C

Program Product

GC28-1151-5
File No. S$370-36

MVS/ Extended Architecture
\() stem Programming
rary: System Macros
and Facmtles
Volume 2

MVS/System Product:

JES3 Version 2 5665-291
JES2 Version 2 5740-XC6

4.'I|




Sixth Edition (September, 1989)

This is a major revision of, and obsoletes, GC28-1151-4 and Technical Newsletter
GN28-1939. See the Summary of Amendments following the Contents for a summary of
the changes made to this manual. Technical changes or additions to the text and
illustrations are indicated by a vertical line to the left of the change.

This edition applies to Version 2 Release 2 of MVS/System Product program number
5665-291 and 5740-XC6 and to all susequent releases until otherwise indicated in new
editions or Technical Newsletters. Changes are made periodically to the information
herein; before using this publication in connection with the operation of IBM systems,
consult the latest IBM System/370 Bibliography, GC20-0001, for the editions that are
applicable and current.

References in this publication to IBM products or services do not imply that IBM intends
to make these available in all countries in which IBM operates. Any reference to an IBM
product in this publication is not intended to state or imply that only IBM’s product may
be used. Any functionally equivalent product may be used instead. This statement does
not expressly or implicitly waive any intellectual property right IBM may hold in any
product mentioned herein.

Publications are not stocked at the address given below. Requests for IBM publications
should be made to your IBM representative or to the IBM branch office serving your
locality.

A form for readers’ comments is provided at the back of this publication. If the form has
been removed, comments may be addressed to IBM Corporation, Information
Development, Department D58, Building 921-2, PO Box 950, Poughkeepsie, N.Y. 12602.
IBM may use or distribute whatever information you supply in any way it believes
appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1982, 1989
All Rights Reserved

A
//' ™~
Ny

,
. 5
// N
NS




Preface

This two-volume publication describes supervisor and scheduler facilities that the system
programmer can use. In this publication, a system programmer is defined as a programmer
whose programs run in supervisor state, system key 0-7 or access APF-authorized libraries.
The publication includes the macro instructions and parameters used to obtain the functions.

Volume 1, GC28-1150, contains descriptions of the supervisor and scheduler services available
to a system programmer. Most of the services described are supervisor services; however, the
scheduler functions available through the use of the DYNALLOC macro instruction are also
described. Volume 1 includes a description of the DYNALLOC macro instruction. Some of
the topics discussed in Volume 1 are also discussed in Supervisor Services and Macro
Instructions; however in Volume 1, these topics are extended to include functions that are
restricted to system programmers or used primarily by system programmers.

Volume 2 contains the formats and descriptions of the supervisor macro instructions. Volume 2
provides system programmers with the information necessary to code the macro instructions.

Each macro instruction is completely described, in Volume 2, but restrictions, requirements, and
environmental considerations for the effective use of each macro is explained in Volume 1.

Trademarks

The following are trademarks of International Business Machines Corporation.
e MVS/SP™

e MVS/XA™
e System/370™

Related Publications

Assembler H Version 2 Application Programming: Language Reference, GC26-4037
MVS|Extended Architecture Debugging Handbook Volume 1, LC28-1164
MVS|Extended Architecture Debugging Handbook Volume 2, 1L.C28-1165
MV S|Extended Architecture Debugging Handbook Volume 3, LC28-1166
MYVS|Extended Architecture Debugging Handbook Volume 4, LC28-1167

MYVS|Extended Architecture Debugging Handbook Volume 5, LC28-1168

Preface 1ii



MVS|Extended Architecture Interactive Problem Control System User's Guide and Reference,
GC28-1297

MVS|Extended Architecture Interactive Problem Control System Logic and Diagnosis,
GC28-1298

MVS|/Extended Architecture Message Library: System Codes, GC28-1157
OS/VS2 Planning: Global Resource Serialization, GC28-1062
MVS|Extended Architecture Supervisor Services and Macro Instructions, GC28-1154

MVS|Extended Architecture System Programming Library: System Macros and Facilities,
Volume 1, GC28-1150

MVS|Extended Architecture System Logic Library Volume 12, 1.Y28-1250

MVS|Extended Architecture System Programming Library: Initialization and Tuning,
GC28-1149

MVS|/Extended Architecture System Programming Library: Service Aids, GC28-1159
System Programming Library: Resource Access Control Facility (RACF), SC28-1343

OS/VS2 MVS Resource Access Control Facility (RACF) Command Language Reference,
SC28-0733 : '

370-Extended Architecture: Principles of Operation, GA22-7085

IBM System/370 Vector Operations, SA22-7125

MVS|Extended Architecture Operations: JES3 Commands, SC23-0063
MVS|Extended Architecture Operations: System Commands, GC28-1206

MVS|Extended Architecture System Programming Library: System Modifications,
GC28-1152

MYVS|Extended Architecture System-Data Administration, GC26-4149
MVS/Enterprise Systems Architecture System-Data Administration, SC26-4515

MVS|Extended Architecture System Programming Library: User Exits, GC28-1147

Notes:

1.

All references to RACF in this publication indicate the program product Resource Access
Control Facility Version 1 Release 7 (5740-XXH).

All references to Assembler H in this publication indicate the program product Assembler H
Version 2 (5668-962).

1V SPL: System Macros and Facilities Volume 2

-
N/

™~

\(J/



Contents

Using the Supervisor Macro Instructions  2-1
Selecting the Macro Level  2-1

Addressing Mode and the Macro Instructions — 2-3
Cross Memory Restrictions for Macro Instructions  2-4
Macro Instruction Forms  2-6

Coding the Macro Instructions  2-7

ATSET - Set Authorization Table 2-10

ATTACH - Create a New Task  2-12

ATTACH (List Form) 2-21

ATTACH (Execute Form) 2-24

AXEXT - Extract Authorization Index 2-27
AXFRE - Free Authorization Index 2-29

AXRES - Reserve Authorization Index  2-31

AXSET - Set Authorization Index  2-33

BLSABDPL - Map the Exit Parameter List BLSABDPL  2-35

BLSQMDEF - Define a Control Block Format 2-39

BLSQMFLD - Specifying a Control Block Format Field 2-43

BLSQSHDR - Generate Model Subheader  2-53
BLSRESSY - Map IPCS Symbeol Table Record 2-55
CALLDISP - Force Dispatcher Entry  2-56

CALLRTM - Call Recovery Termination Manager  2-59
CBPZDIAG - Build Diagnestic Stack Entry  2-62
CBPZLOG - Log an MVS Configuration Program Message
CBPZPPDS - Push/Pop Diagnostic Stack Entry  2-67

CHANGKEY - Change Virtual Storage Protection Key  2-69

2-65

Contents

\%




CIRB - Create Interruption Request Block  2-71
Branch Entry Interface  2-71

CPOOL - Perform Cell Pool Services 2-75
CPOOL (List Form) 2-81
CPOOL (Execute Form) 2-82
DATOFF - DAT-OFF Linkage 2-83
DEQ - Release a Serially Reusable Resource  2-85
DEQ (List Form) 2-91
DEQ (Execute Form) 2-92
DOM - Delete Operator Message  2-94
DSGNL - Issue Direct Signal 2-98
DYNALLOC - Dynamic Allocation  2-101
ENQ - Request Control of a Serially Reusable Resource  2-102
ENQ (List Form) 2-110
ENQ (Execute Form) 2-112
ESPIE - Extended SPIE  2-114
SET Option 2-114
RESET Option  2-116
TEST Option  2-117
ESPIE (List Form) 2-119
ESPIE (Execute Form) 2-120
ESTAE - Specify Task Abnormal Exit Extended 2-122
ESTAE (List Form) 2-129

ESTAE (Execute Form) 2-130

ETCON - Connect Entry Table 2-132

~ ETCON (List Form) 2-134

ETCON (Execute Form) 2-135
ETCRE - Create Entry Table 2-136

ETDES - Destroy Entry Table 2-139

SPL: System Macros and Facilities Volume 2

N

N




ETDES (List Form) 2-141

ETDES (Execute Form) 2-142

ETDIS - Disconnect Entry Table 2-143

EVENTS - Wait for One or More Events to Complete 2-144
EXTRACT - Extract TCB Information 2-148

EXTRACT (List Form) 2-151

EXTRACT (Execute Form) 2-152

FESTAE - Fast Extended STAE  2-153

FRACHECK - Check User’s Authorization 2-156
FRACHECK (List Form) 2-160

FRACHECK (Execute Form) 2-161

FREEMAIN - Free Virtual Storage  2-163

FREEMAIN (List Form) 2-169

FREEMAIN (Execute Form) 2-170

GETMAIN - Allocate Virtual Storage 2-171

GETMAIN (List Form) 2-178

GETMAIN (Execute Form) 2-179

GQSCAN - Extract Information From Global Resource Serialization Queue
GQSCAN (List Form) 2-185

GQSCAN (Execute Form) 2-187

IEFQMREQ - Invoke SWA Manager in Move Mode  2-189
INTSECT - Intersect With the Dispatcher  2-190

IOSDDT - Device Descriptor Table Build Macro  2-192
IOSDMLT - Module Lists Table Macro  2-195

IOSINFO - Obtain Information From the Input/Output Supervisor (I0S)
IOSLOOK - Locate Unit Control Block  2-200

LOAD — Bring a Load Module into Virtual Storage  2-202

2-180

2-197

Contents




viil

LOAD (List Form) 2-206
LOAD (Execute Form) 2-207
LOCASCB - Locate ASCB  2-208
LXFRE - Free a Linkage Index  2-209
LXFRE (List Form) 2-211
LXFRE (Execute Form) 2-212
LXRES - Reserve a Linkage Index 2-213
LXRES (List Form) 2-215
LXRES (Execute Form) 2-216
MGCR - Internal START or REPLY Command 2-217
MODESET - Change System Status  2-219
Inline Code Generation  2-220
SVC Generation  2-222
MODESET (List Form) 2-223
MODESET (Execute Form) 2-224
NIL - Provide a Lock Via an AND IMMEDIATE (NI) Instruction  2-225
NUCLKUP - Nucleus Map Lookup Service 2-227
OIL - Provide a Lock Via an OR IMMEDIATE (OI) Instruction 2-229
PCLINK - Stack, Unstack, or Extract Program Call Linkage Information 2-231
STACK Option of PCLINK  2-231
UNSTACK Option of PCLINK  2-233
EXTRACT Option of PCLINK  2-236
PGANY - Page Anywhere 2-238 |
PGFIX - Fix Virtual Storage Contents  2-240
PGFIXA - Fix Virtual Storage Contents  2-243
PGFREE - Free Virtual Storage Contents  2-245
PGFREEA - Free Virtual Storage Contents  2-248
PGSER - Page Services 2-249

PGSER - Fast Path Page Services 2-256

SPL: System Macros and Facilities Volume 2




POST - Signal Event Completion  2-259

POST (List Form) 2-263

POST (Execute Form) 2-264

PROTPSA - Disable, Enable Low Address Protection
PTRACE - Processor Trace  2-267

PURGEDQ - Purge SRB Activity 2-269
PURGEDQ (List Form) 2-271

PURGEDQ (Execute Form) 2-272

QEDIT - Command Input Buffer Manipulation 2-273

RACDEF - Define a Resource to RACF  2-275
RACDEF (List Form) 2-291

RACDEF (Execute Form) 2-293

RACHECK - Check RACF Authorization 2-296
RACHECK (List Form) 2-309

RACHECK (Execute Form) 2-311

RACINIT - Identify a RACF-Defined User 2-313
RACINIT (List Form) 2-322

RACINIT (Execute Form) 2-324

RACLIST - Build In-Storage Profiles  2-326
RACLIST (List Form) 2-331

RACLIST (Execute Form) 2-332

RACROUTE - MVS Router Interface  2-334
RACROUTE (List Form) 2-340

RACROUTE (Execute Form) 2-341

RACSTAT - Determines the Status of RACF  2-343
RACSTAT (List Form) 2-346

RACSTAT (Execute Form) 2-347

2-265




RACXTRT - Retrieve Fields from RACF User Profile 2-348

RACXTRT (List Form) 2-362

RACXTRT (Execute Form) 2-364

RESERVE - Reserve a Device (Shared DASD)  2-366
RESERVE (List Form) 2-371

RESERVE (Execute Form) 2-372

RESUME - Resume Execution of a Suspended Request Block 2-374

RISGNL - Issue Remote Immediate Signal  2-377

RPSGNL - Issue Remote Pendable Signal  2-379

SCHEDULE - Schedule System Services for Asynchronous Execution

SDUMP - Dump Virtual Storage  2-383
SDUMP (List Form) 2-400
SDUMP (Execute Form) 2-402
SETFRR - Set Up Functional Recovery Routines  2-404
SETLOCK - Control Access to Serially Reusable Resources
OBTAIN Option  2-409
Release Option  2-414
TEST Option  2-418
SETRP - Set Return Parameters  2-422
SPIE - Specify Program Interruption Exit  2-430
SPIE (List Form) 2-432
SPIE (Execute Form) 2-433
SPLEVEL - Set and Test Macro Level 2-434
SPOST - Synchronize POST  2-436

SRBSTAT - Save, Restore, or Modify SRB Status  2-437

2-408

SRBTIMER - Establish Time Limit for System Service = 2-439

STAE - Specify Task Abnormal Exit 2-441

STAE (List Form) 2-444

X  SPL: System Macros and Facilities Volume 2




STAE (Execute Form) 2-445

STATUS - Change Subtask Status  2-447
SET/RESET Options  2-449

SUSPEND - Suspend Execution of a Request Block  2-451
SVCUPDTE - SVC Update  2-452
SVCUPDTE (List Form) 2-457
SVCUPDTE (Execute Form) 2-459
SWAREQ - Invoke SWA Manager in Locate Mode  2-460
SWAREQ (Execute Form) 2-462
SWAREQ (Modify Form) 2-463
SYMREC - Process Symptom Record 2-464
SYMREC (List Form) 2-465
SYMREC (Execute Form) 2-466
SYNCH - Take a Synchronous Exit to a Processing Program | 2-467
SYNCH (List Form) 2-470
SYNCH (Execute Form) 2-471
SYSEVENT - System Event 2-473
SYSEVENT mnemonics  2-475
Notify SRM of Transaction Completion  2-475
Control Swapping  2-479
Obtain System Measurement Information  2-481
TCTL - Transfer Control from an SRB Process  2-484
TESTAUTH - Test Authorization of Caller  2-485
TIMEUSED — Obtain Accumulated CPU Time  2-487
T6EXIT - Type 6 Exit 2-489
VRADATA - Update Variable Recording Area Data  2-491
VSMLIST - List Virtual Storage Map  2-495

VSMLOC - Verify Virtual Storage Allocation  2-500

VSMREGN - Obtain Private Area Region Size  2-504

Contents

Xi




Xii

WTL — Write To Log  2-506

WTL (List Form)  2-509

WTL (Execute Form) 2-510

WTO - Write to Operator  2-511
WTO (List Form) 2-519

WTO (Execute Form) 2-521

WTOR - Write to Operator with Reply
WTOR (List Form) 2-530

WTOR (Execute Form) 2-532

Index X-1

SPL: System Macros and Facilities Volume 2

2-523



Figures

VRN R W=

Macro Level Selected at Execution Time  2-2

Sample Macro Instruction  2-7

Continuation Coding  2-9

Return Code Area Used by DEQ  2-89

Return Code Area Used by ENQ  2-107

IHAETD Mapping Macro  2-137

FRACHECK Parameters for RELEASE=1.6 and Later  2-158
RACDEF Parameters for RELEASE=1.6 and Later 2-287
Types of Profile Checking Performed by RACHECK  2-302
RACHECK Parameters for RELEASE=1.6 and Later  2-305
RACINIT Parameters for RELEASE=1.6 and Later 2-319
RACLIST Parameters for RELEASE =1.6 and Later 2-328
RACSTAT Parameters for RELEASE=1.6 and Later 2-344
RACXTRT Parameters for RELEASE=1.6 and Later 2-359
Return Code Area Used by RESERVE  2-369

PSWREGS Parameter List  2-388

List of Storage Ranges Specified by LISTA  2-393

Characters Printed or Displayed on an MCS Console  2-507
MCSFLAG Fields (WTO) 2-516

MCSFLAG Fields (WTOR)  2-527

Figures

xiii




Xiv  SPL: System Macros and Facilities Volume 2

AN

N

A
‘t‘{ 5 ”/,




Summary of Amendments

Summary of Amendments
for GC28-1151-5
MYVS/System Product Version 2 Release 2.3

This major revision contains changes to support MVS/System Product Version 2 Release 2.3.
Changes include:

e MVS/XA support for MVS/Data Facility Product Version 3 Release 1.0, which introduces
the storage management subsystem (SMS). SMS provides new function for data and storage
management.

e New keywords on the SWAREQ, LOAD, and SDUMP macros.
e Adding the TIMEUSED macro.

o Moving the FRACHECK and RACSTAT macros from Supervisor Services and Macro
Instructions into this book.

Summary ef Amendments

for GC28-1151-4

as updated February 14, 1989
by TNL GN28-1939

This technical newsletter documents a new parameter for the execute form of the SWAREQ
macro. Do not use this parameter unless you have installed the PTF for APAR numbers
0Y10290 and OY10291.

Summary of Amendments
for GC28-1151-4
MYVS/System Product Version 2 Release 2

This major revision describes the new BLSQSHDR, IEFQMREQ, IOSDDT, IOSDMLT,
SWAREQ, and SYMREC macros, and changes in the BLSQMFLD, DOM, SDUMP, SETRP,
SVCUPDTE, VSMLOC, WTO, and WTOR, macros. It also describes changes that affect:

e The DATOFF index entry, INDCDS.
o The GSPV and GSPL parameters of the ATTACH macro.

Summary of Amendments XV




XVl SPL: System Macros and Facilities Volume 2

AN
N



Using the Supervisor Macro Instructions

You can communicate service requests to the control program using a set of macro instructions
provided by IBM. The users of most of the macro instructions described in this publication
must be in supervisor state or PSW key 0-7 or APF-authorized or PKM 0-7; that is, MVS
restricts their use. MVS does not restrict some of the macro instructions described in this
publication, but because of the functions of the macro instructions, the installation might want
to restrict them.

This volume describes those supervisor macro instructions that should be installation-controlled.
The supervisor macro instructions intended for the application programmer are described in
Supervisor Services and Macro Instructions. Some macro instructions are totally restricted in
use; others are not restricted in use, but do contain some restricted parameters. For each macro
instruction, any restrictions are described first, followed by the macro syntax and a complete
description.

The macro instructions are available only when programming in the assembler language, and
are processed by the assembler program using macro definitions supplied by IBM and placed
in the macro library when the system was generated. The processing of the macro instruction
by the assembler program results in a macro expansion, generally consisting of data and
executable instructions in the form of assembler language statements. The data fields are the
parameters to be passed to the requested control program routine. The executable instructions
generally consist of a branch around the data, instructions to load registers, and either a branch
instruction, a supervisor call (SVC), or a PC instruction to give control to the proper program.
The exact macro expansion appears as part of the assembler output listing.

Selecting the Macro Level

Certain MVS/XA macro expansions cannot execute on an MVS/370 system. These macros are
downward incompatible. Parameters that are new for MVS/XA are not supported by the
MVS/370 versions of the downward incompatible macros. In some cases the new parameters
are ignored, in other cases they cause assembly errors. The following macro instructions are the
downward incompatible macros described in this book:

ATTACH

ESTAE

EVENTS

FESTAE

INTSECT

SCHEDULE SCOPE=GLOBAL
SDUMP

SETLOCK RELEASE,TYPE=REG|ALL
WTOR

Using the Supervisor Macro Instructions  2-1



The SPLEVEL macro instruction solves the problems associated with downward incompatible
macros. The SPLEVEL macro instruction allows an installation to assemble programs using
the MVS/XA macro library and to select either the MVS/370 System Product Version 1 Release
3 or the MVS/XA expansion of the downward incompatible macros.

Before issuing a downward incompatible macro, assembler language users can specify the macro
level that they want. They do this by issuing the SPLEVEL macro using the SET =n option,
with n=1 or 2. If n=1, the MVS/370 System Product Version 1 Release 3 expansion of the
macro code is generated and if n=2, the MVS/XA expansion of the macro code is generated.

If the user does not specify the value of », the SPLEVEL routine uses the default value of 2.
See SPL: System Modifications for information concerning the way in which an installation can
set this default.

A user can also select the level of the macro at execution time, based on the system that is
operating. The example in Figure 1 shows one method of selecting the macro level at
execution time. The example uses the WTOR macro instruction, but any downward
incompatible macro instruction could be substituted. The code makes use of the fact that the
CVTMYVSE bit in byte CVTDCB (located at offset 116 or X‘74’ of the communications vector
table (CVT)) is set to 1 when MVS System Product Version 2 is operating. The CYTMVSE
field of the CVT is defined in System Product Version 2.

* DETERMINE WHICH SYSTEM IS EXECUTING
T™ CVTDCB,CVTMVSE
BO Sp2
* INVOKE MVS/370 VERSION OF THE MACRO
SPLEVEL SET=1
WTOR . o
B CONTINUE
* INVOKE MVS/XA VERSION OF THE MACRO
Sp2 SPLEVEL SET=2
WTOR “ee
* RESET TO SYSTEM DEFAULT

CONTINUE SPLEVEL SET

Figure 1. Macro Level Selected at Execution Time

2-2  SPL: System Macros and Facilities Volume 2




Addressing Mode and the Macro Instructions

Callers in either 24-bit or 31-bit addressing mode can invoke most of the macros described in
this book. The following is a list of the macro instructions, documented in this book, that
require the caller to be executing in 24-bit addressing mode and require that the parameters be
located in 24-bit addressable storage:

RACDEF
RACHECK
RACINIT
RACLIST
SPIE

STAE

Note: RACEF services are also available through the RACROUTE macro, which can execute in
either 24-bit or 31-bit addressing mode.

In general, a program executing in 24-bit addressing mode cannot pass parameters located
above 16 megabytes in virtual storage to a system service. There are exceptions to this general
rule. For example, a program executing in 24-bit addressing mode can:

e Free storage above 16 megabytes using the FREEMAIN macro instruction
e Allocate storage above 16 megabytes using the GETMAIN macro instruction

e Perform cell pool services for cell pools located in storage above 16 megabytes using the
CPOOL macro instruction

e Perform page services for storage locations above 16 megabytes using the PGSER macro
instruction

See the descriptions of the individual macro instructions for details.

If a program is executing in 31-bit addressing mode, the addresses specified as parameters for
the macro instructions in this book can be located above or below the 16 megabytes line unless
otherwise stated. If a parameter passed by a program executing in 31-bit addressing mode must
be located below the 16 megabytes line in virtual storage, the restriction is stated in the
description of the parameter of the macro instruction.

If you are executing in 31-bit addressing mode, you must use the MVS/XA version of the
following macro instructions:

ATTACH
CALLDISP
ESTAE
EVENTS
FESTAE
INTSECT
MODESET
SETRP
SNYCH
WTOR-

Using the Supervisor Macro Instructions 2-3




Cross Memory Restrictions for Macro Instructions

The topic “Cross Memory” in Volume 1 describes the general restrictions pertaining to cross
memory and the general functions available to callers in cross memory mode. Unless stated, a
macro service is not available in cross memory mode. A brief description of how specific macro
instructions can be used in cross memory is given here.

The following macro instructions are available to callers in cross memory mode without
restrictions:

ABEND

DSGNL

INTSECT (global intersect)

LOCASCB (locate an ASCB from an ASID)
RISGNL

RPSGNL

PTRACE

SCHEDULE

SETLOCK (for global locks)

SUSPEND

VSMREGN (provides addresses in the current address space)

The following services have special options or restrictions for cross memory mode programs:
ATSET - The issuer of this macro instruction must be execuﬁng in primary mode.
ATEXT - The issuer of this macro instruction must be executing in primary mode.
AXFRE - The issuer of this macro instruction must be executing in primary mode.
AXRES - The issuer of this macro instruction must be executing in primary mode.

AXSET - The issuer of this macro instruction must be executing in primary mode.

CALLDISP - This macro instruction is available if the caller uses the BRANCH = YES
option.

CALLRTM - This macro instruction has options and restrictions related to cross memory.

CPOOL - This macro instruction is available to all cross memory callers, except for callers
in secondary mode, who specify LINKAGE =SYSTEM.

CPUTIMER - This macro instruction can be invoked in primary cross memory mode.
ETCON - The issuer of this macro instruction must be executing in primary mode.
ETCRE - The issuer of this macro instruction must be executing in primary mode.
ETDES - The issuer of this macro instruction must be executing in primary mode.

ETDIS - The issuer of this macro instruction must be executing in primary mode.

2-4  SPL: System Macros and Facilities Volume 2




GETMAIN/FREEMAIN (private storage) - The GETMAIN/FREEMAIN macro
instructions with the BRANCH =YES option can be used in cross memory mode to obtain
private storage if the caller has current addressability to the address space and holds the
address space’s local lock as a CML lock.

GETMAIN/FREEMAIN (common storage) - The GETMAIN/FREEMAIN macro
instruction with the BRANCH =(YES,GLOBAL) option is available in cross memory
mode to obtain common storage.

GQSCAN - The issuer of this macro instruction must be executing in primary mode.
LXFRE - The issuer of this macro instruction must be executing in primary mode.
LXRES - The issuer of this macro instruction must be executing in primary mode.

MODESET - The inline form of the MODESET macro instruction can by used by any
callers in cross memory mode.

PCLINK - The STACK and UNSTACK options are available to issuers in primary mode.
The EXTRACT option is available to a caller with addressability to the same address space
as when PCLINK STACK was issued for the stack element from which data is being
extracted.

PGFIX/PGFREE - These macro instructions have restrictions related to cross memory. See
the description of the individual macro instruction for details.

PGSER - The ANYWHER, FIX, FREE, LOAD, OUT, and RELEASE options of this
macro are available to an enabled caller in supervisor state, key zero, who specifies branch
entry. To use the LOAD and the ANYWHER options, the issuer of PGSER must not be
running in secondary mode.

RESUME - To issue RESUME, the requestor must have current addressability to the
address space of the task being resumed. That is, the address space must be the current
address space.

SDUMP - MVS/XA dumping services format additional data required by cross memory.
The SDUMP macro instruction with the BRANCH = YES option is supported in cross
memory mode, and other options dump address spaces related to the failing address space.

SETFRR - The SETFRR macro instruction can set up a recovery environment in cross
memory mode and provides predictable entry and re-try environments in case of error.

SETLOCK (CML lock) - Programs can call the MVS/XA lock manager using the
SETLOCK macro instruction. The program can request the local lock of another address
space (the CML lock) in order to serialize resources in the other address space. The
requestor must have an active addressing bind to the address space whose local lock he is
requesting.

SETRP - This macro instruction supports the freeing of the CML lock when a functional
recovery routine requests that termination processing continue, and it also has an improved
mechanism to get from SRB recovery to related task recovery. SETRP also supports a
cross memory mode re-try environment.

SLIP - The operator can set SLIP traps to intercept an event in cross memory mode.

Using the Supervisor Macro Instructions  2-3




SRBSTAT:- Callers must have the authority to issue a SSAR to the home address space.

The save area must be addressable from the home address space. Control returns from the ey
SRBSTAT macro instruction in primary mode. :\‘&J:‘
SSAFF - TCB subsystem affinity - This macro instruction, described in SPL: System

Modifications, has restrictions associated with cross memory.

WAIT/POST - The WAIT and cross address space POST branch entry sérvices provide
restricted support.

| .

} VSMLIST and VSMLOC - Callers who specify LINKAGE=SYSTEM cannot be in

* secondary mode. All address returned by these macro instructions are associated with the
current address space.

See the topic “Summary of MVS/XA Facilities Available in Cross Memory Mode” in Volume 1
for other functions that are available to callers in cross memory mode.

Macro Instruction Forms

When written in the standard form, some of the macro instructions result in instructions that
store into an inline parameter list. The option of storing into an out-of-line parameter list is
provided to allow the use of these macro instructions in a reenterable program. You can
request this option through the use of list and execute forms. When list and execute forms exist
for a macro instruction, their descriptions follow the description of the standard form.

Use the list form of a macro instruction to provide a parameter list to be passed either to the
control program or to a problem program, depending on the macro instruction. The expansion
of the list form contains no executable instructions; therefore you cannot use registers in the
list form.

Use the execute form of a macro instruction in conjunction with one or two parameter lists

established using the list form. The expansion of the execute form provides the executable

instructions required to modify the parameter lists and to pass control to the required program.

If you do not generate the control program parameter list using the list form of the macro, you

must provide the list yourself, initialize it, then update it directly or by explicitly specifying N
keywords on the execute form. N

Some macros also provide a modify form. Use the modify form of a macro instruction to
modify a parameter list created with the list form of the macro instruction.

