Program Product

Licensed Material - Property of IBM

LY28-6424-02

IBM DOS/VS COBOL
Subroutine Library
Program Logic

Program Number: 5746-LM4

Licensed Material - Property of IBM

PREFACE

This publication describes the object-time
subroutine library used by the IBM DOS/VS
COBOL compiler. It is intended for use by
persons involved in library maintenance and
by system programmers involved in altering
the library for installations requiring
such alteration. This publication
supplements the subroutine listings and
their comments, but it is not a substitute
for them. The publication is divided into
the following parts:

¢ An introduction which describes the
contents and the functions of the
library and specifies the relationships
between the library and the compiler
and the library and the operating
system.

¢ A methods of operation section which
describes the function of each
subroutine in the library, the code
used in the object program to interface
with each subroutine, and the output
(where applicable) of each subroutine.
This section is divided into two main
parts: the subroutines for object-time
program operations; the subroutines for
object-time debugging operations; and
the subroutines for object-time
execution statistics.

Third Edition (September 1985)

s A program organization section which

consists of diagrams and flowcharts.
The diagrams describe the flow of
control, loading and calling
dependencies, and virtual storage
layouts in instances where several
programs are present together in
virtual storage. Flowcharts are
provided for most of the data
management subroutines, all of the
subroutines for object-time debugging
operations, and for other complex
subroutines.

A data areas section which describes
the tables used by the subroutines for
object-time debugging operations and
control blocks for VSAM subroutines.

A diagnostic aids section which
includes execution-time messages and
error messages from the debugging
subroutines, virtual storage layouts,
information on locating DTF's and data,
and special diagnostic aids for
debugging subroutines.

¢ A glossary of special terms.

This is a reprint of LY28-6424-01 incorporating changes released in the following

Technical Newsletters:

LN20-9122-00 (dated 1 August 1975)
LN20-9183-00 (dated 3 December 1976)
LN20-9237-00 (dated S August 1977)
LN20-9348-00 (dated 15 May 1981)

References in this publication to I BM products, programs, or services do not imply
that 1BM intends to make these available in all countries in which IBM operates.

Publications are not stocked at the address given below. Requests for copies of IBM
publications should be made to your IBM representative or to the I BM branch office

serving your locality.

A form for readers’ comments has been provided at the back of this publication.
If the form has been removed, address comments to IBM Corporation, Programming
Publishing, P.O. Box 50020, San Jose, California. IBM may use or distribute whatever
information you supply in any way it believes appropriate without incurring any

obligation to you.

©Copyright International Business Machines Corporation 1973, 1974

Effective use of this manual requires an
extensive knowledge of the 1IBM Assembler
Language, DOS/VS System Control, DOS/VS
COBOL and the IBM DOS/VS COBOL Compiler.
Prerequisite and related publications
include:

IBM DOS/VS Operating Procedures, Order
No. GC33-5378

IBM 0S/VS and DOS/VS Assembler Language
Guide, Order No. GC33-4010

IBM DOS/VS System Control Statements,
Order No. GC33-5376

IBM DOS/VS sistem Utilities, Order
No. GC33-5381

IBM DOS/VS Supervisor and 1/0 Macros,
Order No. GC33-5373

IBM DOS/VS Access Method Services, Order
No. GC33-5382

IBM DOS/VS Data Management Guide, Order
No. GC33-5372

Prerequisite Program Product documents
include:

IBM DOS Full American National Standard

COBOL, Order No. GC28-6394 ;

IBM DOS/VS COBOL Compiler and Libra
Programmer's Gulde, Order NO. SC28-6478
IBM DOS/VS_COBOL Compiler and Librar
Installation Reference Naterial, Order

No. SC28-6u79

Licensed Material -~ Property of IBM

IBM DOS/VS COBOL Compiler Program logic,

Order No. LY28-6423

The following publications provide
detailed information on the IEM 3886
Optical Character Reader:

IBM 3886 Optical Character Reader
General Information Manual, Order

IBM 3886 Optical Character Reader Input

Document Desiqn and Specifications,
Order No. GA21-91u8

DOS/Vs Planning Guide for the IBM 3886
Optical Character Reader, Model 1, Order

No. GC21-5059

The following publications provide
information on the IBM DOS/VS Sort/Merge
Program Product, Program Number 5746-SM1,
and the DOS Sort/Merge Prograr Product,
Program Number 5743-SM1l:

IBM DOS/VS_SortsMerge General
Information, Order No. GC33-4030

IBM DOS/VS sort/Merge Installation
Reference Material, Order No. SC33-4026

IBM DOS_SortsMerge Programmer's Guide,
Order No. SC33-4018

The titles and abstracts of related
publications are listed in IBM System/360

and System/370 Bioliography, Order
NO. 6822-682 3

Licensed Material - Property of IBM

ACKNOWLEDGMENT

The following extract from Government
Printing Office Form Humber 1965-0795689 is
presented for the information and gquidance
of the user:

"any organization interested in reproducing
the COBOL report, and specifications in
whole or in part, using ideas taken from
this report as the basis for an instruction
manual or for any other purpose is free to
do so. However, all such organizations are
requested to reproduce this section as part
of the introduction to the document. Those
using a short passage, as in a book review,
are requested to mention *COBOL' in
acknowledgement of the source, but need not
quote this entire section.

"COBOL is an industry language and is not
the property of any company or group of
companies, or of any organization or group
of organizations.

"No warranty, expressed or implied, is made
by any contributor or by the COBOL
committee as to the accuracy and
functioning of the programming system and
language. Moreover, no responsibility is
assumed by any contributor, or by the
committee, in connection therewith.

"Procedures have been established for the
maintenance of COBOL. Inquiries concerning
the procedures for proposing changes should
be directed to the Executive Committee of
the Conference on Data Systems Languages.

"The authors and copyright holders of the
copyrighted material used herein

FLOW-MATIC (Trademark of Sperry Rand
Corporation), Programming for the
UNIVAC (R) I and 1I, Data Automation
Systems copyrighted 1958, 1959, by
Sperry Rand Corporation; IBM
Commercial Translator, Form

No. F28-8013, copyrighted 1959 by IBM;
FACT, DSI 27A5260-2760, copyrighted
1960 by Minneapolis-Honeywell

have specifically authorized the use of
this material in whole or in part, in the
COBOL specifications. Such authorization
extends to the reproduction and use of
COBOL specifications in programming manuals
or similar publications."

Licensed Material - Property of IBM

Summary of Amendments Number 3

Date of Publication: May 15, 1981

Form of Publication: TNL LN20-9348 to LY28-6424-1
New: Program and Documentation

The library has been expanded with the following new subroutines:

ILBDCVB Convert to Binary

ILBDSTG STRING

ILBDUST UNSTRING

ILBDINS INSPECT

ILBDDTE DATE, DAY, and
TIME

ILBDCMM GETCORE/FREECORE

ILBDACS Compare with Alternate
Colatting Sequence

ILBDSIO SAM I/O

ILBDBUG Use-for-Debugging
Declaratives

The new documentation supplies explanatory text for these new routines, and

supplies flowcharts where appropriate. In addition, these existing subroutines have been
modified: ILBDGDO, ILBDSAE, ILBDMNS, ILBDVOC, ILBDVIO, ILBDSRT, ILBDMRG,
ILBDMVE, ILBDSPA, ILBDDBG, and ILBDMP24.

Summary of Amendments Number 2

Date of Publication: December 3, 1976

Form of Publication: TNL LN20-9183 to LY28-6424-1

1BM DOS/VS COBOL
Maintenance: Documentation

e Minor technical changes and additions have been made to the text.

Summary of Amendments Number 1

Date of Publication: March 15, 1974
Form of Publication: Revision, LY28-6424-1

Support of New CBL Statement Option

New: Programming Feature

Release 2 of the IBM DOS/VS COBOL Subroutine Library supports the object-
time execution statistics option COUNT/NOCOUNT.

Support of SORT-OPTION IS data-name in SD Statement

New: Programming Feature

Release 2 of the DOS/VS COBOL Subroutine Library supports the SORT—
OPTION IS data-name clause. This allows the programmer more flexibility in
handling sort files and use of SORT/MERGE program messages.

ACCEPT Verb

New: Programming Feature

The ACCEPT verb library subroutine now translates lowercase input into the
uppercase equivalents.

Debug Common Area

Maintenance: Documentation Only

The debug common area has now been documented as a principal data area
used by library subroutines.

Licensed Material—Proparty of IBM

CONTENTS

SECTION 1:

Environmaental and Physical

Characteristics....ccivveecsacennnne

Operational Considerations.........
METHODS OF OPERATION....cccveceanns

SUBROUTINES FOR OBJECT TIME PROGRAM
OPERATIONS . vvereencnncncss
Arithmetic Conversion
Subroutines........ ceeresssasaens

Binary to Internal Decimal
CILBDBIDO) . v vvennosencnonsancne
Binary to External Decimal
(ILBDBIEO).....
Binary to Intern 1
Floating-Point (ILBDBIIO)......
Internal and External Decimal
to Internal Floating-Point
CILBDDCIO) e e eievenncersaoncnanne
Internal Floating-Point to
Binary (ILBDIFBO)..cvievvnvenns
Intarnal Floating-Point to
Internal Decimal (ILBDIFDO)....
Internal and External Decimal
to Binary (ILBDIDBO).....ccvuun
Decimal to Binary (ILBDCVBO),
%Zzgry to Decimal (ILBDCVB1)
All Numeric Forms to External
Floating-Point (ILBDTEF0)......
External Floating-Point to
Internal Floating-Point
(ILBDEFLO).

Arithmetic Verb Subrouttnes:..: i6.

ees 16,
Decimal Division (ILBDXDIO).. 16.

Decimal Multiplication

CILBDMXUDG) s vveeevenvenons
Decimal Fixed-Point
Exponentiation (ILBDXPRO)....
Floating-Point Exponentiation
to an Integer Exponent
(ILBDGPUD) . . i et ittt e iieenocnn .
Floating-Point Exponentiatton
to a Noninteger Exponent
CILBDFPUWO) . v vt iveeenenn cecreen

Data Manipulation Subrouttnes......
SORT (ILBDSRTO0) and MERGE
(ILBDSRTO0 and ILBDMRGO) [CAlJ...
Dummy SORT (ILBDDUMO)..........
Move (ILBDVMOO)....ccvevvevense
?8;|n9 Characters (ILBDMOVO)
Transform (ILBDVTRO)...........
MOVE Figurative Constant
CILBDANFO) . v vvviennecenennna
MOVE to Right-Justified Field
for System/370 C(ILBDSMVO)......
Alphanumeric Edit (ILBDAMNEO)...
STRING (ILBDSTGO) [CBAl........
UNSTRING (ILBDUSTO) [CBBl......
INSPECT (ILBDINSO) [CBCl.......
SEARC" (ILBDSCHO).' * 6 0 ¢ 0 0 50 0
Segmentation C(ILBDS 8) [CCl...

1
c
£
E
GO TO DEPENDING ON (

-z

INTRDDUOTION....00.......
Library Contents...c.viiveeecvennnsee

OO0 VO

11

1
1

16.1

ILBDGDOLl, ILBDGDO2)......... . 32.1

Date, Day, and Time (ILBDDTEO,
ILBDDTEL, ILBDDTE2) [CCAl..
SUBROUTINES FOR LIBRARY
MANAGEMENT . v tvveeeercosnecsananns
GETCORE/FREECORE Subroutines
CILBDCMMO, ILBDCMi1) (CCBI.....

"TEST AND COMPARE SUBROUTINES.....

Class Test (ILBDCLSO)..........
Compare (ILBDVCOO)...ivevvennen
Compare Figurative Constant
CILBDIVLO)...... vee e cre e
Comparison with Alternate Collat
Sequanca (ILBDACSO, ILBDACS1)

.. 32.1

32.2

32.
32

32

32.3
ing

2
.2
3

[CCC) .. iiieivinerennennsnnnsesns 32.6
UPSI C(ILBDUPSO0)...veveveccsscess 32.6
Linkage (ILBDSETO0)......... 32.4
Program Indicator (ILBDNNSO)... 32.4
TIME-OF-DAY and CURREWT-DATE
Subroutine (ILBDTODO).......... 32.5
SYMDIIP Address Test
CILBDADRO) . cvvvevencesnnsacans 32.5

GENERAL DATA MAMAGEMENT

SUBROUTINES ivivireeeoeeocanns 32.6
DISPLAY CILBDDSPO) [EA)........ 32.6
Optimizer DISPLAY (ILBDDSS0)
(EB]. vessseass 33

ACCEPT (ILBDACPO) CECI..........
Checkpoint (ILBDCKPO) [EDI]......
OPEN ACCEPT File (ILBDASYO0)

. 34
. 34

5 35

OPEN DISPLAY Flle (ILBDOSYO)

[EFY .. it ittt eeevecoocensnnossans 35

Close Ntth Lock (ILBDCLKO) [EGJ 35

User Standard Labels (ILBDUSLO)

[EH]..... .o 35

Nonstandard Labels’ (ILBDNSLO)

[EI)...... teererace et esoeneua 35

Error Nessages ($$BCOBER) fEJI... 35

Error Message Print ($$BCOBR1) 56

SYMDHP Error Message (SSBCOBEH)

(ELY..... .o aeeo 36

3836 Optvcal Character Reader

(OCR) Interface (ILBDOCRO)

[Chart EM].iiiieeerececeanones 36
Sequential Access Data Management
Subroutines..... 37

?2? 1/0 Subrouttne (ILBDSIOO)

SA Printer Spacxng (ILBDSPAO)

8 3 . .2
SA Varlable—Length Record

Qutput (ILBDVDBLO) [FB)....... 38.3
SA Error (ILBDSAEO) LFCI..... 38.3
SA Tape Pointer (ILBDIMLO)

[FD). it ieiveevtoncnnsanses 38.3
SA Position Multiple File

Tapes (ILBDMFTO0) [FE)........ 38.3
%AFTest Tape File (ILBDMVEO) 384

(ILBDABX0) [FG).........cn....
$A Reposition Tape ($$BFCAUL)
Indexed éé&&éé%?éi'ﬂééé;;’bééé'"'

Management Subroutines.
ISAM READ and NRITE (ILBDISMO)

Contents

.

-y

-
.

Licensed Matarial—Property of IBM

[GAl........... SaF ‘e .. 39 OBJECT-TIME EXECUTION STATISTICS

ISAM Error Routln (ILBDIS EO) SUBROUTINES ... vveeieevicnsceeenees 58
[GB). . ittt it inenvesnsonenne 39 Relationship to the Debug Control
ISAM START C(ILBDSTRO) [GCJ . 40 Subroutine......... Cesesssscscces D8
Direct-Access Data Management COUNT Data Areas......vic0veseese 58
Subroutines......cciieeieietttncnns 40 COUNT OperationS..cievceeversrseess 58
DA Close Unit (ILBDCRDO) [HA).. 40 COUNT Initialization Subroutine
DA Close Unit for Relative (ILBDTCO00) [KA)....ovvvveeanese 59
Track (ILBDRCRO) [HB).......... 4O COUNT Frequency Subroutine
DA Extent Processor (ILBDXTNO) (ILBDCT10) (KBl....... ceessnsss 59
HCY . ittt tviannnnnns . 41 COUNT Termination Subroutine
DA Sequentlal READ (ILBDDSRO) (ILBDTC20) [KCY......cviveunnn . 60
[HD) .. ittt eroeronnnnsvenans 41 COUNT Print Subroutine
DA Sequenttal READ for Relatlve CILBDTC30) [KD)....ovveveveeees 60
Track C(ILBDRDSO) [HE).......... 41}
DA RZERO Record C(ILBDFMTO) SECTION 2: PROGRAM ORGANIZATION.... 61
[HFl........ Ceeren cesecaess @1 Diagrams. .. .vivvececrvevenanans eees 62
DA RZERO for Relatlve Track Flowcharts......icoveeeoenaas seeess 79
CILBDRFMO) [HG).o eneea 41
DA Increase SEEK Address SECTION 3: DATA AREAS.cccecceesecss 189
(ILBDIDAO) [HH)...... L T4 Debug Common Area (ILBDDBG7)...... 159
DA READ and WRITE (ILBDDIOO) Debug Input File...ieevoescesnsaes 161
8 0 O ¥4 PRUOGSUM Table..vieiierreceneaass 162
DA READ and WRITE for Relative OBODOTAB Table..v.vceererensssss 163
Track CILBDRDIOG) [HJ)Y.......... 42 DATATAB Table...vceeoecerenseee. 166
DA Error Routine (ILBDDAEO) PROCTAB Table..cceeseeesascosass 169
L 0 .o 642 CARDINDX Table.v.iveeesvesereees. 169
VSAM Data Management Subroutines... 62 SEGINDX Table.ieeeeeessssenseanss 170
VSAM Initialization (ILBDINTO) PROCINDX Table....cccvvvveeneeas 170
HLY. .. .ovveene tiersecccersses &3 Execution-Tima Tables for Debug
VSAM Open and Close Subroutine Operations....cccveevvevcoaseseeas 171
CILBDVOCO) [HM). .. iivineneenss 643 DATADIR Table..veerievonosssasess 171
VSAM Action Request Subroutine DYNAMTAB Table.....vcceveevosenes 172
CILBDVIOO)Y EHN).....ivivivneee. 63 PCONTROL Table...cieeseeceneeea. 173
ASCII Support Subroutine........... 44 QUALNAMS Table.viiivesrecerseess 176
Separately Sianed Numeric Control Blocks for VSAM 175
Subroutine (ILBDSSHO0) [IA)..... 44 Vg?g)Flle Information Block 175
DIAGNOSTIC AID SUBROUTINES......... 45 VSAM File Control Block.....co.. 177
Debug Control Subroutine Count Program Data Areas...... eees 179
CILBDDBGO) . . v i vt e ittt iteecnanneanns 45 COUNT Subroutinae Tables......... 179
Subroutines for the Debug Optvons Verb Translate, Verb, and
(STATE, FLOW, SYMDMP)..iieeeeeasees. @47 Verb Text Tables.....cvcvveee. 179
Statement Number Subroutine Count Table..sivveseesesacenss 179
(ILBDSTNO)Y [JFI....... 47 Verbsum Tabl@....ccveeesccoans 179
Flow Trace Subroutine (ILBDFLNO) Count Chain........... eeessseseess 180
A ¢ T T TS 48 Noda Count Table.......ec000.. 180
?gz?olrc Dump (SYNDMP) Subroutlne 48 Count Common Area.....ccs00... 180
Processing (Sequence of SECTION 4: DIAGNOSTIC AIDS........ 183
Events) ...t iiiieeennnnnns veees 50 Diagnostic Aids for Program
Processing (Routines)...... eess 53 OperationS...cveeeecececenns I §.19
IODISK C(ILBDMPOLl) [JI)......... 53 Execution-Time Messages......... 184
IOTAPE CILBDMPO2) [JI)......... 53 Storaga Layout....eeeeeenceness. 186
SYMINIT C(ILBDMPLO) [JJ-JK] 53 Locating a DTF.....ceveeveeeeess 186
SCANP (ILBDNMP1l) [JL).......... 54 Locating Data....ccovveeveneanas 187
SCAND CILBDNP12) [JUM].......... 5% Special Diagnostic Aids for
FINDNAMS (ILBDMPL3) [JNI....... 54 Debugging Subroutines............. 187
FINDLOCS (ILBDMP14) [JO)....... 55 Virtual Storage Layout.......... 187
SYMCHTRL C(ILBDMP20) [JP-JQ].... 55 Tables Used by SYMDMP.....v0o.... 188
SEGINIT CILBDMP21) [JR)........ 55
DMPCNTRL (ILBDMP22) [JS-JT].... 55 APPENDIX A: FLOHCHART LABEL
pumMPl C(ILBDMP23) [JU).......... 56 DIRECTORY:.ceecescoscsscsccsssscaca 189
pulip2 (ILBDMP24) [JV]). veees 56
SYMSTATE (ILBDMP25) (JN] cesess 57 GLOSSARY.ceeecececcessacscccnssscss 195
SRCHPUBS (ILBDMPO4) [JX]....... 57
USE-FOR"DEBUGGIHG Subroutine INDEx...'Il....'..0....0.0.0....0' 197

C(ILBDBUGO) [JY)..... ceseseseees 57

iv

Licensed Material—Property of IBM

ZLLUSTRATIONS

EIGURES

Figurae 1. Parametaer List Passed by

ILBDSRTO for SORT....cvovveevenaccs 2

Figure 2. Parameter List by
ILBDSRTO for MERGE.....icvevescanss
Figure 3. Summary of SORT-OPTION
OParandsS...cccvecsccesavscssvssnccse
Figure 4. Sort/Marge File Name and
Dafault Symbolic Unit Namaes........

DIAGRAMS

Diagram 1. ILBDSRTO Logic Flouw

for SORT..eeevecensnn ceeves

Diagram 2. ILBDSRTO and ILBDMRGO

Logic Flow for MERGE.......ccv00eee 6

Diagram 3. SYMDMP Subroutinaes:
Loading Dependenci@s......cocevveeses
Diagram 4. Debug and Execution
Statistics Subroutines: Flow of
Control at Initialization.....ccc..
Diagram 5. Debug and Execution
Statistics Subroutines: Flow of
Control at Abnormal Termination....
Diagram 6. Debug and Execution
Statistics Subroutines: Calling
Dependaencies (Part 1 of 4)....c0000c0
Diagrain 6., Debug and Execution
Statistics Subroutines: Calling
Dependencies (Part 2 of 4).........
Diagram 6. Debug and Execution
Statistics Subroutines: Calling
Dependencies (Part 3 of 4).........
Diagram 6. Debug and Execution

66

67

63

69

Figure 5. Switch Codas for
DispPlay.cceceecervrvcscossssscssnacee 33
Figura 6. Execution-Time Messages

for 170 Error Conditions.......... 184
Figure ?. Error Messages from
Debugging Subroutines............. 185
Figure 8. Example of Storage Used
During Execution......ccecoceeesees 186
Figure 9. Example of a Phase Map.. 187
Figure 10. Tables Used by

Debugging Subroutines..... eesessecs 188

Statistics Subroutines: Calling
Dependencies (Part 4 of 4)......... 71
Diagram 7. Virtual Storage Layout

of SYMDMP Modules......ccveevvseaee 72
Diagram 8. SYMDMP Subroutines:

Control Card Processing. Ralation
Betuween Object-Time Tables and

Debug Filae in Processing....cecceee 73
Diagram 9. SYMDMP Subroutinaes:

Control Card Processing. Identifier
Procaessing........ cececssneces 16
Diagram 10. SYMDMP Subroutlnes-
Control Card Processing. Card

Numbar Processing.....ccceeceeveees 75
Diagram 11. Doubleword Data Area

Used by the TGT Address (ILBDDBG3)

and STXIT (ILBDDBG2) Routines of

the Debug Control Subroutine....... 76
Diagram 12. Overall Processing for
Producing Object-Time Execution
Statisties.......cc00000e A ¥ |
Diagram 13. How Tables Are Usaed to
Produce Objact-Time Execution
Statistics. ...t erecenseees 78

Illustrations

\'

Licensed Material—Property of IBM

CH S

Chart AA. Decimal to Binary

(ILBDCVBO) and Binary to Decimal
(ILBDCVB1) (Part 1 of 3).....¢..... 80
Chart AA. Decimal to Binary

(ILPDCVDBO) and Binary to Decimal
(ILBDCVB1) (Part 2 of 3)......... 80.1
Chart AA. Decimal to Binary

(ILBDCVBO) and Binary to Decimal
(ILBDCVB1l) (Part 3 of 3)......... 80.2
Chart CA. Sort/Merge (ILBDSRTO,
ILBDIMRGO) (Part 1 of 5): Main

Routine. ..o eeeneenonnns .oo. 80.3
Chart CA. Sort/Merge (ILBDSRTO,
ILBDMRGO) (Part 2 of 5): E15R0UT
Routine...... cesecses 80.%
Chart CA. Sort/Merge (ILBDSRTO;
ILBDMRGO) (Part 3 of 5): E35ROUT
Routine....iovieieenneennnnn . 80.5
Chart CA. Sort/Merge (ILBDSRTO.
ILBDMRGO) (Part 4 of 5): CHKPOINT
Routine...... Pesereeane cees 81
Chart CA. Sort/Merge (ILBDSRTO,
ILBDMRGO) (Part 5 of 5): E32

Routinme. ...t eeennne ceeeas . 82
Chart CB. Moving Characters
CILBDMOVO) i it vt ittt e niennnnn seeees 83

Chart CBA. STRING (ILBDSTGO)

(Part 1 0f 2) .. iiiiererionconeonnss 8%
Chart CBA. STRING (ILBDSTGO)

(Part 2 of 2) ...t rennnnnn .. 86.1
Chart CBB. UNSTRING (ILBDUSTO)

(Part 1 of 4).
Chart CBB. UWSTRIhG (ILBDUSTO)

(Part 2 of 4). ... iencrennns . 86.3
Chart CBB. UNSTRING (ILBDUSTO)

(Part 3 of 4)
Chart CBB. UNSTRING (ILBDUSTO)

(Part 4 of G).v.iiierenenennennas 84.5
Chart CBC. INSPECT Subroutine
(ILBDINSO) (Part 1 of 4)......... 84.6
Chart CBC. INSPECT Subroutine

(ILBDINSO) (Part 2 of 4)....... .. 84.7
Chart CBC. INSPECT Subroutine
(ILBDINSO) (Part 3 of 6)......... 86.8
Chart CBC., INSPECT Subroutine
(ILBDINSO) (Part 4 of 4)......... 84.9
Chart CC. Segmentation

CILBDSEMO) i eeeteeeenenennnne 84.10

Chart CCA. GO TO DEPEMNDING ON
(ILBDGDOO, ILBDGDO1, ILBDGDO2... 84.11
Chart CCB. DATE, DAY, and TIME
(ILBDDTEO, ILBDDTEL, ILBDDTE2).. 84.12
Chart CCC. GETCORE/FREECORE
Subroutines (ILBDCM{10, ILBDCMM1)

(Part 1 of 2).... cerat et .
Chart CCC. GETCORE/FREECORE
Subroutines (ILEDCMMO, ILBDCMM1)

(Part 2 of 2).c.vvennn ceeseses 84.14
Chart CCD. Comparison wlth
Alternate Collating Sequence

(ILBDACS) . .cvvevnne vevsesass 84.15
Chart EA. Dlsplay (ILBDDSPO)
(Part 1 0f 2)...vveernnennne ceesee 85
Chart EA. Display (ILBDDSPO)
(Part 2 of 2)...... P {1
Chart EB. Opttmuﬁer DISPLAY
(ILBDDSS0) (Part 1 of 2)...... cevee 87

Chart EB, Optimizer DISPLAY

(ILBDDSS0) (Part 2 of 2)..ccveceees. 88
Chart EC. Accept (ILBDACPO)........ 89
Chart ED. Checkpoint (ILBDCKPO).... 90
Chart EE. Open ACCEPT File

CILBDASYD). ivvevennennnnn cresees 91
Chart EF. Open DISPLAY Fvle
(ILBDOSYO0)...... . 14
Chart EG. Close Nlth Lock
(ILBDCLKO)Y........ seessseense 93
Chart EH. User Standard Labels
(ILBDUSLD) . iiveiterenrorscssnnnonse 96
Chart EI. Nonstandard Labels
CILBDNSLOD) . ivcereevescssncsnnsccess 95
Chart EJ. Error Messages

($$BCOBER) - e vvvvonrunnnnn —1)
Chart EK. Error Nessages Prlnt
(SSBCOBR1) .. eviveveeevecsnonnncnnass 97
Chart EL. SYMDMP Error Messages
(SSBCOBEM) . . vvveenn
Chart EM. Optical Character Readcr
(0CR)Y Interface (ILBDOCRO)......... 99
Chart F. SAM I/0 (ILBDSIOO0)

(Part 1 of 10). eeeeeass 100
Chart F. SAM I/0 (ILBDSI00)
(Part 2 of 10)...cieeennncann «ee. 100.1

Chart F. SAM 10 (ILBDSIO00)
(Part 3 of 10)......0000vevunsa, 100.2
Chart F. SAM 1,0 (ILBDSI00)

(Part 4 of 10)........ .ees 100.3
Chart F. SAM I/0 (ILBDSIOO)
(Part 5 0f 10).....0cciieenanne . 100.4
Chart F. SAM I/O (ILBDSIO0G)
(Part 6 of 10)...0i0eiecvennnnn . 100.5
Chart F. SAM I/O (ILBDSIO00)
(Part 7 of 10)...0cveecnnn sees 100.6
Chart F. SAM I/O (ILBDSIOO)
(Part 8 of 10).........000u.. eee 100.7
Chart F. SAM I/0 (ILBDSIOO)
(Part 9 of 10)........ «ee. 100.8
Chart F. SAM 1/0 (ILBDSIOO)
(Part 10 of 10)....0c00vunn veese. 100.9

Chart FA. SA Printer Spacing
(ILBDSPAO) (Part 1 of 7)....... 100.10
Chart FA. SA Printer Spacing
(ILBDSPAO) (Part 2 of 7)....... 100.11
Chart FA. SA Printer Spacing
(ILBDSPAG) (Part 3 of 7)....... 100.12
Chart FA. SA Printer Spacing
(ILBDSPAO) (Part ¢ of 7)....... 100.13
Chart FA. SA Printer Spacing
(ILBDSPAO) (Part 5 of 7)....... 100.14
Chart FA. SA Printer Spacing
(ILEDSPAO) (Part 6 of 7)..... veee. 101
Chart FA. SA Printer Spacing
(ILBDSPAO) (Part 72 of 7)....¢c00... 102
Chart FB. SA Variable Length

Record Output (ILBDVBLO).......... 103
Chart FC. SA Error Routine

(ILBDSAED)......c0c... ceseesesssess 104
Chart FD. SA Tape Pointer
CILBDIMLO) . . eeeencennann sessses 105

Chart FE. SA Position Multiple

File Tapaes (ILBDMFT0)....c00veee.. 106
Chart FF. SA Test Tape File
(ILBDMVEO)......c.... tecesssnssess 107

Charts vii

Chart FG. SA STXIT Macro
Instruction (ILBDABX0)......cv000e
Chart FH. SA Reposition Tapa

($SBFCMUL)

@0 s 000000

Chart GA. ISAM READ and WRITE
CILBDISMO)uuvven.
Chart GB. ISAM Error (ILBDISEO)...

Chart GC. ISAM Start (ILBDSTRO)...
Chart HA. DA Close Unit
CILBDCRDO) .. .cvvvieronsnscnscnnnns
Chart HB. DA Close Unit for
Relative Track (ILBDRCRO)....ccvt
Chart HC. DA Extent Processor
(ILBDXTNO)........ cesereseroasnne
Chart HD. DA Sequentlal Read
CILBDDSRO) . ..o ivtevssnnsnnnsanss
Chart HE. DA Sequential Read for
Relative Track (ILBDRDSO0)...... ...
Chart HF. DA RZERO Record
CILBDFMTO0) .. vvtevevsenanssncnnonnsns
Chart HG. DA RZERO Record for
Relative Track (ILBDRFMO).....c...
Chart HH. DA Increase SEEK Addrass

108
109
110
111
112
113
114
115
116
117
118

119

CILBDIDADG) ..o vivrevecosonennoccasss 120
Chart HI. DA READ and WRITE
(CILBDDIOO) . ..cvceveveevossonascneess 121
Chart HJ. DA READ and WRITE for
Relative Track (ILBDRDIO)......... 122
Chart HK. DA Error (ILBDDAEO)..... 123
Chart HL. VSAM Initialization
(ILBDINTO)....c00.. cees 124
Chart HM, VSAM OPEN “and CLOSE
S:broutlne (ILBDVOCO) (Part 1 125
Chart HM. VSAM OPEN and CLOSE
Subroutine (ILBDVOCO) (Part 2

OF 2)eeiveeersocsnssesssscsnsssennse 126
Chart HN. VSAM Action Requast
Subroutine (ILBDVIOO)......o00vses 127
Chart IA. Separately Signed

Numeric C(ILBDSSNO)....ccveeveeeecs 128
Chart JA. Test (ILBDDBGO) (Part 1

OF 2)iiieevenonsssnsvassosonssceass 129
Chart JA. Test (ILBDDBGO) (Part 2

0f 2)..iiviannn . 130
Chart JB. Print (ILBDDBGI)........ 131

viii

Licensed Matarial—Property of IBM

Chart JC. STXIT (ILBDDBG2), TGT
Address (ILBDDBG3), and Save

Raegister 14 (ILBDDBG4).....0o00.0.. 132
Chart JD. Dynamic Dump
CILBDDBGS)......... ceessres 133
Chart JE. Range (ILBDDBG6) and

Close Debug File (ILBDDBG8)

Subroutines......cciiiiiirtiennanse 134
Chart JF. Statement Number
(ILBDSTNO) (Part 1 of 2)...c0vcnnn 135
Chart JF. Statement Number
(ILBDSTNO) (Part 2 of 2)....... 136

Chart JG. Flow Trace (ILBDFLNO)... 137
Chart JH. SYMNDMP - Overall 138
Chart JI. IODISK/IOTAPE
(ILBDMPOL1/ILBDIPO2). ... vevenne veee 139
Chart JJ. SYMINIT (ILBDMPIO)...... 140
Chart JK. READIPT/ERROR (in

ILBDHPLIO) . .ttt iiieiiineennnns eo. 161
Chart JL. SCANP CILBDMPI1)........ 142
Chart JM. SCAND (ILBDIP12)........ 143
Chart JN. FINDNAMS (ILBDMP13)..... 144
Chart JO. FINDLOCS (ILBDMNPl4)..... 1645
Chart JP. SYMCNTRL (ILBDIP20)..... 146
Chart JQ. HEXDUNP (in ILBDHPZO)... 147
Chart JR. SEGINIT (ILBDIP21). . 148
Chart JS. DHPCHTRL (ILBDHP22). 1649
Chart JT. NXTENTRY (ILBDi1P22)..... 150
Chart JU. DUMPL1 (ILBDMP23)........ 151
Chart JV. DUIMP2 (ILBDIF24)........ 52
Chart JW. SYMSTATE (ILBDMP25)..... 153
Chart JX. SRCHPUBS (ILBD!P0G)..... 154
Chart JY. USE-FOR~-DEBUGGING

Declaratives Subroutine

(ILBDBUGO) (Part 1 of 2)........ 154.1
Chart JY. USE-FOR-DEBUGGING
Declaratives Subroutine

(ILBDBUGO) (Part 2 of 2)........ 1564.2
Chart KA. COUNT Initialization

Subroutine (ILBDTCO00).......... ... 155
Chart KB. COUNT Frequency

Subroutine (ILBDTC10)............. 156
Chart KC. COUNT Termination

Subroutine (ILBDTC20)..... veecenss 157

Chart KD. COUNT Print Subroutine
C(ILBDTC30)....

The IBM DOS/VS COBOL Library provides
subroutines that can be link edited with
object modules produced by the program
product IBM DOS/VS COBOL Compiler (Program
Number 5746-CB1). The library also
provides subroutines that can be
dynamically fetched dquring problem program
execution.

LIBRARY CONTENTS

The compiler uses a number of subroutines
to perform frequently required operations.
Because these subroutines are too extensive
to be efficiently placed into the object
module whenever needed, they are stored in
the relocatable library and included in the
phase by the linkage editor. Exceptions to
this are transient subroutines 4BCOBER,
$$BCOBR1, $3BFCMUL, SBCOBEM, and the
SYMDMP subroutines, which are stored in the
core image library.

The COBOL Object-time Likrary contains
subroutines to perform the following
operations:

¢ Internal data format conversion.
e Arithmetic operations.
¢ Input/Output operations.

¢ Miscellaneous operations to support
such statements as SEARCH or DISPLAY
and specialized operations such as
class tests or compares.

¢ Internal data format conversions for
input and output files coded in the
Anmerican National Standard Code for
Information Interchange, X3.4-1968.

* Generation of a formatted trace of the
last procedures executed before an
abnormal termination of a job in
response to the specification of the
flow trace option. The number of
procedures to be traced is specified by
the user.

e Identification of the statement being
executed . at the time of an abnormal
termination of a job in response to the
specification of the statement number
option. The information includes the
name of the program containing the
statement and the number of the
statement and of the verb being

Licensed Material - Prorerty of IBM

SECTION 1: INTRODUCTION

executed at the time of abnormal
termination.

e Generation of additional execution-time
information for debugging purposes in
response to the specification of the
symbolic dump option. This information
includes symbolic formatted dumps of
named data areas taken dynamically at
specified points in the Procedure
Division, and a symbolic formatted dump
when a program terminates aknormally.

A dump taken at abnormal termination
consists of three parts: an abnormal
termination message identifying the
source statement causing the error,
selected areas in the Task Global
Table, and data items from the Data
Division. Note that a dynamic dump,
requested when a STOP RUN or GOBACK
statement is encountered, produces, in
effect, an "end-of-job" dump.

e Generation of object-time execution
statistics for debugging, testing, and
optimization in response to the COUNT
option. The statistics include a
listing of the Procedure Division verbs
with execution frequency information
and an executable verb summary. The
statistics are provided at normal and
abnormal termination.

ENVIRONMENTAL AND PHYSICAL CHARACTERISTICS

The DOS/VS COBOL Subroutine Library is
designed for use under the IBM DOS/VS
Operating System with object modules
produced by the DOS/VS COBOL Compiler. A
DOS Release 29 is the minimum level
required.

The DOS/VS COBOL Subroutine Library is
part of the DOS/VS core image and
relocatable libraries, which must reside or
a disk storage device.

If the SYMDMP option is specified, the
library subroutine called to supply the
symbolic formatted dump requires that the
dictionary of symbolic names and other
information produced during compilation be
present at execution time. This
information is written on an additional
work file designated as SYS005 during
compilation. SYS005 may reside on either ¢
tape or direct access device. The work
file may be named according to the user's
option at execution time.

Section 1: Introduction ¢

Licensed Material - Property of 1BM

OPERATIONAL CONSIDERATIONS

Phases 50, 51, and Phase 60 or 64 of the
DOS/VS COBOL Compiler generate the calls to
the subroutines contained in the COBOL
Okject~time Library. (dNote that Phase 60
or 64 generates these calls in the
initialization routines in the object
module.) Parameters are passed to the
subroutines in one of the following ways:

e In general or floating-point registers.

e As in-line constants (DCs) following
the call.

10

Note:

e In the WORKING CELL area of the Task
Global Table (TGT) in the object
module.

The subroutines can return parameters in
registers or in the WORKING CELL area.

References to the WORKING CELL area
are in the form of a displacement from
register 13 which points at execution time
to the beginning of the Task Global Table.
In the calling sequences in Section 2:
"Method of Operation,” the references are
in the form:

WORKA (length,13)

Licensed Material - Property of IBM

METHODS CF_OPERATION

Methods of Operation 11

Licensed Material - Property of IBM

SUBROUTINES FOR OBJECT TIME PROGRAM_ OPERATIONS

The subroutines described below perform
frequently required program operations at
object time. These operations include
internal data format conversions,
arithmetic operations, input/output
operations, miscellaneous operations to
support such statements as SEARCH or
DISPLAY and specialized operations such as
class tests or compares, and certain
operations connected with the ASCII support
feature of the compiler.

Flowcharts are provided in "Section 2:
Program Organization®™ for some of the
subroutines. Each chart identifier appears
in square brackets after the name of its
subroutine.

ARITHMETIC CONVERSION SUBROUTINES

The subroutines described below perform the
arithmetic conversions between the eight
numeric data formats permitted in COBOL.
The conversions from internal decimal to
external decimal, from external decimal to
internal decimal, and from internal decimal
to report are done in-line and do not
require use of the library.

The following conventions are used for
the conversion subroutine parameters:

BINARY: Single words are in register 0;
double words are in registers 0 and 1.

INTERNAL DECIMAL: The number is passed in
the first 10 bytes of the WORKING CELL area
in the Task Global Table (TGT). It is
right justified with high-order zeros.

EXTERNAL DECIMAL: The number is passed in
the first 18 bytes of the WORKING CELL area
in the TGT. It is right justified with
high-order zeros.

INTERNAL FLOATING=-POINT: The number is
long form in floating-point register 0.

EXTERNAL FLOATING-POINT: The number is
variable in length. For input to the
subroutine, it is pointed to by general
register 3. For output from the
subroutine, it is in the WORKING CELL area
in the TGT.

STERLING NONREPORT: Sterling nonreport
items are either internal decimal for
computatioral purposes (right justified in
a 16-byte field) or external decimal for

12 Arithmetic Conversion Subroutines

display purposes (variable length, from 4
to 20 bytes).

STERLING REPORT: Sterling rerort items are
internal decimal for computational
purposes. They are right justified in a
16-byte field.

Note: The external floating-point (EF)
number parameter code bits are:

Bit Meaning, if on
1-5 Not used
Mantissa PICTURE sign is negative
Exponent PICTURE sign is negative
EF number has a real decimal
point

- N«)

Binary to Internal Decimal (ILEDBIDO)

Operation: converts a double precision
binary number into a 10-byte internal
decimal number. The binary number must be
in register pair 0, 1 or 2, 3 or 4, 5.

Linkage:
L 15,=V(entry point)
BALR 14,15
Note: Substitute for entry point as

follows:

ILBDBIDO if binary number is in register
pair 0, 1

ILBDBID1 if binary number is in register
pair 2, 3

ILBDBID2 if binary number is in register
pair 4, 5

Output: A 10-byte internal decimal number
starting at WORKA(13), where 13 is the
register pointing to the TGT.

Binary to External Decimal (ILBDBIEO)

Operation: Converts a double precision
binary number into an 18-byte external
decimal number. The binary number must be
in register pair 0, 1 or 2, 3 or 4, 5.

Linkage:
L 15,=V(entry point)
BALR 14,15

Note: Substitute for entry point as
follows:

ILBDBIEO if binary number is in register

pair 0, 1

ILBDBIE1 if binary number is in register

pair 2, 3

ILBDBIE2 if binary number is in register

pair 4, 5

Output:
starting at WORKA(13), where 13 is the
register pointing to the TGT.

Binary to Internal Floating-Point
(ILBDBIIO)

oigrationz converts a doukle precision
binary number into a double precision
floating-point number.

Linkage:

LM 0,1,BI-number

L 15,=V(ILBDBIIO)

BALR 14,15

DC XL2'Decimals in BI number'
Output: A double precision floating-point

number in floating-point register 0.

Internal and External Decimal to Internal
Floating-Point (ILBDDCIQ)

Operation: Converts a 16-kyte internal
decimal number or an 18-byte external
decimal number into a double precision

internal floating-point number. Register
13 points to the TGT.
Linkage:
For internal decimal:
ZAP WORKA(16,13),ID-field
L 15,=V(ILBDDCI1)
BALR 14,15
DC XL2'Decimals in ID number'

For external decimal:

L 15,=V(ILBDDCIO)
BALR 14,15
DC XL2*Decimals in ED number®

Output: A double precision internal
floating-point number in floating-point
register 0.

Subroutines for Object Time Program Operations

An 18-byte external decimal number

Licensed Material - Property of IBM

Internal Floating-Point to Binary
(ILBDIFBO)

Operation: Converts a double precision
nternal floating-point number into either
a binary number, or into a binary number
and an exponent to the base 10, depending
on where the subroutine is called from.
The internal floating-point number is put
into floating-point register 0. If the
internal floating-point number is too big,
the binary number is set to the maximum.
If the internal floating-point number is
too small, the binary number is set to the

minimum. No error indication is given.
Linkage:
LD 0,FP~-numker
or
SDR 0,0

LE 0, FP-number

Followed in either case by:

L 15,=V(ILBDIFB1)
CNOP 6,8
BALR 14,15

o]} XL8'double precision floating-
point number' (of the form
10**X where X is the number of
decimals in the result field)

Output: A binary number in register pair
,1.
Note: If this subroutine is called by

another subroutine, the linkage and output
are as follows:

If called by ILBDIFDO:

Linkage:
LD 0,Internal floating-point number
LD 2,Decimals in result
L 15,=V(ILBDIFBO)
BALR 14,15
Output: A binary number in register pair

Opl.
If called by ILEDTEF3:

Linkage:

LD 0,Internal floating-point number
LD 6,Digits in external floating-
point mantissa

L 15,V(ILBDIFB2)
BALR 14,15
Output: A binary number in register pair

0,1, and a power-of-10 exponent in register

13

Licensed Material - Property of IBM

Internal Floating-Point to Internal Decimal
(ILBDIFDO)

Operation: Converts a double precision
internal floating-point number into a
10-byte internal decimal number. If the
internal floating-point number exceeds the
maximum permissible length, register 15 is
set to 0 and a normal exit is taken.

