Licensed Mmaterial — Property of IBM

LY28-6424-1

IBM DOS/VS COBOL
Subroutine Library
Program Product Program Logic

Program Number: 5746-LM4

Page of LY28-6424-1, revised 12/3/76 by TNL: LN20-9183
Licensed Material - Property of IBM

PREFACE

This publication describes the object-time * A program organization section which
subroutine library used by the IEM DOS/VS consists of diagrams and flowcharts.
COBOL compiler. It is intended for use by The diagrams describe the flow of :
persons involved in library maintenance and control, loading and calling
by system programmers involved in altering dependencies, and virtual storage
the library for installations requirinag layouts in instances where several
such alteration. This publication programs are present together in .
supplements the subroutine listings and virtual storage. Flowcharts are
their comments, but it is not a substitute provided for most of the data
for them. The publication is divided into management subroutines, all of the
the following parts: subroutines for okbject-time debugging
operations, and for other complex

e An introduction which describes the subroutines.
contents and the functions of the
library and specifies the relationships

between the library and the compiler ¢ A data areas section which describes
and the library and the operating the tables used by the subroutines for
system. object-time debugging operations and

control blocks for VSAM subroutines.
e A methods of operation section which
describes the function of each
subroutine in the library, the code * A diagnostic aids section which

used in the object procram to interface
with each subroutine, and the output
(where applicable) of each subroutine.
This section is divided into two main

includes execution-time messages and
error messages from the debucging
subroutines, virtual storage layouts,
information on locating DTF's and data,

and special diagnostic aids for
debugging subroutines.

parts: the subroutines for object-time
program operations; the subroutines for
object-time debugging operations; and
the subroutines for object-time
execution statistics. ¢ A glossary of special terms.

Second Edition (March 1974)]

This edition, as amended by Technical Newsletters LN20-9183 (dated
December 3, 1976) and LN20-9122 (dated August 1, 1975), corresponds
to Release 2 of the IBM DOS/VS COBOL Subroutine Library.

Changes are periodically made to the specifications herein; before

using this publication in connection with the operation of IBM systems,

refer to the latest IBM System/360 Bibliography, GC20-0360, or IBM System/370
Bibliography, GC20-0001, for editions that are applicable and current.

Requests for copies of IBM publications should be made to your IBM
representative or to the IBM branch office serving your locality.

Forms for readers' comments are provided at the back of this publication.

If the forms have been removed, comments may be addressed to IBM

Corporation, P.O. Box 50020, Programming Publishing, San Jose, California 95150.
Comments and suggestions become the property of IBM.

© Copyright International Business Machines Corporation 1973, 1974

EM Technical Newsletter This Newsletter No.

Date

Base Publication No.

Prerequisite Newsletters

IBM DOS/VS COBOL
Subroutine Library Program Logic

© IBM Corp. 1973,1974

This technical newsletter, a part of Release 2 of
IBM DOS/VS COBOL Subroutine Library, provides a s

LN20-9237
August 5, 1977

LY28-6424-1

LN20-9122
LN20-9183

the
upplemen-

tal page for the subject publication. This supplement

remains in effect for subsequent releases unless
cally altered.

specifi~

The supplemental page can be inserted in the base
publication near the description of the General Data

Management Subroutines (pages 32-36) for ease of

24,]

. Summary of Amendments

reference.

One new General Data Management subroutine (ILBDTABO)
has been added. This subroutine contains a table of

device~dependent information needed at run time.

the devices previously supported by DOS/VS COBOL,

Besides
the

table contains support for the 3330-11 and 3350 devices.

Note: Please file this cover letter at the back
manual to provide a record of changes.

IBM Corporation, P.O. Box 50020, Programming Publishing, San Jose, California 95150

Licensed Material - Property of IBM

of the

Printed in U.S.A,

EM@ TeChNical NGWSletter This Newsletter No. [.N20-9183

Date December 3, 1976

Base Publication No. 1Y28-6424-1

Previous Newsletters [.N20-9122

IBM DOS/VS COBOL
Subroutine Library
Program Logic

© IBM Corp. 1973, 1974

This technical newsletter, a part of Release 2 of the IBM DOS/VS COBOL Subroutine Library,
provides replacement pages for the subject publication. These replacement pages remain in effect
for subsequent releases unless specifically altered.

Pages to be inserted and/or replaced are:

Cover, edition notice

Summary of Amendments

17,18

Each technical change is marked by a vertical line to the left of the change.

The Summary of Amendments page should be inserted after the Acknowledgment page.

Note: Please file this cover letter at the back of the publication to provide a record of change.

IBM Corporation, P.O. Box 50020, Programming Publishing, San Jose, California 95150

Licensed Material — Property of IBM Printed in US.A.

JUBIML /Technical Newsletter S——

Date

Base Publication No.
File No.

Previous Newsletters

LN20-9122
August 1, 1975

LY28-6424-1
S370-24

None

¢
" IBM DOS/VS COBOL SUBROUTINE LIBRARY PROGRAM LOGIC

© IBM Corp. 1973, 1974
This technical newsletter, a part of Release 2 of the IBM DOS/VS COBOL Compiler, provides
replacement pages for the subject publication. These replacement pages remain in effect for subsequent
releases unless specifically altered. Pages to be inserted and removed are:
Cover, edition notice
43,44
175-178

. Each technical change is marked by a vertical line to the left of the change.

Note: Please file this cover letter at the back of the publication to provide a record of change.

IBM Corporation, Programming Publishing, 1501 California Avenue, Palo Alto, California 94304

Printed in U.S.A.