The descriptions of the following macro instructions assume that the standard begin, end, and
continue columns are used -- for example, column 1 is assumed as the begin column. To
change the begin, end, and continue columns, code the ICTL instruction to establish the coding
format you wish to use. If you do not use ICTL, the assembler recognizes the standard
columns. To code the ICTL instruction, see Assembler H Version 2 Application Programming:
Language Reference.

C

2-6  SPL: System Macros and Facilities Volume 2




Coding the Macro Instructions

( The table appearing near the beginning of each macro instruction indicates how to code the
macro instruction. The table does not explain the meanings of the parameters; the parameters
are explained following the table.

Figure 2 shows a sample macro instruction, TEST, and summarizes all the coding information
that is available for it. The table is divided into three columns, A, B, and C.

1 7

name name: symbol. Begin name in column 1.
b One or more blanks must precede TEST.
(” .———» TEST
- b One or more blanks must follow TEST.
MATH
HIST
GEOG
,DATA=data addr data addr: RX-type address, or register (2) - (12)
——» \LNG=data length data length: symbol or decimal digit, with a maximum value of 256.
JFMT=HEX Default: FMT=HEX
JFMT=DEC
LFMT=BIN
,PASS=value value: symbol, decimal digit, or register (1) or (2) - (12).
Default: PASS=65
.grade grade: symbol, decimal digit, or register (1) or (2) - (12).
( Figure 2. Sample Macro Instruction

o The first column, A , contains those parameters that are required for that macro
instruction. If a single line appears in that column, Al , the parameter on that line is
required and you must code it. If two or more lines appear together, A2 , you must code
the parameter appearing on one and only one of the lines.

e The second column, B , contains those parameters that are optional for that macro
instruction. If a single line appears in that column, Bl , the parameter on that line is
optional. If two or more lines appear together, B2, although the entire parameter is
optional, if you elect to make an entry, code one and only one of the lines.

e The third column, C, provides additional information for coding the macro instruction.
When substitution of a variable is required, the following classifications are used:

( symbol: any symbol valid in the assembler language. That is, an alphabetic character followed
- by 0-7 alphameric characters, with no special characters and no blanks.

Using the Supervisor Macro Instructions 2-7




decimal digit: any decimal digit up to the value indicated in the parameter description. If both

symbol and decimal digit are indicated, an absolute expression is also allowed. N
register (2) - (12): one of general registers 2 through 12, specified within parentheses, ~
previously loaded with the right-adjusted value or address indicated in the parameter
description. You must set the unused high-order bits to zero. You can designate the register
symbolically or with an absolute expression.

register (0): general register 0, previously loaded as indicated under register (2) - (12) above.
Designate the register as (0) only.

register (1): general register 1, previously loaded as indicated under register (2) - (12) above.
Designate the register as (1) only.

RX-type address: any address that is valid in an RX-type instruction (for example, LA).

A-type address: any address that can be written in an A-type address constant.

,/"' ™

default: a value that is used in default of a specified value; that is, the value that is assumed if N

the parameter is not coded. Use the parameters to specify the services and options to be

performed, and write them according to the following general rules:

e If the selected parameter is written in all capital letters (for example, MATH, HIST, or
FMT =HEX), code the parameter exactly as shown.

e If the selected parameter is written in italics (for example, grade), substitute the indicated
value, address, or name. PR

e If the selected parameter is a combination of capital letters and italics separated by an e
equal sign (for example, DATA =data addr), code the capital letters and equal sign as
shown, and then make the indicated substitution for the italics.

o Read the table from top to bottom.

e Code commas and parentheses exactly as shown.

e Positional parameters (parameters without equal signs) appear first and must be coded in T
the order shown. Keyword parameters (parameters with equal signs) may be coded in any R
order.

e If a parameter is selected, read the third column before proceeding to the next parameter.

The third column often contains coding restrictions for the parameter.
Continuation Lines

You can continue the parameter field of a macro instruction on one or more additional lines

according to the following rules:

1. Enter a continuation character (not blank, and not part of the parameter coding) in column
72 of the line.

2. Continue the parameter field on the next line, starting in column 16. All columns to the .
left of column 16 must be blank. { )

»

2-8 SPL: System Macros and Facilities Volume 2




You can code the parameter field being continued in one of two ways. Code the parameter
field through column 71, with no blanks, and continue in column 16 of the next line; or
truncate the parameter field by a comma, where a comma normally falls, with at least one
blank before column 71, and then continue in column 16 of the next line. Figure 3 shows an
example of each method.

1 10 16 4b 72

vy oy v v

NAME1 OP1  OPERAND1, OPERANDZ2, OPERAND3, OPERAND4, OPERANDS, OPERANDS, OPX

ERAND7 THIS IS ONE WAY
NAMEZ ~ 0OP2  OPERAND1, OPERANDZ, THIS IS ANOTHER WAY X
OPERAND3, OPERANDA, X

OPERANDS, OPERANDG, OPERAND7

Figure 3. Continuation Coding

Using the Supervisor Macro Instructions 2-9




ATSET - Set Authorization Table

The ATSET macro instruction sets both the PT and SSAR authority in the home address
space’s authorization table entry that corresponds to the specified authorization index (AX)
value. This action sets up authority for address spaces with the specified AX to issue a PT
instruction (PT =YES) or SSAR instruction (SSAR =YES) into the home address space.

The caller must be either in supervisor state or PKM 0-7, executing in primary mode enabled
and unlocked.

Before entry to this macro, register 13 must point to a standard register save area addressable in
primary mode. Register 2, which is modified by the macro after the registers are saved, should
not be used as the base register.

After completion, the registers contain the following information:

e Registers 0 and 1 are unpredictable.

o Registers 2 - 14 are preserved.

e Register 15 contains the return code.

The ATSET macro instruction is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede ATSET.
ATSET
b One or more blanks must follow ATSET.
AX = AX value AX value: RX-type address or general register (0) - (12).
JPT=NO ' Default: PT=NO
LPT=YES
,SSAR=NO Default: SSAR =NO
,SSAR=YES
,RELATED = value value: any valid ﬁxacro instruction keyword specification.

2-10  SPL: System Macros and Facilities Volume 2

N

N

N




The parameters are explained as follows:

AX=AX value
specifies the AX value for which the PT and SSAR authority are to be set. If the
RX-type address is used, it points to the address of a half word, addressable in primary

mode, that contains the AX value. If the register form is used, the AX value must be in
bits 16-31; bits 0-15 are ignored.

LT=NO

,LPT=YES
specifies whether (YES) or not (NO) a program transfer (PT) into the home address space
by routines executing with the specified AX is to be allowed.

SSAR=NO
,SSAR=YES

specifies whether (YES) or not (NO) routines executing with the specified AX are to be
allowed to establish secondary addressability to the home address space.

,RELATED = value
specifies information used to self document macro instructions by “relating” functions or
services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user and can be any valid coding values.

Note: Both the PT and SSAR authority are set every time you invoke the ATSET macro
instruction. If you do not specify PT, for example, the PT authority is set off. If you
want the PT authority to remain on, you must specify PT=YES.

When control returns, register contains the following return code:

Hexadecimal
Code Meaning
0 The selected authorization table entry has been

set

" ATSET - Set Authorization Table 2-11




P

ATTACH - Create a New Task

This macro can be assembled compatibly between MVS/XA and MVS/370 through the use of
the SPLEVEL macro instruction. Default processing will result in an expansion of the macro
that operates only with MVS/XA. See the topic “Selecting the Macro Level” for additional
information. If you are executing in 31-bit addressing mode, you must use the MVS/XA
version of this macro instruction.

The ATTACH macro instruction causes the control program to create a new task and indicates
the entry point in the program to be given control when the new task becomes active. The
entry point name that is specified must be a member name or an alias in a directory of a
partitioned data set, or must have been specified in an IDENTIFY macro instruction. If the
specified entry point cannot be located, the new subtask is abnormally terminated.

On entry to the attached routine, the high order bit, bit 0, of register 14 is set to indicate the
addressing mode of the issuer of the ATTACH macro. If bit 0 is 0, the issuer is executing in
24-bit addressing mode; if bit 0 is 1, the issuer is executing in 31-bit addressing mode.

The address of the task control block for the new task is returned in register 1. The new task is N
a subtask of the originating task; the originating task is the task that was active when the

ATTACH macro instruction was issued. The limit and dispatching priorities of the new task

are the same as those of the originating task unless modified in the ATTACH macro

instruction.

The load module containing the program to be given control is brought into virtual storage if a

usable copy is not available in virtual storage. The issuing program can provide an event

control block, in which termination of the new task is posted, an exit routine to be given .
control when the new task is terminated, and a parameter list whose address is passed in
register 1 to the new task. If you code neither the ECB nor ETXR parameter, the subtask is hhd
automatically removed from the system upon completion of its execution. If you specify the

ECB parameter in the ATTACH macro instruction, the ECB must be in storage so that you

can wait on it (using the WAIT macro instruction) and the control program can post it on

behalf of the terminating task. You can also use the ATTACH macro instruction to specify

that ownership of virtual subpools is to be assigned to the new task, or that the subpools are to

be shared by the originating task and the new task.

Except for DCB and JSCB, all input parameters to the ATTACH macro instruction can reside
in storage above 16 megabytes if the issuer is executing in 31-bit addressing mode.

The description of the ATTACH macro instruction follows. The ATTACH macro instruction

is also described in Supervisor Services and Macro Instructions with the exception of the JSTCB,
SM, SVAREA, KEY, DISP, JSCB, TID, NSHSPV, NSHSPL, and RSAPF parameters. These
parameters are restricted in use to supervisor state or PSW key 0-7 programs and, therefore, are Y 2
only described here. ’

.
\

2-12  SPL: System Macros and Facilities Volume 2



The standard form of the ATTACH macro instruction is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede ATTACH.
ATTACH
b One or more blanks must follow ATTACH.
EP =entry name entry name: symbol.
EPLOC = entry name addr entry name addr: A-type address, or register (2) - (12).
DE = list entry addr list entry addr: A-type address, or register (2) - (12).
,DCB=dcb addr dcb addr: A-type address, or register (2) - (12).
,LPMOD =limit prior nmbr limit prior nmbr: symbol, decimal digit, or register (2) - (12).
,DPMOD =disp prior nmbr disp prior nmbr: symbol, decimal digit, or register (2) - (12).
,PARAM = (addr) addr: A-type address, or register (2) - (12).
,LPARAM = (addr),VL=1 Note: addr is one or more addresses, separated by commas. For example,
PARAM = (addr,addr,addr)
( i LJECB =ecb addr ech addr: A-type address, or register (2) - (12).
LETXR =exit rtn addr exit rin addr: A-type address, or register (2) - (12).
JGSPV = subpool nmbr subpool nmbr: symbol, decimal digit, or register (2) - (12).
,GSPL = subpool list addr subpool list addr: A-type address, or register (2) - (12).
,SHSPV = subpool nmbr subpool nmbr: symbol, decimal digit, or register (2) - (12).
SHSPL = subpool list addr subpool list addr: A-type address, or register (2) - (12).
,SZERO=YES Default: SZERO =YES
,SSZERO=NO
,TASKLIB=dcb addr dcb addr: A-type address, or register (2) - (12).
,STAI = (exit addr) exit addr: A-type address, or register (2) - (12).
) ,STAI= (exit addr,parm addr) parm addr: A-type address, or register (2) - (12).
: LJESTAI = (exit addr)
,ESTAI = (exit addr,parm addr)
,PURGE =QUIESCE Note: PURGE may be specified only if STAI or ESTAI is specified.
,PURGE=NONE Default for STAL: PURGE =QUIESCE
JLPURGE=HALT Default for ESTAI: PURGE=NONE
,ASYNCH =NO Note: ASYNCH may be coded only if STAI or ESTALI is specified.
,ASYNCH=YES Default for STAI: ASYNCH=NO
Default for ESTAI: ASYNCH =YES
,TERM=NO Note: TERM may be specified only if ESTAI is specified.
,TERM =YES Default: TERM =NO
JSTCB=NO Default: JISTCB=NO
JSTCB=YES
- ,SM =PROB Default: SM =PROB
( ,SM =SUPV
,SVAREA =YES Default: SVAREA =YES
,SVAREA =NO
LKEY =PROP Default: KEY =PROP
JKEY=ZERO
,DISP=YES Default: DISP=YES
,DISP=NO
LJSCB =jisch addr Jjscb addr: A-type address, or register (2) - (12).
,TID = task id task id: decimal digits 0-255, or register (2) - (12).
Default: TID =0
,NSHSPV =subpool nmbr subpool nmbr: symbol, decimal digit, or register (2) - (12).
,NSHSPL =subpool list addr subpool list addr: A-type address, or register (2) - (12).
,RSAPF=NO Default: RSAPF =NO
,RSAPF=YES
,RELATED =value value: any valid macro keyword specification.

ATTACH - Create a New Task 2-13




The parameters are explained below:

EP =entry name

EPLOC =entry name addr

‘DE =list entry addr
specifies the entry name, the address of the entry name, or the address of the name field
of a 60-byte list entry for the entry name that was constructed using the BLDL macro
instruction. If EPLOC is coded, the name must be padded to eight bytes, if necessary.

Notes:

1. ATTACH processing can attach a load module in 24-bit or 31-bit addressing mode
physically resident above or below 16 megabytes virtual. The AMODE and RMODE,
which are load module attributes located in the directory entry for the load module,
provide this information. The RMODE indicates where the module is to be placed; the
AMODE indicates the addressing mode of the module. If the AMODE of the entry
point being attached is ANY, it will be attached with the same addressing mode as the
caller.

2. When you use the DE parameter with the ATTACH macro, the DE parameter is
referring to a list that was created by a BLDL macro. The ATTACH and the BLDL
must be issued from the same task. Otherwise, an abend 106 with a return code of 15
might result.

,LDCB=dcb addr '
specifies the address of the data control block for the partitioned data set containing the
entry name described above.

Note: The DCB must be opened before the ATTACH macro instruction is executed and
must reside in storage below 16 megabytes.

,LPMOD = limit prior nmbr
specifies the number (255 or less) to be subtracted from the current limit priority of the
originating task. The result is the limit priority of the new task. If this parameter is
omitted, the current limit priority of the originating task is assigned as the limit priority of
the new task. ‘

,DPMOD =disp prior nmbr
specifies the signed number (255 or less) to be algebraically added to the current
dispatching priority of the originating task. The result is assigned as the dispatching
priority of the new task, unless it is greater than the limit priority of the new task. If the
result is greater, the limit priority is assigned as the dispatching priority.

If a register is designated, a negative number must be in two’s complement form in the
register. If this parameter is omitted, the dispatching priority assigned is the smaller of
either the new task’s limit priority or the originating task’s dispatching priority.

,PARAM = (addr)

JPARAM = (addr), VL =1
specifies the address(es) to be passed to the attached program. Each address is expanded
inline to a fullword on a fullword boundary, in the order designated. Register 1 contains
the address of the first word when the program is given control.

2-14  SPL: System Macros and Facilities Volume 2




VL =1 should be designated only if the called program can be passed a variable number
of parameters. VL =1 causes the high-order bit of the last address to be set to 1; the bit
can be checked to find the end of the list.

,ECB =ech addr

specifies the address of an event control block for the new task to be used by the control
program to indicate the termination of the new task. The ECB must be in storage so that
the issuer of the attach can wait on it (using the WAIT macro instruction) and the control
program can post it on behalf of the terminating task. The return code (if the task is
terminated normally) or the completion code (if the task is terminated abnormally) is also
placed in the event control block. If this parameter is coded, a DETACH macro
instruction must be issued to remove the subtask from the system after the subtask has
been terminated.

LETXR =exit rtn addr

specifies the address of the end-of-task exit routine to be given control after the new task
is normally or abnormally terminated. The exit routine is given control when the
originating task becomes active after the subtask is terminated, and must be in virtual
storage when required. If this parameter is coded, a DETACH macro instruction must be
issued to remove the subtask from the system after the subtask has been terminated.

The exit routine receives control in the addressing mode of the caller of the ATTACH
macro instruction. ATTACH processing issues an ABEND with completion code X‘72A’
if a caller attempts to create two subtasks with the same exit routine in different
addressing modes.

The contents of the registers when the exit routine is given control are as follows:

Register Contents

0 Control Program Information

1 Address of the task control block for the task that was
terminated

2-12 Unpredictable

13 Address of a save area provided by the control program

14 Return address (to the control program)

15 Address of the exit routine

The exit routine is responsible for saving and restoring the registers.

,GSPYV = subpool nmbr
+GSPL = subpool list addr

specifies a virtual storage subpool number less than 128 or the address of a list of virtual
storage subpool numbers each of which less than 128. Except for subpool 0, ownership of
each of the specified subpools is assigned to the new task. Although you can specify
subpool zero, it cannot be transferred. When a task transfers ownership of a subpool, it
can no longer GETMAIN or FREEMAIN the associated virtual storage areas.

If GSPL is specified, the first byte of the list contains the number of remaining bytes in
the list; each of the following bytes contains a virtual storage subpool number.

,SHSPV = subpool nmbr
SHSPL = subpool list addr

specifies a virtual storage subpool number less than 128 or the address of a list of virtual
storage subpool numbers each less than 128. Programs of both originating task and the
new task can use the associated virtual storage areas.

ATTACH - Create a New Task 2-15




If SHSPL is specified, the first byte of the list contains the number of remaining bytes in
the list; each of the following bytes contains a virtual storage subpool number.

AN
NS
,SZERO =YES
,SZERO=NO

specifies whether subpool 0 is to be shared with the subtask. YES specifies that subpool 0

is to be shared; NO specifies that subpool 0 is not to be shared.

STASKLIB =dcb addr
specifies that a task library DCB address has been supplied and is to be stored in
TCBJLB. Otherwise, TCBJLB is propagated from the originating task. If the DCB
address specifies LINKLIB, no other library is searched because searching LINKLIB
indicates the end of the search.

Note: The DCB must be opened before the ATTACH macro instruction is executed and
must reside in storage below 16 megabytes.

STAI=(exit addr)

STAI = (exit addr,parm addr)

LJESTAI = (exit addr) .

,ESTAI = (exit addr,parm addr)
specifies whether a STAI or ESTAI SCB is to be created; any STAI/ESTAI SCBs queued
to the originating task are propagated to the new task.

The exit addr specifies the address of the STAI or ESTAI exit routine which is to receive

control if the subtask abnormally terminates; the exit routine must be in virtual storage at

the time of abnormal termination. The parm addr is the address of a parameter list that ; ‘
can be used by the STAI or ESTAI exit routine. ot

ATTACH processing passes control to the ESTAI exit routine in the addressing mode of
the caller of the ATTACH service routine. Therefore, the ESTAI exit routine can execute
in either 24-bit or 31-bit addressing mode. A STALI exit routine can execute only in 24-bit
addressing mode. If a caller in 31-bit addressing mode specifies the STAI parameter on
the ATTACH macro instruction, the caller is abended with an X‘52A’ completion code.

,LPURGE =QUIESCE v P
JSLURGE =NONE \
,LPURGE =HALT o

specifies what action is to be taken with regard to I/O operations when the subtask is

abnormally terminated. No action may be specified (NONE), a halting of I/O operations

may be requested (HALT), or a quiescing of I/O operations may be indicated

(QUIESCE).

LASYNCH=NO

,LASYNCH =YES
specifies whether asynchronous exits are to be allowed when a subtask abnormal
termination occurs.

ASYNCH =YES must be coded if:

e Any supervisor services that require asynchronous interruptions to complete their ]
normal processing are going to be requested by the ESTAI exit routine. (( ™

J
4

2-16 SPL: System Macros and Facilities Volume 2




o PURGE=QUIESCE is specified for any access method that requires asynchronous
( interruptions to complete normal input/output processing.

e PURGE=NONE is specified and the CHECK macro instruction is issued in the
ESTALI exit routine for any access method that requires asynchronous interruptions to
complete normal input/output processing.

Note: If ASYNCH =YES is specified and the ABEND was originally scheduled because
of an error in asynchronous exit handling, an ABEND recursion will develop.

,2TERM=NO

,TERM =YES
specifies whether the exit routine associated with the ESTAI request is also to be
scheduled in the following situations:

e CANCEL
( e Forced LOGOFF
® Job step timer expirations
e Wait time limit for job step exceeded

e ABEND condition because incomplete task detached when STAE option not specified
on DETACH

( e Attaching task abnormally terminates

AJSTCB=NO

,JSTCB=YES
specifies whether the attached task is a new job step (YES) or a task in the present job
step (NO). If YES is specified, the address of the TCB of the newly created task is placed
in the TCBJSTCB field of the TCB; if NO is specified, the TCBJSTCB field of the task
using ATTACH is propagated to the new task.

‘ Note: The JSTCB=YES option causes a new job pack area to be established for the
( ‘ attached task. Any modules within the job pack area of the task issuing the ATTACH
are therefore not implicitly known to the newly attached task.

SM=PROB

sSM =SUPV
specifies that the system is to run in problem program mode (PROB) or in supervisor
mode (SUPV) when executing the attached task.

SVAREA =YES

,SVAREA =NO
specifies whether a save area is needed for the attaching task. If YES is specified, the
ATTACH routine obtains a 72-byte save area. If both attaching and attached task share

subpool zero, the save area is obtained there; otherwise, it is obtained from a new 4K-byte
block.

ATTACH - Create a New Task 2-17




LKEY =PROP

KEY =ZERO A
specifies whether the protection key of the newly created task should be zero (ZERO) or N/
copied from the TCBPKF field of the TCB for the task using ATTACH (PROP).

,DISP=YES

,DISP=NO

specifies whether the subtask is to be dispatchable (YES) or nondispatchable (NO).

Note: If DISP=NO is specified, the attaching task must use the STATUS macro
instruction to reset the TCBANDSP nondispatchability bit to 0, before the ATTACH
processing can be completed for the new task.

+JSCB =jsch addr _
specifies the address of the job step control block. If specified, the JSCB is used for the
new task. Otherwise, the JSCB of the attaching task is also used for the new task.

Note: The JSCB parameter must specify a Storage location below 16 megabytes.

,TID = task id .
specifies the task identifier to be placed in the TCBTID field of the attached task.

,NSHSPYV = subpool nmbr

JNSHSPL = subpool list addr
specifies the virtual storage subpool number 236 or 237, or the address of a list of virtual
storage subpool numbers 236 and 237. The subpools specified will not be shared with the P
subtask. .

If NSHSPL is specified, the first byte of the list contains the number of bytes remaining in
the list; each of the following bytes contains a virtual storage subpool number.

,RSAPF=YES
specifies that the attached subtask may come from an unauthorized library. If, however,
it comes from an APF-authorized library and is link-edited with the APF-authorized
attribute, the step begins execution with APF authorization.

RSAPF =YES applies when all of the following conditions are met:

e The caller is running in supervisor state, system key (0-7), or both.

e The caller is running non-APF authorized.

o The task is attached in the problem program state and with a non-system key.
,LRELATED = (value)

specifies information used to self-document macro instructions by “relating” functions or

services to corresponding functions or services. The format and contents of the

information specified are at the discretion of the user, and may be any valid coding
values.

2-18 SPL: System Macros and Facilities Volume 2



Example 1
Example 2
Example 3

When control is returned, register 15 contains one of the following return codes:

Hexadecimal

Code Meaning

00 Successful completion.

04 ATTACH was issued in a STAE exit; processing not completed.

08 Insufficient storage available for control block
for STAI/ESTALI request; processing not completed.

oC Invalid exit routine address or invalid parameter
list address specified with STAI parameter;
processing not completed.

14 Authorized task specifying JSTCB = YES was not itself a job
step task; processing not completed.

18 Attempt to create a new subtask would result in both
job step tasks and non-job step tasks being subtasks of
current task; processing not completed.

Notes:

1. For any return code other than 00, register 1 is set to zero upon return.

2. The program manager processing for ATTACH is performed under the new subtask after
control has been returned to the originating task. Therefore, it is possible for the originating
task to obtain return code 00, and still not have the subtask successfully created (for example,
if the entry name could not be found by the program manager). In such cases, the new
subtask is abnormally terminated.

Operation: Attach program SYSPROGM, which will run with protection key 0 and in
supervisor mode. Subpool 0 is not to be shared, and the new task is not to have a save area
provided.

ATTACH EP=SYSPROGM,KEY=ZERO,SM=SUPV,SZERO=NO, SVAREA=NO

Operation: Attach as a new job step the program name addressed in register 7. The new task
is to run in problem program mode, a save area is to be provided, a job step control block is
provided, subpool 0 is not to be shared, a task library DCB is provided, and the new task is to
be nondispatchable.

ATTACH EPLOC=(7),SM=PROB,JSTCB=YES, SVAREA=YES,SZERO=NO, X
JSCB=(5) ,DISP=NO, TASKLIB=(8)

Operation: Cause the program named in the list to be attached. Establish RTN as an end of
task exit routine.

ATTACH DE=LISTNAME,ETXR=RTN

ATTACH - Create a New Task 2-19




Example 4

Operation: Cause PROGRAMI to be attached, share subpool 5, supply WORDI so the

originating task can know when the subtask is complete, and establish EXIT1 as an ESTAI
exit.

ATTACH EP=PROGRAM1,SHSPV=5,ECB=WORD1,ESTAI=(EXIT1)

2-20 SPL: System Macros and Facilities Volume 2




ATTACH (List Form)

Two parameter lists are used in an ATTACH macro instruction: a control program parameter
list and a problem program parameter list. You can construct only the control program
parameter list in the list form of ATTACH. Address parameters to be passed in a parameter
list to the problem program can be provided using the list form of the CALL macro instruction.
This parameter list can be referred to in the execute form of ATTACH.

ATTACH (List Form) 2-21




The list form of the ATTACH macro instruction is written as follows:

name
b
ATTACH
b

name: symbol. Begin name in column 1.

One or more blanks must precede ATTACH.

One or more blanks follow ATTACH.

EP =entry name
EPLOC =entry name addr
DE =list entry addr

,DCB=dcb addr

,LPMOD = limit prior nmbr
,DPMOD =disp prior nmbr
L,ECB=ech addr

L,ETXR =exit rtn addr

,GSPV =subpool nmbr
,GSPL = subpool list addr

,SHSPV = subpool nmbr
,SHSPL = subpool list addr

,SZERO =YES
,SZERO=NO

,TASKLIB =dcb addr

,STAI = (exit addr)

,STAIL= (exit addr,parm addr)
L,ESTAI = (exit addr)

JESTAI = (exit addr.,parm addr)

,PURGE =QUIESCE
JPURGE=NONE
,PURGE=HALT

,ASYNCH =NO
,LASYNCH=YES

,TERM=NO
,TERM=YES

LJJSTCB=NO
JJSTCB=YES

,SM=PROB
,SM=SUPV

,SVAREA =YES
,SVAREA =NO

,KEY =PROP
JKEY =ZERO

,DISP=YES
,DISP=NO

LJSCB =jscb addr
JTID = task id

,NSHSPV = subpool nmbr
,NSHSPL = subpool list addr

,RSAPF=NO
,RSAPF =YES

L,RELATED = value
SF=L

entry name: symbol.
entry name addr: A-type address.
list entry addr: A-type address.

dcb addr: A-type address.

limit prior nmbr: symbol or decimal digit.
disp prior nmbr: symbol or decimal digit.
ech addr: A-type address.

exit rtn addr: A-type address.

subpool nmbr: symbol or decimal digit.
subpool list addr: A-type address.

subpool nmbr: symbol or decimal digit.
subpool list addr: A-type address.

Default: SZERO =YES

dcb addr: A-type address.

exit addr: A-type address.
parm addr: A-type address.

Note: PURGE may be specified only if STAI or ESTALI is specified.
Default for STAI: PURGE =QUIESCE
Default for ESTAI: PURGE = NONE

Note: ASYNCH may be specified only if STAI or ESTAI
is specified.

Default for STAI: ASYNCH=NO

Default for ESTAI: ASYNCH=YES

Note: TERM may be specified only if ESTAI is specified.
Default: TERM =NO

Default: JSTCB=NO

Default: SM =PROB

Default: SVAREA =YES
Default: KEY =PROP

Default: DISP=YES
jscb addr: A-type address.

task id: decimal digits 0-255.
Default: TID=0

subpool nmbr: symbol, decimal digit.
subpool list addr: A-type address.
Default: RSAPF =NO

value: any valid macro keyword specification.

2-22  SPL: System Macros and Facilities Volume 2

v'(/k\
|

TN

NS




The parameters are explained under the standard form of the ATTACH macro instruction, with
the following exception:

SF=L
specifies the list form of the ATTACH macro instruction.