Linkage:
LD 0, FP=number
or
SDR 0,0

LE 0, FP~number

Followed in either case by:

L 15,=V(ILBDIFDO)
CNOP 6,8
BALR 14,15

DC XL8 ' FP~number"®
(of the form 10**X where
X is the number of
decimals in the result
field)

Output: A 10-byte internal decimal number
starting at WORKA(13) where register 13
points to the TGT.

Internal and External Decimal to Binary
(ILBDIDBO)

Operation: Converts a 10-byte internal
decimal number or an 18-byte external
decimal number into a double precision
binary number. The decimal field starts at
WORKA(13) where register 13 points to the
TGT.

Linkage:
ZAP WORKA(10,13) ,ID-field
L 15,V(entry point)
BALR 14,15

Note: Substitute for entry point as
follows:

ILBDIDBO, if input is an internal
decimal number

ILBDIDB1, if input is an external
decimal number

Qutput: A double precision binary number
in register pair 0,1.

14 Arithmetic Conversion Subroutines

Decimal to Binary (ILBDCVB0O), Binary to
Decimal (ILBDCVBl) [AA]

Operation: The subroutine converts a
signed, unsigned, or separate signed
external decimal number or a signed or
unsigned internal decimal number to binary
and converts binary numbers back to
external or internal decimal numbers.

When the subroutine receives control at
entry point ILBDCVBO, it initializes the
PASS]1 switch. Two passes must be made by
the subroutine if it is necessary to
handle two fields when the subroutine is
called by the generated code for an
UNSTRING verb. If register 2 contains
zero, it is assumed, however, that there
are not two fields to be processed. The
subroutine then checks register 5 for a
field address. If register 5 also
contains zero, the call to the subroutine
has been generated by the code for an
UNSTRING verb; in this case, the POINTER
and TALLYING fields of an UNSTRING
statement are to be initialized to one
and zero, respectively. The subroutine
passes control to PLACEBIN to perform the
initialization.

If either or both registers 2 and 5
contain field addresses, ILBDCVBO obtains
the type flags, field size, and field
address and branches to the CNVRTBIN
routine. The type flags are used to
index a table, called NDXTBL, and obtain
the displacement of the code for handling
the specific field type. The necessary
information for the field, such as the
type of sign and where it is located in
the field, is set up. Then control is
passed to a common set of instructions
which move the field to the proper work
area for conversion; the field is packed
if necessary.

Following this processing, the number
is treated as a double-precision number
even if it was a single-precision number
in the beginning. The number occupies
two doubleword work areas: the low-order
nine digits (in packed format) are in one
work area and the high-order nine digits
are in the other. These digits are
converted to the binary in two
registers. The value of the high-order

.register is multiplied by 109 to

reflect its actual value, and the sign is
adjusted to negative if necessary.

Control is then passed to PLACEBIN. If
the binary values are to be returned in
registers, PLACEBIN merely returns
control to the caller. However, if the
call to ILBDCVBO was generated by the
code for an UNSTRING verb, the binary
values are placed in a work area for
later use by ILBDUSTO, and control is

returned to the caller. The address of
the work area is contained in the
SCUSTWRK field in ILBDMNSO. If the
SCUSTWRK field contains zero, no storage
has been obtained yet for the work area.
In this case, ILBDCVB0O issues a GETVIS
macro instruction to obtain storage for
the work area and enters the address of
the area obtained in the SCUSTWRK field.
The binary values are then placed in the
correct location in the work area and
control is returned to the caller.

When the subroutine receives control at
entry point ILBDCVBl, it determines
whether the number to be converted is
already in registers 1 and/or 2. 1If it
is not, it obtains the number from the
appropriate location in the USTWRK work
area. Then, ILBDCVBl sets the type flags
and branches to the CNVRTDEC routine.

CNVRTDEC converts the values in
registers 1 and 2 to packed decimal
format. The high-order nine digits from
register 1 occupy one doubleword work
area and the low-order nine digits from
register 2 occupy another. 1If the
receiving field for the converted value
is internal decimal, the two doubleword
areas are moved to form one 18-digit
number. If the receiving field is
external decimal, the doubleword work
areas are unpacked to form one 18-digit
external decimal number and zone bits are
adjusted. Next, the type flags for the
field are used to index the NDXTBL table
and obtain the displacement of the code
for handling the sign of the number.
When sign processing is completed, the
converted number in the work area is
moved into a field, the address of which
was passed to ILBDCVBl in register 5.
Finally control is returned to the caller.

ILBDCVBO

Linkage generated for an UNSTRING verb:

LA 0,='Type flags®' (see Note 1)
LA 1,='Size of field'
LA 2,=Address of field

The foregoing three instructions are
generated only if POINTER was specified, or
if POINTER was not specified:

SR 2,2

LA 3,='Type flags' (see Note 1)
LA 4,='Size of field*

LA 5,=Address of field

Licensed Material - Property of IBM

The foregoing four instructions are
generated only if TALLYING was specified,
or if TALLYING was not specified:

SR 5'5
L 15,V(ILBDCVBO)
BALR 14,15

Linkage generated by ILBDUSTO or ILBDSTGO:

SR 2,2

LA 3,='Type flags' (see Note 2)
LA 4,='Size of field'

LA 5,=Address of field

L 15,V(ILBDCVBO)

BALR 14,15

ILBDCVBl

Linkage generated for an UNSTRING verb:

If value is POINTER field
m 2'1
or if value is TALLYING field

LA 2,0

LA 3,='Type flags' (see Note 1)
LA 4,='Size of field'

LA 5,=Address of field

L 15,V (ILBDCVBl)

BALR 14,15

Linkage generated by ILBDUSTO or ILBDSTGO:

LM or 1,2,double-precision binary number
L 2,single-precision binary number
LA 3,='Type flags' (see Note 2)
LA 4,="'Size of field'
LA 5,=Address of field
L 15,V (ILBDCVB1l)
BALR 14,15
where 'Type flags' bits have the following
meaning:
Bits Meaning
0-1 Unused
2 Indicates whether binary values
are passed to, or to be
passed from ILBOCVB in
registers. See Notes 1 and
2.
3 Set to 1 if number being passed

in register is a
double-precision number. If
bit 2 is not set to 1, this
bit is meaningless.

Subroutines for Object Time Program Operations 1!

Licensed Material - Property of IBM

4-7 Code Field Type
0110 External decimal, unsigned
0111 External decimal, sign is
trailing overpunch
1000 External decimal, sign is
leading overpunch
1001 External decimal, sign is
trailing separate character
1010 Eternal decimal, sign is
leading separate character
1011 Binary
1100 Internal decimal, unsigned
1101 Internal decimal, signed
Note 1l: Bit 3 of the "Type flags" is

never set for the POINTER and TALLYING
fields passed by the generated code for
the UNSTRING verb. These fields are
treated specially: when converting these
fields to binary, the converted values
are placed in a work area, called USTWRK,
which is later used when ILBDUSTO is
called by the generated code for the same
UNSTRING verb; when converting these
fields to decimal, the binary values are
obtained from USTWRK.

Note 2: Bit 3 of the 'Type flags' must
be set when ILBDCVB is entered under any
other conditions than those stated in
Note 1.

OQutput: The output from ILBDCVBO is a
binary number either in registers 2,3, or
in the USTWRK work area. The output from
ILBDCVBl is an internal or external
decimal number at the location specified
in the calling sequence.

Calling Information: Called by the
compiled code for an UNSTRING verb or by
the subroutines ILBDUST0O, ILBDINSO, and
ILBDSTGO. Calls no other subroutines.

All Numeric Forms to External
Floating-Point (ILBDTEFO0)

Operation: Converts a single precision
binary, a double precision binary, an
internal decimal, or an internal
floating-point numker into an externa
floating~point number. ‘

Linkage:

For single precision binary:

L 0,BI-number

L 15,=V(ILEDTEFO0)

BALR 14,15

DC XL1'Decimals in EF mantissa‘

DC XL1'Total length of EF number*

DC XL1'EF parameter code'
(See note at beginning of this
section)

DC XLl*Decimals in BI-number'

16 Arithmetic Verb Subroutines

For double precision binary:

LM 0,1,BI-number

L 15,=V(ILBDTEF1)

BALR 14,15

DC XLl°Decirals in EF mantissa’

DC XL1*Total length of EF number'

DC XL1*EF parameter code’
(See note at beginning of this
section)

DC XL1*Decimals in BI-number'

For internal decimal:

ZAP WORKA(16,13) ,ID-field

L 15,=V(ILBDTEF2)

DC XL1'Decimals in EF mantissa®

DC XL1*Total length of EF number'

DC XL1'EF parameter code'’
(See note at beginning of this
section)

DC XL1*Decimals in ID number®

For internal floating-point: either
SDR 0,0
LE 0,FP-number

or

LD 0, FP-number

Followed in either case by:

L 15,=V(ILBDTEF3)
cNoP 2,8
BALR 14,15

DC XL1*Decimals in EF mantissa*

DC XL1*Total length of EF number'

DC XL1'EF parameter code'
(See note at beginning of this
section)

DC XL1'Slack byte'

DC XL8'FP-number®
(of the form 10%+#X, where X is
the number of digits in the EF
mantissa)

Output: The external floating-point result
is in WORKA+2u4(1,13) where register 13
points to the TGT.

Calling Information: Called by compiled

code or by the object-time SYMDMP
subroutine (ILBDMP23).

External Floating-Point to Internal
Floating-Point (ILBDEFLO)

Operation: Converts an external
floating-point number into an internal
floating~-point number.

Linkage:
L 3,=A(EF-number)
L 15,=V(ILBDEFLO0)
BALR 14,15
DC XL1l"Decimals in EF mantissa“
DC XL1'Total length of EF-number®

DC XL1"EF parameter code'
(See note at beginning of this
section)

DC XL1'*Slack byte’

Qutput: An internal floating-point number
in floating point register 0.

ARITHMETIC VERB SUBROUTINES

The five subroutines described bhelow
perform involved calculations, such as
exponentiation, or calculations involving
larger numbers. Arithmetic operations not
in these categories are performed in-line
and do not require use of the library.

Decimal Multiplication (ILBDMXUOQ)

Operation: Multiplies two 30-digit decima
numbers to produce a 60-digit decimal '
number. Input signs are expected to be C,
F, or D.

Linkage:

ZAP WORKA(16,13) ,MPLIER
ZAP WORKA+16(16,13) ,MPCAND
L 15,=V(ILBDXMUO)

BALR 14,15

Output: The product, a 60-digit decimal
number is placed in the 32-byte field
following the multiplicand in the working
cell area in the TGT.

Subroutines for Object Time Program Operations

Licensed Material - Property of IBM

Decimal Division (ILBDXDIO)

Operation: Divides a 60-digit decimal
number by a 30-digit decimal number to
yield a 60-digit decimal quotient. The
dividend and divisor are both signed
decimal numbers, right aligned in their
fields.

Linkage:

MVC WORKA(32,13),Dividend
(if dividend is 32 kytes)
ox
Xc WORKA(16,13) ,WORKA (13)
(if dividend is 16 bytes or
less)
ZAP WORKA+16(16,13) ,Dividend

Followed in either case by:

ZAP WORKA+48 (16,13) ,Divisor

L 15,=V(ILEDXDIO0)
BALR 14,15
Output: The quotient, a 60-digit decimal

number, is in the 32-byte field following
the divisor in the working cell area in the
TGT. The sign is determined by the rules
of algebra from the dividend and the
divisor signs. No remainder is returned.

Decimal Fixed-Point Exponentiation
{ILBDXPRO)

Operation: Exponentiates any 30-digit
packed decimal base to a binary exponent.
This subroutine calls packed decimal
multiplication and division routines.

l6.!

Linkage:
ZAP WORKA(16,13) ,BASE(L)
L 0, EXPONENT
L 15,=V(ILBDXPRO)
BALR 14,15

DC XL1'Decimal places in base'
DC XL2"Decimal places required in
result'

Qutput: A 16-byte packed decimal number at
the beginning of the working cell area in
the TGT.

Floating-Point Exponentiation to_an Integer
Exponent (ILBDGPWO)

Operation: Exponentiates a double
precision floating~point number to a binary
exponent.

Linkage:
LD 0,BASE
or
SDR 0,0

LE 0, BASE
Followed in either case by:

0, EXPONENT
(EXPONENT was converted to
binary, if necessary)
L 15,=V (ILBDGPW0)
BALR 14,15

Output: The result is in floating-point
register 0.

Floating-Point Exponentiation to a
Noninteger Exponent (ILBDFFWO)

Operation: Exponentiates a long~-form
fgoating-point base to a floating-point
exponent.

Linkage:
LD 0,BASE
or
SDR 0,0

LE 0,BASE
Followed in either case Ly:

MVC WORKA+8(8,13) ,EXPONENT
(EXFONENT was converted into
long-form floating-point,
if necessary)

L 15,=V(ILBDFPWQ)

BALR 14,15

Licensed Material - Prorerty of IBM

Output: The result is in floating-point
regEster 0. To avoid imaginary numbers
(involving the square root of -1), the
base is always treated as a positive
number, and the result will always be
positive. Any condition which would cause
exponent overflow results in an answer
equal to the largest floating-point number.
Any condition which would cause exponent
underflow results in an answer equal to 0.

DATA MANIPULATION SUBROUTINES

The subroutines described below
manipulate data both in virtual storage and
on files. They also perform some editing
and initializing functions.

SORT (ILBDSRTO) And MERGE (ILBDSRTO And
ILBDMRGO) [CA}

Sort Operation: ILBDSRTO acts as an
interface between the COBOL generated
object program and the Prograr Froduct
Sort/Merge program. It links to the
Sort/Merge program, using parareters from
the COBOL object program. If INPUT
PROCEDURE or OUTPUT PROCEDURE has been
specified, ILBDSRT(0 branches at exits from
the Sort/Merge program to the sequence of
instructions specified in the CCBOL object
program.

I1f, instead of the INPUT PROCECURE, the
USING option of the CCECL SORT statement
has been specified, at the exit from the
SORT/MERGE program the subroutine branches
to the compiler-generated code to open the
USING file(s). If more than one file is
specified in the USING statement, they are
all opened at once. The subroutine then
reads every record from the first file
until end-of-file, closes it and then reads
all the records from the next file until
end-of-file, closes it, and so cn.

1f, instead of the OUTPUT PROCEDURE, the
GIVING option of the COBOL SORT statement
has been specified, at the exit from the
SORT/MERGE program the subroutine branches
to the compiler-generated code tc open the
GIVING file. The subroutine then writes
every record onto the GIVING file and
closes it when the operations with it are
complete. Finally, the subroutine returns
ccntrol to the COBOL object program when
the sort operation is complete.

Sort Flow of Control: Diagram 1 (see
"Program Organization" Section) describes
the logical flow arong the three programs
which are active during executicn of a
COBOL SORT statement. The statement has
specified both INPUT PROCEDURE and CUTPUT

Subroutines for Obiject Time Program Cperations 17

Licensed Material - Property of IBM

PROCEDURE; but checkpoint records are not
to be taken.

The COBOL object program sets up the
parameter list, and branches to ILBDSRTO.
This parameter list consists of 10 address
constants pointing to the card images
describing the parameters for the
Sort/Merge program (see Figure 1, items 1
through 6). The parameter list also
contains the addresses of the three branch
tables and SORT-RET cell in the TGT (see
Figure 1, items 7 through 10). After
initialization the subroutine links to the
Sort/Merge program. When phase 1 of the
sort/Merge program reaches exit E15, it
returns to the subroutine. The first time
this path is followed, ILBDSRTO branches to
the routine in the COBOL okject program
which initializes the PERFORM statement of
the input procedure specified. Control is
then passed to that procedure.

when the RELEASE statement is
encountered in the input procedure, control
returns to the subroutine. The subroutine
then establishes the linkage back to the
statement after the E15 exit instruction of
the Sort/Merge prooram. The Sort/Merge
program then loops through its phase 1
operation until it is ready to receive
another record. It then passes control to
ILBDSRTO0, which in turn passes control to
the statement in the input procedure
immediately following the RELEASE
statement.

This same flow of control through the
Sort/Merge program, ILBDSRTO, and the COROL
input procedure continues until the input
procedure has released the last record.
Then control passes to the end of the
procedure, and by means of the subroutine,
to phase 2 of the Sort/Merge program.

The interaction among the three programs
during the output procedure is essentially
the same as during the input procedure.
Phase 3 of the Sort/Merge program returns
to the subroutine at exit E35 whenever it
is prepared to return a sorted record.
Linkage between the subroutine and the
output procedure is similar to that between
the subroutine and the input procedure.
After the last record has been returned by
the Sort/Merge program, control returns
through ILBDSRTO to the COBCL object
program at the instruction irmediately
following the one which originally branched
to the subroutine.

Merge_ Operation: ILBDSRTO and ILBDMRGO act
as the interface between the COBOL object
program and the Sort/Merge Program (Program
Number 5746-SM1).

ILBDSRTO performs the following functions:

18 Data Manipulation Subroutines

e Calls ILBDMRGO for initialization

¢ Links to the Sort/Merge program using’
parameters from the COBOL object
program.

e At exit E32 from the Sort/Merge program
branches to ILBDMRGO.

e When a merged sequence is determined,
branches at exit E35 from the
Sort/Merge program to the COBOL object
program OUTPUT PROCEDURE or to the code
for the GIVING option which is the same
as for the SORT statement.

ILBDMRGO performs the following functions:

e At initialization saves the following
information

-~ SD buffer address

~- MAddress of the open USING files
routine in the COBOL okject program

-~ Number of input files
-=- Recording mode of SD

~-- Address of error exit for VSAM
files

¢ At exit E32 from the Sort/Merge program

== Branches to the compiler-generated
code to open all the USING files

-= Reads each record from the input
files requested by the Sort/Merge
program

~- Passes the record to the Sorts/Merge
program for merging with a record
from other files

-- Performs a CLOSE operation on a
file on which an end-of-file
occurred

Merge Flow of cControl: The flow of control

for MERGE processing is shown in Diagram 2
in "section 2: Program Organization."

This diagram describes the logical flow
among the four programs which are active
resident in storage during execution of the
COBOL MERGE statement.

The COBOL object program sets up the
parameter list and branches to ILBDSRTO.
This parameter list consists of ten address
constants pointing to the card images
describing the parameters for the
Sort/Merge program (see Figure 2). Items 1
through 6 are set up by the COBOL compiler.
ILBDSRTO sets up the rest of the list, then
links to ILBDMRGO for initialization. On
return from ILBDMRGO, ILBDSRTO links to

theSort/Merge program. When phase 3 of the
Sort/Merge program reaches exit E32, it
returns to ILBDSRTO which then branches to
ILEDMRGO.

The first time this path is followed,
ILBDMRGO branches to the COBOL object
program which opens all the input files and
passes control back to ILBDMRGO with
pointers to opened files, DTIFs, and BLs in
WORKING CELLS of the TGT. ILBDMRGO then
reads a record from the input file
requested by the Sort/Merge program, and
establishes the linkage back to the
statement after the E32 exit instruction of
the Sort/Merge program.

The Sort/Merge program loops through
exit E32 until a merged sequence is
established. It then returns to ILBDSRTO
at exit E35. Linkage between ILBDSRTO and
the OUTPUT PROCEDURE is the same as that
for the SORT statement. (If GIVING is
specified, ILBDSRTO writes a record onto an
output file.)

This flow of control through the
sort/Merge program, ILBDSRT0 and ILBDMRGO

Licensed Material - Property of IBM

at exit E32, and ILBDSRTO at exit E35
continues until ILBDMRGO has released the
last record to the Sort/Merge program and
after the last merged record has been
returned by the Sort/Merge program.
Control is passed from ILBDSRTO to the
COBOL object program at the instruction
immediately following the one that
originally branches to the subroutine.

Parameters Passed to the Sort/Merge
Program: ILBDSRT0 passes in register 1 a

pointer to a ten-word parameter list (see
Figure 1 for the SCRT statement). The ten
parameters contain addresses of the control
areas that exist in virtual storage during
execution of the SORT statement. The first
six control areas are generated as EBCDIC
literals by phase 51 of the COBOL compiler.
They correspond to the control cards that
are needed by the Sort/Merge program to
define the specific sort operation. The
next three control areas are tables of
branch addresses that are located in
ILBDSRTO. The final control area is a
location SORT-RET in the TGT into which a
return code is placed by the Sort/Merge
program.

Subroutines for Object Time Program Operations 19

Licensed Material - Property of IBM

t SORT FIELDS=(pg,ls,f1¢81{,cccPaarliarf12¢812})WCRK=x, [SIZE=valuel

F 1
¢t RECORD TYPE={V}.LENGTH={(;1,,,,[&d])}

INPFIL EXIT

t OUTFIL EXIT

©EOE ©

t OPTION [LABEL=(,,{S})].lSTORAGE=va1ue]
4]

| or
¢+ SORT/OPTION data-name

(a) ¢ MODS PH1=(,,El15),PH3=(,,E35)
(b) MODS PH1=(,,E11,E15),PH2=(,,E21),PH3=(,,E31,E35)

OJONORENC)

t PH1 B E1l - CHECKPOINT ROUTINE
B E15 - INPUT PROCEDURE OR READ USING FILE(S)
PH2 B E21 - CHECKPOINT ROUTINE
| |
t PH3 B E31 - CHECKPOINT ROUTINE
B E32 - EXIT E32 IS NOT USED
B E35 - OUTPUT PROCEDURE OR WRITE THE GIVING FILE

®

Return_code (2-byte area in the TGT)

Note: ¢ indicates “address of".

For an explanation of each parameter, see the appropriate circled number under
"Explanation of Parameter Lists"™ in this section.

4
L)
|
|
|
|

4

|
t
|
|
|
k
|
|
|
|
L
F

igure 1. Parameter List Passed by ILBDSRTO for SORT

Explanation of Parameter lists: 1n=the length in bytes of the
control data field

(1) SORT or MERGE Control Statement: fn=the format of the data in
each of the control data
fields, for example, 2D

The FIELDS parameter describes the (zoned decimal), CSL
SORT or MERGE keys of which a (leading separate
maximum of 12 may be character for ASCII)
specified. For each key there
are four parameters. sp=the sequence into which the

control data field will be
sorted, that is, A

pn=the position within the (ascending), D
record, of the high order (descending)
byte of the control data
field

20 Data Manipulation Subroutines

Licensed Material - Property of IBM

— e ey

©EOE ©

——]

F 1

t INPFIL EXIT

t OUTFIL EXIT

t OPTION [STORAGE=valuel
or

t SORT-OPTION data-name

(c) ¢

t MERGE FIELDS=(ps,ls,f1¢S1vrse--Prasliasf12,812) FILES=n

t RECORD TYPE= {V},LENGTH'—’ {(y rerellgl)

O, MODS PH3(,,E32,E35)
@ + PH1 B E11 - EXIT NOT USED
| B E15 - EXIT NOT USED
| |
I * PH2 B F21 - EXIT NOT USED
|
@ t PH3 B E31 - EXIT NOT USED
B E32 - ILBDMRGO TO READ RECORDS FROM USING FILES
B E35 - OUTPUT PROCEDURE OR WRITE THE GIVING FILE

®

¢t Return code

I
|
|
1

i oo s s cteams e e ot s @l e s s e e st St s At . 2ol . s i e g T S S—— i — — . St S s st . s

|

|

4 1

| |Note: ¢ indicates "address of".

| |

) | For explanation of the parameters see "Explanation of Parameter Lists" in this
| | section.

L 1

Figure 2. Parameter List by ILBDSRTO for MERGE

The WORK parameter specifies the
number of devices available
for tape intermediate storage
or the number of extents
available for disk
intermediate storage. For
tape devices, the range of
acceptable values is 3 through
9. For direct-access devices,
the range of acceptable values
is 1 through 8. If no value
is specified, default values
of 1 and 3 will be assigned
for disk and tape,
respectively.

The FILES parameter specifies the
number of input files that are
to be merged. If
SORT-FILE~-SIZE is specifieqd,
the SIZE= parameter is added
for SORT only.

®

®

RECORD Control Statement:

The TYPE parameter is used to
differentiate between F (fixed
length) and V (variakble
length) records.

The LENGTH parameter for
fixed-length records specifies
the number of bytes (1) of one
logical record in the input
file. For variable length
records the LENGTH parameter
specifies the maximum (1)
number of bytes in a single
input record. 1If
SORT-MODE-SIZE exists, 1 is
also specified.

INPFIL Control Statement:

The EXIT parameter indicates to
the Sort/Merge program that
all input records are supplied

Subroutines for Object Time Program Cperations 21

Licensed Material - Property of IBM

at exit E15 and that a routine
at that exit reads the input
file and passes the records
one at a time to the
Sort/Merge program.

(:) QUTFIL Control Statement:

The EXIT parameter specifies to
the Sorts/Merge program that a
routine at exit E35 will
process each record after it
has been sorted and that a
routine at that exit writes
the output file. This routine
is the output procedure that
has been specified or created.

() opTIONS control Statement:

The LABEL parameter indicates the
type of label on the work
files. It may be U
(unlabeled) or S (standard).
All work files must have the
same type of lakel. (Not used
for MERGE.) If SORT~-CORE-SIZE
exists, the STORAGE= parameter
is added.

If SORT-OPTION is specified
in the SD statement, the
address of the data-name is
passed to subroutine ILBDSRTO.
The value contained in the
data-name field may have the
following format:

OPTION

PRINT
PRINT=NONE
PRINT=ALL
PRINT=CRITICAL

{,LABEL=(, ,work)]

n

nK
+STORAGE=) (n,VIRT).

(nK, VIRT)

{,ALTWK] [(,ERASE}):

+ ROUTE=LST
+» ROUTE=LOG

« SORTWK=work
+ SORTWK= (work, , - . .work,)
Note: At least one blank must

follow the last operand.
Figure 3 summarizes the

22 Data Manipulation Subroutines

SORT-OPTION operands and their
defaults. The word OPTION
must start in column 1.

PRINT Option

PRINT
PRINT=NONE
PRINT=ALL
PRINT=CRITICAL

PRINT and PRINT=ALL specify
that all messages are to be
printed by the Sort/Merge
program. This includes error
and end-of-job messages,
control card inforration,
various size calculations, and
other informative messages.

PRINT=NCNE specifies that
no messages are to be printed.
It is useful if you have no
alternate message device and
do not want messages listed
with other printed output. A
message device need not be
assigned.

PRINT=CRITICAL specifies
that only messages resulting
from conditions that can cause
program termination are to be
printed. For more details on
these conditions and messages,

refer to IBM DOS/VS_Sort/Merge

Programmer's Guide, Order
No. SC33-4028.

Note: PRINT=ALL is assumed
until the SORT-OPTION
statement is read. Therefore,
if PRINT=NONE or
PRINT=CRITICAL are to be used,
these options must precede all
others in the SORT-OPTION
statement.

LABEL OQtion
(LABEL=(, ,work))

This operand specifies the
type of labels associated with
the work files. The parameter
represented by work is either
S (standard labels) or U
(unlakeled). This operand is
required if the SORT-OPTION
statement is specified and
unlabeled work files are used.
If it is omitted, standard
labels are assumed for all
files.

Licensed Material - Property of IBM

i Statement H Operands I Ccomments i
| OPTION PRINT={ALL/NONE/CRITICAL} or PRINT | Default=aLL |
{ STORAGE=n/(n,VIRT)/(nK, <) Default: see discussion.

: LABEL=(, ,work) Default=standard labels.

: ALTWK "1
} ERASE |
: ROUTE={1ST/LOG} Default: PhO ressage on }
| printer and console and |
| Phl-3 on console. }
i SORTHK= (WwOrk/ (WOTKy , « - - «WOTKp) } Default=(1,2,...m 1!
Figure 3. Summary of SORT-OPTION Operands B

Note: When standard labels
are used, the Sort/Merge
program uses the DOS/VS system
facilities to process these
labels. Unlakeled tape files
are processed by the
Sort/Merge program. No user
programming is required.

STORAGE Option

n

nK
(nK,VIRT)
(nK,VIRT)

+« STORAGE=

This option is required to
specify to the Sort/Merge
program how much storage to
use and whether it can fix
pages.

n specifies a decimal
number of bytes of storage to
be made available to the
sort/Merge program (together
with its user routines). nK
specifies the decimal number
of K (1024 bytes) of storage
available.

The default is the value of
the SIZE parameter on the EXEC
job control statement. If
both SIZE and STORAGE are
specified, the lower value is
taken. If neither is
specified, the default is the
partition size of the required
size calculated by the
Sort/Merge program (but at
least 64K), which ever is
smaller. The Sort/Merge
program terminates if n is
less than 16K bytes. If n is

greater than the partition
size, it is ignored.

If the Sort/Merge program
is invoked from another
program, the defaults are
calculated in a similar way,
but the value of the SIZE
parameter and the partition
size are adjusted downwards by
the difference between the
address of the Sort/Merge load
point and the starting address
of the partition.

If VIRT is specified, the
Sort/Merge program does not
try to fix pages when running
in virtual mode. You may need
to specify VIKT to prevent
interference with other jobs
running simultaneously, or to
allow a user-written routine
to fix pages. VIRT should be
avoided whenever possible,
since it has an unfavorable
effect on Sort/Merge
performance. It is ignored
when the Sort/Merge program is
running in real mode. The
value in SORT-CORE-SIZE is
ignored if the SORT-OPTION
clause is specified.

ALTWK Option

ALTWK specifies an
alternate work drive (tape
only) in a sorting job. This
doubles the maximumr input file
size allowed. The address of
the alternate device must be
different from the address of
all other devices used in the
job. Figure 3 shows the file
narme and default symbolic unit
name.

Subroutines for Object Time Program Operations 23

Licensed Material - Property of IEM

ERASE Option

ERASE specifies that work
data sets used dquring a sort
are to be erased at the end of
the job. It is ignored if
2400-series tapes are used for
work areas. If the sort
terminates abnormally,

e ERASE is performed unless
the checkpoint facility
has been specified;

e if ERASE is performed, and
if a workfile has been
pooled with output, the
output file is also
erased.

Note that the Sort/Merge
program does not close work
data sets, even when
terminating normally.

ROUTE Option

,ROUTE=LST
.ROUTE=LOG

LST specifies that messages
are to be routed to the SYSLST
file by the Sort/Merge
program. Messages requiring
operator intervention are also
printed on SYSICG if allocated
to a DOS/VS supported console
device.

LOG specifies that messages
are to be routed to the
controls.

Note: The default is assumed
until the ROUTE option has
been read.

SORTWK Option

+ SORTWK=work
,SORTWK=(work1,...workm)]

This orperand specifies the
logical unit numbers
associated with the work
files. The parameters within
parentheses must be replaced
by symbolic unit numbers of a
maximum of three significant
digits from 1 to 221, or a
comma. When a comma is coded,
or if the operand is omitted,
the Sort/Merge program uses
the default assignment.
Figure 4 summarizes the file
names and default symbolic
unit names.

24 Data Manipulation Subroutines

1) R
Use of Device|Filename|Symbolic Unit Name
4 4

v T
work | SCRTWK1 |SYS001
| .
L
| SORTWK9 |SYS (M)
+ +
ALTWK | SORTALT |SYS(M+1)
L 4

[8

M=the number of work files, as specified
| in the SELECT statement for the SD file.

b s v iy e wllnn S c— e o c— vl o—

Figure

O)

4. Sort/Merge File Name and
Default Symbolic Unit Names

MODS control Statement:

This statement specifies the exits
used to branch out of the
Sort/Merge program to the
subroutine. The PHn entry
specifies the phase in which the
exit occurs. The Enn entry
specifies the number of the exit
used in branching to the
subroutine. When RERUN has been
specified in the COROL source
program (that is, when checkpoint
records have been requested), the
format generated is indicated by
(b) in Figure 1. Otherwise, the
format indicated by (a) in Figure
1 is used.

) (a) This statement indicates
to the Sort/Merge program that
exit E15 is to be used in phase 1;
no modification is to be made to
phase 2; and exit E35 is to be
used in phase 3.

(b) This statement indicates
to the Sort/Merge program that
exits El11 and E15 are to be taken
in phase 1; exit E21 is to be used
in phase 2; and exits E31 and E35
are to ke used in phase 3.

(c) This statement indicates
to the Sort/Merge Program that no
modifications are to be made to
Phases 1 and 2, and that Exits E32
and E35 are to be used in Phase 3.

PH1 (Phase 1 Branch Table):

This branch takle consists of
branch instructions that the
Sort/Merge program uses when a
phase 1 exit is requested on the
MODS control statement. It is not
used for MERGE. The three branch
tables are assembled in the SORT
subroutine according to the form
shown in Figure 1. To pass
control to a routine at a

particular exit, the Sort/Merge
program uses the branch table and
a fixed displacement associated
with each program exit and then
branches to the routine indicated.

For example, when the
Sort/Merge program goes to the E15
exit, it loads register 15 with
the address of the beginning of
the table and issues a BAL
14,4(15) instruction. The
Sort/Merge program passes in
register 1 the address of a
parameter list containing pointers
to any records, checkpoint lists,
etc., applicable to that exit.

PH2 (Phase 2 Branch Table):

This branch takle is used to pass
control to the Checkpoint
subroutine (ILBDCKPO) during Phase
2 of the Sort/Merge program, if
the E21 exit is specified (see
Figure 1, item 6b). It is not
used for MERGE.

PH3 (Phase 3 Branch Table):

This branch table is used to
return a sorted record to
ILBDSRTO0. It is also used to pass
control to the Checkpoint
subroutine, if the E31 exit is
specified.

Return Code:

The Sort/Merge program stores a
return code of 0 or 16 indicating
the success or failure,
respectively, of the sort
procedure. The user can test the
return code by referring to the
reserved word SORT-RETURN.

PH3 (Phase 3 Branch Table)

This branch table is used to
branch to ILBDMRGO to get a record
from one of the input files to be
merged or to return a merged
record to ILBDSRTO from the
Sort/Merge Program.

Subroutines for

Licensed Material - Property of IBM

Linkage to ILBDSRTO for SORT or MERGE:

MVC
MVC

ES5EEEE

5

LNR

SR
STM
LA
LA
LA
LA
STM
LH

STH
L
BALR

or

o

PRRAM CELLS,literal-1 for SORT FIELDS

PARAM CELLS,literal-2 for RECORD TY
0,PARAM CELLS for SORT FIELDS

1'0

1,PARAM CELLS for RECORD TYPE
2,INPFIL

3,0UTFIL

4,O0PTIONS (SORT without SORT-OPTI

specified in sD)

4,SORT-OPTION data-name (SORT with
SQRT-OPTIO
data-name
specified
SD)

4,4

r

4,4 (MERGE)

0, 4,WORKCELLS

0,MODS

1,INPUT PKOCEDURE

2,Input buffer

3,0UTPUT PROCEDURE

0, 3,WORKCELLS+16

4,*number of USING files®
SORT only

4 ,WORKCELLS+38

15,=V(ILBDSRTO0)

14,15

The code generated to open USING files
for MERGE and SORT and pass back DTF and BL
addresses to ILBDMRGO and ILBDSRTO is as

PE

ON

N

in

follows:
GN1 EQU +

ST 14,XSAa return address to

ILBDSRTO or ILBDMRGO

The OPEN code for multiple file-names is as
follows:

L 1,DTF#2 Open coding for

L 2,BL#2 multiple file-names

STM 1,2,WORKING CELLS#1

GN2

L 1,DTF#3

L 2,BL#3

ST™ 1,2,WORKING CELLS#9

MVI WORKING CELLS#9,X'80° generat
only if
VvsAaM fi

L 14,XsSa

BC 15,14

EQU +#

Object Time Program Operations

ed
le

25

Licensed Material - Property of IBM

Before control is passed to ILBDSRTO,
addressability is set up for the parameters
that are needed in the Sort/Merge program
and for the input and output procedures
that have been specified.

Output: If the GIVING option is employed,
the output is the sorted or merged file; if
not, the output is sorted records passed
singly.

Linkage to ILBDMRGO from IIBDSRTO:

At initialization the code is:

L 1,A(SDEUFFER)

L 2,A(USING GN)

LH 3,'NUM OF USING FILES®

LA 4,1 If SD recording
rode is V or S

or

SR 4,4 If SD recording
mode is F

L 15,=V(ILBDMRGO)

L 5,A(ERROREXIT)

BAL 14,4(15)

At exit E32 from the Sort/Merge program the
code is:

L 15,=V(ILBDMRGO)
BR 15
Output: The record is passed to the

Sort/Merge program for merging.

Dummy SORT (ILBDDUMO)

Cperation: This subroutine is a 2-byte
dummy subroutine which is loaded after the
object module. If the SYMDMF option is not
specified, the load point of ILBDDUMO is
used as the load point for the DOS/Vs
Operating System SORT Program. If the
SYMDMP option is specified, the load point
of the SORT program is determined by adding
the length of the allocated SYMDMP modules
and tables to the load point of ILBDDUMO.

Linkage: None.
Output: None.

Move (ILBDVMOQ)

Operation: Used when one or both operands
are variable in length or exceed 4096 bytes
in length and the MVCL instruction cannot
be used because the operands overlap. The
variable-length operand may exceed 256
bytes. The subroutine has two entry :
points, depending upon whether the move is
left justified or right justified.

26 Data Manipulation Subroutines

Linkage:
L 15,=V(ILBDVMOO) (left-justified)
or
L 15,=V(ILBDVMO1l) (right-justified)
BALR 1,15
DC X110'Cperand-2 Information'
(See Note)
DC X110'Operand-B Information'
(See Note)
Note: Substitute one of the following:

For a variable-length operand:

DC XL1'Type code’

DC AL3(displacemrent of the variable-
length cell in the TGT from the
base register code)

DC ALl(base register code)

DC AL3(displacement of kase locator
from the above base register)

DC XL2'Displacement of item from
BL address'

For a fixed-length operand:
DC XL1°Type code'

DC XL3*Length of operand'
DC ALl(base code)

DC AL3(displacement of item from
above Lkase)
bC XL2'Displacement of item from

BL address'
The Type codes are:

Bit Meaning, if on

Figurative constant

Not used

Variable length

Direct pointer to the Program
Glokal Takle (for a literal)

Not used

E =~
1 WNhRrRO
~

Output: None.

Moving Characters (ILBDMOVO) ([CR])

Operation: This subroutine executes an MVC
instruction of any length.

Linkage:
L 3,LENGTH
L 5,A(Receiving field)
L 2,A(Sending field)
L 15,=V(ILBDMOVO)
BALR 14,15
Output: The MVC is executed if the length

is positive.

Transform (ILBDVTRO)

Operation: This subroutine translates a
field (operand) of variable length or of a
length greater than 256 bytes. It uses the
translate table, ILBDTRNO, which it moves
to a work area and then modifies according
to the needed transformation.

Linkage:
L 2,=A(ILBDTRNO)
L 15,=V(ILBDVTRO)
BALR 1,15

DC XL1YType code' (see Note)

DC XL3'Length of item'

DC ALl(base code)

DC AL3(displacement of pointer in
TGT or displacement of literal
text)

DC XL2*Displacement from BL®

Note:

it Meaning, if on
0-1 Not used

2 variable-length item

3 Direct pointer (for example, a
pointer for a literal or TALLY)

4-7 Not used

The Type code bits are:

OQutput: The data field is transformed as
requested.

MOVE Fiqurative Constant (IIBDANFO)

operation: This subroutine moves a
figurative constant of more than one
character into a nonnumeric receiving

field. The result may be right or left
justified.
Linkage:
L 0,Length of receiving field
LA 1,Receiving field
LA 2,Figurative constant
L 15,=V(ILBDANFQ)
BALR 14,15

DC X'00°'(Flag byte: Bit 0 = 1 if
the receiving field is
right adjusted)

DC X'00*' (Length of figurative
constant)

output: The receiving field is filled with
the figurative constant.

Licensed Material - Property of IBM

MOVE to Right-Justified Field for
System/370 (ILBDSMVO)

Operation: This subroutine moves
characters into a right-justified receiving
field when the user has specified IBM-370
in the OBJECT-CCMPUTER paragraph and the
receiving field is either greater than 512
bytes in length or variable in length.

Linkage:

LA 0,Receiving field

LH 1,Length of receiving field
LA 2,Sending field

LH 3,Length of sending field

L 15,=V(ILBDSMVO0)
BALR 14,15
Output: The characters are transferred to

a right-justified receiving field.

Calling Information: Called by compiled

code.

Alphanumeric Edit (ILBDANEQ)

Operation: This subroutine moves a
data-name, literal, or figurative constant
into a right- or left-adjusted alphanumeric
edited field. Each group of X's in the
PICTURE is treated as an individual field.

Linkage:
L 0,Length of sending field
LA 1,Sending field
LA 2,Receiving field
LA 3,Edit mask (see Note 1)
L 15,=V(ILBDANEO)
BALR 14,15
DC X*00' (Flag byte; see
Note 2)

DC X*00'(Mask length)
DC X' 0000' (Receiving length)

Note 1: Edit mask is an encoded form of
the COBOL alphanuimeric edit picture.
Note 2:
Bit Meaning, if on
0 Right-adjusted receiving field
1 Sending field is a figurative

constant
2-17 Not used

Output: The completed alphanureric edited

move.

Subroutines for Object Time Program Operations 27

Licensed Material - Property of IBM

STRING (ILBDSTGO) [CBA]

Operation: The subroutine moves one or
more data items contiguously into a
specified receiving field following the
rules for the STRING verb. The
subroutine moves all or, when DELIMITED
BY is specified, part of each data item
in the sending fields. If the number of
characters to be moved exceeds the length
of the receiving field, or if the value
of POINTER is less than one or greater
than the size of the receiving field, an
overflow condition exists. If an
OVERFLOW routine was specified, it
receives control in response to an
overflow condition.

Linkage

LA 0,FIELDA

LA 1,FIELDB

LA 2,FIELDC

LA 3,receiving field
LA 4,length of POINTER
LA 5, POINTER

LA 15,=V(ILBDSTGO)

BALR 14,15

FIELDA DC CL2'Length of receiving field'
FIELDB DC ALU4 (parameter set 1)
ALY (parameter set 2)

XL1°'80°
AL3 (last parameter set)
DC XL1'Number of sending fields in
parameter set 1°

FIELDC

XLl 'Number of sending fields
in last parameter set'

where
the parameter set format for sending
fields and delimiters is as follows:

DC XL1'Switch byte' (see Note 1)

DC XL3'Size of field'

DC XL1'Base of base locator'

DC XL1 - Unused

DC XL1'Locator of base locator'

DC XL2'Displacement from base locator'

There is one parameter set for each
sending field, followed by one set for
the delimiter. However, if the delimiter

28 Data Manipulation Subroutines

is SIZE, X'FFFF' is generated instead of
the parameter set.

Note: Switch byte has the following
meanings:

Value Meaning .

X*'10' Frield is a literal or
figurative constant, pointer
is direct

X*20*' Pointer is direct

X'40' Size field contained the

displacement of the VLC in
the TGT for a sending field
or delimiter

Qutput: The concatenated data items in
the specified receiving field.

Calling Information: Called by compiled
code. Calls subroutine ILBDCVBO and
ILBDACSO.

UNSTRING (ILBDUSTO) [CBB]

Operation: The subroutine separates
contiguous data and moves it from one
sending field into one or more receiving
fields according to the rules for the
UNSTRING verb.

When the subroutine is entered for the
first time for an UNSTRING statement,
storage is obtained and initialization
processing is performed. The subroutine
checks whether the POINTER value, if
specified, is less than one or greater than
the size of the sending field. If so, the
return address associated with the OVERFLOW
option is taken.

Following the above processing, or upon
subsequent entries to UNSTRING, or after
processing each of the four possible types
of fields, the subroutine checks for the
end of the input parameter fields. 1If the
end has been reached, end processing is
performed and control is returned to the
calling program. If the end of the sending
field has not been reached when the final
call to UNSTRING has been executed, an
overflow conditior exists and the return
address associated with the OVERFLOW option
is taken. If the end of the input
parameter fields has not been reached, the
subroutine determines what type of field
has been specified as input: DELIMITED BY,
RECEIVING, DEI.IMITER JIN, or COUNT IN.

For a DELIMITED BY field, a Delimiter
table is created and an entry is made for
each delimiter. An entry contains the flag
byte from the input parameters, and the
address and lenath of the delimiter. The

count of delimiters processed is saved (if
this is the first call) as the number of
entries in the table and the input
parameter field is updated by the length of
the parameter field for DELIMITED BY. The
subroutine then checks for the end of the
input DELIMITED BY parameter fields and
continues as described above. When there
are no more DELIMITED BY fields, the
subroutine checks for otner types of
fields.

