‘INTERCOMM

C COBOL PROGRAMMERS GUIDE

ISOGON |
CORPORATION

330 Seventh Avenue - New York, New York 10001

LICENSE: INTERCOMM TELEPROCESSING MONITOR
Copyright (c) 2005, 2022, Tetragon LLC

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Use or redistribution in any form, including derivitave works, must be for non-
commercial purposes only.

2. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

3. Redistributions in binary form must reproduce the above copyright notice, this list
of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

COBOL Programmers Guide

Publishing History

Publication Date Remarks

First Edition September 1973 This manual corresponds to Intercomm
Release 6.0.

Second Edition_ December 1982 This manual corresponds to Intercomm
Release 9.0.

Third Edition April 1994 Updates and revisions for Releases 9
and 10.

NOTES:

The following enhancements are for Release 10 only:

1

g

3-byte MSGHBMN number

INTSORT (in-core table sort) service routine

Dynamically loaded programs above the 16M line

DWSCHK, INDUMP and SAM parameters - SYCTTBL macro

REJECT (of msg queued for delayed subsystem) parm - SYCTTBL
DWSSNAP Facility (online debugging/DWS snaps)

VSAM data set access under Dynamic File Allocation (DFA)
Subsystem message flushing (SSFL command)

GETDATE macro

SCTL system control/debugging command

FTUN/SSUP, PRTY, SPAGC, TCTV subsystem control commands
Backend initiation of a transaction on an LU6.2 link
Table Facility

Page Facility using Table Facility (no PAGETBLE/data sets)
VS COBOL II support

following are desupported under Release 10:

AMIGOS file access method
DISAM file access method

The material in this document is proprietary
and confidential. Any reproduction of this
material without the written permission of
Isogon Corporation is prohibited.

PREFACE

Intercomm is a state-of-the-art teleprocessing monitor system
executing on the IBM System/370 and System/390 family of computers and
operating under the control of IBM Operating Systems (XA and ESA).
Intercomm monitors the transmission of messages to and from terminals,
concurrent message processing, centralized access to I/0O files, and the
routine wutility operations of editing input messages and formatting
output messages, as required.

The COBOL Programmers Guide explains the organization of
Intercomm from the application programmer’s point of view and
illustrates the procedures for creating COBOL application programs and
integrating them into the Intercomm environment.

Syntax wused in describing the coding of JCL or application
program statements is:

o { }) A pair of braces indicates the presence of a choice:
code elements contained within the braces represent
alternatives, one of which must be chosen. The braces
are not to be coded.

o [] A pair of brackets indicates an optional parameter which
may be omitted depending on access requirements as
described in the accompanying text. The brackets are not
to be coded.

o A parameter consisting partially or solely of 1lower case
letters represents the generic (Intercomm) name of the value.
The programmer must substitute the actual name wused for
defining the data area within the specific program.

As a prerequisite to this manual, it is assumed that the user is
familiar with the Intercomm Concepts and Facilities Manual. The
following manuals describe in further detail facilities referenced in
this manual:

o Message Mapping Utilities

° Utilities Users Guide

° Store/Fetch Facility

) Dynamic Data Queuing Facility

° Page Facility and Table Facility

° Operating Reference Manual: "Message Management"
"File Management"

Note: the term COBOL refers to both 0S/VS and ANS COBOL and to VS COBOL
ITI programs. The term OS/ANS COBOL refers to all supported COBOL

compilers except VS COBOL II. A mixed environment is supported
except as noted in Chapter 3. A distinction is made 1if
necessary.

iii

INTERCOMM PUBLICATIONS

GENERAL INFORMATION MANUALS

Concepts and Facilities

Planning Guide

APPLICATION PROGRAMMERS MANUALS

Assembler Language Programmers Guide

COBOL Programmers Guide
PL/1l Programmers Guide

SYSTEM PROGRAMMERS MANUALS

Basic System Macros

BTAM Terminal Support Guide

Installation Guide
Messages and Codes

Operating Reference Manual

System Control Commands

CUSTOMER INFORMATION MANUALS

Customer Education Course Catalog

Technical Information Bulletins

User Contributed Program Description

FEATURE IMPLEMENTATION MANUALS

Autogen Facility

ASMF Users Guide

DBMS Users Guide

Data Entry Installation Guide

Data Entry Terminal Operators Guide

Dynamic Data Queuing Facility

Dynamic File Allocation

Extended Security System

File Recovery Users Guide

Generalized Front End Facility
Message Mapping Utilities

Model System Generator

Multiregion Support Facility

Page Facility

Store/Fetch Facility

SNA Terminal Support Guide

Table Facility

TCAM Support Users Guide

Utilities Users Guide

EXTERNAL FEATURES MANUALS

SNA LU6.2 Support Guide

iv

hapter 1

c
1
1
1
1.
1
1
1

vvuouun PN

.1
.2

hapter 2

wN

DDA
ROV PLDDDNDDNDDNDE
.—l

0
.11

hapter 3

w N

c
3
3
3
3
3.
3
3
3
3
3

aocouvupprppLLOUNDE

Chapter 4
4.1
4.2

Chapter 5
5.1
5.2

Chapter 6
6.1
6.1.1

TABLE OF CONTENTS

INTRODUCTORY CONCEPTS OF ON-LINE SYSTEMS

Introduction

...............................

The On-Line System Environment

Batch Environment vs.

On-Line Environment

Single-Thread vs. Multithread Processing
Program Functions in the On-Line Environment
Monitor Control Functionsc0cvvvn.n
Application Processing Functions

MESSAGE PROCESSING AND CONTROL UNDER INTERCOMM
The Intercomm Environmentooeeeennnnnenns

System Components ...
Front End
Back End
LU6.2 Link

System Programs

Subsystems

...............................

...............................

Reentrant vs Nonreentrant Subsystems

Intercomm Tables

Interfacing with the Intercomm Monitor
Intercomm Message Headerciviviivinnnn

MSGHQPR and MSGHVMI Fieldsccvivvnnn.
Intercomm Message Flow Using Message Mapping
Intercomm Message Flow Using Edit and OQutput
The Intercomm System LOZotvviviiunrnenenens
Additional Application Processing Facilities

CODING AN INTERCOMM SUBSYSTEM IN COBOL

Program Structure ...

Message Processing Conceptsccoviuveuvnennn

Subsystem Coding

...............................

Message Switching Between Subsystems
Reentrant Coding Conventionscovvuueueen
XA/ESA Extended Storage Loading Requirements
Dynamic Working Storage (DWS) Protection Optionm...
VS COBOL II Program Conversion and Support

Restarted Messages ..
DWSSNAP Facility

...............................

...............................

USING THE MESSAGE MAPPING UTILITIES0cuocuon.

Concepts
Processing

USING THE EDIT UTILITY
Concepts
Processing Results ..

USING THE FILE HANDLER
General Concepts

...............................

...............................

...............................

...............................

...............................

Subsystem Processing i i,

d
Y
O O NN LR ®

6.2 Calling Service Routines, 54
6.2.1 Automatic Error Checking 55
6.3 Select, Release FUNcCtionsouotiiiininnrnnns 56
6.3.1 Closing A Filec.iiiiiiiii e nnnnnans 57
6.4 Exclusive Control for Non-VSAM Files 57
6.4.1 Release Exclusive Control--RELEX 59
6.5 Sequential Access Method (SAM) Processing 60
6.5.1 File Handler Service Routines 60
6.5.2 Undefined Record Format and Record Length 61
6.5.3 Variable-Length Record Format and Record Length... 61
6.6 Indexed Sequential Access Method (ISAM) Processing . 62
6.6.1 File Handler Service Routines 62
6.7 Direct Access Method (BDAM) Processing 64
6.7.1 File Handler Service Routines 64
6.8 Virtual Storage Access Method (VSAM) Processing 67
6.8.1 File Handler Service Routines 67
6.8.2 VSAM Processing Optionsciiiiinnnnn. 69
6.8.3 FHCW Reason Codes for VSAMcc0vvuunn. 70
6.8.4 Exclusive Control for VSAM Files 70
6.8.5 Loading an ESDS Data Setoiieuiieennnnnnn 70
6.8.6 Alternate Path Processing of Keyed VSAM Files 71
6.9 ISAM/VSAM Compatibility Under Intercomm 74
Chapter 7 USING THE OUTPUT UTILITYovitivinnnnennensnenns 75
7.1 COMCEPES v ittt ittt ittt it sttt i i e 75
7.2 Processing0ttt i i i e 75
Chapter 8 CONVERSATIONAL SUBSYSTEMSc0iiiiinntrinennnans 79
8.1 General COMCEPLES ... vivi it ine et onnsnsonssonesas 79
8.1.1 Conversational Applications, 79
8.1.2 Conversational Transactions0.... 79
8.1.3 Retention of Information 80
8.2 Implementing Conversational Subsystems 81
8.3 Saving Information in USERSPAcc0.v.. 82
8.4 Saving Information with Store/Fetch 84
8.5 Saving Information on a Dynamic Data Queue 86
8.6 Saving Information via the CONVERSE Service

Routine it A 88
8.6.1 Subsystem Design Using CONVERSE 90
8.7 Design Considerations in Conversational

Processingciti ittt it 93
8.7.1 Control of the Input to Conversations 93
8.7.2 Assigning a Verb to a Terminal 93
Chapter 9 USING INTERCOMM SERVICE ROUTINES AND FACILITIES 95
9.1 Reentrant COBOL Interface Routine (COBREENT) 95
9.2 COBOL Intersubsystem Queuing (COBPUT) 97
9.3 Input Message Switching (MSGCOL)cc0uvunn 99
9.4 Free Dynamic (Message Area) Storage (COBSTORF) 100
9.4.1 Intersubsystem Message Queuing Via Message

Collection (MSGCOL)itviitinnenrnennnnnns 100

vi

\O \O O
~N oy

O O
N

N =

w N =

(Yo Qi Ve JVe R Ve JRVe TRV o JRVe JVe]
o

H = 00 0o

o
[

Send Message to Front End (FESEND)
User Log Entries (LOGPUT)ciiiiiiiiinnnnennns
Calling User Subroutines from Reentrant COBOL
Subsystems i e e e s
Defining User Subroutines to Intercomm
Interfacing to User-Coded Assembler Language
Subroutines i e
Interfacing to User-Coded COBOL Subroutines
Front End Control Messagesouvivinenennsn
Front End Data Queuing,
Front End Feedback Messages00vu ..
Front End Queue Releasec.0iiiivnnnnn
In-core Table Sort Facility (INTSORT)
Other Intercomm Service Facilities
Features Accessible via Assembler Macros

Chapter 10 SAMPLE PROCESSING PROGRAMSiuiiiiinninnennns

Chapter 11 SUBSYSTEM TESTINGttuittmnenneenetnennennenens

11.1
11.2
11.3

Introductioniiiiiii it
Debugging Application Program Problems
Testing a Subsystem with the Front End Simulator ...

Chapter 12 SUBSYSTEM TESTING IN TEST MODEccvvvuivunennn

12.1
12.2

Introductioniiiiii ittt
Testing a Subsystem in Test Mode

Chapter 13 VS COBOL II TESTINGcuttntnitnenenenenenneensns

Appendix A COBOL JCL PROCEDURESc0itiiiinieninnennrenens

A.l
A.2

0S/VS and ANS COBOL Compile and Link JCL
VS COBOL IT Compile and Link JCL0cu...

Appendix B SOURCE STATEMENT LIBRARY COPY MEMBERS

Appendix C INTERCOMM TABLE SUMMARYc0ititiinnnnnensnenns

Appendix D CALLING USER SUBROUTINES FROM REENTRANT

SUBSYSTEMS ... ittt ittt it s

Appendix E NONREENTRANT SUBSYSTEMSciiiiuniennnrennnnnns

E.1
E.2

vii

LIST OF ILLUSTRATIONS

Figure
1 On-line Transaction Processing in a Multiprogramming
Environment00ttt
2 Differences Between Batch and On-line Environments
3 Multithreading in an On-line Environment
4 The Intercomm Environment 00
5 Intercomm Control Sequencecoiuievununennns
6 Intercomm System Componentsoouivuiviennenens
7 Intercomm Message Header Fields
8 Intercomm Message Flow Using Message Mapping
9 Intercomm Message Flow Using Edit and Output
10 Sequence of Log Entries,
11 INTERLOG Entriesttt iiiininininienieenenens
12 Reentrant COBOL Subsystem Structure
13 Reentrant Application Program Environment
14 Intercomm System Return Codescoiivuvnnnn
15 Subsystem Logic Using Message Mapping Utilities
16 Subsystem Logic Using Edit and Output Utilities
17 Echo Message Example; Reentrant COBOL
18 Message Processing Using MMUcoviiivennn
19 Edit Utility Processing of Fields Omitted or in Error
20 Functions of File Handler Service Routines
21 DD Statement Parameters for the File Handler
22 Defining File Handler Control Areas

ix

Figure
23
24
25
26

27

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

47

File Handler Service Routine Parameters
OQutline of File Handler Return Codes0.....
File Handler SELECT/RELEASE Return Codes

Exclusive Control Processingcoviunnnn,

File Handler Release Exclusive Control (RELEX) Return

(0o Yo - -

File Handler Sequential Access Method Return Codes

File Handler ISAM Returm Codesviiuuununss
File Handler BDAM Option Codescovvinvvinnnn
File Handler BDAM Return Codes M eese e
File Handler VSAM Call SUmMmMarycovuuuuneenn
File Handler VSAM Return and Feedback Codes
Message Header Specifications for the Qutput Utility ..
Typical Conversational Transactions
Input Message Data Retention During a Conversation ...

User and Terminal Table Space in the USERSPA
Sample USERSPA Declaration Within a Subsystem
Conversational Processing Using Store/Fetch
Conversational Processing Using Dynamic Data Queuing ..
Conversational Subsystem Logic Using Converse'
CONVERSE Return Codesccoiiiininnennennnennnns
COBREENT Routine Pointers (REENTSBS)covvu.
COBPUT Return Codescouitiiiniinnnrninnensones
Recovery From COBPUT EXTOXSveuveuvuvunenennnas
Message Collection Return Codesc.ovvuuunn,

FESENDC Return CodesSi ittt neeeeeeennn

56

58

59

60

63

65

66

72

73

77

80

80

82

83

85

87

89

91

96

98

98

99

C

Figure
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

A-1

A-2

A-3

Sample Reentrant Subsystem (IBM ANS COBOL).............
Sample COBOL Subroutineciiiiiininninnenin,
Table Updates to Implement Simulation Mode Testing
MMU Maps Used by Sample Subsystem
Input Test Messages Generated via CREATSIM
Linkedit and Execution JCL for Simulation Mode
SIM3270 Printout from Simulation Mode Execution
Simulation Mode Execution Log Printout
Sample Inquiry Subsystem; Reentrant (IBM ANS COBOL)

Table Updates to Implement Test Mode Testing
Utilities Table Coding for Test Mode Subsystem
Test Mode Message Card Formats v,
Sample Input Test Messages for Test Mode
Linkedit and Execution JCL for Test Mode
Sample Test Mode Execution Smapscvuu..
Test Mode Execution Log Printout
Sample VS COBOL IT Subsystemcoiiuuinennenn
Table Updates for Simulation Mode Testing
Simulation Mode Linkedit and Execution JCL
Release 10 Simulation Mode Log Print
Intercomm-supplied COBOL JCL Procedures
VS COBOL ITI JCL to Compile a Program

VS COBOL II JCL to Compile and Link a Program

xi

132

133

134

136

139

16l

169

Figure

B-2
B-3

B-4

ICOMHEXC COPY Memberceoviiieiinnennnnnsnnnnns 230
New Release 10 ICOMINMG COPY Member 231
Basic Release 10 ICOMINMG COPY Member 232
Release 9 ICOMINMG COPY Memberc000uvun. 233
New Release 10 ICOMDWS COPY Member 234
Basic Release 10 ICOMDWS COPY Member 235
Release 9 ICOMDWS COPY Memberccvvuuenn. 236
ICOMSBS COPY Memberciiiiiiiinennnenrnnnnnns 237
Table Names and Associated Macro Instructions 239
Components and Associated Table Names 241
COBOL Subsystem/Subroutine Nested Calls 244
COBREENT Save ATEaSuouvveenieoonnennononnssonenss 244
Reentrant Subsystem Sample Coding 245
Reentrant Subroutine Sample Coding 246
Nonreentrant COBOL Subsystem Structure 248
Echo Message Example; Nonreentrant COBOL 249
Nonreentrant Application Program Environment 252

Chapter 1

INTRODUCTORY CONCEPTS OF ON-LINE SYSTEMS

1.1 INTRODUCTION

The objective of most on-line systems is to reduce the time
factor from source of input data to the results of data processing.
Typical on-line systems applications in the business environment are:

° Data Collection
Transactions may be edited partially on receipt, batch totals
may be transmitted and verified, but the bulk of processing

of the collected data takes place in the batch mode off-line.

° Inquiry/Update Systems

Transactions are processed immediately to retrieve and/or
update information in an on-line data base.

° Message Switching

Transactions consist of administrative data to be rerouted to
other terminals in the systemn.

On-line systems are characterized by a mode of operation which is
nonscheduled and transaction-oriented. An operator at a terminal
remote from the data processing center enters a transaction (unit of
work) by transmitting a message over communication facilities. Each
individual transaction is processed immediately, as opposed to batch
systems, where transactions are accumulated for processing on a
periodic basis (monthly, daily, etc.).

Online systems are designed to satisfy a response time
requirement which is the elapsed time between a request for processing
by an input message from a terminal to receipt of an acknowledgement,
or response to that input message (completion of a transaction).

1.2 THE ON-LINE SYSTEM ENVIRONMENT

Typical on-line message processing application programs operate
on one transaction at a time as they come in from terminals.
Application programs are usually designed to process only one type of
transaction, and the whole environment can be said to be transaction

oriented. Input messages can be processed as received, in any order,
and the files to be referenced should not be read from beginning to end
for each transaction. Instead, the records in files are accessed

directly, either through a specific key or some form of cross-reference
look-up.

Chapter 1 Introductory Concepts of Online Systems

A few applications might require some sequential or list
processing of a file, and while this is possible, message processing
times for such applications would tend to be high.

Figure 1 shows a computer system schematic depicting a memory
layout with an on-line system such as Intercomm, operating in a region
or address space as a job under an operating system such as IBM's MVS.
The on-line system has its own Transaction Monitor which schedules the
activation of transaction processing according to the varying demands
in message traffic.

COMPUTER PROCESSOR

TRANSACTION FILE
DEVICES OPERATING SYSTEM DEVICES

ON-LINE OTHER
SYSTEM JOBS
MONITOR

- - - -]

TRANSACTION
A, text TYPE A

RETRIEVE
PROCESS

X, text TYPE B

e

TRANSACTION
TYPE n
OTHER
| REGION 1 REGIONS
|
I !
Figure 1. On-line Transaction Processing in a

Multiprogramming Environment

Chapter 1 Introductory Concepts of Online Systems

The transaction processing programs do not conduct input or
output operations with the terminals. This function is provided by the
on-line system, which reads input messages from terminals and saves
them (queues them) wuntil the appropriate processing program can be
activated (scheduled). The message is then retrieved from the queue
and passed directly to the processing program by the Monitor. The
processing program then requests the Monitor to queue its output
response message, and the Monitor handles the terminal output function.

1.3 BATCH ENVIRONMENT VS. ON-LINE ENVIRONMENT

The classical batch processing system flow of
input/process/output can be expanded to include message queuing and

retrieving in the on-line environment. However, the typical on-line
application program need only be concerned with actual transaction
processing, because the on-line system does the rest. Figure 2

summarizes some of the differences between batch and on-line
environments.

Batch Online
Scheduled input Unscheduled input
Single-application job Multiple-application job

Delayed processing of transactions | Immediate processing of individual
in batches by type transactions by type

Transaction input, processing, and | Terminal input/output events are

output controlled by processing asynchronous to the processing
program logic program
Figure 2. Differences Between Batch and On-line Environments

Chapter 1 Introductory Concepts of Online Systems

1.4 SINGLE-THREAD VS. MULTITHREAD PROCESSING

In the on-line environment, the logical path of a program in
execution is called a thread. A single-thread system processes one
message at a time. However, in a multiple application environment,
message volume is such that all message traffic could not be adequately
serviced in a single-thread mode. Large queues (waiting lines) tend to
develop because messages arrive faster than they can be processed. To
alleviate this problem and improve system throughput, the delay time in
the processing of one message waiting for an I/0 operation may be used
for simultaneously processing another message. In this way, several
message processing logic paths, or threads, may be active at once.
This is referred to as multithreading.

Multithreading 1is coordinated by the Transaction Monitor, and,
depending on message traffic, can occur between two or more programs or
within a single program.

To illustrate this, let us assume that we have two transaction
processing programs, A and B, and that three messages have arrived for
processing; two A-type transactions and one B-type transaction.
Programs A and B both require access to records in a file, affording an
opportunity for some processing overlap or multithreading.
Multithreading would occur between programs A and B if while program A
is waiting for file retrieval, program B is activated by the Monitor to
carry out its message processing. However, if oprogram A were
reentrant, that 1is, written in such a way that it could handle more
than one thread at a time, then multithreading could also occur within
program A. This means that while reentrant program A is waiting for a
file retrieval for the processing of one message, it may be activated
again to carry out the parallel processing of a second, or nth,
message. Figure 3 illustrates these concepts.

B

Chapter 1 Introductory Concepts of Online Systems

(¥

GET ACCESS ACCESS POST
MESSAGE RECORD RECORD PROCESS
A1 A2 D MESSAGE
B
PREPROCESS GET POST OUTPUT
MESSAGE MESSAGE PROCESS MESSAGE
A1 C MESSAGE B
Al
ACCESS PREPROCESS OUTPUT
RECORD MESSAGE MESSAGE
A1 ' C A1
ACCESS REFILE
RECORD RECORD
c A2
PREPROCESS REFILE
MESSAGE RECORD
B B

1

ACCESS REFILE GET REFILE
RECORD RECORD MESSAGE RECORD
B A1 E c

]]
GET //f GET PREPROCESS POST

MESSAGE MESSAGE MESSAGE PROCESS
A2 D E MESSAGE

A2

l [

PREPROCESS PREPROCESS ACCESS OUTPUT
MESSAGE MESSAGE RECORD MESSAGE
A2 D E A2

LpJ L—J t———'/ TO NEXT TASK

Figure 3. Multithreading in an On-line Environment

Chapter 1 Introductory Concepts of Online Systems

1.5 PROGRAM FUNCTIONS IN THE ON-LINE ENVIRONMENT “

An on-line system consists of programs to serve four different
functions:

) Line Control and Terminal Control

-- Servicing input requests from the various terminal types
including transmission error recovery

-- Directing output to the various terminal types including
transmission error recovery

-- Intercepting and storing messages to mnon-operational
devices, and retrieval of messages when devices become
operational

-- Translation of messages to and from terminal transmission
code and EBCDIC code for processing

) Message Processing Control

-- Queuing new input messages until the associated message
processing program is scheduled for execution

-- Scheduling message processing programs to obtain best
system throughput for message traffic]

-- Controlling multithread operation for concurrent
processing of several messages

-- Centralizing data file accesses to eliminate redundant
operations and provide exclusive control over records
during file updates

) Systems Operation Control

-- Security checking functions to restrict certain
transactions to specific operators and/or terminals, and
to prevent access to unauthorized functions/files.

-- Logging (journaling) of all message traffic

-- Checkpointing, Message Restart, File Recovery and
Backout-On-The-Fly (dynamic file backout) facilities

-- Cancellation of message processing programs when a
program check or program loop occurs

-- Collect and display system statistics

-- Display and modify system status

Chapter 1 Introductory Concepts of Online Systems

° Message (Transaction) Processing

-- Editing text data from terminal input, including format
conversion and content editing of individual fields

-- Retrieval and updating of data from on-line files or data
bases

-- Preparation of response (output) messages to terminals

-- Queuing of response messages for output to terminals

1.5.1 Monitor Control Functions
The Intercomm System provides complete facilities for:
° Line control and terminal control
® Message processing control

° Systems operation control

1.5.2 Application Processing Functions

Transaction processing logic lies within the coding domain of the
application programmer. Intercomm provides the following message and
file handling support:

° Format conversion and editing of input fields

® Centralized control of data files

° Format conversion and placement of constant and variable
information in response messages and terminal displays

° Queuing of messages (for the same or another terminal, or
another application)

The installation-dependent application logic functions then need
include only the following:

° Content editing of individual input message fields
® Retrieval and updating of data from on-line files

° Selection of individual fields for the output message(s)

Chapter 2

MESSAGE PROCESSING AND CONTROL UNDER INTERCOMM

2.1 THE INTERCOMM ENVIRONMENT

Intercomm operates under MVS as a job in a region or address
space. The job is loaded at the beginning of on-line operations and
continues to operate until the terminal network is closed down.
Intercomm contains many system programs and application subsystems.
Intercomm system programs include the Monitor and other subprograms to
handle such things as terminal and peripheral I/O0O operations.
Subsystems are message processing application programs activated by the
Monitor. The term "subsystem" includes both application-oriented
message processing programs written by users and Intercomm system
command processing and utility programs. The Intercomm region contains
the execution module itself plus dynamically allocated storage or work
space, as illustrated in Figure 4.

TO PERIPHERAL
ON-LINE DEVICES
TERMINALS COMPUTER

OPERATING SYSTEM]

REGIONS

Uil

SYSTEM
PROGRAMS

MESSAGE
PROCESSING
SUBSYSTEMS

RoaMEAAZH

r

Figure 4. The Intercomm Environment

Chapter 2 Message Processing and
Control Under Intercomm

The system programs are time- or event-driven; the subsystems are
message-driven. The Intercomm Monitor calls system programs to handle
events and exceptional conditions as they occur, for example, terminal
and peripheral I/O interrupts, time-dependent processing, excessive
message traffic, and system operator commands.

A subsystem, on the other hand, is called by the system monitor
when there are messages queued for it, and it has been scheduled for
execution. Subsystems, while executing, can call user subroutines or
call system programs to perform services, such as accessing data files
and queuing messages for output or additional processing by other
subsystems. Figure 5 shows that called system programs and user
subroutines will always return to the calling subsystem (or
subroutine), just as the subsystem itself, executing as a subroutine of
Intercomm, must always return to the system monitor that originally
activated it.

SYSTEM PROGRAMS TRANSACTION SUBSYSTEMS
MONITOR PROGRAM AA SUBSYSTEM
CALL SUBAA ENTRY AA AA

<

SYSX i CALL SYSX

‘——WPROGRAM AB

. CALL AC
CALL AB . 4

< :
Lﬁnocm AC

END

S¥Sn SUBSYSTEM
nn

Figure 5. Intercomm Control Sequence

10

Chapter 2 Message Processing and
Control Under Intercomm

2.2 SYSTEM COMPONENTS
On-line system component programs are often categorized as
resident or mnonresident, system or wuser, but typical on-line

terminology also distinguishes between Front End and Back End system
components.

2.2.1 Front End

The Front End communicates with and monitors all terminals in the

network. It receives and sends messages, checks wvalidity, performs
security checking if specified, and accomplishes appropriate code
translation. The Front End communicates with the Intercomm message

processing Back End via input message queuing and output message
dequeuing routines. Although Intercomm has its own VTAM Front End, it
can also interface with other software Front Ends such as TCAM and
BTAM. The term ’terminal’ refers to all supported hardware devices
(such as the IBM 3270 family, PCs and workstations with 3270 emulation,
etc.) and software (LU6.2 1link) which can transmit input messages
and/or receive output messages.

2.2.2 Back End

The Back End accomplishes all message processing control, system
operation control, and processing of individual messages. It is,
essentially, the "director" of the entire on-line system operation.

The Front End and the Monitor portion of the Back End are always
resident, whereas message processing subsystems can be any combination
of resident and 1loadable. (See Figure 6.) The decision to make a
message processing subsystem permanently resident, or loadable, is
based upon the trade-offs between response time, frequency of use, and
total system core storage requirements.

2.2.3 LU6.2 Link

Support for LU6.2 sessions is an external feature to Intercomm
which is available in two modes:

® Basic: (Releases 9 and 10) an upgrade to the VTAM Front End
to support secondary LU6.2 sessions with IBM’s CICS to
receive input messages, queue them for subsystem processing,
and route the responses back to CICS.

o Enhanced: (Release 10 only) an add-on to basic support plus
an upgrade to the Back End to permit both receipt and
initiation of transactions on LU6.2 sessions with other VTAM
applications (Intercomm, CICS, etc.). Subsystems may invoke
an LU6.2 transaction wvia the INITLU6 service routine. See

SNA_LU6.2 Support Guide.
11

Chapter 2 Message Processing and
Control Under Intercomm

2.3 SYSTEM PROGRAMS

Intercomm system programs are written in Assembler language and
include the Monitor, File Handler, high-level language interface
routines to maintain reentrancy, and message processing service
routines.

The Monitor interfaces with the Front End via message queues and
controls the processing of messages by subsystems. It is essentially a
traffic director, analyzing message traffic and scheduling subsystems
based upon traffic volume and priority criteria. The Monitor has four
key components:

@ The TP queuing interface, which communicates with the Front
End to dequeue input messages or to queue output messages
created by subsystems.

° The Subsystem Controller, which schedules, 1loads and
activates the application subsystems, and performs clean up
processing when the subsystem returns.

e The Dispatcher, which controls the execution of all events in
the system to accomplish multithreading.

e The Resource Manager, which allocates/deallocates and
controls dynamic resources (such as core storage) used by
system and application programs.

The File Handler is the central Intercomm routine where all
peripheral I/O service for data files is controlled. The File Handler
issues OPENs, CLOSEs, GETs, PUTs, READs, and WRITEs via the operating
system data management facility. Subsystems merely call an appropriate
File Handler routine. Therefore, all access methods supported by
Intercomm are available to any subsystem program, regardless of the
programming language used. The File Handler maintains a single set of
control blocks for each file defined to it wvia standard Job Control
Language Data Definition statements, and all programs share this one
set of control blocks. Intercomm can control overlapping of peripheral
I/0 processing, as well as provide standardized error analysis. A file

is wusually opened only once during an on-line session: at system
startup (optional), or if not, then at the time the first I/0 is
requested. Since files can be accessed concurrently by different

subsystems, an exclusive control feature 1is provided to eliminate
difficulties arising when two or more subsystems (or subsystem threads)
attempt to update the same record at the same time.

Language interface routines are described in Chapter 3.

12

Chapter 2 Message Processing and
Control Under Intercomm

R FRONT-END
E
S oo e e e e e e e e e e c e mmcccmmmmmmcemmmmmmmmmm——m—— =
I
D BACK-END
E
N
T SYSTEM PROGRAMS
I Monitor
N
T File Handler
E
R Message Service Routines:
C
0 Mapping Utilities
M Fesend
M Logput
Message Collection
M
0
N .
I Language Interface Routines
T
0]
R

SUBSYSTEMS
Intercomm supplied:
Output Utility

Change/Display Utility
Page Facility

User Applicatiomns:

Figure 6. Intercomm System Components

13

Chapter 2 Message Processing and
Control Under Intercomm

The basic message processing service routines are:

) FESEND--which passes an output message to the Front End for
transmission to a terminal.

) LOGPUT--which copies a message onto the system log whenever
called by a system program or user subsystem.

e MESSAGE COLLECTION--which handles the queuing and dequeuing
of all messages destined for subsystems.

Intercomm provides service routines to convert terminal-dependent
input messages to a terminal-independent form for application

processing. This transformation includes removal of terminal-dependent
control characters and conversion of numeric data fields to fixed
decimal or binary form, if required. Similarly, for output messages,

service routines provide transformation from terminal-independent
results of application subsystem processing to terminal-dependent
messages for transmission. This includes insertion of terminal-
dependent control characters, conversion of numeric fields to character
format, if required, and inclusion of title information, if specified.
Each of these routines function via user-specified descriptions
(tables) of input and output message formats. These service routines
are:

) Message Mapping Utilities

This 1s a set of service routines called by an application
program to perform the device-dependent transformations
specified by the user for both input and output messages.
Validity checking, conversion, justification and
padding/truncation of data fields is also performed. This
utility also executes output message disposition
(queuing/spooling), if requested.

° Edit Utility

This is a service routine called by the Monitor to process
input messages, performing device-dependent transformations,
and field validity checking, conversion and padding according
to user-specified editing characteristics.

