
--..- ------ - - ----- -. ------ ---. -----_____ t_

Order Number
GC26-4152-2

'"

MVS/Extended Archite<:tQr~ "',, '
VSAM Administration:' ~': '<,.'::;'~~;,.' ':':":' ,', .

Macro Instruction Refere'hce:'-

Data Facility Produl;t
5665-XA2

.........
. ~"' .. "~

. ""'\.":

::c..

" • ..::....; .:>~

~,

{';.

;~

., Third Edition (June 1987)

This is a major revision of, and makes obsolete, GC26-4152-1.

This edition applies to Version 1 Release 3.0 of MVS/Extended Architecture Data
Facility Product, Licensed Program 5665-XA2, and to any subsequent releases until
otherwise indicated in new editions or technical newsletters.

The changes for this edition are summarized under "Summary of Changes" fonowing
the preface. Specific changes are indicated by a vertical bar to the left of the change.
These bars win be deleted at any subsequent republication of the page affected.
Editorial changes that haw no technical significance are not noted.

Changes are made periodically to this publication; before using this publication in
connection with the operation of IBM systems, consult the latest IBM System/370.
30xx. and 4300 Processors Bibliography, GC10-OOO1, for the editions that are applicable
and current.

References in this publication to IB M products, programs, or services do not imply
, that IBM intends to make these available in all countries in which IBM operates. Any
·reference to an IBM licensed program in this publication is not intended to state or
imply that only IBM's program may be used. Any functionally equivalent program
may be used instead.

Requests for IBM publications should be made to your IBM representative or to the
IBM branch office serving your locality. If you request publications from the address
given below, your order wiD be delayed because publications are not st·xked there.

A form for readers' comments is provided at the back of this publication. If the form
has been removed, comments may be addressed to IBM Corporation, P.O. Box 50020,
Programming Publishing, San Jose, California, U.S.A. 95150. IBM may use or
distribute whatever information you supply in any way it believes appropriate without
inCUrring any obligation to you.

C Copyright Intemationa1Business Machines Corporation 1985, 1986, 1981

Preface·

Organization

This pubIication is a reference manual and contains the macro instructions that
are used for the virtual storage access method (VSAM). It is intended for
programmers who use VSAM macro instructions, access method services
commands, or JCL to process data.

This publication contains the following major sections:

• Chapter 1, "Macro Instruction Return Codes and Reason Codes," contains
return codes for macros used to open and close data sets, manage control
blocks, and issue data management requests.

• Chapter 2, "VSAM Macro Fonnats and Examples," describes the syntax of
each macro and includes coded examples.

• Appendix A, "Format of Macros," summarizes, for ease of reference, the
format of the macros used to communicate with VSAM.

• AppendiJt -H, "list, Execute, ·andGenemte C'!O."'ms of Macr-os, "explai.."\5 how
to code reentrant programs with the macros that generate, modify, test, and
display control blocks at execution.

• Appendix C, "Operand Notation," defines the terms used to describe the
operand notation used in the macros that generate, modify, test, and display
control blocks at program execution time.

• Appendix D, "Building Parameter Lists," describes the standard way to
build parameter lists.

• "Glossary of Terms and Abbreviations" defines VSAM terms.

• Index is a subject index to this publication.

·Preface iii ,_."

Prerequisite Knowledge

Readers of this publication are assumed to have a programming background that
includes:

• VSAM data management.

• Catalog administration

• Job control language

Required Publications

You should be familiar with the infonnation presented in the following
publications:

• MVS/Extended Architecture Catalog Administration Guide, GC26-4138,
describes the administration of task~ for catalogs and how to use the access
method services commands to manipulate catalogs, and the objects cataloged
in them.

• MVS/Extended Architecture Data Facility Product Version 2: Customization,
GC26-4267, contains consolidated customization infonnation for the Of I)
library.

• MVS/Extended Architecture JCT... Users Guide, GC28-13SI, and
MVS/Extended ArchitectureJCL Reference, GC28-13S2, describes the JCL
parametcn referred to in this publication and describes dynamic allocation.

• MVS/Extended Architecture Message Library: System Messages, Volumes 1
and 2, GC28-1376 and GC2S-1377, provides a complete listing of the
messages issued by VSAM.

• . MVS/Extended Architecture VSAM Administration Guide, GC26-41S1,
describes how to· use VSAM.

• MVS/ Extended Architecture VSAM Logic, L Y26-3970, describes the internal
logic of VSAM.

Related Publications

Within the text, references are made to the publications listed in the table below:

iv MVSjXA VSAM Administration: Macro Instruction Reference

Short litle Publication litle Order Number

Access Method MVS/ Extended Architecture GC26-4135
Services Integrated Catalog
Reference Administration: Access Method

Services Reference

MVS/Extended Architecture GC26-4136
VSAM Catalog
Administration: Access Method
Services Reference

Catalog MVS/Extended Architecture GC26-4 138
Administration Catalog Administration Guide
Guide

Checkpoint/ MVS/Extended Architecture GC26-4139
Restart User's Checkpoint/ Restart User's
Guide Guide

Data Facility MVS/ Extended Architecture GC26-4267
Product: Data Facility Product Version
Customization 2: Customization

Data MVS/Extended Architecture GC26-4141
Administration: Data Administration: Macro
Macro Instruction Reference
Instruction
Reference

Data MVS/Extended Architecture LYB8-1191
Areas-JES2 Data Areas - J ES 2

Data M VS / Extended Architecture LYB8-1195
Areas-JES3 Data Areas - J ES 3

Data Facility MVS/Extended Architecture GC26-4146
Product: Master Data Facillty Product Version
Index 2: Master Index

Data Facility M VSj Extended Architecture GC26-4147
Product: Data Facility Product Version
Planning Guide 2: Planning Guide

Debugging MVS/Extended Architecture LC28-11641

Handbook System Programming Library: LC28-1165
Debugging Handbook, LC28-1166
Volumes 1 through 5 LC28-1167

LC28-1168

Introduction to Introduction to the IBM 3850 GA32-0028
the IBM 3850 Mass Storage System (MSS)
Mass Storage
System

JCL User's MVS/ Extended Architecture GC28-1351
Guide JCL User's Guide

JCL Reference MVS/ Extended Architecture GC28-1352
JCL Reference

Note:

All five volumes may be ordered under one order number, LBOF-IOI5 .

..
Preface V

Short Title Publication Title Order Number

OS/VS Mass OS/ VS Mass Storage System GC35-0017
Storage System (MSS) Services: Reference
Services: Information
Reference .
Infonnation

RACF General . OS/VS2 MVS Resource Access GC28-0722
Information Control Facility (RACF):
Manual General I nj'ormation Manual

Supervisor MVS/Extended Architecture GC28·1154
Services and System Programming Library:
Macro Supervisor Services and "'Iacro
Instructions Instructions

System Messages MVS/Extended Architecture GC28-1376
Message Library: System and
Messages, Volumes I and 2 GC28-I377

System MVSj Extended Architecture GC28-1152
Modifications . System Programming Library:

System Modifications

TSO Command OS/VS2 TSO Command GC28-0646
Language Language Reference with SD23-0259
Reference MVS/Extended Architecture

supplement

TSO Terminal M VS/ Extended Architecture GC28-1274
User's Guide TSO Terminal Users Guide

VSAM M VS/ Extended Architecture GC26-4151
Administration VSA.W Administration Guide
Guide

VSAl\f Logic A1VS/ EXlended Architecture LY26-3970
VSA.W Logic

31-Bit lvlVS/ Extended Architecture GC28-1158
Addressing System Programming Library:

31·Blt Addressing

Notational Conventions

A uniform system of notation describes the format of VSAM macro instructions.
This notation is not part of the language; it merely provides a basis for describing
the structure of the macros.

The macro format illustrations in this book use the following conventions:

• Brackets (J indicate optional parameters.

• Braces { } indicate a choice of entry; unless a default is indicated, you must
choose one of the entries.

• Items separated by a vertical bar (I) represent alternative items. No more
than one of the items may be selected.

vi MVS/XA VSAM Administration: Macro Instruction Reference

• An ellipsis (...) indicates that multiple entries of the type immediately
preceding the ellipsis are allowed.

• Other punctuation (parentheses, commas, etc.) must be entered as shown.

• BOLDFACE type indicates the exact characters to be entered. Such items
must be entered exactly as illustrated (in uppercaSe, except in TSO).

• Italics type specifies fields to be supplied by the user.

• BOLDF ACE--tJNDERSCOREI> type indicates a default option. If the
parameter is omitted, the underscored boldface value is assumed.

• A C 'in the macro format indicates that a blank (an empty space) must be
prescnt before the next parameter.

Preface vii

Summary of Changes

I Release 3.0, June 1987

New Programming Support

• A new parameter, MODE= 24131, has been added to the BLDVRP,
CLOSE, OLVRP and OPEN macros.

• A new parameter, RMODE31 = (ALLIBUFFICBINONE), has been added to
the ACB, BLDVRP, GENCB and MODCD macros. This new parameter
replaces the MACRF=AMODE31 subparameter in the ACB,
GENCB-ACB, and MODCB·ACB macros and the LOC parameter in the
BLDVRP and GENCB-RPL macros.

• A new specification, DAT AIINDEX, has been added to the TYPE parameter
in the BLDVRP macro.

• The parameter LOC = BELOWIANY has been added to the GENCB macro.

• The BLDVRP, CLOSE, DLVRP, and OPEN parameter lists, the ACB, and
other control blocks and I/O buffers may now reside above or below 16
megabytes.

• New codes have been added to the logical error reason codes in the feedback
field of the request parameter list.

• New codes have been added to the return codes from BLDVRP and some
existing code descriptions have been changed.

• Some code descriptions have been changed in the open reason codes in the
error field of the access method control block.

Summary of Changes ix

Service Changes

Version 2 Publications

Infonnation has been added to reflect technical service changes.

The tables containing the macro operand expressions in Appendix C, "Operand
Notation" have been deleted.

Release 2.0, June 1986

Service Changes

Infonnation has been added to reflect technical service changes.

Version 2 Publications

The preface. has. been updated to include otder numbets.£ac Version 2.

Release 1.0, April 1985

A new parameter, ACTION = REFRESH, has been added to the VERIFY
macro.

A new parameter, IOPID, has been added to the EXLST macro. This parameter
pennits tennination of existing I/O and prevention of new I/O.

x MVS/XA VSAM Administration: Macro Instruction Reference

Contents

Chapter I. Macro Instruction Return Codes and Reason Codes .•••••..•.• I
Return Codes and Reason Codes from OPEN 1
Return Codes from CLOSE 6
OPEN/CLOSE Message Area for Multiple Reason or \Vaming Messages ... 7

Message Area Ileader 7
Message list .. 9

Control Block Manipulation Macro Return Codes and Reason Codes 10
Record Management Return Codes and Reason Codes 13

Return Codes (RPLRTNCD) 13
Component Codes (RPLCMPON) 14
Reason Codes (RPLERRCD) 15

Return Codes from Macros Used to Share Resources among Data Sets 30
Return Codes from BLDVRP 30
Return Codes from DL VRP 31

Return Codes from End-of-Volume 31

Chapter 2. VSA:\I l\lacro Formats and Examples ••...••••.•........ 33
ACB Macro (Generate an Acces!) Method Control Block at Assembly Time) 34
ACQRANGE Macro (Stage Data) 44
BLDVRP Macro (Build VSAM Resource Pool) 46

Example 1. Obtaining an LSR Pool above 16 Megabytes 49
Example 2. Request for Separate Data and Index Resource Pools 50

CIIECK Macro (Wait for Completion of Request) 51
CLOSE Macro (Disconnect Program and Data) 55

Example: CLOSE Macro 56
CNVTAD Macro (Convert Address) 57
DLVRP Macro (Delete VSAM Resource Pool) 59

Example: DLVRP l\lacro 60
ENDREQ Macro (Tenninate a Request) 61
ERASE Macro (Delete a Record) 63
EXLST Macro (Generate an Exit List at Assembly Time) 66
GENCB Macro (Generate an Access Method Control Block at Execution

Time) ... 69
GENCB Macro (Generate an Exit list at Execution Time) 76
GENCB Macro (Generate a Request Parameter List at Execution Time) ... 80
GET Macro (Retrieve a Record) . ~ .. 86
GETIX J\.facro (Retrieve an Index Record) 97
MNTACQ Macro (Mount Acquire) 98
MODCB Macro (Modify an Access Method Control Block) 100
MODCB Macro (Modify an Exit List) 102
MODCB Macro (Modify a Request Parameter List) 104
MRKBFR Macro (Mark Buffer) 106
OPEN Macro (Connect Program and Data) 107

Contents xi

-.
POINT Macro (Position for Access) _. 109
PUT Macro (Store a Record) III
PUTIX Macro (Store an Index Record) 125
RPL Macro (Generate a Request Parameter List at Assembly Time) 126
SCHBFR Macro (Search Buffer) 132
SHOWCD Macro (Display Fields of an Access Method Control Block) .• 133
SHOWCD Macro (Display Fields of an Exit List)• 139
SHOWCD Macro (Display Fields of a Request Parameter List)• 141
TESTCD Macro (Test Fields of an Access Method Control Block) 145
TESTCB Macro (Test.Fields of an Exit List) 150
TESTCD Macro (Test a Request Parameter List) 152
VERIFY Macro (Synchronize End of Data) 155
WRTBFR Macro (Write Buffer) 156

:, Appendix A. .~ormat of Macros 159

Appendix B. List, Execute, and Generate Forms of Macros ••••••••••• 171
List-Form Keyword•................... _ . 172
Execute-Form Keyword 173
Generate-Form Keyword 173
List, Execute and Generate Formats 174
Use of.List, Execute, and Generate Forms 178

Examples q£Generate~ List". and Execute Forms in Reentrant
Environments 179

Appendix C. Operand Notation •••••••••••••••••••••••••••••••• 181
Operands with GENCD, MODCB, SHOWCD, and TESTCB 181

Appendix D. Building Parameter Lists •••••••••••••••••••••••••• 183
The Fonnat of the Parameter Lists - 183
Building I leader and Element Entries 185
Passing Control Directly to VSAM 187

Modifying and Displaying the RECLEN Field of an RPL Directly 188

Glossary of Terms and Abbreviations •••••••••••••••••••••••••••• 191

Index•................... 197

xii MVS/XA VSAM Administration: Macro Instruction Reference

I-,

Figures

1. OPEN Reason Codes in the ERROR Field of the Access Method
Control Block .. 2

2. CLOSE Reason Codes in the ERROR Field of the Access Method
Control Block•......•........... 6

3. Fonnat of the Message Area Header ..•.•.....•............... 8
4. Fonnat of Individual Messages in Message List•............. 9
S. GENCB, MODCB, SHOWCD, and TESTCD Reason Codes Returned

in Register 0 • 11
6. Component Codes Provided in the RPL IS
7. Successful Completion Reason Codes in the Feedback Area of the

Request Parameter List•................. 16
8. Logical Enor Reason Codes in the Feedback Area of the Request

Parameter List ... 17
9. Positioning States of Reason Codes Listed for Sequential, Direct, and

Skip-Sequential Processing 2S
10. Physical Enor Reason Codes in the Feedback Area of the Request

Parameter list .. 27
11. Physical Error Message POlmat 27
12. MACRF Options .. 38
13. OPTCD Options 0 •• 128
14. PIELDS Opcrand Keywords for an Access Method Control Block .. 134
15," FlEWS OpemuJ J(eyw~rds.for.a .Display.Request P.anunetcr List • £ 142
16. Reentrant Programming 178
17. Fonnat of Header and Element Entries for GENCB, MODCB,

SHOWCB, and TESTCB Parameter Lists 0 0" •••••••• 0 • •• 184

Figures xiii

Chapter 1. Macro Instruction Return Codes and Reason Codes

This chapter describes the return codes and reason codes generated by the macro
instructions used 10 open and close a data set, manage VSAM control blocks,
and issue data processing requests.

VSAM sets the return codes in register IS. These return codes are paired with
reason codes set in the access method control block (ACB) and the request
parameter list (RPL). Reason codes set in the ACB indicate open or close errors.
Reason codes set in the RPL indicate record management errors.

This manual lists return codes and reason codes in decimal and hexadecimal
values. The decimal value is shown frrst, followed by the hexadecimal value in
parentheses. Fonnat descriptions and examples of each macro are shown in
Chapter 2, "VSAM Macro Ponnats and Examples" on page 33.

Return Codes and Reason Codes from OPEN

When your program receives control after issuing an OPEN macro, the return
code in register 15 indicates whether all of the VSAM data sets were opened
successfully:

Return
Code

0(0)

4(4)

8(8)

12(C)

Condition

All data sets were opened successfully.

All data sets were opened successfully, but one or more warning
messages were issued (reason codes less than X'80').

At least one data set (VSAM or non-VSAM) was not opened
successfully; the access method control block was restored to the
contents it had before OPEN was issued; or, if the data set was
already open, the access method control block remains open and
usable and is not changed.

A non-VSAM data set was not opened successfully when a
non-VSAM and a VSAM data set were being opened at the same
time; the non-VSAM data control block was not restored to the
contents it h~d before OPEN was issued (and the data set cannot be
opened without restoring.the control block).

Olapter 1. Macro Instruction Return Codes and Reason Codes 1

If register IS contains a nonzero return code, you can use the SHO\VCB macro
to display the corresponding reason code. The SHOWCB macro displays the
error field in each access method control block specified by the OPEN macro.
(See "SHOWeD Macro (Display Fields of an Access Method Control Block),'
on page 133.) Figure I lists the reason codes that may appear in this error field.
VSAM also writes a message to the operator console and to the progranuner's
listing to explain the error further. For a listing of VSAM messages, see System
Messages.

Reason
Code

0(0)

Condition

One of the following conditions exists:

• VSAM is processing the access method control block for some
other request.

• The access method control block address is invalid.

76(4C) Warning message: The interrupt recognition flag (I R P) was detected
for a data set opel1ed for input processing.

92(5C) Warning message: Inconsis~ent use of COUP processing. Sharing
options. diffet between ~xand·data. £9mponent&.

96(60) \Varningmessage: An unusable data set was opened for input.

100(64) Warning message: OPEN encountered an empty alternate index that
is part of an upgrade set.

104(68) Warning message: The time stamp of the volume on which a data set
is stored doesn t match the system time stamp in the data set's catalog
record; this indicates that extent infonnation in the catalog record
may not agree with the extents indicated in the volume's VTOC.

108(6C) Warning message: The time stamps of a data component and an
index component do not match; this indicates that either the data or
the index has been updated separately from the other.

116(74) Warning message: The data set was not properly closed and either
OPEN's implicit verify was unsuccessful or the user specified that
OPEN's implicit verify should not be executed.

A previous VSAM program may have abnonnally tenninatcd. Data
may be lost if processing continues; the access method services
VERIFY command may be used to cause the data set to be properly
closed. For a description of the VERIFY command, see Access
Method Se",ices Reference. In a cross-system shared DASD
environment, a return code of 116 can have two meanings: (I) the
data set was not properly closed, or (2) the data set is opened for
output on another processor ..

~ 118(76) Warning message: The data set was not 'properly closed but OPEN's
implicit verify was successfully executed.

Figure I (Part I or 4). OPEN Reason Codes in the ERROR Field of the Access
Method Control Block

I
2 MVS/XA VSAM Administration: Macro Instruction Reference

Reason
Code Condition

128(80) DD statement for this access method control block is missing or
invalid.

132(84) One of the following errors occurred:

• Not' enough storage was available for work areas.
• lbe required volume could not be mounted.
• An uncorrectable I/O error occurred while VSAM was reading

the job rue control block (JFCB).
• The format-l DSCB or the catalog cluster record is invalid.
• The user-supplied catalog name docs not match the name on the

entry.
• rlbe user is not authorized to open the catalog as a catalog.

136(88) Not enough virtual storage space is available in your program's
address space for work areas, control blocks, or buffers.

140(8C) The catalog indicates this data set has an invalid physical record size.

144(90) An uncorrcctable I/O error occurred while VSAM was reading or
writing a catalog record.

145(91) An uncorrcctable error occurred in the VSAM volume data set
(VVDS).

148(94) No record for the data set to be opened was found in the available
catalog(s), or an unidentified error occurred while VSAM was
searching the catalog. For the catalog return code, see system
message IDC30091 in System Messages.

152(98) Authorization checking has failed for the following reasons: .

1. The password specified in the access method control block for a
specified level of access doesn't match the password in the catalog
for that level of access.

2. RACF failure. For the catalog return code, see system message
IDC30091 in System Messages.

160(AO) The operands specified in the ACB or GENCB macro are
inconsistent either with each other or with the information in the
catalog record.

One of these conditions has been detected:

• For option ACBRST
- Path processing
- LSRIGSR

• For option ACBICI
- LSRIGSR
- KSDS

Figure I (Part 2 or 4).' OPEN Reason Codes in the ERROR Field of the Access
Method Control Block

..
Oaapter 1. Macro Instruction Return Codes and Reason Codes 3

Reason
Code Condition

Path processing
Sequence set with data
Replicated index
Blocksize not equal to CI size

• For option ACBUBF
LSRIGSR

- ACBCNV not specified
- ACBKEY specified
- ACBADR specified

• For option ACBSDS
- LSRIGSR
- Path processing
- Upgrade processing

• For option ACBCBIC
- LSRIGSR
- ACBICI not specified

• For miscellaneous options
BufTerspace specified and the amount is too small to process
thcdata set
Volume not mounted
Trying to open an empty data set for input

I 64(A4) An uncorrectable I/O error occurred while VSAM was reading the
volume label.

I 68(A8) The data set was not available for the type of processing you
specified, or an attempt was made to open a reusable data set with the
reset option while another user had the data set open. The data set
may have the INHIBIT attribute specified.

The data set cannot be opened for CBUF processing because it was
already opened for non-CBUF processing. Or the data set has
conflicting CB UF attributes for the data and index components of the
ACB.

176(80) An error occurred while VSAM was attempting to fix a page of
virtual storage in real storage.

180(84) A VSAM catalog specified in JCL either does not exist or is not
open, and no record for the data set to be opened was found in any
other catalog.

184(88) An uncorrectable I/O error occurred while VSAM was completing an
I/O request.

188(BC) The data set indicated by the access method control block is not of
the type that may be specified by an access method control block.

192(CO) An unusable data set was opened for output.

Figure I (Part J or 4). OPEN Reason Codes in the ERROR Field or the Access
l\1ethod Control Block

4 MVSjXA VSAM Administration: Macro Instruction Reference

Reason
Code

193(CI)

196(C4)

200(C8)

204(CC)

20S(CD)

208(DO)

212(04)

216(D8)

220(DC)

224(EO)

228(E4)

~2(E8)

236(EC)

240(FO)

244(F4)

Condition

The interrupt recognition flag (IRF) was detected for a data set
opened for output processing.

Access to data was requested via an empty path.

The Fonnat-4 DSCB indicates that the volume is unusable. There
was an error in CO NVERTV to convert the volume from either real
to virtual or virtual to real.

The ACB MACRF specification is GSR and caller is not operating in
supervisor protect key 0 to 7, or ACB MACRF specification is CBIC
(Control Blocks in Common) and caller is not operating in supervisor
state with protcct key 0 to 7.

lbe ACBCATX option or VSAM volume data set OPEN was
specified and the calling program was not authorized.

The ACB MACRF specification is GSR and ea1ler is using an
OSjVS 1 system.

lbe ACB MACRF specification is GSR or LSR and the data set
requires load mode processing.

The ACB MACRF specification is GSR or LSR and the key leDbrth
of the data set exceeds the maximum key length specified in
BLDVRP.

lbe ACB MACRF specification is GSR or LSR and the data set's
control interval size exceeds the size of the largest buffer specified in
BLDVRJ>.

Improved control interval processing is specified and the data set
requires load mode processing.

The ACB MACRF specification is GSR or LSR and the VSAM
shared resource table (VSRT) does not exist (no buffer pool is
available).

Reset was specified for a nonreusable data set and the data set is not
empty.

A pennanent staging error occurred in MSS (ACQUIRE).

Format-4 DSCB and volume timestamp verification failed during
volume mount processing fQr output processing.

The volume containing the catalog recovery area was not mounted
and not verified for output processing.

Figure I (Part 4 or 4). OPEN Reason Codes in the ERROR Field or the Access
Method Control Block

Otapter 1. Macro Instruction Return Codes and Reason Codes 5

Return Codes from CLOSE

When your program receives control after it has issued a CLOSE macro, a return
code in register 15 indicates whether all the VSAM data sets were closed
successfully:

Retum
Code

0(0)

4(4)

Condition

All data sets were closed successfully.

At least one data set (VSAM or non-VSAM) was not closed
successfully.

If register 15 contains 4, you can use SIIO\VCB to display the ERROR field in
each access method control block to fmd out whether a VSAM data set wasn't
closed successfully and why not. (See "SHO\VCB Macro (Display Fields of an
Access Method Control Block)" on page 133.) Figure 2 gives the reason codes
that the ERROR field may contain following CLOSE. In addition to these
reason codes, VSAM writes a message to the operator's console and the
progr-MIUIler's listing to further explain the error. For a listing of these messages,
see System Messages.

Retum
Code Condition

0(0) No error (set when register 15 contains 0).

4(4) The data set indicated by the access method control block is already
closed.

129(81) TCLOSE was issued against a media manager's structure.

132(84) An uncorrectable I/O error occurred while VSAM was reading the
job me control block (JFCD).

136(88) Not enough virtual storage was available in your program's address
space for a work area for CLOSE.

144(90) An uncorrcctable I/O error occurred while VSAM was reading or
writing a catalog record.

145(91) An uncorrectable error occurred in the VSAM volume data set
(VVDS).

148(94) An unidentified error occurred while VSAM was searching the
catalog.

Figure 2 (Part I of 2). CI.OSE Reason Codes in the .:RROR .~ield .of the Access
Method Control Block

6 MVS/XA VSAM Administration: Macro Instruction Reference

Return
Code Condition

184(B8) An uncorrectable 1/0 error occurred while VSAM was completing
outstanding I/O requests.

236(EC) A pcnnanent destaging error occurred in MSS (RELINQUISH).
With temporary CLOSE, a destaging error or a staging error
(ACQUIRE) occurred.

Figure 2 (Part 2 or 2). CLOSE Reason Codes in the ERROR Field or the Access
Method Control Block

OPEN/CLOSE Message Area for Multiple Reason or Warning
Messages

Message Area Header

During the execution of an OPEN, CLOSE, or TYPE = T option of CLOSE,
morc' than one error condition may be detected. However, the ACB error flag
field can only accommodate one warning or error condition. In order to receive
multiple error or warning conditions, you may specify an optional message area.
VSAM will accumulate error messages from an OPEN, CLOSE, or TYPE=T
option in this message area.

Multiple messages will be supplieJ when you specify nonzero values in the
MAREA and MLEN parameters of the ACB. If MAREA or MLEN is not
specified or is zero, no error or warning information is stored into the message
area. The ACB error flag field is then the only indication for errors or warnings.
If MAREA and ML£N are'5pCcif1ed and ·iftbe'1'flessage -area is 100 small to
accommodate all messages, the last incoming messages are dropped. However,
you will be given an indication of the number of warnings and me . sages that
occurred.

The message area provided by VSAM is subdivided into two parts:

• The message area header
• The message list

The message area header contains statistical, pointer: and general information. Its
contents are unrelated to the individual messages. The format of the message
area header is shown in Figure 3 on page 8.

Chapter 1. Macro Instruction Return Codes and Reason Codes 7

Byte 0

Bytes 1-2

Byte 3

Bytes 4},1

Bytes 12-13

Bytes 14-15

Bytes 16-19

Flag Byte

bit 0 = 1 Full message area header has
been stored.

bit 0 = 0 Only flag byte of message area
header has been stored.
(Implies that no messages

. have been stored.)

bits 1-7 Reserved (set to binary zeros)

Length of message area header (includes flag byte
and length byte)

Request type code:

X'Ol# OPEN

X'02' CLOSE

X'03' TCLOSE

ddname. wed for ACB

Total number of messages (error or warning
conditions) issued by OPEN/CLOSE/TCLOSE

Number of messages stored by OPEN/CLOSE/TCLOSE
into message area

Address of message list, for example, of first
message in message area

Figure J. Format or the l\fessage Area I leader

The function of the ACB error flag field remains unchanged whether or not this
optional message area is specified. At the end of an OPEN, CLOSE, or
TCLOSE, this field contains either X ' 00' (indicating no error or warning
condition occurred) or a nonzero code. The ACB elTOr flag byte stores the
nonzero OPEN/CLOSE/TCLOSE reason code corresponding to the error or
warning condition that occurred with the highest severity.

Message area header information is only stored when a warning or error
condition is detected; that is, when the ACB error flag field is set to a nonzero
value. The header information consists of the flag byte only if the message area
Icngth (l\ILEN) is not large enough to accommodate the full message area
header. In this case, bit 0 of the flag byte will be zero. Before accessing the
message header information (bytes I through 19), test byte 0 to See if more
infonnation is stored. If MLEN = 0, no header information is stored, not even
the flag byte. If the full message area header is stored, bytes 1 and 2 contain its
actual length. Your pro~ should be sensitive to this length when interrogating
the message area header.

8 MVSjXA VSAM Administration: Macro Instruction Reference

Message List

The message list contains individual messages corresponding to detected warning
or error conditions. Bytes 16 through 19 of the message area header point to the
location of the message list within the message area. If the message area header is
not stored completely (bit 0 of byte 0 is 0), the location of the message list is not
provided. Within the message list, individual messages are stored as a contiguous
string of variable-length records. Bytes 14 and 15 of the message area header
contain the number of messages stored. Check for a nonzero stored message
count before investigating the message list. However, messages may not be
stored even if the ACB error flag byte contains a nonzero value and the message
area header bit 0 of byte 0 is 1. For example, no messages will be stored if
MLEN is not large enough to allow at least one message to be stored.

The format of the individual messages is given in Figure 4.

Bytes 0-1

Byte 2

Byte 3

Length of message including these two bytes.

ACB error flag code corresponding to the error or warning
condition repr~sented by this message.

Function type code:

Specifics which dsname, if any, is stored in bytes 4 through 47 of
the message.

X'OO' no dsname stored. Bytes 4-47 of the message contain
binary zeros. The error warning condition is not clearly
related to a component, or VSAM was unable to identify
or obtain the cluster name of the component in error.
This code is used only if the ddname of the ACB does not
identify a valid DD statement, or VSAM was unable to
obtain the dsname ctmtained in1heDD 'Statement.

X'OI' dsname contained in DD statement is stored. The error
or warning condition is not clearly related to a
component, or VSAM was unable to identify or obtain
the cluster name of the component in error.

X'02' dsname (cluster name) of base cluster stored. Error
occurred during OPEN /CLOSE/TCLOSE for base
cluster.

X'03' dsname (cluster name) of alternate index component
stored. Error occurred during OPEN/CLOSEjTCLOSE
for alternate index component.

X'04' dsname (cluster name) of member of upgrade set stored.
Error occurred during OPEN/CLOSE/TCLOSE for this
member of the upgrade set.

Bytes 4-47 Binary zeros (function type code = X'OO') or a dsname as described
by byte 3.

Figure 4. Format of Individual Messages in Message List

Olapter 1. Macro Instruction Return Codes and Reason Codes 9

..
Bytes 0 and I of each message specify its actual length. Because messages vary in
length, you will need to know the actual length of each message in ord.er to do
your processing.

Byte 2 of the message contains the ACB error flag code; it does not indicate that
a dsname has been stored. Depending on the condition that raised the ACD
error flag code, either no dsname or different types of dsnames (DO, base cluster,
alternate index, or upgrade set member) may be stored. (The same condition·
may be detccted both when opening the base cluster and when opening a
member of the upgrade set. For example, an 1/0 error may occur when trying to
obtain the dsname for the component in error.) Bytes 4 through 47 of the
message can contain a dsname, but do not specify its type. Only byte 3 of the
message specifics whether a dsname has been stored and, if so, its type.

Control .Block Manipulation Macro Return Codes and Reason Codes

The GENCO, MODCD, SIIO\VCD, and TESTCR macros are execUtable (unlike
the ACD, EXLST, and RPL macros). They cause control to be given to VSAM
to perform the indicatcd task. VSAM indicates if the task was completed by a
return code in register 1 S:

Return
Code

0(0)

4(4)

Condition

Task completed.

Task not complcted.

8(8) An attempt was made to use the execute fonn of a macro to modify a
keyword that isn~t in the parameter list. (See Appendix B, "List,
Execute, and Generate Forms of l\1acros" on page 171.)

An error can occur because you specified the operands incorrectly or, if you
constructed a parameter list yourself, because the paramcter list was coded
incorrectly. See Appendix 0, "Building Parameter Lists" on page 183, for an
explanation of how to construct parameter lists for GENCB, MODCB,
SIIO\VCB, and TESTeD.

\Vhen "Jter"t~Main~ef'~adasorr'·~indkatms. w~
· ~tir~ra 1htr.rJask ... ,![you construct the parameter list, registcr 0
can contain reason codes I, 2, 3, 10, 14, 20, and 21. Figure S on page 11
describes each reason code that can be returned in register o.

10 MVSjXA VSAM Administration: Macro Instruction Reference

Reason Applicable
Code Macros· Reason VSAM Couldn't Perform the Task

1(1) G,M,S,T The request type (generate, modify, show, or test) is
invalid.

2(2) G,M,S,T The block type (access method control block, exit list, or
request parameter list) is invalid.

3(3) G,M,S,T One of the keyword codes in the parameter list is invalid.

4(4) M,S,T The block at the address indicated is not of the type you
indicated (access method control block, exit list, or request
parameter list).

5(5) S,T ./' Access method control block fields were to be shown or
tested, but the data set is not open or it is not a VSAM
data set.

6(6) S,T Access method control block infonnation about an index
was to be shown or tested, but no index was opened with
the data set.

7(7) M,S An exit list was to be modified, but the list was not large
enough to contain the new entry; or an exit was to be
modified or shown but the specified exit wasn't in the exit
list. (With TESTCR, if the specified exit address isn't
prescnt, you get an unequal condition when you test for
it.)

8(8) G There isn't enough virtual storage in your program's
address space to generate the access method control
block(s), exit list(s), or request parameter list(s) and no
work area outside your address space was specified.

9{~} (i,S The work area specified was 100 small for generation -Of

display of the indicated control block or fields.

IO(A) G,M With GENCB, exit list control block type was specified
and you specified an exit without without giving an
address. With MODCB, exit list control block type was
specified and you specified an exit without giving an
address; in this case, either active or inactive must be
specified, but load cannot be specified.

11(8) M Either (I) a request parameter list was to be modified, but
the request parameter list dermes an asynchronous request
that is active (that is, no CHECK or ENDREQ has been
issued on the request) and thus cannot be modified; or (2)
MODeB is already issued for the control block, but
hasn't yet completed.

Figure S (Part I or 2). GENCD, MODCD, SHOWCD, and TESTCD Reason Codes
Returned in Register 0

Ulapter 1. Macro Instruction Return Codes and Reason Codes II

Reason Applicable
Code Macros' Reason VSAM Couldn't Perform the Task

12(C) M An access method control block was to be modified, but
the data set identified by the access method control block
is open and thus cannot be modified.

13(D) M An exit list was to be modified, and you attempted to
activate an exit without providing a new exit address.
Because the exit list indicated does not contain an address
for that exit, your request cannot be honored.

14(E) G,M,T One of the option codes (for MACRF, A TRB, or
o PTCD) has an invalid combination of option codes
specified (for example, OPTCD = (ADR, SKP».

IS(F) G,S The work area specified did not begin on a fullword
boundary.

16(10) G,M,S,T A VT AM keyword or subparameter was specified but the
AM = VT AM parameter was not specified. AM = VT AM
must be specified in order to process a VT AM version of
the control block.

19(13) MrSrT A keY"lwd was. specified. which refers. to a ficld beyond
the length of the control block located at the address
indicatcd. (For examplc, a VTAM keyword was specified,
but the control block pointed to was a shorter,
non-VTAM block.)

20(14) S Keywords were specified which apply only if
MACRF = LSR or GSR.

21(15) S,T The block to be displayed or tested does not exist because
the data set is a dummy data sct.

122(16) S Al\1 = VT AM was specified and the RPL FIELDS
parameter conflicts with the RPLNIB bit status. Either
RPLFIELDS = NIB was specified and the RPLNIB was
otT, or RPL FIELDS=ARG was specified and the
RPLNIB bit was on.

Figure S (Part 2 or 2). G.:NCB, MODCR, SIIO\VCB, and TESTCR Reason Codes
Returned in Register 0

Note to Fagure 5:

G=GENCB, M=MODCB, S=SHOWCB, T=TESTCB

12 MVS/XA VSAM Administration: Macro Instruction Reference

Record Management Return Codes and Reason Codes

The following record management macros give return codes and reason codes in
the feedback area of the RPL: GET, PUT, POINT, ERASE, CHECK,
ENDREQ, GETIX, PUTIX, ACQRANGE, CNVTAD, MNTACQ,
MRKBFR, SCHBFR, and WRTBFR. .

The feedback word in the RPL consists of four bytes:

Byte Description

I Problem determination function (PDF) code. This code is used to locate
the point in VSAM record management at which a logical error
condition is recognized. A description of the returned PDF code is
located in the IDARMRCD macro.

1 RPL return code. This code is returned in register 15.

3 Component code. This code specifies the component being processed
when the error occorred.

4 Reason tode. This code, when paired with the return code in byte 2,
specifies the actual reason for either a successful completion or an error.

Bytes 2 through 4 make up the RPL feedback area. An explanation of the codes
that appear in these three bytes follows.

Bytes 3 and 4 make up the RPL condition code. An explanation of this code
also follows.

The field name of each byte appears within parentheses in the following figure.

RPL Feedback Word (4 ~ytes)
1---RPL Feedback Area (3 bytes)

I I RPL Condition Code (2 bytes) ,I 1 _____________ _

PDF Code Retu~n Code Component Code Reason Code
(RPLFUNCD) (RPLRTNCD) (RPLCMPON) (RPLERRCD)

For more infonnation on the RPL feedback word, see VSAM Logic.

Return Codes (RPLRTNCD)

The meaning of the return code depends on whether processing is asynchronous
or synchronous.

Olapter 1. Macro Instruction Return Codes and Reason Codes 13

Asynchronous Request

After you issue an asynchronous request for access to a data set, VSAM issues a
return code in register IS to indicate whether the request was accepted, as follows:

Return Code
(RPLRTNCD) Condition

0(0)

4(4)

Request was accepted.

Request was not accepted because the request parameter list
indicated by the request (RPL=address) was active for another
request.

If the asynchronous request was accepted, issue a CIIECK after doing your other
processing so VSAM can indicate in register IS whether the request was
completed successfully, set a return code in the feedback area, and exit to any
appropriate exit routine. If the request was not accepted, you should either wait
until the other request is complete (for example, by issuing a CHECK on the
request parameter list) or terminate the other request (using ENDREQ). Then
you can reissue the rejected request.

Mter a synchronous request, or a CHECK or ENDREQ macro, the return code
in register 15 indicates whether the request was completed successfully, as follows:

Return Code
(Rl)LRTNCD) Condition

0(0)

4(4)

8(8)

12(C)

Request completed successfully.

Request was not accepted because the request parameter list
indicated by the request (RPL= address) was active for another
request.

Logical error; specific error is indicated in the feedback area in
the RPL.

Physical error; specific error is indicated in the feedback area in
the RPL.

Component Codes (RPLCl"IPON)

When a logical or physical error occurs, VSAM uses the component code field of
the RPL to identify the component being processed when the error occurred and
indicates whether the alternate index upgrade set is co~ct following the request
that failed. The component code can be displayed and tested by using the
SHOWCB and TESTCD macros. The codes and their meanings are given in
Figure 6 on page 1 S.

14 MVS/XA VSAM Administration: Macro Instruction Reference

Note: The component code (byte 3 of the RPL feedback word) and the reason
code (byte 4 of the RPL feedback word) make up the 2-byte RPL condition
code.

For more information on the RPL feedback word see VSAM Logic.

Component Code What Was Being
(RI)I .. Cl\IPON) Processed IJpgrade Set Status

0(0) Base cluster Correct

1(1) Base cluster May be incorrect

2(2) Alternate index Correct

3(3) Alternate index May be incorrect

4(4) Upgrade set Correct

5(5) Upgrade set May be incorrect

.~igure 6. Component Codes I'rovided in the RI)L

Reason Codes (RPLERRCD)

The 0, 8, and 12 return codes in register 15 are paired with reason codes in the
feedback area of the request parameter list.

The reason codes in the feedback area of the request parameter list can be
examined with the SHO\VCB or TESTCB macro. You may code your
examination routine inunediately following the request macro. Logical errors,
physical--et1'On, and reaching the end of the data -set ali cause VSAM to -exit. to
the appropriate exit routine, if you provide one.

Coordinate error checking in your program with your error-analysis exit routines.
If they terminate the program, for instance, you would not need to code a check
for an error after a request. But if a routine returns to VSAM to continue
processing, you should check register 15 after a request to detennine whether
there was an error. Even though the error was handled by an exit routine, you
may want to modify processing because of the error.

Reason Code (Successful Request)

When the request is completed, register 15 is set to indicate the status of the
request. A reason code of 0 indicates successful completion. Nonzero codes are
set for a variety of other reasons. Figure 7 on page 16 lists these codes and their
meanings.

..
Outpter 1. Macro Instruction Return Codes and Reason Codes 15

Reason Code
(RPLERRCD)
When Register
IS = 0(0) Condition

0(0)

4(4)

8(8)

12(C)

16(10)

20(14)

24(18)

28(lC)

32(20)

36(24)

40(28)

Request completed successfully.

Request completed successfully. For retrieval, VSAM mounted
another volume to locate the record; for storage, VSAM allocated
additiol).al space or mounted another volume.

For GET requests, indicates a duplicate alternate key exists
(applies only when accessing a data set using an alternate index
that allows nonunique keys); for PUT requests, indicates that a
duplicate key was created in an alternate index with the
nonunique attribute.

All buffers, except for the buffer just obtained, may have been
modified and may need to be written; issuance of WRTBfR
macro is suggested.

The sequence-set record does not have enough space to allow it
to address all of the control intervals in the control area that
should contain the record. The record was written into a new
control atca.

Data set is not on virtual DAS 0 for
CNVTAD/MNTACQ/ACQRANGE request.

Buffer found but not modified; no buffer writes performed.

Control interval split indicator was detected during an addressed
GET NUP request.

Request deferred for a resource held by the tenninated RPL is
asynchronous and cannot be restarted by TERMRPL.

Possible data set error condition was detected by TERMRPL:

• The request was abnormally tenninated in the middle of its
I/O operation.

• One of the data/index B UFCs of the string contains data that
needs to be written (BUFCMW=ON) but it was invalidated
byTERMRPL.

Error in PLH data DUFC pointer was detected by TERMRPL.

Figure 7. Successful Completion Reason Codes in the Feedback Area of the Request
Parameter List

16 MVS/XA VSAM Administration: Macro Instruction Reference

I
\

Reason Code (Logical Errors)

If a logical error occurs and you have no LERAD routine (or the LERAD exit is
inactive), VSAM returns control to your program following the last executed
instruction. (CiUser-\Vriuen-Exit Routines" in Data Facility Product:
Customization describes the LERAD routine.) The return code in register 15
indicates a logical error (8), and the feedback area in the request parameter list
contains a reason code identifying the error. Register I points to the request
parameter list.
Figure 8 gives the reason codes shown in the feedback area and explains their
meanings.

Reason Code
(RPLERRCD)
When Register
IS = 8(8) Condition

4(4)

~78(8)

12(C)

16(10)

End of data set encountered (during sequential or
skip sequential retrieval), or the search argument
is greater than the high key of the data set.
Either no EODAD routine is provided, or one is
provided, returned to VSAM, and the processing
program issued another GET. ("User-Written-Exit
Routines" in VSAM Administration Guide describes
the EODAD routine.)

You attempted to store a record with a duplicate
key, or there is a duplicate record for an
alternate index with the unique key option.

A key sequence check was pcrfonned and an error was
detected in one of the following processing
conditions:

... Foril key-sequenced data set

PUT sequential or skip-sequential processing
GET sequential, single string input only
GET skip-sequential processing and the previous
request is not a POINT

• For a relative record data set

- GET skip-sequential processing
- PUT skip-sequential processing

Record not found, or
the RBA is not found in the buffer pool.

