(4

Order Number
GC26-4150-1

MVS/Extended Architecture Licensed
Data Administration: Program
Utilities

Data Facility Product Version 2
5665-XA2 Release 3.0

Order Number
GC26-4150-1

MVS/Extended Architecture
Data Administration:
Utilities

Data Facility Product
5665-XA2

Licensed
Program

Version 2
Release 3.0

Second Edition (June 1987)
This is a major revision of, and makes obsolete, GC26-4150-0.

This edition applies to Version 2 Release 3.0 of MVS/Extended
Architecture Data Facility Product, Licensed Program 5665-XA2,
and to any subsequent releases until otherwise indicated in new
editions or technical newsletters.

The changes for this edition are summarized under "Summary of
Changes" following the preface. Specific changes are indicated
by a vertical bar to the left of the change. These bars will be
deleted at any subsequent republication of the page affected.
Editgrial changes that have no technical significance are not
noted.

Changes are made periodically to this publication; before using
this publication in connection with the operation of IBM
systems, consult the latest IBM Svystem/370, 30xx, and 4300
Processors Bibliography, GC20-0001, for the editions that are

applicable and current.

References in this publication to IBM products, programs, or
services do not imply that IBM intends to make these available
in all countries in which IBM operates. Any reference to an IBM
licensed program in this publication is not intended to state or
imply that only IBM's program may be used. Any functionally
equivalent program may be used instead.

Requests for IBM publications should be made to your IBM
representative or to the IBM branch office serving vour
locality. If you request publications from the address given
below, your order will be delayed because publications are not
stocked there.

A form for readers' comments is provided at the back of this
publication. If the form has been removed, comments may be
addressed to IBM Corporation, P.0. Box 50020, Programming
Publishing, San Jose, California, U.S.A. 95150. IBM may use or
distribute whatever information you supply in any way it
believes appropriate without incurring any obligation to you.

?bg;pyright International Business Machines Corporation 1985,

This publication describes how to use the MVS/Extended
Architecture Data Facility Product utility programs to
manipulate system and user data and data sets.

GANIZATIO

This publication contains the following major parts:

"Introduction™ summarizes the utility programs and
information on the differences among system, data set, and
independent utility programs. The introduction contains
basic information about how the programs are executed and
about the utility control statements used to specify program
functions. New or infrequent users of the utility programs
should give particular attention to the introduction.

"Guide to Utility Program Functions" contains a table,

arranged in alphabetic order, of utility program functions
and the programs that perform them. This table enables vou
to find the program that can do what you need to have done.

"Invoking Utility Programs from a Problem Program" contains
a description of the macro instructions used to invoke a
utility program from a problem program rather than executing
the utility program by job control statements or by a
procedure in the procedure library. This section should be
read only if you plan to invoke a utility program from a
problem program.

The remainder of the book contains individual chapters for
each utility program arranged in alphabetic order. For a
discussion of the organization of these chapters, see
"Organization of Program Descriptions" on page iv.

Appendix A, MExit Routine Linkage"™ contains information
about linking to and returning from optional user-supplied
exit routines. This appendix should be read only if vou
plan to code or use an exit routine. If you are coding an
exit routine, this appendix provides linkage conventions,
descriptions of parameter lists, and return codes. If you
are using an existing exit routine, you may be interested in
the meaning of return codes from the exit routine.

Appendix B, "DD Statements for Defining Mountable Devices™
contains a review of how to define mountable volumes to
ensure that no one else has access to them. For a
definitive explanation of this subject, see MVS/Extended
Architecture JCL, GC28-1148. '

Appendix C, "Processing User Labels"™ describes the
user-label processing that can be performed by IEBGENER,
IEBCOMPR, IEBPTPCH, IEHMOVE, and IEBUPDTE. This appendix
should be read only if you plan to use a utility program for
processing user labels.

Appendix D, "IEHLIST VTOC Listing”™ provides a sample of the

volume table of contents listing produced by IEHLIST,
including a detailed explanation of fields.

Preface 1iii

ORGANIZ 06

DESCRIPTIONS

To enable you to find information more easily, program
descriptions are all organized, as much as possible, in the same

way.

Most programs are discussed according to the following

pattern:

Introduction to and description of the functions that can be
performed by the program. This description typically
includes an overview of the program's use, definitions of
terms, illustrations, etc.

Functions supported by the utility and the purpose of each
function.

Input and output (including return codes) used and produced
by the program.

Control of the program through job control statements and
utility control statements. Explanations of utility control
statement parameters are presented in alphabetic order in
tabular format, showing applicable control statements,
syntax, and a description of the parameters. Any general
information, restrictions, and relationships of a given
utility control statement to other control statements are
described in the sections concerning the statements or in
the section for restrictions.

Examples of using the program, including the job control
statements and utility control statements.

In order to use this book efficiently, you should be familiar
with the following:

[

REQUIRED PUBLICATIONS

iv

You

Job control language
Data management

Virtual storage management

should be familiar with the information presented in the

following publications:

MVS/Extended Architecture Message Library: Svstem Messages,
Volumes 1 and 2 , GC28-1376 and GC28-1377, contains a
complete listing and explanation of the messages and codes
issued by MVS/XA utility programs.

MVS/Extended Architecture JCl User's Guide, GC28-1351,
contains a description of the use and coding of the job
control language.

M!§/Exiendgd AEth jggjgcg Dgig Adminigjcgiign Qgi dg,
GC26-6160, describes the input/output facilities of the
operating system. It contains information on record
formats, data set organization, access méthods, data set
disposition, space allocation, and generation data sets.

/ ende ect ini i :
tio r ’ GC26 4141, contains a description of

the WRITE macro instruction; it also contains the format and
contents of the DCB.

MVS/Extended Architecture Svystem Programming Library:
upervi ervices Macro Instructions, GC28-1154,

contains information on how to use the services of the
supervisor. Among the services of the supervisor are

MVS/XA Data Administration: Utilities

(

ELATED PURLIC

IONS

program manag
virtual stora

Within the text,
in the table below.

ement,
ge management.

task creation and management, and

references are made to the publications listed

Short Title Publication Title Oorder Number
Access Method MVS/Extended Architecture GC26-4135
Services ntegrated Catalog
Reference Administration: Access
Method Services Reference
MVS/Extended Architecture GC26-6136
VSAM Catalog
Administration: Access
Method Services Reference
Catalog MVS/Extended Architecture GC26-4138
Administration Catalog Administration
Guide Guide
Conversion MVS/Extended Architecture GC28-1143
Notebook Conversion Notebook
Data MVS/Extended Architecture GC26-4140
Administration ata Administration Guide
Guide
Data MVS/Extended Architecture GC26-6141
Administration: Data Administration: Macro
Macro Instruction Reference
Instruction
Reference
Data Facility MVS/Extended Architecture GC26-4267
Product: Data Facility Product
Customization Version 2: Customization
Debugging MVS/Extended Architectur LC28-11641
Handbook Debugaing Handbook, Volumes LC28-1165
1 through 5 LC28-1166
LC28-1167
LC28-1168
Device Support vice Suppo aciliti GC35-0033
Facilities User's Guide and Reference
User's Guide
and Reference
DFDSS: User's Data Facility Data Set SC26-4125
Guide and Services: User's Guide and
Reference Reference
IBM 3480 IBM 3480 Magnetic Tape GC35-0098
Magnetic Tape Subsvstem: Planni n
Subsysten: igratio uide
Planning and
Migration Guide

Note:

All five volumes may be ordered under one order number,

LBOF-1015

Preface v

Short Title

Publication Title

order Number

IBM 3480 IBM 3480 Magnetic Tape GC35-0099
Magnetic Tape u em: User's Gui
Subsystem:
User's Guide
IBM 3800 IBM 3800 Printing Subs?§i§m GC26-3846
Printing Programmer's Guide
Subsystem
Programmer's
Guide
JCL User's MVS/Extended Architecture GC28-1351
Guide JCL User's Guide
JCL Reference VS/Extended Architectu GC28-1352
JCL Reference
Reference Reference Manual for the GA26-1653
Manual for the IBM 3800 Printing Subsvystem
IBM 3800
Printing
Subsystem
Linkage Editor MVS/Extended Architecture GC26-4143
and Loader Linkage Editor and lLoader
User's Guide
Magnetic Tape MVS/Extended Architecture GC26-4145
Labels and File Maanetic lLabels and Fi
Structure Structure Administration
Supervisor MVS/Extended Architecture GC28-1154
Services and Svstem Prodgramming Librarvy:
Macro Supervisor Services and
Instructions Macro Instructions
System—Data MVS/Extended Architecture GC26-4149
Administration Svystem—Data Administration
System Messages S/Extended A itectu GC28-1376
lessage Library: Svste and
Messages, Volumes 1 and 2 GC28-1377
VSAM MVS/Extended Architecture GC26-4151
Administration ipistration Guid
Guide
Ut S NOT PLAINED IS BOO
There are several specialized utilities not discussed in this
book. The following list shows their names and functions, and
indicates which book contains their explanation.
Utility Function Reference
IDCAMS Allows users to define, manipulate, MVS/Extended
or delete VSAM data sets, define Architecture Cataloa

and manipulate VSAM catalogs, and Administr
GC26-64138

copy,

print, or convert SAM and
ISAM data sets to VSAM data sets.

’

vi MVS/XA Data Administration: Utilities

Utility Function Reference
Device Support Used for the initialization and Device Support

Facilities

maintenance of DASD volumes.

Facilities User's
Guide and Reference,
GC35-0033

Data Facility
Data Set Services

Describes DASD utility functions
such as dump/restore and reduction
of free space fragmentation

Data Facili Data Se

Services: User's Guide
and Reference,
SC26-4125

0ffline IBM
3800 Utility

Describes the Offline IBM 3800
Utility program, used with the IBM
3800 Tape-to-Printing Subsystem
Feature.

Offline IBM 3800
Utility, SH20-9138

Preface vii

viii

MVS/XA Data Administration: Utilities

| RELEASE 3.0, JUNE 1987

| ENHANCEMENT

Support for the years beyond 1999 has been added to the IEHLIST
system utility.

| CUSTOMIZATION RESTRUCTURE

| SERVICE CHANGES

(

Most of the text from Appendixes A and C has been removed and
placed in Data Facility Product: Customization

The chapter on the IFHSTATR program has been completely
replaced.

Examples throughout the book have been corrected, where
necessary, with respect to beginning the continued portion of
jo? control and utility control statements in the correct
columns.

A formula has been added for calculating the region size needed

when executing the IEBGENER program (in cases where vou specify

the number of buffers to be used rather than use the default

gﬁmber). A new IEBGENER example has been added to illustrate
is.

RELEASE 1.0, APRIL 1985

ENHANCEMENTS AND NEW SUPPORT

NEW DEVICE SUPPORT

o Appendix D, MIEHLIST VTOC Listing™ has been added.
. Examples have been updated to reflect 3380 support.

. The IEBCOPY, IEBGENER, IEHINITT, IEHLIST, and IEHPROGM
chapters have been updated.

. IBM 4248 Printer
The FCB Statement in IEBIMAGE can now be used to create
forms control buffer modules in a form appropriate for use
on the IBM 64248 Printer. Information to support the 4248
has been added to the IEBIMAGE chapter.

. IBM 3262 Model 5 Printer

Information to support the IBM 3262 Model 5 Printer has been
added to the IEBIMAGE chapter.

. IBM 6245 Printer

Information to support the IBM 4245 Printer has been added
to the IEBIMAGE chapter.

Preface ix

VERSION 2 PUBLICATIONS

The Preface includes the new order numbers for Version 2.

x MVS/XA Data Administration: Utilities

N

Introduction o o e o o o o 6 o o o o o o o o o
System Utility Programs e e e e e e e e .
Data Set Utility Programs e e e e e e e e

Independent Utility Programs
DASD and Tape Device Support
Control .
Job Control Statements .o
Utility Control Statements .
Continuing Utility Control Statements
Restrictions . .
Notational Conventlons
keyword=device=list
Installation Considerations
Special Referencing Aids

Guide to Utility Program Functions e e e o o o o @

Invoking Utility Programs from a Problem Program .
LINK or ATTACH Macro Instruction .
ICAPRTBL Pr‘ogpam L] . L] L] . L] L] L] . L] L] L] . . L] L] .
Executing ICAPETBL e e e e e e e e e e e
Input and Output
Control .
Utility Control Statements e e e e e e e e e
JOB Statement e e e e e e e e e e
DFN Statement C e e e e e e e e e e e e e
UCS Statement e e e e e e e e e e e e
FCB Statement e e e e e e e e e e e e e
END Statement e e e e e e e e e e e e e e
ICAPRTBL Examples e e e e e e e e e e e e
ICAPRTBL Example
ICAPRTBL Example
ICAPRTBL Example
ICAPRTBL Example

IEBCOMPR Pr‘ogr\am L . L] Ll L L] L L . o . . L]

PDUN -

Input and Output e e e e e e e e e e e
Return Codes . . .
Control

Job Control Statements .
Utility Control Statements
COMPARE Statement .
EXITS Statement e e e
LABELS Statement e e e e e e e e e e e
IEBCOMPR Examples e e e e e e e e e e e e e
IEBCOMPR Example e e e . e e
IEBCOMPR Example
IEBCOMPR Example
IEBCOMPR Example
IEBCOMPR Example
IEBCOMPR Example
IEBCOMPR Example

NOAUPAWN-

IEBCOPY Ppogram L] . L] L] * * . * . . L2 . L2 . * L]
Creating:a. Backup Copy e e e e e e e e e e
Copying Data Sets
Copying or Loading Unloaded Data Sets
Selecting Members to be Copied, Unloaded, or Loaded

Copying Members That Have Alias Names
Replacing Identically Named Members e e
Replacing Selected Members e e e e e e e e
Renaming Selected Members .
Excluding Members from a Copy Operatlon

Compressing a Data Set e e e e e e e e e e e
Merging Data Sets e e e e e e e e e e e e e e
Re-creating a Data Set . e e e e e e e .

Altering Load Modules in Place

Contents

NP DWN -

xi

Copying and Reblocking Load Modules
Load Module Requirements .

Inserting RLD Counts

Overlay
Input and

Load Modules
Output .

Return Codes

Control

Job Control Statements .
PARM Information on the EXEC Statement
SYSPRINT DD Statement
anvynamel and anyname2 DD Statements

SYSIN

IEBCOPY Unloaded Data Set Block Slze)

DD Statement

Space Allocation
Restrictions

Utility Control Statements '

COPY Statement .
ALTERMOD Statement
COPYMOD Statement
SELECT Statement

EXCLUDE Statement

IEBCOPY Examples

IEBCOPY
IEBCOPY
IEBCOPY
IEBCOPY
IEBCOPY
IEBCOPY
IEBCOPY
IEBCOPY
IEBCOPY
IEBCOPY
IEBCOPY
IEBCOPY
IEBCOPY
IEBCOPY
IEBCOPY
IEBCOPY
IEBCOPY
IEBCOPY

Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example 12
Example 13
Example 14
Example 15
Example 16
Example 17
Example 18

HHEYOONOUMPAWNE

IEBDG Program « o o
Types of Patterns

IBM-Supplied Patterns
User-Specified Pictures

.

