Order Number
GC26-4152-2

VSAM Administration: = .

MVS/Extended Archatecture

Macro Instruction Referehce.

¢
R

Data Facility Produsct
5665-XA2

ﬂe{aﬁs@ 3 @3

.
e
P
£
k3
3
Pyt
Ea
%

: N
et
s

Varsion 2

‘| Third Edition (June 1987)
| This is a major revision of, and makes obsolete, GC26-4152-1.

| This edition applies to Version 2 Release 3.0 of MVS/Extended Architecture Data
Facility Product, Licensed Program 5665-XA2, and to any subsequent releases until
otherwise indicated in new editions or technical newsletters.

The changes for this edition are summarized under “Summary of Changes” following
the preface. Specific changes are indicated by a vertical bar to the left of the change.
These bars will be deleted at any subsequent republication of the page affected.
Editorial changes that have no technical significance are not noted.

Changes are made periodically to this publication; before using this publication in
connection with the operation of IBM systems, consult the latest IBM System/370,
30xx, and 4300 Processors Bibliography, GC20-0001, for the editions that are applicable
and current.

References in this publication to IBM products, programs, or services do not imply

' that IBM intends to make these available in all countries in which IBM operates. Any
‘reference to an IBM licensed program in this publication is not intended to state or
imply that only IBM’s program may be used. Any functionally equivalent program

" may be used instead. '

Requests for IBM publiaxions should be made to your IBM representative or to the
IBM branch office serving your locality. If you request publications from the address
given below, your order will be delayed because publications are not st:xcked there.

A form for readers’ comments is provided at the back of this publication. If the form
has been removed, comments may be addressed to IBM Corporation, P.O. Box 50020,
Programming Publishing, San Jose, California, U.S.A. 95150. IBM may use or
distribute whatever information you supply in any way it believes appropriate without
incurring any obligation to you.

© Copyright International Business Machines Corporation 1985, 1986, 1987

Preface

Organization

This publication is a reference manual and contains the macro instructions that
are used for the virtual storage access method (VSAM). It is intended for
programmers who use VSAM macro instructions, access method services
commands, or JCL to process data.

This publication contains the following major scctions:

e Chapter 1, “Macro Instruction Return Codes and Reason Codes,” contains
return codes for macros used to open and close data sets, manage control
blocks, and issue data management requests.

® Chapter 2, “VSAM Macro Formats and Examples,” describes the syntax of
cach macro and includes coded cxamples.

e Appendix A, “Format of Macros,” summarizes, for ease of reference, the
format of the macros used to communicate with VSAM.

TR

e Appendix B, “List, Execute, and Generate Ferms of Macros,” explains how
to code reentrant programs with the macros that generate, modify, test, and
display control blocks at exccution.

® Appendix C, “Operand Notation,” defines the terms used to describe the
operand notation used in the macros that generate, modify, test, and display
control blocks at program execution time.

e Appendix D, “Building Parameter Lists,” describes the standard way to
build parameter lists.

¢ “Glossary of Terms and Abbreviations” defines VSAM tcrms.

e Index is a subject index to this publication.
\

Preface il

L B

Prerequisite Knowledge

Readers of this ﬁublication are assumed to have a programming background that
includes:

[J

VSAM data management
Catalog administration

Job control language

Required Publications

You should be familiar with the information presented in the following
publications: '

Related Publications

MVS|Extended Architecture Catalog Administration Guide, GC26-4138,
describes the administration of tasks for catalogs and how to use the access
method services commands to manipulate catalogs, and the objects cataloged
in them.

MVS|Extended Architecture Data Facility Product Version 2: Customization,
GC26-4267, contains consolidated customization information for the DFFP

_ library.

MVS/|Extended Architecture JCI. User's Guide, GC28-1351, and
MVS|Extended Architecture JCL Reference, GC28-1352, describes the JCL,
paramcters referred to in this publication and describes dynamic allocation.

MVS|Extended Architecture Message Library: System Messages, Volumes 1
and 2, GC28-1376 and GC28-1377, provides a complete listing of the
messages issued by VSAM.

. MVS/Extended Architecture VSAM Administration Guide, GC26-4151,

describes how to use VSAM.

MVS|Extended Architecture VSAM Logic, 1L.Y26-3970, describes the internal
logic of VSAM.

Within the text, references are made to the publications listed in the table below:

iv. MVS/XA VSAM Administration: Macro Instruction Reference

Short Title Publication Title Order Number
Access Method MVS|Extended Architecture GC26-4135
Services Integrated Catalog
Reference Administration: Access Method
Services Reference
MVS|Extended Architecture GC26-4136
VSAM Catalog
{ Administration: Access Method
Services Reference
Catalog MVS|Extended Architecture GC26-4138
Administration Catalog Administration Guide
Guide
Checkpoint/ MVS/|Extended Architecture GC26-4139
Restart Uscr’s Checkpoint|Restart User's
Guide Guide ‘
Data Facility MVS|Extended Architecture GC26-4267
Product: Data Facility Product Version
Customization 2: Customization
Data MVS|Extended Architecture GC26-4141
Administration: Data Administration: Macro
Macro Instruction Reference
Instruction
Reference
Data MVS|Extended Architecture LYBS8-1191
Areas—JES2 Data Areas—JES 2
Data MVS/Extended Architecture LYBS8-1195
Areas— JES3 Data Areas—JES 3
Data Facility MVS|Extended Architecture GC26-4146
Product: Master | Data Facility Product Version
Index 2: Master Index
Data Facility MVS/Extended Architecture 1 GC26-4147
‘Product: Data Facility Product Version 1
Planning Guide 2: Planning Guide
Debugging MVS|Extended Architecture LC28-1164
Handbook System Programming Library: LC28-1165
Debugging Handbook, LC28-1166
Volumes 1 through § LC28-1167
LC28-1168
Introduction to Introduction to the IBM 3850 GA32-0028
thc IBM 3850 Mass Storage System (MSS)
Mass Storage
System
JCL User’s MVS|Extended Architecture GC28-1351
Guide JCL User's Guide
JCL Reference MVS|Extended Architecture GC28-1352
JCL Reference
Note:

! All five volumes méy_ be ordered under one order number, LBOF-1015.

Preface V

Short Title Publication Title Order Number
0S/VS Mass OS/VS Mass Storage System GC35-0017
Storage System (MSS) Services: Reference
Services: Information
Reference
Information
RACF General "OS/VS2 MVS Resource Access | GC28-0722
Information Control Facility (RACF):
Manual General Information Manual
Supervisor MVS|Extended Architecture GC28-1154
Services and System Programming Library:
Macro Supervisor Services and Macro
Instructions Instructions
System Messages | MVS/Extended Architecture GC28-1376
Message Library: System and
Messages, Volumes 1 and 2 GC28-1377
System | MVS/Extended Architecture GC28-1152
Modifications - System Programming Library:
System Modifications
TSO Command 0S/VS82 TSO Command GC28-0646
Language Language Reference with SD23-0259
Reference | MVS/Extended Architecture
[supplement
TSO Terminal MVS|Extended Architecture GC28-1274
User’s Guide TSO Terminal User's Guide
VSAM MVS|Extended Architecture GC26-4151
Administration VSAM Administration Guide
Guide ‘
VSAM Logic MVS|Exiended Architecture LY26-3970
VSAM Logic
31-Bit MVS|Extended Architecture GC28-1158
Addressing System Programming Library:
31-Bit Addressing

Notational Conventions

A uniform system of notation describes the format of VSAM macro instructions.
This notation is not part of the language; it mercly provides a basis for describing
the structure of the macros.

The macro format illustrations in this book use the following conventions:

e Brackets [] indicate optional parameters.

® Braces { } indicate a choice of entry; unless a default is indicated, you must
choose one of the entries.

e Items separated by a vertical bar (]) represent alternative items. No more
than one of the items may be selected.

Vi MVS/XA VSAM Administration: Macro Instruction Reference

An ellipsis (...) indicates that multiple entries of the type immediately
preceding the ellipsis are allowed.

Other punctuation (parentheses, commas, etc.) must be entered as shown.

BOLDFACE type indicates the exact characters to be entered. Such itcms
must be entercd exactly as illustrated (in uppercase, except in TSO).

Italics type specifies ficlds to be supplied by the user.

BOLDFACE-UNDERSCORED type indicates a dcefault option. If the
parameter is omitted, the underscored boldface value is assumed.

A ‘ '’ in the macro format indicates that a blank (an empty space) must be
present before the next parameter.

Preface

vii

Summary of Changes

| Release 3.0, June 1987

| New Programming Support

A new parameter, MODE = 24|31, has been added to the BLDVRP,
CLOSL, DLVRP and OPEN macros.

A new paramcter, RMODE31 = (ALL|BUFF|CB|NONE), has been added to
the ACB, BLDVRP, GENCB and MODCB macros. This new parameter
replaces thce MACRF = AMODE31 subparamcter in the ACB,
GENCB-ACB, and MODCB-ACB macros and the LOC parameter in the
BLDVRP and GENCB-RPL macros.

A new specification, DATA|INDEX, has been added to the TYPE parameter
in the BLDVRP macro.

A gew option, 1LDS, has been added to the TESTCB-ACB macro. V

The parameter LOC = BELOW]ANY has been added to the GENCB macro.
The BLDVRP, CLOSE, DLVRP, and OPEN parameter lists, the ACB, and
other control blocks and 1/O buffers may now reside above or below 16

megabytes.

New codes have been added to the logical error reason codes in the feedback
ficld of the request paramcter list.

New codes have been added to the return codes from BLDVRP and some
existing code descriptions have been changed.

Somec code descriptions have been changed in the open reason codes in the
error ficld of the access method control block.

Summary of Changes iX

Service Changes

Information has been added to reflect technical service changes.

Version 2 Publications

The tables containing the macro operand expressions in Appendix C, “Operand
Notation” have becn deleted.

Release 2.0, June 1986

Service Changes

Information has been added to reflect technical service changes.

Version 2 Publications

The preface has been updated ta include order numbers far Version 2.

Release 1.0, April 1985

A new paramcter, ACTION = REFRESH, has been added to the VERIFY
macro.

A new paramcter, [OPID, has been added to the EXLST macro. This parameter
permits termination of existing I/O and prevention of new I/O.

X MVS/XA VSAM Administration: Macro Instruction Reference

Contents

Chapter 1. Macro Instruction Return Codes and Reason Codes 1
Return Codes and Reason Codes from OPEN 1
Return Codes from CLOSE i i, 6
OPEN/CLOSE Message Area for Multiple Reason or Warning Messages ... 7
Message Arealleader i i i i, 7
Message Listttt ittt 9
Control Block Manipulation Macro Retumn Codes and Reason Codes 10
Record Management Return Codes and Reason Codes 13
Return Codes (RPLRTNCD) ... o ittt i i ie e 13
Componcnt Codes (RPLCMPON) i 14
Reason Codes (RPLERRCD) i, 15
Return Codes from Macros Used to Share Resources among Data Sets 30
Return Codes from BLDVRP 30
Return Codes from DLVRP i 31
Return Codes from End-of-Volume 31
Chapter 2. VSAM Macro Formats and Examples 33
ACB Macro (Generate an Access Method Control Block at Assembly Time) 34
ACQRANGE Macro (Stage Data) 44
BLDVRP Macro (Build VSAM Resource Pool) 46
Examplc 1. Obtaining an L.SR Pool above 16 Mcgabytes 49
Example 2. Request for Scparate Data and Index Resource Pools 50
CHECK Macro (Wait for Completion of Request) 51
CLOSE Macro (Disconnect Programand Data) 55
Example: CLOSE Macrottt iiiiiiiiiieainnann 56
CNVTAD Macro (Convert Address)cvtiuneemennannnnnn. 57
DLVRP Macro (Delete VSAM Resource Pool) 59
Example: DLVRP Macro 60
ENDREQ Macro (Terminate a Request) 61
ERASE Macro (Deletea Record) i, 63
EXLST Macro (Generate an Exit List at Assecmbly 'lunc) 66
GENCB Macro (Gencrate an Access Method Control Block at Execution
71T TP 69
GENCB Macro (Gencrate an Exit List at Exccution Time) 76
GENCB Macro (Generatec a Request Parameter List at Exccutnon Time) . 80
GET Macro (Retrieve a Record) iiiiiiiieinnnnneeeenn 86
GETIX Macro (Retrieve an Index Record) 97
MNTACQ Macro (Mount Acquire)cceeveneenanenennnn 98
MODCB Macro (Modify an Access Method Control Block) 100
MODCB Macro (Modify an Exit List)c.cccvnn. 102
MODCB Macro (Modify a Request Parameter List) 104
MRKBFR Macro (Mark Buffer) ciiiuinann. 106
OPEN Macro (Connect Programand Data) 107

Contents X

~ POINT Macro (Position for ACCess)covvvuveeeennnnn.. 109

PUT Macro (StoreaRecord)cciiiiiiiiiininnnnn 111
PUTIX Macro (Store an Index Record)c..ciiniian... 125
RPL Macro (Generate a Request Parameter List at Assembly Time) 126
SCHBFR Macro (Search Buffer)ccooviiiiiiiiiia.., 132
SHOWCB Macro (Display Fields of an Access Method Control Block) .. 133
SHOWCB Macro (Display Fields ofan Exit Last) 139
SHOWCB Macro (Display Fields of a Request Parameter List) 141
TESTCB Macro (Test Fields of an Access Mcthod Control Block) 145
TESTCB Macro (Test-Fieldsof an Exit List) 150
TESTCB Macro (Test a Request Parameter List) 152
VERIFY Macro (Synchronize Endof Data): 155
WRTBFR Macro (Write Buffer) it 156
= Appendix A. Format of Macros Ceereereaseenenaas . 159
Appendix B. List, Exccute, and Generate Forms of Macros 171
List-Form Keywordcciiiniiitiiiiiiiii e 172
Execute-Form Keyword 173
Generate-Form Keyword it nnnns 173
List, Exccute and Generate Formats [P 174
Use of List, Execute, and Generate Forms ciiiveennn.., 178
Examples of Generate, List, and Execute Forms in Reentrant
Environments 00ttt i 179
Appendix C. Opcrand Notationccveeeretocsccnscsnsnens 181
Operands with GENCB, MODCB, SIHOWCB, and TESTCB 181
Appendix D. Building Parameter Lists ceeecroenan 183
The Format of the Parameter Listso .. 183
Building Header and Element Entriescooiii .. 185
Passing Control Directlyto VSAM e 187
Modifying and Displaying the RECLEN Ficld of an RPL Directly 188
Glossary of Terms and Abbreviationsccc00vceevevencennans 191
Index esesseseteersbtnecnastncssas e nenenanan 197

Xii MVS/XA VSAM Administration: Macro Instruction Reference

Figures

10.

1.
12.

13.
14.
15

16.
17.

OPEN Reason Codes in the CLRROR Field of the Access Method

Control Block . ..v.iiiiiiiniiineneriononoseannenonnansss 2
CLOSE Reason Codes in the ERROR Field of the Access Mcthod

Control Blockciiitiiiiereinnneennnnnnncesanans 6
Format of the Message Arealleader 8
Format of Individual Messages in Message List 9
GENCB, MODCB, SHOWCB, and TESTCB Reason Codes Returned
InNRegister 0 ..., .ttt iiiiensrecsanassconaossnsns 11
Component Codes Providedinthe RPL 15
Successful Completion Reason Codes in the Feedback Arca of the

Request Parameter List i innnnnnn. 16
Logical Error Reason Codes in the Feedback Area of the Request
Parameter List0iutciiiueeeennnnnnneenannnnnn 17
Positioning States of Rcason Codes Listed for Sequential, Direct, and
Skip-Scquential Processingccveeennrecacncnenenann 25
Physical Error Reason Codes in the Feedback Area of the Request
Parameter List i iiiiiiiiiiinnennaennnnnnns 27
Physical Error Message Format vt 27
MACRFOptionsco0uu.n. ettt 38
OPTCD Optionsc.vivtiiurennceonnennsssnannnoans 128

FIELDS Opecrand Kcywords for an Access Method Control Block .. 134
FIELDS Operand Keywords for a Display Request Parameter List .. 142

Reentrant Programmingc.cciiiiieeriennnnnnaess 178
Format of Header and Element Entries for GENCB, MODCB,
SHOWCB, and TESTCB Parameter Lists e neeaaea. 184

Figures Xiii

Chapter 1. Macro Instruction Return Codes and Reason Codes

This chapter describes the return codes and reason codes generated by the macro
instructions uscd to open and close a data set, manage VSAM control blocks,
and issue data processing requests.

VSAM sets the return codes in register 15. These return codes are paired with
reason codes set in the access method control block (ACB) and the request
parameter list (RPL). Reason codes set in the ACB indicate open or close errors.
Reason codes set in the RPL indicate record management errors.

This manual lists return codes and reason codes in decimal and hexadecimal
values. The decimal value is shown first, followed by the hexadecimal value in
parentheses. Format descriptions and examples of each macro are shown in
Chapter 2, “VSAM Macro Formats and Examples” on page 33.

Return Codes and Reason Codes from OPEN

When your program receives control after issuing an OPEN macro, the return
code in register 15 indicatcs whether all of the VSAM data sets were opened
successfully:

Return
Code Condition

0(0) All data sets were opened successfully.

4(49) All data scts were opened successfully, but one or more warning
mecssages were issued (reason codes less than X 80").

8(8) At least one data set (VSAM or non-VSAM) was not opened
successfully; the access method control block was restored to the
contents it had before OPEN was issued; or, if the data sct was
already open, the access method control block remains open and
usable and is not changed.

12(C) A non-VSAM data set was not opened successfully when a
non-VSAM and a VSAM data set were being opened at the same
time; the non-VSAM data control block was not restored to the
contents it had before OPEN was issued (and the data set cannot be
opened without restoring the control block).

Chapter 1. Macro Instruction Return Codes and Reason Codes 1

If register 15 contains a nonzero return code, you can use the SHOWCB macro
to display the corresponding reason code. The SHOWCB macro displays the
error field in each access method control block specified by the OPEN macro.
(See “SHOWCB Macro (Display Fields of an Access Method Control Block)”
on page 133.) Figure 1 lists the reason codes that may appear in this error field.
VSAM also writes a message to the operator console and to the programmer’s
listing to explain the error further. For a listing of VSAM messages, sce System
Messages.

Reason -
Code Condition

0(0) One of the following conditions exists:

® VSAM is processing the access method control block for some
other request.

¢ The access mcthod control block address is invalid.

76(4C) Warming message: The interrupt recognition flag (IRF) was detected
for a data sct opened for input processing.

92(5C) Waming message: Inconsistent use of CBUF processing. Sharing
- options. differ between index and data components.

96(60) Warning message: An unusable data set was opened for input.

100(64) Warning message: OPEN cncountered an empty alternate index that
is part of an upgrade set.

104(68) Waming message: The time stamp of the volume on which a data sct
is stored doesn t match the system time stamp in the data sct’s catalog
record; this indicates that extent information in the catalog record
may not agrce with the extents indicated in the volume’s VTOC.

108(6Cy Warning message: The time stamps of a data component and an
index component do not match; this indicates that cither the data or
the index has been updated separatcly from the other.

116(74) Warning message: The data set was not properly closed and cither
OPEN’s implicit verify was unsuccessful or the user specificd that
OPEN’s implicit verify should not be exccuted.

A previous VSAM program may have abnormally terminated. Data
may be lost if processing continues; the access method scrvices
VERIFY command may be used to cause the data set to be properly
closed. For a description of the VERIFY command, sce Access
Method Services Reference. In a cross-system shared DASD
cnvironment, a return code of 116 can have two meanings: (1) the
data set was not properly closed, or (2) the data set is opencd for
output on another processor.

s 118(76) Warning message: The data set was not properly closed but OPEN’s
implicit verify was successfully executed.

Figure 1 (Part 1 of 4). OPEN Reason Codes in the ERROR Field of the Access
Methed Control Block

/
2 MVS/XA VSAM Administration: Macro Instruction Reference .

Reason
Code
128(80)

132(84)

136(88)

140(8C)
144(90)

145(91)

148(94)

152(98)

160(A0)

Condition

DD statement for this access method control block is missing or
invalid. :

One of the following errors occurred:

e Not enough storage was available for work areas.

® The required volume could not be mounted.

® An uncorrectable 1/O error occurred while VSAM was reading
the job file control block (JFCB).

® The format-1 DSCB or the catalog cluster record is invalid.

® The user-supplicd catalog name does not match the name on the
entry.

e The user is not authorized to open the catalog as a catalog.

Not enough virtual storage space is available in your program'’s
address space for work areas, control blocks, or buffers.

The catalog indicates this data sct has an invalid physical record size.

An uncorrectable 1/0 error occurred while VSAM was reading or
writing a catalog record.

An uncorrectable error occurred in the VSAM volume data sct
(VVDS).

No record for the data sct to be opened was found in the available
catalog(s), or an unidentificd error occurred while VSAM was
scarching the catalog. For the catalog return code, sce system
message IDC3009] in Systerm Messages.

Authorization checking has failed for the following reasons:

1. The password specificd in the access method control block for a
specified level of access doesn’t match the password in the catalog
for that level of access.

2. RACEF failure. For the catalog return code, see system message
IDC30091 in System Messages.

The operands specified in the ACB or GENCB macro are
inconsistent cither with each other or with the information in the
catalog rccord.

One of these conditions has been detected:

® For option ACBRST
— Path processing
— LSR|GSR

¢ For option ACBICI
- LSR|GSR
— KSDS

Figure 1 (Part 2 of 4). OPEN Reason Codes in the ERROR Field of the Access

Method Control Block

Chapter 1. Macro Instruction Return Codes and Reason Codes 3

—— —— — . —— — — S— —— — — s S S oy i o S

Reason
Code

164(A4)

163(A8)

176(B0)

180(B4)

184(B8)
188(BC)

192(C0)

Condition

— Path processing

— Sequence set with data

- Replicated index

— Blocksize not equal to CI size
e For option ACBUBF

— LSR|GSR

— ACBCNYV not specified

— ACBKEY specificd

— ACBADR specified
¢ For option ACBSDS

— LSR|GSR

— Path processing

— Upgrade processing
® For option ACBCBIC

— LSR|GSR

— ACBICI not specified
¢ For miscellaneous options

— Bufferspace specified and the amount is too small to process

the data set
" — Volume not mounted
~ Trying to open an cmpty data sct for input

An uncorrectable 1/O error occurred while VSAM was reading the
volume label.

The data set was not available for the type of processing you
specified, or an attempt was made to open a rcusable data set with the
resct option while another user had the data set open. The data set
may have the INHIBIT attribute specified.

The data set cannot be opened for CBUF processing because it was
already opened for non-CBUF processing: Or the data sct has
conflicting CBUF attributes for the data and index components of the
ACB.

An error occurred while VSAM was attempting to fix a page of
virtual storage in real storage.

A VSAM catalog specificd in JCL either does not exist or is not
open, and no record for the data set to be opened was found in any
other catalog.

An uncorrectable I/O error obcurred while VSAM was completing an
I/O request. '

The data sct indicated by the access method control block is not of
the type that may be specified by an access method control block.

An unusable data set was opened for output.

Figure 1 (Part 3 of 4). OPEN Reason Codes in the ERROR Field of the Access

Method Control Block

4 MVS/XA VSAM Administration: Macro Instruction Reference

Reason

Code ,
193(CD)
196(C4)
200(C8)

204(CC)

1Y

205(CD)
208(D0)
212(D4)

216(D8)
220(DC)

224(E0)

228(E4)

©32AES)

236(EC)
240(F0)

244(F4)

Condition

The interrupt recognition ﬂag (IRF) was detcctcd for a data set
opened for output processing.

Access to data was rcquested via an empty path.

The Format-4 DSCB indicates that the volume is unusable. There
was an error in CONVERTY to convert the volume from cither real
to virtual or virtual to real.

The ACB MACREF specification is GSR and caller is not opcrating in
supcervisor protect key 0 to 7, or ACB MACREF specification is CBIC
(Control Blocks in Common) and caller is not opcrating in supervisor
state with protect key 0 to 7.

The ACBCATX option or VSAM volume data sct OPEN was
specified and the calling program was not authorized.

The ACB MACREF specification is GSR and caller is using an
0OS/VS1 system.

The ACB MACREF specification is GSR or LSR and the data set
requires load mode processing.

The ACB MACREF specification is GSR or LSR and the key length
of the data set exceeds the maximum key length specified in
BLDVRP.

The ACB MACRF spccification is GSR or LSR and the data sct’s
control interval size exceeds the size of the largest buffer specified in
BLDVRP.

Improved control interval processing is specificd and the data set
rcquires load modc processing.

The ACB MACREF specification is GSR or LSR and the VSAM
sharcd resource table (VSRT) does not exist (no buffer pool is
available).

Reset was specified for a nonreusable data sct and the data set is not
empty.

A pcrmanent staging error occurred in MSS (ACQUIRE).

Format-4 DSCB and volume timestamp verification failed during
volume mount processing for output processing.

The volume containing the catalog recovery arca was not mounted
and not verificd for output processing.

Figure 1 (Part 4 of 4). OPEN Reason Codes in the ERROR Field of the Access

Method Control Block

Chapter 1. Macro Instruction Return Codes and Reason Codes 5

Return Codes from CLOSE

When your program receives control after it has issued a CLOSE macro, a return
code in register 15 indicates whether all the VSAM data scts were closed
successfully:

Return
Code Condition

0(0) All data sets were closed successfully.
4(4) At least one data set (VSAM or non-VSAM) was not closed
successfully.

If register 15 contains 4, you can use SIIOWCB to display the ERROR field in
cach access method control block to find out whether a VSAM data sct wasn't
closed successfully and why not. (Sce “SHOWCB Macro (Display Fields of an
Access Method Control Block)” on page 133.) Figure 2 gives the reason codes
that the ERROR ficld may contain following CLOSE. In addition to these
reason codes, VSAM writes a message to the operator’s console and the
programmer’s listing to further explain the crror. For a listing of these messagcs,
see System Messages.

Return
Code Condition

0(0) No error (sct when register 15 contains 0).
4(4) The data set indicated by the access method control block is alrcady
closed.

129(81) TCLOSE was issued against a media manager’s structure.

132(84) An uncorrectable I/O error occurred while VSAM was reading the
job file control block (JFCB).

136(88) Not enough virtual storage was available in your program’s address
space for a work area for CLOSE.

144(90) An uncorrectable I/O crror occurred while VSAM was reading or
writing a catalog record.

145(91) An uncorrectable crror occurred in the VSAM volume data sct
(VVDS).

148(94) An unidentified error occurred while VSAM was scarching the
catalog.

Figure 2 (Part 1 of 2). CLOSE Reason Codcs in the ERROR Ficld of the Access
Method Control Block

6 MVS/XA VSAM Administration: Macro Instruction Reference

Return
Code Condition

184(B8) An uncorrectable 1/O error occurred while VSAM was completing
outstanding 1/O requests.

236(EC) A pcrmanent destaging error occurred in MSS (RELINQUISH).
With temporary CLOSE, a destaging error or a staging error
(ACQUIRE) occurred. '

Figure 2 (Part 2 of 2). CLOSE Reason Codes in the ERROR Field of the Access
Method Control Block

OPEN/CLOSE Message Area for Multiple Reason or Warning

Messages

Message Area Header

During the execution of an OPEN, CLOSE, or TYPE=T option of CLOSE,
more than one error condition may be detected. However, the ACB error flag
field can only accommodate one warning or error condition. In order to receive
multiple error or warning conditions, you may specify an optional message arca.
VSAM will accumulate error messages from an OPEN, CLOSE, or TYPE=T
option in this message area.

Multiple messages will be supplied when you specify nonzero valuces in the
MAREA and MLEN parameters of the ACB. If MAREA or MLEN is not
specified or is zero, no error or warning information is stored into the message
area. The ACB error flag field is then the only indication for errors or warnings.
K MAREA and MLEN are speeified and if the message -area is too smati to
accommodate all messages, the last incoming messages are dropped. However,
you will be given an indication of the number of warnings and me :sages that
occurred.

The message area provided by VSAM is subdivided into two parts:

¢ The message area header
e The message list

The message arca header contains statistical, pointcr, and general information. Its
contents are unrelated to the individual messages. The format of the message
area header is shown in Figure 3 on page 8.

Chapter 1. Macro Instruction Return Codes and Reason Codes 7

Byte 0 Flag Byte

bit 0=1 Full message area header has
been stored.

bit 0=0 Only flag byte of message area
header has been stored.
(Implics that no messages
-have been stored.)

bits 1-7 Rescrved (sct to binary zcros)

Bytes 1-2 Length of message area header (includes flag byte
and length byte)

Byte 3 Request type code:
X’01’ OPEN

X’02 CLOSE
X0 TCLOSE
Bytes 4-11 ddname used for ACB

Bytes 12-13 Total number of messages (crror or warning
conditions) issued by OPEN/CLOSE/TCLOSE

Bytes 14-15 Number of messages stored by OPEN/CLOSE/TCLOSE
into message area

Bytes 16-19 Address of message list, for example, of first
message in message area

Figure 3. Format of the Message Arca leader

The function of the ACB error flag ficld remains unchanged whether or not this
optional message area is specified. At the end of an OPEN, CLOSE, or
TCLOSE, this field contains either X' 00' (indicating no error or warning
condition occurred) or a nonzero code. The ACB error flag byte stores the
nonzero OPEN/CLOSE/TCLOSE reason code corresponding to the error or
wamning condition that occurred with the highest severity.

Message arca header information is only stored when a warning or error
condition is detected; that is, when the ACB error flag ficld is set to a nonzero
value. The header information consists of the flag byte only if the message arca
Iength (MLEN) is not large enough to accommodate the full mcssage arca
hecader. In this case, bit 0 of the flag bytc will be zero. Before accessing the
message header information (bytes 1 through 19), test byte 0 to see if more
information is stored. If MLEN =0, no header information is stored, not even
the flag byte. If the full message area header is stored, bytes 1 and 2 contain its
actual length. Your program should be sensitive to this length when interrogating
the message area header.

8 MVS/XA VSAM Administration: Macro Instruction Reference

Message List

The message list contains individual messages corresponding to detected warning
or error conditions. Bytes 16 through 19 of the message area header point to the
location of the message list within the message area. If the message area header is
not storcd completely (bit 0 of byte 0 is 0), the location of the message list is not
provided. Within the message list, individual messages are stored as a contiguous
string of variable-length records. Bytes 14 and 15 of the message area header
contain the number of messages stored. Check for a nonzero stored message
count before investigating the message list. However, messages may not be
stored even if the ACB error flag byte contains a nonzero value and the message
area header bit 0 of byte 0is 1. For example, no messages will be stored if
MLEN is not large cnough to allow at least one message to be stored.

The format of the individual messages is given in Figure 4.

Bytes 0-1 Length of message including these two bytes.

Byte 2 ACB crror flag code corresponding to the error or warning
condition represented by this message.

Byte 3 Function type code:

Specifies which dsname, if any, is stored in bytes 4 through 47 of
the message.

X’00° no dsname stored. Bytes 4-47 of the message contain
binary zcros. The crror warning condition is not clearly
related to a componcent, or VSAM was unable to identify
or obtain the cluster namce of the component in error.
This code is used only if the ddname of the ACB does not
identify a valid DD statcment, or VSAM was unable to
obtain the dsnamc centained in-the DD statement.

X0l dsname containcd in DD statcment is stored. The error
or warning condition is not clearly related to a
component, or VSAM was unable to identify or obtain
the cluster name of the component in error.

X’02" dsname (cluster name) of base cluster stored. Error
occurred during OPEN/CLOSE/TCLOSE for base
cluster.

X’03 dsname (cluster name) of alternate index component
stored. Error occurred during OPEN/CLOSE/TCLOSE
for altcrnate index component.

X’04 dsnamc (cluster name) of member of upgrade set stored.
Error occurred during OPEN/CLOSE/TCLOSE for this
member of the upgrade set.

Bytes 4-47 Binary zeros (function type code = X"00") or a dsname as described
by byte 3.

Figure 4. Format of Individual Messages in Message List

Chapter 1. Macro Instruction Return Codes and Reason Codes 9

Bytes 0 and 1 of each message specify its actual length. Because messages vary in
length, you will need to know the actual length of each message in order to do
your processing.

Byte 2 of the message contains the ACB error flag code; it does not indicate that
a dsname has been stored. Dcpending on the condition that raised the ACB
error flag code, either no dsname or different types of dsnames (DD, base cluster,
alternate index, or upgrade set member) may be stored. (The same condition:
may be detected both when opening the base cluster and when opening a
member of the upgrade set. For example, an 1/O error may occur when trying to
obtain the dsname for the component in error.) Bytes 4 through 47 of the
message can contain a dsname, but do not specify its type. Only byte 3 of the
message specifics whether a dsname has been stored and, if so, its type.

| Control Block Manipulation Macro Return Codes and Reason Codes

The GENCB, MODCB, SIHOWCB, and TESTCB macros are executable (unlike
the ACB, EXLST, and RPL macros). They cause control to be given to VSAM
to perform the indicated task. VSAM indicates if the task was complcted by a
return code in register 15;

Rcturn
Code Condition

0(0) Task completed.
= 44 Task not completed.
8(8) An attempt was made to use the execute form of a macro to modify a

keyword that isn’t in the paramecter list. (Sce Appendix B, “List,
Exccute, and Generate Forms of Macros” on page 171.)

An error can occur because you specified the operands incorrectly or, if you
constructed a paramcter list yourself, because the paramcter list was coded
incorrectly. See Appendix D, “Building Parameter Lists” on page 183, for an
explanation of how to construct parameter lists for GENCB, MODCB,
SHOWCSB, and TESTCB.

When mgrster-1 Feontains4; scgrster (Peentains. aseasorr codg, indicating, wiv,
- SAM O Idireperform the task.., If you construct the parameter list, register 0
can contain reason codes 1, 2, 3, 10, 14, 20, and 21. Figure 5 on page 11
describes each reason code that can be returned in register 0.

10 MVS/XA VSAM Administration: Macro Instruction Reference

Code
1(1)

2(2)

33)
a4

5(5)

6(6)

7

8(8)

5(%)

10(A)

11(B)

Applicable
Macros!
GM;ST
GMS,T
GMST

MS,T

ST «

S,T

M.S

M

Reason VSAM Couldn’t Perform the Task

The request type (generate, modify, show, or test) is
invalid.

The block type (access method control block, exit list, or
request paramcter list) is invalid.

Onc of the keyword codes in the pararhcter list is invalid.

The block at the address indicated is not of the type you
indicated (access method control block, exit list, or request
parameter list).

Access method control block ficlds were to be shown or
tested, but the data set is not open or it is not a VSAM
data sct.

Access method control block information about an index
was to be shown or tested, but no index was opencd with
the data set.

An exit list was to be modificd, but the list was not large
enough to contain the new entry; or an exit was to be
modified or shown but the specificd cxit wasn’t in the exit
list. (With TESTCRB, if the specified exit address isn't
present, you get an unequal condition when you test for
it.)

There isn't enough virtual storage in your program’s
address space to gencrate the access method control
block(s), exit list(s), or request parameter list(s) and no
work area outside your address space was specificd.

The wotk area specified ‘was too smail for generation or
display of the indicated control block or ficlds.

With GENCB, exit list control block type was specified
and you specified an exit without without giving an
address. With MODCB, exit list control block type was
specified and you specified an exit without giving an
address; in this case, either active or inactive must be
specified, but load cannot be specified.

Either (1) a request parameter list was to be modificd, but
the request parameter list defines an asynchronous request
that is active (that is, no CHECK or ENDREQ has bcen
issued on the request) and thus cannot be modified; or (2)
MODCB is already issucd for the control block, but
hasn’t yet completed.

Figure S (Part 1 of 2). GENCB, MODCB, SHOWCB, and TESTCB Reason Codes

Returned in Register 0

Chapter 1. Macro Instruction Return Codes and Reason Codes 11

Recason Applicable

Code Macros!
122C) M
133D) M
14E) GM,T
ISF) G,S

16(10) GM,S,T

19(13) MST
20(14) S
21(15) S,T
22(16) S

Reason VSAM Couldn’t Perform the Task.

An access method control block was to be modified, but
the data set identified by the access method control block
is open and thus cannot be modified.

An exit list was to be modified, and you attempted to
activate an cxit without providing a new exit address.
Because the exit list indicated does not contain an address
for that exit, your rcquest cannot be honored.

One of the option codes (for MACRF, ATRB, or
OPTCD) has an invalid combination of option codes
specified (for example, OPTCD=(ADR, SKP)).

The work area specified did not begin on a fullword
boundary.

A VTAM keyword or subparameter was specified but the
AM=VTAM parameter was not specificd. AM=VTAM
must be specified in order to process a VTAM version of

the control block.

A_keywerd was specified which refers to a field beyond
the length of the control block located at the address
indicated. (For example, a VTAM keyword was specified,
but the control block pointed to was a shorter,
non-VTAM block.)

Keywords were specificd which apply only if
MACRF=LSR or GSR.

The block to be displayed or tested does not exist because
the data set is a dummy data set.

AM=VTAM was specified and the RPL FIELDS
parameter conflicts with the RPLNIB bit status. Either
RPLFIELDS = NIB was specified and the RPLNIB was
off, or RPL FIELDS = ARG was specified and the
RPLNIB bit was on.

Figure S (Part 2 of 2). GENCB, MODCB, SITOWCB, and TESTCB Rcason Codes

Note to Figure &:

Returned in Register 0

! G=GENCB, M=MODCB, S=SIIOWCB, T=TESTCB

12 MVS/XA VSAM Administration: Macro Instruction Reference

Record Management Return Codes and Reason Codes

The following record management macros give return codes and reason codes in
the feedback arca of the RPL: GET, PUT, POINT, ERASE, CHECK,
ENDREQ, GETIX, PUTIX, ACQRANGE, CNVTAD, MNTACQ,
MRKBFR, SCHBFR, and WRTBFR. ‘

The feedback word in the RPL consists of four bytes:

Byte Description

1 Problem detcrmination function (PDF) code. This code is used to locate
the point in VSAM record management at which a logical error
condition is recognized. A description of the retuned PDF code is
located in the IDARMRCD macro.

2 RPL return code. This code 1s retumed in register 15.

3 Component code. This code specifies the component being processed
when the error occorred.

4 Reason tode. This code, when paired with the return code in byte 2,
specifies the actual reason for either a successful completion or an error.

Bytes 2 through 4 make up the RPL feedback arca. An cxplanation of the codes
that appear in these three bytes follows. -

Bytes 3 and 4 make up the RPL condition code. An cxplanation of this code
also follows.

The field namec of cach byte appears within parentheses in the following figure.

?PL Feedback Word (4 bytes)
lltPL Feedback Area (3 bytes)
{ RPL Condition Code (2 bytes)

PDF Code

Return Code | Component Code | Reason Code
(RPLFUNCD) (RPLRTNCD) (RPLCMPON) (

o
RPLERRCD)

For more information on the RPL feedback word, see VSAM Logic.

Return Codes (RPLRTNCD)

The meaning of the return code depends on whether processing is asynchronous
or synchronous.

Chapter 1. Macro Instruction Return Codes and Reason Codes 13

Asynchronous Request

Synchronous Request

After you issue an asynchronous request for access to a data set, VSAM issues a
return code in register 15 to indicate whether the request was accepted, as follows:

Return Code

(RPLRTNCD) Condition

0(0) Request was accepted.

4(4) Request was not accepted because the request parameter list
indicated by the request (RPL = address) was active for another
request. ’

If the asynchronous request was accepted, issue a CHECK after doing your other
processing so VSAM can indicate in register 15 whether the request was
completed successfully, set a return code in the feedback area, and exit to any
appropriate exit routine. If the request was not accepted, you should either wait
until the other request is complete (for example, by issuing a CHECK on the
request parameter list) or terminate the other request (using ENDREQ). Then
you can reissue the rejected request.

After a synchronous request, or a CHECK or ENDREQ macro, the return code
in register 15 indicates whether the request was completed successfully, as follows:

Rcturn Code

(RPLRTNCD) Condition

0(0) Request completed successfully.

4(4) Request was not accepted because the request parameter list
indicated by the request (RPL = address) was active for another
request.

8(8) Logical error; specific error is indicated in the feedback area in
the RPL.

12(C) Physical error; specific crror is indicated in the fecedback area in
the RPL.

Component Codes (RPLCMPON)

When a logical or physical error occurs, VSAM uses the component code field of
the RPL to identify the component being processed when the error occurred and
indicates whether the alternate index upgrade set is correct following the request
that failed. The component code can be displayed and tested by using the
SHOWCB and TESTCB macros. The codes and their meanings are given in

Figure 6 on page 15.

14 MVS/XA VSAM Administration: Macro Instruction Reference

Note: The component code (byte 3 of the RPL fecdback word) and the reason
code (byte 4 of the RPL feedback word) make up the 2-byte RPL condition
code. .

For more information on the RPL feedback word see VSAM Logic.

Component Code What Was Being

(RPLCMPON) Processed Upgrade Sct Status
0(0) Base cluster Correct

I(1) Base cluster May be incorrect
2(2) Altemate index Correct

3(3) Alternate index May be incorrect
4(4) Upgrade set Correct

5(5) Upgrade set May be incorrect

Figure 6. Component Codes Provided in the RPL

| Reason Codes (RPLERRCD)

The 0, 8, and 12 rctumn codes in register 15 are paired with reason codes in the
fecdback arca of the request paramecter list.

The reason codes in the feedback arca of the request parameter list can be
examinced with the SHOWCB or TESTCB macro. You may code your
examination routine immecdiately following the request macro. Logical errors,
phiysical errors, and rcaching the end of the data set ali causc VSAM to exit to
the appropriate exit routine, if you provide one.

Coordinate error checking in your program with your error-analysis exit routines.
If they terminate the program, for instance, you would not need to code a check
for an error after a request. But if a routine returns to VSAM to continue
processing, you should check register 15 after a request to detcrmine whether
there was an error. Even though the crror was handled by an exit routine, you
may want to modify processing because of the error.

Reason Code (Successful Request)

When the request is complcted, register 15 is set to indicate the status of the
request. A reason code of 0 indicates successful completion. Nonzero codcs are
set for a variety of other reasons. Figurc 7 on page 16 lists these codes and their
meanings.

Chapter 1. Macro Instruction Return Codes and Reason Codes 15

Reason Code

(RPLERRCD)

When Register
15=000)

0(0)
4(4)

8(8)

12(C)

16(10)

20(14)

24(18)
28(1C)

32(20)

36(24)

40(28)

Condition
Request completed successfully.

Request completed successfully. For retrieval, VSAM mounted
another volume to locate the record; for storage, VSAM allocated
additional space or mounted another volume.

For GET requests, indicates a duplicate alternate key exists
(applies only when accessing a data set using an alternate index
that allows nonunique keys); for PUT requests, indicates that a
duplicate key was crcated in an alternate index with the
nonunique attribute.

All buffers, except for the buffer just obtained, may have been
modificd and may need to be written; issuance of WRTBFR
macro is suggested.

The sequence-set record does not have enough space to allow it
to address all of the control intervals in the control arca that
should contain the record. The record was written into a new
cantrol agca.

Data sct is not on virtual DASD for
CNVTAD/MNTACQ/ACQRANGE request.

Buffer found but not modified; no buffer writes performed.

Control interval split indicator was detected during an addresscd
GET NUP request.

Request deferred for a resource held by the terminated RPL is
asynchronous and cannot be restarted by TERMRPL.

Possible data set error condition was detected by TERMRPL:

e The request was abnormally terminated in the middle of its
1/0 operation.

® One of the data/index BUFCs of the string contains data that
needs to be written (BUFCMW = ON) but it was invalidated
by TERMRPL.

Error in PLH data BUFC pointer was detected by TERMRPL.

