Program Product

GC28-1295-0
File No. $370-39

Property of Systéml
Development Librq’y

MVS/Extended Architecture
TSO Guide to Writinga
Terminal Monitor Program or
a Command Processor .

MVS/System Product - JES2 Version 2 5740-XC6
MVS/System Product - JES3 Version 2 5665-291
Data Facility Product " 5665-284

First Edition (January, 1983)

This edition applies to Version 2 of MVS/System Product 5665-291 or §740-XC6 until
otherwise indicated in new editions or technical newsletters. Changes are continually made
to the information herein; before using this publication in connection with the operation of
IBM systems, consult the latest /BM System/370 Bibliography, GC20-0001, for the editions
that are applicable and current.

References in this publication to IBM products, programs, or services do not imply that IBM
intends to make these available in all countries in which IBM operates. Any reference to an
IBM program product in this publication is not intended to state or imply that only IBM’s
program product may be used. Any functionally equivalent program may be used instead.

Publications are not stocked at the address given below. Requests for IBM publications should
be made to your IBM representative or to the IBM branch office serving your locality.

A form for readers’ comments is provided at the back of this publication. If the form has been
removed, comments may be addressed to IBM Corporation, Information Development,
Department D58, Building 920-2, PO Box 390, Poughkeepsie, N.Y. 12602. IBM may use or

distribute whatever information you supply in any way it believes appropriate without incurring
any obligation to you.

© Copyright International Business Machines Corporation 1982

Preface

This publication describes features of TSO that can be replaced, modified,
or added to by each installation, to adapt the command system to the
installation’s particular needs. The manual is intended for programmers who
are responsible for modifying portions of TSO.

The publication discusses the terminal monitor program and the
command processors from the viewpoint of their replaceability, and
describes the programming features provided within TSO for user-written
terminal monitor programs, command processors, and application programs.
These features include:

« Service routines
e Macro instructions
« SVCs

This publication contains information required by a programmer writing a
terminal monitor program or a command processor for TSO. It discusses the
functions that a terminal monitor program or a command processor should
provide, and it describes the macro instructions and service routines that
can be used to provide these functions.

The book is divided into fifteen sections:

¢ Introduction

o Terminal Monitor Program

¢« Command Processors

+« MVS/Extended Architecture Considerations

¢ Processing Terminal Requests -- The TSO Service Routines

e Message Handling

« Attention Interruption Handling -- The STAX Service Routine

o Dynamic Allocation of Data Sets -- The Dynamic Allocation Interface
Routine (DAIR)

o Using BSAM or QSAM for Terminal 1/0

o Using the TSO 1/0 Service Routines for Terminal 1/0

o Using the TGET/TPUT/TPG SVC for Terminal 1/O

¢ Using Terminal Control Macro Instructions

e« Command Scan and Parse -- Determining the Validity of Commands

o Catalog Information Routine (IKJEHCIR)

o Default Service Routine (IKIEHDEF)

The first three sections describe the functions performed by terminal
monitor programs and command processors. The fourth section describes
programming considerations for MVS/Extended Architecture systems that
affect the tasks documented in this manual. The fifth section describes how
to interface with the TSO service routines to process terminal requests.

The next ten sections describe the macro instructions and service routines
that a programmer can use to provide the required functions. The macro
instructions and service routines can be used to:

o Issue messages
o Schedule and process attention interruptions

Preface iii

» Allocate, free, concatenate, and deconcatenate data sets during
program execution

+ Provide I/O between a program and a terminal

+ Control terminal functions and attributes

« Determine the validity of commands, subcommands, and operands
entering the system

+ Retrieve information from the system catalog

o Construct a fully-qualified data set name

The packaging of the TSO library for MVS/Extended Architecture
(MVS/XA) is as follows:

o A base book as updated by an MVS/System Product Version 2
System Library Supplement,

o A new book (System Programming Library: TSO, TSO Terminal
User’s Guide, TSO Guide to Writing a TMP or a CP).

Note that the titles for the TSO library for MVS/XA begin with the
“MVS/Extended Architecture” system prefix.
Prerequisite and Reference Publications

The reader of this publication should have a knowledge of the structure of
TSO.

In addition, the reader should have the following publications available
for reference:

Principles of Operation

MVS/Extended Architecture Data Management Macro Instructions,
GC26-4014

MVS/Extended Architecture Data Management Services, GC26-4013
MVS/Extended Architecture VSAM Programmer’s Guide, GC26-4015

MVS/Extended Architecture System Programming Library: Data
Management, GC26-4010

MVS/Extended Architecture System Programming Library: Initialization
and Tuning, GC28-1149

MVS/Extended Architecture JCL, GC28-1148

MVS/Extended Architecture System Programming Library: Supervisor
Services and Macro Instructions, GC28-1154

MVS/Extended Architecture System Programming Library: TSO,
GC28-1173

MVS/Extended Architecture System Programming Library: System
Modifications, GC28-1152

MVS/Extended Architecture System Programming Library: System
Macros and Facilities

Vol. I, GC28-1150
Vol. II, GC28-1151

iv TSO Guide to Writing a TMP or a CP

Data Areas
(for MVS/System Product Version 2 JES2) LYB8-1191
(for MVS/System Product Version 2 JES3) LYB8-1195
Data Area Usage Table
(for MVS/System Product Version 2 JES2) LYB8-1193
(for MVS/System Product Version 2 JES3) LYB8-1197
Symbol Usage Table
(for MVS/System Product Version 2 JES2) LYB8-1192
(for MVS/System Product Version 2 JES3) LYB8-1196
OS/VS?2 Directory, SYB8-0743
MVS/Extended Architecture TSO Command Language Reference

(0OS/VS2 TSO Command Language Reference, GC28-0646, as
amended by GD23-0259)

MVS/Extended Architecture TSO Command Processor Logic, Volume I -
ACCOUNT

(0OS/VS2 TSO Command Processor Logic, Volume I - ACCOUNT,
SY28-0651, as amended by LD23-0270)

MVS/Extended Architecture TSO Command Processor Logic, Volume II
- EDIT,

(0OS/VS2 TSO Command Processor Logic, Volume II - EDIT,
SY33-8548, as amended by 1.D23-0272)

MVS/Extended Architecture TSO Command Processor Logic, Volume IV,

(0OS/VS2 TSO Command Processor Logic, Volume IV, SY28-0652, as
amended by LD23-0265)

MVS/Extended Architecture TSO Terminal Monitor Program and
Service Routines Logic

(OS/VS2 TSO Terminal Monitor Program and Service Routines Logic,
S$Y28-0650, as amended by LD23-0262)

MVS/Extended Architecture TSO Terminal User's Guide, GC28-1274
MVS/Extended Architecture Message Library: TSO Terminal Messages

(OS/VS Message Library: TSO Terminal Messages, GC38-1046, as
amended by GD23-0269)

MVS/Extended Architecture System Programming Library: 31-Bit
Addressing, GC28-1158

Preface v

vi

Referenced Products

TSO Guide to Writing a TMP or a CP

1.

All references to MVS/Extended Architecture (or to MVS/XA)
indicate Data Facility Product (5665-284) and MVS/System Product
Version 2 - JES2 (5740-XC6) or MVS/System Product Version 2 -
JES3 (5665-291).

. All references to VTAM, TSO/VTAM, and ACF/VTAM indicate

the program product ACF/VTAM Version 2 (5665-280).

. All references to TCAM and TSO/TCAM indicate the program

product ACF/TCAM Version 2 Release 4 (5735-RC3).

. All references to TSO/E indicate the program product TSO

Extensions (5665-293).

J

Contents

Summary of Amendments . Xiii
Introduction . Lo o
The Terminal Momlor Program (TMP) and Command Processors P |
Basic Functions of Terminal Monitor Programs and Command Processors .2
Communicating with the User .2
Passing Control to Command and Subcommand Processors .3
Responding to Abnormal Terminations3
Responding to Attention Interruptions 4
The Dynamic Allocation of Data Sets 4
Summary L Lo oL 4
The Terminal Monitor Program . . . e e e S
Terminal Monitor Program lmllallzallon 6
Requesting a Command00 7
Intercepting an ABEND e e e R
Intercepting a Subtask ABEND e e e 9
Intercepting a TMP Task ABEND 10
Processing an Attention Interruption . . . e .. 1
Parameters Received by Attention Handlmg Roulmes e e 12
The Attention Exit Parameter List 14

The Terminal Attention Interrupt Element (TAIE) 14
Processing a STOP Command e e e e 15
Command Processors . . . o 17
Adding Commands to TSO 17
Command Processor Coding Convenllons . e e e 18
Command Processor Use of the TSO Service Routmes . 18
STACK Service Routine 18
Catalog Information Routine 19
Default Service Routine . 19
GETLINE Service Routine 19
PUTLINE Service Routine 20
PUTGET Service Routine . . . e e e oo 20
IKJEFF02 Message Issuer Servrce Routme e e e e e ... 20
DAIR Service Routine . . . TR 20
Command Scan Service Routme 21
Parse Service Routine . 21
ESTAE/ESTAI Exit Routines -- Inlerceptmg an ABEND 22
Linkage Considerations . . 22
Command Processor Functions that Rely on Exrl Routrne Support 22
Guidelines for ESTAE and ESTAI Exit Routines X
Attention Exit Routines L0000 A
The HELP Data Set . . . e O 24
Attributes of SYSI. HELP e e e e e 25
Format of HELP Members 25
Private HELP Data Sets . e e e e e 25
Updating SYSIL.HELP 25
Writing HELP Members - . 26
MVS/Extended Architecture Considerations . 29
Testing a Program 29
31-Bit Addressing -- General Interface Consrderallons e e e 29
AMODE=24, RMODE=24 30
AMODE=ANY,RMODE= 30
AMODE=31 . 30
Specific Interfaces and Funcllons 31
Control Program Interfaces 31
Service Routine Interfaces e 31
Macro Interfaces00 e 32
Notes on Figure 12 e e 34

Contents vii

viii

Processing Terminal Requests -- The TSO Service Routines

Interfacing with the TSO Service Routines

The Command Processor Parameter List
Passing Control to the TSO Service Routines
The CALLTSSR Macro Instruction

MessageHandIing........................

Message Levelso e

Effects of the Input Source on Message Processmg
TSO Message Issuer Routine (IKJEFFO02)
IKJTSMSG -- Describes Text and Insert Locations .

Attention Interruption Handling - The STAX Service Routine
Specifying a Terminal Attention Exit - The STAX Macro lnstrucuon
The STAX Parameter List . . FE N
Coding Example of the STAX Macro Instructlon

Return Codes from the STAX Service Routine

Dynamic Allocation of Data Sets -- The Dynamic Allocation Interface Routine (DAIR)

Considerations L L L. L L
Using DAIR

The DAIR Parameter List (DAPL)

The DAIR Parameter Block (DAPB)
Code X'00’ - Determine if DDNAME or DSNAME Allocated ..
Code X‘04' - Determine if DSNAME Allocated or in System Catalog .
Codc X'08' - Allocate a Data Set by DSNAME . . -
Code X'0C' - Concatenate the Specified DDNAMES
Code X‘10° - Deconcatenate the Indicated DDNAME

Code X'14’ - Return Qualifiers for the Specified DSNAME . -
Code X‘18’ - Free the Specified Data Set e

Code X‘1C' - Allocate the Specified DDNAME to the Termlnal .
Code X‘24’ - Allocate a Data Set by DDNAME ..
Code X‘28' - Perform a List of DAIR Operations . . .

Code X‘2C’ - Mark Data Sets as Not in Use .

Code X'30’ - Allocate a SYSOUT Data Set to the Message Class .

Code X'34’ - Associate DCB Parameters with a Specified Name
DAIRACB - DAIR Attribute Control Block L .

Return Codes from DAIR .

Return Codes from Dynamic Alloeatlon

DAIRFAIL Routine (JIKJEFF18) . .

GNRLFAIL/VSAMFAIL Routine (IKJEFFIQ)

Using BSAM or QSAM for Terminal 1/0
BSAM/QSAM Macro Instructions . .
SAM Terminal Routines

GET. o

PUT and PUTX e
READ
WRITE o oL
CHECK

Record Formats, Buffering Techmques and Processmg Modes

Specifying Terminal Line Size

End of File (EOF) for Input Processmg

Modifying DD Statements for Batch or TSO Processmg e

Using the TSO 1/0 Service Routines for Terminal 1/O . .

The Input/Qutput Parameter List

Passing Control to the 1/0 Service Routines
The 1/0 Service Routine Macro Instructions e e e
STACK - Changing the Source of Input
The STACK Macro Instruction - List Form
The STACK Macro Instruction - Execute Form
Sources of Input . . S
Building the STACK Parameter Block e e e e e
Building the List Source Descriptor (LSD)
Return Codes from STACK e
GETLINE - Getting a Line of Input . . . PR .
The GETLINE Macro Instruction - List Form PR

TSO Guide to Writing a TMP or a CP

The GETLINE Macro Instruction - Execute Form 119

Sources of Input Lo 122
End of Data Processing e e e e 122
Building the GETLINE Parameler Block 123
Input Line Format - The Input Buffer 125
Examples of GETLINE e e e e e e e 126
Return Codes from GETLINE e 129
PUTLINE - Putting a Line Out to the Terminal 129
The PUTLINE Macro Instruction - List Form e e e e 129
The PUTLINE Macro Instruction - Execute Form 132
Building the PUTLINE Parameter Block R 137
Types and Formats of Output Lines e 138
PUTLINE Message Line Processing e 146
Return Codes from PUTLINE 154
PUTGET - Putting a Message Out to the Termmal and Oblammg a Line of Inpul in
Response . . . e e e e .. 154
The PUTGET Macro Inslrucuon - LlSl Form e e e e e . 155
The PUTGET Macro Instruction - Execute Form 159
Building the PUTGET Parameter Block (PGPB) R 164
Types and Formats of the Output Line 167
Passing the Message Lines to PUTGET 167
PUTGET Processing e e e R 170
[nput Line Format - the Input Buffer o . 171
An Example of PUTGET 173
Return Codes from PUTGET 177
Using the TGET/TPUT/TPG SVC for Terminal 1/O 179
The TPUT Macro [nstruction - Writing a Line to the Terminal 179
Return Codes from TPUT 185
The TPG Macro Instruction - Writing a Lme Causmg Immedlate Response 185
Return Codes from TPG 187
The TGET Macro Instruction - Gemng a Line from the Termmal R 188
Return Codes from TGET 190
TGET/TPUT/TPG Parameter Formats 191
Coding Examples of TGET and TPUT Macro Instrucnons 196
Examples of Both TPUT and TGET Using the Default Values 196
Example of TPUT Macro I[nstruction - Buffer Address and
Buffer Length in Registers R 198
Example of the TGET Macro Instruction - Register Format A 199
Using Terminal Control Macre Instructions 200
GTSIZE - Get Terminal Line Size e e e ... 202
GTTERM - Get Terminal Attributes. 202
RTAUTOPT - Restart Automatic Line Numbering or Character Prompting . . . 203
SPAUTOPT - Stop Automatic Line Numbering or Character Prompting 204
STATTN - Set Attention Simulation 205
STAUTOCEP - Start Automatic Character Prompting 206
STAUTOLN - Start Automatic Line Numbering 207
STBREAK -Set Break e e e 209
STCC - Specify Terminal Comrol Characters e e 210
STCLEAR - Set Display Clear Character String 212
STCOM - Set Inter-Terminal Communication, . . 213
STFSMODE - Set Full ScreenMode 213
STLINENO - Set Line Number 215
STSIZE - Set Terminal Line Size 216
STTIMEOU - Set Time Out Feature , 217
STTMPMD - Set Terminal Display Manager Options 219
STTRAN - Set Character Translation e e PR 220
TCLEARQ - Clear Buffers e e 221
Command Scan and Parse - Determining the Validity of Commands RN 223
Sequence of Operations, e e ... 223
Using the Command Scan Service Routine (IKJSCAN) PR R 224
Command Name Syntax 224
The Parameter List Structure Required by Command Scan 225
The Command Scan Parameter List 225
Flags Passed to Command Scan 226
The Commard Scan Output Area I 226
The Operation of the Command Scan Service Routine P 227

Contents ix

Results of the Command Scan 229

Return Codes from Command Scan e e 229
Using the Parse Service Routine (IKJPARS) 230
Command Parameter Syntax e e P 233

Positional Parameters Y A .

Keyword Parameters e e e 244
Using the Parse Macro Instructions to Define Command Syntdx . &

IKJPARM - Beginning the PCL and the PDL e 246

IKJPOSIT - Describing a Delimiter-Dependent Postttonal Parameter P 247

IKJTERM - Describing a Delimiter-Dependent Positional Parameter 252

IKJOPER - Describing a Delimiter-Dependent Positional Parameter 258

IKJRSVWD - Describing a Delimiter-Dependent Positional Parameter 262

IKJIDENT - Describing a Non-Delimiter Dependent Positional Parameter 265

IKJKEYWD - Describing a Keyword Parameter . . . B

IKJNAME - Listing the Keyword or Reserved Word Parameter Names P 272

IKJSUBF - Describing a Keyword Subfield 276

IKJENDP - Ending the Parameter Control List 277

IKJRLSA - Releasing Real Storage Allocated by Parse 277
Passing Control to the Parse Service Routine e e o218

The Parse Parameter List P e 279

Formats of the PDEs Returned by Parse 279

The PDL Header . . . e e e oo 280
PDEs Created for Posrttonal Parameters L . 280
Effect of List and Range Options on PDE Formats . 293
The PDE Created for a Keyword Parameter e e 300

Additional Facilities Provided by Parse e 300

Translation to Uppercase O 300

Insertion of Default Values e 300
Passing Control to a Validity Checkmg Routtne e e e 301
Insertion of Keywords e 302
Issuing Second Level Messages e 303
Prompting . . . e e 303
Examples of Ustng the Parse Servrce Routme e 306
Example 1 e 306
Example 2 310
Example 3 T) &
Example 4 . . T 2)

Return Codes from the Parse Servrce Routme O 1 1)

Catalog Information Routine (IKJEHCIR) P, 321
Return Codes from IKJEHCIR
Return Codes from LOCATE e 323

Default Service Routine (IKJEHDEF) 1325

Appendix A: Notation for Defining Macro Instructions 327

Appendix B: Using VTAM Full-Screen Mode (STFSMODE and STLINENO) 329

Protection of Screen Contents e e 329

Useof TGET T X 0]
Screen Content Restoration L0000 330
NOEDIT Mode P X B
Full-Screen Protection Responsrbthttes of Attentlon Extt Routtnes e S 331
Determining Screen Protection in Full-Screen Mode 331
Exiting and Reentering Full-Screen Mode 335
Full-Screen Command Processor Termination L 335

Use of Terminal Break 336

Index L. P P & ¥

x TSO Guide to Writing a TMP or a CP

Figures

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure
Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

—SomNoUAELN—

A LOGON Procedure 5
Requesting a Commando 7
The TSEVENT Macro Instructlon Specnfymg PPMODE 8
ABEND, ESTAI, ESTAE Relationship 9
Parameters Passed to the Attention Exit Routine 13
The Attention Exit Parameter List 14
The Terminal Attention Interrupt Element 14
Format of a HELP DataSet 26
An Example of a User’'s SAMPLE Command Formal 27
An Example of a User's EXAMPLE Subcommand Format . . . 27
Coding Example - Including the SAMPLE Command and EXAMPLE

Subcommand in the HELP Data Set 28
MVS/XA Interface Rules for Macro Instructions 33
Control Block Interface Between the TMPandCP 38
The Command Processor Parameter List (CPPL) 39
The CALLTSSR Macro Instruction L. .. 40
The IKJTSMSG Macro Instruction 47
An Example of an IKITSMSG Macro Instruction 48
The STAX Macro Instruction - List and Execute Forms 52
Using Registers in the STAX Macro Instruction, 54
The STAX Parameter List 55
Coding Example - STAX Macro Inslrucuon e L. 57
Control Blocks Passed to DAIR P . . 60
Format of the DAIR Parameter List (DAPL) R, ... 6l
DAIR Entry Codes and Their Functions, 62
DAIR Parameter Block - Entry Code X'00° 62
DAIR Parameter Block - Entry Code X‘04* 64
DAIR Parameter Block - Entry Code X*08' 66
DAIR Parameter Block - Entry Code X'0C* 69
DAIR Parameter Block - Entry Code X‘10° 70
DAIR Parameter Block - Entry Code X'14> 71
DAIR Parameter Block - Entry Code X‘18° 72
DAIR Parameter Block - Entry Code X'1C*, 74
DAIR Parameter Block - Entry Code X*24° 75
DAIR Parameter Block - Entry Code X*28° 79
DAIR Parameter Block - Entry Code X2C* 80
DAIR Parameter Block - Entry Code X'30°, 81
DAIR Parameter Block - Entry Code X34° 84
DAIR Attribute Control Block (DAIRACB) B85
BSAM/QSAM Macro Functions under TSO 92
The Input/Output Parameter List 98
Control Block Interface Between TMP and 1/0 Service Routine . . . 99
The List Form of the STACK Macro Instruction 101
The Execute Form of the STACK Macro Instruction -. 103
The STACK Parameter Block S 109
STACK Control Blocks: No In-Storage List 110

Coding Example - STACK Specnfymg the Terminal as the Input
Source L. Lo 111

The List Source Descriptor 112
STACK Control Blocks: In-Storage List Specified 113
Coding Example - STACK Specifying an In-Storage List

as the Input Source 0.0 114
The List Form of the GETLINE Macro Instruction 117
The Execute Form of the GETLINE Macro Instruction 119
The GETLINE Parameter Block 124
Format of the GETLINE Input Buffer 125
GETLINE Control Blocks - Input Line Returned R 126
Coding Example - Two Executions of GETLINE 127
The List Form of the PUTLINE Macro Instruction R 130
The Execute Form of the PUTLINE Macro Instruction 133
The PUTLINE Parameter Block R 138
PUTLINE Single Line Data Format 139
Coding Example - PUTLINE Single Line Data 140
PUTLINE Multiline Data Format 141
Coding Example - PUTLINE Multiline Data 142
The Output Line Descriptor 144
Control Block Structures for PUTLINE Messages - 145
‘PUTLINE Functions and Message Types 146

Contents xi

xif

Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

TSO Guide to Writing a TMP or a CP

Coding Example - PUTLINE Text Insertion
Coding Example - PUTLINE Second Level Informational

Chainingo oo
The List Form of the PUTGET Macro Instruction
The Execute Form of the PUTGET Macro Instruction
The PUTGET Parameter Block
The Output Line Descriptor (OLD)
Control Block Structures for PUTGET Output Messages
Format of the PUTGET Input Buffer
PUTGET Control Block Structure -'Input Line Returned
Coding Example - PUTGET Multilevel PROMPT Message
The TPUT Macro Instruction - Standard, Register, List, and

Execute Formso ;
The TPG Macro Instruction - Standard, List,

and Execute Forms00
The TGET Macro Instruction - Standard, Register, List,

and Execute Forms
TPUT Parameter Registers
TGET Parameter Registers
Parameter List Expansion for the Execute Form of TPUT
Parameter List Expansion for the List Form of TPUT
Parameter List Expansion for the Execute Formof TPG
Parameter List Expansion for the List Formof TPG
Parameter List Expansion for the Standard, List, and Execute Forms of
TGET o o e
Coding Example: TPUT and TGET Macro Instructions Using

-the Default Values
Coding Example: TPUT Macro Instruction Buffer Address

and Buffer Length in Registers
Coding Example: TGET Macro Instruction Register Format .
The GTSIZE Macro Instruction
The GTTERM Macro Instruction
Parameter List Expansion for the List Form of GTTERM
The RTAUTOPT Macro Instruction
The SPAUTOPT Macro Instruction
The STATTN Macro Instruction
The STAUTOCP Macro Instruction
The STAUTOLN Macro Instruction
The STBREAK Macro Instruction
The STCC Macro Instruction
The STCLEAR Macro Instruction
The STCOM Macro Instruction
The STFSMODE Macro Instruction
The STLINENO Macro Instruction
The STSIZE Macro Instruction
The STTIMEOU Macro Instruction, ...
The STTMPMD Macro Instruction, ...
The STTRAN Macro Instruction
The TCLEARQ Macro Instruction
The Parameter List Structure Passed to Command Scan
The Command Scan Parameter List ,
The Command Scan Output Area
Character Types Recognized by Command Scan and Parse
Return from Command Scan - CSOA and Command Buffer Settings
A Command Processor Using the Parse Service Routine
Delimiter-Dependent Parameters
Example of an Indirect Address
Example of an Address Expression with Indirect Addressing .
The IKJPARM Macro Instruction
The Parameter Control Entry Built by IKJPARM , . . .
The IKJPOSIT Macro- Instruction
The Parameter Control Entry Built by IKJPOSIT
The IKJTERM Macro Instruction
The Parameter Control Entry Built by IKJTERM | . -
The IKJOPER Macro Instruction, ..
The Parameter Control Entry Built by IKJOPER
The IKJRSVWD Macro Instruction
The Parameter Control Entry Built by IKJRSVWD
The IKJIDENT Macro Instruction e

149

152
155
159
165
168
169
172
173
174

180

185

188
191
192
193
193
194
194

195

Figure 128. The Parameter Control Entry Built by IKJIDENT 269

Figure 129. The IKIKEYWD Macro Instruction 271
Figure 130. The Parameter Control Entry Built by IKIKEYWD 272
Figure 131. The IKINAME Macro Instruction (when used with the

IKJKEYWD Macro Instruction) 273
Figure 132, The IKINAME Macro Instruction (when used with the

IKIRSVWD Macro Instruction) 273
Figure 133. The Parameter Control Entry Built by IKINAME 275
Figure 134. The IKJSUBF Macro Instruction 276
Figure 135. The Parameter Control Entry Built by IKISUBF 276
Figure 136. The IKJIENDP Macro Instruction 271
Figure 137. The Parameter Control Entry Built by IKIENDP 277
Figure 138. The IKJRLSA Macro Instruction 277
Figure 139. Control Flow Between Command Processor and Parse 278
Figure 140. The Parse Parameter List 279
Figure 141. A PDL Showing PDEs Describinga List 294
Figure 142. A PDL Showing PDEs Describing a Range 295
Figure 143. A PDL Showing PDEs Describing LIST and RANGE Options . . . 296
Figure 144. PDL - LIST and RANGE Acceptable, Single Parameter Entered . . 297
Figure 145. PDL - LIST and RANGE Acceptable, Single Range Entered 297
Figure = 146. PDL - LIST and RANGE Acceptable, List Entered 298
Figure 147. PDL - LIST and RANGE Acceptable, List of Ranges Entered . . . 299
Figure 148. Format of the Validity Check Parameter List 302
Figure 149. Return Codes from a Validity Checking Routine 302
Figure 150. Coding Example 1 - Using Parse Macros to Describe

Command Parameter Syntax e e e 307
Figure 151. An IKJPARMD DSECT (Example 1) 308
Figure 152. The IKJIPARMD DSECT and the PDL (Example 1) 309
Figure 153. Coding Example 2 - Using Parse Macros to Describe Parameter

Syntax L e e 310
Figure 154. An IKJPARMD DSECT (Example 2) 311
Figure 155. The IKJPARMD DSECT and the PDL (Example 2) 312
Figure 156. Coding Example 3 - Using Parse Macros to Describe Parameter

Syntax L Lo e e 313
Figure 157. An IKJPARMD DSECT (Example 3) 314
Figure 158. The IKJIPARMD DSECT and the PDL (Example 3) 315
Figure 159. Coding Example 4 - Using Parse Macros to Describe Parameter

Syntax L L e e e e 316
Figure 160. An IKJPARMD DSECT (Example 4)31
Figure 161. The IKIPARMD DSECT and the PDL (Example 4) 318
Figure 162. Catalog Information Routine Parameter List (CIRPARM) 321
Figure 163. Data Returned from Valid CIROPT Values 322
Figure 164. User Work Area for CIRPARM 323
Figure 165. Volume Information Format 323
Figure 166. Function of RESHOW Code in Full-Screen Message Processing . . . 329
Figure 167. Function of INITIAL=YES When First Message is Full-Screen . . . 332

Figure 168. Function of INITIAL=YES When First Message is Non-Full-Screen . 333
Figure 169. Function of INITIAL=NO

Contents Xxiil.
IBM Confidential, MVS/XA ESP

Introduction

TSO consists of many relatively small, functionally distinct modules of code.
One major benefit of this modular construction is that the installation may
add to or modify TSO to better suit the needs of its users. You can add to
or replace IBM-supplied code with your own, and delete those functions of
TSO which you do not require.

TSO is composed of modules that communicate with the user and
perform the work requested by him. Modifications to the control program
should be made only by system programmers responsible for the proper
functioning of TSO within MVS. Each installation can replace or augment
the terminal monitor program (TMP) and the command processors.

If you choose to write your own terminal monitor program or command
processors, you can use service routines, interface routines, and macro
instructions, supplied with TSO or modified to support TSO, to provide
many of the functions required by a TMP or a command processor.

The Terminal Monitor Program (TMP) and Command
Processors

The terminal monitor program is a problem program that accepts and
interprets commands. The TMP causes the appropriate command processors
to be scheduled and executed.

A terminal monitor program must be able to communicate with the user
at the terminal, load and pass control to command processors, respond to
abnormal terminations at its own task level or at lower levels, and respond
to and process attention interruptions.

When a user logs on to TSO, he must either specify the name of a
LOGON procedure via the LOGON command or accept the use of his
default procedure name from the user attribute data set (UADS). In either
case, the program named in the EXEC statement of the LOGON procedure
is attached during the Jogon as the terminal monitor program. The program
named in the EXEC statement can be either the TMP supplied with TSO,
one provided by the installation, or one you have written yourself.

Once the logon has completed, the terminal monitor program requests
the user at the terminal to enter a command name. The IBM-supplied TMP
writes a READY message to the terminal to indicate that a command
should be entered. The TMP determines if the response entered is a
command. If the response is a command, the TMP attaches the requested
command processor, and the command processor performs the computing
functions requested by the user at the terminal.

When writing your own command processors, keep in mind that you can
add them to the IBM-supplied command library, concatenate your own
command library to the one supplied by IBM, or replace the entire TSO
command library with your own.

Command processors must be able to communicate with the user at the
terminal, respond to abnormal terminations, and process attention
interruptions. If required command processors must be able to load and

Introduction 1

2

pass control to subcommand processors, as well as process abnormal
terminations of those subcommand processors.

Basic Functions of Terminal Monitor Programs and
Command Processors

You can see from the preceding discussion that any terminal monitor
program and any command processor must provide four basic functions:

1. Both the TMP and command processors must be able to
communicate with the user at the terminal.

2. The TMP must be able to load and pass control to a command
processor. If a command processor has subcommand processors, it
must be able to load and pass control to them.

3. Both the TMP and command processors must be able to intercept
and investigate abnormal terminations.

4. Both the TMP and command processors must be able to respond to
and process attention interruptions entered from the terminal.

You can provide each of these functions for a terminal monitor program
or a command processor by using a service routine or a macro instruction
provided with or modified to support TSO.

Communicating with the User

There are three ways a program running under TSO can communicate with
a user:

1. The BSAM or QSAM access methods.

2. The STACK, GETLINE, PUTLINE, and PUTGET I/0 service
routines. These 1/0 service routines are invoked via the STACK,
GETLINE, PUTLINE, and PUTGET macro instructions respectively.
They provide the following functions:

STACK - The STACK service routine establishes and changes the
source of input by adding elements to, or deleting elements from, an
internally maintained input stack. The top element on the input stack
determines the current source of input.

GETLINE - The GETLINE service routine obtains and returns all
input lines other than commands, subcommands, and responses to
prompting messages. (A prompting message asks the user at the
terminal to supply required information.) The GETLINE service
routine returns these lines of input from the input source designated
by the top element of the input stack.

PUTLINE - The PUTLINE service routine formats output lines,
writes them to the terminal, and chains second level messages to be
written in response to a question mark from the terminal.

PUTGET - The PUTGET service routine writes a message to the
terminal and obtains a response from the terminal. A message written
to the terminal that requires a response is called a conversational
message.

TSO Guide to Writing a TMP or a CP

3. The TGET, TPUT, and TPG supervisor call. A supervisor call routine,
SVC 93, is invoked via the TGET, TPUT, and TPG macro
instructions. TGET, TPUT, and TPG provide a route for [/O to a
terminal.

Each of these methods performs different functions and is thus suited for
particular I/0 situations. The programmer designing his own TMP or
command processor must understand which of the 1/O methods best
provides the 1/0 support required in different programming situations.

Passing Control to Command and Subcommand Processors

A terminal monitor program must be able to recognize a command name
entered into the system, load the requested command processor, and pass
control to it. A command processor must be able to perform similar
functions when a subcommand name is entered.

Your TMP or command processor can use the command scan service
routine to search the input line for a syntactically valid command name or
subcommand name. The ATTACH macro instruction can then be issued to
pass control to the requested routines and to establish ESTAI exits. (See
“Responding to Abnormal Terminations” below.)

When you write a command processor or subcommand processor, you
can use the parse macro instructions to describe to the parse service routine
the operands that may be entered with the command name. You can then
use the parse service routine to determine which operands are present in the
input buffer. The parse service routine compares the information you
supplied in the parse macro instructions with the contents of the input
buffer. This syntactical comparison indicates which operands are present in
the input line. The parse service routine returns a list to the calling routine,
indicating which operands were found in the buffer. These operands
indicate to the processing routine the functions the user is requesting.

Responding to Abnormal Terminations

A programmer coding a routine to run under TSO should do all that is
possible to keep that routine from causing an abnormal termination of a
TSO user. If you write your own terminal monitor program or command
processors, you should use the ESTAE or FESTAE macro instruction and
the ESTAI operand on the ATTACH macro instruction to provide error
handling exits.

Use the ESTAE or FESTAE macro instruction to provide the address of
an error handling routine to be given control if any routine at the same task
level as the error handling routine begins to terminate abnormally.

Use the ESTAI operand on the ATTACH macro instruction. to provide
the address of an error handling routine to be given control if a routine at a
lower task level begins to terminate abnormally.

Introduction 3

4

Responding to Attention Interruptions

A terminal monitor program and any command processor that accepts
subcommands must be able to respond to an attention interruption entered
from the terminal. TSO interprets an attention interruption as a signal that
the user wants to halt current program execution, possibly to request a new
command or subcommand. You must provide attention exits that can obtain
a line of input from the terminal and respond to that input.

To build the control blocks and queues necessary for the system to
recognize and schedule your attention handling routines, use the STAX
service routine, which is invoked via the STAX macro instruction.

The Dynamic Allocation of Data Sets

Aside from the four basic functions provided by a terminal monitor
program or a command processor, other useful time sharing functions can
be obtained using routines provided by IBM. You can invoke dynamic
allocation routines using the dynamic allocation interface routine (DAIR)
to:

« Obtain the current status of a data set

o Allocate a data set

» Free a data set

« Concatenate data sets

« Deconcatenate data sets

o Build a list of attributes (DCB parameters) to be assigned to data sets
o Delete a list of attributes

It is recommended, however, that you invoke dynamic allocation directly
whenever possible (especially when writing new command processors) to
take advantage of the additional functions available and to decrease system
overhead. For a detailed description of these functions and how to invoke
dynamic allocation directly, refer to SPL: System Macros and Facilities.

The DAIR interface, designed to invoke dynamic allocation for you, is
maintained so that existing command processors do not have to be modified
to invoke dynamic allocation directly. DAIR acts as a translator; it converts
the DAIR parameter list it receives as input to a dynamic allocation
parameter list, which it then passes to dynamic allocation.

Summary

Most of the functions of terminal monitor programs and command
processors can be provided with macro instructions, service routines, or
supervisor call routines supplied by IBM. The following sections describe
how to use these macros and routines in a TMP or command processor.

TSO Guide to Writing a TMP or a CP

<

The Terminal Monitor Program

The terminal monitor program (TMP) is a problem program that provides
an interface between the terminal user, command processors, and the TSO
control program. TSO LOGON causes the system initiator to attach the
program named on the EXEC statement of the user’s LOGON cataloged
procedure. This may be the IBM-supplied TMP or any user-supplied
alternate.

The maximum number of concurrently allocated data sets allowed in a
given TSO session is defined in the user’s LOGON procedure. The
LOGON procedure indicated on the LOGON command may contain DD
statements that define data sets to be used during the TSO session, other
DD statements, called DD DYNAM statements, and the DYNAMNBR
parameter of the EXEC statement. These statements are used in
combination to determine the maximum number of data sets that may be
allocated to the user at any one time during the session. The formula for
determining the maximum is:

Maximum = # DD statements + # DD DYNAM statements + the number supplied on the
DYNAMNBR parameter of the EXEC statement.

The DYNAMNBR parameter obsoletes the DD DYNAM statement as a
way of establishing the maximum number of data sets. While existing DD
DYNAMS continue to be included in the formula for determining the
maximum, use of the DYNAMNBR keyword is recommended because it
involves only one statement (the EXEC statement) and can be modified
easily.

Figure 1 shows an example of the EXEC statement in a user LOGON
procedure. This procedure is equivalent to a LOGON procedure containing
10 DD DYNAM statements and no DYNAMNBR operand. For a complete
discussion of a LOGON procedure, see SPL: TSO.

Figure 1. A LOGON Procedure

The terminal monitor program you use can be the TMP supplied with
TSO, one provided by the installation, or one you have supplied yourself. If
you choose to write your own terminal monitor program, use the TSO
service routines and macro instructions described in this book to help you
code the TMP and fit it into TSO.

The TMP must be able to respond to the following four conditions:

1. Normal completion of a command processor or user program, and the
requesting of another command

2. An error causing termination of the TMP, a command processor, or a
user program

The Terminal Monitor Program 5

3. An attention interruption from the terminal, halting execution of the

current program ;’
4. A STOP operator command, forcing a LOGOFF for the user

This section explains how to respond to these conditions. It describes in
general terms how the IBM-supplied TMP functions, and how it fits
together with the rest of TSO. For a more specific description of the
IBM-supplied TMP, see TSO Terminal Monitor Program and Service
Routines Logic.

Terminal Monitor Program Initialization

In a LOGON procedure, the terminal monitor program (TMP) name must

appear as the first operand of the PGM= keyword operand on the EXEC
statement.

When the TMP is attached:

« Register 1 contains the address of the field containing the length and
data of the EXEC parameter. The IBM-supplied TMP uses this
PARM value as the first command requested. The first two bytes of
the PARM value are on a halfword boundary and contain the length
of the PARM value. (The length value does not include the two
length bytes.)

e Register 13 contains the address of the register save area.

. Register 14 contains the return address of the LOGON/LOGOFF
scheduler. :

« Register 15 contains the entry point address of the TMP.)

The TMP sets up the tables and control blocks it requires, loads the
TIME command processor, sets up the ESTAE and ESTAI exits to respond
to abnormal terminations, sets up the attention exits, builds the command
buffer, and initializes the input stack to point to the terminal. The TMP
then uses the EXTRACT macro instruction to obtain the addresses of the
STOP/MODIFY ECB and the protected step control block (PSCB) built
by the LOGON/LOGOFF scheduler.

The TMP determines whether it is running in a TSO or a batch
environment by testing the time-sharing bit in the TCB. If the TMP is
running in a batch environment, it will use the DATASET keyword while
invoking the STACK service routine to cause GETLINE and PUTLINE to
be directed to data sets. The TMP must also build the same control blocks
that LOGON would have built.

The IBM-supplied terminal monitor program attaches the command
processor named in the EXEC statement PARM field. If no command was
named as a PARM operand, the TMP issues a PUTGET macro instruction
to obtain the first command. The TMP shares subpool 78 with the attached
command processor but does not share subpool 0. The command processor,
in turn, must share subpool 78 with any lower level tasks.

The TMP should not pass in-line parameter lists to commands or to TSO
service routines. Subpool 251 should not be used for parameter lists. The
command processor parameter list (CPPL), described later in this book,

6 TSO Guide to Wrifing a TMP or a CP

should be in subpool 1. You may use the IKITMPWA macro to map the
TMP workarea.

Requesting a Command

Figure 2 summarizes the steps taken by a terminal monitor program to
obtain a command, to pass control to the commmand processor, and to

detach the

command processor when it has finished.

Terminal Monitor

Program
PUTGET service routine
IKJPTGT ~ gets next command from
terminal or stack,
A
——— A e
I, NSRS P
Command Buffer
SCAN Service Routine
IKJSCAN ﬂ checks for valid comand EDIT tevvinnnnnnaennnns
name syntax,
N . Command Library

ATTACH

A A Aae
. VO S
Nt ANmcnatonm
NAN A A A

DETACH

IKJDAIR
O/ Ny PN -
EIPNDY NV o Uy, S
A e AN A

Stack

ATTACH attaches the
Command Processor,

Virtual Storage

TSO User's
Private Address
Space

DETACH detaches the
Command Processor.

rb

Dynamic allocation marks
data sets allocated by the
Command Processor available
to be freed,

x

\WVA

———|
E=

£/

nd

Figure 2. Requesting a Command

The Terminal Monitor Program 7

Use the PUTGET service to request a command from the terminal,
routine. The PUTGET service routine first writes a line to the terminal to
inform the user that another command is expected, then returns a line
entered in response to the request, and places that line into a command
buffer.

Use the command scan service routine to determine whether the line of
input is a syntactically valid command name.

Use the ATTACH macro instruction (specifying an ESTAI exit routine)
to pass control to the requested command processor.

Your TMP must create any parameter lists expected by the command
processor and pass them to the newly attached command processor. The
IBM-supplied TMP passes the address of a command processor parameter
list in register one. See the sections entitled “MVS/Extended Architecture
Considerations” and ‘“Processing Terminal Requests -- The TSO Service
Routines” for more information about the interface between the TMP and
command processors.

When the command processor completes, the TMP releases it via a
DETACH macro instruction, uses dynamic allocation to indicate that
dynamically allocated data sets may be freed, and uses the PUTGET service
routine to obtain another command.

The TSEVENT macro facilitates the use of the generalized trace facility
(GTF) to trace the attaching of a command processor by an
installation-supplied terminal monitor program. The TSEVENT macro
results in control being passed to a GTF hook located in the system
resources manager (SRM) interface program.

User written TMPs should issue the TSEVENT macro before attaching
each command processor.

Issue the TSEVENT macro instruction as follows:

1. Load register 1 with the first four characters of the command name
being attached or released.

2. Load register 15 with the last four characters of the command name.

3. Code the TSEVENT macro instruction as shown in Figure 3.

[label]| TSEVENT| PPMODE

Figure 3. The TSEVENT Macro Instruction Specifying PPMODE

Intercepting an ABEND

The terminal monitor program must be able to recognize and respond to
two basic types of ABEND situations:

1. An attached subtask (for example, a command processor) is
terminating abnormally.

2. The TMP itself or a program linked to by the TMP (for example,
command scan) is terminating abnormally.

8 TSO Guide to Writing a TMP or a CP

Intercepting a Subtask ABEND

When a subtask of the terminal monitor program begins to terminate
abnormally, the TMP ESTALI exit, specified by the TMP when it attached
the subtask, receives control. The TMP ESTAI exit receives control under
the TCB of the abending subtask. The subtask will already have performed
its own ESTAE processing, if any was specified. Figure 4 shows the
relationship between the ABEND, the ESTAE, and the ESTAI. For
additional information about expanded recovery facilities available through
ESTAI, refer to Supervisor Services and Macro Instructions.

Terminal Monitor Program

ESTAE Exit ~ For ABEND at
TMP TCB Level.

ESTAI Exit = For ABEND at
daughter TCB level,

ATTACH
(with ESTAI operand)
Command
Processor ABEND

SvC 13

ESTAE Exit - For ABEND at
this TCB level

Figure 4. ABEND, ESTAI, STAE Relationship

The Terminal Monitor Program 9

10

The TMP must inform the user at the terminal of the ABEND situation,
and allow the user to enter another command. Use the PUTGET service
routine, specifying the TERM operand, to inform the user of the ABEND
and to return a line of input from the terminal.

The terminal user has three options:

1. He can allow the ABEND to continue by entering a null line
(pressing the ENTER key).

2. He can terminate processing of the ABEND by entering a command
name other than TIME.

3. He can request any second-level messages concerning the terminating
program by entering a question mark.

Use the command scan service routine to determine what the user has
entered at the terminal.

If he enters a null line, the TMP returns control to the ABEND routine,
and the task is allowed to terminate abnormally. If he enters a command
name, other than TIME, the TMP processes the new command name after
detaching the subtask.

If the user enters a question mark, the PUTGET service routine causes
the second-level informational message chain (if one exists) to be written to
the terminal, again puts out the mode message, and returns the response
from the terminal.

When the TIME command is entered, the TMP links to the TIME
command processor to obtain the time information. Upon completion of the
TIME command, the user still has the above three options.

Intercepting a TMP Task ABEND

When the TMP (or any program linked to by the TMP) causes an ABEND,
the TMP ESTAE exit gains control. The TMP specifies its own ESTAE exit
routine by issuing the ESTAE macro instruction. (See SPL: System Macros
and Facilities, for a discussion of the ESTAE macro instruction.)

For a discussion of interface considerations for establishing ESTAE and
ESTAI exit routines, refer to “ESTAE/ESTAI Exit Routines -- Intercepting
an ABEND” in the section on command processors in this manual.

Your TMP ESTAE exit routine can use the contents of the ESTAE work
area created by the STAE macro instruction to determine:

o The type of error

o The cause of the error

o The PSW at the time of the ABEND

The last PSW before the program ABEND
« The contents of the program registers

If your TMP ESTAE exit routine cannot correct the problem, it should
use the PUTLINE macro instruction to inform the user at the terminal that
a task running under the TMP’s TCB is terminating abnormally. Then, the
TMP ESTAE routine should take a dump of the user’s region if a
SYSABEND or a SYSUDUMP data set was specified in the user’s LOGON
cataloged procedure, clear the user’s region, load a fresh copy of the TMP,

TSO Guide to Writing a TMP or a CP

9

and begin processing as if the TMP had been invoked by the
LOGON/LOGOFF scheduler.

If the error persists and the TMP fails again, the ESTAE routine should
pass control to the PUTLINE service routine to notify the user. A logoff
should be forced by returning to the LOGON/LOGOFF scheduler.

For additional information about expanded recovery facilities available
through ESTAE and ESTAI, refer to Supervisor Services and Macro
Instructions.

Processing an Attention Interruption

After having been attached, the TMP must set up its attention handling
facilities. For this initialization process, you can use the STAX macro
instruction to pass the address of your attention handling routine to the
system.

For a discussion of interface considerations for attention exit routines,
refer to “Specifying a Terminal Attention Exit -- The STAX Macro
Instruction” later in this book.

Several attention handling routines may be enqueued at any one time;
that is, both the TMP and the currently active command processor may
have issued STAX macro instructions. For a description of how the user
can request different levels of attention exits, see ‘““Attention Interruption
Handling -- The STAX Service Routine” later in this book.

The attention handling routine you specify for the terminal monitor
program is given control under any of the following conditions:

1. An attention interruption is entered from the terminal while the
terminal monitor program is in control.

2. An attention interruption is received from the terminal while a
program (other than the terminal monitor program), that has not
provided an attention handling routine, is in control.

3. A program other than the terminal monitor program is in control. The
program has provided an attention exit, but the user at the terminal
has issued sufficient attention interruptions to reach the terminal
monitor program’s attention handling routine. As an example, if a
command processor that has provided an attention handling routine is
in control, and a user enters two successive attention interruptions
from the terminal, the terminal monitor program’s attention exit
receives control.

You can defer attention interruption processing with the DEFER
operand of the STAX macro instruction. If you do use the DEFER option,
attention interruptions are queued as they are received, and are not
processed until you request that the DEFER option be removed.

The Terminal Monitor Program 11

Parameters Received by Attention Handling Routines

When your attention exit routine is entered, the registers contain the
following information:

Register Contents

0,2-12 Irrelevant

1 The address of the attention exit parameter list.

13 Save area address.

14 Return address.

15 Entry point address of the attention handling routine.

The attention exit parameter list pointed to by register one, contains the
address of a terminal attention interruption element (TAIE).

The parameter structure received by your attention exit routine is shown
in Figure 5.

12 TSO Guide to Writing a TMP or a CP

Entry from the STAX service routine

Attention Exit Routine

Register 1

Attention Exit
Parameter List

Terminal Attention
Interrupt Element

Figure 5. Parameters Passed to the Attention Exit Routine

The Terminal Monitor Program 13

The Attention Exit Parameter List

Figure 6 shows the format of the attention exit parameter list pointed to by

register one when an attention exit routine receives control.

Number of
Bytes

Field

Contents or Meaning

The address of the terminal attention interrupt
element (TAIE).

The address of the input buffer you specified
as the IBUF operand of the STAX macro
instruction. Zero if you did not include the
IBUF operand in the STAX macro instruction.

The address of the user parameter information
you specified as the USADDR operand of the
STAX macro instruction.

Zero if you did not include the USADDR
operand in the STAX macro instruction.

Figure 6. The Attention Exit Parameter List

The Terminal Attention Interrupt Element (TAIE)

The first word of the attention exit parameter list contains the address of an
eighteen-word terminal attention interrupt element (TAIE). Figure 7 shows

the format of the TAIE, which is mapped by the IKJTAIE macro.

Number of
Bytes

Field

Contents or Meaning

64

TAIEMSGL

TAIETGET

TAIEIAD

TAIERSAV

The length in bytes of the message placed
into the input buffer you specified as the IBUF
operand on the STAX macro instruction.

Zero if you did not code the IBUF operand in
the STAX macro instruction.

The return code from the TGET macro
instruction issued to get the input line from
the terminal.

Reserved.

Interruption address. The right half of the

interrupted PSW. The address at which the
program (or a previous attention exit) was
interrupted.

The contents of general registers, in the order
0 - 15, of the interrupted program.

Figure 7. The Terminal Attention Interrupt Element

If you did not include the IBUF and the OBUF operands in the STAX
macro instruction that set up the attention handling exit, use the PUTGET
macro instruction, specifying the TERM operand, to send a mode message
to the terminal identifying the program that was interrupted, and to obtain

a line of input from the terminal.

14 TSO Guide to Writing a TMP or a CP

9

If you specify the OBUF operand on the STAX macro instruction
without an IBUF operand, or with an IBUF length of 0, you can then use
the PUTGET macro instruction, specifying the ATTN operand. This causes
the PUTGET service routine to inhibit the writing of the mode message,
since a message was already written to the terminal from the output buffer
specified in the STAX macro instruction. The PUTGET service routine
merely returns a logical line of input from the terminal.

In either of the above cases, if the user enters a question mark, the
PUTGET service routine automatically causes the second-level
informatjonal message chain (if one exists) to be written to the terminal,
puts out the mode message again, and returns a line from the terminal.

If you used the IBUF operand on the STAX macro instruction, note that
no logical line processing or question mark processing is performed. If the
user returns a question mark, you will have to use the PUTLINE macro
instruction to write the second-level informational message chain to the
terminal. Then issue a PUTGET macro instruction, specifying the TERM
operand, to write a mode message to the terminal and to return a line of
input from the terminal.

Use the command scan service routine to determine that the line of input
is syntactically correct in the input buffer returned by the PUTGET service)
routine, or in the attention input buffer (pointed to by the second word of
the attention exit parameter list).

Special functions such as the TIME function should be performed
immediately by the attention handling routine, and a new READY message
should then be put out to the terminal, so that the terminal user may enter
another command. Any other command should be passed to the TMP
mainline routine for processing as if it were a newly entered command.

Note that the TGET and TPUT buffers are flushed when an attention
interruption is entered. If the user enters an attention interruption from the
terminal and then enters a null line to continue processing, the contents, if
any, of the TGET and TPUT buffers are lost.

Processing a STOP Command

A STOP/MODIFY ECB is created by the time sharing system and can be
obtained by your TMP by use of the EXTRACT macro instruction. During
TMP processing, if a STOP command is indicated by a post to the STOP
ECB, return to the LOGON/LOGOFF scheduler so that the user may be
logged off the system.

The Terminal Monitor Program 15

16 TSO Guide to Writing a TMP or a CP

Command Processors

A command processor is a problem program invoked by the TMP when a
user at a terminal enters a command name. It may be link-edited into any
library in the system link library list (LNKLSTxx) or SYS1.LPALIB. The
command processor may be placed in a date set that is specified on the
STEPLIB DD statement in a LOGON procedure. Execution should
normally not be handled from a STEPLIB because of a decrease in
performance during a system and TSO session. Refer to “Adding
Commands to TSO” for a description of when a STEPLIB should be used.

The internal logic of the IBM-supplied command processors is described
in TSO Command Processor Logic, Volumes I, II, and IV. The command
language used to request each of these command processors is described in
TSO Command Language Reference.

If you choose to write your own command processors, you should be
familiar with the service routines described in this book.

This section discusses the relationships between the command processors
and the rest of TSO, and provides guidelines for coding your own command
Processors.

This section is divided into the following topics:

e Adding Commands to TSO - Describes how to add a new command
processor to TSO

« Command Processor Coding Conventions - Describes rormal interface
conventions

« Command Processor Use of the TSO Service Routines - Briefly
discusses each of the TSO service routines and the situations in which
they should be used

» The ESTAE and ESTAI Exit Routines - Discusses the functions your
error routines should provide

 Attention Exit Routines - Discusses the need for attention handling
exits and the functions those exits should perform

» The HELP Data Set - Discusses the HELP data set, how to write
HELP members, and how to update existing HELP members

Adding Commands to TSO

There are three methods you can use to add a new command processor to
TSO.

1. You can enter your command processor as a member of the
partitioned data set SYS1.CMDLIB, via the linkage editor.

2. You can create your own command library and concatenate it to the
SYS1.CMDLIB data set. In this case, use the utility [EBUPDTE to
create new statements in the link list (LNKLSTOQOQ or LNKLSTxx) in
SYS1.PARMLIB.

3. Generally, unauthorized users can request that a LOGON procedure
be created that specifies, on the STEPLIB DD statement, the name
of the partitioned data set containing the command.

Command Processors 17

18

Command Processor Coding Conventions

The TMP uses standard linkage conventions in passing control to a
command processor. The command processor parameter list (CPPL) is the
input parameter list to all command processors. For more information on
the CPPL, see the section called ‘‘Interfacing with the TSO Service
Routines” later in this book.

Command processors should contain logic that issues error messages.
These messages should handle all error codes, expected or unexpected, from
any routine or SVC they invoke. Whenever possible, generalized routines
such as DAIRFAIL should be used. Use of these routines allows the
issuance of meaningful error messages for return codes.

When returning control to the TMP, the command processor should use
standard linkage and set a return code in general register 15. Command
procedures (CLISTs) may then check this code for the following
conventions:

0-normal execution
12-termination error during execution (no error exists if a command processor is able to
obtain required information by prompting)

Command Processor Use of the TSO Service Routines

Use the IBM-provided service routines described in this manual when
coding your own command processors. Read the sections on the various
service routines, macro instructions, and ‘““Interfacing with the TSO Service
Routines” for an understanding of the services they perform and how to
use them. The following topics provide information on when to use each of
the service routines.

Note: “MVS/Extended Architecture Considerations” lists the linkage
attributes for the TSO service routines. Additional descriptions of
considerations caused by 31-bit addressing are provided in the sections
describing the routines and macros.

STACK Service Routine

Use the STACK service routine to change the source of input by adding an
element to the input stack or to reset the input stack to the terminal
element originally specified by the terminal monitor program.

A command processor should issue the STACK macro instruction in the
following circumstances:

1. Your command processor has created a series of commands to be
executed after the command processor terminates. The command
processor should build an in-storage list containing the commands to
be executed and issue the STACK macro instruction to place a
pointer to the list on the input stack.

2. You may want to pass data from one of your command processors to
another command processor. This data may be passed in storage via
the input stack. Issue the STACK macro instruction to place a pointer
to the in-storage data on the input stack.

TSO Guide to Writing a TMP or a CP

9

3. Your command processor performs functions similar to those
performed by the IBM-supplied EXEC command (that is, it executes
a command procedure). Your command processor should issue the
STACK macro instruction to place a pointer on the input stack to the
command procedure to be executed.

4. Whenever one of your command processors terminates with an error
condition, its error handling routine should issue the STACK macro
instruction to clear the input stack, before returning control to the
TMP. The input stack must be cleared or command procedure
(CLIST) processing will not be handled correctly. Commands such as
DELETE and FREE do not flush the stack if the module requested
was not found.

Catalog Information Routine

The catalog information routine (IKJEHCIR) retrieves information from the
system catalog. This information may include a data set name, index name,
control volume address, or volume ID. The information may be requested
from a specific user catalog. If you do not specify a specific catalog,
IKJEHCIR searches the system default catalog. An entry code indicates
what kind of information is being requested.

Use the CALL, CALLTSSR, or LINK macro instruction to invoke the
catalog information routine.

Note: For additional information concerning the catalog information routine,
see ‘“‘Catalog Information Routine (IKJEHCIR)” later in this book.

Default Service Routine

The default service routine (IKJEHDEF) constructs a fully-qualified data
set name when the calling routine provides a partially-qualified data set
name. A fully-qualified data set name has three fields: a userid, a data set
name, and a descriptive quclifier.

Use the CALL, CALLTSSR or LINK macro instruction to invoke the
default service routine. At entry, general register 1 must point to the default
parameter list (DFPL). IKJEHDEF then invokes the catalog information
routine (IKJEHCIR) to search the system catalog for the required
qualifiers. When the search argument is satisfied, the default service routine
returns to the calling control program. All of the general registers are
restored except for register 15 which contains the return code.

Note: For additional information concerning the default service routine, see
TSO Terminal Monitor Program and Service Routines Logic.

GETLINE Service Routine

Your command processors should use the GETLINE service routine to
obtain data. The buffer returned by GETLINE is in subpool 1, and is
owned by your command processor. For efficient execution, issue
FREEMAIN macro instructions within each command processor, or within
each subtask created by the command processor, to free the GETLINE
buffers it obtains.

Command Processors 19

PUTLINE Service Routine

Your command processors should use the PUTLINE service routine to write J
informational messages or data to the terminal and to chain second level

informational messages. PUTLINE writes the output lines to the terminal

regardless of the source of input. TPUT should not be used under these

circumstances. The GNRLFAIL service routine should be used to issue

meaningful error messages for return codes from PUTLINE.

PUTGET Service Routine

Your command processors should use the PUTGET service routine for
prompting and for subcommand requests. Use the operands on the
PUTGET macro instruction to specify logical line processing with editing
and the WAIT option.

If the user enters a question mark in response to a message issued with a
PUTGET macro instruction, the PUTGET service routine displays the
second level messages chained by previous PUTLINE macro instructions. If
the user responds with a subcommand name, the second level messages are
deleted and the storage they occupied is freed. See “PUTGET Processing”
for exceptions to this usual method of processing.

As with the GETLINE service routine, the buffers returned by the
PUTGET service routine belong to, and should be freed by, the command
Processor.

IKJEFF02 Message Issuer Service Routine

If you make numerous insertions into messages, you should use this service ’
routine instead of PUTLINE and PUTGET. Also, when you use IKJEFF02,
all of your messages can be placed in a single CSECT or a single module.

DAIR Service Routine

You may use the DAIR service routine to obtain information about a data
set and, if necessary, to invoke dynamic allocation routines to perform the
requested function. However, additional functions are available if you
invoke dynamic allocation (SVC 99) directly. Another drawback to using
DAIR is that DAIR, which normally invokes SVC 99, increases system
overhead. For a discussion of how to invoke dynamic allocation directly,
refer to SPL: System Macros and Facilities.

20 TSO Guide to Writing a TMP or a CP

If you are going to use DAIR, you should read the section called
“Dynamic Allocation of Data Sets - The Dynamic Allocation Interface
Routine (DAIR)” later in this book and adhere to the following guidelines:

o Command processors should allocate data sets by DSNAME and use
the DDNAMES returned by DAIR to open the data sets. If necessary,
command processors should pass the ddnames on to any
subcommands or problem programs running under them.

« Command processors should allow DAIR, the default service routine,
or the parse service routine to prefix an identifier on the data set
name so the PROFILE command’s PREFIX and NOPREFIX options
are automatically supported. You can use the default service routine to
add any data set suffix that exists for the data set. (The default
service routine is documented in 7SO Terminal Monitor Program and
Service Routines Logic).

« Whenever the user specifies a password for a data set, the command
processor should send the password to DAIR when allocation is
requested.

o Command processors should normally invoke DAIR to free all data
sets at termination so other TSO users or submitted jobs can have full
use of the data sets.

« Before detaching terminated subcommands, command processors that
accept subcommands should use DAIR to free any data sets allocated
by the subcommands.

o Command processors should use the DAIRFAIL service routine to
issue meaningful error messages for non-zero return codes from
DAIR.

Command Scan Service Routine

Your command processors should use the command scan service routine to
scan for valid subcommand names. The option of checking the remainder of
the input line for non-separator characters should be requested. If no
additional significant characters are found in the line, the command
processor subroutine need not invoke the parse service routine to scan the
command operands because none are present.

Parse Service Routine

Your command processors and subcommand processors should use the
parse service routine to scan the operands entered with the command or
subcommand name. The parse service routine returns a parameter descriptor
list to the calling routine. The parameter descriptor list describes the
operands found in the command buffer.

In the parse macro instructions that define command syntax, command
processors and subcommand processors can indicate to the parse service
routine that validity checking exits be taken on certain types of operands.
Because the parse service routine checks the operands only for syntax
errors, you should indicate in the parse macro instructions that validity
checking routines be entered whenever a logical, rather than a syntactical,
error might occur.

Command Processors 21

22

The GNRLFAIL service routine should be used to issue meaningful error
messages for non-zero return codes from the parse service routine.

ESTAE/ESTAI Exit Routine -- Intercepting an ABEND

Use the ESTAE and ESTALI exits in your command processors, if they are
needed, to keep the system operable if abnormal termination occurs.
ESTAE/ESTALI exits should be used in such a way that the command
processor gets control if a subcommand abnormally terminates. If you issue
an ESTAE, issue it as early as possible in your command processor. Any
ESTAE should be issued before any STAX. ESTAE provides the command
processor with the ability to intercept an ABEND so that cleanup, bypass,
and if possible, execution retry can be accomplished. (See SPL: System
Macros and Facilities for a discussion of the ESTAE macro instruction. See
Supervisor Services and Macro Instructions for a discussion of the ESTAI
operand of the ATTACH macro instruction and for information about
ESTAE and ESTALI exit routines.)

Linkage Considerations

Programs may issue the ESTAE and FESTAE macros, as well as the
ATTACH macro with the ESTAI operand, in either 24- or 31-bit
addressing mode. The ESTAE, FESTAE, and ESTAI recovery routines
receive control in the same addressing mode in which the ESTAE,
FESTAE, and ATTACH macros are issued. When the macros are issued in
31-bit addressing mode, ESTAE, FESTAE, and ESTAI routines may reside
above the 16-megabyte virtual storage line.

The ESTAE, FESTAE, and ATTACH macros are downward
incompatible. The MVS/Extended Architecture versions of these macros do
not execute properly in 370 mode. For an explanation of how to select the
desired macro level, see SPL: System Macros and Facilities.

While not recommended, the STAE macro and the STAI operand of
ATTACH may be used to provide error handling exits. However, programs
executing in 31-bit addressing should not establish STAE or STAI recovery
exits.

Command Processor Functions that Rely on Exit Routine Support

The following types of command processors should use ESTAE exit
routines:

« All command processors that process subcommands

« All command processors that request system resources that are not
freed by ABEND or DETACH

» Command processors that process lists, to allow processing of other
elements in the list if a failure occurs while processing one element in
the list

Command processors that attach subcommands should also provide an
ESTAI exit to intercept abnormally terminating subcommand processors.

Simple command or subcommand processors should not issue an ESTAE
or ESTALI if the terminal monitor program or calling command processor
ESTAI exits provide adequate processing.

TSO Guide to Writing a TMP or a CP

Guidelines for ESTAE and ESTAI Exit Routines
ESTAE and ESTALI exit routines should observe the following guidelines:

1. The error handling exit routine should issue a diagnostic error message
of the form:

1st level command-name ENDED DUE TO ERROR+
subcommand-name

2nd level COMPLETION CODE IS xxxx

The name supplied in the first level message is obtained from the
environment control table, and the code supplied in the second level
message is the completion code passed to the ESTAE or ESTAI exit
from ABEND. The GNRLFAIL service routine may be used to issue
the diagnostic error message, although it requires additional storage
space (see guideline number 4).

The routine should issue these messages so that the original cause of
abnormal termination is recorded should the error handling exit
routine itself terminate abnormally before diagnosing the error.

When an ABEND is intercepted, the command processor ESTAE exit
routine should determine whether retry is to be attempted. If so, the
exit routine should issue the diagnostic message and return, indicating
via a return code that an ESTAE retry routine is available. If a retry
is not to be attempted, the exit routine should return, indicating via a
return code that no retry is to be attempted. The TMP ESTAI exit
routine will issue the diagnostic message. (For a description of the
return codes and their meanings, see Supervisor Services and Macro
Instructions.)

2. The ESTAE or ESTAI routine that receives control from ABEND
should perform all necessary steps to provide system cleanup. This
cleanup should be performed in the ESTAE exit routine rather than in
the ESTAE retry routine because DETACH with the ESTAE=YES
operand does not allow the subtask to retry from an ESTAE/ESTAI
exit. (The TMP issues DETACH with ESTAE=YES when a
command processor has been interrupted with an attention.)

3. The error handling exit routine should attempt to retry program
execution when possible. If the command processor can circumvent or
correct the condition that caused the error, the error handling routine
should attempt to do so. In other cases, however, RETRY has no
function and the command processor ESTAE exit should not specify
the RETRY option.

4. Storage might not be available when the ESTAE or ESTAI routine
receives control. Any storage the routine requires should be acquired
before it receives control, and be passed to it.

Attention Exit Routines

An attention exit routine should be provided by any command processor
that accepts subcommands. Use the STAX macro instruction to specify the
address of your attention handling routine. See “Attention Interruption
Handling - The STAX Service Routine” for a complete discussion of the
STAX macro instruction. Simple command processors should not issue a

Command Processors 23

STAX if the TMP or the calling command processor STAX exits provide
adequate processing.

If you did not include the IBUF and the OBUF operands in the STAX
macro instruction that set up the attention handling exit, use the PUTGET
macro instruction, specifying the TERM operand, to send a mode message
to the terminal identifying the program that was interrupted, and to obtain
a line of input from the terminal.

If you specify the OBUF operand on the STAX macro instruction
without an IBUF operand, or with an IBUF length of 0, you can then use
the PUTGET macro instruction, specifying the ATTN operand. This causes
the PUTGET service routine to inhibit the writing of the mode messages,
since a message was already written to the terminal from the output buffer
specified in the STAX macro instruction. The PUTGET service routine
merely returns a logical line of input from the terminal.

In either of the above cases, if the user enters a question mark, the
PUTGET service routine automatically causes the second level
informational message chain (if one exists) to be written to the terminal,
puts out the mode message again, and returns a line from the terminal.

If you used the IBUF operand on the STAX macro instruction note that
no logical line processing or question mark processing is performed. If the
user returns a question mark, you will have to use the PUTLINE macro
instruction to write the second level informational message chain to the
terminal. Then issue a PUTGET macro instruction, specifying the TERM
operand, to write a mode message to the terminal and to return a line of
input from the terminal.

Whether you use the IBUF operand on the STAX macro instruction or
the PUTGET macro instruction to return a line from the terminal, you can
use the command scan service routine to determine what the user has
entered.

If the user enters a null line, the attention handling routine should return
to the point of interruption. Note, however, that the TGET and TPUT
buffers are flushed during attention interruption processing. If any data was
present in these buffers, it is lost.

If a new command or subcommand is entered, the attention handling
routine should:

« Post the command processor’s event control block to cause active
service routines to return to the command processor.
« Exit.

+ Reset the input stack in the command processor mainline. (A stack
flush in an attention routine may cause severe errors.)

The HELP Data Set

A terminal user can enter the HELP command to retrieve information
about commands or subcommands. This information is stored in a data set
labeled SYS1.HELP (the HELP data set). If you add command processors
to TSO, you should either add HELP information to the SYS1.HELP data
set, or to a private HELP data set.

24 TSO Guide to Writing a TMP or a CP

Attributes of SYS1.HELP

SYS1.HELP is a cataloged, partitioned data set consisting of one member
named COMMANDS and individual members for each command in the
system. The COMMANDS member contains a list of the commands
available to the user, and a brief description of each. The individual
members for each command are named with the command name, and
contain more specific information about the command and its
subcommands. The HELP information contained within any member of the
HELP data set consists of punch-card images. The logical record length is
therefore 80 characters.

Format of HELP Members

Each of the HELP members, other than the COMMANDS member, is
divided into the following subgroups, each of which can be displayed at the
terminal:

o A subcommand list - This appears only if the command has
subcommands.

» Functional description - This provides a brief description of the
function of the command or subcommand.

« Syntax - This describes the syntax of the command or subcommand.

« Message identifier description - This provides information pertaining
to messages issued by the command or its subcommand.

o Operand description - This provides information on the command
positional operands, followed by individual sections containing brief
descriptions of each keyword and its parameters.

Private HELP Data Sets

You may concatenate your data set to the SYS1.HELP data set (or vice
versa). Concatenated data sets need not have the same attributes as the
SYS1.HELP data set, but the first concatenated data set must have the

largest blocksize of the concatenated data sets, and it must not specify a
fixed blocksize.

Concatenated data sets are searched in the order of concatenation. If
SYS1.HELP and a private HELP data set have been concatenated, the first
COMMANDS member encountered by the HELP processor is used as the
list of available commands. Thus, if you concatenate your own HELP data
set to SYS1.HELP, you should make additions to the COMMANDS
member of SYS1.HELP.

Private HELP data sets must be allocated with filename SYSHELP,
either in the LOGON procedure or on an ALLOCATE command. When
data sets are concatenated, the filename SYSHELP is required. If only
SYS1.HELP is required, the filename SYSHELP would not have to be
allocated. (See the DAIR entry code X‘24’ later in this book.)

Updating SYS1.HELP

Use the IEBUPDTE utility program or the EDIT comumand to update
SYS1.HELP. SYS1.HELP is a system data set, so it will generally require
operator intervention when it is updated.

Command Processors 25

26

Writing HELP Members

To add a new member to a data set named PRIVATE.HELP using the
EDIT command, enter:

edit 'private.help(mbrname)' data new

Use the information described in Figure 8 when you add to SYS1.HELP or
set up your own HELP data set. The control characters, beginning in card
column 1, divide the data set into the subgroups previously described, and
thereby permit the HELP command processor to select message text
according to the operands supplied on the HELP command. (See T.SO
Command Language Reference for a discussion of the HELP command.)

Control

Character Purpose of Data Card

)S This card indicates that a list of commands or subcommands
follows.

)F This card indicates that the functional discussion of the command
or subcommand follows.

)X This card indicates that the syntax description of the command or
subcommand follows.

™ This card indicates that message ID information follows. The

information is only printed by the HELP command when the
MSGID keyword is specified.

))messageid This card indicates that information follows describing the named
messageid. One of these control cards should be present for each
message issued by the command. Each card contains the identifier
of the message it describes. Message IDs can be any length and
the first character must be alphabetic.

)O This card indicates that the command operands and their
descriptions follow. Positional operands must follow immediately
after the)O control card and before the))keyword control cards.
))keyword This card indicates that information follows describing the named
keyword. One of these control cards must be present for each
keyword operand within the command. Each card contains the
name of the keyword it describes.

=subcommandname | This card indicates that information follows concerning the
subcommand named after the equal sign. One of these cards is
required for each subcommand accepted by the command being
described. Note that this card merely names the subcommand; it
does not describe it. Describe the subcommand in the same manner
you would describe a command.

If the subcommand has an alias name, you may include the alias
name on the control card, i.e.
=subcommandname=subcommandalias. Note that no blanks may
appear between the subcommand and the alias.

Figure 8. Format of a HELP Data Set

All data cards, except the =subcommandname card, can contain
additional information. If you include additional information on the cards,
the control characters)S,)F,)X, and)O must be followed by at least one
blank, and the control character))keyword by at least one blank or a left
parenthesis. Use the left parenthesis when the keyword you are describing
is followed by operands enclosed in parentheses.

The only restrictions on data cards are that columns 72-80 are reserved
for sequence numbers, and column one must contain a right parenthesis, an
equal sign, or a blank. The sequence numbers are not printed when the
HELP command is executed.

TSO Guide to Writing a TMP or a CP

<9

The OPERAND cards must be the last section of the HELP member.
The YO card may only be followed by the)) or = cards.

For example, information concerning a user’s SAMPLE command, shown
in Figure 9, could be formatted for entry into the HELP data set (or your
own private help data set).

SAMPLE

positl [, (posit2)) [KEYWD1{ (posit3,posits)])

Figure 9. An Example of a User’s SAMPLE Command Format

The SAMPLE command has one subcommand, the EXAMPLE
subcommand (see Figure 11). Both the command and the subcommand can
issue messages IKJXX110I and IKJXX1111.

EXAMPLE

posit10,positii

KEYWD10
KEYWD11
KEYWD12

[KEYWD13 (posit12)]

Figure 10. An Example of a User’'s EXAMPLE Subcommand Format

Command Processors 27

Figure 11 shows data cards that would present and format information
about the SAMPLE command and EXAMPLE subcommand for inclusion

in the HELP data set.

»

] Ql I
S H
“ -y << > Tl
0 Q 3K vy QA R o]
Qi Q Y] ~ > x| & N
> 0 U] X [Q]
< BRI S [N ~
Q SYECTERE I Q ¥ 2/ (v |
b IR IENED XIX] [NRYEIMNEY Q X
Q ANASIETIESIENIE d N Y] [Q nNin N
of I [[SILNIY) L ~ Q ~
Q] [Su[s! (&[S)) N (Oly] |9 Q
RY Q0 XKD W[(D] -] I ~ ~ NIRS >
W [OIQ ~ NIRRT ol | ¥ NN ~ T
NN ~|x|Y > [¥) N
O QK[TX[OS = L) ~ N < Q .
2 NSO Txle] OIS QI Tyl J y m
M.vrmrms U. ~ * [m._“ea.m_ /ﬁ
[V ~ |~ SN | _pl\ [. [
NI N EY IR IES gy 5 W IR YBYES
M ILNLNET IR IR NESEN Sy Wil EN i[&
N NIHIEJECTLN S IIEECTIETIRY ~ WiN Yyl Twlw AN Wi
RS RYTNES WX RIS g RS Ry EVEIANANES x
[N W h T =[xy ~ TN NN [N QA
wlnlvn QS BB INLNESY NI Q NN EIRY NNy
AT N ~ y Y[¥l Wy ~ R < 79} (%) NENENENBY Q»
| (4 %) QX ~~Ix > QU (= T Wiy %
N IDQNQINT K] (W N Wl W) OIS [¥= X Uk ~
X W N Sy YL Q [N [n
> [X N %) LSO NES PIES) Ql= \ NENEE KN >N
<l [Q]3 <] [Ng [- qf [\ ¥[§[qQ
ST & Yxlunl [Noln [C1EYY ~N [0 K OlQ [T ¥
K[QlQlO NN 0Nl NWl [y B[R] ~
LIS NN Qg [y y EEWAWW (Y
= ~ > FIEIEIEY Q NI Qx> [NISEN
N CICTMMLITMIEE LN PN NIEY] GIN (O T T TalNJw N <
< [SIENIIRIEY W Sw(S [L] = QI [) [IRY Nd
A IEMIENANAN LT IS | ILNES B3 RNLTTEE RN [[Ty
SV SIS (gl [O/~ [} [NY < (I LIS
[S1EN Qlx ~ [(§) [¥) ~lNW LARY Ql X ~ NENEY ~
(7] () % ' [NSINEIEILNIN Ny 7] [NIN N
Yyl [} SWO WYy SISTRINTS [~ QNS RS IR
ST WS UR O] (gsIsSIN]--[Ww[Y ~ (Y Sy [w [NES YA Ui~Nn
QN2][T[OA U Q[AU[9 QIOMNIKIDD Nﬁm T} HRNRNLLIEIEY
XYoo N EI[ILS) QlaQ |w QU N < Q R dEAY QsISININIQIS
N 3 RYEN EHONGIES NES ~ = x| DL SN N
wl NS (%) JoaWg[e < [K Qlwy AT OTOJOINT K]
VIS RIS [O 1O % Bl [~
SR T R T SHIRHER SRR
[N < KN MTOI_/O 4 [SILN XN |
B ,23
~ |~ -~ [] EYEIASES
<> Q ~J | [SYEAY
== EY BN
| B LT W |y
it T L X — T} A EOI IR
w x ~[~ Wi > [S) NN
~ L ~ M)\/\O/ -~ "W -~ N\ NN

Figure 11. Coding Example - Including the SAMPLE Command and EXAMPLE Subcommand in

the HELP Data Set

28 TSO Guide to Writing a TMP or a CP

MVS/Extended Architecture Considerations

This section discusses considerations for MVS/Extended Architecture in
terms of its impact on the tasks documented in this manual. You should be
familiar with the publications that describe comprehensive programming
considerations for MVS/Extended Architecture, as well as with those that
describe the routines and macros discussed in this manual. Henceforth,
MVS/Extended Architecture is referred to as MVS/XA.