Effective use of this manual requires an
extensive knowledge of the IBM Assembler
Language, DOS/VS System Control, DOS/VS
COBOL and the IBM DOS/VS COBOL Compiler.
Prerequisite and related publications
include:

IBM DOS/VS Operating Procedures, Order
No. GC33-5378

IBM 0S/VS and DOS/VS Assembler Language
Guide, Order No. GC33-4010

IBM DOS/VS System Control Statements,
Order No. GC33-5376

IBM DOS/VS System Utilities, Order
No. GC33-5381

IBM DOS/VS Supervisor and I/0 Macros,
Order No. GC33-5373

Licensed Material - Property of IBM

IBM DOS/VS COBOL Compiler Program Logic,
Order No. LY28-6423

The following publications provide

detailed information on the IBM 3886
Optical Character Reader:

IBM 3886 Optical Character Reader
General Information Manual, Order

No. GAR21-9146

IBM 3886 Optical Character Reader Input
Document Design and Specifications,
Order No. GA21-9148

DOS/VS Planning Guide for the IBM 3886
Optical Character Reader, Model 1, Order
No. GC21-5059

The following publications provide

IBM DOS/VS Access Method Services, Order
No. GC33-5382

IBM DOS/VS Data Management Guide, Order
No., GC33-5372

Prerequisite Program Product documents
include:

IBM DOS Full American National Standard
COBOL, Order No. GC28-6394

IBM DOS/VS COBOL Compiler and Library
Programmer's Guide, Order No. SC28-6478

IBM DOS/VS COBOL Compiler and Library
Installation Reference Material, Order
No. SC28-6479

information on the IBM DOS/VS Sort/Merge
Program Product, Program Number 5746-SM1,
and the DOS Sort/Merge Prograrm Product,
Program Number 5743-SM1:

IBM DOS/VS Sort/Merge General
Information, Order No. GC33-u4030

IBM DOS/VS Sort/Merge Installation
Reference Material, Order No. SC33-4026

IBM DOS Sort/Merge Programmer's Guide,
Order No. SC33-4018

The titles and abstracts of related
publications are listed in IBM System/360
and System/370 Bipliography, Order

No. GA22-6822.

Licensed Material - Property of IBM

ACKNOWLEDGMENT

The following extract from Government
Printing Office Form Humber 1965-0795689 is
presented for the information and guidance
of the user:

"Any organization interested in reproducing
the COBOL report, and specifications in
whole or in part, using ideas taken from
this report as the basis for an instruction
manual or for any other purpose is free to
do so. However, all such organizations are
requested to reproduce this section as part
of the introduction to the document. Those
using a short passage, as in a book review,
are requested to mention *COBOL®' in
acknowledgement of the source, but need not
quote this entire section.

"COBOL is an industry language and is not
the property of any company or group of
companies, or of any organization or group
of organizations.

"No warranty, expressed or implied, is made
by any contributor or by the COBOL
committee as to the accuracy and
functioning of the programming system and
language. Moreover, no responsibility is
assumed by any contributor, or by the
committee, in connection therewith.

"Procedures have been established for the
maintenance of COBOL. Inquiries concerning
the procedures for proposing changes should
be directed to the Executive Committee of
the Conference on Data Systems Languages.

"The authors and copyright holders of the
copyrighted material used herein

FLOW-MATIC (Trademark of Sperry Rand
Corporation), Programming for the
UNIVAC (R) I and II, Data Automation
Systems copyrighted 1958, 1959, by
Sperry Rand Corporation; IBM
Commercial Translator, Form

No. F28-8013, copyrighted 1959 by IBM;
FACT, DSI 27A5260-2760, copyrighted
1960 by Minneapolis-Honeywell

have specifically authorized the use of
this material in whole or in part, in the
COBOL specifications. Such authorization
extends to the reproduction and use of
COBOL specifications in programming manuals
or similar publications."

Summary of Amendments Number 1

Date of Publication: March 15, 1974
Form of Publication: Revision, LY28-6424-1

Support of New CBL Statement Option

New: Programming Feature

Release 2 of the IBM DOS/VS COBOL Subroutine Library supports the object-
time execution statistics option COUNT/NOCOUNT.

Support of SORT-OPTION 1S data-name in SD Statement

New: Programming Feature

Release 2 of the DOS/VS COBOL Subroutine Library supports the SORT—
OPTION IS data-name clause. This-allows the programmer more flexibility in
handling sort files and use of SORT/MERGE program messages.

ACCEPT Verb

New: Programming Feature

The ACCEPT verb library subroutine now translates lowercase input into the
uppercase equivalents.

Debug Common Area

Maintenance: Documentation Only

The debug common area has now been documented as a principal data area
used by library subroutines.

Editorial changes that have no technical significance are not noted here.

Specific changes to the text made as of this publishing date are indicated by a vertical bar to the
left of the text. These bars will be deleted at any subsequent republication of the page affected.

Page of LY28-6424-1, revised 12/3/76 by TNL: LN20-9183 ‘

Licensed Material - Property of IBM

Summary of Amendments Number 2

"Date of Publication: December 3, 1976

Form of Publication: TNL LN20-9183 to LY28-6424-1

IBM DOS/VS COBOL
Maintenance: Documentation

e Minor technical changes and additions have been made to the text.

Editorial changes having no technical significance are not noted here.

Specific changes to the text made as of this publishing date are indicated by a vertical bar to the left of the
text. These bars will be deleted at any subsequent republication of the page.

SECTION 1: INTRODUCTIION . . . < o o « .
Library Contents . . « = o o & e & o w
Environmental and Phy31ca1

Characteristics .« ¢ o & 4 w o« o o« v =« «
Operational Considerations « « « o« « u =

METHODS OF OPERATION . w o w o v o o w o

SUBROUTINES FOR OBJECT TIME PROGRAM
OFERATIONS w o o v @ o o v v« o o o © o =
Arithmetic Conversion Subroutines . .
Binary to Internal Decimal
(ILBDBIDO) =« « o « o « = . e e -
Binary to External Dec1mal

(ILBDBIEO) - v w o « = o+ = e a
Binary to Internal Floatlng-P01nt
(ILBDBIIO) . . . = - - . - o=

Internal and External Dec1mal to
Internal Floating~Point (ILBDDCIQO) .
Internal Floating-Point to Binary
(ILBDIFBO) . . « - « - e * w o w e
Internal Floating- P01nt to

Internal Decimal (ILBDIFDO) « - « o
Internal and External Decimal to
Binary (ILBDIDBO) & o o o o v o o =
Internal Decimal to Sterling Report

