods suggested in "Passing Control to the 
TSO Service Routines." 

IKJEHCIR (catalog information routine) and IKJEHDEF (default 
service routine) may be invoked in either addressing mode, but all input 
passed to these routines must reside below 16 megabytes. These routines 
execute in 24-bit addressing mode and return control in the same 
addressing mode in which they are invoked. 

ST AX (specify terminal attention exit routine) may be invoked in either 
24- or 31-bit addressing mode. Refer to "Attention Interruption Handling 
-- The ST AX Service Routine" for more information. 

IKJDAIR (dynamic allocation interface routine) may be invoked in either 
24- or 31-bit addressing mode. When invoked in 31-bit addressing mode, 
IKJDAIR may be passed input that resides above 16 megabytes. IKJDAIR 
returns control in the same addressing mode iIi which it is invoked. 

Macro Interfaces 

Figure 12 shows the MVS/XA rules for the macros discussed in this 
manual. 

Note: In Figure 12, a dash (-) indicates that the category does not apply to 
the macro because the macro does not generate executable code. The 
addressing mode of the program that accesses the date generated by the 
macro must agree with the residence of the data. 

32 TSO Guide to Writing a TMP or a CP 

J 



Macro (XI May Be Issued In (PI May Be Issued by Program 
(I) Input May Be 

24-Bit Mode 31-Bit Mode Below 16 Mb Above 16 Mb 

ATTACH X X I, P I, P 

CALL X X I, P I, P 

CALLTSSR X X P P 

ESTAE X X I, P I, P 

FESTAE X X I, P I, P 

GETLINE X X I, P 

GTSIZE X X P P 

GTTERM X P 

IKJENDP - - P P 

IKJIDENT - - P P 

IKJKEYWD - - P P 

IKJNAME - - P P 

IKJOPER - - P P 

IKJPARM - - P P 

IKJPOSIT - - P P 

IKJRLSA X X P P 

IKJRSVWD - - P P 

IKJSUBF - - P P 

IKJTERM - - P P 

IKJTSMSG - - P P 

L LINK X X I, P I, P 

LOAD X X I, P . I, P 

PUTGET X X I, P 

PUTLINE X X I, P 

RTAUTOPT X X P P 

SAM Macros X I, P 

SPAUTOPT X X P P 

STACK X X I, P 

STAE X I, P 

Figure 12. MVS/XA Interface Rules for Macro Instructions (Part 1 of 2) 

MVS/Extended Architecture Considerations 33 



Macro (X) May Be Issued In (P) May Be Issued by Program 
(I) Input May Be 

24·Bit Mode 31·Bit Mode Below 16Mb Above 16Mb 

STATTN X I, P 

STAUTOCP X X P P 

STAUTOLN X I, P 

STAX X X I, P See section on 
STAX. 

STBREAK X I, P 

STCC X I, P 

STCLEAR X I, P 

STCOM X I, P 

STFSMODE X I, P 

STLINENO X I, P 

STSIZE X I, P 

STTIMEOU X I, P 

STTMPMD X I, P 

STTRAN X I, P 

TCLEARQ X I, P 

TGET X I, P 

TPG X I, P 

TPUT X I, P 

XCTL X X I, P I, P 

Figure 12. MVS/XA Interface Rules for Macro Instructions (Part 2 of 2) 

Notes on Figure 12 

ATTACH, LINK, LOAD, XCTL 

34 TSO Guide to Writing a TMP or a CP 

A program may issue the ATTACH, LINK, LOAD, and XCTL macro 
instructions while executing in either 24- or 31-bit addressing mode. 
These system services determine where to load the requested program in 
storage and in which addressing mode to invoke it based on the 
program's AMODE and RMODE attributes. Note that LOAD only loads 
a program; it does not invoke the program. LOAD returns the address of 
the loaded program. The high-order bit of this address reflects the 
AMODE attribute of the loaded program. 

If a program is invoked via a LINK, ATTACH, or XCTL macro, it 
receives control in the addressing mode specified or allowed by its 
AMODE attribute. On the other hand, if a program branches to another 
program without changing addressing modes via the BASSM or BSM 
branch instructions, the requested program receives control in whatever 
addressing mode is active at the time of the branch -- that is, in the 
addressing mode of the caller. For more information on these macros, 
refer to System Macros and Facilities. 



L 
CALL ; 

You may use the CALL macro to invoke a program if that program may 
be invoked in the current addressing mode. 

CALLTSSR 
The CALLTSSR macro instruction may be issued in either 24- or 31-bit 
addressing mode. See "Passing Control to the TSO Service Routines" 
later in this book for more information on issuing the CALLTSSR 
macro. 

ESTAE,FESTAE,STAE, ESTAI 
The ESTAE andoFESTAE macros may be issued in either 24- or 31-bit 
addressing mode. Refer to "EST AE/EST AI Exit Routines -- Intercepting 
an ABEND" for more information. Use of the ST AE macro and the 
EST AI operand on the ATTACH macro to establish recovery exits and 
routines is not recommended. If they are used, the recovery exits and 
routines must receive control in 24-bit addressing mode -- that is the 
STAE and ATTACH macros must be issued in 24-bit addressing mode. 

ESTAI 
See ESTAE. 

FESTAE 
See ESTAE. 

GETLlNE, PUTGET, PUTLlNE, STACK 
The GETLINE, PUTGET, PUTLINE, and STACK macros must be 
issued in 24-bit addressing mode. 

IKJTSMSG 
The IKJTSMSG macro must be issued by a program loaded below 16 
megabytes. 

LINK 
See ATTACH. 

LOAD 
See ATTACH. 

Parse Macros 
The parse parameter list passed to the parse service routine must reside 
below 16 megabytes. As a result, the parse macro instructions that 
generate input to parse must be issued by a program loaded below 16 
megabytes. See Figure 12 for a list of the parse macros and their linkage 
requirements. The IKJRLSA parse macro must be issued in 24-bit 
addressing mode. 

PUTGET 
See GETLINE. 

PUTLINE 
See GETLINE. 

SAM Macros 
The sequential access method (SAM) terminal macro instructions must 
be issued in 24-bit addressing mode. 

STACK 
See GETLINE. 

MVS/Extended Architecture Considerations 3S 



STAE 
See ESTAE. 

STAX 
A program may issue the ST AX macro in either 24- or 31-bit addressing 
mode. Refer to "Specifying a Terminal Attention Exit -- The ST AX 
Macro Instruction" for specific restrictions. 

SVC 93 (TGET, TPUT, TPG) 
SVC93 (TGET, TPUT, and TPG macros) executes in 24-bit addressing 
mode. Programs must issue TGET, TPUT, and TPG in 24-bit addressing 
mode. 

SVC 94 (Terminal Control Macros) 
SVC 94 (terminal control macros) executes in 24-bit addressing mode. 
With a few exceptions, terminal control macros must be issued in 24-bit 
addressing mode. The exceptions are the GTSIZE, RTAUTOPT, 
SPAUTOPT, and STAUTOCP terminal control macros, which may be 
issued in 31-bit addressing mode. See Figure 12 for a list of the terminal 
control macros and their linkage requirements. 

XCTL 
See ATTACH. 

36 TSO Guide to Writing a TMP or a CP 



L 

L 

I 
Processing Terminal~Requests - The TSO Service Routines 

The TSO service routines process terminal requests initiated by the terminal 
monitor program (TMP), command processors (CPs), and other service 
routines. If you write your own command processors, or replace the 
IBM-supplied terminal monitor program with one of your own design, you 
should use the service routines to process terminal requests. 

The TSO service routines build, modify, or make use of various control 
blocks. The following control block DSECTS are provided in 
SYS1.MACLIB for your use, and are listed in Data Areas. 

IKJCPPL 

IKJCSOA 

IKJCSPL 

IKJDAPL 

IKJDAPOC 

IKJDAPOO 

IKJDAP04 

IKJDAP08 

IKJDAPIC 

IKJDAPIO 

IKJDAPI4 

IKJDAP18 

IKJDAP2C 

IKJDAP24 

IKJDAP28 

IKJDAP30 

IKJDAP34 

IKJDFPB 

IKJDFPL 

IKJECT 

IKlEFFDF 

IKJEFFGF 

IKlEFFMT 

IKJGTPB 

IKJIOPL 

IKJLSD 

IKJPGPB 

IKJPPL 

IKJPSCB 

IKJPTPB 

IKJSTPB 

IKJSTPL 

IKJTAIE 

IKJTAXE 

IKJTMPWA 

IKJUPT 

The command processor parameter list 

The command scan output area 

The command scan parameter list 

The dynamic allocation parameter list 

DAIR entry code parameter block 

DAIR entry code parameter block 

DAIR entry code parameter block 

DAIR entry code parameter block 

DAIR entry code parameter block 

DAIR entry code parameter block 

DAIR entry code parameter block 

DAIR entry code parameter block 

DAIR entry code parameter block 

DAIR entry code parameter block 

DAIR entry code parameter block 

DAIR entry code parameter block 

DAIR entry code parameter block 

The default parameter block 

The default parameter list 

The environment control table for GETLINE/PUTLINE/PUTGET/STACK 

PARMLIST to IKJEFF18 (DAIRFAIL) 

PARMLIST to IKlEFF19 (GNRLFAIL) 

P ARMLIST to IKJEFF02 

The GETLINE parameter block 

The input output parameter list for GETLINE/PUTLINE/PUTGET/STACK 

The list source descriptor for STACK 

The PUTGET parameter block 

Defines the parse parameter list 

The protected step control block 

The PUT LINE parameter block 

The STACK parameter block 

The STACK parameter list 

Terminal attention interrupt element from ST AX 

Terminal attention exit element from ST AX 

The terminal monitor program work area 

User profile table 

Processing Terminal Requests - The TSO Service Routines 37 



, 

\ 

Interfacing with the TSO Service Routines 

Terminal 
Monitor 
Program 

When the terminal monitor program attaches a command processor, register 
1 contains a pointer to a command processor parameter list (CPPL) 
containing addresses required by the command processor. The CPPL is 
located in subpool 1. The control block interface between the TMP and an 
attached CP is shown in Figure 13. 

Register 1 I 
I 

Command 
Processor 

CPPL 

Figure 13. Control Block Interface between the TMP and CP 
" 

The Command Processor Parameter List 

You must pass certain addresses contained in the CPPL to the TSO service 
routines. Your user-written command processors can access the CPPL via 
the symbolic field names contained in the IKJCPPL DSECT by using the 
address received in register 1 as a starting address for the DSECT. The use 
of the DSECT is recommended since it protects the command processor 

, from any changes to the CPPL. 

The command processor parameter list, as defined by the IKJCPPL 
DSECT, is a four-word parameter list. Figure 14 describes the contents of 
the CPPL. 

38 TSO Guide to Writing a TMP or a CP 



L 
When the TMP invokes a problem program, whether a command 

processor or not, register 1 contains the address of the CPPL. The CPPL is 
required by any program that is going to use TSO service routines. If any 
problem program or user-written command processor is going to invoke an 
IBM-supplied command processor, the CPPL address must be supplied in 
register 1. 

AU input passed to IBM-supplied command processors and the 
IBM-supplied TMP must reside below 16 megabytes. 

Number of 
Contents or Meaning Bytes Field 

4 CPPLCBUF The address of the command buffer for the 
currently attached command processor. 

4 CPPLUPT The address of the user profile table (UPT). 
The UPT is built by the LOGON/LOGOFF 
scheduler from information stored in the user 
attribute data set (UADS) and from 
information contained in the LOGON 
command. The address of the UPT is obtained 
from the PSCBUPT field of the protected step 
control block (PSCB). 

4 CPPLPSCB The address of the protected step control 
block (PSCB). The PSCB is built by the 
LOGON/LOGOFF scheduler from information 
stored in the UADS. The TMP can obtain the 
address of the PSCB using the EXTRACT 
macro instruction. 

4 CPPLECT The address of the environment control table 
(ECT). The ECT must be built by the TMP 
during its initialization process; it is used by 
the TSO service routines and by some TSO 
commands and subcommands. 

Figure 14. The Command Processor Parameter List (CPPL) 

For a description of linkage and program residency considerations, refer 
to "Service Routine Interfaces" in the previous section. 

Passing Control to the TSO Service Routines 
There are four ways you can pass control to the TSO service routines. 

1. You can issue an I/O macro instruction without the ENTRY 
parameter for the I/O service routines. 

2. You can issue a LINK instruction to a service routine,but this 
requires more system overhead than other methods. 

The LINK macro instruction loads the routine in storage based on its 
RMODE attribute, and passes control to the routine in the addressing 
mode specified or allowed by its AMODE attribute. 

3. You can issue a LOAD instruction for a service routine and then do 
branches to the loaded routine, but this also requires more system 
overhead than other methods. 

The LOAD macro loads the routine in storage based on its RMODE 
attribute. LOAl) returns the address of the loaded program. The 

Processing Terminal Requests - The TSO Service Routines 39 



42 ISO Guide to Writing a IMP or a CP 



Message Handling 

TSO messages are divided into three classes: 

• Prompting messages 
• Mode messages 
• Informational messages 

Prompting messages begin with ENTER or REENTER, and require a 
response from the user. Prompting messages should be initiated by the 
parse service routine, rather than by parse validity check exits, using the 
text supplied by the command processor as the PROMPT operand of the 
IKJPOSIT, IKJTERM, IKJOPER, IKJRSVWD or IKJIDENT parse macro 
instructions. See "Using the Parse Service Routine (IKJPARS)" for a 
discussion of the PROMPT operand on these macro instructions. 

Mode messages are the READY messages sent by the terminal monitor 
program, and any other similar messages sent by command processors, such 
as the EDIT mode message sent by the EDIT command processor. They 
inform the user which command is in control and let him know that the 
system is waiting for him to enter a new command or subcommand. 

Informational messages do not require an immediate response from the 
user. 

Prompting and mode messages should be displayed using the PUTGET 
service routine. Informational messages should be displayed using the . 
PUTLINE service routine. The TPUT routine does not support multi-level 
messages, message id stripping, and text insertion, and does not function in 
background mode (it acts as a NOP). 

Message Levels 
Messages usually should have associated with them other messages that 
more fully explain the initial message. These messages, called second level 
messages, are displayed only if the user specifically requests them by 
entering a question mark (?). 

Prompting messages may have any number of additional levels. The 
second level is displayed if the user enters a question mark in response to 
the initial message. The last level is displayed if the user enters a question 
mark in response to the next to the last message. If the user at the terminal 
enters a question mark after aU messages have been displayed, PUTGET 
displays the message NO INFORMATION A V AILABLE. Pass your second 
level prompting messages to the parse service routine by coding them as the 
HELP operand in the IKJPOSIT, IKJTERM, IKJOPER, IKJRSVWD and 
IKJIDENT parse macro instructions. 

An informational message can have only one second level message 
associated with it. Since many informational messages might be displayed at 
the terminal before a question mark is returned from the terminal, 
PUTLINE moves all second level informational messages to subpool 78 and 
chains them off the environment control table. This chain exists from one 
PUTGET for a mode message to the next. In other words, whenever the 
user can enter a new command or subcommand, he can enter a question 

Message Handling 43 



** ~ CO ULD HA VE CO M~ EN T5 PR ce £0 

• Message IKJ562501 is a single level PUTLINE message ~ith one 
insert. 

• Message IKJ562511 is a PUTLINE message with two levels. 

• Message IKJ56252A is a PUTGET message with two levels. 

• Message IKJ56253I is a PUTLINE message with an insert at the end 
of the text. 

• The IKJTSMSG macro with no operands is required to indicate the 
end of the message CSECT. 

ING OR FO LL ow ING ITHE MA CR OS TO LI SiT 

~ NO Du LES I S SU ING THE ME SS AG IES ~NP GI VE T,HE ME SS AGE ~E Sc RI PiT 10 WS 
*** I I< EF F(J3 CS EC 

I I< JT SM SG ( I IK IJ~ 62 5(J1 JOB 
, I SU '~M IT T,E ' ) , flU/) , , 

It 

II<. JT SM SG ( , /K J5 62 511 
, , CO MM ~ND NOT AU TH OIR I Z ED + I ) . R.rll . . 

IK .]T SM slG ( I II< J,5 62 51 I YO UR IN ST AL LA TI ON IN, U 5T AU Tf..I OR I ZE USc OIF T+ 
HIS CO MM AN 'D' ) , 111 , R ¢ 1 

* )fIX' SEC N LE VE L POI NTc TO FI RST LE VIE L FOR PU TL INE *~ 

'* 
I I I 

i 
IX, IJT 5M 51G ( , III< IJ516 215 2A fiN TER IJO Bitt ~MIE CH ARA IT E R+ - ' ) 1 ~ 2] Sf/J2 , 

I K. ~T SM slG ( , IK J56 25 2A IJlo BN AM£ IS CR EA TElo FR OM US ER. '10 PL US , + • , ONE ALI~H A/Ii U~ ER. I C ,0 f< N IT 10 NIAL CH AR AC TIE K ' ) • SI~2 
~ )fX FI 1};51 T LE ViF L: IP Oil NlT 5 iTO ISE/qa NiD L,E VEL iF OiR P!lJ TG EiTI ~,Jt' i i i : 

* I I I I I 
i I lkiT ! , [ I ! ! i ~ 

MslGI 1(' 
---+-- -r-

I i I I KIJ 7,5 I'K 516 2513 I I!NV!~ /:DLfl' A,RiACi ER ,- ,D:, :¢ ;3' I ' j ! i : I ! I 
f--+----+ I : : 

)(-i , T , ** TH E 'qO!MM AI ,A FT EJ<iTiH Ei ,APO ST'gO:P HiEl IN 01 :CI4'T 65i A: TRAI L IWIGi if N:5ERT: I ' r 

I i 

, 

I ! I I I I 

{K liT 5M SG I I l f 

Ittw 1/<. ~IE FF rA3 I 
I 

j I 

I 

Figure 17. An Example of an IKJTSMSG Macro Instruction 

48 TSO Guide to Writing a TMP or a CP 



L 

Attention Interruption Handling -- The ST AX Service Routine 

The ST AX service routine creates the control blocks and queues necessary 
for the system to recognize and schedule user exits due to attention 
interruptions. Your terminal monitor program, your command processors, or 
the problem program provide the address of an attention exit to the ST AX 
service routine by issuing the ST AX macro instruction. You should provide 
attention exit routines within the terminal monitor program and any 
command processors that accept subcommands. Simple command or 
subcommand procedures should not issue a STAX macro instruction unless 
the ST AX routine specified by the TMP or the calling command processor 
cannot process an attention interruption adequately. 

The ST AX service routine may be invoked in either 24-bit or 31-bit 
addressing mode. The attention exit routine receives control in the same 
addressing mode in which the respective ST AX macro is issued. 

With the exception of the TPUT ASID buffers for TeAM, when the 
user enters an attention interruption from the terminal, the TGET, TPUT, 
and TPG buffers are flushed. Any data contained in these buffers is lost. If 
the user then attempts to continue processing from the point of 
interruption, he may have lost an input or an output record, or an output 
message from the system. 

Attention processing gives the user the ability to specify exit routines 
that receive control asynchronously when the attention key is struck or 
when an interruption occurs as a result of the simulated attention facility 
(STATTN macro). The mechanism used to request attention exits is the 
STAX macro. When the STAX macro is issued, a TAXE (terminal 
attention exit element) is created and placed on a queue. The T AXE queue 
is ordered according to the attention level, and the attention level 
determines the order in which the attention exits are given control. If the 
ATTENTION key is struck once, the first level attention exit is given 
control. If the key is struck twice, the second level attention exit is given 
control. When placing a T AXE on the T AXE queue, two rules apply: 

1. An attention exit routine for a task will always occupy a higher 
attention level than the attention exit of any of its subtasks. 

2. The attention exit routine is placed at the lowest possible attention 
level, without violating the first rule. 

In other words, the placement at an attention level is determined by the 
position of the task in the subtask queue relative to the position of the 
other tasks creating attention exits. The lower the subtask the lower the 
attention level assigned. The subtask queue is considered to be the 
mother-daughter queue only. If for any reason a complex task structure is 
created that would have a mother task with multiple daughter tasks, then 
the order in which the daughters issue ST AX macros must be synchronized 
in order to ensure predictability from day to day. Note that the order in 
which the daughters issue ST AX macros, not the order in which the 
daughters are attached, determines the order in which the associated 
TAXEs are placed on the TAXE queue. 

Attention Interruption Handling -- The ST AX Se"ice Routine 49 



If a task has issued mUltiple ST AX macros, the order in which the 
associated T AXE is placed on the T AXE queue is determined by the 
second rule. 

Attention levels can change during execution of the session for three 
reasons: 

1. A task has issued ST AX and its daughter then issues ST AX. In this 
case the attention exit for the first task would have an attention level 
of one until its sub task had issued ST AX. The daughter task would 
then have an attention level of one and the original task would have 
a level of two. 

2. A task that has established an attention exit environment abnormaliy 
terminates or exits. When this occurs the TAXEs for that task are 
freed. The remaining TAXEs then assume the new attention level 
relative to its position on the T AXE queue. 

3. The ST AX macro is used to cancel the last attention exit established 
by a task. 

When generating an attention interruption by striking the ATTENTION 
key, the ATTENTION level is recorded by counting the number of times 
the ATTENTION key has been struck. If the number of times the key is 
struck exceeds the number of available attention levels, an"!I" mess<!ge is 
sent to the terminal. If the attention has been accepted, an "!" message is 
sent to the terminal to indicate that the attention exit is being scheduled. If 
an attention interruption is received while a previously requested (lower 
attention level) attention exit is in the process of being scheduled, the first 
attention exit is canceled and the new attention exit is scheduled. This wiil 
be true until control has been passed to the user's attention exit. 

Prior to passing control to the attention exit, the task under which the 
attention exit is running will have all its subtasks stopped. Note, however, 
that if a system routine (SVRB on RB chain) is executing for one of the 
TCBs and has not specified STAX DEFER=NO (see below for expanded 
explanation), then the scheduling of the attention exit will be deferred until 
the completion of such system routines. All SVRBs start execution in a 
ST AX DEFER= YES state and all other RBs start execution in a ST AX 
DEFER=NO state. Consequently, the presence of an SVRB on a TCB's 
RB chain normally means attention exits will be deferred. When the user's 
attention exit completes processing the sub tasks are automatically restarted. 
If, for any reason, the attention routine requires one of the subtasks to be 
restarted, it is the responsibility of the attention exit to restart the task 
through the use of the status start facility. If the subtasks should not be 
restarted, it is the responsibility of the attention exit to use the status stop 
facility to ensure that the subtasks will not become dispatchable when the 
attention exit completes processing. See Supervisor Services and Macro 
Instructions for additional information. . 

The attention level at which the attention exit is running and all of the 
lower attention levels are considered unavailable as soon as scheduling of 
the exit takes place. Therefore, once the attention scheduling has begun, 
only higher attention levels are available for use until the attention exit 
completes processing. 

50 TSO Guide to Writing a TMP or a CP 



L 
Message Handling 

TSO messages are divided into three classes: 

• Prompting messages 
• Mode messages 
• Informational messages 

Prompting messages begin with ENTER or REENTER, and require a 
response from the user. Prompting messages should be initiated by the 
parse service routine, rather than by parse validity check exits, using the 
text supplied by the command processor as the PROMPT operand of the 
IKJPOSIT, IKJTERM, IKJOPER, IKJRSVWD or IKJIDENT parse macro 
instructions. See "Using the Parse Service Routine (IKJPARS)" for a 
discussion of the PROMPT operand on these macro instructions. 

Mode messages are the READY messages sent by the terminal monitor 
program, and any other similar messages sent by command processors, such 
as the EDIT mode message sent by the EDIT command processor. They 
inform the user which command is in control and let him know that the 
system is waiting for him to enter a new command or subcommand. 

Informational messages do not require an immediate response from the 
user. 

Prompting and mode messages should be displayed using the PUTGET 
service routine. Informational messages should be displayed using the . 
PUTLINE service routine. The TPUT routine does not support multi-level 
messages, message id stripping, and text insertion, and does not function in 
background mode (it acts as a NOP). 

Message Levels 
Messages usually should have associated with them other messages that 
more fully explain the initial message. These messages, called second level 
messages, are displayed only if the user specifically requests them by 
entering a question mark (?). 

Prompting messages may have any number of additional levels. The 
second level is displayed if the user enters a question mark in response to 
the initial message. The last level is displayed if the user enters a question 
mark in response to the next to the last message. If the user at the terminal 
enters a question mark after all messages have been displayed, PUTGET 
displays the message NO INFORMA nON AVAILABLE. Pass your second 
level prompting messages to the parse service routine by coding them as the 
HELP operand in the IKJPOSIT, IKJTERM, IKJOPER, IKJRSVWD and 
IKJIDENT parse macro instructions. 

An informational message can have only one second level message 
associated with it. Since many informational messages might be displayed at 
the terminal before a question mark is returned from the terminal, 
PUTLINE moves all second level informational messages to subpool 78 and 
chains them off the environment control table. This chain exists from one 
PUTGET for a mode message to the next. In other words, whenever the 
user can enter a new command or subcommand, he can enter a question 

Message Handling 43 



mark instead, requesting all the second level messages for informational 
messages issued during execution of the previous command or subcommand. 
If he does not enter a question mark, PUTGET deletes the second level 
messages and frees the storage they occupy. 

Mode messages cannot have second level messages, since a question 
mark entered in response to a mode message is defined as a request for the 
second levels of previous informational messages. Your program should 
request all commands or subcommands by issuing a mode message with the 
PUTGET service routine so that second level informational messages may 
be properly handled. 

Effects of the Input Source on Message Processing 
Message handling is considerably affected if the input source designated by 
the input stack is an in-storage list rather than a terminal. See the 
explanation of the STACK macro instruction for a discussion of in-storage 
lists. In-storage lists may be either procedures or source lists. 

If a procedure without the prompt option is being executed, the 
PUTGET service routine does not display prompting messages, but returns 
an error code (12) in register 15. If the parse service routine issued the 
PUTGET macro instruction, the parse service routine issues an 
informational message to the terminal, and returns an error code 4 to its 
caller. The command processor should reset the input stack and terminate. 
If a command processor issued the PUTGET macro instruction, the 
command processor should use the PUTLINE service routine to write an 
appropriate informational message to the terminal prior to terminating. 

If a source in-storage list is being processed, prompt messages are 
displayed to, and responses read from, the terminal by the PUT GET service 
routine. 

If the user at the terminal has specified the "PAUSE" operand on the 
PROFILE command, PUTGET issues a special message, "PAUSE", if all of 
these three conditions exist: 

(1) A mode message is to be written out. 

(2) Second level messages exist. 

(3) An in-storage list is being processed. 

The user may enter either a question mark or a null line. If he enters a 
question mark, the chain of second level messages is written to the terminal. 
If he enters a null line, control returns to the executing command processor. 
In either case, the next line from the in-storage list is returned to the 
command processor. 

A special situation arises if an in-storage list is being processed, second 
level messages are chained, and the user has specified NOPAUSE as an 
operand of the PROFILE command. Normally, if a subcommand 
encounters an error situation, it issues an informational message and 
returns. The command processor then uses the PUTGET service routine to 
issue a mode message on the assumption that the user can take corrective 
action with other subcommands. When processing from an in-storage list, 
this is not true. If NOPAUSE was specified, PUTGET returns an error 
code (12) to the calling routine. In most cases, the command processor 

44 TSO Guide to Writing a TMP or a CP 



should reset the input stack and terminate. If the message producing the 
second level message was purely informational and does not require 
corrective action, the command processor may set the ECTMSGF flag in 
the environment control table to delete the second level message, and 
reissue the PUTGET macro instruction to continue. 

TSO Message Issuer Routine (IKJEFF02) 
The TSO message issuer routine issues a message as a PUTLINE, 
PUTGET, write-to-operator (WTO), or a write-to-programmer (WTP). You 
may invoke IKJEFF02 just to issue the message to the terminal, both to 
issue the message and return the requested message to the caller in the 
caller's buffers, or just to return the message to the caller. This process of 
returning the message is referred to as extracting the message. This routine 
simplifies the issuing of messages with inserts because hexadecimal inserts 
can be converted to printable characters and the same parameter list used 
to issue any message. It also makes it more convenient to place all messages 
for a command in a single CSECT or assembly module, which is important 
when message texts must be modified. Adding or updating a message is 
simpler when IKJEFF02 is used, rather than PUTLINE or PUTGET. 

Refer to "Interfacing with the TSO Service Routines" earlier in this book 
for a description of the ways in which IKJEFF02 may be invoked. 
Regardless of the linkage method used, IKJEFF02 must receive control in 
24-bit addressing mode. If a program invokes IKJEFF02 via the 
CALLTSSR macro and IKJEFF02 has been placed in the link pack area, 
the program should issue CALLTSSR in 24-bit addressing mode. If 
IKJEFF02 has not been placed in the link pack area, the program may 
issue CALL TSSR in either addressing mode. In this case, the LINK macro 
generated by CALL TSSR invokes IKJEFF02 in 24-bit addressing mode. 

All input passed to IKJEFF02 must reside below the 16-megabyte virtual 
storage line. 

Generally, you will invoke the TSO message issuer routine via the 
CALLTSSR or LINK macro, passing the address of the following parameter 
list in register 1: 

Offset 
Dec 

o 

4 

8 

12 
12 

16 

20 

Hex 

o 

4 

8 

C 
C 

10 

14 

Field Name 

MTPLPTR 

MTCPPLP 

MTECBP 

MTRESVI 
MTHIGH 

MTCSECTP 

MTSWI 

Contents 

Address of message description section of this 
parameter list. (The message description section 
begins with the MTCSECTP entry.) 
Address of TMP's CPPL control block (required for 
PUTLINE or PUTGET). 
Address of optional communications ECB for 
PUTLINE or PUTGET. 
Reserved. 
High-order bit of reserved field turned on for 
standard linkage. 
Address of an assembly module or a CSECT 
containing IKJTSMSG macros that build message 
identifications and associated texts. 
One byte field of switches 

Message Handling 45 



Offset 
Dec Hex Field Name Contents 

MTNOIDSW 1. ...... Message is printed; no messageid is 
needed. 

MTPUTlSW .1. ..... Message issued as PUTUNE. 
(Message inserts for a second level 
message must be listed before inserts 
for a first level message.) If this bit is 
zero, message issued as a PUTGET, 
with second level message required 
and inserts for second level 
messages necessarily following 
inserts for first level messages. 

MTWTOSW .. 1. .... Message issued as a WTO. 
Default is PUTGET. 

MTHEXSW ... 1 .... Number translations to printable 
hexadecimal rather than default of 
printable decimal. 

MTKEYlSW .... 1. .. Modeset from key 1 to key 0 before 
issuing a PUTUNE or PUTGET 
message. Default is no modeset. 

MTJOBISW ..... 1.. Blanks are compressed out of xx(yy) 
format inserts. Default is no 
compression. 

MTWTPSW ...... 1. Message issued as WTO with 
write-to-programmer routing code. 
Inserts are handled the same as for 
PUTUNE. Default is PUTGET. 

MTNHEXSW ....... 1 Number translations to printable 
decimal, even if larger than X'FFFF'. 
Default is printable hex above 
X'FFFF'. 

21 15 MTREPlVP Address of reply from PUTGET. The reply text is 
preceded by a two-byte field containing length of 
text plus header field. 

24 18 MTSW2 One byte field of switches. 
MT20lDSW 1. ...... Field MTOLDPTR points to second 

level message already in 
PUTUNE/PUTGET (Output line 
Descriptor) format. Default is 
IKJTSMSG format. 

MTDOMSW .1. ..... Delete WTP or WTO messages from 
the display console, using the delete 
operator message macro. 

MTNOXQSW .. 1. .... Override default of X"around inserts 
converted to printable hex. 

MTNPlMSW ... 1 .... Override default of error message if 
PUTLINE fails. 

MTPGMSW .... 1. .. Request an error message if PUTGET 
fails. 

25 19 MTRESV2 Reserved. 
28 lC MTOLDPTR Pointer to O.l.D. for second level message, 

required if MT20lDSW bit is on. 
32 20 MTRESV3 Reserved. 
36 24 MTRESV4 Reserved. 
40 28 MTMSGID Message's identifier in message CSECT, padded 

with blanks on the right. 
44 2C MTINSRTS Insert information for message. The following two 

fields are supplied for each insert: 
44 2C MTlEN length of an insert for the message. 
44 2C MTHIGHl High-order bit is on if translate the first 1-4 bytes 

of the insert from hexadecimal to character 
(printable hexadecimal or decimal depending on 
whether MTHEXSW is set to ON or OFF). 

44 2C MTINSRT Refers to an insert entry. 
45 2D MTADDR Address of an insert for the message. 

..,J 
46 TSO Guide to Writing a TMP or a CP 



The return code from the TSO message issuer routine is contained in 
register 15 as follows: 

o - Message issued successfully. 

76 - Error in parameter list. A diagnostic message is also issued. 

Other - PUTLINE or PUTGET return code. 

The IKJEFFMT macro maps the input parameter list. Specify 
MTDSECT = YES option to obtain DSECT MTDSECTD instead of storage. 

IKJTSMSG -- Describes Text and Insert Locations 

The IKJTSMSG macro is used to generate assembler language DC 
instructions describing the text and locations of inserts for a message which 
may be issued by the TSO message issuer routine (IKJEFF02). All of the 
messages which a command issues should be grouped into an assembly 
module consisting entirely of IKJTSMSG macros preceded by a CSECT 
card and followed by an END card. The last IKJTSMSG macro in the 
CSECT must be a dummy entry with no operands. 

The IKJTSMSG macro must be issued in by a program loaded below 16 
megabytes. Figure 16 shows the syntax of the IKJTSMSG macro 
instruction; each of the operands is explained following the figure. 
Appendix A describes the notation used to define macro instructions. 

[symbol] IKJTSMSG ('msgid msgtext') ,id1 [,id21 

Figure 16. The IKJTSMSG Macro Instruction 

msgid - The identifier which will be displayed when the message is 
issued. 

msgtext - The text of the message. If an insert is necessary within the 
text of a message or at the end of a message, use the 
following rules: 

• The location of an insert in the middle of a message should be 
indicated by a ',:. 

• If the insert is to be located at the end of a message, indicate it by a 
" following the message text. 

idl - The internal identifier of the message. It may be from one to four 
characters and should not contain a blank, comma, parentheses, or 
an apostrophe. This id is passed to IKJEFF02 in the MTMSGID 
field of the parameter list. 

id2 - The internal identifier of a message to be chained to this message. 
For a PUTGET message, the first level message would have an id2 
field identifying the second level, and the second level message 
could have an id2 field to identify a another second level, etc. For 
a PUTLINE, WTO, or write-to-programmer message, the second 
level message would have an id2 field identifying the first level. 

For an example of the coding involved for a CSECT containing the 
IKJTSMSG macro, see Figure 17. The example shows how a message 
module can be created for a SUBMIT command, using the IKJTSMSG 
macro. 

Message H..... 47 



**~ 
~ CO 
~ NO 
lOOE 
I K 1.1 E 

)(-

* * 

~ 

'* 
~! 
I~ 

i 

I 

• Message IKJ56250I is a single level PUTLINE message with one 
insert. 

• Message IKJ562511 is a PUTLINE message with two levels. 

• Message IKJ56252A is a PUTGET message with two levels. 

• Message IKJ56253I is a PUTLINE message with an insert at the end 
of the text. 

• The IKJTSMSG macro with no operands is required to indicate the 
end of the message CSECT. 

ULD INA YE CO M~ E~ TS PRE ED ING OR FO LL ow 1 NG THF= MA CR OS TO LI 57 
Of LES I 5 su ING ITHE ME. 55 AG E5 ~N~ GI VE T!HE ME 5S A(jE ~It SC RI 'P7 10 NS 

FF ¢3 C5 EelT 
I I< JT SM SG ( I IK J~ 62 5tJI ~08 

, 
I SU iBM I T TIE f11 ) , 0(J , , 

II<. JT SM SG ( I IX J5 62 511 
, , 

CO M~ ~ NO NOT AU TH olR I Z ED 1-' ) , RrJ/ , , 
IK IJT SM 51G ( I I I< JI5 62 5fl YO UR IN siT AL LA TI ON IMU 5T AUT OR I ZE USiE OF T+ 

,.ll5 CO MM f4N ID' ) , ~ 1 , R¢1 
)OE SEC Nf: LE VEL PO I N T::' TO FI RST LE VEL FOR PU TL INE 7fjlf 

, i 

IK. IJT 3M 5G ( , 11K. J5 6'L 152 A tiN TEIR. IJO BJiV ~MIE CH ARlA ITE r<.1+ -' ) , f)2 1 5 !J)2 I 

IK. ~T 5MS ( , I K J5,6 25 2A JiD 8NA M£ 15 CR EA 7£10 FR OMI US ERI PL US , 1+ , , ONE AL 'PH AN UME RIC OR NIIlIT 10 NIAL CI-I AR AC TF: IR' ) , SI(1J2 I ! 

I *~ FI 'P.5T LE ViEL POi/WT5 iTO SErC ON,D LE IVEL IFOIR PU TG EITl ,)fi~ I . i 
I I , I , I ! I 

, , , ! I 

i I I KIJ 75 MS!G ( , {1K.J5,6 21513 I! IWVIA,L IDI CH AIRiAC!T Elr<. - I !. i)!, ,¢ :31 i ! • , I ! I ; ! ! 

I ! I I , *~ T'HE ciO'M MAl ,AFT ER iTiH EIAPO STlR'QP HEI 'f.N 0.1 CIAiT £is Ai T.R /1>/ L INGi II N5£ RT: 
I 

I II I I i I I I I , 
I {K JiT SM SG , I 

, 

I 
I 

fND II~IJ ElF F~3 I 

Figure 17. An Example of an IKJTSMSG Macro Instruction 

48 TSO Guide to Writing a TMP or a CP 

J 



L 

L 

Attention Interruption Handling -- The ST AX Service Routine 

The ST AX service routine creates the control blocks and queues necessary 
for the system to recognize and schedule user exits due to attention 
interruptions. Your terminal monitor program, your command processors, or 
the problem program provide the address of an attention exit to the ST AX 
service routine by issuing the ST AX macro instruction. You should provide 
attention exit routines within the terminal monitor program and any 
command processors that accept subcommands. Simple command or 
subcommand procedures should not issue a ST AX macro instruction unless 
the ST AX routine specified by the TMP or the calling command processor 
cannot process an attention interruption adequately. 

The ST AX service routine may be invoked in either 24-bit or 31-bit 
addressing mode. The attention exit routine receives control in the same 
addressing mode in which the respective ST AX macro is issued. 

With the exception of the TPUT ASID buffers for TeAM, when the 
user enters an attention interruption from the terminal, the TGET, TPUT, 
and TPG buffers are flushed. Any data contained in these buffers is lost. If 
the user then attempts to continue processing from the point of 
interruption, he may have lost an input or an output record, or an output 
message from the system. 

Attention processing gives the user the ability to specify exit routines 
that receive control asynchronously when the attention key is struck or 
when an interruption occurs as a result of the simulated attention facility 
(STATTN macro). The mechanism used to request attention exits is the 
STAX macro. ·When the STAX macro is issued, a TAXE (terminal 
attention exit element) is created and placed on a queue. The TAXE queue 
is ordered according to the attention level, and the attention level 
determines the order in which the attention exits are given control. If the 
ATTENTION key is struck once, the first level attention exit is given 
control. If the key is struck twice, the second level attention exit is given 
control. When placing a T AXE on the TAXE queue, two rules apply: 

1. An attention exit routine for a task will always occupy a higher 
attention level than the attention exit of any of its subtasks. 

2. The attention exit routine is placed at the lowest possible attention 
level, without violating the first rule. 

In other words, the placement at an attention level is determined by the 
position of the task in the subtask queue relative to the position of the 
other tasks creating attention exits. The lower the subtask the lower the 
attention level assigned. The subtask queue is considered to be the 
mother-daughter queue only. If for any reason a complex task structure is 
created that would have a mother task with multiple daughter tasks, then 
the order in which the daughters issue ST AX macros must be synchronized 
in order to ensure predictability from day to day. Note that the order in 
which the daughters issue ST AX macros, not the order in which the 
daughters are attached, determines the order in which the associated 
TAXEs are placed on the T AXE queue. 

Attention Interruption Handling -- The ST AX Service Routine 49 



If a task has issued mUltiple ST AX macros, the order in which the 
associated T AXE is placed on the T AXE queue is determined by the 
second rule. 

Attention levels can change during execution of the session for three 
reasons: 

1. A task has issued ST AX and its daughter then issues ST AX. In this 
case the attention exit for the first task would have an attention level 
of one until its subtask had issued ST AX. The daughter task would 
then have an attention level of one and the original task would have 
a level of two. 

2. A task that has established an attention exit environment abnormaliy 
terminates or exits. When this occurs the TAXEs for that task are 
freed. The remaining TAXEs then assume the new attention level 
relative to its position on the T AXE queue. 

3. The ST AX macro is used to cancel the last attention exit established 
by a task. 

When generating an attention interruption by striking the ATTENTION 
key, the ATTENTION level is recorded by counting the number of times 
the ATTENTION key has been struck. If the number of times the key is 
struck exceeds the number of available attention levels, an "!I" message is 
sent to the terminal. If the attention has been accepted, an "!" message is 
sent to the terminal to indicate that the attention exit is being scheduled. If 
an attention interruption is received while a previously requested (lower 
attention level) attention exit is in the process of being scheduled, the first 
attention exit is canceled and the new attention exit is scheduled. This wiil 
be true until control has been passed to the user's attention exit. 

Prior to passing control to the attention exit, the task under which the 
attention exit is running will have all its subtasks stopped. Note, however, 
that if a system routine (SVRB on RB chain) is executing for one of the 
TCBs and has not specified STAX DEFER=NO (see below for expanded 
explanation), then the scheduling of the attention exit will be deferred until 
the completion of such system routines. All SVRBs start execution in a 
STAX DEFER=YES state and all other RBs start execution in a STAX 
DEFER=NO state. Consequently, the presence of an SVRB on a TCB's 
RB chain normally means attention exits will be deferred. When the user's 
attention exit completes processing the subtasks are automatically restarted. 
If, for any reason, the attention routine requires one of the sub tasks to be 
restarted, it is the responsibility of the attention exit to restart the task 
through the use of the status start facility. If the subtasks should not be 
restarted, it is the responsibility of the attention exit to use the status stop 
facility to ensure that the subtasks will not become dispatchable when the 
attention exit completes processing. See Supervisor Services and Macro 
Instructions for additional information. 

The attention level at which the attention exit is running and all of the 
lower attention levels are considered unavailable as soon as scheduling of 
the exit takes place. Therefore, once the attention scheduling has begun, 
only higher attention levels are available for use until the attention exit 
completes processing. 

SO TSO Guide to Writing a TMP or a CP 

J 



'-

You can use the ST AX macro not only to specify and cancel attention 
exits, but also to defer the dispatching of attention exits. The DEFER 
operand of ST AX macro instruction can be specified to set an indicator 
that will postpone the dispatching of attention exits for a TCB and all of 
the TCBs above it on the mother-daughter TCB chain. When ST AX with 
the DEFER= YES option is specified, a bit in the RB that represents the 
issuer's routine is set (or reset). The indicator in the TCB, which allows or 
defers the dispatching of attention exits, is set equal to the result of ORing 
all of these bits in the RBs on the TCB RB chain. When the TCB defer 
indicator is off for the a TCB and all its subtasks, then attention exits will 
be dispatched. If the defer indicator is on for a TCB or any of its subtasks, 
then attention exits will be deferred until the defer'indicator(s) for the TCB 
and all of its subtasks are off. When an attention exit can once again be 
dispatched, the DEFER=NO operand can be used to enable it to be 
dispatched. 

The deferral bit setting of a routine (RB) can be changed or propagated 
to other routines (RBs) which are used by the original RB. There are three 
cases to be considered. 

1. A new RB is created and placed on the RB queue along with the 
original RB. This can occur if the original RB issues a LINK. In this 
situation, the routine that has been linked maintains its own deferral 
bit setting. The deferral bit setting of the original RB is not passed to 
the new RB, nor is the deferral bit setting of the new RB passed 
back to the original RB. 

2. A new RB is created and placed on the RB queue and the original 
RB is destroyed. This can occur if the original RB issues an XCTL 
macro, The routine receiving control under the new RB receives the 
deferral bit setting of the original RB. 

3. No new RB is created but control is passed to a routine running 
under the original RB. This can occur if the original RB issues a 
CALL or LOAD macro. The called or loaded routine runs under the 
original RB. If the called or loaded routine issues a ST AX macro 
instruction with the DEFER option, then the deferral bit setting is 
changed for the original RB. 

Note: Tasks within a tree structure being stopped for the attention exit 
scheduling will be stopped in an indeterminate order when any are deferring 
attention exits. As a result, care must be taken to control intertask 
dependencies and dependencies on scheduling attention exits. Failure to do 
so may result in an intertask deadlock that can only be relieved by 
canceling the TSO user. 

Specifying a Terminal Attention Exit -- The STAX Macro 
Instruction 

Use the STAX macro instruction to specify the address of an attention exit 
routine that is to be given control asynchronously when a user strikes the 
attention key or when a simulated attention is specified. (See the ST A TIN 
macro instruction for a description of the simulated attention function.) 

The ST AX macro instruction can also be used to cancel the last attention 
exit routine established by the task. To do this, specify the ST AX macro 
instruction without any operands. 

Attention Interruption Handling -- The STAX Service Routine 51 



[ symbol] 

The ST AX macro instruction is used only in a time sharing environment. 
When a task other than a TSO user issues the ST AX macro, no action is 
taken. In addition, attention exits can be established only for time sharing 
tasks operating in the foreground. 

The system routines that process attention handling require that the 
ST AX parameter list remain unchanged for the life of the program. Because 
the expansion of the ST AX parameter list is usually located in an area that 
is reusable by the active program, you should either code the necessary 
protection to prevent overlays or you should make a copy of the parameter 
list in an area that is non-reusable. 

Issue the STAX macro instruction to provide the information required by 
the ST AX service routine. 

The ST AX macro may be issued in 24- or 31-bit addressing mode. An 
attention exit routine receives control in the same addressing mode in which 
the ST AX macro is issued. 

The ST AX macro instruction has a list, an execute, and a standard form. 

The list form of the STAX macro instruction (MF=L) generates a STAX 
parameter list. The execute form of the ST AX macro instruction 
(MF=E,address) completes or modifies that list and passes its address to 
the ST AX service routine. The standard form does not require you to 
specify MF =L or MF =E. 

Figure 18 shows the format of the list and execute forms of the STAX 
macro instruction; each of the operands is explained following the figure. 
Appendix A describes the notation used to define macro instructions. 

STAX [eXit address [,OBUF=(output buffer addreSS,SiZel]] 

[,IBUF=(input buffer address,sizel] 

[,USADDR=user address] 

[,REPLACE= ~fJ 
[/DEFER= ~f ] 

{ MF=L } 
:MF=(E,addressl 

Figure 18. The STAX Macro Instruction -- List and Execute Forms 

Note: When the STAX macro is issued in 31-bit addressing mode, exit addr 
and USADDR may reside above 16 megabytes. All other input must reside 
below 16 megabytes. 

52 TSO Guide to Writing a TMP or a CP 



L 

exit address 
Specify the entry point of the routine to be given control when an 
attention interruption is received. You must specify the exit address in 
both the list and the execute forms of the ST AX macro instruction when 
you are establishing an attention interruption handling exit. 

You need not specify an exit address if you are using the DEFER 
operand as long as you code no other operands (except the MF 
operand). If you exclude the exit address and code no other operands, 
the ST AX service routine cancels the previous attention exit established 
by the task issuing this ST AX macro instruction. 

OBUF=(output buffer address,output buffer size} 
Output buffer address - Supply the address of a buffer you have 
obtained and initiated with the message to be put out to the terminal 
user who entered the attention interrupti)n. This message may identify 
the exit routine and request information from the terminal user. It is sent 
to the terminal before the attention exit routine is given control. 

Output buffer size - Indicate the number of characters in the output 
buffer. The size may range from 0 to 32,767 (215-0 inclusive. 

IBUF=(input buffer address,input buffer size) 
Input buffer address - Supply the address of a buffer you have obtained 
to receive responses from the terminal user. The attention exit routine is 
not given control until the ST AX service routine has placed the terminal 
user's reply into this buffer. 

Input buffer size - Indicate the number of bytes you have provided as an 
input buffer. The size may range from 0 to 32,767 (215_1) inclusive. 

USADDR=(user address} 
The user address is a pointer to any information you want passed to your 
attention handling exit routine when it is given control. 

REPLACE= YES or NO 

YES indicates that the attention exit specified by this ST AX macro 
instruction replaces any attention exit specified by a ST AX macro 
instruction previously issued by this task. YES is the default value. 
REPLACE implies establishing a new attention exit routine for the task, 
if no previous attention exit has been established. 

NO indicates that this attention exit be established as a new attention 
exit for this task, in addition to any that have been previously established 
for this task. 

Attention Interruption Handling -- The ST AX Service Routine 53 



DEFER=YES or NO 

The DEFER operand is optional. If the DEFER operand is coded in the 
STAX macro instruction, the option you request (YES or NO) applies to 
all tasks within the task chain in which the macro instruction was issued. 
Any task may issue the ST AX macro instruction to specify 
DEFER = YES or NO; the issuing task need not itself have provided an 
attention exit routine. If the DEFER operand is not coded in the macro 
instruction, no action is taken by the STAX service routine regarding the 
deferral of attention exits. 

YES indicates that any attention interruptions received are to be queued 
and are not to be processed until another ST AX macro instruction is 
executed specifying DEFER=NO, or until the program that issued the 
ST AX with the DEFER= YES terminates. 

NO indicates that the defer option is being canceled. Any attention 
interruptions received while the defer option was in effect will be 
processed. If the DEFER operand is omitted, the control program leaves 
the deferral status unchanged. 

Be aware that if a program issues a ST AX macro instruction specifying 
DEFER = YES, the program can get into a situation where an attention 
interruption cannot be received from the terminal. If your program enters 
a loop or an unending wait before it has issued a ST AX macro 
instruction specifying DEFER=NO, you cannot regain control at the 
terminal by entering an attention interruption. 

You need not specify an exit address in a ST AX macro instruction issued 
only to change deferral status. 

MF=L 

This specifies the list form of the ST AX macro instruction. It generates a 
ST AX parameter list. 

MF={E,address) 

This specifies the execute form of the ST AX macro instruction. It 
completes or modifies the ST AX parameter list and passes the address of 
the parameter list to the ST AX service routine. Place the address of the 
STAX parameter list (the address of the list form of the STAX macro 
instruction) into a register and specify that register number within 
parentheses. 

You can place each of the required address and size parameters into 
registers and specify those registers, within parentheses, in the ST AX macro 
instruction. Figure 19 shows how an execute form of the STAX macro 
instruction may look if you load all the required parameters into registers. 

STAX (2), IBUF= ( (3) , (4) ) , OBUF= ( (5) , (6) ) , USADDR= (7) , MF= (E, ( 1 ) ) 

Figure 19. Using Registers in the STAX Macro Instruction 

54 TSO Guide to Writing a IMP or a CP 



The ST AX Parameter List 
When the list form of the ST AX macro instruction expands, it builds a 
six-word ST AX parameter list. The list form of the macro instruction 
initializes this ST AX parameter list according to the operands you have 
coded. 

The execute form of the STAX macro instruction modifies the STAX 
parameter list and passes its address to the ST AX service routine. Figure 20 
describes the contents of the ST AX parameter list. 

Number of 
Field Contents or Meaning Bytes 

4 STXEXIT Contains address of the attention exit routine 
to receive control in response to an attention 
interruption. This is the address you supplied 
as the exit address operand on the STAX 
macro instruction. 

2 STXISIZ Contains a binary number representing the 
size of the input buffer you provided as the 
IBUF operand on the STAX macro instruction. 
The maximum buffer size is 32,767 bytes. 

2 STXOSIZ Contains a binary number representing the 
size of the output buffer you provided as the 
OBUF operand on the STAX macro instruction. 
The maximum buffer size is 32,767 bytes. 

4 STXOBUF Contains the address of the output buffer you 
provided as the OBUF operand on the STAX 
macro instruction. 

4 STXIBUF Contains the address of the input buffer you 
provided as the IBUF operand on the STAX 
macro instruction. 

Figure 20. The STAX Parameter List (Part 1 of 2) 

Attention Interruption Handling -- The ST AX Service Routine 55 



Number of 
Bytes Field Contents or Meaning 

1 STXOPTS STAX option flags. 

.0 ...... REPLACE = YES 

.1. ..... REPLACE = NO 

.. 1. .... Defer attention interruption processing, that is 
DEFER = YES. 

... 1 .... Cancel the deferral of attention interruption 
processing, that is DEFER = NO. 

.... 1. .. Indicates that the CLiST attention counter 
should be incremented. 

..... 1.. Indicates that the CLiST attention counter 
should be decremented. 

...... 1. Indicates that STXFNUM contains a format 
number. 

x ...... x Reserved bits. 

1 STXFNUM STAX format flags. 

....... 1 Indicates that the MVSjXA version of the 
STAX parameter list is used. If this bit is zero, 
the MVSj370 version of the parameter list is 
used. 

xxxx xxx. Not used. 

2 Reserved bytes. 

4 STXNUSER Contains the address of the parameters you 
want passed to your attention handling exit 
routine when it is given control. This is the 
address you supplied as the USADDR operand 
on the STAX macro instruction. 

Figure 20. The ST AX Parameter List (Part 2 of 2) 

Coding Example of the ST AX Macro Instruction 
The coding example shown in Figure 21 uses the list and the execute forms 
of the ST AX macro instruction to set up an attention handling exit. The 
OBUF operand provides a message to be written to the terminal when the 
attention interruption is received, and the IBUF operand provides space for 
an input buffer. This example does not code the REPLACE operand in the 
macro instruction; YES is the default value. The attention handling exit 
established by this execution of the ST AX macro instruction replaces the 
previous attention handling exit established for this task. 

56 TSO Guide to Writing a TMP or a CP 



if T'H /5 K:O 01 WG IF-X f4i11 PLE I 5 SU ES L1 5T AX MA clRO IN ST RU CT lOW TO 

* SET UP IAN AIT IT E 'NT ION fX IT. I 

\If 1t 

~ PI« DC ES 51 tJG 

* f;lf ~ I i 
LA 3 • ST AX L I 517 I I 

f,¥ IS 'SUE TH E EX £C UTE FO Rf11 OF THE ST AX MA c~ a I I NS TV< UC lOW 
jf i 1* 

ST 14X ~T TN lEX liT ,0 BU ~=( au TB Ufo • 3 1 ) I.] 15 /, F= (1 N8 IJ.IFI, 11/- ) I 

~F =( E, (3) 1 I \ , 
l\lf 1* 
~ CH C~ I T/"1 IF RE lTV R'N CO~ FJ<. o~ THE 57 AX SE I5V Ie E KO UIT IW E. 

*" 
A liE RO RIE Tlu RW CO ~IE IN Ie AT E.S su CC ES SF UL CiO MP LIE TI ON .J 

1f , I I : it 
LTIR 15 , f 5 , 

Iii 

~Wl IfR If< TW I ! : : : 

* I , , , I i • :* 
* PR DC ES SIN G' I I I ' . ! I I ! 

I 

~ I I i I I ' : , 

* I i ! I I ' 
£R!/(ITN ..l. , , : I I 'it 
~ ..l. I I I , , I ' , 

llf I 
, .* 

* 
I 

, 
I I 1* 

iArT NE x liT I ! 
I i I I , I 

J , : ' , 
I ii' 

!;If ! I , ! ! 1(-

~ ST OR AG E DEC LA ~~ T/ ONS I , , 
i 

\If I I, ! 7(-

lST~ XL 1ST ST AX IAT TN EX liT ,~ F:L 11-1 151 L/ SIT FOR'M! all- Tf.I It:" ISTiAX 
1 MA CI/(IO IW ST 1f('{J:CIT/ OW 'E XlP AWID5 AND 

, ,{<O'v'/ I/"lEIS SP ~ICi£ F,OiR. ,TIH Ei iST ~X 
A/(~ MF TIEl< L./iSIT. ! : I 

1 

Jf : , , I , \ I 
*" UT BUF DC C' TI-I IS 1151 A SAVll LE ,AT TE NT 101M EXI 17 I ii' 

QS VJF 
, ! I 

lIN BUF /.Ie CL tt! I' Ii" IW 171 !AL I liE f l/-Ig BY TES TO iE RO 
~ AS TIHE IN lPu T BU FF EIR 
~ 

ENI" 

Figure 21. Coding Example - ST AX Macro Instruction 

L 
Attention Interruption Handling -- The STAX Service Routine 57 



Return Codes from the STAX Service Routine 
Control is returned to the instruction following the ST AX macro 
instruction. When control is returned, register 1 will contain the address of 
the user parameter list provided for the previous exit for this task or will 
contain zero. The register will contain zero if this is the first ST AX issued 
for this task, a ST AX with a cancel option, or a ST AX with only the 
DEFER option. If an error was detected (return code 8), then the contents 
of register 1 will be the same as it was at entry. Register 15 will contain 
one of the following return codes: 

CODE 

o 
4 

MEANING 

The ST AX service routine successfully completed the function you requested. 
Deferral of attention exits has already been requested and is presently in effect. 
Any other operands you specified in the ST AX macro instruction have been 
processed successfully. . 

8 Invalid user of DEFER option (asynchronous exit routine). 

If any combination of parameters or the parameters themselves are 
invalid, an ABEND will be issued. 

The types of errors that will cause an ABEND are: 

• Both DEFER = YES and DEFER=NO are specified. 
• Invalid input buffer address (storage not in same key as user's TCB). 
• Invalid buffer size (input or output). 

58 TSO Guide to Writing a TMP or a CP 



Dynamic Allocation of Data Sets -- The Dynamic Allocation Interface Routine 
(DAIR) 

Dynamic allocation routines allocate, free, concatenate, and deconcatenate 
data sets dynamically; that is, during problem program execution. With 
TSO, dynamic allocation permits the terminal monitor program, command 
processors, and other problem programs executing in the foreground region 
to allocate data sets after LOGON and free them before LOGOFF. 

For a complete discussion of dynamic allocation, see SPL: System 
Macros and Facilities. 

The dynamic allocation routines may be accessed by TSO directly or 
through the dynamic allocation interface routine (DAIR). In general, DAIR 
obtains information about a data set and, if necessary, invokes dynamic 
allocation routines to perform the requested function. 

You can use DAIR to perform the following functions: 

• Obtain the current status of a data set 
• Allocate a data set 
• Free a data set 
• Concatenate data sets 
• Deconcatenate data sets 
• Build a list of attributes (DCB parameters) to be assigned to data sets 
• Delete a list of attributes 

Considerations 

• The user must correctly initialize the DAIR parameter block (DAPB) 
before calling DAIR. Unused fields should be zeroed or blanked (if 
character items). 

• Specifying the data set name and the member name for DAIR entry 
code X'08' causes the data set to be allocated but no check is done to 
see if the member exists. To verify that the member really exists: 

- Allocate the data set with the member name using DAIR entry 
code X'08'. 

- Open the data set with DSORG=PO, MACRF=R. 

- Issue BLDL for the member. (The BLDL return code will indicate 
whether the member is there or not.) 

- Close the data set. 

- If BLDL indicates that the member does not exist, unallocate the 
data set using ddname and DAIR entry code X'I8'. 

Using DAIR 
Invoke the DAIR service routine via a CALLTSSR macro instruction, 
specifying the entry point IKJDAIR in load module IKJDAIR. The DAIR 
service routine may be invoked in either 24- or 31-bit addressing mode. 
When invoked in 31-bit addressing mode, IKJDAIR may be passed input 
above 16 megabytes. 

Dynamic Allocation of Data Sets -- The Dynamic Allocation Interface Routine (DAIR) 59 



CAllTSSR 

DAPL 
0 

4 

8 

12 

16 

The control block structure required by the DAIR service routine is 
shown in Figure 22. Note that the DAIR parameter block (DAPB) is a 
variable-size block; the block size depends upon the function requested by 
the calling routine. That function is indicated to the DAIR service routine 
by the code in the first two bytes of the DAIR parameter block. (See 
"Processing Terminal Requests -- The TSO Service Routines" for a 
description of the CALLTSSR macro and a list of IBM-supplied mapping 
macros for parameter lists.) 

DAIR 

DAPB 
o 

Entry Code 

Figure 22. Control Blocks Passed to DAIR 

60 TSO Guide to Writing a TMP or a CP 

J 



The DAIR Parameter List (DAPL) 

At entry to DAIR, register 1 must point to a DAIR parameter list that you 
have built. Figure 23 shows the format of the DAPL. The addresses of the 
user profile table, environment control table, and protected step control 
block may be obtained from the command processor parameter list (CPPL) 
that the TMP passes to your command processor. Additional information on 
the address and creation of the user profile table, environment control 
table, and protected step control block is shown in Figure 14 (the command 
processor parameter list). 

Number of 
Bytes Field Contents or Meaning 

4 DAPLUPT The address of the user profile table. 

4 DAPLECT The address of the environment control table. 

4 DAPLECB The address of the calling program's event 
control block. The ECB is one word of real 
storage declared and initialized to zero by the 
calling routine. 

4 DAPLPSCB The address of the protected step control 
block. 

4 DAPLDAPB The address of the DAIR parameter block, 
created by the calling routine. 

Figure 23. Format of the DAIR Parameter List (DAPL) 

The DAIR Parameter Block (DAPB) 

The fifth word of the DAIR parameter list must contain a pointer to a 
DAIR parameter block built by the calling routine. 

It is a variable-size parameter block that contains, in the first two bytes, 
an entry code that defines the operation requested by the calling routine. 
The remaining bytes contain other information required by DAIR to 
perform the requested function. Figure 24 is a list of the DAIR entry codes 
and the functions requested by those codes. 

Dynamic Allocation of Data Sets -- The Dynamic Allocation Interface Routine (DAIR) 61 



Entry 
Code 

X'OO' 
X'04' 

X'08' 
X'OC' 
X'IO' 
X'l4' 

X'IS' 
X'IC' 
X'24' 
X'28' 
X'2C' 
X'30' 
X'34' 

Funcdon Perfonned by DAIR 

Test if a given DSNAME or DDNAME is currently allocated to the caller. 
Test if a given DSNAME is currently allocated to the caller, or is in system 
catalog. 
Allocate a data set by DSNAME. 
Concatenate data sets by DDNAME. 
Deconcatenate data sets by DDNAME. 
Search the system catalog for all qualifiers for a DSNAME. (The DSNAME 
alone represents an unqualified index entry.) 
Free. a data set. 
Allocate a DDNAME to a terminal. 
Allocate a data set by DDNAME or DSNAME. 
Perform a list of operations. 
Mark data sets as not in use. 
Allocate a SYSOUT data set. 

. Associate DCB parameter with a specified ·name for use with su~sequent 
allocations. 

Figure 24. DAIR Entry Codes and Their Functions 

The DAIR parameter blocks have the formats shown in the following 
tables. The formats of the blocks depend upon the function requested by 
the calling routine. 

Code X'OO' - Determine if DDNAME or DSNAME Allocated 

Build the DAIR parameter block shown in Figure 25 to request that DAIR 
determine whether or not the specified DSNAME or DDNAME is 
allocated. 

Number of 
Field Contents or Meaning Bytes 

2 DAooCD Entry code X'OOOO' 

2 DAOOFLG A flag field set by DAIR before returning to 
the calling routine. The flags have the 
following meaning: 

Byte 1 
0000 .... Reserved. Set to zero. 

... l. .. DSNAME or DDNAME is permanently 
allocated. 

.... . 1.. DDNAME is a DYNAM . 

.... .. 1. The DSNAME is currently allocated . 

....... 1 The DDNAME is currently allocated to the 
terminal. 

Byte 2 
0000 0000 Reserved. Set to zero. 

Figure 25. DAIR Parameter Block -- Entry Code X'OO' (Part I of 2) 

62 TSO Guide to Writing a TMP or a CP 

J 

.;) .... 



L 

Number of 
Field Contents or. Meaning Bytes 

4 DAOOPDSN Place in this field the address of the DSNAME 
buffer. The DSNAME buffer is a 46 byte field 
with the following format: 
The first two bytes contain the length, in bytes 
of the DSNAME; 
The next 44 bytes contain the DSNAME, left 
justified, and padded to the right with blanks. 

8 DAOODDN Contains the DDNAME for the requested data 
set. If a DSNAME is present, the DAIR service 
routine ignores the contents of this field. 

1 DAOOCTL A flag field: 
00.00000 Reserved bits. Set to zero. 
.. 1. .... Prefix use rid to DSNAME . 

2 Reserved bytes; set these bytes to zero. 

1 DAOODSO A flag field. These flags describe the 
organization of the data. They are returned to 
the calling routine by the DAIR service routine. 

1. ...... Indexed sequential organization 
. 1 ...... Physical sequential organization . 
.. 1. .... Direct organization 
... 1 .... STAM or QTAM line group 
.... 1 ... QTAM direct access message queue 
..... 1.. QTAM problem program message queue 
...... 1. Partitioned organization 
....... 1 Unmovable 

Figure 25. DAIR Parameter Block -- Entry Code X'OO' (Part 2 of 2) 

After DAIR searches the data set entry for the fuUy qualified data set 
name, register 15 contains one of the following DAIR return codes: 

0,4,52 

See "Return Codes from DAIR" for return code meanings. 

Code X'04' - Determine if DSNAME Allocated or in System Catalog 

Build the DAIR parameter block shown in Figure 26 to request that DAIR 
determine whether or not the specified DSNAME is allocated. DAIR also 
searches the system catalog to find an entry for the DSNAME. 

Dynamic Allocation of Data Sets -- The Dynamic AUocation Interface Routine (DAlR) 63 



Number of 
Bytes Field Contents or Meaning 

2 DA04CD Entry code X'OO04'. 

2 DA04FLG A flag field set by DAIR before returning to 
the calling routine. The flags have the 
following meaning: 

Byte 1 
00000 .. 0 Reserved bits. Set to zero. 
.... . 1 .. DAIR found the DSNAME in the catalog . 
.... .. 1. The DSNAME is currently allocated. 
Byte 2 
00000000 Reserved. Set to zero. 

2 Reserved. Set to zero. 

2 DA04CTRC These two bytes will contain an error code 
from the catalog management routines if an 
error was encountered by catalog 
management. 

4 DA04PDSN Place in this field the address of the DSNAME 
buffer. The DSNAME buffer is a 46-byte field 
with the following format: 
The first two bytes contain the length, in 
bytes, of the DSNAME; 
The next 44 bytes contain the DSNAME, left 
justified, and padded to the right with blanks. 

1 DA04CTL A flag field: 
00.00000 Reserved bits. Set to zero. 
.. 1. .... Prefix userid to DSNAME . 

2 Reserved bytes; set these bytes to zero. 

1 DA04DSO A flag field. These flags are set by the DAIR 
service routine; they describe the organization 
of the data set to the calling routine. These 
flags are returned only if the data set is 
currently allocated. 

1 ....... Indexed sequential organization 
.1.. .... Physical sequential organization 
.. 1. .... Direct organization 
... 1 .... BTAM or QTAM line group 
.... 1 ... QTAM direct access message queue 
..... 1 .. QTAM problem program message queue 
...... 1. Partitioned organization 
....... 1 Unmovable 

Figure 26. DAIR Parameter Block -- Entry Code X'04' 

After attempting the requested function, DAIR returns one of the 
following codes in register 15: 

0,4,8,52 

See "Return Codes from DAIR" later in this section for return code 
meanings. 

64 TSO Guide to Writing a TMP or a CP 



Code X'08' - Allocate a Data Set by DSNAME 

Build the DAIR parameter block shown in Figure 27 to request that DAIR 
allocate a data set. The exact action taken by DAIR depends upon the 
presence of the optional fields and the setting of bits in the control byte. 

If the data set is new and you ~pecify DSNAME, (NEW, CATLG) the 
data set is cataloged upon successful allocation. This is the only time a data 
set will be cataloged at allocation time. If the catalog attempt is 
unsuccessful, the data set is freed. If the proper indices are not present, the 
indices are built. 

To allocate a utility data set use DAIR code X'08' and use a DSNAME 
of the form &name. If the &name is found allocated, that data set is used. If 
the &name is' not found, a new data set is allocated. 

To supply DCB information, provide the name of an attribute list that 
has been defined previously by a X'34' entry into DAIR. 

When setting disposition in a parameter list, only one bit should be on. 

The DAIR parameter block required for entry code X'08' has the format 
shown in Figure 27. 

Dynamic Allocation of Data Sets -- The Dynamic Allocation Interface Routine (DAIR) 65 



Number of 
Bytes Field Contents or Meaning 

2 DA08CD Entry code X·0008'. 

2 DA08FLG A flag field set by DAIR before returning to 
the calling routine. The flags have the 
following meaning: 

Byte 1 
1 ....... The data set is allocated but a secondary 

error occurred. Register 15 contains an error 
. 0000000 code . 
Byte 2 Reserved bits. Set to zero. 

Reserved. Set to zero. 

2 DA08DARC This field contains the error code, if any, 
returned from the dynamic allocation routines. 
(See "Return Codes from Dynamic 
Allocation.") 

2 DA08CTRC This field contains the error code, if any, 
returned from catalog management routines. 
(See "Return Codes from DAIR.") 

4 DA08PDSN Place in this field the address of the DSNAME 
buffer. The DSNAME buffer is a 46 byte field 
with the following format: 
The first two bytes contain the length, in 
bytes, of the DSNAME; the next 44 bytes 
contain the DSNAME, left justified and padded 
to the right with blanks. If this field 
(DA08PDSN) is zero, the system generates a 
data set name unless bit 5 in DA08CTL is on, 
in which case a DUMMY data set is allocated. 
The system also generates a name if the 
DA08PDSN field points to a DSNAME buffer 
which has a length of 44, is initialized to 
blanks, and bit 5 in DA08CTL is off. 

8 DA08DDN This field contains the DDNAME for the data 
set. If a specific DDNAME is not required, fill 
this field with eight blanks; DAIR will place in 
this field the DDNAME to which the data set is 
allocated. 

8 DA08UNIT This is an eight-byte field containing an 
esoteric group name, a generic group name, 
or a specific device address (in EBCDIC). If 
the unit information is less than eight 
characters, it must be padded to the right with 
blanks. If no information is to be provided, the 
field must be blank. In this case, DAIR will 
obtain information from the protected step 
control block. If there is no unit information in 
the PSCB, then a default of all direct access 
devices is used. The specified unit information 
will be ignored if volume information is 
obtained from the catalog, unless the unit 
specification is a subset of that obtained from 
the catalog. In this case the specified unit 
information will override the returned 
information. 

Figure 27. DAIR Parameter Block -- Entry Code X'OS' (Part I of 3) 

66 TSO Guide to Writing a TMP or a CP 



Number of 
Bytes Field Contents or Meaning 

8 DA08SER Serial number desired. Only the first six bytes 
are significant. If the serial number is less 
than six bytes, it must be padded to the right 
with blanks. If the serial number is omitted, 
the entire field must contain blanks. In this 
case the following is done: if the data set is a 
new data set, the system determines the 
volume to be used for the data set based on 
the unit information. If the data set already 
exists, volume and unit information are 
obtained from the catalog. If the information is 
not found in the catalog, the allocation request 
is denied. 