Note: Interfaces for service routines and macro instructions mentioned in
this section are covered in more detail in the sections of this manual
describing the individual service routines and macro instructions.

Testing a Program

MVS/XA users cannot use the TEST command to test a program unless
TSO Extensions (TSO/E 5665-293) is installed. If TSO/E is not installed
and a user enters the TEST command, he receives a message informing him
that the command is not recognized.

31-Bit Addressing - General Interface Considerations

The interfaces described in this section reflect what is possible on an
MVS/XA system. When determining the attributes and linkage conventions
for a program, you should analyze the program’s individual interfaces and
its overall interactions with other programs. This section provides general
guidelines for making these determinations.

MVS/XA requires that addressing modes and program residency be
considered when determining linkage conventions. See “Specific Interfaces
and Functions” later in this section for brief descriptions of those
considerations for the service routines and macro instructions described in
this manual.

Assuming you are running programs on an MVS/XA system, you may
wish to take advantage of the added virtual storage provided by extended
addressing, or you may wish to prepare for doing so in the future. Before
describing linkage considerations, it is important to note that if a program is
to be run on MVS/370 systems or on both MVS/370 and MVS/XA
systems, it cannot perform any functions unique to MVS/XA.

Some MVS/XA macro instructions are downward incompatible; their
MVS/XA expansions do not function correctly in MVS/370. Of the
macros discussed in this manual, ATTACH, ESTAE, FESTAE, and STAX
are downward incompatible. For a description of how to generate the
desired level of a macro instruction, refer to SPL: System Macros and
Facilities.

When making linkage decisions, you should analyze:

o Who passes control to whom
« Whether return is desired
« AMODE and RMODE attributes

The first two items are discussed in SPL: 31-Bit Addressing.

MVS/Extended Architecture Considerations 29

30

The following discussion provides a general description of AMODE and
RMODE attributes; it does not attempt to cover AMODE and RMODE
considerations in depth. For a detailed discussion of 31-bit addressing, refer
to SPL: 31-Bit Addressing.

The following paragraphs pertain to programs running exclusively in
370-XA mode.

AMODE=24, RMODE=24

Programs with these attributes expect to (or are designed to) receive
control in 24-bit addressing mode, and are loaded below 16 megabytes.

If you do not assign AMODE and RMODE attributes to a program, the
attributes default to AMODE=24 and RMODE=24.

The IBM-supplied terminal monitor program and command processors
have these attributes, and are loaded below 16 megabytes.

AMODE=ANY, RMODE=24

AMODE=ANY indicates that a program expects to (or is designed to)
receive control in the addressing mode of the program that invoked it. Note
that a program with the AMODE=ANY attribute may have to switch
addressing modes for certain processing. However, such a program must
switch back to the addressing mode in which it received control before
returning to the caller.

AMODE=ANY programs must be given the RMODE=24 attribute.

AMODE=ANY does not indicate whether the program should be passed
input that resides below 16 megabytes; the particular interfaces should be
analyzed to determine where input may reside. However, a program should
meet certain criteria in order to be assigned the AMODE=ANY attribute.
Refer to SPL:31-Bit Addressing for a description of the criteria.

AMODE=31

AMODE=31 indicates that a program expects to (or is designed to) receive
control in 31-bit addressing mode. Such a program may have the
RMODE=24 or RMODE=ANY attribute, depending on its residency
requirements. Regardless of the program’s RMODE attribute, the residency
of its input depends on the program’s requirements. The program may
require that some of its input reside below 16 megabytes, while other input
may reside anywhere.

A program that runs exclusively in 31-bit addressing mode
(AMODE=31) may do so provided it complies with the restrictions of
invoking, and being invoked by, programs that run in 24-bit addressing
mode (AMODE=24 or AMODE=ANY).

Refer to SPL: 31-Bit Addressing for more information on the
AMODE=31 attribute.

TSO Guide to Writing a TMP or a CP

9

Specific Interfaces and Functions

The interfaces described in this section reflect what is possible on an
MVS/XA system. When determining the attributes and linkage conventions
for a program, you should analyze the program’s individual interfaces and
its overall interactions with other programs. This section provides specific
guidelines for making these determinations.

Control Program Interfaces

The IBM-supplied command processors are loaded below 16 megabytes and
must receive control in 24-bit addressing mode.

The command processor parameter list (CPPL) passed by IBM-supplied
control programs resides below 16 megabytes.

User-written TMPs and CPs may execute in either 24- or 31- bit
addressing mode provided they honor the restrictions involved in invoking
programs that have 24-bit dependencies.

Service Routine Interfaces

The following routines execute, and must receive control, in 24-bit
addressing mode. All input passed to these routines must reside below 16
megabytes:

IKJEBEPS data type processor
IKJEFF02 TSO message issuer routine
IKJEFF18 DAIRFAIL

IKJEFF19 GNRLFAIL/VSAMFAIL
IKJEHSIR STA interface routine
IKJGETL GETLINE

IKJPARS parse service routine
IKJPTGT PUTGET

IKJPUTL PUTLINE

IKJSCAN command scan service routine
IKJSTCK STACK

If a program running in 31-bit addressing mode invokes any one of these
routines, the LINK macro should be used to invoke it because LINK does
not require the invoking program to switch to 24-bit addressing mode. In
this case, LINK switches to 24-bit mode in behalf of the invoking program.
If a program is loaded above 16 megabytes, it must use LINK to invoke
one of these routines. LINK returns control to the invoking program in the
same mode in which the LINK macro is issued.

A program that is running in 31-bit addressing mode and is loaded below
16 megabytes may issue CALLTSSR to invoke IKJEFF02, IKJPARS, or
IKJSCAN, provided the program switches to 24-bit addressing mode before
issuing CALLTSSR. Control is returned to the invoking program in 24-bit
addressing mode. If the requested routine has not been placed in the link
pack area, CALLTSSR generates a LINK macro to invoke it. In this case,
the invoking program may issue CALLTSSR in either addressing mode.
Note that CALLTSSR can be used to invoke only certain routines.

MYVS/Extended Architecture Considerations 31

32

A program running in 24-bit addressing mode may invoke these 11
routines using any of the methods suggested in “Passing Control to the
TSO Service Routines.”

IKJEHCIR (catalog information routine) and IKJEHDEF (default
service routine) may be invoked in either addressing mode, but all input
passed to these routines must reside below 16 megabytes. These routines
execute in 24-bit addressing mode and return control in the same
addressing mode in which they are invoked.

STAX (specify terminal attention exit routine) may be invoked in either
24- or 31-bit addressing mode. Refer to ““Attention Interruption Handling
-- The STAX Service Routine” for more information.

IKJDAIR (dynamic allocation interface routine) may be invoked in either
24- or 31-bit addressing mode. When invoked in 31-bit addressing mode,
IKJDAIR may be passed input that resides above 16 megabytes. IKJIDAIR
returns control in the same addressing mode in which it is invoked.

Macro Interfaces

Figure 12 shows the MVS/XA rules for the macros discussed in this
manual,

Note: In Figure 12, a dash (-) indicates that the category does not apply to
the macro because the macro does not generate executable code. The
addressing mode of the program that accesses the date generated by the
macro must agree with the residence of the data.

TSO Guide to Writing a TMP or a CP

Macro [X) May Ba Issued In (P) May Be Issued by Program
(1) Input May Be

24-Bit Mode 31-Bit Mode Below 16 Mb Above 16 Mb
ATTACH I, P 1,P
CALL X X I,P I,P
CALLTSSR X X P P
ESTAE X X I, P I,P
FESTAE X X I,P I,P
GETLINE X X I, P
GTSIZE X X P P
GTTERM X P
IKJENDP - — P P
IKJIDENT - - P P
IKJKEYWD - — P P
IKINAME - - P P
IKJOPER - _ P P
IKJPARM - - P P
IKJPOSIT — — -] p
IKJRLSA X X [2]
IKJRSVWD - — P P
IKJSUBF - - P P
IKJTERM - -) P
IKJTSMSG — - P P
LINK X X I,P I,P
LOAD X X 1P 1P
PUTGET X X P
PUTLINE X X 1P
RTAUTOPT X X P P
SAM Macros X I, P
SPAUTOPT X P P
STACK % P
STAE X P

Figure 12. MVS/XA Interface Rules for Macro Instructions (Part 1 of 2)

MVS/Extended Architecture Considerations 33

34

Macro (X) May Be Issued In (P) May Be Issued by Program
(1) Input May Be
24-Bit Mode 31-Bit Mode Below 16Mb Above 16Mb
STATTN X I,P
STAUTOCP X X P P
STAUTOLN X I,P
STAX X X IP See section on
STAX.
STBREAK X I,P
sTCC X 1P
STCLEAR X I, P
STCOM X P
STFSMODE X I,P
STLINENO X I, P
STSIZE X 1P
STTIMEQU X I,P
STTMPMD X [P
STTRAN X I,P
TCLEARQ X I,P
TGET X I,P~
TPG X I,P
TPUT X I, P
XCTL X X 1P P

Figure 12. MVS/XA Interface Rules for Macro Instructions (Part 2 of 2)

Notes on Figure 12
ATTACH, LINK, LOAD, XCTL

A program may issue the ATTACH, LINK, LOAD, and XCTL macro
instructions while executing in either 24- or 31-bit addressing mode.
These system services determine where to load the requested program in
storage and in which addressing mode to invoke it based on the
program’s AMODE and RMODE attributes. Note that LOAD only loads
a program,; it does not invoke the program. LOAD returns the address of
the loaded program. The high-order bit of this address reflects the
AMODRE attribute of the loaded program.

If a program is invoked via a LINK, ATTACH, or XCTL macro, it
receives control in the addressing mode specified or allowed by its
AMODE attribute. On the other hand, if a program branches to another
program without changing addressing modes via the BASSM or BSM
branch instructions, the requested program receives control in whatever
addressing mode is active at the time of the branch -- that is, in the
addressing mode of the caller. For more information on these macros,
refer to System Macros and Facilities.

TSO Guide to Writing a TMP or a CP

CALL ;
You may use the CALL macro to invoke a program if that program may
be invoked in the current addressing mode.

CALLTSSR
The CALLTSSR macro instruction may be issued in either 24- or 31-bit
addressing mode. See “Passing Control to the TSO Service Routines”
later in this book for more information on issuing the CALLTSSR
macro.

ESTAE, FESTAE, STAE, ESTAI

The ESTAE and FESTAE macros may be issued in either 24- or 31-bit
addressing mode. Refer to “ESTAE/ESTAI Exit Routines -- Intercepting
an ABEND” for more information. Use of the STAE macro and the
ESTAI operand on the ATTACH macro to establish recovery exits and
routines is not recommended. If they are used, the recovery exits and
routines must receive control in 24-bit addressing mode -- that is the
STAE and ATTACH macros must be issued in 24-bit addressing mode.

ESTAI
See ESTAE.

FESTAE
See ESTAE.

GETLINE, PUTGET, PUTLINE, STACK
The GETLINE, PUTGET, PUTLINE, and STACK macros must be
issued in 24-bit addressing mode.

IKJTSMSG
The IKITSMSG macro must be issued by a program loaded below 16
megabytes.

LINK
See ATTACH.

LOAD
See ATTACH.

Parse Macros
The parse parameter list passed to the parse service routine must reside
below 16 megabytes. As a result, the parse macro instructions that
generate input to parse must be issued by a program loaded below 16
megabytes. See Figure 12 for a list of the parse macros and their linkage
requirements. The IKJRLSA parse macro must be issued in 24-bit
addressing mode.

PUTGET
See GETLINE.

PUTLINE
See GETLINE.

SAM Macros
The sequential access method -(SAM) terminal macro instructions must
be issued in 24-bit addressing mode.

STACK
See GETLINE.

MYVS/Extended Architecture Considerations 35

STAE \.
See ESTAE.

STAX J

A program may issue the STAX macro in either 24- or 31-bit addressing
mode. Refer to “Specifying a Terminal Attention Exit -- The STAX
Macro Instruction” for specific restrictions.

SVC 93 (TGET, TPUT, TPG)
SVC93 (TGET, TPUT, and TPG macros) executes in 24-bit addressing
mode. Programs must issue TGET, TPUT, and TPG in 24-bit addressing
mode.

SVC 94 (Terminal Control Macros)
SVC 94 (terminal control macros) executes in 24-bit addressing mode.
With a few exceptions, terminal control macros must be issued in 24-bit
addressing mode. The exceptions are the GTSIZE, RTAUTOPT,
SPAUTOPT, and STAUTOCP terminal control macros, which may be
issued in 31-bit addressing mode. See Figure 12 for a list of the terminal
control macros and their linkage requirements.

XCTL
See ATTACH.

36 TSO Guide to Writing a TMP or a CP

/

Processing Terminal‘Requests - The TSO Service Routines

The TSO service routines process terminal requests initiated by the terminal
monitor program (TMP), command processors (CPs), and other service
routines. If you write your own command processors, or replace the
IBM-supplied terminal monitor program with one of your own design, you
should use the service routines to process terminal requests.

The TSO service routines build, modify, or make use of various control
blocks. The following control block DSECTS are provided in
SYSi.MACLIB for your use, and are listed in Data Areas.

IKJCPPL The command processor parameter list
IKJCSOA The command scan output area
IKJCSPL The command scan parameter list
IKJDAPL The dynamic allocation parameter list

IKIDAPOC DAIR entry code parameter block
IKJDAPOO DAIR entry code parameter block

IKJDAPO4 DAIR entry code parameter block
IKIDAPO8 DAIR entry code parameter block
IKIJIDAPIC DAIR entry code parameter block
IKJDAP10 DAIR entry code parameter block

IKIDAP14 DAIR entry code parameter block
IKJDAP18 DAIR entry code parameter block
IKJDAP2C DAIR entry code parameter block
IKJDAP24 DAIR entry code parameter block
IKJDAP28 DAIR entry code parameter block
IKJDAP30 DAIR entry code parameter block
IKJDAP34 DAIR entry code parameter block

IKIJDFPB The default parameter block
IKJDFPL The default parameter list
IKJECT The environment control table for GETLINE/PUTLINE/PUTGET/STACK

IKJEFFDF PARMLIST to IKJEFF18 (DAIRFAIL)
IKJEFFGF PARMLIST to IKJEFF19 (GNRLFAIL)
IKIJEFFMT PARMLIST to IKJEFFO2

IKJGTPB The GETLINE parameter block

IKJIOPL The input output parameter list for GETLINE/PUTLINE/PUTGET/STACK
IKJLSD The list source descriptor for STACK

IKJPGPB The PUTGET parameter block

IKJPPL Defines the parse parameter list

IKJPSCB The protected step control block

IKJPTPB The PUTLINE parameter block

IKJSTPB The STACK parameter block

IKJSTPL The STACK parameter list

IKJTAIE Terminal attention interrupt element from STAX
IKITAXE Terminal attention exit element from STAX
IKITMPWA The terminal monitor program work area
IKJUPT User profile table

Processing Terminal Requests - The TSO Service Routines 37

Interfacing with the TSO Service Routines

When the terminal monitor program attaches a command processor, register J
1 contains a pointer to a command processor parameter list (CPPL)

containing addresses required by the command processor. The CPPL is

located in subpool 1. The control block interface between the TMP and an

attached CP is shown in Figure 13.

Terminal Command
Monitor Processor
Program

ATTACH

—)

|
|
|
|
|
l
|

Register 1

CPPL -

Figure 13. Control Block Interface between the TMP and CP
t

The Command Processor Parameter List

You must pass certain addresses contained in the CPPL to the TSO service
routines. Your user-written command processors can access the CPPL via
the symbolic field names contained in the IKJCPPL DSECT by using the
address received in register 1 as a starting address for the DSECT. The use
of the DSECT is recommended since it protects the command processor
from any changes to the CPPL.

The command processor parameter list, as defined by the IKJCPPL
DSECT, is a four-word parameter list. Figure 14 describes the contents of
the CPPL.

38 TSO Guide to Writing a TMP or a CP

When the TMP invokes a problem program, whether a command
processor or not, register 1 contains the address of the CPPL. The CPPL is
required by any program that is going to use TSO service routines. If any
problem program or user-written command processor is going to invoke an
IBM-supplied command processor, the CPPL address must be supplied in
register 1.

All input passed to IBM-supplied command processors and the
IBM-supplied TMP must reside below 16 megabytes.

Number of

Bytes Field Contents or Meaning

4 CPPLCBUF The address of the command buffer for the
currently attached command processor.

4 CPPLUPT The address of the user profile table (UPT).
The UPT is built by the LOGON/LOGOFF
scheduler from information stored in the user.
attribute data set (UADS) and from
information contained in the LOGON
command. The address of the UPT is obtained
from the PSCBUPT field of the protected step
control block (PSCB).

4 CPPLPSCB The address of the protected step control
block (PSCB). The PSCB is bulilt by the
LOGON/LOGOFF scheduler from information
stored in the UADS. The TMP can obtain the
address of the PSCB using the EXTRACT
macro instruction.

4 CPPLECT The address of the environment control table
(ECT). The ECT must be bullt by the TMP
durlng its initialization process; it is used by
the TSO service routines and by some TSO
commands and subcommands.

Figure 14. The Command Processor Parameter List (CPPL)

For a description of linkage and program residency considerations, refer
to “Service Routine Interfaces” in the previous section.

Passing Control to the TSO Service Routines

There are four ways you can pass control to the TSO service routines.

1. You can issue an I/O macro instruction without the ENTRY
parameter for the I/0O service routines.

2. You can issue a LINK instruction to a service routine, but this
requires more system overhead than other methods.

The LINK macro instruction loads the routine in storage based on its
RMODE attribute, and passes control to the routine in the addressing
mode specified or allowed by its AMODE attribute.

3. You can issue a LOAD instruction for a service routine and then do
branches to the loaded routine, but this also requires more system
overhead than other methods.

The LOAD macro loads the routine in storage based on its RMODE
attribute. LOAD returns the address of the loaded program. The

Processing Terminal Requests - The TSO Service Routines 39

42 TSO Guide to Writing a TMP or a CP

Message Handling

TSO messages are divided into three classes:

« Prompting messages
« Mode messages
« Informational messages

Prompting messages begin with ENTER or REENTER, and require a
response from the user. Prompting messages should be initiated by the
parse service routine, rather than by parse validity check exits, using the
text supplied by the command processor as the PROMPT operand of the
IKJPOSIT, IKJTERM, IKJOPER, IKJRSVWD or IKJIDENT parse macro
instructions. See ‘“Using the Parse Service Routine (IKJPARS)” for a
discussion of the PROMPT operand on these macro instructions.

Mode messages are the READY messages sent by the terminal monitor
program, and any other similar messages sent by command processors, such
as the EDIT mode message sent by the EDIT command processor. They
inform the user which command is in control and let him know that the
system is waiting for him to enter a new command or subcommand.

Informational messages do not require an immediate response from the
user.

Prompting and mode messages should be displayed using the PUTGET
service routine. Informational messages should be displayed using the
PUTLINE service routine. The TPUT routine does not support multi-level
messages, message id stripping, and text insertion, and does not function in
background mode (it acts as a NOP).

Message Levels

Messages usually should have associated with them other messages that
more fully explain the initial message. These messages, called second level
messages, are displayed only if the user specifically requests them by
entering a question mark (?).

Prompting messages may have any number of additional levels. The
second level is displayed if the user enters a question mark in response to
the initial message. The last level is displayed if the user enters a question
mark in response to the next to the last message. If the user at the terminal
enters a question mark after all messages have been displayed, PUTGET
displays the message NO INFORMATION AVAILABLE. Pass your second
level prompting messages to the parse service routine by coding them as the
HELP operand in the IKJPOSIT, IKJTERM, IKJOPER, IKJRSVWD and
IKJIDENT parse macro instructions.

An informational message can have only one second level message
associated with it. Since many informational messages might be displayed at
the terminal before a question mark is returned from the terminal,
PUTLINE moves all second level informational messages to subpool 78 and
chains them off the environment control table. This chain exists from one
PUTGET for a mode message to the next. In other words, whenever the
user can enter a new command or subcommand, he can enter a question

Message Handling 43

o Message IKJ56250I is a single level PUTLINE message with one
insert.

e Message IKJ562511 is a PUTLINE message with two levels.
« Message IKJ56252A is a PUTGET message with two levels.

» Message IKJ562531 is a PUTLINE message with an insert at the end
of the text.

« The IKITSMSG macro with no operands is required to indicate the
end of the message CSECT.

e i |
x| [clolulL]o] [alvE] [clomMMEINT]S] [PlRE|CEID]/ M6 [0R] [Flolc]Llolw/ Inie] [TiHE] MlalciRlois] [Tiol Ic]/|s|T]
x| MololulLEls| |1|s|S|UIING| [TIH|E| ME'S|SIAGEE|S| IAND| [6]/|VIE |TIHIE| |ME|S|S|AGIE| Digs|cRl1 PT]I oS
X|x|% 1
I|KJEFIFl@3| [C[SIECT \
1KJTIsIMs6l [([![1KTI516|12|518)/) o8] '],],]’] [slvleiM/IrTEID D], @@
* T
1K TisMisi6l [([']/|k715e[25/1]/] |']L1, "] IClommaNO N[o[T] |Alu[TIHIOR Z[E[Dl+]")], IRla]r
I KATIsMslE ([’ [/[kT5le[25]1 (/] [YiolIr] |/ N[sITIAILIL|AlT]/ [oIN] IMuls'T alulTHOR] [ZIE] [Uisle] TolA T+
\ K11s| [clomimalnlol T, al1 , [Rlglr !
% T xd [sle|clonD] [L|glVIElL [PlorINTiS [T0l [Fl1RISIT] LIEVEIL] [FlolR] TPlulT]c]/INE] Tx|¢
kaiTisiMslel [(['[/[kT56|252'A |ENTER JloBNAME] Ic[HARACITER# |-['D1, 0|2, [slp2 !
[[1KU]TsMse [(['[1kT516|25]24] [ToBNAME |/|s| |cREAITED [FIROM, U[sER] 1B TALulS]'T, +
| " JoNE[[ALIPHANUMEIR /IC Jo|R WAT|/IoNAIL] CIHARJAICTER ")],Isidlzl]
X || e |Fi/ RS LIEVEL] 1Plo/INTIS| T SECOND| LEVELI Flor [PUTGIET xx | T[T
% HEREREEER | REEE I BEREEREREEDEE
| T ikirdrsMsie (1 1KTi56|253]] [rinvialLlrol cHIARACTIER [[,)L igl3 T [T T[T T71T™
M | ‘ x x| |7 HE] [ComMMA ‘AF,;TE‘R,L ‘7iHE‘; AKPOSlTRiO;PHEl IND I CATIES] A TRAILI/ING /INSERT
AT \ 1 | [l L B | HIEEERNRRERE
J | L 1kI[TisMsle ' BEEE ! | ' !
I | | |elvo] | | [1KVIEFFI2 3 ’ | T
BEER |
[T | [|

Figure 17. An Example of an IKJTSMSG Macro Instruction

48 TSO Guide to Writing a TMP or a CP

Attention Interruption Handling -- The STAX Service Routine

The STAX service routine creates the control blocks and queues necessary
for the system to recognize and schedule user exits due to attention
interruptions. Your terminal monitor program, your command processors, or
the problem program provide the address of an attention exit to the STAX
service routine by issuing the STAX macro instruction. You should provide
attention exit routines within the terminal monitor program and any
command processors that accept subcommands. Simple command or
subcommand procedures should not issue a STAX macro instruction unless
the STAX routine specified by the TMP or the calling command processor
cannot process an attention interruption adequately.

The STAX service routine may be invoked in either 24-bit or 31-bit
addressing mode. The attention exit routine receives control in the same
addressing mode in which the respective STAX macro is issued.

With the exception of the TPUT ASID buffers for TCAM, when the
user enters an attention interruption from the terminal, the TGET, TPUT,
and TPG buffers are flushed. Any data contained in these buffers is lost. If
the user then attempts to continue processing from the point of
interruption, he may have lost an input or an output record, or an output
message from the system.

Attention processing gives the user the ability to specify exit routines
that receive control asynchronously when the attention key is struck or
when an interruption occurs as a result of the simulated attention facility
(STATTN macro). The mechanism used to request attention exits is the
STAX macro. When the STAX macro is issued, a TAXE (terminal
attention exit element) is created and placed on a queue. The TAXE queue
is ordered according to the attention level, and the attention level
determines the order in which the attention exits are given control. If the
ATTENTION key is struck once, the first level attention exit is given
control. If the key is struck twice, the second level attention exit is given
control. When placing a TAXE on the TAXE queue, two rules apply:

1. An attention exit routine for a task will always occupy a higher
attention level than the attention exit of any of its subtasks.

2. The attention exit routine is placed at the lowest possible attention
level, without violating the first rule.

In other words, the placement at an attention level is determined by the
position of the task in the subtask queue relative to the position of the
other tasks creating attention exits. The lower the subtask the lower the
attention level assigned. The subtask queue is considered to be the
mother-daughter queue only. If for any reason a complex task structure is
created that would have a mother task with multiple daughter tasks, then
the order in which the daughters issue STAX macros must be synchronized
in order to ensure predictability from day to day. Note that the order in
which the daughters issue STAX macros, not the order in which the
daughters are attached, determines the order in which the associated
TAXE:s are placed on the TAXE queue.

Attention Interruption Handling -- The STAX Service Routine 49

50

If a task has issued multiple STAX macros, the order in which the
associated TAXE is placed on the TAXE queue is determined by the
second rule.

Attention levels can change during execution of the session for three
reasons:

1. A task has issued STAX and its daughter then issues STAX. In this
case the attention exit for the first task would have an attention level
of one until its subtask had issued STAX. The daughter task would
then have an attention level of one and the original task would have
a level of two.

2. A task that has established an attention exit environment abnormally
terminates or exits. When this occurs the TAXEs for that task are
freed. The remaining TAXEs then assume the new attention level
relative to its position on the TAXE queue.

3. The STAX macro is used to cancel the last attention exit established
by a task.

When generating an attention interruption by striking the ATTENTION
key, the ATTENTION level is recorded by counting the number of times
the ATTENTION key has been struck. If the number of times the key is
struck exceeds the number of available attention levels, an*“!I”” message is
sent to the terminal. If the attention has been accepted, an “!”” message is
sent to the terminal to indicate that the attention exit is being scheduled. If
an attention interruption is received while a previously requested (lower
attention level) attention exit is in the process of being scheduled, the first
attention exit is canceled and the new attention exit is scheduled. This wiil
be true until control has been passed to the user’s attention exit.

Prior to passing control to the attention exit, the task under which the
attention exit is running will have all its subtasks stopped. Note, however,
that if a system routine (SVRB on RB chain) is executing for one of the
TCBs and has not specified STAX DEFER=NO (see below for expanded
explanation), then the scheduling of the attention exit will be deferred until
the completion of such system routines. All SVRBs start execution in a
STAX DEFER=YES state and all other RBs start execution in a STAX
DEFER=NO state. Consequently, the presence of an SVRB on a TCB’s
RB chain normally means attention exits will be deferred. When the user’s
attention exit completes processing the subtasks are automatically restarted.
If, for any reason, the attention routine requires one of the subtasks to be
restarted, it is the responsibility of the attention exit to restart the task
through the use of the status start facility. If the subtasks should not be
restarted, it is the responsibility of the attention exit to use the status stop
facility to ensure that the subtasks will not become dispatchable when the
attention exit completes processing. See Supervisor Services and Macro
Instructions for additional information.

The attention level at which the attention exit is running and all of the
lower attention levels are considered unavailable as soon as scheduling of
the exit takes place. Therefore, once the attention scheduling has begun,
only higher attention levels are available for use until the attention exit
completes processing.

TSO Guide to Writing a TMP or a CP

Message Handling

TSO messages are divided into three classes:

« Prompting messages
+ Mode messages
+ Informational messages

Prompting messages begin with ENTER or REENTER, and require a
response from the user. Prompting messages should be initiated by the
parse service routine, rather than by parse validity check exits, using the
text supplied by the command processor as the PROMPT operand of the
IKJPOSIT, IKITERM, IKJOPER, IKJRSVWD or IKJIDENT parse macro
instructions. See “Using the Parse Service Routine (IKJPARS)” for a
discussion of the PROMPT operand on these macro instructions.

Mode messages are the READY messages sent by the terminal monitor
program, and any other similar messages sent by command processors, such
as the EDIT mode message sent by the EDIT command processor. They
inform the user which command is in control and let him know that the
system is waiting for him to enter a new command or subcommand.

Informational messages do not require an immediate response from the
user.

Prompting and mode messages should be displayed using the PUTGET
service routine. Informational messages should be displayed using the
PUTLINE service routine. The TPUT routine does not support multi-level
messages, message id stripping, and text insertion, and does not function in
background mode (it acts as a NOP).

Message Levels

Messages usually should have associated with them other messages that
more fully explain the initial message. These messages, called second level
messages, are displayed only if the user specifically requests them by
entering a question mark (?).

Prompting messages may have any number of additional levels. The
second level is displayed if the user enters a question mark in response to
the initial message. The last level is displayed if the user enters a question
mark in response to the next to the last message. If the user at the terminal
enters a question mark after all messages have been displayed, PUTGET
displays the message NO INFORMATION AVAILABLE. Pass your second
level prompting messages to the parse service routine by coding them as the
HELP operand in the IKJPOSIT, IKJTERM, IKJOPER, IKJRSVWD and
IKJIDENT parse macro instructions.

An informational message can have only one second level message
associated with it. Since many informational messages might be displayed at
the terminal before a question mark is returned from the terminal,
PUTLINE moves all second level informational messages to subpool 78 and
chains them off the environment control table. This chain exists from one
PUTGET for a mode message to the next. In other words, whenever the
user can enter a new command or subcommand, he can enter a question

Message Handling 43

44

mark instead, requesting all the second level messages for informational

messages issued during execution of the previous command or subcommand.

If he does not enter a question mark, PUTGET deletes the second level
messages and frees the storage they occupy.

Mode messages cannot have second level messages, since a question
mark entered in response to a mode message is defined as a request for the
second levels of previous informational messages. Your program should
request all commands or subcommands by issuing a mode message with the
PUTGET service routine so that second level informational messages may
be properly handled.

Effects of the Input Source on Message Processing

Message handling is considerably affected if the input source designated by
the input stack is an in-storage list rather than a terminal. See the
explanation of the STACK macro instruction for a discussion of in-storage
lists. In-storage lists may be either procedures or source lists.

If a procedure without the prompt option is being executed, the
PUTGET service routine does not display prompting messages, but returns
an error code (12) in register 15. If the parse service routine issued the
PUTGET macro instruction, the parse service routine issues an
informational message to the terminal, and returns an error code 4 to its
caller. The command processor should reset the input stack and terminate.
If a command processor issued the PUTGET macro instruction, the
command processor should use the PUTLINE service routine to write an
appropriate informational message to the terminal prior to terminating.

If a source in-storage list is being processed, prompt messages are
displayed to, and responses read from, the terminal by the PUTGET service
routine.

If the user at the terminal has specified the “PAUSE” operand on the
PROFILE command, PUTGET issues a special message, “PAUSE”, if all of
these three conditions exist:

(1) A mode message is to be written out.
(2) Second level messages exist.
(3) An in-storage list is being processed.

The user may enter either a question mark or a null line. If he enters a
question mark, the chain of second level messages is written to the terminal.
If he enters a null line, control returns to the executing command processor.
In either case, the next line from the in-storage list is returned to the
command processor.

A special situation arises if an in-storage list is being processed, second
level messages are chained, and the user has specified NOPAUSE as an
operand of the PROFILE command. Normally, if a subcommand
encounters an error situation, it issues an informational message and
returns. The command processor then uses the PUTGET service routine to
issue a mode message on the assumption that the user can take corrective
action with other subcommands. When processing from an in-storage list,
this is not true. If NOPAUSE was specified, PUTGET returns an error
code (12) to the calling routine. In most cases, the command processor

TSO Guide to Writing a TMP or a CP

9

should reset the input stack and terminate. If the message producing the
second level message was purely informational and does not require
corrective action, the command processor may set the ECTMSGF flag in
the environment control table to delete the second level message, and
reissue the PUTGET macro instruction to continue.

TSO Message Issuer Routine (IKJEFF02)

The TSO message issuer routine issues a message as a PUTLINE,
PUTGET, write-to-operator (WTQ), or a write-to-programmer (WTP). You
may invoke IKJEFFO02 just to issue the message to the terminal, both to
issue the message and return the requested message to the caller in the
caller’s buffers, or just to return the message to the caller. This process of
returning the message is referred to as extracting the message. This routine
simplifies the issuing of messages with inserts because hexadecimal inserts
can be converted to printable characters and the same parameter list used
to issue any message. It also makes it more convenient to place all messages
for a command in a single CSECT or assembly module, which is important
when message texts must be modified. Adding or updating a message is
simpler when IKJEFFO02 is used, rather than PUTLINE or PUTGET.

Refer to “Interfacing with the TSO Service Routines” earlier in this book
for a description of the ways in which IKJEFF02 may be invoked.
Regardless of the linkage method used, IKJEFF02 must receive control in
24-bit addressing mode. If a program invokes IKJEFF02 via the
CALLTSSR macro and IKJEFFO02 has been placed in the link pack area,
the program should issue CALLTSSR in 24-bit addressing mode. If
IKJEFFO02 has not been placed in the link pack area, the program may
issue CALLTSSR in either addressing mode. In this case, the LINK macro
generated by CALLTSSR invokes IKJEFF02 in 24-bit addressing mode.

All input passed to IKJEFF02 must reside below the 16-megabyte virtual
storage line.

Generally, you will invoke the TSO message issuer routine via the
CALLTSSR or LINK macro, passing the address of the following parameter
list in register 1:

Offset
Dec Hex Field Name Contents

0 0 MTPLPTR Address of message description section of this
parameter list. (The message description section
begins with the MTCSECTP entry.}

4 4 MTCPPLP Address of TMP’s CPPL control block (required for
PUTLINE or PUTGET).

8 8 MTECBP Address of optional communications ECB for
PUTLINE or PUTGET.

12 Cc MTRESV1 Reserved.

12 C MTHIGH High-order bit of reserved field turned on for
standard linkage.

16 10 MTCSECTP Address of an assembly module or a CSECT
containing IKJTSMSG macros that build message
identifications and associated texts.

20 14 MTSW1 One byte field of switches

Message Handling 45

Offset
Dec

21

24

25

32
36

R £ 8

&%

46 TSO Guide to Writing a TMP or a CP

Hex

15

18

19
1C

20
24
28
2C

2C
2C

2C
2D

Field Name
MTNOIDSW

MTPUTLSW

MTWTOSW
MTHEXSW

MTKEY1SW

MTJOBISW

MTWTPSW

MTNHEXSW

MTREPLYP

MTSW2
MT20LDSW

MTDOMSW

MTNOXQSW
MTNPLMSW
MTPGMSW

MTRESV2
MTOLDPTR

MTRESV3
MTRESV4
MTMSGID
MTINSRTS

MTLEN
MTHIGHL

MTINSRT
MTADDR

Contents

1. ... Message is printed; no messageid is
needed.

A Message issued as PUTLINE.
(Message inserts for a second level
message must be listed before inserts
for a first level message.) If this bit is
zero, message issued as a PUTGET,
with second level message required
and inserts for second level
messages necessarily following
inserts for first level messages.

IS DU Message issued as a WTO.

Default is PUTGET.

TS Number translations to printable
hexadecimal rather than default of
printable decimal.

.1 Modeset from key 1 to key O before
issuing a PUTLINE or PUTGET
message. Default is no modeset.

R T Blanks are compressed out of xx(yy)
format inserts. Default is no
compression.

1. Message issued as WTO with
write-to-programmer routing code.
Inserts are handled the same as for
PUTLINE. Default is PUTGET.

....... 1 Number translations to printable
decimal, even if larger than X'FFFF'.
Default is printable hex above
X'FFFF'.

Address of reply from PUTGET. The reply text is

preceded by a two-byte field containing length of

text plus header field.

One byte field of switches.

1. ... Field MTOLDPTR points to second
level message aiready in
PUTLINE/PUTGET (Output Line
Descriptor) format. Default is
IKJTSMSG format.

g Delete WTP or WTO messages from
the display console, using the delete
operator message macro.

I PR Override default of X" around inserts
converted to printable hex.
S S Override default of error message if
PUTLINE fails.
. Request an error message if PUTGET
fails.
Reserved.

Pointer to O.L.D. for second level message,
required if MT20LDSW bit is on.

Reserved.

Reserved.

Message’s identifier in message CSECT, padded
with blanks on the right.

Insert information for message. The following two
fields are supplied for each insert:

Length of an insert for the message.

High-order bit is on if translate the first 1-4 bytes
of the insert from hexadecimal to character
(printable hexadecimal or decimal depending on
whether MTHEXSW is set to ON or OFF).

Refers to an insert entry.

Address of an insert for the message.

9

The return code from the TSO message issuer routine is contained in
register 15 as follows:

0 - Message issued successfully.
76 - Error in parameter list. A diagnostic message is also issued.
Other - PUTLINE or PUTGET return code.

The IKJEFFMT macro maps the input parameter list. Specify
MTDSECT=YES option to obtain DSECT MTDSECTD instead of storage.

IKJTSMSG -- Describes Text and Insert Locations

The IKJTSMSG macro is used to generate assembler language DC
instructions describing the text and locations of inserts for a message which
may be issued by the TSO message issuer routine (IKJEFF02). All of the
messages which a command issues should be grouped into an assembly
module consisting entirely of IKITSMSG macros preceded by a CSECT
card and followed by an END card. The last IKITSMSG macro in the
CSECT must be a dummy entry with no operands.

The IKITSMSG macro must be issued in by a program loaded below 16
megabytes. Figure 16 shows the syntax of the IKITSMSG macro
instruction; each of the operands is explained following the figure.
Appendix A describes the notation used to define macro instructions.

[symbol] IKJTSMSG ('msgid msgtext'),id1[,id2]

Figure 16. The IKJTSMSG Macro Instruction

msgid - The identifier which will be displayed when the message is
issued.

msgtext - The text of the message. If an insert is necessary within the
text of a message or at the end of a message, use the
following rules:

o The location of an insert in the middle of a message should be
indicated by a ‘,,’.

« If the insert is to be located at the end of a message, indicate it by a
’, following the message text.

id1 - The internal identifier of the message. It may be from one to four
characters and should not contain a blank, comma, parentheses, or
an apostrophe. This id is passed to IKJEFF02 in the MTMSGID
field of the parameter list.

id2 - The internal identifier of a message to be chained to this message.
For a PUTGET message, the first level message would have an id2
field identifying the second level, and the second level message
could have an id2 field to identify a another second level, etc. For
a PUTLINE, WTO, or write-to-programmer message, the second
level message would have an id2 field identifying the first level.

For an example of the coding involved for a CSECT containing the
IKJTSMSG macro, see Figure 17. The example shows how a message
module can be created for a SUBMIT command, using the IKJTSMSG
macro.

Message Handling 47

o Message IKJ562501 is a single level PUTLINE message with one

insert. ‘.
o Message IKJ562511 is a PUTLINE message with two levels. J
« Message 1KJS56252A is a PUTGET message with two levels.

» Message 1KJ562531 is a PUTLINE message with an insert at the end
of the text.

+ The IKJITSMSG macro with no operands is required to indicate the
end of the message CSECT.

** AR B
® [clolulL]o] [alvle] [clommEN]T]S] [PlREE|CIEID]/ N6 [0[RI |FlolLiL]olw]/ nl6] [TiHlE] mlalclelols] [7lo] I|/1s[T]
x| [MololulLlels] |1]s|slulrNGl [TIH|E| ME|s|s|alGlElS| anvD] [el/IvE] [TlHE| IMEels|slalcle] Iblels|clrlr|AT]/ oS
X|x|%
1|KJE|FFl@3] [c|s|ElciT]
[IKIITIsIMs|G) [’ |/[KT516(121508)7 | Lo |'1L 1 |1] [SluiBim(riTiED)], |0l
a
(Kl TsiMisle] ('] ixu]5lel25171] [' .11 [clomiMalniol [wlojr] |alulT|wiolRlr Z]E[o[+|")], IRlals
|&in7isimsle ||’ |/[klTi516]215]7 1] [Ylolur| |7 In|sITAlL|L]Alr|/ o] [MulsiT] [alulriHOR]/ [ZE] Tusle] TolA [T+
15| Iclomimainio)], a]7], [Riglr
¥ ¥/ |5|E[cloND |L|evIEl] |plolr IN[TIS IT0] |F/[RISIT| [LIEIVIEIL] TFlOlR] TPlulr]cl/IME] ¢
x | | {
1[kl7TsiMsle] [(1']/]ku1s16|2521A1 [EMTIEIR] |diolBvIAME] [clHIARAKITERIH T-[D], 10|12, [sje]2 1:
T klaTIsMislel [[k i516]25124] |7oBmAIME] (/]S [clrE|A|TIEID [Flriom] TulslERl/ 10 TR lus], +
, 1 ‘1 To|NE] |aLlAHIANUMEIR/IC] lolrR WlAIT| [oINAIL] [cIHIAIRIAICTIEIR)T, |sid]z | ,
x| xx| |Fl/|RS|T] ILEVIELL! |Ploli IN[T S| (70, Is|EicloiND| [LIEVEIL] FOIR] [PlUTIGIETT ¥ ENiES
X ! T HARRE ! ‘ BEREE
i 1[K7iTIsMsa] [¢|[/ikiTtsle|z5i3]iT [1wvialL]i ol lculalRaciTelRl -] [, g3l T i T
¥ Ci | e TT]HE] ICoMMA AFTIER THIE APOISTROPHE (IND/\CATIES| A [TRAILIING |NSERT
CEANNN T T EEESRERRNERENS) >
[T L HKT|TISMS G ! !
| Enlp 1|KT EFIFIO]3
(1] |

Figure 17. An Example of an 1IKJTSMSG Macro Instruction

48 TSO Guide to Writing a TMP or a CP

Attention Interruption Handling -- The STAX Service Routine

The STAX service routine creates the control blocks and queues necessary
for the system to recognize and schedule user exits due to attention
interruptions. Your terminal monitor program, your command processors, or
the problem program provide the address of an attention exit to the STAX
service routine by issuing the STAX macro instruction. You should provide
attention exit routines within the terminal monitor program and any
command processors that accept subcommands. Simple command or
subcommand procedures should not issue a STAX macro instruction unless
the STAX routine specified by the TMP or the calling command processor
cannot process an attention interruption adequately.

The STAX service routine may be invoked in either 24-bit or 31-bit
addressing mode. The attention exit routine receives control in the same
addressing mode in which the respective STAX macro is issued.

With the exception of the TPUT ASID buffers for TCAM, when the
user enters an attention interruption from the terminal, the TGET, TPUT,
and TPG buffers are flushed. Any data contained in these buffers is lost. If
the user then attempts to continue processing from the point of
interruption, he may have lost an input or an output record, or an output
message from the system.

Attention processing gives the user the ability to specify exit routines
that receive control asynchronously when the attention key is struck or
when an interruption occurs as a result of the simulated attention facility
(STATTN macro). The mechanism used to request attention exits is the
STAX macro. When the STAX macro is issued, a TAXE (terminal
attention exit element) is created and placed on a queue. The TAXE queue
is ordered according to the attention level, and the attention level
determines the order in which the attention exits are given control. If the
ATTENTION key is struck once, the first level attention exit is given
control. If the key is struck twice, the second level attention exit is given
control. When placing a TAXE on the TAXE queue, two rules apply:

1. An attention exit routine for a task will always occupy a higher
attention level than the attention exit of any of its subtasks.

2. The attention exit routine is placed at the lowest possible attention
level, without violating the first rule.

In other words, the placement at an attention level is determined by the
position of the task in the subtask queue relative to the position of the
other tasks creating attention exits. The lower the subtask the lower the
attention level assigned. The subtask queue is considered to be the
mother-daughter queue only. If for any reason a complex task structure is
created that would have a mother task with multiple daughter tasks, then
the order in which the daughters issue STAX macros must be synchronized
in order to ensure predictability from day to day. Note that the order in
which the daughters issue STAX macros, not the order in which the
daughters are attached, determines the order in which the associated
TAXEs are placed on the TAXE queue.

Attention Interruption Handling -- The STAX Service Routine 49

50

If a task has issued multiple STAX macros, the order in which the
associated TAXE is placed on the TAXE queue is determined by the
second rule.

Attention levels can change during execution of the session for three
reasons:

1. A task has issued STAX and its daughter then issues STAX. In this
case the attention exit for the first task would have an attention level
of one until its subtask had issued STAX. The daughter task would
then have an attention level of one and the original task would have
a level of two.

2. A task that has established an attention exit environment abnormally
terminates or exits. When this occurs the TAXEs for that task are
freed. The remaining TAXEs then assume the new attention level
relative to its position on the TAXE queue.

3. The STAX macro is used to cancel the last attention exit established
by a task.

When generating an attention interruption by striking the ATTENTION
key, the ATTENTION level is recorded by counting the number of times
the ATTENTION key has been struck. If the number of times the key is
struck exceeds the number of available attention levels, an“!I” message is
sent to the terminal. If the attention has been accepted, an ! message is
sent to the terminal to indicate that the attention exit is being scheduled. If
an attention interruption is received while a previously requested (lower
attention level) attention exit is in the process of being scheduled, the first
attention exit is canceled and the new attention exit is scheduled. This will
be true until control has been passed to the user’s attention exit.

Prior to passing control to the attention exit, the task under which the
attention exit is running will have all its subtasks stopped. Note, however,
that if a system routine (SVRB on RB chain) is executing for one of the
TCBs and has not specified STAX DEFER=NO (see below for expanded
explanatjon), then the scheduling of the attention exit will be deferred until
the completion of such system routines. All SVRBs start execution in a
STAX DEFER=YES state and all other RBs start execution in a STAX
DEFER=NO state. Consequently, the presence of an SVRB on a TCB’s
RB chain normally means attention exits will be deferred. When the user’s
attention exit completes processing the subtasks are automatically restarted.
If, for any reason, the attention routine requires one of the subtasks to be
restarted, it is the responsibility of the attention exit to restart the task
through the use of the status start facility. If the subtasks should not be
restarted, it is the responsibility of the attention exit to use the status stop
facility to ensure that the subtasks will not become dispatchable when the
attention exit completes processing. See Supervisor Services and Macro
Instructions for additional information.

The attention level at which the attention exit is running and all of the
lower attention levels are considered unavailable as soon as scheduling of
the exit takes place. Therefore, once the attention scheduling has begun,
only higher attention levels are available for use until the attention exit
completes processing.

TSO Guide to Writing a TMP or a CP

You can use the STAX macro not only to specify and cancel attention
exits, but also to defer the dispatching of attention exits. The DEFER
operand of STAX macro instruction can be specified to set an indicator
that will postpone the dispatching of attention exits for a TCB and all of
the TCBs above it on the mother-daughter TCB chain. When STAX with
the DEFER=YES option is specified, a bit in the RB that represents the
issuer’s routine is set (or reset). The indicator in the TCB, which allows or
defers the dispatching of attention exits, is set equal to the result of ORing
all of these bits in the RBs on the TCB RB chain. When the TCB defer
indicator is off for the a TCB and all its subtasks, then attention exits will
be dispatched. If the defer indicator is on for a TCB or any of its subtasks,
then attention exits will be deferred until the defer indicator(s) for the TCB
and all of its subtasks are off. When an attention exit can once again be
dispatched, the DEFER=NO operand can be used to enable it to be
dispatched.

The deferral bit setting of a routine (RB) can be changed or propagated
to other routines (RBs) which are used by the original RB. There are three
cases to be considered.

1. A new RB is created and placed on the RB queue along with the
original RB. This can occur if the original RB issues a LINK. In this
situation, the routine that has been linked maintains its own deferral
bit setting. The deferral bit setting of the original RB is not passed to
the new RB, nor is the deferral bit setting of the new RB passed
back to the original RB.

2. A new RB is created and placed on the RB queue and the original
RB is destroyed. This can occur if the original RB issues an XCTL
macro. The routine receiving control under the new RB receives the
deferral bit setting of the original RB.

3. No new RB is created but control is passed to a routine running
under the original RB. This can occur if the original RB issues a
CALL or LOAD macro. The called or loaded routine runs under the
original RB. If the called or loaded routine issues a STAX macro
instruction with the DEFER option, then the deferral bit setting is
changed for the original RB.

Note: Tasks within a tree structure being stopped for the attention exit
scheduling will be stopped in an indeterminate order when any are deferring
attention exits. As a result, care must be taken to control intertask
dependencies and dependencies on scheduling attention exits. Failure to do
so may result in an intertask deadlock that can only be relieved by
canceling the TSO user.

Specifying a Terminal Attention Exit -- The STAX Macrb
Instruction

Use the STAX macro instruction to specify the address of an attention exit
routine that is to be given control asynchronously when a user strikes the
attention key or when a simulated attention is specified. (See the STATTN
macro instruction for a description of the simulated attention function.)

The STAX macro instruction can also be used to cancel the last attention
exit routine established by the task. To do this, specify the STAX macro
instruction without any operands.

Attention Interruption Handling -- The STAX Service Routine 51

The STAX macro instruction is used only in a time sharing environment.
When a task other than a TSO user issues the STAX macro, no action is
taken. In addition, attention exits can be established only for time sharing
tasks operating in the foreground.

The system routines that process attention handling require that the
STAX parameter list remain unchanged for the life of the program. Because
the expansion of the STAX parameter list is usually located in an area that
is reusable by the active program, you should either code the necessary
protection to prevent overlays or you should make a copy of the parameter
list in an area that is non-reusable.

Issue the STAX macro instruction to provide the information required by
the STAX service routine.

The STAX macro may be issued in 24- or 31-bit addressing mode. An
attention exit routine receives control in the same addressing mode in which
the STAX macro is issued.

The STAX macro instruction has a list, an execute, and a standard form.

The list form of the STAX macro instruction (MF=L) generates a STAX
parameter list. The execute form of the STAX macro instruction
(MF=E,address) completes or modifies that list and passes its address to
the STAX service routine. The standard form does not require you to
specify MF=L or MF=E.

Figure 18 shows the format of the list and execute forms of the STAX
macro instruction; each of the operands is explained following the figure.
Appendix A describes the notation used to define macro instructions.

[symbol] STAX [exit address [,OBUF=(output buffer address,size)]]
[, IBUF=(input buffer address,size)]
[,USADDR=user address]

[, REPLACE= %gjf]

,DEFER= YES
NO

, MF=L
{,MF=(E,address)

Figure 18. The STAX Macro Instruction -- List and Execute Forms

Note: When the STAX macro is issued in 31-bit addressing mode, exit addr
and USADDR may reside above 16 megabytes. All other input must reside
below 16 megabytes.

52 TSSO Guide to Writing a TMP or a CP

exit address
Specify the entry point of the routine to be given control when an
attention interruption is received. You must specify the exit address in
both the list and the execute forms of the STAX macro instruction when
you are establishing an attention interruption handling exit.

You need not specify an exit address if you are using the DEFER
operand as long as you code no other operands (except the MF
operand). If you exclude the exit address and code no other operands,
the STAX service routine cancels the previous attention exit established
by the task issuing this STAX macro instruction.

OBUF=(output buffer address,output buffer size)
Output buffer address - Supply the address of a buffer you have
obtained and initiated with the message to be put out to the terminal
user who entered the attention interruption. This message may identify
the exit routine and request information from the terminal user. It is sent
to the terminal before the attention exit routine is given control.

Output buffer size - Indicate the number of characters in the output
buffer. The size may range from 0 to 32,767 (215-1) inclusive.

IBUF =(input buffer address,input buffer size)
Input buffer address - Supply the address of a buffer you have obtained
to receive responses from the terminal user. The attention exit routine is
not given control until the STAX service routine has placed the terminal
user’s reply into this buffer.

Input buffer size - Indicate the number of bytes you have provided as an
input buffer. The size may range from 0 to 32,767 (215-1) inclusive.

USADDR=(user address)
The user address is a pointer to any information you want passed to your
attention handling exit routine when it is given control.

REPLACE=YES or NO
YES indicates that the attention exit specified by this STAX macro
instruction replaces any attention exit specified by a STAX macro
instruction previously issued by this task. YES is the default value.
REPLACE implies establishing a new attention exit routine for the task,
if no previous attention exit has been established.

NO indicates that this attention exit be established as a new attention
exit for this task, in addition to any that have been previously established
for this task.

Attention Interruption Handling ~~ The STAX Service Routine 53

DEFER=YES or NO
The DEFER operand is optional. If the DEFER operand is coded in the J
STAX macro instruction, the option you request (YES or NO) applies to
all tasks within the task chain in which the macro instruction was issued.
Any task may issue the STAX macro instruction to specify
DEFER=YES or NO; the issuing task need not itself have provided an
attention exit routine. If the DEFER operand is not coded in the macro
instruction, no action is taken by the STAX service routine regarding the
deferral of attention exits.

YES indicates that any attention interruptions received are to be queued
and are not to be processed until another STAX macro instruction is
executed specifying DEFER=NO, or until the program that issued the
STAX with the DEFER=YES terminates.

NO indicates that the defer option is being canceled. Any attention
interruptions received while the defer option was in effect will be
processed. If the DEFER operand is omitted, the control program leaves
the deferral status unchanged.

Be aware that if a program issues a STAX macro instruction specifying
DEFER=YES, the program can get into a situation where an attention
interruption cannot be received from the terminal. If your program enters
a loop or an unending wait before it has issued a STAX macro
instruction specifying DEFER=NO, you cannot regain control at the
terminal by entering an attention interruption.

You need not specify an exit address in a STAX macro instruction issued
only to change deferral status.

MF=L J

This specifies the list form of the STAX macro instruction. It generates a
STAX parameter list.

MF=(E,address)
This specifies the execute form of the STAX macro instruction. It
completes or modifies the STAX parameter list and passes the address of
the parameter list to the STAX service routine. Place the address of the
STAX parameter list (the address of the list form of the STAX macro
instruction) into a register and specify that register number within
parentheses.

You can place each of the required address and size parameters into
registers and specify those registers, within parentheses, in the STAX macro
instruction. Figure 19 shows how an execute form of the STAX macro
instruction may look if you load all the required parameters into registers.

STAX| (2) ,IBUF=((3),(4)),0BUF=((5), (6)) ,USADDR=(7) ,MF=(E, (1))

Figure 19. Using Registers in the STAX Macro Instruction

54 TSO Guide to Writing a TMP or a CP

The STAX Parameter List

When the list form of the STAX macro instruction expands, it builds a
six-word STAX parameter list. The list form of the macro instruction
initializes this STAX parameter list according to the operands you have
coded.

The execute form of the STAX macro instruction modifies the STAX
parameter list and passes its address to the STAX service routine. Figure 20
describes the contents of the STAX parameter list.

Number of

Bytes Field Contents or Meaning

4 STXEXIT Contains address of the attention exit routine
to receive control in response to an attention
interruption. This is the address you supplied
as the exit address operand on the STAX
macro instruction.

2 STXISIZ Contains a binary number representing the
size of the input buffer you provided as the
IBUF operand on the STAX macro instruction.
The maximum buffer size is 32,767 bytes.

2 STXOSIZ Contains a binary number representing the
size of the output buffer you provided as the
OBUF operand on the STAX macro instruction.
The maximum buffer size is 32,767 bytes.

4 STXOBUF Contains the address of the output buffer you
provided as the OBUF operand on the STAX
macro instruction.

4 STXIBUF Contains the address of the input buffer you
provided as the IBUF operand on the STAX
macro instruction.

Figure 20. The STAX Parameter List (Part 1 of 2)

Attention Interruption Handling -- The STAX Service Routine 58

Number of . .
Bytes Field Contents or Meaning
1 STXOPTS STAX option flags.
0. ... REPLACE = YES
Ao REPLACE = NO
R T Defer attention interruption processing, that is
DEFER = YES.
R Cancel the deferral of attention interruption
processing, that is DEFER = NO.
I Vo Indicates that the CLIST attention counter
should be incremented.
I Indicates that the CLIST attention counter
should be decremented.
1. Indicates that STXFNUM contains a format
number.
) ST ¢ Reserved bits.

1 STXFNUM STAX format flags.

....... 1 Indicates that the MVS/XA version of the
STAX parameter list is used. If this bit is zero,
the MVS/370 version of the parameter list is
used.

XXXX XXX. Not used.

2 Reserved bytes.

4 STXNUSER Contains the address of the parameters you
want passed to your attention handling exit
routine when it is given control. This is the
address you supplied as the USADDR operand
on the STAX macro instruction.

Figure 20. The STAX Parameter List (Part 2 of 2)

Coding Example of the STAX Macro Instruction

The coding example shown in Figure 21 uses the list and the execute forms
of the STAX macro instruction to set up an attention handling exit. The
OBUF operand provides a message to be written to the terminal when the
attention interruption is received, and the IBUF operand provides space for
an input buffer. This example does not code the REPLACE operand in the
macro instruction; YES is the default value. The attention handling exit
established by this execution of the STAX macro instruction replaces the
previous attention handling exit established for this task.

56 TSO Guide to Writing a TMP or a CP

| .. S x|] ot I & S K- 3 N I HESE | *
| i - vv r— A —— [F— 43— "1
= 4 L] j =] I S
= ~| I LA Lo <g|><| |] [
~ LY <[<z w
= >] I 41 L L I N T I L I=xIwn|~ [5X)
SYEAS w - N (Y[.
(=) ~| [~[_1_I=|=]| 1 o= IS
— ~ <O = <g[W P~]
) i S |so S~ [[T] x[><[=~[_I_ I | [«]
) = | _[olw C o = N 1Y I A O 1 1%
[T~ (] T 1 o] =W
— Bl [~ Q = == =N 1 _ wlzlol || >[4
72 = it W N i S (=)' > [eo[
= [~ wl Olo K ded~L | -1 |« =
~ 11 D —[S . L L IS .
| . S| | > [1. _ L] Ix[Qo9 " [=]_[+H
S —~ & L S|~ 10 |~
- [MS) o Q|- ~)
(&) | [N I 1] ~[N TIY
T = ~ (2] L _I=]» [<3 = W=
N >< | 1] i 21 E%) w| j~—
> ~ Ty, \ ~[=[W[F] =13
>< =LY o o = 78]
T ~ > ol T 1 LT 111 S[— <[=[x
[w| [ST (IR T [~
[75) [L) R I N IS Y w ~
w S x B e |t [)
= <o =~ ~I=[a ol =l
~ — [FV]
v " =~ B <X
Wl wl |w o< - %)
D~ ol S . "
(D[>< L [Q \ \ L
— | [] _jwl= L T] DIRUWAL - SL
ol [~ Q= Vi {) W ~ | ~ |-
wil= N W N S S RN INARYEI = [~
=) >< >~ [O[W A/ 1WA S| [D |-
Q| — N <tfw Wofay Q| W= (PTT T [1] ~ Tug ~
~ [(= = = ~| = VY[i { ~ =2 x| =
<[=) wnD| |~ |aclo ~[| (ALY U IV =g [~ [S
Wl [~ Y QS D ol [N) T e [~ ~ LWL~
D) [T << = ~ T JI 7 A O L)
[ZIANEY > W AR i A ~J
Ot W[J] [w (S) Fil Ol]
= O[] . > M~ D [ANIVA [W =
~=l [\ [\ Uy < 1Y) &N = \NEYA JIRIAYAY Q =dl | | T
Q=] o[/ 1 /== T~ ol [~ e WANARAN / JAN) M~ QN =
) VT U I~ (V2] T T AHI VTV CTOTt [Y] [72) QI [XV]
a. =) %) S
> w o | W ~ <z| |~
— |~ [72) [(NEY A > S| [~ u
8] [%2) = % = w [= S |w
~|x - o= al” T =L ol Ix[[[o =
[N O T I I A I =g | = [0
s & [~ P~ S =
EIESESERESEIEES Ske [3K EAEAEALYEIEAES EAE30%) EASEENEIES

Figure 21. Coding Example - STAX Macro Instruction

Attention Interruption Handling -- The STAX Service Routine 57

Return Codes from the STAX Service Routine

Control is returned to the instruction following the STAX macro
instruction. When control is returned, register 1 will contain the address of
the user parameter list provided for the previous exit for this task or will
contain zero. The register will contain zero if this is the first STAX issued
for this task, a STAX with a cancel option, or a STAX with only the
DEFER option. If an error was detected (return code 8), then the contents
of register 1 will be the same as it was at entry. Register 15 will contain
one of the following return codes:

CODE MEANING
0 The STAX service routine successfully completed the function you requested.
4 Deferral of attenticn exits has already been requested and is presently in effect.

Any other operands you specified in the STAX macro instruction have been
processed successfully. '
8 Invalid user of DEFER option (asynchronous exit routine).

If any combination of parameters or the parameters themselves are
invalid, an ABEND will be issued.

The types of errors that will cause an ABEND are:

« Both DEFER=YES and DEFER=NO are specified.
- Invalid input buffer address (storage not in same key as user’s TCB).
- Invalid buffer size (input or output).

58 TSO Guide to Writing a TMP or a CP

C

Dynamic Allocation of Data Sets -- The Dynamic Allocation Interface Routine

(DAIR)

Dynamic allocation routines allocate, free, concatenate, and deconcatenate
data sets dynamically; that is, during problem program execution. With
TSO, dynamic allocation permits the terminal monitor program, command
processors, and other problem programs executing in the foreground region
to allocate data sets after LOGON and free them before LOGOFF.

For a complete discussion of dynamic allocation, see SPL: System
Macros and Facilities.

The dynamic allocation routines may be accessed by TSO directly or
through the dynamic allocation interface routine (DAIR). In general, DAIR
obtains information about a data set and, if necessary, invokes dynamic
allocation routines to perform the requested function.

You can use DAIR to perform the following functions:

« Obtain the current status of a data set

o Allocate a data set

« Free a data set

o Concatenate data sets

« Deconcatenate data sets

o Build a list of attributes (DCB parameters) to be assigned to data sets
« Delete a list of attributes

Considerations

« The user must correctly initialize the DAIR parameter block (DAPB)
before calling DAIR. Unused fields should be zeroed or blanked (if
character items).

« Specifying the data set name and the member name for DAIR entry
code X‘08’ causes the data set to be allocated but no check is done to
see if the member exists. To verify that the member really exists:

- Allocate the data set with the member name using DAIR entry
code X‘08’.

" - Open the data set with DSORG=PO, MACRF=R.

- Issue BLDL for the member. (The BLDL return code will indicate
whether the member is there or not.)

- Close the data set.

- If BLDL indicates that the member does not exist, unallocate the
data set using ddname and DAIR entry code X‘18’.

Using DAIR

Invoke the DAIR service routine via a CALLTSSR macro instruction,
specifying the entry point IKJIDAIR in load module IKIDAIR. The DAIR
service routine may be invoked in either 24- or 31-bit addressing mode.
When invoked in 31-bit addressing mode, IKJDAIR may be passed input
above 16 megabytes.

Dynamic Allocation of Data Sets -- The Dynamic Allocation Interface Routine (DAIR) 59

60

The control block structure required by the DAIR service routine is
shown in Figure 22. Note that the DAIR parameter block (DAPB) is a
variable-size block; the block size depends upon the function requested by
the calling routine. That function is indicated to the DAIR service routine
by the code in the first two bytes of the DAIR parameter block. (See
“Processing Terminal Requests -- The TSO Service Routines” for a
description of the CALLTSSR macro and a list of IBM-supplied mapping
macros for parameter lists.)

CALLTSSR

T T DAIR

DAPB

Entry Code

"
e eatin

Figure 22. Control Blocks Passed to DAIR

TSO Guide to Writing a TMP or a CP

<

The DAIR Parameter List (DAPL)

At entry to DAIR, register 1 must point to a DAIR parameter list that you
have built. Figure 23 shows the format of the DAPL. The addresses of the
user profile table, environment control table, and protected step control
block may be obtained from the command processor parameter list (CPPL)
that the TMP passes to your command processor. Additional information on
the address and creation of the user profile table, environment control
table, and protected step control block is shown in Figure 14 (the command
processor parameter list).

Number of . .
Bytes Field Contents or Meaning
4 DAPLUPT The address of the user profile table.
4 DAPLECT The address of the environment control table.
4 DAPLECB The address of the calling program’s event
control block. The ECB is one word of real
storage declared and initialized to zero by the
calling routine.
4 DAPLPSCB The address of the protected step control
block.
4 DAPLDAPB The address of the DAIR parameter block,
created by the calling routine.

Figure 23. Format of the DAIR Parameter List (DAPL)

The DAIR Parameter Block (DAPB)

The fifth word of the DAIR parameter list must contain a pointer to a
DAIR parameter block built by the calling routine.

It is a variable-size parameter block that contains, in the first two bytes,
an entry code that defines the operation requested by the calling routine.
The remaining bytes contain other information required by DAIR to
perform the requested function. Figure 24 is a list of the DAIR entry codes
and the functions requested by those codes.

Dynamic Allocation of Data Sets —- The Dynamic Allocation Interface Routine (DAIR) 61

Entry

Code Function Performed by DAIR

X'00° Test if a given DSNAME or DDNAME s currently allocated to the caller.

X'04’ Test if a given DSNAME is currently allocated to the caller, or is in system
catalog.

X'08’ Allocate a data set by DSNAME.

X'ocC’ Concatenate data sets by DDNAME.

X'10 Deconcatenate data sets by DDNAME.

X'14° Search the system catalog for all qualifiers for a DSNAME. (The DSNAME
alone represents an unqualified index entry.)

X'18’ Free a data set.

X'1C Allocate a DDNAME to a terminal.

X224 Allocate a data set by DDNAME or DSNAME.

X28’ Perform a list of operations.

X2c Mark data sets as not in use.

X'30’ Allocate a SYSOUT data set.

X34’ Associate DCB parameter with a specified name for use with subsequent
allocations.

Figure 24. DAIR Entry Codes and Their Functions

The DAIR parameter blocks have the formats shown in the following
tables. The formats of the blocks depend upon the function requested by
the calling routine.

Code X‘00’ - Determine if DDNAME or DSNAME Allocated

Build the DAIR parameter block shown in Figure 25 to request that DAIR
determine whether or not the specified DSNAME or DDNAME is

allocated.
{
l;yu;:sber ° Field Contents or Meaning
2 DAOOCD Entry code X‘0000’
2 DAOOFLG A flag field set by DAIR before returning to

the calling routine. The flags have the
following meaning:

Byte 1

0000 Reserved. Set to zero.

.. L. DSNAME or DDNAME is permanently
allocated.

A O DDNAME is a DYNAM.
1. The DSNAME is currently allocated.

....... 1 The DDNAME is currently aliocated to the
terminal.

Byte 2

0000 0000 Reserved. Set to zero.

Figure 25. DAIR Parameter Block -- Entry Code X‘00° (Part [of 2)

62 TSO Guide to Writing a TMP or a CP

Number of
Byu::s e Field Contents or Meaning

4 DAOOPDSN Place in this field the address of the DSNAME
buffer. The DSNAME buffer is a 46 byte field
with the following format:

The first two bytes contain the length, in bytes
of the DSNAME;

The next 44 bytes contain the DSNAME, left
justified, and padded to the right with blanks.

8 DAOODDN Contains the DDNAME for the requested data
set. If a DSNAME is present, the DAIR service
routine ignores the contents of this field.

1 DAOQOCTL A flag field:

00.0 0000 Reserved bits. Set to zero.

IS PR Prefix userid to DSNAME.
2 Reserved bytes; set these bytes to zero.
1 DAOODSO A flag field. These flags describe the

organization of the data. They are returned to
the calling routine by the DAIR service routine.

1. ... Indexed sequential organization
Ao Physical sequential organization
Wl Direct organization
IS BTAM or QTAM line group
T QTAM direct access message queue
R O QTAM problem program message queue
TS Partitioned organization
....... 1 Unmovable

Figure 25. DAIR Parameter Block ~- Entry Code X‘00° (Part 2 of 2)

After DAIR searches the data set entry for the fully qualified data set
name, register 15 contains one of the following DAIR return codes:

0, 4, 52

See ‘“Return Codes from DAIR” for return code meanings.

Code X‘04’ - Determine if DSNAME Allocated or in System Catalog

Build the DAIR parameter block shown in Figure 26 to request that DAIR
determine whether or not the specified DSNAME is allocated. DAIR also
searches the system catalog to find an entry for the DSNAME.

Dynamic Allocation of Data Sets -- The Dynamic Allocation Interface Routine (DAIR) 63

64

Number of . .
Bytes Field Contents or Meaning

2 DAQ4CD Entry code X'0004'.

2 DAO4FLG A flag field set by DAIR before returning to
the calling routine. The flags have the
following meaning:

Byte 1

0000 0..0 Reserved bits. Set to zero.

RO O DAIR found the DSNAME in the catalog.
veee WL The DSNAME is currently allocated.
Byte 2

0000 0000 Reserved. Set to zero.

2 Reserved. Set to zero.

2 DAO4CTRC These two bytes will contain an error code
from the catalog management routines if an
error was encountered by catalog
management.

4 DAO4PDSN Place in this field the address of the DSNAME
buffer. The DSNAME buffer is a 46-byte field
with the following format:

The first two bytes contain the length, in
bytes, of the DSNAME;

The next 44 bytes contain the DSNAME, left
justified, and padded to the right with blanks.

1 DA04CTL A flag field:

00.0 0000 Reserved bits. Set to zero.
IO PR Prefix userid to DSNAME.

2 Reserved bytes; set these bytes to zero.

1 DA04DSO A flag field. These flags are set by the DAIR
service routine; they describe the organization
of the data set to the calling routine. These
flags are returned only if the data set is
currently allocated.

l... ... Indexed sequential organization

. Physical sequential organization

1o Direct organization

S R BTAM or QTAM line group
R P QTAM direct access message queue
W1 QTAM problem program message queue

.1 Partitioned organization
....... 1 Unmovable

Figure 26. DAIR Parameter Block -- Entry Code X'04’

After attempting the requested function, DAIR returns one of the

following codes in register 15:

0,4, 8,52

See “Return Codes from DAIR” later in this section for return code

meanings.

TSO Guide to Writing a TMP or a CP

Code X‘08’ - Allocate a Data Set by DSNAME

Build the DAIR parameter block shown in Figure 27 to request that DAIR
allocate a data set. The exact action taken by DAIR depends upon the
presence of the optional fields and the setting of bits in the control byte.

If the data set is new and you specify DSNAME, (NEW, CATLG) the
data set is cataloged upon successful allocation. This is the only time a data
set will be cataloged at allocation time. If the catalog attempt is
unsuccessful, the data set is freed. If the proper indices are not present, the
indices are built.

To allocate a utility data set use DAIR code X‘08’ and use a DSNAME
of the form &name. If the &name is found allocated, that data set is used. If
the &name is not found, a new data set is allocated.

To supply DCB information, provide the name of an attribute list that
has been defined previously by a X‘34’ entry into DAIR.

When setting disposition in a parameter list, only one bit should be on.

The DAIR parameter block required for entry code X‘08’ has the format
shown in Figure 27.

Dynamic Allocation of Data Sets -- The Dynamic Allocation Interface Routine (DAIR) 65

66

Number of
Bytes

Field

Contents or Meaning

DAO8SCD

DAOSFLG

.000 0000
Byte 2

DAOSDARC

DAOSCTRC

DAO8SPDSN

DAOSDDN

DAOSUNIT

Entry code X'0008'.

A flag field set by DAIR before returning to
the calling routine. The flags have the
following meaning:

The data set is allocated but a secondary
error occurred. Register 15 contains an error
code.

Reserved bits. Set to zero.

Reserved. Set to zero.

This field contains the error code, if any,
returned from the dynamic allocation routines.
(See “Return Codes from Dynamic
Allocation."")

This field contains the error code, if any,
returned from catalog management routines.
(See '‘Return Codes from DAIR.”)

Place in this field the address of the DSNAME
buffer. The DSNAME butfer is a 46 byte field
with the following format:

The first two bytes contain the length, in
bytes, of the DSNAME; the next 44 bytes
contain the DSNAME, left justified and padded
to the right with blanks. If this field
(DAO8SPDSN) is zero, the system generates a
data set name unless bit 5 in DAO8CTL is on,
in which case a DUMMY data set is allocated.
The system also generates a name if the
DAOSPDSN field points to a DSNAME buffer
which has a length of 44, is initialized to
blanks, and bit 5 in DAOSCTL is off.

This field contains the DDNAME for the data
set. If a specific DDNAME is not required, fill
this field with eight blanks; DAIR will place in
this field the DDNAME to which the data set is
allocated.

This is an eight-byte field containing an
esoteric group name, a generic group name,
or a specific device address (in EBCDIC). If
the unit information is less than eight
characters, it must be padded to the right with
blanks. If no information is to be provided, the
field must be blank. In this case, DAIR will
obtain information from the protected step
control block. If there is no unit information in
the PSCB, then a default of all direct access
devices is used. The specified unit information
will be ignored if volume information is
obtained from the catalog, unless the unit
specification is a subset of that obtained from
the catalog. In this case the specified unit
information will override the returned
information.

Figure 27. DAIR Paraneter Block -- Entry Code X‘08’ (Part 1 of 3)

TSO Guide to Writing a TMP or a CP

Number of

Bytes Field Contents or Meaning

8 DAOSSER Serial number desired. Only the first six bytes
are significant. If the serial number is less
than six bytes, it must be padded to the right
with blanks. If the serial number is omitted,
the entire field must contain blanks. In this
case the following is done: if the data set is a
new data set, the system determines the
volume to be used for the data set based on
the unit information. If the data set already
exists, volume and unit information are
obtained from the catalog. If the information is
not found in the catalog, the allocation request
is denied.

4 DAO8SBLK This is a four-byte field used as follows: if the
data set is a new data set and bit O in
DAOS8CTL is off and bit 1 in DAO8SCTL is on,
this field is used with DAOSPQTY to determine
the amount of direct access space to be
allocated for the data set. if bit 6 of DAO8SCTL
is off, the field is also used as DCB blocksize
specification. The value for blocksize must be
placed in the low-order two bytes, and the
high-order bytes must be zero.

4 DAO8SPQTY Primary space quantity desired. The high-order
byte must be set to zero and the low-order
three bytes should contain the space quantity
required. If the quantity is omitted, the entire
field must be set to zero. In the case of new
direct access data sets, primary and

secondary space and type of space are
defaulted. Directory quantity is used if
specified in DAOSDQTY.

4 DAOSSQTY Secondary space quantity desired. The
high-order byte must be set to zero; the
low-order three bytes should contain the
secondary space quantity required. If the
quantity is omitted, the entire field must be
set to zero.