Modification of Selected F1elds

Input and

Output

Return Codes

Control

Job Control Statements '

PARM Information on the EXEC Statement |
SYSPRINT DD Statement . .

SYSIN DD Statement

seqinset DD Statement
parinset DD Statement
seqout DD Statement
parout DD Statement .
Utility Control Statements

DSD Statement

FD Statement .

CREATE Statement

REPEAT Statement

END Statement .
IEBDG Examples

IEBDG Example
IEBDG Example
IEBDG Example
IEBDG Example
IEBDG Example
IEBDG Example
IEBDG Example

NP W

IEBEDIT Program o o

Input and

Output

| xii MVS/XA Data Administration: Utilities

.

e o o o o o

Return Codes
Control .
Job Control Statements .
Utility Control Statement
EDIT Statement . .
IEBEDIT Examples
IEBEDIT Example
IEBEDIT Example
IEBEDIT Example
IEBEDIT Example
IEBEDIT Example
IEBEDIT Example

IEBGENER Program . e e o o o o o o o o s o o o e o @
Creating a Backup Copy e e
Producing a Partitioned Data Set from Sequent1al Input
Expanding a Partitioned Data Set e e e e e
Producing an Edited Data Set . .
Reblocking or Changlng Loglcal Record Length

Input and Qutput e e e e e e e
Return Codes

Control .

Job Control Statements e e e e e e e e e e e e
EXEC Statement . e e e e e e e e e e e
SYSPRINT DD Statement e e e e e e e e
SYSUT1 DD Statement
SYSUT2 DD Statement
SYSIN DD Statement . e e e e e e e e e e e

Utility Control Statements e e e e e e e e e e
GENERATE Statement e e e e e e e e e e e e
EXITS Statement
LABELS Statement
MEMBER Statement
RECORD Statement e e e

IEBGENER Examples e e e e
IEBGENER Example . . .
IEBGENER Example
IEBGENER Example
IEBGENER Example
IEBGENER Example
IEBGENER Example
IEBGENER Example
IEBGENER Example
IEBGENER Example
IEBGENER Example
IEBGENER Example

AU PAWN -

HEOOONONLBMIDAWND -

O

IEBIMAGE Program
General Information e e e e e e e e e e e e e e
Storage Requirements e e e e e e e e e e
For IEBIMAGE . e e e e e e e e e e e
For SYS1. IMAGELIB e e e
Maintaining the SYSI1. IMAGELIB Data Set . e
General Module Structure c e N
Naming Conventions for Modules e e e e e e e e e e
Using IEBIMAGE . C e e e e e e
Creating a Forms Control Buffer Module e e e e e e
3800 FCB Module Structure .
62648 FCB Module Structure

FCB Module Listing . e
Creating a Copy Mod1f1cat1on Module e e e e
COPYMOD Module Structure e e e e e e e

COPYMOD Module Listing .
Creating a Character Arrangement Table Module
TABLE Module Structure

TABLE Module Listing . .
Creating a Graphic Character Mod1f1cat1on Module .
GRAPHIC Module Structure e e e e e e e e e e e
GRAPHIC Module Listing e e e e e e
Creating a Library Character Set Module e e e e e
CHARSET Module Structure e e e e e e e e e e e e
CHARSET Module Llst1ng C e e e e e e e e e e e e
Input and Output . . e e e e e e e e e e e e e

Return Codes P

132
133
133
134
134
136
137
137
138
139
140
141

142
142
142
143
144
145
145
146
146
166
147
148
148
148
149
149
150
150
151
151
151
157
158
159
159
160
161
161
162
163
164
165
166

168
168
168
168
169
170
171
172
172
172
173
173
175
177
177
178
178
179
181
182
183
183
185
185
186
187
187

Contents xiii

Control e e e e e e e e e e e

Job Control Statements e e e e e e

SYSPRINT DD Statement e e e e e e e e e e

SYSUT1 DD Statement e e e e e e e e e e e e e e

SYSIN DD Statement . e e e e e e e e e e e e e
Utility Control Statements e e e e e e e e e e e e

Operation Groups .. e e e e e
FCB Statement C e e e e e e e e e
COPYMOD Statement . .
TABLE Statement e e e e e
GRAPHIC Statement e e e e e

CHARSET Statement e e e e e e e e e e e e e e e e
INCLUDE Statement C e e e e e e e e e e e e e e e e
NAME Statement e e e e e e e e e e e e e e e e e e
OPTION Statement e e e e e e e e e e e e e e e e e

Using OVERRUN e e e e e e e e e e e e e e e e e

IEBIMAGE Examples

Example 1: Bu11d1ng a New 3800 Forms Control Buffer
Module . R
3800 Model 1
Example 2: Replac1ng a 3800 Forms Control Buffer Module
3800 Model 1
Example 3: Replac1ng a 3800 Forms Control Buffer Module
3800 Model 1 .
Example 4: Bu11d1ng a New 3800 Forms Control Buffer
Module . .
33800 Model 1
Example 5: Replac1ng the 3800 Forms Control Buffer
Module STD3 .
3800 Model 1 . . .
Example 6: Bu1ld1ng a New 3800 Forms Control Buffer
Module for Additional IS0 Paper Sizes
3800 Model 3
Example 6A: Bu11d1ng a 4248 Forms Control Buffer Module
Example 7: Building a New Copy Modification Module .
3800 Model 1 .
Example 8: Bu11d1ng a New Copy Mod1f1cat1on Module From
an Existing Copy .
3800 Model 3 .
Example 9: Adding a New Character to a Character
Arrangement Table Module e e e e e e
3800 Model 3 B T
Example 10: Building a New Character Arrangement Table
Module From an Existing Copy e e e e e e e e e e e
3800 Model 3 e e e e e e e e e e e e e e e e e e
Example 11: Building Graphic Characters in a Character
Arrangement Table Module e e e e e e e e e e e e
3800 Model 1 e e e e e e e e e e e e e
Example 12: Deleting Graphic References From a
Character Arrangement Table Module e e
3800 Model 3 .
Example 13: L1st1ng the World Trade National Use
Graphics Graphic Character Modification Module
3800 Model 1 . .
Example 14: Bu11d1ng a Graph1c Character Mod1f1cation
Module From the World Trade GRAFMOD . e e e e e
3800 Model 3 . . .
Example 15: Bu11d1ng a New Graph1c Character
Modification Module and Mod1fy1ng a Character
Arrangement Table to Use It e e e
3800 Model 3 e e
Example 16: Bu11d1ng a Graphic Character Modification
Module From Multiple Sources e e e e e e . e
3800 Model 1 N
Example 17: Defining and Us1ng a Character 1n a Graph1c
Character Modification Module e e e e e e e e e
3800 Model 3 N
Example 18: Llstlng a L1brary Character Set Module .
3800 Model 1 . .
Example 19: Bu11d1ng a L1brary Character Set Module .
3800 Model 3 .
Example 20: Bu11d1ng a L1brary Character Set Module and
Modifying a Character Arrangement Table to Use It .
3800 Model 3 e e e e e e e e e e e e

xiv MVS/XA Data Administration: Utilities

188
188
189
189
189
189
190
190
191
192
193
194
195
195
195
196
212

213
213
214
214
214
214

215
215

216
216

217
217
218
219
219

220
220

221
221

221
222

222
222

223
223

224
224

225
225

226
226

227
227

228
228
231
231
231
231

232
232

/" N

N/

Example 21: Building a lerary Character Set Module

From Multiple Sources 234
(3800 Model 1 . 234
JIERISAM Program e o o o o o o s o s o o e & o o 236
Copying an ISAM Data Set . e e e e e e e e e e 236
Creating a Sequential Backup Copy 236
Overriding DCB Control Information .. 237
Creating an ISAM Data Set from an Unloaded Data Set . 238
Printing the Loglcal Records of an ISAM Data Set . . 238
Input and Output 239
Return Codes 240
Control 240
Job Control Statements 240
PARM Information on the EXEC Statement 261
IEBISAM Examples .. 262
IEBISAM Example 1 243
IEBISAM Example 2 243
IEBISAM Example 3 2644
IEBISAM Example 4 26946
IEBISAM Example 5 245
IEBPTPCH Program e o o s o s o o e o e o s e s e o s o @ 246
Printing or Punching an Entire Data Set e e e 266
Printing or Punching Selected Members 267
Printing or Punching Selected Records 267
Printing or Punching a Partitioned Dlrectory 267
Printing or Punching an Edited Data Set 267
Input and Output e e e e e e 247
Return Codes 268
Control 268
Job Control Statements 2648
SYSPRINT DD Statement 249
SYSUT1 DD Statement 249
SYSUT2 DD Statement 249
SYSIN DD Statement . 249
Utility Control Statements 269
(PRINT Statement . 250
PUNCH Statement 251
TITLE Statement 251
EXITS Statement 252
MEMBER Statement 252
RECORD Statement 252
LABELS Statement . 253
IEBPTPCH Examples . 263
IEBPTPCH Example 1 . . 264
IEBPTPCH Example 2 . . 264
IEBPTPCH Example 3 . . 265
IEBPTPCH Example 4 . . 266
IEBPTPCH Example 5 . 267
IEBPTPCH Example 6 . 267
IEBPTPCH Example 7 v . 268
IEBPTPCH Example 8 . . 269
IEBPTPCH Example 9 . 270
IEBPTPCH Example 10 . 271
IEBUPDTE Program . . e o o s o o o o o o o o 272
Creating and Updatlng Data Set Libraries e e e e 272
Modifying an Existing Data Set e e e e 272
Changing Data Set Organization 272
Input and Output e e e e 272
Return Codes 273
Control [273
Job Control Statements e e 274
PARM Information on the EXEC Statement 276
SYSPRINT DD Statement e e 275
SYSUT1 DD Statement 275
SYSUT2 DD Statement 275
SYSIN DD Statement . 276
Utility Control Statements 276
s Function Statement e e e e e e e e e e e . 277
(Function Restrictions e e e e e e e e e e . 278
Detail Statement . . 280
Detail Restrictions 281

Contents xv

Data Statement e e e e e e e e e
LABEL Statement e e e e e e e e e
ALIAS Statement e e e e e e e e e
ENDUP Statement e e e e e e e .
IEBUPDTE Examples e e e e e e e
IEBUPDTE Example e ..
IEBUPDTE Example
IEBUPDTE Example
IEBUPDTE Example
IEBUPDTE Example
IEBUPDTE Example
IEBUPDTE Example
IEBUPDTE Example
IEBUPDTE Example
IEBUPDTE Example
IEBUPDTE Example

IEHATLAS Prog"am . . * . . L] . . L] * .
Input and Output e e e e e e e
Return Codes C e e e e e e e e e
Control e e e e e e e
Job Control Statements e e e e e e
Utility Control Statements e e e e
TRACK Statement . e e e e e e
VTOC Statement e e e e e e e e e e
IEHATLAS Examples e e e e e e e e e e
IEHATLAS Example . e . e e e
IEHATLAS Example
IEHATLAS Example
IEHATLAS Example

IEHINITT Program . e o o o @
Placing a Standard Label Set on Magnetic

Input and Output . . C e e e e e e
Return Codes e e e e e e e e e e e

Control e e e e e e
‘Job Control Statements .

OO NAUDWN -
.

.

PHUNH-

PARM Information on the EXEC Stetement '

SYSPRINT DD Statement e e e
anyname DD Statement e e e e e e e
SYSIN DD Statement . e e e e
Utility Control Statement e e e
INITT Statement . e e e e
IEHINITT Examples e e e e e e e e
IEHINITT Example .o e e
IEHINITT Example
TEHINITT Example
IEHINITT Example
IEHINITT Example
IEHINITT Example
IEHINITT Example

IEHLIST Progpam . * . * o . L] L] .
Listing 0S CVOL Entr1es e e e e e e
Listing a Partitioned Data Set Directory

NoumnpUWN -

o o o o o

Edited Format . e e e e e e
Unedited (Dump) Format e
Listing a Volume Table of Contents .
Edited Format e e e e e e e
Unedited (Dump) Format e e e e e e
Input and Output e e e e e e e e e e
Return Codes e e e e e e
Control

Job Control Statements . e e e
PARM Information on the EXEC Statement
SYSPRINT DD Statement C e e e e
anynamel DD Statement e e e e e
anyname2 DD Statement e e e e
SYSIN DD Statement

Utility Control Statements e e e
LISTCTLG Statement e e e e .
LISTPDS Statement e e e e e e e e
LISTVTOC Statement e e e e e .

IEHLIST Examples e e e e e e e .

xvi MVS/XA Data Administration: Utilities

e o o & o o o

e o o o o o o o o o o

o o o o @

282
282
284
285
290
292
293
296
295
296
297
298
299
302
303
303

305
305
306
307
307
308
308
308
309
310
310
311
311

313
314
315
315
316
316
317
317
317
317
317
318

321

321
322
322
323

323

324
324

325
325
325
326
327
327
328
330
330
331
331
331
332
333
333
333
333
333
334
334
335
337

AN
NS

IEHLIST Example
IEHLIST Example
IEHLIST Example
IEHLIST Example

HWN -

IEHMOVE Program
Volume Size Compat1b111ty C e e e e e e e e e e
Space Allocation e .

Reblocking Data Sets .
Using IEHMOVE with RACF

Moving or Copying a Data Set
Sequential Data Sets
Partitioned Data Sets
BDAM Data Sets .

Multivolume Data Sets
Unloaded Data Sets e e e e e e e e e e e e e e
Unmovable Data Sets e e e

Moving or Copying a Group of Cataloged Data Sets e

Moving or Copving an 0S CVOL . . .

Moving or Copying a Volume of Data Sets .

Moving or Copying BDAM Data Sets with Var1ab1e Spanned

Records e e e e e e e

Input and Output

Return Codes

Control e e e e e e e e e e e e e e e e
Job Control Statements e e e e e e e e e e e
PARM Information on the EXEC Statement e e e
SYSPRINT DD Statement e e e e e e e e e
SYSUT1 DD Statement e e e e e e e e e e
anynamel DD Statement e e e e e e e e e e
anyname2 DD Statement e e e e e e e e e e

tape DD Statement e e e e
SYSIN DD Statement
Job Control Language for the Track 0verflow Feature

Utility Control Statements e e e e e e e e e e e e
MOVE DSNAME Statement e e e e e e e e e e e e e e
COPY DSNAME Statement e e e e e e e e e e e e e
MOVE DSGROUP Statement e e e e e e e e e e e e

COPY DSGROUP Statement e e e e e e e e e e e e

MOVE PDS Statement e e e e e e e e e e e e e e

COPY PDS Statement e e e e e e e e e e e e e e e

MOVE CATALOG Statement

COPY CATALOG Statement

MOVE VOLUME Statement

COPY VOLUME Statement

INCLUDE Statement

EXCLUDE Statement

SELECT Statement e e e e e e e e e e e e e e e e

REPLACE Statement e e e e e e e e e e e e e e e

IEHMOVE Examples e e e e e e e e e e e e e e e e .