4 DA08BLK This is a four-byte field used as follows: if the 
data set is a new data set and bit 0 in 
DA08CTL is off and bit 1 in DA08CTL is on, 
this field is used with DA08PQTY to determine 
the amount of direct access srace to be 
allocated for the data set. If bit 6 of DA08CTL 
is off, the field is also used as DCB blocksize 
specification. The value for blocksize must be 
placed in the low-order two bytes, and the 
high-order bytes must be zero. 

4 DA08PQTY Primary space quantity desired. The high-order 
byte must be set to zero and the low-order 
three bytes should contain the space quantity 
required. If the quantity is omitted, the entire 
field must be set to zero. In the case of new 
direct access data sets, primary and 
secondary space and type of space are 
defaulted. Directory quantity is used if 
specified in DA08DQTY. 

4 DA08SQTY Secondary space quantity desired. The 
high-order byte must be set to zero; the 
low-order three bytes should contain the 
secondary space quantity required. If the 
quantity is omitted, the entire field must be 
set to zero. 

4 DA08DQTY Directory quantity required. The high-order 
byte must be set to zero; the low-order three 
bytes contain the number of directory blocks 
desired. If the quantity is omitted, the entire 
field must be set to zero. 

8 DA08MNM Contains a member name of a partitioned data 
set. If the name has less than eight 
characters, pad it to the right with blanks. If 
the name is omitted, the entire field must 
contain blanks. 

8 DA08PSWD Contains the password for the data set. If the 
password has less than eight characters, pad 
it to the right with blanks. If the password is 
omitted, the entire field must contain blanks. 

FJgUre 27. DAIR Parameter Block -- Entry Code X'OS' (Part 2 of 3) 

Dynamic Allocation of Data Sets -- The Dynamic Allocation Interface Routine (DAIR) 67 



Number of 
Bytes Field Contents or Meaning 

1 DA08DSP1 Flag byte. Set the following bits to indicate the status of the data 
0000 .... set: 
.... 1. .. Reserved. Set these bits to zero . 
..... 1.. SHR 
...... 1. NEW 
...... 1 MOD 

OLD 
If this byte is zero, OLD is assumed. NEW or MOD is required if 
DSNAME is omitted. 

1 DA08DPS2 Flag byte. Set the following bits to indicate the normal disposition of 
the data set: 

0000 .... Reserved bits. Set them to zero. 
.... 1. .. KEEP 
..... 1.. DELETE 
...... 1. CATLG 
....... 1 UNCATLG 

If this byte is zero, it is defaulted as follows: if DA08DSP1 is NEW, 
DELETE is used; otherwise, KEEP is used. 

1 DA08DPS3 Flag byte. Set the following bits to indicate the abnormal disposition 
of the data set: 

0000 .... Reserved bits. Set them to zero. 
.... 1. .. KEEP 
..... 1.. DELETE 
...... 1. CATLG 
....... 1 UNCATLG 

If this byte is zero, DA08DPS2 will be used. 

1 DA08CTL Flag byte. These flags indicate to the DAIR service routine what 
operations are to be performed: 

xx ...... Indicate the type of units desired for the space parameters, as 
follows: 

01.. .... Units are in average block length. 
10 ...... Units are in tracks (TRKS). 
11. ..... Units are in cylinders (CYLS). 
.. 1. .... Prefix userid to DSNAME . 
... 1 .... RLSE is desired . 
.... 1. .. The data set is to be permanently allocated; it is not to be freed 

until specifically requested. 
.... . 1.. A DUMMY data set is desired . 
.... .. 1. Attribute list name supplied . 
.... ... 0 Reserved bit; set to zero . 

3 Reserved bytes; set them to zero. 

1 DA08DSO A flag field. These flags are set by the DAIR service routine; they 
describe the organization of the data set to the calling routine. 

1. ...... Indexed sequential organization 
.1. ..... Physical sequential organization 
.. 1. .... Direct organization 
... 1 .... BTAM or QTAM line group 
.... 1. .. QTAM direct access message queue 
..... 1.. QTAM problem program message queue 
...... l. Partitioned organization 
....... 1 Unmovable 

8 DA08ALN Attribute list name, or a ddname from which DCB attributes should 
be copied (as in a JCL DCB reference). If the name is less than 8 
characters, it should be padded to the right with blanks. 

Figure 27. DAIR Parameter Block -- Entry Code X'08' (Part 3 of 3) 

68 TSO Guide to Writing a TMP or a CP 



After attempting the requested function, DAIR returns one of the 
following codes in register 15: 

0,4,8, 12, 16,20, 28, 32, 44, 52 

See the topic "Return Codes from DAIR" for return code meanings. 

Code X'OC' - Concatenate the Specified DDNAMES 

Build the DAIR parameter block shown in Figure 28 to request that DAIR 
concatenate data sets. The DDNAMES listed in the DAIR parameter block 
are to be concatenated in the order in which they appear. All data sets 
listed by DDNAME in the DAIR parameter block must be currently 
allocated. 

Number of 
Bytes Field Contents or Meaning 

2 DAOCCD Entry code X'OOOC' 

2 DAOCFLG Reserved. Set this field to zero. 

2 DAOCDARC This field contains the error code, if any, 
returned from the dynamic allocation routines. 
(See "Return Codes from Dynamic 
Allocation.") 

2 Reserved field. Set this field to zero. 

2 DAOCNUMB Place in this field the number of data sets to 
be concatenated. 

2 Reserved. Set this field to zero. 

8 DAOCDDN Place in this field the DDNAME of the first 
data set to be concatenated. This field is 
repeated for each DDNAME to be 
concatenated. 

Figure 28. DArR Parameter Block -- Entry Code X'OC' 

After attempting the requested function, DAIR returns one of the 
following codes in register 15. 

0,4, 12, 52 

See "Return Codes from DAIR" for return code meanings. 

Code X'lO' - Deconcatenate the Indicated DDNAME 

Build the DAIR parameter block shown in Figure 29 to request that DAIR 
deconcatenate a data set. The DDNAME specified within the DAIR . 
parameter block has been previously concatenated and is now to be 
deconcatenated, 

Dynamic Allocation of Data Sets -- The Dynamic Allocation Interface Routine (DAIR) 69 



Number of 
Bytes Field Contents or Meaning 

2 DAIOCD Entry code X'OOIO' 

2 DAIOFLG Reserved. Set this field to zero. 

2 DAIODARC This field contains the error code, if any, 
returned from the dynamic allocation routines. 
(See "Return Codes from Dynamic 
Allocation.") 

2 Reserved field. Set this field to zero. 

S DAIODDN Place in this field the DDNAME of the data set 
to be deconcatenated. 

Figure 29. DAIR Parameter Block -- Entry Code X'IO' 

After attempting the requested function, DAIR returns one of the 
following codes in register 15: 

·0,4, 12,52 

See "Return Codes from DAIR" for return code meanings. 

Code X'14' - Return Qualifiers for the Specified DSNAME 

Build the DAIR parameter block shown in Figure 30 to request that DAIR 
return all qualifiers for the DSNAME specified. 

You must also provide the return area pointed to by the third word of 
. the DAIR parameter block. If the area you provide is larger than needed 

for all returned information, the remaining bytes in the area are set to zero 
by DAIR. If the area is smaller than required, it is filled to its limit, and the 
return code specifies this condition. 

70 TSO Guide to Writing a TMP or a CP 



Number of 
Field Contents or Meaning Bytes 

2 DA14CD Entry code X'OO14'. 

2 DA14FLG Reserved. Set this field to zero. 

4 DAl4PDSN Place in this field the address of the DSNAME 
buffer. The DSNAME buffer is a 46 byte field 
with the following format: . 
The first two bytes contain the length, in 
bytes, of the DSNAME; 
the next 44 bytes contain the DSNAME, left 
justified and padded to the right with blanks. 
DSNAME alone represents an unqualified Index 
entry. 

4 DA14PRET Place in this field the address of the return 
area in which DAIR Is to place the qualifiers 
found for the DSNAME. Place the length of the 
return area in the first two bytes of the return 
area. Set the next two bytes in the return area 
to zero. DAIR returns each of the qualifiers it 
finds in two fullwords of storage be,inning at 
the first word (offset 0) within the return area. 

I DA14CTL A flag field. 

Byte I 
00.00000 Reserved bits; set them to zero . 
.. 1. .... Prefix userid to DSNAME. 

3 Reserved bytes. Set this field to zero. 

FIgure 30. DAIR Parameter Block -- Entry Code X'14' 

After attempting the requested function, DAIR returns one of the 
following codes in register 15: 

0,4,36,40 

See "Return Codes from DAIR" for return code meanings. 

Code X'18' - Free the Specified Data Set 

Build the DAIR parameter block shown in Figure 31 to request that DAIR 
free a data set. The data set name represented by DSNAME is to be freed. 
If no DSNAME is given, the data set associated with the DDNAME is 
freed. If both DDNAME and DSNAME are given, DAIR ignores the 
DDNAME. 

If the specified DSNAME is allocated several times to the user, all such 
allocations are freed. 

When setting disposition in a parameter list, only one bit should be on. 

Dynamic AUocatlon of Data Sets -- The Dynamic AUocation Interface Routine (DAIR) 71 



Number of 
Bytes Field Contents or Meaning 

2 DA18CD Entry code X'OO18'. 

2 DA18FLG A flag field set by DAIR before returning to 
the calling routine. The flags have the 
following meanings: 

Byte 1 
The data set is freed but a secondary error 

1. ...... occurred. Register 15 contains zero and the 
error information is in DA18DARC. 

. 0000000 Reserved bits. Set to zero . 
Byte 2 Reserved. Set to zero. 

2 DA18DARC This field contains the error code, if any, 
returned from the dynamic allocation routines. 
(See "Return Codes from Dynamic 
Allocation." ) 

2 DA18CTRC This field contains the error code, if any, 
returned from catalog management routines. 
(See "Return codes from DAIR.") 

4 DA18PDSN Place in this field the address of the DSNAME 
buffer. The DSNAME buffer is a 46-byte field 
with the following format: 
The first two bytes contain the length, in 
bytes, of the DSNAME; 
the next 44 bytes contain the DSNAME, left 
justified and padded to the right with blanks. 
This field is zero if the DSNAME-is not 
specified. 

Figure 31. DAIR Parameter Block -- Entry Code X'l8' (Part 1 of 2) 

72 TSO Guide to Writing a TMP or a CP 



Number of 
Field Contents or Meaning Bytes 

8 DA18DDN Place in this field the DDNAME of the data set 
to be freed, or blanks. If DSNAME is specified, 
this field is ignored. 

8 DA18MNM Contains the member name of a partitioned 
data set. If the name has less than eight 
characters, pad it to the right with blanks. If 
the name is .omitted, the entire field must 
contain blanks. 

2 DA18SCLS SYSOUT class. The output class may be A-Z 
or 0-9 in the first byte. The second byte in 
the field is ignored. If SYSOUT is not 
specified, the first byte of this field must 
contain zeros or blanks. 

1 DA18DPS2 Flag byte. Set the following bits to override 
the normal disposition of the data set: 

0000 .... Reserved bits. Set them to zero. 
.... 1 ... KEEP 
..... 1.. DELETE 
.....• 1. CATLG 
.....•• 1 UNCATLG 

If the disposition specified at allocation is to 
be used, this field must contain zero. 

1 DA18CTL Flag byte. These flags indicate to the DAIR 
service routine what operations are to be 
performed: 

.. 1. .... Prefix use rid to DSNAME (requires DA18PDSN 
data be available). 

00 .• 0000 Reserved bits; set them to zero. 
... 1 .... If this bit is on, permanently allocated data 

sets are unallocated. If the bit IS off, the data 
set will be marked "not in use," if it is 
permanently allocated. 

8 Reserved bytes; set this field to hexadecimal 
zeros. 

FIgure 31. DAIR Parameter Block - Entry Code X'lS' (Part 2 of 2) 

After attempting the requested function, DAIR returns one of the 
following codes in register 15: 

0,4, 12, 24, 28, 52 

See "Return Codes from DAIR" for return code meanings. 

Code X'l C' - ADocate the Specified DDNAME to the Terminal 

Build the DAIR parameter block shown in Figure 32 to request that DAIR 
allocate a DDNAME to the terminal. If the DDNAME field is left blank, 
DAIR returns the allocated DDNAME in that field. To supply DCB 
information, provide the name of an attribute list that has been defined 
previously by a X'34' entry into DAIR, or the DDNAME of a currently 
allocated data set from which DCB attributes can be copied (as in a JCL 
DCB reference). 

Dynamic Allocation of Data Sets - The Dynamic Allocadon Interface Routine (DAIR) 73 



Number of 
Bytes Field Contents or Meaning 

2 DAICCD Entry code X'OOlC' 

2 DAICFLG Reserved field; set it to zero. 

2 DAICDARC This field contains the error code, if any, 
returned from the dynamic allocation routines. 
(See "Return Codes from Dynamic 
Allocation.") 

1 Reserved field; set it to zero. 

1 DAICCTL Control byte. 
.... 1. .. The data set is to be permanently allocated; 

it is not to be freed until specifically 
requested . 

.... .. 1. 
0000.0.0 Attribute list name supplied. 

Reserved; set to zero. 

S DAICDDN Place in this field the DDNAME for the data 
set to be allocated to the terminal or blanks if 
the allocated DDNAME should be returned in 
this field. 

S DAICALN Attribute list name that has been defined 
previously by a X'34' entry into DAIR, or a 
DDNAME of a currently allocated data set 
from which DCB attributes can be copied. This 
field is used only if Bit 6 of DAICCTL is set to 
one. 

Figure 32. DAIR Parameter Block -- Entry Code X'IC' 

After attempting the requested function, DAIR returns one of the 
following codes in register 15: 

0, 4, 12, 16, 20, 28, 52 

See "Return Codes from DAIR" later in this section for return code 
meanings. 

Code X'24' - Allocate a Data Set by DDNAME 

Build the DAIR parameter block shown in Figure 33 to request that DAIR 
allocate a data set by DDNAME. 

If DAIR locates the DDNAME you specify and a DSNAME is currently 
associated with it, the associated DSNAME is allocated overriding the 
DSNAME pointed to by the third word of your DAIR parameter block. 
The DDNAME may be found associated with a DUMMY, and if so an 
indicator is returned but no allocation takes place. 

If DAIR cannot allocate by DDNAME, it will give control to code X'08' 
to allocate by DSNAME and will generate a new DDNAME. 

When setting disposition in a parameter list, only one bit should be on. 

74 TSO Guide to Writing a TMP or a CP 

J 



Number of 

L 
Contents or Meaning Bytes Field 

2 DA24CD Entry code X'0024'. 

2 DA24FLG A flag field set by DAIR before returning to 
the calling routine. The flags have the 
following meaning: 

Byte 1 
1. ...... The data set is allocated but a secondary 

error occurred. Register 15 contains an error 
.... 1. .. code . 
. 000.000 DDNAME requested is allocated as DUMMY . 
Byte 2 Reserved bits. Set to zero. 

Reserved. Set to zero. 

2 DA24DARC This field contains the error code, if any, 
returned from the dynamic allocation routines. 
(See "Return Codes from Dynamic 
Allocation." ) 

2 DA24CTRC This field contains the error code, if any, 
returned from catalog management routines. 
(See "Return Codes from DAIR.") 

4 DA24PDSN Place in this field the address of the DSNAME 
buffer. The DSNAME buffer is a 46-byte field 
with the following format: 
The first two bytes contain the length, in 
bytes, of the DSNAME; 
the next 44 bytes contain the DSNAME, left 
justified and padded to the right with blanks. 
If the specified DDNAME is used, this field 
(DA24PDSN) is ignored. 

8 DA24DDN Place here the DDNAME for the data set to be 
allocated. This DDNAME is required. If the 

L 
specified DDNAME is not allocated, then a 
generated DDNAME will be used with the 
DSNAME and the generated DDNAME will be 
returned in this field. 

Figure 33. DAIR Parameter Block -- Entry Code X'24' (Part 1 of 4) 

Dynamic Allocation of Data Sets -- The Dynamic Allocation Interface Routine (DAIR)· 75 



Number of 
F1e1d Contents or Meaning Bytes J 

8 DA24UNIT This is an eight-byte field containing an 
esoteric group name, a generic group name, 
or a specific device address (in EBCDIC). If 
the unit information is less than eight 
characters, it must be padded to the right with 
blanks. If no information is to be provided, the 
field must be blank. In this case, DAIR will 
obtain information from the protected step 
control block. If there is no unit information in 
the PSCB, then a default of all direct access 
devices is used. The specified unit information 
will be ignored if volume information is 
obtained from the catalog, unless the unit 
specification is a subset of that obtained from 
the catalog. In this case the specified unit 
information will override the returned 
information. 

8 DA24SER Serial number desired. Only the first six bytes 
are significant. If the serial number is less 
than six bytes, it must be padded to the right 
with blanks. If the serial number is omitted, 
the entire field must contain blanks. In this 
case, the following is done: 
If the data set is a new data set, the system 
determines the volume to be used for the data 
set based on the unit information. If the data 
set already exists, volume and unit information 
are obtained from the catalog. If the 
information is not found in the catalog, the 
allocation request is denied. 

4 DA24BLK This a four-byte field used as follows: If the 
data set is a new data set and CONTROL bit 0 
is off and bit 1 is on (see below), this field is 
used with PRIMARY SPACE QUANTITY to 
determine the amount of direct access space 
to be allocated for the data set. If CONTROL 
bit 6 is off, the field is also used as a DCB 
blocksize specification. The value for 
BLOCKSIZE must be placed in the low-order 
two bytes. The high-order byte must be zero. 

4 DA24PQTY Primary space quantity desired. The high-order 
byte must be set to zero; the low-order three 
bytes should contain the space quantity 
required. If the quantity is omitted, the entire 
field must be set to zero. In this case for new 
direct access data sets primary and secondary 
space, and type of space will be defaulted. 
Directory quantity will be used if specified in 
DA24DQTY. 

F"JgUre 33. DAIR Parameter Block -- Entry Code X'14' (Part 1 of 4) 

76 TSO Guide to Writing a TMP or a CP 



Number of 
Bytes Field Contents or Meaning 

4 DA24SQTY Secondary space quantity desired. The high 
order byte must be set to zero; the low order 
three bytes should contain the secondary 
space quantity required. If the quantity is 
omitted, the entire field must be set to zero. 

4 DA24DQTY Directory quantity required. The high order 
byte must be set to zero; the low order three 
bytes contain the number of directory blocks 
desired. If the quantity is omitted, the entire 
field must be set to zero. 

S DA24MNM Contains a member name of a partitioned data 
set. If the name has less than eight 
characters, pad it to the right with blanks. If 
the name is omitted, the entire field must 
contain blanks. 

8 DA24PSWD Contains the password for the data set. If the 
password has less than eight characters, pad 
it to the right with blanks. If the password is 
omitted, the entire field must contain blanks. 

1 DA24DSPl Flag byte. Set the following bits to indicate the 
status of the data set: 

0000 .... Reserved. Set these bits to zero. 
.... 1. .. SHR 
..... 1.. NEW 
...... 1. MOD 
....... 1 OLD 

If this byte is zero, OLD is assumed. 

1 DA24DPS2 Flag byte. Set the following bits to indicate the 
normal disposition of the data set: 

0000 .... Reserved bits. Set them to zero .. 
.... 1. .. KEEP 
..... 1.. DELETE 
...... 1. CATLG 
....... 1 UNCATLG 

If this byte is zero, it is defaulted as follows: if 
DA24DSPI is new, DELETE is used; otherwise 
KEEP is used. 

1 DA24DPS3 Flag byte. Set the following bits to indicate the 
abnormal disposition of the data set: 

0000 .... Reserved bits. Set them to zero. 
.... 1. .. KEEP 
..... 1.. DELETE 
...... 1. CATLG 
....... 1 UNCATLG 

If this byte is omitted (set to zero), 
DA24DPS2 will be used. 

Figure 33. DAIR Parameter Block -- Entry Code X'24' (Part 3 of 4) 

Dynamic Allocation of Data Sets -- The Dynamic Allocation Interface Routine (DAIR) 77 



Number of 
Bytes Field Contents or Meaning 

1 DA24CTL Flag byte. These flags indicate to the DAIR 
service routine what operations are to be 
performed: 

XX ...... Indicate the type of units desired for the 
space parameters, as follows: 

01.. .... Units are in average block length. 
10 ...... Units are in tracks (TRKS). 
11.. .... Units are in cylinders (CYLS). 
.. 1. .... Prefix userid to DSNAME . 
... 1 .... RLSE is desired . 
... 1 .... The data set is to be permanently allocated; it 

is not be freed until specifically requested. 

.... . 1.. A DUMMY data set is desired . 

.... .. 1. Attribute list name supplied . 

.... ... 0 Reserved bit; set to zero . 

3 Reserved bytes; set them to zero. 

1 DA24DSO A flag field. These flags are set by the DAIR 
service routine; they describe the organization 
of the data set to the calling routine. 

1. ...... Indexed sequential organization. 
. 1. ..... Physical sequential organization . 
.. 1. .... Direct organization . 
... 1 .... BTAM or QTAM line group . 
.... 1. .. QTAM direct access message queue . 
.... . 1.. QTAM problem program message queue . 
.... .. 1. Partitioned organization . 
.... ... 1 Unmovable . 

8 DA24ALN Attribute list name, or a ddname from which 
DCB attributes should be copied (as in a JCL 
DCB reference). If the name is less than eight 
characters, it should be padded to the right 
with blanks. 

Figure 33. DAIR Parameter Block -- Entry Code X'24' (Part 4 of 4) 

After attempting the requested function, DAIR returns one of the 
following codes in register 15: 

0,4,8, 12, 16,20,52 

See "Return Codes from DAIR" for return code meanings. 

Code X'28' - Perform a List of DAIR Operations 

Build the DAIR parameter block shown in Figure 34 to request that DAIR 
perform a list of operations. This DAIR parameter block points to other 
DAPBs which request the operations to be performed. 

All valid DAIR functions are acceptable; however, code X'14' or another 
code X'2S' are ignored. 

DAIR processes the requested operations in the order they are requested. 

DAIR processing stops with the first operation that fails. 

78 TSO Guide to Writing a TMP or· a CP 



Number of 
Bytes Field Contents or Meaning 

2 DA28CD Entry code X·OO28'. 

2 DA28NOP Place in this field the number of operations to 
be performed. 

4 DA28PFOP DAIR fills this field with the address of the 
DAIR parameter block for the first operation 
that failed. If aU operations are successful, this 
'field will contain zero upon return from the 
DAIR service routine. If this field contains an 
address, register fifteen contains a return 
code. 

4 DA280PTR Place in this field the address of the DAIR 
parameter block for the first operation you 
want performed. Repeat this field, filling it with 
the addresses of the DAPBs, for each of the 
operations to be performed. 

Figure 34. DAIR Parameter Block -- Entry Code X'28' 

After attempting the requested function, DAIR returns one of the following 
codes in register 1 S: 

~4, 8, 12, 1~ 2~ 24, 28, 32,44, 52 

For return code meanings see the topic "Return Codes from DAIR." 

Code X'2C' - Mark Data Sets as Not in Use 

Build the DAIR parameter block shown in Figure 3S to request that DAIR 
mark data sets associated with a task control block as not in use. This 
allows data set entries to be reused. 

This is the code which the TMP should pass to DAIR prior to detaching 
a command processor. This code should also be issued by any command 
processor which attaches another command processor and detaches that 
command processor directly. 

Dynamic AUocation of Data Sets -- The Dynamic AUocation Interface Routine (DAIR) 79 



Number of 
Bytes Field Contents or Meaning 

2 DA2CCD Entry code X'002C'. 

2 DA2CFLG A flag field. Set the bits to indicate to the DAIR 
service routine which data sets you want marked 
'not in use'. 
Hex Setting Meaning 
0000 Mark all data sets of the 
indicated 

TCB 'not in use'. 

0001 Mark the specified DDNAME 'not 
in use'. 

0002 Mark all data sets associated with 
lower tasks 'not in use'. 

4 DA2CTCB Place in this field the address of the TCB for the 
task whose data sets are to be marked 'not in use'. 
DA2CFLG must be set to hex 0000. 

8 DA2CDDN Place in this field the DDNAME to be marked 'not in 
use'. DA2CFLG must be set to hex 0001. 

Figure 35. DAIR Parameter Block -- Entry Code X'2C' 

After attempting the requested function, DAIR returns one of the 
following codes in register 15: 

0,4,52 

For return code meanings see "Return Codes from DAIR" later in this 
section. 

Code X'30' - Allocate a SYSOUT Data Set to the Message Class 

Build the DAIR parameter block shown in Figure 36 to request that DAIR 
allocate a SYSOUT data set to the message class. The exact action taken by 
DAIR is dependent upon the presence of the optional fields and the setting 
of bits in the control byte. To supply DCB information, provide the name 
of an attribute list that has been defined previously by a X'34' entry into 
DAIR, or the DDNAME of a currently allocated data set from which DeB 
attributes can be copied (as in a JCL DCB reference). 

To place a SYSOUT data set in a class other than the message class, use 
DAIR entry code X'30' and when the output has been written, specify the 
desired class either by using DAIR entry code X'18', or execute the FREE 
command, after the program has completed processing. 

When setting disposition in a parameter list, only one bit should be on. 

80 TSO Guide to Writing a TMP or a CP 

~. 



L 

"; . "~' 
, ,f.' 

'~.: .. : 
~jr 
\~!' ~ '-'-."" . ,~~: 

Number of 
Bytes Field Contents or Meaning 

2 DA30CD Entry code X'0030'. 

2 DA30FLG A flag field set by DAIR before returning to 
the calling routine. The 'flags have the 
following meaning: 

Byte 1 
1 ....... The data set is allocated but a secondary 

error occurred. Register 15 contains an error 
code. 

. 0000000 Reserved bits. Set to zero . 
Byte 2 Reserved. Set to zero. 

2 DA30DARC This field contains the error code, if any, 
returned from the dynamic allocation routines. 
(See "Return Codes from Dynamic 
Allocation. ") 

2 Reserved. Set this field to zero. 

4 DA30PDSN Place in this field the address of the DSNAME 
buffer or zeros. The DSNAME buffer is a 
46-byte field which must appear as follows: 
The first two bytes must contain 44 (X'2C'); 
the next 44 bytes contain blanks. 

a DA30DDN This field contains the DDNAME for the data 
set. If a specific DDNAME is not required, fill 
this field with eight blanks; DAIR will place in 
this field the DDNAME to which the data set is 
allocated. 

a DA30UNIT This is an eight-byte field containing an 
esoteric group name, a generic group name, 
or a specific device address (in EBCDIC). If 
the unit information is less than eight. 
characters, it must be padded to the right with 
blani<s. If no information is to be provided, the 
field must be blank. In this case, DAIR will 
obtain unit information from the protected 
step control block. If there is no unit 
information in the PSCB, then a default of all 
direct access devices is used. The specified 
unit information will be ignored if volume 
information is obtained from the catalog, 
unless the unit specification is a subset of that 
obtained from the catalog. In this case the 
specified unit information will override the 
returned information. 

a DA30SER Serial number desired. Only the first six bytes 
are significant. If the serial number is less 
than six bytes, it must be padded to the right 
with blanks. If no volume serial number is 
specified, the field must be blank. In this case, 
the following is done: If the data set is a new 
data set, the system determines the volume to 
be used for the data set based on the unit 
information. If the data set already exists, 
volume and unit information are obtained from 
the catalog. If the information is not found in 
the catalog, the allocation request is denied. 

FIgure 36. DAIR Parameter Block -- Entry Code X'30' (Part 1 of 1) 

Dynamic Allocation of Data Sets -- The Dynamic Allocation Interface Routine (DAlR) 81 



Number of 
Bytes Field Contents or Meaning 

4 DA30BLK Block size requested. This figure represents 
the average record length desired. 

4 DA30PQTY Primary space quantity desired. The high-order 
byte must be set to zero; the low-order three 
bytes should contain the space quantity 
required. If the quantity is omitted, ,the entire 
field must be set to zero. In this case for new 
direct access data sets primary and secondary 
space, and type of space will be defaulted. 

4 DA30SQTY Secondary, space quantity desired. The 
high-order byte must be set to zero; the 
low-order three bytes should contain the 
secondary space quantity required. If the 
quantity is omitted, the entire field must be 
set to zero. 

B DA30PGNM Place in this field the member name of a 
special user program to handle SYSOUT 
operations. Fill this field with blanks if you do 
not provide a program name. 

4 DA30FORM Form number. This form number indicates that 
the output should be printed or punched on a 
specific output form. It is a four character 
number. This field must be filled with blanks if 
this parameter is omitted. 

2 DA300CLS SYSOUT class. The data set will be allocated 
to the message class, regardless of the class 
you specify here. To place a SYSOUT data set 
in a class other than the message class, use 
DAIR entry code X'30' and when the output 
has been written, specify the desired class by 
using DAIR entry code X'IB'. 

1 Reserved. Set this field to zero. 

1 DA30CTL Flag byte. These flags indicate to the DAIR 
service routine what operations are to be 
performed. 

XX ...... Indicate the type of units desired for the 
space parameters, as follows: 

01 ...... Units are in average block length. 
10 ...... Units are in tracks (TRKS). 
11 ...... Units are in cylinders (CYLS). 
.. 1. .... Prefix userid to DSNAME 
... 1 .... RLSE is desired . 
.... 1 ... The data set is to be permanently allocated; it 

is not to be freed until specifically requested. 

..... 1.. A DUMMY data set is desired, 

...... 1. Attribute list name specified, 

....... 0 Reserved bit; set to zero, 

8 DA30ALN Attribute list name, or a ddname from which 
DCB attributes should be copied (as in a JCL 
DCB reference). If the name is less than eight 
characters, it should be padded to the right 
with blanks. 

Figure 36. DAIR Parameter Block -- Entry Code X'30' (Part 2 of 2) 

82 TSO Guide to Writing a TMP or a CP 



L 
After attempting the requested function, DAIR returns one of the 

following codes in register 15: 

0,4, 12, 16,20,28, 52 

See "Return Codes from DAIR" later in this section for return code 
meanings. 

Code X'34' - Associate DCB Parameters with a Specified Name 

Build the DAIR parameter block shown in Figure 37 to request that DCB 
parameters to be used with subsequent allocations are associated with a 
specified name (attribute name). The following functions related to attribute 
names are available using code X'34': 

1. Associate a set of DCB parameters to be used in subsequent 
allocations. 

2. Search on the attribute name. 

3. Delete the attribute name. 

Note: When you request that DAIR associate DCB parameters with a 
specified name, you must also build a DAIR attribute control block 
(DAIRACB). 

Dynamic Allocation of Data Sets -- The Dynamic Allocation Interface Routine (DAIR) 83 



Number of 
Bytes Field Contents or Meaning 

2 DA34CD Entry code X '0034'. 

2 DA34FLG A flag field set by DAIR before returning to 
the calling routine. The flags have the 
following meaning: 

Byte 1 
DA34FIND 
1. ...... An attribute list name was found. 
0 ....... An attribute list name was not found. 
. 0000000 Reserved bits. Set to zero . 
Byte 2 Reserved. Set to zero. 

2 DA34DARC This field contains the code returned from the 
dynamic allocation routines. (See "Return 
Codes from Dynamic Allocation."). 

1 DA34CTRL Flag byte. These flags indicate to DAIR what 
operations are to be performed. 

DA34SRCH 
1. ...... Search for the attribute list name specified in 

field DA34NAME. 
DA34CHN 
.1.. .... Build and chain an attribute list. 
DA34UNCH 
.. 1. .... Delete an attribute list name . 
... 00000 Reserved bits. Set to zero. 

1 Reserved. Set to zero. 

8 DA34NAME This field contains the name for the list of 
attributes. This' field is required and if the 
name is less than 8 characters it must be 
padded to the right with blanks. 

4 DA34ADDR This field contains the address of the DAIR 
attribute control block (DAIRACB). This field 
need only be specified if bit 1 of DA34CTRL is 
on. 

Figure 37. DAIR Parameter Block -- Entry Code X'34' 

After attempting the requested function, DAIR returns one of the 
following codes in register 15: 

0,4, 12,52 

See "Return Codes from DAIR" below for return code meanings. 

DAIRACB - DAIR Attribute Control Block 

Build the DAIRACB shown in Figure 38 when you request that DAIR 
construct an attribute list. Place the address of the DAIRACB into the 
DA34ADDR field of the code X'34' DAIR parameter block shown in 
Figure 37. 

84 TSO Guide to Writing a TMP or a CP 



Number of 
Field Contents or Meaning Bytes 

2 DA30CD Entry code X'0030'. 

2 DA30FLG A flag field set by DAIR before returning to 
the calling routine. The flags have the 
following meaning: 

Byte 1 
1. ...... The data set is allocated but a secondary 

error occurred. Register 15 contains an error 
code. 

. 0000000 Reserved bits. Set to zero . 
Byte 2 Reserved. Set to zero. 

2 DA30DARC This field contains the error code, if any, 
returned from the dynamic allocation routines. 
(See "Return Codes from Dynamic 
Allocation.") 

2 Reserved. Set this field to zero. 

4 DA30PDSN Place in this field the address of the DSNAME 
buffer or zeros. The DSNAME buffer is a 
46-byte field which must appear as follows: 
The first two bytes must contain 44 (X'2C'); 
the next 44 bytes contain blanks. 

8 DA30DDN This field contains the DDNAME for the data 
set. If a specific DDNAME is not required, fill 
this field with eight blanks; DAIR will place in 
this field the DDNAME to which the data set is 
allocated. 

8 DA30UNIT This is an eight-byte field containing an 
esoteric group name, a generic group name, 
or a specific device address (in EBCDIC). If 
the unit information is less than eight. 
characters, it must be padded to the right with 
blanks. If no information is to be provided, the 
field must be blank. In this case, DAIR will 
obtain unit information from the protected 
step control block. If there is no unit 
information in the PSCB, then a default of all 
direct access devices is used. The specified 
unit information will be ignored if volume 
information is obtained from the catalog, 
unless the unit specification is a subset of that 
obtained from the catalog. In this case the 
specified unit information will override the 
returned information. 

8 DA30SER Serial number desired. Only the first six bytes 
are significant. If the serial number is less 
than six bytes, it must be padded to the right 
with blanks. If no volume serial number is 
specified, the field must be blank. In this case, 
the following is done: If the data set is a new 
data set, the system determines the volume to 
be used for the data set based on the unit 
information. If the data set already exists, 
volume and unit information are obtained from 
the catalog. If the information is not found in 
the catalog, the allocation request is denied. 

~ .. 

Figure 36. DAIR Parameter Block -- Entry Code X'30' (Part 1 of 2) 

. '~' 
Dynamic AUocation of Data Sets -- The Dynamic AUocation Interface Routine (DAlR) 81 

'. .'~ 



Number of 
Bytes Field Contents or Meaning 

2 DA34CD Entry code X'0034'. 

2 DA34FLG A flag field set by DAIR before returning to 
the calling routine. The flags have the 
following meaning: 

Byte 1 
DA34FIND 
1 ....... An attribute list name was found. 
0 ....... An attribute list name was not found. 
. 0000000 Reserved bits. Set to zero. 
Byte 2 Reserved. Set to zero. 

2 DA34DARC This field contains the code returned from the 
dynamic allocation routines. (See "Return 
Codes from Dynamic Allocation."). 

1 DA34CTRL Flag byte. These flags indicate to DAIR what 
operations are to be performed. 

DA34SRCH 
1... .... Search for the attribute list name specified in 

field DA34NAME. 
DA34CHN 
.1.. .... Build and chain an attribute list. 
DA34UNCH 
.. 1. .... Delete an attribute list name . 
... 00000 Reserved bits. Set to zero . 

1 Reserved. Set to zero. 

8 DA34NAME This field contains the name for the list of 
attributes. This field is required and if the 
name is less than 8 characters it must be 
padded to the right with blanks. 

4 DA34ADDR This field contains the address of the DAIR 
attribute control block (DAIRACB). This field 
need only be specified if bit 1 of DA34CTRL is 
on. 

Figure 37. DAIR Parameter Block -- Entry Code X'34' 

After attempting the requested function, DAIR returns one of the 
following codes in register 15: 

0,4, 12,52 

See "Return Codes from DAIR" below for return code meanings. 

DAIRACB - DAIR Attribute Control Block 

Build the DAIRACB shown in Figure 38 when you request that DAIR 
construct an attribute list. Place the address of the DAIRACB into the 
DA34ADDR field of the code X'34' DAIR parameter block shown in 
Figure 37. 

84 TSO Guide to Writing a TMP or a CP 



Number of 
Bytes Field Contents or Meaning 

8 Reserved. 

8 DAIMASK First 6 bytes and eighth byte are reserved. 
DAILABEL Seventh-byte flags. These flags indicate the 

INOUT /OUTIN options of the OPEN macro. 
DAIINOUT 
1 ....... Use the INOUT option. 
DAIOUTIN 
.1 ...... Use the OUTIN option . 
.. 000000 Reserved bits. Should be set to zero. 

3 Reserved. Should be set to zero. 

3 DAIEXPDT This field r.ontains a data set expiration date 
specified in binary. 

DAIYEAR The first byte contains the expiration year. 
DAIDAY The next 2 bytes contain the expiration day, 

left justified. For example, the date 99352 is 
specified '630160'B. 

2 Reserved. Should be set to zero. 

1 DAIBUFNO This field contains the number of buffers 
required. 

1 DAIBFTEK This field contains the buffer type and 
alignment. 

. 1 ...... Simple buffering (S) . 

. 11. .... Automatic record area construction (A) . 

.. 1. .... Record buffering (R) . 

... 1 .... Exchange buffering (E) . 

.... .. 1. Doubleword boundary (D) . 

.... ... 1 Fullword boundary (F) . 
0 ... 00 .. Reserved bits. Should be set to zero. 

2 DAIBUFL This field contains the buffer length. 

1 DAIEROPT This field indicates the error options: 
1 ....... Accept error record. 
. 1 ...... Skip error record . 
.. l. .... Abnormal EOT . 
... 00000 Reserved bits. Should be set to zero . 

1 DAIEKYLE This field contains the key length. 

6 Reserved. Should be set to zero. 

Figure 38. DAIR Attribute Control Block (DAIRACB) (Part I of 2) 

Dynamic AUocation of Data Sets -- The Dynamic Allocation Interface Routine (DAIR) 85 
, ~~. 

~-., I' .. 

~" 



DAIRFAIL Routine (IKJEFF18) 
The DAIRFAIL routine analyzes return codes from SVC99 or DAIR, and 
performs one of the following functions, as requested: 

• Issue an error message when appropriate. 
• Issue an error message, as well as return the message to the caller. 

This process of returning the message(s) to the caller is referred to as 
extracting the message. 

DAIRFAIL must receive control in 24-bit addressing mode and be 
passed input that resides below 16 megabytes. If the program invoking 
DAIRF AIL is executing in 31-bit addressing mode, it may issue a LINK 
macro without switching addressing modes to invoke DAIRFAIL. (The 
LINK macro ensures that DAIRF AIL is invoked in 24-bit addressing 
mode.) When linking to IKJEFF18, provide the address of the following 
four-word parameter list in register 1: 

Offset 
Dec Hex Field Name 

DSECT - DFDSECTD 
DFS99RBP 

or 
0 0 DFDAPLP 

4 ·4 DFRCP 

8 8 DFJEFF02 

12 C DFIDP 

16 10 DFCPPLP 

20 14 DFBUFP 

88 TSO Guide to Writing a TMP or a CP 

Contents 

Address of the failing SVC99 request block or 
address of the failing DAIR parameter list. 
Address of a fullword containing either the SVC99 
or DAIR return code. 
Address of a fullword containing either the entry 
point address of IKJEFF02 (message writer 
routine) or zeros, if that address is unknown. This 
field (DFJEFF02) must always contain an address. 
Address of a two-byte area containing: 
Byte 1 Switches 
Bit 1: 0 - PUTLINE issued 

1 - WTP issued 
Bit 2: 1 - Caller wants message extracted only. 
Bit 3: 1 - Caller wants message extracted as 

well as issued as a PUTLINE 
or write-to-programmer (WTO). 

Byte 2 Caller identification number 
X'Ol' - DAIR 
X'32' - SVC99 
X'33' - SVC99 invoked by the FREE command 
Address of the CPPL. This is needed only when 
IKJEFF18 is called with an SVC99 error and the 
user is not requesting a write-to-programmer 
message. 
Address of DFBUFS buffer if bit 2 (DFBUFSW) or 
bit 3 (DFBUFS2) of DFIDP is on. This is required 
when the message is to be extracted and returned 
to the caller. If the DFBUFSW is on, the 
message(s) will only be extracted. If DFBUFS2 is 
on, the message(s) will be issued as well as 
extracted and returned to the caller. It will be 
possible to extract the first level and one second 
level message. 

'~." , 



Offset 
Dec Hex Field Name Contents 

DSECT - DFDSECT2 

0 0 

2 2 

4 4 

DFBUFS 
or 

DFBUFll 

DFBUFOI 

DFBUFTl 

A 2 byte field that will contain the total length of 
the first level message, plus 4 bytes for length 
and offset fields. 
A 2 byte field containing the offset field. It will be 
set to zero when a message is extracted. 
A 251 byte buffer that will contain the text of the 
first level message extracted. If the message is 
greater than 251 bytes, the message will be 
truncated. 

256 100 DFBUFL2 A 2 byte field containing the total length of the 
first second level message plus four bytes. If 
there is no second level message, this field will 
contain HEX zeros. 

258 102 

260 104 

DFBUF02 

DFBUFT2 

A 2 byte field containing the offset. It will be set 
to zero when a message is extracted. 
A 251 field that will contain the text of the first 
second level message extracted. If the message is 
greater than 251 bytes, the message will be 
truncated. 

The IKJEFFDF macro may be used to map the fields in the parameter 
list. Specify DFDSECT= YES option to obtain DSECT DFDSECTD instead 
of storage. Specify the DFSECT2= YES option to obtain DSECT 
DFDSECT2 instead of storage. DFDSECT2 defines a storage area supplied 
by the caller. DAIRF AIL will return the requested informational message(s) 
in the associated buffers. It is not necessary to initialize these buffers. On 
return from DAIRF AIL, the buffers will contain the extracted message(s). 

DAIRF AIL allows the user to specify that a write-to-programmer 
message should be issued rather than the default PUTLINE routine. This is 
especially useful for analyzing errors occurring in a batch invocation of 
SVC99. If the high-order bit of the caller identification area (pointed to by 
DFIDP) is on, a write-to-programmer message will be issued instead of a 
PUTLINE. When the write-to-programmer feature is used, the address of 
the CPPL (DFCPPLP) need not be specified. 

The return code from DAIRF AIL is contained in register 15 as follows: 

o Message issued successfully 
4 Invalid caller identification number 
8 Message writer detected an error while attempting to issue a message 
12 - Extracted message buffer parameter list error 

GNRLF AIL/VSAMF AIL Routine (IKJEFF19) 

The GNRLFAIL/VSAMFAIL routine analyzes VSAM macro instruction 
failures, subsystem request (SSREQ) failures, parse service routine or 
PUTLINE failures, and ABEND codes, and issues an appropriate error 
message. It will insert the meaning of return codes from the VSAM/ job 
entry subsystem interface. Other VSAM codes are explained in the VSAM 
Programmer's Guide. 

GNRLF AIL/VSAMF AIL must receive control in 24-bit addressing mode 
and be passed input that resides below 16 megabytes. If the program 
invoking GNRLF AIL/VSAMF AIL is executing in 31-bit addressing mode, 
it may issue a LINK macro without switching addressing modes to invoke 
it. (The LINK macro ensures that GNRLFAIL/VSAMFAIL is invoked in 

Dynamic Allocation of Data Sets -- The Dynamic Allocation Interface Routine (DAIR) 89 



24-bit addressing mode.) When linking to IKJEFFI9, provide the address 
of a pointer to the following parameter list in register 1: 

Offset 
Dec Hex 

0 0 

4 4 

8 8 

12 C 

GFCALLIO = 

14 E 

15 F 
16 10 

20 14 
24 18 
26 lA 
28 lC 

32 20 

36 24 
40 28 

Field Name 

GFCBPTR 

GFRCODE 

GF02PTR 

GFCALLIO 

Hexadecimal 
01 (GFCHECK) 
02 (GFCLOSE) 
03 (GFENDREQ) 
04 (GFERASE) 
05 (GFGET) 
06 (GFOPEN) 
07 (GFPOINT) 
08 (GFPUT) 
15 (GFPARSE) 

16 (GFPUTL) 
IF (GFABEND) 
20 (GFSSREQ) 

GFBITS 
GFKEYN08 
GFSUBSYS 

GFWTPSW 

GFRESVI 
GFCPPLP 

GFECBP 
GFDSNLEN 
GFPGMNL 
GFDSNP 

GFPGMNP 

GFRESV2 
GFRESV3 

Contents 

Pointer to VSAM ACB if GFOPEN or GFCLOSE 
calle rid. Pointer to VSAM RPL for other VSAM 
macro failures. Pointer to SSOB if GFSSREQ caller 
id. 
Error return code from register 15 or ABEN D code 
if GFCALLIO is GFABEND. 
Zero, or address of TSO message issuer routine 
(IKJEFF02) if already loaded. 
10 for caller's failing VSAM macro, or other 
failure. 

for VSAM CHECK macro error 
for VSAM CLOSE macro error 
for VSAM ENOREQ macro error 
for VSAM ERASE macro error 
for VSAM GET macro error 
for VSAM OPEN macro error 
for VSAM POINT macro error 
for VSAM PUT macro error 
for parse service routine error, other than a 
return code of 4 or 20. 
for PUTLINE service routine error 
Issue ABEND message 
for Subsystem interface request (SSREQ) 
error 

Special processing switches 
1... .... Caller not in key 0 or 8. 
.1.. .... Caller used VS2 VSAMjjob entry 

subsystem interface . 
.. 1. .... Issue error message as 

write-to-programmer instead of 
PUTLINE. 

Reserved. 
Pointer to TMP's CPPL control block (needed if 
PUTLINE issued, or to have command name 
inserted in the failure message). 
Pointer to ECB for PUTLINE (optional). 
Length of data set name. 
Length of program name. 
Pointer to data set name to insert in VSAMFAIL 
error messages (optional; default is ddname). 
Pointer to program name for insertion in all error 
messages (optional; default is ddname). 
Reserved. 
Reserved. 

The return code from GNRLFAIL is contained in register 15 as follows: 

o - Message issued successfully 

80 - Invalid input parameter list (GFPARMS) for IKJEFFI9. A message is also 

issued. 

Other- PUTLlNE/PUTGET /IKJEFF02 message issuer error return code. 

The IKJEFFGF macro may be used to map the input parameter list. 
Specify GFDSECT = YES option to obtain DSECT GFDSECTD instead of 
storage. 

90 TSO Guide to Writing a TMP or a CP 



Using BSAM or QSAM for Terminal I/O 

The basic sequential and queued sequential access methods provide terminal 
I/O support for programs operating under TSO. For a complete discussion 
of the use of BSAM and QSAM, see the publication Data Management 
Services. 

The major benefit of using BSAM or QSAM to process terminal I/O 
under TSO is that programs using these access methods do not become 
TSO dependent or device dependent and may execute either under TSO or 
in the batch environment. Therefore, your existing programs that use BSAM 
or QSAM for I/O may be used under TSO without modification or 
recompilation. 

This section describes: 

• The BSAM/QSAM macro instructions 
• SAM terminal routines 
• Record formats, buffering techniques, and processing modes 
• Specifying the terminal line size 
• End of file (EOF) for input processing 
• Modifying DD statements for batch or TSO processing 

BSAM/QSAM Macro Instructions 
Some of the BSAM and QSAM access method routines have been modified 
to provide special services under TSO; others provide the same function 
that is provided in a batch environment. Those BSAM/QSAM macro 
instructions that are not relevant to terminal I/O act as no-ops. All of the 
BSAM/QSAM macro instructions, when executed in the batch 
environment, provide the non-terminal functions as explained in Data 
Management Macro Instructions. The BSAM/QSAM macro instructions 
must be issued in 24-bit addressing mode. Figure 39 shows the functions 
performed by the BSAM and QSAM macro instructions when used for 
terminal I/O. Following the table are more detailed explanations of the 
GET, PUT, PUTX, READ, WRITE, and CHECK macro instructions. 

Using BSAM or QSAM for Tenninal I/O 91 



SAM Macro 
Instruction BSAM QSAM Terminal Interpretation 

BSP X X NOP 
BUILD X X As in batch processing, the BUILD macro 

instruction causes a buffer pool to be constructed 
in a user-provided storage area. 

BUILDRCD X NOP 
CHECK X Takes an EODAD exit after a READ EOF. NOP after 

a WRITE. 
CLOSE X X The CLOS~ macro instruction frees the control 

blocks built to handle I/O and deletes the loaded 
SAM terminal routines. 

CNTRL X X NOP 
REOV X X NOP 
FREEBUF X As in batch processing, the FREEBUF macro 

instruction causes the control program to return a 
buffer to the buffer pool assigned to the specified 
data control block. 

FREEPOOL X X As in batch processing, the FREEPOOL macro 
instruction causes an area of virtual storage, 
previously assigned as a buffer pool for a specified 
data control block, to be released. 

GET X The GET macro instruction obtains data from the 
terminal via the TGET macro instruction. 

GETBUF X As in batch processing, the GETBUF macro 
instruction causes the control program to obtain a 
buffer from the buffer pool assigned to the 
specified data control block, and to return the 
address of the buffer in a designated register. 

GET POOL X X As in batch processing, the GETPOOL macro 
instruction causes a buffer pool to be constructed 
in a storage area provided by the control program. 

NOTE X NOP 
OPEN X X The OPEN macro instruction loads the proper SAM 

terminal I/O routines and constructs the necessary 
control blocks. 

POINT X NOP 
PRTOV X X NOP 
PUT X The PUT macro instruction routes data to the 

terminal via the TPUT macro instructiori. 
PUTX X The PUTX macro instruction routes data to the 

terminal via the TPUT macro instruction. 
READ X The READ macro instruction obtains data from the 

terminal via the TGET macro instruction. 
RELSE X NOP 
SETPRT X X NOP 
TRUNC X NOP 
WRITE X The WRITE macro instruction routes data to the 

terminal via the TPUT macro instruction. 

Figure 39. BSAM/QSAM Macro Functions under TSO 

SAM Terminal Routines 

The GET, PUT, PUTX, READ, WRITE, and CHECK macro instructions 
perform differently in terminal I/O than they do in the batch environment. 
Descriptions of these differences are presented here, but for a detailed 
explanation of how to use the macro instructions, see Data Management 
Macro Instructions. 

92 ISO Guide to Writing a TMP or a CP 



GET 

The GET macro instruction causes a record to be retrieved from the 
terminal and placed in either the first buffer of the buffer pool control 
block (locate mode) or in a user specified area (substitute or move mode). 
In either case, the address of the record is returned in register 1. 

The record is moved via a TGET macro instruction which does not 
return control until the transfer of data completes. 

The input to the GET macro instruction consists of the DCB address and 
the user's area address (omitted for locate mode). The output is edited (that 
is, specially-indicated characters are deleted from the message). Lowercase 
characters are folded to uppercase characters. 

When the terminal user types /*, end-of -file is indicated and control is 
passed to the problem program's EODAD routine. If no EODAD routine is 
specified, the job will ABEND with a system code of 337. 

PUT and PUTX 

Both the PUT and the PUTX macro instructions cause a record to be 
written to a terminal. This transfer of data is accomplished with the TPUT 
macro instruction which does not return control until the transfer is 
completed. 

In locate mode, the first use of PUT or PUTX causes an address 
pointing to a buffer to be returned in register 1. The first record is placed 
in this buffer by the problem program and is written out when the next 
PUT or PUTX for the same data control block (DCB) is issued. Succeeding 
records are written in the same manner. The last record is written at 
CLOSE time. 

In move or substitute mode, the PUT or PUTX macro instruction moves 
a record from the user-specified work area to the terminal. You must supply 
the work area address to the PUT macro instruction. 

The input to the PUT and PUTX macro instruction consists of the DCB 
address and the user's area address (omitted for locate mode). 

READ 

The READ macro instruction causes a block of data to be retrieved from 
the terminal and placed in a user-designated area in storage. This transfer 
of data is done via a TGET macro instruction which does not return control 
before the transfer is completed. The data is folded to uppercase. 

The input to the READ macro instruction consists of the string of 
parameters explained in Data Management Macro Instructions. 

WRITE 
The WRITE macro instruction causes a block of data to be written from 
the user-specified area to the terminal. This transfer of data is done via a 
TPUT macro instruction which does not return control until the transfer is 
completed. 

The input to the WRITE macro instruction consists of the string of 
parameters explained in Data Management Macro Instructions. 

Using BSAM or QSAM for Terminal I/O 93 



CHECK 

The CHECK macro instruction used after a WRITE macro instruction 
results in a NOP. When it is used after a READ macro instruction, it 
performs as a NOP unless an end of file (EOF) condition is encountered. 
The end of file signal from the terminal is /*. When end of file is 
encountered, CHECK takes the EODAD exit specified in the data control 
block. If no EODAD exit is specified, CHECK will cause the job to 
ABEND with a system code of 337. 

The input to the CHECK macro instruction is the address of the 
problem program's data event control block (DECB). 

Record Formats, Buffering Techniques, and Processing 
Modes 

All record formats -- fixed (F), variable (V), and undefined (U) -- are 
supported under TSO. Before passing the data to the problem program, 
TSO automatically generates the first four bytes of control information for 
V format records coming in from the terminal. When you send V format 
records to the terminal, TSO automatically removes the control information 
before writing the line. 

Control characters (ASCn or machine) are not supported under TSO. 
On output, they are removed before the data is sent to the terminal. On 
input, they are ignored. 

Both simple and exchange buffering techniques are supported, as are all 
four processing modes for the queued access method. 

Specifying Terminal Line Size 
If the LRECL and BLKSIZE fields are not specified in the DCB, the 
terminal line size default (or the line size the terminal user has specified via 
the TERMINAL command) is merged into the data control block fields as 
if it came from the label of the data set. 

For BSAM, BLKSIZE is used by TSO to determine the length of the 
text line it is to process. For both BSAM and QSAM, if the text entered 
from the terminal is shorter than the value specified for LRECL, and if F 
format is used, blanks are supplied on the right. For either access technique, 
if the text entered is longer than BLKSIZE or LRECL, the next GET or 
READ retrieves the remainder of the message. If the record generated by 
the problem program is longer than the specified line size, multiple lines are 
displayed at the terminal. 

End-of-File (EOF) for Input Processing 
The sequential access method GET and CHECK terminal routines 
recognize /* from the terminal as an end-of-file (EOF). The EODAD exit 
in the data control block is taken for the EOF condition. If no EODAD 
exit has been specified, and an EOF has been signaled from the terminal, 
the job ABENDs with a system code of 337. 

94 TSO Guide to Writing a TMP or a CP 



Modifying DD Statements for Batch or TSO Processing 
TERM=TS, when added to a DD statement defining an input or an output 
data set, is ignored in the batch processing environment, but under TSO 
indicates to the system that the unit to which I/O is being addressed is a 
time sharing terminal. Thus a user who wants his job to run in either the 
foreground or the background could provide a DD statement as follows: 

IIDD11 D~ TERM=TS,SYSOUT=A 

In this example the output device is defined as a terminal under TSO 
processing, and as the SYSOUT device during batch processing. For a 
complete description of the TERM=TS parameter, see JCL. 

Using BSAM or QSAM for Tennlnal I/O 95 



96 TSO Guide to Writing a TMP or a CP 



L 

'j-

Using the TSO I/O Service Routines for Terminal I/O 

The TSO I/O service routines process terminalI/O requests initiated by 
the terminal monitor program (TMP), command processors (CPs), and 
other service routines. If you write your own command processors, or 
replace the IBM-supplied terminal monitor program with one of your own 
design, you should use the I/O service routines to process terminal I/O. 

The I/O service routines -- STACK, GETLINE, PUTLINE, and 
PUTGET -- offer the following features: 

1. They provide an interface between an I/O request and the TGET 
and TPUT supervisor calls. 

2. They provide a method of selecting sources of input other than the 
terminal. Requests for input can be directed to an in-storage list or 
data set as well as to the terminal. 

3. They provide a message formatting facility with which you can insert 
text segments into a basic message format, and display or inhibit the 
displaying of message identifiers. 

4. They process requests for more information (question-mark 
processing), and they analyze processing conditions to determine if 
I/O requests should be disregarded or honored. 

You pass control to the I/O service routines and indicate the functions 
you want performed by coding the operands you require in the list and the 
execute forms of the I/O service routine macro instructions. Each of the 
I/O service routine macro instructions (STACK, GETLINE, PUTLINE, 
and PUTGET) has a list and an execute form. 

The list form of each service routine macro instruction initializes the 
parameter blocks according to the operands you code into the macro 
instruction. 

The execute form is used to modify the parameter blocks and to provide 
linkage to the service routines, and can be used to set up the input/output 
parameter list. The input/output parameter list contains addresses required 
by the I/O service routines. 

Note: See the section "Interfacing with TSO Service Routines" for 
information on the CALLTSSR macro interface to TSO service routines 
and a list of the DSECTS provided for TSO control blocks. 

The Input/Output Parameter List 

The I/O service routines use two of the pointers contained in the command 
processor parameter list: the pointer to the user profile table and the 
pointer to the environment control table. These addresses are passed to the 
service routines in another parameter list, the input/output parameter list 
(IOPL). The 10PL and the fields in the IOPL must reside below 16 
megabytes. Before executing any of the TSO I/O macro instructions 
(GETLINE, PUTLINE, PUTGET, or STACK) you must provide an 10PL 
and pass its address to the I/O service routine. 

Using the TSO I/O Service Routines for Terminal I/O 97 



There are two ways you can construct an 10PL: 

1. You can build and initialize the 10PL within your code and place a 
pointer to it in the execute form of the I/O macro instruction. 

2. You can provide space for an 10PL (4 fullwords), pass a pointer to it 
together with the addresses required to fill it, to the execute form of 
the I/O macro instruction, and let the I/O macro instruction build 
the 10PL for you. 

The input/output parameter list, as defined by the IKJIOPL DSECT, is a 
four-word parameter list. Figure 40 describes the contents of the 10PL. 

Number of 
Bytes Field Contents or Meaning 

4 10PLUPT The address of the user profile table from the 
CPPLUPT field of the command processor 
parameter list. 

4 10PLECT The address of the environment control table 
from the CPPLECT field of the CPPL. 

4 10PLECB The address of the command processor's 
event control block (ECB). The ECB is one 
word of storage, declared and initialized to 
zero by the command processor.Command 
processors with attention exits can post this 
ECB after an attention interruption to cause 
active service routines to exit. 

4 10PLlOPB The address of the parameter block created 
by the list form of the I/O macro instruction. 
There are four types of parameter blocks, one 
for each of the I/O service routines: 
STACK parameter block (STPB) 
GETLINE parameter block (GTPB) 
PUTLINE parameter block (PTPB) 
PUTGET parameter block (PGPB) 

Figure 40. The Input/Output Parameter List 

The parameter block pointed to by the fourth word (IOPLIOPB) of the 
I/O parameter list is built and modified by the I/O service routine macros 
themselves. It is created and initialized by the list form of the I/O macro 
instruction, and modified by the execute form. Thus you can use the same 
parameter block to perform different functions. All you need to do is code 
different parameters in the execute forms of the macro instructions; these 
parameters provide those options not specified in the list form, and override 
those which were specified. Each of these parameter blocks -- the STACK, 
GETLINE, PUTLINE, and PUTGET parameter blocks -- is described in 
the separate sections on each of the I/O macro instructions. 

Figure 41, an extension of Figure 38, summarizes the control block 
interfaces established between the terminal monitor program and an I/O 
service routine. 

98 TSO Guide to Writing a TMP or a CP 



L 

L 

L 

Terminal Command 
Monitor Processor 
Program ATTACH ... 

1"-
I 
I 
I 

CPPl 

~ 

I/O 
Service 

LINK Routine ... 
1"-
I 
I 
I 

Parameter 
Block 
----l 

I 
I 
I 
I 
I L ___ -1 

Figure 41. Control Block Interface between TMP and I/O Service Routine 

Passing Control to the 110 Service Routines 
Pass control to an I/O service routing using the corresponding I/O macro 
instruction: 

Service Routine 
• STACK 
• GETLINE 
• PUTLINE 
• PUTGET 

Macro Instruction 
STACK 
GETLINE 
PUTLINE 
PUTGET 

You can use the DELETE macro instruction to release the storage area 
occupied by the load module when you have finished with your terminal 
I/O. 

All of the TSO terminalI/O service routines are contained in the 
IKJPTGT load module. The IKJPTGT load module has the AMODE=24 
and RMODE=24 attributes and is loaded below 16 megabytes. The TSO 
I/O service routines must receive control in 24-bit addressing mode. 

Using the TSO I/O Service Routines for Terminal I/O 99 



The I/O Service Routine Macro Instructions 
The I/O service routines -- STACK, GETLINE, PUTLINE, and PUTGET 
-- each perform a specific 1/0 function: 

• STACK determines the source of input. 
• GETLINE obtains a line of input. 
• PUTLINE puts a line of output to the terminal. 
• PUTGET puts a line to the terminal and gets a line in response. 

In order to perform these functions, the 1/0 macro instructions use the 
control blocks explained in the section "TSO Service Routines -- Their Uses 
and Interfaces," and other, more individualized control blocks, the 
parameter blocks. Each of the 1/0 macro instructions has a list and an 
execute form. The list form sets up the parameter block required by that 
1/0 service routine; the execute form can be used to set up the input 
output parameter list, and to modify the parameter block created by the list 
form of the macro instruction. 

The STACK, GETLINE, PUTLINE, and PUTGET macros must be 
issued in 24-bit addressing mode. All input must reside below 16 
megabytes. 

The parameter block required by each of the I/O service routines is 
different, and each one may be referenced through a DSECT. The 
parameter blocks and the DSECTS used to reference them are: 

• The STACK parameter block referenced by IKJSTPB 
• The GETLINE parameter block referenced by IKJGTPB 
• The PUTLlNE parameter block referenced by IKJPTPB 
• The PUTGET parameter block referenced by IKJPGPB 

Each of these blocks is explained in the section describing the 1/0 macro 
instruction that builds it. 

STA. eK - Changing the Source of Input 

Use the STACK macro instruction to establish and to change the source of 
input. The currently active input source is described by the top element of 
the input stack, an internal pushdown list maintained by the I/O service 
routines. The first element of the input stack is initialized by the terminal 
monitor program (TMP), and cannot thereafter be changed or deleted. The 
IBM-supplied TMP initializes this first element to indicate the terminal as 
the current input source. The STACK service routine adds an element to 
the input stack or deletes one or more elements from it, and thereby 
changes the source of input for the other 1/0 service routines. 

This topic describes: 

• The list and execute forms of the STACK macro instruction 
• The sources of input 
• The STACK parameter block 
• The list source descriptor 
• Return codes from STACK 

Coding examples are included where needed. 

too TSO GIIiIIe to WrkInR • TMP or • CP 



) 

... 

The STACK Macro Instruction - List Form 

[symbol] 

The list form of the STACK macro instruction builds and initializes a 
STACK parameter block (STPB), according to the operands you specify in 
the macro. The STACK parameter block indicates to the STACK service 
routine which functions you want performed. Figure 42 shows the list form 
of the STACK macro instruction; each of the operands is explained 
following the figure. Appendix A describes the notation used to define 
macro instructions. 

STACK rOP
} DELETE= i~ 

{PROCN,PROMPT} 
STORAGE = (el emen t 3. ddr ess, PROCL, PROMPT ) ,MF=L 

SOURCE 

* DATASET= INDD=addrl,PROMPT,LIST 
MEMBER=addr3 
OUTDD=addr2,CNTL,SEQ 

~ CLOSE -
Figure 42. The List Form of the STACK Macro Instruction 

DELETE= 
Delete an element or elements from the input stack. The element to be 
deleted must be further defined as TOP, PROC, or ALL. 

TOP 

The topmost element (the element most recently added to the input 
stack) is to be deleted. 

PROC 

The current procedure element is to be deleted from the input stack. If 
the top element is not a PROC element, all elements down to and 
including the first PROC element encountered are to be deleted. 

ALL 
All elements are to be deleted from the input stack except the bottom 
element (the first element). 

STORAGE=element address 
Add an in-storage element to the input stack. The element address is the 
address of the list source descriptor (LSD). The LSD is a control block, 
pointed to by the STACK parameter block, which describes the 
in-storage list. The in-storage element must be further defined as a 
SOURCE, PROCN, or PROCL list. SOURCE is the default. 

PROMPT 
Specifies prompting by commands within a command procedure. 
PROMPT is used with the keywords PROCN and PROCL, which 
specify that the element to be added to the input stack is a command 
procedure. 

Using the TSO I/O Service Routines for Terminal I/O 101 



PROCN 

The element to be added to the input stack is a command procedure and 
NOLIST option has been specified. 

PROCL 

The element to be added to the input stack is a command procedure and 
the LIST option has been specified. Each line read from the command 
procedure is written to the terminal. 

SOURCE 

The element to be added to the input stack is an in-storage source data 
set. 

MF=L 

Indicates that this is the list form of the macro instruction. 

DATASET 

• 

Supports the use of ACCOUNT in the background by expanding the 
facilities of dataset I/O for TSO commands to include reading from a 
SYSIN data set and writing to a SYSOUT dataset. To use the dataset 
function, the input and output files passed to the STACK service routine 
must be preallocated, either by a previously issued ALLOCATE 
command, a command processor going to dynamic allocation, a DD 
statement specified in the logon procedure, or, in the background, a 
user-supplied DD statement. 

Specifies that STACK use the bottom element in the input stack for I/O 
operations. This operand is the functional equivalent of TERM = * , which 
is still supported for compatibility. 

INDD=addrl 
Specifies the input file name. 

PROMPT 

Allows prompting if prompting is also allowed on the bottom element of 
the input stack. 

LIST 

Lists the input from the input stream. 

MEMBER=addr3 
Specifies an 8-charactet member name for a partitioned data set which 
was specified as the input file with the INDD operand. 

OUTDD= addr2 
Specifies the output file name. 

CNTL 

The output line has its own control character. 

CLOSE 

Closes the data control blocks (DCBs) of the input stack. 

SEQ 

Tells dataset I/O not to remove sequence numbers. 

102 TSO Guide to Writing a TMP or a CP 



Note: In the list form of the macro instruction, only 

STACKJMF=L 

is required. When only STACK MF=L is specified, the STPB is zeroed. 
The other operands and their sub lists are optional because they may be 
supplied by the execute form of the macro instruction. 

The operands you specify in the list form of the STACK macro 
instruction set up control information used by the STACK service routine. 
The DATASET, STORAGE, and DELETE operands set bits in the 
STACK parameter block. These bit settings indicate to the STACK service 
routine which options you wish performed. 

The STACK Macro Instruction - Execute Form 

[syDOoll . 

Use the execute form of the STACK macro instruction to perform the 
following three functions: 

1. To set up the input output parameter list (IOPL). 

2. To initialize those fields of the STACK parameter block not 
initialized by the list form of the macro instruction, or to modify 
those fields already initialized. 

3. To pass control to the STACK service routine which modifies the 
input stack. 

Figure 43 shows the execute form of the STACK macro instruction; each 
of the operands is explained following the figure. Appendix A describes the 
notation used to define macro instructions.· 

STACK [PARM=parm addr.][,UPT=upt addr.] 

[,ECT=ect addr.l[,ECR=ecb addr.l 

-
{TOP} DELETE= ~~ 

t OCR
•
PROMPT 

} STORAGE=(element addr., PROCL,PROMPT ) 
SOURCE 

{. } INDD=addr1,PROMPT,LIST 
D~TASET= MEMBER=addr 3 .. 

OUTDD=addr2,CNTL,SEQ 
CLOSE 

"-

[,ENTRY= {entry addr.}] ,M!'= (E, {list addr.}) 
. (15) (U 

F"lgure 43. The Execute form of tbe STACK Macro Instruction 

Note: TERM=· will be allowed by STACK to provide compatibility with 
existing modules when they are recompiled. 

Using tbe TSO I/O Senice Routines for Termini! I/O 103 



SEQ 

Tells dataset I/O not to remove sequence numbers. 

CLOSE 

Closes the data control blocks (DCBs) of the bottom element of the 
input stack. 

ENTRY=entry address or (15) 
Specifies the entry point of the STACK service routine. The address may 
be any address valid in an RX instruction or (15) if the entry point 
address has been loaded into general register 15. If ENTRY is omitted, a 
LINK macro instruction will be generated to invoke the STACK service 
routine. 

MF=E 

Indicates that this is the execute form of the macro instruction. 

listaddr 
(1) 
The address of the four-word input/output parameter list (IOPL). This 
may be a completed IOPL that you have built, or it may be 4 words of 
declared storage that will be filled from the PARM, UPT, ECT, and 
ECB operands of this execute form of the STACK macro instruction. 
The address is any address valid in an RX instruction or (1) if the 
parameter list address has been loaded into general register 1. 

Note: In the execute form of the STACK macro instruction only the 
following operands are required: 

The PARM, UPT, ECT, and ECB operands are not required if you have 
built an IOPL in your own code. 

The other operands and their sublists are optional because they may be 
supplied by the list form of the macro instruction. 

The ENTRY operand need not be coded in the macro instruction. If it is 
not, a LINK macro instruction will be generated to invoke the I/O service 
routine. 

The operands you specify in the execute form of the STACK macro 
instruction are used to set up control information used by the STACK 
service routine. You can use the PARM, UPT, ECT, and ECB operands of 
the STACK macro instruction to complete, build, or alter an IOPL. The 
DATASET, STORAGE, and DELETE operands set bits in the STACK 
parameter block. These bit settings indicate to the STACK service routine 
which options you want. 

Sources of Input 

The input sources provided are defined as follows: 

1. Terminal 

If the terminal is specified in the STACK macro instruction as the 

106 TSO Guide to Writing a TMP or a CP 



L ""-

input source, all input and output requests through GETLINE, 
PUTLINE, and PUTGET are read from the terminal and written to 
the terminal. The user at the terminal controls TSO by entering 
commands; the system processes these commands as they are entered 
and returns to the user for another command. 

2. In-Storage List 

An in-storage list can be either a list of commands or a source data 
set. It may contain variable-length records (with a length header) or 
fixed-length records (no header and all records the same length). In 
either case, no one record on an in-storage list may exceed 256 
characters. 

An in-storage list and its processing are specified by setting the 
STORAGE operand type to PROCN, PROCL, or SOURCE . 

• PROCN or PROCL - Indicates that the in-storage list is a command 
procedure, a list of commands to be executed in the order specified. If 
you specify PROCN, requests through GETLINE are read from the 
in-storage list, but PROMPT requests from the executing command 
processor are suppressed. MODE messages, those messages normally 
sent to the terminal requesting entry of a command or a 
sub-command, are not sent but a command is obtained from the 
in-storage list. If the PROCL option is specified, the command is 
displayed at the terminal as it is read from the list. 

• SOURCE - Indicates that the in-storage list is a source data set. 
Requests through GET LINE are read from the in-storage list, but 
PROMPT requests from the executing command processor are 
honored if prompting is allowed, and a line is requested from the 
terminal. MODE messages are handled the same way as with PROCN 
or PROCL. No LIST facility is provided with SOURCE records. 