Figure 8 (Part I or 7). Logical Error Reason Codes in the Feedback Area or the
Request Parameter List

Cllapter). Macro Instruction Return Codes and Reason (".odes I 7

Reason Code
(RPLERRCD)
\Vhen Register
15 = 8(8) Condition

20(14)

24(18)

28(lC)

32(20)

36(24)

40(28)

44(2C)

The RBA is found, but the buffer is under the exclusive control of
another request. With this condition, it is possible to also have
buffers invalidated. Or, the control interval is for a record already
held in exclusive control by another requester.

Note: If the R PL message area is correctly specified, the following
infonnation is returned:

Offset Length Discussion

o 4

4 1

Address of RPL in exclusive
control

Flag Byte:

X' 00' - neither RPL is doing a
control area split

X f 01 '- current RPL is attempting a .
control area sput

X ' 02' - other RPL is doing
a control area split

Record resides on ~ volume that can't be mounted.

Data set cannot be extended because VSAM can't allocate
additional direct access storage space. Either there is not enough
space left to make the secondary allocation request or you
attempted to increase the size of a data set while processing with
SHAREOPTIONS=4 and DISI)=SHR.

You specified an RBA that doesn't give the address of any data
record in the data set.

Key ranges were specified for the data set when it was defmed, but
no range was specified that includes the record to be inserted.

Insufficient virtual storage in your address space to complete the
request.

Work area not large enough for the data record or for the buffer·
(GET with OPTCD=MVE).

Figure 8 (Part 2 of 7). Logical Error Reason Codes in the Feedback Area of the
Request Parameter Lu.-t

18 MVS/XA VSAM. Administration: Macro Instruction Reference

Reason Code
(RPLERRCD)
When Register
IS = 8(8) Condition

48(30)

52(34)

64(40)

68(44)

72(48)

76(4C)

80(50)

84(54)

Invalid options, data set attributes, or processing conditions
specified for TERMRPL request:

• CNV processing
• The specified RPL is asynchronous
• Chained RPLs
• Path processing
• Shared resow-ces (LSR/GSR)
• Load mode
• Relative record data set
• Data set contains spanned records
• User not in key 0 and supervisor state
• End-of-volume in process (secondary allocation)

The previous request was TERMRPL.

There is insufficient storage available to dynamically add another
string. Or, the maximum number of placeholders that may be
allocated to the request has been allocated, and a placeholder is not
available.

You attempted to use a type of processing (output or control
interval processing) that was not specified when the data set was
opened.

You made a keyed request for access to an entry-sequenced data
set, or you issued a GETIX or I'UTIX to an entry-sequenced or
relative record data set.

'You ISSUed an addressed or control interval PUT to add to a
key-sequenced data set, or you issued a control interval PUT to a
relative record data set.

You issued an ERASE request in one of the following situations:

• For access to "an entry-sequenced data set.
• For access to an entry-sequenced data set via a path.
• With control interval access.

You specified OPTCD= LOC in one of the following situations:

• For a PUT request.
• In a request parameter list in a chain of request parameter lists.
• For UHF processing.

Figure 8 (Part J of 7). Logical Error Reason Codes in the Feedback Area of the
Request Parameter List

Otapter 1. Macro Instruction Return Codes and Reason Codes 19

•

Reason Code
(RPLERRCD)
When Register
15 = 8(8) Condition

88(S~
.,j

92(5C)

96(60)

100(64)

104(68)

You issued a sequential GET request without having caused
VSAM to be positioned for it, or you changed from addressed
access to keyed access without causing VSAM to be positioned for
keyed-sequential retrieval; there was no positioning established for
sequential PUT insert for a relative record data set, or you
attempted an illegal switch between forward and backward
processing.

You issued a PUT for update or an ERASE without a previous
GET for update, or a PUTIX without a previous GETIX.

You attempted to change the prime key or key of reference while
making an update.

You attempted to change the length of a record while making an
addressed update.

The RPL options are either invalid or conflicting in one of the
following. ways:

• SKP was specified and either KEY was not specified or B\VD
was specified.

• BWD was specified for CNV processing.

• FWD and LRD were specified.

• Neither ADR, CNV, nor KEY was specified in the RI)L.

• BFRNO is invalid (less than 1 or greater than the number of
buffers in the pool).

• WRTBFR, MRKBFR, or SCHBFR was issued, but either
TRANSID was greater than 31 or the shared resource option
was not specified.

• ICI processing was specified, but a request other than a GET
or a PUT was issued. .

• MRKBFR MARK=OUT or l\fARK= RLS was issued but
the RPL did not have a data buffer associated with it.

• The RPL specifi~d W AITX, but the ACB did not specify LSR
or GSR.

Figure 8 (Part 4 or 7). Logical Error Reason Codes in the Feedback Area of the
Request Parameter List

20 MVS/XA VSAM Administration: Macro Instruction Reference

Reason Code
(RPLERRCD)
When Register
15 = 8(8) Condition

108(6C)

112(70)

116(74)

120(78)

1 24(7C)

132(84)

136(88)

140{8C)

144(90)

148(94)

152(98)

156(9C)

RECLEN specified was larger than the maximum allowed, equal to
0, or smaller than the sum of the length and the displacement of
the key field; RECLEN was not equal to record (slot) size specified
for a relative record data set. The automatic increase in the record
size of an upgrade index for the base eluster may cause an incorrect
RECLEN specification.

KEYLEN specified was too large or equal to O.

During initial data set loading (that is, when records arc being
stored in the data set the frrst time it's opened), GET, POINT,
ERASE, direct PUT, skip-sequential PUT, or PUT with
OPTCD= UPD is not allowed. For initial loading of a relative
record data set, the request was other than a PUT insert.

The request was operating under an incorrect TCD. For example,
an end-of-vol.ume call or a GETMAIN would have been necessary
to complete the request, but the request was issued from a job step
other than the one that opened the data set. The request can be
resubmitted from the correct task, if the new request reestablishes
positioning.

A request was cancelled for a user JRNAD exit.

An attempt was made in locate mode to retrieve a spanned record.

You attempted an addressed GET of a spanned record in a
key-sequenced data set.

The spanned record segment update number is inconsistent.

Invalid pointer (no associated base record) in an alternate index.

The maximum number of pointers in the alternate index has been
exceeded.

Not enough buffers are available to process your request (shared
resources only).

An invalid control intcrval was detected during keyed processing, or
an addressed GET UPD request failed because the control interval
flag was on, or an invalid control interval or index record was
detected. The RPL contains the invalid control interval's RBA.

Figure 8 (Part 5 or 7). Logical Error Reason Codes in the Feedback Area of the
Request Parameter List

Olapter 1. Macro Instruction Return Codes and Reason C.I)des 21

*.

".

Reason Code
(RPLERRCD)
When Register
IS == 8(8) Condition

160(AO)

164(A4)

168(A8)

i72(AC)

176(80)

180(84)

One or more candidates were found that have a modified buffer
marked to be written. The buffer was left in write status with valid
contents. With this condition, it is possible to have other buffers
invalidated or found under exclusive control.

One of the following invalid options was specified for a
CNVTAD/MNTACQ/ACQRANGE request:

• Generic key (GEN)

• Load mode

• Path processing

• User buffers (UBF) with LSR/GSR

• Key-sequenced data set, but not key processing (KEY)

• Entry-sequenced data set, but not address processing{ADR)

• Relative record data set, but not key processing (KEY)

• RPL is chained

• Key-sequ~nced data set has single-level imbedded index

One of the following user parameter list errors was detected for
CNVTAD/MNTACQ/ACQRANGE request:

• No user parameter list is specified (RPLARG = 0)

• Argument count is zero for CNVf AD/MNT ACQ request

• Ending argument is less than starting argument for
ACQRANGE request

• Parameter list not on word boundary

ACQUIRE error returned by SVC 126 for
~INTACQ/ACQRANGE request.

Staging failure for MNTACQ/ACQRANGE request.

RBA/volume error for MNTACQ/ACQRANGE request ..
(Required volume not mounted or specified RBA(s) not on
mounted volume.)

Figure 8 (Part 6 of 7). Logical Error Reason Codes in "the Feedback Area of the
Request Parameter List

22 MVS/XA VSAM Administration: Macro Instruction Reference

(

Reason Code
(RPLERRCD)
When Register
15 = 8(8) Condition

184(B8)

188(BC)

192(CO)

196(C4)

200(C8)

204(CC)

208(DO)

212(04)

224(EO)

228(E4)

232(E8)

236(Eq

240(FO)

244(F4)

248(F8)

2S2(FC)

253(FD)

Catalog errors returned from SVC 126 for CNVT AD request.

Storage for ACQUIRE ECBs (subpooI241) is not available.

Invalid relative record number.

You issued an addressed request to a relative record data set.

You attempted addressed or control interval access through a path.

PUT insert requests are not allowed in backward mode.

The user has issued an ENDREQ macro instruction against an
RPL that has an outstanding WAIT against the ECB associated
with the RPL. This can occur when an ENDREQ is issued from a
ST AE or EST AE routine routine against an RPL that was started
before the abend. No ENDREQ processing has been done.

During control area split processing, a condition exists that prevents
the split of the index record. Index control interval size may need
to be increased.

MRKBFR OUT was issued for a buffer with invalid contents.

Caller in cross-memory mode is not in ~upcrvisor state or RPL of
caller in SRB or cross-memory mode docs not specify SYN
processing.

UP AD error; ECB was not posted by user in cross-memory mode.

Validity check error for SHAREOPTIONS 3 or 4.

For shared resources, one of the following is being perfonned: (a)
an attempt is being made to obtain a buffer in exclusive control, (b)
a buffer is being invalidated, or (c) the buffer use chain is changing.
For more detailed feedback, reissue the request.

Register 14 stack size is not large enough.

Register 14 return offset went negative.

Record mode processing is not allowed for a linear data sct.

VERIFY is not a valid function for a linear data set.

Figure 8 (Part 7 of 7). Logical Error Reason Codes in the Feedback Area of the
Request Parameter List

Otapter 1. Macro Insfruction Return Codes and Reason Codes 23

When the search argument you supply for a POINT or GET request is greater
than the highest key in the data set, the reason code in the feedback area depends
on the RPL's OPTeD values, as shown in the table below:

Request RPLsOPTCD Reason Code (RPLERRCD)
Type Options When Register 15= 8(8)

Decimal Hexadecimal

POINT GEN,KEQ 16 X' 10'
POINT GEN,KGE 4 X' 4'
POINT FKS,KEQ 16 X'10'
POINT FKS,KGE 4 X' 4'
GET GEN,KEQ,DIR 16 X'10'
GET GEN,KGE,DIR 16 X'IO'
GET FKS,KEQ,DIR 16 X'10'
GET FKS,KGE,DIR 16 X'10'
GET GEN,KEQ,SKP 16 X t 10'
GET GEN,KGE,SKP 4 X t 4'
GET FKS,KEQ,SKP 16 X'10'
GET FKS,KGE,SKP 4 X' 4'

Positioning Following Logical mars.

VSAM is unable to maintain positioning after every logical error. \Vhenever
positioning is not maintained following an error request, you must reestablish it (
before processing resumes.

Positioning may be in one of four states following a POINT or a direct request
that encountered a logical error:

Yes VSAM is positioned at the position in effect before the request in error
was issued.

No VSAM is not positioned, because no positioning was established at the
time the requea in error was ·issued. .

New VSAM is positioned at a new position.

U VSAM is positioned at an unpredictable position.

The following table shows which positioning state applies to .each reason code
listed for sequential, direct, and skip-sequential processing. "N/A" indicates that
the reason code is not applicable to the type of processing indicated. Figure 9 on
page 2S lists these codes and their meanings.

24 MVS/XA VSAM Administration: Macro Instruction Reference

Reason Code
(RPLERRCD)
\\l1en Register
15= 8(8)
Decimal Hexadecimal Sequential Direct Skip-Sequential

4 X' 4' Yes N/A Yes
8 X' 8' 1 Yes No New
12 X'C' Yes N/A Yes
16 X' 10' No No No
20 X' 14' U No2 No2
24 X' 18' Yes No No
28 X'IC' Yes No Yes
32 X '20' No No N/A
36 X '24' Yes No New
40 X'28' Yes No No
44 X'2C' Yes New Yes
64 X '40' No No No
68 X'44' Yes Yes Yes
72 X'48' Yes Yes Yes
76 X'4C' Yes Yes Yes
80 X' 50' Yes Yes Yes
84 X'54' Yes Yes Yes
88 X' 58' Yes Yes Yes
92 X' 5C' Yes Yes Yes
96 X' 60' Yes Yes Yes
100 X'64' Yes Yes Yes
104 X' 68' Yes New Yes
108 X' 6C' Yes New Yes
112 X' 70' Yes Yes Yes
116 X' 74' Yes Yes Y.es
120 X' 78' Yes No No
124 X '7C' No No No
132 X'84' Yes New Yes
136 X' 88' No No N/A
140 X' 8C' Yes New Yes
144 X '90' Yes Yes Yes
148 X' 94' Yes Yes Yes
152 X' 98' Yes No No
156 X '9C' Yes No No
160 X' AO' N/A No N/A
192 X 'CO' Yes Yes Yes
196 X'C4' Yes Yes Yes

Figure 9 (Part I of 2). Positioning States of Rea.~n Codes Listed for Sequential,
Direct, and Skip-Scquential I)rocessing

Chapter I. Macro Instruction Return Codes and Reason Codes 25

Reason Code
(RPLERRCD)
When Register
15-8(8)
Decimal Hexadceimal Sequential Direct Skip-Sequential

200 X'C8' Yes Yes Yes
204 X'CC' Yes Yes Yes
208 X' 00' Yes Yes Yes
224 X' EO' N/A No N/A
228 X'E4' No No No
232 X' E8' No No No
236 X'EC' No No No
240 X' FO' Yes Yes Yes

A subsequent GET SEQ will retrieve the duplicate record; however, a
subsequent GET SKP for the same key will get a sequence error. In a
relative record data set, a subsequent PUT SEQ positions to the next slot
(whether the slot is empty or not).

2 PUT UPD, DIR or UPD, SKI» retains positioning. The RPL contains an
RBA that could not be obtained for exclusive control.

Figure- ~ (part 1 or 1). Posit iun ing States'of Reaso&-COOe3' l.istetl-fm"" SequeMiat,
Direct, and Skip-Sequential Processing

Reason Code (Physical Errors)

If a physical error occurs and you have no SYNAD routine (or the SYNAD exit
is inactive), VSAM returns control to your program following the last executed
instruction. The return code in register IS indicates a physical error (12), and the
feedback area in the request parameter list contains a reason code identifying the
error; the RPL message area contains more details about the error. Register 1
points to the request parameter list. The R BA field in the request parameter list
gives the relative byte address of the control interval in which the physical error
occurred. Figure 10 gives the reason codes in the feedback area and explains
what each indicates.

26 MVS/XA VSAM Administration: Macro Instruction Reference

(

Reason Code
(RPLERRCD)
When Register
15= 12(OC) Condition

4(4) Read error occurred for a data set.

8(8) . Read error occurred for an index set.

12(C) Read error occurred for a sequence set.

16(10) Write error occurred for a data set.

20(14) Write error occurred for an index set.

24(18) Write error occurred for a sequence set.

Figure 10. Physical Error Reason Codes in the Feedback Area of the Request
Parameter List

Figure 11 gives the fonnat of a physical error message. lbe fonnat and some of
the contents of the message are purposely similar to the fonnat and contents of
the SYNADAF message, which is described in Data Administration: Macro
Instruction Reference.

Field

Message
Length

Message
Length - 4

Address of
I/O Buffer

Bytes

0-1

2-3

4-'5

6-7

8-11

Length' Discussion

2 Binary value of 128

2

2

2

4

Unused (0)

'Binary value of 124
(provided for compatibility
with SYNADAP Message)

Unused (0)

The' 110 buffer associated
with the data where
the error occurred

The rest of the message is in printable format

Date

Time

12-16

17

18-25

S

1

8

VYDDD (year and day)

Comma (,)

HHMMSSTH (hour, minute,
second, and tenths and
hundredths of a second

Figure II (Part I of 4). Physical Error Message Format

..
Oaapter 1. Macro Instruction Return Codes and Reason Codes 27

field Bytes Length Discussion

26 1 Comma (,)

RBA 27-34 8 Relative byte address of the
record where
the error occurred

35 Comma (,)

Component 36-41 6 "DATA" or "INDEX"
TYPE

42 1 Comma (,)

Volume Serial 43-48 6 Volume serial number of the
Number volume where

the error occurred

49 1 Comma (,)

Job Name 50-57 8 Name of the job where
error occurred

58 1 Comma (,)

Step Name 59-66 8 Name of the job step in
which error occurred

67 Comma (,) (
Unit 68-70 3 The unit, CUU (channel and

unit), where
the error occurred

71 1 Comma (,)

Device Type 72-73 2 The type of device where
the error
occurred (always DA for
direct access)

74 1 Comma (,)

ddname 75-82 8 The ddname of the DD
statement defIning the data
set where the
error occurred

83 1 Comma(,)

Figure 11 (Part 2 or 4)- Physical Error Message Format

28 MVS/XA VSAM Administration: Macro Instruction Reference

Field

Channel

Message

Bytes

84-89

90

91-105

Length Discussion

6 The channel command that
caused the error in the first
two bytes, followed by "_OP"

15

Comma (,)

Messages arc divided
according to ECB condition
codes:

x' 41' "INCORR LENGTH"
"UNIT EXCEPTION"
"PROGRAM CHECK"
"PROTECTION CHK"
"CHAN DATA CHK"
"CHAN CTRL CHK"
"INTFCE CTRL CHK"
"CHAINING CHK"
"UNIT CIIECK"

H the type of unit check can
be detennined, the 'UNIT CHECK'
message is replaced by one of
by one of the following:

"CMD REJECT"
-"INT REQ"
"BUS OUT CK"
"EQP CHECK"
"DATA CHECK"
"OVER RUN"
"TRACK -COND CKu

"SEEK CHECK"
"COUNT DATA CHK"
"TRACK OVERRUN"
"CYLINDER END"
"NO RECORD FOUND"
"FILE PROTECT"
"MISSING A.M."
"OVERFLINCP"

X' 48' "))URGED REQUEST"

X' 4A' "I/O PREVENTED"

X' 4F' "R.HA.RO. ERROR"

For any other ECB condition code:

"UNKNOWN COND."

Figure II (Part J of 4). Physical Error Message Format

Cllapter 1. Macro Instruction Return Codes and Reason Codes 29

Fielcl Bytes Length Discussion

106 1 Comma (,)

Physical 107-120 14 BBCCHHR (bin, cylinder,
Direct Access head, and record)
Address

121 Comma (,)

Access 122-127 6 "VSAM"
Method

Figure II (Part 4 of 4). Physical Error Message Format

. Return Codes from Macros Used to Share Resources among Data Sets

VSAM has a set of macros that enables you to share 1;0 buffers, 1;0 related
control blocks, and channel programs among VSA~I data sets.

Return Codes from BLDVRP

VSAM returns a code in register 15 that indicates whether the BLDVRP request
was successful:

Return
Code

0(0)

4(4)

8(8)

12(C)

16(10)

20(14)

24(18)

28(IC)

Condition

VSAM completed the request.

The requested data resource pool or index resource pool already exists
in the address spaee (LSR) or in the system protect key (GSR).

There is not enough virtual storage space to satisfy the request.
GETMAIN or ESTAE failed.

Buffers cannot be fixed in real storage. PAGEFIX failed.

TYPE=GSR is specified but the program that issued BLDVRP is
not in supervisor state with protection key 0 to 7.

STRNO is less than 1 or greater than 255.

BUFFERS is specified incorrectly. A size or number is invalid.

The requested resource pool is invalid. A SHRPOOL value greater
than 15 was specified.

30 MVS/XA VSAM Administration: Macro Instruction Reference

32(20)

36(24)

Return Codes from DLVRP

The resource pool already exists above 16 megabytes and the request
was for storage below 16 megabytes, or the resource pool already
exists below 16 megabytes and the request was for storag~ above 16
megabytes.

BLDVRP was issued to build an index resource pool but the required
corresponding data resource pool does riot .exist.

VSAM returns a code in register 15 that indicates whether the DLVRP request
was successful:

Return
Code

0(0)

4(4)

8(8)

12(C)

16(10)

Condition

VSAM completed the request.

There is no resource pool to delete.

There is not enough virtual storage space to satisfy the request.
GETMAIN or ESTAE failed.

There is at least one open data set using the resource pool.

TYPE = GSR is specified, but the program that issued DLVRP is not
in supervisor state with protection key 0 to 7.

Return Codes from End-of-Volume

End-of-velwr~ retums the following codes in register 1 s:

Return
Code

0(0)

4(4)

8(8)

12(C)

16(10)

Condition

Successful.

The requested volume could not be mounted.

The requested amount of space could not be allocated.

I/O operations were in progress when end-or-volume was requested.

The catalog could not be updated.

Otapter 1. Macro Instruction Return Codes and Reason Codes 31

Chapter 2. VSAM Macro Formats and Examples

This chapter contains macro instruction formats and examples.

The macros that work at assembly time allow you to specify subparameter values
as absolute numeric expressions, character strings, codes, and expressions that
generate valid relocatable A-type address constants. The macros that work at
execution allow you also to specify these values as:

• Register notation, where the expression designating a register from 2 through
12 is enclosed in parentheses; for example, (2) and (REG), where REG is a
label equated to a number from 2 through 12

• An expression of the form (S,scon), where scon is an expression valid for an
S-typc address constant, including the base-displacement form

• An expression of the form (. ,scon) , where scon is an expression valid for an
S-type address constant, including the base-displacement form, and the
address specified by scon is indirect-that is, it gives the location of the area
that contains the value for th~ subparameter.

For most programming applications, you can conveniently use register notation
or absolute numeric expressions for numbers, character strings for names, and
register notation or expressions that generate valid A-type address constants for
addresses. AppendiK· C, "Operand N{}tat«m" en -page 181, gives all tbe ways of
coding each parameter for the macros that work at execution time.

You can write a reentrant program only with execution-time macros.
Appendix B, "List, Execute, and Generate Fonns of Macros" on page 171,
describes alternative ways of coding these macros for reentrant programs. This
chapter describes the standard fonn of these macros.

Otapter 2. VSAM Macro Formats and Examples 33

ACB

ACB Macro (Generate an" Access Method Control Block at Assembly
Time)

The fonnat of the ACB macro is:

(label} ACB (AM == VSA:\;II
I,BSTRNO == numberf
(,BUFND == numberJ
(,BUFNI == numberJ
(,BUi"SP == numberJ
(,CATALOG == YESINOI
(,CRA == SCRAIUCRAI
I,DDNAME == ddnamel
I,EXLST == addressl
I,MACRF == «ADRII,CNVII,KEYI

(,CFXINFXI
(,~IDSNI

.1,DFRINI>.1
(,DIRII,SI~QU,SKPI

I,ICII~CII
(,lli)1,0 UTJ
(,NISISISL
I,~IAIXI
I,~IRSTI
(,~ILSRIGSRI
1,1'llJBI {JB.'I)I

1,l\(AREA == addressl
(,i\"ILEN == numberJ
(,P ASS\VD == addressl
(,R:\(ODE31 = {ALLIBUl"FICBINONl:}I
(,SHRPOOL == H!lnumber} I
(,STRNO = numberJ

Note: The RMODE31 parameter replaces the Al\IODE31 subparameter shown
in previous releases.

Values for ACB macro subparameten can be specified as absolute numeric
expressions, character strings, codes, and expressions that generate valid
rclocatablc A-type address constants.

label
is I to 8 characters that provide a symbolic address for the access method
control block that is assembled and also, if you omit the DDNAME
parameter, serves as the ddname.

AM = VSAM
specifies that the access method using this control block is VSAM.

BSTRNO=number
specifies the number of strings initially allocated for access to the base
cluster of a path. The default is STRNO. BSTRNO is ignored if the

34 MVS/XA VSAM Administration: ,Macro Instruction Reference

I

"

t

ACB

object being opened is not a path. If the number specified for BSTRNO is
insufficient, VSAM will dynamically extend the number of strings as needed
for the access to the base cluster. BSTRNO can influence perfonnance.
The VSAM control blocks for the set of strings specified by BSTR NO are
allocated on contiguous virtual storage, whereas this is riot guaranteed for
the strings allocated by dynamic extension.

BUf"ND == number
specifics the number of 110 buffers VSAM is to use for transmitting data
between virtual and auxiliary storage. A buffer is the size' of a control
interval in the data component. The minimum number you may specify is
I plus the number specified for STRNO (if you omit STRNO, nUFND
must be at least 2, because the default for STR NO is 1). The number can
be supplied by way of the JCL DD Al\fP parameter as well as by way of
the macro. The default is the minimum number required. Note, however,
that minimum buffer specification does not provide optimum sequential
processing perfonnance. Generally, the more data buffers specified, the
better the performance. Note also that additional data buffers will benefit
direct inserts or updates during control area splits and will benefit spanned
record accessing. For more infonnation, See "Optimizing Perfonnance" in
VSAM Administration Guide.

BUFN. = number
specifies the number of 1/0 buffers VSAM is to use for transmitting the
contents of index entries between virtual and auxiliary storage for keyed
access. A buffer is the size of a control interval in the index. The
minimum number is the number specified for STR NO (if you omit
STRNO, BlJFNI must be at least I, because the default for STRNO is 1).
You can supply the I\umber by way of the JCL DD Al\IP parameter as
well as by way of the macro. The default is the minimum number
required.

Additional index buffers will improve performance by providing for the
residency of some or all of the high-level inilex, tbereoy minimizing the
number of high-level index records to be retrieved from DASD for
key-direct processing. For more information, see "Optimizing
Performance" in VSAM Administration Guide.

BU."SP == number
spe(..ifies the maximum number of bytes of virtual storage to be used for the
data and index 110 buffers. VSAM gets the storage in your program's
address space. If you specify less than the amount of space that was
specified in the BUFFERSPACE parameter of the DEFINE command
when the data set was dermed, VSAM overrides your BUFSP specification
upward to the value specified in BUFFERSPACE. (BUFFERSPACE, by
defmition, is the least amount of virtual storage that will ever be provided
for 110 buffers.) You can supply ,BUFSP by way of the JCL DD AJ\IP
parameter as well as by way of the macro. If you don't specify BUFSP in
either place, the amount of storage used for buffer allocation is the largest
of:

• The amount specified in the catalog (BUFFERSPACE),

• The amount determined from BUFND and BUFNI, or

Olapter 2. VSAM Macro Formats and Examples 35

ACB

• The minimum storage required to process the data set with its specified
processing options

If BUFSP is specified and the amount is smaller than the minimum
amount of storage requ~d to process the data set, VSAM cannot open the
data set.

A valid BUFSP amount takes precedence over the amount called for by
nUFND and BUFNI. If the BUFSP amount is greater than the amount
called for by BUFND and BUFNI, the extra space is allocated as fellows:

• \Vhen MACRF indicates direct access only, additional index buffers are
allocated.

• When MACRF indicates sequential access, one additional index buffer
and as many data buffers as possible are allocated.

If the BUFSP amount is less than the amount called for by BUFND and
nUFNI, the number of data and index buffers is decreased as follows:

• When MACRF indicates direct access only, the number of data butTers
is decreased to not fewer than the minimum number. Then, if required,
the number of index buffers is decreased until the amount called for by
BUFND and BUFNI complies with the BUFSP amount.

• When MACRF indicates sequential access, the number of index butTers
is decreased to not fewer than I more than the minimum number.
Then, if required, the number of data buffers is decreased to not fewer
than the minimum number. If still required, I more is subtracted from
the number of index buffers.

• Neither the number of data buffers nor the number of index butTers is
decreased to fewer than the minimum number.

If the index doesn't exist or isn't being opened, only BUFND, and not
BUFNI, enters into these calculations. The bufferspace must not exceed
16776704.

CATAI..OG=YESINO
specifies whether a catalog is being opened as a catalog (YES) or as a data
set (NO). When NO is coded (or taken as the default), you can process the
catalog with request macros (GET, PUT, etc). Your program must be
APF-authorized to process a catalog as a data set. To open a password
protected catalog for processing with VSAM macros, you must supply its
master password. When CATALOG = YES is coded, the catalog must be
processed with an SVC designed for that purpose. (Access method services,
for example, processes catalogs with SVC 26.) The request macros are
invalid for processing a catalog "as a catalog. tt VSAM users should alter the
contents of a catalog only by access method services comniands.

CRA=SCRAIUCRA
specifies that a catalog recovery area is to be opened and that the control
blo,cks are to be built in either system storage (SCRA) or user storage

36 MVSjXA VSAM Administration: Macro Instruction Reference

ACB

(VCRA). If you specify SCRA and issue record management requests, you
must operate in key o. If you specify VCRA, you must be authorized by
the system and you must supply the master password of the master catalog.

DDNAME= ddname
is 1 to 8 characters that identify the data set that you want to process by
specifying the JCL DD statement for the data set. You may omit
DDNAME and provide it by way of the label or by way of the MODCB
macro before opening the data set. MODCB is described later in this
chapter.

EXLST = address
specifies the address of a list of addresses of exit routines that you are
providing. The list is established by the EXLST or GENCB macro. If you
use the EXLST macro, you can specify its label here as the address of the
exit list. If you use GENCB, you can specify the address returned by
GENCB in register 1 or the label of an area you supplied to GENCB for
the exit list. Omitting this parameter indicates that you have no exit
routines. Exit routines are described in "User-Written Exit Routines" in
Dala Facility Producl: Cuslomizalion.

MACRF = (IADRII,CNVII,KEYI
I,CFXINFXI
1,I>J)~Il)SNI

I,DFRINDFI
I,DIRII,SEQII,SKPI
I,ICIINCII
I,~I,()UTI
(,NISISISI
I,NRl\IIAIXI
I,NRSIRSTI
I,NSRILSRIGSRI
i,NU.otlll!.~)

specifies the kind(s) of processing you will do with the data set. The
subparameters must be meaningful for the data set. For example, if you
specify keyed access for an entry-sequenced data set, you cannot open the
data set. You must specify all the types of access you're going to use,
whether you use them concurrently or by switching from one to the other.
Figure 12 on page 38 gives the subparameters;.each group of
subparameters has a default value (indicated by underlining). You may
specify subparameters in any order. You may specify both ADR and KEY
to process a key-sequenced data set. You may specify both DIR and SEQ;
with keyed access, you may specify SKP as well. If you specify OUT and
want merely to retrieve some records as well as update, delete, or insert
others, you need not also specify IN.

Note: The RMODE31 parameter replaces the AMODE31 subparameter
shown in previous releases.

Olapter 2. VSAM Macro FOmlats and Examples 37

ACB

Option

ADR

CNV

CFX

DSN

DFR

l\feaning

Addressed access to a key .. sequenced or an entry-sequenced data
set; RBAs are used as search arguments and sequential access is by
entry sequence.

Access is to the entire contents of a control interval rather than to
an individual data record. If the data set is password protected,
you must supply the address of the control or higher-level
password in the ACB PASSWD parameter.

Keyed access to a key .. sequenced or relative record data set; keys
or relative record numbers are used as search arguments and
sequential access is by key or relative record number.

Control blocks and 1/0 buffers are to be fixed in real storage;
MACRF = ICI must also be specified.

Control blocks and 1/0 buffers are fixed in real storage only
during 1/0 operations.

Subtask shared control block connection is based on common
ddnames.

Subtask shared control block connection is based on common
datil set names ..

With shared resources, writes for direct PUT requests are deferred
until the \VRTBFR macro is issued or until VSAM needs a buffer
to satisfy a GET request; deferring writes saves I/O requests in
cases where subsequent requests can be satisfied by the data
already in the buffer pool.

~ Writes are not to be deferred for direct PUTs.

DIR Direct access to a key-sequenced, entry-sequenced, or a relative
record data set.

SEQ Sequential access to a key-sequenced, entry-sequenced, or a
relative record data set.

SKP Skip-sequential access to a key-sequenced or a relative record data
set; used only with keyed access in a forward direction.

lei Processing is limited to imprOVed control interval processing;
access is faster because fewer processor instructions are executed.

~ Processing other than improved control interval processing.

lli Retrieval of records of a key-sequenced, entry-sequenced, or a
relative record data set; (not allowed for an empty data set). If the
data set is password protected, you must supply the address of the
read or higher-level password in the ACB PASSWD parameter.

Figure 12 (Part 1 or 2). MACRF Options

38 MVS/XA VSAM Administration: Macro Instruction Reference

I
I
I
i
I
I
I
I
I

Option

our

~

SIS

~

AIX

NRS

RST

~

LSR

GSR

ACB

Meaning

Storage of new records in a key-sequenced, entry-sequenced, or
relative record data set (not allowed with addressed access to a
key-sequenced data set); update of records in a key-sequenced,
entry-sequenced, or relative record data set; deletion of records from a
key-sequenced data set or relative record data set.

If the data set is password protected, you must supply the address of
the update or higher-level password in the ACB PASS\VD parameter.

Nonnal insert strategy.

Sequential insert strategy (split control intervals and control areas at
the insert point rather than at the midpoint when doing direct PUTs);
although positioning, is lost and writes are done after each direct PUT
request, SIS allows more efficient space usage when direct inserts are
clustered around certain keys.

The object to be processed is the one named in the specified ddname.

The object to be processed is the alternate index of the path specified
by ddname, rather than the base cluster via the alternate index.

Data set is not reusable.

Data set is reusable (high-used RBA is reset to 0 during OPEN). If
the data set is password protected, you must supply the address of the
update or higher-level password in the ACB PASSWORD parameter.

Nonshared resources.

Local shared resources. Each address space may have up to 16 index
resource pools and 16 data resource pools independent of other
address spaces. Unless you are using the default, SIIRPOOL= 0, you
must specify the-s111tPOOL parameter to indicate which resource
pool you are using. Specifying LSR will cause a data set to use the
local resource pool built by the BLDVRP macro. If an index
resource pool exists at the time an OPEN macro is issued, the index
for a key-sequenced data set will be connected to the index resource
pool.

Global shared resources; all address spaces may have local and global
resources pools, where tasks in an address space with a local resource
pool may use either the local resource pool or the global resource
pool.

N!l!! Management of I/O buffers is left up to-VSAM.

UBF Management of I/O buffers is left up to the user; the work area
specified by the RPL (or GENCB) AREA parameter is, in effect, the
I/O buffer-VSAM transmits the contents of a control interval directly
between the work area and direct access storage; valid when
OPTCD = MVE and MACRF = CNV are specified; when ICI is
specified, U,BF is assumed.

Figure 12 (Part 2 of 2). MACRF Options

..
Chapter 2. VSAM Macro Fonnats and Examples 39

ACB

~1AREA = address
specifies the address of an optional OPEN/CLOSE or TYPE = T option
(CLOSE macro) message area. See "OPEN/CLOSE Message Area for
Multiple Reason or Warning Messages" on page 7 for more infonnation.

l\ILEN = number
specifies the length of an optional OPEN/CLOSE or TYPE = T option
(CLOSE macro) message area. Default = 0; maximum = 32K. See
"OPEN/CLOSE l\tfessage Area for Multiple Reason or \Varning Messages"
on page 7 for more infonnation.

P As...'i\VD = address
specifies the address of a field that contains the highest-level password
required for the typc(s) of access indicated by the MACRF parameter. The
flrSt byte of the field pointed to contains the length (in binary) of the
password (maximum of 8 bytes). Zero indicates that no password is
supplied. If the data set is password protected and you don't supply a
required password in the access method control block, VSAM will give the
console operator the opportunity to supply it when you open the data set.

R:\(ODE31 = IAI .. I .. /8UFF/CB/NOSEI
specifics where VSAM OPEN is to obtain virtual storage (above or below
16 megabytes) for control blocks and I/O buffers.

The values specified. by the Rl\10DE31 parameter only have an effect on
VSAM at the setting just before an OPEN is issued. At all other times,
changing these values has no effect on the residency of the control blocks <,
and I/O butTers.

ALL
both VSAM control blocks and I/O buffers are to be obtained above
16 megabytes.

BUFF
only VSAM I/O buffers are to be obtained above 16 megabytes.

CD
only VSAM control blocks are to be obtained above 16 megabytes.

NONE
both I/O buffers and VSAM control blocks arc to be built below 16
megabytes. This is the default.

Note: In previous releases, the MACRF subparameter Al\tlODE3l
specified that I/O buffers were to be obtained above 16 megabytes and that
the caller was running in 3 I-bit addressing mode. The RMODE3l
parameter replaces the AMODE31 subparameter and the two are mutually
exclusive. If both the AMODE31 subparameter and the RMODE31
parameter are specified within the same program, AMODE31 is ignored.

SHRPOOL == {number/!!}
identifies which LSR pool is to be connected to the ACB. This parameter
is valid only when MACRF = LSR is also specified. The identification

40 MVS/XA VSAM Administration: Macro Instruction Reference

ACB

number of the shared pool must be a number from 0 to 15. The default is
O.

STRNO = number
specifies the number of requests requiring concurrent data set positioning
VSAM is to be prepared to handle. The default is I. A request is dermed
by a given request parameter list or chain of request 'parameter lists. See
"RPL Macro (Generate a Request Parameter List at Assembly Time)" on
page 126 and "GENCB Macro (Generate a Request Parameter List at
Execution Time)" on page 80 for information on request parameter lists.
When records are loaded into an empty data set, the STRNO value in the
access method control block must be 1.

VSAM dynamically extends the number of strings as they are needed by
concurrent requests for this ACB. This automatic extension can influence
performance. The VSAM control blocks for the set of strings specified by
STRNO arc allocated on contiguous virtual storage, but this is not
guaranteed for the strings allocated by dynamic extension. Dynamic string
addition cannot be done when using the following options:

• Load mode
• ICI
• LSR or GSR

For STRNO, you should specify the total number of request parameter
lists or chains of request parameter lists that you are using to derme
requests. (VSAM needs to remember only one position for a chain of
request parameter lists.) However, each position beyond the minimum
number that VSAM needs to be able to remember requires additional
virtual storage space for: .

• A minimum of one data 1/0 buffer and, for keyed access, one index
1/0 buffer (the .si7..c.Df an J/O buffer is the control interval size of a data
set)

• Internal control blocks and other areas

Olapter 2. VSAM Macro Fonnats and Examples 41

ACB

Example I: ACB ~Iacro

In this example, the ACB macro is used to identify a data set to be opened and
to specify the types of processing to be perfonned. The access method control
block senerated by this example is built when the program is assembled.

BLOCK ACB AM=VSAM, BUFND=4, BLOCK gives symbolic
BUFNI=3, address of the access
BUFSP=19456, method control block.
DDNAME=DATASETS,
EXLST=EXITS,
MACRF=(KEY,DIR,SEQ,OUT),
PASSWD=FIELD,
STRN0=2

FIELD DC FLl'6',C'CHANGE' The update password:
CHANGE has 6 characters.

The ACB macro's parameters are;

• BUFND specifies four I/O buffers for data; BUFNI specifies three I/O
buffers for index entries;.and BUFSP specifics 19456 bytes of buffer space,
enough space to accommodate control intervals of data that arc 4096 bytes
and control intervals of index entries that arc 1024 bytes.

• DONAME· Sf)ecifics" that this ~ess method- £onLrol bloGk is, a5-sociated with
a DD statement named DATASETS.

• EXLST specifies that the exit list associated with this access method control
block is named EXITS.

• l\.1ACRF specifics keyed-direct and keyed-sequential processing for both
insertion and update.

• PASSWD spe<..ifies the location, FIELD, of the password provided. FIELD
contains the length of the password as well as the password itself.

• STRNO specifies that two requests will require concurrent positioning.

42 MVSjXA VSAM Administration: Macro Instruction Reference

Example 2: ACB Macro

ACB

In this example, the ACB macro is used to identify a data set to be opened and
to specify the types of processing to be perfonncd. An LSR pool is connected to
the data set. The access method control block generated by this example is built
when the program is assembled. The caller requests that the VSAM control
blocks and I/O buffers be obtained above 16 megabytes if possible.

BLOCK2

FIELD

ACB AM=VSAM,
DDNAME=DATASETS,
EXLST=EXITS,
MACRF=(KEY,DIR,
LSR,SEQ,OUT),
PAS SWD=FIELD,
RMODE31=ALL,
SHRPOOL=l

DC FLl'6',C'CHANGE'

The ACB macro's parameters are:

BLOCK2 gives symbolic
address of the access
method control block.

The update password:
CHANGE has 6 characters.

• DONAl\fE specifics that this access method control block is associated with
a DO statement named OATASETS.

• EXLST specifies that the exit list associated with this access method control
block is named EXITS.

• MACRF specifies keyed-direct and keyed-sequential processing for both
insertion and update. LSR indicates that the LSR pool created by BLDVRP
is to be connected to the data set.

• PASS\VD specifies the location, PIELO, of the password provided. FIELD
contains the length of the password as well as the password itself.

• RMODE31 =ALL specifies that you want both VSAM control blocks and
I/O buffers to reside above 16 megabytes.

• SHRPOOL specifies that the LSR pool with the identification number of 1 is
to be used. However, if an index resource pool exists at the time the OPEN
macro is issued, the index for the key-sequenced data set will be connected to
the index resource pool.

Oaapter 2. VSAM M. . ::'-ormats and Exanlptes 43

ACQRANGE

ACQRANGE Macro (Stage Data)

The fonnat of the ACQRANGE macro is:

Illabell I ACQRANGE I RPL=- address

RPL = address
specifies the address of the RPL that identifies your open data set and your
argument range. RPL parameters that have meaning for ACQRANGE are
as follows:

ACB = address
identifies your VSAM data set.

ARG = address
identifies your starting and ending arguments. Address points to a
parameter list, aligned on a fullword boundary as follows:

KEY-Sfo:QUENCED DATA SET

Offset Length

o 4

4 K

Contents

Feedback area: Address
of an ECB \V AIT list

Starting full argument
(K = key length)

4+ K K (K = key length)

ENTRY-SEQUENCED DATA SET OR RELATIV .. : RECORD
DATASET

Offset Length

o 4

4 4

8 4

Contents

Feedback area: Address
of an ECB WAIT list

Starting RBA/RRN

Ending RBA/RRN

The maximum number of argument pairs you may specify is one.

OPTCD = ({ADRIKEY}
,{ASYISYNJ
,(KEQIKGEJ
,FKS)

ADR is valid for an entry-sequenced data set, error for key-sequenced
data set or relative record data set.

44 MVS,'XA VSAM Administration: Macro Instruction Reference

ACQRANGE

KEY is valid for key-sequenced data set and relative record data set,
error for entry-sequenced data set.

If ASY is specified, you cannot WAIT on the RPLECB field for
MNTACQ or ACQRANGE. You use the address placed in the
parameter list feedback area. This address points to a list of event
control blocks (ECB) (in standard WAIT list fonnat) which you may
use in place of the RPLECB field.

GEN is not supported; if specified, it will give an error indication.

All other OPTCD subparameters are not applicable, and, if specified,
are ignored with no error indication.

Because your request may result in the staging of numerous cylinders, a single
ECB is not sufficient for an asynchronous ACQRANGE request. The RPLECB
field is inoperative for the ACQRANGE interface. Upon return from an
asynchronous ACQRANGE, the feedback area of the ACQRANGE parameter
contains the address of a standard ECB WAIT list. You must then use this list
in conjunction with either the WAIT macro or the EVENTS macro of MVS.
An asynchronous request must conclude with either CIIECK, ENDREQ, or
CLOSE. lbe parameter list cannot be reused until the CHECK, ENDREQ, or
CLOSE is completed.

At the conclusion of this macro, the RPL is disconnected. Any positioning in
effect prior to execution of ACQRANGE will be lost. You may have to
reposition. Chained RPLs are not supported by this macro.

Otapter 2. VSAM Macro Formats and Examples 45

BLDVRP
-.

BLDVRP Macro (Build VSAM Resource Pool)

The format of the BLDVRP macro is:

BLDVRP BUFFERS = (size(number),size(number), •..)
(,FIX = {BFRIIOBI(BFR,IOB)H
(,KEYLEN = lengthl
I,R~IODE31 = {ALL,BU .. · ... ,CB,NON .. :U
(,SHRI)OOL = {!.Inumber} I
1,1\IOOE= {~13IH
,STRNO = number
I,TYl)E= (LSRf,~IINOEXII GSRJI

Note: The RMODE31 parameter replaces the LOC= BELOWIANY parameter
shown in previous releases.