Figure 7. Successful Completion Reason Codes in the Feedback Area of the Request
Paramcter List

16 MVS/XA VSAM Administration: Macro Instruction Reference

Reason Code (Logical Errors)

If a logical error occurs and you have no LERAD routine (or the LERAD exit is

inactive), VSAM returns control to your program following the last executed

instruction. (“User-Written-Exit Routines” in Data Facility Product:

Customization describes the LERAD routine.) The return code in register 15
indicates a logical error (8), and the feedback area in the request parameter list

contains a reason code identifying the error. Register 1 points to the request

parameter list. _
Figure 8 gives the reason codes shown in the feedback area and explains their
meanings.
Reason Code
(RPLERRCD)
When Rcgister
15=8(8) Condition
44) End of data set encountcred (during sequential or
skip scqucntial retricval), or the search argument
is greater than the high key of the data sct.
Either no COPAD routine is provided, or one is
provided, returned to VSAM, and the processing
program issued another GET. (“User-Written-Exit
Routines” in VSAM Administration Guide describes
the EODAD routine.)
7 8(8) You attempted to store a record with a duplicate
key, or there is a duplicate record for an
altcrnate index with the unique key option.
12(C) A key sequence check was performed and an crror was
detected in one of the following processing
conditions:
< Forakey-scquenced data set
— PUT sequential or skip-sequential processing
— GET scquential, single string input only
— GET skip-sequential processing and the previous
request is not a POINT)
* For a relative record data sct
— GET skip-sequential processing
— PUT skip-sequential processing
16(10) Record not found, or

the RBA is not found in the buffer pool.

Figure 8 (Part 1 of 7). Logical Error Reason Codes in the Feedback Area of the

Request Parameter List

Chapter 1. Macro Instruction Return Codes and Reason Codes

17

Reason Code

(RPLERRCD)
When Register

15=8(@8)
20(14)

24(18)
28(1C)

32(20)
36(24)
40(28)

44(2C)

Condition

The RBA is found, but the buffer is under the exclusive control of
another request. With this condition, it is possible to also have
buffers invalidated. Or, the control interval is for a record alrcady
held in exclusive control by another requester.

Note: If the RPL message area is correctly specified, the following
information is returned:

Offset Length Discussion

0 4 Address of RPL in exclusive
control
4 1 Flag Byte:

X '00" - ncither RPL is doing a
control arca split

X '01"- current RPL is attempting a
control area spiit

X '02"'- other RPL is doing
a control area split

Rccord resides on a volume that can’t be mounted.

Data set cannot be extended because VSAM can't allocate
additional direct access storage space. Either there is not enough
space lcft to make the secondary allocation request or you
attempted to increase the size of a data sct while processing with
SHAREOPTIONS =4 and DISP=SHR.

You specificd an RBA that doesn’t give thc address of any data
record in the data set.

Key ranges were specified for the data sct when it was defined, but
no range was specificd that includes the record to be inscrted.

Insufficient virtual storage in your address space to complcte the
request.

Work area not large enough for the data record or for the buffer-
(GET with OPTCD=MVE).

Figure 8 (Part 2 of 7). Logical Error Reason Codes in the Fecdback Area of the

Request Parameter List

18 Mvsxa VSAM Administration: Macro Instruction Reference

Reasoﬁ Code

(RPLERRCD)
When Register
15=8(8) Condition
48(30) Invalid options, data set attributes, or processing conditions
specified for TERMRPL request: _
o CNV processing
e The specified RPL is asynchronous
® Chained RPLs
¢ Path processing
® Shared resources (LSR/GSR)
¢ Load mode
e Relative record data sct
e Data sct contains spanned records
® User not in key 0 and supervisor state
e End-of-volume in process (secondary allocation)
52(34) The previous request was TERMRPL.
64(40) There is insufficient storage available to dynamically add another

string. Or, the maximum number of placcholders that may be
allocated to the request has becn allocated, and a placeholder is not

available.

68(44) You attempted to use a type of processing (output or control
interval processing) that was not specified when the data set was
opened.

72(48) You madec a keyed request for access to an entry-scquenced data

set, or you issued a GETIX or PUTIX to an entry-sequenced or
relative record data set.

76(4C) You issucd an addressed or control interval PUT to add to a
key-sequenced data set, or you issucd a control interval PUT to a
relative record data set.

80(50) You issued an ERASE request in one of the following situations:

e For access to an entry-sequenced data set.
¢ For access to an cntry-sequenced data set via a path.
® With control interval access.

84(54) You specified OPTCD = LOC in one of the following situations:

¢ For a PUT request.
@ In a request parameter list in a chain of request parameter lists.
o For UBF processing.

Figure 8 (Part 3 of 7). Logical Error Reason Codes in the Feedback Area of the
Request Parameter List

Chapter 1. Macro Instruction Return Codes and Reason Codes 19

Reason Code
(RPLERRCD)

When Register
15=8(8) Condition

88(56 You issued a sequential GET request without having caused
< VSAM to be positioned for it, or you changed from addressed
access to keyed access without causing VSAM to be positioned for
keyed-scquential retrieval; there was no positioning established for
sequential PUT insert for a relative record data set, or you
attempted an illegal switch between forward and backward

processing.
92(5C) You issued a PUT for update or an ERASE without a previous
GET for update, or a PUTIX without a previous GETIX.
96(60) You attempted to change the prime key or key of reference while
making an update.

100(64) You attempted to change the length of a record while méking an
addressed update.

104(68) The RPL options are either invalid or conflicting in one of the
following ways:

o SKP was specified and either KEY was not specified or BWD
was specified.

e BWD was specified for CNV processing.
e FWD and LRD were spccified.
® Neither ADR, CNV, nor KEY was specified in the RPL.

¢ BFRNO is invalid (less than 1 or greater than the number of
buffers in the pool).

e WRTBFR, MRKBFR, or SCHBFR was issued, but either
TRANSID was greater than 31 or the shared resource option
was not specified.

e ICI processing was spccified, but a request other than a GET
or a PUT was issued.

e MRKBFR MARK =0UT or MARK = RLS was issued but
the RPL did not have a data buffer associated with it.

® The RPL specified WAITX, but the ACB did not specify LSR
or GSR.

Figure 8 (Part 4 of 7). Logical Error Reason Codes in the Feedback Area of the
Request Parameter List

20 MVS/XA VSAM Administration: Macro Instruction Reference

Reason Code
(RPLERRCD)

When Register
15=§(8) Condition

108(6C) RECLEN specified was larger than the maximum allowed, equal to
0, or smallcr than the sum of the length and the displaccment of
the key ficld; RECLEN was not cqual to record (slot) size specificd
for a rclative record data sct. The automatic increase in the record
size of an upgrade index for the base cluster may causc an incorrect
RECLEN specification.

112(70) KEYLEN specified was too large or equal to 0.

116(74) During initial data set loading (that is, when records arc being
stored in the data set the first time it’s opened), GET, POINT,
ERASE, direct PUT, skip-sequential PUT, or PUT with
OPTCD= UPD is not allowed. For initial loading of a rclative
record data sct, the request was other than a PUT inscrt.

120(78) The request was operating under an incorrect TCB. For example,
an end-of-volume call or a GETMAIN would have been necessary
to complcte the request, but the request was issucd from a job step
other than the one that opencd the data set. The request can be
resubmitted from the correct task, if the new request reestablishes
positioning.

124(7C) A request was cancelled for a user JRNAD exit.
132(84) An attempt was made in locate mode to retrieve a spanned record.

136(88) You attempted an addressed GET of a spanncd record in a
key-sequenced data set.

140(8C) The spanned record scgment update number is inconsistent.

144(90) Invalid pointer (no associated base record) in an alternate index.

148(94) The maximum number of pointers in the alternate index has been
exceeded. .

152(98) Not enough buffers are available to process your request (shared

resources only).

156(9C) An invalid control interval was detected during keyed processing, or
an addresscd GET UPD request failed because the control interval
flag was on, or an invalid control interval or index record was
detected. The RPL contains the invalid control interval’s RBA.

Figure 8 (Part S of 7). Logical Error Reason Codes in the Feedback Area of the
Request Parameter List

Chapter 1. Macro Instruction Return Codes and Reason Codes 21

Reason Code

(RPLERRCD)

When Register

15=8(8) Condition

160(A0) One or more candidates were found that have a modified buffer
marked to be written. The buffer was left in write status with valid
contents. With this condition, it is possible to have other buffers
invalidated or found under exclusive control.

164(A4) One of the following invalid options was specified for a
CNVTAD/MNTACQ/ACQRANGE rcquest:

¢ Generic key (GEN)

¢ Load mode

¢ Path processing

e User buffers (UBF) with LSR/GSR

e Key-sequenced data set, but not key processing (KEY)

¢ Entry-sequenced data sct, but not address processing (ADR)
e Rclative record data sct, but not key processing (KEY)

¢ RPL is chained

¢ Key-sequenced data sct has single-level imbedded index

168(A8) One of the following user parameter list errors was detected for
CNVTAD/MNTACQ/ACQRANGE rcquest:

e No user parameter list is specified (RPLARG=0)
¢ Argument count is zero for CNVTAD/MNTACQ request

e Ending argument is less than starting argument for
ACQRANGE request

e Parameter list not on word boundary

172(AC) ACQUIRE crror rcturned by SVC 126 for
MNTACQ/ACQRANGE rcquest.

176(B0) Staging failure for MNTACQ/ACQRANGE request.

180(B4) RBA/volume crror for MNTACQ/ACQRANGE requcst.
_ (Required volume not mounted or specificd RBA(s) not on
mountcd volume.) :

Figure 8 (Part 6 of 7). Logical Error Reason Codes in the Feedback Area of the
Request Parameter List

22 MVS/XA VSAM Administration: Macro Instruction Reference

Reason Code

(RPLERRCD)

When Register

15=8(8) Condition

184(B8) Catalog errors returned from SVC 126 for CNVTAD request.

188(BC) Storage for ACQUIRE ECBs (subpool 241) is not available.

192(C0) Invalid relative record number.

196(C4) You issued an addressed request to a relative record data set.

200(C8) You attempted addresscd or control interval access through a path.

204(CC) PUT inscrt requests are not allowed in backward mode.

208(D0) The user has issued an ENDREQ macro instruction against an
RPL that has an outstanding WAIT against the ECB associated
with the RPL. This can occur when an ENDREQ is issucd from a
STAE or ESTAE routinc routine against an RPL that was started
before the abend. No ENDREQ processing has been done.

212(D4) During control arca split processing, a condition exists that prevents
the split of the index record. Index control interval size may nced
to be increased.

224(E0) MRKBFR OUT was issued for a buffcr with invalid contents.

228(E4) Caller in cross-memory mode is not in supcrvisor state or RPL of
caller in SRB or cross-mecmory mode docs not specify SYN
processing.

232(E8) UPAD error; ECB was not posted by user in cross-memory mode.

238(EC) “Validity check error for SHAREOPTIONS 3 or 4.

240(F0) For shared resources, one of the following is being performed: (a)
an attempt is being made to obtain a buffer in exclusive control, (b)
a buffer is being invalidated, or (c) the buffer use chain is changing.
For more detailed feedback, reissue the request.

244(F4) Register 14 stack size is not large enough.

248(F8) Register 14 return offsct went negative.

252(FC) Record mode processing is not allowed for a lincar data sct.

253(FD) VERIFY is not a valid function for a lincar data sct.

Figure 8 (Part 7 of 7). Logical Error Reason Codes in the Feedback Area of the
Request Parameter List

Chapter 1. Macro Instruction Return Codes and Reason Codes 23

When the search argument you supply for a POINT or GET request is greater
than the highest key in the data set, the reason code in the feedback area depends
on the RPL’s OPTCD values, as shown in the table below:

Request RPLs OPTCD Reason Code (RPLERRCD)
Type Options When Register 15=§(8)
Decimal Hexadecimal

POINT GENKEQ 16 xX'10'
POINT GEN,KGE 4 X'4'
POINT FKS,KEQ 16 x'10'
POINT FKS,KGE 4 X'4'
GET GEN,KEQ,DIR 16 xX'10'
GET GEN,KGE,DIR 16 X'10'
GET FKS,KEQ,DIR 16 xX'1o'
GET FKS,KGE,DIR 16 xX'10'
GET GENLKEQ,SKP 16 X'10'
GET GENKGE,SKP 4 X'4'
GET FKS,KEQ,SKP 16 x'10'
GET FKS,KGE,SKP 4 X'4'

Positioning Following Logical Errors
VSAM is unable to maintain positioning after every logical error. Whenever
positioning is not maintained following an error request, you must reestablish it

before processing resumes.

Positioning may be in one of four states following a POINT or a direct request
that encountered a logical error:

Yes VSAM is positioned at the position in effect before the request in error
was issued.

No VSAM is not positioned, because no positioning was established at the
time the request in error was issued. ~

New VSAM is positioned at a new position.

U VSAM is positioned at an unpredictable position.

The following table shows which positioning state applies to each reason code
listed for sequential, dircct, and skip-sequential processing. '"N/A" indicates that

the reason code is not applicable to the type of processing indicated. Figure 9 on
page 25 lists these codes and their meanings.

24 MVS/XA VSAM Administration: Macro Instruction Reference

Reason Code

(RPLERRCD)
When Register
15=8(8)
Decimal Hexadecimal
4 X'4'
8 X'g"
12 X'c'
16 X'io'
20 X'14' -
24 X'18'
28 X'ic’
32 X'20'
36 X'24"
40 X"'28'
44 X'2C'
64 X'40'
68 X'4'
72 X'48"'
76 X'4C’
80 X's0'
84 X's54'
88 X"'s8'
92 X'sc'
96 X'60'
100 X'64'
104 X'e68'
108 X'6C'
112 X'70'
116 X'74'
120 X'78'
124 xX'ic'
132 X'84"'
136 X'ss’'
140 X'sC'
144 X'90'
148 X'94'
152 X'98'
156 X'oC'
160 X'A0'
192 X'co'
196 X'cq'

Figurc 9 (Part 1 of 2).

Sequential Direct Skip-Sequential

Yes
Yes
Yes
No
U
Yes
Yes
No
Yes
Yes
Yes
No
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
No
Yes
No
Yes
Yes
Yes
Yes
Yes
N/A
Yes
Yes

N/A
No
N/A
No
No?
No
No
No
No
No
New
No
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
New
New
Yes
Yes
No
No
New
No
New
Yes
Yes
No
No
No
Yes
Yes

Yes
New
Yes
No
No?
No
Yes
N/A
New
No
Yes
No
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
No
No
Yes
N/A
Yes
Yes
Yes
No
No
N/A
Yes
Yes

Positioning States of Reason Codes Listed for Sequential,
Direct, and Skip-Sequential Processing

Chapter 1. Macro Instruction Return Codes and Reason Codes

25

Reason Code

(RPLERRCD)

When Register

15-8(8)

Decimal Hexadecimal Scquential Direet Skip-Sequential
200 X'cs' Yes Yes Yes
204 X'cc’ Yes Yes Yes
208 X'Do’ Yes Yes Yes
224 X'E0' N/A No N/A
228 X'E4' No No No
232 X'ES' No No No
236 X'EC' No No No
240 X'Fo' Yes Yes Yes

! A subsequent GET SEQ will retrieve the duplicate record; however, a
subscquent GET SKP for the same key will get a scquence crror. In a
rclative record data sct, a subsequent PUT SEQ positions to the next slot
(whether the slot is empty or not).

1 PUT UPD, DIR or UPD, SKP retains positioning. The RPL contains an
" RBA that could not be obtained for ¢xclusive control.

Figure 9 (Part 2 of 2) Positioning States of Reason Codes Listed-for Scquentiat,
Direct, and Skip-Sequential Processing

Reason Code (Physical Errors)

If a physical error occurs and you have no SYNAD routine (or the SYNAD exit
is inactive), VSAM returns control to your program following the last executed
instruction. The return code in register 15 indicates a physical error (12), and the
fcedback area in the request parameter list contains a reason code identifying the
error; the RPL message area contains more details about the error. Register 1
points to the request parameter list. The RBA ficld in the request paramecter list
gives the relative byte address of the control interval in which the physical error
occurred. Figure 10 gives the reason codes in the feedback area and explains
what each indicates.

26 MVS/XA VSAM Administration: Macro Instruction Reference

Reason Code

(RPLERRCD)

When Register

15=12(0C) Condition

44) Read error occurred for a data set.
8(8) ‘Read error occurred for an index set.
12(C) Read error occurred for a sequence set.
16(10) Write error occurred for a data set.
20(14) Write crror occurred for an index set.
24(18) Write error occurred for a sequence sct.

Figure 10. Physical Error Reason Codes in the Feedback Area of the Request
: Parameter List

Figurc 11 gives the format of a physical crror message. The format and somce of
the contents of the message are purposely similar to the format and contents of
the SYNADAF message, which is described in Data Administration: Macro
Instruction Reference.

Field Bytcs Length- Discussion
Message 0-1 2 Binary value of 128
Length
2-3 2 Unused (0)
Message 43 2 Binary value of 124
Length - 4 (provided for compatibility
with SYNADAF Message)
6-7 2 Unused (0)
Address of 8-11 4 The 1/O buffer associated

1/O Buffer with the data where
the error occurred

The rest of the message is in printablc format

Date 12-16 5 YYDDD (year and day)
17 1 Comma (,)
Time 18-25 8 HHMMSSTH (hour, minute,
second, and tenths and
hundredths of a second

Figure 11 (Part 1 of 4). Physical Error Message Format

Chapter 1. Macro Instruction Return Codes and Reason Codes 27

Field

RBA

Component
TYPE

Volume Serial
Number

Job Name

Step Name

Unit

Device Type

ddname

Bytes
26
27-34

35
36-41
42

43-48

49

50-57

58
59-66

67
68-70

71
72-73

74
75-82

83

Length

1

Discussion

Comma (,)

Relative byte address of the
record where

the error occurred

Comma (,)

"DATA" or "INDEX"
Comma (,)

Volume serial number of the
volume where

the error occurred

Comma (,)

Name of the job where
error occurred

Comma (,)

Name of the job step in
which crror occurred

Comma (,)

The unit, CUU (channel and
unit), where
the error occurred

Comma (,)

The type of device where
the error

occurred (always DA for
direct access)

Comma (,)

The ddname of the DD
statement defining the data
set where the

error occurred

Comma (,)

Figure 11 (Part 2 of 4). Physical Error Message Format

28 MYVS/XA VSAM Administration: Macro Instruction Reference

Ficld Bytes Length Discussion

Channel 84-89 6 The channél command that
caused the error in the first

two bytes, followed by "'_OP"

90 1 Coma (’)
Mcssage 91-105 15 Mcssages arc divided
according to ECB condition
codcs:

X'41' "INCORR LENGTH"
"UNIT EXCEPTION"
"PROGRAM CHECK"
"PROTECTION CHK"
"CHAN DATA CHK"
"CHAN CTRL CHK"
"INTFCE CTRL CHK"
"CHAINING CHK"
"UNIT CHECK"

If the type of unit check can

be determined, the ‘UNIT CHECK'’
message is replaced by one of

by one of the following:

"CMD REJECT"
"INT REQ"
"BUS OUT CK"
"EQP CHECK"
"DATA CHECK"
"OVER RUN"
"TRACK COND CK"
"SEEK CHECK"
"COUNT DATA CHK"
"TRACK OVERRUN"
"CYLINDER END"
"NO RECORD FOUND"
"FILE PROTECT"
"MISSING A.M."
"OVERFL INCP"

X'48' "PURGED REQUEST"

X'"4A"' "1/O PREVENTED"

X'4F' "R.HA.RO. ERROR"
For any other ECB condition code:

"UNKNOWN COND."

Figure 11 (Part 3 of 4). Physical Error Message Format

Chapter 1. Macro Instruction Return Codes and Reason Codes 29

Field Bytes Length Discussion
106 1 Comma (,)
Physical 107-120 14 BBCCHHR (bin, cylinder,
Direct Access head, and record)
Address '
121 1 Comma (,)
Access 122-127 6 "VSAM"
Method

Figure 11 (Part 4 of 4). Physical Error Message Format

‘Return Codes from Macros Used to Share Resources among Data Sets

VSAM has a sct of macros that enables you to share I/Q buffers, I/O rclated
control blocks, and channel programs among VSAM data scts.

| Return Codes from BLDVRP

VSAM returns a code in register 15 that indicates whether the BLDVRP request
was successful:

Return
Code

0(0)
I 44

8(8)

12(C)
16(10)

20(14)

24(18)
28(1C)

Condition
VSAM completed the request.

The requested data resource pool or index resource pool already exists
in the address space (LSR) or in the system protect key (GSR).

There is not enough virtual storage space to satisfy the request.
GETMAIN or ESTAE failed.

Buffers cannot be fixed in real storage. PAGEFIX failed.

TYPE=GSR is specified but the program that issued BLDVRP is
not in supervisor state with protection key 0 to 7.

STRNO is less than 1 or greater than 255.

BUFFERS is specificd incorrectly. A size or number is invalid.

. The requested resource pool is invalid. A SHRPOOL value greater

than 15 was specified.

30 MVS/XA VSAM Administration: Macro Instruction Reference

32(20)

36(24)

Return Codes from DLVRP

The resource pool already exists above 16 megabytes and the request
was for storage below 16 megabytes, or the resource pool already
exists below 16 megabytes and the request was for storage above 16
megabytes.

BLDVRP was issued to build an index resource pool but the required
corresponding data resource pool does not.exist.

VSAM retumns a code in register 15 that indicates whether the DLVRP request
was successful:

Return

Code
0(0)
44)
8(8)
12(C)

16(10)

Condition
VSAM completed the request.
There is no resource pool to delete.

There is not cnough virtual storage space to satisfy the request.
GETMAIN or ESTAE failed.

There is at least onc open data set using the resource pool.

TYPE=GSR is specified, but the program that issued DLVRP is not
in supervisor state with protection key 0 to 7.

Return Codes from End-of-Volume

End-of-volume retumns the folowing codes in register 15:

Return
Code

0(0)
a4)
8(8)
12(C)
16(10)

Condition

Successful.

The requested volume could not be mounted.

The requested amount of space could not be allocated.

I/0O operations were in progress when end-of-volume was requested.

The catalog could not be updated.

Chapter 1. Macro Instruction Return Codes and Reason Codes 31

Chapter 2. VSAM Macro Formats and Examples

This chapter contains macro instruction formats and examples.

The macros that work at assembly time allow you to specify subparameter values
as absolute numeric expressions, character strings, codes, and expressions that
generate valid rclocatable A-type address constants. The macros that work at
execution allow you also to specify these values as:

e Register notation, where the expression designating a register from 2 through
12 is enclosed in parentheses; for example, (2) and (REG), where REG 1s a
label cquated to a numbcr from 2 through 12

e An expression of the form (S,scon), where scon is an expression valid for an
S-type address constant, including the base-displacement form

® An expression of the form (*,scon), where scon is an expression valid for an
S-type address constant, including the base-displacement form, and the
address specificd by scon is indircct—that is, it gives the location of the arca
that contains the value for the subparameter.

For most programming applications, you can conveniently use register notation
or absolute numeric expressions for numbers, character strings for names, and
register notation or expressions that generate valid A-type address constants for
addresses. Appendix C, “Operand Notation” on page 181, gives all the ways of
coding each parameter for the macros that work at execution time.

You can write a reentrant program only with execution-time macros.
Appendix B, “List, Execute, and Generate Forms of Macros” on page 171,
describes alternative ways of coding these macros for reentrant programs. This
chapter describes the standard form of these macros.

Chapter 2. VSAM Macro Formats and Examples 33

ACB

ACB Macro (Generate an Access Method Control Block at Assembly

| Time)

The format of the ACB macro is:

[labe] | ACB | [AM=VSAM]
[,BSTRNO = number]
|, BUFND = nwnber]
[,BUFNI = number}
[,BUFSP = number}
[,CATALOG = YES|NOJ
[,CRA =SCRA|UCRA]
[,DDNAME = ddname]
LEXLST = address]
[[MACRF = (JADRJ|,CNV|,KEY]
[,CFX|NFX]
LDDNIDSN]
L,DFR|NDE]
LDIR||,SEQ|,SKP]
LICHNCY)
INJL,OUT]
LNIS|SIS|
LNRM|AIX]
.NRS|RST]
LNSR|LSR|GSR]
.NUB|UBFD]
[,MAREA = address]
|,MLEN = number]
[,PASSWD = address}
[RMODE31 = {ALL|{BUFF|CB|NONE}
[,SSHRPOOL = {0|number}}
[,STRNO = number]

Note: The RMODE3! parameter replaces the AMODE31 subparameter shown
in previous releases.

Values for ACB macro subparameters can be specified as absolute numeric
expressions, character strings, codes, and expressions that generate valid
rclocatable A-type address constants.

label
is 1 to 8 characters that provide a symbolic address for the access method
control block that is asscrmbled and also, if you omit the DDNAME
parameter, serves as the ddname

AM=YVSAM
' specxﬁes that the access method using this control block is VSAM

BSTRNO = number
specifies the number of strings initially allocated for access to the base
cluster of a path. The default is STRNO. BSTRNO is ignored if the

34 MVS/XA VSAM Administration: Macro Instruction Reference

ACB

object being opened is not a path. If the number specified for BSTRNO is
insufficient, VSAM will dynamically extend the number of strings as needed
for the access to the base cluster. BSTRNO can influence performance.
The VSAM control blocks for the set of strings specified by BSTRNO are
allocated on contiguous virtual storage, whereas this is not guarantced for
the strings allocated by dynamic extension.

BUFND = number
specifics the number of I/O buffers VSAM is to usc for transmitting data
between virtual and auxiliary storage. A buffer is the size of a control
interval in the data component. The minimum number you may specify is
1 plus the number specified for STRNO (if you omit STRNO, BUFND
must be at lcast 2, because the default for STRNO is 1). The number can
be supplied by way of the JCL. DD AMP paramecter as well as by way of
the macro. The default is the minimum number required. Note, however,
that minimum buffer specification does not provide optimum sequential
processing performance. Generally, the more data buffers specified, the
better the performance. Note also that additional data buffers will benefit
direct inserts or updates during control arca splits and will bencfit spanncd
record accessing. For more information, see “Optimizing Performance” in
VSAM Administration Guide.

BUFNI = number
specifies the number of 1/O buffers VSAM is to use for transmitting the
contents of index entrics between virtual and auxiliary storage for keyed
access. A buffer is the size of a control interval in the index. The
minimum number is the number specified for STRNO (if you omit
STRNO, BUFNI must be at least 1, because the default for STRNO 1s 1).
You can supply the number by way of the JCL DD AMP parameter as
well as by way of the macro. The dcfault is the minimum number
required.

Additional indcex buffers will improve performance by providing for the
residency of some or all of the high-level index, theréby minimizing the
number of high-level index records to be retricved from DASD for
key-direct processing. For more information, see “Optimizing
Performance” in VSAM Administration Guide.

BUFSP = number

specifies the maximum number of bytes of virtual storage to be used for the
data and indcx 1/0 buffers. ' VSAM gets the storage in your program’s
address space. If you specify less than the amount of space that was
specificd in the BUFFERSPACE parameter of the DEFINE command
when the data set was defined, VSAM overrides your BUFSP spccification
upward to the value specified in BUFFERSPACE. (BUFFERSPACE, by
definition, is the least amount of virtual storage that will ever be provided

" for /O buffers.) You can supply BUFSP by way of the JCL. DD AMP
parameter as well as by way of the macro. If you don’t specify BUIFSP in
either place, the amount of storage used for buffer allocation is the largest
of:

¢ The amount specified in the catalog (BUFFERSPACE),

e The amount determined from BUFND and BUFNI, or

Chapter 2. VSAM Macro Formats and Examples 35

ACB

® The minimum storage required to process the data set with its specified
processing options

If BUFSP is specified and the amount is smaller than the minimum
amount of storage required to process the data set, VSAM cannot open the
data set.

A valid BUFSP amount takes precedence over the amount called for by
BUFND and BUFNIL If the BUFSP amount is greater than the amount
called for by BUFND and BUFNI, the extra space is allocated as follows:

e When MACREF indicates direct access only, additional index buffers are
allocated.

e When MACRF indicates scquential access, one additional index buffer
and as many data buffers as possible are allocated.

If the BUFSP amount is less than the amount called for by BUFND and
BUFNI, the number of data and index buffers is decreased as follows:

e When MACREF indicates direct access only, the number of data buffers
is decrcased to not fewer than the minimum number. Then, if required,
the number of index buffers is decreased until the amount called for by
BUFND and BUFNI complies with the BUFSP amount.

¢ When MACREF indicates sequential access, the number of index buffers
is decreased to not fewer than | more than the minimum number.
Then, if required, the number of data buffers is decreased to not fewer
than the minimum number. If still required, 1 more is subtracted from
the number of index buffers.

¢ Neither the number of data buffers nor the number of index buffers is
decreased to fewer than the minimum number.

If the index doesn’t exist or isn’t being opened, only BUFND, and not
BUFNI, enters into these calculations. The bufferspace must not exceed
16776704.

CATALOG=YES|NO
specifies whether a catalog is being opened as a catalog (YES) or as a data
set (NO). When NO is coded (or taken as the default), you can process the
catalog with request macros (GET, PUT, ctc). Your program must be
APF-authorized to process a catalog as a data set. To open a password
protected catalog for processing with VSAM macros, you must supply its
master password. When CATALOG = YES is coded, the catalog must be
processed with an SVC designed for that purpose. (Access method services,
for example, processes catalogs with SVC 26.) The request macros are
invalid for processing a catalog “as a catalog.” VSAM users should alter the
contents of a catalog only by access method services commands.

CRA=SCRA|UCRA

specifies that a catalog recovery area is to be opened and that the control
blocks are to be built in either system storage (SCRA) or user storage

36 MVS/XA VSAM Administration: Macro Instruction Reference

ACB

(UCRA). [If you specify SCRA and issue record management requests, you
must operate in key 0. If you specify UCRA, you must be authorized by
the system and you must supply the master password of the master catalog.

DDNAME = ddname
is 1 to 8 characters that identify the data set that you want to process by
specifying the JCL DD statement for the data set. You may omit
DDNAME and provide it by way of the label or by way of the MODCB
macro before opening the data sct. MODCB is described later in this
chapter.

EXLST = address -
specifies the address of a list of addresses of exit routines that you are
providing. The list is established by the EXLST or GENCB macro. If you
use the EXLST macro, you can specify its label here as the address of the
exit list. If you use GENCB, you can specify the address returned by
GENCSB in register 1 or the label of an area you supplied to GENCB for
the exit list. Omitting this parameter indicates that you have no exit
routines. Exit routines are described in “User-Written Exit Routines” in
Data Facility Product: Customization.

MACRF = (JADR]|,CNV|KEY]
,CFX|NEX]
LDDNIDSN]
|, DFR|NDF]
[.DIR||,SEQJ|.SKP]
LICHNCI]
LINJLOUT]
.NIS|SIS]|
L NRMJAIX]

[NRS|RST]
[NSRILSR|GSR]
{NLB|UBF)

specifies the kind(s) of processing you will do with the data set. The
subparameters must be meaningful for the data set. For example, if you
specify keyed access for an entry-sequenced data set, you cannot open the
data set. You must specify all the types of access you're going to use,
whether you use them concurrently or by switching from one to the other.
Figure 12 on page 38 gives the subparameters; each group of
subparameters has a default value (indicated by undcrlining). You may
specify subparameters in any order. You may specify both ADR and KEY
to process a key-sequenced data set. You may specify both DIR and SEQ;
with keyed access, you may specify SKP as well. If you specify OUT and
want mercly to retrieve some records as well as update, delete, or insert
others, you need not also specify IN.

Note: The RMODE3! parameter replaces the AMODE31 subparameter
shown in previous releases.

Chapter 2. VSAM Macro Formats and Examples 37

ACB

Option
ADR

CNVY

NFX
DDN
DSN

DFR

Mecaning

Addressed access to a key-scquenced or an entry-sequenced data
set; RBAs are used as search arguments and sequential access is by
entry sequence.

Access is to the entire contents of a control interval rather than to
an individual data rccord. If the data sct is password protected,
you must supply the address of the control or higher-level
password in the ACB PASSWD parameter.

Keyed access to a key-sequenced or relative record data set; keys
or relative record numbers are used as search arguments and
sequential access is by key or relative record number.

Control blocks and I/O buffers are to be fixed in real storage;
MACRF = ICI must also be specified.

Control blocks and I/O buffers are fixed in real storage only
during 1/O operations.

Subtask shared control block connection is based on common
ddnames.

Subtask shared control block connection is based on common
data sct mames.

With shared resources, writes for direct PUT requests are deferred
until the WRTBFR macro is issucd or until VSAM neceds a buffer
to satisfy a GET request; deferring writes saves I/O requests in
cases wherc subsequent requests can be satisfied by the data
already in the buffer pool.

Writes are not to be deferred for direct PUTSs.

- Direct access to a key-sequenced, entry-sequenced, or a relative

record data set.

Sequential access to a key-sequenced, entry-sequenced, or a
relative record data set.

Skip-scquential access to a key-sequenced or a relative record data
sct; used only with keyed access in a forward direction.

Processing is limited to improved control interval processing;
access is faster because fewer processor instructions are executed.

Processing other than improved control interval processing.

Retrieval of records of a key-sequenced, entry-sequenced, or a
relative record data set; (not allowed for an empty data set). If the
data sct is password protected, you must supply the address of the
read or higher-level password in the ACB PASSWD parameter.

Figure 12 (Part 1 of 2). MACRF Options

38 MVS/XA VSAM Administration: Macro Instruction Reference

— ap— St —— —— o—— ——— — ——

ACB

Option
ouT

NIS
SIS

NRM
AIX

NRS
RST

NSR
LSR

GSR

NUB
UBF

Mecaning

Storage of new records in a key-sequenced, entry-sequenced, or
relative record data set (not allowed with addressed access to a
key-sequenced data sct); update of records in a key-scquenced,
entry-sequenced, or relative record data set; deletion of records from a
key-sequenced data sct or relative record data set.

If the data set is password protected, you must supply the address of
the update or higher-level password in the ACB PASSWD paramcter.

Normal inscrt strategy.

Sequential inscrt strategy (split control intervals and control areas at
the insert point rather than at the midpoint when doing direct PUTSs);
although positioning is lost and writes are done after each direct PUT
request, SIS allows more cfficient space usage when direct inserts are
clustered around certain keys.

The object to be processed is the one named in the specificd ddname.

The object to be processed is the alternate index of the path specified
by ddname, rather than the basc cluster via the alternate index.

Data sct is not reusable.

Data sct is rcusable (high-used RBA is resct to 0 during OPEN). If
the data set is password protccted, you must supply the address of the
update or higher-level password in the ACB PASSWORD paramcter.

Nonshared resources.

Local sharcd resources. Each address space may have up to 16 index
resource pools and 16 data resource pools indcpendent of other
address spaces. Unless you are using the default, SHRPOOL =0, you
must specify the SHRPOOL parameter to indicate which resource
pool you are using. Specifying LSR will causc a data sct to usc the
local resource pool built by the BLDVRP macro. If an index
resource pool exists at the time an OPEN macro is issued, the index
for a key-sequenced data set will be connected to the index resource

pool.

Global shared resources; all address spaces may have local and global
resources pools, where tasks in an address space with a local resource
pool may usc either the local resource pool or the global resource

pool.
Management of 1/O buffers is left up to_.VSAM.

Management of I/O buffers is left up to the user; the work area
specified by the RPL (or GENCB) AREA parameter is, in cffcct, the
1/0 buffer—VSAM transmits the contents of a control interval directly
between the work area and direct access storage; valid when
OPTCD=MVE and MACRF = CNV are specified; when ICI is
specified, UBF is assumed.

Figure 12 (Part 2 of 2). MACRF Options

Chapter 2. VSAM Macro Formats and Examples 39

ACB

MAREA = address

specifies the address of an optional OPEN/CLOSE or TYPE=T option
(CLOSE macro) message area. See “OPEN/CLOSE Message Area for
Multiple Reason or Warning Messages” on page 7 for more information.

MLEN = number

specifies the length of an optional OPEN/CLOSE or TYPE=T option
(CLOSE macro) message area. Default = 0; maximum =32K. See
“OPEN/CLOSE Message Area for Multiple Reason or Warning Messages”
on page 7 for more information.

PASSWD = address

specifies the address of a ficld that contains the highest-level password
required for the type(s) of access indicated by the MACRF parameter. The
first byte of the field pointed to contains the length (in binary) of the
password (maximum of 8 bytes). Zero indicates that no password is
supplicd. If the data set is password protected and you don’t supply a
required password in the access method control block, VSAM will give the
console opcrator the opportunity to supply it when you open the data sct.

RMODE3I = [ALL|BUFF|CB|NONE]

specifics where VSAM OPEN is to obtain virtual storage (above or below
16 megabytcs) for control blocks and I/O buffers.

The values specified by the RMODIE31 parameter only have an cffect on
VSAM at the sctting just before an OPEN is issued. At all other times,
changing these values has no effect on the residency of the control blocks
and IO buffers.

ALL
both VSAM control blocks and I/O buffers are to be obtained above
16 megabytes.

BUFF
only VSAM [/O buffers are to be obtained above 16 megabytes.

CB
only VSAM control blocks are to be obtained above 16 megabytes.

NONE
both I/O buffers and VSAM control blocks arc to be built below 16
megabytes. This is the default.

Note: In previous releases, the MACRF subparameter AMODE31
specified that I/O buffers were to be obtaincd above 16 megabytes and that
the caller was running in 31-bit addressing mode. The RMQODE31
paramcter replaces the AMODE31 subparamecter and the two are mutually
exclusive. If both the AMODE31 subparameter and the RMODE31
parameter are specified within the same program, AMODEZ3I is ignored.

SHRPOOL = {number|0}

identifies which LSR pool is to be connected to the ACB. This parameter
is valid only when MACRF =LSR is also specified. The identification

40 MVS/XA VSAM Administration: Macro Instruction Reference

ACB

number of the shared pool must be a number from 0 to 15. The default is
0.

STRNO = number
specifies the number of requests requiring concurrent data set positioning
VSAM is to be prepared to handle. The default is 1. A request is defined
by a given request paramcter list or chain of request parameter lists. See
“RPL Macro (Generate a Request Parameter List at Assembly Time)” on
page 126 and “GENCB Macro (Generate a Request Parameter List at
Exccution Time)” on page 80 for information on request parameter lists.
When records are loaded into an empty data set, the STRNO value in the
access method control block must be 1.

VSAM dynamically extends the number of strings as they are necded by
concurrent requests for this ACB. This automatic extension can influence
performance. The VSAM control blocks for the set of strings specified by
STRNO are allocated on contiguous virtual storage, but this is not
guaranteed for the strings allocated by dynamic extension. Dynamic string
addition cannot be done when using the following options:

¢ Load mode
¢ ICI
e LSR or GSR

For STRNO, you should spccify the total number of request parameter
lists or chains of request parameter lists that you are using to dcfine
requests. (VSAM neceds to remember only one position for a chain of
request parameter lists.) However, each position beyond the minimum
numbcr that VSAM neceds to be able to remember requires additional
virtual storage space for:

¢ A minimum of one data 1/O buffer and, for keyed access, one index
1/0 buffer (the size of an 1/O buffer is the control interval size of a data
set)

e Internal control blocks and other areas

Chapter 2. VSAM Macro Formats and Examples 41

'ACB

Example 1: ACB Macro

In this example, the ACB macro is used to identify a data sct to be opened and
to specify the types of processing to be performed. The access method control
block generated by this example is built when the program is assembled.

BLOCK ACB AM=VSAM,BUFND=4, BLOCK gives symbolic

BUFNI=3, address of the access
BUFSP=19456, method control block.
DDNAME=DATASETS, '
EXLST=EXITS,
MACRF=(KEY,DIR, SEQ,OUT),
PASSWD=FIELD,
STRNO=2

FIELD DC FL1'6',C'CHANGE' The update password:

CHANGE has 6 characters.
The ACB macro’s parameters are:

e BUFND specifies four I/O buffers for data; BUFNI specifies three [/O
buffers for index entries;.and BUFSP specifics 19456 bytes of buffer space,
cnough space to accommodate control intervals of data that arc 4096 bytcs
and control intervals of indcx entrics that arc 1024 bytes.

e DDNAME specifics that this access method control block is associated with
a DD statement namcd DATASETS.

e EXLST specifies that the exit list associated with this access method control
block is named EXITS.

® MACREF specifies keyed-direct and keyed-sequential processing for both
insertion and update.

e PASSWD specifies the location, FIELD, of the password provided. FIELD
contains the length of the password as well as the password itsclf.

e STRNO specifies that two requests will require concurrent positioning.

42 MVS/XA VSAM Administration: Macro Instruction Reference

Example 2: ACB Macro

ACB

In this example, the ACB macro is used to identify a data sct to be opened and
to specify the types of processing to be performed. An LSR pool is connected to
the data set. The access method control block generated by this example is built
when the program is assembled. The caller requests that the VSAM control
blocks and 1/O buffers be obtained above 16 megabytes if possible. '

BLOCK2 ACB AM=VSAM,

BLOCK2 gives symbolic
DDNAME=DATASETS, address of the access
EXLST=EXITS, method control block.
MACRF=(KEY,DIR,

LSR, SEQ,0UT),

PASSWD=FIELD,

RMODE31=ALL,

SHRPOOL~1

FIELD DC FL1'6',C'CHANGE' The update password:

CHANGE has 6 characters.

The ACB macro’s parameters are:

DDNAME specifics that this access method control block is associated with
a DD statement named DATASETS.

EXLST specifies that the exit list associated with this access method control
block is named EXITS.

MACREF specifies keyed-direct and keyed-sequential processing for both
inscrtion and update. LSR indicates that the 1.SR pool crcated by BLDVRP
is to be connected to the data sct.

PASSWD specifies the location, FIELD, of the password provided. FIELD
contains the length of the password as well as the password itsclf.

RMODE31= ALL speccifies that you want both VSAM control blocks and
I/O buffers to reside above 16 megabytes.

SHRPOOL specifies that the LSR pool with the identification number of 1 is
to be used. However, if an index resource pool exists at the time the OPEN
macro is issued, the index for the key-sequenced data sct will be connected to
the index resource pool.

Chapter 2. VSAM M:- “ormats and Examples 43

ACQRANGE

ACQRANGE Macro (Stage Data)

The format of the ACQRANGE macro is:

{llabe§ | ACQRANGE | RPL = address |

RPL = address '
specifies the address of the RPL that identifies your open data sct and your
argument range. RPL parameters that have mcaning for ACQRANGE are
as follows:

ACB= address
identifies your VSAM data set.

ARG = address
identifies your starting and ending arguments. Address points to a
parameter list, aligned on a fullword boundary as follows:
KEY-SEQUENCED DATA SET
Offsct Length Contents

0 4 Feedback area: Address
of an ECB WAIT list

4 K Starting full argument
(K = key length)

4+K K (K = key length)

ENTRY-SEQUENCED DATA SET OR RELATIVE RECORD
DATA SET

Offset Length Contents

0 4 Feedback area: Address
of an ECB WAIT list

4 4 Starting RBA/RRN

8 4 Ending RBA/RRN

The maximum number of argument pairs you may specify is one.

OPTCD = ({ADRIKEY}
{ASY|SYN)
(KEQ|KGE}
,FKS)

ADR is valid for an entry-sequenced data set, error for key-sequenced
data set or relative record data set.

44 MVS/XA VSAM Administration: Macro Instruction Reference

ACQRANGE

KEY is valid for key-sequenced data set and relative record data set,
error for entry-sequenced data set.

If ASY is specified, you cannot WAIT on the RPLECB field for
MNTACQ or ACQRANGE. You use the address placed in the
parameter list feedback area. This address points to a list of event
control blocks (ECB) (in standard WAIT list format) which you may
use in place of the RPLECB field.