Building the STACK Parameter Block 

When the list form of the STACK macro instruction expands, it builds a 
five word STACK parameter block (STPB). The list form of the macro 
instruction initializes this STPB according to the operands you have coded. 
This initialized block, which you may later modify with the execute form of 
the macro instruction, indicates to the II 0 service routine the functions you 
want performed. 

By using the list form of the macro instruction to initialize the block, and 
the execute form to modify it, you can use the same STPB to perform 
different STACK functions. Keep in mind, however, that if you specify an 
operand in the execute form of the macro instruction, and that operand has 
a sub list as a value, the default values of the sub list will be coded into the 
STPB for any of the sublist values not coded. If you do not want the 
default values, you must code each of the values you require, each time you 
change anyone of them. 

For example, if you coded the list form of the STACK macro instruction 
as follows: 

STACK STORAGE=(element address,PROCN),MF=L 

Using the TSO I/O Service Routines for Terminal I/O 107 



Terminal 
Monitor 
Program ATTACH 

Command 
Processor 

R eg. 

l 

CPPt 

LINK 

I 

( 

STACK 
Service 
Routine 

IOPt 

.. 

STPB 

I I 
00000000 

0 

0 

Flpre 45. Sf ACK Control BIoeks: No In-Storap LIst 

To add an in-storage list element to the input stack, you must describe 
the in-storage list and pass a pomter to it to the STACK I/O service 
routine. You do this by building a list source descriptor (LSD). 

110 TSO Guide to Writing a TMP or a CP 



* EN 1R Y FR OM 

* TH E CP PL 
~ HO US 

* AD DR 

* SA VE 

* LR 
L 

~ 
L 

* LA 
~ 

If I S SU E TH E 

* SP EC I F Y TH 
* 10 PL W I TH 
~ 

S1 AC 

7( 
7( PR DC 
~ 
1{ ST OR 
7f 
IO PL DC 

* EeB DC 
* ST AI< BL Olk 5T AC 

* ~ 
I~ 

END 

Figure 46 is an example of the code required to add the terminal to the 
input stack as the current input source. In this example, the execute form of 
the STACK macro instruction is used to build the input/output parameter 
list for you. The list form of the STACK macro instruction expands into a 
STACK parameter block, and its address is passed to the execute form of 
the macro instruction as the P ARM operand address. 

TM p - RE G I 51 ER ON E CO NT A I NS A PO IN TE R TO 

E.I< EE PI NG. 
ES SA B I L I 11 Y . 

AR EA eN A I N / NG. 

1* 
2 , 1 SA VE 1N E AD DR ES S OF HI E CP PL. 
3 , If ( 2 ) PL AC E TNE UPT AD DR ESS IN 70 A 

RE G,/ 51 E!R 
if , 12 ( 2 ) PL AC E THE EeT AD DR ESS 1 N TO A 

RE G / SIT ER 
5 , EeB PL AC E HIE E CB AD DR E~S / N 10 A 

RE 61 ST ER 
EX EC U1 E FO RM OF 71-1 E 5T AC K MA CRO IN 51 RU c[ I 0 ~; 
E TE RM / N AL AS IT N E /N PU 1 SO UR CE . au I L D TUE 
TH E 51 AC K MA eRO / N ST RU CT I 0 N. 

rII 
I< PA RM =5 1A KB LO K, UP T= ( 3 , E CT =( Ifl) , E CB .( n ,. T E~ 1M: if, 

MF = ( E , 10 PLI) 
I~ 

ES SI NG 

* AG E DE CL AR AT I 0 NS 
~ 

J/.F '~ I SP AC E FOR TW E 1M PUT OU TP UT 
PA RA ME TER LI ST. 

F I ~\ SP ACE OV? TU E EV ENT CO 1A11 ROL 
8L DC K. 

K MF =L TI-I E LI S1 FO ~M OF TI-I E 51 ~CI~ 
MA CR 0 IN S1 RU CT 10 N - IT WI LL· 
EX PA ND IN TO A 51 AC K PA RA ~E TER 
6~ DC I< • 

Figure 46. Coding Example - STACK Specifying the Terminal as the Input Sour-ee 

This sequence of code does not make use of the IKJCPPL DSECT to 
access the command processor parameter list, nor does it provide 
reenterable code. 

Building the List Source Descriptor (LSD) 

A list source descriptor (LSD) is a four-word control block which describes 
the in-storage list pointed to by the new element you are adding to the 
input stack. If you are designating the terminal as the input source, no LSD 
is necessary and the second word of the STPB will be zero. If you specify 

Using the TSO I/O Service Routines for Terminal I/O 111 



STORAGE as the input source in the STACK macro instruction, your code 
must build an LSD, and place a pointer to it as a sublist of the STORAGE 
operand. The LSD must begin on a doubleword boundary, and must be 
created in the shared subpool designated by the terminal monitor program; 
the IBM-supplied TMP shares subpool 78 with the command processors. 
The LSD is defined by the IKJLSD DSECT. Figure 47 describes the 
contents of the LSD. 

Number of 
Bytes Field Contents or Meaning 

4 LSDADATA The address of the in-storage list. 

2 LSDRCLEN The record length if the in-storage list 
contains fixed-length records. Zero if the 
record lengths are variable. 

2 LSDTOTLN The total length of the in-storage list; the sum 
of the lengths of all records in the list. 

4 LSDANEXT Pointer to the next record to be processed. 
Initialize this field to the address of the first 
record in the list. The field is updated by the 
GETLINE and PUTGET service routines. 

4 LSDRSVRD Reserved. 

Figure 47. The List Source Descriptor 

If you have provided an LSD, and specified the STORAGE operand in 
the STACK macro instruction, the second word of the stack parameter 
block will contain the address of the LSD, and the STACK control block 
structure will look like Figure 48. 

112 TSO Guide to Writing a TMP or a CP 



Terminal 
Monitor 
Progrom 

CPPL 

Command 
Processor LINK 

IOPL 

STACK 
Service 
Routine 

STPB 

FlgUl"e 48. STACK Control Blocks: In-Storage List Specined 

Figure 49 is an example of the code required to use the STACK macro 
instruction to place a pointer to an in-storage list on the input stack. 

Using the TSO I/O SenIee ROIIdnes 'ar T ...... I/O 113 

. , 



LOGICAL 

The input line to be obtained is a logical line; the GETLINE service 
routine is to perform logical line processing. 

PHYSICAL 

The input line to be obtained is a physical line. The GETLINE service 
routine need not inspect the input line. 

Note: If the input line you are requesting is a logical line coming from the 
input source indicated by the input stack, you need not code the INPUT 
operand or its sub-list operands. The input line description defaults to 
1ST ACK, LOGICAL. 

TERMGET 

Specifies the TGET options requested. GETLINE issues a TGET SVC 
to bring in a line of data from the terminal. This operand indicates to the 
TGET SVC which of the TGET options to use. The TGET options are 
EDIT or ASIS, and WAIT or NOWAIT. The default values are EDIT 
and WAIT. 

EDIT 

Specifies that in addition to minimal editing (see ASIS), the buffer is to 
be filled out with trailing blanks. 

ASIS 

Specifies that minimal editing is to be done as follows: 

a. Transmission control characters are removed. 

b. The line of input is translated from terminal code to EBCDIC. 

c. Line deletion and character deletion editing is performed. 

d. Line feed and carrier return characters, if present, are removed. 

WAIT 

Specifies that control is to be returned to the routine that issued the 
GETLINE macro instruction only after an input message has been read. 

NOWAIT 

Specifies that control is to be returned to the routine that issued the 
GETLINE macro instruction whether or not a line of input is available. 
If a line of input is not available, a return code of 12 decimal is returned 
in register 15 to the command processor. 

MF=L 
Indicates that this is the list form of the macro instruction. 

Note: In the list form of the macro instruction, only 

GETLINEIMF=L 

is required. The other operands and their sublists are optional because they 
may be supplied by the execute form of the macro instruction, or 
automatically supplied if you want the default values. 

The operands you specify in the list form of the GETLINE macro 
instruction set up control information used by the GETLINE service 
routine. The INPUT and TERMGET operands set bits in the GETLINE 

118 TSO Guide to Writing a TMP or a CP 



lsyui>oll GEl'LINE 

parameter block to indicate to the GETLINE service routine which options 
you want performed. 

The GETLINE Macro Instruction - Execute Form 

Use the execute form of the GETLINE macro instruction to perform the 
following three functions: 

1. You may use it to set up the input/output parameter list (IOPL). 

2. You may use it to initialize those fields of the GETLINE parameter 
block (GTPB) not initialized by the list form of the macro 
instruction, or to modify those fields already initialized. 

3. You use it to pass control to the GETLINE service routine which 
gets the line of input. 

Figure 51 shows the execute form of the GETLINE macro instruction; 
each of the operands is explained following the figure. Appendix A 
describes the notation used to define macro instructions. 

lPARM=paramet.er address) l, UPT=upt address) 

£, ECT=ect address) l. ECB=ecb address) 

[,INPt1T=({ISTACK}{ ,LOGICAL }>] 
TERM ,PHYSICAL 

[ , TERIGET= ({ EDIT} { , WAIT } >] 
ASIS , NOWAIT 

[,ENTRy={entry address} J'MF=(E,{list address}' (is> (1) 

FltPa'e 51. The Execute Fonn of the GETLINE Macro Instruction 

PARM=parameter address 
Specifies the address of the 2-word GETLINE parameter block (GTPB). 
It may be the address of a list form GETLINE macro instruction. The 
address is any address valid in an RX instruction, or the number of one 
of the general registers 2-12 enclosed in parentheses. 1 his address will be 
placed in the input/output parameter list (IOPL). 

UPT =upt address 
Specifies the address of the user profile table (UPT). You may obtain 
this address from the command processor parameter list pointed to by 
register 1 when the command processor is attached by the terminal 
monitor program. The address may be any address valid in an RX 
instruction or the number of one of the general registers 2-12 enclosed in 
parentheses. This address will be placed in the IOPL. 

Using the TSO I/O Serrice Routines for Termlnall/O 119 



ECT=ect address 
Specifies the address of the environment control table (ECT). You may 
obtain this address from the CPPL pointed to by register 1 when the 
command processor is attached by the terminal monitor program. The 
address may be any address valid in an RX instruction or the number of 
one of the general registers 2-12 enclosed in parentheses. This address 
will be placed into the IOPL. 

ECB=ecb address 
Specifies the address of an event control block (ECB). You must provide 
a one-word event control block and pass its address to the GETLINE 
service routine by placing it into the IOPL. The address may be any 
address valid in an RX instruction or the number of one of the general 
registers 2-12 enclosed in parentheses. This address will be placed into 
the IOPL. 

INPUT= 

Indicates that an input line is to be obtained. This input line is further 
described by the INPUT sublist operands 1ST ACK, TERM, LOGICAL, 
and PHYSICAL. 1ST ACK and LOGICAL are the default values. 

ISTACK 

Obtain an input line from the currently active input source indicated by 
the input stack. 

TERM 

Obtain an input line from the terminal. If TERM is coded in the macro 
instruction, the input stack will be ignored and regardless of the currently 
active input source, a line is returned from the terminal. 

LOGICAL 

The input line to be obtained is a logical line; the GETLINE service 
routine is to perform logical line processing. A logical line is a line that 
has had additional processing by the GETLINE service routine before it 
is returned to the requesting program. 

PHYSICAL 

The input line to be obtained is a physical line. A physical line is a line 
that is returned to the requesting program exactly as it is received from 
the input source. 

Note: If the input line you are requesting is a logical line coming from 
the input source indicated by the input stack, you need not code the 
INPUT operand or its sublist operands. The input line description 
defaults to 1ST ACK, LOGICAL. 

TERM GET 

Specifies the TGET options requested. GETLINE issues a TGET SVC 
to bring in a line of data from the terminal. This operand indicates to the 
TGET SVC which of the TGET options to use. The TGET options are 
EDITor ASIS, and WAIT or NOW AlT. The default values are EDIT 
and WAIT. 

EDIT 

Specifies that in addition to minimal editing (see ASIS), the input buffer 
is to be filled out with trailing blanks. All station control characters are 
suppressed from data. 

120 TSO Guide to Writing a TMP or a CP 

J 



ASIS 

Specifies that minimal editing is to be done by the TGET SVC. The 
following editing functions will be performed by TGET: 

a. Station control characters remain in the data. 

b. The line of input is translated from terminal code to EBCDIC. 

c. Line deletion and character deletion editing are performed. 

d. Line feed and carrier return characters, if present, are removed. 

WAIT 

Specifies that control is to be returned to the routine that issued the 
GETLINE macro instruction, only after an input message has been read. 

NOWAIT 

Specifies that control is to be returned to the routine that issued the 
GETLINE macro instruction whether or not a line of input is available. 
If a line of input is not available, a return code of 12 decimal is returned 
in register 15 to the command processor. 

ENTRY =entry address or (15) 

Specifies the entry point of the GETLINE service routine. If ENTRY is 
omitted, a LINK macro instruction will be generated to invoke the 
GETLINE service routine. The address may be any address valid in an 
RX instruction or (15) if the entry point address has been loaded into 
general register 15. 

MF=E 

Indicates that this is the execute form of the macro instruction. 

listaddr 
(1) 
The address of the four-word input/output parameter list (IOPL). This 
may be a completed IOPL that you have built, or it may be 4 words of 
declared storage that will be filled from the PARM, UPT, ECB, and 
ECT operands of this execute form of the GETLINE macro instruction. 
The address is any address valid in an RX instruction or (1) if the 
parameter list address has been loaded into general register 1. 

Note: In the execute form of the GETLINE macro instruction only the 
following is required: 

address~ ) 
( 1 ) ~ 

The PARM, UPT, ECT, and ECB operands are not required if you have 
built your IOPL in your own code. 

The other operands and their sublists are optional because you may have 
supplied them in the list form of the macro instruction or in a previous 
execution of GETLINE, or because you are using the default values. 

The ENTRY operand need not be coded in the macro instruction. If it is 
not, a LINK macro instruction will be generated to invoke the I/O service 
routine. 

Using the TSO I/O Service Routines for Tenninall/O 121 



The operands you specify in the execute form of the GETLINE macro 
instruction are used to set up control information used by the GETLINE 
service routine. You can use the PARM, UPT, ECT, and ECB operands of 
the GETLINE macro instruction to build, complete, or modify an IOPL. 
The INPUT and TERMGET operands set bits in the GETLINE parameter 
block. These bit settings indicate to the GETLINE service routine which 
options you want performed. 

Sources of Input 

There are two sources of input provided; they are the terminal, and an 
in-storage list. 

1. Terminal: Input comes from the terminal under either of the following 
conditions: 

• You have specified the terminal as the input source by including the 
TERM operand in the GETLINE macro instruction. 

• You have specified the current element of the input stack by including 
the 1ST ACK operand in the GETLINE macro instruction, and the 
current element is a terminal element. 

If you specify terminal as the input source, you have the option of 
requesting the GETLINE service routine to process the input as a logical or 
physical line by including the LOGICAL or the PHYSICAL operand in the 
macro instruction. LOGICAL is the default value. 

Physical Line Processing: A physical line is a line which is returned to the 
requesting program exactly as it is received from the input source. The 
contents of the line are not inspected by the GETLINE service routine. 

Logical Line Processing: A logical line is a line which has had additional 
processing by the GETLINE service routine before it is returned to the 
requesting program. If logical line processing is requested, each line 
returned to the routine that issued the GETLINE is inspected to see if the 
last character of the line is a continuation mark (a dash '-' or a plus '+'). A 
continuation mark signals GETLINE to get another line from the terminal 
and to concatenate that line with the line previously obtained. The 
continuation mark is overlaid with the first character of the new line. 

2. In-Storage List: If the top element of the input stack is an in-storage list, 
and you do not specify TERM in the GETLINE macro instruction, the 
line will be obtained from the in-storage list. The in-storage list is a 
resident data set which has been previously made available to the I/O 
service routines with the STACK service routine. No logical line 
processing is performed on the lines because it is assumed that each line 
in the in-storage list is a logical line. It is also assumed that no single 
record has a length greater than 256 bytes. 

End of Data Processing 

If you issue a GETLINE macro against an in-storage list from which all the 
records have already been read, GETLINE senses an end of data (EOD) 
condition. GETLINE deletes the top element from the input stack and 
passes a return code of 16 in register 15. Return code 16 indicates that no 

122 TSO Guide to Writing a TMP or a CP 



line of input has been returned by the GETLINE service routine. You can 
use this EOD code (16) as an indication that all input from a particular 
source has been exhausted and no more GETLINE macro instructions 
should be issued against this input source. If you reissue a GETLINE macro 
instruction against the input stack after a return code of 16, a record will 
be returned from the next input source indicated by the input stack. You 
can identify the source of this record by the return code (0 = terminal, 4 = 
in-storage) . 

Building the GETLINE Parameter Block 

When the list form of the GETLINE macro instruction expands, it builds a 
two word GETLINE parameter block (GTPB). The list form of the macro 
instruction initializes this GTPB according to the operands you have coded 
in the macro instruction. This initialized block, which you may later modify 
with the execute form of the macro instruction, indicates to the GETLINE 
service routine the function you want performed. 

You must supply the address of the GTPB to the execute form of the 
GETLINE macro instruction. For non-reenterable programs you can do this 
simply by placing a symbolic name in the symbol field of the list form of 
the macro instruction, and passing this symbolic name to the execute form 
of the macro instruction as the PARM value. The GETLINE parameter 
block is defined by the IKJGTPB DSECT. Figure 52 describes the contents 
of the GTPB. 

Using the TSO I/O Service Routines for Terminal I/O 123 



Number of 
Bytes Field Contents or Meaning 

2 Control flags. These bits describe the 
requested input line to the GETLINE service 
routine. 

Byte 1 
.. 0 ..... The input line is a logical line . 
.. 1. .... The input line is a physical line . 
... 0 .... The input line is to be obtained from the 

current input source indicated by the input 
stack. 

... 1 .... The input line is to be obtained from the 
terminal. 

xx .. xxxx Reserved bits. 

Byte 2 
xxxx xxx x Reserved. 

2 TGET options field. These bits indicate to the 
TGET SVC which of the TGET options you want 
to use. 

Byte 1 
1. ...... Always set to 1 for TGET. 
... 0 .... WAIT processing has been requested. Control 

will be returned to the issuer of GETLINE only 
after an input message has been read. 

... 1 .... NOWAIT processing has been requested . 
Control will be returned to the issuer of the 
GETLINE macro instruction whether or not a 
line of input is available. 

...... 00 EDIT processing has been requested. In 
addition to the editing provided by ASIS 
processing, the input buffer is to be filled out 
with trailing blanks to the next doubleword 
boundary. 

...... 01 ASIS processing has been requested. (See the 
ASIS operand of the GETLINE macro 
instruction description.) 

. xx. xx .. Reserved bits . 

Byte 2 
xxxx xxxx Reserved. 

4 GTPBIBUF The address of the input buffer. The GETLINE 
service routine fills this field with the address 
of the input buffer in which the input line has 
been placed. 

Figure 52. The GETLINE Parameter Block 

124 TSO Guide to Writing a TMP or a CP 



Input Line Format - The Input Buffer 

The second word of the GETLINE parameter block contains zeros until the 
GETLINE service routine returns a line of input. The service routine places 
the requested input line into an input buffer beginning on a doubleword 
boundary located in subpool 1. It then places the address of this input 
buffer into the second word of the GTPB. The input buffer belongs to the 
command processor that issued the GETLINE macro instruction. The 
buffers returned by GETLINE are automatically freed when your CP 
relinquishes control. You may free the input buffer with the FREEMAIN 
macro instruction after you have processed or copied the. input line. 

Regardless of the source of input, an in-storage list or the terminal, the 
input line returned to the command processor by the GETLINE service 
routine is in a standard format. All input lines are in a variable length 
record format with a fullword header followed by the text returned by 
GETLINE. Figure 53 shows the format of the input buffer returned by the 
GETLINE service routine. 

~ ___ L_en_g_th ____ ~ ____ O_ff_se_t ____ ~ _____________ T_ex_t __________ ~~ 
~--~V~----~A~----V~--~ 

2 Bytes 2 Bytes 

~~----------------------------~y~--------------------------~I 
Length 

Figure 53. Fonnat of the GETLINE Input Buffer 

The two-byte length field contains the length of the input line including 
the header length (4 bytes). You can use the length field to determine the 
length of the input line to be processed, and later, to free the input buffer 
with the R-form of the FREEMAIN macro instruction. 

The two-byte offset field is always set to zero on return from the 
GETLINE service routine. 

Figure 54 shows the GETLINE control block structure after the 
GETLINE service routine has returned an input line. 

lJsing the TSO I/O Service Routines for TerminalI/O 125 



Terminal 
Monitor 
Program ATTACH 

Command 
Proeessar 

CPPL 

LINK 

GETLINE 
Serviee 
Routine 

IOPL 

GTPB 

Data 

Figure 54. GETLINE Control Blocks - Input Line Returned 

Examples of GETLINE 

Figure "55 is an example of the code required to execute the GETLINE 
macro instruction. In this example two execute forms of the GETLINE 
macro instruction are issued. The first one builds the IOPL, and uses the 
parameters initialized by the list form of the macro instruction to get a 
physical line from the terminal with the NOW AIT and ASIS options. 

In the second execution of the GETLINE macro instruction, the same 
IOPL is used, but the GETLINE options are changed from TERM to 
ISTACK, and from NOWAIT to WAIT explicitly, and from PHYSICAL to 
LOGICAL and from AS IS to EDIT by default. 

126 TSO Guide to Writing a TMP or a CP 

J 



'* * * * * * 
* * ~ 

* 
* 
Xi I 

, 

* 
, 

* 

* * * * ~ 

* * 
* 

* * * * * 
~ 

Notice also that the IKJCPPL DSECT is used to map the command 
processor parameter list, and the IKJGTPB DSECT is used to map the 
GETLINE parameter block. 

E.N TRY FROM TMP - RE G I ST ER 1 CO NT AINS A PO INT EIR TO ITHE 
CO MA NO PR DC ES SIOR PA RA ~ET ER L I ST. , I ' : I ! ! • 

1I0!U SE KE EP'I NG I , I I i 
AD OR ES SA 81 LI TY ! . l 
SA VE AR fA CH AI NI NG , 

I I I ' , : 
, 

i ,* I , 

LR 2, 1 I , I SIA V,E TlHE AO'DR £IS SI,O'F! TH'E' C P,PL. 
US I NG CP PL,2 I i lA DID RE SSA 81/ L,I,TY FIOR ICPPL I 

'i ! I , ! 
, , 

I I ! , : ! i ! 
, , 

* I S SUE AN EX ECIUT,EI FlO RiM O,F THE IG:ET Ll/INIE MiAiCR'O I ;NST R'UeT I DiN 
TO G'ET ,A ,P,/1 Y S I ',CAL LIME FROM TI/1'E; TER'MI NAI. rUI $, EXfCU TE 
FO RIM 8UI LOS ANID :1 NI [iI,A L J Z£S T:H'Ei I NPiVJ :aU T'P UiTi P'A RAMEl ER I 
LIST ! ' I ! 

, ' 1 ' I , , . , , 
! ! i 

I I ! ! 
' , :* 

I L 3"CPP LU;PT , ' I PLACE H~iEi AiD,DRE S,S, O,F HIE Y'P'T' ! 
I , , 

! ! INTO A REG I :STIR· i , ! • ! , , 
L 'f,C P'P LEIC'r ! 

: 
I , PLACE HI E A:DDRE 5'St :D:F rUlE E C:T : , , 

! i I f 'N'T:Oi A IRE!G ISITiEiR • ! I ' , i , 

GE TL INf , PA R~i= GEIT 8iL OC:K, U PiT =(3 )i, Ee T=( 'II) , , 
i 

EC B=E CIB AD'S ,M F= ( EI,'I OP L!A DS) , , ! I I 

, I , I I i I i I i I 11 
TH I S EXE;C UTE iFO R'M !OF THE GE TL/:ME MACiR 01 ,IN STR!U,CT flOW: 'U S'EIS , 

TI1E TE RiM'1 IPH YIS leA Li,1 'AS /IS t AINID N OiWIA:/IT IOiP'EIR A!NDiS COIOiE D IN i 
IT HE L I S,T FO RM OF, T;/1 E G ElrLil N Ei MIA;C Rial 'I N 5 TiRiU'C Ti/iOiN, i I ! I I 

j I I I I i ' i ! i , 

i r i I i I : ~* 
6£ T IT 11 EiA DD RE5 5, ,OF IT'HE IR EIT URWiEIDI L/iN,E FIR!OM TIUfEI 16 Ein ,I iN E ! 

PA RA ME TIER BL DiC Ki., I 
I i 

I i i ! , I 1 ! i I I i , i ! : 
i , i i : , : i I I ' 

I 
I I ! ! I • : i , 

LA bi,IGIEIT BL O:CK ' i . SifT: UP !ADiD RiE,S'SIA Bil Li /'T Y paiR ,T,ME 
V!S',I NG GiT PIBI, 6' GiTP!Bi. , , , i , ! l ; , I : i , 
L I 51, GITP 81 BiUF I 6:ETi iT J./,E ;AD D:R E:S S 'OF: IT HIE Li I NE " i 

: " 

I , 
I I I I , I ! , :-N -

PR,D CE SS T/1E iL INiE : I ' i , 
, , I , i , 

I 1 i I , , , 
i : : I I i ! I i : I I I i I 1 i : :* , , 

I S SUE AINO TH E RI iE'XE CU TEl FiOIR:M OF THE GET L'I iNE AfIA,CiRiO 1 

IN 57 RU CITtO N. :T'11 'is ,ON £, 6E rs A ILII 'NE FIR'O M ,THE C'ViR RE MTUY I : 
AC I V E il NP UT ISO UR OE - I T ;u SES TUE IO PL CO NS TRIU CT EDI 18 Y 

HE F I RIST EX EICU T I ON OF THE GET L/ NE lM AC RO IN STIR UC IT liON, 

Figure 55. Coding Exam~lle - Two Executions of GETLINE (Part I of 2) 

Using the TSO I/O Service Routines for Tennlnall/O 127 



* IAN 01 MO DI/'FI/'ES .THE GiTlplB C R E'AIT ED BY TIH L/ SIT FO R~I OF TH 
X GE TiLl NE MIAIC Ro liN S N<iUCiT 1:0 N. i I 

~ , i I I • i I I , : I 
I ! 

I * I GE'TL / N E NJiPUiT =!(!l!SiT ACI< ) , TE RM GET = ( ~A I T ) , 
I I I I j 

I MF = (E 'iliO PiL AiDS:)1 I 
~ I 

! ! I ! 
i I I jf I i I I I 

~ , TH 115 E X!EIC UTE FOiR!M IDIF THE 'GIE TL INE MA eRO IN STIR U C'T ION 
Jf C;JI AiN GES TERIM ,TIOI II SIT'AICiK ,i DIEIF AU LTS TO LO C:JI CA L , CH ANi6 ES 
~, NO WA I T iT 01 IW~ liT , ANDi ITA KIE 5 IT J.!E DE FAU LT VA LUE EDI T • i 

*1 J I , i ! I : ' I iii i 
I '* 

)( , 

i ; I 
, , ! : i I ! * : I 

L 
I 

i i 
~! I :GE TI iT JlE AIOiO R EiSiS iO F ITII1 E RE!TIU RINED LJ NE FiR OM HIE IGE TIL INE i 

*' 
I :P!A R'AJM ET E:R' '8L DCK " ! 

, 
I 

i 
, 

I I , I 

* I 
I , I 

i ' 
, 

I i "I ! i i 
I * , 

, , 
L $,GTP BIBUF I i 

I i : j 
, : 1 

, I : .- . 

: ' i I I : J ' ! I Jf *' • i ' 

, 
, , I 

i , 

*: ; _i PRDCE ~LJlIE LINE 
, 

i ! i : • i I , , : I , I 

* 
,. , , , i* , , 

~ 

6-rCLIA REiD ST DRAGE I ! : ! 
I 

, 
i I * 

, I , I ! I , I I , 

* 
1 , 

, , I : i 1 : I ' , ,~ , 

IOP,LA 'DI5i DC: tj.!F'~i' 1 I 
1 

S,P,AiCiE JPO'R HIE! ,I NiP UTI O'U'TiPU r 
7t: I i I I 

I i i ! I I PAR,AiM EITE,R L,/IST'. 
G!EiTIB LOICjK GETL INE i i I IN1PU!T = (IT EIR M ,IPiJ.! Y SICA L ) i,' 

, , i j IrfiRYv1IG EiTl=I(A 51 $,W OW 'A'/'T :) 1 Mif = L: 

* , I I : Ii' ! ' i hi EI L / ST! FO'f,'(vj K/I- ITIf-/ GE TL tNE 
I I ! I I ! , I /t1ILl CiRO IN 5T RU elll IN fl~ 'I-IAN 5 INT * 

*' 
: , , , , 

• 1 i AN 1/ 'N / TI ~L /z b'll DTP ~. , 

£ciB AIDSI ' DC F I il': I 1 i S PAICE FOIR AW if VE WT CO NT R~ 
f*! I I ! ! 

. I I I I B!L1OIC,K· ! I 
• I, i JK JCP PC I i : D'SiEC T FORI 1'H EI C D'!t1 MIA'N Di 

', ... ..;, 
*' : I ! : ! ; ! : ' I piRro C E SISOR P,A R'A ME TER U/ ST. T Hil S 

* ' I I ' I , , i ' 1 ! ! i , 
-.-~-

1 ; EIX'P,AW DS WI 111 rll E SY ~BIO LIe I 

*! I : , ! . I 
I 

! AJPIO,R!E S:S['IC p'p L ~ • I I I 
! I 

I I 
I ~MJGT PB ! 

1 

. l ; : ! DISifiG T iFIOR T H'E! GE TL I 'N E 

*' , i , I I •• : I i PA RA M EliER B,L ole K . TH I 5 EX PA NiDS 
~I , I I ! i ; , , WI/ TH TUE 5 Y:MBiO LIe AD DR ESS GiT PB I 

I L [IN DI I I ; I I I i 

Figure 55. Coding Example - Two Executions of GETLINE (Part 2 of 2) 

128 TSO Guide to Writing a TMP or a CP 



Return Codes from GETLINE 

When it returns to the program that invoked it, the GETLINE service 
routine returns one of the following codes in general register 15: 

CODE 
o 
4 

8 

12 
16 

20 
24 

28 
36 

MEANING 
GETLINE has completed successfully. The line was obtained from the terminal. 
GETLINE has completed successfully. The line was returned from an 
in-storage list. 
The GET LINE function was not completed. An attention interruption occurred 
during GETLINE processing, and the user's attention routine turned on the 
completion bit in the communications ECB. 
The NOW AIT option was specified and no line was obtained. 
EOD - An attempt was made to get a line from an in-storage list but the list 
had been exhausted. 
Invalid parameters passed to the GETLINE service routine. 
A conditional GETMAIN was issued by GETLINE for input buffers and there 
was not sufficient space to satisfy the request. 
The terminal has been disconnected. 
End of data was received when a continuation condition was expected. 

PUTLINE - Putting a Line Out to the Terminal 

Use the PUTLINE macro instruction to prepare a line and write it to the 
terminal. Use PUTLINE to put out lines that do not require immediate 
response from the terminal; use PUTGET to put out lines that require 
immediate response. The types of lines which do not require response from 
the terminal are defined as data lines and informational message lines. 

The PUTLINE service routine prepares a line for output according to the 
operands you code into the list and execute forms of the PUTLINE macro 
instruction. The operands of the macro instruction indicate to the 
PUTLINE service routine the type of line being put out (data line or 
informational message line), the type of processing to be performed on the 
line (format only, second level informational message chaining, text 
insertion), and the TPUT options requested. 

This topic describes: 

• The list and execute forms of the PUTLINE macro instruction 
• The PUTLINE parameter block 
• The types and formats of output lines 
• PUTLINE message processing 
• Return codes from PUTLINE 

Coding examples are included where appropriate. 

The PUTLINE Macro Instruction - List Form 

The list form of the PUTLINE macro instruction builds and initializes a 
PUTLINE parameter block (PTPB), according to the operands you specify 
in the macro instruction. The PUTLINE parameter block indicates to the 
PUTLINE service routine which functions you want performed. Figure 56 
shows the list form of the PUTLINE macro instruction; each of the 
operands is explained following the figure. Appendix A describes the 
notation used to define macro instructions. 

Using the TSO I/O Service Routines for Tenninall/O 129 



{,SINGLE } ~ [symbol] PUTLINE [OUTPUT= (output address { , TERM } , MULTLVL {' INFOR }) 
, FORMAT , MULTLIN , DATA 

[, TERMPUT= ({ ~~~~ } {' WAlT } { , NOHOLD} {' NOBREAK }) ] 
CONTROL , NOWAlT , HOLD , BREAK IN 

,MF=L 

Figure 56. The List Fonn of the PUTLINE Macro Instruction 

OUTPUT=output address 

Indicates that an output line is to be written to the terminal. The type of 
line provided and the processing to be performed on that line by the 
PUTLINE service routine are described by the OUTPUT sublist 
operands TERM, FORMAT, SINGLE, MULTLVL, MULTLIN, INFOR 
and DATA. The default values are TERM, SINGLE, and INFOR. 
The output address differs depending upon whether the output line is an 
informational message or a data line. For DATA requests, it is the 
address of the beginning (the fullword header) of a data record to be 
written to the terminal. For informational message requests (INFOR), it 
is the address of the output line descriptor. The output line descriptor 
(OLD) describes the message to be put out, and contains the address of 
the beginning (the fullword header) of the message or messages to be 
written to the terminal by the PUTLINE service routine. 

TERM 

Write the line out to the terminal. 

FORMAT 

The output request is only to format a single message and not to put the 
message out to the terminal. The PUTLINE service routine returns the 
address of the formatted line by placing it in the third word of the 
PUTLINE parameter block. 

SINGLE 

The output line is a single line. 

MULTLVL 

The output message consists of multiple levels. INFOR must be specified. 

MULTLIN 

The output data consists of multiple lines. DATA must be specified. 

INFOR 

The output line is an informational message. 

DATA 

The output line is a data line. 

130 TSO Guide to Writing a TMP or a CP 



TERMPUT 

Specifies the TPUT options requested. PUTLINE issues a TPUT SVC to 
write the line to the terminal, this operand indicates which of the TPUT 
options you want to use. The TPUT options are EDIT, ASIS, or 
CONTROL; WAIT or NOWAIT; NOHOLD or HOLD; and NOBREAK 
or BREAKIN. The default values are EDIT, WAIT, NOHOLD, and 
NO BREAK. 

EDIT 

Specifies that in addition to minimal editing (see ASIS), the following 
TPUT functions are requested: 

a. Any trailing blanks are removed before the line is written to the 
terminal. If a blank line is sent, the terminal vertically spaces one line. 

b. Control characters are added to the end of the output line to position 
the cursor to the beginning of the next line. 

c. All terminal control characters (for example: bypass, restore, 
horizontal tab, new line) are replaced with a printable character. 
Backspace is an exception; see item d. under ASIS. 

ASIS 

Specifies that minimal editing is to be performed by TPUT as follows: 
a. The line of output is translated from EBCDIC to terminal code. 

Invalid characters are converted to a printable character to prevent 
program-caused 110 errors. This does not mean that all unprintable 
characters are eliminated. Restore, upper case, lower case, bypass, and 
bell ring, for example, might be valid but nonprinting characters at 
some terminals. (See CONTROL.) 

b. Transmission control characters are added. 
c. EBCDIC NL, placed at the end of the message, indicates to the 

TPUT SVC that the cursor is to be returned at the end of the line. 
NL is replaced with whatever is necessary for that particular terminal 
type to cause the cursor to return. This NL processing occurs only if 
you specify ASIS, and the NL is the last character in your message. 
If you specify EDIT, NL is handled as described by item c. under 
EDIT. 
H the NL is embedded in your message, it is sent to the terminal as a 
carrier return. No idle characters are added (see item f. below). This 
may cause overprinting, particularly on terminals that require a 
line-feed character to position the carrier on a new line. 

d. If you have used backspace in your output message, but the backspace 
character does not exist on the terminal type to which the message is 
being routed, TPUT attempts alternate methods to accomplish the 
backspace. 

e. Control characters are added as needed to cause the message to occur 
on several lines if the output line is longer than the terminal line size. 

f. Idle characters are sent at the end of each line to prevent typing as 
the carrier returns. 

CONTROL 

Specifies that the output line is composed of terminal control characters 
and will not print or move the carrier on the terminal. This option should 
be used for transmission of characters such as bypass, restore, or bell 
ring. 

Using the TSO I/O Service Routines for Terminal I/O 131 



WAIT 

Specifies that control will not be returned until the output line has been 
placed into a terminal output buffer. 

NOWAIT 

Specifies that control should be returned whether or not a terminal 
output buffer is available. If no buffer is available, a return code of 8 
(decimal) will be returned in register 15, to the command processor. 

NOHOLD 

Specifies that the control is to be returned to the routine that issued the 
PUTLINE macro instruction, and that routine can continue processing as 
soon as the output line has been placed on the output queue. 

HOLD 

Specifies that the routine that issued the PUTLINE macro instruction 
cannot continue its processing until this output line has been put out to 
the terminal or deleted. 

NOBREAK 

Specifies that if the terminal user has started to enter input, he is not to 
be interrupted. The output message is placed on the output queue to be 
printed after the terminal user has completed the line. 

BREAKIN 

Specifies that output has precedence over input. If the user at the 
terminal is transmitting, he is interrupted, and this output line is sent. 
Any data that was received before the interruption is kept and displayed 
at the terminal following this output line. 

MF=L 

Indicates that this is the list form of the macro instruction. 

Note: In the list form of the macro instruction, only 

PUTLINE(MF=L 

is required. The output line address is required for each issuance of the 
PUTLINE macro instruction but it may be supplied in the execute form of 
the macro instruction. 

The other operands and sublists are optional because you can supply 
them in the· execute form of the macro instruction, or they may be supplied 
by the macro expansion if you want the default values. 

The operands you specify in the list form of the PUTLINE macro 
instruction set up control information used by the PUTLINE service 
routine. This control information is passed to the PUTLINE service routine 
in the PUTLINE parameter block, a three-word parameter block built and 
initialized by the list form of the PUTLINE macro instruction. 

The PUTLINE Macro Instruction - Execute Form 

Use the execute form of the PUTLINE macro instruction to put a line or 
lines out to the terminal, to chain second level messages, and to format a 
line and return the address of the formatted line to the code that issued the 
PUTLINE macro instruction. The execute form of the PUTLINE macro 

132 TSO Guide to Writing a TMP or a CP 



[symbol] 

instruction performs the following functions: 

1. It can be used to set up the input/output parameter list (IOPL). 

2. It can be used to initialize those fields of the PUTLINE parameter 
block (PTPB) not initialized by the list form of the macro instruction, 
or to modify those fields already initialized. 

3. It passes control to the PUTLINE service routine. 

The PUTLINE service routine makes use of the IOPL and the PTPB to 
determine which of the PUTLINE functions you want performed. 

Figure 57 shows the execute form of the PUTLINE macro instruction; 
each of the operands is explained following the figure. Appendix A 
describes the notation used to define macro instructions. 

PUTLINE [PARM=parameter address] [,UPT=upt address] 

[,ECT=ect address] [,ECB=ecb address] 

[,OUTPUT=(Output address ( · TERM I rIR;~ } ,FORMAT ,MULTLVL 
, MULTLIN 

{ ,INFOR)1 ,DATA 

[.TERMPUT=«(~i~ }/.WAIT I /.NOBOLDI/·NOBREAKI~ 
CONTROL , NOWAIT ,HOLD ,BREAI<IN 

[, ENTRY= {entry addreSS}], MF= (E,{ list address } ) 
(15) (1) 

Figure 57. The Execute Fonn of the PUTLINE Macro Instruction 

P ARM = parameter address 
Specifies the address of the 3-word PUTLINE parameter block (PTPB). 
It may be the address of a list form PUTLINE macro instruction. The 
address is any address in an RX instruction, or the number of one of the 
general registers 2-12 enclosed in parentheses. This address will be 
placed into the IOPL. 

UPT = upt address 
Specifies the address of the user profile table (UPT). You may obtain 
this address from the command processor parameter list (CPPL) pointed 
to by register 1 when a command processor is attached by the terminal 
monitor program. The address may be any address valid in an RX 
instruction or it may be placed in one of the general registers 2-12 and 
the register number enclosed in parentheses. This address will be placed 
into the IOPL. 

Using the TSO I/O Service Routines for TerminalI/O 133 



ECT=ect address 
Specifies the address of the environment control table (ECT). You may 
obtain this address from the CPPL pointed to by register 1 when a 
command processor is attached by the terminal monitor program. The 
address may be any address valid in an RX instruction or it may be 
placed in one of the general registers 2-12 and the register number 
enclosed in parentheses. This address will be placed into the IOPL. 

ECB=ecb address 
Specifies the address of the event control block (ECB). You must 
provide a one-word event control block and pass its address to the 
PUTLINE service routine. This address will be placed into the IOPL. 
The address may be any address valid in an RX instruction or it may be 
placed in one of the general registers 2-12 and the register number 
enclosed in parentheses. 

OUTPUT = output address 
Indicates that an output line is provided. The type of line provided and 
the processing to be performed on that line by the PUTLINE service 
routine are described by the OUTPUT sublist operands TERM, 
FORMAT, SINGLE MULTLVL, MULTLIN, INFOR and DATA. The 
default values are TERM, SINGLE, and INFOR. 
The output address differs depending upon whether the output line is an 
informational message or a data line. For DATA requests, it is the 
address of the beginning (the fullword header) of a data record to be put 
out to the terminal. For informational message requests (INFOR), it is 
the address of the output line descriptor. The output line descriptor 
(OLD) describes the message to be put out, and contains the address of 
the beginning (the fullword header) of the message or messages to be 
written to the terminal by the PUTLINE service routine. 

TERM 

Write the line out to the terminal. 

FORMAT 

The output request is only to format a single message and not to put the 
messages out to the terminal. The PUTLINE service routine returns the 
address of the formatted line by placing it in the third word of the 
PUTLINE parameter block. 

SINGLE 

The output line is a single line. 

MULTLVL 

The output message consists of multiple levels INFOR must be specified. 

MULTLIN 

The output data consists of multiple lines DATA must be specified. 

INFOR 

The output line is an informational message. 

DATA 

The output line is a data line. 

134 TSO Glilde to Writing a TMP or a CP 



TERMPUT 
Specifies the TPUT options requested. PUTLINE issues a TPUT SVC to 
write the line to the terminal, this operand indicates which of the TPUT 
options you want to use. The TPUT options are EDIT, ASIS, or 
CONTROL; WAIT or NOWAIT; NOHOLD or HOLD; and NOBREAK 
or BREAKIN. The default values are EDIT, WAIT, NOHOLD, and 
NOBREAK. 

EDIT 
Specifies that in addition to minimal editing (see ASIS), the following 
TPUT functions are requested: 

a. Any trailing blanks are removed before the line is written to the 
terminal. If a blank line is sent, the terminal vertically spaces one line. 

b. Control characters are added to the end of the output line to position 
the cursor to the beginning of the next line. 

c. All terminal control characters (for example: bypass, restore, 
horizontal tab, new line) are replaced with a printable character. 
Backspace is an exception; see item d. under ASIS. 

ASIS 

Specifies that minimal editing is to be performed by TPUT as follows: 

a. The line of output is translated from EBCDIC to terminal code. 
Invalid characters are converted to a printable character to prevent 
program-caused I/O errors. This does not mean that all unprintable 
characters are eliminated. Restore, upper case, lower case, bypass, 
and bell ring, for example, may be valid but nonprinting characters at 
some terminals. (See CONTROL.) 

b. Transmission control characters are added. 

c. EBCDIC NL, placed at the end of the message, indicates to the 
TPUT SVC that the cursor is to be returned at the end of the line. 
NL is replaced with whatever is necessary for that particular terminal 
type to cause the cursor to return. This NL processing occurs only if 
you specify ASIS, and the NL is the last character in your message. 

If you specify EDIT, NL is handled as described in c. under EDIT. 

If the NL is embedded in your message, a semicolon is substituted for 
NL and sent to the terminal. No idle characters are added (see item 
f. below). This may cause overprinting, particularly on terminals that 
require a line-feed character to position the cursor on a new line. 

d. If you have used backspace in your output message, but the 
backspace character does not exist on the terminal type to which the 
message is being routed, the PUTLINE service routine attempts 
alternate methods to accomplish the backspace. 

e. Control characters are added as needed to cause the message to occur 
on several lines if the output line is longer than the terminal line size. 

f. Idle characters are sent at the end of each line to prevent typing as 
the carrier returns. 

Using the TSO I/O Service Routines for Terminal I/O 135 



CONTROL 

Specifies that the output line is composed of terminal control characters 
and will not display or move the cursor on the terminal. This option 
should be used for transmission of characters such as bypass, restore, or 
bell ring. 

WAIT 

Specifies that control will not be returned until the output line has been 
placed into a terminal output buffer. 

NOWAIT 

Specifies that control should be returned whether or not a terminal 
output buffer is available. If no buffer is available, a return code of 8 is 
returned in register 15. 

NOH OLD 

Specifies that control is returned to the routine that issued the PUTLINE 
macro instruction, and it can continue processing, as soon as the output 
line has been placed on the output queue. 

HOLD 

Specifies that the module that issued the PUTLINE macro instruction is 
not to resume processing until the output line has been put out to the 
terminal or deleted. 

NOBREAK 

Specifies that if the terminal user has started to enter input, he is not to 
be interrupted. The output message is placed on the output queue to be 
displayed after the terminal user has completed the line. 

BREAKIN 

Specifies that output has precedence over input. If the user at the 
terminal is transmitting, he is interrupted, and the output line is sent. 
Any data that was received before the interruption is kept and displayed 
at the terminal following the output line. 

ENTRY =entry address or (15) 

Specifies the entry point of the PUTLINE service routine. If ENTRY is 
omitted, the PUTLINE macro expansion will generate a LINK macro 
instruction to invoke the PUTLINE service routine. The address may be 
any address valid in an RX instruction or (15) if the entry point address 
has been loaded into general register 15. 

MF=E 

Indicates that this is the execute form of the PUTLINE macro 
instruction. 

list address 
(1) 
The address of the four-word input/output parameter list (IOPL). This 
may be a completed IOPL that you have built, or 4 words of declared 
storage to be filled from the PARM, UPT, ECT, and ECB operands of 
this execute form of the PUTLINE macro instruction. The address is any 
address valid in an RX instruction or (1) if the parameter list address has 
been loaded into general register 1. 

136 TSO Guide to Writing a TMP or a CP 



Note: In the execute form of the PUTLINE macro instruction only the 
following is required: 

The PARM, UPT, ECT, and ECB operands are not required if you have 
built your IOPL in your own code. 

The output line address is required for each issuance of the PUTLINE 
macro instruction, but you may supply it in the list form of the macro 
instruction. 

The other operands and sub lists are optional because you may have 
supplied them in the list form of the macro instruction or in a previous 
execute form, or because you may want to use the default values which are 
automatically supplied by the macro expansion itself. 

The ENTRY operand need not be coded in the macro instruction. If it is 
not, a LINK macro instruction will be generated by the macro expansion to 
invoke the I/O service routine. 

The operands you specify in the execute form of the PUTLINE macro 
instruction set up control information used by the PUTLINE service 
routine. You can use the PARM, UPT, ECT, and ECB operands of the 
PUTLINE macro instruction to build, complete or modify an IOPL. The 
OUTPUT and TERMPUT operands and their sublist operands initialize the 
PUTLINE parameter block. The PUTLINE parameter block is referenced 
by the PUTLINE service routine to determine which functions you want 
PUTLINE to perform. 

Building the PUTLINE Parameter Block 

When the list form of the PUTLINE macro instruction expands, it builds a 
three-word PUTLINE parameter block (PTPB). The list form of the macro 
instruction initializes the PTPB according to the operands you have coded 
in the macro instruction. The initialized block, which you may later modify 
with the execute form of the PUTLINE macro instruction, indicates to the 
PUTLINE service routine the function you want performed. 

You must supply the address of the PTPB to the execute form of the 
PUTLINE macro instruction. Since the list form of the macro instruction 
expands into a PTPB, all you need do is pass the address of the list form of 
the macro instruction to the execute form as the PARM value. 

The PUTLINE parameter block is defined by the IKJPTPB DSECT. 
Figure 58 describes the contents of the PTPB. 

Using the TSO I/O Service Routines for Tenninall/O 137 



Number of 
Bytes Field Contents or Meaning 

2 Control flags. These bits describe the output line to the PUTLINE 
service routine. 

Byte 1 
.. 0 ..... The output line is a message . 
.. 1. .... The output line is a data line . 
... 1 .... The output line is a single level or a single line . 
.... 1 ... The output is multiline . 
..... 1 .. The output is multilevel. 
.... .. 1. The output line is an informational message . 
xx ..... x Reserved bits. 
Byte 2 
.. 1. .... The format only function was requested . 
xx.x xxxx Reserved bits. 

2 TPUT options field. These bits indicate to the TPUT SVC which of 
the TPUT options you want to use. 

Byte 1 
0 ....... Always set to 0 for TPUT. 
... 0 .... WAIT processing has been requested. Control will be returned to the 

issuer of PUTLINE only after the output line has been placed into a 
terminal output buffer. 

... 1 .... NOWAIT processing has been requested. Control will be returned to 
the issuer of PUTLINE whether or not a terminal output buffer is 
available. 

.... 0 ... NOHOLD processing has been requested. The command processor 
that issued the PUTLINE can resume processing as soon as the 
output line has been placed on the output queue. 

.... 1 ... HOLD processing has been requested. The command processor that 
issued the PUTLINE is not to resume processing until the output line 
has been written to the terminal or deleted. 

..... 0 .. NOBREAK processing has been requested. The output line will be 
printed only when the terminal user is not entering a line. 

..... 1 .. BREAKIN processing has been requested. The output line is to be 
sent to the terminal immediately. If the terminal user is entering a 
line, he is to be interrupted. 

.... .. 00 EDIT processing has been requested . 

.... .. 01 ASIS processing has been requested . 

.... .. 10 CONTROL processing has been requested . 

. xx ..... Reserved . 

Byte 2 Reserved. 

4 PTPBOPUT The address of the output line descriptor (OLD) if the output line is 
a message. The address of the fullword header preceding the data if 
the output line is a single data line. The address of a forward-chain 
pointer preceding the fullword data header, if the output is multiline 
data. 

4 PTPBFLN Address of the format only line. The PUTLINE service routine places 
the address of the formatted line into this field. 

Figure 58. The PUTLINE Parameter Block 

Types and Formats of Output Lines 

There are two types of output lines processed by the PUTLINE service 
routine: 

• Data lines (DATA) 
• Message lines (INFOR) 

138 TSO Guide to Writing a TMP or a CP 



'--...-

PUTLINE 

2 bytes 

Length 

The OUTPUT sub list operands you specify in the PUTLINE macro 
instruction indicate to the PUTLINE service routine which type of line you 
want processed (DATA, INFOR), whether the output consists of one line, 
several lines, or several levels of messages (SINGLE, MULTLIN, 
MULTLVL), and whether the line is to be written to the terminal (TERM), 
or formatted only (FORMAT). 

1. Data Lines: A data line is the simplest type of output processed by the 
PUTLINE service routine. It is simply a line of text to be written to the 
terminal. PUTLINE does not format the line or process it in any way; it 
merely writes the line, as it appears, out to the terminal. There are two 
kinds of data lines, single line data and multiline data; each is handled 
differently by the PUTLINE service routine. 

Single Line Data: Single line data is one contiguous character string which 
PUTLINE places out to the terminal as one logical line. If the line of data 
you provide exceeds the terminal line length, the TPUT routine segments 
the line and puts it out as several terminal lines. PUTLINE accepts single 
line data in the format shown in Figure 59. 

OUTPUT ~ (output oddress, ~~_~_, SINGLE, DATA) _________ 

2 bytes 

Offset Doto D 
~--------------------~v~----------------------~ 

Length 

Figure 59. PUTLINE Single Line Data Fonnat 

You must precede your line of data with a 4-byte header field. The first 
two bytes contain the length of the output line, including the header; the 
second two bytes are reserved for offsets and are set to zero for data lines. 
You pass the address of the output line to the PUTLINE service routine by 
coding the beginning address of the four-byte header as the OUTPUT 
operand address in either the list or the execute form of the macro 
instruction. When the macro instruction expands, it places this data line 
address into the second word of the PUTLINE parameter block. 

Figure 60 is an example of the code that could be used to write a single 
line of data to the terminal using the PUTLINE macro instruction. Note 
that the execute form of the PUTLINE macro instruction is used in this 
example to construct the input/output parameter list, and that the 
TERMPUT operands are not coded in either the list or the execute form of 
the macro instruction; the default values will be assumed by the PUTLINE 
service routine. 

Using the TSO I/O Service Routines for Tenninall/O 139 



As an example, if you provided one primary and two secondary segments 
as shown: 

2 bytes 2 bytes 28 bytes 

321· 01 PLEASE; ENTER TO PROCESSING 

91 141 TEXT 

13'1 17'1 CONTINUE 

PUTLINE would place the first insert, TEXT, after the 13th character, and 
the second insert, CONTINUE, after the 17th character of the text field of 
the primary segment. After PUTLINE inserts the two text segments, the 
message would read: 

PLEASE ENTER TEXT TO CONTINUE PROCESSING 

The leading and trailing blanks are automatically stripped off before the 
message is written to the terminal. 

Figure 66 is an example of the code required to make use of the text 
insertion feature of the PUTLINE service routine; it uses the text segments 
shown above. 

Note that the operand INFOR, which indicates to the PUTLINE service 
routine that the text segments are to be processed as informational 
messages, requires an output line descriptor to point to the message 
segments. Only one output line descriptor (ONEOLD) is required to point 
to the 3 messages segments because the 3 segments are to be combined 
into one single level message. 

148 TSO Guide to Writing a TMP or a CP 



l* EWlr~Y f~~~~ l! fIj£! IrE ~M I 'NIA L MOW I T o~ P'R 06 ~A fW· 

* R~IG/ ST E~l OW'F CV NIT ~/ NS ITHE A IflRl£ SS O~ IT'll E CO M~ AW~ 
*: PIRloiC iES StaiR! iP~ r<A MIEJ ElR LII ST, (;C pp Li) 

* 
, 'I/:OIUiSi£ VI. EElPi/WG i i , , 

* I i AIJORiE S SA,B!/,L ITiY I I : , : ! ; i , 

1\ , , SAVE: AREA 'CiH!Ai liM! NIG i i 
, , , i I 

~, , : , I ! ; I , 
I I ! i I I , 

I 
, 

j J:A' . : , , , : 
I I LR 2 ,', ' , , 

SAVE In/·re :AD!D!RES 51 ,O,Ft TH 'E: C Pp,L!. , 
i : : I USIMG Pf!JL, 2: i i I i i : AiDJD!RJE $JSiAiB I L!I TiY IFOR 1IllE CP Pit!· , I : L I 3, "cp:p LUiPT ! ! I ! PiLiA:C!E !THiE ~DID RE. SS OF TH!E UPlT i : 

* I ' : ! ! i I 
, ! I INiTIO 11 R GI SIT ,Elf< • i I ! 

: , 
i , ! ! L I tfi ,iCiP PII IE CiT ~L ACE THE A~ D!f<. ES~ 0 T'HII= lEiC!T 

* I 
I i I I /Iftj TO 'RE 61 5r E~ • : , : : 

* I i , I .. ¥ i 

jt I ISiS VIE Irh'IEj EX EIC UTIE FO V?M Of:. TtflE IPU TL INE ~f4 c~~ lIN ST ~IU 10 IJJ 

"* 
LlE,T VIT IMIT I AIL IlllE. lTHIE 110 PL. 

,. 
"* 

I i , 
i i I I 

*' ! I P'UrTL I WE: I I P~IR~ =~ UT ~IL IK ,IU PT =( 3) II E CT =( tI) , F: CB =E BR OS, 
, 

I ! : i I otur!P!u T!:.(iOV'l /:.'0 LO, Tir:iR M, S I WG LE , I NF O~ ) , : 

: : I 
, I MFi=,(!E ,[I Dip LAD 51)1 i , 

1'* i I : , I 
, i I I I~ i ! 

I~ ! i I PV('OIC E5 Si/iNG, I I 

*: I I i : : 
I : , I I I , i I 

.* I STIO ~~ GFi ID!~C LA RA T/IO NS , 

EC ~A 1)5 DCi F' ~' SPA E FOiR T~E IE V IEWT CO 'NT VlL 
~ I i RL OC K .-
TO ipL ADS DCI ~F ' 111' SP ACE ~O~ hi E lIN IfJUT OU T'P UrIT 

Figure 66. Coding Example· PUTLINE Text Insertion (Partt of 2) 

Using the TSO I/O Senice Routines for Terminal I/O t49 



* I Ip!A'RIA VIt1E TER LI ST. I 

PU B'LK PU Till E , F=IL , , 
TWIEl LI S,T F O'R ~l OF TiHlE IPUIT:L IW:EI I 

* ; 
I i ~IAC RO IW ST RU CiTII OW:;, :/ T EXP N'DIS 

* 
I i I lIN TO SPA CE F OiR! A, PTiP . i 1 : I ! 

0 EO LD /Ie I IJ. ' 3' , IW I C TE T'H RE~i TE lXlT SE GME NITSi· 
IJ)C I ' l4( FI 5T SEIG) AD ORE S5 OF ,THle FII RISIT 'TEIXiT ' I 

i I SE!6 E T. I I, I I I I I • I 

C . , 
I , A (IS E CS EG , ADDIR E 5S OF ITiHE S£ C O!fv ) ! TIEiX T 

I~ 
J ' 

! ' SEG 1\1E T'· I ! I I , 
DC ! ; AI(IT J./I RDiSEIG )1 . AVID V<IE 55, OF THIEl r ./ 'RiD i7 EXT ! 

I 
, , I I ; SE!G ~E i~· I , I I ! I 

II~S ITS E.G DC I 1/'13 2' ! LENGT OF TH E iF 1~ISiT SiEG~E 'NIT 

* I ! ! I ' ! : , I NiCiLiU D,/'N G TiJ.IBH E:AiDIER • ! ' ! i 

~IC I ~ 'IOJ[' O~~lSIE 71 IG 'PRI/ME ''',1'"1,-10, ~WI71 1151 
1 ~ILIWA!Y ~l~ LtlR IU. 

D'C II"L28' 1~,PlLEA SE EN fER T Oi PR,O CESSI 16ti' , . , 
I 

, 
, 

*1 i i i : , 
: . : PRIMA R:Y'SE GMENT. I ' 

--+-

SEGIl' S',sCS:E,G! ! DC , Wt 9 ' LENG T /-lOF Tii E SECOND ENT 
*1 ' i • I /~N-C:[U riltlG- THE J.I EADER. 

I , I ' . DC. IfI'f'if' OFF S-E TINT b FIR. STSE GMENT AT 
*: ' i ! . I WHICH r:sIco lNo SE GMENT 1ST o BE *; ! I : I ' I I i IN.SiER 17E~. , . : , 

" : 
C , CL5 'IT EIX r,t;j' TE[Xir OF: 1st co !NDI SEG ~IE ir.' . i ~ I 

WI RD SE~ DC : I Wi' 1 3 ' 'EWIG TV; '0 TIH E! IT IJIJ ID SEG~E T 
, 

, I 

* 
, 

I I ! ' I I IlIJiC L U Of IG IT1H E !H E~ D~ ~ .1 ! I i ! : 

C , W' 1 7 I ! OFIFI$ Ell I T ITV11E iF IR SI~SEiG £W:T 

* i I I AF TEf< I C HI E ITIH IIR D SI8G ENl7 

* IS 'TlO B I Sf If<T AD!. I I 
OIC CL 9' CO IN Et' EX:7 OF: TJ.I IRn S E1G ~£ ItlJ· I 

J J,r ~ II C nil I" ~Ir T; Ilf-l I ~ I~XIP IDs w!'r 
* F SlY LI'C 4D 'f ,.. ,)~ r~ 'f;1! • 

If 10 

Figure 66. Coding Example - PUTLINE Text Insertion (Part 2 of 2) 

Using the Format Only Function: You can also use the PUTLINE service 
routine to format a message but not write it at the terminal. To do this, 
code the FORMAT operand in the PUTLINE macro instruction and pass 
PUTLINE the same message segment structure required for the text 
insertion function. The PUTLINE service routine performs text insertion if 
requested and places the finished message in subpool 1, which is not 
shared. It then places the address of the formatted line into the third word 
of the PUTLINE parameter block. The storage occupied by the formatted 
message belongs to your program and, if space is a consideration, must be 
freed by it. The returned formatted line is in the variable-length record 
format; that is, it is preceded by a four-byte header. You can use the first 
two bytes of this header to determine the length of the returned message, 
and later, to free the real storage occupied by the message with the R form 
of the FREEMAIN macro instruction. 

150 TSO Guide to Writing a TMP or a CP 



L 

PUTLINE 

2 bytes 

Length 

The OUTPUT sublist operands you specify in the PUTLINE macro 
instruction indicate to the PUTLINE service routine which type of line you 
want processed (DATA, INFOR), whether the output consists of one line, 
several lines, or several levels of messages (SINGLE, MULTLIN, 
MULTLVL), and whether the line is to be written to the terminal (TERM), 
or formatted only (FORMAT). 

1. Data Li1ll!S: A data line is the simplest type of output processed by the 
PUTLINE service routine. It is simply a line of text to be written to the 
terminal. PUTLINE does not format the line or process it in any way; it 
merely writes the line, as it appears, out to the terminal. There are two 
kinds of data lines, single line data and multiline data; each is handled 
differently by the PUTLINE service routine. 

Single Line Data: Single line data is one contiguous character string which 
PUTLINE places out to the terminal as one logical line. If the line of data 
you provide exceeds the terminal line length, the TPUT routine segments 
the line and puts it out as several terminal lines. PUTLINE accepts single 
line data in the format shown in Figure 59. 

OUTPUT = (output oddress, ~ _____ , SINGLE, DATA) ________ 

2 bytes 

Offset Data D 
~ ____________________ ~v~ ______________________ ~ 

Length 

Figure 59. PUTLINE Single Line Data Fonnat 

You must precede your line of data with a 4-byte header field. The first 
two bytes contain the length of the output line, including the header; the 
second two bytes are reserved for offsets and are set to zero for data lines. 
You pass the address of the output line to the PUTLINE servi~e routine by 
coding the beginning address of the four-byte header as the OUTPUT 
operand address in either the list or the execute form of the macro 
instruction. When the macro instruction expands, it places this data line 
address into the second word of the PUTLINE parameter block. 

Figure 60 is an example of the code that could be used to write a single 
line of data to the terminal using the PUTLINE macro instruction. Note 
that the execute form of the PUTLINE macro instruction is used in this 
example to construct the input/output parameter list, and that the 
TERMPUT operands are not coded in either the list or the execute form of 
the macro instruction; the default values will be assumed by the PUTLINE 
service routine. 

Using the TSO I/O Service Routines for Terminal I/O 139 



~ 
, 

EN TRY FR O~I 17 HE ITE RM IN AL Mia N I TOR PR OGR AM, I 11 
* RE 6 I S TER DiN E CO NT A I S TNE. AD DRESS OF T1I-I E CO MM AND r i 

* PR oc E S5 OR Ip AR AM lET ER L/ S TI I( CP PLi) • ! J ; I I 
! 

* HO USE I~E EP I N~ I I 

* 
, 

AD DRIE S SIA 13 I L I TY I i I 
, 

I I ' ! ! ' : 
i 

* SA VEl A R1E,A Ie H A 17J I NI6 ! i I 
I I" 

*' I 
1 

I , 
! ' , 

, . , ! i i I i ' I , 
: ~ 

LR 2,.1 ! ! S:A,ViE ri-liE' !A DO'/? £::5 51 !OIF T8!EIC p,pILi. 
Ui5!1 iNG CPPIL:, 2: I ! AD.DRIE SS!AiBi I L 11 Y FO'R! T 1-1£ ,cp piL'. 

I : , L! 3,!C:P'P LUPT P L1rCE 'TME' A D.DRE 5 S' ,OF TJIE UPT 
~I : : ! I I : I 1 I i : ! 

, ! , I NiTO: Ai REIG I STE,R .: : i 
, I I 

I 
, I 

i ! I : , L If." CP PL E1e\TI i PLACE THE A DOiRIE 55: ,O,F TI-I'l:: E:C! 

* : I I I : I IN TO A! R!EIG / S,TE:R , i ' ! I I 
I i I I , 

* 
! II , I I 

i ; i : i ! IT· I 
, 

ili I I I I I I , , I , 

Fio R~ Iplu MIAiC~R 0 liS SUiE THE if XEC UTE !OFI ,T HE. TL INE I iN 5 TIR1UC 7 I a NI.I 

* i UiS E II T TIOI .~ R liT E A SI NG L,EI 1Ll NE !OF DAlr A TIOI TI-IE 'TE RiM I N,A L • : I 

it liN C/ID EN TIA LL Y ,1 USE liT TO IBIU I LD Tf.! E 1/0 PL.' : ! I 
, 

I i I I PjUIT L I NEI I AR~ ::: PUiTB'L Ole K, U PIT =I( 3),IEICiT :(11/-'), 1 
i . 1 

I r 
, 

! E:CiB,= ECIB AID 5 ,!Q1UITP UT = (IT Eix rlAiD S , : TiEP M ,!S liN GILE , :D A'T1A);. 
I ! I 

I ! i : ~FI= (!E ,iI OPiL AiD'S') : I . i ! ! ! I I I ! 
I 

I i 
)f I TiH IS EX EC UIT E ,FrOIRIM IOFI iT HiE !p'U TILl I 'NfE ~MA'C R 0 ./N,S TRU CT !,O'N DOiE S I 

* iNiOT S PE C!I FiY TIJ-IE IT E,R. MP U T[ iolplE RiAN D S; I Ti WII LIL U:SiE TH EI DE FA UL17 
~ VA LU f. s. i : I . I ! 1 : I ! i I 
*1 I I ! I ;- i : 

, I , 
i 

I 
!* I I , I 

~, PR!OiCE SSI/'NG I I : , . i I ! , I~ I , 

* 
, • I i ! I I ! I I I I I~ 

f*f I STOIR'A GE, iDlE C LAIR AT I 0 MS I ! i I I 
I , 

i I I 

~l i 1 I : , ! I 
I ! ! ! I I I i l~ ! 

Ee BADS OSi F;'01 ' i 1 , SPA elE FOR TUIE IE VEiN T C OrNiTR OL 

* I : 
I . 

! ! I BLIOIC k ; , 
I I I I 

pu. aiL OK p ulriC I NEI : ; 1 IMfF =IL Lil,SiT FO!RI~ OF! iT1H E 'PU TUINE IMA eRiO 
ll/ I ! I ' : 

r : , i INS TR UC TI ON .1 TH I S EX PAW DS I NTIO 

* I 
, 

! ! A PU TL I NE IPARA ME TER BL OCiK. 
EX TA DS DC ' 2 8 ' LEN G T H OF THE au TP UT LI NI£ • 

DC I HI , 
I I RES ER VE D. 

DC L1 {, 1 ~ S IN GLELII NE 'DA TA' I 

10 PL ADS ~C ifF I e I I SP ACE FOR THE I N PU T OU TplUT 

* I PA RA ME TER LI ST. I 
kJ CP PL I DSE CT FOR TI-IE CP PL I 

I 

lElA I r 
Figure 60. Coding Example - PUTLINE Single Line Data 

Multiline Data: Multiline data is a chain of single lines. Each line of data is 
processed by the PUTUNE service routine exactly as if it were single line 
data. Each element of the chain, however, begins a new line to the 
terminal. By specifying multiline data (MUL TUN) in the PUTLINE macro 
instruction, you can put out several variable length, non-contiguous lines at 
the terminal with one execution of the macro instruction. PUTLINE accepts 
multiline data in a format similar to that of single line data except that each 
line is prefaced with a fullword forward chain pointer. Figure 61 shows the 
format of PUTUNE multiline data. 

140 TSO Guide to Writing a TMP or a CP 



PUTLINE OUTPUT = (output address, _____ , MULTLlN, DATA) __ ____ 

00000000 

y 

Length 

Data 

Data 

Data 

J 

Figure 61. PUTLINE Multiline Data Format 

Each of the forward-chain pointers points to the next data line to be 
written to the terminal. The forward-chain pointer in the last data line 
contains zeros. In the case of multiline data, you pass the address of the 
output line to the PUTLINE service routine by coding the beginning 
address of the first forward-chain pointer as the OUTPUT operand address 
in either the list or the execute form of the macro instruction. When the 
macro instruction expands, it will place this multiline data address into the 
second word of the PUTLINE parameter block. 

Figure 62 is an example of the code required to write multiple lines of 
data to the terminal using the PUTLINE macro instruction. Note that the 
programmer has built his own IOPL rather than build it with the execute 
form of the PUTLINE macro instruction. Note also the use of the IOPL 
and CPPL DSECTs (generated by the IKJIOPL and IKJCPPL macro 
instructions). These provide an easy method of accessing the fields within 
the IOPL and the CPPL, and they protect your code from changes made to 
the control blocks. 

Using the TSO I/O Service Routines for Terminal I/O 141 



~ EN Til. Y FIR O~ T';i E TE ~IM IN AL IMO NI TO R PR 06 RA M; 
~ RE 61 57 ER ON E CO NT AI NS hi E AD DR ES S OF THE. CO 1M At 'AND 
* PR DC ES SO R PA RA ME TE R LI 57 (C PP L) • 
jf iJ10 US EK. EE PI NG \ 

~ AD DR ES SA BI L I TY 
* SA VE AR fA CH A I NI NG 
;If * LR 2 , 1 SA VE TH E AD DR ESS OF THE CP PL. 

i US ',N'G CPPL , 2! . , AiDiDl?,E SIS!A!81/ L I ny FIO,R· T H£ CP PIL • 
L 3 CP PLU PT piLA CE THE AD OR ESS OF THE UPT 

~ I IN TO A RE G liS TE R. 
L lj.l, CP PL ECT PL ~ CE THE EC T AD DR ES5 IN ITO A 

* RE 61 5T ER. 
LA 5 , EC BA DS PL ACE THE AD DR ESS OF THE ECB 

* IN TO A RE 61 51 ER. 

* * ~ Sf T UP AD DR ES SA B I LI TY FOR TIHE IN PUT OU TP UT PA RA ME TER 
~ LI 5T DS EC T. 