4 DAO8DQTY Directory quantity required. The high-order
byte must be set to zero; the low-order three
bytes contain the number of directory blocks
desired. If the quantity is omitted, the entire
field must be set to zero.

8 DAOSMNM Contains a member name of a partitioned data
set. If the name has less than eight
characters, pad it to the right with blanks. If
the name is omitted, the entire field must
contain blanks.

8 DAOSPSWD Contains the password for the data set. If the
password has less than eight characters, pad
it to the right with blanks. If the password is
omitted, the entire field must contain blanks.

Figure 27. DAIR Parameter Block -- Entry Code X‘08’ (Part 2 of 3)

Dynamic Allocation of Data Sets -- The Dynamic Allocation Interface Routine (DAIR) 67

Number of
Bytes

Field

Contents or Meaning

DAO8DSP1
0000

DAOSALN

Flag byte. Set the following bits to indicate the status of the data
set:

Reserved. Set these bits to zero.

SHR

NEW

MoD

oLD

If this byte is zero, OLD is assumed. NEW or MOD is required if
DSNAME is omitted.

Flag byte. Set the following bits to indicate the normal disposition of
the data set:

Reserved bits. Set them to zero.

KEEP

DELETE

CATLG

UNCATLG

If this byte is zero, it is defaulted as follows: if DAOSDSP1 is NEW,
DELETE is used; otherwise, KEEP is used.

Flag byte. Set the following bits to indicate the abnormal disposition
of the data set:

Reserved bits. Set them to zero.

KEEP

DELETE

CATLG

UNCATLG

If this byte is zero, DAOS8DPS2 will be used.

Fiag byte. These flags indicate to the DAIR service routine what
operations are to be performed:

Indicate the type of units desired for the space parameters, as
follows:

Units are in average block length.

Units are in tracks (TRKS).

Units are in cylinders (CYLS).

Prefix userid to DSNAME.

RLSE is desired.

The data set is to be permanently allocated; it is not to be freed
until specifically requested.

A DUMMY data set is desired.

Attribute list name supplied.

Reserved bit; set to zero.

Reserved bytes; set them to zero.

A flag field. These flags are set by the DAIR service routine; they
describe the organization of the data set to the calling routine.
Indexed sequential organization

Physical sequential organization

Direct organization

BTAM or QTAM line group

QTAM direct access message queue

QTAM problem program message queue

Partitioned organization

Unmovable

Attribute list name, or a ddname from which DCB attributes should
be copied (as in a JCL DCB reference). lf the name is less than 8
characters, it should be padded to the right with blanks.

Figure 27. DAIR Parameter Block -- Entry Code X‘08” (Part 3 of 3)

TSO Guide to Writing a TMP or a CP

After attempting the requested function, DAIR returns one of the
following codes in register 15:

0, 4, 8, 12, 16, 20, 28, 32, 44, 52

See the topic “Return Codes from DAIR” for return code meanings.

Code X‘0C’ - Concatenate the Specified DDNAMES

Build the DAIR parameter block shown in Figure 28 to request that DAIR
concatenate data sets. The DDNAMES listed in the DAIR parameter block
are to be concatenated in the order in which they appear. All data sets
listed by DDNAME in the DAIR parameter block must be currently

allocated.
Number of i .
Bytes Field Contents or Meaning

2 DAOCCD Entry code X‘000C’

2 DAOCFLG Reserved. Set this field to zero.

2 DAOCDARC This field contains the error code, if any,
returned from the dynamic allocation routines.
(See ‘‘Return Codes from Dynamic
Allocation.’’)

2 Reserved field. Set this field to zero.

2 DAOCNUMB Place in this field the number of data sets to
be concatenated.

2 Reserved. Set this field to zero.

8 DAOCDDN Place in this field the DDNAME of the first
data set to be concatenated. This field is
repeated for each DDNAME to be
concatenated.

Figure 28. DAIR Parameter Block -- Entry Code X‘0C’

After attempting the requested function, DAIR returns one of the
following codes in register 15.

0,4, 12,52

See “Return Codes from DAIR” for return code meanings.

Code X‘10° - Deconcatenate the Indicated DDNAME

Build the DAIR parameter block shown in Figure 29 to request that DAIR
deconcatenate a data set. The DDNAME specified within the DAIR

. parameter block has been previously concatenated and is now to be
deconcatenated.

Dynamic Allocation of Data Sets -- The Dynamic Allocation Interface Routine (DAIR) 69

70

Number of .
Bytes Field Contents or Meaning
2 DA10CD Entry code X‘0010’
2 DA10FLG Reserved. Set this field to zero.
2 DA10DARC This field contains the error code, if any,
returned from the dynamic allocation routines.
(See ‘"‘Return Codes from Dynamic
Allocation.")
2 Reserved field. Set this field to zero.
8 DA10DDN Place in this field the DDNAME of the data set
to be deconcatenated.

Figure 29. DAIR Parameter Block -- Entry Code X‘10°

After attempting the requested function, DAIR returns one of the

following codes in register 15:

0, 4,12, 52

See “Return Codes from DAIR" for return code meanings.

Code X‘14’ - Return Qualifiers for the Specified DSNAME

Build the DAIR parameter block shown in Figure 30 to request that DAIR
return all qualifiers for the DSNAME specified.

You must also provide the return area pointed to by the third word of
the DAIR parameter block. If the area you provide is larger than needed
for all returned information, the remaining bytes in the area are set to zero
by DAIR. If the area is smaller than required, it is filled to its limit, and the
return code specifies this condition.

TSO Guide to Writing a TMP or a CP

Number of

Bytes Fleld Contents or Meaning

2 DA14CD Entry code X'0014’.
2 DA14FLG Reserved. Set this field to zero.

4 DA14PDSN Place in this field the address of the DSNAME
buffer. The DSNAME butfer is a 46 byte field
with the following format:

The first two bytes contain the length, in
bytes, of the DSNAME;

the next 44 bytes contain the DSNAME, left
justified and padded to the right with blanks.
DSNAME alone represents an unqualified index
entry.

4 DA14PRET Place in this field the address of the return
area in which DAIR Is to place the qualifiers
found for the DSNAME. Place the length of the
return area in the first two bytes of the return
area. Set the next two bytes in the return area
to zero. DAIR returns each of the qualifiers it
finds in two fullwords of storage beginning at
the first word (offset O) within the return area.

1 DA14CTL A flag field.

Byte 1
00.0 0000 Reserved bits; set them to zero.
W Prefix userid to DSNAME.

3 Reserved bytes. Set this field to zero.

Figure 30. DAIR Parameter Block -- Entry Code X‘14’

After attempting the requested function, DAIR returns one of the
following codes in register 15:

0, 4, 36, 40

See “Return Codes from DAIR” for return code meanings.

Code X‘18’ - Free the Specified Data Set

Build the DAIR parameter block shown in Figure 31 to request that DAIR
free a data set. The data set name represented by DSNAME is to be freed.
If no DSNAME is given, the data set associated with the DDNAME is
freed. If both DDNAME and DSNAME are given, DAIR ignores the
DDNAME.

If the specified DSNAME is allocated several times to the user, all such
allocations are freed.

When setting disposition in a parameter list, only one bit should be on,

Dyntamic Allocation of Data Sets -— The Dynamic Allocation Interface Routine (DAIR) 71

72

Number of
Bytes

Field

Contents or Meaning

DA18CD

DA18FLG

Byte 1

.000 0000
Byte 2

DA18DARC

DA18CTRC

DA18PDSN

Entry code X'0018".

A flag field set by DAIR before returning to
the calling routine. The flags have the
following meanings:

The data set is freed but a secondary error
occurred. Register 15 contains zero and the
error information is in DA18DARC.
Reserved bits. Set to zero.

Reserved. Set to zero.

This field contains the error code, if any,
returned from the dynamic allocation routines.
(See ‘‘Return Codes from Dynamic
Allocation.”’)

This field contains the error code, if any,
returned from catalog management routines.
(See “Return codes from DAIR."")

Place in this field the address of the DSNAME
buffer. The DSNAME buffer is a 46-byte field
with the following format:

The first two bytes contain the length, in
bytes, of the DSNAME;

the next 44 bytes contain the DSNAME, left
justified and padded to the right with blanks.
This field is zero if the DSNAME-is not
specified.

Figure 31. DAIR Parameter Block -- Entry Code X‘18° (Part 1 of 2)

TSO Guide to Writing a TMP or a CP

Number of

Bytes Field Contents or Meaning

8 DA18DDN Place in this field the DDNAME of the data set
' to be freed, or blanks. If DSNAME is specified,
this field is ignored.

8 DA18MNM Contains the member name of a partitioned
data set. If the name has less than eight
characters, pad it to the right with blanks. If
the name is omitted, the entire field must
contain blanks.

2 DA18SCLS SYSOUT class. The output class may be A-Z
or 0-9 in the first byte. The second byte in
the field is ignored. If SYSOUT is not
specified, the first byte of this field must
contain zeros or blanks.

1 DA18DPS2 Flag byte. Set the following bits to override
the normal disposition of the data set:

0000 Reserved bits. Set them to zero.
I T KEEP
U U DELETE
RS CATLG
....... 1 UNCATLG
If the disposition specified at allocation is to
be used, this field must contain zero.

1 DA18CTL Flag byte. These flags indicate to the DAIR
service routine what operations are to be
performed:

I T Prefix userid to DSNAME (requires DA18PDSN
data be available).

00.. 0000 Reserved bits; set them to zero.

IS R If this bit is on, permanently allocated data
sets are unallocated. If the bit is off, the data
set will be marked ‘‘not in use,” if it is
permanently allocated.

8 Reserved bytes; set this field to hexadecimal
Zeros.

Figure 31. DAIR Parameter Block -~ Entry Code X‘18’ (Part 2 of 2)

After attempting the requested function, DAIR returns one of the
following codes in register 15:

0, 4, 12, 24, 28, 52

See “Return Codes from DAIR” for return code meanings.

Code X‘1C’ - Allocate the Specified DDNAME to the Terminal

Build the DAIR parameter block shown in Figure 32 to request that DAIR
allocate a DDNAME to the terminal. If the DDNAME field is left blank,
DAIR returns the allocated DDNAME in that field. To supply DCB
information, provide the name of an attribute list that has been defined
previously by a X‘34’ entry into DAIR, or the DDNAME of a currently
allocated data set from which DCB attributes can be copied (as in a JCL
DCB reference).

Dynamic Allocation of Data Sets -~ The Dynamic Allocation Interface Routine (DAIR) 73

74

Number of

Bytes Field Contents or Menning'
2 DA1CCD Entry code X‘'001C’
2 DA1CFLG Reserved field; set it to zero.
2 DA1CDARC This field contains the error code, if any,

returned from the dynamic allocation routines.
(See ""Return Codes from Dynamic
Allocation.")

1 Reserved field; set it to zero.
1 DA1CCTL Control byte.

.. 1. The data set is to be permanently allocated,;
it is not to be freed until specifically
requested.

0000 .0.0 Attribute list name supplied.

Reserved; set to zero.

8 DA1CDDN Place in this field the DDNAME for the data
set to be allocated to the terminal or blanks if
the allocated DDNAME should be returned in
this field.

8 DA1CALN Attribute list name that has been defined

. previously by a X'34’ entry into DAIR, or a
DDNAME of a currently allocated data set
from which DCB attributes can be copied. This
field is used only if Bit 6 of DA1CCTL is set to
one.

Figure 32. DAIR Parameter Block -- Entry Code X‘1C’

After attempting the requested function, DAIR returns one of the
following codes in register 15:
0, 4, 12, 16, 20, 28, 52

See “Return Codes from DAIR” later in this section for return code
meanings.

Code X“24’ - Allocate a Data Set by DDNAME

Build the DAIR parameter block shown in Figure 33 to request that DAIR
allocate a data set by DDNAME.

If DAIR locates the DDNAME you specify and a DSNAME is currently
associated with it, the associated DSNAME is allocated overriding the
DSNAME pointed to by the third word of your DAIR parameter block.
The DDNAME may be found associated with a DUMMY, and if so an
indicator is returned but no allocation takes place.

If DAIR cannot allocate by DDNAME, it will give control to code X‘08’
to allocate by DSNAME and will generate a new DDNAME.

When setting disposition in a parameter list, only oné bit should be on.

TSO Guide to Writing a TMP or a CP

Number of

Bytes Field Contents or Meaning

2 DA24CD Entry code X‘0024'.

2 DA24FLG A flag field set by DAIR before returning to
the calling routine. The flags have the
following meaning:

Byte 1
1. ... The data set is allocated but a secondary
error occurred. Register 15 contains an error
RS PO code.

.000 .000 DDNAME requested is allocated as DUMMY.
Byte 2 Reserved bits. Set to zero.

Reserved. Set to zero.

2 DA24DARC This field contains the error code, if any,
returned from the dynamic allocation routines.
(See ‘‘Return Codes from Dynamic
Allocation.”’)

2 DA24CTRC This field contains the error code, if any,
returned from catalog management routines.
(See ""Return Codes from DAIR.”")

4 DA24PDSN Place in this field the address of the DSNAME
buffer. The DSNAME buffer is a 46-byte field
with the following format:

The first two bytes contain the length, in
bytes, of the DSNAME;

the next 44 bytes contain the DSNAME, left
justified and padded to the right with blanks.
If the specified DDNAME is used, this field
(DA24PDSN) is ignored.

8 DA24DDN Place here the DDNAME for the data set to be
allocated. This DDNAME is required. If the
specified DDNAME is not allocated, then a
generated DDNAME will be used with the
DSNAME and the generated DDNAME will be
returned in this field.

Figure 33. DAIR Parameter Block -- Entry Code X‘24’ (Part I of 4)

Dynamic Allocation of Data Sets -- The Dynamic Allocation Interface Routine (DAIR) 75

76

Number of
Bytes

Field

Contents or Meaning

DA24UNIT

DA24SER

DA24BLK

DA24PQTY

This is an eight-byte field containing an
esoteric group name, a generic group name,
or a specific device address (in EBCDIC). If
the unit information is less than eight
characters, it must be padded to the right with
blanks. If no information is to be provided, the
field must be blank. In this case, DAIR will
obtain information from the protected step
control block. If there is no unit information in
the PSCB, then a default of all direct access
devices is used. The specified unit information
will be ignored if volume information is
obtained from the catalog, unless the unit
specification is a subset of that obtained from
the catalog. In this case the specified unit
information will override the returned
information.

Serial number desired. Only the first six bytes
are significant. If the serial number is less
than six bytes, it must be padded to the right
with blanks. If the serial number is omitted,
the entire field must contain blanks. In this
case, the following is done:

If the data set is a new data set, the system
determines the volume to be used for the data
set based on the unit information. If the data
set already exists, volume and unit information
are obtained from the catalog. If the
information is not found in the catalog, the
allocation request is denied.

This a four-byte field used as follows: If the
data set is a new data set and CONTROL bit O
is off and bit 1 is on (see below), this field is
used with PRIMARY SPACE QUANTITY to
determine the amount of direct access space
to be allocated for the data set. 1f CONTROL
bit 6 is off, the field is also used as a DCB
blocksize specification. The value for
BLOCKSIZE must be placed in the low-order
two bytes. The high-order byte must be zero.

Primary space quantity desired. The high-order
byte must be set to zero; the low-order three
bytes should contain the space quantity
required. If the quantity is omitted, the entire
field must be set to zero. In this case for new
direct access data sets primary and secondary
space, and type of space will be defaulted.
Directory quantity will be used if specified in
DA24DQTY.

Figure 33. DAIR Parameter Block -~ Entry Code X‘24° (Part 2 of 4)

TSO Guide to Writing a TMP or a CP

Number of

Bytes Field Contents or Meaning

4 DA24SQTY Secondary space quantity desired. The high
order byte must be set to zero; the low order
three bytes should contain the secondary
space quantity required. If the quantity is
omitted, the entire field must be set to zero.

4 DA24DQTY Directory quantity required. The high order
byte must be set to zero; the low order three
bytes contain the number of directory blocks
desired. If the quantity is omitted, the entire
fleld must be set to zero.

8 DA24MNM Contains a member name of a partitioned data
set. If the name has less than eight
characters, pad it to the right with blanks. If
the name is omitted, the entire field must
contain blanks.

8 DA24PSWD Contains the password for the data set. If the
password has less than eight characters, pad
it to the right with blanks. If the password is
omitted, the entire field must contain blanks.

1 DA24DSP1 Flag byte. Set the following bits to indicate the
status of the data set:
0000 ' Reserved. Set these bits to zero.
U PO SHR
T O NEW
T MOD
....... 1 OoLD

If this byte is zero, OLD is assumed.

1 DA24DPS2 Flag byte. Set the following bits to indicate the
normal disposition of the data set:
0000 Reserved bits. Set them to zero.
o KEEP
U DELETE
.1 CATLG
.1 UNCATLG

If this byte is zero, it is defaulted as follows: if
DA24DSP1 is new, DELETE is used; otherwise

KEEP is used.
1 DA24DPS3 Flag byte. Set the following bits to indicate the

abnormal disposition of the data set:

0000 Reserved bits. Set them to zero.

e 1o KEEP

. DELETE
OO CATLG
....... 1 UNCATLG

If this byte is omitted (set to zero),
DA24DPS2 will be used.

Figure 33. DAIR Parameter Block -~ Entry Code X‘24° (Part 3 of 4)

Dynamic Allocation of Data Sets -- The Dynamic Allocation Interface Routine (DAIR) 77

78

Number of

Bytes Field Contents or Meaning
1 DA24CTL Flag byte. These flags indicate to the DAIR

service routine what operations are to be
performed:

XX.. ... Indicate the type of units desired for the
space parameters, as follows:

0l.. ... Units are in average block length.

10.. ... Units are in tracks (TRKS).

11.. ... Units are in cylinders (CYLS).

0 T Prefix userid to DSNAME..

1 RLSE is desired.

1 The data set is to be permanently allocated; it

is not be freed until specifically requested.

. I A DUMMY data set is desired.
. Attribute list name supplied.
....... 0 Reserved bit; set to zero.
3 Reserved bytes; set them to zero.
1 DA24DSO A flag field. These flags are set by the DAIR

service routine; they describe the organization
of the data set to the calling routine.
1. ... ’ Indexed sequential organization.
A Physical sequential organization.
WA Direct organization.
TS R BTAM or QTAM line group.
T P QTAM direct access message queue.
A I QTAM problem program message queue.
R W Partitioned organization.
....... 1 Unmovable.

8 DA24ALN Attribute list name, or a ddname from which
DCB attributes should be copied (as in a JCL
DCB reference). If the name is less than eight
characters, it should be padded to the right
with blanks.

Figure 33. DAIR Parameter Block -- Entry Code X‘24’ (Part 4 of 4)

After attempting the requested function, DAIR returns one of the
following codes in register 15:

0, 4, 8, 12, 16, 20, 52

See “Return Codes from DAIR” for return code meanings.

Code X‘28’ - Perform a List of DAIR Operations

Build the DAIR parameter block shown in Figure 34 to request that DAIR
perform a list of operations. This DAIR parameter block points to other
DAPBs which request the operations to be performed.

All valid DAIR functions are acceptable; however, code X‘14’ or another'
code X‘28’ are ignored.

DAIR processes the requested operations in the order they are requested.

DAIR processing stops with the first operation that fails.

TSO Guide to Writing a TMP or a CP

Number of

Bytes Field Contents or Meaning
2 DA28CD Entry code X'0028'.
2 DA28NOP Place in this field the number of operations to

be performed.

4 DA28PFOP DAIR fills this field with the address of the
DAIR parameter block for the first operation
that failed. If all operations are successful, this
field will contain zero upon return from the
DAIR service routine. If this field contains an
address, register fifteen contains a return
code.

4 DA280PTR Place in this field the address of the DAIR
parameter block for the first operation you
want performed. Repeat this field, filling it with
the addresses of the DAPBs, for each of the
operations to be performed.

Figure 34. DAIR Parameter Block -- Entry Code X‘28’
After attempting the requested function, DAIR returns one of the following
codes in register 15:

0, 4, 8, 12, 16, 20, 24, 28, 32, 44, 52

For return code meanings see the topic ‘“‘Return Codes from DAIR.”

Code X2C’ - Mark Data Sets as Not in Use

Build the DAIR parameter block shown in Figure 35 to request that DAIR
mark data sets associated with a task control block as not in use. This
allows data set entries to be reused.

This is the code which the TMP should pass to DAIR prior to detaching
a command processor. This code should also be issued by any command
processor which attaches another command processor and detaches that
command processor directly.

Dynamic Allocation of Data Sets -- The Dynamic Allocation Interface Routine (DAIR) 79

Number of J

Bytes Field Contents or Meaning

2 DA2CCD Entry code X'002C'.

2 DA2CFLG A flag field. Set the bits to indicate to the DAIR
service routine which data sets you want marked
‘not in use’.
Hex Setting Meaning
0000 Mark all data sets of the
indicated

TCB 'not in use’.

0001 Mark the specified DDNAME ‘not
in use’.

0002 Mark all data sets associated with
lower tasks ‘not in use’.

4 DA2CTCB Place in this field the address of the TCB for the
task whose data sets are to be marked ‘not in use’.
DA2CFLG must be set to hex 0000.

8 DA2CDDN Place in this field the DDNAME to be marked ‘not in
use’. DA2CFLG must be set to hex 0001.

Figure 35. DAIR Parameter Block -- Entry Code X‘2C’

After attempting the requested function, DAIR returns one of the
following codes in register 15:

0. 4, 52 ﬁ,

For return code meanings see ‘“Return Codes from DAIR” later in this
section.

Code X‘30’ - Allocate a SYSOUT Data Set to the Message Class

Build the DAIR parameter block shown in Figure 36 to request that DAIR
allocate a SYSOUT data set to the message class. The exact action taken by
DAIR is dependent upon the presence of the optional fields and the setting
of bits in the control byte. To supply DCB information, provide the name
of an attribute list that has been defined previously by a X‘34’ entry into
DAIR, or the DDNAME of a currently allocated data set from which DCB
attributes can be copied (as in a JCL DCB reference).

To place a SYSOUT data set in a class other than the message class, use
DAIR entry code X‘30’ and when the output has been written, specify the
desired class either by using DAIR entry code X‘18’, or execute the FREE
command, after the program has completed processing.

When setting disposition in a parameter list, only one bit should be on.

80 TSO Guide to Writing a TMP or a CP

Number of

Bytes Field

Contents or Meaning

2 DA30CD

2 DA30FLG

.000 0000
Byte 2

2 .| DA30ODARC

4 DA30PDSN

8 DA30DDN

8 DA3OUNIT

8 DA30SER

Entry code X'0030'.

A flag field set by DAIR before returning to
the calling routine. The flags have the
following meaning:

The data set is allocated but a secondary
error occurred. Register 15 contains an error
code.

Reserved bits. Set to zero.
Reserved. Set to zero.

This field contains the error code, if any,
returned from the dynamic allocation routines.
(See ''Return Codes from Dynamic
Allocation."")

Reserved. Set this field to zero.

Place in this field the address of the DSNAME
buffer or zeros. The DSNAME buffer is a
46-byte field which must appear as follows:
The first two bytes must contain 44 (X‘2C’);
the next 44 bytes contain blanks.

This field contains the DDNAME for the data
set. If a specific DDNAME is not required, fill
this field with eight blanks; DAIR will place in
this field the DDNAME to which the data set is
allocated.

This is an eight-byte field containing an
esoteric group name, a generic group name,
or a specific device address (in EBCDIC). f
the unit information is less than eight
characters, it must be padded to the right with
blanks. If no information is to be provided, the
field must be blank. In this case, DAIR will
obtain unit information from the protected
step control block. If there is no unit
information in the PSCB, then a default of all
direct access devices is used. The specified
unit information will be ignored if volume
information is obtained from the catalog,
unless the unit specification is a subset of that
obtained from the catalog. In this case the
specified unit information will override the
returned information.

Serial number desired. Only the first six bytes
are significant. If the serial number is less
than six bytes, it must be padded to the right
with blanks. If no volume serial number is
specified, the field must be blank. In this case,
the following is done: If the data set is a new
data set, the system determines the volume to
be used for the data set based on the unit
information. If the data set already exists,
volume and unit information are obtained from
the catalog. If the information is not found in
the catalog, the allocation request is denied.

Figure 36. DAIR Parameter Block -- Entry Code X‘30° (Part 1 of 2)

Dynamic Allocation of Data Sets -- The Dynamic Allocation Interface Routine (DAIR) 81

Number of
Bytes

Field

Contents or Meaning

DA30BLK

DA30PQTY

DA30SQTY

DA30PGNM

DA30FORM

DA300CLS

DA30CTL

DA30ALN

Block size requested. This figure represents
the average record length desired.

Primary space quantity desired. The high-order
byte must be set to zero; the low-order three
bytes should contain the space quantity
required. If the quantity is omitted, the entire
field must be set to zero. In this case for new
direct access data sets primary and secondary
space, and type of space will be defaulted.

Secondary space quantity desired. The
high-order byte must be set to zero; the
low-order three bytes should contain the
secondary space quantity required. If the
quantity is omitted, the entire field must be
set to zero.

Place in this field the member name of a
special user program to handle SYSOUT
operations. Fill this field with blanks if you do
not provide a program name.

Form number. This form number indicates that
the output should be printed or punched on a
specific output form. It is a four character
number. This field must be filled with blanks if
this parameter is omitted.

SYSOUT class. The data set will be allocated
to the message class, regardless of the class
you specify here. To place a SYSOUT data set
in a class other than the message class, use
DAIR entry code X‘30’ and when the output
has been written, specify the desired class by
using DAIR entry code X'18'.

Reserved. Set this field to zero.

Flag byte. These flags indicate to the DAIR
service routine what operations are to be
performed.

Indicate the type of units desired for the
space parameters, as follows:

Units are in average block length.

Units are in tracks (TRKS).

Units are in cylinders (CYLS).

Prefix userid to DSNAME

RLSE is desired.

The data set is to be permanently allocated; it
is not to be freed until specifically requested.

A DUMMY data set is desired.
Attribute list name specified.
Reserved bit; set to zero.

Attribute list name, or a ddname from which
DCB attributes should be copied (as in a JCL
DCB reference). If the name is less than eight
characters, it should be padded to the right
with blanks.

Figure 36. DAIR Parameter Block -- Entry Code X‘30° (Part 2 of 2)

TSO Guide to Writing a TMP or a CP

After attempting the requested function, DAIR returns one of the
following codes in register 15:

0, 4, 12, 16, 20, 28, 52
See “Return Codes from DAIR” later in this section for return code
meanings.

Code X‘34’ - Associate DCB Parameters with a Specified Name

Build the DAIR parameter block shown in Figure 37 to request that DCB
parameters to be used with subsequent allocations are associated with a
specified name (attribute name). The following functions related to attribute
names are available using code X‘34’:

1. Associate a set of DCB parameters to be used in subsequent
allocations.

2. Search on the attribute name.

3. Delete the attribute name.

Note: When you request that DAIR associate DCB parameters with a
specified name, you must also build a DAIR attribute control block
(DAIRACB).

Dynamic Allocation of Data Sets -- The Dynamic Allocation Interface Routine (DAIR) 83

Number of N .
Bytes Field Contents or Meaning J

2 DA34CD Entry code X'0034’.

2 DA34FLG A flag field set by DAIR before returning to
the calling routine. The flags have the
following meaning:

Byte 1

DA34FIND

1. ... An attribute list name was found.
0... ... An attribute list name was not found.
.000 0000 Reserved bits. Set to zero.

Byte 2 Reserved. Set to zero.

2 DA34DARC This field contains the code returned from the
dynamic allocation routines. (See ‘‘Return
Codes from Dynamic Allocation.").

1 DA34CTRL Flag byte. These flags indicate to DAIR what
operations are to be performed.

DA34SRCH

1. ... Search for the attribute list name specified in
field DA34NAME.

DA34CHN

Ao Build and chain an attribute list.

DA34UNCH

5 PR Delete an attribute list name.

...0 0000 Reserved bits. Set to zero.

1 Reserved. Set to zero.

8 DA34NAME This field contains the name for the list of i
attributes. This field is required and if the
name is less than 8 characters it must be
padded to the right with blanks.

4 DA34ADDR This field contains the address of the DAIR
attribute control block (DAIRACB). This field
need only be specified if bit 1 of DA34CTRL is
on.

Figure 37. DAIR Parameter Block -- Entry Code X‘34’

After attempting the requested function, DAIR returns one of the
following codes in register 15:

0, 4, 12, 52

See “Return Codes from DAIR” below for return code meanings.

DAIRACB - DAIR Attribute Control Block

Build the DAIRACB shown in Figure 38 when you request that DAIR
construct an attribute list. Place the address of the DAIRACB into the
DA34ADDR field of the code X‘34’ DAIR parameter block shown in
Figure 37.

84 TSO Guide to Writing a TMP or a CP

Number of

Bytes Field

Contents or Meaning

2 DA30CD

2 DA30FLG

.000 0000
Byte 2

2 .| DA30ODARC

4 DA30PDSN

8 DA30DDN

8 DA3OUNIT

8 DA30SER

Entry code X‘0030'.

A flag field set by DAIR before returning to
the calling routine. The flags have the
following meaning:

The data set is allocated but a secondary
error occurred. Register 15 contains an error
code.

Reserved bits. Set to zero.
Reserved. Set to zero.

This field contains the error code, if any,
returned from the dynamic allocation routines.
(See "'Return Codes from Dynamic
Allocation.”’)

Reserved. Set this field to zero.

Place in this field the address of the DSNAME
buffer or zeros. The DSNAME buffer is a
46-byte field which must appear as follows:
The first two bytes must contain 44 (X‘2C’);
the next 44 bytes contain blanks.

This field contains the DDNAME for the data
set. If a specific DDNAME is not required, fill
this field with eight blanks; DAIR will place in
this field the DDNAME to which the data set is
allocated.

This is an eight-byte field containing an
esoteric group name, a generic group name,
or a specific device address (in EBCDIC). If
the unit information is less than eight
characters, it must be padded to the right with
blanks. If no information is to be provided, the
field must be blank. In this case, DAIR will
obtain unit information from the protected
step control block. If there is no unit
information in the PSCB, then a default of all
direct access devices is used. The specified
unit information will be ignored if volume
information is obtained from the catalog,
unless the unit specification is a subset of that
obtained from the catalog. In this case the
specified unit information will override the
returned information.

Serial number desired. Only the first six bytes
are significant. If the serial number is less
than six bytes, it must be padded to the right
with blanks. If no volume serial number is
specified, the field must be blank. In this case,
the following is done: If the data set is a new
data set, the system determines the volume to
be used for the data set based on the unit
information. If the data set already exists,
volume and unit information are obtained from
the catalog. If the information is not found in
the catalog, the allocation request is denied.

Figure 36. DAIR Parameter Block -- Entry Code X‘30° (Part 1 of 2)

Dynamic Allocation of Data Sets -- The Dynamic Allocation Interface Routine (DAIR) 81

:;:::er of Field Contents or Meaning

2 DA34CD Entry code X'0034’.

2 DA34FLG A flag field set by DAIR before returning to
the calling routine. The flags have the
following meaning:

Byte 1

DA34FIND

1... ... An attribute list name was found.
0... ... An attribute list name was not found.
.000 0000 Reserved bits. Set to zero.

Byte 2 Reserved. Set to zero.

2 DA34DARC This field contains the code returned from the
dynamic allocation routines. (See ‘‘Return
Codes from Dynamic Allocation.”).

1 DA34CTRL Flag byte. These flags indicate to DAIR what
operations are to be performed.

DA34SRCH

1. ... Search for the attribute list name specified in
field DA34NAME.

DA34CHN

A Build and chain an attribute list.

DA34UNCH

W1 Delete an attribute list name.

...0 0000 Reserved bits. Set to zero.

1 Reserved. Set to zero.

8 DA34NAME This field contains the name for the list of
attributes. This field is required and if the
name is less than 8 characters it must be
padded to the right with blanks.

4 DA34ADDR This field contains the address of the DAIR
attribute control block (DAIRACB). This field
need only be specified if bit 1 of DA34CTRL is
on.

Figure 37. DAIR Parameter Block —- Entry Code X‘34’

After attempting the requested function, DAIR returns one of the

following codes in register 15:

0,4, 12,52

See “Return Codes from DAIR” below for return code meanings.

DAIRACB - DAIR Attribute Control Block

Build the DAIRACB shown in Figure 38 when you request that DAIR
construct an attribute list. Place the address of the DAIRACB into the
DA34ADDR field of the code X‘34’ DAIR parameter block shown in

Figure 37.

TSO Guide to Writing a TMP or a CP

Number of . .
L Bytes Field Contents or Meaning
8 Reserved.
8 DAIMASK First 6 bytes and eighth byte are reserved.
DAILABEL Seventh-byte flags. These flags indicate the
INOUT/OUTIN options of the OPEN macro.
DAIINOUT
1... ... Use the INOUT option.
DAIOUTIN
A Use the OUTIN option.
.00 0000 Reserved bits. Should be set to zero.
3 Reserved. Should be set to zero.
3 DAIEXPDT This field contains a data set expiration date
specified in binary.
DAIYEAR The first byte contains the expiration year.
DAIDAY The next 2 bytes contain the expiration day,
left justified. For example, the date 99352 is
specified ‘630160'B.
2 Reserved. Should be set to zero.
1 DAIBUFNO This field contains the number of buffers
required.
1 DAIBFTEK This field contains the buffer type and
alignment.
.. Simple buffering (S).
A1, Automatic record area construction (A).
S T Record buffering (R).
R R Exchange buffering (E).
1. Doubleword boundary (D).
R | Fullword boundary (F).
0... 00.. Reserved bits. Should be set to zero.
2 DAIBUFL This field contains the buffer length.
1 DAIEROPT This field indicates the error options:
1. .. Accept error record.
A Skip error record.
D DR Abnormal EOT.
...0 0000 Reserved bits. Should be set to zero.
1 DAIEKYLE This field contains the key length.
6 Reserved. Should be set to zero.

Figure 38. DAIR Attribute Control Block (DAIRACB) (Part 1 of 2)

Dynamic Allocation of Data Sets -- The Dynamic Allocation Interface Routine (DAIR) 85

88

DAIRFAIL Routine (IKJEFF18)

The DAIRFAIL routine analyzes return codes from SVC99 or DAIR, and
performs one of the following functions, as requested:

« Issue an error message when appropriate.
« Issue an error message, as well as return the message to the caller.

This process of returning the message(s) to the caller is referred to as
extracting the message.

DAIRFAIL must receive control in 24-bit addressing mode and be
passed input that resides below 16 megabytes. If the program invoking
DAIRFAIL is executing in 31-bit addressing mode, it may issue a LINK
macro without switching addressing modes to invoke DAIRFAIL. (The
LINK macro ensures that DAIRFAIL is invoked in 24-bit addressing
mode.) When linking to IKJEFF18, provide the address of the following
four-word parameter list in register 1:

Offset
Dec Hex Field Name Contents
DSECT - DFDSECTD
DFS99RBP
or

0 0 DFDAPLP Address of the failing SVC99 request block or
address of the failing DAIR parameter list.

4 -4 DFRCP Address of a fullword containing either the SVC99
or DAIR return code.

8 8 DFJEFFO2 Address of a fullword containing either the entry
point address of IKJEFFO2 (message writer
routine) or zeros, if that address is unknown. This
field (DFJEFFO2) must always contain an address.

12 C DFIDP Address of a two-byte area containing:

Byte 1 Switches
Bit 1: 0 - PUTLINE issued
1 - WTP issued
Bit 2: 1 - Caller wants message extracted only.
Bit 3: 1 - Caller wants message extracted as
well as issued as a PUTLINE
or write-to-programmer (WTO).
Byte 2 Caller identification number
X'01' - DAIR
X'32' - SVC99
X'33' - SVC99 invoked by the FREE command

16 10 DFCPPLP Address of the CPPL. This is needed only when
IKJEFF18 is called with an SVC99 error and the
user is not requesting a write-to-programmer
message.

20 14 DFBUFP Address of DFBUFS buffer if bit 2 (DFBUFSW) or

bit 3 (DFBUFS2) of DFIDP is on. This is required
when the message is to be extracted and returned
to the caller. if the DFBUFSW is on, the
message(s) will only be extracted. If DFBUFS2 is
on, the message(s) will be issued as well as
extracted and returned to the caller. It will be
possible to extract the first level and one second
level message.

TSO Guide to Writing a TMP or a CP

9

Offset

Dec Hex Field Name Contents
DSECT - DFDSECT2
DFBUFS
or
0 0 DFBUFL1 A 2 byte field that will contain the total length of

the first level message, plus 4 bytes for length
and offset fields.

2 2 DFBUFO1 A 2 byte field containing the offset field. It will be
set to zero when a message is extracted.
4 4 DFBUFT1 A 251 byte buffer that will contain the text of the

first level message extracted. If the message is
greater than 251 bytes, the message will be
truncated.

256 100 DFBUFL2 A 2 byte field containing the total length of the
first second level message plus four bytes. If
there is no second level message, this field will
contain HEX zeros.

258 102 DFBUF02 A 2 byte field containing the offset. It will be set
to zero when a message is extracted.
260 104 DFBUFT2 A 251 field that will contain the text of the first

second level message extracted. If the message is
greater than 251 bytes, the message will be
truncated.

The IKJEFFDF macro may be used to map the fields in the parameter
list. Specify DFDSECT=YES option to obtain DSECT DFDSECTD instead
of storage. Specify the DFSECT2=YES option to obtain DSECT
DFDSECT? instead of storage. DFDSECT?2 defines a storage area supplied
by the caller. DAIRFAIL will return the requested informational message(s)
in the associated buffers. It is not necessary to initialize these buffers. On
return from DAIRFAIL, the buffers will contain the extracted message(s).

DAIRFAIL allows the user to specify that a write-to-programmer
message should be issued rather than the default PUTLINE routine. This is
especially useful for analyzing errors occurring in a batch invocation of
SVC99. If the high-order bit of the caller identification area (pointed to by
DFIDP) is on, a write-to-programmer message will be issued instead of a
PUTLINE. When the write-to-programmer feature is used, the address of
the CPPL (DFCPPLP) need not be specified.

The return code from DAIRFAIL is contained in register 15 as follows:

o - Message issued successfully

4 - Invalid caller identification number

8 - Message writer detected an error while attempting to issue a message
12 - Extracted message buffer parameter list error

GNRLFAIL/VSAMFAIL Routine (IKJEFF19)

The GNRLFAIL/VSAMFAIL routine analyzes VSAM macro instruction
failures, subsystem request (SSREQ) failures, parse service routine or
PUTLINE failures, and ABEND codes, and issues an appropriate error
message. It will insert the meaning of return codes from the VSAM/job
entry subsystem interface. Other VSAM codes are explained in the VSAM
Programmer’s Guide.

GNRLFAIL/VSAMFAIL must receive control in 24-bit addressing mode
and be passed input that resides below 16 megabytes. If the program
invoking GNRLFAIL/VSAMFAIL is executing in 31-bit addressing mode,
it may issue a LINK macro without switching addressing modes to invoke
it. (The LINK macro ensures that GNRLFAIL/VSAMFAIL is invoked in

Dynamic Allocation of Data Sets -- The Dynamic Allocation Interface Routine (DAIR) 89

90

24-bit addressing mode.) When linking to IKJEFF19, provide the address
of a pointer to the following parameter list in register 1:

Offset

Dec Hex
0 0
4 4
8 8
12 C

GFCALLID =
14 E
15 F
16 10
20 14
24 18
26 1A
28 1C
32 20
36 24
40 28

Field Name
GFCBPTR

GFRCODE
GFO2PTR

GFCALLID

Hexadecimal

01 (GFCHECK)
02 (GFCLOSE)
03 (GFENDREQ)
04 (GFERASE)
05 (GFGET)

06 (GFOPEN)
07 (GFPOINT)
08 (GFPUT)

15 (GFPARSE)

16 (GFPUTL)
1F (GFABEND)
20 (GFSSREQ)

GFBITS
GFKEYNO8
GFSUBSYS

GFWTPSW

GFRESV1
GFCPPLP

GFECBP
GFDSNLEN
GFPGMNL
GFDSNP

GFPGMNP

GFRESV2
GFRESV3

Contents

Pointer to VSAM ACB if GFOPEN or GFCLOSE
callerid. Pointer to VSAM RPL for other VSAM
macro failures. Pointer to SSOB if GFSSREQ caller
id.

Error return code from register 15 or ABEND code
if GFCALLID is GFABEND.

Zero, or address of TSO message issuer routine
(IKJEFFO2) if already loaded.

ID for caller’s failing VSAM macro, or other
failure.

for VSAM CHECK macro error
for VSAM CLOSE macro error
for VSAM ENDREQ macro error
for VSAM ERASE macro error
for VSAM GET macro error
for VSAM OPEN macro error
for VSAM POINT macro error
for VSAM PUT macro error
for parse service routine error, other than a
return code of 4 or 20.
for PUTLINE service routine error
Issue ABEND message
for Subsystem interface request (SSREQ)
error
Special processing switches

) P Caller not in key O or 8.

A Caller used VS2 VSAM/job entry
subsystem interface.

[DR Issue error message as
write-to-programmer instead of
PUTLINE.

Reserved.

Pointer to TMP’'s CPPL control block (needed if
PUTLINE issued, or to have command name
inserted in the failure message).

Pointer to ECB for PUTLINE (optional).

Length of data set name.

Length of program name.

Pointer to data set name to insert in VSAMFAIL
error messages (optional; default is ddname).
Pointer to program name for insertion in all error
messages (optional; default is ddname).
Reserved.

Reserved.

The return code from GNRLFAIL is contained in register 15 as follows:

0 -
80 -

Other-

Message issued successfully

Invalid input parameter list (GFPARMS) for IKJEFF19. A message is also
issued.
PUTLINE/PUTGET/IKJEFF02 message issuer error return code.

The IKJEFFGF macro may be used to map the input parameter list.
Specify GFDSECT=YES option to obtain DSECT GFDSECTD instead of

storage.

TSO Guide to Writing a TMP or a CP

Using BSAM or QSAM for Terminal 1/0

The basic sequential and queued sequential access methods provide terminal
1/0 support for programs operating under TSO. For a complete discussion
of the use of BSAM and QSAM, see the publication Data Management
Services.

The major benefit of using BSAM or QSAM to process terminal 1/0
under TSO is that programs using these access methods do not become
TSO dependent or device dependent and may execute either under TSO or
in the batch environment. Therefore, your existing programs that use BSAM
or QSAM for I/O may be used under TSO without modification or
recompilation.

This section describes:

« The BSAM/QSAM macro instructions

« SAM terminal routines

« Record formats, buffering techniques, and processing modes
o Specifying the terminal line size

» End of file (EOF) for input processing

- Modifying DD statements for batch or TSO processing

BSAM/QSAM Macro Instructions

Some of the BSAM and QSAM access method routines have been modified
to provide special services under TSO; others provide the same function
that is provided in a batch environment. Those BSAM/QSAM macro
instructions that are not relevant to terminal 1/O act as no-ops. All of the
BSAM/QSAM macro instructions, when executed in the batch
environment, provide the non-terminal functions as explained in Data
Management Macro Instructions. The BSAM/QSAM macro instructions
must be issued in 24-bit addressing mode. Figure 39 shows the functions
performed by the BSAM and QSAM macro instructions when used for
terminal 1/0. Following the table are more detailed explanations of the
GET, PUT, PUTX, READ, WRITE, and CHECK macro instructions.

Using BSAM or QSAM for Terminal 1/0 91

92

SAM Macro

Instruction BSAM | QSAM Terminal Interpretation
BSP X X NOP
BUILD X X As in batch processing, the BUILD macro

instruction causes a buffer pool to be constructed
in a user-provided storage area.

BUILDRCD X NOP

CHECK X Takes an EODAD exit after a READ EOF. NOP after
a WRITE.

CLOSE X X The CLOSE macro instruction frees the control

blocks built to handle 1/0 and deletes the loaded
SAM terminal routines.

CNTRL X X NOP
REOV X X NOP
FREEBUF X As in batch processing, the FREEBUF macro

instruction causes the control program to return a
buffer to the buffer pool assigned to the specified
data control block.

FREEPOOL X X As in batch processing, the FREEPOOL macro
instruction causes an area of virtual storage,
previously assigned as a buffer pool for a specified
data control block, to be released.

GET X The GET macro instruction obtains data from the
terminal via the TGET macro instruction.
GETBUF X As in batch processing, the GETBUF macro

instruction causes the control program to obtain a
buffer from the buffer pool assigned to the
specified data control block, and to return the
address of the buffer in a designated register.
GETPOOL X X As in batch processing, the GETPOOL macro
instruction causes a buffer pool to be constructed
in a storage area provided by the control program.
NOTE X NOP

OPEN X X The OPEN macro instruction loads the proper SAM
terminal 1/0 routines and constructs the necessary
control blocks.

POINT X NOP

PRTOV X X | NOP

PUT X The PUT macro instruction routes data to the
terminal via the TPUT macro instruction.

PUTX X The PUTX macro instruction routes data to the
terminal via the TPUT macro instruction.

READ X The READ macro instruction obtains data from the
terminal via the TGET macro instruction.

RELSE X NOP

SETPRT X X NOP

TRUNC X NOP

WRITE X The WRITE macro instruction routes data to the

terminal via the TPUT macro instruction.

Figure 39. BSAM/QSAM Macro Functions under TSO

SAM Terminal Routines

The GET, PUT, PUTX, READ, WRITE, and CHECK macro instructions
perform differently in terminal I/O than they do in the batch environment.
Descriptions of these differences are presented here, but for a detailed
explanation of how to use the macro instructions, see Data Management
Macro Instructions.

TSO Guide to Writing a TMP or a CP

GET

The GET macro instruction causes a record to be retrieved from the
terminal and placed in either the first buffer of the buffer pool control
block (locate mode) or in a user specified area (substitute or move mode).
In either case, the address of the record is returned in register 1.

The record is moved via a TGET macro instruction which does not
return control until the transfer of data completes.

The input to the GET macro instruction consists of the DCB address and
the user’s area address (omitted for locate mode). The output is edited (that
is, specially-indicated characters are deleted from the message). Lowercase
characters are folded to uppercase characters.

When the terminal user types /*, end-of-file is indicated and control is
passed to the problem program’s EODAD routine. If no EODAD routine is
specified, the job will ABEND with a system code of 337.

PUT and PUTX

Both the PUT and the PUTX macro instructions cause a record to be
written to a terminal. This transfer of data is accomplished with the TPUT
macro instruction which does not return control until the transfer is
completed.

In locate mode, the first use of PUT or PUTX causes an address
pointing to a buffer to be returned in register 1. The first record is placed
in this buffer by the problem program and is written out when the next
PUT or PUTX for the same data control block (DCB) is issued. Succeeding

records are written in the same manner. The last record is written at
CLOSE time.

In move or substitute mode, the PUT or PUTX macro instruction moves
a record from the user-specified work area to the terminal. You must supply
the work area address to the PUT macro instruction.

The input to the PUT and PUTX macro instruction consists of the DCB
address and the user’s area address (omitted for locate mode).

READ

The READ macro instruction causes a block of data to be retrieved from
the terminal and placed in a user-designated area in storage. This transfer
of data is done via a TGET macro instruction which does not return control
before the transfer is completed. The data is folded to uppercase.

The input to the READ macro instruction consists of the string of
parameters explained in Data Management Macro Instructions.

WRITE

The WRITE macro instruction causes a block of data to be written from
the user-specified area to the terminal. This transfer of data is done via a
TPUT macro instruction which does not return control until the transfer is
completed.

The input to the WRITE macro instruction consists of the string of
parameters explained in Data Management Macro Instructions.

Using BSAM or QSAM for Terminal I/O 93

CHECK

The CHECK macro instruction used after a WRITE macro instruction J
results in a NOP. When it is used after a READ macro instruction, it

performs as a NOP unless an end of file (EOF) condition is encountered.

The end of file signal from the terminal is /*. When end of file is

encountered, CHECK takes the EODAD exit specified in the data control

block. If no EODAD exit is specified, CHECK will cause the job to

ABEND with a system code of 337.

The input to the CHECK macro instruction is the address of the
problem program’s data event control block (DECB).

Record Formats, Buffering Techniques, and Processing
Modes

All record formats -- fixed (F), variable (V), and undefined (U) -- are
supported under TSO. Before passing the data to the problem program,
TSO automatically generates the first four bytes of control information for
V format records coming in from the terminal. When you send V format
records to the terminal, TSO automatically removes the control information
before writing the line.

Control characters (ASCII or machine) are not supported under TSO.
On output, they are removed before the data is sent to the terminal. On
input, they are ignored.

Both simple and exchange buffering techniques are supported, as are all
four processing modes for the queued access method.

Specifying Terminal Line Size J
If the LRECL and BLKSIZE fields are not specified in the DCB, the
terminal line size default (or the line size the terminal user has specified via

the TERMINAL command) is merged into the data control block fields as
if it came from the label of the data set.

For BSAM, BLKSIZE is used by TSO to determine the length of the
text line it is to process. For both BSAM and QSAM, if the text entered
from the terminal is shorter than the value specified for LRECL, and if F
format is used, blanks are supplied on the right. For either access technique,
if the text entered is longer than BLKSIZE or LRECL, the next GET or
READ retrieves the remainder of the message. If the record generated by
the problem program is longer than the specified line size, multiple lines are
displayed at the terminal.

End-of-File (EOF) for Input Processing

The sequential access method GET and CHECK terminal routines
recognize /* from the terminal as an end-of-file (EOF). The EODAD exit
in the data control block is taken for the EOF condition. If no EODAD
exit has been specified, and an EOF has been signaled from the terminal,
the job ABENDs with a system code of 337.

94 TSO Guide to Writing a TMP or a CP

Modifying DD Statements for Batch or TSO Processing

TERM=TS, when added to a DD statement defining an input or an output
data set, is ignored in the batch processing environment, but under TSO
indicates to the system that the unit to which I/O is being addressed is a
time sharing terminal. Thus a user who wants his job to run in either the
foreground or the background could provide a DD statement as follows:

//DD1| DD| TERM=TS, SYSOUT=A

In this example the output device is defined as a terminal under TSO
processing, and as the SYSOUT device during batch processing. For a
complete description of the TERM=TS parameter, see JCL.

Using BSAM or QSAM for Terminal [/O 95

96 TSO Guide to Writing a TMP or a CP

Using the TSO I/0 Service Routines for Terminal 1/0

The TSO I/0 service routines process terminal I/O requests initiated by
the terminal monitor program (TMP), command processors (CPs), and
other service routines. If you write your own command processors, or
replace the IBM-supplied terminal monitor program with one of your own
design, you should use the I/O service routines to process terminal 1/0.

The 1/0 service routines -- STACK, GETLINE, PUTLINE, and
PUTGET -- offer the following features:

1. They provide an interface between an I/O request and the TGET
and TPUT supervisor calls.

2. They provide a method of selecting sources of input other than the
terminal. Requests for input can be directed to an in-storage list or
data set as well as to the terminal.

3. They provide a message formatting facility with which you can insert
text segments into a basic message format, and display or inhibit the
displaying of message identifiers.

4. They process requests for more information (question-mark
processing), and they analyze processing conditions to determine if
I/0 requests should be disregarded or honored.

You pass control to the I/0 service routines and indicate the functions
you want performed by coding the operands you require in the list and the
execute forms of the I/O service routine macro instructions. Each of the
I/0 service routine macro instructions (STACK, GETLINE, PUTLINE,
and PUTGET) has a list and an execute form.

The list form of each service routine macro instruction initializes the
parameter blocks according to the operands you code into the macro
instruction.

The execute form is used to modify the parameter blocks and to provide
linkage to the service routines, and can be used to set up the input/output
parameter list. The input/output parameter list contains addresses required
by the 1/O service routines.

Nofte: See the section “Interfacing with TSO Service Routines” for
information on the CALLTSSR macro interface to TSO service routines
and a list of the DSECTS provided for TSO control blocks.

The Input/Output Parameter List

The I/0 service routines use two of the pointers contained in the command
processor parameter list: the pointer to the user profile table and the
pointer to the environment control table. These addresses are passed to the
service routines in another parameter list, the input/output parameter list
(IOPL). The IOPL and the fields in the IOPL must reside below 16
megabytes. Before executing any of the TSO I/0O macro instructions
(GETLINE, PUTLINE, PUTGET, or STACK) you must provide an IOPL
and pass its address to the I/O service routine.

Using the TSO 1/0 Service Routines for Terminal /O 97

There are two ways you can construct an IOPL:

1. You can build and initialize the IOPL within your code and place a
pointer to it in the execute form of the I/O macro instruction.

2. You can provide space for an IOPL (4 fullwords), pass a pointer to it
together with the addresses required to fill it, to the execute form of
the I/O macro instruction, and let the I/O macro instruction build
the IOPL for you.

The input/output parameter list, as defined by the IKJIOPL DSECT, is a
four-word parameter list. Figure 40 describes the contents of the IOPL.

Number of : .
Bytes Field Contents or Meaning

4 IOPLUPT The address of the user profile table from the
CPPLUPT field of the command processor
parameter list.

4 IOPLECT The address of the environment control table
from the CPPLECT field of the CPPL.

4 IOPLECB The address of the command processor’s
event control block (ECB). The ECB is one
word of storage, declared and initialized to
zero by the command processor.Command
processors with attention exits can post this
ECB after an attention interruption to cause
active service routines to exit.

4 |OPLIOPB The address of the parameter block created
by the list form of the I/O macro instruction.
There are four types of parameter blocks, one
for each of the 1/0 service routines:

STACK parameter block (STPB)

GETLINE parameter block (GTPB)

PUTLINE parameter block (PTPB)

PUTGET parameter block (PGPB)

Figure 40. The Input/Output Parameter List

The parameter block pointed to by the fourth word (IOPLIOPB) of the
I/0O parameter list is built and modified by the 1/O service routine macros
themselves. It is created and initialized by the list form of the 1/O macro
instruction, and modified by the execute form. Thus you can use the same
parameter block to perform different functions. All you need to do is code
different parameters in the execute forms of the macro instructions; these
parameters provide those options not specified in the list form, and override
those which were specified. Each of these parameter blocks -- the STACK,
GETLINE, PUTLINE, and PUTGET parameter blocks -- is described in
the separate sections on each of the I/O macro instructions.

Figure 41, an extension of Figure 38, summarizes the control block
interfaces established between the terminal monitor program and an 1/0
service routine.

98 TSO Guide to Writing a TMP or a CP

Terminal
Monitor
Program

Reg.

Command
Processor
ATTACH

CPPL

/0
Service
Routine

IOPL

Parameter
Block

T
I |
| I
l |
: |
| !
e

Figure 41. Control Block Interface between TMP and I/O Service Routine

Passing Control to the I/O Service Routines

Pass control to an I/O service routing using the corresponding I/0 macro

instruction:

Service Routine
« STACK

« GETLINE

« PUTLINE

« PUTGET

Macro Instruction
STACK
GETLINE
PUTLINE
PUTGET

You can use the DELETE macro instruction to release the storage area
occupied by the load module when you have finished with your terminal

I/0.

All of the TSO terminal I/O service routines are contained in the
IKJPTGT load module. The IKJPTGT load module has the AMODE=24
and RMODE=24 attributes and is loaded below 16 megabytes. The TSO
I/0 service routines must receive control in 24-bit addressing mode.

Using the TSO 1/0 Service Routines for Terminal 1/0 99

| The I/0O Service Routine Macro Instructions

The I/0 service routines -- STACK, GETLINE, PUTLINE, and PUTGET
-- each perform a specific I/0O function:

o STACK determines the source of input.

o GETLINE obtains a line of input.

« PUTLINE puts a line of output to the terminal.

o PUTGET puts a line to the terminal and gets a line in response.

In order to perform these functions, the I/O macro instructions use the
control blocks explained in the section “TSO Service Routines -- Their Uses
and Interfaces,” and other, more individualized control blocks, the
parameter blocks. Each of the I/O macro instructions has a list and an
execute form. The list form sets up the parameter block required by that
1/0 service routine; the execute form can be used to set up the input
output parameter list, and to modify the parameter block created by the list
form of the macro instruction.

The STACK, GETLINE, PUTLINE, and PUTGET macros must be
issued in 24-bit addressing mode. All input must reside below 16
megabytes.

The parameter block required by each of the I/O service routines is
different, and each one may be referenced through a DSECT. The
parameter blocks and the DSECTS used to reference them are:

o The STACK parameter block referenced by IKISTPB

o« The GETLINE parameter block referenced by IKIGTPB
« The PUTLINE parameter block referenced by IKJPTPB
¢ The PUTGET parameter block referenced by IKIPGPB

Each of these blocks is explained in the section describing the I/O macro
instruction that builds it.

STACK - Changing the Source of Input

Use the STACK macro instruction to establish and to change the source of
input. The currently active input source is described by the top element of
the input stack, an internal pushdown list maintained by the I/O service
routines. The first element of the input stack is initialized by the terminal
monitor program (TMP), and cannot thereafter be changed or deleted. The
IBM-supplied TMP initializes this first element to indicate the terminal as
the current input source. The STACK service routine adds an element to
the input stack or deletes one or more elements from it, and thereby
changes the source of input for the other I/O service routines.

This topic describes:

o The list and execute forms of the STACK macro instruction
¢ The sources of input

« The STACK parameter block

e The list source descriptor

o Return codes from STACK

Coding examples are included where needed.

100 TSO Guide to Writing a TMP or a CP

The STACK Macro Instruction - List Form

The list form of the STACK macro instruction builds and initializes a
STACK parameter block (STPB), according to the operands you specify in
the macro. The STACK parameter block indicates to the STACK service
routine which functions you want performed. Figure 42 shows the list form
of the STACK macro instruction; each of the operands is explained
following the figure. Appendix A describes the notation used to define
macro instructions.

i TOP 7
(symboll STACK DELETE={PROC
ALL
PROCN, PROMPT
STORAGE=(element address,{PROCL,PROMPT)| ,MF=L
SOURCE
*

DATASET=|\INDD=addrl , PROMPT ,LIST
MEMBER=addr3
OUTDD=addr2,CNTL,SEQ

- CLOSE :

Figure 42. The List Form of the STACK Macro Instruction

DELETE=
Delete an element or elements from the input stack. The element to be
deleted must be further defined as TOP, PROC, or ALL.

TOP
The topmost element (the element most recently added to the input
stack) is to be deleted.

PROC
The current procedure element is to be deleted from the input stack. If
the top element is not a PROC element, all elements down to and
including the first PROC element encountered are to be deleted.

ALL
All elements are to be deleted from the input stack except the bottom
element (the first element).

STORAGE=element address
Add an in-storage element to the input stack. The element address is the
address of the list source descriptor (LSD). The LSD is a control block,
pointed to by the STACK parameter block, which describes the
in-storage list. The in-storage element must be further defined as a
SOURCE, PROCN, or PROCL list. SOURCE is the default.

PROMPT
Specifies prompting by commands within a command procedure.
PROMPT is used with the keywords PROCN and PROCL, which
specify that the element to be added to the input stack is a command
procedure.

Using the TSO 1/0 Service Routines for Terminal 1/0 101

102

PROCN
The element to be added to the input stack is a command procedure and
NOLIST option has been specified.

PROCL
The element to be added to the input stack is a command procedure and
the LIST option has been specified. Each line read from the command
procedure is written to the terminal.

SOURCE
The element to be added to the input stack is an in-storage source data
set.

MF=L
Indicates that this is the list form of the macro instruction.

DATASET
Supports the use of ACCOUNT in the background by expanding the
facilities of dataset I/O for TSO commands to include reading from a
SYSIN data set and writing to a SYSOUT dataset. To use the dataset
function, the input and output files passed to the STACK service routine
must be preallocated, either by a previously issued ALLOCATE
command, a command processor going to dynamic allocation, a DD
statement specified in the logon procedure, or, in the background, a
user-supplied DD statement.

Specifies that STACK use the bottom element in the input stack for I/0
operations. This operand is the functional equivalent of TERM=*, which
is still supported for compatibility.

INDD=addr1
Specifies the input file name.

PROMPT
Allows prompting if prompting is also allowed on the bottom element of
the input stack.

LIST
Lists the input from the input stream.

MEMBER=addr3
Specifies an 8-character member name for a partitioned data set which
was specified as the input file with the INDD operand.

OUTDD=addr2
Specifies the output file name.

CNTL
The output line has its own control character.

CLOSE
Closes the data control blocks (DCBs) of the input stack.

SEQ
Tells dataset I/O not to remove sequence numbers.

TSO Guide to Writing a TMP or a CP

J

Note: In the list form of the macro instruction, only

STACK|MF=L

is required. When only STACK MF=L is specified, the STPB is zeroed.
The other operands and their sublists are optional because they may be
supplied by the execute form of the macro instruction.

The operands you specify in the list form of the STACK macro
instruction set up control information used by the STACK service routine.
The DATASET, STORAGE, and DELETE operands set bits in the
STACK parameter block. These bit settings indicate to the STACK service
routine which options you wish performed.

The STACK Macro Instruction - Execute Form

Use the execute form of the STACK macro instruction to perform the
following three functions:

1. To set up the input output parameter list (IOPL).

2. To initialize those fields of the STACK parameter block not
initialized by the list form of the macro instruction, or to modify
those fields already initialized.

3. To pass control to the STACK service routine which modifies the
input stack.

Figure 43 shows the execute form of the STACK macro instruction; each
of the operands is explained following the figure. Appendix A describes the
notation used to define macro instructions. -

(symbol] STACK [PARM=parm addr.][,UPT=upt addr.]
[, ECT=ect addr.][,ECB=ecb addr.]

TOP _]
DELETE={PROC}
ALL
PROCN, PROMPT
STORAGE=(element addr. ,{PROCL,PROMPT)
SOURCE
*
INDD=addrl , PROMPT,LIST
DATASET= { MEMBER=addr3
oUTDD=addr2,CNTL,SEQ
i CLOSE i
[ENTRY-{entry addr.] ,ME'=(E,{list addr.})
(15) } (D)

Figure 43. The Execute form of the STACK Macro Instruction

Note: TERM=* will be allowed by STACK to provide companblllty with
existing modules when they are recompiled.

Using the TSO 1/0 Service Routines for Terminal /0 103

SEQ
Tells dataset I/O not to remove sequence numbers.)

CLOSE
Closes the data control blocks (DCBs) of the bottom element of the
input stack.

ENTRY =entry address or (15)
Specifies the entry point of the STACK service routine. The address may
be any address valid in an RX instruction or (15) if the entry point
address has been loaded into general register 15. If ENTRY is omitted, a
LINK macro instruction will be generated to invoke the STACK service
routine.

MF=E
Indicates that this is the execute form of the macro instruction.

listaddr
(1)
The address of the four-word input/output parameter list (IOPL). This
may be a completed IOPL that you have built, or it may be 4 words of
declared storage that will be filled from the PARM, UPT, ECT, and
ECB operands of this execute form of the STACK macro instruction.
The address is any address valid in an RX instruction or (1) if the
parameter list address has been loaded into general register 1.

Note: In the execute form of the STACK macro instruction only the
following operands are required:

STACK |MF= (E, % list addressE))
(1

The PARM, UPT, ECT, and ECB operands are not required if you have
built an IOPL in your own code.

The other operands and their sublists are optional because they may be
supplied by the list form of the macro instruction.

The ENTRY operand need not be coded in the macro instruction. If it is
not, a LINK macro instruction will be generated to invoke the I/0 service
routine.

The operands you specify in the execute form of the STACK macro
instruction are used to set up control information used by the STACK
service routine. You can use the PARM, UPT, ECT, and ECB operands of
the STACK macro instruction to complete, build, or alter an IOPL. The
DATASET, STORAGE, and DELETE operands set bits in the STACK
parameter block. These bit settings indicate to the STACK service routine
which options you want.

Sources of Input
The input sources provided are defined as follows:
1. Terminal
If the terminal is specified in the STACK macro instruction as the

9

106 TSO Guide to Writing a TMP or a CP

c

input source, all input and output requests through GETLINE,
PUTLINE, and PUTGET are read from the terminal and written to
the terminal. The user at the terminal controls TSO by entering
commands; the system processes these commands as they are entered
and returns to the user for another command.

2. In-Storage List

An in-storage list can be either a list of commands or a source data
set. It may contain variable-length records (with a length header) or
fixed-length records (no header and all records the same length). In
either case, no one record on an in-storage list may exceed 256
characters.

An in-storage list and its processing are specified by setting the
STORAGE operand type to PROCN, PROCL, or SOURCE.

e PROCN or PROCL - Indicates that the in-storage list is a command
procedure, a list of commands to be executed in the order specified. If
you specify PROCN, requests through GETLINE are read from the
in-storage list, but PROMPT requests from the executing command
processor are suppressed. MODE messages, those messages normally
sent to the terminal requesting entry of a command or a
sub-command, are not sent but a command is obtained from the
in-storage list. If the PROCL option is specified, the command is
displayed at the terminal as it is read from the list.

« SOURCE - Indicates that the in-storage list is a source data set.
Requests through GETLINE are read from the in-storage list, but
PROMPT requests from the executing command processor are
honored if prompting is allowed, and a line is requested from the
terminal. MODE messages are handled the same way as with PROCN
or PROCL. No LIST facility is provided with SOURCE records.

Building the STACK Parameter Block

When the list form of the STACK macro instruction expands, it builds a
five word STACK parameter block (STPB). The list form of the macro
instruction initializes this STPB according to the operands you have coded.
This initialized block, which you may later modify with the execute form of
the macro instruction, indicates to the I/0 service routine the functions you
want performed.

By using the list form of the macro instruction to initialize the block, and
the execute form to modify it, you can use the same STPB to perform
different STACK functions. Keep in mind, however, that if you specify an
operand in the execute form of the macro instruction, and that operand has
a sublist as a value, the default values of the sublist will be coded into the
STPB for any of the sublist values not coded. If you do not want the
default values, you must code each of the values you require, each time you
change any one of them.

For example, if you coded the list form of the STACK macro instruction
as follows:

STACK STORAGE= (element address,PROCN) ,6 MF=L

Using the TSO I/0 Service Routines for Terminal I/O 107

Teminal Command STACK
Monitor Processor Service
Program ATTACH LINK Routine

' |

|

' I

| |

| |

l |

Reg. 1 Reg. 1
CPPL IoPL

STPB
||
00000000
0
0

Figwre 45. STACK Control Blocks: No In-Storage List
To add an in-storage list element to the input stack, you must describe

the in-storage list and pass a pointer to it to the STACK I/O service
routine. You do this by building a list source descriptor (LSD).

110 TSO Guide to Writing a TMP or a CP

Figure 46 is an example of the code required to add the terminal to the
input stack as the current input source. In this example, the execute form of
the STACK macro instruction is used to build the input/output parameter
list for you. The list form of the STACK macro instruction expands into a
STACK parameter block, and its address is passed to the execute form of
the macro instruction as the PARM operand address.

% | [EINTIRIY! [FIRIOM| [TiMP| I=| |RIEIGIIISITIEIR| |0INIE] |CIOINIT|AI!(NIS| Al |PIO|}INITIEIR! |TIO
% | [TIHE] [ciPlplL
X H|o[UISIEKIEIEIPI IN[G]-
¥ ADIDRIE(SISIAIB|/ IL]I(T]Y
X S|AVIE] [alR[E[A] TcIHIAl/IN[1INlG
¥ ¥
LR 20,1 SIAVE] [TIHIE] [AID[DIRIEISIS] [olF[ITIHIE] lclplpIL].
L 30, 14(([2]) PILAICE| [TIHEl [UIPIT| |AIDIDIRIEISIS] [/IN[TIO] |A
% | REEGIISITIER '
L 4, 1112[(]2)) PILIAICE] [TIHE| e CIT] [Alp[DRIEIS]S] [rIn]TIO] [A
% RIEIG||S|TIEIR
LA GAEEE PILIAICIE] [TIHE] |EICIB] |alDD[RIESIS] TiIn[TIOl TA
* RIE[6|/]s|TIEIR
¥ | 1]s[slvle] TrlHle] [e[x[e[clu[TIe] IrlolrIM] T0lF] I7ikIE] [s|TalClk! IMACIRIO[T/ INISITIRIUICTTTI ToIN;
%[| ISIPIEIC]|Fly] TTHIE] ITIElRM! INJAIL] |A[S] [TIHIE] L1INPJUlT] [sio[ulRIclET;] 8[ulrLlD] [TIHIE
%[| Zlolelc] MIITHI TTIHIE] ISIT]AlCK] MiAlCIRo] T/IMSITIRIUICIT]I IO
SITIAICIK| |PlARMI=(SIT|AIKIBILIOIK!, WP ITI=1(13DL, IEICITI=IC (4D, IEICIBI=I([s)), [TIERMI=%],
MIF=|((€[, IIOPIL
X
X PIRIOICIE]S]S/IMG
X X
SITIOIRIAGIE| |DIEICILIAIRIAIT|/ [OIN|S
%
I0PL DIC 4F’ g SIPAICIE| |FIOR| [THIEL | INIPWITT [olu|TIPIUIT
X PIARIAMIEITIEIR] [L]71S[T].
EICB DlC Fl'la’ SIPAICIE] IFIOR) |TIHE! 1E[VIEWTT |cloN[TIRJoIL
% BILIOICIK]. ,
SITIAIKIBILIOIK] [S[TIAICIK] IMIF|=L TIHIE[|L{/]S[T] [FIORM] |olF| ITIHIE] [SITIAIC
X MIAICIRIO| |/ IMSITIRIVICITIION] |- 11T Ims ILIL]
m EIX|PIAINID| |1 IN[TIO] |A [SITIAICIK] 1PIAIRIAMIE(TIEIR
LIOICIK.
EIND |

Figure 46. Coding Example - STACK Specifying the Terminal as the Input Source

This sequence of code does not make use of the IKJICPPL DSECT to
access the command processor parameter list, nor does it provide
reenterable code.

Building the List Source Descriptor (LSD)

A list source descriptor (LSD) is a four-word control block which describes
the in-storage list pointed to by the new element you are adding to the
input stack. If you are designating the terminal as the input source, no LSD
is necessary and the second word of the STPB will be zero. If you specify

Using the TSO 1/0 Service Routines for Terminal 1/0 111

112

STORAGE as the input source in the STACK macro instruction, your code
must build an LSD, and place a pointer to it as a sublist of the STORAGE
operand. The LSD must begin on a doubleword boundary, and must be
created in the shared subpool designated by the terminal monitor program;
the IBM-supplied TMP shares subpool 78 with the command processors.
The LSD is defined by the IKJL.SD DSECT. Figure 47 describes the
contents of the LSD.

Number of . .
Bytes Field Contents or Meaning

4 LSDADATA The address of the in-storage list.

2 LSDRCLEN The record length if the in-storage list
contains fixed-length records. Zero if the
record lengths are variable.

2 LSDTOTLN The total length of the in-storage list; the sum
of the lengths of all records in the list.

4 LSDANEXT Pointer to the next record to be processed.
Initialize this field to the address of the first
record in the list. The field is updated by the
GETLINE and PUTGET service routines.

4 LSDRSVRD Reserved.

Figure 47. The List Source Descriptor

If you have provided an LSD, and specified the STORAGE operand in
the STACK macro instruction, the second word of the stack parameter
block will contain the address of the LSD, and the STACK control block
structure will look like Figure 48.

TSO Guide to Writing a TMP or a CP

Terminal Command STACK
Monitor ATTACH Processor LINK Service

Program - P Routine

|
|
|
|
|
|
Reg. 1 Reg. 1

CPPL IOPL

STPB

LSD

In=Storage List

et

Figure 48. STACK Control Blocks: In-Storage List Specified

Figure 49 is an example of the code required to use the STACK macro
instruction to place a pointer to an in-storage list on the input stack.

Using the TSO 1/0 Service Routines for Terminal 1/0 113

LOGICAL
The input line to be obtained is a logical line; the GETLINE service
routine is to perform logical line processing.

PHYSICAL

The input line to be obtained is a physical line. The GETLINE service
routine need not inspect the input line.

Note: 1f the input line you are requesting is a logical line coming from the
input source indicated by the input stack, you need not code the INPUT
operand or its sub-list operands. The input line description defaults to
ISTACK, LOGICAL.

TERMGET
Specifies the TGET options requested. GETLINE issues a TGET SVC
to bring in a line of data from the terminal. This operand indicates to the
TGET SVC which of the TGET options to use. The TGET options are
EDIT or ASIS, and WAIT or NOWAIT. The default values are EDIT
and WAIT.

EDIT
Specifies that in addition to minimal editing (see ASIS), the buffer is to
be filled out with trailing blanks.

ASIS
Specifies that minimal editing is to be done as follows:

a. Transmission control characters are removed.

b. The line of input is translated from terminal code to EBCDIC.
c. Line deletion and character deletion editing is performed.

d. Line feed and carrier return characters, if present, are removed.

WAIT
Specifies that control is to be returned to the routine that issued the
GETLINE macro instruction only after an input message has been read.

NOWAIT
Specifies that control is to be returned to the routine that issued the
GETLINE macro instruction whether or not a line of input is available.
If a line of input is not available, a return code of 12 decimal is returned
in register 15 to the command processor.

MF=L
Indicates that this is the list form of the macro instruction.

Note: In the list form of the macro instruction, only

GETLINE |MF=L

is required. The other operands and their sublists are optional because they
may be supplied by the execute form of the macro instruction, or
automatically supplied if you want the default values.

The operands you specify in the list form of the GETLINE macro
instruction set up control information used by the GETLINE service
routine. The INPUT and TERMGET operands set bits in the GETLINE

TSO Guide to Writing a TMP or a CP

9

»

parameter block to indicate to the GETLINE service routine which options
you want performed.

The GETLINE Macro Instruction - Execute Form

Use the execute form of the GETLINE macro instruction to perform the
following three functions:

1. You may use it to set up the input/output parameter list (IOPL).

2. You may use it to initialize those fields of the GETLINE parameter
block (GTPB) not initialized by the list form of the macro
instruction, or to modify those fields already initialized.

3. You use it to pass control to the GETLINE service routine which
gets the line of input.

Figure 51 shows the execute form of the GETLINE macro instruction;
each of the operands is explained following the figure. Appendix A
describes the notation used to define macro instructions.

[symboll GETLINE | [PARM=parameter addressl [,UPT=upt address]

[, ECr=ect address] [, ECB=ecb address]

[, INPUT=([ISTACK| | ,LOGICAL |)
TERM , PHYSICAL

[, TERMGET=(|EDIT| | ,WAIT |)
ASIS| |, NOWAIT

15) (1)

[, ENTRY=lentry address}],,MF=(E, I list address,)

Figure 51. The Execute Form of the GETLINE Macro Instruction

PARM=parameter address
Specifies the address of the 2-word GETLINE parameter block (GTPB).
It may be the address of a list form GETLINE macro instruction. The
address is any address valid in an RX instruction, or the number of one
of the general registers 2-12 enclosed in parentheses. This address will be
placed in the input/output parameter list (IOPL).

UPT=upt address
Specifies the address of the user profile table (UPT). You may obtain
this address from the command processor parameter list pointed to by
register 1 when the command processor is attached by the terminal
monitor program. The address may be any address valid in an RX
instruction or the number of one of the general registers 2-12 enclosed in
parentheses. This address will be placed in the IOPL..

Using the TSO 1/0 Service Routines for Terminal 1/0 119

ECT=ect address
Specifies the address of the environment control table (ECT). You may
obtain this address from the CPPL pointed to by register 1 when the J
command processor is attached by the terminal monitor program. The
address may be any address valid in an RX instruction or the number of
one of the general registers 2-12 enclosed in parentheses. This address
will be placed into the IOPL.

ECB=ecb address
Specifies the address of an event control block (ECB). You must provide
a one-word event control block and pass its address to the GETLINE
service routine by placing it into the IOPL. The address may be any
address valid in an RX instruction or the number of one of the general
registers 2-12 enclosed in parentheses. This address will be placed into
the IOPL.

INPUT=
Indicates that an input line is to be obtained. This input line is further
described by the INPUT sublist operands ISTACK, TERM, LOGICAL,
and PHYSICAL. ISTACK and LOGICAL are the default values.