° OQutput Utility

This is a service routine executing as a subsystem to process
output messages by performing device-dependent
transformations, and then pass the messages to the Front End.

For detailed documentation of these facilities, see Message
Mapping Utilities and the Utilities Users Guide.

Other service routines of the Intercomm system for processing
requests associated with special subsystem design requirements are:

14

Chapter 2 Message Processing and
Control Under Intercomm

° Store/Fetch

This facility allows a subsystem to save and retrieve a temporary
or permanent data string identified by a user-defined key. One
or more subsystems can access each stored data string. (See
Store/Fetch Facility.)

™ Dynamic Data Queuing (DDQ)

This facility allows a subsystem to save and retrieve a set of
related data strings (a data queue) identified by a user-defined
name. One or more subsystems can access each DDQ which may be
transient or permanent. A DDQ may also be used for collecting
messages destined for another subsystem, a printer, or a batch

program. (See Dynamic Data Queuing.)

° Table Facility

This facility provides for creating a temporary table with a
unique user name in core storage above the 16M line. Table entry
data strings may then be added, updated or retrieved by the same
or another subsystem, and may have keys for sorting and retrieval
as a user option. (See Table Facility.)

° CRT Page Facility

This facility allows a subsystem to write a set of output
messages to a CRT terminal-oriented Page Data Set (Release 9) or
to a table via the Table Facility (Release 10). The first
message of a set is also sent to the Front End automatically.
The terminal operator may then enter commands processed by the
Paging subsystem to retrieve and browse through the pages of an
output message set. (See Page Facility.)

° Data Base Management System Support (DBMS)

This facility consists of service routines for each supported
DBMS (IDMS, ADABAS, TOTAL, DL/I) which allows access to the DBMS
from Intercomm. (See Data Base Management System Users Guide.)

° Dynamic File Allocation (DFA)

This facility allows a subsystem to create (allocate) and/or
access a sequential data set, or to access a VSAM data set,
specifying its DSNAME as part of subsystem logic, rather than
with execution JCL. (See Dynamic File Allocation.)

° Signed-on Operator-Id Checking

When executing under the security control of the Intercomm
Extended Security System (ESS), a subsystem may call a service
routine (SECUSER) to determine the user-ID of the operator at the
terminal from which the transaction to be processed was entered.

(See Extended Security System.)

° LU6.2 Support (See Section 2.2.3 and SNA LU6.2 Support Guide.)

15

Chapter 2 Message Processing and
Control Under Intercomm

2.4 SUBSYSTEMS

Intercomm-supplied subsystems are written in reentrant Assembler
Language, and include the Output Utility, the Change/Display Utility,
the Page Browsing Subsystem and many command processing subsystems.

The Output Utility allows a programmer to specify predefined
report and display formats so that simply constructed output messages
from a subsystem can be expanded, columnized, headed and subheaded, and
displayed upon different types of devices without concern to the
subsystem creating the message. Output Utility display formats can be
changed without program modifications.

The Change/Display Utility allows simple inquiry and file
maintenance via predefined keyword input messages from terminals
causing access to data files defined by tables. The Display Utility is
used in conjunction with the Output Utility to produce varied report or
display formats.

The Page Facility processes commands from CRT-type terminals to
browse through a series of output display screens created by the PAGE
system program. Subsystems make use of this feature by calling the
PAGE interface program during message processing. The terminal
operator interacts with the Page Facility directly.

Command processing subsystems process Intercomm standard messages
to accomplish the start/stop of system functions, message switching
between terminals, displaying and changing the status of system control
parameters, display of statistics, etc. The commands and text syntax
are described in System Control Commands.

User-supplied subsystems accomplish application-dependent message
processing. Each may call any Intercomm service routine or
user-supplied subroutine, and may be written in COBOL, Assembler or
PL/1.

2.4.1 Reentrant vs Nonreentrant Subsystems

In an interactive on-line environment, the probability is very
high for more than one terminal operator to enter concurrent requests
to be processed by the same subsystem. To accomplish the
multithreading of concurrent requests, application subsystems should be
coded as reentrant, that is, variable data is defined and processed in
a dynamic working storage area (DWS) obtained for the exclusive use of
one processing thread. Since COBOL does not allow the facility for
dynamically obtaining a working storage area (no equivalent to
Assembler GETMAIN/FREEMAIN processing), Intercomm provides an interface
whereby COBOL subsystems may be coded as psuedo-reentrant so that
multi-threading may be accomplished. A special interface to accomplish
multi-threading in reentrant VS COBOL II programs is also provided.
These interfaces and program coding requirements are described in
Chapter 3.

16

C

Chapter 2 Message Processing and
Control Under Intercomm

2.5 INTERCOMM TABLES

Intercomm is a generalized on-line system monitor, requiring
information about specific operating characteristics of a particular

installation. This information is supplied in the form of tables
generated with Intercomm macro instructions. Application programmers
are usually not involved in defining the Intercomm tables, except for
table specifications which pertain to their own applicatioms. The

basic tables controlling message processing are as follows:
° Front End Verb Table (BTVRBTB

A table 1listing all wvalid transaction identifiers (verbs),
and relating them to the subsystem required for message
processing. There is one entry per verb, defined via a
BTVERB macro.

° Front End Network Table
Tables describing the terminal network (relating individual
devices to five-character station identifications), device
hardware and operating characteristics, and output message

queuing specifications.

o Back End Station Table (PMISTATB) and Device Table (PMIDEVTB)

Tables describing terminal identifications and
device-dependent characteristics to the Message Mapping
Utilities and/or the Edit and Output Utilities.

° System Parameter List (SPA)

A table describing system-wide operating characteristics.
This table may be extended to include installation-defined
table entries, accessible to all wuser subsystems and
subroutines (see Chapter 8). This table is generated wvia the
SPALIST macro.

° Data Set Control Table (DSCT

A table generated by the File Handler describing on-line data
sets. Information in this table is derived from JCL and file
control (FAR) parameters at execution startup time.

° Subsystem Control Table (SCT)

A table listing the program properties (reentrancy, language,
entry point, etc.), message queue specifications (core and/or
disk queues), and scheduling (resident or 1loadable,
concurrent message processing limits, priority, etc.) for
each subsystem. There is one entry per subsystem, defined
via a SYCTTBL macro.

The above listed tables are described in detail in the Operating
Reference Manual. Additional tables describe detailed functions for
the system programs, service routines and utilities.

17

Chapter 2 Message Processing and
Control Under Intercomm

2.6 INTERFACING WITH THE INTERCOMM MONITOR

Each message processed by Intercomm consists of a 42-byte header
prefix, plus application-oriented message text. The message header is
prefixed to each input message by the Front End and is analyzed by the
System Monitor for all message processing control. The particular
fields of the header which control message routing are Receiving
Subsystem Code (MSGHRSC) and Receiving Subsystem Code High-Order
(MSGHRSCH) . This two-byte code 1is initialized by the teleprocessing
interface when it constructs the header from the verb supplied at the
beginning of the message text. The Front End Verb Table relates user
verbs to their corresponding subsystem codes via coding of BTVERB
macros (see Basic System Macros) in a user member USRBTVRB copied into
the system BTVRBTB which contains the Intercomm system verbs.

All subsystems are defined to Intercomm by an entry in the
Subsystem Control Table (SCT). There is one entry for each subsystem
which defines the program’s general characteristics, scheduling
requirements and message queuing specifications. Each subsystem must
be assigned a unique two-character subsystem code for message routing.
Definition of Intercomm system subsystems for utility and command
processing is provided in the released member INTSCT.

The Subsystem Control Table entry for each user subsystem is
defined using the SYCTTBL macro which is coded in a user member USRSCTS
copied into the system INTSCT at assembly time. A full description of
the macro may be found in the Intercomm Basic System Macros manual.

Many installations assign the responsibility of coding the
Subsystem Control Table entries for individual user subsystems to the
application programmer. At other installations, the Intercomm System
Support Manager performs this task. In either case, the SYCTTBL macros
must be coded with care, as there is one table controlling all user and
system subsystems in operation when Intercomm is executing.

The most significant SYCTTBL macro parameters for COBOL
subsystems are:

° LANG=RCOB
For reentrant COBOL subsystems (LANG=COB if nonreentrant).
° SBSP=xxxxxxxXx Or LOADNAM=xxxxxxxXx (for dynamic load

Specifies the subsystem entry, that is, the PROGRAM-ID of the
COBOL subsystem (SBSP), or the load module name (LOADNAM).

® GET=nnnnn

Only meaningful if LANG=RCOB is coded. It specifies the
amount of dynamic working storage (initialized to low-values)
to be provided via the Linkage Section on entry to a
reentrant COBOL subsystem. The amount specified may be up to
64K minus 308 bytes (which is used for a link/save prefix
area, and for the DWS protection option described in Chapter
3.

18

<

Chapter 2

Message Processing and
Control Under Intercomm

FREE=nnnnn

Only meaningful if LANG=RCOB is specified. The GET parameter
must be specified to use FREE. It indicates the amount of
the dynamic working storage area, provided on entry (via GET)
to the reentrant COBOL subsystem, which should be freed when
the subsystem completes. It defaults to the value specified
for GET. (See Section 9.4 for further details.)

TCTV=nnn

Expected maximum processing time (in seconds) in a
high-volume environment before the subsystem is assumed to be
looping, or in an extended wait for file or data base access,
and should be timed out. Considerations for this wvalue
depend on subsystem processing such as data base access, file
updates, number and type of file accesses, exclusive control
for file updates, number of output messages created, enqueue
lock-out possibilities, etc.

MNCL=nn

Specifies the maximum number of concurrent threads that can
be executed through this specific subsystem during a high
activity period (when more than one operator enters
transactions routed to this subsystem).

RESOURC=name

This parameter is used to control concurrent access to a
resource (file, table, data base, etc.) across several
subsystems in one Intercomm region. The name is also coded
for the ID parameter of a RESOURCE macro (coded before all
SYCTTBLs in the SCT) which identifies the shared resource and
the maximum concurrent subsystem threads that may be
activated for that resource. Note that the maximum share
count coded on the RESOURCE macro overrides the combined MNCL
value for all the subsystems "naming" that resource. An
internal enqueue is issued (no time-out). While using this
feature will affect response time during peak activity, it
does not affect the TCTV for a subsystem, which goes into
effect after shared control of the resource is granted.

2.7 INTERCOMM MESSAGE HEADER

The

Intercomm message header is constructed by the Front End for

each message when it arrives from a terminal. New messages created
within the subsystem must be prefixed with the standard forty-two-byte
header format, which is constructed by copying the input message header
to an output message area and then altering appropriate fields. Figure
7 lists the names and formats of all the fields in the message header,
and describes their contents and changeability.

19

Chapter 2 Message Processing and
Control Under Intercomm
Alter
Field Name | Length Description Legend*
MSGHLEN 2 Length of message including Y
header (binary number)
___ -
MSGHQPR 1 Teleprocessing segment I/0 code: N
02/F2=full message;
00/FO=header segment;
0l1/Fl=intermediate segment
03/F3=final (trailer) segment
MSGHRSCH 1 High-order receiving subsystem code Y
MSGHRSC 1 l Low-order receiving subsystem code Y
MSGHSSC 1 Low-order sending subsystem code M
MSGHMMN 3 Monitor message number assigned by N
Message Collection (binary) J
MSGHDAT 6 Julian date (YY.DDD)%% N
MSGHTIM 8 Time stamp (HHMMSSTH) N
MSGHTID 5 Terminal identification (originating Y
terminal on input messages,
destination terminal on output)
or Broadcast Group name
MSGHFLGS 2 Message indicator flags (MSGHCON - Rel 9) N
____________________ B PRSPPI IP PRI RPIPIPIDY NORPIPIPIRIRIRI
(MSGHPID) 2 Reserved area (MSGHFLGS - Rel 9) N
............ e e B
MSGHBMN 3 Front End message number - Rel 10 N
(binary)
MSGHSSCH 1 High-order sending subsystem code M
MSGHUSR 1 User/system processing code¥¥¥ L
2 Used for special processing N
by the Front End (MSGHBMN - Rel 9)
MSGHLOG 1 Log code (see Figure 11) L
MSGHBLK/ 1 Reserved area/ N
MSGHRETN Subsystem return code (for log code
X'FA’' entries only)
MSGHVMI 1 Verb or message identifier Y
interpreted by receiving subsystem
as required, and by FESEND
Figure 7. Intercomm Message Header Fields (Page 1 of 2)

20

Chapter

2

Message Processing and
Control Under Intercomm

Y

L

1.

¢ Alter Legend:

Must be filled in for intersubsystem message switching and
output messages passed to FESEND (MSGHVMI should be set to
X'57' or X'67', as appropriate, for output messages passed
directly to FESEND)

Should be filled in for user’s own information (required by
Intercomm for message restart/file recovery and Log Analysis)

Do Not Touch (must be copied from input to output message
header area)

May be modified for user codes based on subsystem logic

% The period represents a one-byte message thread number (for resource
management and/or message restart purposes).

PeA*MSGHUSR is used by Intercomm modules as follows:

If the BTVERB macro for the input verb has HPRTY=YES coded;
contains a C'P’ to request priority queuing for the
subsystem. The user may move a C'P’ to this field to request
priority queuing for output messages to a terminal (via
FESEND) or to another subsystem (via Message Collection).

For an input message from a BTAM 3270 CRT which contains SBA
sequences, has a C'F' in the 01 log record.

For output messages to a switched async device (Teletype;
Dataspeed 40, and 2740); a C’B’ requests disconnect after
transmitting the output message.

For output messages to a switched Teletype or Dataspeed 40
device; a C'X' requests using the alternate call-list for the
next input message (as described in the BTAM Terminal Support
Guide).

For output messages discarded by the Front End, a C'F’
indicates the message was flushed by command, a C’Z’ that it
was discarded by the VTAM OTQUEUE user exit (Rel 10 only).

If none of the above considerations are applicable, the subsystem
may use this field for messages queued to other user subsystems,
or for special logging information. The LOGPRINT utility always
prints the value coded in this field (in hexadecimal).

Figure 7. Intercomm Message Header Fields (Page 2 of 2)

21

Chapter 2 Message Processing and
Control Under Intercomm

2.7.1 MSGHQPR and MSGHVMI Fields

In general, a COBOL application subsystem does not need to be
concerned with the MSGHQPR field, unless processing long input from a
Teletype or similar device where message input may be segmented. In
this case, the DDQ Facility must be used to store and sequentially
forward the input message segments. Otherwise, input messages from the
Front End always contain a QPR of C’'2'. Both MMU and the Output
Utility set the QPR to X'02' for output messages unless the Output
Utility finds it necessary to segment an output message, in which case
a segment code 1is used. The various uses of the MSGHVMI field for
input and output message processing may be determined from the index
references to this field at the end of this manual.

2.8 INTERCOMM MESSAGE FLOW USING MESSAGE MAPPING

The interaction of Intercomm system components, tables and
subsystems with the Message Mapping Utilities (MMU) is summarized in
Figure 8; the path of one input message and its corresponding output
message is traced, and the numbered arrows in the diagram correspond to
the numbered paragraphs below.

1 The Front End reads an input message and prefixes a 42-byte
control header containing routing information, time, date,
originating terminal and message length. The message is then
queued for subsystem processing by Message Collection.

2 The System Monitor schedules the subsystem and retrieves the
message based upon the Subsystem Control Table (SCT)
scheduling criteria.

3 The message is passed to the subsystem.

4 Input in terminal-dependent format is transformed to a
terminal independent form by a call to a Message Mapping
Utility (MMU).

5 The subsystem performs message processing logic, requesting
I/0 service functions from the File Handler or Data Base
Manager interface.

6 The subsystem creates one or more terminal-dependent output
messages by calling MMU.

7 The subsystem passes the message formatted by MMU to the
Front End by a call to FESEND (unless MMU is asked to perform
this function).

8 The subsystem returns control to the System Monitor, passing

a return code indicating normal completion or an error
condition.

22

C

Chapter 2

In the Intercomm multithread environment,
events is carried out concurrently for many messages.

Message Processing and
Control Under Intercomm

this same sequence of

VERB
TABLE

FRONT END

ﬁ

®

>

SUB-

MESSAGE
COLLECTION

SYSTEM
QUEUES

MAPS

FESEND I‘

MESSAGE
MAPPING
UTILITIES
SYSTEM e APPLICATION
[MONITOR ~ SUBSYSTEM
3CT &) T
{ 7 \ |
ACCESS . FILE HANDLER

METHOD OR ' ’ OR DATA BASE
DATA BASE MANAGER

MANAGER

INTERFACE

Figure 8.

Intercomm Message Flow Using Message Mapping

23

Chapter 2 Message Processing and
Control Under Intercomm

2.9 INTERCOMM MESSAGE FLOW USING EDIT AND OUTPUT

The path of one input message and its corresponding output
message 1is traced in Figure 9; the numbered arrows in the diagram
correspond to the numbered paragraphs below.

1 The Front End reads an input message and prefixes a 42-byte
control header containing routing information, time, date,
originating terminal, and message length. The message 1is
then queued for subsystem processing by Message Collection.

2 The System Monitor schedules the subsystem and retrieves the
message based upon the Subsystem Control Table (SCT)
scheduling criteria.

3 The Edit Utility 1is called (if required) and the input
message is edited according to the Edit Control Table (ECT).

4 If Editing is not successful due to invalid input data, the
Edit Utility optionally creates an error message for the
originating terminal and queues it for the Output Utility by
calling Message Collection. The subsystem is not activated.

5 If Editing is successful, the edited message is passed to the
subsystem. If editing is not required, the unedited message
is passed directly to the subsystem.

6 The subsystem performs message processing logic, requesting
I/O0 service functions from the File Handler or Data Base
Manager interface.

7 The subsystem creates one or more output messages and queues
them for the Output Utility by calling Message Collection
(COBPUT) .

8 The subsystem returns control to the System Monitor, passing
a return code indicating normal completion or an error
condition. :

9 The System Monitor schedules the Output Utility and passes
the output message(s) to it for processing.

10 The Output Utility performs formatting, if specified in the
message header, according to entries in the Output Format
Table (OFT), finally passing the message to the Front End via
a call to FESEND.

11 The Output Utility returns to the System Monitor.

24

Chapter 2

Message Processing and
Under Intercomm

Control

v

1 VERB
TABLE
FRONT END

(O

MESSAGE
COLLECTION

SUB-
SYSTEM
QUEUES

FESEND

O,

A 4
SYSTEM APPLICATION
MONITOR SUBSYSTEM
)
OFT | U
ACCESS FILE HANDLER
METHOD OR ‘ ’ OR DATA BASE
DATABASE MANAGER
MANAGER INTERFACE
Figure 9. Intercomm Message Flow Using Edit and Output

25

Chapter 2 Message Processing and
Control Under Intercomm

2.10 THE INTERCOMM SYSTEM LOG

The Intercomm system log (INTERLOG) provides system journaling
and maintains a historical record of all traffic within the system.
Complete documentation of performance during on-line processing 1is
thus provided, along with system control for restart/recovery.

Message traffic is recorded at the time of entry on a subsystem
queue, and at the time message processing begins and ends within each
subsystem. Subsystems may make user entries on the system log by
calling an Intercomm system program (LOGPUT).

An installation may suppress some or all log entries, depending
on its own requirements. The system log is optionally used at
Intercomm system restart time to restore message traffic within the
system at the time of failure. The logging entries are blocked and
written to a variable-length sequential data set which may reside on
disk or tape.

Log entries are in one of two formats: HT--42-byte message
header and full text, as the message arrives from a terminal and is
queued for a subsystem, or queued for a terminal; or HO--header-only
entries, to mark progress through the system or error conditionms.

Log entries are identified by a code in the MSGHLOG field of the
message header. The time and date stamps (MSGHTIM and MSGHDAT) in the
message header are updated for each log entry.

Progress of a message through a specific subsystem, or through
the Front End, is indicated by the same Monitor Message Number
(MSGHMMN) in each log record (01-30-FA or F2-F3). Complete progress
of a message, from the first processing subsystem to final
transmission, 1is indicated by the same Front End Message Number
(MSGHBMN). The log may be printed completely or selectively wvia the
Intercomm off-line utility LOGPRINT, described in the Operating
Reference Manual.

A timing analysis utility (Log Analysis), which is supplied with
Intercomm, may be used off-line to produce a report of message queuing

and processing time. Statistics for messages by terminal, verb,
subsystem, and/or system totals are provided. See the Operating

Reference Manual.

The logging entries may be input to user-written batch programs
to provide performance analysis in detail, such as traffic vs. network
configurations, accounting routines, etc.

Figure 10 illustrates the log entries for one input message and a

corresponding output message generated via the Output Utility. Number
6 appears only if executing in Test mode, since there is no Front End.

26

Chapter 2 Message Processing and
Control Under Intercomm

For live or simulated mode Intercomm, two additional entries are an F2
log code (HT) when the message is queued for the Front End via FESEND
(appears in place of the 40 log entry between the 30 and FA entries),
and an F3 log code (HO) when the message was transmitted by the Front
End. Logging of the message to be transmitted (log code F2) occurs
before final Front End processing (idles insertion, New Line to SBA
sequence conversion, etc.).

If Message Mapping is used and the message is passed to the Front
End via FESEND (Figure 8), only the log entries numbered 1, 2, and 4
appear for each message processing thread, with the FESEND log entry
(log code 40 or F2) appearing in place of log entry 3. Log entries 3,
5, and 7 represent the additional processing for a message passed to
the Output Utility (receiving code U).

MSGCOL MONITOR
log code 01 log code FA
i/_ "

MONITOR MONITOR
log code 30 log code 30
APPLICATION FESEND

OPTIONAL log code log code 40
41-6F ‘ HT
MSGCOL MONITOR
log code 01 log code FA
\HE/— "

HT = Intercomm message header and message data
HO = Intercomm message header only
Figure 10. Sequence of Log Entries
Figure 11 describes all the Intercomm log codes. Note that user

log entries may only use log codes in the range X’'4l’ to X'6F'.

27

Chapter 2 Message Processing and
Control Under Intercomm
Internal| External Restart
Code Code Format | Description Origin Use
X'00’ 00 HT Checkpoint Record Checkpoint | Yes
cr2’ 01 HT Message queued for subsystem Message
by Front End or a subsystem Collection | User
__ -
C'R' 02 HT Message restarted through LOGPROC User
the system
——— -4
C'P’ 03 HT Message restarted--related LOGPROC User
to Data Base Recovery
___ -
X'21-2F'| 21-2F HO/HT | See SNA LU6.2 Support Guide Front End | No
c'T’ 30 HO Message passed to subsystem Subsystem | User
L for processing Controller
________________________ drommm e -
crz’ 40 HT Message passed to Front End FESEND No
(test mode only)
X'41" - 41- HT User called LOGPUT Any No
X'6F' 6F Subsystem
X'80"'- 80- HT File Recovery before-images IXFLOG User
X'8E’ 8E
X'8F' 8F HO Checkpoint Records indicator IXFCHKPT Yes
X'90’ - 90- HT File Recovery after-images IXFLOG User
X'9E’ 9E
X'9F’ 9F HT Intercomm Startup LOGPUT Yes
X'AO' A0 HO Message restart begun W LOGPROC Yes
X'Al’ Al HO Message restart finished: LOGPROC Yes
all subsequent log entries
produced by live Intercomm
X'AA’ AA HT Intercomm Closedown LOGPUT No
___ R LT R
X’co’ co HT Region started (Multiregion MRINTER No
only) (Text=Region-id(s))
C'A’ Cl HT Message successfully queued MRQMNGR User
for Satellite Region CR only
Internal Code: Log code in core during processing (snaps and dumps)
External Code: Log code after translation by LOGPUT (INTERLOG printout)
Format: HT for header and text, HO for header only
Restart Use: Yes, No, User (specified via user-coded system macros)

Figure

11.
28

INTERLOG Entries (Page 1 of 2)

Chapter 2 Message Processing and
Control Under Intercomm
Internal|External Restart
Code Code Format | Description Origin Use
C'B’ c2 HO Message successfully passed MRQMNGR User
to Satellite Region CR only
c’'c’ Cc3 HO Message lost (Region/Hold Q MRQMNGR User
full) or flushed (SR/SS down) CR only
c'Tr’ c9 HT Sign on/off processing, ESS No
security violation messages
c’'3’ FA HO Normal message complete Subsystem User
Controller
c'5’ FB HO Unprocessed message--invalid Message User
subsystem/QPR code Collection
c'e’ FC HO Unprocessed message--core and Message User
disk queue full Collection
crg’ FD HO Message cancelled--program Subsystem User
error, time-out or I/0 error; Controller
or flushed by command (Rel 10)
c'9’ FE HO Message flushed by Retriever, Retriever No
used when application program
does not obtain (via GETSEG)
all parts of a segmented
message; or message failed
security check SYCT400
__________________ i g
cry Fl1 HT Message after verb USRBTLOG No
verification (optional)
__________________ B e e e e e e e e e e e e e e e e s e e G G e e w e e - e w wm-- - o - -
cr2’ F2 HT Message queued for FESEND User
transmission
c’'3’ F3 HO Message transmitted, Front User
discarded (MSGHUSR=Z-Rel 10), End
L or flushed (MSGHUSR=F-Rel 10)
c'4’ F4 HO 3270 output message content BLHOT No
Linvalid--message dropped.
C'5'- F5- HT Transmitted DDQ msg status: Front No
crsg’ F8 see SNA Term. Support Gd. End
X'FF' FF HT Intercomm Restart Accounting MSGAC Yes
Figure 11. INTERLOG Entries (Page 2 of 2)

29

Chapter 2 Message Processing and
Control Under Intercomm

2.11 ADDITIONAL APPLICATION PROCESSING FACILITIES

In addition to the application programming facilities described
in this and related manuals, the application designer should be aware
of the following processing options available under Intercomm:

° Off-line batch region execution: the Intercomm File Handler,
DFA, DDQ, Store/Fetch and MMU may be executed by an off-line
program (coded as non-reentrant) to prepare a file, data
strings, or messages for on-line access. See the associated
manuals for linkedit considerations.

e Multiregion Facility batch region interface: when executing
an on-line Multiregion system, any batch application region

may pass a message or a FECMDDQ (see also Chapter 9) to an
on-line subsystem or to the Front End wia the Output Utility

subsystem. See Multiregion Support Facility.

e Time controlled processing: instead of being triggered by an
input terminal message, an application may be designed to
execute at a particular time of day. See the Operating
Reference Manual.

° Segmented input message processing via DDQ: segmented input
messages, whether gathered by Intercomm from a remote device
(CPU, etc.) or generated by an application program, are
placed on a DDQ and may be serially passed to an application
subsystem via a DDQ Facility interface. See Dynamic Data

Queuing.

e Dynamic linkedit feature: dynamically loaded user subsystems
and subroutines are linkedited to called Intercomm resident
routines and COBOL support routines at startup, thus reducing
the size of the load modules. The LOAD system control
command is used to force a relinkedit of a new version of a
dynamically loaded program placed on the load library while
Intercomm is executing. See the Operating Reference Manual.

° User exits: various user exits for installation dependent
processing are listed in the Operating Reference Manual.

° Binary table search: service routines for incore table
searching are described in the Assembler Language Programmers

Guide.

o IJKPRINT: service routine to write one or more print lines
to SYSPRINT (SYSOUT data set). See the Operating Reference
Manual.

° IJKDELAY: service routine to request a timed delay

(averaging 100 milliseconds) of program processing, to allow
other work (subsystem threads) to process. See the Operating
Reference Manual.

30

<

Chapter 3

CODING AN INTERCOMM SUBSYSTEM IN COBOL

3.1 PROGRAM STRUCTURE

An application subsystem executing under Intercomm control is
activated to process one message. The following examples typify the
concerns of message processing logic:

1.

Interpretation of message text to reroute administrative data
to another terminal.

Editing of message text, creation of a record on a sequential
data set for later off-line processing and preparation of an
acknowledgement message to the originating terminal.

Editing and analysis of message text to determine file
retrieval and/or wupdate criteria, data file access,
preparation of a response message for the operator at the
originating terminal.

Analysis of an application-oriented control message and
appropriate action, such as checking batch totals from
example 2, above, or acting on a special request to close a
file or perform some other control function.

All subsystems are called by Intercomm and execute as subroutines
with standard parameters passed on entry to the program. These
parameters must be defined in the Linkage Section of the COBOL
subsystem in the following order:

1.

The input message to be processed (42-byte header plus
message text) of maximum length 4096 bytes.

The System Parameter Area table (a 500-byte internal table
plus appended user fields, if any), of maximum length 4096
bytes. Only the user fields may be modified, if desired.

The Subsystem Control Table entry for the called subsystem (a
100-byte table entry). This may not be modified.

A fullword computational field (PIC S9(8)) into which the
subsystem must place an appropriate Intercomm return code
before returning control to Intercomm.

The dynamic working storage area acquired by Intercomm for
this reentrant subsystem to use (for all non-constant user
and Intercomm-required fields) while processing a particular

message thread. The size of the area obtained is specified
by the subsystem’s Subsystem Control Table entry (GET
parameter). For nonreentrant COBOL and for FORTRAN

subsystems, see Appendix E.

31

Chapter 3 Coding an Intercomm
Subsystem in COBOL

Figures 12 and 13 illustrate a reentrant COBOL subsystem with the
Linkage Section initialized with the parameters described above for the
Intercomm operating environment. A precise definition in the Linkage
Section of the System Parameter Area (SPA) and Subsystem Control Table
entry (SCT) is only required if these table areas are referenced by the
subsystem during processing. Otherwise, an elementary 01 (PIC X) to be
used as a parameter save space for the Procedure Division USING clause
is sufficient. Note that the DWS area passed to the subsystem is that
following a 256-byte Link/Save prefix used exclusively by the Intercomm
interface routines.

ID DIVISION.

PROGRAM-ID. EXAMPLEL.

REMARKS. THIS IS A REENTRANT INTERCOMM COBOL SUBSYSTEM PROGRAM.
ENVIRONMENT DIVISION.

DATA DIVISION.

WORKING-STORAGE SECTION.

77 CONSTANT-ITEMS PICTURE X(8) VALUE ’'CONSTANT’.

. THESE ARE NEVER-CHANGING LITERAL VALUES...

LINKAGE SECTION.

01 INPUT-MESSAGE-AREA PICTURE X(4096).
01 SPA PICTURE X(500).
01 SCT PICTURE X(100).
01 INTERCOMM-RETURN-CODE PICTURE S9(8) COMPUTATIONAL.
01 DYNAMIC-WORK-SPACE.
02 OUTPUT-MESSAGE-AREA PICTURE X(2000).

02 FILE-RECORD-AREA.
02 INbEPENDENT—ITEMS PICTURE §S9(7)V99 COMPUTATIONAL-3.
. ALL MODIFIABLE STORAGE MUST BE DEFINED HERE...

02 RE&URN-VALUE PIC 99.

OTHER AREAS...

PROCEDURE DIVISION USING INPUT-MESSAGE-AREA, SPA, SCT,
INTERCOMM-RETURN-CODE, DYNAMIC-WORK-SPACE.
. PROGRAM PROCESSING LOGIC...
...GO TO INTERCOMM.

INTERCOMM.

MOVE RETURN-VALUE TO INTERCOMM-RETURN-CODE.
GOBACK.
Figure 12. Reentrant COBOL Subsystem Structure

32

Chapter 3 Coding an Intercomm
Subsystem in COBOL

SYSTEM
INTERCOMM PARAMETER
SYSTEM AREA
3A
3B SUBSYSTEM
REENTSBS | , FILE CONTROL
LANGUAGE HANDLER TABLE BB
INTERFACES AA XX YY
SUBSYSTEMS | SUBSYSTEM XX
SUBSYSTEM AA
BB SUBSYSTEM YY
REENTRANT
COBOL SUBSYSTEM BB
LINKAGE WORKING-STORAGE
POINTERS

CONSTANT ITEMS

[s
INTERCOMM DYNAMIC POOL STORAGE SUBPOOLS
@ BB INPUT BB INPUT
MESSAGE A MESSAGE B FILE
AREAS
.—N RET-COD A | .’l RET-COD B |
Dynamic-Work- Dynamic-Work-
Space For Space For
SUBSYSTEM BB SUBSYSTEM BB
Thread A: Thread B:
LINK/SAVE LINK/SAVE MVS ACCESS
a OUTPUT MSG. e OUTPUT MSG METHODS
RECORD AREAS RECORD AREAS
INDEP ITEMS INDEP ITEMS

Figure 13. Reentrant Application Program Environment.