(ILBDIDRO) . . . o e « @ ow a
Internal Decimal to Sterllng
Nonreport (ILBDIDTO) w w © o o o o =

Sterling Nonreport to Internal
Decimal (ILBDSTIO) « « v o = « = w =
All Numeric Forms to External
Floating-Point (ILBDTEFO0) . . « « =
External Floating-Point to Internal
Floating-Point (ILBDEFLO) . . v = .
Arithmetic Verb Subroutines . . -
Decimal Multiplication (ILBDMXUO) -
Decimal Division (ILBDXDIO) . & « «
Decimal Fixed-Point Exponentiation
(ILBDXPRO) w o o w o o o = o « - -
Floating-Point Exponentiation to
an Integer Exponent (ILBDGPWO) . - «
Floating-Point Exponentiation to
Noninteger Exponent (ILBDFPW0) . . .
Data Manipulation Subroutines
SORT (ILBDSRTO0) And MERGE

']

(ILBDSRTO And ILBDMRGO) (CA] . - o «
Dummy SORT (ILBDDUMO) w w o o w = o
Move (ILBDVMOO) “ .-
Moving Characters (ILBDMOVO) [CB] -
Transform (ILBDVTRO) . . « -

MOVE Figurative Constant (ILBDANFO)
MOVE to Right-Justified Field for
System/370 (ILBDSMVO) w w v v « « =
Alphanumeric Edit (ILBDANEO) .
SEARCH (ILBDSCHO) . . o -
Segmentation (ILBDSEMO) [CC] -
GO TO DEPENDING ON (ILBDGDOO)
Test and Compare Subroutines . . .
Class Test (ILBDCLS0) w « « = « «
compare (ILBDVCOO) . v o o w o = «

LN T B }
3 [}
L]

3
s 3 s 5 8

10
11
12
12
12
12
13
13
13
14
14

14

Licensed Material - Property of IBM

CONTENTS

Compare Figurative Constant
(ILBDIVLO) . v 4 o o ¢ o o s « o o =
UPSI (ILBDUPSO) & ¢ ¢ o o « = o« « =
Linkage (ILBDSETO) w e e e
Program Indicator (ILBDMNSO) « e e e
TIME-OF-DAY and CURRENT-DATE
Subroutine (ILBDTODO) < &+ <« w o « «
SYMDMP Address Test (ILBDADRO) . . .
General Data Management Subroutines . .
DISPLAY (ILBDDSPO) [EA] « o w a w
Optimizer DISPLAY (ILBDDSSO) [EBI] -
ACCEPT (ILBDACPO) [EC) « w o o o = =
Checkpoint (ILBDCKPO) [ED] . . - -
OPEN ACCEPT File (ILBDASYO0) [EE] - .
OPEN DISPLAY File (ILBDOSYOQ) [EF] -
Close With Lock (ILBOCLKO) [EG] . .
User Standard Labels (ILBDUSLO)
[EH] v & « . . o o o mow e
Nonstandard Labels (ILBDNSLO) [ETI] .
Error Messages ($$BCOBER) [EJ] . . .
Error Message Print ($$BCOBR1) [EK]
SYMDMP Error Message ($$BCOBEM)
[EL] ¢« v a0 & o ¢« a a o « -
3886 Uptical Character Reader (OCR)
Interface (ILBDOCR0O) ([Chart EM] . .
Sequential Access Data Management
Subroutines .« « « « o « = - -
SA Printer Spacing (ILBDSPAO) [FA] .
SA Variable-Length Record Output
(ILBDVBLO) [FB] & v o o o « o «w =« =
SA Error (ILBDSAEQ) [FC]l w ¢ w o w =
SA Tape Pointer (ILBDIMLO) [FD] . .
SA Position Multiple File Tapes
(ILBDMFT0) [FE] “ e @
SA Test Tape File (ILBDMVEO) [FF] -
SA STXIT Macro Instruction
(ILBDABX0) [FG] . . « o o e o
SA Reposition Tape ($$BFCMUL) [FH]
Indexed Sequential Access Data
Management Subroutines -
ISAM READ and WRITE (ILBDISMO) [GA]
ISAM Error Routine (ILBDISEO) ([GB] .
ISAM START (ILBDSTRO) [GC]
Direct-Access Data Management
Subroutines . . . “« o ® e o o o o @ =
DA Close Unit (ILBDCRDO) (HAl . . .
DA Close Unit for Relative Track
(ILBDRCRO) [HB] . . . « o o
DA Extent Processor (ILBDXTNO) [HC]
DA Sequential Read (ILBDDSR0O) [HD] .
DA Sequential READ for Relative
Track (ILBDRDSO) I[HE] - = & u - = .
DA RZERO Record (ILBDFMTO) ([HF1 . .
DA RZERC for Relative Track
(ILBDRFMO) [HG] 2 & v o « o o = « =
DA Increase SEEK Address
(ILBDIDAO) [HH] « o - o
DA READ and WRITE (ILBDDIOO) [HI] -
DA READ and WRITE for Relative
Track (ILBDRDIO) ([HJ) PR
DA Error Routine (ILBDDAEO) [HK] - .
VSAM Data Management Subroutines . . o .

36
36

37
37

38
38

38
38

39
39

39

39
4o

40
40

40
41

41

41

42
42

42

42

Licensed Material -~ Property of IBM

VSAM Initialization (ILBDINTO) {HL)
VSAM Open and Close Sukroutine
(ILBDVOCO) [HM] a8 o w e+ e o =
VSAM Action Request Subroutine
(ILBDVIOO) [HN] e @ 9 e s e e e om

ASCII Support Subroutine o
Separately Signed Numeric

Subroutine (ILBDSSNO) [IA] - . .