IEHMOVE Example
IEHMOVE Example
IEHMOVE Example
IEHMOVE Example
IEHMOVE Example
JEHMOVE Example
IEHMOVE Example
IEHMOVE Example
IEHMOVE Example
IEHMOVE Example
IEHMOVE Example
IEHMOVE Example
IEHMOVE Example

IEHPROGM PI‘Ogl‘am . . ° . . . 3 3 3
Scratching a Data Set or Member e e e e e e e e e e
Renaming a Data Set or Member e e e e e e e e e
Cataloging a Data Set in an 0S CVOL e e e e e
Building or Deleting an Index in an 0s CVOL e e e e
Building or Deleting an Index Alias in an 0S CVOL ..

e = O OO NON T DN N -

WN-~O

Connecting or Releasing Two 0S CVOLs .. .
Building and Maintaining a Generation Data Group Index
in an 0S CVOL . e e e e e e e e e e e

Maintaining Data Set Passwords e e e e e e e

Contents

337
338
338
339

340
341
3462
343
364
344
345
346
3638
368
349
349
349
350
351

352
353
353
353
354
354
355
355
356
356
357
357
357
358
360
360
361
361
362
363
363
364
366
365
365
366
366
367
373
376
375
375
376
377
378
379
380
381
381
382
383
384

385
385
386
386
386
387
388

389
390

xvii

Adding Data Set Passwords
Replacing Data Set Passwords
Deleting Data Set Passwords
Listing Password Entries
Input and Output
Return Codes
Control
Job Control Statements
PARM Information on the EXEC Statement
SYSPRINT DD Statement .
anynamel DD Statement
anyname2 DD Statement
SYSIN DD Statement . .
Utility Control Statements
SCRATCH Statement . .
RENAME Statement
CATLG Statement
UNCATLG Statement
BLDX (Build Index) Statement
DLTX (Delete Index) Statement
BLDA (Build Index Alias) Statement
DLTA (Delete Index Alias) Statement
CONNECT Statement e e
RELEASE (Disconnect) Statement .
BLDG (Build Generation Data Group Index) Statement
ADD (Add a Password) Statement . .
REPLACE (Replace a Password) Statement
DELETEP (Delete a Password) Statement
LIST (List Information from a Password) Statement
IEHPROGM Examples e e e e e e
IEHPROGM Example 1
IEHPROGM Example 2
IEHPROGM Example 3
IEHPROGM Example 4
IEHPROGM Example 5
IEHPROGM Example 6
IEHPROGM Example 7
IEHPROGM Example 8
IEHPROGM Example 9
IEHPROGM Example 1

IFHSTATR Program .« . . . e o e s o o
Assessing the Quality of Tapes 1n a L1brary c e e
Input and Output N e e e
Legend
Control

Job Control Statements

Appendix A. Exit Routine Linkage e e e e e e e e e

Appendix B. DD Statements for Def1n1ng Mountable Devices
DD Statement Examples . . .
DD Example ..
DD Example
DD Example
DD Example
DD Example

VPR UWN -

Appendix C. Processing User Labels e e e o o o o s o o

Appendix D. IEHLIST VTOC Listing .
Explanation of Fields in IEHLIST Formatted VTOC Llstlng

Index e o e e s e o e o & e e+ o o o o o e o o s o o o o

MVS/XA Data Administration: Utilities

392
392
393
393
393
394
394
395
395
396
396
396
397
397
397
398
398
399
399
400
400
400
401
401
401
402
402
403
403
409
409
410
10
411
411
412
412
613
413
4146

G417
418
419
419
420
420

6422

423
423
423
426
426
426
425

626

427
428

432

EIGURES

-
N NHHOVOONOULIDAWN -

System Utility Programs

Data Set Utility Programs

Independent Utility Program

Utility Programs-Supported DASD and Tape Dev1ces
Locating the Correct Example . .

Tasks and Utility Programs

Typical Parameter Lists .

Sequence of DDNMELST Entr1es

ICAPRTBL Wait-State Codes . .

ICAPRTBL Utility Control Statements

ICAPRTBL Example Directory

Partitioned Directories HWhose Data Sets Can Be

Compared Using IEBCOMPR . .
Partitioned Directories Nhose Data Sets Cannot Be

Compared Using IEBCOMPR .

IEBCOMPR Return Codes .

Job Control Statements for IEBCDMPR

IEBCOMPR Utility Control Statements

IEBCOMPR Example Directory . .

IEBCOPY Return Codes

Job Control Statements for IEBCOPY

Changing Input Record Format Using IEBCOPY

IEBCOPY Utility Control Statements

Multiple Copy Operations within a Job Step

IEBCOPY Example Directory .

Copying a Partitioned Data Set——Full Copy .

Copying from Three Input Partitioned Data Sets .

Copy Operation with "Replace" Specified on the Data

Set Level e

Copying Selected Members w1th Reblocklng and
Deblocking . e
Eeleitlve Copy w1th "Replace“ Spec1f1ed on the Member
eve . c e
Selective Copy w1th "Replace" Spec1f1ed on the Data
Set Level ..

Renaming Selected Members Uszng IEBCOPY .

Exclusive Copy with "Replace" Spec1f1ed for One Input
Partitioned Data Set

Compress-in-Place Follow1ng Full Copy w1th “Replace"
Specified . e e e e

Multiple Copy Operatlons/Copy Steps .

Multiple Copy Operations/Copy Steps w1th1n a Job Step
IBM-Supplied Test Date Patterns . . .
IEBDG Actions . . .

IEBDG Return Codes

Job Control Statements for IEBDG

IEBDG Utility Control Statements

Defining and Selecting Fields for Output Records
Using IEBDG . .
Field Selected from the Input Record for Use 1n the
Output Record

Compatible IEBDG 0perat1ons

IEBDG User Exit Return Codes .

Default Placement of Fields w1th1n an Output Record

Using IEBDG . .

Creating Output Records w1th Ut111ty Control

Statements

Repetition Caused by the REPEAT Statement Us1ng IEBDG
IEBDG Example Directory . .

Output Records at Job Step Completxon

Output Partitioned Member at Job Step Completlon

Partitioned Data Set Members at Job Step Completion

Contents of Output Records at Job Step Complet1on
IEBEDIT Return Codes .

Job Control Statements for IEBEDIT

IEBEDIT Example Directory

Creating a Partitioned Data Set frOm Sequent1a1 Input
Using IEBGENER . .

Figures

136
143

xix

Pk ot et ot o ot o ot e fd ed e ot ok ot et
OO D O000O0O

[
——-
N-Y- "IN

120.

AUV UNNHFHOWVON OOUTPDPWNHHO-.

Expanding a Partitioned Data Set Using IEBGENER
Editing a Sequential Data Set Using IEBGENER . .
IEBGENER Return Codes . .. e e e
Job Control Statements for IEBGENER

IEBGENER Utility Control Statements

IEBGENER Example Directory .

3800 General Module Header

3800 FCB Module Structure

4248 FCB Module Structure .

4248 FCB Module Control Byte

6268 FCB Module Data Byte .
IEBIMAGE Listing of a Forms Control Buffer Module
Copy Modification Module Structure . .
IEBIMAGE Listing of Three Segments of a Copy
Modification Module . e e
Character Arrangement Table Module Structure .
IEBIMAGE Listing of a Character Arrangement Table
Module .
Graphic Character Mod1f1cat10n Module Structure
IEBIMAGE Listing of Two Segments of a Graphlc
Character Modification Module .
Library Character Set Module Structure .
IEBIMAGE Listing of Two Segments of a L1brary
Character Set . .

IEBIMAGE Return Codes .

Job Control Statements for IEBIMAGE .o . .
Utility Control Statements for IEBIMAGE . .
IEBIMAGE Listing of a Copy Mod1f1cat1on Module w1th
Overrun Notes . . .
IEBIMAGE Example D1rectory

An Unloaded Data Set Created Us1ng IEBISAM

Record Heading Buffer Used by IEBISAM e e e e e e
JTEBISAM User Exit Return Codes e e e e e e
IEBISAM Return Codes e e e e

Job Control Statements for IEBISAM e e e e
IEBISAM Example Directory c e e e e e e e
IEBPTPCH Return Codes . e e e e e e e
Job Control Statements for IEBPTPCH e e e e e
IEBPTPCH Utility Control Statements e e e e e
IEBPTPCH Example Directory . e e e e e e
IEBUPDTE Return Codes e e e e e e

Job Control Statements for IEBUPDTE e e e e .
IEBUPDTE Utility Control Statements e e e e e e e
NEW, MEMBER, and NAME Parameters e e e e e e e e
UPDATE=INPLACE Return Codes e e e e e e e e e e e
IEBUPDTE Example Directory e e e e e
Example of Reordered Sequence Numbers e e e e e
Reordered Sequence Numbers e e e e e e e e e e e

IEHATLAS Return Codes .

Job Control Statements for IEHATLAS e e e e e
Utility Control Statements for IEHATLAS e e e
IEHATLAS Example Directory . .
IBM Standard Label Group after Volume Rece1ves Data
IEHINITT Return Codes e e e e e .
IEHINITT Job Control Statements .
Printout of INITT Statement Spec1f1cat10ns and
Initial Volume Label Information e e e e .
IEHINITT Example Directory e e e e e e e
Index Structure—Listed by IEHLIST e e e e e e
Sample Directory Block . e e e e e e e
Edited Partitioned D1rectory Entry e e e e e e e
Sample Partitioned Directory L15t1ng e e
IEHLIST Return Codes . .. e e e e e e
IEHLIST Job Control Statements c e e e e e e e e
IEHLIST Utility Control Statements e e e e e e e
IEHLIST Example Directory

Move and Copy Dperat1ons——DASD Rece1v1ng Volume w1th
Size Compatible with Source Volume

Move and Copy Operations—DASD Rece1v1ng Volume w1th
Size Incompatible with Source Volume

Move and Copy Operations—Non-DASD Rece1v1ng Volume
Moving and Copying Sequential Data Sets e e e e
Moving and Copying Partitioned Data Sets e e e e

o .

xx MVS/XA Data Administration: Utilities

144
145
146
147
149
157
171
173
174
174
175
176
177

178
180

181
183

184
185

186
188
188
189

196
212
238
239
239
240
240
242

2648

2648
250
263
273
276
276
279
284
290
299
301
306
307
308
309
314
316
316

318
321
325
326
326
327
331
332
334
337

3461

341
342
345
346

RN

NS

121.

122.
123.
126.

125.
126.
127.
128.
129.
130.
131.

132.
133.

134.
135.

136.

137.
138.
139.
140.
141.
142.
143,
144,
145,
146.
147.

148,

Partitioned Data Set Before and After an IEHMOVE
Copy Operation . .

Merging Two Data Sets U51ng IEHMOVE

Merging Three Data Sets Using IEHMOVE .
Moving and Copying a Group of Non- VSAM Cataloged
Data Sets .

Moving and Copy1ng the OS CVOL .

Moving and Copying a Volume of Data Sets

IEHMOVE Return Codes . e e e e

IEHMOVE Job Control Statements .

IEHMOVE Utility Control Statements

IEHMOVE Example Directory .
Index Structure Before and After an IEHPROGM Bu11d
Operation . .
Building an Index A11as U51ng IEHPROGM .
Connecting an 0S CVOL to a Second 0S CVOL Us1ng
IEHPROGM . ..
Connecting Three OS CVOLs U51ng IEHPROGM

Building a Generation Data Group Index Using
IEHPROGM .

Relationship between the Protectlon Status of a Data
Set and Its Passwords

Listing of a Password Entry

IEHPROGM Return Codes

IEHPROGM Job Control Statements

IEHPROGM Utility Control Statements

IEHPROGM Example Directory .

SMF Type 21 (ESV) Record Format (48 bytes)

SMF Type 21 (ESV) Record Format (62 Bytes)

Sample Output from IFHSTATR

IFHSTATR Job Control Statements

IFHSTATR Example

Parameter Lists for Non Label Proce551ng Ex1t
Routines

Sample Output of IEHLIST——Volume Table of Contents

347
347
368

350
351
352
353
354
358
373

387
387

388
389

390

391
393
394
395
397
409
417
418
419
420
421

422
427

Figures xxi

.

INTRODUCTION

STE 1

MVS/Extended Architecture Data Facility Product provides utility
programs to assist in organizing and maintaining data. Each
utility program falls into one of three classes of programs,
determined by the function performed and the type of control of
the utility.

OGRAMS

System utility programs are used to maintain and manipulate
system and user data sets. Entire volume manipulation, for
example, copying or restoring, is also provided. These programs
must reside in an authorized library and are controlled by JCL
statements and utility control statements.

They can be executed as jobs or can be invoked as subroutines by
authorized programs. The invocation of utility programs and the
linkage conventions are discussed in "Invoking Utility Programs
from a Problem Program™ on page 12.

Figure 1 is a list of system utility programs and their purpose.

System
Utility Purpose
IEHATLAS To assign alternate tracks and recover usable data

records when defective tracks are indicated
IEHINITT To write standard labels on tape volumes
IEHLIST To list system control data
IEHMOVE To move or copy collections of data
IEHPROGM To build and maintain system control data

IFHSTATR To select, format, and write information about tape
errors from the IFASMFDP tape

Figure 1. System Utility Programs

OGRAMS

Data set utility programs are used to reorganize, change, or
compare data at the data set and/or record level. These
programs are controlled by JCL statements and utility control
statements.

These utilities manipulate partitioned, sequential, or indexed
sequential data sets provided as input to the programs. Data
ranging from fields within a logical record to entire data sets
can be manipulated.

Data set utility programs can be executed as jobs or can be
invoked as subroutines by a calling program. The invocation of
utility programs and the linkage conventions are discussed in
"ITnvoking Utility Programs from a Problem Program™ on page 12.

Utility programs that manipulate data sets and are included in

this manual cannot be used with VSAM data sets. Information
about VSAM data sets can be found in VSAM Admini ion Guid

Introduction 1

Two utilities, IEHMOVE and IEBCOPY, do not support Virtual
Input/0Output (VIO) data sets.

A
Figure 2 is a list of data set utility programs and their i% ,
purpose. e
Data Set

utility Purpose

IEBCOMPR Totcompare records in sequential or partitioned data
sets

IEBCOPY To copy, compress, or merge partitioned data sets, to
add RLD count information to load modules, to select
or exclude specified members in a copy operation, and
to rename and/or replace selected members of
partitioned data sets

IEBDG Lotcreate a test data set consisting of patterned
ata
IEBEDIT To selectively copy job steps and their associated

JOB statements

IEBGENER To copy records from a sequential data set or to
convert a data set from sequential organization to
partitioned organization

IEBIMAGE To modify, print, or link modules for use with the
IBM 3800 Printing Subsystem, the IBM 3262 Model 5, or
the 4248 printer

IEBISAM To place source data from an indexed sequential data
set into a sequential data set in a format suitable
for subsequent reconstruction

IEBPTPCH To print or punch records that reside in a sequential
or partitioned data set

IEBUPDTE To incorporate changes to sequential or parti%ioned
data sets ‘

Figure 2. Data Set Utility Programs

INDEPENDENT UTILITY PROGRAMS

Independent utility programs are used to prepare devices for
system use when the operating system is not available. They
operate outside of, and in support of, the operating system, are
controlled by utility control statements, and cannot be invoked
by a calling program. This publication addresses only the
ICAPRTBL utility program.