LA 7, 10 P ADS 
US ING 10 PL , 7 

* * * FI LL IN THE 10 PL EX CE PT FO R THE PT PB AD DR ES S . 
5T 3 , 10 PL UPT 
S7 1/-, 10 PL Eer 
5T 5, IO PL EeB 

* Jt 

* IS SUE T'HE EX EC UT E FO RM OF TH E PU TL INE MA eRO I N 5T RU CT ION 

* IPU TL tNE PA RM =P UT BL 01<, 

FIgure 62. Coding Example - PUTLINE Multiline Data (Part 1 of 2) 

141 TSO Guide to Writing a TMP or a CP 



OUTPUT=(T EX TAD1S ,M UL TL / N , D AT A) ,MF .. ( E, IO PL AD S) 

* 1 ~ 

* PR OC ES S / NG 

* * * 5T OR AGE DE CL AR AT I 0 NS 
X * EC BA DS DS F 
10 PL ADS DC 'IF I IiJ 0 

TE XT ADS DC A( TE XT 2 ) FOR ARD PO / N TER TO NE XT LI NE. 
DC H' ll8 ' LE NG TH OF F/ RI5 T L / NE. 
DC H' I RE SE RV EO. j 

DC CL 16 'M UL T/ LI NE DA TA 1 0 I 
/I , ; N 
PU T8 LOK PU TL , N E ~F =L L I ST F01RM OF ITII-II£ PUtT L liNE MAIC:R 

* I j , IN STR UCiT / 0 Ni. I ! , : ! I 1 : 

I 
, ! ! I i I i I * * i I 

DC M~!)I i , END OF 'CJ.l!A / N, 'IN 011 :CA!7 O:~., I ' 

I ' TE XTZ ~ 
, , , 

DC J./ '28!' ! ' ! I I , L.E N!G HI OF S E1CONO IL'/N E .. , I ! i I 

DC H" " 1 Ii! R,f S.E R VIED ' I f ; I 
I i i i 

DC CL 16 'M U L T / L'/ ME DA TA 2 " I : 1 i ! ; i ! 

* ! I I I I ! ! ' 1* 
11K JC PPL DS ECT FOR THE CO MA NO 

* PR OC ES SOR PA RA ME TER LI S T ; HI I S 

* EX PA NOS WI HI TH E SY 1MB OL I C NA ME 

* CP PL. 
IKJ 10 PL OS fer FOR THE /N PUT OU TP UT 

* PA RA ME TER L I ST. TH IS EX PA NDS 

* WI TH 1HIE SY MB OL I C NA ~E lIo PL. 
END 

Figure 62. Coding Example - PUTLlNE Multiline Data (Part 2 of 2) 

2. Message Lines: If you code INFOR in the PUTLINE macro instruction, 
the PUTLINE service routine writes the information you supply as an 
informational message and provides additional functions not applicable to 
data lines. An informational message is a line of output from the program 
in control to the user at the terminal. It is used solely to pass output to the 
terminal; no input from the terminal is required after an informational 
message. 

There are two types of informational messages processed by the 
PUTLINE service routine: 

• Single level messages (SINGLE) 
• Multil~vel message (MUL TL VL) 

Single Level Messages: A single level message is composed of one or more 
message segments to be formatted and written to the terminal with one 
execution of the PUTLINE macro instruction. 

Multilevel Messages: Multilevel messages are composed of one or more 
message segments to be formatted and written to the terminal, and one or 
more message segments to be formatted and placed on an internal chain in 
shared subpool 78. This internal chain can either be put out to the terminal 
or purged by a second execution of the PUTLINE macro instruction. 

Using the TSO I/O Service Routines for Terminal I/O 143 



Passing the Message Lines to PUTLINE: You must build each of the 
message segments to be processed by the PUTLINE service routine as if it 
were a line of single line data. The segment must be preceded by a 
four-byte header field -- the first two bytes containing the length of the 
segment, including the header, and the second two bytes containing zeros or 
an offset value if you use the text insertion facility. See "Using the 
PUTLINE Text Insertion Function" for a discussion of offset values. This 
message line format is required whether the message is a single level 
message or a multilevel message. 

Because of the additional operations performed on message lines, 
however, you must provide the PUTLINE service routine with a description 
of the line or lines that are to be processed. This is done with an output 
line descriptor (OLD). 

There are two types of output line descriptors, depending on whether the 
messages are single level or multilevel. 

The OLD required for a single level message is a variable-length control 
block which begins with a fullword value representing the number of 
segments in the message, followed by fullword pointers to each of the 
segments. 

The format of the OLD for multilevel messages varies from that required 
for single level messages in only one respect. You must preface the OLD 
with a fullword forward-chain pointer. This chain pointer points to another 
output line descriptor or contains zero to indicate that it is the last OLD on 
the chain. Figure 63 shows the format of the output line descriptor. 

Number of 
Bytes Field Contents or Meaning 

4 none The address of the next OLD, or zero if this is 
the last one on the chain. This field is present 
only if the message pointed to is a multilevel 
message. 

4 none The number of message segments pointed to 
by this OLD. 

4 none The address of the first message segment. 

4 none The address of the next message segment. 

Figure 63. The Output Line Descriptor 

You must build the output line descriptor and pass its address to the 
PUTLINE service routine as the OUTPUT operand address in either the list 
or the execute form of the macro instruction. When the macro instruction 
expands, it places the address of the output line descriptor into the second 
word of the PUTLINE parameter block. 

Figure 64 shows the two control block structures possible when 
processing a message line with PUTLINE. Note that the second word of 
the PUTLINE parameter block points to an output line descriptor rather 
than directly to the message line itself. 

144 TSO Guide to Writing a TMP or a CP 



L 

Terminal 
Monitor 
Program ATTACH 

Single Level Messages 

Mu I t i-Level Messages 

Command 
Processor 

LINK 

I 
I 
I 
I 

PUTLINE 
Service 
Routine 

Reg 11 • I 

I 

From PTPS 

IOPL 

.. 
PTPB 

.. 

/oLD 
Number 

+ Segment 1 Lenath I Offset I Text J 
J I I I + Segment 2 

+ Segment n ~r----r----'r------..., 

+ Next OLD 

Number 

+ Segment 1 

+ Segment 2 

I + Segment n ~r--'----r-----' 
00000000 

Number 

+ Segment 1 

+ Segment 2 

I + Segment n 

Figure 64. Control Block Structures for PUTLINE Messages 

Using the TSO I/O Service Routines for Tenninall/O 145 



PUTLINE Message Line Processing 

In addition to writing a message out to the terminal, the PUTLINE service 
routine provides the following additional functions for message line 
(INFOR) processing: 

• Message identification stripping 
• Text insertion 
• Formatting only 
• Second level informational chaining 

Figure 65 shows the distribution of these PUTLINE service routine 
functions over the two output message types. 

Message Types 

Functions Single Level Multilevel 

Message ID Stripping x x 

Text Insertion x x 

Formatting Only x 

Second Level Informational Chaining x 

Figure 65. PllTLINE Functions and Message Types 

Stripping Message Identifiers: The user at the terminal indicates whether or 
not he wants message identifiers displayed at the terminal. He does this 
with the PROFILE command. (See TSO Command Language Reference 
and TSO Terminal User's Guide). If the terminal user has indicated that he 
does not want message identifiers displayed, the PUTLINE service routine 
strips them off the message before writing the message to the terminal. 

A message identifier must be a variable-length character string, 
containing no leading or embedded blanks, must not exceed a maximum 
length of 255 characters, and must be terminated by a blank. 

Messages without message identifiers must begin with a blank. A 
message beginning with a blank is handled by the PUTLINE service routine 
as a message that does not require message identifier stripping, regardless of 
what the user at the terminal has requested. If you do not provide a 
message identifier, and do not begin your message with a blank, the 
beginning of your message up to the first blank will be stripped off by the 
PUT LINE service routine if message identifier stripping is requested from 
the terminal. If the message segment does not contain at least one blank, 
PUTLINE will return a code of 12 (invalid parameters) in register 15, even 
if message ID stripping is not requested from the terminal. 

The following examples show the effects of the PUTLINE message 
identifier stripping function. 

146 TSO Guide to Writing a TMP or a CP 



If you provide message identifiers on your messages and the terminal 
user does not request message ID stripping, your message will appear at the 
terminal exactly as it appears here: 

MESSAGE0010 THIS IS A MESSAGE. 

If the user at the terminal requests message ID stripping, the message 
will appear as: 

THIS IS A MESSAGE. 

If you do not want to use message identifiers on your output messages, 
begin your message with a blank. A message beginning with a blank is 
unaffected by a terminal user's request for message ID stripping and will 
appear as you wrote it, minus the blank. 

Using the PUTLINE Text Insertion Function: The text insertion function of 
the PUTLINE service routine allows you to build or modify messages at the 
time you put them out to the terminal. With text insertion you can respond 
to different output message requirements with one basic message (the 
primary segment). You can insert text into this primary segment or add text 
to it, and thereby build an output message to meet the current processing 
situation. 

To use text insertion you pass your messages to the PUTLINE service 
routine as a variable number of text segments -- from 1 to 255 segments 
are permissible. Each segment may contain from 0 to 255 characters, 
however, the total number of characters in all the segments must not 
exceed 256. You must precede each of these text segments with a four-byte 
header: the first two bytes containing the length of the message, including 
the header, and the second two bytes containing an offset value. The offset 
value in the primary segme!lt must be zero. The offset in any secondary 
segments may be from zero to the length of the primary segment's text 
field. An offset of zero in a secondary segment implies that the segment is 
to be placed before the primary segment. An offset that is equal to the 
length of the primary segment's text field implies that the secondary 
segment is to be placed after the primary segment. An offset of n, where n 
represents a value greater than zero but less than the total length of the 
primary segment, implies that the segment is to be inserted after the nth 
byte of the primary segment. PUTLINE places the secondary segment after 
that character, completes the message, and puts it out to the terminal. 

If you specify an offset in a secondary segment, greater than the length 
of the primary segment, PUTLINE cannot handle the request and returns 
an error code of 12 (invalid parameters) in register 15. If the secondary 
segments do not appear in the OLD with their offsets in ascending order, 
PUTLINE returns an error code of 12 (invalid parameters) in register 15. 

I( you provide more than one secondary segment to be inserted into a 
primary segment, the offset fields on each of the secondary segments must 
indicate the position within the original primary segment at which you want 
them to appear. PUTLINE determines the points of insertion by counting 
the characters of the original primary segment only. 

Using the TSO I/O Service Routines for Terminal I/O 147 



As an example, if you provided one primary and two secondary segments 
as shown: 

2 bytes 2 bytes 28 bytes 

321. 0 1 PLEASE ENTER TO PROCESSING 

PUTLINE would place the first insert, TEXT, after the 13th character, and 
the second insert, CONTINUE, after the 17th character of the text field of 
the primary segment. After PUTLINE inserts the two text segments, the 
message would read: 

PLEASE ENTER TEXT TO CONTINUE PROCESSING 

The leading and trailing blanks are automatically stripped off before the 
message is written to the terminal. 

Figure 66 is an example of the code required to make use of the text 
insertion feature of the PUTLINE service routine; it uses the text segments 
shown above. 

Note that the operand INFOR, which indicates to the PUTLINE service 
routine that the text segments are to be processed as informational 
messages, requires an output line descriptor to point to the message 
segments. Only one output line descriptor (ONEOLD) is required to point 
to the 3 messages segments because the 3 segments are to be combined 
into one single level message. 

148 TSO Guide to Writing a TMP or a CP 



One difference between format only processing and text insertion 
processing is that format only processing can be used only on single level 
messages. You cannot use the format only feature to format multilevel 
messages. You can however, use the second level informational chaining 
function of PUTLINE to format second level messages and place them on 
an internal chain. 

Building a Second Level Informational Chain: PUTLINE can accept two 
levels of informational messages at each execution of the service routine. It 
formats the first level message and puts it out to the terminal. The second 
level message is formatted and a copy of it is placed on an internal chain in 
shared subpool 78. This internal chain, the second level informational chain, 
is maintained by the I/O service routines for the duration of one command 
or subcommand processor. You can use the PUTLlNE service routine to 
purge this chain or to put it out to the terminal in its entirety. 

To purge the chain without putting it out to the terminal, you must turn 
on the high order bit in the first byte (ECTMSGF) of the third word of the 
environment control table (ECT). The ECT is pointed to by the second 
word of the input/output parameter list, and may be mapped by the 
IKJECT DSECT. The next time any chaining or unchaining is requested 
with PUTLINE or PUTGET, the second level informational chain will be 
eliminated. 

To put the entire chain out to the terminal, use the PUTLINE macro 
instruction and place a zero address where the output line address is 
normally required. This will cause the PUTLINE service routine to write the 
chain to the terminal and eliminate the internal chain. You will normally use 
this procedure only if your attention exit routine is using the PUTLINE 
macro instruction to process a question mark entered from the terminal. 

Figure 67 is an example of the code required to build a second level 
informational chain. It· executes the PUTLINE service routine by using two 
different execute form macro instructions to modify the PUTLINE 
parameter block built by the list form of the PUTLINE macro instruction. 

The code shown puts two messages out to the terminal and places two 
second level messages on an internal chain. It then executes a third execute 
form of the PUTLINE macro instruction with a zero OUTPUT address to 
put the second level chain out to the terminal. 

Note that the offset value for the primary message segment must always 
be zero, and when placing second level messages on an internal chain, the 
offset value for the second level message must also be zero. Note also that 
you do not place a message identifier on a second level message. 

Using the TSO I/O Senice Routines for Tenninall/O 151 



if .€W ~Y ~~ OM ITi't~ rvJI N\A ~ -1.10 -1/1 TO~ p~ 0 I.., 
fYI • 

if iCE> Ifs T~ K' 0-11 ~ Cp ,yT !-II vSi IT It' Ii I", S5 ~~ I7W ~ Lr A iI'l. 

7f ~ oC ~S ~p f f'~ ~~.If? ~~ LI lsT ( pit ). 

I*' flO (/5 ,f"ft ~~ ~I 11~ 
*' "'~ (),f Eis iSA 18 1 Lil Tly 

~ SAlv !-I~ ~f-'I C~ -41 ~I ~G 

'* I ,If 

L~ Z f 51t y~ 17h' ~ ~~ ~~ lEis s ~~ 17~ PP ~ . 
(lfs I;,,y <::, CP IPL I, Z I,", ~15 Sf.4 ~I ~ I !TIY ~O ~ ~W~ p[l • 
L r3 CP IPL 1)1;:7 10 1 f'Jc... ~ T'fI ~ f4 1..,ln '0: S ~* 17~~ ~17 

If I 111 Tc; ~ ~~ k;1; ~IT ~~ . 
I L 'rt, Ie;; IPL Elc, P ~ ~ T~ ~ f41"'~ ts ~~ ~~~ Ere 17 

7f I , I~ Iro ~ f\"~ ~v ~lr F~' 
,Jf , 

1~t.$?D= 
~ 

If ~Isv~ u~E18~ ~~~~ 'e/Ie IT W~ ~IO ~ 1r1t~ ~f4 ~ I:J /W 1'~~~7 /~ . 
~ '11'(11/~' I ;O~ :r ~'(~ P~l~ ~(iT~tS 14! ,,16" L<;~f4G~ ITO I't~ ! , 

-'fl I lTiF"re~ ..,~P-+-f4 ~crjO~~ ci's 11 .. 1 ~F ~b!Ya ~t:lv~i. ¥t=,SiS -4~F I" 111 T¥k= 
*' : IC~I/N ~ I ! I ~ . ,! I ! 

! , I : : I I 
I: I I : , I , i I Ii' I I i 

ttft~ll-
I •• i , , 

- ': : 
I I , : I I I I i ' I 1 ' I ~ 

I ' i p,vr~ il f'vs! ! ~f4rR~= P~U:"'r8f_ ~...l.-'-- £!rOT =/3J .:;q;r1 .. il ~vl, £c 8~~IC'A I Ill.::: 

I ..... IV Ti;'/k:? ~Oil 17'£ ~~,fu ~~T LI/I L 'I IVF ~Ri) 
, 

~ = ( ~ If? p~ A 1.0 l51J ! 
I*, -I(-

* 
I IL' 55 IfvG ~p fl-F 

I~ I fs',v tE 4 s~ cit.:: N:t:l ~~ ~(' 1('17 ~ I .. ~f'I'1 b~ IT~~ PI) 7t- I Vi!: ~4~ 

"* 1ft! IrR ~, c 71 ~f'\I. lIT ~~ B~ Irh' ~ Isfi ~~ .l~ ~~ 1'41'\1 ~ ~7 P8 14~ T.yl= 
~ ;; Elv I~ vS ~~ ~c ITe ~o ~~. 1:7 ~I v!~ 5 r4 4'E'~ 1/7 vl7 ~v, y~ 

* ~ <;c ~I 7/::1 ~ f'I{/ {/~ t=s S ~fS ~~k: ~ f'lTP~ T- c::~ r!£f'4 ,yir1, 'T WI ~ ~Ic It-'J /rll\l 

*" o~ T ~~ ,,&1/ T~ I~ tEo 
C?~ c~ o '/ fYiSlr ~v CiT I" 4' "'~ 17 GS It: -11 ~ ~~ Ss .i~~ 7 

~ TW € ITlt= R~ IW ~L ~WD Wf4 IV ~ ~W olT WE ~. 
~ ~ 

Pv lr~ vfv~ ~'" ~~ ~p ~IT ~~ f'<;IJ !C;lu TP I/Ir =I( It:ll ~12 ~v, ITIL v I "'p ~ I, 
I ~~ z ( ~ IV, 10/ 4'{JrSJ I 

* 
, 

1--
oJ( P'f? ~c E~ ~I rv G 

, 

* 
, 

~~ 
1---

liE ~€ ~fvp ~~ I/I~~ ~~~,IS ,i/$ ~ c~ f1 v, IT~ ~ TO / T/: T ~ TW C IT~ ~11 ~~L 
-I(. ~ll TI-J Ffv D T~c ~~ 111/" lIS fs~ l: IT..,. ~ ~~ ~~ 17E ~o, f'.~ '7:.y ~ 
~ IP'f!T I'll ~ -1.1 A Lo .(:IF-' liV fSr. ~~ ~Ir IP, rv ~I 71-'1 ~ i?~ ~~ ~p ~~ €SS ~~. inf~ 

1* ()~ ~I rV~ ~~ o~ ~f' s lis I,., ~~ £. {/ ~ 

f,\c !if 
Pv 1* IV~ io~ ~~ "IP ~T '8t.. /(, ()(/ ~ j,ov lr. ~ ~~ ·11 e i"b Lit 

"* ~ 
*' P,f ~c ~5 lSI Nt; 

f.¥ 
,If 57 1111-" I.e "iE c~ ~~ ~IT I" !\IS 

Figure 67. Coding Example - PUTLINE Second Level Infonnational Chaining (Part 1 of 2) 

152 TSO Guide to Writing a TMP or a CP 



II).:? ~~~ is c \Il~ 'jB I 
1 51' ~Ic ~ ~Ioif Ir.t( E Ifv' ItlT bT T 

* I I'~ tff4 ~Gj7 ~~ I~ ~. 
lP~ T II PVI; I Itt fyr"L Title LIS lr ~~. ~~ IO~ 1,..1#6' P~~ ltV 
,l(- I I '114 ~I(O 1ft! slr. r..tC 17/ ~11t. I Ie ~ 
,If i 

, 

IN ITlt ::il' ~~~ ~~If I"~ P~ . 
EC I.BA ~s f}C ~ I ftJ~ , ..51' ~ ~ I"o~ ~[.f ~v r.-~T Irprv k" '-
,If 

1 
I 1 8/ 0 ~. 

leI.. f I?ci ~1(fiI i~IT 4~ I" ) 10 ~o iP'o It 'v I ... rr ~~ ~~ k'IT Ie::: Ii. 
C 

I lr I 1 ' 0111 L.y Io"'~ siC' IT. r"l 
.!)Ic ; ~Il ~te SS1 G~ t') III) ~~ ~I.s S o~ T~ ~17 ~t:>'jc.I f\.-/. 

W~ r'/ v ~k I"i ~) , 
1'1/ [01 ~11 T~ ~ lsV- Ic~~ ~ Ic~ 1111 

C ~ , 1 ' c7 . ..y it:.}' ~~ ~ lc:;.ic= 
I"'" r. 

c; IA ~ES S~G iEiZ U' i II.!)'/) ~r= 15~ o~ ~/= c~ 
I " 

~v ~ ~ IT~ ~17 . 
fi,M ~IGi~f ~d f1 1,,3 '2 I ! 1 .~~G,T H 0 11"" ~~ f$fU6 N.T 1[11 'L~ I G 

* i ' I I , I ' ! ; 
I i ! : ~ I 

I 1 W~r1pc ~.I 1 I i I 
I 1 ""el I I v,I/~!'1 I I I ' 1 o~d~ 1Tt_k:' ~ ~!f I~ ,sl€ .~~ ~r, fI.-.'/. ~lr 1 , 

* ii, i ' I i • I : , ' : I 
'~ ~C' r'£ ~O'. ! Iii. ii' ! I 

: i 1 /De, , Ir L :ZS ' ~Y'MSG f pt.e ~S:£ IE \-V7"C'~ ~;SE~ ~~.,' i ' : I , 
~l Ii, ~ i i ! : ! ' 

I IPI)~ST '- I=IV~ 1..: MI€:S 1sJ.! G~i. I 
L-.- f-~--

fy~is s A!Gle!l iPlc ;1 W'.3b ' jt.;:.,vG!7V, ~~ ~~~41tc ~n I/V L-:l ~Joil fv~ I 

*' i I 

• 

I ' ! : , ! ; I7'E~ pc ~. I I i i 

i I I jt;!C ~ '~'~ I ! I ~ i ! ~ sF'17 ~W!s po lB/!;1 ~~ fE' O. 

C lriLl3Z' SViS ~ la' I", I~ It! ~If' 1""'0 ~ i4~ c!O~ filI7 III'V G' f-'-Y 

!* I I I ~~ C~ rvir. IL~ ~~ ~- ~~ SISf-' ~. I?Fo' ~ 
ft'- I I 

I , I 17wl417 II; ~.v Sir IVI:i I~ ~iA IV!,.:: 
~ , I I i ! 

I 

IU~ ~jsA ~~ jr~ • 
oIL Z C . ! ~11t!Me I~!rjc L 0:) y:~ k'~jA ~I? )1:0 VN Lr~ IS' ~" ~ T 01.1 

I iJ:IC lr 'If' i I~~ ,Iy ""(\.' I.: ~~ ~~ ~~ T. 
I II::c ~1(1S ~'c ~ ~1} , kJo )ok ~~ s e~ jQ~ /~ Itl s F>~ jEfv . 

W Xil Ie L loi C' It ~) IWP I~ ~17 ~ 17~ IfS IJs "WI~ ~f4 ST 0(, 

* 
I ~rv j7~ 115 y,.~ / /11 • I 

~( ~ , f I ~yv to]y ~~ ~ ~j!= G~ ~~ 17,. 
I ~C l-lj(l.:i K:~ ~jk; z) iAlDlD /('~ ~s ~* 171-'1~ ~~ c~ f\1D I" L. 

if. I 1Ti.!: 1)(17 • I I i , 

s~ Iwls Gf C I ih 1~311 Il~ ~l<' l?'~ o~ Iryf ~ IT ~ .,. I;'Fj~ I ... 

* 
I 

I IN ~L ~ !l'1 1\Ir:.- I;~ ~p ~r' "'F 
I ~d 1 fI' jIli' I v,F ',1:5 ~17 ~F ~Iif 1f46' c~;'~ ~/v IT 

~ I i 
I 1 ~'lE ~E fA' 0 • 

I nc II'L Z9 'fu Y~ 15G2 [PI Efot SE ~ 1 ... 1", L> ~~o 11 .u~' "'-
~ ~I ~~ po- ~~ IIEI u r:7E. 
SE Cf4, ~z f)C '~ 1 ' I£E f'v~ IT~ ~r 7'~ )(1 5; ~ 

* 111 ~ ~~ II\I~ Tit ~ .y~ ~€ 

--.1 ~c 'i" ~, ~s ~17 ~~ 57' ee ~~ ~o. 
~c IrL 37 ' G p~ ~c e~ 11I1t!e 41~ f4iE ~E ~v I~ C(.i ~l>' /!'O 1=:1 :JiOK I __ i 

-H. is·jf' It'"o iVie' L~ VllL H~ S ~G ~. rv I 

~ ~"' 147' 117" ~V ~r ~~ iT ~1'9 vE ~ 
~ iIf~ 155 ~IS Ie ~~. 

Ik~ CIP ~II (PIP 1tJ~ ~~ IT, T'H IS EX ~ IDLe; !fIT 

f* ITIIIE Sir ~8 V".LI ~~Ifl ll:s ~lll . 
IE If: 

Figure 67. Coding Example - PUTLINE Second Level Informational Chaining (Part 2 of 2) 

Using the TSO I/O Service Routines for Terminal I/O 153 



Return Codes from PUTLINE 

When the PUTLINE service routine returns control to the program that 
invoked it, it provides one of the following return codes in general register 
15: 

Code 
decimal 

o 
4 

8 
12 
16 

20 

Meaning 

PUTLINE completed normally. 
The PUTLINE service routine did not complete. An attention interruption occurred 
during its execution, and the attention handler turned on the completion bit in the 
communications ECB. 
The NOW ArT option was specified and the line was not written to the terminal. 
Invalid parameters were supplied to the PUTLINE service routine. 
A conditional GETMAIN was issued by PUTLINE for output buffers and there was 
not sufficient real storage to satisfy the request. 
The terminal has been disconnected. 

Note: The GNRLFAIL service routine described in this book can be 
invoked to issue a meaningful error message for a PUTLINE error code. 

PUTGET - Putting a Message Out to the Terminal and Obtaining a 
Line of Input in Response 

Use the PUTGET macro instruction to put messages out to the terminal 
and to obtain a response to those messages. A message to the user at the 
terminal which requires a response is called a conversational message. There 
are two types of conversational messages: 

• Mode messages - Those which tell the user at the terminal which 
processing mode he is in so that he can enter a response applicable to 
that processing mode. Examples of mode messages are the READY 
sent to the terminal by the terminal monitor program to indicate that 
it expects a command to be entered and the command name (EDIT, 
TEST, etc.) sent by a command processor to indicate that it is ready 
to accept a subcommand name. 

• Prompt messages - Those which prompt the user at the terminal to 
enter parameters required by the program in control, or to reenter 
those parameters which were previously entered incorrectly. Prompt 
information can only be obtained from the user at the terminal. 

The input line returned by the PUTGET service routine can come from 
the terminal or from an in-storage list; PUTGET determines the source of 
input from the top element of the input stack unless you have specified the 
TERM or ATTN operands in the PUTGET macro instruction. 

PUTGET, like PUTLINE and GETLINE has many parameters. The 
parameters are passed to the PUTGET service routine according to the 
operands you code in the list and the execute forms of the PUTGET macro 
instruction. 

This topic describes: 

• The list and execute forms of the PUTGET macro instruction 
• Building the PUTGET parameter block 
• Types and formats of the output line 
• Passing the message lines to PUTGET 
• PUTGET processing 

IS4 TSO Guide to Writing a TMP or a CP 



L 

L 

[symbol] 

• Input line format - the input buffer 
• An example of PUTGET 
• Return codes from PUTGET 

The PUTGET Macro Instruction - List Form 

The list form of the PUTGET macro instruction builds and initializes a 
PUTGET parameter block (PGPB), according to the operands you specify 
in the PUT GET macro instruction. The PUTGET parameter block indicates 
to the PUTGET service routine which of the PUTGET functions you want 
performed. Figure 68 shows the list form of the PUTGET macro 
instruction; each of the operands is explained following the figure. 
Appendix A describes the notation used to define macro instructions. 

[ rRO~T}] PUT GET OUTPUT=(output address {,SINGLE } ,MO~ > 
,MULTLVL ,PTBYPS 

,TERM 
,ATTN 

[, TERMPUT= (\ ~i~ I { , WAIT } {,NOHOID } { , NOBREAK pJ 
CONTROL , NOWAIT ,HOLD ,BREAKIN 

[,TERMGET= ({ EDIT}{, WAIT } >} MF=L 
ASIS ,NOWAIT 

FIgIft 68. The List Form of tbe PUTGET Macro IDstructioD 

OUTPUT = output address 

Specify the address of the output line descriptor or a zero. The output 
line descriptor (OLD) describes the message to be put out, and contains 
the address of the beginning (the one-word header) of the message or 
messages to be written to the terminal. You have the option under 
MODE processing to provide or not provide an output message. If you 
do provide an output line, code OUTPUT=O, and only the GET 
functions will take place. If you do provide an output message, the type 
of message and the processing to be performed by the PUTGET service 
routine are described by the OUTPUT sublist operands SINGLE, 
MULTLVL, PROMPT, MODE, PTBYPS, TERM, and ATTN. SINGLE 
and PROMPT are the default values. 

SINGLE 

The output message is a single level message. 

MULTLVL 

The output message consists of multiple levels. The first level message is 
written to the terminal, the second level messages are printed at the 
terminal, one at a time, in response to question marks entered from the 
terminal. PROMPT must also be specified or defaulted to. 

PROMPT 

The output line is a prompt message. 

Using the TSO I/O Service Routines for Terminal I/O 155 



MODE 

The output line is a mode message. 

PTBYPS 

The output line is a prompt message and the terminal user's response will 
not be displayed at those terminals that support the print inhibit feature. 
A terminal user can override bypass processing by hitting an attention 
followed by hitting the ENTER key before entering his input. 

TERM 

Specifies that the output line (a mode message) is to be written to the 
terminal, and a line is to be returned from the terminal, regardless of the 
top element of the input stack. 

ATIN 
Specifies that the output line (a mode message) is to be initially 
suppressed but an input line is to be returned from the terminal. 

TERMPUT= 

Specifies the TPUT options requested. Since PUTGET issues a TPUT 
SVC to write the message to the terminal, this operand is used to 
indicate which of the TPUT options you want to use. The TPUT options 
are EDIT, ASIS or CONTROL; WAIT, or NOWAIT; NOHOLD, or 
HOLD; and NOBREAK or BREAKIN. The default values are EDIT, 
WAIT, NOHOLD, and NOBREAK. 

EDIT 

Specifies that in addition to minimal editing (see ASIS), the following 
TPUT functions are requested: 

a. Any trailing blanks are removed before the line is written to the 
terminal. If a blank line is sent, the terminal vertically spaces one line. 

b. Control characters are added to the end of the output line to position 
the cursor to the beginning of the next line. 

c. All terminal control characters (for example: bypass, restore, 
horizontal tab, new line) are replaced with a printable character. 
Backspace is an exception; see item d. under ASIS. 

ASIS 

Specifies that minimal editing is to be performed by TPUT as follows: 

a. The line of output is to be translated from EBCDIC to terminal code. 
Invalid characters will be converted to printable characters to prevent 
program caused I/O errors. This does not mean that all unprintable 
characters will be eliminated. Restore, upper case, lower case, bypass, 
and bell ring, for example, might be valid but nonprinting characters 
at some terminals. (See CONTROL.) 

b. Transmission control characters will be added. 

c. EBCDIC NL, placed at the end of the message, indicates to the 
TPUT SVC that the cursor is to be returned at the end of the line. 
NL is replaced with whatever is necessary for that particular terminal 
type to cause the cursor to return. This NL processing occurs only if 
you specify ASIS, and the NL is the last character in your message. 

156 TSO Guide to Writing a TMP or a CP 

If you specify EDIT, NL is handled as described in item c. under 
EDIT. 



If the NL is embedded in your message, it is sent to the terminal as a 
cursor return. No idle characters are added (see item f. below). This 
may cause overprinting, particularly on terminals that require a 
line-feed character to position the cursor on a new line. 

d. If you have used backspace in your output message but the backspace 
character does not exist on the terminal type to which the message is 
being routed, TPUT attempts alternate methods to accomplish the 
backspace. 

e. Control characters are added as needed to cause the message to occur 
on several lines if the output line is longer than the terminal line size. 

f. Idle characters are sent at the end of each line to prevent typing as 
the carrier returns. 

CONTROL 

Specifies that the output line is composed of terminal control characters 
and will not display or move the cursor on the terminal. This option 
should be used for transmission of characters such as bypass, restore, or 
bell ring. 

WAIT 

Specifies that control will not be returned to the program that issued the 
PUTGET until the output line has been placed into a terminal output 
buffer. 

NOWAIT 

Specifies that control should be returned to the program that issued the 
PUTGET macro instruction, whether or not a terminal output buffer is 
available. If no buffer is available a return code of 16 (decimal) is 
returned. 

NOHOLD 

Specifies that control is to be returned to the issuer of the PUTGET 
macro instruction, and that program can resume processing as soon as 
the output line has been placed on the output queue. 

HOLD 

Specifies that the program that issued the PUTGET macro instruction 
cannot continue its processing until this output line has been put out to 
the terminal or deleted. 

NOBREAK 

Specifies that if the terminal user has started to enter input, he is not to 
be interrupted. The output message is placed on the output queue to be 
displayed after the terminal user has completed the line. 

BREAK IN 

Specifies that output has precedence over input. If the user at the 
terminal is transmitting, he is interrupted, and this output line is sent. 
Any data that was received before the interruption is kept and displayed 
at the terminal following this output line. 

Using the TSO I/O Service Routines for TerminalI/O IS7 



TERMGET= 

Specifies the TGET options requested. Since PUTGET issues a TGET 
SVC to bring in a line of data, this operand is used to indicate to the 
TGET SVC which of the TGET options you wish to use. The TGET 
options are EDIT or ASIS, and WAIT or NOW AlT. The default values 
are EDIT and WAIT. 

EDIT 

Specifies that in addition to minimal editing (see ASIS), the buffer is to 
be filled out with trailing blanks. 

ASIS 

Specifies that minimal editing is to be done as follows: 

a. Transmission control characters are removed. 

b. The line of input is translated from terminal code to EBCDIC. 

c. Line deletion and character deletion editing is performed. 

d. Line feed and cursor return characters, if present, are removed. 

WAIT 

Specifies that control is to be returned to the program that issued the 
PUTGET macro instruction, only after an input message has been read. 

NOWAIT 

Specifies that control should be returned to the program that issued the 
PUTGET macro instruction whether or not a line· of input is available. If 
a line of input is not available, a return code of 20 (decimal) is returned 
in register 15 to the command processor. 

MF=L 

Indicates that this is the list form of the macro instruction. 

Note: In the list form of the PUTGET macro instruction, only 

PUTGETIMF=L 

is required. 

The output line address is not specifically required in the list form of the 
PUTGET macro instruction, but must be coded in either the list or the 
execute form. 

The other operands and their sublists are optional because you can 
supply them in the execute form of the macro instruction, or if you want 
the default values, they are supplied automatically by the expansion of the 
macro instruction. 

The operands you specify in the list form of the PUTGET macro 
instruction set up control information used by the PUTGET service routine. 
This control information is passed to the PUTGET service routine in the 
PUTGET parameter block, a four-word parameter block built and 
initialized by the list form of the PUTGET macro instruction. 

IS8 TSO Guide to Writing a TMP or a CP 



[symbol] 

· The PUTGET Macro Instruction - Execute Form 

Use the execute form of the PUTGET macro instruction to prepare a mode 
or a prompt message for output to the terminal, to determine whether or 
not that message should be sent to the terminal, and to return a line of 
input from the source indicated by the top element of the input stack to the 
program that issued the PUTGET macro instruction. 

You can use the execute form of the PUTGET macro instruction to 
build and initialize the input/output parameter list required by the 
PUT GET service routine, and to request PUTGET functions not already 
requested by the list form of the macro instruction, or to change those 
functions previously requested in either a list form or a previous execute 
form of the PUTGET macro instruction. 

Figure 69 shows the execute form of the PUTGET macro instruction; 
each of the operands is explained following the figure. Appendix A 
describes the notation used to define macro instructions. 

PUT GET [PARM=parameter address] [, UPT=Upt address] 

[,ECT=ect address] [,ECB=ecb address] 

l CROMM} ] 
, OUTPUT = (output addreSs{ ,SINGLE} ,MODE ) 

,MULTLVL ,PTBYPS 
,TERM 
,ATTN 

~ TERMP_ «( ~g II- WAI! II- NOHOLD II- NOBREA!( 1>] 
CONl'ROL , NCMAIT I HOLD , BREAK IN 

[,TERMGET= {{ EDIT} {' WAIT }) ] 
ASIS , NOWAIT 

[,EN'l'RY= {entry address} ] ' MF= {E, {list address J ) 
(15) (l). 

FIgure 69. 1be Execute Form of the PUTGET Macro IDstruction 

PARM=parameter address 
Specifies the address of the four-word PUTGET parameter block 
(PGPB).This address is placed into the input/output parameter list 
(IOPL). It may be the address of a list form PUTGET macro instruction. 
The address is any address valid in an RX instruction, or you can put it 
in one of the general registers 2-12, and use that register number, 
enclosed in parentheses, as the parameter address. 

Using the TSO I/O Service Routines for Terminal I/O 159 



UPf=upt address 
Specifies the address of the user profile table (UPT). This address is 
placed into the IOPL when the execute form of the PUTGET macro 
instruction expands. You can obtain this address from the command 
processor parameter list (CPPL) pointed to by register 1 when the 
command processor is attached by the terminal monitor program. The 
address can be used as received in the CPPL or you can put it in one of 
the general registers 2-12, and use that register number, enclosed in 
parentheses, as the UPT address. 

ECT =ect address 
Specifies the address of the environment control table (ECT). This 
address is placed into the IOPL when the execute form of the PUTGET 
macro instruction expands. You can obtain this address from the 
command processor parameter list (CPPL) pointed to by register one 
when the command processor is attached by the terminal monitor 
program. The address can be used as received in the CPPL or you can 
put it in one of the general registers 2-12, and use that register number, 
enclosed in parentheses, as the ECT address. 

ECB=ecb address 
Specifies the address of the command processor event control block 
(ECB). This address is placed into the IOPL by the execute form of the 
PUTGET macro instruction when it expands. 
You must provide a one-word event control block and pass its address to 
the PUTGET service routine by placing the address into the IOPL. If 
you code the address of the ECB in the execute form of the PUTGET 
macro instruction, the macro instruction places the address into the IOPL 
for you. The address can be any address valid in an RX instruction, or 
you can put it in one of the general registers 2-12, and use that register 
number, enclosed in parentheses, as the ECB address. 

OUTPUT=output address 
Specifies the address of the output line descriptor or a zero. The output 
line descriptor (OLD) describes the message to be put out, and contains 
the address of the beginning (the one-word header) of the message or 
messages to be written to the terminal. You have the option under 
MODE processing to provide or not provide an output message. If you 
do not provide an output line, code OUTPUT=O, and only the GET 
function will take place. If you do provide an output message, the type 
of message and the processing to be performed by the PUTGET service 
routine are described by the OUTPUT sublist operands SINGLE, 
MULTLVL, PROMPT, MODE, PTBYPS, TERM, and ATTN. The 
default values are SINGLE and PROMPT. 

SINGLE 

The output message is a single level message. 

MULTLVL 

The output message consists of multiple levels. The first level message is 
written to the terminal, the second level messages are displayed at the 
terminal, one at a time, in response to question marks entered from the 
terminal. PROMPT must also be specified or defaulted to. 

PROMPT 

The output line is a prompt message. 

160 TSO Guide to Writing a TMP or a CP 



MODE 

The output line is a mode message. 

PTBPYS 

The output line is a prompt message and the terminal user's response will 
not display at those terminals that support the print inhibit feature. A 
terminal user can override bypass processing by hitting an attention 
followed by hitting the ENTER key before entering input. 

TERM 

Specifies that the output line (a mode message) is to be written to the 
terminal, and a line is to be returned from the terminal, regardless of the 
top element of the input stack. 

ATTN 
Specifies that the output line (a mode message) is to be initially 
suppressed but an input line is to be returned from the terminal. 

TERMPUT= 

Specifies the TPUT options requested. PUTGET issues a TPUT SVC to 
write the message to the terminal. This operand is used to indicate which 
of the TPUT options you want to use. The TPUT options are EDIT, 
ASIS or CONTROL; WAIT or NOW AIT; NOHOLD or HOLD; and 
NOBREAK or BREAKIN. The default values are EDIT, WAIT, 
NOH OLD and NOBREAK. 

EDIT 

Specifies that in addition to minimal editing (see ASIS), the following 
TPUT functions are requested: 

a. Any trailing blanks are removed before the line is written to the 
terminal. If a blank line is sent, the terminal vertically spaces one line. 

b. Control characters are added to the end of the output line to position 
the cursor to the beginning of the next line. 

c. All terminal control characters (for example: bypass, restore, 
horizontal tab, new line) are replaced with a printable character. 
Backspace is an exception; see item d. under ASIS. 

ASIS 

Specifies that minimal editing is to be performed by TPUT as follows: 

a. The line of output is translated from EBCDIC to terminal code. 
Invalid characters are converted to a printable character to prevent 
program caused I/O errors. This does not mean that all unprintable 
characters will be eliminated. Restore, upper case, lower case, bypass, 
and bell ring, for example, might be valid but nonprinting characters 
at some terminals. (See CONTROL.) 

b. Transmission control characters are added. 

c. EBCDIC NL, placed at the end of the message, indicates to the 
TPUT SVC that the cursor is to be returned at the end of the line. 
NL is replaced with whatever is necessary for that particular terminal 
type to cause the cursor to return. This NL processing occurs only if 
you specify ASIS, and the NL is the last character in your message. 

If you specify EDIT, NL is handled as described in item c. under 
EDIT. 

Using the TSO I/O Service Routines for Terminal I/O 161 



The PARM, UPT, ECT, and ECB operands are not required if you have 
built your IOPL in your own code. 

The output line address is not specifically required in the execute form of 
the PUTGET macro instruction, but must be coded in either the list or the 
execute form. 

The other operands and sublists are optional because you may have 
supplied them in the list form of the macro instruction or in a previous 
execute form, or because you may want to use the default values which are 
automatically supplied by the macro expansion itself. 

The ENTRY operand need not be coded in the macro instruction. If it is 
not, a LINK macro instruction is generated by the PUTGET macro 
expansion to invoke the PUTGET service routine. 

The operands you specify in the execute form of the PUTGET macro 
instruction set up control information used by the PUTGET service routine. 
You can use the PARM, UPT, ECT, and ECB operands of the PUTGET 
macro instruction to build, complete, or modify an IOPL. The OUTPUT, 
TERMPUT, and TERMGET operands and their sublist operands initialize 
the PUTGET parameter block. The PUTGET parameter block is referenced 
by the PUTGET service routine to determine which functions you want 
PUTGET to perform. 

Building the PUTGET Parameter Block (PGPB) 

When the list form of the PUTGET macro instruction expands, it builds a 
four-word PUTGET parameter block (PGPB). This PGPB combines the 
functions of the PUTLINE and the GETLINE parameter blocks and 
contains information used by the PUT and the GET functions of the 
PUTGET service routine. The list form of the PUTGET macro instruction 
initializes this PGPB according to the operands you have coded in the 
macro instruction. This initialized block, which you may later modify with 
the execute form of the PUTGET macro instruction, indicates to the 
PUTGET service routine the functions you want performed. It also contains 
a pointer to the output line descriptor that describes the output message 
and it provides a field into which the PUTGET service routine places the 
address of the input line returned from the input source. 

You must pass the address of the PGPB to the execute form of the 
PUTGET macro instruction. Since the list form of the macro instruction 
expands into a PGPB, all you need do is pass the address of the list form of 
the macro instruction to the execute form as the P ARM value. 

The PUTGET parameter block is defined by the IKJPGPB DSECT. 
Figure 70 describes the contents of the PUTGET parameter block. 

164 TSO Guide to Writing a TMP or a CP 



Number of 
Bytes Field Contents or Meaning 

2 PUT control flags. These bits describe the 
output line to the PUTGET service routine. 

Byte 1 
.. 0 ..... Always zero for PUTGET . 
... 1 .... The output line is a single level message . 
.... 0 ... Must be zero for PUTGET . 
.... . 1.. The output line is a multilevel message . 
.... ... 1 The output line is a PROMPT message . 
xx .... x. Reserved. 
Byte 2 
1. ...... The output line is a MODE message. 
... 1 .... BYPASS processing is requested . 
.... 1. .. AnN processing is requested . 
. xx .. xxx Reserved . 

2 TPUT options field. These bits indicate to the 
TPUT SVC which of the TPUT options you 
want to use. 

Byte 1 
0 ....... Always set to 0 for TPUT. 
... 0 .... WAIT processing has been requested. Control 

will be returned to the issuer of TPUT only 
after the output line has been placed into a 
terminal output buffer. 

... 1 .... NOWAIT processing has been requested . 
Control will be returned to the issuer of TPUl 
whether or not a terminal output buffer is 
available. 

.... 0 ... NOHOLD processing has been requested. The 
issuer of the TPUT can resume processing as 
soon as the output line has been placed on 
the output queue. 

.... 1. .. HOLD processing has been requested. The 
issuer of the TPUT is not to resume 
processing until the output line has been 
written to the terminal or deleted. 

..... 0 .. NOBREAK processing has been requested. The 
output line will be displayed only when the 
terminal user is not entering a line. 

..... 1.. BREAKIN processing has been requested. The 
output line is to be sent to the terminal 
immediately. If the terminal user is entering a 
line, he is to be interrupted. 

.... .. 00 EDIT processing has been requested . 

.... .. 01 ASIS processing has been requested . 

.... .. 10 CONTROL processing has been requested . 

. xx ..... Reserved . 

Byte 2 Reserved. 

Figure 70. The PUTGET Parameter Block (Part I of 2) 

Using the TSO I/O Service Routines for Terminal I/O 165 



Number of 
Bytes Field Contents or Meaning 

4 The address of the output line descriptor. 

2 GET control flags. 

Byte 1 

. 00 ..... Always zero for PUTGET . 

... 1 .... TERM processing is requested . 

x ... xxxx Reserved bits. 

Byte 2 

xxxx xxxx Reserved. 

2 TGET options field. These bits indicate to the 
TGET SVC which of the TGET options you wish 
to use. 

Byte 1 

1. ...... Always set to 1 for TGET. 

... 0 .... WAIT processing has been requested. Control 
will be returned to the issuer of the TGET SVC 
only after an input message has been read. 

... 1 .... NOWAIT processing has been requested . 
Control will be returned to the issuer of the 
TGET SVC whether or not a line of input is 
available. If no line was available. PUTGET 
returns a code of 20 (decimal) in general 
register 15. 

...... 00 EDIT processing has been requested. In 
addition to the editing provided by ASIS 
processing. the input buffer is to be filled out 
with trailing blanks to the next doubleword 
boundary. 

...... 01 ASIS processing has been requested. (See the 
ASIS operand of the PUTGET macro 
instruction description.) 

. xx. xx .. Reserved bits . 

Byte 2 

xxxx xxxx Reserved. 

4 PGPBIBUF The address of the input buffer. The PUTGET 
service routine fills this field with the address 
of the input buffer in which the input line has 
been placed. 

Figure 7&. The PUTGET Parameter Block (Part 2 of 2) 

166 ISO utOlle to Writing a TMP or a CP 



Types and Formats of the Output Line 

The PUTGET service routine writes only conversational messages to the 
terminal, it does not handle data lines. For information on how to write a 
data line or a nonconversational message to the terminal, see the section on 
the PUTLINE macro instruction. 

PUTGET accepts two output line formats depending upon whether the 
message you provide is a single level message or a multilevel message. 

Single Level Messages: A single level message is composed of one or more 
message segments to be formatted and written to the terminal with one 
execution of the PUTGET macro instruction. 

Multilevel Message: Multilevel messages are composed of one or more 
message segments to be formatted and written to the terminal, and one or 
more message segments to be formatted and written to the terminal in 
response to question marks entered from the terminal. Note, however, that 
if you specify MODE in the PUTGET macro instruction, you can process 
only single level messages. If you specify PROMPT in the PUTGET macro 
instruction, then these second level messages will be written to the terminal, 
one at a time, in response to successive question marks entered from the 
terminal. If these PROMPT messages are to be available to the user at the 
terminal, however, the top element of the input stack must not specify a 
procedure element as the current source of input, and the terminal user 
must not have inhibited prompting. (See the PROFILE command in TSO 
Command Language Reference). 

Passing the Message Lines to PUTGET 

You must build each of the message segments to be processed by the 
PUTGET service routine as if it were a line of single line data. The 
segment must be preceded by a four-byte header field - the first two 
bytes containing the length of the segment induding the header, and the 
second two bytes containing zeros or an offset value if you use the text 
insertion facility provided by PUTGET. This message line format is 
required whether the message is a single level message or a multilevel 
message. 

Because of the additional functions performed on message lines -
message ID stripping, text insertion, and multilevel processing - you must 
provide the PUTGET service routine with a description of the line or lines 
that are to be processed. This is done with an output line descriptor (OLD). 

There are two types of output line descriptors. The type depends on 
whether the messages are single level or multilevel. 

The OLD required for a single level message is a variable length control 
block which begins with a fullword value representing the number of 
segments in the message, followed by fullword pointers to each of the 
segments. 

The format of the OLD for multilevel messages varies from that required 
for single level messages in only one respect. You must preface the OLD 
with a fullword forward-chain pointer. This chain pointer points to another 
output line descriptor or contains zero to indicate that it is the last OLD on 
the chain. Figure 71 shows the format of the output line descriptor. 

Using the TSO I/O Service Routines for Terminal I/O 167 



PUTGET Processing 

Text insertion and message identifier stripping are available to all output 
messages processed by the PUTGET service routine. For a detailed 
description of these functions see "PUTLINE Message Line Processing." 

The PUTGET service routine provides other processing capabilities 
dependent upon whether the message is a mode or a prompt message. 

1. Mode Message Processing: A mode message is a message put out to the 
terminal when a command or a subcommand is anticipated. The 
processing of mode messages by the PUTGET service routine is 
dependent upon the following two conditions: 

1. Are you providing an output line? 

2. From what source is the input line coming? 

Is an Output Line Present: You need not provide an output line to the 
PUTGET service routine. If you do provide an output line address then 
PUT processing will take place. Whether your output line is written to the 
terminal is then dependent upon the input source indicated by the input 
stack. If you do not provide an output line (OUTPUT=O) then only the 
GET function of the PUT GET service routine takes place. 

What is the Input Source: The source of the input line, as determined by the 
top element of the input stack, determines the type of processing performed 
by the PUTGET service routine. You can override the input stack by 
coding the TERM or ATTN operands in the PUTGET macro instruction. 
The two sources of input supported are: 

1. Terminal 

2. In-storage 

If the current source of input is the terminal, and you provide an output 
line, the PUTGET service routine writes the line to the terminal, returns a 
line from the terminal, and places the address of the returned line into the 
fourth word of the PUTGET parameter block. If the line returned from the 
terminal is a question mark, however, the PUTGET service routine causes 
the second level message (if one exists) to be written to the terminal, again 
puts out the mode message, and then returns a line from the terminal. If the 
user at the terminal enters a question mark in response to a mode message, 
and no second level message exists, PUTGET puts out the message 
"IKJ6676OI NO INFORMATION AVAILABLE", puts the mode message 
out again, and returns a line from the terminal. 

Note that if the user enters a question mark from the terminal, the 
second level message returned to the terminal is not related to the current 
mode message but to the command processor just terminated; mode 
messages can have only one level. 

If the current source of input is an in-storage list, the output line (if you 
provide one) is ignored and the PUTGET service routine normally obtains 
an input line from the in-storage list and places a pointer to that'line in the 
fourth word of the PGPB. If however, a second level message exists, 
PUTGET will only return a line if the user at the terminal has access to the 
information in the chain through the PAUSE mechanism. If the chain is not 

170 TSO Guide to Writing a TMP or a CP 



available to the user, no line is obtained by PUTGET, and it returns a code 
of 12 in register 15. You can test this return code, and if you want, recover 
from this error condition by turning on the high order bit of the ECTMSGF 
field of the environment control table and reissuing the PUTGET. The 
second level message is then purged and a line is obtained from the 
in-storage list. 

Pause Processing: If the user at the terminal has requested the PAUSE 
option on the PROFILE command, the PUTGET service routine makes the 
second level messages available to him, even if the current input source is 
not the terminal. 

PAUSE processing works as follows. If a second level message does 
exist, PUTGET puts out the message "IKJ56762A PAUSE" to the terminal 
informing the terminal user that PAUSE processing is in effect. At this 
point the terminal user can enter either a question mark to indicate that he 
wishes to have the second level messages put out to the terminal, or press 
the ENTER key to indicate that the information is not needed. If the user 
presses the ENTER key, the second level message is eliminated. If he enters 
any response other than a question mark or hitting the ENTER key, 
PUT GET prompts him for a correct response. 

2. Prompt Message Processing: A prompt message is a message put out to the 
terminal when the program in control requires input from the terminal 
user. PROMPT information must come from the terminal and can not be 
obtained from any other source of input. There are two cases when a 
request for PROMPT processing is denied by PUTGET: 

1. When the current source of input, as determined by the top element 
of the input stack, is an in-storage procedure. 

2. When the terminal user has requested via the PROFILE command 
that no prompting be done. 

If PROMPT processing is allowed, the PUTGET service routine writes 
the first level message to the terminal and obtains an input line from the 
terminal. If the input line is a question mark, PUTGET either returns the 
next level message provided, or a message informing the user that no 
information is available. PUTGET continues to respond to question marks 
entered from the terminal by writing one more second level message to the 
terminal in response to each question mark entered until the chain is 
exhausted; at that point PUTGET issues a message informing the user at 
the terminal that no more information is available. The prompt message is 
not repeated and the task goes into an input wait until the terminal user 
enters a line. When a line is obtained from the terminal, PUTGET places 
the address of the line into the fourth word of the PGPB. 

Input Line Format - the Input Buffer 

The fourth word of the PUTGET parameter block contains zeros until the 
PUTGET service routine returns a line of input. The service routine places 
the requested input line into an input buffer beginning on a doubleword 
boundary located in subpool 1. It then places the address of this input 
buffer into the fourth word of the PGPB. The input buffer belongs to the 
program that issued the PUT GET macro instruction. The buffer or buffers 
returned by PUTGET are automatically freed when your code relinquishes 

Using the TSO I/O Service Routines for Tenninall/O 171 



control. You may free the input buffer with the FREEMAIN macro 
instruction after you have processed or copied t~e input line. 

Regardless of the source of input, the input line returned by the 
PUTGET service routine is in a standard format. All input lines are in the 
variable length record format with a fullword header followed by the text 
returned by PUTGET. Figure 73 shows the format of the input buffer 
returned by the PUTGET service routine. 

~ ___ ~ __ ng_th ____ ~ ___ O_f_~_t ____ ~ ______________ T_ex_t ___________ l~ 
~ __ ~~r ____ ~A~ ____ ~v~ __ ~ 

2 Bytes 2 Bytes 
~ _____________________________ ~~ __________________________ ~f 

Length 

FIgure 73. Format of the PUTGET lDput Buffer 

The two-byte length field contains the length of the returned input line 
including the header (4 bytes). You can use this length field to determine 
the length of the input line to be processed, and later, to free the input 
buffer with the R form of the FREEMAIN macro instruction. The two-byte 
offset field is always set to zero on return from the PUTGET service 
routine. 

172 TSO Guide to Writing a TMP or a CP 



L 

LINK 

Figure 74 shows the PUTGET control block structure for a multilevel 
PROMPT message after the PUTGET service routine has returned an input 
line. 

PUTGET 
Service 
Routine 

R eg. I 

I 

~ Output Message 

IOPL ~OLD 
( • Next OLD 

Number 

+ Segment 1 Length I Offset1 Messoge Segment J ... • Segment 2 

I~ I I I I 
I + Segment n ~ PGPB I I I 

I .J 
I 

.... ~ OLD 

00000000 

,~ I T I 
I 
I 

; ; 
1 

I ~ I 

) I nput Line 

I Length I Offset Data I 

FIgure 74. PUTGET Cootrol Block StnIclture - Input Line Returned 

An Example of PUTGET 

Figure 75 is an example of the code required to execute the PUTGET 
macro instruction. The code uses a multilevel PROMPT message as the 
PUTGET output line. It assumes that a line of input will be returned from 
the terminal and tests only for a zero return code (PUTGET completed 
normally). 

Using the TSO I/O Service Routines for Terminal I/O 173 



~ T/H 

* RiE 

'* p 

* 
* 
* 
* 
* 

N-

* 
If 

I.-

* /s 

If ~K 

/I 
!.II ~~ 
~ 

I!! 
I,Ii ITiE 

N k 
~ 

~ 

~ 
~ 

~ 

IS 

G 15 
C ~ 

SUE 

p lie CE 

The execute form of the PUTGET macro instruction builds the I/O 
parameter list, using the addresses of the user profile table and the, '\ ' 
environment control table supplied in the command processor parameter ,.., 
list. In addition, the I/O parameter list contains the address of an ECB 
built by the code, and the address of the list form of the PUTGET macro 
instruction as the PUTGET parameter block address. 

Note that the TERMPUT, TERMGET, and ENTRY operands are not 
coded; the default values are used. Note also that this code is effective only 
if the top element of the input stack indicates a terminal as the current 
source of input. 

OF ck:J oj.!: 5S U~ IES EW TiR Y IF Wo~ TW~ \D. T~ 
T£ OW CO w!TlA I "'-'S T ~ ~ iP ~ES oir IJW ~ c ro ~ 
S le:: OR ~ RA ~~f7 R L lde:; (C plDiL ) . 

I I I ' i 

i * W OU 51: kE Elf I G ! I i I 

IA lJiRlEs AIB!I LI 1;ly I I I : I I ! 
L I ! I ' 

S IVI AR IEl4! :c~ :AII ~t!t W·G! ! I : 1 ! ! . 
j ! , , , , 

I I I i I w_ 
~t ~~I 

I I 
I 

w1$ 
I 

LR 2) f. i SiA'ViE! 11;:E '4 5' e~! TW IE iC lo L' • jT! PL 1/5 / It G Irpp ) 2 I A plJ)RE SS ·8'1 I 7Y l()~ T liE' CP 
1 ~ 

t. ~, clP Pi. vIP loll ACE T J) £ ~ kJ~ wiE ,,",PT 

IW TO ~ ~jE GI isT l!::~. 
II ~) ciP iPL celT IP~ f:4f;' ~ IT Vte 14 ES 01F 17 cIT 

liN 170 1-4 ~ Ic7I 1s1 7 \.s 
I~ 

14~ E)( !=C '"0 IP~ TG E7 ft1 k; 0 1f'V 15T CTI ~. 7 IS -
~c UT Ib W ~ R IT ~b b lPT /(1/ iHF fss AG~ T T~ TIF R~I L. W 
I~ [5' IE I'J (.) v~ ~5 5f4 T lIls XE c~ II IIlF TWI.!: 

TG lET ~~ IR IN 5T UC I"" IFI 1111 S IW 17 ~ lIo I.I='L. 

!If 
PO TIG EIT IP W. IPG IP~ k'i1P T= (3 ) EC . ( "I; cld =€ c !.4' 5" 

kiT lou IT .. (FI sir OL ~II LI7 Lilt L 1,& 0 jp T) 
~ (t:- v L IllS 

, 
!H-I 

s~ T ~ ~b~ iE.TV ~ [8,y r P'(.I Ir~ £T 51= VI ~~ 0 Til ,,~ ! 

iElnl /oJ colo oIP 10 I Ie ~s WOR L el,.; ~iP L[.,c 171 ~ , 

I1fi I ,[5 Ils TW 
~ 

~ IGI~ 1C0 ? 
~i! IXI I ... - C ITI" 14 ~~ II Tlj 

>'4 s- L 7 ~~ IW 
'T I.t: ~I € TV rv (U ~~ /41 1I,c 

IT ~. I t. . 
I~ 

A IGI> IA k; 8 11 14' C L"i 181 ILv ~IY ~101E 
IO~ I G !PIG IT ~ ~ 17 T ~~ ~ ~ jL ~ 1# • 
II , ~G [alB I~ ",i.e T T ~~ ~ ~ IT ~/I\I 

1';< T ~~ . ~ T ~ ~I('. I ~ II- • 

FIgure 75. Coding Example - PUTGET Multilevel PROMPT Message (Part 1 of 3) 

174 TSO Guide to Writing a TMP or a CP 



tf ~ 

*" P~ oc ~~ 5 I7HE. V ~U r I I ~~; ~W e~ FI f',Il fSl{ ~O lOt" V ~~ S5 Iv p, 'Ff E~ 
~ T~ I::. /W PrJ IT ~ F 

* loll 
! LIN It:ll , ¢( II) [PUT ~f.( ~ ~~ ~~ 7!1 Io.c= ~", I~ P~17 

'* ~I ~~ II rvk: Llv 101 ArS 7NIi: ~~ iD~ IeIJ 
~ IfI/ TO ~~ ~1I ST ~k' ~~ ~tJ. 

0 0. =X 'I/J I ~ I/J~ t/J¢ t/J' 

* • Frf EE ~I ~J LIII . ( ,,~ ~ ::: (I) 

~ I""~ ~ Tf'! € I~ iP~ 17 SO F~ ~~. 

~ ~ 
~ ipR oc ES 51 ~G 

~ I 

~ I 

~x liT IE Xl T RO ~7 Ir.t ES 

* I 
, 

I I 
I , I 

I , i I I 
I 

I : i 
! I , I I I ¥ I , I I ' I , , ' I ' I I 

~ I' I 
, : i I i I i 

X I I I I I I I I I 

~ lslTp ~A G~ p~ L,4R ~7 ID ..v~ I i 

1-"" I 1,\1 

AlP 6lP8 lPu TG ~IT u~ .~ /..1 ~T! ,,~ ~ o.c= 71( (!! P'() TG lET ~.., ~* 
~I IfV islr ~£/ ~I ~fV. IT ~~ P~ '1 0 70 

~I S(I II ~ A f III I 7 GE 7 1'1 PA fjfE T ~ " FoI""~ ic1c ~~s {),r F' ~ , A ~U ilL ~ I"" OF sr O~ f4cs IE ~~ ~ I'I{~ 
~ CO 011.., ~N (.) IP If 0 =5 lso f: e~ B. 
!...f.{ ~~~ (.)5 oe (IoF '¢' FO~ ~ F'(/ v~ ,.. 

~ ~ TN~ I,V '" (/17 ~ .... 
It 

>". 
0(,1 IrIP ~T ~~ ~IA r.lE T~ ~ t-/ ~7. 

* ~ 

,It 8~ I ~ T~ ~ eN f41 v OF P ~T ~I v~ ~E ~ ~I IPr O~ ~ -tW ~ O~ ~II 

H ule SS ~G ~ bs~ c:ol\4 I~ 1S. 

* 1.11 

FI 57 ~1.t.J ~ A( N~ )<7 Ir: l. ~I) PC! 1'1 IT~ ~ T'p l7/fe W~ ~r Ir:L 
(.. r' I ' IN 101 ~A T~ ~W Lly ~~ ~IC 

()~ A 0 IT4I "GI) TN ~ ~(.) "". FSS bll'= T~ ~ ~~ 17 
~ /If ~~ ~G . 
Figure 75. Coding Example - PUTGET Multilevel PROMPT Message (Part 1 of 3) 

Using the TSO I/O Service Routines for TerminalI/O 175 



c (~) / I~ Tit'S ~17 ~ Ills IS ~IC 
fV T V ~I fV. 

Ir: [.c , , ' I wltll C 7" .5 kI~ ~IY Ie \S~ rv 
IT Is ~PI\I II ~ IL 

E ~H If'll Ie ~./. 
\~ I~ 

I~ 

IDe ~' " 

* 
* 
~ I I 

* i 

I.IF 
I 

i 
r I , 

c~ 1,.t~ ~G Ioe Vt'37" 

* ~ 
~ 

1.,Ii 

Ir~c 
I,l/ 

* I I I,.:: sIS ~~. ' 

1,If 

~ 

~ 

~ 
-If 

~ I i "'~~Ir CESSO~ IP l41\CriE II / S17. 

, 

FJgIII'e 75. Coding Example - PUTGET Multilevel PROMPT Message (Part 3 of 3) 

176 TSO Guide to Writing a TMP or a CP 



Return Codes from PUTGET 

When the PUTGET service routine returns control to the program that 
invoked it, it provides one of the following return codes in general register 
15. 

Code 
(decimal) 

o 

4 

8 

12 

12 

16 

20 

24 

28 

32 

Meaning 

PUTGET completed normally. 
The line obtained came from the terminal. 

PUTGET completed normally. 
The line obtained did not come from the terminal. (MODE messages only.) 

The PUTGET service routine did not complete. An attention interruption 
occurred during the execution of PUTGET, and the attention handler turned on 
the completion bit in the communications ECB. 

No prompting was allowed on a PROMPT request. Either the user at the 
terminal requested no prompting with the PROFILE command, or the current 
source of input is an in-storage list other than an EXEC command procedure. 

A line could not be obtained after a MODE request. Second level messages exist, 
and the current stack element is not a terminal, but the terminal user did not 
request PAUSE processing with the PROFILE command. The messages are, 
therefore, not available to him. 

The NOW AIT option was specified for TPUT and no line was put out. 

The NOWAIT option was specified for TGET and no line was received. 

Invalid parameters were supplied to the PUTGET service routine. 

A conditional GETMAIN was issued by PUTGET for output buffers and there 
was not sufficient space to satisfy the request. 

The terminal has been disconnected. 

Using the TSO I/O Service Routines for Terminal I/O 177 



[symbol] 

Note: For a discussion of register contents and parameter list expansions for 
TPUT, see "TGET /TPUT /TPG Parameter Formats" later in this section. 

,.... -
TPUT buffer address,buffer size 

rIT J 
,NOEDIT 
,ASIS [' WAIT J [NOHOLD] [NOBREAIf-] 
,CONTROL ,NOWAIT ,HOLD ,BREAKIN 
,FULLSCR 

[HIGHP] [ASIDOid ~ ,LOWP ,ASIDLOC=address 
,USERIDL=address 

[R { ] MF= L 
1-' (E,ctrladdrl} 

Figure 76. The TPUT Macro Instruction -- Standard, Register, List, and Execute Forms 

buffer address 
Standard form: The address of the buffer that holds your line of output. 
You may specify any label valid in an RX instruction, or place the 
address of the label in one of the general registers 1-12, and then specify 
that register within parentheses. 

Register form: The register that contains the parameters to be passed in 
register 1 to the TPUT SVC. When the R format is specified, this 
operand must be in one of the general registers 1-12, and that register 
specified within parentheses. 

buffer size 
Standard form: The size of the output buffer in bytes. The allowable 
range is from 0 through 32,767 bytes. A buffer size of 0 results in no 
data being transmitted to the terminal. You can specify this buffer size 
directly as a number, or you can place the buffer size into one of the 
general registers 0, or 2-12, and specify that register within parentheses. 

Register form: The register that contains the parameters to be passed in 
register 0 to the TPUT SVC. When the R format is specified, this 
operand must be in one of the general registers 0 or 2-12, and that 
register specified within parentheses. 
Notes: 

1. If the registers you specify as the first and second operands in the 
register form of TPUT are registers 1 and 0 respectively, the 
TPUT macro instruction will expand directly into the 
TGET /TPUT /TPG SVC. However, if you use registers 2-12, the 
macro expansion will load registers 1 and 0 from the registers you 
specify before issuing the SVC. Therefore, you might find it 
advantageous to use registers 1 and O. (The expansion destroys the 
contents of registers 1 and 0.) 

2. If QSAM is used for terminalI/O and a data set is defined with 
BLKSIZE=80 and RECFM=U, each line will be truncated by 1 
character. This byte (the last byte) is reserved for an attribute 
character. 

180 TSO Guide to Writing a TMP or a CP 



R 
Indicates that this is the register form of the TPUT macro instruction. 
You must place the parameters you want passed to the TPUT SVC into 
two registers and specify those registers as macro instruction. 

The R operand and all other optional operands are mutually exclusive. If 
both R and any other optional operands are coded, the macro will not 
expand. 

MF= 

Indicates the form of the TPUT macro instruction. 

L 

Specifies the list form. 

(E,ctrl addr) 
Specifies the execute form and the address of the list form. 

EDIT 

. Indicates that in addition to minimal editing (see ASIS), the following 
TPUT functions are requested: 

a. All trailing blanks are removed before the line is written to the 
terminal. If a blank line is sent, the terminal vertically spaces one line. 

b. Control characters are added to the end of the output line to position 
the cursor to the beginning of the next line. 

c. All terminal control characters (except backspace) are replaced with a 
printable character. 

EDIT is the default value for the EDIT, ASIS, CONTROL, FULLSCR, 
and NOEDIT operands. 

NOEDIT 

Indicates that, if the terminal is an IBM 3270 display, the message is 
transmitted completely unedited. It is assumed that the command 
processor using this option has structured the data stream with the 
necessary commands to perform the display function. For LU Tl 
terminals, this option is converted to ASIS. -

ASIS 

Indicates that minimal editing is to be performed by the TPUT SVC as 
follows: 

a. The line of output is translated from EBCDIC to terminal code. 
Invalid characters are converted to a printable character to prevent 
program caused I/O errors. This does not mean that all unprintable 
characters are eliminated. For example, restore, uppercase, lower case, 
bypass, and bell ring might be valid but unprintable characters at some 
terminals. (See CONTROL.) 

b. Transmission control characters are added. 

c. An EBCDIC NL, placed at the end of the message, indicates to the 
TPUT SVC that the cursor is to be returned at the end of the line. 
NL is replaced with whatever is necessary to cause the cursor to 
return for that particular terminal type. This NL processing occurs 
only if you specify ASIS, and if the NL is the last character in your 
message. 

Using the TGET/TPUT/TPG SVC for Terminal I/O 181 



If you specify EDIT, NL is handled as described in item c under 
EDIT. 

If the NL is embedded in your message, a semicolon or colon may be 
substituted for NL and sent to the terminal. No idle characters are 
added (see item f below). This may cause overprinting, particularly on 
terminals that require a line-feed character to position the carrier on a 
new line. 

d. If you have used backspace in your output message, but the backspace 
character does not exist on the terminal type to which the message is 
being routed, the backspace character is removed from the output 
message. 

e. If the output line is longer than the terminal line size, control 
characters are added as needed to cause the message to display on 
s~veral lines. line size. 

r. A sufficient number of idle characters is added to the end of each 
output line to prevent the transmission of output to the terminal while 
the cursor is being returned to the left-hand margin. 

g. Including a bypass character, bypass carriage return, or bypass 
new-line character in the TPUT macro data suppresses printing of the 
next input entered by the user at the 3270 terminal. VT AM moves ihe 
cursor to the next available line, unlocking the keyboard. No more 
data is sent to the terminal until the terminal user enters data or 
presses the ENTER key. The data entered by the user is not printed 
at the terminal. 

CONTROL 

Indicates that this line is composed of terminal control characters and 
does not display or move the cursor on the terminal. This option should 
be used for transmission of characters such as bypass, restore, or bell 
ring. See item g under ASIS. 

FULLSCR 

Indicates that, for IBM 3270 display terminals, the message will be 
transmitted essentially unedited. The FULLSCR option is designed to 
allow you to use special features of the 3270 system. For any other 
terminal type, this option is treated exactly as ASIS. With the FULLSCR 
option, only the following editing is performed: 

a. If the first character in your message is an escape control character 
(X'27'), the two following characters are treated as a command code 
and as a write control character by the 3270. Note that the command 
code should always be for a remote 3270. If necessary, TPUT will 
convert the code to that for a local 3270. If the first character is not 
an escape character, a default write command and a write control 
character are added to the beginning of the message. Any 
attachment-dependent characters required for correct transmission of 
the data stream are provided by the access method. 

b. Transmission control characters (SOH, STX, ETX, ETB, EOT, and 
NAK) and characters having no 3270 equivalent (X'04', X'06', X'14'. 
through X'17', and X'24') are converted to printable colons to 
prevent program-caused I/O errors. 

181 TSO Guide to Writing a TMP or a CP 



L 

Lines are not counted when you use this option. 