Note: If RSAPF parameter is not specified on the list form of the ATTACH macro
instruction, the default is RSAPF=NO. If RSAPF=YES is specified on the list form or on a
previous execute form using the same SF = list, RSAPF =NO is ignored for any subsequent
execute forms of the ATTACH macro instruction.

Once RSAPF is specified, it is in effect for all users of that list.

ATTACH (List Form) 2-23




P
. ) /’

[
.

ATTACH (Execute Form)

Two parameter lists are used in ATTACH: a control program parameter list and an optional

problem program parameter list. Either or both of these parameter lists can be remote and can

be referred to and modified by the execute form of ATTACH. If only the problem program

parameter list is remote, parameters that require use of the control program parameter list

cause that list to be constructed inline as part of the macro expansion.
“\\, ~
\\‘M ‘/
N
\\Q\ J

2-24 SPL: System Macros and Facilities Volume 2




The execute form of the ATTACH macro instruction is written as follows:

name
b
ATTACH
b

name: symbol. Begin name in column 1.

One or more blanks must precede ATTACH.

One or more blanks must follow ATTACH.

EP=entry name
EPLOC =entry name addr
DE =list entry addr

,DCB =dcb addr
,LPMOD = limit prior nmbr

,DPMOD =disp prior nmbr
,PARAM = (addr)
JPARAM = (addr),VL=1

L,ECB=ecb addr

L,ETXR =exit rtn addr

,GSPV = subpool nmbr
sGSPL = subpool list addr

,SHSPV = subpool nmbr
,SHSPL = subpool list addr

,SZERO=YES
,SZERO=NO

,TASKLIB =dcb addr
,STAI = (exit addr)

,STAI = (exit addr,parm addr)

,ESTAI= (exit addr)

,ESTAI = (exit addr,parm addr)

,PURGE =QUIESCE
,PURGE=NONE
,PURGE=HALT

,LASYNCH=NO
,ASYNCH=YES

,TERM=NO
,TERM=YES

LJSTCB=NO
JSTCB=YES

,SM=PROB
,SM =SUPV

,SVAREA =YES
,SVAREA =NO

,KEY =PROP
,KEY=ZERO

,DISP=YES
,DISP=NO

LJSCB =jscb addr
,TID = task id

,NSHSPV = subpool nmbr
,NSHSPL = subpool list addr

,RSAPF=NO
.RSAPF =YES

,RELATED =value

,MF = (E,prob addr)
,SF=(E,ctrl addr)

,MF = (E,prob addr),SF= (E,ctrl addr)

entry name: symbol.
entry name addr: RX-type address, or register (2) - (12).
list entry addr: RX-type address, or register (2) - (12).

dcb addr: RX-type address, or register (2) - (12).
limit prior nmbr: symbol, decimal digit , or register (2) - (12).

disp prior nmbr: symbol, decimal digit, or register (2) - (12).

addr: RX-type address, or register (2) - (12).

Note: addr is one or more addresses, separated by commas. For example,
PARAM = (addr,addr,addr)

ech addr: RX-type address, or register (2) - (12).

exit rtn addr: RX-type address, or register (2) - (12).

subpool nmbr: symbol, decimal digit, or register (2) - (12).
subpool list addr: RX-type address, or register (2) - (12).

subpool nmbr: symbol, decimal digit, or register (2) - (12).
subpool list addr: RX-type address, or register (2) - (12).

dcb addr: RX-type address, or register (2) - (12).

exit addr: RX-type address, or register (2) - (12).
parm addr: RX-type address, or register (2) - (12).

Note: PURGE may be specified only if STAI or ESTAI is specified.

Note: ASYNCH may be specified only if STAI or ESTALI is specified.
Note: TERM may be specified only if ESTAI is specified.
Default: JSTCB=NO

Default: SM =PROB

Default: SVAREA =YES
Default: KEY =PROP

Default: DISP=YES

Jscb addr: RX-type address, or register (2) - (12).

task id: decimal digits 0-255, or register (2) - (12).
Default: TID =0

subpool nmbr: symbol, decimal digit, or register (2) - (12).
subpool list addr: RX-type address, or register (2) - (12).

Default: RSAPF=NO

value: any valid macro keyword specification.

prob addr: RX-type address, or register (1) or (2) - (12).
ctrl addr: RX-type address, or register (2) - (12) or (15).

ATTACH (Execute Form)

2-25



The parameters are explained under the standard form of the ATTACH macro instruction, with

the following exceptions:

JMF = (E, prob addr)
,SF=(E, ctrl addr)
»MF = (E, prob addr) ,SF = (E, ctrl addr)

specifies the execute form of the ATTACH macro instruction using a remote problem
program parameter list or a remote control program parameter list or both. If a
parameter list is not provided, any problem program or control program parameters are
provided in parameter lists expanded inline.

Notes:

1.

If STAI is specified on the execute form, the following fields are overlaid in the control
program parameter list: exit addr, parm addr, PURGE, and ASYNCH. If parm addr is not
specified, zero is used; if PURGE or ASYNCH are not specified, defaults are used.

If ESTAI is specified on the execute form, the following fields are overlaid; exit addr, parm
addr, PURGE, ASYNCH, and TERM. If parm addr is not specified, zero is used; if
PURGE, ASYNCH, or TERM are not specified, defaults are used.

If the STAI or ESTAI is to be specified, it must be completely specified on either the list or
execute form, but not on both forms.

If SZERO is not specified on the list or execute form, the default is SZERO=YES. If
SZERO= NO is specified on either the list form or a previous execute form using the same
SF=list, then SZERO=YES is ignored for any following execute forms of the macro. Once
SZERO = NO is specified, it is in effect for all users of that list.

If RSAPF=YES is specified on the list form of the ATTACH macro instruction or on a
previous execute form of the ATTACH macro instruction using the same SF= list,
RSAPF=NO is ignored for any subsequent execute forms of the ATTACH macro instruction.

2-26  SPL: System Macros and Facilities Volume 2

A

',



AXEXT - Extract Authorization Index

The AXEXT macro instruction returns to the caller the authorization index (AX) value of the
specified address space.

The caller must be in supervisor state or PKM 0-7 executing in primary mode enabled and
unlocked. Register 13 must point to a standard register save area that must be addressable in
primary mode.

( g Registers 2-14 are preserved. Register 2, which is modified by the macro after the registers are
saved, should not be used as the base register. Register 15 contains the return code. The
extracted AX is placed in bits 16-31 of register 0 and bits 0-15 are set to zero. The contents of
register 1 are unpredictable.

The AXEXT macro instruction is written as follows:

| ( name name: symbol. Begin name in column 1.
|
‘ b One or more blanks must precede AXEXT.
AXEXT
b One or more blanks must follow AXEXT.
ASID = asid value asid value: RX-type address or register (0) - (12).

Default: current PASID.

( . ,RELATED = value value: any valid macro keyword specification.

The parameters are explained as follows:

ASID =asid value
specifies the ASID of the address space whose AX is to be extracted. If the RX-type
address is used, it points to a halfword containing the ASID. If the register form is used,
the register must contain the ASID in bits 16-31 with bits 0-15 set to zero. If ASID is not
specified, the current PASID is assumed.

AXEXT - Extract Authorization Index 2-27




,RELATED =value
specifies information used to self document macro instructions by “relating” functions or
services to corresponding functions or services. The format and content of the

information specified are at the discretion of the user and can be any valid coding values.

When control returns, register 15 contains the following return code:

Hexadecimal
Code Meaning
0 The AX value of the specified address space was successfully obtained.

2-28  SPL: System Macros and Facilities Volume 2

./



AXFRE - Free Authorization Index

The AXFRE macro instruction returns one or more authorization index (AX) values to the
system. The caller must ensure that the AXs to be returned are no longer being used by any
address space or else the caller is abnormally terminated. On completion of the AXFRE macro
instruction, all authorization of the freed AX values in authorization tables for the entire system
will be purged. The caller must be dispatched in the address space that owns the AX.

The caller must be in supervisor state or PSW mask 0-7, executing in primary mode enabled
and unlocked.

Register 13 must point to a standard register save area that must be addressable in primary
mode. The list of AX values passed to the AXFRE macro instruction must also be addressable
in primary mode at the time the macro instruction is issued.

Registers 2-12 are preserved. Register 2, which is modified by the macro after the registers are
saved, should not be used as the base register. Register 15 contains the return code. The
contents of registers 0 and 1 are unpredictable.

The AXFRE macro instruction is written as follows:

name name: symbol. Begin name in column 1.
b One ore more blanks must precede AXFRE.
AXFRE
b » One or more blanks must follow AXFRE.
AXLIST = list addr list addr: RX-type address or register (0) - (12).
,RELATED = value value: any valid macro keyword specification.

The parameters are explained as follows:

AXLIST =list addr
specifies the address of a variable length list of halfword entries that contain the AX
values to be freed. The first halfword must contain the number of values in the list.

,LRELATED =value
specifies information used to self document macro instructions by “relating” functions or
services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user and can be any valid coding values.

AXFRE - Free Authorization Index 2-29




When control returns, register 15 contains one of the following return codes:

Hexadecimal
Code Meaning
0 The specified authorization index or indexes were successfully freed.
4 The specified authorization index or indexes were not successfully freed. One or more of the

indexes could be unavailable for use.

2-30 SPL: System Macros and Facilities Volume 2

//( ™

NS



AXRES - Reserve Authorization Index

The AXRES macro instruction reserves one or more authorization index (AX) values for the
caller’s use. The AX values are then owned by the current home address space.

The caller must be in supervisor state or PKM 0-7, executing in primary mode enabled and
unlocked. The parameter list passed to the AXRES macro instruction must be addressable in
primary mode at the time the macro expansion is executed. Register 13 must point to a
standard register save area that must be addressable in primary mode.

Registers 2-14 are preserved. Register 2, which is modified by the macro after the registers are
saved, should not be used as the base register. Register 15 contains the return code. The

contents of registers 0 and 1 are unpredictable.

The AXRES macro instruction is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede AXRES.
AXRES
b One or more blanks must follow AXRES.
AXLIST =list addr list addr: RX-type address or register (0) - (12).
,RELATED = value value: any valid macro keyword specification.

The parameters are explained as follows:

AXLIST =list addr
specifies the address of a variable length list, addressable in primary mode, of halfword
entries in which the requested AX values are to be returned. The first halfword must
contain the number of values to be returned. Enough halfwords must follow the first
entry to contain the requested number of values. If the requested number of AX values is
not available, the caller is abnormally terminated.

,LRELATED =value
specifies information used to self document macro instructions by “relating” functions or
services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user and can be any valid coding values.

AXRES - Reserve Authorization Index 2-31




When control returns, register 15 contains the following return code.

Hexadecimal
Code Meaning
0 The AX value or values were successfully reserved.

2-32  SPL: System Macros and Facilities Volume 2

P



AXSET - Set Authorization Index

The AXSET macro instruction sets the authorization index (AX) of the home address space to
the value specified by the caller. The AX must have been previously reserved and the address
space whose AX is being changed cannot own connected space switch entry tables. All routines
that subsequently execute with a PASID of the address space whose AX was changed execute
with the new AX.

The caller must be in supervisor state or PKM 0-7 executing in primary mode enabled and
unlocked. Register 13 must point to a standard register save area that must be addressable in
primary mode.

Registers 2-14 are preserved. Register two, which is modified by the macro after the registers
are saved, should not be used as the base register. Register 0 contains the original AX value in
bits 16-31 with bits 0-15 set to zero. Register 15 contains the return code. The contents of
register 1 are unpredictable.

The AXSET macro instruction is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede AXSET.
AXSET
b One or more blanks must follow AXSET.
AX=AX value AX value: RX-type address or régister 0) - (12).
,RELATED = value value: any valid macro keyword specification.

The parameters are explained as follows:

AX=AX value
specifies the new AX value. The RX-type address specifies a halfword containing the new
AX. If the register form is used, the register must contain the new AX in bits 16-31 and
bits 0-15 must be zero.

,RELATED = value
specifies information used to self-document macro instructions by “relating” functions or
services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user and can be any valid coding values.

AXSET - Set Authorization Index 2-33




When control returns, register 15 contains the following return code:

Hexadecimal
Code Meaning
0 The AX of the home address space was set to the value specified by the caller.

2-34  SPL: System Macros and Facilities Volume 2

AN
N

N

\l Y,



C

BLSABDPL - Map the Exit Parameter List BLSABDPL

The BLSABDPL macro instruction maps the exit parameter list (BLSABDPL), which is a data
area that enables IPCS, PRDMP, SNAP, and user-written exit routines to tailor dumps.

Using this macro, you can map the following areas within the BLSABDPL exit parameter list:
e The processor status record
(<, e The storage access parameter list

e The select ASID parameter list
e The control block and format model processor parameter list
e The ECT parameter list

j - By accessing any one of these parameter lists, the exit routine can then use the data in the

“ ( parameter list to invoke the corresponding exit service routine. For information about using

the exit service routines, see MVS/XA Interactive Problem Control System User's Guide and
Reference.

BLSABDPL - Map the Exit Parameter List BLSABDPL ~ 2-35




The BLSABDPL macro instruction is written as follows:

name
b
BLSABDPL

b

name: symbol. Begin name in column 1.

One or more blanks must precede BLSABDPL.

One or more blanks must follow BLSABDPL.

AMDCPST=YES
AMDCPST=NO

,AMDEXIT =YES
,LAMDEXIT =NO

,AMDOSEL =YES
,LAMDOSEL =NO

,AMDPACC =YES
,LAMDPACC=NO

,AMDPECT =YES
,AMDPECT=NO

,AMDPFMT =YES
,AMDPFMT =NO

,AMDPSEL =YES
,AMDPSEL =NO

,DSECT=YES
,DSECT=NO

Defaunlt: AMDCPST =NO

Default: AMDEXIT=YES

Default: AMDOSEL =YES

Default: AMDPACC =YES

Default: AMDPECT=YES

Default: AMDPFMT =YES

Default: AMDPSEL = YES

Default: DSECT = YES

N

The parameters are explained as follows:

AMDCPST =YES
AMDCPST=NO

specifies whether the format of the CPU status data available through the IPCS and

PRDMP storage access services is to be mapped (YES) or suppressed (NO).

If this parameter is not specified, the default is NO.

AN

N,

Because the system uses DSECT AMDCPMAP to map the format of CPU status data
(when AMDCPST = YES), the system ignores the DSECT = NO option if it is

specified.

AMDEXIT =YES
AMDEXIT =NO

specifies whether the common exit parameter list (BLSABDPL) is to be mapped (YES) or

suppressed (NO).

If this parameter is not specified, the default is YES.

2-36  SPL: System Macros and Facilities Volume 2




The common exit parameter list contains two parts: ABDPL and ADPLEXTN.
DSECT=YES causes DSECT statements to be generated for both. DSECT=NO

- suppresses the DSECT statements and causes ABDPL and ADPLEXTN to be defined as
the labels associated with the first bytes described in the ABDPL and ADPLEXTN
exit parameter lists, respectively.

AMDOSEL =YES

AMDOSEL=NO
specifies whether the select ASID service output data available under IPCS and PRDMP
is to be mapped (YES) or suppressed (NO).

If this parameter is not specified, the default is YES.

If the DSECT =NO option is specified, it is ignored. The select ASID parameter list is
always mapped using DSECT ADPLPSEL.

Because the system uses DSECT ADPLPSEL to map the select ASID parameter list
(when AMDOSEL = YES), the system ignores the DSECT = NO option if it is
specified.

AMDPACC=YES
AMDPACC=NO

specifies whether the storage access service parameter list is to be mapped (YES) or
suppressed (NO).

If this parameter is not specified, the default is YES.

The storage access service parameter list is described as ADPLPACC. DSECT=YES
causes DSECT statements to be generated for ADPLPACC. DSECT =NO suppresses the
DSECT statements and causes ADPLPACC to be defined as the label associated with the
first byte described in the storage access service parameter list.

AMDPECT =YES
AMDPECT =NO
specifies whether the ECT service parameter list is to be mapped (YES) or suppressed

NO).
If this parameter is not specified, the default is YES.

The ECT service parameter list is described as ADPLPECT. DSECT =YES causes
DSECT statements to be generated for ADPLPECT. DSECT =NO suppresses the
DSECT statements and causes ADPLPECT to be defined as the label associated with the
first byte described in the ECT service parameter list.

BLSABDPL - Map the Exit Parameter List BLSABDPL  2-37




AMDPFMT =YES

AMDPFMT =NO AN
specifies whether the parameter list used by both the control block formatter and the < J
format model processor services is to be mapped (YES) or suppressed (NO).

If this parameter is not specified, the default is YES.

The parameter list used by both the control block formatter and the format model
processor services is described as ADPLPFMT. DSECT =YES causes DSECT statements
to be generated for ADPLPFMT. DSECT =NO suppresses the DSECT statements and
causes ADPLPFMT to be defined as the label associated with the first byte described in
the parameter list.

AMDPSEL =YES
AMDPSEL =NO
specifies whether the select ASID service parameter list is to be mapped (YES) or

suppressed (NO). PN
If this parameter is not specified, the default is YES. e
The ASID service parameter list is described as ADPLPSEL. DSECT=YES causes
DSECT statements to be generated for ADPLPSEL. DSECT =NO suppresses the
DSECT statements and causes ADPLPSEL to be defined as the label associated with the
first byte described in the ASID service parameter list.
DSECT=YES
DSECT=NO AN
specifies whether parameter lists mapped by BLSABDPL are to be mapped as DSECTs N
(YES) or not (NO).
If this parameter is not specified, the default is YES.
NOTE: Output data from services can also be mapped by BLSABDPL. Output data are
always mapped as DSECTs. These DSECTs cannot be suppressed by DSECT=NO. To
determine whether DSECT =NO can suppress a specific DSECT, see the above
parameters. ,
2N
Example N

2-38

Operation: Code the macro instructions to invoke the select ASID service routine (that
generates a list of selected address spaces within a dump) by reserving space for an initialized
select ASID service parameter list and defining the mapping of the ABDPL for the user-written
exit routine.

BLSADPL DSECT=NO,AMDEXIT=NO,AMDOSEL=NO,AMDPACC=NO,

AMDPFMT=NO, AMDPECT=NO, AMDPSEL=YES
BLSADPL AMDPACC=NO, AMDPFMT=NO, AMDPECT=NO, AMDPSEL=NO

SPL: System Macros and Facilities Volume 2



BLSQMDEF - Define a Control Block Format

The BLSQMDEF macro instruction is used to start and end the formatting model of a control
block from a dump. A control block model must begin with the BLSQMDEF macro
instruction, specifying the appropriate parameters. The end of the model is indicated by a
BLSQMDEF macro instruction with only the END keyword specified.

The BLSQMDEF and BLSQMFLD macro instructions work together to create a dump
formatting model. A control block model has the following structure:

e One BLSQMDEF macro instruction to begin the model definition.

o At least one BLSQMFLD macro instruction to define the attributes of a desired control
block field.

e One BLSQMDEF macro instruction to end the model definition.

The order of the BLSQMFLD statements in the formatting model determines the order the
fields printed in the dump. No object code producing assembler statements other than the
BLSQMFLD macro instruction should be placed between the BLSQMDEF macro instructions
that delimit the start and end of the model definition. The BLSQSHDR macro instruction,
which associates text strings with dumped data fields, can be used to clarify the dump for the
user.

Through the implementation of BLSQMDEF, BLSQMFLD, and BLSQSHDR users of IPCS,
PRDMP, and SNAP can control their dump output within user-written formatting routines.
For additional information, refer to MVS/XA Interactive Problem Control System User's Guide
and Reference.

BLSQMDEEF - Define a Control Block Format 2-39




The BLSQMDEF macro instruction is written as follows:

AN
NS
name name: symbol. Begin name in column 1.
b "~ One or more blanks must precede BLSQMDEF.
BLSQMDEF
b One or more blanks must follow BLSQMDEF.
END Note: END is required if this BLSQMDEF macro is terminating the
current
,CBLEN = value format model definition. This is the exclusive use of the END parameter;
when END is specified, no other options are allowed.
,BASELBL = label label: symbol.
value: decimal constant, hexadecimal constant, or an absolute value.
Note: CBLEN is required except when the END parameter is specified.
,MAINTLYV =name name: 1 to 8 byte character string. N
,LACRONYM = name name: 1 to 8 byte character string N
Note: If ACRONYM is specified, the ACROLBL or ACROFF parameters
should also be specified. If neither are, a default offset of zero is assumed.
,ACROLEN = value value: decimal constant, hexadecimal constant, or absolute expression
of a number from 1 to 8, inclusive.
,LACROLBL = label label: symbol.
Note: Use ACROLBL only if BASELBL is specified.
,ACROFF =value value: decimal constant, hexadecimal constant, or absolute value.
Note: 1. Use ACROFF if acronym is not at offset zero and BASELBL is
not specified
2. The ACROFF value is used when both ACROFF and AN
ACROLBL are specified.
,PREFIX = value value: integer constant 0 - 8 inclusive. s
' Default: PREFIX =3
,OFFSETS =PRINT Default: OFFSETS =PRINT
,OFFSETS = NOPRINT
,STRTCOL = value value: decimal constant, hexadecimal constant, or an absolute
expression.
Default: STRTCOL =0
L,LBLSPC =value value: decimal constant, hexadecimal constant, or an absolute
expression.
Default: LBLSPC =0 PN
,HEADER = name name: one to eight byte character string. ;
Note: 1. If HEADER is not specified, ACRONYM value is used. NS

2. If neither HEADER nor ACRONYM is specified, the control
block will not contain a heading.

The parameters are explained as followed:

END
specifies the termination of the control block model. This parameter is required ONLY
when the BLSQMDEF macro instruction is used to end the control block format. All
other parameters are ignored if this parameter is specified.

BASELBL = label
specifies the label of an assembler statement, which is to be used to calculate field offsets.
If specified, all field offsets calculated by the BLSQMFLD macro instruction will be N
relative to this label. If not specified, all field offsets must be explicitly specified on the (
BLSQMFLD macro instruction via the ACROFF. parameter. =

2-40  SPL: System Macros and Facilities Volume 2




CBLEN =value
specifies the total length of the control block. Value may be a decimal constant,
hexadecimal constant, or an absolute expression. This parameter is required except when
the END parameter is specified.

MAINTLYV =name
specifies the maintenance level of the control block. The maintenance level name may be a
1 to 8 byte character string that contains no blanks.

ACRONYM = name
specifies the contents of the control block acronym field. Name may be a one to eight
byte character string that contains no blanks. If this field is specified, the ACROLBL or
ACROFF parameter should also be specified in order to define the offset of the acronym
field within the control block. If neither the ACROLBL nor the ACROFF parameter is
specified, an offset of zero is assumed.

ACROLEN = value
specifies the length of the acronym name specified by the ACRONYM parameter in the
event that the acronym name requires blanks. If omitted, the length used is the actual
length of the name specified in the ACRONYM parameter (without any blanks). Value
may be a decimal constant, hexadecimal constant, or absolute expression of a number
from zero to eight, inclusive.

ACROLBL =/abel
specifies the label on the assembler statement that defines the acronym field. The label
specified here is used with the label provided by BASELBL to calculate the acronym field
offset. Use this parameter only if BASELBL is specified. The ACROLBL parameter is
ignored if ACROFF is specified.

ACROFF =value
specifies the offset of the field containing the control block acronym within the control
block. Use this parameter if the acronym is not at offset zero and BASELBL is not
specified. Value may be a decimal constant, hexadecimal constant, or absolute
expression.

PREFIX =value
specifies the number of characters to be removed from the front of a field name to
produce the field label. The field name is defined by the NAME parameter of the
BLSQMFLD macro. Value must be an integer constant (0 - 8, inclusive). When
PREFIX =8 is specified, the fields will have no label. mode. If not specified, the default
is PREFIX=3. PREFIX may be re-specified on a succeeding BLSQMFLD macro.

OFFSETS =PRINT

OFFSETS =NOPRINT
specifies whether or not the field offset information should be printed at the beginning of
each output line of the formatted control block. PRINT specifies that offset information
should be included on the formatted line; NOPRINT causes the offset information to be
suppressed. If this parameter is not specified, a default of PRINT is used.

STRTCOL =value
specifies a left margin for each line of the formatted control block. Value may be a
decimal constant, a hexadecimal constant, or an absolute expression. If not specified, or
specified as zero, the format model processor uses the value specified by IPCS or
printdump.

BLSQMDEEF - Define a Control Block Format 2-41




LBLSPC =value B
specifies the spacing between label fields in the formatted output. Value may be a ol ™
decimal constant, hexadecimal constant, or an absolute expression. If not specified, or N
specified as zero, this indicates to the format model processor that the value specified by
IPCS, SNAP, or PRDMP should be used. This value is initially set to 20.

Note: If value is 18, the output is condensed.

HEADER = name
specifies the heading that will precede the formatted control block. Name may be any
one to eight byte character string that contains no blanks. If HEADER is omitted, the
ACRONYM value is used for the heading. If neither the ACRONYM parameter nor the
HEADER parameter is specified, the formatted control block will not have a heading.

2-42  SPL: System Macros and Facilities Volume 2



BLSQMFLD - Specifying a Control Block Format Field

The BLSQMFLD macro instruction is used to identify the fields within the dumped control
block that are to be formatted. A BLSQMFLD macro must be coded for each requested field
that will be formatted.

The BLSQMDEF and BLSQMFLD macro instructions work together to create a dump
formatting model for a control block, the model has the following structure:

( o One BLSQMDEF macro instruction to begin the model definition.

e At least one BLSQMFLD macro instruction to define the attributes of a desired control
block field.

e One BLSQMDEF macro instruction to end the model definition.

The order of the BLSQMFLD statements in the formatting model determines the order the
- fields are printed in the dump. No object code producing assembler statements other than the
( BLSQMFLD macro instruction should be placed between the BLSQMDEF macro instructions
that delimit the start and end of the model definition.

Through the implementation of BLSQMDEF and BLSQMFLD, users of IPCS, PRDMP, and
SNAP can control their dump output within user-written formatting routines. The BLSQSHDR
macro instruction, which associates text strings with dumped data fields, can be used to clarify
the dump for the user. For additional information, refer to MV S/XA Interactive Problem
Control System User’'s Guide and Reference.

BLSQMFLD - Specifying a Control Block Format Field 2-43




The BLSQMFLD macro instruction is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede BLSQMFLD.
BLSQMFLD
b One or more blanks must follow BLSQMFLD.
NAME = label label: symbol.
NAME =*
,SHDR = addr addr: A-type address.
Note: If SHDR is specified, only CALLRTN, NEWLINE,
NOSPLIT, and VIEW are allowed.
,OFF =value value: decimal constant, hexadecimal constant, or absolute
value.
Note: OFF is required if BASELBL is not specified on the
BLSQMDEF macro or if NAME = * is specified on the
BLSQMFLD macro.
,LEN =value value: decimal constant, hexadecimal constant, or absolute
expression.
Note: LEN is required if name parameter label is
unresolved.
L,VIEW = (list) (list): integers between 1 and 16, inclusive.
,VIEW =value value: decimal constant, hexadecimal constant, or absolute

LARRAY=((DL1,DU1),(DL2,DU2))
LARRAY =value

LARRAY =*

,LARRAY =END

,LDTYPE =HEX
,DTYPE=EBCDIC
,NEWLINE
,NOLABEL
,CALLRTN
,PREFIX = value

,NOSPLIT
,NUMDEC
,NOCOLNM
STRTCOL =value

,COLNUM = value

,COLSEP = value

JTEMSEP = value

,ORDER =(1,2)
,ORDER =(2,1)

LHEXONLY

value.
Default: VIEW = X‘0200

DL1,DU1,DL2,DU2: decimal constants,

hexadecimal constants, or absolute values.

value: decimal constant, hexadecimal constant, or absolute

value. ’

Note: LEN and OFF are ignored when you code any specification
of ARRAY = other than ARRAY =END.

END terminates an array definition.

Default: DTYPE =HEX

value: integers between 0 and 8
Note: If omitted, value specified in the last preceding
BLSQMDEF or BLSQMFLD macro is used.

Default: Hexadecimal.
Default: Number the columns.

value: decimal constant, hexadecimal constant, or absolute
value.
Default: value specified by SNAP, IPCS, or PRDMP.

value: decimal constant, hexadecimal constant, or absolute
value.
Default: A value is calculated.

value: decimal constant, hexadecimal constant, or absolute
value.
Default: A value is calculated.

value: decimal constant, hexadecimal constant, or absolute
value.
Default: A value is calculated.