Figure 3 on page 3 shows the independent utility program and its
purpose.

2 MVS/XA Data Administration: Utilities

Independent
Utility Purpose

ICAPRTBL To load the forms control and universal character
set buffers of the IBM 3203-5 or 3211 printer after
an unsuccessful attempt to IPL, with the 3203-5 or
3211 assigned as the output portion of a composite
console. ICAPRTBL operates only in a System/370
environment but supports MVS/XA with stand-alone
buffer loading for the IBM 3211 printer. ICAPRTBL
does not function with any IBM processor in
extended architecture mode.

Figure 3. Independent Utility Program

The selection of a specific program depends on the nature of the
job to be performed. For example, renaming a data set involves
modifying system control data. Therefore, a system utility
program can be used to rename the data set. In some cases, a
specific function can be performed by more than one program.
"Guide to Utility Program Functions™ on page 8 will help you
find the program that performs the function you need.

0

Except where noted, all the following DASD and tape devices are
supported by all utility programs. Restrictions and peculiar
device support are noted in the individual utility sections.

The table below indicates specific devices supported, and the
notation to be used to reference them. - The term DASD includes
all direct access storage devices listed below.

Device Number | Devices
DASD: 2305-2 2305-2
3330 3330-1, 3330-2, 3333 and 3350
in 3330-1 compatibility mode
3330-1 3330-11, 3333-11 and 3350 in
3330-11 compatibility mode
3330V 3850 MSS Virtual Volumes
3340 3340, 3344 (both 35 & 70
megabyte models)
3350 3350 Native mode
3375 3375
3380 3380 (all models)
Tape: 3400 3620 (all models) and 3430
3480 36480

Figure 6. Utility Programs-Supported DASD and Tape Devices

Introduction 3

CONTROL

System and data set utility programs are controlled by job
control statements and utility control statements. The
independent utility program is controlled by utility control
statements only; because this program is independent of the
operating system, job control statements are not required. The
job control statements and utility control statements necessary
to use utility programs are provided in the major discussion of
each utility program.

JOB CONTROL STATEMENTS

A system or data set utility program can be introduced to the
operating system in different ways:

. Job control statements can be included in the input stream.

. Job control statements, placed in a procedure library or
defined as an inline procedure, can be included by means of
the EXEC job control statement.

U A utility program can be invoked by a calling program.

If job control statements are placed in a procedure library,
they should satisfy the requirements for most applications of
the program; a procedure, of course, can be modified or
supplemented for applications that require additional
parameters, data sets, or devices. The data set utility
IEBUPDTE can be used to enter a procedure into a procedure
library; see "IEBUPDTE Program™ on page 272.

A job that modifies a system data set (identified by SYS1.)
must be run in a single job environment; however, a job that
uses a system data set, but does not modify it, can be run in a
multiprogramming environment. The operator should be informed
of all jobs that modify system data sets.

DD statements should ensure that the volumes on which the data
sets reside cannot be shared when update activity is being
performed.

Job control statements can be continued on subsequent lines, but
the continued line must begin in column 4 through 16. No
continuation mark is required in column 72.

UTILITY CONTROL STATEMENTS

Utility control statements are used to identify a particular
function to be performed by a utility program and, when
required, to identify specific volumes or data sets to be
processed.

The control statements for the utility programs have the
following standard format:

label operation operand

The label symbolically identifies the control statement and,
with the exception of system utility program IEHINITT, can be
omitted. MWhen included, a name must begin in the first position
of the statement and must be followed by one or more blanks. It
can contain from one to eight alphameric characters, the first
of which must be alphabetic.

The operation identifies the type of control statement. It must
be preceded and followed by one or more blanks.

The operand is made up of one or more keyword parameters,
separated by commas. The cperand field must be preceded and
followed by one or more blanks. Commas, parentheses, and blanks
can be used only as delimiting characters.

4 MVS/XA Data Administration: Utilities

Comments can be written in a utility statement, but they must be
separated from the last parameter of the operand field by one or
more blanks.

Continuing Utility Control Statements

Restrictions

0 CON

Utility control statements are coded on cards or as online input
and are contained in columns 1 through 71. A statement that
exceeds 71 characters must be continued on one or more
additional lines. A nonblank character must be placed in column
72 to indicate continuation. A utility statement can be
interrupted either in column 71 or after any comma.

The continued portion of the utility control statement must
begin in column 16 of the following statement.

Note: The IEBPTPCH and IEBGENER utility programs permit certain
exceptions to these requirements (see the applicable program
description).

The utility control statements are’discussed in detail, as
applicable, in the remaining chapters.

U Unless otherwise indicated in the description of a specific
utility program, a temporary data set can be processed by a
utility program only 1if vou specify the complete name
generated for the data set by the system (for example,
DSNAME=SYS82296 .T000051 .RP001.JOBTEMP.TEMPMOD) .

. The utility programs described in this book do not normally
support VSAM data sets. For certain exceptions, refer to
the various program descriptions.

. Most utility programs do not support ISCII/ASCII tape data
sets. (Conversion from EBCDIC codes to ISCII/ASCII codes
will result in loss of data.) Refer to the IEHINITT program
for specific exceptions. '

0

A uniform system of notation describes the format of utility
commands. This notation is not part of the language; it merely
provides a basis for describing the structure of the commands.

The command format illustrations in this book use the following
conventions:

. Brackets [1 indicate optional parameters.

. Braces { } indicate a choice of entry; unless a default is
indicated, you must choose one of the entries.

[Items separated by a vertical bar (|) represent alternative
items. No more than one of these items may be selected.

U An ellipsis (...) indicates that multiple entries of the
type immediately preceding the ellipsis are allowed.

. Other punctuation (parentheses, commas, spaces, etc.) must
be entered as shown. A space is indicated by a blank.

. BOLDFACE type indicates the exact characters to be entered,

except as described in the bulleted notes above. Such items
must be entered exactly as illustrated.

U Lowercase underscored type specifies fields to be supplied
by the user.

Introduction 5

keyword=device=1list

ON _CONSID

. BOLDFACE UNDERSCORED type indicates a default option. If
the parameter is omitted, the underscored value is assumed.

The term kevword is replaced by VOL, FROM, or TO.

The term device is replaced by either a generic name, for
example, 3380; or an esoteric name, for example, DISK, if this
esoteric name has been generated into vour system. For DASD,
the term list is replaced by one or more volume serial numbers
separated by commas. When there is more than one volume serial
number, the entire list field must be enclosed in parentheses.

For tapes, the term list is replaced by either one or more
volume serial number/comma/data set sequence number pairs. Each
pair is separated from the next pair by a comma. MWhen there is
more than one pair, the entire list field must be enclosed in
parentheses; for example: FROM=3600=(tapeA,1l,tapeB,1).

S

The System/370 versions of Device Support Facilities (Releases 1
through 5) are not applicable for Data Facility Product
installations. You must order and install the MVS/XA version of
Device Support Facilities Release 6 (5655-257) to run in an
MVS/XA Data Facility Product environment.

Releases 1.0 and 1.1 of Data Facility Data Set Services (DFDSS)
are not applicable for Data Facility Product installations. You
must install DFDSS Release 1.2 or higher to run in an MVS/XA
Data Facility Product environment. Installation of Release 1.2
supersedes Release 1.1.

The following utilities are not included as support for the Data
Facility Product for MVS/XA.

~
. IBCDASDI—Disk initialization functions are described in
evice S a ities Us r' Guide er
U IBCDMPRS——Stand-alone disk restore functions are described
in DFDSS: User's Guide and Reference.
. IEHDASDR—Disk initialization functions are described in
evice Support Facilities User's Guide and Reference. Dump
restore functions are described in SS: ! i
Reference.
Note: DFDSS does not support the dump format produced by
IEHDASDR or DRWDASDR. Dumps taken by DFDSS in a System/370
environment may be restored by DFDSS in an MVS/XA environment.
. Analysis Program-1 (AP-1)—Functions to aid in the analysis
of DASD errors are described in Device Support Facilities
a e
“

6 MVS/XA Data Administration: Utilities

SPECI EFERENCING AIDS

- To help you locate the correct utility program for your needs
(and locate the correct example of the program for reference two
special referencing aids are included in this publication.
To locate the correct utility program, refer to Figure 6 on
page 8 under "Guide to Utility Program Functions."

To locate the right example, use the figure (called an "example
directory") that precedes each program's examples. Figure 5
shows a portion of the example directory for IEHMOVE. The
figure shows that IEHMOVE Example 1 is an example of moving a
sequential data set and that IEHMOVE Example 2 is an example of
copying a sequential data set.

Operation Device Comments Example
MOVE Disk Source volume is demounted 1
Sequential after job completion.
COPY Disk Three cataloged sequential 2
Sequential data sets are to be copied.

The disks are mountable.

Figure 5. Locating the Correct Example

Introduction 7

GUIDE TO UTILITY PROGRAM FUNCTIONS

AN
1\4&“-//
Figure 6 is a list of tasks that the utility programs can be
used to perform. The left-hand column shows tasks you might
want to perform. The middle column more specifically defines
the tasks., The right-hand column shows the utility programs
that can be used for each task. Notice that, in some cases,
more than one program may be available to perform the same task.
. Utility
Task Options Program
Add a password IEHPROGM
Alter in a load module IEBCOPY
place
Assigni tracks to a DASD volume and IEHATLAS
alternate recover usable data
Catalog a data set in an 0S CVOL IEHPROGM
Change data set organization IEBUPDTE
logical record length IEBGENER
Compare partitioned data sets IEBCOMPR
sequential data sets records ke
Compress in a partitioned data set IEBCOPY
place N
Convert to a sequential data set created as IEBCOPY N
partitioned a result of an unload ‘ J
: w«
sequential data sets IEBUPDTE,
IEBGENER
Convert to a partitioned data set IEBUPDTE,
sequential IEBCOPY
an indexed sequential data set IEBISAM,
IEBDG
Copy a direct access volume IEHMOVE
' a load module IEBCOPY
a partitioned data set IEBCOPY,
TEHMOVE
a volume of data sets IEHMOVE
an indexed sequential data set IEBISAM
job steps IEBEDIT
selected members IEBCOPY,
IEHMOVE
sequential data sets IEBGENER,
IEHMOVE,
IEBUPDTE

Figure 6 (Part 1 of 4). Tasks and Utility Programs

8 MVS/XA Data Administration: Utilities

-~

. Utility
Task Options Program
Create a backup copy of a partitioned IEBCOPY
data set
a character arrangement table IEBIMAGE
module
a copy modification module IEBIMAGE
a 3800 or 6248 forms control IEBIMAGE
buffer module
a graphic character modification IEBIMAGE
module
a library character set module IEBIMAGE
a library of partitioned members IEBUPDTE
a member IEBDG
IEBGENER
IEBUPDTE
a sequential output data set IEBDG
an indexed sequential data set IEBDG
an output job stream IEBEDIT
Delete a password IEHPROGM
catalog entries IEHPROGM
records in a partitioned data set IEBUPDTE
Edit and a sequential data set IEBGENER,
convert to IEBUPDTE
partitioned
Edit and a job stream IEBEDIT
copy
a sequential data set IEBGENER,
IEBUPDTE
Edit and error statistics by volume (ESV) IFHSTATR
list records
Edit and a sequential data set IEBPTPCH
print
Edit and a sequential data set IEBPTPCH
punch
Enter a procedure into a procedure IEBUPDTE
library
Exclude a partitioned data set member IEBCOPY,
from a copy operation IEHMOVE
Expand a partitioned data set IEBCOPY
a sequential data set IEBGENER
Generate test data IEBDG

Figure 6 (Part 2

of 4). Tasks and Utility Programs

Guide to Utility Program Functions

. Utility
Task Options Program
Get alternate tracks on a DASD volume TEHATLAS
Include changes to members or séquential IEBUPDTE
data sets
Insert into a partitioned data set IEBUPDTE
records
Label magnetic tape volumes IEHINITT
List a password entry IEHPROGM
a volume table of contents IEHLIST
number of unused directory blocks IEBCOPY
and tracks
partitioned directories TIEHLIST
Load a previously unloaded partitioned IEBCOPY
data set
an indexed sequential data set " IEBISAM
an unloaded data set IEHMOVE
UCS and FCB buffers of a 3211 ICAPRTBL
Merge partitioned data sets IEHMOVE,
IEBCOPY
Modify a partitioned or sequential IEBUPDTE
data set
Move a volume of data sets IEHMOVE
partitioned data sets IEHMOVE
sequential data sets IEHMOVE
Number in a new member IEBUPDTE
records
in a partitioned data set IEBUPDTE
Password add a password IEHPROGM
protect
delete a password IEHPROGM
list passwords IEHPROGM
replace a password IEHPROGM
Print sequential data sets IEBGENER,
IEBUPDTE,
IEBPTPCH
partitioned data sets IEBPTPCH
selected records IEBPTPCH
Punch a partitioned data set member IEBPTPCH
a sequential data set IEBPTPCH

Figure 6 (Part 3

of 4). Tasks and Utility Programs

10 MVS/XA Data Administration: Utilities

utility

Task options Program
selected records IEBPTPCH
Reblock a load module IEBCOPY
a partitioned data set IEBCOPY
a sequential data set {Egggg;g;
Recover data from defective tracks on IEHATLAS
direct access volumes
Re-create a partitioned data set IEBCOPY
Rename a partitioned data set member IEBCOPY,
IEHPROGM
Zaisqgggtial or partitioned IEHPROGM
moved or copied members IEHMOVE
Renumber logical records IEBUPDTE
Replace a password IEHPROGM
data on an alternate track IEHATLAS
identically named members IEBCOPY
logical records IEBUPDTE
members IEBUPDTE
records in a member IEBUPDTE
records in a partitioned data set IEBUPDTE,
IEBCOPY
selected members IEBCOPY
selected members in a move or TEBCOPY,
copy operation IEHMOVE
Scratch a volume table of contents IEHPROGM
data sets IEHPROGM
Uncatalog data sets IEHPROGM
Unload a partitioned data set IEHMOVE,
IEBCOPY
a sequential data set IEHMOVE
an indexed sequential data set IEBISAM
Update in a partitioned data set IEBUPDTE
place

Figure 6 (Part 4

of 4). Tasks and Utility Programs

Guide to Utility Program Functions

11

INVOKING UTILITY

OGRAMS Q OBLE ROGRA

Utility programs can be invoked by a problem program through the
use of the ATTACH or LINK macro instruction.

The problem program must supply the following to the utility
program:

. The information usually specified in the PARM parameter of
the EXEC statement

. The ddnames of the data sets to be used during processing by
the utility program

The following programs may execute authorized functions:
IEBCOPY, IEHATLAS, IEHINITT, IEHMOVE, IEHPROGM

When executing an authorized function, the calling program must
be authorized via the Authorized Program Facility (APF).

For details on program authorization, see Conversion Notebook.