The BLDVRI) macro has a standard form and list and execute fonns. The
standard form builds a parameter list and passes control to VSAM to build the
resource pool. The list and execute fonns arc described in Appendix B, "List,
Execute, and Generate Forms of l\facros" on page 171.

BUFFERS = (s;ze(number),size(number), ...)
specifies the size and number of buffers in each buffer pool in the resource
pool. The number of buffer pools in the resource pool is implied by the
number of size(number) pairs you specify. .

\Vhen you process a key-sequenced data set, the index component, as well
as the data component, shares the buffers of a buffer pool. When you use
an alternate index to process a base cluster, the components of the alternate
index and the base cluster share buffers_ The components of alternate
indexes in an upgrade set share buffers. Buffers of the appropriate size and
number must be provided for all these components. Each component uses
the buffer pool with buffers either the required size or larger.

size
is 512, 1024, 2048, 4096, and then in increments of 4096 to a
maximum of J2K bytes.

number
is at least 3.

Size times number must be less than 16 megabytes.

FIX = {B,,'RIIOBI(B,,'R,IOB)}
specifies that I/O buffers (OFR), or I/O-related control blocks (lOB), or
both, are to be fixed in real storage. With GSR, lOB inCludes channel
programs. If the program that issues BLDVRP with FIX specified is not
authorized to fix areas in real storage, FIX is ignored. A program is
authorized if it is in ~upervisor state with protection key 0 to 7, or has been
link-edited with authorization (the authorized program facility is described
in Supervisor Services and Macro Instructions).

46 MVS/XA VSAM Administration: Macro Instruction Reference

BLDVRP

Note: If FIX is specified, DLVRP must be issued by the same task that
issues BLDVRP.

KEYLEN = length
specifies the maximum key length of the data sets that are to share the
resource pool. The default is 255. The keys whose lengths must be
provided for are the prime key of each key-sequenced data set and the
alternate key of each alternate index that is used for processing or is being
upgraded. If none of the data sets is keyed, specify O.

RMODE31 == (ALLIBUf}"ICBINONE}
specifies the storage residence location of the buffers and 110 related control
blocks of the LSR pool identified with the SIIRPOOL keyword.

lbe RMODE31 parameter tells the VSAM OPEN routines where to
obtain storage for the 110 related control blocks and 110 buffers.
Therefore, the only time the values specified by the RMODE31 parameter
have any effect on VSAM is on the setting just before an OPEN is issued.
At other times, changing these values has no effect on the residency of the·
110 related control blocks and 110 buffers. .

Note: The RMODE31 parameter is valid only when TYPE = LSR is
specified.

ALL
both I/O buffers and the VSAM 110 related control blocks associated
with the pool are to reside above 16 megabytes.

BU

CD

specifics that only 110 buffers are to reside above 16 megabytes.

Gal)' the VSAM 110 related control bIock-s assooatcdwith the pool
are to reside above 16 megabytes.

NO~E

both 110 buffers and the VSAM 110 related control blocks associated
with the pool are to reside below 16 megabytes. TIlls is the default.

Note: In previous releases, the LOC= (BELOWIANY) parameter was
used to specify that buffers in the pool be created above 16 megabytes. The
RMODE31 parameter replaces the LOC parameter and the two parameters
are mutually exclusive. If both are specified on the BLDVRP macro, the
LOC parameter is ignored.

SHRIlOOL = {!Inumber}
specifics the identification number of a shared resource pool. Valid only
when TYPE = LSR is also specified or defaulted. lbis parameter also
requires that the RMODE31 parameter be specified.

specifies the shared pool with the ID of O. It is the default LSR pool.

Chapter 2. VSAM Macro Formats and Examples 47

I
l
I
I
I
I

BLDVRP

number
specifies the shared pool with the 10 of number where number can be
o to I s. The LS R control block and buffer pool residence is
detenruned by th~ RMODE31 = keyword.

1\'IOD£ = {~131}
specifies the fonnat of the BLDVRP parameter list that is to be generated.

31

specifies that a standard fonn (24-bit) parameter list address be
generated. This is the default.

specifies that a long form (31-bit) parameter list address be generated.
This value must be coded if the parameter list resides above 16
megabytes.

STRNO = number
specifies the total number of placeholders required for all the data sets that
are to share the resource pool. 1 is minimum; 2SS is maximum.

The number should equal the potential number of requests that may be
issuedconcutrently for all the data sets that wiU...share. the resource pooL I(a
request fails because the number of placeholders is insufficient (you receive a
reason code of 64 (X'4Q') in the RPL feedback area), you may retry the
request; it will be assigned a placeholder if one has been released. See
Figure 8 on page 17 for a complete description of reason code 64 (X' 40').

TYPE = {lSRI,DATAI~DEXII GSR}
specifics whether a local (LSR) or a global (GSR) resource pool is to be
built.

specifies that the caller requests a local shared resource pool. A
maximum of 16 data and 16 index resource pools can be built in one
address space. Each resource pool must be built individually.

~
specifies that the caller wants to build a data resource pool. This
option requires that LSR be specified. This resource pool must exist
before an index pool with the same shared pool ID can be built.

INDEX

GSR

specifies that the caller wants to build an index resource pool. This
option requires that LSR be specified or defaulted. INDEX must be
specified in order to 'create a separate index resource pool. If it is not
specified, both data and index components will use the data pools. A
data pool must already exist before an index pool with the same
shared pool 10 can be built.

specifies that the caller requests a global shared resource pool.

48 MVS/XA VSAM Administration: Macro Instruction Reference

BLDVRP

Only one BLDVRP TYPE = GSR may be issued for the system for each of
the protection keys 0 through 7. The program that issues BLDVRP
TYPE = GSR must be in supervisor state with protection key 0 to 7.

Example 1. Obtaining an LSR Pool above 16 Megabytes

This example shows how both a local shared resource pool and a BLDVRP
parameter list residing above 16 megabytes are obtained.

paOLI BLDVRP BUFFERS=(I024(5»,
STRN0=4,
TYPE=LSR,
MODE=31,
RMODE31=ALL

The BLDVRP parameters are:

• BUFFERS specifies that there is one buffer pool in the resource pool. 1bis
buffer pool contains 5 buffers, and each of these buffers is 1024 bytes.

• STRNO specifies that 4 placeholders are required for the data sets to share
the resource pool.

• TYPE specifies that a local resource pool is to be built.

• MODE specifies that a parameter list is to be generated that may reside
above or below 16 megabytes. The value of 31 must be coded if the
parameter list resides above 16 megabytes.

• Rl\-IODE31 specifies the location in storage for the I/O buffers and I/O
related control blocks of the LS R pool.

To connect the LSR pool to the data set, you must code the LSR and
SlIRPOOL parameters on the ACB. See "ACB Macro (Generate an Access
Method Control Blol> at Assembly Time)" on page 34.

Chapter 2. VSAM Macro Formats and Examples 49

BLDVRP

Example 2. Request for Separate Data and Index Resource Pools

This example shows how the two separate data and index resource pools with an
identification equal to 3 are created.

POOLI BLDVRP BUFFERS=(2048(4»,
TYPE=(LSR, DATA) ,
SHRPOOL=3,
STRN0=2,
RMODE31=ALL

* LTR R15,R15 Check return code.
BNZ ERROR Do not build index if

error.
* POOL2 BLDVRP BUFFERS~(1024(5»,

TYPE=(LSR,INDEX),
SHRPOOL=3,
STRN0=2,
RMODE31=ALL

Note: POOLI must be created first because the data pool must exist before the
index pool with the same shared pool ID can be built. Also, only one data and
one index pool can be built for a shared pool ID.

50 MVS/XA VSAM Administration: Macro Instruction Reference

CHECK

CHECK Macro (Wait for Completion of.Request)

The fonnat of the CHECK macro is:

Illabe~ I CHECK I RPL = address

where:

label
is 1 to 8 characters that provide a symbolic address for the CIIECK macro.

RPL == address
specifics the address of the request parameter list that defmes the request.
You may specify the address in register notation (using a register from 1
through 12, enclosed in parentheses) or specify it with an expression that
generates a valid relocatable A-type address constant.

Example I: Check Return Codes after an Asynchronous Request

In this example, return codes are checked after an asynchronous request. The
CIIECK macro is used to cause an exit to be taken if there is a logical or
physical error or if the end of the data set isrcachcd.

REQPARMS RPL OPTCD=ASY

REJECTED

FAILURE

.
GET

LTR

BNZ

RPL=REQPARMS

\5,15

REJECTED

Was the request completed
successfully?

Zero indicates the request was
accepted. If it was not
accepted, register 15 contains
4~REQPARMS is active for
another request. Continue to
work on something that is not
dependent on the request.

CHECK RPL=REQPARMS CHECK would cause one of the
three exits to be taken if
there was a logical or physical
error or if the end of the

LTR

BNZ

15,15

FAILURE

data set was reached and an
active exit list exists.

Test return indication is
register 15.

Zero indicates the request
completed successfully. If
it failed, register 15
contains 8 or 12: there was
a logical or a physical
error.

..
Olapter 2. VSAM Macro Formats and Examples 51

CHECK

Unless you provide exit routines that tenninate processing, always test registcr 15
after the CHECK. If a routine returns to VSAM, register 15 is reset and control
is passed back to your program immediately after the CHECK. An error analysis
routine nonnally issues SHOWCB or TESTCB to examine the feedback field in
the request parameter list, so that, when your processing program gets control
back, it doesn't have to analyze the errors-but it may· alter its processing if there
was an error. If you don't provide an error analysis routine, your program can
issue SIIO\VCB or TESTCD to analyze an error when it gcts control back
following the CIIECK.

Example 2: Check Return Codes after a Synchronous Request

With synchronous processing, you should test register 15 after the request
because the request may not have been accepted (register 15 contains 4) or
because an error might have occurred (8 or 12):

GET RPL=REQPARMS

LTR

BNZ

REJFAIL

Example 3: Overlap IJroccssing

15,15

REJFAIL

Was the request completed
successfully?

If branch is not taken, was
the request accepted and
completed succesfully?

In this example, the CIIECK macro is used to wait for completion of a request
before continuing to other processing. Access is asynchronous.

BLOCK ACB

LIST RPL ACB=BLOCK, Asynchronous access.
AREA=WORK,
AREALEN=50,
OPTCD=ASY

.
LOOP GET RPL=LIST

LTR 15,15

BNZ NOTACCEP

Do other processing.

CHECK RPL=LIST

LTR 15,15

BNZ ERROR

Process the record.

B LOOP

52 MVS/XA VSAM Administration: Macro Instruction Reference

Suspends your processing to wait
for completion of'GET if
necessary and to cause VSAM to
indicate return codes.

NOTACCEP

ERROR

WORK
.
DS CL50

CHECK

Request WSs not accepted.

Request failed.

Work area.

Mter issuing the request, make sure that VSAM accepted it before you go on to
other processing. When you have done as much other processing as you can,
issue the CIIECK macro. VSAM will not give you back control until the
request is complete. If you don't want to issue CHECK until you know the
request is complete, use the ECB parameter of the RPL macro or the
10 = COMPLETE parameter of the TESTCD macro. After you issue the
CHECK, VSAM immediately returns a code and takes an exit, if necessary. See
"RPL l\iacro (Generate a Request Parameter List at Assembly Time)" on
page 126 and "GENCD Macro (Generate a Request Parameter List at Execution
Time)" on page 80. for infonnation on the BCD parameter.

Example 4: Suspend a Request for Many Records

In this example, a CHECK macro is issued for the rust request parameter list in a
chain of parameter lists. If an error occurred for one of the request parameter
lists in the chain and you have supplied error analysis routines, VSAM takes a
LERAD or SYNAD exit before it returns control to your program after the
CHECK.

FIRST RPL

SECOND RPL

THIRD RPL

.
LOOP GET

LTR

BNZ

ACB=BLOCK,
ARE A=ARE A 1 ,
AREALEN=50,
NXTRPL=SECOND,
OPTCD=ASY

ACB=BLOCK,
AREA=AREA2,
AREALEN=50,
NXTRPL=THIRD..,.
OPTCD=ASY

ACB=BLOCK,
AREA=AREA3,
AREALEN=50,
OPTCD=ASY

RPL=FIRST

15,15

NOTACCEP

Last list does not indicate
a next list.

Request gives the address of
the first request parameter
list.

Do other processing.

CHECK RPL=FI RST

LTR 15,15

BNZ ERROR

Olapter 2. VSAM Macro Formats and Examples 53

CHECK

Process the- three records retrieved by the GET.

B LOOP

NOTACCEP Request wasn't accepted.

ERROR Display the feedback field
(FIELDS=FDBK) of each request
parameter list to find
out which one had an error.

AREAl DS CLSO A single GET request causes VSAM
to put a record in each of AREAl,
AREAl, and AREA3.

AREA2 DS CLSO

AREA3 DS CLSO

Mer the CHECK, register 15 is set to indicate the status of the request. A code
of 0 indicates that no error was associated with any of the request parameter lists.
Any other code indicates that an error occurred for one of the request parameter
lists. You should issue a SIIO\VCD macro for each request parameter list in the
chain to fmd out which one had an error. VSAM doesn't process any of the
request parameter lists beyond the one with an error.

54 MVSjXA VSAM Administration: Macro Instruction Reference

CLOSE

CLOSE Macro (Disconnect Program and Data)

The format of the CLOSE macro is:

I/abe~ CLOSE (addressl,(oplions»), .•.)
1,!\10DE= {24131J1
I,T¥PE=TI

where:

label
is I to 8 characters that provide a symbolic address for the CLOSE macro.

address
specifies the address of the access method control block or OCR for each
data set to be closed. You may specify the address in register notation
(using a register from 2 through 12-in parentheses) or specify it with an
expression that generates a valid relocatable A-type address constant. If
you specify only one addresswith a register, you must enclose the
expression identifying the register in two sets of parentheses: for example,
CLOSE «2».

options .
are options parameters for use only in closing non-VSAM data sets. If any
options are specified with the address of an access method control block,
VSAl\1 ignores them.

N ole: Because the CLOSE parameters are positional, include a comma for
options (even if you don't specify options) before a subsequent parameter.

l\'IODE= {24131}
specifies the format of the CLOSE parameter list that is to be built.

31

TYPE=T

specifies that a standard form (24-bit) parameter list address be built.
This parameter list must reside below 16 megabytes and contain the
address of ACBs residing below 16 megabytes. The caller, however,
may be above 16 megabytes. This is the default parameter list
format.

specifies that a long fonn (3 I-bit) parameter list address be built.
This list can reside above or below 16 megab)1es. This value must be
coded if the parameter list resides above 16 megabytes or contains the
address of an VSAMjVTAM ACB residing above 16 megabytes.

specifies that VSAM is to complete outstanding I/O operations and update
the catalog, but not disconnect the program from the data.

You can issue a temporary CLOSE macro to cause VSAM to complete
outstanding I/O operations, put back into the catalog the updated

Otaptcr 2. VSAM Macro Formats and Examples 55

I
I
I
t
r

I
I

CLOSE

infonnation that was brought into virtual storage when the data set was
opened, and write records in the SMF data set uyou are using SMF. A
temporary CLOSE doesn't disconnect the program from the data set, so
your program can continue to process the data set without issuing an
o PEN macro again.

You must close and reopen a newly created VSAM data set before you can
issue noncreate requests. A temporary close is not adequate for this
purpose.

Note: If you are sharing subtasks or if you have issued an asynchronous request
for access to a data set, you must issue a CHECK or an ENDREQ on all RPLs
before you issue a CLOSE or CLOSE TYPE = T; otherwise, concurrent data set
I/O activity will cause unpredictable results during. a close.

Example: CLOSE Macro

This example shows how to close an ACB with a parameter list that may reside
above 16 megabytes.

BLOCKl ACB

OPEN

.
,RMODE3l=ALL

BLOCKl,
MODE=3l

CLOSE BLOCK!,
MODE=3l,
TYPE=T

The CLOSE parameters are:

VSAM control blocks
and I/O. buffers may
be above 16 megabytes

OPEN/CLOSE parameter
list may reside above
16 megabytes

• MODE=31 is required if the OPEN/CLOSE parameter list resides above 16
megabytes or if the ACB resides above 16 megabytes.

• TYPE indicates a temporary CLOSE. This causes VSA~1 to complete
outstanding I/O operations, put back into the catalog the updated
infonnation that was brought into virtual storage when the data set was
opened, and write records in the SMF data set if you arc using Sl\IF.

56 MVS/XA VSAM Administration: Macro Instruction Reference

CNVTAD

CNVTAD Macro (Convert Address)

The fonnat of the CNVT AD macro is:

Illabe~ I CNVT AD I RPL = address

RPI .. = address
specifics the address of the request parameter list (RPL). The RPL
identifies your opened VSAM data set and your arguments. The following
RPL parameters and subparameters have meaning for the CNVTAD
macro:

ACB = address
identifies your VSAM data set.

ARG I: address

. .

identifies your arguments. lne address points to a parameter list,
aligned on a full word boundary as follows:

Key-sequenced data set

Offset

o

3

4+ (N-I)(lO+ K)

8+ (N-I)(10+ K)

14+ (N-I)(lO+ K)

Length

3

4

4

K

Contents

Reserved; unused

Number of arguments (N)
(N = 1 to 255)

Feedback RBA
(K = key length)

Feedback volume serial number
(K = key length)

Full key argument
(K = key length)

Entry-sequenced data set or relative record data set

Offset Length Contents

0 3 Reserved; unused
3 1 Number of arguments (N)
4+ (N-l)(4) 4 Feedback RBA
8 + (N-l)(l4) 6 Feedback volume serial number
18+(N-I)(14) 6 RBA/RRN argument

The value for K is always 4 in an entry-sequenced or relative record
data set. Therefore, 10+ K is always 14 for these two types of data
sets. The maximum number of arguments allowed is 255 .

Otapter 2. VSAM Macro Formats and Examples 57

CNVTAD
-.

ECD = address
specifies the address of an event control block (ECB) which you may
specify. VSAM indicates in the ECD whether or not a request is
complete. This parameter is optional.

OPTCD = ({ADRIKEY}
,{ASYISYN}
,{KEQIKGE}
,FKS)

ADR is only valid for entry-sequenced data sets.

KEY is only valid for key-sequenced data sets and relative record dat
a sets.

If ASY is specified, you cannot WAIT on the RPLECD field for
MNTACQ or ACQRANGE. You use the address placed in the
parameter list feedback area. This address points to a list of ECDs (in
standard WAIT list fonnat) which you may use in place of the
R PLECn field.

GEN is not supported; if specified, it will give an error indication.

All sther OPl'f:D S\:IbparametcfS> are oot applicable, and, if specifled-,
are ignored with no error indications.

for a given list of discrete arguments, CNVT AD returns the volume serial
number (volser) and the RBA corresponding to each argument in the parameter
list feedback area. 111e data portion of your VSAM data set is not referenced and
need not be mounted even if the sequence set is embedded.

For an entry-sequenced data set, the volser is returned, and the same RBA
specified in the argument field is also returned.

Note: The RBA returned by 'CNVT AD in the case of a key-sequenced data set
is not the exact RBA of the record. It is, in fact, an approximate value. (For
data sets with the IMBED option, it is the RBA of the beginning of the sequence
set for the record's control area; for data sets with NOIl\tBED, it is the RBA of
the record's control interval.) When passed to MNTACQ, these RnA values
cause l\fN'r ACQ to stage the appropriate cylinders corresponding to the
reque.sted arguments originally passed to CNVT AD. You should therefore use
caution if you are planning to usc the RBAs obtained from CNVT AD for any
purpose other than as input to MNTACQ.

At the conclusion of this macro, the RPL is disconnected. Any positioning in
effect pri~r to execution of this macro will be lost. You may have to reposition.
Chained RPLs are not supported by CNVT AD.

58 MVSjXA VSAM Administration: Macro Instruction Reference

DLVRP

DLVRP Macro (Delete VSAM Resource Pool)

The DLVRP macro has a standard fonn and an execute fonn. The standard
fonn builds a parameter list and passes control to VSAM to delete the resource
pool. The execute fonn is described in Appendix B, "List, Execute, and
Generate Fonns of .Macros" on page 171.

The fonnat of the D LVRP macro is:

DI..VRP T¥PE= {I.'sRIGSR}
1,'10DE= {24131J1
I,SHRI)OOL = H!lnumberJl

lYPE= {~IGSR}
specifics the type of resource pool to be deleted: local (LSR) or global
(GSR). When deleting an LSR pool, the number specified on the
SIIRPOOL parameter indicates which LSR pool is to be deleted. If both a
data resource pool and an index resource pool have the same SIIRPOOL
number, both will be deleted. The program that issues DLVRP
TYPE = GSR must be in supervisor state with protection key 0 to 7.

l\IODE = {24131}
specifics the format of the DLVRP parameter list that is to be generated.

24

31

specifics that a standard form (24-bit) parameter list address be built.
This parameter Jist must reside below 16 megab)1es and contain the
address of ACBs residing below 16 megabytes. The caller, however,
may be above 16 megabytes. This is the default parameter list
fonnat.

specifics that a long form (31-bit) parameter list address be built.
This list can reside above or below 16 megabytes. This parameter
value must be coded if the parameter list resides above 16 megabytes
or contains the address of a VSAM/Vr Al\t ACB residing above 16
megabytes.

SHRPOOL = {!Inumber}
specifics the identification number of the shared resource pool that is to be
deleted. Valid only when TYl)E== LSR is also specified. rlbe DLVRP
parameter list may reside above or below 16 megabytes.

specifics the shared pool with the identification of o. This is the
default LSR pool identification number.

number
specifies the .shared pool with the identification of number where
number is a number from 0 to 15.

Olapter 2. VSAM Macro Formats and Examples 59

DLVRP

Example: DL VRP Macro

This example shows how an LSR pool with a parameter list that may reside
above 16 megabytes and identification number other than 0 is deleted.

DELPOOL DLVRP TYPE=LSR.
MODE=31,
SHRPOOL=l

The DL VRP parameters are:

• TYPE specifies that an LSR pool is to be deleted.

• l\IODE = 31 specifies the parameter list may reside above or below 16
megabytes.

• SHRPOOL specifies that the data resource pool and the index resource pool
(if any) with the identication number of 1 are to be deleted.

60 MVSjXA VSAM Administration: Macro Instruction Reference

ENDREQ

ENDREQ Macro (Terminate a Request)

The fonnat of the ENDREQ macro is:

IllabelJ I ENI>REQ I RI)L = address

where:

label
is 1 to 8 characters that provide a symbolic address for the ENDREQ
macro.

RI)L = address
specifies the address of the request parameter list that defmes the request.
You may specify the address in register notation (using a register from 1
through 12, enclosed in parentheses) or specify it with an expression that
generates a valid relocatable A-type address constant.

Note: The ENDREQ macro must not be issued when records arc being loaded
into a VSAM data set (load mode). ENDREQs issued while in load mode are
ignored.

Example: RcieascPositioning for Another Request

In this exampJe, the ENDREQ macro is used to cause VSAM to release
exclusive control of a control interval containing a record. There arc two request
parameter lists, both of which require VSAM to have the ability to remember its
position until VSAM is explicitly requested to' forget its position.

BLOCK

"SEQ

DIRUPD

LOOP

ACB

RPL

RPL

GET

LTR

BNZ

GET

LTR

BNZ

MACRF=(SEQ,
DIR),STRN0=2

ACB=BLOCK,
OPTCD=SEQ

ACB=BLOCK,
OPTCD=(DIR,UPD)

RPL=SEQ

15,15

ERROR

RPL=DIRUPD

15,15

ERROR

VSAM must remember its
position.

VSAM must remember its
position and maintain
exclusive control until
explicitly requested to
forget it by PUT or
ENDREQ.

VSAM now remembers its
position for this request
only while it is
processing the req~est.

VSAM can remember its
position for this request.
The control interval will
be placed in exclusive
control until either
ENDREQ or PUT UPD is
issued.

Otapter 2. VSAM Macro Formats and Examples 61

ENDREQ

Decide whether to update the record.

B . FORGET

PUT RPL=DI RUPD

LTR 15,15

BNZ ERROtt

B LOOP

FORGET ENDREQ RPL=DIRUPD

LTR 15,15

BNZ ERROR

B LOOP

ERROR xxx

No; do not update the
record.
Yes; update the record,
causing VSAM to forget its
position for DIRUP.

Cause VSAM to forget its
position for DIRUPD.
Release exclusive control.

Request wasn't accepted or
failed.

The usc of ENDREQ illustrated here causes VSAM to release exclusive control
of the control interval for a record. When PUT is issued after a DIRUPD GET
request, ENDREQ need not be issued, because PUT causes VSAl\l to release
exclusive control (the next DIRUPD GET doesn't depend on VSAM's
remembering its position). Another result of ENDREQ is that current buffers
arc written if they have been modified.

To cause VSAM to give up its position associated with a chain of request
parameter lists, specify the first request parameter list in the chain in your
ENDREQ macro.

ENDREQ can also be used to cancel an asynchronous request, rather than
suspending processing with CIIECK.

Note: If you arc sharing subtasks or if you have issued an asynchronous request
for access to a data set, you must issue a CHECK or an ENDREQ on all RPLs
before you issue a CLOSE or CLOSE TYPE = T; otherwise, concurrent data set
I/O activity will cause unpredictable results during a close. in is adequate.

Because VSAM remembers its position after a direct GET with 0 PTCD = UPD
or LOC, if no (JUT or ENDREQ follows, you can switch to sequential access
and usc the positioning for a GET.

62 MVS/XA VSAM Administration: Macro Instruction Reference

ERASE

ERASE Macro (Delete a Record)

The fonnat of the ERASE macro is:

II/abe~ I ERASE I RPL - address

where:

label
is I to 8 characters that provide a symbolic address for the ERASE macro.

RPL- address
specifies the address of a request parameter list that defines the request.
You may specify the address in register notation (using a register from 1
through 12, enclosed in parentheses) or specify it with an expression that
generates a valid relocatable A-type address constant.

With ERASE processing of key-sequenced data sets, VSAM attempts to make
the control interval available to the control area when the last record in the
control interval is erased. 'Ibus, key-sequenced data set control intervals can be
reused for new records whose keys fall anywhere within the control area's range
of keys. You may suppress the process of reclaiming the control interval by
setting RPLNOCIR in the RPL used for ERASE. The high key control interval
of a control area is never reclaimed.

Example I: Keyed-Direct Deletion

In this example, GET and ERASE macros are used to retrieve and delete records.
Not every record retrieved for deletion is deleted. lbe search argument is a full
key (5 bytes). compared equal.

DELETE ACB

LIST RPL

LOOP HVC

GET

LTR

BNZ

MACRF=(KEY, DIR,
OUT)

ACB=DELETE,
AREA=WORK,
AREALEN=50,
ARG=KEYFIELD ,
OPTCD=(KEY, DIR,
SYN,UPD, UPD indicates deletion.
MVE,FKS,
KEQ)

KEYFIELD, source Search argument for
retrieval, from a table
or transaction record.

RPL=LIST

15,15

ERROR

-.
Olapter 2. VSAM Macro Formats and Examples "63

ERASE

Decide whether to delete the record.

BE LOOP

ERASE RPL=LIST

LTR 15,15

BNZ ERROR

B LOOP

ERROR

WORK DS CLSO

KEYFIELD DS CLS

No; retrieve the next record.

Yes; delete the record.

Request was not accepted, or
failed.

Examine the data record here.

Search argument.

\Vhen you retrieve a record for deletion (OPTeD = UPD, same as retrieval for
update), VSAM is positioned at the record retrieved, in anticipation of a
succeeding ERASE (or PUT) request for that record. You are not required to
issue such a request, though. Another GET request nullifies any previous
positioning for deletion or update.

Keyed-sequential retrieval for deletion varies from direct in not using a search
argument (except for possible use of the POINT macro). Skip-sequential
retrieval for deletion (OPTeD = (SKP,tJPD» has the same effect as direct, but it
is faster or slower depending on the number of control intervals separating the
records being retrieved.

Example 2: Addressed-Sequential Deletion

In this example, the ERASE macro is used to delete records from a
key-sequenced data set. Not every record retrieved for deletion is deleted.
Skipping is effected by the POINT macro.

DELETE ACB MACRF=(ADR, SEQ,
OUT)

REQUEST RPL ACB=DELETE,
AREA=WORK,
AREALEN=100,
ARG=ADDR,
OPTCD=(ADR,SEQ,
ASY,
UPD,MVE) UPD indicates deletion.

LOOP Decide whether you need to
skip to another position
forward or backward}.

B RETRIEVE No; bypass the POINT.

MVe ADDR,source Yes; move search argument
for POINT into
search-argument field.

64 MVS/XA VSAM Administration: Macro Instruction Reference

POINT

LTR

BNZ

CHECK

LTR

BNZ

RETRIEVE GET

LTR

BNZ

CHECK

LTR

BNZ

RPL=REQUEST

15~15

ERROR

RPL=REQUEST

15,15

ERROR

RPL=REQUEST

15~15

ERROR

RPL=REQUEST

15,15

ERROR

ERASE

Position VSAM to the
record to be retrieved
next.

Decide whether to ddete the record.

ERROR

ADDR

WORK

BE

ERASE

LTR

BNZ I

CHECK

LTR

BNZ

B

.
DS

DS

LOOP

RPL=REQUEST

15,15

ERROR

RPL=REQUEST

15,15

ERROR

LOOP

F

CLI00

No; skip ERASE and CHECK.

Yes; delete the record.

Request was not accepted,
or failed .

RBA search argument for
POINT.
Work area.

Addressed deletion is allowed only for a key· sequenced data set. 'The records of
an entry· sequenced data set are fixed. When records are deleted using addressed
deletion from a key·scquenccd data set, the index is not updc'ltoo.

O.!tV"" 2. VSAM Macro Formats and Examples 65

EXLST

EXLST Macro (Generate an Exit List at Assembly Time)

The fonn~t of the EXLST macro is:

(labe" EXLST (A~I-VSAi\-fI
(,}:ODAI) == (address(,&INII,LJ)1
(,IOPID = (address)1
I,JRNAD = (address(,:1INII,LI>I

. (,LERAD == (address(,AINII,tJ)1
(,SYNAD == (addressl,~INI(,I .. 1>1
(,UP AD == (addresS(,&1 Nil ,Lf)1

Values for EXLST macro subparameters can be specified as absolute numeric
expressions, character strings, codes, and expressions that generate valid
rclocatable A-type address constants.

Note: See Data Facility Product: Customization for the factors that dctennine
the addressing mode and the parameter list residency mode set when the exit
routine gets control.

label
is 1 to 8 characters that provide a symbolic address for the exit list that is
established.

Al\1 = VSA:\ I
specifics that the access method using the control block is VSAl\f.

I:OOAO = (address(,!~.INII,LI)
101llD = (address)
JRNAJ) = (address(,~I~II,I .. D
LERAD = (addre.\'sl,~INII,I..I)
SYNAD = (addressl,~I~II,LI)
UPAD == (addressl,&INII,AI)

specify that you are supplying a routine for the exit specified.

For more infonnation about user exit routines, see Data Facility Product:
Customization.

The exits and values that can be specified for these routines are:

EOOAD
specifies that an exit is provided for special processing when the end
of a data set is reached by sequential access.

101)ID
specifies that an I/O prevention identifier is provided ~o tenninate I/O
and prevent new I/O from being started for the data sets associated
with the identifier. When the 10PID address is specified, the
identifier is a1w~ys assumed to be active.

66 MVSjXA VSAM Administration: Macro Instruction Reference

Example: f:XLST l\facro

EXLST

JRNAD
specifies that an exit is provided for journalizing transactions as you
process data records. -

LERAD
specifies that an exit is provided for analyzing logical errors.

SYNAD
specifics that an exit is provided for analyzing physical errors.

UPAD
specifies that an exit is provided for user processing during a VSAM
request. The GENCO, MODCB, SlIO\VCB, and TESTCB macros
do not s~pport the UP AD user exit routine.

address

~IN

L

is the address of a user-supplied exit routine or an I/O prevention
identifier. The address must immediately follow the equal sign.

specifics that the exit routine is active (A) or not active (N). VSAM
docs not enter a routine whose exit is marked not active.

specifics that the address is that of an 8-h}1e field that contains the
name of an exit routine in a partitioned data set that is identified by a
JOBLIO or STEPLIB DD statement or in SYSl.LINKLIB. VSAM
is to load the exit routine for exit processing. If I.. is omitted, the
address gives -the entry point of the exit routine in virtual storage, and
the exit routine is entered in the addressing mode of the VSA:\·l caller.

In this example, an EXLST macro is used to identify exit routines that are
provided for analyzing logical and physical errors. The label, EXITS, of the
EXLST macro is used in an ACB or GENCB macro that generates an access
method control block to associate the exit list with an access method control
block. The exit list generated by this example is built when the program is
assembled.

EXITS EXLST EODAD=(ENDUP,N), EXITS gives symbolic

ENDUP

LOGICAL

ROUTNAME DC

LERAD=LOGICAL, address of the exit list.
SYNAD=(ROUTNAME,L)

C'PHYSICAL'

EODAD routine.

LERAD rout ine.

Pad shorter names with
blanks: C'SYN'or CLS'SYN'.

The EXLST macro's parameters are:

• EODAD specifies that the end-of-data routine is located at ENDUP and is
not active.

Chapter 2. VSAM Macro Formats and Examples 67

EXLST

• LERAD specifies that the logical error routine is located at LOGICAL and is
active.

• SYNAD specifies that the physical error routine's name is located at
ROUTNAME.

68 MVS/XA VSAM Administration: Macro Instruction Reference

GENCB-ACB

GENeB Macro (Generate an Access Method Control Block at
Execution Time)

The fonnat of the GENCB macro used to generate an access method control
block is:

I/abe~ GENCO BI..K=ACB
(,AM = VSAl\lI
I,BSTRNO = numberJ
1,8UJ."NI> = numberJ
I,BUFNI = numberJ
(,BUFSI) = numberJ
I,CAT AI..OG = YESINOI
I,COPIES = numberJ
(,CRA == SCRAIUCRAI
I,DD~AME = ddnamel
I,EXLST == addres.rl
I,LENGTH = numberJ
(,I .. OC = BEtO\VIANYI
1,l\IACRF = (IADRII,C1'f'VII,KEYI

I,CFXIN.~XI

I,J)J)~IDS~I

I,DFRINDFI
(,DIRII,SEOII,SKI)I
(,leIINell
l,lliIl,OUTJ
I,NISISISI
(,NRI\IIAIXI
I,NRSIRSTI
I,NSRII .. SRIGSRI
I,NVBIUBFI)I

.. 1,i\fAREA~ address!
1,l\'fLEN == numberJ
1,1) ASS\VD = address)
I,RMODE31 = {ALLIBUFFICBINO~ElI
I,SHRPOOL= {!!Inumber} I
I,STRNO = numberJ
I,W AREA = addressl

Note: lbe Rl\fODE parameter replaces the AMODE31 subparameter used in
previous releases.

The subparameters of the GENCn macro can be expressed as absolute numeric
expressions, as character strings, as codes, as expressions that generate valid
relocatablc A-type address constants, in register notation, as S-typc address
constants, and as indirect S-type address constants. Appendix C, "Operand
Notation" on page 181, further dermes these operand expressions.

label
is 1 to 8 characters that provide a symbolic address for the GENCB macro.

Chapter 2. VSAM Macro Formats and Examples 69

GENCB-ACB
".

BLK=ACB
specifies that you are generating an access method control block.

Al'l = VSAI\f
specifies that the access method using this control block is VSAM.

BSTRNO = number
specifies the number of strings initially allocated for access to the base
cluster of a path. The default is STRNO. BSTRNO is ignored if the
object being opened is not a path. If the number specificd for BSTRNO is
insufficient, VSAM will dynamically extend the number of strings as needed
for the access to the base cluster. BSTR NO can also influence
performance. ·The VSAM control blocks for the set of strings specified by
BSTRNO are allocated on contiguous virtual storage, whereas this is not
guarantced for the strings allocated by dynamic extension.

BUFNO = number
specifics the number of I/O buffers VSAM is to usc for transmitting data
between virtual and auxiliary storage. A buffer is the size of a control
interval in the data component. The minimum number you may specify is
1 plus the number specified for STRNO (if you omit STRNO, nUF~D
must be at least 2, because the default for STR~O is 1). The number can
be supplied by way of the JCL DD AMP parameter as well as by way of
the macro. TIe default is the minimum number required. A larger number
for BUPND can improve the performance of sequential access.

BVf"'N1 = number
specifics the number of I/O buffers VSA~I is to usc for transmitting index
entries between virtual and auxiliary storage for keyed access. A buffer is
the size of a control interval in the index. The minimum number is the
number specified for STRNO (if you omit STRNO, BUFNI must be at
least 1, because the default for STRNO is I). You can supply the number
by way of the JCL DD A~IP parameter as well as by way of the macro.
The default is the minimum number required. A larger number for BUPNI
can improve the performance of keycd-direct retrieval.

BUFSP = number
specifies the maximum number of bytes of virtual storage to be used for the
data and indcx I/O buffers. VSAIVI gets the storage in your program's
address space. If you specify less than the amount of space that was
specified in the BUPPERSPACE parameter of the DEFINE command
when the data set was dcfmcd, VSAM overrides your BUFSP specification
upward to the value specified in BUPPERSPACE. (BUFFERSPACE, by
dcfmition, is the least amount of virtual storage that will ever be provided
for I/O buffers.) You can supply BUPSP by way of the JCI.. DD AMP
paramcter as well as by way of the macro. If you don't specify B UFSP in
either place, the amount of storage used for buffcr allocation is thc largest
of:

• The amount specified in the catalog (BUFFERSPACE),

• The amount determined from BUFND and BUFNI, or

70 MVS/XA VSAM Administration: Macro Instruction Reference

GENCB-ACB

• The minimum storage required to process the data set with its specified
processing options

If BUFSP is specified and the amount is smaller than the minimum
amount of storage required to process the data set, VSAM cannot open the
data set.

A valid BUFSP amount takes precedence over the amount called for by
BUFND and BUFNI. If the BUFSP amount is greater than the amount
called for by BUPND and BUFNI, the extra space is allocated as follows:

• When MACRF indicates direct access only, additional index buffers are
allocated.

• When MACRF indicates sequential access, one additional index buffer
and as many data buffers as possible are allocated.

If the BUFSP amount is less than the amount called for by BUFND and
BUFNI, the number of data and index buffers is decreased as follows:

• \Vhen MACRF indicates direct access only, the number of data buffers
is decreased to not less than the minimum number. PIllen, if required,
the number of index buffers is decreased until the amount called for by
BIJFND and BUFNI complies with the BlJFSP amount.

• When MACRF indicates sequential access, the number of index buffers
is decreased to not less than 1 more than the minimum number. Then,
it required, the number of data buffers is decreased to not less than the
minimum number. If still required, 1 more is subtracted from the
number of index buffers.

• Neither the number of data buffers nor the number of index buffers is
decreased to less than the minimum number.

if the index doesn't exist or isn't being opened, only BUFND, and not
BUFNI, enters into these calculations.

CATALOG = YESINO .
specifics whether a catalog is being opened as a catalog (YES) or as a data
set (NO). \Vhen NO is coded (or taken as the default), you can process the
catalog with request macros (GET, PUT, etc.). To open a
password-protected catalog for processing with VSAM macros, you must
supply its master password. When CATALOG = YI ~S is coded, the catalog
must be processed with an SVC designed for that purpose. (Access method
services, for example, processes catalogs with SVC 26.) The request macros
are invalid for processing a catalog "as a catalog." VSAM users should altcr
the contents of a catalog only by access method services commands .

. COPIES = number
specifies the number of copies of the access method control block VSAM is
to generate. All the copies are identical. You can use M 0 DC B to tailor
each one for the data set and processing you want for it. MO DCB is
described later in this chapter.

Olapter 2. VSAM Macro Formats and Examples 71

GENCB-ACB

CRA = SCRAIVCRA
specifies that a catalog recovery area is to be opened and that the control
blocks are to be built in either system storage (SCRA) or user storage
(VCRA). If you specify SeRA and issue record management requests, you
must operate in key O. If you specify VCRA, you must be authorized by
the system and you must supply the master password of the master catalog.

DDNA~IE = ddname
is 1 to 8 characters that identify the data set that you want to process by
specifying the JCL DO statement for the data set. You may omit
DDNAl\fE and provide it by way of the MODCD macro before opening
the data set. MODCD is described later in this chapter.

EXLST = address
specifies the address of a list of addresses of exit routines that you are
providing. The list is established by the EXLST or GENCO macro. If you
use the EXLST macro, you can specify its label here as the address of the
exit list. If you use GENCB, you can specify the address returned by
GENCO in register I. Omitting this parameter indicates that you have no
exit routines. Exit routines are described in the chapter "User-Written Exit
Routines" in Data Facility Product: Customization.

LENGTH = number
specifies the length, in bytes, of the area, if any, that you are supplying for
VSAM to generate the access method control block(s). (See the \VARRA
parameter.) When the LENGTH value is specified, it cannot exceed 65535
(X' FFFF').

LOC= BEI..O\VIANY

BEtOW

ANY

specifies that VSAM is to construct an ACB in an area of virtual
storage below 16 megabytes at execution time. This is the default.

specifies that VSAM is to construct an ACB in an area of virtual
storage above 16 megabytes, if possible, at execution time.

l\IACRF = (lADRII,CNVII,KJ:YI
I,CFXI~FXI
I,lllllil DSNI .
I,D.~RIND"l

I,DIRII,SEQIl,SKPI
I,ICIINCII
1,:lliJI,O UTI
I,~ISISI
I,~IAIXI
I,~IRSTJ
I,~ILSRIGSRI
I,NVBJVBFJ)

specifies the kind(s) of processing you will do with the data set. The
subparameters must be meaningful for the data set. For example, if you
specify keyed access for an entry-sequenced data set, you cannot open the

72 MVS/XA VSAM Administration: Macro Instruction Reference

GENCB-ACB

data set. You must specify all the types of access you're going to use,
whether you use them concUITCntly or by switching from one to the other.
The subparameters are shown in Figure 12 on page 38. They are arranged
in groups, and each group has a default value (indicated by underlining).
You may specify subparameters in any order. You may specify both ADR
and KEY to process a key-sequenced data set .. You may specify both DIR
and SEQ; with keyed access, you may spCciry SKP as well. If you specify
OUT and want merely to retrieve some records as well as update, delete, or
insert others, you need not also specify IN.

Note: The RMODE3l parameter replaces the AMODE31 subparameter
used in previous releases.

MAREA = address
specifics the address of an optional OPENICLOSE or TYPE = T option
(CLOSE macro) message area.

MLEN = number
specifics the Icngth of an optional OPEN/CLOSE or TYPE = T option
(CLOSE macro) message area.

I) ASS\VD = address
specifies the address of a field that contains the highest-level password
required for the type(s) of access indicated by the MACRF parameter. The
frrst byte of the field contains the length (in binary) of the password
(maximum of 8 bytes). Zero indicates that no password is supplied. If the
data set is password protected and you don't supply a required password in
the access method control block, VSAM may give the console operator the
opportunity to supply it when you open the data set.

R1\fODE31 = IALLIBU ~ICBIN()N.:I
specifies where VSAl\·f OPEN is to obtain virtual storage (above or below
16 megabytes) for control blocks and I/O buffers.

The values specified by the RMODE31 parameter only have an effect on
VSAM at the setting just before an OPEN is issued. At all other times, .
changing these values has no effect on the residency of the control blocks
and 110 buffers.

The virtual storage location of the ACB is independent of the RMODE3l
paramete~. An ACB may reside either above or below 16 megabytes.

AI .. L
both VSAM control blocks and 110 buffers are to be obtained above
16 megabytes.

DU"~""
only VSAM 110 buffers are to be obtained above 16 megabytes.

CD
only VSAM control block~ are to be obtained above 16 megabytes.

Otaptcr 2. VSAM Macro Formats and Examples 73

GENCB-ACB

~O~E

both·VSAM control blocks and I/O buffers are to be obtained below
16 megabytes. This is the default.