For a RECE1VING field, the subroutine
gets the address of t.ie next byte of the
sending field to be processed. If the end
of the sending field lLas been reached,
processing is terminated, and although no
overflow condition exists, the return
address associated with the OVERFLOW option
is taken.

If the end of the r£ending field has not
been reached, the subroutine checks for
delimiters. 1if no delimiters were
specified, the size of the field to be
moved from the sendinc field to the
receiving field is equal to the size of the
receiving field.

If delimiters were specified, the
subroutine scans the sending field for a
match with any one of the delimiters
stored in the delimiter table. If a
match is found, the size of the sending
field is equal to the length of the field
extending from the location of the next
byte of the sending field to be processed
to the location of the first character of
the delimiter or the end of the sending
field, whichever comes first. If the
match is not equal and if PROGRAM
COLLATING SEQUENCE is in effect, the
operands are translated according to the
collating sequence specified.

Information about the delimiter is saved
for later use in processing the DELIMITER
IN field.

When the length of the sending field
has been determined, processing to
prepare the data to be moved is
performed. An internal routine performs
the move according to the receiving field
type. After moving the data, POINTER and
TALLY, and the address of the next byte
of the sending field to be processed are
updated.

If a delimiter was found, the subroutine
now checks to determine whether ALL was
specified. 1If ALL was specified, the
subroutine determines the number of
complete delimiters that follow in the
sending field and, accordingly, updates the
size and end address of the delimiter
field, which was saved for DELIMITER IN
processing. 1In all cases, whether there is
a delimiter or not, the subroutine updates

Licensed Material - Property of IBM

the input parameter field by the length of
the parameter field for RECEIVING and
branches to check for other types of fields
or for the end of the input parameter
fields. The size of the isolated delimiter
field is added to the POINTER value either
at the beginning of processing for the next
KECEIVING field or at the end of the
subroutine if this is the last call.

For a DELIMITER IN field, the
information stored while processing a
RECEIVING field is used to determine how
much of the delimiter field is to be moved
to the DELIMITER IN field. The subroutine
then handles the move in the same manner as
for a RECEIVING field. After moving the
delimiter field, the subroutine updates the
input parameter field by the length of the
parameter field for DELIMITER IN and
branches to check for other types of fields
or for the end of the input parameter
fields.

For a COUNT IN field, the subroutine
generates a call to the subroutine entry
point ILBDCVBl, which performs the actual
processing for this field. Upon return
from ILBDCVBl, the subroutine updates the
input parameter field by the length of
the parameter field for COUNT IN and
branches to check for other types of
fields or for the end of the input
parameter fields.

Linkage

If POINTER and/or TALLYING is specified,
a call to ILBDCVB0 precedes these
instructions,

L 15,GN1

BALR 1,15
. (generated code for statements
o following the UNSTRING verb)

e First call to ILBDUSTO for an UNSTRING
verb

GN1 sT 1,PARAM CELLS

. (possible subscripting)

2,0VERFLOW return address
WORKING CELLS, indicator whether
OVERFLOW specified
J.sending field address
4,length of sending field
15,GNx1
1,15
Input parameter fields (see note)
GNx1 L 15,=V (ILBDUSTO)
BALR 14,15

ét"t“t“ gt."

In addition to the above instructions,
the following information is placed in
the WORKING CELLS field of the TGT if
needed:

Subroutines for Object Time Program Operations 29

Licensed Material - Property of IBM

Byte Contents
0 =X'FF' if overflow specified
=X'00* if overflow not

specified

1 This COBOL program's character
for COMMA

2 This COBOL program's character
for DECIMAL POINT

3 This COBOL program's character
for CURRENCY SIGN

4-7 Address of ILBDCVBO

In the TGT working cells, the TUNSF bit
(X'20') in the TGWRKCL2 field

(TGT + X'74') is set to indicate that
this is the first call to ILBDUSTO for
this UNSTRING verb. If this is the last
call, the TUNSL bit (X'10') is set. (It
is possible for both first and last
indicators to be set on in the case where
this is the only call to ILBDUSTO.) In
the case where this is a first call and a
subsequent call is expected. TGWRKCLZ2 is
set to X'00' on return to compiled code
from any but the last call. 1In ILBDMNSO,
the SCUSTWRK field (ILBDMNSO + 8)
contains either the address of a work
area obtained through a GETVIS macro
instruction or zeros to indicate that
ILBDUSTO must obtain the work area. 1If
the work area has been obtained, the
initial POINTER and TALLYING values have
been placed in bytes 4-19 of this work
area.

¢ Subsequent calls for an UNSTRING verb :

L 15,GNx2
BALR 1,15
Input parameter fields (see note)
GNx2 L 15,V=(ILBDUSTO)
BALR 14,15
e Last call for an UNSTRING verb :

L 15,GNx3
BALR 1,15
Input parameter fields (see note)

GNx3 L register, address of SUBCOM
MVI TGWRKCL2, TUNSL
L 15,=V(ILBDUSTO)
BALR 14,15

OVERFLOW return address -- If POINTER
and/or TALLYING is specified, a call to
ILBDCVBl1 is generated.

L 15,PARAM cells

BCR 15,15
Note: The format of the input parameter
fields is as follows:

DC XL1'Type Flags'

Bits contents
0-1 ID bits

30 Data Manipulation Subroutines

code Meaning
00 DELIMITER field

01 RECEIVING field
10 DELIMITER-IN field
11 COUNT-IN field

2 If 1, All specified for
DELIMITER field (also may be
set for COUNT-IN field with
different meaning for use by
ILBDCVB0O subroutine)

3 If 1, base locator is
direct; only valid for a
DELIMITER field; 0 for other
field types

4-7 As indicated in the
following chart:

code Meaning
0000 Variable group

0001 Alphanumeric

0010 Alphanumeric,
right-justified

0110 External decimal,
unsigned

0111 External decimal,
trailing overpunch

1000 External decimal,
leading overpunch

1001 External decimal,
separate trailing

1010 External decimal,
separate leading

1011 Binary

1100 Internal decimal,

unsigned
1101 Internal decimal,
signed
DC XL3'Length to be considered from

sending field AL3(VLC) if this is
a variable group field'

DC AL4 (base locator)

DC XL2'DISPLACEMENT' -- these two
fields are used to compute address

The preceding ten bytes are present for all
types of fields; the following fields are
present only for type specified.

e DELIMITER Field

DC XL1*'NN' sequence number starting at
zero

e RECEIVING or DELIMITER-IN field if
numeric.

DC XL1'Number of digits to right of
decimal’
DC XL1'Scaling factor'

Output: The characters are transferred
to the receiving field.

Called by
Calls no other

Calling Information:
subroutine ILBDUSTO.
subroutines.

INSPECT-(ILBDINSO) [CBC]

Operation: When this re-entrant routine
receives control to implement the INSPECT
statement, the compiler has already
explicitly defined any implied operands.
The four major sections of ILBDINSO then
perform as follows: XSETUP obtains a
work area and performs initialization
housekeeping. XDELIM sets up the
delimiter limits for each clause, and
builds a translate table. XSCAN scans
the identifier, performing replacement
and tallying as necessary. XTERM loops
back to XDELIM if a Format 3 INSPECT has
only completed the TALLYING portion;
otherwise, it performs termination
housekeeping.

Linkage

LA 1,parameter list
LA 13,TGT

L 15,V (ILBOINSO)
BALR 14,15

The parameter list is:
Word Byte Use

XX0 switches for ID-1
(internal format
information)

1-3 length of ID-1

address of ID-1

Licensed Material - Property of IBM

The following seven words are repeated
for each TALLYING or REPLACING opera-
tion to be performed (the final such
group is denoted by the high-order bit
being on):

Word Byte Use
1 0

YY switches (same as

corresponding verb)

1 XX1 switches for OP-1
(internal format
information)

2 XX2 switches for OP-2
(internal format
information)

3 XX3 switches for OP-3

(internal format

information)

set to zero

1-3 length of OP-1 (TALLYING
or REPLACING operand)

address of OP-1

set to zero

1=-3 length of OP-2 (comparand;
zero if CHARACTERS)

address of OP-2

set to zero
1-3 length of OP-3

7 1=-3 address of OP-3 (INITIAL
operand; zero if omitted)
Qutput: Updated TALLYING and REPLACING

identifiers.

Calling Information: Called by the
compiled code. Calls ILBDCMMO (for

GETCORE/FREECORE operations), ILBDCVBO
(for binary conversions), and ILBDACSO
(for alternate collating sequence
comparisons).

Subroutines for Object Time Program Operations 31

Licensed Material - Property of IBM

SEARCH (ILBDSCHO)

Operation: This subroutine searches a
table using a binary search technique and
returns the address of a desired table
entry to the calling routine. From one to
twelve keys may be specified, all of which
must be satisfied for a successful search.
The table must have been presorted on all
keys, and all entries must be of the same
length. If the search is unsuccessful,
control is returned to the AT END address
specified by the caller. The subroutine is
called by code generated from processing a
SEARCH ALL statement.

Linkage:
LA 0,Search argument
LA 1,Table 'descriptor (See
Note 1)
CNOP 2,4
L 15,=V(ILBDSCHO)
BALR 14,15

DC x* nn* (See Note 2)

DC X"nn* (Length of first key)

DC X*nnnn' (Offset of first key
from the beginning of table

entry)
. (Same 4 bytes
o of information
. for each key)

Note 1: The table descriptor is a 16-byte
area starting at TEMP STORAGE-4 in the TGT
and is in the following format:

Byte Meaning

0-3 Table address

4-7 Maximum number of occurrences
8-11 AT END address

12 Number of keys

13 Not used
14-15 Length of a takle entry

The search argument is in a location
starting at TEMP STORAGE-2 in the TGT.

Note 2: The type of key is as follows:
Bit Meaning
0 1=ascending; O=descending
1 Binary
2 Packed decimal
3 Zoned decimal
4 Alphanumeric

5-7 Not used (all bits 0)

Output: If the desired entry is found, its
address is returned in register 0, and
control is returned to the instruction
appearing after the in-line key
descriptions. If the entry is not found,
control is returned to the AT END address.

The instructions following the key
entries cause the index-name associated

32 Data Manipulation Subroutines

with the level of the table being searched
to be set to the displacement of the found
entry.

Segmentation (ILBDSEMO) (cC}

Operation: This subroutine performs the
Toading and initializing for the
segmentation feature of the compiler when
LANGLVL(1l) is used. 1If the GO TO
statement has a VN as its operand, this
subroutine will do one of the following:

1. Load and initialize, if the segment of
destination is independent and not in
virtual storage.

2. Load only, if the segment of
destination is overlayable and not in
virtual storage.

3. Initialize only, if the segment of
destination is in virtual storage,
independent, and not the same as the
origin of branch.

4. Branch to the desired entry point, if
the segment of destination is in the
root segment.

5. Branch to subroutine ILBDDBGO if the
SYMDMP option is in effect.

If the GO TO has a PN as operand, the
subroutine will load a segment if it is not
in virtuval storage.

ILBDSEM1 is an alternate entry point to
the subroutine. If the subroutine is
entered at ILBDSEM1, the Procedure Block
for the PN is loaded into register 11, and
the priority and PN address are calculated
and loaded into register 0 to simulate the
linkage to ILBDSEMO; then operation is the
same as for entry point ILBDSEMO.

Linkage:

For programs for which the optimization
option (OPT) has not been specified:

If GO TO with VN as operand:

L 15,=V(ILBDSEMO)
L 0,VN#
BALR 14,15
DC X'PTY'
DC Xx*o00*

IF GO TO with PN as operand:

L 15,=V(ILBDSEMO)
L 0, PN#

LCR 0,0

BALR 14,15

For programs for which the optimization
option (OPT) has been specified:

If GO TO with VN as operand:

L 15,=V(ILBDSEMO0)
L 0,VN#

BALR 14,15

DC X'pTY!

DC X*00*

If GO TO with PN as operand:

L 15,=V(ILBDSEM1)

BALR 14,15

DC X*Priority*

DC X'*Block number*

DC XL2'Displacement of PN from
' block’

If GO TO DEPENDING ON:

control passes to entry point ILBDSEM1
from subroutine ILBDGDOQ with register
14 pointing to a U-~-byte parameter list
as described above.

Output: There is no output from this
subroutine.

GO TO DEPENDING ON (ILBDGDOO, ILBDGDO1,
ILBDGDO2§ iCCA[

Operation: These routines handle
conditional independent segment refresh.
ILBOGDOO uses the value of a particular
data name as an index into a list of
constants for each PN specified and then
transfers control to the proper PN. If
the value of the data name is greater
than the number of PNs specified,
control returns to the next instruction
after the calling sequence. The
subroutine uses the set of constants to
determine the address of the PN, loads
the procedure block for that PN into
register 11, and then branches to the
PN. Entry points ILBOGDOl and ILBOGDO2
are called to refresh an independent
segment when the destination has (or may
have) a different priority from the
origin. ILBOGDOl will initialize the PN
cells of the target segment if it differs
from the origin and is higher than 49;
return is to the caller. ILBOGDO2 is
invoked for a PERFORM n TIMES statement;
it performs a similar initialization
function, but does not return to the
caller--rather, it goes directly to the
destination segment.

Licensed Material - Property of IBI

Linkage: This subroutine is called only
when the optimization option (OPT) is
requested and a GO TO DEPENDING ON
statement is used.

1,Contents of data name
2,=V(ILBDSEM1)
or, if the program
is not segmented,

LH 3,Number of PN's in lis
L
L

SR 2,2
L 15,=V(ILBDGDOO0)
BALR 14,15

1 set of DC
constants DC

X'Priority’
X' Block number*

for each DC XL2'Displacement of PN
PN from block®
specified:

ILBDGDOl1

IC RO,priority Priority of origin
segment or, if
origin already
known to have
different priority

from target.

SR 0,0

IC Rl,priority Target segment
priority
L 15,=V(ILBDGD1)

BALR 14,15
ILBDGDO2

Ic RO,priority Priority of origin
segment or
if origin already
known to have
different priority
from target.
Byte 0= priority o
target segment
Bytes 1-3= Address
within target
segment.
L 15,=V(ILBDGDO2)
BR 15

SR 0,0

L 1l,0rqg.

Output: There is no output from this
EEF?EGtine.

DATE, DAY, and TIME (ILBDDTEQ, ILBDDTE],

ILBDDTE2) [CCB

Operation: The subroutine performs thre
functions in response to the use of the
DATE, DAY, and TIME special registers.

ILBDDTEO calculates the time in the forr

hour minute second hundredth-of-a-secon

Subroutines for Object Time Program Operations 32

Licensed Material - Property of IBM

. he £ : into the 4K blocks retrieved and the
ILBDDTEL calculates the date in the form address of the storage is returned to the
year month day user. User requests are rounded to the

next 128-byte boundary.

ILBDDTE2 calculates the day in the form: ILBDCMMO Linkage:

year day

For GETCORE
ges: L 0,length
Linkages: L 15, =V (ILBDCMMO)
ILBDDTEO (for TIME) BALR 14,15
LA 2,receiving field Address returned in Rl.
(temp storage 2)
L 15,=V (ILBDDTEO) For FREECORE:
BALR 14,15
L 1,address
ILBDDTEl (for DATE) L 15,=V (ILBDCMM1)
BALR 14,15

LA 2 ivi field
(éiﬁges:oﬁgge 3, Qutput: User regulated blocks of storage
L 15,=V(ILBDDTEl) cﬁained into the storage chain.

BALR 14,15

ILBDDTE2 (for DAY)

LA 2,receiving field TEST _AND COMPARE SUBROUTINES

(temp storage 2)
L 15,=V(ILBDDTE2)

BALR 14,15 The subroutines described below test
certain characteristics of items in virtual
Qutput: The date, time, or day is placed storage. Condition codes or return codes
in temporary sto:;ge; tée compiler then indicate the results of the test or
generates code to move the date, time, or comparison.

day to the receiving field.

Calling Information: Called by compiled
code. Calls no other subroutines.

Class Test (ILBEDCLSO)

Operation: This subroutine performs a test

SUBROUTINES FOR LIBRARY MANAGEMENT to determine whether a field is alphabetic,
external decimal, or internal decimal. The
The subroutines that control storage field (operand) will be variable length or

additions or deletions are described here. of a length greater than 256 bytes. The
subroutine uses one of five tables:

GETCOREfFREECORE Subroutine (ILBDCMMO, ILBDATEO iiigﬁigeiiilrnal decimal)
1LBDCMM1 ccc ILBDITBO (signed internal decimal)

. ILBDUTBO (unsigned internal decimal)
Operation: ILBDWTBO (unsigned external decimal,

3 i ic edited
This subroutine will get storage and free numer !
storage for COBOL library subroutines :ipﬁgﬁﬂﬂziig'egfgea>
requiring storage additions or P
deletions. A GETVIS is always issued for
a 4K or larger block. The larger GETVIS The address of the table is loaded into
requests are made when the user's request register 2. The tables are 256-byte

gigzkfhgigégg 2§?dsA{§ g§;3§sfgio:ECh translate tables which enable the

requests are rounded to the next 4K subroutine to perform testing.
boundary. User requests are then chained

32.2 Test and Compare Subroutines

. Linkage:

For fixed-length operands:

L 2,=V(Table)
L 15,=V(ILBDCLS0)
BALR 1,15

DC XL1'Type code’
pC XL3'Length of item’
DC ALl (base code)
DC AL3(displacement of pointer in TGT
to data name
DC XL2*Displacement of item
from BL address®

For variable-length operands:

L 2,=V(Table)
L 15,=V(ILBDCLS0)
BALR 1,15
DC XL1" Type code'
DC AL3(displacement of the
. variable-length cell
in the TGT)

DC ALl(base code)

DC AL3(displacement of item
from above Lkase)

DC XL2*Displacement of item
from BL address®

where the type code bits are:

Bit Meaning, if on
0-1 Not used

. 2 variable-length item
3 Direct pointer (for example, for
a literal or TALLY)
4-7 Not used

Output: The condition code is set to 0
when the test is true, and to nonzero
when the test is false.

compare (ILBDVCOO)

. Operation: Compares two operands, one or
both of which are variable in length or are
greater than 4096 bytes in length. When
control is returned to the object program,
the condition code is set to indicate
whether operand-A is less than, equal to,
or greater than operand-B.

Linkage:
L 15,=V(ILBDVCO0)
BALR 1,15

DC XL10'Operand-A Information’
(sre note)

DC XL10"Operand-B Information'
(see note)

Licensed Material - Property of IBM

Note: Substitute one of the following:

For a variable-length operand:

DC XL1'Type code’

DC AL3(displacement of the variable-
length cell in the TGT from the
base register code)

DC ALl(base register code)

DC AL3(displacement of base locator
from above base register)

DC XL2'Displacement of item from
BL address'

For fixed-length operand:

XL1*Type code*

XL3*Length of operand'

ALl (base code)

AL3(displacement of item from
above base)

DC XL'Displacement of item from BL

address’

3888

The type codes are:

Bit Meaning, if on

Figurative constant

Not used

Variable length

Direct pointer to the Program
Global Table (for a literal)

Not used

&
| WN o
~

Qutput: The condition code is set to
indicate whether Operand-A is less than,
equal to, or greater than Operand-B.

Compare Fiqurative Constant (ILBDIVLO)

Operation: This subroutine compares a
data-name operand and a figurative constant
of more than one character. The figurative
constant is always the second operand.

Linkage:
MvC Param Cell-1,FIGCON
L 0,Length of figurative constant
L 1l,Length of data name operand
La 2,Param Cell-l
LA 3,Data name
L 15,=V(ILBDIVLO)

BALR 14,15

Outgut: The condition code is set to
ndicate whether the data-name operand
is less than, equal to, or greater
than the figurative constant.

Subroutines for Object Time Program Operations 32.3

Licensed Material - Property of IBM

Comparison with Alternate Collatin
Sequence (ILBDACSO, ILBDACS1) [CCD]

Operation: ILBDACSO compares operand 1
to operand 2 (both unsigned display or
group), where operand 1 is either an
identifier or a literal (other than a
figurative constant) and operand 2 is
either an identifier or a literal (other
than a multi-byte figurative constant).
ILBOACS1 is similar, except that operand
2 is a multi-byte figurative constant
(that is, all 'XX...' for XX with length
2 or greater).

Linkages:
ILBDACSO

LA 0,operand 1

L 1,length of operand 1

LA 2,operand 2 (omitted if a 1l-byte
figurative constant)

L 3,1length of operand 2 (0 if a
10byte figurative constant)

LA 13,TGT

L 15,=V(ILBDACSO)

BALR 14,15

In the TGT, #TBlPCS will have been set if
an alternate collating sequence was
specified; if so, #TPCSADR points to the
transfer table.

ILBDACS1

L 0,length of figurative constant
L 1,length of identifier

LA 2,figurative constant

LA 3,identifier

LA 13,TGT

L 15,=V(ILBDACS1)

BALR 14,15

The TGT indicators are the same as for
ILBDACSO.

Output: The condition code is set to
high, equal, or low, according to the
result of the comparison.

Calling Information: This re-entrant
routine can be called by either the
compiled code or by the ILBDINSO
subroutine. Calls no other subroutines.
In the TGT of ILBDACS's caller, #TB1PCS
will have been set on if the user
specified an alternate collating
sequence; if so, #TPCSADR points to the
transfer table.

UPSI (ILBDUPSO0)

Operation: This subroutine initializes the
UPSI bytes in the TGT. It is called at the
beginning of the program, if the user has

32.4 Test and Compare Subroutines

specified UPSI in the SPECIAL NAMES
paragraph.

Linkage:
L 15,=V(ILBDUPSO)
BALR 14,15
Output: If the UPSI bit is on, the

corresponding byte in the TGT is set to
X'F1'; otherwise, it is left at X'F0“.

Linkage (ILBDSET0)

Operation: This subroutine sets the
switch byte of the Program Indicator
subroutine (ILBDMNSO) to X'FF'. The
linkage subroutine must be called by any
program which is not an American National
Standard or DOS/VS COBOL program before
that program calls an American National
Standard or DOS/VS COBOL subprogram. The
name of this subroutine can be changed to
any name specified by the user.

Linkage:
L 13,A(Savearea)
L 15,=V(ILBDSETO)
BALR 14,15
L 15,=V(COBOL subprogram)

BALR 14,15

OQutput: The switch byte of subroutine
ILBDMNSO is set to X'FF'.

Program Indicator (ILBDMNSO)
Operation: This subroutine contains a
number of disparate items.

l. A one-byte switch used to indicate

whether the program is a main program
or a subprogram.

2. A flag byte containing:
a. An alternate index build flag.
b. A debug switch.

3. A pointer used as an anchor for the
chain of storage obtained@ by the
subroutine ILBDCMMO.

4. A pointer to the currently being used
storage area.

5. The CSECT ILBDPRMO used to access
SYSPARM bytes using the COMRG macro,
and to set the flags in the flag byte.

Linkage to ILBDPRMO:

L 15,=V(ILBDMNSO)
LA 15,16 (15)
BALR 14,15

Output:

1. Main switch byte is set to X'FF' by a
main program. Subprograms do not
affect it.

2. Set by step 4.

3. Set by ILBDCMMO to the address of the
first block of storage obtained.

4. Sets the flags in step 2 above.

TIME-OF-CAY and CURRENT-DATE_ Subroutine
(ILBDTODO)

Operation: This subroutine, in response to
the use of the TIME-OF-DAY special
register, issues the GETIME macro
instruction and calculates the time of day
of the execution of the program. 1In
response to the use of the CURRENT-DATE
special register, the subroutine issues the
COMRG macro instruction and calculates the
date of the execution of the program.

Linkage:
TIME-OF-DAY

LA 2,receiving field
LH 3,length of receiving field

LNR 3,3

L 15, =V (ILBDTODO)

BALR 14,15
CURRENT-DATE

LA 2,receiving field

LH 3,length of receiving field
L 15,=V(ILEDTODO)

BALR 14,15

Output: The time in the form of
hour/minutes/second (HHMMSS) or the date in

Subroutines for Object Time Program Operations

Licensed Material - Property of IBM

the form either of day/month/year
(DD/MM/YY) or of months/day/year (MM/DD/YY)
is stored in the receiving field. The form
of the date is set at system generation
time.

SYMDMP Address Test (ILBDADRO)

Operation: This subroutine tests the
validity of an address calculated for a
subscripted identifier or the validity of
the starting and ending addresses of a
variable-length identifier used as a
receiving field in a MOVE instruction. The
subroutine determines whether the address
lies within a data area for any of the
current programs in the run unit. Checking
for valid addresses is only performed when
all programs in the run unit are American
National Standard or DOS/VS COBOL programs.
The subroutine has two entry points.

It is called at entry point ILBDADRO
from the inline code generated to calculate
the address of a subscripted item.

It is called at entry point ILBDADR1
from subroutines ILBDVMOO and ILBDMOVO
before a variable-length MOVE instruction.

Linkage:
From generated code:
LR 0,register containing data-name
address
L 15,=V(ILBDADRO)

BALR 14,15

From subroutines ILBDMOV0 and ILBDMVOO:

LR 0,register containing data-name
address

LR 1,register containing length

L 15,=V(ILBDADR1)

BALR 14,15

32.5

Licensed Material - Property of IBM

Output: If the address or addresses are
valid, control is returned to the caller.
If the address or addresses are invalid, an
error message (C170I - INVALID ADDRESS) is
written on SYSLST and subroutine ILBDMP20
is called to produce a symbolic dump.

GENERAL DATA MANAGEMENT SUBROUTINES

The subroutines described Lkelow perform
certain 1/0 operations, such as,, accepting
and displaying information, opening and
closing files.

DISPLAY (ILBDDSPO) [EA]

Operation: This subroutine is used (in
conjunction with ILBDDSS0) to print, punch,
or type data, usually in limited amounts,
on an output unit. TRACE and EXHIBIT are
special kinds of DISPLAY. The acceptable
forms of data for this subroutine are:

1. Display

2. External decimal

3. Internal decimal

4. Binary

S. External floating-point

Internal decimal and binary are converted
by the subroutine to external decimal.
Internal floating-point numbers are
converted to external floating-point before
the subroutine is called and placed in the
PARAM cells of the TGT.

Note: When OPT has been specified,
subroutine ILBDDSS0O0 is sometimes called
instead of subroutine ILBDDSP0. See
"Optimizer DISPLAY (ILBDDSS0)" below.

When NOOPT is in effect or the ILBDDSSO
criteria cannot be met, ILBDDSPO is called.
This causes ILBDDSSO to be included at link
edit time. At object time the two
subroutines act as a superset of the
DISPLAY function. (See the ILBDDSPO and
ILBDDSSO flowcharts for a visual
representation of this interaction.)

Linkage:

For DISPLAY, the linkage is:
LA 2,=C(PROGRAM-1ID)
(If DISPLAY on SYSPCH)

L 15,=V(ILBDDSPO0)
or

32.6 General Data Management Subroutines

L
BALR
DC

15,=V(ILBDDSS0)

1,15

XL2*Device code’
(See Note 1)

operand information

DC

(See Note 2)
(Parameters)

X*FFFF*

For TRACE, the linkage is:

15,=V(1ILBDDSPOQ)

or

15,=V (ILEDDSSO0)

1,15

XL2*Device code'
(See Note 1)

X'40"* (Type code)
(See Note 3)

X5

XL6 (EBCDIC generated card
number)

For EXHIBIT, the linkage is:

jall e ¢ 2

BALR
DC

(Test coding if CHANGED
case)
15,=V(ILBDDSPO)
or .
15,=V(ILBDDSS0)
2,A(Switch)
(See Note 4)
1,15
XL2*Device code*
(See Note 1)

operand information

8ill

Note 1:
device to be used. They are:

Code

E W

Note 2:

(See Note 2)
(Parameters)
X" FFFF*
The device codes specify the
Device
SYSLST
CONSOLE
SYSPCH
SYSIPT

The operand information describes

each item and has one of the following
three formats:

1.

Fixed length, ready to display:

DC

DC
DC

DC

XL1°*Type code'
(See Note 3)

XL3'Length of item’

ALl (base code)
{See Note 5)

AlL3 (displacement of pointer
in TGT to data-name or
displacement of literal

Licensed Material - Property of IBM

General Data Management Subroutines

The following subroutine has been added.

ILBDTABO

Operation: This subroutine contains a table of device-dependent
information for tape or mass-storage devices and a search routine

to get the table entry corresponding to the caller's parameter.
The parameter may be either a PUB device code or a DTF device code.

Linkage:
L 1,=A(search argument)
L 15,=V(ILBDTABO)
BALR 14,15
DC AL1 (indic) (See Note 1)
DC AL1(default) (See Note 2)

Note 1: indic is an index into branch vector, which
indicates whether the parameter pointed to by
register 1 is a PUB code (indic=0) or a DTF
code (indic=4).

Note 2: default is an alternate search argument to use
instead of the parameter in register 1 if the
search does not yield a match for the parameter.
Specify 255 if you do not want the default.

Output: Register 1 contains the address of the table entry
containing the information corresponding to the caller's .
parameter. If the search is unsuccessful, register 1 is set to 0.

text or TALLY)

DC XL2'Displacement’

2. Fixed-length binary or internal
decimal (conversion is required):
DC XL1'Type code’

(See Note 3)

DC XL1'Length of input item'

DC XL2'Length after conversion'

DC ALl (base code)

(See Note 5)

DC Al3(displacement of item
from above base)

DC XL2'Displacement’

3. Variable length:

DC XL1*Type code'

(See Note 3)

DC AL3(displacement of the
variable-length cell in
the TGT)

DC ALl{(base code)

(See Note 5)

DC AL3(displacement of item
from above base)

DC XL2"Displacement"

Note 3: The type code kits are:
Bit Meaningg if on
0 Not use
1 TRACE item
2 Variable length
3 DIRECT pointer (for example,
for a literal TALLY)

4-5 See below

6 Internal decimal item
7 Binary item

If bits 4 through 7 are all on, the item
is numeric, ready to display. If bits &4
through 7 are all off, it is nonnumeric.

Note 4: The switch indicates whether or
not an item should be exhibited. It is a
2-bit switch and corresponds to either one

Licensed Material - Property of IBM

or two 10-byte operands. Figure 5 gives
the switch codes, an indication of whether
SEG1 (the first operand) is an alphanumeric
literal, the meaning of codes, and the
action that is taken.

An overriding situation occurs to the
conditions in Figure 5 if register 3
contains a zero when the subroutine is
called, indicating the first-time through
requirement for the EXHIBIT CHANGED (NAMED)
case. It is assumed that the second bit of
the switch is on and only the first three
conditions can occur.

Note 5: The base code indicates a register
which contains a pointer to the TGT or the
PGT.

Qutput: Lines of print via a PUT on the

printer or the card punch, or via an EXCP
on the console.

Optimizer DISPLAY (1ILBDDSSO) [ER]

Operation: When OPT has been specified,
tEis subroutine is used to print or type
data of a certain kind on SYSLST or the
console, respectively. Acceptable forms of

data are the same as those listed for the
ILBDDSP0 subroutine except the following:

floating-pont data-names;

floating-point literals;

variable-length items;

any DISPLAY verb where the sum of the
operand lengths exceeds 120 bytes
for SYSLST or 100 bytes for the
console;

any DISPLAY UPON SYSPCH.

Note: When any of the above items are to
be printed, or typed, subroutine ILBDDSPO
is called together with Subroutine
ILBDDSSO.

T T T 1
|First Segment| | i
|Alphanumeric | |
Switch | Literal Meaning | Action |
4 4
1) |
01 or 00} - Source literal or Display as 'SEG1' (up to 10 bytes) |
| figurative constant |
4l d
]]
11 | yes Nared, changed Display as 'SEGl1 = SEG2' (up to 20 bytes) |
- L

+ 1
11 | no Not named, changed Display as 'SEG1l' (up to 10 bytes) |
'y J
4
10 yes Named, not changed]Nothing displayed (up to 20 bytes) |
4
1
10 no Not named, not Display n + 1 blanks when n is the length |
changed of SEG1 (up to 10 bytes) |
4 |

Figure 5. Switch Codes for Display
Subroutines for Object Time Program Operations 33

Licensed Material - Property of IBM

Linkage: The linkage to this subroutine is
the same as the linkage to subroutine
ILBDDSPOQ.

Output: Lines of print via a PUT on the
printer or via an EXCP on the console.

ACCEPT (ILBDACPO) [EC]

Operation: Services ACCEPT and STOP
literal statements. For ACCEPT, a record
is read from SYSIPT or the console.
Lowercase alphabetic characters accepted
from the console are translated to their
uppercase equivalents. For STOP, the
literal is typed on the console.

Linkage:
L 15,=V(ILBDACPO)
BALR 1,15

DC XL2'Device code*
(See Note 2)

DC XL1'TYPE'

(See Note 1)

DC XL3'MNN' (If binary or internal
decimal, M=length of input
item and NN=length of conver-
ted result. If variable-length
the three bytes are an ADCON
pointing to the VLC-CELL.
Otherwise, the three bytes are
the length.)

DC ALY (base locator)
or

ALY (operand-text)
(if bit 3 of TYPE is set)

DcC XL2'Displacement of text
from base*

Note 1: The TYPE bits are:
Bit Meaning, if on

0- Not used
2 Variable-length
3 Pointer ADCON is direct

4-7 Not used

Note 2: The device codes specify the
device to be used. They are:

Code Device

Xx'0002°' CONSOLE

X'0004" SYSIPT

For a STOP literal, the first byte of
the device code is X'80'.

Cutput: The record accepted is placed in
the operand specified. If it is a STOP
literal, the message is typed on the
console.

34 General Data Management Subroutines

Checkpoint (ILBDCKPO) [ED]

Operation: This subroutine builds a table
of pointers to DTF's of all magnetic tape
units used in the problem program and its
subprograms, and issues a CHKPT macro
instruction, which will write checkpoint
records on a user specified tape or disk
checkpoint device.

There are three sequences:

Linkage:

1. The first call, made during
initialization is:

L 15,=V(ILBDCKPO)
CNOP 2,4

BALR 14,15

DC XL8'0' (See Note)

DC A(DTFPTR-1)

(address of first DTF cell)
DC A(DTFPTR-n)

(address of last DTF cell)

2. When the specified number of records
of the RERUN file has been read or
written, the subroutine is called
again, as follows:

L 15,=V (ILBDCKP1)
BALR 14,15

DC X'N’

DC XL7'External name'

3. During a sorting operation requiring
checkpoints the SORT subroutine calls
this subroutine as follows:

L 1,A(Physical IOCS list)
L 15,=V(ILBDCKP2)
BALR 14,15

Note: If SORT RERUN is specified,
substitute the following two instructions:

DC X*N*
DC XL7'External name'
where:

N
is the unit number of the checkpoint
device, and

External name
is the external name of the checkpoint
file or SYSxxx if no external name is

used.
Output: For DTFMT's, the DTF address is

placed in a parameter list for CHKPT, and
the macro instruction is issued. For more
details on this macro instruction, refer to

IBM DOS/VS Supervisor and 1/0 Macros

Reference, Order No. GC33-5373.

OPEN ACCEPT File (ILBDASY0) (EE]

Cperation: This subroutine ensures that
SYSIPT is open. It is called if there is
an ACCEPT FROM SYSIPT statement in a label
declarative.

Linkage:
L 15,=V(ILBDASY0)
BALR 14,15
Output: SYSIPT is opened if it was not

already opened.
OPEN DISPLAY File (ILBDOSYO) (EF]

Operation: This subroutine ensures that
SYSLST or SYSPCH or both are open. It is
called if there is a DISPLAY UPON SYSLST or
a DISPLAY UPON SYSPCH or both in a label
declarative.

Linkage:
L 15,=V(ILBDOSY0)
BALR 14,15

DC X* NNNN*
where:

NNNN = *3000°
if both DISPLAY's are used

* NNNN* = *2000°*
if the device is SYSLST

* NNNN* = *1000°*
if the device is SYSPCH

Output: SYSLST and/or SYSPCH is opened if
it was not already open.

Close With Lock (ILBOCLKQ) [(EG]

Operation: This subroutine receives
control only when an OPEN is to be executed
for a file and a CLOSE WITH LOCK for that
file is specified anywhere within the
program. The Pre-DTF switch is tested to
determine if the file was closed with lock:;
a X'FF*' indicates it was. 1If the file was
not closed with lock, control is returned
to the COBOL program. 'If it was closed
with lock, the subroutine issues an error
message and the job is terminated.

Linkage:
L 1,DTFPTR
L 15,=V(ILBDCLKO)
BALR 14,15

Licensed Material - Property of IBM

Output: A message is issued stating that
an attempt has been made to reopen a file
that was closed with a lock and the job is
terminated.

User Standard labels (ILBDUSLO) [EH)

Operation: This subroutine enakles the
user to write or check user standard
labels. It determines the lakel condition
(BOF, BOV, EOF, or EOV) and branches to the
appropriate user procedure.

Linkage: None. The address of this
subroutine is in the DTF and is kranched to
from LIOCS.

Output: Register 0 is set to decimal 8,
12, 16, or 20 depending on entry conditions
(BOF, EOF, EOV, BOV, respectively).
Register 4 points to the DTF. If there are
tape output files and no user procedure,
the COBOL label bit is turned on to
indicate to LIOCS that no labels are to be
written.

Nonstandard Labels (ILBDNSLO) [EI)

Operation: This subroutine reads and
writes nonstandard lakels 9nd tranches to
the appropriate user label processing
routine. It writes a tape mark after the
last trailer label on each output reel.

Linkage:

1. When the entry is from LIOCS, the
entry point will be ILBDNSLO).

One of the following:

2. When the entry is from a user
procedure and return is to the
procedure:

L 15,=V(ILBDNSL1)
BR 15

3. When the entry is from a user
procedure and return is to LIOCS:

L 15,=V(ILBDNSL2)
BR 15

Output: Register 4 points to the DTF and
Register 1 to the label area.

Error Messages (SSBCOBER) [EJ]

Operation: This subroutine prepares
input/output error messages to ke printed
by the Error Message Print Subroutine
($$BCOBR1). After preparing the error
message, it places the address cf the

Subroutines for Object Time Program Operations 35

Licensed Material - Property of IBM

message in register 0. Then it fetches
$$BCOBR1, overlaying itself. See the
descriptions of ILBDSAEO, ILBDISEQ, and
ILEDDAEO.

Linkage:
LA 4,DTF-8
LA 0, ERRCODE
SLL 0,24
OR 0,4
LA 1,=C* $$BCOBER"
svC 2
OQutput: Register 0 contains the address of

an error message to ke written by $$BCOBR1
on SYSLOG or SYSLST.

Error Message Print ($$BCOER1) [EK]

Operation: This subroutine prints the
input/output error messages prepared by the
Error Messages Subroutine ($$BCOBER) and
provides a dump if the DUMP option is in
effect. After the sukroutine prints the
error message, it tests the DUMP bit. 1If
the bit is on, it calls the $$BPDUMP
Subroutine via a SVC 2 instruction. If the
DUMP bit is off, $$BCOBR1 returns control
to the routine which fetched $$BCOBER. In
either case the fetching routine determines
if the job should be cancelled or control
transferred to the Debug Control subroutine
(ILBDDBGO). See the descriptions of
subroutines ILBDSAEO, ILBDISEO, and
ILBDDAEO for further information on
input/output error handling.

Linkage:
LA 1,=C*$$BCOBR1"
svC 2
Note: Register 0 contains the address of

the message to be printed.

Cutput: An error message on SYSLOG and/or
SYSLST and, optionally, a PDUMP.

SYMDMP Error Message ($$BCOBEM) (EL}

Operation: This subroutine (a transient)
puts the correct error message into the
buffer of the PRINT routine (ILEBDDBG1l).
When this subroutine is fetched by the
PRINT routine, register 0 contains the
error number in the high-order byte and the
address of the buffer in the low-order byte
and the address of the buffer in the low-
order three bytes. If the error number
does not fall within the range of errors
contained in the subroutine, control is
returned to the fetching program.

36 General Data Management Subroutines

Linkage:
L 0,CURRBUFF Error code and buffer
address
LA 1,C'$$BCOBEM*
svC 2
Output: An error message on SYSLST.

3886 Optical Character Reader (OCR)
Interface (ILBDOCRO) (Chart EM]

Operation: ILBDOCRO handles all
input/output operations with the 3886
Optical Character Reader and builds the OCR
File Control Block required for this
purpose. The subroutine receives control
from the COBOL program via the CALL
statement with the USING parameter for
action requests and from the DOS/VS system
for error recovery and end-of-file
condition.

For an action request the functions of
the subroutine are as follows:

e Validate operation code (See Note 1)

¢ Validate OCR-file identification by
searching OCR File Control Block chain

e Test for valid sequence of WAIT and
READO operations

s Call action routine to issue
appropriate macro instruction for
request (see Note 1)

e Build OCR File Control Block (via
GETVIS) for OPEN requests and release
OCR FCB (via FREEVIS) for CLOSE
requests

s Set Status Key (See Note 2)
Note 1: Valid OCR operations and the

DOS/VS macro instructions issued for each
are listed below:

OCR-operation DCS/VS _macro instruction

OPEN OPEN

CLOSE CLOSE

READ READ and WAITF
READO READ

WAIT WAITF

SETDV SETDEV

MARKL CNTRL

MARKD CNTRL

EJECT CNTRL

Note 2: The status key contains a

completion code returned to the COBOL
program. The codes, their meanings, and
the action requests which generate them are
listed below:

Code Meaning Action Request

OPEN, CLOSE, READ,
READO, WAIT, MARKL,
MARKD, EJECT, SETDV

00 |Successful
completion

10 |End-of-file READ, WAIT, MARKL,

MARKD, EJECT, SETDV

31 |Mark Check EJECT

READ, READO, WAIT,
MARKL, MARKD, EJECT,

32 |Nonrecovery
| error

| SETDV
33 |Incomplete READ, WAIT
Scan
34 |Mark Check § EJECT
Equipment
Check

READ, READO, WAIT,
MARKL, MARKD, EJECT,
SETDV

39 {Permanent
error

———

OPEN, CLOSE, READ,
READO, WAIT, MARKL,
MARKD, EJECT, SETDV

92 |Logic error

93 |Insufficient OPEN

storage
95 |Invalid OPEN, READ, READO,
Parameter MARKL, MARKD, EJECT
99 |Unrecognizable
operation
L
Linkage: cCalled by compiled code for the

CALL statement.

Note: The user must set appropriate fields
in the identifier data area before issuing
the CALL statement with the USING option.
(Refer to the 3886 statement in IBM DOS/VS

COBOL Programmer's Guide, Order
No. GC28-6u478.)

Output: The OCR File Control Block is
built in virtual storage; the indicated
action request is performed; a return code
is entered in the Status Key field of the
OCR file data area.

SEQUENTIAL ACCESS DATA MANAGEMENT
SUBROUTINES

The subroutines described below handle
some special I/O operations for the
sequential access method.

Licensed Material - Property of IBM

SAM 1/0 Subroutine (ILBDSIOO0) [F]

Operation:

A single entry, ILBDSIOl, for
initialization of SAM XDTF entry, save
registers, and sets the READ, WRITE,
REWRITE, and WRITE ADVANCING entry points
to the logic error internal address
(RETLOGST) within ILBDSIOO0. The ILBDSIOl
entry point is invoked from the inline
code during INIT3 processing. Any
non-SAM DTFs found during initialization
processing are bypassed.

A single entry, ILBSDIOO, for all
open/close requests, save registers, and
then transfer to the appropriate action
routine for the request, as follows.

On each OPEN/CLOSE request from the
inline code, a single SAM DTF address and
the specified OPEN/CLOSE Option are
passed to entry point ILBDSIOO.

If the request is for OPEN, the OPEN
PROLOG processing section is entered.
There, the single XDTF control block for
the file is obtained by using the SAM DTF
address. The XDTF is examined to ensure
that no logic error is involved in the
request. If a logic error is
encountered, this fact is noted in the
status key (when present) and in the XDTF
field XDTFSTAT.

If CLOSE with LOCK has occurred for this
file and file status was not specified,
ILBDSIOO0 calls ILBDCLKO to send a message
and terminate the run unit.

If LINAGE was gpecified, those values are
saved via ILBDSPAl.

Lastly, the DOS data management i
OPEN/CLOSE function is invoked. The DTF
address is placed in registers 0 and 4,
and the OPEN or CLOSE macro is issued
after the inline registers are restored.

Upon successful return from the
OPEN/CLOSE function, and either the OPEN
or CLOSE EPILOG section of ILBDSIOO is
entered before returning to the inline
COBOL code.