Default: ORDER =(1,2)

2-44  SPL: System Macros and Facilities Volume 2

P
L




The parameters are explained as follows:

NAME = label

NAME =*
specifies the name of the control block field described by this BLSQMFLD macro. If
BASELBL is specified on the BLSQMDEF macro, the NAME label will be used with the
BASELBL label to calculate the offset of this field from the start of the control block. If
BASELBL was not specified on the BLSQMDEF macro, then OFF becomes required on
the BLSQMFLD macro.

A single asterisk specifies an unnamed, reserved field. Use of the single asterisk for the
name of a control block field requires that the OFF and LEN parameters be specified.
The dump formatter replaces the asterisk with a “reserved” label.

SHDR = addr
specifies the address of a character string used as a subheading in the control block
format. The address must be valid in an assembler A-type DC instruction. This
parameter should point to a one-byte length field followed by the actual heading character
string. The length byte indicates the length of the heading string only and should not
include the length of the length byte.

If this parameter is specified, only CALLRTN, NEWLINE, NOSPLIT, and VIEW can be
specified. Other parameters will be ignored.

OFF =value
specifies the offset of this field from the beginning of the control block. The value may be
a decimal constant, a hexadecimal constant, or an absolute expression. If this parameter
is specified, the value defined overrides the default field offset generated by the NAME
label on this macro and the BASELBL label on the BLSQMDEF macro.

OFF is ignored if you code any specification of ARRAY = other than ARRAY =END.

This parameter is required if the BASELBL parameter is not specified on the
BLSQMDEF macro or if NAME=* is specified on the BLSQMFLD macro.

LEN =value
specifies the length of the control block field. The value is a decimal constant, .
hexadecimal constant, or absolute expression that defines the length of the control block
field. This parameter is required if no data constants with a label exist in the assembly
program as defined by the NAME parameter, or if use of the assembler length attribute
would not result in a correct length determination for the data constant representing the
field.

LEN is ignored if you code any specification of ARRAY = other than ARRAY =END.

An assembly error occurs if LEN is not specified and there is no assembler statement with
a label matching the one specified by NAME.

BLSQMFLD - Specifying a Control Block Format Field 2-45




VIEW = (list)

VIEW =value , A
specifies up to sixteen different views of the control block fields. Any combination of one 'Y J
to sixteen view attributes can be specified for each field. The last four bits of the view
pattern of 16 are reserved for the control program. The caller of the dump formatter
provides a view pattern defining those views to be formatted.

When an attribute in the view pattern supplied by the dump formatter’s caller (in
ADPLPFMT) matches an attribute in the field view pattern, the field is selected for
formatting.

The list is an unordered list of attributes; each attribute can be a decimal integer between
1 and 16, inclusive (as in VIEW =1,2,...,16), binary constant (as in VIEW =B‘0010"), or
hexadecimal constant (as in VIEW =X‘0080’).

The following chart illustrates the view parameter’s control block field options provided
through the specification of a 4-digit hexadecimal number. Any combination of the view o

fields listed may be specified.

Hexadecimal User-defined fields to be displayed

Code

x‘8000’ keyfield

x‘4000” summary field

x2000” register save area

x‘1000’ linkage field P

x‘0800° error fields

x‘0400° hexadecimal dump N

x0200° all non-reserved fields

x‘0100° reserved fields

x‘0080° static array

x‘0040° dynamic array

x‘0020° input field

x‘0010° output field

If this parameter is not specified, the default value of VIEW =X‘0200’ is used. See IPCS
User’s Guide and Reference for more information about ADPLPFMT. P

ARRAY = ((DLI,DUI),(DL2,DU2)) .
ARRAY =value
ARRAY =*
ARRAY =END

specifies that the succeeding BLSQMFLD statements define a set of fields that are
repeated in the control block.

Using the ARRAY parameter on the BLSQMFLD macro indicates that this particular
BLSQMFLD macro instruction is the beginning or the end of an array definition.

The LEN and OFF parameters are ignored when you code any specification of
ARRAY = other than ARRAY =END.

The VIEW specified applies to all fields within the array; therefore, the VIEW specified

on the BLSQMFLD macro that starts an array should be the composite of the VIEW on ™~
all fields within the array. J

2-46  SPL: System Macros and Facilities Volume 2



If ARRAY=((DL1,DUI),(DL2,DU2)) is coded, a two dimensional array is specified.

( ™, DL] is the lower limit of the first dimension, DUI is the upper limit of the first
dimension, and similarly for DL2 and DU2 for the second dimension. If a lower limit for
a dimension is not specified, a default of 1 is provided. There is no default for the upper
limit of a dimension. However, an asterisk (*) may be coded for either the upper limit or
lower limit of the dimension to indicate that the dimension is to be provided by the
calling program at execution time.

Notes:

1. The correspondence of a dimension to either row or column is determined by the
ORDER keyword.

2. If the array is larger than 65,535 bytes, the calling program must process the array in
sections. The formatter will equate the lower limit for each dimension to the value one
for the purpose of addressing the array entries in a buffer, but will use the specified

(w ; values for the purpose of numbering rows and columns in the formatted output.

If ARRAY =value is coded, a one dimensional array (list) is specified. Value defines how
many array entries are contained in the control block.

If ARRAY =* is coded, the number of entries in the one-dimensional array (list) is to be
be provided by the calling program at execution time.

If ARRAY =END is coded, the array definition is terminated.

(” » NEWLINE
specifies that this field must start on a new line of formatted output.

DTYPE =HEX
DTYPE =EBCDIC
specifies the type of data contained in the area to be dumped. DTYPE=HEX indicates
that the area to be dumped contains four-bit hexadecimal digits. DTYPE =EBCDIC
indicates that the area to be dumped contains eight-bit EBCDIC characters. When you
specify DTYPE=HEX, the dumped area includes the actual hexadecimal digits in the
. range 0-F, plus any EBCDIC characters that are equivalent to 2-digit combinations of
( those digits. The equivalent EBCDIC appears within vertical bars. When you specify
DTYPE =EBCDIC, the dumped area includes only the EBCDIC characters, with nothing
between the vertical bars.

NOLABEL
specifies that the field label is not to be printed. NAME is still required for offset
calculation.

CALLRTN
specifies that the dump formatter calls the output line processing exit after the output line
containing this field has been formatted but before it is printed. The output line
processing exit entry point address is specified by the caller in the parameter list when the
dump formatter is invoked.

PREFIX =value
s specifies how many characters are to be removed from the front of a field name to
( produce the field label. The field name is defined by the NAME parameter. Value must
be an integer constant greater than or equal to zero and less than or equal to eight. If

BLSQMFLD - Specifying a Control Block Format Field 2-47




PREFIX is omitted from the current BLSQMFLD macro, the value specified on the last
preceding BLSQMFLD or BLSQMDEF macro is used. The BLSQMDEF macro used to
start a model definition may be used to set the value of PREFIX.

NOSPLIT
specifies that the dump formatter attempts to print all the field data on the same output
line. If the data does not fit on the current output line but fits on a single output line, the
dump formatter skips to a new line prior to printing this data field.

NUMDEC
specifies that the columns and rows of a two-dimensional array be numbered in decimal.
The default is hexadecimal.

NOCOLNM
specifies that column numbers (headers) of a two-dimensional array be suppressed. The
default is to number the columns. (The NUMDEC parameter controls the numbering
system used for numbering the columns.) '

STRTCOL =value
specifies the left margin of the formatted output. Value indicates the number of blanks
before the first character. STRTCOL applies only to two-dimensional arrays. This
specification overrides the value defined by the STRTCOL keyword in the BLSQMDEF
macro, or by the host (IPCS, SNAP, or PRDMP), for the duration of displaying the
array. If not specified, a default of zero is provided and the formatter will use the value
specified by the host.

COLNUM =value
specifies the number of columns of a two dimensional array that are to be displayed as a
group. If not specified, or if the specified number of columns will not fit in the currently
available print buffer, the formatter will calculate a value consistent with, and not
exceeding, the maximum line length specified by IPCS, SNAP, or PRDMP.

COLSEP =value
specifies the number of blanks to be placed between the columns of a two-dimensional
array. The default is zero, and the formatter uses a calculated value.

ITEMSEP =value
specifies the number of blanks to be placed between items within an array entry. An
array entry may be a structure, and each element of the structure is referred to as an
“item”. If the array entry is a single item, value will be ignored. If ITEMSEP is not
specified, a default of zero is provided and the formatter will use a calculated value when
needed.

ORDER=(1,2)

ORDER =(2,1)
specifies the order in which the data of a two-dimensional array are to be processed. If
ORDER =(1,2) is specified, the data is processed in consecutive rows. If ORDER=(2,1)
is specified, the data is processed in consecutive columns. The default is ORDER =(1,2).

HEXONLY
specifies that the data is to be displayed in hex only. If you omit HEXONLY, the data is
displayed in both hex and EBCDIC, on the same line, with vertical bars bounding the
EBCDIC portion of the display. HEXONLY is valid only if the view parameter specifies
X‘0400°, which requests a hexadecimal dump.

2-48 SPL: System Macros and Facilities Volume 2



Example 1

( Operation: Code the macro instructions that will establish a control block formatting model to
be used by the dump formatter to format functional recovery routines (FRRs).

IEAVTRP3 CSECT
BLSQMDEF CBLEN=X'0320',MAINTLV=HBB2102,PREFIX=4,0FFSETS=PRINT, X
HEADER=FRRS
BLSQMFLD NAME=FRRSEMP,OFF=X'0000"',LEN=4,VIEW=X'0202"'
BLSQMFLD NAME=FRRSLAST,OFF=X'0004',LEN=4,VIEW=X'0202"
BLSQMFLD NAME=FRRSELEN,OFF=X'0008"',LEN=4,VIEW=X'0202"
BLSQMFLD NAME=FRRSCURR,OFF=X'000C',LEN=4,VIEW=X'0200"
BLSQMFLD NAME=FRRSRSA,OFF=X'0010',LEN=24,VIEW=X'0200"
BLSOMFLD SHDR=RTM1WA,VIEW=X'0200',6 NEWLINE
BLSQMFLD SHDR=BLANK,VIEW=X'0200',6NEWLINE
BLSQMFLD SHDR=ENTEXT,VIEW=X'0200',6NEWLINE
BLSQMFLD SHDR=BLANK,VIEW=X'0200',NEWLINE
BLSQMFLD NAME=FRRSXSTK,VIEW=X'0200',ARRAY=16,NOLABEL
BLSQOMFLD NAME=FRRSKM,OFF=X'00AO',LEN=2,VIEW=X'0200',6NEWLINE
e BLSQMFLD NAME=FRRSSAS,OFF=X'00A2',LEN=2,VIEW=X'0200"
(: BLSQMFLD NAME=FRRSAX,OFF=X'00A4',LEN=2,VIEW=X'0200"
- BLSQMFLD NAME=FRRSPAS,OFF=X'00A6',LEN=2,VIEW=X'0200',6ARRAY=END
BLSQMFLD SHDR=BLANK,VIEW=X'0200',NEWLINE
BLSQMFLD SHDR=ENTS,VIEW=X'0200',6NEWLINE
BLSQMFLD SHDR=BLANK,VIEW=X'0200',NEWLINE
BLSQMFLD NAME=FRRSENTS,VIEW=X'0200',ARRAY=16,NOLABEL
BLSQMFLD NAME=FRRSFRRA,OFF=X'0120"',LEN=4,VIEW=X'0200',6NEWLINE
BLSQMFLD NAME=FRRSFLGS,OFF=X'0124"',LEN=4,VIEW=X'0200"

BLSQMFLD NAME=FRRSPARM,OFF=X'0128"',LEN=24,VIEW=X'0200"', X
ARRAY=END
; BLSQMDEF END
BLANK BLSQSHDR ' !
. ENTEXT BLSQSHDR 'FRR ENTRY EXTENSIONS'
ENTS BLSQSHDR 'FRR ENTRIES'
RTM1WA BLSQSHDR 'RTM1 WORK AREA FOLLOWS FRR ENTRIES'
END
Example 2
Operation: Code the macro instructions that will establish a control block formatting model to
be used by the dump formatter to format a STAE control block (SCB).
( IEAVTRP4 CSECT
BLSQMDEF CBLEN=X'0018',MAINTLV=JBB2125,PREFIX=3,0FFSETS=PRINT, X
HEADER=SCB

BLSQMFLD NAME=SCBCHAIN,OFF=X'0000',6LEN=4,VIEW=X'0200"'
BLSQMFLD NAME=SCBEXIT,OFF=X'0004',LEN=4,VIEW=X'0200"'
BLSQMFLD NAME=SCBFLGS1,0FF=X'0008',LEN=1,VIEW=X'0200"
BLSQMFLD NAME=SCBPARMA,OFF=X'0009',LEN=3,VIEW=X'0200"
BLSQMFLD NAME=SCBFLGS2,0FF=X'000C',LEN=1,VIEW=X'0200"
BLSQMFLD NAME=SCBOWNRA,OFF=X'000D' ,LEN=3,VIEW=X'0200"
BLSQMFLD NAME=SCBFLGS3,0FF=X'0010',LEN=1,VIEW=X'0200"
BLSQMFLD NAME=SCBPKEY,OFF=X'0011',6LEN=1,VIEW=X'0200"
BLSQMFLD NAME=SCBID,OFF=X'0012',LEN=1,VIEW=X'0200"'
BLSQMFLD NAME=SCBRSVRE,OFF=X'0013',LEN=1,VIEW=X'0200"
BLSQMFLD NAME=SCBXPTR,OFF=X'0014',6LEN=4,VIEW=X'0200"
BLSQMFLD NAME=* ,OFF=X'0000',LEN=X'0018"',VIEW=X'0400"',6NOLABEL
BLSQMDEF END

End

BLSQMFLD - Specifying a Control Block Format Field 2-49




Example 3

Operation: Define the format of a very simple control block. Note that this could be done by
using a macro-invocation.

MYBLK DSECT , My simplest control block ever
MYBLKABC DC C'ABC' Identifier

MYBLKDEF DC X'00' Flags

MYBLKD80 EQU X'80" 1st flag bit

MYBLKD40 EQU X'40' 2nd flag bit

MYBLKGHI DC V (MYENTRY) Address of my program
MYBLKEND EQU * End of my control block

Define enough storage to get the block displayed. Note that no ENTRY
statement is required for access to CBMODEL1l from other CSECTs
since CBMODEL1 lies at the origin of the CSECT.

TITLE 'CBMODELl--Basic Control Block Model'
CBMODEL CSECT , Start definition of simple model
CBMODEL1 BLSQMDEF BASELBL=MYBLK,CBLEN=MYBLKEND-MYBLK,PREFIX=5
BLSQMFLD NAME=MYBLKABC
BLSQMFLD NAME=MYBLKDEF
BLSQMFLD NAME=MYBLKGHI
BLSQMDEF END End definition of simple model

Add acronym checking, the display of the acronym in EBCDIC,
and descriptive header for the display in the dump.

TITLE 'CBMODEL2--More Elaborate Than 1lst Model'
ENTRY CBMODEL?2 Permit access from other CSECTs
CBMODEL2 BLSQMDEF BASELBL=MYBLK,CBLEN=MYBLKEND-MYBLK,PREFIX=5, X

ACRONYM=ABC,ACROLBL=MYBLKABC, Acronym field data
HEADER=MYBLOCK Heading for block in dump

BLSQMFLD NAME=MYBLKABC,DTYPE=EBCDIC Show it as EBCDIC data

BLSQMFLD NAME=MYBLKDEF

BLSOMFLD NAME=MYBLKGHI

BLSQMDEF END End definition of alternate model

END CBMODEL1 End definition of formatting model

2-50 SPL: System Macros and Facilities Volume 2

"

A

o

—



Example 4

Operation: Assume the data is stored in this sequence:

00010001
00010002
00010003
00010004
00020001
00020002
00020003
00020004
00030001
00030002
00030003
00030004

. 00090001
( | 00090002

L/’ 00090003
00090004
00100001
00100002
00100003
00100004

And you want the data to be formatted as follows:

001 00010001 00010002 00010003 00010004
002 00020001 00020002 00020003 00020004
003 00030001 00030002 00030003 00030004
004 00040001 00040002 00040003 00040004
005 00050001 00050002 00050003 00050004
006 00060001 00060002 00060003 00060004
007 00070001 00070002 00070003 00070004
008 00080001 00080002 00080003 00080004
009 00090001 00090002 00090003 00090004
010 00100001 00100002 00100003 00100004

( Therefore, code the macro instruction that will create a formatting model to do the following:

Number rows 1 through 10.

Number columns 1 through 4.

Use the decimal numbering system for numbering rows and columns.
Place data in to the array row by row.

Put one blank between each column.

Display 4 columns in each group.

Start printing in the second column from the left margin.

View all non-reserved fields.

Print the field label ARRENTRY.

One way to code the macro:

STRTCOL=1,COLSEP=1,COLNUM=4 ,NUMDEC ,NOLABEL

- BLSQOMFLD NAME=ARRAYX,ARRAY=((1,10),(1,4)),VIEW=X'0200"', X
‘[: BLSQMFLD NAME=ARRENTRY,OFF=0,LEN=4,ARRAY=END,VIEW=X'0200"

BLSQMFLD - Specifying a Control Block Format Field 2-51




Example 5

Operation:

Assume the data is stored in this sequence:

00010001
00010002
00010003
00010004
00020001
00020002
00020003
00020004
00030001
00030002
00030003
00030004

00090001
00090002
00090003
00090004
00100001
00100002
00100003
00100004

And you want the data to be formatted as follows:

000
001
002
003

000
001
002
003

Therefore,

00010001 00020001 00030001 00040001 00050001
00010002 00020002 00030002 00040002 00050002
00010003 00020003 00030003 00040003 00050003
00010004 00020004 00030004 00040004 00050004

00060001 00070001 00080001 00090001 00100001
00060002 00070002 00080002 00090002 00100002
00060003 00070003 00080003 00090003 00100003
00060004 00070004 00080004 00090004 00100004

\\“ /,r‘

code the macro instruction that will create a formatting model to do the following:

Number rows 0 through 3.
Number columns 5 through 14.
Use the hexadecimal numbering system for numbering rows and columns.
Put two blanks between each column.

Display 5 columns in each group.

Start printing in the fourth column from the left margin.
View all non-reserved fields.

Print the field label ARRENTRY.

One way to code the macro:

BLSQMFLD NAME=ARRAYX,ARRAY=((5,14),(0,3)),VIEW=X'0200"', X (
STRTCOL=3,COLSEP=2, COLNUM=5 ,NOLABEL,ORDER=(2,1) 7
BLSQMFLD NAME=ARRENTRY,OFF=0,LEN=4,ARRAY=END,VIEW=X'0200"

2-52  SPL: System Macros and Facilities Volume 2



BLSQSHDR - Generate Model Subheader

The BLSQSHDR macro instruction lets you define a text string, called a subheader, and
associate it with a particular data field in a dump format. Whenever the dump occurs, the text
string appears in the dump as an aid in spotting the associated data field.

BLSQSHDR, with its text string, should be placed after the end of the format model definition.
You create a format model definition by coding two BLSQMDEF macros, one at the beginning
of the definition and another at the end. The BLSQMFLD macros, which define the data fields
of the format model, are included between these two BLSQMDEF macros. The SHDR fields
of the included BLSQMFLD macros reference text strings (subheaders) that you have placed
after the end of the model definition. The order of the macros is:

BLSQMDEF
BLSQMFLD

BLSQMFLD
BLSQMDEF
BLSQSHDR

Thus, each BLSQSHDR macro placed after the end of the model must have a label that can be
referenced by the BLSQMFLD macros within the model. The text string of the BLSQSHDR
macro is enclosed in single quotation marks. L(x) may also be coded if the length of the string
is different than the length of the enclosed text string.

The BLSQSHDR macro instruction is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede BLSQSHDR.
BLSQSHDR
b One or more blanks must follow BLSQSHDR.
L(x) x: Length of subheader - if other than
length of actual text
‘text’ text: text of subheader

BLSQSHDR - Generate Model Subheader 2-53




L(x)
specifies the length of the subheader. Only necessary if the length is to be different from
the length of the enclosed text string.

Example

SHDRO1 BLSQSHDR 'This is a subheader'

SHDRO2 BLSQSHDR L(6)' '

2-54 spL: System Macros and Facilities Volume 2

™
L



BLSRESSY - Map IPCS Symbol Table Record

Example

The BLSRESSY macro instruction maps the symbol table record that a user-written exit
routine (operating under IPCS) passes to the get symbol and equate symbol services.

With the BLSRESSY macro instruction, users of the get symbol and equate symbol services can
retrieve definitions described in the IPCS symbol table and create definitions for later use by the
IPCS user or by other routines. For information about the get symbol and equate symbol
services, see MVS/XA Interactive Problem Control System User’s Guide and Reference.

The BLSRESSY macro instruction is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede BLSRESSY.
BLSRESSY
b One or more blanks must follow BLSRESSY.
DSECT=YES Default: DSECT =YES
DSECT=NO

NOTE: Users must supply a label (name), and start it in column 1 of the BLSRESSY macro
instruction. When the BLSRESSY macro is executed, the label becomes the record name and
the prefix to the name of each field in the record.

The parameters are explained as followed:
DSECT =YES
DSECT=NO

specifies whether the record mapped by BLSRESSY is to be mapped as a DSECT (YES)
or not (NO).

Operation: Map the IPCS symbol table record but not as a DSECT.

ESSY BLSRESSY DSECT=NO

BLSRESSY - Map IPCS Symbol Table Record 2-55




CALLDISP - Force Dispatcher Entry

If you are executing in 31-bit addressing mode, you must use the MVS/XA version of this
macro instruction.

The CALLDISP macro instruction expands into an SVC or branch that results in the caller’s
status being saved in the current TCB/RB and then the dispatcher is entered. The dispatcher
then searches for the highest priority ready work to dispatch. When this task is redispatched,
control is returned to the next sequential instruction.

When control returns to the caller:

o The cross memory mode is unchanged.

e Registers 14-1 are destroyed if FIXED =NO is specified; otherwise registers are unchanged.
e No locks are held.

e Control returns enabled.

e PCLINK status is saved and restored.

The CALLDISP macro instruction is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede CALLDISP.
CALLDISP
b One or more blanks must follow CALLDISP.
BRANCH=NO Default: BRANCH =NO
BRANCH =YES
L,FIXED =YES Default: (Available only if BRANCH = YES is coded)
L,FIXED =NO FIXED = YES
,FRRSTK =SAVE Default: (Available only if BRANCH = YES is coded)
,FRRSTK =NOSAVE FRRSTK =NOSAVE

2-56  SPL: System Macros and Facilities Volume 2



The parameters are explained as follows:

( ‘ BRANCH=NO
- BRANCH =YES

specifies whether the branch entry (BRANCH =YES) or the SVC entry
(BRANCH =NO)to the dispatcher is to be used. BRANCH = YES is restricted to key 0
supervisor state callers. The default is BRANCH=NO. Routines that are unlocked,
have no enabled unlocked task FRRs on the stack, and are in home mode can use
BRANCH=NO. “Using the BRANCH = YES Option of the CALLDISP Macro
Instruction” in Volume 1 lists requirements for routines that use BRANCH = YES.

LJFIXED=YES

JFIXED=NO
specifies that the code invoking branch entry CALLDISP is in fixed storage
(FIXED =YES) or in pageable storage (FIXED=NO). For FIXED =NO, registers 14-1
are altered.

( JFRRSTK =SAVE

s ,JFRRSTK = NOSAVE
specifies that the current FRR stack be saved and restored (FRRSTK =SAVE), if at least
one of the FRRs is an enabled unlocked task (EUT) FRR, or not saved
(FRRSTK =NOSAVE).

When FRRSTK =SAVE is specified:
o The caller must not hold any locks or an abend results.

( Note: For MVS/System Product Version 2 Release 1.3 Vector Facility Enhancement
or MVS/System Product Version 2 Release 1.3 Availability Enhancement and later
releases:

— If any EUT FRRs exist, the current FRR stack is saved and the caller may hold
either the LOCAL or CML lock. CALLDISP releases the lock before going to
the dispatcher.

— If no EUT FRR exists, the caller cannot hold any locks. Otherwise, an abend

( ’ occurs.

® Asynchronous exits (IRBs and SIRBs) are not dispatched until all EUT FRRs have
béen deleted.

For more information, see “Suspension and Resumption of Request Blocks” in Volume 1
for an explanation of the CALLDISP function used with SUSPEND/RESUME
processing.

Specifying FRRSTK =NOSAVE causes the FRR stack to be purged and the LOCAL or
CML lock to be released before entering the dispatcher.

Note: 1If there are any EUT FRRs on the stack, the SVC interface to CALLDISP cannot be
used; the BRANCH = YES option must be used.

CALLDISP - Force Dispatcher Entry  2-57




Example 1

Operation: Pass control to another ready task.
CALLDISP
Example 2
Operation: A non-page-fixed task with an enabled, unlocked task FRR gives control to the

dispatcher. When the task regains control, the contents of registers 14, 15, 0 and 1 will have
changed.

CALLDISP FIXED=NO,FRRSTK=SAVE,BRANCH=YES

2-58 SPL: System Macros and Facilities Volume 2

!F:\A\
N



CALLRTM - Call Recovery Termination Manager

The CALLRTM macro instruction is usually used to direct the services of the recovery
termination manager to a task or address space other than itself or its caller. The recovery
termination manager selects the appropriate recovery or termination process according to the
status of the system and the requests of its invokers.

Only key zero supervisor state routines can use CALLRTM. If the current address space is
terminated (MEMTERM), control might or might not return to the caller before the
MEMTERM takes effect. See “Invoking the Recovery Termination Manager” in Volume 1 for
the complete recovery termination interface.

Except for the TCB, all input parameters to this macro instruction can reside in storage above
16 megabytes if the issuer is executing in. 31-bit addressing mode.

The CALLRTM macro instruction is written as follows:

name name: symbol. Begin rname in column 1.
b One 61’ more blanks must precede CALLRTM.
CALLRTM
b One or more blanks must follow CALLRTM.

TYPE=ABTERM
TYPE=MEMTERM

,COMPCOD = comp code comp code: symbol, decimal digit, or register (2) - (12).

,REASON = code code: a symbol, decimal or hexadecimal number, or register (2) - (12).
,LASID = asid asid: decimal digits 0-32,765 or register (2) - (15):
,TCB=tch addr teb addr: 0, or register (2) - (12).

Note: This parameter may only be specified with TYPE=ABTERM.
,DUMP=YES Default: DUMP=YES
,DUMP=NO Note: This parameter may only be specified with TYPE=ABTERM.
STEP=NO Default: STEP=NO
STEP=YES Note: This parameter may only be specified with TYPE = ABTERM.
,DUMPOPT = parm list addr parm list addr: register (3)-(15).

CALLRTM - Call Recovery Termination Manager 2-59




The parameters are explained as follows:

TYPE = ABTERM

TYPE =MEMTERM
specifies whether the services of the recovery termination manager are being directed
towards task termination (ABTERM) or address space termination (MEMTERM). For
MEMTERM, all recovery processing in the address space is skipped.

Unless ASID is also specified, TYPE = ABTERM is supported in home mode only. In a
cross memory environment, if ASID is not specified, the TCB must reside in the home
address space; if ASID is specified, the TCB must be in the same address space as the
ASCB.

,LCOMPCOD = compcode
specifies the system completion code associated with the abnormal termination. This
parameter can be specified as a hexadecimal code (x‘80A”), a decimal code (2058), or a
register containing a hexadecimal code; in all cases, the result is hexadecimal.

,LREASON = code
specifies additional information to supplement the completion code associated with an
abnormal termination. The value range for the reason code is any 32-bit hexadecimal
number or 31-bit decimal number. In all cases the result is hexadecimal.

If the reason code is explicitly specified using the REASON parameter, the hexadecimal
representation of the code is passed to RTM in register 6 and a flag (X‘04’) is set in byte
0 in general register 1. If the REASON code is not specified, this flag is set to 0.

The reason code value is passed to recovery exits in the SDWACRC field of the SDWA.
This value can be altered by the SETRP macro instruction. If altered, the altered value is
sent to the next recovery exit.

,LASID = asid
specifies the address space identifier of the address space to be terminated (for
MEMTERM) or the address space identifier of the address space containing the TCB of
the task to be terminated (for ABTERM). If you omit this parameter or specify zero, the
current address space is assumed. If you specify this parameter, you must supply an
18-word work area and pass its address in register 13.

Note: The contents of register 2 is destroyed if this parameter is used.

,ITCB = tcb addr
specifies the TCB address of the task to be terminated. In a cross memory environment,
if ASID is not specified, the TCB must reside in the home address space; if ASID is
specified, the TCB must be in the same address space as the ASCB.

Note: The TCB resides in storage below 16 megabytes.