SHRPOOL- {numberl!!}
specifics the identification number of the resource pool to be used for LSR
processing. The default is SIIRPOOL= O.

STRNO = number
specifics the number of requests requiring concurrent data set positioning
VSAM is to be prepared to handle. A request is defmed by a given request
parameter list or chain of request parameter lists. See "RPL Macro
(Generate a Request Parameter List at Assembly Time)" on page 126 and ,
"GENCS Macro (Generate a Request Parameter List at Execution Time)"
on page 80 for infonnation on request parameter lists.

\V AREA = address
specifics the address of an area in which to generate the access method
control block(s).

The area must begin on a fullword boundary.

This parameter is paired with the LENGTH parameter. You must supply
the LENGTII parameter if you specify an area address.

Note: If you do not specify an area in which the access method control
block is to be generated, VSAM obtains virtual storage space for the area
(as specified by the LOC = keyword). VSAl\1 returns the address of the
area containing the control block(s) in register 1 and the lcngth of the area
in register O. You can fmd out the length of each control block by dividing
the length of the area by the number of copies. The address of each control
block can then be calculated by this offset from the address in register 1.
You can fmd the length of an access method control block with the
SHO\VCB macro.

If you are generating control blocks by issuing several GENeBs, specifying
an area (\VAREA and LENGTH parameters) for them enables you to
address all of them with one base register and to avoid repetitive requests
for virtual storage.

74 MVS/XA VSAM Administration: Macro Instruction Reference

GENCB-ACB

Example: GENCB 1\lacro (Generate an Access ~lcthod Control Block)

In this example, a GENCB macro is used to identify a data set to be-opened and
to specify the types of processing to be perfonned. This example specifics that
the space for the control block be obtained above 16 megabytes. The access
method control block generated by this example is l>uilt when the program is
executed.

GENCB GENCB BLK=ACB,AM=VSAM,
BUFND=4, BUFNI=3,
BUFSP=19456,
DDNAME=DATASETS,
EXLST=EXITS,
LOC=ANY,
MACRF=(KEY,DIR,
SEQ ,OUT) ,
PASSWD=FIELD,
RMODE31=ALL,
STRN0=2

ST 1,ACBADDR

One copy generated; VSAM
gets the storage for it,
because the WAREA LENGTH
parameters have been
omitted.

Save the address of the
access method control
block.

ACBADDR DS F The address of the
access method control
block is saved in
ACBADDR.

FIELD DC FLl'6',C'CHANGE' CHANGE, the password, has
6 characters.

The GENCO macro's parameters arc:

• BUFND specifics four 110 buffers for data; BUFNI specifics three I/O
buffers for index entries; and nUFSP specifics 19456 bytes of buffer space,
enough space to accommodate control intervals of data that are 4096 b)1CS
and of index entries that arc) 024 bytes.

• DDNAtvlE specifies that this access method control block is associated with
a DD statement named DATASETS.

• EX LST specifics that the exit list associated with this access method control
block is named EXITS.

• LOC specifics that VSAM obtain virtual storage for the Acn from an area
that may be above 16 megabytes.

• l\fACRF specifies keyed direct and keyed sequential processing for both
insertion and update.

• PASS\VD specifics the location, FIELD, of the password provided.

• RMODE31 specifics that VSAM obtain storage for the VSA~f control
blocks and I/O buffers in an area above 16 megabytes when the ACB is
opened.

• STRNO specifies that two requests will require concurrent positioning .

..
Otapter 2. VSAM Macro Fonnats and Examples 75

GENCB-EXLST

GENeB Macro (Generate an Exit List at Execution Time)

The fonnat of the GENCO macro used to generate an exit list is:

.
(/abe~ GENCO BLK==EXLST

(,Ai\1 == VSAlVlI
(,EODAD == (addressf,~I~II,I..J)1
(,JR~AD == (addressf,!lINII,LI)1
(,LERAI> == (addressf ,~I!';II ,LI)I
(,SYNAD == (addressl,~I~II,I.J)1
(,COPIES == number!
(,LENGTH == number!
(,LOC == BEI..OWI ANYI
(,W AREA == addressl

The parameters of the GENCO macro can be expressed as absolute numeric
expressions, as character strings, as codes, as expressions that generate valid
relocatable A-type address constants, in register notation, as S-type address
constants, and as indirect S-type address constants. Appendix C, "Operand
Notation" on page 181, further defines these operand expressions.

Note: See Data Facility Product: Customization for the factors that determine
the addressing mode and the parameter list residency mode set when the exit
routine gets control.

label
is I to 8 characters that providz a symbolic address for the GENCB macro.

BLK==EXLST
specifies that you are generating an exit list.

MI==VSAl\1
specifies that the access method using this control block is VSAM.

(,EODAD == (addressf,~INII,LI)1
(,JRNAD = (address(,~INJ(,Lf)1
(,LERAD == (addressf,AINII,Lf)1
(,SYNAD == (addressf,AJl~II,LI)I

specify that you are supplying a routine for the exit named.

For more infonnation about user exit routines, see Data Facility Product:
Customization.

If none of these user exit routines is specified, VSAl\f generates an exit list
with inactive entries for all the exits. The exits and values that can be
specified for them are:

EODAD
specifies that ~ exit is provided for special processing when the end
of a data set is reached by sequential access.

76 MVS,tXA VSAM Administration: Macro Instruction Reference

GENCB-EXI.ST

JRNAD
specifies that an exit is provided for joumaling as you process data
records.

LERAD
specifies that an exit is provided for analyzing logical errors.

SYNAD
specifics that an exit is provided for analyzing physical errors.

address

~.lN

L

is the address of a user-supplied exit routine. The address must
immediately follow the equal sign.

specifies that the exit routine is active (A) or not active (N). VSAM
does not enter a routine whose exit is marked not active.

specifies that the address is that of an 8-hyte field that contains the
name of an exit routine in a partitioned data set that is identified by a
JOBLIB or STEPLIB DD statement or in SYSl.LINKLIB. VSAM
is to load the exit routine for exit processing. If L is omittedt the
address gives the entry point of the exit routine in virtual storaget and
the exit routine is entered in the addressing mode of the VSAM caller.
L may precede or follow the A or N specification.

COPIES:: number
specifics the number of copies of the exit list you want generated. GENCn
generates as many copies as you specify (default is 1) when your program is
executed. All copies are the same. You can use MODCB to change some
or all of the addresses in a list. (IVIODCB is described later in this chapter.)

LENGTH :: number
specifies the length, in bytest of the areat if anYt that you are supplying for
VSAM to generate the exit list(s). (See the \VAREA parameter.) \Vhen
the LENGTH value is specifiedt it cannot exceed 65535 (X ' FFFF ').

LOC = BEI..O\VIANY

BELO\V

ANY

specifies that VSAM is to construct an exit list in an area below 16
megabytes at execution time. This is the default value.

specifics that VSAM is to construct an exit list in an area above 16
megabytes, if possible, at execution time.

W AREA = address
specifies the address of an area in which the exit list(s) is to be generated.

The area must begin on a fullword boundary.

Cl1ap~ 2. VSAM Macro Formats and Examples 77

GENCB-EXLST

This parameter is paired with the LENGTH parameter, which must be
given if you specify an area address.

Note: If you did not specify an area in which the exit list is to be
generated, VSAM obtains virtual storage space for the area (as specified by
the LOC = keyword). VSA~I returns the address of the area in which the
exit lists(s) is to be generated in register 1, and the length of the area in
register o. You can find the length of each exit list by dividing the length of
the area by the number of copies. The address of each exit list can then be
calculated by this offset from the address in register 1. You can fmd the
length of an exit list with the SIIO\VCO macro, described under
"SIIO\VCB Macro (Display Fields of an Exit "List)" on page 139.

If you are generating control blocks by issuing several GENCBs, specifying
an area (W AREA and LENGTH) for them enables you to address all of
them with one base register and to avoid repetitive requests for vi~ual
storage.

Example: GENeB l'lacro (Generate an Exit List)

In this example, a GENCO macto is used to generate an exit list when the
program is executed.

EXITS GENCB BLK=EXLST,
EOliAD=(E"OlJ, N) ,
LERAD=LOGICAL,
SYNAD=(ERROR,
A,L)

LTR 15,15

BNZ ERROR

ST 1,EXLSTADR Address of the exit list is saved.

EOD EQU * EODAD routine.

LOGICAL EQU * LERAD routine.

ERROR DC C'PHYSICAL' Name of the SYNAn module.

EXLSTADR DS F Save area for exit-list address.

The GENCO macro's parameters are:

• B LK specifies that an exit list is to be generated.

• EODAD specifics that the end-of-data routine is located at EOD and is not
active.

• LERAD specifics that the logical error routine is located at LOGICAL;
because neither A nor N is specified, the LERAD routine is' marked active by
default.

• SYNAD specifies that the physical.error routine's name is located at
ERROR.

78 MVS/XA VSAM Administration: Macro Instruction Reference

(

GENCB-EXLST

Because no area was specified in which the exit list was to be. generated, VSAM
obtained virtual storage for the exit list and returned the address in register 1.
Immediately after the GENCB macro, the address of the exit list, contained in
register I, is moved to EXLSTADR. EXLSTADR may be specified in a
GENCB macro that generates an access method control block or in a MODCn,
SHOWCB, or TESTCD macro that modifies, displays, or tests fields in an exit
list.

Chapter 2. VSAM Macro Formats and Examples 79

GENCB-RPL

GENCB Macro (Generate a Request Parameter List at Execution
Time)

The fonnat of the GENCB macro used to generate a request parameter list is:

(/abe~ GENCB BLK=RPL
(,ACB = addressl
I,A~I = VSA~n
(,AREA = addressl
(,AREALEN = numberJ
(,ARG = addressl
I,COI)IES = numberJ
1,.:C8 = addressl
(,KEYLEN = numberJ
l,tEl':GTlI = numberJ
(,LOC = HEI..O\VIANYI
I,MSGAREA = addressl
(,lVISGI..EN = numberJ
I,NXTRPL = addressl
(,OPTeD = (IADRICNVI KEYI

(,DIRISEQISKPI
J,Altl')~l_ll-I-)J

1,m!!IB\VDI
I,ASYIS~I
I,NSPI~IUPDJ
I,KEOIKGEI
I,"'KSIGENI
I,Loe 1l\tIVEI)I

I,RECLEN = numberJ
I,TRA~SID = numberJ
I,\V AREA = addressl

The parameters of the GENCO macro can be expressed as absolute numeric
expressions, as character strings, as codes, as expressions that generate valid
relocatable A-type address constants, in register notation, as S-type address
constants, and as indirect S-type address constants. Appendix C, "Operand
Notation" on page 181 further defines these operand expressions .

. The parameters of the GENCO macro to generate a request parameter list are
. optional in some cases, but required in others. It is not necessary to omit

parameters that are not required for a request; they arc ignored. Thus, for
example, if you switch from direct to sequential retrieval with a request parameter
list, you don't have to zero out the address of the field containing the search
argument (ARG = address).

label
is 1 to 8 characters that provide a symbolic address for the GENCB macro.
For addressing lists generated by GENCB, see the discussion of the
COPIES parameter •.

80 MVS/XA VSAM Administration: Macro Instruction Reference

(

GENCB-RPL

BI .. K=RPL
specifies that you are generating a request parameter list.

ACB = address
specifies the address of the access method control block that identifies the
data set to which access will be requested. If you omit this parameter, you
must issue MODCn to specify the address of the access method control
block before you issue a request. (MODCD is described later in this
chapter.)

AM=VSAM
specifies that the access method using this control block is VSAM.

AREA = address
specifics the address of a work area to and from which VSAM moves a data
record if you request it to do so (with the RPL parameter
OPTCD = MVE). If you request that records be processed in the I/O
buffer (OPTCD= LOC), VSA~f puts into this work area the address of a

. data record within the I/O buffer.

AREAI .. EN = number
specifics the length, in bytes, of the work area whose address is specified by
the AREA parameter. Its minimum for OPTCD= MVE is the size of a
data record (or the largest data record, for a data set with records of variable
length). Por OPTCD = LOC, the area should be 4 bytes to contain the
address of a data record within the I/O buffer.

ARG = addre.rs
specifics the address of a field that contains the search argument for direct
retrieval, skip-sequential retrieval, and positioning. For a relative record
data set, the ARG field must be 4 bytes long. For direct or skip-sequential
processing, this field contains your search argument, a relative record
number. For sequential processing (OPTCD = (KEY,SEQ», the 4 bytes
are required for VSAM.t.o return the {eedbac-k RRN. For keyed -access
(OPTCD= KEY), the search argument is a full or generic key; for
addressed access (OPTCD = ADR), it is an RBA. If you specify a generic
key (OPTCD = GEN), you must also specify in the KEYLEN parameter
how many of the bytes of the full key you are using for the generic key.

COI)IES = number
specifics the number of copies of the request parameter list you want
generated. GENCB generates as many copies as you specify (default is 1)
when your program is executed.

The copies of a request parameter list can be used to:

• Chain lists together to gain access to many records with one request

• Defme many requests to gain access to many parts of a data set
concurrently

All copies generated are identical; you must use MODCB to tailor them to
specific requests. MODCB is described in this chapter.

Otapler 2. VSAM Macro Formats and Examples 81

~ENCB-RPL

'. ECD = address
specifies the address of an event control block (ECB) that you may supply.
VSA~1 indicates in the ECB whether a request is complete or not (using
standard completion codes, which are described in Data Areas). You can
use the ECB to detennine that an asynchronous request is complete before
issuing a CHECK macro. This parameter is always optional.

KEYLEN = number
specifics the length, in bytes, of the generic key (0 PTCD = G E N) you are
using for a search argument (given in the field addressed by the ARG
parameter). This parameter is required with a search argument that is a
generic key. The number can be I through 255. For full-key searches,
VSAM knows the key length, which is taken from the catalog defmition of
the data set when you open the data set.

LE~GTH = number
specifies the length, in bytes, of the area, if any, that you arc supplying for
VSAM to generate the request parameter list(s). (See the WAREA
parameter.) When the LENGTH value is specified, it cannot exceed 65535
(X' FPPF ').

You can find out how 10i.lg a request parameter list is with the SIIO\VCB
macro, described later in this chapter.

Loe = BEI..O\VIANY

BF:I .. O\V

ANY

specifics that storage for the RPL be obtained from virtual storage
below 16 megabytes. This is the default value.

specifics that storage be obtained from virtual storage above 16
megabytes if possible.

i\·ISGAREA = address
specifies the address of an area that you are supplying for VSAM to send
you a message in case of a physical error. (The fonnat of a physical error
message is given under "Physical Errors" in the chapter "Request
Macros.")

~ISGLEN = number
specifics the size, in bytes, of the message area indicated in the l\IlSGAREA
parameter. The size of a message is 128 bytes; if you provide less than 128
bytes, no message is returned to your program. This parameter is required
when MSGAREA is coded.

82 MVS/XA VSAM Administration: Macro Instruction Reference

GENCB-RPL

NXTRPL == address
specifies the address of the next request parameter list in a chain. Omit this
parameter from the macro that generates the only or last list in the chain.
When you issue a request that is defIDed by a chain of request parameter
lists, indicate in the request macro the address of the fust parameter list in
the chain. A single request macro can be defIDed by multiple request
parameter lists, such that a GET, for example, can cause VSAM to retrieve
two or more records.

OPTCD = (lADRICNVIKEYI
(,DrR/SEQ/SKI)1
I,~II..RDI
·I,~/BWDI
I,ASYISYNI
I,NSI)I~IUPDI
I,KJ:QIKGEI
1,.E!ili/GENI
"LOC IMVEI)
specifics the subparameters that govern the request derIDed by the request.
parameter list. Each group of subparameters has a default; subparameters
arc shown in figure 13 on page 128 with defaults underlined. Only one
subpar-cUlleter from each group is effective for a request. Some requests do
not require an subparameter from all of the groups to be specified. The
groups that are not required are ignored; thus, you can use the same request
parameter list for a combination of requests (GET, PUT, POINT, for
example) without zeroing out the inapplicable subparameters each time you
go from one request to another.

R ECLEN = number
specifics the length, in bytes, of a data record being stored. If the records
you are storing are all the same length, you will not need to change
RECLEN after you set it. This parameter is required for PUT requests.
for GET requests, VSAl\f puts the length of the record retrieved in this
fie1d in "the request parameter tist. 1t will be there If you update and store
the record.

TRANSID - number
specifics a number that relates modified buffers in a buffer pool. Use in
shared resource applications and a description are in "Sharing Resources"
in VSAAI Administration Guide.

\\' AREA == address
specifics the address of an area in which the request parameter list(s) is to
be generated.

The area must begin on a fullword boundary.

This parameter is paired with the LENGTH parameter, which must be
given if you specify an area address.

Note: If you did not specify an area in which the request parameter list is
to be generated, VSAM obtains virtual storage space for the area (as
specified by the LOC = keyword). VSAM returns the address of the area in
which the request parameter list(s) is generated in register I, and. the length

Olapter 2. VSAM Macro Fonnats and Examples 83

GENCB-RPL

of the area in register O. You can fmd the length of each list by dividing the
length of the area by the number of copies. You can then calculate the
address of each list by using the length of each list as an offset.

If you are generating control blocks by issuing several GENCBs, specifying
an area (WAREA and LENGTH parameters) for them enables you to
address all of them with one base register and to avoid repetitive requests
for virtual storage.

Building a Chain of Request Parameter Lists

When GENCO is used to build a chain of request parameter lists, the request
parameter lists may be chained using only GENCO macros or using GENCO and
MODCO macros together. When only GENCB is used, the request parameter
lists are created in reverse order, as follows:

SECOND

FIRST

GENCB
LR
GENCB

BLK=RPL
2,1
BLK=RPL,NXTRPL=(2)

SECOND GENCO creates the second request parameter list, which makes its
address available for the first request par.lmeter list. The address of the request
parameter list is returned in register 1 and is loaded into register 2. FIRST
GENCO creates the frrst request parameter list and supplies the address of the
nert request parameter list using regisfer notafion. GE N en and lVtoDCtt
macros may be used together to create a chain of request parameter lists, as
follows:

GENCB
LR
SRL
LR
LA
MODCS

BLK=RPL,COPIES=2
2,0
2,1
3,1
4,0(2,3)
RPL=(3),NXTRPL=(4)

The GENCB macro creates two request parameter lists. The length of the
parameter lists is returned in register 0 and loaded into register 2. The address of
the area in which the lists were created (and, therefore, the address of the frrst
one) is returned in register 1 and loaded into register 3. The SRL statement
divides the total length of the area (register 2) by 2. The LA statement loads the
address of the second request parameter list into register 4. The MODCn macro
modifies the flfSt request parameter list (register 3) by supplying the address of the
second request parameter list (register 4) in the NXTRPL parameter.

Each request parameter list in a chain should have the same OPTCD
subparameters. I laving different subparameters may cause logical errors. You
can't chain request parameter lists for updating or deleting records-only for
retrieving records or storing new records. You can't process records in the I/O
buffer with chained request parameter lists. (OPTCD= UPD and LOC are
invalid for chained request parameter lists.)

84 MVS/XA VSAM Administration: Macro Instruction Reference

GENCB-RPL

Example: GENCB Macro (Generate a Request Parameter List)

In this example, a GENCB macro is used to generate a request parameter list.

ACCESS GENCB BLK=RPL,
ACB=ACCESS,
AM=VSAM,
AREA=WORK,
AREALEN=125,
ARG=SEARCH,
LOC=ANY,
MSGAREA=HESSAGE,
MSGLEN=128,
OPTCD=(SKP,UPD)

ACCESS ACB MACRF=(SKP, OUT)

WORK DS CL125

SEARCH DS CL8

MESSAGE DS CL128

The GENCB macro's parameters are:

• BLK specifics that a request parameter list is to be generated.

• ACB specifies that the request parameter list is associated with a data set and
processing options identified by ACCESS.

• AREA and AREALEN specify a 125-byte work area to be used for
processing records.

• AR G specifies the address of the search argument.

• LOC specifics that VSAM obtain storage for the request parameter list in an
area above 16 megabytes.

• MSGAREA and MSGLEN specify a 128-byte area to be used for
physical-error messages.

• OPTCD specifies the subparameters that govern the request defined by the
request parameter list identified by SKP and UPD.

Olapter 2. VSAM Macro Formats and Examples 85

GET

GET Macro (Retrieve a Record)

The fonnat of the GET macro is:

Illabe4 I GET I RPr = address

where:

label
is 1 to 8 characters that provide a symbolic address for the GET macro.

RPL = address
specifics the address of the request parameter list that deiines this GET
request. You may specify the address in register notation (using a register
from I through 12, enclosed in parentheses) or specify it with an expression
that generates a valid rclocatable A-type address constant.

Example I: Keyed-Sequential Retrieval (Forward)

In this example, a GET macro is used to sequentially retrieve records by key.
Retrieval is in 'a forward direction. Fixed-length, IOO-byte records are moved to a
work area. Processin~is synchronous.

INPUT ACB MACRF=(KEY,
SEQ,IN)

RETRVE RPL ACB=INPUT,
AREA=IN,
AREALEN=100,
OPTCD=(KEY,SEQ,
SYN,NUP,MVE)

LOOP

ERROR

IN

· GET RPL=RETRVE

LTR 15,15

BNZ ERROR

· B LOOP

· DS CL100

All MACRF and OPTCD
subparameters specified are
defaults and could have
been omitted.

This GET or identical GETs can
be issued, with no change in
the request parameter list, to
retrieve subsequent records in
key sequence.

Request was not accepted, or
failed.

IN contains a data record after
GET is completed.

The records are retrieved in" key sequence in a forward direction. No search
argument has to be specified; VSAM is positioned at the first record in key
sequence when the data set is opened, and the next record is retrieved

86 MVSjXA VSAM Administration: Macro Instruction Reference

GET

automatically as each GET is issued. The branch to ERROR could also be
taken if the end of the data set is reached.

Example 2: Keyed-Sequential Retrieval (Backward)

This example is the same as the previous one, except that a POINT macro
instruction is issued to the last record in the data set' and the records are retrieved
in a backward direction.

INPUT ACB

RETRVE RPL

PDNAME=INPUT,
EXLST=EXLSTI

ACB=INPUT,
AREA=IN,
AREALEN=100,
OPTCD=(KEY,SEQ,
LRD,BWD)

EXLSTI EXLST EODAD=EOD

POINT RPL=RETRVE

LTR 15,15

BNZ ERROR

LOOP GET RPL=RETRVE

LTR 15,15

BNZ ERROR

B LOOP

EOD EQU *
ERROR

.
IN DS CLI00

Example 3: Skip-Sequential Retrieval

Define RPL for last record
positioning and backward
processing.

Define end of data.

Position to last record (no
argument is required).

Get previous record.

Come here for end of data.

Request failed.

Area for retrieved record.

In this example, a GET macro is used to retrieve variable-length records
synchronously. Records are to be processed in the I/O buffer. The search
argument is full key, compared grcater-than-or-equal; key length is eight bytes.

The records arc retrieved in key sequence, but some records arc skipped.
Skip-sequential retrieval is similar to keyed-direct retrieval, except that you must
retrieve records in ascending sequence (with skips) rather than in a random
sequence.

GENCB BLK=ACB,
DDNAME=INPUT,
MACRF=(KEY,
SKP,IN)

LTR 15,15

VSAM gets an area in
virtual storage to generate
the access method control
block and returns the
address in register 1.

..
Chapter 2. VSAM Macro Formats and Examples 87

GET

LOOP

ERROR

CHECKO

BNZ CHECKO

LR 2,1

GENCB BLK=RPL,
ACB=(2),
AREA=RCDADDR,
ARE ALE N=4,
ARG=SRCHKEY,
OPTCD=(KEY,SKP,
SYN,NUP,KGE,
FKS,LOC)

LTR 15,15

BNZ CHECKO

LR 3,1

.
MVC SRCHKEY,source

GET RPL=(3)

LTR 15,15

BNZ ERROR

SHOWCB AREA=RCDLEN,

LTR

BNZ

.
B

FIELDS=RECLEN,
LENGTH=4,
RPL=(3)

15,15

CHECKO

LOOP

RCDADDR DS F

SRCHKEY DS

RCDLEN DS

CL8

F

Address of the request
parameter list .

Search argument for
retrieval, moved in from
a table or a transaction
record.

Display the length of the
record.

Request was not accepted,
or failed.

Generation or display
failed.

Work area into which VSAM puts
the address of a data record
within the lID buffer
(OPTCD=LOC) •

Search argument ~or retrieval.

For displaying variable record
lengths.

The macros and instructions are as follows:

88 MYSiXA YSAM Administration: Macro Instruction Reference

GET

• The fIrSt GENCB generates an access method control block, which specifies
keyed, skip-sequential, and input processing. The address of the access
method control block is stored in register 2.

• The $eCond GENCB generates a request parameter list. The address of the
request parameter list is stored in register 3.

• MVC moves the search argument into SRCIIKEY, the area defined for the
search argument.

• GET specifies that the record pointed at by the request parameter list whose
address is in register 3 is to be retrieved. Records are retrieved by a
skip-sequential search through the sequence set of the index.

Example 4: Addressed-Sequential Retrieval

In this example, one GET macro is used to retrieve multiple fixed-length, 20-byte
records. The records are moved to a work area (only option).

BLOCK ACB DDNAME=INPUT,
MACRF=(ADR, SEQ,
IN)

.
GENCB BLK=RPL,

COPIES=10,
ACB=BLOCK,
OPTCD=(ADR, SEQ,
SYN,NUP,MVE)

LTR 15,15

BNZ CHECKO

LA 3,10 Number of lists(10).

LR 2,1 Address of the first list.

LR 1,0 Length of all of the lists.
Registers 0 and 1 contain
length and address of the
generated control blocks
when VSAM returns control
after GENCB.

SR 0,0 Prepare for following division.

DR 0,3 Divide number of lists into
length of all the lists.

LR 3,1 Save-the resulting length of a
single list for an offset.

LR 4,2 Save address of the first
list.

LA S,RECAREA Address of the first work
area.
Do the following 6
instructions 10 times to set
up all the request parameters
lists. The 10th time, register
4 must be set to 0 to indicate
the last request parameter
list in the chain.

Olapter 2. VSAM Macro Formats and Examples 89

GET

LOOP

eHECKO'

ERROR

AR 4,3

MODCD RPL=(2),
NXTRPL=(4) ,
AREA=(S),
AREALEN=20

LTR 15,15

BNZ CHECKO

AR

LA

GET

2,3

5,20(5)

RPL=(2)

LTR 15,15

BNZ ERROR

B LOOP

RECAREA DS CL200

Address the next list.

In each request parameter list,
indicate the address of the
next list and the address and
length of the work area.

Address the next list.

Address the next work area.
Restore register 2 to address
the first list before continuing
to orocess.

Process the 10 records that
have been retrieved by the
GET.

Display the feedback field
(FIELDS=FDBK) of each request
parameter list to find out
which one had an error.

Space for a work area for each
of the 10 request parameter
lists.

The GENCO macro generates 10 request parameter lists; the lists are
subsequently chained together by using the MOOCH macro to modify the
NXTRPL parameter in each copy. Because SEQ is specified in each request
parameter list and no previous request has been issued against the access method
control block since it was opened, retrieval begins at the beginning of the data set.
Each time the GET macro is executed, VSAM is positioned at the next record in
RBA sequence. VSAl\-f moves each record into the work area provided for the
request parameter list that identifies the record.

If an error occurred for one of the request parameter lists in the chain and you
have supplied error-analysis routines, VSAM takes a LERAD or SYNAD exit
before returning to your program. Register 15 is set to indicate the status of the
request. A code of 0 indicates that no error was associated with any of the
request parameter lists. Any other code indicates that an error occurred for one
of the request parameter lists. You should issue a SHOWCB macro for each
request parameter list in the chain to. fmd out which had an error. VSAM
doesn't process any of the request parameter lists except the one with an error.

90 MVS/XA VSAM Administration: Macro Instruction Reference

GET

Example S: Sequential Retrieval for a Rclative Record Data Set

In this example, a GET macro is used to sequentially retrieve records -by relative
record number. Fixed-length, IOO-byte records are moved to a work area.
Processing is synchronous.

INPUT ACB HACRF=(KEY , SEQ,
IN)----- -

RETRVE RPL ACB=INPUT,
AREA=IN,
AREALEN=1 00,
ARG=RCDNO,
OPTCD=(KEY, SEQ,
SNY,NUP,MVE)

LOOP

-.....

GET RPL=RETRVE

LTR 15,15

BNZ ERROR

B LOOP

All HACRF and OPTCD
subparameters specified are
defaults and could have been
omitted.

This GET or identical GETs
can be issued, with no change
in the RPL, to retrieve
subsequent records in relative
record number sequence.

ERROR Request was not accepted or
it failed.

IN DS CLI00

ReDNO DS CIA

IN contains a data record
afur GET is ..camplet.ea ..

VSAM returns relative record
number of retrieved record in
this field.

The records arc retrieved in relative record number sequence. Empty records are
bypassed for sequential retrieval. A 4-byte search argument must be specified.
The relative record number of each record retrieved is stored in the search
argument. VSAM is positioned at the fll'st relative record when the data set is
opened, and the next nonempty record is retrieved automatically as each GET is
issued. The branch to ERROR would also be taken if the end of the data set is
reached.

Otapter 2. VSAM Macro Formats and Examples 91

GET

Example 6: Keyed-Direct Retrieval

In this example, a GET macro is used to retrieve fixed-length, IOO-byte records
directly by key. The key length is 15 bytes; the search argument is as-byte
generic key, compared equal. The control blocks are generated at assembly.

INPUT ACB MACRF=(KEY,
DIR,IN)

RETRVE RPL ACB=INPUT,
AREA=IN,
AREALEN=4,
OPTCD=(KEY,
DIR,SYN,NUP,
KEQ, GEN, LOC) ,
ARG=KEYAREA,
KEYLEN=5

You specify all parameters for
the request in the RPL macro.

LOOP MVC KEYAREA,SOURCE Search argument for retrieval,

ERROR

IN

GET RPL=RETRVE

LTIf 15, IS

BNZ ERROR

B LOOP

DS CL4

KEYAREA DS CLS

moved in from a table or a
transaction record.

This GET or identical GETs can
be issued with no change in the
RPL: Specify each new search
argument in the field KEYAREA.

Process the record.

Request was not accepted, or
failed.

VSAM puts here the address of
the record within the I/O
buffer.

You specify the search argument
here.

The generic key specifics a class of records. For example, if you search on the
first third of employee number, VSAM positions at and retrieves the fIrSt of
presumably several records that start with the specified characters~ To retrieve all
the records in that class, either switch to sequential access or to a full-key search
with a greater-than-or-equal comparison.

92 MVS,'XA VSAM Administration: Macro Instruction Reference

GET

Example 7: Addressed-Direct Retrieval

In this example, a GET macro is used to retrieve fIXed-length 20-byte records.
The records are to be moved to a work area.

BLOCK

LOOP

CHECKO

ERROR

ACB

GENCB

LTR

BNZ

LR

MVC

GET

LTR

BNZ

B

IN DS

SRCHADR DS

DDNAME=INPt.rr,
MACRF=(ADR, DIR,
IN)

BLK=RPL,
COPIES=I,
ACB=BLOCK,
OPTCD=(ADR, DIR,
SYN, NUP, MVE)

15,15

CHECKO

2, 1

SRCHADR,

RPL=(2)

15, 15

ERROR

LOOP

CL20

CIA

Access method control
block generated at
assembly.

ARG=SRCHADR, AREA=IN,
AREA LEN=20
Request parameter list
generated at execution.

Address of the list.

Search argument for
retrieval; calculated or
moved in from a table or
a transaction record.

Process the record.

Generation failed.

Request was not accepted,
or failed.

VSAM puts a record here
for each GET request.

You specify the RBA
search argument here for
each request.

The RBA provided for a search argument must match the RBA of a record.
Keyed insertion and deletion of records in a key-sequenced data set will probably
cause the RBAs of some records to change. Therefore, if you process a
key-sequenced data set by addressed-direct access (or by addressed-sequential
access using POINT), you need to keep track of changes. You can use the
JRNAD exit for this purpose. See "EXLST Macro (Generate an Exit List at
Assembly Time)" on page 66.

Chapter 2. VSAM Macro Fonnats and Examples 93

GET
-.

Example 8: Switch from Direct to Sequential Retrieval

In this example, GET macros are used to retrieve fued-Iength, IOO-byte records.
The retrieval is via an alternate index path defmed with the nonunique key
option. Every time a nonunique key is retrieved, the program switches to
sequential processing to retrieve the other records with the same key. The
control blocks were generated at assembly, but the MODCD macro is used to
modify the request parameter list to pennit switching from keyed-direct to
keyed-sequential retrieval. For the direct request preceding sequential requests,
the search argument is an 8-byte, generic key, compared equal. Positioning is
requested for direct requests.

INPUT ACB MACRF=(KEY,DIR,
SEQ, IN)

RETRVE RPL ACB=INPUT,
AREA=IN,
AREALEN=100,
OPTCD=(KEY,DIR,
SYN,NSP,KEQ,
GEN,.MVE) ,
ARG=KEYAREA,
KEYLEN=£

LOOPI

SEQ

.
MVC KEY'AREA-, source

GET RPL=RETRVE

LTR 15,15

BNZ ERROR

SHOWCB RPL=RETRVE,
AREA=FDBAREA,
FIELDS=FDBK

LTR 15,15

BNZ ERROR

CLI ERRCD,S

BE SEQ

B LOOP

MODCB RPL=RETRVE,
OPTCD=SEQ

LTR 15,15

BNZ CHECKO

94 MVS/XA VSAM Administration: Macro Instruction Reference

Both direct and
sequential access
specified.

NSP specifies that VSAM
is to remember its
position.

Search argument for
direct retrieval; moved
in from a table or a
transaction record.

Extract feedback
information.

Does a duplicate key
follow?

Yes; retrieve duplicates
sequentially.

No; retrieve next record
in direct mode.

Alter r~quest parameter
list for sequential
access.

SEQGET GET RPL=RETRVE

15,15

DIR

ERROR

IN

LTR

BNZ ERROR

.
SHOWCB RPL=RETRVE,

ARE A=FDB AREA ,
FIELDS=FDBK

LTR 15,15

BNZ ERROR

CLI ERRCD,8

BE SEQGET

MODCB RPL=RETRVE,
OPTCD=DIR

LTR 15,15

BNZ CHECKO

B LOOP

.
DS CLIOO

KEYAREA DS CL8

FDBAREA DS

DS

TYPECD DS

CMPCD DS

ERRCD DS

OF

lC

IC

lC

lC

GET

Do sequential retrieval.

Test for error.

Extract feedback
information.

Does a duplicate key
follow?

Yes; retrieve
sequentially.

Alter request parameter
list for direct access ..

Prepare new search
argument.

Request was not accepted,
or failed.

Modification failed .

VSAM puts retrieved
records here.

Specify the generic key
for a direct request
here.

Feedback area for SHOWCB.

Reserved.

Error type code.

Component code.

Reason code.

Positioning is associated with a request parameter list; the f\.fODCB macro is
used to modify a singJe request parameter list that alternately dermes requests for
both types of access rather than use a different request parameter list for each
-type.

With direct retrieval, VSAM doesn't remember its position for subsequent
sequential retrieval unless you explicitly request it (OPTeD = NSP or UPD).
Mter a direct GET for update, VSAM is positioned for a subsequent PUT,

Cllapter 2. VSAM Macro Formats and Examples 95

GET

ERASE, or sequential GET. If you modify OPTeD = (DIR,NUP) to
OPTCD=SEQ, you must issue POINT to get VSAM positioned for sequential
retrieval, as NUP indicates that no positioning is desired with a direct GET.

If you have chained many request parameter lists together, one position is
remembered for the whole chain. For example, if you issue a GET that gives the
address of the fU'St request parameter list in the chain, the position of VSAM
when the GET request is complete is at the record following the record dermed
by the last request parameter list in the chain. Therefore, modifying
OPTCD=(DIR,NSP) in each request ·parameter list in a chain to
OPTCD= SEQ implies continuing with sequential access relative to the last of
the direct request parameter lists.

96 MVS/XA VSAM Administration: Macro Instruction Reference

GETIX

GETIX Macro (Retrieve an Index Record)

The fonnat of the GETIX macro is:

Illabe~ I GETIX I RPL = address

whcrc:

label
is 1 to 8 characters that provide a symbolic address for the GETIX macro.

RPL = address
specifics the address of the request parameter list that defincs this GETIX
request. You may specify the address in register notation (using a register
from I through 12, enclosed in parentheses) or specify it with an expression
that generatcs a valid relocatablc A-type address constant.

The following RPL parameters and subparameters are required for GETIX:

OI)TCD = (CNV
,DIR
,{NUPIUPI>INSP}
,{ LOC ll\fVE})

GETIX can be issued either for update or not for update;
OPTCD= NSP is interpreted as OPTCD= NUP.

With OPTCD= l\tIVE, AREALEN must be at lcast indcx control
in tcrval size.

ARG = address
The scarch argumcnt for GETIX is the RBA of a control intcrval.

To process the index of a key-sequenced data set with GETIX, you must open
the cluster with:

ACB MACRF=(CNV, ...)

Olapter 2. VSAM Macro Formats and Examples 97

MNTACQ

MNTACQ Macro (Mount Acquire)

The fonnat of the MNT ACQ macro is:

Il/ahelf I MNfACQ I RPL=address

RPL = address
specifies the address of the RPL that identifies your opened VSAM data set
and your arguments. The following RPL parameters have meaning for
MNTACQ:

ACB = address
identifies yoUr VSAM data set.

ARG ="address
identifies your arguments. address points to a parameter list, aligned
on a fullword boundary as follows:

Offset Length Contents

o 4 Feedback area: address of an
ECn \VAIT list

4 6 VOLSER, target volume

10

11

12 4N

Reserved

Argument entry count (N)
(N = 1 to 255)

Argument entries

4 RBA for which an ACQUIRE is
requested

The maximum number of arguments is 255.

For the specified list, MNT ACQ will acquire (stage) the data cylinders
corresponding to each RBA for the one given volume. The volume
will be mounted if necessary.

OPTCD = ((ADRIKEY}
,{ASYISYN}
,{KEQIKGE}
,FKS)

ADR is valid for entry-sequenced data set, error for key-sequenced
data set or relative record data set.

98 MVS/XA VSAM Administration: Macro Instruction Reference

MNTACQ

KEY is valid for key-sequenced data set and relative record data set,
error for entry-sequenced data set.

If ASY is specified, you cannot WAIT on the RPLECB field for
MNTACQ or ACQRANGE. You use the address placed in the
parameter list feedback area. 1bis address points to a list of ECBs (in
standard WAIT list format) which you may use in place of the
RPLECB field.

GEN is not supported; if specified, it will give an error indication.

All other OPTeD parameters are not applicable, and, if specified, are
ignored with no error indication.

Because your request may result in the staging of numerous cylinders, a single
ECB is not sufficient for an asynchronous MNTACQ request. The RPLECB
field is inoperative for the J\.INT ACQ interface. Upon return from an
asynchronous MNT ACQ, the feedback area of the l\INTACQ parameter list will
contain the address of a standard ECB WAIT list. You must then use this list in
conjunction with the \V AIT macro or you may use the list in conjunction with
the EVENTS macro of MVS. An asynchronous request must conclude with
either CHECK, ENDREQ, or CLOSE.

At the conclusion of this macro, the RPL is disconnected in a manner similar to
that of a direct VSAM request. Any positioning in effect prior to execution of
this macro will be lost. You may have to rcoosition. Chained RPLs are not
supported by MNTACQ.

..
Otapter 2. VSAM Macro Formats and Examples 99

MODCB-ACB

MODCB Macro (Modify an Access Method Control Block)

The format .ofthe MODCD macro used to modify an access method control
block is:

I/abeJi MODCR ACB = address
IRSTRNO = numberJ
(,BUtND = numberJ
(,BU.NI = numberJ
I,BU"'SP = numberJ
(,CATAI..OG = YESINOI
(,CRA = SCRAIUCRAJ
(,DDNAME = ddnameJ
(,EXI..sT = addressl
(,MACRF = (IADRII,Cl'VII,KEYI

I,C.XINFXI
1,IlDNIDSNI
(,Dt'RINDtl
(,DIRII,SEQII,SKPI
I,ICII~CII
1,INII,OUll
(,NISISISI
(,NR:\1IAIXI
bNRSIRSTl
I,NSRI LSRIGSRI
(,NUBIUBFI>I

(,:\,IAREA = addressl
1,:\ 11.. EN = number!
(,P ASS\VI) = addresJI
(,Rl\IODE31 = (AtLIBU ICBINONEJI
I,SIIRPOOL = number!
(,STRNO = number!

Note: The Rl\IODE31 parameter replaces the AMODE31 subparameter shown
in previous releases.

The parameters of the MODCD macro.can be expressed as absolute numeric
expressions, as character strings, as codes, as expressions that generate valid
rclocatable A-type address constants, in register notation, as S-type address
constants, and as indirect S-type address constants. Appendix C, "Operand
Notation" on page 181, further defines these operand expressions.

label
is 1 to 8 characters that provide a symbolic address for the MODCB macro.

A(:B = address
specifies the address of the access method control block to be modified.
The data set identified by the access method control block must not be
opened. A request to modify the access method control block of an open
data set will fail.

100 MVSjXA VSAM Administration: Macro Instruction Reference

MODCB-ACB

Note: The remaining parameters represent parameters of the ACB macro that
can be modified. The value specified replaces the value, if any, presently in the
access method control block. There are no defaults. For an explanation of these
parameters, see "ACB Macro (Generate an Access Method Control Block at
Assembly Time)" on page 34.

If MODCB is used to modify a MACRF subparameter, other subparameters are
unaffected, except when they are mutually exclusive. for example, if you specify
~fACRF=ADR in the MODCB and MACRF= KEY is already indicated in the
control block, both ADR and KEY will now be indicated. But, if you specify
MACRF = UBF in the MODCn and NUB is indicated, only UHf will now be
indicated.

The RMODE31 parameter tells the VSAM OPEN routines where to obtain
storage for the control blocks and I/O buffers. Thetefore, the only time the
values specified by the RMODE31 parameter have any effect on VSAM is on the
setting just before an OPEN is issued. At other times, changing these values has
no effect on the residency of the control blocks and I/O buffers.

If MODcn RilL is used to change the address of an ACB, you must flfst issue
an ENDREQ macro.

Examplc: l\10DCB l\lacro (l\lodify an Access l\lcthod Control Block)

In this example, a MODCB macro is used to modify the name of the exit list in
an access method control block.

MODCB ACB=BLOCK,
EXLST=EGRESS

BLOCK was generated at
assembly.

Chapter 2. VSAM Macro Formats and Examples 101

l\'[ODCB-EXLST

MODCD Macro (Modify an Exit List)

The format of the MODCB macro used to modify an exit list is:

(label) MODeB EXIST - address
(,EODAD - «(addressll,AINI(,LI)1
(,JRNAD = «(addressll,AINJI,LI)1
(,LERAD - (laddressll,A I NJ(,LJ)I
(,SYNAD = «addressll,A I Nil ,1..1)1

The subparameters of the MODCB macro can be expressed as absolute numeric
expressions, as character strings, as codes, as expressions that generate valid
relocatable A-type address constants, in register notation, as S-type address
constants, and as indirect S-type address constants. Appendix C, "Operand
Notation" on page 181, further defmes these operand expressions.

Note: See Data Facility Product: Customization for the factors that detennine
the addressing mode and the parameter list residency mode set when the exit
routine gets control.

label
is 1 to 8 characters that provide a symbolic address for the MODCB macro.

EXl,S'f =r addre-ss
specifies the address of the exit list to be modified. You can modify an exit
list at any time-that is, before or after opening the data set(s) for which the
list indicates exit routines. Yeu cannot, however, add an entry to the exit
list if it will change the exit list's length; the exit list must already be large
enough to contain the new exit address. The order in which addresses are
stored in the EXLST control block is: EODAD, SYNAD, LERAD,
JRNAD, and UPAD. For example, if you generate an exit list with only
the LERAD exit, you can add entries for EODAD and SYNAD later; you
cannot add the JRNAD exit address, because doing so would increase the
size of the EXLST control block. The MODCB macro does not support
the UP AD user exit.