GEN is not supported; if specified, it will give an error indication.

All other OPTCD subparameters are not applicable, and, if specified,
are ignored with no error indication.

Because your request may result in the staging of numcrous cylinders, a single
ECB is not sufficient for an asynchronous ACQRANGE request. The RPLECB
ficld is inoperative for the ACQRANGE interface. Upon rcturn from an
asynchronous ACQRANGE, the fecdback arca of the ACQRANGE paramcter
contains the address of a standard ECB WAIT list. You must then use this list
in conjunction with either the WAIT macro or the EVENTS macro of MVS.
An asynchronous request must conclude with cither CIIECK, ENDREQ, or
CLOSE. The paramcter list cannot be reused until the CHECK, ENDREQ, or
CLOSE is completed.

At the conclusion of this macro, the RPL is disconnected. Any positioning in

cffect prior to exccution of ACQRANGE will be lost. You may have to
reposition. Chained RPLs are not supported by this macro.

Chapter 2. VSAM Macro Formats and Examples 45

BLDVRP

.

BLDVRP Macro (Build VSAM Resource Pool)

The format of the BLDVRP macro is:

BLDVRP

BUFFERS = (size(number),size{number),...)

[,FIX = {BFR}{IOB|(BFR,IOB)}]
[,KEYLEN = length]

[,RMODE31 = {ALL|BUFF|CB|NONE}]
,SSHRPOOL = {0| number}]

LMODE = (2431}]

STRNO = number

L,TYPE = {LSR|,DATA|INDEX] | GSR}|

Note: The RMODL3! parameter replaces the LOC=BELOW|ANY parameter
shown in previous releases. '

The BLDVRP macro has a standard form and list and cxccute forms. The
standard form builds a parameter list and passes control to VSAM to build the
resource pool. The list and exccute forms are described in Appendix B, “List,
Exccute, and Generate Forms of Macros” on page 171.

BUFFERS = (size(number),size(number),...)

specifies the size and number of buffers in each buffer pool in the resource
pool. The number of buffer pools in the resource pool is implied by the
number of size(number) pairs you specify.

When you process a key-sequenced data set, the index component, as well
as the data component, shares the buffers of a buffer pool. When you use
an alternate index to process a base cluster, the components of the alternate
index and the base cluster share buffers. The components of alternate
indexes in an upgrade set share buffers. Buffers of the appropriate size and
number must be provided for all these components. Each component uses
the buffer pool with buffers either the required size or larger.

size
is 512, 1024, 2048, 4096, and then in increments of 4096 to a
maximum of 32K bytes.

number
is at lcast 3.

Size times number must be less than 16 megabytes.

FIX = {BFR|IOB|(BFR,IOB)}

specifies that 1/O buffers (BFR), or I/O-related control blocks (I0B), or
both, are to be fixed in real storage. With GSR, IOB includes channel
programs. If the program that issues BLDVRP with FIX specified is not
authorized to fix areas in real storage, FIX i$ ignored. A program is
authorized if it is in supervisor state with protection key 0 to 7, or has been
link-edited with authorization (the authorized program facility is described
in Supervisor Services and Macro Instructions).

46 MVS/XA VSAM Administration: Macro Instruction Reference

BLDVRP

Note: If FIX is specified, DLVRP must be issued by the same task that
issues BLDVRP.

KEYLEN = length
specifies the maximum key length of the data scts that are to share the
resource pool. The default is 255. The keys whosc lengths must be
provided for are the prime key of each key-sequenced data set and the
alternate key of each alternate index that is used for processing or is being
upgraded. If nonc of the data scts is keyed, specify 0.

RMODE3I = {ALL|BUFF|CB|NONE}
specifies the storage residence location of the buffers and I/O related control
blocks of the LSR pool identificd with the SHHRPOOL keyword.

The RMODED31 paramcter tells the VSAM OPEN routines where to
obtain storage for the 1/O related control blocks and I/O buffers.
Therefore, the only time the values specified by thce RMODE3!1 parameter
have any cffect on VSAM is on the sctting just before an OPEN is issued.
At other times, changing these values has no effect on the residency of the -
I/0 related control blocks and 1/O buffers. '

Note: The RMODE31 paramcter is valid only when TYPE=LSR is
specified.

ALL ’
both 1/O buffers and the VSAM 1/0 related control blocks associated
with the pool are to reside above 16 mcgabytes.

BUFF
specifics that only 1/O buflers arc to reside above 16 mcgabytes.

CB
eady the YSAM 1/0 rclated control biocks associated -with the pool
4 are to reside above 16 megabytes.

NONE
both I/0O buffers and the VSAM 1/0 related control blocks associated
with the pool are to reside below 16 megabytes. This is the default.

Note: In previous releases, the LOC=(BELOW|ANY) parameter was
uscd to specify that buffers in the pool be created above 16 megabytes. The
RMODE3] parameter replaces the LOC paramcter and the two paramcters
are mutually exclusive. If both are specificd on the BLDVRP macro, the
LOC parameter is ignored.

SHRPOOL = {0 number}
specifies the identification number of a shared resource pool. Valid only
when TYPE=LSR is also specified or defaulted. This parameter also
requires that the RMODE31 parameter be specified.

0
specifies the shared pool with the ID of 0. It is the default LSR pool.

Chapter 2. VSAM Macro Formats and Examples 47

BLDVRP

number

specifies the shared pool with the ID of number where number can be
0to 15. The LSR control block and buffer pool residence is
determined by the RMODE31 = keyword.

MODE = {2431}
specifies the format of the BLDVRP paramcter list that is to be generated.

A

31

specifies that a standard form (24-bit) parameter list address be
generated. This is the dcfault.

specifies that a long form (31-bit) parameter list address be generated.
This value must be coded if the parameter list resides above 16
megabytes.

STRNO = number
specifies the total number of placcholders required for all the data sets that
are to share the resource pool. 1 is minimum; 255 is maximum.

The number should cqual the potential number of requests that may be
issued concurrently for all the data sets that will share the resource poal. Ifa
request fails because the number of placeholders is insufficient (you receive a
reason code of 64 (X’40") in the RPL, feedback arca), you may retry the
request; it will be assigned a placcholder if one has been released. See

Figure 8 on page 17 for a complcte description of rcason code 64 (X'40°).

TYPE = (LSR],DATA|INDEX] | GSR}
specifies whether a local (LSR) or a global (GSR) resource pool is to be

built.

LSR

specifies that the caller requests a local shared resource pool. A
maximum of 16 data and 16 index resource pools can be built in one
address space. Each resource pool must be built individually.

. DATA

specifies that the caller wants to build a data resource pool. This
option requires that LSR be specified. This resource pool must exist
before an index pool with the same shared pool ID can be built.

INDEX

GSR

specifies that the caller wants to build an index resource pool. This
option requires that LSR be specified or defaulted. INDEX must be
specified in order to create a separate index resource pool. If it is not
specified, both data and index components will use the data pools. A
data pool must already exist before an index pool with the same
shared pool ID can be built.

specifies that the caller requests a global shared resource pool.

48 MVS/XA VSAM Administration: Macro Instruction Reference

BLDVRP

Only one BLDVRP TYPE = GSR may be issued for the system for each of
the protection keys 0 through 7. The program that issues BLDVRP
TYPE = GSR must be in supervisor state with protection key 0 to 7.

| Example 1. Obtaining an LSR Pool above 16 Megabytes

I
l
l
|
I

This example shows how both a local shared resource pool and a BLDVRP
paramcter list residing above 16 megabytes are obtaincd. :

POOL1 BLDVRP BUFFERS=(1024(5)),
STRNO=4,
TYPE=LSR,
MODE=31,
RMODE31=ALL

The BLDVRP parameters are:

e BUFFERS specifies that there is one buffer pool in the resource pool. This
buffer pool contains 5 buffers, and each of thesc buffers is 1024 bytes.

e STRNO specifics that 4 placcholders are required for the data sets to share
the resource pool.

e TYPE specifics that a local resource pool is to be built.

¢ MODE specifies that a parameter list is to be generated that may reside
above or below 16 megabytes. The value of 31 must be coded if the
paramecter list resides above 16 megabytes.

e RMODE3I specifies the location in storage for the 1/O buffers and 1/O
related control blocks of the LSR pool.

To connect the LSR pool to the data set, you must code the LSR and |

SHIRPOOL parameters on the ACB. See “ACB Macro (Generate an Access
Method Control Bloc: at Assembly Time)” on page 34.

Chapter 2. VSAM Macro Formats and Examples 49

BLDVRP

Example 2. Request for Separate Data and Index Resource Pools
This example shows how the two separate data and index resource pools with an

identification equal to 3 are created.

POOL1 BLDVRP BUFFERS=(2048(4)),
TYPE=(LSR,DATA),

SHRPOOL=3,
STRNO=2,
. RMODE31=ALL
LTR R15,R15 Check return code.
BNZ ERROR Do not build index if
. error.

POOL2 BLDVRP BUFFERS=(1024(5)),
TYPE=(LSR, INDEX),
SHRPOOL=3,
STRNO=2,
RMODE31=ALL

Note: POOL1 must be crcated first because the data pool must exist before the
index pool with the same shared pool ID can be built. Also, only one data and
one index pool can be built for a shared pool ID.

50 MVS/XA VSAM Administration: Macro Instruction Reference

e~

CHECK

CHECK Macro (Wait for Completion of Request)

The format of the CHECK macro is:

[laben | CHECK | RPL=address

where:

label

is 1 to 8 characters that provide a symbolic address for the CHECK macro.

RPL = address

specifics the address of the request parameter list that defines the request.
You may specify the address in register notation (using a register from 1
through 12, enclosed in parentheses) or specify it with an expression that
gencrates a valid relocatable A-type address constant.

Example 1: Check Return Codes after an Asynchronous Request

In this example, return codcs arc checked after an asynchronous request. The
CHECK macro is used to cause an exit to be taken if there i1s a logical or
physical crror or if the end of the data sct is recached.

REQPARMS RPL
GET
LTR

BNZ

CHECK

LTR

BNZ

REJECTED ...
FAILURE ...

OPTCD=ASY

RPL=REQPARMS
15,15

REJECTED

RPL=REQPARMS

15,15

FAILURE

Was the request completed
successfully?

Zero indicates the request was
accepted. If it was not
accepted, register 15 contains
43 REQPARMS is active for
another request. Continue to
work on something that is not
dependent on the request.

CHECK would cause one of the
three exits to be taken if
there was a logical or physical
error or if the end of the
data set was reached and an
active exit list exists.

Test return indication is
register 15.

Zero indicates the request
completed successfully. If
it failed, register 15
contains 8 or 12: there was
a logical or a physical
error. -

Chapter 2. VSAM Macro Formats and Examples 51

CHECK

Unless you provide exit routines that terminate processing, always test register 15
after the CHECK. If a routine rcturns to VSAM, register 15 is reset and control
is passed back to your program immediately after the CIIECK. An error analysis
routine normally issues SHOWCB or TESTCB to examine the feedback field in
the request parameter list, so that, when your processing program gets control
back, it doesn’t have to analyze the errors—but it may-alter its processing if there
was an error. If you don’t provide an error analysis routine, your program can
issue SHHOWCB or TESTCB to analyze an error when it gets control back
following the CIIECK.

Example 2: Check Return Codes after a2 Synchronous Request

With synchronous processing, you should test register 15 after the request
because the request may not have been accepted (register 15 contains 4) or
because an crror might have occurred (8 or 12):

GET RPL=REQPARMS

LTR 15,15 Was the request completed
successfully?
BNZ REJFAIL If branch is not taken, was

the request accepted and
completed succesfully?

REJFAIL ...
Example 3: Overlap Proccssing

In this example, the CHHECK macro is used to wait for complction of a request
before continuing to other processing. Access is asynchronous.

BLOCK ACB
LIST RPL ACB=BLOCK, Asynchronous access.
AREA=WORK,
AREALEN=50,
. OPTCD=ASY

LOOP GET RPL=LIST

LTR 15,15

BNZ NOTACCEP

Do other processing.

CHECK RPL=LIST Suspends your processing to wait
for completion of GET if
necessary and to cause VSAM to
indicate return codes.

LTR 15,15

BNZ ERROR

Process the record.

B Loop

52 MVS/XA VSAM Administration: Macro Instruction Reference

CHECK

NOTACCEP ... Request wds not accepted.
ERROR . Request failed.
WORK DS CL50 Work area.

After issuing the request, make surc that VSAM accepted it before you go on to
other processing. When you have done as much other processing as you can,
issue the CHECK macro. VSAM will not give you back control until the
request is complete. If you don’t want to issue CHECK until you know the
request is complete, use the ECB parameter of the RPL macro or the

10 = COMPLETE parameter of the TESTCB macro. After you issue the
CHECK, VSAM immediatcly returns a code and takes an exit, if nccessary. See
“RPL Macro (Generate a Request Parameter List at Assembly Time)” on

page 126 and “GENCB Macro (Gencrate a Request Parameter List at Execution
Time)” on page 80 for information on the ECB parameter.

Examplc 4: Suspend a Regquest for Many Records

In this cxample, a CHECK macro is issucd for the first request parameter list in a
chain of parameter lists. If an error occurred for one of the request paramicter
lists in the chain and you have supplied error analysis routines, VSAM takes a
LERAD or SYNAD exit before it returns control to your program after the
CHECK.

FIRST RPL ACB=BLOCK,
AREA=AREA1,
AREALEN=50,
NXTRPL=SECOND,
OPTCD=ASY
SECOND RPL ACB=BLOCK,
AREA=AREA2,
AREALEN=50,
NXTRPL=THIRD,
OPTCD=ASY
THIRD RPL ACB=BLOCK, Last list does not indicate
AREA=AREA3, a next list.

AREALEN=50,
OPTCD=ASY

LOOP GET RPL=FIRST Request gives the address of
the first request parameter
LTR 15,15 list.
BNZ - NOTACCEP
Do other processing.
CHECK RPL=FIRST
LTR 15,15

BNZ ERROR

Chapter 2. VSAM Macro Formats and Examples 53

CHECK

Process the three records retrieved by the GET.

B LOOP

NOTACCEP ... ' Request wasn't accepted.

ERROR .o Display the feedback field
(FIELDS=FDBK) of each request
parameter list to find
out which one had an error.

AREA1 Ds CL50 A single GET request causes VSAM

to put a record in each of AREA1l,
AREAl, and AREA3.
AREAZ © DS CL50 »

AREA3 DS CL50

After the CHECK, rcgister 1S is sct to indicate the status of the request. A code
of 0 indicatcs that no error was associated with any of the request parameter lists.
Any other codc indicates that an error occurred for onc of the request parameter
lists. You should issue a SHOWCB macro for each request parameter list in the
chain to find out which one had an crror. VSAM doesn’t process any of the
rcquest paramcter lists beyond the one with an crror.

54 MVS/XA VSAM Administration: Macro Instruction Reference

CLOSE

CLOSE Macro (Disconnect Program and Data)

The format of the CLOSE macro is:

l{abel]

CLOSE | (address|(options)),...)
|,MODE = (24131)]

[,TYPE=T]

where:

label

is 1 to 8 characters that provide a symbolic address for the CLOSE macro.

address

specifics the address of the access method control block or DCB for cach
data sct to be closcd. You may specify the address in register notation
(using a register from 2 through 12—in parcntheses) or specify it with an
expression that generates a valid relocatable A-type address constant. If
you spccify only onc address with a register, you must enclose the
cxpression identifying the register in two scts of parentheses: for example,
CLOSE ((2)).

options

arc options paramecters for usc'on]y in closing non-VSAM data scts. If any
options arc specified with the address of an access method control block,
VSAM ignores them.

Note: Because the CLOSE parameters arc positional, include a comma for
options (cven if you don’t specify options) before a subsequent paramecter.

MODE = {24]31)
specifics the format of the CLOSE paramecter list that is to be built.

24

31

TYPE=T

specifies that a standard form (24-bit) parameter list address be built.
This parameter list must reside below 16 megabytes and contain the
address of ACBs residing below 16 megabytes. The caller, however,
may be above 16 megabytes. This is the default parameter list
format.

specifies that a long form (31-bit) parameter list address be built.
This list can reside above or below 16 megabytes. This value must be
coded if the paramcter list resides above 16 megabytes or contains the
address of an VSAM/VTAM ACB rcsiding above 16 megabytes.

specifics that VSAM is to complete outstanding I/O operations and update
the catalog, but not disconnect the program from the data.

You can issue a temporary CLOSE macro to cause VSAM to complete
outstanding I/O operations, put back into the catalog the updated

Chapter 2. VSAM Macro Formats and Examples 55

CLOSE

information that was brought into virtual storage when the data set was
opened, and write records in the SMF data set if you are using SMF. A
temporary CLOSE doesn’t disconnect the program from the data set, so
your program can continue to process the data set without issuing an
OPEN macro again.

You must close and rcopen a newly created VSAM data set before you can
issue noncreate requests. A temporary close is not adequate for this

purpose.

Note: If you are sharing subtasks or if you have issued an asynchronous request
for access to a data set, you must issue a CHECK or an ENDREQ on all RPLs
before you issue a CLOSE or CLOSE TYPE = T; otherwise, concurrent data set
I/O activity will cause unpredictable results during a close.

| Example: CLOSE Macro

| This example shows how to close an ACB with a parameter list that may reside
| above 16 mcgabytes. '

BLOCK1 ACB
| ,RMODE31=ALL VSAM control blocks
. and 1/0 buffers may
be above 16 megabytes
OPEN BLOCK1, OPEN/CLOSE parameter

MODE=31 list may reside above
16 megabytes

CLOSE BLOCK1,
MODE=31,
TYPE=T

| The CLOSE parameters are:

] e MODE=3l1 is required if the OPEN/CLOSE parameter list resides above 16
| megabytes or if the ACB resides above 16 megabytes.

e TYPE indicates a temporary CLOSE. This causes VSAM to complcte
outstanding I/O operations, put back into the catalog the updated
information that was brought into virtual storage when the data sct was
opened, and write records in the SMF data sct if you are using SMF.

56 MVS/XA VSAM Administration: Macro Instruction Reference

CNVTAD Macro (Convert Address)

The format of the CNVTAD macro is:

CNVTAD

I |label)

| CNVTAD | RPL = address

RPL = address
specifics the address of the request parameter list (RPL). The RPL
identifics your opcned VSAM data sct and your arguments. The following
RPL paramcters and subparameters have meaning for the CNVTAD
macro:

ACB = address

identifics your VSAM data sct.

ARG = address
identifics your arguments. The address points to a parameter list,
aligned on a fullword boundary as follows:

Key-scquenced data set

Offset Length
0 3
3 1
4+ (N-1)(10+K) 4
8+ (N-1)(10+K) 4

14+ (N-1)(10+ K) K

Contents
Reserved; unusced

Number of arguments (N)
(N = 110 255)

Fcedback RBA
(K = key length)

Fecdback volumc scrial number
(K = key length)

Full key argument
(K = key length)

Entry-sequenced data set or relative record data set

Offsct Length
0 3
3 1
4+(N-1)(4) 4
8+ (N-1)(14) 6
18+ (N-1)(14) 6

Contents

Reserved; unused

Number of arguments (N)
Feedback RBA

Feedback volume serial number
RBA/RRN argument

The value for K is always 4 in an entry-sequenced or relative record
data set. Therefore, 10+ K is always 14 for these two types of data
sets. The maximum number of arguments allowed is 255.

Chapter 2. VSAM Macro Formats and Examples 57

CNVTAD

ECB = address
specifies the address of an event control block (ECB) which you may
specify. VSAM indicates in the ECB whether or not a request is
complete. This parameter is optional.

OPTCD = ({ADR|KEY)
{ASY|SYN}
{KEQ|KGE}

JFKS)

ADR is only valid for entry-sequenced data sets.

KEY is only valid for key-sequenced data scts and relative rccord dat
a sets.

If ASY is specified, you cannot WAIT on the RPLECB field for
MNTACQ or ACQRANGE. You use the address placed in the
paramcter list feedback areca. This address points to a list of ECBs (in

standard WAIT list format) which you may usc in place of the
RPLECB field.

GEN is not supported; if specified, it will give an crror indication.

All other ©PTED subparameters are rot applicable, and; if specified,
arc ignored with no crror indications.

For a given list of discretc arguments, CNVTAD returns the volume scrial
number (volser) and the RBA corresponding to each argument in the parameter
list fecdback arca. The data portion of your VSAM data set is not referenced and
nced not be mounted cven if the scquence set is embedded.

For an entry-sequenced data set, the volser is returned, and the same RBA
specified in the argument ficld is also returned.

Note: The RBA retumed by CNVTAD in the case of a key-sequenced data set
is not the exact RBA of the record. It is, in fact, an approximate value. (For
data sets with the IMBED option, it is the RBA of the beginning of the sequence
set for the record’s control area; for data sets with NOIMBED, it is the RBA of
the record’s control interval.) When passed to MNTACQ, these RBA values
cause MNTACQ to stage the appropriate cylinders corresponding to the
rcquested arguments originally passed to CNVTAD. You should therefore use
caution if you are planning to usc the RBAs obtained from CNVTAD for any
purpose other than as input to MNTACQ.

At the conclusion of this macro, the RPL is disconnected. Any positioning in

effect prior to execution of this macro will be lost. You may have to reposition.
Chained RPLs are not supported by CNVTAD.

58 MVS/XA VSAM Administration: Macro Instruction Reference

DLVRP

DLVRP Macro (Delete VSAM Resource Pool)

The DLVRP macro has a standard form and an execute form. The standard
form builds a parameter list and passes control to VSAM to delete the resource
pool. The execute form is described in Appendix B, “List, Execute, and
Generate Forms of Macros” on page 171.

The fdrmat of the DLVRP macro is:

DLVRP | TYPE = {LSR|GSR}
- | LMODE = (24/31)]
[,SHRPOOL = {0|ruumber}]

TYPE= {LSR|GSR}
specifies the type of resource pool to be deleted: local (1.SR) or global
(GSR). When decleting an LSR pool, the number specified on the
SHRPOOL parameter indicates which LSR pool is to be dclcted. If both a
data resource pool and an index resource pool have the same SIIRPOOL
numbcr, both will be deleted. The program that issues DLVRP
TYPE = GSR must be in supervisor state with protection key 0 to 7.

MODE = (24|31}
specifics the format of the DILVRP parameter list that is to be gencrated.

24
specifics that a standard form (24-bit) parameter list address be built.
This parameter list must reside below 16 megabytes and contain the
address of ACBs residing below 16 megabytes. The caller, however,
may be above 16 megabytes. This is the default paramcter list
format.

31
specifics that a long form (31-bit) paramcter list address be built.
This list can reside above or below 16 megabytes. This parameter
value must be coded if the parameter list resides above 16 megabytes
or contains the address of a VSAM/VTAM ACB residing above 16
mcgabytes.

SHRPOOL = (0| number)
specifics the identification number of the shared resource pool that is to be
delcted. Valid only when TYPE = LSR is also specified. The DLVRP
parameter list may reside above or below 16 megabytes.

0
specifics the shared pool with the identification of 0. This is the
default LSR pool identification number.

number

specifies the shared pool with the identification of mumber where
number is a number from 0 to 15.

Chapter 2. VSAM Macro Formats and Examples 59

DLVRP

| Example: DLYRP Macro

| This example shows how an LSR pool with a parameter list that may reside
| above 16 megabytes and identification number other than 0 is deleted.

DELPOOL DLVRP TYPE=LSR,
| MODE=31,
SHRPOOL=1

The DLVRP paramecters are:
® TYPE specifies that an LSR pool is to be deleted.

| e MODE =31 spccifies the parameter list may reside above or below 16
| megabytes.

| o SHRPOOL spccifies that the data resource pool and the index resource pool
| (if any) with the identication number of | are to be delcted.

60 MVS/XA VSAM Administration: Macro Instruction Reference

ENDREQ

ENDREQ Macro (Terminate a Request)

The format of the ENDREQ macro is:

llabel} | ENDREQ RPL = address

where:

label
is 1 to 8 characters that provide a symbolic address for the ENDREQ
macro.

RPL = address
specifies the address of the request parameter list that defines the request.
You may specify the address in register notation (using a register from 1
through 12, enclosed in parcntheses) or specify it with an cxpression that
gencrates a valid rclocatable A-type address constant.

Note: The ENDREQ macro must not be issued when records are being loaded
into a VSAM data sct (load modc). ENDREQs issued while in load mode are
ignored.

Example: Relcasc Positioning for Another Request

In this exampie, the ENDREQ macro is used to cause VSAM to release
cxclusive control of a control interval containing a record. There are two request
paramctcr lists, both of which requirc VSAM to have the ability to remember its
position until VSAM is explicitly requested to forget its position.

BLOCK ACB MACRF=(SEQ,

DIR),STRNO=2
SEQ RPL ACB=BLOCK, VSAM must remember its
OPTCD=SEQ position.
DIRUPD RPL ACB=BLOCK, VSAM must remember its
OPTCD=(DIR,UPD) position and maintain
. exclusive control until
. explicitly requested to
. forget it by PUT or
ENDREQ.
Loop GET RPL=SEQ VSAM now remembers its
position for this request
LTR 15,15 only while it is
- processing the request.
BNZ ERROR
GET RPI~=DIRUPD VSAM can remember its
position for this request.
LTR 15,15 The control interval will
be placed in exclusive
BNZ ERROR control until either
ENDREQ or PUT UPD is
issued.

Chapter 2. VSAM Macro Formats and Examples 61

ENDREQ

Decide whether to update the record.

B . FORGET No; do not update the
record.
PUT RPL=DIRUPD Yes; update the record,
causing VSAM to forget its
LTR 15,15 position for DIRUP.
BNZ ERROR
B LOOP
FORGET ENDREQ RPL=DIRUPD Cause VSAM to forget its
position for DIRUPD.
LTR 15,15 , Release exclusive control.
BNZ ERROR
B LOOP
ERROR XXX Request wasn't accepted or
failed.

The use of ENDREQ illustrated here causes VSAM to release exclusive control
of the control interval for a record. When PUT is issued after a DIRUPD GET
request, ENDRLEQ nced not be issued, because PUT causes VSAM to release
exclusive control (the next DIRUPD GET doesn’t depend on VSAM'’s
remembering its position). Another result of ENDREQ is that current buffers
arc written if they have been modified.

To cause VSAM to give up its position associated with a chain of request
parameter lists, specify the first request parameter list in the chain in your
ENDREQ macro.

ENDREQ can also be used to cancel an asynchronous request, rather than
suspending processing with CHECK.

Note: If you are sharing subtasks or if you have issued an asynchronous request
for access to a data set, you must issue a CHECK or an ENDREQ on all RPLs
before you issue a CLOSE or CLOSE TYPE =T; otherwise, concurrent data set
I/O activity will cause unpredictable results during a close. in is adequate.

Becausc VSAM rcmembers its position after a direct GET with OPTCD =UPD

or LOC, if no PUT or ENDREQ follows, you can switch to sequential access
and use the positioning for a GET.

62 MVS/XA VSAM Administration: Macro Instruction Reference

ERASE

ERASE Macro (Delete a Record)

The format of the ERASE macro is:

[labeff | ERASE | RPL = address

where:

label
is 1 to 8 characters that provide a symbolic address for the ERASE macro.

RPL = address v
specifics the address of a request paramcter list that defines the request.
You may specify the address in register notation (using a register from 1
through 12, enclosed in parentheses) or specify it with an expression that
generates a valid relocatable A-type address constant.

With ERASE processing of key-sequenced data sets, VSAM attempts to make
the control interval available to the control arca when the last record in the
control interval is crased. Thus, key-scquenced data set control intervals can be
rcused for new records whose keys fall anywhere within the control arca’s range
of keys. You may suppress the process of reclaiming the control interval by
sctting RPILNOCIR in the RPL uscd for ERASE. The high key control interval
of a control area is never reclaimed.

Example 1: Keyed-Direct Deletion

In this example, GE'T ana ERASE macros are used to retrieve and delete records.
Not every record retricved for delction is deleted. The scarch argument is a full
key (5 bytes), compared cqual.

DELETE ACB MACRF=(KEY,DIR,
0UT) :

LIST RPL ACB=DELETE,
AREA=WORK,
AREALEN=50,
ARG=KEYFIELD,
OPTCD=(KEY,DIR,
SYN,UPD, UPD indicates deletion.
MVE,FKS,
KEQ)

LOOP MVC KEYFIELD,source Search argument for
~ retrieval, from a table
or transaction record.
GET RPL=LIST
LTR 15,15

BNZ ERROR

S e,

Chapter 2. VSAM Macro Formats and Examples 63 '

ERASE

Decide whether to delcte the record.

BE LOOP No; retrieve the next record.
ERASE RPL=LIST Yes; delete the record.
LTR 15,15)
BNZ ERROR
B LOoP .
ERROR ce Request was not accepted, or
failed.
WORK DS CL50 Examine the data record here.
KEYFIELD DS CL5 Search argument.

When you retrieve a record for deletion (OPTCD = UPD, same as retrieval for
update), VSAM is positioned at the record retrieved, in anticipation of a
succeeding ERASE (or PUT) rcquest for that record. You are not required to
issue such a request, though. Another GET request nullifics any previous
positioning for deletion or update.

Keyed-sequential retricval for deletion varies from direct in not using a scarch
argument (except for possible use of the POINT macro). Skip-sequential
retrieval for deletion (OPTCD = (SKP,UPD)) has the same effect as direct, but it
is faster or slower depending on the number of control intervals scparating the
records being retrieved.

Example 2: Addressed-Scquential Deletion

In this example, the ERASE macro is used to delete records from a
key-scquenced data sct. Not every record retricved for deletion is delcted.
Skipping is effected by the POINT macro.

DELETE ACB MACRF=(ADR, SEQ,

ouT)
REQUEST RPL ACB=DELETE,
AREA=WORK,
" AREALEN=100,
ARG=ADDR,
OPTCD=(ADR, SEQ,
ASY,
UPD,MVE) UPD indicates deletion.
LOOP - Decide whether you need to
skip to another position
forward or backward).
B RETRIEVE No; bypass the POINT.
MVC ADDR, source Yes; move search argument

for POINT into
search-argument field.

64 MVS/XA VSAM Administration: Macro Instruction Reference

POINT

LTR
BNZ
CHECK
LTR
BNZ
RETRIEVE GET
LTR
BNZ
CHECK
LTR
BNZ

RPL=REQUEST

15,15
ERROR
RPI~=REQUEST
15,15
ERROR
RPL~REQUEST
15,15
ERROR
RPL=REQUEST
15,15
ERROR

Decide whether to delete the record.

BE
ERASE
LTR
BNZ
CHECK
LTR
BNZ

ERROR oo

ADDR DS
WORK DS

LOOP
RPL=REQUEST
15,15

ERROR
RPL=REQUEST
15,15

ERROR

LOOP

F
CL100

ERASE

Position VSAM to the
record to be retrieved
next. -

No; skip ERASE and CHECK.

Yes; delete the record.

Request was not accepted,
or failed.

RBA search argument for
POINT.
Work area.

Addressed delction is allowed only for a key-sequenced data sct. The records of
an entry-sequenced data set are fixed. When records are deleted using addressed
deletion from a key-scquenced data set, the index is not updated.

Chzt t=r 2. VSAM Macro Formats and Examples 65

EXLST

EXLST Macro (Generate an Exit List at Assembly Time)

The format of the EXLST macro is:

[labefy | EXLST | [AM=VSAM]
' LEODAD = (address{,AIN|I,LD}
|,IOPID = (address))
ILJRNAD = (address|,AINII,LDI
. LLERAD = (address{,AINI[.1.DI
[,SYNAD = (address|,A|N]|,1.DI
ILUPAD = (address|,AIN|I,LDI

Values for EXLST macro subparamecters can be specified as absolute numcric
expressions, character strings, codes, and expressions that gencrate valid
rclocatable A-type address constants.

Note: Sce Data Facility Product: Customization for the factors that determine
the addressing mode and the parameter list residency mode set when the exit
routine gets control. :

label .
is 1 to 8 characters that provide a symbolic address for the exit list that is
established.

AM=VSAM
specifics that the access method using the control block is VSAM.

EODAD = (address|,A|N|I,L})
IOPID = (address)
JRNAD = (address|,AIN|L,L])
LERAD = (address|,AINI|,LD
SYNAD = (address{,AIN]|,L])
UPAD = (address|,AIN|I,A})
specify that you are supplying a routine for the exit specified.

For more information about user exit routines, see Data Facility Product:
Customization.

The cxits and values that can be specified for these routines are:

EODAD _
specifies that an exit is provided for special processing when the end
of a data set is rcached by scquential access.

10PID
specifies that an /O prevention identifier is provided to terminate I/O
and prevent new I/O from being started for the data sets associated
with the identifier. When the IOPID address is specified, the
identifier is always assumed to be active.

66 MVS/XA VSAM Administration: Macro Instruction Reference

Example: EXLST Macro

EXLST

JRNAD
specifies that an exit is provided for journalizing transactions as you
process data rccords. C

LERAD
specifies that an exit is provided for analyzing logical errors.

SYNAD
specifics that an exit is provided for analyzing physical errors.

UPAD
specifies that an exit is provided for user processing during a VSAM
request. The GENCB, MODCB, SHOWCB, and TESTCB macros
do not support the UPAD uscr exit routinc.

address
is the address of a uscr-supplicd exit routine or an I/O prevention
identifier. The address must immediatcly follow the cqual sign.

AIN
specifics that the cxit routine is active (A) or not active (N). VSAM
docs not cnter a routine whose cxit is marked not active.

specifics that the address is that of an 8-byte ficld that contains the
namec of an exit routine in a partitioncd data sct that is identificd by a
JOBLIB or STEPLIB DD statement or in SYS1L.LINKLIB. VSAM
is to load the exit routine for exit processing. If L is omitted, the
address gives the entry point of the exit routine in virtual storage, and
the exit routine is entered in the addressing modce of the VSAM caller.

In this example, an EXLST macro is used to identify exit routincs that are
provided for analyzing logical and physical errors. The label, EXITS, of the
EXLST macro is used in an ACB or GENCB macro that gencratcs an access
method control block to associate the exit list with an access method control
block. The exit list generated by this example is built when the program is
assemblcd.

EXITS EXLST EODAD=(ENDUP,N), EXITS gives symbolic

LERAD=LOGICAL, address of the exit list.
SYNAD=(ROUTNAME, L)

ENDUP EODAD routine.

LOGICAL LERAD routine.

ROUTNAME DC C'PHYSICAL' Pad shorter names with

blanks: C'SYN'or CL8'SYN'.

The EXLST macro’s parameters are:

o EODAD specifies th;xt the end-of-data routine is located at ENDUP and is

not active.

Chapter 2. VSAM Macro Formats and Examples 67

EXLST

¢ LERAD specifies that the logical error routine is located at LOGICAL and is
active. '

® SYNAD specifies that the physical error routine’s name is located at
ROUTNAME.

68 MVS/XA VSAM Administration: Macro Instruction Reference

GENCB—-ACB

i GENCB Macro (Generate an Access Method Control Block at

| Execution Time)

The format of the GENCB macro uscd to generate an access method control

block is:

{label]

GENCB

BLK=ACB
[, AM =VSAM|
[,LBSTRNO = number]
|, BUFND = number]
|,BUFNI = number]
|,BUFSP = number]
|,CATALOG = YES|NOJ
,COPIES = number]
|,CRA = SCRA|UCRA]}
|,DDNAME = ddname]
LEXLST = addressj
[LLENGTH = number}
[,LOC = BELOW|ANY]
[, MACRF = (JADR]|,CNV]|.KEY]
.CFX|NEX]
LDDN|DSN]
[,DFRINDF]
LDIR] SEQ]L.SKP]
LICIINCY)
LINJLOUT)
LNIS|SIS]
[LNRMJAIX]
LNRSIRST]
[NSR|LSR|GSR]
LNUB|UBF))]

{ {, MAREA = address}

[,MLEN = number]
[,PASSWD = address]

[,LRMODE31 = {ALL|BUFF|CB|NONE}]

[,SHRPOOL = {0|number}]
[,STRNO = number}
|,WAREA = address]

Note: The RMODE paramcter replaces the AMODE3! subparameter used in
previous rcleases.

The subparameters of the GENCB macro can be expressed as absolute numeric
expressions, as character strings, as codes, as expressions that gencrate valid
relocatable A-type address constants, in register notation, as S-type address
constants, and as indirect S-type address constants. Appendix C, “Operand
Notation” on page 181, further defines these operand expressions.

label

is 1 to 8 characters that provide a symbolic address for the GENCB macro.

Chapter 2. VSAM Macro Formats and Examples 69

GENCB—ACB

. ..

BLK=ACB
specifies that you are generating an access method control block.

AM=VSAM
specifies that the access method using this control block is VSAM.

BSTRNO = number
specifies the number of strings initially allocated for access to the base
cluster of a path. The default is STRNO. BSTRNO is ignored if the
object being opencd is not a path. If the number specified for BSTRNO is
insufficient, VSAM will dynamically extend the numbcr of strings as nceded
for the access to the base cluster. BSTRNO can also influence
performance. ‘The VSAM control blocks for the set of strings specified by
BSTRNO are allocated on contiguous virtual storage, whereas this is not
guarantced for the strings allocated by dynamic extension.

BUFND = number
specifies the number of 1/O buffers VSAM is to use for transmitting data
between virtual and auxiliary storage. A buffer is the size of a control
interval in the data component. The minimum number you may specify is
1 plus the numbcer specified for STRNO (if you omit STRNQ, BUFND
must be at least 2, because the default for STRNO is 1). The number can
be supplied by way of the JCL. DD AMP parameter as well as by way of
the macro. The default is the minimum number required. A larger number
for BUFND can improve the performance of sequential access.

BUFNI = number
specifics the number of 1/O buflfers VSAM is to use for transmitting index
cntrics between virtual and auxiliary storage for keyed access. A buffer is
the size of a control interval in the index. The minimum number is the
number specified for STRNO (if you omit STRNO, BUFNI must be at
least 1, because the default for STRNO is 1). You can supply the number
by way of the JCL DD AMP paramecter as well as by way of the macro.
The default is the minimum number required. A larger number for BUFNI
can improve the performance of keyed-direct retricval.

BUFSP = number
specifies the maximum number of bytes of virtual storage to be used for the
data and index I/O buffcrs. VSAM gets the storage in your program’s
address space. If you specify less than the amount of space that was
specificd in the BUFFERSPACE parameter of the DEFINE command
when the data sct was defined, VSAM overrides your BUFSP specification
upward to the value specificd in BUFFERSPACE. (BUFFERSPACE, by
definition, is the least amount of virtual storage that will ever be provided
for I/O buffers.) You can supply BUFSP by way of the JCL. DD AMP
parameter as well as by way of the macro. If you don’t specify BUFSP in
cither place, the amount of storage used for buffer allocation is the largest
of:

e The amount specified in the catalog (BUFFERSPACE),

¢ The amount determined from BUFND and BUFNI, or

70 MYVS/XA VSAM Administration: Macro Instruction Reference

GENCB—-ACB

® The minimum storage required to process the data set with its specified
processing options

If BUFSP is specified and the amount is smaller than the minimum
amount of storage required to process the data set, VSAM cannot open the
data set. .

A valid BUFSP amount takes precedence over the amount called for by
BUFND and BUFNI. If the BUFSP amount is greater than the amount
called for by BUFND and BUFNI, the extra space is allocated as follows:

¢ When MACREF indicates direct access only, additional index buffers are
allocated.

¢ When MACREF indicates sequential access, one additional index buffer
and as many data buffers as possible are allocated.

If the BUFSP amount is Icss than the amount called for by BUFND and
BUFNI, the number of data and index buffers is decreasced as follows:

® When MACREF indicates direct access only, the number of data buffers
is dccreased to not less than the minimum number. Then, if required,
the number of index buffers is decreased until the amount called for by
BUFND and BUFNI complies with the BUI'SP amount.

e When MACREF indicates sequential aceess, the number of index buffers
is decreased to not less than 1 more than the minimum number. Then,
if required, the number of data buffers is decreased to not less than the
minimum number. If still required, I more is subtracted from the
number of index buffers.

¢ Ncither the number of data buffers nor the number of index buffers is
dccrcased to less than the minimum number.

if the indcx doesn’t exist or isn't being opened, only BUFFND, and not
BUFNI, enters into these calculations.

CATALOG = YES|NO ,
specifics whether a catalog is being opened as a catalog (YES) or as a data
sct (NO). When NO is coded (or taken as the default), you can process the
catalog with request macros (GET, PUT, ctc.). To open a
password-protected catalog for processing with VSAM macros, you must
supply its master password. When CATALOG = YES is coded, the catalog
must be processed with an SVC designed for that purpose. (Access method
scrvices, for example, processes catalogs with SVC 26.) The request macros
are invalid for processing a catalog “as a catalog.” VSAM users should alter
the contents of a catalog only by access method scrvices commands.

-COPIES = number
specifics the number of copies of the access method control block VSAM is
to generate. All the copies are identical. You can use MODCB to tailor
cach one for the data set and processing you want for it. MODCB is
described later in this chapter.

Chapter 2. VSAM Macro Formats and Examples 71

GENCB—-ACB

CRA=SCRA|UCRA

specifies that a catalog recovery area is to be opened and that the control
blocks are to be built in either system storage (SCRA) or user storage
(UCRA). If you specify SCRA and issue record management requests, you
must operate in key 0. If you specify UCRA, you must be authorized by
the system and you must supply the master password of the master catalog.

DDNAME = ddname

is 1 to 8 characters that identify the data set that you want to process by
specifying the JCL DD statement for the data set. You may omit
DDNAME and provide it by way of the MODCB macro before opening
the data set. MODCB is described later in this chapter.

EXLST = address

specifies the address of a list of addresses of exit routines that you are
providing. The list is established by the EXLST or GENCB macro. If you
use the EXLST macro, you can specify its label here as the address of the
exit list. If you use GENCB, you can specify the address returned by
GENCSB in register 1. Omitting this paramecter indicates that you have no
exit routines. Exit routines are described in the chapter “User-Written Exit
Routines” in Data Facility Product: Customization.

LENGTH = number

specifies the length, in bytes, of the area, if any, that you are supplying for
VSAM to generate the access method control block(s). (Sce the WARFEA
paramcter.) When the LENGTH value is specified, it cannot exceed 65535

(X' FFFF").

LOC=BELOWJANY

BELOW
specifies that VSAM is to construct an ACB in an arca of virtual
storage below 16 megabytes at execution time. This is the default.

ANY
specifies that VSAM is to construct an ACB in an area of virtual
storage above 16 megabytes, if possible, at execution time.

MACRF = (JADRJ[,CNV]|,KEY]

[.CFXINFX]
LDDNIDSN] |
LDFR|NDF)
L,DIRJ,SEQJ|,SKP]
LICIINCI]
LINJL,OUT]

[NIS|SIS]
NRM]AIX]

. |NRS|RST]

[NSRILSR|GSR]

[NUB|UBF])
specifies the kind(s) of processing you will do with the data set. The
subparameters must be meaningful for the data set. For example, if you
specify keyed access for an entry-sequenced data set, you cannot open the

72 MVS/XA VSAM Administration: Macro Instruction Reference

GENCB—-ACB

data sct. You must specify all the types of access you’re going to use,
whether you use them concurrently or by switching from one to the other.
The subparameters are shown in Figure 12 on page 38. They are arranged
in groups, and each group has a default value (indicated by underlining).
You may specify subparameters in any order. You may specify both ADR
and KEY to process a key-sequenced data sct. - You may specify both DIR
and SEQ; with keyed access, you may specify SKP as well. If you specify
OUT and want merely to retrieve some records as well as update delete, or
insert others, you nced not also specify IN.

Note: The RMODE3] paramecter replaces the AMODE3I subparamctcr
used in previous releases.