ISTACK
Obtain an input line from the currently active input source indicated by
the input stack.

TERM
Obtain an input line from the terminal. If TERM is coded in the macro
instruction, the input stack will be ignored and regardless of the currently
active input source, a line is returned from the terminal.

LOGICAL J
The input line to be obtained is a logical line; the GETLINE service
routine is to perform logical line processing. A logical line is a line that
has had additional processing by the GETLINE service routine before it
is returned to the requesting program.

PHYSICAL
The input line to be obtained is a physical line. A physical line is a line
that is returned to the requesting program exactly as it is received from
the input source.

Note: If the input line you are requesting is a logical line coming from
the input source indicated by the input stack, you need not code the
INPUT operand or its sublist operands. The input line description
defaults to ISTACK, LOGICAL.

TERMGET
Specifies the TGET options requested. GETLINE issues a TGET SVC
to bring in a line of data from the terminal. This operand indicates to the
TGET SVC which of the TGET options to use. The TGET options are
EDIT or ASIS, and WAIT or NOWAIT. The default values are EDIT
and WAIT.

EDIT
Specifies that in addition to minimal editing (see ASIS), the input buffer
is to be filled out with trailing blanks. All station control characters are
suppressed from data.

120 TSO Guide to Writing a TMP or a CP

ASIS
Specifies that minimal editing is to be done by the TGET SVC. The
following editing functions will be performed by TGET:

a. Station control characters remain in the data.

b. The line of input is translated from terminal code to EBCDIC.
c. Line deletion and character deletion editing are performed.

d. Line feed and carrier return characters, if present, are removed.

WAIT
Specifies that control is to be returned to the routine that issued the
GETLINE macro instruction, only after an input message has been read.

NOWAIT
Specifies that control is to be returned to the routine that issued the
GETLINE macro instruction whether or not a line of input is available.
If a line of input is not available, a return code of 12 decimal is returned
in register 15 to the command processor.

ENTRY =entry address or (15)
Specifies the entry point of the GETLINE service routine. If ENTRY is
omitted, a LINK macro instruction will be generated to invoke the
GETLINE service routine. The address may be any address valid in an
RX instruction or (15) if the entry point address has been loaded into
general register 15.

MF=E
Indicates that this is the execute form of the macro instruction.

listaddr
M
The address of the four-word input/output parameter list (IOPL). This
may be a completed IOPL that you have built, or it may be 4 words of
declared storage that will be filled from the PARM, UPT, ECB, and
ECT operands of this execute form of the GETLINE macro instruction.
The address is any address valid in an RX instruction or (1) if the
parameter list address has been loaded into general register 1.

Note: In the execute form of the GETLINE macro instruction only the
following is required:

GETLINE|MF=(E, ; list addressE)
(1)

The PARM, UPT, ECT, and ECB operands are not required if you have
built your IOPL in your own code.

The other operands and their sublists are optional because you may have
supplied them in the list form of the macro instruction or in a previous
execution of GETLINE, or because you are using the default values.

The ENTRY operand need not be coded in the macro instruction. If it is
not, a LINK macro instruction will be generated to invoke the 1/0 service
routine.

Using the TSO 1/0 Service Routines for Terminal /O 121

122

The operands you specify in the execute form of the GETLINE macro
instruction are used to set up control information used by the GETLINE
service routine. You can use the PARM, UPT, ECT, and ECB operands of
the GETLINE macro instruction to build, complete, or modify an IOPL.
The INPUT and TERMGET operands set bits in the GETLINE parameter
block. These bit settings indicate to the GETLINE service routine which
options you want performed.

Sources of Input

End

There are two sources of input provided; they are the terminal, and an
in-storage list.

1. Terminal: Input comes from the terminal under either of the following
conditions:

» You have specified the terminal as the input source by including the
TERM operand in the GETLINE macro instruction.

« You have specified the current element of the input stack by including
the ISTACK operand in the GETLINE macro instruction, and the
current element is a terminal element.

If you specify terminal as the input source, you have the option of
requesting the GETLINE service routine to process the input as a logical or
physical line by including the LOGICAL or the PHYSICAL operand in the
macro instruction. LOGICAL is the default value.

Physical Line Processing: A physical line is a line which is returned to the
requesting program exactly as it is received from the input source. The
contents of the line are not inspected by the GETLINE service routine.

Logical Line Processing: A logical line is a line which has had additional
processing by the GETLINE service routine before it is returned to the
requesting program. If logical line processing is requested, each line
returned to the routine that issued the GETLINE is inspected to see if the
last character of the line is a continuation mark (a dash ‘-’ or a plus ‘+°). A
continuation mark signals GETLINE to get another line from the terminal
and to concatenate that line with the line previously obtained. The
continuation mark is overlaid with the first character of the new line.

2. In-Storage List. If the top element of the input stack is an in-storage list,
and you do not specify TERM in the GETLINE macro instruction, the
line will be obtained from the in-storage list. The in-storage list is a
resident data set which has been previously made available to the I/O
service routines with the STACK service routine. No logical line
processing is performed on the lines because it is assumed that each line
in the in-storage list is a logical line. It is also assumed that no single
record has a length greater than 256 bytes.

of Data Processing

If you issue a GETLINE macro against an in-storage list from which all the
records have already been read, GETLINE senses an end of data (EOD)
condition. GETLINE deletes the top element from the input stack and
passes a return code of 16 in register 15. Return code 16 indicates that no

TSO Guide to Writing a TMP or a CP

line of input has been returned by the GETLINE service routine. You can
use this EOD code (16) as an indication that all input from a particular
source has been exhausted and no more GETLINE macro instructions
should be issued against this input source. If you reissue a GETLINE macro
instruction against the input stack after a return code of 16, a record will
be returned from the next input source indicated by the input stack. You
can identify the source of this record by the return code (0 = terminal, 4 =
in-storage).

Building the GETLINE Parameter Block

When the list form of the GETLINE macro instruction expands, it builds a
two word GETLINE parameter block (GTPB). The list form of the macro
instruction initializes this GTPB according to the operands you have coded
in the macro instruction. This initialized block, which you may later modify
with the execute form of the macro instruction, indicates to the GETLINE
service routine the function you want performed.

You must supply the address of the GTPB to the execute form of the
GETLINE macro instruction. For non-reenterable programs you can do this
simply by placing a symbolic name in the symbol field of the list form of
the macro instruction, and passing this symbolic name to the execute form
of the macro instruction as the PARM value. The GETLINE parameter
block is defined by the IKIGTPB DSECT. Figure 52 describes the contents
of the GTPB.

Using the TSO I/O Service Routines for Terminal I/0 123

Number of

Bytes Field Conl(ents or Meaning

2 Control flags. These bits describe the
requested input line to the GETLINE service
routine.

Byte 1

0. . The input line is a logical line.

I TR The input line is a physical line.

W0 The input line is to be obtained from the
current input source indicated by the input
stack.

U The input line is to be obtained from the
terminal.

XX, XXXX Reserved bits.

Byte 2

XXXX XXXX Reserved.

2 TGET options field. These bits indicate to the
TGET SVC which of the TGET options you want
to use.

Byte 1

1. ... Always set to 1 for TGET.

[¢ I WAIT processing has been requested. Control

will be returned to the issuer of GETLINE only
after an input message has been read.

Y TR NOWAIT processing has been requested.
Control will be returned to the issuer of the
GETLINE macro instruction whether or not a
line of input is available.

...... 0c EDIT processing has been requested. In
addition to the editing provided by ASIS
processing, the input buffer is to be filled out
with trailing blanks to the next doubleword
boundary.

...... 01 ASIS processing has been requested. (See the
ASIS operand of the GETLINE macro
instruction description.)

XX XX, Reserved bits.
Byte 2
XXXX XXXX Reserved.
4 GTPBIBUF The address of the input buffer. The GETLINE

service routine fills this field with the address
of the input buffer in which the input line has
been placed.

Figure 52. The GETLINE Parameter Block

124 TSO Guide to Writing a TMP or a CP

Input Line Format - The Input Buffer

The second word of the GETLINE parameter block contains zeros until the
GETLINE service routine returns a line of input. The service routine places
the requested input line into an input buffer beginning on a doubleword
boundary located in subpool 1. It then places the address of this input
buffer into the second word of the GTPB. The input buffer belongs to the
command processor that issued the GETLINE macro instruction. The
buffers returned by GETLINE are automatically freed when your CP
relinquishes control. You may free the input buffer with the FREEMAIN
macro instruction after you have processed or copied the input line.

Regardless of the source of input, an in-storage list or the terminal, the
input line returned to the command processor by the GETLINE service
routine is in a standard format. All input lines are in a variable length
record format with a fullword header followed by the text returned by
GETLINE. Figure 53 shows the format of the input buffer returned by the
GETLINE service routine.

Length

Offset Text 22

2 Bytes

2 Bytes

Length

Figure 53. Format of the GETLINE Input Buffer

The two-byte length field contains the length of the input line including
the header length (4 bytes). You can use the length field to determine the
length of the input line to be processed, and later, to free the input buffer
with the R-form of the FREEMAIN macro instruction.

The two-byte offset field is always set to zero on return from the
GETLINE service routine.

Figure 54 shows the GETLINE control block structure after the
GETLINE service routine has returned an input line.

Using the TSO I/0 Service Routines for Terminal I/Q 125

Terminal
Monitor
Progrom

Reg. 1

Command GETLINE
Processor Service
ATTACH LINK Routine
| I
| |
| I
| |
| f
Reg. 1
4 CPPL IOPL
L o
GTPB

Input Buffer

Data

Figure 54. GETLINE Control Blocks - Input Line Returned

Examples of GETLINE

Figure 55 is an example of the code required to execute the GETLINE
macro instruction. In this example two execute forms of the GETLINE
macro instruction are issued. The first one builds the IOPL, and uses the
parameters initialized by the list form of the macro instruction to get a
physical line from the terminal with the NOWAIT and ASIS options.

In the second execution of the GETLINE macro instruction, the same
IOPL is used, but the GETLINE options are changed from TERM to
ISTACK, and from NOWAIT to WAIT explicitly, and from PHYSICAL to

LOGICAL and from ASIS to EDIT by default.

126 TSO Guide to Writing a TMP or a CP

Notice also that the IKICPPL DSECT is used to map the command
processor parameter list, and the IKJIGTPB DSECT is used to map the
GETLINE parameter block.

NTRIY
W

~
©lMm
[

SITIER] T1] ICIOINTT]AT/NIST TA] TP0l/INTIER] [TI0] THIE
AMETER] [LIT[STT].

oM
[=)
>
=
>
0 —

S
(=
GIESESIE S
m
SO

FAEIEIEIEIES

|
|)
1NN | | | | ! !« o

- T 1T [ol~=>
o[
<

" |SIAVEL [THE ADDRESS OF [THE CIPPL-
ADIDRE[SSABIILLITY] [FlOR ClPpL, | 1

o I) o I 7Y S E S LS
>
=

ORM 10F TTHE IGETILINE WACRO INSTRUCT IION
CAL| LINE| FROM THE |TERMINAL. [THIS [EXECUTE |
T I ALTZES] THE_[INPUT OUTPUVEPARAMETER ,

mi|m

o[
=
[NI
m
Sf
[
3
my
-

~ -
~H=E o<

e
=lolSw

EIEIEIEIEIES

P

SEER - - - ' .
L T B.CPPLUPT [+ [PLACE THE[|ADDRE[SS, OF[THE UPT! |
[B T 1T lIUNTO JA REGISTER[- R
B ' ["IPLACE THE,ADDRESS‘OF Twa'fcn
CIINTO! A REGSTER]. i i
TBLOCKJUMF=(3)bEKT=(4),
F=I([€,'T]olp|L CADSD] 1] !

K

l

L] H
T'LI/INE] MACRIO! 1/ NS[TR

T/
m
==
—m[m
]
=
R[x[m

E U
AINID! N[OWAIIT| (0'PER|AIND
LINE'MAC O'IWSWRU{THO

| =t ; ;
RIESS OF_THE REWURNfDlLINE\FROW THE, GETLINE
LO;CK\.‘ O ‘\ A l‘é i]{ 1 B
\ P I :) | ‘f
[A 1116, GETBLOCK, — [SET_UP ADDRESSABILITY FOR TTHE
USIING| [6TIPIBI,6 | ¢ | 16TPiB;. 1EEERR BN N ;
, Pl GET _TIHE ADDRESS| OF _TIHE LiNEL

: '
| i i Lot
|] L = ——d

4l%)

o] [I |

Hm
M
\‘
1
] T
oo oS

miXx
5[]
) []
<

Pa] |
p=3
=i

T IEIEIEAEIEAEIES

—
]

<

)

PRIOICIE

w
\'
i
-
=
m

m|
= ol
T
>
il

=
m
™

EIEIEIEARIFIES

—
T<<|>|M
<
(]
-3
OO

H
N[.| THI, TS 1A L
ulT 1SI0U ‘
EXECUT HE] [GET

Figure 55. Coding Example - Two Executions of GETLINE (Part 1 of 2)

O(xim
[=)
o=
SO =
()
<
~
S OD[Oo
™
=
-|
r—~

=M
<]
w
m
w
=~
I
m

S
1

SIS
NS
cr
HE

SE==
- ||
171
—
]

=

Using the TSO [/O Service Routines for Terminal I/O 127

x!!mND(Woowqus‘Tw%fGﬁpm‘cmEAWEo BIY[THIE] TL]/[SiT! TFlolRM TolFT TTIKIE
X GETL/ E;Mmmko rNsrkwcr MMﬁ
X oo B
L |I6ET LN ‘pr = (LSTIBCK) S TERMGIE T (WAL TT=]
I] } ‘ E L MlF:l("E ;IOPLA}D‘SM ‘ | f
x 1A] | ‘wﬂ“ 1; :‘m‘ | , |
X, ' |TIH/IS [EIXEICUTIE[(Fl0RM| OlFT |TIHE, ‘GE|T L,/ INE[MACRID INSTRUCTIOW
X [(CHANGIE]S” TERM Ti0| I|STACK],. DEFAULITS] ITlol L]0/ [CIALT, | TCHIAINIGE]S
X | INOWAL/\T] [T0" WALI'T],| "ANDT TAKEIS| [TIHEL DEFIAUILT VA}UE Ewir.
iw; T T HH - ;
¥ 1 GIE[T TTIHIE" ADDIRIESS| (O|F THE| RETUIRINED] |CI/INEL [FRIOM [THE T6lETILI/'NIE
*’UPARAMETEﬁjBLMCK T | HNEN
¥ S ' BN EERRERRR R EERIAE Bl '
B L |5, 6TPRIBUF i T ! J
X T T i BN EARTR SIS T
X PROCES]S, THE| LINE RN RS ik
X N 1 N
X DECLARED STIORAGE|'! | ::J ;"i ,a; T
¥ N : B L LN
TOPLADS | |DC, JEg T T &PACE %OJ,TH£|JNPUTIOUWPWT
x| T T T IPARAMETER LI ST. 1| '
GETRILIOCK| [GET LUIME . " [ENPWWTIEI(TERML PHIYISITCIAILD |5
IREERERIN TIERMGIET|<ICAIS!/[S, WlowiA./ [T1) |, MiA=|L
X Bl ! T T U 7e 1S [FlokMl ole €l GETLI/W
x B] S Werol TWSTIRUICTIION [EXPANDS] T/
X ! T T L AN T ALLZED G T PRI]
tCBMWS\J e kg | ‘ SPAIClE| FlOR |AN [EVIEWT [CloWTRIOL
el]| BRI NREE | BLocK]- |] ! !
P TKJCPPIL _ [IDSECT| FIOR [THEI ClOMMAND,_
¥ | L IPRCEISSIORT [PARAMETIER! IL:TSITL. | TH
r A A IR I IARE EXDMNDS,W/TH THE| [S)YMBIOIL]IC
X j‘xl' v | ‘ : : ADDRES»S;: CPPQ} ; v A
Loy kdelriele 1 [IDISECT] FIOR THﬁ[%ETLIWEL |
¥ LT o T T T IPARAMETER] [BLIOICK]. [THIS [EXPANDS
T I:i L WAL [THE] SYMBOLIC AID|DREIS[S] [61T]P
LT ewn EEN N | |

Figure 55. Coding Example - Two Executions of GETLINE (Part 2 of 2)

128 TSO Guide to Writing a TMP or a CP

Return Codes from GETLINE

When it returns to the program that invoked it, the GETLINE service
routine returns one of the following codes in general register 15:

CODE MEANING
0 GETLINE has completed successfully. The line was obtained from the terminal.
4 GETLINE has completed successfully. The line was returned from an
in-storage list.
8 The GETLINE function was not completed. An attention interruption occurred

during GETLINE processing, and the user’s attention routine turned on the
completion bit in the communications ECB.

12 The NOWAIT option was specified and no line was obtained.

16 EOD - An attempt was made to get a line from an in-storage list but the list
had been exhausted.

20 Invalid parameters passed to the GETLINE service routine.

24 A conditional GETMAIN was issued by GETLINE for input buffers and there
was not sufficient space to satisfy the request.

28 The terminal has been disconnected.

36 End of data was received when a continuation condition was expected.

PUTLINE - Putting a Line Out to the Terminal

The

Use the PUTLINE macro instruction to prepare a line and write it to the
terminal. Use PUTLINE to put out lines that do not require immediate
response from the terminal; use PUTGET to put out lines that require
immediate response. The types of lines which do not require response from
the terminal are defined as data lines and informational message lines.

The PUTLINE service routine prepares a line for output according to the
operands you code into the list and execute forms of the PUTLINE macro
instruction. The operands of the macro instruction indicate to the
PUTLINE service routine the type of line being put out (data line or
informational message line), the type of processing to be performed on the
line (format only, second level informational message chaining, text
insertion), and the TPUT options requested.

This topic describes:

o The list and execute forms of the PUTLINE macro instruction
o The PUTLINE parameter block

» The types and formats of output lines

o PUTLINE message processing

o Return codes from PUTLINE

Coding examples are included where appropriate.

PUTLINE Macro Instruction - List Form

The list form of the PUTLINE macro instruction builds and initializes a
PUTLINE parameter block (PTPB), according to the operands you specify
in the macro instruction. The PUTLINE parameter block indicates to the
PUTLINE service routine which functions you want performed. Figure 56
shows the list form of the PUTLINE macro instruction; each of the
operands is explained following the figure. Appendix A describes the
notation used to define macro instructions.

Using the TSO 1/0 Service Routines for Terminal 1/0 129

,MULTLVL

,SINGLE l
[,MULTLIN [

,INFOR}{

¢ DATA

(symboll | PUTLINE [OUTPUT=(output address | ,TERM
+» FORMAT

EDIT
[,TERMPU'I‘=({ASIS] , WAIT ,NOHOLD] . NOBREAK)}
CONTROL/ |, NOWAIT| |, HOLD , BREAKIN
,MF=L

Figure 56. The List Form of the PUTLINE Macro Instruction

OUTPUT =output address
Indicates that an output line is to be written to the terminal. The type of
line provided and the processing to be performed on that line by the
PUTLINE service routine are described by the OUTPUT sublist
operands TERM, FORMAT, SINGLE, MULTLVL, MULTLIN, INFOR
and DATA. The default values are TERM, SINGLE, and INFOR.
The output address differs depending upon whether the output line is an
informational message or a data line. For DATA requests, it is the
address of the beginning (the fullword header) of a data record to be
written to the terminal. For informational message requests (INFOR), it
is the address of the output line descriptor. The output line descriptor
(OLD) describes the message to be put out, and contains the address of
the beginning (the fullword header) of the message or messages to be
written to the terminal by the PUTLINE service routine.

TERM
Write the line out to the terminal.

FORMAT
The output request is only to format a single message and not to put the
message out to the terminal. The PUTLINE service routine returns the
address of the formatted line by placing it in the third word of the
PUTLINE parameter block.

SINGLE
The output line is a single line.

MULTLVL
The output message consists of multiple levels. INFOR must be specified.

MULTLIN
The output data consists of multiple lines. DATA must be specified.

INFOR
The output line is an informational message.

DATA
The output line is a data line.

130 TSO Guide to Writing a TMP or a CP

TERMPUT
Specifies the TPUT options requested. PUTLINE issues a TPUT SVC to
write the line to the terminal, this operand indicates which of the TPUT
options you want to use. The TPUT options are EDIT, ASIS, or
CONTROL; WAIT or NOWAIT; NOHOLD or HOLD; and NOBREAK
or BREAKIN. The default values are EDIT, WAIT, NOHOLD, and
NOBREAK.

EDIT
Specifies that in addition to minimal editing (see ASIS), the following
TPUT functions are requested:

a. Any trailing blanks are removed before the line is written to the
terminal. If a blank line is sent, the terminal vertically spaces one line.

b. Control characters are added to the end of the output line to position
the cursor to the beginning of the next line.

¢. All terminal control characters (for example: bypass, restore,
horizontal tab, new line) are replaced with a printable character.
Backspace is an exception; see item d. under ASIS.

ASIS

Specifies that minimal editing is to be performed by TPUT as follows:

a. The line of output is translated from EBCDIC to terminal code.
Invalid characters are converted to a printable character to prevent
program-caused I/0 errors. This does not mean that all unprintable
characters are eliminated. Restore, upper case, lower case, bypass, and
bell ring, for example, might be valid but nonprinting characters at
some terminals. (See CONTROL.)

b. Transmission control characters are added.

¢. EBCDIC NL, placed at the end of the message, indicates to the
TPUT SVC that the cursor is to be returned at the end of the line.
NL is replaced with whatever is necessary for that particular terminal
type to cause the cursor to return. This NL processing occurs only if
you specify ASIS, and the NL is the last character in your message.
If you specify EDIT, NL is handled as described by item c. under
EDIT.

If the NL is embedded in your message, it is sent to the terminal as a
carrier return. No idle characters are added (see item f. below). This
may cause overprinting, particularly on terminals that require a
line-feed character to position the carrier on a new line.

d. If you have used backspace in your output message, but the backspace
character does not exist on the terminal type to which the message is
being routed, TPUT attempts alternate methods to accomplish the
backspace.

e. Control characters are added as needed to cause the message to occur
on several lines if the output line is longer than the terminal line size.

f. Idle characters are sent at the end of each line to prevent typing as
the carrier returns.

CONTROL
Specifies that the output line is composed of terminal control characters
and will not print or move the carrier on the terminal. This option should
be used for transmission of characters such as bypass, restore, or bell
ring.

Using the TSO I/0 Service Routines for Terminal 1/0 131

132

The

WAIT
Specifies that control will not be returned until the output line has been
placed into a terminal output buffer.

NOWAIT
Specifies that control should be returned whether or not a terminal
output buffer is available. If no buffer is available, a return code of 8
(decimal) will be returned in register 15, to the command processor.

NOHOLD
Specifies that the control is to be returned to the routine that issued the
PUTLINE macro instruction, and that routine can continue processing as
soon as the output line has been placed on the output queue.

HOLD
Specifies that the routine that issued the PUTLINE macro instruction
cannot continue its processing until this output line has been put out to
the terminal or deleted.

NOBREAK
Specifies that if the terminal user has started to enter input, he is not to
be interrupted. The output message is placed on the output queue to be
printed after the terminal user has completed the line.

BREAKIN
Specifies that output has precedence over input. If the user at the
terminal is transmitting, he is interrupted, and this output line is sent.
Any data that was received before the interruption is kept and displayed
at the terminal following this output line.

MF=L
Indicates that this is the list form of the macro instruction.

Note: In the list form of the macro instruction, only

PUTLINE|MF=L

is required. The output line address is required for each issuance of the
PUTLINE macro instruction but it may be supplied in the execute form of
the macro instruction.

The other operands and sublists are optional because you can supply
them in the execute form of the macro instruction, or they may be supplied
by the macro expansion if you want the default values.

The operands you specify in the list form of the PUTLINE macro
instruction set up control information used by the PUTLINE service
routine. This control information is passed to the PUTLINE service routine
in the PUTLINE parameter block, a three-word parameter block built and
initialized by the list form of the PUTLINE macro instruction.

PUTLINE Macro Instruction - Execute Form

Use the execute form of the PUTLINE macro instruction to put a line or
lines out to the terminal, to chain second level messages, and to format a
line and return the address of the formatted line to the code that issued the
PUTLINE macro instruction. The execute form of the PUTLINE macro

TSO Guide to Writing a TMP or a CP

3

instruction performs the following functions:

1. It can be used to set up the input/output parameter list (IOPL).

2. It can be used to initialize those fields of the PUTLINE parameter

block (PTPB) not initialized by the list form of the macro instruction,

or to modify those fields already initialized.

3. It passes control to the PUTLINE service routine.

The PUTLINE service routine makes use of the IOPL and the PTPB to
determine which of the PUTLINE functions you want performed.

Figure 57 shows the execute form of the PUTLINE macro instruction;
each of the operands is explained following the figure. Appendix A
describes the notation used to define macro instructions.

[{symbol]

PUTLINE | [PARM=parameter address][,UPT=upt address]

[,ECT=ect address)[,ECB=ecb address]

,OUTPUT= (cutput address |, TERM ,SINGLE
,FORMAT » MULTLVL
s MULTLIN

+INFOR|)
» DATA

CONTROL) | ,NOWAIT) |,HOLD

, ENTRY={entry address| |,MF=(E,| list address])
(15) (1

EDIT
, TERMPUT=({ ASIS LWALT }I,NOHOLD . NOBREAK
,BREAKI N

|

)

—=

Figure 57. The Execute Form of the PUTLINE Macro Instruction

PARM=parameter address
Specifies the address of the 3-word PUTLINE parameter block (PTPB).

It may be the address of a list form PUTLINE macro instruction. The

address is any address in an RX instruction, or the number of one of the

general registers 2-12 enclosed in parentheses. This address will be
placed into the IOPL.

UPT=upt address

Specifies the address of the user profile table (UPT). You may obtain

this address from the command processor parameter list (CPPL) pointed

to by register 1 when a command processor is attached by the terminal

monitor program. The address may be any address valid in an RX

instruction or it may be placed in one of the general registers 2-12 and
the register number enclosed in parentheses. This address will be placed

into the IOPL.

Using the TSO 1/0 Service Routines for Terminal I/O 133

134

ECT=ect address
Specifies the address of the environment control table (ECT). You may
obtain this address from the CPPL pointed to by register 1 when a
command processor is attached by the terminal monitor program. The
address may be any address valid in an RX instruction or it may be
placed in one of the general registers 2-12 and the register number
enclosed in parentheses. This address will be placed into the IOPL.

ECB=ecb address
Specifies the address of the event control block (ECB). You must
provide a one-word event control block and pass its address to the
PUTLINE service routine. This address will be placed into the IOPL.
The address may be any address valid in an RX instruction or it may be
placed in one of the general registers 2-12 and the register number
enclosed in parentheses.

OUTPUT =output address
Indicates that an output line is provided. The type of line provided and
the processing to be performed on that line by the PUTLINE service
routine are described by the OUTPUT sublist operands TERM,
FORMAT, SINGLE MULTLVL, MULTLIN, INFOR and DATA. The
default values are TERM, SINGLE, and INFOR.
The output address differs depending upon whether the output line is an
informational message or a data line. For DATA requests, it is the
address of the beginning (the fullword header) of a data record to be put
out to the terminal. For informational message requests (INFOR), it is
the address of the output line descriptor. The output line descriptor
(OLD) describes the message to be put out, and contains the address of
the beginning (the fullword header) of the message or messages to be
written to the terminal by the PUTLINE service routine.

TERM
Write the line out to the terminal.

FORMAT
The output request is only to format a single message and not to put the
messages out to the terminal. The PUTLINE service routine returns the
address of the formatted line by placing it in the third word of the
PUTLINE parameter block.

SINGLE
The output line is a single line.

MULTLVL
The output message consists of multiple levels INFOR must be specified.

MULTLIN
The output data consists of multiple lines DATA must be specified.

INFOR
The output line is an informational message.

DATA
The output line is a data line.

TSO Guiide to Writing a TMP or a CP

TERMPUT
Specifies the TPUT options requested. PUTLINE issues a TPUT SVC to
write the line to the terminal, this operand indicates which of the TPUT
options you want to use. The TPUT options are EDIT, ASIS, or
CONTROL; WAIT or NOWAIT; NOHOLD or HOLD; and NOBREAK
or BREAKIN. The default values are EDIT, WAIT, NOHOLD, and
NOBREAK.

EDIT

Specifies that in addition to minimal editing (see ASIS), the following
TPUT functions are requested:

a.

ASIS

Any trailing blanks are removed before the line is written to the
terminal. If a blank line is sent, the terminal vertically spaces one line.

. Control characters are added to the end of the output line to position

the cursor to the beginning of the next line.

All terminal control characters (for example: bypass, restore,
horizontal tab, new line) are replaced with a printable character.
Backspace is an exception; see item d. under ASIS.

Specifies that minimal editing is to be performed by TPUT as follows:

a.

The line of output is translated from EBCDIC to terminal code.
Invalid characters are converted to a printable character to prevent
program-caused I1/0 errors. This does not mean that all unprintable
characters are eliminated. Restore, upper case, lower case, bypass,
and bell ring, for example, may be valid but nonprinting characters at
some terminals. (See CONTROL.)

Transmission control characters are added.

. EBCDIC NL, placed at the end of the message, indicates to the

TPUT SVC that the cursor is to be returned at the end of the line.
NL is replaced with whatever is necessary for that particular terminal
type to cause the cursor to return. This NL processing occurs only if
you specify ASIS, and the NL is the last character in your message.

If you specify EDIT, NL is handled as described in ¢. under EDIT.

If the NL is embedded in your message, a semicolon is substituted for
NL and sent to the terminal. No idle characters are added (see item
f. below). This may cause overprinting, particularly on terminals that
require a line-feed character to position the cursor on a new line.

If you have used backspace in your output message, but the
backspace character does not exist on the terminal type to which the
message is being routed, the PUTLINE service routine attempts
alternate methods to accomplish the backspace.

Control characters are added as needed to cause the message to occur
on several lines if the output line is longer than the terminal line size.

Idle characters are sent at the end of each line to prevent typing as
the carrier returns.

Using the TSO 1/0 Service Routines for Terminal /0 135

136

CONTROL
Specifies that the output line is composed of terminal control characters
and will not display or move the cursor on the terminal. This option
should be used for transmission of characters such as bypass, restore, or
bell ring.

WAIT
Specifies that control will not be returned until the output line has been
placed into a terminal output buffer.

NOWAIT
Specifies that control should be returned whether or not a terminal
output buffer is available. If no buffer is available, a return code of 8 is
returned in register 15.

NOHOLD
Specifies that control is returned to the routine that issued the PUTLINE
macro instruction, and it can continue processing, as soon as the output
line has been placed on the output queue.

HOLD
Specifies that the module that issued the PUTLINE macro instruction is
not to resume processing until the output line has been put out to the
terminal or deleted.

NOBREAK
Specifies that if the terminal user has started to enter input, he is not to
be interrupted. The output message is placed on the output queue to be
displayed after the terminal user has completed the line.

BREAKIN
Specifies that output has precedence over input. If the user at the
terminal is transmitting, he is interrupted, and the output line is sent.
Any data that was received before the interruption is kept and displayed
at the terminal following the output line.

ENTRY=entry address or (15)
Specifies the entry point of the PUTLINE service routine. If ENTRY is
omitted, the PUTLINE macro expansion will generate a LINK macro
instruction to invoke the PUTLINE service routine. The address may be
any address valid in an RX instruction or (15) if the entry point address
has been loaded into general register 15.

MF=E
Indicates that this is the execute form of the PUTLINE macro
instruction.

list address
(1) :
The address of the four-word input/output parameter list (IOPL). This
may be a completed IOPL that you have built, or 4 words of declared
storage to be filled from the PARM, UPT, ECT, and ECB operands of
this execute form of the PUTLINE macro instruction. The address is any
address valid in an RX instruction or (1) if the parameter list address has
been loaded into general register 1.

TSO Guide to Writing a TMP or a CP

Note: In the execute form of the PUTLINE macro instruction only the
following is required:

PUTLINE |MF=(E, {list address})
(1)

The PARM, UPT, ECT, and ECB operands are not required if you have
built your IOPL in your own code.

The output line address is required for each issuance of the PUTLINE
macro instruction, but you may supply it in the list form of the macro
instruction.

The other operands and sublists are optional because you may have
supplied them in the list form of the macro instruction or in a previous
execute form, or because you may want to use the default values which are
automatically supplied by the macro expansion itself.

The ENTRY operand need not be coded in the macro instruction. If it is
not, a LINK macro instruction will be generated by the macro expansion to
invoke the I/0 service routine.

The operands you specify in the execute form of the PUTLINE macro
instruction set up control information used by the PUTLINE service
routine. You can use the PARM, UPT, ECT, and ECB operands of the
PUTLINE macro instruction to build, complete or modify an IOPL. The
OUTPUT and TERMPUT operands and their sublist operands initialize the
PUTLINE parameter block. The PUTLINE parameter block is referenced
by the PUTLINE service routine to determine which functions you want
PUTLINE to perform.

Building the PUTLINE Parameter Block

When the list form of the PUTLINE macro instruction expands, it builds a
three-word PUTLINE parameter block (PTPB). The list form of the macro
instruction initializes the PTPB according to the operands you have coded

in the macro instruction. The initialized block, which you may later modify
with the execute form of the PUTLINE macro instruction, indicates to the
PUTLINE service routine the function you want performed.

You must supply the address of the PTPB to the execute form of the
PUTLINE macro instruction. Since the list form of the macro instruction
expands into a PTPB, all you need do is pass the address of the list form of
the macro instruction to the execute form as the PARM value.

The PUTLINE parameter block is defined by the IKJPTPB DSECT.
Figure 58 describes the contents of the PTPB.

Using the TSO 1/0 Service Routines for Terminal /O 137

138

Number of . .
Bytes Field Contents or Meaning

2 Control flags. These bits describe the output line to the PUTLINE
service routine.

Byte 1

0. .. The output line is a message.

R P The output line is a data line.

[T RO The output line is a single level or a single line.

Ll The output is multiline.

1. The output is multilevel.

TS The output line is an informational message.

XKoo oo X Reserved bits.

Byte 2

W1 The format only function was requested.

XX.X XXXX Reserved bits.

2 TPUT options field. These bits indicate to the TPUT SVC which of
the TPUT options you want to use.

Byte 1

0.. ... Always set to O for TPUT.

0L WAIT processing has been requested. Control will be returned to the
issuer of PUTLINE only after the output line has been placed into a
terminal output buffer.

0 R NOWAIT processing has been requested. Control will be returned to
the issuer of PUTLINE whether or not a terminal output buffer is
available.

.. 0. NOHOLD processing has been requested. The command processor
that issued the PUTLINE can resume processing as soon as the
output line has been placed on the output queue.

T HOLD processing has been requested. The command processor that
issued the PUTLINE is not to resume processing until the output line
has been written to the terminal or deleted.

..0.. NOBREAK processing has been requested. The output line will be
printed only when the terminal user is not entering a line.

. N BREAKIN processing has been requested. The output line is to be
sent to the terminal immediately. If the terminal user is entering a
line, he is to be interrupted.

.00 EDIT processing has been requested.

...... 01 ASIS processing has been requested.

...... 10 CONTROL processing has been requested.

.XX. Reserved.

Byte 2 Reserved.

4 PTPBOPUT The address of the output line descriptor (OLD) if the output line is
a message. The address of the fullword header preceding the data if
the output line is a single data line. The address of a forward-chain
pointer preceding the fullword data header, if the output is multiline
data.

4 PTPBFLN Address of the format only line. The PUTLINE service routine places

the address of the formatted line into this field.

Figure 58. The PUTLINE Parameter Block

Types and Formats of Output Lines

There are two types of output lines processed by the PUTLINE service

routine:

« Data lines (DATA)
o Message lines (INFOR)

TSO Guide to Writing a TMP or a CP

The OUTPUT sublist operands you specify in the PUTLINE macro
instruction indicate to the PUTLINE service routine which type of line you
want processed (DATA, INFOR), whether the output consists of one line,
several lines, or several levels of messages (SINGLE, MULTLIN,
MULTLVL), and whether the line is to be written to the terminal (TERM),
or formatted only (FORMAT).

1. Data Lines: A data line is the simplest type of output processed by the
PUTLINE service routine. It is simply a line of text to be written to the
terminal. PUTLINE does not format the line or process it in any way; it
merely writes the line, as it appears, out to the terminal. There are two
kinds of data lines, single line data and multiline data; each is handled
differently by the PUTLINE service routine.

Single Line Data: Single line data is one contiguous character string which
PUTLINE places out to the terminal as one logical line. If the line of data
you provide exceeds the terminal line length, the TPUT routine segments
the line and puts it out as several terminal lines. PUTLINE accepts single
line data in the format shown in Figure 59.

PUTLINE QUTPUT = (output address,

Length Offset Data j {

Length

, SINGLE, DATA)

Figure 59. PUTLINE Single Line Data Format

You must precede your line of data with a 4-byte header field. The first
two bytes contain the length of the output line, including the header; the
second two bytes are reserved for offsets and are set to zero for data lines.
You pass the address of the output line to the PUTLINE service routine by
coding the beginning address of the four-byte header as the OUTPUT
operand address in either the list or the execute form of the macro
instruction. When the macro instruction expands, it places this data line
address into the second word of the PUTLINE parameter block.

Figure 60 is an example of the code that could be used to write a single
line of data to the terminal using the PUTLINE macro instruction. Note
that the execute form of the PUTLINE macro instruction is used in this
example to construct the input/output parameter list, and that the
TERMPUT operands are not coded in either the list or the execute form of
the macro instruction; the default values will be assumed by the PUTLINE
service routine.

Using the TSO I/O Service Routines for Terminal /O 139

148

As an example, if you provided one primary and two secondary segments
as shown:

2 bytes 2 bytes 28 bytes
32) 0| PLEASE ENTER TO PROCESSING
9 14 | TEXT
13 17|CONTINUE

PUTLINE would place the first insert, TEXT, after the 13th character, and
the second insert, CONTINUE, after the 17th character of the text field of
the primary segment. After PUTLINE inserts the two text segments, the
message would read:

PLEASE ENTER TEXT TO CONTINUE PROCESSING

The leading and trailing blanks are automatically stripped off before the
message is written to the terminal.

Figure 66 is an example of the code required to make use of the text
insertion feature of the PUTLINE service routine; it uses the text segments
shown above.

Note that the operand INFOR, which indicates to the PUTLINE service
routine that the text segments are to be processed as informational
messages, requires an output line descriptor to point to the message
segments. Only one output line descriptor (ONEOLD) is required to point
to the 3 messages segments because the 3 segments are to be combined
into one single level message.

TSO Guide to Writing a TMP or a CP

IEWITRIY| IFlelown [THIE TIERM WAILl WION|/|TIOR] [Plelol6iRIAM []]
¥ €6/ [SITIER] ToWIE] 'clow[Tlal/ WiS| TTHE! "AlDDIRIETS]S| TolF] [TwlEl Iclo NP
X | PROCEISISOR PRAIRAMEITIER [LI/IST I clPlPlL)].
£] ouvsekleepywle TTTTT 1]
¥ U [ApDRESISAB LY
X [0 | [SAVE_|AREA CHATNING L \ |
X ; RN ERRR A NN R I LM
L LR 2,1 T TISAVE [THE ADDRESIS 0F [THE. clPpL.
J USINGLICPPL,I2 1|1 lADDREISSABIILLTY [FOR| THE ICIPIPL:.]
T T T3 acPPlLURPT | PLACE] TTHE! [ADDRIEISS] [OF] [THEL [UPT
x| I T T T T o) AL RE6|SITIER] - s
Do e T T cPPLECT [1 | [PLIACE [THE |ADDREISS| [0FF| ITHE IEC
X I i 1 LT [/MTIoL Al RIEIG/|SITIER]- '

! L | : ¥
|1/ SISWE [THE EXIECUTE] [FlokM| TolF| THIE] 1PUTILII WIE] TMAICIRID] 1 WISITRIUICT]IIOINLs
X [LET N ML) ZE THE [ToPL.
x|l ' EEREERN [X

L P TPuTLIWE T PARMEPUITBILIK WPTIS(3])], [ElCTI=(4]) |, |ECIB[=|ECIBIAIDIS],
EEEE T oUTPulT=ICoNEDL D, |TERM IS NGLIEL, T/ WE[ORD], !
B o [Me= e[T0PILIADS) T | | '
REREER NS BEEERRNNRREENE ' ¥
¥ [T IPROCESISING [|| N
X i g L
% 1 ISToRIAGE DECILIARATI/IOMS
Elciglab|s D'C Fi' 4" SPIACIE| [FloR| ITHIE [EVIENT! [cloWirRlolL
¢ B BILIOCIK]-
TolPLAlD[ST | [DiC YF) SIPACIE] FOR] [THE! [/IWPL[T] 10U P

Figure 66. Coding Example - PUTLINE Text Insertion (Part 1 of 2)

Using the TSO 1/0 Service Routines for Terminal I/O 149

e 1] T T T AR AMIEIT ER sgﬂer TI %ubi/k@g
LK UL T IWE] FRIL | [[[THE ILUIST FIORM PUITLY N,
i”TBL5 i | TE T T MAICRO[[INS[TIRUICT I/ 1oW!s! /1T EXPIANDS
[| 1 il Tl NTO [SPAICE[FIOR |A_PTPBL.I ' []
oWEOLD] || P'C 3] | /WD CIAITE TTHRIEE| [TEXT [SEGMENT.S -
DC A(Fﬁksrs[EG)i ADORESIS! [0F ﬁgq FiRST| TEXT |
’ [T ISEGMEWT. | HEREEES
b T T IACSECSEGD] [| JADDRESS DF| [THE, [SEICOWD [TEX[T] ||
X L ‘ L[[ISEGMEWT - | RENEAEY
D¢ [ACTHIRDSEGD] T |ADDRE|SS| OF| [THE [TH/RD| TEXT| | . |
e [L[] Tt L SEGMENT . [t T] i [
TRSITSEG D | | H 132" Rl LENG TH_0F[[THE] IFITRIST, [SEIGMENT| |
] | e T T TINCLUD NG, [THE HEADER|.
hlfa g’ OFFSEY (0F PRI ME] SEGMENT /151 | |
X il WAy EerOL T T[] L
R DC, CL28 [BPLEA[SE _ENTER TI0i PROICESSIWNGS] B
LESREAR -) ; PRIMARY SEIGMENT|.

SECSEG | |pC H'9 ' LENGTIH OF [THE SIECOND| SEGMENT
R k ‘ | TINCLUDING |THE HIEADER|.

T T Pe W 14 [T0FFSET. _INTIO FIR[ST SEIGMENT| AT
X | ‘ : _ WHICH| SECOWD: SE|GMENT| /S T|0 BE
¥ 1T L T N SERITED. ; ISR I
. T be . [ICLS TEXTE |, ||| |TEKT, l0IF; [SE|COND ISEGMENT.! |~ ' |

RIRDSEG ole. [113 [T [T VIENGITH 0F |THE TIH/RD IS EGMEWT]
¥ MR ARERNEEN L L T UNCLUpr NG [THE HEADER].[1 171 T |

oiC] HEAN T l0FFSE[T [IWTlol [THE] FII RIS|T, "SIEGMEN.T

X | LT T IAFTER] WHYCH THE] [TH!IRIDL 1S EGMENT,
X ! { | 1S Tlo[1Bl [/ WSERTIED.T 1 T[T T[]

pCL T TlcLls) (CloW T NWER! T TTEEXT) [0FF] TH|/IRID. S|E[GMEW]TT.] |
IKVICPIPL CPPLL PSEICT];| [TH/IS| EXIPANDS| W/
o THE| 15pMBOL|/(c| WDIDRESS| ElPPL
|

Figure 66. Coding Example - PUTLINE Text Insertion (Part 2 of 2)

Using the Format Only Function: You can also use the PUTLINE service
routine to format a message but not write it at the terminal. To do this,
code the FORMAT operand in the PUTLINE macro instruction and pass
PUTLINE the same message segment structure required for the text
insertion function. The PUTLINE service routine performs text insertion if
requested and places the finished message in subpool 1, which is not
shared. It then places the address of the formatted line into the third word
of the PUTLINE parameter block. The storage occupied by the formatted
message belongs to your program and, if space is a consideration, must be
freed by it. The returned formatted line is in the variable-length record
format; that is, it is preceded by a four-byte header. You can use the first
two bytes of this header to determine the length of the returned message,

and later, to free the real storage occupied by the message with the R form
of the FREEMAIN macro instruction.

150 TSO Guide to Writing a TMP or a CP

The OUTPUT sublist operands you specify in the PUTLINE macro
instruction indicate to the PUTLINE service routine which type of line you
want processed (DATA, INFOR), whether the output consists of one line,
several lines, or several levels of messages (SINGLE, MULTLIN,
MULTLVL), and whether the line is to be written to the terminal (TERM),
or formatted only (FORMAT).

1. Data Lines: A data line is the simplest type of output processed by the
PUTLINE service routine. It is simply a line of text to be written to the
terminal. PUTLINE does not format the line or process it in any way; it
merely writes the line, as it appears, out to the terminal. There are two
kinds of data lines, single line data and multiline data; each is handled
differently by the PUTLINE service routine.

Single Line Data: Single line data is one contiguous character string which
PUTLINE places out to the terminal as one logical line. If the line of data
you provide exceeds the terminal line length, the TPUT routine segments
the line and puts it out as several terminal lines. PUTLINE accepts single
line data in the format shown in Figure 59.

PUTLINE OUTPUT = (output address, , SINGLE, DATA)
2 bytes 2 bytes
Length Offset Data g §

Length

Figure 59. PUTLINE Single Line Data Format

You must precede your line of data with a 4-byte header field. The first
two bytes contain the length of the output line, including the header; the
second two bytes are reserved for offsets and are set to zero for data lines.
You pass the address of the output line to the PUTLINE service routine by
coding the beginning address of the four-byte header as the OUTPUT
operand address in either the list or the execute form of the macro
instruction. When the macro instruction expands, it places this data line
address into the second word of the PUTLINE parameter block.

Figure 60 is an example of the code that could be used to write a single
line of data to the terminal using the PUTLINE macro instruction. Note
that the execute form of the PUTLINE macro instruction is used in this
example to construct the input/output parameter list, and that the
TERMPUT operands are not coded in either the list or the execute form of
the macro instruction; the default values will be assumed by the PUTLINE
service routine.

Using the TSO 1/0 Service Routines for Terminal I/O 139

% | [ENTRIY] JFRoM] [TIHIE] [Tle[RM WAL Mo [1]o[R] [PRI0|6[RA|M|, o | ’E
¥ RIEG /|s|T|elR| |o\nlg] clojn|TIA|I N|S| [TIHIE A|D|DIR'E|S|S| |OF TYHE IC|OMM|AINID |]l
¥ | |PR|0[CE|S|slo[R] [P|a[RlA METIEIR" [LT/][sT| [(IclPlPIL:) ‘ ‘ ! , ;
X | T | [ADDRIE[S[SIAB[L]/|TY. T) i RERE NEl
x |1 SIAVEE |AREIA [CIHAIN NG| %}‘[‘iL ;4; ERENER 1$i
I | " ‘ L | P] i B L i %
* ! LR 2LM BEREE |f SAWE\THE&MDDKE?SEMf]T@MECPwa
T USING| [cPPiL, 2 T T T TIADDREISSAB LI TY |FOR TIHE CPPL.
T L 3, CPPLUPT | PLACE| THE |ADDRESS OF THE [PT
X T INTO | REG STER. 1| | 1
T T e T cPPLECT | [PLACE THE ADDREISS, 0F| THE |ECT
¥] AN 1 ;f L INTO A REGSTER | LT ¢ 1%1;
AREEE ~ T e e
jf}hsﬂue #ME EECUTIE| £ ORM OF| TIHE_PUTL/ NE| MACIRIo] TN S[TRUCTIT 0N
b USIE| /[T Tio] WR[ITE |A[[SUNG|LE [LI/NE] OF| DlAITIA 7o THEiﬂERmHNAL.;
b T INC T DlENT AL Y], ulS[E| 11T Tlol 1Blult{L o] TTiHIEl L/olplL . ! T
TP N AIPARMFPWJB@OWKbyPW=:5),E£J=(4)” ;
T Ekm=fCB%DB,DWWPUTEYiERT%DS,TEWM,SINGLd,ijA)J
T T ME=[CE[0Py | [T] RAREEE
TTHIS, EIXECUTIE] FORM [OIF| THE _PUITLTNE[MACR|O /N S[TRUICTI.ON_DIOIES
% INO[T| 'S[PlElClIIF Y] [THE JEkaun OIPEIRAND'S| Uf WilLL WSE [THE DEFAULT
ACUES] T | BB o N !
ERdRNd N NRARANERARIUAN AR ESRA VRN AR B
¥ [T [ProlcessynG | i 1, Tl N RN %
e TP T T e P et M
RN SﬂdkAG&]QQCLARAFIOWSi %[| lL Bl [}i §|;i
NINENEENRRR RN e L A [
?chvLL{ os L E BT _ISPACE| FIOR_THE EWENT ICONTRIOL]
X RN 1 L[Blliock BEREE B g
pluTBILloK | [PUTL NET T T M=l LirSIT_[FlORM _[o|F {THIE[PITIL.I NE_IMACRQ
T . T [NSTRCT 0N - THII S| [EXIPIANIDS| /INT0
X | | | T AL PWTILINE [PARAMETER! [BlL'O[CK[.T [
TEXTIADIS, | D[| . | " 12a]” T [LENT6|T{H To[F_|TIHE] olu[TPulT] |LIINIE[[[
] DICI | | H'" @’ il RIE'SIERVIEID ! ;
blc CIL[1"6] " [B1S /[NG|LIEIL I IN|E| |DIAITIA"
ToP|LIADIS] | DC NEE ~|SIPlaCE] [FloR] [THiE] [1INPlulT] JolulTlP T
% T IPlARAMETIER LI/|SIT]. |
" TKVICIPIPIL| | | |D[SEC[T| IFlojR |THIE[(C[PIPIL j ,
1 NG [T T1T

Figure 60. Coding Example - PUTLINE Single Line Data

Multiline Data: Multiline data is a chain of single lines. Each line of data is
processed by the PUTLINE service routine exactly as if it were single line
data. Each element of the chain, however, begins a new line to the
terminal. By specifying multiline data (MULTLIN) in the PUTLINE macro
instruction, you can put out several variable length, non-contiguous lines at
the terminal with one execution of the macro instruction. PUTLINE accepts
multiline data in a format similar to that of single line data except that each
line is prefaced with a fullword forward chain pointer. Figure 61 shows the
format of PUTLINE multiline data.

140 TSO Guide to Writing a TMP or a CP

PUTLINE OUTPUT = (output address,

, MULTLIN, DATA) ~— . _

Pointer to next e}emenf Length Offset Data 5 ?
\ —~ -
Length
Pointer to next element Length Offset Data X T
00000000 Length Offset Data } 2

Figure 61. PUTLINE Multiline Data Format

Each of the forward-chain pointers points to the next data line to be
written to the terminal. The forward-chain pointer in the last data line
contains zeros. In the case of multiline data, you pass the address of the
output line to the PUTLINE service routine by coding the beginning
address of the first forward-chain pointer as the OUTPUT operand address
in either the list or the execute form of the macro instruction. When the
macro instruction expands, it will place this multiline data address into the
second word of the PUTLINE parameter block.

Figure 62 is an example of the code required to write multiple lines of
data to the terminal using the PUTLINE macro instruction. Note that the
programmer has built his own IOPL rather than build it with the execute
form of the PUTLINE macro instruction. Note also the use of the IOPL
and CPPL DSECTs (generated by the IKJIOPL and IKJCPPL macro
instructions). These provide an easy method of accessing the fields within
the IOPL and the CPPL, and they protect your code from changes made to
the control blocks.

Using the TSO I/O Service Routines for Terminal [/O 141

9

] S < [=
Qjja [¥) Q
[~ =Y ~] [) [¥T] —
olal ~ [[
W =2 W Wy (€}
w x -~ X ~ >
x[wl~ — w 3
| 1 i = v —
= ~[@ [2) [~T o)
| |<z L [=) w [=) o =
| I [SY4 [~ <T . -
EJ Sl ol [» a 7]
[&) wnLln] [aQ | [[=)
O [%2) o<t [3 —~ [3
w[>lae|Wy og W =) o [¥)
sl) o[~~~ Ql~ a Q <<
EIES ol-[Qlun[o] alvn] |~ [=) =
<</~ o<t ~w <T|[~ S
[<[— [(<) [=) W
[GY'Y o|wlww] Juiw [7a) =
[SIES) Wi T[T [oe ~ a, -
4 T~ W~ =Y ~ =
alun [%) =9 [<C a Q. [
(21K Wy wnjw = 2
o || wacufaul~lu[o ~ W Q
Olee[S~ |WO[<T [~ =X -
Y Q=] w-I= w [w X
~[Q[a wnigla[~[alada [~ x =X [<)
=IO [¢ ~]
A=) A o o
B3 4 'y Wl =
T~ =) [=) [~)
~d[~[n = [y ~ o
ho ~ ~ Q = "
2|l =2 [[> (%2 w[~[=]m o =
~[= — >N~ Q (W) [%2) ~ Q Ao o o
[=[~[ac] |~ > [wl [© ~| =<t <o [u| |<t
=T D[~ N[~ ~ =T ~J ™~ wjIllg a
W~ 2|3]0 olQ Q. o) - Q. = Ao [a. w)
~|={w |~ Q. [} (W)) Al N =1[=][s) [
(] Q || ~|Q i (W) V) ~[a Q=] >
wlo|<cfw|<Tiw NI - - [72) ~ S Ql =]] » [€)
x[wwae ~|Oo[n = [2] ~[— |3~ Wy w)
~wlg|X[wnl<c [>< =
2o [w|w [GY | - [G) Ly Qy -
[S) oW = == = X)
[<) xlDQl> ~ [=\[§) -~ ~ w [
[O|OQl< [~4[%) e d < || [e | e >
Wiwlwn|T <[D[~J ~J wnJ>D 2|win|n [
=~ [SY[=) -~
> nw > w
[IE[S) ~ ~ D
~|w|o [\ 3 [72)
=i w~ ~ [72)
wjeja, V2] Y] 'Y ~
FAERERAEIESER BES ™ E4 x| % X X[x

- PUTLINE Muiltiline Data (Part 1 of 2)

Figure 62. Coding Example

TSO Guide to Writing a TMP or a CP

142

0UWPUT=(DEXTAUS.MULTLIN,DATA‘,MF-(E.IOPLADS)*
* ‘\j |
% PRIOIC|ES|S!/ [NIG |
X ‘ ‘ %
SITIOR[AGIE[[DIEICILIARIAT]/I0N]S E .
X
E[CIBlAIDIS DS F 1
ZloPlLIADIS] | [DiC MERS
TIEIX|TIAID]S] | [DIC ACITIEIXITIZ)) FlolR|WAIRID[[Plo]/|N[TIER] [Tlo] IN[EIXIT| IL|/INE
blc H2lg | | CENGITIH [olF] [Fl7RIS[T] IL./INE]|.
Dl H'le" R EIS[ER|VEID].
Dic ClC|1l6] MUIL]T/ |L]/INE [DIAITIAL (11 ‘ .
|
:UTBLOK PUTILITINET T T F=l0 [LIS FORMLIOF ITIHIE] PIUTILITINIE] MIAICR'O
¥ T T NSITRIUCT o T L
X IR ERRRREREE HREBENS L] RN
TIEIXT[2 Dl ACBy | LT T |END![olFl 'CHAI N IND/ICATIOR., || |
DC W 2@ [T T[T TICENGITIH "0'F [SECOND. 'L NE. il
piC H g L REISERVED N R ,l
Dicl | [1 el WU T 1L WET DA AL J21'] | i AENE ! :
X | s %
KJIClPIPIL " IDSIEICTT] IFOR[[TTHIE] (CloMIMIAINID
X | " |PRIOCIEISIS[OR] [PAIRIAMIETIER] ILII[SITIs] [TIHII]S
¥ | [E[XIPIAIN[DIS| W/ T HI [T'HIE| [S!YMBIOILLIIC] IN|AMIE
X CPPIL.
IIKJ|IlolPIL p|SIEICIT] [FloR| [TIH[E] [/INPIUT! Joju[T[Plu[T
* PIARIAMETIER] |L]/S[TL.] [TIHII S| [E|XPlAINID|S
* I W/ /|T/H [TIHE [S]YMIBIOIL[IIC] [NIAMIE| TI0|PIL|.
EIND | T LI [

Figure 62. Coding Example - PUTLINE Multiline Data (Part 2 of 2)

2. Message Lines: If you code INFOR in the PUTLINE macro instruction,
the PUTLINE service routine writes the information you supply as an
informational message and provides additional functions not applicable to
data lines. An informational message is a line of output from the program
in control to the user at the terminal. It is used solely to pass output to the
terminal; no input from the terminal is required after an informational
message.

There are two types of informational messages processed by the
PUTLINE service routine:

« Single level messages (SINGLE)
o Multilevel message (MULTLVL)

Single Level Messages: A single level message is composed of one or more
message segments to be formatted and written to the terminal with one
execution of the PUTLINE macro instruction.

Multilevel Messages: Multilevel messages are composed of one or more
message segments to be formatted and written to the terminal, and one or
more message segments to be formatted and placed on an internal chain in
shared subpool 78. This internal chain can either be put out to the terminal
or purged by a second execution of the PUTLINE macro instruction.

Using the TSO I/0 Service Routines for Terminal 1/0 143

144

Passing the Message Lines to PUTLINE: You must build each of the
message segments to be processed by the PUTLINE service routine as if it
were a line of single line data. The segment must be preceded by a
four-byte header field -- the first two bytes containing the length of the
segment, including the header, and the second two bytes containing zeros or
an offset value if you use the text insertion facility. See "'Using the
PUTLINE Text Insertion Function' for a discussion of offset values. This
message line format is required whether the message is a single level
message or a multilevel message.

Because of the additional operations performed on message lines,
however, you must provide the PUTLINE service routine with a description
of the line or lines that are to be processed. This is done with an output
line descriptor (OLD).

There are two types of output line descriptors, depending on whether the
messages are single level or multilevel.

The OLD required for a single level message is a variable-length control
block which begins with a fullword value representing the number of
segments in the message, followed by fullword pointers to each of the
segments.

The format of the OLD for multilevel messages varies from that required
for single level messages in only one respect. You must preface the OLD
with a fullword forward-chain pointer. This chain pointer points to another
output line descriptor or contains zero to indicate that it is the last OLD on
the chain. Figure 63 shows the format of the output line descriptor.

Number of .
Bytes Field Contents or Meaning
4 none The address of the next OLD, or zero if this is
the last one on the chain. This field is present
only if the message pointed to is a multilevel
message.
4 none The number of message segments pointed to
by this OLD.
4 nane The address of the first message segment.
4 none The address of the next message segment.

Figure 63. The Output Line Descriptor

You must build the output line descriptor and pass its address to the
PUTLINE service routine as the OUTPUT operand address in either the list
or the execute form of the macro instruction. When the macro instruction
expands, it places the address of the output line descriptor into the second
word of the PUTLINE parameter block.

Figure 64 shows the two control block structures possible when
processing a message line with PUTLINE. Note that the second word of
the PUTLINE parameter block points to an output line descriptor rather
than directly to the message line itself.

TSO Guide to Writing a TMP or a CP

Terminal Command PUTLINE
Monitor Processor Service

ATTACH LINK

Program l Routine
|

|
|
|
|
|

Reg. 1 Reg. 1

CPPL 10PL

PTPB

oLD

Number
— Length | Offset Text |

Single Level Messages } Segment 2 |

—]

From PTPB

} Next OLD
Number

* Segment 1
} Segment 2 \h Length | Offset Text]
. . |

1
Multi-Level Messages |

00000000
Number

4 Segment 1
b Segment 2 J

l |

Figure 64. Control Block Structures for PUTLINE Messages

Using the TSO 1/0 Service Routines for Terminal 1/0 145

146

PUTLINE Message Line Processing

In addition to writing a message out to the terminal, the PUTLINE service
routine provides the following additional functions for message line
(INFOR) processing:

« Message identification stripping

o Text insertion

« Formatting only

o Second level informational chaining

Figure 65 shows the distribution of these PUTLINE service routine
functions over the two output message types.

Message Types
Functions Single Level Multilevel
Message [D Stripping X X
Text Insertion X X
Formatting Only X
Second Level Informational Chaining X

Figure 65. PUTLINE Functions and Message Types

Stripping Message Identifiers: The user at the terminal indicates whether or
not he wants message identifiers displayed at the terminal. He does this
with the PROFILE command. (See TSO Command Language Reference
and T'SO Terminal User’s Guide). If the terminal user has indicated that he
does not want message identifiers displayed, the PUTLINE service routine
strips them off the message before writing the message to the terminal.

A message identifier must be a variable-length character string,
containing no leading or embedded blanks, must not exceed a maximum
length of 255 characters, and must be terminated by a blank.

Messages without message identifiers must begin with a blank. A
message beginning with a blank is handled by the PUTLINE service routine
as a message that does not require message identifier stripping, regardless of
what the user at the terminal has requested. If you do not provide a
message identifier, and do not begin your message with a blank, the
beginning of your message up to the first blank will be stripped off by the
PUTLINE service routine if message identifier stripping is requested from
the terminal. If the message segment does not contain at least one blank,
PUTLINE will return a code of 12 (invalid parameters) in register 15, even
if message 1D stripping is not requested from the terminal.

The following examples show the effects of the PUTLINE message
identifier stripping function.

TSO Guide to Writing a TMP or a CP

If you provide message identifiers on your messages and the terminal
user does not request message ID stripping, your message will appear at the
terminal exactly as it appears here:

MESSAGEOO010 THIS IS A MESSAGE.

If the user at the terminal requests message ID stripping, the message
will appear as:

THIS IS A MESSAGE.

If you do not want to use message identifiers on your output messages,
begin your message with a blank. A message beginning with a blank is
unaffected by a terminal user’s request for message ID stripping and will
appear as you wrote it, minus the blank.

Using the PUTLINE Text Insertion Function: The text insertion function of
the PUTLINE service routine allows you to build or modify messages at the
time you put them out to the terminal. With text insertion you can respond
to different output message requirements with one basic message (the
primary segment). You can insert text into this primary segment or add text
to it, and thereby build an output message to meet the current processing
situation.

To use text insertion you pass your messages to the PUTLINE service
routine as a variable number of text segments -- from 1 to 255 segments
are permissible. Each segment may contain from O to 255 characters,
however, the total number of characters in all the segments must not
exceed 256. You must precede each of these text segments with a four-byte
header: the first two bytes containing the length of the message, including
the header, and the second two bytes containing an offset value. The offset
value in the primary segment must be zero. The offset in any secondary
segments may be from zero to the length of the primary segment’s text
field. An offset of zero in a secondary segment implies that the segment is
to be placed before the primary segment. An offset that is equal to the
length of the primary segment’s text field implies that the secondary
segment is to be placed after the primary segment. An offset of n, where n
represents a value greater than zero but less than the total length of the
primary segment, implies that the segment is to be inserted after the nth
byte of the primary segment. PUTLINE places the secondary segment after
that character, completes the message, and puts it out to the terminal.

If you specify an offset in a secondary segment, greater than the length
of the primary segment, PUTLINE cannot handle the request and returns
an error code of 12 (invalid parameters) in register 15. If the secondary
segments do not appear in the OLD with their offsets in ascending order,
PUTLINE returns an error code of 12 (invalid parameters) in register 15.

If you provide more than one secondary segment to be inserted into a
primary segment, the offset fields on each of the secondary segments must
indicate the position within the original primary segment at which you want
them to appear. PUTLINE determines the points of insertion by counting
the characters of the original primary segment only.

Using the TSO I/0O Service Routines for Terminal I/0O 147

148

As an example, if you provided one primary and two secondary segments
as shown:

2 bytes 2 bytes 28 bytes
32| 0| PLEASE ENTER TO PROCESSING
9 14 | TEXT
13 17 |CONTINUE

PUTLINE would place the first insert, TEXT, after the 13th character, and
the second insert, CONTINUE, after the 17th character of the text field of
the primary segment. After PUTLINE inserts the two text segments, the
message would read:

PLEASE ENTER TEXT TO CONTINUE PROCESSING

The leading and trailing blanks are automatically stripped off before the
message is written to the terminal.

Figure 66 is an example of the code required to make use of the text
insertion feature of the PUTLINE service routine; it uses the text segments
shown above.

Note that the operand INFOR, which indicates to the PUTLINE service
routine that the text segments are to be processed as informational
messages, requires an output line descriptor to point to the message
segments. Only one output line descriptor (ONEOLD) is required to point
to the 3 messages segments because the 3 segments are to be combined
into one single level message.

TSO Guide to Writing a TMP or a CP

One difference between format only processing and text insertion
processing is that format only processing can be used only on single level
messages. You cannot use the format only feature to format multilevel
messages. You can however, use the second level informational chaining
function of PUTLINE to format second level messages and place them on
an internal chain.

Building a Second Level Informational Chain: PUTLINE can accept two
levels of informational messages at each execution of the service routine. It
formats the first level message and puts it out to the terminal. The second
level message is formatted and a copy of it is placed on an internal chain in
shared subpool 78. This internal chain, the second level informational chain,
is maintained by the I/O service routines for the duration of one command
or subcommand processor. You can use the PUTLINE service routine to
purge this chain or to put it out to the terminal in its entirety.

To purge the chain without putting it out to the terminal, you must turn
on the high order bit in the first byte (ECTMSGF) of the third word of the
environment control table (ECT). The ECT is pointed to by the second
word of the input/output parameter list, and may be mapped by the
IKJECT DSECT. The next time any chaining or unchaining is requested
with PUTLINE or PUTGET, the second level informational chain will be
eliminated.

To put the entire chain out to the terminal, use the PUTLINE macro
instruction and place a zero address where the output line address is
normally required. This will cause the PUTLINE service routine to write the
chain to the terminal and eliminate the internal chain. You will normally use
this procedure only if your attention exit routine is using the PUTLINE
macro instruction to process a question mark entered from the terminal.

Figure 67 is an example of the code required to build a second level
informational chain. It executes the PUTLINE service routine by using two
different execute form macro instructions to modify the PUTLINE
parameter block built by the list form of the PUTLINE macro instruction.

The code shown puts two messages out to the terminal and places two
second level messages on an internal chain. It then executes a third execute
form of the PUTLINE macro instruction with a zero QUTPUT address to
put the second level chain out to the terminal.

Note that the offset value for the primary message segment must always
be zero, and when placing second level messages on an internal chain, the
offset value for the second level message must also be zero. Note also that
you do not place a message identifier on a second level message.

Using the TSO 1/0 Service Routines for Terminal I/O 151

J

- K3 MT - X
a0 N > K2 ~ L%, I
N) Q] N Q TR
A N <) q SN
S T U TR ”__5 X
AS] By q
Gl (] [X RY Wl Ixlwn E [N M
ENLTINERLN & /W u E M < N y 4 <
INIEY Nxia 9 (VLN EN BRI EN LNIEIRY N
1= NG 9 BN Q 172 INIEYI) ~ MR [}
< Q Q = HIEIENET N Y
3 o N QW] 4+ T = ~ iy [0 L
Q[(9 1NIO) ~ LYIRILNIAN N NI N
Q LN Ol . Q X [D 4y X Wy [
€]) [T % XWn] 1IN Iy ol ./ ~ QN
Gy Q@ T SIKTNQO N | NEINYEAY n
YRIQNQTN <] LINIS NLEVR Q NI qQ
SR ~AT%Qlol [§[90Ix]. []OI~ O=[9 ~ SIUx Ay
- R TR TS W L) SREE N \
</~ N R LTI
I CYLTIAATIET RIR Y QU< ~ W X »
O <> [%Ixfk ~E N MmN =0 1% N QWY N
A NN NN sl TS y RN D R)
[%) K[< < NN wiN LAY LN N Q
0| - Wy | Slwl | N Q [N N [0} x| N
TG~ L I I YL AT 3 NGNS N < W_Q 1
NEIEY S AR (1 Ys N EENINTN S AT N
NLYRIRY I TENN . ~ %) ~
NINLY ENANEN LV TIEQ ik NENYSILN IR BN X
ANV Nilwl T il <! BIQISNIOL N ~
o [~ 1w 1T 1%k 1 Y Y | T %)
X4 WAL T ORI H@ [N EEANLIINEIENINLY NI N >
EILN [O) SNy RN NEIIY)] ‘#rv N Q
N LN > > LNINES x LNEY[%) Qs ~[N ~
VRN > <S|OIO] [JalN . N[= (NN NI N 4
Wiv N N &N ‘ EIAMELY N A3 ~ S[Q 1~ <
J= ENEN O] al ol T I&NIQ WV IS T&IQ IO L% &
NIZEINES W ‘w_f‘ _l=xlaN Wiey & N] W &in| [« <
YW\ NS ~ O QK| 4 YW [OlLiol [/ %) Y N
[(MININEISNIES ~N g WINIL [1.1 X nix T Sl X[y Q
WIS NIEVENAN [N T N B L NS BRI wa [|O NPy L™ O 1y
SRR SRV [O M@l T AR 1= & IS Ta Ny S
LIy q N OQIT T NA NI R s NEMELY ~
N[k N[O[™ Y Q TIANIR Y ni<l [LVIQTs = (%) OO~ W %) G
INLTIRIES) XTI~ > WO U NN S) [l > D) ©
> [[U] WIS [~ Ylolelx ~N ~ yy IV ~ Wy
RN V%Y x R\ S B N} QO [N IS N) NS | \S]
Sl sloars ey a1 SR RTS S > sONCSETR
[N [NI I
ulti<[® NI ~ KNIS(x . Ul 0[] Q Q] KWy Q Q ()
0 Q] NYINENETIET NEIEILY
I N I ENLTEILS SN
[ARNES Siolxist 1] S NN R YNEEN
AL REE T FILAENES SRR
RTINS i I -
g VLN LN E T o B B SN AN AN EVEV S <
e B O SR
EIEIEIEIES s TR R %KL A % % S IEIESEIRIE IE K- EIEIEIE IR EAESES

Figure 67. Coding Example - PUTLINE Second Level Informational Chaining (Part 1 of 2)

TSO Guide to Writing a TMP or a CP

152

T T
[

(0] - 1= Q { x

Q N | N |l‘6 D. Iou 3 F N
na ~N

i e i = 5| :
R) N & Q ~ ~ R [N [BN S 2 N ~J
LUEETNE TN T Q T T Q N[AT TalS GILY

RYAT CY LN NEY RYEIENS L] ~ [« N YEN 3 N /= Q

AN -lQ 2[Q M L L [0 [T) LY 0] 210
Q | LN Gl W V,D;I . ul | s~ Q W > Qf -

N R A YEY FYENRY DS I ENATTRY Y 2 ORISR [~ [~ NILTTRY %)
INEEIEININ [CIANY ~[~ IR [SILN < by R yoal® x|
ENEANEETYR] 1y I \IEIK of 0[N G NIQlW Wil (2] W

INERIHIWERILY BNV I AU NI Y B AN S Wl ﬂ.ﬂ) CLTIBNE) 7

"} YR ~ [N LN 3] (9w N [0} Niwn [swinly L) [
NENLIES T [IENERIERNNT Tl Q] Q Q 2R ~ <! | Kl [} X K" ~R

1N WS [QIQY lwc-éw_wldrf.xmw ATTTEN . _ INEEMCIR IR IS
Wl [Slola NI EMINRIETEY nwf_u.s{lnp.a.r Wpsvsm WMN w,wm_‘?ww_ _/cl

NN
H'UMDU\ ML\ F.F/&WNSF—,IIWH Urh_lF—l ﬁuﬂﬂ_cUuD.W; MMS [N Dﬂr WWVU)U
% M_W Nsw SFFTLE ‘RTW‘F,.moN r.psm(DT O TN TR TUIRNOID
NN Yy Yl OOl W] I8 TNl [(IENETIENLT ol WS XN wlg
NN NLAVE N RN .ior% 1 Kuylglelw[h[g[nl | _IS[]9 ~ IR
NANEEL & oln RN ZINLY IR YRS OISO <[~ [0 [XIQR[X[S[[X[QIR[TQ/~ S
[MEINIES Ul lx [ylol (WK wlylwjyinhuYy®ixl <l [N Yk KISyl =] [xf [®
Ol [¥[0]9ly SNLYENESEARLIESNAA DECIEVIIRNANEN PNLWRNIAN N O~vl Olul9 (X q [N
O S I N N Y M A R N N N R N N e R N TS AN
H ~
Wmew,wﬂwm WMMAW_,OBE/ VWO KRS T=NSINRANINS HA YA YENAY) %)
1 1 LI]
I ~N I B I O ~
. R EREE — 3
| R i L .
(U] \S)
T SRR R R : 3
I I e VN TS A Y O B Twl. 1 N9 O 3 %
S et R R e e 3
- x| @ lal~ 1 [[[~ I ~ X[1O ol [~ | Bl ~ N
Q NECTELITIESE ...m N ~ | |l N I S) I 1 S VT N A O VT . R B R~ o
T R A R A Rt ol T VT N e A B - A) o S S B -

M OO O Q A ANV AL = X0 ~

> _

~N S N e ﬁ.yl | ey I N N - ©

N T B A S e U e S B 1] T T = W

0 ToT TOMOlORUGIQTUT (O] 1T T9] TUla BASIEEIES O O oL TV IO
S R RRRlaRIR -t (& fa el a[Q[_Ql [R[QQ[CQ 3 [Q

>~ N - b
~ T 1 [I~ [5
© RN Qg |7 BT O e R RS ~ I r B
X 0 [(o] [[~ o A R or T 9 -
(< | TH <! [i Z
N | /_ IRIEEES Kl [1w ;I\ LI N ”\[(LU 4t M
Rt i i i e i . ,
M#u*xs*o x| k| TSR] | [F[x[x[© * %[0k [x[[%[0ix x| x[%[[%x

Figure 67. Coding Example - PUTLINE Second Level Informational Chaining (Part 2 of 2)

Using the TSO 1/0 Service Routines for Terminal /0 153

Return Codes from PUTLINE

When the PUTLINE service routine returns control to the program that ?
invoked it, it provides one of the following return codes in general register
15:
Code Meaning
decimal
0 PUTLINE completed normally.
4 The PUTLINE service routine did not complete. An attention interruption occurred

during its execution, and the attention handler turned on the completion bit in the
communications ECB.

8 The NOWAIT option was specified and the line was not written to the terminal.

12 Invalid parameters were supplied to the PUTLINE service routine.

16 A conditional GETMAIN was issued by PUTLINE for output buffers and there was
not sufficient real storage to satisfy the request.

20 The terminal has been disconnected.

Note: The GNRLFAIL service routine described in this book can be
invoked to issue a meaningful error message for a PUTLINE error code.

PUTGET - Putting a Message Out to the Terminal and Obtaining a
Line of Input in Response

Use the PUTGET macro instruction to put messages out to the terminal
and to obtain a response to those messages. A message to the user at the
terminal which requires a response is called a conversational message. There
are two types of conversational messages:

« Mode messages - Those which tell the user at the terminal which
processing mode he is in so that he can enter a response applicable to
that processing mode. Examples of mode messages are the READY
sent to the terminal by the terminal monitor program to indicate that J
it expects a command to be entered and the command name (EDIT,
TEST, etc.) sent by a command processor to indicate that it is ready
to accept a subcommand name.

e Prompt messages - Those which prompt the user at the terminal to
enter parameters required by the program in control, or to reenter
those parameters which were previously entered incorrectly. Prompt
information can only be obtained from the user at the terminal.

The input line returned by the PUTGET service routine can come from
the terminal or from an in-storage list; PUTGET determines the source of
input from the top element of the input stack unless you have specified the
TERM or ATTN operands in the PUTGET macro instruction.