,DUMP =YES

,LDUMP=NO
specifies that a dump is (YES) or is not (NO) to be taken. If the DUMPOPT parameter
is not also specified, the contents of the dump are defined by the //SYSABEND,
//ISYSMDUMP, or //SYSUDUMP DD statement and the system or user-defined defaults.

2-60 SPL: System Macros and Facilities Volume 2

AN
N



STEP=NO
- STEP =YES
( ' specifies that the entire job step is (YES) or is not (NO) to be abnormally terminated.

,LDUMPOPT = parm list addr
specifies the address of a parameter list valid for the SNAP macro instruction. The
parameter list is used to produce a tailored dump, and can be created using the list form
of the SNAP macro instruction, or a compatible list can be created. The system dump
options specified by the CHNGDUMP operator command can add to or override this
parameter list. All recovery routines entered for the failure can also add to the list of
dump options. The TCB, DCB, and STRHDR options available on SNAP are ignored if
they appear in the parameter list; the TCB used is for the task that received the ABEND
and the DCB used is provided by the ABDUMP routine. If a /SYSABEND,
//SYSMDUMP, or //SYSUDUMP DD statement is not provided, the DUMPOPT
parameter is ignored.

Note: The contents of register 3 is destroyed if this parameter is used.

( ,,,,,, Register 15 contains one of the following return codes for TYPE=MEMTERM only:
Hexadecimal
Code Meaning
0 - The MEMTERM request was processed successfully.
4 MEMTERM processing was not performed. The address space was marked as not suitable for

MEMTERM processing. RTM writes an entry to SYS1.LOGREC if it rejected the
MEMTERM request due to a damaged ASCB, if the address space must not be terminated, or
if ASID exceeds ASVTMAX.

(, Example 1

Operation: Terminate the current address space with a completion code of 123.
CALLRTM TYPE=MEMTERM, COMPCOD=123 ,ASID=0
Example 2
Operation: Schedule the TCB whose address is specified in register 8 for abnormal termination.

(k The abnormal termination of this TCB takes place in the address space identified by the ASID
specified in register 5, and has a completion code of 123.

CALLRTM TYPE=ABTERM,COMPCOD=123,ASID=(5),TCB=(8)

CALLRTM - Call Recovery Termination Manager 2-61




CBPZDIAG - Build Diagnostic Stack Entry

The CBPZDIAG macro must be included in the unit information module (UIM) that an
installation provides for any device that the MVS configuration program (MVSCP) does not
support. See SPL: System Modifications for a complete description of coding a UIM.

The CBPZDIAG macro builds a diagnostic stack entry. The diagnostic stack entry contains
debugging information that is placed in the system diagnostic work area (SDWA) if an ABEND
occurs in the UIM. The diagnostic stack entry is contained within the UIM.

Note: A UIM must not establish an ESTAE to provide diagnostic information in the event that it
ABENDs. Rather, it must:

1. Specify the diagnostic information in a diagnostic stack entry, using the CBPZDIAG macro.
2. Use the CBPZPPDS macro to put the entry on the diagnostic stack in its entry logic.

3. Use the CBPZPPDS macro to remove the entry from the diagnostic stack in its exit logic.
The ESTAE routine in the control routine for the MVS configuration program (CBPMVSCP)
uses the information in the active diagnostic stack entry to fill in the SDWA. Also, the ESTAE
routine builds a symptom string in the variable recording area (VRA) consisting of all the

CSECT names in the entries on the diagnostic stack.

The CBPZDIAG macro is written as follows:

name name: symbol. Begin name in column 1.

b One or more blanks must precede CBPZDIAG.
CBPZDIAG

b One or more blanks must follow CBPZDIAG.
MODNAME = modname modname: CBPUCnnn

n is a decimal digit.

CSECT = csectname csectname: CBPUCnnn
n is a decimal digit.

COMP=id id: component identifier, 5 bytes long.
DESC=text text: character string in quotes.

VRADATA = label label: symbolic label

,RELATED = value value: any valid macro keyword specification.

2-62 SPL: System Macros and Facilities Volume 2

N
N



name
specifies the label on the diagnostic stack entry. The labels on the fields generated in the
diagnostic stack entry will start with the same characters as name does. (If name exceeds
four characters, only the first four characters will be used in building the labels on the
generated fields.) This name is required.

MODNAME = modname
specifies the name of the load module that contains the diagnostic stack entry. If an
ABEND occurs, this value will be placed in SDWA field SDWAMODN. The module
name is eight characters long and is in the form of CBPUCnnn, where nnn is a decimal
number from 001 to 256, inclusive, for customer-written UIMs. This parameter is
required.

CSECT = csectname
specifies the name of the CSECT that contains the diagnostic stack entry. If an ABEND
occurs, this value will be placed in SDWA field SDWACSCT. This parameter is optional.
The default for this parameter is the assembler symbol, &SYSECT. '

COMP=id
specifies the component identifier of the UIM. If an ABEND occurs, this value will be
placed in SDWA field SDWACID. The component identifier should be five bytes long.
This parameter is required.

DESC = text
specifies the UIM description, which should contain the unit names of the device(s) that
the UIM supports. If an ABEND occurs, this value will be placed in SDWA field
SDWASC. The UIM description can be a maximum of 23 bytes long. This parameter is
required.

VRADATA =/abel
specifies the name of an array that contains the addresses of data to be placed in the
VRA, if an ABEND occurs. The array contains the VRA keys and data lengths, in
addition to the data addresses. This parameter is optional. If it is not specified, no
specific control blocks or data areas for the UIM will be placed in the VRA. (On
IODEVICE calls, the diagnostic stack entry for CBPICBBR, which is the routine that
invokes UIMs on IODEVICE calls, causes the IODV to be placed in the VRA.)

Each entry in the VRA array contains eight bytes. The format of an entry is as follows:

Offset Length Function
0 2 Reserved, must be set to zero in all but the last entry in the array.
2 1 Key of VRA data, as specified in IHAVRA.
3 1 Length of VRA data.
4 4 Address of VRA data. If this field is set to zero, the ESTAE routine will skip

this entry when moving data into the VRA. UIMs are permitted to
dynamically update this field while the diagnostic entry is on the diagnostic
stack.

The last entry in the VRA array must be set to X'FFFFFFFFFFFFFFFF.

CBPZDIAG - Build Diagnostic Stack Entry  2-63




,RELATED =value
specifies information used to self-document macro instructions by ‘relating’ functions or P
services to corresponding functions or services. The format and contents of the O
information specified are at the discretion of the user, and may be any valid coding
values.

2-64  SPL: System Macros and Facilities Volume 2



CBPZLOG - Log an MVS Configuration Program Message

The CBPZLOG macro can be used only in the unit information module (UIM) that an
installation provides for any device that the MVS configuration program (MVSCP) does not
support. See SPL: System Modifications for a complete description of coding a UIM.

The CBPZLOG macro is used to issue a message to the MVS configuration program log file. A
UIM must have addressability to the CPVT when it issues the CBPZLOG macro. It must also
invoke the CBPZLOGR mapping macro. (CBPZLOGR maps the parameter list that is built by
the CBPZLOG macro.)

The CBPZLOG macro is written as follows:

name name: symbol. Begin name in column 1.

b One or more blanks must precede CBPZLOG.

CBPZLOG

b One or more blanks must follow CBPZLOG.

MID =id id: CBPnnnl. n is a decimal digit.
,SEV = value value: LOGRINFO, LOGRWARN, LOGRERR, or LOGRTERM.
STMT=ITRHSNBR must be coded as shown.

,TEXT = label label: symbolic label.

name

specifies the label to be generated on the first instruction in the macro expansion. The
name is optional.

MID =id
specifies the message identifier. The message identifier is seven characters long and is in
the form of CBPnnnl, where nnn is a decimal number from 900 to 999 inclusive for
user-written UIMs. This parameter is required.

SEV =value
specifies the message severity. The following severities are supported:

LOGRINFO

informational message. This message has no effect on MVS configuration
processing or its return code.

CBPZLOG - Log an MVS Configuration Program Message 2-65




LOGRWARN

warning message. This message has no effect on MVS configuration program
processing but will cause a return code of 4 to be issued (unless a higher severity
message is issued.)

LOGRERR

error message. This message will prevent the MVS configuration program from
building any I/O configuration members, and will cause a return code of 8 to be
issued (unless a higher severity message is issued.)

LOGRTERM

terminating message. This message causes the MVS configuration program to
terminate its processing and issue a return code of 16. A UIM must never issue a
terminating message.

This parameter, which is optional, defaults to LOGRERR.

Note: The equates LOGRINFO, LOGRWARN, LOGRERR and LOGRTERM are
generated by the CBPZLOGR macro.

STMT =ITRHSNBR
specifies the number of the statement in the MVS configuration program input stream
that the message refers to. Field ITRHSNBR in the internal text record header (mapped
by CBPZITRH) contains the statement number. This parameter is optional. If it is
omitted, no statement number will be associated with the message.

TEXT = label

specifies the label of the message text. This text contains up to 255 bytes of data. The

length of the text is determined by the length attribute of this field. This parameter is
required.

Note: The message service will compress multiple blanks in the text and will split the text
across multiple lines if necessary.

2-66  SPL: System Macros and Facilities Volume 2

Y

O



CBPZPPDS - Push/Pop Diagnostic Stack Entry

The CBPZPPDS macro must be included in the unit information module (UIM) that an
installation provides for any device that the MVS configuration program (MVSCP) does not-
support. See SPL: System Modifications for a complete description of coding a UIM.

The CBPZPPDS macro is used to push an entry on (put an entry on) or pop an entry from
(remove an entry from) the diagnostic stack. A UIM must have addressability to the CPVT
( ) when it issues the CBPZPPDS macro. It must also invoke the CBPZDIAG macro to build the
diagnostic stack entry that is to be pushed on or popped from the diagnostic stack.

The CBPZPPDS macro is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede CBPZPPDS.
CBPZPPDS
( ) b One or more blanks must follow CBPZPPDS.
PUSH
POP
DIAG = label label: symbolic label.
,RELATED =value value: any valid macro keyword specification.
( name
. specifies the name on the first instruction in the macro expansion. The name is optional.
PUSH

specifies that the designated diagnostic entry is to be put on the diagnostic stack. Either
PUSH or POP must be specified.

POP
specifies that the designated diagnostic entry is to be removed from the diagnostic stack.
Either PUSH or POP must be specified.

DIAG = label

identifies the diagnostic entry. This name must be specified on the label field of the
CBPZDIAG macro invocation.

CBPZPPDS - Push/Pop Diagnostic Stack Entry 2-67




,RELATED =value

specifies information used to self-document macro instructions by ‘relating’ functions or PN
services to corresponding functions or services. The format and contents of the ’ j
information specified are at the discretion of the user, and may be any valid coding

values.

See the CBPZDIAG macro description for more information about diagnostic entries.

2-68 SPL: System Macros and Facilities Volume 2

N



CHANGKEY - Change Virtual Storage Protection Key

The CHANGKEY macro instruction changes the protection key and fetch protection status of
one or more pages of virtual storage. The CHANGKEY function is available only for use by
system components that execute in supervisor state and key zero. Callers can be enabled or
disabled and cannot hold any lock that would prevent RSM from obtaining any RSM lock.

The CHANGKEY function is valid for virtual storage obtained by GETMAIN in page
multiples from problem program subpools. Callers must provide an 18-word save area and
place the address of the save area in register 13. If the caller is disabled, the save area must be
in fixed storage. '

The CHANGKEY macro instruction is written as follows:

name
b
CHANGKEY
b

name: symbol. Begin name in column 1.

One or more blanks must precede CHANGKEY.

One or more blanks must follow CHANGKEY.

R,BA =page addr,

EA =page addr page addr: A-type address or register (1) - (12).

L,LISTAD =list addr Note: The R-type macro expansion alters the contents of register 2. EA

JKEY =stor key

,BRANCH=YES

should not be specified as (1).
list addr: A-type address or register (1) - (12).

stor key: Decimal digit 1-15 or register (0) or register (3) - (12).

Required.

The parameters are explained as follows:

R,BA =page addr
EA =page addr
L,LISTAD = [ist addr

specifies

R
L
BA

EA

the type of CHANGKEY request:

indicates a request to change the key of a single area of virtual
storage.

indicates a request to change the key of one or more areas of virtual
storage.

specifies the address of the first byte of the first page of the

virtual storage area whose key is to be changed.

specifies the address of the first byte of the last page of the

virtual storage area whose key is to be changed.

CHANGKEY - Change Virtual Storage Protection Key 2-69




Notes:
1. BA<FA

2. BA, EA, and LISTAD are expected to be 31-bit addresses, regardless of the addressing
mode of the issuer of the macro.

LISTAD specifies the address of the first double-word of a variable length parameter list
in fixed storage. The first word of each element is defined as BA above and the second
word of each element as EA above. If the high-order bit of the second word is one that
element is the last element in the parameter list.

JKEY =stor key
specifies the new storage key and fetch protection status for the virtual storage areas
specified. If the stor key specification is a decimal digit, then the supervisor assumes the
user wants fetch protection. If the user does not want fetch protection, he should specify
the protection key he wants in bits 24-27 of a register and leave bit 28 at zero to indicate
that he doesn’t want fetch protection.

,BRANCH=YES
The only entry available into the CHANGKEY service routine is branch entry.

Note: The requestor must have addressability to the CVT.

Upon completion of the CHANGKEY macro instruction, register 15 contains a zero return
code. If a caller requested that the key be changed to key 0, the caller is abended with a code

X‘08F".
Example 1
Operation: Change the storage key and ensure fetch protection of a single page of virtual
storage addressed by register 5.
CHANGKEY R,BA=(REG5) ,EA=(REG5) ,KEY=8,BRANCH=YES
Example 2

Operation: Change the storage key and ensure fetch protection of two noncontiguous pages of
virtual storage addressed by PAGE1 and PAGE2 respectively.

CHANGKEY L,LISTAD=PLIST,KEY=10,BRANCH=YES

PLIST DC 2A(PAGELl) FIRST ELEMENT IN LIST
DC A(PAGE2) BA PART OF SECOND ELEMENT
DC AL1(X'80") INDICATES LAST ELEMENT IN LIST
DC AL3(PAGE2) EA PART OF SECOND ELEMENT

2-70 SPL: System Macros and Facilities Volume 2

’,(]] ™
A

-



CIRB - Create Interruption Request Block

. The CIRB macro instruction causes a supervisor routine (called the exit effector routine) to
create an interruption request block (IRB). In addition, other parameters of this macro
instruction may specify the building of a register save area and/or a work area to contain
interruption queue elements, which are used by supervisor routines in scheduling the execution
of user exit routines.

Branch Entry Interface
For BRANCH =YES, the branch entry interface is as follows:

e The caller must be in supervisor state, key zero, and own the LOCAL lock and no locks
above the SALLOC lock in the locking hierarchy.

e The caller must pass a TCB address in register 4 to be used by GETMAIN when allocating
space for the IRB and for the problem program save area. Also, if a problem key is
specified in the KEY = parameter of the CIRB, the TCBPKF field of that TCB is used.

o The caller must include the CVT mapping macro.

e Upon return, register 1 contains the address of the created IRB, registers 0, and 2-14 are
unchanged, and register 15 is unpredictable.

e Control is returned in supervisor state, key zero, with the same locks held as on entry.

Note: The IRB address is returned in register 1.

CIRB - Create Interruption Request Block 2-71




The CIRB macro instruction is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede CIRB.
CIRB
b One or more blanks must follow CIRB.
EP = entry point addr entry point addr: RX-type address, or register (0) or (2) - (12).
LKEY =PP Default: KEY =PP
,KEY =SUPR
,MODE=PP Default: MODE =PP
,MODE =SUPR
,SVAREA=NO Default: SVAREA =NO
,SVAREA =YES
,RETIQE=YES Default: RETIQE=YES
,RETIQE=NO
,STAB=(DYN)
,WKAREA =workarea size workarea size: Decimal digit, or register (2) - (12).
Default: zero
,BRANCH =NO Default: BRANCH =NO
,BRANCH = YES
,RETRN=NO Default: RETRN =NO
,RETRN =YES Note: This parameter has meaning only if RETIQE=NO is specified above.
,AMODE =CALLER Default: AMODE =CALLER

,AMODE =DEFINED

The parameters are explained as follows:

EP =entry point addr
specifies the address of the entry point of the user’s asynchronous exit routine.

JKEY =PP

,LKEY =SUPR
specifies whether the asynchronous exit routine operates with a key of zero (SUPR) or
with a key obtained from the TCB of the task issuing the CIRB macro instruction (PP).

,MODE =PP

,MODE =SUPR
specifies whether the asynchronous exit routine executes in problem program (PP) or
supervisor (SUPR) mode.

2-72  SPL: System Macros and Facilities Volume 2

N

‘\ p



SVAREA =NO

SVAREA =YES
specifies whether to obtain a 72-byte register save area from the virtual storage assigned
to the problem program. If a save area is requested, CIRB places the save area address in
the IRB. The address of this area is passed to the user routine via register 13.

,LRETIQE =YES

,RETIQE=NO
specifies whether the associated queue elements are request queue elements (YES) or
interruption queue elements (NO).

STAB=(DYN)
specifies that the IRB (including the work area) is to be freed by EXIT.

Note: If the STAB parameter is omitted from the CIRB macro instruction, the IRB
remains available for later use by the task issuing the macro.

,WKAREA =workarea size
specifies the size, in doublewords, of the work area to be included in the IRB. The area
may be used to build IQEs. The first four bytes of the work area that is obtained
contains the address of the next available IQE (RBNEXAYV field). The maximum size is
255 double words.

,BRANCH=NO
,BRANCH=YES
specifies that branch linkage (YES) or SVC linkage (NO) to CIRB will be provided.

,RETRN =NO

,RETRN =YES
specifies that the IQE is (YES) or is not (NO) returned to the available queue when the
asynchronous exit terminates.

,AMODE = CALLER
,/AMODE =DEFINED
specifies the addressing mode in which the exit routine is to be given control.

If CALLER is specified, the exit routine receives control in the same addressing mode as
the caller.

If DEFINED is specified, the addressing mode of the exit routine is pointer defined. This
means that the addressing mode is determined by the setting of the high order bit of the
entry point address for the exit routine. If the bit is set, the addressing mode is 31-bit; if
the bit is not set, the addressing mode is 24-bit.

CIRB - Create Interruption Request Block 2-73




Example 1

Operation: Create an IRB to be used in scheduling an asynchronous exit. The exit is scheduled
via the IQE interface to stage 2 exit effector, and receives control in the supervisor state. The
IRB is to be freed when it terminates. The exit receives control at the IQERTN label.

CIRB EP=IQERTN,MODE=SUPR,RETIQE=NO,STAB=(DYN) ,BRANCH=NO

Example 2

Operation: Create an IRB to be used in scheduling an asynchronous exit. The RQE interface
to stage 2 exit effector is used to schedule the routine. The exit gets control at the RQETEST
label.

CIRB EP=RQETEST,KEY=SUPR,MODE=SUPR, STAB=(DYN) , BRANCH=NO

2-74 SPL: System Macros and Facilities Volume 2

A
N/



CPOOL - Perform Cell Pool Services

The CPOOL macro instruction creates a cell pool, obtains or returns a cell to the cell pool, or
deletes the previously built cell pool, according to the function requested.

The CPOOL macro instruction is also described in Supervisor Services and Macro Instructions
with the exception of the KEY, TCB, and LINKAGE = BRANCH parameters.

LINKAGE =BRANCH can be used only by callers in supervisor state and key 0. TCB and
KEY can be used only by supervisor state, key 0-7, or APF-authorized callers. Problem
programs cannot create cell pools in subpools greater than 127. In order to create a cell pool in
a subpool greater than 127, the user must be in system key, supervisor state, or be
APF-authorized. On entry to this macro, users who specify the parameters: BUILD, DELETE,
or REGS=SAVE must pass the address of a 72-byte save area in register 13.

The caller’s secondary ASID is preserved when a PC instruction is issued; however, the caller
cannot be in secondary addressing mode when issuing this macro instruction.

Except for the TCB, all input parameters to this macro instruction can reside in storage above
16 megabytes if the issuer is executing in 31-bit addressing mode.

CPOOL - Perform Cell Pool Services 2-75




The CPOOL macro instruction is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede CPOOL.
CPOOL
b One or more blanks must follow CPOOL.
BUILD
GET
FREE
DELETE
,UNCOND Default: UNCOND
U Note: This parameter can be specified only with the
,COND GET keyword.
,C

,PCELLCT =primary cell count
,SCELLCT = secondary cell count
,CSIZE = cell size

,SP = subpool number

,LOC=BELOW
,LOC=(BELOW,ANY)
,LOC=ANY
,LOC=RES
,LOC=(RES,ANY)

,CPID =pool id

,CELL = cell addr

SJKEY =key number

,TCB =tcb addr

,HDR = hdr

,LINKAGE =SYSTEM
,LINKAGE =BRANCH

,REGS=SAVE
,REGS=USE

cell count: symbol, decimal digit, or register (0), (2) - (12).

Note: This parameter can be specified only with the BUILD keyword.
Default: PCELLCT

Note: This parameter can be specified only with the BUILD keyword.
cell size: symbol, decimal digit, or register (0), (2) - (12).

Note: This parameter can be specified only with the BUILD keyword.
subpool number: symbol, decimal digit, or register (0), (2) - (12).
Default: SP=0

Note: This parameter can be specified only with the BUILD keyword.

Default: LOC=RES
Note: This parameter can be specified only with the BUILD keyword.

pool id: RX-type address or register (0), (2) - (12).
Note: This parameter must be specified with the GET, FREE, and DELETE
keywords but is optional with the BUILD keyword.

cell addr: RX-type address or register (0), (2) - (12).

Note: This parameter is required with the FREE keyword, is optional with the
GET keyword, and cannot be specified with the BUILD and DELETE keywords.
key number: decimal digits 0-15 or register (0), (2) - (12).

Note: This parameter can be specified only with the BUILD keyword.

teb addr: RX-type address or register (0), (2) - (12).

Default: TCB address in PSATOLD.

Note: This parameter can be specified only with the BUILD keyword.

hdr: character string enclosed in single quotes, RX-type address, or register (0), (2)
-(12).

Default: ‘CPOOL CELL POOL’

Note: This parameter can be specified only with the BUILD keyword.

Default: LINKAGE =SYSTEM
Note: This parameter cannot be specified with FREE or GET conditionally.

Default: REGS=SAVE
Note: This parameter can be specified only with the GET or FREE keywords.

2-76  SPL: System Macros and Facilities Volume 2

e,
)
A

~



The parameters are explained as follows:

BUILD

GET

FREE
DELETE

specifies the cell pool service to be performed.

BUILD creates a cell pool in a specified subpool by allocating storage and chaining the
cells together.

GET attempts to obtain a cell from the previously built cell pool. This request can be
conditional or unconditional as described under the UNCOND/COND keyword.

FREE returns a cell to the cell pool.

DELETE deletes a previously built cell pool and frees storage for the initial extent, all
secondary extents, and all pool control blocks.

,UNCOND

U

,COND

,C

when used with GET specifies whether the request for a cell is conditional or
unconditional. If COND or C is specified and the cell pool is empty, the CPOOL service
routine returns to the caller without a cell and places a zero in the cell address. If
UNCOND or U is specified and the cell pool is empty, the CPOOL service routine
extends the pool in order to obtain a cell for the caller.

LJPCELLCT = primary cell count

specifies the number of cells expected to be needed in the initial extent of the cell pool.
The CPOOL service module uses PCELLCT and cell size (CSIZE) to determine the
optimum number of cells to provide in order to make effective use of virtual and real
storage.

SCELLCT =secondary cell count

specifies the number of cells expected to be in each secondary or non-initial extent of the
cell pool. The CPOOL service routine uses SCELLCT and CSIZE to determine the
optimum number of cells to provide in order to make effective use of virtual and real
storage.

,CSIZE = cell size

specifies the number of bytes in each cell of the cell pool. If CSIZE is a multiple of 8, the
cell resides on doubleword boundaries. If CSIZE is a multiple of 4, the cell resides on
word boundaries. The minimum value of CSIZE is 4 bytes.

SP =subpool number

specifies the subpool from which the cell pool is to be obtained. If a register or variable is
specified, the subpool number is taken from bits 24-31.

CPOOL - Perform Cell Pool Services 2-77




,LOC=BELOW

,LOC=(BELOW,ANY)

,LOC=ANY

,LOC=(ANY,ANY)

,LOC=RES

,LOC =(RES,ANY)
specifies the location of virtual storage and real storage for the cell pool. This is helpful
for users with 24-bit dependencies. The location of real storage specified in this
parameter is the location of the storage after it is fixed, either by definition or by
PGFIX, PGFIXA, or PGSER. The specification of the LOC parameter, which applies to
the location of real storage, is only guaranteed when the area is fixed.

LOC=BELOW indicates that virtual and real storage are to be allocated below 16
megabytes.

LOC=(BELOW,ANY) indicates that virtual storage is to be allocated below 16
megabytes and real storage can be anywhere.

LOC=ANY and LOC=(ANY,ANY) indicate that both virtual and real storage can be
located anywhere.

LOC=RES indicates that the location of virtual and real storage depends on the location
of the issuer of the macro. If the issuer resides below 16 megabytes, virtual and real
storage are allocated below 16 megabytes; if the issuer resides above 16 megabytes, virtual
and real storage can be located anywhere.

LOC=(RES,ANY) indicates that the location of virtual storage depends on the location
of the issuer of the macro. If the issuer resides below 16 megabytes, virtual storage is
allocated below 16 megabytes; if the issuer resides above 16 megabytes, virtual storage is
allocated anywhere. Real storage can be located anywhere.

Note: Callers executing in 24-bit addressing mode could perform services for cell pools
located in storage above 16 megabytes by specifying LOC=ANY or LOC=(ANY,ANY).

,CPID = pool id
specifies the address or register containing the cell pool identifier that is returned to the
caller after the pool is created using CPOOL BUILD. The issuer must specify CPID on
all subsequent CPOOL requests containing the keywords GET, FREE, or DELETE.

yCELL = cell addr
specifies the address or register where the cell address is returned to the user by a GET or
a FREE request.

LJKEY =key number
specifies the key in which storage is to be obtained. If a register is specified, the key is
taken from bits 28-31. This parameter is valid for subpools 227, 228, 229, 230, 231, and
241.

2-78 SPL: System Macros and Facilities Volume 2

AT
S

™



,TTCB=1tch addr
specifies the TCB address for task related storage requests. The TCB must be within the
currently addressable address space. If the caller specifies zero as the TCB address, the
CPOOL service routine uses the TCB address in ASCBXTCB. If the CPOOL request is
for private area storage and the caller does not specify TCB, the default is the TCB
address in PSATOLD.

Note: The TCB resides in storage below 16 megabytes.

,HDR = hdr
specifies a 24-byte header, which is placed in the header of each initial and secondary
extent. The header can contain user-supplied information that would be useful in a
dump.

,LINKAGE =SYSTEM

,LINKAGE = BRANCH
specifies the type of linkage used in CPOOL processing. LINKAGE =SYSTEM indicates
that the linkage is via a PC instruction, LINKAGE =BRANCH indicates branch entry.
For BUILD and DELETE this processing is between the caller and CPOOL processing;
for GET UNCOND, the linkage is within CPOOL processing.

,REGS=SAVE

,REGS =USE
indicates whether or not registers 2-12 are to be saved. If REGS=SAVE is specified, the
registers are saved in a 72-byte user-supplied save area pointed to by register 13. If
REGS=USE is specified, the registers are not saved.

Notes:

1. If GET U, LINKAGE=SYSTEM,REGS=USE is specified, the secondary ASID will not be
preserved. In all other cases the secondary ASID is unchanged.

2. A program in secondary mode cannot use LINKAGE=SYSTEM.

The contents of the registers on return from this macro depends on the parameters specified.

Register(s) Comment
0 : Contains the cell pool identification
1 Contains the address of the cell that was obtained if GET unconditional was specified; contains zero

if GET conditional was specified and fails

2-12 Saved for BUILD and DELETE requests or if REGS =SAVE is specified
5-13 Saved if GET conditional or FREE is specified with REGS =USE
13 Saved if GET unconditional and REGS=USE is specified or if BUILD or DELETE is specified

with either LINKAGE =SYSTEM or LINKAGE =BRANCH

CPOOL - Perform Cell Pool Services 2-79




Example 1

Example 2

Example 3

Example 4

Operation: Create a cell pool containing 40-byte cells from subpool 2. Allow for 10 cells in the
initial extent and 20 cells in all subsequent extents of the cell pool.