DIAGNOSTIC AID SUBROUTINES w v o o = o
Debug Control Subroutine (ILBDDEGO) .
Subroutines for the Debug Cptions
(STATE, FLOW, SYMDMP) e e e omow e o=
Statement Number Subroutine
(ILBDSTNO) [JF] . o .« .
Flow Trace Subroutine (ILBDFLWO)[JG]
Symbolic Dump (SYMDMP) Subroutine
[JH] & 4 4 4 «a o = o o« 2 0o o o o o
Processing (Sequence of Events) .
Processing (Routines) . o« w « «
IODISK (ILBDMPO1) [JI] o o w = « =

IOTAPE (ILBDMPO02) [JI] . & . o o =
SYMINIT (ILBDMP10) [JJ-JK] . . .
SCANP (ILBDMP11)[JL] . o« « & o o «

SCAND (ILBDMP12) [IM] . . . - & o o
FINDNAMS (ILBDMP13)[JN] .« <« o = =
FINDLOCS (ILBDMP14)([J0] . . - . .
SYMCNTRL (ILBDMP20) [JP-JC] - « .« =
SEGINIT (ILEDMP21)IJR] v @ o = = =
DMPCNTRL (ILBDMP22) [JS-JT] . « «
DUMP1 (ILBDMP23) [JU)] & o . o = a
DUMP2 (ILBDMP24)[JV] v o« o o o« v =
SYMSTATE (ILBDMP25) [OW]
SRCHPUBS (ILBDMPO4) [JX] & o - < «

OBJECT-TIME EXECUTION STATISTICS

SUBROUTINES . « - - - -
Relationship to the Debug Ccntrol
Subroutine “w e me e omom

COUNT Data AY€AS w o« © o = = = « = «
COUNT Operations « v w = = o w « » «
COUNT Initialization 3ukroutine

(ILBDTCO00) (KAl . & & = o e m e
Count Frequency Subroutlne
(ILBDCT10) [KB] & o o o « .- e o
COUNT Termination subroutlne
(ILBDTC20) [KC] . o . - -

COUNT Print Subroutine (ILBDTC30)

[KD] &= & 4 @ c 4 ¢ @ 0w 2 o = o=

43
43

u3
4y

4y

45
45

47

59
60
60

SECTION 2: PROGRAM ORGANIZATION 4+ - - « 61
DiagYamMS o « o« o o = o = o o o « « = . 62
FlOWChArts o o« « o v ¢ = @ o « o o o =« « 19

3

SECTION 3: DATA AREAS &« o « « « = « o «159
Debug Common Area (ILBDDBG7) « « o o «» =159
Debug Input File . . & « o « « o = o - o161
PROGSUM Table o & w o v o « o a « « 2162
OBODOTAB Table o « o« « o« o« o o« o o o .163
DATATAB T3ble w o v a v «a o « = = - <164
PROCTAB Table . 4 v « o « o o = o = 2169
CARDINDX Table o« v« o o = = o o a o « «169
SEGINDX Table & « « u o v = « =« - « <170
PROCINDX Table o « « “ - e « « o o170
Execution-Time Tables for Debug
Operations « o « o« o uw o ° « + o = o =
DATADIR Table .« o« o o 4 o o« o o = o
DYNAMTAB Table v o« o o o = = « o =
PCONTROL Table€ o« « o w o = a « « =
QUALNAMS Table . . . o % o a e
Ccontrol Blocks For VSAM - -
VSAM File Information Block (FIB)
VSAM File Control Block . « .« o«
Count Program Data AXeas . o o « o =
COUNT Subroutine Tables . o« o « + «
Verb Translate, Verb, and Verb
Text Tables . o o o o « o « o = «
count Table . 4 o o o o o o w « =
Verbsum Table . <« o w o i o« « o =
Count Chain . . ® e @ @ @ ®w a w a =
Node Count Table “ % = v o0 om e =
Count Common Ar€a . w o o o w o »

-171
-171
-172
.173
-174
-175
<175
-.177
-179
-179

¢ & 8 3

-179
-179
-179
-180
-180
-180

SECTION 4: DIAGNOSTIC AIDS = « « « » = 183
Diagnostic Aids for Program Operations .184
Execution-Time MesSsSages « o« « « =» - .184
Storage Layout o o o = w « o o w = « «186
Locating @ DIF v « o w « u =« = » = = +186
Locating Data e « o w = - 187
Special Diagnostic Aids for Debugging
Subroutines o+ ¢ o v o % @ e ¢ ¢ o = =
Virtual Storage Layout . - - . - - «
Tables Used by SYMDMP . « . . o w =

-187
.187
-188
APPENDIX A:

FLOWCHART LABEL DIRECTORY .189

GLOSSARY o o « o o = a 2 = a = o « « «» 2195

INDEX « « o o o o = = o« v o = « = « = =197

Figure 1. Parameter List Passed by
ILBDSRTO fOr SORT w < « o o =
Figure 2.
fOr MERGE < v 4 ¢ = w a w = « o « @
Figure 3. Summary of SORT-OPTION

Cperands @ @ 4 @ e % @ mm e ow o om
Figure 4. Sort/Merge File Name and
Default Symbolic Unit Names . <« o w

° =

Diagram 1. ILBDSRTO Logic Flow
FOr SORT o o w o & a o « o e
Diagram 2. ILBDSRT
Logic Flow For MERGE - e s e
Diagram 3. SYMDMP Subroutines:
Loading Dependencies « « « o o =
Diagram 4. Debug and Execution
Statistics Subroutines: Flow of
Control at Initialization . . .
Diagram 5. Debug and Execution
Statistics Subroutines: Flow of
Control at Abnormal Termination
Diagram 6. Debug and Execution
‘Statistics Subroutines: Calling
Dependencies (Part 1 of 4) . .
Diagram 6. Debug and Execution
Statistics Subrotines : Calling
Dependencies (Part 2 of 4) -
Diagram 6. Debug and Execution
Statistics Subroutines: Calling
Dependencies (Part 3 of 4) “ o
Diagram 6. Debug and Execution
Statisitics Subroutines: Calling
Dependencies (Part 4 of U4) o e

Parameter List by ILBDSRTO

and ILBDVr!.