PUTGET, like PUTLINE and GETLINE has many parameters. The
parameters are passed to the PUTGET service routine according to the
operands you code in the list and the execute forms of the PUTGET macro
instruction.

This topic describes:

« The list and execute forms of the PUTGET macro instruction
o Building the PUTGET parameter block

« Types and formats of the output line

o Passing the message lines to PUTGET

o PUTGET processing

154 TSO Guide to Writing a TMP or a CP

« Input line format - the input buffer
« An example of PUTGET
« Return codes from PUTGET

The PUTGET Macro Instruction - List Form

The list form of the PUTGET macro instruction builds and initializes a
PUTGET parameter block (PGPB), according to the operands you specify
in the PUTGET macro instruction. The PUTGET parameter block indicates
to the PUTGET service routine which of the PUTGET functions you want
performed. Figure 68 shows the list form of the PUTGET macro
instruction; each of the operands is explained following the figure.
Appendix A describes the notation used to define macro instructions.

B PROMPT
[symbol] PUTGET OUTPUT=(output address |,SINGLE] . MODE)
,MULTLVL|! ,PTBYPS
, TERM
l_ ,ATTN

EDIT
, TERMPUT= (] ASIS ‘,WAIT “,NOHOID] ,NOBREAK])

L CONTROL| | ,NOWAIT | | ,HOLD +BREAKIN

,TERMGET= (| EDIT| [, WAIT |)|,MF=L
ASIS ||,NOWAIT

Figure 68. The List Form of the PUTGET Macro Instruction

OUTPUT=output address
Specify the address of the output line descriptor or a zero. The output
line descriptor (OLD) describes the message to be put out, and contains
the address of the beginning (the one-word header) of the message or
messages to be written to the terminal. You have the option under
MODE processing to provide or not provide an output message. If you
do provide an output line, code OUTPUT=0, and only the GET
functions will take place. If you do provide an output message, the type
of message and the processing to be performed by the PUTGET service
routine are described by the OUTPUT sublist operands SINGLE,
MULTLVL, PROMPT, MODE, PTBYPS, TERM, and ATTN. SINGLE
and PROMPT are the default values.

SINGLE
The output message is a single level message.

MULTLVL
The output message consists of multiple levels. The first level message is
written to the terminal, the second level messages are printed at the
terminal, one at a time, in response to question marks entered from the
terminal. PROMPT must also be specified or defaulted to.

PROMPT
The output line is a prompt message.

Using the TSO I/0 Service Routines for Terminal I/Q 155

156

MODE
The output line is a mode message.

PTBYPS
The output line is a prompt message and the terminal user’s response will
not be displayed at those terminals that support the print inhibit feature.
A terminal user can override bypass processing by hitting an attention
followed by hitting the ENTER key before entering his input.

TERM
Specifies that the output line (a mode message) is to be written to the
terminal, and a line is to be returned from the terminal, regardless of the
top element of the input stack.

ATTN
Specifies that the output line (a mode message) is to be initially
suppressed but an input line is to be returned from the terminal.

TERMPUT=
Specifies the TPUT options requested. Since PUTGET issues a TPUT
SVC to write the message to the terminal, this operand is used to
indicate which of the TPUT options you want to use. The TPUT options
are EDIT, ASIS or CONTROL; WAIT, or NOWAIT; NOHOLD, or
HOLD:; and NOBREAK or BREAKIN. The default values are EDIT,
WAIT, NOHOLD, and NOBREAK.

EDIT
Specifies that in addition to minimal editing (see ASIS), the following
TPUT functions are requested:

a. Any trailing blanks are removed before the line is written to the
terminal. If a blank line is sent, the terminal vertically spaces one line.

b. Control characters are added to the end of the output line to position
the cursor to the beginning of the next line.

c. All terminal control characters (for example: bypass, restore,
horizontal tab, new line) are replaced with a printable character.
Backspace is an exception; see item d. under ASIS.

ASIS
Specifies that minimal editing is to be performed by TPUT as follows:

a. The line of output is to be translated from EBCDIC to terminal code.
Invalid characters will be converted to printable characters to prevent
program caused 1/O errors. This does not mean that all unprintable
characters will be eliminated. Restore, upper case, lower case, bypass,
and bell ring, for example, might be valid but nonprinting characters
at some terminals. (See CONTROL.)

b. Transmission control characters will be added.

c. EBCDIC NL, placed at the end of the message, indicates to the
TPUT SVC that the cursor is to be returned at the end of the line.
NL is replaced with whatever is necessary for that particular terminal
type to cause the cursor to return. This NL processing occurs only if
you specify ASIS, and the NL js the last character in your message.

If you specify EDIT, NL is handled as described in item c. under
EDIT.

TSO Guide to Writing a TMP or a CP

9

If the NL is embedded in your message, it is sent to the terminal as a
cursor return. No idle characters are added (see item f. below). This
may cause overprinting, particularly on terminals that require a
line-feed character to position the cursor on a new line.

d. If you have used backspace in your output message but the backspace
character does not exist on the terminal type to which the message is
being routed, TPUT attempts alternate methods to accomplish the
backspace.

e. Control characters are added as needed to cause the message to occur
on several lines if the output line is longer than the terminal line size.

f. Idle characters are sent at the end of each line to prevent typing as
the carrier returns.

CONTROL
Specifies that the output line is composed of terminal control characters
and will not display or move the cursor on the terminal. This option
should be used for transmission of characters such as bypass, restore, or
bell ring.

WAIT
Specifies that control will not be returned to the program that issued the
PUTGET until the output line has been placed into a terminal output
buffer.

NOWAIT
Specifies that control should be returned to the program that issued the
PUTGET macro instruction, whether or not a terminal output buffer is
available. If no buffer is available a return code of 16 (decimal) is
returned.

NOHOLD
Specifies that control is to be returned to the issuer of the PUTGET
macro instruction, and that program can resume processing as soon as
the output line has been placed on the output queue.

HOLD
Specifies that the program that issued the PUTGET macro instruction
cannot continue its processing until this output line has been put out to
the terminal or deleted.

NOBREAK
Specifies that if the terminal user has started to enter input, he is not to
be interrupted. The output message is placed on the output queue to be
displayed after the terminal user has completed the line.

BREAKIN
Specifies that output has precedence over input. If the user at the
terminal is transmitting, he is interrupted, and this output line is sent.
Any data that was received before the interruption is kept and displayed
at the terminal following this output line.

Using the TSO I/0 Service Routines for Terminal /O 157

TERMGET=
Specifies the TGET options requested. Since PUTGET issues a TGET 1
SVC to bring in a line of data, this operand is used to indicate to the J
TGET SVC which of the TGET options you wish to use. The TGET
options are EDIT or ASIS, and WAIT or NOWAIT. The default values
are EDIT and WAIT.

EDIT
Specifies that in addition to minimal editing (see ASIS), the buffer is to
be filled out with trailing blanks.

ASIS
Specifies that minimal editing is to be done as follows:

a. Transmission control characters are removed.

b. The line of input is translated from terminal code to EBCDIC.
¢. Line deletion and character deletion editing is performed.

d. Line feed and cursor return characters, if present, are removed.

WAIT
Specifies that control is to be returned to the program that issued the
PUTGET macro instruction, only after an input message has been read.

NOWAIT
Specifies that control should be returned to the program that issued the
PUTGET macro instruction whether or not a line of input is available. If
a line of input is not available, a return code of 20 (decimal) is returned
in register 15 to the command processor.

MF=L J

Indicates that this is the list form of the macro instruction.

Note: In the list form of the PUTGET macro instruction, only

PUTGET | MF=L

is required.

The output line address is not specifically required in the list form of the
PUTGET macro instruction, but must be coded in either the list or the
execute form.

The other operands and their sublists are optional because you can
supply them in the execute form of the macro instruction, or if you want
the default values, they are supplied automatically by the expansion of the
macro instruction.

The operands you specify in the list form of the PUTGET macro
instruction set up control information used by the PUTGET service routine.
This control information is passed to the PUTGET service routine in the
PUTGET parameter block, a four-word parameter block built and
initialized by the list form of the PUTGET macro instruction.

158 TSO Guide to Writing a TMP or a CP

The PUTGET Macro Instruction - Execute Form

Use the execute form of the PUTGET macro instruction to prepare a mode
or a prompt message for output to the terminal, to determine whether or
not that message should be sent to the terminal, and to return a line of
input from the source indicated by the top element of the input stack to the
program that issued the PUTGET macro instruction.

You can use the execute form of the PUTGET macro instruction to
build and initialize the input/output parameter list required by the
PUTGET service routine, and to request PUTGET functions not already
requested by the list form of the macro instruction, or to change those
functions previously requested in either a list form or a previous execute
form of the PUTGET macro instruction.

Figure 69 shows the execute form of the PUTGET macro instruction;
each of the operands is explained following the figure. Appendix A
describes the notation used to define macro instructions.

[symboll PUTGET | (PARM=parameter address] ([, UPT=upt address]

[, ECT=ect addressl][,ECB=ecb address]

+ PROMP1
, OUTPUT=(output address|,SINGLE + MODE)
| ,MULTLVL|{ ,PTBYPS
»TERM
L ATTN

r EDIT
,TERMPUT=(’ASIS] ,WAIT I . NOHOLD| f, NOBREAK |)
CONTROL) |, NOWAIT/ |, HOLD , BREAK IN

ASIS)| ,NOWAIT

[, T ERMGET= (l EDIT] ,WAIT])]

(15) (1)

[,ENl‘RYﬁlentry addressljl , MF= (E, [list address])

Figure 69. The Execute Form of the PUTGET Macro Instruction

PARM=parameter address
Specifies the address of the four-word PUTGET parameter block
(PGPB).This address is placed into the input/output parameter list
(IOPL). It may be the address of a list form PUTGET macro instruction.
The address is any address valid in an RX instruction, or you can put it
in one of the general registers 2-12, and use that register number,
enclosed in parentheses, as the parameter address.

Using the TSO 1/0 Service Routines for Terminal /O 159

UPT=upt address
Specifies the address of the user profile table (UPT). This address is
placed into the IOPL when the execute form of the PUTGET macro
instruction expands. You can obtain this address from the command
processor parameter list (CPPL) pointed to by register 1 when the
command processor is attached by the terminal monitor program. The
address can be used as received in the CPPL or you can put it in one of
the general registers 2-12, and use that register number, enclosed in
parentheses, as the UPT address.

ECT=ect address
Specifies the address of the environment control table (ECT). This
address is placed into the IOPL when the execute form of the PUTGET
macro instruction expands. You can obtain this address from the
command processor parameter list (CPPL) pointed to by register one
when the command processor is attached by the terminal monitor
program. The address can be used as received in the CPPL or you can
put it in one of the general registers 2-12, and use that register number,
enclosed in parentheses, as the ECT address.

ECB=ecb address
Specifies the address of the command processor event control block
(ECB). This address is placed into the IOPL by the execute form of the
PUTGET macro instruction when it expands.
You must provide a one-word event control block and pass its address to
the PUTGET service routine by placing the address into the IOPL. If
you code the address of the ECB in the execute form of the PUTGET
macro instruction, the macro instruction places the address into the IOPL
for you. The address can be any address valid in an RX instruction, or
you can put it in one of the general registers 2-12, and use that register
number, enclosed in parentheses, as the ECB address.

OUTPUT =output address
Specifies the address of the output line descriptor or a zero. The output
line descriptor (OLD) describes the message to be put out, and contains
the address of the beginning (the one-word header) of the message or
messages to be written to the terminal. You have the option under
MODE processing to provide or not provide an output message. If you
do not provide an output line, code OUTPUT=0, and only the GET
function will take place. If you do provide an output message, the type
of message and the processing to be performed by the PUTGET service
routine are described by the OUTPUT sublist operands SINGLE,
MULTLVL, PROMPT, MODE, PTBYPS, TERM, and ATTN. The
default values are SINGLE and PROMPT.

SINGLE
The output message is a single level message.

MULTLVL
The output message consists of multiple levels. The first level message is
written to the terminal, the second level messages are displayed at the
terminal, one at a time, in response to question marks entered from the
terminal, PROMPT must also be specified or defaulted to.

PROMPT
The output line is a prompt message.

160 TSO Guide to Writing a TMP or a CP

MODE
The output line is a mode message.

PTBPYS
The output line is a prompt message and the terminal user’s response will
not display at those terminals that support the print inhibit feature. A
terminal user can override bypass processing by hitting an attention
followed by hitting the ENTER key before entering input.

TERM
Specifies that the output line (a mode message) is to be written to the
terminal, and a line is to be returned from the terminal, regardless of the
top element of the input stack.

ATTN
Specifies that the output line (a mode message) is to be initially
suppressed but an input line is to be returned from the terminal.

TERMPUT=
Specifies the TPUT options requested. PUTGET issues a TPUT SVC to
write the message to the terminal. This operand is used to indicate which
of the TPUT options you want to use. The TPUT options are EDIT,
ASIS or CONTROL; WAIT or NOWAIT; NOHOLD or HOLD; and
NOBREAK or BREAKIN. The default values are EDIT, WAIT,
NOHOLD and NOBREAK.

EDIT

Specifies that in addition to minimal editing (see ASIS), the following
TPUT functions are requested:

a. Any trailing blanks are removed before the line is written to the
terminal. If a blank line is sent, the terminal vertically spaces one line.

b. Control characters are added to the end of the output line to position
the cursor to the beginning of the next line.

c. All terminal control characters (for example: bypass, restore,
horizontal tab, new line) are replaced with a printable character.
Backspace is an exception; see item d. under ASIS.

ASIS
Specifies that minimal editing is to be performed by TPUT as follows:

a. The line of output is translated from EBCDIC to terminal code.
Invalid characters are converted to a printable character to prevent
program caused I/O errors. This does not mean that all unprintable
characters will be eliminated. Restore, upper case, lower case, bypass,
and bell ring, for example, might be valid but nonprinting characters
at some terminals. (See CONTROL.)

b. Transmission control characters are added.

c¢. EBCDIC NL, placed at the end of the message, indicates to the
TPUT SVC that the cursor is to be returned at the end of the line.
NL is replaced with whatever is necessary for that particular terminal
type to cause the cursor to return. This NL processing occurs only if
you specify ASIS, and the NL is the last character in your message.

If you specify EDIT, NL is handled as described in item c. under
EDIT.

Using the TSO 1/0 Service Routines for Terminal /0 161

164

The PARM, UPT, ECT, and ECB operands are not required if you have
built your IOPL in your own code.

The output line address is not specifically required in the execute form of
the PUTGET macro instruction, but must be coded in either the list or the
execute form.

The other operands and sublists are optional because you may have
supplied them in the list form of the macro instruction or in a previous
execute form, or because you may want to use the default values which are
automatically supplied by the macro expansion itself.

The ENTRY operand need not be coded in the macro instruction. If it is
not, a LINK macro instruction is generated by the PUTGET macro
expansion to invoke the PUTGET service routine.

The operands you specify in the execute form of the PUTGET macro
instruction set up control information used by the PUTGET service routine.
You can use the PARM, UPT, ECT, and ECB operands of the PUTGET
macro instruction to build, complete, or modify an IOPL. The OUTPUT,
TERMPUT, and TERMGET operands and their sublist operands initialize
the PUTGET parameter block. The PUTGET parameter block is referenced
by the PUTGET service routine to determine which functions you want
PUTGET to perform.

Building the PUTGET Parameter Block (PGPB)

When the list form of the PUTGET macro instruction expands, it builds a
four-word PUTGET parameter block (PGPB). This PGPB combines the
functions of the PUTLINE and the GETLINE parameter blocks and
contains information used by the PUT and the GET functions of the
PUTGET service routine. The list form of the PUTGET macro instruction
initializes this PGPB according to the operands you have coded in the
macro instruction. This initialized block, which you may later modify with
the execute form of the PUTGET macro instruction, indicates to the
PUTGET service routine the functions you want performed. It also contains
a pointer to the output line descriptor that describes the output message
and it provides a field into which the PUTGET service routine places the
address of the input line returned from the input source.

You must pass the address of the PGPB to the execute form of the
PUTGET macro instruction. Since the list form of the macro instruction
expands into a PGPB, all you need do is pass the address of the list form of
the macro instruction to the execute form as the PARM value.

The PUTGET parameter block is defined by the IKJPGPB DSECT.
Figure 70 describes the contents of the PUTGET parameter block.

TSO Guide to Writing a TMP or a CP

Number of
Bytes

Field

Contents or Meaning

Byte 2

PUT control flags. These bits describe the
output line to the PUTGET service routine.

Always zero for PUTGET.

The output line is a single level message.
Must be zero for PUTGET.

The output line is a multilevel message.
The output line is a PROMPT message.
Reserved.

The output line is a MODE message.
BYPASS processing is requested.
ATTN processing is requested.
Reserved.

TPUT options field. These bits indicate to the
TPUT SVC which of the TPUT options you
want to use.

Always set to O for TPUT.

WAIT processing has been requested. Control
will be returned to the issuer of TPUT only
after the output line has been placed into a
terminal output buffer.

NOWAIT processing has been requested.
Control will be returned to the issuer of TPUT
whether or not a terminal output buffer is
available.

NOHOLD processing has been requested. The
issuer of the TPUT can resume processing as
soon as the output line has been placed on
the output queue.

HOLD processing has been requested. The
issuer of the TPUT is not to resume
processing until the output line has been
written to the terminal or deleted.

NOBREAK processing has been requested. The
output line will be displayed only when the
terminal user is not entering a line.

BREAKIN processing has been requested. The
output line is to be sent to the terminal
immediately. If the terminal user is entering a
line, he is to be interrupted.

EDIT processing has been requested.
ASIS processing has been requested.
CONTROL processing has been requested.
Reserved.

Reserved.

Figure 70. The PUTGET Parameter Block (Part 1 of 2)

Using the TSO I/0 Service Routines for Terminal /O 165

:;::::e rof Field Contents or Meaning

4 The address of the output line descriptor.

2 GET control flags.

Byte 1

.00. Always zero for PUTGET.

D I TERM processing is requested.

X... XXXX Reserved bits.

Byte 2

XXXX XXXX Reserved.

2 TGET options field. These bits indicate to the
TGET SVC which of the TGET options you wish
to use.

Byte 1

l... ... Always set to 1 for TGET.

.0 .. WAIT processing has been requested. Control
will be returned to the issuer of the TGET SVC
only after an input message has been read.

S NOWAIT processing has been requested.
Control will be returned to the issuer of the
TGET SVC whether or not a line of input is
available. If no line was available, PUTGET
returns a code of 20 (decimal) in general
register 15,

...... 00 EDIT processing has been requested. In
addition to the editing provided by ASIS
processing, the input buffer is to be filled out
with trailing blanks to the next doubleword
boundary.

...... 01 ASIS processing has been requested. (See the
ASIS operand of the PUTGET macro
instruction description.)

XX, XX.. Reserved bits.

Byte 2

XXXX XXXX Reserved.

4 PGPBIBUF The address of the input buffer. The PUTGET
service routine fills this field with the address
of the input buffer in which the input line has
been piaced.

Figure 70. The PUTGET Parameter Block (Part 2 of 2)

166 TSO wuice to Writing a TMP or a CP

Types and Formats of the Output Line

The PUTGET service routine writes only conversational messages to the
terminal, it does not handle data lines. For information on how to write a
data line or a nonconversational message to the terminal, see the section on
the PUTLINE macro instruction.

PUTGET accepts two output line formats depending upon whether the
message you provide is a single level message or a multilevel message.

Single Level Messages: A single level message is composed of one or more
message segments to be formatted and written to the terminal with one
execution of the PUTGET macro instruction.

Multilevel Message: Multilevel messages are composed of one or more
message segments to be formatted and written to the terminal, and one or
more message segments to be formatted and written to the terminal in
response to question marks entered from the terminal. Note, however, that
if you specify MODE in the PUTGET macro instruction, you can process
only single level messages. If you specify PROMPT in the PUTGET macro
instruction, then these second level messages will be written to the terminal,
one at a time, in response to successive question marks entered from the
terminal. If these PROMPT messages are to be available to the user at the
terminal, however, the top element of the input stack must not specify a
procedure element as the current source of input, and the terminal user
must not have inhibited prompting. (See the PROFILE command in 7SO
Command Language Reference).

Passing the Message Lines to PUTGET

You must build each of the message segments to be processed by the
PUTGET service routine as if it were a line of single line data. The
segment must be preceded by a four-byte header field — the first two
bytes containing the length of the segment including the header, and the
second two bytes containing zeros or an offset value if you use the text
insertion facility provided by PUTGET. This message line format is
required whether the message is a single level message or a multilevel
message.

Because of the additional functions performed on message lines —
message ID stripping, text insertion, and multilevel processing — you must
provide the PUTGET service routine with a description of the line or lines
that are to be processed. This is done with an output line descriptor (OLD).

There are two types of output line descriptors. The type depends on
whether the messages are single level or multilevel.

The OLD required for a single level message is a variable length control
block which begins with a fullword value representing the number of
segments in the message, followed by fullword pointers to each of the
segments.

The format of the OLD for multilevel messages varies from that required
for single level messages in only one respect. You must preface the QLD
with a fullword forward-chain pointer. This chain pointer points to another
output line descriptor or contains zero to indicate that it is the last OLD on
the chain. Figure 71 shows the format of the output line descriptor.

Using the TSO 1/O Service Routines for Terminal [/O 167

170

PUTGET Processing

Text insertion and message identifier stripping are available to all output
messages processed by the PUTGET service routine. For a detailed
description of these functions see “PUTLINE Message Line Processing.”

The PUTGET service routine provides other processing capabilities
dependent upon whether the message is a mode or a prompt message.

1. Mode Message Processing: A mode message is a message put out to the
terminal when a command or a subcommand is anticipated. The
processing of mode messages by the PUTGET service routine is
dependent upon the following two conditions:

1. Are you providing an output line?

2. From what source is the input line coming?

Is an Qutput Line Present: You need not provide an output line to the
PUTGET service routine. If you do provide an output line address then
PUT processing will take place. Whether your output line is written to the
terminal is then dependent upon the input source indicated by the input
stack. If you do not provide an output line (OUTPUT=0) then only the
GET function of the PUTGET service routine takes place.

What is the Input Source: The source of the input line, as determined by the
top element of the input stack, determines the type of processing performed
by the PUTGET service routine. You can override the input stack by
coding the TERM or ATTN operands in the PUTGET macro instruction.
The two sources of input supported are:

1. Terminal
2. In-storage

If the current source of input is the terminal, and you provide an output
line, the PUTGET service routine writes the line to the terminal, returns a
line from the terminal, and places the address of the returned line into the
fourth word of the PUTGET parameter block. If the line returned from the
terminal is a question mark, however, the PUTGET service routine causes
the second level message (if one exists) to be written to the terminal, again
puts out the mode message, and then returns a line from the terminal. If the
user at the terminal enters a question mark in response to a mode message,
and no second level message exists, PUTGET puts out the message
“IKI667601 NO INFORMATION AVAILABLE”, puts the mode message
out again, and returns a line from the terminal.

Note that if the user enters a question mark from the terminal, the
second level message returned to the terminal is not related to the current
mode message but to the command processor just terminated; mode
messages can have only one level.

If the current source of input is an in-storage list, the output line (if you
provide one) is ignored and the PUTGET service routine normally obtains
an input line from the in-storage list and places a pointer to that-line in the
fourth word of the PGPB. If however, a second level message exists,
PUTGET will only return a line if the user at the terminal has access to the
information in the chain through the PAUSE mechanism. If the chain is not

TSO Guide to Writing a TMP or a CP

9

available to the user, no line is obtained by PUTGET, and it returns a code
of 12 in register 15. You can test this return code, and if you want, recover
from this error condition by turning on the high order bit of the ECTMSGF
field of the environment control table and reissuing the PUTGET. The
second level message is then purged and a line is obtained from the
in-storage list.

Pause Processing: If the user at the terminal has requested the PAUSE
option on the PROFILE command, the PUTGET service routine makes the
second level messages available to him, even if the current input source is
not the terminal.

PAUSE processing works as follows. If a second level message does
exist, PUTGET puts out the message “IKJ56762A PAUSE” to the terminal
informing the terminal user that PAUSE processing is in effect. At this
point the terminal user can enter either a question mark to indicate that he
wishes to have the second level messages put out to the terminal, or press
the ENTER key to indicate that the information is not needed. If the user
presses the ENTER key, the second level message is eliminated. If he enters
any response other than a question mark or hitting the ENTER key,
PUTGET prompts him for a correct response.

2. Prompt Message Processing: A prompt message is a message put out to the
terminal when the program in control requires input from the terminal
user. PROMPT information must come from the terminal and can not be
obtained from any other source of input. There are two cases when a
request for PROMPT processing is denied by PUTGET:

1. When the current source of input, as determined by the top element
of the input stack, is an in-storage procedure.

2. When the terminal user has requested via the PROFILE command
that no prompting be done.

If PROMPT processing is allowed, the PUTGET service routine writes
the first level message to the terminal and obtains an input line from the
terminal. If the input line is a question mark, PUTGET either returns the
next level message provided, or a message informing the user that no
information is available. PUTGET continues to respond to question marks
entered from the terminal by writing one more second level message to the
terminal in response to each question mark entered until the chain is
exhausted; at that point PUTGET issues a message informing the user at
the terminal that no more information is available. The prompt message is
not repeated and the task goes into an input wait until the terminal user
enters a line. When a line is obtained from the terminal, PUTGET places
the address of the line into the fourth word of the PGPB.

Input Line Format - the Input Buffer

The fourth word of the PUTGET parameter block contains zeros until the
PUTGET service routine returns a line of input. The service routine places
the requested input line into an input buffer beginning on a doubleword
boundary located in subpool 1. It then places the address of this input
buffer into the fourth word of the PGPB. The input buffer belongs to the
program that issued the PUTGET macro instruction. The buffer or buffers
returned by PUTGET are automatically freed when your code relinquishes

Using the TSO 1/0 Service Routines for Terminal 1/O 171

172

control. You may free the input buffer with the FREEMAIN macro
instruction after you have processed or copied the input line.

Regardless of the source of input, the input line returned by the
PUTGET service routine is in a standard format. All input lines are in the
variable length record format with a fullword header followed by the text
returned by PUTGET. Figure 73 shows the format of the input buffer
returned by the PUTGET service routine.

Langth Offset Text {{

2 Bytes 2 Bytes

Length

Figure 73. Format of the PUTGET Input Buffer

The two-byte length field contains the length of the returned input line
including the header (4 bytes). You can use this length field to determine
the length of the input line to be processed, and later, to free the input
buffer with the R form of the FREEMAIN macro instruction. The two-byte
offset field is always set to zero on return from the PUTGET service
routine.

TSO Guide to Writing a TMP or a CP

9

Figure 74 shows the PUTGET control block structure for a multilevel
PROMPT message after the PUTGET service routine has returned an input

line.
PUTGET
LINK Service
n Routine
|
|
l
I
Reg. 1
Qutput Message
IOPL oLp
{ Next OLD
Number
} Segment 1 \-.4 Length | Offse'l Message Segment |
P 4 Segment 2)
| ! |] |
—
L =
OoLp
00000000
I !
! | I _
Input Line
‘Lenglh IE““' | Data —I

Figure 74. PUTGET Control Block Structwre - Input Line Returned

An Example of PUTGET

Figure 75 is an example of the code required to execute the PUTGET
macro instruction. The code uses a multilevel PROMPT message as the
PUTGET output line. It assumes that a line of input will be returned from
the terminal and tests only for a zero return code (PUTGET completed
normally).

Using the TSO 1/0 Service Routines for Terminal [/O 173

The execute form of the PUTGET macro instruction builds the I/0O
parameter list, using the addresses of the user profile table and the ;
environment control table supplied in the command processor parameter)
list. In addition, the I/O parameter list contains the address of an ECB
built by the code, and the address of the list form of the PUTGET macro
instruction as the PUTGET parameter block address.

Note that the TERMPUT, TERMGET, and ENTRY operands are not
coded; the default values are used. Note also that this code is effective only

if the top element of the input stack indicates a terminal as the current
source of input.

W 1 17 (s| 1Pl Elclel Tolel clololel lalsls s| [eWlrRly[[Flelom| iTiwiel [rwne!l. 1[
W | elElGl [slrlee lowlel Iclov| Al s ITWIE| AlbRIESIS! oF| |TH £ ICIOMIAN
x| [PRrOCIElsIslolr] | IPlRAWEINER| 1LY ISIT | (|c L).‘ |
[Ld
| |
" oluislelklelelA7vla |11 L]
% ADpREsIshB)/ L) (7Y [E‘i} } ! !L 14
W [T | salvie aleeal cliarwispe ii ;%}% \ % L | 'iif’ 25
L Ly | L | L]
! 1]l ‘+ 2,17 T sva r%flA gisls' 0F rwe knpq.
| [lvsiz el lelplPL s (2 ' hioolelelsishBl ki 7 rloe Wl cPPL]-
%
- L 3, [clp Pt P 7] L lcle] [rile] Wiplokilsis| pF| FWIE WP
» 'wirio] A EGl/ISITER|.| !
%, [cleolL |ElC|7) LUl Flolel uiopkiess| loF| I7wE] €
o / O A G|/ S| 7E .
* * i
1 1/1slslvlel el glxlelclviTie| [Foem PUTIGEIn MACKD' |/ reyiciriziomM.| (T2 is
K [ewecdrliom wel/iEls| | leklomelr Wie welsisAicie| 7ol ITHE| ITERM WAL
e | IclAl/vis| ekclowvo] kEVE elsislalele.| | 7l 8] EXECy bWV loF| [TH
puTGEl Whlkleo| | Wisirielvicl7l oM Flrikie|s| v [THIE| ZI0PL
Pl TIGIE|TT lelw - [Alelelelsl, wielri=1(|3|) |, lelci7]=|1¥) |, |E|C18|= EICBARS
Sulrlelolr <\ 1A 7 Yelsimiole i), UL incime |, \pRome(7)) |,

I Fl=|(|E], TIOPLADIS |
PENER 1 L P
e Elslr| [Tl o REIrIRMED| BiY] TWE| PUITGET| ISER VY CE| ROVIYVE T;
¥ | Ul REUEM [cloble lofF| iBErio |/ MO/ CAITIES WoORWA L (CoMPILETIOM.|

%
5 e 75,1715 /5 £] RIEINVRW| (€04 £ 7
BNz x|/ MOl |-| BRAWICH (rio] UM IEXVT1;
e Agsl-| k] rivleiovie] UiMe| (087Ul W
™ TWE| L|/WE REITIVEVIED Fleloks [TWwiE
" TIERM/ WAL -
5
£1A 6|P18 SIE|T] ARIPRIES) /YT
sl w6l 1P6P8I, TWiEe P ral el BLoC K|
n 1], PelPB|IIBIVF 7| THE UDPRESS| OF THE! LIVE
| 7 el wWel 7] I WAL

Figure 75. Coding Example - PUTGET Multilevel PROMPT Message (Part 1 of 3)

174 TSO Guide to Writing a TMP or a CP

ol

EAPER)

)

THIE| ¥ WP T

a.

4

PUTIBEIT WAl
KIPAWPIS| |[no
rlele B bk
5
clal.
Wie| VvlPl|7
vlsl7].
oV \TPL|7
MEMT] -

A

7

pleloclelsls|/ W

v S|7E|

/V¥ICLIVWY|/ VG

TWE LE

3

FREE| THE! [/WPL[T BUFFIER.

| Flr M/ s
/W7o

= (|71)

147
L\’

l

7TH\E o TP

/17
%

A4
reol rwiE WEKT o D).

/MDIr CIAITIE| IomiL)Y] 10
TWIE APDPRESIS| 0
WESISAGIE|.

PUTIGIET| PARA

olelp| o] [sirolelale
Closmawy| PRlokEsislole

PURAMETER
Using the TSO 1/0 Service Routines for Terminal /O 175

Fovel FrLimor
/WE| DIESCR/PIrow

L sl Fo kM| lo
/NISTRWCT /O
BU/ LD

Al Floelk

O\ TP

Pl WITE

4 -4

R, 1LiU=Co)],

qry

X' |8|/10¢0/0/01010|”

4,
?,
i

=L
TP 7]

DECLARAT| DS
A (WIEX|Toel)

Fl’l
U (lov s G

R EE

LH
X /7] lelol7 WEls

TWE| 1 MPUT BFFIER

b WLRIOICIEISIS| THIE| YIMPWVT| ILir VE|;
X | lplelolclelss|/ e

I£1X|7 (7]

IS7TORAIG
C

PV TIGIE|T]
D|C
i

sisklele lselcpMaMTs|.

B/ LD [TWE| A M e

[

pe

Figure 75. Coding Example - PUTGET Muitilevel PROMPT Message (Part 2 of 3)

EICBAPL'S
rlolPl lalpls
£l leslrlolclp] Tole

I>¢
ad

B

[% T %3 X
yy] T»-Q\ W T[w [I
u X ol W]] 11 N L'} N1
Y] I ECYE: 3 B I O R A R B 2 3 D' o | u B
LN ® TIuy[o N[N Q
hY x| 2y DIEYLNE N T IR HY ~ [TIEEIRN -
N Yyl [0} = %] T <> Q] QIR [K
%) ,w w Mﬁﬁrf ko/ﬁ.‘,fwfy‘fﬂ ,Do 4# S
: . < i RONIENIE >
NEY MY TEECIETIEN INTAG TW N TolO TN Q
~ 2wl 10 [Nl [w] N Qlwn gl [q IR 2
oz [qle] Jo[X\[w A Twlel T WS [Sw~Tyl [» NETRLITEYNINEES
FILY] ~ YRS Qi | [1o ol RN ~ L I[GQ W
Wiy Ry NN x,/l-,.Aﬁ. [SIEYENAN | NI SIERITIEN LY X[~
STu[x Qlw QQ[Ql[[U[n[N Tyly Qlw 9[J2Q[0] Oy
m YENTE YES X0 0w/ [U [&OINATR o
RN WINKT] Wil Xjuly Y [ENIENN | |Ix <
eI INT ‘mflw_ﬁnxﬁ;wmm MMI/W < s.wMW%mm x5
< JoLT T I < L ~ <
s IR N RSN 3 g g] RN
[N} Q ‘. [NEY YxiQl | [oly INEIIIOR BN
0wl [Q[S N Qv RELIEAIN OfNIN_ INTRT TS ISLIHININMLIIIN D
Yeral 3 s avnwp._ iyl Dl RS EAE SN o
[N i ~ T . < < a~
<[Q[xXIwnit [CIIN RN EVIVENEY) N [Y NIZIINEN RN
olyls 4, Yy N [<lx]. [N ISl Wl Ol [[NX[D [KNw
a MMﬁ Iﬁ?ﬁ eau%usosr Wgrcsrwwﬂfﬁf_cschcltim Hc
0 | 4 1’2} S ‘ ~ | § - [~ Q |
> <[2Qlwu] |4 WG] % e] RN RG] vl STo NN TTu]
SNETENE 1k YA Y NIENENLTRUTINEVENEN MRS LVE SN L TSV ENENEN DY
ks E....,_ (S Lm S R T ! -
S) A S N | | _ < Al g =
SRR (N B 1Y A I == IRV J‘f
] T Xl T I S A
. oy L L Wi]
wi>lWw N J 4 L
[G) G/_Y T lw 1T 1] M T
1] A RN I e N N
) Q| - Q x
7] QL |~ L1 L ~ h
e 1 TR Y £ e S O S S
YIS SR [w] LV L. YA | m]
~ S LN NI e : ~
Q [V} O X 8] 4} ~
< Q Q
~[~ 1 17 1 L IR Q
~ X \\J r) Q (9]
Q 1)]S >)
[XIAN) [N N ¥ O 1 1T 1ol 1O B X R’ <
NI NMINES Ql | o] Q 19 L
PILNES
QxlolN -
IS -
~ Q Lo e | .
: SRENSE e ==g=lE
~N I IS B U
N 5 I3
E X LIE L IFTIES) X[X FAEIE < EIEIEIE S EIE]Y X EIESES

Figure 75. Coding Example - PUTGET Multilevel PROMPT Message (Part 3 of 3)

TSO Guide to Writing a TMP or a CP

176

Return Codes from PUTGET

When the PUTGET service routine returns control to the program that
invoked it, it provides one of the following return codes in general register

15.

Code
(decimal)
0

12

12

16
20
24
28

32

Meaning
PUTGET completed normally.
The line obtained came from the terminal.

PUTGET completed normally.
The line obtained did not come from the terminal. (MODE messages only.)

The PUTGET service routine did not complete. An attention interruption
occurred during the execution of PUTGET, and the attention handler turned on
the completion bit in the communications ECB.

No prompting was allowed on a PROMPT request. Either the user at the
terminal requested no prompting with the PROFILE command, or the current
source of input is an in-storage list other than an EXEC command procedure.

A line could not be obtained after a MODE request. Second level messages exist,
and the current stack element is not a terminal, but the terminal user did not
request PAUSE processing with the PROFILE command. The messages are,
therefore, not available to him.

The NOWAIT option was specified for TPUT and no line was put out.
The NOWAIT option was specified for TGET and no line was received.
Invalid parameters were supplied to the PUTGET service routine.

A conditional GETMAIN was issued by PUTGET for output buffers and there
was not sufficient space to satisfy the request.

The terminal has been disconnected.

Using the TSO I/0 Service Routines for Terminal /O 177

Note: For a discussion of register contents and parameter list expansions for
TPUT, see “TGET/TPUT/TPG Parameter Formats” later in this section.

[symbol] TPUT buffer address,buffer size
,EDIT
, NOEDIT
,ASIS ,WAIT , NOHOLD , NOBREAK
, CONTROL , NOWAIT ,HOLD , BREAKIN
, FULLSCR ’

, LOWP ,ASIDLOC=address

I:,HIGHP] ,ASID=id
,USERIDL=address

,MF=)L
L (E,ctrladdr)

Figure 76. The TPUT Macro Instruction -- Standard, Register, List, and Execute Forms

buffer address
Standard form: The address of the buffer that holds your line of output.
You may specify any label valid in an RX instruction, or place the
address of the label in one of the general registers 1-12, and then specify
that register within parentheses.

Register form: The register that contains the parameters to be passed in
register 1 to the TPUT SVC. When the R format is specified, this
operand must be in one of the general registers 1-12, and that register
specified within parentheses.

buffer size
Standard form: The size of the output buffer in bytes. The allowable
range is from O through 32,767 bytes. A buffer size of 0 results in no
data being transmitted to the terminal. You can specify this buffer size
directly as a number, or you can place the buffer size into one of the
general registers 0, or 2-12, and specify that register within parentheses.

Register form: The register that contains the parameters to be passed in
register 0 to the TPUT SVC. When the R format is specified, this
operand must be in one of the general registers 0 or 2-12, and that
register specified within parentheses.

Notes:

1. If the registers you specify as the first and second operands in the
register form of TPUT are registers 1 and O respectively, the
TPUT macro instruction will expand directly into the
TGET/TPUT/TPG SVC. However, if you use registers 2-12, the
macro expansion will load registers 1 and O from the registers you
specify before issuing the SVC. Therefore, you might find it
advantageous to use registers 1 and 0. (The expansion destroys the
contents of registers 1 and 0.)

2. If QSAM is used for terminal 1/0 and a data set is defined with
BLKSIZE=80 and RECFM=U, each line will be truncated by 1
character. This byte (the last byte) is reserved for an attribute
character.

180 TSO Guide to Writing a TMP or a CP

Indicates that this is the register form of the TPUT macro instruction.
You must place the parameters you want passed to the TPUT SVC into
two registers and specify those registers as macro instruction.

The R operand and all other optional operands are mutually exclusive. If
both R and any other optional operands are coded, the macro will not
expand.

MF=

Indicates the form of the TPUT macro instruction.

Specifies the list form.

(E,ctrl addr)

Specifies the execute form and the address of the list form.

EDIT

Indicates that in addition to minimal editing (see ASIS), the following
TPUT functions are requested:

a. All trailing blanks are removed before the line is written to the
terminal. If a blank line is sent, the terminal vertically spaces one line.

b. Control characters are added to the end of the output line to position
the cursor to the beginning of the next line.

¢. All terminal control characters (except backspace) are replaced with a
printable character.

EDIT is the default value for the EDIT, ASIS, CONTROL, FULLSCR,
and NOEDIT operands.

NOEDIT

Indicates that, if the terminal is an IBM 3270 display, the message is
transmitted completely unedited. It is assumed that the command
processor using this option has structured the data stream with the
necessary commands to perform the display function. For LU__T1
terminals, this option is converted to ASIS.

ASIS

Indicates that minimal editing is to be performed by the TPUT SVC as
follows:

a. The line of output is translated from EBCDIC to terminal code.
Invalid characters are converted to a printable character to prevent
program caused I/0 errors. This does not mean that all unprintable
characters are eliminated. For example, restore, uppercase, lower case,
bypass, and bell ring might be valid but unprintable characters at some
terminals. (See CONTROL.)

b. Transmission control characters are added.

c. An EBCDIC NL, placed at the end of the message, indicates to the
TPUT SVC that the cursor is to be returned at the end of the line.
NL is replaced with whatever is necessary to cause the cursor to
return for that particular terminal type. This NL processing occurs
only if you specify ASIS, and if the NL is the last character in your
message.

Using the TGET/TPUT/TPG SVC for Terminal I/O 181

If you specify EDIT, NL is handled as described in item c under
EDIT.

If the NL is embedded in your message, a semicolon or colon may be
substituted for NL and sent to the terminal. No idle characters are
added (see item f below). This may cause overprinting, particularly on
terminals that require a line-feed character to position the carrier on a
new line.

. If you have used backspace in your output message, but the backspace

character does not exist on the terminal type to which the message is
being routed, the backspace character is removed from the output
message.

If the output line is longer than the terminal line size, control
characters are added as needed to cause the message to display on
several lines. line size.

A sufficient number of idle characters is added to the end of each
output line to prevent the transmission of output to the terminal while
the cursor is being returned to the left-hand margin.

. Including a bypass character, bypass carriage return, or bypass

new-line character in the TPUT macro data suppresses printing of the
next input entered by the user at the 3270 terminal. VTAM moves the
cursor to the next available line, unlocking the keyboard. No more
data is sent to the terminal until the terminal user enters data or
presses the ENTER key. The data entered by the user is not printed
at the terminal.

CONTROL
Indicates that this line is composed of terminal control characters and
does not display or move the cursor on the terminal. This option should
be used for transmission of characters such as bypass, restore, or bell
ring. See item g under ASIS.

FULLSCR
Indicates that, for IBM 3270 display terminals, the message will be
transmitted essentially unedited. The FULLSCR option is designed to
allow you to use special features of the 3270 system. For any other
terminal type, this option is treated exactly as ASIS. With the FULLSCR
option, only the following editing is performed:

a. If the first character in your message is an escape control character

182 TSO Guide to Writing a TMP or a CP

(X27’), the two following characters are treated as a command code
and as a write control character by the 3270. Note that the command
code should always be for a remote 3270. If necessary, TPUT will
convert the code to that for a local 3270. If the first character is not
an escape character, a default write command and a write control
character are added to the beginning of the message. Any
attachment-dependent characters required for correct transmission of
the data stream are provided by the access method.

. Transmission control characters (SOH, STX, ETX, ETB, EOT, and

NAK) and characters having no 3270 equivalent (X‘04’, X‘06’, X‘14°.
through X‘17°, and X‘24°) are converted to printable colons to
prevent program-caused 1/0 errors.

Lines are not counted when you use this option.

If the OWAITHI value specified in your TSO parameters is not large
enough to contain your entire message, or if the BUFFERS and
BUFFERSIZE parameters are specified so that your message does not fit
into all of the system’s buffers, the TPUT operation does not proceed,
and code X‘10’ is returned. For a description of OWAITHI, refer to
SPL: Initialization and Tuning. Without the FULLSCR option, your
TPUT proceeds buffer-by-buffer as buffers become available.

If FULLSCR is specified for a message destined for another terminal,
ASIS will be used instead. ‘

WAIT
Specifies that control is not be returned to the program that issues the
TPUT macro instruction until the output line is placed into a terminal
output buffer. If no buffers are available, the issuing program is placed
into a wait state until buffers become available, and the output line is
placed into them. WAIT is the default value for the WAIT and
NOWALIT operands.

NOWAIT
Specifies that control is returned to the program that issues the TPUT
macro instruction, whether or not a terminal output buffer is available
for the output line. If no buffer is available, the TPUT SVC returns a
code of 04 in register 15.

NOHOLD
Indicates that control is returned to the program that issues the TPUT
macro instruction as soon as the output line is placed in terminal output
buffers.
NOHOLD is the default value for the NOHOLD and HOLD operands.

HOLD
Specifies that the program that issues the TPUT macro instruction cannot
continue its processing until this output line is written to the terminal or
deleted.

NOBREAK
Specifies that if the user starts to enter input, he is not interrupted. The
output message is placed on the output queue and displayed after the
user completes the line.
NOBREAK is the default value for the NOBREAK and BREAKIN
operands.

_BREAKIN
Specifies that output has precedence over input. If the user starts to
enter input, he is interrupted, and this output line is displayed. Any data
received before the interruption is displayed following this output line.

Using the TGET/TPUT/TPG SVC for Terminal I/O 183

HIGHP

Specifies that this message must be sent to the terminal, even though the
destination terminal does not display messages from other terminals. This
operand counters the effect of the interterminal communication bit when
the bit is set by the TERMINAL command. (The HIGHP operand is
used by the SEND subcommand of OPERATOR and the SEND
operator command.) The operand is recognized only if the issuing task is
authorized (via system key, supervisor state, or APF). The ASID
keyword must also be specified. HIGHP is the default if neither HIGHP
nor LOWP is specified, and if the issuing program is authorized.

LOWP
Specifies that if the user of the destination terminal allows interterminal
messages, this TPUT will be sent to the terminal. (TPUT tests the
interterminal communication bit in the terminal status block). If such
messages are not allowed, the message is not displayed, and a code of
X‘0C’ is returned, indicating that the message was not displayed. The
LOWP operand is recognized only when ASID is specified. The issuer
must be authorized (via system key, supervisor state, or APF).
If LOWP is specified, the issuing program should have an alternate
method of transmitting the message to the terminal user. For example, a
message data set could be used.

ASID, ASIDLOC, or USERIDL
Specifies the ASID (address space identifier) of the target terminal, the
address of that ASID, or the address of a field that contains a user ID.
This facility is used for supervisor communication with the terminal and
for inter-user communication among terminals (the SEND command). If
you specify ASID, you must supply an ASID number. The ASID is
located in the two-byte JSCBTIJID field of the job step control block. If
you use ASIDLOC, you must supply the address of the halfword that
contains the ASID. If you use USERIDL, you must supply the address of
the eight-byte field that contains the user ID. The user ID must be
left-justified and, if necessary, padded with blanks. ASID, ASIDLOC, or
USERIDL can be specified in a register (2-12), and must be
right-justified. The register number must be enclosed in parentheses. If
USERIDL is used, the NOHOLD option is both required and the default
if not specified.

Note: Normally, a program invokes TPUT to issue a message to the user
running the program -- that is, ASID, ASIDLOC, and USERIDL are not
specified. If that program is run in the background, the TPUT has no
effect.

If the TPUT specifies an ASID or user ID, the message is sent to the target
terminal. ASID and USERID TPUTs from programs not in supervisor state
or not authorized under APF are prefixed with a plus sign (+) by SVC 93
to prevent possible counterfeiting of system messages to an operator
console.

184 TSO Guide to Writing a TMP or a CP

Return Codes from TPUT

When it returns control to the program (foreground or background) that
invoked it, the TPUT SVC supplies one of the following return codes in
general register 15:

Code Meaning
(hexadecimal)
00 TPUT completed successfully.
04 NOWAIT was specified and no terminal output buffer was available.
08 An attention interruption occurred while the TPUT SVC routine was processing.

The message was not sent.

oC A TPUT macro instruction with an ASID operand was issued but the user,
indicated by the ASID, requested that interterminal messages not be printed on
his terminal. The message was not sent.

10 Invalid parameters were passed to the TPUT SVC.

14 The terminal was disconnected and could not be reached.

The TPG Macro Instruction -- Writing a Line Causing
Immediate Response

Use the TPG macro instruction (SVC 93) to transmit a line of output to
the terminal if that line of output will cause the device to respond
immediately with input. The main use of TPG is to perform the Query
function for a user who has included a Read Partition Structured field. TPG
NOEDIT creates an outbound request unit with an associated change
direction indicator to allow the device to go into send state. This data is not
inspected. A TGET macro must be issued to retrieve the query response.

You can use the TPG macro instruction in any TSO routines you write,
and in any application programs to be run under TSO.

Note: The TPG macro instruction is designed specifically to allow you to
use the special features of the IBM 3279.

The TPG macro instruction must be issued in 24-bit addressing mode.
All input specified on the macro must reside below 16 megabytes.

Figure 77 shows the format of the TPG macro instruction. Each of the
operands is explained following the figure. Appendix A describes the
notation used to define macro instructions. For a discussion of parameter
list expansions for TPG, see “TGET/TPUT/TPG Parameter Formats” later
in this section.

[symbol]

TPG

buffer address,buffer size

[,NOEDIT] [,WAIT] [,NOHOLD]
"NOwAIT] L,HOLD

[,MF= L
(E,ctrladdr)

Figure 77. The TPG Macro Instruction -- Standard, List, and Execute Forms

Using the TGET/TPUT/TPG SVC for Terminal I/O 185

200 TSO Guide to Writing a TMP or a CP

Return Codes from TPUT

When it returns control to the program (foreground or background) that
invoked it, the TPUT SVC supplies one of the following return codes in
general register 15:

Code Meaning
(hexadecimal)
00 TPUT completed successfully.
04 NOWAIT was specified and no terminal output buffer was available.
08 An attention interruption occurred while the TPUT SVC routine was processing.

The message was not sent.

oC A TPUT macro instruction with an ASID operand was issued but the user,
indicated by the ASID, requested that interterminal messages not be printed on
his terminal. The message was not sent.

10 Invalid parameters were passed to the TPUT SVC.

14 The terminal was disconnected and could not be reached.

The TPG Macro Instruction -- Writing a Line Causing
Immediate Response

Use the TPG macro instruction (SVC 93) to transmit a line of output to
the terminal if that line of output will cause the device to respond
immediately with input. The main use of TPG is to perform the Query
function for a user who has included a Read Partition Structured field. TPG
NOEDIT creates an outbound request unit with an associated change
direction indicator to allow the device to go into send state. This data is not
inspected. A TGET macro must be issued to retrieve the query response.

You can use the TPG macro instruction in any TSO routines you write,
and in any application programs to be run under TSO.

Note: The TPG macro instruction is designed specifically to allow you to
use the special features of the IBM 3279,

The TPG macro instruction must be issued in 24-bit addressing mode.
All input specified on the macro must reside below 16 megabytes.

Figure 77 shows the format of the TPG macro instruction. Each of the
operands is explained following the figure. Appendix A describes the
notation used to define macro instructions. For a discussion of parameter
list expansions for TPG, see “TGET/TPUT/TPG Parameter Formats” later
in this section.

[symbol]

TPG

buffer address,buffer size

[,NOEDIT] [,WAIT][,NOHOLD]
, NOWAIT , HOLD

,MF=}L
(E,ctrladdr)

Figure 77. The TPG Macro Instruction -- Standard, List, and Execute Forms

Using the TGET/TPUT/TPG SVC for Terminal /O 185

186

buffer address
Standard form: The address of the buffer that holds your output data.
You may specify any address valid in an RX instruction, or place the
address in one of the general registers 1-12, and then specify that
register within parentheses.

buffer size
Standard form: The size of the output buffer in bytes. The allowable
range is from O through 32,767 bytes. A buffer size of O results in no
data being transmitted to the terminal. You can specify this buffer size
directly as a number, or you can place the buffer size into one of the
general registers 0, or 2-12, and specify that register within parentheses.

Note: The R format may not be used for the TPG macro.

NOEDIT
Indicates that, if the terminal is an IBM 3270 display, the message is
transmitted completely unedited. The command processor using this
option must structure the data stream with the necessary commands to
perform the display function (by including the command, write control
character, structured fields,...). The command processor should supply
only the data stream. Any attachment-dependent characters (such as
X27’ for bisynchronous devices) are provided by the access method. For
LU__T1 termjnals, this option is treated exactly like the ASIS option of
the TPUT macro.

WAIT
Specifies that control is not returned to the program that issued the
TPUT macro instruction until the output line is placed into a terminal
output buffer. If no buffers are available, the issuing program is placed
into a wait state until buffers become available, and the output line is
placed into them. WAIT is the default value for the WAIT and
NOWAIT operands.

NOWAIT
Specifies that control is returned to the program that issued the TPG
macro instruction, whether or not a terminal output buffer is available
for the output line. If no buffer is available, the TPG SVC returns a
code of 04 in register 15.

NOHOLD
Indicates that control is returned to the program that issued the TPUT
macro instruction as soon as the output line is placed in terminal output
buffers.
NOHOLD is the default value for the NOHOLD and HOLD operands.

HOLD
Specifies that the program that issued the TPG macro instruction cannot
continue its processing until this output line is written to the terminal or
deleted.

TSO Guide to Writing a TMP or a CP

B

MF=
Indicates the form of the TPG macro instruction.

L
Specifies the list form.

(E,ctr] addr)
Specifies the execute form and the address of the list form.

Note: If a TPG macro is coded in a background program, the TPG is
ignored.

Return Codes from TPG

When it returns control to the program (foreground or background) that
invoked it, the TPG SVC supplies one of the following return codes in
general register 15:

Code Meaning
(hexadecimal)
00 TPG completed successfully.
04 NOWAIT was specified and no terminal output buffer was available.
08 An attention interruption occurred while the TPG SVC routine was processing.

The message was not sent.
10 Invalid parameters were passed to the TPG SVC.

14 The terminal was disconnected and could not be reached.

Using the TGET/TPUT/TPG SVC for Terminal /O 187

The TGET Macro Instruction -- Getting a Line from the
Terminal

Use the TGET macro instruction to read a line of input from the terminal.
A line of input is defined as all the data between the beginning of the input
line and a line-end delimiter. A line-end delimiter is any character or
combination of characters which causes the cursor to return to the left-hand
margin on a new line, or which terminates transmission from the terminal.

You can use the TGET macro instruction in any TSO routine, and in any
application program that is run under TSO. Note, however, that TGET does
not provide access to in-storage lists, nor does it perform any type of
logical line processing on the returned line. If you require these features,
use the GETLINE macro instruction.

Each time TGET returns control to your program, register 1 contains the
number of bytes of data actually moved from the terminal to your input
buffer. If your buffer is smaller than the line of input entered at the
terminal, only as much of the input line as can be contained in the input
buffer is moved. Return code X‘OC’ indicates that only part of the line was
obtained by TGET. You must then issue as many TGET macro instructions
as are required to get the rest of the line of input.

The TGET macro instruction must be issued in 24-bit addressing mode.
All input specified on the macro must reside below 16 megabytes.

Figure 78 shows the format of the TGET macro instruction; it combines
the standard and the register form. Each of the operands is explained
following the figure. Appendix A describes the notation used to define
macro instructions.

For a discussion of register contents and parameter list expansions for
TGET, see “TGET/TPUT/TPG Parameter Formats” later in this section.

[symbol]

,EDIT SWAIT
TGET buffer address,buffer size ,ASIS , NOWAIT

[:ﬁf‘:;L ‘]

(E,ctrladdr)

Figure 78. The TGET Macro Instruction -- Standard, Register, List, and Execute Forms

buffer address
Standard form: The address of the buffer that is to receive the input line.
This can be any address valid in an RX instruction, or the address can
be placed in one of the general registers 1-12, and that register specified
within parentheses.

Register form: The register that contains the parameters to be passed in
register 1 to the TGET SVC. When the R format is specified, this
operand must be in one of the general registers 1-12, and that register
specified within parentheses.

TSO Guide to Writing a TMP or a CP

buffer size

Standard form: The size of the input buffer in bytes. The allowable
range is from O through 32,767 bytes. You can specify this buffer size
directly as a number, or you can place the buffer size into one of the
general registers 0, or 2-12, and specify that register within parentheses.
A TGET with a O-length buffer size will successfully get a null line.

Register form: The register that contains the parameters to be passed in
register O to the TGET SVC. When the R format is specified, this
operand must be in one of the general registers 0 or 2-12, and that
register specified within parentheses.

Note: If the registers you specify as the first and second -operands in the
register form of TGET are registers 1 and 0 respectively, the TGET macro
instruction will expand directly into the TGET/TPUT/TPG SVC. However,
if you use registers 2-12, the macro expansion will load registers 1 and 0
from the registers you specify before issuing the SVC. Therefore, you might
find it advantageous to use registers 1 and O.

R

Indicates that this is the register form of the TGET macro instruction.
You must place the parameters you want passed to the TGET SVC into
two registers and specify those registers as the first two operands of the
macro instruction.

The R operand and all other optional operands are mutually exclusive. If
both R and any other optional operands are coded, the macro will not
expand.

EDIT

Specifies that in addition to minimal editing (see ASIS), the following
TGET functions are requested:

a. All terminal control characters (nongraphic characters such as bypass,
line feed, restore, prefix and the character immediately following it)
are removed from the data.

b. When backspace is not used for character deletion, the horizontal tab
(HT) and the backspace (BS) characters, remain in the data.

c. If the returned input line is shorter than the input buffer length, the
buffer is padded with blanks. These blanks are not included in the
character count returned in register 1.

EDIT is the default value for the EDIT and ASIS operands.

ASIS

Specifies that minimal editing is done as described below:
a. Transmission control characters are removed.

b. The returned input line is translated from terminal code to EBCDIC.
Invalid characters are compressed out of the data.

c. Line deletion and character deletion are performed according to the
specifications in the terminal status block.

d. New line (NL), cursor return (CR), and line feed (LF) characters, if
present at the end of the line, are not included in the data count
returned in register 1.

Using the TGET/TPUT/TPG SVC for Terminal /O 189

e. After the input message is received, the cursor is returned to the

WAIT

left-hand margin of the next line before any output to the terminal is
displayed.

Specifies that control is not returned to the program that issues the
TGET macro instruction until the input line is placed into your input
buffer. If an input line is not available from the terminal, the issuing
program is placed into a wait state until a line becomes available and is
read into your input buffer. WAIT is the default value for the WAIT and
NOWAIT operands.

NOWAIT

Specifies that, whether or not an input line is available from the terminal,
control is returned to the program that issues the TGET macro
instruction. If no line is returned, the TGET SVC returns a code of
X‘04’ in register 15.

MF=

Indicates the form of the TGET macro instruction.

L

Specifies the list form.

(E,ctrladdr)

Specifies the execute form and the address of the list form.

Return Codes from TGET

When it returns control to the program that invokes it, the TGET SVC
supplies, in register 1, the length of the message moved into your buffer,
and, in register 15, one of the following return codes:

Code

Meaning

(hexadecimal)

00

04

08

oC

10

14
18

1C

190 TSO Guide to Writing a TMP or a CP

TGET completed successfully. Register 1 contains the length of the input line
read into your input buffer.

NOWAIT was specified and no input was available to be read into your input
buffer.

An attention interruption occurred while the TGET SVC routine was processing.
The message was not received.

Your input buffer was not large enough to accept the entire line of input entered
at the terminal. Subsequent TGET macro instructions will obtain the rest of the
input line.

Invalid parameters were passed to the TGET SVC.
The terminal was disconnected and could not be reached.

TGET completed successfully. Register 1 contains the length of the input line
read into your input buffer. The data was received in NOEDIT mode.

Your input buffer was not large enough to accept the entire line of input entered
at the terminal. Subsequent TGET macro instructions will obtain the rest of the
input line. The data was received in NOEDIT mode.

C

TGET/TPUT/TPG Parameter Formats

If you use the register format of the TGET or TPUT macro instruction,
you must code the parameters you want passed to the TGET/TPUT/TPG
SVC into two registers. Specify these two registers, enclosed in
parentheses, as the first two operands of the TGET or TPUT macro
instruction, followed by the R operand to indicate that you are executing
the register form of the macro instruction.

Note: For TPUT, the expansion destroys the contents of registers O and 1.

If the registers you specify as the first and second operands of the macro
instruction are register 1 and register O respectively, the TGET or TPUT
macro instruction expands directly to the TGET/TPUT SVC. If you
specify other permissible registers, registers 2-12, the macro expands to
load registers one and zero from the registers you specify before issuing the
SVC. The R format may not be used for the TPG macro.

For the TPUT macro, the registers must be formatted as shown in
Figure 79.

RO

RY

R15

=2 =
Address Space ID (ASID-TPUT only) Buffer Size
L — —
Flags Address of your Input or Output Buffer
| =
Address of User |ID

Figure 79. TPUT Parameter Registers

Using Terminal Control Macro Instructions 191

For the TGET macro, the registers must be formatted as shown in
Figure 80.

RO

Reserved Buffer Size

R1

Flags Address of Your Input Buffer

Figure 80. TGET Parameter Registers

Flags/Flag1
One Byte

0... ... Always set to 0 for TPUT.
1. ... Always set to 1 for TGET.
0. ... No user ID.
1 Register 15 contains address of user ID.
0. ... HIGHP processing is requested.
1 LOWP processing is requested.
.0 WAIT processing is requested.

R NOWAIT processing is requested.
.. 0... NOHOLD processing is requested.
1 HOLD processing is requested.
..0. NOBREAK processing is requested.

R I BREAK processing is requested.
.00 EDIT processing is requested.
...... 01 ASIS processing is requested.
.10 CONTROL processing is requested.
.1 FULLSCR processing is requested.

If you use the execute form of the TPUT macro, the coded parameters
expand into the parameter list shown in Figure 81.

192 TSO Guide to Writing a TMP or a CP

General

‘ Register 1

RO

+0
Address Space ID {ASID-TPUT only) Qutput Buffer Size

Flag 1 Address of Your Qutput Buffer

+8
Address of User ID

+C Flag2

(X'80°) Reserved

X'80’ Reserved

Figure 81. Parameter List Expansion for the Execute Form of TPUT

|

If you use the standard form of the TPUT macro, you can code your
parameters using registers or symbols. In this case, the TPUT macro

expands to load

the parameters into registers 0, 1, and 15 in the format

illustrated in Figure 79.

If you use the list form of the TPUT macro, the coded parameters

expand into the

parameter list shown in Figure 82.

Address Space I1D (ASID-TPUT only)

Output Buffer Size

Flag 1 Address of Your Qutput Buffer
+8 Address of User ID
+
¢ Flag 2 Reserved

Figure 82. Parameter List Expansion for the List Form of TPUT

C

Using the TGET/TPUT/TPG SVC for Terminal /O 193

If you use the execute form of the TPG macro, the coded parameters
expand into the parameter list shown in Figure 83.

General
Register 1

+i
0 Reserved Qutput Buffer Size
+4
Address of Your Qutput Buffer
+8 Reserved
+C Flag 2
Flag 1 Reserved
(x'80°) %
RO {X‘80") Resarved

Figure 83. Parameter List Expansion for the Execute Form of TPG

If you use the list form of the TPG macro, the coded parameters expand
into the parameter list shown in Figure 84.

+0 Reserved Qutput Butfer Size
4 Address of Your Qutput Buffer

+8 Reserved

*e Flag 2 Flag 1 Reserved

Figure 84. Parameter List Expansion for the List Form of TPG

For Figure 81 - Figure 84, Flagl is the same as that for Flags in Figure
79 and Figure 80. Flag2 is X‘01’ for the NOEDIT option and X‘02’ for the
TPG macro.

I

194 TSO Guide to Writing a TMP or a CP

In Figure 85, Flags is the same as that for Flags in Figure 79 and Figure
80.

If you use the standard, list, or execute form of the TGET macro, the
coded parameters expand into the parameter list shown in Figure 85.

RO Reserved Input Buffer Size

R1 Flags Address of Your Input Buffer

Execute and Standard Form

Reserved Input Buffer Size

Flags Address of Your Input Buffer

List Form

Figure 85. Parameter List Expansion for lhg Standard, List, and Execute Forms of TGET

Using the TGET/TPUT/TPG SVC for Terminal 1/0 195

Coding Examples of TGET and TPUT Macro Instructions
The following coding examples show different ways to use the TGET and ’
TPUT macro instructions.

Examples of TPUT and TGET Using the Default Values

Figure 86 shows a TPUT and a TGET macro instruction. They both use
the default values; that is, the TPUT macro instruction defaults to EDIT,
WAIT, NOHOLD, and NOBREAK, and the TGET macro instruction
defaults to EDIT and WAIT.

196 TSO Guide to Writing a TMP or a CP

'] T .
X PRrloclelsls) Wie]
* HEE | ! #
use |7Wld 7Pl muiclelo] [/ vslrevicirl/lon o] el [riel Wl mieisislalee] [Ho] [7we
x | reem/vall.] T usie kel o 7 Wl VEls \
Bai | *
! s slshledr), 2|« A BUlFlFEle| WbpRESIs| [/]s] rivid
o | ‘ [11] sywmBlol|/lc| hiplelElsls| welsiskislelr], | pMD
* el BrFFER| LiEMS|Ty| v is| [rimeniT
» | ovie Biyi7ies|.
LT /151,175 | | [reislA leeriviel lcolle -] Eerlo
* " AW clalr viclcelsls Fluie
» [| "1 kcoP Er oM. | IVE] I7WE| elelridaM
s = RR 7V L cople woir BERP,| l6d 70 AW
* , ' T erRoR| oviryviE | T (11 |
! L RERRRRE! | T by
x| | lusel THE Teler ackla [/visirevic Ty ont rol dBrA M aM WPz e ME |
m}gffoM[THFLVE?M/MAZ TAKE THE| PEFAVLT vALdES. [iwi
SEREEE | NN RN NN ! 11 HAENEEAR"
%{ B redr | Burrele,lrisd | THE BYFFAR ApPRESS! |/ls, T¥ N
* i ' ‘ [[717 [symeoll/cl hbpeEesis, BrEFee,| anvo
el | |]! 1 T L e l7vpir BFFe® kEMar /ls| low
|] | i whlek e Brres|.
| |
‘ f , 71 75,1715 | | relsiA vl klervieM [clobe] |- id8-d
L | I /Wbl e vicklesisliade] [11
] e L compL Erpon]. | VA 7] 7R
1 | clobe /1] Wlo 0, 1BlelWlciH |70 WM
P [eRRae o/ We. | |
* L] 1 . e
| | [Pleolciels|s] wie l ;
o |] ‘ ¢
RR|T, N | ER k| oV TV IVIE ARACE SIS/ Wig
! - |
| LT
¥] L™
® | |simoedleld IDEddRrAT | IoWs |
B >
| S 0F |
sisaleels| bl [1 1 leled’|7m/s| I/]s]) 7447 elsisples.
BUFFER| S |73 18]
M L[|

Figure 86. Coding Example: TPUT and TGET Macro Instructions Using the Default Values

The program issuing the TGET macro instruction is not given control
until a line of data is returned. The default value is WAIT. If less then 130
characters are entered, the input buffer will be padded with blanks. The
default is EDIT. Remember that the actual length of the data in the input
buffer is returned in register 1.

Using the TGET/TPUT/TPG SVC for Terminal 1/0 197

Example of TPUT Macro Instruction -- Buffer Address and Buffer
Length in Registers

In the coding example shown in Figure 87 the output message buffer
address and length are loaded into registers, and those registers coded as
operands in the TPUT macro instruction.

You might want to do this when, for example, the TPUT macro
instruction is issued in a subroutine which receives, as parameters, a pointer
to the message and the message length.

* I o
% | |PRIOcesls|’Me
* | a3
¥ | PeAclE] e BUEFER ADPRIESE UMD THe| BUFFER EWSTH I il
| | /W7o [l Sirieles|- | D | | il
el |] [IRE B HENER [? B
il LA, LU MESSABES | | oA [THE BYFFE welrel iplrol | T
® L ol L kEersTER Zlefo. rwe kpAl ||
M } T LT T khoplelesisl ymsl-evclAron] |/msdieles! |
x| | rwalrl el W e loleldelRl By A 1is|]
N | zefocld /v e lelesl Isiriee.
n 1|, #ESISAGEY L0 AD LREISIS| loF| TwE|l puirel
™ VEFER (/HTD| REGY BTER| DVE|.
lad
* | |/lsislvEl l7wE 1ImPU7 cRO |/Wspreve7l o]
[F
n | 17D, ideD| |]]
I ¥
7 1151, |7 HesA [xe el (ool - Eded
™ /ey cUnAs IskckieisisFoe
e osPLET oW | | [7E] Pie 1Berieh
Z RICTM coLE Vs woll Eero, | ol ol Al
* okl leolry viel. H
al | | iaj
be| | |PRo|clEls|sl iG] | r
%
0 O Wfae 7TV N PROCE SIS/ VG|
| b] (
I
=]
i ae]
bl | Isl-olels DECKNARAI oM
o e
s [
siselel?| 1ac icl’lAwl sl I/s| W] I7ele AR
wd
2

Figure 87. Coding Example: TPUT Macro Instruction Buffer Address and Buffer Length in Registers

198 TSO Guide to Writing a TMP or a CP

Example of the TGET Macro Instruction -- Register Format

Figure 88 shows the code necessary to issue a register format TGET macro
instruction. The buffer length, buffer address, and the option flags are
loaded into registers zero and one. Note that the flag byte in register one is
set to binary 10000001, indicating that this is a TGET macro instruction
requesting ASIS processing. This means that only minimal editing is
performed on the input line.

GEVTFYL BIS ‘17 7|
bt
» FRY CE|SISI/ W6
% |
L | 1P kelel (7wl lBlvisrae |sir2lel Wvo| BlFFAse| hplprielsis| |/1viro| |AE6Y SITERS
Ea \Wwp| oV ‘
i o+
LA L1 1BlvFF e)] vFlFele (sl izle vl /sl
* | ALl d
| LA 7, BUFIFER o FAcle nooeesls | /ivire
b l ddel/slreld bWie.
A A, |GEIT L 6lS Tw/is| WL BE TWE| v s -e 3
X bala F| OB/ S 7|
S|¢|L , |2 VET| TVE A 68| ro| 7] W)/ 6~
> peLER BITE|.
l o 4R G| Fe A6l By Y70 KEGI S/
* W&l .
e i
® | |21SISWIE| |TME |Tle 7| mAICRO |1y ISreviElrlr pal;| SPEIEK FlYl KEls/ |1S|7]
e | Loyl 'R’
24
L Veelr a7, 1(A
a "
jad pe
L|7R 25,178] 7i&8|1 71 RET VR pPE|,| 1 Fl Mo E10!,
seerw g |7lo| UM ok Eop\ 7y W,
*
w | |PROCEISIS/VG
#
LRITV
¢ B
x| | |siTloR4|elE PECILHReA T PV
al il
¥ ER s EAGE /WelUr levFiFlEle
L |

Figure 88. Coding Example: TGET Macro Instruction Register Format

Using the TGET/TPUT/TPG SVC for Terminal [/O 199

200 TSO Guide to Writing a TMP or a CP

Using Terminal Control Macro Instructions

The following macro instructions allow a command processor to control
terminal functions and attributes.

Macro Instruction

GTSIZE
GTTERM
RTAUTOPT
SPAUTOPT
STATTN
STAUTOCP
STAUTOLN
STBREAK
STCC
STCLEAR
STCOM
STFSMODE
STLINENO
STSIZE
STTIMEOU
STTMPMD
STTRAN
TCLEARQ

Function

Get terminal line size

Get terminal attributes

Restart automatic line numbering or character prompting
Stop automatic line numbering or character prompting
Set attention simulation .
Start automatic character prompting

Set automatic line numbering

Set break

Specify line-deletion and character-deletion characters
Set display clear character string

Set interterminal communication

Set full screen mode

Set line number

Set terminal line size

Set timeout feature

Set terminal display manager options

Set character translation

Clear buffers

Some of the terminal control macro instructions may be safely coded in a
user-written command processor. They are:

GTSIZE
GTTERM
RTAUTOPT
SPAUTOPT
STAUTOCP
STAUTOLN
STFSMODE
STLINENO
STTMPMD
STSIZE
TCLEARQ

The other macro instructions are intended for system use and are not
recommended for inclusion in user-written command processors. These
macros are used in the IBM-supplied PROFILE and TERMINAL
commands. Inappropriate use of the following macros can cause terminal

€ITOrIS!

STATTN
STBREAK
STCC
STCLEAR
STCOM
STTIMEOU
STTRAN

Using Terminal Control Macro Instructions 201

Except for the GTSIZE, RTAUTOPT, SPAUTOPT, and STAUTOCP
macros, all terminal control macros must be issued in 24-bit addressing
mode. Note that all services invoked by the terminal control macros execute
in 24-bit addressing mode.

GTSIZE -- Get Terminal Line Size

Use the GTSIZE macro instruction to determine the current logical line size
of the user’s terminal. If the terminal is a display station, use the GTSIZE
macro instruction to determine the size of the display screen.

When the GTSIZE macro instruction is issued in a time sharing
environment, the logical line size of the user’s terminal (that is, the
maximum number of characters per line) is returned in register 1. If the
terminal is a display station, the line size is returned in register 1 and the
screen length (that is, the maximum number of lines per display) is returned
in register 0. If the terminal is not a display station, register 0 will contain
all zeros. The GTSIZE macro instruction is ignored if TSO is not active
when the macro instruction is issued.

Figure 89 shows the format of the GTSIZE macro instruction.

[symbol] GTSIZE

Figure 89. The GTSIZE Macro Instruction

When control is returned to the user, register 15 contains one of the
following return codes:

Hexadecimal

Code Meaning
00 Successful. The contents of registers O and 1 are described above.
04 Parameter specified to the SVC. No parameter should be specified.

GTTERM -- Get Terminal Attributes

Use the GTTERM macro instruction to determine the primary (default) and
alternate screen sizes specified for a 3270 display terminal.

Use the ERASE/WRITE command (X‘F5’) to erase the screen, to set the
screen size mode to primary mode, and optionally to write data to the
screen. Use the ERASE/WRITE ALTERNATE command (X‘7E’) to erase
the screen, to set the screen size mode to the alternate mode, and
optionally to write data to the screen.

Figure 90 shows the format of the GTTERM macro instruction.

[symbol]

GTTERM

PRMSZE=addr [, ALTSZE=addr] | ,ATTRIB=addr][ME‘=i L
(E,ctrl-addr)

Figure 90. The GTTERM Macro Instruction

PRMSZE =addr
specifies the address of a 2-byte area into which GTTERM returns the
primary row value in the high-order byte and the primary column value
in the low-order byte.

202 TSO Guide to Writing a TMP or a CP

ALTSZE=addr
specifies the address of a 2-byte area into which GTTERM returns the
alternate row value in the high-order byte and the alternate column value
in the low-order byte.

ATTRIB=addr
specifies the address of a 1-word field into which GTTERM returns
terminal attributes. The contents of this field are described below:

Byte Bits Values Meaning
0-2 Reserved
3 0-5 Reserved

6 The device supports EBCDIC code.

0
1 The device supports ASCII code.

7 0 The Read Partition (Query) is not supported.
1 The Read Partition (Query) is supported.

Note: If ATTRIB is specified, you do not have to code PRMSZE or
ALTSZE.

MF=
Indicates the form of the GTTERM macro instruction.

L
Specifies the list form.

(E,ctrladdr)
Specifies the execute form and the address of the list form.

When control is returned to the user, register 15 contains one of the
following return codes:

Hexadecimal
Code Meaning
00 Successful.
08 Terminal in use is not a display terminal.
oC Required PRMSZE parameter was not specified.

If you use the list form of the GTTERM macro, the coded parameters
expand into the parameter list shown in Figure 91.

+0 Address of halfword to receive primary screen size
+4 Address of halfword to receive alternate screen size
+8 Address of word to receive Device Query supported flag

Figure 91. Parameter List Expansion for List Form of GTTERM

RTAUTOPT -- Restart Automatic Line Numbering or Character
Prompting

Use the RTAUTOPT macro instruction to restart either the automatic line
numbering feature or the automatic character prompting feature. (The
feature was suspended when the terminal user caused an attention
interruption or entered a null line of input.) Since only one of these
features can be used at a time, the restarted feature is the one that was
suspended. (See the STAUTOLN macro instruction for a description of the
automatic line numbering feature and the STAUTOCP macro instruction
for a description of the automatic character prompting feature.)