If the OW AITHI value specified in your TSO parameters is not large 
enough to contain your entire message, or if the BUFFERS and 
BUFFERSIZE parameters are' specified so that your message does not fit 
into all of the system's buffers, the TPUT operation does not proceed, 
and code X'10' is returned. For a description of OWAITHI, refer to 
SPL· Initialization and Tuning. Without the FULLSCR option, your 
TPUT proceeds buffer-by-buffer as buffers become available. 

If FULLSCR is specified for a message destined for another terminal, 
ASIS will be used instead. . 

WAIT 

Specifies that control is not be returned to the program that issues the 
TPUT macro instruction until the output line is placed into a terminal 
output buffer. If no buffers are available, the issuill& program is placed 
into a wait state until buffers become available, and the output line is 
placed into them. WAIT is the default value for the WAIT and 
NOW AIT operands. 

NOWAIT 

Specifies that control is returned to the program that issues the TPUT 
macro instruction, whether or not a terminal output buffer is available 
for the output line. If no buffer is available, the TPUT SVC returns a 
code of 04 in register 15. 

NOH OLD 

Indicates that control is returned to the program that issues the TPUT 
macro instruction as soon as the output line is placed in terminal output 
buffers. 
NOHOLD is the default value for the NOHOLD and HOLD operands. 

HOLD 

Specifies that the program that issues the TPUT macro instruction cannot 
continue its processing until this output line is written to the terminal or 
deleted. 

NOBREAK 

Specifies that if the user starts to enter input, he is not interrupted. The 
output message is placed on the output queue and displayed after the 
user completes the line. 
NOBREAK is the default value for the NOBREAK and BREAKIN 
operands. 

_BREAKIN 

Specifies that output has precedence over input. If the user starts to 
enter input, he is interrupted, and this output line is displayed. Any data 
received before the interruption is displayed following this output line. 

Using the TGET/TPUT/TPG SVC for Terminal I/O 183 



HIGHP 

Specifies that this message must be sent to the terminal, even though the 
destination terminal does not display messages from other terminals. This 
operand counters the effect of the interterminal communication bit when 
the bit is set by the TERMINAL command. (The HIGHP operand is 
used by the SEND subcommand of OPERATOR and the SEND 
operator command.) The operand is recognized only if the issuing task is 
authorized (via system key, supervisor state, or APF). The ASID 
keyword must also be specified. HIGHP is the default if neither HIGHP 
nor LOWP is specified, and if the issuing program is authorized. 

LOWP 

Specifies that if the user of the destination terminal allows interterminal 
messages, this TPUT will be sent to the terminal. (TPUT tests the 
interterminal communication bit in the terminal status block). If such 
messages are not allowed, the message is not displayed, and a code of 
X'OC' is returned, indicating that the message was not displayed. The 
LOWP operand is recognized only when ASID is specified. The issuer 
must be authorized (via system key, supervisor state, or APF). 
If LOWP is specified, the issuing program should have an alternate 
method of transmitting the message to the terminal user. For example, a 
message data set could be used. 

ASID, ASIDLOC, or USERIDL 

Specifies the ASID (address space identifier) of the target terminal, the 
address of that ASID, or the address of a field that contains a user ID. 
This facility is used for supervisor communication with the terminal and 
for inter-user communication among terminals (the SEND command). If 
you specify ASID, you must supply an ASID number. The ASID is 
located in the two-byte JSCBTJID field of the job step control block. If 
you use ASIDLOC, you must supply the address of the halfword that 
contains the ASID. If you use USERIDL, you must supply the address of 
the eight-byte field that contains the user ID. The user ID must be 
left-justified and, if necessary, padded with blanks. ASID, ASIDLOC, or 
USERIDL can be specified in a register (2-12), and must be 
right-justified. The register number must be enclosed in parentheses. If 
USERIDL is used, the NOHOLD option is both required and the default 
if not specified. 

Note: Normally, a program invokes TPUT to issue a message to the user 
running the program -- that is, ASID, ASIDLOC, and USERIDL are not 
specified. If that program is run in the background, the TPUT has no 
effect. 

If the TPUT specifies an ASID or user ID, the message is sent to the target 
terminal. ASID and USERID TPUTs from programs not in supervisor state 
or not authorized under APF are prefixed with a plus sign (+) by SVC 93 
to prevent possible counterfeiting of system messages to an operator 
console. 

184 TSO Guide to Writing a TMP or a CP 



[symbol] 

Return Codes from TPUT 

When it returns control to the program (foreground or background) that 
invoked it, the TPUT SVC supplies one of the following return codes in 
general register 15: 

Code Meaning 
(hexadecimal) 

00 TPUT completed successfully. 

04 NOW AIT was specified and no terminal output buffer was available. 

08 An attention interruption occurred while the TPUT SVC routine was processing. 
The message was not sent. 

OC A TPUT macro instruction with an ASJD operand was issued but the user, 
indicated by the ASID, requested that interterminal messages not be printed on 
his terminal. The message was not sent. 

10 Invalid parameters were passed to the TPUT SVC. 

14 The terminal was disconnected and could not be reached. 

The TPG Macro Instruction -- Writing a Line Causing 
Immediate Response 

TPG 

Use the TPG macro instruction (SVC 93) to transmit a line of output to 
the terminal if that line of output will cause the device to respond 
immediately with input. The main use of TPG is to perform the Query 
function for a user who has included a Read Partition Structured field. TPG 
NOEDIT creates an outbound request unit with an associated change 
direction indicator to allow the device to go into send state. This data is not 
inspected. A TGET macro must be issued to retrieve the query response. 

You can use the TPG macro instruction in any TSO routines you write, 
and in any application programs to be run under TSO. 

Note: The TPG macro instruction is designed specifically to allow you to 
use the special features of the IBM 3279. 

The TPG macro instruction must be issued in 24-bit addressing mode. 
All input specified on the macro must reside below 16 megabytes. 

Figure 77 shows the format of the TPG macro instruction. Each of the 
operands is explained following the figure. Appendix A describes the 
notation used to define macro instructions. For a discussion of parameter 
list expansions for TPG, see "TGET/TPUT/TPG Parameter Formats" later 
in this section. 

buffer address,buffer size 

[['NOEDIT] [,WAIT ] [,NOHOW] ] ' NOWAIT , HOLD 

[ MF= {L } ] ' (E,ctrladdr) 

Figure 77. The TPG Macro Instruction -- Standard, List, and Execute Forms 

Using the TGET /TPUT /TPG SVC for Terminal I/O 185 



200 TSO Guide to Writing a TMP or a CP 



L 

[symbol] 

Return Codes from TPUT 

When it returns control to the program (foreground or background) that 
invoked it, the TPUT SVC supplies one of the following return codes in 
general register 15: 

Code Meaning 
(hexadecimal) 

00 TPUT completed successfully. 

04 NOW AIT was specified and no terminal output buffer was available. 

08 An attention interruption occurred while the TPUT SVC routine was processing. 
The message was not sent. 

OC A TPUT macro instruction with an ASID operand was issued but the user, 
indicated by the ASID, requested that interterminal messages not be printed on 
his terminal. The message was not sent. 

10 Invalid parameters were passed to the TPUT SVc. 

14 The terminal was disconnected and could not be reached. 

The TPG Macro Instruction -- Writing a Line Causing 
Immediate Response 

TPG 

Use the TPG macro instruction (SVC 93) to transmit a line of output to 
the terminal if that line of output will cause the device to respond 
immediately with input. The main use of TPG is to perform the Query 
function for a user who has included a Read Partition Structured field. TPG 
NOEDIT creates an outbound request unit with an associated change 
direction indicator to allow the device to go into send state. This data is not 
inspected. A TGET macro must be issued to retrieve the query response. 

You can use the TPG macro instruction in any TSO routines you write, 
and in any application programs to be run under TSO. 

Note: The TPG macro instruction is designed specifically to allow you to 
use the special features of the IBM 3279. 

The TPG macro instruction must be issued in 24-bit addressing mode. 
All input specified on the macro must reside below 16 megabytes. 

Figure 77 shows the format of the TPG macro instruction. Each of the 
operands is explained following the figure. Appendix A describes the 
notation used to define macro instructions. For a discussion of parameter 
list expansions for TPG, see "TGET /TPUT /TPG Parameter Formats" later 
in this section. 

buffer address,buffer size 

[ [,NOEOITi [, WAIT ] [,NOHOLQ] ] , NOWAIT ,HOLD 

[ MF= {L } ] ' (E,ctrladdr) 

Figure 77. The TPG Macro Instruction -- Standard, List, and Execute Forms 

Using the TGET/TPUT/TPG SVC for Terminal I/O 185 



buffer address 
Standard form: The address of the buffer that holds your output data. 
You may specify any address valid in an RX instruction, or place the 
address in one of the general registers 1-12, and then specify that 
register within parentheses. 

buffer size 
Standard form: The size of the output buffer in bytes. The allowable 
range is from 0 through 32,767 bytes. A buffer size of 0 results in no 
data being transmitted to the terminal. You can specify this buffer size 
directly as a number, or you can place the buffer size into one of the 
general registers 0, or 2-12, and specify that register within parentheses. 

Note: The R format may not be used for the TPG macro. 

NOEDIT 

Indicates that, if the terminal is an IBM 3270 display, the message is 
transmitted completely unedited. The command processor using this 
option must structure the data stream with the necessary commands to 
perform the display function (by including the command, write control 
character, structured fields, ... ). The command processor should supply 
only the data stream. Any attachment-dependent characters (such as 
X'27' for bisynchronous devices) are provided by the access method. For 
LU _ Tl terminals, this option is treated exactly like the ASIS option of 
the TPUT macro. 

WAIT 

Specifies that control is not returned to the program that issued the 
TPUT macro instruction until the output line is placed into a terminal 
output buffer. If no buffers are available, the issuing program is placed 
into a wait state until buffers become available, and the output line is 
placed into them. WAIT is the default value for the WAIT and 
NOW AIT operands. 

NOWAIT 

Specifies that control is returned to the program that issued the TPG 
macro instruction, whether or not a terminal output buffer is available 
for the output line. If no buffer is available, the TPG SVC returns a 
code of 04 in register 15. 

NOHOLD 

Indicates that control is returned to the program that issued the TPUT 
macro instruction as soon as the output line is placed in terminal output 
buffers. 
NOHOLD is the default value for the NOH OLD and HOLD operands. 

HOLD 

Specifies that the program that issued the TPG macro instruction cannot 
continue its processing until this output line is written to the terminal or 
deleted. 

186 TSO Guide to Writing a TMP or a CP 



MF= 
Indicates the form of the TPG macro instruction. 

L 

Specifies the list form. 

(E,ctrl addr) 

Specifies the execute form and the address of the list form. 

Note: If a TPG macro is coded in a background program, the TPG is 
ignored. 

Return Codes from TPG 

When it returns control to the program (foreground or background) that 
invoked it, the TPG SVC supplies one of the following return codes in 
general register 15: 

Code Meaning 
(hexadecimal) 

00 TPG completed successfully. 

04 NOWAIT was specified and no terminal output buffer was available. 

08 An attention interruption occurred while the TPG SVC routine was processing. 
The message was not sent. 

10 Invalid parameters were passed to the TPG SVC. 

14 The terminal was disconnected and could not be reached. 

Using the TGET/TPUT/TPG SVC for TerminalI/O 187 



[symbol] 

The TGET Macro Instruction -- Getting a Line from the 
Terminal 

Use the TGET macro instruction to read a line of input from the terminal. 
A line of input is defined as all the data between the beginning of the input 
line and a line-end delimiter. A line-end delimiter is any character or 
combination of characters which causes the cursor to return to the left-hand 
margin on a new line, or which terminates transmission from the terminal. 

You can use the TGET macro instruction in any TSO routine, and in any 
application program that is run under TSO. Note, however, that TGET does 
not provide access to in-storage lists, nor does it perform any type of 
logical line processing on the returned line. If you require these features, 
use the GETLINE macro instruction. 

Each time TGET returns control to your program, register 1 contains the 
number of bytes of data actually moved from the terminal to your input 
buffer. If your buffer is smaller than the line of input entered at the 
terminal, only as much of the input line as can be contained in the input 
buffer is moved. Return code X'OC' indicates that only part of the line was 
obtained by TGET. You must then issue as many TGET macro instructions 
as are required to get the rest of the line of input. 

The TGET macro instruction must be issued in 24-bit addressing mode. 
All input specified on the macro must reside below 16 megabytes. 

Figure 78 shows the format of the TGET macro instruction; it combines 
the standard and the register form. Each of the operands is explained 
following the figure. Appendix A describes the notation used to define 
macro instructions. 

For a discussion of register contents and parameter list expansions for 
TGET, see "TGET /TPUT /TPG Parameter Formats" later in this section. 

[[ ,EDIT] [,WAIT] ] TGET buffer address, buffer size ',~SIS ,NOWAIT 

[ MF= ~L fJ 
' (E,ctrladdr) 

Figure 78. The TGET Macro Instruction -- Standard, Register, List, and Execute Forms 

buffer address 
Standard form: The address of the buffer that is to receive the input line. 
This can be any address valid in an RX instruction, or the address can 
be placed in one of the general registers 1-12, and that register specified 
within parentheses. 

Register form: The register that contains the parameters to be passed in 
register 1 to the TGET SVC. When the R format is specified, this 
operand must be in one of the general registers 1-12, and that register 
specified within parentheses. 

188 TSO Guide to Writing a TMP or a CP 



buffer size 
Standard form: The size of the input buffer in bytes. The allowable 
range is from 0 through 32,767 bytes. You can specify this buffer size 
directly as a number, or you can place the buffer size into one of the 
general registers 0, or 2-12, and specify that register within parentheses. 
A TGET with a O-length buffer size will successfully get a null line. 

Register form: The register that contains the parameters to be passed in 
register 0 to the TGET SVC. When the R format is specified, this 
operand must be in one of the general registers 0 or 2-12, and that 
register specified within parentheses. 

Note: If the registers you specify as the first and second operands in the 
register form of TGET are registers 1 and 0 respectively, the TGET macro 
instruction will expand directly into the TGET /TPUT /TPG SVC. However, 
if you use registers 2-12, the macro expansion will load registers 1 and 0 
from the registers you specify before issuing the SVC. Therefore, you might 
find it advantageous to use registers 1 and O. 

R 
Indicates that this is the register form of the TGET macro instruction. 
You must place the parameters you want passed to the TGET SVC into 
two registers and specify those registers as the first two operands of the 
macro instruction. 
The R operand and all other optional operands are mutually exclusive. If 
both R and any other optional operands are coded, the macro will not 
expand. 

EDIT 

Specifies that in addition to minimal editing (see ASIS), the following 
TGET functions are requested: 

a. All terminal control characters (nongraphic characters such as bypass, 
line feed, restore, prefix and the character immediately following it) 
are removed from the data. 

b. When backspace is not used for character deletion, the horizontal tab 
(HT) and the backspace (BS) characters, remain in the data. 

c. If the returned input line is shorter than the input buffer length, the 
buffer is padded with blanks. These blanks are not included in the 
character count returned in register 1. 

EDIT is the default value for the EDIT and ASIS operands. 

ASIS 

Specifies that minimal editing is done as described below: 

a. Transmission control characters are removed. 

b. The returned input line is translated from terminal code to EBCDIC. 
Invalid characters are compressed out of the data. 

c. Line deletion and character deletion are performed according to the 
specifications in the terminal status block. 

d. New line (NL), cursor return (CR), and line feed (LF) characters, if 
present at the end of the line, are not included in the data count 
returned in register 1. 

Using the TGET/TPUT/TPG SVC for TerminalI/O 189 



. \ 

e. After the input message is received, the cursor is returned to the 
left-hand margin of the next line before any output to the terminal is 
displayed. 

WAIT 

Specifies that control is not returned to the program that issues the 
TGET macro instruction until the input line is placed into your input 
buffer. If an input line is not available from the terminal, the issuing 
program is placed into a wait state until a line becomes available and is 
read into your input buffer. WAIT is the default value for the WAIT and 
NOW AIT operands. 

NOWAIT 

Specifies that, whether or not an input line is available from the terminal, 
control is returned to the program that issues the TGET macro 
instruction. If no line is returned, the TGET SVC returns a code of 
X'04' in register 15. 

MF= 

Indicates the form of the TGET macro instruction. 

L 

Specifies the list form. 

(E,ctrladdr) 
Specifies the execute form and the address of the list form . 

Return Codes from TGET 

When it returns .control to the program that invokes it, the TGET SVC 
supplies, in register I, the length of the message moved into your buffer, 
and, in register IS, one of the following return codes: 

Code Meaning 
(hexadecimal) 

00 TGET completed successfully. Register 1 contains the length of the input line 
read into your input buffer. 

04 NOWAIT was specified and no input was available to be read into your input 
buffer. 

08 An attention interruption occurred while the TGET SVC routine was processing. 
The message was not received. 

OC Your input buffer was not large enough to accept the entire line of input entered 
at the terminal. Subsequent TGET macro instructions will obtain the rest of the 
input line. 

10 Invalid parameters were passed to the TGET SVC. 

14 The terminal was disconnected and could not be reached. 

18 TGET completed successfully. Register 1 contains the length of the input line 
read into your input buffer. The data was received in NOEDIT mode. 

1C Your input buffer was not large enough to accept the entire line of input entered 
at the terminal. Subsequent TGET macro instructions will obtain the rest of the 
input line. The data was received in NOEDIT mode. 

190 TSO Guide to Writing a TMP or a CP 



TGET/TPUT /TPG Parameter Formats 

-

If you use the register format of the TGET or TPUT macro instruction, 
you must code the parameters you want passed to the TGET /TPUT /TPG 
SVC into two registers. Specify these two registers, enclosed in 
parentheses, as the first two operands of the TGET or TPUT macro 
instruction, followed by the R operand to indicate that you are executing 
the register form of the macro instruction. 

Note: For TPUT, the expansion destroys the contents of registers 0 and 1. 

If the registers you specify as the first and second operands of the macro 
instruction are register 1 and register 0 respectively, the TGET or TPUT 
macro instruction expands directly to the TGET /TPUT SVC. If you 
specify other permissible registers, registers 2-12, the macro expands to 
load registers one and zero from the registers you specify before issuing the 
SVc. The R format may not be used for the TPG macro. 

For the TPUT macro, the registers must be formatted as shown in 
Figure 79. 

Address Space 10 (ASIO-TPUT only) Buffer Size 

RO 
I I 

Rl r Flags T Address of your Input or Output Buffer 
~I 

R15 I~ Address of User 10 ~I 

Figure 79. TPUT Parameter Registers 

Using Terminal Control Macro Instructions 191 



RO r 
R1 [ 

Figure 80. TGET Parameter Registers 

For the TGET macro, the registers must be formatted as shown in 
Figure 80. 

Reserved T Buffer Size 

Flags T 
Flags/Flag 1 

One Byte 

0 ...... . 

I ...... . 

. 0 ..... . 

. 1. .... . 

.. 0 .... . 

.. 1. ... . 

... 0 ... . 

... 1 ... . 

.... 0 .. . 

.... 1. .. 

.... . 0 .. 

.... . 1.. 

.... .. 00 

.... .. 01 

.... .. 10 

.... .. 11 

Address of Your Input Buffer 

Always set to 0 for TPUT. 

Always set to 1 for TGET. 

No user ID . 

Register 15 contains address of user 10 . 

HIGHP processing is requested . 

LOWP processing is requested . 

WAIT processing is requested . 

NOW AIT processing is requested . 

NOHOLD processing is requested . 

HOLD processing is requested . 

NOBREAK processing is requested . 

BREAK processing is requested . 

EDIT processing is requested . 

ASIS processing is requested . 

CONTROL processing is requested . 

FULLSCR processing is requested . 

~I 

J 

If you use the execute fomt of the TPUT macro, the coded parameters 
expand into the parameter list shown in Figure 81. 

192 TSO Guide to Writing a TMP or a CP 



I 

General 
Register 1 

RO 

--
+0 

+4 

+S 

+C 

Address Space ID (ASIO-TPUT onlyl T Output Buffer Si ze 

Flag 1 I Address of Your Output Buffer 

Address of User 10 

Flag 2 I (X'SO') Reserved 

X'SO' Reserved 

Figure 81. Parameter List Expansion for the Execute Form of TPUT 

+0 

+4 

+8 

+C 

If you use the standard form of the TPUT macro, you can code your 
parameters using registers or symbols. In this case, the TPUT macro 
expands to load the parameters into registers 0, 1, and 15 in the format 
illustrated in Figure 79. 

If you use the list form of the TPUT macro, the coded parameters 
expand into the parameter list shown in Figure 82. 

Address Space 10 (ASIO-TPUT only) Output Buffer Size 

Flag 1 Address of Your Output Buffer 

Address of User 10 

Flag 2 Reserved 

Figure 82. Parameter List Expansion for the List Form of TPUT 

Using the TGET/TPUT/TPG SVC for Terminal I/O 193 



General 
Register 1 

l 

( 

RO 

~ 

+0 

+4 

+8 

+C 

If you use the execute form of the TPG macro, the coded parameters 
expand into the parameter list shown in Figure 83. 

Reserved I Output Buffer Size 

Address of Your Output Buffer 

Reserved 

Flag 2 I I Reserved 
(X'SO') 

Flag 1 

(X'SO') Reserved 

Figure 83. Parameter List Expansion for the Execute Form of TPG 

+0 

+4 

+S 

+c 
Flag 2 

If you use the list form of the TPG macro, the coded parameters expand 
into the parameter list shown in Figure 84. 

Reserved I Output Buffer Size 

Address of Your Output Buffer 

Reserved 

I Flag 1 I Reserved 

Figure 84. Parameter List Expansion for the List Form of TPG 

For Figure 81 - Figure 84, FlagI is the same as that for Flags in Figure 
79 and Figure 80. Flag2 is X'OI' for the NOEDIT option and X'02' for the 
TPG macro. 

194 TSO Guide to Writing a IMP or a CP 



RD 

R1 Flags 

In Figure 85, Flags is the same as that for Flags in Figure 79 and Figure 
80. 

If you use the standard, list, or execute form of the TGET macro, the 
coded parameters expand into the parameter list shown in Figure 85. 

Reserved Input Buffer Size 

Address of Your Input Buffer 

Execute and Standard Form 

Reserved Input Buffer Size 

Flags Address of Your Input Buffer 

List Form 

Figure 85. Parameter List Expansion for th«; Standard, List, and Execute Forms of TGET 

Using the TGET/TPUT /TPG SVC for Terminal I/O 195 



Coding Examples of TGET and TPUT Macro Instructions 
The following coding examples show different ways to use the TGET and 
TPUT macro instructions. 

Examples of TPUT and TGET Using the Default Values 

Figure 86 shows a TPUT and a TGET macro instruction. They both use 
the default values; that is, the TPUT macro instruction defaults to EDIT, 
WAIT, NOHOLD, and NOBREAK, and the TGET macro instruction 
defaults to EDIT and WAIT. 

196 TSO Guide to Writing a TMP or a CP 

J 



* 
1,If 

~ PI? ve ES 51 "IG 1 

If .If 

-If IUSE TH Ie ,T!' vr fsf4 Cl(o IrV '.:>-7 ~~ CiT /10 IV T(J ~~ IT .f ~ € S j,!: 0 IT~~ 
~ Tl€ k'ftf IN / /) ~ ITHE {N! \l:"~ UIL 11'1/ J Itt e:S • 
~ '* 

If'~f IES !'fG Ie f '2~ ITf't ~ 8 ~~ €K" A~ ~~ IE ~ IS iT ~. 

,IE SiY 1Jf~ oil. IC ~P P~ ~s ~£ S5 , ~ II: 

1ft iT~ ~ \5 err /~ rv G ITiIt IS IT~ ~W 171y 
If! ,,~~ ~lr 176 ~. 

L T'f: 1f5 l2.f~ 17€ iSlZ ~~ lTV ~b- C~ ~~ - ~ 
!~ IrV 10/ ~~ r~ ~ ~~ c ~fS ~llIL 

'* fV1 ~i'= IT/~ t\;'. I IZ"W .fIT ""~~ Ii3 r ~~ rv i C'O k?lf 1I/§ l1- 07 ~E ~ l2. ~Ic ITO -9~ 

if E~f? O~ ~k7~IT IV \E. I 

Itt I 
, I 

, 

I I I~ , 

Itt'l (lis it 17 ~I'" !7~c iT ~IC~IC; I!YS ITRk-C,7 lOW! iz' ~. bls[T t1 i/ W i4 rt1/ ~P ~TI t.. I ~ I 

· r'~'/~ 17rt ~: :T~R IN'A?- I rilt; :olt'i ,0 ., E: Tift' P~f/I ~jLr :y I4L,vC's i ' , I • ! i 

'* ' i 
! ' , I I Iii I I ! I I I I i 

, 
l.,lfo 

I ' I T1~S7 1"''- I=~ tl3isz ! I I T#,e ~~ ~l-= j.fl~ tI joPlE' i€1sfs I 11 IE I 

'* I i I I S!Yif1 ~~ ILl ~~p r~s 15ll. ~~~ I, ~Yv~ 
j,Jf 17Yt~ It!' \'11'" IZ' I='.f" r- I!=t'\' vjG r I lc:; ~~~ 

"" 
I p- lfl jT~ VR lr~ p ~i:). 

i*' I ~ 
1.1 17)E: 1'f iJ 1'r5 I rF ST IrW ~ ~il' fr,J ~'~ CIr1~ - ,~ 

I"" I\" 

~ ltv jov k=f1 T~~ s~ C ~l§ ~~L 
Ii! ~11i IAt7~ ck:i ~j..cl IL I ... ~. I~ \€rr ~~~ 

loll c~ P'~ /~ /110 IT ~~ ~Ir 1 .. ~~ !.tIN C~ 171" 11~ 
I~ I.e I~ ~ jz I~ ~ . I~r' ,,,. I I;H 

lIE p~ Oc ~ S5 IWG 

i'E 1,11 
~~ ~17~ I ~ jC:::k' ~~ r-'17 II. IV ~ ~~ p CjE lc;/ . 

* I~ 
it- 517 O~ ~IG I.e, IT\.c !CL ~~ ~T Ip ~S! 
~ }f 

1)$ it!:~ 
es ~~ Gte t ,,;, ~~ 2~ / 7 ~/S IS lZ'[,C ~Z ~~ ~~ ~C::i ~. 

I".. 
S :~L f ~ f-

IE ~ 

Figure 86. Coding Example: TPUT and TGET Macro Instructions Using the Default Values 

The program issuing the TGET macro instruction is not given control 
until a line of data is returned. The default value is WAIT. If less then 130 
characters are entered, the input buffer will be padded with blanks. The 
default is EDIT. Remember that the actual length of the data in the input 
buffer is returned in register 1. 

Using the TGET/TPUT/TPG SVC for Terminal I/O 197 



,If 

'If ~ ()C c9 I 

~ 

~ PL 4C E 7f.1!!c 

~ / 170 ~ ~~ 
* 

! LiA 

*i' I i 

~ ! 

* 
I 

1L~ 

1«' 
fH 
". / 55 ~ I'll 
~ 

~ 
It 

LT 
If. 

~ 

'" 1* 
f'f 
iN- p rJC ES I 

if 

~~ ~Lrw 

~ 
fll' .s 
f(' 

Is 
- If-~ 1 Ie 

* 
W 

IS 

Example of TPUT Macro Instruction -- Buffer Address and Buffer 
Length in Registers 

In the coding example shown in Figure 87 the output message buffer 
address and length are loaded into registers, and those registers coded as 
operands in the TPUT macro instruction. 

You might want to do this when, for example, the TPUT macro 
instruction is issued in a subroutine which receives, as parameters, a pointer 
to the message and the message length. 

~ 

~ 

s- Ill'" T~E 18 'II" i 
lsr ~ -f1S • i i 1 I 

I 
I 

I , I I , 
I f~ 

I¢ ,'L '~ ~!slsl'/'G I.€i f I I ~f'1 \til W;E ~~W ~ ~~D r~ I/W roi I 

I I I ' - ~!GilS 17",G"~ ~ iE~o;.! ITW ~: ' ~AP I I 
I i ' - I 

I 11 ~*, ~~ ~ls I/rv ~~~kI CiT l~rtI Il-¥,S~ I=lsl I 
I lrW-flr IrW ~ WIlGf'r 1- - ~'y f~ II'S '"" "" 

IV ~I'I ~ k'~ ~I rl= ~. 
f, JJF SS A~ l!:t ~~ A~ Ii/) ~~ les s p~ T~ ~~ T ~17 

~~ ~~ lit Ir~ ~~ ~1I fir ~~ ~N 
~ 

T,'P ()7 tf" c~lo IrY 57 ffV ITI ~~. 
;(. 

7 1(1 ) (~) 

* flo IS lT~ SiT 7'11 I.E ~~ T'(/ ~w ro - ''''~ '0 

I~ (J I' .... T'I: S ~,V C 
_1_1 -... '.., 

..... ~ ... €7 leA .v. 11::1 7""/i, ~~ GI.~ 'V 
/:~ ~T'" ro! /)~ IS vo r ..... o r 4'\1 .. ,",v' 

~ ~R fO (/7 /'V '€. 
,If 

G 

!~ II'> ~\O ~17 1'rI/ ~ ~~ (jC lsi G. 

IH-
EK: ~~ 1fT 10 ~G; 

~ 
wa~ 
11-1 TW lIS /s ,1/ T~ tilT ~~Is 1 , 

~ 

Figure 87. Coding Example: TPUT Macro Instruction Buffer Address and Buffer Length in Registers 

198 ISO Guide to Writing a IMP or a CP 

J 

J 



*' 

* 

* 
* 

I ! 

Example of the TGET Macro Instruction -- Register Format 

LII 

!LA 

51-'-

Figure 88 shows the code necessary to issue a register format TGET macro 
instruction. The buffer length, buffer address, and the option flags are 
loaded into registers zero and one. Note that the flag byte in register one is 
set to binary 10000001, indicating that this is a TGET macro instruction 
requesting ASIS processing. This means that only minimal editing is 
performed on the input line. 

'f., , ' 
1-11 

''''~'''' ,..."' ..... 17 ' ' 
I'" 

!Lr , L, ,15' 

* 

II!: CiL 

I 

Figure 88. Coding Example: TGET Macro Instruction Register Format 

Using the TGET/TPUT/TPG SVC for TerminalI/O 199 



200 TSO Guide to Writing a TMP or a CP 



L 

Using Terminal Control Macro Instructions 

The following macro instructions allow a command processor to control 
terminal functions and attributes. 

Macro Instruction 

GTSIZE 

GTTERM 

RTAUTOPT 

SPAUTOPT 

STATTN 

STAUTOCP 

STAUTOLN 

STBREAK 

STCC 

STCLEAR 

STCOM 

STFSMODE 

STLINENO 

STSIZE 

STTIMEOU 

STTMPMD 

STTRAN 

TCLEARQ 

Function 

Get terminal line size 

Get terminal attributes 

Restart automatic line numbering or character prompting 

Stop automatic line numbering or character prompting 

Set attention simulation 

Start automatic character prompting 

Set automatic line numbering 

Set break 

Specify line-deletion and character-deletion characters 

Set display clear character string 

Set interterminal communication 

Set full screen mode 

Set line number 

Set terminal line size 

Set timeout feature 

Set terminal display manager options 

Set character translation 

Clear buffers 

Some of the terminal control macro instructions may be safely coded in a 
user-written command processor. They are: 

GTSIZE 

GTTERM 

RTAUTOPT 

SPAUTOPT 

STAUTOCP 

STAUTOLN 

STFSMODE 

STLINENO 

STTMPMD 

STSIZE 

TCLEARQ 

The other macro instructions are intended for system use and are not 
recommended for inclusion in user-written command processors. These 
macros are used in the IBM-supplied PROFILE and TERMINAL 
commands. Inappropriate use of the following macros can cause terminal 
errors: 

STATTN 

STBREAK 

STCC 

STCLEAR 

STCOM 

STTIMEOU 

STTRAN 

Using Terminal Control Macro Instructions 201 



Except for the GTSIZE, RTAUTOPT, SPAUTOPT, and STAUTOCP 
macros, all terminal control macros must be issued in 24-bit addressing 
mode. Note that all services invoked by the terminal control macros execute 
in 24-bit addressing mode. 

GTSIZE -- Get Terminal Line Size 

Use the GTSIZE macro instruction to determine the current logical line size 
of the user's terminal. If the terminal is a display station, use the GTSIZE 
macro instruction to determine the size of the display screen. 

When the GTSIZE macro instruction is issued in a time sharing 
environment, the logical line size of the user's terminal (that is, the 
maximum number of characters per line) is returned in register 1. If the 
terminal is a display station, the line size is returned in register 1 and the 
screen length (that is, the maximum number of lines per display) is returned 
in register O. If the terminal is not a display station, register 0 will contain 
all zeros. The GTSIZE macro instruction is ignored if TSO is not active 
when the macro instruction is issued. 

Figure 89 shows the format of the GTSIZE macro instruction. 

[ symbol] GTSIZE 

Figure 89. The GTSIZE Macro Instruction 

When control is returned to the user, register 15 contains one of the 
following return codes: 

Hexadecimal 

Code Meaning 

00 Successful. The contents of registers 0 and I are described above. 

04 Parameter specified to the SVC. No parameter should be specified. 

GTTERM -- Get Terminal Attributes 

Use the GTTERM macro instruction to determine the primary (default) and 
alternate screen sizes specified for a 3270 display terminal. 

Use the ERASE/WRITE command (X'F5') to erase the screen, to set the 
screen size mode to primary mode, and optionally to write data to the 
screen. Use the ERASE/WRITE ALTERNATE command (X'7E') to erase 
the screen, to set the screen size mode to the alternate mode, and 
optionally to write data to the screen. 

Figure 90 shows the format of the GTTERM macro instruction. 

PRMSZE=addr [,ALTSZE=addr] [,ATTRIB=addr]r,MF=~ LtJ 
[ 1(E,ctrl-addr)f 

Figure 90. The GTTERM Macro Instruction 

PRMSZE=addr 

specifies the address of a 2-byte area into which GTTERM returns the 
primary row value in the high-order byte and the primary column value 
in the low-order byte. 

202 TSO Guide to Writing a TMP or a CP 



AL TSZE=addr 

specifies the address of a 2-byte area into which GTTERM returns the 
alternate row value in the high-order byte and the alternate column value 
in the low-order byte. 

ATTRIB=addr 

specifies the address of a I-word field into which GTTERM returns 
terminal attributes. The contents of this field are described below: 

Byte Bits Values Meaning 

0-2 Reserved 
3 0-5 Reserved 

6 0 The device supports EBCDIC code. 
1 The device supports ASCII code. 

7 0 The Read Partition (Query) is not supported. 
1 The Read Partition (Query) is supported. 

Note: If A TTRIB is specified, you do not have to code PRMSZE or 
ALTSZE. 

MF= 

Indicates the form of the GTTERM macro instruction. 

L 

Specifies the list form. 

(E,ctrladdr) 

Specifies the execute form and the address of the list form. 

When control is returned to the user, register 15 contains one of the 
following return codes: 

Hexadecimal 

Code 

00 

08 

OC 

Meaning 

Successful. 

Terminal in use is not a display terminal. 

Required PRMSZE parameter was not specified. 

If you use the list form of the GTTERM macro, the coded parameters 
expand into the parameter list shown in Figure 91. 

+0 Address of halfword to receive primary screen size 
+4 Address of halfword to receive alternate screen size 
+8 Address of word to receive Device Query supported flag 

Figure 91. Parameter List Expansion for List Form of GTTERM 

RTAUTOPT -- Restart Automatic Line Numbering or Character 
Prompting 

Use the RT AUTOPT macro instruction to restart eitfier the automatic line 
numbering feature or the automatic character prompting feature. (The 
feature was suspended when the terminal user caused an attention 
interruption or entered a null line of input.) Since only one of these 
features can be used at a time, the restarted feature is the one that was 
suspended. (See the ST AUTOLN macro instruction for a description of the 
automatic line numbering feature and the STAUTOCP macro instruction 
for a description of the automatic character prompting feature.) 

When this macro instruction is used to restart automatic line numbering, 
the first line number assigned after line numbering is restarted is the same 

Using Terminal Control Macro Instructions 203 



line number that would have been assigned to the next line of terminal 
input if automatic line numbering had not been suspended. 

If the application program is creating a line numbered data set, use of 
the ST AUTOLN macro to specify the starting number is recommended 
when restarting automatic line numbering. This will insure that the 
application's numbers are still in synchronization with the system's. 

The RT AUTOPT macro instruction is used only in a time sharing 
environment. It is ignored if TSO is not active when the macro instruction 
is issued. 

Figure 92 shows the format of the RT AUTOPT macro instruction. 

[symbol] RTAUTOPT 

Figure 92. The RTAUTOPT Macro Instruction 

When control is returned to the user, register 15 contains one of the· 
following return codes: 

Hexadecimal 

Code Meaning 

00 Successful. Either automatic line numbering or automatic character prompting 

has been restarted. 

04 Parameter specified to the SVc. No parameter should be specified. 

08 Invalid request. Either automatic line numbering or automatic character 

prompting was never started or never suspended, or a SPAUTOPT macro 

instruction has been issued to stop automatic line numbering or automatic 

character prompting. 

SPAUTOPT -- Stop Automatic Line Numbering or Character 
Prompting 

Use the SPAUTOPT macro instruction to stop either the automatic line 
numbering feature or the automatic character prompting feature. Since only 
one of these features can be used at a time, the active feature is the feature 
that is stopped. (See the ST AUTOLN macro instruction for a description of 
the automatic line numbering feature, and the STAUTOCP macro 
instruction for a description of the automatic character prompting feature.) 

The system can suspend automatic prompting when the terminal user 
causes an attention interruption or enters a null line of input. This macro 
should then be issued by the application program in its attention exit, or as 
the result of a zero length input line received via TGET. When stopped by 
the SPAUTOPT macro, prompting cannot be restarted by use of the 
RT AUTOPT macro. Prompting must be restarted by the ST AUTOLN or 
ST AUTOCP macro. 

The SPAUTOPT macro instruction is used only in a time sharing 
environment. It is ignored if TSO is not active when the macro instruction 
is issued. 

204 TSO Guide to Writing a TMP ora CP 

J 



[symbol] 

Figure 93 shows the format of the SPAUTOPT macro instruction. 

[symbol] I SPAUTOPT 

Figure 93. The SPAUTOPT Macro Instruction 

When control is returned to the user, register 15 contains one of the 
following return codes: 

Hexadecimal 

Code Meaning 

00 Successful. Either automatic line numbering or automatic character prompting 

has been stopped. 

04 Parameter specified to the SVC. No parameter should be specified. 

08 Invalid request. Either automatic line numbering or automatic character 

prompting was never started. 

STA TIN -- Set Attention Simulation 

Use the ST ATTN macro instruction to specify how a terminal user can 
interrupt the execution of his program without using an attention key. The 
TERMINAL command issues the ST ATTN macro when the terminal user 
requests that simulated attention be set up. 

When the ST A TIN macro instruction assigns a value to an operand, that 
value remains in effect until another ST ATTN macro instruction assigns a 
new value to the operand, or until the terminal user logs off. Issuing the 
ST ATTN macro instruction without specifying any operands results in a 
NOP instruction. 

The ST A TIN macro instruction is used only in a time sharjng 
environment with terminals that use TSO through TeAM. It is ignored if 
TSO is not active when the macro instruction is issued. 

Figure 94 shows the format of the ST ATTN macro instruction. Each of 
the operands is explained following the figure. If an operand is not 
specified, its current status is not changed. 

STATTN 
[LINES= ~int~gerf [. TENS= 1int3gerf ] ] 

[,INPUT= ~add~essf ] 

FIgure 94. The ST A TIN Macro Instruction 

LINES = 

indicates the output line count (if any) that determines when a terminal 
user can interrupt the execution of his program. 

integer 

specifies an integer from 1 through 255. This integer indicates the 
number of consecutive lines of output that can be directed to the 
terminal before the keyboard will unlock to let the terminal user 
interrupt the execution of his program. 

Using Terminal Control Macro Instructions 205 



o 
indicates that output line count will not be used to determine when 
the terminal user can interrupt the execution of his program. 
The LINES operand applies only to terminals that are not display 
stations. However, the display user may cause a simulated attention 
interruption at the bottom of the screen (that is, after every 6, 12, or 
15 lines of consecutive output, depending on screen size). 

TENS= 

indicates whether or not locked keyboard time will be used to determine 
when a terminal user can interrupt the execution of his program. 

integer 

o 

specifies an integer from 1 through 255. This integer indicates the tens 
of seconds (that is, from 10 to 2550 seconds) of locked keyboard 
time that can elapse before the keyboard will unlock to let the 
terminal user interrupt the execution of his program. 

indicates that locked keyboard time will not be used to determine 
when the terminal user can interrupt the execution of his program. 

INPUT= 

indicates whether or not a character string will be used to determine 
when a terminal user can interrupt the execution of his program. 

address 

o 

specifies the address of a character string from one to four EBCDIC 
characters long, left-justified and padded to the right with blanks if 
less than four characters long. When this character string is 
encountered as the only data in a line, input processing is interrupted 
to let the program take an attention exit. (See the description of the 
STAX macro instruction.) This string will not be recognized if it is 
preceded by any other character, including line delete or character 
delete control characters. 

indicates that no character string will be used to determine when the 
terminal user can interrupt the execution of his program. 

When control is returned to the user, register 15 will contain the 
following return code: 

Hexadecimal 

Code Meaning 

00 Successful 

08 Invalid terminal type. This macro instruction should not be issued for 

terminals that use TSO/VTAM. 

STAUTOCP -- Start Automatic Character Prompting 

Use the ST AUTOCP macro instruction to start automatic character 
prompting. Automatic character prompting signals the terminal user when 
the system is ready to accept input from the terminal. This signal consists of 
putting out at the terminal either an underscore and a backspace or a 
period and a carriage return, depending on the type of terminal being used. 
The ST AUTOCP macro has no effect with a display station, since the 
terminal user is always prompted for input by the start-of-message symbol. 

206 TSO Guide to Writing a TMP or a CP 



This macro instruction can be used to have the system automatically 
prompt the user for input. It is used, for example, by the INPUT 
subcommand of EDIT. 

Once started, automatic prompting is handled as follows: When the 
system has received a line of input, it immediately sends back to the 
terminal the next character prompt. If the program should send output while 
automatic prompting is in effect, the prompt will be repeated after all 
output has been set to the terminal. For example: 

line of input 
OUTPUT MSG FROM PROGRAM 

Automatic prompting is designed to be used by a program operating in 
input mode (that is, issuing successive TGET macros). 

The system suspends automatic prompting when the terminal user causes 
an attention interruption or when he enters a null (nonprinting) line of 
input. The application program then takes appropriate action in an attention 
exit routine, or after receiving a zero length input via the TGET macro 
instruction. The application program can stop the prompting or line 
numbering function via SPAUTOPT, or restart the function via 
STAUTOCP. 

The ST AUTOCP macro instruction is used only in a time sharing 
environment. It is ignored if issued by a batch task. 

Figure 95 shows the format of the ST AUTOCP macro instruction. 

[symbol] I STAUTOCP 

Figure 95. The ST AUTOCP Macro Instruction 

When control is returned to the user, register 15 contains one of the 
following return codes: 

Hexadecimal 

Code Meaning 

00 Successful. 

04 Parameter specified to the SVc. No parameter should be specified. 

STAUTOLN -- Start Automatic Line Numbering 

Use the STAUTOLN macro instruction to start automatic line numbering. 
Automatic line numbering displays a line number at the beginning of each 
line. 

This macro instruction can be used to have the system automatically 
prompt the user for input. It is used, for example, by the INPUT 
subcommand of the EDIT command. 

Once started, automatic line numbering is handled as follows: when the 
system has received a line of input, it immediately sends back to the 
terminal the next line number. If the program should send output while 

Using Terminal Control Macro Instruction 107 



automatic line numbering is in effect, the line number will be repeated after 
all output has been set to the terminal. For example: 

00030 line of input 
00040 OUTPUT MSG FROM PROGRAM 
00040 

Automatic line numbering is designed to be used by a program operating in 
input mode (that is, issuing successive TGET macros). 

The system displays a new line number for each line of input received. 
The current line number maintained by the system is decremented 
appropriately whenever the input queue is cleared by a TCLEARQ macro 
or as the result of an attention interruption. The application program is 
responsible for numbering the lines independently, if it is creating a line 
numbered data set. The system line number is not available to the 
application program. 

The system suspends automatic line numbering when the terminal user 
causes an attention interruption or when he enters a null (nonprinting) line 
of input. The application program then takes appropriate action in an 
attention exit routine, or after receiving a zero length input via the TGET 
macro instruction. The application program can stop the line numbering 
function via SPAUTOPT, or restart the function via STAUTOLN or 
RTAUTOPT. You should use STAUTOLN rather than RTAUTOPT to 
restart automatic line numbering, if the application program is numbering 
the input lines it receives. This choice will insure that the program's 
numbers are still in synchronization with the system's numbers. 

The ST AUTOLN macro instruction is used only in a time sharing 
environment. It is ignored if issued by a batch task. 

Figure 96 shows the format of the STAUTOLN macro instruction. Each 
of the operands is explained following the figure. 

[symbol] STAUTOLN S=address, I=address 

Figure 96. The ST AUTOLN Macro Instruction 

s= 

1= 

indicates the address of a fullword that contains the number to be 
assigned to the first line of terminal input. This number can be any 
integer from 0 through 99,999,999. 

indicates the address of a fullword that contains the increment value to 
be used when assigning line numbers to lines of terminal input. This 
number can be any integer from 0 through 99,999,999. 

When control is returned to the user, register 15 contains one of the 
following return codes: 

Hexadecimal 

Code Meaning 

00 Successful. A line number will be printed out at the beginning of each line of 

input. 

04 Invalid parameter specified - values out of range. 

208 TSO Guide to Writing a TMP or a CP 



STBREAK -- Set Break 

Use the STBREAK macro instruction to indicate whether the transmit 
interrupt feature on an IBM 1050,2741,3270, 3767, or 3770 terminal will 
be used or suppressed. The transmit interrupt feature lets terminal output 
processing interrupt terminal input processing. 

The TERMINAL command issues this macro when the terminal user 
specifies the BREAK or NOBREAK operand of the command. 

The transmit interrupt feature is a special feature on 1050 and 2741 
terminals; it is a standard feature on the 3767, 3770, and 3270 display 
terminals. Specifying STBREAK YES for a 1050 without the transmit 
interrupt feature could result in loss of output or a permanent error at the 
terminal. 

When the transmit interrupt feature is being used by the system, the 
terminal user can enter the next line while the previous one is being 
processed. All 33/35 Teletypes and IBM 3270, 3767, and 3770 terminals 
are handled this way. 1050s and 2741s that have been defined in the 
TCAM message control program as having the transmit interrupt feature 
will be handled this way (unless STBREAK NO is specified). 

Note: For 2741s, 3767s, 3770s, TWX, and WTTY devices supported by 
VT AM, the keyboard will remain unlocked when STBREAK NO is 
specified. . 

When the feature is in use, terminal handling of input and output is as 
follows: if no output is available for the terminal, and if there are sufficient 
TSO terminal buffers available, the keyboard will be unlocked to allow the 
user to enter input. If the user's program generates output (TPUT) before 
he has started to enter data, the read operation is halted and the break 
(transmit interrupt) feature can be used to lock the keyboard and condition 
the communications line to transmit output. If the user has already started 
to type when the TPUT is issued, the output will not be sent until he has 
finished that line of input. If, however, the TPUT had specified the 
BREAKIN option, the output message would interrupt any input in 
progress. If the application does not issue a TCLEARQ macro to flush the 
input buffer queue, the interrupted input from a 1050 or a 2741 terminal 
will be printed out again after the output is sent, to let the user continue to 
type from the point where he had been interrupted. If the application does 
not issue a TCLEARQ macro to flush the input buffer queue, the 
interrupted input from a 3767, 3270, or a 3770 terminal is received by the 
application program but is not printed at the terminal. 

When the transmit interrupt feature is not being used by the system, a 
1050 or 2741 terminal keyboard is unlocked only after the user's program 
has issued a TGET request for input. (A 3270, 3767, or 3770 terminal 
keyboard's normal state is unlocked.) In this mode of operation, the 
terminal user cannot type ahead of his program. A TPUT with the 
BREAKIN option cannot interrupt input. The output will not be sent until 
the terminal user has completed entering his current input line. All display 
stations are handled in this way. All 1050s and 2741s which have been 
defined in the TCAM message control program as not having the transmit 
interrupt feature will be handled this way. 

Using Terminal Control Macro Instruction 209 



CD= 
indicates what character will be used for the character delete control 
character: 
X'n' where n is the hexadecimal representation of any EBCDIC 

character on the terminal keyboard except the new line (NL) and 
carrier return (CR) control characters. If X'OO' is specified, the 
previously used character delete control character is retained. If X'FF' 
is specified, no character will be used for the character delete control 
character. If an invalid character is specified, that character is rejected 
and no character is used to delete a character from a line of terminal 
input. 

C'c' where c is the character representation of any EBCDIC character 
on the terminal keyboard. 

When control is returned to the user, the low-order byte of register 0 
contains the former line delete control character. If X'FF' appears in the 
low-order byte of register 0, there is no former line delete control character. 
If X'80' appears in the high-order byte of register 0, ATTN was in effect 
for line deletion prior to the issuance of the STCC macro. 

The low-order byte of register 1 contains the former character delete 
control character. If X'FF' appears in the low-order byte of register 1, there 
is no former character delete control character. 

Register 15 contains one of the following return codes: 

Hexadecimal 
Code 

00 

04 

08 

oc 

Meaning 
Successful. 

Invalid parameters specified to the SVc. 

Invalid request. Specified character does not appear on the terminal keyboard 
or ATTN was specified for a terminal that does not have an attention key. 

Invalid terminal type. 

STCLEAR -- ~et Display Clear Character String 

Use the STCLEAR macro instruction to specify the character string that 
will be used to request that a 2260 or 2265 display station screen be 
erased. The TERMINAL command issues this macro when the user 
specifies the character string he wants. 

The STCLEAR macro instruction is used only in a time sharing 
environment. It is ignored if TSO is not active when the macro instruction 
is issued. 

Figure 99 shows the format of the STCLEAR macro instruction. Each of 
the operands is explained following the figure. 

[symbol] STCLEAR 
~addresst 

STRING= 1 0 f 

Figure 99. The STCLEAR Macro Instruction 

212 TSO Guide to Writing a TMP or a CP 



l 

.... 

STRING= 

indicates the address of a one- to four- character string that will be used 
to request that the display station screen be erased. This character string 
must be left-justified and padded on the right with blanks, if necessary. 
If 0 is specified, no ~. string will be used to erase the screen. 

When control is returned to the user, register 15 contains one of the 
following return codes: 

Hexadecimal 

Code Meaning 

00 Successful. 

04 Invalid parameter. 

08 Invalid terminal type. The terminal is not a display station. 

STCOM -- Set Inter-Terminal Communication 

Use the STCOM macro instruction to specify whether or not a terminal will 
accept messages from other terminals or low priority messages from the 
system operator. High priority operator messages are always sent to the 
terminal. The PROFILE command issues this macro when the user specifies 
the INTERCOM or NOINTERCOM operand of the command. 

The STCOM macro instruction is used only in a time sharing 
environment. It is ignored if TSO is not active when the macro instruction 
is issued. 

Figure 100 shows the format of the STCOM macro instruction. 

[symbol I STCOM I 
Figure 100. The STCOM Macro Instruction 

YES 
indicates that the terminal will accept messages from other terminals. If 
neither YES nor NO is specified, YES is assumed. 

NO 

indicates that the terminal will not accept messages from other terminals. 

When control is returned to the user, register 15 contains one of the 
following return codes: 

Hexadecimal 
Code 

00 

04 

Meaning 
Successful. 

Invalid parameter specified to the SVC. 

STFSMODE -- Set Full Screen Mode 

Use the STFSMODE macro instruction under VTAM to specify whether an 
IBM 3270 display terminal is to operate in full-screen mode. Operating in 
full-screen mode provides screen protection by preventing the . screen from 
being overlaid by noil-full-screen messages, and allowing the terminal user 
to read non-full-screen messages before they are overlaid by full-screen 
messages. If full-screen mode is set off, full-screen TPUT requests (that is, 
TPUT requests that specify the FULLSCR operand) can result in certain 
problems at the terminal. A message not expected by the terminal user or 

Using Terminal Control Macro Instructions 213 



[symbol] 

the command processor, such as a broadcast message or password request, 
might not be noticed by the terminal user and might be quickly overlaid by 
a full-screen display. An unexpected message might overlay part of a 
full-screen display, which could result in invalid input to the command 
processor. 

The STFSMODE macro instruction may be used only in a VTAM 
time-sharing environment. It is ignored if VT AM is not active when the 
macro instruction is issued. 

See Appendix B for additional information about the use of the 
STFSMODE macro and the full-screen environment. 

Figure 101 shows the format of the STFSMODE macro instruction. 

STFSMODE [g~FJ [,INITIAL=YES] [ , RSHWKEY=n] 
,INITIAL=NO 

[,NOEDIT-YES ] 
, NOEDIT=NO 

Figure 101. The STFSMODE Macro Instruction 

ON 

indicates that full screen mode is in operation. If neither ON nor OFF is 
specified, ON is assumed. When a terminal operating in full-screen mode 
is to receive a non-full-screen message (TPUT without FULLSCR), the 
display screen is cleared, the alarm is sounded (if the Alarm special 
feature is installed), and the message is displayed on the screen. If 
several such messages occur one after the other, the screen is cleared 
once, the alarm is sounded, and the messages are dispalyed in sequence. 
When the next full screen TPUT message (TPUT with FULLSCR) is 
issued by the application, the terminal user will be required to 
acknowledge the messages on the screen before the TPUT FULLSCR 
can be displayed. Three asterisks (***) displayed at the current line 
indicate that acknowledgement is required. To continue, the user must 
press the ENTER key. 

OFF 

indicates that full screen mode is not in operation. When a terminal that 
is not operating in full-screen mode receives a message, the RSHWKEY 
value is reset to the default, and the message is sent to the terminal 
according to the options specified in the TPUT macro, possibly 
overlaying the current screen contents. 

INITIAL = YES 

indicates that this is the first time during the execution of a command 
processor that the command processor has entered full screen mode. This 
operand prevents the first TPUT FULLSCR issued by the command 
processor from forcing a paging condition when the last transaction at 
the terminal was input. For example, after a user logs on and the 
READY message is displayed and the user types in the name of a 
command processor, a paging condition is not forced if INITIAL= YES 
was specified. INITIAL= YES is ignored if OFF is specified. 

214 TSO Guide to Writing a TMP or a CP 

I 



L 
INITlAL=NO 

indicates that forced paging is to occur nonmilly whenever a TPUT with 
FULLSCR follows a TPUT without FULLSCR. If neither 
INITIAL = YES nor INITIAL=NO is specified, INITIAL=NO is 
assumed. 

NOEDlT=YES 

indicates that input from the terminal will be added to the input queue 
without being modified, regardless of the options specified on the TGET 
macro instruction. 

NOEDlT=NO 

indicates that input from the terminal will be handled according to the 
options specified on the TGET macro instruction before it is added to 
the input queue. If neither NOEDIT=NO or NOEDIT=YES is specified, 
NOEDIT=NO is assumed. 

RSHWKEY 

specifies as a decimal digit the program function (PF) key to be used as 
the reshow key. If RSHWKEY is not specified, the default value for the 
PA2 key (X'6E') is used. 

When control is returned to the user, register 15 contains one of the 
following return codes: 

Hexadecimal 
Code Meaning 

Successful. 00 
04 
08 

Invalid parameter specified to the SVC. 
Invalid terminal type. This macro instruction is valid only for IBM 3270 
display terminals that use VT AM. 

STLINENO -- Set Line Number 

Use the STLINENO macro instruction under VT AM to specify the number 
of the screen line on an IBM 3270 display terminal on which the next 
non-full-screen message should appear. (A non-full-screen message results 
from issuing a TPUT macro instruction without the FULLSCR operand.) 
The STLINENO macro instruction may also be used to specify whether the 
3270 terminal is to operate in full screen mode. 

The STLINENO macro instruction may be used only in a TSO /VT AM 
time-sharing environment. It is ignored if TSO/VTAM is not active when 
the macro instruction is issued. 

See Appendix B for additional information about the use of the 
STLINENO macro and the full-screen environment. 

Figure 102 shows the format of the STLINENO macro instruction. 

[symbol] STLINENO 
~LINE=number f[ MODE=ON ] 
LINELOC=address ,MODE=gfF 

Figure 102. The STLINENO Macro Instruction 

Using Terminal Control Macro Instructioos 21S 



[ symbol] 

LlNE= 

specifies in decimal the line number on which the next non-full-screen 
message is to appear. The line number must be a value from 1 to n 
where n is the maximum number of lines allowed for the terminal in use. 
Either the actual line number or a register (2-12, enclosed in 
parentheses) containing the line number in the low-order byte may be 
specified. 

LlNELOC= 

specifies the address of a fullword whose low-order byte contains the 
number of the screen line on which the next non-full-screen message is 
to appear. The line must number be a value from 1 to n where n is the 
maximum number of lines allowed for the terminal in use. Either an 
actual address (RX-type) or a register (2-12, enclosed in parentheses) 
containing the address may be specified. 

MODE= 

specifies whether full screen mode is to be set ON or OFF. If MODE is 
not specified, MODE=OFF is assumed. 

When control is returned to the user, register 15 contains one of the 
following return codes: 

Hexadecimal 
Code 

00 
04 
08 

oc 

Meaning 

Successful. 
Invalid parameter specified to the SVC. 
Invalid terminal type. This macro instruction is valid only for IBM 
3270 display terminals that use TSO/VTAM. 
The line number specified was 0 or it was greater than the maximum 
number of lines allowed for the terminal in uSe. 

STSIZE -- Set Terminal Line Size 

Use the STSIZE macro instruction to set the logical line size of the time 
sharing terminal. If the terminal is a display station, the STSIZE macro 
instruction is used to set the screen size. 

The TERMINAL command issues this macro instruction when the user 
specifies the LINESIZE or SCREEN operands of the command. 

The STSIZE macro instruction is used only in a time sharing 
environment. It is ignored if TSO is not active when the macro instruction 
is issued. 

Figure 103 shows the format of the STSIZE macro instruction. Each of 
the operands is explained following the figure. 

STSIZE 
~SIZE=number f 
SIZELOC=address 

[,LINE=number J 
,LINELOC=address 

Figure 103. The STSIZE Macro Instruction 

SIZE 

specify the logical line size of the terminal in characters. If the logical 
line size requested is greater than the mechanical line size of the 
terminal, the last character in the line may be repeatedly typed over. 
Specifying a size greater than 255 will give unpredicatable results. 

216 TSO Guide to Writing a TMP or a CP 



L 
SIZELOC 

specify the address of a word containing the logical line size of the 
terminal in characters. 

LINE 
specify the number of lines that can appear on the screen of a display 
station terminal. 

LlNELOC 
specify the address of a word containing the number of lines that can 
appear on the screen of a display station terminal. 

Note: If the terminal is a display station, either the LINE or LINELOC 
operand must be specified. If the terminal is not a display station, neither 
operand should be specified. 

Defaults by terminal type are as follows: 

Terminal Type Line Size, Number of Lines, or Screen Size 

2741 120 

1050 120 

33/35 Teletype2 72 

2260,2265 12x80, 12x40, 6x40, 15x64 - as specified by the installation in the TCAM 

message control program. 

3270 

3767 

3770 

12x40, 12x80, 24x80, 32x80, or 43x80 

132 

132 

When control is returned to the user, register 15 contains one of the 
following return codes: 

Hexadecimal 

Code 

00 

04 

08 

Meaning 

Successful. 

Invalid parameter specified to the SVC. 

Invalid LINE, LINELOC, SIZE, or SIZELOC operand, as follows: 

I. The LINE or LINELOC operand was specified for any terminal except a 

display station. (An operand value of zero is not an error, and has the 

same effect as omitting the operand.) 

2. The LINE or LINELOC operand was omitted, or specified as zero, for a 

display' station. 

3. The SIZE or SIZELOC operand was omitted, or specified as zero, for any 

terminal type. 

OC The dimensions specified for a display station do not correspond to known 

existing screen size. Incorrect screen management can result. 

STflMEOU -- Set Time Out Feature 

Use the STTIMEOU macro instruction to specify whether the 1050 
terminal has the optional text time out suppression feature. The macro 
instruction allows 1050s, with or without the feature, to call in via the same 
switched line, with any 1050 being handled initially as if it did not have the 
feature. 

2Trademark of the Teletype Corporation. 

Using Terminal Control Macro Instruction 217 



A 1050 without the text time out suppression feature operates as 
follows: When the PROCEED light is on and the keyboard is unlocked, the 
terminal will time out; that is, the keyboard will lock if the user does not 
type input for approximately 20 seconds. The system subsequently responds 
to the time out by restoring the keyboard so that the user may continue. 
The user can prevent the time out by periodically pressing the SHIFT key. 

A 1050 with the text time out suppression feature operates as follows: 
The keyboard does not lock if the user does not type input within 20 
seconds. The system can therefore use the read inhibit channel command, 
which does not time out within 28 seconds, in contrast to the read channel 
command that does time out. (Note: If the system is directed to use the 
read inhibit channel command for a 1050 that does time out, the terminal 
may be locked out of the system.) 

Until the STTIMEOU macro instruction is issued, 1050 terminals are 
handled as per the definition provided in the TCAM message control 
program. If the currently connected terminal has the text time out 
suppression feature, STTIMEOU NO can be issued to direct the system to 
use read inhibit rather than read channel commands. (STTIMEOU NO 
should not be issued for a 1050 that does not have the text time out 
suppression feature. This specification could cause the terminal to be locked 
out of the system.) 

The TERMINAL command processor issues the STTIMEOU macro 
instruction when the user specifies the TIME OUT or NOTIMEOUT 
operand of the TERMINAL command. The STTIMEOU macro instruction 
will remain in effect until the user logs off. 

The STTIMEOU macro instruction should be issued only when an IBM 
1050 terminal is being used. Terminals which are equivalent to the one 
explicitly supported may also function satisfactorily. The customer is 
responsible for establishing equivalency. IBM assumes no responsibility for 
the impact that any changes to the IBM-supplied products or programs may 
have on such terminals. 

The STTIMEOU macro instruction is used only in a time sharing 
environment. It is ignored if TSO is not active when the macro instruction 
is issued. 

Figure 104 shows the format of the STTIMEOU macro instruction. 

[symbol] STTIMEOU 

Figure 104. The STTIMEOU Macro Instruction 

YES 

indicates that IBM 1050 terminal does time out. It does not have the text 
time out suppression feature. If the operand is omitted, the default is 
YES. 

NO 

indicates that the IBM 1050 terminal does not time out. The 1050 does 
have the text time out suppression feature. 

218 TSO Guide to Writing a TMP or a CP 



L 

L 

When control is returned to the user, register 15 contains one of the 
following return codes: 

Hexadecimal 

Code Meaning 

00 Successful. 

04 Invalid parameter specified to the SVc. 

08 Invalid terminal type. This macro instruction applies to the IBM 1050 

terminal only. 

STTMPMD -- Set Terminal Display Manager Options 

Use the STTMPMD macro instruction to specify whether a Display 
Terminal Manager is active or whether the PAl and CLEAR key 
indications are to be passed through to the application program. 

The STTMPMD macro instruction is issued only in a time-sharing 
environment. It is ignored if issued for a non-TSO task. The STTMPMD 
macro is valid for display terminals operating in both the TCAM and 
VT AM environments. 

Figure 105 shows the format of the STTMPMD instruction. Each of the 
operands is explained following the figure. 

[symbol] STTMPMD 

Figure 105. The STTMPMD Macro Instruction 

ON 
indicates that a Display Terminal Manager is in control. If neither ON 
nor OFF is specified, ON is the default. 

OFF 

indicates that a Display Terminal Manager is not in control. 

KEYS=NO 
indicates that the PAl and CLEAR key indications are not to be 
returned to the application program. This is the default if the KEYS 
operand is omitted. 

KEYS=ALL 
indicates that the PAl and CLEAR key indications are to be returned to 
the application program. 

When control is returned to the user, register 15 contains one of the 
following return codes: 

Hexadecimal 
Code 

00 

04 

08 

Meaning 

Successful. 

Invalid parameter specificd. 

Invalid terminal type. This is not a display terminal. 

Using Terminal Control Macro Instructions 219 



STI'RAN -- Set Character Translation 

Use the STTRAN macro instruction to initiate the use of user-specified 
translation tables, to modify specific character translations in active 
translation tables, to remove character modifications made to user-specified 
translation tables, and to terminate the use of user-specified translation 
tables. Translation tables allow characters entered at the terminal to be 
interpreted as other characters when they are received by TSO, and 
characters sent by TSO to be interpreted as other characters when they are 
received at the terminal. 

The TERMINAL command issues this macro instruction when a terminal 
user specifies the TRAN, NOTRAN, CHAR, or NOCHAR operand of the 
command. 

Translation tables are built and used in pairs: one for input and one for 
output. Each pair is a control section consisting of a fullword containing the 
address of the output table, followed by a 256-byte EBCDIC table for 
translating the inbound characters, followed by a 256-byte EBCDIC table 
for translating the outbound characters. Each character in an input table 
must have a counterpart in its companion output table, and the characters 
must have the same relative position in both tables. Refer to SPL: TSO for 
instructions on building translation tables. 

A translation table translates inbound data after the system translates the 
line code to EBCDIC characters. A translation table translates outbound 
data before the system translates EBCDIC characters to line code. 

The STTRAN macro instruction is used only in a VT AM time-sharing 
environment. It is ignored if VT AM is not active when the macro 
instruction is issued. 

Figure 106 shows the format of the STTRAN macro instruction. Each of 
the operands is explained following the figure. 

[symbol) STTRAN [tABLE._~'NAME_-f }] NOTRAN 

l TCHAR=address,SCHAR=address ~ 
NOCHAR.NAME=address 

[ MF= l ~E,ctrl addr) fJ 
Figure 106. The STIRAN Macro Instruction 

T ABLE=address 
specifies the address of a pair of user-written translation tables. 

220 TSO Guide to Writing a TMP or a CP 



NAME=address 
specifies the address of an 8-byte area containing an EBCDIC character 
string. (The string is left-justified and padded to the right with blanks if 
it is less than eight characters long.) The character string consists of the 
name of a member in a load module that contains user-written 
translation tables. 
When NAME is used with NOCHAR, the STTRAN macro instruction 
causes the command processor to store the member name in the 8-byte 
area. 

NOTRAN 

specifies that the use of user-written translation tables be discontinued. 

TCHAR=address 
specifies the address of a I-byte area containing the EBCDIC 
representation of a character as it appears at the terminal. 

SCHAR=address 
specifies the address of a I-byte area containing the EBCDIC 
representation of a character as it appears to the system. 

NO CHAR 

specifies that current TCHAR and SCHAR values are no longer in 
effect. 

MF== 

indicates the form of the STTRAN macro instruction. 

L 
specifies the list form. 

(E,ctrl addr) 
specifies the execute form and the address of the list form. 

When control is returned to the user, register 15 contains one of the 
following return codes: 

Hexadecimal 

Code 

Meaning 

00 Successful. 

04 NOTRAN or NOCHAR was specified but translation was not in effect. 

08 TABLE or NOCHAR was specified but the NAME operand did not specify 

an address. 

OC Internal error - unidentifiable flag set in input register O. 

TCLEARQ -- Clear Buffers 

TCLEARQ enables the user to throwaway "typed ahead" input or unsent 
output. This clearing of the buffers lets the command processor 
resynchronize with the terminal user. 

For example, when a command processor analyzes the specified operands 
in a line of input and discovers missing or invalid parameters, it issues a 
TCLEARQ INPUT before sending a prompting message to the user. This 
ensures that the command processor will receive a line of input entered 
after the terminal user has seen the prompting message. 

When the TCLEARQ macro instruction is issued to clear the input 
buffers, all the input that has been entered at the terminal, but has not yet 

Using Terminal Control Macro Instructions 221 



7. The command processor processes the command according to the 
operands received. 

8. When the command processor terminates, it returns control to the 
terminal monitor program and the sequence is repeated. 

The following sections discusses: 

• Using the command scan service routine 
• Using the parse service routine 

Using the Command Scan Service Routine (IKJSCAN) 
In general, a terminal monitor program links to command scan to verify 

command names. It may also be invoked by any command processors that 
process subcommands. It can also be used to scan the reply to a prompt 
message. 

Command scan examines a command in a command buffer and performs 
the following functions: 

1. It translates all lowercase characters in the command name to 
uppercase. 

2. If a valid parameter is present, it resets the offset to the number of 
text bytes preceding the first non-blank character in the operand 
field. If a valid operand is not present, the offset equals the length of 
the text portion of the buffer. 

3. It returns a pointer to the command name, the length of the 
command name, and a code explaining the results of its scan to the 
calling routine. 

4. It optionally checks the syntax of the command name. 

5. It recognizes an implicit EXEC command that has a percent sign as 
the first character. 

6. It has logic to handle leading blanks and embedded comments. 

This topic discusses: 

• Command name syntax 
• The parameter list structure required by command scan 
• The command scan parameter list 
• Flags passed to command scan 
• The command scan output area 
• The operation of the command scan service routine 
• The results of the command scan 
• Return codes from command scan 

Command Name Syntax 

If you write your own command processor, and you intend to use the 
command scan service routine to check for a valid command name, your 
name must meet the following syntax requirements: 

• The first character must be an alphabetic or a national character. 
• The remaining characters must be alphameric. 
• The length of the command name must not exceed eight characters. 

224 TSO Guide to Writing a TMP or a CP 



General 
Register 1 

+ 0 

t 
+ 4 t 
+ 8 t 
+12 t 
+ 16 t 
+20 t 

• The command delimiter must be a separator character. 
• The name should include one or more numerals. Since no 

IBM-supplied command names include numerals, your command name 
will be unique. 

The Parameter List Structure Required by Command Scan 

Before invoking the command scan service routine via the CALLTSSR 
macro, you must create the parameter structure shown in Figure 108. You 
then place the address of the command scan parameter list (CSPL) into 
general register 1, set the flags in the flag word, and issue CALLTSSR 
specifying IKJSCAN, the command scan service routine. 

IKJSCAN must receive control in 24-bit addressing mode. All input 
passed to IKJSCAN must reside below the 16-megabyte virtual storage line. 

CSPL 

UPT 

ECT 

CP ECB 

Flag Word 

Output Area 

Command Buffer 

Reserved 

Command Scan Output Area 

Command Name Pointer 
1-------,----,.-----1 To be sel' by 

Command 
Length Reserved Scan 

Command Buffer 

o ~----L-e~--th-~2~--O--ffi-e-t--~--~T~ 

Figure 108. The Parameter List Structure Passed to Command Scan 

The Command Scan Parameter List 

The command scan parameter list (CSPL) is a six-word parameter list 
containing addresses required by the command scan routine. In order to 
ensure the reenterability of the calling program, the CSPL should be built in 
subpool 1 in an area obtained by the calling program with the GETMAIN 
macro instruction. 