@

-

-

o8

20
21
23

24

63
64

65

66

67

68

69

70

71

Licensed Material - Property of IBM

ILLUSTRATIONS

FIGURES

Figure 5. Switch Codes for Display . 33
Figure 6. Execution-Time Messages
for I/0 Exror Conditions o s e m e o
Figure 7. Error Messages frorm
Debugging Subroutines . o 4 o « o o .
Figure 8. Example of Storage Used
During Execution " w s e w o = om o e
Figure 9. Example of a Phase Map .
Figure 10. Tables Used by Debugging
Subroutines .« . . 4 4 e 4 4 4 < w @

.184
.185

.186
.187

.188

DIAGRAMS

Diagram 7. Virtual Storage
Layout of SYMDMP Modules . . . 4 » . 72
Diagram 8. SYMDMP Subroutines:
Control Card Processing. Relation
Between Object-Time Tables and
Debug File in Processing

o o m e w4 e e e s e e w «ouw e = ~ 13
Diagram 9. SYMDMP Subroutines:
Control Card Processing.
Identifier Processing . v « w w « . T4
Diagram 10. SYMDMP Subroutines:
Control Card Processing. Card
Number Processing . . o =« « = o « « 715
Diagram 11. Doubleword Data Area
Used by the TGT Address (ILBDDRG3)
and STXIT (ILBDDBG2) Routines of
the Debug Control Subroutine . . .
Diagram 12, Overall Processing
for Proiucing Object-Time
Execution Statistics « « « ¢ v o « o 77
Diagram 13. How Tables Are Used
to Produce Object-Time Execution
Statistics - « ¢ v ¢ 4 4 4 4 a0 w . . 78

. 76

Licensed Material - Property of IBM

CHARTS

Chart CA. Sort/Merge (ILBDSRTO,

ILBDMRGO) (Part 1 of 3): Main Routine

and E15ROUT Routine . . . « o o o 80
Chart CA. Sort/Merge (ILBDSRTO

ILBDMRGO) (Part 2 of 3): E35ROUT and
CHKPOINT Routines . . e o « o w = o 81

Chart CA.

ILBDMRGO) (Part 3 of 3):

Sort/Merge (ILBDSRTO
E32 Routine . . 82

Chart CB. Moving Characters (ILBDMOVO) 83
Chart CC. Segmentation (ILBDSEMO) . . . 84
Chart EA. Display (ILBDDSP0O) (Part 1

of 2) . . « e 4 @ o - - - 85
Chart EA. Dlsplay (ILBDDSPO) (Part 2

Of 2) 4 o 4 4 4 4 e e n o e« e o a = o 86
Chart EB. Optimizer DISPLAY

(ILBDDSSO) (Part 1 of 2) <« . . . 87
Chart EB. Optimizer DISPLAY

(ILBDDSS0) (Part 2 of 2) v v & = « = - - 88
Chart EC. Accept (ILBDACPO) . « o « - - 89
Chart ED. Checkpoint (ILBDCKP0O) -« .- - - 90
Chart EE. Open ACCEPT File (ILBDASYO) . 91
Chart EF. Open DISPLAY File (ILBDOSYO) 92
Chart EG. Close With Lock (ILBDCLKO) . 93
Chart EH. User Standard Labels

(ILBDUSLO) 2 4 o « 2 2 = « = = o « = o « 94
Chart EI. Nonstandard Labels

(ILBDNSLO0) - - o . « o« 95
Chart EJ. Error Messages ($$BCOBER) - o 96
Chart EK. Error Messages Print

(SSBCOBR1) 2 o = o« « = = = @« w o « = o« o 97
Chart EL. SYMDMP Error Messages

(S5BCOBEM) 4 v = « o o o« n w = o« n « » = 98
Chart EM. Optical Character Reader

(OCR) Interface (ILBDOCRO) o v w o w = « 99
Chart FA. SA Printer Spacing

(ILBDSPAO) (Part 1 of 3) w v &« o o o w 2100
Chart FA. SA Printer Spacing

(ILBDSPAQ) (Part 2 of 3) v v o v o = - 2101
Chart FA. SA Printer Spacing

(ILBDSPAQ) (Part 3 of 3) o w « &« v o w 2102
Chart FB. SA Variable Length Record

Output (ILBDVBLO) e« o © = = « -103
Chart FC. SA Error Routine (ILBDSAEO) -104
Chart FD. SA Tape Pointer (ILBDIMLO) .105
Chart FE. SA Position Multiple File

Tapes (ILBDMFTO0) “ e a « w = -106
Chart FF. SA Test Tape Flle (ILBDMVEO) 107
Chart FG. SA STXIT Macro Instruction
(ILBDABX0) = « @ « o o « « = « = o = » 2108
Chart FH. SA Reposition Tape

(SSBFCMUL) = = = = « o = u = o o « < 2109
Chart GA. ISAM READ and WRITE

(ILBDISMO) o w @ o « « « v o »n - «110
Chart GB. ISAM Error (ILBDISEO) e« - 2111
Chart GC. ISAM Start (ILBDSTRO)112
Chart HA. DA Close Unit (ILBDCRDO) . .113
Chart HB. DA Close Unit for Relative

Track (ILBDRCRO) o v o « o v = « = « = <1104
Chart HC. DA Extent Processor

(ILBDXTNQ) v . . - - e e o = = = 2115
Chart HD. DA Sequentlal Read

(ILBDDSRO) v 2 v o @ o o o« = 2 = = =« « 116

Chart HE. DA Sequential Read for

Relative Track (ILBDRDSO) o« o « « = - 2117
Chart HF. DA RZERO Record (ILBDFMTO) .118
Chart HG. DA RZERC Record for

Relative Track (ILEDRFMO) . . . w &« o .119
Chart HH. DA Increase SEEK Address
(ILBDIDAD) o w @ o« » o a s« = = « » o « 120
Chart HI. DA READ and WRITE (ILBDDIOO) 121
Chart HJ. DA READ and WRITE for

Relative Track (ILEDRDIO) .« o « « o = 122
Chart HK. DA Error (ILBDDAEO) . v = - .123
Chart HL. VSAM Initialization