In the OPEN EPILOG, for any SAM DTF file
opened for input or input/output, the
appropriate EOF address in the DTF is set
to an internal ILBDS1O0 address. This
address is used for further EOF file
processing when the EOF condition

occurs. The user's EOF GN address is
placed in the XDTF control block in line
code for executions for READ.

Subroutines for Object Time Program Operations 37

Licensed Material - Property of IBM

If the file is DTFMT, multi-file reel

with labels omitted, ILBDMVEO will set

the EOF status, and the address of
ILBDMOEO (set by phase 21) is not replaced.

If the file is DTFSD open for output, the
internal address of the ILBDSIOO code for
end of extent processing is placed in the
DTFSD at the appropriate address.

The invalid key address is placed in the
XDTF control block during execution of the
inline code for VRITE. If the end of
extend condition occurs, ILBDSIO0 passes
control to the specified user procedure.

Finally, the transfer address to be used
by the inline READ or WRITE code
expansion is set to the appropriate
values corresponding to the OPEN mode
requested.

For files with nonzero initial
LINES-AT-THE-TOP, ILBDSIO0 invokes
ILBDSPAl to space the specified number of
lines during processing of the first
WRITE request for the file. At this
point, OPEN processing is complete, the
inline registers are restored, and
control is returned to COBOL inline code.

The CLOSE EPILOG processing section frees
the work area obtained during OPEN
processing.

The inline code expansions for 1/0 action
requested use the READ, WRITE, REWRITE,
and WRITE with ADVABCUBG entry points set
during OPEN processing in the XDTF.

The choice of entries set by OPEN is
determined by the OPEN mode requested,
file status specification, and the type
of records in the file.

All 1/0 requests (non-advancing) for
variable block records are handled via
calls to ILBDVBLO. Other record types
are handled by the appropriate DOS data
management GET or PUT macro interface.

Requests for WRITE ADVANCING are routed
via ILBDSPAl.

If EOF, end of extent, or logic errors
occur, the appropriate action to exit to
the user GN address is taken, after file
status is set.

ILBDSIO0 also invokes the user error
declaratives when the appropriate
condition occurs. The user declarative
addresses are found in pre-DTF control
block.

ILBDSAEQO still invokes the user 1/0 error
declaratives, but ILBDSIO0 sets the file
status and determines the inline return
point.

ILBDSIOO0 Linkages

Entry Point ILBDSIOl

Purpose: Handles initialization of SAM
XDTF.

Linkage: Called by inline code (from
INIT3 code).

R14 = points to 4-byte inline parameter
R13 = loaded with TGT address
Rl12 = loaded with PGT address

The parameter list contains:

HWORD1 - displacement of first DTF cell
in TGT
HWORD2 - number of DTF cells in TGT
- (end of parameter list
return point)

Input: See Linkage above.

Output: Requested initialization
operation is performed on various areas
of XDTF. The I/0 transfer address in the
XDTF is set to its initial "logic error"
values,

Entry Point ILBDSIOO

Purpose: Entry point for OPEN/CLOSE
requests and CLOSE UNIT requests. Called
by inline expansion of OPEN/CLOSE verbs.

Rl = address of parameter list
i for OPEN/CLOSE request
Rl4 = return address

R13 = TGT address

R12 = PGT address

Note: Where appropriate, R2 contains
address of BL cell for the file.

The parameter list contains (word
boundary) :

Bytes 1-4 address of DTF

Byte 5 option byte for OPEN
0123 4567 bit positions
0000 0000 input
0000 0001 input, no rewind
0000 0010 input, reversed
0000 0011 input, reversed

no rewind

0000 0100 output
0000 0101 output, no rewind
0000 1100 1I1/0

Byte 5 option byte for CLOSE
0123 4567 bit positions
0000 0000 close rewind
0000 0001 close no rewind
0000 0010 close lock
0000 1000 close reel rewind
0000 1001 close reel, no

rewind

38 Sequential Access Data Management Subroutines

" Byte 6 command byte

0123 4567 bit positions
0001 0000 OPEN request
0001 0100 CLOSE request
0001 1000 CLOSE reel/unit

request

The above parameter list is generated
inline and pointed to by register 1.

Note: The generated inline code still
sets the appropriate DTF bits for the
rewind function in the DTF fields, and
the pre-DTF byte for open mode, in order
to maintain existing interfaces to other
library routines (i.e. label handling,
etc.).

Linkage: Called by inline code
expansions for I/O action verbs READ,
REWRITE, WRITE, and WRITE WITH ADVANCING.

Purpose: I/0 function support for action
verbs. The action verbs are invoked by

the inline code via a transfer vector
that is up in XDTF, the DTF extension
control block of SAM files at open and
close.

For READ:
Rl = address of DTF

R2 = BL address of record (if
appropriate)

R4 = address of the XDTF
Rl4 = return address
R15 = address that is in XDTFRD

For REWRITE:

Rl = address of DTF

R2 = BL address of record (if
appropriate)

R4 = address of XDTF

R1l4 = return address

R15 = address that is in SDTFRW

For WRITE (without advancing):

Rl = address of DTF

R2 = BL address of record (if
appropriate)
R4 address of XDTF

Rl4 = return address
R15 = address that is in XDTFWR

For WRITE (with ADVANCING clause):

*RO0 = address of record if AWO
*Rl = address of DTF

*R2 = BL address of record

*R3 = length or record

*R4 = address of XDTF

Rl14 = return address

+4 if ID not specified
+8 if ID is specified
*R14 +0 address parameter list
* The contents of the registers and the
option byte setting are those specified
for module ILBDSPAQ, which is called by

Licensed Material - Property of IBM

ILBDSIO0 to support WRITE WITH ADVANCING
statements.

Note: 1In the case of the WRITE ADVANCING
data name identifier, the address of the
identifier is placed in the inline
generated code parameter list. ILBDSIOO
loads the address of the identifier prior
to the call to ILBDSPAl.

Parameter list for WRITE WITH ADVANCING:

Byte 1 parameter 1
0123 4567 bit positions
yy remainder of integer/3
00 integer
0l identifier
10 mnemonic
8/370 control
characters
ASA CC, no befores for
file at all
BEFORE, this statement
AFTER, this statement
00 binary identifier
01 packed decimal
identifier
10 zoned decimal
identifier

HO = O©

Byte 2 parameter 2
0123 4567 bit positions
22 either mnemonic skip
code, or quotient of
integer/3 or length
of identifier in
digits.
Byte 3 parameter 3
0123 4567 bit positions
-=== 0000 fixed length record
-=== 0001 variable unblocked
-=-== 0010 variable blocked
(not AWO)
-=== 0100 undefined
--== 1000 apply write only

Byte 4 parameter 4
0123 4567 bit positions
-=~=~ 0001 with code (RW
specified)
1000 ---- advance page
0100 ---- EOP
0010 ---- positioning

Bytes 5-8 address of identifier, if
specified
Interface: Same as interface to ILBDSPAQ

except for bytes 5-8, which contain the
address of the identifier. This address
is passed to ILBDSPAO in register 4.

XDTF, PREDTF, and DTF Control Block
Structure

Only one XDTF control block. is generated
for any SAM file. (This control block is
generated in phase 21.) The XDTF control
block contains those fields necessary to
support SAM I/O with file status and
linage clause.

Subroutines for Object Time Program Operations 38.1

Licensed Material - Property of IBM

The XDTF contains a transfer address for
each of the following I/O action verbs:
READ, REWRITE, WRITE, and WRITE WITH
ADVANCING clause. The XDTF control block
also contains status fields and the
user~-specified EOF and end of extent
addresses.

For a file opened only one way in the

program, a DTF control block is generated
for the file. The SAM DTF control blocks
are DTFCD, DTFMT, DTFPR, DTFSD, and DTFDU.

Preceding the DTF control block is the
pre-DTF control block associated with
that DTF. The pre-DTF control block
contains the pre-DTF status byte, the
error declarative address, and the label
declarative address. These pre-DTF
control blocks have been adjusted in size
for all SAM DTFs, and an address field
has been added that contains the address
of the single XDTF control block for the
file. The presence of the XDTF control
is indicated by setting the XDTF bit in
the PCE-DTE byte to one (this is done by
ILBDSIOO: at open).

Since the address of the XDTF is now
always at a known offset in the pre-DTF
control block, the XDTF address can
always be located from the DTF address.

On all I/0 action requests from inline
source code, the XDTF address is found in
register 4 and the DTF address is found
in register 1.

For any given SAM DTF, the pre-DTF and
DTF control are in contiguous storage.
If the file is opened in only one way in
the COBOL program, the XDTF control
precedes the pre-DTF, DTF pair in
storage. For files opened in more than
one way, there are multiple pre-DTF, DTF
control blocks generated; a pre-DTF, DTF
combination for each way the file is
opened.

There is only one XDTF control block
generated for each file. The address of
this control block is found in each
pre-DTF control block.

The primary DTF field in the DTF is
initialized with the address of the DTF
that has the XDTF control block
associated with it. This is the only
XDTF control block generated for that
file.

For example, if the DTFMT file is opened
for INPUT, OUTPUT, and INPUT-REVERSED in
the same program, then the INPUT pre-DTF,
DTF pair will have the XDTF control block
associated with it in contiguous storage
and that its DTF address is placed in the
TGT DTF address slot.

The other pre-DTF, DTF structures for
OUTPUT and INPUT-REVERSE will be

generated and the address of each will be
found in the pre-DTF control for each
structure.

The address of these pre-DTF, DTF pairs
is located via the secondary DTF pointers
in the PGT. Note that the primary DTF
combination also has a secondary cell
associated with it. Prior to any
OPEN/CLOSE request, the secondary DTF for
the specified file is moved to the
primary cell in the TGT. Register 1 is
always loaded from the primary DTF cell.

SA Printer Spacing (ILBDSPAO) [FA}

Operation: This subroutine performs
printer spacing; that is, it handles the
WRITE statement with the ADVANCING
option., It calls subroutine ILBDVBLO to
write variable-length blocked records.

Entry point ILBDSPAl is called by
ILBDSIOO0 to handle WRITE ADVANCING
together with any linage clause
information from the XDTF for the file.
If LINES-AT-THE-TOP is specified for the
file, ILBDSPAl writes the necessary blank
lines together with the first write
request.

In simple cases, ILBDSPAl issues a PUT
macro directly to write the line.
Otherwise, it creates an appropriate
parameter list and calls ILBDSPAO to
perform the writes. ILBDSPAO is also
called directly from inline code to
process WRITE ADVANCING in LANGLVL(1l)
programs.

Linkage:

L 0,A(Record) (If APPLY WRITE-ONLY)
L 2,BUFPTR (If no APPLY WRITE-ONLY)
L 4,A(Identifier)

L 1,DTFPTR

L 3,RECORDLEN

L 15,=V(ILBDSPAO) or (ILBDSPAl)
BALR 14,15

DC B'01234567' (see note 1)
DC X'22' (see note 3)

DC B'01234567' (see note 2)
DC B'01234567"' (see note 4)

Note 1:
follows:

Substitute binary digits as

For 01: 00 if a binary indentifier
01 if a packed decimal
identifier
10 if a zone decimal
identifier

if before
if after

For 2:

For 3: if system/360 control
character

if ASA control characters

r o ro

38.2 Sequential Access Data Management Subroutines

For 45: 00 if integer
01 if identifier
10 if mnemonic

For 67: The remainder of integer/3.

Note 2: Substitute binary digits as
follows: (1, 2, and 3 are not used):

For O: 1 if ASCII file

For 4567: 0100 if undefined
1000 if APPLY WRITE-ONLY
0000 if fixed
0001 if variable unklocked
0010 if variable blocked
(not APPLY WRITE-ONLY)

Note 3: 2Z = mnemonic skip code, or
quotient of integer/3, or length of
identifier.

Note 4: This byte is only used by the
ILBDSPAl entry point. Substitute binary
digits as follows:

For 0: 1 indicates ADVANCING PAGE
For 1: END OF PAGE specified
For 2: AFTER POSITIONING specified
For 7: 1 indicates WITH CODE

specified (REPORT WRITER)

Output: The user's record, with proper
spacing, is written on his ocutput file.
IOREG (+u4 if variable blocked records) is
forwarded to main line.

SA Variable-Length Record Output (ILBDVBLO)
EFB]

Operation: This subroutine writes
variable-length blocked records. 1t calls
ILBDMOVO to move records into a buffer.

Linkage:
L 1,DTFPTR
L 2,A(record)
L 3,Record length
L 15,=V(entry point)
BALR 14,15
where:
entry point

is ILBDVBLO if the subroutine was
called by ILBDSPAO, or ILBDVBL1, if
the subroutine was called by the
main-line program.

Output: The record is written and the
IOREG is advanced past the record length
field.

Licensed Material - Property of IBM

SA Exrror (ILBDSAEQ) (FC]

Operation: This subroutine handles
errors on DTFMT and DTFSD files. If an
XDTF is present and file status has been
specified, then file status is set in the
XDTF. If user error bytes are to be set,
they are set and either an exit to a user
error routine is made or, if file status
has not been set, an error message is
printed by fetching $$BCOBER. If
$$BCOBER is fetched, an appropriate
message is printed on SYSLOG and SYSLST
by $$BCOBRl. If a dump is not required,
return is made to ILBDSAEO; if it is,
$$BPDUMP is called. $$PDUMP provides the
dump and returns control to ILBDSAEO. 1If
ILBDDBG2 (the STXIT routine) is in the
load module, control is passed to it. 1If
it is not, the job is cancelled.

Linkage: None. Control is transferred to
this subroutine through LIOCS. The address
of the subroutine is in the DTF.

Entry points are:

ILBDSAEO (ADDR in ERROPT field of DTF)
ILBDSAE1 (ADDR in WRLERR field of DTF)

Qgéggg: Register 0 contains the error
code and the address of DTF-8 when
fetching $$BCOBER.

Sh_Tape Pointer (ILBDIMLO) (FD)

Operation: This subroutine gets the
pointer to the physical tape drive
associated with the logical unit for a
particular tape file.

Linkage:
LA 0,DTFPTR cell
L 15,=V(ILBDIMLO)
BALR 14,15

Output: The current PUB pointer for this
device is moved to DTF-8.

SA Position Multiple File Tapes (ILBDMFTO)
FE

Operation: This subroutine positions an
unlabeled or nonstandard labeled tape to
the beginning of a desired file. Given a
position integer greater than one, the
subroutine rewinds and forward-spaces the
tape, bypassing all files ahead of the
desired one.

Subroutines for Object Time Program Operations 38.3

Licensed Material - Property of IBM

Linkage:
L 1,DTFPTR
LA 2,Position integer
L 15,=V(ILBDMFTO0)
BALR 14,15

Output: The tape is positioned.

SA Test Tape File (ILEDMVEQ) [FF)

Operation: This subroutine determines

whether a multivolume unlabeled tape has
reached EOF or EOV and acts accordingly.
It sends a message reading, "C126D IS IT

EOF?" to the operator. If the operator's

answer 1s yes (Y or y), the subroutine
exits to the AT END address; if it is no (N
or n), the subroutine executes an FEOV
instruction to switch to the next volume,
executes a GET instruction to get the first
record, and then returns.

Linkage:
L 5,A(AT END routine)
L 1,A(DTF)
BALR 15,0
La 3,12(15) (See Note)
L 15,16(1)

BAL 14,8(15)

For spanned records, a different linkage
is required since register 3 is not
available.

38.4 Sequential Access Data Management Subroutines

and the work area address is needed by the
subroutine:

CNOP 2,4
L 5,A(AT END routine)
BALR 15,0

ST 5,20(15)

ST 0,24(15)

LA 5,20(15) (Register 5 points to the
2 fullword constants below)

L 15,16(1)

B 8(5)

Ds F (Contains end-of-file address)
DS F (Contains workarea address)

BAL 14,8(15)

Note: This is the same address as that in
register 14.

OQutput: The message, "C126D IS IT EOF" is
sent to the operator.

SA STXIT Macro Instruction (ILBDABX0) (FG)

Operation: This subroutine is called
during the code generated for OPEN verbs.
It issues a STXIT AB macro instruction
specifying that an address within the
subroutine is to be given control by the
system in the event of aknormal
termination. The secondary entry point is
called if an error occurs on a unit record
device, there is a standard error
declarative for the device, and STXIT is
requested on the CBL card. 1If the ILBDTC20
subroutine is in the load module, control
is passed to it.

Linkage:
L 15,=V(ILBDABXO0)
BALR 14,15
OQutput: The STXIT AB macro instruction is

issued.

SA Reposition Tape ($$BFCMUL) (FH]

Cperation: This subroutine resets the PUB
pointer for a particular (S¥YsSnnn) device to
the same as that saved earlier (by
subroutine ILBDIMLO). It rotates the
LUB/JIB pointers until the current PUB
pointer is identical to the saved one.

Linkage:

L 0,A(DTF) (See Note)
LA 1,=CL8'SBFCMUL"*
svC 2

Licensed Material - Property of IBM

Note: The saved PUB pointer is at DTF-8
Output: the LUB and JIB pointers may be
changed.

INDEXED SEQUENTIAL ACCESS DATA MANAGEMENT
SUBROUTINES

The subroutines described below handle
some of the I/0 operations for the indexed
sequential access method.

ISAM READ and WRITE (ILBDISMO) (Ga)

Operation: This subroutine handles all
indexed sequential READ and WRITE
instructions. It checks for invalid key
and input/output errors and branches

accordingly to the appropriate procedure.

Linkage:
L 1,DTFPTR
L 0,A(Record) BL for Sequential
READ, REWRITE only
L 15,=V(entry point)
L S« A(INVKEY or EOF)
BALR 14,15

For ‘entry point,' substitute one of the
following:

ILBDISMO for LOAD or EXTEND (WRITE,
Sequential)

ILBDISM1 for ADD (WRITE, Random)

ILBDISM2 for Random Retrieval (READ,
Random)

ILBDISM3 for Random Retrieval (READ,
Sequential)

ILBDISM4 for Random Update (REWRITE,
Random)

ILBDISM5 for Sequential Update (REWRITE,
Sequential)

Output: The record is read or written.

ISAM Error Routine (ILEDISE(O) (GB)

Operation: This subroutine processes ISAM
errors either by setting user error bytes
(if any) and branching to a user error
routine, or if there is no user error
routine, by setting the error code and
fetching $$BCOBER. If the exit is to the
user routine, register 1 points to the
error block. If 4BCOBER is fetched, an
appropriate message is printed on SYSLOG
and SYSLST by $$BCOBRl1. Then, if a dump is
not required, control returns to ILBDISEO;

Subroutines for Object Time Program Operations 39

Licensed Material - Property of IBM

if it is, $5PDUMP is called, provides the
dump and returns control to ILBDISEO. 1If
ILBDDBG2 (the STXIT routine) is in the load
module, control is transferred to it. 1If
it is not, the job is cancelled.

Linkage:

If this subroutine is called by
ILBDISMO:

L 2, ERRBLKPTR

L 1,DTFPTR

L 15,=V(ILBDISEOQ)
BR 15

If this subroutine is called by the main
line:

L 1,DTFPTR
L 15,=V(ILBDISEl)
BR 15
Output: User error bytes, if any, are set

to reflect the error condition. Register 1
points to the error block for data transfer
on input file. The error code and address
of DTF-8 (for PDUMP) are forwarded in
register 0 when fetching $$BCOBER.

ISAM START (ILBDSTRO) [GC]

Operation: This subroutine, in response to
START or START with the KEY EQUAL TO
option, issues the $$BSETL macro to
initiate sequential retrieval. If the
subroutine is called in response to the KEY
EQUAL TO option, certain processing occurs
prior to the issuance of the $$BSETL macro;
after obtaining the address and length of
the NOMINAL KEY data-name (KEYARG) from the
DTF, this subroutine moves the generic key
identifier to the NOMINAL KEY data-name and
pads with zeros if the generic key
identifier is shorter.

Linkage:

If the subroutine is called in response
to START:

L 0,DTFPTR
L 15,=V(ILBDSTR1) (Entry point in
BALR 14,15 ILBDSTRO)

If the subroutine is called in response
to START with KEY EQUAL TO:

L 0,DTFPTR

LA 3,identifier (Address of
identifier
which contains
key value
requested)

40 Direct-Access Data Management Subroutines

LH 5,=H'LENGTH'® (Length of
OR 'VILC® identifier)

L 15,=V(ILBDSTRO)

BALR 14,15

Output: For START, the file is positioned
to the specific key within the file. For
START with KEY EQUAL TO, the file is
positioned to the beginning of the generic
group within the file. The generic key
identifier is moved to the NOMINAL KEY
data-name and padded with zeros if
necessary.

DIRECT-ACCESS DATA MANAGEMENT SUBROUTINES

The subroutines described below handle
some of the 1/0 operations for the direct
access method.

DA Close Unit (ILBLCRDO) [HA)

Operation: This subroutine implements a
CLOSE UNIT instruction on a DA file which
is read sequentially when absolute track
(physical) addressing is used.

Linkage:
L 1,DTFPTR
L 15,=V(ILBDCRDO)
BALR 14,15
Output: The current extent bucket in the

Extent Store Area (described under "DA
Extent Processor®) and the SEEK address are
updated to the first extent on the next
volume for subroutine ILBDDSRO.

?A ?1ose Unit for Relative Track (ILBDRCRO)
HB

Operation: This subroutine implements a
CLOSE UNIT instruction for relative track
addressing on a DA file which is read
sequentially.

Linkage:
L 1,DTFPTR
L 15,=V(ILBDRCRO)
BALR 14,15

Output: The current extent bucket (in the
high-order byte of DTF-16; followed by the
3~-byte address of the extent takble in the
DTF) and the SEEK address are updated to
the first extent on the next volume for
subroutine ILBDRDSO.

DA Extent Processor (ILBDXTNO) [HC]

Operation: When absolute track addressing
is used, this subroutine is called to store
the extent limit information made available

by an OPEN. A maximum of 7 extents can be
stored. The Extent Store Area address is
in DTF-16.

Linkage: None. The address of this

subroutine is in the DTF.

Qutput: The extent limits are saved. The
SEEK address is initialized for ILBDDSRO,
and the first byte of the Extent Store Area
is initialized to 0.

The Extent Store Area format is as follows:

Current extent bucket. It is
set at CLOSE UNIT time by
subroutine ILBDCRDO and used
as an indicator by subroutine
ILBDDSRO.

Byte 0:

Byte 1: Used by subroutine ILBDXTNO to
indicate the SY¥S-number of the

applicable unit.

Bytes 2-8: The lower limit of the first
extent, in the form MBBCCHH.
Bytes 9-15: The upper limit of the first
extent, in the form MBBCCHH.
The lower and upper limits of
any remaining extents, in the
same form as the first.

Bytes 16-n:

X*FF*, to indicate the end of
the extent store area.

Byte n + 1:

DA _Sequential Read (ILBDDSRO) [HD]

operation: This subroutine reads a DA file
sequentially when absolute track addressing
is used. It generates a SEEK address from
the extent information stored by subroutine
ILBDXTNO and from the IDLOC returned by

LIOCS. It utilizes subroutine ILBDIDAO to
increase the SEEK address Ly one track.
Linkage:
L 1,DTFPTR
L 0,A(ACTKEY) (If actual key
specified)
SR 0,0 (If actual key not
specified)
L 15, =V(ILBDDSRO)
L S¢A{EOF)
BALR 14,15

Licensed Material - Property of IBM

Output: The record is read and the track
address is updated for the next READ.

DA_Sequential READ for Relative Track
(ILBDRDS0) (HE]

Operation: This subroutine reads a DA file
wfth relative track addressing
sequentially. The relative track address
is initialized at OPEN time by the
main-line code or, at CLOSE UNIT time, by
subroutine ILBDRCRO. The address of the
next record, which has been stored in the
IDLOC field by the LIOCS module, is stored
in the track address field.

Linkage:
L 1,DTFPTR
L 0,A(ACTKEY) (If actual key
specified)
SR 0,0 (If actual key not
specified)
L 15,=V(ILBDRDSO0)
L 5,A(EQF)
BALR 14,15
Output: The record is read and the track

address is updated for the next READ.

DA_RZERO Record (ILBDFMTO0) (HF)

Operation: When aksolute track addressing
is used, this subroutine writes Record 0
onto each track of a DA output file.

Linkage:
L 1,DTFPTR
L 15,=V(ILBDFMTO)
BALR 14,15
Output: The RZERO record is written.

DA RZERO for Relative Track (ILBDRFMO) (HGI]

Oreration: This subroutine writes Record 0
onto each track of a DA output file with
relative track addressing.

Linkage:
L 1,DTFPTR
L 15,=V(ILBDRFMO0)
BALR 14,15
Output: The RZERO record is written.

Subroutines for Object Time Program Operations 41

Licensed Material - Property of IBEM

© DA Increase SEEK Address (ILBDIDAQ) [HH]

Cperation: This subroutine increasges a
SEEK address by one track when absolute
addressing is used.

Linkage:
L 1,DTFPTR
L 15,=V(ILBDIDAO)

BALR 14,15

Qutput: The SEEK address is increased.

DA READ and WRITE (ILBDDIOQ) ([HI}

Overation: When absolute track addressing
is used, this subroutine reads or writes

records on random access DTFDA files in
response to READ or WRITE instructions
using absolute addressing. It also checks
for invalid key and input/output errors and
branches, if necessary, to the appropriate
procedure.

Linkage:

LH 3,RECSIZE (Undefined and spanned
records only)

AH 3,=H'4' (Spanned records only)
L 0,A (ACTKEY)

L 15,=V(Entry point)

L 5, A (INVKEY)

BALR 14,15

For ‘'entry point®', substitute as
follows:

ILBDDIOO for WRITE AFTER or WRITE key
(American National standard and
DOS/VS COBOL WKITE/REWRITE)

ILBDDIO1 for READ key and SAVE key
READ (American National Standard and
DOS/VS COBOL READ) :

ILBDDIO2 for READ key

ILBDDIO3 for WRITE key

ILBDDIOUW for WRITE AFTER

Output: The record is read or written.

DA READ and WRITE for Relative Track
(ILBDRDIO) [HJ)

Operation: This subroutine reads or writes
records an random access DTFDA files in
response to READ or WRITE instructions
using relative track addressing. It also
checks for invalid key and input/output
errors and, if necessary, kranches to the
appropriate procedure.

42 VSAM Data Management Subroutines

Linkage:
LH 3,RECSIZE
L 1,DTFPTR
L 0,A(ACTKEY)
L 15,=V(entry point)
L 5,A(INVKEY)
BALR 14,15

For ‘'entry point', substitute as
follows: ’

ILBDRDIO, for WRITE AFTER cr WRITE KEY
(American National Standard and
DOS/VS COBOL WRITE/REWRITE)

ILBDRDI1, for READ KEY and SAVE KEY
READ (American National Standard and
DOS/VS CCBOL READ)

ILBDRDI2, for READ KEY

ILBDRDI3, for WRITE KEY

ILBDRDIY4, for WRITE AFTER

Output: The record is read or written.

DA Error Routine (ILBLCLCAE(Q) [HK]

Operation: This subroutine handles errors
on DTFDA files either Ly setting user error
bytes (if any) and branching to a user
error routine, or if there is no user error
routine, by setting the error code and
fetching $$BCOBER. If $$BCOBER is fetched,
an appropriate message is printed on SYSIOG
and SYSLST. Then, if a dump is not :
required, control returns to ILBDDAEO; if
it is, $$BPDUMP is called. 4BPDUMP
provides the dump and returns control to
ILBDDAEO. If ILBDDBG2 (the STXIT routine)
is in the load module, control is passed to
it. If it is not, the job is cancelled.

Linkage:
L 2,A(DTF-24)
L 15,=V(ILBDDAEOQ)
BR 15
Output: Register 1 points to the data in

the error block when exiting to user if
there has been input data transferred.
user error bytes, if any, are set to
reflect the error condition.

The

VSAM DATA MANAGEMENT SUBROUTINES

The subroutines described below are the
interface between the IBM DOS/VS COBOL
object program and the VSAM system control
subroutines.

VSAM Initialization (ILBDINTO) (HL]

Operation: This subroutine issues the
GETVIS macro instruction to obtain virtual
storage for the VSAM File Control Block
(FCB) associated with each VSAM File
Information Block (FIB). 1t initializes
the FCB to zeros, sets some initial values,
and stores the address of the FCEB in the
okject program's TGT area. It also
acquires work space for the VSAM
subroutines.

Linkage:

L R15,V(ILBDINTO)

BALR R14,R15

oC XL2'DISPL IN TGT CF 1ST FIE CELL®
Dc XL2'NUMBER OF FIR's'

Output: Storage is acquired for the VSAN
FCB and VSAM work space.

VSAM Open_and Close Subroutine (ILBDVOCO)

Licensed Material - Property of IBM

Indicate end of
list.

MVI SAV3+LASTDISP
(rR13) ,Xx"80
LA R1,SAV3{R13)

L R15,=V(ILBDVOCO)
BALR R14,15
Note 1: See FOPENOPT field of the FCB in

"Section 3: Data Areas" for kit
assignments for each option.

Linkage--For CLCSE Request

The following code is generated for each
file to be closed:

L R1,FIB-CELL(R13)

ST R1,SAV3+DISP(R13)

MVC FCLOSOPT (4,R1), (See Note 1)
=XLU4°'CLOSE-OPTIONS"

The following code is generated last:
MVI SAV3+LASTDISP(R13),X"80°*
LA R1, SAV3(R13)
L R15,=V(ILBDVOC1)
BALR R14,R15

Note 1: See FCLOSCPT field of the FCE in

[HM

|t

cperation: This subroutine handles all
VSAM OPEN and CLOSE reguests.

For OPEN, the subroutine fills in FCB
fields, obtains workspace for the file,
constructs three control blocks for each
file to be opened (ACB, EXLST, RPL), and
fills in fields in these control blocks.
It sets up the STATUS KEY and RERUN
integer and checks the CLOSE option for
LOCK. 1If opened OUTPUT, it checks the
high relative byte address for zero. It
then branches to the appropriate VSAM
system control subroutine.

For CLOSE, the subroutine issues a
FREEVIS for all space used for the file
being closed and sets up the STATUS KEY as
well as the CLOSE options in the FCB. It
tests for RERUN and, if required, takes a
checkpoint. It then kranches to the
arpropriate VSAM system control subroutine.

Linkage--For OPEN Request

The following code is generated for each
file to be openead:

L R1,FIB-CELL(R13)

ST R1,SAV3+DISP(R13)

MVC FOPENOPT(4,R1),
=XL4"OPEN-OPTIONS® (See Note 1)

MVC FUSEERR(4,R1), If USE...ERROR
USERRPN(R12) Declarative

The following code is generated last:

"Section 3: Data Areas"™ for kit
assignments for each option.

VSAM Action Request Subroutine (ILBDVIOOQ)
[Hid)

This subroutine handles all requests for
START, READ, REWRITE, WKITE, and DELETE
verbs with vsaM files.

Each request is routed to the code
handling the particular verb. This code
passes the request to VSAM. Upon execution
of the request, it checks the return code
from VSAM for errors. Depending on the
return code and conditions set in the FCE,
it returns control to the calling
subroutine.

For more specific meanings for each of
the STATUS KEY entries, see IBM DOS/VS
COBOL Programmer's Guide.

Linkage:
MOVE RECORD-AREA, (If FROM option
FROM-AREA specified for
WRITE and
REWRITE)
R4, FIB-CELL(R13)

L

L R14, return-GN

MVC FENDINV(U4,RYU),
ENDINVGN(R12)

(If INVALID KEY,
AT END, Oor AT
ECP specified)

Subroutines for Object Time Program Operations 43

Licensed Material - Property of IBM

MVI FRECKEY(R4), (If KEY clause
RECORD-KEY-# specified for
READ and START)
LB RO, =H" RECORD- (If WRITE or
LENGTH' REWRITE speci-~

fied for fixed
length record)
or

LH RO, RECORD-VLC(R13) (If WRITE or
REWRITE speci-
fied for vari-
able length rec-
ord)

LA RO, KEY-LENGTH (If START speci-
fied with key)

L R15,FCOBRTN(R4)

BALR R1,R15

DC XL1'COMMAND-CODE' (See Note 1)

DC XL3°'OPTICNS' . (See Note 2)
MOVE

L R5, NEXT-sentence GN (if INTO option
BR R5 for READ)

Note 1: Command Codes-
(4=READ, 8=WRITE,12=REWRITE,16=START, 20=
DELETE)

Note 2: Option bytes have the following
bit information:

Byte 0 - Bit geanigg
Invalid Key

0

1 At End
2-5 Unused

6 Next

7 Key (For READ or START)

Byte 1 - Search condition for START
Code Meaning
X*'80" Greater
X*40* Equal
X*20"' Not less

Byte 2 - X'80' called from ILBDSRTO

Qutput: The requested input/output
instruction is performed.

44 VSAM Data Management Subrcutines

ASCII SUPPORT SUBROUTINE

The subroutine described below handles
two of the functions necessary for handling
files written in ASCII code. Other
functions are handled by code in the COBOL
Frogram or by subroutine ILBDSPAO.

Separately Signed Numeric Subroutine
{ILBDSSNO) [IA]

Operation: This subroutine is called
whenever a data-namre is involved in an
arithmetic operation or in certain move
operations and has a TRAILING SEPARATE
CHARACTER or LEADING SEPARATE CHARACTER
clause in the source program. The
subroutine checks the sign for validity.
If the sign is not a valid sign,the
subroutine issues a message and abnormally
terminates the job. The subroutine has two
entry points, ILBDSSNO and ILBDSSN1.

The subroutine is called at entry point
ILBDSSNO, when an internal deciral number
is to be produced. It places the proper
sign in the low-order four bits of the
receiving byte.

The subroutine is called at entry point
ILBDSSN1, when a separately signed external
decimal number is to be produced. It
rlaces the proper EBCDIC sign in the
receiving byte and replaces the converted
sign in the high-order four bits with a
X'FY.

Linkage:

LA 0,8ign

LA 1,Receiving byte

L 15,=V(ILBDSSNO) or (ILEDSSN1)
BALR 14,15

Output: The output of this routine is an
internal decimal number, or a separately
signed external decimal number.

Three options are available for
object-time debugging. These are the
statement number option (STATE), the flow
trace option (FLOW), and the symbolic debug
option (SYMDMP). The subroutines for the
first two options provide debugging
information at abnormal termination of a
program; the subroutines for the third
option provide debugging information either
at abnormal termination or dynamically
during the execution of a program. All of
the subroutines are under the control of
and are serviced by the Debug Control
subroutine (ILBDDBGO). This chapter
discusses (1) the Debug Control subroutine
(ILBDDBGO), and (2) the sukroutines that
are called in response to each of the three
debug options.

Note: Diagram 6 in "Section 2: Program

Organization® illustrates the calling
dependencies among these routines.

DEBUG CONTROL SUBROUTINE (ILEDDBGO)

This subroutine is included by the
linkage editor whenever the CBL control
card for a program contains at least one of
the debug options or the CCUNT option. It
is a single CSECT, consisting of eight
routines and one common area. These are,
with their entry points:

¢ Test routine (ILBDDBGO)

e Print routine (ILBDDBG1)

e STXIT routine (ILBDDBG2)

e TGT Address routine (ILBDDBG3)

s Save Register 14 routine (ILEDDBGY)

e Dynamic Dump routine (IIBDDBGS)

e Range routine (ILBDDBG6)

e Debug common area (ILBDDBG7)

e Close Debug File routine (ILBDDBGS)
The routines are described below. The
debug common area is descriked in "Section
3: Data Areas."

TEST ROUTINE (ILBDDBGO) ([JAl: A call is
generated to the TEST routine (ILBDDBGO) in

INIT 3. This routine tests for the debug
options that have been specified by

Licensed Material - Property of 1BM

DIAGNOSTIC AID SUBROUTINES

checking bits 4, 5, and 6 of SWITCH in the
TGT table, or for the COUNT option
specified through bit 20.

The subroutine calls FLOW (ILBDFLW0) fox
the flow trace (FLCW) option, and loads and
branches to SYMINIT (ILBDMP10) for the
symbolic dump (SYMDMP) option. These
subroutines perforr initialization
processing for the respective options. The
initialization process varies for each
option and is discussed below.

The TEST subroutine calls the execution
statistics initialization subroutine
(ILBDTCO00) to begin implementation of the
COUNT option.

The TEST routine issues the STXIT macro
instruction specifying that the STXIT
routine (ILBDDBG2) is to receive control
when abnormal termination occurs. It also
computes the load point for SYMDMP modules
and issues the LOAD macro instruction to
load ILBDMP10. ILBDMP10 is then given
control so that it can read in and, process
the SYMDMP control cards.

Diagrams 4 and 5 in "Section 2: Prograi
Organization®" show the flow of control for
the Symbolic Dump (SYMDMP) subroutines.
Diagram 6 shows control flow for the Debug
control Subroutine (ILBDDBGO) through five
levels.

Linkage:
L 15,=V(ILEDDBGO)
BALR 14,15

If the COUNT option has been specified, th
following is added:

DC H'numkter-of-count-blocks'
Input: Register 13 contains the address o

the TGT.

PRINT ROUTINE (ILBDDBG1l) ([JB]: The PRINT
routine is called by each of the
subroutines associated with the debugging
operations. 1Its function is to print
either the debugging information requested
or any error messages about the debug
option subroutines themselves.

Linkage:
L 15,=V(ILEDDBG1)
BALR 14,15

Diagnostic Aid Subroutines 4

Licensed Material - Property of IBM

Input:

1. DBGI1CODE in the communication area in
ILBDDBGO module. This code indicates
to ILBDDBG1 how the output is to be
printed.

2. Buffer, containing information to be
written on SYSLST.

Output:

1. Register 2 contains the address of the
next buffer.

2. A line of output on SYSLST.

STXIT ROUTINE (ILBDDBG2) [JC]: This
routine gets control from the system when
an abnormal termination has occurred. This
routine may also get control from a COBOL
library I/0 module when a termination type
of error is recognized. It traces all
COBOL programs in the run unit.

For those programs compiled with the
COUNT option, the STXIT routine calls
subroutine ILBDTC20 to write execution
statistics on SYSLST. For those that are
compiled with SYMDMP, STATE, or FLOW
options, the subroutine calls the
corresponding sukroutines to record the
requested debugging information.

Therefore, if the interrupted program
was itself called by another program in the
same load module, the STXIT routine also
supervises debugging operations for the
calling program if one of the debug options
has been specified for that program. It
uses data area FIRST-LAST, for this purpose
(see "TIGT Address routine (ILBDDBG3))".

The debugging operations are completed when
the highest level calling program which has
been compiled with a dekug option (SYMDMP,
STATE, or FLOW) has been given debug
information. Diagram 6 shows the control
flow for the STXIT routine through five'
levels. Diagram 11 in "Section 2: Program
Organization®" shows the doukleword
data-area (FIRST-LAST) which is used to
trace the COBOL programs at aknormal
termination.

Linkage:

This routine is given control directly from
the System at abnormal termination. It
returns to the System by issuing an EOF
macro instruction.

Input: STXIT save area, containing the PSW
and registers 0-15 at the time of abnormal
termination.

TGT ADDRESS ROQUTINE (ILBDDBG3) [JCl: The

TGT Address routine (ILBDDEG3) is called by
the COBOL program following the return of

46 Debug Control Statements

control to the COBOL program after a branch
outside the current program. The TGT
Address routine stores in a fullword
(LAST), the address of the current TGT upon
return from a called program. This data
area is used by the STXIT routine at
abnormal termination to trace the calling
programs of an interrupted program so that
debugging information may be provided for
each of them. Diagram 11 in "Section 2:
Program Organization®™ shows the pointer
connections between the FIRST-~LAST data
area and the TGT's of the programs that are
link edited together.

Linkage:
L 15,=V(ILBDDBG3)
BALR 14,15
Input: Register 13 contains the address of

the current TGT.

SAVE REGISTER 14 ROUTINE (ILBDDBGU4) (JC]:
The Save Register 14 routine (ILBDDBGU4) is
called by the COBOL program just before any
instruction which passes control outside
the COBOL program. It stores the address
of this instruction. If an abnormal
termination occurs and the PSW points
outside the current COBOL program, it is
this address and not the PSW address that
is used to determine the number of the
source statement that caused the program
error.

Linkage:

L 15,=V(ILBDDBGH)
BALR 14,15

Input: Register 14 contains the address of
the instruction that transfers control
outside the current program.

DYNAMIC DUMP ROUTINE (ILBDDBGS) [(JD): The
function of this routine is to signal
SYMDMP that a dynamic dump is to be given.
Upon return from SYMDMP, register 10
contains the address of the instruction
that was overlaid with the BALR instruction
that called ILBDDBGS5. (See "Program
Modification" under "Symbolic Dump (SYMDMP)
Subroutine”.) The overlaid instruction is
then executed and control is returned to
the COBOL program.

Linkage:

L 15,=V(ILBDDBGS)
BALR 14,15

Input:
1. Register 3 contains the TGT address.

2. Upon return from SYMDMP, register 10
points to the instruction that was

overlayed with the BALR instruction
that invoked ILBDDBGS.

RANGE ROUTINE (ILBDDBG6) [JE]l: This routine
is called from the GOBACK code. 1Its
function is to indicate that a branch
(GOBACK) to a program that is higher than
the highest COBOL program compiled with
SYMDMP, STATE, or FLOW has been taken.

Such a program is outside the range of the
Debug Control Subroutine. That is, an
abnormal termination in such a program will
be intercepted by the STXIT routine
(ILBDDBG2). The STXIT routine's only
function in this case is to issue the EOJ
macro instruction.

Linkage:

L 15,=V(ILBDDBG6)
BALR 14,15

Input: Register 13 contains the current
TGT address.

CLOSE DEBUG FILE ROUTINE (ILBDDEGS8) [JE]:
This routine is called by ILEDTC20 to close
the debug file when object-time execution
statistics have been written, but there are
no debugging options specified.

Called by: ILBDTC20

Linkage:

L 15,=V(ILBDDBGS)
BALR 14,15
Calls: $$BCLOSE
Input: None

Output: DTF closed

SUBROUTINES FOR THE DEBUG OPTIONS (STATE,
FLOW, SYMDMP)

The statement number (STATE) and flow trace
(FLOW) options each require a separate
subroutine. They are the Statement Number
subroutine (ILBDSTNO) and the Flow Trace
subroutine (ILBDFLWO). The symbolic dump
option (SYMDMP) requires a subroutine made
up of 13 modules or phases, whose entry
point from the Debug Control Subroutine is
ILBDMP10.

The debugging information provided by
the Statement Number subroutine (ILBDSTNO)
consists of the number of the COBOL
statement and the number of the verb within

Licensed Material - Property of IBM

the statement being executed when abnormal
termination occurred. The debugging
information provided by the Flow Trace
subroutine (ILBDFLWO) consists of the
source card numbers that represent the
COBOL procedures executed before abnormal
termination occurred.

When a dynamic dump is requested, the
Symbolic Dump subroutines provide a
formatted symbolic dumpr of specified areas
of the Data Division just prior to the
execution of each of the specified COBOL
statements. When SYMDMP is specified, the
symbolic dump subroutines provide at
abnormal termination a formatted symbolic
dump consisting of the following parts:

1. an abnormal termination message
identifying the source statement
causing the error,

2. selected areas in the TGT, and

3. all the data items from the Data
Division.

STATEMENT NUMBER SUBROUTINE (ILBDSINO) [JF]

Operation: When the subroutine receives
control from the STXIT routine (ILBDDBG2)
at abnormal termination, it provides the
number of the CCBOL statement and the
number of the verb within the statement
that was being executed when aknormal
termination occurred. If abnormal
termination occurs during execution of an
instruction outside of the COBOL program,
the statement number that is provided is
that of the last COBOL statement executed.
The subroutine uses the information stored
by the Save Register 14 routine (ILBDDBGY)
for this purpose. The subroutine calls the
PRINT routine (ILBDDBG1l) to write the
debugging information on SYSLST.

This subroutine is called from the STXIT
routine (ILBDDBG2) using the following
sequence:

L 15,=V(ILBDSTNO)
BALR 14,15

Input: Register 13 points to the
communication area in the Debug Control
Subroutine (ILBDDBGO) from which the
address of the current TGT and other
information can be obtained.

Output:
SYSLST.