Command Scan and Parse -- Determining the Validity of Commands 225 



\ 
, 

CHARACTER TYPE 
CHARACTER Command Separator National Alphabetic Numeric 

Delimiter Delimiter Special 

Comment I" x 

Horizontal Tab HT x x 

Blank 15 x x 

Comma , x x 

Dollar Sign $ x 

Number Sign # x 

At Sign 1'Cr x 

0- z x 

A - z x 

0-9 x 

New line NL x x 

Period x x 

\.eh p01'8nthes is ( x x 

Right parenthesis ) x x 

Ampersand & x x 

Asterisk " x 

Semicolon ; x x 

Minus sign, hyphen - x x 

Slash I x x 

Apostrophe . x x 

Equal sign : x x 

Cent sign ¢ x 

Less than < x 

Greater than > x 

Plus sign + x 

Logical OR I x 

Exclamation point , 
x 

Logical NOT ~ x 

Percent sign % x 

Dash - x 

Questi on mark ? x 

Colon : x 

Quototion Mark " x 

Figure 111. Character Types Recognized by Command Scan and Parse 

228 TSO Guide to Writing a TMP or a CP 



L 

Flag 

X'SO' 

X' 40' 

x'20' 

X'10' 

X' OS' 

X'04' 

I , 
Results of the Command Scan t 

The command scan service routine scans the command buffer and returns 
the results of its scan to the calling routine by filling in the command scan 
output area, and by updating the offset field in the command buffer. Figure 
112 shows the possible CSOA settings and command buffer offset settings 
upon return from the command scan service'routine. 

Command Scan Output Area Command Buffer 

Meaning Length Fiel:i Offset set to: 

'Ihe comma nd name is Length of command nalle rhe first non-
valid and the separator following 
remainder of the the command name. 
buffer contai ns non-
separator 
characters. 

'Ibe command name is Length of command naae rhe end of the 
valid and there are buffer. 
no non-separator 
characters 
remaining. 

'I'he ::ornmand name is Zero Unchanged. 
a question mark. 

'Ihe buffer is empty Zero rhe end of the 
or contains only cuffer. 
separators. 

'lbe command name is Zero Unchanged. 
syntactically 
invalid. 

The command is an Length of command name. The first non-
irnplici t EXEC separator following 
command. the command name. 

Figure 112. Return from Command Scan - CSOA and Command Buffer Settings 

Return Codes from Command Scan 

The command scan service routine returns the following codes in general 
register 15 to the program that invoked it: 

Hexadecimal 

Code Meaning 

o Command scan completed successfully. 

4 Command scan was passed invalid parameters, 

Command Scan and Parse -- Determining the Validity of Commands 229 



I , 
\ 

Using the 'Parse Service Routine (IKJP ARS) 
The \larse service routine checks the syntax of command operands. To 
prepare for this, the command processor creates a parameter control list 
(PCL) -- a description of permissible operands, default values, text to be 
used when prompting, and, if present, the address of a validity checking 
subroutine. 

The command processor invokes the parse service routine via the 
CALLTSSR or LINK macro, passing it a parse parameter list (PPL) which 
contains the address of the PCL. The parse service routine scans and 
checks each operand against the entries (called PCEs: parameter control 
entries) in the PCL. In turn, the parse service routine builds and returns 
results of the scan to the command processor in a parameter descriptor list 
(PDL), whose entries contain pointers to data set names, indications of 
specified options, or pointers to the subfields entered with the command 
operands. 

The command processor uses the IKJPARMD DSECT to refer to the 
PDL. The command processor specifies the IKJPARMD DSECT at the 
time it issues the parse macro instructions to build the PCL. The labels used 
by the command processor on the various parse macro instructions become 
the symbolic addresses of the fields in the IKJPARMD DSECT. 

IKJPARS must receive control in 24-bit addressing mode. All input 
passed to IKJPARS must reside below the 16-megabyte virtual storage line. 

Figure 113 depicts a command processor's use of the parse macro 
instructions, the parse service routine, and the IKJPARMD DSECT. 

230 TSO Guide to Writing a TMP or a CP 



L 

J 

Command Buffer 

o 

length Offset Command Nome Parameter 1 Parameter 2 Parameter 3 

2 4 

Command Processor 

G) Issues Parse macro 
instructions to build 
a PCl describing 
valid parameters 

• label 1 Macro 
e label2 Macro 
• label3 Macro 

These macro 
i nstructi ons a Iso 
create the 
IKJPARMO OSECT. 

IKJPARMO 
OSECT 
fTabell- --, 
I I 
r.-----I 
Ilabel2 I 
I-:--:--~ 
Ilabel3 I L ___ ....J 

o The Command 
Processor uses the 
IKJPARMO OSECT 
to access the various 
POEs within the 
POL. 

PCl 

PCEl 

PCE2 

PCE3 

POL 

Pone Service Routine 

G) Compares peE's ta 
paramete" in the 
Command 8uffer. 

POE ~----------•• 0 Builds the POL. 1-----1 
POE 

POE 

Figure 113. A Command Processor Using the Parse Service Routine 

The parse service routine support consists of the following: 

1. The following set of macro instructions: 

IKJPPL builds an IKJPPL DSECT which maps the parse parameter 
list. 

IKJP ARM begins the parameter control list and establishes a 
symbolic reference for the parameter descriptor list. 

IKJPOSIT builds a parameter control entry. This PCE describes a 
positional parameter that contains delimiters recognized by the parse 
service routine, but not including the positional parameters described 
by the IKJTERM, IKJOPER, IKJlDENT, or IKJRSVWD macro 
instructions. 

Command Scan and Parse -- Determining the Validity of COIIImads 131 



IKJIDENT also builds a parameter control entry; however, this PCE 
describes a positional parameter that does not depend upon a 
particular delimiter. 

IKJKEYWD builds a parameter control entry that describes a 
keyword parameter. 

IKJNAME describes the possible names that may be entered for a 
keyword or a reserved parameter. 

IKJTERM builds a parameter control entry. This PCE describes a 
positional parameter that may be a constant, statement number, or 
variable. 

IKJOPER builds a parameter control entry that describes an 
expression. An expression consists of three parts; two operands and 
an operator in the form: 

(operand 1 operator operand2) 

IKJRSVWD builds a parameter control entry. This PCE may be used 
with the IKJTERM macro instruction to describe a reserved word 
constant, with the IKJOPER macro instruction to describe the 
operator of an expression, or by itself to describe a reserved word 
parameter. 

IKJSUBF indicates the beginning of a keyword subfield description. 

IKJENDP indicates the end of the PCL. 

IKJRLSA releases any virtual storage (allocated by the parse service 
routine) that remains after the parse service routine has returned 
control to the command processor. 

2. A program that checks the syntax of the command operands within 
the command buffer against the PCL and builds a PDL containing 
the results of the syntax check. 

The parse service routine also provides the following services which may 
be selected by the calling routine:. 

• It translates the command operands to uppercase. 
• It substitutes default values for missing operands. 
• It prompts the user at the terminal for missing positional parameters. 
• It passes control to an exit, supplied by the calling routine, to do 

further checking on a positional parameter. 
• It inserts implied keywords. 
• It appends user-supplied second level messages to prompting messages. 

This section describes: 

• Command parameter syntax 
• Using the parse macro instructions to define command syntax 
• The parse macro instructions 
• Passing control to the parse service routine 
• Formats of the PDEs returned by the parse service routine 
• Additional facilities provided by the parse service routine 
• An example of using the parse service routine 
• Return codes from the parse service routine 

232 TSO Guide to Writing a TMP or a CP 



L 

L 

Command Parameter Syntax 

If you write your own command processors, and you intend to use the 
parse service routine to determine which operands have been entered 
following the command name, your command parameters must adhere to 
the syntactical structure described in this section. 

Command parameters must be separated from one another by one or 
more of the separator characters: blank, tab, comma, or a comment (see 
Figure 111). The command parameters end either at the end of a logical 
line (carrier return), or at a semicolon. If the command parameters end with 
a semicolon, and other characters are entered after the semicolon but 
before the end of the logical line, the parse service routine ignores that 
portion of the line that follows the semicolon. The parse service routine 
returns no message to indicate this condition. 

There are two types of command parameters recognized by the parse 
service routine: 

1. Positional parameters 

2. Keyword parameters 

Positional Parameters 

Positional parameters must be coded first in the parameter string, and they 
must be in a specific order. 

In general, the parse service routine considers a positional parameter to 
be missing if the first character of the parameter scanned is not the 
character expected. For instance, if a parameter is supposed to begin with a 
numeric character and the parse service routine finds an alphabetic 
character in that position, the numeric parameter is considered missing. The 
parse service routine then prompts for the missing parameter if it is 
required, substitutes a default value if one is available, or ignores the 
missing parameter if the parameter is optional. 

For the purpose of syntax checking, positional parameters are divided 
into parameters that include delimiters as part of their definition 
(delimiter-dependent parameters), and parameters that do not include 
delimiters as part of their definition (non-delimiter-dependent parameters). 

Delimiter-Dependent Parameters: Those parameters that include delimiters 
as part of their definition are called delimiter-dependent parameters. The 
parse service routine recognizes the following delimiter-dependent 
parameter syntaxes shown in Figure 114. 

Command Scan and Parse -- Determining the Validity of Commands 233 



Parameter Macro Instruction Used to Describe Parameter 

DELIMITER 
STRING 
VALUE 
ADDRESS 
PSTRING IKJPOSIT 
USERID 
UID2PSWD 
DSNAME 
DSTHING 
QSTRING 
SPACE 
JOBNAME 

CONSTANT 
VARIABLE IKJTERM 
STATEMENT NUMBER 

EXPRESSION IKJOPER 

RESERVED WORD IKJRSVWD 

HEX 
CHAR IKJIDENT 
INTEG 

Figure It 4. Delimiter-Dependent Parameters 

234 TSO Guide to Writing a TMP or a CP 

DELIMITER - It may be any character other than an asterisk, left 
parenthesis, right parenthesis, semicolon, blank, comma, tab, carrier 
return, or digit. A self-defining delimiter character is represented in 
this discussion by the symbol #. The delimiter parameter is used only 
in conjunction with the string parameter. 

STRING - A string is the group of characters between two alike 
self -defining delimiter characters, such as 

#string# 

or, the group of characters between a self-defining delimiter character 
and the end of a logical line, such as 

#string 

The same self-defining delimiter character can be used to delimit two 
contiguous strings, such as 

#string#string# 

or 

#string#string 

A null string, which indicates that a positional parameter has not been 
entered, is defined as two contiguous delimiters or a delimiter and the 
end of the logical line. If the missing string is a required parameter, 
the null string must be entered as two contiguous delimiters. Note that 
a string received from a prompt or a default must not include the 
delimiters. 



VALUE - A value consists of a character followed by a string 
enclosed in apostrophes, such as 

X'string' 

The character must be an alphabetic or national character. The string 
may be of any length and may consist of any combination of 
enterable characters. If the ending apostrophe is left off the string, the 
parse service routine assumes that the string ends at the end of the 
logical line. If the parse service routine encounters two successive 
apostrophes, it assumes them to be part of the string and continues to 
scan for a single ending apostrophe. The parse service routine always 
raises the character preceding the first apostrophe to uppercase. The 
value is considered missing if the first character is not an alphabetic or 
national character, or if the second character is not an apostrophe. 

ADDRESS - There are several forms of the ADDRESS parameter. 

Absolute address - An absolute address consists of from one to six 
hexadecimal digits followed by a period, or, in extended mode, from 
one to eight hexadecimal digits followed by a period. An extended 
absolute address must not exceed the address represented by the 
hexadecimal value 7FFFFFFF. 

(For more information on extended addressing, see the description of 
the EXTENDED operand in "IKJPOSIT - Describing a 
Delimiter-Dependent Positional Parameter" below.) 

Relative address - A relative address consists of from one to six 
hexadecimal digits preceded by a plus sign, or, in extended mode, 
from one to eight hexadecimal digits preceded by a plus sign. 

General register address - A general register address consists of a 
decimal integer in the range 0 to 15 followed by the letter R. R can 
be entered in either uppercase or lowercase. 

Floating-point register address - A floating-point register address 
consists of an even decimal integer in the range 0 to 6 followed by 
the letter D (for double precision) or E (for single precision). The 
letter E or D can be entered in either uppercase or lowercase. 

Symbolic address - A symbolic address consists of any combination, 
up to 32 characters in length, of the alphameric characters and the 
break character. The first character must be either an alphabetic or a 
national character. 

Qualified address - A qualified address has one of the following 
formats: 

1. modulename.entryname.relative-address 

2. modulename.entryname 

3. modulename. entryname. symbolic-address 

4. . entryname. symbolic-address 

5. .entryname.relative-address 

6. . entryname 

Command Scan and Parse -- Determining the Validity of Commands 235 



• modulename - any combination of one to eight alphameric 
characters, of which the first is an alphabetic or national character 

• entryname - same syntax as a module name, and always preceded by 
a period 

• symbolic address - syntax as defined above, and always preceded 
by a period 

• relative address - syntax as defined above, and always preceded by 
a period 

You may qualify symbolic or relative addresses to indicate that they 
apply to a particular module and CSECT as in formats 1-3. However, 
if the address applies to the currently active module, you do not have 
to specify modulename as in formats 4-6. 

Indirect address - An indirect address is an absolute, relative, 
symbolic, or general register address followed by from one to 255 
indirection symbols (percent signs), such as 

+A% 

The number of percent signs following the address indicates the 
number of levels of indirect addressing. In this example (+ A %), tht! 
data is at the location pointed to by +A. See Figure 115. 

RELATIVELOC +A LOC C2C 
. ---"" 

100 100 loe /2C I DATA 

Figure 115. Example of an Indirect Address 

Address expression - An address expression has the following format: 

address{±}expression value [% ... l[ {±}expression value [% ... ll ... 

• address - can be an absolute, symbolic, indirect, relative, or general 
register address. If a general register is specified, it must be followed 
by at least one indirection symbol. 

• expression value - a plus or minus displacement from an address in 
storage, consisting of from one to six decimal or hexadecimal digits. 

- When you specify the EXTENDED keyword of IKJPOSIT to 
indicate extended mode, the terminal user may specify a one to ten 
digit decimal number, or a one to eight digit hexadecimal number. 

- Decimal displacement is indicated by an "N" or "n" following the 
offset. The absence of an "N" or "n" indicates hexadecimal 
displacement. 

- There is no limit to the number of expression values in an address 
expression. 

• Each expression value may be followed by from one to 255 percent 
signs, one for each level of indirect addressing. 

236 TSO Guide to Writing a TMP or a CP 

J 



For example, addr 1 + 124n, an address expression in decimal format, 
indicates a location 124 decimal bytes beyond addrl. Another example, 
addr2-AC, is an address expression in hexadecimal format and indicates a 
location 172 decimal bytes before addr2. 

The processing of an address expression, 12R%%+4N%, involving 
indirect addressing, is shown in Figure 116. The address in the expression is 
a general register address with two levels of indirect addressing. The result 
of the processing of this part of the address expression is location 100. The 
expression value indicates a displacement of four bytes beyond location 
1 DO with one level of indirect addressing. The data, then, is at location 
474. 

A'r 00 100 lo'1281--1~:ro~'jo, I DO I-"'ITbJ ;r:::A 
~ 

Figure 116. Example of an Address Expression with Indirect Addressing 

Note: Blanks are not allowed within any form of the address parameter. 

PSTRING - A parenthesized string is a string of characters enclosed within 
a set of parentheses, such as: 

(string) 

The string may consist of any combination of characters of any length, with 
one restriction; if it includes parentheses, they must be balanced. The 
enclosing right parenthesis of a PSTRING can be omitted if the string ends 
at the end of a loeical line. 

A null PSTRING is defined as a left parenthesis followed by either a right 
parenthesis or the end of a logical line. 

USERIO - A userid consists of an identification optionally followed by a 
slash and a password. The format is: 

identification[/ password] 

identification - can be any combination of alphameric characters up to 
seven characters in length, the first of which must be an alphabetic or 
national character. 

password - can be any combination of alphameric characters up to eight 
characters in length. If delimiters are used, the password must be enclosed 
in quotes. If quotes are to be used in the password, two quotes must be 
entered consecutively. One of them will be eliminated by the parse service 
routine. 

Separators may be inserted between the identification and the slash, and 
between the slash and the password. 

If just the identification is entered, the parse service routine does not 
prompt for a password. If the identification is entered followed by a slash 
and no password, the parse service routine prompts for a password by 
executing a PUTGET macro instruction specifying bypass mode. The 

Command Scan and Parse -- Determining the Validity of Commands 237 



terminal user can reply to a prompt for password by entering either a 
password or a null line. If the user enters a null line, the parse service 
routine builds the PDE and leaves the respective password field zero. 

UID2PSWD - A userid consists of an identification optionally 
followed by two passwords. The delimiter between the three values is a 
slash. The format is: 

identification[/ password 1 [/ password2 JJ 

identification - can be any combination of alphameric characters up 
to seven characters in length, the first of which must be an 
alphabetic or national character. 

passwordl - can be any combination of alphameric characters up 
to eight characters in length. If delimiters are used, the password 
must be enclosed in quotes. If quotes are to be used in the 
password, two quotes must be entered consecutively. One of them 
will be eliminated by the parse service routine. 

password2 - Same as password 1. 

IKJPOSIT generates a variable length parameter control entry (PCE). 
Within the PCE, a field contains a hexadecimal number indicating the 
type of positional operand described by the PCE. For UID2PSWD, 
the hexadecimal number is C. 

DSNAME - The data set name parameter has three possible formats: 

dsname [ (membernamel] (/password] 
[dsname) (membernamel [password) . 
'dsname [ (membernamel) , [/password) 

dsname - may be either a qualified or an unqualified name. 

An unqualified name is any combination of alphameric characters up 
to eight characters in length, the first character of which must be an 
alphabetic or national character. 

A qualified name is made up of several unqualified names, each 
unqualified name separated by a period. A qualified name, including 
the periods, may be up to 44 characters in length. 

membername - one to eight alphameric characters, the first of which 
must be an alphabetic or a national character. 

Note: The parse service routine considers the entire dsname parameter 
missing if the first character scanned is not an apostrophe, an alphabetic 
character, a national character, or a left parenthesis. If the VOLSER option 
is specified, the first character may be numeric. 

231 TSO Guide to Writing a TMP or a CP 

If it is numeric, only six characters are accepted for VOLSER. 
VOLSER is valid only for DSNAME or DSTHING. If USID is 
specified, the parse service routine will prefix all data set names not 
entered in quotes with the user identification (from the UPT). 

If the slash and the password are not entered, the parse service 
routine does not prompt for the password. If the slash is entered and 
not the password, the parse service routine prompts for the password 



by executing a PUT GET macro instruction specifying bypass mode; 
that is, the terminal user's reply will not print at the terminal. 

DSTHING - A DSTHING is a dsname parameter as previously 
defined except that an asterisk can be substituted for an unqualified 
name or for each qualifier of a qualified name. The parse service 
routine processes the asterisk as if it were a dsname. The asterisk is 
used to indicate that all data sets at that particular level are 
considered. 

Note: If the first character of a dsname is an asterisk, the parse service 
routine will not prefix the USERID. 

QSTRING - A quoted string is a string of characters enclosed within 
apostrophes, such as: . 

'string' 

The string can consist of any length combination of characters, with 
one restriction: if the user wishes to enter apostrophes within the 
string, two successive apostrophes must be entered for each single 
apostrophe desired; one of the apostrophes is removed by the parse 
service routine. 

The ending apostrophe is not required if the string ends at the end of 
the logical line. 

A null quoted string is defined as two contiguous apostrophes or an 
apostrophe at the end of the logical line. 

SPACE - Space is a special purpose parameter; it allows a string . 
parameter that directly follows a command name to be entered 
without a preceding self-defining delimiter character. The space 
parameter must always be followed by a string parameter. If the 
delimiter of the command name is a tab, the tab is the first character 
of the string. The string always ends at the end of the logical line. 

JOBNAME - The jobname may have an optional job identifier. Each 
job identifier is a maximum of eight alphameric characters of which 
the first is alphabetic or national. There is no separator character 
between the jobname and job identifier. The syntax is jobname 
(jobid). 

CONSTANT - There are several forms of the constant parameter. 

Fixed-point numeric literal - Consists of a string of digits (0 through 
9) preceded optionally by a sign (+ or -), such as: 

+1234.43 

This literal may contain a decimal point anywhere in the string except 
as the rightmost character. The total number of digits cannot exceed 
18. Embedded blanks are not allowed. 

Command Scan and Parse -- Determining the Validity of COmIlllllCls 239 



:240 TSO Guide to Writing a TMP or a CP 

Floating-point numeric literal - Takes the following form: 

+ 1234.56E+ 10 

This literal is a string of digits (0 through 9) preceded optionally by a 
sign (+ or -) and must contain a decimal point. This is immediately 
followed by the letter E and then a string of digits (0 through 9) 
preceded optionally by a sign ( + or -). Embedded blanks are not 
allowed. The string of digits preceding the letter E cannot be greater 
than 16 and the string following E cannot be greater than 2. 

Non-numeric literal - Consists of a string of characters from the 
EBCDIC character set, excluding the apostrophe, and enclosed in 
apostrophes, entered as: 

'numbers (1234567890) and letters are ok' 

The length of the string excluding apostrophes may be from 1 to 120 
characters in length. 

Figurative constant - Is one of a set of reserved words supplied by the 
caller of the parse service routine such as: 

test123 

A figurative constant consists of a string of characters up to 255 in 
length. Embedded blanks are not allowed. All characters of the 
EBCDIC character set are allowed except the blank, comma, tab, 
semicolon, and carrier return, however, the first parameter must be 
alphabetic. 

VARIABLE - The following is the form of the variable parameter. 

[program-id.l data-name Il~~~ qUalification] 

L (subscript) 

Program-id - Consists of the first eight characters of a program 
identifier followed by a period. The first character must be alphabetic 
(A through Z) and the remaining characters must be alphameric (A 
through Z or 0 through 9), entered as: 

Data-name - consists of a maximum of 30 characters of the set: 

A through Z (alphabetic) 

o through 9 (numeric) 

- (hyphen) 

typically entered as: 

mydataset-123 

The data-name cannot begin or end with a hyphen and must contain 
at least one alphabetic character. 

here55.mydataset-123 



Qualification - Is applied by placing after a data-name one or more 
data-names preceded by the qualifiers IN or OF, entered as: 

mydataset-123 of yourdataset-456 

The number of qualifiers that can be entered for a data-name is 
limited to 255. 

Subscript - Consists of a data-name with subscripts enclosed in 
parentheses following the data-name entered as: 

yourdataset-456 (mydataset-123) 

A separator between the data-name and the subscript is optional. 
Subscripts are a list of constants or variables. 

The number of subscripts that can be entered for a data-name is 
limited to 3, entered as: 

here55 (abc def h15) 

A separator character between subscripts is required. 

STATEMENT NUMBER - The following is the form of a statement 
number: 

[program id.]line number[.verb number] 

An example is: 

here.23.7 

where: 

Program id - consists of the first eight characters of a program 
identifier followed by a period. The first character must be alphabetic 
(A through Z) and the remaining characters must be alphameric (A 
through Z or 0 through 9). 

Line number - consists of a string of digits (0 through 9) and cannot 
exceed a length of 6 digits. 

Verb number - consists of one digit (0 through 9) that is preceded by 
a period. 

Embedded blanks are not allowed in a statement number. 

EXPRESSION - An expression takes the form: 

(operand 1 operator operand2) 

The operator in the expression shows a relationship between the 
operands, such as: 

(abc equals 123) 

An expression must be enclosed in parentheses. An expression is 
defined by the HOOPER macro. The operands are defined by the 
IKJTERM macro, and the operator by the IKJRSVWD macro 
instruction. 

Command Scan and Parse -- Determining the Validity of Commands 241 



RESERVED WORD - Has three uses depending on the presence or 
absence of operands on the IKJRSVWD macro instruction. The uses 
are: 

• When used with the RSVWD keyword of the IKJTERM macro 
instruction, the IKJRSVWD macro identiFies the beginning of a list 
of reserved words, anyone of which can be entered as a constant. 

• When used with the RSVWD keyword of the IKJOPER macro 
instruction, the IKJRSVWD macro identifies the beginning of a list 
of reserved words, anyone of which can be an operator in an 
expression. 

• When used by itself, the IKJRSVWD macro instruction defines a 
positional reserved word parameter. 

Note: The IKJRSVWD macro instruction is followed by a list of IKJNAME 
macros that contain all of the possible reserved words used as figurat1"\l'C 
constants or operators. 

The HEX, CHAR, and INTEG operands on the IKJlDENT macro 
describe delimiter positional parameters . 

• HEX - indicates that any quantity of the form X'nn', 'ABC' 
(quoted string), or any nonquoted character string in which case a 
separator or delimiter indicates the end, will be accepted as valid 
data. 

• CHAR - indicates that any data in the form of a quoted or 
nonquoted string will be accepted as valid data. 

• INTEG - indicates that any numeric character in the following form 
will be converted by the parse service routine to its appropriate 
binary value. 

(X'nn')---where n is a valid hexadecimal digit(A-F,0-9), maximum 
of 8. 

(B'mm')---where m is a valid binary bit (0-1), maximum of 32. 

dddddd---decimal digits (0-9), maximum of 10. 

Note: The maximum decimal value for INTEG is 2147R43647. 

Positional Parameters Not Dependent on Delimiters: A positional parameter 
that is not dependent on delimiters is passed as a character string with 
restrictions on the beginning character, additional characters, and length. 
These restrictions are passed to the parse service routine as operands on the 
IKJlDENT macro instruction. 

The parse service routine recognizes the following character types as the 
beginning character and additional characters of a non-delimiter-dependent 
positional parameter: 

ALPHA - Indicates an alphabetic or national character. 

NUMERIC - Indicates a number (0-9). 

ALPHANUM - Indicates an alphabetic or national character or a 
number. 

242 TSO Guide to Writing a TMP ()r a CP 

J 



ANY - Indicates that the character to be expected can be any character 
other than a blank, comma, tab, semicolon, or carrier return. A right 
parenthesis must, however, be balanced by a left parenthesis. 

NONA T ABC - Indicates an alphabetic character only is accepted. (No 
national characters.) 

NONA TNUM - Indicates numbers and alphabetic characters are 
accepted.(No national characters.) 

An asterisk can be entered in place of any positional parameter that is 
not dependent on delimiters. 

Entering Positional Parameters as Lists of Ranges: You may want to have 
some positional parameters of your command entered in the form of a list, 
a range, or a list of ranges. The macro instructions that describe positional 
parameters to the parse service routine, IKJPOSIT, IKJTERM and 
IKJIDENT, provide a LIST and a RANGE operand. If coded in the macro 
instruction, they indicate that the positional parameters expected can be in 
the form of a list or a range. 

LIST 

Indicates to the parse service routine that one or more of the same type 
of positional parameters may be entered enclosed in parentheses as 
follows: 

(positional-parameter positional-parameter ... ) 

If one or more of the items contained in the list are to be entered 
enclosed in parentheses, both the left and the right parenthesis must be 
included for each of those items. 

The following positional parameter types may be used in the form of a 
list: 

RANGE 

VALUE 
ADDRESS 
USERID 
UID2PSWD 
DSNAME 
DSTHING 
JOBNAME 
CONSTANT 
STATEMENT NUMBER 
VARIABLE 
HEX 
CHAR 
INTEG 
Any positional parameters that are not dependent upon delimiters 

Indicates to the parse service routine that two positional parameters are 
to be entered separated by a colon as follows: 

positional-parameter:positional-parameter 

The following positional parameter types may be used in the form of a 
range or a list of ranges: 

HEX (form X' , only) 
ADDRESS 
VALUE 
CONSTANT 

Command Scan and Parse -- Determining the Validity of Commands 243 



ST A TEMENT NUMBER 
VARIABLE 
INTEG 
Any positional parameter that is not dependent upon delimiters 

If the user at the terminal wants to enter a parameter that begins with a 
left parentheses, and you have specified in either the IKJPOSIT or 
IKJIDENT macro instruction that the parameter can be entered as a list or 
a range, the user must enclose the parameter in an extra set of parentheses 
to obtain the correct result. 

For instance, you have specified via the IKJPOSIT macro instruction that 
the dsname operand may be entered as a list, and the terminal user wishes 
to enter a dsname of the form: 

(membername)/password 

He must enter it as: 

((membername)/password) 

Keyword Parameters 

Keyword parameters can be entered anywhere in the command as long as 
they follow all positional parameters. They may consist of any combination 
of alphameric characters up to 31 characters long, the first of which must 
be an alphabetic character. 

You describe keyword parameters to the parse service routine with the 
IKJKEYD, IKJNAME and IKJSUBF macro instructions. 

Keyword parameters can have other parameters associated with them. 
These parameters, known as subfields, must be enclosed in parentheses 
directly following the keyword. A sub field may contain positional as well as 
keyword parameters. In the following example posn 1 and kywd2 are 
parameters in the subfield of keyword 1: 

keywordl(posnl kywd2) 

The same syntax rules that apply to commands apply within keyword 
subfields. 

• Keyword parameters must follow positional parameters. 
• Enclosing right parenthesis may be eliminated if the subfield ends at 

the end of a logical line. 
• The subfield may not contain unbalanced right parentheses. 

If a keyword with a subfield in which there is a required parameter is 
entered without the subfield, the parse service routine prompts for the 
required parameter. The terminal user must not include the sub field 
parentheses when he enters the required parameter. 

If a sub field has a positional parameter that can be entered as a list, and 
if this is the only parameter in the subfield, the list must be enclosed by the 
same parentheses that enclose the subfield, such as: 

keyword (item1 item2 item3) 

where item 1, item2, and item3 are members of a list. 

244 TSO Guide to Writing a TMP or a CP 



If a subfield has as its first parameter a positional parameter that may be 
entered as a list and there are additional parameters in the subfield, a 
separate set of parentheses is required to enclose the list, such as: 

keyword((item1 item2 item3) param) 

where item I, item2, and item3 are members of a list, and param is a 
parameter not included in the list. 

Using the Parse Macro Instructions to Define Command Syntax 

A command processor using the parse service routine must build a 
parameter control list (PCL) defining the syntax of acceptable command 
parameters. Each acceptable command parameter is described by a 
parameter control entry (PCE) within the PCL. The parse service routine 
compares the command parameters within the command buffer against the 
PCL to determine if valid command parameters have been entered. 

Parse returns the results of this comparison to the command processor in 
a parameter descriptor list (POL). The POL is composed of separate entries 
(POEs) for each of the command parameters found in the command buffer. 

The command processor builds the PCL and the PCEs within it using the 
parse macro instructions. These macro instructions generate the PCL and 
establish symbolic references for the POL returned by the parse service 
routine. 

The parse macros that generate input to parse must be issued by a 
program that is loaded below 16 megabytes so that IKJPARS can access 
the PCL. The IKJRLSA macro must be issued in 24-bit addressing mode. 

There are eleven parse macro instructions: 

IKJPARM 
IKJPOSIT 
IKJTERM 
IKJOPER 
IKJRSVWD 
IKJIDENT 
IKJKEYWD 
IKJNAME 
IKJSUBF 
IKJENDP 
IKJRLSA 

These macro instructions perform the following functions: 

1. The IKJPARM macro instruction begins the PCL CSECT and the 
POL OSECT, and provides symbolic addresses for both. 

2. The IKJPOSIT, IKJTERM, IKJOPER, IKJRSVWO, IKJIDENT, 
IKJKEYWD, IKJNAME, and IKJSUBF macro instructions describe 
the positional and keyword parameters valid for the command 
processor. These macro instructions expand into the PCEs required 
by the parse service routine during its scan of the command buffer. 
The label fields of these macro instructions are used as labels within 
the OSECT that maps the POL returned by the parse service routine. 

3. The IKJENDP macro instruction ends the PCL CSECT. 

4. The IKJRLSA macro instruction releases the virtual storage obtained 
by the parse service routine for the PDL. 

Command Scan and Parse -- Determining the Validity of Commands 245 



IKJPARM - Beginning the peL and the PDL 

Code the IKJPARM macro instruction to begin the parameter control list '\ 
and to provide a symbolic address for the beginning of the parameter ...", 
descriptor list returned by the parse service routine. The PCL is constructed 
in the CSECT named by the label field of the macro instruction; the POL 
will be mapped by the OSECT named in the OSECT operand of the macro 
instruction. 

Figure 117 shows the format of the IKJP ARM macro instruction. Each 
of the operands is explained following the figure. Appendix A describes the 
notation used to define macro instructions. 

label IKJPARM 
ldsect name~ 

DSECT= IKJPARMD 

Figure 117. The IKJPARM Macro Instruction 

label 
The name you provide is used as the name of the CSECT in which the 
PCL is constructed. 

DSECT= 
Provides a name for the OSECT created to map the parameter descriptor 
list. This may be any name; the default is IKJPARMO. 

The Parameter Control Entry Built By IKJPARM: The IKJP ARM macro 
instruction generates the parameter control entry (PCE) shown in Figure 
118. This PCE begins the parameter control list. 

Number of 
Field Contents or Meaning Bytes 

2 length of the parameter control list. This field 
contains a hexadecimal number representing 
the number of bytes in this peL. 

2 length of the parameter descriptor list. This 
field contains a hexadecimal number 
representing the number of bytes in the 
parameter descriptor list returned by the parse 
service routine. 

2 This field contains a hexadecimal number 
representing the offset within the Pel to the 
first IKJKEYWD PCE or to an end-of-field 
indicator if there are no keywords. An 
end-of-field indicator may be an IKJSUBF or 
an IKJENDP PCE. 

Figure 118. The Parameter Control Entry Built by IKJPARM 

246 TSO Guide to Writing a TMP or a CP 



IKJPOSIT - Describing a Delimiter-Dependent Positional Parameter 

Code the IKJPOSIT macro instruction to describe most of the 
delimiter-dependent positional parameters. IKJIDENT is used to describe 
the others. 

The order in which you code the macros for positional parameters is the 
order in which the parse service routine expects to find the positional 
parameters in the command string. 

Figure 119 shows the format of the IKJPOSIT macro instruction. Each 
of the operands is explained following the figure. Appendix A describes the 
notation used to define macro instructions. 

Command Scan and Parse -- DetermlnllJll the Validity of COIIIIII8IIds 147 



DEFAULT='defauIt value' 
The parameter described by this IKJPOSIT macro instruction is required, 
but the terminal user need not enter it. If the parameter is not entered, 
the value specified as the default value is used. 

Note: If neither PROMPT nor DEFAULT is specified, the parameter is 
optional. The parse service routine takes no action if the parameter 
specified by this IKJPOSIT macro instruction is not present in the 
command buffer. 

HELP=('help data','help data' ... } 
You can provide up to 255 second level messages. Enclose each message 
in apostrophes and separate the messages by single commas. These 
messages are issued one at a time after each question mark is entered by 
the terminal user in response to a prompting message from the parse 
service routine. These messages are not sent to the user when the prompt 
is for a password on a dsname or userid parameter. 
Parse adds a message ID and the word ENTER (in prompt mode) or 
MISSING (in no-prompt mode) to the beginning of each message before 
writing it to the terminal. 

VALIDCK=symbolic-address 
Supply the symbolic address of a validity checking subroutine if you want 
to perform additional validity checking on this parameter. Parse calls this 
routine after first determining that the parameter is syntactically correct. 

The Parameter Control Entry Built by IKJPOSIT: The IKJPOSIT macro 
instruction generates the variable length parameter control entry (peE) 
shown in Figure 120. 

250 TSO Guide to Writing a TMP or a CP 



Number of 
Bytes Field Contents or Meaning 

2 Flags. These flags are set to indicate which 
options were specified in the IKJPOSIT macro 
instruction. 

Byte 1 
001. .... This is an IKJPOSIT PCE. 
... 1 .... PROMPT 
.... 1... DEFAULT 
..... 1.. This is an extended format PCE. If the 

VALlDCK parameter was specified, the length 
of the field containing the address of the 
validity checking routine is four bytes. 

...... 1. HELP 

....... 1 VALlDCK 
Byte 2 
1 ....... LIST 
. 1 ...... ASIS 
.. 1. .... RANGE 
.... 1... SQSTRING 
..... 1.. USID 
...... 1. VOLSER 
....... 1 DDNAME 

2 Length of the parameter control entry. This 
field contains a hexadecimal number 
representing the number of bytes in this 
IKJPOSIT PCE. 

2 Contains a hexadecimal offset from the 
beginning of the parameter descriptor list to 
the related parameter descriptor entry built by 
the parse service routine. 

1 This field contains a hexadecimal number 
indicating the type of positional parameter 
described by this PCE. These numQers have 
the following meaning: 

HEX 
1 DELIMITER 
2 STRING 
3 VALUE 
4 ADDRESS 
5 PSTRING 
6 USERID 
7 DSNAME 
8 DSTHING 
9 QSTRING 
A SPACE 
B JOBNAME 
C UID2PSWD 
D EXTENDED ADDRESS 
E to FF Not used. 

1 Contains the length minus one of the default 
or prompting information supplied on the 
IKJPOSIT macro instruction. This field and the 
next are present only if DEFAULT or PROMPT 
was specified on the IKJPOSIT macro 
instruction. 

Figure 120. The Parameter Control Entry Built by IKJPOSIT (Part 1 of 2) 

Command Scan and Parse -- Determining the Validity of Commands 251 



Number of 
Bytes Field Contents or Meaning 

Variable This field contains the prompting or default 
information supplied on the IKJPOSIT macro 
instruction. 

2 This field contains a hexadecimal figure 
representing the length in bytes of all the PCE 
fields used for second level messages. The 
figure includes the length of this field. The 
fields are present only if HELP is specified on 
the IKJPOSIT macro instruction. 

1 This field contains a hexadecimal number 
representing the number of second level 
messages specified by HELP on this IKJPOSI1 
PCE. 

2 This field contains a hexadecimal number 
representing the length of this HELP segment. 
The length figure includes the length of this 
field, the message segment offset field, and 
the length of the information. These fields are 
repeated for each second level message 
specified by HELP on the IKJPOSIT macro 
instruction. 

2 This field contains the message segment 
offset. It is set to X'OOOO'. 

Variable This field contains one second level message 
supplied on the IKJPOSIT macro instruction 
specified by HELP. This field and the two 
preceding ones are repeated for each second 
level message supplied on the IKJPOSIT macro 
instruction. These fields do not appear if 
second level message data was not supplied. 

3 or 4 This field contains the address of a validity 
checking routine if VALlDCK was specified on 
the IKJPOSIT macro. If the "extended format 
PCE" bit is on in the IKJPOSIT PCE, the 
address is four bytes long; if the bit is off, the 
address is three bytes long. This field is not 
present if VALlDCK was not specified. 

Figure 120. The Parameter Control Entry Buill by IKJPOSIT (Part 2 of 2) 

IKJTERM - Describing a Delimiter-Dependent Positional Parameter 

Code the IKJTERM macro instruction to describe a positional parameter 
that is one of the following: 

• Statement number 
• Constant 
• Variable 
• Constant or variable 

The order in which you code the macros for positional parameters is the 
order in which the parse service routine expects to find the parameters in 
the command string. 

252 TSO Guide to Writing a TMP or a CP 



label 

Figure 121 shows the format of the IKJTERM macro instruction. Each 
of the operands is explained following the figure. Appendix A describes the 
notation used to define macro instructions. 

IKJTERM 'parameter-type' [, LIS'r] [.RANGE] 

r UPPERCASE] [ r~} ] ,~SIS .TYPE= ~~T 

[.SBSCRPT[=labe1-PCE]] ~PROMPT='prompt data' ] 
.DEFAULT='default value' 

[.BELP=('help data' .'help data' •••• )] 

[.~LIDCK=syrnbolic-adjress][,RSVWD=label-PCE] 

Figure 121. The IKJTERM Macro Instruction 

label 
This name is used to address the PCE built by the IKJTERM macro. 
The hexadecimal offset to the parameter descriptor entry described by 
this IKJTERM macro instruction is contained in the PCE. 

Note: The hexadecimal offset to the PDE will contain binary zero when 
the IKJTERM macro is describing a subscript of a data name. 

'parameter-type' 

This field is required so that the parameter can be identified when an 
error message is necessary. This field differs from the PROMPT field in 
that the PROMPT field is not required and, if supplied, is used only for 
a required parameter that is not entered by the terminal user. Blanks 
within the apostrophes are allowed. 

LIST 

The command operands may be entered by the terminal user as a list, in 
the form: 

commandname (parameter,parameter, ... ) 

The LIST option may be used with any of the TYPE= positional 
parameters. 

RANGE 

The command operands may be entered by the terminal user as a range, 
in the form: 

commandname parameter:parameter 

The RANGE option may be used with any of the TYPE= positional 
parameters. 

Note: The LIST and RANGE options can not be used when the 
IKJTERM macro instruction is describing a subscript of a data-name. 

UPPERCASE 

The parameter is to be translated to uppercase. 

Command Scan and Parse -- Determining the Validity of Commands 253 



ASIS 

The parameter is to be left as it was entered by the terminal user. 

TYPE= 
Describes the type of the parameter as one of: 

• STMT - statement number 
• CNST - constant 
• V AR - variable 
• ANY - constant or variable 

Note: A syntactical definition of these parameters is contained under 
"Delimiter-Dependent Parameters." 

SBSCRIPfI =label-PCE) 
.Specifies one of two conditions: 

1. If SBSCRIPT is entered with a label-PCE then the data-name 
described by the IKJTERM macro may be subscripted. Supply the 
name of the label of an IKJTERM macro instruction that describes 
the subscript. Only TYPE = V AR or TYPE=ANY parameters can be 
subscripted. 

2. If SBSCRPT is entered without a label-PCE then the IKJTERM 
macro is describing the subscript of a data-name. All TYPE= 
parameters may be used on a subscript except TYPE=STMT. The 
LIST and RANGE options can not be used on an IKJTERM macro 
that is describing a subscript. 

Note: Two IKJTERM macros are coded to describe a subscripted 
data-name. The first IKJTERM macro describes the data name and 
specifies the SBSCRIPT option with the label of the second IKJTERM 
macro. The second IKJTERM macro describes the subscript of the 
data-name and specifies SBSCRPT without a label-PCE. The second 
macro must immediately follow the first. 

PROMPf='prompt data' 
The parameter described by this IKJTERM macro instruction is required. 
The prompting data is the message to be issued if the parameter is not 
entered by the terminal user. If prompting is necessary and the terminal 
is in prompt mode, the parse service routine adds a message-identifying 
number (message ID) and the word ENTER to the beginning of the 
message before writing it to the terminal. 
If prompting is necessary but the terminal is in no-prompt mode, the 
parse service routine adds a message ID and the word MISSING to the 
beginning of the message before writing it to the terminal. If a 
subscripted data-name requires prompting, the terminal user is prompted 
for the entire name including the subscript. 

DEFAULT='default value' 
The parameter described by this IKJTERM macro instruction is required, 
but the terminal user need not enter it. If the parameter is not entered, 
the value specified as the default value is used. 

Note: If neither PROMPT nor DEFAULT is specified, the parameter is 
optional. The parse service routine takes no action if the parameter is not 
present. 

254 TSO Guide to Writing a TMP or a CP 

:J 



HELP=('help data' ,'help data', ... ) 
You can provide up to 255 second level messages. Enclose each message 
in apostrophes and separate the messages by single commas. These 
messages are issued one at a time after each question mark entered by 
the terminal user in response to a. prompting message from the parse 
service routine. 
Parse adds a message ID and the word ENTER (in prompt mode) or 
MISSING (in no-prompt mode) to the beginning of each message before 
writing it to the terminal. 

V ALIDCK=symbolic-address 
Supply the symbolic address of a validity checking subroutine if you want 
to perform additional checking on this parameter. Parse calls this routine 
after first determining that the parameter is syntactically correct. 

RSVWD=label-PCE 
This parameter is used when TYPE=CNST or TYPE=ANY is specified. 
This option indicates that this parameter can be a figurative constant. 
Supply the address of the PCE (label on a IKJRSVWD macro 
instruction) that begins the list of reserved words that can be entered as 
a figurative constant. 
This list of reserved words is defined by a series of IKJNAME macros 
that contain all possible names and immediately follow the IKJRSVWD 
macro. 

Note: The IKJRSVWD macro can be coded anywhere in the list of 
macros that build the PCL except following an IKJSUBF macro 
instruction. This permits other IKJTERM macro instructions to refer to 
the same list. 

Command Scan and Parse -- Determining the Validity of Commands 255 



The Parameter Control Entry Built by IKJTERM: The IKJTERM macro 
instruction generates the variable parameter control entry (PCE) shown in 
Figure 122. 

Number of 
Bytes Field Contents or Meaning 

2 Flags. These flags are set to indicate options 
on the IKJTERM macro instruction. 

Byte 1 
110 ..... This is an IKJTERM PCE. 
... 1 .... PROMPT 
.... 1. .. DEFAULT 
.... . 1.. This is an extended format PCE. If the 

VALlDCK. parameter was specified, the length 
of the field containing the address of the 
validity checking routine is four bytes. 

....... 1. HELP 
....... 1 VALlDCK 
Byte 2 
1. ...... LIST 
.1 ...... ASIS 
.. 1. .... RANGE 
... 1 .... This term may be SUBSCRIPTED. 
.... 1. .. A reserved word PCE is chained from this 

term. 
..... 000 Reserved 

2 The hexadecimal length of this PCE. 

2 Contains a hexadecimal offset from the 
beginning of the parameter descriptor list to 
the parameter descriptor entry built by the 
parse routine. 

1 This field indicates the type of positional 
parameter described by this PCE. 

1. ...... STATEMENT NUMBER 
.1.. .... VARIABLE 
.. 1. .... CONSTANT 
... 1 .... ANY (constant or variable) 
.... 1. .. This term is a SUBSCRIPT term . 
..... 000 Reserved 

4 Byte 1-2 Contains the hexadecimal . length of the 
parameter-type field. 

Byte 3-4 Contains the offset of the parameter-type 
field. It is set to X'0012'. 

Variable Contains the parameter-type field. 

Figure 122. The Parameter Control Entry Built by IKJTERM (Part t of 2) 

256 TSO Guide to Writing a TMP or a CP 



Number of 
Bytes Field Contents or Meaning 

1 Contains the length of the default or 
prompting information supplied on the macro 
instruction. 

Variable Contains the default or prompting information 
supplied on the macro instruction. 

2 If a subscript is specified on the macro, this 
field contains the offset into the parameter 
control list of the subscript PCE. 

2 If a reserved word PCE is specified on the 
macro, this field contains the offset into the 
parameter control list of the reserved word 
PCE. 

2 Contains the length (including this field) of all 
the PCE fields used for second level messages 
if HELP is specified on the macro. 

1 The number of second level messages 
specified on the macro instruction by the 
HELP parameter. 

2 Contains the length of this segment including 
this field, the message offset field and second 
level message. 
Note: This field and the following two are 
repeated for each second level message 
specified by HELP on the macro. 

2 This field contains the message segment 
offset. 

Variable This field contains one second leve) message 
specified by HELP on the macro instruction. 
This field and the two preceding fields are 
repeated for each second level message 
specified. 

3 or 4 This field contains the address of a validity 
checking routine if VALlDCK was specified on 
the IKJTERM macro. If the "extended format 
PCE" bit is on in the IKJTERM PCE, the 
address is four bytes long; if the bit is off, the 
address is three bytes long. This field is not 
present if VALlDCK was not specified. 

Figure 122. The Parameter Control Entry Built by IKJTERM (Part 2 of 2) 

Command Scan and Parse -- Detennining the Validity of Commands 257 



label 

IKJOPER - Describing a Delimiter-Dependent Positional Parameter 

Code the IKJOPER macro instruction to provide a parameter control entry 
(PCE) that describes an expression. An expression consists of three parts; 
two operands and one operator in the form: 

(operand1 operator operand2) 

typically entered as: 

(abc eq 123) 

The parts of an expression are described by PCEs that are chained to the 
IKJOPER PCE. The IKJTERM macro instruction is used to identify the 
operands, and the IKJRSVWD macro instruction is used to identify the 
operator. 

Figure 123 shows the format of the IKJOPER macro instruction. Each 
of the operands is explained following the figure. Appendix A describes the 
notation used to define macro instructions. 

IKJOPER 'parameter-type' [,PROMPT='prompt data' J 
,DEFAULT='default value' 

[,HELP=('help data' ,'help data' , ... )] 
[,VALIDCK=symbolic-address] ,OPERND1=label1 
,OPERND2=labe12,RSVWD=labe13 
[ ,CHAIN=labe14] 

Figure 123. The IKJOPER Macro Instruction 

label 
This name is used to address the PCE built by the IKJOPER macro. The 
hexadecimal offset to the parameter descriptor entry described by this 
macro is contained in the PCE. 

'paranBeter-type' 
This field is required so that the parameter can be identified when an 
error message is necessary. This field differs from the PROMPT field in 
that the PROMPT field is not required and if supplied is used only for a 
required parameter that is not entered by the terminal user. Blanks 
within the apostrophes are allowed. 

Note: This field is used only with error messages for the complete 
expression. The IKJTERM and IKJRSVWD PCEs are used with an error 
message for missing operands or operator. If a validity check routine 
specifies an invalid expression, then the entire expression is prompted 
for. 

258 TSO Guide to Writing a TMP or a CP 



PROMPT='prompt data' 
The parameter described by this IKJOPER macro instruction is required. 
The prompting data is the message to be issued if the parameter is not 
entered by the terminal user. If prompting is necessary and the terminal 
is in prompt mode, the parse service routine adds a message-identifying 
number (message 10) and the word ENTER to the beginning of the 
message before writing it to the terminal. If prompting is necessary but 
the terminal is in no-prompt mode, the parse service routine adds a 
message 10 and the word MISSING to the beginning of the message 
before writing it to the terminal. 

DEFAULT='defauIt value' 
The parameter described by this IKJOPER macro instruction is required, 
but the terminal user need not enter it. If the parameter is not entered 
the value specified as the default value is used. 

Note: If neither PROMPT nor DEFAULT is specified, the parameter is 
optional. The parse service routine takes no action if the parameter is not 
present. 

HELP=('help data·.'help data· •... ) 
You can provide up to 255 second level messages. Enclose each message 
in apostrophes and separate the messages by single commas. These 
messages are issued one at a time after each question mark entered by 
the terminal user in response to a prompting message from the parse 
service routine. 

Parse adds a message ID and the word ENTER (in prompt mode) or 
MISSING (in no-prompt mode) to the beginning of each message before 
writing it to the terminal. 

VALIDCK=symbolic-address 
Supply the symbolic address of a validity checking subroutine if you want 
to perform additional checking on this expression. The parse service 
routine calls this routine after first determining that the expression is 
syntactically correct. 

OPERNDl =Iabell 
Supply the name of the label field of the IKJTERM macro instruction 
that is used to describe the first operand in the expression. This 
IKJTERM macro instruction should be coded immediately following the 
IKJOPER macro instruction that describes the expression. 

OPERND2=labeI2 
Supply the name of the label field of the IKJTERM macro instruction 
that is used to describe the second operand in the expression. This 
IKJTERM macro instruction should be coded immediately following the 
IKJNAME macro instructions that describe the operator in the 
expression under the associated IKJRSVWD macro instruction. 

RSVWD=labeI3 
Supply the name of the label field of the IKJRSVWD macro instruction 
that begins the list of reserved words that are used to describe the 
possible operators to be entered for the expression. The IKJRSVWD and 
associated IKJNAME macro instructions should be coded immediately 
following the IKJTERM macro that describes the first operand, and 
immediately preceding the IKJTERM macro that describes the second 
operand. 

Command Scan and Parse -- Determining the Validity of Commands 259 



CHAIN-labeI4 
Indicates that this parameter described by the IKJOPER macro 
instruction may be entered as an expression or as a variable. Supply the 
name of the label field of an IKJTERM macro instruction that describes 
the variable term. The LIST and RANGE options are not permitted on 
this IKJTERM macro instruction. Code this IKJTERM macro instruction 
immediately following the IKJTERM macro that describes the second 
operand. 

Note: The parse service routine first determines if the parameter is 
entered as an expression. If the parameter is an expression, that is, 
enclosed in parentheses, then it is processed as an expression. If it is not 
an expression, then it is processed using the chained IKJTERM PCE to 
control the scan of the parameter. 

260 TSO Guide to Writing a TMP or a CP 



The Parameter Control Entry Built by IKJOPER: The IKJOPER macro 
instruction generates the variable parameter control entry (PCE) shown in 
Figure 124. 

Number of 
Bytes Field Contents or Meaning 

2 Flags. These flags are set to indicate options 
on the IKJOPER macro instruction. 

Byte 1 
111 ..... This is an IKJOPER PCE. 
... 1 .... PROMPT 
.... 1. .. DEFAULT 
.... . 1.. This is an extended format PCE. If the 

VALlDCK parameter is specified, the length of 
the field containing the address of the validity 
checking routine is four bytes. 

...... 1. HELP 

....... 1 VALlDCK 
Byte 2 
00000000 Reserved 

2 The hexadecimal length of this PCE. 

2 Contains a hexadecimal offset from the 
beginning of the parameter descriptor list to 
the parameter descriptor entry built by the 
parse service routine. 

4 Byte 1-2 Contains the hexadecimal length of the 
parameter-type field. 

Byte 3-4 Contains the offset of the parameter-type field 
(X'OO12'). 

Variable Contains the parameter-type field. 

2 If a reserved word PCE is specified on the 
macro, this field contains the offset into the 
parameter control list of the reserved word 
PCE. 

2 Contains the offset into the parameter control 
list of the OPERND1 PCE. 

2 Contains the offset into the parameter control 
list of the OPERND2 PCE. 

2 Contains the offset into the parameter control 
list of the chained term PCE if present. Zero if 
not present. 

1 Contains the length of the default or 
prompting information supplied on the macro 
instruction. 

Figure 124. The Parameter Control Entry Built by IKJOPER (Part I of 2) 

Command ScaD and Parse -- Determining the Va.lldlty of COIIIIII8IIds 261 



Number of 
Bytes Field Contents or Meaning 

Variable Contains the default or prompting information 
supplied on the macro instruction. 

2 Contains the length (including this field) of all 
the PCE fields used for second level messages 
if HELP is specified on the macro. 

1 The number of second level messages 
specified on the macro instruction by the 
HELP = parameter. 

2 Contains the length of this segment including 
this field, the message offset field and second 
level message. 
Note: This field and the following two are 
repeated for each second level message 
specified by HELP on the macro. 

2 This field contains the message segment 
offset. 

Variable This field contains one second level message 
specified by HELP on the macro instruction. 
This field and the two preceding fields are 
repeated for each second level message 
specified. 

3 or 4 This field contains the address of a validity 
checking routine if VALlDCK was specified on 
the IKJOPER macro. If the "extended format 
PCE" bit is on in the IKJOPER PCE, the 
address is four bytes long; if the bit is off, the 
address is three bytes long. This field is not 
present if VALlDCK was not specified. 

Figure 124. The Parameter Control Entry Built by IKJOPER (Part 2 of 2) 

IKJRSVWD - Describing a Delimiter-Dependent Positional 
J»ara~eter . 

Code the IKJRSVWD macro instruction with at least the 'parameter-type' 
operand when you use it: 

• With the RSVWD keyword of the IKJOPER macro instruction to 
define the beginning of a list. of the possible reserved words that can 
be an operator in an expression. The possible reserved words that can 
be operators in an expression. are identified by a list of IKJNAME 
macro instructions that immediately follow the IKJRSVWD macro 
instruction. 

• By itself to define a positional reserved word. 

Code the IKJRSVWD macro instruction without operands when you use it: 

• With the RSVWD keyword of the IKJTERM macro instruction to 
define the beginning of a list of possible reserved words that can be 
used as a figurative constant. The possible figurative constants are 
defined by a list of IKJNAME macros that immediately follow the 
IKJRSVWD macro instruction. 

262 TSO Guid,· In \\'rilin~ a .,.\11' nr a ("I' 

J 



L 

label 

In this case, simply code the IKJRSVWD macro instruction as: 

label I IKJRSVWD 

The order in which you code the macros for positional parameters is the 
order in which the parse service routine expects to find the parameters in 
the command string. 

Figure 125 shows the format of the IKJRSVWD macro instruction. Each 
of the operands is explained following the figure. Appendix A describes the 
notation used to define macro instructions. 

IKJRSVWD 'parameter-type' [PROMPT=' prompt data' ] 
,DEFAULT='default value' 

[,HELP=('help data', 'help data', ... )] 

Figure t 25. The IKJRSVWD Macro Instruction 

label 
This name is used to address the PCE built by the IKJRSVWD macro. 
The hexadecimal offset to the parameter descriptor entry described by 
this macro is contained in the PCE. 

Note: The following operands are not coded on the IKJRSVWD macro 
when you use it with the RSVWD keyword of the IKJTERM macro 
instruction. 

~ara~eter-type' 

This field is required so that the parameter can be identified when an 
error message is necessary. This field differs from the PROMPT field in 
that the PROMPT field is not required and if supplied is used only for a 
required parameter that is not entered by the terminal user. Blanks 
within the apostrophes are allowed. 

PROMPT='pro~pt data' 
The parameter described by this IKJRSVWD macro instruction is 
required. The prompting data is the message to be issued if the 
parameter is not entered by the terminal user. If prompting is necessary 
and the terminal is in prompt mode, parse adds a message-identifying 
number (message 10) and the word ENTER to the beginning of the 
message before writing it to the terminal. If prompting is necessary but 
the terminal is in no-prompt mode, parse adds a message ID and the 

. word MISSING to the beginning of the message before writing it to the 
terminal. 

DEFAULT='default value' 
The parameter described by this IKJRSVWD macro instruction is 
required, but the terminal user need not enter it. If the parameter is not 
entered, the value specified as the default value is used. 

Note: If neither PROMPT nor DEFAULT is specified, the parameter is 
optional. The parse service routine takes no action if the parameter is not 
present. 

Command Scan and Parse -- Detennining the Validity or Commands 163 

.~ 

! 



HELP=('help data','help data', ... ) 
You can provide up to 255 second level messages. Enclose each message 
in apostrophes and separate the messages by single commas. These 
messages are issued one at a time after each question mark entered by 
the terminal user in response to a prompting message from the parse 
routine. 
The parse service routine adds a message ID and the word ENTER (in 
prompt mode) or MISSING (in no-prompt mode) to the beginning of 
each message before writing it to the terminal. 

The Parameter Control Entry Built by IKJRSVWD: The IKJRSVWD macro 
instruction generates the variable parameter control entry (peE) shown in 
Figure 126. 

Number of 
Bytes Field Contents or Meaning 

2 Flags. These flags are set to indicate options 
Byte 1 on the IKJRSVWD macro instruction. 

101. ... This is an IKJRSVWD PCE. 
... 1 .... PROMPT 
.... 1. .. DEFAULT 
.... . 0 .. Reserved 
...... 1. HELP 
....... 0 Reserved 
Byte 2 
1. ...... This PCE is used with the IKJTERM macro as a 

figurative constant. 
0 ....... This PCE is not used with the IKJTERM macro 

as a figurative constant. 
. 0000000 Reserved . 

2 The hexadecimal length of this PCE. 

2 Contains a hexadecimal offset from the 
beginning of the parameter descriptor list to 
the parameter descriptor entry built by the 
parse service routine. 
Note: The following fields are omitted if this 
peE is used with the IKJTERM macro to 
describe a figurative constant. 

4 Byte 1-2 Contains the hexadecimal length of the 
parameter-type field. 

Byte 3-4 
Contains the offset of the parameter-type field 
(X'OOI2'). 

Variable Contains the parameter-type field. 

1 Contains the length of the default or 
prompting information supplied on the macro 
instruction. 

Variable Contains the default or prompting information 
supplied on the macro instruction. 

Figure 126. The Parameter Control Entry Built by IKJRSVWD (Part 1 of 2) 

264 TSO Guide to Writing a TMP or a CP 

J 



Number of 
Bytes Field Contents or Meaning 

2 Contains the length (including this field) of ali 
the PCE fields used for second level messages 
if HELP is specified on the macro. 

1 The number of second level messages 
specified on the macro instruction by the 
HELP = parameter. 

2 Contains the length of this segment including 
this field, the message offset field and second 
level message. 
Note: This field and the following two are 
repeated for each second level message 
specified by HELP on the macro. 

2 This field contains the message segment 
offset. 

Variable This field contains one second level message 
specified by HELP on the macro instruction. 
This field and the two preceding fields are 
repeated for each second level message 
specified. 

Figure 126. The Parameter Control Entry Built by IKJRSVWD (Part 2 of 2) 

IKJIDENT - Describing a Non-Delimiter-Dependent Positional 
Parameter 

Execute the IKJIDENT macro instruction to describe a positional parameter 
that does not depend upon a particular delimiter for its syntactical definition 
-- those parameters discussed under "Positional Parameters Not Dependent 
on Delimiters." 

These positional parameters must be in the form of a character string, 
with restrictions on the beginning character, additional characters, and 
length, decimal integers, or hexadecimal characters. 

The order in which you code the macro instructions for positional 
parameters is the order in which the parse service routine expects to find 
the positional parameters in the command string. 

Figure 127 shows the format of the IKJIDENT macro instruction. Each 
of the operands is explained following the figure. Appendix A describes the 
notation used to define macro instructions. 

Command Scan and Parse -- Determining the Validity of Commands 265 



label IKJIDEN'I 'parameter-type' [ , LI ST] [ , RANG El [ , PTBYPS] 

[,ASTERISK] [, UPPf.RCASE] [ ,z."AXLNr&=nurnber] 
,ASIS 

[ IA LPtl A I~ [ (ALPHA I] , FIRST= NUME Rl C , or HER= NUMERIC 
ALPHANtM ALPHANUM 
ANY ANY 
NONATABC NONA~BC 
NONATNUM NONATNUM 

[ , PROMP'I'= 'prompt data' ] 
,DEFAULT='default value' 

[
,CHAR] 
,INTEG 
,HEX 

[, VALIDCK=symbolic-address) 

LHELP=('help data', 'help data', ••• ») 

Figure 127. The IKJIDENT Macro Instruction 

label 
This name is used within the PDL DSECT as the symbolic address of 
the parameter descriptor entry for this positional parameter. 

'parameter-type' 
This field is required so that the parameter can be identified when an 
error message is necessary. This field differs from the PROMPT field in 
that the PROMPT field is not required and if supplied is used only for a 
required parameter that is not entered by the terminal user. Blanks 
within the apostrophes are allowed. 

LIST 

This positional parameter may be entered by the terminal user as a list, 
that is, in the form: 

commandname (parameter,parameter, ... ) 

RANGE 

This positional parameter may be entered by the terminal user as a 
range, that is, in the form: 

commandname parameter:parameter 

PTBYPS 
All prompting for the parameter is to be done in print inhibit mode. This 
option may be specified only when the PROMPT option is specified. 

ASTERISK 
An asterisk may be substituted for this positional parameter. 

Note: ASTERISK and INTEGER are mutually exclusive. 

UPPERCASE 

The parameter is to be translated to uppercase. 

266 TSO Guide to Writing a TMP or a CP 



ASIS 

The parameter is to be left as it was entered. 

MAXLNTH=number 
The maximum number of characters the string may contain. If you do 
not code the MAXLNTH operand, the parse service routine accepts a 
character string of any length. 

FIRST= 

Specify the character type restriction on the first character of the string. 

OTHER= 

Specify the character type restriction on the characters of the string other 
than the first character. 

Note: The restrictions on the characters of the string are specified by 
coding one of the following character types after the FIRST= and the 
OTHER= operands. This is true unless HEX, INTEG, or CHAR is 
specified. FIRST= and OTHER= serve no purpose in these cases. 

ALPHA 

An alphabetic or national character. ALPHA is the default value for 
both the FIRST and the OTHER operands. 

NUMERIC 

A digit, 0-9. 

ALPHANUM 

An alphabetic, numeric, or national character. 

ANY 

Any character other than a blank, comma, tab, or semicolon. Parentheses 
must be balanced. 

NONATABC 

An alphabetic character only. National characters and numerics are 
excluded. 

NONATNUM 

An alphabetic or numeric character. National characters are excluded. 

PROMPT='prompt data' 
The parameter is required; the prompting data is the message to be 
issued if the parameter is not entered by the terminal user. If prompting 
is necessary and the terminal is in prompt mode, the parse service routine 
adds a message-identifying number (message lD) and the word ENTER 
to the beginning of this message before writing it to the terminal. 
If prompting is necessary but the terminal is in no-prompt mode, the 
parse service routine adds a message ID and the word MISSING to the 
beginning of this message before writing it to the terminal. 

DEFAULT='default value' 
The parameter is required, but a default value may be used. If the 
parameter is not entered by the terminal user. the value specified as the 
default value is used. 

Note: The parameter is optional if neither PROMPT nor DEF AUL T is 
specified. The parse service routine takes no action if the parameter 
specified by this IKJIDENT macro instruction is not present in the 
command buffer. 

Command Scan and Parse -- Determining the Validity of Commands 267 



-- - ----------------

CHAR 

Specifies that the parse service routine is to accept a string of characters 
as input. This input string may be either quoted or unquoted. 

INTEG 

Specifies that the parse service routine is to accept a numeric quantity as 
input. This quantity may be decimal, hexadecimal, or binary. The number 
is stored internally as a fullword binary value, regardless of how INTEG 
was specified. 

Note: A maximum length is automatically implied if the INTEG option is 
specified. For binary input, the maximum number of characters is 32. 
For hexadecimal input, the maximum length is 8. For decimal input, the 
maximum length is 10. 

HEX 

Specifies that the parse service routine is to accept a hexadecimal value 
as input. This string quantity may be hexadecimal or a quoted or 
non-quoted string. 

Note: All input entered in the form X'n ... ' must be valid hexadecimal 
digits (0-9, A-F). All input entered in the form B'n .. .' must be valid 
binary digits (0, O. All input entered as unquoted decimals must be valid 
decimal digits (0-9). 

V ALIDCK=symbolic-address 
Supply the symbolic address of a validity checking subroutine if you want 
to perform additional validity checking on this parameter. The parse 
service routine calls the addressed routine after first determining that the 
parameter is syntactically correct. 

HELP=('help data','hclp data' ... ) 

You can provide up to 255 second level messages. Enclose each message 
in apostrophes and separate the messages by single commas. These 
messages are issued one at a time after each question mark entered by 
the terminal user in response to a prompting message from the parse 
service routine. These messages are not sent to the user when the prompt 
is for a password on a dsname or userid parameter. 
The parse service routine adds a message ID and the word ENTER (in 
prompt mode) or MISSING (in no-prompt mode) to the beginning of 
each message before writing it to the terminal. 

268 TSO Guide to Writing a TMP or a CP 

',J 



The Parameter Control Entry Built by IKJIDENT: The IKJIDENT macro 
instruction generates the variable length parameter control entry (PCE) 
shown in Figure 128. 

Number of 
Bytes Field Contents or Meaning 

2 Flags. These flags are set to indicate which 
options were specified in the IKJIDENT macro 
instruction. 

Byte 1 
100 ..... This is an IKJIDENT PCE . 
... 1 .... PROMPT 
.... 1. .. DEFAULT 
.... . 1.. This is an extended format PCE. If the 

VALlDCK parameter is specified, the length of 
the field containing the address of the validity 
checking routine is four bytes . 

.... .. 1. HELP 

....... 1 VALlDCK 
Byte 2 
1. ...... LIST 
.1.. .... ASIS 
.. 1. .... RANGE 
... 00000 Reserved 

2 Length of the parameter control entry. This 
field contains a hexadecimal number 
representing the number of bytes in this 
IKJIDENT PCE. 

2 Contains a hexadecimal offset from the 
beginning of the parameter descriptor list to 
the related parameter descriptor entry buiit by 
the parse service routine. 

1 A flag field indicating the options coded on 
the IKJIDENT macro instruction. 

1. ...... ASTERISK 
.1. ..... MAXLNTH 
.. 1. .... PTBYPS 
... 1 .... Integer 
.... 1. .. Character 
..... 1.. Hexadecimal 
...... 00 Reserved 

1 This field contains a hexadecimal number 
indicating the character type restriction on the 
first character of the character string 
described by the IKJIDENT macro instruction. 

HEX Acceptable characters: 
0 Any (except blank, comma, tab, semicolon) 
1 Alphabetic or national 
2 Numeric 
3 Alphabetic, national, or numeric 
4 Alphabetic 
5 Alphabetic or numeric 
6 to FF Not used 

Figure 128. The Parameter Control Entry Built by IKJIDENT (Part 1 of 3) 

Command Scan and Parse -- Determining the Validity of Commands 269 



Number of 
Bytes field Contents or Meaning 

1 This field contains a hexadecimal number 
indicating the character type restriction on the 
other characters of the character string 
described by the IKJIDENT macro instruction. 

HEX Acceptable characters: 
0 Any (except blank, comma, tab, semicolon) 
1 Alphabetic or national 
2 Numeric 
3 Alphabetic, national, or numeric 
4 Alphabetic 
5 Alphabetic or numeric 
6 to FF Not used 

2 This field contains a hexadecimal number 
representing the length of the parameter type 
segment. This figure includes the length of this 
field, the length of the message segment 
offset field, and the length of the parameter 
type field supplied on the IKJIDENT macro 
instruction. 

2 This field contains the message segment 
offset. It is set to X '0012'. 

Variable This field contains the field supplied as the 
parameter type operand of the IKJIDENT 
macro instruction. 

1 This field contains a hexadecimal number 
representing the maximum number of 
characters the string may contain. This field is 
present only if the MAXLNTH operand was 
coded on the IKJIDENT macro instruction. 

1 This field contains the length minus one of the 
defaults or prompting information supplied on 
the IKJIDENT macro instruction. This field and 
the next are present only if DEFAULT or 
PROMPT were specified on the IKJIDENT 
macro instruction. 

Variable This field contains the prompting or default 
information supplied on the IKJIDENT macro 
instruction. 

2 This field contains a hexadecimal figure 
representing the length in bytes of all the peE 
fields used for second level messages. The 
figure includes the length of this field. The 
fields are present only if HELP is specified on 
the IKJIDENT macro instruction. 

Figure 118. The Parameter Control Entry Built by IKJIDENT (Part 2 of 3) 

270 TSO Guide to Writing a TMP or a CP 



Number of 
Bytes Field Contents or Meaning 

1 This field contains a hexadecimal number 
representing the number of second level 
messages specified by HELP on this IKJIDENT 
PCE. 

2 This field contains a hexadecimal number 
representing the length of this HELP segment. 
The figure includes the length of this field, the 
message segment offset field, and the length 
of the information. These fields are repeated 
for each second level message specified by 
HELP on the IKJIDENT macro instruction. 

2 This field contains the message segment 
offset. It is set to X '0000' . 

Variable This field contains one second level message 
supplied on the IKJIDENT macro instruction 
specified by HELP. This field and the two 
preceding ones are repeated for each second 
level message supplied on the IKJIDENT 
macro instruction; these fields do not appear 
if no second level message data was supplied. 

3 or 4 This field contains the address of a validity 
checking routine if VALlDCK was specified on 
the IKJIDENT macro. If the "extended format 
PCE" bit is on in the IKJIDENT PCE, the 
address is four bytes long; if the bit is off, the 
address is three bytes long. This field is not 
present if VALlDCK was not specified. 