(ILBDINTO) « & o o o © « « « o o « « « 1204
Chart HM. VSAM OPEN And CLOSE

Subroutine (ILBDVOCO) (Part 1 of 2) . .125
Chart HM. VSAM OPEN And CLOSE

Subroutine (ILBDVOCO) (Part 2 of 2) . .126
Chart HN. VSAM Action Request

Subroutine (ILBDVIOO) & « o « « « o« « 2127
Chart IA. Separately Signed Numeric
(ILBDSSNO) o o o w o © o = « a o« o o o 128
Chart JA. Test (ILBDDBGO) (Part 1 of

2) 4@ i 4 4 e e e e w wm oa e s e s a e w 129
Chart JA. Test (ILBDDBGO) (Part 2 of

2) 4 o @ o o m @ o 0o = 4 e @ «w e a a w «130
Chart JB. 7Print (ILBDDBG1) e o « a e 2131
Chart JC. STXIT (ILBDDBG2), TGT

Address (ILBDDBG3), and Save Register

14 (ILBDDBGU) .+ o « o « « a « o o = =132
Chart JD. Dynamic Dump (ILBDDBGS) w -« <133
Chart JE. Range (ILBDDBG6) and Chose

Debug File (ILBDDBG8) Subroutines . - .134
Chart JF. Statement Number (ILBDSTNO)
(Part 1 0f 2) o 0 v @ @ o o« o o« = « « 2135
Chart JF. Statement Wumber (ILBDSTWO0)
(Part 2 Of 2) . & 4 o 2o o o «w a « « « 136
Chart JG. Flow Trace (ILBDFLWO) . « . .137
Chart JH. SYMDMP - Overall - .138
Chart JI. IODISK/IOTAPE
(ILBDMPO1/ILBDMP02) 4« o o w o « = = -« =139
Chart JJ. SYMINIT (ILBDMP10) < - = - 2140
Chart JK. READIPT/ERROR (in ILEDMP10) .1u41
Chart JL. SCANP (ILBDMP11)142
Chart. JM. SCAND (ILBDMP12) . . « - - .143
Chart JN. FINDNAMS (ILBDMP13)144
Chart JO. FINDLOCS (ILBDMP14) . . - . .145
Chart JP. SYMCNTRL (ILBDMP20)146
Chart JQ. HEXDUMP (in ILBDMP20) « - « 147
Chart JR. SEGINIT (ILBDMP21)1u48
Chart JS. DMPCNTRL (ILBDMP22) « « « = 149
Chart JT. NXTENTRY (ILBDMP22) . . . « .150
Chart JU. DUMP1 (ILBDMP23) e o w « - =151
Chart JV. DUMP2 (ILBDMP24)152
Chart JW. SYMSTATE (ILBDMP25) . - - - .153
Chart JX. SRCHPUBS (ILBDMPO4) . . « - 154
Chart KA. COUNT Initialization

Subroutine (ILBDTCO00) . . . e = = « 155
Chart KB. COUNT Frequency Subroutlne
(IIBDTC10) « v o o = w © 2 2 o « =« « « =156
Chart KC. COUNT Termination

Subroutine (ILBDTC20) e -« w =157
Chart KD. COUNT Print Subroutlne
(ILBDTC30) v o 2 o = a 2 « o« = » = « = 2158

The IBM DOS/VS COBOL Library provides
subroutines that can be link edited with
object modules produced by the program
product IBM DOS/VS COBOL Compiler (Program
Number 5746-CB1). The library also
provides subroutines that can be
dynamically fetched during problem program
execution.

LIBRARY CONTENTS

The compiler uses a number of subroutines
to perform frequently required operations.
Because these subroutines are too extensive
to be efficiently placed into the object
module whenever needed, they are stored in
the relocatable library and included in the
phase by the linkage editor. Exceptions to
this are transient subroutines $$BCOBER,
$$BCOBR1, $$BFCMUL, &$$BCOBEM, and the
SYMDMP subroutines, which are stored in the
core image library.

The COBOL Object-time Likrary contains
subroutines to perform the following
operations:

e Internal data format conversion.
e Arithmetic operations.
e Input/Output operations.

e Miscellaneous operations to support
such statements as SEARCH or DISPLAY
and specialized operations such as
class tests or compares.

e Internal data format conversions for
input and output files coded in the
American National Standard Code for
Information Interchange, X3.4-1968.

e Generation of a formatted trace of the
last procedures executed before an
abnormal termination of a job in
response to the specification of the
flow trace option. The number of
procedures to be traced is specified by
the user.

e Identification of the statement being
executed at the time of an abnormal
termination of a job in response to the
specification of the statement number
option. The information includes the
name of the program containing the
statement and the number of the
statement and of the verb being

Licensed Material - Prorerty of IBM

SECTION 1: INTRODUCTION

executed at the time of abnormal
termination.

e Generation of additional execution-time
information for debugging purposes in
response to the specification of the
symbolic dump option. This information
includes symbolic formatted dumps of
named data areas taken dynamically at
specified points in the Procedure
Division, and a symbolic formatted dump
when a program terminates abnormally.

A dump taken at abnormal termination
consists of three parts: an abnormal
termination message identifying the
source statement causing the error,
selected areas in the Task Global
Table, and data items from the Data
Division. Note that a dynamic dump,
requested when a STOP RUN or GOBACK
statement is encountered, produces, in
effect, an "end-of-job" dump.

¢ Generation of object-time execution
statistics for debugging, testing, and
optimization in response to the COUNT
option. The statistics include a
listing of the Procedure Division verbs
with execution frequency information
and an executable verb summary. The
statistics are provided at normal and
abnormal termination.

ENVIRONMENTAL AND PHYSICAL CHARACTERISTICS

The DOS/VS COBOL Subroutine Library is
designed for use under the IBM DOS/VS
Operating System with object modules
produced by the DOS/VS COBOL Compiler. A
DOS Release 29 is the minimum level
required.

The DOS/VS COBOL Subroutine Library is
part of the DOS/VS core image and
relocatable libraries, which must reside on
a disk storage device.

If the SYMDMP option is specified, the
library subroutine called to supply the
symbolic formatted dump requires that the
dictionary of symbolic names and other
information produced during compilation be
present at execution time. This
information is written on an additional
work file designated as SYS005 during
compilation. SYS005 may reside on either a
tape or direct access device. The work
file may be named according to the user's
option at execution time.