Note: If the JRNAD exit is changed for an OPEN ACB, then the ACB
must be closed and reopened in order to use the modified JRNAD exit.

For more infonnation about user exit routines sec Data Facility Product:
Customization.

The remaining parameters represent parameters of the EXLST macro that can be
modified or added to an exit list. For an explanation of these parameters, see
"EXLST Macro (Generate an Exit List at Assembly Time)" on p.age 66.

102 MVSjXA VSAM Administration: Macro Instruction Reference

lVIODCB-EXLST

Example: MODCD l\facro (l\fodify an Exit List)

. In this example, a MODCB macro is used to activate an exit in an exit list.

EOD

MODCB EXLST=(*
EXLSTADR) ,
EODAD=(EOD,L,A)

DC C'ENDUP'

EXLSTADR DS F

The MODCn macro's parameters arc:

Indirect notation is used
to specify the address of
the exit list, which was
generated at execution.

When the exit list was
generated, its address was
saved here.

• EXLST specifics that the address of the exit list to be modified is located at
EXLSTADR.

• EODAD specifies that the entry for the end-of-data routine is to be marKed
active in the exit list whose address resides at EXLST ADR. The name of the
end-of-data routine, ENDUP, is located at EOD.

Olapter 2. VSAM Macro Fonnats and Examples 103

MODCB-RPL

MODeB Macro (Modify a Request Parameter List)

The fonnat of a MODCD macro used to modify a request parameter list is:

IlabelJ ~IODCD RPL:III address
I,ACH = addressl
(,AREA = addressl
(,AREALEN = numberJ
I,ARG = addressl
I,ECD = addressl
I,KEYI..EN = numberJ
1,~tSGAREA = addressJ
I,MSGLEN = numberJ
I,NXTRI)L = addressJ
I,OPTCD == (IADRICNVIKEYJ

I,DIRISEQISKPI
(,ARDII .. RDI
I,}WDIB\VDI
I,ASYISYNI
(,NSPINUI)I UPD,
I,K":QIKGEI
I,FKSIGENI
(,LOCrMVEI)I

tRECi:EN == numDerf
I,TRANSII) == numberJ

The parameters of the MODCn macro can be expressed as absolute numeric
expressions, as character strings, as codes, as expressions that generate valid
rclocatable A-type address constants, in register notation, as S-type address
constants, and as indirect S-type address constants. Appendix C, "Operand
Notation" on page 181, further defines these operand expressions.

label
is 1 to 8 characters that provide a symbolic address for the ~fODCB macro.

RPL = address
specifics the address of the request parameter list to be modified. You may
not modify an active request parameter list; that is, one that defines a
request that has been issued but not completed. To modify such a request
parameter list, you must first issue a CHECK or an ENDREQ macro.

Note: The remaining parameters represent parameters of the RPL macro that
can be modified. The value specified replaces the value, if any, presently in the
request parameter list. There are no defaults. For an explanation of these
parameters, see "GENCO Macro (Generate a Request Parameter List at
Execution Time)" on page 80.

If MO DCB is used to modify an 0 IYfCD subparameter within a group of
subparameters, the current subparameter for that group is changed, because only
one subparameter in a group is effective at a time. Only the OPTCD
subparameter specified is changed; all other OPTCD subparameters remain
unchanged.

104 MVS/XA VSAM Administration: Macro Instruction Reference

MODCB-RPL

Example: l\fODCB Macro (Modify a Request Parameter List)

In this example, a MODCD macro is used to modify the record length field in a
request parameter list.

Note: This example also shows the one exception to GENCB, MODCB,
SHOWCB, and TESTeD building a parameter list and passing it to the control
block manipulation module in register 1. In this example, the RPL address (in
register 2) would be loaded into register I and the RECLEN value (in register 3)
would be loaded into register O. These registers would be passed to the control
block manipulation macro. This will occur if the LIST, EXECUTE, or
GENERATE form of the MODcn macro is not used and the only parameter
specified, besides RPL, is RECLEN.

L 3, length

MODCB RPL=(2),

RECLEN=(3)

The MODCn macro's parameters are:

Load the new record length.

Register 2 contains the address
of the request parameter list.

Register 3 contains the record
length.

• RPL specifics that register 2 contains the address of the request parameter list
to be modified.

• RECLEN specifies that the record length field is to be modified. The
contents of register 3 will replace any current value in the RECLEN field.

Olapter 2. VSAM Macro Formats and Examples 105

MRKBFR ..
MRKBFR Macro (Mark Buffer)

The fonnat of the MRKBFR macro is:

~'IRKB.~R l\IARK == {DINV ALIDIXt\V ALIDIOUfIRLS}
,RPL == address

i\IARK == {DINVALIDIXINV ALIDIOUTIRLSJ
specifics whether to mark for output or to release from exclusive control or
shared status the butTer identified in the RPL. To do both, issue
MRKBPR twice, once with MARK = OUT, again with MARK = RLS.

DINVALIDIXINV AI..ID

OUT

RLS

specifics whether to mark the data component or index component
butTers invalid. The butTers to be invalidated are identified as those
which contain records, whose RBA values are within the RBA range
pointed to by the RPL ARG address. DINVALID specifics that the
data component buffers are to be marked invalid; XINVALID
specifies that the iQdex component butTers are to be marked invalid.

indicates that the buffer is to be marked for output. The buffer is
kept under exclusive control or in shared status.

indicates that the buffer is to be released from exclusive control or
shared status.

RPI .. == address
specifics the address of the request parameter list that defmes the
MRKBrR request. Use the RPL used by SCHOrR or GET to locate the -
buffer being marked or released. These RPL parameters have meaning for
MRKBPR:

ACB == address

ARG == address
The address of the 8·bytc field that contains the beginning and ending
RBAs of the range to be searched on.

[CD == address

TRANSID == number

All other RPL parameters are ignored. RPLs are assumed not to be
chained. 0 PTCD = LOC is assumed.

If the ACB to which the RPL is related has MACRF = GSR, the
program that issues MRKBFR must be in supervisor state with
proJection key 0 to 7.

I 06 MVSjXA VSAM Administration: Macro Instruction Reference

OPEN

OPEN Macro (Connect Program and Data)

The format of the OPEN macro is:

Ilabe~ OPEN (address,l(options)I, ...)
(,1\101>1: = {24131J1

label
is I to 8 characters that provide a symbolic address for the OPEN macro.

address
specifics the address of the ACB or DCB for the data set(s) to be opened.
You may specify the address in register notation (using a register from 2
through 12, in parentheses) or specify it with an expression that generates a
valid rclocatable A-type address constant. If you use register notation to
open only one data set, you must enclose the expression identifying the
register in two sets of parentheses: for example, OPEN ((2».

options
are options parameters for usc only in opening non-VSAI\f data sets. If
any options are specified with the address of an access method control
block, VSAM ignores them.

l\'IODE =
specifies the fonnat of the OPEN parameter list that is to be generated.

31

specifics that a standard fonn (24-bit) parameter list address is to be
generated. The parameter list must reside below 16 megab}1eS and
point to an ACB residing below 16 megabytes. This is the default
parameter.

specifies that a long form (3 I-bit) parameter list address is to be
generated. This parameter value must be coded if the parameter list
or the VSAM/VTAM ACB resides above 16 megabytes.

Note: If the VSAM control blocks and buffers are to reside above 16 megab)'1es,
the RMODE31 parameter must be specified in the ACB before the OPEN is
issued.

Because the OPEN parameters are positional, include a comma for options (even
if you don't specify options) before a subsequent parameter.

Otapler 2. VSAM Macro Formats and Examples 107

OPEN

Example I: OPEN l\lacro ud to open two data sets.

In this example, the access method control block for one data set was generated
at execution; the other was generated at assembly.

GENeB BLK=ACB,
DDNAME=DATA

LTR IS, IS

BNZ ERROR

LR 2,1

OPEN (BLOCK,,(2»

BLOCK ACB

Example 2: OPEN Macro with a parameter list above 16 megabytes.

An access method control block.

Address of the control block.

A label is used for the access
method control block generated
by ACBj register notation is used
for the one generated by GENCB.
The two commas indicate the
omission of options.

Another access method control
block.

This example shows a program being opened with a parameter list that may
reside above 16 megabytes.

OPLSTA OPEN MODE=31,
MF=(E,OPLSTB)

OPLSTB OPEN (ACB1"ACB2),
MODE=31,
MF=L

Since l\10DE= 31 is coded in the list fonn of the OPEN macro, VSAl\'1 ACBs
and the 0 PEN parameter list may reside above 16 megabytes.

Note: Consistency must be maintained while using the MODE operand in the
MF= Land MF = E versions of the OPEN macro. If l\10DE = 31 is specified in
the MF = L version, then MODE = 31 must also be coded in the corresponding
MF = E version of the macro. Unpredictable results may occur if this rule is not
fonowed.

MF=E and MF=L arc not required. OPEN (ACBl), MODE=31 is also valid.

108 MVS/XA VSAM Administration: Macro Instruction Reference

POINT

POINT Macro (Position for Access)

The fonnat of the POINT macro is:

Illabe~ I POI1'.T I RPL == address

label
is 1 to 8 characters that provide a symbolic address for the POINT macro.

RPI .. = address

Example: Position with POIl'lT

specifies the address of the request parameter list that dermes the request.
You may specify the address in register notation (using a register from 1
through 12, enclosed in parentheses) or specify it with an expression that
generates a valid rclocatable A-type address constant.

In this example, the POINT macro is used to position at a record identified by a
full key (5-b}1c) search argument, compared equal.

. Otapter 2. VSAM Macro Formats and Examples 109

POINT

BLOCK ACB

POSITION RPL

.
LOOP MVe

POINT

LTR

BNZ

LOOP 1 GET

LTR

BNZ

DDNAME=IO

ACB=BLOCK,
AREA=WORK,
AREALEN=50,

Default MACRF subparameters
sufficient.

ARG parameter and KEQ and
FKS OPTCD subparameters
define the POINT request.

ARG=SRCHKEY,
OPTCD=(KEY,SEQ,SYN,KEQ,FKS)

SRCHKEY, source Search argument for
positioning, moved in from

RPL=POSITION a table or a transaction
record.

1S,15

ERROR

RPL=POSITION

15,lS

ERROR

Process the record. Decide whether to skip to another
position (forward or backward).

ERROR

.

BE

B

SRCHKEY DS

WORK DS

LOOP

LOOP1

CL5

CLSO

Yes; skip.

No; continue in
consecutive sequence'.

Request was not accepted,
or failed .

Search argument for
positioning.

VSAM puts a record here
for each GET request.

110 MVS/XA VSAM Administration: Macro Instruction Reference

PUT

PUT Macro (Store a Record)

The format of the PUT macro is:

Illabe~ I PUT I RPL = address

label
is 1 to 8 characters that provide a symbolic address for the PUT macro.

RPL = address
specifies the address of the request parameter list that dermes the request.
You may specify the address in register notation (using a register from 1
through 12, enclosed in parentheses) or specify it with an expression that
generates a valid relocatable A·type address constant.

Note: If the PUT macro is being used to load records into an empty data set,
the STR NO value in the access method control block must be 1, and RPL
OPTeD = DIR must not be specified. However, for an empty relative record
data set, DIR is allowed.

Example I: Keycd·Scquentiallnscrtion

In this example, a PUT macro is used to perfonn keyed·sequential insertion.
Variable·lcngth records with a key length of 15 bytes are to be moved from a
work area. Some records will be inserted between existing records; other records
will be added at the end of the data set.

BLOCK ACB "'DDNAME=OUTPUi ,
MACRF=(KEY,SEQ,OUT)

LIST RPL ACB=BLOCK,
AREA=BUILDRCD,
AREALEN=25 ° ,
OPTDC=(KEY, SEQ,
SYN,NUP,MVE) .

LOOP L 2,sonrce Put length of record to
be inserted into.
register.

MODCB RPL=LIST, Indicate record length
RECLEN=(2) in request parameter

list.

LTR 15,15

BNZ CHECKO

PUT RPL=LIST

LTR 15,15

BNZ ERROR

B LOOP

CHECKO Modification failed.

-.
Chapter 2. VSAM Macro Formats and Examples III

PUT

ERROR

.
BUILDRCD DS CL250

Request was not accepted,
or failed .

Work area for building
records.

The request parameter list, LIST, is associated with the access method control
block, BLOCK. The length of each record to be inserted is put into register 2,
whi~h is subsequently used by MODCB to change the record length in the
request parameter list. The record length is, therefore, correctly indicated in the
request parameter list before the PUT macro is issued. The execution of the
PUT macro causes VSAM to skip ahead (never back) to the next record.

Example 2: Recording RBAs When Loading

In this example, a PUT macro is used to record the RBAs of records as they are
loaded into a key-sequenced data set. The RBAs are recorded in a table with
20-byte entries (4 bytes for RBA, 15 bytes for associated key, and 1 byte of
padding so the next entry begins on a fullword boundary).

LA 3,RBATABLE

.
LOOP L 2,source

MODCB RPL=LIST,
RECLEN={2}

LTR 15,15

BNZ CHECKO

PUT. RPL=LIST

LTR 15,15

BNZ ERROR

SHOWCB AREA=(3),
FIELDS=RBA,
LENGTH=4,
RPL=LIST

LTR 15,15

BNZ CHECKO

MVC 4(15,3),
keyfield

LA 3,20(3)

B LOOP

ERROR

112 MVS/XA VSAM Administration: Macro Instruction Reference

Address of the beginning of
the table .

Put length of record to be
inserted into register 2.

Indicate record length in
request parameter list.

Each SHOWCB puts a record's
RBA into the table.

Put the record's key field
in the table.

Point to the next entry.

Request was not accepted,
or failed.

PUT

CHECKO Modification or display
failed .

.
DSECT Get enough virtual storage

for as many table entries
as there are records in
the data set.

RBATABLE DS OF

RBA

KEY

DS

DS

DS

CL4

CL15

CLI Padding to keep each RBA
entry on a fullword
boundary: SHOWCB's display
area must be on a fullword
boundary.

The need to process a key-sequenced data set by address should be unusual, but
by recording the RBA of each record in a key-sequenced data set, you have
search arguments for possible processing of the data set by addressed-direct
retrieval and by addressed-sequential retrieval using the POINT macro. (You
don't need to know RBAs to process a key-sequenced data set by simple
addressed-sequential retrieval, since you go from the beginning without any
skips.)

You can display the RBA of a record after you issue a GET or a POINT, as well
as after you issue a PUT .

• :xamplc 3: Loading a Relative Record Data Set (Skip-Scqu('otial and Direct Processing)

In this example, a PUT macro is used to store twenty 100-byte records in slots 5,
10, 15, ... ,100 of the data set. }\.fODCB is used to switch to direct processing, and
a PUT is used to store records in slots 26 and 51 of the data set.

OUTACB ACB MACRF=(SKP , OUT ,
DIR,KEY)

GENCB BLK=RPL,
ACB=OUTACB,
AREA=WORK,
ARE ALE N= 1 00,
ARG=RCDNO,
OPTCD=(KEY,SKP)

LTR 15,15

BNZ GENFAIL

LR

LR

LA

ST

LA

5,0

6,1

7,5

7,RCDNO

10,20

Generate a request
parameter list at
execution time.

Save length of RPL.

Save address of RPL.

Initialize increment
value.

Initialize argument to
slot s.
Initialize loop counter.

Otapter 2. VSAM Macro Formats and Examples 113

PUT

LOOP Move new record into work.

PUT RPL=(6) Store record.

LTR 15, IS"

BNZ PtrrERR Request was
or failed.

not accepted,

L 1,RCDNO

AR 1,7

ST 1,RCDNO Increment argument by 5.

BCT 10, LOOP

MODCB RPL=(6), Switch to direct processing
OPTCD=(DIR,KEY) to store records in slots

51 and 26.
LTR 15,15

BNZ GENFAIL

LA 7,51

ST 7,RCDNO Initialize argument to slot
51.

Move neW record into WORK.

PUT RPL=(6) Store record in slot 51.

LTR 15,15

BNZ PUTERR Request was not accepted,
or failed.

LA 7,26

ST 7, RCDNO Initialize argument to slot
26.

Move new record into WORK.

PUT RPL=(6) Store record in slot 26.

LTR 15,15

BNZ PUTERR Request was not accepted,
or failed.

B RETURN

GENFAIL Generation or modification
failed.

PUTERR PUT request was not
accepted, or failed.

RETURN Terminate program.

WORK DS CLIOO lOa-byte work area that
contains record to be
stored by PUT macro.

ReDNO DS CL4 4-byte relative record
number.

114 MVSjXA VSAM Admi~stration: Macro Instruction Reference

PUT

Both skip-sequential and direct processing can be used to create a relative record
data set. The ACB is opened for output. The 4-byte search argument
(RCDNO) indicates the slot number where the record is to be stored.

Example 4: Keyed-Sequential Insertion (Relative Record Data Set)

In this example, a PUT macro is used to insert twenty 1 DO-byte records into
empty slots of a previously loaded relative record data set. If the slot is empty
when the PUT is issued, the record is stored and the slot number (returned in the
ar1:.'llment field) is stored in a table. If the slot is not empty when the PUT is
issued, a duplicate record error indication is returned. When a duplicate record is
indicated, the PUT is reissued until the record is successfully stored in an empty
slot in the data set.

OUTACB ACB

.

MACRF=(KEY, SEQ,
OUT)

GENCB BLK=RPL, Generate a request parameter
ACB=OUTACB, list.
AREA=WORK,
AREALEN=100,
ARG=RCDNO,
OPTDC=(KEY,SEQ)

LTR 15,15

BNZ GENERR

LR

LA

LA

6,1

4,RRNTABLE+80

3,RRNTABLE

Save the address of the RPL.

Initialize address of end of
table.

Initialize index to relative
record number table.

WRITERCD Move record into work area.

PUT RPL=(6)

LTR 15,15

BZ STRCDNO Branch, if PUT is successful.

LA 10,8

CLR 10,15 Test for logical error.

BNE PUTERR

TESTCB RPL=(6),FDBK=8, Test for duplicate record.
ERET=TESTERR

BE WRITERCD

B PUTERR

Branch, if duplicate record,
and try to store record in
next slot.

Chapter 2. VSAM Macro Formats and Examples I 15

PUT

STRDCNO

HYc.

LA

CLK

BE

B

GENERR

TESTERR

PUTERR

RETURN

RCDNO DS

RRNTABLE DS

WORK DS

O(4,3)RCDNO

3,4(3)

3,4

RETURN

WRlTERCD

CL4

20F

CLlOO

Store relative record
number in RRNTABLE.

Increment to next table
entry.

If table full, return to
caller.

Write next record.

Error routine for GENCB
macro.

Error routine for TESTCB
macro.

Error routine for PUT
macro.

Return to caller or
terminate program.

4-byte relative record
number (argument) field.

Relative record number
tab-leo

lOO-byte work area that
contains record to be
stored by PUT macro.

Each record is stored in the next available slot in the data set. \Vhen a record is
successfully stored, its relative record number is recorded in a table.

Example S: Skip-Sequential Insertion

In this example, one PUT macro is used to insert multiple fixed-length, lOO-byte
records. Records are to be moved asynchronously from a work area.

OUTPUT ACB MACRF=(KEY, SKP,
OUT)

GENCB BLK=RPL,
COPIES=5,
ACB=OUTPUT ,
AREALEN=lOO,
OPTCD=(KEY,SKP,
ASY,NUP,MVE),
RECLEN=lOO

LTR 15,15

BNZ CHECKO

116 MVSjXA VSAM Administration: Macro Instruction Reference

Generate 5 request
parameter lists at
execution.

PUT

Calculate length of each list and use register notation with
the MODCB macro to complete each list.

MODCB RPL=(2),
AREA=(3) ,
NXTRPL=(4)

LTR 15,15

BNZ CHECKO

Increase the value in each register and repeat the MODCB
until all five request parameter lists have been completed.
The last time, register 4 must be set to o.

LOOP

PUT

LTR

BNZ

CHECK

LTR

BNZ

B

CHECKO

NOTACCEP

ERROR

WORK DS

RPL=(2)

15,15

NOTACCEP

RPL=(2)

15,15

ERRO

LOOP

CL500

Restore address of first
list in register 2.
Build 5 records in WORK.

Register 2 points to the
first request parameter
list in the chain. The
five records in WORK are
stored with this one
PUT request.

Generation or modification
failed.

Display the feedback field
in each request parameter
list to find out which one
had an error.

Contains five IOO-byte work
areas.

You give no search argument for storage: VSAM knows the position of the key
field in each record and extracts the key from it. Skip-sequential insertion differs
from keyed-direct insertion in the sequence in which records may be inserted
(ascending nonconsecutive sequence versus random sequence) and in
performance.

With skip-sequential insertion, if you insert two or more records into a control
interval, VSAM doesn't write the contents of the buffer to direct-access storage
until you have inserted all the records. With direct insertion, VSA~f writes the
contents of the buffer after you have inserted each record.

Chapter 2. VSAM Macro Formats and Examples 117

PUT
..

Example 6: Keyed-Direct Insertion

In this example, a PUT macro is used to move fixed-length, lOO-byte records
from a work area.

OUTPUT ACB

DIRECT RPL

LOOP PUT

MACRF=(KEY, DIR~
OUT)

ACB=OUTPUT ,
AREA=WORK,
AREALEN=100,
OPTCD=(KEY,DIR,
ASY,NUP,MVE),
RECLEN=100

RPL=DlRECT

LTR 15,15

BNZ NOTACCEP

CHECK RPL=DIRECT

LTR 15,15

BNZ- ERROR

B LOOP

NOTACCEP

ERROR

.
WORK DS CLI00

The macros are as follows:

Request was not accepted.

Request failed.

Work area.

• ACB specifics that the data set, OUTPUT, into which records are to·be
inserted, is opened for keyed-direct, output processing.

• RPL specifies that the record to be inscrted into the OUTPUT data set
resides in a 100-byte area, WORK.

VSAM extracts the key from the key field of each record found at \VO R K.
U sing keyed-direct access is similar to using skip-sequential access.

118 MVSjXA VSAM Administration: Macro Instruction Reference

(

PUT

Example 7: Addressed-Sequential Addition

In this example, a PUT macro is used to add variable-length records to a data
sct. The data set is assumed to be an entry-sequenced data set, because records
cannot be inserted into or added to a key-sequenced data set with addressed
access.

BLOCK ACB

LIST RPL

LOOP

L

MODCB

LTR

BNZ

PUT

LTR

BNZ

B

CHECKO

ERROR

NEWRCD DS

MACRF=(ADR, SEQ,
OUT)

ACB=BLOCK,
AREA=NEWRCD,
AREALEN=100,
OPTCD=(ADR,SEQ,
SYN,MVE)

3, source

RPL=LIST,
RECLEN=(3)

15,15

CHECKO

RPL=LIST

15,15

ERROR

LOOP

CLIOO

Build the record.

Put the length of the
record into register 3.

Indicate length of new
record.

Modification failed.

Request was not accepted,
or failed.

Build record in this work
area.

Each record is stored in the next position after the last record in the data set.
You do not have to specify an RBA or do any explicit positioning (with the
POINT macro). Addressed addition of records is always identical to lo~iding a
data set: \Vhen additional space is required, VSAM extends the data set.

The only difference between addressed-sequential and addressed-direct addition is
when the buffers are written to external storage. lbe buffer is written to external
storage only when it is full for sequential addition; it is written after each record
for direct addition. You cannot use direct storage to load records into a data set
for the frrst time; you must use sequential storage.

Chapter 2. VSAM Macro Formats and Examples 119

PUT

Example 8: Keyed-Sequential Update

In this example, GET and PUT macros are used to retrieve and update
fixed-length, 50-byte records. Records are updated synchronously in a work area.
This example requires the use of a work area because you cannot update a record
in the I/O buffer.

UPDATA ACB MACRF=(KEY, SEQ,
OUT)

LIST

LOOP

RPL

GET

ACB=UPDATA,
AREA=WORK,
AREALEN=50,
OPTCD=(KEY,SEQJ
SYN,UPD,MVE)

RPL=LIST

LTR 15,15

BNZ ERROR

UPD indicates the record may
be stored back (or deleted).

Decide whether to update the record.

BE

Do update the

PUT

LTR

BNZ

B

ERROR

WORK DS

LOOP

record.

RPL=LIST

15,15

ERROR

LOOP

CLSO

Do not update it; retrieve
anot"her.

Store the record back.

Request was not accepted, or
failed.

VSAM puts the retrieved record
here.

A GET for update (OPTeD = UPD) must precede a PUT for update. Besides
retrieving the record to be updated, GET positions VSAM at the record retrieved,
in anticipation of the succeeding update (or deletion). It is not necessary for you
to store back (or delete) the record that you retrieved for updat~. VSAiVl's
position at the record previously retrieved allows you to issue another GET to
retrieve the following record. You cannot then, however, store back the previous
record: The position for update has been forgotten because of the following GET.

120 MVS/XA VSAM Administration: Macro Instruction Reference

PUT

Example 9: Keyed-Direct Update

In this example, GET and PUT macros are used to retrieve and update records.
The MODCD macro is used to modify record length (RECLEN) in the request
parameter list when an update causes the record length to change. The
maximum record length is 120 bytes. The search argument is a full key (5 bytes),
compared equal.

INPUT ACB

UPDTE RPL

HACRF=(KEY,DIR,
OUT)

ACB=INPUT,
AREA=IN,
AREALEN=120,
OPTDC=(KEY,DIR,
SYN,UPD,KEQ,
FKS,MVE) ,
ARG=KEYAREA,
KEYLEN=5

UPDTE indicates the record
may be stored back
(or· deleted).

Process input and get search argument into KEYAREA; proceed
to retrieve a record.

LOOP GET RPL=UPDTE

LTR 15,15

BNZ ERROR

SHOWCB RPL=UPDTE,
AREA=RLNGTH,
FIELDS=RECLEN,
LENGTH=4

LTR 15,15

BNZ CHECKO

Display the length of the
record.

Update the record. Does the update change the record's
length?

BL STORE No; length not changed.

L 5, length Yes; load new length into
register 5.

MODCB RPL=UPDTE, Modify length indication
RECLEN=(5) in the request parameter

list.

LTR 15,15

BNZ CHECKO

STORE PUT RPL=UPDTE

LTR 15,15

BNZ ERROR

B LOOP

Dlapter 2. VSAM Macro Formats and Examples 121

PUT

ERROR

CHECKO

IN DS

KEYAREA DS

RLNGTH DS

CL120

CLS

F

Request was not accepted, or
failed.

Display or modification
failed.

Work area for retrieving,
updating, and storing a
record.

Search argument for
retrieving a record.

Area for displaying the
length of a retrieved record.

You cannot update records in the I/O buffer. A direct GET for update positions
VSAM at the record retrieved, in anticipation of storing back (or deleting) the
record. This positioning also allows you to switch to sequential access to retrieve
the next record. \Vhen PUT is issued after a DIRUPD GET request, PUT
causes VSA:'vt to release exclusive control.

You do not have to store back a record that you retrieve for update, but, if you
do not store it back before another retrieval, the current updates are lost.

122 MVS/XA VSAM Administration: Macro Instruction Reference

PUT

Example 10: Addressed-Sequential Update

In this example, GET and PUT macros are used to retrieve and update records in
an entry-sequenced data set. The records arc variable in length, a maximum of
200 bytes. The lengths of the records are not changed by update (the length of a
record can never be changed by addressed access).

ENTRY ACB

ADRUPD RPL

HACRF=(ADR,SEQ,OUT)

LOOP

ERROR

CHECKO

WORK

· GET

ACB=ENTRY,
AREA=WORK,
AREALEN=200,
OPTCD=(ADR,SEQ,
SYN,UPD,MVE)

RPL=ADRUPD

LTR 15,15

BNZ ERROR

SHOWCB RPL=ADRUP.D,

LTR

BNZ

· PUT

LTR

BNZ

B

· DS

AREA=RECLEN,
FIELDS=RECLEN,
LENGTH=4

15,15

CHECKO

RPL=ADRUPD

13,1'5

ERROR

LOOP

RLNGTH DS

CL200

F

UPDTE indicates update (or
deletion) .

Find out how long the record
is.

Request was not accepted, or
failed.

Display failed.

Record-processing work area.

Display area for length of
records.

If you have inactive records in your entry-sequenced data set, you may reuse the
_ space they occupy by retrieving the records for update and restoring a new record

in their place.

\Vith a key-sequenced data set, it is not possible to change the length of records
by addressed update because the index is not used and VSAM could not split a
control interval if required because of changing record length.

Addressed-direct update varies from sequential update in the specification of an
RBA for a search argument.

-.

Olapter 2. VSAM Macro Formats and Examples 123

PUT

Example II: l\1arking Records Inactive

In this example, GET and PUT macros are used to retrieve a record from an
entry-sequenced data set and to mark it as inactive. (The record is marked as
inactive by putting a hexadecimal 'FF' in the first byte of a record.) The inactive
record will not be sequentially retrieved except for update.

ENTRYSEQ ACB

LIST RPL

LOOP GET

LTR

BNZ

Decide whether

BE

MVI

PUT

LTR

BNZ

B

ERROR

RECORD DS

RBAAREA DS

MACRF=(ADR, D IR,
OUT)

ACB=ENTRYSEQ,
AREA=RECORD,
AREALEN=100,
OPTCD=(ADR,DIR,
SYN,UPD,MVE),
ARG=RBAAREA

RPL=LIST

15,15

ERROR

you still want the

LOOP

RECORD,X'FF'

RPL=LIST

15,15

ERROR

LOOP

CLI00

F

UPD indicates update;
storing the record back
marked inactive.

data in the record.

Yes; retrieve the next
record.

No; flag the record
inactive.

Storing the record with
an inactive indicator is
equivalent to deletion
for an entry-sequenced
data set.

Request was not accepted,
or failed.

Work area for marking
records.

Search argument for
retrieving the record.

Records of an entry-sequenced data set can't be deleted. If a record loses its
usefulness for your application. your program can mark it inactive by placing a
uIiique flag in some conventional part of the record so that when your programs
retrieve the record thereafter they can recognize and bypass it. You can use the
space occupied by an inactive record by retrieving it for update and storing a new
record in its place.

124 MVSjXA VSAM Administration: Macro Instruction Reference

PUTIX

PUTIX Macro (Store an Index Record)

The fonnat of the PUTIX macro is:

Il/abe~ IllUTIX I RPL = address

where:

label
is I to 8 characters that provide a symbolic address for the PUTIX macro.

RPL = address
specifics the address of the request parameter list that defines this PUTIX
request. You may specify the address in register notation (using a register
from I through 12, enclosed in parentheses) or specify it with an expression
that generates a valid relocatable A-type address constant.

The following RPL parameters and subparameters are required for PUTIX:

OPTeD = (Cl\ry
,DIR
,lJPD
,MVE)

o PTCD = LOC is not allowed.

AREAL}:N
must be at least index control interval size.

The contents of a control interval must previously have been retrieved for update
by way of GETIX.

To process the index of a key-sequenced data set with GETIX, you must open
the cluster with:

ACB MACRF=(CNV, ...)

Otapter 2. VSAM Macro Formats and Examples 125

RPL

RPL Macro (Generate a Request Parameter List at Assembly Time)

The fonnat of the RPL macro is:

Ilabe4 RilL IACO == addressl
I,A:\I == VSAMI
I,AREA = addresJI
1,.r\REALE~ = numberJ
I,ARG == addressl
I,ECD == addressl
(,KEYLEN = numberJ
1,l\ISGAREA == addressl
(,MSGLEN == numberJ
I,NXTRI)L == addressl
I,OPTCD == (lADRICNVIKEYJ

(,DIRISEQISKI)I
(,alilll tRDI
l,lllli.l8\VI)1
(,ASYIS~J

I,~S"I:\VI)IL"DI
(,KEQI K(;EI
(,FKSIGENI
I,:\'"\VAITXI\VAITXI
I,LOCI:\IVEDI

bRECIL'!-= numhen--
I,TRA~SIl) = numberJ

Values for RPL macro parameters can be specified as absolute numeric
expressions, character strings, codes, and expressions that gcnerate valid
rclocatable A-type address constants.

label
is 1 to 8 characters that provide a symbolic address for the request
parameter list that is generated. You can use it in the request macros to
give the address of the list. You can use it in the NXTRPL parameter of
the RPL macro, when you are chaining request parameter lists, to indicate
the next list.

ACB = address
specifics the address of the acccss method control block that identifies the
data set to which access will be requested. If you used the ACn macro to
generate the control block, you may specify the label of that macro for the
address. If the ACn parametcr is not codcd, you must specify the address
before issuing the request.

A~J=VSAi\(

specifics that the access method using the control block is VSAM.

AREA = address
specifies the address of a work area to and from which VSAM moves a data
record if you request it to do so (with the RPL parameter
OPTeD =: MVE). If your request is to process records in the 110 buffer

126 MVSjXA VSAM Administration: Macro Instruction Reference

RPL

(OPTCD= LOC), VSAM puts into this work area the address of a data
record within the I/O buffer.

AREALEN == number
specifies the length, in bytes, of the work aiea whose address is specified by
the AREA parameter. Its minimum for OPTCD= MVE is the size of a
data record (of the largest data record, for a data set with records of variable
length). Por OPTCD= LOC, the area should be 4 bytes to contain the
address of a data record within the I/O buffer.

ARG == address
specifies the address of a field that contains the search argument for direct
retrieval, skip-sequential retrieval, and positioning. Por a relative record
data set, the ARG field must be 4 bytes long. For direct or skip-sequential
processing, this field contains your search argument, a relative reeord
number. For sequential processing (OPTCD= (KEY,SEQ», the 4 bytes
are required for VSAM to return the feedback RRN. Por keyed access
(OPTeD = KEY), the search argument is a full or generic key or relative
record number; for addressed access (OPTCD=ADR), it is an RBA. If
you specify a generic key (OPTCD = GEN), you must also specify in the
KEYLEN parameter how many of the bytes of the full key you are using
for the generic key. ARG is also used with \VRTBFR and :\IRKBFR. Its
usage with these macros is described in "Sharing Resources" in VSAlvl
Administration Guide.

ECD == address
specifics the address of an event control block (ECB) that you may supply.
VSAM indicates in the ECB whether. a rcque!)1 is complete or not (using
standar~ completion cOOcs,which ~re ncscrihcd in !Jtll~ Ar-eas). \' {)u can
use the ECB to determine that an asynchronous request is complete before
issuing a CHECK macro. (If you issue a CHECK before a request is
complete, you give up control and must wait for completion.) The ECB
parameter is always optional.

KEYLEN == number
specifies the length, in bytes, of the generic key (OPTCD = GEN) you are
using for a search argument (given in the field addressed by the AR G
parameter). This parameter is specified as a number from 1 through 255; it
is required when the search argument is a generic key. For full-key
searches, VSAM knows the key lenb'1h, which is taken from the catalog
definition of the data set when you open the data set.

MSGAREA = address
specifics the address of an area that you may, optionally, supply for VSAl\1
to send you a message in case of a physical error. The format of a physical
error message is given in "Reason Code (Physi~-u Errors)" on page 26.

l\"ISGLEN == number
specifies the size, in bytes, of the message area indicated in the MSGAREA
parameter. H MSGAREA is specified, MSGLEN is required. The
minimum size of a message is 128 bytes; if you provide less than 128 bytes,
no message is returned to your program.

Otapter 2. VSAM Macro Formats and Examples 127

RPL

NXTRPL = address
specifies the address of the nex.t request parameter list in a chain. VInit this
parameter from the macro that generates the last list in the chain. \Vhen
you issue a request that is defined by a chain of request parameter lists,
indicate in the request macro the address of the first parameter list in the
chain.

OPTCD = (fADRICNVIKEYI
I,DIRISF:QISKPI
I,ARDILRDI
1,!:}y!!IOWDI
I,ASYISYNI
I,NSPINUPIUPDI
I,KEQIKGEI
1,!:]£iIGENI
I,NW AITXI\V AITXI
I,LOCI:\tvEI)
specifics the subparameters that govern the request defmed by the request
parameter list. Each group of subparameters has a default; subparameters
are shown in Figure 13 with defaults underlined. Only one subparameter
from each group can be specified. Some requests do not require an
subparameter from all of the groups to be specified. The groups that aren't
required arc ignored; thus, you can use the same request parameter list for a
combination of requests (GET, PUT, POINT, for example) without
zeroing out the inapplicable sub parameters each time you go from one
request to another.

Option i\1t'aning

ADR

CNV

DIR

SKP

Addressed access to a key-sequenced or an entry-sequenced
data set: RBAs are used as search arguments and sequential
access is done by entry sequence.

Control interval access (this type of access is described in
VSAM Administration Guide).

Keyed access to a key-sequenced or relative record data set:
keys or relative record numbers are used as search arguments
and sequential access is done by key or relative record number
sequence.

Direct access to a key-sequenced, entry-sequenced, or relative
record data set.

Sequential access to a key-sequenced, entry-sequenced, or
relative record data set.

Skip sequential access to a key-sequenced or a relative record
data set: used with keyed access only.

Figure 13 (Part 1 or 3). OPTeD Options

128 MVSjXA VSAM Administration: Macro Instruction Reference

Option

LRD

F\\1)

B\VD

ASY

SYN

RPL

Meaning

User's argument determines the record to be located, retrieved,
or stored.

Last record in the data set is to be located (POINT) or
retrieved (GET direct); requires OPTCD= BWD.

Ilrocessing to proceed in a forward direchon.

Processing to proceed in a backward direction; for keyed
(KEY) or addressed (AOR) sequential (SEQ) or direct (DIR)
requests; valid for POINT, GET, PUT, and ERASE
operations; establish positioning by a PO I NT with
OPTCD= BWD or by a GET direct with
OPTCD = (NSP,BWD). When OPTCD = BWD is specified,
subparameters KGE and GEN arc ignored; subparametcrs
KEQ and FKS are assumed.

Asynchronous access; VSAM returns to the processing
progr.un after scheduling a request so the program can do other
processing while the request is being carried out.

Synchronous access; VSAM returns to the processing program
after completing a request.

With OPTCD= DIR only, VSAM is to remember its position
(for subsequent sequential access); that is, the position is not to
be forgotten unless an ENDREQ macro is issued.

A data record that is being retrieved will not be updated or
-deleted; a 1'{,~r4 that is bciag stor<..'<i is a ncwreoord; VSAl\f
doesn't remember its position for direct requests into a work
area.

A data record that is being retrieved may be updated or deleted;
a record that is being stored or deleted was previously retrieved
with O:'TCD= UPD; VSAM remembers its position for
sequential and direct GET requests. \Vhen PUT is issued after
a DIRUPD GET request, PUT causes VSAM to release
exclusive control.

For GET with OPTCD= (KEY,DIR) or (KEY,SKP) and for
POINT with OPTCD = KEY, the key (full or generic) that you
provide for a search argument must equal the key or relative
record number of a record. For a relative record data set, KEQ
is assumed except for PO I NT.

~'igure 13 (Part 2 of 3). OPTen Options

Otapter 2. VSAM Macro Formats and Examples 129

RPL
'.

Option l\lcaning

KGE

[K§

GEN

For the same cases as KEQ, if the key (full or generic) that you
provide for a search argument doesn't equal that of a record,
the request applies to the record that has -the next higher key.
For a relative record data set and POINT, KGE positions to
the specified relative record number whether the slot is empty
or not. If the relative record number is greater than the highest
existing record, EOD is returned. A subsequent PUT will
insert the record at this position.

A full key is provided as a search argument.

A generic key is provided as a search argument; give the length
in the KEYLEN parameter.

N\VAITX

WAITX

Never take the user's UPAD exit.

If OPTCD= SYN and the ACB's MACRF= LSR GSR and
UPAD exit routing is specified, VSAM takes the UPAD exit at
points when VSAM would nonnally issue a WAIT.

LOC For retrieval, VSAl\-1 leaves the data record in the I/O butTer
for processing; not valid for PUT or ERASE; valid for GET
with OPTCD= UPD. However, to update the record, you
must build a new version of the record in a work area and
modify the request parameter list OPTCD from LOC to l\IVE
before issuing a PUT. For keyed-sequential retrieval,
modifying key fields in the I/O butTer may cause incorrect
results for subsequent GET requests until the I/O record is
reread.

For retrieval, VSAM moves the data record to a work area for
processing, and for storage, VSAM moves it from the work
area to the I/O buffer.

Figure I J (Part J of J). OPTeD Options

RECLEN = number
specifies the length, in bytes, of a data record being stored. This parameter
is required for a PUT request.

For GET requests, VSAM puts the length of the record retrieved in this
field in the request parameter list. It will be there if you update and store
the record.

TRANSID = number
spccities a number that relates modified buffers in a buffer pool. Used in
shared resource applications and described in the chapter "Sharing
Resources" in VSAM Administration Guide.

130 MVSjXA VSAM Administration: Macro Instruction Reference

Example: RPL l\laero

In this example, an RPL macro is used to generate a request paramet~r list
named PARMLIST.

ACCESS ACB MACRF=(SKP, OUT) ,
DDNAME=PAYROLL

PARMLIST RPL

RPL

ACB=ACCESS,
AM=VSAM,
AREA=WORK,
AREALEN= 125 ,
ARG=SEARCH,
MSGAREA=MESSAGE,
MSGLEN=128,
OPTCD=(SKP,UPD) Most OPTCD defaults are

appropriate to assumptions.
WORK DS

SEARCH DS
MESSAGE DS

CL125

CL8
CL128

The ACB macro named ACCESS, specifics skip-sequential retrieval for update.
rurther details may be provided on a DD statement named PAYROLL.

The RPL macro's parameters arc:

• Acn associates the request parameter list with the access method control
block generated by ACCESS.

• AREA and AREALEN specify a work area, \VORK, that is 125 b)1es long.

-. nRGspccifies that lhe 'Search cu-gument is defined at SEAR-CI!. l'he ~arch
argument is 8 bytes long.

• l\-ISGAREA and l\ISGLEN specify a message area, l\U~SSAGE, that is 128
bytes long. The message area is provided for physical error messages.

• OPTCD specifies skip-sequential processing and specifics that a retrieved
record may be updated or deleted.

Because KEYLEN is not coded, a full-key search is assumed.

Olapter 2. VSAM Macro Formats and Examples 131

SCHBFR

SCHBFR Macro (Search Buffer)

The fonnat of the SCHBFR macro is:

I SCIIBFR IIBFRNO=numberi
,RPL = address

Bf'RNO = number
specifies the number of the buffer VSAM is to search first. The buffers
preceding it in the buffer'pool are not searched. The default is I; that is,
the ftrst buffer is searched first. (If the number is coded in register notation,
all registers except 1 and 13 may be used.)

RPL = address
specifics the address of the request parameter list that defines the SC II n fR
request. These RPL parameters have meaning for SCHBFR:

ACB = address

AREA = address
If a buffer is found, the area whose address is specified will contain its
address (OPTCD= LOC) or a copy of its contents (OPTeD = :\tVE).

ARf:AI..EN = number
At least 4 with OPTCD = LOC; at least control interval size with
OPTCD=MVE.

ARG = address
ARG gives the address of an 8-byte field that contains the beginning
and ending control interval RBAs of the range to be searched on.

ECB = address

OPTCD = ({ASYISYN},{LOCIi\IVEl)

TRANSID = number

All other RPL parameters are ignored. RPLs are assume(l not to be
chained. Control interval access is assumed.

If the ACB to which the RPL is related has MACRP = GSR, the program
that issues SCHBFR must be in supervisor state with protection key 0 to 7.

132 MVS/XA VSAM Administration: Macro Instruction Reference

r

SHOWCB-ACB

SHOWCB Macro (Display Fields of an Access Method Control Block)

The fonnat of the SHOWCD macro used to display fields in an access method
control block is:

Ilabe~ SHOWCn ACB = address
,AREA = address
,LE1"GTH = number
I,OBJECl'= I>ATAII~DEXI
,FIEI..DS = (IACBLE~II,A VSPAC)

I,BFR~DII,BSTRNO)
I,BUFNO)I,BU}'RDS)
I,BUFSP)
I,CINVII,I)l)~A:\'IEII,ENI>RBAI

I,ERRORII,EXLSTII,FS)
I,HALCRBAII,KEYLEl"II,LRECLI
I,MAREA)I,i\ILE~II,l\;CISI

1,~I>EI .. RII,l"EXCPII,NEXTI
I,NIXI .. II,l'I..OGRII,NRETRI
I,NUI\VII,l'UJlDRII,Jl ASS\VDI
I,SIIRPOOI..II,ST:\·ISTII,STRl\IAXI
I,STRNOII,UI\\l)

The parameters of the SHO\VCB macro can be expressed as absolute numeric
expressions, as character strings, as codes, as expressions that generate valid
rclocatable A-type address constants, in register notation, as S-type address
constants, and as indirect S-typc ~ddress constants. Appendix C, "Operand
Notation" im -page lSi, furthL"f -dcfmesthese -operand expressions.

label
is I to 8 characters that provide a symbolic address for the SIIO\VCD
macro.