MAREA = address
specifics the address of an optional OPEN/CLOSE or TYPE =T option
(CLOSE macro) message area.

MLEN = number
specifics the length of an optional OPEN/CLOSE or TYPE =T option
(CLOSE macro) message area.

PASSWD = address
specifics the address of a ficld that contains the highest-level password
required for the type(s) of access indicated by the MACRF parameter. The
first byte of the ficld contains the length (in binary) of the password
(maximum of 8 bytes). Zero indicates that no password is supplicd. If the
data sct is password protected and you don‘t supply a required password in
the access method control block, VSAM may give the console operator the
opportunity to supply it when you open the data sct.

RMODE31 = |ALL|BUFF|CB{NONE]
specifies where VSAM OPEN is to obtain virtual storage (above or below
16 mcgabytes) for control blocks and I/O buffers.

The values specified by the RMODE3! parameter only have an cffect on
VSAM at the setting just before an OPEN is issued. At all other times,
changing these values has no effect on the residency of the control blocks
and /O buffers.

The virtual storage location of the ACB is independent of the RMODE3!
paramcter. An ACB may reside cither above or below 16 megabytes.

ALL
both YSAM control blocks and 1/O buffers are to be obtained above
16 megabytes.

BUFF
only VSAM 1I/O buffers are to be obtained above 16 megabytes.

CB
only VSAM control blocks are to be obtained above 16 megabytes.

Chapter 2. VSAM Macro Formats and Examples 73

GENCB—ACB

NONE
both - VSAM control blocks and 1/O buffers are to be obtained below
16 megabytes. This is the default.

SHRPOOL = (number|0}
specifics the identification number of the resource pool to be used for LSR
processing. The default is SHRPOOL =0.

STRNO = number
specifics the number of requests requiring concurrent data set positioning
VSAM is to be prepared to handle. A request is defined by a given request
parameter list or chain of request parameter lists. See “RPL Macro
(Generate a Request Parameter List at Assembly Time)” on page 126 and
“GENCB Macro (Generate a Request Parameter List at Execution Time)”
on page 80 for information on request parameter lists.

WAREA = address
specifics the address of an arca in which to generate the access method
control block(s).

The arca must begin on a fullword boundary.

This parameter is paired with the LENGTII parameter. You must supply
the LENGTH parameter if you specify an area address.

Note: If you do not specify an arca in which the access method control
block is to be generated, VSAM obtains virtual storage space for the area
(as specified by the LOC =keyword). VSAM returns the address of the
arca containing the control block(s) in register 1 and the length of the area
in register 0. You can find out the length of each control block by dividing
the Iength of the area by the number of copics. The address of each control
block can then be calculated by this offset from the address in register 1.
You can find the Iength of an access mcthod control block with the
SHOWCB macro.

If you are generating control blocks by issuing several GENCBs, specifying
an arca (WAREA and LENGTH parameters) for them enables you to
address all of them with one base register and to avoid repetitive requests
for virtual storage.

74 MVS/XA VSAM Administration: Macro Instruction Reference

GENCB—ACB

Example: GENCB Macro (Generate an Access Method Control Block)

In this example, a GENCB macro is used to identify a data set to be-opcned and
to specify the types of processing to be performed. This example specifics that
the space for the control block be obtained above 16 megabytes. The access
method control block generated by this example is built when the program is
exccuted. :

GENCB GENCB BLK=ACB,AM=VSAM, One copy generated; VSAM

BUFND=4,BUFNI=3, gets the storage for it,

BUFSP=19456, because the WAREA LENGTH

DDNAME=DATASETS, parameters have been

EXLST=EXITS, omitted.

LOC=ANY,

MACRF=(KEY,DIR,

SEQ,0UT),

PASSWD=FIELD,

RMODE31=ALL,

STRNO=2

ST 1,ACBADDR Save the address of the
access method control
block.
ACBADDR DS F : The address of the

access method control
block is saved in
ACBADDR.

FIELD DC FL1'6',C'CHANGE' CHANGE, the password, has

6 characters.

The GENCB macro’s parameters are:

BUFND specifics four 1/0 buffers for data; BUFNI specifics three 1/0O
buffers for index entries; and BUISP specifics 19456 bytes of buffer space,
enough space to accommodate control intervals of data that are 4096 bytes
and of index cntrics that arc 1024 bytes.

DDNAME specifies that this access method control block is associated with
a DD statement named DATASETS.

EXLST specifics that the exit list associated with this access method control
block is named EXITS.

LLOC spccifics that VSAM obtain virtual storage for the ACB from an arca
that may bc above 16 mcgabytcs.

MACREF specifies keyed direct and keyed sequential processing for both
inscrtion and updatc.

PASSWD specifies the location, FIELD, of the password provided.

RMODE31 specifies that VSAM obtain storage for the VSAM control
blocks and I/O buffers in an area above 16 mcgabytes when the ACB is

opened.

STRNO specifies that two requests will require concurrent positioning.

Chapter 2. VSAM Macro Formats and Examples 75

——) —

GENCB—EXLST

GENCB Macro (Generate an Exit List at Execution Time)

The format of the GENCB macro used to generate an exit list is:

|[label] | GENCB | BLK=EXLST

[,AM=VSAM]

[,EODAD = (address|,AIN||,LD]
[.JRNAD = (address|,AINI|[,LD]
,LERAD = (address|,AINJI,LD|
[LSSYNAD = (address|,A|N]I,L.DI
[,COPIES = number]
[,LENGTH = number}

[LOC = BELOW|ANY]
LWAREA = address]

The paramcters of the GENCB macro can be expressed as absolute numcric
expressions, as character strings, as codes, as expressions that gencrate valid
relocatable A-type address constants, in register notation, as S-type address
constants, and as indircct S-type address constants. Appendix C, “Operand
Notation” on page 181, further defines these operand expressions.

Note: See Data Facility Product: Customization for the factors that determine
the addressing mode and the paramecter list residency mode set when the exit
routine gets control.

label
is I to 8 characters that providz a symbolic address for the GENCB macro.

BLK = EXLST
specifies that you are generating an exit list.

AM=VSAM
specifies that the access method using this control block is VSAM.

[,LEODAD = (address{,AINJ|,LD}
[.JRNAD = (address|,A|N],LD]
LLERAD = (address{,AIN]|,LD]
,SYNAD = (address{, AIN|[,LDI
specify that you are supplying a routine for the exit named.

For more information about user exit routines, see Data Facility Product:
Customization.

If nonc of these user exit routines is specified, VSAM gencrates an exit list
with inactive cntrics for all the cxits. The exits and values that can be
specified for them are:

EODAD

specifies that an exit is provided for special processing when the end
of a data set is reached by sequential access.

76 MVS/XA VSAM Administration: Macro Instruction Reference

GENCB—EXLST

JRNAD
specifies that an exit is provided for journaling as you process data
records.

LERAD
specifies that an exit is provided for analyzing logical errors.

SYNAD
specifics that an exit is provided for analyzing physical errors.

address
is the address of a user-supplied exit routine. The address must
immediately follow the equal sign.

AIN
specifies that the exit routine is active (A) or not active (N). VSAM
does not enter a routine whose exit is marked not active.

specifies that the address is that of an 8-byte ficld that contains the
name of an exit routine in a partitioncd data sct that is identificd by a
JOBLIB or STEPLIB DD statement or in SYS1I.LINKLIB. VSAM
is to load the exit routine for exit processing. If L is omitted, the
address gives the entry point of the exit routine in virtual storage, and
the cxit routine is entered in the addressing mode of the VSAM caller.
L may precede or follow the A or N specification.

COPIES = number .
specifies the number of copics of the exit list you want generated. GENCB
generatcs as many copics as you specify (dcfault is 1) when your program is
executed. All copies are the same. You can use MODCB to change some
or all of the addresses in a list. (MODCB is described later in this chapter.)

LENGTH = number
specifies the length, in bytes, of the area, if any, that you are supplying for
VSAM to generate the exit list(s). (See the WAREA parameter.) When
the LENGTH value is specified, it cannot exceed 65535 (X ' FFFF').

LOC=BELOW|ANY
BELOW
specifics that VSAM is to construct an exit list in an arca below 16

megabytes at execution time. This is the default value.

ANY
specifics that VSAM is to construct an exit list in an arca above 16
megabytes, if possible, at execution time. :

WAREA = address
specifies the address of an area in which the exit list(s) is to be generated.

The area must begin on a fullword boundary.

Chapter 2. VSAM Macro Formats and Examples 77

GENCB—EXLST

This parameter is paired with the LENGTH parameter, which must be
given if you specify an area address.

Note: If you did not specify an area in which the exit list is to be
gencrated, VSAM obtains virtual storage space for the area (as specified by
the LOC =keyword). VSAM retumns the address of the arca in which the
exit lists(s) is to be generated in register 1, and the length of the area in
register 0. You can find the length of each exit list by dividing the length of
the arca by the number of copies. The address of each exit list can then be
calculated by this offsct from the address in register 1. You can find the
length of an exit list with the SHHOWCB macro, described under
“SHOWCB Macro (Display Fields of an Exit List)” on page 139.

If you are gencrating control blocks by issuing several GENCBEs, specifying
an arca (WAREA and LENGTH) for them enables you to address all of
them with one base register and to avoid repetitive requests for virtual
storage. ‘

Examplc: GENCB Macro (Generate an Exit List)

In this example, a GENCB macto is uscd to gencrate an exit list when the
program is exccuted.

EXITS GENCB BLK=EXLST,

EOD
LOG
ERR
EXL

The

EODAD=({EOD,N),
LERAD=LOGICAL,
SYNAD=(ERROR,

A,L)
LTR 15,15
BNZ ERROR
ST 1,EXLSTADR Address of the exit list is saved.
EQU * EODAD routine.
ICAL EQU =* LERAD routine.
OR DC C'PHYSICAL' Name of the SYNAD module.
STADR DS F Save area for exit-list address.
GENCB macro’s parameters arc:

BLK specifies that an exit list is to be generated.

EODAD specifics that the end-of-data routine is located at EOD and is not
active.

LERAD specifies that the logical error routine is located at LOGICAL,;
because neither A nor N is specificd, the LERAD routine is' marked active by
default.

SYNAD specifies that the physical error routine’s name is located at
ERROR.

78 MVS/XA VSAM Administration: Macro Instruction Reference

GENCB—-EXLST

Because no area was specified in which the exit list was to be.generated, VSAM
obtained virtual storage for the exit list and rctumed the address in register 1.
Immediately after the GENCB macro, the address of the exit list, contained in
register 1, is moved to EXLSTADR. EXLSTADR may be specified in a
GENCB macro that generates an access method control block or in a MODCB,
SHOWCSB, or TESTCB macro that modifies, displays, or tests ficlds in an exit

list.

Chapter 2. VSAM Macro Formats and Examples 79

GENCB—RPL

| GENCB Macro (Generate a Request Parameter List at Execution
| Time)

The format of the GENCB macro used to generate a request parameter list is:

|labed | GENCB | BLK=RPL

[,ACB = address]

[LAM=VSAM]

[LAREA = address]|

[,AREALEN = number|

LARG = address)

[,COPIES = number]

[,ECB = address|

LKEYLEN = number|

[, LENGTH = number]

I [,LOC = BELOW|ANY]

[,MSGAREA = address)

[,MSGLEN = number]

[,NXTRPL = address]

[,OPTCD = (JADR|CNV|KEY]
[.DIR|SEQ|SKP]
[ARDILRD} ~
[, WD |BWD] '
[ASYISYN]
[NSPINUP|UPD]
. KEQ|KGF]
FKSIGEN]
[,LOCIMVE)]

[LRECLEN = number]

[, TRANSID = number]

[,\VAREA = address]

The parameters of the GENCB macro can be expressed as absolute numeric
expressions, as character strings, as codes, as expressions that generate valid
relocatable A-type address constants, in register notation, as S-type address
| constants, and as indirect S-type address constants. Appendix C, “Operand
| Notation” on page 181 further defincs these operand expressions.

-The parameters of the GENCB macro to generate a request parameter list are

. optional in some cases, but required in others. It is not nccessary to omit
parameters that are not required for a request; they arc ignored. Thus, for
example, if you switch from direct to sequential retrieval with a request parameter
list, you don’t have to zero out the address of the ficld containing the scarch
argument (ARG = address).

label
is 1 to 8 characters that provide a symbolic address for the GENCB macro.
For addressing lists generated by GENCB, see the discussion of the
COPIES parameter. -

80 MVS/XA VSAM Administration: Macro Instruction Reference

GENCB—RPL

BLK =RPL
specifies that you are generating a request parameter list.

ACB = address
specifies the address of the access method control block that identifies the
data set to which access will be requested. If you omit this parameter, you
must issue MODCB to specify the address of the access method control
block before you issue a request. (MODCB is described later in this
chapter.) :

AM=VSAM
specifies that the access method using this control block is VSAM.

AREA = address
specifies the address of a work arca to and from which VSAM moves a data
record if you request it to do so (with the RPL parameter
OPTCD=MVE). If you request that records be processed in the I/O
buffer (OPTCD = LOC), VSAM puts into this work area the address of a
- data record within the 1/O buffer.

AREALEN = number
specifies the length, in bytes, of the work arca whosc address is specified by
the AREA paramcter. Its minimum for OPTCD = MVE is the size of a
data record (or the largest data record, for a data set with records of variable
Iength). For OPTCD=1.OC, the arca should be 4 bytes to contain the
address of a data record within the 1/O buffer.

ARG = address
specifics the address of a ficid that contains the scarch argument for direct
retricval, skip-scquential retricval, and positioning. For a relative record
data sct, the ARG ficld must be 4 bytes long. For direct or skip-scquential
processing, this field contains your search argument, a relative record
number. For sequential processing (OPTCD = (KEY,SEQ)), the 4 bytes
are requircd for VSAM te seturn the feedback RRN. For keyed access
(OPTCD=KEY), the search argument is a full or generic key; for
addressed access (OPTCD= ADR), it is an RBA. If you specify a generic
key (OPTCD = GEN), you must also specify in the KEYLEN parameter
how many of the bytes of the full key you are using for the generic key.

COPIES = number
specifies the number of copics of the request parameter list you want
generated. GENCB generates as many copies as you specify (default is 1)
when your program is exccuted.
The copies of a request parameter list can be used to:

e Chain lists together to gain access to many records with one rcquest

¢ Define many requests to gain access to many parts of a data set
concurrently .

All copies generated are identical; you must use MODCB to tailor them to
specific requests. MODCB is described in this chapter.

Chapter 2. VSAM Macro Formats and Examples 81

oENCB—RPL

ECB=address

specifies the address of an event control block (ECB) that you may supply.
VSAM indicates in the ECB whether a request is complete or not (using
standard completion codes, which are described in Data Areas). You can
use the ECB to dctermine that an asynchronous request is complete before
issuing a CHECK macro. This parameter is always optional.

KEYLEN = number

specifies the length, in bytes, of the generic key (OPTCD = GLEN) you are
using for a scarch argument (given in the ficld addressed by the ARG
paramcter). This parameter is required with a scarch argument that is a
generic key. The number can be 1 through 255. For full-key searches,
VSAM knows the key length, which is taken from the catalog definition of
the data set when you open the data set.

LENGTH = number

specifies the length, in bytes, of the area, if any, that you are supplying for
VSAM to generate the request parameter list(s). (Sce the WAREA
parameter.) When the LENGTH value is specificd, it cannot exceed 65535

(X'FFFF).

You can find out how loag a rcquest paramcter list is with the SIIOWCB
macro, described later in this chapter.

LOC =BELOW|ANY

BELOW
specifies that storage for the RPL, be obtained from virtual storagc
below 16 megabytes. This is the default value.

ANY
specifics that storage be obtained from virtual storage above 16
mcegabytes if possible.

MSGAREA = address

specifies the address of an arca that you are supplying for VSAM to send
you a message in case of a physical error. (The format of a physical error
message is given under “Physical Errors” in the chapter “Request
Macros.”)

MSGLEN = number

specifies the size, in bytes, of thc message arca indicated in the MSGAREA
parameter. The size of a message 1s 128 bytes; if you provide less than 128
bytes, no message is returned to your program. This paramecter is required
when MSGAREA is coded.

82 MVS/XA VSAM Administration: Macro Instruction Reference

GENCB—RPL

- NXTRPL = address
specifies the address of the next request parameter list in a chain. Omit this
parameter from the macro that generates the only or last list in the chain.
When you issue a request that is defined by a chain of request parameter
lists, indicate in the request macro the address of the first parameter list in
the chain. A single request macro can be defined by multiple request
parameter lists, such that a GET, for example, can cause VSAM to retrieve
two or more records. :

OPTCD = (JADR|CNVI|KEY]

.DIR|SEQISKP]

,ARD|LRD]

L, FWD|BWD]

[LASY[SYN]

[NSP|NUP|UPD]

LKEQIKGE]

.FKS|GEN]

ILLOCIMVE)

specifics the subparameters that govern the request defined by the request.
parameter list. Fach group of subparameters has a default; subparameters
arc shown in Figurc 13 on page 128 with defaults underlined. Only one
subparamcter from cach group is cffective for a request. Some requests do
not rcquire an subparameter from all of the groups to be specified. The
groups that are not required are ignored; thus, you can use the same request
paramectcr list for a combination of requests (GET, PUT, POINT, for
example) without zcroing out the inapplicable subparameters each time you
go from one request to another.

RECLEN = number
specifies the length, in bytes, of a data record being stored. If the records
you are storing are all the same length, you will not need to change
RECLEN after you set it. This parameter is required for PUT requests.
For GET requests, VSAM puts the length of the record retrieved in this
ficid in the request paramcter fist. 1t will be there if you update and store
the record.

TRANSID = number
specifics a number that relates modified buffers in a buffer pool. Use in

shared resource applications and a description are in “Sharing Resources”
in VSAM Administration Guide.

WAREA = address

specifics the address of an arca in which the request parameter list(s) is to
be generated.

The area must begin on a fullword boundary.

This parameter is paired with the LENGTH parameter, which must be
given if you specify an area address.

Note: If you did not specify an area in which the request parameter list is
to be generated, VSAM obtains virtual storage space for the area (as
specified by the LOC =keyword). VSAM rcturns the address of the area in
which the request parameter list(s) is generated in register 1, and the length

Chapter 2. VSAM Macro Formats and Examples 83

GENCB—RPL

of the area in register 0. You can find the length of each list by dividing the
length of the area by the number of copies. You can then calculate the
address of each list by using the length of each list as an offset.

If you are generating control blocks by issuing several GENCBs, specifying
an area (WAREA and LENGTH parameters) for them enables you to
address all of them with one base register and to avoid repetitive requests
for virtual storage.

Building a Chain of Request Parameter Lists

When GENCB is used to build a chain of request parameter lists, the request
paramcter lists may be chained using only GENCB macros or using GENCB and
MODCB macros together. When only GENCB is used, the request parameter
lists are created in reverse order, as follows:

SECOND ggncn 2L§=RPL
FIRST GENCB BLK=RPL,NXTRPL=(2)

SECOND GENCB creates the second request parameter list, which makes its
address available for the first request parameter list. The address of the request
paramecter list is retumned in register | and is loaded into register 2. FIRST
GENCSB creates the first request parameter list and supplies the address of the
fext request pararncter list using register notation. GENCB and MODCB
macros may be used together to create a chain of request parameter lists, as
follows:

GENCB BLK=RPL,COPIES=2
IR 2,0

SRL 2,1

IR 3,1

LA 4,0(2,3)

MODCB RPL=(3),NXTRPL=(4)

The GENCB macro creates two request parameter lists. The length of the
parameter lists is returned in register 0 and loaded into register 2. The address of
the area in which the lists were created (and, therefore, the address of the first
one) is returned in register 1 and loaded into register 3. The SRL statecment
divides the total length of the area (register 2) by 2. The LA statement loads the
address of the seccond request paramcter list into register 4. The MODCB macro
modifies the first request parameter list (register 3) by supplying the address of the
second rcquest parameter list (register 4) in the NXTRPL paramcter.

Each request parameter list in a chain should have the same OPTCD
subparameters. Having different subparameters may cause logical errors. You
can’t chain rcquest parameter lists for updating or delcting records—only for

retricving records or storing new records. You can’t process records in the [/O
buffer with chained request parameter lists. (OPTCD=UPD and LOC are
invalid for chained request parameter lists.)

84 MVS/XA VSAM Administration: Macro Instruction Reference

GENCB—RPL

Example: GENCB Macro (Generate a Request Parameter List)

In this example, a GENCB macro is used to generate a request paramecter list.

ACCESS

ACCESS
WORK DS
SEARCH DS
MESSAGE DS

GENCB BLK=RPL,
ACB=ACCESS,
AM=VSAM,
AREA=WORK,
AREALEN=125,
ARG=SEARCH,
LOC=ANY,
MSGAREA=MESSAGE,
MSGLEN=128,
OPTCD=(SKP, UPD)

ACB MACRF=(SKP,0UT)
CL125
CL8

CL128

The GENCB macro’s parameters are:

BLK specifies that a request parameter list is to be generated.

ACB specifies that the request paramcter list is associated with a data sct and
processing options identificd by ACCESS.

AREA and AREALEN specify a 125-byte work arca to be usced for
processing records.

ARG specifies the address of the search argument.

LOC specifics that VSAM obtain storage for the request parameter list in an
area above 16 megabytes.

MSGAREA and MSGLEN specify a 128-byte area to be used for
physical-error messagcs.

OPTCD specifies the subparameters that govern the request defined by the
request paramcter list identificd by SKP and UPD.

Chapter 2. VSAM Macro Formats and Examples 85

GET

GET Macro (Retrieve a Record)

The format of ihe GET macro is:

|fabeq]

GET

RPI =address

where:

label

is 1 to 8 characters that provide a symbolic address for the GET macro.

RPL = address

specifics the address of the request parameter list that defines this GET
request. You may specify the address in register notation (using a register
from 1 through 12, enclosed in parentheses) or specify it with an expression
that generates a valid relocatable A-type address constant.

Example 1: Keyed-Sequential Retrieval (Forward)

In this example, a GET macro is used to sequentially retrieve records by key.
Retricval is in‘a forward direction. Fixed-length, 100-byte records are moved to a
work area. Processingis synchronaus.

INPUT ACB

RETRVE RPL

LOOP GET
LTR
BNZ
B

ERROR

IN DS

MACRF=(KEY,
SEQ, IN)

ACB=INPUT,
AREA=IN,
AREALEN=100,
OPTCD=(KEY, SEQ,
SYN, NUP,MVE)

RPL=RETRVE

15,15
ERROR

LOOP

CL100

All MACRF and OPTCD
subparameters specified are
defaults and could have
been omitted.

This GET or identical GETs can
be issued, with no change in
the request parameter list, to
retrieve subsequent records in
key sequence.

Request was not accepted, or
failed.

IN contains a data record after
GET is completed.

The records are retrieved in key sequence in a forward direction. No search
argument has to be specified; VSAM is positioned at the first record in key
sequence when the data set is opened, and the next record is retrieved

86 MVS/XA VSAM Administration; Macro Instruction Reference

GET

automatically as each GET is issued. The branch to ERROR could also be

taken if the end of the data set is reached.

Example 2: Keyed-Sequential Retrieval (Backward)

This example is the same as the previous one, except that a POINT macro
instruction is issued to the last record in the data set and the records are retrieved
in a backward direction.

INPUT

RETRVE

EXLST1

LOoP

EOD
ERROR

IN

Example 3: Skip-Scquential Retrieval

ACB

RPL

EXLST
POINT
LTR
BNZ
GET
LTR
BNZ

EQU

DS

DDNAME=INPUT,
EXLST=EXLST1

ACB=INPUT,
AREA=IN,
AREALEN=100,
OPTCD=(KEY, SEQ,
LRD, BWD)
EODAD=EOD
RPL=RETRVE
15,15

ERROR
RPL=RETRVE
15,15

ERROR

LOOP

CL100

Define RPL for last record
positioning and backward
processing.

Define end of data.

Position to last record (no
argument is required).

Get previous record.

Come here for end of data.

Request failed.

Area for retrieved record.

In this example, a GET macro is uscd to retrieve variable-length records
synchronously. Records are to be processed in the 1/O buffer. The search
argument is full key, compared greater-than-or-equal; key length is cight bytes.

The records are retricved in key scquence, but some records are skipped.
Skip-sequential retrieval is similar to keyed-direct retricval, except that you must
retricve records in ascending sequence (with skips) rather than in a random

scquence.

GENCB

LTR

BLK=ACB,
DDNAME=INPUT,
MACRF=(KEY,
SKP, IN)

15,15

VSAM gets an area in
virtual storage to generate
the access method control
block and returns the
address in register 1.

e,

Chapter 2. VSAM Macro Formats and Examples 87

GET

BNZ

GENCB

LTR
BNZ

LOOP MVC
GET
LTR

BNZ
SHOWCB

LTR
BNZ

ERROR ...

CHECKO ...

RCDADDR DS

SRCHKEY DS
RCDLEN DS

CHECKO

2,1

BLK=RPL,
ACB=(2),
AREA=RCDADDR,
AREALEN=4,
ARG=SRCHKEY,
OPTCD=(KEY, SKP,
SYN,NUP, KGE,
FKS,LOC)
15,15

CHECKO

3,1

SRCHKEY, source

RPL=(3)

15,15

ERROR
AREA=RCDLEN,
FIELDS=RECLEN,
LENGTH=4,
RPL=(3)

15,15

CHECKO

LOOP

CL8

Address of the request
parameter list.

Search argument for
retrieval, moved in from
a table or a tramsaction
record.

Display the length of the
record.

Request was not accepted,
or failed.

Generation or display
failed.

Work area into which VSAM puts
the address of a data record
within the I/0 buffer
(OPTCD=LOC).

Search argument for retrieval.

For displaying variable record
lengths.

The macros and instructions are as follows:

88 MVS/XA VSAM Administration: Macro Instruction Reference

GET

e The first GENCB generates an access method control block, which specifies
keyed, skip-sequential, and input processing. The address of the access
method control block is stored in register 2.

¢ The second GENCB generates a request parameter list. The address of the
request parameter list is stored in register 3.

¢ MVC moves the search argument into SRCHKEY, the area defined for the
search argument. :

® GET specifies that the record pointed at by the request parameter list whose
address is in register 3 is to be retrieved. Records are retrieved by a
skip-sequential search through the sequence set of the index.

Example 4: Addressed-Sequential Retrieval

In this example, one GET macro is used to retrieve multiple fixed-length, 20-byte
records. The records are moved to a work area (only option).

BLOCK ACB DDNAME=INPUT,
MACRF=(ADR, SEQ,

IN)

GENCB BLK=RPL,
COPIES=10,
ACB=BLOCK,
OPTCD=(ADR, SEQ,
SYN,NUP,MVE)

LTR 15,15

BNZ CHECKO

LA 3,10 Number of lists(10).

LR 2,1 Address of the first list.

LR 1;0 Length of all of the lists.
Registers 0 and 1 contain
length and address of the
generated control blocks
when VSAM returns control
after GENCB.

SR 0,0 Prepare for following division.

DR 0,3 Divide number of lists into
length of all the lists.

IR 3,1 Save the resulting length of a
single list for an offset.

LR 4,2 ggve address of the first

st.

LA 5,RECAREA Address of the first work
area.

. Do the following 6

. instructions 10 times to set

R up all the request parameters

lists. The 10th time, register
4 must be set to 0 to indicate
the last request parameter

list in the chain.

Chapter 2. VSAM Macro Formats and Examples 89

GET

AR 4,3 Address the next list.
MODCB RPL=(2), In each request parameter list,
NXTRPL=(4), indicate the address of the
AREA=(5), next list and the address and
AREALEN=20 length of the work area.
LTR 15,15
BNZ CHECKO
AR 2,3 Address the next list.
IA 5,20(5) Address the next work area.
. Restore register 2 to address
. the first list before continuing
. to orocess.
LOOP GET RPL=(2)
LTR 15,15
BNZ ERROR
. Process the 10 records that
. have been retrieved by the
. GET.
B Loop
CHECKG
ERROR Display the feedback field
(FIELDS=FDBK) of each request
parameter list to find out
which one had an error.
RECAREA DS CL200 Space for a work area for each

of the 10 request parameter
lists.

The GENCB macro generates 10 request parameter lists; the lists are

subsequently chained together by using the MODCB macro to modify the
NXTRPL parameter in each copy. Because SEQ is specificd in each request
parameter list and no previous request has been issued against the access method
control block since it was opened, retrieval begins at the beginning of the data set.
Each time the GET macro is executed, VSAM is positioned at the next record in
RBA sequence. VSAM moves cach record into the work arca provided for the
request parameter list that identifies the record.

If an error occurred for one of the request parameter lists in the chain and you
have supplied crror-analysis routines, VSAM takcs a LERAD or SYNAD exit
before returning to your program. Register 15 is set to indicate the status of the
request. A code of 0 indicates that no error was associated with any of the
request parameter lists. Any other code indicates that an error occurred for one
of the request paramcter lists. You should issue a SHOWCB macro for each
request parameter list in the chain to find out which had an error. VSAM
doesn’t process any of the request parameter lists except the one with an error.

90 MVS/XA VSAM Administration: Macro Instruction Reference

Example S: Sequential Retrieval for a Relative Record Data Set

GET

In this example, a GET macro is uscd to sequentially retrieve records by relative
record number. Fixed-length, 100-byte records are moved to a work area.

Processing is synchronous.
INPUT ACB MACRF=(KEY, SEQ,
IN) .
RETRVE RPL ACB=INPUT,
AREA=]N,
AREALEN=100,
ARG=RCDNO,
OPTCD=(KEY, SEQ,
. SNY,NUP,MVE)
. -~
LOOP GET RPL=RETRVE
LTR 15,15
BNZ ERROR
B LOOP
ERROR “ee
IN DS CL100
CL4

RCDNO DS

All MACRF and OPTCD
subparameters specified are
defaults and could have been
omitted. :

This GET or identical GETs

can be issued, with no change
in the RPL, to retrieve
subsequent records in relative
record number sequence.

Request was not accepted or
it failed.

IN contains a data record
after GET is <completed.

VSAM returns relative record
number of retrieved record in
this field.

The records arc retrieved in relative record number sequence. Empty records are
bypassed for scquential retricval. A 4-byte search argument must be specified.
The relative record number of each record retrieved is stored in the search
argument. VSAM is positioncd at the first relative record when the data sct is
opened, and the next nonempty record is retricved automatically as cach GET is
issucd. The branch to ERROR would also be taken if the end of the data sct is

reached.

Chapter 2. VSAM Macro Formats and Examples 91

GET

Example 6: Keyed-Direct Retrieval

In this example, a GET macro is used to retrieve fixed-length, 100-byte records
directly by key. The key length is 15 bytes; the search argument is a 5-byte
generic key, compared equal. The control blocks are generated at assembly.

INPUT ACB
RETRVE RPL
LOOP MVC
GET
LTR
BNZ
B
ERROR .
IN DS
KEYAREA DS

MACRF=(KEY,
DIR, IN)
ACB=INPUT,
AREA=IN,
AREALEN=4,
OPTCD=(KEY,
DIR, SYN,NUP,
KEQ, GEN, LOC),
ARG=KEYAREA,
KEYLEN=5

KEYAREA, SOURCE

RPL=RETRVE

15,15
ERROR

LOOP

CL4

CL5

You specify all parameters for
the request in the RPL macro.

Search argument for retrieval,
moved in from a table or a
transaction record.

This GET or identical GETs can
be issued with no change in the
RPL: Specify each new search
argument in the field KEYAREA.

Process the record.

Request was not accepted, or
failed.

VSAM puts here the address of
the record within the I/0
buffer.

You specify the search argument
here.

The generic key specifics a class of records. For example, if you scarch on the
first third of employce number, VSAM positions at and retrieves the first of
presumably several records that start with the specified characters. To retrieve all
the records in that class, either switch to sequential access or to a full-key search

with a greater-than-or-cqual comparison.

92 MVS/XA VSAM Administration: Macro Instruction Referénce

Example 7: Addressed-Direct Retrieval

GET

In this example, a GET macro is used to retrieve fixed-length 20~b.ytc— records.
The records are to be moved to a work area.

BLOCK ACB
GENCB
LTR
BNZ
LR

LOoP MVC
GET
LTR
BNZ
B

CHECKO

ERROR oo

IN DS

SRCHADR DS

DDNAME=INPUT,

MACRF=(ADR, DIR,

IN)

BLK=RPL,
COPIES=1,
ACB=BLOCK,

OPTCD=(ADR, DIR,

SYN, NUP, MVE)
15,15

CHECKO

2,1

SRCHADR,

RP1~=(2)
15, 15
ERROR

LOOP

CL20

CL4

Access method control
block generated at
assembly.

ARG=SRCHADR, AREA=IN,
AREALEN=20

Request parameter list
generated at execution.

Address of the list.

Search argument for
retrieval; calculated or
moved in from a table or
a transaction record.

Process the record.

Generation failed.

Request was not accepted,
or failed.

VSAM puts a record here
for each GET request.

You specify the RBA
search argument here for
each request.

The RBA provided for a search argument must match the RBA of a record.
Keyed insertion and delction of records in a key-sequenced data set will probably
cause the RBAs of some records to change. Therefore, if you process a
key-sequenced data set by addressed-direct access (or by addressed-scquential
access using POINT), you need to keep track of changes. You can use the
JRNAD exit for this purpose. See “EXLST Macro (Generate an Exit List at
Assembly Time)"” on page 66.

Chapter 2. VSAM Macro Formats and Examples 93

GET

Example 8: Switch from Direct to Sequential Retrieval

In this example, GET macros are used to retrieve fixed-length, 100-byte records.
The retrieval is via an alternate index path defined with the nonunique key
option. Every time a nonunique key is retrieved, the program switches to
sequential processing to retrieve the other records with the same key. The
control blocks were generated at assembly, but the MODCB macro is used to
modify the request parameter list to permit switching from kcyed-direct to
keyed-sequential retrieval. For the direct request preceding sequential requests,

the search argument is an 8-byte, generic ke
requested for direct requests.

INPUT ACB

RETRVE RPL

MVE

LOOP1 GET
LTR

BNZ
SHOWCB

LTR
BNZ
CLI

BE

SEQ MODCB

LTR
BNZ

MACRF=(KEY,DIR,
SEQ, IN)

ACB=INPUT,
AREA=IN,
AREALEN=100,
OPTCD=(KEY,DIR,
SYN,NSP,KEQ,
GEN,MVE),
ARG=KEYAREA,
KEYLEN=¢

KEYAREA, source

RPL=RETRVE
15,15
ERROR

RPL=RETRVE,
AREA=FDBAREA,
FIELDS=FDBK
15,15

ERROR

ERRCD, 8
SEQ
LOOP

RPL=RETRVE,
OPTCD=SEQ

15,15
CHECKO

94 MVS/XA VSAM Administration: Macro Instruction Reference

y, compared equal. Positioning is

Both direct and
sequential access
specified.

NSP specifies that VSAM
is to remember its
position.

Search argument for
direct retrieval; moved
in from a table or a
transaction record.

Extract feedback
information.

Does a duplicate key
follow?

Yes; retrieve duplicates
sequentially.

No; retrieve next record
in direct mode.

Alter request parameter
list for sequential
access.

SEQGET

DIR

ERROR

CHECKG

IN

KEYAREA

FDBAREA

TYPECD

CMPCD
ERRCD

GET
LTR
BNZ

.

SHOWCB

LTR
BNZ
CLI

BE
MODCB

LTR
BNZ

DS
DS

DS
DS
DS
DS
DS

RPL=RETRVE
15,15
ERROR

RPL=RETRVE,
AREA=FDBAREA,
FIELDS=FDBK
15,15

ERROR

ERRCD, 8
SEQGET
RPL=RETRVE,
OPTCD=DIR
15,15
CHECKO
LOOP

CL100

CL8

OF
1C
1C
1C
1C

GET

Do sequential retrieval.

Test for error.

Extract feedback
information.

Does a duplicate key
follow?

Yes; retrieve
sequentially.

Alter request parameter
list for direct access.

Prepare new search
argument.

Request was not accepted,
or failed.

Modification failed.

VSAM puts retrieved
records here.

Specify the generic key
for a direct request
here.

Feedback area for SHOWCB.
Reserved.

Error type code.

Component code.

Reason code.

Positioning is associated with a request parameter list; the MODCB macro is
used to modify a single request parameter list that alternately defines requests for
both types of access rather than use a different request paramcter list for each

type

With direct retrieval, VSAM doesn’t remember its position for subsequent
sequential retrieval unless you explicitly request it (OPTCD = NSP or UPD).
After a direct GET for update, VSAM is positioned for a subsequent PUT,

Chapter 2. VSAM Macro Formats and Examples 95

GET

ERASE, or sequential GET. If you modify OPTCD=(DIR,NUP) to
OPTCD=SEQ, you must issue POINT to get VSAM positioned for sequential
retrieval, as NUP indicates that no positioning is desired with a dirgct GET.

If you have chained many request parameter lists together, one position is
remembered for the whole chain. For example, if you issue a GET that gives the
address of the first request parameter list in the chain, the position of VSAM
when the GET request is complete is at the record following the record defined
by the last request parameter list in the chain. Therefore, modifying
OPTCD=(DIR,NSP) in each request paramcter list in a chain to
OPTCD=SEQ implies continuing with sequential access relative to the last of
the direct request parameter lists.

96 MVS/XA VSAM Administration: Macro Instruction Reference

£

GETIX

GETIX Macro (Retrieve an Index Record)

The format of the GETIX macro is:

llabel] | GETIX | RPL=address

where:

label
is 1 to 8 characters that provide a symbolic address for the GETIX macro.

RPL = address
specifies the address of the request parameter list that defines this GETIX
request. You may specify the address in register notation (using a register
from 1 through 12, enclosed in parcntheses) or specify it with an expression
that gencrates a valid relocatable A-type address constant.

The following RPL parameters and subparameters are required for GETIX:

OPTCD =(CNV
,DIR
J{NUP|UPD|NSP}
,{LOC|MVE})

GETIX can be issued either for update or not for update;
OPTCD = NSP is interpreted as OPTCD = NUP.

With OPTCD= MVE, AREALEN must be at Icast indcx control
interval size.

ARG = address
The scarch argument for GETIX is the RBA of a control interval.

To process the index of a key-sequenced data set with GETIX, you must open
the cluster with:

ACB MACRF=(CNV,...)

Chapter 2. VSAM Macro Formats and Examples 97

MNTACQ

MNTACQ Macro (Mount Acquire)

The format of the MNTACQ macro is:

{labed | MNTACQ | RPL = address 1

RPL = address
specifies the address of the RPL that identifics your opencd VSAM data set
and your arguments. The following RPL parameters have meaning for
MNTACQ:

ACB = address
identifies your VSAM data set.

ARG = address

identifies your arguments. address points to a paramcter list, aligned
on a fullword boundary as follows:

Offset Length Contents

0 4 Feedback area: address of an
ECB WAIT list

4 6 VOLSER, target volume

10 1 Reserved

1 1 Argument cntry count (N)
(N = 1to 255)

12 4N Argument entries

12+ 4(N-1) 4 RBA for which an ACQUIRE is
requested

The maximum number of arguments is 255.

For the specificd list, MNTACQ will acquire (stage) the data cylinders
corresponding to each RBA for the one given volume. The volume
will be mounted if necessary.

OPTCD = ({ADR|KEY)
{ASY|SYN}
{KEQ|KGE}
JFKS)

ADR is valid for entry-sequenced data set, error for key-sequenced
data set or relative record data set.

98 MVS/XA VSAM Administration: Macro Instruction Reference

MNTACQ

KEY is valid for key-sequenced data set and relative record data set,
- error for entry-sequenced data set.

If ASY is specified, you cannot WAIT on the RPLECB field for
MNTACQ or ACQRANGE. You use the address placed in the
paramecter list feecdback area. This address points to a list of ECBs (in
standard WAIT list format) which you may use in place of the
RPLECSB field.

GEN is not supported; if specified, it will give an error indication.

All other OPTCD parameters are not applicable, and, if specified, are
ignored with no error indication.

Because your request may result in the staging of numcrous cylinders, a single
ECB is not sufficient for an asynchronous MNTACQ request. The RPLECB
ficld is inoperative for the MNTACQ interface. Upon return from an
asynchronous MNTACQ, the fccdback arca of the MNTACQ paramcter list will
contain the address of a standard ECB WAIT list. You must then use this list in
conjunction with the WAIT macro or you may use the list in conjunction with
thc EVENTS macro of MVS. An asynchronous request must conclude with
either CHECK, ENDREQ, or CLOSE.

At the conclusion of this macro, the RPL is disconnected in a manner similar to
that of a dircct VSAM request. Any positioning in cffect prior to execution of
this macro will be lost. You may have to rennsition. Chained RPLs are not
supported by MNTACQ.

Chapter 2. VSAM Macro Formats and Examples 99

MODCB—ACB

MODCB Macro (Modify an Access Method Control Block)

The format of the MODCB macro used to modify an access method control
block is:

[label MODCB | ACB = address

[BSTRNO = number}

[,BUFND = number]

[, BUFNI = number]

|,BUFSP = number]

[,CATALOG = YES|NO]

[,CRA = SCRA|UCRA}

[,DDNAME = ddname}

LEXLST = addressj

L,MACRF = (JADR][,CNV||KEY]
[,CFX|NFX]
[LDDN|DSN]
[, DFR|NDF}
[,DIR|,SEQ|I,.SKP]
LICIINCY
LIN]|,OUT]
[,NIS|SIS}
[LNRM|AIX]
LNRSIRST]
[LNSRILSR|GSR]
LNUB|UBF))]

[, MAREA = address]

[, MLEN = number|

[,PASSWD = address]

[,LRMODE31 = {ALL|BUFF|CBINONE}

[,SHRPOOL = number]

[LSTRNO = numberi

Note: The RMODE31 parameter replaces the AMODE3! subparameter shown
in previous releases.

The parameters of the MODCB macro can be expressed as absolute numeric
expressions, as character strings, as codes, as expressions that generate valid
relocatable A-type address constants, in register notation, as S-type address
constants, and as indircct S-type address constants. Appendix C, “Operand
Notation” on page 181, further defines these operand expressions.

label
is 1 to 8 characters that provide a symbolic address for the MODCB macro.

ACB=address
specifies the address of the access mcthod control block to be modified.
The data set identified by the access method control block must not be
opened. A request to modify the access method control block of an open
data set will fail.

100 MVS/XA VSAM Administration: Macro Instruction Reference

MODCB—ACB

Note: The remaining parameters represent parameters of the ACB macro that
can be modified. The value specified replaces the value, if any, presently in the
access method control block. There are no defaults. For an explanation of these
parameters, see “ACB Macro (Generate an Access Method Control Block at
Assembly Time)” on page 34.

If MODCB is used to modify a MACRF subparameter, other subparameters are
unaffected, except when they are mutually exclusive. For example, if you specify
MACRF=ADR in the MODCB and MACRF = KEY is alrcady indicatcd in the
control block, both ADR and KEY will now be indicated. But, if you specify
MACRF = UBF in the MODCB and NUB is indicated, only UBF will now be
indicated.

The RMODE231 parameter tells the VSAM OPEN routines where to obtain
storage for the control blocks and 1/O buffers. Therefore, the only time the
values specified by the RMODE31 parameter have any effect on VSAM is on the
sctting just before an OPEN is issued. At other times, changing these values has
no effect on the residency of the control blocks and 1/O buffers.

If MODCB RPL is used to change the address of an ACB, you must first issue
an ENDRLEQ macro.

Examplc: MODCB Macro (Modify an Access Method Control Block)

In this example, a MODCB macro is used to modify the name of the exit list in
an access method control block.

MODCB ACB=BLOCK, : BLOCK was generated at
EXLST=EGRESS assembly.