Section 1: Introduction 9

Licensed Material - Property of IBM

OPERATIONAL CONSIDERATIONS

Phases 50, 51, and Phase 60 or 64 of the
DOS/VS COBOL Compiler generate the calls to
the subroutines contained in the COBOL
Okject-time Library. (Note that Phase 60
or 64 generates these calls in the
initialization routines in the object
module.) Parameters are passed to the
subroutines in one of the following ways:

¢ In general or floating-point registers.

¢ As in-line constants (DCs) following
the call.

10

e In the WORKING CELL area of the Task
Global Table (TGT) in the object
module.

The subroutines can return parameters in
registers or in the WORKING CELL area.

Note: References to the WORKING CELL area
are in the form of a displacement from
register 13 which points at execution time
to the beginning of the Task Global Table.
In the calling sequences in Section 2:
"Method of Operation," the references are
in the form:

WORKA (length,13)

Licensed Material - Property of IBM

METHODS OF OPERATION

Methods of Operation 11

Licensed Material - Property of IBM

SUBROUTINES FOR OBJECT TIME PROGRAM OPERATIONS

The subroutines described below perform
frequently required program operations at
object time. These operaticns include
internal data format conversions,
arithmetic operations, input/output
operations, miscellaneous operations to
suppert such statements as SEARCH or
DISPLAY and specialized operations such as
class tests or compares, and certain
operations connected with the ASCII support
feature of the compiler.

Flowcharts are provided in "Section 2:
Program Organization" for some of the
subroutines. Each chart identifier apvears
in square brackets after the name of its
subroutine.

ARITHMETIC CONVERSION SUBROUTINES

The subroutines described below perform the
arithmetic conversions between the eight
numeric data formats permitted in COBOL.
The conversions from internal decimal to
external decimal, from external decimal to
internal decimal, and from internal decimal
to report are done in-line and do not
require use of the library.

The following conventions are used for
the conversion subroutine parameters:

BINARY: Single words are in register 0;
double words are in registers 0 and 1.

INTERNAL DECIMAL: The number is passed in
the first 10 bytes of the WORKING CELL area
in the Task Global Table (TGT). It is
right justified with high-order zeros.

EXTERNAL DECIMAL: The number is passed in
the first 18 bytes of the WORKING CELL area
in the TGT. It is right justified with
high-order zeros.

INTERNAL FLOATING-POINT: The number is
long form in floating~point register 0.

EXTERNAL FLOATING-POINT: The number is
variable in length. For input to the
subroutine, it is pointed to by general
register 3. For output from the
subroutine, it is in the WORKING CELL area
in the TGT.

STERLING NONREPORT: Sterling nonreport
items are either internal decimal for
computatioral purposes (right justified in
a 16-byte field) or external decimal for

12 Arithmetic Conversion Subroutines

display purposes
to 20 bytes).

(variable length, from 4

STERLING REPORT: Sterling report items are
internal decimal for computational
purposes. They are right justified in a
16-byte field.

Note: The external floating-point (EF)
number parameter code bits are:

Bit Meaning, if on
1-5 Not used
6 Mantissa PICTURE sign is negative
7 Exponent PICTURE sign is negative
8 EF number has a real decimal

point

Binary to Internal Decimal (ILEDBIDOQ)

Operation: Converts a double precision
binary number into a 10-byte internal
decimal number. The binary number must be

in register pair 0, 1 or 2, 3 or 4, 5.
Linkage:

L 15,=V(entry point)

BALR 14,15
Note: Substitute for entry point as

follows:

ILBDBIDO if binary number is in register
pair 0, 1

ILBDBID1 if binary number is in register
pair 2, 3

ILBDBID2 if binary number is in register
pair 4, 5

Output: A 10-byte internal decimal number

starting at WORKA(13), where 13 is the
register pointing to the TGT.

Binary to External Decimal (ILBDBIEOQ)

Operation: Converts a double precision
binary number into an 18-byte external
decimal number. The binary number must be

in register pair 0, 1 or 2, 3 or 4, 5.
Linkage:

L 15,=V(entry point)

BALR 14,15

Substitute for entry point as

ILBDBIEO if binary number is in register
pair 0, 1

ILBDBIEl1l if binary number is in register
pair 2, 3

ILBDBIE2 if binary number is in register
pair 4, 5

Output: An 18-byte external decimal number
starting at WORKA(13), where 13 is the
register pointing to the TGT.

Binary to Internal Floating-~Point
(ILBDBIIO)

Operation: Converts a doukle precision
binary number into a double precision
floating-point number.

Linkage:

LM 0,1,BI-number

L 15,=V(ILBDBIIO)

BALR 14,15

DC XL2'Decimals in BI number'
Output: A double precision floating-point

number in floating-point register 0.

Internal and External Decimal to Internal

Licensed Material - Property of IBM

Internal Floating-Point to Binary
(ILBDIFBO)

Operation: Converts a double precision
internal floating-roint number into either
a binary number, or into a binary number
and an exponent to the base 10, depending
on where the subroutine is called from.
The internal floating-point number is put
into floating-point register 0. If the
internal floating-point number is too big,
the binary number is set to the maximum.
If the internal floating-point number is
too small, the binary number is set to the

minimum. No error indication is given.
Linkage:
LD 0, FP-numbker
or
SDR 0,0
LE 0, FP-number

Followed in either case by:

L 15,=V(ILBDIFB1)

CNOP 6,8

BALR 14,15

DC XL8'double precision floating-

point number' (of the form
10**X where X is the number of
decimals in the result field)

Output: A binary number in register pair
0,1.
Note: If this subroutine is called by

Floating=-Point (ILBDDCIOQ)

Operation: Converts a 16-kyte internal
decimal number or an 18-byte external
decimal number into a double precision

internal floating-point number. Register
13 points to the TGT.
Linkage:
For internal decimal:
ZAP WORKA(16,13),ID-field
L 15,=V(ILBDDCI1)
BALR 14,15
DC XL2'Decimals in ID number'
For external decimal:
MVC WORKA(18,13) ,ED-field
L 15,=V(ILBDDCIO)
BALR 14,15
DC XL2*Decimals in ED number'
Qutput: A double precision internal

floating-point number in floating-point
register 0.

another subroutine, the linkage and output
are as follows:

If called by ILBDIFDO:

Linkage:
LD 0,Internal floating-point number
LD 2,Decimals in result
L 15,=V(ILBDIFBO)
BALK 14,15
OQutput: A binary number in register pair
0,1.