Statement number message on

Diagnostic Aid Subroutines 47

Licensed Material - Property of IBM

FLOW TRACE SUBROUTINE (ILBDFLWO) [JG)

Operation: This sukroutine is entered at
entry point ILBDFLWO by the TEST routine
(ILBDDBGO) for initialization and at entry
point ILBDFLW2 by the STXIT routine
(ILBDDBG2) at abnormal termination. It is
also called at entry point ILBDFLW1l by
compiled code upon encountering each COBOL
PN. Calls are not generated for dummy PNs.
when the subroutine is called for
initialization at entry point ILEDFLWO, it
obtains the address of the area allocated
for the flow trace table. The number of
traces specified by the user is a factor in
determining the table size at compile tirme.
This table is at a fixed displacement in
the TGT of the COBOL program. After
initialization each time that the
subroutine receives control from the COBOL
programn, it inserts the executing program's
8~character Program Identification as well
as the card number of the current COBOL
Procedure into the next available position
in the table. The address of the next
available position in the takle is stored
at location NXTAVL. Pointers for physical
end (PEND) and logical keginning (LBEG),
which indicates table wraparound, are also
employed and are located just before the
80-byte PROGRAM-ID area of the table.

When the end of the table is reached,
location NXTAVL points once again to the
beginning of the table; and subsequent
entries into the table overlay previous
entries. The procedure is repeated until
the end of the main COBOL program or until
abnormal termination. If abnormal
termination occurs, the subroutine receives
control from the STXIT routine; and it
calls the PRINT routine (ILBDDBGl) to print
each entry of the table beginning with the
earliest entry.

Linkage:

From the TEST routine (ILBDDEGO):
L 15,=V(ILBDFLWO0)
BALR 14,15

From compiled code:

L 15,=V(ILBDFLW1)
BALR 14,15

From the STXIT routine (ILBDDBG2)

L 15,=V(ILBDFLW2)
BALR 14,15

48 Symbolic Dump (SYMDMP) Sukroutine

SYMBOLIC DUMP (SYMDMP) SUBROUTINE [JH]

The symbolic dump subroutine, referred to
mnemonically as SYMDMP, consists of 13 load
modules or phases. Of these, two '(ILBDMPO1
and ILBDMP02) service I/0 requests for the
remaining modules; five (ILBDMP10 through
ILBDMP14) constitute what is here termed
Pass 1; and six (ILBDMP20 through ILBDMP25)
constitute Pass 2. The first digit in the
load module name identifies the pass, the
second digit the module within the pass.

The 13 modules of SYMDMP are arranged in
an overlay structure under the control of
SYMDMP itself, with the modules of Pass 2
overlaying those of Pass 1 after
initialization is complete. (See Diagrams
3 and 7 in "Section 2: Program
Organization."

PASS1: The function of Pass 1 is to scan
control cards and translate them into
tables for the use of Pass 2. Pass 1 is
entered during INIT3 kefore execution of a
program compiled with the SYMDMP option or,
when several programs compiled with the
SYMDMP option have been link edited
together, before execution of the first

program. Pass 1 is entered only once per
run unit.
PASS 2: The function of Pass 2 is to

produce the output requested by the control
cards. After Pass 2 has overlaid Pass 1,
it is present during the entire run and may
be entered many times. Pass 2 may be
entered at the following times:

e During INIT3 before executicn of each
program

e Before each entry to any independent
program segment

e At abnormal termination

e Each time a dynamic dump request is to
be satisfied.

COMMON DATA AREA: The SYMDMP modules
communicate with one another by means of a
block of cells initialized by Pass 1 and
kept intact (not overlaid) when control is
turned over to Pass 2. Register 12 is
reserved in all modules as the Lrase
register for this area. The first portion
of the common data area contains four
standard register save areas, and data
needed by both passes. The data needed by
both passes include: addresses of tables;
addresses of buffers; cells used by the two
170 modules; information about storage
*llocation; etc. The second portion
contains data used to communicate between
the modules of either pass, but not between
the passes. This includes: 1load addresses

for the modules of the pass; addresses of
the table entries currently being
processed; parameters for subroutines; etc.

OBJECT~TIME TABLES: Three tables are built
in Pass 1 to facilitate communication among
the modules of SYMDMP. These are:

¢ The PCONTROL table, which contains one
entry for each program in a run unit;
it preserves information about the
program's debug file, the
program-control card options, the other
tables, and critical locations in the
COBOL program itself.

e The DYNAMTAB table, which contains one
entry for each dynamic dump request; it
preserves card/verb number, virtual
storage location and machine
instruction corresponding to the
request, and pointers which are used to
locate on the debug file the data-names
specified.

e The DATADIR table, which is an index to
the blocks of the debug file that are
needed for dynamic dumping.

For detailed descriptions of the PCONTROL,
DYNAMTAB, and DATADIR tables, see "Section
3: Data Areas."

INPUT: SYMDMP receives information from
four sources external to itself:

e The communication area of ILBDDBGO,
containing, in particular, in LAST the
address of the COBOL program's TGT.

e The COBOL program’s TGT and INIT1
cells, its instructions, and its Data
Division.

e The control cards on SYSIPT.

e The debug file built by the COBOL
compiler.

control cards: There are two types of
control cards, program-control and
line-control.

Each program for which any SYMDMP
service is requested must be identified by
a program-control card. PROGRAM-1D, debug
file information, the ENTRY option, and the
HEX option for abnormal termination dumps
are specified on this card. Each dynamic
dump request is identified Ly a
line~-control card. Card/verb number, the
Data Division items to be dumped, and the
ON and local HEX options are specified on
this card.

The SYMDMP control cards are described
in detail in the publication IBM_DOS/VS

Licensed Material - Prorerty of IBM

COBOL Compiler and Library Programmer's
Guide, Order No. SC28-6u478.

Debug File: When the SYMDMP option is
specified on the CBL card, Phases 25 and 65
of the compiler create a file for use by
SYMDMP at object time. The file contains
information about the items of the Data
Division and about the location of the
machine instructions corresponding to each
Procedure Division source statement.

The program-control card identifies the
debug file for SYMDMP at object time by
specifying device type (MT or SD), logical
unit number, and, for a disk file,
filename. These three items of information
are saved in the PCONTROL table. Device
type is used to determine which of the two
I/70 modules to invoke; logical unit number
and file-name are stored in the DTF before
the file is opened. Thus, the single DTF
contained in each of the 1I/0 modules can
serve any number of files used one at a
time.

The format and contents of the debug
file are described in "Data Areas" under
"Program Organization®". Diagrams 8, 9, and
10 in "Section 2: Program Organization"
show the relations between the debug file
and the object-time tables.

OUTPUT: SYMDMP generates the following
types of information:

e Output on SYSLST consisting of:
of all control cards; diagnostic
messages; dynamic dumps; the abnormal
termination statement number message;
the complete aknormal termination dump

a copy

s Modifications to the COBOL program in
virtual storage if dynamic dumping is
requested for the program

Program modification: The mechanism by
which SYMDMP intervenes in the COBOL

program to produce a dynamic dump is as
follows:

Pass 1 searches the Procedure Division
tables of the debug file for the specified
card nunber. It stores, in the DYNAMTAB
entry for the card, the address (relative
to the beginning of the Procedure Division
or of the transient area) of the
corresponding instruction.

Pass 2, when entered during INIT3,
relocates this address to its true current
value and saves the instruction itself in
the DYNAMTAB entry. The first two bytes of
the instruction in virtual storage are then
replaced with BALR 0,12, that is, a branch
to the PGT. Since, in a program compiled
with the SYMDMP option, the first cells of
the PGT contain a call to ILBDDEG5, the

Diagnostic Aid Subroutines 49

Licensed Material - Property of IBM

effect is to invoke SYMDMP each time
control flows through the modified
instruction.

After it has issued the requested dumps,
SYMDMP returns to ILBDDBGS the address of
the DYNAMTAB cell which contains the saved
original instruction. This instruction is
executed in ILBDDBG5 before control is
returned to the following instruction in
the program. (Note that when abnormal
termination occurs, SYMDMP restores the
original instruction to the program so
that, if the user obtains a system dump,
the dqump will reflect the COBOL program as
it was compiled.)

LINKAGE _TO SYMDMP:

L 15,=A(ILBDMP10) (See Note A.)
BALR 14,15
DC H'n' (See Note B.)

Note A: the address is computed by
ILBDDBGO before the first call to SYMDMP.

Note B:

n' = 0 in a call for initialization
from ILBDDBGO
4 in a call for dynamic Qumps
from ILBDDBGS
8 in a call for abnormal
termination dumps from ILBDDBG2

Processing (Sequence of Events)

The sequence of events when SYMDMP
services are requested for a run unit is,
in general, as follows:

e Initialization for the first COBOL
program in a run unit

e Initialization for all other COBOL
programs in a run unit

e Initialization for independent program
segments

e Processing for dynamic dump requests

e Processing for abnormal termination
dumps

The load names, mnemonic names, and
functions of the individual SYDMP modules
are as follows:

1. I/0 modules:

ILBDMPO1 (IODISK) -~ I/0 operations

for a debug file
on disk.

50 Symbolic Dump (SYMDMP) Subroutine

ILBDMP02 (IOTAPE) - I/0 operations

for a debug file

on tape.
2. Pass 1 modules:
ILBDMP10 (SYMINIT) - initialization
and Pass 1
control.

ILBDMP11 (SCANP) - program-control

card scan.

line-control
card scan.

ILBDMP12 (SCAND) -

ILBDMP13 (FINDNAMS) - resolution of
identifiers.

ILBDMP1Y4 (FINDLOCS) - resolution of
card/verb
numbers.

3. Pass 2 modules:
ILBDMP20 (SYMCNTRL) - Pass 2 control.
ILBDMP21 (SEGINIT) - program and

segment
initialization.

ILBDMP22 (DMPCNTRL) - control for the
two dump
modules.

ILBDMP23 (DUMF1l) - group and

elerentary item

dump.

ILBDMP24 (DUMP2) - FD, SD, RD, VSAM
FD, and TGT dump

ILBDMP25 (SYMSTATE) - abnorral termi-
nation statement
numker
processing.

The overlay structure and the hierarchy
of loading responsibility are detailed in
Diagrams 3 and 7 in "Section 2: Program
Organization." The flow of control among
the modules of Pass 1 and Pass 2 is shown
in Diagrams 4 and 5, respectively. The
operation of the individual modules is
summarized in "Processing (Routines)" in
this’ chapter.

INITIALIZATION - FIRST COBOL PROGRAM:

During INIT3 of the first program
encountered with the SYMDMP opticn,
ILBDDBGO loads and calls ILBDMP10
(SYMINIT).

1. SYMINIT initializes the common data
area and reads the first
proaram-control card.

2.

3'

5‘

6.

8.

10.

11.

12.

13.

SYMINIT loads and calls SCANP.

SCANP builds the PCONTRCL takle, reads
the next card, and returns to SYMINIT.

If the card starts with a number
(line-control card), SYMINIT loads and
calls SCAND; otherwise, SYMINIT skips
to step 11 below.

SCAND builds the DYNAMTAR table;
collects data-names in the QUALNAMS
area for the batch search of the debug
file; reads the next card and, if it
starts with a number, repeats the
process.

SCAND loads and calls FINDNAMS,
overlaying itself.

FINCNAMS searches the debug file for
names collected in the CUALNAMS are
and fills in identifier information in
the DYNAMTAB table; FINDNAMS then
loads and returns to SCAND, overlaying
itself.

SCAND enters DYNAMIAB and DATADIR
pointers in the PCONTRCL table, and
returns to SYMINIT.

SYMINIT loads and calls FINDLOCS.

FINDLOCS searches the debug file for
addresses corresponding to card/verb
numbers and enters these in the
DYNAMTAB table, FINDLOCS then returns
to SYMINIT.

If end-of-file has not bee reached on
SYSIPT, SYMINIT returns to step 2
above.

At end-of-file, SYMINIT calculates the
total size of SYMDMP for the rest of
the run unit and stores this value in
the ILBDDBGO cell SYMSIZE for use by
the SORT subroutine; SYMINIT also
stores information in the common data
area for use by the Pass 2 space
allocation routines.

SYMINIT loads ILBDMP20 overlaying
itself and transfers to Pass 2;
ILBDMP20 continues normal
initialization processing. (See
Initialization - All Other COBOL
Programs.")

INITIALIZATION - ALL OTHER CCBOL_PROGRAMS:
During INIT3 of all COBOL programs after
the first,, ILBDDBGO calls SYMDMP at its
original address, which is now occupied by
ILBDMP20 (SYMCNTRL).

1.

SYMCNTRL analyzes the calling
parameter and determines that it has
been called for initialization.

3.

4.

5.

9.

Licensed Material - Property of IBM

SYMCNTRL loads and calls SEGINIT.

SEGINIT, by analyzing PROGRAM-ID,
determines that a fresh program is
being entered.

SEGINIT stores ACURPC (pointer to the
current PCONTROL entry) and frequently
referenced addresses in COROL program;
SEGINIT also saves the root segment
priority of zero.

If this is the first time that SEGINIT
has been entered (that is, SEGINIT has
been entered from SYMINIT), and the
DYNAMTAB table exists for any program
in the entire run unit, SEGINIT
computes the load addresses for
DUMP1/DUMP2, IODISK/IOTAPE, and the
debug file buffers.

If there is no DYNAMTAB takle for the
current program, SEGINIT skips to step
8 below.

SEGINIT loads and calls IODISK or
IOTAPE to open the debug file;
relocates addresses in the PCONTROL
and DYNAMTAB tables; saves the
original instructions and modifies
them in virtual storage to effect
calls to SYMDMP for dynamic dumping.

SEGINIT returns to SYMCNTRL.

SYMCNTRIL returns to ILBDDRGO.

INITIALIZATION - INDEPENDENT PROGRAM

SEGMENT:
program segment,

Before entry to an independent
ILBDDBGO calls SYMDMP at

ILBDMP20 (SYMCNTRL).

1.

SYMCNTRL analyzes the calling
parameter and determines that it has
been called for initialization.

SYMCNTRL loads and calls SEGINIT.

SEGINIT, by analyzing the PROGRAM-I1D,
determines that the program is the
same program as at the previous entry.

SEGINIT compares the priority in the
TGT with the saved priority; if they
are equal, SEGINIT skips to step 7
below.

SEGINIT saves the new priority; then,
if there is no DYNAMTAB takle for the
program, SEGINIT skips to step 7
below.

SEGINIT saves and modifies
instructions in the current
independent segment to effect calls to
SYMDMP for dynamic dumps.

Diagnostic Aid Subroutines 51

Licensed Material - Property of IBM

7.

8.

SEGINIT returns to SYNCNTRL.

SYMCNTRL returns to IIBDDBGO.

DYNAMIC DUMP REQUEST: ILBDDBGS5, called
through the program modifications made by
SYMDMP (see step 7 under "Initialization -
All other COBOL Programs,” step 6 under
®"Initialization - Independent Program
Segment" and "Program Modification" under
"Output" above) , calls SYMDMP at ILBDMP20
(SYMCNTRL).

1.

5.

6.

SYMCNTRL analyzes the calling
parameter and determines that it has
been called for dynamic dumps.

SYMCNTRL loads and calls DMPCNTRL.

DMPCNTRL searches the DYNAMTAB table
for all entries with current priority
and address fields which match the
value of register 0 in the COBOL
program; stores the instruction
address for ILBDDBGO; updates and
analyzes ON counters (if any) for the
entries to determine if a dump is
required at this execution of the
COBOL statement specified on the
line-control card. If no dump is
required, DMPCNTRL skips to step 9
below; otherwise, DMPCNTRL gets the
first (or only) active DYNAMTAB entry
for the current request.

DMPCNTRL determines from the DYNAMTAB
entry the limits of the dump
requested; and gets the dump's
starting item from the DATATAB table
on the debug file.

DMPCNTRL loads and calls DUMPl if the
item is a group or elementary item;
otherwise, DMPCNTRL loads and calls
DUMP2.

DUMP1 analyzes the item's attributes
which are contained in the DATATAB
entry and issues a formatted dump of
its contents in virtual storage; gets
the next DATATAB entry. If it is
beyond the limits of the requested
dump, DUMP1 returns to DMPCNTRL; if
itis a group or elementary item, DUMP1
repeats the process described above;
if it is other than a group or
elementary item, DUMP1l requests
DMPCNTRL to load and transfer control
to DUMP2 to process the item.

Similarly, DUMP2 Qumps information
about FD, RD, SD, or index items; and
gets the next DATATAB entry. If it is
beyond the limits of the requested
dqump, DUMP2 returns to DMPCNTRL; if it
is a group or elementary item, DUMP.
requests DMPCNTRL to load and transfer
control to DUMP1,

52 symbolic Dump (SYMDMP) Sukroutine

7. When DUMP1 or DUMP2 returns after
satisfying a dump request, DMPCNTRL
examines the current DYNAMTAB entry;
if it specifies further identifiers
for the same card/verb number,
DMPCNTRL returns to step 4 above.

8. DMPCNTRL continues the search of the
DYNAMTAB table for further entries of
equal address and priority; when it
finds any such entries, it returns to
step 4 above.

9. DMPCNTRL returns to SYMCNTRL.

10. SYMCNTRYL returns to ILBDDBGS.

ABNORMAL TEFRMINATION: ILBDDBG2 calls

SYMDMP at entry point ILBDMP20 (SYMCNTRL)
to produce abnormal termination dumps for
the abnormally terminating program, and, on
subsequent calls, for all other SYMDMP-
compiled programs encountered in its
kackward chain to the main COBOL program.

1. SYMCNTRL analyzes the calling
parameter and determines that it has
been called for abnormal termination
dumps.

2. The BOMB switch is turned on.
3. SYMCNTRL loads and calls SEGINIT.

4. SEGINIT, finding BOMB on, performs
special abnormal termination
processing: examines all DYNAMTAB
entries in the run unit and restores
the modified instructions to their
original state; if the run unit
included no dynamic dumping requests,
searches all PCONTROL entries for a
record of Procedure Divisicns large
enough to be overlaid by as yet unused
SYMDMP modules (DUMP1/DUMP2,
IODISK/IOTAPE, and debug file
buffers); may also use SORT and
DISPLAY sukroutines if present; as a
last resort may use space remaining
between end of tables and end of
partition.

5. SEGINIT loads and calls IODISK or
IOTAPE to open (or "rewind") the debug
file; and relocates addresses in the
PCONTROL table if the entry has never
been used.

6. SEGINIT returns to SYMCNTRL.
7. SYMCNTRL loads and calls SYMSTATE.

8. If the STATEOUT switch is on, SYMSTATE
skips to step 9 below, since the
statement numker message is only
produced for an abnormally terminating
program; otherwise, SYMSTATE turns on
STATEOUT; gets the address in

ILBDDBGO's STXIT program status word
(PsW), or, if this is not within the
program’s limits, gets the contents of
register 14, which were saved by
ILBDDBGY4; uses this address to search
Procedure Division tables of the debug
file; identifies the most closely
matching card/verb numkber and issues
the statement number message.

9. SYMSTATE returns to SYMCNTRL.

10. SYMCNTRL loads and calls DMPCNTRL.

11. DMPCNTRL, finding BOMB on, sets the
dump limit at the last entry in the
DATATAB table; turns ALLSW on; and
gets the first entry in the DATATAB
table.

12. DMPCNTRL loads and calls DUMP2.

13. DUMP2 dQumps the TGT and returns to
DMPCNTRL.

14. DMPCNTRL loads and calls either DUMP1
or DUMP2 depending on the attributes
of the initial DATATAR item (see step
5 under "Dynamic Dump Request").

15. DUMP1 and DUMP2 jointly dump the
virtual storage contents of all
DATATAB items (see step 6 under
"Dynamic Dump Request").

16. DUMP1l returns to DMPCNTRL after
dumping the final Data Divisiion entry
in the DATATAB table.

17. Since ALLSW is on, indicating that the
entire Data Division has been dumped,
there can be no further dump request
to £ill and DMCNTRL returns to
SYMCNTRL.

18. SYMCNTRL returns to ILBDDBG2.

Processing (Routines)

IODISK (ILBDMPO1) (JI]

Operation: Contains DTFSD, SDMOD, and

routines to open, close, read, read and

ggte, point and read, for a debug file on
sKk.

Linkage:
L 15,AIOMOD
LA 1,="ILBDMPO1"
LOAD (1),(15)
BALR 14,15
DC H'nn' (See note.)

licensed Material - Progperty of IBM

Note: °‘nn' = 00 to open
04 to read
08 to point before reading
12 to close

Output: Address of current debug file

buffer is returned in register 3 and in
ADBGBUF. If note was requested, block
identification is returned in NOTEADR.

Calling Information: Called by the SCAND,
FINDLOCS, and FINDNAMS subroutines in Pass
1, and by the SEGINIT, DMPCNTRL, and
SYMSTATE subroutines in Pass 2. It
overlays IOTAPE.

IOTAPE (ILBDMPO02) (JI]

Operation: 1Identical with IODISK
(ILBDMPO1) except that it contains DTFMT
and MTMOD for a debug file on tape.

Linkage: Identical with IODISK (ILBDMPO1)
except that the loadname is 'ILBDMPO2°'.

Output: See IODISK (ILBDMPO1l).
Calling Information: See IODISK
(ILBDMPO1l).

SYMINIT (ILBDMP10) {JJ-JK]

Operation: Controls Pass 1 operations;
contains 3 common subroutines (CALLFIND,

ERROR, and READIPT) for Pass 1 modules.
‘Linkage:

L 15,=A(ILBDMP10)

BALR 14,15

DC H'00°*
Output: Table addresses and virtual

storage limits are passed in common data
area to Pass 2. SYMSIZE cell is set in
ILBDDBGO for use by the SORT subroutine.

Calling Information: Called by ILBDDBGO
during INIT3 of the first program compiled
with the SYMDMP option. It is overlaid by
SYMCNTRL (ILBDMP20) after completion of
Pass 1.

CALLFIND (COMMCN PASS 1 SUBROUTINE
CONTAINED IN SYNINIT)

Operation: Effects linkage between SCAND
and FINDNAMS.

Diagnostic Aid Subroutines 53

Licensed Material - Property of IBM

Linkaqge:
L 15,ACALLFND
BALR 14,15
Output: None.

Calling Information: Called by SCAND when
the DYNAMTAB table is complete.

ERROR (COMMON PASS 1 SUBROUTINE CONTAINED
IN SYMINIT)

Operation: Issues Pass 1 error messages.

Linkage:
MVI ERR,message-number
L 15,AERROR
BALR 14,15
Output: Error message -on SYSLST.

Calling Information: Called ky SYMINIT,
SCANP, SCAND, FINDNAMS, and FINDLOCS.

READIPT (COMMON PASS 1 SUBROUTINE CONTAINED
IN _SYMINIT)

Operation: Reads and calls ILBDDBG1l to
list control card on SYSIPT; scans card.

Linkage:

L 15,AREADIPT
BALR 14,15

Output:

Current input card in INBUF;

AELM, address of start of element;
COL, card column of start of next
element;

LEN, length of element;

EOCSW, on if no more elements on card;
EOFSW, on if end-of~file found;

NUMSW, on if element is number;
PARENSW, on if element starts with
left parenthesis.

Calling Information: Called by SYMINIT,

SCANP, and SCAND.

SCANP (ILBDMP11) (JL)

Operation: Calls the READIPT subroutine of
SYMINIT to scan program-control card;
builds the PCONTROL table entry.

Linkage:
L 0, ASCANP
L 1,='ILBDMP11"*
Loap (1),(0)
BALR 14,1

54 Symbolic Dump (SYMDMP) Subroutine

Output: PCONTROL entry and its pointer
ACURPC, NXTBYTE, free area pointer, updated
to byte following this entry.

Calling Information: Called by SYMINIT
when program-control card has been found.
Overlays QUALNAMS area used by SCAND and
FINDNAMS.

SCAND (ILBDMP12) (JM]

Operation: cCalls the READIPT subroutine of
SYMINIT to scan line-control card; reads
the next card and scans until it comes to a
card which does not start with a
card-number. Builds a DYNAMTAE entry for
each line-control card. Collects
data-names specified in QUALNAMS area.
Reads in the first klock of the debug file.

Linkage:
L 0,ASCAND
L 1,="ILBDMP12°
LoAD (1),(0)
BALR 14,1
Output: DYNAMTAB table with fields to be

completed by FINDNAMS and FINDLOCS.
QUALNAMS area containing all names
requested on line-control cards. Pointers
to the DYNAMTAB and DATADIR tables in the
PCONTROL table. NXTBYTE cell updated to
byte following last DYNAMTAB entry.

Calling Information: Called by SYMINIT
when card starting with a number is found
by SCANP. Overlays FINDNAMS and FINDLOCS.

FINDNAMS (ILBDMP13) [JN]

Operation: Searches the DATATAB table on
the debug file for identifiers collected in
the QUALNAMS area. Builds the DATADIR
table containing block identification for
each distinct DATATAB block required.
Enters the table locators for identifiers
in the DYNAMTAB takle.

Linkage:
L 0,ASCAND
L 1,="ILBDMP13"
LOAD (1),(0)
BALR 14,1
Qutput: Locators in the DYNAMTAB table,

which permit Pass 2 to point directly,
without search, to the requested data-nares
in the debug file. NXTBYTE cell updated to
byte following last DATADIR entry.

Calling Information: Called by SCAND via
CALLFIND subroutine in SYMINIT when last
line-control card for program has been
scanned. Overlays SCAND and FINDLOCS.

FINDLOCS (ILBDMP14) [JO}

Cperation: Searches the PRCCTAB table on
the debug file for the card/verb numbers
specified on line-control cards. Enters
corresponding relative addresses in the
DYNAMTAB table.

Linkage:
L 0, SCAND
L 1,="ILBDMP14"
Loap (1),(0)
BALR 14,1
Qutput: Priority and relative address

fields in the DYNAMTAB table.
Called by SYMINIT

Calling Information:
when SCAND returns to it with DTABOK switch

on. Overlays SCAND and FINDNAMS.

SYMCNTRL (ILBDMP20) [JP-JQ)

Cperation: Controls Pass 2 processing.
Contains 1 common subroutine (HEXDUMP) for
Pass 2 modules.

Linkage:
L 15.=A(ILBDMP10)
BALR 14,15
DC H'n' (See note.)
Note: *n*® = 0 for initialization
4 for dynamic dump
8 for abnormal termination
Output: BOMB switch is turned on in the

event of an abnormal termination. This
switch is checked by SEGINIT and DMPCNTRL.

Calling Information: Called by ILBDDBGO,
ILBDDBG5, and ILBDDBG2. Overlays SYMINIT.

HEXDUMP (COMMON PASS 2 SUBROUTINE CONTAINED
IN_SYMCNTRL).

Operation: Calls ILBDDBGl to print
hexadecimal dumps.

Linkage:
L 15, AHEXDUMP
BALR 14,15

Licensed Material - Property of IBM

Note: Caller places address in ADTODUMP
and length in LENTODMP; places desired
starting column for address in ADCOL and
desired starting column for contents in
CORECOL. If address is to be printed,
caller turns on PRINTLOC switch.

Output: Hexadecimal dump on SYSLST.
Calling Information: cCalled by DUMP1 and
DUMP2.

SEGINIT (ILBDMP21) [JR]

Operation: Opens the debug file; reads the
OBODOTAB table into virtual storage;
relocates table addresses; initializes
virtual storage for dynamic durping;
performs space allocation at abnormal
termination.

Linkage:
L 2,ASEGINIT
LA 1,=*ILBDMP21"
LoaD (1),(2)
BALR 14,2
Output: Program modifications for dynamic

dump calls. The pointer contained in
ACURPC is updated to the current PCONTROL
entry. LASTSEG is updated to contain the
current priority.

Calling Information: Called by SYMCNTRL
for initialization and in the event of an
abnormal termination. Overlays DMPCNTRL
and SYSMSTATE.

DMPCNTRL (ILBDMP22) (JS-JT)

Operation: Controls dumping, identifies
current dynamic request in the DYNAMTAB
table, and provides service and control for
DUMP1 and DUMP2. Contains 2 sukroutines
(CALLD1D2 and NXTENTRY) common to DUMP1 and
DUMP2.

Linkage:
L 2,ASEGINIT
LA 1,='ILBDMP22"
LoaD (1),(2)
BALR 14,2
Output: Heading line on SYSLST, before a

dynamic dump, to identify card/verb number
of request. Cells and switches filled in
by NXTENTRY subroutine.

Diagnostic Aid Subroutines 55

Licensed Material - Property of IBM

Calling Information: Called by SYMCNTRL at
each dynamic request and after SYMSTIATE at

abnormal termination. Overlays SEGINIT and
SYMSTATE.

CALLD1D2 (COMMON PASS 2 SUBROUTINE
CONTAINED IN DMPCNTRL)

Operation: Serves as linkage between DUMP1
and DUMP2. Loads whichever of the two is
not in virtual storage when it is entered
and passes control to it.

Linkage:
L 15,ACALLD
BR 15
Output: None.
Calling Information: Called by DUMP1 and
DUMP2.

NXTENTRY (COMMON PASS 2 SUEBROUTINE
CONTAINED IN DMPCNTRL)

Operation: Gets and analyzes the next
DATATAB entry on the debug file.
Linkage:

L 15, ANXTNTRY

BALR 14,15
Output: Address of the current DATATAB

entry is returned in register 3 and
ADATNAME; address of its attributes field
is returned in ADATTR; LEV, MAJ, MIN, and
other fields are also set.

Calling Information: Called by DMPCNTRL to
get the first item of a dump, called by
DUMP1 and DUMP2 to get subsequent items.

DUMP1_ (ILBDMP23) (JU]

Operation: Formats the contents of group
and elementary items; calls ILBDDBG1 to
print dumps.

Linkage:

L 15,ADUMP1

LA 1,="ILBDMP2*

LOAD (1),(15)

BALR 14,15
Output: The following is written on
SYSLST:

For group items:
card-number.
required.

name, level, and
Hexadecimal dump as

56 sSymbolic Dump (SYMDMP) Sukbroutine

For elementary items: name, level,
card number, location in virtual
storage, type code (for example, B
for "binary," P for "packed
decimal, " etc.). Contents of
alphabetic and alphanumeric fields
in normal print characters.
contents of numeric fields in scaled
decimal form.

Every occurrence of each subscripted
elementary item is dumped, preceded on the
line by its subscripts. Every collection
of subscripted elementary items belonging
to a variable-length group is preceded by
the name(s) and current value of the
applicable object(s) of the
OCCURS. . . DEPENDING CN clause.

Calling Information: Called by DMPCNTRL
and DUMP2. Overlays DUMP2.

DUMP2 (ILBDMP24) (JV]

Operation: Formats the contents of FD's,

SD's, RD's, index-names, and fields of the
TGT. Calls ILBDDBGl to print dumps.
Linkage:

L 15,ADUMP1

LA 1,=*ILBDMP24*

LOAD (1), (15)

BALR 14,15
Output: The following is written on

SYSLST:
TGT fields in hexadecimal format.

For an SD: name, type, and
card-numker.

For an index-name: name, type, and
contents converted to decimal.

For an RD: name, type, card-number,
and contents of PAGE-COUNTER and
LINE-COUNTER, if present (Note:
Report line is printed by DUMP1.)

For an FD: name, type, card-number,
and DTF information including
contents of DTF in hexadecimal
format.

For a VSAM FD: whether the file is
open or closed, file organization,
access method, the file status key,
and the last I1/0 statement.

calling Information: Called by DMPCNTRL
and DUMP2. Overlays DUMP2.

SYMSTATE (ILBDMP25) [JW]}

Operation: Calls ILBDDBGl to issue
statement number message in the event of
abnormal termination. cCalls the FLOW
subroutine (ILBDFLWO0), if FLOW is
specified, before the first Data Division
dump is issued.

Linkage: *
L 2,ASEGINIT
La 1,='ILBDMP25"
LoAD (1),(2)
BALR 14,2
Qutput: Statement number message on

SYSLST. STATEOUT switch is set on.
Calling Information: Called by SYMCNTRL
after SEGINIT in the event of abnormal
termination. Overlays SEGINIT and
DMPCNTRL.

SRCHPUBS (ILBDMPO4) (JX]

Operation: Searches the PUB table for the
device type and then completes the SYS005
DTF by entering the device type, track
capacity, and upper head limit.

Linkage:
L RO, ADBGBUF
LA R1,YILBDMPOU4®
LoAD (1), (0)
LA RO, ERREXIT
BALR R10,R1
Qutput: Three bytes beginning at DTF +

X'1DY are filled in; the first byte
contains the device type and the next two

Licensed Material - Property of IBM

bytes contain the device-type track
capacity. DTF + X'27' contains the maximum
head limit for a cylinder of that device.

Calling Information: Called by IODISK for
each request to open SYS005.

USE-FOR-DEBUGGING Subroutine (ILBDBUGO)
IJYI

Operation: ILBDBUGO is called to handle
invocations of USE-FOR-DEBUGGING
declaratives, including the setting up of
the debug item.

Linkages

L 15,V (ILBDBUGO)
BALR 14,15

Branch bypass--GN (4,6, or 8 bytes)

DC X'FF'
DC XL2'card number of this verb'

(following fields repeated for each
declarative invocation)

DC X'description of DEBUG object’
DC XL3'displ. of DBG-NM literal'
DC XL2'length of DBG-NM literal'
DC XL3'displ. of USDBG PN cell’

(optional fields)

DC XL3'displ. of base for DBG-CONTT'
DC XL2'displ. from the base’

DC XL2'length of DBG-CONTENT data’

Qutput: The debug item is allocated and
filled in as specified by the declarative.

Calling Information: This subroutine is
called by the compiled code. Calls
ILBDCMMO (for GETCORE operations).

Diagnostic Aid Sukroutines 5

Licensed Material - Property of IBM

OBJECT-TIME EXECUTION STATISTICS

P d AL A LIRSt e e S

SUBROUTINES

Programmers can specify three options in
the PARM field of the EXEC statement to
generate statistics for helping them make
their programs more efficient. The
VERBSUM and VERBREF options are
implemented by the compiler, producing
statistics on the design of the
programs. The COUNT option is
implemented by the compiler and
object-time execution statistics
subroutines, producing statistics on the
frequency with which sections of the
programs are executed.

RELATIONSHIP TO THE DEBUG CONTROL
SUBROUTINE

The object-time execution statistics
subroutines are controlled and supported by
the debug control subroutine, ILBDDBGO (see
"Diagnostic Aid Subroutines").

The debug initialization subroutine is
called by INIT3 in the object module
whenever the COUNT option has been
specified, regardless of whether any
debugging options have also been
specified. The debug initialization
subroutine calls COUNT subroutines to
perform COUNT initialization. The debug
control subroutines also provide the
following functions for the object time
execution statistics subroutines:

e Call COUNT subroutines at abnormal
termination of object module execution
(ILBDDBG2)

® Write on the debug print file
(SYSDBOUT) if count errors are
found (ILBDDBGl)

COUNT DATA AREAS

The object-time execution statistics
subroutines use a number of tables:

e The count table, built by the
compiler as part of the object
module. The table contains each
procedure-name and verb as it is
encountered in the source program,
each verb being in Pl-code form.

58 Symbolic Dump (SYMDMP) Subroutine

e The verb translate table, verb
table, and verb text table --
parts of subroutine ILBDTC30 --
which enable the subroutine to

translate the verb codes into
EBCDIC form for listing, and also
enables the subroutines to locate
verbsum table entries.

e The COUNT chain, space for which is
obtained by ILBDTC00. This table is
modified by the object-time execution
statistics sukroutines and contains the
program-ids, pointers, and the node
count table.

e The node count takle contains the
current number of times each
count-block is entered. A count-block
is a set of COBOL verbs such that
(exclusive of ABENDs) each verb in the
block is executed if, and only if, the
first verb is executed.

e The verbsum table, space for which is
obtained by sukroutine ILBDTC30. This
table is built at termination of object
module execution and contains a summary
of the information in the count tables
and node count tables.

The COUNT subroutines use the count
common area (ILBDTCOl) to control the
monitoring process. It also uses the
debug common area (DBGOCOM) for
printing. These tables, chains, and
common areas are described in "Section
3: Data Areas." "Section 2: Program
Organization"” shows how the tables are
used.

COUNT OPERATIONS

At the start of object module execution
the debug control subroutine calls the
ILBDTC00 subroutine to begin implementation
of the COUNT option.

During object module execution
subroutine ILBDCT10 is called Ly compiled
code to update the counts of the frequency
with which count-blocks of object module
statements are executed. A count-~block is
determined by the compiler on the basis
that any statement in it is executed if and
only if all statements in the block are
executed. The start of a block is called a
node.

An example of what constitutes a
count-block is as follows:

Statement Statement
Number Type
1 ADD
2 SUBTRACT
3 MOVE
4 IF.eaGO TOvuw
5 ADD

Statement 1 is a node for the first
count-block, which consists of statements 1
through the IF in statement 4. The GO TO
part of statement 4 is the node for a
second count-block. Statement 5 is the
node for the third count-block.

Each count-block is assigned a unique
number. At each node in the object module
is embedded a call to ILBDCT10 with a
parameter consisting of the appropriate
count-block number.

At termination of load module
execution, abnormal or otherwise, the
ILBDTC20 and ILBDTC30 subroutines write
the COUNT option statistics on SYSCOUNT.

Diagram 12 in "sSection 2: Program
Organization" show COUNT operations in more
detail. The subroutines themselves are
described individually below.

COU?T Initialization Sukroutine (ILBDTCO00)
(XA

Operation: 1Initializes the count common
area, gets space for and initializes the
count chain, and initializes the count
chain pointer in the object module TGT.

Called by: ILBDDBGO, which was called by

INIT3.
Linkage:
L R15,=V(ILBDTCO00)
L Rl,A(parameter list)

BALR R14,R15
where the parameter list is:
DC 1H' number-of-count-klocks?*

Calls: GETVIS
ILBDDBG1

Input:

1. Register 1 points to the number of
entries for the count table

Licensed Material - Property of IBM

2. Register 8 points to the TGT

3. Register 13 points to the debug common
area (ILBDDBG7)

4. Registers 14, 15:

Outputs
1. Count chain generated and initialized

standard linkage

2. Count common area initialized and/or
bits set in ccunt common

3. Object module TGT points to the count
chain

Count Frequency Sukroutine (ILBDCT10) [KB]

Operation: Updates the appropriate node
counter by one and saves the caller's

count-block number in the count chain.

Called by: Generated code in the object
module.

Linkage:
without SYMDMP option
BALR 1,12
DC H'count-klock number® (Goes to
the COUNT linkage area in
the PGT)

with SYMDMP option
BAL 1,8(12)

DC H'count-klock number' (Goes to
the COUNT linkage area in
the PGT)

where the COUNT linkage area of the
object module PGT contains:

L 15,=V(ILEDCT10)
BCR 15,15
DC 1H'0"

Calls: None

Input:

1. Register 1 points to the block number,
and the return address is at
002(register 1).

2. Register 12 points to the PGT

3. Register 13 points to the TGT, where
are contained the save area and a
pointer to the appropriate count chain

. 4. Register 15 points to this subroutine

Object-Time Execution Statistics Subroutines 59

Licensed Material - Property of IBM

Qutput:

1. Appropriate node counter updated by
one

2. Count chain contains the last
count-block number

COUNT Termination Subroutine (ILBDTC20)
kel

Operation: cCalled at termination of object
module execution to determine if there are
programs being monitored. If so, it calls
subroutine ILBDTC30 to write execution
statistics, and if the termination is
normal, calls ILBDDBG8 to close the debug
print file. If the termination is not
normal, the debug print file is left open
for debugging information.

called by: Generated code in the object
module, ILBDDBG2, ILBDABXO.

Linkage:
from ILBDDBG2
LA 1,=X"FFFFFFFF*
L 15,=V(ILBDTC20)
BALR 14,15

from all other callers

SR 1,1
L 15,V(ILBDTC20)
BALR 14,15
Calls: ILBDTC30
ILBDDBGS
Input:
Register Contents Meaning
1 Zero Close debug print

file after ILBDTC30
executes.

Pointer to Do not close debug

X*FFFFFFFF' print file after
ILBDTC30 executes.

60 Symbolic Dump (SYMDMP) Subroutine

13 Pointer to
save area
14,15 Standard
linkage
Output: None

COUNT Print Subroutine (ILBDTC30) [XD]

Operation: This subroutine computes and
writes execution statistics on the debug
print file upon termination of the program
being monitored.

Called by: ILBDTC20
Linkage:
L R15,V(ILBDTC30)
BALR R14,R15
Calls: ILBDDBG1l
ILBDDBGS
FREEVIS
GETVIS
Input:
Register Contents Meaning
1 Zeros or From ILBDTC20 input
X*FFFFFFFF*
9 Points to count
common area
13 Points to
save area
14,15 Standard linkage
Output:

1. Printed execution statistics
2. ©Space for the count chains released

3. Count common area updated

Chart HM.

o’oaA1oooooo.oo.
. L

o 1eBgVESy- H
RS YT L LS

PRELUDE

.0000510 sreesene
.

.
:INITIALI ZATION :

* .
SERSR 0SS0 0 0000

X
BASEADDR _.¢.
Cl .. ‘

oo ¢, CLOS
.cnosg RE ouzsr.o--- <

‘e, .o
.. “eese

v
sessenee

sensae

*
.
I3
: STORE REG1U
-
.

(ITL LIS TS ALY L]

'0000".0
.
D FCB Al

w> -

.
ADLKeSSES :‘

‘t“..‘l.““.'.

.r1' .-,
¢ OPENEU o; s, YES

o ‘e,
'..BPEN EATENU

e

‘e, ...
. ¥
*f10
<
“DO1060u L
;31 .,

., «®
., .
eYES
.l.
Ji .,
o * L
ot ¢, NO
%. OPTIONAL
., ..
., ..
) ‘i.
L ES ese
-5
¢ F2 ¢
“ene

*, NO
P e .

N 4

Licensed Material - Property of IBM

VSAM OPEN And CLOSE Subroutine (ILBDVOCO) (Part 1 of 2)

MLO3000 1

SEFLUCEEISS SIS0

. -
OPEN ALL ACB'S
L *

Section 2:

mDO6 000
SESASHEEIISE NI

* CLOSE FILES ¢

- WITn ERRURS
L] .

S0 EREGE SISOt

¥DO6004
SEOONESHERRERIS NS
B "ANUP-‘““
® FREZ STORAGE
‘FOR FILES WITH ‘

PSS SICESISIINIRISS IS T TR R 20)
:“"C“.....“‘.. yboggggtcsiﬁt‘.‘..“
* . []
$=e~r=FIN Re=w=® ¢ SET UP STETUS ¢
* LOOP %‘.‘I ACB'S. . KEYS Ir *
¢+ POR El Rons . * EEQUIRED .
CESOSTIEBISSE ISR EI 22T E IS 2T]
o', .’
by e, D5 e,
¥ ., . .,
. . .*END_OF FCB *. NO
‘.‘ANY ERRORS '-‘-—--> *, LIST .
R N e, Y
., ¢ s, .
*NO eYES
“°°§29§.=u.......... x007000
$mmenaGETRER ==t CEEILESEREO OIS
$GET LNURB} FOR * » *
-->¢ FILE OPLi:l . % . RETURW .
QUTPUT . . »
‘ * LRI TR Y 24
FEESORS LG44I O
e
[L
* F2 ¢
‘ ‘—-
no
Mb01002 ., ..,
‘OOOOF2‘OQ'.OQtO: r3 ., p« '
S TEREEEOSAGE. v .+iko OF FCB's. YES| |0 LoEND OF FCL'e. JEs
q .o---_-—-->oAsboc;LT£ﬁ WIThS=oomenmm>el ‘ LIST Semeod 22 60 LisT el
Filb
XTI AR 2L)‘. ", _..
A . .
YES
sz' e,
‘Shgl]bNTIAL ..
. oot
., *
., .
* NO
MDOL008
..‘.. H2 sssvssasse ‘....HJ.‘O..“.‘: SEIERHUSS OIS SSIIS “O..HS..“‘C.“:
. .
* ISSUE GE SeuweeBLDEXL=~===8¢ $ececmeELDACE~===#
SAME RECORD ‘-------->¢po s % AL $-——-=e==>3BULLD €T$-——---—->¢ BUILD ACE 3
. AREA ASSU : . ILD K. L‘{‘ . ILD EXIT LI A 3
{ED .
‘.‘...‘0““....‘ 4000588000040 08S ‘..‘....“‘O'.’.' O“.."‘.‘..‘O.“
MDO1006
:o‘ooazo oooao.t: :t‘t‘J5‘t‘ttt~tt:
+ GET I('l LI&T L $omweeBLDRP LT ===
3 s BUILD RPL
L L] »
L] » [*
SHEPERESSB 00000 SEEEBSES LBV ERNRS
[213
BEETE
. *
LIl

Program Organization 125

Lme

Licensed Material - Property of IBM

Chart HM.