Chapter 2. VSAM Macro Formats and Examples 101

MODCB—EXLST

MODCB Macro (Modify an Exit List)

The format of the MODCB macro used to modify an exit list is:

[labe} | MODCB | EXLST = address

' [LEODAD = ([address|, AINI,LD]
[JRNAD = (jaddressil,AINJI,LD|
[,LERAD = (laddress|[,A|N}I,L)}
[SSYNAD = ({address}{,A|NJl,LD}

The subparameters of the MODCB macro can be expressed as absolute numeric
expressions, as character strings, as codes, as expressions that generate valid
relocatable A-type address constants, in register notation, as S-type address
constants, and as indirect S-type address constants. Appendix C, “Operand
Notation” on page 181, further defines these operand cxpressions.

Note: See Data Facility Product: Customization for the factors that dctermine
the addressing mode and the parameter list residency mode set when the exit
routine gets control.

label
is 1 to 8 characters that provide a symbolic address for the MODCB macro.

EXEST =address
specifies the address of the exit list to be modified. You can modify an exit
list at any time—that is, before or after opening the data set(s) for which the
list indicates exit routines. Ycu cannot, however, add an entry to the exit
list if it will change the exit list’s length; the cxit list must already be large
enough to contain the new cxit address. The order in which addresses are
stored in the EXLST control block is: EODAD, SYNAD, [LERAD,
JRNAD, and UPAD. For cxample, if you generate an exit list with only
the LERAD exit, you can add entries for EODAD and SYNAD later; you
cannot add the JRNAD exit address, because doing so would increase the
size of the EXLST control block. The MODCB macro does not support
the UPAD user exit.

Note: If the JRNAD exit is changed for an OPEN ACB, then the ACB
must be closed and reopened in order to use the modified JRNAD exit.

For more information about uscr exit routines sce Data Facility Product:
Customization.

The remaining parameters represent parameters of the EXLST macro that can be

modificd or addcd to an exit list. For an cxplanation of these parameters, see
“EXLST Macro (Gencrate an Exit List at Assembly Time)” on page 66.

102 MVS/XA VSAM Administration: Macro Instruction Reference

MODCB—EXLST

Example: MODCB Macro (Modify an Exit List)

. In this example, a MODCB macro is used to activate an exit in an exit list.

MODCB EXLST=(* Indirect notation is used
EXLSTADR), to specify the address of
EODAD=(EOD,L,A) the exit list, which was

generated at execution.

EOD DC C'ENDUP'
EXLSTADR DS F . When the exit list was

generated, its address was
saved here.

The MODCB macro’s paramecters arc:

e EXLST specifics that the address of the exit list to be modified is located at
EXLSTADR.

e EODAD specifics that the entry for the end-of-data routine is to be marked

active in the exit list whose address resides at EXI.STADR. The name of the
end-of-data routinc, ENDUP, is located at EOD.

Chapter 2. VSAM Macro Formats and Examples 103

MODCB—RPL

MODCB Macro (Modify a Request Parameter List)

The format of a MODCB macro used to modify a request parameter list is:

|labef} | MODCB | RPL = address

,LACB = address]

LAREA = address]

[,LAREALEN = number}

LARG = address}

,ECB = address]

LKEYLEN = number]

LMSGAREA = address]

[LEMSGLEN = number}

|, NXTRPL = address]

[,OPTCD = (JADR|CNV|KEY]
,DIR|SEQ|SKP]
[LARD{LRD}
,FWD|BWD]
[LASY|SYN]
LNSPINUP|UPDJ
LKEQIKGE]
I,FKS|GEN]
LLOCIMVE]]

1 " HRECLEN = number

[, TRANSID = number}

The parameters of the MODCB macro can be expressed as absolute numeric
expressions, as character strings, as codes, as cxpressions that generate valid
relocatable A-type address constants, in register notation, as S-type address
constants, and as indirect S-type address constants. Appendix C, “Operand
Notation” on page 181, further defines these operand expressions.

label
is 1 to 8 characters that provide a symbolic address for the MODCB macro.

RPL = address
specifics the address of the request parameter list to be modified. You may
not modify an active request parameter list; that is, onc that defines a
request that has been issued but not completed. To modify such a request
paramecter list, you must first issue a CHECK or an ENDREQ macro.

Note: The remaining parameters represent parameters of the RPL macro that
can be modified. The value specificd replaces the value, if any, presently in the
request parameter list. There are no defaults. For an explanation of these
parameters, sce “GENCB Macro (Generate a Request Parameter List at
Execution Time)” on page 80.

If MODCB is used to modify an OPTCD subparameter within a group of
subparameters, the current subparameter for that group is changed, because only
one subparameter in a group is effective at a time. Only the OPTCD
subparameter specified is changed; all other OPTCD subparameters remain
unchanged.

104 MVS/XA VSAM Administration: Macro Instruction Reference

MODCB—RPL

Example: MODCB Macro (Modify a Request Parameter List)

In this example, a MODCB macro is used to modify the record length field in a
request parameter list.

Note: This example also shows the one exception to GENCB, MODCB,
SHOWCB, and TESTCB building a parameter list and passing it to the control
block manipulation module in register 1. In this example, the RPL address (in
register 2) would be loaded into register 1 and the RECLEN value (in register 3)
would be loaded into register 0. These registers would be passcd to the control
block manipulation macro. This will occur if the LIST, EXECUTE, or
GENERATE form of the MODCB macro is not used and the only paramecter
specified, besides RPL, is RECLEN.

L 3,1length Load the new record length.

MODCB RPL=(2), Register 2 contains the address
of the request parameter list.

RECLEN=(3) Register 3 contains the record
length.

The MODCB macro’s parameters are:

e RPL specifies that register 2 contains the address of the request paramcter list
to be modified.

e RECLEN specifies that the record length field is to be modified. The
contents of register 3 will replace any current value in the RECLEN ficld.

Chapter 2. VSAM Macro Formats and Examples 105

MRKBFR

‘e

MRKBFR Macro (Mark Buffer)

The format of the MRKBFR macro is:

MRKBFR | MARK = {DINVALID|XINVALID|OUT|RLS}
,RPL = address

MARK = {DINVALID|XINVALID]OUT|RLS}
specifies whether to mark for output or to release from exclusive control or
shared status the buffer identified in the RPL. To do both, issue
MRKBFR twice, once with MARK =OUT, again with MARK =RLS.

DINVALID|XINVALID
specifies whether to mark the data component or index component
buffers invalid. The buffers to be invalidated are identificd as those
which contain records, whose RBA values are within the RBA range
pointed to by the RPL ARG address. DINVALID specifics that the
data component buffers are to be marked invalid; XINVALID
specifies that the index component buffers are to be marked invalid.

ouT =
indicates that the buffer is to be marked for output. The buffer is
kept under exclusive control or in shared status.

RLS
indicates that the buffer is to be released from exclusive control or
sharcd status.

RPL =address
specifies the address of the request parameter list that defines the
MRKBIR request. Use the RPL used by SCIIBFR or GET to locate the -
buffer being marked or relcased. These RPL paramecters have meaning for
MRKBFR:

ACB = address
ARG = address
The address of the 8-byte ficld that contains the beginning and ending

RBAs of the range to be scarched on.

ECB = address

TRANSID = number

All other RPL parameters are ignored. RPLs are assumed not to be
chained. OPTCD=LOC is assumed. '

If the ACB to which the RPL is related has MACRF = GSR, the

program that issues MRKBFR must be in supervisor state with
protection key 0 to 7.

106 MVS/XA VSAM Administration: Macro Instruction Reference

OPEN

| OPEN Macro (Connect Program and Data)

The format of the OPEN macro is:

|label) OPEN (address|(options)),...)
[LMODE = {24]31}]

label
is 1 to 8 characters that provide a symbolic address for the OPEN macro.

address
specifics the address of the ACB or DCB for the data sct(s) to be opencd.
You may specify the address in register notation (using a register from 2
through 12, in parentheses) or specify it with an expression that generates a
valid rclocatable A-type address constant. If you usc register notation to
opcn only one data sct, you must enclose the expression identifying the
register in two scts of parentheses: for example, OPEN ((2)).

options
arc options paramctcrs for usc only in opcning non-VSAM data sets. If
any options are specificd with the address of an access method control
block, VSAM ignores them.

MODE =

specifies the format of the OPEN paramcter list that is to be gencrated.

24
specifics that a standard form (24-bit) parameter list address is to be
generated. The parameter list must reside below 16 megabytes and
point to an ACB residing below 16 megabytes. This is the default
paramcter.

31

specifies that a long form (31-bit) parameter list address is to be
generated. This parameter value must be coded if the paramcter list
or the VSAM/VTAM ACB resides above 16 megabytes.

Note: 1f the VSAM control blocks and buffers are to reside above 16 megabytes,
the RMODE31 parameter must be specificd in the ACB before the OPEN is

1ssucd.

Because the OPEN parameters are positional, include a comma for options (even
if you don't specify options) before a subscquent paramcter. '

Chapter 2. VSAM Macro Formats and Examples 107

OPEN

Example 1: OPEN Macro uscd to open two data sets.

In this example, the access method control block for one data set was generated
at execution; the other was generated at assembly.

GENCB BLK=ACB, An access method control block.
DDNAME=DATA

LTR 15,15

BNZ ERROR

LR 2,1 Address of the control block.

OPEN (BLOCK,,(2)) A label is used for the access
method control block generated
by ACB; register notation is used
for the one generated by GENCB.
The two commas indicate the
omission of options.

BLLOCK ACB Another access method control
block.

| Example 22 OPEN Maucro with a parameter list above 16 megabytes.
| V ‘ This example shows a program being opened with a parameter list that may
reside above 16 mcgabytes.

OPLSTA OPEN MODE=31,
MF=(E,OPLSTB)

| OPLSTB OPEN (ACB1,,ACB2),
MODE=31,
| MF=L

——

| Since MODE = 31 is coded in the list form of the OPEN macro, VSAM ACBs
] and the OPEN parameter list may rcside above 16 mcgabytes.

| Note: Consistency must be maintained while using the MODE operand in the

| MF=L and MF=E versions of the OPEN macro. If MODE =31 is specified in
| the MF=L version, then MODE = 31 must also be coded in the corresponding

| MF=E version of the macro. Unpredictable results may occur if this rule is not
] followed.

| MF =E and MF =L are not rcquircd. OPEN (ACB1), MODE =31 is also valid.

108 MVS/XA VSAM Administration: Macro Instruction Reference

POINT

POINT Macro (Position for Access)

The format of the POINT macro is:

{labe]] | POINT | RPL = address

label .
is | to 8 characters that provide a symbolic address for the POINT macro.

RPL = address
specifies the address of the request parameter list that defines the request.
You may specify the address in register notation (using a register from 1
through 12, enclosed in parcntheses) or specify it with an expression that
generates a valid relocatable A-type address constant.

Example: Position with POINT

In this example, the POINT macro is used to position at a record identified by a
full key (5-byte) search argument, compared cqual.

‘Chapter 2. VSAM Macro Formats and Examples 109

POINT

BLOCK ACB DDNAME=10 Default MACRF subparameters
sufficient.
POSITION RPL ACB=BLOCK, ARG parameter and KEQ and
AREA=WORK, FKS OPTCD subparameters
AREALEN=50, define the POINT request.
ARG=SRCHKEY,

. OPTCD=(KEY, SEQ, SYN, KEQ, FKS)

Loop MVC SRCHKEY, source Search argument for
positioning, moved in from

POINT RPL=POSITION a table or a transaction
record.
LTR 15,15
BNZ ERROR
LOOP1 GET RPL=POSITION
LTR 15,15
BNZ ERROR

Process the record. Decide whether to skip to another
position (forward or backward).

BE Loop Yes; skip.
B LOOP1 No; continue in
consecutive sequence.
ERROR .o Request was not accepted,
. or failed.
SRCHKEY DS CL5 Search argument for
positioning.
WORK DS CL50 VSAM puts a record here

for each GET request.

110 MVS/XA VSAM Administration: Macro Instruction Reference

PUT

PUT Macro (Store a Record)

The format of the PUT macro is:

[label) PUT RPL = address

label ,
is 1 to 8 characters that provide a symbolic address for the PUT macro.

RPL = address
specifics the address of the request paramcter list that defines the request.
You may specify the address in register notation (using a register from |
through 12, enclosed in parcntheses) or specify it with an expression that
generates a valid relocatable A-type address constant.

Note: If the PUT macro is being used to load records into an ecmpty data sct,
the STRNO value in the access method control block must be 1, and RPL
OPTCD=DIR must not be specified. However, for an empty relative record
data sct, DIR is allowed.

Example 1: Keyed-Scquential Insertion

In this cxample, a PUT macro is used to perform keyed-sequential inscrtion.
Variable-length records with a key length of 15 bytes are to be moved from a
work arca. Some records will be inserted between cxisting records; other records
will be addced at the end of the data sct.

BLOGCK ACB DDNAME=0OUTPUT,
MACRF=(KEY,SEQ, OUT)

LIST RPL ACB=BLOCK,
AREA=BUILDRCD,
AREALEN=250,
OPTDC=(KEY, SEQ,

SYN,NUP,MVE)

LOOP i 2,source Put length of record to
be inserted into.
register.

MODCB RPL=LIST, Indicate record length
RECLEN=(2) in request parameter
list.
LTR 15,15
BNZ CHECKO
PUT RPI~LIST
LTR 15,15
BNZ ERROR
B LOOP
CHECKO e Modification failed.

Chapter 2. VSAM Macro Formats and Examples 111

PUT

Example 2: Recording RBAs When Loading

ERROR e

BUILDRCD DS

CL250

Request was not accepted,
or failed.

Work area for building
records.

The request parameter list, LIST, is associated with the access method control
block, BLOCK. The length of each record to be inserted is put into register 2,
which is subsequently used by MODCB to change the record length in the
request parameter list. The record length is, therefore, correctly indicated in the
request parameter list before the PUT macro is issued. The exccution of the
PUT macro causes VSAM to skip ahead (never back) to the next record.

In this example, a PUT macro is used to record the RBAs of records as they are
loaded into a key-sequenced data set. The RBAs are recorded in a table with
20-byte entries (4 bytes for RBA, 15 bytes for associated key, and 1 byte of
padding so the next entry begins on a fullword boundary).

LA

LOOP L

MODCB

LTR
BNZ

PUT.

LTR
BNZ

SHOWCB

LTR
BNZ
MVC

ERROR cen

3,RBATABLE

2,source
RPL=LIST,
RECLEN=(2)
15,15
CHECKO
RPL=LIST
15,15
ERROR
AREA=(3),
FIELDS=RBA,
LENGTH=4,
RPL=LIST
15,15
CHECKO

4(15,3),
keyfield

3,20(3)
LOooP

112 MVS/XA VSAM Administration: Macro Instruction Reference

Address of the beginning of
the table.

Put length of record to be
inserted into register 2.

Indicate record length in
request parameter list.

Each SHOWCB puts a record's
RBA into the table.

Put the record's key field
in the table.

Point to the next entry.

Request was not accepted,
or failed.

PUT

CHECKO ... Modification or display
. failed.
DSECT Get enough virtual storage

for as many table entries
as there are records in
the data set.

RBATABLE DS (0]}

RBA DS CL4
KEY DS CL15
DS CL1 Padding to keep each RBA

entry on a fullword
boundary: SHOWCB's display
area must be on a fullword
boundary.

The necd to process a key-sequenced data set by address should be unusual, but
by recording the RBA of each record in a key-sequenced data set, you have
scarch arguments for possible processing of the data set by addressed-direct
retrieval and by addressed-scquential retrieval using the POINT macro. (You
don't need to know RBAs to process a key-scquenced data set by simple
addressed-sequential retrieval, since you go from the beginning without any
skips.)

You can display the RBA of a record after you issuec a GET or a POINT, as well
as after you issue a PUT.

Example 3: Loading a Relative Record Data Set (Skip-Sequential and Direct Processing)

In this example, a PUT macro is used to store fwenty 100-byte records in slots 5,
10, 15.,...,100 of thc data set. MODCB is used to switch to direct processing, and
a PUT is used to store records in slots 26 and 51 of the data set.

OUTACB ACB MACRF=(SKP, OUT,

DIR,KEY)

GENCB BLK=RPL, Generate a request
ACB=0UTACB, parameter list at
AREA=WORK, execution time.
AREALEN=100,

ARG=RCDNO,
OPTCD=(KEY, SKP)

LTR 15,15

BNZ. GENFAIL

LR 5,0 Save length of RPL.

IR 6,1 Save address of RPL.

LA 7,5 Initialize increment

value.

ST 7 ,RCDNO Initialize argument to

slot 5.
LA 10,20 Initialize loop counter.

Chapter 2. VSAM Macro Formats and Examples 113

PUT

Loop .es
PUT
LTR
BNZ

ST
BCT
MODCB

LTR
BNZ

ST

PUT
LTR
BNZ

ST

PUT
LTR
BNz

GENFAIL ...

PUTERR ...
RETURN ...
WORK DS

RCDNO DS

RPL=(6)
15,15
PUTERR
1,RCDNO
1,7
1,RCDNO
10,LO0P

RPL=(6),
OPTCD=(DIR,KEY)

15,15
GENFAIL
7,51
7,RCDNO

RPL=(6)
15,15
PUTERR
7,26
7,RCDNC

RPL=(6)
15,15
PUTERR

RETURN

CL100

CL4

114 MVS/XA VSAM Administration: Macro Instruction Reference

Move new record into work.

Store record.

Request was not accepted,
or failed.

Increment argument by 5.

Switch to direct processing
to store records in slots
51 and 26.

Initialize argument to slot
51.

Move new record into WORK.

Store record in slot 51.

Request was not accepted,
or failed.

Initialize argument to slot

Move new record into WORK.

Store record in slot 26.

Request was not accepted,
or failed.

Generation or modification
failed.

PUT request was not
accepted, or failed.

Terminate program.
100-byte work area that
contains record to be
stored by PUT macro.

4-byte relative record
number.

PUT

Both skip-sequential and direct processing can be used to create a relative record
data set. The ACB is opened for output. The 4-byte search argument
(RCDNO) indicates the slot number where the record is to be stored.

Example 4: Kcyed-Scquential Insertion (Relative Record Data Set)

In this example, a PUT macro is used to insert twenty 100-byte records into
empty slots of a previously loaded relative record data set. If the slot is cmpty
when the PUT is issucd, the record is stored and the slot number (retumned in the
argument field) is stored in a table. If the slot is not empty when the PUT is
issucd, a duplicate record crror indication is rcturned. When a duplicate record is
indicated, the PUT is reissued until the record is successfully stored in an cmpty

slot in the data sct.

OUTACB ACB

GENCB

LTR
BNZ

B B

WRITERCD ..

PUT
LTR
BZ

CLR
BNE
TESTCB

BE

MACRF=(KEY, SEQ,
OUT)

BLK=RPL,
ACB=OUTACB,
AREA=WORK,
AREALEN=100,
ARG=RCDNO,
OPTDC=(KEY,SEQ)
15,15

GENERR

6,1

4 ,RRNTABLE+80

3,RRNTABLE

RPL=(6)
15,15
STRCDNO
10,8
10,15
PUTERR

RPL=(6),FDBK=8,
ERET=TESTERR

WRITERCD

PUTERR

Chapter 2. VSAM Macro Formats and Examples

Generate a request parameter
list.

Save the address of the RPL.

Initialize address of end of
table.

Initialize index to relative
record number table.

Move record into work area.

Branch, if PUT is successful.
Test for logical error.

Test for duplicate record.
Branch, if duplicate record,

and try to store record in
next slot.

115

PUT

STRDCNO

GENERR
TESTERR
PUTERR
RETURN

RCDNO

RRNTABLE

WORK

MVC.

CLR
BE

DS

DS

DS

0(4, 3)RCDNO
3,4(3)

3,4
RETURN

WRITERCD

CL4
20F

CL100

Store relative record
number in RRNTABLE.

Increment to next table
entry.

If table full, return to
caller.

Write next record.

Error routine for GENCB
macro.

Error routine for TESTCB
macro.

Error routine for PUT
macro.

Return to caller or
terminate program.

4-byte relative record
number (argument) field.

Relative record number
table,

100-byte work area that
contains record to be
stored by PUT macro.

Each record is stored in the next available slot in the data set. When a record is
successfully stored, its rclative record number is recorded in a table.

Example S: Skip-Sequential Insertion

In this example, one PUT macro is used to insert multiple fixed-length, 100-byte
records. Records are to be moved asynchronously from a work area.

OUTPUT

ACB

.

GENCB

LTR
BNZ

MACRF=(KEY, SKP,
ouT)

BLK=RPL,
COPIES=S,
ACB=0UTPUT,
AREALEN=100,
OPTCD=(KEY, SKP,
ASY,NUP,MVE),
RECLEN=100

15,15
CHECKO

116 MVS/XA VSAM Administration: Macro Instruction Reference

Generate 5 request
parameter lists at
execution.

PUT

Calculate length of each list and use register notation with
the MODCB macro to complete each list.

MODCB RPL=(2),
AREA=(3),
NXTRPL=(4)

LTR 15,15
BNZ CHECKO

Increase the value in each register and repeat the MODCB
until all five request parameter lists have been completed.
The last time, register 4 must be set to O.

LOOP :.. Restore address of first
list in register 2.
Build 5 records in WORK.

PUT RPI~(2) Register 2 points to the
first request parameter
list in the chain. The
five records in WORK are
stored with this one

LTR 15,15 PUT request.

BNZ NOTACCEP

CHECK RPL=(2)

LTR 15,15
BNZ ERRO
B LOOP
CHECKO e Generation or modification
failed.
NOTACCEP
ERROR .o Display the feedback field
in each request parameter
list to find out which one
had an error.
WORK DS CL500 Contains five 100-byte work

areas.

You give no scarch argument for storage: VSAM knows the position of the key
ficld in cach record and cxtracts the key from it. Skip-scquential insertion differs
from keycd-direct insertion in the sequence in which records may be inserted
(ascending nonconsccutive sequence versus random sequence) and in
performance.

With skip-sequential insertion, if you insert two or more records into a control
interval, VSAM doesn’t write the contents of the buffer to direct-access storage
until you have inserted all the records. With direct insertion, VSAM writes the
contents of the buffer after you have inserted each record.

Chapter 2. VSAM Macro Formats and Examples 117

PUT

Example 6: Keyed-Dircct Inscrtion

In this example, a PUT macro is used to move fixed-length, 100-byte rccords
from a work area.

OUTPUT ACB MACRF=(KEY,DIR,
ouT)

DIRECT RPL ACB=0UTPUT,
AREA=WORK,
AREALEN=100,
OPTCD=(KEY,DIR,

ASY,NUP,MVE),
RECLEN=100

Loop PUT RPL=DIRECT
LTR 15,15
BNZ NOTACCEP

CHECK RPL=DIRECT

LTR 15,15

BNZ ERROR

B LOOP
NOTACCEP ... Request was not accepted.
ERROR . Request failed.
WORK DS CL100 Work area.

The macros are as follows:

¢ ACB specifies that the data set, OUTPUT, into which records are to be
inserted, is opened for keyed-direct, output processing.

® RPL specifies that the record to be inserted into the OUTPUT data set
resides in a 100-bytc area, WORK.

VSAM extracts the key from the key ficld of each record found at WORK.
Using keyed-direct access is similar to using skip-sequential access.

118 MVS;XA VSAM Administration: Macro Instruction Reference

PUT

Example 7: Addressed-Sequential Addition

In this example, a PUT macro is used to add variable-length records to a data
sct. The data set is assumed to be an entry-sequenced data sct, because records
cannot be inserted into or added to a key-sequenced data set with addressed
access.

BLOCK ACB MACRF=(ADR, SEQ,
ouT)

LIST RPL ACB=BLOCK,
AREA=NEWRCD,
AREALEN=100,

- OPTCD=(ADR, SEQ,
SYN,MVE)
LOOP ce Build the record.
L 3,source Put the length of the
record into register 3.
MODCB RPL=LIST, Indicate length of new
RECLEN=(3) record.
LTR 15,15

BNZ CHECKO
PUT RPL=LIST

LTR 15,15

BNZ ERROR

B LOOP
CHECKO ... ’ Modification failed.
ERROR ... Request was not accepted,

‘ or failed.
NEWRCD DS CL100 gui;d record in this work
rea.

Each record is stored in the next position after the last record in the data sct.
You do not have to specify an RBA or do any cxplicit positioning (with the
POINT macro). Addressed addition of records is always identical to loading a
data sct: When additional space is requircd, VSAM cxtends the data sct.

The only difference between addressed-sequential and addressed-direct addition is
when the buffers are written to external storage. The buffer is written to external
storage only when it is full for sequential addition; it is written after each record
for direct addition. You cannot use direct storage to load records into a data set
for the first time; you must use scquential storage.

Chapter 2. VSAM Macro Formats and Examples 119

PUT

Example 8: Keyed-Sequential Update

In this example, GET and PUT macros are used to retrieve and update
fixed-length, 50-byte records. Records are updated synchronously in a work area.
This example requires the use of a work area because you cannot update a record
in the I/O buffer.

UPDATA ACB MACRF=(KEY, SEQ,
ouT)

LIST RPL ACB=UPDATA, UPD indicates the record may
AREA=WORK, be stored back (or deleted).
AREALEN=50,
OPTCD=(KEY, SEQ,
SYN,UPD,MVE)

LooP GET RPL=LIST
LTR 15,15
BNZ ERROR

Decide whether to update the record.
BE LOOP Do not update it; retrieve

another.

Do update the record.

PUT RPL=LIST Store the record back.
LTR 15,15
BNZ ERROR
B LOOP
ERROR ... Request was not accepted, or
failed.
WORK DS CL50 Xs;ﬂ;be{ puts the retrieved record
ere.

A GET for update (OPTCD = UPD) must precede a PUT for update. Besides
retricving the record to be updated, GET positions VSAM at the record retricved,
in anticipation of the succeeding update (or deletion). It is not necessary for you
to store back (or delcte) the record that you retricved for update. VSAM's
position at the record previously retrieved allows you to issue another GET to
retricve the following record. You cannot then, however, store back the previous
record: The position for update has been forgotten because of the following GET.

120 MVS/XA VSAM Administration: Macro Instruction Reference

Example 9: Keyed-Direct Update

PUT

In this example, GET and PUT macros are used to retrieve and update records.
The MODCB macro is used to modify record length (RECLEN) in the request
parameter list when an update causes the record length to change. The
maximum record length is 120 bytes. The search argument is a full key (5 bytes),

compared equal.

INPUT ACB

MACRF=(KEY,DIR,

- 0uT)

UPDTE RPL

.

ACB=INPUT,
AREA=IN,
AREALEN=120,
OPTDC=(KEY,DIR,
SYN, UPD,KEQ,
FKS,MVE),
ARG=KEYAREA,
KEYLEN=5

UPDTE indicates the record
may be stored back
(or deleted).

Process input and get search argument into KEYAREA; proceed
to retrieve a record.

LooP GET
LTR
BNZ

SHOWCB

LTR
BNZ

Update the record.

length?
BE
L

MODCB

LTR
BNZ
PUT
LTR
BNZ

STORE

RP1L=UPDTE
15,15

ERROR
RPL=UPDTE,
AREA=RLNGTH,
FIELDS=RECLEN,
LENGTH=4
15,15

CHECKO

Display the length of the
record.

Does the update change the record's

STORE No; length not changed.

5,1length Yes; load new length into
register 5.

RPL=UPDTE, Modify length indication

RECLEN=(5) in the request parameter
list.

15,15

CHECKO

RPL=UPDTE

15,15

ERROR

Loop

Chapter 2. VSAM Macro Formats and Examples 121

PUT

ERROR oo

CHECKO ...

IN DS CL120
KEYAREA DS CL5
RINGTH DS F

Request was not accepted, or
failed.

Display or modification
failed.

Work area for retrieving,
updating, and storing a
record.

Search argument for
retrieving a record.

Area for displaying the
length of a retrieved record.

You cannot update records in the I/O buffer. A direct GET for update positions
VSAM at the rccord retricved, in anticipation of storing back (or delcting) the

record. This positioning also allows you to switch to scquential access to retrieve
the next record. When PUT is issuced after a DIRUPD GET request, PUT

causcs VSAM to release exclusive control.

You do not have to store back a record that you retrieve for update, but, if you
do not store it back before another retrieval, the current updates are lost.

122 MVS/XA VSAM Administration: Macro Instruction Reference

PUT

Example 10: Addressed-Sequential Update

In this example, GET and PUT macros are used to retrieve and update records in
an entry-sequenced data set. The records arc variable in length, a maximum of
200 bytes. The lengths of the records are not changed by update (the length of a
record can never be changed by addressed access).

ENTRY ACB MACRF=(ADR, SEQ, OUT)

ADRUPD RPL ACB=ENTRY, UPDTE indicates update (or
AREA=WORK, deletion).
AREALEN=200,
OPTCD=(ADR, SEQ,
SYN,UPD,MVE)

LOOP GET RPL=ADRUPD

LTR 15,15

BNZ ERROR

SHOWCB RPL=ADRUPD, Find out how long the record
AREA=RECLEN, is.
FIELDS=RECLEN,
LENGTH=4

LTR 15,15

BNZ CHECKO

PUT RPL=ADRUPD

LTR 15,15
BNZ ERROR
B. LOOP
ERROR e Request was not accepted, or
failed.
CHECKO ... Display failed.
WORK DS CL200 Record-processing work area.
RLNGTH DS F Display area for length of
records.

If you havc inactive records in your entry-sequenced data sct, you may reuse the
space they occupy by retrieving the records for update and restoring a new record
in their place.

With a key-scquenced data sct, it is not possible to change the length of records
by addressed update because the index is not used and VSAM could not split a
control interval if required because of changing record length.

Addressed-direct update varies from sequential update in the specification of an
RBA for a search argument.

Chapter 2. VSAM Macro Formats and Examples 123

PUT

Example 11: Marking Records Inactive

In this example, GET and PUT macros are used to retricve a record from an
entry-sequenced data set and to mark it as inactive. (The record is marked as
inactive by putting a hexadecimal ‘FF” in the first byte of a record.) The inactive
record will not be scquentially retrieved except for update.

ENTRYSEQ ACB
LIST RPL
LOQP GET
LTR
BNZ

MACRF=(ADR, DIR,
ouT)

ACB=ENTRYSEQ,
AREA=RECORD,
AREALEN=100,
OPTCD=(ADR, DIR,
SYN,UPD,MVE),
ARG=RBAAREA

UPD indicates update;
storing the record back
marked inactive.

RPL=LIST
15,15
ERROR

Decide whether you still want the data in the record.

BE

MVI

PUT

LTR

BNZ

ERROR

RECORD DS

RBAAREA DS

Loor Yes; retrieve the next

record.

RECORD, X'FF' No; flag the record

inactive.

RPL=LIST Storing the record with
an inactive indicator is
equivalent to deletion
for an entry-sequenced
data set.

15,15

ERROR

LOOP
Request was not accepted,
or failed.

CL100 Work area for marking
records.

F Search argument for

retrieving the record.

Records of an entry-sequenced data sct can't be deleted. If a record loses its
usefulness for your application, your program can mark it inactive by placing a
unique flag in some conventional part of the record so that when your programs
retrieve the record thercafter they can recognize and bypass it. You can use the
space occupied by an inactive record by retrieving it for update and storing a new

record in its place.

124 MVS/XA VSAM Administration: Macro Instruction Reference

PUTIX

PUTIX Macro (Store an Index Record)

The format of the PUTIX macro is:

|{abel) PUTIX | RPL = address

where:

label
is 1 to 8 characters that provide a symbolic address for the PUTIX macro.

RPL = address
specifics the address of the request parameter list that defines this PUTIX
request. You may specify the address in register notation (using a register
from 1 through 12, enclosed in parentheses) or specify it with an expression
that gencerates a valid relocatable A-type address constant.

The following RPL parameters and subparameters are required for PUTIX:
OPTCD =(CNV

,DIR

,UPD

\MVE)

OPTCD=LOC is not allowed.

AREALEN
must be at least indcx control interval size.

The contents of a control interval must previously have been retrieved for update
by way of GETIX.

To process the index of a key-sequenced data set with GETIX, you must open
the cluster with:

ACB MACRF=(CNV,...)

Chapter 2. VSAM Macro Formats and Examples 125

RPL

RPL Macro (Generate a Request Parameter List at Assembly Time)

The format of the RPL macro js:

[label} | RPL [ACB = address}

[, AM=VSAM]

[,LAREA = address]

[LAREALEN = number]

[, ARG = address]

[,ECB = address}

|,KEYLEN = number]

[, MSGAREA = address)

[, MSGLEN = number}

[LNXTRPL = address]|

[LOPTCD = (JADR|CNV|KEY]
[DIR|SEQ|SKP|
[ARDILRD]
LFWD|BWD]
LASYISYN]
LNSPINCP|UPD]
L KEQIKGE]
[FKS|GEN]
LNWAITX|WAITX]
LLOCIMYED]

LRECLEN = numbert-
[, TRANSID = number]

Values for RPL macro paramcters can be specified as absolute numeric
expressions, character strings, codcs, and expressions that generate valid
relocatable A-type address constants.

label
is 1 to 8 characters that provide a symbolic address for the request
parameter list that is generated. You can use it in the request macros to
give the address of the list. You can use it in the NXTRPL parameter of
the RPL macro, when you are chaining request parameter lists, to indicate
the next list.

ACB = address
specifics the address of the access method control block that identifies the
data sct to which access will be requested. If you used the ACB macro to
generate the control block, you may specify the label of that macro for the
address. If the ACB paramcter is not coded, you must specify the address
before issuing the request.

AM =VSAM .
specifics that the access method using the control block is VSAM.

AREA = address
specifies the address of a work area to and from which VSAM moves a data
record if you request it to do so (with the RPL parameter
OPTCD=MVE). If your request is to process records in the I/O buffer

126 MVS/XA VSAM Administration: Macro Instruction Reference

RPL

(OPTCD=L0OC), VSAM puts into this work area the address of a data
record within the I/O buffer.

AREALEN = number
specifies the length, in bytes, of the work arca whose address is specified by
the AREA parameter. Its minimum for OPTCD = MVE is the sizc of a
data record (of the largest data record, for a data set with records of variable
length). For OPTCD=LOC, the area should be 4 bytes to contain the
address of a data record within the I/O buffer.

ARG = address
specifies the address of a ficld that contains the search argument for direct
retrieval, skip-sequential retrieval, and positioning. For a relative record
data set, the ARG ficld must be 4 bytes long. For direct or skip-scquential
processing, this field contains your scarch argument, a relative record
number. For sequential processing (OPTCD = (KEY,SEQ)), the 4 bytes
arc required for VSAM to retumn the feedback RRN. For keyed access
(OPTCD=KEY), the scarch argument is a full or gencric key or rclative
record numbecr; for addressed access (OPTCD= ADR), it is an RBA. If
you specify a generic key (OPTCD = GLEN), you must also specify in the
KEYLEN parameter how many of the bytes of the full key you arc using
for the generic key. ARG is also used with WRTBFR and MRKBFR. Its
usage with these macros is described in “Sharing Resources” in VSAM
Administration Guide.

ECB = address
specifies the address of an event control block (ECB) that you may supply.
VSAM indicates in the ECB whether a request is complete or not (using
standard completion codes, which arc described in Data Areas). You can
usc the ECB to determine that an asynchronous request is complete before
issuing a CHECK macro. (If you issuc a CIIECK before a request is
complete, you give up control and must wait for complction.) The ECB
parameter is always optional.

KEYLEN = number
specifies the length, in bytes, of the generic key (OPTCD = GEN) you are
using for a search argument (given in the field addressed by the ARG
parameter). This parameter is specified as a number from 1 through 255; it
is required when the scarch argument is a generic key. For full-key
scarches, VSAM knows the key length, which is taken from the catalog
definition of the data sct when you open the data sct.

MSGAREA = address
specifies the address of an arca that you may, optionally, supply for VSAM
to send you a message in casc of a physical error. The format of a physical
error message is given in “Reason Code (Physical Errors)” on page 26.

MSGLEN = number
specifies the size, in bytes, of the message area indicated in the MSGAREA
parameter. if MSGAREA is specified, MSGLEN is required. The
minimum size of a message is 128 bytes; if you provide less than 128 bytes,
no message is returned to your program.

Chapter 2. VSAM Macro Formats and Examples 127

RPL

NXTRPL = address

specifies the address of the next request parameter list in a chain. Urnit this
parameter from the macro that generates the last list in the chain. When
you issue a request that is defined by a chain of request parameter lists,
indicate in the request macro the address of the first parameter list in the
chain.

OPTCD = ([ADR|CNV|KEY]

LDIR|SEQ|SKP]

.ARD|LRD]

[LEWDIBWD]

LASYISYN]

.NSP|NUP|UPD]

| KEQ|KGE]

LEKS[GEN]

LNWAITX|WAITX]

LLOCIMVE))

specifies the subparamcters that govern the request defined by the request
paramcter list. Each group of subparameters has a default; subparameters
are shown in Figure 13 with defaults underlined. Only one subparameter
from each group can be specified. Some requests do not require an
subparamcter from all of the groups to be specificd. The groups that aren’t
required arc ignored; thus, you can use the same request parameter list for a
combination of requests (GET, PUT, POINT, for example) without
zcroing out the inapplicable subparameters cach time you go from one
request to another.

Option Mecaning

ADR

CNV

KEY

DIR

SEQ

SKP

Addressed access to a key-scquenced or an entry-sequenced
data set: RBAs arc used as scarch arguments and sequential
access is done by entry sequence.

Control interval access (this type of access is described in
VSAM Administration Guide).

Keyed access to a key-sequenced or relative record data set:
keys or relative record numbers are used as search arguments
and sequential access is done by key or relative record number
sequence.

Direct access to a key-secquenced, entry-sequenced, or relative
record data set.

Sequential access to a key-sequenced, entry-sequenced, or
relative record data set.

Skip sequential access to a key-scquenced or a relative record
data set: uscd with kecyed access only.

Figure 13 (Part 1 of 3). OPTCD Options

128 MVS/XA VSAM Administration: Macro Instruction Reference

RPL

Option
ARD

LRD

FWD
BWD

ASY

SYN

NSP

. UPD

KEQ

Mecaning

User’s argument determines the record to be located, retrieved,
or stored.

Last record in the data sct is to be located (POINT) or
retrieved (GET direct); requires OPTCD=BWD.

Processing to proceed in a forward direction.

Processing to proceed in a backward direction; for keyed
(KEY) or addressed (ADR) sequential (SEQ) or direct (DIR)
requests; valid for POINT, GET, PUT, and ERASE
opcrations; establish positioning by a POINT with
OPTCD=BWD or by a GET dircct with
OPTCD=(NSP,BWD). When OPTCD=BWD is specificd,
subparametcrs KGE and GEN are ignored; subparameters
KEQ and FKS are assumed.

Asynchronous access; VSAM rcturns to the processing
program after scheduling a request so the program can do other
processing while the request is being carried out.

Synchronous access; VSAM returns to the processing program
after completing a request.

With OPTCD = DIR only, VSAM is to remember its position
(for subsequent secquential access); that is, the position is not to
be forgotten unless an ENDREQ macro is issued.

A data record that is being retricved will not be updated or
deleted; a record that s being stored is a new secerd; VSAM
doesn’t remember its position for direct requests into a work
arca.

A data record that is being retricved may be updated or deleted,;
a rccord that is being stored or deleted was previously retrieved
with G2TCD = UPD; VSAM remembers its position for
scquential and direct GET requests. When PUT is issued after
a DIRUPD GET request, PUT causes VSAM to relcase
exclusive control.

For GET with OPTCD=(KEY,DIR) or (KEY,SKP) and for
POINT with OPTCD=KEY, the key (full or generic) that you
provide for a scarch argument must cqual the key or relative
record number of a record. For a relative record data set, KEQ
is assumed cxcept for POINT.

Figure 13 (Part 2 of 3). OPTCD Options

Chapter 2. VSAM Macro Formats and Examples

129

RPL

Option
KGE

FKS
GEN

NWAITX

WAITX

LOC

MVE

Meaning

For the same cases as KEQ, if the key (full or generic) that you
provide for a search argument doesn’t equal that of a record,
the request applies to the record that has-the next higher key.
For a relative record data set and POINT, KGE positions to
the specificd relative record number whether the slot is empty
or not. [f the relative record number is greater than the highest
existing record, EOD is returned. A subsequent PUT will
insert the record at this position.

A full key is provided as a search argument.

A generic key is provided as a search argument; give the length
in the KEYLEN parameter.

Never take the user’'s UPAD exit.

If OPTCD=SYN and thc ACB’s MACRF=LSR GSR and
UPAD ecxit routing is specified, VSAM takes the UPAD exit at
points when VSAM would normally issue a WAIT.

For retrieval, VSAM leaves the data record in the I/O buffer
for processing; not valid for PUT or ERASE; valid for GET
with OPTCD = UPD. However, to updatc the rccord, you
must build a new version of the record in a work arca and
modify the request parameter list OPTCD from LOC to MVE
before issuing a PUT. For keyed-sequential retricval,
modifying key ficlds in the [/O buffer may causc incorrect
results for subsequent GET requests until the 1/O record is
reread.

For retrieval, VSAM moves the data record to a work arca for
processing, and for storage, VSAM movecs it from the work
arca to the I/O buffer.

Figure 13 (Part 3 of 3). OPTCD Options

RECLEN = number
specifies the length, in bytes, of a data record being stored. This parameter
is required for a PUT request.

For GET rcquests, VSAM puts the length of the record retrieved in this
ficld in the request parameter list. It will be there if you update and store
the record.

TRANSID = number
specifics a number that relates modified buffers in a buffer pool. Used in
shared resource applications and described in the chapter “Shanng
Resources” in VSAM Administration Guide.

130 MVS/XA VSAM Administration: Macro Instruction Reference

Examplc: RPL Macro

RPL

In this example, an RPL macro is used to generate a request parameter list
named PARMLIST.

ACCESS ACB

PARMLIST RPL

WORK DS

SEARCH DS
MESSAGE DS

MACRF=(SKP,0UT),
DDNAME=PAYROLL

ACB=ACCESS,

AM=VSAM,

AREA=WORK,

AREALEN=125,

ARG=SEARCH,

MSGAREA=MESSAGE,

MSGLEN=128, .

OPTCD=(SKP,UPD) Most OPTCD defaults are
appropriate to assumptions.

CL125

CL8
CL128

The ACB macro named ACCESS, specifics skip-scquential retrieval for update.
Further details may be provided on a DD statement named PAYROLL.

The RPL macro’s parameters are:

e ACB associates the request parameter list with the access method control
block generated by ACCESS.

e AREA and AREALEN specify a work arca, WORK, that is 125 bytes long.

® ARG speeifics that the search argument is defined at SEARCIHL. The scarch
argument is 8 bytes long.

e MSGAREA and MSGLEN specify a message arca, MESSAGE, that is 128
bytes long. The message area is provided for physical error messages.

¢ OPTCD specifics skip-sequential processing and specifies that a retricved
record may be updated or deleted.

Because KEYLEN is not coded, a full-key scarch is assumed.

Chapter 2. VSAM Macro Formats and Examples 131

SCHBFR

SCHBFR Macro (Search Buffer)

The format of the SCHBFR macro is:

SCHBFR |BFRNO.= number]
,RPL = address

BFRNO = number
specifies the number of the buffer VSAM is to scarch first. The buffers
preceding it in the buffer pool are not searched. The default is 1; that is,
the first buffer is searched first. (If the number is coded in register notation,
all registers except 1 and 13 may be used.)

RPL = address
specifics the address of the request parameter list that dcfines the SCIIBFR
request. These RPL parameters have meaning for SCHBFR:

ACB = address

AREA = address
If a buffer is found, the area whose address is specified will contain its
address (OPTCD=1.OC) or a copy of its contents (OPTCD = MVE).