33

Chapter 3

Coding an Intercomm
Subsystem in COBOL

After a subsystem completes processing and returns control to the

Subsystem Controller (see Chapter 2),

the Intercomm return code is

checked to determine whether the message should be cancelled due to an

error.

Then the return code is placed in the externally saved input

message header in MSGHRETN (MSGHCON+l1l for Rel 9), and the header is

logged with an appropriate 1log code

describes Intercomm return codes.
subroutine) program checks, or the
returns an appropriate error message

(see Chapter 2). Figure 14
If the subsystem (or a called
return code is 8 or 12, USRCANC
to the terminal operator. USRCANC

is a wuser exit provided by Intercomm under the name PMICANC, and is
described in the Operating Reference Manual.

Return Subsystem Controller
Code Meaning Error Action
0 Successful completion None
___ -
4 Applies to Assembler Language subsystems only
-------- s e
8 Unrecoverable error Message canceled, CALL to USRCANC
condition (no core,
MAPEND error, etc.)
12 I/0 error Message canceled, CALL to USRCANC
16 (Reserved for internal use)T ---
20-60 | User codes to identify None
unusual condition
------------------------------------ e = > = = e e = = =
64 File or DBMS Update None
Subsystem, no message
restart required¥
........ i i g
68 File or DBMS Inquiry None
Subsystem, message
restart required¥
72-254 Same as 20-60 None
255 Reserved for MROTPUT None]
900%%* | Successful completion None
912 Force Backout-on-the-Fly* File updates or additions backed out

Users Guide

*See File Recovery Users Guide or Data Base Management System

**Used only when a called Assembler Language subroutine (MSGCOL/FESEND)
has requeued or freed the input message.
has freed the input message, a return code of 0 must be used.

If MAPIN has been called and

Figure 14.

Intercomm System Return Codes

34

<

Chapter 3 Coding an Intercomm
Subsystem in COBOL

3.2 MESSAGE PROCESSING CONCEPTS

The application program receiving the message may analyze the
Verb Message Identifier (MSGHVMI) in the header and/or message text
fields to further control message processing logic. The meaning of
different VMI values is dependent on the design requirements of the
program receiving the message. For example, the Front End sets the VMI
to X'00’ to indicate to the Subsystem Controller that editing by the
Edit Utility is required, based on the specification in the Front End
Verb Table for a given verb (BTVERB macro, EDIT parameter). The
PREPROG interface routine then analyzes the VMI to determine if the
Edit Utility should be called prior to passing the message to the
subsystem (if editing 1is successful). A VMI value of X'FF’
(high-values) indicates that no processing 1is required by, or was
performed by, the Edit Utility. Any other value in the VMI indicates
that the Edit Utility has already processed the message or that a user
subsystem has placed a code in the field before switching (queuing) the
message to the currently processing subsystem.

An application subsystem creates an output message by building a
42-byte header and appropriate message text. This new message 1is
either passed to the Front End via FESEND for transmission to the
terminal, or is queued for later processing by the Output Utility or
some other subsystem by calling the Intercomm system program COBPUT.
The subsystem destined to receive this new message is determined by the
receiving subsystem code fields (MSGHRSC, MSGHRSCH) in the message
header. The receiving subsystem may then analyze the VMI, as
appropriate. The Output Utility, for example, analyzes the VMI to
determine whether or not prespecified output message formatting is to
be performed. If the output message is passed directly to FESEND,
MSGHRSCH and MSGHRSC should be set to binary zeros (low-values).

Subsystem logic for input message text analysis and output
message text creation varies, depending on whether Message Mapping or
the Edit and Output Utilities are used. Figures 15 and 16 illustrate
subsystem processing logic for these two cases.

It is very important to note that the input message area
(Intercomm header and message text) may only be examined (treated as a
read-only area) by the application program. It may also be copied to
an output message area (header only, or header and text) where it may
be added to or changed, depending on program logic. Never add data to
the input message text area.

35

Chapter 3

Coding an Intercomm
Subsystem in COBOL

Subsystem Logic

Comments

Initial-
ization

Lgfic

MAPIN
according to
user specifi-

cations

Processing
Logic

Prepare
Output
Data

MAPOUT
according to
user speci-

fications

MAPEND
pPlace message
header and
text in DWS

FESEND
place message
in terminal
queue for
transmission

GOBACK

The subsystem determines (perhaps based
on the particular verb entered) if the
input message requires mapping.

MAPIN is called to convert the input

message to text consisting of fixed

length fields with a three-byte prefix of
length (two bytes) and flag (one byte),
indicating the result of field conversion.
All terminal-dependent characters are
removed.

Processing logic is application-dependent.

Output text data has a format similar to
mapped input text: fixed length data
fields with a three-byte prefix of length
(two bytes) and attribute (one byte),
indicating terminal-dependent field
characteristics, if applicable.

MAPOUT is called to build an output
message text stream, padding, justifying
and/or converting data fields from
computational form, as necessary, and
adding constant heading information as
required.

MAPEND is called to return the output
message (header and text) in terminal-
dependent format ready for transmission,
or to dispose of the output message.

FESEND is called to pass the output
message to the Front End (if MAPEND has
not disposed of the output message).

Subsystem completes its processing and
returns to Intercomm.

Figure 15. Subsystem Logic Using Message Mapping Utilities

36

Chapter 3 Coding an Intercomm
Subsystem in COBOL

Subsystem Logic Comments

ENTRY

If the Front End Verb Table indicates EDIT=YES,

Initial- the subsystem receives an edited input message
ization automatically. The message text consists of fixed
Logic length data fields or variable length data fields

prefixed with a l-byte identification and a l-byte
length code (binary values).

Processing Processing logic is application-dependent.
Logic

The subsystem prepares an output message by
creating a message header and the appropriate

Prepare text. Output message text fields are either
Output fixed length data fields or variable length
Message fields with a prefix as described for Edit, above.

Message header fields RSCH, RSC, and VMI identify
the specific message text format.

COBPUT
queue the COBPUT is called to queue the output message for
message for processing by the Output Utility subsystem.
Output
Final Subsystem completes its processing and returns to
Processing Intercomm.

GOBACK

Figure 16. Subsystem Logic Using Edit and Output Utilities
(Page 1 of 2)

37

Chapter 3 Coding an Intercomm
Subsystem in COBOL

Subsystem Logic Comments
(ENTRY ’
Output Utility The Output Utility performs message formatting
message for- according to user specifications, adding constant
matting logic heading information as required.
FESEND
put message FESEND is called to pass the output message to the
in terminal Front End. Output completes its processing and
queue returns to Intercomm.

Figure 16. Subsystem Logic Using Edit and Output Utilities
(Page 2 of 2)

3.3 SUBSYSTEM CODING

The language interface routines are:

° PREPROG--which interfaces the Subsystem Controller to the
COBOL subsystem by initializing the reentrant (if VS COBOL
IT) or pseudo-reentrant (if O0S/VS or ANS COBOL) environment

for each subsystem processing thread. If the VMI of the
input message is X'00’, the Edit Utility is called to edit
the message. If successful, the subsystem is activated. If

unsuccessful, EDIT returns an appropriate error message to
the input terminal and PREPROG returns to the Subsystem

Controller (subsystem not activated). If the subsystem 1is
loaded above the 16M 1line, it will receive control in
31-Amode.

° COBREENT--which maintains 1linkages and save areas (and
performs Amode switching) for COBOL subsystem interface to
Intercomm service routines and for wuser subroutines, thus
preserving the multithreaded reentrant environment while

providing standard CALL interfaces to the routines. For VS
COBOL II, COBREENT saves and restores the thread'’'s run unit
environment.

38

Chapter 3 Coding an Intercomm
Subsystem in COBOL

e COBPUT--which is called via COBREENT to copy a message from
the dynamic working storage of a COBOL program into the
Intercomm-managed dynamic pool storage area before passing it
to Message Collection to be queued for another subsystem.

° REENTSBS--table of Intercomm service routine and wuser-coded
subroutine entry points, names and related characteristics.

All COBOL subsystems and subroutines interface to Intercomm
service routines and user subroutines using standard CALL ’'literal’
statements. Dynamic call is not supported. One routine only is
called: COBREENT. The first passed parameter is the name of a code
defining the actual routine to which interface is desired, subsequent
parameters are those required by the called routine, and should be in
Dynamic Working Storage if the subsystem (subroutine) can be loaded
above the 16M line (must be a 24-bit address). Coding format:

CALL 'COBREENT'’ USING routine-code, parml[, parm2,...].

Subsequent chapters of this manual and of related message
processing facility manuals contain detailed descriptions of applicable
routine-codes and the required parameters. The Intercomm source text
member ICOMSBS, listed in Appendix B, provides the definition of the
halfword routine-code constants (PIC 9(4) COMP) used for calling most
of the Intercomm service routines via COBREENT. To ensure that the
correct code value 1is wused, ICOMSBS should be COPYed into the
Working-Storage Section of each COBOL program as follows:

01 COBREENT-CODES COPY ICOMSBS.

Code names correspond to the entry point name defined in REENTSBS, and
the code itself is an index value (offset) into the REENTSBS table (see
Chapter 9).

Figure 17 illustrates the basic coding required to implement an
Intercomm subsystem and the definition of an input message and creation
of an output message via an application to "echo" the text of an
incoming message back to the originating terminal. The Message Mapping
Utilities, the Edit Utility and the formatting capabilities of the
Output Utility are not used.

1. The message header 1is created by copying the input message
header to the output message header area and adjusting the
following fields:

@ MSGHSSCH, MSGHSSC--Sending Subsystem Code
Move in the original receiving subsystem code values,

MSGHRSCH (to MSGHSSCH) and MSGHRSC (to MSGHSSC), to
identify the current subsystem as the sending subsystem.

39

Chapter 3 Coding an Intercomm
Subsystem in COBOL

® MSGHRSCH, MSGHRSC--Receiving Subsystem Code

Move in a predefined code to indicate further processing
(the next subsystem) for this message (for FESEND, use
low-values).

° MSGHVMI--Verb/Message Identifier

Move in a predefined code for subsystem processing, or to
indicate to FESEND that the output message is not fully
formatted, use X'57'. If an output message is formatted
by MMU, do not touch this field.

) MSGHLEN--Message Length

Modified to 1include header and text length of output
message.

e MSGHTID--Receiving Terminal Name

If the originating terminal is to receive the response
message, do not change. Otherwise, specify the receiving
terminal name for the output message(s).

2. The new message text 1is created by copying the input message
text to the output text area, and then appending the author’s
name and a message ending character (X'26' or X'37').

3. Queuing of the output message for the terminal 1is
accomplished via the service routine FESEND (FESENDC).

4. The return code from the queuing routine must be analyzed to
assure that the new message was actually queued, and recovery
action taken if not.

5. The last logical activity in the subsystem is to move a value
to the Intercomm return code field and GOBACK to the
Subsystem Controller.

The program identification and entry point name must correspond
to the subsystem entry point described in the Subsystem Control Table.

The input-message entry parameter defined in the Linkage Section
has been further detailed to reference the 42-byte input message header
and the input message text as separate entities. See Chapter 2 for a
description of individual fields in the message header.

To assist the programmer in defining the message header, there
are two source text members, ICOMINMG and ICOMDWS, listed in Appendix
B; they may be COPYed into the appropriate portions of the Linkage
Section. Additionally, the COPY member ICOMHEXC (for the Working-
Storage Section) provides common hexadecimal codes.

The entry parameters for the System Parameter Area (SPA) and
Subsystem Control Table (SCT) entry for the subsystem are not detailed
as there is no need to reference any of their individual fields.

40

Chapter 3 Coding an Intercomm
Subsystem in COBOL

The entry parameter for the Intercomm return code is used to
indicate the result of message processing to the Subsystem Controller.

The output message format appears as the first definitions in the
Dynamic-Work-Space entry in the Linkage Section, which corresponds to
the fifth entry parameter.

Constants are defined as wusual in the Working-Storage Section.
Independent items, that is, areas of storage modified during program
execution, must be included in the Linkage Section as part of the
Dynamic-Work-Space definition. Such items also include storage areas
required for Intercomm service routines and passed to those routines as
parameters, whether or not the subsystem references or modifies those
areas. Additionally, variable areas passed as parameters to user
subroutines must also be defined in the Dynamic-Work-Space. Unmodified
constant values (map names, file DD names, etc.) may be defined in
Working-Storage even though passed as parameter values to called
routines, except if an 0S/VS or ANS COBOL program is loaded above the
16M line (see Section 3.4.1). For VS COBOL II, variable items may be
in Working-Storage (see Section 3.4.3).

3.3.1 Message Switching Between Subsystems

Any Intercomm subsystem may send a message to any other Intercomm
subsystem. If a message 1s sent to some other subsystem, it 1is called
"message switching." An application subsystem can switch a message to
the Output Utility, which is another subsystem. The Change/Display
Utility switches messages to the Output Utility. An application
subsystem may switch (or requeue) a message to itself in the event that
reprocessing or deferred processing of the message is required. An
application subsystem may exceed an installation’s core limitations and
be broken into several subsystems. One subsystem may receive a message
input from a terminal, perform partial processing and develop
intermediate results in the form of a message sent to a second
subsystemn. The second subsystem processes the intermediate results as
an input message and may complete the message processing or develop
additional intermediate results in the form of messages sent or
switched to any other subsystem or subsystems. Any one of these
subsystems might also switch messages to the Output Utility.

Message switching between subsystems is accomplished by moving
the input message header to an output message area, changing the
receiving subsystem codes in the output header, adding (or copying)
message text, and then calling COBPUT. The Verb/Message Identifier
(MSGHVMI) may be 1initialized for interpretation by the receiving
subsystem. A VMI equal to X'00’ indicates that the Edit Utility is to
be called by PREPROG prior to activating the subsystem.

To switch messages between terminals, the destination terminal

identifier (MSGHTID), and the VMI, would also have to be changed before
calling COBPUT or FESEND.

41

Chapter 3 Coding an Intercomm
Subsystem in COBOL
PP 5740-CBL RELEASE 2.4 IBM US/VS COBOL
L 1,422.55 MAY 2641994
00001 000010 ID DIVISION.
00M02 000020 PRUGRAM-1D. ECHOHSG.
00003 000030 REMARKS. TRIS REENTRANT SUBSYSTEM ECnOS AN INPUT MESSAGE
00004 000040 CONTAINING UP TO 500 CHARACTERS OF TEXT BACK TO THE
9€005 000050 ORIGINATING TERAMINAL.
00006 000060 IT COPIES THE INPUT TO THE QUTPUT MESSAGE AREA,
00007 000070 MODIFIES THE MESSAGE HEADER, APPENDS THE AUTHOR'S NaME,
00008 000080 AND MESSAGE ENDINu CHARACTER, BEFURE CALLINGL FESENDC TO
00009 000090 QUEUE THE MESSAGE FOR THE INPUT TERMINAL.
00010 200100 ENVIKONMENT DIVISION.
00011 000110 DATA OIVISION.
00012 000120 WORKING-STORAGE SECTION.
00013 000130 O1 HEX=-CODES COPY ICOMHEXC.
00014 C 01 nEx~-CODES.
00015 C 05 HEX=00 PIC X YALUE ' ',
00016 C 05 CODE-00 REDEFINES HEX=-00 PIC X.
00017 C 05 HEX=15 PIC X VALUE ' ',
00018 C 05 CODE-21 REDEFINES HEX-15 PIC X.
00019 C 05 HEX=37 PIC X VYALUE ' *,
00020 C 95 CODE-55 REDEFINES HEX=37 PIC X.
00021 C 05 HEX-50 PIC X VALUE '€'.
00022 C 05 CDDE-80 REDEFINES HEX=50 PIC x.
00023 C 05 HEX=51 PIC X VYALUE ' °'.
00024 C 05 CODE=-8L REDEFINES HEX=51 PIC X.
00025 C 05 HEX-52 PIC X VALUE ' ',
00026 C 05 CODE-82 REDEFINES HEX=52 PIC X.
00027 C 05 HEX=53 PIC X VALUE ' ',
00028 ¢ 05 CO0E-83 REDEFINES HEX=53 PIC X.
00029 C 05 HEX-54 PIC X VALUE * ',
00030 C 05 CODE-84 REDEFINES HEX=54 PIC X.
00031 ¢ 05 HEX=55 PIC X VALUE ' ',
00032 C 05 CODE-85 REDEFINES HEX=55 PIC X.
00033 C 05 HEX=56 PIC X VYALUE * ',
00034 C 05 CODE-86 REDEFINES HEX=56 PIC Xe
00035 C 05 HEX=-57 PIC X VALUE * ',
00036 C 05 CODE-87 REDEFINES HEX=57 PIC X.
00037 C 05 HEX=-72 PIC X VALUE ' °,
00038 C 05 CODE~114 REDEFINES HEX=72 PIC X.
00039 ¢ 05 HEX=FF PIC X VALUE ' ',
00040 C 05 CDDE-255 REDEFINES HEX=FF PIC X,
00042 000140 01 REENTSBS=CODES COPY ICUMSBS.
00043 C 01 REENTSHS-CODES.
00044 C « THESE CODES REPRESENT OFFSETS FOR ROUTINE AQDRESSES IN THE
00045 C * TABLE NAMED REENTSBS. ONLY THE MOST COMMONLY USED VALUES
00046 C * ARE INCLUDED HERE; THE USERS MANUAL HAS A COMPLETE LIST.
00047 C * IF OFFSET 0DO, THEN TRUE OFFSETe=(OFFSET+1)
00048 C 05 INTSORTC PIC 99 COMP VALUE 99.

Figure 17. Echo Message Example; Reentrant COBOL

(Page 1 of 6)

42

Chapter 3 Coding an Intercomm
Subsystem in COBOL
2 ECHOMSG 15.22.55 MAY 26,1994
00049 C 05 DWS=SNAP PIC 99 COMP VALUE 95.
00050 C 05 MAPFREE PIC 99 COmP YALUE 9S1.
00051 C U5 FECMRLSE PIC ¥9 COMP YALUE 87.
00052 C 05 FESEND PIC 99 COMP VALUE 33.
00053 C 05 FESENOC PIC 99 COMP VALUE 79.
00054 C 05 DYN=-ALLOCATE PIC Y9 COMP VALUE 75.
00055 C 05 DYN=ACCESS PIC 99 COMP YALUE 71.
00056 C 05 MAPURGE PIC 99 COMP YALUE 67.
00057 C 05 MAPCLR PIC 99 COMP YALUE 63.
00058 C 05 MAPEND PIC 99 COMP VALUE 59.
00059 C 05 MAPOUT PIC 99 COMP VALUE 55.
00060 C 05 MAPIN PIC 99 COMP VALUE 51.
00061 C 05 INTUNSTO PIC 99 COMP VALUE 47,
00062 C 05 INTSTORE PIC 99 CODMP VALUE 43.
00063 C 05 INTFETCH PIC 99 COMP VALUE 39.
00064 C 05 FECMFODBK PIC 99 COMP VALUE 35,
00005 C 05 FECMUDQ PIC 99 COMP VALUE 31.
00066 C 05 0Q-WRITEX PIC 99 COMP VALUE 27.
00067 C 05 DQ-READX PIC 99 COMP VALUE 23.
00068 C 05 0Q-wRITE PIC 99 COMP VALUE 19.
00069 C 05 DQ-READ PIC 99 COMP VALUE 15,
00070 C 05 DO-CLOSE PIC 99 COMP VALUE 1ll.
00071 C 95 DOQ-OPEN PIC 99 COMP VALUE 07.
00072 C 05 D0Q-BUILD PIC 99 COMP YALUE 03.
00073 C 05 FH=SELECT PIC 99 COMP VALUE 4.
00074 ¢ 05 FH=RELEASE PIC 99 COMP VALUE 8.
00075 C 05 FH=READ PIC 99 COMP VALUE 12,
00076 C 05 FH=wRITE PIC 99 COMP VALUE 1lb.
00077 C 05 FH=GET PIC 99 COMP YALUE 20.
00078 ¢ 05 FH=-PUT PIC 99 COMP VALUE 24.
00079 C 05 FH=-RELEX PIC 99 COMP VALUE 28,
00080 C 05 FH=FEQY PIC 99 COMP VALUE 32.
00081 C 05 cOoBPUT PIC 99 COMP VALUE 6.
00082 C 05 AaSGCOL PIC 99 COMP VALUE 72.
00043 C 05 COBSTORF PIC 99 COMP VALUE 7b.
00084 C 05 CONYERSE PIC 99 COMP VALUE 80.
00085 C 05 OBINT PIC 99 COMP VALUE 84.
00086 C 05 LOGPUT PIC Y9 COMP VALUE 88.
00087 C U5 PAGE-FILE PIC 99 COMP VALUE 92.
00088 C 05 FH-GETY PIC 99 COMP VALUE 9.
00089 C 05 FH=PUTY PIC 999 COMP VALUE 100.
00090 C * CODES 104 AND UP INDICATE USER ADDITIONS TO THE TABLE
00092 000150 Ol AUTHORS=NAME.
00093 000160 04 QUT-NANE PIC X(10) VALUE ' T.ELGUERA'.
00094 000170 04 0QUT-ASG REDEFINES OUT-NAME, ‘
00095 000180 06 NAME=-CHAR PIC X OCCURS 10 TIMES.
Figure 17. Echo Message Example; Reentrant COBOL

(Page 2 of 6)

43

Chapter 3 Coding an Intercomm
Subsystem in COBOL
3 ECHONSG 15422455 MAY 2651994
00097 000190 LINKAGE SECTION.
00098 600200 01 INPUT-MESSAGE COPY ICOMINMG.
00099 ¢ 0L INPUT-mESSAGE.
00100 ¢ U4 MESSG-HOK.
00101 € 06 ASGH-LENGTH PIC 59999 COMP.
00102 C 06 NSGH-QPR PIC X.
00103 C 06 MHSGH=RSCH PIC X.
00104 C 06 MSGH=RSC PIC X,
00105 C 06 ASGH-SSC PIC X
00106 C 06 MSGH-MAMN PIC XXX
00107 C 06 MSGH=DATE.
00108 C 08 MSGH-YR PIC 99.
00109 ¢ 08 AMSGH-PERIOD PIC X.
00110 C 08 NSGH-JULIAN-DAY PIC 999.
00111 € 06 ASGH=TIME.
00112 ¢ 08 MSGH-HH PIC 99.
00113 C 08 MSGH=-MA PIC 99.
00114 C 08 MSGH-SS PIC 99.
00115 C 08 MSGH-Tn PIC 99,
00116 C 06 ASGH-TID.
00117 C 08 MSGH-TIL PIC X.
00118 C 08 MSGH=-TI12-3 PIC XX.
00119 C 08 MSGH-T14=5 PIC 99.
00120 C 06 AMSGH=FLGS “PIC X(2).
00121 C 06 ASGH=P1D PIC X(5).
00122 ¢ 06 MSGH=PIDX REDEFINES MSGH~PID.
00123 C 08 FILLER PIC X(2).
00124 C 08 ASGH=8MN PIC Xx(3).
00125 ¢ 06 MSGH=-SSCH PIC X
00126 C 06 nSGH—ADOR PIC X(3).
00127 ¢ 06 NSGH-ADRX REDEFINES MSGH-ADOR.
00128 ¢ 08 ASGH-USR PIC X.
00129 ¢ 08 FILLER PIC X(2).
00130 C 06 ASGH-LOG PIC X
00131 C 06 ASGH-B8LK PIC X.
00132 C 06 WSGH=VHI PIC X.
00134 000210 04 INPUT-MESSAGE-TEXT PIC X OCCURS 500 TIMES.
00135 000220 01 SYSTEM-PARAMETER-TABLE PIC X.
00136 000230 01 SUBSYSTEM=CONTROL-TABLE PIC X.
00137 000240 QL INTERCIMM-~RET=-CODE PIC S9(7) COMPUTATIONAL.
00138 000250 Ol DYNAMIC-wORK=SPACE COPY ICOMOWS.
00139 C 01 DYNAMIC-wORK=SPACE. .
00140 C 02 OUTPUT-MESSAGE.
00141 C 04 OMESSG-HOR.
00142 C 06 OMSGH-LENGTH PIC S9999 COMP,
00143 C 06 OMSGH=QPR PIC Xo
00144 C 06 OMSGH=RSCH PIC X.
00145 C 06 OMSGH=RSC PIC X.
00146 C 06 DNSGH=SSC PIC X.
00147 C 06 OMSGr=-HAN PIC XXX
00148 C 06 OMSGH-=DATE.
Figure 17. Echo Message Example; Reentrant COBOL

(Page 3 of 6)

44

Chapter 3 Coding an Intercomm
Subsystem in COBOL
4 ECHOMSG 15422455 HAY 261994
00149 C 08 UOMSGH=-YR PIC 99.
00150 C 08 UMSGA=PERIVD PIC X.
00151 C 08 UMSGH=-JUL[AN=DAY PIC 999,
00152 C 06 UMSGH-TIME.
00153 C 08 OMSGH=HH PIC 99.
00154 C 08 UMSGH=MM PIC 99.
00155 ¢ 08 OMSGH-SS PIC 99.
00156 C 08 OMSGH=TH PIC 99.
00157 C 06 UOMSGH-TID.
00158 C 08 OMSGH-TIL PIC X
00159 C 08 OMSGH-TI2-3 PIC XX
00160 C 08 OMSGH-TI4-3 PIC 99,
00161 € 06 OMSGH=FLGS PIC X(2),
00162 C 06 OMSGH=PID PIC X(5).
00163 C 06 UOMSGH=PIDX REDEFINES OMSGH-PID.
00164 C 08 FILLER PIC X(2)e
00165 C 08 OMSGH-BMN PIC X(3).
00166 C 06 (OMSGH-=SSCH PIC X.
00167 C 06 OMSGH-ADOR PIC x(3).
00168 C 06 UMSGH-ADRX REDEFINES UMSGH-ADDR.
00169 C 08 OMSGH=USR PIC X.
00170 C 08 FILLER PIC x(2).
00171 ¢ 06 OMSGH-LOG PIC X.
00172 C 06 OMSGH=BLK PIC Xeo
00173 € 06 OMSGH=-VMI PIC X
00175 000260 04 OUTPUT-MESSAGE-TEXT PIC X OCCURS 510 TIMES.
00176 000270 02 FESENDC-RETURN-CODE PIC 99.
00177 000280 88 QUEUED YALUE ZERO.
00178 000290 02 I PIC S9¢4) CUMPUTATIONAL.
00179 000300 02 J . PIC S9(3) CUMPUTATIONAL.
Figure 17. Echo Message Example; Reentrant COBOL

(Page 4 of 6)

44,1

Chapter 3 Coding an Intercomm
Subsystem in COBOL
5 ECHOMSG 15022455 MAY 26,1994
00181 000310 PRUCEDURE DIVISIUN USING
00182 000320 INPUT-MESSAGE
00183 000330 SYSTEM=PARARETER=TABLE
00184 000340 SUBSYSTEM—CONTROL-TABLE
00185 000350 INTERCOMN=RET=CODE
00186 000360 DYNAMIC=WORK=SPACE «
00137 000370 MOVE MESSG-HOR TO UMESSG-HODR.
00188 000380 MOVE OMSGH=RSCH TO OMSGH=SSCH.
00189 000390 MOVE OMSGH=RSC TD OMSGH=SSC.
00190 000400 NOVE LUW=VALUES TO OMSGH=RSCH.
00191 000410 MOVE LOW=YALUES TO OMSGH=RSC.
00192 000420 MOVE HEX=57 TO OMSGH=vMI.
00193 000430 PERFORM MOVE-A~CHARACTER VARYING I FROM +1 BY +1
00194 000440 UNTIL I IS EQUAL TO MSGH-LENGTH = 42.
00195 000450 PERFORM NAME-MUVE YARYING J FRUM +1 BY +L UNTIL J > +10.
00196 000460 ROVE HEX=-37 TO OUTPUT-MESSAGE-TEXT (I,
00197 000470 COMPUTE OMSGH=LENGTH = I + 42,
00198 000480 CALL °*COBREENT® USING
00199 000490 FESENDC
00200 000500 QUTPUT-MESSAGE
00201 000510 FESENDC-RETURN=CODE.
00202 000520 IF NOT QUEUED
00203 000530 MUYE FESENDC-RETURN=-CODE TO INTERCOMM-RET-CODE
00204 000540 ELSE
00205 000550 MOVE ZEROS TO INTERCOMM-RET~CODE.
00206 000560 GOBACK.
00207 000570 SUBROUTINE SECTION.
00208 000580 MOVE-A—-CHARACTER.
00209 000590 MOVE INPUT=-MESSAGE=TEXT (I) TO OUTPUT-MESSAGE-TEXT (1),
00210 000600 NAME-MOVE.
00211 000610 MDVE NAME=CHAR (J) TO OUTPUT~MESSAGE=TEXT (I).
00212 000620 COMPUTE 1 = I + 1.