MOCLOSL
u.oa‘A1o
-

¥5T0/E ALCISTER
: 14

(AT 2T

YT XY

*
CEFBF RS RS E I RSO

i 5L100C v
I LI I
. L]
7 ULTEPNINE IF %
—->% " FILE OPEN «
[T77 .
L] *
SESPEERE IS NSRNN
+DC1004 v
PP 4RCI 0090000 e o o e o
* - USE _CB_MANIPULATION
* UFACTIVATE ~ #=w==—=e=-|ROUTINE
* LERAD/SYNAD ——————————
H EXIT :
FEEBFETERR O EGREN
MDC10C6 . *. EEO1AL
vl ., Ootttp tt.‘n““t
.. .. ¢ ILBDA
.-‘-.-0-0-.-O-.-'
.. RERUN S
. Y $TAKE CHECKPOINT?
‘e, L8 tt«cttoo.ttooattt
%0
MDC1008 %
E1" e,
.. ..
NO ,*END OF FCE #,
~--t. " LIST A e
., g
., . *
YES
MDC1020 _ . %.
1 ., tocuoraouctooooo:
STANY FILBS *, YES . CLOSE .
-.‘ TO CL . ._------->: THE H
‘e, ,o' * ACB'S .
*, L * SEEEEEISS IR EERR RS
*NO
...
G2 .
. .,
. .,
* ! SUCCESSFUL
*, ,o
.,
*, .t
YES

Py et

VSAM OPEN And CLOSE Subroutine (ILBDVOCO) (Part 2 of 2)

MDC1060

“0“@3“#“.““

*CLOSE ONB PILE ‘
AT A TIME :

* *
EEPSSESSEBEEROSEN

I

MDCIOG“ 2%
'R srsesi3eesarrnres
.‘ ., .
. pa— DERR----'
‘.ELOSE ERRORS I#-Ceee—_>¢ FIND ERRORS
‘e, .o' .
.o . Tererseannsnsnces
*NO
> <
”°°§299.Jz.......... SER0RTINRNANNENS
. . . .
* GET FCB ADDR ¢ USE DECLARATIVE#
. LIST . ROUTINE e mrmemmcma—————
. . .
. P! . .
P LIITT I II PO
A
~DC3004 YES MDC3016
T I I T K3® '.. notttxuctaocootto MDC3050
. P4 o SHEPKSEPIEIE RN
% SET UP_STATUS NO $-==~CLEAN p----t
: KEY o-------->‘,.nEchstngg.,a--_-—-_->o FRE% s;gge%g Ponmcaanadd RETURN
126 Flowcharts . . . ° R SEEEOEGOBBISS S
CEERENIIRRIEIIERS P T T Y T

*
*
*

Chart HN.

(AT SR I L)

: ILBDVIOO :
AT TTTS T T LT

PRELUDE
:tt.tu1oto¢att‘o:

. -
:INITIALIZATION :

. -
SRR BENSSEEIERI G

vVIoo %

ci

ACT00680
. s
R . .

“Czittntttt.:
. ‘s WO * 8ET UP CURRENT #
¢., FILE OPEN . $-c—----=>% RECORD AREA 4

‘e, s « ADDRESS .

., e CHEsEEIIPROBCISSS
*¥ES
ACT00002__.*.
Dl ., SPSEED208 00200800
. ., » Y
+1F1RST Rzouzs; YES . LESEBYQ¥EAD S
Ye) i A » EXTT
., . » .
* ¥ LI II AT IS AS YT L)
«No
<
ACT000CH
SENESELSNEAIRROS
v DETERMINE *
. REGUESTAND o
» "BEANCH TO ¢
* LPPROPRIATE #
+ TUROUTINE #
CEERB ISR EES RPN SO N

v
hCT00700__.*. ACT00704
F1 . L PO P Y S T
o ., . .
.* . *. YES * SAVE ACTION ¢
#. FILE CPiN . $ecemwea=d>® CODE .
. o * *
*, «? L d
*«, L. LA XA AL XY T)
*NO
<
ACTO(736
EENEGLERNNINROS
L4 Ll
: RETURN :
SRR OREREIREAER

{

08

RO

VSAM Action Request Subroutine (ILBDVIOO)

e e 0 e o e

Licensed Material - Property of 1BM

Section 2:

Program Organization 127

Licensed Material - Property of IBM

Chart IA. Separately Signed Numeric (ILBDSSNO)
sersnlenesereny
: ILBUSSNG :
V¢SSP0t NS
c.l
81 ., “eesef2000808 0000
R .. *SLET LOW=ORD&R Ge
. *. YES . S M
*. I8 SIGH ¢ i#emmemeew=>PKECEIVING FIELL®--eum
e ..‘ . TO X'C .
‘o, o ssesessseestsINsS
*NO
ot
c1’ e, e
.® ., ¥ES :S;T LOW-ORDER 4® oooocaoooo.‘a‘n‘
.. .,
., &£ SIGN = _o®m==ceceu>®RECEIVING FIELDSe~em—o==>® RETURN -
. A * T0 X'D * .
.. i [XTYSITIT LI TE 1]
.t seesssnsEsaIIREL.
*30
1
peensilesensrenye
.
* 1SSUE ERXOK_*
® MiSSAGE, oUNMP *
¢ AIDTTEREINATE o
sesseessasessnee
\
280 1000000000
. END v
L
SEESEPOENIGIISIES
srsel0svesrense
* .
: ILBDEENL :
LAZATI 2RI 21
v
6L s, :oo..czooooooooao
o ., .
+*A4IGH=OROFR *. YES ¢ MAKE S RATE ¢
o, U §¥T§-§F;- P Ibbup— Y} sEGNERAo E ————
*, OR 'C i . PY
..
. .. sressnestntesens
*NO
1
UL vrerorcevey S R wproneisas ST
g = L EPA . *8SET =
ol b axrs-x*b".--------->: SIGN A = $---n—-—->¢4 BITS TO RPES $mmmemeeu>t RETURN
‘e, Y e seNEIRINES
.. i PO I LI essvesssasoneseee

9038 T1448000800 08
* L]
¢ ISSUE ERROR #
SMESSAG Mp, *
:"ﬁ%g 2EavERREE H

LTI IR AL RS2 L1 2 1 S .

LII2) SR IR 211]
. [
. END 4
. .

0060050000000

128 Flowcharts

L4
.
*

DAM;

Chart JA. Test (ILBDDBGO) (Part 1 of 2)

Licensed Material - Property of IBM

.oottA1toooootoo
: ILBDDBGO :
2090404008000 0
§E§.‘Bl‘..".“.: B0 2ED
S epr switch To s T [GYTRCBUFPER ADDAEER"
:A olD RBCURSION‘
.0‘..‘...“‘.0..‘
., SYM JJOLA2/JPOLA2
c1 ., SRE0EC2¢004 000000
'ILBD 10720 .
. YES A e 2l TR N
.SEGHQNEATION ‘--—----->‘ INITI 2E |
. P : l
‘, .t.0...0.‘..0“ 1ddild
*NO 02
. F3e
e
*
.Y NOTOUT
o1 e "°T'¥“§3pz..-....... :;;;003;50;%2232?’JP01A2
.. 18’1‘ IN'I'RY ., U, YES = S=tot_t_b_s_0.o_ .
. ——————— ———m—3 .o--_-..-- . P
. ‘ . BDDBC:O ‘ >o'§grwszs'rag Ag 0 >4 ‘.RIQUISTlD ' >‘ IN%‘I’IA{ 2E :
". .t' ...00‘.....‘....‘ LEAITITI LI LI]]
SYES 02 ¢
¢ Fie
* "
L]
v , NOSYM JGOLAL
.“..21. O.t“.l. ..‘0‘;“‘..0..0..' R
b IT MAC g .. ',o' » . S=sod-soeeoente
..T xslgci H r-=> ,..:;g ES" et neea=D>¢ IN R --_l
.“OCOOOWOO‘..“‘ * Q.O.‘.“’O“‘.“O:.‘..
: -
0033.
L
L]
v
t.“.r1. senrnece

o
3 BRLRORS ¢
‘ REGISTER 1 '
o‘a.noooot-o‘oooo

Se0seGleeestatNee
TUR| 18
EN%R gHITC

PELESSERBRS RSO

seses
sssce

\
seeellessssrses

* *
* L 4
* GET COMRG .
. ADDRESS b4
. .
. .
LT T L TP Y T Y

J .,
.. .,
+*PROG] ..,
oo Fgggpy wide. w0

Section 2: Program Organization 129

Licensed Material - Property of IBM

Chart JA. Test (ILBDDBGO) (Part 2 of 2)

sess sese
02 * « *
* Bl -~ * B2 »
» * l L.
*eus »e
v N
TGTLOOP Bl ., "°°95...52.......... :t“.n3tt‘0“t.t:
.. ., »
.. *. NO $GET_HIGHER SAVE’ * GET INIT2 *
=->*.MAIN PROGRAM_ c-----—-->o ARB§ ADDRESS 0-------->: ADDRES: :
. . .
[ooc .'t, ,o" ootooooon-:.ootoo ‘ooootoo¢t0..ooot s
- * *YES
¢ BL
. .
s J
N .
EXIIT TS ETEL I T Y) c3 ‘..
3 .
* GET INIT1 * S THIS _¢.
: ADDRESS : * COBOL PRG;W ‘---
* * “e. L
P T P TR Y R v ., .8’ seee
YES . .
% B2 ¢
. .
seve
v
., NOSEGM o *,
D1 ., ‘ou-opzoocoooaoc. D3 o.
. ., o
.¢ PROGRAM '+, NO GET ADDRESS 0 .® NO
‘.. SEGMENTED ..' ------- >'BEYOND PROGRAM ‘ ., NAMES SQUAL L bt
Te, o Te. Y l
., . .“‘Ot" ottoovut ., . stes
*YES SYES .
t %eess B2 ¢
-5 .
* Bl geees
seee
\
SEIESELSERERIRRES
3 .
* GET ADDEESS .
*BEYOND LARGEST *
* SEGMENT *
SEEERAEREIIRREEI S
seee
* F3 e
L
< IYITI
LOAD \ %,
(XS IR LT PY YT r3 .,
+ LOAD ILBDMP10 ot e, o
* L . .
: ?SYM(MP;1 : -->‘.EOUN‘I‘ OPTION‘.‘--—
. . [‘s, .
CEARSEEEIEESEIINS sheee ., .
02 ¢ *YES
. F3s
0
.
X
CAl'Io'ﬁnoG],t [IIT2I Y] S6559G 344 ,0‘5%2%5
I3
. SAVE. ILBDMP10 * o-o-o-o.o-o-o-o-t
e (SYMDMPV * ua.ALIZE .
* ADDRESS : 0 COl l"!gg'm :
SREESEIIISIERIRIGS sooooto'-tnoooooo
JJO1A2 EXIv \
SreesHIERERASRSS s SesesH3Ivesnsesves
'ILBDMPIO . * .
..... _tot_¢ ¢ GET RETURN ¢
‘ INI‘!‘IALIZE » . ADDRESS e
* COBOL PROGRAM : : :
SEEPREEESEIONEIRNS P I T Y I TY T
PEEIETIHES00S00 0 .
‘SAXS LOAD POINT* 983004000800
: g#gg%nmk : :xawggogo COBOL:
* SORT/MERGE *
. PROGRAM * 8890000080000
L Rt T T TP P T
* F3 ¢
. .
sesn

[1LBDSRTO USES
THIS ADDRESS

TO LOKD” SORT/MERGE
PROGRA!

130 Flowcharts

Chart JB. Print (ILBDDBG1)
SEESQL 698008008 NTER FROM SYMDHP.
s rtamer 3 ?ﬁ% B
SRECSPPPEPPE OGS TommessesssTIeT
..Bl...". ERR?:“tazoooooootno

.* YES M HOVE RRBUF! o- b et e Y
., PRINT ERROR t-----—-> Egg ER 5 '------>O MOVE ERROR et 44
MESSAGE TO . .

EKO1A1
oootosaooauooooo:

Licensed Material - Progerty of IBM

JBO1F3

seneenyseerestied

SWRITEL

b 5t 1o TP

WRITE ERROR %~—o
MESSAGE

.

‘e, . .
., ¢ .‘.‘."“.‘...“. “..'Eg...."‘.“ BP0 000020008 0¢0000S
* * *
1uo * E1*
.
sees
. ..,
‘e, cxcgggooczooooo‘too‘ c3 ¢, peeeecccece——e——
i, i, . - sy
g‘"’ ;a msgssi .-------.,.wssm BEEEs 3-———-no>eScHECK CODE J1e —-corex | FRELE
LN ‘e, .o' Sesesssessasesves 'o,.,o
[]
T3 e I
L] *
e 1
l zil 3 4 5
RTPASS . V. JBOLFS WRTNOEJ 01rs WRTFOOT JBOLFS WRTHEAD JBOLFS EJHEAD JBO1FS
LTI ST T iy .o.oonio'hooooo.o #0489 D3000808888 5 ‘ootobhtott.‘tt't IIIHII T Py Ty
WRIT *WRITE: *WRIT! SWRI . *WRITEL N
bttt PuPalolaltattabod -‘-’- -‘-‘-.—.-. -'—.-O-.-.-‘—‘-‘ Bubabobatobb b
s NEETRERRy, o ¢ WRITE RECORD * o TERSELERREHC o t wﬁr ESBiRG * + WRITE HEaoInG ¢
osﬁciﬂ‘éﬁ"ﬁﬁlmo . * 3
AT LYY T 1Y) [IT AT I TR Y] “.“""“‘....‘ "“‘...0‘..“‘.. (1222 T I SIS])
o__--::::-->
L .
¢ E1 @
>
s8¢
N oPN
SRENEE]L S206S0 004 CHAEEEIeSsv Ittt e S
. * . L
s SAVE BUFFER ¢ ¢ TURN ON DBG1 *
+ ABUReBITER® o * U SWITC Cam
¢ CURRBUPF o : : l
G020 4 04800400008 SE089808490000 04000
* .
*E3 e
L] *
[121]
A SEEFI04890880868% = cmccccccoce—a,
ooo;r . aooooco o OPEN OUTRUT * R FROM .ooatrsoootoo.o"
. CALLL . F 2" . L) n.s%p T : WRITEL :
..9??.9-.%.?.-. SoTmmees e sesnsaseseetIes
[II TSI Y LY
<
:oaoocgnuoooooooz :tooosso aooo-.o:
* SAVE BUFFER * JDETERMINE LINE ¢
¢ ADDRESS IN o » COUNT .
: ORRBUY! : : SPreIRG” :
0886000080800 00 8 (AZI YT IS ST RS T R
v X
H3® '0.. LT LI LTI T Y PN)
. .
.*"CODE = 0, ¢, NO . .
., 4, 5 o tome- 1SSUE PUT MACRO
., . l . .
.,)
., L,® [112] SEEERFIIEINIR G}
YES o »
¢ E1
* .
o; MlL 5
ECT. '00T EAD 1
£J 00%00330 ..i??!!? HRT!‘.“ i. ..1521!2 EJ“.....Ju....§223§§ savenJse Z.......
. SWRITE . OWRI' SWRITE1l * . .
:-a-t-o-o-a-.-o-o :-c-o-o-.-o-o-o_: :-Esia;.o;;i;ig-: : xng&kcnangg :
$ E3JECT PAGE 3 WRITE FOOTING * HEAD * ADDRESSES 3
L XTI TR I Y) SOSS S84 200000800 % 0200904808900 PRI T TR S22)]
[T1 1] ...O.‘ l (211
- - -8
> el e > e e >t e
* * L] L
008 208 L2l 1]
SHO4KGENSNE SIS
. RE .
:CALLING RO INL:
008606250000
Section 2: Program Organization

131

Licensed Material - Property of IBM

Chart JC. STXIT (ILBDDBG2), TGT Address (ILBDDBG3), and Save Register 14 (ILBDDBGHY)
. JBQ}A*
e L LBDI
1Lan2§§2g1c.-o‘oaot DID | *. .'; 35555; * zn’”?!sggutootooooo I 959255.......-.
* . .. DBGZ_ '*. YES memeeocaciens & E FROM S CENIER FROM e
* STXIT ROUTINE #———ee-. —D>, 1) ISSUE EEROR ‘ €O PROGRAM ‘ . PROGRAM ¢
. . *.TERMINATE. * SAGE ~ * . . .
sersessennetenn ssessctsssesace’ ey
., se00ssisRsOteNe
L]
No cove AFTER RETURN BEPORE
. . JROM AL BRANCH TO
* B3 ¢ ANOTHER
. ~> ——————ea—— PROGRAM
008 e ccneae
DUMP v \
 NTERED FROM SY5 :““Bz.‘.“..'.: :“‘.sa.“‘.‘...: :‘.“B“." D""‘:‘ :.“‘Bs‘ .‘...'.:
E TEM
AFTER PROGRAM CHECK. . TURN ON . $ISSUE EOJ MACRO® OAngg B ﬁf * SAVE CONTENTS *
THIS_ROUTINE WAS *ILBDDBG2 SWITCH® s INSTRUCTION ¢ . N}‘g *QOF REG eggk 4 e
R am, N P o BERL ¢
: (2121 111) e L] "‘.‘ 2000206 ENNSOS
..,
c2” ‘e, v v v
% DID ®, S406C3IN00000000 $S00CUSSIS RIS 4480506000800
"‘Agﬁomnsgg i IES S oERkIwATE + . RETURN . . RETURN .
* o TERMI E_o‘ o
- .8 4500800000000 [III2 T RITITTIT 2T 4000240080808
o, .0
L d - -
RETURN TO
SYSTEM
¥,
o’ CU?ZON ., YES
o SERRERTIy reYES_ |
«. ROUT' .
‘.. at
*NO
L1 1) “‘.‘.2& 2‘
. ILBDTC20 .
WRITE COUNT
* STATISTICS, *
SESIER SR IG0S0R
o é
* -
* F1 ¢
'--
4
LOOPDBG2 .5,
Fl .,
NO _.sADDRESS O
===+ INITL BETHIN. 2 #<mmmmm e e
'GIO] .t
‘e, .o
*¥ES
(11 2)
fos 3
sene ¥
e COBDBG2 __.*. UPLAST RE
G2 ‘e 63 64" G5 LN
o *ph co ‘e **procram’ 's. vES . 8 ‘e, NO * **e. N0
. Anuoagﬁk% .-------->- NAHES EQUAL, e S s 5§§;p°' 'o-_-__._.>a §9§Bngk P FLOW P et
E . .., * . .*
‘e,
‘e, .O ., . 0. ., .0 . o (1719
R0 RO . ofi0 o¥ES +YES .
e J1 e
e I :
"0
<
.., ..,
..“‘Hl‘.‘..‘.“. H3 ., L] ., *ss4oH ‘0092%%2
.. .. ., sILBDFEN .
osawuggxmcg o8 . ¥_e:* sumome *lec 2.:® nigﬁgég *le :';Eanucz';nai"=
* SRocRAN~ » “e, . : ’t..r T ..-' : TRACE .
BEEELEEEEEIGARENY ‘e, ,0° ‘e, .8 SEEEEISIIGEIEIRS
'YES *NO
LIT 1] e
tat P AN——— ->= :
L] —d> M J1 s
L1121 (111
... v g JP01A
‘Jl .;‘. 3. 111 :‘...Jﬂ.....;.‘.:
: YE e S T . .
*.FIRST = LAST .%==w ‘INI gg! POR ‘< L4 ON ¢
T : H H .
...‘}.«‘). shee “"‘..‘..‘.“..‘ R IT I T I I}
¢ B3 o [TT1]
D> .
soe .« J1
L2121
NEXTDBG2 .o ToLR %
S SEK] ¢t bt K4 ., ‘...‘K%N..‘.. ¢ 1]
. ILBDST
* GET gé . s, ¥ [t yut e S VN --o-o
. . —— o STATE R S conpnng .
: : . . MESSAGE *
., " L] -
S48 00 50000 ES 00 ., .0 OSSPSR PRS00 S
.‘.... * et
¢ F1e >0 a5 o
L L]
L1214 .o

132 Flowcharts

Licensed Material - Property of IBM

Chart JD. Dynamic Dump (ILBDDBGS)

SIGIRL 009800888 e

. . §NT‘R 'ROHACODgLTO
Pomewse 3 |GiRIE

T T Y YT Y Subuftsbtbebuiiibetde
cene
. .
* B3 ¢
. P
LT 1)
v
Y R I YT YL T :.nonasoo.ootooo=
.
$SAVE REGISTERS * ¢ STORE EN BAVE ¢
® IN SAVE AREA ¢ . Al .
. . . .
. . . .
2200000000000 0000 $0080000000000008
' MOVE
LTI E R T P T TN Y SssenCiecencsneee
. » . .
* SET R RSION ¢ *INS ON .
. SWI% ON . b ghssg%; Akg *
: : R
P Y PP Y YT Y T T 1Y S0400000000000000
\ . v
teseeDlosessecess geessDiessesscss
. . ¢ SET RECUR;ION .
:GB‘!‘ SYMDMP ADDR: : SWITCH OFF :
. . . .
PETTITTI T YT LTI T YT YT TTY P Y Y

000003101 ““0:3‘L‘.....“
*SYMDMP b .
ot Y i . RES' .
» GIVE DYNAM * REGI s »

UMP : :
*

205080000000 000 0006000000000 00 0
:ooo‘r1tut¢ttooto ooooor:nJoooo.o.:
. *

. » * .
SRR MBS rperkiSihm |
: : B
PSS 200500500000 9040008008900 000

t“‘.Gl.LOOOOQOOO v
*GET INSTRUCTION® 0809GIN00000440
¢T0 B UT]

ED * *RETURN TO COBOL®
* I OBOL . . Pi RAM .
. PRO:&M : ROG!
8000000000000 8

GO0 3000 8000000

s
:oco-nlouoootooo:
*COMPUTE LENGTH *
:OP INSTRUCTION :

* L
LALII LI LA L 22 1]]

A
oooocq;nlooooaoc.

L] L]
L
: R DD :
SOFSCES020004 000
LI11)

Section 2: Program Organization 133

Licensed Material - Property of IBM

Chart JE. Range (ILBDDBG6) and Chose Debug File (ILBDDBG8) Subroutines

‘.‘..A],.‘......‘. ——————— nsgg ...“A,“.‘....O.
. . 4 I BGE .
Do 1 (RRERG, mewe

sestssresresee 8 P RARGE LTI YT I LYY
’ v
:.“.51. ..‘..“: S08BI0060800 0090 ¢
. VE STER » ¢ CLOSE
. SA ‘}EBI TER . PRINT gi%?
* . L]
. L3
LA IR AT TS Y]} 9480800800000 0 ¢
<
c;' ‘e, 24000C20 000000000 4
‘ onc N .. Y:s N ON 'GO : .‘.“catil.....‘.‘
‘-‘ HIGlGlgR '------—)‘ ﬁ%g’ gg?égg : : RETURN :
.o . esscectenctsnn
‘e, HASTIPPRPPI-
‘NO
¢
\
DaG‘&"‘z‘Dl...."‘..
.
: RETURN .
T

134 Flowcharts

Chart JF.
SesepLasesstene [?ﬁi R _FROM
L. A DL DL T LBDDBG2
¢ ILBDSTNO H e —en——————
sessrsssasssere
-‘.
.FI:l .. s PEeEBess e s bt

?I B“T x ‘ZE—---->‘ RETURN :

., sesetsestentete
.Iﬁo

¥,
.Cl '. oaoooczooottogooz
..’ ‘e, YES SINCREMENT DEBUGS
‘-. PLOW ALSO ..‘ ——————— >‘TABLE PTR B
., .

., .® ““O‘.O0.0““‘O
*NO
<

sesssDlecssssries
‘GET ADDR! 8 OF ‘
INI
‘
.
".‘..“....““.
v
:u..og1o sesseene
REGISTER 13¢
RON ST!XIT :
SEEP RSN ESEN NN
aess
- .
* F2 »
& .
] wees
r1' T, oototrz.ttoo.too:
.. . .
smzsr% %ic JNo___ % GEf REGISTER %
‘e ‘.‘ A . :
“e, .0 Sessecasereasseoe
*YES
1eesaGlevvernaees 62' e
.
: gﬁ%ggkgg% b4 . REGIST%R 1“ :
* ADDRESS - ., "
.
T LI YT it
o*. 1
Hl ., :ootéggsﬁzx;;aa.:
.o° .,
o MR,
., . ¢ ADDR USING *
L .* ¢ REGISTER yb b
'.‘&a LI T L e T2 2]
cose
L->e .
* A3 e
* L]
sees
seersgiensevensss ‘Jz' 'o.‘
-c ULATE ADDR * [vo ' ‘e,
[T : ———sl SW ON .
. ‘e, 'y
Seasenessereeraes . .8
*
A
v lND
.Kl'b.°' xz‘ ‘.
.. aﬁu N e, NO o ..
s, STAR L e e——-. >.. CURPTY s“ .
o Q .’ .,

Te, Lo ‘e, e
*YES .
Lsa***

® A3 @
sane

Licensed Material - Property of IBM

Statement Number (ILBDSTNO) (Part 1 of 2)

sees
. .
* A e
. ..
sene
sesssnesrectanes
*
:GET CU#E;Y P'ROH:
. .
. .
P T T T YT
SesssBINessNntse
. .
. PROCTA .
.
E & §n3§é H
T T T T YT
.t
c3 . ooooocsooocoooott
ot ey sﬁ ADDR " ¢. * GET A APDR OF :
ot JCURPTY = 0 Io--------».a%u gc t----—-»nmsu .
‘. ..‘ ‘ QRTNS FROM I I :
‘e, .0 ‘e, ¢ PEREEEESIINIEROSE
YES SYES
v
2esesp3 seve seesepSessseseest
*
‘GET 8}‘ T FROM ‘ » CALCULATE M
IT1 SORIGIN OF FIRST*
‘ : : FRAGMENT b
PETTITIIT I sesssestsrtetenes
eere
- .
> F3 »
. .
2680
no.otsgojoctott.: En"'
. ..
cor1ERNCeF FEnae X ".END SEGINDX ..us
+ FRAGRENT ¢ [Y Ll
cossssessstesee ‘e, .o sone
. . .
vese A * Hy o
* L d L *
¢ F3 sens
. “>
sene
sseseFivevesseees CIEEIFUIIISR IO
CURRET | U et
-
* AD] 88 OF L4 . 8 + b4
+ CAB sus . . R .
* INSTRUCTION ¢ .]
SEPEFERIESIRIN OGS (XIS TTI RS XL 3
A
:oo.oea.'coocoooo Gn' ‘e,
.,
Y!S * M| b4 C
[t : 883 ﬁ !18 :--------)o 5EGxNDx ENTny.o---l
. . ‘e,
segen seesstseteesentee T “oene
oog . S 02 ¢
* 520 oo . A2e
e . . .
- : H4 : >
eee
v
groesturevererany
. .
P oo
. .
. .
METITT T TTTT Y Y T
“eee
->402
* J
seee
YES
..‘%‘
02
* J2s
Dt
.
.t
K3 .,
" L
YES .* RBENDING _*. %0
Frcmcama=D>t, NSTR R IN.® ==
PRy ﬁ
'%33..' sses
. .
lyzsoooo * F2*
> .. *
" A3 & esas
.
seen

section 2: Program Organization

135

Licensed Material - Property of IBM

Chart JF. Statement Number (ILBDSTNO) (Part 2 of 2)
(113 1]
T
»2
1e0eeA2e000s00ees
L
*SAVE_SEGCTR IN *
. FSTPTY .
. .
. .
SeesesIIEIINININS
sees
. .
» B2 #
. ~>
[111 v .
S4sssp10essEsesS B2' s, B3’ 't. :ooooauo.noouu
. . ., A
‘SA EGCTR IN » INST *. > .* ‘MW! 8 'Y TO 0
VE 5 -<-----f._-. Evnsgcxu x.o--._--_->o. LPTY = o - LT
: ‘ ?RG ADR..‘ "o o ‘
teessarsransassns “e. L0" “e. L0 tecerencsccnccees
- NO
v v
teseeCIebsvsssaey seeasc2eseserenes
L
L d Ld .
Segmem 1 e ggge e
. . . .
LTI T T Y PO YY)
v
£.
v {
01’ 'o seessD2essnssanne
" CURPTY NO ‘ PIC R1 «
o, NEXT PTY IN P hentRR AND PTR; .
¢, SEGINDX .* A .
., 4 0 [
o . PO IIILIIITIY
*YES
.., y
E1’ e, sesnsE2eNtensNGS
o ., L d *
% END Ol ¢, NO * SET CRDP';R -
‘.‘ SEGINDX o S : PTR1+ :
‘e
*, . [IZI IR 2 Y)
*YES
Loot*** soee
> . .
B2 * s F2 ¢
. ~>
(11 1] 008
SE400F2000 0000000
. .
¢ FRAG ADDR ¢ ¢
:CRDADDR = VRBRD:
. .
PO T T T T
v
LTI T T T G2 s,
* . ot gL ..
[CRD: = * < «% _ADI OF .« >
+ CRDPTR¢S $ommmament gzu ING | lel--
: : “oTERRp
Sesessssiesseee o .e sees
sene . J1 e
. . .
¢ H2 @ sose
. ~>
Y
K1 e, penadd AL RIS 12]
. ..
+* CRDPTR ¢, YES MOVE CARD NO, *
L LPTR2+3 o ‘AND VERB NO ‘1‘0‘
., . } " OUTPUT AREA
‘e, o e ooooo“oooountt
. .
sees . F2 0 srse
. » - .02 *
. J1 0 eere s 32 6>
. *=D> . .
sene e
VvV JBO1Al
seeseisssscstenn sePeRT200000008 08
+ sE - s Pt i ST
+ SEZSRRRTE < 2 ¢ GET BUFFER ¢
: : ADDR ¢
LRI L LTI 2L Y] LI LTI AT 1423
e
>
. H2
»
seee !
sesesK20essessane Ty 0.0“.0‘00
. osgg f;c Ty T T T
‘MOVE MESSAGE TO* W,
BUFFE [J——1 1 g 0_----_-->o RETURN .
. . aTLRs . secsssenncssane’
136 Flowcharts tersssesesnensens OIS |

NO

PemmmmmmaD®

Chart JG. Flow Trace (ILBDFLWO)
sersAleasesacre CEIsA2¢ 00080000
: ILBDFLWO : : ILBDFLW1 :
sssesesseesenes sesseetesstne

"l

S T sessen2essssrrees
o "¢, YES ¢ INDIC FLW1 »
. INITSW ON .#ew- . ENTRY .
*, .® . .
., L . .
. . POLTITTTTTT YT IY

o

£

v
geeeeciesrasasens cg; e,
SIRACE RABLE TR : '!so'i;rc ONE m e
$16T RNE Wit : - ¥ :
aau-.ootooooooooo ‘e, ,o'

NO
.,
to'o‘p1o-¢oooto’~ D2 .,
: . .,
‘ INITI, +¢ IS SLOT .
. ‘TABLE PO. RS ‘ '.. AVAILABLE .
M ‘e, Y
Teeserenesscecens . ..

*YES
badddd AU ALIAI0 $esesE2ehassnaay
* . * INSERT NEW .
:WRN IRITSW ON : : P&‘O‘G‘ID :
. . . .
P T T T YT TT Y P T T Ty YT YT

seen
. o < >
*FL @
. ~>
sove
STACK v

FEEaP0s 000000
vesspsetaesarer . PROG-ID H
: RETURN : EX IN TABLE :
“e00ssonserIe

[*
S PGPSO NSRSV

t-o‘cczot

LAA AL AL DI 2211 1d

(21 TIAT 1]

assese
sasss

v

:0000ﬂ20"000ttotz
SPOINT N *
. Nzgg agg%vguTo‘
bd TABLE ¢
CITTTTTIITT Y2 T T 1Y

Licensed Material - Property of IBM

“‘. a““‘.‘t.
o RS

.‘t‘l“'..““.

Section 2:

Program

sassaIvsassraes SaeEpUIIEIRIRES
: ILBDPLWI : : ILEDPLW2 :
s00stesnsstnns Casssstneentue
4 ot DIAGTEST_ _.*.
:oootnaouonooato: .au o.‘ BS 0.
§ INDICATE FLW3 3 .*INITSW OFF +. YES .¢ ARE
L4 El : { e ¢, (NO TRACING ,¢-w——ee ——D, DIAGNOS ICS ot
. . . NE) _.»*
. - . . R .t
“esesssssassInIee . .* . . T
*NO 'YES * .
ey [
L d * - *
. C5 ¢ oo
L
e,
00‘0‘§3..‘0000.00 KU . HRITD}t‘cstn.o'ootoot
YES .¢° NXTAVL * UT OUT .
‘(----—---‘ PBEG ANB LBE? * DIAGNOGTICS .
. o e, "
PO T . . srsasastssenens
*
ene Ne ceee
=> > .
L cs » * Fl *
. . .
sone se8e
HEADLINE 4
.O.o.p3o;;;o..‘.: :oo-cg:o ;;;oootm
¢« g
.MESSEZES CE * ® CHARACTER AND *
ﬁ ON=- ¢ *MOVE R TO
CONTIGUOUS : : BUFF bd
PTTTTTT T TTTYTITY PETTITITI YT T T YS
R
->3 F1 ¢
.
sove i
s R T
. BG1 .
r-=> WRITE BUFFER
. .
(AT TII L 2212 11]
.., LAST 01Al
F4 0. SSAFSeesstRsse e
‘L;ST Al LE s, YES * - *
ENTRYC CerES s ""WRITE LAST
. . * BUFFER .
‘e, 8" sesessssEsertIe
‘NO
seee
> .
«F1L e
. .
e
CEEEGLEEEISEEIEN
* CONVER INE *
¢NUMBER TO DEC.,*
—-' UNPACK. FiLL .
BUFFER WITH ¢
‘ TABLE ENTRIES ¢
ertsssrEstetsore
.,
3 e SRS HUSEIELEIERS sreerSIRessenras
* T?R LBEG ON * *
.‘NXTDVL > OR‘ YES . !NDISASES e ‘ POINT NXTAVL L
>®, PEND t--....-..)-t 8 L D — Y) ART *
L ‘.‘ # WRAP-AROUND) : TABLE .
‘e, .o TP+ esessnsesnersenes
*NO
o .
RE
J3 L
.. .. ooooauoo;o;;‘oo‘
- . . R R|
‘-‘FLHI ENTRY ‘.‘-—-----> VIA R14 :
‘e, .. *esesssNERsEERS

Organization 137

Licensed Material

Chart JH. SYNMDMP -

e L L T
ENTER FROM
COBOL PROGRAM

LAZA RIS 2 1

*ae
sse

*9888

XTI L]

W1 .
.+FIRST,

Property of IBM

Cverall

*, TO SY
.,
., .
', .
PASB OF [==~
SYMDMP

V. JJO1A2
shessD1sssesdOINN
‘ILEDMPl .
OCOMPUTE
* MODU.
¢ READ CAR .
RIS ERAONRIRIINS

sese

. .

¢ E1l e

. >
L i1 2]

',

El
*

YES
.EOP oN SYSIP'I'.'--------)‘ SYMINIT W
., SYMCNTR

.. _‘
*, o
‘NO

JLO1A
SERIPPINNERER IS

esssedasnsvadoes

o,
Gl

.» ‘e,
.+'DOES CARD *. NO
«"SORRS SRR Cn.MO

+- NUMBER

.....

YES

---.

: Daas %a :

R
*NO

JNO1AL
oototx1tooo¢tcoo:
S et

* PROCESS FOR
b DYNAMTAB

* *
CEEEP NSRRI SFOEN LI I LIT LT LT LY L FEEEr Y
5---5----22---- >.....‘
R ShMEL Eenren s E1 e
TRBLY TOCATGRS » .
IN DYNAMTAB (XT3
138 Flowcharts

.‘OOOEZOOOOOOOCO‘

JPO.
ssssepiesssRee
*ILBDMP20
0-0-0-‘-._;ﬁ;~‘-:

- DETERM.
:HODUL! TO rmn:

EAL I I AT RS2 ARt dd

= 2 o o e

JRO1AL

[IF ANY_DYNAWTAB
ERLAY N

SILEOMEL euoeot

‘CALLED POR ..
8 COBOL
T N%DRS

YES

o ------_.>¢
3

»
. S5 24080400 00088

c3’

o . ..
. YES
.. DYNAHIC DUMP Y St S Y s

‘e, .

: ‘885%n°§‘

pmn DUMP LA
‘e, ot

., 0

YES

NO

"[23KBPrron

o T ————,
“‘..%.%
‘—._0-.

esseenIee

A
*S429EIS ;
'ILBDMPZ

b4 STOR SIZ§ oF

*8 %AY ‘_____'

SERESPEPEEEEREIRND

NAMES
[READ NEXT CARD

et e o e e 0

By P
, :
‘ xssugu

’..O...‘..“..“‘
LLL L)

L d *

* F3 »

. .
ssee

.ntoor;--
Mp2

>t
>

=2}«

SIS PEEHEERENIN S

B e g

oooocso.tQ*A;IJCOIJ‘

W X

JO01A2
hededd i LRIl
*ILBDMP14
b3t i i Tt SRR

#eccamen=>¢SEARCH CARD FOR®
* . CARD NUMS :

LN Juo1A2
...‘.Hg“....‘ *e
¢ ILBD .
‘ITBH LEVEL ¢, YES ‘—O-.-‘-.—‘-.—.-.
'™ DESCRIPTION | ¢------w->%" DUNP LEVEL
. + DERERYPTION o
.. .t » TR
, 0 S99 “.O...
sfi0
*08
14 L d
L] *
* L L]
(121
JVO1A2
000034000688 5%%
$ILBDI
:"a;i‘;a-.'s-“z
sRD MGty * 1RDEx H
(JI XTI IIT TS 111]

--N?stgﬁgloﬂl'!?

SE0850000640000

Licensed Material - Property of IBM

Chart JI. IODISK/IOTAPE (ILBDMP01/ILBDMP02)

.,
P —— A3 .
c .ounm] sessp2000000000 .. .,
& s¥Hort R RNy T N
LTI YY IY LY ‘e .
o, .
.
OPEN nw' POINT CLOSE
. y
OPENIT ‘lz‘ 't.. READFIL B3 *ce. ’0122:§§5n0¢0o00¢o0= °‘°§§!§¥35.. to00000e
B .
. .., NO ,. 8W] Py— Toenas $eee=CLO! 1.---.
*. 18 DTF OP“ b gﬁﬁﬁ '-.- :CHICK * m: . CLOSE ?R; .
‘e, . .
. .0 o tesnseorsernncees tesscencserercees
oizs
eove
e :.>
ssee !
OPEN2 cz “‘“E¥Ioocaonoo‘ooooo 08040CUGISsIRGORS
YIs ‘ . “ o NT TO ¢ ..“‘cs."'..'....
..--_-----...--..o: ign" .. °’5 ‘“iicﬁun . . ’§23§E:£n ™ s * RETURN .
NG ¢ . P! R . . .
L4 L[] S00C00000020908
‘e, aa tessassnessessans se00eessstsncrens
P IN—
cx‘?**!opzoﬁtotocooo °“'95§!.p;. renssoees axuggiooono”ooooooo:
* CLO! R 'HE ‘ *
: 0?’{“ D&‘ o :Cuwﬂ LAST nm: : SET SINGLE ON ¢
.
:.oooooouoooooooo Seececssccersenes teverseasssaneees
Lmonaneooaesd
1
HE l**ﬁo:zo eesesere .;3' 'o.. 'zagooooguoo-..‘-oo.
o . .0° orr . H
dﬁ“ * .. NOTESW .‘--- ¢ READ BLOCK .
'rco L l" ., g [.
. .,
cesesscassesaneos ., .0 . seoe
ON
v CHIC*
sesveriesesesesse sessep2escesesens gessepeversesees ITeree asessere
. . . R) T
& (R Bﬁ T0 o . OPEN S’l" HE . ‘8%!0 4 ‘le LAST READ®
N : : : R : : : '
00000000000000000 Ss0e0000s0000000e sessctsessetttee ss000000000000000
...‘.‘.
Ses s > er s P A—— |
. N
vose ssee y
Gy ‘e,
.o .. oN
L O“EBU' ﬂ!'lcl‘l S
Sou. L0t
“edrr
READIT 4
$hersiIsenesenery
[] .
¢ READ BLOCK .
: :
0800500000000000
v

lug!x 4

b4 '*?J;O"“‘OOOO:
fih o
. L3
L3 B [
Ld L]
0000080080000 900

JI!‘....‘l
K

0000000084000 0

Section 2: Program Organization 139

Licensed Material - Property of IBM

Chart JJ. SYMINIT (ILBDMP10)

VI P TTI T P c;ngggz IT
* * !NDH% gnfn

. LBDM| p " D ONCE
;oo B o ,
S2ESEIBINRSNERS

ST L3l a4 ALl s L Ld

OT!
LTI IT LRI TYL 1144

v
[T TY T TT YT TS
* .
. -
¢ OPEN SYsIPT ¢
- *
. .

SEREINER SRS O OESY

"...DZ."’.“"&?%&‘ E“D§‘=“D30‘......‘. .‘..ODI‘...‘..O".
.

SRS -E?o-u-o_c-ozot .
‘ READ CONTROL ‘-------->‘ CLOSE S8YSIPT :—'--—--->‘ ﬁﬁgmo

XYY

‘ .
CESPISESREERIERNS‘...‘.‘..

e vm—————

NXTPROG V. JLO1A
SRR E 6 ..OO“‘

¢1LBDMP1
:-o-o-o-.-o-o -

*SEHS “".‘.:

2
*
*
*

SCAN PROGRAM- *
:R 'ONTROL CARD :
LTI PR P D 1

.
2ES 5SS 0000000

R FeTCHPHS |
2, V. _JPO1A2
e xRST.-. ‘.a-oru- .R ;aa..
NO .¢'L . 1,39
-l EL&M .t b4 MP2

« JNUMERICn..u-nu’o

o
$YES

*e

FETCHPHS JMO1A2
ooto-azo.o.-oooo-
*ILBDMP1
b2 s SF S

. - *
M CONTROL CARD M

FBTS¥§§§H oo.¢¢02}A2

140 Flowcharts

Chart JK.