CPOOL BUILD,PCELLCT=10,SCELLCT=20,CSIZE=40,SP=2

Operation: Unconditionally obtain a cell pool, specifying the pool ID in register 2. Use a PC
instruction for linkage and do not save the registers.

CPOOL GET,U,CPID=(2),REGS=USE,LINKAGE=SYSTEM

Operation: Free a cell specifying the pool ID in register 2 and the cell address in register 3.

CPOOL FREE,CPID=(2),CELL=(3)

Operation: Delete a cell pool, specifying the pool ID in register 2. Use a PC instruction for
linkage. '

CPOOL DELETE,CPID=(2),LINKAGE=SYSTEM

2-80 SPL: System Macros and Facilities Volume 2

=
\1/



CPOOL (List Form)

The list form of the CPOOL macro instruction builds a non-executable parameter list that can
be referred to by the execute form of the CPOOL macro.

The list form of the CPOOL macro instruction is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede CPOOL.
CPOOL
b One or more blanks must follow CPOOL.
BUILD

,PCELLCT = primary cell count

,SCELLCT = secondary cell count
,CSIZE = cell size

,SP = subpool number

,LOC=BELOW
,LOC = (BELOW,ANY)
,LOC=ANY
,LOC=RES
,LOC=(RES,ANY)

,CPID = pool id
JKEY =key number
,TCB=tch addr

LHDR = hdr
JMF=L

cell count: symbol, decimal.
Note: PCELLCT must be specified on either the list or the execute form
of the macro.

Default: PCELLCT

cell size: symbol, decimal digit.
Note: CSIZE must be specified on either the list or the execute form of the
macro.

subpool number: symbol, decimal digit.
Default: SP=0

Default: LOC=RES

pool id: A-type address.
key number: decimal digits 0 - 15.

teb addr: A-type address or register.
Default: TCB address in PSATOLD.

hdr: character string enclosed in single quotes, A-type address.

The parameters are explained under the standard form of the CPOOL macro instruction with

the following exception:

,MF=L

specifies the list form of the CPOOL macro instruction.

CPOOL (List Form) 2-81



CPOOL (Execute Form)

The execute form of the CPOOL macro instruction is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede CPOOL.
CPOOL
b One or more blanks must follow CPOOL.
BUILD

LJLPCELLCT = primary cell count

,SCELLCT = secondary cell count
,CSIZE = cell size

,SP = subpool number

,LOC=BELOW

,LOC =(BELOW,ANY)
,LOC=ANY
,LOC=RES
,LOC=(RES,ANY)

,CPID = pool id
JKEY =key number
,TCB=tcbh addr

,HDR = hdr
,LINKAGE=SYSTEM

,LINKAGE = BRANCH
,MF=(E, ctrl prog)

cell count: symbol, decimal digit, or register (0), (2) - (12).
Note: PCELLCT must be specified on either the list or the execute format
of the macro.

Default: PCELLCT

cell size: symbol, decimal digit, or register (0), (2) - (12).
Note: CSIZE must be specified on either the list or the execute form of the
macro.

subpool number: symbol, decimal digit, or register (0), (2) - (12).
Default: SP=0

Default: LOC=RES

pool id: RX-type address or register (0), (2) - (12).
key number: decimal digits 0 - 15 or register (0), (2) - (12).

tch addr: RX-type address or register (0), (2) - (12).
Default: TCB address in PSATOLD.

hdr: character string enclosed in single quotes, RX-type address, or
register (0), (2) - (12).

Default: LINKAGE=SYSTEM

ctrl prog: RX-type address or register (0) - (12).

The parameters are explained under the standard form of the CPOOL macro instruction with

the following exception:

JMF = (E,ctrl prog)

specifies the execute form of the CPOOL macro instruction.

2-82  SPL: System Macros and Facilities Volume 2

S
‘n
N



DATOFF - DAT-OFF Linkage

The DATOFF macro transfers control to a specified routine in the DAT-OFF section of the

nucleus.

The macro is restricted to key 0, supervisor state users, that are enabled for DAT. Users must
include the IHAPSA mapping macro with the DATOFF macro instruction. The macro
destroys the contents of general registers 0, 14, and 15.

The DATOFF macro instruction is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede DATOFF.
DATOFF
b One or more blanks must follow DATOFF.
index Note: See the description of the parameters for the valid options.

,RELATED =value

value: any valid macro keyword specification.

The parameters are explained as follows:

index

specifies the routine that is to be given control in the DAT-OFF section of the nucleus.
The possible values for index along with the entry point in the routine and the purpose of

the routine follow.

Index

INDCDS
INDMVCLO

INDMVCLK
INDXCO0
INDUSRI
INDUSR?2

INDUSR3
INDUSR4

Entry Point

IEAVCDS
IEAVMVCO0

IEAVMVKY
IEAVXCO
IEAVEURI
IEAVEUR2

IEAVEUR3
IEAVEUR4

Purpose

DAT-OFF Compare Double and Swap routine
General DAT-OFF move character
long function

General DAT-OFF move character
long in user key function

General DAT-OFF exclusive

OR character function

User written function

User written function

User written function

User written function

Note: See SPL: System Modifications for information about how to insert a user-written
function in the nucleus.

DATOFF - DAT-OFF Linkage 2-83




,RELATED =value
specifies information used to document the macro instruction and to relate the service
performed to some corresponding service or function. The format of the information
specified can be any valid coding values that the user chooses.

Example 1
Operation: Invoke the general DAT-OFF move character long function. The user must supply
the following information in the registers specified:
Registers Information
2 Location into which the characters are to be moved
3 Length of the area into which the characters are to be moved
4 Location of the area from which the characters are to be moved
5 Length of the area from which the characters are to be moved
Note: Registers 2 and 4 contain real addresses.
DATOFF INDMVCLO
Example 2
Operation: Invoke the general DAT-Off exclusive OR character function. The user must
supply the following information in the registers specified:
Registers Information
2 Location of the results of exclusive OR character processing
3 Bits 24-31 contain one less than the number of bytes on which the exclusive OR is to be performed.
4 Location of the operand on which the exclusive OR is to be performed
Note: Registers 2 and 4 contain real addresses.
DATOFF INDXCO
Example 3

Operation: Invoke the general DAT-OFF move character long in user key function. The user
must supply the following information in the registers specified:

Registers Information

2 Location into which the characters are to be moved

3 Length of the area into which the characters are to be moved

4 Location of the area from which the characters are to be moved

5 Length of the area from which the characters are to be moved

6 Bits 24-27 contain the PSW key in which the MVCL is to be executed.

Note: Registers 2 and 4 contain real addresses.

DATOFF INDMVCLK

2-84 SPL: System Macros and Facilities Volume 2

£
AT




DEQ - Release a Serially Reusable Resource

DEQ removes control of one or more serially reusable resources from the active task. Register
15 is set to 0 if the request is satisfied. An unconditional request to release a resource from a
task that is not in control of the resource or a request that contains invalid parameters results in
abnormal termination of the task.

Note: When global resource serialization is active, the SYSTEM inclusion resource name list
and the SYSTEMS exclusion resource name list are searched for every resource specified with a
scope of SYSTEM or SYSTEMS. A resource whose name appears on one of these resource
name lists might have its scope changed from the scope that appears on the macro instruction.
(See Planning: Global Resource Serialization for additional information about global resource
serialization.)

The description.of the entire DEQ macro instruction follows. The DEQ macro instruction also
appears in Supervisor Services and Macro Instructions with the exception of the RMC,
GENERIC, TCB, and UCB parameters. These parameters are restricted in use to programs
that run in supervisor state, key 0-7, or with APF authorization, and are, therefore, described
only here.

Except for the TCB and UCB, all input parameters to this macro instruction can reside in
storage above 16 megabytes for callers executing in 31-bit addressing mode.

DEQ - Release a Serially Reusable Resource  2-85




The standard form of the DEQ macro instruction is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede DEQ.
DEQ
b One or more blanks must follow DEQ.
(
qname addr gname addr: A-type address, or register (2) - (12).
,rname addr rname addr: A-type address, or register (2) - (12).

b
;rname length

,STEP

SYSTEM

,SYSTEMS

)
,RET=HAVE
,RET=NONE
,RMC=NONE
,RMC=STEP

,GENERIC=NO
,GENERIC=YES

,TCB=tcbh addr

,2UCB = ucb addr

,RELATED = value

rname length: symbol, decimal digit, or register (2) - (12).
Note: rname length must coded if a register is specified for rname addr.

Default: STEP

Default: RMC=NONE

Defalult: GENERIC=NO

Note: If GENERIC =YES is specified, you must also specify RET=HAVE
above.

teb addr: A-type address, or register (2) - (12).
Note: TCB cannot be specified with RMC above.

ucb addr: A-type address, or register (2) - (12).

value: any valid macro keyword specification.

The parameters are explained as follows.

(

specifies the beginning of the resource description.

gname addr

specifies the address in virtual storage of an 8-character name. The gname must be the
same name specified for the resource in an ENQ macro instruction.

Jrname addr

specifies the address in virtual storage of the name used in conjunction with qname and

scope to represent the resource acquired by a previous ENQ macro instruction. The name

can be qualified and must be from 1 to 255 bytes long. The rname must be the same
name specified for the resource in an ENQ macro instruction.

2-86  SPL: System Macros and Facilities Volume 2

FERN
N/



s

Jname length

specifies the length of the rname described above. The length must have the same value
as specified in the previous ENQ macro instruction. If this parameter is omitted, the
assembled length of the rname is used. You can specify a value between 1 and 255 to
override the assembled length, or you may specify a value of 0. If 0 is specified, the
length of the rname must be contained in the first byte at the rname addr specified above.

STEP
SYSTEM
,SYSTEMS

specifies the scope of the resource. You must specify the same STEP, SYSTEM, or
SYSTEMS option as you used in the ENQ macro instruction requesting the resource.

specifies the end of the resource description.

Note: Multiple resources can be specified with the DEQ macro instruction. You can repeat
gname addr, rname addr, rname length, and the scope until there is a maximum of 255
characters including the parentheses.

,RET =HAVE
,RET =NONE .

HAVE specifies that the request for releasing the resources named in DEQ is to be
honored only if the active task has been assigned control of the resources or if ENQ was
executed with ECB. A return code is set if the resource is not held. NONE specifies an
unconditional request to release all the resources. RET=NONE is the default. The
active task is abnormally terminated if it has not been assigned control of the resources.

In either case, if the resources requested for release were originally queued with the ECB
parameter specified, they are released with return code 0.

,RMC=NONE
,RMC=STEP
,GENERIC=NO
,GENERIC =YES

RMC specifies that the reset must-complete function is not to be used (NONE) or that
the requesting task is to release the resources and terminate the must complete function
(STEP). The NONE or STEP subparameter must agree with the subparameter specified
in the SMC parameter of the corresponding ENQ macro instruction.

GENERIC specifies whether or not (YES or NO) all resources with the specified gname
are to be released. In order for the resource to be released, the task must have control of
or be in ECB wait for the resource. (ECB was specified on the original ENQ.) If the task
is waiting for a resource, but is not in an ECB wait, the task remains queued and waiting.

DEQ - Release a Serially Reusable Resource 2-87




The following return codes are associated with a GENERIC DEQ:

Hexadecimal
Code Meaning

ra)
Ny

0 One or more resources which the task had control of or was in ECB wait for have been
released.

4 One or more resources were unconditionally requested by the task, but the task was not
* assigned control. The task is not removed from the wait condition. However, other
resources with the same gname might have been released.

8 No resources were found for the specified gname.

ys7TCB=tcbh addr
specifies a register that points to a TCB or specifies the address of a fullword on a
fullword boundary that points to a TCB on whose behalf the DEQ is to be done. The
caller (not the directed task) is abnormally terminated if the RET parameter is omitted
and an attempt is made to DEQ a resource not requested or not owned by the directed
task, except when ECB was specified on the original ENQ. If ECB was specified on the SN
ENQ and the resource is not owned by the directed task, the TCB DEQ request releases N
the resources with a zero return code. )

Note: The TCB resides in storage below 16 megabytes.

ZUCB=ucb addr
specifies the address of a fullword that contains the address of a UCB for a reserved
device that is now being released. This parameter is used to release a device reserved with
the RESERVE macro instruction. The UCB parameter is optional. P

Note: The UCB resides in storage below 16 megabytes. R

,RELATED = value
specifies information used to self-document macro instructions by “relating” functions or
services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user, and can be any valid coding values.

Return codes are provided by the control program only if RET =HAVE is designated. If all of
the return codes for the resources named in DEQ are 0, register 15 contains 0. If any of the P
return codes are not 0, register 15 contains the address of a virtual storage area containing the \
return codes as shown in Figure 4.

2-88  SPL: System Macros and Facilities Volume 2




Address
Returned in
Register 15

'

Return
Codes

° )
RC 1
12
RC 2
24 (! Return codes are
12 bytes apart,
starting 3 bytes
from the address
in register 15.
RC 3
36
N B I j
RC N {

Figure 4. Return Code Area Used by DEQ

The return codes are placed in the parameter list resulting from the macro expansion in the
same sequence as the resource names in the DEQ macro instruction. The return codes are

shown below.

Hexadecimal
Code

0
4

Meaning

The resource has been released.

The resource has been requested for the task, but the task has not been assigned control. The
task is not removed from the wait condition. (This return code could result if DEQ is issued
within an exit routine which was given control because of an interruption.)

Control of the resource has not been requested by the active task, or the resource has already
been released.

DEQ - Release a Serially Reusable Resource 2-89




Example 1

Example 2

Example 3

Example 4

Operation: Unconditionally release control of the resource in Example 1 of ENQ, and reset the
“must-complete” state.

DEQ (MAJOR1,MINOR1,8,STEP),RMC=STEP

Operation: Conditionally release control of the resource in Example 2 of ENQ.

DEQ (MAJOR2,MINOR2,4,SYSTEM),TCB=(R2) ,RET=HAVE

Operation: Unconditionally release control of the resource (device) in Example 1 of
RESERVE.

DEQ (MAJOR3,MINOR3,,SYSTEMS),UCB=(R3)

Operation: Release control of the resource in Example 1 of ENQ, if it has been assigned to the
current TCB. The length of the rname is explicitly defined as 8 characters.

DEQ (MAJOR1,MINOR1,8,STEP),RET=HAVE

2-90 SPL: System Macros and Facilities Volume 2




DEQ (List Form)

Use the list form of the DEQ macro instruction to construct a control program parameter list.
The number of gname, rname, and scope combinations in the list form of DEQ must be equal
to the maximum number of gname, rname, and scope combinations in any execute form of
DEQ that refers to that list form. The list form of the DEQ macro instruction is written as

follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede DEQ.
DEQ
b One ore more blanks must follow DEQ.
(

gname addr qname addr: A-type address.

, rname addr: A-type address.

Jrname addr

,rname length

STEP
SYSTEM
SYSTEMS

,RET=HAVE
,RET=NONE

,RMC=NONE
,RMC=STEP
,GENERIC=NO
,GENERIC=YES

,TCB=0

L2UCB=ucb addr
,RELATED = value
,MF=L

rname length: symbol or decimal digit.

Default: STEP

Default: RET=NONE

Default: RMC=NONE

Default: GENERIC=NO
Note: If GENERIC = YES is specified, you must also specify RET=HAVE
above.

Note: TCB cannot be specified with RMC above, and must be specified on
the list form if used on the execute form. -

uch addr: A-type address.

value: any valid macro keyword specification.

The parameters are explained under the standard form of the DEQ macro instruction, with the

following exception:

2MF=L

specifies the list form of the DEQ macro instruction.

DEQ (List Form) 2-91



DEQ (Execute Form)

A remote control program parameter list is used in, and can be modified by, the execute form
of the DEQ macro. The parameter list can be generated by the list form of either the DEQ or

the ENQ macro instruction.

The execute form of the DEQ macro instruction is written as follows:

name: symbol. Begin name in column 1.

One or more blanks must precede DEQ.

One or more blanks must follow DEQ.

name
b
DEQ
b
(
qname addr
,rname addr

s

Jrname length

STEP
SYSTEM
,SYSTEMS

)

,RET=HAVE
,RET=NONE

,RMC=NONE
,RMC =STEP
,GENERIC=NO
,GENERIC=YES

,TCB = tcb addr

,UCB=ucb addr
,RELATED = value

,MF = (E,ctrl addr)

Note: ( and ) are the beginning and end of a parameter list. The entire list is
optional. If nothing in the list is desired, then (, ), and all parameters
between ( and ) should not be specified. If something in the list is desired,
then (, ), and all parameters in the list should be specified as indicated at

the left.

gname addr: RX-type address, or register (2) - (12).
rname addr: RX-type address, or register (2) - (12).

rname length: symbol, decimal digits, or register (2) - (12).

Note: See note opposite ( above.

Note: If GENERIC=YES is specified, you must also

specify RET =HAVE above.

teb addr: RX-type address, or register (2) - (12).
Note: TCB cannot be specified with RMC above, and must be specified on
the execute form if used on the list form.

ucb addr: RX-type address, or register (2) - (12).
value: any valid macro keyword specification.

ctrl addr: RX-type address, or register (1) - (12).

2-92  SPL: System Macros and Facilities Volume 2

—

A ™

\_/




The parameters are explained under the standard form of the DEQ macro instruction, with the
following exception: '

JMF = (E,ctrl addr)

specifies the execute form of the DEQ macro instruction using a remote control program
parameter list.

DEQ (Execute Form) 2-93



£

A WG
DOM - Delete Operator Message
The DOM macro instruction is used to delete an operator message or group of messages from
the display screen of the operator’s console. It can also prevent messages from ever appearing
on any operator’s console. When a program no longer requires that a message be displayed, it
can issue the DOM macro instruction to delete the message.
Depending on the timing of the DOM relative to the WTO(R), the message may or may not be N
. . . . . . . . e
displayed. If the message is being displayed, it is removed when space is required for other ‘\‘
messages. If the message is not yet displayed, it is removed before it gets displayed. e
When a WTO or WTOR macro instruction is issued, the system assigns an identification
number to the message and returns this number (32 bits right-justified) to the issuing program
in register 1. When the display of this message is no longer needed, the issuing program can
issue the DOM macro instruction using the identification number that was returned in general
register 1.
The DOM macro instruction is written as follows: P
N
name name: symbol. Begin name in column 1.
b One or more blanks must precede DOM.
DOM
b One or more blanks must follow DOM.
A
MSG = addr addr: register (1) - (12), or an address. ! ,
MSGLIST =list addr list addr: symbol, RX-type address, or register (1) - (12). S
TOKEN = addr addr: register (1) - (12), or an address.
DOMCBLK = addr addr: register (1) - (12), or an address
,COUNT = addr addr: register (2) - (12), or an address.
,SYSID = addr addr: register (2) - (12), or an address.
,REPLY =YES

,SCOPE=SYSTEM

,SCOPE=SYSTEMS

2-94 spL: System Macros and Facilities Volume 2



The parameters are explained as follows:

MSG=
The field or register contains the message id of a message to be deleted.

MSGLIST =
specifies the address of a list of one or more fullwords, each word containing the
message id of a message to be deleted.

REPLY =
specifies that one or more WTOR messages are to be deleted. REPLY is not required,
and is invalid with DOMCBLK, TOKEN, SYSID, COUNT and SCOPE.

Specifying the REPLY parameter of the DOM macro causes an MNOTE warning
message to be issued at assembly time. The MNOTE warns you that you are coding the
REPLY parameter, which is a function no longer supported in the system. If you code
the REPLY parameter and receive the MNOTE warning, remove the REPLY parameter
from your program and reassemble it. Programs containing the REPLY parameter that
are already assembled do not need to be reassembled.

DOMCBILK =
specifies the address of a DOM control block that is to be used as input for the DOM
macro. Only authorized programs can issue DOMCBLK, which is mutually exclusive with
all keywords except for SCOPE.

TOKEN =
specifies a field or register containing a 4-byte token that is associated with messages to be
deleted. When you issue WTO or WTOR to write a message, you can choose a token
value, and specify it as an input parameter to WTO(R) via the TOKEN keyword.
WTO(R) returns control to the application with a message id in register 1. To delete the
message by the TOKEN method, ignore the message id returned by WTO(R) in register 1,
and specify the token value instead, using the TOKEN keyword when you issue DOM.
TOKEN is an alternate method for identifying messages, which is independent of the
register 1 message id.

Authorized users may delete any messages originally issued under the same ASID and
system id with this keyword. Unauthorized users may delete only those messages that
were originally issued under the same jobstep TCB, ASID, and system id. The value of
the token may not be the same as the id that was returned in register 1 after a WTO or
WTOR. TOKEN is mutually exclusive with MSG, MSGLIST, COUNT, DOMCBLK,
and REPLY.

SYSID =
specifies a field or register containing the 1-byte id of the system on which the message
was issued. If no message ids are specified, (that is, MSG or MSGLIST is not specified)
all messages issued from the specified system are deleted. If message ids are specified, (i.e.,
MSG or MSGLIST has been specified), messages indicated by the MSG or MSGLIST
keyword issued from the specified system are deleted.

DOM - Delete Operator Message  2-95




Example 1

Example 2

SYSID is invalid with DOMCBLK, COUNT, and REPLY. SYSID can be used with the
TOKEN keyword to delete all messages originally issued from a particular system with
the specified TOKEN. Authorized users may delete any messages originally issued under
the same ASID when TOKEN and SYSID are specified. Unauthorized users may delete
only those messages that were originally issued under the same jobstep TCB and ASID
when TOKEN and SYSID are specified. If an address is used, the address points to a
1-byte field which contains the system id.

COUNT =

specifies a field or register containing the one-byte count of 4-byte message ids associated
with this request. The count must be from 1 to 60. If COUNT is specified, the issuer must
not set the high order bit on in the last entry of the DOM parameter list (DOMPL). If
COUNT is not specified, the message ids are treated as 3-byte ids. If an address is used,
the address points to a 1-byte field that contains the count. COUNT is invalid with
DOMCBLK, SYSID, TOKEN, and REPLY.

SCOPE =SYSTEM
SCOPE =SYSTEMS

specifies how to process the DOM request. If SCOPE =SYSTEMS is specified, the
DOM request is to be communicated to other processors. If SCOPE=SYSTEM is
specified, the DOM request is not to be communicated to other processors. If
SCOPE is not specified, the DOM request defaults to SCOPE=SYSTEMS.

Notes:

1. For any DOM keywords that allow a register specification, the value must be
right-justified in the register and the remaining bytes within the register must be zero.

2. Any authorized DOM keywords that are specified by an unauthorized program will
cause a 157 ABEND.

3. Specifying the REPLY parameter of the DOM macro causes an MNOTE warning
message to be issued at assembly time. The MNOTE warns you that you are coding the
REPLY parameter, which is a function no longer supported in the system. If you code
the REPLY parameter and receive the MNOTE warning, remove the REPLY parameter
Jfrom your program and reassemble it. Programs containing the REPLY parameter that
are already assembled do not need to be reassembled.

Operation: Delete an operator message. The message id is in register 1.

DOM MSG=(1)

Operation: Delete a list of operator messages.

DOM MSGLIST=ID2

2-96  SPL: System Macros and Facilities Volume 2




Example 3

Example 4

Example 5

Example 6

Operation: Delete four operator messages. The number of messages to be deleted is stored in
the field named FOUR, and ID3 is the address of the list of message ids for the four messages.

DOM MSGLIST=ID3,COUNT=FOUR

Operation: Delete a single message issued on a particular system. The message ID is in register
1, and the one-byte system id is stored in the field named TWO.

DOM MSG=(1) ,SYSID=TWO

Operation: Delete all messages issued on a particular system. The one-byte system id is stored
in the field named SYSNAME.

DOM SYSID=SYSNAME

Operation: Delete all messages issued with a particular token on a particular system. The
four-byte token is stored in TOKENI, and the one-byte system id is in TWO.

DOM TOKEN=TOKEN1,SYSID=TWO

DOM - Delete Operator Message 2-97



The DSGNL macro instruction uses the signal processor (SIGP) instruction to modify or sense

DSGNL - Issue Direct Signal

the physical state of a specific processor in a multiprocessing configuration. The SIGP
instruction order codes specified on the DSGNL macro instruction are defined as direct
services. Additional SIGP order codes defined as remote services are available through the

RISGNL and RPSGNL macro instructions. See Principles of Operations for an explanation of

the order codes.

Programs executing in cross memory mode can issue this macro instruction.

The DSGNL macro instruction is written as follows:

name

DSGNL

name: symbol. Begin name in column 1.

One or more blanks must precede DSGNL.

One or more blanks must follow DSGNL.

SENSE
START
STOP
RESTART
5SS
ICPUR
CPUR
STATUS
PREFIX
©

,CPU=PCCA addr

,PARAM = qddr
,PARAM =(2)

PCCA addr: RX-type address, or register (1).

addr: RX-type address, or register (2).
Note: This parameter is required with PREFIX and STATUS only. It
cannot be specified with any of the other parameters.

2-98  SPL: System Macros and Facilities Volume 2




The parameters are explained as follows:

SENSE

START

STOP

RESTART

SSS

ICPUR

CPUR

PREFIX

STATUS

)
specifies the action to be performed. If (0) is specified, the code indicating the desired
function has already been loaded into bits 24-31 of register 0. (Only the direct class
functions are valid.) The actions and codes are:

Order Code Action
SENSE 01 State of specified processor is to be sensed
START 04 Start function
STOP 05 Stop function
RESTART 06 Restart function
SSS 09 Stop and store status function
ICPUR 0B Initial processor reset function
CPUR 0C Processor reset function
PREFIX 0D Set prefix from address
STATUS OE Store status at address

,CPU=PCCA addr
specifies the address of the physical configuration communication area (PCCA) of the
processor on which the function is to be executed.

Note: The PCCA resides in storage below 16 megabytes.

,PARAM = addr

,LLARAM=(2)
allows an address to be passed to the specified processor. If addr is coded, the word at
that location is loaded into register 2 and passed to the specified processor. The contents
of that location must contain a real address. If (2) is coded, the contents of register 2 is
passed to the processor. Register 2 must also contain a real address.

When this parameter is used with PREFIX, the word passed to the specified processor is
the address to which the processor’s prefix register is to be set.

When this parameter is used with STATUS, the word passed to the specified processor is
the real address at which the processor’s status is to be stored.

DSGNL - Issue Direct Signal 2-99



Example 1

2-100 SpL:

When control is returned, register 15 contains one of the following return codes:

Hexadecimal

Code Meaning

00 Function successfully initiated, but not necessarily completed.

04 Function not completed because the access path to the addressed processor was busy or
the addressed processor was in a state where it could not accept and respond to the
order code.

08 Function unsuccessfully initiated or successful SIGP SENSE request. Status is returned
in register 0.

0C Specified processor is either not installed, not configured into the system, or powered

' off.

14 MSSF is currently inoperative.

With a return code of 8, register 0 contains status information from the SIGP macro
instruction. The bit settings and meanings follow:

Bits Meaning

0 Equipment check

1-21 Unassigned, contains zeros
22 Incorrect state

23 Invalid parameter

24 External call pending

25 Stopped

26 Operator intervening

27 Check stop

28 Not ready

29 MSSF currently inoperative
30 Invalid order code

31 - Receiver check

Operation: The processor whose PCCA address is in register 1 will be placed in the STOP
state.

DSGNL STOP,CPU=(1)

System Macros and Facilities Volume 2

S

AT



DYNALLOC - Dynamic Allocation

See Volume 1 for the description of this macro instruction.

DYNALLOC - Dynamic Allocation

2-101




ENQ - Request Control of a Serially Reusable Resource

ENQ requests the control program to assign control of one or more serially reusable resources
to a task. If any of the resources are not available, the task might be placed in a wait condition
until all of the requested resources are available. Once control of a resource has been assigned
to a task, it remains with that task until one of the programs of the same task issues a DEQ
macro instruction specifying the same resource. Register 15 is set to 0 if the request is satisfied.

You can also use ENQ to determine the status of the resource; whether it is immediately
available or in use, and whether control of the resource has been previously requested by the
active task in another ENQ macro instruction.

You can request either shared or exclusive use of a resource. The resource is represented in the
ENQ by a pair of names, the gname and the rname, and a scope value. The scope value
determines the scope of serialization; that is, what other tasks, address spaces, or systems can
use the resource. The control program does not correlate the names with the actual resources.
ENQ simply coordinates access to whatever it is the names represent. The names may be given
meaning within a job step or across job steps. In either case, all programs for which
coordination of the resource is provided must refer to it by the same name and scope value.
You must ensure that the name and scope value are used consistently.

Issuing two ENQ macro instructions for the same resource without an intervening DEQ macro
instruction results in abnormal termination of the task, unless the second ENQ designates
RET=TEST, USE, CHNG, or HAVE. If normal termination of a task is attempted while the
task still has control of any serially reusable resources, all requests made by this task will be
automatically dequeued. If resource input addresses are incorrect, the task is abnormally
terminated.