ACB = address
specifies the address of the access method control block whose fields are to
be displayed. If you used the ACB macro with a label, you can specify the
label here. The ACB parameter is optional when you wish to display the
Jen!,rth of an access method control block (FIELDS = ACRLEN). (All
access method control blocks have the same length, so you need not specify
the address of a particular one.)

AREA = address
specifics the address of a work area that you are supplying for VSAM to
display the contents of the fields you specify in the FIELDS parameter.
The contents of the fields are displayed in the order in which you specify
them. The area must begin on a fullword boundary.

LENGTH = number
specifies the length, in bytes, of the work area that you are providing for
VSAM to display the indicated fields in. (See the FIELDS parameter for
the fields that can be displayed and for the length of each field.) If the area
is not large enough for all the fields, VSAM doesn't display any of their

Dlapter 2. VSAM Macro Formats and Examples 133

SHOWCB-ACB

contents and returns a reason code (see "Control Block Manipulation
l\facro Return Codes and Reason Codes" on page 10).

OBJECT = DATAU~DEX
specifi~ther fields are to be displayed for the data or for the index.

FIELDS = IACBLENII,A VSPACI
I,BI:R} "NDII,8STRNOI
I,BUFNDII,BUI-'XII
I,BU.~OIl,BUI-·RDSI
I,BUFS1)II,CINVI
I,DDNA:\I[II,E~DRBAI

I,ERRORII,EXLSTI
I,FSII,HALCRBAI
I ,KEYI.E:\1I ,I..REC"'I
I,~(AREAII,~ILENI
I,~CISII,:\D[I..RI

I,~I-:XCI)II,~EXTI
(,NINSRII,NIXI .. I
I,NI .. OGRII,~RETRI
I,NSSSII,NUI\\l
1,l\UI)DRII,I) ASS\VDI
I,RKI)II,SIIRPOOLI
I,ST;\ISTII,STR:\IAXI
I,STR~OII,{;I\\l)

specifics the fields whose contents· are to be displayed. s.ome of the fields.
can be displayed at any time; others only after a data set is opened. ~
ones that can be displa ed only after a data set is 0 e n in the case of

ata set t at has been 0 ned for ke ed access pertain' --elt er 0 e e ill ex. See the OBJECT paramcter. Figure 14
explams the keywords you can cooe in the FIELDS parameter for an access
method control block .

Keyword

ACBI..EN

BSTR~O

BU.~I)

• ·ulhvords Description of the I-ield

Note: The following fields can be displayed at any
time.

Length of an access method control block
(displaying the length of an access method control
block gives your program independence from
changes in the length that may occur from release
to release of VSAM)

N umber of strings initially a1locat~d for access to
the base cluster by a path

Number of 110 buffers to be used for data, as
specified in the ACB (or GENCO) .

Figure 14 (Part 1 01 4). FIELDS Operand Keywords lor an Access Method Control
Block

134 MVS/XA VSAM Administration: Maero Instruction Reference

Keyword Fullwords

BUI-"NI

DD~A:\tE 2

ERROR 1

EXLST

MAREA

l\·ILEN

PASS\VD

SHRPOOL

STR~IAX

STR~O

AVSPAC

BFRFND

BUJ.'X()

BUJ.'RDS

CINV

1

1

SHOWCB-ACB

Description of the Field

Number of I/O buffers to be used for inde·x entries,
as specified in the ACB (or GENCB)

Amount of space specified in the ACB (or
GENCB) for liD buffers

Name of the DO statement that identifies the data
set

The code returned by VSAi\1 after the opening or
closing of the data set (see "OPEN Macro (Connect
Program and Data)" on page 107 and "CLOSE
Macro (Disconnect Program and Data)" on
page 55).

Addressof.the exit list, if any; 0 if none

Address of the message area, if any; 0 if none

Length of the message area, if any; 0 if none

Address of the field containing the password; the
rust byte of the field contains the 1cnb'1h of the
password (in binary)

Identification number of resource pool to be used
for LS R processing

Maximum number of strings concurrently active

Number of requests for whic11 VSA1\l is prepared
to remember its position in the data sct

Notc: Thc following fidds can be displayed only
after the data set is opened.

Amount of available space in the data component
or index component, in b)1es

Number of successful look-asides

Number of I/O buffers actually in use for the data
component or index component

Number of buffer reads

Control interval size for the data component or
index component

Figure 14 (I'art 2 of 4). FIEI.J)S Operand Keywords for an Access Method Control
Block

..
Olapter 2. VSAM Macro Formats and Examples 135

SHOWCB-ACB

Keyword

ENDRBA

FS

HALCRBA

KEYLEN

LRECL

~CIS

:\DELR

~EXCP

~EXT

NIXL

NLOGR

NRETR

NSSS

Fullwords Description of the }'ield

Ending RBA of the space used by the data
component or index component; not the RBA of
any record in the data set, but of the last used byte
in the data set

Number of free control intervals per control area in
the data component (0 for OBJECT = INDEX)

High-allocated RBA; the relative byte address of the
end of the data component (OBJECT = DATA) or
the index component (OBJECT = I~DEX)

Length of the key of reference of the key field of
data records in the data component (whether
OBJECT= DATA or INDEX)

Length of data records in the data component
(maximum length for variable-lenbIth data records)
or of indcx records in the index component (control
interval length minus 7)

Number of control intervals that have been split in
the data component (0 for OBJECT = I~DEX)

Number of records that have been deleted from the
data.componcnt ~O COf OBJEC'r ::.a: I ~9EXt

Number of EXCP macros that VSA:\I has issued
for access to the data component or index
component.

Number of extents now allocated to the data
component or index component (the maximum
that can be allocated in 123)

Number of records that have been inserted into (or
added to) the data component (0 for
OBJECT = INDEX)

Number of levels in the index component (0 for
OBJECT = DATA)

Number of records in the data component or index
component

Number of records that have ever been retrieved
from the data component (0 for
OBJECT= INDEX)

Number of control areas that have been split in the
data component (0 for OBJECT = INDEX)

Figure 14 (Part 3 of 4). FIELDS Operand Keywords for an Access ;\Iethod Control
Block

136 MVS/XA VSAM Administration: Macro Instruction Reference

Keyword

NUIW

NUPDR

RKI)

ST1\IST

UI\V

.'ullwords

2

SHOWCB-ACB

Description of the Field

Number of writes not initiated by the user

Number of records in the data component or index
component that have ever been updated

Displacement of the key of reference of the key field
from the beginning of a data record (whether
OBJECT= DATA or INDEX)

System time stamp, which gives the time and day of
the last time the data component or index
component was closed, with bit 51 (counting from
o at the left) equivalent to one microsecond and bits
52 through 63 unused

Number of user-initiated writes

Figure 14 (I»art 4 of 4). FIELDS Operand Keywords for an Access Method Control
Block

Example J: SHO'VCB l\lacro (Display an Access l\lethod Control Block)

In this example, a SIIO'VCD macro is used to display fields in an access method
control block. The fields displayed (KEYLEN, LRECL, and RKP) permit the
program to modify variables to process anyone of a number of data sets that
have different sized key fields and records and different placements of key field in
a record.

SHOWCB ACB=CONTROL,
AREA=DISPLAY,
FIELDS=(KEYLEN,
LRECL, RKP) ,
LENGTH=12

DISPLAY DS OF

KEYLEN DS F

LRECL DS F

RKP DS F

lbe SHOWCD macro's parameters are:

Align on fullword boundary.

• ACB specifies the address of the access method control block to be displayed.

• AREA specifics that the area to be used to display access method control
block fields is to begin on a fullword boundary.

• FIELDS specifies that the KEYLEN, LRECL, and RKP fields are to be
displayed.

• LENGTH specifies that the length of the area to be used for the display is 12
bytes, enough to accommodate the specified fields.

Otapter 2. VSAM Macro Formats and Examples 137

SHOWCB-ACB

This display enables the program to set up its variables for the particular data set
it has opened.

Example 2: SHO\VCB Macro (Display an Exit List Address)

In this example, a SIIO\VCB macro is used to get the address of an exit list by
displaying the address in an access method control block that uses the exit list.

SHOWCB ACB=address,
AREA=address,
FIELDS=EXLST,
LENGTH=4

The Sf lowcn macro's parameters are:

• ACB specifics the address of an access method control block from which the
address of an exit list is to be displayed.

• AREA and LENGTH specify an area and length, 4 bytes, to be used to
display the address of the exit list.

• FIELDS specifies that the EXLST field in an access method control block is
to be displayed.

138 MVS/XA VSAM Adminis~ation: Macro Instruction Reference

SHOWCB-EXLST

SHO\VCB Macro (Display Fields of an Exit List)

The fonnat of the SHO\VCB macro used to display fields in an exit list is:

Ilabe~ SIIO\VCB EXI .. ST = address
,AREA = address
,I..E~GTH = number
,.·IELDS = (IEODADII,EXLLE~II,JRNADI

I,LERADII,S~AD»

The subparameters of the SHOWCD macro can be expressed as absolute numeric
expressions, as character strings, as codes, as expressions that generate valid
relocatable A-type address constants, in register notation, as S-type address
constants, and as indirect S-type address constants. Appendix C, "Operand
Notation" on page 181, further defmes these operand expressions.

label
is I to 8 characters that provide a symbolic address for the SIIO\VCB
macro.

EXI~ST = address
specifies the address of the exit list whose fields are to be displayed. If you
used the EXI,ST macro with a label, you can specify the lahel here. The
EXLST parameter is optional only when you want to display the lenh1h
that an exit list can have (see FIELDS = EXLLEN below). The SIIO\VCB
macro does not support the lJPAD user exit.

AREA = address
specifics 1he address of a work area that you are supplYIng for VSJ\~l to
display the contents of the fields you specify in the FIELDS parameter.
The contents of the fields arc displayed in the order you specify them. The
area must begin on a fullword boundary.

LENGTH = number
specifies the length, in bytes, of the work area that you are providing for
VSAM to display the indicated fields in. Each exit-list field requires a
fullword. If the area is not large enough for all the fields, VSAl\1 doesn't
display any of their contents and returns an error code (see "Control Block
Manipulation Macro Return Codes and Reason Codes" on page 10).

FIELDS = (1}:ODADII,EXLLENII,.JRNADI
I,LERADII,SYNADJ)
specifics the values to be displayed, as follows:

EODAD
specifies that the address of the end-of-data-set routine is to be
displayed.

EXLLEN
specifies that the length of the exit list indicated in the EXLST
parameter or if EXLST is omitted, the maximum length an exit
length can have, is to be displayed.

Chapter 2. VSAM Macro Fonnats and Examples 139

SHOWCB-EXLST

JRN'AD
specifies that the address of the journalizing routine is to be displayed.

LERAD
specifies that the address of the logical error analysis routine is to be
displayed.

SYNAD
specifies that the address of the physical error analysis routine is to be
displayed.

You can use S IIO\VCD to display the address of an exit routine only if the exit
routine is indicated in the exit list. If it isn't, the SHO\VCD request will fail. Use
TESTCD to test whether an entry for a given exit type is present in the exit list
and to fmd out whether the exit is active and whether the routine is to be loaded.

Example: SHO\VCB Macro (Display the Length of an Exit List)

In this example, a SHOWeD macro is used to display the maximum length of an
exit list. The maximum length of an exit list is subsequently used in a GENCB
macro to get virtual storage for an exit list.

LENGTH

SHoweB AREA=LENGTH,
FIELDS=EXLLEN,
LENGTH=4

L 0, LENGTH

GETMAIN R,LV=(O)

LR 2,1

GENCB BLK=EXLST,
LENGTH=(*,
LENGTH) ,
WAREA=(2)

.
DS F

The SHOWCD macro's parameters are:

Amount of storage for
GETMAIN.

Address of storage for
GENeB.

Indirect notation for
length of work area.

Contains the length of
GENeB's work area.

• AREA and LENGTI I specify ~he area, which begins on a fullword
boundary, and its length, four bytes, that is to be used for the display.

• FIELDS specifies that the maximum length of an exit list is to be displayed.
Because only EXLLEN is specified, the EXLST parameter is omitted.

The GENCB macro specifies a work area in which an exit list is to be generated.
The length of the work area is located at LENGTH, where the maximum length
of an exit list was put as a result of the SHOWCB macro.

140 MVS/XA VSAM Administration: Macro Instruction Reference

SHOWCB-RPL

SHO\VCB Macro (Display Fields of a Request Parameter List)

. The fonnat of the SHOWCB macro used to display fields in a request -parameter
list is:

Ilabe~ SHO\VCB RI)l = address·
,AREA = address
,lENGTH = number
,FIEI..DS = (IACBII,AIXPCII,AREAII,AREAI..E~)

I,ARGII,ECIlII,FDBKII,F]"NCD)
I,KEYI..E1"II,l\-ISGAREA)
I,MSGlENI
I,NXTRPLII,RBAI
I,RECI..ENI
I ,R J>I..I..E~I
I,TRANSID»

The parameters of the SIIO\Vcn macro can be expressed as absolute numeric
expressions, as character strings, as codes, as expressions that generate valid
rclocatable A-type address constants, in register notation, as S-type address
constants, and as indirect S-type address constants. Appendix C, "Operand
Notation" on page 181, further dermes these operand expressions.

label
is I to 8 characters that provide a symbolic address for the SIIOWCB
macro.

RPl = address
specifics the address of the request parameter list whose fields arc to be
displayed. If you used the R PL macro with a label, you can specify the
label here. The RPL parameter is optional when you want to display the
length of a request parameter list (FIELDS = RPLLEN). (All VSAM
request parameter lists have the same length, so you need not specify the
address of a particular one.)

AREA =.address
specifics the address of a work area that you arc supplying for VSAM to
display the contents of tht! fields you specify in the FIELDS parameter.
The contents of the fields arc displayed in the order you specify them. The
area must begin on a full word boundary.

LENGTH = number
specifics the length, in bytes, of the work area that you arc providing for
VSAI\t1 to display the indicated fields in. Each request parameter list field
requires a fullword. If the area is not large enough for all the fields, VSAM
doesn't display any of their contents and returns an error code (see
"Control Block Manipulation Macro Return Codes and Reason Codes" on
page 10).

Olaptcr 2. VSAM Macro Formats and Examples 141

SHOWCB-RPL

-.
FIELDS = (IACBII,AIXPclI,AREAII,AREALENJI,ARGI

I,ECBII,FDBKII,FThCDII,KEYLENI
1,l\/ISGAREAII,~ISGLENI
I,NXTRPLII,RBAII,RECLENI
I,RPLLENII,TRANSIDD
specifies the fields whose contents are to be dispiayed. Figure I S on
page 142 explains the keywords you can code in the FIELDS parameter for
a request parameter list. Some fields (each indicated by an asterisk (+) in
figure IS) are meaningful only if the requests have been completed;
therefore, you must wait until the request has completed (for example, by
issuing a CHECK if the request is asynchronous) before issuing SIIO\VC8.

Keyword

ACB

ARE~

AREALEN

ARG

ECB*

F'INCD*

Fullwords Description of the Field

1

Address of the access method control block that
relates the request parameter list to the data

Number of alternate index pointers

Address of the work area that the program uses to
process a data record for the access as defmed by
tlie req uest parameter list

Length of the work area whose address is given in
AREA

Address of the field containing a search argument,
if search-argur:ru::nts are being used

Address of an event control block, if any, in which
VSANf indicates the completion of requests
defmed by the request parameter list

Reason code that VSAM puts into the feedback
field to describe the error detected for the
preceding request. (The meaning of this code
depends on the contents of register I S, which
indicates whether the request was successful or
failed because of a logical or physical error. See
"Record Management Return Codes and Reason
Codes" on page 13)

Code that describes the function in which a logical
or physical error occurred; indicates whether the
upgrade set may have been modified incorrectly by
the preceding request (The meaning of this code
depends on the contents of register IS, which
indicates whether the request was successful or
failed because of a logical or physical error. Sec
"Record Management Return Codes and Reason
Codes" on page 13)

Figure IS (Part I of 2). FIELDS Operand Keywords for a Display Request Parameter
List

142 MVS/XA VSAM Administration: Macro Instruction Reference

KeYl\'ord Fu II words

KEYLEN

l\ISGAREA * 1

l\ISGLE~

NXTRPL

RBA*

RECLEN*

RI~LLEN

TRANSII)

SHOWCB-RPL

Description of the .1c1d

Length of the search argument, if a generic key is
used for a search argument

Address of the area, if any, into which VSAM puts
physical error messages .

Length of the message area, if any

Address of the next request parameter list, if
another one is chained to this one

Relative byte address of the most recently
processed record; you could use it to record the
RBAs of records that you are retrieving or storing
sequentially or by key

LcnhJth of the data record, access to which is
dermed by the reque~t parameter list

LenhJth of a request parameter list

~umber that relates modified buffers in a buffer
pool; described in VSAM Administration Guide

Figure 15 (Part 2 of 2). FIELDS Operand Keywords for a Display Request Parameter
Ust

Chapter 2. VS,M Macro Formats and Examples 143

SHOWCB-RPL

Example: SHO\VCB :\'Iacro (Display a Physical Error l\'lcssage)

In this example, a SHOWeD macro is used to display a physical error message.
This example assumes that there is no SYNAD routine (or the SYNAD exit is
inactive), in which case, VSAM returns control to your program following the
last executable instruction if a physical error occurs. Register 15 indicates a
physical error (12), and the feedback field in the request parameter list contains a
code identifying the error; the message area contains more details about the error.
Register 1 points to the request parameter list.

REQUEST RPL MSGAREA=
MESSAGES,
MSGLEN=128

CHECKO

SHOWCB AREA=MSGADDR,
FIELDS=MSGAREA,
LENGTH=4,
RPL=REQUEST

LTR 15,15

BNZ CHECKO

MESSAGES DS CL128

MSGADDR DS F

Display failed.

For VSAM to give you a
detailed message about
a physical error.

For displaying the
address of the message
area with SHOWCB.

The RPL macro in this example provides for a message area, :\tESSAGES, of
128 bytes to be used for any physical error message.

The SHOWCB macro's parameters are:

• AREA and LENGTH specify a 4-byte area, l\tSGADDR, to be used for
displaying the address of the message area for the associated request
parameter list.

• FIELDS specifies that the address of the message area is to be displayed.

• RPL specifics the name, REQUEST, of the request parameter list for which
the message area address is to be displayed.

144 MVSjXA VSAM Administration: Macro Instruction Reference

TESTCB-ACB

TESTeB Macro (Test Fields of an Access Method Control Block)

Only one keyword can be specified each time you issue TESTCB. The fonnat of
the TESTCB macro used to test a field in an access method control block is:

Ilabe~ TESTCB ACB = address
(,ERET - addres.rl
(,OBJECT- DATAIIXDEXI
,{ATRB - (lESDSIl,KSDSIl,tDSIl,REPLI

(,RRI>SII,SPANII,SS\\'DII,\VCKII
ATRB= Ul';QI
CATALOG = YESINOI
CRA = SCRAIUCRAI
l\fACRF - «(AI>RII,AIXII,C.·XII,C~VII,I>DNI

(,DFRII,DIRII,DSNII,GSRII,ICIII,INI
·1,KEYII,LSRII,NCIII,NFDII,l'.~XII,l'ISJ
(,NR:\111~RSII,NSRII,NUBII,OUTIl,RSTI
I,SEQII,SISII,SKI)II,UBFJ)I

OFI .. AGS - OPENI
OI)E~OBJ= I)ATIIIBASEIAIXI
ACBLEN - number I
A VSP AC - number I
BSTRr\O = number I
BU.~D = numberl
BU.'XI - number I
BUE~O - number I
BU.·SP = numberl
CINV - numbed
"}D~Al\IE~ddname~

.:Nl>RBA - numberl
ERROR = number I
EXLST = addressl
.'S - number I
KEYLEN = numberl
LRECL = numberl
l\fAREA = address I
l\fLEN - numberl
NCIS = numberl
NDEI..R = numberl
NEXCI) = number I
NEXT - numberl
NINSR - number I
NIXI.. = numberl
NLOGR - numberl
NRETR = numberl
NSSS = number I
NUPDR = numbed
P ASS\\'D = (lddressl

. RKP = numberl
SHRPOOL - numberl
SfMST = addressl
STRNO = number}

Olapter 2. VSAM Macro Formats and Examples 145

TESTCB-ACB

The subparameters of the TESTCD macro can be expressed as absolute numeric
expressions, as character strings, as codes, as expressions that generate valid
relocatable A-type address constants, in register notation, as S-type address
constants, and as indirect S-type address constants. Appendix C, "Opercmd
Notation" on page 181, furt~er defmes these operand expressions.

ACB = address
specifies the address of the access method control block whose infonnation
you want to test. You may omit it only if you'rc testing the length of an
access method control block (ACBLEN = number). (All VSAM access
method control blocks have the same length.)

ERET = address
specifics the address of a routine to which VSAM is to give control if,
because of an error, it is unable to test for the condition you specify. For
example, testing AVSPAC in an access method control block for an
unopened data set would fail. VSAM indicates in register 15 whether it
could do the test and, if not, indicates in register 0 the reason it couldn't.
(The reasons are discussed under "Control Block Manipulation Macro
Return Codes and Reason Codes" on page 10.) ;\ failure trying to execute
TESTCD indicates a basic logical problem in the processing program, so
the error routine would probably issue an ABEND. If it lets the program
continue, it must branch to the continuation point itself, and not return to
VSAl\1.

OBJECT=~II~DEXI
specifies whether you want to test a field for data or for index.

ATRIJ = (lESDSII,KSDSII,I .. I)SI
I,REPLI
I,RRDSI
I,SI)A~I

I,SS\\l)1
I,\VCKD

specifies, for an open data set, the attribute that is to be tested for, as
follows:

[SJ)S
entry-sequenced data set

KSDS

LDS

key-sequenced data set

linear data set

Note: When specified, LOS must be the only parameter indicated by
ATRB. All other parameters will be ignored and a binary test will be
perfonned that indicates whether the data set is a linear data set
(return code 0) or not (return code 1).

146 MVS/XA VSAl\1 Administration: Macro Instruction Reference

TESTCB-ACB

REPL
some portion of the index is replicated

RRDS
relative record data set

SPAN
data set contains spanned records

SS\VD
sequence set is adjacent to the data

\VCK
write operations for the data set arc being verified

ATRB=UNQ
specifics, for an open alternate index or path, that the alternate index
requires unique keys. The test for ATRB = UNQ must be made with a
separate TESTeD macro. VSAM examines the path control blocks for the
UNQ attribute; and also examines the base cluster's control blocks for the
other attributes. If other attributes arc tested for, VSA\1 examines. the base
cluster's control blocks for all attributes: The test for ATRB = U~Q would
give inaccurate results when applied to the base cluster's control blocks.

CAT Al.OG = Y":SINO
specifies that a test is to be made to determine, any time, whether or not
the access method control block specifies a catalog data set.

eRA = SCRAIUCRA
specifICS that a test is to be made to -dctcrmmc,any time, whetRcr-cata.leg
recovery area control blocks are to be built in system stor&lge or user
storage.

l\IACR"~ = «(ADRII,AIXII,CFX)
I,CNVII,I)D~)

I,DFRII,DIRI
I ,D S:\' II ,GSR)
(,ICIII,IN)
I,KEYII,I..SR)
I,NCIII,!\;I>FI
I,N XIl,NISI
I,NRl\III,NRSI
(,NSRIl,NUBI
I,OUTII,RSTI
I,SEQII,SISI
I,SKI)II,UBFI

specifies that a test is to be made to determine, at any time, what
subparamctcr or combination of subparameters is being used for processing.

OFLAGS=OPEN
specifies that a test is to be made to determine, after open, whether the data
set identified by the control block has been opened.

..
Dlapter 2. VSAM Macro Formats and Examples 147

TESTCB-ACB

OPENOBJ==PATHIBASEIAIX
specifies that a test is to be made to detennine, after open, whether an
opened object is a path, a base cluster, or an alternate index.

The remaining parameters represent fields in an access method control block that
can be compared with the value specified. These fields are the same as those that
can be displayed by using the SIIOWCB macro and are. described in Figure 14
on page 134.

If you omit a routine to handle error conditions, you can examine register IS
following TESTCD by using a branch table, for example, but don't alter the
PSW condition code that VSAM set to indicate the result of a test until you've
had a chance to test it.

Example: TESTeD i\lacro (Test for Data Set Attributes)

In this example, a TESTCR macro is used to determine whether a data set is a
key sequenced or an entry-sequenced data set.

LIST RPL

KEYSEQ

CHECKO

.
SHOWCB ARE~=DATAFACT,

FIELDS=ACB,
LENGTH=4,
RPL=LIST

LTR 15,,15

BNZ CHECKO

TESTCB ACB=(*,

BE

.

DATAFACT) ,
ATRB=KSDS,
ERET--CHECKO

K£YSEQ

DATAFACT DS F

The SHOWCB macro's parameters are:

Is the data set key
sequenced?

Yes.

Data set is key sequenced.

Display or test failed.

For displaying address of
access method control
block.

• AREA and LENGTH specify a 4-byte area, DATAFACT, aligned on a
fullword boundary, to be used for the display.

• FIELDS and RPL specify that the address of the access method control
block in the LIST request parameter list is to be displayed.

The TESTCD macro's parameters are:

148 MVS/XA VSAM Administration: Macro Instruction Reference

TESTCB-ACB

• ACB specifics that a field in the access method control block. the address of
which is located at DA T AF ACT, is to be tested. The SHOWCB macro put
the address of the acccss mcthod control block at DATAFACT.

• ATRB specifies that the access method control block is to be tested to
dctcnnine whether it is a key-sequenced data set.

• ~RET specifies that a routine named CIIECKO is to be given control if an
error occurs that makes it impossible to .make the test.

There is no necd to examine the fccdback field in an EODAD routine, becausc it
can be assumed to contain the end-of-data-set indication.

Oaapter 2. VSAM Macro Formats and Examples 149

TESTCB-EXI.ST

TESTeD Macro (Test Fields of an Exit List)

The fonnat of the TESTC B macro used to test fields in an exit list is:

I/abeJi TESTeD f:XLST =- address
I,ERET = addressl
,{EODAD == {O I «(addre.rsll ,A I Nil ,l. I)} I
JRNAD = {OI(laddressll,AI!';II,LI)} I
l.ERAD == (OI<laddressll,AINH,I.I)} I
SYNAD == (OI<laddressD,AIl\II,I..I)}}

I,EXLLEN = numberJ

The parameters of the TESTCB macro can be expressed as absolute numeric
expressions, as character strings, as codes, as expressions that generate valid
relocatable A-type address constants, in register notation, as S-type address
constants, and as' indirect S-type address constants. Appendix C, "Operand
Notation" on page 181, further defmes these operand expressions.

label
is I to 8 characters that provide a symbolic address for the TESTCB macro.

EXLST = address
specifics the address of the exit list whose information you want to test.
You may omit it only if you're testing the maximum length of an exit list
(EXLbEN = number),.,. The TES'tCB "macro. ~s. not support Ll}e Ul) AD
user exit.

ERET = address
specifics thc address of a routine to which VSA~I is to give control if,
because of an error, it is unable to test for the condition you specify. For
example, testing AVSPAC in an access mcthod~control block for an
unopened data set would fail. VSAM indicatcs in register 15 whether it
could do the test and, if not, indicates in register 0 the reason it couldn't.
(The reasons are discussed under "Control Block I\1anipulation l\lacro
Rcturn Codes and Reason Codes" on page 10.) A failure trying to execute
TESTCD indicates a basic logical problem in the processing program, so
the error routine would probably issue an ABEND. If it lets the program
continue, it must branch to the continuation point itself, and not return to
VSAM.

[OUAD == (OI<laddressll,AINII,I .. I)J I
JRNAJ) == {O I (Iaddressll ,A I NII,LI») I
LERAD == {OI(laddressll,AINII-,I..Dlt
SYNAD = {OI(laddressll,AINII,LIH

specifies the exit about which you arc asking a yes-no question. If you
code more than one parameter for an exit name, each must equal the
corresponding value in the cont-:ol block for you to get an equal condition.
The values that can be tested are:

o
specifies that a test is to be made to detennine whether an entry is
provided for the exit in the exit list.

150 MVS/XA VSAM Administration: Macro Instruction Reference

TESTCB-EXLST

address

AIN

L

specifies that a test is to be made to detennine whether this is the
address of th~ exit. Tests for an address result in an equal, unequal,
high, low, not-high, or not-low condition. Tests for a combination of
an address and A, N, or L result in an equal or unequal condition.

specifies that a test is to be made to detennine whether an exit is
active (A) or not active (N). Tests for A or N result in an equal or
unequal condition.

specifics that a test is to be made to determine whether the address is
the location of an: 8-byte field containing the name of a module to be
loaded rather than the entry point of the routine. Tests for L result in
either an equal or unequal condition.

EXLLEN - number
specifics either the maximum length that an exit list can have (if you don't
code the EXI..sT parameter) or the actuallenl:,rth of the exit list indicated by
the EXLST parameter. If you specify an exit, you may not also specify
EXL'LEN; if you specify EXLLEN, you may not also specify an exit.

If you omit a routine to handle error conditions, you can examine register 15
following TESTCD by using a branch table, for example, but don't alter the
PS\V condition code that VSAM set to indicate the result of a test until you've
had a chance to test it .

• :xample: TESTeD ~Iacro (Usc a Uranch Table)

In this example, a TESTeD macro is used to test whether ENDPROC is the
routine supplied for the EODAD exit in the exit list EXITS, and whether the
EODAD exit is active. A branch table is used to detennine whether the test is
succp.ssful.

TESTCB EODAD=(ENDPROC,A) Is ENDPROC supplied and is
EXLST=EXITS the exit active?

B *+4(15)

If the test was made successfully, register 15 contains 0 and the next instruction is
executed.

BTEST!

If it was unsuccessful, register 15 contains 4 and the next instruction is executed.

TEST!

YES

NO

ABEND 2, DUMP

BNE NO

Yes; ENDPROC is supplied
and active.

ENDPROC isn't supplied, or
the exit isn't active.

Olapter 2. VSAM Macro Formats and Examples 151

TESTCB-RPL

TESTeD Macro (Test a Request Parameter List)

The format of the TESTCD macro to test fields in a request parameter list is:

Ilabel} TESTCD RPL = address
(,ERET= addressl
,{AIXFLAG = AIXPKPI
AIXI)C = numbed
.... INCD = number,
10 = C()~U)I .. ETEI
OPTCD = (fADRII,ARDII,ASYII,BWDI

I,CNVII,DIRII,}'KSII,}"VDI
(,GENI(,KEQII,KEYII,KGEIl,I .. OCI
1,I..RDII,i\IVEII,~S(lJ(,NUPII,SEQI
(,SKPII,SYNII,UPDI)I

ACB = address I
AREA = address I
AREALJ.:N = numberl
ARG = address I
EC8 = address I
FDnK = number I
KEYI .. EN = number I
:\ISGAREA = addressl
i\IS(;LEN = number I
NXTRPL = addressl
RBA = number,
RECI..EN = numberl
RI)LLEN = numbed
TRA~SID = number}

The parameters of the TESTCD macro can be expressed as absolute numeric
expressions, as character strings, as codes, as expressions that generate valid
relocatable A-type address constants, in register notation, as S-type address
constants, and as indirect S-type address constants. Appendix C, "Operand
Notation" on page 181, further defmes these operand expressions.

where:

label
is 1 to 8 characters that provide a symbolic address for the TESTCS macro.

RI)L = address
specifies the address of the request parameter list whose infonnation you
want to test. You may omit it only if you're testing the len!:,rth of a request
parameter list (RPLLEN = number). (All request parameter lists have the
same length.)

ERET = address
specifies the address of a routine to which VSAM is to give control if,
because of an error, it is unable to test for the condition you specify. For
example, testing AVSPAC in an access method control block for an
unopened data set would fail. VSAM indicates in register 15 whether it

152 MVS/XA VSAM Administration: Macro Instruction Reference

TESTCB-RPL

could do the test and, if not, indicates in register 0 the reason it couldn't.
(The reasons are discussed under "Control Block Manipulation Macro
Return Codes and Reason Codes" on page 10.) A failure trying to execute
TESTCD indicates a basic logical problem in the processing program, so
the error routine would probably issue an abend. If it lets the program
continue, it must branch to the continuation point itself, and not return to
VSAM. .

AIXFI .. AG = AIXPKP
specifics that prime-key pointers are used rather than RBAs.

AIXPC = number
specifics the pointer count.

FfNCI) = number
specifies whether the upgrade set is correct or may have been modified by a
request. These codes are described under "Component Codes
(RPLCMPON)" on page 14.

10 = CO!\II'I..ETE
specifics that a test is to be made to detennine whether an asynchronous
request has been completed. (When you issue a CIIECK macro, you
suspend processing until a request has been completed if it hasn't yet been
completed.)

OI)TCD = (I,ADRII,ARDU,ASYII,B\V1)II,CNVII,DIRII,FKSI
1,F\\l)II,GE~II,KEQII,KEYII,KGEII,I..()CII,LRDI
1,:\IVEII,~SPII,:\t;PII,SEQII,SKJ>II,SYXII,UPI>I

specifics that a test is to be made to determine what subparameter or
combination of subparamcttts is being used fbr'the request. See l;igure 17
on page 184 for a description of these -subparameters.

1 he remaining parameters specify fields m a request parameter list and values; the
contents of a field are to be compared to the specified value. These fields are the
same as those that can be displayed by using a SIIO\VCB macro. (See Figure 15
on page 142 for an explanation of these fields.) Fields can be tested at the same
time they are displayed.

You may specify only one keyword. If you code a list of option codes (for
example, OPTeD = (KEY,DIR», each of them must equal the corresponding
value in the control block for you to get an equal condition.

If you omit a routine to handle error conditions, you can examine register 15
following TESTCS by· using a branch table, for example, but don't alter the
PSW condition code that VSAM set to indicate the result of a test until you've
had a chance to test it.

Chapter 2. VSAM Macro Formats and Examples 153

TESTCB-RPL
..

Example: TESTeD l\facro (Test a Request Parameter List).

CHANGE

NOCHNGE

TESTCS RPL=(3),
RECLEN=80

BE NOCIINGE

The TESTCD macro's paramctcrs are:

Because the record length in
the request parameter list was
not 80, the length indicator
must be modified so that it
is 80.

Because the record length in
the request parameter list was
80, no change is required.

• RI'L specifics that the address of the request parameter list to be testcd is
contained in register 3.

• RECLEN specifics that the record length indicated in the request parameter
list is to be tested to detcnnine whether it is 80.

154 MVS/XA VSAM Administration: Macro Instruction Reference

VERIFY

VERIFY Macro (Synchronize End of Data)

The format of the VERIFY macro is:

I/abe~ V .. :RIFY RI)L -= address
I,ACfION = REFRESHI

where:

label
is I to 8 characters that provide a symbolic address for the VERIfY macro.

RPL II: address
specifies the address of the request parameter list that defines this VERIFY
request. You may specify the address in r:cgister notation (using a register
from I through 12, enclosed in parentheses) or specify it with an expression
that generates a valid relocatable A-type address constant.

The following parameter and subparameter arc required for VERIfY:

In the RPL, OJ)TCI) == (CNV, .•.) must be specified.

ACTIOX - R .. :FRF.,SII
specifics that the VSA~I control blocks arc to be updated from the catalog
after an attempt has been made to verify the high-used RBA. For a data
set that has been extended, VERIF)' with ACTION = REFRESII will
invoke end of volume proc~ssing to update the control block structure,
reflecting 1he new ext~.

If you do not specify ACTION = REFRESH for an extended data set, you must
close the data set and reopen it to obtain new extent information before you can
verify it.

Any attempt to issue the VERifY macro against a linear data set (LDS) will
result in a logical error (return code 253 in the feedback field of the RPL).

After verifying a data set, positioning must be established with a PO I NT macro
or with a GET macro with RPL OPTCD= i)IR.

Oaapter 2. VSAM Macro Formats and Examples 155

WRTBFR

\VRTBFR Macro (\Vrite Buffer)

The format of the WRTBFR macro is:

WRTBFR RPL = address
,TYPE = {ALLICHKIDRBAIDSILRU(percent)ITRN}

RPL = address
specifics the address of the request parameter list that defines the \VRTBFR
request. An RPL need not be built especially for the
\VRTBfR-\VRTBfR may usc an inactive RPL that dcfmes other
rcquest(s) (GET, PUT, and so forth) for a data set that is using the
resource pool. The following RPL ·parameters have meaning for
WRTBI-;R:

ACB = address
ARG=address

for TYPE= DRBA, the address of a 4-byte field that contains the
RnA to be located and written.

ECB = address

OPTCD= (ASYISYN}
\VRTBFR can be issued synchronously (SYN) or asynchronously
(ASy). A CIIECf(or ENDREQ must be issued to synchronize an (
asynchronous \VRTBFR request.

TRA1\SID = number
Specifies a number from 0 to 31.

All other RPL parameters are ignored. RPLs are assumed not to be
chained.

If the ACB to which the RPL is related has MACRF = GSR, the program
that issues WRTBFR must be in supervisor state with protection key 0 to
7.

TYPE= (AI..I..ICIIKII>RBAII)SII..RU(percent)ITRN}
specifics which butTers are to be written.

Note: Before using WRTBFR TYPE=CIIKIDRBAITRN, be sure to
release all butTers. VSAM defers processing until all butTers are released.
For details about releasing butTers, see VSAM Administration.

ALL
specifies that all modified unwritten index and data butTers in each
butTer pool in the resource pool are to be written. No butTers will be
invalidated. Closing all the data sets that use a resource pool causes
the same butTers to be written.

156 MVS/XA VSAM Administration: Macro Instruction Reference

CHK

WRTBFR

is as TRN (below), but, if an error occurs in writing buffers,
transaction IDs continue to be associated with the buffers.·
WRTBFR TYPE = CHK could be used by a checkpoint routine to
record checkpoint information and leave buffers for which an error
occurred as they were for continued processing.

DRBA

DS

specifics that one of the data set's data buffers is to be written. The
buffer to be written is. identified with the RBA pointed to by the RPL
ARG address.

specifies that, for the data set defmed by the ACB to which the
WRTBfR's RPL is related, all modified unwritten index and data
buffers are to be written and all buffers are to be marked empty, i.e.,
invalidated. Therefore, \VRTBFR TYPE = DS should be issued only
after all VSAM requests for the data set have been quiesced.
Otherwise, unpredictable results may occur.

I .. R U(percent)

TRN

specifics that some of the modified buffers in each buffer pool in the
resource pool are to be written. The percent is the percentage of
buffers in each pool that are to be examined for possible writing. The
least recently used buffers are examined. (If percent is coded in
register notation, only registers 1 and 13 may not be used.)

TYPE = LR U is used for writing some modified buffers, without
.r.cspe£llo.a.particular.data sel or tunsaction ID, to ensure that
buffers will be available for GET requests (without having to wait for
buffers to be written).

specifies that all buffers in a buffer pool that have been modified by
requests with the transaction 10 specified in the \VRTBFR's RPL are
to be written. Transaction IDs are no longer associated with these
buffers if WRTBFR completes successfully.

Olapter 2. VSAM Macro Formats and Examples 157

Appendix A. Format of Macros

For easy reference, the fonnats of all the macros described in this book are
repeated here in alphabetic order.

ACB (Generate an Access l\fcthod Cootrol Block at Assembly lime)

I/abe4 ACB IAl\f == VSAl\U
I,BSTRNO = number!
I,BU}'"ND == number!
I,BUFNI == number!
I,BlJFSI) == numberJ
I,CAT ALOG ==. {YESI~Oll
I,CRA == {SCRAIUCRAJI
1,I>DXA:\1E == ddnamel
I,EXLST = addressl
1,l\fACRF == «(ADRII,CNVII,KEYI

I,CFXI~"'XI
I,DJ)~IJ)SNI

ItD.J-~RJr\I).l

(,D I RII,SEOII ,SKPI
I,ICIINCII
I,~I,()UTI
I,~ISISISI
I,~IAIXI
I,~IRSTI
I,NSRILSRIGSR)
I,NUBI UBFI)I

1,l\fAREA - addressJ
1,l\fLEN = numberJ
1,1) ASS\VD == addressl
I,Rl\IODE31- {AI..I .. IBUFli'ICBINONEU
I,SIIRPOOL- {!!Inumber}l
I,STRNO - number!