Figure 17. Echo Message Example; Reentrant COBOL

(Page 5 of 6)

44,2

Coding an Intercomm
Subsystem in COBOL

Chapter 3

d%0)d 32 Sa LZ0~L=WNQ 22 =778 r 20 120-1=WNQ
dW0od 2 sa 910-4=WNQ vzZe L=717¢ 1 20 QT0=-L=WNO
000=L=WNQ a3n3nnd BR 000-L=WNCO
WN=dSIC J2 Sa €Ly—-9=WNQ 822 L=T778§ 200J-NuNL3Y¥-IONIS33 20 ELY—-9=UNO
dSIa 1 Sa Tyy-9=WNQ v2Zo L=T178 1X31-39vSS3W-INdLIND €0 Ty H=Q«UNQ
dsIda 1 Sa 22%=9=WNQ 620 =78 IWA=-HOSUD 40 22%=9=WNQ
ds 10 1 sa 00%—=9=WNQ 820 =178 ¥Ig=-HISWO ¥O 00 %=Q=WNQ
dSIa J1 sa T1RE-9=WNQ 120 4=778 907-HISHO 40 T9€E~9=WNO
dSIa JZ SO L9E=9=}NQ 6?20 =178 ¥371d SO L9€E~-9=UNO
dsIo 1 sa ShE-9=WNQ %20 L=178 UYSH—HOSWE SO Sy E=-9=WNO
4n0¥9 €720 SO 22€-9=WNQ ¥20 L=118 XAQY-HISWND &0 Z2E=~9=KNQC
dS1a J¢ Sa 20€-9=WNQ ¥20 L=718 AOAY-HOSHO &0 20€-9=WNQ
dsia J1 SO 282-9=UNQ €20 L8 HISS-HISWO %0 282-9«WNQ
dsSIa ¢ SO 092-9=WNQO ozo 4=7178 NWE-HOSWO 60 092-9=NNQ
ds1Ia J2 sa 942=-9=UNQ 310 =778 ¥3IIN14 soO 9472-9=WNQ
dnN0 Y9 €720 Sa 022=9=WNQ ato =178 X0Id=HOSNO &0 022-9=WNQ
dsIa 3¢ Sa T102-9=WNQ 310 2=7178 QI d=-HOSWO &0 102-9=HWNQ
ds10 JdZ Ssa T8T1—-9=WNQO 310 L=7€ SOTJ—=HOSHD 4O 181=-9=WNQ
WN=-dSIQ J2 Sa 09T-9=WNQ vio =178 G—-411-HISWO SO 091=9=WNQ
dS10 J2 sa 6€T—-9=WNQ eto0 L=T118 €-211-HOSHO 6O &ET-G=UNC
dsla J1 sa 0Z2T=-9=WNQ 110 =178 TIL-HOSKHO 6O 021-9=4NG
dnoy¥o €700 SO 860-9=UNQ LT0 L=7"8 GIL1-HISHD ¥0 860-9=WNQ
WN=dSI0 JZ Sa 080-9=WNGC st0 l=178 H1-H9SHO 60 080-9=WNQ
WN=4dSI10 JZ Ssa 650-9=WNQ €10 =178 SS=HISWO 6O 650-9=UNQ
WN=-dS1a J2 sa T¥0-9=WNQO 110 =118 HU=-HOSWO O T»0-9=WNQ
WN-dSIO J2 Sa €20-9=WNQ 400 L=71718 - HH=HO9SWO &0 €20-9=WNQO
dnNN Y9 87120 S@ 000-9=WNQ 400 4=11¢ 3WI 1-HOSWO O 000-9=WNQ
WN=dSIQ J€ SO 2L9-S=WNQ 200 Z=178 AYO-NYIINF-HO9SWO 60 2LY=-GwlNC
ds10 1 s@ 064=G=UNQ 800 =176 G01¥3d4-HIOSWD GO 06Y=G=WND
WN=dSIO J2 sa 62¥=-5=UNQ 600 L=T178 YA-HISWO 6O 62»=6=UNQ
dNoy¥9 9720 SQ 90Y—=S=WNQO 600 4=7178 JIVO-HOSWD 40 90 ¥=G=WNQ
ds10 7€ SO YBE-G=WNQO 900 L=Ne NUW=-HOSHD &0 YBE-S=WNQ
dS1Ia0 T Sa S9E-S=WNQ s00 L=7116 JSS-HOoSKO 40 G9€-G=WNO
ds1a JT sa EYE-G=UWNO Y00 L=118 JS¥-HIOSHO ¢O EYE-G=WNQO
dslio 1 SO €E2E-GS=WNQ €00 =778 HJISY¥-HOSWO %0 €2€-G=WNQ
ds1a 1 Sa T0€E-6=WNQ 200 4=7118 YdO-HISWO %0 T10€-6=WNO
dw0)d 32 S0 6L42-$=WNQ 000 L=778 H1ON3I=-WOSHD &0 6L2-5=uWNQ
dnnNyY9 2%700 Sa 962-6=WNQ ono l=77¢ YOH=-9SS3WC €0 967-G=WNQ
anoyo 266700 $¢ 622-S=WNQ 000 (=78 39vSS§3W-1ndiN0 20 622-G=UND
[Cano¥n 865730 SO 861=~5=WNQ 2JVdS—-HYOP-2IHVNAO 10 R6T-G=WNO
¥ w5 3% 50 I9T=%=WN T —uWcI¥sIN I9T=C¢=WNT
ds1a T SO YET-S=UNO 000 S=7¢ IVAVI=T0Y¥INDI-USLSASEBNS TO bET-GmWNG
4510 1 SG 201-6=WNQ 000 y=78 FIEVL—¥ILIWVAVI=KILSAS T0 20T-¢=uNQ
ds1o J1 SO T1L0-S=WNQ vZ0 €=17118 A¥31-39vSS3u=-1INdNI 20 TL0-6=WNG
dS10 1 S0 060-6=WNO 620 €=17¢ IWA=H9SKH €0 060-6=WNQ
ds1Ia 1 SO 2F0-$=WNQ 820 €=17€ YIE~HOSW €0 2€0-G=WNQ
dS10 T S0 $70-6=wWNQ 120 €«178 901-HISW €0 »10~-G=WNQO
ds1d0 J2 S@ 000=-6=WNQ s20 €=17€ YSTITI4 0 000-G=WNC
ds1d0 1 s@ TRY—4=WN(%70 €=T17¢€ YSN=HOSH %0 Teb=4=WNQ
dnoy9 €720 Sa 6Gy=9=UNQ %70 €=17€ XYJv=H9SW €0 6SY—bulUNQ
SHETE92 AVN €6°22°¢1 9SWOHI2

*Defines amount of Dynamic-Work-Space specification in the Subsystem
Control Table via GET parameter on the SYCTTBL macro.

J

Echo Message Example; Reentrant COBOL

(Page 6 of 6)

Figure 17.

44.3

Chapter 3

44 .4

Coding an Intercomm
Subsystem in COBOL

Chapter 3

Coding an Intercomm
Subsystem in COBOL

L 3.4 REENTRANT CODING CONVENTIONS

When coding a reentrant COBOL subsystem (or subroutine), care
must be taken to observe the following conventions:

1.

2.

10.

Never use the ALTER verb.
Never modify the WORKING-STORAGE SECTION.

Define in the Linkage Section all areas modifiable during
program execution as items subordinate to the fifth 01
(Dynamic-Work-Space) entry.

Call all system service routines, data base service routines,
and user subroutines through the COBREENT interface program
in order to maintain reentrancy and the multithreading
environment.

A call to COBREENT within a PERFORM range, although
permissible, must be treated as a branch (GO TO) out of the
PERFORM range. This restriction is easily met if all PERFORM
ranges are accessed only by PERFORM statements. Never GO TO
a performed paragraph.

Verify that the amount of dynamic storage defined for the
subsystem in the Subsystem Control Table is an exact multiple
of 8 and is the same or greater than the number of characters
shown in the DMAP and defined for the fifth 01 (DWS) entry in
the Linkage Section (see Figure 17).

FDs cannot be used, nor any file access verbs (OPEN, READ,
etc.).

Do not use the reserved COBOL data name RETURN-CODE for any
Intercomm return codes. (That data name refers to the
contents of general register 15, which is not used for this
purpose by the interface programs.)

Do not forget to code GOBACK to exit to Intercomm; otherwise
a User 519 abend will result.

Ensure numeric fields are not zero before executing a DIVIDE
or COMPUTE.

3.4.1 XA/ESA Extended Storage Loading Requirements (Release 10 only)

COBOL subsystems and subroutines using Intercomm reentrant coding
conventions are eligible for 1loading above the 16M 1line if these
recommendations are followed:

C .

The module should be linkedited with the AMODE=31,RMODE=ANY
and REUS (RENT if VS COBOL II) parameters (see Appendix A)

45

Chapter 3 Coding an Intercomm
Subsystem in COBOL

) For subsystems, the LOADNAM, LANG=RCOB, BLDL=YES (default),
and REUSE=YES (default) parameters are required on the
SYCTTBL macro (a loaded subsystem remains in extended storage
except when necessary to delete it after a program check,
time-out, or by user system control command request)

° For subroutines, the LNAME, TYPE=COBOL, BLDL=YES (default)
and USAGE=REENT parameters are required on the SUBMODS macro
defining the subroutine to Intercomm (see also Section 9.7)

) Ensure that the Intercomm interface routines PREPROG,
COBREENT and DYNLLOAD (for 1loaded subroutines) were
reassembled under XA or ESA (with the XA global on in the
Intercomm global table SETGLOBE if at SM level 2240 or lower)

e All parameters (except the ICOMSBS code) passed via calls to
COBREENT must be in 24-Amode storage (DWS). Constants (file
names, map names, etc.) must be moved to the DWS before the
call, except if VS COBOL II (see below).

3.4.2 Dynamic Working Storage (DWS) Protection Option

Destruction of Intercomm storage pool areas can result if the
Dynamic Working Storage (DWS) acquired for a COBOL subsystem or
subroutine is too small. This user option causes Intercomm to allocate
extra space at the end of the DWS for each reentrant program. When the
subsystem or subroutine calls COBREENT, this space is checked to see if
it has been modified. 1If so, then the DWS is too small and the thread
is terminated with a program check (Snap 126). An error message is
sent to the terminal operator, and the Intercomm control terminal.

This protection option applies only to reentrant COBOL subsystems
with an equal value of GET and FREE specified on the SYCTTBL macro
instruction, and to all reentrant COBOL subroutines with the GET
parameter specified on the SUBMODS macro. This option cannot detect
the possibility of storage destruction beyond the extra DWS area.
Because of the processing overhead required for this feature, it should
be used only until subsystems are thoroughly tested.

The DWS protection option is requested system-wide via the DWSCHK
parameter on the SPALIST macro at system generation time. The option
may also be dynamically controlled system-wide by the Intercomm STRT
and STOP system control commands which control activation and
deactivation of various system control and debugging features. In
addition under Release 10, for individual subsystems, the option may be
requested via the DWSCHK parameter on the SYCTTBL macro describing the
subsystem. If YES is coded, and the option is active system-wide, DWS
checking will be performed. If NO is coded, then it will not be
performed even though active for the system. Conversely, if not active
for the system, SYCTTBL coding is ignored.

46

>

C

Chapter 3 Coding an Intercomm

3.

4,

3

Subsystem in COBOL

VS COBOL II Program Conversion and Support (Release 10 only)

Compiler options required for Intercomm programs are:

RENT, RES and NODYNAM
DATA(24)

NOTEST and NOFDUMP
LIB

The following compiler options are recommended:

APOST (single quote for literals and CALLs)

TRUNC(BIN)

COMPILE (if not the default)

NONAME and NOTERM

SSRANGE (if supported for Intercomm COBOL II installation)
LIST and NOOFFSET

All other compiler options are dependent on site standards or
programmer specification, and are explained in detail in IBM's VS

COBOL II Application Programming Guide For MVS. See the sample
Compile JCL in Appendix A for compiler parms specification.

Note that use of the OPTIMIZE option may enhance performance, but
will increase the size of the COBOL load module as all the
PERFORMed paragraph code is generated inline in the object
(assembler) code immediately following the PERFORM statement. If
a paragraph is PERFORMed multiple times, then multiple copies of
the paragraph code are generated in the object code. While this
may mnot affect seldom executed loadable programs (or programs
loaded above the 16M line), it will greatly increase the size of
the Intercomm load module for resident subsystems and
subroutines.

Coding Requirements and Options:

GOBACK (not STOP RUN) must be used to return to Intercomm.

Dynamic Working Storage (GET parameter on SYCTTBL or SUBMODS)
must be a minimum of 8 bytes. Under VS COBOL II, wvariable
(modifiable) fields may be in the 'WORKING-STORAGE SECTION’.
They (and VALUE fields) do not have to be copied from Working-
Storage to the DWS area, even if the program is loaded above the
16M line. Due to the DATA(24) compiler option requirement, no
coding changes are needed to have a reentrant program dynamically
loaded above the 16M line. If loadable above the line, storage
will be saved in the Intercomm Address Space, and the only
requirement is the added AMODE=31,RMODE=ANY linkedit parameters
(see sample Compile and Link JCL in Appendix A). VS COBOL II
subroutines must also have a DWS of at least 8 bytes, and should
define all variable fields in that DWS if the subroutine may be
called more than once within one message processing thread
(run-unit). If subroutines define wvariable fields in the
'WORKING-STORAGE SECTION’, they need code to clear those fields
(to low-values) on each entry to the subroutine if it may be
called more than once within a single subsystem processing thread
(run unit).
46.1

Chapter 3 Coding an Intercomm

Subsystem in COBOL

'COBREENT’ must be called to interface to all Intercomm service
routines and user subroutines. The REENTSBS code is still
required as the first parameter in the passed parameter list.

CALL identifier (dynamic call) is not supported.

Nested COPY (below the 01 level) may be used: change the $$COPY
for MMU symbolic maps to a standard COPY statement. The COPRE
pre-compile step is no longer needed for Intercomm COPY.

Non-reentrant (do not use a DWS and do not call COBREENT)
programs may not be converted to VS COBOL II (unless first
recoded). Note that single-threading (serial execution) may be
forced via coding MNCL=1 on the SYCTTBL macro.

VS COBOL II user subroutines may not be called by non-COBOL II
subsystems (or subroutines), even if called via COBREENT by a
reentrant OS/ANS COBOL program. That 1is, convert subsystems to
VS COBOL II before converting any reentrant subroutines called by
those subsystems.

Reduce the number of WORKING-STORAGE fields which have VALUE
definitions by converting them to literals in the program code
(for MOVE statements, for example). The literal table is not
copied out to dynamic storage acquired by VS COBOL II.
Conversion does not apply to values in COPY members such as
ICOMSBS and COBLOGCH.

If DWS fields are moved to WORKING-STORAGE, note that every 01
level definition is forced to the next doubleword boundary, even
if the previous field is less than 8 bytes. Therefore, group
areas together by field size and alignment under 01 level
group-names, such as FILE-AREAS, MMU-AREAS, DATA-BASE-AREAS,
etc. See sample program in Chapter 13. Note that fields
subordinate to 0l level names may be passed as parameters on
subroutine calls.

77 level fields always start on a doubleword boundary, even if
the previous field is less than 8 bytes, or not a multiple of 8
in length. Therefore, define such fields which are not 8-byte
multiples in length under an appropriate Ol level group (see
above).

Prefix programs/stubs/roots may not be linked with VS COBOL II
programs as the first routine to receive control. See Operating
Reference Manual for user exits (PREPROGI/E) to use for modifying
the subsystem parameter list/areas.

SORT, MERGE and File I/O verbs are not supported.

READY TRACE, RESET TRACE and SERVICE RELOAD statements must be
deleted (not supported by VS COBOL II).

Only the IBM VS COBOL II (Release 3.0 and higher) compiler is
supported. Installation and 1linkedit of the VS COBOL 1II
environment is described in other Intercomm documentation. See
also Chapter 13.

46.2

J

Chapter 3 Coding an Intercomm
Subsystem in COBOL

o Subsystems may be resident, in an EXGRP or OVERILIAY A, or
dynamically loadable (above the 16M line if possible - COBREENT
provides mode conversion). They may not be in OVERLAY B, C, or D
(linked with MONOVLY). Subsystems must be coded and linked as
reentrant (RENT parm used on linkedit with NOCALL and LET) and if
loadable, NOCALL suppresses linking in called routines (COBREENT
and IGZEBST, which are in the Intercomm linkedit). The extermnal
references to entry points in the Intercomm load module will be
resolved by dynamic linkedit. No programs may directly call any
user subroutines which call other routines. All user subroutines
which are not single-threaded (self-contained) and/or are not in
the Intercomm load module must be called via COBREENT. If the
subsystem is loaded above the 16M line, then all user subroutines
not linked with the subsystem must be called wvia COBREENT (for
mode conversion). On the SYCTTBL macro, LANG=RCOB and REUSE=YES
are required.

° Subroutines called via COBREENT must be coded and defined as
reentrant, and may be resident or loadable (above or below the 16M
line) and must be defined in the REENTSBS table. See Chapter 9 on
defining a DWS area for a COBOL subroutine. On the SUBMODS macro,
TYPE=COBOL and USAGE=REENT are required.

® All Intercomm Facilities and features available at the user site
may be accessed as currently documented, except:

CONVERSE Facility not supported.

DWS checking not applicable to fields moved to Working-Storage.

DWSSNAP will not snap fields/areas defined in Working-Storage,
only those in the DWS area.

o Snap facilities have been enhanced to snap VS COBOL II applicable
storage for subsystem threads in indicative dumps, and to provide
interface debugging snaps at critical times (see Messages and
Codes). Note that in 118 (timeout) and 126 (program check) snaps,
the save area chain contains an extra save area because the TGT
save area is not removed from the chain as for 0OS/ANS COBOL, when
a reentrant COBOL program calls COBREENT. Under the MVS SAVE AREA
TRACE iIn the snap, there may be two consecutive listings for calls
to COBREENT: the first is for the TGT save area, and the second is
for the copy of the TGT save area in the DWS prefix. Only the
second appears in OS/ANS COBOL snaps.

° A new snap 123 (see Messages and Codes) has been added which is
produced (with Intercomm message MP003I) when a recoverable UlOnn
abend is caused by a VS COBOL II run time subroutine (such as an
SSRANGE checking, invalid sign, truncation, or recursive call
abend). The thread is cancelled and the subsystem is flagged
inactive (NO SCHED). That is, no new messages are processed until
the subsystem is corrected and reloaded via the LOAD command, or
the FTUN/SSUP commands are used to reactivate the subsystem (set
SCHED to YES). An indicative dump (similar to a snap 126) is
produced if indicative dumps are active for the region and the
subsystem. See IBM’'s VS COBOL II Application Programming
Debugging for abend and error message (IGZOnnI) explanation.

46.3

Chapter 3 Coding an Intercomm
Subsystem in COBOL

3.5 RESTARTED MESSAGES

After an Intercomm system failure (abend or operator cancel) or
an operating system failure (requiring a re-IPL of the CPU), Intercomm
may be brought up in Restart Mode which permits reprocessing of
messages in progress at the time of failure. Additionally, previously
cancelled messages (see Figure 14), and unprocessed messages (received
and queued, but not started) will be requeued for processing after
system startup completes. This 1is accomplished by retrieving the
original input messages from the log created in the previous Intercomm
execution as described in the Operating Reference Manual, and may be
coordinated with file or database record backout as described in the
File Recovery Users Guide and DBMS Users Guide.

Restarting of messages for a particular subsystem is controlled
by the RESTART parameter of the SYCTTBL macro defining the subsystem in

the SCT. A restarted input message (in progress at failure time)
contains a log code of C'R’ or C'P’ (if data base wupdate may be
executed by the subsystem). All other input messages contain a log
code of C’'2' (see Figure 11). A subsystem may need a different

processing path for a restarted message and should be careful about
creating an output response message which might confuse a terminal
operator.

3.6 DWSSNAP FACILITY (Release 10 only)

The DWSSNAP Facility allows a COBOL subsystem to snap data areas
from its own DWS; a COBOL subroutine can snap areas from its own DWS
and/or areas from the calling subsystem’s DWS (data areas passed as
parameters to the subroutine via Linkage). The output of the DWSSNAP
request may be sent to SNAPDD (unlimited output) with snap ID=087 or
may be returned to the inputting terminal (limit is one screen of
output per snap, all subsequent pages of output are lost), or may be
routed to another terminal, usually a printer (maximum output of 20

pages).

Parameter Contents

SNCWname The Snap Control Word, initialized to: 'YSpp’
(SNAP Option) for output to the system SNAPDD datal
set; 'PDPP’ (DISPLAY Option) for output back to
the inputting terminal, ‘'YPPY’ (PRINTER Option)
for output to terminal named in next parm.

term-id The Intercomm terminal name where output is to be
routed. Only coded if PRINTER option used.

parm-address-start | A data name in the subsystem’s/subroutine’s DWS
which represents the start of the area to be
snapped.

parm-address-end A data name in the subsystem’s/subroutine’s DWS
which represents the end (must be a higher address|
than start) of the area to be snapped.

46.4

-

Chapter 3 Coding an Intercomm
Subsystem in COBOL

Coding format:

CALL 'COBREENT’ USING DWS-SNAP, SNCWname[, term-id]
[, parm-address-start[, parm-address-end]].

The CALL to DWSSNAP can have up to 5 address pairs specified.
However, no addresses need be coded if a snap of the entire DWS is
desired. For example:

CALL 'COBREENT’ USING DWS-SNAP, SNCWname.
will cause the entire DWS to be snapped.

CALL 'COBREENT’ USING DWS-SNAP, SNCWname, parm-address-start.
will cause a snap of DWS from parm-address-start to the end of DWS.

When using the DWSSNAP Facility to receive output at the
inputting terminal, data areas to be snapped (all inclusive) cannot
exceed 300 bytes (only one page of output will be sent to the inputting
terminal; all additional output will be ignored/lost) when one pair of
addresses is specified. If multiple address pairs are specified then
the number of bytes that can be snapped is 300 minus 48 (times the
number of address pairs desired). The storage snapped will be
displayed at the terminal just as it would appear in a formatted dump;
hexadecimal digits .(to the left) and the alphanumeric equivalent (to
the right).

When calling DWSSNAP from a COBOL subroutine, the addresses
passed as parms must be within the subroutine’s DWS or that of the main
COBOL subsystem’s DWS. To pass addresses in the DWS of the subsystem
from a subroutine, they must be part of the Linkage Section of the
subroutine. For example:

LINKAGE SECTION.
01 DWS.
02 SNCW PIC X(4).

01 RECORD-AREA.
04 RECORD PIC X(166).
04 RECORD-END PIC X.

PROCEDURE DIVISION USING DWS, RECORD-AREA.

MOVE 'BDPP’ TO SNCW.
CALL 'COBREENT' USING DWS-SNAP, SNCW, RECORD, RECORD-END, DWS.

will cause a snap, to the inputting terminal, of the 166-byte Record-
Area passed to the subroutine by the subsystem via Linkage and the
entire DWS of the subroutine, provided the output does not exceed one
screen (everything in excess of one screen will be lost). RECORD-END
is a dummy delimiter for displaying the passed record area.

46.5

Chapter 4

USING THE MESSAGE MAPPING UTILITIES

4.1 CONCEPTS

The Message Mapping Utilities (MMU) provide an interface between
the application subsystem and terminal-dependent message processing
logic for both input and output messages. MMU is invoked by calls to
Intercomm service routines which perform mapping functions based upon
user-specified tables (MAPs). Mapping includes justification, padding,
and conversion of character data to/from arithmetic format.

4.2 PROCESSING

MMU input mapping produces fixed length data fields prefixed by a
two-byte length and one-byte flag (indicates errors or omissions)
unless the data fields are defined in a structured (named) segment
(contiguous group of fields). In this case the three-byte prefix
occurs for the entire segment, not for the individual fields.

MMU output mapping operates upon data in the same format, but the
flag byte becomes the field (or segment) attribute character. The
mapped input text area and the unmapped output text area are called
symbolic maps and are defined by special MMU $$COPY statements in the
application program’s Dynamic-Work-Space for O0S/ANS COBOL. Under VS
COBOL II, use the standard COPY statement to copy symbolic maps into

either the Working-Storage Section or into the DWS area. The
application program references data fields and the associated prefix by
symbolic mname. For example, a customer name field (CUSTMER) of

twenty-five characters would appear in an MMU symbolic definition as
follows:

06 CUSTMERL PIC 9(4) COMP. (length)
06 CUSTMERT PIC X. (flag/attribute)
06 CUSTMER PIC X(25). (data)

Output message disposition 1is determined by options passed to
MMU: the formatted message(s) may be returned to the subsystem; passed
to FESEND for terminal queuing; passed to the Page Facility for CRT
page browsing; or spooled to a DDQ for subsequent transmission as a
series of report pages for a printer.

A summary of message processing logic using MMU is shown in
Figure 18. For a complete description of Message Mapping and its use
by application subsystems, refer to the Intercomm Message Mapping
Utilities.

47

Chapter 4§

Using the Message Mapping Utility

APPLICATION SERVICE MAP
LOGIC ROUTINES FILES
MAP
Input ' Initiali- Load
Message zation Lfif;ifi/
Prepare LOADMAP
MAPIN Offline
Calling Utility
Sequence
Process MAPIN MMU
Mapped Convert/Edit Store/
Input Input Fetch
Message Message Data_S:t:J
Prepare
Output
Message
Data
Prepare MAPOUT j
MAPOUT Map output
Calling Message Data
Sequence

Output
Message

Prepare
MAPEND
Calling
Sequence

RETURN

MAPEND

Convert/Edit
Output

Message
7

Figure 18. Message Processing Using MMU

48

<

Chapter 5

USING THE EDIT UTILITY

5.1 CONCEPTS

The Edit Utility may be used for input messages instead of MMU.
It provides an interface to facilitate application program logic for
message editing. When editing has been requested for a verb (via Front
End Verb Table specification), the Intercomm PREPROG interface program
calls the Edit Utility to produce edited message text from data fields
entered by the terminal operator.

The edited message becomes the input message passed to the
subsysten. The Edit Control routine strips the following field
definition characters during the course of editing:

° The system separator character, as defined in the System
Parameter List (SPA)

° 3270 CRT SBA sequences

° Dataspeed 40/1 and 2 terminal TAB characters

° New Line characters

° Carriage Return or combined Carriage Return/Line Feed

) End of Text, End of Message, End of Block, or End of
Transmission characters.

All other device control characters not translated or otherwise
suppressed by the Front End translation table for a particular device
will be treated as text within a field.

Editing is controlled by the Edit Control - Table (ECT - system
table PMIVERBS), which contains all information about each message
necessary to perform editing. An edit proceeds field by field based
upon the user-specified ECT. Data fields may be edited by Intercomm or
user-coded Edit Subroutines. For a complete description of the Edit
Utility, its components and processing logic, refer to the Intercomm
Utilities Users Guide. The sample program in Chapter 12 illustrates
edited message processing.

5.2 PROCESSING RESULTS

The result of processing by EDIT is a message with a standard
forty-two-byte message header and data fields in one of the following
basic formats:

49

Chapter 5 Using the Edit Utility

° Fixed Format

Each edited field is of fixed length in a predefined sequence
as follows:

DATA DATA DATA
HEADER 1 2 | ----- N

® Variable Format

Each edited field may vary in 1length and position in the
edited result. Each edited field is prefixed with a one-byte
identification code, one-byte length, and possibly a one-byte
occurrence number for fields defined as repetitive in the
ECT: '

DATA DATA DATA
HEADER |I (L X I(L Y |----- I]|L zZ

The Edit Utility considers a message successfully edited if there
are no required fields (as specified by the Edit Control Table) in
error or omitted. In the case of unsuccessful editing, Edit sends an
error message to the originating terminal for each required field
omitted or in error. If none of the required fields is omitted or in
error, it remains the responsibility of the application program to
analyze the edited result and perform recovery logic for any non-
required fields in error. Figure 19 summarizes results of Edit
processing for fields in error.

Field Type Fixed Format Variable Format
Non-Required Field appears in edited result, Field does not
Field Omitted filled with pad character appear in edited

associated with Edit Subroutine, result.

that is, spaces for alphanumeric
field, zero for numeric field, or
user-assigned.

Non-Required Field appears in edited result Field does not
Field in Error | filled with high-values (X'FF’). appear in edited
result.
Required Field | Message rejected by EDIT. Message rejected
in Error or by EDIT.
Omitted
Figure 19. Edit Utility Processing of Fields Omitted or in Error

50

J

Chapter 6

USING THE FILE HANDLER

6.1 GENERAL CONCEPTS

The Intercomm File Handler provides centralized control over all
data file access in the on-line system. Requests for data file access
are made in message processing subsystems by calling a File Handler
service routine.

The correspondence between the normal COBOL file access functions
and the Intercomm File Handler service routines is shown in Figure 20.

Function COBOL Verbs Service Routine
Prepare a file for access OPEN SELECT
Access logical records sequentially READ,WRITE GET, PUT
(QSAM, QISAM) GET, PUT GET, PUT
Access logical records randomly READ,WRITE READ,WRITE
(BISAM, BDAM) REWRITE WRITE
Access physical blocks (BSAM,BDAM) READ,WRITE READ,WRITE
Access VSAM files READ, START GETV
WRITE,REWRITE PUTV
______________________________________ R e

Conclude file access CLOSE RELEASE

Figure 20. Functions of File Handler Service Routines

A data file on-line is identified to the File Handler by the
existence of a data definition (DD) statement in the execution JCL.
Files must be existing (DISP=0LD or SHR) except for sequential output
data sets (DISP=NEW or MOD).

DD statement requirements are illustrated in Figure 21.
Additional requirements for VSAM are described in that section.
Special processing definitions for particular files are defined to
Intercomm at system startup by FAR (File Attribute Record) parameters.
These include READONLY (prohibit output), OPEN (at startup), file
duplexing, etc., and are described in the Operating Reference Manual.
Additional parameters for file recovery (in case of program or system
failure) are described in the File Recovery Users Guide.

51

Chapter 6 Using the File Handler

//ddname* DD DSNAME=¥%

// ,DISP=t*

// , DCB=(DSORG=¥%

// , OPTCD="% For BSAM,BDAM,BISAM only.

// ,RECFM= Must be specified by existing
// ,BLKSIZE= data set label or explicitly
// , LRECL= in DD statement.

// ,NCP=

// , LIMCT=

// etc.)

*Name used to identify file in calls to SELECT.
**%Marks those parameters which must be explicitly specified on the DD
statement for each data set.

Figure 21. DD Statement Parameters for the File Handler.

In centralizing data file accesses, the File Handler provides one
central set of control blocks for each file, thus reducing core
requirements in individual message processing subsystems. There are no
File Description entries in a COBOL-coded Intercomm program.

Furthermore, all the facilities of the following Operating System
Data Management functions are accessible to any subsystem: BDAM, BSAM,
QSAM, BISAM, QISAM and VSAM.

The File Handler also supports the following ISAM replacement
access method available from another vendor: TIAM.

Data Base interfaces supported under Intercomm (IDMS, ADABAS,
TOTAL, DL/I) are described in the DBMS Users Guide and the respective
vendors’ manuals.

6.1.1 Subsystem Processing

In the on-line environment, several subsystems in concurrent
execution may require access to the same data file. Rather than each
subsystem issuing an OPEN and corresponding CLOSE for accessing a
particular file, the File Handler will open a file the first time it is
accessed (unless already opened at startup) and the file remains open

for the duration of the on-line job in execution. A SELECT request
simply establishes internal control blocks and the corresponding
RELEASE request merely disconnects those internal control blocks. In

each subsystem, following a SELECT for a particular file, access
functions (READ, WRITE, GET, PUT, GETV, PUTV) may be called as many
times as may be necessary for message processing logic. RELEASE must
be called for each selected file prior to the return to the System
Monitor.

52

Chapter 6 Using the File Handler

Each subsystem must provide space for two File Handler control
areas. The information in these areas is unique for each message
thread, so they must be defined in the Dynamic-Work-Space of reentrant
programs, that is, defined in the Linkage Section as a subordinate item
to the fifth entry parameter. To assure that they are fullword
aligned, they should be defined following an eight-digit computational
item, such as 02 FILLER PICTURE S9(8) COMP SYNC. Figure 22 shows how
these control areas may be defined so as to force the proper alignment.

02 FORCE-ALIGN PIC S9(8) COMP SYNC.
02 FHCW REDEFINES FORCE-ALIGN.
04 FH-RET1 PIC X.

88 1IOK VALUE O.
88 TIOERROR VALUE 1.
88 NOT-FOUND VALUE 2.
88 EOF VALUE 2.
88 XTO VALUE 3.
88 NO-DD VALUE 9.

04 FH-REQL PIC X.

04 FH-REQ2 PIC X.

04 FH-RET2 PIC X.
02 EXTDSCTL PIC X(48).
02 EXTDSCT2 PIC X(48).

Figure 22. Defining File Handler Control Areas

For each call to a File Handler service routine, the File Handler
is passed the addresses of the two control areas. The first is an
aligned 48-character area, called an External DSCT (EXTDSCT), which the
File Handler uses to save control information for the subsystenm
processing thread, from the time that a given file is first SELECTed
until it is finally RELEASEd. A unique EXTDSCT must be defined for
each file concurrently accessed within the same processing thread. The
other control field, called the File Handler Control Word (FHCW), is an
aligned four-character field used for communication between the File
Handler and the calling subsystem. Prior to each call to a service
routine, the subsystem must clear the FHCW with spaces or initialize it
with a predefined request code as described for each routine. A code
of space (blank) is indicated in the detailed access descriptions by
the lower case letter }¥. An example of such a request would be to
establish Exclusive Control during a call to READ with intent to
update. The File Handler will return a completion code in this word,
after servicing a request, to communicate the status of the operation
back to the subsystem.

53

Chapter 6 Using the File Handler

6.2 CALLING SERVICE ROUTINES

A COBOL subsystem may call the File Handler service routines
through the Intercomm interface module COBREENT, and provide a
routine-code name corresponding to the desired routine name, as
described in the Intercomm COPY member ICOMSBS. The COBREENT prototype
coding format is described in Chapter 3.

The parameters for the File Handler service routines are
described in Figure 23. The specific parameters passed to a given
service routine depend on file requirements and the processing options
of the particular service routine called. If the calling subsystem (or
subroutine) might be loaded above the 16M line, then all parameters
(except the ICOMSBS code) must be in the 24-Amode DWS (may be in
Working-Storage for VS COBOL IT).

Parameter Content

EXTDSCTname A 48-character fullword-aligned area supplied by the
subsystem for the File Handler’s use for each file
SELECTed (see Figure 22)

FHCWname The File Handler Control Word, in which the File
Handler returns a completion code to the subsystem
(see Figure 22)

ddname An eight-character constant initialized with the name
of the DD statement describing the data set to
Intercomm (move to the DWS for calls from 31-Amode
0S/ANS COBOL programs)

Record-area The area for data read from, or to be written to,
the file
key | The key for file access (ISAM, Keyed BDAM, VSAM-KSDS) |
© vsam RBA | Four-byte Relative Byte Address mumber (ESDS) |
vsaM RN | Four-byte Relative Record Number (RRDS) |
© Block-Ib | Applies only to BDAM files: 1

e three-byte relative block number (RBN)

e three-byte relative track and record number (TTR)

e eight-byte actual address (MBBCCHHR)

Figure 23. File Handler Service Routine Parameters

The File Handler IAM support uses the Intercomm ISAM support routines.