When this macro instruction is used to restart automatic line numbering,
the first line number assigned after line numbering is restarted is the same

Using Terminal Control Macro Instructions 203

line number that would have been assigned to the next line of terminal
input if automatic line numbering had not been suspended.)

If the application program is creating a line numbered data set, use of
the STAUTOLN macro to specify the starting number is recommended
when restarting automatic line numbering. This will insure that the
application’s numbers are still in synchronization with the system’s.

The RTAUTOPT macro instruction is used only in a time sharing
environment. It is ignored if TSO is not active when the macro instruction
is issued.

Figure 92 shows the format of the RTAUTOPT macro instruction.

[symbol] RTAUTOPT

Figure 92. The RTAUTOPT Macro Instruction

When control is returned to the user, register 15 contains one of the-
following return codes:

Hexadecimal

Code Meaning
00 Successful. Either automatic line numbering or automatic character prompting
has been restarted.
04 Parameter specified to the SVC. No parameter should be specified.
08 Invalid request. Either automatic line numbering or automatic character

prompting was never started or never suspended, or a SPAUTOPT macro
instruction has been issued to stop automatic line numbering or automatic ’
character prompting.

SPAUTOPT -- Stop Automatic Line Numbering or Character
Prompting

Use the SPAUTOPT macro instruction to stop either the automatic line
numbering feature or the automatic character prompting feature. Since only
one of these features can be used at a time, the active feature is the feature
that is stopped. (See the STAUTOLN macro instruction for a description of
the automatic line numbering feature, and the STAUTOCP macro
instruction for a description of the automatic character prompting feature.)

The system can suspend automatic prompting when the terminal user
causes an attention interruption or enters a null line of input. This macro
should then be issued by the application program in its attention exit, or as
the result of a zero length input line received via TGET. When stopped by
the SPAUTOPT macro, prompting cannot be restarted by use of the
RTAUTOPT macro. Prompting must be restarted by the STAUTOLN or
STAUTOCP macro.

The SPAUTOPT macro instruction is used only in a time sharing
environment. It is ignored if TSO is not active when the macro instruction
is issued.

204 TSO Guide to Writing a TMP or a CP

Figure 93 shows the format of the SPAUTOPT macro instruction.

[symbol] SPAUTOPT

Figure 93. The SPAUTOPT Macro Instruction

When control is returned to the user, register 15 contains one of the
following return codes:

Hexadecimal
Code Meaning
00 Successful. Either automatic line numbering or automatic character prompting
has been stopped.
04 Parameter specified to the SVC. No parameter should be specified.
08 Invalid request. Either automatic line numbering or automatic character

prompting was never started.

STATTN -- Set Attention Simulation

Use the STATTN macro instruction to specify how a terminal user can
interrupt the execution of his program without using an attention key. The
TERMINAL command issues the STATTN macro when the terminal user
requests that simulated attention be set up.

When the STATTN macro instruction assigns a value to an operand, that
value remains in effect until another STATTN macro instruction assigns a
new value to the operand, or until the terminal user logs off. Issuing the
STATTN macro instruction without specifying any operands results in a
NOP instruction.

The STATTN macro instruction is used only in a time sharing
environment with terminals that use TSO through TCAM. It is ignored if
TSO is not active when the macro instruction is issued.

Figure 94 shows the format of the STATTN macro instruction. Each of
the operands is explained following the figure. If an operand is not
specified, its current status is not changed.

[LINES= %integeri I:,TENS= %integerg]]
[symbol] STATTN 0 0
[, INPUT= iaddress%]
0

Figure 94. The STATTN Macro Instruction

LINES=
indicates the output line count (if any) that determines when a terminal
user can interrupt the execution of his program.

integer
specifies an integer from 1 through 255. This integer indicates the
number of consecutive lines of output that can be directed to the
terminal before the keyboard will unlock to let the terminal user
interrupt the execution of his program.

Using Terminal Control Macro Instructions 205

206

indicates that output line count will not be used to determine when
the terminal user can interrupt the execution of his program.

The LINES operand applies only to terminals that are not display
stations. However, the display user may cause a simulated attention
interruption at the bottom of the screen (that is, after every 6, 12, or
15 lines of consecutive output, depending on screen size).

TENS=
indicates whether or not locked keyboard time will be used to determine
when a terminal user can interrupt the execution of his program.

integer
specifies an integer from 1 through 255. This integer indicates the tens
of seconds (that is, from 10 to 2550 seconds) of locked keyboard
time that can elapse before the keyboard will unlock to let the
terminal user interrupt the execution of his program.

0
indicates that locked keyboard time will not be used to determine
when the terminal user can interrupt the execution of his program.

INPUT=
indicates whether or not a character string will be used to determine
when a terminal user can interrupt the execution of his program.

address
specifies the address of a character string from one to four EBCDIC
characters long, left-justified and padded to the right with blanks if
less than four characters long. When this character string is
encountered as the only data in a line, input processing is interrupted
to let the program take an attention exit. (See the description of the
STAX macro instruction.) This string will not be recognized if it is
preceded by any other character, including line delete or character
delete control characters.

0
indicates that no character string will be used to determine when the
terminal user can interrupt the execution of his program.

When control is returned to the user, register 15 will contain the
following return code:

Hexadecimal
Code Meaning
00 Successful
08 Invalid terminal type. This macro instruction should not be issued for

terminals that use TSO/VTAM.

STAUTOCP -- Start Automatic Character Prompting

Use the STAUTOCP macro instruction to start automatic character
prompting. Automatic character prompting signals the terminal user when
the system is ready to accept input from the terminal. This signal consists of
putting out at the terminal either an underscore and a backspace or a

period and a carriage return, depending on the type of terminal being used.
The STAUTOCP macro has no effect with a display station, since the
terminal user is always prompted for input by the start-of-message symbol.

TSO Guide to Writing a TMP or a CP

J

I

This macro instruction can be used to have the system automatically
prompt the user for input. It is used, for example, by the INPUT
subcommand of EDIT.

Once started, automatic prompting is handled as follows: When the
system has received a line of input, it immediately sends back to the
terminal the next character prompt. If the program should send output while
automatic prompting is in effect, the prompt will be repeated after all
output has been set to the terminal. For example:

line of input
OUTPUT MSG FROM PROGRAM

Automatic prompting is designed to be used by a program operating in
input mode (that is, issuing successive TGET macros).

The system suspends automatic prompting when the terminal user causes
an attention interruption or when he enters a null (nonprinting) line of
input. The application program then takes appropriate action in an attention
exit routine, or after receiving a zero length input via the TGET macro
instruction. The application program can stop the prompting or line
numbering function via SPAUTOPT, or restart the function via
STAUTOCP.

The STAUTOCP macro instruction is used only in a time sharing
environment. It is ignored if issued by a batch task.

Figure 95 shows the format of the STAUTOCP macro instruction.

[symbol] STAUTOCP

Figure 95. The STAUTOCP Macro Instruction

When control is returned to the user, register 15 contains one of the
following return codes:

Hexadecimal

Code Meaning
00 Successful.
04 Parameter specified to the SVC. No parameter should be specified.

STAUTOLN -- Start Automatic Line Numbering

Use the STAUTOLN macro instruction to start automatic line numbering.
Automatic line numbering displays a line number at the beginning of each
line.

This macro instruction can be used to have the system automatically
prompt the user for input. It is used, for example, by the INPUT
subcommand of the EDIT command.

Once started, automatic line numbering is handied as follows: when the
system has received a line of input, it immediately sends back to the
terminal the next line number. If the program should send output while

Using Terminal Control Macro Instruction 207

automatic line numbering is in effect, the line number will be repeated after
all output has been set to the terminal. For example:)

00030 line of input

00040 OUTPUT MSG FROM PROGRAM

00040
Automatic line numbering is designed to be used by a program operating in
input mode (that is, issuing successive TGET macros).

The system displays a new line number for each line of input received.
The current line number maintained by the system is decremented
appropriately whenever the input queue is cleared by a TCLEARQ macro
or as the result of an attention interruption. The application program is
responsible for numbering the lines independently, if it is creating a line
numbered data set. The system line number is not available to the
application program.

The system suspends automatic line numbering when the terminal user
causes an attention interruption or when he enters a null (nonprinting) line
of input. The application program then takes appropriate action in an
attention exit routine, or after receiving a zero length input via the TGET
macro instruction. The application program can stop the line numbering
function via SPAUTOPT, or restart the function via STAUTOLN or
RTAUTOPT. You should use STAUTOLN rather than RTAUTOPT to
restart automatic line numbering, if the application program is numbering
the input lines it receives. This choice will insure that the program’s
numbers are still in synchronization with the system’s numbers.

The STAUTOLN macro instruction is used only in a time sharing
environment. It is ignored if issued by a batch task. ’

Figure 96 shows the format of the STAUTOLN macro instruction. Each
of the operands is explained following the figure.

[symbol] STAUTOLN S=address, I=address

Figure 96. The STAUTOLN Macro Instruction

S=
indicates the address of a fullword that contains the number to be
assigned to the first line of terminal input. This number can be any
integer from O through 99,999,999.

=
indicates the address of a fullword that contains the increment value to
be used when assigning line numbers to lines of terminal input. This
number can be any integer from O through 99,999,999,

When control is returned to the user, register 15 contains one of the
following return codes:

Hexadecimal
Code Meaning
00 Successful. A line number will be printed out at the beginning of each line of
input.
04 Invalid parameter specified - values out of range.

208 TSO Guide to Writing a TMP or a CP

STBREAK -- Set Break

Use the STBREAK macro instruction to indicate whether the transmit
interrupt feature on an IBM 1050, 2741, 3270, 3767, or 3770 terminal will
be used or suppressed. The transmit interrupt feature lets terminal output
processing interrupt terminal input processing.

The TERMINAL command issues this macro when the terminal user
specifies the BREAK or NOBREAK operand of the command.

The transmit interrupt feature is a special feature on 1050 and 2741
terminals; it is a standard feature on the 3767, 3770, and 3270 display
terminals. Specifying STBREAK YES for a 1050 without the transmit
interrupt feature could result in loss of output or a permanent error at the
terminal.

When the transmit interrupt feature is being used by the system, the
terminal user can enter the next line while the previous one is being
processed. All 33/35 Teletypes and IBM 3270, 3767, and 3770 terminals
are handled this way. 1050s and 2741s that have been defined in the
TCAM message control program as having the transmit interrupt feature
will be handled this way (unless STBREAK NO is specified).

Note: For 2741s, 3767s, 3770s, TWX, and WTTY devices supported by
VTAM, the keyboard will remain unlocked when STBREAK NO is
specified.

When the feature is in use, terminal handling of input and output is as
follows: if no output is available for the terminal, and if there are sufficient
TSO terminal buffers available, the keyboard will be unlocked to allow the
user to enter input. If the user’s program generates output (TPUT) before
he has started to enter data, the read operation is halted and the break
(transmit interrupt) feature can be used to lock the keyboard and condition
the communications line to transmit output. If the user has already started
to type when the TPUT is issued, the output will not be sent until he has
finished that line of input. If, however, the TPUT had specified the
BREAKIN option, the output message would interrupt any input in
progress. If the application does not issue a TCLEARQ macro to flush the
input buffer queue, the interrupted input from a 1050 or a 2741 terminal
will be printed out again after the output is sent, to let the user continue to
type from the point where he had been interrupted. If the application does
not issue a TCLEARQ macro to flush the input buffer queue, the
interrupted input from a 3767, 3270, or a 3770 terminal is received by the
application program but is not printed at the terminal.

When the transmit interrupt feature is not being used by the system, a
1050 or 2741 terminal keyboard is unlocked only after the user’s program
has issued a TGET request for input. (A 3270, 3767, or 3770 terminal
keyboard’s normal state is unlocked.) In this mode of operation, the
terminal user cannot type ahead of his program. A TPUT with the
BREAKIN option cannot interrupt input. The output will not be sent until
the terminal user has completed entering his current input line. All display
stations are handled in this way. All 1050s and 2741s which have been
defined in the TCAM message control program as not having the transmit
interrupt feature will be handled this way.

Using Terminal Control Macro Instruction 209

212

CD=

indicates what character will be used for the character delete control

character:

X‘n’ where n is the hexadecimal representation of any EBCDIC
character on the terminal keyboard except the new line (NL) and
carrier return (CR) control characters. If X‘00’ is specified, the
previously used character delete control character is retained. If X‘FF’
is specified, no character will be used for the character delete control
character. If an invalid character is specified, that character is rejected
and no character is used to delete a character from a line of terminal
input.

C‘c’ where ¢ is the character representation of any EBCDIC character
on the terminal keyboard.

When control is returned to the user, the low-order byte of register 0
contains the former line delete control character. If X‘FF’ appears in the
low-order byte of register 0, there is no former line delete control character.
If X‘80’ appears in the high-order byte of register 0, ATTN was in effect
for line deletion prior to the issuance of the STCC macro.

The low-order byte of register 1 contains the former character delete
control character. If X‘FF’ appears in the low-order byte of register 1, there
is no former character delete control character.

Register 15 contains one of the following return codes:

Hexadecimal

Code Meaning
00 Successful.
04 Invalid parameters specified to the SVC.
08 Invalid request. Specified character does not appear on the terminal keyboard

or ATTN was specified for a terminal that does not have an attention key.
oC Invalid terminal type.

STCLEAR -- Set Display Clear Character String

Use the STCLEAR macro instruction to specify the character string that
will be used to request that a 2260 or 2265 display station screen be
erased. The TERMINAL command issues this macro when the user
specifies the character string he wants.

The STCLEAR macro instruction is used only in a time sharing
environment. It is ignored if TSO is not active when the macro instruction
is issued.

Figure 99 shows the format of the STCLEAR macro instruction. Each of
the operands is explained following the figure.

3address‘
[symbol] STCLEAR STRING= 0

Figure 99. The STCLEAR Macro Instruction

TSO Guide to Writing a TMP or a CP

STRING=
indicates the address of a one- to four- character string that will be used
to request that the display station screen be erased. This character string
must be left-justified and padded on the right with blanks, if necessary.
If 0 is specified, no éhg;;a@&r string will be used to erase the screen.

When control is returned to the user, register 15 contains one of the
following return codes:

Hexadecimal

Code Meaning
00 Successful.
04 Invalid parameter.
08 Invalid terminal type. The terminal is not a display station.

STCOM -- Set Inter-Terminal Communication

Use the STCOM macro instruction to specify whether or not a terminal will
accept messages from other terminals or low priority messages from the
system operator. High priority operator messages are always sent to the
terminal. The PROFILE command issues this macro when the user specifies
the INTERCOM or NOINTERCOM operand of the command.

The STCOM macro instruction is used only in a time sharing
environment. It is ignored if TSO is not active when the macro instruction
is issued.

Figure 100 shows the format of the STCOM macro instruction.

' YES
[symbol STCOM NO

Figure 100. The STCOM Macro Instruction

YES
indicates that the terminal will accept messages from other terminals. If
neither YES nor NO is specified, YES is assumed.

NO
indicates that the terminal will not accept messages from other terminals.

When control is returned to the user, register 15 contains one of the
following return codes:

Hexadecimal

Code Meaning
00 Successful.
04 Invalid parameter specified to the SVC.

STFSMODE -- Set Full Screen Mode

Use the STFSMODE macro instruction under VTAM to specify whether an !
IBM 3270 display terminal is to operate in full-screen mode. Operating in i
full-screen mode provides screen protection by preventing the ‘screen from |
being overlaid by non-full-screen messages, and allowing the terminal user ‘
to read non-full-screen messages before they are overlaid by full-screen

messages. If full-screen mode is set off, full-screen TPUT requests (that is,

TPUT requests that specify the FULLSCR operand) can result in certain

problems at the terminal. A message not expected by the terminal user or

Using Terminal Control Macro Instructions 213

214

the command processor, such as a broadcast message or password request,
might not be noticed by the terminal user and might be quickly overlaid by
a full-screen display. An unexpected message might overlay part of a
full-screen display, which could result in invalid input to the command
processor.

The STFSMODE macro instruction may be used only in a VTAM
time-sharing environment. It is ignored if VTAM is not active when the
macro instruction is issued.

See Appendix B for additional information about the use of the
STFSMODE macro and the full-screen environment.

Figure 101 shows the format of the STFSMODE macro instruction.

[symbol] STFSMODE ON [,INITIAL=YES [,RSHWKEY=n]
OFF ,INITIAL=NO
,NOEDIT=YES
[,NOEDIT=NO]

Figure 101. The STFSMODE Macro Instruction

ON
indicates that full screen mode is in operation. If neither ON nor OFF is
specified, ON is assumed. When a terminal operating in full-screen mode
is to receive a non-full-screen message (TPUT without FULLSCR), the
display screen is cleared, the alarm is sounded (if the Alarm special
feature is installed), and the message is displayed on the screen. If
several such messages occur one after the other, the screen is cleared
once, the alarm is sounded, and the messages are dispalyed in sequence.
When the next full screen TPUT message (TPUT with FULLSCR) is
issued by the application, the terminal user will be required to
acknowledge the messages on the screen before the TPUT FULLSCR
can be displayed. Three asterisks (***) displayed at the current line
indicate that acknowledgement is required. To continue, the user must
press the ENTER key.

OFF
indicates that full screen mode is not in operation. When a terminal that
is not operating in full-screen mode receives a message, the RSHWKEY
value is reset to the default, and the message is sent to the terminal
according to the options specified in the TPUT macro, possibly
overlaying the current screen contents.

INITIAL=YES
indicates that this is the first time during the execution of a command
processor that the command processor has entered full screen mode. This
operand prevents the first TPUT FULLSCR issued by the command
processor from forcing a paging condition when the last transaction at
the terminal was input. For example, after a user logs on and the
READY message is displayed and the user types in the name of a
command processor, a paging condition is not forced if INITIAL=YES
was specified. INITIAL=YES is ignored if OFF is specified.

TSO Guide to Writing a TMP or a CP

INITIAL=NO
indicates that forced paging is to occur normally whenever a TPUT with
FULLSCR follows a TPUT without FULLSCR. If neither
INITIAL=YES nor INITIAL=NO is specified, INITIAL=NO is
assumed.

NOEDIT=YES
indicates that input from the terminal will be added to the input queue

without being modified, regardless of the options specified on the TGET
macro instruction.

NOEDIT=NO ,
indicates that input from the terminal will be handled according to the
options specified on the TGET macro instruction before it is added to
the input queue. If neither NOEDIT=NO or NOEDIT=YES is specified,
NOEDIT=NO is assumed.

RSHWKEY
specifies as a decimal digit the program function (PF) key to be used as
the reshow key. If RSHWKEY is not specified, the default value for the
PA2 key (X‘6E’) is used.

When control is returned to the user, register 15 contains one of the
following return codes:

Hexadecimal
Code Meaning
00 Successful.
04 Invalid parameter specified to the SVC.
08 Invalid terminal type. This macro instruction is valid only for IBM 3270

display terminals that use VTAM.

STLINENO -- Set Line Number

Use the STLINENO macro instruction under VTAM to specify the number
of the screen line on an IBM 3270 display terminal on which the next
non-full-screen message should appear. (A non-full-screen message results
from issuing a TPUT macro instruction without the FULLSCR operand.)
The STLINENO macro instruction may also be used to specify whether the
3270 terminal is to operate in full screen mode.

The STLINENO macro instruction may be used only in a TSO/VTAM

time-sharing environment. It is ignored if TSO/VTAM is not active when
the macro instruction is issued.

See Appendix B for additional information about the use of the
STLINENO macro and the full-screen environment.

Figure 102 shows the format of the STLINENQO macro instruction.

LINE=number , MODE=ON
[symbol] STLINENO LINELOC=address)|, MODE=QFF

Figure 102. The STLINENO Macro Instruction

Using Terminal Control Macro Instructions 215

216

LINE=
specifies in decimal the line number on which the next non-full-screen
message is to appear. The line number must be a value from 1 to n
where n is the maximum number of lines allowed for the terminal in use.
Either the actual line number or a register (2-12, enclosed in
parentheses) containing the line number in the low-order byte may be
specified.

LINELOC=
specifies the address of a fullword whose low-order byte contains the
number of the screen line on which the next non-full-screen message is
to appear. The line must number be a value from 1 to n where n is the
maximum number of lines allowed for the terminal in use. Either an
actual address (RX-type) or a register (2-12, enclosed in parentheses)
containing the address may be specified.

MODE=
specifies whether full screen mode is to be set ON or OFF. If MODE is
not specified, MODE=QFF is assumed.

When control is returned to the user, register 15 contains one of the
following return codes:

Hexadecimal
Code Meaning
00 Successful.
04 Invalid parameter specified to the SVC.
08 Invalid terminal type. This macro instruction is valid only for IBM
3270 display terminals that use TSO/VTAM.
ocC The line number specified was 0 or it was greater than the maximum

number of lines allowed for the terminal in use.

STSIZE -- Set Terminal Line Size

Use the STSIZE macro instruction to set the logical line size of the time
sharing terminal. If the terminal is a display station, the STSIZE macro
instruction is used to set the screen size.

The TERMINAL command issues this macro instruction when the user
specifies the LINESIZE or SCREEN operands of the command.

The STSIZE macro instruction is used only in a time sharing
environment. It is ignored if TSO is not active when the macro instruction
is issued.

Figure 103 shows the format of the STSIZE macro instruction. Each of
the operands is explained following the figure.

[symbol]

JSIZE=number G l:, LINE=number]
s

STSIZE SIZELOC=address , LINELOC=addres

Figure 103. The STSIZE Macro Instruction

SIZE
specify the logical line size of the terminal in characters. If the logical
line size requested is greater than the mechanical line size of the
terminal, the last character in the line may be repeatedly typed over.
Specifying a size greater than 255 will give unpredicatable results.

TSO Guide to Writing a TMP or a CP

9

SIZELOC
specify the address of a word containing the logical line size of the
terminal in characters.

LINE
specify the number of lines that can appear on the screen of a display
station terminal.

LINELOC
specify the address of a word containing the number of lines that can
appear on the screen of a display station terminal.

Note: If the terminal is a display station, either the LINE or LINELOC
operand must be specified. If the terminal is not a display station, neither
operand should be specified.

Defaults by terminal type are as follows:

Terminal Type Line Size, Number of Lines, or Screen Size

2741 120

1050 120

33/35 Teletype?2 72

2260,2265 12x80, 12x40, 6x40, 15x64 - as specified by the installation in the TCAM
message control program.

3270 12x40, 12x80, 24x80, 32x80, or 43x80

3767 132

3770 132

When control is returned to the user, register 15 contains one of the
following return codes:

Hexadecimal

Code Mezaning
00 Successful.
04 Invalid parameter specified to the SVC,
08 Invalid LINE, LINELOC, SIZE, or SIZELOC operand, as follows:

I. The LINE or LINELOC operand was specified for any terminal except a
display station. (An operand value of zero is not an error, and has the
same effect as omitting the operand.)

2. The LINE or LINELOC operand was omitted, or specified as zero, for a
display station.

3. The SIZE or SIZELOC operand was omitted, or specified as zero, for any
terminal type. ’

oC The dimensions specified for a display station do not correspond to known
existing screen size. Incorrect screen management can result.

STTIMEOU -- Set Time Out Feature

Use the STTIMEOU macro instruction to specify whether the 1050
terminal has the optional text time out suppression feature. The macro
instruction allows 1050s, with or without the feature, to call in via the same
switched line, with any 1050 being handled initially as if it did not have the
feature.

2Trademark of the Teletype Corporation.

Using Terminal Control Macro Instruction 217

218

A 1050 without the text time out suppression feature operates as
follows: When the PROCEED light is on and the keyboard is unlocked, the
terminal will time out; that is, the keyboard will lock if the user does not
type input for approximately 20 seconds. The system subsequently responds
to the time out by restoring the keyboard so that the user may continue.
The user can prevent the time out by periodically pressing the SHIFT key.

A 1050 with the text time out suppression feature operates as follows:
The keyboard does not lock if the user does not type input within 20
seconds. The system can therefore use the read inhibit channel command,
which does not time out within 28 seconds, in contrast to the read channel
command that does time out. (Note: If the system is directed to use the
read inhibit channel command for a 1050 that does time out, the terminai
may be locked out of the system.)

Until the STTIMEOU macro instruction is issued, 1050 terminals are
handled as per the definition provided in the TCAM message control
program. If the currently connected terminal has the text time out
suppression feature, STTIMEOU NO can be issued to direct the system to
use read inhibit rather than read channel commands. (STTIMEOU NO
should not be issued for a 1050 that does not have the text time out
suppression feature. This specification could cause the terminal to be locked
out of the system.)

The TERMINAL command processor issues the STTIMEOU macro
instruction when the user specifies the TIME OUT or NOTIMEOUT
operand of the TERMINAL command. The STTIMEOU macro instruction
will remain in effect until the user logs off.

The STTIMEOU macro instruction should be issued only when an IBM
1050 terminal is being used. Terminals which are equivalent to the one
explicitly supported may also function satisfactorily. The customer is
responsible for establishing equivalency. IBM assumes no responsibility for
the impact that any changes to the IBM-supplied products or programs may
have on such terminals.

The STTIMEOU macro instruction is used only in a time sharing
environment. It is ignored if TSO is not active when the macro instruction
is issued.

Figure 104 shows the format of the STTIMEOU macro instruction.

YES
[symbol] STTIMEGU NO

Figure 104. The STTIMEOU Macro Instruction

YES
indicates that IBM 1050 terminal does time out. It does not have the text
time out suppression feature. If the operand is omitted, the default is
YES.

NO
indicates that the IBM 1050 terminal does not time out. The 1050 does
have the text time out suppression feature.

TSO Guide to Writing a TMP or a CP

9

When control is returned to the user, register 15 contains one of the
following return codes:

Hexadecimal
Code Meaning
00 Successful.
04 Invalid parameter specilied to the SVC.
08 Invalid terminal type. This macro instruction applies to the IBM 1050

terminal only.

STTMPMD -- Set Terminal Display Manager Options

Use the STTMPMD macro instruction to specify whether a Display
Terminal Manager is active or whether the PA1 and CLEAR key
indications are to be passed through to the application program.

The STTMPMD macro instruction is issued only in a time-sharing
environment. It is ignored if issued for a non-TSO task. The STTMPMD
macro js valid for display terminals operating in both the TCAM and
VTAM environments.

Figure 105 shows the format of the STTMPMD instruction. Each of the
operands is explained following the figure.

OFF ALL

[symbol] STTMPMD [ﬂ] [,KEYS= iM %]

Figure 105. The STTMPMD Macro Instruction

ON
indicates that a Display Terminal Manager is in control. If neither ON
nor OFF is specified, ON is the default.

OFF
indicates that a Display Terminal Manager is not in control.

KEYS=NO
indicates that the PA1 and CLEAR key indications are not to be

returned to the application program. This is the default if the KEYS
operand is omitted.

KEYS=ALL
indicates that the PA1 and CLEAR key indications are to be returned to
the application program.

When control is returned to the user, register 15 contains one of the
following return codes:

Hexadecimal
Code Meaning
00 Successful.
04 Invalid parameter specilied.
08 Invalid terminal type. This is not a display terminal.

Using Terminal Control Macro Instructions 219

STTRAN -- Set Character Translation

Use the STTRAN macro instruction to initiate the use of user-specified
translation tables, to modify specific character translations in active
translation tables, to remove character modifications made to user-specified
translation tables, and to terminate the use of user-specified translation
tables. Translation tables allow characters entered at the terminal to be
interpreted as other characters when they are received by TSO, and
characters sent by TSO to be interpreted as other characters when they are
recejved at the terminal.

The TERMINAL command issues this macro instruction when a terminal
user specifies the TRAN, NOTRAN, CHAR, or NOCHAR operand of the
command.

Translation tables are built and used in pairs: one for input and one for
output. Each pair is a control section consisting of a fullword containing the
address of the output table, followed by a 256-byte EBCDIC table for
translating the inbound characters, followed by a 256-byte EBCDIC table
for translating the outbound characters. Each character in an input table
must have a counterpart in its companion output table, and the characters
must have the same relative position in both tables. Refer to SPL: TSO for
instructions on building translation tables.

A translation table translates inbound data after the system translates the
line code to EBCDIC characters. A translation table translates outbound
data before the system translates EBCDIC characters to line code.

The STTRAN macro instruction is used only in a VTAM time-sharing
environment. It is ignored if VTAM is not active when the macro
instruction is issued.

Figure 106 shows the format of the STTRAN macro instruction. Each of
the operands is explained following the figure.

lsymbol] | STTRAN iTABLE-address,NAMEqddress
NOTRAN s

%TCHAH=address,SCHAH=address s
NOCHAR,NAME=address

L
I:MF= i {E,ctrl addr) s]

Figure 106. The STTRAN Macro Instruction

TABLE=address
specifies the address of a pair of user-written translation tables.

220 TSO Guide to Writing a TMP or a CP

c

NAME=address
specifies the address of an 8-byte area containing an EBCDIC character
string. (The string is left-justified and padded to the right with blanks if
it is less than eight characters long.) The character string consists of the
name of a member in a load module that contains user-written
translation tables.
When NAME is used with NOCHAR, the STTRAN macro instruction
causes the command processor to store the member name in the 8-byte
area.

NOTRAN
specifies that the use of user-written translation tables be discontinued.

TCHAR=address
specifies the address of a 1-byte area containing the EBCDIC
representation of a character as it appears at the terminal.

SCHAR=address
specifies the address of a 1-byte area containing the EBCDIC
representation of a character as it appears to the system.

NOCHAR
specifies that current TCHAR and SCHAR values are no longer in
effect.

MF=
indicates the form of the STTRAN macro instruction.

L
specifies the list form.

(E,ctrl addr)
specifies the execute form and the address of the list form.

When control is returned to the user, register 15 contains one of the
following return codes:

Hexadecimal Meaning
Code
00 Successful.
04 NOTRAN or NOCHAR was specified but translation was not in effect.
08 TABLE or NOCHAR was specified but the NAME operand did not specify
an address.
oC Internal error - unidentifiable flag set in input register 0.

TCLEARQ -- Clear Buffers

TCLEARQ enables the user to throw away “typed ahead” input or unsent
output. This clearing of the buffers lets the command processor
resynchronize with the terminal user.

For example, when a command processor analyzes the specified operands
in a line of input and discovers missing or invalid parameters, it issues a
TCLEARQ INPUT before sending a prompting message to the user. This
ensures that the command processor will receive a line of input entered
after the terminal user has seen the prompting message.

When the TCLEARQ macro instruction is issued to clear the input
buffers, all the input that has been entered at the terminal, but has not yet

Using Terminal Control Macro Instructions 221

224

The command processor processes the command according to the
operands received.

When the command processor terminates, it returns control to the
terminal monitor program and the sequence is repeated.

The following sections discusses:

Using the command scan service routine
Using the parse service routine

Using the Command Scan Service Routine (IKJSCAN)

In general, a terminal monitor program links to command scan to verify
command names. It may also be invoked by any command processors that
process subcommands. It can also be used to scan the reply to a prompt
message.

Command scan examines a command in a command buffer and performs
the following functions: '

1.

6.

It translates all lowercase characters in the command name to
uppercase.

If a valid parameter is present, it resets the offset to the number of
text bytes preceding the first non-blank character in the operand
field. If a valid operand is not present, the offset equals the length of
the text portion of the buffer. .

. It returns a pointer to the command name, the length of the

command name, and a code explaining the results of its scan to the
calling routine.

It optionally checks the syntax of the command name.

. It recognizes an implicit EXEC command that has a percent sign as

the first character.

It has logic to handle leading blanks and embedded comments.

This topic discusses:

Command name syntax

The parameter list structure required by command scan
The command scan parameter list

Flags passed to command scan

The command scan output area

The operation of the command scan service routine
The results of the command scan

Return codes from command scan

Command Name Syntax

If you write your own command processor, and you intend to use the
command scan service routine to check for a valid command name, your
name must meet the following syntax requirements:

TSO Guide to Writing a TMP or a CP

The first character must be an alphabetic or a national character.
The remaining characters must be alphameric.
The length of the command name must not exceed eight characters.

« The command delimiter must be a separator character.

» The name should include one or more numerals. Since no
IBM-supplied command names include numerals, your command name
will be unique.

The Parameter List Structure Required by Command Scan

Before invoking the command scan service routine via the CALLTSSR
macro, you must create the parameter structure shown in Figure 108. You
then place the address of the command scan parameter list (CSPL) into
general register 1, set the flags in the flag word, and issue CALLTSSR
specifying IKJSCAN, the command scan service routine.

IKJSCAN must receive control in 24-bit addressing mode. All input
passed to IKISCAN must reside below the 16-megabyte virtual storage line.

General
Register 1
[=
CSPL
+0
T Flag Word
+ 4
T Flags Reserved
+ 8
T CP ECB
12 Command Scan Output Area
T Flag Word >
% Cammand Name Pointer To be set by
Output Area . Command
Length Flags | Reserved | Scon
+20
Command Buffer 7
Commond Buffer)1
T(
Length Offset Text
)1
0 2 4 v

Figure 108. The Parameter List Structure Passed to Command Scan

The Command Scan Parameter List

The command scan parameter list (CSPL) is a six-word parameter list
containing addresses required by the command scan routine. In order to
ensure the reenterability of the calling program, the CSPL should be built in
subpool 1 in an area obtained by the calling program with the GETMAIN
macro instruction.

Command Scan and Parse -- Determining the Validity of Commands 225

CHARACTER TYPE

CHARACTER Separator National | Alphabetic | Numeric g:;?:?;:: Delimiter Special
Comment /* x
Horizontal Tob HT x x
Blank] x x
Comma , x x
Dollar Sign $ x
Number Sign 4 x
At Sign @ x
a-z
A=~z
0-9 x
New line NL x x
Period . x x
Left parenthesis (x x
Right parenthesis) x x
Ampersand & x x
Asterisk * x
Semicolon ; x x
Minus sign, hyphen - x x
Slash / x x
Apostrophe ! x x
Equal sign = x X
Cent sign ¢ x
Less than < x
Greater than > x
Plus sign + x
Logical OR | x
Exclamation paint I x
Logical NOT — x
Percent sign % x
Dash - x
Question mork ? x
Colon x
Quotation Mark " x

Figure 111. Character Types Recognized by Command Scan and Parse

228 TSO Guide to Writing a TMP or a CP

Results of the Command Scan {

The command scan service routine scans the command buffer and returns
the results of its scan to the calling routine by filling in the command scan
output area, and by updating the offset field in the command buffer. Figure
112 shows the possible CSOA settings and command buffer offset settings
upon return from the command scan service routine.

Command Scan Output Area

Command Buffer

Flag Meaning Length Field Offset set to:

X'80"| The command name is |Length of command name | The first non-
valid and the separator following
remainder of the the command name.
buffer contains non-
separator
characters.

X'40*| The command name is |Length of command name | The end of the
valid and there are ouffer.
no non-separator
characters
remaining.

X"20"| The command name is Zexro Unchanged.

a question mark.

X'10'| The buffer is empty Zero The end of the
or contains only puffer.
separators.

X'08"'| The command name is Zero Unchanged.
syntactically
invalii.

X'04'(The command is an Length of command name.| The first non-

implicit EXEC
command.

separator following
the command name.

Figure 112. Return from Command Scan - CSOA and Command Buffer Settings

Return Codes from Command Scan

The command scan service routine returns the following codes in general
register 15 to the program that invoked it:

Hexadecimal
Code Meaning
0 Command scan completed successfully,
4 Command scan was passed invalid parameters.

Command Scan and Parse ~- Determining the Validity of Commands 229

by
|
‘.
Using the 'Parse Service Routine (IKJPARS)

The¥arse service routine checks the syntax of command operands. To
prepare for this, the command processor creates a parameter control list
(PCL) -- a description of permissible operands, default values, text to be
used when prompting, and, if present, the address of a validity checking
subroutine.

The command processor invokes the parse service routine via the
CALLTSSR or LINK macro, passing it a parse parameter list (PPL) which
contains the address of the PCL. The parse service routine scans and
checks each operand against the entries (called PCEs: parameter control
entries) in the PCL. In turn, the parse service routine builds and returns
results of the scan to the command processor in a parameter descriptor list
(PDL), whose entries contain pointers to data set names, indications of
specified options, or pointers to the subfields entered with the command
operands.

The command processor uses the IKJIPARMD DSECT to refer to the
PDL. The command processor specifies the IKJPARMD DSECT at the
time it issues the parse macro instructions to build the PCL. The labels used
by the command processor on the various parse macro instructions become
the symbolic addresses of the fields in the IKJPARMD DSECT.

IKJPARS must receive control in 24-bit addressing mode. All input
passed to IKJPARS must reside below the 16-megabyte virtual storage line.

Figure 113 depicts a command processor’s use of the parse macro
instructions, the parse service routine, and the IKJPARMD DSECT.

230 TSO Guide to Writing a TMP or a CP

Command Buffer

Length | Offset

Command Name

Parameter 1 Parameter 2 Parameter 3

0 2 4

Command Processor

(@ CALLTSSR/LINK to Parse Pane Service Routine

@ Issues Parse macro
instructions to build
a PCL describing
valid parameters
o labell Macro
o label2 Macro
e label3 Macro

These macro
instructions also
create the
IKJPARMD DSECT.

IK JPARMD
DSECT

|I—|-abe|'l _ll
:TGI;IZ_ - _i
Habels -
I

The Command
Processor uses the
IKJPARMD DSECT
to access the various
PDEs within the
PDL.

Command Buffer.
PCL
Y
PCE2
PCE3
PDL
PDE < (7) b.ilds the PDL.
PDE
PDE

@ Compares PCE's to
parameters in the

@ Return to the Command Processor l

Figure 113. A Command Processor Using the Parse Service Routine

The parse service routine support consists of the following:

1.

The following set of macro instructions:

IKJPPL builds an IKJPPL DSECT which maps the parse parameter
list.

IKJPARM begins the parameter control list and establishes a
symbolic reference for the parameter descriptor list. ’

IKJPOSIT builds a parameter control entry. This PCE describes a
positional parameter that contains delimiters recognized by the parse
service routine, but not including the positional parameters described
by the IKITERM, IKJOPER, IKJIDENT, or IKJRSVWD macro
instructions.

Command Scan and Parse —- Determining the Validity of Commands 231

IKJIDENT also builds a parameter control entry; however, this PCE
describes a positional parameter that does not depend upon a
particular delimiter.

IKIKEYWD builds a parameter control entry that describes a
keyword parameter.

IKINAME describes the possible names that may be entered for a
keyword or a reserved parameter.

IKJTERM builds a parameter control entry. This PCE describes a
positional parameter that may be a constant, statement number, or
variable.

IKJOPER builds a parameter control entry that describes an
expression. An expression consists of three parts; two operands and
an operator in the form:

(operand1 operator operand2)

IKJRSVWD builds a parameter control entry. This PCE may be used
with the IKITERM macro instruction to describe a reserved word
constant, with the IKJOPER macro instruction to describe the
operator of an expression, or by itself to describe a reserved word
parameter.

IKJSUBF indicates the beginning of a keyword subfield description.
IKJENDP indicates the end of the PCL.

IKJRLSA releases any virtual storage (allocated by the parse service
routine) that remains after the parse service routine has returned
control to the command processor.

A program that checks the syntax of the command operands within
the command buffer against the PCL and builds a PDL containing
the results of the syntax check.

The parse service routine also provides the following services which may
be selected by the calling routine:

232 TSSO Guide to Writing a TMP or a CP

It translates the command operands to uppercase.

It substitutes default values for missing operands.

It prompts the user at the terminal for missing positional parameters.
It passes control to an exit, supplied by the calling routine, to do
further checking on a positional parameter.

It inserts implied keywords.

It appends user-supplied second level messages to prompting messages.

section describes:

Command parameter syntax

Using the parse macro instructions to define command syntax
The parse macro instructions

Passing control to the parse service routine

Formats of the PDEs returned by the parse service routine
Additional facilities provided by the parse service routine

An example of using the parse service routine

Return codes from the parse service routine

Command Parameter Syntax

If you write your own command processors, and you intend to use the
parse service routine to determine which operands have been entered
following the command name, your command parameters must adhere to
the syntactical structure described in this section.

Command parameters must be separated from one another by one or
more of the separator characters: blank, tab, comma, or a comment (see
Figure 111). The command parameters end either at the end of a logical
line (carrier return), or at a semicolon. If the command parameters end with
a semicolon, and other characters are entered after the semicolon but
before the end of the logical line, the parse service routine ignores that
portion of the line that follows the semicolon. The parse service routine
returns no message to indicate this condition.

There are two types of command parameters recognized by the parse
service routine:

1. Positional parameters

2. Keyword parameters

Positional Parameters

Positional parameters must be coded first in the parameter string, and they
must be in a specific order.

In general, the parse service routine considers a positional parameter to
be missing if the first character of the parameter scanned is not the
character expected. For instance, if a parameter is supposed to begin with a
numeric character and the parse service routine finds an alphabetic
character in that position, the numeric parameter is considered missing. The
parse service routine then prompts for the missing parameter if it is
required, substitutes a default value if one is available, or ignores the '
missing parameter if the parameter is optional.

For the purpose of syntax checking, positional parameters are divided
into parameters that include delimiters as part of their definition
(delimiter-dependent parameters), and parameters that do not include
delimiters as part of their definition (non-delimiter-dependent parameters).

Delimiter-Dependent Parameters: Those parameters that include delimiters
as part of their definition are called delimiter-dependent parameters. The
parse service routine recognizes the following delimiter-dependent
parameter syntaxes shown in Figure 114.

Command Scan and Parse -- Determining the Validity of Commands 233

-——ae.

234

Parameter Macro Instruction Used to Describe Parameter

DELIMITER
STRING
VALUE
ADDRESS
PSTRING IKJPOSIT
USERID
UID2PSWD
DSNAME
DSTHING
QSTRING
SPACE
JOBNAME

CONSTANT
VARIABLE IKJTERM
STATEMENT NUMBER

EXPRESSION IKJOPER
RESERVED WORD IKJRSVWD
HEX

CHAR IKJIDENT
INTEG

Figure 114. Delimiter-Dependent Parameters

TSO Guide to Writing a TMP or a CP

DELIMITER - It may be any character other than an asterisk, left
parenthesis, right parenthesis, semicolon, blank, comma, tab, carrier
return, or digit. A self-defining delimiter character is represented in
this discussion by the symbol #. The delimiter parameter is used only
in conjunction with the string parameter.

STRING - A string is the group of characters between two alike
self-defining delimiter characters, such as

#string#

or, the group of characters between a self-defining delimiter character
and the end of a logical line, such as

#string

The same self-defining delimiter character can be used to delimit two
contiguous strings, such as

#string#string#
or
#string#string

A null string, which indicates that a positional parameter has not been
entered, is defined as two contiguous delimiters or a delimiter and the
end of the logical line. If the missing string is a required parameter,
the null string must be entered as two contiguous delimiters. Note that
a string received from a prompt or a default must not include the
delimiters.

VALUE - A value consists of a character followed by a string
enclosed in apostrophes, such as

X'string’

The character must be an alphabetic or national character. The string
may be of any length and may consist of any combination of
enterable characters. If the ending apostrophe is left off the string, the
parse service routine assumes that the string ends at the end of the
logical line. If the parse service routine encounters two successive
apostrophes, it assumes them to be part of the string and continues to
scan for a single ending apostrophe. The parse service routine always
raises the character preceding the first apostrophe to uppercase. The
value is considered missing if the first character is not an alphabetic or
national character, or if the second character is not an apostrophe.

ADDRESS - There are several forms of the ADDRESS parameter.

Absolute address - An absolute address consists of from one to six
hexadecimal digits followed by a period, or, in extended mode, from
one to eight hexadecimal digits followed by a period. An extended
absolute address must not exceed the address represented by the
hexadecimal value 7FFFFFFF.

(For more information on extended addressing, see the description of
the EXTENDED operand in “IKJPOSIT - Describing a
Delimiter-Dependent Positional Parameter” below.)

Relative address - A relative address consists of from one to six
hexadecimal digits preceded by a plus sign, or, in extended mode,
from one to eight hexadecimal digits preceded by a plus sign.

General register address - A general register address consists of a
decimal integer in the range 0 to 15 followed by the letter R. R can
be entered in either uppercase or lowercase.

Floating-point register address - A floating-point register address
consists of an even decimal integer in the range 0 to 6 followed by
the letter D (for double precision) or E (for single precision). The
letter E or D can be entered in either uppercase or lowercase.

Symbolic address - A symbolic address consists of any combination,
up to 32 characters in length, of the alphameric characters and the
break character. The first character must be either an alphabetic or a
national character.

Qualified address - A qualified address has one of the following
formats:

1. modulename.entryname.relative-address
modulename.entryname
modﬁlename.entryname.symbolic—address
.entryname.symbolic-address

.entryname.relative-address

(2 I O B S UC R O]

.entryname

Command Scan and Parse -- Determining the Validity of Commands 235

236

RELATIVE LOC +A LOC C2C

o modulename - any combination of one to eight alphameric
characters, of which the first is an alphabetic or national character ,

o entryname - same syntax as a modulename, and always preceded by
a period

- symbolic address - syntax as defined above, and always preceded
by a period

« relative address - syntax as defined above, and always preceded by
a period

You may qualify symbolic or relative addresses to indicate that they
apply to a particular module and CSECT as in formats 1-3. However,
if the address applies to the currently active module, you do not have
to specify modulename as in formats 4-6.

Indirect address - An indirect address is an absolute, relative,
symbolic, or general register address followed by from one to 255
indirection symbols (percent signs), such as

+A%

The number of percent signs following the address indicates the
number of levels of indirect addressing. In this example (+A%), the
data is at the location pointed to by +A. See Figure 115.

00 |00 [OC | 2C DATA

Figure 115. Example of an Indirect Address J

Address expression - An address expression has the following format:

address{i}expression value [%...1]] {i}expression value [%...]]...

TSO Guide to Writing a TMP or a CP

address - can be an absolute, symbolic, indirect, relative, or general
register address. If a general register is specified, it must be followed
by at least one indirection symbol.

expression value - a plus or minus displacement from an address in
storage, consisting of from one to six decimal or hexadecimal digits.

- When you specify the EXTENDED keyword of IKJPOSIT to
indicate extended mode, the terminal user may specify a one to ten
digit decimal number, or a one to eight digit hexadecimal number.

- Decimal displacement is indicated by an “N” or “n’’ following the

offset. The absence of an “N” or “n” indicates hexadecimal
displacement.

- There is no limit to the number of expression values in an address
expression.

Each expression value may be followed by from one to 255 percent
signs, one for each level of indirect addressing.

For example, addr!+124n, an address expression in decimal format,
indicates a location 124 decimal bytes beyond addr!. Another example,
addr2-AC, is an address expression in hexadecimal format and indicates a
location 172 decimal bytes before addr2.

The processing of an address expression, 12R% % +4N %, involving
indirect addressing, is shown in Figure 116. The address in the expression is
a general register address with two levels of indirect addressing. The result
of the processing of this part of the address expression is location 1D0. The
expression value indicates a displacement of four bytes beyond location
1DO with one level of indirect addressing. The data, then, is at location
474.

R12 _» LOC 128 /LOC 1D0 LOC 474

00 |00 (01] 28 00|00| 01 (DO DATA

00|00 |04 |74

Figure 116. Example of an Address Expression with Indirect Addressing
Note: Blanks are not allowed within any form of the address parameter.

PSTRING - A parenthesized string is a string of characters enclosed within
a set of parentheses, such as:

(string)

The string may consist of any combination of characters of any length, with
one restriction; if it includes parentheses, they must be balanced. The
enclosing right parenthesis of a PSTRING can be omitted if the string ends
at the end of a logical line.

A null PSTRING is defined as a left parenthesis followed by either a right
parenthesis or the end of a logical line.

USERID - A userid consists of an identification optionally followed by a
slash and a password. The format is:

identification[/password]

identification - can be any combination of alphameric characters up to
seven characters in length, the first of which must be an alphabetic or
national character.

password - can be any combination of alphameric characters up to eight
characters in length. If delimiters are used, the password must be enclosed
in quotes. If quotes are to be used in the password, two quotes must be
entered consecutively. One of them will be eliminated by the parse service
routine.

Separators may be inserted between the identification and the slash, and
between the slash and the password.

If just the identification is entered, the parse service routine does not
prompt for a password. If the identification is entered followed by a slash
and no password, the parse service routine prompts for a password by
executing a PUTGET macro instruction specifying bypass mode. The

Command Scan and Parse -- Determining the Validity of Commands 237

-

PR

terminal user can reply to a prompt for password by entering either a
password or a null line. If the user enters a null line, the parse service 3
routine builds the PDE and leaves the respective password field zero.

UID2PSWD — A userid consists of an identification optionally
followed by two passwords. The delimiter between the three values is a
slash. The format is:

identification[/password1[/password2]]

identification — can be any combination of alphameric characters up
to seven characters in length, the first of which must be an
alphabetic or national character.

password]l — can be any combination of alphameric characters up
to eight characters in length. If delimiters are used, the password
must be enclosed in quotes. If quotes are to be used in the
password, two quotes must be entered consecutively. One of them
will be eliminated by the parse service routine.

password2 — Same as passwordl.

IKJPOSIT generates a variable length parameter control entry (PCE).
Within the PCE, a field contains a hexadecimal number indicating the
type of positional operand described by the PCE. For UID2PSWD,
the hexadecimal number is C.

DSNAME - The data set name parameter has three possible formats:

dsname [(membername)] (/password]
[dsname] (membername) ([password])
'dsname [(membername)] ' [/password]

dsname - may be either a qualified or an unqualified name.

An unqualified name is any combination of alphameric characters up
to eight characters in length, the first character of which must be an
alphabetic or national character.

A qualified name is made up of several unqualified names, each
unqualified name separated by a period. A qualified name, including
the periods, may be up to 44 characters in length.

membername - one to eight alphameric characters, the first of which
must be an alphabetic or a national character.

Note: The parse service routine considers the entire dsname parameter
missing if the first character scanned is not an apostrophe, an alphabetic
character, a national character, or a left parenthesis. If the VOLSER option
is specified, the first character may be numeric.

If it is numeric, only six characters are accepted for VOLSER.
VOLSER is valid only for DSNAME or DSTHING. If USID is
specified, the parse service routine will prefix all data set names not
entered in quotes with the user identification (from the UPT).

If the slash and the password are not entered, the parse service
routine does not prompt for the password. If the slash is entered and
not the password, the parse service routine prompts for the password s)

238 TSO Guide to Writing a TMP or a CP

by executing a PUTGET macro instruction specifying bypass mode;
that is, the terminal user’s reply will not print at the terminal.

DSTHING - A DSTHING is a dsname parameter as previously
defined except that an asterisk can be substituted for an unqualified
name or for each qualifier of a qualified name. The parse service
routine processes the asterisk as if it were a dsname. The asterisk is
used to indicate that all data sets at that particular level are
considered.

Note: If the first character of a dsname is an asterisk, the parse service
routine will not prefix the USERID.

QSTRING - A quoted string is a string of characters enclosed within
apostrophes, such as:

‘string’

The string can consist of any length combination of characters, with
one restriction: if the user wishes to enter apostrophes within the
string, two successive apostrophes must be entered for each single
apostrophe desired; one of the apostrophes is removed by the parse
service routine.

The ending apostrophe is not required if the string ends at the end of
the logical line.

A null quoted string is defined as two contiguous apostrophes or an
apostrophe at the end of the logical line.

SPACE - Space is a special purpose parameter,; it allows a string .
parameter that directly follows a command name to be entered
without a preceding self-defining delimiter character. The space
parameter must always be followed by a string parameter. If the
delimiter of the command name is a tab, the tab is the first character
of the string. The string always ends at the end of the logical line.

JOBNAME - The jobname may have an optional job identifier. Each
job identifier is a maximum of eight alphameric characters of which
the first is alphabetic or national. There is no separator character
between the jobname and job identifier. The syntax is jobname
(jobid).

CONSTANT - There are several forms of the constant parameter.

Fixed-point numeric literal - Consists of a string of digits (0 through
9) preceded optionaily by a sign (+ or -), such as:

+1234.43

This literal may contain a decimal point anywhere in the string except
as the rightmost character. The total number of digits cannot exceed
18. Embedded blanks are not allowed.

Command Scan and Parse -- Determining the Validity of Commands 239

Floating-point numeric literal - Takes the following form:
+1234.56E+10

This literal is a string of digits (O through 9) preceded optionally by a
sign (+ or -) and must contain a decimal point. This is immediately
followed by the letter E and then a string of digits (O through 9)
preceded optionally by a sign (+ or -). Embedded blanks are not
allowed. The string of digits preceding the letter E cannot be greater
than 16 and the string following E cannot be greater than 2.

Non-numeric literal - Consists of a string of characters from the
EBCDIC character set, excluding the apostrophe, and enclosed in
apostrophes, entered as:

‘numbers (1234567890) and letters are ok’

The length of the string excluding apostrophes may be from 1 to 120
characters in length.

Figurative constant - Is one of a set of reserved words supplied by the
caller of the parse service routine such as:

test123

A figurative constant consists of a string of characters up to 255 in
length. Embedded bianks are not allowed. All characters of the
EBCDIC character set are allowed except the blank, comma, tab,
semicolon, and carrier return, however, the first parameter must be
alphabetic.

VARIABLE - The foliowing is the form of the variable parameter.

[program-id.] data-name %OF‘ qualification
IN
(subscript)

240 TSO Guide to Writing a TMP or a CP

Program-id - Consists of the first eight characters of a program
identifier followed by a period. The first character must be alphabetic
(A through Z) and the remaining characters must be alphameric (A
through Z or 0 through 9), entered as:

Data-name - consists of a maximum of 30 characters of the set:
A through Z (aiphabetic)

0 through 9 (numeric)

- (hyphen)

typically entered as:

mydataset-123

The data-name cannot begin or end with a hyphen and must contain
at least one alphabetic character.

here55.mydataset-123

Qualification - Is applied by placing after a data-name one or more
data-names preceded by the qualifiers IN or OF, entered as:

mydataset-123 of yourdataset-456

The number of qualifiers that can be entered for a data-name is
limited to 255.

Subscript - Consists of a data-name with subscripts enclosed in
parentheses following the data-name entered as:

yourdataset-456 (mydataset-123)

A separator between the data-name and the subscript is optional.
Subscripts are a list of constants or variables.

The number of subscripts that can be entered for a data-name is
limited to 3, entered as:

here55 (abc def h15)
A separator character between subscripts is required.

STATEMENT NUMBER - The following is the form of a statement
number:

[program id.]line number[.verb number]
An example is:

here.23.7

where:

Program id - consists of the first eight characters of a program
identifier followed by a period. The first character must be alphabetic
(A through Z) and the remaining characters must be alphameric (A
through Z or 0 through 9).

Line number - consists of a string of digits (0 through 9) and cannot
exceed a length of 6 digits.

Verb number - consists of one digit (O through 9) that is preceded by
a period.

Embedded blanks are not allowed in a statement number.
EXPRESSION - An expression takes the form:
(operandl operator operand2)

The operator in the expression shows a relationship between the
operands, such as:

(abc equals 123)

An expression must be enclosed in parentheses. An expression is
defined by the IKJOPER macro. The operands are defined by the
IKJTERM macro, and the operator by the IKIRSVWD macro
instruction.

Command Scan and Parse -- Determining the Validity of Commands 241

RESERVED WORD - Has three uses depending on the presence or
absence of operands on the IKIRSVWD macro instruction. The uses :
are:)

« When used with the RSVWD keyword of the IKJTERM macro
instruction, the IKIRSVWD macro identifies the beginning of a list
of reserved words, any one of which can be entered as a constant.

e« When used with the RSVWD keyword of the IKIOPER macro
instruction, the IKIRSVWD macro identifies the beginning of a list
of reserved words, any one of which can be an operator in an
expression.

o When used by itself, the IKIRSVWD macro instruction defines a
positional reserved word parameter.

Note: The IKJIRSVWD macro instruction is followed by a list of IKINAME
macros that contain all of the possible reserved words used as figurative
constants or operators.

The HEX, CHAR, and INTEG operands on the TKJIDENT macro
describe delimiter positional parameters.

« HEX - indicates that any quantity of the form X‘nn’, ‘ABC’
(quoted string), or any nonquoted character string in which case a
separator or delimiter indicates the end, will be accepted as valid
data.

« CHAR - indicates that any data in the form of a quoted or
nonquoted string will be accepted as valid data.

« INTEG - indicates that any numeric character in the following form ’
will be converted by the parse service routine to its appropriate
binary value.

(X‘nn’)---where n is a valid hexadecimal digit(A-F,0-9), maximum
of 8.

(B‘mm’)---where m is a valid binary bit (0-1), maximum of 32.

dddddd---decimal digits (0-9), maximum of 10.
Note: The maximum decimal value for INTEG is 2147843647.

Positional Parameters Not Dependent on Delimiters: A positional parameter
that is not dependent on delimiters is passed as a character string with
restrictions on the beginning character, additional characters, and length.
These restrictions are passed to the parse service routine as operands on the
IKJIDENT macro instruction.

The parse service routine recognizes the following character types as the
beginning character and additional characters of a non-delimiter-dependent
positional parameter:

ALPHA - Indicates an alphabetic or national character.
NUMERIC - Indicates a number (0-9).

ALPHANUM - Indicates an alphabetic or national character or a
number.

242 TSO Guide to Writing a TMP or a CP

ANY - Indicates that the character to be expected can be any character
other than a blank, comma, tab, semicolon, or carrier return. A right
parenthesis must, however, be balanced by a left parenthesis.

NONATABC - Indicates an alphabetic character only is accepted. (No
national characters.)

NONATNUM - Indicates numbers and alphabetic characters are
accepted.(No national characters.)

An asterisk can be entered in place of any positional parameter that is

not dependent on delimiters.

Entering Positional Parameters as Lists of Ranges: You may want to have
some positional parameters of your command entered in the form of a list,
a range, or a list of ranges. The macro instructions that describe positional
parameters to the parse service routine, IKJPOSIT, IKJTERM and
IKJIDENT, provide a LIST and a RANGE operand. If coded in the macro
instruction, they indicate that the positional parameters expected can be in
the form of a list or a range.

LIST

Indicates to the parse service routine that one or more of the same type
of positional parameters may be entered enclosed in parentheses as
follows:

(positional-parameter positional-parameter...)

If one or more of the items contained in the list are to be entered
enclosed in parentheses, both the left and the right parenthesis must be
included for each of those items.

The following positional parameter types may be used in the form of a
list:

VALUE

ADDRESS

USERID

UID2PSWD

DSNAME

DSTHING

JOBNAME
CONSTANT
STATEMENT NUMBER
VARIABLE

HEX

CHAR

INTEG

Any positional parameters that are not dependent upon delimiters

e o o o o o ® ® o o o o o o

RANGE

Indicates to the parse service routine that two positional parameters are
to be entered separated by a colon as follows:

positional-parameter:positional-parameter

The following positional parameter types may be used in the form of a
range or a list of ranges:

HEX (form X‘’ only)
ADDRESS

VALUE
CONSTANT

e o o o

Command Scan and Parse -- Determining the Validity of Commands 243

244

STATEMENT NUMBER

VARIABLE
INTEG))
Any positional parameter that is not dependent upon delimiters

If the user at the terminal wants to enter a parameter that begins with a
left parentheses, and you have specified in either the IKJPOSIT or
IKJIDENT macro instruction that the parameter can be entered as a list or
a range, the user must enclose the parameter in an extra set of parentheses
to obtain the correct result.

For instance, you have specified via the IKJPOSIT macro instruction that
the dsname operand may be entered as a list, and the terminal user wishes
to enter a dsname of the form:

(membername) /password

He must enter it as:

((membername) /password)

Keyword Parameters

Keyword parameters can be entered anywhere in the command as long as
they follow all positional parameters. They may consist of any combination
of alphameric characters up to 31 characters long, the first of which must
be an alphabetic character.

You describe keyword parameters to the parse service routine with the
IKJKEYD, IKINAME and IKJSUBF macro instructions.

Keyword parameters can have other parameters associated with them. J
These parameters, known as subfields, must be enclosed in parentheses

directly following the keyword. A subfield may contain positional as well as

keyword parameters. In the following example posnl and kywd2 are

parameters in the subfield of keyword1:

keyword1(posn1 kywd2)

The same syntax rules that apply to commands apply within keyword
subfields.

+ Keyword parameters must follow positional parameters.

« Enclosing right parenthesis may be eliminated if the subfield ends at
the end of a logical line.

o The subfield may not contain unbalanced right parentheses.

If a keyword with a subfield in which there is a required parameter is
entered without the subfield, the parse service routine prompts for the
required parameter. The terminal user must not include the subfield
parentheses when he enters the required parameter.

If a subfield has a positional parameter that can be entered as a list, and
if this is the only parameter in the subfield, the list must be enclosed by the
same parentheses that enclose the subfield, such as:

keyword (item1 item2 item3)

where item1, item2, and item3 are members of a list.

TSO Guide to Writing a TMP or a CP

(=

If a subfield has as its first parameter a positional parameter that may be
entered as a list and there are additional parameters in the subfield, a
separate set of parentheses is required to enclose the list, such as:

keyword{({(item1 item2 item3) param)

where iteml, item2, and item3 are members of a list, and param is a
parameter not included in the list.

Using the Parse Macro Instructions to Define Command Syntax

A command processor using the parse service routine must build a
parameter control list (PCL) defining the syntax of acceptable command
parameters. Each acceptable command parameter is described by a
parameter control entry (PCE) within the PCL. The parse service routine
compares the command parameters within the command buffer against the
PCL to determine if valid command parameters have been entered.

Parse returns the results of this comparison to the command processor in
a parameter descriptor list (PDL). The PDL is composed of separate entries
(PDEs) for each of the command parameters found in the command buffer.

The command processor builds the PCL and the PCEs within it using the
parse macro instructions. These macro instructions generate the PCL and
establish symbolic references for the PDL returned by the parse service
routine.

The parse macros that generate input to parse must be issued by a
program that is loaded below 16 megabytes so that IKJIPARS can access
the PCL. The IKJRLSA macro must be issued in 24-bit addressing mode.

There are eleven parse macro instructions:

IKJPARM
[KJPOSIT
IKJTERM
IKJOPER
IKJRSVWD
IKJIDENT
IKJKEYWD
IKINAME
IKJSUBF
IKJENDP
IKJRLSA

These macro instructions perform the following functions:

1. The IKJPARM macro instruction begins the PCL CSECT and the
PDL DSECT, and provides symbolic addresses for both.

2. The IKJPOSIT, IKJTERM, IKJOPER, IKJRSVWD, IKJIDENT,
IKJKEYWD, IKJNAME, and IKJSUBF macro instructions describe
the positional and keyword parameters valid for the command
processor. These macro instructions expand into the PCEs required
by the parse service routine during its scan of the command buffer.
The label fields of these macro instructions are used as labels within
the DSECT that maps the PDL returned by the parse service routine.

3. The IKJENDP macro instruction ends the PCL CSECT.

4. The IKJRLSA macro instruction releases the virtual storage obtained
by the parse service routine for the PDL.

Command Scan and Parse -- Determining the Validity of Commands 245

IKJPARM - Beginning the PCL and the PDL

Code the IKJPARM macro instruction to begin the parameter control list J
and to provide a symbolic address for the beginning of the parameter

descriptor list returned by the parse service routine. The PCL is constructed

in the CSECT named by the label field of the macro instruction; the PDL

will be mapped by the DSECT named in the DSECT operand of the macro

instruction.

Figure 117 shows the format of the IKJPARM macro instruction. Each
of the operands is explained following the figure. Appendix A describes the
notation used to define macro instructions.

dsect name%
label IKJPARM DSECT= (}IKJPARMD

Figure 117. The IKJPARM Macro Instruction

label
The name you provide is used as the name of the CSECT in which the
PCL is constructed.

DSECT=
Provides a name for the DSECT created to map the parameter descriptor
list. This may be any name; the default is IKIPARMD.

The Parameter Control Entry Built By IKJPARM: The IKJIPARM macro
instruction generates the parameter control entry (PCE) shown in Figure

118. This PCE begins the parameter control list. '
Number of
B;'It“els e Field Contents or Meaning
2 Length of the parameter control list. This field

contains a hexadecimal number representing
the number of bytes in this PCL.

2 Length of the parameter descriptor list. This
field contains a hexadecimal number
representing the number of bytes in the
parameter descriptor list returned by the parse
service routine.

2 This field contains a hexadecimal number
representing the offset within the PCL to the
first IKIKEYWD PCE or to an end-ot-field
indicator if there are no keywords. An
end-of-field indicator may be an IKJSUBF or
an IKJENDP PCE.

Figure 118. The Parameter Control Entry Built by IKJPARM

246 TSO Guide to Writing a TMP or a CP

IKJPOSIT - Describing a Delimiter-Dependent Positional Parameter

Code the IKJPOSIT macro instruction to describe most of the
delimiter-dependent positional parameters. IKJIDENT is used to describe
the others.

The order in which you code the macros for positional parameters is the
order in which the parse service routine expects to find the positional
parameters in the command string.

Figure 119 shows the format of the IKJPOSIT macro instruction. Each
of the operands is explained following the figure. Appendix A describes the
notation used to define macro instructions.

Command Scan and Parse -- Determining the Validity of Commands 247

250

DEFAULT="‘default value’
The parameter described by this IKJPOSIT macro instruction is required,
but the terminal user need not enter it. If the parameter is not entered,
the value specified as the default value is used.

Note: If neither PROMPT nor DEFAULT is specified, the parameter is
optional. The parse service routine takes no action if the parameter
specified by this IKJPOSIT macro instruction is not present in the
command buffer.

HELP=(‘help data’,‘help data’...)
You can provide up to 255 second level messages. Enclose each message
in apostrophes and separate the messages by single commas. These
messages are issued one at a time after each question mark is entered by
the terminal user in response to a prompting message from the parse
service routine. These messages are not sent to the user when the prompt
is for a password on a dsname or userid parameter.
Parse adds a message ID and the word ENTER (in prompt mode) or
MISSING (in no-prompt mode) to the beginning of each message before
writing it to the terminal.

VALIDCK =symbolic-address
Supply the symbolic address of a validity checking subroutine if you want
to perform additional validity checking on this parameter. Parse calls this
routine after first determining that the parameter is syntactically correct.

The Parameter Control Entry Built by IKJPOSIT: The IKJPOSIT macro
instruction generates the variable length parameter control entry (PCE)
shown in Figure 120.

TSO Guide to Writing a TMP or a CP

9

Number of
Bytes

Field

Contents or Meaning

MUOTBPOONOOLWN—T

m
>

to FF

Flags. These flags are set to indicate which
options were specified in the IKJPOSIT macro
instruction.

This is an IKJPOSIT PCE.

PROMPT

DEFAULTY

This is an extended format PCE. If the
VALIDCK parameter was specified, the length
of the field containing the address of the
validity checking routine is four bytes.

HELP

VALIDCK

LIST

ASIS
RANGE
SQSTRING
USID
VOLSER
DDNAME

Length of the parameter control entry. This
field contains a hexadecimal number
representing the number of bytes in this
IKJPOSIT PCE.

Contains a hexadecimal offset from the
beginning of the parameter descriptor list to
the related parameter descriptor entry built by
the parse service routine.

This field contains a hexadecimal number
indicating the type of positional parameter
described by this PCE. These numbers have
the following meaning:

DELIMITER
STRING
VALUE
ADDRESS
PSTRING
USERID
DSNAME
DSTHING
QSTRING
SPACE
JOBNAME
UID2PSWD
EXTENDED ADDRESS
Not used.

Contains the length minus one of the default
or prompting information supplied on the
IKJPOSIT macro instruction. This field and the
next are present only if DEFAULT or PROMPT
was specified on the IKJPOSIT macro
instruction.

Figure 120. The Parameter Control Entry Built by IKJPOSIT (Part 1 of 2)

Command Scan and Parse -- Determining the Validity of Commands 251

Number of b
B;::s re Field Contents or Meaning ’
Variable This field contains the prompting or default
information supplied on the IKJPOSIT macro
instruction.
2 This field contains a hexadecimal figure

representing the length in bytes of ali the PCE
fields used for second level messages. The
figure includes the length of this field. The
fields are present only if HELP is specified on
the IKJPOSIT macro instruction.

1 This field contains a hexadecimal number
representing the number of second level
messages specified by HELP on this IKJPOSIT
PCE.

2 This field contains a hexadecimal number
representing the length of this HELP segment.
The length figure includes the length of this
field, the message segment offset field, and
the length of the information. These fields are
repeated for each second level message
specified by HELP on the IKJPOSIT macro
instruction.

2 This field contains the message segment
offset. It is set to X‘0000'.

Variable This field contains one second level message
supplied on the IKJPOSIT macro instruction
specified by HELP. This field and the two '
preceding ones are repeated for each second

level message supplied on the IKJPOSIT macro
instruction. These fields do not appear if
second level message data was not supplied.

3or4 This field contains the address of a validity
checking routine if VALIDCK was specified on
the IKJPOSIT macro. If the "‘extended format
PCE" bit is on in the IKJPOSIT PCE, the
address is four bytes long; if the bit is off, the
address is three bytes long. This field is not
present if VALIDCK was not specified.

Figure 120. The Parameter Control Entry Built by IKJPOSIT (Part 2 of 2)

IKJTERM - Describing a Delimiter-Dependent Positional Parameter

Code the IKJTERM macro instruction to describe a positional parameter
that is one of the following:

« Statement number

« Constant

» Variable

« Constant or variable

The order in which you code the macros for positional parameters is the
order in which the parse service routine expects to find the parameters in
the command string.

252 TSO Guide to Writing a TMP or a CP

Figure 121 shows the format of the IKJTERM macro instruction. Each

of the operands is explained following the figure. Appendix A describes the
notation used to define macro instructions.

label IKJITERM *parameter-type’ [, LIST] [,RANGE]
, UPPERCASE STMI
JASIS +TYPE=] CNST
VAR
ANY

[,SBSCRPT[=label-PCEl] | ,PROMPI'=' prompt data'
,DEFAULT="default value'

[,HELP=('help data','help data‘’,...)]

[, VALIDCK=symbolic-adiress] [,RSVWD=label-PCE]

Figure 121. The IKJTERM Macro Instruction

label

This name is used to address the PCE built by the IKJTERM macro.
The hexadecimal offset to the parameter descriptor entry described by
this IKJTERM macro instruction is contained in the PCE.

Note: The hexadecimal offset to the PDE will contain binary zero when
the IKITERM macro is describing a subscript of a data name.

‘parameter-type’
This field is required so that the parameter can be identified when an
error message is necessary. This field differs from the PROMPT field in
that the PROMPT field is not required and, if supplied, is used only for
a required parameter that is not entered by the terminal user. Blanks
within the apostrophes are allowed.

LIST

The command operands may be entered by the terminal user as a list, in
the form:

commandname (parameter,parameter,...)
The LIST option may be used with any of the TYPE= positional
parameters.

RANGE

The command operands may be entered by the terminal user as a range,
in the form:

commandname parameter:parameter

The RANGE option may be used with any of the TYPE= positional
parameters.

Note: The LIST and RANGE options can not be used when the
IKJTERM macro instruction is describing a subscript of a data-name.

UPPERCASE
The parameter is to be translated to uppercase.

Command Scan and Parse -- Determining the Validity of Commands 253

254

ASIS

The parameter is to be left as it was entered by the terminal user.)

TYPE=

Describes the type of the parameter as one of:

« STMT — statement number
e CNST — constant

¢ VAR — variable

s« ANY — constant or variable

Note: A syntactical definition of these parameters is contained under
“Delimiter-Dependent Parameters.”

SBSCRIPT|=label-PCE]

Specifies one of two conditions:

1. If SBSCRIPT is entered with a label-PCE then the data-name
described by the IKITERM macro may be subscripted. Supply the
name of the label of an IKJTERM macro instruction that describes
the subscript. Only TYPE=VAR or TYPE=ANY parameters can be
subscripted.

2. If SBSCRPT is entered without a label-PCE then the IKITERM
macro is describing the subscript of a data-name. All TYPE=
parameters may be used on a subscript except TYPE=STMT. The
LIST and RANGE options can not be used on an IKJITERM macro
that is describing a subscript.

Note: Two IKJITERM macros are coded to describe a subscripted ‘
data-name. The first IKITERM macro describes the data name and J
specifies the SBSCRIPT option with the label of the second IKJTERM

macro. The second IKJTERM macro describes the subscript of the

data-name and specifies SBSCRPT without a label-PCE. The second

macro must immediately follow the first.

PROMPT="prompt data’

The parameter described by this IKITERM macro instruction is required.
The prompting data is the message to be issued if the parameter is not
entered by the terminal user. If prompting is necessary and the terminal
is in prompt mode, the parse service routine adds a message-identifying
number (message ID) and the word ENTER to the beginning of the
message before writing it to the terminal.

If prompting is necessary but the terminal is in no-prompt mode, the
parse service routine adds a message ID and the word MISSING to the
beginning of the message before writing it to the terminal. If a
subscripted data-name requires prompting, the terminal user is prompted
for the entire name including the subscript.

DEFAULT="default value’

The parameter described by this IKITERM macro instruction is required,
but the terminal user need not enter it. If the parameter is not entered,
the value specified as the default value is used.

Note: If neither PROMPT nor DEFAULT is specified, the parameter is
optional. The parse service routine takes no action if the parameter is not

present. <)

TSO Guide to Writing a TMP or a CP

HELP=(‘help data’,‘help data’,...)
You can provide up to 255 second level messages. Enclose each message
in apostrophes and separate the messages by single commas. These
messages are issued one at a time after each question mark entered by
the terminal user in response to a. prompting message from the parse
service routine.
Parse adds a message ID and the word ENTER (in prompt mode) or
MISSING (in no-prompt mode) to the beginning of each message before
writing it to the terminal.

VALIDCK=symbolic-address
Supply the symbolic address of a validity checking subroutine if you want
to perform additional checking on this parameter. Parse calls this routine
after first determining that the parameter is syntactically correct.

RSVWD=label-PCE
This parameter is used when TYPE=CNST or TYPE=ANY is specified.
This option indicates that this parameter can be a figurative constant.
Supply the address of the PCE (label on a IKJIRSVWD macro
instruction) that begins the list of reserved words that can be entered as
a figurative constant.
This list of reserved words is defined by a series of IKINAME macros
that contain all possible names and immediately follow the IKIRSVWD
macro.

Note: The IKIRSVWD macro can be coded anywhere in the list of
macros that build the PCL except following an IKJSUBF macro
instruction. This permits other IKITERM macro instructions to refer to
the same list.

Command Scan and Parse -- Determining the Validity of Commands 255

The Parameter Control Entry Built by IKJTERM: The IKJITERM macro
instruction generates the variable parameter control entry (PCE) shown in i
Figure 122.

Number of

Bytes Field Contents or Meaning

2 Flags. These flags are set to indicate options
on the IKJTERM macro instruction.

Byte 1
110. ... This is an IKJTERM PCE.
Y0 S PROMPT
R PO DEFAULT

S O This is an extended format PCE. If the
VALIDCK parameter was specified, the length
of the field containing the address of the
validity checking routine is four bytes.
TS HELP
....... 1 VALIDCK

1. .. LIST
A ASIS
5 PR RANGE
D R This term may be SUBSCRIPTED.
S U A reserved word PCE is chained from this
term.
. .000 Reserved

2 The hexadecimal length of this PCE.

2 Contains a hexadecimal offset from the
beginning of the parameter descriptor list to

the parameter descriptor entry built by the

parse routine.