Global resource serialization counts and limits the number of concurrent resource requests in an
address space. If an unconditional ENQ (an ENQ that uses the RET =NONE option) causes
the count of global resource serialization requests to exceed the sum of a threshold value plus a
tolerance value, an authorized caller is abended with a system code of X‘538’. See “Limiting
Global Resource Serialization Requests” in Volume 1.

Note: When global resource serialization is active, the SYSTEM inclusion resource name list
and the SYSTEMS exclusion resource name list are searched for every resource specified with a
scope of SYSTEM or SYSTEMS. A resource whose name appears on one of these resource
name lists might have its scope changed from the scope that appears on the macro instruction.
(Refer to Planning: Global Resource Serialization for additional information.)

Except for the TCB, all input parameters to this macro instruction can reside in storage above
16 megabytes if the issuer is executing in 31-bit addressing mode.

2-102  SPL: System Macros and Facilities Volume 2

\Q S



An ENQ used with the MASID and MTCB operands provides a special form of the ENQ
macro instruction that allows a further conditional control of a resource. One task, called the
“issuing task” can issue an ENQ macro for a resource specifying the ASID and TCB of another
task, called the “matching task.” The MTCB and MASID operands are specified with
RET=HAVE, RET=TEST, and/or ECB= to provide additional return codes. If the issuing
task does not acquire control of the resource, it may receive a return code indicating that the
resource is controlled by the matching task. Upon receiving this return code, the issuing task
could use the resource, if serialization between itself and the matching task has been
accomplished by some pre-arranged protocol known to both the issuing and matching tasks.

The description of the ENQ macro instruction follows. The ENQ macro instruction is also
described in Supervisor Services and Macro Instructions with the exception of the SMC, ECB,
and TCB parameters. These parameters are restricted in use to programs that run in supervisor
state, PSW key 0-7, or APF authorized and are therefore only described here.

name " name: symbol. Begin name in column 1.
b One or more blanks must precede ENQ.
ENQ
b One or more blanks must follow ENQ.
(
qname addr qname addr: A-type address, or register (2) - (12).
,rname addr rname addr: A-type address, or register (2) - (12).
, Default: E
E
S
,rname length rname length: symbol, decimal digit, or register (2) - (12).
Default: assembled length of rname
Note: rname length must be coded if a register is specified for rname addr.
,STEP Default: STEP
SYSTEM
SYSTEMS
)
,RET=CHNG Default: RET=NONE
,RET=HAVE
,RET =TEST
,RET=USE
,RET=NONE
,SMC=NONE
,SMC=STEP
L,ECB=ecb addr ech addr: A-type address, or register (2) - (12).
,TCB=tcb addr tch addr: A-type address, or register (2) - (12).

Default: SMC=NONE

Note: ECB cannot be specified with RET above. ECB and TCB can be
specified together. If TCB is specified but not ECB, then RET = CHNG,
TEST or USE must be specified above.

,MASID = matching-asid addr matching-asid addr: A-type address, or register (2)-(12).
,MTCB = matching-tcb addr matching-tch addr: A-type address, or register (2)-(12).
,RELATED = value value: any valid macro keyword specification.

ENQ - Request Control of a Serially Reusable Resource 2-103



The parameters are explained as follows:

(

specifies the beginning of the resource description.

qname addr
specifies the address in virtual storage of an 8-character name. Every program issuing a
request for a serially reusable resource must use the same gname, rname, and scope to
represent the resource.

Jrname addr
specifies the address in virtual storage of the name used in conjunction with gname to
represent a single resource. The name can be qualified and must be from 1 to 255 bytes
long. If the name specified as rname is defined by an EQU assembler instruction, rname
length must be specified.

specifies whether the request is for exclusive (E) or shared (S) control of the resource. If
the resource is modified while under control of the task, the request must be for exclusive
control; if the resource is not modified, the request should be for shared control.

Jrname length
specifies the length of the rname described above. If this parameter is omitted, the
assembled length of the rname is used. You can specify a value between 1 and 255 to
override the assembled length. If the name specified as rname, is defined by an EQU
assembler instruction, rname length must be specified.

STEP
,SYSTEM
SYSTEMS
specifies the scope of the resource.

STEP specifies that the resource can be used only within an address space. If STEP is
specified, a request for the same gname and rname from a program in another address
space denotes a different resource.

SYSTEM specifies that the resource can be used by more than one address space.
SYSTEMS specifies that the resource can be shared between systems.

STEP, SYSTEM, and SYSTEMS are mutually exclusive and do not refer to the same
resource. If two macro instructions specify the same gname and rname, but one specifies

STEP and the other specifies SYSTEM or SYSTEMS, they are treated as requests for
different resources.

When global resource serialization is active, scope conversion can occur. This could result

in two requests with different scopes referring to the same resource. See Planning: Global
Resource Serialization for details.

2-104 SPL: System Macros and Facilities Volume 2

O
S

g



specifies the end of the resource description.

Note: Multiple resources can be specified in the ENQ macro instruction. You can repeat the
gname addr, rname addr, type of control, rname length, and scope until there is a maximum of
255 characters including the parentheses.

,RET =CHNG
,RET=HAVE
,RET =TEST
,RET =USE
,RET =NONE
specifies the type of request for all of the resources named above.

CHNG - the status of the resource specified is changed from shared to exclusive control.

HAVE - control of the resources is requested conditionally; that is, control is requested
only if a request has not been made previously for the same task.

TEST - the availability of the resources is to be tested, but control of the resources is
not requested.

USE -  control of the resources is to be assigned to the active task only if the resources
are immediately available. If any of the resources are not available, the active
task is not placed in a wait condition.

NONE - control of all the resources is unconditionally requested.

,SMC=NONE
SMC=STEP
JECB =ech addr
,TCB=tchb addr
specifies optional parameters available to the system programmer:

SMC specifies that the set must-complete function is not to be used (NONE) or that it is
to place other tasks for the step nondispatchable until the requesting task has completed
its operations on the resource (STEP).

When SMC=STEP is specified with RET =HAVE and the requesting task already has
control of the resource, the SMC function is turned on and the task continues to control
the resource. '

SMC= and TCB= are mutually exclusive with the MASID parameter, therefore,

hexadecimal return codes 20, 24, 28, and 44 will not be given by an ENQ using the SMC
or TCB operands.

ENQ - Request Control of a Serially Reusable Resource 2-105



The return codes and status of the set must-complete function for the various RET =

specifications are as follows: {" B
%
Hexadecimal Code SMC Status
RET=CHNG 0 on
4 off
8 off
14 off
RET=HAVE 0 on
8 on
14 off
RET=TEST 0 off
4 off
8 off
14 off
RET=USE 0 on
4 off
8 off
14 off o
18 off i '
S
ECB specifies the address of an ECB, and conditionally requests all of the resources
named in the macro instruction. If the return code for one or more requested resources is
hexadecimal 4 or 24 and the request is not nullified by a corresponding DEQ, the ECB is
posted when all the requested resources (specifically, those that initially received a return
code of 4 or 24) are assigned to the requesting task.
If the ECB parameter is an A-type address, the address is the name of the fullword that is
used as an ECB. If the operand is a register, then the register contains the address of the N
ECB. N
TCB specifies a register that points to a TCB or specifies the address of a fullword on a
fullword boundary that points to a TCB on whose behalf the ENQ is to be done.
Note: The TCB resides in storage below 16 megabytes.
,JMASID = matching-asid addr
specifies the matching task (by defining a matching ASID) for the ENQ, if used in
conjunction with the MTCB parameter. MASID defines the ASID of a task that may be 0
using a resource desired by the issuer of the ENQ macro instruction. If the MASID “_ S

parameter is an A-type address, the address is the name of a fullword containing the
ASID. If the operand is a register, then the register contains the ASID.

Note: MASID can only be specified if MTCB is also specified.

,MTCB = matching-tcb addr
specifies the matching task (by defining a matching TCB) for the ENQ, if used in
conjunction with the MASID parameter. MTCB defines the TCB of a task that may be
using a resource desired by the issuer of the ENQ macro instruction.

If the task specified by the MASID and MTCB parameters is not using the resource,

global resource serialization gives control to the issuer of the ENQ and returns a return

code indicating whether the resource can be used. If the task specified by MASID and

MTCB parameters is using the resource, global resource serialization records a request for
the resource, suspends the issuing task until the resource is available, or optionally returns L
a return code indicating that an ECB will be posted when the resource can be used.

2-106 SPL: System Macros and Facilities Volume 2




The MASID and MTCB parameters are specified with RET=HAVE, RET=TEST,
and/or ECB = parameters to elicit additional return codes that provide information about
the owner of the resource. If the MTCB parameter is an A-type address, the address is
the name of a fullword containing the TCB. If the operand is a register, then the register

contains the TCB.

Note: MTCB can only be specified if MASID is also specified.

,RELATED = value

specifies information used to self-document macro instructions by ‘relating’ functions or
services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user, and may be any valid coding

values.

Return codes are provided by the control program only if you specify RET =TEST,
RET=USE, RET=CHNG, RET=HAVE, or ECB=; otherwise return of the task to the
active condition indicates that control of the resource has been assigned to the task. If all
return codes for the resources named in the ENQ macro instruction are 0, register 15 contains
0. If any of the return codes are not 0, register 15 contains the address of a storage area

containing the return codes, as shown in Figure 5.

Return codes are

12 bytes apart,
starting 3 bytes
from the address
in register 15.

Address Return
Returned in Codes
Register 15
¢ 1 2 ’ 3 4 12
° )
RC 1
12
RC 2
24 4
RC 3
36 L]
RC N

Figure 5. Return Code Area Used by ENQ

ENQ - Request Control of a Serially Reusable Resource 2-107




The return codes are placed in the parameter list resulting from the macro expansion in the
same sequence as the resource names in the ENQ macro instruction. The return codes are

shown below.

Hexadecimal
Code

0

14

18

20

24

28

44

Meaning

For RET =TEST, the resource is immediately available. For RET=USE, RET=HAVE, or
ECB=, control of the resource has been assigned to the active task. For RET = CHNG, the
status of the resource has been changed to exclusive. The ECB is not posted.

For RET=TEST or RET = USE, the resource is not immediately available. For
RET =CHNG, the status cannot be changed to exclusive. For ECB=, the ECB will be posted
when available.

For RET =TEST, RET=USE, RET=HAVE, or ECB=, a previous request for control of
the same resource has been made for the same task. The task has control of resource. For
RET =CHNG, the resource has not been enqueued. If bit 3 is on -- shared control of
resource; if bit 3 of the first byte of the ENQ parameter list is off -- exclusive control. The
ECB is not posted.

A previous request for control of the same resource has been made for the same task. The
task does not have control of resource. The ECB is not posted.

For RET=HAVE, RET =USE, or ECB=, the limit for the number of concurrent resource
requests has been reached. The task does not have control of the resource unless some
previous ENQ or RESERVE request caused the task to obtain control of the resource. The
ECB is not posted.

The matching task (the task specified in the MASID/MTCB parameters) owns the resource.
The issuer of the ENQ macro instruction may use the resource but it must ensure that the
owning task does not terminate while the issuer of the ENQ macro is using the resource. If
the issuer of the ENQ requested exclusive control, then this return code indicates that the
matching task is the only task that currently owns the resource. If the issuer of the ENQ
requested shared control and the owning task had requested shared control, this return code
may indicate that a previous task had requested exclusive control. The issuing task must issue
a DEQ to cancel this ENQ. The ECB will not be posted.

The issuing task will have exclusive control after the ECB is posted. The issuing task may use
the resource but must ensure that the matching task does not terminate while the issuing task
is using the resource. The issuing task must issue a DEQ to cancel the ENQ. "

The issuing task cannot obtain exclusive control of the resource using the MASID/MTCB
ENQ. The matching task’s involvement with other tasks precludes control by the issuing task.
This task must not issue a DEQ to cancel the ENQ. The ECB will not be posted.

The issuing task is violating a restriction of the MASID/MTCB ENQ in one or more of the
following ways:

® Another task has already issued this ENQ for this resource specifying the same
MASID/MTCB.

® The MASID/MTCB parameters specify a task that acquired control of the resource by
using the MASID/MTCB ENQ.

® The matching task requested ownership of the resource but has not yet been
granted ownership.

The ECB will not be posted. Return code 44 is never given by an ENQ RET =TEST, return
code 4 is given instead.

2-108 SPL: System Macros and Facilities Volume 2

i

'«

7

J




Example 1

Example 2

Operation: Unconditionally request exclusive control of a serially reusable resource that is
known only within the address space (STEP), and place other tasks for the step nondispatchable
until the requesting task has completed its operations on the resource.

ENQ (MAJOR1,MINOR1,E,8,STEP) ,SMC=STEP

Operation: Conditionally request control of a sharable resource in behalf of another task. The
resource is known by more than one address space, and is only wanted if immediately available.

ENQ (MAJOR2,MINOR2,S,4,SYSTEM),TCB=(R2),RET=USE

ENQ - Request Control of a Serially Reusable Resource  2-109




ENQ (List Form)

Use the list form of ENQ to construct a control program parameter list. Any number of
resources can be specified in the ENQ macro instruction, therefore, the number of gname,
rname, and scope combinations in the list form of the ENQ macro instruction must be equal to
the maximum number of gname, rname, and scope combinations in any execute form of the
macro instruction that refers to that list form.

The list form of the ENQ macro instruction is written as follows:

,RELATED =value
MFE=L

name name: symbol. Begin name in column 1.
b One or more blanks must precede ENQ.
ENQ
b One or more blanks must follow ENQ.
(
qname addr gname addr: A-type address.
,rname addr rname addr: A-type address.
, Default: E
E
.S
,rname length rname length: symbol or decimal digit.
Default: assembled length of rname
s Default: STEP
,STEP
,SYSTEM
SYSTEMS
)
,RET=CHNG Default: RET =NONE
,RET=HAVE
,RET=TEST
,RET=USE
,RET=NONE
,SMC=NONE
,SMC = STEP
,ECB=ecbh addr ech addr: A-type address.
,TCB=0 Default: SMC =NONE
Note: ECB cannot be specified with RET above.
Note: TCB or ECB must be specified on the list form if it is used on the
execute form. ECB and TCB can be specified together. If TCB is specified
but not ECB, then RET=CHNG, TEST or USE must be specified above.
,MASID =0
,MTCB=0

value: any valid macro keyword specification.

2-110 SPL: System Macros and Facilities Volume 2



The parameters are explained under the standard form of the ENQ macro instruction, with the
following exception:

JMF=L
specifies the list form of the ENQ macro instruction.

The list form of this macro generates a prefix followed by the parameter list, however the label

specified in MF=L does not include an offset prefix area. If MASID, MTCB, TCB, or ECB is
specified, these labels are offset; allowance must be made for the parameter list prefix.

ENQ (List Form) 2-111




ENQ (Execute Form)

A remote control program parameter list is used in and can be modified by the execute form of
the ENQ macro instruction. The parameter list can be generated by the list form of ENQ.

The execute form of the ENQ macro instruction is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede ENQ.
ENQ
b One or more blanks must follow ENQ.

( Note: ( and ) are the beginning and end of a parameter list. The entire list is
optional. If nothing in the list is desired then (, ), and all parameters
between ( and ) should not be specified. If something in the list is desired,
the (, ), and all parameters in the list should be specified as indicated at the
left.

gname addr gname addr: RX-type address, or register (2) - (12).

,rname addr rname addr: RX-type address, or register (2) - (12).

,E

S

b
,rname length

,STEP
,SYSTEM
,SYSTEMS

)

,RET=CHNG
,RET=HAVE
,RET=TEST
,RET=USE
,RET=NONE

,SMC=NONE
,SMC=STEP
,ECB=ecb addr
,TCB=tch addr

,MASID = matching-asid addr
,MTCB = matching-tcb addr

L,RELATED = value
,MF = (E,ctrl addr)

rname length: symbol, decimal digit, or register (2) - (12).

Note: See note opposite ( above.

ecb addr: RX-type address, or register (2) - (12).

tch addr: RX-type address, or register (2) - (12).

Note: ECB cannot be specified with RET above.

Note: ECB and TCB can be specified together. If TCB is specified but not
ECB, then RET=CHNG, TEST or USE must be specified above.
matching-asid addr: Rx-type address, or register (2)-(12).

matching-tch addr: Rx-type address, or register (2)-(12).

value: any valid macro keyword specification.

ctrl addr: RX-type address, or register (1) - (12).

2-112  SPL: System Macros and Facilities Volume 2

k'(,,, P

NS




The parameters are explained under the standard form of the ENQ macro instruction, with the
following exceptions:

,MF = (E,ctrl addr)
specifies the execute form of the ENQ macro instruction using a remote control program
parameter list. ’

Note: If ECB (or TCB) is specified in the execute form, ECB (or TCB=0) must be specified in
the list form. If MASID and MTCB are specified, MASID =0 and MTCB=0 must be
specified in the list form.

The list form of this macro generates a prefix followed by the parameter list, however the label

specified in MF =L does not include an offset prefix area. If MASID, MTCB, TCB, or ECB is
specified, these labels are offset; allowance must be made for the parameter list prefix.

ENQ (Execute Form) 2-113




ESPIE - Extended SPIE

The ESPIE macro instruction extends the function of the SPIE (specify program interruption
exits) macro instruction to callers in 31-bit addressing mode. Callers in either 24-bit or 31-bit
addressing mode can issue the ESPIE macro instruction. Only callers in 24-bit addressing mode
can issue the SPIE macro instruction. For additional information concerning the relationship
between the SPIE and the ESPIE macro instructions, see the section “Interruption Services” in
Volume 1.

The ESPIE macro instruction performs the following functions using the options specified:
o Establishes an ESPIE environment (that is, identifies the interruption types that are to
cause entry to the ESPIE exit routine) by executing the SET option of the ESPIE macro

instruction.

e Deletes an ESPIE environment (that is, cancels the current SPIE/ESPIE environment) by
executing the RESET option of the ESPIE macro instruction

e Determines the current SPIE/ESPIE environment by executing the TEST option of the
ESPIE macro instruction

The following description of the ESPIE macro instruction also appears in Supervisor Services

and Macro Instructions with the exception of interruption type 17. This interruption type
designates page faults and its use is restricted to an installation-authorized system programmer.

SET Option

The SET option of the ESPIE macro instruction is written as follows:

name name: symboi. Begin name in column 1.
b One or more blanks must precede ESPIE.
ESPIE
b One or more blanks must follow ESPIE.
SET
,exit addr exit addr: A-type address or register (2) - (12).
,(interruptions) interruptions: decimal numbers 1 - 15 or 17 expressed as

single values: (2, 3, 4, 7, 8, 9, 10)
ranges of values: (2, 4), (7, 10))
combinations: (2, 3, 4, (7, 10))

,PARAM = list addr list addr: A-type address or register (2) - (12).

2-114  SPL: System Macros and Facilities Volume 2




The parameters are explained as follows:

SET

indicates that an ESPIE environment is to be established.

,exit addr

specifies the address of the exit routine to be given control when program interruptions of
the type specified by interruptions occur. The exit routine will receive control in the same
addressing mode as the issuer of the ESPIE macro instruction.

,(interruptions)

indicates the interruption types that are being trapped. The interruption types are:

Number Interruption Type

1 Operation

2 Privileged operation

3 Execute

4 Protection

S Addressing

6 Specification

7 Data

8 Fixed-point overflow (maskable)
9 Fixed-point divide

10 Decimal overflow (maskable)

11 Decimal divide

12 Exponent overflow

13 Exponent underflow (maskable)
14 Significance (maskable)

15 Floating-point divide

17 Page fault

These interruption types can be designated as one or more single numbers, as one or more
pairs of numbers (designating ranges of values), or as any combination of the two forms.
For example, (4,8) indicates interruption types 4 and 8; ((4,8)) indicates interruption types
4 through 8.

If a program interruption type is maskable, the corresponding program mask bit in the
PSW is set to 1. If a maskable interruption is not specified, the corresponding bit in the
PSW is set to 0. Interruption types not specified above (except for type 17) are handled
by the control program. The control program forces an abend with the program check as
the completion code. If an ESTAE-type recovery routine is also active, the SDWA
indicates a system-forced abnormal termination. The registers at the time of the error are
those of the control program.

Note: For both ESPIE and SPIE — If you are using vector instructions and an
interruption of 8, 12, 13, 14, or 15 occurs, your recovery routine can check the exception
extension code (the first byte of the two-byte interruption code in the EPIE or PIE) to
determine whether the exception was a vector or scalar type of exception. For more
information about the exception extension code, see IBM System/370 Vector Operations
(SA22-7125).

SPARAM = [ist addr

specifies the fullword address of a parameter list that is to be passed by the caller to the
exit routine.

ESPIE - Extended SPIE  2-115



On return from the SET option of the ESPIE macro instruction, the registers contain the

.. . &
following information: , (‘ j
A
Register Content
0 Unpredictable
1 Token representing the previously active SPIE/ESPIE environment
2-13 Unchanged
14 Unpredictable
15 Return code of 0
Example 1
Operation: Give control to an exit routine for interruption types 1 and 4. EXIT is the location
of the exit routine to be given control and PARMLIST is the location of the user-parameter list .
to be used by the exit routine. '
ESPIE SET,EXIT,(1,4),PARAM=PARMLIST
Example 2
Operation: Give control to the exit routine located at EXIT when a page fault occurs.
ESPIE SET,EXIT,(17)
o
RESET Option .
The RESET option of the ESPIE routine cancels the active SPIE/ESPIE environment and
restores the SPIE/ESPIE environment specified by token.
The RESET option of the ESPIE macro instruction is written as follows:
name name: symbol. Begin name in column 1.
b One or more blanks must precede ESPIE. ‘ « /
ESPIE
b One or more blanks must follow ESPIE.
RESET
,token token: RX-type address or register (1) or (2) - (12).

2-116  SPL: System Macros and Facilities Volume 2



The parameters are explained as follows:

RESET

indicates that the current ESPIE environment is to be deleted and the previously active
SPIE/ESPIE environment specified by token is to be re-established.

,token

specifies a fullword that contains a token representing the previously active SPIE/ESPIE
environment. This is the same token that ESPIE processing returned to the caller when
the ESPIE trap was established using the SET option of the ESPIE macro instruction.

If the token is zero, all SPIEs and ESPIEs are deleted.

On return from ESPIE RESET, the contents of the registers are as follows:

Register
0

1

2-13

14

15

Example 1

Contents

Unpredictable

Token identifying the new active SPIE/ESPIE environment
Unchanged

Unpredictable

Return code of 0

Operation: Cancel the current SPIE/ESPIE environment and restore the SPIE/ESPIE
environment represented by the contents of TOKEN.

ESPIE RESET,TOKEN

TEST Option

The TEST option of the ESPIE macro instruction determines the active SPIE/ESPIE
environment and returns the information in a four-byte parameter list.

The TEST option of the ESPIE macro instruction is written as follows:

name

ESPIE

name: symbol. Begin name in column 1.

One or more blanks must precede ESPIE.

One or more blanks must follow ESPIE.

TEST

parm addr

parm addr: RX-type address, or register (1) or (2) - (12).

ESPIE - Extended SPIE

2-117



The parameters are explained as follows:

TEST
indicates a request for information concerning the active or current SPIE/ESPIE
environment. ESPIE processing returns this information to the caller in a four-word
parameter list located at parm addr.

,Lparm addr

specifies the address of a four-word parameter list aligned on a fullword boundary. The
parameter list has the following form:

Word Content

0 Address of the user-exit routine. This address is a 31-bit address with the high-order bit set to
indicate the addressing mode of the routine that set the ESPIE.

1 Address of the user-defined parameter list
2 Mask of program interruption types
3 Zero

On return from ESPIE TEST, the registers contain the following information:

Register Contents

0 Unpredictable

1-13 Unchanged

14 Unpredictable

15 Return code as follows:

Code Meaning

0 An ESPIE exit is active and the four-word parameter list contains the the information
specified in the description of the parm addr parameter.

4 A SPIE exit is active. Word 1 of the parameter list described under parm addr contains
the address of the current PICA. Words 0, 2, and 3 of the parameter list are
unpredictable.

8 No SPIE or ESPIE is active. The contents of the four-word parameter list are
unpredictable.

Example 1

Operation: Identify the active SPIE/ESPIE environment. Return the information about the exit
routine in the four-word parameter list, PARMLIST. Also return, in register 15, an indication
of whether a SPIE, ESPIE, or neither is active.

ESPIE TEST,PARMLIST

2-118 SPL: System Macros and Facilities Volume 2

NS

C



ESPIE (List Form)

~ Example 1

The list form of the ESPIE macro instruction builds a non-executable problem program
parameter list that can be referred to or modified by the execute form of the ESPIE macro
instruction.

The list form of the ESPIE macro instruction is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede ESPIE.
ESPIE
b One or more blanks must follow ESPIE.
SET

,exit addr exit addr: A-type address.

Note: This parameter must be specified on either the list or the execute form
of the macro instruction.

J(interruptions) interruptions: decimal number 1 - 15 or 17 expressed as
single values: (2, 3,4, 7, 8, 9, 10)
ranges of values: ((2, 4), (7, 10))
combinations: (2, 3, 4, (7, 10))

,LPARAM =list addr list addr: A-type address.

,MF=L

The parameters are explained under the standard form of the ESPIE macro instruction with the
following exception:

MF=L
specifies the list form of the ESPIE macro instruction.

Operation: Build a non-executable problem program parameter list that will cause control to
be transferred to the exit routine, EXIT, for the interruption types specified in the execute form
of the macro instruction. Provide the address of the user parameter list, PARMLIST.

LIST1 ESPIE SET,EXIT,,PARAM=PARMLIST,MF=L

ESPIE (List Form) 2-119



ESPIE (Execute Form)

The execute form of the ESPIE macro instruction can refer to and modify the parameter list
constructed by the list form of the ESPIE macro instruction.

The execute form of the ESPIE macro instruction is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede ESPIE.
ESPIE
b One or more blanks must follow ESPIE.
SET
Lexit addr exit addr: RX-type address or register (2) - (12).

Note: This parameter must be specified on either the list or the execute form
of the macro instruction.

J(interruptions) interruptions: decimal number 1 - 15 or 17 expressed as
single values: (2, 3, 4, 7, 8, 9, 10)
ranges of values: ((2, 4), (7, 10))
combinations: (2, 3, 4, (7, 10))

,PARAM = list addr list addr: RX-type address or register (1) or (2) - (12).

L,MF = (E,ctrl addr) ctrl addr: RX-type address, or register (1) or (2) - (12).

The parameters are explained under the standard form of the ESPIE macro instruction with the
following exception:

JMF = (E,ctrl addr)

specifies the execute form of the ESPIE macro instruction using a remote control program
parameter list.

2-120 SPL: System Macros and Facilities Volume 2



Example 1

Operation: Give control to a user-exit routine for interruption types 1, 4, 6, 7, and 8. The exit
routine address and the address of a user-parameter list for the exit routine are provided in a
remote control program parameter list at LIST1.

ESPIE SET,,(1,4,(6,8)),MF=(E,LIST1)

ESPIE (Execute Form) 2-121




ESTAE - Specify Task Abnormal Exit Extended

This macro can be assembled compatible between MVS/XA and MVS/370 through the use of
the SPLEVEL macro instruction. Default processing will result in an expansion of the macro
that operates only with MVS/XA. See the topic “Selecting the Macro Level” for additional
information. If you are executing in 31-bit addressing mode, you must use the MVS/XA
version of this macro instruction.

The ESTAE macro instruction allows the user to intercept a scheduled ABEND. Control is
given to a user-specified recovery routine in which the user can, for example, perform
pre-termination processing, diagnose the cause of ABEND, and specify a retry address if he
wishes to avoid the termination. These recovery routines operate in both problem program and
supervisor modes.

The addressing mode in which the ESTAE macro expansion executes becomes the addressing
mode in which the ESTAE exits and retry routines execute (that is, the ESTAE exits and retry
routines execute in the same addressing mode as the issuer of the ESTAE macro instruction.)

Note: The ESTAE macro instruction is not supported in cross memory mode.

The description of the ESTAE macro instruction follows. The ESTAE macro instruction is also
described in Supervisor Services and Macro Instructions with the exception of the BRANCH,
SVEAREA, KEY, RECORD, AND TOKEN parameters. These parameters are restricted in

use, and, therefore, are described only in here.

“ESTAE-Type Recovery Routines” in Volume 1 describes the complete interface to the ESTAE
exit routine.