54

Chapter 6 Using the File Handler

On return from a File Handler service routine, the leftmost
position of the FHCW area will contain a character code indicating the
result of the operation, as shown in Figure 24. Additionally, for VSAM
files, the rightmost position of the FHCW will contain a VSAM reason
code.

Code Meaning
0 Normal completion

BT Hardvare 1/0 error 1

e Unusual condition (EOF, invalid key, etc.) 1

B Exclusive control time-out occurred J

e | Not wsed .

e Invalid request (mo DD statement, invalid
parameter sequence, attempt to output to an input
only file, etc.)

Figure 24. Outline of File Handler Return Codes

The application subsystem logic must then analyze this return
code and take appropriate error recovery action. An error message
might be created and queued for output to the terminal. Otherwise, the
subsystem can return to the Subsystem Controller with a return code of
12, indicating that the Subsystem Controller should call the USRCANC
routine which in turn will send an error message to the terminal.

6.2.1 Automatic Error Checking

If the application subsystem logic 1s such that special error
recovery processing is not required, the File Handler will perform
error checking itself and data will be returned to the subsystem only
if the return code is zero. Otherwise, the File Handler will force a
program check, which causes cancelling of the input message and return
to the Subsystem Controller, which calls the USRCANC routine. To
request this function, place a character ’'C’ in the first byte of the
FHCW prior to calling a File Handler service routine.

55

Chapter 6 Using the File Handler

6.3 SELECT, RELEASE FUNCTIONS

SELECT must be called to initialize the subsystem’s EXTDSCT prior
to any data access function performed by the File Handler. Prior to
the call to SELECT, the subsystem’s EXTDSCT must be initialized to low
values.

RELEASE must be called to notify the File Handler that Iits
pointers to the subsystem’s EXTDSCT should be cleared and that all data
access to a particular file within one subsystem thread is complete.
There must be a RELEASE corresponding to each SELECT of a file.
Multiple SELECTs of the same file using the same EXTDSCT are not
permitted without intervening RELEASEs, within the same processing
thread. After each RELEASE, the EXTDSCT should be cleared to
low-values before being reused.

Coding format:
CALL ’'COBREENT' USING FH-SELECT, EXTDSCTname, FHCWname, ddname.
CALL 'COBREENT'’ USING FH-RELEASE, EXTDSCTname, FHCWname.

Note: the ddname must be in the DWS 1f the calling program can be

loaded above the 16M line (except if VS COBOL II).

Figure 25 describes the return codes for SELECT and RELEASE.

Return Codes
(First Byte

of FHCW) SELECT RELEASE
0 A reusable file (disk input) ready Successful
for access; sequential access begins release
at first record.
—— ﬂ——————————————————i
1 A nonreusable file (SYSOUT, disk Not applicable
output (DISP=NEW/MOD or DISP=SHR/OLD .
and FAR WRITEOVER parm specified, or
a data set on tape) ready for access,
begins after last record previously
accessed. Or empty/reused VSAM ESDS
file ready for output only.
9 No ddname found in File Handler File not
internal control table. (No DD selected.

statement in JCL or the file has
been "locked" by the FILE control
command.)

Figure 25. File Handler SELECT/RELEASE Return Codes

56

Chapter 6 Using the File Handler

6.3.1 Closing a File

Occasionally, it is necessary to close a file, perhaps because it
is to be updated by a batch job. A special form of RELEASE requests
the File Handler to close a file. However, unless some external
control is taken to assure that no other programs have selected the
file, a close request could cause other transactions for the file to

fail. Also, if new transactions are attempting to access the closed
file, the File Handler will open it again and unpredictable results may
occur. Intercomm provides the FILE system control command for

systemwide file access control.

To close a file from an application program:

° If the file has been previously selected: first release the
EXTDSCT by calling RELEASE referencing the EXTDSCTname used
when the file was selected (as described above), then

e Move a character C to the second byte of the FHCW ('BCpY’')
and call RELEASE supplying the ddname of the file to be
closed; use the following coding format:

CALL ’COBREENT’ USING FH-RELEASE, ddname, FHCWname.

Note: the ddname must be in the DWS if the calling program can be
loaded above the 16M line (except if VS COBOL II).

6.4 EXCLUSIVE CONTROIL_FOR NON-VSAM FILES

In a multithread environment with only inquiry applications, the
fact that several message processing programs may concurrently retrieve
data from the same file or files presents no operational problems.
However, when more than one message processing program attempts to
update or add records to a file, data integrity problems can occur.
Figure 26 illustrates the problems of concurrent updates; program B's
update nullifies that of program A. Exclusive control implies that
while one program is operating on a record, that is, the time between a
READ and a WRITE, all other requests to read or write that particular
record will be delayed. A program requesting a record held during
exclusive control by another program is not notified of this delay, but
rather stops execution in the File Handler until exclusive control is
either removed or expires so that the File Handler can then proceed
with the requested function. Exclusive control, when required, must be
requested separately with each call to File Handler READ or GET
functions. Exclusive control for basic access methods operates at the
block or record level. Exclusive control for queued access methods
operates at the data set level; thus applications should be designed to
avoid GET for update whenever feasible.

To obtain exclusive control over the entire data set in a QISAM
file or over a physical block in a BDAM or BISAM file, move 'PBXpP’ to
the File Handler Control Word prior to calling GET or READ. Exclusive
control does not apply to physical sequential (QSAM/BSAM) files.

57

Using the File Handler

Chapter 6

dvdy JAISNTIOXT HILIM

6 :XLO
ViZ W3ALI
YATIIEASN

qrvad

i

S Xd
AYOLNIANI
mmtmmUZH

[PE—
!

.»aa
nm WALI
VITIINSN
Xd avay

T$\ﬁr\\

o}

AdLYLSNIAY
o/1

aaaNiIdsns
0/1

¥LZ WALI
¥dTI48sn
ADXH avdy

T

06 :x10
L7 WALI
YATIJAYSO
dLvadn

0T ZXdg
XAYOLNIANI
Jona Iy

avdd JIAISNTOXHT INOHLIM

SOT:XLO
7.2 WHLI
YaTIradasn
drnvadn

¥YL? WHLI
VATIJISH
JXd avday

S Xd
AMOLNIANI
dSYIYONI

00T :X10
V.Z WHLI

06 :X10
YLZ WALI
VATIAYSN
qLvadn

0T x4
AdOLNIANI
a2nda 3y

00T :Xx10
¥LZ WILI
vITIAESN

Exclusive Control Processing

Figure 26.

58

Chapter 6 Using the File Handler

Exclusive control will be released by:

e A call to WRITE or PUT referencing the same EXTDSCTname, that
is, the update of the previously acquired record, and no key
or block-id specified.

e A call to WRITE referencing the same EXTDSCTname and a key
and/or block-id is specified.

e A call to READ or GET referencing the same EXTDSCTname
(retrieving a new record from the file).

e A call to RELEASE referencing the same EXTDSCTname.

e An elapsed time after the call to READ with Exclusive Control
greater than the exclusive control time-out value of the File
Handler. This is set at two minutes for any given record and
a maximum of ten minutes for consecutive exclusive accesses
to a QISAM file.

NOTE: A return code of 3 after a call to WRITE or PUT to
update a record held in exclusive control indicates
that exclusive control timed out: the WRITE or PUT
did not take place. The program should re-READ or
re-GET the same record with exclusive control and
WRITE or PUT again, after reprocessing the record.

e A call to RELEX, if the program logic is such that the record
does not need to be updated, or additional and time-consuming
activity (accessing other files) is required before resuming
access to the file. Such a program could call RELEX to
release exclusive control without actually RELEASEing the
file until later in the program logic.

6.4.1 Release Exclusive Control--RELEX

RELEX is called to release Intercomm or VSAM exclusive control
without having to read, update, time-out, or RELEASE the file.

Coding format:

CALL 'COBREENT' USING FH-RELEX, EXTDSCTname, FHCWname.

Return Code Meaning
0 Exclusive control released
9 File not selected or invalid function

Figure 27. File Handler Release Exclusive Control (RELEX)
Return Codes

59

Chapter 6 Using the File Handler

6.5 SEQUENTIAL ACCESS METHOD (SAM) PROCESSING

6.5.1 File Handler Service Routines--GET, PUT SAM) ; READ, WRITE

(BSAM)
GET is called to access the next sequential logical record from a
file. PUT is called to write the next sequential logical record to a
file. READ is called to access the next sequential physical block.

WRITE is called to write the next sequential physical block. If PUT or
WRITE is called referencing a disk data set, the record last accessed
by a GET or READ will be updated, however, the length may not be
changed. GET processing 1is subtasked by the File Handler in order to
provide multithreading facilities; for further details, see the
Operating Reference Manual.

Coding format:

CALL 'COBREENT’ USING FH-GET, EXTDSCTname, FHCWname,
record-area [,record-length].

CALL 'COBREENT’ USING FH-READ, EXTDSCTname, FHCWname,
record-area [,record-length].

CALL 'COBREENT’ USING FH-PUT, EXTDSCTname, FHCWname,
record-area [,record-length].

CALL 'COBREENT’ USING FH-WRITE, EXTDSCTname, FHCWname,
record-area [,record-length].

Return Codes GET, READ PUT, WRITE

0 Successful Successful

1 I/0 Error I/0 Error

2 End-of-file (Not applicable)w*

9 Not selected or invalid | Not selected or invalid
function; that is, using | function; that is, using a
an output-only file tape input file or readonly

file, or file not sequential.

% For WRITE to a disk file: indicates End-of-file (write not done)

Figure 28. File Handler Sequential Access Method Return Codes

60

Chapter 6 Using the File Handler

6.5.2 Undefined Record Format and Record Length

The record-length parameter is valid and required only when a
file with an undefined record format (DCB=RECFM=U) is accessed. The
record-length parameter points to a fullword containing the length of
the output record before a PUT or WRITE operation, or to contain the
length of the input record after a GET or READ operation. The second
character of the File Handler Control Word must be set to U to utilize
this feature. Do mnot code the DCB subparameter LRECL on the DD
statement for the file in the Intercomm execution JCL. The BLKSIZE,
RECFM and DSORG subparameters are required.

6.5.3 Variable-Length Record Format and Record Length

Variable-length records start with a Record Descriptor Word (RDW)
which must be fullword aligned (PIC 9(8) COMP SYNC). The first two
bytes of the word contain the record length in binary (+4 for the
RDW); the second two bytes contain binary zeros (low wvalues). The RDW
is followed immediately by the record data, and must be recognized by
the subsystem on input, and provided and initialized on output.

For blocked files, if GET or PUT are used, the access method will
perform the blocking and deblocking. If READ or WRITE are used, the
application program must perform the deblocking (READ) and blocking
(WRITE). In this case, the block must start with a Block Descriptor
Word (BDW) of four bytes (aligned); the first two bytes contain, in
binary, the total block length (including 4 for the BDW), and the
second two bytes contain binary zeros (low values). For JCL details,
and FAR options for defining and accessing the file, see the Operating
Reference Manual.

61

Chapter 6 Using the File Handler

6.6 INDEXED SEQUENTIAL ACCESS METHOD (ISAM) PROCESSING

To use an ISAM file on-line under Intercomm, do not define three
DD statements (INDEX/PRIME/OVERFLOW) for either the off-line creation
of the ISAM data set, or the on-line execution DD statement. For
creation, let the access method set up the index and overflow areas
(use CYLOFL parameter on DD statement). For on-line execution, define
only DISP=OLD and the data set name, volser and unit parameters if not
catalogued, and the DCB parameter DSORG=IS. Optionally, the DCB
parameter OPTCD may also be specified. See also the descriptions of
FAR parameters applicable to ISAM data sets described in the QOperating
Reference Manual.

6.6.1 File Handler Service Routines--GET, PUT ISAM): READ, WRITE
(BISAM)

GET 1is called to access the next sequential record, or to
reposition (if a key 1is specified) and access the next sequential
record. READ is called to retrieve a specific record at random. PUT
is called to update the last record retrieved by a call to GET. WRITE
is called to update the last record retrieved by a call to READ, or to
add a record to the file (if a key 1is specified). For wupdate,
exclusive control may be requested; otherwise use blanks in the FHCW.

Coding format:

to retrieve next sequential record:

CALL 'COBREENT’ USING FH-GET, EXTDSCTname, FHCWname, record-area.

to reposition and retrieve record with key equal or high:

CALL 'COBREENT’ USING FH-GET, EXTDSCTname, FHCWname, record-area,
key.

to update last GET:

CALL 'COBREENT'’ USING FH-PUT, EXTDSCTname, FHCWname, record-area.

to retrieve a specific record:

CALL 'COBREENT’ USING FH-READ, EXTDSCTname, FHCWname, record-area,
key.

to update last READ:

CALL 'COBREENT’ USING FH-WRITE, EXTDSCTname, FHCWname, record-area.

62

<

Chapter 6

Using the File Handler

to add a specific record:

CALL

'GCOBREENT' USING FH-WRITE, EXTDSCTname, FHCWname, record-area,

key.

Figure 29 describes return codes for ISAM access.

QISAM
Return
Codes GET w/o Key GET w/Key PUT
0 Next sequential Record with equal Record from
record retrieved or next higher previous GET
key retrieved updated
1 I/0 error I/0 error I/0 error
2 End of File Key out of range N/A
3 N/A N/A Exclusive Control
Time-out
9 File not selected File not selected File not selected
or invalid function | or invalid function | or invalid function
BISAM
Return
Codes WRITE w/o Key WRITE w/Key READ
0 Record from Record with Record with equal
previous READ specified key key retrieved
updated added
1 I/0 error I/0 error I/0 error
2 N/A Key already exists | Key does not exist
or no room to add
new record
3 Exclusive Control N/A N/A
Time-out
9 File not selected File not selected File not selected

or invalid function

or invalid function

or invalid function

Figure 29.

63

File Handler ISAM Return Codes

Chapter 6 Using the File Handler

6.7 DIRECT ACCESS METHOD (BDAM) PROCESSING

BDAM files are accessed by block-id. The form of the block-id is
defined in the OPTCD subparameter of the DCB parameter of the DD
statement and the same form must be used by all programs accessing the
file:

® OPTCD=RF--block-id is three-byte binary RBN (relative block
number) for fixed-length files only

® OPTCD=AF--block-id is eight-byte actual MBBCCHHR

® OPTCD=F--block-1id is three-byte binary TTR (relative track and
record number) for fixed- or variable-length files.

The F permits feedback (of block-id) requests: the form of the
block-id is that requested by the OPTCD parameter. For Keyed BDAM with
extended search, insert an E immediately after the = sign (that is,
code OPTCD=ERF, etc.), and specify the LIMCT subparameter on the DCB
parameter of the DD statement.

6.7.1 File Handler Service Routines--READ, WRITE (BDAM)

READ is called to retrieve a physical block. WRITE is called to
update a block previously read, to replace an existing block in a
preformatted file, or to add a new block.

Coding format:

CALL ’'COBREENT’ USING FH-READ, EXTDSCTname, FHCWname,
record-area[, key], block-id.

CALL 'COBREENT’ USING FH-WRITE, EXTDSCTname, FHCWname,
record-area[, key][, block-id].

Figure 30 shows FHCW options (byte 2) for standard and keyed BDAM
files, and when to use key and/or block-id fields. Figure 31 describes
the corresponding return codes. When reading a keyed BDAM file, the
key will be read into the key field if a key parameter is passed and
the key is not used as the search argument (w/o extended search). For
a keyed BDAM file, replace requires a previous read; update and replace
are synonymous.

Intercomm provides two utilities for off-line preformatting of
fixed-length BDAM files:

o CREATEGF for BDAM files without keys
e KEYCREAT for BDAM files with keys.

These utilities are described in the Operating Reference Manual.

64

Chapter 6 Using the File Handler
1. BDAM Files Without Keys
Code Request Macro
¥ READ w/o exclusive control, w/block-id READ DIF
X READ w/exclusive control, w/block-id READ DIX
) WRITE to update last READ, w/o block-id WRITE DI/DIX
B WRITE to update/replace w/o previous READ, WRITE DI
w/block-1d
A WRITE to add a record--variable-length only WRITE DAF
(record address returned automatically in
caller’s block-id field)

2. BDAM Files With Keys

Code Request Macro
*Y READ data block only w/o exclusive control READ DKF
(w/extended search) w/key, w/block-id
*X READ data only w/exclusive control READ DKX
(w/extended search) w/key, w/block-id
J READ key and data block w/o exclusive control READ DIF
w/o extended search, w/block-id (w/key)
I READ key and data w/exclusive control READ DIX
w/o extended search, w/block-id (w/key)
___ B
*HY WRITE to update data only w/o extended search WRITE DKF/DKX
w/key
I WRITE to update key and data w/o extended WRITE DI/DIX
search, w/key (w/block-1id)
*A WRITE to add a record--next available space WRITE DAF
w/key, w/block-id (w/extended search)
*Feedback of record addresses may be requested for these options only
by placing an F in byte 3 of the FHCW.
Figure 30. File Handler BDAM Option Codes.
NOTE: The DI form of the macros (issued in the File Handler)

requires that the block-id field contains the exact address of
the data record in the form specified by the OPTCD
subparameter on the DD statement. wWith the DK form, if

65

Chapter 6

Using the File Handler

extended search is not specified (via E on the OPTCD subparameter),
only one track is searched for a record with key matching that passed
in the key field, and starting at the address specified in the block-id

field.

positioning is remembered internally.

A WRITE for update of last READ does not need a block-id, as

READ updated

1. BDAM Files Without Keys
Return
Codes READ WRITE w/o block-id WRITE w/block-id
0 Block retrieved Block from previous | Specified block

added/replaced

or invalid function

or invalid function

1 I/0 error I/0 error I/0 error
2 Block out of range | N/A RECFM=F. ..
Block out of range
RECFM=V. ..
No space available/
J block out of range
3 N/A Exclusive Control N/A
Time-Out
9 File not selected File not selected File not selected
or invalid function‘or invalid function | or invalid function
2. BDAM Files With Keys
Return
Codes READ WRITE w/o block-id | WRITE w/block-id
0 Logical record Record from Specified record
retrieved previous READ added
updated
1 I/0 error I/0 error I/0 error
2 Key not found Key not found at RECFM=F. ..
(READ w/key) block-id saved from | No dummy record found
previous READ = = q--------ceccccocaaannan .
(WRITE DK only) RECFM=V. ..
No space available
3 N/A Exclusive Control N/A
Time-Out
9 File not selected File not selected File not selected

or invalid function

Figure 31.

66

File Handler BDAM Return Codes

Chapter 6 Using the File Handler

6.8 VIRTUAL STORAGE ACCESS METHOD (VSAM) PROCESSING

VSAM support is provided for all three file types: KSDS, ESDS,
and RRDS. Subsystems designed to access VSAM files use two File
Handler service routines; GETV and PUTV. SELECT and RELEASE function
for VSAM as they do for OS data sets. Calls are similar to the
standard File Handler format, with the File Handler Control Word (FHCW)
used to specify VSAM options. DD statements for VSAM must specify
AMP=(AMORG) and for fixed-length data records, 'RECFM=F’ must also be
specified on the AMP parameter: AMP=(AMORG, 'RECFM=F"'). FAR options
and execution options for VSAM files such as LSR buffer pool support,
empty ESDS file load or overwrite, and data set name sharing, are
described in the Operating Reference Manual. Most users converting
ISAM to VSAM can continue to use their current File Handler calls.
Refer to "ISAM/VSAM Compatibility under Intercomm" later in this
chapter for further details.

6.8.1 File Handler Service Routines--GETV, PUTV (VSAM)

A VSAM call may request either sequential or direct access and
may specify access for KSDS via keys (keyed access) or for ESDS via
Relative Byte Addresses (addressed access). A keyed access call for
direct retrieval may provide either a generic key or a full key, and
may specify a search for either an equal (generic) key or for the first
greater-or-equal (generic) key.

A VSAM Relative Record Number Data Set (RRDS) may be accessed
sequentially, or directly by Relative Record Number. A direct access
request to a RRDS is made by suppling the Relative Record Number of the
desired record instead of a key or RBA. All direct accesses to an RRDS
must specify "full key, search equal." RBA access is not allowed and
RRNs should not be converted to RBAs for access to an RRDS. Records
may be inserted into emply slots in an RRDS but a record may not be
added with a higher relative record number than the maximum allowed.
This maximum is specified when the data set is defined to VSAM.

GETV calls are processed assuming that no wupdate will be
performed unless the caller so specifies. The caller may switch back
and forth from direct to sequential access, provided VSAM rules are not
violated, for example, keyed request against an entry-sequenced data
set. The File Handler service routine GETV is called for retrieval.
The File Handler service routine PUTV 1is called for storage or
deletion.

Coding formats:

For sequential access

CALL 'COBREENT'’ USING FH-GETV, EXTDSCTname, FHCWname, record-area.

67

Chapter 6 Using the File Handler

Coding formats (continued):

For direct access

CALL 'COBREENT’ USING FH-GETV, EXTDSCTname, FHCWname,

For update of record retrieved by preceding GETV or for sequential

record-area, {rba}.
{(key)
{rrn)

addition

CALL 'COBREENT’ USING FH-PUTV, EXTDSCTname, FHCWname, record-area.

For direct addition of a new record

CALL 'COBREENT’ USING FH-PUTV, EXTDSCTname, FHCWname,

where:

record-area, (rba).
{(key)
{rrn)

EXTDSCTname is the standard File Handler parameter.

FHCWname is the standard File Handler parameter. Its VSAM use is
to define processing options and to return completion codes to
the caller (see Figures 32 and 33).

record-area is the label of the user’s I/O area. For fixed
length records, no length is specified and data will start in the
beginning of the area. For variable length, the first four bytes
of the area are used as an O0S-type, fullword-aligned, variable
record descriptor word (RDW), the first two bytes of which
specify the appropriate length in binary (data length +4); data
begins in the fifth byte. For GETV, the File Handler will return
this length to the caller and for PUTV, the caller must provide
the length to the File Handler.

rba 1is the label of an aligned fullword containing the Relative
Byte Address when required for addressed access.

key is the label of a field providing a key, when required for
keyed access. If a generic key is provided, then the first two
bytes of this field must be the length, in binary, of the generic
key which must begin in byte 3, and the field must be
fullword-aligned.

rrn is the address of a fullword-aligned field providing a

four-byte binary Relative Record Number whose value is 1 to n,
where n is the maximum record number defined for the data set.

68

<

Chapter 6 Using the File Handler

[6.8.2 VSAM Processing Options

The following determine the mode of VSAM access to be performed:

° The preceding call

A VSAM call is dependent upon the preceding call only in two
cases: PUTV for update, or sequential GETV or PUTV calls
requiring initial positioning.

In the first case, the PUTV call must be immediately preceded
by a GETV for update, which identifies the record to be
updated. The PUTV for update has no fourth parameter because
the key, RRN or RBA was defined by the prior GETV. In the
second case, a direct call providing a key, RRN or RBA and
requesting positioning must be issued in order to process
sequentially starting from that point in the file. To
request positioning in this manner, specify S in the second
byte of the FHCW for the direct call to GETV; the first
record in the sequence will be returned. For an ESDS file, a
GETV call without a fourth parameter results in sequential
reads from the beginning of the file; the S in the FHCW is
unnecessary.

° The presence or absence of the fourth parameter

With the exception of a PUTV for update, all calls for direct
access specify a fourth parameter and all subsequent calls
| - for sequential access specify only three parameters.

° The contents of the File Handler Control Word

The second and third bytes of the FHCW are used to complete
the definition of the options desired. Alphabetic codes are
used and positive tests are made for each defined code. When
no defined code 1s present, the default option (blank) is
used.

Bytes 1 and 2 of the FHCW are utilized the same as for OS Access
Methods for Return Codes (Byte 1) and Special Requests (Byte 2). The
first byte of the FHCW will contain a zoned decimal digit upon return
from GETV or PUTV. A nonzero value indicates an error or an
exceptional condition.

Byte 2 is used in conjunction with direct access. When an S is
provided in byte 2, the direct access 1is treated as the first of a
series of sequential requests which begins at a point specified by the
fourth parameter. Therefore, a VSAM POINT will be issued and
sequential access will subsequently be performed for the next call.

69

Chapter 6 Using the File Handler

Byte 3 is used for all VSAM calls as illustrated in Figure 32.
There are five default (blank) cases:]’

° GETV with three parameters (subsequent sequential access)
o GETV with four parameters (search key/RRN equal, no update)

e PUTV with three parameters with no prior GETV for update
(sequential add/insert)

e PUTV with three parameters and with a prior GETV for update

) PUTV with four parameters (direct key/RRN add/insert)

6.8.3 FHCW Reason Codes for VSAM

Byte 4 1is wused to provide VSAM reason codes (from the RPL
feedback field) upon completion of a VSAM file access request. In
VSAM, a distinction is made between logical and physical errors. 1In
either case VSAM returns a supplementary reason code in hexadecimal
defining the condition more precisely. Accordingly, the File Handler
will return this reason code in FHCW byte 4, for the caller’s use. If
the File Handler was called at an ISAM entry point (GET/PUT,
READ/WRITE), the code returned in FHCW byte 1 may differ from GETV/PUTV
calls (in order to maintain compatibility with existing ISAM
subsystems). Figure 33 summarizes VSAM and ISAM/VSAM return codes.
VSAM reason codes are fully documented in IBM'’s VSAM Macros manual. J

6.8.4 Exclusive Control for VSAM Files

VSAM automatically provides exclusive control of a control
interval (physical block) whenever a GETV for update is processed if
the file was defined with SHAREOPTION 1 or 2. The subsystem must
release this exclusive control via a call to RELEX before another GETV
is issued for the same file, unless an intervening PUTV for update or
erase 1s issued. If no subsequent GETV will be issued, the call to
RELEASE will also release exclusive control. There is no VSAM
exclusive control time-out. If the VSAM file is accessed by more than
one region (Intercomm and/or batch), see IBM documentation on VSAM
SHAREOPTIONs, and the Intercomm Operating Reference Manual.

6.8.5 Loading an ESDS Data Set

During File Handler initialization at startup, if an ESDS file is
empty or if the FAR parameter WRITEOVER is specified, the ESDS file is
flagged as output-only. The first call to SELECT for the file will
return a code of 1. The program receiving this code may only use a
PUTV call for the file. If that (or any other) program will need to
get a record from the file, it must close the file via calls to RELEASE
(see Section 6.3.1), after the first PUTV. The next call to SELECT
will return a code of 0, and any subsequent call to GETV or PUTV will
then cause the file to be reopened for input/output and multi-thread J
access 1is then permitted. PUTV calls should be single- threaded to
ensure file integrity.

70

Chapter 6 Using the File Handler

6.8.6 Alternate Path Processing of Keved VSAM Files

L Base Cluster and Alternate Path processing of keyed VSAM files is
supported with the following (VSAM-imposed) restrictionms:

° If defined in the JCL, the DD statement for the base cluster
must be before those for any related paths, and open at
startup must be requested via a FAR. Also, both the base
cluster and the paths must be connected to an LSR buffer
pool.

o Each path to be accessed on-line must be defined in the JCL
and be SELECTed with the corresponding ddname. When created,
the path must be defined with the UPDATE option.

e The FAR READONLY option must be specified for all paths and
the base cluster (if defined) except for the path used for
updating, when Shareoption 2 1is in effect for the base
cluster. If updating is only via the base cluster, then
READONLY must be specified for all associated paths. VSAM
will not allow any accesses to a base cluster under
Shareoption 1 when one path has opened it for update. A base
cluster under Shareoption 3 may be accessed for reads or
updates by more than one path at any time, however mno
exclusive control (read/write file integrity) is provided by
either VSAM or Intercomm. For Intercomm-provided exclusive
control for Shareoption 4, see the Operating Reference
Manual.

o If multiple paths are accessed, and/or retrieval/update is
done via the path(s) and the base cluster, retrieval of
updated versions of the records can be ensured via the FAR
DSN and LSR parameters.

° Since duplicate keys may occur in an Alternate Index, the
application program is responsible for checking for duplicate
keys. Sequential processing (GETV type 1) can be used after
the first GETV with key (and an S in byte 2 of the FHCW) in
order to retrieve subsequent records. The program can test
to see if the last record under a duplicate key was retrieved
by checking the VSAM reason code which will be placed in byte
4 of the FHCW. See IBM’s VSAM Macros manuals for reason code
values.

e The alternate index data set must be defined with the UPGRADE
attribute and be built prior to Intercomm startup. An
attempt to retrieve a record from an empty file will cause a
program check.

® Alternate index data sets should not be defined in the JCL
unless access to a data record containing the prime keys is
desired, or path processing 1is not wused. Only readonly
processing should be done for an AIX and for any related
paths and for the base cluster, otherwise, retrieval of the
(.' current version of a record is unpredictable.

71

Using the File Handler

KEY/RRN
or RBA

Comments

Chapter 6
Service
Type | Routine
1 GETV
2 GETV
3 GETV
_____ B
4 GETV
5 GETV
______________ -
6 GETV
_____ -
7 GETV
8 PUTV
9 PUTV
______________ .
10 PUTV
11 PUTV
12 PUTV

Generic
Key

Generic
Key

- = - =]

- - = -]

In KEY or RRN
sequence

In RBA sequence
(default for
ESDS)

Search greater
or = (not valid
for RRDS)
Search =

(not wvalid for
RRDS)

Search greater
or = (not wvalid
for RRDS)

e I

No prior GETV for
update (insert
not allowed for
Addressed Access)
Prior GETV for
update required
(Addressed Access
update may not
change length)
Prior GETV for
update required
(not valid for
Addressed Access)

Insert not valid

Access or FHCW Byte 3
Action Update|No Update
Sequential U default
Sequential A R
----------- ﬁ_---—-- e - = - - - - -
Direct U default
Direct L F
----------------------------- -
Direct = E
___________ e R
Direct > G
_____________________________ .
Direct A R
Sequential default
Add or
Insert
Update default
Erase E
___________ N PR
Direct default
Add or
Insert
Add A
Figure 32.

72

File Handler VSAM Call Summary

Chapter 6

Using the File Handler

or PUTV called for READONLY file

FHCW
Byte 1 (char) Byte 4

Condition at Completion of Operation¥ VSAM | ISAM (hexadecimal)
ﬁuccessful completion (A) 0 0 04,08,0C,10,1cC
Physical 1/0 error (A) 171 1 |os,08,0c,10,14,18
End of data (1, 2) | 2 | 2 | 04
No record found (3, 4, 5, 6, 7) | 2 | 2 [0 |
Key not within defined key ranges | 2 | 1 | 2 |

(3, 4, 5, 6, 7)
buplicate key (8, 11) | o | 2 | 08
Key out of ascending sequence (8) | o [2 | oc |
Update attempt with mew key (9) | o | o | o |
poy ecesss mximn .6 | o] e | o]
%ddress;d ;;date changes length (9) 9 ¥k 64
Invalid RBA provided (7, 12) | o | ww | 20
Required positioning mot performed | o | e | s8 |

(1, 2, 8)
Direct or update call while loading (8)| 9 | 9 | %
GETV for ESDS while loading (2,7)
Insufficient disk space (8, 9, 11, 12) | 9 | 9 | c |
Record on unmountable volume | o | o | 18 1

(1-7, 11, 12)
Tnvalid Relative Record Number (3,11) | o [W | o
Invalid RBA access to a RRDS file (7,12) 9 | w« | o4
Invalid EXTDSCT or file unavailable | 9 | 9 | 0 |

A

(Figure 32) which apply.

*%*Should not occur.

*Characters in parentheses reference the type(s) of VSAM Call
all cases.

The File Handler will force a program check
condition to terminate the message in progress.

Figure 33.

73

File Handler VSAM Return and Feedback Codes

Chapter 6 Using the File Handler

6.9 ISAM/VSAM COMPATIBILITY UNDER INTERCOMM

Subsystems accessing ISAM files can function with little or no
modification when their files are converted to VSAM. Intercomm’s
ISAM/VSAM interface does not use IBM’s VSAM/ISAM interface modules.
See the Operating Reference Manual for steps necessary to activate the
interface. When processing a VSAM data set, the File Handler uses
QISAM compatible access for a GET or PUT call and BISAM compatible
access for a READ or WRITE call.