When IEHMOVE, IEHPROGM, or IEHLIST is dynamically invoked in a
job step containing a program other than one of these three, the
DD statements defining mountable devices for the IEHMOVE,
IEHPROGM, or IEHLIST program must be included in the job stream
ahead of DD statements defining data sets required by the other
program.

LINK OR ATTACH MACRO INSTRUCTION

The LINK or ATTACH macro instruction can be used to invoke a
utility program from a problem program.

The format of the LINK or ATTACH macro instruction is:

[labell {LINKIATTACH} EP=progname
s PARAM=(optionaddrl,ddnameaddr]

[,hdingaddrl)
»VL=1
where:
EP=progname
specifies the name of the utility progran.
PARAM=

specifies, as a sublist, address parameters to be passed
from the problem program to the utility program. These
values can be coded:

optionaddr
specifies the address of an option list, OPTLIST,
which is usually specified in the PARM parameter of
the EXEC statement. This address must be written for
all utility programs.

12 MVS/XA Data Administration: Utilities

=N
/

O

ddnameaddr
specifies the address of a list, DDNMELST, of
alternate ddnames for the data sets used during
utility program processing. If standard ddnames are
used and this is not the last parameter in the list,
it should point to a halfword of zeros. If it is the
last parameter, it may be omitted.

hdinagaddr
specifies the address of a 6-byte list, HDNGLIST,
which contains an EBCDIC page count for the output
device. If hdingaddr is omitted, the page number
defaults to 1.

vL=1
specifies that the sign bit of the last fullword of the
address parameter list is to be set to 1.

Figure 7 shows these lists as they exist in the user's DC area.
Note that the symbolic starting addresses for OPTLIST and
DDNMELST fall on halfword boundaries that are not also fullword
boundaries.

Full word Full word
bounary boundary

Half word Half word

OO|O0O8| N|JO |V |E R | F Y 0
Starting address of
the optionaddr - | =,]100|48 |OO [0O0O| 00| OO 1
parameter list il
(OPTLIST) # 0|00 |00 |00 00| 00|00 2
00 |00|00|(00 |00 |00|00]| 00 3
Startingaddress of g 00|00} oo|oo|o0|o0| 00|00 4
the ddnameaddr y
parameter list oo|oo|oo|oo| t [N|P| U
(DDNMELST) .
T 1 1 140]00|00| 00|00 6
00 |00|00|00|00|00| 00|00 7
Starting address of
the hdingaddr 00 |00|j00|00]| 1| N Pl U 8
parameter list T S E H |
(HDNGLIST) s T|w c 9
00|04| 00|00 10
OO |0A 1

Figure 7. Typical Parameter Lists

The PARAM parameter of the LINK macro instruction in the calling
program provides the utility program with the symbolic addresses
of the parameter lists shown in Figure 7, as follows:

. The option list, OPTLIST, which includes the number of bytes
in the list (hexadecimal 08) and the NOVERIFY option

. The alternate ddname list, DDNMELST, which includes the
number of bytes in the list (hexadecimal 48) and alternative
names for the SYSIN INPUT11l, SYSUT1 INPUTSET, and SYSUT2
WHICHPTR data sets

Invoking Utility Programs from a Problem Program 13

. The heading list, HDNGLIST, which includes the number of
bytes in the list (hexadecimal 04) and indicates the
starting page number (hexadecimal OA, or decimal 10) for

Vs
printing operations controlled through the SYSPRINT data set |

"

The option list, OPTLIST, must begin on a halfword boundary that
is not also a fullword boundary. The two high-order bytes
contain a hexadecimal count of the number of bytes in the
remainder of the OPTLIST. (For all programs except IEHMOVE,
IEHLIST, IEHPROGM, IEHINITT, IEBUPDTE, and IEBISAM, the count
must be zero.) OPTLIST is free form, with fields separated by
commas. No blanks or zeros should appear in the list.

The ddname list, DDNMELST, must begin on a halfword boundary
that is not also a fullword boundary. The two high-order bytes
contain a count of the number of bytes in the remainder of the
list. Each name of fewer than 8 bytes must be left aligned and
padded with blanks. If an alternate ddname is omitted from the
list, the standard name is assumed. If the name is omitted
within the list, the 8-byte entry must contain binary zeros.
Names can be omitted from the end by merely shortening the list.
Figure 8 shows the sequence of the 8-byte entries in the ddname
list pointed to by .

Entry Standard Name

00000000
00000000
00000000
00000000
SYSIN
SYSPRINT
00000000
SYSUT1
SYSUT2
SYSUT3
SYSUT4

Figure 8. Sequence of DDNMELST Entries

VoONGOUIDRWN

[Y.
o

The first 2 bytes of HDNGLIST contain the length in bytes of the
heading list. The remaining 4 bytes contain a page number that
thi utility program is to place on the first page of printed
output.

Some utilities, however, use fewer than four bytes per page
number. Storing a page number that is too large in HDNGLIST
could cause unpredictable results. For example, if you link to
IEBIMAGE with a page number of 998 in HDNGLIST, the following
page numbers result:

998
999
(biank)

2
(and so on)

In this case, you cannot specify a page number larger than 999,

14 MVS/XA Data Administration: Utilities

~

c

p

NG

0G

c

ICAPRTBL is an independent utility that operates only in a
System/370 environment but supports MVS/XA with stand-alone
buffer loading. It is used to load the universal character set
(UCS) buffer and the forms control buffer (FCB) for an IBM 3211
or 3203-5 Printer. ICAPRTBL does not function with any IBM
processor in extended architecture mode.

ICAPRTBL is used when the 3211/3203-5 is assigned as the output
portion of a composite console and an unsuccessful attempt has
been made to initialize the operating system because the UCS and
FCB buffers contain improper bit patterns. ICAPRTBL loads the
buffers properly so the operating system can be initialized.

Note: MWhen an operable console printer keyboard is available,
thetbuffers are loaded under the control of the operating
system.

ICAPRTBL must be loaded from a card reader. Control statements
must follow the last card of the program. Only one printer can
be initialized each time the program is executed.

To execute ICAPRTBL:

1. Mount the correct train on the printer and ready the
printer.

2. Place the object program deck and the control cards in the
ﬁard reader. Ready the reader and press the END OF FILE
ey.

3. Load the object program from the reader by setting the load
selector switches and pressing the console LOAD key.

Wait state codes will be displayed in the address portion of the
PSH for normal termination and for input/output, system, or
control card errors. Code B0l is issued for normal termination;
B02 through B07 are issued for control card errors; B0A through
BOC are issued for system errors; and Bll through BlD are issued
for input/output errors. Figure 9 on page 16 shows these codes
and their meanings.

ICAPRTBL Program 15

INPU

D_oU

Code Meaning

BO1 Visually check the train image printed on the
3211/3203-5.

BO2 Missing control card or control card out of order,
BO3 Incorrect JOB statement.
BO4G Incorrect DFN statement.
BO5 Incorrect UCS statement.
BO6 Incorrect FCB statement.
BO7 Incorrect END statement.

BOA External interrupt.

BOB Program check interrupt.

BOC Machine check interrupt.

Bll Reader not online.

B12 Reader not ready.

B13 Reader unit check (dispiay low virtual storage locations
2 through 7 for sense information).

Bl4 Reader channel error.

B15 No device end on reader.

B19 Printer not online.

B1lA Printer not ready.

B1B Printer unit check (display low virtual storage locations
2 through 7 for sense information).

Bl1C Printer channel error.

B1D No device end on printer.

Figure 9. ICAPRTBL Wait-State Codes

ICAPRTBL uses, as input, utility control statements that contain
images to be loaded into the universal character set and/or the
forms control buffer. ICAPRTBL produces, as output, properly
loaded UCS and FCB buffers.

ICAPRTBL is controlled by utility control statements. Because
ICAPRTBL is an independent utility program, operating system job
control statements are not used.

16 MVS/XA Data Administration: Utilities

(

UTILITY CONTROL STATEMENTS

JOB Statement

DFN Statement

All utility control statement operands must be preceded and
followed by one or more blanks. Continuation requirements for
utility control statements are described in "Continuing Utility
Control Statements"™ on page 5.

ICAPRTBL utility control statements are listed in Figure 10.

Statement Use
JOB Indicates the beginning of an ICAPRTBL job.

DFN Defines the address of the 3211 or 3203-5, specifies
that lowercase letters are to be printed in
uppercase when the lowercase print train is not
available, and identifies UCS and FCB image names.

ucs Contains an image of the characters to be loaded
into the UCS buffer.

FCB Defines the image to be loaded into the FCB.

END Indicates the end of an ICAPRTBL 3job.

Figure 10. ICAPRTBL Utility Control Statements

The JOB statement indicates the beginning of an ICAPRTBL job.
The format of the JOB statement is:

[labell JOB [user-informationl

The DFN statement is used to define the address of the 3211 or
3203-5, to specify that lowercase letters are to be printed in
uppercase when the lowercase print train is not available, and
to identify UCS and FCB image names.

The format of the DFN statement is:

DFN ADDR=cuu

[,FOLD=Y|NI]
[,DEVT=3211]|3203-51
[,UCS=ucsname|ANJA11l]
[,FCB=fcbname|STD|STD21]

ICAPRTBL Program 17

UCS Statement

The UCS statement contains an image to be loaded into the UCS AN
buffer.

The format of the UCS statement is:

i
e

[ucsnamel ucs ucs-image

FCB Statement

The FCB statement defines the image to be loaded into the forms
czntrol guffer. The FCB statement may precede or follow the UCS
statement.

The format of the FCB statement is:

[fcbnamel FCB LPI={6]83}
sLNCH=((1,¢c)[,(1lyc)...1)
» FORMEND=x

END Statement)
The END statement signals the end of the ICAPRTBL job. .
The format of the END statement is:

[labell END [user-informationl

18 MVS/XA Data Administration: Utilities

! (Parameters

Applicable
Control
Statements

Description of Parameters

ADDR

DFN

ADDR=cuu
specifies the channel number, ¢, and unit
number, uu, of the 3211 or 3203-5.

DEVT

DFN

DEVT=321113203-5
specifies the device type to which the ADDR
parameter applies. 3211 is the default device
type.

FCB

DFN

FCB=fcbname|STD|STD2
specifies a 1- to 8-character name of the image
loaded into the forms control buffer. The
actual image loaded into the buffer is not
affected by this name, but serves as a
meaningful reference when printed on the
printer. fcbname should be the same as the FCB
image being used. STD2 is the default.

FOLD

DFN

FOLD=Y|N
specifies whether lowercase letters are to be
printed as uppercase letters when the lowercase
pranz train is not available. The values can be
coded:

Y
specifies that lowercase letters are to be
printed as uppercase letters when the
lowercase print train is not available.

specifies that lowercase letters are not to

be printed as uppercase letters. This is
the default.

FORMEND

FCB

FORMEND=x
specifies the number of lines (maximum 180) on
the printer form. For an ll-inch form, spacing
six lines per inch, x must be 66.

LNCH

FCB

LNCH=((1,¢)I,(lsc)... 1)

specifies the channels of the FCB image. Each

set of parentheses must contain the line number
(1-180), a comma, and the channel number (1-12)
to be assigned to that line. One or all of the
12 channels may be assigned in any order. Each
set must be separated by commas and the entire

group surrounded by parentheses.

LPI

FCB

LPI={6]82}
specifies the number of lines per inch that will

be printed on the document. These values can be
coded:

6

specifies that six lines per inch are to be
printed.

specifies that eight lines per inch are to
be printed.

ICAPRTBL Program 19

Applicable

‘ Control L.

| Parameters Statements Description of Parameters

{ ucs DFN UCS=ucsname|AN|ALl

i is a 1 to 8 character alphameric name of the

‘ image loaded into the UCS buffer. This name is

| printed on the printer to serve as a reference
to the print train being used.
AN

is the default for 3203-5 devices.

All

: is the default for 3211 devices.

\ ucs-image Ucs ucs—image
specifies characters to be loaded into the UCS
buffer. The characters must be contained in
columns 16 through 71. The first UCS statement
contains the first 56 characters; subsequent
statements contain continuations of the image to
be loaded into the UCS buffer. A continuation
mark (any printable character) is required in
column 72 of a continued UCS image card.

user- JOB [user-informationl
information| END specifies user explanation of action and
comments.
ICAPRTBL EXAMPLES

The examples that follow illustrate some of the uses of

ICAPRTBL.

Figure 11 can be used as a quick-reference guide to

the examples. The numbers in the "Examples™ column refer to
examples that follow.

Devices

3211

3203-5

Examples
1, 2
3, 4

Figure 11. ICAPRTBL Example Directory

20 MVS/XA Data Administration: Utilities

| ICAPRTBL EXAMPLE 1

C

In this example, a 3211 UCS image (All) and an FCB image are
loaded into the UCS and FCB buffers.

STD2 FCB LPI=6,

END

JOB LOAD All IMAGE

DFN ADDR=002, FOLD=N

All UCS 1<.=IHGFEDCBAX$-RQPONMLKJ%,&ZYXWVUTS/3#0987654321<.=IHGF
EDCBAX$-RQPONMLKJ%, &ZYXWVUTS/9#0987654321<.=IHGFEDCBAX$~
RQPONMLKJ Y, &ZYXWVUTS/9#0987654321<.=IHGFEDCBA%$-RQPONMLK
J%, &ZYXWVUTS/2%#0987656321< . =IHGFEDCBAX$-RQPONMLKJ %, &ZYXW
VUTS/3#0987654321<,=IHGFEDCBAX$-RQPONMLKJ%,&ZYXWVUTS/#0
987654321<.=ITHGFEDCBAX$-RQPONMLKJ%, &ZYXWVUTS/23098765432
1<.=THGFEDCBAX$-RQPONMLKJ%, &ZYXWVUTS/9#09876564321<.=IHGF
EDCBAX$-RQPONMLKJ%, &ZYXWVUTS/2#098765432

LNCH=((4,1),(10,2),(16,3),(22,4),(28,5),(34,6),(40,7),
(66,8),(52,10),(58,11),(64,12),(66,9)),
FORMEND=66

72

o000

ICAPRTBL EXAMPLE 2

The control statements are discussed below:

. DFN specifies the channel and unit number of the default
device type 3211 and FOLD=N specifies that lowercase letters
are not to be printed as uppercase letters when the
lowercase print train is not available.

U UCS specifies the characters to be loaded into the UCS
buffer.

U FCB specifies the values to be loaded into the forms control
buffer. LPI=6 indicates that six lines per inch are to be
printed, and FORMEND=66 specifies 66 lines per page.

In this example, a 3211 UCS image (P11l) and an IBM standard FCB
image are loaded into the UCS and FCB buffers by specifying
images via the UCS and FCB parameters of the DFN statement.

JOB LOAD 3211 P11 IMAGE
gsg UCS=P11,ADDR=004, FCB=STD

The DFN control statement is discussed below:

. gglgmitting the DEVT parameter, the default device type is

. The UCS parameter specifies the UCS image ID to be loaded
into the UCS buffer from standard image tables provided by
the utility. '

. The ADDR parameter specifies the channel and unit number of
the 3211.