1 This field indicates the type of positional
. parameter described by this PCE.

1. .. STATEMENT NUMBER

A VARIABLE

W CONSTANT

S R ANY (constant or variable)

e 1l This term is a SUBSCRIPT term,

.... .000 Reserved

4 Byte 1-2 Contains the hexadecimal length of the
parameter-type field.

Byte 3-4 Contains the offset of the parameter-type
field. It is set to X'0012’.

Variable Contains the parameter-type field.

Figure 122. The Parameter Control Entry Bullt by IKJTERM (Part 1 of 2)

256 TSO Guide to Writing a TMP or a CP

Number of
Bytes

Field

Contents or Meaning

Variable

Variable

3oré4

Contains the length of the default or
prompting information supplied on the macro
instruction.

Contains the default or prompting information
supplied on the macro instruction.

If a subscript is specified on the macro, this
field contains the offset into the parameter
control list of the subscript PCE.

If a reserved word PCE is specified on the
macro, this field contains the offset into the
parameter control list of the reserved word
PCE.

Contains the length (including this field) of all
the PCE fields used for second level messages
if HELP is specified on the macro.

The number of second level messages
specified on the macro instruction by the
HELP parameter.

Contains the length of this segment including
this field, the message offset field and second
level message.

Note: This field and the following two are
repeated for each second level message
specified by HELP on the macro.

This field contains the message segment
offset.

This field contains one second leve! message
specified by HELP on the macro instruction.
This field and the two preceding fields are
repeated for each second level message
specified.

This field contains the address of a validity
checking routine if VALIDCK was specified on
the IKJTERM macro. If the “‘extended format
PCE" bit is on in the IKJTERM PCE, the
address is four bytes long; if the bit is off, the
address is three bytes long. This field is not
present if VALIDCK was not specified.

Figure 122. The Parameter Control Entry Built by IKJTERM (Part 2 of 2)

Command Scan and Parse -- Determining the Validity of Commands 257

258

IKJOPER - Describing a Delimiter-Dependent Positional Parameter

Code the IKJOPER macro instruction to provide a parameter control entry
(PCE) that describes an expression. An expression consists of three parts;
two operands and one operator in the form:

(operandl operator operand2)

typically entered as:

(abc eq 123)

The parts of an expression are described by PCEs that are chained to the

IKJOPER PCE. The IKJTERM macro instruction is used to identify the
operands, and the IKJRSVWD macro instruction is used to identify the
operator.

of

Figure 123 shows the format of the IKJOPER macro instruction. Each
the operands is explained following the figure. Appendix A describes the

notation used to define macro instructions.

label IKJOPER

'parameter-type'’ , PROMPT="prompt data'
,DEFAULT="default value]

[,HELP=('help data', 'help data',...)]
[,VALIDCK=symbolic-address],OPERND1=1label
,OPERND2=1abel2 ,RSVWD=1abel3
[,CHAIN=label#]

Figure 123. The IKJOPER

Macro [nstruction

label

This name is used to address the PCE built by the IKJOPER macro. The
hexadecimal offset to the parameter descriptor entry described by this
macro is contained in the PCE.

‘parameter-type’

This field is required so that the parameter can be identified when an
error message is necessary. This field differs from the PROMPT field in
that the PROMPT field is not required and if supplied is used only for a
required parameter that is not entered by the terminal user. Blanks
within the apostrophes are allowed.

Note: This field is used only with error messages for the complete
expression. The IKITERM and IKJRSVWD PCEs are used with an error
message for missing operands or operator. If a validity check routine
specifies an invalid expression, then the entire expression is prompted
for.

TSO Guide to Writing a TMP or a CP

PROMPT="‘prompt data’
The parameter described by this IKJOPER macro instruction is required.
The prompting data is the message to be issued if the parameter is not
entered by the terminal user. If prompting is necessary and the terminal
is in prompt mode, the parse service routine adds a message-identifying
number (message ID) and the word ENTER to the beginning of the
message before writing it to the terminal. If prompting is necessary but
the terminal is in no-prompt mode, the parse service routine adds a
message ID and the word MISSING to the beginning of the message
before writing it to the terminal.

DEFAULT=‘default value’
The parameter described by this IKJOPER macro instruction is required,
but the terminal user need not enter it. If the parameter is not entered
the value specified as the default value is used.

Note: If neither PROMPT nor DEFAULT is specified, the parameter is
optional. The parse service routine takes no action if the parameter is not
present.

HELP=(‘help data’,‘help data’,...))
You can provide up to 255 second level messages. Enclose each message
in apostrophes and separate the messages by single commas. These
messages are issued one at a time after each question mark entered by
the terminal user in response to a prompting message from the parse
service routine.

Parse adds a message ID and the word ENTER (in prompt mode) or
MISSING (in no-prompt mode) to the beginning of each message before
writing it to the terminal.

VALIDCK=symbolic-address
Supply the symbolic address of a validity checking subroutine if you want
to perform additional checking on this expression. The parse service
routine calls this routine after first determining that the expression is
syntactically correct.

OPERND1 =labell
Supply the name of the label field of the IKITERM macro instruction
that is used to describe the first operand in the expression. This
IKJTERM macro instruction should be coded immediately following the
IKJOPER macro instruction that describes the expression.

OPERND2 =label2
Supply the name of the label field of the IKITERM macro instruction
that is used to describe the second operand in the expression. This
IKJTERM macro instruction should be coded immediately following the
IKJINAME macro instructions that describe the operator in the
expression under the associated IKJRSVWD macro instruction.

RSYWD=label3
Supply the name of the label field of the IKIRSVWD macro instruction
that begins the list of reserved words that are used to describe the
possible operators to be entered for the expression. The IKIRSVWD and
associated IKINAME macro instructions should be coded immediately
following the IKITERM macro that describes the first operand, and
immediately preceding the IKITERM macro that describes the second
operand.

Command Scan and Parse -- Determining the Validity of Commands 259

260

CHAIN-label4
Indicates that this parameter described by the IKJOPER macro
instruction may be entered as an expression or as a variable. Supply the
name of the label field of an IKITERM macro instruction that describes
the variable term. The LIST and RANGE options are not permitted on
this IKJITERM macro instruction. Code this IKJTERM macro instruction
immediately following the IKJITERM macro that describes the second
operand.

Note: The parse service routine first determines if the parameter is
entered as an expression. If the parameter is an expression, that is,
enclosed in parentheses, then it is processed as an expression. If it is not
an expression, then it is processed using the chained IKITERM PCE to
control the scan of the parameter.

TSO Guide to Writing a TMP or a CP

J

The Parameter Control Entry Built by IKJOPER: The IKJOPER macro
instruction generates the variable parameter control entry (PCE) shown in

Figure 124.

Number of
Bytes

Field

Contents or Meaning

Variable

2

Byte 1
111. ...

Byte 2
0000 0000

Byte 1-2

Byte 3-4

Flags. These flags are set to indicate options
on the IKJOPER macro instruction.

This is an IKJOPER PCE.

PROMPT

DEFAULT

This is an extended format PCE. If the
VALIDCK parameter is specified, the length of
the field containing the address of the validity
checking routine is four bytes.

HELP

VALIDCK

Reserved
The hexadecimal length of this PCE.

Contains a hexadecimal offset from the
beginning of the parameter descriptor list to
the parameter descriptor entry built by the
parse service routine.

Contains the hexadecimal length of the
parameter-type field.

Contains the offset of the parameter-type fieid
(X'0012’).

Contains the parameter-type field.

If a reserved word PCE is specified on the
macro, this field contains the offset into the
parameter control list of the reserved word
PCE.

Contains the offset into the parameter control
list of the OPERND1 PCE.

Contains the offset into the parameter controt
list of the OPERND2 PCE.

Contains the offset into the parameter control
list of the chained term PCE if present. Zero if
not present.

Contains the length of the defauit or
prompting information supplied on the macro
instruction.

Figure 124. The Parameter Ceontrol Entry Built by IKJOPER (Part 1 of 2)

Command Scan and Parse -- Determining the Validity of Commands 261

Number of
Bytes

Field

Contents or Meaning

Variable

Variable

3o0r4d

Contains the default or prompting information
supplied on the macro instruction.

Contains the length (including this field) of all
the PCE fields used for second level messages
if HELP is specified on the macro.

The number of second level messages
specified on the macro instruction by the
HELP = parameter.

Contains the length of this segment including
this field, the message offset field and second
level message.

Note: This field and the following two are
repeated for each second level message
specified by HELP on the macro.

This field contains the message segment
offset.

This field contains one second level message
specified by HELP on the macro instruction.
This field and the two preceding fields are
repeated for each second level message
specified.

This field contains the address of a validity
checking routine if VALIDCK was specified on
the IKJOPER macro. If the “‘extended format
PCE" bit is on in the IKJOPER PCE, the
address is four bytes long; if the bit is off, the
address is three bytes long. This field is not
present if VALIDCK was not specified.

Figure 124. The Parameter Control Entry Built by IKJOPER (Part 2 of 2)

IKJRSYWD - Describing a Delimiter-Dependent Positional

Parameter

Code the IKJIRSVWD macro instruction with at least the ‘parameter-type’

operand when you use it:

¢ With the RSVWD keyword of the IKIOPER macro instruction to
define the beginning of a list of the possible reserved words that can
be an operator in an expression. The possible reserved words that can
be operators in an expression. are identified by a list of IKINAME
macro instructions that immediately follow the IKJRSVWD macro

instruction.

« By itself to define a positional reserved word.

Code the IKJRSVWD macro instruction without operands when you use it:

o With the RSVWD keyword of the IKITERM macro instruction to
define the beginning of a list of possible reserved words that can be
used as a figurative constant. The possible figurative constants are
defined by a list of IKINAME macros that immediately follow the
IKJRSVWD macro instruction.

262 1I'SO Guide (o Writing a TMP or a CP?

9

In this case, simply code the IKJIRSVWD macro instruction as:

label IKJRSVWD

The order in which you code the macros for positional parameters is the
order in which the parse service routine expects to find the parameters in
the command string.

Figure 125 shows the format of the IKJRSVWD macro instruction. Each
of the operands is explained following the figure. Appendix A describes the
notation used to define macro instructions.

label IKJRSVWD 'parameter-type' ,PROMPT="'prompt data’'
,DEFAULT="'default value'

[,HELP=('help data', 'help data',...}]

Figure 125. The IKJRSVWD Macro Instruction

label
This name is used to address the PCE built by the IKJIRSVWD macro.

The hexadecimal offset to the parameter descriptor entry described by
this macro is contained in the PCE.

Note: The following operands are not coded on the IKIRSVWD macro
when you use it with the RSVWD keyword of the IKJTERM macro
instruction.

‘parameter-type’
This field is required so that the parameter can be identified when an
error message is necessary. This field differs from the PROMPT field in
that the PROMPT field is not required and if supplied is used only for a
required parameter that is not entered by the terminal user. Blanks
within the apostrophes are allowed.

PROMPT="‘prompt data’
The parameter described by this IKIRSVWD macro instruction is
required. The prompting data.is the message to be issued if the
parameter is not entered by the terminal user. If prompting is necessary
and the terminal is in prompt mode, parse adds a message-identifying
number (message ID) and the word ENTER to the beginning of the
message before writing it to the terminal. If prompting is necessary but
the terminal is in no-prompt mode, parse adds a message ID and the
-word MISSING to the beginning of the message before writing it to the
terminal. .

DEFAULT="‘default value’
The parameter described by this IKIRSVWD macro instruction is
required, but the terminal user need not enter it. If the parameter is not
entered, the value specified as the default value is used.

Note: If neither PROMPT nor DEFAULT is specified, the parameter is

optional. The parse service routine takes no action if the parameter is not
present.

Command Scan and Parse —- Determining the Valldity of Commands 263

HELP=(‘help data’,‘help data’,...)
You can provide up to 255 second level messages. Enclose each message

in apostrophes and separate the messages by single commas. These
messages are issued one at a time after each question mark entered by
the terminal user in response to a prompting message from the parse

routine.

The parse service routine adds a message ID and the word ENTER (in
prompt mode) or MISSING (in no-prompt mode) to the beginning of
each message before writing it to the terminal.

The Parameter Control Entry Built by IKJRSVWD: The IKJRSVWD macro
instruction generates the variable parameter control entry (PCE) shown in

Figure 126.

Number of
Bytes

Field

Contents or Meaning

Variable

Variable

.000 0000

Byte 1-2

Byte 3-4

Flags. These flags are set to indicate options
on the IKJRSVWD macro instruction.

This is an IKJRSVWD PCE.
PROMPT

DEFAULT

Reserved

HELP

Reserved

This PCE is used with the IKJTERM macro as a
figurative constant.

This PCE is not used with the IKJTERM macro
as a figurative constant.

Reserved.

The hexadecimal length of this PCE.

Contains a hexadecimal offset from the
beginning of the parameter descriptor list to
the parameter descriptor entry built by the
parse service routine.

Note: The following fields are omitted if this
PCE is used with the IKJTERM macro to
describe a figurative constant.

Contains the hexadecimal iength of the
parameter-type field.

Contains the offset of the parameter-type field
(X'0012').

Contains the parameter-type field.

Contains the length of the default or
prompting information supplied on the macro
instruction.

Contains the default or prompting information
supplied on the macro instruction.

Figure 126. The Parameter Control Entry Built by IKJRSYWD (Part 1 of 2)

264 TSO Guide to Writing a TMP or a CP

J

Number of

Bytes Field Conlents or Meaning

2 Contains the length (including this field) of ali
the PCE fields used for second level messages
if HELP is specified on the macro.

1 The number of second level messages
specified on the macro instruction by the
HELP = parameter.

2 Contains the length of this segment including
this field, the message offset field and second
level message.

Note: This field and the following two are
repeated for each second level message
specified by HELP on the macro.

2 This field contains the message segment
offset.

Variable This field contains one second level message
specified by HELP on the macro instruction.
This field and the two preceding fields are
repeated for each second level message
specified.

Figure 126. The Parameter Control Entry Built by IKJRSVWD (Part 2 of 2)

IKJIDENT- Describing a Non-Delimiter-Dependent Positional
Parameter

Execute the IKIIDENT macro instruction to describe a positional parameter
that does not depend upon a particular delimiter for its syntactical definition
-- those parameters discussed under ''Positional Parameters Not Dependent
on Delimiters."

These positional parameters must be in the form of a character string,
with restrictions on the beginning character, additional characters, and
length, decimal integers, or hexadecimal characters.

The order in which you code the macro instructions for positional
parameters is the order in which the parse service routine expects to find
the positional parameters in the command string.

Figure 127 shows the format of the IKJIDENT macro instruction. Each
of the operands is explained following the figure. Appendix A describes the
notation used to define macro instructions.

Command Scan and Parse -- Determining the Validity of Commands 265

266

label

IKJIDENT 'parameter-type’' (,LIST]I[,RANGE][,PTBYPS])
[,ASTERIS](][+ UPPLRCAS E][MAXLNT B= number]
,ASIS
ALPuA ALPHA
o FIRST=] NUMERIC s OT HER=]} NUMERIC

ALPHANTM ALPHANUM

ANY ANY

NONATARBC NONATABC

NONAT NUM NONAT NUM

[+ PROMPT="'prompt data’]
+ DEFAULT="default value'

,CHAR
,» INTEG
+HEX

[, VALIDCK=symbolic~address]
[LHELP=('help data', 'help data',...)]}

Figure 127. The IKJIDENT Macro Instruction

label
This name is used within the PDL DSECT as the symbolic address of
the parameter descriptor entry for this positional parameter.

‘parameter-type’
This field is required so that the parameter can be identified when an :
error message is necessary. This field differs from the PROMPT field in J
that the PROMPT field is not required and if supplied is used only for a
required parameter that is not entered by the terminal user. Blanks
within the apostrophes are allowed.

LIST
This positional parameter may be entered by the terminal user as a list,

that is, in the form:

commandname (parameter,parameter,...)

RANGE
This positional parameter may be entered by the terminal user as a
range, that is, in the form:

commandname parameter:parameter

PTBYPS
All prompting for the parameter is to be done in print inhibit mode. This
option may be specified only when the PROMPT option is specified.

ASTERISK
An asterisk may be substituted for this positional parameter.

Note: ASTERISK and INTEGER are mutually exclusive.

UPPERCASE
The parameter is to be translated to uppercase. ¢]

TSO Guide to Writing a TMP or a CP

ASIS
The parameter is to be left as it was entered.

MAXLNTH=number
The maximum number of characters the string may contain. If you do
not code the MAXLNTH operand, the parse service routine accepts a
character string of any length.

FIRST=
Specify the character type restriction on the first character of the string.

OTHER=
Specify the character type restriction on the characters of the string other
than the first character.

Note: The restrictions on the characters of the string are specified by
coding one of the following character types after the FIRST= and the
OTHER= operands. This is true unless HEX, INTEG, or CHAR is
specified. FIRST= and OTHER= serve no purpose in these cases.

ALPHA
An alphabetic or national character. ALPHA is the default value for
both the FIRST and the OTHER operands.

NUMERIC
A digit, 0-9.

ALPHANUM
An alphabetic, numeric, or national character.

ANY
Any character other than a blank, comma, tab, or semicolon. Parentheses
must be balanced.

NONATABC
An alphabetic character only. National characters and numerics are
excluded.

NONATNUM
An alphabetic or numeric character. National characters are excluded.

PROMPT="‘prompt data’
The parameter is required; the prompting data is the message to be
issued if the parameter is not entered by the terminal user. If prompting
is necessary and the terminal is in prompt mode, the parse service routine
adds a message-identifying number (message ID) and the word ENTER
to the beginning of this message before writing it to the terminal.
If prompting is necessary but the terminal is in no-prompt mode, the
parse service routine adds a message ID and the word MISSING to the
beginning of this message before writing it to the terminal.

DEFAULT="‘default value’
The parameter is required, but a default value may be used. If the
parameter is not entered by the terminal user, the value specified as the
default value is used.

Note: The parameter is optional if neither PROMPT nor DEFAULT is
specified. The parse service routine takes no action if the parameter
specified by this IKJIIDENT macro instruction is not present in the
command buffer.

Command Scan and Parse -- Determining the Validity of Commands 267

CHAR
Specifies that the parse service routine is to accept a string of characters J
as input. This input string may be either quoted or unquoted.

INTEG
Specifies that the parse service routine is to accept a numeric quantity as
input. This quantity may be decimal, hexadecimal, or binary. The number
is stored internally as a fullword binary value, regardless of how INTEG
was specified.

Note: A maximum length is automatically implied if the INTEG option is
specified. For binary input, the maximum number of characters is 32.
For hexadecimal input, the maximum length is 8. For decimal input, the
maximum length is 10.

HEX
Specifies that the parse service routine is to accept a hexadecimal value
as input. This string quantity may be hexadecimal or a quoted or
non-quoted string.

Note: All input entered in the form X‘n...” must be valid hexadecimal
digits (0-9, A-F). All input entered in the form B‘n..."” must be valid
binary digits (0,1). All input entered as unquoted decimals must be valid
decimal digits (0-9).

VALIDCK =symbolic-address
Supply the symbolic address of a validity checking subroutine if you want
to perform additional validity checking on this parameter. The parse
service routine calls the addressed routine after first determining that the
parameter is syntactically correct. J

HELP=(‘help data’,‘help data’...)
You can provide up to 255 second level messages. Enclose each message
in apostrophes and separate the messages by single commas. These
messages are issued one at a time after each question mark entered by
the terminal user in response to a prompting message from the parse
service routine. These messages are not sent to the user when the prompt
is for a password on a dsname or userid parameter.
The parse service routine adds a message 1D and the word ENTER (in
prompt mode) or MISSING (in no-prompt mode) to the beginning of
each message before writing it to the terminal.

268 TSO Guide to Writing a TMP or a CP

()

The Parameter Control Entry Built by IKJIDENT: The IKJIDENT macro
instruction generates the variable length parameter control entry (PCE)
shown in Figure 128.

];;tr::er of Field Contents or Meaning

2 Flags. These flags are set to indicate which
options were specified in the IKJIDENT macro
instruction.

Byte 1
This is an IKJIDENT PCE.
PROMPT
DEFAULT
This is an extended format PCE. If the
VALIDCK parameter is specified, the length of
the field containing the address of the validity
checking routine is four bytes.
1L HELP
....... 1 VALIDCK
Byte 2
1. .. LIST
1. ASIS
W1 RANGE
0 0000 Reserved

2 Length of the parameter control entry. This
field contains a hexadecimal number
representing the number of bytes in this
IKJIDENT PCE.

2 Contains a hexadecimal offset from the
beginning of the parameter descriptor list to
the related parameter descriptor entry built by
the parse service routine.

1 A flag field indicating the options coded on
the IKJIDENT macro instruction.

ASTERISK
MAXLNTH
PTBYPS
Integer
. Character
1L Hexadecimal
...... 00 Reserved

1 This field contains a hexadecimal number
indicating the character type restriction on the
first character of the character string
described by the IKJIDENT macro instruction.

HEX Acceptable characters:

0 Any (except blank, comma, tab, semicolon)
1 Alphabetic or national

2 Numeric

3 Alphabetic, national, or numeric

4 Alphabetic

5 Alphabetic or numeric

6 to FF Not used

Figure 128. The Parameter Control Entry Built by IKJIDENT (Part 1 of 3)

Command Scan and Parse -- Determining the Validity of Commands 269

Number of
Bytes

Field

Contents or Meaning

Variable

Variable

ONHWN—~OT
Y

-
o

-
-

This field contains a hexadecimal number
indicating the character type restriction on the
other characters of the character string
described by the IKJIDENT macro instruction.

Acceptable characters:

Any (except blank, comma, tab, semicolon)
Alphabetic or national

Numeric

Alphabetic, national, or numeric

Alphabetic

Alphabetic or numeric

Not used

This field contains a hexadecimal number
representing the length of the parameter type
segment. This figure includes the length of this
field, the length of the message segment
oftset field, and the length of the parameter
type field supplied on the IKJIDENT macro
instruction.

This field contains the message segment
offset. it is set to X'0012'.

This field contains the field supplied as the
parameter type operand of the IKJIDENT
macro instruction.

This field contains a hexadecimal number
representing the maximum number of
characters the string may contain. This field is
present only if the MAXLNTH operand was
coded on the IKJIDENT macro instruction.

This field contains the length minus one of the
defaults or prompting information supplied on
the IKJIDENT macro instruction. This field and
the next are present only if DEFAULT or
PROMPT were specified on the IKJIDENT
macro instruction.

This field contains the prompting or defauit
information supplied on the IKJIDENT macro
instruction.

This field contains a hexadecimal figure
representing the length in bytes of all the PCE
fields used for second level messages. The
figure includes the length of this field. The
fields are present only if HELP is specified on
the IKJIDENT macro instruction.

Figure 128. The Parameter Control Entry Built by IKJIDENT (Part 2 of 3)

270 TSO Guide to Writing a TMP or a CP

o

Number of

Bytes Field Contents or Meaning

1 This field contains a hexadecimal number
representing the number of second level
messages specified by HELP on this IKJIDENT
PCE.

2 This field contains a hexadecimal number
representing the length of this HELP segment.
The figure includes the length of this field, the
message segment offset field, and the length
of the information. These fields are repeated
for each second level message specified by
HELP on the IKJIDENT macro instruction.

2 This field contains the message segment
offset. It is set to X'0000'.

Variable This field contains one second level message
supplied on the IKJIDENT macro instruction
specified by HELP. This field and the two
preceding ones are repeated for each second
level message supplied on the |IKJIDENT
macro instruction; these fields do not appear
if no second level message data was supplied.

3oré4 This field contains the address of a validity
checking routine if VALIDCK was specified on
the IKJIDENT macro. If the ‘‘extended format
PCE" bit is on in the IKJIDENT PCE, the
address is four bytes long; if the bit is off, the
address is three bytes long. This field is not
present if VALIDCK was not specified.

Figure 128. The Parameter Control Entry Built by IKJIDENT (Part 3 of 3)

IKJKEYWD - Describing a Keyword Parameter

Execute the IKIKEYWD macro instruction to describe a keyword
parameter. Execute a series of IKINAME macro instructions to indicate the
possible names for the keyword parameter. Keyword parameters may
appear in any order in the command but must follow all positional
parameters. A user is never required to enter a keyword parameter; if he
does not, the default value you supply, if you choose to supply one, is used.
Keywords may consist of any combination of alphameric characters up to
31 characters in length, the first of which must be an alphabetic character.

Figure 129 shows the format of the IKIKEYWD macro instruction, Each
of the operands is explained following the figure. Appendix A describes the
notation used to define macro instructions.

label IKJIKEYWD [DEFAULT="'default-value']

Figure 129. The IKIKEYWD Macro Instruction

label
This name is used within the PDL DSECT as the symbolic address of
the parameter descriptor entry for this parameter.

Command Scan and Parse -- Determining the Validity of Commands 271

DEFAULT="‘default-value’

The default value you specify is the value that is used if this keyword is
not present in the command buffer. Specify the valid keyword names
with IKINAME macro instructions following this IKIKEYWD macro

instruction.

The Parameter Control Entry Built by IKJKEYWD: The IKIKEYWD macro
instruction generates the variable length parameter control entry (PCE)

shown in Figure 130.

Contents or Meaning

Number of .
Bytes Field
2
Byte 1
010.
.... .000
Byte 2
0000 0000
2
2
1
Variable

Flags. These flags are set to indicate which
options were coded in the IKJKEYWD macro
instruction.

This is an IKJKEYWD PCE
Reserved.
DEFAULT
Reserved.

Reserved.

Length of the parameter control entry. This
field contains a hexadecimal number
representing the number of bytes in this
IKJKEYWD PCE.

This field contains a hexadecimal offset from

the beginning of the parameter descriptor list
to the related parameter descriptor entry built
by the parse service routine.

This field contains the length minus one of the
default information supplied on the IKJKEYWD
macro instruction. This field and the next are
present only if DEFAULT was specified on the
IKJKEYWD macro instruction.

This field contains the default value supplied
on the IKJKEYWD macro instruction.

Figure 130. The Parameter Control Entry Built by IKIKEYWD

IKJNAME - Listing the Keyword or Reserved Word Parameter

Names

The IKINAME macro instruction may be coded with the following two

macro instructions:

1. With the IKJKEYWD macro instruction to define keyword parameter

names.

2. With the IKJIRSVWD macro instruction to define reserved word

parameter names.

272 TSO Guide to Writinga TMP or a CP

J

A description and format of the IKINAME macro instruction for both
methods of coding follows:

1. Code a series of IKINAME macro instructions to indicate the possible
names for a keyword parameter. One IKINAME macro instruction is
needed for each possible keyword name. Code the IKINAME macro
instructions immediately following the IKJIKEYWD macro instruction
to which they pertain.

Figure 131 shows the format of the IKINAME macro instruction. Each
of the operands is explained following the figure. Appendix A describes the
notation used to define macro instructions.

IKJINAME | 'keyword-name' [, SUBFLD=subfield-name]
[,INSERT="'keyword-string']

[ALIAS=('name', 'name',...)]

Figure 131. The IKJINAME Macro Instruction (when used with the IKJKEYWD Macro
Instruction)

keyword-name
One of the valid keyword parameters for the IKIKEYWD macro
instruction that precedes this IKINAME macro instruction.

SUBFLD=subfield-name
This option indicates that this keyword name has other parameters
associated with it. Use the subfield-name as the label field of the
IKJSUBF macro instruction that begins the description of the possible
parameters in the subfield.

INSERT=‘keyword-string’
The use of some keyword parameters may imply that other keyword
parameters are required. The parse service routine inserts the keyword
string specified into the command string just as if it had been entered as
part of the original command string. The command buffer is not altered.

ALIAS=(‘name’,‘name’,...)
Specifies up to 32 alias names for a keyword. Each name represents a
valid abbreviation or alternate name and must be enclosed in quotes. All
abbreviations or names must be enclosed in a single set of parentheses.

2. Code a series of IKINAME macro instructions to indicate the possible
names for reserved words. One IKINAME macro instruction is needed
for each possible reserved word name. Code the IKINAME macro
instructions immediately following the IKIRSVWD macro instruction
to which they apply.

Figure 132 shows the format of the IKINAME macro instruction. Each
of the operands is explained following the figure. Appendix A describes the
notation used to define macro instructions.

IKJINAME | 'reserved-word name'

Figure 132. The IKINAME Macro Instruction (when used with the IKJRSVWD Macro
Instruction)

Command Scan and Parse -- Determining the Validity of Commands 273

reserved-word name

One of the valid reserved word parameters for the IKJRSVWD macro)
instruction that precedes the IKINAME macro instructions.

Note: The IKINAME macro instruction has two uses when coded with
the IKJRSVWD macro instruction. The reserved-words identified on the
IKINAME macros may be figurative constants when the IKJRSVWD
macro is chained from an IKJTERM macro, or operators in an
expression when the IKJIRSVWD macro is chained from the IKJOPER
macro.

The Parameter Control Entry Built by IKJINAME: The IKJNAME macro
instruction generates the variable length parameter control entry (PCE)
shown in Figure 133.

Note: Only the first four fields are valid when the IKINAME macro
instruction is coded with the IKJIRSVWD macro instruction.

274 TSO Guide to Writing a TMP or a CP

Number of

Bytes Field Contents or Meaning

2 Flags. These flags are set to indicate which
options were coded in the IKJNAME macro
instruction.

Byte 1
011. ... This is an IKINAME PCE.
.0 0. Reserved.
R SUBFLD
...... 00 Reserved.
Byte 2
000. Reserved.
U R INSERT
v Ll ALIAS
.... 00.0 Reserved.

2 Length of the parameter control entry. This
field contains a hexadecimal number
representing the number of bytes in this
IKINAME PCE.

1 This field contains the length minus one of the
keyword or reserved word names specified on
the IKJNAME macro instruction.

Variable This field contains the keyword or reserved
word name specified on the IKJINAME macro
instruction.

2 This field contains a hexadecimal offset, plus
one, from the beginning of the parameter
control list to the beginning of a subfield PCE.
This field is present only if the SUBFLD
operand was specified in the IKINAME macro
instruction.

1 This field contains the length minus one of the
keyword string included as the INSERT
operand in the IKJNAME macro instruction.
This field and the next are not present if
INSERT was not specified.

Variable This field contains the keyword string specified
as the INSERT operand of the IKINAME macro
instruction.

1 The total number of aliases.

1 The length minus one of first alias.

Variable The first alias.

1 The length minus one of second alias.

Variable The second alias.

Figure 133. The Parameter Control Entry Built by IKINAME

Command Scan and Parse -- Determining the Validity of Commands 275

IKJSUBF - Describing a Keyword Subfield

Keyword parameters may have subfields associated with them. A subfield .
consists of a parenthesized list of parameters directly following the
keyword.

Execute the IKISUBF macro instruction to indicate the beginning of a
subfield description. The IKISUBF macro instruction ends the main part of
the parameter control list or the previous subfield description, and begins a
new subfield description.

Note that the IKJSUBF macro instruction is used only to begin the
subfield description; the subfield is described using the IKJPOSIT,
IKJIDENT, and IKJKEYWD macro instructions, depending upon the type
of parameters within the subfield.

You must use the name you have coded as the SUBFLD operand of the
IKINAME macro instruction for the label of this macro instruction.

Figure 134 shows the format of the IKISUBF macro instruction.
Appendix A describes the notation used to define macro instructions.

label IKJSUBF

Figure 134. The IKJSUBF Macro Instruction

label
The name you supply as the label of this macro instruction must be the
same name you have coded as the SUBFL.D operand of the IKINAME
macro instruction describing the keyword name that takes this subfield. J

The Parameter Control Entry Built by IKJSUBF: The IKJSUBF macro
instruction generates the parameter control entry (PCE) shown in Figure

135.
Number of
B;t':s er o Field Contents or Meaning
1 Flags. These flags indicate which type of PCE
this is.
000. This PCE indicates an end-of-field. These

end-of-field indicators are present in IKJSUBF
and IKJENDP PCEs; they indicate the end of a
previous subfield or of the PCL itseif.

...0 0000 Reserved.

2 This field contains a hexadecimal number
representing the offset within the PCL to the
first IKJKEYWD PCE or to the next
end-of-field indicator if there are no keywords
in this subfield.

Figure 135. The Parameter Control Entry Built by IKJSUBF

276 TSO Guide to Writing a TMP or a CP

IKJENDP - Ending the Parameter Control List

Execute the IKJENDP macro instruction to inform the parse service routine
that it has reached the end of the parameter control list built for this
command.

Figure 136 shows the format of the IKJENDP macro instruction.
Appendix A describes the notation used to define macro instructions.

IKJENDP

Figure 136. The IKJENDP Macro Instruction

The Parameter Control Entry Built by IKJENDP: The IKIENDP macro
instruction generates the parameter control entry (PCE) shown in Figure
137. It is merely an end-of-field indicator.

];;:::)er of Field Contents or Meaning
1 Flags. These flags are set to indicate
end-of-field.
000. End-of-field indicator. Indicates the end of the
PCL.
...0 0000 Reserved.

Figure 137. The Parameter Control Entry Built by IKJENDP

IKJRLSA - Releasing Virtual Storage Allocated by Parse

Execute the IKJRLSA macro instruction to release virtual storage allacated
by the parse service routine and not previously released by the parse service
routine. This virtual storage consists of the parameter descriptor list (PDL)
returned by the parse service routine and any storage obtained for new data
received by parse as a result of a prompt.

If the return code from the parse service routine is non-zero, all storage
allocated by parse has been freed by the parse service routine. In that case,
this macro instruction need not be issued, but will not cause an error if it is
issued.

Figure 138 shows the format of the IKJRLSA macro instruction. Each of
the operands is explained following the figure. Appendix A describes the
notation used to define macro instructions.

label IKJRLSA Address of the answer place
(1-12)

Figure 138. The IKJRLSA Macro Instruction

address of the answer place
The address of the word in which the parse service routine placed a
pointer to the PDL when control was returned to the command
processor. This address may be loaded into one of the general registers 1
through 12, right adjusted with the unused high order bits set to zero.
See “Passing Control to the Parse Service Routine” for a description of
the parse parameter list.

Command Scan and Parse -- Determining the Validity of Commands 277

Passing Control to the Parse Service Routine

You pass control to the parse service routine by issuing a CALLTSSR
macro instruction specifying IKJPARS as the entry point. IKJPARS must
receive control in 24-bit addressing mode. See ‘“‘Passing Control to the TSO
Service Routines” for a description of a restriction on using the
CALLTSSR macro to invoke parse. Before you invoke the parse service
routine however, you must build a parse parameter list (PPL), and place its
address into register 1. This PPL must remain intact until the parse service
routine returns control to the calling routine. Figure 139 shows this flow of
control between a command processor and the parse service routine.

Command Processor

CALLTSSR
P ice Routi
EP = IKJPARS arse Service Routine
|
|
|
I
|
I
f
|
I
I
I
Reg. 1 ¥
.
y PPL
*0 4 UPT
*4 4 ECT
+8) CP ECB
28 el
+ ‘6* Answer Place o~
+20* Command Buffer (o
+24* User Work Area
Arswer Place
Lenéfh Offset Command Name |Command Parameters

Figure 139. Control Flow Be-tween Command Processor and the Parse Service Routine

278 TSO Guide to Writing a TMP or a CP

J

!

The Parse Parameter List l ‘

The parse parameter list (PPL) is a seven-word parameter list containing
addresses required by the parse service routine. -

The PPL is defined by the IKJPPL DSECT. Figure 140 shows the
format of the parse parameter list.

Number of
B;::s re Field Contents or Meaning

4 PPLUPT The address of the user profile table.
4 PPLECT The address of the environment control table

4 PPLECB The address of the command processor’s
event control block. The ECB is one word of
storage, declared and initialized to zero by the
command processor.

4 PPLPCL The address of the parameter control list
created by the command processor using the
parse macro instructions. Use the label on the
IKJPARM macro instruction as the symbolic
address of the PCL.

4 PPLANS The address of a fullword of virtual storage,
supplied by the calling routine, in which the
parse service routine places a pointer to the
parameter descriptor list (PDL). If the parse of
the command buffer is unsuccessful, parse
sets the pointer to the PDL to X'FFO00000'.

4 PPLCBUF The address of the command buffer.

4 PPLUWA The address of a user supplied work area. This
field can contain anything that the calling
routine wishes passed to a validity checking
routine.

Figure 140. The Parse Parameter List

Formats of the PDEs Returned by the Parse Service Routine

The parse service routine returns the results of the scan of the command
buffer to the command processor in a parameter descriptor list (PDL). The
PDL, built by parse, consists of the parameter descriptor entries (PDE),
which contain pointers to the parameters, indicators of the options
specified, and pointers to the subfield parameters entered with the
command operands.

Use the IKJIPARMD DSECT to map the PDL and each of the PDEs.
Base the IKJPARMD DSECT on the PDL address returned by the Parse
service routine. The PPLANS field of the parse parameter list points to a
fullword of storage that contains the address of the PDL. Then use the
labels you used on the parse macro instructions to access the corresponding
PDEs.

The format of the PDE depends upon the type of parameter parsed. For
a discussion of parameter types, see the topic ‘““Command Parameter
Syntax.” The following description of the possible PDEs within a PDL
shows each of the PDE formats and the type of parameters they describe.

Command Scan and Parse -- Determining the Validity of Commands 279

R

The PDL Header

The PDL begins with a two-word header. The DSECT= operand of the

IKJPARM macro instruction provides a name for the DSECT created to

map the PDL. Use this name as the symbolic address of the beginning of
the PDL header.

+0

A pointer to the next block of virtual storage

+4

+5

Subpool number Length

Pointer to the next block of virtual storage:
The parse service routine gets virtual storage for the PDL and for any
data received as the result of a prompt. Each block of storage obtained
begins with another PDL header. The blocks of storage are forward
chained by this field. A forward-chain pointer of X‘FF000000’ in this
field indicates that this is the last storage element obtained.

Subpool number:
This field will always indicate subpool 1. All storage allocated by the
parse service routine for the PDL and for data received from a prompt is
allocated from subpool 1.

Length:
This field contains a hexadecimal number indicating the length of this
block of storage (this PDL); the length includes the header.

PDEs Created for Positional Parameters

The labels you use to name the macro instructions provide access to the
corresponding PDEs. The positional parameters described by the IKJPOSIT,
IKJTERM, IKJOPER, IKJRSVWD and the IKJIDENT macro instructions
have the following PDE formats.

SPACE, DELIMITER: The parse service routine does not build a PDE for
either a SPACE or a DELIMITER parameter.

STRING, PSTRING, and QSTRING: The parse service routine uses the
IKJPOSIT macro to build a two-word PDE to describe a STRING,
PSTRING, or a QSTRING parameter; the PDE has the following format:

+0

A pointer to the character string

+4

Length

+6 +7
Flags Reserved

Pointer to the character string:
Contains a pointer to the beginning of the character string, or a zero if
the parameter was omitted.

280 TSO Guide to Writing a TMP or a CP

J

Length: S
Contains the length of the string. Any punctuation around the character
string is not included in this length figure. The length is zero if the string
is omitted or if the string is null.

Flags:
0....... The parameter is not present.
1l e The parameter is present.
XXX XXXX Reserved bits.

Note: If the string is null, the pointer is set, the length is zero, and the
flag bit is 1.

VALUE: The parse service routine uses the IKJPOSIT macro to build a
two-word PDE to describe a VALUE parameter; the PDE has the
following format:

+0

A pointer to the character strirng

+4

Length

+6 +7
Flags Type-char.

Pointer to the character string:
Contains a pointer to the beginning of the character string; that is, the
first character after the quote. Contains a zero if the VALUE parameter
is not present.

Length:

Contains the length of the character string excluding the quotes.
Flags:

0... ... The parameter is not present.

) [The parameter is present.

XXX XXXX Reserved bits.

Type-character:
Contains the letter that precedes the quoted string.

DSNAME, DSTHING: The parse service routine uses the IKJPOSIT macro
to build a six-word PDE to describe a DSNAME or a DSTHING
parameter.

Command Scan and Parse -- Determining the Validity of Commands 281

282

The PDE has the following format:

+0
A pointer to the dsname
+4 +6 +7
Lengthl Flagsl Reserxrved
+8
A pointer to the member name
+12 +14 +15
Length2 Flags2 Reserved
+16
A pointer to the password
+20 +22 +23
Length3 Flags3 Reserxrved

Pointer to the dsname:
Contains a pointer to the first character of the data set name. Contains
zero if the data set name was omitted. Contains a pointer to the USID if
it is prefixed.

Lengthl:
Contains the length of the data set name. If the data set name is
contained in quotes, this length figure does not include the quotes. When
the USID is prefixed, this field will contain the total length of the data
set name and the USID.

Flags1:
0. ... The data set name is not present.
1. ... The data set name is present.
0 The data set name is not contained within quotes.

g The data set name is contained within quotes.
XX XXXX Reserved bits.

Pointer to the member name:
Contains a pointer to the beginning of the member name. Contains zero
if the member name was omitted.

Length2:
Contains the length of the member name. This length figure does not
include the parentheses around the member name.

Flags2:
0. ... The member name is not present.
1. ... The member name is present.
XXX XXXX Reserved bits.

Pointer to the password:
Contains a pointer to the beginning of the password. Contains zero if the
password was omitted.

Length3:
Contains the length of the password.

TSO Guide to Writing a TMP or a CP

Flags3:

0... ... The password is not present.
... The password is present.
XXX XXXX Reserved bits.

JOBNAME: The parse service routine uses the IKJPOSIT macro to build a
four word PDE to describe a JOBNAME parameter. The PDE has the
following format:

+0
A pointer to the jobname
+4 +6 +7
Lengthl Flaasl Reserved
+8
The pointer to the jobid name
+12 +14 +15
Length?2 Flags2 Reserved

Pointer to the jobname:
Contains a pointer to the beginning of the jobname. Contains zero if the
jobname was omitted.

Lengthl:
Contains the length of the jobname. The jobname may not be entered in
quotes.
Flags1
0. ... The jobname is not present.
1....... The jobname is present.

Pointer to the jobid:
Contains a pointer to the beginning of the jobid. Contains zero if the
jobid was omitted.

Length2:

Contains the length of the jobid. This length figure does not include the
parentheses around the jobid.

Flags2
0. ... The jobid is not present.
T v The jobid is present.
XXX XXXX Reserved bits.

ADDRESS: The parse service routine uses the IKJPOSIT macro to build a
nine word PDE to describe an ADDRESS parameter.

Command Scan and Parse -- Determining the Validity of Commands 283

284

The PDE has the following format:

+0
A pointer to the load name
+4 +6 +7
Lengthl Flagsl Reserved
+8
A pointer to the entry name
+12 +14 +15
Length2 Flags2 Reserved
+16
A pointer to the address string
+20 +22 +23
Length3 Flags3 Reserved
+24 +25 +26
Flagsl Sign Inlirect count
+28
A pointer to the first expression value PDE
+32 .]
Resexrved for use by user validity check routine

Pointer to the load name:
Contains a pointer to the beginning of the load module name. Contains
zero if no load module name was specified.

Lengthl:

Contains the length of the load module name, excluding the period.
Flags1:

0.. ... The load module name is not present.

| OV The load module name is present.

XXX XXXX Reserved bits.

Pointer to the entry name:
Contains a pointer to the name of the CSECT; zero if the CSECT name
is not specified.

Length2:

Contains the length of the entry name, excluding the period.

Flags2:
0. ... The entry name is not present.
1. ... The entry name is present.
XXX XXXX Reserved bits.

Pointer to the address string:
Contains a pointer to the address string portion of a qualified address.
Contains a zero if the address string was not specified.

TSO Guide to Writing a TMP or a CP

Length3:
Contains the length of the address string portion of a qualified address.
This length count excludes the following characters for the following
address types:

1. Relative address - excludes the plus sign.
2. Register address - excludes letters.
3. Absolute address - excludes period.

Flags3
0... The address string is not present.
1. ... The address string is present.
XXX XXXX Reserved bits.

Flags4:

The bits set in this one-byte flag field indicate the type of address found
by the parse service routine.

Bit Setting Hex Meaning

0000 0000 00 Absolute address.

1000 0000 80 Symbolic address.

0100 0000 40 Relative address.

0010 0000 20 General register.

0001 0000 10 Double precision floating-point register.

0000 1000 08 Single precision floating-point register.

0000 0100 04 Non-qualified entry name (optionally preceded by a load name).

Sign:
Contains the arithmetic sign character used before the following
expression value. Contains a zero if the address is not an address
expression.

Indirect count:
Contains a number representing the number of levels of indirect
addressing.

Pointer to the first expression value PDE:
If the address is in the form of an address expression, this is a pointer to
the PDE for the first expression value. Contains X‘FF000000’ if the
address is not an address expression.

User word for validity checking routine:
A word provided for use by the user-written validity checking routine.

Expression Value: If an ADDRESS parameter is found to be in the form of
an address expression, the parse service routine builds an expression value
PDE for each expression value within the address expression. These
expression value PDEs are chained together, beginning at the eighth word
of the address PDE built by the parse service routine to describe the
address parameter. The last expression value PDE is indicated by
X‘FF000000’ in its fourth word, the forward chaining field.

Command Scan and Parse -- Determining the Validity of Commands 285

286

The parse service routine uses the IKJPOSIT macro to build a four-word ,
PDE to describe an expression value; it has the following format: ’

+0

A pointer to the address string

+4

Length3 Reserved

+6

+8

Flags5

+9 +10
Sign Indirect count

+12

A pointer to the next expression value

Pointer to the address string:
Contains a pointer to the expression value address string.

Length3:
Contains the length of the expression value address string. The N is not
included in this length value.

FlagsS5:
The parse service routine sets these flags to indicate the type of
expression value:
Bit Setting Hex Meaning

0000 0100 04 This is a decimal expression value.
0000 0010 02 This is a hexadecimal expression value.

o J

Contains the arithmetic sign character used before an expression value.

Indirect count:
Contains a number representing the number of levels of indirect
addressing within this particular address expression.

Pointer to the next expression value PDE:
Contains a pointer to the next expression value PDE if one is present;
contains X‘FF000000’ if this is the last expression value PDE.

USERID: The parse service routine uses the IKJPOSIT macro to build a
four-word PDE to describe a USERID parameter; it has the following
format:

+0

A pointer to the userid

+4

Lengthl

+6 +7
Flagsl Reserved

+8

A pointer to the password

+12

Length2

+14 +15
Flags2 Reserved

TSO Guide to Writing a TMP or a CP

C\

Pointer to the userid:
Contains a pointer to the beginning of the userid. Contains zero if the
userid was omitted.

Lengthl:
Contains the length of the userid.
Flagsl:
0. ... The userid is not present.
1. ... The userid is present.
XXX XXXX Reserved bits.

Pointer to the password:
Contains a pointer to the beginning of the password. Contains zero if the
password is omitted.

Length2:

Contains the length of the password, excluding the slash.
Flags2

0... ... The password is not present.

1. ... The password is present.

XXX XXXX Reserved bits.

UID2PSWD: The parse service routine uses the IKJPOSIT macro to build a
six-word PDE to describe a UID2PSWD parameter. It has the following
format:

+
0 A pointer to the userid
+4 +6 +7
Length1 Flags]l Reserved
+8 .
A pointer to passwordl
+12 +14 +15
Length2 Flags2 Reserved
+16 A pointer to password2
+22 +23
+20 Length3 Flags3 Reserved

Pointer to the userid:

Contains a pointer to the beginning of the userid. It contains zero if the
userid was omitted.

Lengthl:
Contains the length of the userid.
Flags1:
0. ... Userid is not present.
1. ... Userid is present.
XXX XXXX Reserved.

Pointer to password1:

Contains a pointer to the beginning of passwordl. It contains zero if the
passwordl is omitted.

Length2:
Contains the length of password1, excluding the slash.

Command Scan and Parse -- Determining the Validity of Commands 287

0. ... Passwordl is not present.
) SO Password1 is present. .
XXX XXXX Reserved. '

Pointer to password2:
Contains a pointer to the beginning of password2. It contains zero if the
password2 is omitted.

Length3:

Contains the length of password2, excluding the slash.
Flags3:

0... ... Password2 is not present.

I... ... Password2 is present.

XXX XXXX Reserved.

CONSTANT: The parse service routine uses the IKITERM macro to build
a five-word PDE to describe a CONSTANT parameter. The PDE has the
following format:

+0 +1 +2
Lengthl Length2 Reserved
+4 +6
Reserved Word Number Flags
+8 - .
A pointer to the string of digits
+12
A pointer to the exponent
+16 J

A pointer to the decimal point

Lengthl:
Contains the length of term entered, depending on the type of parameter
entered as follows:

o For a fixed-point numeric literal, the length includes the digits but not
_ the sign or decimal point.

« For a floating-point numeric literal, the length includes the mantissa
(string of digits preceding the letter E) but not the sign or decimal
point.

o For a non-numeric literal, the length includes the string of characters
but not the apostrophes.

Length2:
For a floating-point numeric literal, length2 contains the length of the
string of ‘digits following the letter E but not the sign.

Reserved Word Number:
The reserved word number contains the number of the IKINAME macro
that corresponds to the entered name.

Note: The possible names of reserved words are given by coding a list of
IKINAME macros following an IKIRSVWD macro. One IKINAME

3

288 TSO Guide to Writing a TMP or a CP

macro is needed for each possible name. If the name entered does not
correspond to one of the names in the IKINAME macro list then this
field is set to zero.

0... ... The parameter is missing.
I .. The parameter is present.
Ao Constant.
I SR Variable.
V0 B Statement number.
U o Fixed-point numeric literal.
R O Non-numeric literal.
T Figurative constant.
....... 1 Floating-point numeric literal.

0. e Sign on constant is either plus or omitted.

1... ... Sign on constant is minus.

0. ... Sign on exponent of floating-point numeric literal is either
plus or omitted.

g Sign on exponent of floating-point numeric literal is minus.

[P Decimal point is present.

o XXXXX Reserved bits.

Pointer to the string of digits:
Contains a pointer to the string of digits, not including the sign if
entered. Contains zero if a constant type of parameter is not entered.

Pointer to the exponent:
Contains a pointer to the string of digits in a floating-point numeric
literal following the letter E, not including the sign if entered.

Pointer to the decimal point:
Contains a pointer to the decimal point in a fixed-point or floating-point
numeric literal. If a decimal point is not entered, this field is zero.

STATEMENT NUMBER: The parse service routine uses the IKITERM
macro to build a five-word PDE to describe a STATEMENT NUMBER
parameter. The PDE has the following format:

+0 +1 +2 +3
Lengthl Length2 Length3 Reserved
+4 +6
Reservel Flags
+8
A pointer to the program-id
+12
A pointer to the line number
+16

A pointer to the verb number

Lengthl:
Contains the length of the program-id specified but does not include the
following period. Contains zero if the program-id is not present.

Command Scan and Parse -- Determining the Validity of Commands 289

290

Length2:

Contains the length of the line number entered but does not include the
delimiting periods. Contains zero if the line number is not present.

Length3:

Contains the length of the verb number entered but does not include the
preceding period. Contains zero if the verb number is not present.

Flags:

Byte 1
0... ... The parameter is missing.
1. .. The parameter is present.
. Constant.
I P Variable.
[G Statement number.
er XXXX Reserved.

Byte 2:
XXXX XXXX Reserved.

Pointer to the program-id:

Contains a pointer to the program-id, if entered. Contains zero if not
present.

Pointer to the line number;

Contains a pointer to the line number, if entered. Contains zero if not
present.

Pointer to the verb number:

Contains a pointer to the verb number, if entered. Contains zero if not
present.

VARIABLE: The parse service routine builds a five-word PDE (when using
the IKJTERM macro) to describe a VARIABLE parameter. The PDE has
the following format:

+0
A pointer to the data-name
+4 +5 +6 +7
Lengthl Reserved Flags . Reserved
+8 .
A pointer to the PDE for the first qualifier.
+12
A pointer to the program-id name.
+16 +17 +18 +19
Number of Number of
Length2 Qualifiers Subscripts Reserved

Pointer to

the data-name:

Contains a pointer to the data-name. If a program-id qualifier precedes
the data-name, this pointer points to the first character after the period
of the program-id qualifier.

Lengthl:

Contains the length of the data-name.

TSO Guide to Writing a TMP or a CP

0... ... The parameter is missing.
| I The parameter is present.
A Constant.

P R Variable.

I G Statement number.

.. XXXX Reserved.

Pointer to the PDE for the first qualifier:
Contains a pointer to the PDE describing the first qualifier of the
data-name, if any. This field contains X‘FF000000’ if no qualifiers are
entered.

Note: The format of the PDE for a data-name qualifier follows this
description.

Pointer to the program-id name:
Contains a pointer to the program-id name, if entered. This field
contains zero if the optional program-id name is not present.

Length2:
Contains the length of the program-id name, if entered. Contains zero if
the optional program-id name is not present.

Number of Qualifiers:
Contains the number of qualifiers entered for this data-name. (For
example, if data-name A of B is entered, this field would contain 1.)

Number of Subscripts:
Contains the number of subscripts entered for this data-name. (For
example, if data-name A(1,2) is entered, this field would contain 2.)

The format of a data-name qualifier is:

+0
A pointer to the data-name qualifier.
+4 +5 +6 +7
Length Reserved Flags Reserved
+8

A pointer to the PDE for the next qualifier.

Pointer to the data-name qualifier:
Contains a pointer to the data-name qualifier.

Length:
Contains the length of the data-name qualifier.
Flags:
XXXX XXXX Reserved.

Pointer to the PDE for the next qualifier:
Contains a pointer to the PDE describing the next qualifier, if any. This
field contains X‘FFO00000’ for the last qualifier.

RESERVED WORD: The parse service routine uses the IKJIRSVWD macro
to build a two-word PDE (using the IKIRSVWD macro instruction) to
describe a RESERVED WORD parameter. The PDE has the following
format:

Command Scan and Parse -- Determining the Validity of Commands 291

292

+0 +2
Reserved Reserved-word number

+4 . +6 +7

Reserved Flags Reserved

Note: This PDE is not used when the IKJRSVWD macro instruction is
chained from an IKJTERM macro instruction. In this case, the

reserved-word number is returned in the CONSTANT parameter PDE built
by the IKJTERM macro instruction.

Reserved-word number:

The reserved-word number contains the number of the IKINAME macro
instruction that corresponds to the entered name.

Note: The possible names of reserved-words are given by coding a list of
IKINAME macros following an IKJIRSVWD macro. One IKINAME
macro is needed for each possible name. If the name entered does not
correspond to one of the names in the IKINAME macro list, this field is

set to zero.
Flags:
Bytel
0... ... The parameter is missing.
1o The parameter is present.
XXX XXXX Reserved.

EXPRESSION: The parse service routine uses the IKJOPER macro to build
a two-word PDE to describe an EXPRESSION parameter. The PDE has
the following format:

+0
Reserved
+4 +6 +7
Reserved Flags Reserved
Flags:
0... ... The entire parameter (expression) is missing.
) T The entire parameter (expression) is present.
XXX XXXX Reserved.
IKJIDENT PDE: The parse service routine uses the IKJIDENT macro
instruction to build a two-word PDE to describe a non-delimiter-dependent
positional parameter; it has the following format:
+0 }
A pointer to the positional parameter
+4 +6 +7

Length Flags Reserved

TSO Guide to Writing a TMP or a CP

J

Pointer to the positional parameter:
Contains a pointer to the beginning of the positional parameter. If
INTEG was specified on the IKJIDENT macro instruction, this will
contain a pointer to a fullword binary value.
Contains zero if the positional parameter is omitted.

Length:

Contains the length of the positional parameter.
Flags

0. ... The parameter is not present.

1. ... The parameter is present.

XXX XXXX Reserved bits.

Effect of List and Range Options on PDE Formats

The formats of the IKJPARMD mapping DSECT and of the PDEs built by
the parse service routine are affected by the options you specify in the
parse macro instructions, as well as by the type of parameter specified. If
you specify the LIST or the RANGE options in the parse macro
instructions describing positional parameters, the IKJIPARMD DSECT and
the PDEs returned by the parse service routine are modified to reflect these
options.

LIST: The LIST option may be used with the following positional
parameter types:

USERID

DSNAME

DSTHING

ADDRESS

VALUE

CONSTANT
VARIABLE
STATEMENT NUMBER
HEX

INTEG

CHAR

Any non-delimiter-dependent positional parameter

e ® o o o © ® o ° o o o

If you specify the LIST option in the parse macro instructions describing
the above listed positional parameter types, the parse service routine
allocates an additional word for the PDE created to describe the positional
parameter. This word is allocated even though a list may not actually be
entered by the terminal user. If a list is not entered, this word is set to
X‘FF000000’. If a list is entered, the additional word will be used to chain
the PDEs created for each element found in the list. Each additional PDE
has a format identical to the one described for that parameter type within
the IKJPARMD DSECT. Since the number of elements in a list is variable,
the number of PDEs created by the parse service routine is also variable.
The chain word of the PDE created for the last element of the list is set to
X‘FF000000"’.

Figure 141 shows the PDL returned by the parse service routine after
three positional parameters have been entered. In this case, the first two
parameters, a USERID and a STRING parameter, had been defined as not
accepting lists. The third parameter, a VALUE parameter, had the LIST
option coded in the IKJPOSIT macro instruction that defined the parameter
syntax. The VALUE parameter was entered as a two-element list.

Command Scan and Parse -- Determining the Validity of Commands 293

PDL - Mapped by IKJPARMD DSECT J

PDL Header

USERID PDE

STRING PDE

VALUE PDE
(First element of a two element list)

Chain Word \

VALUE PDE
| (Last element of a two
element list)

Figure 141. A PDL Showing PDEs Describing a List

RANGE: The RANGE option may be used with the following positional
parameter types:

HEX (X'’ only)

ADDRESS

VALUE

CONSTANT

VARIABLE

STATEMENT NUMBER

INTEG

Any non-delimiter-dependent positional parameter.

If you specify the RANGE option in the parse macro instructions
describing the above listed positional parameter types, the parse service
routine builds two identical, sequential PDEs within the PDL returned to
the calling routine. Space is allocated for the second PDE even though a
range may not actually be supplied by the terminal user. If a range is not
supplied, the second PDE is set to zero. The flag bit which is normally set
for a missing parameter will also be zero in the second PDE.

Figure 142 shows the PDL returned by the parse service routine after
two positional parameters have been entered. In this case, the first
parameter is a USERID parameter and the second parameter is a VALUE

9

294 TSO Guide to Writing a TMP or a CP

parameter that had the RANGE option coded in the IKJPOSIT macro
instruction that defined the parameter syntax. For this example, the

Q VALUE parameter was not entered as a range, and, consequently, the
second PDE is set to zero.

PDL - Mapped by IKJPARMD DSECT

PDL Header

USERID PDE

VALUE PDE
| (May be entered as a Range)

- - T =0 VALUE PDE built to recejve second element of Range.
0e— — — =0 | O 0 I O =0 (Parameter was not entered as a Range)
| - Figure 142. A PDL Showing PDEs Describing a Range

Combining the LIST and RANGE Options: If you specify both the LIST and
RANGE options in a parse macro instruction describing a positional
parameter, the parse service routine builds two identical PDEs within the
PDL returned to the calling routine. Both of these PDEs are formatted
according to the type of positional parameter described. These two PDEs
describe the RANGE. An additional word is appended to the second PDE
for the purpose of chaining any additional PDEs built to describe the LIST.

Command Scan and Parse -- Determining the Validity of Commands 295

Figure 143 shows this general format.

PDL - Mapped by IKJPARMD DSECT

PDL Header
PDE
Identical PDE
| ‘ (Parameter may be entered as a range)
Chain Word \ } (Parameter may be entered as a list)
I T T T T T T T
r————- i — PDE
L _ - — L
l |
| —————— T r- —I Identical PDE
o= L L
L Chain Word 0:'\
———————— ~N

Figure 143. A PDL Showing PDEs Describing LIST and RANGE Options

If you have specified both the LIST and the RANGE options in the
parse macro instruction describing a positional parameter, the user at the
terminal has the option of supplying a single parameter, a single range, a list
of parameters, or a list of ranges. The construction of the PDL returned by

the parse service routine can reflect each of these conditions.

TSO Guide to Writing a TMP or a CP

Figure 144 shows the PDL returned by the parse service routine if the
user enters a single parameter.

PDL - Mapped by |KJPARMD DSECT

PDL Header

PDE - Filled in
s —— — — — — — — — =0

Identical PDE - Zeroed
0 — ——0| O >0 | 0= =0
F F 0 0 0 0 0 0 Chain Word

Figure 144. PDL - LIST and RANGE Acceptable, Single Parameter Entered

As Figure 144 further shows, the second PDE and the chain word are
both set to zero by the parse service routine, if the LIST and RANGE
options were coded in the macro instruction describing the parameter, but
the user entered a single parameter.

Figure 145 shows the PDL returned by the parse service routine if the
user enters a single range of the form:

parameter:parameter

PDL - Mapped by IKJPARMD DSECT

PDL Header

PDE ~ Filled in

Identical PDE ~ Filled in

F F 0 0 0 0 o0 O Chain Word

Figure 145. PDL - LIST and RANGE Acceptable, Single Range Entered

As Figure 145 further shows, both PDEs are filled in to describe the
single RANGE parameter entered by the user. The chain word is set to
X‘FF000000’ to indicate that there are no elements chained onto this one;
that is, the parameter was not entered in the form of a LIST.

Command Scan and Parse -- Determining the Validity of Commands 297

298

Figure 146 shows the format of the PDL returned by the parse service
routine if the user enters a list of parameters in the form:)

(parameter,parameter,...)

PDL - Mopped by IKJPARMD DSECT

PDL Header
PDE - Filled in
Qe—- - - - - - - - = -—0
|dentical PDE - Zeroed
Qe—--—»0| 0= +0| O=+0
Chain Word L
PDE = Filled in
Q- - - - - = - - - = —0
Identical PDE ~ Zeroed
Q—- -—>0|0<—-.-0|0<--—0 '
Chain Word ~ J

T 1
ho - -——
P e
L _
| { !)
|_ _____ I__J___1
L - ___ “_/u

/

Figure 146. PDL - LIST and RANGE Acceptable, LIST Entered

As Figure 146 further shows, each of the first PDEs and the chain word
pointers are filled in by the parse service routine to describe the list of
parameters entered by the user. The second, identical PDEs are zeroed to
indicate that the parameter was not entered in the form of a range.

TSO Guide to Writing a TMP or a CP

The last set of PDEs on the chain will contain X‘FF000000’ in the chain
word to indicate that there are no more PDEs on that particular chain.

The PDL created by the parse service routine to describe a parameter
entered as a list of ranges is similar to the one created to describe a list.
The difference is that the second, identical PDEs are also filled in by the
parse service routine to describe the ranges entered.

Figure 147 further shows the format of the PDL returned by the parse
service routine if the user enters a list of ranges in the form:

(parameter:parameter, parameter:parameter,...)

PDL - Mapped by IKJPARMD DSECT

PDL Header

PDE - Filled in

|dentical PDE - Filled in

Chain Word o~

PDE - Filled in

’ Identical PDE - Filled in

Chain Word ~

F————-r—-7--A
L 4 L]
| I
r———-= | I
b - — — — e

Figure 147. PDL - LIST and RANGE Acceptable, List of Ranges Entered

Command Scan and Parse -- Determining the Validity of Commands 299

As Figure 147 shows, each of the PDEs and each of the second,
identical PDEs are filled in by the parse service routine to describe the
ranges entered. The chain words are also filled in to point down through J
the list of parameters entered.

The last set of PDEs on the chain will contain X‘FF000000’ in the chain
word to indicate that there are no more PDEs on that particular chain.

The PDE Created for a Keyword Parameter

Parse builds a halfword (2-byte) PDE to describe a keyword parameter; it
has the following format:

+0

Number
+2

Number:
You describe the possible names for a keyword parameter to the parse
service routine by coding a list of IKINAME macro instructions directly
following the IKJKEYWD macro instruction. One IKINAME macro
instruction must be executed for each possible name.
The parse service routine places into the PDE the number of the
IKJNAME macro instruction that corresponds to the keyword name

entered.

If the keyword is not entered, and you did not specify a default in the ,
IKJKEYWD macro instruction, the parse service routine places a zero J
into the PDE.

Additional Facilities Provided by Parse

The parse service routine, in addition to determining if command
parameters are syntactically correct, provides the following services which
may be selected by the calling routine.

Translation to Uppercase

Positional parameters are ordinarily translated to uppercase unless the
calling routine specifies ASIS in the IKIPOSIT or IKJIDENT macro
instructions. The first character of a value parameter, the type-character, is
always translated to uppercase, however. The string that follows the type
character is translated to uppercase, unless ASIS is coded in the describing
macro instructions.

The parse service routine always translates keyword parameters to
uppercase.
Insertion of Default Values

Positional parameters (except delimiter and space) and keyword parameters
may have default values. These default values are indicated to the parse
service routine through the DEFAULT= operand of the IKJPOSIT,
IKJTERM, IKJOPER, IKJRSVWD, IKJIDENT, and IKJKEYWD macro

300 TSO Guide to Writing a TMP or a CP

.

instructions. When a positional or a keyword parameter is omitted, for
which a default value has been specified, the parse service routine inserts
the default value.

The parse service routine also inserts the default value you specified if a
parameter is invalid and the terminal user enters a null line in response to a
prompt.

Passing Control to a Validity Checking Routine

You can provide a validity checking routine to do additional checking on a
positional parameter. Each positional parameter can have a unique validity
checking routine. Indicate the presence of a validity checking routine by

coding the entry point address of the routine as the VALIDCK= operand
in the IKJPOSIT, IKJTERM, IKJOPER or IKJIDENT macro instructions.

The parse service routine can call validity checking routines for the
following types of positional parameters:

HEX

VALUE

ADDRESS

QSTRING

USERID

DSNAME

DSTHING

CONSTANT
VARIABLE
STATEMENT NUMBER
EXPRESSION
JOBNAME

INTEG

Any non-delimiter-dependent parameters

The validity check exit is taken after the parse service routine has
determined that the parameter is syntactically correct. If a dsname or userid
parameter is entered with a password, parse takes the validity check exit
after the first parsing both the userid or dsname and the password. If the
terminal user enters a list, the validity check routine is called as each
element in the list is parsed. If a range is entered, the parse service routine
calls the validity check routine only after both items of the range are
parsed.

When control is passed from the parse service routine to a validity
checking routine, the parse service routine uses standard linkage
conventions. The validity check routine must save parse’s registers and
restore them before returning control to the parse service routine. The parse
service routine builds a three-word parameter list and places the address of
this list into register 1 before branching to a validity checking routine. This
three-word parameter list has the format shown in Figure 148.

Command Scan and Parse -- Determining the Validity of Commands 301

302

Number of
Bytes

Field

Contents or Meaning

PDEADR

USERWORD

VALMSG

The address of the parameter descriptor entry
(PDE) built by parse for this syntactically
correct parameter.

The address of the user work area. This is the
same address you supplied to the parse
service routine in the parse parameter list.

Initialized to X‘FFOO0000’ by parse. A
user-provided validity checking routine can
place the address of a second level message
in this field.

Figure 148. Format of the Validity Check Parameter List

Your validity checking routines must return a code in general register 15
to the parse service routine. These codes inform the parse service routine of
the results of the validity check and determine the action that parse should

take. Figure 149 shows the return codes, their meaning, and the action
taken by the parse service routine.

Return Code

Meaning

Action Taken by Parse

0

12

The parameter is valid.

No additional

processing is
performed on this
parameter by the

The parameter is invalid. The parse service

routine writes an
error message to the
terminal and prompts

The parameter is invalid. The validity checking

routine has issued an
error message; parse
prompts for a valid

parameter.
The parameter is invalid; the The parse service
processor cannot continue. routine stops all

further syntax
checking and returns
to the calling routine.

parse service routine.

for a valid parameter.

Figure 149. Return Codes from a Validity Checking Routine

If the parse service routine receives a return code of 4 or 8, the new
data entered in response to the prompt is parsed as if it were the original
data and control is again passed to the validity check routine. This cycle
continues until a valid parameter is obtained.

Insertion of Keywords

Some keyword parameters may imply other keyword parameters. You may
specify that other keywords are to be inserted into the parameter string
when a certain keyword is entered. Use the INSERT operand of the

TSO Gulde to Writing a TMP or a CP

9

C

IKINAME macro instruction to indicate that a keyword or a list of
keywords is to be inserted following the named keyword. The inserted
keywords are processed as if they were entered from the terminal.

Issuing Second Level Messages

You may supply second level messages to be chained to any prompt
message issued for a positional parameter (keyword parameters are never
required). Use the HELP operand of the IKJPOSIT, IKITERM, IKJOPER,
IKJRSVWD or IKJIDENT macro instructions to supply these second level
messages to the parse service routine. You can supply up to 255 second
level messages for each positional parameter. One second level message is
issued each time a question mark is entered from the terminal. If a question
mark is entered and no second level messages were provided, or they have
all been issued in response to previous question marks, the terminal user is
notified that no help is available.

If a user-provided validity checking routine returns the address of a
second level message to the parse service routine, that second level message
or chain will be written out in response to question marks entered from the
terminal. The original second level chain, if one was present, is deleted.

The format of these second level messages is the same as the HELP
second level message portion of the PCE for the macro from which the
validity checking routine received control.

Prompting

The parse service routine prompts the terminal user if the command
parameters found are incorrect or if required parameters are missing. It
allows the terminal user to enter a missing parameter or correct an incorrect
one without having to reenter the entire command. The parse service
routine prompts, and the terminal user must respond, in the following
situations:

1. A userid or dsname was entered with a slash but without a password.
2. A parameter is syntactically invalid.

3. A keyword is ambiguous, that is, it is not clear to the parse service
routine which keyword of several similar ones is being entered.

4. A required positional parameter is missing. The requirement for a
particular positional parameter and the prompting message to be
issued if that parameter is not present, are specified to the parse
service routine through the PROMPT operand of the IKJPOSIT,
IKJTERM, IKJOPER, IKJRSVWD, and IKJIDENT macro
instructions. The parse service routine puts out the prompting
message supplied in the macro instruction.

5. A validity check exit indicates that a parameter is invalid.

There are a number of rules that govern the processing of responses
entered from the terminal after a prompt.

1. All of the new data entered is parsed before the scan of the original
command is resumed.

Command Scan and Parse -- Determining the Validity of Commands 303

2. Unless otherwise stated in the command syntax definition, the new

304 TSO Guide to Writing a TMP or a CP

parameter is entered as it is entered in the original command. See "_’
“Command Parameter Syntax” for exceptions to this rule.

In general, additional parameters may be entered along with the data
prompted for. It must be kept in mind, however, that all of the new
data entered is parsed before the scan of the material in the original
command buffer is resumed. A problem could occur in a situation
where a command is entered followed by two positional parameters
and a keyword, and the first positional parameter is invalid. The parse
service routine issues a prompt for the first positional parameter.
When the user at the terminal reenters that first positional parameter,
it would be invalid to enter additional keywords along with it. The
additional keywords would be scanned before the second positional
parameter and an error condition would result when the parse service
routine returned to the original command buffer and found a
positional parameter.

Note that if the parameter prompted for is within a subfield, only
parameters valid within that subfield may be entered along with the
parameter prompted for.

In general, a null response is acceptable only for optional parameters.

However, if a null response is entered for an optional parameter that

has a default, parse inserts the default. If a prompt for a required

parameter is answered by a null response from the terminal, parse

reissues the prompt message. The parse service routine continues

prompting until a correct parameter is entered. The terminal user can

request termination by entering an attention. J‘!

Parse will always accept a null response to a prompt for a password,
whether or not the dsname or userid parameters are required. It is the
responsibility of the routine using the parse service routine to ensure
that the correct password was entered if one was required, by
checking the password pointed to by the PDE returned by the parse
service routine.

. If a required parameter which may be entered in the form of a list is

missing, or if it was entered as a single parameter (not as a list), and
that single parameter is incorrect, parse will not accept a list after the
prompt. The user at the terminal must enter a single parameter.

If, however, the item was entered as a list but an item within the list
is invalid, the parse service routine accepts one or more parameters
after the prompt. The parse service routine considers these newly
entered parameters to be part of the original list. Parameters that are
not valid in the list may be entered from the terminal in response to
this prompt.

If the last item in a list is found to be invalid, parse only accepts one
parameter after a prompt.

If the parse service routine determines that a parameter is invalid, the

invalid portion of the parameter is indicated in the error message. The

remainder of the parameter is not yet parsed. The user must reenter

as much of the invalid parameter as was indicated in the error

message. This situation often occurs if a dsname parameter or userid J

QO

parameter is entered with blanks between the dsname or userid and
the password. The dsname or userid may be invalid but the password
is still good and will be parsed after a new dsname or userid is
entered in response to the prompt.

The parse service routine always attempts to obtain syntactically correct
parameters before returning to the calling routine. However, this is not
always possible. The terminal user may have requested that no prompt
messages be sent to the terminal, or the command being parsed may have
come from a procedure.In these cases, an error message is issued and a
code is returned to the calling routine indicating that a correct command
could not be obtained. Any second level messages that would ordinarily be
appended to the request for new data are appended to the error message.

Command Scan and Parse -- Determining the Validity of Commands 305

Examples of Using the Parse Service Routine
Example 1

This example shows how the parse macro instructions could be used within

a command processor to describe the syntax of an EDIT command to the
parse service routine.

The sample EDIT command we are describing to the parse service
routine has the following format:

EDIT dsname
PLI ([number [number] [CHAR60]) T
2 72 CHARUS

FORT
ASM

TEXT
L DATA

SCAN
NOSCAN]

[
[NONUM]
[

BLOCK (number)
BLKSIZE (number)

LINE(number)

306 TSO Guide to Writing a TMP or a CP

Figure 150 shows the sequence of parse macro instructions that would
describe the syntax of this EDIT command to the parse service routine.

] 11 I !
PARM 71418 P | ;
Dis WA rikivlpols T | | biswaue, \ARopPT | IDATIAl |SEIT| WAME!” %
7iPlE raviKep o T [T |
7w WA ME leclr]], svlBlAcol=pelr e
| kv wiahse ‘ol RN
' wiawe T T 1A | L[]][]
wowakid | [rlexir) 1] [
valg 1 [ennal]] ‘
SclaW 111 | lzkv wo| | peFRlUT =" Wl slchm- [11]
T T2 wame || ["]siclaw]” N il [
| || ReN%aY [T Wosk lan- [T1] | ‘
Y KVIEV el IDEFALIr= Wom " iR I
([lzvabme T~ I wokd'| | ‘ NN] ‘
| Tvwake ool TTT T L
Az biclkd | 7Kk JKEr Mol | , L . AR
T rkvaapie TTT T s Loleldl, Isisleelol-182.0 ck|slvB], AL 1 4lsl=|IBIL KIS |12
(WE T [l xvwerwd | W] ! J]
T rx/WAlE T Tl el], [slUBlF LDl |Ll VeS| [zle
Pl T1Fl ol IlisvBle T |
Pelrclold 71 | a7 plemd ™ | | Wiumslele!' |, [A/ ks 7-Wumer): cl, loryar=pumers\c
‘ T PerAvkT=["2]"] | |
Priclol 2] [7k pEWT] WomslElel T, A/ sl -Womerls |, lorEer =mu /Cl,
| | DEFRLITA'[712]" |
Pl rlpe] | Einviwleb o] | bkl “icpraRie e’ J
T T rkiamde T T | clalellel T T T AN
[T T ekvwahbae T lcwhiens]” | Hl
Bzl0ck'ss| TkisBA | | | [
B | | kvl plEW7] "Wolisled |, el lelslA -Wenterl |, dield- wivie s
omplri=1"8l o Wsi/ \2le, malxidvirial =l8
L eSS/ e [TkssvsrE || ! \
W s/ plewr | 'WUMBEQ’,F/WST=ZI ER|/ C, OTWER -WVHER!
T \ s’
- ILP?W \ pfo@p L(VES/
|

Figure 150. Coding Example 1 - Using Parse Macros to Describe Command Parameter Syntax

The parse macro instructions shown in Figure 150 perform two distinct
functions when executed:

1. Build the parameter control list describing the syntax of the EDIT
command parameters. The PCL is used by the parse service routine
during its scan of the parameters within the command buffer.