AREALEN = number
At least 4 with OPTCD = LOC; at least control interval size with '
OPTCD=MVE.
ARG = address
ARG gives the address of an 8-byte field that contains the beginning
and ending control intcrval RBAs of the range to be scarched on.

ECB = address

OPTCD = ((ASYI&N),{LOCIQ_@)

TRANSID = number

All other RPL parameters are ignored. RPLs are assumea not to be

chaincd. Control interval access is assumed.

If the ACB to which the RPL is related has MACRF = GSR, the program
that issues SCHBFR must be in supervisor state with protéction key 0 to 7.

132 MVS/XA VSAM Administration: Macro Instruction Reference

r

—r

SHOWCB—-ACB

SHOWCB Macro (Display Fields of an Access Method Control Block)

The format of the SHOWCB macro used to display ficlds in an access method
control block is:

|label) SHOWCB | ACB = address

,AREA = address

JLENGTH = number

[LOBJECT = DATA|INDEX]

JFIELDS = (JACBLEN] |,AVSPAC]
{,BFRFNDJ[,BSTRNO]
[, BUFNO]} |, BUFRDS]
|,.BUFSP]
[,CINV] ,LDDNAMEJ|LENDRBA]
|,LERROR] |,LEXLST]|,FS]
[LHALCRBA] | KEYLEN]J|,LRECL]
LMAREA] [,MLEN|{,NCIS]
LNDELR] [NEXCP)|,NEXT]
[LNIXL] LINLOGR]J|,NRETR]
LNUIW] [NUPDR|I,PASSWD]
LSHRPOOL] [, STMST), STRMAX]
[,STRNOJ [,UIW))

The paramecters of the SHOWCB macro can be expressed as absolute numeric
expressions, as character strings, as codes, as expressions that gencerate valid
relocatable A-type address constants, in register notation, as S-type address
constants, and as indirect S-typc address constants. Appendix C, “Opcrand
‘Notation” on page 181, further defines these operand cxpressions.

label .
is | to 8 characters that provide a symbolic address for the SITIOWCB
macro.

ACB = address
specifies the address of the access method control block whose ficlds are to
be displayed. If you used the ACB macro with a label, you can specify the
label here. The ACB parameter is optional when you wish to display the
length of an access method control block (FIELDS=ACBLEN). (All
access method control blocks have the same length, so you need not specify
the address of a particular one.)

AREA = address
specifics the address of a work arca that you are supplying for VSAM to
display the contents of the ficlds you specify in the FIELDS paramcter.
The contents of the fields are displayed in the order in which you specify
them. The area must begin on a fullword boundary.

LENGTH = number
specifies the length, in bytes, of the work area that you are providing for
VSAM to display the indicated fields in. (See the FIELDS parameter for
the fields that can be displayed and for the length of each ficld.) If the arca
is not large enough for all the ficlds, VSAM doesn‘t display any of their

Chapter 2. VSAM Macro Formats and Examples 133

SHOWCB—-ACB

contents and returns a rcason code (see “Control Block Manipulation
Macro Return Codes and Reason Codes” on page 10).

OBJECT =DATA|INDEX
specifies whether ficlds are to be displayed for the data or for the index.

FIELDS = [ACBLEN]|,AVSPAC]

[, BFRFND}|,BSTRNO}

[,BUFNDJ[,BUFNI}

[, BUFNOJ|,BUFRDS}

[,BUFSP][,CINY]

LDDNAMEJLENDRBA]

LERROR],LEXLST]

I,FS|I,HALCRBA]}

,LKEYLEN],LRECL]

LMAREAJLMLEN]

[LNCIS|[,NDELR]

LNEXCPIL,NEXT]

LNINSRI[,NIXL]

ILNLOGRJ,NRETR]

[LNSSSI|,NUIW]

LNUPDR]|,PASSWD]|

[, RKP}|,SHRPOOL]

LSTMST|[,STRMAX]

[STRNOJ|,LIW]
specifics the fields whose contents are to be displayed. Some of the fields
can be displayed at any time; others only after a data set is opened. Th
ones that can be displayed only after a data sct is opened can, in the case of
a key-sequenced data sct that has been opened for keyed access, pertain -

mmmm Figure 14

‘cXplams The Keywords you can code in the FIELDS parameter for an access

method control block.

Keyword Fullwords Description of the Field

Note: The following fields can be displayed at any
time,

ACBLEN 1 Length of an access method control block
(displaying the length of an access method control
block gives your program indcpendence from
changes in the length that may occur from relcase
to release of VSAM)

BSTRNO 1 Number of strings initially allocated for access to
the basc cluster by a path

BUFND 1 Number of I/O buffers to be uscd for data, as
specificd in the ACB (or GENCB)

Figure 14 (Part 1 of 4). FIELDS Operand Keywords for an Access Method Control
Block

134 MVS/XA VSAM Administration: Macro Instruction Refcrence

SHOWCB—ACB

Kcyword Fullwords Description of the Ficld

BUFNI 1 Number of I/O buffers to be used for index entrics,
as specified in the ACB (or GENCB)

BUFSP 1 Amount of space specificd in the ACB (or
GENCSB) for I;0 buffers

DDNAME 2 Name of the DD statement that identifies the data
sct

ERROR 1 The code returned by VSAM after the opening or

closing of the data set (sce “OPEN Macro (Connect
Program and Data)” on page 107 and “CLOSE
Macro (Disconnect Program and Data)” on

page 55).
EXLST 1 Address of the exit list, if any; 0 if none
MAREA | Address of the message arca, if any; 0 if nonc
MLEN 1 Length of the message area, if any; 0 if none
PASSWD | Address of the ficld containing the password; the

first byte of the ficld contains the length of the
password (in binary)

SHRPOOL 1 Identification numbcer of resource pool to be used
for LSR processing

STRMAX | Maximum number of strings concurrently active

STRNO 1 ‘Number of requests Tor which VSAM is prepared

to rememboer its position in the data sct

Note: The following ficlds can be displayed only
after the data sct is opened.

AVSPAC | Amount of available space in the data component
or index componcnt, in bytes

BFRFND 1 Number of successful look-asides

BUFNO 1 Number of 1/O buffers actually in use for the data
component or index component

BUFRDS l Number of buffer rcads

CINV 1 Control interval size for the data component or

index componcnt

Figure 14 (Part 2 of 4). FIELDS Opcrand Keywords for an Access Method Control
Block

e,

Chapter 2. VSAM Macro Formats and Examples 135

SHOWCB—ACB

Kcyword Fullwords Description of the Field

ENDRBA 1 Ending RBA of the space uscd by the data
component or indcx component; not the RBA of
any record in the data set, but of the last used byte
in the data sct

FS 1 Number of free control intervals per control arca in
the data componcnt (0 for OBJECT = INDEX)

HALCRBA | High-allocated RBA,; the relative byte address of the
end of the data component (OBJECT = DATA) or
the index component (OBJECT = INDEX)

KEYLEN 1 Length of the key of reference of the key ficld of
data records in the data component (whether
OBJECT = DATA or INDEX)

LRECL 1 Length of data records in the data component
(maximum length for vanable-length data records)
or of index records in the index component (control
interval length minus 7)

NCIS 1 Number of control intervals that have been split in
the data componcnt (0 for OBJECT = INDEX)
NDELR 1 Number of records that have been deleted from the
data component (0 for OBIECT = INDEX)Y
NEXCP 1 Number of EXCP macros that VSAM has issucd |
for access to the data component or index
component.
NEXT 1 Number of extents now allocated to the data

component or index component (the maximum
that can be allocated in 123)

NINSR 1 Number of records that have been inscrted into (or
added to) the data component (0 for
OBJECT = INDEX)

NIXL 1 Number of levels in the index component (0 for
OBJECT=DATA)

NLOGR 1 Number of records in the data component or index
component

NRETR 1 Number of records that have ever been retrieved

from the data component (0 for
OBJECT = INDEX)

NSSS i Number of control arcas that have been split in the
data component (0 for OBJECT =INDEX)

Figure 14 (Part 3 of 4). FIELDS Operand Keywords for an Access Method Control
Block

136 MVS/XA VSAM Administration: Macro Instruction Reference

SHOWCB—ACB

Keyword
NUIW
NUPDR

RKP

STMST

UIW

Fullwords

Description of the Ficld
Number of writes not initiated by the user -

Number of records in the data component or index
component that have ever bcen updated

Displacement of the key of reference of the key field
from the beginning of a data record (whether
OBJECT =DATA or INDEX) '

System time stamp, which gives the time and day of
the last time the data component or index
component was closed, with bit 51 (counting from
0 at the left) equivalent to one microsecond and bits
52 through 63 unuscd

Number of user-initiated writes

Figure 14 (Part 4 of 4). FIELDS Opcrand Keywords for an Access Mcthod Control

Block

Example 1: SHOWCB Macro (Display an Access Mcthod Control Block)

In this example, a SHOWCB macro is used to display fields in an access method
control block. The fields displayed (KEYLEN, LRECL, and RKP) permit the
program to modify variables to process any one of a number of data scts that
have different sized key ficlds and records and different placements of key ficld in

a rccord.

SHOWCB ACB=CONTROL,
AREA=DISPLAY,
FIELDS=(KEYLEN,
LRECL,RKP),
LENGTH=12

DISPLAY DS
KEYLEN DS
LRECL DS
RKP DS

OF

Align on fullword boundary.

The SHIOWCB macro’s paramcters are:

® ACB specifics the address of the access method control block to be displayed.

e AREA spccifics that the area to be used to display access mcthod control
block fields is to begin on a fullword boundary.

e FIELDS specifies that the KEYLEN, LRECL, and RKP fields are to be

displayed.

e LENGTH specifies that the length of the area to be used for the display is 12
bytes, enough to accommodate the specified fields.

Chapter 2. VSAM Macro Formats and Examples 137

SHOWCB—-ACB

This display enables the program to set up its variables for the particular data set
it has opened.

Example 2: SHOWCB Macro (Display an Exit List Address)

In this example, a SHHOWCB macro is used to get the address of an exit list by
displaying the address in an access method control block that uses the exit list.
SHOWCB ACB=address,
AREA=address,

FIELDS=EXLST,
LENGTH=4

The SHOWCB macro’s parameters are:

e ACB specifics the address of an access method control block from which the
address of an exit list is to be displayed.

e AREA and LENGTI specify an arca and length, 4 bytes, to be used to
display the address of the exit list.

e TFIELDS specifies that the EXLST field in an access method control block is
to be displayed.

138 Mvs/xaA vsam Administration: Macro Instruction Reference

Pt N

SHOWCB—EXLST

SHOWCB Macro (Display Fields of an Exit List)

The format of the SHOWCB macro used to display ficlds in an exit list is:

[label] | SHOWCB | EXLST = address

LAREA = address 7

,LENGTH = number

JFIELDS = (JEODAD]| |, EXLLEN] [LJRNAD]
,LERADJ|,SYNAD)) '

The subparamcters of the SHHOWCB macro can be expressed as absolute numeric
expressions, as character strings, as codcs, as expressions that gencrate valid
rclocatable A-type address constants, in register notation, as S-type address
constants, and as indirect S-type address constants. Appendix C, “Operand
Notation” on page 181, further defines these operand expressions.

label
is 1 to 8 characters that provide a symbolic address for the SHHOWCB
macro.

EXLST = address
specifies the address of the exit list whose fields are to be displayed. If you
used the EXLST macro with a label, you can specify the label here. The
EXLST paramcter is optional only when you want to display the length
that an exit list can have (sce FIELDS=EXLLEN below). The SIIOWCB
macro docs not support the UPAD user exit.

AREA = address
specifics the address of a work arca that you are supplying for VSAM to
display the contents of the fields you specify in the FIELDS parameter.
The contents of the ficlds are displayed in the order you specify them. The
arca must begin on a fullword boundary.

LENGTH = number
specifies the length, in bytes, of the work area that you are providing for
VSAM to display the indicated fields in. Each exit-list field requires a
fullword. If the arca is not large enough for all the ficlds, VSAM doesn’t
display any of their contents and returns an error code (sce “Control Block
Manipulation Macro Rctum Codes and Reason Codes” on page 10).

FIELDS = ((JEODADJ,LEXLLEN]||,JRNAD]
LLERADJ|,SYNAD))
specifics the valucs to be displayed, as follows:

EODAD
specifies that the address of the end-of-data-set routine is to be
displayed.

EXLLEN
specifies that the length of the exit list indicated in the EXLST
parameter or if EXLST is omitted, the maximum length an exit
length can have, is to be displayed.

Chapter 2. VSAM Macro Formats and Examples 139

SHOWCB—EXLST

JRNAD
specifies that the address of the journalizing routine is to be displayed.

LERAD
specifies that the address of the logical error analysis routine is to be
displayed.

SYNAD
specifies that the address of the physical crror analysis routine is to be
displaycd.

You can use SHHOWCB to display the address of an exit routine only if the exit
routine is indicated in the exit list. If it isn’t, the SHOWCB request will fail. Use
TESTCB to test whether an entry for a given exit type is present in the exit list
and to find out whcether the exit is active and whether the routine is to be loaded.

Example: SHOWCB Macro (Display the Length of an Exit List)

In this example, a SHHIOWCB macro is used to display the maximum length of an
exit list. The maximum length of an exit list is subsequently used in a GENCB
macro to get virtual storage for an exit list.

SHOWCB AREA=LENGTH,
FIELDS=EXLLEN,

LENGTH=4
L 0, LENGTH Amount of storage for
GETMAIN.
GETMAIN R,LV=(0)
LR 2,1 Address of storage for
GENCB.

GENCB BLK=EXLST, Indirect notation for
LENGTH=(*, length of work area.
LENGTH),

WAREA=(2)
LENGTH DS F Contains the length of

GENCB's work area.

The SHOWCB macro’s parameters are:

AREA and LENGTII specify the area, which begins on a fullword
boundary, and its length, four bytcs, that is to be used for the display.

FIELDS specifies that the maximum length of an exit list is to be displayed.
Because only EXLLEN is specified, the EXLST parameter is omitted.

The GENCB macro specifies a work area in which an exit list is to be generated.
The length of the work arca is located at LENGTH, where the maximum length
of an exit list was put as a result of the SHOWCB macro.

140 MVS/XA VSAM Administration: Macro Instruction Reference

SHOWCB—RPL

SHOWCB Macro (Display Fields of a Request Parameter List)

- The format of the SHOWCB macro used to display ficlds in a request -parameter
list is:

{labe] | SHOWCB | RPL= address.
LAREA = address
,LENGTH = number ,
JFIELDS = (JACBJ|,AIXPCJ[,AREA|,AREALEN]
ILARG||,ECB|I,FDBK]|,FINCD]
LKEYLEN],MSGAREA]
LMSGLEN]
LNXTRPL|,RBA]
LRECLEN]
ILRPLLEN]
|,TRANSID})

The parameters of the SIIOWCB macro can be expressed as absolute numeric
cxpressions, as character strings, as codcs, as expressions that gencrate valid
relocatable A-type address constants, in register notation, as S-type address
constants, and as indirect S-type address constants. Appendix C, “Opecrand
Notation” on page 181, further defincs these operand expressions.

label
is 1 to 8 characters that provide a symbolic address for the SHOWCB
macro.

RPL = address
specifies the address of the request parameter list whose ficlds arc to be
displayed. If you used the RPL macro with a label, you can specify the
label here. The RPL paramcter is optional when you want to display the
length of a request parameter list (FIELDS=RPLLEN). (All VSAM
request parameter lists have the same length, so you need not specify the
address of a particular one.)

AREA =.address
specifics the address of a work arca that you arc supplying for VSAM to
display the contents of the fields you specify in the FIELDS parameter.
The contents of the ficlds are displayed in the order you specify them. The
arca must begin on a fullword boundary.

LENGTH = number
specifics the length, in bytes, of the work arca that you arc providing for
VSAM to display the indicated ficlds in. Each request parameter list field
requires a fullword. If the arca is not large cnough for all the ficlds, VSAM
doesn’t display any of their contents and returns an error code (see
“Control Block Manipulation Macro Return Codes and Reason Codes” on
page 10). '

Chapter 2. VSAM Macro Formats and Examples 141

SHOWCB—RPL \

. .

FIELDS = (JACBJ,AIXPC],AREAJ,AREALEN][,ARG]
LECBJ|,FDBK|[,FTNCDJ[,LKEYLEN]
[{MSGAREA]|,MSGLEN]}
[LNXTRPLJ[,RBAJ,RECLEN]}
[, RPLLEN][,TRANSID}) .
specifics the ficlds whose contents are to be displayed. Figure 15 on
page 142 explains the keywords you can code in the FIELDS paramecter for
a request parameter list. Some fields (each indicated by an asterisk (*) in
Figure 15) are mecaningful only if the requests have been completed;
therefore, you must wait until the request has completed (for cxample, by
issuing a CHECK if the request is asynchronous) before issuing SHHOWCB.

Keyword Fullwords Description of the Ficld

ACB 1 Address of the access method control block that
rclates the request paramcter list to the data

AIXPC* 1 Number of alternate index pointers

AREA 1 Address of the work arca that the program uses to

process a data record for the access as defined by
the request parameter list

AREALEN 1 Length of the work arca whose address is given in
AREA
ARG i Address of the field containing a scarch argumecnt,

if search arguments are being used

ECB* 1 Address of an cvent control block, if any, in which
VSAM indicates the completion of requests
defined by the request parameter list

FDBK* 1 Reason code that VSAM puts into the feedback
ficld to describe the error detected for the
preceding request. (The mceaning of this code
depends on the contents of register 15, which
indicates whether the request was successful or
failed becausc of a logical or physical error. Sece
“Record Management Return Codes and Reason
Codes” on page 13)

FINCD* 1 Codc that describes the function in which a logical
or physical crror occurred; indicates whether the
upgrade sct may have been modified incorrectly by
the preceding request (The meaning of this code
depends on the contents of register 15, which
indicatcs whether the request was successful or
failed because of a logical or physical crror. Sce
“Record Management Return Codes and Reason
Codes” on page 13)

Figure IS (Part | of 2). FIELDS Operand Keywords for a Display Request Parameter
: List

142 MVS/XA VSAM Administration: Macro Instruction Reference

SHOWCB—RPL

Keyword
KEYLEN

MSGAREA*

MSGLEN
NXTRPL

RBA*

RECLEN*

RPLLEN
TRANSID

Fullwords
1

Description of the Ficld

Length of the scarch argument, if a generic key is
used for a search argument

Address of the area, if any, into which VSAM puts
physical error messages

Length of the message area, if any _

Address of the next request parameter list, if
another onc is chainced to this one

Rclative byte address of the most recently
processed record; you could use it to record the
RBAs of records that you are retrieving or storing
scquentially or by key

Length of the data record, access to which is
dcfined by the request parameter list

Length of a rcquest paramecter list

Number that relates modificd buffers in a buffer
pool; described in VSAM Administration Guide

Figure 15 (Part 2 of 2).

FIELDS Opecrand Keywords for a Display Request Parameter
List

Chapter 2. VS§M Macro Formats and Examples 143

SHOWCB—RPL

Example: SHOWCB Macro (Display a Physical Error Vecssage)

In this example, a SHOWCB macro is used to display a physical error message.
This example assumes that there is no SYNAD routine (or the SYNAD exit is
inactive), in which case, VSAM retums control to your program following the
last executable instruction if a physical error occurs. Register 15 indicates a
physical error (12), and the feedback ficld in the request parameter list contains a
code identifying the crror; the message arca contains more details about the error.
Register 1 points to the request parameter list.

REQUEST RPL MSGAREA=
MESSAGES,
MSGLEN=128

SHOWCB AREA=MSGADDR,
FIELDS=MSGAREA,
LENGTH=4,
RPL=REQUEST

LTR 15,15

BNZ CHECKO

CHECKO ... Display failed.

MESSAGES DS CL128 For VSAM to give you a
detailed message about
a physical error.

MSGADDR DS F For displaying the
address of the message
area with SHOWCB.

The RPL macro in this example provides for a message area, MESSAGES, of
128 bytes to be used for any physical error message.

The SHOWCB macro’s parameters are:

e AREA and LENGTI specify a 4-byte area, MSGADDR, to be used for
displaying the address of the message arca for the associated request
paramcter list.

o FIELDS specifies that the address of the message area is to be displayed.

® RPL specifies the name, REQUEST, of the request paramecter list for which
the message arca address is to be displayed.

144 MVS/XA VSAM Administration: Macro Instruction Reference

TESTCB—ACB

| TESTCB Macro (Test Fields of an Access Method Control Block)

Only one kecyword can be specified each time you issue TESTCB. The format of

the TESTCB macro used to test a field in an access method control block is:

label]

TESTCB

ACB = address
I,LERET = address)
[,OBJECT = DATA|INDEX]

| {ATRB = (JESDS||,KSDS]|,LDS]|,REPL|

I,LRRDS||,SPANJI,SSWDJ|,WCK]|

ATRB=UNQ)]

CATALOG = YES|NO|

CRA =SCRA|UCRA|

MACRF = (JADR]LAIX]|,CFX]|,CNV]||,DDN]
|,DFR]|,DIR][,DSN]|,GSR|LICI||,IN]
LKEYJ,LSR||,NCIJ,NFDJ|NFX]|,NIS]
LNRM]INRSJ[,NSR]|,NUBJ[,OUT]| RST]
,SEQILSIS|I,SKPJ|,UBF])|

OFLAGS=OPEN|

OPENOBJ = PATH|BASE|AIX]|

ACBLEN = number|

AVSPAC = number|

BSTRNO = number|

BUFND = number|

BUFNI = number|

BUFNO = number|

BUFSP = number]|

CINYV = number}

DDNAME = ddnarre]

ENDRBA = number]

ERROR = number]|

EXLST = address|

FS = number|

KEYLEN = number|

LRECL = number|

MAREA = address|

MLEN = number]|

NCIS = number]

NDELR = number}

NEXCP = number|

NEXT = number)|

NINSR = number]|

NIXL = number|

NLOGR = number]|

NRETR = number]|

NSSS = number]|

NUPDR = number|

PASSWD = address]|

~ RKP = number]|

‘SHRPOOL = number|
STMST = address|
STRNO = number}

Chapter 2. VSAM Macro Formats and Examples

145

TESTCB—ACB

The subparameters of the TESTCB macro can be expressed as absolute numeric
expressions, as character strings, as codes, as expressions that generate valid
relocatable A-type address constants, in register notation, as S-type address
constants, and as indirect S-type address constants. Appendix C, “Operand
Notation” on page 181, further defines these operand expressions.

ACB = address

specifies the address of the access method control block whose information
you want to test. You may omit it only if you're testing the length of an
access method control block (ACBLEN =numbcr). (All VSAM access
method control blocks have the same length.)

ERET = address

specifies the address of a routine to which VSAM is to give control if,
because of an error, it is unable to test for the condition you specify. For
example, testing AVSPAC in an access method control block for an
unopened data sct would fail. VSAM indicates in register 15 whether it
could do the test and, if not, indicates in register 0 the reason it couldn’t.
(The recasons are discussed under “Control Block Manipulation Macro
Return Codes and Reason Codes” on page 10.) A failure trying to execute
TESTCB indicates a basic logical problem in the processing program, so
the crror routine would probably issuc an ABEND. If it lets the program
continue, it must branch to the continuation point itself, and not return to
VSAM.

OBJECT = DATA|INDEX]

specifies whether you want to test a field for data or for index.

ATRB = (JESDSJ[,KSDSJ|,LDS}

LREPL]
LLRRDS]
[,SPAN]
[,SSWDJ
[LWCK])

specifies, for an open data set, the attribute that is to be tested for, as
follows:

ESDS
entry-sequenced data set

KSDS
key-scquenced data set

LDS
linear data set

Note: When specified, LDS must be the only parameter indicated by
ATRB. All other parameters will be ignored and a binary test will be
performed that indicates whether the data set is a linear data set
(rcturn code 0) or not (return code 1).

146 MVS/XA VSAM Administration: Macro Instruction Reference

TESTCB—ACB

REPL
some portion of the index is replicated

RRDS
relative rccord data set

SPAN
data set contains spanned records

SSWD
sequence set is adjacent to the data

WCK
write operations for the data set are being verified

ATRB=UNQ
specifics, for an open alternate index or path, that the altcrnate index
requires unique keys. The test for ATRB = UNQ must bc made with a
scparate TIESTCB macro. VSAM cxamines the path control blocks for the
UNQ attribute; and also examines the base cluster’s control blocks for the
other attributes. If other attributcs are tested for, VSAM cxamincs the basc
cluster’s control blocks for all attnbutes: The test for ATRB= UNQ would
give inaccurate results when applied to the basc cluster’s control blocks.

CATALOG = YES|INO
specifics that a test is to be made to determine, any time, whether or not
the access method control block specifics a catalog data sct.

CRA=SCRA|UCRA
specifics that a test is 0 be made to dotermine, any time, whether cataleg
rccovery arca control blocks are to be built in system storage or user
storage.

MACRF = (JADR][,AIX]|,CFX]
.CNV]I,DDN]
I,DFR]||,DIR]
I,DSN],GSR]
LICHLIN]
[LKEY],LSR]
LNCI|,NDF]
LNFX]LNIS]
I,NRM]|.NRS]
LNSRJ,NUB]
|, OUT]|,RST]
I,SEQI,SIS]
|,SKPJ,UBF]

specifies that a test is to be made to determine, at any time, what
subparamcter or combination of subparameters is being used for processing.

OFLAGS = OPEN _
specifies that a test is to be made to determine, after open, whether the data
set identified by the control block has been opened.

Chapter 2. VSAM Macro Formats and Examples 147

TESTCB—ACB

OPENOBJ = PATH|BASE]AIX
specifies that a test is to be made to dctermine, after open, whether an
opened object is a path, a base cluster, or an alternate index.

The remaining parameters represent fields in an access method control block that
can be compared with the value specified. These ficlds are the same as those that
can be displayed by using the SHHOWCB macro and are described in Figure 14
on page 134.

If you omit a routine to handle error conditions, you can examine register 15
following TESTCB by using a branch table, for example, but don’t alter the
PSW condition code that VSAM set to indicate the result of a test until you've
had a chance to test it.

Example: TESTCB Macro (Test for Data Sct Attributes)

In this example, a TESTCB macro is used to detecrmine whether a data sct is a
key sequenced or an entry-sequenced data set.

LIST RPL

SHOWCB AREA=DATAFACT,

FIELDS=ACB,
LENGTH=4,
RPL=LIST
LTR 15,15
BNZ CHECKO
TESTCB ACB=(%*, Is the data set key
DATAFACT), sequenced?
ATRB=KSDS,
ERET=CHECKO
BE KEYSEQ Yes.
KEYSEQ .. Data set is key sequenced.
CHECKO ... Display or test failed.
DATAFACT DS F For displaying address of
access method control
block.

The SHOWCB macro’s parameters are:

¢ AREA and LENGTH specify a 4-byte area, DATAFACT, aligned on a
fullword boundary, to be used for the display. '

e FIELDS and RPL specify that the address of the access method control
block in the LIST request parameter list is to be displayed.

The TESTCB macro’s parameters are:

148 MVS/XA VSAM Administration: Macro Instruction Reference

TESTCB—ACB

e ACB specifics that a ficld in the access method control block, the address of
which is located at DATAFACT, is to be tested. The SHOWCB macro put
the address of the access method control block at DATAFACT.

e ATRB specifics that the access method control block is to be tested to
determine whether it is a key-sequenced data set.

e ERET specifies that a routine named CHECKO is to be given control if an
crror occurs that makes it impossible to make the test.

There is no necd to examine the feedback ficld in an EODAD routine, because it
can be assumed to contain the end-of-data-set indication.

Chapter 2. VSAM Macro Formats and Examples 149

TESTCB—EXLST

TESTCB Macro (Test Fields of an Exit List)

The format of the TESTCB macro used to test ficlds in an exit list is:

[labefy | TESTCB| EXLST = address

LERET = address)

,({EODAD = {0|(laddress]|,AINII,LD}|
JRNAD = {0|([address|l,AINIl,LD}H
LERAD = {0{(laddressi|,AIN},LD} |
SYNAD = {0|(Jaddress||,AINIL,LD} }

LEXLLEN = number}

The paramcters of the TESTCB macro can be expressed as absolute numeric
expressions, as character strings, as codes, as expressions that generate valid
relocatable A-type address constants, in register notation, as S-type address
constants, and as indircct S-type address constants. Appendix C, “Operand
Notation” on page 181, further defines these operand cxpressions.

label
is 1 to 8 characters that provide a symbolic address for the TESTCB macro.

EXLST = address
specifies the address of the exit list whosc information you want to test.
You may omit it only if you’re testing the maximum length of an exit list
(EXLLEN =number). The TESTCB macro does not support the UPAD
user exit.

ERET = address
specifics the address of a routine to which VSAM is to give control if,
because of an error, it is unable to test for the condition you specify. For
example, testing AVSPAC in an access mcthod control block for an
unopened data set would fail. VSAM indicates in register 15 whether it
could do the test and, if not, indicates in register 0 the rcason it couldn’t.
(The reasons are discussed under “Control Block Manipulation Macro
Returmn Codes and Reason Codes” on page 10.) A failure trying to execute
TESTCB indicates a basic logical problem in the processing program, so
the error routine would probably issue an ABEND. If it lets the program
continue, it must branch to the continuation point itself, and not retumn to
VSAM.

EODAD = {0](Jaddressi,AINJL,LD} |

JRNAD = {0|(Jaddress}|,AIN,LD}

LERAD = {0|(Jaddress|l;AINILLDH

SYNAD = {0|([address|l,AINJ, LD}
specifies the exit about which you are asking a yes-no question. [f you
code more than one parameter for an exit name, each must equal the
corresponding value in the control block for you to get an equal condition.
The values that can be tested are:

0

specifies that a test is to be made to determine whether an entry is
provided for the exit in the exit list.

150 MVS/XA VSAM Administration: Macro Instruction Reference

TESTCB—EXLST

address
specifies that a test is to be made to determine whether this is the
address of thc exit. Tests for an address result in an cqual, uncqual,
high, low, not-high, or not-low condition. Tests for a combination of
an address and A, N, or L result in an equal or uncqual condition.

AN
specifies that a test is to be made to determine whether an exit is
active (A) or not active (N). Tests for A or N result in an cqual or
uncqual condition.

specifics that a test is to be made to determine whether the address is
the location of an 8-byte ficld containing the name of a module to be
loaded rather than the entry point of the routine. Tests for L result in
either an equal or unequal condition.

EXLLEN = number
specifies cither the maximum length that an cxit list can have (if you don’t
code the EXLST parameter) or the actual length of the exit list indicated by
the EXLST paramcter. If you specify an cxit, you may not also specify
EXLLEN; if you specify EXLLEN, you may not also specify an exit.

If you omit a routinie to handle error conditions, you can examine register 15
following TESTCB by using a branch table, for example, but don’t alter the
PSW condition codc that VSAM set to indicate the result of a test until you've
had a chance to test it.

Examplc: TESTCB Macro (Use a Branch Table)
In this example, a TESTCB macro is used to test whether ENDPROC is the

routinc Supplicd for thc EODAD cxit in the cxit list EXITS, and whether the
EODAD exit is active. A branch table is uscd to determine whether the test is

successful.
TESTCB EODAD=(ENDPROC,A) 1Is ENDPROC supplied and is
EXLST=EXITS the exit active?
B *+4(15)

If the test was made successfully, register 15 contains 0 and the next instruction is
exccuted.

B TEST1

If it was unsuccessful, register 15 contains 4 and the next instruction is executed.

ABEND 2,DUMP

TEST1 BNE NO

YES Yes; ENDPROC is supplied
and active.

NO ENDPROC isn't supplied, or

the exit isn't active.

Chapter 2. VSAM Macro Formats and Examples 151

TESTCB—RPL

TESTCB Macro (Test a Request Parameter List)

The format of tﬁe TESTCB macro to test fields in a request parameter list is:

|[labe} | TESTCB| RPL = address

LERET = address]

,{AIXFLAG = AIXPKP|

AIXPC = number)|

FINCD = number}

10=COMPLETE]|

OPTCD = (JADR}[,ARD]|,ASY]|,BWD]
LLCNV||,DIR||,FKS][,FWD] '
L,GENILKEQJ.KEY],LKGE][,LOC]
LLRDJLMVELNSPILNUP|LSEQ]
I,SKPJ[.SYN|,UPD))|

ACB = addressj

AREA = address|

AREALEN = number]|

ARG = address]|

ECB = address)

FDBK = number]|

KEYLEN = number|

MSGAREA = address)

MSGLEN = number}

NXTRPL = address|

RBA = number|

RECLEN = number}

RPLLEN = number|

TRANSID = number}

The parameters of the TESTCB macro can be cxpressed as absolute numeric
cxpressions, as character strings, as codes, as cxpressions that generate valid
relocatable A-type address constants, in register notation, as S-type address
constants, and as indirect S-type address constants. Appendix C, “Operand
Notation” on page 181, further defines these operand expressions.

where:

label
is 1 to 8 characters that provide a symbolic address for the TESTCB macro.

RPL = address
specifics the address of the request parameter list whose information you
want to test. You may omit it only if you're testing the length of a request
paramcter list (RPLLEN = number). (All request paramcter lists have the
same length.) .

ERET = address
specifies the address of a routine to which VSAM is to give control if,
because of an error, it is unable to test for the condition you specify. For
example, testing AVSPAC in an access method control block for an
unopened data set would fail. VSAM indicates in register 15 whether it

152 MVS,;XA VSAM Administration: Macro Instruction Reference

TESTCB—RPL

could do the test and, if not, indicates in register 0 the reason it couldn't.
(The reasons are discussed under “Control Block Manipulation Macro
Retum Codes and Reason Codes” on page 10.) A failure trying to execute
TESTCB indicates a basic logical problem in the processing program, so
the error routine would probably issue an abend. If it lets the program
continue, it must branch to the continuation point itsclf, and not return to
VSAM.

AIXFLAG = AIXPKP .
specifics that prime-key pointers are uscd rather than RBAs.

AIXPC = number
specifies the pointer count.

FINCD = number
specifies whether the upgrade set is correct or may have been modified by a
request. These codes are described under “Component Codes
(RPLCMPON)” on page 14.

10=COMPLETE
specifics that a test is to be made to determine whether an asynchronous
request has been completed. (When you issuc a CHECK macro, you
suspend processing until a request has been completed if it hasn’t yet been
completed.)

OPTCD = (,ADR||,ARD}|,ASY]|, BWD]|,CNV]|,DIR|| . FKS]
LFWDJL,GEN)|,KEQJLKEY].KGEJ|,LOC][,LLRD]
LMVENNSPILNUPHLSEQ]LSKP)L,SYN],UPD]

specifics that a test is to be made to determinc what subparamcter or
combination of subparameters is being used for the request. See Figure 17
on page 184 for a description of these subparameters.

The remaining paramecters specify ficlds 1n a request parameter list and values; the
contents of a ficld are to be compared to the specified value. These fields are the
same as those that can be displayed by using a SHHOWCB macro. (Sce Figure 15
on page 142 for an explanation of these fields.) Fields can be tested at the same
time they are displayed.

You may specify only one keyword. H you code a list of option codes (for
example, OPTCD = (KEY,DIR)), each of them must equal the corresponding
value in the control block for you to get an equal condition.

If you omit a routine to handle error conditions, you can examinc register 15
following TESTCB by using a branch table, for example, but don't alter the
PSW condition code that VSAM sct to indicate the result of a test until you've
had a chance to test it.

Chapter 2. VSAM Macro Formats and Examples 153

TESTCB—RPL

Example: TESTCB Ma&o (Test 2 Request Parameter List)
TESTCB RPL=(3),

RECLEN=80
BE NOCHNGE

CHANGE ces Because the record length in
the request parameter list was
not 80, the length indicator
must be modified so that it
is 80. ‘

NOCHNGE ... Because the record length in

the request parameter list was
80, no change is required.

The TESTCB macro’s parametcrs are:

e RPL spccifics that the address of the request parameter list to be tested is
contained in register 3.

e RECLEN spccifics that the record length indicated in the request paramcter
list is to be tested to determine whether it is 80.

154 MVS;XA VSAM Administration: Macro Instruction Reference

VERIFY

VERIFY Macro (Synchronize End of Data)

The format of the VERIFY macro is:

flabe) | VERIFY | RPL = address
LACTION = REFRESH]|

where:

label
is 1 to 8 characters that provide a symbolic address for thc VERIFY macro.

RPL = address
specifies the address of the request parameter list that defines this VERIFY
request. You may specify the address in register notation (using a register
from 1 through 12, enclosed in parentheses) or specify it with an expression
that gencrates a valid relocatable A-type address constant.

The following paramcter and subparameter arc required for VERIFY:
In the RPL, OPTCD = (CNV,...) must be specified.

ACTION = REFRESH
specifics that the VSAM control blocks are to be updated from the catalog
after an attempt has been made to verify the high-used RBA. For a data
set that has been extended, VERIFY with ACTION = REFRIESH will
invoke cnd of volume processing to update the control block structure,
reficeting the new cxtents.

If you do not specify ACTION = REFRESII for an extended data set, you must
closc the data sct and rcopen it to obtain ncw cxtent information before you can

verify it.

Any attempt to issue the VERIFY macro against a linear data set (1.DS) will
result in a logical error (return code 253 in the feedback field of the RPL).

After verifying a data sct, positioning must be established with a POINT macro
or with a GET macro with RPL. OPTCD= DIR.

Chapter 2. VSAM Macro Formats and Examples 155

WRTBFR

WRTBFR Macro (Write Buffer)

The format of the WRTBFR macro is:

WRTBFR | RPL =address

,TYPE = {ALL|CHK|DRBA|DS|LRU(percent)| TRN}

RPL = address

specifies the address of the request parameter list that defines the WRTBFR
request. An RPL need not be built especially for the
WRTBFR—WRTBFR may usc an inactive RPL that dcfines other
request(s) (GET, PUT, and so forth) for a data set that is using the
resource pool. The following RPL paramcters have meaning for
WRTBFR:

ACB = address

ARG = address
For TYPE = DRBA, the address of a 4-byte field that contains the
RBA to be located and written.

ECB = address

OPTCD = {ASY|SYN}
WRTBFR can be issucd synchronously (SYN) or asynchronously
(ASY). A CIIECK or ENDREQ must be issued to synchronize an
asynchronous WRTBFR request.

TRANSID = number
Specifics a number from 0 to 31.

All other RPL parameters are ignored. RPLs are assumcd not to be
chained.

If the ACB to which the RPL is related has MACRF = GSR, the program
that issues WRTBFR must be in supervisor state with protection key 0 to
7.

TYPE={ALL|CHK|DRBA|DS|LRU(percent)| TRN}

specifies which buffers are to be written.

Note: Bcefore using WRTBFR TYPE = CHK|DRBA|TRN, be sure to
release all buffers. VSAM defers processing until all buffers are released.
For details about rcleasing buffers, sce VSAM Administration.

ALL
specifies that all modified unwritten index and data buffers in each
buffer pool in the resource pool are to be written. No buffers will be
invalidated. Closing all the data sets that use a resource pool causes
the same buffers to be written.

156 MVS/XA VSAM Administration: Macro Instruction Reference

CHK

WRTBFR

is as TRN (below), but, if an error occurs in writing buffers,
transaction IDs continue to be associated with the buffers.-
WRTBFR TYPE = CHK could be used by a checkpoint routine to
record checkpoint information and leave buffers for which an error
occurrcd as they were for continued processing.

DRBA

DS

specifics that one of the data sct’s data buffers is to be written. The
buffer to be written is identified with the RBA pointed to by the RPL
ARG address.

specifies that, for the data set defined by the ACB to which the
WRTBIR’s RPL is related, all modified unwritten index and data
buffers are to be written and all buffers are to be marked empty, i.e.,
invalidated. Therefore, WRTBFR TYPE = DS should be issucd only
after all VSAM requests for the data sct have been quiesced.
Otherwise, unpredictable results may occur.

LRU(percent)

TRN

specifies that some of the modified buffers in cach buffer pool in the
resource pool are to be written. The percent is the percentage of
buffers in each pool that are to be examined for possible writing. The
lcast recently uscd buffers are examined. (If percent is coded in
register notation, only registers 1 and 13 may not be used.)

TYPLE=LRU is used for writing some modified buffers, without

respect 10 a particular data set or transaction ID, to cnsure that

buffers will be available for GET requests (without having to wait for
buffers to be written). :

specifies that all buffers in a buffer pool that have been modified by
requests with the transaction ID specified in the WRTBFR’s RPL are
to be written. Transaction IDs are no longer associated with these
buffers if WRTBFR completes successfully.

Chapter 2. VSAM Macro Formats and Examples 157

Appendix A. Format of Macros

For casy reference, the formats of all the macros described in this book are

repecated here in alphabetic order.

ACB (Gencrate an Access Method Control Block at Assembly Time)

llabe]]

ACB | |JAM=VSAM]
[,BSTRNO = numberi
|, BUFND = number]
|, BUFNI = number]
|,.BUFSP = number]
ILCATALOG ={YES|NO}}
|,CRA = {SCRA|UCRA}|
[,DDNAME = ddname]
LEXLST = address]
[,LMACRF = (JADR]|,CNV]|.KEY]
,CFX|NEX]
|.DDNIDSN]
{,DFRINDF]
DIR|SEQJI,SKP]
LICINCI)
LINILOUT)
.NIS|SIS]
LNRMIAIX]
L NRS|RST]
INSRILSR|GSR]
NUB|UBF})
[,MAREA = address]
I,MLEN = number}
[,PASSWD = address]
[,LRMODE31 = {ALL|BUFF{CB|NONE}|
[, SHRPOOL = {0| number}]
[LSTRNO = number}

ACQRANGE (Stage Data)

[label

| ACQRANGE | RPL = address

*.