. By omitting the FOLD parameter, the default FOLD value N is
selected, specifying that lowercase letters are not to be
printed as uppercase letters when the lowercase print train
is not available.

ICAPRTBL Program 21

° The FCB parameter specifies the standard FCB image id (STD)
to be loaded into the FCB buffer from standard image tables

{ € ne A
| provided by the utility. G
i % ’
| ICAPRTBL EXAMPLE 3
|
| In this example, a 3203-5 UCS image (AN by default) and a
‘ standard FCB image (STD2 by default) are loaded into the UCS and
i FCB buffers.
JOB
DFN DEVT=3203-5,ADDR=002
END
The DFN statement is discussed below:
. The DEVT parameter specifies the device type as 3203-5.
. The ADDR parameter specifies the channel and unit number of
the 3203-5.
. By omitting the FOLD parameter, the default FOLD value N is
selected, specifying that lowercase letters are not to be
printed as uppercase letters when the lowercase print train
is not available.
| . By omitting both a UCS statement and the UCS parameter, the
| default 3203-5 UCS image (AN) is loaded into the UCB buffer
| from standard image tables provided by the utility.

| . By omitting both an FCB statement and the FCB parameter, the

‘ default FCB image (STD2) is loaded into the FCB buffer from N

standard image tables provided by the utility.

ICAPRTBL EXAMPLE 4

In this example, a 3203-5 UCS image (AN by default) and a
provided FCB image are loaded, respectively, into the UCS and
FCB buffers.

72
JOB 3203-5 USER FCB
USER FCB FORMEND=88,LPI=8,LNCH
(20,3),(28,4),(36,5),
(60,8),(68,10),(76,11
DFN FOLD=Y,
FCB=STD,
ADDR=003,
DEVT=3203-5

=((4,1),(12,2),
(46,6),(52,7),
),(84,12),(88,9))

OO0 OO0

END

The control statements are discussed below:

o The JOB statement includes user comments on the action

taken.

. The FCB statement specifies the values to be loaded into the
forms control buffer. FORMEND=88 and LPI=8 indicate that N
there will be 88 lines per page, 8 lines per inch. Note ,%:)
that the specification of the FCB parameter on the DFN 4

statement is overridden by the FCB statement specification.

22 MVS/XA Data Administration: Utilities

The DEVT parameter of the DFN statement specifies the device
type as 3203-5.

The ADDR parameter specifies the channel and unit number of
the 3203-5.

The FOLD=Y parameter specifies that lowercase letters are to
be printed as uppercase letters when the lowercase print
train is not available.

By omitting both a UCS statement and the UCS parameter of

the DFN statement, the default 3203-5 UCS image (AN) is
loaded from standard image tables provided by the utility.

ICAPRTBL Program 23

EBCOMPR:

0G

P
N

IEBCOMPR is a data set utility used to compare two sequential or
two partitioned data sets at the logical record level to verify
a backup copy. Fixed, variable, or undefined records from
blocked or unblocked data sets or members can also be compared.

Two sequential data sets are considered equal, that is, are
considered to be identical, if:

. The data sets contain the same number of records, and

. Corresponding records and keys are identical.

Two partitioned data sets are considered equal if:

. Corresponding members contain the same number of records.

. Note lists are in the same position within corresponding
members.

. Corresponding records and keys are identical.
. Corresponding directory user data fields are equal.

If all these conditions are not met for a specific type of data

set, an unequal comparison results. If records are unequal, the
record and block numbers, the names of the DD statements that

define the data sets, and the unequal records are listed in a

message data set. Ten successive unequal comparisons terminate

the job step, unless a user routine is provided to handle error
conditions. N

Partitioned data sets can be compared only if all the names in e
one or both of the directories have counterpart entries in the

other directory. The comparison is made on members identified

by these entries and corresponding user data.

Figure 12 shows the difectories of two partitioned data sets.
Directory 2 contains corresponding entries for all the names in
Directory 1; therefore, the data sets can be compared.

Directory 2
ABCDEFGH
1 JKL

Directory 1
ABCDGL

Figure 12. Partitioned Directories Whose Data Sets Can Be
Compared Using IEBCOMPR

Figure 13 on page 25 shows the directories of two partitioned
data sets. Each directory contains a name that has no
corresponding entry in the other directory; therefore, the data
sets cannot be compared, and the job step is terminated.

User exits are provided for optional user routines to process

user labels, handle error conditions, and modify source records. SN
See Appendix A, "Exit Routine Linkage" on page 6422, for a ({/
discussion of the linkage conventions to be followed when user
routines are used.

26 MVS/XA Data Administration: Utilities

g

INPUT AND OUTPUT

RETURN CODES

CONTROL,

Directory 1 Directory 2
ABCFHIJ ABFGHIJ

Figure 13. Partitioned Directories Whose Data Sets Cannot Be
Compared Using IEBCOMPR

IEBCOMPR uses the following input:
. Two sequential or two partitioned data sets to be compared.

. A control data set that contains utility control statements.
This data set is required if the input data sets are
partitioned or if user routines are used.

IEBCOMPR produces as output a message data set that contains
informational messages (for example, the contents of utility
control statements), the results of comparisons, and error
messages.

IEBCOMPR returns a code in register 15 to indicate the results
of program execution. The return codes and their meanings are
listed in Figure 14.

Codes Meaning

00 (00 hex) Successful completion.

08 (08) An unequal comparison. Processing continues.

12 (0C) An unrecoverable error exists. The job step is
terminated.

16 (10) A user routine passed a return code of 16 to

IEBCOMPR. The job step is terminated.
Figure 14. IEBCOMPR Return Codes

IEBCOMPR is controlled by job control statements and utility
control statements. The job control statements are required to
execute or invoke IEBCOMPR and to define the data sets that are
used and produced by IEBCOMPR. The utility control statements
are used to indicate the input data set organization (that is,
sequential or partitioned), to identify any user rocutines that
may be provided, and to indicate whether user labels are to be
treated as data.

IEBCOMPR Program 25

JOB CONTROL STATEMENTS
AN

Figure 15 shows the job control statements for IEBCOMPR. @ ;
W
One or both of the input data sets can be passed from a
preceding job step.

Input data sets residing on different device types can be
compared. Input data sets with a sequential organization
written at different densities can also be compared.

Statement Use
JOB Initiates the job.
EXEC Specifies the program name (PGM=IEBCOMPR) or, if

the job control statements reside in a procedure
library, the procedure name.

SYSPRINT DD Defines a sequential message data set, which can
be written to a system output device, a tape
volume, or a direct access volume.

SYSUT1 DD Defines an input data set to be compared.
SYSUT2 DD Defines an input data set to be compared.
SYSIN DD Defines the control data set or specifies DUMMY if

the input data sets are sequential and no user
routines are provided. The control data set
normally resides in the input stream; however, it
can be defined as a member within a library of
partitioned members.

Figure 15. Job Control Statements for IEBCOMPR

The SYSPRINT DD statement must be present for each use of
IEBCOMPR. The block size specified in the SYSPRINT DD statement
must be a multiple of 121.
The SYSIN DD statement is required. The block size specified in
the SYSIN DD statement must be a multiple of 80.
The logical record lengths of the input data sets must be
identical; otherwise, unequal comparisons result. The block
sizes of the input data sets can differ; however, block sizes
must be multiples of the logical record length.

f

26 MVS/XA Data Administration: Utilities

UTILITY CONTROL STATEMENTS

COMPARE Statement

EXITS Statement

The utility control statements used to control IEBCOMPR are
given in Figure 16.

Statement Use

COMPARE Indicates the organization of a data set.
EXITS Identifies user exit routines to be used.
LARBELS Indicates whether user labels are to be treated as

data by IEBCOMPR.
Figure 16. IEBCOMPR Utility Control Statements

Continuation requirements for utility control statements are
described in "Continuing Utility Control Statements"™ on page 5.

The COMPARE statement is used to indicate the organization of
data sets to be compared.

The COMPARE statement, if included, must be the first utility
control statement. COMPARE is required if the EXITS or LABELS
stitement is used or if the input data sets are partitioned data
sets.

The format of the COMPARE statement is:

[labell COMPARE TYPORG={PS| PO}

The EXITS statement is used to identify any user exit routines
to be used. If a user exit routine is used, the EXITS statement
is required. If more than one valid EXITS statement is
included, all but the last EXITS statement are ignored. For a
discussion of the processing of user labels as data set
descriggors, see Appendix C, "Processing User Labels"™ on

page .

The format of the EXITS statement is:

[labell EXITS [INHDR=routinepamel
[, INTLR=routinenamel
[,ERROR=routinenamel
[,PRECOMP=routinenamel

IEBCOMPR Program 27

LABELS Statement

The LABELS statement specifies whether user labels are to be
treated as data by IEBCOMPR. For a discussion of this option,
refer to Appendix C, "Processing User lLabels™ on page 6426.

The format of the LABELS statement is:

[labell

LABELS [DATA={YESINOJALL|ONLY}]

Note: LABELS DATA=NO must be specified to make IBM standard/

user label (SUL) exits inactive when input/output data sets with

nonstandard labels (NSL) are to be processed.

If more than one valid LABELS statement is included, all but the

last LABELS statement are ignored.

Parameters

Applicable
Ccontrol
Statements

Description of Parameters

DATA

LABELS

DATA={YES|NO|ALLJONLY}

YES

NO

ALL

ONLY

specifies whether user labels are to be treated
as data. The values that can be coded are:

specifies that any user labels that are not
rejected by a user's label processing routine
are to be treated as data. Processing of labels
as data stops in compliance with standard return
codes. YES is the default.

specifies that user labels are not to be treated
as data.

specifies that all user labels are to be treated
as data. A return code of 16 causes IEBCOMPR to
complete processing of the remainder of the
g;oup of user labels and to terminate the job
step.

specifies that only user header labels are to be
treated as data. User header labels are
processed as data regardless of any return code.
The job terminates upon return from the OPEN
routine.

ERROR

EXITS

ERROR=routinename

specifies the name of the routine that is to
receive control after each unequal comparison
for error handling. If this parameter is
omitted and ten consecutive unequal comparisons
occur while IEBCOMPR is comparing sequential
data sets, processing is terminated; if the
input data sets are partitioned, processing
continues with the next member.

INHDR

EXITS

INHDR=routinename

specifies the name of the routine that processes
user input header labels.

28 MVS/XA Data Administration:

Utilities

e,
{ \
S

Control

(- Applicable
Parameters Statements Description of Parameters

INTLR EXITS INTLR=routinename

user input trailer labels.

specifies the name of the routine that processes

PRECOMP EXITS PRECOMP=routinename

logical records (physical blocks in the

before they are compared.

specifies the name of the routine that processes

case of

variable spanned (VS) or variable blocked
spanned (VBS) records longer than 32K bytes)
from either or both of the input data sets

TYPORG COMPARE TYPORG={PS| PO}
specifies the organization of the input

PS
specifies that the input data sets
sequential data sets. This is the

PO
specifies that the input data sets
partitioned data sets.

sets. The values that can be coded are:

data

are
default.

are

IEBCOMPR_EXAMPLES

(? : The examples in Figure 17 illustrate some of the uses

IEBCOMPR. The numbers in the "Example™"™ column refer to examples

that follow.

Examples that use disk or tape in place of actual device numbers

of

must be changed before use. See "DASD and Tape Device Support"

on page 3 for valid device number notation.

. Data Set

Operation Organization Devices Comments Example

COMPARE Sequential 9-track No user routines. Blocked 1
Tape input.

COMPARE Sequential 7-track No user routines. Blocked 2
Tape input.

COMPARE Sequential 7-track User routines. Blocked input. 3
Tape and Different density tapes.
9-track
Tape

COMPARE Sequential Card No user routines. Blocked G
Reader, input.
9-track
Tape

COMPARE Partitioned Disk No user routines. Blocked 5

input.

Figure 17 (Part 1 of 2). IEBCOMPR Example Directory

C

IEBCOMPR Program

29

. Data Set
Operation Oorganization Devices Comments Example
COPY Sequential 9-track No user routines. Blocked [
(using Tape input. Two job steps; data
IEBCOPY) sets are passed to second job
and step.
COMPARE _
COPY Partitioned Disk User routine. Blocked input. 7
(using Two job steps; data sets are
IEgCOPY) passed to second job step.
an
COMPARE

Figure 17 (Part 2 of 2).

IEBCOMPR EXAMPLE 1

30 MVS/XA Data Administration:

In this example,
tape volumes are

IEBCOMPR Example Directory

two sequential data sets that reside on 9-track
to be compared.

//TAPETAPE JOB

/77
//SYSPRINT DD
//SYSUT1 DD
/7

s’/
//S5YSUTZ2 DD
77/
/7
//SYSIN DD
/%

EXEC PGM=IEBCOMPR

SYSOUT=A

UNIT=tape, LABEL=(,NL),

DCB=(RECFM=FB, LRECL=80,BLKSIZE=2000),
DISP=(OLD,KEEP),VOLUME=SER=001234
UNIT=tape, LABEL=(,NL),DISP=(0OLD,KEEP),
DCB=(RECFM=FB, LRECL=80, BLKSIZE=1040),
VOLUME=SER=001235

DUMMY

Because no user routines are used and the input data sets have a
sequential organization, utility control statements are not

necessary.

The job control statements are discussed below:

. SYSUT1 DD defines an input data set, which resides on an

unlabeled, 9-

track tape volume.

. SYSUT2 DD defines an input data set, which resides on an

unlabeled, 9-

track tape volume.

. SYSIN DD defines a dummy data set.

Utilities

IEBCOMPR EXAMPLE 2

(

IEBCOMPR EXAMPLE 3

In this example, two sequential data sets that reside on 7-track

tape volumes are compared.

//TAPETAPE JOB ...

7/ EXEC PGM=IEBCOMPR

//SYSPRINT DD SYSOUT=A

7/SYSUT1 DD DSNAME=SET1,LABEL=(2,SUL),DISP=(0LD,KEEP),

4 VOL=SER=001234,DCB=(DEN=2,RECFM=FB, LRECL=80,
7/ BLKSIZE=2000, TRTCH=C),UNIT=3400

7/3YSUT2 DD DSNAME=SET2,LABEL=(,SUL),DISP=(0LD,KEEP),

7’7 VOL=SER=001235, DCB=(DEN=2,RECFM=FB, LRECL=80,
7/ BLKSIZE=2000, TRTCH=C),UNIT=3400

//7SYSIN DD x
COMPARE TYPORG=PS
LABELS DATA=0ONLY
LABELS DATA=0NLY
/%

The control statements are discussed below:

. SYSUT1 DD defines an input data set, SET1l, which resides on

a labeled, 7-track tape volume. The blocked data set was

originally written at a density of 800 bits per inch (DEN=2)

with the data converter on (TRTCH=C).

. SYSUT2 DD defines an input data set, SET2, which is the
first or only data set on a labeled, 7-track tape volume.

The blocked data set was originally written at a density of

800 bits per inch (DEN=2) with the data converter on
¢(TRTCH=C).

U] SYSIN DD defines the control data set, which follows in the

input stream.

. COMPARE TYPORG=PS specifies that the input data sets are
sequentially organized.