An ISAM retrieval is converted to a VSAM GET for update. If a
key is provided, it is, of course, treated as a full key. For GET with
a key, positioning and a search for a greater or equal key 1is
performed. For READ, a search is made for an equal key. File Handler
logic will initialize the wuser FHCW prior to performing the VSAM
function as follows:

° Byte 2 is set to 'S’ to force sequential positioning.
e Byte 3 is set to 'U’ or 'L’ to force update mode.

ISAM delete code processing continues to function as usual via
the OPTCD subparameter of AMP on the DD statement. The new OPTCD
parameters (I, IL) which specify supplementary delete code processing
are supported also.

The following considerations apply to ISAM users converting to
VSAM and should be carefully observed:

° ISAM subsystems must already be operational for ISAM files
before accessing VSAM files. Erroneous ISAM parameter lists
will cause unpredictable results.

) Between a SELECT and a RELEASE, neither READ and GET nor
WRITE and PUT may be intermixed.

° The caller may not provide his own DCB.

) The FHCW will be modified in order to convert the call to its
VSAM equivalent.

e There 1is no equivalent to a QISAM physical block once the
file has been converted to VSAM. All VSAM data records are
equivalent to ISAM logical records. This means that users
processing the file via READ in one subsubsystem and GET in
another will both retrieve what would have been an ISAM
logical record.

Figure 33 describes return codes when ISAM/VSAM compatibility is
used.

74

Chapter 7

USING THE OUTPUT UTILITY

7.1 CONCEPTS

The Output Utility 1is a subsystem that processes messages
destined for terminals operating under control of Intercomm. It is
responsible for completing any device-dependent formatting requirements
in a message before passing it to the teleprocessing interface (FESEND)
for eventual transmission to the terminal device. It also checks the
operational status of destination terminals. Should it find a
destination terminal not operational, it will redirect messages to an
alternate terminal, if one has been named for that particular
destination terminal. Otherwise, the Front End will intercept a
message to a nonoperational terminal and queue it in the output queue
assigned to that terminal to await its availability. If an alternate
terminal name has been provided to the Front End Network Table, and the
alternate can receive output, then the Front End will dequeue the
message queued for the nonoperational primary terminal and send it to
the alternate as soon as possible (useful primarily for non-functional
printers).

7.2 PROCESSING

An application subsystem may create four different types of
output message text, identified by a value in the message header VMI
field (MSGHVMI):

™ Preformatted (VMI=X’57' or C’P’)

Text consists of both data and device control characters.
All spacing and other formatting (titles, column headings,
etc.) 1is included in the message text. Output processing
consists merely of passing the message to the Front End via
FESEND. TIf the destination terminal (MSGHTID) is the name of
a broadcast group, rather than an individual terminal, a
separate message is created for each terminal of the group.
Except for broadcast terminal-ids, subsystems should use the
service routine FESEND, which is more efficient than queuing
via Output.

75

Chapter 7 Using the Output Utility

° Formatting Required, Variable Text (VMI=X'50’ or C'0’)

Text consists of a string of character data items to be
inserted into a final message format defined by an Output
Format Table (OFT) entry. Each data field is prefixed with
an item code and length prefix, and an occurence factor (if a
repetitive field), to identify the field. The OFT defines
the position and content of titles, headings, etc., and
defines the position where data fields from the message text
are to be inserted. Output formats the final message, adding
device-dependent control characters, and performs broadcast
group processing, as described above.

° Formatting Required, Multiple Segments (VMI=n)

This form is used when multiple messages are to be created
for the same hardcopy terminal (such as a printer) and inter-
leaving of other messages for the same device is not
desired. The text is variable format as described above.
The VMI code for the first (or header) segment is X'51’ or
C’l’; for intermediate segments is X'52’ or C’2’' or X'5C' or
C’4’' depending on 1line types desired; and for the final
seqment is X'53’ or C’'3’. The final segment must be queued,
even if no intermediate segments are created, in order that
Output may release the terminal for other messages.

° Formatting Required, Fixed Text (VMI=X'72' or C'S’)

Text consists of fixed length text fields in character or
arithmetic format. This type of message is routed to the
Change/Display Utility, where it 1is converted to a Variable
Text message and routed to the Output Utility. The fixed
text is described to Change/Display by a Format Description
Record (FDR). The first twelve bytes of the fixed format
text identify the particular FDR which details the fixed
fields of the message. Byte 9 within this header provides
the segment type (see Figure 34).

The application subsystem creates its output message (header and
text) and directs the message to either the Output Utility or the
Change/Display Utility by calling the service routine COBPUT. The
receiving subsystem codes and VMI in the message header specify the
destination subsystem and message text formatting requirements. Figure
34 summarizes message header specifications. In addition, the MSGHQPR
field in the message header must be set to C'2’' if the originating
subsystem might process segmented input.

The sample subsystem in Chapter 12 provides examples of using the
Output and Change/Display Utilities. For complete details regarding
the Output Utility and Change/Display Utility, refer to the Utilities
Users Guide.

76

Chapter 7

Using the Output Utility

Message Header Fields Change/
---------------------------- Display
OUTPUT Message Type MSGHRSCH | MSGHRSC | MSGHVMI | Prefix
Preformatted (device-dependent) X'00’ c'u’ X's57’ N/A
or
c'P’
Variable Text Formatting: X'50’
or
Single Segment Messages: c'o’
character format for item X'00’ c'y’ N/A
code, length or
_(and occurrence number) | cror) .. | (R IS
binary format for item code, c'y’ cr'y’ N/A
_____ length (and occurrence number)l _______f _______] ...
Multi-Segment Messages:
character format X'00’ c'v’ X'51 N/A
first segment or or
c'o’ c'1’
detail segment X'52'
- repetitive data items or
cra2’
detail segment X’'5C’
- non-repetitive data items or
c'c’
final segment Xr53’
or
c’3’
__ R
binary format c'v’ crv! N/A
first segment X's1’
detail segment
- repetitive items Xrs52’
detail segment
-non-repetitive items X's5¢c’
final segment X'53’
Fixed Field Formatting: X'00’ C'H’ Xr72'
or
c’s’
Single-Segment Messages: c'o’
Multi-Segment Messages:
first segment c'y’
detail segment cr2’
- repetitive items
detail segment c'4’
- non-repetitive items
final segment cr3’

NOTE: COBPUT converts character codes to the corresponding
hexadecimal values for VMI codes, and MSGHRSCH to X'00’.
Figure 34. Message Header Specifications for the Output Utility

77

Chapter 8

CONVERSATIONAL SUBSYSTEMS

8.1 GENERAL CONCEPTS

Conversational subsystems are defined as one or more subsystems
designed to process more than one input message to complete a
transaction. They effectively carry on a dialogue with the terminal
operator, receiving an input message, retaining it and/or associated
results of processing, issuing a response (perhaps a prompt for
additional information), receiving another input message, retaining it,
etc., until the transaction 1is complete. At the end of the
conversation, appropriate files may be updated.

8.1.1 Conversational Applications

Typical applications which lend themselves to conversational
processing are:

° Operator prompting (multiscreen input)
° Batch Data collection

Prompting, or multiscreen input, applications typically consist
of dialogues in which the terminal operator enters an input message,
the information is analyzed by the application subsystem and the
results of processing are saved; the application subsystem then sends
an output message to the terminal, prompting the operator for the next
piece of information required. This dialogue continues until the
application subsystem has obtained all the necessary information to
complete processing for the given transaction.

Batch data collection may be conversational in that even though
the input data is saved for later retrieval, the collecting application
may need to return an error message requesting correction of invalid
input data before saving the input record, or the application may need
to request the input of a different type of record (for more detailed
subsidiary information, intermediate totals, etc.).

8.1.2 Conversational Transactions

Conversational transactions involve the sending and receiving of
more than one message in a terminal session. Each input message may be
processed by related subsystems or by the same subsystem. A two-part
conversational transaction is illustrated in Figure 35.

79

Chapter 8 Conversational Subsystems

customer name ’ MESSAGE
status request

‘ account number RESPONSE
current status

sales order data » MESSAGE

L ‘ verification of order RESPONSE

Figure 35. Typical Conversational Transactions

8.1.3 Retention of Information

Assume a conversation in which three input messages and three
responses are necessary to complete the transaction. A terminal, a
subsystem and a storage medium on which to save the input messages,
and/or corresponding intermediate results of the processing, are
necessary components in the conversational environment. In the example
illustrated in Figure 36, the subsystem receives information and
prompts the terminal operator for additional information until it
obtains all the required data. This intermediate information is also
stored either in core or on a disk data set. After the final input
message is received and processed, appropriate files are updated,
intermediate data is deleted, and a final response is issued.

Terminal XY2Z Subsystem ABC Storage

Input Message l---> Receive, process and store----> Input Message 1
+ results

Output Message 1<---Prompt for additional information

Input Message 2---> Receive, access Input Message 1l<--Input Message 1
Process + results
Also store Input Message 2----- > Input Message 2

+ results

Output Message 2<---Prompt for additional information

Input Message 3---> Receive, analyze with prior <---- Input Message
messages and results 1 & 2 + results

Update files, delete prior data

Output Message 3<---Final response

Figure 36. Input Message Data Retention During a Conversation

80

9

Chapter 8 Conversational Subsystems

8.2 IMPLEMENTING CONVERSATIONAL SUBSYSTEMS

Conversational subsystems may be implemented in several ways,
each characterized by the retention of initial and subsequent input
and processing results. The method of retention differs, depending
upon the method of implementation chosen.

Control of the conversation, or the retention of the input
messages and/or corresponding results of processing may be
accomplished by wusing any one of the following methods of
implementation:

° The User SPA (User Extension to System Parameter List)
o The Store/Fetch Facility

o The Dynamic Data Queuing Facility

° The CONVERSE Service Routine

) The Table Facility (instead of the DDQ Facility)

In addition to the retention of the input environment,
conversational subsystems have design considerations with respect to
file updates and control of input verbs. These design considerations
are discussed following a review of the first four methods of
retention of input messages/data and corresponding results of
processing.

Intercomm provides Front End conversational support to ensure
that duplicate input from the same terminal is not processed. This is
accomplished by defining applicable verbs and interactive terminals as
conversational in the Front End tables. See the Operating Reference
Manual.

81

Chapter 8 Conversational Subsystems

8.3 SAVING INFORMATION IN USERSPA

The user extension to the SPA is called USERSPA and is accessible
to all Intercomm subsystems since the SPA is the second entry parameter
to all subsystems. The SPA is a 500-byte core-resident table. The
user extention to the SPA begins at the 501lst byte and may include
application-oriented areas, such as tables, counters, and switches for
application subsystem use. Thus, the size of USERSPA is installation-
dependent. The user portion of the SPA is optionally checkpointable
and can be restored at system restart time.

A portion of USERSPA may be divided into sections associating
table space for each terminal, as illustrated by Figure 37. Each
terminal-oriented area might be used for control data during
conversational processing, until the conversation with that terminal
completes.

SPA SPALIST macro
\
User A Area
User B Area
COPYed
member

TERMINAL/ Table for TID1
TABLE
SPACE
J Table for TID2 USERSPA

Figure 37. User and Terminal Table Space in the USERSPA

The SPA 1is expanded by updating the Assembler Language member
USERSPA on the system release library SYMREL. The wupdated version
should be stored on SYMUSR. When assembling INTSPA, USERSPA is copied
as the last entry in the SPA Csect. Therefore, any user additions would
be referenced beginning with the 501lst byte. Any such additions should
ordinarily be coordinated through the System Manager, as most
application subsystems could be affected.

82

Chapter 8 Conversational Subsystems

In the linkage section definition of SPA, as shown in Figure 38,
three different applications have their own 50-byte areas defined:
(USERA-AREA, USERB-AREA, USERC-AREA) plus a table for their common use
(COMMON-TABLE). The Assembler Language member USERSPA for this example
would contain a definition of an area corresponding to OURSPA. OURSPA
could be defined as a systemwide COPY member for all COBOL routines, to
be copied into the Linkage Section following the INTSPA statement.

01 SPA.
02 INTSPA PICTURE X(500).
02 OURSPA. -
04 COMMON-TABLE PICTURE X(200).
04 USERA-AREA PICTURE X(50).

04 USERB-AREA.
06 COUNT-FIELD1 PICTURE S9(8) COMP.
06 ON-OFF-SWITCH PICTURE X.
06 FILLER PICTURE X(45).

04 USERC-AREA PICTURE X(50).

Figure 38. Sample USERSPA Declaration Within a Subsystem

The following chart summarizes the advantages and disadvantages
of the USERSPA method of implementation of conversational processing.

Advantages Information saved in Core; mo I/0 overhead.
Accessed easily.

Checkpointable and restorable at restart.

Disadvantages The entire USERSPA is accessible to all Intercomm
subsystems. Therefore a problem of control develops
with respect to the possiblity of destruction of data
by another subsystem, or security problems.

Updating and maintenance of USERSPA may require
recompiling all subsytems which reference it.

A potentially large area of storage must be allocated.

Addressability, 1f area larger than 3596 bytes.

83

Chapter 8 Conversational Subsystems

8.4 SAVING INFORMATION WITH STORE/FETCH

Conversational information may be stored and later retrieved
(either in storage or on a disk data set) by the Store/Fetch Facility.
Information is retained via the STORE function, and retrieved wvia the
FETCH function. The storage space may be released via the UNSTORE
function. Saved information may also be updated.

An operator prompting type of conversation involving one terminal
and one or more application subsystem(s) could use Store/Fetch very
efficiently for retaining information. Store/Fetch performs its
function upon data strings. Data strings are logical entities of
information (input messages to be retained or whatever other data the
user intends to save), which are 1identified by unique wuser-defined
keys. The information is accessible only to those subsystems which
call a Store/Fetch service routine naming the data string by its unique
key, which could include the current terminal-ID from the input message

header. Therefore, there is more control over the information than
there would be if it were to be saved in the USERSPA. The data strings
are classified as either transient, semipermanent or permanent. The

differences between these classifications are as follows:

Disposition Availability Storage Medium
Transient Not available across restart Core or disk
Semipermanent Available across restart Disk
Permanent Available across every system Disk

start until explicitly unstored

In conversational processing, permanent data strings should not
be used. As to whether to use transient or semipermanent strings, the
user must decide whether the information is critical enough to be
preserved across system restart. If so, the data strings would be
classified as semipermanent and would reside on disk. At restart time,
the operator could then resume a conversation at the point of failure
if subsystem logic can determine when the conversation was
interrupted. If stored data 1is specified as transient, data is
eligible to reside in core. Processing would thus be speeded up, as
I/0 overhead would be eliminated. At restart time, the operator would
then start the conversation from the beginning.

Detailed information on Store/Fetch, including the interface
between application subsystems and the Store/Fetch service routines,
may be found in Store/Fetch Facility. Application subsystem logic must
determine whether the input message in progress 1is initial,
intermediate or final. This determination is necessary to assure that
the proper calls to Store/Fetch are issued when data is to be saved or
retrieved. Once the determination is made, Store/Fetch may be used to
manage the conversational information as shown in Figure 39.

84

Chapter 8

Conversational Subsystems

Initial Input:

STORE--create a new data string

Intermediate Input:

FETCH--retrieve existing data string

STORE--update string: mnew information merged with existing data

Final Input:

FETCH--retrieve existing data string
Process input and merge final information with existing data
Update necessary files and create final output message

UNSTORE--free data string storage

__

Figure 39. Conversational Processing Using Store/Fetch
t Subsystem processing logic can be simplified by using one or more
of the following techniques:

° A 'string-not-found’ return code from a FETCH request
indicates intial input (no intermediate data stored).

° A FETCH with the Delete option forces restart of the
conversation from the beginning if the system fails, or the
subsystem times out or program checks before the STORE of the
intermediate data can be done. This technique also saves
Store/Fetch and core storage resource overhead.

¥

° The STORE of the intermediate data should be done after the
output message is processed.

° File record(s) should not be updated until all intermediate
data 1is collected. At this time the record(s) should be
retrieved for update (exclusive control) and checked for
external wupdates by unrelated processing since the
conversation began.

e Do not send the final confirmation output message until

successfully updating the file(s).

85

Chapter 8 Conversational Subsystems

8.5 SAVING INFORMATION ON A DYNAMTC DATA QUEUE

The Dynamic Data Queuing Facility (DDQ) 1is a Special Feature
available to Intercomm users. Detailed specifications on using DDQ may
be found in Dynamic Data Queuing Facility. A DDQ provides the
application subsystem with the ability to dynamically create, retrieve
and delete logical data sets (or queues) of records on a BDAM data
set. As illustrated in Figure 40, more calls are required to interface
with the DDQ routines than are required to interface with Store/Fetch
to obtain the same functions. However, a DDQ provides the ability to
save several related data strings as a type of sequential file. The
entire DDQ can then be processed by another subsystem or postponed for
batch processing. A DDQ is most effectively used, not as a means for
temporary storage of data during a conversation, but as a means for
accumulating conversational results for subsequent processing, that is,
for data collection. This facility can also be used for collecting
data from related conversations with more than one terminal.

The data queues may be either transient, single-retrieval

transient, semipermanent or permanent. Single-retrieval transient
queues cannot be read more than once. This type of DDQ, therefore,
would not be suitable for conversational processing. The other queue

types are distinguished by the following characteristics:

Queue Type Characteristics

Transient Must be passed to another subsystem or freed.
Cannot be retrieved later.
Not preserved across restart or normal startup.

Semipermanent | Retrieved at a later point in time via a
user-provided Queue Identifier (QID).

Extra I/0 overhead is involved in saving the queue.
Can be freed by user request.

Queue must be completed (closed) in order to be
preserved across restart.

Existing semipermanent queues freed at normal startup.
Permanent Same characteristics as semipermanent except that
permanent queues are always preserved across any
Intercomm start, warm or cold, if closed at least
once.

86

Chapter 8 Conversational Subsystems

Figure 40 1illustrates typical use of DDQ facilities in
conversational processing. The application subsystem logic must
determine whether input is initial, intermediate, or final. Final
input, in this example, causes the queue to be closed and passed to
another subsystem for asynchronous or postponed file updating. Thus,
the terminal operator, upon receipt of the final output message, can
begin another conversation without waiting for file updates to occur.
This technique is particularly useful for files which do not require
up-to-date inquiry response such as order entry, personnel, etc.

Initial Input:

QBUILD -- Create a new queue
QWRITE -- Save input message and related data
QCLOSE -- Save the DDQ

Intermediate Input:

QOPEN -- Open the queue
QREADX -- Read the record or QWRITE to add
with intent to update to the queue

QWRITEX -- Update the record

QCLOSE -- Save the DDQ

Final Input:

QOPEN -- Open the queue

QREADX -- Retrieve the record or QWRITE to add
to the queue

QWRITEX -- Update the record

QCLOSE -- Pass the DDQ to another subsystem which will update
files and free the queue.

Issue final output message.

Figure 40. Conversational Processing Using Dynamic Data Queuing

87

Chapter 8 Conversational Subsystems

8.6 SAVING INFORMATION VIA THE CONVERSE SERVICE ROUTINE

The final method of retaining information for a conversation is
to use the Intercomm system service routine CONVERSE. The CONVERSE
routine is called by an application subsystem when input from the same

terminal 1is required to continue processing a transaction. The
application subsystem thread stops processing until the next input
message 1is received from that terminal. Control is returned to the

next sequential instruction following the call to CONVERSE.

Application subsystems are designed more easily with CONVERSE, as
it 1is simpler to control the sequential order of the messages.
However, the use of CONVERSE is not encouraged, as it ties up Intercomm
resources. Dynamic working storage associated with the initial and
subsequent input messages 1is retained during the call to CONVERSE.
Storage requirements for subsystems would be greater than when other
conversational techniques are used, because one subsystem contains
logic for all message types of a conversational transaction. It is far
more efficient to design conversational subsystems which retain control
only for the amount of time necessary to process one message than to
tie up system resources while each input message in the conversation is
in turn received, kept, analyzed and responded to in one execution of
one application subsystem. When CONVERSE is used, dynamically loaded
subsystems remain in storage until all "conversations in progress" have

terminated. Intercomm restart processing of such subsystems restarts
the conversation from the beginning. All intermediate messages are
discarded.

The saving of information in the USERSPA or in a Store/Fetch data
set or in a DDQ or Table Facility table does not require an application
subsystem to contain logic for time-outs. The use of CONVERSE does.
If the next input message is not received in the time limit specified
by the user, a time-out occurs, which must be handled by subsystem
logic.

An example of the use of CONVERSE in a two-part conversation is
illustrated in Figure 41.

NOTE: CONVERSE is not supported for VS COBOL II, nor for OS/ANS COBOL
subsystems loaded above the 16M.

88

Chapter 8

Conversational Subsystems

Part A Logic

Part B Logic

SUBSYSTEM

CALLED BY
MONITOR

PROCESS
INPUT
MESSAGE A

FORMAT
OUTPUT
MESSAGE A

CONVERSE
SAVE THE
INTERCOMM
ENVIRONMENT

PROCESS
REPLY
MESSAGE B

FORMAT
OUTPUT
MESSAGE B

v

< RETURN TO)
MONTTOR

Beginning of Conversation

Pass Message to Front End

CONVERSE saves terminal
identification, subsystem code,
storage pointers, etc.

When the next message with the
same terminal-id arrives, the
subsystem resumes from this point
referencing the original areas
and the new message.

Pass message to Front End

Figure 41.

Conversational Subsystem Logic Using Converse

89

Chapter 8 Conversational Subsystems

8.6.1 Subsystem Design Using CONVERSE

The Intercomm system service routine CONVERSE is called when
awaiting additional input in response to some prompting message. Since
any interval may elapse before the next message is received, CONVERSE
will save information in its own control table for each conversation
and return to the Subsystem Controller while waiting for the response.

The call to CONVERSE specifies a time limit within which a reply
message should be received. If it is not received during the specified
interval, then the subsystem is entered at the next instruction
following the call to CONVERSE and its message parameter is adjusted to
point to a time-out message supplied by CONVERSE. That message (header
plus text) could then be switched to the Output Utility or FESEND. The
terminal identification in the header is that of the non-responding
terminal. A zero value for the time l1limit will bypass the automatic
time-out feature.

Coding format:

CALL ‘COBREENT’ USING CONVERSE, word, time.

where:
word
is the name of an aligned fullword (PIC 9(8) COMP SYNC) in
the subsystem’s DWS required by CONVERSE for work space.
time

is the name of an aligned fullword binary value indicating a
limit (in seconds) within which a subsequent message 1is
anticipated.

When processing resumes following the call to CONVERSE, the
environment appears as it was before the call--except the input message
parameter (unless there was a time-out) now points to the most recent
message from the terminal. It will have been edited if specified for
the verb’s definition in the Front End Verb Table. The Intercomm
return code area will contain a binary wvalue in the low-order byte
indicating the condition for return from CONVERSE (see Figure 42).

The CONVERSE program keeps track of conversational requests by
terminal and subsystem, and separates messages accordingly. Hence,
each unique subsystem thread may be in conversation with a different
terminal.

It is the subsystem’s responsibility to verify that the message

received following the call to CONVERSE is actually the appropriate
message expected in the logical sequence of the conversation.

90

Chapter 8 Conversational Subsystems

Note that the CONVERSE routine may only be called from a 24-Amode
0S/VS or ANS COBOL subsystem. Due to complications arising in
reestablishing COBOL internal tables on return from the call to
CONVERSE, it may not be called by a COBOL subroutine of the subsystem.

For example:

® Monitor calls COBOL Subsystem AA which calls CONVERSE (valid
sequence of program logic).

e Monitor calls COBOL Subsystem BB which calls Assembler
Language subroutine Bl which calls CONVERSE (valid sequence
of program logic). However, if the new input message
processed by the Assembler Language subroutine on return from
the call to CONVERSE is freed by the subroutine or passed by
it to another subsystem or FESEND, then the subroutine must
zero the first word in the parameter list passed to it (see
Assembler Language Programmer’s Guide), and under Release 10,
it must also zero the first word of the original parameter
list passed by PREPROG to a reentrant COBOL subsystem.
PREPROG’s parameter 1list address 1is stored in the field
ITCBPMSS in the Intercomm Thread Control Block (ITCB) whose
address 1s obtained via the INTTCB macro with OPT=S (see
Basic System Macros). The calling COBOL subsystem may then
not reference the input message area or any of its data
fields (except for data fields in its DWS passed as
parameters to the BAL subroutine for storing message data
and/or a copy of the new message header for the next output
message) . Note that the BAL subroutine may wuse the new
return code address parameter to pass a code back to the
COBOL subsystem, or the COBOL subsystem may test it for the
CONVERSE return code on return from the BAL subroutine.

® Monitor calls COBOL Subsystem CC which calls COBOL subroutine
Cl which calls CONVERSE (invalid sequence of program logic).

The COBOL subsystem may not use an old copy of the message header for a
new output message. If the subsystem calling CONVERSE is compiled with
the ANS4 or a VS compiler, the Intercomm input-message and return-code
parameters may not be addressable after the call. Use the IBM SERVICE
RELOAD verb immediately following the CONVERSE call to solve this
problem.

Conversational subsystem logic must be designed with care
regarding file access. Selected files should be released prior to the
call to CONVERSE. If not, other subsystems accessing the same files or
other messages in process in the same subsystem may "time out." This
may occur because an operating system control block is associated with
the access to the file and is not "freed" until the file is released.
If a file is accessed prior to the call to CONVERSE and released after
the call to CONVERSE a "lock out" situation may occur.

91

Chapter 8

Conversational Subsystems

Return Codes Meaning

0 (X'00') Normal return: the entry parameter input-message

17 (X'1ll’) No core available for CONVERSE control blocks;

18 (X'12’) Time-out expired. The entry parameter input-message

reflects the address of the new input message. The
message will have been edited successfully if the
Front End Verb Table shows editing required. (If
editing is unsuccessful, error messages will be sent
to the terminal, and the subsystem is not reactivated
until either a subsequent input message is edited
successfully or an automatic time-out occurs.)

CAUTION: The CONVERSE automatic time-out is not
extended if a message is found in error by
the Edit Utility.

conversational mode not initiated.

reflects the address of an error message generated by
CONVERSE. The message header contains the appropriate
terminal identification. The message text is:

*PMI*CONVERSE¥ANTICIPATED MESSAGE NOT RECEIVED
WITHIN USER SPECIFIED TIME INTERVAL

Figure 42. CONVERSE Return Codes

Control of the conversational program environment is accomplished
by Intercomm in different ways, depending on the subsystem’s residency:

Resident

The dynamic-work-space (DWS) for one message from a terminal
is retained pending arrival of the next message from that
terminal; the subsystem will continue to process messages
from other terminals.

Overlay Loaded
Same as above, except the loaded overlay region may contain

other subsystems to process other messages during (and after)
"CONVERSE time."

Dynamically Loaded

Same as above, except the subsystem remains in core until all
"conversations in progress" have terminated.

92

Chapter 8 Conversational Subsystems

8.7 DESIGN CONSIDERATIONS IN CONVERSATIONAL PROCESSING

In order to ensure file integrity, conversational subsystems
performing file and/or data base updates should be designed to perform
the updates for the last message in the conversation. Alternatively,
control may be passed (via message queuing) to a non-conversational
subsystem to perform the updates.

8.7.1 Control of the Input to Conversations

Conversational subsystems expect ordered input. They must be
designed to analyze input messages and to determine which message in
the sequence has been received. Control of the input may be exercised
by the terminal operator or by the application subsystem(s).

The terminal operator may be given a specific sequential list of
messages to input at the terminal for a given verb or verbs. This
method would probably be wused for data collection applications, in
which more messages are sent to the application subsystem than are
received at the terminal. It could also be used for any conversational
application in which the order of input is fixed.

The application subsystem may control the input sequence by
analyzing an input message, processing it, and issuing a response
informing the operator about the content or format of the next input
message. The response may direct the operator to input another verb
(that of a related subsystem). Subsystem-controlled input is good for
conversations in which the "next" desired pilece of information may vary
depending wupon the contents of a file record, or a table, or the
setting of a switch in the area saved between subsystem activations.

8.7.2 Assigning a Verb to a Terminal

To eliminate the requirement for an operator to key in a wverb
with each input message, the operator may enter a system control
command message to LOCK a specific terminal to a particular verb. The
Front End then prefixes that verb to each input message from that
terminal. The operator may enter another control message, UNLK, to
unlock the terminal from the verb. See System Control Commands.

The LOCK/UNLK commands processed by the Front End can also be
issued by a subsystem. When a LOCK 1is in effect, all subsequent
messages from the specified terminal will be automatically prefixed by
the verb specified in the LOCK command. This LOCK remains in effect
until UNLK is issued. With LOCK in effect, some advantages are:

) The terminal operator does not have to keep reentering the
same verb.

® A new verb cannot be entered during the conversation.

93

Chapter 8 Conversational Subsystems

Either the subsystem or the operator may control the input
sequence by locking and unlocking the terminal to different verbs at
different points in, or at the end of, the conversation.

Optionally, the Intercomm AUTOLOK feature may be defined for the
verb in the Front End Verb Table, which dictates that when that verb is
input from the terminal, the terminal is to be automatically locked to
that wverb. Subsequently, the terminal 1is to remain 1locked until
specifically UNLKed by the operator or processing subsystem.

The format for the LOCK/UNLK commands (message text) 1is as
follows:

LOCK$ TPUxxxxx$vvvv@
UNLKS$ TPUxxxxx@
where:
XXXXX
is the five-character terminal identification
A aaad
is the four-character verb
@
is the end-of-transmission character (X’'26')
$

is the system separator character as defined for the
installation.

The preformatted message constructed by a subsystem must be
prefixed with the standard message header for FESEND

(MSGHRSCH=X'00"' ,MSGHRSC=X'00' ,VMI=X'57"). This message 1is passed to
the Front End via FESENDC (see Chapter 9) and the LOCK or UNLK takes
place. No response message is sent to the terminal when such

processing is requested by a subsystem.

94

Chapter 9

USING INTERCOMM SERVICE ROUTINES AND FACILITIES

9.1 REENTRANT COBOL INTERFACE ROUTINE (COBREENT)

COBREENT is the interface routine called by all COBOL subsystems
in order to maintain reentrancy during execution of a subroutine which
potentially causes an I/O operation or gives up processing control to
the Intercomm Dispatcher. The application program calls COBREENT
specifying which subroutine is to be called (system program or user
routine) and the appropriate parameters to pass to it. COBREENT saves
registers, chains save areas, saves the program’s Task Global Table (if
OS/ANS COBOL) or it’s THDCOM (if VS COBOL II) in a dynamic storage
area, saves the COBOL save area, and saves the entry parameters for the
called program. COBREENT then calls the specified subroutine. On
return from that subroutine, COBREENT restores the environment and
returns to the calling program. Coding format:

CALL 'COBREENT'’ USING routine-code, parameters.
where:
routine-code indicates the routine entry to be called.

parameters 1is the actual parameter list to be passed to the

called routine. A maximum of ten parameters is recommended.
Intercomm service routines require less than ten parameters; user
subroutines should be designed with this 1limit in mind. The

limit on the number of parameters passed by VS COBOL II programs
is 64. If the calling subsystem (or subroutine) may be loaded
above the 16M line, then all referenced parameters must be in the
caller’s DWS (have a 24-Amode address), except they may be in the
Working-Storage Section if the caller is VS COBOL IT.

Routine-codes name halfword offset values into the REENTSBS table
of routine addresses. Offsets 0 through 100 are reserved for Intercomm
system routines. Offsets 104 and up may be used for user subroutines.
Figure 43 lists the routine-codes assigned as identifiers for Intercomm
service routines in the released REENTSBS table. The COPY member (of
routine-codes) for COBOL subsystems and subroutines is named ICOMSBS
and is illustrated in Appendix B. See also Chapter 3 for sample coding
using the ICOMSBS table. The hard-coded (with a VALUE clause)
routine-code may be in the caller’s Working-Storage Section of all
COBOL programs.

Specifications and coding criteria for wuser subroutines are
described in Section 7 of this chapter.