EIIIFSELLITITTL L)
L[

: READIPT/ERROR ¢
PIT TSP PTIETLL V)

OERR BYg! - “e. ¥ES

., ®

[Z 1AL LIS 22 21 11 d
»

*
SMOVE PROGRAM-1De
:TO PRINT BU!FER:

[.
PEFERVEENREEISR NN

...... —

A
saeseELe
$ILBDDBG1

Cabobuboboabntbab
¢ CALL

®TO WRI!
st eitsNtNNee

oooctr10n‘¢.o‘tto
' !NCREHENT IRROR 0
. crglﬂ‘ FOR

M OTING :
PS040 400000

v
JreseGLessnentee
L3
. RETURN b4
o000 0s0s0008

P S Y

READIPT/ERROR (in ILBEDMP10)

Licensed Material - Property of IBM

soee
. .
o By &
. -
EAD . seee COLLECT
.,
READ2 2° e, sesssByusesssseey ooo..gsooooonooct
o* ..
.. . OFF NO ¥ ‘
N uas'? c“; ok i |
., .0 Seressrssssecenes Cetessscersssres
on Oins
sle pm——— ->
v
ll‘%oo.oca-oooottooo $0004CUISEIININSS cs” ‘e,
. - osz; Bos ;o . +*I8 BYTE®.
Eore . . 8T ¢ . . e, NO
fowcancccneeea-eee$READ NEXT CARD * oznzagnr (? FFER® . H MY ol
: 3 s eotf T v NoubeR’ .«
P TT I T T T S50 0000000000008¢ ‘e, L0
YES
.-._.-—-.-)4
4 \ - YTE
!Olig D2 . ..30-“0‘122%%2’ pu ‘e, GOOQE‘..DS.,Z...'....
. . ¢ILBDDRG, .
. . Pt 3t ot put PRI % 18 aymg .. NO oxugﬁgnz COL. ¢
¢ CLOSE SYSIPT * . * ®, BLANK O . . POINTER *
4 . SPRINT NEXT CARD* ., COHHA .o’ . *
. *
. .0 PLTTTTTIT I YT,
¢YES
! v
SOEISE20 000000000 23" e, SS00ESTEISISINS ES" ‘e,
- . .. 'R,
¢ SET EOFSW, . *, YES ‘INCREN!“T COL. L4 o .* .,
: EOCSW ON : ¢.FLUSH HAHTED. =D ‘ AND POINT : ——=®, COLUMN 72 ‘.'
. . ‘e, Ky . PY ‘e, ..’
PO T T YT YT YT . .0 $50040000 4008000 ¢ ., .0
NO *YES
P SEPE— |
v .,
CESPEFIs0 00t s oo e r ., S04 F 54044088048
: : o ..o :c 5§ kﬂ' H
L3 -
. COL = 0 * —-‘- COLUHN 72 -’ L % .
. . . .
. . ‘e, . . .
S0000400000000000 o.. T T YT
seee 1
->4 .
e By ®
. .
sone
.‘. ",
., GS ’.
® ., ®
NO e L ALL ‘e. NO
----‘-‘ BLANK .* -BYT NOMBRIC.‘---
‘e, .. ‘e, ..t
. e ., e
*YES *YES
v
T T TR Y T YT Y coensSeteesiente
. . . .
. . . .
: SET EOCSW ON : : SET NUMSW ON :
. . . .
sesssetsssesnies PETLI T Y T Y Y YT
v
JrereIsesecescres
IMB,
‘%'s ol F ¢
vore
it P S——
>
READEXIT \
L TeRKSeReeraner
: RETURN :
cosesstrseine

Section 2: Program Organization 141

Licensed Material - Property of IBM

Chart JL. SCANP (ILBDMP11)

.'..Az..‘.‘...‘ ~==SCANP:

Y ieowp S ENTER FROM_ILBDMP10
. + " ""7777| CONTROL CARDS
S SENESERESEN

. JKO1A1
B2 o. ot.t‘BS‘t‘.t.OO.t

.. .. NO
ROgM %ﬁgggn ‘-------->0 ISSUB ggSBAGE ‘-—---‘

‘e, .o' : ‘
. . sesssseesessnsesy
YES

SEEANC2ERIIRINES

8
: PROGRAM-ID
OSSR BIOHNESEI0 S

.
GETELY, .., SO
ATy _e_ee_eEND-OP-CARD
o GET NEXT ¢ = =
ST
G040 NSRSLEEENI S

v

|
!
1
|
|

... JKO1A1
E2 *, .““E;.‘..‘....‘
- 'ALID . NO V "9] : v
.l svsuxu uuunsk.t—------>0':§sﬁa ggsEAEs'o-----
‘ b A
‘e o
$, % EXTIIZ IR LI L YY)
¢YES
.'.O.Fz‘..‘..‘.‘:
*
¢ STORE IN ¢
* PCONTROL ¢
. *
. *
I IST LI L T)

v
CENIEG2o8RNNNNNS
. L d
* *
: SET PTABOK ON :

* L d
SECCRETETESEROSS

SREAD .
>a_o-t-o-o_o-o-.-o
: CONT&SL ARD M
se0sssstesessite

seee
. .
. H2 *
. ~>
seen
JKO1A1 DRET
ocotogga oo.ooos seseriIesrenorens
i e e et e] RRD cmu PCONTROL ‘
—ece—ecameameee=>$ GET NE. $-——===-->t"" POINTERS
s ElewE : . :
.
PETTTTYTTTT TR sseessessesseness
v v
eerssTI040 00000 J2° e, oooooasouooggegéi
-31¥§5 EEB%S qog: YES ,o'. .'o :3!325!!._0-0-0_0
¢ "IN PCONTROL #<ec——emee ' . . .
: P L :< VAfID OPTI(:N . :ngsygﬁcm' :
T T T P T ‘e, 0" PTTITITT YT T YT
NO
<
Vv JKO1Al JJ01F2
P asy T LTt
. . sseeK3Iessesvree
P 3 it S P Y . gts N 7 :
LJ * L
® ISSUE MESSAGE ¢ * .
. . sesssenesesnens
seseesststsatItes
ooe
> .
v H2 *
. .
sone

142 Flowcharts

Licensed Material -~ Property of IBM

Chart JM. SCAND (ILBDMP12)

- ERN - .toc.;zoooootono.

ggggx;%go amee——- ® ILBDMP12 .
0C. NE~ . .

C OL CARDS LTI I LY T L]

[111) *
. .
& BY »
. P S ——
4 IBIT;E;‘ L NXTDYCRD JKO1A1
sesvsB2eraasvaces gesesBItussvaners gu' ‘e, seseepsuershesses
. . e D By 8 ¢ P rr i a4
SOPEN BUG FILE* p——==>¢BYTE ON's -, (u Y% -——> *
: PEN DE! : by ™ : - ‘e 5" SREAD NEXT CARD $
S8008400800888600 0000090050000 .. Qgs .‘.'....7..““..
v A A b
out.: oootcgznmootgg% * :noacut--totoono cs’ e,
.. .,
‘: :-*ﬁe-!!.-.—.—.-‘ : SET . ot FIRST ..‘!Es
: Pl i P | Pomligerel || o g G
(I XTI IIT IR L] V0048000300000 0 5 Se¢dseR ‘..‘.‘.. '.. ‘.- s
* [4
cone No s D2 ¢
* - L] *
D2 sees
. ~>
een y]
.., v JKO1Al v JRO1Al
sessopzes o-ao--o. D3 e, $8000DUNEEIRE SRS seteapseEesstites
.. ., . IPT . *ILBDMP13 .
s gﬁ% wﬁgy, ..o NUMERIC o,.uo :- -a-o-;..o-o-a-: :. -.i.;';ﬁ;-.-.—:
: cum'ﬂus Te, .. s SEoER o ETE8CATE NAMESe
., o* . . ¢ IN DEBUG FILE ¢
‘..‘....‘...“... , .¢ L1113 S0008 098I SEEEREN KSR E RN NSS4
sYEs ¢« e
« By *
L] B
L1111
] v
"sane 2.77.-‘.’599.‘% CeessE ettt ES’ '0.
-ngm g!‘ . . b L
PR | LS s | ocobigm e o
: CETanENT : “"¢ " DYNAMT . .., L
P TTII II T T T T YT LTI LTI T Y “e. 0
¢OFF
| .----...----2
F2° ‘e, Fu' e, CS0EIFSIeEEIN IS
. ., 4 . - .
NO .¢ s, " ¢, YES . »
-, MUMERIC _le * END OF CARD .¢-----. ¢ SET DTABOK ON %
‘e, .. ‘e, 'y . .
*, . *, . . Y1 TT 1)
SYES INO
YNCARD y RE L
o $9essG2ess000aces K- 2 :ooooqstu.-t-tao:
* STORE VERB b4 .+'DID 'OF' 's. YES ¢ PUT _DYMAMT e
. ;i . ., Y St o »
: l'aHBI.R : .. .PRECED!‘ . Pgé“molﬂ :
008000043000 000 8 “o, .0 ooounornnuu
sf0
P S——
v JXO1AL JJ01H2
» 1pT ‘s :”“ﬁi””a"‘: Yy 5a!-unno
SREAD: POIPYRPIRY . r'x'gn . * nE'ruN'ro .
: °i£:ﬂi§$: 3 B INL ¢ ILBOMP1O H
* L ° . PECSREIEESN R4S
0SSP0 ERNSIINE CPEERS SIS 4RSS
P I——
-, 'rogumz
allfou J2 ., 8 .ottoauoottoont¢:
.o “e. YES ¢ STORE NAME IN *
-, "ON* o Smaen, SQUALNAMS ENTRY *
., .* . .
., I » .
. .* PYYTTTYITITITII S
o
Lse®***.
* BU:»
seee
VvV JKO1Al
:“‘. u.w“....‘:
[2 e e s o]
—— Ld
.
. Ld
....‘:...‘..‘....“‘.'
* By *
. .
sore

section 2: Program Organization 143

Licensed Material -

Property of IBM

Chart JN. FINDNAMS (ILBDMP13)
LIITTSEITI YY) ---r INAMS
: I::DHPIS . "H! NER !’R?)Mij pHP12
. " CONTROL _CARD IS
SERBSISRNOPOEE PROCESSED
esen
B2
HEL I
sone
v MO!
seeveBlesesssorss sesesB2viersereey
. 0. S ¢ ¢ POINT TO NI XT 0
: I§§ i Nggg : ‘QUALNANB .
. .
CEeRsEsEEIIILEIAS Tessssrassvsnanas
seee
. .
g et
) v seee ¥
1sasecte ..922*5? .cz' 'o.. c:' ‘0..
f&fo-ogu-gfz-t-: ‘.;;D oF ‘e, ‘e e .. s gg@n “e. YES
onﬁ% YA BLSCK, H B Bu.. .1‘u.|..mm e
vesses i EiReensees ‘e, . ‘e, 0"
¢YES *NO
X
“”T9%?é§p;.......... .-ooon;vjo..-ooo.
‘ POINT TO_NEXT ‘ ‘ POINT TOQ
: DATATAB ENTRY : ‘POLLWII‘G BmY‘
PP tessecesencscanes
[—
az"'c srsggg..zs.r“_....:
.
oF e, No * BACK UPTO ¢
.l aLocx 3 rr') — 4 PREVIOUS NAME 3
'. .. . [
., L SRS ESTELINSENS
YES
3 v
F2" s, G e
o ., .,
YES .. HAS N *. YES
——. DATATAB BLOCK. . BEEN FOUND .%=a=
& ‘e, .. ‘e, ot
e
. . #o 1)
* By
.
one
! 1
X TLT-3TY '...iui‘? 63" .‘-.
. »
:£¥§E§.2§£23._._: . MATCHEEA%{TA; R
: DATRTRP BLOCK H Y ot
SEEISEIRIEESRET RS ‘s, .0 s
YES *
s B2 e
. .
sens
>
NEWD! L \
n!*"fﬂzc'oooooooo sssesf3sesneessee
. .
‘POINT TO FIRST * MARK AS »
‘QUAWS EWI‘R‘! ‘<—- : rgﬁﬁg :
. .
Teeseesnsesannses PO TT T YT T Y T
eessn
- L]
>ec3 e
. .
ssee v
J3 e,
.
8 IT FIRST*. NO
- N;HE IN iﬂggz-‘—-
. .. l
. o® one
SYES : B2 :
. .
seee

144 Flowcharts

[et ded LIS LIIIII L]

R

’ NTP”

.

SeRRELEOSIRIEINNS
e e

>0 .

.« B2 s
. .
ssee

tose
s B e
. B4 S
sete

€0080B EsEE 0000
®POINT TO PIRST
s ENTRY OR‘

: “BhaRiRe

*
SESEEENNSIRERESOS

[YYXX 3

FILLDY .t
L .,

.18 pynauTApe.

*ENTRY FOR ALL..----->opyu

., .t
. .®
*NO

",
ISQPOUNDD“
" W, ‘..

. « NO
0..zgwn rounu‘.o....----..-..----

.mss gmsq,.._“

R
*§0

a.c‘oru;
* ADD ENT

: B,
3

PSS 0208%
0 *

.

VING

I8 ENTRY :
084400000000 400¢

ooooosuo! eseecee

.

TATAB
TOR o

IN DY Al

*
‘.“..“l“‘.‘..‘

<

[S——

coooocsolooooo.o:
POINT TO NEXT

‘ [
42483 E SRS RN

A
‘.l“rs.".....“‘
.

$"Y560E Yrasace
L]
145

‘...‘..‘l.“""‘

sneeeG5e oooooooo
O

MARK DYNANTAB
‘ENTRY A8, &RROR‘

.“00“. 0‘.0000‘

'4
ottonﬂuouoooo.ooa

EXT *

‘ngiﬂhns ENTRY 0

"O“.O‘~O...O.Q‘

Ju° e,

..
'-END or
‘e, ..

.

JMO1RS

(1212 “.“‘...‘..
s IRy
. .

RS04 50880040¢

TAB ENTRY :(——

Licensed Material - Property of IBM

Chart JO. FINDLOCS (ILBDMP14)

sebe
* *
e A4 o
L Bemem
(11 1] &
FIN sesen2 . :i'ugﬁvo“ "'[75?%5%
-——- - L] {II1 T 111 Y]
ENTE . A L] Salelelolelabatud
ILBDMP10 AFTER ——eeaae® ILBDMP14 . LK} PROCINDX *
ILBDMP13 SWITCH . . *ENTRY FOR SEGI-#+
SRS S 2000Y * RD; § 1]
R ——— 6088208400800 608

BLK
seens $$¢4BUSEESE000
.

L nﬁiﬁ.gg T i sms 3 :

‘.

‘ IN PCOI ROL H e
tetsaanenrassrees 'n, K ssssssisssenseene
*NO
>
uoncznu‘!*%ggc...f..ﬁ‘.’%#!
$ILBDMPO1/02 . oI 0}/02 b4
"""'iﬁi"'-": Jetoenacioete ey
*
SFERE Chlt ¢ : astbon |
. ENTRY . + P B .
sesenessessesanee sessassssesteitcs
>
v
";“D%;"“"i': gesseDustrsaneree
L z"'l‘
: g?ﬁﬂ'l‘hgmn : ‘Smﬂ ROCTAB .
¢ "PRIORITY IN * + CARENGH matcH t
SaeesaeseINGNINNY tresnsscssesreres
ot
.““gi. "uuu JE o.‘
Pt ﬁéS o. Y 0
%ﬁi D&ﬂﬁ o<--------o mqs ;o%%{ . M‘l !OUND .N I
‘e, S
teransasernsneans . e
'izs s
sF20 4 Yoedt01A2 ottuput--'toouon seesepse
‘ILBDHPO /02 » SE| VE ¢ *
P 3t i Sut Wt S BRI
$POINT AND %5%0 . » IN » ¢ D
: FIRST 8 3 X : * D' AB : :X'Pl‘ M
LI T LT sessseessessostee LTI ITT TS
tnugzo‘ Jasnsanes05...'..152%’.‘%
ARCH YNAHTAB‘ SERROR .
' FOR ERIO?H . :_t_t-o_o-t-o-o-:
H ND. . .
*ENT IN ¥ ABO . MESSAGE 151 :
XTI YT T YT Y N SO0 EPSBESOS 4SS
4 “<
e H2' ‘e, ne’ "o. 30132
‘ G! rmx'r 0 .* '. .® ., nng%nnnou
SEGINDX E NO 'l' +® PROCESS ¢, YES . RN '60 *
‘(READ ch;(I!‘ ‘<-------—’ SBG BN%R . ¢ .LAST D' AB. *emnccan=Dt ILBDMP1 s
KED A ., R " . .
: ., .. 0008000800 00S
T T T LT
oiEs 0
mmgunazonnuu: m‘o’!”osuo“"un:
I * . .
iy X
. . .
SEEEIRINNIEEIINGE teessscssessvenes
sese l soee
S P %' 3
A4 2 - U]
s e

Section 2: Program Organization 145

Licensed Material - Property of IBM

Chart JP. SYMCNTRL (ILBDMP20)

i“ mi‘*""ml'--- SEEOp2000 000008

emmem—= ¢ ILBDMP20 .
* -

Bg YT TR YIS T T
DUHP [{ END OR
DYNAMIC

L]
B2" s, $eeveB3assesseses
.

. .
. *, YES INITIALIZE
L PIR?%‘R&A‘LL ‘------) COMMON FOR PASS'
., ;Labunog K
‘e, L0 terrsrresererenes
N0

.
CZ
.* CA L FOR ‘v, YES

. IALI> femeececcececccece——

ZA ION .'

O. .‘
*NO

JCU N N
.*FOR_DYNAMIC*. YES
s, DUMP

:ootozzo oooooot:
. ON ¢
:(A% SWITCH) :

. L
LA AT I TR R Y]]

JRO1AL1
ooaoopgt LI T
»ILBDMP2 .
o-o-.-o- LY P

:ouu gﬁ%‘.‘“i&cs

2000036800008 040 %
JWO1A2
“"‘Gg““.‘."‘
‘Il’:ﬂgﬂ .
e e T oy B
* ISSUE S %’1‘! *
: :
SEPSGEP IS OSSR RS
P ——
DUMPIT JSO01A1 FETCH Vv JRO1Al
geee ch eesiases :oisauznrooooooo:
‘—.-.---‘—‘_.—. I E"g —‘-0_.-‘
‘ DUMP D 3§A . ‘
: DIVISI : " IN g ‘
2898388348800 00 0 .““. “...
¥<
RET
2° $0000330 00000000 JA0lAL
*1/0 ERR * SETOPY SYmup ¢ S RERN To e
ON DBBEG g§ ‘--—-----)‘ E{T IN TGT ‘---7\--.->: ? Dgﬂso :
., -‘ SEFSSCRRSEESRES
., .0 ocooooo'ooo.ooon-
T]

146 Flowcharts

Chart JQ.

EBOBP20 08000000

. HEXDUMP :
S8 0008 000000

“!“¥§§Eosz.

¢ SET NEXTSAME
: o gy

v
(XX I LTS

anses

£ d
COSSENIEESLEISESS
000
L Ld

. C2 ¢
* >
seve r

.

-_-_-----------..135 ‘“’3%:3% £D! *

KX
Ce. .9
NO

s8e8
. .

e D2 e
. >
t‘..

GIV§C9 v
22- ‘tooa;o:
‘Vgﬁfuh Ygggnncat
¢ AT ADDRESS IN 0

. nzgx TER

CONVE 8
oottooov .

seseeDIsGessENRRe
.

.
*PUT ADDRESS IN ¢
* REGISTER FOR #
¢ CONVERSION :

.
P T EITEI AL XL]3]

%8

....O

sans
->% .
* B3 o
. .
esee

v
ooooo:1tontotocon LINELOOP g2" s,

0
‘ SET LF-LINE ‘ NO OOM _ 1 ..
. COUN%E& go 0<--------‘ BUF;BR FOR 8 .*
WORDS .°*

‘.."...‘.O‘Q.‘.‘

., L0

*YES

LA LI A I RT3 Y]
»

.S - .
3 EBhupkTaEIE
[3 WORDS

*se

LIA RIS DR 2211 14

S900000%0
UFFER ¢
LIGN AND
ORD, EOUNT
Ly -oo.g‘tggo

HEXDUMP (in ILBDNP20)

P O—
.

ENTER P§

EEaRNBLR %

HORDEOO‘BS.“.‘.'..‘
‘CO A

0 REGISTER AND
* SHIFT

o<.-

* L d l

LSS EHSES PR RO SRS
L]

*
¢ Bl s
* L
’599
BYTELOOP _.*.
<3 .
NO ‘“poNg 2 e,
<--' HAES—BYTES ‘.'
. o
..t
YES
S9SREDIERSRESES S
*DEC] BYTES?
*
. xucaangkr p
. *
(XX ATRIITIS LTI L 2]
v
E3’ s,

.,

.
., .*

3’ e,
.. .
.. .
JDONE A WORD le
.‘
«®
YES

NO
Cowtl

‘..

NOTEND \
Se808GI0e

‘SPACE N_PRINT ‘
BUFFER ‘

.0‘0“0‘

.
...““. (221111 1)

H3' '~..
DONE A °
HAL!-LINE ..

‘e, ..

., .‘
*YES

.

NO .
<o e

tcn.oa;toooocooo:
: .
:BPACE IN BU!FBR:

L d L
CRSPRNICE S0 00S

C‘.
KS ..

wo

———

‘DONE HgOLl ..

. .
L

.®
o0 SPREPBuRERE 11122

ISITALL

Section 2:

Licensed Material

ot
BY .,
.‘ .
" RiDRESS “.“
-, o B
*. JITSELF
'o . sese
* *
irs 2
L] L]
(111}
.,
cu .
®
. ¢. OFF
i, NEXTSAME le-—
“e. ..
s, . esse
SON * .
® D2 »
. *
(211
CEE2RDYS SIS S ENOS
L] *

$PUT *~~SAME-=' *
*IN PRINT BUFFERY

L] .
LTI RIS AT S)
0“0
‘ BH : 5
Pklg gguooo ggggéé
.- -0229%— -‘-‘-:
Pl!gsl%*“m :
EXIIITIIE RIS L LY L)
[T 11]
L]
:, ru :_>
.’-
) L} HEXOUT
‘BY E .. .oooopsoooo.ooao
ssz—m N S
LTI
“e. 8"
IND
0
THAN Ae. NO
Hgaﬁ! LEFT s
,.
..§ L,
ES s 82
L] »
sese
...,
H“ .
.. .,
..‘ NEXT L{AET ‘_-_
‘e
.0.‘. -+ ‘ootn.
YES v B2
L] *
o0
",
’JH ... '...‘Js’......‘.‘
.t +. OFF
‘-. NEXTSAME . -——————->‘B!T NEXTSAME ON'
..u o.‘
o, ¢ “...‘."..“‘.‘.
*ON
L 111
1] L4
s C2 ¢
one
.'..‘xu“.‘a;.‘.:
*DECREMENT Byt st
x.%‘r’-r”‘? A LIN

‘...Qi‘...““...
e

-3 .

¢ Fu4 o

. .

sees

- Progperty of IBM

Program Organization 147

Licensed Material - Property of IBM

Chart JR. SEGINIT (ILBDMP21)
Ssesp100000 0000 [~ 2ZCEEGINITnn
ENTER EROM
¢ ILBDMP21 $-——————| ILBDMP20 FOR INIT
» OR ABEND
LA ITTII T]
688
* *
s Bu Y
Gm;:z; "1'
..,
- . 8¢RIt ete *
'.51 -52 * . : '301 113 s
*. PIRST TIME .% > DYNAMTAB I s >e Ag§§ 5ckSor o !zs..o
i A S : The - APUEESH s ¢ [
.,o .
, . ..‘.a (IYIYSITIIT T2 1111} ,
tho N “OO.
L ‘ CY4 »
. ~>
L2111
xsx!.!o.cl‘tt‘t..‘o. SUSEICUISSEEINIES
* L]
$ FIND PCONTROL : $SEARCH POR ROOMS
¢ PROGRAM ¢ + Moy ‘
LI T I ISP]] 5500002060450
GoT ... CLEA ... NEW
PRID D1 ., SE0ED20 40000800 NIT D3 o.. §§9§.pu......~-.:
S el N0 . IRST ¢ .+ *pogs 12°"e. Jo_ * 0 4
o sk Borr *1eN0 ____sepcofFRol RRELe 0—---->-.navz AgLe ——> fgg .
.. 6asun .
., . . . ‘e, . . -
., .8 P06 00600000000S ., * LI IAS TR T2 Y1 Y]
oYES o¥ES
aous .o
nor JPO1G2 nzs!?&%‘ﬁi.‘....‘.‘. .0".!““0.‘.‘..‘
.. YES ...O‘ “Q“..“. : * ’ 8
“is’ggim TelES_ : éﬁﬂ?ar : :mssﬁ 'ONS INe . P%Eaﬁkﬁ%u :
LITTE2TIIT 2T 2 1) * L .
A (LI IT] 1] L] ’ LIl T]
l PR
ES y
... Y TRYPDUMP__.#. ..
P’ e, 2" el 3 e, e e,
NO .e'I e o ‘-, o5 ppuNp' e, MO NO _.ehIRST OPEN'®
——— ie —>¢.SAME SEGMENT .¢ o1* BODRSYED *i.o p——t FERTPOLET Tie
¢. WANTED _.¢
.
., ¢ o, .* ., . 28
*¥ES ei0 YES *YES
1A1 v
"“‘Gl..‘...‘. (1] G2e¢ G3¢ ‘.“.‘.. SO SGLESRES S S0 0
*ILBDDBG . . . »
:-.-‘-a—‘_:‘-t;‘ ¢ : : ¢ “f;ﬁf RAM o : n&gcg E i
¢ PRINT ENTRY ¢ : SAVE PRIORITY : : : s anp sggbxn :
LTI TIT I ISR L Y] A ITITTITIT I IS) 000808000004 0500 (T2 21222 T2]L]
e
-1 1 *
* BS @
* L]
v soet Vv JQ01A2 4
I LTI T YT T oooc‘u30uooogcooo HG e,
. REXDUMP . o .,
OBTORE cnzr:gaz . bbb tatnabutas NO
-->¢"AD: N e $ouMp Bl <-‘.Aﬂ¥ oaonomaa .
. s DIVISE .
. * * * .. .‘
SESE2 0SS 90009 2620005000808 0 ¢ o, .4
s¥Es
[ZE—
v
. oMP __.®
.Jl' ., NopD J3 'o.. Tessegusssenneset
.+’ DOl ‘e, ot ‘e, $READ -
*IPR Rﬁﬁ:"‘v= 1oXE o ¢5§§§§° s Mo Iy EuTIRE
+.D AB .+ l o, TABLES .¢ H .
., .t ., .t [} »
., L,® 009 ., ¢ LLL 1] S04 204¢ 0085508
- SYES
¢ Cy e . By o
' (1127
JP01G2 SESeK3It00 0SB 000 e KM ‘..
S RETURN O e . : BoMB u:rcnt NO
¢ I K23 : :pco§*§o£'¥xnnz . ->o" ofe .o
¢SS PSP RERESS *‘
coo‘.ooo.-ooooott ., .
*YES
seen l (111
-0 - -
* By * * ps ¢
..‘.. [12 1]

148 Flowcharts

——————D

sene

. .

¢85 3
e

.
lNITDYN
c.oooasou‘oo’occ-

GET

IRS
‘DYNRNTA ENTRY ‘

O'..‘O“Q"“...‘

e s o o g

o,
(] L8
.t .,
N % IS IT FOR ®.
---‘.zHIS PRIORIT!-‘

., .
., .»

*908 . s
. e *YES
- HS *
$ 853 l
st e
®,
D5 .
*InstRac- "
YES .¢ - e,
—=<¢. TION BEER .
[». STORED .s
., ¥
*, ¢
oo
oooon;so sreverer
'nv Eg :sgny H
L]

"".‘.'"“.‘.“‘

v
"IL§££aopso sessenen

* ToéNs UCT ON‘
. TU,
‘G%§TORAGE A :

» DYNAMTAB *
ELII T L A P L 1

r'.‘..‘.‘
¢REPLACE 2 BYTESe®
ViRguRL

Y e

SEEEEOEIEERERESS
.."

‘ HS .
g

ISITLAST \
ssesRl5e
*

4
LITITLT Y]
.
* GET NEXT .
:DYNAHTAB ENTRY :

L L]
SEEEESSRTRES SRS

J5 ..

"
*.END OF TABLE
. .
., .t
..

JPO1G2
.“‘gg. ;..‘.i‘
*

i T

LI A ST)

Chart Js.

AT LI

.
M ILBDMP22
LTI YT P T

.t

Bl .
o .,
.+BOMB SWITCHe. YES

.. B et

., -
., ..
. .e

sNO

prevuecncnsd

A
sevseCiesieserery
. H FOR

SEA!
i
SHIRD KoBR ‘s

[
VS50 ES00PISSS

S6eeaDIOCOSSE RS
STORE RY
ADDR. IN
1LBDDBGO
LI T IS R L T T 1

sanse
ssese

JELT e

. +D0; zurnx .. NO

'™ VE O P ity
‘e, .-'

o ®
YES

\
tesespiecernecees

* UPDATE ITS ON *
* " COUNTERS ¢
L[] *
Ll L[]
SIS 900 0O S RIS G
\
GL' e,
.

OUNTIRSO. YES
. PERHIT DUHP ud>

0. .o’

&

‘o0
SEEIHL 4480800000
. .

¢ MARK ENTRY TO *
: BE SKIPPED :

[(]
6000040000000 4¢

Pom - ——

J1° e,
.. ..
NO ¢ or e,
-, D AR _.e
.. o
. L
YEs

noooox1o esereeve

RN R ¢

o‘ooooooooooooooo
seee
. .
. Fy o
. .
soes

Cmvmcncnnnad

DMPCNTRL (ILBDMP22)

nocazoo-oaoooo:
$8ET Hﬁ HANT‘
o

..'...'.‘....‘."

‘5“"‘.’3..&. . TV

DMP2
o-t-t-‘-o-o-o-o-o
I3

: DUMP TGT :
LA LA LI ITI I LT I

/
860D 200¢eS B ENS
L4 .

. L
:Bl‘l' WANTTGT OP!:

* [
SRS ENEIIRININEIS

o.oo‘ 20’0..;..0.
gﬂ

OLIH ART'

gk TAB :

ooottttantoocttoo

JPO1J2

SS00EIES200 0SS ‘EM
R N
: I 2 :< -‘.IND or TABLE .

RIS Il 111]

Licensed Material - Progerty of 1BM

(1111
® By »
i »
sees ¥
By e,
. ..
.. *. ON
e, ALLSW
‘e et
s, ¢
OFF
STEPID

[Z——

ooo..pno'oot.cott
. .
. GET NEXT .
:nrnhﬁ%aa ENTRY :

L d *
E6 S0P 0UEBIRESS

.,
‘.

‘e, ..

eesesF2e

(I I LTI 2])

V. _JTO1A1
:;;;'G .—..‘...‘:
Vabatatebobotbulal
SANALYZE DATATABS

L4
0400595050000 008

[ENTER FROM
P24

840GI0080000 ¢

*

¢ caubip2 ¢
AL LTI T]]

.‘ .,
¢, NO

[N .DSBCﬁ PTIOH‘ P

., ..’

, %
SYES

.....ﬂg....iEQ%ﬁi
¢ILBDMP2 *
:-'- -0-.-0-‘-‘-:

. DUMP .
. .
*0EEISISISEEEENES
ese
» .
* By o
.

e

L edddd "“U‘egnz

d
.-E‘c-.-t-.-o-o-o
0 DUMP :
-oooooooooooo.ooo
e
i .
* B4 ®
.
ssee

.n' 'o.
8 ENTRY TOe. YES
EKIFPED _.o~--
t. .‘
. ..
RO

V JBO1Al
ooo‘tauauoo.o.ooo

§5§”‘¥2

EST b
.‘.‘.OO *8S8 000

.l

.. YES

L IS IT FOR ALL P
‘e, .‘ l

. .® ssee
*NO . .
& B2 o
. .

sese

<

Py Rt 1

Jpo1J2

ET
S000R5¢ 88646000
-n'éi'unn%o'

ILBDMP2 b4
tssesstsesvenee

otnnocsoootoooooo

o:' @gﬁs m 'o!fs.._--o:uoﬁz%n s&o

““...O"."Q.“‘

OO.QOgM‘.OOCOOtQt
L

i

‘..‘...tlt....“'

Section 2:

Program Organization 149

Licensed Material ~ Property of IBM

Chart JT.

Sesspleseasetee
*

: NXTENTRY
SEEBIRENSRISRSS

Bl
‘THIS !NETY ..

..
L]

NO
o

« o*

*¥ES

BEESSCLERR S0 ES S
* *

. *
:SET ENDENTRY ON:

» *
RIS AT 2]]

:;‘.‘D1tt‘tt“tt‘

LEVEL = *
b EEV DOF EkST .
ITEM (0, If FD,
* 8D, RD .

*
BEESRISSSEN ISR

VNESIERI §

badadd i it ilds]

UP_DATATAB .

'POINTER TO0 N!XT
ENTRY

’
LA AR 222 Y]

.,
.. O
*.END OP BLOCK

., ..
’, ¥
.
+YES

. NO.
Jee>

v
sssesGle v tei0s
.

*ILBDMP01/02
:-o---o-o-t-o-a-:
:R!AD NEXT, NOTE:

S04 40 20040000

/
SesseHiesencsresr

STORE BLOCK-1D '
‘ IN THIS ENTRY ‘

‘ ‘
CENPSUSRENNS R SS

.t
Ji .,
o* L)

[T
L]

-* *. NO
t.;s Ir PROCTA%.O--E
¢ . .'.

., ,®

*YES

Js01Al
.‘Otoklttttotttt
*

s ILBDMP or ¢

L
LA YT]

150 Flowcharts

NXTENTRY (ILBDMP22)

LB DMP 22
FOR P Pg?

FOR SUBSEQUBN

533

SETDISP
otootgzt-ttotttt.

--—->$ BEREC IRl 3

...‘.‘..- .0‘..".

;.t;‘.‘..:
o8t o
Arigfgg%as) .
440584 %

NO .‘
—, ROGRAH HAV!

‘e, ..
.,
*YES

.‘

*
!2 ..

‘.
Es .15 ITEM A
b A
#. RENAMES .
., ..

., .*
RO

*
.

o,
r2

.. ‘e,
.. ., YES
o..pzséﬁ¥§¥zon..‘--
.. o

, @
*NO

:ttt‘ezt“‘t.t‘t:
*SE STLEV_AND®
RN

.
SEHS PS40 R LSS

o)

NXTB*EE “i':&';%"'
CALLER
SePPIEIINISEES

.
*

otctosgooooo‘otoo

,_-_>. RS
INTO L ABGDR ng H

.ootouoooot;ttooo
vers

L *
. C3
. ">
soes w
oc.tocu-oocoto-.o
.

c3’
‘DATAT Be.
% ENT

., ODO A%ZHIS‘ .!2------>‘ &Rﬁgpo{{gl“c ‘

‘. “.“‘t‘-.t“‘.“
‘YES

p3° e,
s

.
LEVS .o LEVELL ~e. LEV>
I e GDOLEy e

‘..0"3..“‘.“"

sty g

.“‘l“‘"OOOOOOOO

*essse

v
$8904G3essRs0NEES
* COMP .
*STORE P ¢
* L
oog .
* L
PEEIPESE RSB EIN S

<

\’
seessl3e
. .
:UT"gO NTERS TO :

4
.‘OO'..:

. .
S840 00500008

:cootxuoco.oooot:
‘ 8ET M@ﬂ!@lv
rr

*
OOO‘O“..“.‘..‘O

sti% “’1‘533;55.........
.‘GT o+, NO * TURN 10
CALLER

‘e HAST!R ..

'o, o
SYES
l

SemmmmmmaD®
*

»
0060568000880

Chart JU.

DUMP1 (ILBDMP23)

P —— o .Esnaotttcoooo‘
---DU Pl--o CE0E)2¢000 00080 . co| L8 THE
- ———— - ‘
?Lg gs . ILBDMP23 : >:OCCU wsg“ T bd
HO02400000 00 * -
et e o 2 0080508008800 H
o8
* B2 H
. [2
000 >,
B2" e, sesssnissereseses
SeseRLsessI . .,
NO 0! =€ER or .
: RETURN t(--—--—-o A DUMP1 BNTRY. R
.“.0..‘0.‘..“ ‘. .‘ .
., ...‘."‘0.‘.“...
iis
EAD! .
H .Eﬂ?ﬁcz.Y.-...... ‘c; o..
..t ‘e, NO
D! ngv L AN obo ITIH Y paset
b AW 000 1oz,
Sessssseeesensess ‘o, .0 YT
*YES * .
®* F3 e
L d L
L1l
APA§$¥“DZ"“O‘.‘ OBOE ..QDSO“““..‘
(]
forp igcpign o’ e
‘WIT ADDR IN R“: ‘VA E OF !CT
“..‘.'. 950804 s ...“..‘.‘..‘...‘
v
.o, .‘.
B2 ., EJ
AN RINGS. YES ti .
o - naget-— S S F&u"%ﬂiﬁ" e
‘e, .. K
., . .
*NO ‘eYES
e
L] -
¢ F3n l
. ~>
e
Tv’g“..'z..."...‘:
ETERM TYPE ¢
'gr DlTi“%O DUMPo< =~ . SUBBC ‘----
: : +.FIRIg
[IIITTITI TR 2114
oﬁo
..0.‘62.'..“““ :.".63‘....“..:
¢ SAVE ADDR_AND o . *
e d (]
SRR | e e
*09000 e ...‘.“‘ LTI LTI L])
v

ooa.oazooonoooct:
-
RS 3

.
2600505005008 808

L2232

lmccacaane)

.ooooxzooo.ooooot

0 SRR |

“......‘.....0.‘

CALLD!

b o

Section 2:

Licensed Material - Property of IBM

cooe
. .
¢ AL e
. —

oo
seseshustecrrrtsy
¢ MOVE ADDR OF ¢
:DATA TO gUlF!R :

* L d
0000645500000

BGl V. _JBO1Al1
oo‘ooBMOHoooocto-

*ILBDDBG1 *
:-o-.-o-m-o-.-o--
¢ PRINT BUFFER :
SIS0 E40 00

R XRTN
.cu . HE o..oocsotatogg}gg
n L d
uzx RE uzsrsu ToYE8 >:'.' '!2""‘§.':
‘- o sdesrmem>l DUHE OF DAEA

.
‘e, K
[IITA XTSI 1])

S0 ELESSIS IS
.

ssnee

.
CXIAZ T I AT]

.0

‘%ﬁ'o&ﬁ‘é‘ks‘.‘-..l

e, .* RN
SYES
0 B2 :

“..

SE80GUGICIsEEOE
. R .
cessesNeERINRES

Program Organization 151

Licensed Material - Property of IBM

Chart Jv.

———— o o o o]

152 Flowcharts

DUMP2 (ILBDMP24)

SesI) 2000000808
ILBDMP24 :
PS040 20000
-t NONLD
B2 o.‘ ooooosao-.ouoooto
L]
.
4 ¢, OFF t
'.. WANT TGT ‘.O----—-->‘ ngﬁ’r%!g :
‘e, . . .
P 0¢SOS 0400840
ON

toooaczcltoooooo:
$ RRRINE |

b d »
LI LTI IR IS T 12 2]

NEXTCI v
:oo oozo~o‘ooooo=
SMOVE FIELD NAME®
p-->: TO BUFFER :

. [
Sttt sessitne

HAV!E!aogzo'oooonotn

‘&m&ﬂ“ﬁf'ﬁ:ﬁ‘x‘.ﬁ-

OOO““#H.‘OO“‘.

<
[31344 11“!92%53

* L4
L LN
: DUMP IN HEX :
PO SEEES RSN

POINTNXT _ V
o.oooaztuooooooun

u‘:’°£5":§ TAELE

‘.“t“’.““.tt.

(22223

NO .#°

.,
---+ END OF ToT l¢
.. .
., ¢
o¥Es

Js01B4

AP LI LI
. L3
* I 2 *
X421 T24 1]

RET

v
3" e,
®

‘e, .t
., ¢
YES

4
sseseD3IesEsER

GET ADDRESS
FROM TGT

ssase
ssase

. Iupix-ﬁing ‘.o------>..° 11T :.'

IMPSD JBO1Al
t.“.ﬂs.tt...’t.t
*1LBDD) .
o-n-o-t-n-o-o-o_o

VP ——

e .*
., .*
eYES

DUMNPFD
.ooocpucooo.-o’oo
LOGICAL ‘

‘ﬁ'% 1N BOFF

....

.t‘OOISOHOOOOOO.O

R |

.“‘..‘.".‘.‘.‘..

v J801A1
sTiepopel .

: PRINT LINE :

PRI eupada 10012

.
: PRINT LINE b4
CE0E00E00008 00000

v
Se90PFie ..‘O“..

§ igﬁgissérnb v -

:.O"&J OO.goghg

b
sDuMP DTP IN uzx:
0006450005 0000400

* PRINT LINE :
SIS SS 00084

",
c5 .,
A ..,

NO ..‘ ‘..
— 18 IT RD .

. .,
. 18 THERE "¢, NO
* - LINE-COUNTER . 8-
e, Y
., .
YES

“‘.‘zs“.““‘.:
g |

. .
SESSSOBERESININES

"eeen 5.“:-!29*%*
BG. .

*ILBD)
D=ttt P PR B Y

. .
: PRINT LINE :
88408604080 00048

NO .‘15 THERE A .
<-—‘.PAG! COUHT!R .*

‘e, ..
.. ¢
*YES

JUO1A2

g L gy

N0 ., . TO o
— o ._.--...->o 3 .
. .

28500008444 00808

ISITALL y JTO1A1 3

X113 08808009 CISOSHSS S S 08000
-nxwgﬁi fat PR v :'paaz COUNTER® »
. < L
* DATREAD BRrry o A : AND VREER TO :
8¢ 00000000%000 ¢ S0 600806400909
b NT 1
33" e, et FOURTRY2}5

nl ., 2000 JL0 20040098 L d
.eis Eg BEs. NO . » Pt gt o1 -t-o-o-o-o
. D o Vomccccnadt I 2 [] N L]
. . . . ¢ PRINT LINE
*, ® AT T I IS]) » *
s, .® 095084800088 8080

oiEs

Licensed Material - Property of IBM

SECTION 2: PROGRAM ORGANIZATION

This section is divided into two parts: Flowcharts are provided for most of the
"Diagrams" and "Flowcharts". The diagrams data managerent subroutines, all of the
describe the flow of control, loading and subroutines for object-time debugging
calling dependencies, and virtual storage operations, and for other complex
layouts in instances where several programs subroutines.
are present together in virtual storage.

Section 2: Program Organization 6.

Licensed Material - Property of IBM

DIAGRAMS

62 Diagrans

Licensed Material - Property of IBM

COBOL OBJECT PROGRAM ILBDSRTO SUBROUTINE SORT/MERGE PRQGRAM

§ 0¥ T

SORT STATEMENT

INITIALIZE SORT
PARAMETERS

PHASE 1
. —

B ILBDSRT0 — — — — —= L 15 ExiT

INPUT PROC LINKAGE

INITIALIZE PERFORM
OF INPUT PROCEDURE

7

1 INPUT PROCEDURE

RELEASE

. g

PHASE 2

T

r———7"

RESET PERFORM OF
INPUT PROCEDURE

OUTPUT PROC LINKAGE

INITIALIZE PERFORM |
OF OUTPUT PROCEDURE

PHASE 3

. g

OUTPUT PROCEDURE . - o .
’ ; - , E35 EXIT
RETURN = -

e s |

EXIT - -

EXIT

RESET PERFORM OF
OUTPUT PROCEDURE

— - T

¥

BN

Legend:
Broken line arows indicate loglc paths executed only once; solid line arrows represent logic paths in loops.

Diagram 1. ILBDSRTO Logic Flow For SORT

Section 2: Program Organization 6

Licensed Material - Property of IBM

ILBDSRTO SUBROUTINE

SORT/MERGE PROGRAM
AR Ay S

e

COBOL OBJECT PROGRAM

.

MERGE STATEMENT
USING . . . OUTPUT

INITIALIZE ILBDMRGO
PROCEDURE .

-—

.

LOAD SORT/MERGE———1-%
. -

EXIT - — —— =

INITIALIZE MERGE
PARAMETERS

PHASE 3

. —]

=T

|
!

USING LINKAGE E32 EXIT

TO ILBDMRGO

OUTPUT PROC — = EXIT

LINKAGE

-
-

E35 EXIT

.
.

INITIALIZE PERFORM
OF QUTPUT PROCEDURE

——

OUTPUT PROCEDURE

RETURN

-
-

.

EXIT

OUTPUT PROCEDURE

r
|

I

I

; RESET PERFORM OF
L

Legend:
Broken line arrows Indicate loglc paths executed only once; solid line arrows represent logic paths in loops.

Diagram 2. ILBDSRTO and ILBDMRGO Logic Flow For MERGE

64 Diagrams

Licensed Material - Property of IBM

JeST . PERMANENT MAIN STORAGE VARIABLE MilN STORAGE
A
4 N BR R
Link edited SYMINIT SCANP
with
CosoL
program
10D ISK
Loaded
for debug
file on
disk
1OTAPE L pass 1
Loaded
for debug
file on
tape
SYMCNTRL SEGINIT IODISK 4
Loaded
when Looded
Poss | Looded ;
processing during debug
Is completed Initializa~ file on
for Hon disk
Initializo~
tion
SYMSTATE IOTAPE
Loaded Loaded
;ﬁr‘”’ :x% PASS 2
abnormol file on
termination tope
Modules which lie in the same vertical
position in the diogrom overlay one
another in maln storage, except that OMPCNTRL DUMP2
in the 'le*l'oh Main Smuoo‘ ‘; portion
of the dlogrom the Pass 1 modules accupy
t9ace at the end of the partition, while o S Loaded
the Poss 2 are loaded dump or rhon' .l:::n
space Is avallable. obnarmel :| ne
termination siementory
A line from one module to another in- dump nor group
dicates that the module above or at the
left loads the module below or at the right. J

Diagram 3. SYMDMP Subroutines:

Loading Dependencies

Section 2:

Program Organization 6

Licensed Material - Property of IBM

§ § ’%

LI i
4 NI
: S
g] ™

by
L1
i 1]
i ﬂl
¢ Kulfis

Diagram 4. Debug and Execution Statistics Subroutines: Flow of Control at
Initialization

66 Diagrams

Licensed Material - Property of IBM

il

.
%
&

[woouwe]
| _Svmcnm |
Conieol
by

-,

}]
/R ARE A
i = :<
N
1 4
§il¥; i &
SLE.I ihijli
, 1o
ff o i
Diagram 5. Debug and Execution Statistics Subroutines: Flow of Control at Abnormal

Termination

Section 2: Program Organization 67

Licensed Material - Property of IBM

1
Routine: ILBDDBGO -~ Level 1 l
L T T 1}
ROUTINE | PURPOSE |CALLED ROUTINES |CALLING CONDITION
ILBDDBGO Service 3 options for handling SYMINIT called when SYMDMP option
debugging information and the (ILBDMP10) switch is on in TGT.
COUNT option for providing
object-time execution statis-
tics.
SYMCNTRL Called when SYMDMP option
| (ILBDMP20) switch is on in TGT every
time after the first. |
|
ILBDFLWO Called if FLOW option is
specified.
ILBDSTNO Called if STATE option is |
| specified. |
|
| ILBDTCO0 |Called if COUNT option is |
| specified (see "Object- |
| Time Execution Statistics |
| Subroutines®). |
| |
| ILBDTC20 Called in all cases. |
L 4

4

Diagram 6.