. LABELS DATA=0NLY specifies that user header labels are to be
treated as data and compared. All other labels on the tape

are ignored.

In this example, two sequential data sets written at different
densities on different tape units are compared.

//TAPETAPE JOB ...

7/ EXEC PGM=IEBCOMPR

//SYSPRINT DD SYSOUT=A

//3YSUT1 DD DSNAME=SET1,LABEL=(,SUL),DISP=(0LD,KEEP),

Vs VOL=SER=001234,DCB=(DEN=1,RECFM=FB, LRECL=80,
s BLKSIZE=320,TRTCH=C),UNIT=3400

775YSUT2 DD DSNAME=SETZ2,LABEL=(,SUL),DISP=(0LD,KEEP),

7/ DCB=(RECFM=FB, LRECL=80, BLKSIZE=640),

/7 UNIT=tape, VOLUME=SER=001235

7/3YSIN DD %

COMPARE TYPORG=PS
EXITS INHDR=HDRS,INTLR=TLRS
LABELS DATA=NO
/%

IEBCOMPR Program

IEBCOMPR EXAMPLE 4

The control statements are discussed below:

SYSUT1 DD defines an input data set, SET1l, which is the { ,
first or only data set on a labeled, 7-track tape volunme. Y
The blocked data set was originally written at a density of
%%ngatg)per inch (DEN=2) with the data converter on

SYSUT2 DD defines an input data set, SET2, which is the
first or only blocked data set on a labeled tape volume. In
this example, assume SYSUT2 is on a 9-track tape drive.

SYSIN DD defines the control data set, which follows in the
input stream.

COMPARE TYPORG=PS specifies that the input data sets are
sequentially organized.

EXITS identifies the names of routines to be used to process
user input header labels and trailer labels.

LABELS DATA=NO specifies that the user input header and
trailer labels for each data set are not to be compared.

In this example, two sequential data sets (card input and tape
input) are compared.

7/CARDTAPE JOB

7//SYSPRINT DD SYSOUT=A

//SYSIN DD DUMMY)

/7/75YSUT2 DD UNIT=tape,VOLUME=SER=001234,LABEL=(,NL),
//7SYSUT1 DD DATA

{input card data set)

EXEC PGM=IEBCOMPR

DCB=(RECFM=FB,LRECL=80,BLKSIZE=2000), o
DISP=(0OLD, KEEP)

The control statements are discussed below:

SYSIN DD defines a dummy control data set. Because no user
routines are provided and the input data sets are
sequential, utility control statements are not necessary.

SYSUT2 DD defines an input data set, which resides on an
unlabeled, 9-track tape volume.

SYSUT1 DD defines an input data set (card input).

{
L W

32 MVS/XA Data Administration: Utilities

IEBCOMPR EXAMPLE 5

IEBCOMPR EXAMPLE 6

In this example, two partitioned data sets are compared.

//DISKDISK JOB ...

7/ EXEC PGM=IEBCOMPR

//SYSPRINT DD SYSOUT=A

/7/SYSUT1 DD DSNAME=PDSSET1,UNIT=disk,DISP=SHR,

4 DCB=(RECFM=FB, LRECL=80,BLKSIZE=2000),
7/ VOLUME=SER=111112

/7/3YSUT2 DD DSNAME=PDSSET2,UNIT=disk,DISP=SHR,

7/ DCB=(RECFM=FB, LRECL=80,BLKSIZE=2000),
Vs VOLUME=SER=111113

7/SYSIN DD x
COMPARE TYPORG=PO
/%

The control statements are discussed below:

. SYSUT1 DD defines an input partitioned data set, PDSSETI.
The blocked data set resides on a disk volume.

. SYSUT2 DD defines an input partitioned data set, PDSSETZ2.
The blocked data set resides on a disk volume.

. SYSIN DD defines the control data set, which follows in the
input stream.

. COMPARE TYPORG=PO indicates that the input data sets are
partitioned.

In this example, a sequential data set is copied and compared in
two job steps.

//TAPETAPE JOB ...

//STEPA EXEC PGM=IEBCOPY
//SYSPRINT DD SYSOUT=A

//3YSUT1 DD DSN=COPYSET1,UNIT=tape,

77/ DISP=(0LD,PASS),

V4 DCB=(RECFM=FB, LRECL=80,BLKSIZE=640),

7/ LABEL=(,SL),

7/ VOLUME=SER=00123¢

/7/75YSUT2 DD DSNAME=COPYSET2,DISP=(,PASS),LABEL=(,SL),
Vo4 DCB=(RECFM=FB, LRECL=80,BLKSIZE=640),

7/ UNIT=tape,

7/ VOLUME=SER=001235

/7/7SYSIN DD DUMMY

/%

//STEPB EXEC PGM=IEBCOMPR

/7/SYSPRINT DD SYSOUT=A

//S5YSUT1 DD DSNAME=%,STEPA.SYSUT1,DISP=(O0OLD,KEEP)
//7SYSUT2 DD DSNAME=%,STEPA.SYSUT2,DISP=(0OLD,KEEP)
/7/SYSIN DD DUMMY

/%

IEBCOMPR Program 33

IEBCOMPR EXAMPLE 7

The first job step copies the data set and passes the original
and copied data sets to the second job step. The second job AN
step compares the two data sets.

lhf control statements for the IEBCOMPR job step are discussed
elow:
. SYSUT1 DD defines an input data set passed from the
preceding job step (COPYSET1l). The data set resides on a
labeled, 9-track tape volume.
. SYSUT2 DD defines an input data set passed from the
preceding job step (COPYSET2). The data set, which was
created in the preceding job step, resides on a labeled,
9-track tape volume.
. SYSIN DD defines a dummy control data set. Because the
input is sequential and no user exits are provided, no
utility control statements are required.
In this example, a partitioned data set is copied and compared
in two job steps.
The example follows:
//DISKDISK JOB ..
//STEPA EXEC PGM IEBCOPY
/7/SYSPRINT DD SYSOUT=A ‘
/7/7SYSUT1 DD DSNAME=O0OLDSET,UNIT=disk,DISP=SHR,
/77 VOLUME=SER=111112,
Vo4 DCB=(RECFM=FB, LRECL=80, BLKSIZE=640) ,
/7/75YSUT2 DD DSNAME=NEWMEMS,UNIT=disk,DISP=(,PASS), : J
7/ VOLUME=SER=111113,SPACE=(TRK,(5,5,5)), N
Vo4 ' DCB=(RECFM=FB, LRECL=80,BLKSIZE=640)
/775YSUT3 DD UNIT=SYSDA,SPACE=(TRK, (1))
/7/75YSUTG DD UNIT=SYSDA,SPACE=(TRK, (1))
/7/7SYSIN DD x
COPY OUTDD=SYSUTZ2, INDD=SYSUT1
Va3
/7/STEPB EXEC PGM=IEBCOMPR
//SYSPRINT DD SYSOUT=A
//75YSUT1 DD DSNAME=0LDSET,DISP=(0LD,KEEP)
//75YSUT2 DD DSNAME=NENMEMS,DISP=(0LD,KEEP)
/7/SYSIN DD x
COMPARE TYPORG=PO
EXITS ERROR=SEEERROR
/%
The first job step copies the data set and passes the original
and copied data sets to the second job step. The second job
step compares the two data sets.
lh? control statements for the IEBCOMPR job step are discussed
elow:
. SYSUT1 DD defines a blocked input data set (OLDSET) that is
passed from the preceding job step. The data set resides on
a disk volume.
U SYSUT2 DD defines a blocked input data set (NEWMEMS) that is
passed from the preceding job step. The data set resides on N
a disk volume. (\{ ,
i

34 MVS/XA Data Administration: Utilities

. SYSUT3 and SYSUT4 define temporary system data sets to be
ggggoﬁga work files during IEBCOPY. These are not passed to

o SYSIN DD defines the control data set, which follows in the
input stream.

. COMPARE TYPORG=P0O specifies partitioned organization.

. EXITS specifies that a user error routine, SEEERROR, is to
be used.

Because the input data set names are not identical, the data
sets can be retrieved by their data set names.

IEBCOMPR Program 35

IEECOPY PROGRAM

IEBCOPY is a data set utility used to copy one or more
partitioned data sets or to merge partitioned data sets. A
partitioned data set that 1s copied to a sequential data set is
said to be unlecaded. The sequential data set created by an
unload operation can be copied to any direct access storage
device. MWhen one or more data sets created by an unload
operation are used to re-create a partitioned data set, this is
called a load operation. Specific members of a partitioned or
unloaded data set can be selected for, or excluded from, a copy,
unload, or load process.

IEBCOPY can be used to:
. Create a backup copy of a partitioned data set.
. Copy one or more data sets per copy operation.

. Copy one partitioned data set to a sequential data set
(unload).

. Copy one or more data sets created by an unload operation to
any direct access device (load).

U Select members from a data set to be copied, unloaded, or
loaded.

° Replace identically named members on data sets (except when
unloading).

. Replace selected data set members.
. Rename selected members.

. Exclude members from a data set to be copied, unloaded, or
loaded.

. Compress partitioned data sets in place (except when the
data set is an unloaded data set).

. Merge data sets (except when unloading).

. Re-create a data set that has exhausted its primary,
secondary, or directory space allocation.

. Alter load modules in place.
. Copy and reblock load modules.

In addition, IEBCOPY automatically lists the number of unused
directory blocks and the number of unused tracks available for
member records in the output partitioned data set. If LIST=NO
is coded (see "COPY Statement™ on page 49), the names of copied,
unloaded, or loaded members listed by the input data set are
suppressed.

Note: If the partitioned data set that is to be compressed is a
null data set or if the data set has already been compressed,
IEBCOPY will not produce a listing.

36 MVS/XA Data Administration: Utilities

(

CREATING A BACKUP COPY

COPYING DATA SETS

IEBCOPY can be used to create a backup copy of a partitioned
data set by copving (unloading) it to a sequential data set. A
partitioned data set can be totally or partially unloaded to any
tape volume or direct access device supported by BSAM. A data
set 1s unloaded when physical sequential organization space
allocation is specified for the output data set on a direct
access device or when the output data set is a tape volume. To
unload more than one partitioned data set to the same volume in
one execution of IEBCOPY, multiple copy operations must be used
anf multiple sequential data sets must be allocated on the same
volume.

A data set with a physical sequential organization resulting
from an unload operation can, in turn, be copied. No output
tape file will be created if the input is a null file.

IEBCOPY can be used to copy a partitioned data set, totally or
in part, from one direct access volume to another. 1In addition,
a data set can be copied to its own volume, provided its data
set name is changed. If the data set name is not changed, the
data set is compressed in place.

Note that copied members are not reordered; members are copied
in the order in which they exist on the original data set. 1If
the members are to be reordered, IEHMOVE can be used for the
copy operation (see "IEHMOVE Program™ on page 340).

COPYING OR LOADING UNLOADED DATA SETS

Data sets can be copied or loaded, totally or in part, from one
or more direct access volumes or tape volumes to a single direct
access volume. To copy or load more than one input partitioned
data set, specify more than one input data set with the COPY
statement. The input data sets are copied or loaded in the
order in which they are specified.

SELECTING MEMBERS TO EE COPIED, UNLOADED, OR LOADED

Members can be selected from one or more input data sets.
Selected members can be copied, unloaded, or loaded from the
input data sets specified on the INDD statement preceding a
SELECT statement.

Selected members are searched for in a low-to-high (a-to-z)
collating sequence, regardless of the order in which they are
specified; however, they are copied in the same physical
sequence in which they appear on the input partitioned data set.

After a member of a data set has been found, no search is made
for it on any subsequent input data set. Similarly, when all
the selected members are found, the copy or load step is
terminated even though all of the input data sets may not have
been searched. For example, i1f members A and B are specified
and A is found on the first of three input data sets, it is not
searched for again; if B is found on the second input data set,
the copy or load operation is successfully terminated after the
second input data set has been processed, although both A and B
may also exist on the third input data set.

However, if the first member name is not found on the first
input data set, the search for that member stops and the first
data set is searched for the second member. This process
continues until the first input data set has been searched for
all specified members. All the members that were found on the
input data set are then processed for copying, unloading, or
loading to the output data set. This process is repeated for

IEBCOPY Program 37

the second input data set (except that the members that were

found on the first input data set are not searched for again).

AN
Note: Only one data set can be processed if an unload operation | |
is to be performed. Multiple unload operations are allowed for %~
each job step; multiple INDD statements are not allowed for each
unload operation.

Copying Members That Have Alias Names
When copying members that have alias names, note the following:

. When the main member and its alias names are copied, they
exist on the output partitioned data set in the same
relationship they had on the input partitioned data set.

. WHhen members with alias names are copied using the SELECT or
EXCLUDE member option, those alias names that are to be
selected or excluded must be explicitly named.

The rules for replacing or renaming members apply to both
aliases and members; no distinction is made between them.
However, the replace (R) option (on the SELECT statement) does
not apply to an unload operation.

REPLACING IDENTICALLY NAMED MEMBERS

In many copy and load operations, the output partitioned data
set may contain members that have names identical to the names
of the input partitioned data set members to be copied or
loaded. MWhen this occurs, you may specify that the identically
named members are to be copied from the input partitioned data
set to replace existing members.

The replace option allows an input member to override an -
existing member on the output partitioned data set with the same .
name. The pointer in the output partitioned data set directory
is changed to point to the copied or loaded member.

If the replace option is not specified, input members are not
copied when they have the same name as a member on the output
partitioned data set.

The replace option can be specified on the data set or member
level. This level is specified on a utility control statement.

When replace (R) is specified on the data set level with a COPY
or INDD statement, the input data is processed as follows:

. In a full copy or load process, all members on an input
partitioned data set are copied to an output partitioned
data set; members whose names already exist on the output
partitioned data set are replaced by the members copied or
loaded from the input partitioned data set.

. In a selective copy or load process, all selected input
members will be copied to the output data set, replacing any
identically named output data set members.

. In an exclusive copy process, all nonexcluded members on
input partitioned data sets are copied or loaded to an
output partitioned data set, replacing those duplicate named
members on the output partitioned data set.

When replace is specified on the member level (specified as R on

a SELECT statement), only selected members for which replace is
specified are copied or loaded, and identically named members on

the output partitioned data set are replaced.

There are differences between full, selective, and exclusive (&V
copy or load processing. These differences should be remembered 4
when specifying the replace option and all the output data sets

38 MVS/XA Data Administration: Utilities

contain member names common to some or all the input partitioned
data sets being copied or loaded. These differences are:

. When a full copy or load is performed, the output
partitioned data set contains the replacing members that
were on the last input partitioned data set copied.

. When a selective copy or load is performed, the output
partitioned data set contains the selected replacing members
that were found on the earliest input partitioned data set
searched. After a selected member is found, it is not
searched for again; therefore, after it is found, a selected
member is copied or loaded. If the same member exists on
another input partitioned data set, it is not searched for,
and hence, not copied or loaded.

o When an exclusive copy or load is performed, the output
partitioned data set contains all members, except those
specified for exclusion, that were on the last input
partitioned data set copied or loaded.