Figure 128. The Parameter Control Entry Built by IKJIDENT (Part 3 of 3) 

IKJKEYWD - Describing a Keyword Parameter 

Execute the IKJKEYWD macro instruction to describe a keyword 
parameter. Execute a series of IKJNAME macro instructions to indicate the 
possible names for the keyword parameter. Keyword parameters may 
appear in any order in the command but must follow all positional 
parameters. A user is never required to enter a keyword parameter; if he 
does not, the default value you supply, if you choose to supply one, is used. 
Keywords may consist of any combination of alphameric characters up to 
31 characters in length, the first of which must be an alphabetic character. 

Figure 129 shows the format of the IKJKEYWD macro instruction. Each 
of the operands is explained following the figure. Appendix A describes the 
notation used to define macro instructions. 

label IKJKEYWD [DEFAULT='default-value'j 

Figure 129. The IKJKEYWD Macro Instruction 

label 
This name is used within the PDL DSECT as the symbolic address of 
the parameter descriptor entry for this parameter. 

Command Scan and Parse -- Determining the Validity of Commands 171 



DEFAULT ='derault-value' 
The default value you specify is the value that is used if this keyword is 
not present in the command buffer. Specify the valid keyword names 
with IKJNAME macro instructions following this IKJKEYWD macro 
instruction. 

The Parameter Control Entry Built by IKJKEYWD: The IKJKEYWD macro 
instruction generates the variable length parameter control entry (peE) 
shown in Figure 130. 

Number of 
Bytes Field Contents or Meaning 

2 Flags. These flags are set to indicate which 
options were coded in the IKJKEYWD macro 
instruction. 

Byte 1 
010 ..... This is an IKJKEYWD PCE 
... 0 .... Reserved . 
.... 1. .. DEFAULT 
.... . 000 Reserved . 
Byte 2 
00000000 Reserved. 

2 Length of the parameter control entry. This 
field contains a hexadecimal number 
representing the number of bytes in this 
IKJKEYWD PCE. 

2 This field contains a hexadecimal offset from 
the beginning of the parameter descriptor list 
to the related parameter descriptor entry built 
by the parse service routine. 

1 This field contains the length minus one of the 
default information supplied on the IKJKEYWD 
macro instruction. This field and the next are 
present only if DEFAULT was specified on the 
IKJKEYWD macro instruction. 

Variable This field contains the default value supplied 
on the IKJKEYWD macro instruction. 

Figure 130. The Parameter Control Entry Built by IKJKEYWD 

IKJNAME - Listing the Keyword or Reserved Word Parameter 
Names 

The IKJNAME macro instruction may be coded with the following two 
macro instructions: 

1. With the IKJKEYWD macro instruction to define keyword parameter 
names. 

2. With the IKJRSVWD macro instruction to define reserved word 
parameter names. 

172 TSO Guide to Writing a TMP or a CP 



A description and format of the IKJNAME macro instruction for both 
methods of coding follows: 

1. Code a series of IKJNAME macro instructions to indicate the possible 
names for a keyword parameter. One IKJNAME macro instruction is 
needed for each possible keyword name. Code the IKJNAME macro 
instructions immediately following the IKJKEYWD macro instruction 
to which they pertain. 

Figure 131 shows the format of the IKJNAME macro instruction. Each 
of the operands is explained following the figure. Appendix A describes the 
notation used to define macro instructions. 

IKJNAME 'keyword-name' [,SUBFLD=subfield-name] 
[,INSERT='keyword-string'] 

[ALIAS=('name', 'name', ... )] 

Figure 131. The IKJNAME Macro Instruction (when used with the IKJKEYWD Macro 

Instruction) 

keyword-name 
One of the valid keyword parameters for the IKJKEYWD macro 
instruction that precedes this IKJNAME macro instruction. 

SUBFLD=subfield-name 
This option indicates that this keyword name has other parameters 
associated with it. Use the subfield-name as the label field of the 
IKJSUBF macro instruction that begins the description of the possible 
parameters in the subfield. 

INSERT = 'keyword-string' 
The use of some keyword parameters may imply that other keyword 
parameters are required. The parse service routine inserts the keyword 
string specified into the command string just as if it had been entered as 
part of the original command string. The command buffer is not altered. 

ALIAS=('name','name', ... ) 
Specifies up to 32 alias names for a keyword. Each name represents a 
valid abbreviation or alternate name and must be enclosed in quotes. All 
abbreviations or names must be enclosed in a single set of parentheses. 

2. Code a series of IKJNAME macro instructions to indicate the possible 
names for reserved words. One IKJNAME macro instruction is needed 
for each possible reserved word name. Code the IKJNAME macro 
instructions immediately following the IKJRSVWD macro instruction 
to which they apply. 

Figure 132 shows the format of the IKJNAME macro instruction. Each 
of the operands is explained following the figure. Appendix A describes the 
notation used to define macro instructions. 

IKJNAMEI'reserved-word name' 

Figure 132. The IKJNAME Macro Instruction (when used with the IKJRSVWD Macro 

Instruction) 

Command Scan and Parse -- Determining the Validity of Commands 273 



reserved-word name 
One of the valid reserved word parameters for the IKJRSVWD macro 
instruction that precedes the IKJNAME macro instructions. 

Note: The IKJNAME macro instruction has two uses when coded with 
the IKJRSVWD macro instruction. The reserved-words identified on the 
IKJNAME macros may be figurative constants when the IKJRSVWD 
macro is chained from an IKJTERM macro, or operators in an 
expression when the IKJRSVWD macro is chained from the IKJOPER 
macro. 

The Parameter Control Entry Built by IKJNAME: The IKJNAME macro 
instruction generates the variable length parameter control entry (PCE) 
shown in Figure 133. 

Note: Only the first four fields are valid when the IKJNAME macro 
instruction is coded with the IKJRSVWD macro instruction. 

274 TSO Guide to Writing a TMP or a CP 



Number of 
Bytes Field Contents or Meaning 

2 Flags. These flags are set to indicate which 
options were coded in the IKJNAME macro 
instruction. 

Byte 1 
OIl. .... This is an IKJNAME peE. 
... 00 ... Reserved . 
..... 1.. SUBFLD 
.... .. 00 Reserved . 
Byte 2 
000 ..... Reserved. 
... 1 .... INSERT 
...... 1. ALIAS 
.... 00.0 Reserved . 

2 Length of the parameter control entry. This 
field contains a hexadecimal number 
representing the number of bytes in this 
IKJNAME peE. 

1 This field contains the length minus one of the 
keyword or reserved word names specified on 
the IKJNAME macro instruction. 

Variable This field contains the keyword or reserved 
word name specified on the IKJNAME macro 
instruction. 

2 This field contains a hexadecimal offset, plus 
one, from the beginning of the parameter 
control list to the beginning of a subfield peE. 
This field is present only if the SUBFlD 
operand was specified in the IKJNAME macro 
instruction. 

1 This field contains the length minus one of the 
keyword string included as the INSERT 
operand in the IKJNAME macro instruction. 
This field and the next are not present if 
INSERT was not specified. 

Variable This field contains the keyword string specified 
as the INSERT operand of the IKJNAME macro 
instruction. .. 

1 The total number of aliases. 

1 The length minus one of first alias. 

Variable The first alias. 

1 The length minus one of second alias. 

Variable The second alias. 

Figure 133. The Parameter Control Entry Built by IKJNAME 

Command Scan and Parse -- Determining the Validity of Commands 275 



IKJSUBF - Describing a Keyword Subfield 

Keyword parameters may have subfields associated with them. A subfield 
consists of a parenthesized list of parameters directly following the 
keyword. 

Execute the IKJSUBF macro instruction to indicate the beginning of a 
subfield description. The IKJSUBF macro instruction ends the main part of 
the parameter control list or the previous sub field description, and begins a 
new sub field description. 

Note that the IKJSUBF macro instruction is used only to begin the 
subfield description; the subfield is described using the IKJPOSIT, 
IKJIDENT, and IKJKEYWD macro instructions, depending upon the type 
of parameters within the subfield. 

You must use the name you have coded as the SUBFLD operand of the 
IKJNAME macro instruction for the label of this macro instruction. 

Figure 134 shows the format of the IKJSUBF macro instruction. 
Appendix A describes the notation used to define macro instructions. 

label I IKJSUBF 

Figure 134. The IKJSUBF Macro Instructi .. n 

label 

The name you supply as the label of this macro instruction must be the 
same name you have coded as the SUBFLD operand of the IKJNAME 
macro instruction describing the keyword name that takes this subfield. 

The Parameter Control Entry Built by IKJSUBF: The IKJSUBF macro 
instruction generates the parameter control entry (peE) shown in Figure 
135. 

Number of 
Contents or Meaning Bytes Field 

1 Flags. These flags indicate which type of peE 
this is. 

000 ..... This peE indicates an end-of-field. These 
end-of-field indicators are present in IKJSUBI' 
and IKJENDP peEs; they indicate the end of a 
previous subfield or of the pel itself. 

... 00000 Reserved . 

2 This field contains a hexadecimal number 
representing the offset within the pel to the 
first IKJKEYWD peE or to the next 
end-of-field indicator if there are no keywords 
in this subfield. 

Figure 135. The Parameter Control Entry Built by IKJSUBF 

276 TSO Guide to Writing a TMP or a CP 



IKJENDP - Ending the Parameter Control List 

Execute the IKJENOP macro instruction to inform the parse service routine 
that it has reached the end of the parameter control list built for this 
command. 

Figure 136 shows the format of the IKJENOP macro instruction. 
Appendix A describes the notation used to define macro instructions. 

IKJENDP 

Figure 136. The IKJENDP Macro Instruction 

The Parameter Control Entry Built by IKJENDP: The IKJENOP macro 
instruction generates the parameter control entry (PCE) shown in Figure 
137. It is merely an end-of-field indicator. 

Number of 
Bytes Field Conlents or Meaning 

1 Flags. These flags are set to indicate 
end-of-field. 

000 ..... End-of-field indicator. Indicates the end of the 
peL. 

... 00000 Reserved. 

Figure 137. The Parameter Control Entry Built by IKJENDP 

IKJRLSA - Releasing Virtual Storage Allocated by Parse 

Execute the IKJRLSA macro instruction to release virtual storage allocated 
by the parse service routine and not previously released by the parse service 
routine. This virtual storage consists of the parameter descriptor list (POL) 
returned by the parse service routine and any storage obtained for new data 
received by parse as a result of a prompt. 

If the return code from the parse service routine is non-zero, all storage 
allocated by parse has been freed by the parse service routine. In that case, 
this macro instruction need not be issued, but will not cause an error if it is 
issued. 

Figure 138 shows the format of the IKJRLSA macro instruction. Each of 
the operands is explained following the figure. Appendix A describes the 
notation used to define macro instructions. 

label IKJRLSA Address of the answer place 
(1-12) 

Figure 138. The IKJRLSA Macro Instruction 

address of the answer place 
The address of the word in which the parse service routine placed a 
pointer to the POL when control was returned to the command 
processor. This address may be loaded into one of the general registers 1 
through 12, right adjusted with the unused high order bits set to zero. 
See "Passing Control to the Parse Service Routine" for a description of 
the parse parameter list. 

Command Scan and Parse -- Determining the Validity of Commands 277 



Passing Control to the Parse Service Routine 

Command Processor 

You pass control to the parse service routine by issuing a CALLTSSR 
macro instruction specifying IKJPARS as the entry point. IKJPARS must 
receive control in 24-bit addressing mode. See "Passing Control to the TSO 
Service Routines" for a description of a restriction on using the 
CALLTSSR macro to invoke parse. Before you invoke the parse service 
routine however, you must build a parse parameter list (PPL), and place its 
address into register 1. This PPL must remain intact until the parse service 
routine returns control to the calling routine. Figure 139 shows this flow of 
control between a command processor and the parse service routine. 

CALLTSSR 

EP = KJPARS ) Parse Service Routine 

PPL 

+0 t UPT 

+4 + ECT 

+8 + CP ECB 

+ 12t PCL 

+ 16+ Answer Place 

+20+ Cammand Buffer 

+24+ User Work Area 

Answer Place 

Command Name Command Parameters 

FIgure 139. Control Flow Between Command Processor and the Parse Service Routine 

278 TSO Guide to Writing a TMP or a CP 



The Parse Parameter List 

The parse parameter list (PPL) is a seven-word parameter list containing 
addresses required by the parse service routine. •. 

The PPL is defined by the IKJPPL OSECT. Figure 140 shows the 
format of the parse parameter list. 

Number of 
Field Contents or Meaning Bytes 

4 PPLUPT The address of the user profile table. 

4 PPLECT The address of the environment control table 

4 PPLECB The address of the command processor's 
event control block. The ECB is one word of 
storage, declared and initialized to zero by the 
command processor. 

4 PPLPCL The address of the parameter control list 
created by the command processor using the 
parse macro instructions. Use the label on the 
IKJPARM macro instruction as the symbolic 
address of the PCL. 

4 PPLANS The address of a fullword of virtual storage, 
supplied by the calling routine, in which the 
parse service routine places a pointer to the 
parameter descriptor list (PDL). If the parse of 
the command buffer is unsuccessful, parse 
sets the pointer to the PDL to X'FFOOOOOO'. 

4 PPLCBUF The address of the command buffer. 

4 PPLUWA The address of a user supplied work area. This 
field can contain anything that the calling 
routine wishes passed to a validity checking 
routine. 

Figure 140. The Parse Parameter List 

Formats of the PDEs Returned by the Pane Service Routine 

The parse service routine returns the results of the scan of the command 
buffer to the command processor in a parameter descriptor list (POL). The 
POL, built by parse, consists of the parameter descriptor entries (POE), 
which contain pointers to the parameters, indicators of the options 
specified, and pointers to the subfield parameters entered with the 
command operands. 

Use the IKJPARMO OSECT to map the POL and each of the POEs. 
Base the IKJPARMD OSECT on the POL address returned by the Parse 
service routine. The PPLANS field of the parse parameter list points to a 
fullword of storage that contains the address of the POL. Then use the 
labels you used on the parse macro instructions to access the corresponding 
POEs. 

The format of the POE depends upon the type of parameter parsed. For 
a discussion of parameter types, see the topic "Command Parameter 
Syntax." The following description of the possible POEs within a POL 
shows each of the POE formats and the type of parameters they descnbe. 

Command Scan and Parse -- Determining the Validity of Commands Z79 



., 
I 

+0 

+4 

+0 

+4 

The PDL Header 

The PDL begins with a two-word header. The DSECT= operand of the 
IKJPARM macro instruction provides a name for the DSECT created to 
map the PDL. Use this name as the symbolic address of the beginning of 
the PDL header. 

A pointer to the next block of virtual storage 

+5 
Subpool n unber Length 

Pointer to the next block of virtual storage: 
The parse service routine gets virtual storage for the PDL and for any 
data received as the result of a prompt. Each block of storage obtained 
begins with another PDL header. The blocks of storage are forward 
chained by this field. A forward-chain pointer of X'FFOOOOOO' in this 
field indicates that this is the last storage element obtained. 

Subpool number: 
This field will always indicate subpool 1. All storage allocated by the 
parse service routine for the PDL and for data received from a prompt is 
allocated from subpool 1. 

Length: 
This field contains a hexadecimal number indicating the length of this 
block of storage (this PDL); the length includes the header. 

PDEs Created for Positional Parameters 

Length 

The labels you use to name the macro instructions provide access to the 
corresponding PDEs. The positional parameters described by the IKJPOSIT, 
IKJTERM, IKJOPER, IKJRSVWD and the IKJIDENT macro instructions 
have the following PDE formats. 

SPACE, DELIMITER: The parse service routine does not build a PDE for 
either a SPACE or a DELIMITER parameter. 

STRING, PSTRING, and QSTRING: The parse service routine uses the 
IKJPOSIT macro to build a two-word PDE to describe a STRING, 
PSTRING, or a QSTRING parameter; the PDE has the following format: 

~ pointer to the character string 

+6 +1 
Flags Reserved 

Pointer to the character string: 
Contains a pointer to the beginning of the character string, or a zero if 
the parameter was omitted. 

280 TSO Guide to Writing a TMP or a CP 



+0 

+4 
Length 

l.. 

Length: \ ... 
Contains the length of the string. Any punctuation around the character 
string is not included in this length figure. The length is zero if the string 
is omitted or if the string is null. 

Flags: 
0 ...... . 
1 ..... .. 
. xxx xxxx 

The parameter is not present. 
The parameter is present. 
Reserved bits . 

Note: If the string is null, the pointer is set, the length is zero, and the 
flag bit is 1. 

VALUE: The parse service routine uses the IKJPOSIT macro to build a 
two-word POE to describe a VALUE parameter; the POE has the 
following format: 

A poin ter to the character string 

+6 +7 
Flags Type-char. 

Pointer to the character string: 
Contains a pointer to the beginning of the character string; that is, the 
first character after the quote. Contains a zero if the VALUE parameter 
is not present. 

Length: 
Contains the length of the character string excluding the quotes. 

Flags: 
0 ..... .. 
1 ..... .. 
. xxx xxxx 

Type-character: 

The parameter is not present. 
The parameter is present. 
Reserved bits . 

Contains the letter that precedes the quoted string. 

DSNAME, DSTHING: The parse service routine uses the IKJPOSIT macro 
to build a six-word POE to describe a DSNAME or a OSTHING 
parameter. 

Command Scan and Parse -- DeterminiDg the Validity of Commands 281 



..,0 

+4 

+8 

+12 

+16 

+20 

The PDE has the following format: 

A pointer to the dsname 

+6 +7 
Length1 Flags1 Reserved 

A pointer to the member name 

+14 +15 
Length2 Flags2 Reserved 

A pointer to the password 

Length 3 
+22 +23 

Flags3 Reserved 

Pointer to the dsname: 

Contains a pointer to the first character of the data set name. Contains 
zero if the data set name was omitted. Contains a pointer to the USID if 
it is prefixed. 

Length1: 

Contains the length of the data set name. If the data set name is 
contained in quotes, this length figure does not include the quotes. When 
the USID is prefixed, this field will contain the total length of the data 
set name and the USID. 

Flags1: 
0 ...... . 
1... ... . 
. 0 ..... . 
. 1.. .. . 
.. xx xxxx 

The data set name is not present. 
The data set name is present. 
The data set name is not contained within quotes . 
The data set name is contained within quotes . 
Reserved bits . 

Pointer to the member name: 

Contains a pointer to the beginning of the member name. Contains zero 
if the member name was omitted. 

Length2: 

Contains the length of the member name. This length figure does not 
include the parentheses around the member name. 

Flags2: 
0 ...... . 
1... ... . 
. xxx xxx x 

The member name is not present. 
The member name is present. 
Reserved bits . 

Pointer to the password: 

Contains a pointer to the beginning of the password. Contains zero if the 
password was omitted. 

Length3: 
Contains the length of the password. 

282 TSO Guide to Writing a TMP or a CP 



+0 

+4 

+8 

+12 

Flags3: 
0 ..... .. 
1 ..... .. 
. xxx xxxx 

The password is not present. 
The password is present. 
Reserved bits . 

JOBNAME: The parse service routine uses the IKJPOSIT macro to build a 
four word PDE to describe a JOBNAME parameter. The PDE has the 
following format: 

A pointer to the jobname 

+6 +7 
Lengthl Flags1 Reserved 

The pointer to the jobid name 

+14 +15 
Length 2 Flags2 Reserved 

Pointer to the jobname: 
Contains a pointer to the beginning of the jobname. Contains zero if the 
jobname was omitted. 

Length1: 

Contains the length of the jobname. The jobname may not be entered in 
quotes. 

F1ags1: 
0 ....... 
1... .... 

Pointer to the jobid: 

The jobname is not present. 
The jobname is present. 

Contains a pointer to the beginning of the jobid. Contains zero if the 
jobid was omitted. 

Length2: 

Contains the length of the jobid. This length figure does not include the 
parentheses around the jobid. 

F1ags2: 
0 ..... .. 
1... .. .. 
. xxx xxxx 

The jobid is not present. 
The jobid is present. 
Reserved bits . 

ADDRESS: The parse service routine uses the IKJPOSIT macro to build a 
nine word PDE to describe an ADDRESS parameter. 

Command Scan and Parse -- Determining the Validity of Commands 283 



+0 

+4 

+8 

+12 

+16 

+20 

+24 

+28 

+32 

The PDE has the following format: 

A pointer to the load name 

+6 +7 
Length 1 ~'lags1 Reserved 

A pointer to the entry name 

+14 +15 
Length 2 Flags2 Reserved 

A pointer to the address string 

+22 +23 
Length 3 i'lags3 Reserved 

+25 +26 
Flags4 Sign IIrlirect count 

A pointer to the first expression V3.lue POE 

Reserved for use by user validity check routine 

Pointer to the load name: 
Contains a pointer to the beginning of the load module name, Contains 
zero if no load module name was specified. 

Length1: 
Contains the length of the load module name, excluding the period. 

F1ags1: 
0 ..... .. 
1.. ... .. 
. xxx xxxx 

The load module name is not present. 
The load module name is present. 
Reserved bits . 

Pointer to the entry name: 
Contains a pointer to the name of the CSECT; zero if the CSECT name 
is not specified. 

Length2: 
Contains the length of the entry name, excluding the period. 

Flags2: 
0 ...... . 
1.. ... .. 
. xxx xxxx 

The entry name is not present. 
The entry name is present. 
Reserved bits . 

Pointer to the address string: 
Contains a pointer to the address string portion of a qualified address. 
Contains a zero if the address string was not specified. 

284 TSO Guide to Writing a TMP or a CP 



L 
Length3: 

Contains the length of the address string portion of a qualified address. 
This length count excludes the following characters for the following 
address types: 

1. Relative address - excludes the plus sign. 
2. Register address - excludes letters. 
3. Absolute address - excludes period. 

Flags3: 
0 ...... . 
1. ..... . 
. xxx xxx x 

F1ags4: 

The address string is not present. 
The address string is present. 
Reserved bits . 

The bits set in this one-byte flag field indicate the type of address found 
by the parse service routine. 

Bit Setting Hex Meaning 
00000000 00 Absolute address. 
10000000 80 Symbolic address. 
01000000 40 Relative address. 
0010 0000 20 General register. 
0001 0000 10 Double precision floating-point register. 
0000 1000 08 Single precision floating-point register. 
00000100 04 Non-qualified entry name (optionally preceded by a load name). 

Sign: 
Contains the arithmetic sign character used before the following 
expression value. Contains a zero if the address is not an address 
expression. 

Indirect count: 
Contains a number representing the number of levels of indirect 
addressing. 

Pointer to the first expression value PDE: 
If the address is in the form of an address expression, this is a pointer to 
the PDE for the first expression value. Contains X'FFOOOOOO' if the 
address is not an address expression. 

User word for validity checking routine: 
A word provided for use by the user-written validity checking routine. 

Expression Value: If an ADDRESS parameter is found to be in the form of 
an address expression, the parse service routine builds an expression value 
PDE for each expression value within the address expression. These 
expression value PDEs are chained together, beginning at the eighth word 
of the address PDE built by the parse service routine to describe the 
address parameter. The last expression value PDE is indicated by 
X'FFOOOOOO' in its fourth word, the forward chaining field. 

Command Scan and Parse -- Determining the Validity of Commands 185 



+0 

+4 

+8 

+12 

+0 

+4 

+8 

+12 

The parse service routine uses the IKJPOSIT macro to build a four-word 
PDE to describe an expression value; it has the following format: 

A pointer to the address string 

+6 
Length 3 Reserved 

Flags5 
+9 +10 

Sign Indirect count 

A pointer to the next expression value 

Pointer to the address string: 
Contains a pointer to the expression value address string. 

Length3: 
Contains the length of the expression value address string. The N is not 
included in this length value. 

FlagsS: 
The parse service routine sets these flags to indicate the type of 
expression value: 

Bit Setting 
00000100 
00000010 

Sign: 

Hex 
04 
02 

Meaning 
This is a decimal expression value. 
This is a hexadecimal expression value. 

Contains the arithmetic sign character used before an expression value. 

Indirect count: 
Contains a number representing the number of levels of indirect 
addressing within this particular address expression. 

Pointer to the next expression value PDE: 
Contains a pointer to the next expression value PDE if one is present; 
contains X'FFOOOOOO' if this is the last expression value PDE. 

USERID: The parse service routine uses the IKJPOSIT macro to build a 
four-word PDE to describe a USERID parameter; it has the following 
format: 

~ pointer to the userid 

+6 +7 
Length1 Flags1 Reserved 

A pointer to the password 

+14 +15 
Length2 }'lags2 Reserved 

286 TSO Guide to Writing a TMP or 8 CP 



L 

+0 

+4 

+8 

+12 

+16 

+20 

Pointer to the userid: 
Contains a pointer to the beginning of the userid. Contains zero if the 
use rid was omitted. 

Lengthl: 
Contains the length of the userid. 

Flagsl: 
0 ...... . 
1. .... .. 
. xxx xxxx 

The use rid is not present. 
The use rid is present. 
Reserved bits . 

Pointer to the password: 
Contains a pointer to the beginning of the password. Contains zero if the 
password is omitted. 

Length2: 
Contains the length of the password, excluding the slash. 

F1ags2: 
0 ...... . 
L .... . 
. xxx xxxx 

The password is not present. 
The password is present. 
Reserved bits . 

UID2PSWD: The parse service routine uses the IKJPOSIT macro to build a 
six-word PDE to describe a UlD2PSWD parameter. It has the following 
format: 

A pointer to the userid 

Length1 1+ 6 Flags1 ~ +7 Reserved 

A pointer to password1 

Length2 1+14 Flags2 1+ 15 Reserved 

A pointer to password2 

Length3 1+22 Flags3 1+ 23 Reserved 

Pointer to the userid: 

Contains a pointer to the beginning of the userid. It contains zero if the 
userid was omitted. 

Length1: 
Contains the length of the userid. 

Flags1: 
0 ...... . 
1... .. .. 
. xxx xxxx 

Use rid is not present. 
Use rid is present. 
Reserved . 

Pointer to passwordl: 
Contains a pointer to the beginning of passwordl. It contains zero if the 
passwordl is omitted. 

Length2: 
Contains the length of passwordl, excluding the slash. 

Command Sc:an and Parse -- Detennining the Validity of Commands 287 



+0 

+lJ 

+8 

+12 

+16 

FIagsl: 
0 ..... .. 
1 ..... :. 
. xxx XXXX 

Pointer to password2: 

Password 1 is not present. 
Password 1 is present. 
Reserved . 

Contains a pointer to the beginning of password2. It contains zero if the 
password2 is omitted. 

Length3: 
Contains the length of password2, excluding the slash. 

FIags3: 
0 ..... .. 
1 ...... . 
. xxx xxxx 

Password2 is not present. 
Password2 is present. 
Reserved . 

CONSTANT: The parse service routine uses the IKJTERM macro to build 
a five-word PDE to describe a CONSTANT parameter. The PDE has the 
following format: 

+1 +2 
Lengthl Length2 Reserved 

+6 
Reserved Word Nunber Flags 

A 

A 

A 

pointer to the strin9 of digits 

pOinter to the exponent 

pointer to the decimal point 

Length1: 

Contains the length of term entered, depending on the type of parameter 
entered as follows: 

• For a fixed-point numeric literal, the length includes the digits but not 
. the sign or decimal point. 

• For a floating-point numeric literal, the length includes the mantissa 
(string of digits preceding the letter E) but not the sign or decimal 
point. 

• For a non-numeric literal, the length includes the string of characters 
but not the apostrophes. 

Length2: 
For a floating-point numeric literal, length2 contains the length of the 
string of-digits following the letter E but not the sign. 

Reserved Word Number: 
The reserved word number contains the number of the IKJNAME macro 
that corresponds to the entered name. 

Note: The possible names of reserved words are given by coding a list of 
IKJNAME macros following an IKJRSVWD macro. One IKJNAME 

288 TSO Guide to Writing a TMP or a CP 



+0 

+4 

+8 

+12 

+16 

Length1 

Reservei 

macro is needed for each possible name. If the name entered does not 
correspond to one of the names in the IKJNAME macro list then this 
field is set to zero. 

Flags: 
By tel : 

0 ...... . 
I. ..... . 
. 1.. ... . 
.. 1. ... . 
... 1 ... . 
.... 1... 
..... 1.. 
...... 1. 
....... 1 

Byte 2: 
0 ...... . 
1... ... . 
.0 ..... . 

. 1.. ... . 

.. 1. ... . 

... x xxx x 

The parameter is missing. 
The parameter is present. 
Constant . 
Variable . 
Statement number . 
Fixed-point numeric literal. 
Non-numeric literal. 
Figurative constant. 
Floating-point numeric literal. 

Sign on constant is either plus or omitted. 
Sign on constant is minus. 
Sign on exponent of floating-point numeric literal is either 
plus or omitted. 
Sign on exponent of floating-point numeric literal is minus . 
Decimal point is present. 
Reserved bits . 

Pointer to the string of digits: 
Contains a pointer to the string of digits, not including the sign if 
entered. Contains zero if a constant type of parameter is not entered. 

Pointer to the exponent: 
Contains a pointer to the string of digits in a floating-point numeric 
literal following the letter E, not including the sign if entered. 

Pointer to the decimal point: 
Contains a pointer to the decimal point in a fixed-point or floating-point 
numeric literal. If a decimal point is not entered, this field is zero. 

STATEMENT NUMBER: The parse service routine uses the IKJTERM 
macro to build a five-word PDE to describe a STATEMENT NUMBER 
parameter. The PDE has the following format: 

+1 +2 +3 
Length2 Lenqth3 Reserved 

+6 
Flags 

A pointer to the program-id 

A pointer to the line number 

A pointer to the verb number 

Lengthl: 
Contains the length of the program-id specified b1..lt does not include the 
following period. Contains zero if the program-id is not present. 

Command Scan and Parse -- Detennining the Validity of Commands 289 



+0 

+4 

+8 

+12 

+16 

Length2: 

Contains the length of the line number entered but does not include the 
delimiting periods. Contains zero if the line number is not present. 

Length3: 

Contains the length of the verb number entered but does not include the 
preceding period. Contains zero if the verb number is not present. 

Flags: 
Byte 1: 

0 ....... 
1... .. .. 
. 1.. .. .. 
.. 1. .. .. 
... 1 .. .. 
.... xxx x 

Byte 2: 
xxxx xxxx 

The parameter is missing. 
The parameter is present. 
Constant . 
Variable . 
Statement number . 
Reserved . 

Reserved. 

Pointer to the program-id: 

Contains a pointer to the program-id, if entered. Contains zero if not 
present. 

Pointer to the line number: 

Contains a pointer to the line number, if entered. Contains zero if not 
present. 

Pointer to the verb number: 

Contains a pointer to the verb number, if entered. Contains zero if not 
present. 

VARIABLE: The parse service routine builds a five-word PDE (when using 
the IKJTERM macro) to describe a VARIABLE parameter. The PDE has 
the following format: 

1\ pointer to the data-name 

+5 +6 +7 
Length1 Reserved Flags Reserved 

A pointer to the POE for the first qualifier. 
-, 

A pointer to the progr am-id name. 

Length2 

+17 +18 +19 
Number of Nunt>er of 
Qualifiers Subscripts Reserved 

Pointer to the data-name: 

Contains a pointer to the data-name. If a program-id qualifier precedes 
the data-name, this pointer points to the first character after the period 
of the program-id qualifier. 

Length1: 
Contains the length of the data-name. 

290 TSO Guide to Writing a TMP or a CP 



+0 

+4 

+8 

Flags: 
Byte 1: 

0 ...... . 
J... ... . 
.1.. ... . 
.. 1 .... . 
... 1 ... . 
.... xxxx 

The parameter is missing. 
The parameter is present. 
Constant. 
Variable . 
Statement number. 
Reserved . 

Pointer to the PDE for the first qualifier: 
Contains a pointer to the PDE describing the first qualifier of the 
data-name, if any. This field contains X'FFOOOOOO' if no qualifiers are 
entered. 

Note: The format of the PDE for a data-name qualifier follows this 
description. 

Pointer to the program-id name: 
Contains a pointer to the program-id name, if entered. This field 
contains zero if the optional program-id name is not present. 

Length2: 
Contains the length of the program-id name, if entered. Contains zero if 
the optional program-id name is not present. 

Number of Qualifiers: 
Contains the number of qualifiers entered for this data-name. (For 
example, if data-name A of B is entered, this field would contain 1.) 

Number of Subscripts: 
Contains the number of subscripts entered for this data-name. (For 
example, if data-name A(1,2) is entered, this field would contain 2.) 

The format of a data-name qualifier is: 

A pointer to the data-name qualifier. 

+5 +6 +7 
Length Reserved Flags Reserved 

A pointer to the PDE for the next qualifier. 

Pointer to the data-name qualifier: 
Contains a pointer to the data-name qualifier. 

Length: 
Contains the length of the data-name qualifier. 

Flags: 
xxxx xxxx Reserved. 

Pointer to the PDE for the next qualifier: 
Contains a pointer to the PDE describing the next qualifier, if any. This 
field contains X'FFOOOOOO' for the last qualifier. 

RESERVED WORD: The parse service routine uses the IKJRSVWD macro 
to build a two-word PDE (using the IKJRSVWD macro instruction) to 
describe a RESERVED WORD parameter. The PDE has the following 
format: 

Command Scan and Parse -- Determining the Validity of Commands 291 



+0 
Reserved 

+4 
Reservell 

+0 
Reserved 

+4 
Reserved 

+0 

+4 
Length 

+2 
Reserved -word number 

+6 +7 
Flags Reserved 

Note: This POE is not used when the IKJRSVWO macro instruction is 
chained from an IKJTERM macro instruction. In this case, the 
reserved-word number is returned in the CONSTANT parameter POE built 
by the IKJTERM macro instruction. 

Reserved-word number: 
The reserved-word number contains the number of the IKJNAME macro 
instruction that corresponds to the entered name. 

Note: The possible names of reserved-words are given by coding a list of 
IKJNAME macros following an IKJRSVWD macro. One IKJNAME 
macro is needed for each possible name. If the name entered does not 
correspond to one of the names in the IKJNAME macro list, this field is 
set to zero. 

Flags: 
Byte}: 

0 ...... . 
1... ... . 
. xxx xxxx 

The parameter is missing. 
The parameter is present. 
Reserved . 

EXPRESSION: The parse service routine uses the IKJOPER macro to build 
a two-word POE to describe an EXPRESSION parameter. The POE has 
the following format: 

Flags: 
0 ...... . 
1. .... .. 
. xxx xxxx 

+6 +7 
Flags 

The entire parameter (expression) is missing. 
The entire parameter (expression) is present. 
Reserved . 

Reserved 

IKJIDENT PDE: The parse service routine uses the IKJIOENT macro 
instruction to build a two-word PDE to describe a non-delimiter-dependent 
positional parameter; it has the following format: 

J\. pointer to the positional parameter 

+6 +7 
Flags Reserved 

292 TSO Guide to Writing a TMP or a CP 



Pointer to the positional parameter: 
Contains a pointer to the beginning of the positional parameter. If 
INTEG was specified on the IKJIOENT macro instruction, this will 
contain a pointer to a fullword binary value. 
Contains zero if the positional parameter is omitted. 

Length: 
Contains the length of the positional parameter. 

Flags: 
0 ...... . 
1... ... . 
. xxx xxxx 

The parameter is not present. 
The parameter is present. 
Reserved bits . 

Effect of List and Range Options on PDE Formats 

The formats of the IKJPARMO mapping OSECT and of the POEs built by 
the parse service routine are affected by the options you specify in the 
parse macro instructions, as well as by the type of parameter specified. If 
you specify the LIST or the RANGE options in the parse macro 
instructions describing positional parameters, the IKJP ARMD OSECT and 
the POEs returned by the parse service routine are modified to reflect these 
options. 

LIST: The LIST option may be used with the following positional 
parameter types: 

USERID 
DSNAME 
DSTHING 
ADDRESS 
VALUE 
CONSTANT 
VARIABLE 
STATEMENT NUMBER 
HEX 
INTEG 
CHAR 
Any non-delimiter-dependent positional parameter 

If you specify the LIST option in the parse macro instructions describing 
the above listed positional parameter types, the parse service routine 
allocates an additional word for the POE created to describe the positional 
parameter. This word is allocated even though a list may not actually be 
entered by the terminal user. If a list is not entered, this word is set to 
X'FFOOOOOO'. If a list is entered, the additional word will be used to chain 
the POEs created for each element found in the list. Each additional PDE 
has a format identical to the one described for that parameter type within 
the IKJPARMO OSECT. Since the number of elements in a list is variable, 
the number of POEs created by the parse service routine is also variable. 
The chain word of the PDE created for the last element of the list is set to 
X'FFOOOOOO' . 

Figure 141 shows the PDL returned by the parse service routine after 
three positional parameters have been entered. In this case, the first two 
parameters, a USERID and a STRING parameter, had been defined as not 
accepting lists. The third parameter, a VALUE parameter, had the LIST 
option coded in the IKJPOSIT macro instruction that defined the parameter 
syntax. The VALUE parameter was entered as a two-element list. 

Command Scan and Parse -- Detennining the Validity or Commands 193 



POL - Mapped by IKJPARMO OSECT 

I } POL H"d., 

I I 
USERID POE 

I I < 

I I 
- STRING POE 

I VALUE POE 
(First element of a two element list) 

Chain Word 
I, } 

~ 

I 
F F 0 0 

FIgure 141. A PDL Showing PDEs Describing a List 

I 
0 0 0 0 

} 

VALUE POE 
(Last element of a twa 
element list) 

RANGE: The RANGE option may be used with the following positional 
parameter types: 

HEX (X' , only) 
ADDRESS 
VALUE 
CONSTANT 
VARIABLE 
STATEMENT NUMBER 
INTEG 
Any non-delimiter-dependent positional parameter. 

If you specify the RANGE option in the parse macro instructions 
describing the above listed positional parameter types, the parse service 
routine builds two identical, sequential PDEs within the PDL returned to 
the calling routine. Space is allocated for the second PDE even though a 
range may not actually be supplied by the terminal user. If a range is not 
supplied, the second PDE is set to zero. The flag bit which is normally set 
for a missing parameter will also be zero in the second PDE. 

Figure 142 shows the PDL returned by the parse service routine after 
two positional parameters have been entered. In this case, the first 
parameter is a USERID parameter and the second parameter is a VALUE 

194 TSO Guide to Wrldng a TMP or a CP 



parameter that had the RANGE option coded in the IKJPOSIT macro 
instruction that defined the parameter syntax. For this example, the 
VALUE parameter was not entered as a range, and, consequently, the 
second PDE is set to zero. 

POL - Mopped by IKJPARMO OSECT 

I 
POL Header 

I I 
USERIO POE 

I I 
VALUE POE 

I I 
(May be entered as a Range) 

0-- - - - - - - - - - - "0 
VALUE POE built to receive second element of Range. 
(Parameter was not entered as a Range) 0.- - --0 I 0--0 I 0- .. 0 

Figure 142. A PDL Showing PDEs Describing a Range 

Combining the LIST and RANGE Options: If you specify both the LIST and 
RANGE options in a parse macro instruction describing a positional 
parameter, the parse service routine builds two identical POEs within the 
PDL returned to the calling routine. Both of these POEs are formatted 
according to the type of positional parameter described. These two POEs 
describe the RANGE. An additional wOld is appended to the second POE 
for the purpose of chaining any additional POEs built to describe the LIST. 

Command Scan and Parse -- Determining the Validity of CGIIIIIIIUIIIs 1" 



t 
! 

Figure 143 shows this general format. 

POL - Mapped by IKJPARMO OSECT 

I 

I I 

I I 
Chain Ward ~ 

POL Header 

• 

POE 

< 

I dentical POE 
(Parameter may be entered as a range) 

} ( Parameter may be entered as a list) 

---------, 
r- ---1---1---1 
I- - - - - - 1- __ L _ -1 
1 1 1------,-- r-I 
i-----L--L--, 
L ___ Chain~rd ___ :J"-, 

Figure 143. A PDL Showing PDEs Describing LIST and RANGE Options 

\ 
\ 
\ 

POE 

Identical POE 

\. 

If you have specified both the LIST and the RANGE options in the 
parse macro instruction describing a positional parameter, the user at tne 
terminal has the option of supplying a single parameter, a single range, a list 
of parameters, or a list of ranges. The construction of the PDL returned by 
the parse service routine can reflect each of these conditions. 

296 TSO Guide to Writing a TMP or a CP 



Figure 144 shows the POL returned by the parse service routine if the 
user enters a single parameter. 

POL - Mapped by IKJPARMD DSECT 

I 
POL Header 

I I PDE - Filled in 

0-- ---------0 

0- - - -0 I 0- -0 I 0- -0 
Identical POE - Zeroed 

F F 0 0 0 0 0 0 Chain Word 

Figure 144. PDL - LIST and RANGE Acceptable, Single Parameter Entered 

As Figure 144 further shows, the second POE and the chain word are 
both set to zero by the parse service routine, if the LIST and RANGE 
options were coded in the macro instruction describing the parameter, but 
the user entered a single parameter. 

Figure 145 shows the POL returned by the parse service routine if the 
user enters a single range of the form: 

parameter:parameter 

POL - Mapped by IKJPARMD DSECT 

I 
POL Header 

I I 
POE - Filled in 

I I Identical POE - Fi lied in 

F F 0 0 0 0 0 0 Chain Word 

figure 145. PDL - LIST and RANGE Acceptable, Single Range Entered 

As Figure 145 further shows, both PDEs are filled in to describe the 
single RANGE parameter entered by the user. The chain word is set to 
X'FFOOOOOO' to indicate that there are no elements chained onto this one; 
that is, the parameter was not entered in the form of a LIST. 

Command Scan and Parse -- Determining the Validity of Commands 297 



Figure 146 shows the format of the PDL returned by the parse service 
routine if the user enters a list of parameters in the form: 

(parameter,parameter, ... ) 

POL - Mapped by IKJPARMO OSECT 

1 
POL Header 

POE - Fi lied in 1 1 
i 0-- -- - - - - - - -_0 

0----01 0--010---0 
> Identical POE - Zeraed 

Chain Word 

) 
1 1 

POE - Filled in 

. 
0-- - - - - - - - - --0 

0-- --01 0---0 1 0--0 
Identical POE - Zeraed 

Chain Word 

Figure 146. PDL - LIST and RANGE Acceptable, LIST Entered 

.......... 

2 -----------, 
~-----I--I--J 
I I 
r--- --I_-..l---1 

~ - - - - -1- - - \- -l 
r- - - - - -1- - ..J - - 1 L _________ ~ 

I 
/ 

I 

i 

As Figure 146 further shows, each of the first PDEs and the chain word 
pointers are filled in by the parse service routine to describe the list of 
parameters entered by the user. The second, identical PDEs are zeroed to 
indicate that the parameter was not entered in the form of a range. 

298 TSO Guide to Writing a TMP or a CP 



L 
The last set of POEs on the chain will contain X'FFOOOOOO' in the chain 

word to indicate that there are no more POEs on that particular chain. 

The POL created by the parse service routine to describe a parameter 
entered as a list of ranges is similar to the one created to describe a list. 
The difference is that the second, identical POEs are also filled in by the 
parse service routine to describe the ranges entered. 

Figure 147 further shows the format of the POL returned by the parse 
service routine if the user enters a list of ranges in the form: 

(parameter:parameter, parameter:parameter, ... ) 

PDL - Mapped by IKJPARMD DSECT , 

I 

I I < 

I I 
) 

Chain Word -

PDL Header 

PDE - Fi lied in 

Identical PDE - Filled in 

I I 
PDE - Fi lied in 

I I 
Identical PDE - Fi lied in 

.-
Chain Word ........... 

? 1---------, 
1------,--1--, 
L ____ J __ L_-.J 
I I r - - - - - "I - -1-1 
I------.J--...l __ ~ 
L ______ ---\J 

/ 
I , 

Figure 147. PDL - LIST and RANGE Acceptable, List of Ranges Entered 

Command Scan and Parse -- Detennining the Validity of Commands 299 

• 



As Figure 147 shows, each of the PDEs and each of the second, 
identical PDEs are filled in by the parse service routine to describe the 
ranges entered. The chain words are also filled in to point down through 
the list of parameters entered. 

The last set of PDEs on the chain will contain X'FFOOOOOO' in the chain 
word to indicate that there are no more PDEs on that particular chain. 

The PDE Created for a Keyword Parameter 

Parse builds a halfword (2-byte) PDE to describe a keyword parameter; it 
has the following format: 

+0 

I Number I 
+2 

Number: 

. You describe the possible names for a keyword parameter to the parse 
service routine by coding a list of IKJNAME macro instructions directly 
following the IKJKEYWD macro instruction. One IKJNAME macro 
instruction must be executed for each possible name. 
The parse service routine places into the PDE the number of the 
IKJNAME macro instruction that corresponds to the keyword name 
entered. 
If the keyword is not entered, and you did not specify a default in the 
IKJKEYWD macro instruction, the parse service routine places a zero 
into the PDE. 

Additional Facilities Provided by Parse 

The parse service routine, in addition to determining if command 
parameters are syntactically correct, provides the following services which 
may be selected by the calling routine. 

Translation to Uppercase 

Positional parameters are ordinarily translated to uppercase unless the 
calling routine specifies AS IS in the IKJPOSIT or IKJIDENT macro 
instructions. The first character of a value parameter, the type-character, is 
always translated to uppercase, however. The string that follows the type 
character is translated to uppercase, unless ASIS is coded in the describing 
macro instructions. 

The parse service routine always translates keyword parameters to 
uppercase. 

Insertion of Default Values 

Positional parameters (except delimiter and space) and keyword parameters 
may have default values. These default values are indicated to the parse 
service routine through the DEFAULT= operand of the IKJPOSIT, 
IKJTERM, IKJOPER, IKJRSVWD, IKJIDENT, and IKJKEYWD macro 

300 TSO Guide to Writing a TMP or a CP 



(-

instructions. When a positional or a keyword parameter is omitted, for 
which a default value has been specified, the parse service routine inserts 
the default value. 

The parse service routine also inserts the default value you specified if a 
parameter is invalid and the terminal user enters a null line in response to a 
prompt. 

Passing Control to a Validity Checking Routine 

You can provide a validity checking routine to do additional checking on a 
positional parameter. Each positional parameter can have a unique validity 
checking routine. Indicate the presence of a validity checking routine by 
coding the entry point address of the routine as the VALIDCK= operand 
in the IKJPOSIT, IKJTERM, IKJOPER or IKJIDENT macro instructions. 

The parse service routine can call validity checking routines for the 
following types of positional parameters: 

HEX 
VALUE 
ADDRESS 
QSTRING 
USERID 
DSNAME 
DSTHING 
CONSTANT 
VARIABLE 
STATEMENT NUMBER 
EXPRESSION 
JOBNAME 
INTEG 
Any non-delimiter-dependent parameters 

The validity check exit is taken after the parse service routine has 
determined that the parameter is syntactically correct. If a dsname or userid 
parameter is entered with a password, parse takes the validity check exit 
after the first parsing both the use rid or dsname and the password. If the 
terminal user enters a list, the validity check routine is called as each 
element in the list is parsed. If a range is entered, the parse service routine 
calls the validity check routine only after both items of the range are 
parsed. 

When control is passed from the parse service routine to a validity 
checking routine, the parse service routine uses standard linkage 
conventions. The validity check routine must save parse's registers and 
restore them before returning control to the parse service routine. The parse 
service routine builds a three-word parameter list and places the address of 
this list into register 1 before branching to a validity checking routine. This 
three-word parameter list has the format shown in Figure 148. 

Command Scan and Parse -- Determining the Validity of Commands 301 



Number of 
Bytes Field Contents or Meaning 

4 POEAOR The address of the parameter descriptor entry 
(POE) built by parse for this syntactically 
correct parameter. 

4 USERWORO The address of the user work area. This is the 
same address you supplied to the parse 
service routine in the parse parameter list. 

4 VALMSG Initialized to X'FFOOOOOO' by parse. A 
user-provided validity checking routine can 
place the address of a second level message 
in this field. 

Figure 148. Fonnat of the Validity Check Parameter List 

Your validity checking routines must return a code in general register 15 
to the parse service routine. These codes inform the parse service routine of 
the results of the validity check and determine the action that parse should 
take. Figure 149 shows the return codes, their meaning, and the action 
taken by the parse service routine. 

Return Code Meaning Action Taken by Parse 

0 The parameter is valid. No additional 
processing is 
performed on this 
parameter by the 
parse service routine. 

4 The parameter is invalid. The parse service 
routine writes an 
error message to the 
terminal and prompts 
for a valid parameter. 

S The parameter is invalid. The validity checking 
routine has issued an 
error message; parse 
prompts for a valid 
parameter. 

12 The parameter is invalid; the The parse service 
processor cannot continue. routine stops all 

further syntax 
checking and returns 
to the calling routine. 

Figure 149. Return Codes from a Va6d1ty Checking Routine 

If the parse service routine receives a return code of 4 or 8, the new 
data entered in response to the prompt is parsed as if it were the original 
data and control is' again passed to the validity check routine. This cycle 
continues until a valid parameter is obtained. 

Insertion of Keywords 

Some keyword parameters may imply other keyword parameters. You may 
specify that other keywords are to be inserted into the parameter string 
when a certain keyword is entered. Use the INSERT operand of the 

301 TSO Guide to Wrltlna a TMP or a CP 



IKJNAME macro instruction to indicate that a keyword or a list of 
keywords is to be inserted following the named keyword. The inserted 
key~ords are processed as if they were entered from the terminal. 

Issuing Second Level Messages 

You may supply second level messages to be chained to any prompt 
message issued for a positional parameter (keyword parameters are never 
required). Use the HELP operand of the IKJPOSIT, IKJTERM, IKJOPER, 
IKJRSVWD or IKJIDENT macro instructions to supply these second level 
messages to the parse service routine. You can supply up to 255 second 
level messages for each positional parameter. One second level message is 
issued each time a question mark is entered from the terminal. If a question 
mark is entered and no second level messages were provided, or they have 
all been issued in response to previous question marks, the terminal user is 
notified that no help is available. 

If a user-provided validity checking routine returns the address of a 
second level message to the parse service routine, that second level message 
or chain will be written out in response to question marks entered from the 
terminal. The original second level chain, if one was present, is deleted. 

The format of these second level messages is the same as the HELP 
second level message portion of the PCE for the macro from which the 
validity checking routine received control. 

Prompting 

The parse service routine prompts the terminal user if the command 
parameters found are incorrect or if required parameters are missing. It 
allows the terminal user to enter a missing parameter or correct an incorrect 
one without having to reenter the entire command. The parse service 
routine prompts, and the terminal user must respond, in the following 
situations: 

1. A userid or dsname was entered with a slash but without a password. 

2. A parameter is syntactically invalid. 

3. A keyword is ambiguous, that is, it is not clear to the parse service 
routine which keyword of several similar ones is being entered. 

4. A required positional parameter is missing. The requirement for a 
particular positional paranieter and the prompting message to be 
issued if that parameter is not present, are specified to the parse 
service routine through the PROMPT operand of the IKJPOSIT, 
IKJTERM, IKJOPER, IKJRSVWD, and IKJIDENT macro 
instructions. The parse service routine puts out the prompting 
message supplied in the macro instruction. 

5. A validity check exit indicates that a parameter is invalid. 

There are a number of rules that govern the processing of responses 
entered from the terminal after a prompt. 

1. All of the new data entered is parsed before the scan of the original 
command is resumed. 

Command Scan and Parse -- Determining the Validity of Commands 303 



2. Unless otherwise stated in the command syntax definition, the new 
parameter is entered as it is entered in the original command. See 
"Command Parameter Syntax" for exceptions to this rule. 

3. In general, additional parameters may be entered along with the data 
prompted for. It must be kept in mind, however, that all of the new 
data entered is parsed before the scan of the material in the original 
command buffer is resumed. A problem could occur in a situation 
where a command is entered followed by two positional parameters 
and a keyword, and the first positional parameter is invalid. The parse 
service routine issues a prompt for the first positional parameter. 
When the user at the terminal reenters that first positional parameter, 
it would be invalid to enter additional keywords along with it. The 
additional keywords would be scanned before the second positional 
parameter and an error condition would result when the parse service 
routine returned to the original command buffer and found a 
positional parameter. 

Note that if the parameter prompted for is within a subfield, only 
parameters valid within that subfield may be entered along with the 
parameter prompted for. 

4. In general, a null response is acceptable only for optional parameters. 
However, if a null response is entered for an optional parameter that 
has a default, parse inserts the default. If a prompt for a required 
parameter is answered by a null response from the terminal, parse 
reissues the prompt message. The parse service routine continues 
prompting until a correct parameter is entered. The terminal user can 
request termination by entering an attention. 

Parse will always accept a null response to a prompt for a password, 
whether or not the dsname or use rid parameters are required. It is the 
responsibility of the routine using the parse service routine to ensure 
that the correct password was entered if one was required, by 
checking the password pointed to by the PDE returned by the parse 
service routine. 

5. If a required parameter which may be entered in the form of a list is 
missing, or if it was entered as a single parameter (not as a list), and 
that single parameter is incorrect, parse will not accept a list after the 
prompt. The user at the terminal must enter a single parameter. 

If, however, the item was entered as a list but an item within the list 
is invalid, the parse service routine accepts one or more parameters 
after the prompt. The parse service routine considers these newly 
entered parameters to be part of the original list. Parameters that are 
not valid in the list may be entered from the terminal in response to 
this prompt. 

If the last item in a list is found to be invalid, parse only accepts one 
parameter after a prompt. 

6. If the parse service routine determines that a parameter is invalid, the 
invalid portion of the parameter is indicated in the error message. The 
remainder of the parameter is not yet parsed. The user must reenter 
as much of the invalid parameter as was indicated in the error 
message. This situation often occurs if a dsname parameter or userid 

304 TSO Guide to Writing a TMP or a CP 



parameter is entered with blanks between the dsname or userid and 
the password. The dsname or userid may be invalid but the password 
is still good and will be parsed after a new dsname or userid is 
entered in response to the prompt. 

The parse service routine always attempts to obtain syntactically correct 
parameters before returning to the calling routine. However, this is not 
always possible. The terminal user may have requested that no prompt 
messages be sent to the terminal, or the command being parsed may have 
come from a procedure. In these cases, an error message is issued and a 
code is returned to the calling routine indicating that a correct command 
could not be obtained. Any second level messages that would ordinarily be 
appended to the request for new data are appended to the error message. 

Command Scan and Parse -- Determining the Validity of Commands 305 



EDIT 

Examples of Using the Parse Service Routine 

Example 1 

This example shows how the parse macro instructions could be used within 
a command processor to describe the syntax of an EDIT command to the 
parse service routine. 

The sample EDIT command we are describing to the parse service 
routine has the following format: 

dsname 
-

PLI 

FORT 
ASM. 
TEXT 

,-DATA 

[ SCAN ] 
NOSCAN 

[ BLOCK (number) J 
BLKSIZE (number) 

LINE (n umber) 

-

306 TSO Guide to Writing a TMP or a CP 



If A ~ IA 

~ Iv ~ 
17 1;:£ 

SC ~W 

W~,~ 

\tiL ~C11 

II I IE 

L1 ~~ 10 
P~ '1C OL 1 

PLt ck; L'Z 

IfL 117 yiPE 

1 

IL OC K,siu,B 
LWW ~M 1 

ILl IV~ SI Ie 
III W ~ 

i 

i 

Figure 150 shows the sequence of parse macro instructions that would 
describe the syntax of this EDIT command to the parse service routine. 

-, -T 
W.l~ ~ 

--, 

II~ .Ilf OS IT ~~W ~ ~I' I~\.f O~ I,cll , 
All A 5~ T ~~~ Ie ' 

~ II!"~"IY f£-
11K w\4 f1i, '~ II f ' ~ ~B I;: L :I.~ L 1~ LII: 

I .I II~ ".~ ok' 7' 
J ~~ 

, s~ , 
I .;W wI,/: 'TE T' I 

,j ""I~ 
, T , 

I .; IE y f.? FI;: oIL IT" 'w d sir 14 r\' I 

111K Vw W 'SC N ' 
vW w~ I ,r; 5 k;"A WI 
~ cY I#~ Ir EV=: U T::' wU ~I 

IIr .IW ~If 'VY UM I 

I1Vr ';/11 ~It= 'Iv Wv 1\1' 
1"k . .I VtlE Yli'lrt; 
Ir"k.;W ~I,t: 'IB LO c~' Sk) is II .:1..: L O'C KS ulB A L I A 5= 'B LK ~ II~ 
I".; ~~ Y~O , 
I .I ~\l: 'L if'll 1;' slv BI.I: Lb .:11 IElc:; If\! Iii!: E 
j VSU ..'!~ 1 
II( .I If) ~WIT 'N ~ ~~ W' Ipi 5T " NV ~It: I.R I Ir TW ,;:I~ :fV u~ ~k> 1 CI, 

~;: 1;:1'1 VL IT = 121 

.II Leo\' T 'N (/1",,18 'I, 'F I 5 :: II !A,fL: 10 1 "T W,;: =W I£'~ tE,e- I Irl , 

joE ~4 UL T= '7 Z I 

lr~v ~Ir /ttl> £~ iV L T= 'k:' ~ oR,(, 1121 ' 
l!~.; ~c ' C IhA ~, If' 
[f~I.; W~ ~~ 'e ~~ ~ , 

k'v sv ~~ 
1Ik-~I Ie~ '~ IB ,"" , 1 , 'l/= lko ~IT .= Iv ~E k'ic ~ k·1I\I 

I_ 
V -= I. 

lP~ o~ if'17 .. 'I8L 0 ~Sll IE ,lAtA XL NIT III ::: 8 

I ~s ~It'" 
1 .II ~~~T ,~ ~~ (/~ ~ I I, I.t: Ik' ST; IA, yJ): iii I Ir I. '_I'" }f= ~v ~~ K'I ~I, 

In II"l Ir: .. I LI I,cI5 l;~ I.e I 

IVr .Ilf rv~'" I 

! 

Figure 150. Coding Example 1 - Using Parse Macros to Describe Command Parameter Syntax 

The parse macro instructions shown in Figure 150 perform two distinct 
functions when executed: 

1. Build the parameter control list describing the syntax of the EDIT 
command parameters. The PCL is used by the parse service routine 
during its scan of the parameters within the command buffer. 

2. Create the IKJPARMD DSECT (defaulted to on the IKJPARM 
macro instruction) that you use to map the parameter descriptor list 
returned by the parse service routine after it scans the parameters 
within the command buffer. 

Your code never refers to the PCL; it is used only by the parse service 
routine. Therefore, it is not shown in the example. 

Command Scan and Parse -- Determining the Validity of Commands 307 

r ' 
:-

, , 
i 

, 



I~ V~ f4~ ~~ 

~~ w~iH 
TY P~ 
5" AN 
NU~ 
~[; ~c~ 
~L ~S 11i!~ 
L I ~(c: 
P~ fC ~/L 1 
IP ~ 1C bLZ 
~[; 1 TY ~!e 
~k'. fkW {i~ 
LI ftiw IuH 

I 

k 
S 

{)5 

~s 

(.)5 
5 
s 

illS 
S 

~fs 
ID~ 
~s 

5 

~S 

Figure 151 shows the IKJP ARMD DSECT created by the expansion of 
the parse macro instructions. 

CT 
2~ 
~A 
'tf 

~ 

'"' 
~ -r - - --~- - --t- - r-
I~~ 

W 
12 Ii 
jg~ 
~ 

~A 
l£~ 

~ 

; 

Figure-lSI. An lKJPARMD DSECT (Example l) 

If a terminal user entered the above described EDIT command in the 
form: 

edit sysfile/x pl1 (3) nanum block 

the parse service routine would prompt for the blocksize as follows: 

ENTER BLOCKSIZE 

The user at the terminal might respond with: 

160 

The parse service routine would then complete the scan of the command 
parameters, build a parameter descriptor list (PDL), place the address of 
the PDL into the fullword pointed to by the fifth word of the parse 
parameter list, and return to the calling program. 

The calling routine uses the address of the PDL as a base address for the 
IKJPARMD DSECT. 

308 TSO Guide to Writing a TMP or a CP 

, 



IKJPARMO 
OSECT 

IKJPARMO 

OSNAM 

TYPE, SCAN 

NUM, BLOCK 

LINE 

PLlCOLl 

PLlCOL2 

PLlTYPE 

BLKNUM 

LlNNUM 

Figure 152 shows the POL returned by the parse service routine. The 
symbolic addresses within the IKJPARMO OSECT are shown to the left of 
the POL at the points within the POL to which they apply, and the 
meanings of the fields within the POL are explained to the right of the 
POL. 

POL 

Pointer to SYSFILE 

7 1101 

0 

0 01 

Pointer to X 

1 11 

1 

2 

0 

Pointer to 3 

1 11 

Pointer to 72 

2 11 

1 

Pointer to 160 

3 11 

0 

0 01 

2 

1 

Unused 

Unused 

Description of 
Field Contents 

} 
POL Header. Used only by 
IKJRLSA 

Oato Set Name 

No member name 

Password 

PU, NOSCAN 

NONUM, BLOCK 

LINE not specified 

3 was specified 

72 is the default 

CHAR60 is the default 

160 was prompted far 

LINNUM not specified 

FIgure 151. The IKJPARMD DSECT and the PDL (Example I) 

Command Scan and Parse -- Determining the Validity of Commands 309 



COMMAND 

AT 

II )/ .m2 
s/; 1m ~ II' c ~ 

po , ,. tp ce 

kc 'IP ce 
n~ Imie PC~ 
cO I" n ts u.b 

irJ ~n /:p c~ 

Example 2 

This example shows how the parse macro instructions could be used to 
describe the syntax of a sample AT command that has the following syntax: 

OPERANDS 

{stmt l (s~mt-l, stmt-2, ••• ) (cmd,chain) COONI' (integer) 
stmt- 3: stm t- 4 

~K JIP 
~K IJIT 

rile iJ P 

Ik Jf 
II< IN 
II~ I5 
IX 71 

II< 7E 

Figure 153 shows the sequence of parse macro instructions that describe 
this sample AT command to the parse service routine. 

A R~ OS lEe Tc Il'd rs e.t 
£RI~ , s tl t , me n t nu. mh IIr 

, IUP PE lie ASE L/ ST ,1' AI" 6£, , 
TY PE =5 TM T. VA L1 DC ~ .. cit As -i l1li l-

os ~T PS Til I NG liE LP . ' cit 14in 01 co Imm dn J I 

VA LI ~Cl '" C hk '1m " EY 1110 i 

.1. liE 'e 01'1 ~T 
, sl(j Blf LO ·c ou. nt su.b , 

1I1.!ilf 

DE NT 
, 
~O UN T' F/ ~S 17 ;: I~III'M EIR le OT HE iii .. :N\lI ~E lilC 

VA Ll olr It" cit Ik c Ou. nt 
AI DP 

Figure t 53. Coding Example 2 - Using Parse Macros to Describe Parameter Syntax 

The parse macro instructions shown in Figure 153 perform two distinct 
functions when executed: 

1. Build the parameter control list describing the syntax of the command 
parameters. This PCL is then used by the parse service routine during 
its scan of the parameters in the command buffer. 

2. Create the IKJP ARMD DSECT that you use to map the parameter 
descriptor list. The PDL is returned by the parse service routine after 
it scans the parameters in the command buffer. 

Note: Your code never refers to the PCL; it is used only by the parse 
service routine. Therefore, the parameter control list is not shown in the 
example. 

310 TSO GuIde to Writing a TMP or a CP 



II< Jp lAR~ 
PA V?S IF AI7 
S7 IMT IPc~ 
PO Sl T~ (.E 
KIF yp elE 
/1[) ~IAJ IT~ (I} 

liS ~C7 
liS 
{)S 
~S 
OS 
OS 

Figure 154 shows the IIUPARMO OSECT created by the expansion of 
the parse macro instructions. 

2A 
l1A 
2A 
I~ 
21A 

FIgure 1!4. An IKJPARMD DSECf (Example 1) 

In this example, if the terminal user entered the above described 
command incorrectly like this: 

at 200/3 (list all) count{a) 

the parse service routine would prompt the terminal user with the 
message: 

INVALID STATEMENT NUMBER, 200/3 
REENTER 

The user might respond with: 

200.3 

the parse service routine would then prompt the user with: 

INVALID COUNT, a 
REENTER 

The user might respond with: 

3 

This sequence resulted in the syntactically correct command of: 

at 200.3 (list all) count(3) 

The parse service routine would then build a parameter descriptor list 
(POL) and place the address of the POL into the fullword pointed to by 
the fifth word of the parse parameter list. 

The parse service routine then returns to the caller and the caller uses 
the address of the POL as a base address for the IIUPARMD OSECT. 

COIIIIIWld Scan and Pane -- Detennln1na the Validity 01 COIIIIMIIIIs 311 



IKJPARMD 

Figure ISS shows the POL returned by the parse routine. The symbolic 
addresses of the IKJPARMO OSECT are shown to the left of the POL at 
the points within the PDL to which they apply. A description of the fields 
within the POL is shown on the right. 

DSECT POL 

Description of 
Field Contents 

PARSEAT 

STMTPCE 

POSITPCE 

KEYPCE 

IDENTPCE 

o 
2 

4 

0 

0 

0 

0 

0 

0 

B 

PDE Offset 

I 3 1 

- X'90' 

Poi nter to 200 

Pointer to 3 

I 0 0 

- X '00' 

X 'F FOOOOOO , 

Poi nter to LIS Tin stri ng 

I - X'BO' 

1 

Pointer to 3 

1 X'BO' 

Figure 155. The IKJPARMD DSECT and the PDL (Example2) 

312 TSO Guide 10 Writing a TMP or a CP 

-
-

0 

-

-
-

-

} 
POL Heoder, used only by 
IKJRLSA 

Lengths (program - id, line no, 
and verb no, ) 

Parameter is present 

No program - id 

line number 

Verb number 

Double POE for RANGE option, 
but not entered 

LIST option not entered 

first character after) 

Length, parameter is present 

First keyword 

Subfield 

Length, parameter is .present 



L 

•• Ia ,,3 
VI rip ce 

sl" /Jp cc 

k. YP cc 

nil Im~ pee 

I" r " n ~ s ,," 

Example 3 

It 
It 

IX 

IK 
~~ 
It 
lK 

It 

This example shows how the parse macro instructions could be used to 
describe the syntax of a sample LIST command that has the following 
syntax: 

COMMAND OPERANDS 

LIST symbol PRINT (symbol) 

Figure 156 shows the sequence of parse macro instructions that describe 
this sample LIST command to the parse service routine. 

JP AliA! OS {(' T· pier ,.s .2 
./1 ~1A4 ' s YII 110 I I • U PP fA' CA SE Pt 011 P7 = I ,Iv 1mb o , I , 

T'f Pi =V Ali ,.v Ai /D CK "c It. c~ , 5 lJS ell PiT ·s u.6p ce 

jT EtlA I 5 ub 5~ r i pI: I 58 SC IlP T, TY PE -C NS T, 
Pi 011 PT • I *04 ~s C ,. Ip ti'l 

IJK Ely WD i i I 

~~,A tiE i I I" I,. " n 1:' ' , 5 US F'L D!= P ,.Ic·in t s ," b' I , 

~skJ III IF. 
, 

I I : I I ! 

JTif R~i I 'IS YlmJ. o I -i2 I (j PIPiE RICiAiS f. PI OM PiT • I sly 1m ho" - Z!' 
Tly PE -Iv AR i I : 1 

\.1 f WDP 

I 

i 
I 

Figure 156. Coding Example 3 - Using Parse Macros to Describe Parameter Syntax 

The parse macro instructions shown in Figure 156 perform two distinct 
functions when executed: 

1. Build the parameter control list describing the syntax of the command 
parameters. This PCL is then used by the parse service routine during 
its scan of the parameters in the command buffer. 

2. Create the IIGPARMD DSECT that ,you use to map the parameter 
descriptor list. The PDL is returned by the parse service routine after 
it scans the parameters in the command buffer. 

Note: Your code never references the PCL; it is used only by the parse 
service routine. Therefore, the parameter control list for the example is not 
shown. 

Figure 157 shows the IKJPARMD DSECT created by the expansion of the 
parse macro instructions. 

Command Scan and Parse -- DetermiDing the Validity of Commands 313 



I,Kll PlAIR. M'C OS E el7 I 1 
flAiR 51£12 ~s ~14 
V:AiK P1CIE 05 5A i 
SIUiBPICE 0,5 1 :lliA I i 
KE[Y PICIE i 015 1 1M 

, 
i 

P!/(j] :}.}JISIUIB DS fJA 
! I , r I I 
: j I I 
i I iii : I 

Figure 157. An IKJPARMD DSECT (Example 3) 

In this example, if the terminal user entered the above described 
command incorrectly like this: 

list a of 1 in 3(1) print(d) 

the parse service routine would prompt the terminal user with: 

INVALID SYMBOL, a ... l in 3(1) 
REENTER 

The user might respond with: 

a of b in 3 (1) 

the parse service routine would then prompt with: 

INVALID SYMBOL, a ... 3(1) 
REENTER 

The user might respond with: 

a of b in c (1) 

This sequence resulted in the syntactically correct command of: 

list a of b in c(l) print (d) 

The parse service routine would then build a parameter descriptor list 
(POL) and place the address of the POL into the full word pointed to by 
the fifth word of the parse parameter list. 

The parse service routine then returns to the caller and the caller uses 
the address of the POL as a base address for the IKJPARMD D""PCT. 

Figure 158 shows the PDL returned by the parse service routin. The 
symbolic addresses of the IKJP ARMD OSECT are shown to the left of the 
PDL at the points within the PDL to which they apply. A description of the 
fields within the PDL is shown on the right. 