95

Chapter 9

Using Intercomm Service
Routines and Facilities

REENTSB1 CSECT

% BY COBREENT AND PMIPLL.
SUBMODS NAME=INITLUG6
SUBMODS NAME=INTSORTC
SUBMODS NAME=DWSSNAP
SUBMODS NAME=MAPFREE
SUBMODS NAME=FECMRLSE
SUBMODS NAME=FESEND
SUBMODS NAME=FESENDC
SUBMODS NAME=ALLOCATE
SUBMODS NAME=ACCESS
SUBMODS NAME=MAPURGE
SUBMODS NAME=MAPCLR
SUBMODS NAME=MAPEND
SUBMODS NAME=MAPOUT
SUBMODS NAME=MAPIN
SUBMODS NAME=INTUNSTO
SUBMODS NAME=INTSTORE
SUBMODS NAME=INTFETCH
SUBMODS NAME=FECMFDBK
SUBMODS NAME=FECMDDQ
SUBMODS NAME=QWRITEX
SUBMODS NAME=QREADX
SUBMODS NAME=QWRITE
SUBMODS NAME=QREAD
SUBMODS NAME=QCLOSE
SUBMODS NAME=QOPEN
SUBMODS NAME=QBUILD
ENTRY REENTSBS
IREENTSBS DS 0A

SUBMODS NAME=SELECT
SUBMODS NAME=RELEASE
SUBMODS NAME=READ
SUBMODS NAME=WRITE
SUBMODS NAME=GET
SUBMODS NAME=PUT
SUBMODS NAME=RELEX
SUBMODS NAME=FEOV
SUBMODS NAME=TABUILD
SUBMODS NAME=TABOPEN
SUBMODS NAME=TABPUT
SUBMODS NAME=TABGET
SUBMODS NAME=TABSORT
SUBMODS NAME=TABEND

% NEGATIVE OFFSETS ARE USED BY SPECIFYING AN OFFSET ENDING IN B'll’,
% WHICH IS INCREMENTED BY 1 AND COMPLEMENTED TO OBTAIN TRUE OFFSET

OFFSET -104,CODED AS 103
OFFSET -100,CODED AS 99
OFFSET -96,CODED AS 95
OFFSET -92,CODED AS 91
OFFSET -88,CODED AS 87
OFFSET -84,CODED AS 83
OFFSET -80,CODED AS 79
OFFSET -76,CODED AS 75
OFFSET -72,CODED AS 71
OFFSET -68,CODED AS 67
OFFSET -64,CODED AS 63
OFFSET -60,CODED AS 59
OFFEST -56,CODED AS 55
OFFSET -52,CODED AS 51
OFFSET -48,CODED AS 47
OFFSET -44,CODED AS 43
OFFSET -40,CODED AS 39
OFFSET -36,CODED AS 35
OFFSET -32,CODED AS 31
OFFSET -28,CODED AS 27
OFFSET -24,CODED AS 23
OFFSET -20,CODED AS 19
OFFSET -16,CODED AS 15
OFFSET -12,CODED AS 11
OFFSET -8,CODED AS 7
OFFSET -4,CODED AS 3

ALLOW FOR NEGATIVE OFFSETS

DC A(REENTEND-REENTSBS-4)

CODE 4-

CODE 8-

CODE 12-
CODE 16-
CODE 20-
CODE 24-
CODE 28-
CODE 32-
CODE 36-
CODE 40-
CODE 44-
CODE 48-
CODE 52-
CODE 56-

REQUIRED

FILE SELECT

FILE RELEASE

FILE READ

FILE WRITE

FILE GET

FILE PUT

RELEASE EXCL. CONTROL

FILE FEOV

TABLE BUILD

TABLE OPEN

TABLE PUT

TABLE GET

TABLE SORT

TABLE END
(Codes 60-64
are reserved)

Figure 43.

COBREENT Routine Pointers

96

(REENTSBS) (Page 1 of 2)

Chapter 9 Using Intercomm Service
Routines and Facilities

SUBMODS NAME=COBPUT CODE 68- COBOL MESSAGE SWITCHING
SUBMODS NAME=MSGCOL CODE 72- MESSAGE COLLECTION
SUBMODS NAME=COBSTORF CODE 76- COBOL STORFREE

SUBMODS NAME=CONVERSE CODE 80- CONVERSE

SUBMODS NAME=DBINT CODE 84- DATA BASE REQUEST
SUBMODS NAME=LOGPUT CODE 88- LOGPUT
SUBMODS NAME=PAGE CODE 92- PAGE ROUTINE
SUBMODS NAME=GETV CODE 96- VSAM GET
SUBMODS NAME=PUTV CODE 100-VSAM PUT
ikkad INSERT USER SUBMODS MACROS HERE %

9830 ICICICFC I ICIICIH I IO FH R IR R T W R I IR TR IR IR K TR R I ITIICIWITICFH I RITICIH IR N

COPY USRSUBS

[REENTEND EQU % REQUIRED AFTER LAST SUBMODS
ENTRY REENTEND

REENTSB1 CSECT

END

Figure 43. COBREENT Routine Pointers (REENTSBS) (Page 2 of 2)

9.2 INTERSUBSYSTEM QUEUING (COBPUT)

COBPUT is called to queue a message for a user or Intercomm
subsystem. Queuing is controlled by the Receiving Subsystem Code
fields in the message header. If segmented input messages may be
processed, set the MSGHQPR field in the header to C'2’ before calling
COBPUT. If the Edit Utility 1is used in the system, ensure the VMI
field (MSGHVMI) is non-zero so that an attempt to edit the message
for/by the receiving subsystem is not made.

Coding format:
CALL ’COBREENT’ USING COBPUT, message, return-code.
where:

message is the label of the first position of the message
(header + text) to be queued

return-code is the label of a two-byte character field where
COBPUT will place a return code.

COBPUT copies the message to be queued to a new area of dynamic
storage, converting variable character format message text and header
fields as necessary if the Receiving Subsystem Code is for the Output
Utility (see Figure 34). COBPUT then calls Message Collection (MSGCOL)
to accomplish the queuing of the message. Figure 44 1lists COBPUT
return codes.

The original message remains in the calling program’s Dynamic
Working Storage. If the message has not been processed or queued
successfully, the subsystem may attempt to recover, or simply return to
the Subsystem Controller with a return code of 8 or 12. Figure 45
lists various alternatives.

97

Chapter 9

Using Intercomm Service
Routines and Facilities

Return Code

Meaning

00

-
Item code, length, or line number greater than 255 in

Message queued successfully

NOTE: For Multiregion Facility users sending a message
to another region, this return code signifies that
the message was queued for sending to that region.

variable character data item prefix (Output Utility)
No room on subsystem queue, or (Rel 10) msg rejected for
delayed subsystem--an entry was made on the system log
(MSGHLOG=X'FC')

__

COBPUT has detected a message length too short to

convert character item codes and lengths

Invalid subsystem code--an entry was made on the system
log (MSGHLOG=X'FB’)

DVASN system routine could not reserve a device (on first
segment of multi-segmented messages only)

A non-zero return code means the message was neither
queued nor processed.

Figure 44. COBPUT Return Codes

Return Code

Alternative Action

02, 06, 10,
14, 16

B s T T T T T

Program error: no recovery action. Correct the

invalid fields and recompile program.

Requeue the original input message for reprocessing
by the currently executing subsystem via calling
COBPUT referencing the input message and the
currently executing subsystem, or follow action for
Return Code 28.

No recovery action:
with return code 12.

return to Subsystem Controller

Attempt a time delay and call COBPUT to attempt
queuing of the message again.

Figure 45. Recovery From COBPUT Errors

98

Chapter 9 Using Intercomm Service
Routines and Facilities

9.3 INPUT MESSAGE SWITCHING (MSGCOL)

COBPUT is called to queue an output message to activate another
subsystem. It copies the message from the Dynamic Working Storage area
of the calling subsystem to a new dynamic area and calls Message
Collection. Thus, the output message area within the dynamic-work-
space of a subsystem is reusable upon return from COBPUT.

The logic of an application subsystem might be such that the
input message is modified within its dynamic area to become an output
message to switch to another subsystem. To do this, the length of the

input message may not be increased (data may not be added). If the
length is shortened by 8 bytes or more, see the next section on freeing
the remainder, and adjusting MSGHLEN in the header. Queuing the

message for the mnext subsystem is then done by calling Message
Collection (MSGCOL), instead of COBPUT; Message Collection then owns
and 1is responsible for the management of the message area. All queuing
is controlled by the receiving subsystem code fields (MSGHRSCH and
MSGHRSC) in the message header. When returning to the System Monitor,
the subsystem return code must be set to 900 (see Figure 14).

Coding format:

CALL 'COBREENT'’ USING MSGCOL, message, SPA-addr, return-code.
where:

message is the label of the input message to be queued.
SPA-addr is the second entry parameter in the Linkage Section.

return-code is a fullword computational field where COBREENT will
place the return code from MSGCOL.

MSGCOL return codes indicate the result of the queuing. The
return code is fullword binary and can therefore use the same field as
the Intercomm return code. (See Figure 46.) Regardless of the result,
the calling program no longer has any control over the area of dynamic
storage occupied by the input message and must return a code of 900.

Return Code Meaning
0 Message queued successfully
4 No room on queue (entry made on system log),

or message rejected for delayed subsystem (Rel 10)

__

8 No core for disk queue I/O area
_________________ e e e e c e et r r r e r e rr r e e et m r r e Er r e e, e, ——————— - - - -
12 I/0 error on disk queue
16 Invalid subsystem code (entry made on system log)
Figure 46. Message Collection Return Codes

99

Chapter 9 Using Intercomm Service
Routines and Facilities

Recovery action for wunsuccessful queuing might be to return to
the System Monitor with a return code of 8 or 12. A message would then
be sent to the terminal that originated the input message being
processed, if USRCANC (PMICANC) is included in the Intercomm linkedit.

9.4 FREE DYNAMIC (MESSAGE AREA) STORAGE (COBSTORF)

COBSTORF may be called to free an area of dynamic-work-space not
utilized for a message passed to another subsystem and not to be freed
by the Subsystem Controller when the subsystem returns (see Section
9.4.1). COBSTORF may also be used to free the end of an input message
area when the message text is shortened before being queued for another
subsystem (see previous section).

Coding format:
CALL 'COBREENT'’ USING COBSTORF, area, length.
where:

area is the name defining the first (leftmost) position of the
area to be freed.

length is the name of an aligned fullword containing a binary
value indicating the number of bytes to free.

CAUTION: Dynamic storage 1is managed as doublewords. The area
specified should be aligned on a doubleword boundary
(COBSTORF will round up the address if not). The
length specified should be a multiple of 8 (COBSTORF
will round down the length if not). See also SYCTTBL
macro, GET and FREE parameters, defining the DWS
obtained and freed by the Subsystem Controller as
described in Chapter 2. Note also that COBSTORF
calls may not be used to free part of the DWS if DWS
overflow checking is desired. When freeing part of
an input message, only the rightmost portion may be
freed and the remaining length must be stored in the
first two bytes (MSGHLEN) of the message header
before calling MSGCOL.

9.4.1 INTERSUBSYSTEM MESSAGE QUEUING VIA MESSAGE COLLECTION (MSGCOL)

Since a message created by a reentrant subsystem resides in
dynamic-work-space, it is not a requirement that COBPUT be used to copy
a message to be queued to another subsystem. Message Collection may be
called directly, depending on the SCT specification for the subsystem
(GET and FREE parameters of the SYCTTBL macro). This feature may not
be used 1f DWS checking is in effect (see Chapter 3), nor if the
message is in a VS COBOL II program’s Working-Storage Section. For the
coding format and return codes, see Section 9.3.

100

J

Chapter 9 Using Intercomm Service
Routines and Facilities

The SCT entry specifies the amount of core for dynamic-work-space
obtained upon entry to a reentrant subsystem and also, the amount of
core to be freed when that subsystem returns to the Monitor. They need
not be equal. If unequal, the area of core remaining to be freed is
the "leftmost" or first portion of the area obtained. The application
programmer is then responsible for the "rightmost" area of
dynamic-work-space. A new message may be created in that area (must
start on a doubleword boundary) and queued for any other subsystem by
calling MSGCOL. MSGCOL then owns and is responsible for that amount of
core specified in the message header length field. Any remaining area
of dynamic-work-space beyond (to the right of) the message area must be
freed by the application subsystem by calling COBSTORF before returning
(GOBACK) to the Monitor.

For example, consider two reentrant subsystems:
° Subsystem XX - SCT specifies:
-- 1024 bytes of dynamic-work-space obtained
-- 1024 bytes freed on return to the System Monitor

Must use COBPUT to queue any messages for other subsystems,
that is, OUTPUT, etc.

e Subsystem YY - SCT specifies:
-- 1024 bytes of dynamic-work-space obtained
-- 512 bytes freed on return to the System Monitor

May use MSGCOL to queue a message for another subsystem if
defined in last 512 bytes of the dynamic-work-space (DWS); or

May use COBPUT instead.

Must use COBSTORF to free any part of DWS not freed on return
to System Monitor and not referenced by a call to MSGCOL.

To illustrate:

If subsystem YY queued a message for Output with
MSGHLEN=128, subsystem YY is responsible for freeing the
remaining 384 bytes of the 512 not freed by the System
Monitor.

‘ DWS: 1024 obtained on entry to program ’

‘ 512 freed on ’ ‘ 128 used N 384 to free by »
Return to System for output COBSTORF
Monitor message
queued by
calling
Message
Collection
101

Chapter 9 Using Intercomm Service
Routines and Facilities

9.5 SEND MESSAGE TO FRONT END (FESEND)

FESEND is called to pass a message to the Intercomm Front End for
transmission to a terminal. The message header field MSGHTID specifies
the destination terminal or broadcast group name. The entry point
FESENDC of FESEND is used by high-level language subsystems. FESENDC
copies (from the caller’s DWS) the message to be passed to the Front
End to a new area of storage and proceeds via logic in the program
FESEND. FESEND then requests queuing of the message on the associated
terminal queue. If a broadcast group is specified, FESEND creates an
individual message for each terminal of the group and requests queuing
for each of those messages. All terminals in the broadcast group must
be of the same type, as defined in the Back End Station and Device
tables (see Chapter 2).

FESEND accepts two types of messages: preformatted (VMI=X'57')
message text, which contains the control characters and data for
transmission to the terminal except for start-of-text sequence(s) to be
added by the Front End; and fully-formatted (VMI=X'67') message text,
which contains all control characters and data ready for transmission
to the terminal. (MMU produces fully-formatted messages.) If
segmented input messages may be processed, set MSGHQPR to C’2' before
calling FESENDC. If passing the message to the Front End is for any
reason unsuccessful, the subsystem is notified by a return code, and
recovery action may be taken.

FESEND tests whether messages sent to the Front End might be
system commands or for control purposes. Such messages control Front
End operation and generally cause no output to a terminal. Front End
Control Messages (FECMs) are described 1later in this chapter. All
system control commands and message text contents are documented in

System Control Commands.
Coding format:

CALL 'COBREENT'’ USING FESENDC, message, return-code[, option-codes].

where:
message is the label of the output message (header and text)
to be passed to the terminal queue.

return-code is the name of a two-byte character field where

FESENDC will place a return code indicating whether or not
processing was successfully completed.

102

Chapter 9

option-codes

Using Intercomm Service
Routines and Facilities

field containing Front End processing codes as follows:

Byte 1:

Byte 2:

CRT Release option code:
blank or X’'00’--do not release (prevent screen

overlay) next message (default)

C'R’--release (allow overlay) next message to CRT

C’'C’'--release next message, but do not cancel
Front End conversational time-out

VTAM Response option code (overrides Front End
Network Table definition for terminal):

blank or X'00’--no override (default)
C’D’'--D1 response
C'E’'--El response
C'F’'--D2 response
C’'G’'--E2 response

Bytes 3 and 4: Not used (set to blanks or binary zeros).

FESENDC return codes and possible recovery actions are listed in Figure
47. A nonzero return code means the message was not queued for the

Front End. Return codes 16-24 should only occur during subsystem

testing.

Return Code

Meaning

Message queued successfully.

Queue-full condition encountered; attempt a retry
by invoking FESEND again.

Low-core condition encountered; attempt a retry
by invoking FESEND again or return to Intercomm.
(See Figure 14.)

I/0 error (see Figure 14) encountered on disk
queue; return to Intercomm.

Invalid terminal-ID; no recovery action required.
Check with System Manager to verify terminal/
broadcast group named in MSGHTID field.

Invalid VMI or syntax error in Front End control
or command message text.

Invalid message header; return to Intercomm.
See also error message MG602I and Snap 51.

Figure 47. FESENDC Return Codes

103

is the name of an optional four-byte character

Chapter 9 Using Intercomm Service
Routines and Facilities

9.6 USER LOG ENTRIES (LOGPUT)

An application subsystem may require entries on the system log
for many different situations:

e Application-dependent security violation or other error
recording.

e Log entries rather than snaps used to trace the progress of a
message while testing.

o Any application-oriented requirement for a record on the
system log.

) Before- and/or after-image records of file updates (if not
using the Intercomm File Recovery special feature).

User log entries are identified by unique codes in the message
header log code field (MSGHLOG) and hence can be recognized by any
batch program processing the 1log off-line. Messages to be 1logged
consist of a standard 42-byte header and message text. The log code
field (MSGHLOG) in the message header must be set to any value from
X'41' to X'6F'. Logging is performed by calling the Intercomm system
service routine LOGPUT. The date and time stamp in the message header
(MSGHDAT and MSGHTIM) will be updated by LOGPUT prior to writing to the
log. Log entries may subsequently be suppressed for later Intercomm
executions by modifying the LOGTROUT translate table in the LOGPUT
routine. Any message having a log code in the header which translates
to X'FF' will not be logged.

The length of the record on the log is controlled by the value of
MSGHLEN in the message header and must be at least 42. LOGPUT will not
write out messages longer than the logical record size of the log (see
INTERLOG JCL description in the Operating Reference Manual).

Coding format:
CALL 'COBREENT'’ USING LOGPUT, message.

where:

message is the label of the message (header plus text) to be
logged.

There is no return code from LOGPUT.

104

Chapter 9 Using Intercomm Service
Routines and Facilities

9.7 CALLING USER SUBROUTINES FROM REENTANT COBOL SUBSYSTEMS

All subroutines called by an application subsystem must be called
via COBREENT. Passed parameter values must be in 24-Amode storage (such
as the caller’s DWS), except they may be in the Working-Storage of a VS
COBOL II caller. No other special conventions need be followed in order
to call:

o An Intercomm system service routine.
® A user-coded Assembler Language (BAL) subroutine.
® A user-coded COBOL subroutine.

o A data base interface routine.

9.7.1 Defining User Subroutines to Intercomm

A user-coded subroutine (Assembler Language or COBOL) must be
defined to Intercomm via coding of a SUBMODS macro in a user member
USRSUBS which 1is copied at the end of the subroutine table REENTSBS
(before REENTEND) at assembly time (see Figure 43). Resident,
reentrant Assembler Language subroutines are defined by the NAME
parameter of SUBMODS, all others via the LNAME parameter, plus
additional parameters defining language, residency, etc. Additionally,
the routine’s reference name and corresponding index code should be
added to ICOMSBS (see Appendix B) for easy access by subsystems when
calling COBREENT. The SUBMODS macro 1is described in Basic System
Macros.

9.7.2 Interfacing to User-Coded Assembler Language Subroutines

Assembler Language subroutines must be coded as reentrant if they
may give up control to the Intercomm Dispatcher (via I/O requests, MMU
requests, message queuing, etc.). When called from a COBOL program via
COBREENT, standard linkage conventions are wused. COBREENT issues a
MODCNTRL macro to 1link to non-resident Assembler subroutines. At
entry, register 13 points to the beginning of a 256-byte link/save area
which precedes the DWS acquired for the COBOL program. Therefore, the
caller’s registers must be saved on entry to the Assembler subroutine,
and reloaded before return, and save area chaining must be done. The
COBOL link/save area may not otherwise be used by a called subroutine.
An Assembler subroutine may not call a COBOL subroutine.

9.7.3 Interfacing to User-coded COBOL Subroutines

A reentrant COBOL subroutine is coded like a COBOL subsystem in
that it uses a Linkage Section and a Dynamic Working Storage area, and
it calls COBREENT to interface to Intercomm service routines and other
user subroutines. Non-resident reentrant COBOL subroutines loaded
above the 16M line under Release 10 must use the coding conventions
described in Chapter 3. Subroutine calls may be nested, but must
return to the caller, as illustrated previously in Figure 5.

105

Chapter 9 Using Intercomm Service
Routines and Facilities

The Linkage Section may optionally contain definitions for the
input message (if not previously freed via a MAPIN call), the SPA, the
SCT (SYCTTBL entry for the calling subsystem), and the Intercomm return
code system parameter areas. Any, or all, of these parameters (in the
above order) are requested via the SUBMODS macro definition of the
subroutine. These must be the first 0l level definitions in the
Linkage Section. The required Dynamic Working Storage area is defined
via the GET parameter of the SUBMODS macro. The 01 level definition
for the dynamic working storage area 1is coded after the system
parameters (if requested) and before the 01 1level definitions for
parameters passed by the caller.

The Intercomm return code area may be used to pass a return code
back to the calling COBOL subsystem because both the subroutine and the
subsystem are referencing the same area via Linkage Section
definitions. The subsystem may pass that return code back to the
Intercomm Monitor (if standard Intercomm return code conventions are
used by the subroutine) or may take action based on the return code and
then change the passed value in the return code area to a standard
Intercomm return code value. See the sample programs in Chapter 10.
Coding conventions for subroutine interfaces prior to Intercomm Release
9.0 are defined in Appendix D.

9.8 FRONT END CONTROL MESSAGES

The Front End Control Message (FECM) facility provides three
types of Front End control messages which may be used by application
subsystems for:

° Front End data queuing (FECMDDQ)
° Front End feedback messages (FECMFDBK)
e Front End queue release (FECMRLSE)

A FECM is generated by an application program call to a service
routine. The generated FECM message text is complete. The header
field MSGHLEN has been set; bytes 3-42 are not modified. If the user
has copied a valid header to the FECM message area prior to the call,
only the sending subsystem codes (SSCH,SSC) and the VMI (X'57’) must be
set. The generated FECM must then be passed to the Front End by a call
to FESENDC in the application program.

After a call to any Front End Control Message facility, a return
code is placed in the first byte of the status word:

Return Code Value Meaning
c'o’ FECM successfully created
c’s’ No storage for FECM processing (Assembler only)

106

Chapter 9 Using Intercomm Service
Routines and Facilities

9.8.1 Front End Data Queuing

Front End data queuing (FECMDDQ) works in conjunction with the
Dynamic Data Queuing Facility. It provides the user with a more
efficient way of handling groups of related output messages. An
application may pass a Dynamic Data Queue (DDQ) to the Front End via a
FECM. The DDQ contains messages to be sent to a terminal. This is a
more efficient design approach than sending one message at a time to
the Front End via FESEND, and prevents interleaving of wunsolicited
messages with those on the DDQ. This feature is particularly useful
for printed reports. The messages on the DDQ must be preformatted
(VMI=X'57') or fully formatted (VMI=X'67'). The Dynamic Data Queuing
Facility manual contains detailed information on DDQ concepts,
facilities and implementation, and specific design considerations for
Front End Data Queuing. MMU wuses this facility (FECMDDQ), when
requested for multipage printer output. Coding format:

CALL 'COBREENT’ USING FECMDDQ, status-word, fecm-area,
ddq-id[, ddq-disp].

where:

status-word is a 4-byte (fullword aligned) area required by the

facility.

fecm-area is a 112-byte area to contain the FECM (header and
text). The user should initialize the header prior to the
call, probably by copying the input message header to this
area.

ddg-id is the sixteen (16) byte DDQ identifier.

ddg-disp is a one-byte code indicating DDQ disposition after all
messages are transmitted:

C’S’' means SAVE the DDQ (required if MSGHTID is a broadcast
group name)

C'F' means FREE the DDQ (default)
NOTE: The ddq-disp parameter may be omitted if the DDQ is to be freed
after all the messages are transmitted (default). All of the

above parameters must be in the DWS if the calling program is
loaded above the 16M line.

9.8.2 Front End Feedback Messages

This type of FECM (FECMFDBK) 1is wused by an application to
determine that all prior messages queued for a terminal (before the
FECM) have been transmitted. 1In this way, an application subsystem can
be notified that certain critical messages have indeed been
successfully transmitted.

107

Chapter 9 Using Intercomm Service
Routines and Facilities

Subsystem logic creates all normal output messages and passes
them to the Front End (via FESEND, MMU, or by queuing messages for
OQutput). Generation of a feedback message is then requested by a call
to a FECM service routine. The feedback message is then processed in
the same way as the other messages for the terminal (queued via FESENDC
or the Output Utility). When the Front End retrieves the feedback
message, it is routed to the subsystem specified when the feedback
message was generated rather than to the destination terminal.

Feedback messages may also be used in conjunction with Front End
Data Queuing. A feedback message could be an intermediate, or the
last, message on a DDQ passed to the Front End. If the DDQ was created
via MMU (a MAPEND call option), then the feedback FECM must be created
and queued by the subsystem on return from the MAPEND call. Coding
format:

CALL ’'COBREENT’ USING FECMFDBK, status-word, fecm-area,
fecm-rsc, fecm-text.

where:

status-word is a 4-byte (fullword aligned) area required by the
facility.

fecm-area is a 78-byte area to contain the FECM (header and text).
The user should initialize the header area prior to the call,
probably by copying the input message header to this area.

fecm-rsc is a two-byte receiving subsystem code (high/low) to
specify the feedback message destination subsystem.

fecm-text is a 1l6-byte area containing the desired feedback
message text.

9.8.3 Front End Queue Release

This type of FECM (FECMRLSE) allows the subsystem to override the
normal Front End Logic for CRTs, which requires a one-for-one
correspondence between input and output messages. When the release
FECM is processed by the Front End, it causes a subsequent response
message queued for the same terminal (as identified by MSGHTID in the
FECMRLSE message header) to be transmitted immediately, rather than
waiting for input (RLSE command) from the terminal operator. Because
of protocol restrictions (HDFF) on VTAM Front End IBM SDLC 3270 CRT
processing, the CRT release option for the first call to FESEND should
be used (see Section 9.5) as a release; because if the terminal is
already in send mode, it is necessary to turn the line around before
sending the released message, which may confuse the terminal operator.
The CRT release option locks the terminal in receive mode, preventing
new input by the operator.

A release FECM might be used if a subsystem queues more than one
output message to the CRT terminal due to a considerable amount of
processing (file/data base I/0) being necessary between messages. The
first message might be an immediate response to the terminal operator

108

<

Chapter 9 Using Intercomm Service
Routines and Facilities

indicating the input request is being processed, but allowing new input
by the operator. Then, the second message (following the release FECM)
is the wultimate result of the requested processing. A release FECM
could also be used to force immediate transmission of a critical
message to another CRT (other than the input terminal). Such
processing should be used with caution because unsolicited messages can
cause confusion for the terminal operator and may clear an existing
screen format or displayed message. Coding format:

CALL ’'COBREENT'’ USING FECMRLSE, status-word, fecm-area.
where:

status-word is a 4-byte (fullword aligned) area required by the
facility.

fecm-area is a 60-byte area to contain the FECM (header and text).
The user should initialize the header area prior to the call,
probably by copying the input message header to this area.

9.9 IN-CORE TABLE SORT FACILITY (INTSORT) (Release 10 only)

If the Table Facility is not used to create an in-core table,
then to sort a user in-core table, the INTSORT Facility (entry point
INTSORTC for COBOL) is provided. Such a table might contain data
stored in Store/Fetch strings or file data record via online
transactions or offline processing. The table can have any number of
fixed-length entries, and each entry can have a total size of 1 to
32767 bytes. The key to be sorted on can be anywhere within the first
256 bytes of the entry, but must be in the same place, and of the same
length, in each entry. Coding format:

CALL ’'COBREENT’ USING INTSORTC, entries, entry-length, table,
key-offset, key-length, return-code.

where:

entries is a 4-byte (fullword aligned) area containing the number
of table entries in binary format.

entry-length is a 4-byte (fullword aligned) area containing the
size of each entry (up to 32767) in binary format.

table is the name of the area containing the table to be sorted.

key-offset is a 4-byte (fullword aligned) area containing the
offset (-1) in binary format of the key within each entry (value
must be 0 if key at the beginning of the table entry; 1 if it
starts in the second position of the table entry, etc.). May be
0 to 255.

key-length is a 4-byte (fullword aligned) area containing the
length in binary format of the key (to be sorted on) of each
entry (can be the same as entry-length). Length may be 1 to 256
depending on key-offset (key-offset+key-length must be less than
257).

109

Chapter 9 Using Intercomm Service
Routines and Facilities

return-code is a 4-byte (fullword aligned) area to contain the
return code (in binary in the low-order byte) from INTSORTC, as

follows:
Return Meaning
Code
X'00 INTSORT completed successfully (no duplicate keys)
X704 | Number of entries less than 1 or table size greater than 164-]
'X708" | Length of an entry is less than 1 or greater tham 32767 |

B i T LT e T T T T U M g

X'24’ Successfully sorted table contains duplicate keys (entries).

For all non-zero return codes except 24, the sort is not executed.

9.10 OTHER INTERCOMM SERVICE FACILITIES

The following service routines for application programs are
accessed via the following subroutine entry names listed in REENTSBS:

e MMU (MAPIN, MAPOUT, MAPEND, MAPCLR, MAPURGE, MAPFREE)

) Store/Fetch (INTSTORE, INTFETCH, INTUNSTO)

e DDQ (QBUILD, QOPEN, QREAD, QREADX, QWRITE, QWRITEX, QCLOSE)
° Page Facility (PAGE)

° DBMS (DBINT) - data base interfacing

® Dynamic File Allocation (ALLOCATE, ACCESS)

e Table Facility (TABUILD, TABOPEN, TABPUT, TABGET, TABSORT,
TABEND)

° LU6.2 transaction invocation (INITLU6)

Code names for all routines are provided in the COPY member ICOMSBS
(see Appendix B). Detailed documentation for wuse of the above
facilities is provided in separate manuals (see Chapter 2). Special
coding and call conventions for specific data base support are
described in Data Base Management System Users Guide and vendor
manuals.

110

Chapter 9 Using Intercomm Service
Routines and Facilities

Other service routines described at the end of Chapter 2 and in
the Assembler Language Programmers Guide such as binary table search,
ESS user-id search, dispatcher related routines, and data field search
routines (when Edit and Output Utilities wused), can be accessed by
adding the entry name to USRSUBS with a SUBMODS macro (use NAME
parameter only) and adding the name and offset code to ICOMSBS.

9.10.1 Features Accessible via Assembler Macros

Several Intercomm facilities are accessible only via a call to an
assembler-coded subroutine which issues an Intercomm macro to use the
facility. Such features include:

o Enqueue/Dequeue--to request exclusive or shared control of a
resource (INTENQ, INTDEQ)

° Start/Stop--function control or status test (SSSTART, SSSTOP,
SSTEST)

° Write-to-operator--to issue a message to the CPU console
(PMIWTO, PMIWTOR)

o Snap--to 1issue a snap of the passed program areas for
debugging if DWSSNAP not used (Release 10 - see Chapter 3)
(PMISNAP)

) Timed wait--to request a timed delay of subsystem processing
if IJKDELAY not used (see Chapter 2) (INTWAIT)

° Asynchronous oprocessing--dispatch a time-delayed routine,
post or wait on an asynchronous processing routine (DISPATCH,
INTPOST, INTWAIT)

o Acquire current time and/or date (INTTIME, GETDATE)

e Acquire device-dependent information about a terminal
(EXTERM) :

e Track user accounting information for SAM (USRTRACK)

o Convert hexadecimal fields to printable character (LAYOUT,
HEXCON)

) Format subsystem codes for printing (SSCONV)

o Test authority of the currently signed-on (under ESS) user to
use a logical function, such as Data Base access (SECTEST).

Note that wuse of most of these facilities will add to subsystem
processing time (increase TCTV). Further documentation may be found in

the Assembler Language Programmers Guide and Basic System Macros.
GETDATE macro may only be used under Release 10.

110.1

Chapter 10

SAMPLE PROCESSING PROGRAMS

The sample program SQCOBOLA, shown in Figure 48, demonstrates
coding of an OS/ANS COBOL subsystem which is either resident or
dynamically loadable below the 16M 1line. To be eligible for loading
above the 16M line, the MMU map group and map names would have to be
copied to fields added to the DWS, and those new fields referenced for
MMU calls which need those names in the passed parameter list.