2-122  SPL: System Macros and Facilities Volume 2

‘\"&ij

NS



The standard form of the ESTAE macro instruction is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede ESTAE.
ESTAE
b One or more blanks must follow ESTAE.
exit addr exit addr: A-type address, or register (2) - (12).
0
,CT Default: CT
,OV
,PARAM = list addr list addr: A-type address, or register (2) - (12).
,XCTL=NO Default: XCTL=NO
,XCTL=YES
,PURGE=NONE Default: PURGE = NONE
,PURGE=QUIESCE
,LPURGE=HALT
LASYNCH =YES Default: ASYNCH =YES
LASYNCH=NO i
,TERM=NO Default: TERM =NO
,TERM=YES
,BRANCH=NO Default: BRANCH =NO
,BRANCH = YES,SVEAREA = save addr save addr: A-type address, or register (2) - (12) or (13).
,LKEY=SAVE storage key: any numeral in the range 0-15.
LJKEY =storage key
,RECORD =NO Default: RECORD =NO
,RECORD =YES
,TOKEN = token addr token addr: A-type address, or register (2) - (12).
,RELATED = value value: any valid macro keyword specification.

The parameters are explained as follows.

exit addr

0
specifies the 31-bit address of an ESTAE recovery routine to be entered if the task issuing
this macro instruction terminates abnormally. The recovery routine executes in the
addressing mode of the issuer of the ESTAE. If 0 is specified, the most recent ESTAE
routine is canceled.

,OV
specifies the creation of a new ESTAE exit (CT) or indicates that parameters passed in
this ESTAE macro instruction are to overlay the data contained in the previous ESTAE
routine (OV).

JPARAM = [list addr

specifies the 31-bit address of a user-defined list containing data to be used by the ESTAE
routine when it is scheduled for execution.

ESTAE - Specify Task Abnormal Exit Extended 2-123




,XCTL=NO

XCTL=YES P
specifies that the ESTAE macro instruction will be deleted (NO) or will not be deleted \‘k 0
(YES) if an XCTL macro instruction is issued by this program. ~

,PURGE =NONE

,PURGE = QUIESCE

,PURGE =HALT
specifies that all outstanding requests for I/O operations are not to be saved when the
ESTAE routine gets control (HALT) or that I/O processing is to be allowed to continue
normally when the ESTAE routine gets control (NONE) or that all outstanding requests
for I/O operations are to be saved when the ESTAE routine is taken (QUIESCE). If
QUIESCE is specified, the user’s retry routine can restore the outstanding I/O requests.

PURGE =NONE specifies that all control blocks affected by input/output processing can
continue to change during ESTAE routine processing. If you specify PURGE =NONE,
and the ABEND was originally scheduled because of an error in input/output processing,
an ABEND recursion develops when an input/output interruption occurs, even if the \
ESTAE routine is in progress. Thus, it will appear that the ESTAE routine failed when, S
in reality, input/output processing caused the failure.

Notes:

1. You should understand PURGE processing before using this parameter. For
information on PURGE processing, see System-Data Administration.

2. If you specify PURGE=HALT, or PURGE=QUIESCE but I/0O is not restored,

o  While using SAM or ISAM, only the input/output event on which the purge is done e
will be posted. Subsequent event control blocks (ECBs) will not be posted. If you
issue further data management macros, such as GET/PUT, READ/WRITE or
CLOSE, after a PURGE is issued during ESTAE recovery, a wait may occur in an
access method module.

o  While using ISAM,
— The ISAM check routine will treat purged I/O as normal 1/O. AN

— Part of the data set might be destroyed if the data set was being updated or
added to when the failure occurred.

,ASYNCH =YES

,ASYNCH=NO
specifies that asynchronous exit processing will be allowed (YES) or prohibited (NO)
while the user’s ESTAE routine is executing.

ASYNCH =YES must be coded if:

® Any supervisor services that require asynchronous interruptions to complete their
normal processing are going to be requested by the ESTAE routine.

e PURGE=QUIESCE is specified for any access method that requires asynchronous _
interruptions to complete normal input/output processing. (\

2-124  SPL: System Macros and Facilities Volume 2



PURGE =NONE is specified and the ESTAE routine issues the CHECK macro
instruction for any access method that requires asynchronous interruptions to
complete normal input/output processing.

Note: If ASYNCH=YES is specified and the ABEND was originally scheduled because
of an error in asynchronous exit handling, an ABEND recursion will develop when an
asynchronous exit handling was the cause of the failure.

,TERM=NO

,TERM=YES
specifies that the ESTAE routine will be scheduled (YES) or will not be scheduled (NO)
in the following situations:

Cancel by operator

Forced logoff

Expiration of job step timer

Exceeding of wait time limit for job step

ABEND condition because of DETACH of an incomplete subtask when the STAE
option was not specified on the DETACH

ABEND of the attaching task when the ESTAE macro instruction was issued by a
subtask

ABEND of job step task when a non-job step task requested ABEND with the STEP
option.

When the ESTAE routine is entered because of one of the preceding reasons, re-try is not
permitted. If a dump is requested at the time of ABEND, it is taken before entry into the
ESTAE routine.

Note: If DETACH was issued with the STAE parameter, the following occurs for the
task to be detached:

C :

All ESTAE routines are entered.
The most recently established STAE routine is entered.

All STAI/ESTAI routines are entered unless one of the STAI routines issues return
code 16.

In these cases, entry to the routine occurs before dumping and re-try is not permitted.

,BRANCH=NO

,BRANCH = YES ,SVEAREA = save addr
specifies that an SVC entry to the ESTAE service routine is to be performed (NO) or that
a branch entry is to be performed (YES). The save area is a 72-byte area used to save the
general registers. If the caller is not in key zero, the KEY parameter must be specified.

ESTAE - Specify Task Abnormal Exit Extended 2-125




LKEY=SAVE

L,KEY =storage key .
specifies that supervisor state users who are not in key zero can use the branch entry
interface to the ESTAE service routine.

If the user specifies KEY =SAVE, the system saves the current PSW protection key in
register 2 and issues a set protection key instruction (SPKA) to change to protection key
zero. When the ESTAE service routine returns control, it restores the original PSW key
from register 2. Therefore, the user should save register 2 before the macro expansion
and restore it afterwards. Specifying KEY =SAVE destroys the contents of register 2
during the macro expansion.

On the other hand, if the user knows the current PSW protection key, he may specify it
directly in the form KEY =(0-15) to eliminate saving and restoring the original protection
key. This procedure eliminates an IPK instruction and prevents the use of register 2 in
the macro expansion.

,RECORD=NO

,RECORD =YES
specifies that the system diagnostic work area (SDWA) is not to be written to
SYS1.LOGREC (NO) or that the entire SDWA (including the fixed length base, the
variable length recording area, and the recordable extensions) is to be written to
SYS1.LOGREC (YES).

,TOKEN = token addr
specifies that a four-byte token is to be associated with the ESTAE routine.
Unauthorized or accidental destruction of the ESTAE routine is prevented because the
ESTAE cannot be canceled or overlaid unless the same token is specified.

With CT (create): ESTAE processing places the token created for this request in the
location specified by token addr as well as in the ESTAE parameter list.

With OV (overlay): ESTAE processing locates the specified ESTAE routine for the
current RB and replaces the routine information. If there are any newer ESTAE routines
for the RB, they are deleted.

With 0 (cancel): ESTAE processing locates the specified ESTAE routine for the current
RB and deletes the routine. Any newer ESTAE routines for the RB are deleted.

,RELATED = value
specifies information used to self-document macro instructions by “relating” functions or
services to corresponding functions or services. The format and content of the
information specified are at the discretion of the user, and may be any valid coding
values.

2-126  SPL: System Macros and Facilities Volume 2

5 \}
.



Example 1

Example 2

Example 3

Example 4

Control returns to the instruction following the ESTAE macro instruction. When control
returns, register 15 contains one of the following return codes:

Hexadecimal
Code Meaning
00 Successful completion of ESTAE request.
04 ESTAE OV was specified with a valid exit address, but the current exit is either

nonexistent, not owned by the user’s RB, or is not an ESTAE exit,
as indicated by the reason code in register 0.
0C Cancel or an exit address equal to zero was specified, and either there are no exits
for this TCB, the most recent exit is not owned by the caller, the most
recent exit is not an ESTAE exit, or the ESTAE was created with the TOKEN parameter
and on a delete request, either the token was not specified or does not match.

10 An unexpected error was encountered while processing this request.
14 ESTAE was unable to obtain storage for required data areas.
18 The ESTAE was created with the TOKEN parameter and on an

overlay request, either the token was not specified or does not match.

Operation: 1If an error occurs, pass control to the ESTAE routine specified by register 4, allow
asynchronous exit processing, do not allow special error processing, do not branch enter SVC
60, and default to CT (create) and PURGE =NONE.

ESTAE (4),ASYNCH=YES,TERM=NO, BRANCH=NO

Operation: If an error occurs, pass control to the ESTAE routine specified by register 4. The
address of the ESTAE parameter list is in register 2. Place the token associated with this
ESTAE routine in TOKENFLD.

ESTAE (4),PARM=(2),TOKEN=TOKENFLD

Operation: If an error occurs, pass control to the ESTAE routine labeled ADDR, allow
synchronous exit processing, halt I/O, allow special error processing, branch enter SVC 60, use
the 72-byte save area at SADDR, and execute the execute form of the macro instruction.
EXEC is the label of the ESTAE parameter list built by a list form of the macro instruction
elsewhere in this program.

ESTAE ADDR,ASYNCH=YES,PURGE=HALT,TERM=YES,BRANCH=YES, X
SVEAREA=SADDR,MF=(E,EXEC)

Operation: Request an overlay of the existing ESTAE recovery routine with the following
options: the address of the parameter list is at PLIST, I/O will be halted, no asynchronous exits
will be taken, ownership will be transferred to the new request block resulting from any XCTL
macro instructions.

ESTAE ADDR,OV,PARAM=PLIST,XCTL=YES,PURGE=HALT , ASYNCH=NO

ESTAE - Specify Task Abnormal Exit Extended 2-127



Example 5

£

Operation: Provide the pointer to the recovery code in the register called EXITPTR, place the \,/

address of the ESTAE parameter list in register 9. Register 8 points to the area where the

ESTAE parameter list (created with the MF =L option) was moved.

ESTAE (EXITPTR) ,PARAM=(9) ,MF=(E, (8))

o
.-
w
/ﬂ/ B :
N

2-128 SPL: System Macros and Facilities Volume 2



ESTAE (List Form)

The list form of the ESTAE macro instruction is used to construct a remote control program
parameter list.

The list form of the ESTAE macro instruction is written as follows:

( / name name: symbol. Begin name in column 1.
b One or more blanks must precede ESTAE.
ESTAE
b One or more blanks must follow ESTAE.
‘ exit addr exit addr: A-type address.
| ( h ,PARAM = list addr list addr: A-type address.
,PURGE=NONE Default: PURGE =NONE

,PURGE=QUIESCE
LPURGE=HALT

,ASYNCH =YES Default: ASYNCH = YES
LASYNCH=NO
,TERM=NO Default: TERM =NO
,TJERM=YES
o ,RECORD =NO Default: RECORD =NO
,RECORD =YES
,RELATED = value value: any valid macro keyword specification.
JMFE=L

The parameters are explained under the standard form of the ESTAE macro instruction, with
the following exception:

MF=L
specifies the list form of the ESTAE macro instruction.

ESTAE (List Form) 2-129




ESTAE (Execute Form)

A remote control program parameter list is used in, and can be modified by, the execute form
of the ESTAE macro instruction. The control program parameter list can be generated by the
list form of the ESTAE macro instruction. Any combination of exit addr, PARAM, XCTL,

PURGE, ASYNCH, TERM, RECORD, and TOKEN can be specified to dynamically change

the contents of the remote ESTAE parameter list. If TOKEN was previously specified and is to

be used again without change, TKNPASS=YES must be coded. Any fields not specified on
the macro instruction remain as they were before the current ESTAE request was made.

The execute form of the ESTAE macro instruction is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede ESTAE.
ESTAE
b One or more blanks must follow ESTAE.
gxit addr exit addr: RX-type address, or register (2) - (12).
,CT
0OV
,PARAM = list addr list addr: RX-type address, or register (2) - (12).
XCTL=NO
,XCTL=YES

,PURGE=NONE
,PURGE = QUIESCE
,PURGE=HALT

,LASYNCH=YES
,LASYNCH=NO

,TERM=NO
,TERM=YES

,BRANCH = NO
,BRANCH = YES,

,RECORD =NO
,RECORD =YES

,TOKEN = token addr

,TKNPASS =NO
,TKNPASS = YES

,RELATED = value
,MF = (E,ctrl addr)

SVEAREA = save addr save addr: RX-type address, or register (2) - (12) or
(13).

token addr: RX-type address, or register (2) - (12).

Default: TKNPASS =NO

value: any valid macro keyword specification.

ctrl addr: RX-type address, or register (1) or (2) - (12).

2-130 SPL: System Macros and Facilities Volume 2

a

s

A N

./



The parameters are explained under the standard form of the ESTAE macro instruction, with
the following exceptions:

,TKNPASS=NO

, TKNPASS=YES
specifies that a previously-specified token, indicated in the parameter list, should be
ignored (NO), or should remain part of the specification (YES).

,MF = (E,ctrl addr)

specifies the execute form of the ESTAE macro instruction using a remote control
program parameter list.

ESTAE (Execute Form) 2-131



ETCON - Connect Entry Table

The ETCON macro instruction connects one or more previously created entry tables to the
specified linkage table indexes in the current home address space. If an entry table is connected
to a system linkage index (an index reserved with the SYSTEM =YES option of the LXRES
macro instruction), the entry table is connected to the linkage table of every address space, both
present and future.

The restrictions on the use of the ETCON macro instruction are as follows:

e If an entry table contains entries that cause address space switches, the entry table owner
must have previously established authorization to issue PT and SSAR instructions to the
home address space.

® An entry table can be connected only once to a single linkage table.

e The linkage index and the entry table being connected must be under the same ownership.

Any violation of these restrictions causes the caller to be abnormally terminated.

The connection created by the ETCON macro instruction remains in effect until one of the
following occurs:

e The ETDIS macro instruction removes the connection.
e The entry table owner terminates.

e The address space to which the table is connected terminates unless the connection was to a
system linkage index.

e The system is re-IPLed.

The caller must be in supervisor state or PKM 0-7, executing in primary mode, enabled, and
unlocked. The parameter list passed to the ETCON macro instruction must be addressable in
primary mode at the time the macro instruction is issued. Register 13 must point to a standard
register save area that must also be addressable in primary mode.

Registers 2-14 are preserved. Register 2, which is modified by the macro after the registers are

saved, should not be used as the base register. Register 15 contains the return code. The
contents of registers 0 and 1 are unpredictable.

2-132  SPL: System Macros and Facilities Volume 2

i
NS




The ETCON macro instruction is written as follows:

(_ . name name: symbol. Begin name in column 1.
b One or more blanks must precede ETCON.
ETCON
b One or more blanks must follow ETCON.
TKLIST = addr addr: RX-type address or register (0) - (12).
L,LXLIST = addr addr: RX-type address or register (0) - (12).
,RELATED = value value: any valid macro keyword specification.
( The parameters are explained as follows:

TKLIST =address
specifies the address of a list of fullword tokens representing the entry tables to be
connected to the linkage table. The first entry in the list must be the number of tokens
that follow (from 1 to 32). The tokens are the values returned in register 0 when the
ETCRE macro instruction is issued.

SJLXLIST = addr
specifies the address of a list of linkage index values to which the specified entry tables are
( ' to be connected. The list contains fullword entries, the first of which must be the number
of linkage index values that follow (from 1 to 32). The number of linkage indexes must
be the same as the number of tokens. The first entry table is connected to the first
linkage index; the second entry table is connected to the second linkage index, and so on.

LRELATED =value
specifies information used to self document macro instructions by “relating” functions or
services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user and can be any valid coding values.

( When control returns, register 15 contains the following return code:
Hexadecimal
Code Meaning
0 The specified connections were successfully made.

ETCON - Connect Entry Table 2-133




ETCON (List Form)

The list form of the ETCON macro instruction constructs a non- executable parameter list. This
list, or a copy of it for reentrant programs, can be referred to by the execute form of the macro ‘
. . i
Instruction.
The list form of the ETCON macro instruction is written as follows:
name name: symbol. Begin name in column 1. N
b One or more blanks must precede ETCON.
ETCON
b One or more blanks must follow ETCON.
TKLIST = addr addr: A-type address.
RN
LLXLIST = addr addr: A-type address. ¥, /
W
,RELATED = value value: any valid macro keyword specification.
,MF=L
The parameters are explained under the standard form of the ETCON macro instruction, with
the following exception:
- \\’
MF=L S

specifies the list form of the ETCON macro instruction.

2-134 SPL: System Macros and Facilities Volume 2




ETCON (Execute Form)

The execute form of the ETCON macro instruction can refer to and modify a remote parameter
list created by the list form of the macro.

The execute form of the ETCON macro instruction is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede ETCON.
ETCON
b One or more blanks must follow ETCON.
TKLIST = addr addr: RX-type address or register (0) - (12).
LXLIST = addr ' addr: RX-type address or register (0) - (12).
,RELATED =value value: any valid macro keyword specification.
,MF = (E,cntl addr) cntl addr: RX-type address or register (0) - (12).

The parameters are explained under the standard form of the ETCON macro instruction with
the following exception:

,MF = (E,cntl addr)

specifies the execute form of the ETCON macro instruction. This form uses a remote
parameter list.

ETCON (Execute Form) 2-135




ETCRE - Create Entry Table

i The ETCRE macro instruction causes a program call entry table to be built based upon
| descriptions of each entry. A token representing the created entry table is returned to the
‘ requestor. This token must be used in all subsequent references to the entry table.

The created entry table is owned by the cross memory resource ownership task in the current
home address space. When the cross memory resource ownership task terminates, entry tables
are disconnected and freed.

The caller must be in supervisor state or PKM 0-7 executing in primary mode enabled and

unlocked. Register 13 must point to a standard register save area that must be addressable in

primary mode. The list of descriptions specified by ENTRIES must also be addressable in
L primary mode when the macro instruction is issued.

J Registers 2 - 14 are preserved. Register 2, which is modified by the macro after the registers are
saved, should not be used as the base register. Register 15 contains the return code. On return,
register 0 contains the 32-bit token associated with the new entry table. The contents of register
1 are unpredictable.

| The ETCRE macro instruction is written as follows:

name name: symbol. Begin name in column 1.
b One or m;)re blanks must precede ETCRE.
ETCRE
b One or more blanks must follow ETCRE.
ENTRIES = addr addr: RX-type address of register (0) - (12).
,RELATED =value value: any valid macro keyword specification.

The parameters are explained as follows:

ENTRIES = addr
specifies the address of the description of the entry table to be built. The entry table
description is a table consisting of a single 4 byte table header followed by one 20 byte
description element for each entry table entry to be built. The description elements must
appear in ascending sequence based on the entry index number. The IHAETD mapping
macro defines the format to which the entry table description must conform as shown in
Figure 6.

2-136 SPL: System Macros and Facilities Volume 2



An entry index value that does not have a description results in an invalid entry in the

entry table. If the program name field in an entry table description entry contains zeroes,
an invalid entry is created for that entry index. A program call to an invalid entry causes

the caller to be abnormally terminated. The ETCRE caller is abnormally terminated if
any of the reserved fields are nonzero or if the system cannot locate the specified program

name.

,RELATED =value

specifies information used to self-document macro instructions by relating functions or
services to corresponding services performed elsewhere. The format and contents of the
information specified can be any valid coding values.

DESCRIPTION

ENTRY TABLE DESCRIPTION LIST
DESCRIBES THE INPUT LIST TO
THE ETCRE MACRO

ETDFMT
ETDRSV1
ETDNUM

ETDELE

FORMAT NUMBER MUST BE ZERO
RESERVED MUST BE ZERO

NUMBER OF ENTRY DESCRIPTIONS
THAT FOLLOW (MAX OF 256)
ELEMENT DESCRIPTION. ONE

FOR EACH ENTRY TO BE ASSIGNED

ETDEX
ETDFLG
ETDSUP

ETDXM

ETDRSV2
ETDRSV3

INDEX FOR THIS ENTRY (O ORIGIN)
FLAG BYTE

IF ONE, THE PROGRAM IS TO
EXECUTE IN SUPERVISOR STATE,
IF ZERO, PROBLEM STATE

CROSS MEMORY SPACE SWITCH. IF
ZERO THE ENTRY WILL NOT CAUSE
A SPACE SWITCH. IF ONE, THE
PROGRAM WILL EXECUTE IN THE
ADDRESS SPACE OF THE CREATOR
OF THE ENTRY TABLE WITH THE
AUTHORIZATION OF THAT ADDRESS
SPACE.

RESERVED. MUST BE ZERO
RESERVED. MUST BE ZERO

PROGRAM NAME OR THE VIRTUAL
ADDRESS TO BE GIVEN CONTROL.

IF A PROGRAM NAME, THE NAMED
PROGRAM MUST BE CN THE ACTIVE
LPA QUEUE (FLPA OR MLPA) OR

BE IN THE PLPA. IF AN ADDRESS,
ETDPRO1 MUST BE ZERO AND

ETPRO2 MUST BE THE ADDRESS.

BIT O OF THE ADDRESS FIELD
SPECIFIES THE ADDRESSING MODE

IN WHICH THE ROUTINE IS TO RECEIVE
CONTROL. (IF SET TO 1, THE
ADDRESSING MODE IS 31-BIT; IF
SET TO O, THE ADDRESSING MODE IS
24-BIT.

Figure 6 (Part 1 of 2).

C

OFFSETS TYPE LENGTH
0 (0) STRUCTURE 4
0 (0) UNSIGNED 1
1 (1) UNSIGNED 1
2 (2) UNSIGNED 2
0 (0) STRUCTURE 20
0 (0) UNSIGNED 1
1 (1) BITSTRING 1

1... ...
.11 1111
2 (2) UNSIGNED 2
(~- 4 (4) CHARACTER 8
4 (4) UNSIGNED 4
8 (8) A-ADDRESS 4

ETDPRO2

IHAETD Mapping Macro

SECOND WORD OF ETDPRO

ETCRE - Create Entry Table

2-137




OFFSETS TYPE LENGTH NAME

12 (C) BITSTRING 2 ETDAKM

loee e ETDAKO
ETDAK1
ETDAK2
ETDAK3
ETDAK4
ETDAKS
ETDAK6

ETDAK7

ETDAKS8
ETDAKO9
ETDAKA
ETDAKB
ETKAKC
ETDAKD
ETDAKE
ETDAKF
ETDEKM

B
[
cees o1,
B &

14 (E) BITSTRING 2

ETDEKO
ETDEK1
ETDEK2
ETDEK3
.. ETDEK4
. ETDEK5
ETDEK6
ETDEK7
ETDEKS8
ETDEK9
. ETDEKA
.o ETDEKB
ETDEKC
ETDEKD
ETDEKE
ETDEKF

15 (F) Toun i,

16 (10) CHARACTER 4 ETDPAR

Figure 6 (Part 2 of 2). IHAETD Mapping Macro

DESCRIPTION
A
16 BIT AUTHORIZED KEY MASK. "/
BIT O REPRESENTS KEY 0, ETC. -
IF A BIT IS ON, THE
CORRESPONDING KEY IS
AUTHORIZED TO CALL THIS ENTRY
BIT REPRESENTING KEY
BIT REPRESENTING KEY
BIT REPRESENTING KEY
BIT REPRESENTING KEY
BIT REPRESENTING KEY
BIT REPRESENTING KEY
BIT REPRESENTING KEY
BIT REPRESENTING KEY

~NoubhwNhEO

BIT REPRESENTING KEY 8

BIT REPRESENTING KEY 9

BIT REPRESENTING KEY 10

BIT REPRESENTING KEY 11

BIT REPRESENTING KEY 12 7N
BIT REPRESENTING KEY 13 A
BIT REPRESENTING KEY 14

BIT REPRESENTING KEY 15

16 BIT EXECUTION KEY MASK.

BIT 0 REPRESENTING KEY 0, ETC.

IF A BIT IS ON, THE CALLED

PROGRAM IS AUTHORIZED TO

USE THE KEY.

BIT REPRESENTING KEY
BIT REPRESENTING KEY
BIT REPRESENTING KEY
BIT REPRESENTING KEY
BIT REPRESENTING KEY
BIT REPRESENTING KEY
BIT REPRESENTING KEY
BIT REPRESENTING KEY
BIT REPRESENTING KEY
BIT REPRESENTING KEY
BIT REPRESENTING KEY 10

BIT REPRESENTING KEY 11

BIT REPRESENTING KEY 12

BIT REPRESENTING KEY 13

BIT REPRESENTING KEY 14 /
BIT REPRESENTING KEY 15 {

«

WoOo~JoOoUbwNRFEO

PARAMETER TO BE PASSED
TO THE CALLED PROGRAM.

When control returns, register 15 contains the following return code:

Hexadecimal
Code Meaning
0 The entry table is successfully created.

2-138 SPL: System Macros and Facilities Volume 2




ETDES - Destroy Entry Table

The ETDES macro instruction destroys a previously-created entry table. Only the address
space that owns the entry table can destroy it. At the time ETDES is issued, the entry table
must not be connected to any linkage tables unless PURGE = YES is coded. If any outstanding
connections still exist and PURGE = YES is not coded, the entry table is not destroyed and the
caller is abnormally terminated.

The caller must be in supervisor state or PKM 0-7 executing in primary mode enabled and
unlocked. Register 13 must point to a standard register save area the must be addressable in
primary mode. The parameter list passed to ETDES must also be addressable in primary mode
at the time ETDES is issued.

Registers 2 - 14 are preserved. Register 2, which is modified by the macro after the registers are
saved, should not be used as the base register. Register 15 contains the return code. The

contents of registers 0 and 1 are unpredictable.

The ETDES macro instruction is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede ETDES.
ETDES
b One or more blanks must follow ETDES.
TOKEN = addr addr: RX-type address or register (0) - (12).
,PURGE=NO Default: PURGE=NO
,PURGE=YES
,RELATED = value value: any valid macro keyword specification.

The parameters are explained as follows:
TOKEN = addr

specifies the address of the fullword token (returned by the ETCRE macro instruction)
associated with the entry table to be destroyed.

ETDES - Destroy Entry Table 2-139




,LPURGE=NO P

,PURGE =YES \x j;‘
specifies whether (YES) or not (NO) the entry table is to be disconnected from all linkage =
tables and then destroyed.

,RELATED =value
specifies information used to self-document macro instructions by “relating” functions or
services to corresponding services. The format and contents of the information specified
can be any valid coding values.

When control is returned, register 15 contains one of the following return codes:

Hexadecimal

Code Meaning

0 The specified entry table was destroyed. There were no connections to linkage indexes.

4 The specified entry table was destroyed. There were connections to linkage indexes, N

PURGE=YES was specified, and the entry table was disconnected. .

N
/"1" \\
\‘%_,./
L&” s

2-140 SPL: System Macros and Facilities Volume 2



ETDES (List Form)

The list form of the ETDES macro instruction constructs a non-executable parameter list. The
execute form of the macro can refer to this parameter list, or a copy of it for reentrant
programs.

The list form of the ETDES macro instruction is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede ETDES.
ETDES
b One or more blanks must follow ETDES.
TOKEN = addr addr: A-type address.
LPURGE=NO Default: PURGE=NO
,PURGE=YES
,RELATED = value value: any valid macro keyword specification.
JMF=L

The parameters are explained under the standard form of the ETDES macro instruction with
the following exception:

JMF=L
specifies the list form of the ETDES macro instruction.

ETDES (List Form) 2-141




o

N
ETDES (Execute Form)
The execute form of the ETDES macro instruction can refer to and modify a remote parameter
list created by the list form of the macro.
The execute form of the ETDES macro instruction is written as follows:
name name: symbol. Begin name in column 1. N
b One or more blanks must precede ETDES.
ETDES
b One or more blanks must follow ETDES.
TOKEN =addr addr: RX-type address or register (0) - (12).
A
,PURGE=NO Default: PURGE =NO y
JPURGE = YES g
,RELATED = value value: any valid macro keyword specification.
SMF = (E,cntl addr) cntl addr: RX-type address or register (0) - (12).
The parameters are explained under the standard form of the ETDES macro instruction with )
the following exception:
N

JF =(E,cntl addr)
specifies the execute form of the ETDES macro instruction. This form uses a remote
parameter list.

C

2-142 SPL: System Macros and Facilities Volume 2




ETDIS - Disconnect Entry Table

The ETDIS macro instruction disconnects one or more entry tables from the home address
space’s linkage table.

The caller must be in supervisor state or PKM 0-7 executing in primary mode enabled and
unl<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>