2. Create the IKJIPARMD DSECT {(defaulted to on the IKJPARM
macro instruction) that you use to map the parameter descriptor list
returned by the parse service routine after it scans the parameters
within the command buffer.

Your code never refers to the PCL; it is used only by the parse service
routine. Therefore, it is not shown in the example.

Command Scan and Parse -- Determining the Validity of Commands 307

Figure 151 shows the IKJPARMD DSECT created by the expansion of

the parse macro instructions. J
rwlellelrlo] loisklclr | 1 | |
Pls| | | | 2l | |
sl pls] | 1] A
TYPE D|S u
SCAwW ols Y !
WU Dls L/ \]4
B D|CK OIS u j Ll o
K|S 5 aH AREERARN
LI/W Dls 4 | 1
PLIIICIOL?| | ID'S A I i) 1
plclrlcollz[[s |1 [z [Hi 1
o l1i7lyiAd [bls] 1 | W '
AN s 2 T l
L/ Wiy | 25 2A ‘ \ | | i ‘ 1 ;
| ! | | | |
RER L[[{ L L

Figure-151. An IKJPARMD DSECT (Example 1)

If a terminal user entered the above described EDIT command in the
form:

edit sysfile/x pl1(3) nonum block

the parse service routine would prompt for the blocksize as follows: 1|

ENTER BLOCKSIZE

The user at the terminal might respond with:

160

The parse service routine would then complete the scan of the command
parameters, build a parameter descriptor list (PDL), place the address of
the PDL into the fullword pointed to by the fifth word of the parse
parameter list, and return to the calling program.

The calling routine uses the address of the PDL as a base address for the
IKJPARMD DSECT.

308 TSO Guide to Writing a TMP or a CP

Figure 152 shows the PDL returned by the parse service routine. The
symbolic addresses within the IKJPARMD DSECT are shown to the left of
the PDL at the points within the PDL to which they apply, and the

meanings of the fields within the PDL are explained to the right of the
PDL.

IKJPARMD PDL Description of
DSECT Field Contents
| | 1
IKJPARMD
PDL Header. Used only by
IKJRLSA

DSNAM Pointer to SYSFILE Data Set Name

7 1[0

0 No member name
0
Pointer to X Password

1 1
TYPE, SCAN 1 2 PL1, NOSCAN
NUM, BLOCK 2 1 NONUM, BLOCK
LINE 0 Unused LINE not specified
PLICOLI Pointer to 3 3 was specified

1 1
PLICOL2 Pointer to 72 72 is the default

2 1
PLITYPE 1 Unused CHARSO is the default
BLKNUM Pointer to 160 160 was prompted for

3 1
LINNUM 0 LINNUM not specified

0 0

Figure 152. The IKJPARMD DSECT and the PDL (Example 1)

Command Scan and Parse -- Determining the Validity of Commands 309

310

Example 2

This example shows how the parse macro instructions could be used to ‘
describe the syntax of a sample AT command that has the following syntax:
COMMAND OPERANDS
stmt .
AT (stmt-1,stmt-2,...); (cmd,chain) COUNT (integer)
stmt-3:stmt-4
Figure 153 shows the sequence of parse macro instructions that describe
this sample AT command to the parse service routine.
¥|a|m|2 I|K|T/PIAIR D\S|EIC|T|=| pla|r|s|e|al¢
tlplclel | HIGITIEIR ts\éla|t|e|mlelnlt] |nluimlblelr|’|, WIPIPIE RICIAISIEL, |L|2)SIT|, |P|AIMG|E),
TIYPIE|=(S|TMIT), [VIAIL|T|DICIK]=|c bk |s € |m ¢
plo|s|i |t|plcle| I KiTIPlOISU|T PISITRIIINIE|,IHEILIP=|" |clhia|/|n| o ¥#]| [clolmimialnld]|’],
VIALIID|C k)= |clhlkic im|d
klely|plcie I\k T|\K|E|YWD :
niamle |plc I|K|T|NV|A[MIE *ICIOUNIT| |, |SIUNBIFILID =lclo|ulnlt|s uid
cloldnl¢[sul] [1]xi7]s|v|8lF
ivlelnltlpjcle] ITk|7\ID|EMT "CIOUN[T'" IFITIRS T|=|MUIMIERI|C|, i0|TIH|ER ~ MV MEIRIT|C],
viAlLTo|clb=lcialKclolulnlt] | |
1k |7[€ Wofp \ |
Figure 153. Coding Example 2 - Using Parse Macros to Describe Parameter Syntax 9'

The parse macro instructions shown in Figure 153 perform two distinct
functions when executed:

1. Build the parameter control list describing the syntax of the command
parameters. This PCL is then used by the parse service routine during
its scan of the parameters in the command buffer.

2. Create the IKJPARMD DSECT that you use to map the parameter
descriptor list. The PDL is returned by the parse service routine after
it scans the parameters in the command buffer.

Note: Your code never refers to the PCL; it is used only by the parse
service routine. Therefore, the parameter control list is not shown in the
example.

TSO Guide to Writing a TMP or a CP

‘L—>

Figure 154 shows the IKJPARMD DSECT created by the expansion of
the parse macro instructions.

T K[TIPARMD DS
PIAIR|SEA S 214
sizmlTlelclel | 1ols 114
PlOSTITIAC S ZA
KEY\PC S H
TDEMTPCE DS 2

Figure 154. An IKJPARMD DSECT (Example 2)

In this example, if the terminal user entered the above described
command incorrectly like this:

at 200/3 (list all) count(a)

the parse service routine would prompt the terminal user with the
message:

INVALID STATEMENT NUMBER, 200/3
REENTER

The user might respond with:

200.3

the parse service routine would then prompt the user with:

INVALID COUNT, a
REENTER

The user might respond with:

3

This sequence resulted in the syntactically correct command of:

at 200.3 (list all) count(3)

The parse service routine would then build a parameter descriptor list
(PDL) and place the address of the PDL into the fullword pointed to by
the fifth word of the parse parameter list.

The parse service routine then returns to the caller and the caller uses
the address of the PDL as a base address for the IKIPARMD DSECT.

Command Scan and Parse -- Determining the Validity of Commands 311

Figure 155 shows the PDL returned by the parse routine. The symbolic
addresses of the IKIPARMD DSECT are shown to the left of the PDL at
the points within the PDL to which they apply. A description of the fields
within the PDL is shown on the right.

DSECT

1KJPARMD

PDL

Description of
Field Contents

PARSEAT

STMTPCE

POSITPCE

KEYPCE

IDENTPCE

PDE Offset

X'90'

Pointer to 200

Pointer to 3

0

X'00"

X 'FF000000"

Pointer to LIST in string

8 -

X'80'

Pointer to 3

X'80'

PDL Header, used only by
1KJRLSA

Lengths (program - id, line no,
and verb no,)

Parameter is present
No program -id
Line number

Verb number

Double PDE for RANGE option,
>

but not entered

LIST option not entered

First character after)
Length, parameter is present
First keyword

Subfield

Length, parameter is present

Figure 155. The IKJPARMD DSECT and the PDL (Example2)

312 TSO Guide to Writing a TMP or a CP

Example 3

This example shows how the parse macro instructions could be used to
describe the syntax of a sample LIST command that has the following

syntax:

COMMAND | OPERANDS

LIST

symbol PRINT (symbol)

Figure 156 shows the sequence of parse macro instructions that describe
this sample LIST command to the parse service routine.

e[x[a[m]3 1k [s[plale o[s]elc]7]lplo] Aslel2] | [T
vialrlplcle | [1jtl[7ElR 'slylmslol/], U|PIPIE R C|A SIE, PlRlOIM PITI=] |3 yim|blol1]",
| 7Y PE[=|v[alR], v|allr10lc|k|=\c ale|< e, [sIBlsIClRlPT]=]s|ul8lp)c e
s ulblp|cle ik 7T E|olM Tslublslc rli pe|'],[sl8]s|clep], |7y P E[-|cINs'T, ’
PIROMPITI-| sldbsc rii|pe!’ l |
klely|plcle | | [Tk|Tkle|yiwlD } 3 | |
nlalmelplclel | Tk TNAME || | ['[pirliinle, 5\ulgFlLioi=|plricinle|siu s | {
priclnitlslds| [k sl8F | 1] '
T K\TTIERM “is ymblo /-12]'|,VPPIEIRCASIE|, PROMPT= " slymbeoil|-12,°,
T TYIPE=]ViA ! BB
TKTEWDP iR

Figure 156. Coding Example 3 - Using Parse Macros to Describe Parameter Syntax

The parse macro instructions shown in Figure 156 perform two distinct
functions when executed:

1. Build the parameter control list describing the syntax of the command
parameters. This PCL is then used by the parse service routine during
its scan of the parameters in the command buffer.

2. Create the IKJPARMD DSECT that you use to map the parameter
descriptor list. The PDL is returned by the parse service routine after
it scans the parameters in the command buffer.

Note: Your code never references the PCL; it is used only by the parse
service routine. Therefore, the parameter control list for the example is not

shown.

Figure 157 shows the IKJIPARMD DSECT created by the expansion of the
parse macro instructions.

Command Scan and Parse -- Determining the Validity of Commands 313

TRTPARHD OSECA [T T[] ’ 7T i T
PARISEZ 1] S Al RN | | :
VARPCE DS54 ﬁ | ‘ BNl J
SUBPCE 1105l 154 L B ' \
KEYPCE (oS (110 T ANEE NEEE
Pi/?{I!WNéTlSyuIB us ; IIIA‘ 1\ il l !
RN . 1
ARBEREN [| i
L T 1 l [T L[]

Figure 157. An IKJPARMD DSECT (Example 3)

314

In this example, if the terminal user entered the above described
command incorrectly like this:

list a of 1 in 3(1) print(d)

the parse service routine would prompt the terminal user with:

INVALID SYMBOL, a...1 in 3(1)
REENTER

The user might respond with:

a of b in 3(1)

the parse service routine would then prompt with:

INVALID SYMBOL, a...3(1) b
REENTER ’

The user might respond with:

a of b in c(1)

This sequence resulted in the syntactically correct command of:

list a of b in c(1) print(d)

The parse service routine would then build a parameter descriptor list
(PDL) and place the address of the PDL into the fullword pointed to by
the fifth word of the parse parameter list.

The parse service routine then returns to the caller and the caller uses
the address of the PDL as a base address for the IKJPARMD DS®CT.

Figure 158 shows the PDL returned by the parse service routin. The
symbolic addresses of the IKIPARMD DSECT are shown to the left of the
PDL at the points within the PDL to which they apply. A description of the
fields within the PDL is shown on the right.

TSO Guide to Writing a TMP or a CP

C

IKJPARMD
DSECT

PDL

Description of
Field Contents

PARSE2

VARPCE

SUBPCE

KEYPCE
PRINTSUB

(First
Qualifier)

Pointer to a

- X'A0" L

Pointer to first qualifier

0 X'C800'

Pointer to 1

0 X'0000'

o|lo|o | o

0 X'0000"

o

] -

Pointer to d

—

] - xao |

o|lo | o

[o [o |

Pointer to b

- []

Pointer to next qualifier

(Next
Qualifier)

Pointer to ¢

1 -] x|

X'FF000000'

*Note: May not be contiguous in storage at this point,

j

PDL Header = Used only by
IKJRLSA

Data - name

Length, parameter is present
Qualifier

No program = id

Length, qualifiers, subscript
Length

Flags, CNST

Subscript

No exponent

No decimal point

2nd element in subscript =
(Not entered)

3rd element in subscript =
(Not entered)

First keyword

Data -name

Length, parameter, variable
No qualifiers

No program - id

No length, qualifier, or subscript
First qualifier

Length, parameter, variable
Next qualifier

Second qualifier

Length, parameter, variable

End of qualifiers

Figure 158. The IKJPARMD DSECT and the PDL (Example 3)

Command Scan and Parse -- Determining the Validity of Commands 315

Example 4

This example shows how the parse macro instructions could be used to a'
describe the syntax of a sample WHEN command that has the following
syntax:

COMMAND |OPERANDS

WHEN addr (subcommand chain)
expression

Figure 159 shows the sequence of parse macro instructions that describe
this sample WHEN command to the parse service routine.

elxjaimi¢ TKU PIAIRM T T T IDISEETT]=]pla |- [s[e[3 T T
opier| I KJOPIER "elxlplrlelsls|i o]’ [, OIPIERND1]=15 y mltloll 4}, 1R
l | DPIERND2!=1s'ylmlbo|1 2], RSVNIDI= oiple|riait o], T (| T T
L kAT N i1, PROMPT =" [terim’], VIAILIIDCK sic|hie ck
siylnlslols |21 [T IERM | 7 T [Islymelot 141 luPPIERICA SE,|[TY PE=|VAR, o
L HER 1] lpeomlplTi=l slylmlsloii2] 1 T
olplelralt[olr| ITKTIRISYWD! | | ["iolpleir|otioir)’|,/PROMPT =" olperatloir’| | [' | i
| Tk TWAME T T [ele’ T] SENEEE T
LTI wiAMEE, el [{1] BRI ERE NS ‘
siymislo/[2] | TkTTERM | "siymiblos 2" [TYPE=[VAR | e
addlr | T TITERN "wddlrlelsis’, [TV PE=VAR, VIALIDCK=chelcltit |
/alsitioinle] | ITIKTIPOs| T T 1 [PISTTRING , VAL DICK-ICHECK2 1| || ||} " 1
il 1kl JEwlolel | TTTT 11111] T T J

Figure 159. Coding Example 4 - Using Parse Macros to Describe Parameter Syntax

The parse macro instructions shown in Figure 159 perform two distinct
functions when executed:

1. Build the parameter control list describing the syntax of the command
parameters. This PCL is then used by the parse service routine during
its scan of the parameters in the command buffer.

2. Create the IKJPARMD DSECT that you use to map the parameter
descriptor list. The PDL is returned by the parse service routine after
it scans the parameters in the command buffer.

Note: Your code never references the PCL,; it is used only by the parse
service routine. Therefore, the parameter control list for this example is not
shown.

316 TSO Guide to Writing a TMP or a CP

Figure 160 shows the IKIPARMD DSECT created by the expansion of
the parse macro instructions.

IIKITPTARMID TOISIEICTT |

PARSER] os Z[A BN

0PLR S 214

SyMBolLls | [Dls 5/

OPERATOR DS 71A

SiYMBlolLz | oS 5A 1

AlDDIRL DS 5A ' T

LIASITIONE | 1DS 214 1 | [l
|

Figure 160. An IKJPARMD DSECT (Example 4)

In this example, if the terminal user entered the above described
command incorrectly like this:

when (a) (list b)

the parse service routine would prompt the terminal user with:

ENTER OPERATOR
The user might then respond:
eq
the parse service routine would then prompt with:

INVALID EXPRESSION, (a eq)
REENTER

The user might respond then with:

(a eq b)

This sequence resulted in a syntactically correct command of:

when (a eg b) (list b)

The parse service routine would then build a parameter descriptor list
(PDL) and place the address of the PDL into the fullword pointed to by
the fifth word of the parse parameter list.

The parse service routine then returns to the caller and the caller uses
the address of the PDL as a base address for the IKIPARMD DSECT.

Command Scan and Parse -- Determining the Validity of Commands 317

318

Figure 161 shows the PDL returned by the parse service routine. The
symbolic addresses of the IKIPARMD DSECT are shown to the left of the
PDL at the points within the PDL to which they apply. A description of the
fields within the PDL is shown on the right.

Description of
Field Contents

‘ IKJPARMD ‘
DSECT PDL
I I
PARSE3
OPER -
- X'80'
SYMBOLI Pointer to o
1 - X'AQ’
X'FF000000"
0
0 0 0
OPERATOR -
- X'8Q’
SYMBOL2 Pointer to b
1 - X'AQ'
X'FF000000*
0
0 0 0
ADDR1 0
0 - X'00'
0
0
0 0 0
LASTONE Pointer to LIST
é X'80’

PDL Header - Used only by
IKJRLSA

Parometer is present

First operand

Length, parometer is present
No qualifiers

No progrom = id

No lengths for program -id,
subscripts, or qualifiers

First keyword entered
Parometer is present

Second operand

Length, parameter, variable
No qualifiers

No progrom -id

No lengths for program=id,
subscripts or quallfiers

(Address = Not entered)

Subcommand

Length, parameter is present

Figure 161. The IKJPARMD DSECT and PDL (Exampile 4)

TSO Guide to Writing a TMP or a CP

J

('\

Return Codes from the Parse Service Routine

When it returns to the program that invoked it, the parse service routine
provides one of the following return codes in general register 15:

Code
decimal

28

Meaning

Parse completed successfully.

The command parameters were incomplete and parse was unable to prompt.

Parse did not complete. An attention interruption occurred during parse processing.
The parse parameter block contains invalid information.

Parse issued a GETMAIN and no space was available.

A validity checking routine requested termination.

Conflicting parameters were found on the IKITERM, IKIOPER or IKIRSVWD
macro instruction.

Terminal has been disconnected.

No error message is needed for return codes 4 and 20. The parse service
routine issues a message before returning a code of 4 and the validity
checking routine issues an error message before it requests termination. The
GNRLFAIL routine can be invoked to issue meaningful error messages for
the other parse return codes. See “GNRLFAIL/VSAMFAIL Routine
(IKJEFF19)” in this book.

Command Scan and Parse -- Determining the Validity of Commands 319

320 TSO Guide to Writing a TMP or a CP

Catalog Information Routine (IKJEHCIR)

The catalog information routine retrieves information from the system
catalog. This information may include data set name, index name, control
volume address, or volume ID. The information may be requested from a
specific user catalog, or, if no catalog was specified, the system default
catalog search is used. An entry code indicates the requested kind of
information as follows:

« The next level qualifiers for a name

« All names having the same name as the high-level qualifier and the
data set type associated with each name

o The volume serial numbers and device types associated with a name

The requester can also ask for combinations of the information above.

The catalog information routine resides in SYS1.LPALIB and executes
with the protection key of the caller.

IKJEHCIR may be invoked in either 24- or 31-bit addressing mode.
However, all input passed to IKJEHCIR must reside below 16 megabytes.
IKJEHCIR executes in 24-bit addressing mode and returns control in the
same addressing mode in which it is invoked.

The catalog information routine parameter list (CIRPARM) is shown in
Figure 162.

Number of
B;::g re Field Contents or Meaning

1 CIROPT Entry code/options used. See Figure 163.

2 Reserved.

1 CIRLOCRC Locate return code.

4 CIPSRCH Address of the search argument. This search
argument is a userid and a data set name
which are names of catalog index levels.

4 CIRCVOL Address of the volume ID of CVOL. If not
given, SYSRES is assumed.

4 CIRWA Address of the user work area. See Figure 164
for the user work area.

4 CIRSAVE Address of a 72-byte save area.

4 CIRPSWD Address of an 8-byte password or zero.

Figure 162. Catalog Information Routine Parameter List (CIRPARM)

Catalog Information Routine (IKJEHCIR) 321

The CIROPT values and data returned are shown in Figure 163.

Code

Meaning

Data Required

X‘ol’

X02'

X04'

X'05’

X'06’'

Move the data set names having one
more level of qualifier above what the
user specified.

Move all data set names to the user
work area.

Get a volume associated with a given
data set name.

Get the next level data set name and
volume information.

Get all level data set names and volume
information.

8-byte qualifiers are
moved into the
user's work area.

44 -byte data set
names are moved to
the user work area.

Volume information is
moved to the user
work area. See
Figure 165 for
volume information
format.

44-byte data set
name and volume
information is moved
to the user work
area.

44-byte data set
name followed by
volume information is
moved to the user
work area for all
levels.

Figure 163. Data Returned from Valid CIROPT Values

Note: For codes X‘05°, and X‘06’ the first byte of the field will contain one

of the following data set types:

o V for volume
C for cluster
G for alternate index

322 TSO Guide to Writing a TMP or a CP

R for path
F or FREE

Y for upgrade

B for GDG

base

X for alias name

P for page space

M for master catalog

U for user catalog

A for non-VSAM data set

9

The user work area that is based on CIRWA is shown in Figure 164.

Number of .
Bytes Field Contents or Meaning
2 AREALN Length of work area.
2 DATALIN Length of data returned +4.
Variable DATA The area data is stored.

Figure 164. User Work Area for CIRPARM

Figure 165 describes the format of the volume information.

Number of i
Bytes Field Contents or Meaning

2 Reserved.

4 DEVTYP Device type.

6 VOLSER Volume serial number.

2 FILESEQ File sequence number. (This field is provided
for compatibility with the OS/VS catalog, and
is used for non-VSAM data sets that reside on
tape volumes.)

1 Reserved.

Figure 165. Volume Information Format

Return Codes from IKJEHCIR
The IKJEHCIR return codes have the following meaning:

Return Code Meaning
Hexadecimal
00 Successful completion of the request.
04 The LOCATE macro instruction has failed. The LOCATE return
code will be stored in CIRLOCRC.
0oC Volumes were returned by LOCATE, indicating a dsname (fully

qualified) was passed in the parameter list but options other than
volumes were requested. The list of the volumes returned by
LOCATE is in the work area.

Return Codes from LOCATE

The LOCATE return codes have the following meaning:

Return Code Meaning
Hexadecimal
00 Successful completion of the request.
04 Required VSAM volume was not mounted or the specified volume
was not open.
08 The data set name qualifier was not found.
18 A permanent I/O error was found when processing the catalog.
20 User work area outside user region or invalid user-supplied parameter
list.
24 User catalog must be allocated amnd opened.
2C Work area too small.
38 Password verification failure.
3C STEPCAT or JOBCAT not open.

Catalog Information Routine (IKJEHCIR) 323

324 TSO Guide to Writing a TMP or a CP

Default Service Routine (IKJEHDEF)

The default service routine (IKJEHDEF) constructs a fully-qualified data
set name when the calling routine provides a partially-qualified data set
name. A fully-qualified data set name has three fields: a userid, a data set
name, and a descriptive qualifier.

Use the CALL, CALLTSSR or LINK macro instruction to invoke the
default service routine.

IKJEHDEF may be invoked in either 24- or 31-bit addressing mode.
However, all input passed to IKJEHDEF must reside below 16 megabytes.
IKJEHDEF executes in 24-bit addressing mode and returns control in the
same addressing mode in which it is invoked.

At entry, general register 1 must point to the default parameter list
(DFPL). IKJEHDEF then invokes the catalog information routine
(IKJEHCIR) to search the system catalog for the required qualifiers. When
the search argument is satisfied, the default service routine returns to the
calling control program. All of the general registers are restored except for
register 15 which contains the return code.

Note: For additional information concerning the default service routine, see
Terminal Monitor Program and Service Routines Logic.

Default Service Routine (IKJEHDEF) 3258

326 TSO Guide to Writing a TMP or a CP

Appendix A: Notation for Defining Macro Instructions

The notation used in this publication is described in the following
paragraphs.

1. The set of symbols listed below are used to define macro instructions,
but should never be written in the actual macro instruction:

hyphen -
underscore
braces ...
brackets []
ellipsis . . .

The special uses of these symbols are explained in paragraphs 4-8.

2. Uppercase letters and words, numbers, and the set of symbols listed
below should be written in macro instructions exactly as shown in the
definition:

apostrophe ’
asterisk *
comma ,
equal sign =
parentheses ()
period .

3. Lowercase letters, words, and symbols appearing in a macro
instruction definition represent variables for which specific
information should be substituted in the actual macro instruction.

Example: If name appears in a macro instruction definition, a speclflc
value (for example, ALPHA) should be substituted for the variable in
the actual macro instruction.

4. Braces group related items, such as alternatives.

Example: The representation

A
ALPHA= ({B}, D)
c

indicates that a choice should be made among the items enclosed
within the braces. If A is selected, the result is ALPHA=(A,D). If B
is selected, the result can be either ALPHA=(,D) or ALPHA=(B,D).

5. Brackets also group related items; however, everything within the
brackets is optional and may be omitted.
Example: The representation

A
ALPHA= (I:B ,D)
c

indicates that a choice can be made among the items enclosed within
the brackets or that the items within the brackets can be omitted. If B

Appendix A: Notation for Defining Macro Instructions 327

is selected, the result is: ALPHA=(B,D). If no choice is made, the)
result is: ALPHA=(,D). ’

6. Hyphens join lowercase letters, words, and symbols to form a single
variable.

Example: If member-name appears in a macro instruction definition, a
specific value (for example, BETA) should be substituted for the
variable in the actual macro instruction.

7. An underscore indicates a default option. If an underscored alternative
is selected, it need not be written in the actual macro instruction.

Example: The representation

A A
B or (B
C C

indicates that either A or B or C should be selected; however, if B is
selected, it need not be written because it is the default option.

8. An ellipsis indicates that the preceding item or group of items can be
repeated more than once in succession.

Example: The representation

ALPHA[,BETA] ...

indicates that ALPHA can appear alone or can be followed by ,BETA
any number of times in succession.

<

¢

328 TSO Guide to Writing a TMP or a CP

Appendix B: Using VTAM Full-Screen Mode (STFSMODE and STLINENO)

C

You should use the STFSMODE and STLINENO macros if your command
processor issues full-screen messages (TPUT macros with the FULLSCR or
NOEDIT operands, or TPG macros). The following paragraphs discuss uses
of STFSMODE and STLINENO and aspects of command processors
operating in full-screen mode.

Notes:

1. In the following text, full-screen message refers to a TPUT
FULLSCR, TPUT NOEDIT, or TPG depending on your environment.
Also, non-full-screen message refers to a non-full-screen TPUT.

2. This section describes considerations for coding programs that provide
the functions of a full-screen editor like SPF. For example, the
full-screen messages issued in Figures 166-169 might be primary
menus.

Protection of Screen Contents

A full-screen command processor should use the STFSMODE macro to
prevent unexpected non-full-screen messages from overlaying the screen.
For instance, unexpected messages from the operator or from other TSO
users could cause invalid input to be sent to the command processor. Also,
the STFSMODE macro prevents full-screen messages from overlaying
unexpected non-full-screen messages before the user has a chance to read

them.

(, Figure 166 illustrates what happens when a command processor,
operating in full-screen mode, issues a full-screen message while
non-full-screen messages are being displayed at the terminal.

COMMAND TSO/VTAM TERMINAL
PROCESSOR

-®— (1) Input
input <€—(1) input <€— (1) <€— (1) ENTER

non-full-scrn msg1 (1) —3 [(1)—» non-full-scrn msg1
non-full-scrn msg2 (2)—® | (2)— non-full-scrn msg?

TPUT (3)—>
(full-scrn msg1) (3)—= | ==+ (4)—>> (4)—» 2=
TGET (3)—»

ENTER <€—(5) «€—(5) ENTER
RESHOW <€—(5a)

TPUT (6)—»

(full-scrn msg1) (6)—® | full-scrn msg1 (6)—I»> {7)— full-scrn msg1
TGET (6)—»

Figure 166. Function of RESHOW Code in Full-Screen Message Processing

Appendix B: Using VTAM Full-Screen Mode (STFSMODE and STLINENO) 329

The following events occur in Figure 166.

1. As soon as the user presses the ENTER key to send input to the J
command processor, TSO/VTAM clears the screen, the alarm sounds
(if the terminal is so equipped), and TSO/VTAM then displays the
non-full-screen message.

2. As long as TSO/VTAM receives non-full-screen messages, it displays
them, one after another on the screen.

3. The command processor’s normal processing of the input received
from the terminal (see step 1) may cause it to construct a new
full-screen message. The command processor issues a TPUT and a
TGET.

4. When TSO/VTAM receives the full-screen message, it displays three
asterisks (***) at the terminal and unlocks the keyboard to ensure
that the user has time to view the non-full-screen messages.

5. When the user presses the ENTER key to acknowledge having seen
the messages, TSO/VTAM:

a. Puts a RESHOW code on the input queue to indicate to the
command processor that the screen contents should be completely
restored. This RESHOW code is picked up by the command
processor’s current TGET request.

b. Discards the full-screen message constructed by the command
Processor.

3. The command processor responds to the RESHOW code by issuing a
full-screen message(s) to restore the screen contents and to request "
new input from the user.

4. Finally, TSO/VTAM displays the full-screen message(s) at the
terminal.

Use of TGET

To protect the screen, TSO/VTAM discards full-screen messages that
immediately follow non-full-screen messages. Therefore the full-screen
command processor must issue a TGET macro after every TPUT
FULLSCR macro so that it can receive the RESHOW code. When a TGET
is issued following a TPUT FULLSCR, VTAM unlocks the display
keyboard. When a TGET is issued following a TPUT NOEDIT or a TPG,
VTAM does not unlock the keyboard. Users of TPUT NOEDIT and TPG
are responsible for all device command and write-control-character bit
settings.

Screen Content Restoration

Upon receiving a RESHOW code, the full-screen command processor must

be able to restore the complete contents of the screen-- for example, reissue

the full-screen message. The VTAM default RESHOW code is X‘6E’, the

key-code for PA2. If the command processor uses any other PF key for the

RESHOW code, it must specify the RSHWKEY keyword on the

STFSMODE macro when it first turns on full-screen mode. To set the

RESHOW code, issue STFSMODE ON, RSHWKEY=n, where n is the PF ,J

330 TSO Guide to Writing a TMP or a CP

key number. VTAM uses the hexadecimal representation of the specified
PF key as the RESHOW code.

NOEDIT Mode

To obtain input (via a TGET macro) that is not edited in any way, specify
the NOEDIT keyword on STFSMODE. Regardless of the options specified
on the TGET macro, in NOEDIT mode, the data is not edited, broken into
separate input lines, or modified. VTAM receives the input from the
terminal and puts it on the input queue intact. To establish NOEDIT mode,
the command processor must issue STFSMODE ON,NOEDIT=YES. (Use
of the NOEDIT keyword has no effect on the treatment of TPUTs and
TPGs.)

Full-Screen Protection Responsibilities of Attention Exit
Routines

To maintain screen protection when the user presses the PA1 or
ATTENTION key, the command processor must have an attention exit
routine. When the terminal user presses the PA1 or ATTENTION key,
VTAM sets FULLSCR to OFF, the RESHOW code to the default, and
NOEDIT mode to NO. If the command processor does not have an
attention exit and the user presses ENTER (in response to the attention
indication), the command processor resumes execution at the point of
interruption with these default values. If the command processor has an
attention exit routine, the exit routine should issue the STFSMODE macro
to reestablish full-screen mode, the desired RESHOW code, and NOEDIT
mode. In this way, the attention exit routine maintains screen protection.

Determining Screen Protection in Full-Screen Mode

The first time the command processor issues the STFSMODE macro to
establish full-screen mode, it may specify INITIAL=YES to prevent
unnecessary protection of the screen contents. This issuance of the macro
sets full-screen mode on and prevents the acknowledgement message from
being sent to the terminal when the last transaction at the terminal was
input. The INITIAL indicator is set to NO after the first full-screen
message.

Appendix B: Using VTAM Full-Screen Mode (STFSMODE and STLINENO) 331

i

Figure 167 illustrates a situation in which INITIAL=YES is specified on
the STFSMODE macro and the first message issued is a full-screen

message.
COMMAND TSO/VNTAM TERMINAL
PROCESSOR
READY (1)—» {1)—» READY
cmdname @&— (1) <€—(1) cmdname
STFSMODE (2)
INITIAL=YES
TPUT (2) —>
{full-scrn msg1) (2)—»» | full-scrn msg1 (3} —» (3)— fullscrn msg?
TGET (2)—»

Figure 167. Function of INITIAL=YES When First Message is Full-Screen
The following events occur in Figure 167:

1. In response to the READY message, the user enters a command
name, SPF for example.

2. The command processor issues the STFSMODE macro with
INITIAL=YES. Then, the CP sends a full-screen message the
terminal.

3. TSO/VTAM sends the message without warning because
INITIAL=YES has been specified and because its previous
interaction with the terminal involved input, not output. There is
nothing to protect.

TSO Guide to Writing a TMP or a CP

5

If the command processor specifies INITIAL=YES on the STFMODE
macro, and the first message is a non-full-screen message, VTAM ignores
the keyword and protects the screen contents. Figure 168 illustrates this

situation.
COMMAND TSO/VTAM TERMINAL
PROCESSOR
READY (1)—>» (1)—>»» READY
cmdname <€— (1) <€— (1) cmdname
STFSMODE (2)
INITIAL=YES
non-full-scrn msg1 (3)—> | (3)—®non-full-scrn msg1
TPUT (4)—>»
(full-scrn msg1) (4)—p| *** (5)—>> (5)—p**
TGET (4)—>»
ENTER «€—(6) «€—(6) ENTER
RESHOW «#—(6a)
TPUT (7)—>
(full-scrn msg1) (7 —=| full-scrn msg1 (7)—» (8)—full-scrn msg1
TGET (7)—>»

Figure 168. Function of INITIAL=YES When First Message is Non-Full-Screen

The following events occur in Figure 168:

1.

In response to the READY message, the user enters a command
name.

The command processor issues the STFSMODE macro with
INITIAL=YES.

. TSO/VTAM displays a non-full-screen message, an operator warning

for example, which effectively overrides the INITIAL=YES keyword.

The command processor sends a full-screen message to the terminal.

. TSO/VTAM protects the screen contents.

When the user presses the ENTER key to acknowledge having seen
the messages, TSO/VTAM:

a. Puts a RESHOW code on the input queue to indicate to the
command processor that the screen contents should be completely
restored. This RESHOW code is picked up by the command
processor’s current TGET request.

b. Discards the full-screen message constructed by the command

processor because the screen contents are completely restored.

. The command processor responds to the RESHOW code by issuing a

full-screen message(s) to restore the screen contents and to request
new input from the user.

. Finally, TSO/VTAM displays the full-screen message(s) at the

terminal.

Appendix B: Using VTAM Full-Screen Mode (STFSMODE and STLINENO) 333

When INITIAL=NO is specified, or allowed to default, no full-screen
messages are displayed without warning. Figure 169 illustrates an example

of this situation.)

COMMAND TSO/VTAM TERMINAL
PROCESSOR
READY (1)—>» (1}—=READY
cmdname ®€— (1) ‘<€—(1) cmdname
STFSMODE (2)
INITIAL=NO
TPUT (2)—>
(full-scrn msg1) (2)—= | *** (3)}—>»> (3)— 22
TGET (2)—»
ENTER «—(4) <€—(4) ENTER
RESHOW «—(4a)
TPUT (5)—»=
(full-scrn msg1) (5)— | full-scrn msgl (5) —= (6)—=full-scrn msg1
TGET (5)—»

Figure 169. Function of INITIAL=NO
The following events occur in Figure 169:

1. In response to the READY message, the user enters a command
name.

2. The command processor issues the STFSMODE macro with
INITIAL=NO. Then, the CP sends a full-screen message to the
terminal.

3. TSO/VTAM protects the screen contents.

4. When the user presses the ENTER key to acknowledge having seen
the messages, TSO/VTAM:

a. Puts a RESHOW code on the input queue to indicate to the
command processor that the screen contents should be completely
restored. This RESHOW code is picked up by the command
processor’s current TGET request.

b. Discards the full-screen message constructed by the command
processor because the screen contents are completely restored.

5. The command processor responds to the RESHOW code by issuing a
full-screen message(s) to restore the screen contents and to request
new input from the user.

6. Finally, TSO/VTAM displays the full-screen message(s) at the
terminal.

¢

334 TSO Guide to Writing a TMP or a CP

Exiting and Reentering Full-Screen Mode

If the command processor issues non-full-screen messages (or invokes
routines that issue non-full-screen messages), it may issue the STLINENO
macro to set full-screen mode off, and to set the line number for the next
non-full-screen message. In so doing, the command processor eliminates the
screen protection function and determines where the next non-full-screen
message will appear. If the line number is set to 1, VTAM clears the
screen. When the command processor issues the last non-full-screen
message (or when the invoked routine returns control to the command
processor), the command processor should issue STFSMODE ON to
reestablish full-screen mode. This STFSMODE macro should be issued
before the next full-screen message macro is issued.

If the command processor exits full-screen mode, expecting to reenter
full-screen mode at a later time before termination, STLINENO should be
used to set full-screen mode off. (Use of STFSMODE to set the mode off
results in the RESHOW code being set to the default.) After a TGET
request, issue STLINENO LINE=n where n is the desired line number.
When all non-full-screen messages are completed, issue STFSMODE ON
before issuing the next full-screen message macro.

You may want either to clear part of the screen before issuing
STLINENO, or to display information that is to remain on the screen after
the STLINENO macro is issued. In either case, issue a full-screen message
macro (including the HOLD option) before issuing the STLINENO. The
HOLD option guarantees that the full-screen message reaches the terminal
before the STLINENO macro takes effect.

Since VTAM clears the screen when the line number is set to 1,
STLINENO LINE=1 is an efficient way for the command processor to
clear the screen. Use of a full-screen message macro (including the HOLD
option) to clear the screen reduces performance because it causes a
swap-out of the address space to wait for the 1/0 to complete.

Full-Screen Command Processor Termination

When the full-screen command processor terminates, it must issue
STFSMODE OF°F to exit full-screen mode. This resets the RESHOW code
and NOEDIT mode values to the defaults. The following termination
procedure is recommended:

When a TGET request is satisfied with data that causes the command
processor to begin exit processing, issue the following:

o STLINENO LINE=1 (causes VTAM to clear the screen)

o STFSMODE=OFF (resets the RESHOW code and NOEDIT mode t
the defaults) .

e non-full-screen TPUTS (optional-- perhaps to provide session
summary information)

If the command processor issues a TPUT or TPG macro before (or
instead of) issuing the STLINENO macro, it should be issued with the
HOLD option to guarantee that the message reaches the terminal before
full-screen mode is set off. If the macro is also a full-screen message, a
TCLEARQ INPUT should be issued just before termination to clear the

Appendix B: Using VTAM Full-Screen Mode (STFSMODE and STLINENO) 3358

336

RESHOW code, which may have been put on the input queue by the
screen protection function.

Use of TERMINAL BREAK

When a command processor establishes full-screen mode, VTAM treats all
devices as if the terminal user had entered the TERMINAL NOBREAK
command. If the user specifies TERMINAL BREAK before a full-screen
command processor is invoked, VTAM supports the BREAK mode
whenever the command processor exits from full-screen mode.

TSO Guide to Writing a TMP or a CP

U.

A
ABEND
completion code 23
ESTAE/ESTALI relationships 9
interception 8
interception of a subtask 9
interception of a TMP task 10
options after 10
types ol 8
abnormal termination
of subtasks 8
of terminal monitor program 10
responding to 3
abnormally terminating subcommand processors 22
absolute address parameter, definition 235
adding commands to TSO 17
address parameter
absolute 235
definitions 235
expression 236
floating-point rcpister 235
forms of the address parameter 235
general register 235
in the command processor parameter list 39
indircct 236
of the format-only line 150
of the GETLINE input buffer 125
qualified 235
relative 235
required for the Input/Output Parameter List 98
symbolic 235
addressing mode
changing 30
of the invoking program 30
setting via BASSM or BSM 39
24-bit 30.40
31-bit 30,40
allocate
data set
by DDNAME 74
by DSNAME 65
SYSOUT 80
to the terminal 73
allocating
data sets after LOGON 59
dynamicalily (during program execution) 59
AMODE=ANY, RMODE=24 30
AMODE=24, RMODE=24 30
AMODE=31 30
Appendix A 327
Appendix B 329
asterisk in place of positional parameter 243
ATTACH macro instruction 3,8
altention exit handling routines 11,14,51
address of 12
command processor use of 23
paramelers received by 12,55
registers at entry 12
scheduling 2,50
specifying 50
attention exit parameter list (AEPL) 14
attention interruption
exit routines 11
parameters received 12

processing 11
responding to 4
STAX service routine 49
attribute control block for DAIR 84
attributes and linkage conventions, determining 29,31

B
balanced parenthescs (PSTRING) 237
basic functions of
command proccssors 2
GETLINE 2
PUTGET 2
PUTLINE 2
STACK 2
terminal monitor program (TMP) 2
TGET 2
TPG 2
TPUT 2
BLKSIZE in data controf block 94
BSAM
length of text line 94
using for terminal 1/0 91
BSAM macro instructions, list of 92
buffer
address in register 198
GETLINE input 125
length in register 198
PUTGET input 171
buffering techniques 94
building
a second level informational chain 151
the GETLINE parameter block (GTPB) 123
the list source descriptor (LSD) 112
the PUTGET parameter block (PGPB) 164
the PUTLINE parameter block (PTPB) 137
the STACK parameter block (STPB) 107

C
CALLTSSR macro instruction 40
catalog information routine (IKJEHCIR) 19,321

parameter list (CIRPARM) 321
chaining second level messages 151
changing addressing mode

branching without 35

for certain processing 30

via BASSM or BSM 34
character, string dcfinition 234
characters

separator 228

types recognized by command scan and parse 228
CHECK macro instruction 94
checking

syntax of command operands 230

validity of command operands 301
coding examples

GETLINE macro 127

parse macro 306

PUTGET macro 174

PUTGET multi-level prompt 174

PUTLINE macro 142

Index

Index 337

second level informational chaining 152
STACK specilying an in-storage list as the input source |14
STACK specilying the terminal as the input source 100
STAX 57
text insertion
TGET macro 196
TPUT macro 196
coding guidelines for command processors 18
combining the LIST and RANGE options 295
command
adding 17
information about {(HELP) 25
requesting 7
command library
adding a new member 17
concatenating a new data set 17
command name
checking syntax 3
determining validity of 223
entering after ABEND 10
syntax validity 3.223
command name symax for user-writlen commands 224
command operand
checking syntax 230
delautt vatues 300
validity checking 301
command paramcler
delimiter-dependent parameters 233
positional parameters 233
syntax 233
command processor parameter list (CPPL) 38
command processors 17
ABEND return code 23
adding to SYSI.CMDLIB 17
allocating and [reeing data sets 21,59
atlendon exit routines 23
basic functions of 2
coding guidelines 18
completion code 23
data set information 20
definition of |7
detaching 8
error routines 18
functions that rely on exit routine support 22
intercepting ABENDS 22
parameter list (CPPL) 38
relationship to the rest of TSO 17
requests for subcommands 22
resel input stack after an attention interruption 24
using TSO service routines 18
validity checking exits 21
command scan
command processor use of 21
control blocks 225
entry point 223
flags passed to 226
operation of 224,227
output area 226
parameter list 225
results of 229
return codes 229
service routine 3,224
used by the terminal monitor program 15
command scan and parse service routines 223
character types recognized 228
sequence of operations 224
command scan cutput area (CSOA) 226
command scan output area and command buffer settings 229

149

338 0OS/VS2 TSO Guide to Writing a TMP or CP

command scan parameter list (CSPL) 226
command syntax defining 245
communicating with the user at the terminal 2
concatenating
command libraries 17
data sets 69
DDNAMES 69
HELP data sets 25
CONSTANT parameter type 234,239
control blocks
passed between the terminal monitor program and I/0
service routines 99
required by command scan service routine 225
required by dynamic allocation interface routine (DAIR) 60
required by PUTGET service routine 169,173
used by GETLINE service routine 126
control flags in the GETLINE parameter block
control program interfaces
IBM-supplied CPs and the TMP 31
user-written TMPs and CPs 31
conversational messages (PUTGET)
current source of input 100

124

154

D
DAIR (dynamic allocation interface routine) 4,59
command proccssor use of 20
control blocks 60
definition 59
drawbacks to using 20
entry codes 62
entry point 59
functions provided by 62
IKJDAIR entry point 59
[KJDAIR load module 59
indicating requcsted function to 62
return codes 86
terminal monitor program use of 6
DAIR attribute control block (DAIRACB) 84
DAIR parameter block (DAPB) 61
code X’0C’ 69
code X'00" 62
code X’04> 63
code X'08" 65
code X’1C" 74
code X'10" 69
code X'14' 70
code X'18” 71
code X2C' 79
code X'24’ 74
code X'28" 78
code X'30" 80
code X'34’ 83
description of 61
DAIR parameter blocks 62
DAIR parameter list (DAPL) 61
DAIRFAIL routine (IKJEFF18) 88
data definition (DD) statement 5,95
in LOGON PROC 5
modifying 95
data lines, definition 139
data name 240
data name qualifier 241
data output
multiline 141

single line 139 examples
data sel buffer address in register 198

allocation 59 buffer length in register 198
‘ by DDNAME 74 GETLINE macro 127
by DSNAME 65 IKJPARMD DSECT 246
to the terminal 73 message identifier stripping (PUTLINE) 147
coricatenating 69 PDE formats affected by LIST and RANGE options 294
deconcatenating 69 PDL returned by parse service routine 309
freeing 71 register format 199

STACK macro 111
text insertion (PUTLINE) 148

marking allocatable 79
marking not in use 79

name, finding 62 TGET macro 197,199
processing 59 TPUT macro 197,198
qualifiers 70 using Lhe parse service routine 306

SYSOUT, allocation of 80
data set name, searching for 62

EXEC statement of LOGON procedures 1
execute form of 1/0 service routine macro, definition of 97

DDNAME, allocation by 74 exit, EODAD 94
deconcatenating data sets 69 exiting full-screen mode 335
default service routine (IKJEHDEF) 19,325 expression 241
DEFER operand of STAX macro 11 address 236
defining command syntax 245 expression value, syntax of 236
delete extended address, absolute 235
clements [rom the input stack 100,104 extended format PCE
procedure element from the input stack 104 bit indication of
second level messages 20,45 IKJIDENT 269
delimiter IKJOPER 261
definition 234 IKJPOSIT 251

dependent parameters 233
detaching a command processor 8

IKITERM 256
validity checking address field

determining the validity of commands 223 IKJIDENT 271

diagnostic error message 23 IKJOPER 262

DSECT= 2406 IKJPOSIT 252

DSNAME IKJITERM 257
allocation by 65 extended mode 235
definition 238 EXTENDED operand of 1KJPOSIT, effect on address
formats 238 expression 236

N parameter missing 238 EXTRACT macro 15

DSTHING, definition 239
dynamic allocation 4,59
return codes 87
dynamic allocation of data sets 4 F
figurative constant 240
finding data set name 62
finding data set qualifiers 70
E fixed record format 94
ECB, STOP/MODIFY 15 fixed-point numeric literal 239
ECTMSGEF bit, use of 45 flag fields in TGET/TPUT/TPG parameter formats 192

element flags passed to command scan 226
input stack floating-point numeric literal 240
adding 100,104 floating-point register address, syntax of 235
coding 107 format

deleting 100,104

end-of-data (EOD) processing (GETLINE) 123
end-of-file (EOF) processing 94
entering positional parameters

as a list 243

as a range 243
entry codes ta DAIR 62
entryname, syntax of 236
EODAD exit 94
error messages 23
ESTAE macro instruction 3,10
ESTAE retry routines 23
ESTAE/ESTALI exit routine guidelines 23
ESTAI operand of ATTACH macro 22
event control block, STOP/MODIFY 15

of HELP members 25
only function 150
PCE built by
IKJENDP 277
IKJIDENT 269
IKJKEYWD 272
IKINAME 274
IKJOPER 261
IKJPARM 246
IKJPOSIT 250
IKJRSVWD 264
IKJSUBF 276
IKJTERM 256
PUTGET input buffer 171
records 94

Index 339

formatting
HELP data set 25
output linc 146
TGET registers 192
TPUT registers 191
forward chain pointers 141
freeing
a data set 7!
GETLINE buffers 19
GETLINE inpul buffer 125
PUTLINE buffer 20,172
full-screen
command processor 329
command processor termination 335
cditor 329
message 329
mode 329
protection responsibilities of attention exits 331
full-screen mode
determining screen protection 331
exiling 335
reentering 335
with the STFSMODE macro instruction 213
with the STLINENO macro instruction 215
function
format only (PUTLINE) 150
ol INITIAL=NO 334
ol INITIAL=YES
when first message is full-screen 332
when first message is non-full-screen 333
of RESHOW codc 329
text insertion (PUTLINE) 147
functions
basic
command processors 2
GETLINE 2
PUTGET 2
PUTLINE 2
STACK 2
terminal monitor program 2
TGET 2
TPG 2
TPUT 2

G
gaining control after a TMP task ABEND 10
general registers 235
GET macro 93
GETLINE buffer, freeing 19
GETLINE macro
basic functions 2
coding example 127
command processor use of 19
contro! blocks used by 126
definition 2
end-of-data (EOD) processing 122
execute form 119
input buffer 125
list form 117
logical line processing 122
macro instruction description 117,119
operands 117,119
parameter block 123
return codes 129
returned record, identifying source of 122
sources of input 122

340 OS/VS2 TSO Guide to Writing a TMP or CP

GETLINE parameter block (GTPB) 123
initializing 117
GNRLFAIL/VSAMFAIL routine (IKJEFF19) 89
GTPB, GETLINE parameter block 123
GTSIZE
return codes 202
using 202
GTTERM macro instruction 202

H

HELP
data set 24
formatting HELP 25
private HELP data sets 25

I

identification (USERID), format of 237
identifying the source of a record returned by GETLINE 122
IKJCPPL 37,40

IKICSOA 37,226
IKJCSPL 37,226
IKIDAIR 40,59

IKIDAPL 37

IKIDAPOC 37

[KIDAPOO 37

IKJDAPO4 37

IKJDAPOS 37

IKJIDAPIC 37

IKJDAP10 37

IKIDAP14 37

IKIDAPI8 37

IKIDAP2C 37

IKIDAP24 37

IKIDAP28 37

IKJDAP30 37

IKJDAP34 37

IKJDFPB 37

IKIDFPL 37

IKJECT 37,98

IKJEFFDF 37

IKJEFFGF 37

IKIEFFMT 33,37,47
IKJEFFO2 (TSO message issuer) 40,45
IKJEFF18 (DAIRFAIL) 88
IKJEFFI19 (GNRLFAIL/VSAMFAIL) 89
IKJEHCIR 40

IKIJENDP 277

IKIGTPB 37

IKJIDENT 265

IKJIOPL 37

IKIKEYWD 271

IKJLSD 37

IKINAME 272

IKJOPER 232,258
IKJPARM 246
IKJPARMD 246

IKJPARS 40,230,278
IKIPGPB 37

IKJPOSIT 247

IKJPPL 37,231,279
IKJPSCB 37

IKIPTGT 99

C

IKJPTPB 37,98
IKJRLSA 277
IKJRSVWD 262
IKJSCAN 40,224
IKJSTPB 37,98
IKJSTPL 37
IKIJSUBF 276
IKJTAIE 37
IKJTAXE 37
IKITERM 232,252
IKITMPWA 37
IKJUPT 37
indirect addrcss parameter 236
indirection symbol 236
informational
chain 151
multilevel message 143
second level message 143
inhibit prompting 167
initialization of the terminal monitor program 6
initializing
GETLINE paramcter block 117
input/output parameter block 98
PUTGET parameter block 164
PUTLINE parameter block 137
STACK parameter block 107
STAX parameler list 5§
input buffer
GETLINE 125
PUTGET 171
input line format 125,171
input output parameter list (1OPL) 97
input source
changing 100
effect on message processing 44
GETLINE 22
STACK 100
input to BSAM/QSAM macro instructions 91
input wait after prompt 171
inserting keywords into a parameter string 302
insertion of default values 300
in-storage list
adding an element 100,105
as input source 107
coding example 114
intercepting
ABEND R
subtask ABEND 9
TMP task ABEND 10
interface considerations
general for 31-bit addressing 29
specific for 31-bit addressing 31
interfaces
determining 2931
overall 29,31
interruption handling, attention |1
1/O macro, uses of 100
1/0 parameter blocks, modifying 98
[/O parameter list 98
building with GETLINE 126
1/0 service routine macro instructions
GETLINE 117
PUTGET 154
PUTLINE 129
STACK 100
1/0 service routines 97
control blocks passed to 3R
execute form of macros 97

list form of macros 97
load module 99
macro instructions 100
parameter block, address of 98
passing control to 99
processing terminal 1/0 97
using 97

issuing second level messages 303

J
job control language (JCL) 95
jobname parameter 239

K

keyword
insertion 302
parameter descriptor entry (PDE) 300
parameters for parse 244,300
subfields 244,276

L
length of text line processed by BSAM 94
levels of indirect addressing 236
levels of messages 43,143

multiple 143

single 143
line format, input 125,171
line number, statcmcnt number parameter 241
line size, terminal 94
LINK macro instruction 31.39
linkage conventions, determining 29
linkage decisions, making 29
list element

in-storage

adding to input stack 100,107

list forms of macro instructions, definitions 97
LIST option of parse 243
list source descriptor (LSD) 112
listing the keyword parameter names 245
load modules

IKJDAIR 59

IKJPTGT 99
locate mode of GET, PUT, PUTX macros 93
locating data set name 62
logical line processing 117
logon cataloged procedure 5

EXEC statement 1
LOGON/LOGOFF scheduler 6
LRECL in DCB 94
LSD (list source dcscriptor) 112

M
macro instruction
1/0
definition 97,100
macro instructions
ATTACH 8
BSAM 92

Index 341

CALLTSSR 40
CHECK 94
downward incompatible 29
ESTAE 10
EXTRACT IS
FESTAE 10
generating the desired level 29
GET 93
GETLINE 2,117,119
IKJENDP 277
IKJIDENT 265
[KIKEYWD 271
IKINAME 273
[KJOPER 258
IKJPARM 246
IKJPOSIT 247
IKJRLSA 277
IKIRSVWD 263
IKJSUBF 276
IKJTERM 252
LINK 39
LOAD 39
PUT 93
PUTGET 2.155
PUTLINE 2,129
PUTX 93
QSAM 92
READ 93
STACK 2.100
STAX 49
TGET 2.185
TPG 2
TPUT 2,198
TSEVENT 8§
WRITE 93
macro interfaces (see also MVS/Extended Architecture
Considerations)
ATTACH 33
CALL 33
CALLTSSR 33,40
ESTAE 2233
FESTAE 22,33
GETLINE 33
IKJTSMSG 33
LINK 33
LOAD 33
parse macros 33
PUTGET 33
PUTLINE 33
SAM macros 33
STACK 33
STAE 22,33
STAX 34
terminal control macros 34
TGET 34
TPG 34
TPUT 34

chaining 151
classes, definition 43
conversational 154
error 23
formatting 97,150
handling 43
[D stripping 146
identifier, definition 146
levels 43
line processing 143
additional for PUTLINE 146
lines 143
mode (definition) 43,154
mode message processing for PUTGET 44
multilevel
definition 143,167
writing 141
passing to PUTGET 167
passing to PUTLINE 144
prompt 154
second-level 303
single level 143
stripping identifiers 146
without message identifiers (restriction) 146.155
methods of constructing an IOPL 98
missing DSNAME 238
missing operands 304
missing positional parameters 233
mode messages, definition 43,170
modifying DD statements 95
modulename, syntax of 236
move mode 93
multilevel messages, definition 143,167
multiline data output 141
multiple lines of output BSAM/QSAM 94
MVS/Extended Architecture Considerations 29
addressing mode 29
changing 30
of the invoking program 30
24-bit 30,40
31-bit 30,40
AMODE=ANY, RMODE=24 30
AMODE=24, RMODE=24 30
AMODE=31 30
attributes and linkage conventions
determining 29,31
changing
addressing mode 30,34,35
control program interfaces
[BM-supplied CPs and the TMP 31,38
user-written TMPs and CPs 31
extended addressing, taking advantage of 29
guidelines for making
general linkage decisions 29
specific linkage decisions 31
input residency
above 16 megabytes 30,32

macro notation 327

marking data sets not in use 79

member name, syntax of 238

message handling 43
effects of the input source on message processing 44
message levels 43

message issuer routine (IKJEFF02) 20,45

message lines output 143

messages
building PUTLINE text insertion 147

342 OS/VS2 TSO Guide to Writing a TMP or CP

below 16 megabytes 30,31,33
STAX 52
interface considerations
general 29
specific 31
interfaces
determining 29,31
individual 29,31
LINK macro instruction, to invoke service routines 31

C

linkage conventions

determining 29,31

linkage decisions, making 29
macro instructions

downward incompatible 29
generating the desired level 29

macro interfaces

ATTACH 33
CALL 33
CALLTSSR 33
ESTAE 33
FESTAE 33
GETLINE 33
IKJTSMSG 33
LINK 33
LOAD 33
parse maeros 33
PUTGET 33
PUTLINE 33
quick reference table 33
SAM macros 33
STACK 33
STAE 33
STAX 34
terminal control macros 34
TGET 34

TPG 34

TPUT 34
XCTL 34

program residency 30
receive contro}

in 24-bit addressing mode 30
in 31-bit addressing mode 30

residency

input 30
program 29
requirements 30

restrictions

on executing exclusively in 31-bit mode 30

on invoking programs with 24-bit dependencies 31
on passing an output line descriptor to IKJEFF02 35
RMODE=ANY, AMODE=31 30
RMODE=24

AMODE=ANY 30
AMODE=24 30
AMODE=31 30

running programs

in 370-XA mode 30
on an MVS/XA system 29
on an MVS/370 system 29

service routine interfaces

catalog information routine (IKJEHCIR) 32
command scan service routine (IKJSCAN) 31
DAIRFAIL (IKJEFF18) 31

data type processor (IKJIEBEPS) 31

default service routine (IKJEHDEF) 32
dynamic allocation interface (IKJDAIR) 32
GETLINE service routine (IKJGETL) 31
GNRLFAIL/VSAMFAIL (IKJEFF19) 31
parse service routine (IKJPARS) 31
PUTGET service routine (IKJPTGT) 31
PUTLINE service routine (IKJPUTL) 31
STA interface routine (IKJEHSIR) 31
STACK service routine (IKJSTCK) 31
STAX 32

TSO message issuer routine (IKJEFF02) 31

specific interfaces and functions 31
31-bit addressing, general interface considerations 29

N
name
qualified 238
unqualified 238
naming the PDL (DSECT=) 246,280
no message identificrs on second level messages 146,151
no output line (PTBYPS) 156
NOEDIT mode 331
non-delimiter dependent positional parameters 242
non-full-screen messages 329
non-numeric literal 240
NOPAUSE processing of an in-storage list 44
notation for defining macro instructions 327
null line entered
after ABEND 10
in response to a prompling message 304
null PSTRING, definition 237
null quoted string (QSTRING) definition 239
null string, definition 234
number of bytes moved by TGET (buffer size) 186

O
OLD (Output Line Descriptor) 130,144
operand
descriptions (HELP) 26
in an expression 241
missing 304
operation of command scan service routine 227
operator, expression parameter 241
output, multiline data 143
OUTPUT=0 (for GET function of PUTGET only) 160
output line descriptor (OLD) 130,144
PUTGET 167
PUTLINE 144
output line formats for PUTGET 167
output message
building 146
no response required 129
response required 154
with the PUTLINE macro instruction 129
with the WRITE macro instruction 93

P
parameter block
GETLINE (GTPB) 123
PUTGET (PGPB) 164
PUTLINE (PTPB) 137
STACK (STPB) 107
parameter control entry (PCE) 245
built by
IKJENDP 277
IKJIDENT 269
IKJKEYWD 272
IKINAME 274
IKJOPER 261
IKJPARM 246
IKJPOSIT 250
IKJRSVWD 264

Index 343

IKJSUBF 276
IKITERM 256
releasing storage allocated by parse 277
parameter control list (PCE), beginning the 246
parameter control list (PCL) 245
example 306
paramcter descriptor entries (PDE) 246,279
combining list and range options 295
description 279
keyword parameters 300
list option 294
positional parameters 280
range option 295
parameter descriptor list (PDL) 280
beginning the 246
parameter formats, TGET/TPUT/TPG 191
parameter list
attention exit parameter list (AEPL) 14

catalog information routine parameter list (CIRPARM) 321

command processor parameter list (CPPL) 38
command scan parameter list (CSPL) 226
DAIR parameter list (DAPL) 61
expansion
execute form of TPG 194
execute form of TPUT 193
format for IKIEFF02 45
list form of GTTERM 203
list form of TPG 194,195
list form of TPUT 193
standard, list, execute forms of TGET 195
input/output parameter list (IOPL) 98
parameter description list (PDL) 280
parse parameter list (PPL) 279
STAX parameter list (STPL) 55
structure required by command scan 225
parameter string, inserting keywords into 302
parameter syntax, command 233
parameters
address, forms of 235
passed to attention handling routines 12
passed to command processors 8
received by attention handling routines 12
parenthesized string (PSTRING) format of 237
PARM field of LOGON EXEC statement 6
parse macro instructions
coding examples 306
combining LIST and RANGE options 295
description 245
IKJENDP 277
IKJIDENT 265
IKIKEYWD 271
IKINAME 273
IKJOPER 258
IKIPARM 246
IKJPOSIT 247
IKJRLSA 277
IKIRSVWD 263
IKJSUBF 276
IKITERM 252
LIST option 293
order of coding l'or positional parameters 247
RANGE option 294
parse service routine (IKJPARS) 223
character types recognized 228
command processor use of 21,230
description 223
entry point 223
examples of use 231,306

344 OS/VS2 TSO Guide to Writing a TMP or CP

insertion of default values 300
insertion of keywords 302
issuing second level messages 303
macro instruction description 245
parameter description list, example 306
parse parameter list (PPL) 279
passing control to 278
passing control to a validity checking routine 301
positional parameters 233
passing control
to command processors 7
to commands and subcommands 3
to I/O service routines 99
to parse service routine 278
to the TSO service routines 39
to validity checking routine 301
passing message lines
to PUTGET 167
to PUTLINE 144
passing parameters to an attention exit 52
password 238
PAUSE processing 44,171
PDE (parameter descriptor entry)
combining LIST and RANGE options 295
effect of LIST and RANGE oplions on format 293
format (general) 279
types
ADDRESS 283
CONSTANT 288
EXPRESSION 292
expression value parameter 285
IKJIDENT 292
JOBNAME 283
KEYWORD 300
non-delimiter dependent parameter 292
positional parameter 280
RESERVED WORD 29}
STATEMENT NUMBER 289
STRING, PSTRING, or a QSTRING 280
UID2PSWD 287
USERID 286
VALUE 281
VARIABLE 290
PDE (paramelter descriptor entry), types, DSNAME or
DSTHING 281
PDL
header 280
naming (DSECT=) 280
perform a list of DAIR operations 78
physical line processing 122
pointer
forward chain 141
to the formatted line (PUTLINE) 150
to the I/O service routine parameter block 98
positional parameters 233
asterisk in place of 239
entered as lists or ranges 243,293
missing 233
not dependent upon delimiters 242
order of coding parse macros 247
PPMODE 8
primary text segment, offset of 147,148
print inhibit (PTBYPS) 156,160
private HELP data set 25
processing
a source in-storage list 44

U.

attention interruptions 10

HELP data sets 25

modes 94,154

physical line 122

STOP commands 15
PROFILE command 44,146,171
program-id

statement number parameter 241

variable parameter 240
prompt message

processing 171

second level 303

prompting
for missing operands 303
inhibiting 167

input wait after 171

messages 43

responses 304

return codes 319

scanning the input buffer 224

translation to upper case 300

types of command parameters recognized 233

user at the terminal 303

using the parse service routine, examples 306
protection of screen contents 329
PSTRING, syntax of 237
PSW, at time of abnormal termination 10
purging the second level message chain 151
PUT macro instruction 93
PUTGET bulfer, freeing 20,172
PUTGET macro instruction

coding example 174

format 155,159

OUTPUT=0 155,170
PUTGET parameter block 164

initializing 164
PUTGET service routine 154

coding example 174

command processor use of 20

control blocks 169,173

description 154

input buffer format 171

input line format 171

macro instruction

execute form 159
list form 155

mode message processing 170

no output line 170

operands 155,159

output line descriptor (OLD) 167

output line formats 167

parameter block (PGPB) 164

passing message lines to 167

PAUSE processing 171

processing of second level messages 43

prompt message processing 171

providing the GET (ATTN) function only 156

question mark processing 171

return codes 177

sources of input 154,170

text insertion 167

TGET options (TERMGET) 158,163

TPUT options (TERMPUT) 156,161

types of output line descriptor 167
PUTLINE functions for message lines 143
PUTLINE macro instruction

coding example 140

format of 129

PUTLINE parameter block 138
initializing 137
PUTLINE service routine 129
building a second-level informational chain 151
coding examples of 149
command processor use of 20
control blocks 145
control flags 138
description 129
format only function 150
macro instruction
execute form 133
list form 130
message line processing 146
message processing control blocks 145
operands 129,130
output line descriptor (OLD) 144
output lines, format 139
parameter block 138
passing message lines to 144
processing of second level messages 43,143
PUTLINE parameter block (PTPB) 137
return codes 154
stripping message identifiers 146
text insertion function 147
TPUT (TERMPUT) options 131
types and formats of output lines 139
PUTX macro instruction 93

Q
QSAM
macro instructions 92
using for terminal I/O 91
QSTRING definition 239
qualification, variable parameter 241
qualified address parameter 235
qualifier, data name 241
question mark
entered after ABEND 10
processing 97,170
quoted string (QSTRING) syntax of 239

R
range, use of (general) 243
range option, how to use 294
READ macro instruction 93
Read Partitioned Query Structured field 185
reading a record from the terminal (the READ macro) 93
receive control
in 24-bit addressing mode 30
in 31-bit addressing mode 30
record formats supported under TSO 94
record returned by GETLINE, identifying the source of 122
reentering full-screen mode 335
register
changing contents 5
floating-point 235
general 235
when TMP is attached 6
relative address parameter 235
requesting a command 7
reserved word 242

Index 345

RESHOW code -

default for VTAM 330

in full-screen message processing 330
residency

input

above 16 megabytes 30,32
below 16 megabytes 30,31,33

program 30

requiremcnts 30
responding to

abnormal terminations 3

attention interruptions 4
restoration of screen contents 330
restrictions

for user-written TMP 6

non-delimiter dependent parameters 242

on executing exclusively in 31-bit mode 30

on invoking programs with 24-bit dependencies 31

on passing an output line descriptor to IKIEFF02 35
results of command scan 229
return codes

from command scan 229

from DAIR 86

from dynamic allocation 87

from GETLINE 129

from GTSIZE 202

from GTTERM 203

from IKJEHCIR 323

from LOCATE 323

from parse service routine 319

from PUTGET 177

from PUTLINE [54

from RTAUTOPT 203

from SPAUTOPT 203

from STACK 116

from STATTN 206

from STAUTOCP 207

from STAUTOLN 208

from STAX 45

from STBREAK 210

from STCC 212

from STCLEAR 213

from STCOM 213

from STFSMODE 215

from STLINENO 216

from STSIZE 217

from STTIMEOU 219

from STTMPMD 219

from STTRAN 220

from TCLEARQ 222

from TGET 190

from TPG 187

from TPUT [85

validity checking 302
RMODE=ANY, AMODE=31 30
RMODE=24

AMODE=ANY 30

AMODE=24 30

AMODE=31 30
RTAUTOPT macro instruction 203
running programs

in 370-XA mode 30

on an MVS/XA system 29

on an MVS/370 system 29

346 OS/VS2TSO Guide to Writing a TMP or CP

S
SAM terminal routines 92
screen contents
protection of 329
restoration of 330
second level messages
definition 43
deleting 20,44,151
informational messages 151
message chain 20,151,167
messages handled by parse 303
no message identifiers 151
requesting 43
writing to the terminal 151
separator characters 228,233
sequential access method (SAM) terminal routines
CHECK 94
GET 93
PUT 93
PUTX 93
READ 93
WRITE 93
service routine interfaces
catalog information routine (IKJEHCIR) 32,40
command scan service routine (IKJISCAN) 31,40
DAIRFAIL (IKJEFF18) 31
data type processor (IKJIEBEPS) 31
default service routine (IKJEHDEF) 32,40
dynamic allocation interface routine (IKJIDAIR) 32,40
GETLINE service routine (IKJIGETL) 31
GNRLFAIL/VSAMFAIL (IKJEFF19) 31
parse service routine (IKJIPARS) 31,40
PUTGET service routine (IKJPTGT) 31
PUTLINE service routine (IKJPUTL) 31
STA interface routine (IKJEHSIR) 31
STACK service routine (IKJSTCK) 31
STAX 32
TSO message issuer routine (IKJEFF02) 31,40,45
service routines, 1/0 (see /O service routines)
setting addressing modes via BASSM or BSM 39
single level messages 143
single line data 139
source, effects on message processing 44
source data set
in storage 107
adding an element to the input stack 100,105
source data set processing 107
sources of input 106
changing 100
current 100
space parameter, definition 239
SPAUTOPT macro instruction 204
special functions of the TMP 15
specifying
terminal attention exits 50
terminal line size 94
STACK macro instruction 100
execute form 103
list form 101
stack parameter block (STPB) 107
STACK service routine 100
basic functions of 2
coding example of macro 107,111
command processor use of 18
control block structures 110,113
description 100
element code 108

input source 106

list source descriptor (LSD) 109

macro instruction

execute form 103
list form 101

paramcter block 107

return codes 116
STAE macro 22
standard form

TGET macro 185

TPUT macro 180
statement number parameter 241
STATTN macro instruction 205
STAUTOCP macro instruction 206
STAUTOLN macro instruction 207
STAX parameter list (STPL) 55
STAX service routine 36

coding example of macro 57

DEFER opcrand 54

description 49

macro instruction format 52

parameter list 55

return codes 45
STBREAK macro instruction 209
STCC macro instruction 210
STCLEAR macro instruction 213
STCOM macro instruction 213
STFSMODE macro instruction 213
STLINENO macro instruction 215
STOP command processing 15
STOP/MODIFY event control block (ECB) 15
string. definition 234
stripping message identifers 146
STSIZE macro instruction 216
STTIMEOU macro instruction 217
STTMPMD macro instruction 219
STTRAN mucro instruction 220
subcommand name, syntactically valid 3,224
subcommand processors, abnormally terminating 22
subfield descriptions 276
subfields associated with keyword parameters 272,276
subscript, variable parameter 241
substitute mode of PUT and PUTX macros 93
subtask ABEND 9
SvC 93 179
symbolic address

definition 235

for parameter descriptor list 248

parameter 235
syntax notation for deflining macro instructions 327
SYSABEND data set 10
SYSOUT data set, allocation of 80
system catalog. searching for data set name 63
system code 337 93,94
SYSUDUMP data set 10
SYS1.CMDLIB 17
SYS1.HELP - the HELP data set 24

T
TCLEARQ macro instruction 221
TERM=TS (operand ol DD statement) 95
terminal
allocating a data set to 73
communicating with 2
terminal as input source 106,111
terminal attention interruption element (TAIE) 14

terminal control macro instruction 201
terminal element
adding to input stack 104
coding example 111
terminal line size 94
terminal monitor program (TMP) 5
basic functions 2
control blocks passed to command processors 38
description 1,5
ESTAE exit 22
fresh copy after ABEND 10
functions of 2
initialization 6
intercepting a task ABEND 10
obtaining a command 7
parameters passed to a command processor 8
processing a STOP command 15
processing an attention interruption 11
shared subpool 6
special functions of 15
STOP/MODIFY ECB 15
TIME function 15
using command scan 15
terminal user’s options after ABEND 10
text insertion function of PUTLINE 147
TGET
basic functions 2
coding example 196,198
definition 185
format 185
macro description 185
number of bytes moved 185
register form 188
return codes 190
standard form 185
used by GET 93
used by READ 93
TGET/TPUT SVC 179
parameter registers 191
TGET/TPUT/TPG SVC, macro instructions 179
TIME function of the TMP 1[5
TPG macro 185
TPUT
basic functions 2
codes returned by 185
coding example 196,198
definition 179
macro description 179
register form 180
return codes 185
standard form 180
used by PUT and PUTX 93
used by WRITE 93
translation of device input 185
translation to upper case 300
TSEVENT macro instruction 8
TSO 1/0 service routines 97
TSO message issuer routine (IKIEFF02) 45
TSO service routines
control blocks 45
IKJCPPL 37,38
IKJCSOA 37,226
IKJCSPL 37,226
IKJDAPL 37
IKJDAPOC 37
IKJDAPOO 37

IKIDAP0O4 37
IKIDAPOS 37
IKIDAPIC 37
IKIDAPLO 37
IKIDAP14 37
IKIDAPI8 37
IKIDAP2C 37
IKIDAP24 37
IKIDAP28 37
IKIDAP30 37
IKIDAP34 37
IKIDFPB 37
IKIDFPL 37
IKJECT 37
IKIEFFDF 37
IKJEFFGF 37
IKIEFFMT 37
IKIGTPB 37,123
IKIIOPL 37,98
IKILSD 37
IKJPGPB 37
IKJPPL 37,231
IKJPSCB 37
IKJPTPB 37
IKISTPB 37
IKJSTPL 37
IKJITAIE 37
IKITAXE 37
IKITMPWA 37
IKJUPT 37

parse macros

IKJENDP 277
IKJIDENT 265
IKIKEYWD 271
IKJOPER 232,258
IKJIPARM 246
IKJPOSIT 247
IKJRSVWD 262
IKJSUBF 276
IKJTERM 232,252

passing contro! to 48

348 OS/VS2 TSO Guide to Writing a TMP or CP

their uses and interfaces
IKIDAIR 59
processing terminal requests 37

8}

UID2PSWD, definition 238

user, communicating with 2

user LOGON PROC, example 5

userid, definition and format 237

using
BSAM for terminal I/O 91
command scan service routine (IKISCAN) 224
DAIR 59
parse macro instructions 245
parse service routine (IKJPARS) 230
PUTLINE format only function 150
PUTLINE text insertion function 147
QSAM for terminal /0 91
terminal control macro instructions 201
TGET/TPUT/TPG SVC for terminal 1/0 179
TSO 1/0 service routines 97
VTAM full-screen mode 329

utility data set allocation 65

v

validity check parameter list 302

validity checking exits 23

value parameter definition 235

variable parameter 241

verb number, statement number parameter 241
VSAMFAIL routine 89

w
WRITE macro instruction 93
writing HELP members 26

- 9

MVS/Extended Architecture TSO Guide to Writing a Terminal Monitor Program or a Command Processor (File No. S370-39) Printed in U.S.A. GC28-1295.0

|||I||||@

GC28-1295-0

Staples can cause problems with automated mail sorting equipment.

Note:

Please use pressure sensitive or other gummed tape to seal this form.

MVS/Extended Architecture READER’S

TSO Guide to Writing a Terminal COMMENT
Monitor Program or a Command FORM
Processor

GC28-1295-0

This manual is part of a library that serves as a reference source for system analysts, programmers, and
operators of IBM systems. You may use this form to communicate your comments about this publication,
its organization, or subject matter, with the understanding that IBM may use or distribute whatever
information you supply in any way it believes appropriate without incurring any obligation to you.

Your comments will be sent to the author’s department for whatever review and action, if any, are deemed
appropriate.

Note: Copies of IBM publications are not stocked at the location to which this form is addressed.
Please direct any requests for copies of publications, or for assistance in using your IBM system, to
your IBM representative or to the IBM branch office serving your locality.

Possible topics for comment are:
Clarity Accuracy Completeness Organization Coding Retrieval Legibility

If you wish a reply, give your name, company, mailing address, and date:

What is your occupation?

How do you use this publication?

Number of latest Newsletter associgted with this publication:

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM
office or representative will be happy to forward your comments or you may mail directly to the address in
the Edition Notice on the back of the title page.)

GC28-1295-0

Reader's Comment Form

Fold and tape

Fold and tape

-|||
olI"

Piease Do Not Staple

BUSINESS REPLY MAIL
FIRST CLASS PERMIT 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE:

International Business Machines Corporation
Department D58, Building 920-2

PO Box 390

Poughkeepsie, New York 12602

Please Do Not Staple

NO POSTAGE
NECESSARY
IF MAILED
INTHE
UNITED STATES

(6€-0LES "ON 3|14) 10558001¢ PUBWIWOY B 10 Weifolq JolIuoj [eulwiay e Buillip 03 8pINg OS) 31N1DalIYdIY PapUaIX3/SAN

auim Buoly P04 10 IN) — — — 0 —‘

0-56Z1-8239 "v’'S'N Ul pAaulg