REPLACING SELECTED MEMBERS

When members are being selected for copying or loading, you may
specify the replace (R) option on either the data set or the
member level.

If the replace option is specified on the data set level, all
selected members found on the designated input data sets replace
identically named members on the output partitioned data set.
This is limited by the fact that after a selected member is
found it is not searched for again.

If the replace option is specified on the member level, the
specified members on the input data set replace identically
named members on the output partitioned data set. After a
member is found, it is not searched for again. (See "Replacing
Identically Named Members" on page 38.)

RENAMING SELECTED MEMBERS

Selected members on input data sets can be copied and renamed on
the output data set; the input and output data sets must not be
the same. However, in the case of a copy or load operation, if
the new name is identical to a member name on the output data
set, the input member is not copied or loaded unless the replace
option is also specified. See "SELECT Statement"™ on page 53 for
information on renaming selected members.

Renaming is not physically done to the input data set directory
entry. The output data set directory, however, will contain the
new hame.

EXCLUDING MEMBERS FROM A COPY OPERATION

Members from one or more input data sets can be excluded from a
copy, unload, or load operation. The excluded member is
searched for on every input data set in the copy, unload, or
load operation and is always omitted. Members are excluded from
the input data sets named on an INDD statement that precedes the
EXCLUDE statement. (See "COPY Statement™ on page 49 and
YEXCLUDE Statement"™ on page 54.)

The replace option can be specified on the data set level in an
exclusive copy or load, in which case, nonexcluded members on
the input data set replace identically named members on the
output data set. See "Replacing Identically Named Members™ on
page 38 for more information on the replace option.

IEBCOPY Program 39

COMPRESSING A DATA SET

MERGING DATA SETS

A compressed data set is one that does not contain embedded, AT
unused space. After copving or loading one or more input L
partitioned data sets to a new output partitioned data set (by N

means of a selective, exclusive, or full copy or }oad that does
not involve replacing members), the output partitioned data set
contains no embedded, unused space.

To make unused space available, either the entire data set must
be scratched or it must be compressed in place. A compressed
version can be created by specifying the same data set for both
the input and output parameters in a full copy step. A backup
copy of the partitioned data set to be compressed in place
should be kept until successful completion of an in-place
compression is indicated (by an end-of-job message and a return
code of 00).

An in-place compression does not release extents assigned to the
data set. Inclusion, exclusion, or renaming of selected members
cannot be done during the compression of a partitioned data set.

When the same ddname is specified for the INDD and OUTDD
keywords (see "COPY Statement™ on page 49) and the DD statement
specifies a block size different from the block size specified
in the DSCB, the DSCB block size is overridden; however, no
physical reblocking or deblocking is performed by IEBCOPY. For
information on reblocking load modules, see "Copying and
Reblocking Load Modules™ on page 41.

A merged data set is one to which an additional member 1s copied
or loaded. It is created by copving or loading the additional
members to an existing output partitioned data set; the merge
operation (the ordering of the output partitioned data set's °
directory) is automatically performed by IEBCOPY. ;

If there is a question about whether or not enough directory
blocks are allocated to the output partitioned data set to which
an input data set is being merged, the output partitioned data
set should be re-created with additional directory space prior
to the merge operation.

RE~-CREATING A DATA SET

A data set can be re-created by copying or loading it and
allocating a larger amount of space than was allocated for the
original data set. This application of IEBCOPY is especially
useful if insufficient directory space was allocated to a data
set. Space cannot be allocated in this manner for an existing
partitioned data set into which members are being merged.

ALTERING LOAD MODULES IN PLACE

IEBCOPY can be used to alter load modules in place.
Alter-in-place reads modules written by earlier runs of the
linkage editor and inserts new relocation dictionary (RLD) and
segment text block counts. For modules created by a program
other than the linkage editor or copied by a program other than
IEBCOPY, alter-in-place can replace erroneous RLD or segment
text block counts by correcting PDS directory entries, control
records, and the note list. For more information, see
"Inserting RLD Counts™ on page 42.

Only members of a partitioned data set may be altered.

For the procedure used to invoke the alter-in-place function, £
see "ALTERMOD Statement™ on page 51. {gw
=

40 MVS/XA Data Administration: Utilities

(

COPYING AND REBLOCKING LOAD MODULES

IEBCOPY can be used to copy and reblock load modules in a data
set library. Copy/reblock copies a sequential (unloaded) data
set or selected members from a partitioned data set onto a new
or existing output partitioned data set. The text records, RLD,
and control records (and the note list, for overlay load
modules) are rebuilt; all other records are copied unchanged.
For a description of how the RLD count is inserted, see
"Inserting RLD Counts™ on page 42.

The reblock function allows vou to specify:

] A maximum block size for compatibility with other systems or
programs

. A minimum block size to specify the smallest block that
should be written on the end of a track

The load modules will be blocked so that they can be link-edited
again and/or loaded by the loader.

Load libraries may be copied to devices with a larger or smaller
block size than the input block size.

IEBCOPY will determine the amount of space remaining on a track
before assigning a new block size. If this amount is smaller
than the output block size, IEBCOPY will attempt to determine
whether a smaller block can be written to use the remaining
space on the track.

lhi maximum block size produced by the COPYMOD function is 32760
vtes,

For the procedure used to copy and reblock load modules, see
"COPYMOD Statement™ on page 52.

(LOAD MODULE REQUIREMENTS

IEBCOPY requires that the members of the input data set that are
to be altered or copied/reblocked must qualify as load modules;
that is, they must possess characteristics such that they can be
loaded by the system's program fetch routine or link-edited
again by the linkage editor. Members that are not recognized as
load modules will be unaffected by the alter-in-place or
copy/reblock operation.

Load modules in scatter-load format and modules that were
link~edited with the noneditable (NE) attribute cannot be
reblocked or altered in place. For more information on module
format and attributes, see Linkage Editor and lLoader User's
Guide.

Load modules in page—aligned format are altered (if ALTERMOD is
specified) and copied and altered (if COPYMOD is specified), but
are not reblocked.

The PDS directory entry for a load module must meet the
following requirements:

1. The entry must be at least 34 bytes long (standard length
for entries is only 12 bytes).

2. Bytes 26 and 27 must contain the length of the first text
record, and this length must be equal to the length
specified by the first control record.

Any record in a load module that precedes the first control
record must be one of the following:

. A symbol record (SYM)

. A composite external symbol dictionary record (CESD)

IEBCOPY Program 4l

. An external symbol dictionary record (ESD)

. A scatter/translation record (STT) AN
. A CSECT identification record (IDR) A
RLD and control records must be:

. An RLD record: '0000 xx10'B in byte 1,

. A control record: '0000 xx01'B in byte 1,

o An RLD and control record: '0000 xx11'B in byte 1, or

. The length specified by the value in bytes 5 and 6 plus the
value in bytes 7 and 8 plus 16. Control records must
cogt?zn the length of the following text record in bytes 15
an .

The sequence of records following a control or RLD/control
record must be:

. Text, End-of-Module/End-of-Segment,

X Text, RLD, End-of-Module/End-of-Segment,

. Text, RLD/control,

o Text, RLD, (RLD, . . .), End-of-Module/End-of-Segment, or
¢ Text, RLD, (RLD, . . .), RLD/control.

For modules link-edited in overlay format, a note list record
follows the last text or RLD record of the load module.

INSERTING RLD COUNTS 2N

Each block of text in a load module is preceded by a control S
record and may be followed by one or more RLD and/or control
records. These records are variable length, with a maximum of

256 bytes. They may contain only RLD data or only control data

or both RLD and control data.

The term "number™ or "count" of RLD records is used to mean the
?ggber of these records that follow a block of text in a module
ibrary.

The system's program fetch routine executes fewer channel
programs if the number of these records following a block of
text is Kknown. During an ALTERMOD or COPYMOD operation, the
number of RLD records following each block of text is inserted
into the control record that immediately precedes that block of
text. In addition, the number of RLD records that follow the
first block of text for a load module is inserted into the PDS
directory entry for that module.

The linkage editor also inserts RLD counts in the control
records and in the PDS directory entries.

OVERLAY LOAD MODULES

A load module in overlay format contains a note list record that
is used to locate the overlay segments within the module. The
system's program fetch routine may load these segments faster if
the number of text blocks contained in each segment is known.
This number, known as the segment text block count, is kept in
the N byte of the note list TTRN_entrigs. For more information

on note lists, see Catalog Administration Guide.

.
Some older versions of the linkage editor did not insert the %L
segment text block counts in the overlay note list. The —e

62 MVS/XA Data Administration: Utilities

INPUT AND OUTPUT

RETURN CODES

ALTERMOD and COPYMOD functions may be used to insert these
counts in overlay modules.

During an ALTERMOD operation on an overlay load module, the RLD
and segment text block counts are updated, if necessary. During
a COPYMOD operation, overlay load modules are reblocked, the RLD
counts are inserted, and the note list is rebuilt with segment
text block counts.

The linkage editor may also be used to insert RLD and segment
text block counts in overlay load modules.

IEBCOPY uses the following input:

. An input data set that contains the members to be copied,
loaded, merged, altered, reblocked, or unloaded to a
sequential data set

U] A control data set that contains utility cortrol statements.
The control data set is required for a copy, unload, load,
or merge operation

IEBCOPY does not support VIO (virtual I/0) data sets.
IEBCOPY produces the following output:

. An output data set, which contains the copied, merged,
altered, reblocked, unloaded, or loaded data. The output
data set is either a new data set (from a copy, reblock,
load, or unload) or an old data set (from a merge,
compress—in-place, copy, alter, or load).

. A message data set, which contains informational messages
(for example, the names of copied, unloaded, or loaded
members) and error messages, if applicable.

. Spill data sets, which are temporary data sets used to
provide space when not enough virtual storage is available
for the input and/or output partitioned data set
directories. These data sets are opened only when needed.

IEBCOPY returns a code in register 15 to indicate the results of
program execution. The return codes and their meanings are
listed in Figure 18.

Codes Meaning

00 (00 hex) Successful completion.

04 (04) A condition exists from which recovery may be
possible.

08 (08) An unrecoverable error exists. The job step is,
terminated.)

Figure 18. IEBCOPY Return Codes

IEBCOPY Program 43

CONTROL

IEBCOPY is controlled by job control statements and utility
control statements.

JOB CONTROL STATEMENTS

PARM Information on

Figure 19 on page 45 shows the job control statements for
IEBCOPY.

the EXEC Statement

The EXEC statement for IEBCOPY can contain PARM information that
is used to define the number of bytes used as a buffer. The
PARM parameter can be coded:

PARM='SIZE=nnnnnnnnlK1"'

The nnnnnnnn can be replaced by 1 to 8 decimal digits. The K
causes the nnnnnnnn to be multiplied by 1024 bytes.

If PARM 1s not specified, or a value below the minimum buffer
size 1s specified, IEBCOPY defaults to the minimum. Minimum
buffer size is twice the maximum of the input or output block
sizi or four times the input or output track capacity, whichever
is larger.

The maximum buffer size that can be specified is equal to the
size of the storage remaining in the storage area gotten when
IEBCOPY issues a conditional one-megabyte storage request
(GETMAIN) for work areas and buffers. If the value specified in
PARM exceeds this maximum, IEBCOPY defaults to the maximum.

A request for too much buffer storage may result in increased
system paging because of a lack of available system page frames.
This will degrade overall system performance.

SYSPRINT DD Statement

The SYSPRINT DD statement is required and must define a data set
with fixed blocked or fixed records. The block size for the
SYSPRINT data set must be a multiple of 121. Any blocking
factor may be specified, with a maximum allowable block size of
32760 bytes.

G4 MVS/XA Data Administration: Utilities

/yf TN

'

|
(Statement Use
1) JOB Initiates the job.

EXEC Specifies the program name (PGM=IEBCOPY) or, if the
job control statements reside in the procedure
library, the procedure name. This statement can
include optional PARM information to define the
size of the buffer to be used; see "PARM
Information on the EXEC Statement.™

SYSPRINT DD Defines the sequential message data set used for
listing statements and messages. This data set can
be written to a system output device, a tape
volume, or a direct access volume.

anynamel DD Defines an input partitioned data set. These DD
statements can describe partitioned data sets on
direct access devices or sequential data sets,
created as a result of unload operations, on tape
or direct access devices. The data set can be
defined by a data set name, as a cataloged data
s:t, or as a data set passed from a previous job
step.

anyname2 DD Defines an output partitioned data set. These DD
statements can describe partitioned data sets on
direct access devices or sequential data sets,

1 created as a result of unload operations, on tape
! or direct access devices.

{ SYSUT3 DD Defines a spill data set on a direct access device.
| SYSUT3 is used when there is no space in virtual
\ (j' storage for some or all of the current input

‘ partitioned data set's directory entries. SYSUT3

}) may also be used when not enough space is available

| in virtual storage for retaining information during
table sorting.

SYSUT4 DD Defines a spill data set on a direct access device.
SYSUT4G is used when there is no space in virtual
storage for the current output partitioned data
set's merged directory and the output partitioned
data set is not new.

SYSIN DD Defines the control data set. The control data set
normally resides in the input stream; however, it
can reside on a system input device, a tape volume,
or a direct access volume.

Figure 19. Job Control Statements for IEBCOPY

anyhamel and anyname2 DD Statements

DD statements are required for input and output data sets.

There must be one DD statement for each unique data set used for
input and one DD statement for each unique data set used for
output in the job step. For an unload operation, only one input
data set may be specified for each output data set.

Data sets used as input data sets in one copy operation can be
used as output data sets in another copy operation, and vice

versa.
(Input data sets cannot be concatenated. The maximum block size
for input data sets to be unloaded is 32760.

IEBCOPY Program 45

SYSIN DD Statement

The SYSIN DD statement is required and must define a data set
with fixed block or fixed records. The block size for the SYSIN
data set must be a multiple of 80. Any blocking factor may be
specified, with a maximum allowable block size of 32760 bytes.

IEBCOPY UNLOADED DATA SET BLOCK SIZE

The block size for unloaded data sets is determined by the
following steps:

1. The minimum block size for the unloaded data set is
calculated as being equal to the larger of:

. 284 bytes, or

. 20 bytes + the block size and key length of the input
data set.

2. If a user-supplied block size was specified, and it is
larger than 284 bytes, it will be passed to step 3.
Otherwise, the minimum size is passed.

A PDS that has been unloaded with a user-supplied block size
can be loaded back with only the COPY function.

3. The block size value passed from step 2 is then compared
with the largest block size acceptable to the output device.
If the output device capacity is smaller than the block size
passed in step 2, the unloaded data set block size is set to
the maximum allowed for the output device.

G, The logical record length (LRECL) is then set to the minimum
block size calculated in step 1 minus 4 bytes.

5. The block size is stored in the first control record
(COPYR1) and used at load time. Block size of the unloaded
data set must not be changed before the data set is loaded.
Be sure to specify the desired block size at unload time if
it is other than that taken by default as indicated above.

For unload and load operations, requests are handled in the same
way as for a copy operation.

Fixed or variable records can be reblocked. Reblocking or
deblocking is done if the block size of the input partitioned
data set is not equal to the block size of the