Appendix A. Format of Macros

159

BLDVRP (Build a VSAM Resource Pool)

BLDVRP | BUFFERS = (size(number),size(number),...)
[,FIX = {(BFR|IOB|(BFR,IOB)}|
LKEYLEN = length]

[[RMODE3! = {ALL|BUFF|CB|NONE}]
[,SHRPOOL = {0| number}]

[MODE = (2431}]

STRNO = number

[,TYPE = (LSR|,DATA|INDEX]|GSR}]

CHECK (Suspend Proccessing)

[{abel) CHECK | RPL = address

CLOSE (Disconnect Program and Data)

[{abe]) CLOSE | (address|(options)]...]
LMODE = (2431}]
LTYPE="T]

CNVYTAD (Convert Address)

[llabed | CNVTAD | RPL = address

DLVRP (Dclete VSAM Resource Pool)

DLVRP| TYPE = {LSR|GSR}
LMODE = (24|31}]
,SHRPOOL = {0]|number}]

ENDREQ (Terminate a Request)

[label) ENDREQ | RPL=address

ERASE. (Dclcte a Record)

Vabel | ERASE | RPL=address

160 MVS/XA VSAM Administration: Macro Instruction Reference

EXLST (Generate an Exit List at Assembly Time)

liabe] | EXLST | |[AM=VSAM]

. | LEODAD = (address{,AIN]JI,L]}
|,IOPID = (address))
[JRNAD = (address|, AINILLD
LLERAD = (address|, AINILLDI
[,SYNAD = (address|,AINJ[,LD]
[,UPAD = (address|,AIN]|,LD}

GENCB (Gencrate an Access Mcthod Control Block at Execution Time)

Jlabefl] | GENCB | BLK=ACB

[,AM=VSAM|

[,LBSTRNO = number]

|,BUFND = number]

I, BUFNI = nurnber]

[, BUFSP = number]

[,CATALOG = {YES|NO}|

[,COPIES = number]

I,CRA = {SCRA|UCRA}]

[, DDNAME = ddnarme]

LEXLST = address]

[LLENGTII = number]

[,LOC = {BELOW|ANY}]

[l MACRF = (JADR]|,CNV||.KEY]
,CFXINFX]
| BDNDSN
[,DFR|NDF]
,DIR]L.SEQJI,SKP]
LICINCH)
LINJLOUT]
L NIS|SIS]
LNRMJAIX]
[,NRS|RST]
[,NSR|LSR]
|.NUB|UBF)

ILMAREA = address]

I, MLEN = numberj

[,PASSWD = address)

[,RMODE3! = {ALL|BUFF|CB|NONE]}]

[,SHRPOOL = {0|number})

I,STRNO = address]

[, WAREA = address]

Appendix A. Format of Macros 161

GENCB (Generate an Exit List at Execution Time)

l/abe))

GENCB

BLK = EXLST

LAM=VSAM]

[,COPIES = number]

|LEODAD = (address{,AIN][,LD]
[.JRNAD = (address{,AIN][,LDI
LLENGTH = number}

LLERAD = (address{,A|NJ,1.D}
[LOC = (BELOW]ANY}
,SSYNAD = (address|,AIN|,LD}
LWAREA = address]

GENCB (Gencrate a Request Parameter List at Execution Time)

GET (Retrieve a Record)

[{abeq

GENCB

BLK=RPL

[, ACB = addressj

[, AM=VSAM]
l,AREA = address]
LAREALEN = number]
[, ARG = address]

[, COPIES = number]

[, ECB = address}
[LKEYLEN = number}

" LLENGTH = numberi

[,1.LOC = {BELOW|ANY}]
I,MSGAREA = address|
[L,MSGLEN = number]
[NXTRPL = address|
[LOPTCD = (JADR|CNV|KEY]
LDIR|SEQ|SKP]
LARD|LRD]
LFWD|BWD}
LASY[SYN]
L NSP|NUP|UPD]
L KEQIKGE]
FKS|GEN]
LLOCIMVED]
[,RECLEN = number]
[, TRANSID = number]
LWAREA = address]

[fabel}

GET

RPL = address

162 MVS/XA VSAM Administration: Macro Instruction Reference

GETIX (Retricve an Index Record)

[fabel]

GETIX

RPL = address

MNTACQ (Mount Acquire)

I [labed

| MNTACQ | RPL = address

MODCB (Modify an Access Mcthod Control Block)

[label

MODCB

ACB = address
LBSTRNO = number]
[, BUFND = number]
|, BUFNI1 = number]
|,BUFSP = number]
I,CATALOG = {YES|NOJ}]
{,CRA = {SCRA|UCRA]}]
[, DDNANME = ddname]
ILEXLST = address]
|, MACRF = (JADRJ[,CNV]|.KEY]
[L,CFX|NFX]
[,LDDN|DSN]
[LDFR|NDF]
LDIR|L,SEQ|ISKP]
LICIINC]]
1INJLOUT]
[LNIS[SIS]
ILNRMJAIX]
{NRS|RST]
I,NSRILSR]
LNUB|UBF])]
ILMAREA = address]|
LMLEN = number]
[,PASSWD = address]

I, SHRPOOL = number]
I.STRNO = number]

|,LRMODE31 = {ALL|BUFF|CB|NONE]}]

MODCB (Modify an Exit List)

llabel)

MODCB

EXLST = address

LEODAD = (address|,AIN]|,LD]
[,JRNAD = (address{,AIN|l,LD}
[,LERAD = (address{,A|NJ}I,LD]

[L,SYNAD = (address{,A|NJ|,L)}

Appendix A. Format of Macros

163

MODCE (Modify a Request Parameter List)

|label}

MODCB

RPL = address
[LACB = address}
l,LAREA = address}
I;FAREALEN = number]
l,LARG = address]
LECB = address}
[, KEYLEN = number]
LMSGAREA = address)
[y MSGLEN = number}
[,NXTRPL = address]|
[,OPTCD = (JADR|CNV|KEY]
LARD|LRDJ]
LFWD|BWDJ]
[,DIR|SEQ|SKP]
LASY|SYN]
[,NSP|NUP|UPD]
LKEQIKGE]
[,FKS|GEN]
I,LOCIMVE))
[,RECLEN = number]
[,TRANSID = number]

MRKBFR (Write Buffer)

MRKBFR

MARK = {DINVALID|XINVALID{OUT|RLS}
,RPL = address

OPEN (Connect Program and Data)

POINT (Position for Access)

PUT (Store a Record)

[label) OPEN (address[,(op(ions)l...)
[,MODE = (2431}]

{label] POINT | RPL = address

llabel] PUT RPL = address

164 Mvs/XA VSAM Administration: Macro Instruction Reference

PUTIX (Store an Index Record)

[label]

PUTIX | RPL=address

RPL (Generate a Request Parameter List at Assembly Time)

jlabel]

RPL ACB = address

[, AM=VSAM]

[, AREA = address]

[,AREALEN = number]

I, ARG = address)

[,LECB = address]

LKEYLEN = numberj

IMSGAREA = address]

[,MSGLEN = number]

[,NXTRPL = address]

[,OPTCD = (JADR|CNVIKEY]
L.DIR|SEQ|SKP]
LARD|LRD]
LFWD|BWD]
LASY|SYN]
[NSP|NUP|UPD]
LKEQIKGE]
EKSIGEN]
LNWAITX|WAITX]
[LLOCIMVED]

[LRECLEN = number]

[,YRANSID = number}

SCHBFR (Scarch Buffcr)

SCHBFR

|BFRNO = number]
,RPL = address

Appendix A. Format of Macros

165

SHOWCB (Display Ficlds of an Access Method Control Block)

[labefl | SHOWCB

ACBaddress

,LAREA = address

,LENGTH = number

[LOBJECT = {DATA|INDEX}]

,FIELDS = (JACBLEN]|,AVSPAC]|[,BFRFND}
[,BSTRNOJ[,BUFND||,BUFNI|
[, BUFNOJ{,BUFRDS]|,BUFSP]
[,CINV],DDNAMEJ[,ENDRBA]
LERRORJL,EXLSTI(,FS]
[LHALCRBAJ[,KEYLENJ,LRECL]
I,LMAREA|J[,MLENJ|,NCIS]
[,NDELRJ[,NEXCPJ[,NEXT]
LNINSR|[,NIXL}{,NLOGR]
[LENRETR]J|,NSSSJ{,NUIW]
LINUPDRJ{,PASSWDJ}{,RKP]
[,SHRPOOLJ[,STMST|[,STRMAX]
[,STRNOJ[,UIW))

SHOWCB (Display Fields of an Exit List)

labe | SHOWCB

AREA = address

JEXLST = address

,LENGTH = number

,JFIELDS = ([EODADJ[,EXLLEN][,JRNAD]
LLERADJ|,SYNAD))

SHOWCB (Display Ficlds of a Request Parameter List)

iabef) | SHOWCB

AREA = address

,LENGTH = number

,RPL = address

,FIELDS = (JACBJ[,AIXPC|[,AREA|
LAREALEN][,ARG]|,ECBJ|,FDBK]
[FINCDJ,KEYLEN|,MSGAREA]
LMSGLEN|,NXTRPL||,RBA]}
[LRECLENJ|,RPLLEN]|,TRANSID]

166 MVS/XA VSAM Administration: Macro Instruction Reference

TESTCB (Test a Ficld of an Access Method Control Block)

{label]

TESTCB

ACB = address
ILERET = address]
[,OBJECT = DATA|INDEX]
J{ATRB = (IESDS]|, KSDS]J|,LDSJ|,REPL]
ILRRDSJ|,SPANJ(,SSWDJ[,WCK])|
ATRB=UNQ
CATALOG = {YES|NO}| :
MACRF = (JADRJ|,AIX)|,CFX][,CNV][,DDX\]
LDFR],DIR]|,DSN),GSRILICH]
LINJLKEY]LLSR|[,NCIJ|,NDF]
LNFX][NIS],NRM]|,NRSJ|,NSR]
,NUBJLOUT][,RST]|,SEQ]|,SIS]
I.SKPI|UBFJ)|
OFLAGS = OPEN]|
OPENOBJ =PATH|BASE|AIX]|
ACBLEN = number|
AVSPAC = number|
BSTRNO = number|
BUFND = number}
BUFNI = number|
BUFNO = number|
BUFSP = number|
CINYV = number|
DDNAME = ddname|
ENDRBA = number|
ERROR = number|
EXLST = address|
¥'S= number]
KEYLEN = number|
LLRECL = number|
MAREA = address|
MLEN = number|
NCIS = number]|
NDELR = number]
NEXCP = number|
NEXT = number|
NINSR = number|
NIXL = number|
NLOGR = number]
NRETR = number|
NSSS = nurnber]
NUPDR = number]|
PASSWD = address|
RKP = number|
SHRPOOL = number|
STMST = address|
STRNO = number}

Appendix A. Format of Macros

167

TESTCB (Test a Field of an Exit List)

|label}

TESTCB

,EXLST = address

LERET = address]

»{EODAD = {0|([address|[,AINI|,.LD}|
JRNAD = {0|(Jaddress||,AINI[,LD}
LERAD = {0|(Jaddress|[,AINI,LD}H
SYNAD = {0|([address|,AINILLD} }
LEXLLEN = number]

TESTCB (Test a Ficld of a Request Parameter List)

[fabed]

TESTCB

RPL = address
LERET = addressj
,({ACB= address|
AIXFLAG = AIXPKP|
AIXPC = number|
AREA = address|
AREALEN = number)|
ARG = address|
ECB = address)
FDBK = number|
FINCD = number|
KEYLEN = number|
MSGAREA = address|
MSGLEN = number}
NX'TRPL = address|
10=COMPLETE]|
OPTCD = (JADRJ,LARDJ[,ASY][,BWDJ|,CNV]|
LDIRJL,FKS]LFWDJ,GENJ,KEQ]
LKEY|,LKGEJ[,LOC]|,LRD|LMVE]
[LNSPI[LNUP|,SEQJ,.SKP|[,SYN]
,UPD))|
RBA = number]|
RECLEN = number]
RPLLEN = number|
TRANSID = number}

VERIFY (Synchronize End of Data)

[label]

VERIFY

RPL = address
,LACTION = REFRESH]

168 MVS/XA VSAM Administration: Macro Instruction Reference

WRTBFR (Write Buffer)

WRTBFR

RPL = address

,TYPE = {ALL|CHK|DRBA|DS|LRU(percent)| TRN}

Appendix A. Format of Macros

169

Appendix B. List, Execute, and Generate Forms of Macros

BLDVRP, DLVRP, GENCB, MODCB, SHOWCB, and TESTCB macros build
a parameter list describing in codes the actions indicated by the operands you
specify and pass the list to VSAM to take the indicated action. The list, execute,
and gencrate forms of BLDVRP, DLVRP, GENCB, MODCB, SHOWCB, and
TESTCB allow you to write rcentrant programs, to share parameter lists, and to
modify a paramecter list before using it.

Following is a brief description of the list, execute, and generate forms:

® The list form is uscd to build the parameter list cither inline (referred to as a
simple list) or in an arca remote from the macro cxpansion (referred to as a
remote list). Both the simple- and the remote-list forms allow you to build a
single parameter list that can be shared.

® The exccute form is used to modify a paramcter list and to pass it to VSAM
for action.

® The gencrate form is used to build the parameter list in a remote area and to
pass it to VSAM for action.

The list, ecxecute, and gencerate forms of the BLDVRP, DLVRP, GENCB,
MODCB, SHOWCB, and TESTCB macros have the same format as the
standard forms, with the exception of:

¢ An additional keyword, MF

¢ Keywords that are required in the standard form may be optional in the list,
execute, and generate forms or may not be allowed in the execute form. The
meaning of the keywords, however, and the notation that may be used to
express addresscs, names, numbers, and option codes are the samc.

The sections that follow describe the format of the MF keyword and the use of
list, exccute, and gencrate forms. They also indicate the optional and invalid

operands.

S e,

Appendix B. List, Execute, and Generate Forms of Macros 171

List-Form Keyword

The format of the MF keyword for the list form is:
MF = (L|(L,address{,label])}

where:

L
specifies that this is the list form of the macro.

address
specifies the address of a remote area in which the parameter list is to be
built. The area must begin on a fullword boundary. You can specify the
address in register notation or as an expression valid for a relocatable
A-type address constant or a direct or indirect S-type address constant.

label
is a unique name that is used in an EQU instruction in the expansion of
the macro; label is equated to the length of the parameter list. You do not
have to know the Iength of the parameter list if you code label; the
expansion of the macro determines the amount of storage required.

Because the MF =L cxpansion does not include executable code, register
notation and cxpressions that generate S-type address constants cannot be used.

If you code MF =L, the parameter list is built inline; which means that the
program is not rcentrant if the parameter list is modificd at execution.

If you code MF = (L ,address), the parameter list is built in the remote area
specified, and the arca must be large enough for the parameter list.

The size, in fullwords, of a parameter list is:

e For GENCB, 4, plus 3 times the number of ACB, EXLST, or RPL
keywords specified (plus 1 for DDNAME, EODAD, JRNAD, LERAD, or
SYNAD)

e For MODCB, 3, plus 3 times the number of ACB, EXI.ST, or RPL
keywords specified (plus 1 for DDNAME, EODAD, JRNAD, LERAD, or
SYNAD)

¢ TFor SHOWCSB, §, plus 2 times the number of ficlds specificd in the FIELDS
operand

¢ For TESTCB, 8 (plus 1 for either DDNAME, STMST, EODAD, JRNAD,
LERAD, or SYNAD)

If you code MF = (L,address,label), the parameter list is built in the remote area
specified. The expansion of the macro equates label with the length of the
parameter list. ‘

172 MVS/XA VSAM Administration: Macro Instruction Reference

Execute-Form Keyword

The format of the MF keyword for the execute form is:
MF = (E,address)

where:

E
specifies that this is the execute form of the macro.

address
is the address of the paramecter list.

The cxpansion of the exccute form of the macro results in exccutable code that
causcs:

1. A parameter list to be modified if requested
2. Control to be passed to a routine that satisfics the request

You may not use the execute form to add an entry to a parameter list. If you try
to add an entry, you will receive a retum code of 8 in register 15.

Generate-Form Keyword

The format of the MF keyword for the generate form is:
MF =(G,address|,label})

where:

G
specifies that this is the gencrate form of the macro.

address
specifics the address of a remote arca in which the parameter list is to be
built. The arca must begin on a fullword boundary.

label
is a unique name that is uscd in an EQU instruction in the expansion of
the macro; label is cquated to the length of the parameter list. You do not
have to know the length of the paramecter list if you code label; the
cxpansion of the macro determines the amount of storage required.

If you code MF = (G,address), the paramcter list is built in the remote arca
specified.

If you code MF = (G,address,label), the parameter list is built in the remote area

specified. The expansion of the macro equates the length of the parameter list to
label.

Appendix B. List, Execute, and Generate Forms of Macros 173

| List, Execute and Generate Formats

List Form of BLDVRP

Note: If FIX is specified, DLVRP must be issued by the same task that issues
BLDVRP. STRNO is optional in the list form of BLDVRP, but, if it is not

specified, it must be specified in the execute form.

The format of the list form of BLDVRP is:

BLDVRP

BUFFERS = (size(number),size(number),...)
MF=L
|,FIX = {BFR|{IOB|(BFR,IOB)}}

[LKEYLEN = length}
[,RMODE31 = {ALL|BUFF|CBINONE}]
[,SHRPOOL = {0|n}]

[, MODE = {24]31}]

[,STRNO = number]

L, TYPE = {LSR]DATA|INDEX]IGSR}|

Execute Form of BLDVRP

Note: The address is the address of the parameter list built by a list form of
BLDVRP. If you use register notation, you may use register 1, and a register
betweemr 2 and 2. Register I is used fo pass the paramcter [ist to VSAM.
BUFFERS may not be specificd in the exccute form of BLDVRP, because this

operand affects the length of the parameter list.

The format of the execute form of BLDVRP is:

BLDVRP

MF = (E,address)

[, KEYLEN = length]

[, RMODE3I1 = {ALL|BUFF|CB|NONE}}
[,SHRPOOL = number}

[, IODE = {24/31}]

[,STRNO = number] '

I,TYPE = {LSRL,DATA|INDEX]|GSR}]

| Note: If MODE =31 was specificd on the list form, MODE =31 must be
| specified on the execute form. The same is true for MODE = 24.

174 MVS/XA VSAM Administration: Macro Instruction Reference

Exccutc Form of DLVRP

List Form of GENCB

Execute Form of GENCB

Note: There is no list form for DLVRP, because DLVRP works with
BLDVRP: It uses the parameter list associated with BLDVRP. The address is
the address of the parameter list built by a list form of BLDVRP. If you use
registcr notation, use register 1 to pass the address of the parameter list to
VSAM.

If MODE = 31 in the BLDVRP macro, then MODE = 31 is required in the
DLVRP macro.

The format of the execute form of DLVRP is:

DLVRP | MF = (E,address)
I,SHRPOOL = number]
MODE= (24131}]
,JYPE = {LSR|GSR}

The format of the list form of GENCB is:

|label] GENCB | BLK = {ACB|EXLST|RPL}

[LAM=VSAM]

[,COPIES = number]

l,keyword = {address|name|number|option},...]
LLENGTH = number]

[LLOC = {BELOW|ANY}]

[,RMODE3I1 = {ALL|BUFF|CBINONE}]
,MF = {L|(L,address|,label])}

[,WAREA = address]

The format of the execute form of GENCB is:

[label] | GENCB | BLK={ACB|EXLST|RPL}

[LAM=VSAM]

1,COPIES = number]

|,keyword = {address|name|number|option},...]
LLENGTH = number]

[,LLOC = (BELOW|ANY}]

[LRMODE31 = {ALL|BUFF|CB|NONE}]
"MF = (E,address)

|,WAREA = address]

Appendix B. List, Execute, and Generate Forms of Macros 175

Gencerate Form of GENCB

The format of the generate form of the GENCB macro is:

|labe} | GENCB | BLK={ACB|EXLST|RPL}

[,AM=VSAM] ‘

|,COPIES = number]

|,keyword = address|name|number|option} ...}
LLENGTH = monber]

[[LOC = {BELOWJANY}|

[,LRMODE3I1 = {ALL|BUFF|CB|NONE}|
»MF = (G,address},label})

[, WAREA = address)

List Form of MODCB

The format of the list form of MODCB is:

{labed) MODCB | (ACB|EXLST|RPL{ = address
yJkeyword = {address|namelnumber|option},...
»MF = {L|(L,address{,labe]])}

Exccute Form of MODCB

Note: If the execute form of MODCB is used and EXLST is used as a keyword
to be processed, the block must be identified by ACB=.

The format of the cxcecute form of MODCB is:

label) MODCB | [{ACBJEXLST|RPL} = address]
keyword = {address\name|number|option},...
,MF = (E,address)

Gencerate Form of MODCB

The format of the generate form of MODCB is:

[labe] | MODCB } {ACBIEXLST|RPL{ = address
keyword = {address|name|number|option},...
»MF = (G,addressl,label})

176 MVS/XA VSAM Administration: Macro Instruction Reference

List Form of SHOWCB

The format of the list form of SHOWCB is:

[label]

SHOWCB

[{{ACB|EXLST|RPL} = address]
LAREA = address

JFIELDS = (keyword] keyword,...])
JLENGTH = number

,MF = {L|(L,address|,label})}
JOBJECT = {(DATA|INDEX}|

Exccute Form of SHOWCB

The format of the exccute form of SHOWCB is:

[/abel]

SHOWCB

[{ACB|EXLST|RPL)} = address
LAREA = address

»MF = (E,address)

LOBJECT = {DATA|INDEX]}]

Generate Form of SHOWCB

The format of the gencrate form of SHOWCB is:

[label

SHOWCB

[{ACBJEXLST|RPL]} = address]
,LAREA = address

JFIELDS = (keyword) keyword,...])
1 LJENGTH = number

yMF = (G,address|,label})
LOBJECT = {DATA|INDEX]}]

List Form of TESTCB

Note: If the execute form of TESTCB is used and EXLST is used as a keyword

to be processed, the block must be identified by ACB=.

The format of the list form of TESTCB is:

[label}

TESTCB

[{ACB|EXLST|RPL} = address]
[.LERET = address]

keyword = {address|name|number|option},...

,MF = {L|(L,address|,label})}
LOBJECT = (DATA|INDEX)]

Appendix B. List, Execute, and Generate Forms of Macros

Execute Form of TESTEB

Note: If the execute form of TESTCB is used and EXLST is used as a keyword

to be processed, the block must be identificd by ACB=.

The format of the execute form of TESTCB is:

[fabel}

TESTCB | [{ACB|EXLST|RPL} = address)

LERET = address)
keyword = {address|name|number|option},...
»MF = (E,address)

LOBJECT = {DATA|INDEX]}}

Generate Form of TESTCB

The format of the gencrate form of TESTCB is:

|label]

TESTCB | [{ACB|EXLST|RPL} = address}

LERET = address]
keyword = {address|name|number|option},...
»MF = (G,address|,label])

[LOBJECT = {DATA|INDEX}]

Use of List, Execute, and Generate Forms

Figure 16 indicates which forms of GENCB, MODCB, SHOWCB, and
TESTCB should be used in reentrant/nonreentrant and shared/nonshared

environments.

Reentrant Nonreentrant
Shared MEF = (L,address{,label]) MF=L

MF = (E,address) MF = (E,address)
Nonshared MUF =(G,address|,label}) Standard Form

Figure 16. Rcentrant Programming

The figure shows that:

¢ To share parameter lists in a rcentrant program, the rcmotc-hst form should
be used in conjunction with the execute form.

¢ To share parameter lists in a nonreentrant program, the simple-list form
should be used in conjunction with the execute form.

MVS/XA VSAM Administration: Macro Instruction Reference

e If you do not intend to share parameter lists, the generate form should be
used in reentrant programs and the standard form should be used for
nonrecntrant programs.

Examples of Generate, List, and Execute Forms in Reentrant Environments

The cxamples that follow illustrate how the list, exccute, and generate forms
work.

Example: Generate Form (Recntrant)

In this example, the generate form of GENCB is used to create a default request
paramcter list (RPL) in a reentrant environment.

LA 10,LEN1 Get length of the parameter list.

GETMAIN R,LV=(10) Get storage for the area in which
the parameter list is to be built.

LR 2,1 Save address of parameter-list
area.

GENCB BLK=RPL,

MF=(G, (2),LEN1)

The macro expansion cquates LEN1 to the length of the parameter list, as
follows:

+LEN1 EQU 16

The parameter list will be built in the area acquired by the GETMAIN macro
and pointed to by register 2. This hist 4s used by VSAM 1o duild the RPL.
VSAM rctumns the RPL address in register 1 and the RPL length in register 0. If
the WAREA and LENGTH paramecters are used, the RPL will be built at the
WAREA address.

Example: Remote-List Form (Reentrant)

In this example, the remote-list form of MODCB is used to build a parameter list -
that will later be used to modify the MACREF bits in the access method control

block ANYACB. _

LA 8,LEN2 Get length of the parameter
list. .

GETMAIN R,LV=(8) Get storage for the area in
which the parameter list is to
be built. .

LR 3,1 Save address of the

parameter-list area.

MODCB ACB=ANYACB,
MACRMF=(L, (3),LEN2)

The macro expansion equates the length of the parameter list to LEN2, as
follows: '

+LEN2 EQU 24

Appendix B. List, Execute, and Generate Forms of Macros 179

This parameter list is built in the remote area pointed to by register 3. The list
will be used by VSAM to modify the ACB when an execute form of MODCB is
issued (see next example). The list form only creates a parameter list; it does not
modify the ACB.

Example: Execute Form (Rcentrant)

In this example, the execute form of MODCB is used to modify the address of
the access method control block and MACREF codes in the paramcter list created
by the remote-list form of MODCB in the previous example.

MODCB ACB=MYACB,MACRF=(ADR, SEQ,OUT),MF=(E,(3))

The parameter list pointed to by register 3 is changed so that the ACB and
MACREF paramcter values in the execute form override those in the list form.
The access method control block, MYACSB, is then modified to

MACRF =ADR,SEQ,OUT). The access method control block at ANYACB is
not changed by either of these examples.

180 MVS/XA VSAM Administration: Macro Instruction Reference

Appendix C. Operand Notation

Operands with GENCB, MODCB, SHOWCB, and TESTCB

The addresses, names, numbers, and options requircd with opcrands in GENCB,
MODCB, SIIOWCB, and TESTCB can be expressed in a variety of ways:

An absolute numeric expression, for example, STRNO =3 and COPIES = 10.

A code or a list of codes separated by commas and enclosed in parentheses, for
example, OPTCD=KEY or OPTCD = (KEY,DIR,IN).

A character string, for cxample, DDNAME = DATASET.

A register from 2 through 12 that contains an address or numecric value, for
example, SYNAD = (3); cquated labels can be used to designate a register, for
example, SYNAD = (ERR), where the following equate statement has been
included in the program: ERR EQU 3.

An cxpression of the form (S,scon), where scon is an cxpression valid for an
S-type address constant, including the base-displacement form. The contents
of the base register will be added to the displacement to obtain the value of
the keyword. For example, if the value of the keyword being represented is a
numeric value (that is, COPIES, LENGTH, RECLEN), the contents of the
base register will be added to the displacement to determine the numeric
value. If the value of the keyword being represented is an address constant
(that is, WAREA, EXLST, EODAD, ACB), thc contents of the basc register
will be added to the displacement to determine the value of the address
constant.

An expression of the form (*,scon), where scon is an expression valid for an
S-type address constant, including the base-displacement form; the address
specificd by scon is indirect, that is, it is the address of an arca that contains
the value of the keyword. The contents of the base register will be added to
the displacement to determine the address of the fullword of storage that
contains the value of thc keyword.

If an indirect S-type address constant is used, the value it points to must meet
the following criteria:

— If it is a numeric quantity or an address, it must occupy a fullword of
storage.

Appendix C. Operand Notation 181

— [If it is an alphameric character string, it must occupy two words of
storage, be left aligned, and be filled on the right with blanks.

® An expression valid for a relocatable A-type address constant, for example,
AREA=MYAREA +4.

The specified keyword determines the type of expressions that can be used.
Additionally, register and S-type address constants cannot be used when MF=L

is specificd.

The tables containing the individual macro operand notations have been deleted
from this relcase. This information may be obtained from the individual macro
~ descriptions shown in Chapter 2, “VSAM Macro Formats and Examples”.

182 MVS/XA VSAM Administration: Macro Instruction Reference

Appendix D. Building Parameter Lists

The standard forms of GENCB, MODCB, SHOWCB, and TESTCB build a
parameter list, put its address in register 1, and pass control to a VSAM routine
to generate, modify, display, or test an access method control block, exit list, or
request parameter list. Other forms of the macros only build the parameter list
(list forms) or only pass control to VSAM (execute forms).

You can avoid using a macro to build the parameter list by building it yourself
and issuing the execute form of the macro to pass control to VSAM. This
chapter explains how to build the parameter lists for GENCB, MODCB,
SHOWCB, and TESTCB. The rulcs for combinations of codes in a paramcter
list arc the same as the rules for combinations of opcrands in a macro.

You can avoid issuing the exccute form of the macro by coding the linkage
instructions that pass control directly to the VSAM control block manipulation
routine. Beforc passing control, you must build the parameter list yoursclf.

The Format of the Parameter Lists

A paramcter list for GENCB, MODCB, SHOWCB, or TESTCB is a list of
fullword addresses. The first address points to a hcader entry that identifics the
type of request and type of control block and gives other general information
about the request. Each of the rest of the addresses in the parameter list points
to an clement entry that identifies the information you want to generate, modify,
display, or test.

The fullwords in the paramcter list must be contiguous, and the last one must
have a 1 in its first bit. The hcader entry and each clement entry may be scparate
from cach other. Figure 17 on page 184 gives the formats of the header and
element entries for the four request types.

Appendix D. Building Parameter Lists 183

Header Entry Element Entry
‘ég:a;i“ 0T GENBTC GENFTC GENCOP O[ELEMKWTC (reserved)
Control- Function Number of copies Keyword
block type type of block type
4[GENUSA (optional) 4
Address of area provided Keyword value
for generation
8 [GENUSL (optional) (reserved) 8| X
(required for |
Length of area some keywords)* |
Lo ——— — —— e — — e
xgd[i)‘é?‘b“ OIMODBTC [MODFTC [(reserved) OELEMKWTC (reserved)
Ceontrol- Function Keyword
block type type type
4 IMODBLAD 4
Address of control block Keyword value
to be modified
%
(required for |
| some keywords)* |
Lo e e o —— PR — |
Display O[SHOWBTC |SHOWFTC |SHOWOBIJ O[ELEMKWTC (reserved)
SHOWCB (optional) R .
Control Function Object type Keyword
block type type (data or index) type
4 SHOWBLAD (optional) 1
Address of control
block to be displayed
8 SHOWUSA
Address of area provided
for display
12 SHOWUSL (reserved)
Length of area
Test O[TESTBTC [TESTFIC | TESTOBI O[ELEMKWTC (reserved)
TESTCB (optional) - .
Control Function Object type Keyword
block type | type (data or index) type
4 TESTBLAD (optional) 4
Address of control Keyword value
block to be tested
8 . ' 8
TESTERET (optionat) | (required for I
Address of error-analysis ' some keywords)* |
routine (ERET) w N
12 e -
*Second fullword required for
keyword value of DDNAME, .
STMST, EODAD, JRNAD,

LERAD, and SYNAD.

Figure 17. Format of Header and Element Entries for GENCB, MODCB, SHOWCB, and TESTCB Parameter Lists

184 MVS/XA VSAM Administration: Macro Instruction Reference

Building Header and Element Entries

W

Five assembler macros are provided for building entries.

IDAGENC, IDAMODC, IDASHOW, and IDATEST help you build a header
entry for generation, modification, display, or test. IDAELEM helps you build
an element entry. :

llabell] | IDAGENC [IDSECT = (YESINOJ]
liabed | IDAMODC [|DSECT = (YES|NOJ]
llabe]l | IDASHOW | [DSECT = {YES|NO)]
llabel | IDATEST | [DSECT={YES|NO}|
liabe] | IDAELEM | [DSECT = (YESINO}]

DSECT = {YESINO}
Indicates whether a DSECT statement is to be generated. If you intend to
build cntrics in a continuous arca, you could have only the first of the
macros gencrate a DSECT statcment and use a single register to address the
whole arca.

These macros gencrate labeled DS statements that give the layout of an entry and
EQU statements that equate a label with a numeric code. You can symbolically
encode an cntry with a scries of move instructions. The macros arc
self-documenting— inspect a listing of their expansions and you can sec which
labels to code in your move instructions. (You can list the macros as they
appear in the macro library.)

To generate an exit list with LERAD and SYNAD exits, you could code a
GENCSB of the standard form:

GENCB BLK=EXLST, LERAD=(LOGERR, L), SYNAD=PHYSERR

The following example shows how to achieve the same effect by building the

parameter list and entries yourself and issuing a GENCB of the exccute form.

LA 5,NTRYAREA Set up base register for
the entries.

USING 5,GENC GENC is the first label in
the work area.

Build the list of addresses that point to the entries.

ST 5,PLIST Address of the header
entry.
LA 6,GENLEN(,5) Address of the first

element entry. GENLEN is
equated to the length of
a header element for
generation.

ST 6,PLIST+4

Appendix D. Building Parameter Lists 185

LA

ST

01
Build the header

MVI

MVI

MVl

ST
MVI

Build the second

LA

MVI

ST
MVI

6,ELEMLLEN(,6)

6,PLIST+8
PLIST+8,X'80'
entry.

GENBTC, GENXLST

GENFTC,GENFTYP

GENCOP+1,X'01"

ELEMKWTC+1,
ELEMLEAD

6, LOGERR

6,ELEMPTR
ELEMXFLG,

ELEMXI+ELEMXADR .

element entry.

5,ELEMLLEN(, 5)

ELEMKWTC+1,
ELEMSYAD

6, PHYSERR

6,ELEMPTR

ELEMXFIG,
ELEMXADR

Pass control to VSAM.

GENCB
LIR
BNZ

MF=(E,PLIST)
15,15
CHECKO

186 MVS/XA VSAM Administration: Macro Instruction Reference

Address of the second
element entry. ELEMLLEN
is equated to the length
of an element entry for
an exit list.

End-of-list indicator.

Indicate the
blocktype-exit list.

Indicate the function
type-generation.

Indicate the number of
copies of the exit list
to be generated.

Indicate the keyword type-
LERAD.

Address of the name of the
logical error analysis
module.

Indicate the presence of
an address ELEMPTR and
that the exit routine is
to be loaded.

Align the DSECT with the
second element entry.
ELEMLLEN is equated to the
length of an element entry
for an exit list.

Indicate the keyword
type-SYNAD.

Address of the entry point

of the physical error
analysis routine.

Indicate the presence of

an address in ELEMPTR.

Generation successful?

No.

CHECKO ABEND 1,DUMP Register 0 indicates the
error.

Physical error analysis exit routine.
PHYSERR . . .
Work areas and constants.

LOGERR DC CL8' LEMOD' Name of the
logical error analysis
module to be loaded.

PLIST DC 3F'0’ List of entry addresses.
3 addresses are
required: 1 for the header
and 2 for the elements
(1 for LERAD and 1 for

SYNAD).
NTRYAREA DC 9F'0"' Work area for header and
. element entries. The

header for GENCB is 3
fullwords, and so are
the LERAD and SYNAD
elements.

DSECT with labels for the header and element entries.

IDAGENC Header entry. A DSECT
statement is generated,
and register 5 is used
to address NTRYAREA
with these labels.

IDAELEM DSECT=NO Element entry. Element
labels are part of the
same DSECT as the
header labels.

Passing Control Directly to VSAM

You can avoid using the exccute form of GENCB, MODCB, SHOWCB, and
TESTCB by building your own linkage instructions. You first build a paramecter
list, as described in the previous section, and put its address in register 1. Then
you pass control to VSAM using the following instructions:

L 15,16 Put. the address of the CVT
into register 15.

L 15,256(,15) Put the address of the AMCBS
control block into register 15.

L 15,12(,15) Put the address of the control

block manipulation routine into
register 15.
BALR 14,15 Branch to the routine

The BALR 14,15 instruction is used when the specific function (GENCB,
MODCB, SHOWCSB, or TESTCB) is not known, or when the control block

Appendix D. Building Parameter Lists 187

type (ACB, EXLST, or RPL) is not known. The uscr-built parameter list
contains the function code and control block type code.

Decimal

Value of xx Function Control Block

8 GENCB ACB

12 GENCB RPL

16 GENCB EXLST

20 Reserved

24 MODCB ACB

28 MODCB RPL

32 MODCB EXLST

36 Reserved

40 SIHHOWCB ACB

44 SIIOWCB RPL

48 SHOWCB EXLST

52 Rescrved

56 TESTCB ACB

60 TESTCB RPL

64 TESTCB EXLST

68 Reserved

72 SHOWCB or Block length
TESTCB keywords only

76! SIHHOWCB RECLEN ficld

. of an RPL
8o MODCB RECLEN field
of an RPL

! Register | points to an RPL when xx is 76 or 80. Sce the following scction
for details.

When VSAM retumns to your program, register 15 contains a completion code.
Register 15 contains a zero value if the task completed successfully. Otherwise,
register 15 and register 0 contain codes that identify the reason VSAM could not
complete the task.

Modifying and Displaying the RECLEN Field of an RPL Directly

You can modify or display the RECLEN ficld (that is, the record length) of an
RPL without issuing a SHHOWCB or MODCB macro, and without building a
paramcter list.

To modify a RPL’s RECLEN ficld, you first put the address of the RPL in
register 1, and the value to be set in the RECLEN ficld in register 0. Next, you
code the instructions that put the address of the VSAM control block
manipulation routinc into register 15, then branch to the routine:

188 MVS/XA VSAM Administration: Macro Instruction Reference

L 15,16 Put the address of the CVT into
register 15.

L 15,256(,15) Put the address of the AMCBS
control block into register 15.

L 15,12(, 15) Put the address of the control
block manipulation routine
into register 15.

BAL 14,80(,15) Branch to the routine.

When VSAM retumns to your program, register 15 contains a completion code.
Register 15 contains a zero value if the field was modified correctly. Otherwise,
register 15 and register 0 contain codes that identify the rcason VSAM could not
complete the task.

To display the contents of a RPL’s RECLEN field, you first put the address of
the RPL in register 1. Next, you code the instructions that put the address of the
VSAM control block manipulation routine into register 15, and then branch to
the routinc: '

L 15,16 Put the address of the CVT into
register 15.

L 15,256(,15) Put the address of the AMCBS
control block into register 15.

L 15,12(,15) Put the address of the control
block manipulation routine into
register 15.

BAL 14,76(,15) Branch to the routine.

When VSAM retumns to your program, register 15 contains a completion code.
Register 15 contains a zero value if the ficld is displayed correctly, and register 0
contains the value of the RPL’s RECLEN ficld. When register 15 is not zero,
register 15 and register 0 contain codes that identify the reason VSAM could not
complete the task.

Appendix D. Building Parameter Lists 189

Glossary of Terms and Abbreviations

The following terms are defined as they are used in this
book. If you do not find the term you are looking for,
sce the index or the /BM Vocabulary for Data
Processing, Telecommunications, and Office Systems,
GC20-1699.

ACB. (See access method control block.)

access method control block. A control block that links
an application program to VSAM or ACF/VTAM.

access method services. A multifunction service
program that is used to define VSAM data sets and
allocate space for them, convert indexed-scquential data
scts to key-sequenced data scts, modify data set
attributes in the catalog, reorganize data scts, facilitate
data portability between operating systems, create
backup copics of data sets, help make inaccessible data
scts accessible, list the records of data scts and catalogs,
dcefinc and build alternate indexcs, and convert OS
CVOLs and VSAM catalogs to intcgrated catalog
facility catalogs.

acquire. To allocate space on a staging drive and to
stage data from an MSS cartridge to the staging drive.

addressed-direct access. The retrieval or storage of a
data record identified by its RBA, independent of the
record’s location relative to the previously retrieved or
stored record. (See also keyed-direct access, addressed-
sequential access, and keyed-sequential access.)

addressed-scquential address. The retricval or storage of
a data record in its entry scquence rclative to the
previously retricved or stored record. (See also
kcyed-scquential access, addressed-direct access, and
keyed-direct access.)

altcrnate index. A collection of index entries organized
by the alternate keys of its associated base data records.
It provides an alternate means of locating records in the
data component of a cluster on which the alternate
index is based.

alternate index cluster. The data and index components
of an alternate index.

alternate key. One or more consecutive characters
taken from a data record and used to build an alternate

index or to locate one or more basc data records via an
alternate index. (See also generic key, key, and key
ficld.)

APF. (See authorized program facility.)

application. As used in this publication, the use to
which an access method is put or the end result that it
serves; contrasted to the internal operation of the access
mcthod.

authorized program facility. A facility that permits the
identification of programs that are authorized to use
restricted functions.

base cluster. A key-sequenced or entry-sequenced data
sct over which one or more alternate indexes are built.

base RBA. Thc RBA stored in the header of an index
rccord that is uscd to calculate the RBAs of data or
index control intervals governed by the index record.

catalog. (See mastcr catalog and user catalog.)

catalog recovery arca. An entry-sequenced file that
exists on cach volume owned by a recoverable catalog,
including the catalog itself. The CRA contains records
that are duplicates of the catalog entries describing the
volume and the files it contains.

CBIC. Control blocks in common, a facility that allows
a user to open a VSAM data set so the VSAM control
blocks are placed in the common scrvice area (CSA) of
thc MVS operating system. This provides the capability
for multiplc memory accesses to a single VSAM control
structure for the same VSAM data sct.

chained RPL. (See RPL string.)

Cl. (See control interval.)

CIDF. (Seé control interval definition field.)

cluster. A named structure consisting of a group of
related components (for example, a data component
with its index component). A cluster may consist of a

single component. (See also base cluster and alternate
index cluster.)

Glossary of Terms and Abbreviations 191

collating sequence. An ordering assigned to a set of
items, such that any two sets in that assigned order can
be collated.

component. A namcd, cataloged collection of stored
records. A component, the lowest member of the
hierarchy of data structures that can be cataloged,
contains no named subsets.

control area. A group of control intervals used as a unit
for formatting a data sct before adding records to it.
Also, in a key-sequenced data sct, the set of control
intervals pointed to by a sequence-set index record; used
by VSAM for distributing free space and for placing a
sequence-set index record adjacent to its data.

control area split. - The movement of the contents of
some of the control intervals in a control area to a
newly created control area, to facilitate the insertion or
lengthening of a data record when there are no
rcmaining free control intervals in the original control
area.

control interval. A fixed-length arca of auxiliary storage
space in which VSAM storcs records. It is the unit of
information transmitted to or from auxiliary storage by
VSAM.

control interval access. The retrieval or storage of the
contents of a control interval.

control interval definition field. In VSAM, the 4-byte
control information ficld at the end of a control interval
that gives the displacement from the beginning of the
control interval to free space and the length of the free
space. If the length is 0, the displacement is to the
beginning of the control information.

control interval split. The movement of some of the
stored records in a control interval to a free control
interval, to facilitate the insertion or lengthening of a
record that won't fit in the original control interval.

control volume. A volume that contains one or more
indexes of the catalog.

CRA. (See catalog recovery area.)

cross memory. A synchronous mcthod of
communication between address spaces.

CVOL. (See control volume.)
DASD. (See direct access storage device.)
data record. A collection of items of information from

the standpoint of its use in an application, as a user
supplies it to VSAM for storage.

data set. The major unit of data storage and retrieval
in the operating system, consisting of data in a
prescribed arrangement and described by control
information to which the system has access. As used in
this publication, a collection of fixed- or variable-length
records in auxiliary storage, arranged by VSAM in key
sequence or in entry sequence. (See also key-sequenced
data set and entry-sequenced data set.)

DD statement. data dcfinition statement

direct access. The retrieval or storage of data by a
reference to its location in a data set rather than relative
to the previously retrieved or stored data. (See also
addressed-direct access and keycd-direct access.)

direct access storage device. A device in which the
access time is cffectively independent of the location of
the data.

EBDIC. Extended binary-coded decimal interchange
code. A coded character set consisting of 8-bit coded
characters.

entry sequence. The order in which data records are
physically arranged (according to ascending RBA) in
auxiliary storage, without respect to their contents.
(Contrast with key scquence.)

entry-sequenced data sct. A data set whose records are
loaded without respect to their contents, and whose
RBAs cannot change. Records are retricved and stored
by addressed access, and new records are added at the
end of the data set.

FEOD. end of data
EOKR. cnd-of-key range
EOYV. end of volume

ficld. In a record or a control block, a specified area
used for a particular category of data or control
information.

free control interval pointer list. In a sequence-set index
record, a vertical pointer that gives the location of a free
control interval in the control arca governcd by the
record.

free space. Space reserved within the control intervals
of a key-sequenced data set for inscrting new records
into the data set in key sequence; also, whole control
intervals reserved in a control area for the same
purpose.

GENDSP. An option of LOCATE to obtain the
control interval number of the catalog record of each
object.

192 MVS/XA VSAM Administration: Macro Instruction Reference

generation data group. A collection of data sets that are
kept in chronological order; each data set is called a
generation data set.

gencric key. A high-order portion of a key, containing
characters that identify those records that are significant
for a certain application. For example, it might be
desirable to retrieve all records whose keys begin with
the generic key AB, regardless of the full key values.

global shared resources. An option for sharing 1,0
buffers, 1;O-rclated control blocks, and channcl
programs among VSAM data scts in a resource pool
that scrves all address spaces in the system.

GSR. (See global shared resources.)