ACQRANGE (Stage Data)

111abe4 I ACQRANGE I RPL - address

..
Appendix A. Format of Macros 159

BLDVRP (Build a VSA~I Resource Pool)

BLDVRP BU}~FERS = (size(number),size(number), •••)
(,FIX = {BFRIIOBI(BFR,IOB)}I
I,KEYLEN = lengthl
(,Ri\IODE31 = (ALtIBUFFICBINO~EJJ
(,SHRPOOL = {!!I number} I
(,i\IOOE = (24131J1
,STRNO = number
(,TYPE = (I..SRI,!MllIINDEXIIGSRJI

CHECK (Suspend Processing)

II/abe" I CHECK I RPL = address

CtOSE (Disconnect Program and Data)

I/abe" CI..OSE (addressl ,(options) 1 ... 1
1,i\IODE = ,(24131J1
(,TYI)E=TI

C:\VTAD (Convert Address)

Illabe" I CNVTAI> I RilL = address

DI..VRI) (Deletc VSA~I Resource Pool)

DLVRP TYPJt: = (I..SRIGSR}
1,l\IODE = {24131J1
I,SHRPOOL = O!lnumberJl

ENDREQ (Terminate a Requcst)

I (/abe" I ":NI>REQ I RPL = address

ERASE (Delete a Rccord)

II/abe" I ERASE I RI)L = address

160 MVS/XA VSAM Administration: Macro Instruction Reference

EXLST (Generate an Exit List at Assembly lime)

Ilabe~ EXIST lAM = VSAl\t1l
I,EODAD = (addressl,A IN)(,L»)
I,IOPID = (address»)
I,JRNAD = (addressl,~I~)(,LJ»)
I,LERAD = (addressf,AI1\II,LI>I
I,SYNAD = (address(,~I1'\II,LI»)
I,UPAD = (address(,AINII,1..1)1

GENCB (Generate an Access l\fethod Control Block at Execution lime)

I/abe~ GENCB BLK=ACB
I,Al\1 = VSAl\11
I,BSTRNO = numberj
I,BUFND = numberj
I,BUFNI = numberj
I,BUI'''SP = numberj
(,CATALOG = {YESINOJ I
I,COP •• :S = numberj
I,CRA= {SCRAIUCRAJI
(,DDNA1\IE = ddnameJ
(,EXLST = addressJ
(,I .. ENGTII = numberj
I,LOC = {BELO\VIANY}J
(,1\fACRF = «(ADRJI,CNVII,KEYI

I,C."XINI-'"XI
I,Dn~fDSN1
I,DFRINI>FI
1,1> IR II ,SEQII ,SKPI
1,ICIINCn
I,~(,OUTJ
I,NISISISI
I,NR1\fIAIXI
(,NRSIRSTI
I,NSRILSRI
I,~IUBFJ)I

1,l\fAREA = address)
I,MLEN = numberJ
I,PASS\VD = address)
I,Rl\10DE31 = {ALLIBU ·,CBINONEH
I,SHRPOOL= (!!lnumber}1
I,STRNO = addressl
I,\V AREA = address)

Appendix A. Format of Macros 161

GENCO (Generate an Exit List at Execution lime)

I/abe4 GENCB BLK==EXLST
I,AM=VSAMI
I,COPIES == numbert
I,EODAD == (addressl,AINJI,LJ)1
I,JRNAD == (addressl,~INII,LJ)1
I,LENGTH == numbert
I,I..ERAD = (addressl,AINII,I.J)1
I,I .. OC = {OELO\VIANY}
I,SYNAD == (addressl,aINII,LI)I
I,W AREA == addressl

GENCO (Generate a Request Parameter List at Execution lime)

(/abelJ GENCO BLK=RPL
(,ACB = addressl
I,AM==VSAMI
(,AREA = addressl
I,AREALEN = number)
(,ARG == addressl
(,COPIES == number)
(,ECR == addressJ
(,KEV~EN == number)
r,tENGYlf = numherf
(,toe = (BEI.O\VIANYH
(,~ISGAR":A = addressl
(,l\ISGLEN = number)
(,NXTRPL = addressl
I,OI)TCD = (IAI>RICNVIKEYI

I,I>IRISEQISKPI
1,Mm.II..RDI
I,~IBWDI
(,ASYI SYNI
(,NSPI~IUPDI
I,KEQIKGEI
I,FKSIGENI
(,LOC I MVEI)I

I,RECLEN == number)
(,TRANSID == number)
I,\V AREA == addressl

GET (Retrieve a R~)

111abe4 I GET I RPL==address

162 MVS/XA VSAM Administration: Macro Instruction Reference

GETIX (Retrieve an Index Record)

Illabe~ I GETIX I RPL = address

l\fNT ACQ (Mount Acquire)

IllabeLl I MNTACQ I RI)L = address

l\IODCB (Modify an Access l\fethod Control Block)

Ilabe~ l\10»CB ACB = address
I,BSTR~O = number)
(,BUFND = number)
I,BUf"NI = number)
I,BUf~SI) = number)
I,CATALOG = {YESINOH
1,CRA= {SCRAIUCRAH
1,I>D~~1\n= = ddnamel
I,EXLST = addressl
1,l\IACRF = (IADRII,CNVII,KEYI

I,CFXI~FXI
I,DD~IDS~I
(,DI'~RINDFI

1,1> I RII ,SEQII ,SKPI
1,1CIINCII
1,~11 ,(}Uri
(,NISISISI
I,NR:\IIAIXI
I,1~RSIRS11
(,NSRILSRI
I,NUBlun·')1

1,l\IAREA = addressl
(,1\'ILEN = number)
(,P ASS\VD = addressl
I,Ri\10DE31 = rALLIBU.~FIC8INO~ElI
I,SIIRI)()OL = number)
I,STRNO = number)

l\IODCB (Modify an Exit List)

(labeLl l\10DCB EXLST = addre.u
(,EODAD = (addressi,AINII,LJ)1
I,.JRNAD = (addres.~,AINII,I..I)1
I,LERAD = (addressi,AINII,LI)I
(,SYNAD = (addressi,AINII,LI)J

Appendix A. Format of Macros 163

~IODCB (~Iodify a Requcst Parameter List)

(labe/f i\IODCB RPL == address
(,ACB == address'
I,AREA == addressJ
(,AREALEN == numberJ
(,ARG == addressl
(,ECB == address,
(,Kf:YLJo:N == numberJ
(,~ISGAREA == address,
(,:\IS(;LEN == numberJ
(,NXTRPL == addressl
I,OI)TCD == (IADRICNVI KEYI

(,ARDII .. RDI
(,F\VDI8\VDI
I,DIRISEQISKPI
(,ASYISYNI
(,NSPI~l.JPIUPDI
(,KEQIKGEI
(,I-"KSIGf:NI
1,1..0CI:\IVEI)

I,RECLEN == number!
(,TRANSID == number!

~IRKOFR (\Vrite IJutTer)

i\IRKOf'R i\:IARK = {DINV AI..IDIXINV AI..IDIO(JTI RI..S}
,RPL == address

OPEN (Connect Program and Data)

(labe" OPEN (address(,(options)I •••)
(,~IODE== {24131J1

POINT (Position for Access)

I(labe" IllOINT I RPL = address

PUT (Store a Rl.'Cord)

I(/abe" I PUT I RilL = address

164 MVSjXA VSAM Administration: Macro Instruction Reference

PUTIX (Store an Index Record)

Illabe~ I PU11X I RilL = address

RPL (Generate a Request Parameter Ust at Assembly lime)

SCHBFR (Search Buffer)

Ilabell RPI .. ACB = address
I,AM=VSAMI
I,AREA = address)
I,AREALEN = numberJ
I,ARG = address)
I,ECB = address)
I,KEYLEN = numberJ
1,1\lSGAREA:= address)
1,l\ISGLEN = numberJ
I,NXTRPL = address)
I,OPTCD = (IADRICl'VIKEYI

I,I>IRISEOISKPI
I,ARI>ILRDI
I, \VI>IB\VDI
I,ASYISYNI
I,NSPI~UPIUPD)

I,KEOIKGEI
I,FKSIGENI
I,N\V AITX I\VAITXI
1,1..0C ll\lVEI»

I,RECI..EN = numberJ
I,TRA~SID = numberl

I SCHBFR IIBI'RlI:O = number)
,RPL = address

Appendix A. Format of Macros 165

SHOWCB (Display Fields or an Access Method Control Block)

I/abe~ SHO\VCB ACBaddress
,AREA - address
,LENGTH - number -
(,OBJECT=- {DATAIINDEXJI
,FIELDS=- «(ACBLENII,A VSPACII,BFRFNDI

I,BSTRNOII,BU.~DII,8U."'N11
I,BUFNOII,BUFRDSJI,BUf'SIJ,
I,CINVII,DDNAMEII,ENDRBAI
I,ERRORII,EXLSTII,·~SI
I,HAI..CRBAII,K":YI..E~II,I..RECI..I
I,MAREAI(,MLENII,NCISI
I,NDELRII,NEXCPII,NEXTJ
I,NINSRJI,NIXLI(,NLOGRI
(,NRETRII,NSSSJl,NUIW)
I,NUPDRJI,PASS\VDJI,RKPI
I,SIIRPOOtll,STMSTII,STRMAXI
(,STRNOII,UIWJ)

SHO\VCB (Display Heltls of an Exit I .. ist)

Ilabe" SHO\VCB AREA=- address
,EXLST == addr~ss
,LENGTH = number
,"~IEI .. DS == «EODADII,EXLI.. .. :NII,JRNADI

I,I..J.:RADII,SYNADI)

SIIO\VCB (Display Fields of a Request Parameter List)

J Fabe~ SHO\VCB AREA = address
,LENGTH = number
,RPL=- address
,FIELDS == (IACBII,AIXPCII,AREAI

(,AREALENII,ARGII,ECBJ(,FDBKJ
I,FfNCDII,KEYLENII,l\(SGAREAI
1,l\fSGI..ENII,NXTRPI..II,RIJAI
I,RECI..ENII,RPLI..ENII,TRANSIDI

166 MVSjXA VSAM Administration: Macro Instruction Reference

I'
I

TESTCD (Test a Field of an Access l\fethod Control Block)

Ilabe~ TESTCD ACB = address
(,ERET -= addressl
(,OBJECT = DATAIINDEXI
,{ATRB = «(ESDSII,KSDSII,I..DSII,REPLI

(,RRDSII,SPANII,SS\VDII,WCKI)I
ATRD==(~Q

CATALOG = {YESINO}I
MACRF = (IADRII,AIXII,CFXII,Cl'VII,DD~1

1,I>f'RII,DIRIl,DS~II,GSRIl,ICII
I,ISII,KEYII,I.SRII,~CIIl,NDFJ
(,N.·XII,NISII,NRMII,NRSII,NSRI
I,NUDII,OIJTII,RSTII,SEQII,SISI
I,SKPII,UBFI)I

OFLAGS = OPENI
OI)ENOBJ == PATHIBASEIAIXI
ACBLEN = numberl
AVSI) AC == numberl
BSTRNO == number I
BUFNI> == number I
BUJ.'"NI == number I
BUFNO == numberl
BUFSP == number I
CISV == number I
DDNA1\'IE == ddnamel
ESDRBA == number I
ERROR == numberl
EXLST == address I

, FS=numberi
KEYLEN == number I
I .. RECL == number I
l\IAREA == address I
l\fLEN == numberl
NCIS == number!
NDELR == number I
NEXCP == numberl
NEXT == numberl
NINSR == numberl
NIXL -= number I
NI..O(;R = numberl
NRETR == numberl
NSSS == numberl
NUP))R == number I
PASS\VD == addressl
RKP == numberl
SHRPOOL == numberl
STMST == address I
STRNO == number}

Appendix A. Format of Macros 167

TESTCB (Test a Field of an Exit List)

IlabetJ TESTCB ,EXLST = address
I,ERET = addressJ
,{EODAD = {OI<laddressl(,AINII,LI}} I
JRNAD = (OI<laddressll,AI~J(,I.I)} I
L[RAD = (OI<laddressll,AI~I(,LI)} I
SYNAD = {Of(faddressll,AI~II,I.I)J J
I,EXLLEN = numbeTj

TESTeB (Test a Field of a Request Parameter List)

(labe" TESTCD RPL = address
(,ER.:T = addressl
,{ACB= address,
AIXFlAG = AIXPKPI
AIXPC = numbed
AREA = address,
AREAI.EN = number,
ARG = address,
ECB= address I
.·DBK = numberl
FTNCD = numbed
KEYI..EN = number I
l\ISGAREA = addressl
~'IS(;IJ':~ = number, (
~XTRI)I.. = address I

10 ~ CO~n)tETEI
OPTeD = (IADRII,ARDII,ASYII,B\VDII,C:\VI

I,DIRII, .. ·KSII, 'vJ)II,GE:\II,KEQI
I,KEYII,KGEII,l()CII,I~R()II,:\I\,EI

I,NSPII,NUPII,SEQII,SKPII,SYNI
I,UPDI)I

RBA = numberl
RECLEN = numberl
RPLLEN = numberl
TRANSID = number}

VERU'Y (Synchronize End of Data)

Ilabe" VERU;Y RI)l = address
(,ACTION = REFRESHI

168 MVSjXA VSAM Administration: Macro Instruction Reference

\\1{TBFR (Write Buffer)

WRTBFR RPL = address
,TYPE- (ALLICHKIDRBAIDSII..RU(percent)ITRN}

Appendix A. Format of Macros 169

Appendix B. List, Execute, and Generate Forms of Macros

BLDVRP, DLVRP, GENCB, MODCD, SHoweD, and TESTeB macros build
a parameter list describing in codes the actions indicated by the operands you
specify and pass the list to VSAM to take the indicated action. The list, execute,
and generate fonns of DLDVRJ>, DLVRP, GENCO, l\tODCB, SHO\VCB, and
TESTeD allow you to write reentrant programs, to share parameter lists, and to
modify a parameter list before using it.

Following is a brief description of the list, execute, and generate fonns:

• 'Inc Jist fonn is used to build the parameter list either inlinc (referred to as a
simple list) or in an area remote from the macro expansion (referred to as a
remote list). Doth the simple- and the remote-list fonns allow you to build a
single parameter list that can be shared.

• The execute fonn is used to modify a parameter list and to pass it to VSAM
for action.

• The generate fonn is used to build the parameter list in a remote area and to
pass it 10 VSAM for action.

The list, execute, and generate fonns of the BLDVRP, DLVRP, GENCB,
MODCD, SHOWeD, and TESTeD macros have the same fonnat as the
standard fonns, with the exception of:

• An additional keyword, MF

• Keywords that are required in the standard fonn may be optional in the list,
execute, and generate fonns or may not be allowed in the execute fonn. The
meaning of the keywords, however, and the notation that may be used to
express addresses, names, numbers, and option codes are the same.

The sections that follow describe the fonnat of the MF keyword and the use of
list, execute, and generate fonns. They also indicate the optional.and invalid
operands.

-.
Appendix B. List, Execute, and Generate Forms of Macros 171

List-Form Keyword

The fonnat of the MF keyword for the list fonn is:

l\IF == (LI(L,addressf,labell)}

where:

L
specifies that this is the list fonn of the macro.

address

label

specifies the address of a remote area in which the parameter list is to be
built. The area must begin on a fullword boundary . You can specify the
address in register notation or as an expression valid for a rc10catable
A-type· address cons.tant or a direct or indirect S-type address constant.

is a unique name that is used in an EQ U instruction in the expansion of
the macro; label is equated to the length of the parameter list. You do not
have to know the length of the parameter list if you code label; the
expansion of the macro determines the amount of storage required.

Because the MP = L expansion does not include executable code, register
notation and expressions that generate S-type address constants cannot be used.

If you code MV = L, the parameter.list. is bailt inli-ne, which mean& that 1he
program is not reentrant if the parameter list is modified at execution.

If you code l\1F = (L,address), the parameter list is built in the remote area
specified, and the area must be large enough for the parameter list.

The size, in full words, of a parameter list is:

• For GENCB, 4, plus 3 times the number of ACB, EXLST, or RPL
keywords specified (plus 1 for DDNAME, EODAD, JRNAD, LERAD, or
SYNAD)

• For MODCB, 3, plus 3 times the number of ACB, EXLST, or RPL
keywords specified (plus 1 for DDNAME, EODAD, JRNAD, LERAD, or
SYNAD)

• For SHO\VCD, S, plus 2 times the number of fields specified in the FIELDS
operand

• For TESTCD, 8 (plus I for either DDNAME, STMST, EODAD, JRNAD,
LERAD, or SYNAD)

If you code MF = (L,address,label), the parameter·list is built in the remote area
specified. The expansion of the macro equates label with the length of the
parameter list.

172 MVS/XA VSAM Administration: Macro Instruction Reference

Execute-Form Keyword

The format of the MF keyword for the execute form is:

MF = (E,address)

where:

E
specifies that this is the execute form of the macro.

address
is the address of the parameter list.

The expansion of the execute form of the macro results in executable code that
causes:

I. A parameter list to be modified if requested

2. Control to be passed to a routine that satisfies the request

You may not use the execute form to add an entry to a parameter list. If you try
to add an entry, you will receive a return code of 8 in register 15.

Generate-Form Keyword

The format of the M F keyword for the generate form is:

1\11'" = (G,addressi,labell)

where:

G
specifies that this is the generate form of the macro.

address

label

specifics the address of a remote area in which the parameter list is to be
built. The area must begin on a fullword boundary.

is a unique name that is used in an EQ U instruction in the expansion of
the macro; label is equated to the length of the parameter list. You do not
have to know the lenbrth of the parameter list if you code label; the
expansion of the macro determines the amount of storage required.

If you code MF = (G,address), the parameter list is built in the remote area
specified.

If you code MF = (G,address,label), the parameter list is built in the remote area
specified. The expansion of the macro equates the length of the parameter list to
label.

Appendix B. List. Executet and Generate Forms of Macros 173

I List, Execute and Generate Formats

List Form of BLDVRP

Note: If FIX is specified, DLVRP must be issued by the same task that issues
BLDVRP. STRNO is optional in the list fonn of BLDVRP, but, if it is not
specified, it must be specified in the execute fonn.

The fonnat of the list fonn of BLDVRP is:

BLOVRP BU .. · .. ·ERS == (size(number),size(number),I' ••)
,MF=L
(,"'IX = {B,,'RIIOBI(BFR,IOB)}I
(,KEYLEN:::a lengthl"
I,Ri\'IOOE31 == {ALLIBUFFICBINONE}I
I,SIIRPOOL == (mnll
1,1\'IOOE = {24131J1
(,STRNO = number!
I,TYI)E = {J.SRI,~II~J)EXII(;SRJ I

Execute Form of BLDVRP

Note: The address is the address of the parameter list built by a list fonn of
nLDVRP. If you use register notation, you may use register I, and a register
between- 2' and- t2. Register r is used to pass tfie parameter ust to VSAM.
BUffERS may not be specified in ~he execute fonn of nLDVRP, because this
operand affects the length of the paramet~r list.

The fonnat of the execute fonn of nLDVRP is:

BLOVRP l\IF == (E,address)
(,KJ.:YLEN == lengthl
(,Ri\100E31 == {ALLIBU."FICBINONEH
(,SHRPOOL == numberJ
(,1\IOOE = {£!131J1
(,STRNO = number!
(,TYPE = {LSRI,~IINI>EXIIGSRJ I

Note: IfMODE=31 was specified on the list fonn, MODE=31 must be
specified on the execute fonn. The same is true for MODE = 24.

I 74 MVS/XA VSAM Administration: Macro Instruction Reference

Execute Form of DLVRP

l..ist Form of GENCB

Execute Form of GENCB

Note: There is no list fonn for DLVRP, because DLVRP works with.
BLDVRP: It uses the parameter list associated with BLDVRP. The address is
the address of the parameter list built by a list fonn of BLDVRP. If you use
register notation, use register 1 to pass the address of the parameter list to
VSAM.

If MODE= 31 in the BLDVRP macro, then MODE= 31 is required in the
DLVRP macro.

The fonnat of the execute fonn of DLVRP is:

DLVRP 1\IF = (E,address)
I,SIIRI)OOL = numberJ
1,1\10DE= (~131}J
,TYPE = (I..8RIGSR)

The fonnat of the list fonn of GENeB is:

Ilabe~ GENCn BLK = (ACBIEXLSTIRPI ..)
I,AM == VSAMI
I,COPIES == number!
l,keyword == {address I namelnumberl option) , ••• 1
I,I .. E~GTH == numberJ
I,LOC = (BEI.O\VIANYH
I,R~10DE31 = {ALL1BUF ,CB1NO~"'E1I
,1\1"" = (LI(L,addre.fJ'I,labe~)}
I,\\' AREA == addressl

The fonnat of the execute fonn of GENCB is:

Ilabe~ GENCB BLK == (ACBIEXLSTIRPL)
I,AM == VSAMI
I.COI)IES == numberJ
l,keyword == {addresslnameJnumberloption} , ••• 1
I,I .. ENGTH == numberJ
I,LOC = {BELOW I ANY} I
I,Ri\IODE31 == {ALLIBU ~ICBINONEH
,MF = (E,address)
I,W AREA = addressJ

Appendix B. List, Execute, and Generate Forms of Macros 175

Generate Form of GENCB

List Form of ~IODtB

Execute Form of ~I()DCB

The fonnat of the generate form of the GENCB macro is:

IlaheLJ GENCB BLK == {ACBIEXLSTIRPL}
(,A~t = VSAM'
(,COPIES = numberJ
(,keyword == address I name I number I option J , •.• 1
(,I . .ENGT":II munberJ
(,LOC = (BEI..O\VIANY}J
(,R~IODE31 ~ {ALLIBUF}~ICBINO~EJI

,MF == (G,addressl,labeLJ)
(,\V AREA = addressl

The format of the list form of MO DCB is:

IlaheLJ l\IODCB - (ACBIEXtSTIRI·I .. (= address
,keyword = (addressl name I numherl option} , ..•
,l\I}"" = (LI(L,addressl,labe4)}

Note: If the executC!-(onTl.af MODCD is used and EXLST is used as a keyword
to be processed, the block must be identified by Acn = .

The format of the execute form of MODCB is:

(lahe4 ;\10DCB I(ACBIEXI .. STIRPL} = addressl
keyword = {addresslnamel number I option} , •.•
,~11"'= (E,address)

Generate Form of l\IODCB

The format of the generate fonn of MODCD is:

IlabeLJ l\-IODCB {ACIJIEXI.,STIRIJL{ = address
,keyword =: (addresslnamelnumberl option} , •••
,MF = (G,addr~ss(,labe4)

176 MVS/XA VSAM Administration: Macro Instruction Reference

List Form of SHO\VCB

The fonnat of the list fonn of SHOWCB is:

(labe4 SHO\VCB ({ACBIEXLSTIRPL} = address)
,AREA = address
,FIELDS = (keywordl,keyword, •••)
,tENGTH = number
,l\t .. ~ = (tl(L,address(,labe~)}
,OB.JECT= {DATAIINDEXH

Execute Form of SHO\VCB

The fonnat of the execute fonn of SHOWCD is:

(labe~ SIIO\VCB HACBIEXI.5TIRPL) = address
,AREA = address
,MF == (E,address)
I,OIUECT= {I>ATAID-4DEXH

Generate Form of SHO\VCB

List Form of TESTCD

'{be fonnat of the gcneratc fonn of SIIOWCD is:

IlabelJ SHO\VCB f(ACBIEXLSTIRPI .. } = addressl
,AREA = addre.tS
;"~II::LDS = (keywordl,keyword, ... 1)
;1 .. }~G"11 = number
,:\11-' = (G,addresJI,labe~)
I,OIUECT = (OAT AII:\DEX}J

Note: If the execute fonn of TESTCB is used and EXLST is used as a keyword
to be processed, the block must be identified by ACB = .

The fonnat of the list fonn ofTESTCB is:

I'abe~ TESTCD ({ACIJI.:XLSTIRPL) = addressl
I,ERET = address)
keyword = {addressl name I number I option} , .••
,l\1F = (I .. I(L,addressi,labe4)}
I,OBJECT= (DATAIINI>EX)I

Appendix B. List. Execute, and Generate Forms of Macros 177

-.
Execute Form ofTESTCB

N ole: If the execute fonn of TESTCD is used and EXLST is used as a keyword
to be processed, the block must be identified by ACD = _

The format of the execute fonn of TESTCD is:

l!abeIJ TESTCD ({ACBIEXI..STIRI)L) == addressl
(,ERET == addressl
keyword == {addresslnamelnumberloplion) , •••
,~I"" == (E,address)
(,OBJECT = {~IINDEXH.

Generate Form of TESTCD

The format of the generate form of TESTCD is:

(labeIJ TI:STCB ((ACBIEXLSTIRPL) == addressl
I,ERKf == addressl
keyword == {addressl name I number I option) , .••
,~I"" == (G,addressl,labeIJ)
I,OBJECT== {DATAIINDEXH

Use of List, Execute, and Generate Forms

Figure 16 indicates which fonns of GENCD, MODCD, SIIO\VCB, and
TESTeD should be used in rcentrant/nonreentrant and shared/nonshared
environments.

Shared

Nonshared

Rt.'entrant

MF = (L,address[,lahe4>
MF = (E,address)

1\114 = (G,address[,lahe4>

Figure 16. Reentrant Programming

The figure shows that:

Nonreentrant

MF=L
l'vtF = (E,address)

Standard Ponn

• To share parameter lists in a reentrant program, the remote-list fonn should
be used in conjunction with the execute fonn.

• To share parameter lists in a nonreentrant program, the simple-list fonn
should be used in conjunction with the execute fonn.

178 MVS;XA VSAM Administration: Macro Instruction Reference

(

• If you do not intend to share parameter lists, the generate fonn should be
used in reentrant programs and the standard fonn should be used for
nonrecntrant programs.

Examples of Generate, List, and Execute Fonns in Reentrant Environments

The examples that follow illustrate how the list, execute, and generate fonns
work.

Example: Generate «'orm (Reentrant)

In this example, the generate fonn of GENCO is used to create a default request
parameter list (RPL) in a reentrant environment.

LA 10,LEN1 Get length of the parameter list.

GETMAIN R,LV=(10) Get storage for the area in which
the parameter list is to be built.

LR 2,1 Save address of parameter-list
area.

GENCB BLK=RPL,
MF=(G,(2),LENl)

The macro expansion equates LEN 1 to the length of the parameter list, as
follows:

+LENI EQU 16

The parameter list will be built in the area acquired by the GErMAIN macro
..and pointed to lly register 2. This list is uscdby V-5AM to -build 1heR PL.
VSAM returns the RPL address in register 1 and the RPL length in register o. If
the \VAREA and LENGTH parameters are used, the RPL will be built at the
\V AREA address.

Example: Remote-List Form (Reentrant)

In this example, the remote-list fonn of MODCB is used to build a parameter list
that willlatcr be used to modify the MACRF bits in the access method control
block ANY ACB.

LA 8,LEN2 Get length of the parameter
list .. ';

GETMAIN R,LV=(8) Get storage for the area in
which the parameter list is to
be built.

LR 3,1 Save address of the
parameter-list area.

MODCB ACB=ANYACB,
MACRMF=(L,(3),LEN2)

The macro expansion equates the length of the parameter list to LEN2, as
follows: .

+LEN2 EQU 24

Appendix B. List, Execute, and Generate Forms of Macros 179

This parameter list is built in the remote area pointed to by register 3. The list
will be used by VSAM to modify the ACB when an execute fonn of MODCB is
issued (see next example). The list fonn only creates a parameter list; it does not
modify the ACB.

Example: Execute Form (Reentrant)

In this example, the execute fonn of MODCB is used to modify the address of
the access method control block and MACRI' codes in the parameter list created
by the remote-list form of MODCB in the previous example.

MODCB ACB=MYACB,MACRF=(ADR,SEQ,OUT),MF=(E,(3»

The parameter list pointed to by register 3 is changed so that the ACB and
MACR F parameter values in the execute fonn override those in the list form.
The access method control block, MY ACB, is then modified to
MACRF = ADR,sEQ,OUT). The access method control block at ANYACB is
not changed by either of these examples.

180 MVSjXA VSAM Administration: Macro Instruction Reference

Appendix C. Operand Notation

Operands with GENCB, MODCB, SHOWCB, and TESTCB

The addresses, names, numbers, and options required with operands in GENCD,
MODCD, SHOWCD, and TESTCD can be expressed in a variety of ways:

• An absolute numeric expression, for example, STRNO = 3 and COPIES = 10.

• A code or a list of ,,-odes separated by ,,·ommas a.nd endc»SCd in parcnthl.'St'S, for
example, OPTCD= KEY or OPTCD= (KEY,DIR,IN).

• A character string, for example, DDNAl\1E= DATASET.

• A register from 2 through 12 that contains an address or numeric value, for
example, SYNAD = (3); equated labels can be used to designate a register, for
example, SYNAD = (ERR), where the following equate statement has been
included in the program: ER R EQ U 3.

• An expression of the form (S,scon), where scon is an expression valid for an
S-typc address constant, including the base-displacement fonn. lbe contents
of the base register will be added to the displacement to obtain the value of
the keyword. For example, if the value of the keyword being represented is a
numeric value (that is, COPIES, LENGTH, RECLEN), the contents of the
base register will be added to the displacement to detennine the numeric
value. If the value of the keyword being represented is an address constant
(that is, WARBA, EXLST, EODAD, ACD), the contents of the base register
will be added to the displacement to determine the value of the address
constant.

• An expression of the form (* ,scan), where scon is an expression valid for an
S-type address constant, including the base-displacement fonn; the address
specified by scon is indirect, that is, it is the address of an area that contains
the value of the keyword. The contents of the base register will be added to
the -displacement to detennine the address of the fullword of storage that
contains the value of the keyword.

If an indirect S-type address constant is used, the value it points to must meet
the following criteria:

If it is a numeric quantity or an address, it must occupy a fullword of
storage.

Appendix C. Operand Notation 181

If it is an alphameric character string, it must occupy two words of
storage, be left aligned, and be filled on the right with blanks.

• An expression valid for a relocatable A-t)pe address constant, for example,
AREA = MY AREA + 4.

The specified keyword detennines the type of expressions that can be used.
Additionally, register and S-type address constants cannot be used when MF= L
is specified.

The tables containing the individual macro operand notations have been deleted
from this rclease. This information may be obtained from the individual macro
descriptions shown in Chapter 2, "VSAl\1 Macro ormats and Examples".

182 MVS/XA VSAM Administration: Macro Instruction Reference

Appendix D. Building Parameter Lists

The standard fonns of GENCB, MODCB, Sllowcn, and TESTCD build a
parameter list, put its address in register 1, and pass control to a VSAM routine
to generate, modify, display, or test an access method control block, exit list, or
request parameter list. Other fonns of the macros only build the parameter list
(list fonns) or only pass control to VSAM (execute fonns).

You can avoid using a macro to build the parameter list by building it yourself
and issuing the execute fonn of the macro to pass control to VSAM. This
chapter explains how to build the parameter lists for GENCn, MODCn,
SIIOWCB, and TESTCB. The rules for combinations of codes in a par'cUlleter
list are the same as the rules for combinations of operands in a macro.

You can avoid issuing the execute form of the macro by coding the linkage
instructions that pass control directly to the VSAM control block manipulation
routine. Before passing control, you must build the parameter list yourself.

The Format of the Parameter Lists

A parameter list for GENCB, l\-IODCB, SHOWCB, or TESTCB is a list of
fullword addresses. lbe first address points to a header entry that identifies the
type of request and type of control block and gives other general infonnation
about the request. Each of the rest of the addresses in the parameter list points
to an clement entry that identifies the information you want to generate, modify,
display, or test.

The fullwords in the parameter list must be contiguous, and the last one must
have a I in its fIrst bit. lbe header entry and each clement entry may be separate
from each other. Figure 17 on page 184 gives the formats of the header and
element entries for the four request types.

..
Appendix D. Building Parameter Lists 183

Generation
GENCB

Modification
MODCB

Display
SHOWCB

Test
TESTCB

o

4

8

o

. 4

o

4

8

12

o

4

8

12

Header Entry

GENBTC GENFTC GENCOP

Control- Function Number of copies
block type type of block

GENUSA (optional)

Address of area provided
for generation

GENUSL (optional) (reserved)

Length of area

MODBTC MODFTC (reserved)

Control- Function
block type type

MODBLAD

Address of control block
to be modified

SHOWBTC SHOWFTC SHOWOBJ
(optional)

Function Object type Control-
block type type (data or index)

SHOW8tkD (optional)

Address of control
block to be displayed

SHOWUSA

Address of area provided
for display

SHOWUSL (reserved)

Length of area

TESTBTC TESTFTC TESTOBJ
(optional)

Function Object type Control-
block type type (data or index)

TESTBLAD (optional)
Address of control
block to be tested

TESTERET (optional)

Address of error-analysis
routine (ERET)

(reserved)

o

4

o

4

Element Entry

ELEMKWTC

Keyword
type

Keyword value

(required for
some keywords)·

(reserved)

L _____________ .J

ELEMKWTC (reserved)

Keyword
type

Keyword value

8,
(required for

, some keywords)· L. _____________ .J

o ELEMKWTC

Keyword
type

(reserved)

o

4

ELEMKWTC

Keyword
type

Keyword value

(required for
some keywords)-

(reserved)

L __ . ___________ .J

·Second fullword required for
keyword value of DDNAME •.
STMST. EODAD. JRNAD.
LERAD. and SYNAD.

Figure 17. Format of Header and Element Entries (or GENCB, MODCR, SHO\VCB, and TESTCR Parameter Lists

184 MVS/XA VSAM Administration: Macro Instruction Reference

Building Header and Element Entries

Five assembler macros are provided for building entries.
IDAGENC, IDAMODC, IDASHOW, and IDATEST help you build a header
entry for generation, modification, display, or test. IDAELEM helps you build
an element entry.

Ilabe~ IDAGENC IDSECT= {YESIXO)I

Ilabell IDA1\IODC IDSECT = {YESIr\0J I

(labell IDASIIO\V IDSECT= {~I~OJl

Ilabell IDATEST IDSECT= {YESINOJI

Ilabell IDAELEM IDSECT= {YESINOH

DSECT= {YESINO}
Indicates whether a DSECT statement is to be generated. If you intend to
build entries in a continuous area, you could have only the first of the
macros generate a DSECT statement and usc a single register to address the
whole area.

These macros generate labeled DS statements that give the layout of an entry and
EQU statements that equate a label with a numeric code. You can symbolically
encode an entry with a series of move instructions. The macros are
sclf-documenting- inspect a listing of their expansions and you can see which
labels to code in your move instructions. (You can list the macros as they
appear in the macro library.)

To generate an exit list with LEkAD and SYNAD exits, you could code a
GENCB of the standard form:

GENCB BLK=EXLST,LERAD=CLOGERR,L),SYNAD=PHYSERR

The following example shows how to achieve the same effect by building the
parameter list and entries yourself and issuing a GENCB of the execute form.

LA 5,NTRYAREA Set up base register for
the entries.

USING 5,GENC GENC is the first label in
the work area.

Build the list of addresses that point to the entries.

ST 5,PLIST Address of the header
entry.

LA 6,GENLEN(,5) Address of the first
element entry. GENLEN is
equated to the length of
a header element for
generation.

ST 6,PLIST+4

Appendix D. Building Parameter Lists 185

LA 6,ELEHLLEN(,6) Address of the second

ST 6,PLIST+8

01 PLIST+8,X'SO'

Build the header entry.

element entry. ELEHLLEN
is equated to the length
of an element entry for
an exit list.

End-of-list indicator.

MYI GENBTC,GENXLST Indicate the
blocktype-exit list.

MYI GENFTC,GENFTYP Indicate the function
type-generation.

MYI GENCOP+1,X'01' Indicate the number of
copies of the exit list
to be generated.

MYI ELEMKWTC+1, Indicate the keyword type-
ELEHLEAD LERAD.

LA 6,LOGERR Address of the name of the
logical error analysis
module.

ST 6,ELEMPTR

MYI ELEMXFLG, Indicate the presence of
ELEMXL. ELEMXADR.. an. adduss ELEMETR and

that the exit routine is
to be loaded.

Build the second element entry.

LA

MYI

LA

5,ELEMLLEN(,5)

ELEMKWTC+ 1,
ELEMSYAD

6,PHYSERR

ST 6,ELEMPTR

MYI ELEMXFLG,
ELEMXADR

Pass control to VSAM.

GENCB MF=(E,PLIST)

LTR

BNZ

15,15

CHECKO

186 MVSjXA VSAM Administration: Macro Instruction Reference

Align the DSECT ~ith the
second element entry.
ELEMLLEN is equated to the
length of an element entry
for an exit list.

Indicate the keyword
type -SYNAD.

Address of the entry point
of the physical error
analysis routine.

Indicate the presence of
an address in ELEMPTR.

Generation successful?

No.

CHECKO
.
ABEND 1 ,DUMP Register 0 indicates the

error.

Physical error analysis exit routine.

PHYSERR ..•

Work areas and constants.

LOGERR DC eLS'LEMOD' Name of the

PLIST DC 3F'O'

NTRYAREA DC 9F'O'

logical error analysis
module to be loaded.

List of entry addresses.
3 addresses are
required: 1 for the header
and 2 for the elements
(1 for LERAD and 1 for
SYNAD) •

Work area for header and
element entries. The
header for GENCB is 3
fullwords, and so are
the LERAD and SYNAn
elements.

DSECT with labels for the header and element entries.

IDAGENC

IDAELEM DSECT=NO

Passing Control Directly to VSAM

Header entry. A DSECT
statement is generated,
and register 5 is used
to address NTRYAREA
with these labels.

Element entry. Element
labels are part of the
same DSECT as the
header labels.

You can avoid using the execute fonn of GENeD, MOOeD, SHoweB, and
TESTeD by building your own linkage instructions. You first build a parameter
list, as described in the previous section, and put its address in register I. Then
you pass control to VSAM using the following instructions:

L 15,16 Put. the address of the CV!
into register 15.

L 15,256(,15) Put the address of the AMCBS
control block into register 15.

L 15,12(,15) Put the address of the control
block manipulation routine into

BALR 14,15
register 15.
Branch to the routine

The BALR 14,15 instruction is used when the specific function (GENeB,
MOOCB, SHOWCB,or TESTeB) is not known, or when the control block

Appendix D. Building Parameter Lists 187

type (ACD, EXLST, or RPL) is not known. The user-built parameter list
contains the funct.ion code and control block type code.

Ik'Cimai
Value of xx Function Control Block

8 GENCD ACB
12 GENCIl RPL
16 GENCO EXLST
20 Reserved
24 MODCB ACD
28 MODCD RPL
32 !\IIODCD EXLST
36 Reserved
40 SIIOWCB ACD
44 SIIO\VCD RPL
48 SIIO\VCD EXLST
52 Reserved
56 TESTCD ACB
60 TESTCD RPL
64 TESTeR EXLST
68 Reserved
72 SHO\VCD or Block length

TESTCD keywords only
761 SIIOWCB RECLEN field

of an RPL
801 l\IODCR RECLEN field

of an RPL

Register I points to an RPL when xx is 76 or 80. See the following section
for details.

\Vhen VSAM returns to your program, register 15 contains a completion code.
Register 15 contains a zero value if the task completed successfully. Otherwise,
register 15 and register 0 contain codes that identify the reason VSAM could not
complete the task.

l\'lodifying and Displaying the RECLEN Field of an RPL Directly

You can modify or display the RECLEN field (that is, the record length) of an
RilL without issuing a SHOWCD or l\IODCD macro, and without building a
parameter list. .

To modify a RPL's RECLEN field, you first put the address of the RPL in
register I, and the value to be set in the RECLEN field in register O. Next, you
code the instructions that put the address of the VSAl\1 control block
ma,nipulation routine into register 15, then branch to the routine:'

188 MVS/XA VSAM Administration: Macro Instruction Reference

L 15,16 Put the address of the CVT into
register 15.

L 15,256(,15) Put the address of the AMCBS
control block into register 15.

L 15,12(,15) Put the address of the control
block manipulation routine
into register 15~

BAL 14,80(,15) Branch to the routine.

When VSAM returns to your program, register 15 contains a completion code.
Register 15 contains a zero value if the field was modified correctly. Otherwise,
register 15 and register 0 contain codes that identify the reason VSAM could not
complete the task.

To display the contents of a RPL's RECLEN field, you frrst put the address of
the RPL in register 1. Next, you code the instructions that put the address of the
VSAM control block manipulation routine into register 15, and then branch to
the routine:

L 15,16

L 15,256(,15)

L 15,12(,15)

BAL 14,76(,15)

Put the address of the CVT into
register 15.

Put the address of the AMCBS
control block into register 15.

Put the address of the control
block manipulation routine into
register 15.

Branch to the routine.

\Vhen VSAM returns to your program, register 15 contains a completion code.
Register 15 contains a zero value if the field is displayed correctly, and register 0
contains the value of the RPL's RECLEN field. \Vhen register 15 is not zero,
register 15 and register 0 contain codes that identify the reason VSAl\1 could not
complete the task.

Appendix D. Building Parameter Lists 189

-. .'

Glossary of Terms and Abbreviations

The following terms are defined as they are used in this
book. If you do not find the term you are looking for,
see the index or the IBM Vocabulary lor Data
Processing. Telecommunications, and Office S,stems,
GC20·1699.

ACH. (See access method control block.)

access method control block. A control block that links
an application program to VSAM or ACF;Vf AM.

access method services. A multifunction service
program that is used to define VSA M data sets and
allocate space for them, convert indexed-sequential data
sets to key-sequenced data sets, modify data set
attributes in the catalog, reorganize data sets, facilitate
data portability between operating systems, create
backup copies of data sets, help make inaccessible data
sets accessible, list the records of data sets and catalogs,
define and build alternate indexes, and convert OS
eVOLs and VSAM catalogs to integrated catalog
facl1ily catalogs.

acquire. To allocate space on a staging drive and to
stage data from an MSS cartridge to the staging drive.

addressed-direct access. The retrieval or storage of a
data record identified by its RBA, independent of the
record's location relative to the previously retrieved or
stored record. (See also keyed-direct access, addressed­
sequential access, and keyed·sequential access.)

addressed-scquential address. The retrieval or storage of
a data record in its entry sequence relative to the
previously retrieved or stored record. (See also
keyed-sequential access, addressed-dircct access, and
keyed-direct access.)

alternate index. A collection of index entries organized
by the alternate keys of its associated base data records.
It provides an alternate means of locating records in the
data component of a duster on which the alternate
index is based.

alternate index cluster. The data and index components
of an alternate index.

alternate key. One or more consecutive characters
taken from a data record and used to build an alternate

index or to locate one or more base data records' via an
alternate index. (See also generic key, key, and key
field.)

APF. (See authorized program facility.)

application. As used in this publication, the use to
which an access meth04 is put or the end result that it
serves; contrasted to the internal operation of the access
method.

authorized program facility. A facility that permits the
identification of programs that arc authorized to usc
restricted functions.

ba.~e cluster. A key-sequenced or entry-sequenced data
set over which one or more alternate indexes are builL

base RHA. The RnA stored in the header of an index
record that is used to calculate the RnAs of data or
index control intervals governed by the index record.

catalog. (See master catalog and user catalog.)

catalog recovery arca. An cntry-sequenced file that
exists on each volume owned by a recoverable catalog,
including the catalog itself. The CRA contains records
that are duplicates of the catalog entries describing the
volume and the files it contains.

CHIC. Control blocks in common, a facility that allows
a user to open a VSAM data set so the VSAM control
blocks are placed in the common service area (CSA) of
the MVS operating system. This provides the capability
for multiple memory accesses to a single VSAM control
structure for the same VSAM data seL

chained RPL. (See RPL string.)

cr. (See control interval.)

CIDF. (See control interval definition field.)

cluster. A named structure consisting of a group of
related components (for example, a data component
with its index component). A duster may consist of a
single component (See also base cluster and alternate
index cluster.)

Glossary of Terms and Abbreviations 191

collating sequence. An ordering assigned to a set of
items, such that any two sets in that assigned order can
be collated.

component. A named, cataloged collection of stored
records. A component, the lowest member of the
hierarchy of data structures that can be cataloged,
contains no named subsets.

control area. A group of control intervals used as a unit
for formatting a data set before adding records to it.
Also, in a key-sequenced data set, the set of control
intervals pointed to by a sequence-set index record; used
by VSAM for distributing frcc space and for placing a
sequence-set index record adjacent to its data.

control area split. The movement of the contents of
some of the control intervals in a control area to a
newly created control area, to facilitate the insertion or
lengthening of a data record when there are no
remaining free control intervals in the original control
area.

control interval. A fixed-length area of auxiliary storage
space in which VSA M stores records. It is the unit of
information transmitted to or from auxiliary storage by
VSAM.

control interval aecess. The retrieval or storage of the
eontcRts of a.,conttol interval.

control interval dcfinition field. In YSAM, the 4-byte
control information field at the end of a control interval
that gives the displacement from the beginning of the
control interval to frcc space and the length of the free
space. If the length is 0, the displacement is to the
beginning of the control information.

control interval split. The movement of some of the
stored records in a control interval to a frcc control
interval. to facilitate the insertion or lengthening of a
record that won't fit in the original control interval.

control volume. A volume that contains one or more
indexes of the catalog.

CRA. (See catalog recovery area.)

cross memory. A synchronous method of
communication between address spaces.

CVOL. (See control volume.)

DA..~O. (See direct access storage device.)

data record. A collection of items of information from
the standpoint of its use in an application, as a user
supplies it to VSAM for storage.

data set. The major unit of data storage and retrieval
in the operating system, consisting of data in a
prescribed arrangement and described by control
information to which the system has access. As used in
this publication, a collection of fixed- or variable-length
records in auxiliary storage, arranged by VSAM in key
sequence or in entry sequence. (See also key-sequenced
data set and entry-sequenced data set.)

1)0 statement. data definition statement

direct access. The retrieval or storage of data by a
reference to its location ina data set rather than relative
to the previously retrieved or stored data. (See also
addressed-direct access and keyed-direct access.)

direct access storage device. A device in which the
access time is dfectively independent of the location of
the data.

E801"<:. Extended binary-coded decimal interchange
code. A coded character set consisting of 8-bit coded
characters.

entry sequence. The order in which data records are
physically arranged (according to ascending RnA) in
auxiliary storage, without respect to their contents.
(Contrast with key sequence.)

entrl'-5Cfluenced data set. A data set whose records are
loaded without respect to their contents, and whose
RllAs cannot change. Records are retrieved and stored
by addressed access, and new records are added at the
end of the data set.

EOO. end of data

EOKR. end-of-key range

EOV. end of volume

field. In a record or a control block, a specified area
used for a particular category of data or control
information.

free control interval pointer list. In a sequence-set index
record, a vertical pointer that gives the location of a frcc
control interval in the control area governed by the
record.

free space. Space reserved within the control intervals
of a key-sequenced data set for inserting new records
into the data set in key sequence; also, whole control
intervals reserved in a control area for the same
purpose.

GENDSP. An option of LOCATE to obtain the
control interval number of the catalog record of each
objecL

192 MVS/XA VSAM Administration: Macro Instruction Reference

generation data group. A collection of data sets that are
kept in chronological order; each data set is called a
generation data set.

generic key. A high-order portion of a key. containing
characters that identify those records that are significant
for a certain application. for example. it might be
desirable to retrieve all records whose keys begin with
the generic key A D. regardless of the full key values.

global shared resources. An option for sharing 1;0
buffers, I/O-related control blocks. and channel
programs among VSAM data sets in a resource pool
that serves all address spaces in the system.