The program processes an Inquiry transaction (MURQ) containing a
part number and a warehouse number for a stock status display. MMU is
used to transform the incoming message into a fixed field format. The
part number 1is transformed into a RBN for accessing a BDAM part
description file (PARTFILE). The RBN and a part description record
area are passed as parameters to a called (via COBREENT) COBOL
subroutine SQCOBOLB, illustrated in Figure 49, which 1is eligible for
residence anywhere. The subroutine retrieves the requested record from
PARTFILE and passes back the File Handler return code to the calling
subsystem via the Intercomm return code field.

Together, the part number and warehouse number provide a VSAM key
for accessing a stock status file (STOKFILE). The File Handler is used
for accessing both files. MMU 1is used for formatting an output
display. Error messages, for conditions such as non-existent or
erroneous warehouse or part numbers, or file I/O errors, are built
within the program and formatted by MMU using an error map area.

The ICOMSBS, ICOMINMG and ICOMDWS basic Release 10 (see Appendix
B) source text members defining the service routine pointers and
Intercomm message header fields. are COPY’d by the COBOL compiler. The
COBLOGCH source text member used for terminal attribute and command
override for MMU processing, and the symbolic map areas, are also
copied into the program.

All required table entries, JCL, sample input messages and
testing procedures, plus sample execution output, are illustrated in

Chapter 11, "Subsystem Testing." The subsystem code used in the
SYCTTBL macro to identify the sample subsystem is RQ. Intercomm’s BTAM
simulator is used for testing. Test messages are included to test as

‘many error combinations as possible.

Chapter 12 illustrates a similar subsystem (without the COBOL
subroutine) coded for the same purpose but using the Edit and Output
Utilities, a COBPUT call, and Test Mode for testing. Chapter 13
illustrates SQCOBOLA redesigned for the VS COBOL II compiler (DWS
fields moved to Working-Storage), and defines changes to Chapter 11 for
testing in the VS COBOL II environment.

111

Chapter 10

Sample Processing Programs

PP 5740-CB1 RELEASE 2.4 IBn 0S/V¥S CDBOL
00001 000100 IDENTIFICATION OIVISION. 00010000
00002 000200 PROGRAM=ID. SOCOBOLA. 00020000
0€003 000300 ENVIRONMENT O0IVISION. 00030000
00004 000400 DATA DIVISION, 00040000
00005 000500 WORKING-STORAGE SECTION. 00050000
00006 00C600 77 SLASH PIC X YALUE '/°'. 00060000
00007 000700 77 BDAM-READ-GCOD PIC X VALUE 'D', 00070000
00008 000800 77 VSAM=READ~-GDOD PIC X VALUE °'v*, 00080000
00009 000900 77 DD-STOCK PIC x(8) VALUE 'STOKFILE’. 00090000
00010 001000 77 DOD-PART PIC X(8) VALUE ‘*PARTFILE'. 00100000
00011 001100 01 10-GRCUP=NA®™E PIC Xxt8) VALUE *STKSTAT®', 00110000
00012 001200 01 [10-MAP=-NAME PIC Xx(8) VALUE *MaPl‘, 00120000
00013 001300 01 ERR-MAP-NARE PIC x(8) VALUE °*ERRMAP', 00130000
00014 001400 01 MESSAGE-TABLE. 00140000
00015 001500 04 MSG-a PIC X(12) VALUE 'PART NUMBER ', 00150000
0001¢ 001600 04 MSG-B PIC X(11) VALUE ' NOT FOUND.'. 00160000
00017 001700 04 MSG-C PIC X(5) VALUE °'PART *, 00170000
00018 001800 04 MSG-D PIC X(24) VALUE 00180000
00019 001900 * NOT FOUND IN WAREHOUSE '. 00190000
00020 002000 04 MSG-E PIC X(20) VALUE '. MESSAGE CANCELLED.'. 00200000
00021 002100 04 MSG-F PIC XT17) VALUE °*MAP ERROR MCW IS °*. 00210000
00022 002200 04 MSG=G PIC X(36) VALUE 00220000
00023 002300 YINVALIC OATA: PARTNGO MUST BE NUMERIC®. 00230000
00024 002400 04 MSG=-H PIC X(35) VALUE 00240000
00025 002500 SINVALID DATA: WHSNO MUST BE NUMERIC'. 00250000
00026 002600 04 MSG-1I PIC X(46) VALUE 00260000
00027 002700 "INVALID DATA: PARTNC AND WHSNO MUST BE NUMERIC®*., 00270000
0002¢ 002800 01 LOGICAL=-DEVICE-DESCRIPTION CGPY COBLOGCH. 00280000
00029 C 01 LOGICAL-DEVICE=-DESCRIPTION.
00030 C 02 UAN PICTURE X VALUE ' °'.
00031 C 02 UANMDT PICTURE X VALUE * ',
00032 C 02 UANSEL PICTURE X VALUE ' °*.
00033 C 02 UANMDSEL PICTURE X VALUE * °*.
00034 C 02 UAMSEL PICTURE X VALUE ' °,
00035 C 02 UAHMDSEL PICTURE X VALUE ' *,
0003¢ C 02 UAX PICTURE Xx VALUE * ',
00037 C 02 UAXMDT PICTURE X VALUE ' ',
00038 € 02 UNN PICTURE X VALUE * °*.
00039 € 02 UNNMDT PICTURE X VALUE * °'.
00040 C 02 UNNSEL PICTURE X VALUE * °*.
00041 C 02 UNNMDSEL PICTURE X VALUE * .,
00042 € 02 UNHSEL PICTURE X VALUE * °*,
00043 C 02 UNHMDSEL PICTURE X VALUE * *,
00044 C 02 UNX PICTURE X VALUE °* °,
00045 € 02 UNXMDT PICTURE X VALUE ' °*, ,
0004& C 02 PAN PICTURE X VALUE ' °.
00047 C 02 PANMDT PICTURE X VALUE ' °*,
00048 C 02 PANSEL PICTURE X VALUE °* °',
00045 C 02 PANMDSEL PICTURE X VALUE * °.
0005¢C C 02 PAHSEL PICTURE X VALUE ' '.
00051 C 02 PAHMDSEL PICTURE X VALUE ' ',
00052 C 02 PAX PICTURE X VALUE * °.
00053 C 02 PAXMDT PICTURE X VALUE * *.
00054 ¢ 02 PSN PICTURE X VALUE ' °.

Figure 48. Sample Reentrant Subsystem (IBM ANS COBOL) (Page 1 of 14)

112

Chapter 10 Sample Processing Programs

00055 C 02 PSNMDY PICTURE X VALUE *' °,
0005¢ C 02 PSNSEL PICTURE X VALUE ! °*,
00057 C 02 PSNMDSEL PICTURE X VALUE ' ',
00058 C 02 PSHSEL PICTURE X VALUE ' °*,
00059 C 02 PSHMDSEL PICTURE X VALUE * °,
00060 C 02 PSX PICTURE X VALUE ' °*,
00061 C 02 PSXMDT PICTURE X VALUE ' °*,
00062 C 02 SUPR PICTURE X VALUE *' °*,
00063 C 02 WRITEl PICTURE X VALUE * °*,
00064 C 02 ERASWRIT PICTURE X VALUE * ',
00065 C 02 ERASWRAL PICTURE X VALUE ' *.
0006¢ C 02 RMDT PICTURE X VALUE * °*,
00067 C 02 RKEYBD PICTURE X VALUE ' ',
0C068 C 02 RMDTKEY® PICTURE X VALUE * °*,
00069 C 02 ALARM PICTURE X VALUE * ',
00070 C 02 ALRMRMDT PICTURE X VALUE ' °.
00071 C 02 ALRMRKEY PICTURE X VALUE ' °*,
0co72 C 02 ALRMRMKY PICTURE X VALUE ' ',
00073 C 02 PRNTNL PICTURE X VALUE ' °*,
00074 C 02 PRNT40 PICTURE X VALUE ' °*,
00075 C 02 PRNTd4 PICTURE X VALUE ' ',
00076 C 02 PRNT80 PICTURE X VALUE ' ',
00077 C 02 PRNLRMDT PICTURE X VALUE ' °,
0cora ¢ 02 PR&ORMDT PICTURE X VALUE * °,
00079 C 02 PRO4RMOT PICTURE X VALUE ' °*,
00080 C 02 PRBORMDT PICTURE X VALUE ' *,
00081 C 02 PRNLRKEY PICTURE X VALUE ' ',
00082 C 02 PR4ORKEY PICTURE X VALUE ' ',
00083 C 02 PRO4RKEY PICTURE X VALUE ' ',
00084 C 02 PRBORKEY PICTURE X VALUE * °*,
00085 C 02 PRNLRMKY PICTURE X VALUE * *,
00086 C 02 PR4ORMKY PICTURE X VALUE ' °*,
00087 C 02 PRO4RMKY PICTURE X VALUE ' °,
00088 C 02 PRBORMKY PICTURE X VALUE * °,
00089 ¢ 02 PRNLALRM PICTURE X VALUE ' °*,
00090 C 02 PR4OALRM PICTURE X VALUE ' ',
00091 C 02 PRO64ALRM PICTURE X VALUE * ',
00092 C 02 PRBOALRM PICTURE X VALUE ' °.
00093 C 02 PRNLARMD PICTURE X VALUE ' °,
00094 C 02 PR&OARMD PICTURE X VALUE ' °*,
00095 C 02 PR64ARMO PICTURE X VALUE * °*,
0C096 C 02 PRBOARMD PICTURE X VALUE * ',
00097 C 02 PRNLARKY PICTURE X VALUE ' °*,
00098 C 02 PR4OARKY. PICTURE X VALUE * °,
00099 C 02 PRO4ARKY PICTURE X VALUE ' °*,
00100 C 02 PRBOARKY PICTURE X VALUE * ',
00101 C 02 PRNLAMKY PICTURE X VALUE ° °*.
00102 C 02 PR4OAMKY PICTURE X VALUE * °*,
00103 C 02 PRO4AMKXY PICTURE X VALUE * °*,
00104 € 02 PRBOAMKY PICTURE X VALUE * °,
00105 C $02 NULL PICTURE X VALUE ' °,
0010¢& C 02 NL PICTURE X VALUE * °,

00107 C 02 FF PICTURE X VALUE ' °,

ool08 ¢ 02 CR PICTURE X VALUE * *.

00109 C 02 SI PICTURE X VALUE *' °,

Figure 48. Sample Reentrant Subsystem (IBM ANS COBOL) (Page 2 of 14)

113

Chapter 10 Sample Processing Programs

0Cl111 002900 O1 COBREENT-CODES COPY [COMSBS. 00290000
00112 C 01 COBREENT-CODES. 00001000
00113 C % THESE CODES REPRESENT OFFSETS FOR ROUTINE ADORESSES IN THE 00002000
00114 C © TABLE NAMED REENTSBS. ONLY THE MOST COMMONLY USED VALUES 00003000
00115 ¢ % ARE INCLUDED HERE; THE USERS MANUAL HAS A COMPLETE LIST. €0004000
00116 € % IF OFFSET ODDy THEN TRUE OFFSET==(OFFSETe1) 00005000
00117 ¢ 05 INTSORTC PIC 99 COMP VALUE 99. 00005300
00118 C 05 DWS-SNAP PIC 99 COMP VALUE 95. 00005400
00119 C 05 MAPFREE PIC 99 COMP VALUE 91. 00005500
00120 ¢ 05 FECMRLSE PIC 99 COMP VALUE 87, 00006000
00121 C 05 FESEND PIC 99 COMP VALUE 83, 00007000
00122 ¢ 05 FESENDC PIC 99 COMP VALUE 79. 00008000
00123 ¢ 05 DYN-ALLOCATE PIC 99 COMP VALUE 75. 00009000
00124 C 05 DYN-ACCESS PIC 99 COMP VALUE 71. 00010000
00125 C 05 MAPURGE PIC 99 COMP VALUE 67. 00011000
00126 C 05 MAPCLR PIC 99 COMP VALUE 63. 00012000
00127 € 0S5 MAPEND PIC 99 COMP VALUE 59. 00013000
0c128 ¢ 05 MAPOUT PIC 99 COMP VALUE 55. 00014000
00129 ¢ 05 MAPIN PIC 99 COMP VALUE 51. . 00015000
0c130 ¢ 05 INTUNSTO PIC 99 COMP VALUE 47. 00016000
00131 ¢ 05 INTSTORE PIC 99 COMP VALUE 43. 00017000
00132 C 05 INTFETCH PIC 99 COMP VALUE 39, 00018000
00133 C 05 FECMFDBK PIC 99 COMP VALUE 35. 00019000
00134 C 05 FECMDDO PIC 99 COMP VALUE 31. 00020000
00135 ¢ 05 DO-WRITEX PIC 99 COMP VALUE 27. 00021000
00136 C 05 DQ-READX PIC 99 COMP VALUE 23. 00022000
00137 € 05 DO-WRITE PIC 99 COMP VALUE 19. 00023000
00138 C 05 DQ-READ PIC 99 COMP VALUE 15. 00024000
00139 ¢ 05 00-CLOSE PIC 99 COMP VALUE 1ll. 00025000
0014C C 05 DQ-O0PEN PIC 99 COMP VALUE 07. 00026000
00141 C 05 DQ-BUILD PIC 99 COMP VALUE 03. 00027000
00142 ¢ 05 FM=-SELECT PIC 99 COMP VALUE 4. 00028000
00143 C 05 FH-RELEASE PIC 99 COMP VALUE 8. 00029000
00144 € 05 FH-READ PIC 99 COMP VALUE 12. 00030000
00145 C 05 FH-WRITE PIC 99 COMP VALUE 1lb. 00031000
00146 € 05 FH=GET PIC 99 COMP YALUE 20. 00032000
00147 C 05 FH=PUT PIC 99 COMP VALUE 24. 00033000
00148 C 05 FH=-RELEX PIC 99 COMP VALUE 28. 00034000
00149 € 05 FH-FEDV PIC 99 COMP VALUE 32. 00035000
00150 C 05 COBPUT PIC 99 COMP VALUE 68. 00036000
00151 € 05 MSGCOL PIC 99 COMP VALUE 72. 00037000
00152 C 05 COBSTORF PIC 99 COMP VALUE 76. 00038000
00153 C 05 CONVERSE PIC 99 COMP VALUE 80. 000390C0
00154 C 05 DBINT PIC 99 COMP VALUE 84. 00040000
0c155 C 05 LOGPUT PIC 99 COMP VALUE 88. 00041000
00156 C 05 PAGE-FILE PIC 99 COMP VALUE 92. 00042000
00157 C 05 FH=-GETV PIC 99 COMP VALUE 96. 00043000
00158 C 05 Fr=-PUTY PIC 999 COMP VALUE 100. 00044000
00159 ¢ ¢ CODES 104 AND UP INDICATE USER ADDITIONS TO THE TABLE 00045000
00161 003000 05 SQcosOLB PIC 999 COMP VALUE 104, 00300000
00162 003100 01 FILLER PIC X(22) VALUE 00310000
00183 003200 TEND OF WORKING STORAGE®', 00320000

Figure 48. Sample Reentrant Subsystem (IBM ANS COBOL) (Page 3 of 14)

114

Chapter 10 Sample Processing Programs

00165 003300 LINKAGE SECTION. 00330000
00166 003400 01 INPUT-MESSAGE COPY ICOMINMG. 00340000
00167 C 01 INPUT-MESSAGE. 00000100
ool68 C 04 MESSG-HDR. , 00000200
00165 C 06 MSGH=LENGTH PIC S9999 COMP. 00000300
oolr7Cc C 06 MSGH=-QPR PIC X. 00000400
00171 C 06 MSGH=RSCH PIC Xx. 00000500
oo172 C 06 MSGH=RSC PIC X. 00000600
00173 C 06 MSGH=-SSC PIC Xx. 00000700
00174 C 06 PFMSGH=MMN PIC XXX. 00000800
00175 C 06 MSGH-DATE. 00000900
00176 C 08 MSGH=-YR PIC 99. 00001000
00177 C 08 MSGH=-PERIQD PIC X. ooool100
oo178 C 08 MSGH-JULIAN-DAY PIC 999. 00001200
00179 C 06 MSGH-TIME, 00001300
00180 C 08 MSGH=HH PIC 99. 00001400
o018l C 08 MSGH-mM PIC 99. 00001500
00182 C 08 MSGH=-SS PIC 99. 00001600
00183 C 08 MSGH=TH PIC 99. 00001700
00184 C 06 MSGH=TID. 00001800
00185 C 08 MSGH=-TI1 PIC X. 00001900
0018¢ C 08 MSGM=T]2-3 PIC XxXx. 00002000
00187 C 08 MSGH=T[4=-5 PIC 99. 00002100
00188 C 06 MSGH-CON PIC $S9999 CONP. 00002200
00189 C 06 MSGH=FLGS PIC x(2). 00002300
ocl90 C 06 MSGH=BMN PIC x(3), 00002350
00191 C 06 MSGH=-SSCH PIC Xx. 00002400
00192 C 06 MSGH-USR PIC X. 00002500
00193 C 06 MSGH=-ADDR PIC XX. 00002600
00194 C 06 MSGH-LOG PI1C X. 00002700
00195 C 06 MSGH=-BLK PI1C X. 00002750
00196 C 06 MSGH=-VMI PIC X. 00002800
00198 003500 02 INPUT-TEXT. 00350000
00199 003600 04 INPUT-VERS PIC x(4). 00360000
0020¢C 003700 01 ICOM=-SPA PIC x(500). 00370000
00201 003800 01 ICOM=SCT PIC xt100). 00380000
00202 003900 01 ICOM-RETURN PIC 5S9(7) COmP, 00390000
00203 004000 01 DYNAMIC-WORK=-SPACE COPY ICOMDWS. 00400000
00204 C 01 OYNAMIC-WORK=-SPACE. 00000100
00205 C 02 DOUTPUT-MESSAGE. 00000200
00206 C 04 QPFESSG-HOR, 00000300
00207 C 06 OMSGH=LENGTH PIC $S9999 COmP. 00000400
00208 C 0& OMSGH=QPR PIC X. 00000500
00209 C 06 OMSGH=-RSCH PIC Xx. 00000600
00210 C 06 OMSGH=-RSC X PIC X. 00000700
00211 C 06 QOMSGH~-5SC PIC Xx. 00000800
00212 C 06 ONMSGH-MMN PIC XxXxX. 00000900
00213 C 06 OMSGH~DATE. 00001000
00214 C 08 OMSGH=YR PIC 99. 00001100
00215 C 08 OMSGH-PERIOD PIC X. 00001200
0021¢ C 08 OMSGH=JULIAN-DAY PIC 999. 00001300
00217 C 06 OMSGH-TIME. 00001400
0cz218 C 08 OMSGH-HH PIC 99. 00001500
00219 C 08 OMSGH=-nM PIC 99. 00001600
0022C C 08 OMSGH~SS PIC 99. 00001700
00221 C 08 OMSGH=-TH PIC 99. 00001800

Figure 48. Sample Reentrant Subsystem (IBM ANS COBOL) (Page 4 of 14)

115

Chapter 10 Sample Processing Programs
00222 ¢ 0& OMSGH-TID, 00001900
00223 C 08 OMSGH=-TI1 PIC X. 00002000
00224 C 08 OMSGH-T]2=3 PIC XX. 00002100
00225 € 08 OMSGH-TI14=5 PIC 99. . 00002200
00226 C 06 DOMSGH-CON PIC 59999 COMP, 00002300
00227 C 06 OMSGH=FLGS PIC X(2}). 00002400
00228 C 06 OMSGH-BMN PIC X(3). 00002450
00229 C 06 OMSGH-5SCH PIC X. 00002500
0023C ¢ 06 QFSGH-USR PIC X. 00002600
00231 C 0¢ OMSGH-aDOR PIC XX. 00002700
00232 C 06 OMSGH=-LOG PIC X. 00002750
00233 C 06 OMSGH=-BLK PIC X. 00002800
00234 C 06 OMSGH=VM] PIC X. 00002900
00236 004100 02 SYMBOLIC-MAP. 00410000
00237 004200°3COPY STKSTATS 00420000
00238 004300 03 MAP1L, 00430000
00229 004400 05 VERBF, 00440000
00240 004500 06 VERSBL PIC 9l4) comP, ! 00450000
00241 004600 06 VERBT PIC X. 00460000
00242 004700 06 VYERB PIC X(4). 00470000
00243 004800 04 PARTNOF, . 00480000
00244 004900 05 PARTNOL PIC 9(4) COmP, 00490000
00245 005000 05 PARTNGOT PIC X, 00500000
00246 005100 05 PARTNC. 00510000
00247 005200 06 FILLER PIC S9(«1, 00520000
00248 005300 06 RBNBYTE PIC S9. 00530000
00249 005400 04 USEGL. 00540000
0025¢ 005500 05 WHSNOF. 00550000
00251 0C5600 06 WHSNOL PIC 9(4) COMP, 00560000
00252 005700 06 WHSNOT PIC X. 00570000
00253 005800 06 WHSNO PIC $S999. 00580000
00254 005900 05 PRTDATAF, 00590000
00255 006000 06 PRTDATAL PIC 9(4) COMP. 00600000
00256 006100 06 PRTDATAT PIC X. 00610000
00257 006200 06 PRTDATA PIC Xx(54). 00620000
00258 006300 05 ORDUNTF, 00630000
00255 006400 06 ORDUNTL PIC 9(4) COMP, 0064000Q
00260 €06500 06 ORDUNTT PIC X. 00650000
00261 006600 06 ORDUNT PIC Xt5). 00660000
00262 006700 05 PRTYPRCF, 00670000
00263 006800 06 PRTPRCL PIC 9(4) COMP, 00680000
00264 006900 06 PRTPRCT PIC X. 00690000
00265 007000 06 PRTPRC PIC S999V9(4) COMP-3, 00700000
00266 007100 05 WHSLOCF. 00710000
0c267 007200 06 WHSLOCL PIC 9(4) COMP., 00720000
00266 c07300 06 WHSLOCT PIC X. 00730000
00269 007400 06 WHSLOC PIC Xx(23), 00740000
Q0270 007500 05 STKLEVF. 007500C0
00271 007600 06 STKLEVL PIC 9(4) COMP, 00760000
00272 007700 06 STKLEYT PIC Xx. ' 00770000
00273 ccrs00 06 STKLEV PIC S9(7) cOomP-3, 00760000
00274 007900 05 LEVYOATEF, 00790000
00275 008000 06 LEVDATEL PIC 9(4) COMP. 00800000
00276 008100 06 LEVDATET PIC X, 00810000
00277 008200 06 LEVDATE PIC X(8). 00820000
0c278 Q08300 05 STKCRODF, 00830000
Figure 48. Sample Reentrant Subsystem (IBM ANS COBOL) (Page 5 of 14)

116

Chapter 10 Sample Processing Programs

00279 008400 06 STKORDL PIC 9(4) COmP, . 00840000
00280 008500 06 STXORDT PIC X. 00850000
00281 008600 06 STKORD PIC $S9(7) COMP-], 00860000
00282 008700 05 ORDCATEF. 00870000
00283 008800 06 ORDDATEL PIC 9(4) COmP., 00880000
cC284 008900 06 ORODATET PIC X, 008900CO
00285 009000 06 ORDDATE PIC x(8). 00900000
00286 009100 04 FILLER PIC x(M. 00910000
00287 009200 03 ERRMAP, 00920000
00288 0091300 05 ERRMSGF., 00930000
00285 009400 06 ERRMSGL PIC 9(4) COMP. 00940000
00290 009500 06 ERRMSGT PIC X, 00950000
00291 009600 06 ERRMSG PIC x(50). 00960000
0C292 009700 04 FILLER PIC x(T). 00970000
00293 009800 02 RECORD-AREA. 00980000
00294 009900 04 PART-RECORD. 00990000
00295 010000% NOTE 100 CHARACTER B80AM RECORD WITHOUT KEYS, 01000000
00296 010100 06 P=REC-PART-DATA, 01010000
00297 010200 08 P-REC-PIN . PIC Xx(5). 01020000
00298 Q10300 08 P-REC-DES PIC X(54), 01030000
00299 010400 08 P=-REC-UNT PIC X(5), 01040000
00300 010500 06 P-REC=-PRC PIC 99V9(4) comp-3, 01050000
00301 010600 06 P=REC-MFR=NUM PIC Xx(15). 01060000
00302 010700 06 FILLER PIC x(17). 01070000
00303 010800 04 STOCK-RECORD. 01080000
001304 010900% NOTE 80 CHARACTER vSam RECORD. 01090000
00305 011000 06 DELETE-CHARACTER PIC X. 01100000
00306 0ll100 06 S=-REC-KEY-FIELD. 01110000
00307 011200 08 S=-REC-WHS PIC 9¢(3). 01120000
00308 gl1300 08 S-REC-PNO PIC 9(5). 01130000
00309 011400 06 FILLER PIC x(28). 01140000
00310 011500 06 S-REC-STOCK-DATA. 01150000
001311 Cl1600 08 S-REC-wWLC PIC x(23). 01160000
00312 011700 08 S=-REC-LEY PIC 9(7 comp-3, 01170000
00313 011800% NOTE S-REC-LEV IS 4 CHARACTERS LONG. 01180000
00214 011900 08 S=REC-LDT PIC Xx(&6). 01190000
00315 012000 08 S-REC-ORD PIC 9(7) ComMp-3. 01200000
00316 012100% NQTE S-REC-ORD IS 4 CHARACTERS LONG. 01210000
00317 012200 08 S-REC-0DT PI1C x(6). 01220000

Figure 48. Sample Reentrant Subsystem (IBM ANS COBOL) (Page 6 of 14)

117

Chapter 10

Sample Processing Programs

00319 012300 02 STATWD PIC S9N comMP SYNC, 01230000
00320 012400% NOTE THIS PUTS US ONTO A FULLWORD BOUNDARY ALTGNMENT, 01240000
00321 012500 02 FH=STATUS REDEFINES STATWD, 01250000
00322 012600 04 FH=STAT1 PIC X. 01260000
00323 012700 88 10K VALUE 0. 01270000
00324 012800 88 IOERRQOR VALUE 1. 01280000
00325 012900 88 NOT-FOUND VALUE 2. 01290000
0C326 013000 88 NO-DD VALUE 9. 01300000
00327 cl3lo0 04 F=H=STAT2 PIC X. 01310000
00328 013200 04 FILLER PIC xXt2). 01320000
0c329 013300 02 EXTDSCT PIC X[48). 013300C0
0033C 013400% NOTE WE ARE STILL ALIGNED MERE. 01340000
00331 013500 02 RBN=-WORD PIC S9(7) COMP. 01350000
00332 013600 02 RBN=-FILLER REDEFINES RBA-WOFD. 01360000
003133 013700 04 FILLER PIC X. 01370000
00334 013800 04 REN PIC X(3). 013800C0
00335 013900 02 CURRENT=FILE PIC X(8). 01390000
00336 014000 02 MCwW PIC G(8) COMP SYNC. 01400000
00337 014100 02 MCW~CODE-BYTES REDEFINES MCW. 01410000
0C338 014200 04 MCW-RETURN-CODE PIC X. 014200C0
00339 014300 88 MAPPING-0K VALUE ZERD. 01430000
00340 014400 88 MAPEND-SUCCESSFUL VALUE ‘8°. 01440000
00341 Cl4500 04 MCN=-OPTION=2 PIC X, 01450000
00342 014600 04 MCW-0PTION=-3 PIC X 01460000
00343 014700 04 MCW=-0PTION=-4 PIC X« 01470000
00344 014800 02 MCW-CODES=~-PART REDEFINES MCW. 01460000
00345 014900 04 MCwW=-CODES1-2 PIC X(2). 01450000
0C346 015000 04 FILLER PIC Xx(2). 015000cC0
00347 015100 02 MCB PIC x(48). 01510000
00348 015200 02 KEY=FIELD PIC 9(8). 01520000
00349 015300 02 DATE-EDIT. 01530000
001350 015400 04 D-E-MO PIC X(2). 01540000
00351 015500 04 D-E-DAY PIC x(2), 01550000
00352 015600 04 D-E-YEAR PIC x(2). 01560000
00353 015700 02 DATE-MOVE. c1570000
00354 015800 04 D-M-MO PIC x(2). 01580000
00355 015900 04 SLASHZ2 PIC X« 01590000
0035¢ 016000 04 D-M=-DAY PIC X(2), 01600000
00357 016100 04 SLASHL PIC X. 01610000
00358 016200 04 D-A-YEAR PIC xX(2), 01620000
Figure 48. Sample Reentrant Subsystem (IBM ANS COBOL) (Page 7 of 14)

118

Chapter 10 Sample Processing Programs

00360 016300 02 INVALID=-INPUT-MESSAGE. 01630000
00361 016400 04 MSG-7 PIC Xx(50). 01640000
00362 016500 02 NO-PART-MESSACE REDEFINES INVALID-INPUT-MESSAGE. 01650000
00363 Cl6600 04 MSG-1 PIC x(1l2). 01660000
00364 016700 04 NOPART=PNO PIC X(5). 01670000
00365 0le&800 04 MSG-2 PIC X(11). 01680000
00366 016900 02 NOWARES-MESSACE REDEFINES INVALID=-INPUT-MESSAGE. 01690000
00367 cl17000 04 MSG-3 PIC x(5). 01700000
0Cle8 017100 04 NOWARES=-PNQO PIC X(5). ol1710cco
00369 017200 04 MSG-4 PIC X(24). 01720000
00370 017300 04 NOWARES=WHS PIC x(3). 01730000
00371 017400 02 CANCEL-MESSAGE REDEFINES INVALID=-INPUT-MESSAGE. 01740000
00372 017500 04 CAN-CODE PIC X(15) JUST RIGHT. 01750000
00372 017600 04 CAN=FILE=-NAME PIC x(8). 01760060
00374 017700 04 MSG-5 PIC X(20). 01770000
00375 017800 02 MAPPING-ERR-MESSAGE REDEFINES INVAL ID-INPUT-MESSAGE. 01780000
0C376 C17900 04 MSG=-6 PIC X(17). 017900C0
00377 cl8o000 04 ERROR-TAG PIC X(4), 01800000
00378 018100 02 MAP=FLAG PIC X 01810000
00375 018200 88 MAP-GOOD VALUE 'G'. 01820000
00380 018300 88 MAP-ERR VALVE 'E°‘. 01830000
00381 018400 88 MAP-QUT=-ABORT VALUE *a‘, 01840000
0c3a2 c1e500 02 FH=READ-FLAG PIC X.o 01450000
00383 018600 80 BDAM-READ-OK YALUE °'0°. 01860000
0038« 018700 88 VSAM-READ-QOX VALUE °'V°, 01870000

Figure 48. Sample Reentrant Subsystem (IBM ANS COBOL) (Page 8 of 14)

119

Chapter 10 Sample Processing Programs
00386 018900 PROCEDURE DIVISION USING INPUT-MESSAGE 018900C0
00387 019000 ICOmM=-S5PA 01900000
00388 g19100 1COM=-SCT 01910000
00389 a19200 ICOM=RETURN 01920000
0039¢C 019300 DYNAMIC~-WORK=-SPACE. - 019300C0
001392 019500 0100-MAIN=-LINE., 01950000
00393 019600 PERFORM 1000~-HOUSEKEEP [NG. 01960000
00394 016700 PERFORM 2000-HEADER=-MQOVE. 01970000
00395 019800 PERFORM 3000~-MAP~-IN, 01980000
00396 019900 MOVE LOW=-VALUES TOD VERB. 01990000
00397 020000 IF PARTNOT NOT EQUAL TO LOW=-VALUES 02000000
00398 020100 OR WHSNOT NOT ECUAL TO LOW=-VALUES 02010000
00399 020200 PERFORM 8900-INVALID=-INPUT=RTN 02020000
00400 020300 ELSE 02030000
00401 020400 IF NOT MAPPING=-0K 020400C0
00402 020500 PERFORM 8850-MAPPING-ERR=-RTN 02050000
00403 020600 ELSE 02060000
00404 020700 PERFORM 3500~MAP~-CLEAR-RTN 02070000
00405 020800 PERFORM 4000-READ-PART-F]LE 02080000
004C6 020900 PERFORM 5000~-FH=-BDAM=READ 02090000
00407 021000 IF BDAM=READ-0K 02100000
00408 021100 PERFORM 5000-READ~-STOCK=FILE 02110000
00409 021200 PERFORM 7000~FH=-VSAM=READ 021200C0
0041C 021300 IF VSAM~-READ=-OK 02130000
00411 021400 PERFORM B8C00-MAP-QUT 0