© header, index record. In an index record, the 24-byte
ficld at the beginning of the record that contains control
information about the record.

header entry. In a paramcter list of GENCB, MODCB,
SHOWCB, or TESTCB, the entry that identifics the type
of request and control block and gives other gencral
information about the request.

horizontal pointer. In the header of an index record, the
RBA of the index record in the same level as this one
that contains keys next in ascending sequence after the
keys in this one.

index. As uscd in this publication, an ordcred collection
of pairs, cach consisting of a key and a pointer, used by
VEAM o sequence and locaic the vecords of &
key-sequenced data sct.

index level. A set of index records that order and give
the location of all the control intervals in the next lower
Ievel or in the data set that it controls.

index record. A collection of index entries that are
retrieved and stored as a group. (Contrast to data
record.)

index record header. In an index record, the 24-byte
ficld at the beginning of the record that contains control
information about the record.

index replication. The use of an entire track of direct
access storage to contain as many copies of a single
index record as possible; reduces rotational dclay.

index sct. The set of index levels above the sequence
sct. The index set and the sequence set together
comprise the index.

integrated catalog facility. The name of the catalog
associated with the Data Facility Product program
product.

10PID. 1/0 prevention identifier which is used to
terminate 1/0 and prevent new 1/0 from being started.

ISAM. indcxed sequential access mctﬁod

ISAM interface. A set of routines that allow a
processing program coded to use ISAM (indexed
sequential access method) to gain access to a
key-sequenced data set.

JCL. (See job control language.)

job catalog. A catalog made available for a job by
mcans of the JOBCAT DD statement.

job control language. A problem-oriented language
designed to express statements in a job that are used to
identify the job or describe its requirements to an
operating system.

job step catalog. A catalog made available for a job by
means of the STEPCAT DD statement.

key. Onc or more characters within an item of data
that are used to identify it or control its use. As uscd in
this publication, one or more consccutive characters
taken from a data record, used to identify the record
and establish its ordcr with respect to other records.
(See also key ficld and generic key.)

key field. A ficld located in the same position in each
record of a data sct, whosc contents arc used for the key
of a record.

key sequence. The collating sequence of data records,
dctermined by the valuc of the key field in each of the
data records. May be the same as, or different from,
the entry sequence of the records.

key-sequenced data set. A VSAM file (data set) whosc
records are loaded in key sequence and controlled by an
index. Records are retricved and stored by keyed access
or by addresscd access, and new records are inserted in
key sequence by means of distributed free space.
Relative byte addresses of records can change because
of control interval or control arca splits.

keyed-direct access. The retrieval or storage of a data
record by use of cither an index that relates the record’s
key to its rclative location in the data sct or a rclative
record number, indcpendent o1 the record’s location
rclative to the previously retricved or stored record.
(See also addresscd-direct access, keyed-scquential
access, and addressed-sequential access.) _

keyed-sequential access. The retrieval }isgorage of a
data record in its key or relative record sequence relative
to the previously retrieved or stored record, as defined
by the sequence set of an index. (See also
addressed-sequential access, keyed-direct access, and
addressed-direct access.)

Glossary of Terms and Abbreviations 193

level number. For the index of a key-sequenced data
set, a binary number in the header of an index record
that indicates the index level to which the record
belongs.

linear data set (LDS). A named linear string of data,
stored in such a way that it can be retrieved or updated
in 4096 byte units. An LDS object is essentially a
VSAM entry-sequenced data set that is processed as a
control interval. However, unlike a control interval, an
L1DS contains data only, that is, it contains no rccord
definition fields (RIDFs) or control interval definition
ficlds (CIDFs).

local shared resources. An option for sharing 1,0
buffers, 1;0-related control blocks, and channel
programs among VSAM data sets in a resource pool
that serves one partition or address space.

LDS. (See lincar data set)
LSR. (See local shared resources.)

master catalog. A catalog that contains cxtensive data
sct and volume information that VSAM requires to
locate data scts, to allocate and deallocate storage space,
to verify the authorization of a program or opcrator to
gain access to a data set, and to accumulate usage
statistics for data sets.

operating system. Software that controls the exccution.
of programs; an opcrating systcm may provide scrvices
such as resource allocation, scheduling, input,;output
control, and data management.

password. A unique string of characters stored in a
catalog that a program, a computer operator, or a
terminal user must supply to meet security requirements
before a program gains access to a data set.

path. A named, logical cntity composed of one or more
clusters (an alternate index and its base cluster, for
example).

physical record. A physical unit or recording on a
medium. For example, the physical unit between
address markers on a disk.

pointer. An address or other indication of location.
For example, an RBA is a pointer that gives the relative
location of a data record or a control interval in the
data set to which it belongs.

prime index. The index component of a key-sequenced
data set that has one or more alternate indexcs. (See
also index and alternate index.)

prime key. ’(See key.)

QSAM. (See queued sequential access method.)

queued sequential access method. An extended version
of the basic sequential access method (BSAM). When
this method is used, a queue is formed of input data
blocks that are awaiting processing or output data
blocks that have been processed and are awaiting
transfer to auxiliary storage or to an output device.

RACF. Resource Access Control Facility.
random access. (See direct access.)

RBA. Relative byte address. The displacement
(cxpressed as a fullword binary integer) of a data record
or a control interval from the beginning of the data set
to which it belongs; independent of the manner in which
the data set is stored.

RDF. (See record dcfinition field.)
record. (See index record, data rccord.)

record definition ficld. A ficld stored as part of a stored
record scgment; it contains the control information
rcquircd to manage stored record segments within a
control interval.

relative byte address. (See RBA.)

relative record data set. A data sct whose rccords are
lIoaded into fixed-length slots.

relative record number. A number that identifics not
only the slot, or data space, in a rclative rccord data sct
but also the record occupying the slot. Used as the key
for keycd access to a relative record data set.

replication. (See index replication.)

request parameter list. A control block that contains
the information necded to process an 1,0 request.

resource pool, VSAM. (See VSAM resource pool.)

rcusable data set. A VSAM data sct that can be rcused
as a work file, rcgardless of its old contents. Must not
be a base cluster.

RPL. (See rcquest paramcter list.)

RPL string. A set of chained RPLs (the sct may
contain one or more RPLs) used to gain access to a
VSAM data sct by action macros (GET, PUT, etc).
Two or more RPL strings may be used for concurrent
direct or sequential requests made from a processing
program or its subtasks.

SAM. (See scquential access method.)

security. (See data security.)

194 MVS/XA VSAM Administration: Macro Instruction Reference

sequence checking. The process of verifying the order
of a set of records relative to some field’s collating
sequence.

sequence set. The lowest level of the index of a
key-sequenced data set; it gives the locations of the
control intervals in the data set and orders them by the
key sequence of the data records they contain. The
sequence set and the index set together comprise the
indcx.

scquential access. The retricval or storage of a data
record in either its entry scquence, its key sequence, or
its relative record number sequence, rclative to the
previously retrieved or stored record. (See also
addressed-scquential access and keyed-sequential
access.)

scquential access method. An access method for storing
or retrieving data blocks in a continuous scquence, using
cither a scquential access or a direct access device.

shared resources. A sct of functions that permit the
sharing of a pool of I;0-related control blocks, channel
programs, and buffcrs among several VSAM data scts
open at the same time.

skip-sequential access. Keyed-sequential retrieval or
storage of records here and there throughout a data set,
skipping automatically to the desired record or collating
position for insertion: VSAM scans the scquence sct to
find a record or a collating position. Valid for
processing in ascending scquences only.

slot. For a rclative record data set, the data area
addressed by a rclative record number which may
contain a record or be empty.

spanned record. A logical record whose length exceeds
control interval length, and as a result, crosses, or spans,
one or more control interval boundaries within a single
control area.

SRB. Secrvice request block. A system control block
uscd for dispatching tasks.

step catalog. A catalog madc available for a step by
mcans of the STEPCAT DD statement.

terminal monitor program. In TSO, a program that
accepts and interprets commands from the terminal, and
causes thc appropriate command processors to be
scheduled and executed.

time sharing option. An optional configuration of the
opcrating system that provides conversational time
sharing from remote stations.

TMP. (See terminal monitor program.)

transaction ID. A number associated with each of
several request paramcter lists that define requests
belonging to the same data transaction.

TSO. (See time sharing option.)

update number. For a spanned record, a binary
number in the second RDF of a record segment that
indicates how many times the segments of a spanned
rccord should be equal. An incquality indicates a
possible crror.

upgrade set. All the alternate indexes that VSAM has
been instructed to update whenever there is a change to
the data component of the base cluster.

user buffering. The use of a work arca in the processing
program’s address space for an 1;0 buffer; VSAM
transmits the contents of a control intcrval between the
work arca and direct access storage without
intermediary buffering.

uscr catalog. An optional catalog used in the same way
as the master catalog and pointed to by the master
catalog. It also lessens the contention for the master
catalog and facilitates volume portability.

vertical pointer. A pointer in an index record of a given
level that gives the location of an index record in the
next lower level or the location of a control interval in
the data sct controlled by the index.

virtual storage access method. An access mcthod for
dircct or sequential processing of fixed and
variable-length records on direct access devices. The
records in a VSAM data sct or file can be organized in
logical sequence by a key ficld (key sequence), in the
physical sequence in which they are written on the data
sct or file (entry sequence), or by relative record
number.

virtual telecommunications access method. A set of
programs that control communication between terminals
and application programs running undcr VSE, OS VS,
and OS;VS2.

VSAM. (See virtual storage access mecthod.)

VSAM resource pool. A virtual storage arca that is
used to share 1/O buflers, 1/0-related control blocks,
and channel programs among VSAM data sets. A
resource poot is local or global; it serves tasks in one
partition or address space or tasks in all address spaces
in the system.

VSAM shared information. Blocks that are used for
cross-system sharing.

VSI. (See VSAM shared information.)

195

Glossary of Terms and Abbreviations

| VTAM. (See virtual telecommunications access
| method.)

196 MVS/XA VSAM Administration: Macro Instruction Reference

Index

A

A-type address constant 33, 69
ACB (access method control block)
crror ficld
rcason codes from OPEN macro 2
gencerating
at assembly time 34
generating at exccution time 69
testing 154
ACB macro 43
cxample using local shared resources and 31-bit
addressing 43

format 34
generate an access method control block at assembly
time

summary 159
inconsistent operand crror 3
ACB paramcter
in FIELDS parameter 142
in GENCB macro 81
in MODCB macro 100
in RPL macro 126
in SHOWCB macro 133
in TESTCB macro 146
ACB subparameter
ACQRANGE macro 44
CNVTAD macro §7
MNTACQ macre 98
MRKBIR macro 106
SCHBI'R macro 132
ACBLEN paramecter
in FIELDS parameter 134
access method control block
Sce ACB
ACQRANGE macro
format 44
summary 159
ACTION = REFRESH paramcter
in VERIT'Y macro 155
addition of records
addressed-sequential 119
addressed-scquential addition example 119
address constant
A-type 33,182
S-type 33, 181
S-type, indircct 33, 181
address list
in parameter lists of GENCB, MODCB, SHOWCB,
and TESTCB macros 183
addressed-sequential deletion
examplec 64
ADR subparameter
in MACRF parameter of the ACB macro 38
in OPTCD parameter of RPL macro -128
AIX option

in MACRF parameter of the ACB macro 39
AIXFLAG parameter
in TESTCB macro 153
AIXPC parameter '
in FIELDS parameter 142
in TESTCB macro 153
ALL subparameter
in WRTBFR macro 156
alternate index
providing buffers for shared resources 46
AM parameter
in ACB macro 34
in EXLST macro 66
in GENCB macro 70, 76, 81
in RPL macro 126
AMODE3] subparamcter
removal from the ACB macro 34
removal from the GENCB macro 69
removal from the MODCB macro 100
ARD subparamcter
in OPTCD parameter of RPL. macro 129
AREA parameter
in FIELDS parameter 142
in GENCB macro 81
in RPL. macro 126
in SHHOWCB macro 133, 139, 141
AREA subparameter
SCHBFR macro 132
ARECALEN paramecter
in FIELDS parameter 142
in GENCB macro 81
in RPL macro 127
AREALEN subparameter
PUTIX macro 125
SCHBFR macro 132
ARG paramecter
in FIELDS parameter 142
in GENCB macro 81
in RPL macro 127
ARG subparameter
ACQRANGE macro 44
CNVTAD macro 57
GETIX macro 97
MNTACQ macro 98
MRKBFR macro 106
SCHBFR macro 132
assembly time
generate a request parameter list, summary 165
gencrate ACB 34
generate an access method control block,
summary 159
gencrate an exit list 66
generate an request parameter list 126
generate exit list, summary 161
ASY subparameter
in OPTCD parameter of RPL macro 129
asynchronous request
canceling 62

Index 197

in MNTACQ macro 99
rcturn codes 14
ATRB parameter
in TESTCB macro 147
AVSPAC parameter
in FIELDS parameter 135

B

BFRFND paramcter
in FIEL.DS paramecter 135
BFRNO parameter
SCHBFR macro 132
BI.DVRP macro
cxccute form 174
format 46
list form 174
obtaining resource pool above 16M example 49

request scparate data and index pools example 50

return codes 30

summary 160
BIL.LK paramcter

in GENCB macro 70, 76, 81"
brackets, in notation convention vii
BSTRNQO parameter

in ACB macro 34

in FIELDS paramcter 134

in GENCB macro 70
buffers

above 16 mcgabytes 40
BUFFERS paramcter

BLDVRP macro 46
BUFFERSPACE parameter

in GENCB macro 70
BUFND paramcter

in ACB macro 35

in FIELDS parameter 134

in GENCB macro 70
BUFND subparameter

BUFSP paramcter in ACB macro 3§
BUFNI parameter

in ACB macro 35

in FIELDS parameter 135

in GENCB macro 70
BUFNI subparamcter

BUFSP parameter in ACB macro 35
BUFNO parameter '

in FIELDS parameter 135
BUFRDS paramecter

in FIELDS parameter 135
BUFSP parameter

ACB macro 35 :

in FIELDS parameter 135

in GENCB macro 70
building

parameter lists for GENCB, MODCB, SHOWCB,

and TESTCB macros
format of parameter lists 185

macros used 185
building header and clement entries 1835
building parameter list for GENCB macro
coding example 185
building paramcter lists 183
BWD subparameter
in OPTCD parameter of RPL macro 129

C

capitalizing, in notation convention vii
CATALOG parameter

in ACB macro 36

in GENCB macro 71

in TESTCB macro 147
CFX subparameter :

in MACREF paramcter of the ACB macro 38
chaining request parameter lists

example in GENCB macro 84

in GET macro 96

not allowed with

WRTBFR 156

CHECK macro 54

format 51
suspend processing
summairy 160

with the WRTBFR macro 136
checking return codes
after a synchronous request 52
after an asynchronous request Sl
CIIK subparamcter
in WRTBFR macro 157
CINYV paramcter
in FIELDS parameter 135
CLOSE macro
disconnecting program and data
summary 160
"~ example 36
format 35
return codes 6
use of SHOWCB macro 6
closing a data set
writing buffers 156
CNYV subparamcter
in MACRF paramecter of the ACB macro 38
in OPTCD paramecter of RPL macro 128
CNVTAD macro
format 57
summary 160
component code 13
from altcrnate index upgrade requests 14
connecting program and data (OPEN macro) 107
control block manipulation macro
return codes and reason codes 10
control information
parameter lists of GENCB, MODCB, SHOWCB,
and TESTCB macros
address list 183

198 MVS/XA VSAM Administration: Macro Instruction Reference

element entry 183
header entry 183
COPIES parameter
in GENCB macro 71, 77, 81
CRA parameter
in ACB macro 36
in GENCB macro 72
in TESTCB macro 147

D

DATA option
BLDVRP macro 48
data sct attributes
testing in TESTCB macro cxample 148
DDN subparameter
in MACRF paramcter of the ACB macro 38
DDNAME paramecter
in ACB macro 37
in FIEL DS parameter 135
in GENCB macro 72
deferring write requests 3
delcting a record
addressed-sequential deletion 64
ERASE macro 63
key-dircct deletion 63
DFR subparamcter -
in MACRF paramcter of the ACB macro 38
DINVALID subparameter
in MRKBFR macro 106
DIR subparameter
in MACRF paramecter of the ACB macro 38
in OPTCD parameter of RPL macro 128
direct processing
reason code positioning state 25
disconnccting your program
CLOSE macro S5
DLVRP macro
example 60
execute form 175
format 59
return codes 31
summary 160
DRBA subparamcter
in WRTBFR macro 157
DS subparameter
in WRTBFR macro 157
DSN subparameter
in MACRF paramcter of the ACB macro 38

E

ECB parameter
in FIELDS parameter 142
in GENCB macro 82
in RPL macro 127

ECB subparameter
CNVTAD macro 58
MRKBFR macro 106
SCHBFR macro 132

element entry

in parameter lists of GENCB, MODCB, SHOWCSB,
and TESTCB macros 183
coding example 185
illustration 185
ellipses, in notation convention vii
end-of-volume
rcturn codes 31
ENDRBA paramcter
in FICLDS paramcter 136

ENDREQ macro
example 61
format 6l
terminating a request
summary 160
used with WRTBFR macro 156
entry

element, in parameter lists of GENCB, MODCB,
SHOWCRB, and TESTCB macros 183
header, in parameter lists of GENCB, MODCB,
SHOWCSB, and TESTCB macros 183
entry-sequenced data sct
uscd in ACQRANGE macro 44
EODAD parameter
in CXLST macro 66
in GENCB macro 76
in SHOWCB macro 139
in TESTCB macro 150
ERASE macro
deleting a record
summary 160
format 63
ERASE processing 63
ERET parameter
in TESTCB macro 146, 150, 152
error ficld of thc ACB
rcason codes from OPEN macro 2
ERROR parameter
in FIELDS paramcter 135
ESDS parameter
in TESTCB macro 146
event control block
used in ACQRANGE macro 45
example
addition of records, PUT macro 119
addressed-sequential deletion, ERASE macro 64
addressed-sequential retrieval, GET macro 89
addressed-sequential update, PUT macro 123

Index 199

check return code after asynchronous request,
CHECK macro S5l

checking return code after synchronous request,
CHECK macro 52 :

close data set with paramcter list above 16M,
CLOSE macro 56

connect LSR pool and run in 31-bit addressing
mode, ACB macro 43

delete L.SR pool, DLVRP macro 60

display an ACB, SHOWCB macro 137

display an exit list address in the ACB, SIHOWCB
macro 138

display exit list length, SHHOWCB macro 140

display physical error message, SHHOWCB
macro 144

gencrate an access mcthod control block, GENCB
macro 75

gencerate an cxit list, GENCB macro 78

gencrate an RPL at assembly time, RPL
macro 131

generate request parameter list, GENCB macro 85

identify data set, ACB macro 42

identify exit routines, EXLST macro 67

keyed-dircct delction, ERASE macro 63

keyed-direct insertion, PUT macro 118

keyed-direct update, PUT macro 121

keyed-sequential inscrtion, PUT macro 111, 115

keyed-sequential retrieval (backward), GET
macro 87

keyed-sequential retrievat, GET maero 86

keyed-sequential update, PUT macro 120

loading a relative record data sct, PUT macro 113

marking rccords inactive, PUT macro 124

modify a request parameter list, MODCB
macro 105

modify an exit list, MODCB macro 103

modify name of exit list in ACB, MODCB
macro 101

obtain LSR above 16M, BLDVRP macro 49

obtaining resource pool above 16M, BLDVRP
macro 49

open macro with parameter list above 16M, OPEN
macro 108

open two data sets, OPEN macro 108

overlay processing, CHECK macro 52

position, POINT macro 109

recording RBAs when loading, PUT macro 112

release positioning, ENDREQ macro 61

requcst separatc data and index pools, BLDVRP
macro 50

rcquest scparate data/index resource pools,
BLDVRP macro 50

retricving a keyed-direct record, GET macro 92

retrieving a relative record sequentially, GET
macro 91

retrieving an addressed-direct record, GET
macro 93

retrieving direct to sequential record, GET
macro 94

ski-sequential retrieval, GET macro 87

skip-sequential insertion, PUT macro 116

suspend many record request, CHECK macro 53
test a request parameter list, TESTCB macro 154
test for data set attributes, TESTCB macro 148
use a branch table, TESTCB macro 151
example of generate, list, execute forms in reentrant
environment 179
execute form
BLDVRP macro 174
DLVRP macro 175
GENCB macro 175
MODCB macro 176
SHOWCB macro 177
TESTCB macro 178
use of 178
execute-form keyword 173
execution time
generate a request parameter list, summary 162
generate an ACB - 69
generate an access method control block 161
generate an exit list, summary 162
gencrate exit list 76
gencrate request parameter list 80
exit list
address displayed in SHOWCB macro
example 138
ficlds displayed in SHOWCB macro 139
generating at exccution time = 76
generating in EXLST macro 66
length displayed in SHOWCB macro example 140
EXLLEN parameter
in SHOWCB macro 139
in TESTCB macro 131
EXLST macro
cxample 67
format 66
gencerate exit list at assembly time
summary 161
EXLST paramecter
in ACB macro 37
in FIELDS parameter 135
in GENCB macro 72
in MODCB macro 102
in SHOWCB macro 139
in TESTCB macro 150

F

FDBK paramecter

in FIELDS parameter 142
feedback word in the RPL 13
FIELDS parameter)

in SHHOWCB macro 134, 139, 142
FIX paramecter

BLDVRP macro 46
FKS subparamecter

in OPTCD parameter of RPL macro 130
format

ACB macro 34

200 MVS/XA VSAM Administration: Macro Instruction Reference’

ACQRANGE macro 44
BLDVRP macro 46
CHECK macro 51
CLOSE macro 55
CNVTAD macro 57
DLVRP macro 59
ENDREQ macro 61
ERASE macro 63
exccute form
of BLDVRP macro 174
of DLVRP macro 175
EXLST macro 66
GENCB macro 69
GET macro 86
GETIX macro 97
list form
of BLDVRP macro 174
MNTACQ macro 98
MODCB macro 100
MRKBFR macro 106
OPEN macro 107
parameter lists of GENCB, MODCB, SIIOWCB,
and TESTCB macros
address list 185
clement entry 185
header entry 185
POINT-macro 109
PUT macto 111
PUTIX macro 125§
RPL macro 126
SCHBFR macro 132
SHOWCB macro 133
TESTCB macro 145, 150
YERIFY macro 155
WRTBFR macro 156
format of the paramcter lists 183
IS parameter
in FIELDS paramcter 136
FTNCD parameter
in FIELDS parameter 142
in TESTCB macro 153
FWD subparameter
in OPTCD parameter of RPL macro 129

G

GENCB macro
exccute form 175
with paramcter lists built by user 183, 185
format 69

gencrate a request paramcter list at execution time

summary 162
generate an access method control block at
execution time
summary 161

gencrate an exit list at execution time
summary 162
generate form 176
reentrant example 179
generating a request parameter list 80
generating a requcst parameter list example 85
generating an access method control block 69
generating an access method control block
example 75
gencerating an exit list 76
gencrating an cxit list cxample 78
inconsistent operand crror 3
linking to VSAM directly 187
list form 175
operand notation 181
reason codes 10
return codes 10
generate form
GENCB macro 176
MODCB macro 176
SHOWCB macro 177
TESTCB macro 178
use of 178
generateform keyword 173
gencrating a request parameter list
GENCB macro 80
RPL macro 126
gencrating an access method control block (GENCB
macro) 69
gencrating an exit list
at asscmbly time 66
GENCB macro 76
GET macro
format 86

retricving a direct to sequential record example 94

retricving a keyed-direct record 92
retricving a keyed-sequential record (backward)
example
backward 87
retrieving a record
summary 162
retrieving a rclative record example 91
retrieving a skip-sequential record, example 87
retricving an addressed-direct record example 93
retrieving an addressed-scquential record
cxample 89
retrieving keyed-sequential record examplie
forward 86
GETIX macro
format 97
retrieving an index record
summary 163
GSR option
BLDVRP macro 48
in MACRF parameter of the ACB macro 39
GSR subparameter
DLVRP macro 59

Index 201

H

HALCRBA parameter
in FIELDS parameter 136
header entry
in parameter lists of GENCB, MODCB, SHOWCB,
and TESTCB macros
coding cxample 185
illustration 1835
using macros to build 18§

1]

ICI subparameter
in MACRF parameter of the ACB macro 38
IDAELEM macro 18S
IDAGENC macro 185
IDAMODC macro 185
IDASHOW macro 185
IDATEST macro 185
IN subparameter
in MACRF parameter of the ACB macro 38
index
retrieval (GETIX macro) 97
storing (PUTIX macro). 125
INDEX option
BLDVRP macro 48
indirect address for S-type address constant 33
indirect S-type address constant 69
inserting records
keyed-direct 118
keyed-sequential 111,115
skip sequential 116
10 parameter
" in TESTCB macro 153
IOPID parameter
in EXLST macro 66

JRNAD paramecter
in EXLST macro 67
in GENCB macro 77
in SHOWCB macro 140
in TESTCB macro- 150

K

KEQ subparaméter .

in OPTCD parameter of RPL macro 129
KEY subparameter

in MACRF parameter of the ACB macro 38

in OPTCD parameter of RPL. macro 128
key-direct dclction

example 63
key-sequenced data set

used in ACQRANGE macro 44
KEYLEN paramcter

BLDVRP macro 47

in FICLDS paramcter 136, 143

in GENCB macro 82

in RPL macro 127
keywords

exccute form 173

generate form 173

list form 172
KGE subparamcter

in OPI'CD paramecter of RPI. macro 130
KSDS paramcter

in TESTCB macro 146

L..

LDS parameter

in TESTCB macro 146
LENGTH paramecter

in GENCB macro 72, 77, 82

in SHHOWCB macro 133, 139, 141
LERAD parameter

in EXLST macro 67

in GENCB macro 77

in SHHOWCB macro 140

in TESTCB macro 150
linear data set

error in VERIFY macro 155

logical error reason codes 23
linking to VSAM directly 187
list form

BLDVRP macro 174

GENCB macro 175

MODCB macro 176

SHOWCB macro 177

TESTCB macro 177

useof 178
list-form keyword 172
list, execute, generate formats 174
list, execute, generate forms of macros 171
list, parameter

of GENCB, MODCB, SHOWCB, and TESTCB

macros 183

LOC parameter

in GENCB macro 72, 77, 82

202 MVS/XA VSAM Administration: Macro Instruction Reference

removal from the BLDVRP macro 47
LOC subparameter

in OPTCD parameter of RPL macro 130
local shared resources

ACB example 43
locate mode

with control interval access

with shared resources 132

lower case, in notation convention vii
L.LRD subparamecter

in OPTCD parameter of RPL macro 129
LRECL parameter

in FIELDS parameter 136
LRU subparameter

in WRTBFR macro 157
LSR option

BLDVRP macro 48

DLVRP macro 59

in MACREF parameter of the ACB macro 39
LSR pool

cxample in BLDVRP macro 50

M

MACRF parameter
in ACB macro 37
in GENCB macro 72
in TESTCB macro 147
macro instruction return codes and reason codes
macros
descriptions 1
summary of 159
MAREA paramecter
in ACB macro 40
in FIELDS parameter 135
in GENCB macro 73
MARK paramecter
in MRKBFR macro 106
marking records inactive 124
message area
" header information . 8
message list 9
OPEN/CLOSE 7
provided by VSAM 7
MLEN parameter
in ACB macro 40
in FIELDS paramecter 135
in GENCB macro 73
MNTACQ macro
format 98
summary 163
MODCB macro
example 101
execute form 176
reentrant example 180
with parameter lists built by user 183
format 100
generate form 176

1

linking to VSAM directly 187
list form 176
modify a request parameter list example 105
modify an exit list example 103 ’
modifying a request paramcter list 104
summary 164
modifying an ACB 100
summary 163
modifying an exit list
format 102
summary 163
opcrand notation 181
rcason codes 10
remote-list form
recentrant example 179
return codes 10
MODE option
BLDVRP macro 48
MODE parameter
DLVRP macro 59
in CLLOSE macro 55
in OPEN macro 107
modifying and displaying the RECLEN ficld of an RPL
directly 188
move modc of control interval access
with shared resources 132
MRKBFR macro
format 106
invalidating a buffer
parameters for 106
rcason codes 106
summary 164
MSGAREA parameter
in FIELDS paramecter 143
in GENCB macro 82
in RPL macro 127
MSGLEN parameter
in FIELDS parameter 143
»<in GENCB macro 82
in RPL macro 127
MVE subparameter
in OPTCD parameter of RPL macro 130

N

NCI subparamcter
in MACRF parameter of the ACB macro 38
NCIS paramcter :
in FIELDS parameter 136
NDELR paramcter
in FIELDS parameter 136
NDF subparameter
in MACRF parameter of the ACB macro 38
NEXCP parameter
in FIELDS parameter 136
NEXT parameter
in FIELDS parameter 136
NFX subparameter

Index 203

in MACRF parameter of the ACB macro 38
NINSR parameter

in FIELDS parameter 136
NIS subparameter

in MACRF parameter of the ACB macro 39
NIXL paramecter

in FIEL.DS parameter 136
NLOGR paramecter

in FIELDS paramcter 136
NO subparameter, in CATALOG paramecter

in ACB macro 36

in GENCB macro 71

in TESTCB macro 147

restriction 36, 71
NRETR parameter

in FIELDS parameter 136
NRM option

in MACRF paramecter of the ACB macro 39
NRS option

in MACRF paramecter of the ACB macro 39
NSP subparameter

in OPTCD paramecter of RPL macro 129
NSR option

in MACRF parameter of the ACB macro 39
NSSS parameter .

in FIELDS parameter 136
NUB option

in MACREF parameter of thc ACB macro 39
NUIW paramcter

in FIELDS parameter 137
NUP subparameter

in OPTCD parameter of RPL macro 129
NUPDR paramcter

in FIELDS parameter 137
NWAITX subparamcter

in QPTCD paramcicr of RPL. macro 130
NXTRPL parameter

in FIELDS parameter 143

in GENCB macro 83

in RPL macro 128

0]

OBJECT paramecter
in SHOWCB macro 134
in TESTCB macro 146
OFLAGS parameter
in TESTCB macro 147
OPEN macro
connecling program and data
summary 164
format 107
open two data scts example 108
parameter list above 16M example 108
reason codes 2
use of SHOWCB macro 2
use of VERIFY command 2
return codes 1

shared resources
reason codes 3
OPEN,CLOSE message area for multiple
reason/warning messages 7
opening a data set
for processing 107
OPENOBJ paramcter
in TESTCB macro 148
operand notation
GENCB 181
MODCB 181
SHOWCB 181
TESTCB 181
operands
optional 174
required 174
operands with GENCB, MODCB, SHOWCB,
TESTCB 181
OPTCD parameter
in GENCB macro 83
in RPL macro 128
in TESTCB macro 1353
OPTCD subparameter
‘ACQRANGE macro 44
GETIX macro 97
in RPL macro 130
MNTACQ macro 98
PUTIX macro 125
SCHBFR macro 132
optional operands 174
or sign, in notation coavention Vil
OUT subparameter
in MACRF paramcter of thc ACB macro 39
in MRKBFR macro 106

P

paramcter list
of GENCB, MODCB, SHOWCB, and TESTCB
macros 183
passing control directly to VSAM 187
PASSWD paramcter
in ACB macro 40
in FIEL DS parameter 135
in GENCB macro 73
physical error analysis
with control interval access 26
physical error message
displayed in SHOWCB macro cxample 144
format 30
RBA ficld 26
POINT macro
format 109
position example 109
positioning for access
summary 164
positioning
following logical errors 24

204 MVS;XA VSAM Administration: Macro Instruction Reference

of reason codes 25
positioning for access (POINT macro) 109
PUT macro
addressed-sequential update example 123
format 111
keyed-direct insertion example 118
keyed-direct update examplc 121
kcyed-sequential insertion example 111, 115
keyed-scquential update example 120
loading a relative record data set 113
marking records inactive example 124
rccording RBAs when loading example 112
skip-sequential insertion cxample 116
storing a rccord
summary 164
PUTIX macro
format 125
storing an index record
summary 165

R

RBA ficld
in physical error message 26
RBA paramecter
in FIELDS parameter 143
RBA values
CNVTAD macro 58
passed to MNTACQ macro 58
rcason codcs
from OPEN macro 2
use of SHOWCE 2
from request macros (GET, PUT, ctc.)
physical errors, control interval access 26
in control block manipulation macros 10
in GENCB macro 10
in MODCB macro 10
in SHHOWCB macro 10
in TESTCB macro 10
logical errors 17
physical errors 26
positioning state 25
request parameter list fcedback area 13,15
sharcd resources from OPEN macro 3
successful request 15
usc of VERIFY command in OPEN macro 2
RECLEN ficld (record length) of an RPL
modifying and displaying 188
RECLEN paramcter
in FIELDS paramecter 143
in GENCB macro 83
in RPL macro 130
record
retricval (GET macro) 86
record length (RECLEN field) of an RPL
modifying and displaying 188
record management
_ return codes and reason codes 13

reentrant program 33
register notation 33, 69
relative record data set
used in ACQRANGE macro 44
reclative record number
usced as a key 91
relcasing exclusive or shared control
MRKBFR macro 106
REPL parameter
in TESTCB macro 147
request macros
CHECK 51
ENDRLEQ 61
ERASE 63
GET 86
physical rcason codes from 26
POINT 109
PUT 111
request parameter list
chaining 81, 126
chaining example 84
chaining in GET macro 96
chaining not allowed
with SCHIBFR macro 132
with WRTBFR macro 156
changing 104
component codes from component code ficld
displaying ficlds in SHOWCB macro 141
generating at assembly time
generating at exccution time 80
generating with GENCB macro example 85
modifying 104
rcason codes from feedback area 1S
testing in TESTCB macro 152
testing in TESTCB macro example 153
with the GENCB macro 81
with the RPL macro 126
required operands 174
resource sharing 21
retricving a record
for dcletion 64
retrieving an index record 13
return codes
checking, example 51
from asynchronous request 14
from BLDVRP macro 30
from CLOSE macro 6
from DLVRP macro 31
from ‘end-of-volume 31
from macros uscd to share resources 30
from OPEN macro 1
from RPL 13
in control block manipulation macros 10
in GENCB macro 10
in MODCB macro 10
in SHOWCB macro 10
in TESTCB macro 10
synchronous request 14
return codes and reason codes from OPEN 1
reusable data set
specifying in ACB macro processing). 39

Index

14

205

RKP parameter
in FIELDS parameter 137
RLS subparameter
in MRKBFR macro 106
RMODES3I1 parameter
example in BLDVRP macro 49
example in the GENCB macro 7§
in ACB macro 40, 43
in BLDVRP macro 47
in OPEN macro 107
in the GENCB macro 73
in the MODCB macro 100
RPL component code 13
RPL condition code 13,18
RPL feedback area 13
RPL feedback word 13
RPL macro
example 131
format 126
generate a request parameter list at asscmbly time
summary 165
RPL opcrand
RECLEN field (record length)
modifying and displaying 188
RPL parameter
in ACQRANGE macro 44
in BLK paramecter in GENCB macro 81
in CHECK macro 51
in CNVTAD macro 57
in ENDREQ macro 61
in ERASE macra 63
in GET macro 86
in GETIX macro 97
in MNTACQ macro 98
in MODCB macro 104
in MRKBFR macro 106
in POINT macro 109
in PUT macro 111
in PUTIX macro 12$
in SCHBFR macro 132
in SHOWCB macro 141
in TESTCB macro 152
in VERIFY macro 155
in WRTBFR macro 156
MNTACQ macro 98
RPL rcason code 13
RPL return code 13
RPLLEN parameter
in FIELDS parameter 143
RRDS parameter
in TESTCB macro 147
RST subparameter .
in MACRF paramecter of the ACB macro 39

S

S-type address constant 33, 69
SCHBFR macro
summary 165
SCRA subparameter, in CRA parameter
in ACB macro 36
in GENCB macro 72
in TESTCB macro 147
restriction 36, 72
search argument
full key 131
generic (partial) key 129
SEQ subparameter
in MACREF parameter of the ACB macro 38
in OPTCD parameter of RPL macro 128
scquential insert strategy
specified in ACB 38
sequential processing
reason code positioning state 25
shared resource macros
return codes 30
shared resources 34
SHAREOPTIONS 4
incompatible with deferring write requests 3
sharing
control blocks
based on DDNAME 34
tased on DSNAME 34
paramcter lists 178
among BLDVRP, DLVRP, GENCB, MODCB,
SHOWCR, and TESTCB 171
reentrant form 178
SHOWCB macro
as used with CLOSE macro return codes 6
display an ACB example 137
displaying a physical error message example 144
displaying an access method control block
example 137
displaying an exit list address example 138
displaying fields of a request parameter list 141
summary 166
displaying ficlds of an access mcthod control
summary 166
displaying ficlds of an access mcthod control
block 133
displaying ficlds of an exit list 139
summary 166
displaying the length of an exit example 140
execute form 177
with parameter lists built by user 183
format 133 .
generate form 177
linking to VSAM directly 187
list form 177
operand notation 181
reason codes 10
reason codes from OPEN macro 2
return codes 10

206 MVS/XA VSAM Administration: Macro Instruction Reference

™

SHRPOOL parameter

ACB macro 41

BLDVRP macro 47

DLVRP macro 59

in GENCB macro 74
SIS option

in MACREF parameter of the ACB macro 39
skip-sequential processing

teason code positioning state 25
SKP subparamecter

in MACREF paramcter of the ACB macro 38

in OPTCD paramcter of RPL macro 128
SPAN parameter

in TESTCB macro 147
SSWD parameter

in TESTCB macro 147
STMST parameter

in FIELDS parameter 137
storage requirements, I/O buffers 36, 70
storing a record (PUT macro) 111
storing an index record 13
string extension, dynamic 385, 38
STRMAX paramecter

in FICLDS paramcter 135
STRNO parameter

BLDVRP macro 48

in ACB macro 41

in FIELDS paramcter 135

in GENCB macro 74
summary of macros 159
suspending processing

overlap processing 52

request for many records 53
SYN subparamcter

in OPTCD paramcter of RPL macro 129, 130
SYNAD exit routine

physical error message 26
SYNAD paramcter

in EXLST macro 67

in GENCB macro 77

in SHOWCB macro 140

in TESTCB macro 150
synchronizing end of data

(VERIFY macro) 155

- synchronous processing

specified in MODCB macro 104

specified in RPL. macro 130
synchronous request

return codes 14

T

T @n TYPE parameter in CLOSE macro) 7
temporary CLOSE macro 7
terminating a request

ENDREQ macro 61
terminating a request before completion 62
TESTCB macro 154

execute form 178
with parameter lists built by user 183
format 1485, 150
generate form 178
linking to VSAM directly 187
list form 177
operand notation 181
reason codes 10
return codes 10
testing a ficld of a request parameter list
summary 168 :
testing a ficld of an access method control block
summary 167
testing a field of an exit list 150
summary 168
testing a request parameter list 152
testing ficlds of an access method control
block 145
testing for data set attributes 148
using a branch table 151
testing a control block
exit list 150
request parameter list 152
transaction 1D
writing rclated requests 157
TRANSID parameter
in FIELDS paramcter 143
in GENCB macro 83
in RPL macro 130
TRANSID subparameter
SCIIBFR macro 132
TRN subparamcter
in WRTBFR matro 157
TYPE parameter
BLDVRP macre 48
DLVRP macro $§9
in CLOSE macro 7, 55
in WRTBFR macro 156

U

UBF option

in MACREF parameter of the ACB macro 39
UCRA subparamcter, in CRA paramcter

in ACB macro 36

in GENCB macro 72

in TESTCB macro 147

restrictions 36, 72
UIW parameter

in FIELDS parameter 137
underlining, in notation convention vii
UNQ attribute, in ATRB parameter 147
UPAD parameter

in EXLST macro 67
UPD subparameter

in OPTCD parameter of RPL macro 129
updaling records

Index

207

See also storing a record, lengthening a record, and
shortening a record

addressed-sequential 123

example 120

keyed-direct 121

keyed-sequential 120
upgrade set

status following request that fails 14
upper case, in notation convention vii
use of list, exccute, generate forms 178

~-user buffering 39

Ay

VERIFY command
.use in OPEN macro
reason codes 2
VERIFY macro
“format 155
.. summary 168
VSAM macro formats and examples 33

w

WAITX subparameter
T i OPFCD pasameter of RBL macro 130
WAREA paramcter
in GENCB
generating request paramcter list 83
in GENCB macro
generating access method control block 74
generating exit list 74, 77
WCK paramcter

in TESTCB macro 147
work area :
processing a record in 83, 126
relation to 1/0 buffer 83, 126
specifying
generating access method control block 74
generating exit list 77
generating request parameter list 83
work data set
specifying in ACB macro 39
WRTBFR macro
format 156
summary 169

X

XINVALID subparameter
in MRKBFR macro 106

Y

YES subparameter, in CATALOG parameter
in ACB macro 36
- in GENCB macro 71
in TESTCB macro 147
restriction 36, 71

Numerics

31-bit format
ACB example 43

i

208 MVS/XA VSAM Administration: Macro Instruction Reference

R P T L T R R R R R R AR R X R

+ 1eEas wIT PITIdUIE SEISIUVE UT OUNEer gummea tape to seat this torm.

ey

srseense

10 8 0008000000000 00tL000000 000000 RE00tCs 000 ssCRbsO0ssRRREOOTY

Reader’s
Comment

MVS/XA VSAM Administration: Form

Macro Instruction Reference
GC26-4152-2

This manual is part of a library that serves as a reference source for system analysts, programmers, and operators of
IBM systems. You may use this form to communicate your comments about this publication, its organization, or
subject matter, with the understanding that IBM may use or distribute whatever information you supply in any way
it believes appropriate without incurring any obligation to you,

Your comments will be sent to the author’s department for whatever review and action, if any, are deemed
appropriate.’
Note: Do not use this form to request IBM publications. If you do, your order will be delayed because publications
are not stocked at the address printed on the reverse side. Instead, you should direct any requests for copies of
publications, or for assistance in using your IBM system, to your IBM representative or to the IBM branch office
serving your locality.

If you wish a reply, give your name, company, mailing address, and telephone number.

VhL ol

If you have applied any technical newsletters (TNLs) to this book, please list them here:

Last TNL

Previous TNL

Fold on two lines, tape, and mail. No postage stamp necessary if mailed in the U.S.A.
(Elsewhere, an IBM office or representative will be happy to forward your comments or you
may mail directly to the address in the Edition Notice on the back of the title page.)

Thank you for your cooperation.

G(C26-4152-2

Reader’s Comment Form

o
e

; Fais

oy # RETR o

4 | ot % i,,,;“”

1, LR g
%‘,." L

b
"* ey e W,,”w
sﬁma'anﬁ,gm WL

@y

R R R R R R R R R R A L R LR N R R R Y P Y ¥

‘ I3 ?':”

TR

';vPlom do not staple

i

i
L :

gt
G it

BUSINESS REPLY MAIL

EIRST CLASS PEAMIT NO.4C ARMONK, N,
S

R R L L R N L R R R R R R LR R T R R P R Y TR PR Py e Y]

Fold and tage

|

o]
b i
_l"gggg

]
8
e"“ :

e

POSTAGE WiLL 8E PAID BY ADDRESSEE

1BM Corporstion

P.D. Box 50020
Programaving Publishing
San Jose, California 95180

Please do not staple

Fold and tape

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

P X T T S T LT LR R R Y R L L T P S R R R R R R Ly P R R

Fald and tape
%

UIWpY WVSA VX/SAN

¢

uonesns

2-ZSLY920D VSN Ul Paluld (YE-0LES "ON 3lid) ai’“”ﬁgl#ﬂ“"‘““l o.oeiy