GSR. (See global shared resources.)

It: header, index record. In an index record, the 24-byte
field at the beginning of the record that contains control
information about the record.

header entry. In a parameter list of GENCO. MODCD,
SIIO\VCB, or TESTeD, the entry that identifies the type
of request and control block and gives other general
information about the request.

bori7.ontal pointer. In the header of an index record, the
RBA of the index record in the same level as this one
that contains keys next in ascending sequence after the
keys in this one.

index. As used in this publication, an ordered collection
of pairs, each consisting of a key and a pointer, used by
VSA 1\4.to ~equence and locate the --records of Ii
key-sequenced data set.

index le\'cl. A set of index records that order and give
the location of all the control intervals in the next lower
level or in the data set that it controls.

index record. A collection of index entries that are
retrieved and stored as a group. (Contrast to data
record.)

index record header. In an index record, the 24-byte
field at the beginning of the record that contains control
information about the record.

index replication. The use of an entire track of direct
access storage to contain as many copies of a single
index record as possible; reduces rotational delay.

index set. The set of index levels above the sequence
set. The index set and the sequence set together
comprise the index.

integrated catalog facility. The name of the catalog
associated with the Data Facility Product program
product.

IOPID. 1;0 prevention identifier which is used to
terminate 1;0 and prevent new I/O from being started.

ISAM. indexed sequential access method

ISAM interface. A set of routines that allow a
processing program coded to use ISA M (indexed
sequential access method) to gain access to a
key-sequenced data set.

JCL. (See job control language.)

job catalog. A catalog made available for a job by
means of the JOOCAT DO statement.

job controllanguagc. A problem-oriented language
designed to express statements in a job that are used to
identify the .job or describe its requirements to an
operating system.

job step catalog. A catalog made available for a job by
means of the STEPCAT DO statement.

kcy. One or more characters within an item of data
that are used to identify it or control its use. As used in
this publication, one or more consecutive characters
taken from a data record, used to identify the record
and establish its ordcr with respect to other records.
(See also key field and generic key.)

key field. A field located in the same position in each
record of a data set, whose contents are used for the key
ofa record.

key sequence. The collating sequence of data records,
determined by the value of the key field in each of the
data records. May be the same as, or different from,
the entry sequence of the records.

key-sequenced data set. A VSAM file (data set) whose
records are loaded in key sequence and controlled by an
index. Records are retrieved and stored by keyed access
or by addressed access. and new records are inserted in
key sequence by means of distributed free space.
Relative byte addresses of records can change because
of control interval or control area splits.

keyed-direct access. The retrieval or storage of a data
record by use of either an index that relates the record's
key to .its relativp location in the data set or a relative
record number, independent 01 the record's location
relative to the previously retrievcd or stored record.
(See also addressed-direct access, kcyed-sequential
access. and addressed-sequential access.) _

keyed-sequcntial access. The retrieval '~;r~lorage of a
data record in its key or relative record sequence'relative
to the previously retrieved or stored record, as defined
by the sequence set of an index. (See also
addressed-sequential access. keyed-direct access. and
addressed-direct access.)

Glossary of Terms and Abbreviations 193

level number. For the index of a key-sequenced data
set. a binary number in the header of an index record
that indicates the index level to which the record
belongs.

linear data set (LOS). A named linear string of data,
stored in such a way that it can be retrieved or updated
in 4096 byte units. An L OS object is essentially a
VSAM entry-sequenced data set that is processed as a
control interval. Ilowever. unlike a control interval. an
1.D8 contains data only. that is. it contains no record
definition fields (RDFs) or controlintcrval definition
fields (CIDfs).

local shared resources. An option for sharing liO
buffers. I/O-related control blocks, and channel
programs among VSAM data sets in a resource pool
that serves one partition or address space.

LOS. (See linear data set)

LSR. (See local shared resources.)

master catalog. A catalog that contaifls extensive data
set and volume information that VSAM requires to
locate data sets. to allocate and deallocate storage space.
to verify the authorization of a program or operator to
gain access to a data set. and to accumulate usage
statistics for data sets.

operating system. Software that controls the execution
of programs; an operating systcm may provide services
such as resource allocation. scheduling, input/output
control, and data managemenL

password. A unique string of characters stored in a
catalog that a program. a computer operator. or a
terminal user must supply to meet security requirements
before a program gains access to a data seL

path. A named. logical entity composed of one or more
clusters (an alternate index and its base cluster. for
example).

physical record. A physical unit 01" recording on a
medium. For examplc. the physical unit between
address markers on a disk.

pointer. An address or other indication of location.
for exam pic, an RBA is a pointer· that gives the relative
location of a data record or a control interval in the
data set to which it belongs.

prime index. The index component of a key-sequenced
data set that has one or more alternate indexes. (See
also index and alternate index.)

prime key. (See key.)

QSAM. (See queued sequential access method.)

queued sequential access method. An extended version
of the basic sequential access method (BSAM). \Vhen
this method is used. a queue is formed of input data
blocks that are awaiting processing or output data
blocks that have been processed and are awaiting
transfer to auxiliary storage or to an output device.

RACF. Resource Access Control Facility.

random access. (See direct access.)

RBA. Relative byte address. The displacement
(expressed as a fullword binary integer) of a data record
or a control interval from the beginning of the data set
to which it belongs; independent of the manner in which
the data set is stored.

RDF. (See record definition field.)

reeord. (See index record, data record.)

record definition field. A field stored as part of a stored
record segment; it contains the control information
required to manage stored record segments within a
control interval.

relative byte address. (See RnA.)

relative record data set. A data set whose records are
loaded into fixed-fength slots.

relative record number. A number that identifies not
only the slot, or data space, in a relative record data set
but also the record occupying the slot. Used as the key
for keyed access to a relative record data set.

replication. (See index replication.)

request parameter list. A control block that contains
the information needed to process an 1,0 request.

resource pool, VSAM. (See VSAM resource pool.)

reusable data set. A VSA M data set that can be reused
as a work file, regardless of its old contents. Must not
be a base cluster.

RI·L. (See request parameter list.)

RPt string. A set of chained RPI.s (the set may
contain one or more RPl.s) used to gain access to a
VSAM data set by action macros (GET. PUT. etc).
Two or more RPL strings may be used for concurrent
direct or sequential requests made from a processing
program or its sub tasks.

SAM. (See sequential access method.)

security. (See data security.)

194 MVS,IXA VSAM Administration: Macro Instruction Reference

sequence ehecking. The process of verifying the order
of a set of records relative to some field's collating
sequence.

sequence set. The lowest level of the index of a
key-sequenced data set; it gives the locations of the
control intervals in the data set and orders them by the
key sequence of the data records they contain. The
sequence set and the index set together comprise the
index.

sequential access. The retrieval or storage of a data
record in either its entry sequence, its key sequence, or
its relative record number sequence, relative to the
previously retrieved or stored record. (See also
addressed-sequential access and keyed-sequential
access.)

sequential access method. An access method for storing
or retrieving data blocks in a continuous sequence, using
either a sequential access or a direct access device.

shared resources. A set of functions that permit the
sharing of a pool of to-related control blocks, channel
programs, and buffers among several VSA M data sets
open at the same time.

skip-sequential access. Keyed-sequential retrieval or
storage of records here and there throughout a data set,
skipping automatically to the desired record or coUating
position for insertion: VSAM scans the sequence set to
find a record or a coUating position. Valid for
processing in ascending sequences only.

slot. F or a relative record data set, the data area
addressed by a relative record number which may
contain a record or be empty.

spanned record. A logical record whose length exceeds
control interval length, and as a result, crosses. or spans,
one or more control interval boundaries within a single
control area.

SRO. Service request block. A system control block
used for dispatching tasks.

step catalog. A catalog made available for a step by
means of the S· rEPCA T I) () statement.

terminal monitor program. In TSO, a program that
accepts and interprets commands from the terminal. and
causes the appropriate command processors to be
scheduled and executed.

time sharing option. An optional configuration of the
operating system that provides conversational time
sharing from remote stations.

TMP. (See terminal monitor program.)

transaction 10. A number associated with each of
several request parameter lists that define requests
belonging to the same data transaction. -

TSO. (See time sharing option.)

update number. For a spanned record, a binary
number in the second RDF of a record segment that
indicates how many times the segments of a spanned
record should be equal. An inequality indicates a
possible error.

upgrade set. All the alternate indexes that VSA VI has
been instructed to update whenever there is a change to
the data component of the base cluster.

user buffering. The usc of a work area in the processing
program's address space for an 1;0 buffer; VSAM
transmits the contents of a control interval between the
work area and direct access storage without
intermediary buffering.

user catalog. An optional catalog used in the same way
as the master catalog and pointed to by the master
catalog. It also lessens the contention for the master
catalog and facilitates volume portability.

vertical pointer. A pointer in an index record of a given
level that gives the location of an index record in the
next lower level or the location of a control interval in
the data set controlled by the index.

virtual storage access method. An access method for
direct or sequential processing of fixed and
variable-length records on direct access devices. The
records in a VSAM data set or file can be organized in
logical sequence by a key field (key sequence), in the
physical sequence in which they are written on the data
set or file (entry sequence), or by relative record
number.

virtual telecommunications aceess method. A set of
programs that control communication between terminals
and application programs running under VS E. OS VS I.
and OS;VS2.

VSAM. (See virtual storage access method.)

VSAM resource pool. A virtual storage area that is
used to share 1/0 buffers, I/O-related control blocks,
and channel programs among VSAM data sets. A
resource pool is local or global; it serves tasks in one
partition or address space or tasks in all address spaces
in the system.

VSAM shared information. Blocks that are used for
cross-system sharing.

VSI. (See VSAM shared information.)

.-

Glossary of Terms and Abbreviations 195

VT AM. (See virtual telecommunications access
method.)

196 MVSjXA VSAM Administration: Macro Instruction Reference

Index

A-type address con'stant 33,69
ACB (access method control block)

error field
reason codes from OPEN macro 2

generating
at assembly time 34

generating at execution time 69
testing 154

ACB macro 43
example using local shared resources and 31-bit

addressing 43
format 34
generate an access method control block at assembly

time
summary 159

inconsistent operand error 3
Acn parameter

in I:U':LDS parameter 142
in GENCS macro 81
in MODCR macro 100
in RPL macro 126
in SUO\VCR macro 133
in TESTCB macro 146

ACR suhparameter
ACQRA~GE macro 44
CNVrAD macro 57
M NT AC'.Q macr.c 98
MRKRfR macro 106
SCIIBFR macro 132

ACBLEN parameter
in fiELDS parameter 134

access method control block
See ACn

ACQRANGE macro
format 44
summary 159

ACI'ION = REFRESH parameter
in VERIFY macro 155

addition of records
addressed-sequential 119
addressed-sequential addition example 119

addr~s constant
A-type 33. 182
S-type 33, 181
S-type, indirect 33, 181

address list
in parameter lists ofGENCB, MODCB, SHOWCB,

and TESTCD macros 183
addressed -sequential deletion

example 64
ADR subparameter

in MACRF parameter of the ACB macro 38
in OPTCD parameter of RPL macro -128

AIX option

in MACRF parameter of the ACD macro 39
AIXFLAG parameter

in TESTCD macro I S3
AIXPC parameter

in FIELDS parameter 142
in TESTCD macro 153

ALL suhparameter
in WRTDFR macro ·156

alternate index
providing buffers for shared resources 46

AM parameter
in ACD macro 34
in EX LST macro 66
in GENCD macro 70, 76, 81
in RPL macro 126

AMO DE31' subparameter
removal from the AC8 macro 34
removal from the GENCD macro 69
removal from the MODCR macro 100

ARD suhparameter
in OPTCD parameter of RPL macro 129

AREA parameter
in fiELDS parameter 142
in GENCD macro 81
in RPL macro 126
in SIIO\VCD macro 133, 139, 141

AREA subparameter
SCIIDFR macro 132

AREAI.EN parameter
in fiELDS parameter 142
in Gt~ cn macro 81
in RPL macro 127

AREAI.EN subparameter
PUTIX macro 125
SCIIDfR macro 132

ARG parameter
in FIELDS parameter 142
in GENCB macro 81
in RPL macro 127

ARG sub parameter
ACQRANGE macro 44
CNVrAD macro 57
G ETIX macro 97
MNTACQ macro 98
MRKDFR macro 106
SCIIDFR macro 132

assemhly time
generate a request parameter list, summary 165
generate ACD 34
generate an access method control block,

summary 159
generate an exit list 66
generate an request parameter list 126
generate exit list, summary 161

ASY subparameter
in OPTeD parameter of RPL macro 129

asynchronous request
canceling 62

Index 197

in MNTACQ macro 99
return codes 14

A TRO parameter
in TESTCD macro 147

AVSPAC parameter
in FIELDS parameter 135

BFRFND parameter
in flEI.DS parameter 135

OfRNO parameter
SCHOfR macro 132

BI.DVRP macro
execute form 174
format 46
list form 174
obtaining resource pool above 16M example 49
request separate data and index pools example SO
return codes 30
summary 160

B I. K parameter
in GENCO macro 70, 76,81·

brackets, in notation convention vii
BSTRNO parameter

in ACB macro 34
in fiE L OS parameter 134
in GENCO macro 70

buffers
above 16 megabytes 40

o U F f E RS parameter
BLDVRP macro 46

OUFFERSPACE parameter
in (j ENCO macro 70

BUf'ND parameter
in ACO macro 35
in fiE L DS parameter 134
in GENCO macro 70

o U FN 0 subparameter
BUfSP parameter in ACO macro 35

OUFNI parameter
in ACIl macro 35
in FIE l.DS parameter 135
in GENCO macro 70

IlUFNI suhparametcr
BUFSP parameter in ACO macro 35

BUFNO parameter
in FIE L I)S parameter J 35

nUFRDS parameter
in FIE L I)S parameter 135

o U FS P parameter
ACO macro 35
in FIEl.DS parameter 135
in GENCO macro 70

building
parameter lists for GENCO, MODCD, SHOWCD,

and TESTCR macros
format of parameter lists 185

macros used 185
building header and clement entries 185
building parameter list for GENCB macro

coding example 185
building parameter lists 183
BWD subparameter

in 0 p'rCD parameter of RPL macro 129

capitalizing. in notation convention vii
CATALOG parameter

in ACB macro 36
in GENCO macro 71
in TESTeB macro 147

CFX suhparameter
in MACRF parameter of the ACB macro 38

chaining request parameter lists
example in G ENCn macro 84
in G F.T macro 96
not allowed with

WR')'BFR 156
CIIECK macro 54

format 51
suspend processing

summary 160
w..ilh the. W a:t:IlF R.. tnaao. I ~

checking return codes
after a synchronous request 52
after an asynchronous request 51

CIIK suhparameter
in WRTBFR macro 157

CINY parameter
in FIELDS parameter 135

CLOSE macro
disconnecting program and data

summary 160
example 56
format 55
return codes 6

usc of SlloweR macro 6
closing a data set

writing buffers 156
CNY suhparameter

in MACRF parameter of the ACB macro 38
in OP'rCD parameter of RPL macro 128

CNVr AD macro
format 57
summary 160

component code 13
from alternate index upgrade rcqu~ts 14

connecting program and data (OI)EN macro) 107
control block manipulation macro

return codes and reason eodes 10
control information

parameter lists ofGENCB, MODCO, SHOWCD,
and TESTCB macros

address Jist 183

198 MYSjXA YSAM Adminisf:tafion: Macro Instruction Reference

element entry 183
header entry 183

COPIES parameter
in GENCB macro 71, 77, 81

CRA parameter
in ACB macro 36
in GENCD macro 72
in TESTCB macro 147

DATA option
DLDVRP macro 48

data set attributes
testing in TESTCD macro example 14~

DON subparametcr
in MACRF parameter of the ACR macro 38

DDNAME parameter
in ACD macro 37
in FIELDS parameter 135
in GENCD macro 72

deferring write requests 3
deleting a record

addressed-sequential deletion 64
ERAS E macro 63
key-direct deletion 63

DFR subparameter
in MACRF parameter of the ACD macro 38

DINVALIO subparametcr
in MRKllfR macro 106

1>1 R subparameter
in MACRF parameter of the ACB macro 38
in OPTCD parameter of RPL macro 128

direct processing
reason code positioning state 25

disconnecting your program
CLOSE macro 55

DlVRP macro
example 60
execute form 175
format 59
return codes 31
summary 160

DROA subparamcter
in WRTDFR macro 157

DS subparameter
in WRTDFR macro 157

DSN subparameter
in MACRF parameter of the ACD macro 38

ECB parameter
in FIELDS parameter 142
in GENCB macro 82
in RPL macro 127

ECB subparameter
CNvrA D macro 58
MRKBFR macro 106
SCHBfR macro 132

element entry
in parameter lists of GENCB. MODCR. SHOWCB,

and TESTCB macros 183
coding example 185
illustration 185

ellipses. in notation convention vii
end-of-volume

return codes 31
ENDRBA parameter

in FIEl.DS parameter 136
ENDREQ macro

example 61
format 61
terminating a request

summary 160
used with WRTDFR macro 156

entry
element. in parameter lists of GENCO, MODCD,

SUO\VCB. and TESTCR macros 183
header. in parameter lists of GENCR, l\IODCB,

SHOWCB, and TESTCD macros 183
,entry-=SCqucnccd dma set

used in ACQRANGE macro 44
EODAD parameter

in EX LST macro 66
in GENCB macro 76
in SHO\VCB macro 139
in TESTCB macro 1 SO

ERASE macro
deleting a record

summary 160
format 63

ERASE processing 63
ERET parameter

in TESTCD macro J 46. I SO. 152
error field of the ACD

reason codes from OPEN macro 2
ERROR parameter

in FIELDS parameter 135
ESDS parameter

in TESTCD macro 146
event control block

used in ACQRANGE macro 45
example

addition of records, PUT macro 119
addressed-sequcntial deletion, ERASE macro 64
addressed-sequential retrieval, GET macro 89
addressed-sequential update, PUT macro 123

Index 199

check return code after asynchronous reques~
CHECK macro 51

checking return code after synchronous reques~
CIIECK macro 52

close data set with parameter list above 16M.
CLOSE macro 56

connect LS R pool and run in 31-bit addressing
mode. ACO macro 43

delete LSR pool. Dl VRP macro 60
display an ACn. SIIO\VCO macro 137
display an exit list address in the ACU, SIIO\VCD

macro 138
display exit list length, SIIO\VCn macro 140
display physical error message, SI IO\VCO

macro 144
generate an access method control block, GENCO

macro 75
generate an exit list. G EN CD macro 78
generate an RPl at assembly time. RPl

macro 131
generate request parameter list, GENCO macro 85
identify data set, ACD macro 42
identify exit routines, EX LST macro 67
keyed-direct deletion, ERASE macro 63
keyed-direct insertion, PUT macro 118
keyed-direct update, PUT macro 121
keyed-sequential insertion, PUT macro III. 115
keyed-sequential retrieval (backward), GET

macro 87
kcyed'~s-eqtJCl'itiaJ, retrieval, GET maero- g&,

keyed-sequential update. PUT macro 120
loading a relative record data set, PUT macro 113
marking records inactive, PUT macro 124
modify a request parameter list, MODCO

macro 105
modify an exit list, MODCn macro 103
modify name of exit list in ACn, MODCO

macro 101
obtain lSR above 16M. OlDVRP macro 49
obtaining resource pool above 16M. BlDVRP

macro 49
open macro with parameter list above 16M. OPEN

macro 108
open two data sets, OPEN macro 108
overlay processing. CHECK macro 52
position, POINT macro 109
recording ROAs when loading, PUT macro 112
release positioning. ENDREQ macro 61
request separate data and index pools, DlDVRP

macro 50
request separate data/index resource pools,

BtDVRP macro 50
retrieving a keyed-direct record, GET macro 92
retrieving a relative record .sequentially. GET

macro 91
retrieving an addressed-direct record. GET

macro 93
retrieving direct to sequential record, GET

macro 94
ski-sequential retrieval. GET macro 87
skip-sequential insertion, PUT macro 116

suspend many record request, CHECK macro 53
test a request parameter list. TEST CD· macro 154
test for data set attributes, TESTCD macro 148
use a branch table. TESTCB macro 151

example of generate, Iis~ execute forms in reentrant
environment 179

execute form
DlDVRP macro 174
DL VRP macro 175
GENCO macro 175
MODCn macro 176
siloWCU macro 177
TESTCD macro 178
use of 178

execute-form keyword 173
execution time

generate a request parameter list. summary 162
generate an ACR 69
generate an access method control block 161
generate an exit list. summary 162
generate exit list 76
generate request parameter list 80

exit list
address displayed in SIIO\VCO macro

example 138
fields displayed in SIIO\VCB macro 139
generating at execution time 76
generating in EX LST macro 66
length displayed in SIlO\VCD macro example 140

EXllENpar~
in SIIO\VCn macro 139
in TESTCD macro lSI

EXLST macro
example 67
format 66
generate exit list at assembly time

summary 161
EX lST parameter

in ACB macro 37
in fiELDS parameter 135
in GENCR macro 72
in MODCR macro 102
in SHOWCD macro 139
in TESTCR macro 150

F D n K parameter
in FIELDS parameter 142

feedback word in the RPl 13
FIE l DS parameter

in SHOWCD macro 134, 139. 142
FIX parameter

BlDVRP macro 46
F KS subparameter

in OPTCD parameter of RPl macro 130
format

ACB macro 34

200 MVS/XA VSAM Administration: Macro Instruction Reference-

ACQRANGE macro 44
BLDVRP macro 46
CII ECK macro 51
CLOSE macro 55
CNVTAD macro 57
DL VRP macro 59
ENDREQ macro 61
ERASE macro' 63
execute form

of BLDVRP macro 174
of DLVRP macro 175

EX lST macro 66
GENCO macro 69
GET macro 86
G ETIX macro 97
list form

of DLDVRP macro 174
MNTACQ macro 98
MODCn macro 100
MRKofR macro 106
OPEN macro 107
parameter lists ofGENCB, MODCD, SIIOWCD.

and TESTCo macros
address list 185
element entry 185
header entry 185

PO I N"Lmacro 109
PUT macro I] I
PUTIX macro 125
RPl macro 126
SClloFR macro
SIIO\VCB macro
TESTCn macro
l.'{:RlF¥ macr-o
\VRTofR macro

132
133

145, 150
ISS

156
format of the parameter lists J 83
FS parameter

in fiELDS parameter 136
fTl'\ CD parameter

in FIELDS parameter 142
in TESTCD macro 153

F\VD subparameter
in OPTCD parameter of RPL macro 129

GENCn macro
execute form 175

with parameter lists built by user 183. 185
format 69
gencrate a request parameter list at execution time

summary 162
generate an access methoa control block at

execution time
summary 161

generate an exit list at execution time
summary 162

generate form 176
reentrant example 179

generating a request parameter list 80
generating a request parameter list example 85
generating an access method control block 69
generating an access method control block

example 75 .
generating an exit list 76
generating an exit list example 78
inconsistent operand error 3
linking to VSAM directly 187
list form 175
operand notation
reason codes 10
return codes] 0

generate form
GENCO macro
MODCD macro
SIIOWCB macro
TESTCB macro
use of 178

181

176
176

177
178

generate-form keyword 173
generating a request parameter list

GENCO macro 80
RPL macro 126

generating an access method control block (GENCn
macro) 69 '

generating an exit list
at assembly time 66
G [NCB macro 76

GET macro
f-ormat fi'6
retrieving a direct to sequential record example 94
retrieving a keyed-direct record 92
retrieving a keyed-sequential record (backward)

example
backward 87

retrieving a record
summary 162

retrieving a relative record example 91
retrieving a skip-sequential record, example 87
retrieving an addressed-direct record example 93
retrieving an addressed-sequential record

example 89
retrieving keyed-sequential record example

forward 86
GETIX macro

format 97
retrieving an index record

summary 163
GSR option

BLDVRP macro 48
in MACRF parameter of the ACB macro 39

GSR subparameter
DLVRP inacro 59

Index 201

-.

HALCRBA parameter
in fIE L OS parameter 136

header entry
in parameter lists of GENCB, MODCR, SHOWCR,

and TESTCR macros
coding example 18S
illustration ISS
using macros to build 185

leI subparameter
in MACRF parameter of the ACD macro 38

IOAELE:\J macro 185
IOAGENC macro 185
IOAMOOC macro 185
IDASIIO\V macro 185
IDA TEST macro 185
IN subparameter

in MACRF parameter of the ACD macro 38
index

retrieval (G ETIX macro) 97
storing. (PUTIX macro}- 125.

I ~ 0 EX option
BLOVRP macro 48

indirect address for S-type address constant 33
indirect S-type address constant 69
inserting records

keyed-direct 118
keyed-sequential Ill, 115
skip sequential 116

10 parameter
. in TESTCD macro 153
IOPIO parameter

in EXLST macro 66

J RNA 0 parameter
in EX LST macro 67
in GENCn macro 77
in SIIO\VC8 macro 140
in TESTCD macro·· ISO

KEQ subparamcter
in OPTCD parameter of RPL macro 129

KEY subparameter
in MACRF parameter of the ACD macro 38
in OfYfCO parameter of RPI. macro 128

key-direct deletion·
example 63

key-sequenced data set
used in ACQRANGE macro 44

KEYLEN parameter
BI.DVRP macro 47
in FIELDS parameter 136, 143
in GENCB macro 82
in RPL macro 127

keywords
execute form 173
generate form 173
list form 172

KGE suhpiuameter
in OPTeD parameter of RPI. macro 130

KSDS parameter
in TESTCB macro 146

L OS parameter
in TESTCD macro 146

LENGTII parameter
in GENCO macro 72, 77, 82
in SIIO\VCD macro 133, 139, 141

LERAO parameter
in EXLST macro 67
in GENCO macro 77
in SIIO\VCD macro 140
in TESTCD macro 1 SO

linear data set
error in VERIFY macro ISS
logical error reason codes 23

linking to VSAM directly 187
list form

DLDVRP macro 174
GENCO macro 175
MOOCD macro 176
SIIO\VCD macro 177
TESTCD macro 177
use of 178

list-form keyword 172
list. execute, generate formats 174
list, execute, generate forms of macros 171
list, parameter

of GENCO, MODCD. SIIOWCD, and TESTCD
macros 183

LOC parameter
in GENCD macro 72, 77, 82

202 MVSjXA VSAM Administration: Macro Instruction Reference

removal from the DLDVRP macro 47
LOC subparameter

in OPTCD parameter of RPL macro 130
local shared resources

ACB example 43
locate mode

with control interval access
with shared resources 132

lower case, in notation convention vii
I.RD subparameter

in OPTCD parameter of RPL macro 129
LRECL parameter

in FIELDS parameter 136
LRU subparameter

in WRTBFR macro IS7
LSR option

8LDVRP macro 48
DLVRP macro S9
in MACRF parameter of the ACD macro 39

LSR pool
example in DLDVRP macro SO

MACRF parameter
in ACn macro 37
in GENCD macro 72
in TESTCD macro 147

macro instruction return codes and reason codes
macros

descriptions 1
-wmmary of -1"59

MAREA parameter
in ACD macro 40
in FIELDS parameter 13S
in GENCB macro 73

MARK parameter
in MRKDFR macro 106

marking records inactive 124
message area

. header information 8
message list 9
OPEN/CLOSE 7
provided by VSAM 7

MLEN parameter
in ACB macro 40
in FIELDS parameter 13S
in GENCn macro 73

MNTACQ macro
format 98
summary 163

MODCD macro
example 101
execute form 176

reentrant example 180
with parameter lists built by user 183

format 100
generate form 176

linking to VSAM directly 187
list form 176
modify a request parameter list example lOS
modify an exit list example 103
modifying a request parameter list 104

summary 164
modifying an ACD 100

summary 163
modifying an exit list

format 102
summary 163

operand notation 181
reason codes 10
remote-list form

reentrant example 179
return codes 10

MODE option
DLDVRP macro 48

MODE parameter
DI.VRPmacro S9
in Cl.OSE macro SS
in OPEN macro 107

modifying and displaying the RECI.EN field of an RPL
direcdy 188

move mode of control interval access
with shared resources 132

MRKnrR macro
format 106
invalidating a buffer

parameters for 106
reason codes 106

summary 164
MSGAREA parameter

in FIEI.DSparametcr 143
in GEl\: CD macro 82
in RPL macro 127

MSG I. EN parameter
in FIELDS parameter 143

, ... in G ENCB macro 82
in RPL macro 127

MVE subparameter
in OPTCD parameter of RPL macro 130

N CI subparameter
in MACRF parameter of the ACB macro 38

N CIS parameter
in FIELDS parameter 136

N DEI. R parameter
in FIELDS parameter 136

NDF subparameter
in MACRF parameter of the ACB macro 38

NEXCP parameter
in FIELDS parameter 136

NEXT parameter
in FIELDS parameter 136

NFX subparameter

Index 203

in MACRF parameter of the ACD macro 38
NINSR parameter

in FIE l DS parameter 136
N IS subparameter

in MACRF parameter of the ACD macro 39
NIXl parameter

in FIE I. DS parameter 136
N lOG R parameter

in fiELDS parameter 136
;\;0 subparameterp in CATALOG parameter

in ACD macro 36
in GENCO macro 71
in TESTCD macro 147
restriction 36, 71

N RETR parameter
in fiELDS parameter 136

NRM option
in MACRF parameter of the ACD macro 39

NRS option
in MACRF parameter of the ACD macro 39

NSP subparameter
in 0 PTCD parameter of RPL macro 129

NSR option
in MACRF parameter of the ACn macro 39

NSSS parameter
in fiELDS parameter 136

NUD option
in MACRf parameter of the ACn macro 39

NUI\V parameter
in FIELDS parameter 131

N UP subpararneter
in OPTCD parameter of RPI. macro 129

NUPDR parameter
in FIELDS parameter 137

N\V A rrx subparameter
in OfYrCD parameler of RPI. macro t 30

NXTRPI. parameter
in FIE L DS parameter 143
in GENCO macro 83
in RPL macro 128

OBJEe(' parameter
in SIlOWCIl macro 134
in TESTCD macro 146

OFlAGS parameter
in TESTCD macro 147

OPEN macro
connecting program and data

summary 164
format 107
open two data sets example" 108
parameter list above 16M example 108
reason codes 2

use ~f SHOWCB macro 2
use of VERIFY command 2

return codes I

shared resources
reason codes 3

OPEN/CLOSE message area for multiple
reason/warning messages 7

opening a data set
for processing 107

OPENORJ parameter
in TESTCB macro 148

operand notation
GENCR 181
MODCn 181
SHOWCR 181
TESTCD 181

operands
optional 174
required 174

operands with GENCO, MODCR. SIIOWCIl,
TESTCB 181

o PTCD parameter
in G EN CR macro 83
in RPL macro 128
in TESTCD macro 153

OPTeD subparameter
ACQRANGE macro 44
GETIX macro 97
in RPL macro 130
MNTACQ macro 98
PUTIX macro 125
SCIIDFR macro 132

optional operands 174
Qr sign. ig,.notati.on CQA,venUoo vii.
OUT subparameter

in MACRF parameter of the ACn macro 39
in MRKnfR macro 106

parameter list
of GENCB, MODCR. SHO\VCB. and TESTCR

macros 183
passing control directly to VSAM 187
PASS\VD parameter

in ACD macro 40
in FIEI.DS parameter 135
in GENCO macro 73

physical error analysis
with control interval aceess 26

physical error message
displayed in SIIOWCD macro example 144
formal 30
RBA field 26

POINT macro
format 109
position example 109
positioning for access

summary 164
positioning

following logical errors 24

204 MVSjXA VSAM Administration: Macro Instruction Reference

of reason codes 25
positioning for access (POINT macro) 109
PUT macro

addressed-sequential update example 123
format III
keyed-direct insertion example 118
keyed-direct update example 121
keyed-sequential.insertion example Ill, 115
keyed-sequential update example 120
loading a relative record data set 11 3
marking records inactive example J 24
recording RBl\s when loading example 112
skip-sequential insertion example 116
storing a record

summary 164
PUTIX macro

format 125
storing an index record

summary 165

RBA field
in physical error message 26

R BA parameter
in FIELDS parameter 143

RBA values
CNVl'AD macro 58
passed to M i'rI 'A CQ macro S8

reason codes
from OPEN macro 2

.usc Df SUOW CJl 2
from request macros (G FT, PUT, etc.)

physical errors, control interval access 26
in control block manipulation macros 10
in GENCS macro 10
in MODCB macro 10
in SIIO\VCB macro 10
in TESTCB macro 10
logical errors 1 7
physical errors 26
positioning state 2S
request parameter list feedback area 13, 15
shared resources from OPEN macro 3
successful request IS
use of VERIFY command in OPEN macro 2

REClEN field (record length) of an Rill
modifying and displaying 188

REClEN parameter
in FIE L OS parameter 143
in GENCO macro 83
in RPl macro 130

record
retrieval (G ET macro) 86

record length (REClEN field) of an RPl
modifying and displaying 188

record management
return codes and reason codes 13

reentrant program 33
register notation 33. 69
relative record data set

used in ACQRANGE macro 44
relative record number

uscd as a key 91
releasing exclusive or shared control

MRKOFR macro 106
REP .. parameter

in TESTCD macro 147
request macros

CIIECK 51
ENDREQ 61
ERASE 63
GET 86
physical reason codes from 26
POINT 109
PUT 111

request parameter list
chaining 81, 126
chaining example 84
chaining in GET macro 96
chaining not allowed

with SCIIBFR macro 132
with \VRTBrR macro 156

changing 104
component codes from component code field 14
displaying fields in SIIOWCB macro 141
generating at assembly time
generating at execution time 80
generating with GENCO macro example 85
modifying 104
reason codes from feedback area 15
testing in TESTCB macro 152
testing in 'f'1::STC--n macro example 154
with the GENCO macro 81
with the RPl macro 126

required operands 174
resource sharing ? .~
retrieving a record

for deletion 64
retrieving an index record 13
return codes

checking, example 51
from asynchronous request 14
from BLDVRP macro 30
from CLOSE macro 6
from DLVRP macro 31
from ·cnd-of-volumc 31
from macros used to share resources JO
from OPEN macro 1
from RPl 13
in control block manipulation macros 10
in GENCO macro 10
in MODCB macro 10
in SHOWCB macro 10
in TESTCB macro 10
synchronous request 14

return codes and reason codes from OPEN
reusable data set

specifying in ACB macro processing). 39

Index 205

RKP parameter
in FIELDS parameter' 137

RLS subparameter
in MRK8FR macro 106

RMODE31 parameter
example in 8LDVRP macro 49
example in the GENCB macro 75
in ACB macro 40.43
in 8LDVRP macro 47
in OPEN macro 107
in the GENCO macro 73
in the MODCD macro 100

RPL component code 13
RPL condition code 13, 15
RPL feedback area 13
RPL feedback word 13
RPL macro

example 131
format 126
generate a request parameter list at assembly time

summary 165
RPL operand

RECLENficld~~o~~ngili)
modifying and displaying 188

RPL parameter
in ACQRANGE macro 44
in DLK parameter in GENCO macro 81
in CIIECK macr-> 51
in CNVfAD macro 57
in ENDREQ macro 61
in. ERAS.~ macro. 61
in GET macro 86
in G ETIX macro 97
in M NT ACQ macro 98
in MODCD macro 104
in :\1RKBfR macro 106
in PO INT macro 109
in PUT macro III
in PUTIX macro 125
in SCIIBFR macro 132
in SHO\VCD macro 141
in TESTCB macro 152
in VERI FY macro ISS
in WRTBFR macro 156
MNTACQ macro 98

RPL reason code 13
RPL return code 13
RPllEN parameter

in FIE L OS parameter 143
RRDS parameter

in TESTCD macro 147
RST subparameter .

in MACRF parameter of the AC8 macro 39

S-type address constant 33. 69
SCHBFR macro

summary. 165
SCRA subparameter. in CRA parameter

in ACB macro 36
in GENCD macro 72
in TESTeB macro 147
restriction 36, 72

search argument
full key 131
generic (partial) key 129

SEQ sub parameter
in MACRF parameter of the ACB macro 38
in OPTCD parameter of RPL macro 128

sequential insert strategy
specified in ACB 38

sequential processing
reason code positioning state 25

shared resource macros
return codes 30

shared resources 34
SHAREOPTIONS 4

incompatible with deferring write requests 3
sharing

control blocks
based on DDNAME 34
l1ase<t O'n OSN Al\-tE 34-

parameter lists 178
among BLDVRP, DLVRP, GENC8. MODeB,

SHO\VCB. and TESTCR 171
reentrant form 178

SHOWCD macro
as used with CLOSE macro return codes 6
display an ACB example 137
displaying a physical error message example 144
displaying an access method control block

example 137
displaying an exit list address example 138
displaying fields of a request parameter list 141

summary 166
displaying fields of an access method control

summary 166
displaying fields of an access method control

block 133
displaying fields of an exit list 139

summary 166
displaying the length of an exit example 140
ex~ute form 177

with parameter lists built by user 183
format 133
generate form 177
linking to VSAM directly 187
list form 177
operand notation 181
reason codes 10
reason codes from OPEN macro 2
return codes 10

206 MVS/XA VSAM Administration: Macro Instruction Reference

I
\

-- I

SHRPOOL parameter
ACB macro 41
DLDVRP macro 47
DLVRP macro 59
in GENCD macro 74

SIS option
in MACRF parameter of the ACB macro 39

skip-sequential processing
teason code positioning state 25

SKP subparameter
in MACRf' parameter of the ACD maero 38
in OPTCD parameter of RPL macro 128

SPAN parameter
in TESTCD macro 147

SSWD parameter
in TESTCB macro 147

STMST parameter
in FIELDS parameter 137

storage requirements. I/O buffers 36. 70
storing a record (PUT macro) III
storing an index record 13
string extension. dynamic 35. 38
STRMAX parameter

in FIELDS parameter 135
STRNO parameter

BLDVRP macro 48
in ACD maero 41
in fiELDS parameter 135
in GENCO macro 74

summary of macros 159
suspending processing

overlap processing 52
request for many records S3

SYN sub parameter
in OPTCD parameter of RPL macro 1l9~ 1.3D

SYNAD exit routine
physical error message 26

SYNAD parameter
in EXLST macro 67
in GENCB macro 77
in SHOWCD macro 140
in TESTCD macro 1 SO

synchronizing end of data
(VERIFY macro) 155

-synchronous processing
specified in MODCD macro 104
specified in RPL macro 130

synchronous request
return codes 14

T (in TYPE parameter in CLOSE macro) 7
temporary CLOSE macro 7
terminating a request

ENDREQ macro 61
terminating a request before completion 62
TESTCD macro 154

execute form 178
with parameter lists built by user 183

format 145. 1 SO
generate form 178
linking to VSAM directly 187
list form 177
operand notation 181
reason codes 10
return codes 10
testing a field of a request parameter list

summary 168
testing a field of an access method control block

summary 167
testing a field of an exit list 1 SO

summary 168
testing a request parameter list 152
testing fields of an access method control

block 145
testing for data set attributes 148
using a branch table 1 5 I

testing a control block
exit list 1 SO
request parameter list 152

transaction I D
writing related requests 157

TRANSI D parameter
in FIELDS parameter 143
in GENCB macro 83
in RPl macro 130

TRANSID subparameter
SCIIBFR macro 132

TRN subparameter
in WRTBFR macro 157

TYPE parameter
BWVRP-tnaa'4 48
Dl VRP macro 59
in CLOSE macro 7,55
in WRTBFR macro 156

UBF option
in MACRF parameter of the ACB macro 39

UCRA subparameter. in CRA parameter
in ACB macro 36
in GENCB macro 72
in TESTCD macro 147
restrictions 36. 72

UIW parameter
in FIELDS parameter 137

underlining. in notation convention vii
UNQ attribute, in ATRB parameter 147
UPAD parameter

in EXLST macro 67
UPD subparameter

in OPTCD parameter ofRPL macro 129
updating records

..
Index 207

See also storing a record, lengthening a record, and
shortening a record

addressed-sequential 123
example 120
keyed-direct 121
keyed-sequential 120

upgrade set
status following request that fails 14

upper case, in notation convention vii
use of list, execute, generate forms 178

. n.,·user butTering 39

VERIfY command
-use in OPEN macro

<I;,'~~ l~._ reason codes 2
':~l:f('i.\<;~··'
~.'P:'~·;~ ... ;<,"/('·;·:''VERlfY macro
~~T ", ,".; .:>:.::~;;.~·~·:~·::;i format 155

,1·'

.. , ' !. summary 168
, ., VSAM macro forn131s and cxanlples 33

\V AITX subparameter
in- 9PTCf) para:meter.,efRBl maGrO' 130

\V AREA parameter
in GENCO

generating request parameter list 83
in GENCO macro

generating access method control block 74
generating exit list 74, 77

\V CK parameter

'I>'

,,' .,
,,,,;'
~~!;~ : ~::.: " _.' Jj,~, ~

~ ~.

in TESTCD macro 147
work area

processing a record in 83, 126
relation to I/O butTer 83, 126
specifying

generating access method control block 74
generating exit list 77
generating request parameter list 83

work data set
specifying in ACD macro 39

WRTOfR macro
format 156
summary 169

XINVALID subparameter
in MRKBFR macro 106

YES subparameter, in CATALOG parameter
in ACB macro 36
in GENCB macro 71
in TESTCD macro 147
restriction 36, 71

I Numericsl

31-bit format
ACB example 43

208 MVS/XA VSAM Administration: Macro Instruction Reference

"'(.., :~/

MVS/XA VSAM Administration:
Macro Instruction Reference
GC26-4152-2

Reader's
Comment
Form

This manual is part of a hDrary that serves as a reference lOurce for system analysts. programmers. and operators of
IBM systems. You may use this form to communicate your comments about this publication, its orpuization, or
subject matter. with the understanding that IBM may use or distnoute whatever information you IUpPJy in any way
it believes appropriate without incurring any obligation to you.

Your comments will be sent to the author's department-for whatever review and actio~ if any. are deemed
appropriate ..
Note: Do not use this fonn to request IBM publications. If you do, your order wiD be delayed because publications
are not stocked at the address printed on the reverse side. Instead, you should direct any requests for copies of
publications, or for assistance in using your IBM system, to your IBM representative or to the IBM branch office
serving your locality.

If you wish a reply, give your name, company, mailing address, and telephone number.

If you have applied any technical newsletters (TNLs) to this book. please list them here:

Last TNL ________ _

Previous TNL ________ _

Fold on two lines, tape, and md. No postage stamp necessary if mailed in the U.S.A.
(Elsewhere. an IBM office or representative will be happy to forward your comments or you
may man directly to the address in the Edition Notice on the back of the title page.)

Thank you for your cooperation.

GC26·4152-2

Reader's Comment Form

.: PI •• o do not staple
.~.~ , " !

Fold and tape

...
o· .
~~

-

•• eo. , •• " ,. ••• ~ •• ,. • fI ~ •• _ ~ ••• , ••• , ~ ••••••• ,. ~ " •• ',. ~ • ~ •••••••••••••••••••• e ... "" .. .

, .. ~~;: .(/
.~~~ '~.I.·:· i": ~. '~§.I~ ~~~; .. :»~, •

••••••••••••• Ii', •• (. " " f' '" U * '" • ':i

Fold a"c1 ta~e

: ;

• ',~ "''JI'''''' "
" </'.",/":

! tlM COfpO!l'~~i'@n
P.O. Box ~0020
Pvog.,@mMing Pld.JUshirtg
San JO$8, C~m@&'nia 95150

111111
.".:

.~~);f.~'i:~l~, .. ~":'~:"";~~",',! .. ;

J;~~,"';.~:I~;:'~~.\ '. I.·/ ~ .

.~;;i::.~!~.::" !', . ", ':';"i('

:~~.: ... ~t9 .. :~: .~, \ : .', .~~~. I.

NO POSTAGE
NECESSARY
IFMAILED

IN THE
UNITED STATES

"

:.
"'
... .
..

I :

~'i

... ""~,. 0: ~ ••••• ,. •• ' • It •••••• , $ ' ••• CI •• :

'"

P'ease do not stapl. Fold a"d tape

"

,,;
.. '':
, ~ ..

3:
< se
X
l>
< en
l>
3:

~
3
:r
!a

0

..,
m ...
(S"
::J