68 Diagrams

Debug and Execution Statistics Subroutines:

4)

Ccalling Dependencies (Part 1 of

Licensed Material - Property of IBM

Routine: ILBDDBGO ~- Level 2
ROUTINE PURPOSE CALLED ROUTINES ICALLING CONDITION
SYMINIT control routine and common sub- {|SCANP Called if program-control
(ILBDMP10) | routines for processing control | (ILBDMP11) card is found.
cards in SYMDMP option. |
SCAND Called if line control |
(ILBDMP12) card is found.
FINDNAMS Called if valid line-
(ILBDMP13) control cards entered in
DYNAMTAB.
FINDLOCS Called if valid line-
(ILBDMP14) control cards entered in
DYNAMTAB.
SYMCNTRL |Contrxol routine for SYMDMP SEGINIT Called each time a program
(ILBDMP20) |output. (ILBDMP21) or segment is entered and
at abnormal termination.
SYMSTATE Called at abnormal termi- |
(ILBDMP25) nation to produce a state-|
ment number message.
DMPCNTRL Called whenever a dump is
(ILBDMP22) to be producead.
ILBDFLWO Produce flow trace if FLOW calls no further
is specified. routines.
ILBDSTNO |Write statement number if STATE |Calls no further
is specified message at abnormal|routines.
termination.
[l
ILBDTCO0 Initialize COUNT statistics if Calls no further1 |
COUNT specified. routines. |
]
ILBDTC20 |Produce COUNT statistics if ILBDTC30 Called if COUNT specified.}
COUNT specified. |
J
£

Diagram 6. Dsbug and Execution statistics Subrotines : Calling Dependencies (Part 2 o
4

Section 2:

Program Organization 69

Licensed Material - Property of IBM

Routine: ILBDDBGO -- Level 3 I
T T
ROUTINE TPURPOSE CALLED ROUTINES |CALLING CONDITICN
SCAND Processes program control cards.|Calls no further |
| (ILBDMP11) routines. |
4 ¥ |
T 1
SCAND Processes line control cards. IODISK |Called when Debug File is |
(ILBDMP12) (ILBDMPO1) |on disk. |
| | |
| | IOTAPE Called when Debug File is |
i | (ILBDMP(2) on tape. |
t 4
R
| FINDNAMS |Searches Debug File for identi- |IODISK Debug File on disk. |
| (ILBDMP13) |fiers requested on line control | (ILBDMPO1) |
| cards; enters locators for them |
i in DYNAMTAB. IOTAPE Dekug File on tape. |
| (ILBDMP02) {
F + 1 1
| FINDLOCS Searches Debug File for card | IODISK Debug File on disk. |
} (ILBDMP14) | number information; enters it in| (ILBDMPO1) |
| DYNAMTAB. | |
| | IOTAPE Debug File on tape. |
! | (ILBDMP02) I [
I + t i
SEGINIT Initializes program segment for	IODISK	Dekug File on disk.	
(ILBDMP21)	dynamic dumping by modifying	(ILBDMPO1)	
specified instructions; allo-			
cates space; relocates table	IOTAPE Dekug File on tape.		
addresses; opens debug file.	(ILBDMPO2)		
L L
+
{SYMSTATE Issues the abnormal termination |IODISK Dekbug File on disk.
| (ILBDMP25) | statement number message. (ILBDMPO1)
IOTAPE Debug File on tape.
(ILBDMPO02)
8 4
1 3 1
| DMPCNTRL Contains main loop céntrolling DUMP1 Called when group or
(ILBDMP22) {dQump. (ILBDMP23) elementary items are to be
| dumped.
|
| DuUMP2 Called when iter to be |
| (ILBDMP24) dumped is neither group
| nor elerentary.
|
| | | IODISK Debug File on disk. |
] | | (ILBDMPO1) |
| |
| IOTAPE Dekug File on tape. |
] (ILBDMPO02) |
L 4
v 1
| ILBDTC30 Print the COUNT statistics. Calls no further |
| routines. |
t d

Diagram 6.
4)

70 Diagrams

Debug and Execution Statistics Subroutines: cCalling Dependencies (Part 3 of

Licensed Material - Progerty of IBM

T]
|Routine: ILBDDBGO -- Level 4 |
i 4

4
iDUMPl TDumps elementary and group TIODISK ;Debug File on disk. |
| ¢(ILBDMP23) |level items (ILBDMPO1) |
i |
| IOTAPE Debug File on tape. |
| (ILEDMPO02) |
L ¥ |

i
{DUMPZ Dumps item which are neither IODISK Debug File on disk. |
| ILBDMP24) |elementary or group level (ILBDMPO1) |
| items. |
| IOTAPE Debug File on tape. |
| | | (ILBDMPO02) | i
L L 4. 4 d
v 1
|Routine: ILBDDBGO -- Level 5 |
t 4
{ ¥]
IODISK Performs input/output operations	{Calls ILBDMPOY4 I		
(ILBDMPO1)	for debug file on disk.	before each	
	open.		
t t + i			
IOTAPE	Performs input/output operations	Calls no further	
(ILEDMPO2)	for debug file on tape.	routines.	
{ 1 4 d			
) 1) B			
SRCHPUBS	Performs initialization of Calls no further	Called by IODISK for each	
(ILBDMPOU)	SYS005 DTF for disk debug file.	routines.	open. i
L 4 4 J

Diagram 6.
of 4)

Debug and Execution Statisitics Subroutines:

Section 2:

Calling Dependencies (Part U4

Program Organization 71

Licensed Material - Property of IBM

Pass 1 Poss 2
SYMDMP LOAD POINT
r 3
Common Date Areo
SYMCNTRL
(ILBDOMP20)
SYMINIT
MINIMUM
SYMDMP (ILBDOMP10) >
SEGINIT DMPCNTRL SYMSTATE
(ILBOMP21) (ILbDMP22) (ILBDMP2S)
SCANP QUALNAMS
(ILBDMPIN) toble
. J

NN

e e — e V]
A

Length unknown during
Pass 1

Object time tables - variable length

D e i I

Slack ~ variable length

End of tables known after Pass 1

IOTAPE
(ILBDMP02)

10D1SK
(ILBDMPOY)

Debug file buffer |

Debug file buffer 2

LOADED FROM HIGH TU
LOW ORDER STORAGE

3CAND
(ILBOMP12)

FINDNAMS
{ILBDMP13)

FINDLOCS
(ILBOMP14)

END OF PARTITION

Diagram 7.

72 Diagrams

oumPl DUMP2
(ILBDMP23) (ILBOMP23)
Debug file buffer 1

IOTAPE
(ILBDMPO2) IODISK

(ILBDMPOY)

Buffer 2 for tape
Buffer 2 for disk Y

Note: If, in Pass 2, there is space for all the modules and data areas
of the pass except a second debug file buffer, the buffer is omitted. Routines
IODISK and IOTAPE (ILBOMPO! and ILBDMPO2) use a single buffer in this cose.

In the case of @ dump for abnormal termination only, as many as
possible of the Pass 2 modules that do not belong to the "minimum
SYMDMP* group are loaded, overlaying the COBOL progrom's Procedure
Division. [f this main storoge space is not sufficient, the additional
modules ore loaded ofter the object-time tables.

Virtual Storage Layout of SYMDMP Modules

Licensed Material - Property of IBM

SYSIPT MAIN STORAGE SYS005
CONTROL
CARDS
N
\:\\\\ OBJECT TIME
\ NS TABLES DEBUG FILES
\\ SN
NN
\\ \\\\ ~
\\ \\ \\
\ N ~
\ \\ \\
\ A Y ~
\ ~
\\ N SN
\ S ~
\\ ~
\ N
\ N,
\ \,
\
\
\\
N -~
\
N DATATAD,
\
\
\
\
\ E
\ K
FROCI‘AI‘
PROGRAM 2
PROGSUM,
MAIN STORAGE TAPE or DISK FILE

NOTE:

Solid arrows indicate the main pointers
connecting the tables.

Broken arrows indicate the primary
sources of information.

Broken lines indicate the boundary b
files.

Diagram 8 SYMDMP Subroutines: Control Card Processing. Relation Between Object-Time
Tables and Debug File in Processing Identifiers on Control Cards

Section 2: Program Organization 73

Licensed Material - Property of IBM

SWYNTND
Tvi0Q080
aoviva
svivivo
- SVINYNAQ
= ~-F
V100080 TOUANODS
SqvO
TOuINGD
SO0

O WUNODI

l}a!’li%‘i@

SWHYNIIO

7100000
/

‘ avive

sviviva

vareriag

100080 IOWNOOI

WASO0M r

.-.1353:..]..'.!_;@

PAVNTYIO
/
100080
/
’ WAV
]
]
I’
J
viviva |/
TVINVNAG
#viOa0e0 TWOUNCD
SRV
WNINCD
e —
“olnates wrow Gou: p0ss &) 31904 SYIOQ0R0 “rptwepy

i-.lm!\-zoulgnoi.-lctﬂaoo-@

IIIII

<
SWYNTID
V100080
waviva

svivive T

CYINYNAG
100000 WNINON
WSO0M

UBipsepy sgo

SO

¥100080

e

aviva i

1

[

]

]

wivive - et
IVNAG
#v100000 WUNCI

v.._i.Qu'azEJ_!lt..l!lJilﬂ?a@

PNIVIO
WI0000
uovivae

wivive //

WVINYNAG | N,

100080 ouNOM z/
I’

sOOM _

.Iﬁif!i:—igﬁial&@

SHYNTING
#v100000
ﬁ\‘
4\\\ uavivo
-
-
iy
wiveraa
100080 0uNGH
Savd
ouno
WsO0m 7
- BOVIVO
ot pocews 3} durwe v LVivQ) Spuadsse 1!’@
SWYNTWD
#v100000
waviva
tviviv /
/
viwwNag /
V100000 WUNCN /
/
/
s
0UNoY
wnsoow -
S05AS T TSRS
uny igtiunp; pue POSI i e erewser) e

Control Card Processing. Identifier Processing

SYMDMP Subroutines:

Diagram 9.

74 Diagrams

sed Material - Prorerty of IBM

Licen

NONIDOW =4 X200 4 XONIJOW
o snavne s swrvno C = N
XONOW™ XPEOWD XONIGIVD
3 ool la.
V100000 100080 100080
N, =% od
. B
waviva wovive
wos N w0u o
A
7I
n
vinvNAG e INvNAG
0MNON 0UNOS 0UNOY
s SavD sawd
T0NNCO WUNOD 0NUNCY
WEOOM O SOOu S — WEO0W e
S0 BV SIVINAG ¥ postos 3y soquns ety wen « woieoe; Sunl gy
-ll!‘llll.!.jtlllll..l‘l.e .’x?ﬂo!%ﬂ.:-l.l-_lalll!d@ VL0 Suas® .‘xﬂ-uo!c_]..l.li.l@
XQNIDOW XONDOM XONIDOW
H SNIvD Fowos | SYWNIO XOEon SHYNWOD
XNV XONIGIVD XONIGND
i
\
\ | w0000 100000 100000
\
\
\
\| = aoviva av)
1308 oW
\
\ A Y
\,
\,
N
LWNAG LR AN AWYNAG
\,
"\,
0NNCOY OUNON N 0NN
\,
N
sawd SO sawd
0RNCD WUNCD OWNOO
SO0 P am— W00 —— WNSOoN e —
- st psmelinsy g ‘o - EV1O0W P ‘XONIOS
S ‘o "y puney o A v— -«-;SJ_IIIJ‘}!{('IU@ ‘XONIDIS .x!gllll!l‘.lliﬂco!@

XGa30u
$= xawors Sevno
ET 7]
b xoaav> |
V0000
waviva
evio0u
vivnug
ouNe
sav
T0UNCD
o o V1O0M
Snsb ‘opme XONIOIS 1 pemy .Il:.l'c@
e o
aav>_|
100000
wovivo
viom
/
1]
/
4
/
v \
/
YORLNOOS \\

[
sawd
200N00

50w P n—
SOOSAS aliosnys vy LSS

ing

ing. Card Number Process

0ol Card Process

contr

10. SYMDMP Subroutines:

Diagram

Section 2: Program Organiz

75

ation

Licensed Material - Property of IBM

—

FIRST | TGT - TGT 4———\ ey TGT
next highest \ .
LAST highest level current
level program program
program*
)

When SYMDMP, STATE, or FLOW has been requested, the TGT Address Routine (ILEDDBG3) is
called by the COBOL program at each return of control to the program after a branch
outside of itself. The routine stores in the fullword LAST the address of the current
TGT. At abnormal termination this data area is used by the STXIT routine (ILBDDBG2) to
trace the calling programs of an interrupted program so that information may be
provided for each of them. Tracing begins at the program whose TGT is stored in data
area LAST; it ends at the program whose TGT is stored in data area FIRST.

*Compiled with the SYMDMP, STATE, or FLOW options.

Diagram 11. Doubleword Data Area Used by the TGT Address (ILBDDBG3) and STXIT
(ILBDDBG2) Routines of the Debug Control Subroutine

76 Diagrams

lLicensed Material - Property of IBM

16T comnt

il

i

&
i i%ih il
Wi | g | Rl
VAN YaN éiﬂé% hién& ﬂgi
N\
B B
PN
Ll N .
2 §
z il i

piagram 12. Overall Processing for Producing Object-Time Execution Statistics

Section 2: Program Organization 77

14300v

"L L GEA

Licensed Material - Property of IEM

—————

LHE

How Tables Are Used to Produce Object-Time Execution Statistics

it

it

Diagram 13.
78 Diagrams

FLOWCHARTS

FUNCTIONAL SYMBOLS
oo‘oon1tntooato“

E ’R°§ESS§"G E

[
- »
SSEPEEERRERORED

o* DEngégN 0.

‘e, .0
L

...061‘;:.‘0000.
‘TE;RHML ﬁbcon

.“O“O““.“.

..tplttttttt
$MODIFICATION ¢
. . BLOCK “

[] *
SHeEERRES RN

SOIELSSERINGIS Y
*INPUT/QUTPUT ¢
. Ug .
200000800000 080

‘.‘..Fl‘...t“‘.:
3 * SUBROUTINE ¢
.
. 7.5 Sl

[4 -
SEENEES000000 0

O‘.‘OGI‘.“‘."::
. s
3 e 3
[1) *

[44 [3.4
PESPESNGBESRN ARG S

1908
> 0%1 N

(111}

JHterBIs ety
: HOURSRTN :
[T YIT TR LT T

(T111]

.
asseee

OS50 8000000 0088

(i1 1)
. .
s« D3 e

>
osee

4
(A1 kLTI 1 d

. .
. .
. .
L *
. .
RIIIIZ TSI]]
3%
* i! “~>
L L]
esee
R
E3 .,
R .,
r——y p—
‘. o
', ¢

4 YYO1A1
Sresepiessesesies

$SUBNM
L2 dut i U P
. .
. .

L d .
Ll A LA 222 1 1] 14

Crmenmnanee.

v

§ G3° ‘e,
0G24 40044000 | . ..
. L3 . .,
. RETURN P2y J 3o o p—
. . [. .*
5506000000040 0 R ., .*
[+ « o® sees
8 [*
8 * D3 o
} 4 . .
] S (T
G
v
SHesHIsebNN0Ee
:: EXECUTE ::
e+ UTLXY2 .
.o e
.. .
00000800004 00008
v
AN
000 J2000000000 ‘.033 ..
..
. RETURN P J p
. ., .. 'l
T T YT Y TP Y Y 1) [.*
0 ED_TO - iR
koif i ;én e
&ﬁ‘? RobRin .
.
o-toxsouo‘cogihl
: TAXRTN :
ssessssstssesere

Licensed Material - Property of 1BM

;%;N%’aﬁk BL&"ﬁﬁm

I e

""gﬁggwc tng"
HART OF IT IS PROVIDED.

ON=-PAGE ENTRY CONN| CTOﬁ.
Tl B SeK apRRAS ok Tilzs
PAGE O LsaEHART.

OFF~PAGE ENTRY CONNECTOR.
BRANCH TO

A TH.
SPHMEE Pl oo

e}

LI

f=11)
CHART STARTING AT B

LINE JUNCTION

ON-PAGE_EX
BNANCHES T afgc BETO8k RIS PAGE
OF THE FLOWCH.

I8 X REFERS TO NE
B EaBaREE TR E Rt RENHD

OFF- EXIT CONNECTOR. CONTROL
B;A %Eg é CK Al ON PAGE

Oﬂ'gsosubmﬁls 0 AN ENTRY

K K3 SHOHS

&ww&z& Rhoz

Section 2:

Program Organization 79

Licensed Material ~ Property of IBM

Chart AA. Decimal to Binary (ILBDCVB0O) and Binary to Decimal (ILBDCVB1)
(Paxrt 1 of 3)

eesep2000000000

M ILBDCVAO M
seesessevecsree

seeepsessescase

o g e

. [LITYTTTTYPY LTS
eoseserstentectee
cvegl desec :ocoocsuuo.o...t:
L N
‘e, '.‘; Ses0s000000000000
E [3] :.> E s :.-’
€veoos .m' ‘e mggé;;gp RN .pq o.’ seesepsetesesces
rs..:ggso*..%"f.:., e OGRS e e G :
oece e Ssesessessenssess ."_ '. P8 41177444 90N
: [: iu i {1
eors
cvaoas 'o cveoz °P..J"ﬂﬂ. etessEasiessseese '._
s . .hﬁﬁ ., . '™ .o'\.) "ﬁ] o-o- L H %{ﬁw!g H !n%
pe --.....-.0,!5 “f u i K : WORK : ™ l.'s con
i* 5... h:; “u 53. : gﬁ?:s :uuo“--:‘:ouu:-'.
seseerievesscere w'oﬂo.n- sesssasee ."" ’n_. “"91... CHEHHALH
. 1z H YEE . ¥ "gﬁnro. H N o
‘u'fvﬁ WP : -coﬁkx f‘rcu E """" ‘.O?gtggl lgft" E ggpm ¥ E‘"
‘o, ﬁ;. 00000000000004000
e
w"szt. 0600800000 m..u]‘"'...‘...
*G! 83, * . .
I - * |}t S Rt S

.nun;o--onnu
e RETURN .
LLITIITIT I T 1)

80 Flowcharts

Licensed Material - Property of IBM

Chart AA, Decimal to Binary (ILBDCVBO) and Binary to Decimal (ILBDCVB1)

(Part 2 of 3)

.1'22000’].0000000“ "“!2... .0‘.00;%;-- ‘1a2=;;.i:‘..a;.‘..0 bx"sz&i] M Loty H
. . : 5 + 3R H 1 : H :
il .éi; St T § { hF it AL
R
. *=>
,xNQOOOO‘j,.' .‘..OOO: bx“g;s..'b. ‘.;ié..:
'"‘?'.x*ﬂw S P oot
* e, "“gi...c . BN ‘... L3 H
ol pr ey
’.....'
s 81
.1“2‘0.. BINLQ, ’x"‘..'OD]l.....‘.'. u"”nmnounn . o
,.R:?*ﬁ,sﬁ‘ i .'Jﬁiﬁé.&s S S

Joeveriesesenere

.
¢ RETURN .
6000800004 0000

LIXYS JUITTITTT 1]

.
* PLACEWIN .
Sesesssecssscee

0000 }1 0040000008
» .

51"
]
.-Ow
A
o..
: hs

S — “gmggg LIy Y

9

.‘-i*ttt IO‘-OO0.000:
Ty

. .
$9000000000000000

s000e000ss0s000

';.iﬁ:"‘... s000G20000 00000

) *. YIS L4 .

. '5 &It?" 'n-—‘-’-): RETURN :
e, |'«.,.

PLCBOL

42 '0. PLC8S aegr000s0secse

'he

oeeoel
"! *H
I

ssseK3eersceese
RETURN .
0000000000000

P .

pIN3

CO%!&R‘YTO

sesces

S0000GHIS00N0000

H M
$ Aooust staN ¢
. .

090000000000000890

Rl LI LN
: AETURN *
[LTTTTTITT T 2T

Section 2:

Program Organization 80,1

Licensed Material - Property of IBM

Chart AA. Decimal to Binary (ILBDCVBO) and Binary to Decimal (ILBDCVB1)

(Part 3 of 3)

seeep20e00000rs
: ILBDCVBL :

CVB}. LI1]

b

tresersesesissnes

-cimg g@ e

*.REGIS’

st

RALA LI AL
: CNVRTDEC :
sesvesssrscesee

.OOOOC . : .
Gl + pLBRCERCWIRES ¢
: : 8IGN :

‘oo-oooou

cv.ée..iggs ‘.is“‘: :..'.DH.".".O‘.:
oFL . * CONVERT TC ¢
osx§: Aggg 1§ T PR ————- spACREE BicTvaL »
H M . .
0000808000 000004 BONE0NES0 00004000
R bzco
.tn "0.y;...!'.“.‘?‘."ﬁ ..
. o o H g 0.
- . n: xmu. .
., . CITTTY LYY PYT Y " K“.
.. - ..
¥es ¥es
“;0'! ...;..;s‘:.. oooo‘!u'- asosnoee
. L .
*aporoy AED:1D ¢ SERDP ﬁoxﬂ MikEase
H SF R El" ¢ .1n-81ax¥ nquzn-
. H Sessesscscesences
L
25380 SHDERe
o2 FERROAERE
., SIGN e
Te. 0"
0:022...ni sesess olc:n; . - ._....;;.
W R g
§1i5 ko SADDR] GN' ggfﬁ e
1303 R34E 12%e0net TiMeenet
Q...
.
o K3 e
* .
"o

PECY0ensz0d0asnsres
$SET glay Jo te3
. .

.
TTTTTY TN

LEC16
$8000K2060000000e
SET TRAILING

H
LXYTTTTTY

80.2 Flowcharts

gg ses0J500 .
st I
880000898008 000
6080000000000 A
coer
.
K3 :
Liil] 1
NOVEACK
"K).;.'....O: :.;agu.;"'.‘;‘: :‘.O'KSO AL YT]
. BREVIATE 2 - "R ¥£A RELTORL .
W}.Rl‘ll lCH A‘ID ‘ ———————>b BB(:!‘!N NG OF $cwccee-=d$ADDKLGS kI EEL '—-------*‘ REGISTERS .
WITCH Fielb : : TO 1LBCCVE . ‘ :
. 0080000000000 00

Licensed Material - Property of IBM

Chart CA, Sort/Merge (ILBDSRTO, ILBDMRGO) (Part 1 of 5):
Main Routine

2
nESUNE THIS SYSTEN PROGRAM CALLS o
THE E13 ROUT AND E3S ROUT
n] ROUTINES OF ILBDSRTO POR id

EVERY RECORD, CON"F”L GET SORT LOAD
RETURNS TO ILBDERT'S MAIN DOS SYSTEM ¥
£ 8ONT WAS L] sORT/NERGE = FOINT AobRtss
PROGRAM ILBDOBGO
L
wosYH
) Y o
srone soRT oET SORT
RETURN 10AD POINT
cooe ADDRESS
\
y
D3 \ et
ADD S1ZE LOAD
PARAMETER
70 'gORT’ RETURN o
TRMENT

T0 COBOL PROGRAM I

INCLUDE
MODAL LE!

IN RECORD
STATENENY

ADD
STORAGR=
PARANETER

a 3 CAOIAL
ILADHRGO
MERGS 58
STATHEITY INITIALISATION

Section 2: Program Organization 80.3

Licensed Material -~ Property of IBM

Chart CA. Sort/Merge (ILBDSRTO, ILBDMRGO) (Part 2 of 5):
seespysesesease [ENTER FROM E15
. E1SROUT * ggégﬂgg SORT/HERGE
L v | BRRGCH TABLE"
ot
B&" e, CENERESREEEIEEE.
‘i;R - TIM‘.‘ YES :GENERAgEDECOBOL:
L EARG0ch Eis Zt--------»m_n:m.gga INPT*
#. ROUTINE .#* * PROCEDURE OR *
.,) *OPEN USING FILL*
. . stsdserisrieeinte
*NO l
sone
->¢ .
l > Hs .
. *
ese
TSTINPRCC “'o, [ss¢93C60ssnsesese
% mepur *s. yvis ot uss- + INDICATE SORT ¢
., PROCEDURE Bmmama- ¥, POR-DEBUGG!N o--------)o INPUT IN TGT o=
., . .. ‘DECLARAT!gE‘ DEBUG INFO *
“e, " “e, e PEEEEGBISSE 00400
No * N0
AR
.
* Dy M l
~> cemmmene
see Y
USING au' “e. SEEEAD5ISIELEEO RS
FIRST TIV "¢, YES : Toor T¥Pg 3
:THROUGH us NG. ------- >'D¥F§§ PLLG Id‘
#. ROUTINE .+ $EOFA Dks GiTe
o . SEUFE ADDAESS »
. . SO ANES
‘NO
-.- 5.
READ 3 ., C°”$¥2%§gs..........
4 ., - -
.* END OF *, YES * CLOSE USING
#. USING FILE _.%=—m=eem-. >e FILE M
., .* . -
.. .+ . .
., * P I T T TITTY YR
*NO
RETAD.“F“.V.......“ 55 'n,
. NO .# ALL FILLS' *.
~REAL USIUG FILE Cmmmmmamnt | HAVE BEis .+
. ., LAD .
.
SerseEREESLERINY ‘e, "
*YES
'ootogs‘n‘tootcot
.
SET CODE TOQ ‘
'CLOSE EXIT E15 ‘---
“..“.".“..".‘...
. .
oo * K4 »
. . . .
* HS [TIT
L B
wrss Y
o
q5 s,
l .,
. USING *,
Kmmmacemececemee=$, SPECIFIED .*
., .
LN .
., ,0°
*YES
INPFINAL v GOCOEBOL
SEEER TSRS NRS RANRN TSR0
Ll L4 » L d
* STORE RECORD # » SET_USING .
POINTER IN SOAT * SWITCH .
:FARAM&TER LIST : : :
sescessrseresenne LTI T T Y YT T
2568 et
. . ~> .
* Ky » * Db *
. —=>
sy L322
SENSKUARRRRRES RETURN IS %
M JETORN * ﬁi gENTiAL INS RUCTION
P ===~ | 2b3kRy EART BbRce Mrocran
CREPSEIFSEBE Qe

80.4 Flowcharts

E15ROUT Routine

oootnC?o.ot.o“‘-
COBOL _INPUT
‘--- P, % “z---.
= ==a>¢CONTRO! 'URNS *
* AF RELEASE ¢
. TE| .
PORIPR-£ 14 $31 1 PR
sees
13 [}
s d5 »
. .
LT TTY

*se20 C3 susnssnes
+ INDICATE -
* SORT OUTPUT ¢

+ IN TGT DEBUG 4~
+ INFORMATION o
5405060004050 00

Chart CA,

CHEOALIEIEONES e —-[ENTLR FROM E35 EXIT
. . OF SORT/MERGE paocau
+ r3skour ¢ 9L SBRR(EH"TRs '

Iy TTTTTTTTTI T

BRANCH IS TO GENEKBTLD
QDE IN COBOL PROGR.
EITHER TO INITIALIZE
OUTPUT PROCEDURL_OR
QO RBE A BVTRG F1oE
.., ..
> B 4 c2 ..
.OU PUT YE t.‘ use- *-, YES
¢, PROCEDURE +#==c-ee + . FOR~DEBUGGING . ¢om o >e
‘.. e *DECLARATIVE®
., .0 , ¢
*NO *NO
GIVING «
el ., CORSENsENASSAES
.¢ FIRST *. . .
0 TIME *. YES $ TEST TYPE OF
L ThROUGH o ¥omccacaad>¢ DTF AND GRT *
« GIVING .* 'EUFFE& ADDRESS ¢
e KTz . .
., ¢ ’....".‘..“..“
*30
<

! ."

WRITE F1l *, Loﬁ‘?zxpz“.““.“
«* LAST ‘. * CLOSE GI ING
+* RECORD YES * FILE AND SET ‘
*. R TURNED RY .0-------->~ CODE TQ CLOSF *
* SORT/MGL_ .+ E3S .
*. BGM . .
o« o ¥ LIRSS RIS LY)
*NO
s
> .
. KL
. *
1111
TRETVAR L%, GIV
Gl ., ...“GZ‘.‘.‘.....
" ., ¢ TEST WHLTH
+* BLOCKEL ¢, YES *RECORD VILL EIT'

.. V-TYPE tmmmmmeaa>® AND
+. XLCORDS .* STRUNCATE nurknao

R Teerressnserasans
*NO

<

PUT
S5 4108000000004

*ALITE GIV!MG .
FILL REC RD

LIII I YT R R YTY 2

[SIAI NSRRI T LT T 1S
*

¢ tET CODE 10
‘ DoLETE PECORD

sesane

0‘0..‘0“.‘."0“
ene
* .

INAL
SesIK1e0000 0000

LT

HETURN

CERSRNEERIEIRNSY

Licensed

ROUT NE IN
PROCEDURE

Section 2

Material - Property of IBM

Sort/Merge (ILBDSRTO, ILBDMRGO) (Part 3 of 5): E35ROUT Routine

S 1¢ INb kUCTION

LRAﬁ04
gﬂi RET RN

OLLOW
bTATlVBiT

TO. AT END
TSuhtut

Program Organization 80,5

Licensed Material - Property of IBM

. Chart CA., Sort/Merge (ILBDSRT0, ILBDMRGO) (Part 4 of S5):
CHKPOINT Routine

SERBDUREERE R R Rk ENTER FROM E11
* e —— E21 OR E31 EXITS
* CHKPOINT * SORT/MERGE_VIA
* * BRANCH TABLES

SEERERRERERRERE
S RAPUEERERFRRKE
* *

*SAVE SORT/MERGE#
* PROGRAM *
: REGISTERS :
‘ T T T T TR
*#t**cu*##**ttt*#

LOAD SUBROUTINE
¢

* *
kbbb k bk kkkk k%

EDO1Al
kR aDL Rk kk ok ko

*ILBDCKPO *
————— #—#-#-*

:TAKE CHECKPOINT:
krk kR kR kbR

LRI ESNE IS SR)

RESTORE
SORT/MERGE
REGISTERS

khkkhdkbhhkhhkbdk

LA X X X J
[X X X X J

SERRFUR R h Rk
* RETURN TO *
* SORT/MGE PGN *
* NEXT INSTR *
T I T T Ll

Section 2 : Program Organization 81

Licensed Material - Property of IBM

Chart CA, Sort/Merge (ILBDSRTO, ILBDMRGO) (Part 5 of 5): E32 Routine

SEEIPLI eSS INSS TL% !RO* I
+ ILBDMRGO ' ? !é or son'r/nsnci
. n.\u VIA B
PEEIPEFSS2 0SS0
... INITRTN
P1 ., t‘ol‘BZ.tOtttt“.
.® ., SESSEISSH 0800 0N
Lo INITIAL- "¢, YES *INITIALIZE oun ‘ .
ol 1ZATION (#ecco-oo->¢SAVE ARER WITH $-------- >* RETUPN H
‘e, ot M . Sesesessesratee
’, .® SPEIS SIS0 RS IR SN
*Ro TO ILEDSHTO
POINTERS:
L S0nor URINGCEXIT ADDR
TR SiRsn ok pettatele
S. RDDR OF ERROR EXIT FOR VSAM
)
... INITFLS INITLOOP
Dl l, SEEN246¢ I GG eSS .““Dg..‘.‘....: .‘;:;§A‘0.é‘§0“. :‘.‘.DS.O‘.‘..‘.‘
.+ FIRST TIME s. YES . . . 0] $INSERT EOF ADDRS
*.T4RUE32 EXIT.#ommocmen> ==oCOBOL PGM--o ——mo--m->$ AREA 1§ ER —--------»romq EGPFER » fmmmmmema>t
By . N_USING * $0F USING r’:lg ER_FOR H
'.. ,‘. LI T T T T RE] 1]) “"...‘..‘..“" ..#“.s“‘...t‘.i ‘..‘..‘.....'..‘.
o
<
.,
:.‘1 ‘. t”nngzo.tontoott
+i0F oN ALL'e. vES * SET CODE T
4., FILES™ l#-cce——oo>$CLOSE EXIT E32 :
e, .ot .
', ,* .‘0..‘.‘..“.‘...
No
L1121
-
*J1 e
L] L]
ey
ReAD
OOOF k‘...‘..“
UnE b By
. SR% /MERGE ~ *
..O“.““..“.Q
\
.. EOF COMCLOSE
Gl ., CRIGE e RENINE NS SE86G3I8080000 004
.. .. $SET CODE_EOF ON#
ot EGF v IS > * crose rrze ° >~up3§é NAL®
R ‘.o' ----- . P — . ; é .
‘e, ﬁa' T I TT YT TY T Y SEEESESS0SRI000ES
COMKTN v
I TSR YT TIIY)
% STORE RECORD ¢
* AODR, CODp 10 *
* 1NSERT RECCRD *
* Il PARAMETER #
. LIS
SEEBEEIEESD IS SRR
e
. J1
» >l<
(121
ooooaloooottotc.
' RETURN *
S008%0 440088000

TO SORT/MEKGE

82 Flowcharts

Licensed Material - Property of IBM

Chart CB. Moving Characters (ILBDMOVO)

.t'oogzoOOOOOUOO‘
* ILBDMOVO *
L T T T T T
-t
B2 ., RETUPN
o* ., *ssspIsvescenss
. ¢LENGTH LESS*. YFS * .
‘.. THAN 1 ..‘-------->: RETURN :
'o, . CEEIOSENIRININS
o e
50
.l.
. .otooc;ooooo-coo:
T Ll .
-—>", GREA%ER %HAN .0---—-~~>0 CdARgC*E :
.. .
T no.tc.ttootot.cto
*YES
GT256
800 eD20Re s Se
. . sese300s0seeee
* MOVE 256 e
: CuARACTERS : : FETURN :
. . LT T T Y
SECEEIRIREIEOSGS
)’
:stooszc oooono.:
. . 6 *
S SRINELAN
* .
PHEEIENICHIIIESS
v
S4e0sF28e ooooto.v

*ADVANCE SERN!
----‘ AND RECLIV. NG ‘
POINTERS

‘ ‘
RSB REES O ERNN S

Section 2: Program Organization 83

Licensed Material - Property of IBM

Chart CBA.

84 Flowcharts

*s0seplesesentess
SSAVE kBG

EPTIRTE ¢

.
cosvres

eseseee

"
1 f
o)
o

seseeDivseesetens
. .
» .
‘GI'.T LE"l!gll FFOM.'__
. .

. .
seseevesssssonsen

z.gg;s“'

STRING (ILBDSTGO) (Part 1 of 2)

:"l.c2“..".“:
. *
Pk g ypem §

———>t

- .
tesessssncsrsenes

.
.'."D:“...O.... D3 ... ‘.‘..DH.“"“..O
. R . .
A TEwo + ." _POINTER “e. YE . P .
>4 8F ECEIVING §-—-—omodel sheElFEED el -->s *SEE, & *
H ., ot AND'LE H
S0P 0CEIESRIISIGS ,‘. .'. 0000004400000
oo
-
oooooE:o-
s %% ERe.
.o VA

teverpaesevsrecee

SET POINTER ;g

EXT, PAR
skTPP A
000."0'"00'000

seessGevsveernee
TER
szTngkng El

.

[t

.
.
.
.
.

seeeree

ooo.oggoucocnnaot
'DLMADR ¥Es
IN DLW

REIRT
AND_SISE®
Bﬁ

greeedscevareves

>*ADDREES GF NExTs
* SENDING ;!3% :

secscsessevesrsre

B

: ¥ES
- *0‘.-)
. ..
e
‘F“' '. toooors--o.o..o.:
. .
e Qﬁ"" LI P %oy
. gpEC 9 . H

K3 0.‘
" DB!J .
&"’"- EHI ER" YES
. -
..
Te. e eoese
. .02
* A2
8

oottoootut.t'ttot

Chart CBA.

(3

STRING (ILBDSTGO) (Part 2 of 2)

3

ADD ONE TO THE

A2
!ND.&NG PLD‘ NO
5"““ copR—

NO 0?

N SIND FLD>
81IE Or

ALTERNATE
SEQ

OF THE
SENDING FIELD

Licensed Material =~ Property of IBM

SUBTRACT ONE

SENDING,
PIELD STARTNO
ADDRESS = ENC
~ ADDRESS
b
Yees

SET NUMBER OF
TO

BE MOVED

MOVE BINDI\IG

E3

SET TEMPORARY
OVERFLOW PLAG
ON

FIEI
HBCIIV!NG FIELD

G2

UPDATE ADDRESS
OF RECEIVING
FIELD

CALCULATE NEW
POINTER VALUR
INITIALIZE
ADDRESS OF
RECEIVING FIELD|

X2

(]
SUBTRACT ONE
FROM NO. OF
PARAMETER
BETS LEFT

B85
SPECDEL

GET ADDRESS
OF ILBOACS

Section 2:

RESTORE
REGISTERS

®

Program Organization

Chart CBB.

Licensed Material - Property of

UNSTRING (ILBDUSTO)

S00spL000000000
¢ ILRDUSTO :

IBM

(Part 1 of 4)

eseesessescseee

(1

ey e,

X e, N0
.. .
O.Illl A X ﬁ..—--

‘e, 0t

YEs
Dt" e,

. ..

o anEi MREBen o

. FO

... ..‘

fes

CE0OEF1 00008000008
123 »
o8] .
se 0f - o
o HA »
.. .
eeses seesese

Eull i

UNETRY 001
SHVERRMTRER

A
<¢POINTER®.
oleug?n‘g;r;u.Bh!ﬁ
o BIfE .e l
L .
NO

080001 0400000000
SriBE8 BEIBALE,

. .
$0000040000800000

84,2 Flowcharts

UﬁéT!ﬂDODl

‘.
CALL .¢
o'..
fes seee
*01 ¢
$Ca ome

so0e
uaaovg*oc.......‘.._

00.00000..00000-...00

. mg;wiz“k e >’¥§§sc,5§§£°"e :

?:s
. Cu .
.
LXi1]

2] "‘kém" RIS ‘gggm..)

"lts ‘e ohs

A

..... ARt

—————————d

HETEupsed

.
beened®
.

seseGIse

e,

.
eos0s0ese

seeoene

.
009000

sesesee

. .
: RETURN 4
Sosevecssersene

UNSTYPE A!'..‘
: °§*ims° i
T

e mgﬂmﬂ .,

Oho
cs” e,
. ..
o Ry yee
., . l
. 4
[. (33414
ofio 03 ¢
l LIl * Ale
-):OEZQ O‘.
*
[111]
Oooootsoo..o.oaon

‘..".“ ‘.0‘.0..

INB!A;
sss0epSesesesds :
tobadotnted

*1 gg AND *
. } 3 .
oosvesesdssessene

‘O‘t

,:ee&*xi F

Licensed Material - Property of IBM

Chart CBB., UNSTRING (ILBDUSTO0) (Part 2 of 8)

seese Qs0ee
03 ¢

o By . iio

DEL: ’o:eﬁntnunuu m‘""gﬁ . n"uu
ST 0N 98 of %ﬂg

°"‘!’.“.".'!m.--m..... 22" "o, ouo. se00000000
R R SO SRR ﬁﬁﬁ,& :
esssssnsestenee .'o. ‘.3‘.
:;;;: a4seestes OELEE R0c2e seevsses DELFLUP e 'o...
e T
"ot
.m' '-... nounzo R 144 H p:
LR TN 'Eﬁm -_"e...;,gtw[
‘e, fu‘). N vesee 3

£’ e, ssseeg2e Ge0ssrIeeesvsente

.® ., * gU .

. ¢, NO 0 “ .
'..Vll!1 CALL ..l--- : :_..

S .ot l . y .

o . 3% HIRP seoee *oe sesscsene
YES ..Xeo >:;»
) Rate
Q.’.

.C.Q' 1.......0..

| i

"I‘ALLI ![!) .
b 40d

>=ox:o.
soee

Section 2: Program Organization 8&.3

Licensed Material - Property of IBM

Chart CBB. UNSTRING (ILBDUSTO)

INDICATE
OVERFLOW
CONDITION DOES

NOT EXIST

A2

ADD 1 TO TALLY
VALUE

POINTER VALUE

(Part 3 of 4)

Dt
UPDATE TO INCREMENT
GET 8IZE AND ADDRESS OF NEXT DELIMITER SIZE
ln| ADDRESSES FOR BYTE OF FOR NUMBER OP
RECEIVING PISLD) FIELD TO BE DELIMITERS IN
PROCESSED SENDING PIELD
1 22 3]
[INCREMENT INPUT]
NG
GET COUNT OF [PARAMETER FIELD oy e
DELINITERS [ADDR BY 1NG oF FIELD AND SAVE
RECEIVING ITE AND ADDR
E [PARAMETER FIE!
r2
RCDEL1 m”
SEARCH
DELINITER TABLE
AND SCAN] MATCH FOUND
SENDING FIELD
FOR MATCH
ves
63

SET LNG OF DATA|
IMOVED T0 Ef

IN SENDING FLD

ALTERNATE
PROG COLL
3EQ

Ga

SET LNG OF FLD
MOVED TO SISE
|[RECVING FLD/LNG|
OF REMAINDER Of|
SENDING FLD

|

MOVED FROM
SENDING FIELD

X1
EJOWAL
MOVE

e end

84.4 Flowcharts

MOVE DATA 70 L...
RECEIVING FIELD

YES

rs

TRANSLATE
D=1

AND
DELINITER

NO

MATCH
POUND

Chart CBB,

UNSTRING (ILBDUSTO) (Part 4 of 4)

eossplevrsceree
. MOVE
.

eseveptesesinene

.
. cu% 0B Buom
3 BYTE
8060040000050 00

_.ct' ‘n."
e
t... ﬁs,o

o *oam R No
ooaLophituiRIc s
L) Vi ..'

.
-

RIIPH!L

Licensed Material - Property of IBM

ono.
NUH“

Sesecrvasnonecned

secns

00805000080 0000
.

.
o ApJUE" .
E"“&Fn‘én‘ﬁ“ :

sevsvvessrensence

XY TR T DAL TS

dschie

.
LI ITTY

-t-oonso

ohfon §

.
seseeece

so000000¢

+ sRPRRRT2"STon $

YT

sessasnes

otoc-uoo

'*xm*ﬁ!&“ 8 i

s0000GUS otooooco
*

- ® .“"
oo E8 o as H seer,
: 43 : (TT1] ' H1 ‘
UIPPXWE ! ot INO e
ST JE2 S e, :
W]
ol MY WEB L n:ﬁ% Ei”ﬁ.n Y mﬁﬁ Wﬁm ----.-...»‘8'#"&!3"324!3 :
.
., . ., Ld
. L. ..
oo, Ko 'hs o
: r 0
.0->
BNPNV'!L' . SINPMFG 2.‘.. :’.."’...."..'.
o ¥EG »]
;gggg,g e s R DD A
-. o' Seesesersrnessnes
l.,. e,
e 41 e
. .
cose
90660G1 9000000008 28800G20060008000
o N| C !'!\‘ SLENC A L
H B LLPE R
. . =% f D .
. “ . . .
vese
* .
.
. H1 :.)
et
BMPEXMOV

sveseniesestaeee

.;éééiﬁ?ﬁ?*ﬁiii;‘

HOP e

£

'::.‘Mxv

55, o

RIM T
. RETURN
XYY T PP YT ITY

.

st anddirrent e
LI YEGERSN ¢
e

R ILET L T e

2080544980000 0000

Soomme; aemet
.

:’ g IR:
¢ KIS
811313 T R 4118

048003000000 00000
¢ R SAVED ¢

SerrRRF ;,"3 :
i it 3
0000803000009 0000
A1)

> ns

00

Section 2 :

Program Organization

L ot

84.5

Licensed Material -~ Property of IBM

Chart CBC. INSPECT Subroutine (ILBDINSO)

84.6 Flowcharts

Al

ILBDINBO

B1

XSETUP

GETCORE IF
FIRST TIME,
SETUP IDENT1
PARAMETERS

ESTABLISH BE-
FORC/AFTER
(DELIMITCR}

BOUNDS, BUILD

TRT TABLE

D1

XSCAN
EXECUTE TRT ON
IDENT?!, DO RE-