314 TSO Guide to Writing a TMP or a CP 



c. IKJPARMO 
OSECT 

PARSE2 

VARPCE 

SUBPCE 

KEYPCE 

PRINTSUB 

(First 
Qualifier) 

(Next 
Quo I ifi er) 

1 

0 

0 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

0 

0 

0 

1 

1 

POL 

Pointer to 0 

- X'AO' l 
Pointer to first qualifier 

2 1 I 
0 - I 

0 X'CBOO' 

Pointer to 1 

0 0 I 
0 X '0000' 

0 0 I 
0 X '0000' 

1 -
Pointer to d 

- X'AO' I 

0 0 l 
Pointer to b 

- X '00' 1 
Pointer to next qualifier 

Pointer to c 

- X '00' I 
X 'FFOOOOOO , 

* Note: May not be contiguous in storage at th is poi nt • 

Figure IS8. The IKJPARMD DSECT and the PDL (Example 3) 

} 
-

-
-

-

I~ -

1...1 

-

-

-

-

Description of 
Field Contents 

PDL Header-Used only by 
IKJRLSA 

Data-name 

Length, porameter is present 

Qualifier 

No program - id 

Length, qualifiers, subscript 

Length 

Flags, CNST 

Subscript 

No exponent 

No decimal point 

2nd element in subscript -
( Not entered) 

> 
3rd element in subscri pt -
(Not entered) 

First keyword 

Data-name 

Length, porameter, variable 

No qualifiers 

No program - id 

No length, qualifier, or subscript 

First qualifier 

Length, parameter, variable 

Next qualifier 

Second qualifier 

Length, porameter, variable 

End of quali fi ers 

Command Scan and Parse -- Determining the Validity of Commands 31S 



elx a!ml4 
o!pl~ 1'1 

I 
I 

I 
sly mb o I 1 

I 
I 

olp t'f' a It air 
I I 

r 
, 

Sly '" ~ 1011f2 
ilir/ ~i'"11 
/ ,aisi~ 10 n t' 

i 

Example 4 

This example shows how the parse macro instructions could be used to 
describe the syntax of a sample WHEN command that has the following 
syntax: 

COMMAND OPERANDS 

WHEN {addr } (subcommand chain) 

expression 

Figure 159 shows the sequence of parse macro instructions that describe 
this sample WHEN command to the parse service routine. 

lKf/ PiA R~I OS~~IT "I, ~ r S .3 1 i I : ' ! I I I I I I I I I 1 [ I I 
~ ~!) !DIP IE!? 'r ,xl.ejr els siO n' OJp El/?iNiO:! ",sjylmlb oil :1. r ,I 1 

I I , 
I I 

i I i D,P ERN DiZ = ,Sly "'0 o 1:2 , RisMW DI= ,olpl. "ia!~ lOll- , , i , I , i 
! I rip A~,N "~~~!r 1, P ~p ItfP'T' : : IZI ~!e [rim!' , lVIAILII OICIK'"ic h!.lc!~ 

·l ~!J!T:E lR~i ' is y~;b 011 J J " 
(JIP PIE~ CiASE:, TiY,PIE,: VIAIR:, I i 

• 

i i 

I i ! PiR O~IP T:= , Is Iy~ b 0 112 ' . : I , i I I ! , • I I 
1 til RI5 V.~1 I ' 10 pel,. .'+10 r t PI!? kJlM PiT,. t 

,0 piC 'I' i. If oir I t i , ; 1 ' i • i 

T KI] NIA ME! ! I i ' f! Ill! 'I i I ! ! i ! i ; i ! : I ! i 
• i I 

T1Ki]jNIA ME: I t ,n t' Iq!' : I , , 

, : I ' iii 
, 

I , I i I 

T K,liT' RMI ! I i t'SiYlm:b o'/IZ!' :, T:y,PIE- V!AiR i I i i ! : , I : 
~~ liTi£ iMI I t it1'd'~ir IE' is !s!':, Ty;pl[a V!AiR~, .V ALliD,C K\"lc;hip cIKI1: : 

IIIK JPIO 51T' I p.s Tiki! NiG!, VA L 1[IDleil< =iC:HiEIC K,2 i i I ! : t ; i I I 
JK J fiN UP I 1 I I I 1 i I J i 111 J i J I I I I I 

Figure 159. Coding Example 4 - Using Parse Macros to Describe Parameter Syntax 

The parse macro instructions shown in Figure 159 perform two distinct 
functions when executed: 

1. Build the parameter control list describing the syntax of the command 
parameters. This PCL is then used by the parse service routine during 
its scan of the parameters in the command buffer. 

2. Create the IKJP ARMO OSECT that you use to map the parameter 
descriptor list. The POL is returned by the parse service routine after 
it scans the parameters in the command buffer. 

Note: Your code never references the PCL; it is used only by the parse 
service routine. Therefore, the parameter control list for this example is not 
shown. 

316 TSO Guide to Writing a TMP or a CP 



IK lip A~ W,O 
PA R'S [3 
OP f/l 
Sly MB OLL 
Of ERA TOR 
Sy #.fS OL 12 
AD IlIU 
LiA 5T ONE 

; I 

I I 

05 1E1(7 
D5 
105 
D5 
DS 
10'5 
1/)5 
05 

Figure 160 shows the IKJP ARMO OSECT created by the expansion of 
the parse macro instructions. 

ZA 
2A 
5A 
2A 
5A 
'5A I 

2A I 

! I 

i I 

- . ~ 

Figure 160. An IKJPARMD DSECT (Example 4) 

In this example, if the terminal user entered the above described 
command incorrectly like this: 

when (a) (list b) 

the parse service routine would prompt the terminal user with: 

ENTER OPERATOR 

The user might then respond: 

eq 

the parse service routine would then prompt with: 

INVALID EXPRESSION, (a eq) 
REENTER 

The user might respond then with: 

(a eq b) 

This sequence resulted in a syntactically correct command of: 

when (a eq b) (list b) 

The parse service routine would then build a parameter descriptor list 
(POL) and place the address of the POL into the fullword pointed to by 
the fifth word of the parse parameter list. 

The parse service routine then returns to the caller and the caller uses 
the address of the POL as a base address for the IKJPARMO OSECT. 

Command Scan and Parse -- Determining the Validity of Commands 317 



IKJPARMO 
OSEeT 

PARSE3 

OPER 

SYMBOLl 

OPERATOR 

SYM80L2 

ADDRl 

LASTONE 

Figure 161 shows the POL returned by the parse service routine. The 
symbolic addresses of the IKJP ARMO OSECT are shown to the left of the~\ 
POL at the points within the POL to which they apply. A description of the .."" 
fields within the POL is shown on the right. 

POL 

-
- X'BO' 

Pointer to a 

1 I - X'AO' 

X 'FFOOOOOO' 

0 

0 I 0 0 

-
- X'BO' 

Pointer to b 

1 I - X'AO' 

X 'FFOOOOOO , 

0 

0 J 0 0 

0 

0 I - X '00' 

0 

0 

0 I 0 0 

Pointer to LIST 

6 X'BO' 

} 
1 -

I -

I -
1 

I -

I -

I - ..., 

I -
> 

I - .-

I -

DtllCription of 
Field Contenh 

POL Header-Used only by 
IKJRLSA 

Parameter is present 

First operand 

Length, parameter is present 

No quallfien 

Na program - id 

No lengths for program - id, 
subscripts, or qualifiers 

First keyword entered 

Parameter is present 

Second operand 

Length, parameter, variable 

Na qualifien 

Na program -Id 

No lengths for program - id, 
subscripts or qualifiers 

(Addr .. - Not entered ) 

Subcommand 

Length, parameter is present 

Figure 161. The IKJPARMD DSECf and PDL (Example 4) 

318 TSO Guide to Writing a TMP or a CP 



Return Codes from the Parse Service Routine 

When it returns to the program that invoked it, the parse service routine 
provides one of the following return codes in general register 15: 

Code 
decimal 

o 
4 
8 
12 
16 
20 
24 

28 

Meaning 

Parse completed successfully. 
The command parameters were incomplete and parse was unable to prompt. 
Parse did not complete. An attention interruption occurred during parse processing. 
The parse parameter block contains invalid information. 
Parse issued a GETMAIN and no space was available. 
A validity checking routine requested termination. 
Conflicting parameters were found on the IKJTERM, HOOPER or IKJRSVWD 
macro instruction. 
Terminal has been disconnected. 

No error message is needed for return codes 4 and 20. The parse service 
routine issues a message before returning a code of 4 and the validity 
checking routine issues an error message before it requests termination. The 
GNRLFAIL routine can be invoked to issue meaningful error messages for 
the other parse return codes. See "GNRLFAIL!VSAMFAIL Routine 
(IKJEFFI9)" in this book. 

Command Scan and Parse -- Determining the Validity or ComllllUlds 319 



320 TSO Guide to Writing 8. TMP or 8 CP 



L' 

Catalog Information Routine (IKJEHCIR) 

The catalog information routine retrieves information from the system 
catalog. This information may include data set name, index name, control 
volume address, or volume ID. The information may be requested from a 
specific user catalog, or, if no catalog was specified, the system default 
catalog search is used. An entry code indicates the requested kind of 
information as follows: 

• The next level qualifiers for a name 
• All names having the same name as the high-level qualifier and the 

data set type associated with each name 
• The volume serial numbers and device types associated with a name 

The requester can also ask for combinations of the information above. 

The catalog information routine resides in SYSl.LPALIB and executes 
with the protection key of the caller. 

IKJEHCIR may be invoked in either 24- or 31-bit addressing mode. 
However, all input passed to IKJEHCIR must reside below 16 megabytes. 
IKJEHCIR executes in 24-bit addressing mode and returns control in the 
same addressing mode in which it is invoked. 

The catalog information routine parameter list (CIRPARM) is shown in 
Figure 162. 

Number of 
Bytes Field Contents or Meaning 

1 CIROPT Entry code/options used. See Figure 163. 

2 Reserved. 

1 CIRLOCRC Locate return code. 

4 CIPSRCH Address of the search argument. This search 
argument is a userid and a data set name 
which are names of catalog index levels. 

4 CIRCVOL Address of the volume ID of CVOL. If not 
given, SYSRES is assumed. 

4 CIRWA Address of the user work area. See Figure 164 
for the user work area. 

4 CIRSAVE Address of a 72-byte save area. 

4 CIRPSWD Address of an a.byte password or zero. 

Figure 162. Catalog Information Routine Parameter List (CIRPARM) 

Catalog Information Routine (lKJEHCIR) 321 



The CIROPT values and data returned are shown in Figure 163. 

Code Meaning Data Required 

X'OI' Move the data set names having one 8-byte qualifiers are 
more level of qualifier above what the moved into the 
user specified. user's work area. 

X'02' Move all data set names to the user 44-byte data set 
work area. names are moved to 

the user work area. 

X'04' Get a volume associated with a given Volume information is 
data set name. moved to the user 

work area. See 
Figure 165 for 
volume information 
format. 

X'05' Get the next level data set name and 44 - byte data set 
volume information. name and volume 

information is moved 
to the user work 
area. 

X'06' Get all level data set names and volume 44-byte data set 
information. name followed by 

volume information is 
moved to the user 
work area for a II 
levels. 

Figure 163. Data Returned from Valid CIROPT Values 

Note: For codes X'OS', and X'06' the first byte of the field will contain one 
of the following data set types: 

• V for volume 
C for cluster 
G for alternate index 
R for path 
F or FREE 
Y for upgrade 

• B for GDG base 
X for alias name 
P for page space 

322 TSO Guide to Writing a TMP or a CP 

M for master catalog 
U for user catalog 
A for non-VSAM data set 



L 
The user work area that is based on CIRWA is shown in Figure 164. 

Number of 
Bytes Field Contents or Meaning 

2 AREAlN length of work area. 

2 DATALIN length of data returned +4. 

Variable DATA The area data is stored. 

Figure 164. User Work Area for CIRPARM 

Figure 165 describes the format of the volume information. 

Number of 
Bytes Field Contents or Meaning 

2 Reserved. 

4 DEVTYP Device type. 

6 VOlSER Volume serial number. 

2 FllESEQ File sequence number. (This field is provided 
for compatibility with the OSjVS catalog, and 
is used for non-VSAM data sets that reside on 
tape volumes.) 

1 Reserved. 

Figure 165. Volume Information Format 

Return Codes from IKJEHCIR 

The IKJEHCIR return codes have the following meaning: 

Return Code 
Hexadecimal 

DO 
04 

DC 

Meaning 

Successful completion of the request. 
The LOCATE macro instruction has failed. The LOCATE return 
code will be stored in CIRLOCRC. 
Volumes were returned by LOCATE, indicating a dsname (fully 
qualified) was passed in the parameter list but options other than 
volumes were requested. The list of the volumes returned by 
LOCATE is in the work area. 

Return Codes from LOCATE 

The LOCATE return codes have the following meaning: 

Return Code 
Hexadecimal 

00 
04 

08 
18 
20 

24 
2C 
38 
3C 

Meaning 

Successful completion of the request. 
Required VSAM volume was not mounted or the specified volume 
was not open. 
The data set name qualifier was not found. 
A permanent I/O error was found when processing the catalog. 
User work area outside user region or invalid user-supplied parameter 
list. 
User catalog must be allocated and opened. 
Work area too small. 
Password verification failure. 
STEPCA T or JOBCA T not open. 

Catalog Information Routine (lKJEHCIR) 323 



324 TSO Guide to Writing a TMP or a CP 



Default Service Routine (IKJEHDEF) 

The default service routine (IKJEHDEF) constructs a fully-qualified data 
set name when the calling routine provides a partially-qualified data set 
name. A fully-qualified data set name has three fields: a userid, a data set 
name, and a descriptive qualifier. 

Use the CALL, CALLTSSR or LINK macro instruction to invoke the 
default service routine. 

IKJEHDEF may be invoked in either 24- or 31-bit addressing mode. 
However, all input passed to IKJEHDEF must reside below 16 megabytes. 
IKJEHDEF executes in 24-bit addressing mode and returns control in the 
same addressing mode in which it is invoked. 

At entry, general register 1 must point to the default parameter list 
(DFPL). IKJEHDEF then invokes the catalog information routine 
(IKJEHCIR) to search the system catalog for the required qualifiers. When 
the search argument is satisfied, the default service routine returns to the 
calling control program. All of the general registers are restored except for 
register 15 which contains the return code. 

Note: For additional information concerning the default service routine, see 
Terminal Monitor Program and Service Routines Logic. 

Default Service Routine (lKJEHDEF) 325 



316 TSO Guide to Writing a TMP or a CP 



L 
Appendix A: Notation for Defining Macro Instructions 

The notation used in this publication is described in the following 
paragraphs. 

1. The set of symbols listed below are used to define macro instructions, 
but should never be written in the actual macro instruction: 

hyphen -
underscore 
braces .. .> 
brackets [] 
ellipsis ... 

The special uses of these symbols are explained in paragraphs 4-8. 

2. Uppercase letters and words, numbers, and the set of symbols listed 
below should be written in macro instructions exactly as shown in the 
definition: 

apostrophe ' 
asterisk * 
comma. 
equal sign = 
parentheses 0 
period. 

3. Lowercase letters, words, and symbols appearing in a macro 
instruction definition represent variables for which specific 
information should be substituted in the actual macro instruction. 

Example: If name appears in a macro instruction definition, a specifiC 
value (for example, ALPHA) should be substituted for the variable in 
the actual macro instruction. 

4. Braces group related items, such as alternatives. 

Example: The representation 

ALPHA= ({~}, D) 

indicates that a choice should be made. among the items enclosed 
within the braces. If A is selected, the result is ALPHA=(A,D). If B 
is selected, the result can be either ALPHA=(,D) or ALPHA=(B,D). 

5. Brackets also group related items; however, everything within the 
brackets is optional and may be omitted. 

Example: The representation 

ALPHA·m'DI 

indicates that a choice can be made among the items enclosed within 
the brackets or that the items within the brackets can be omitted. If B 

Appendix A: Notation for Deflnllll Macro IlIStnIctlons 327 

cl· . 



is selected, the result is: ALPHA = (B,O). If no choice is made, the 
result is: ALPHA = (,0). 

6. Hyphens join lowercase letters, words, and symbols to form a single 
variable. 

Example: If member-name appears in a macro instruction definition, a 
specific value (for example, BETA) should be substituted for the 
variable in the actual macro instruction. 

7. An underscore indicates a default option. If an underscored alternative 
is selected, it need not be written in the actual macro instruction. 

Example: The representation 

indicates that either A or B or C should be selected; however, if B is 
selected, it need not be written because it is the default option. 

8. An ellipsis indicates that the preceding item or group of items can be 
repeated more than once in succession. 

328 1S0 Guide to Writing a TMP or a CP 

Example: The representation 

ALPHA [ , BETA] .•• 

indicates that ALPHA can appear alone or can be followed by ,BETA 
any number of times in succession. 



Appendix B: Using VT AM Full-Screen Mode (STFSMODE and STLINENO) 

You should use the STFSMODE and STLINENO macros if your command 
processor issues full-screen messages (TPUT macros with the FULLSCR or 
NOEDIT operands, or TPG macros). The following paragraphs discuss uses 
of STFSMODE and STLINENO and aspects of command processors 
operating in full-screen mode. 

Notes: 

1. In the following text, full-screen message refers to a TPUT 
FULLSCR, TPUT NOEDIT, or TPG depending on your environment. 
Also, non-full-screen message refers to a non-full-screen TPUT. 

2. This section describes considerations for coding programs that provide 
the functions of a full-screen editor like SPF. For example, the 
full-screen messages issued in Figures 166-169 might be primary 
menus. 

Protection of Screen Contents 
A full-screen command processor should use the STFSMODE macro to 
prevent unexpected non-full-screen messages from overlaying the screen. 
For instance, unexpected messages from the operator or from other TSO 
users could cause invalid input to be sent to the command processor. Also, 
the STFSMODE macro prevents full-screen messages from overlaying 
unexpected non-full-screen messages before the user has a chance to read 
them. 

Figure 166 illustrates what happens when a command processor, 
operating in full-screen mode, issues a full-screen message while 
non-full-screen messages are being displayed at the terminal. 

COMMAND TSONTAM TERMINAL 
PROCESSOR 

~ (1) input 
input ~(1) input ~(1) ~(1) ENTER 

non-fu II-scrn msg 1 (1)~ (1)~ non-full-scrn msg1 
non-full-scrn msg2 (2)~ (2)~ non-full-scrn msg2 

TPUT(3)~ 
(full-scrn msg1 I (3)-" *** (4)~ (41~*** 
TGET(3)~ 

ENTER ~(S) 4-(S)ENTER 
RESHOW ~(Sa) 
TPUT (6)---"-
(full-scrn msg1 I (61 ...... full-scrn msg1 (6)~ (7)---"- full-scrn msg1 
TGET(61~ 

Figure 166. Function of RESHOW Code in Full-Screen Message Processing 

Appendix B: Using VTAM Full-Screen Mode (STFSMODE and STLINENO) 329 



The following events occur in Figure 166. 

1. As soon as the user presses the ENTER key to send input to the 
command processor, TSO/VTAM clears the screen, the alarm sounds 
(if the terminal is so equipped), and TSO/VTAM then displays the 
non-full-screen message. 

2. As long as TSO/VTAM receives non-full-screen messages, it displays 
them, one after another on the screen. 

3. The command processor's normal processing of the input received 
from the terminal (see step 1) may cause it to construct a new 
full-screen message. The command processor issues a TPUT and a 
TGET. 

4. When TSO/VTAM receives the full-screen message, it displays three 
asterisks (***) at the terminal and unlocks the keyboard to ensure 
that the user has time to view the non-full-screen messages. 

S. When the user presses the ENTER key to acknowledge having seen 
the messages, TSO /VT AM: 

a. Puts a RESHOW code on the input queue to indicate to the 
command processor that the screen contents should be completely 
restored. This RESHOW code is picked up by the command 
processor's current TGET request. 

b. Discards the full-screen message constructed by the command 
processor. 

3. The command processor responds to the RESHOW code by issuing a 
full-screen message(s) to restore the screen contents and to request 
new input from the user. 

4. Finally, TSO/VTAM displays the full-screen message(s) at the 
terminal. 

UseofTGET 

To protect the screen, TSO/VTAM discards full-screen messages that 
immediately follow non-full-screen messages. Therefore the full-screen 
command processor must issue a TGET macro after every TPUT 
FULLSCR macro so that it can receive the RESHOW code. When a TGET 
is issued following a TPUT FULLSCR, VT AM unlocks the display 
keyboard. When a TGET is issued following a TPUT NOEDIT or a TPG, 
VT AM does not unlock the keyboard. Users of TPUT NOEDIT and TPG 
are responsible for all device command and write-control-character bit 
settings. 

Screen Content Restoration 
Upon receiving a RESHOW code, the full-screen command processor must 
be able to restore the complete contents of the screen-- for example, reissue 
the full-screen message. The VTAM default RESHOW code is X'6E', the 
key-code for P A2. If the command processor uses any other PF key for the 
RESHOW code, it must specify the RSHWKEY keyword on the 
STFSMODE macro when it first turns on full-screen mode. To set the 
RESHOW code, issue STFSMODE ON, RSHWKEY=n, where n is the PF 

330 TSO Guide to Writing a TMP or a CP 



key number. VT AM uses the hexadecimal representation of the specified 
PF key as the RESHOW code. 

NOEDIT Mode 
To obtain input (via a TGET macro) that is not edited in any way, specify 
the NOEDIT keyword on STFSMODE. Regardless of the options specified 
on the TGET macro, in NOEDIT mode, the data is not edited, broken into 
separate input lines, or modified. VT AM receives the input from the 
terminal and puts it on the input queue intact. To establish NOEDIT mode, 
the command processor must issue STFSMODE ON,NOEDIT=YES. (Use 
of the NOEDIT keyword has no effect on the treatment of TPUTs and 
TPGs.) 

Full-Screen Protection Responsibilities of Attention Exit 
Routines 

To maintain screen protection when the user presses the PAl or 
ATTENTION key, the command processor must have an attention exit 
routine. When the terminal user presses the PAl or ATTENTION key, 
VT AM sets FULLSCR to OFF, the RESHOW code to the default, and 
NOEDIT mode to NO. If the command processor does not have an 
attention exit and the user presses ENTER (in response to the attention 
indication), the command processor resumes execution at the point of 
interruption with these default values. If the command processor has an 
attention exit routine, the exit routine should issue the STFSMODE macro 
to reestablish full-screen mode, the desired RESHOW code, and NOEDIT 
mode. In this way, the attention exit routine maintains screen protection. 

Determining Screen Protection in Full-Screen Mode 
The first time the command processor issues the STFSMODE macro to 
establish full-screen mode, it may specify INITIAL=YES to prevent 
unnecessary protection of the screen contents. This issuance of the macro 
sets full-screen mode on and prevents the acknowledgement message from 
being sent to the terminal when the last transaction at the terminal was 
input. The INITIAL indicator is set to NO after the first full-screen 
message. 

Appendix B: Using VTAM FuU-Screen Mode (STFSMODE and STLINENO) 331 



Figure 167 illustrates a situation in which INITIAL = YES is specified on 
the STFSMODE macro and the first message issued is a full-screen 
message. 

COMMAND TSONTAM TERMINAL 
PROCESSOR 

ReADY(1)~ (1)~READY 

cmdname ~ (1) ~(1) cmdname 

STFSMODE (2) 
INITIAL=YES 
TPUT(2)-'" 
(full-scrn msg1) (2)~ full-scrn msg1 (3~ (3)~full-scrn msg1 
TGET(2)~ 

Figure 167. Function of INITIAL=YES When First Message is Full-Screen 

The following events occur in Figure 167: 

1. In response to the READY message, the user enters a command 
name, SPF for example. 

2. The command processor issues the STFSMODE macro with 
INITIAL= YES. Then, the CP sends a full-screen message the 
terminal. 

3. TSO !VT AM sends the message without warning because 
INITIAL = YES has been specified and because its previous 
interaction with the terminal involved input, not output. There is 
nothing to protect. 

332 TSO Guide to Writing a TMP or a CP 



() 

If the command processor specifies INITIAL = YES on the STFMODE 
macro, and the first message is a non-full-screen message, VTAM ignores 
the keyword and protects the screen contents. Figure 168 illustrates this 
situation. 

COMMAND TSONTAM TERMINAL 
PROCESSOR 

READY(l)~ (l)--.READY 
cmdname~(l) ~(1) cmdname 

STFSMODE (2) 
INITIAL=YES 

non-full-scrn msgl (3)--' (3)--'non-full-scrn msg1 

TPUT(4)--. 
(full-scrn msgl) (4)~ *** (5)~ (5)~*** 

TGET(4)~ 

ENTER .._.._(6) .._.._(6) ENTER 
RESHOW 4-(6a) 
TPUT(7)~ 

(full-scrn msg1) 17 ......... full-scrn msgl (7)--. (8)~full-scrn msgl 
TGET(7)~ 

Figure 168. Function of INITIAL=YES When First Message is Non-Full-Screen 

The following events occur in Figure 168: 

1. In response to the READY message, the user enters a command 
name. 

2. The command processor issues the STFSMODE macro with 
INITIAL= YES. 

3. TSO/VTAM displays a non-full-screen message" an operator warning 
.for example, which effectively overrides the INITIAL = YES keyword. 

4. The command processor sends a full-screen message to the terminal. 

s. TSO/VTAM protects the screen contents. 

6. When the user presses the ENTER key to acknowledge having seen 
the messages, TSO/VTAM: 

a. Puts a RESHOW code on the input queue to indicate to the 
command processor that the screen contents should be completely 
restored. This RESHOW code is picked up by the command 
processor's current TGET request. 

b. Discards the full-screen message constructed by the command 
processor because the screen contents are completely restored. 

7. The command processor responds to the RESHOW code by issuing a 
full-screen message(s) to restore the screen contents and to request 
new input from the user. 

8. Finally, TSO/VTAM displays the full-screen message(s) at the 
terminal. 

Appendix B: Using VTAM Full-Screen Mode (STFSMODE and STLINENO) 333 



When INITIAL=NO is specified, or allowed to default, no full-screen 
messages are displayed without warning. Figure 169 illustrates an example 
of this situation. 

COMMAND TSONTAM TERMINAL 
PROCESSOR 

READY(1)~ (1)-+oREADY 
cmdname ~(1) ~(1) cmdname 

STFSMODE (2) 
INITIAL=NO 
TPUT(2)~ 

(full·scrn msg1) (2)~ ···(3)~ (3)--... .. • 
TGET(2)~ 

ENTER .--(4) ~(4)ENTER 

RESHOW.--(4a) 
TPUT(5)~ 

(full-scrn msg1) (5)~ full-scrn msg1 (5)~ (S)--...full-scrn msg1 
TGET(5)~ 

Figure 169. Function of INITlAL=NO 

The following events occur in Figure 169: 

1. In response to the READY message, the user enters a command 
name. 

2. The command processor issues the STFSMODE macro with 
INITIAL=NO. Then, the CP sends a full-screen message to the 
terminal. 

3. TSO/VTAM protects the screen contents. 

4. When the user presses the ENTER key to acknowledge having seen 
the messages, TSO/VTAM: 

a. Puts a RESHOW code on the input queue to indicate to the 
command processor that the screen contents should be completely 
restored. This RESHOW code is picked up by the command 
processor's current TGET request. 

b. Discards the full-screen message constructed by the command 
processor because the screen contents are completely restored. 

5. The command processor responds to the RESHOW code by issuirig a 
full-screen message(s) to restore the screen contents and to request 
new input from the user. 

6. Finally, TSO/VTAM displays the full-screen message(s) at the 
terminal. 

334 TSO Guide to Writing a TMP or a CP 



Exiting and Reentering Full-Screen Mode 
If the command processor issues non-full-screen messages (or invokes 
routines that issue non-full-screen messages), it may issue the STLINENO 
macro to set full-screen mode off, and to set the line number for the next 
non-full-screen message. In so doing, the command processor eliminates the 
screen protection function and determines where the next non-full-screen 
message will appear. If the line number is set to 1, VT AM clears the 
screen. When the command processor issues the last non-full-screen 
message (or when the invoked routine returns control to the command 
processor), the command processor should issue STFSMODE ON to 
reestablish full-screen mode. This STFSMODE macro should be issued 
before the next full-screen message macro is issued. 

If the command processor exits full-screen mode, expecting to reenter 
full-screen mode at a later time before termination, STLINENO should be 
used to set full-screen mode off. (Use of STFSMODE to set the mode off 
results in the RESHOW code being set to the default.) After a TGET 
request, issue STLINENO LINE=n where n is the desired line number. 
When all non-full-screen messages are completed, issue STFSMODE ON 
before issuing the next full-screen message macro. 

You may want either to clear part of the screen before issuing 
STLINENO, or to display information that is to remain on the screen after 
the STLINENO macro is issued. In either case, issue a full-screen message 
macro (including the HOLD option) before issuing the STLINENO. The 
HOLD option guarantees that the full-screen message reaches the terminal 
before the STLINENO macro takes effect. 

Since VT AM clears the screen when the line number is set to 1, 
STLINENO LINE= 1 is an efficient way for the command processor to 
clear the screen. Use of a full-screen message macro (including the HOLD 
option) to clear the screen reduces performance because it causes a 
swap-out of the address space to wait for the I/O to complete. 

Full-Screen Command Processor Termination 
When the full-screen command processor terminates, it must issue 
STFSMODE OFF to exit full-screen mode. This resets the RESHOW code 
and NOEDIT mode values to the defaults. The following termination 
procedure is recommended: 

When a TGET request is satisfied with data that causes the command 
processor to begin exit processing, issue the following: 

• STLINENO LINE=l (causes VTAM to clear the screen) 
• STFSMODE=OFF (resets the RESHOW code and NOEDIT mode to 

the defaults) 
• non-full-screen TPUTS (optional-- perhaps to provide session 

summary information) 

If the command processor issues a TPUT or TPG macro before (or 
instead of) issuing the STLINENO macro, it should be issued with the 
HOLD option to guarantee that the message reaches the terminal before 
full-screen mode is set off. If the macro is also a full-screen message, a 
TCLEARQ INPUT should be issued just before termination to clear the 

Appendix B: Using VT AM FilII-Screen Mode (STFSMODE and STLiNENO) 335 



RESHOW code, which may have been put on the input queue by the 
screen protection function. 

Use 0/ TERMINAL BREAK 

When a command processor establishes full-screen mode, VT AM treats all 
devices as if the terminal user had entered the TERMINAL NOBREAK 
command. If the user specifies TERMINAL BREAK before a full-screen 
command processor is invoked, VT AM supports the BREAK mode 
whenever the command processor exits from full-screen mode. 

336 TSO Guide to Writing a TMP or a CP 



(J' 

A 
ABEND 

completion code 23 
EST AE/EST AI relationships 9 
interception 8 
interception of a subtask 9 
interception of a TMP task 10 
options after 10 
types of 8 

abnormal termination 
of subtasks 8 
of terminal monitor program 10 
responding to 3 

abnormally terminating subcommand processors 22 
absolute address parameter, definition 235 
adding commands to TSO 17 
address parameter 

absolute 235 
definitions 235 
expression 236 
floating-point register 235 
forms of the address parameter 235 
general register 235 
in the cOlllmand processor parameter list 39 
indirect 236 
of' the format-only line 150 
of the GETLINE input buffer 125 
qualified 235 
relative 235 
required for the Input/Output Parameter List 98 
symbolic 235 

addressing mode 
changing 30 
of the invoking program 30 
setting via BASSM or BSM 39 
24-bit 30,40 
31-bit 30,40 

allocate 
data set 

by DDNAME 74 
by DSNAME 65 
SYSOUT 80 
to the terminal 73 

allocating 
data sets after LOGON 59 
dynamically (during program execution) 59 

AMODE=ANY, RMODE=24 30 
AMODE=24, RMODE=24 30 
AMODE=31 30 
Appendix A 327 
Appendix B 329 
asterisk in place of positional parameter 243 
ATTACH macro instruction 3,8 
attention exit handling routines 11,14,51 

address of 12 
command processor use of 23 
parameters received by 12,55 
registers at entry 12 
scheduling 2,50 
specifying 50 

attention exit parameter list (AEPL) 14 
attention interruption 

exit routines II 
parameters received 12 

processing 11 
responding to 4 
ST AX service routine 49 

attribute control block for DAIR 84 
attributes and linkage conventions, determining 29,31 

B 
balanced parentheses (PSTRING) 237 
basic functions of 

command processors 2 
GETLINE 2 
PUTGET 2 
PUTLINE 2 
STACK 2 
terminal monitor program (TMP) 2 
TGET 2 
TPG 2 
TPUT 2 

BLKSIZE in data control block 94 
BSAM 

length of text line 94 
using for terminal I/O 91 

BSAM macro instructions, list of 92 
buffer 

address in register 198 
GETLINE input 125 
length in register 198 
PUTGET input 171 

buffering techniques 94 
building 

C 

a second level informational chain 151 
the GETLINE parameter block (GTPB) 123 
the list source descriptor (LSD) 112 
the PUTGET parameter block (PGPB) 164 
the PUTLINE parameter block (PTPB) 137 
the STACK parameter block (STPB) 107 

CALL TSSR macro instruction 40 
catalog information routine (IKJEHCIR) 19,321 

parameter list (CIRPARM) 321 
chaining second level messages 151 
changing addressing mode 

branching without 35 
for certain processing 30 
via BASSM or 8SM 34 

character, string dcfinition 234 
characters 

separator 228 
types recognized by command scan and parse 228 

CHECK macro instruction 94 
checking 

syntax of command operands 230 
validity of command operands 301 

coding examples 
GETLINE macro 127 
parse macro 306 
PUTGET macro 174 
PUTGET multi-level prompt 174 
PUTLINE macro 142 

Index 

Index 337 



second level informational chaining 152 
STACK specifying an in-storage list as the input source 114 
STACK specifying the terminal as the input source 100 
STAX 57 
text insertion 149 
TGET macro 196 
TPUT macro 196 

coding guidelines for command processors 18 
combining the LIST and RANGE options 295 
command 

adding 17 
information about (HELP) 25 
req ucsting 7 

cOlllmand library 
adding a new member 17 
concatenating a new data set 17 

command name 
checking syntax 3 
determining validity of 223 
entering after ABEND 10 
syntax validity 3,223 

command nal11e syntax [or user-written commands 224 
cOl11mand operand 

checking syntax 230 
dclaull \Calues 300 
validity chccking 30 J 

command parameter 
delimiter-dependent parameters 233 
positional parameters 233 
syntax 233 

command processor parameter list (CPPL) 3X 
command processors 17 

ABEND return codc 23 
adding to SYS I.CMDLlB 17 
allocating and freeing data sets 21,59 
attention exit routines 23 
basic functions of 2 
coding guidelines 18 
completion code 23 
data set information 20 
definition of 17 
detaching 8 
error routines 18 
functions that rely on exit routine support 22 
intercepting ABENDS 22 
parameter list (CPPL) 38 
relationship to the rest of TSO 17 
requests for subcommands 22 
reset input stack after an attention interruption 24 
using TSO service routines 18 
\alidity checking exits 21 

command scan 
command processor use of 2 I 
control blocks 225 
entry point 223 
flags passed to 226 
operation of 224,227 
output area 226 
parameter list 225 
results of 229 
return codes 229 
service routine 3,224 
used by the terminal monitor program 15 

command scan and parse service routines 223 
character types recognized 228 
sequence of operations 224 

command scan output area (CSOA) 226 
command scan output area and command buffer settings 229 

338 OS/VS2 TSO Guide to Writing a TMP or CP 

command scan parameter list (CSPL) 226 
command syntax defining 245 
communicating with the user at the terminal 2 
concatenating 

command libraries 17 
data sets 69 
DDNAMES 69 
HELP data sets 25 

CONSTANT parameter type 234,239 
control blocks 

passed between the terminal monitor program and I/O 
service routines 99 

required by command scan service routine 225 
required by dynamic allocation interface routine (DAIR) 60 
required by PUTGET service routine 169,173 
used by GETLINE service routine 126 

control flags in the GET LINE parameter block 124 
control program interfaces 

IBM-supplied CPs and the TMP 31 
user-written TMPs and CPs 31 

conversational messages (PUTGET) 154 
current source of input 100 

o 
DAIR (dynamic allocation interface routine) 4,59 

command processor use of 20 
control blocks 60 
definition 59 
drawbacks to using 20 
entry codes 62 
entry point 59 
functions provided by 62 
IKJDAIR entry point 59 
IKJDAIR load module 59 
indicating requested function to 62 
return codes X6 
terminal monitor program use of 6 

DAIR attribute control block (DAIRACB) 84 
DAIR parameter block (DAPB) 61 

code X'OC' 69 
code X'OO' 62 
code X'04' 63 
code X'08' 65 
code X'IC' 74 
code X'IO' 69 
code X'14' 70 
code X'I8' 71 
code X'2C' 79 
code X'24' 74 
code X'28' 78 
code X'30' 80 
code X'34' 83 
description of 61 

DAIR parameter blocks 62 
DAIR parameter list (DAPL) 61 
DAIRFAIL routine (lKJEFFI8) 88 
data definition (DD) statement 5,95. 

in LOGON PROC 5 
modifying 95 

data lines, definition 139 
data name 240 
data name qualifier 241 
data output 

multiline 141 



L 
single line 139 

data set 
allocation 59 

by DDNAME 74 
by DSNAME 65 
to the terminal 73 

concatenating 69 
deconcatenating 69 
freeing 71 
marking allocatable 79 
marking not in use 79 
name, finding 62 
processing 59 
qualifiers 70 
SYSOUT, allocation of 80 

data set name, searching for 62 
DDNAME, allocation by 74 
deconcatenating data sets 69 
default service routine (IKJEHDEF) 19,325 
DEFER operand of ST AX macro I I 
defining command syntax 245 
delete 

clements from the input stack 100,104 
proccdure clement from the input stack 104 
second level mcssages 20,45 

delimiter 
definition 234 
dependent parameters 233 

detaching a command processor X 
determining the validity of commands 223 
diagnostic error message 23 
DSECT= 246 
DSNAME 

allocation by 65 
definition 238 
formats 238 
parameter missing 238 

DSTHING, definition 239 
dynamic allocation 4,59 

return codes X7 
dynamic allocation of data sets 4 

E 
ECB, STOP/MODIFY 15 
ECTMSGF bit, use of 45 
element 

input stack 
adding 100,104 
coding 107 
deleting 100,104 

end-or-data (EOD) processing (GETLlNE) 123 
end-or-file (EOF) processing 94 
entering positional parameters 

as a list 243 
as 'a range 243 

entry codes to DAIR 62 
entryname, syntax of 236 
EODAD exit 94 
error messages 23 
EST AE macro instruction 3,10 
EST AE retry routines 23 
EST AE/EST AI exit routine guidelines 23 
ESTAI operand of ATTACH macro 22 
event control block, STOP/MODIFY 15 

examples 
buffer address in register 198 
buffer length in register 198 
GETLINE macro 127 
IKJPARMD DSECT 246 
message identifier stripping (PUTLlNE) 147 
PDE formats affected by LIST and RANGE options 294 
PDL returned by parse service routine 309 
register format 199 
STACK macro 111 
text insertion (PUTLlNE) 148 
TGET macro 197,199 
TPUT macro 197,198 
using the parse service routine 306 

EXEC statement of LOGON procedures 
execute form of 1/0 service routine macro, definition of 97 
exit, EODAD 94 
exiting full-screen mode 335 
expression 241 

address 236 
expression value, syntax of 236 
extended address, absolute 235 
extended format PCE 

bit indication of 
IKJIDENT 269 
IKJOPER 261 
IKJPOSIT 25 I 
IKJTERM 256 

validity checking address field 
IKJIDENT 271 
IKJOPER 262 
IKJPOSIT 252 
IKJTERM 257 

extended mode 235 
EXTENDED operand of IKJPOSIT, effect on address 

expression 236 
EXTRACT macro 15 

F 
figurative constant 240 
finding data set name 62 
finding data set qualifiers 70 
fixed record format 94 
fixed-point numeric literal 239 
flag fields in TGET /TPUT /TPG parameter formats 192 
flags passed to command scan 226 
floating-point numeric literal 240 
floating-point register address, syntax of 235 
format 

of HELP members 25 
only function 150 
PCE built by 

IKJENDP 277 
IKJIDENT 269 
IKJKEYWD 272 
IKJNAME 274 
IKJOPER 261 
IKJPARM 246 
IKJPOSIT 250 
IKJRSVWD 264 
IKJSUBF 276 
IKJTERM 256 

PUTGET input buffer 171 
records 94 

Index 339 



formatting 
HELP data set 25 
output line 146 
TG ET registers i 92 
TPUT registers 191 

forward chain pointers 141 
freeing 

a data set 71 
GETLINE buffers 19 
GETLINE input buffer 125 
PUTLINE buffer 20,172 

full-screen 
command processor 329 
command processor termination 335 
editor 329 
message 329 
mode 329 
protection responsibilities of attention exits 331 

full-screen mode 
determining screen protection 331 
exiling 335 
reentering 335 
wilh the STFSMODE maero instruction 213 
wilh the STLIN ENO macro instruction 215 

function 
formal only (PUTLlNE) 150 
of INITIAL=NO 334 
of INITIAL=YES 

when first message is full-screen 332 
when firsl message is non-full-screen 333 

of RESHOW code 329 
text insertion (PUTLlNE) 147 

functions 

G 

hasic 
command processors 2 
GETLINE 2 
PUTGET 2 
PUTLINE 2 
STACK 2 
terminal monitor program 2 
TGET 2 
TPG 2 
TPUT 2 

gaining control after a TMP task ABEND 10 
general registers 235 
GET macro 93 
GETLINE buffer, freeing 19 
GETLINE macro 

basic functions 2 
coding example 127 
command processor use of 19 
control blocks used by 126 
definition 2 
end-of-data (EOD) processing 122 
execute form 119 
input buffer 125 
list form 117 
logical line processing 122 
macro instruction description 117,119 
operands 117,119 
parameter block 123 
return codes 129 
returned record, identifying source of 122 
sources of inpu t 122 

340 OS/VS2 TSO Guide to Writing a TMP or CP 

GETLINE parameter block (GTPB) 123 
initializing 117 

GNRLFAIL/VSAMFAIL routine (IKJEFFI9) H9 
GTPB, GETLINE parameter bloek 123 
GTSIZE 

return codes 202 
using 202 

GTTERM macro instruction 202 

H 
HELP 

data set 24 
formatting HELP 25 
private HELP data sets 25 

identification (USERID), format of 237 
identifying the source of a record returned by GETLIN E 122 
IKJCPPL 37,40 
IKJCSOA 37,226 
IKJCSPL 37,226 
IKJDAIR 40,59 
IKJDAPL 37 
IKJDAPOC 37 
IKJDAPOO 37 
IKJDAP04 37 
IKJDAP08 37 
IKJDAPIC 37 
IKJDAPIO 37 
IKJDAPI4 37 
IKJDAPI8 37 
IKJDAP2C 37 
IKJDAP24 37 
IKJDAP28 37 
IKJDAP30 37 
IKJDAP34 37 
IKJDFPB 37 
IKJDFPL 37 
IKJECT 37,9H 
IKJEFFDF 37 
IKJEFFGF 37 
IKJEFFMT 33,37,47 
IKJEFF02 (TSO message issuer) 40,45 
IKJEFFl8 (DAIRFAIL) 88 
IKJEFFl9 (GNRLFAIL/VSAMFAIL) 89 
IKJEHCIR 40 
IKJENDP 277 
IKJGTPB 37 
IKJlDENT 265 
IKJIOPL 37 
IKJKEYWD 271 
IKJLSD 37 
IKJNAME 272 
IKJOPER 232,25H 
IKJPARM 246 
IKJPARMD 246 
IKJPARS 40,230,278 
IKJPGPB 37 
IKJPOSIT 247 
IKJPPL 37,231,279 
IKJPSCB 37 
IKJPTGT 99 



IKJPTPB 37,98 
IKJRLSA 277 
IKJRSVWD 262 
IKJSCAN 40,224 
IKJSTPB 37,98 
IKJSTPL 37 
IKJSUBF 276 
IKJTAIE 37 
IKJTAXE 37 
IKJTERM 232,252 
IKJTMPWA 37 
IKJUPT 37 
indirect address parameter 236 
indirection symbol 236 
informational 

chain 15 I 
multilevel message 143 
second level message 143 

inhibit prompting 167 
initialization of the terminal monitor program 6 
initializing 

GETLINE parameter block 117 
input/output parameter block 98 
PUTGET parameter block 164 
PUTLINE parameter block 137 
STACK parameter block 107 
ST AX parameter list 55 

input burrer 
GETLINE 125 
PUTGET 171 

input line format 125,171 
input output parameter list (IOPL) 97 
input source 

changing 100 
effect on message processing 44 
GETLINE 122 
STACK 100 

input to BSAM/QSAM macro instructions 91 
input wait after prompt 171 
inserting keywords into a parameter string 302 
insertion of default values 300 
in-storage list 

adding an element 100,105 
as input source 107 
coding example 114 

intercepting 
ABEND 8 
subtask ABEND 9 
TMP task ABEND 10 

interface considerations 
general for 31-bit addressing 29 
specific for 31-bit addressing 31 

interfaces 
. determining 29.1l 

overall 29.31 
interruption handling. attention 11 
I/O macro. uses of 100 
I/O parameter blocks, modifying 98 
I/O parameter list 98 

building with GETLINE 126 
I/O service routine macro instructions 

GETLINE 117 
PUTGET 154 
PUTLINE 129 
STACK 100 

I/O service routines 97 
control blocks passed to 38 
execute form of macros 97 

list form of macros 97 
load module 99 
macro instructions 100 
parameter block. address of 98 
passing control to 99 
processing terminalI/O 97 
using 97 

issuing second level messages 303 

J 
job control language (JCL) 95 
jobname parameter 239 

K 
keyword 

insertion 302 

L 

parameter descriptor entry (PDE) 300 
parameters for parse 244,300 
subfields 244.276 

length of text line processed by BSAM 94 
levels of indirect addressing 236 
levels of messages 43.143 

multiple 143 
single 143 

line format. input 125.171 
line number. statement number parameter 241 
line size, terminal 94 
LINK macro instruction 31,39 
linkage conventions, determining 29 
linkage decisions. making 29 
list element 

in-storage 
adding to input stack 100.107 

list forms of macro instructions. definitions 97 
LIST option of parse 243 
list source descriptor (LSD) 112 
listing the keyword parameter names 245 
load modules 

IKJDAIR 59 
IKJPTGT 99 

locate mode of GET. PUT. PUTX macros 93 
locating mila set name 62 
logical·lbte processing 117 
log,>n cataloged procedure 5 

. EXEC statement 1 
LOGON/LOGOFF scheduler 6 
LRECL in DCB 94 
LSD (list source dcscriptor) 112 

M 
macro instruction 

I/O 
definition 97.100 

macro instructions 
ATTACH 8 
BSAM 92 

Index 341 



CALLTSSR 40 
CHECK 94 
downward incompatible 29 
ESTAE 10 
EXTRACT 15 
FESTAE 10 
generating the desired level 29 
GET 93 
GETLINE 2.117.119 
IKJENDP 277 
IKJIDENT 265 
IKJKEYWD 271 
IKJNAME 273 
IKJOPER 258 
IKJPARM 246 
IKJPOSIT 247 
IKJRLSA 277 
IKJRSVWD 263 
IKJSUBF 276 
IKJTERM 252 
LINK 39 
LOAD 39 
PUT 93 
PUTGIT 2.155 
PUTUNI 2.129 
PUTX 93 
QSAM 92 
READ 93 
STACK 2.100 
STAX 49 
TGET 2.1~5 

TPG 2 
TPUT 2.198 
TSEVENT 8 
WRITE 93 

macro interfaces (see also MVS/Extended Architecture 
Considerations) 

ATTACH 33 
CALL 33 
CALLTSSR 33,40 
ESTAE 22.33 
FESTAE 22.33 
GETLINE 33 
IKJTSMSG 33 
LINK 33 
LOAD 33 
parse macros 33 
PUTGET 33 
PUTLINE 33 
SAM macros 33 
STACK 33 
STAE 22,33 
STAX 34 
terminal control macros 34 
TGET 34 
TPG 34 
TPUT 34 

macro notation 327 
marking data sets not in use 79 
member name, syntax of 238 
message handling 43 

effects of the input source on message processing 44 
message levels 43 

message issuer routine (IKJEFF02) 20,45 
message lines output 143 
messages 

building PUTLINE text insertion 147 

342 OS/VS2 TSO Guide to Writing a TMP or CP 

chaining 151 
classes, definition 43 
conversational 154 
error 23 
formatting 97,150 
handling 43 
ID stripping 146 
identifier, definition 146 
levels 43 
line processing 143 

additional for PUTLINE 146 
lines 143 
mode (definition) 43,154 
mode message processing for PUTGET 44 
multilevel 

definition 143.167 
writing 141 

passing to PUTGET 167 
passing to PUTLINE 144 
prompt 154 
second-level 303 
single level 143 
stripping identifiers 146 
without message identifiers (restriction) 146.155 

methods of constructing an IOPL 98 
missing DSNAME 238 
missing operands 304 
missing positional parameters 233 
mode messages, definition 43.170 
modifying DD statements 95 
modulename, syntax of 236 
move mode 93 
multilevel messages, definition 143,167 
multiline data output 141 
multiple lines of output BSAM/QSAM 94 
MVS/Extended Architecture Considerations 29 

addressing mode 29 
changing 30 
of the invoking program 30 
24-bit 30,40 
31-bit 30,40 

AMODE=ANY. RMODE=24 30 
AMODE=24, RMODE=24 30 
AMODE=31 30 
attributes and linkage conventions 

determining 29,31 
changing 

addressing mode 30,34,35 
control program interfaces 

IBM-supplied CPs and the TMP 31,38 
user-written TMPs and CPs 31 

extended addressing, taking advantage of 29 
guidelines for making 

general linkage decisions 29 
specific linkage decisions 31 

input residency 
above 16 megabytes 30,32 
below 16 megabytes 30,31,33 
STAX 52 

interface considerations 
general 29 
specific 31 

interfaces 
determining 29,31 
individual 29,31 

LINK macro instruction, to invoke service routines 31 



linkage conventions 
determining 29,31 

linkage decisions, making 29 
macro instructions 

downward incompatible 29 
generating the desired level 29 

macro intcrf'aces 
ATTACH 33 
CALL 33 
CALLTSSR 33 
ESTAE 33 
FESTAE 33 
GETLINE 33 
IKJTSMSG 33 
LINK 33 
LOAD 33 
parse macros 33 
PUTGET 33 
PUTLINE 33 
quick reference table 33 
SAM macros 33 
STACK 33 
STAE 33 
STAX 34 
terminal control macros 34 
TGET 34 
TPG 34 
TPUT 34 
XCTL 34 

program residency 30 
receive control 

in 24-bit addressing mode 30 
in 31-bit addressing mode 30 

residency 
input 30 
program 29 
requirements 30 

restrictions 
on executing exclusively in 31-bit mode 30 
on invoking programs with 24-bit dependencies 3 I 
on passing an output line descriptor to IKJEFF02 35 

RMODE=ANY, AMODE=31 30 
RMODE=24 

AMODE=ANY 30 
AMODE=24 30 
AMODE=31 30 

running programs 
in 370-XA mode 30 
on an MVS/XA system 29 
on an MVS/370 system 29 

service routine interfaces 
catalog information routine (IKJEHCIR) 32 
command scan service routine (IKJSCAN) 31 
DAIRFAIL (IKJEFFI8) 31 
data type processor (IKJEBEPS) 31 
default service routine (IKJEHDEF) 32 
dynamic allocation interface (IKJDAIR) 32 
GETLINE service routine (IKJGETL) 31 
GNRLFAIL/VSAMFAIL (IKJEFFI9) 31 
parse service routine (IKJPARS) 31 
PUTGET service routine (IKJPTGT) 31 
PUTLINE service routine (IKJPUTL) 31 
STA interface routine (lKJEHSIR) 31 
ST ACK service routine (IKJSTCK) 31 
STAX 32 
TSO message issuer routine (IKJEFF02) 31 

specific interfaces and functions 31 
31-bit addressing, general interface considerations 29 

N 
name 

qualified 238 
unqualified 238 

naming the PDL (DSECT=) 246,280 
no message identifiers on second level messages 146,151 
no output line (PTBYPS) 156 
NOEDIT mode 331 
non-delimiter dependent positional parameters 242 
non-full-screen messages 329 
non-numeric literal 240 
NOPAUSE processing of an in-storage list 44 
notation for defining macro instructions 327 
null line entered 

after ABEND 10 
in response to a prompting message 304 

null PSTRING, definition 237 
null quoted string (QSTRING) definition 239 
null string, definition 234 
number of bytes moved by TGET (buffer size) 186 

o 
OLD (Output Line Descriptor) 130,144 
operand 

descriptions (HELP) 26 
in an expression 241 
missing 304 

operation of command scan service routine 227 
operator, expression parameter 241 
output, multiline data 143 
OUTPUT=O (for GET function of PUTGET only) 160 
output line descriptor (OLD) 130,144 

PUTGET 167 
PUTLINE 144 

output line formats for PUTGET 167 
output message 

.p 

building 146 
no response required 129 
response required 154 
with the PUTLINE macro instruction 129 
with the WRITE macro instruction 93 

parameter block 
GET LINE (GTPB) 123 
PUTGET (PGPB) 164 
PUTLINE (PTPB) 137 
STACK (STPB) 107 

parameter control entry (PCE) 245 
built by 

IKJENDP 277 
IKJlDENT 269 
IKJKEYWD 272 
IKJNAME 274 
IKJOPER 261 
IKJPARM 246 
IKJPOSIT 250 
IKJRSVWD 264 

Index 343 



IKJSUBF 276 
IKJTERM 256 

releasing storage allocated by parse 277 
parameter control list (PCE), beginning the 246 
parameter control list (PCL) 245 

example 306 
parameter descriptor entries (PDE) 246,279 

combining list and range options 295 
description 279 
keyword parameters 300 
list option 294 
positional parameters 280 
range option 295 

parameter descriptor list (PDL) 280 
beginning the 246 

parameter formats, TGET/TPUT/TPG 191 
parameter list 

attention exit parameter list (AEPL) 14 
catalog information routine parameter list (CIRPARM) 321 
command processor parameter list (CPPL) 38 
command scan parameter list (CSPL) 226 
DAIR parameter list (DAPL) 61 
expansion 

execute form of TPG 194 
execute form of TPUT 193 
format for IKJEFF02 45 
list form of GTTERM 203 
list form of TPG 194,195 
list form of TPUT 193 
standard, list, execute forms of TGET 195 

input/ output parameter list (IOPL) 98 
parameter description list (PDL) 280 
parse parameter list (PPL) 279 
STAX parameter list (STPL) 55 
structure required by command scan 225 

parameter string, inserting keywords into 302 
parameter syntax, command 233 
parameters 

address, forms of 235 
passed to attention handling routines 12 
passed to command processors 8 
received by attention handling routines 12 

parenthesized string (PSTRING) format of 237 
PARM field of LOGON EXEC statement 6 
parse macro instructions 

coding examples 306 
combining LIST and RANGE options 295 
description 245 
IKJENDP 277 
IKJIDENT 265 
IKJKEYWD 271 
IKJNAME 273 
IKJOPER 258 
IKJPARM 246 
1KJPOSIT 247 
IKJRLSA 277 
IKJRSVWD 263 
IKJSUBF 276 
IKJTERM 252 
LIST option 293 
order of ,coding for positional parameters 247 
RANGEoption 294 

parse service routine (IKJPARS) 223 
character types recognized 228 
command processor use of 21 ,230 
description 223 
entry point 223 
examples of use 23 1,306 

344 OS/VS2 TSO Guide to Writing a TMP or CP 

insertion of default values 300 
insertion of keywords 302 
issuing second level messages 303 
macro instruction description 245 
parameter description list, example 306 
parse parameter list (PPL) 279 
passing control to 278 
passing control to a validity checking routine 301 
positional parameters 233 

passing control 
to command processors 7 
to commands and subcommands 3 
to I/O service routines 99 
to parse service routine 278 
to the TSO service routines 39 
to validity checking routine 301 

passing message lines 
to PUTGET 167 
to PUTLINE 144 

passing parameters to an attention exit 52 
password 238 
PAUSE processing 44,171 
PDE (parameter descriptor entry) 

combining LIST and RANGE options 295 
effect of LIST and RANGE options on format 293 
format (general) 279 
types 

ADDRESS 283 
CONSTANT 288 
EXPRESSION 292 
expression value parameter 285 
IKJIDENT 292 
JOBNAME 283 
KEYWORD 300 
non-delimiter dependent parameter 292 
positional parameter 280 
RESERVED WORD 291 
STATEMENT NUMBER 289 
STRING, PSTRING, or a QSTRING 280 
UID2PSWD 287 
USERID 286 
VALUE 281 
VARIABLE 290 

PDE (parameter descriptor entry), types, DSNAME or 
DSTHING 281 

PDL 
header 280 
naming (DSECT =) 280 

perform a list of DAIR operations 78 
physical line processing 122 
pointer 

forward chain 141 
to the formatted line (PUTLINE) 150 
to the I/O service routine parameter block 98 

positional parameters 233 
asterisk in place of 239 
entered as lists or ranges 243,293 
missing 233 
not dependent upon delimiters 242 
order of coding parse macros 247 

PPMODE 8 
primary text segment, offset of 147,148 
print inhibit (PTBYPS) 156,160 
private HELP data set 25 
processing 

a source in-storage list 44 



L )-
'-' 

attention interruptions 10 
HELP data sets 25 
modes 94,154 
physical line 122 
STOP commands IS 

PROFILE command 44,146,171 
program-id 

statement number parameter 241 
variable parameter 240 

prompt message 
processing 17 I 
second level 303 

prompting 
for missing operands 303 
inhibiting 167 
input wait after (71 
messages 43 
responses 304 
return codes 319 
scanning the input buffer 224 
translation to upper case 300 
types of command parameters recognized 233 
user at the terminal 303 
using the parse service routine, examples 306 

protection of screen contents 329 
PSTRING, syntax of 237 
PSW, at time of abnormal termination 10 
purging the second level message chain 151 
PUT macro instruction 93 
PUTGET buffer, freeing 20,172 
PUTGET macro instruction 

coding example 174 
format 155,159 
OUTPUT=O 155,170 

PUTGET parameter block 164 
initializing 164 

PUTGET service routine 154 
codingexample 174 
command processor use of 20 
control blocks 169,173 
description 154 
input buffer format 171 
input line format 17 I 
macro instruction 

execute form 159 
list form ISS 

mode message processing 170 
no output line 170 
operands 155,159 
output line descriptor (OLD) 167 
output line formats 167 
parameter block (PGPB) 164 
passing message lines to 167 
PAUSE processing 171 
processing of second level messages 43 
prompt message processing 171 
providing the GET (ATTN) function only 156 
question mark processing 17 I 
return codes 177 
sources of input 154,170 
text insertion 167 
TGET options (TERMGET) 15S,163 
TPUT options (TERMPUT) 156,161 
types of output line descriptor 167 

PUTLINE functions for message lines 143 
PUTUNE macro instruction 

coding example 140 
format of 129 

PUTLINE parameter block 138 
initializing 137 

PUTLINE service routine 129 
building a second-level informational chain lSI 
coding examples of 149 
command processor use of 20 
control blocks 145 
control flags 138 
description 129 
format only function 150 
macro instruction 

execute form 133 
list form 130 

message line processing 146 
message processing control blocks 145 
operands 129,130 
output line descriptor (OLD) 144 
output lines, format 139 
parameter block 138 
passing message lines to 144 
processing of second level messages 43,143 
PUTLINE parameter block (PTPB) 137 
return codes 154 
stripping message identifiers 146 
text insertion function 147 
TPUT (TERMPUT) options 13 I 
types and formats of output lines 139 

PUTX macro instruction 93 

Q 

QSAM 
macro instructions 92 
using for terminal I/O 91 

QSTRING definition 239 
qualification, variable parameter 241 
qualified address parameter 235 
qualifier, data name 241 
question mark 

entered after ABEND 10 
processing 97,170 

quoted string (QSTRING) syntax of 239 

R 
range, use of (general) 243 
range option,how to use 294 
READ macro instruction 93 
Read Partitioned Query Structured field 185 
reading a record from the terminal (the READ macro) 93 
receive control 

in 24-bit addressing mode 30 
in 31-bit addressing mode 30 

record formats supported under TSO 94 
record returned by GETLlNE, identifying the source of 122 
reentering full-screen mode 335 
register 

changing contents 5 
floating-point 235 
general 235 
when TMP is attached 6 

relative address parameter 235 
requesting a command 7 
reserved word 242 

Index 345 



, 

RESHOW code • 
default for VT AM 330 
in full-screen message processing 330 

residency 
input 

above 16 megabytes 30,32 
below 16 megabytes 30,31,33 

program 30 
requirements 30 

responding to 
abnormal terminations 3 
attention interruptions 4 

restoration of screen contents 330 
restrictions 

for user-written TMP 6 
non-delimiter dependent parameters 242 
on executing exclusively in 31-bit mode 30 
on invoking programs with 24-bit dependencies 31 
on passing an output line descriptor to IKJEFF02 35 

results of command scan 229 
return codes 

from command scan 229 
from DAIR 86 
from dynamic allocation S7 
from GETLINE 129 
from GTSIZE 202 
from GTTERM 203 
from IKJEHCIR 323 
from LOCATE 323 
from parse service routine 319 
from PUTGET 177 
from PUTLINE 154 
from RT AUTOPT 203 
from SPAUTOPT 203 
from STACK 116 
from ST ATTN 206 
from STAUTOCP 207 
from ST AUTOLN 20S 
from STAX 45 
from STBREAK 210 
from STCC 212 
from STCLEAR 213 
from STCOM 213 
from STFSMODE 215 
from STLINENO 216 
from STSIZE 217 
from STTIMEOU 219 
from STTMPMD 219 
from STTRAN 220 
from TCLEARQ 222 
from TGET 190 
from TPG 187 
from TPUT 185 
validity checking 302 

RMODE=ANY, AMODE=31 
RMODE=24 

AMODE=ANY 30 
AMODE=24 30 
AMODE=31 30 

30 

RT AUTOPT macro instruction 203 
running programs 

in 370-XA mode 30 
on an MVS/XA system 29 
on an MVS/370 system 29 

346 OS/VS2 TSO Guide to Writing a TMP or CP 

S 
SAM terminal routines 92 
screen contents 

protection of 329 
restoration of 330 

second level messages 
definition 43 
deleting 20,44,151 
informational messages lSI 
message chain 20, 151,167 
messages handled by parse 303 
no message identifiers lSI 
requesting 43 
writing to the terminal 151 

separator characters 228,233 
sequential access method (SAM) terminal routines 

CHECK 94 
GET 93 
PUT 93 
PUTX 93 
READ 93 
WRITE 93 

service routine interfaces 
catalog information routine (IKJEHCIR) 32,40 
command scan service routine (IKJSCAN) 31,40 
DAIRFAIL (IKJEFFI8) 31 
data type processor (IKJEBEPS) 31 
default service routine (IKJEHDEF) 32,40 
dynamic allocation interface routine (IKJDAIR) 32,40 
GETLINE service routine (IKJGETL) 31 
GNRLFAIL/VSAMFAIL (IKJEFFI9) 31 
parse service routine (IKJPARS) 31,40 
PUTGET service routine (IKJPTGT) 31 
PUTLINE service routine (IKJPUTL) 31 
ST A interface routine (IKJEHSIR) 31 
STACK service routine (IKJSTCK) 31 
STAX 32 
TSO message issuer routine (IKJEFF02) 31,40,45 

service routines, I/O (see I/O service routines) 
setting addressing modes via BASSM or BSM 39 
single level messages 143 
single line data 139 
source, effects on message processing 44 
source data set 

in storage 107 
adding an element to the input stack 100, I 05 

source data set processing 107 
sources of input 106 

changing 100 
current 100 

space parameter, definition 239 
SPAUTOPT macro instruction 204 
special functions of the TMP IS 
specifying 

terminal attention exits 50 
terminal line size 94 

STACK macro instruction 100 
execute form 103 
list form 101 

stack parameter block (STPB) 107 
ST ACK service routine 100 

basic functions of 2 
coding example of macro 107, II 1 
command processor use of 18 
control block structures I 10,113 
description 100 
element code 108 



input source 106 
list source descriptor (LSD) 109 
macro instruction 

ext>cutc form 103 
list form 101 

parameter hlock 107 
return codes 116 

STAE macro 22 
standard form 

TGET macro I R5 
TPUT macro ISO 

statement number paraml'ter 241 
ST ATTN macro instruction 205 
ST AUTOCP macro instruction 206 
ST AUTOLN macro instruction 207 
STAX parameter list (STPL) 55 
ST AX service routine 36 

coding example of macro 57 
DEFER operand 54 
description 49 
macro instruction format 52 
parameter list 55 
return codes 45 

STBREAK macro instruction 209 
STCC macro instruction 210 
STCLEAR macro instruction 213 
STCOM macro instruction 213 
STFSMODE macro instruction 213 
STLINENO macro instruction 215 
STOP command processing 15 
STOP /MODIFY event control block (ECB) 15 
string, definition 234 
stripping message identifers 146 
STSIZE macro instruction 216 
STTIMEOU macro instruction 217 
STTMPMD macro instruction 219 
STTRAN macro instruction 220 
subcommand name, syntactically valid 3,224 
subcommand processors, abnormally terminating 22 
subfield descriptions 276 
subfields associated with keyword parameters 272,276 
subscript, variable parameter 241 
substitute mode of PUT and PUTX macros 93 
subtask ABEND 'J 

SVC 93 179 
symbolic address 

definition 235 
for parameter descriptor list 248 
parameter 235 

syntax notation for defining macro instructions 327 
SYSABEND data set 10 
SYSOUT data set, allocation of 80 
system catalog, searching for data set name 63 
system code 337 93,94 
SYSUDUMP data set 10 
SYS1.CMDLIB 17 
SYSI.HELP - the HELP data set 24 

T 
TCLEARQ macro instruction 221 
TERM=TS (operand of DD statement) 95 
terminal 

allocating a data set to 73 
communicating with 2 

terminal as input source 106, III 
terminal allention interruption element (TAlE) 14 

terminal control macro instruction 20 I 
terminal element 

adding to input stack 104 
coding example III 

terminal line size 94 
terminal monitor program (TMP) 5 

basic functions 2 
control blocks passed to command processors 38 
description 1,5 
EST AE exit 22 
fresh copy after ABEND 10 
functions of 2 
initialization 6 
intercepting a task ABEND 10 
obtaining a command 7 
parameters passed to a command processor 8 
processing a STOP command 15 
processing an attention interruption 11 
shared subpool 6 
special functions of 15 
STOP /MODIFY ECB 15 
TIME function 15 
using command scan 15 

terminal user's options after ABEND 10 
text insertion function of PUTLINE 147 
TGET 

basic functions 2 
coding example 196,198 
defini tion 185 
format 185 
macro description 185 
number of bytes moved 185 
register form 188 
return codes 190 
standard form 185 
used by GET 93 
used by READ 93 

TGET/TPUT SVC 179 
parameter registers 191 

TGET /TPUT /TPG SVC, macro instructions 179 
TIME function of the TMP 15 
TPG macro 185 
TPUT 

basic functions 2 
codes returned by 185 
coding example 196,198 
definition 179 
macro description 179 
register form 180 
returnco\:tes 185 
standard form 180 
used by PUT and PUTX 93 
used by WRITE 93 

translation of device input 185 
translation to upper case 300 
TSEVENT macro instruction 8 
TSO I/O service routines 97 
TSO message issuer routine (lKJEFF02) 45 
TSO service routines 

control blocks 45 
IKJCPPL 37,38 
IKJCSOA 37,226 
IKJCSPL 37,226 
IKJDAPL 37 
IKJDAPOC 37 
IKJDAPOO 37 

Index 347 



IKJDAP04 37 
IKJDAP08 37 
IKJDAP1C 37 
IKJDAP10 37 
IKJDAPI4 37 
IKJDAP18 37 
IKJDAP2C 37 
IKJDAP24 37 
IKJDAP28 37 
IKJDAP30 37 
IKJDAP34 37 
IKJDFPB 37 
IKJDFPL 37 
IKJECT 37 
IKJEFFDF 37 
IKJEFFGF 37 
IKJEFFMT 37 
IKJGTPB 37,123 
IKJIOPL 37,98 
IKJLSD 37 
IKJPGPB 37 
IKJPPL 37,231 
IKJPSCB 37 
IKJPTPB 37 
IKJSTPB 37 
IKJSTPL 37 
IKJTAIE 37 
IKJTAXE 37 
IKJTMPWA 37 
IKJUPT 37 

parse macros 
IKJENDP 277 
IKJlDENT 265 
IKJKEYWD 271 
IKJOPER 232,258 
IKJPARM 246 
IKJPOSIT 247 
IKJRSVWD 262 
IKJSUBF 276 
IKJTERM 232,252 

passing control to 48 

348 OS/VS2 TSO Guide to Writing a TMP or CP 

U 

their uses and interfaces 
IKJDAIR 59 
processing terminal requests 37 

UID2PSWD, definition 238 
user, communicating with 2 
user LOGON PROC, example 5 
userid, definition and format 237 
using 

BSAM for terminalI/O 91 
command scan service routine (IKJSCAN) 224 
DAIR 59 
parse macro instructions 245 
parse service routine (IKJPARS) 230 
PUTLINE format only function 150 
PUTLINE text insertion function 147 
QSAM for terminal I/O 91 
terminal control macro instructions 201 
TGET /TPUT /TPG SVC for terminal I/O 179 
TSO I/O service routines 97 
VT AM full-screen mode 329 

utility data set allocation 65 

V 
validity check parameter list 302 
validity checking exits 23 
value parameter definition 235 
variable parameter 241 
verb number, statement number parameter 241 
VSAMFAIL routine 89 

W 
WRITE macro instruction 93 
writing HELP members 26 



.. 

L 



~ ~ 
MVS/Extended Architecture TSO Guide to Writing a Terminal Monitor Program or a Command Processor (File No. S370·39) Printed in U.S.A. GC28·1295.0 

o 
th 
Ol 
N 

00 
N 
U 
(!) 

Ihlllll @ la-· 
1111111 

H:II:lt 
11111111 

" 



...; E 
c .... 
E.E 
c. V> ':; :c 
0'''' 
OJe;; 
Cl OJ 
C V> 
.~ 0 ....... 
o OJ 
V> C. 

.- '" '" ... 
E al .~ 
al E ...J 

'cO E g' 

~ 5. ~ 
... .... 'tl 

~ ~ '0 
..c '0 L.L. 
+J 10... 0 
.~ 0 ; 
V> OJ (J 

E '5 
:B'~ I o OJ 
.... V> I c. OJ 
OJ .... 
V> :J 
::J ~ I 
~ ~ 
c c. I 
'" OJ C,) V> 

V> :J I OJ OJ 
o.:G 
!9 ~ I 
(J)Q.. 

OJ ... 
o 
Z 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

MVS/Extended Architecture 
TSO Guide to Writing a Terminal 
Monitor Program or a Command 
Processor 
GC28-1295-0 

READER'S 
COMMENT 
FORM 

This manual is part of a library that serves as a reference source for system analysts, programmers, and 
operators of IBM systems. You may use this form to communicate your comments about this publication, 
its organization, or subject matter, with the understanding that IBM may use or distribute whatever 
information you supply in any way it believes appropriate without incurring any obligation to you. 
Your comments will be sent to the author's department for whatever review and action, if any, are deemed 
appropriate. 

Note: Copies of IBM publications are not stocked at the location to which this form is addressed. 
Please direct any requests for copies of publications, or for assistance in using your IBM system, to 
your IBM representative or to the IBM branch office serving your locality. 

Possible topics for comment are: 

Clarity Accuracy Completeness Organization Coding Retrieval Legibility 

If you wish a reply, give your name, company, mailing address, and date: 

What is your occupation? _________________________ _ 

How do you use this publication? __ ------------________ _ 

Number otlat-est News'tetterassoc~'ted with this publication: ____________ _ 

Thank you for your cooperation. No p'ostage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM 
office or representative will be happy to forward your comments or you may mail directly to the address in 
the Edition Notice on the back of the title page.) 



GC28-1295-0 

Reader's Comment Form 

Fold and tape 

Fold and tape 

--...-------- - ------- -. ---- - - --------------, -
® 

Pi .... Do Not Stepl. 

111111 

BUSINESS REPLY MAIL 

FI RST CLASS PERMIT 40 ARMONK, NEW YORK 

POSTAGE WILL BE PAID BY ADDRESSEE: 

International Business Machines Corporation 
Department 058. Building 920·2 
PO Box 390 
Poughkeepsie. New York 12602 

Pi .... Do Not Step" 

p 

Fold and tape 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

o 
S 
S! ... o 
a: 
l> 
0' 
::I 

110 
r-
:;" 
co 

I 
I 
I 
1 

I 
1 

I 
I 
I 
I 
I 
1 

I 
I 
I 
I 
I 

- - -- --I 
Fold and tape I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

" ., 
o 
<C ., 
III 

3 
o ., 
III 
(") 
o 
3 
3 
III 
::J 
C. 

" o 
Q 
en 
en 
o ., 

.~. 