If called by ILBRDTEF3:

Linkage:
LD 0,Internal floating-point number
LD 6,Digits in external floating-
point mantissa
L 15,V (ILBDIFB2)
BALR 14,15
OQutput: A binary number in register pair

0,1, and a power-of-10 exponent in register
2.

Subroutines for Object Time Program Operations 13

Licensed Material - Property of 1IBM

Internal Floating-Point to Internal Decimal

Internal Decimal to Sterling Report

(ILBDIFDO)

Operation: Converts a double precision
internal floating-point number into a
10-byte internal decimal number. If the
internal floating-point number exceeds the
maximum permissible length, register 15 is
set to 0 and a normal exit is taken.

Linkage:
LD 0, FP-number
or
SDR 0,0
LE 0, FP-number

Followed in either case by:

L 15,=V(ILBDIFDO)

CNOP 6,8

BALR 14,15

DC XL8'FP~-number’
(of the form 10**X where
X is the number of
decimals in the result
field)

Output: A 10-byte internal decimal number
starting at WORKA(13) where register 13
points to the TGT.

Internal and External Decimal to Binary
(ILBDIDBO)

Operation: Converts a 10-byte internal
decimal number or an 18-byte external
decimal number into a double precision
binary number. The decimal field starts at
WORKA(13) where register 13 points to the
TGT.

Linkage:
ZAP WORKA(10,13),ID-field
L 15,V(entry point)

BALR 14,15

Note Substitute for entry point as
follows: .
ILBDIDBO, if input is an internal
decimal number
ILBDIDB1l, if input is an external
decimal number
Qutput: A double precision binary number

in register pair 0,1.

14 Arithmetic Conversion Subroutines

Output:

(ILBDIDRO)

Operation: Edits a packed decimal quantity
into a sterling report field, as defined by
a sterling report picture in the calling
sequence. The packed decimal quantity
contains 31 digits, signed, and is not
changed by the routine. The rerort field
may be up to 127 bytes long. The decimal
field, pence, is converted to pounds,
shillings, pence, and pence decimal fields
according to the specifications in the
calling sequence. The pound integer field
is edited using the edit and mark
instruction. All other fields are edited
directly by the subroutine.

Linkage:
LA 1,Picture address
LH 2,Picture length
L 3,0N SIZE ERROR GN
LA 0,Sterling report field address
L 15,=V(ILBDIDRO)
BALR 14,15
DC ALl(base code)
DC AL3(displacement of temporary

storage field in TGT)
DC ALl(length of report field)
DC ALl {(number of decimal digits)
DC ALl (number of pounds digits)
DC XL1'Information’

where:

base code
indicates a register which contains a
pointer to the TGT or the PGT.

Information
is as follows:

Bit Meaning

0 Set on if BLANK WHEN ZERO

1 Set on if shilling delimiter is
an S; off if it is a D

2 Set on if pounds delimiter is an
S; off if it is a D

3 Set on if the pounds field is not
present

4=-7 Not used

Edited sterling report field at
the address defined by register 0 upon
entry. All input fields and parameters are
unchanged. All registers are restored,
with the exception of register 15 (the base
register of the routine) and register 14
(which is changed to the address of the
first instruction after the parameter list
if the normal exit is taken).

Internal Decimal to Sterling Nonreport
(ILBDIDTO)

Operation: Converts any internal decimal
number contained in a 16-byte field into
any sterling format specified.

Linkage:
L 1,A(ON SIZE ERROR routine)
LA 0,Sterling field address
L 15,=V(ILBDIDTO)
BALR 14,15
DC ALl (base code)
DC AL3(displacement of temporary
storage field in TGT)
DC XL2'Information®
where:

base code
indicates the register which contains
a pointer to the TGT or the PGT

Information
is as follows:

Bit Meaning
0 Set to 1 if IBM shillings
1 Set to 1 if 2-character pence
representation
2 Set to 1 if IBM pence
3-7 Number of digits of pence
decimals
8-12 Numbers of digits of pound
integers
13-15 Sign indicator:
000 No sign
001 Sign on high-order pound
010 Sign on low-order pound
011 Sign on high-order
shilling
100 Sign on high-order pence
101 Sign on low-order
decimal
Output: Converted sterling fields at the

address specified in the calling sequence.
On ON SIZE error, high-order pound integers
are truncated.

Sterling Nonreport to Internal Decimal
(ILBDSTIO)

Operation: Converts any sterling nonreport
field into a 16-byte internal decimal
number.

Linkage:
LA 0,Sterling field address
L 15,=V(ILBDSTIO)
BALR 14,15
DC ALl (base code)

Licensed Material - Property of IBM

DC AL3(displacement of temporary
storage field in TGT)
DC XL2'Information®
where:

base code
indicates a register which contains a
pointer to the TGT or the PGT.

Information
is the same as that in the above
instructions for the Internal Decimal
to Sterling Nonreport Subroutine.

Output: A 16-byte internal decimal number
at the output address specified in the
calling sequence.

All Numeric Forms to External
Floating-Point (ILEDTEFOQ)

Operation: Converts a single precision
binary, a double precision binary, an
internal decimal, or an internal
floating-point number into an external
floating-point number.

Linkage:

For single precision binary:

L 0,BI-numker

L 15,=V(ILEDTEFO0)

BALR 14,15

DC XLl'Decimals in EF mantissa‘

DC XL1"Total length of EF number’

DC XL1'EF parameter code'
(See note at beginning of this
section)

DC XL1"Decimals in BI-number"

For double precision binary:

LM 0,1, BI-number

L 15,=V(ILBDTEF1)

BALR 14,15

DC XL1°Decirals in EF mantissa'

DC XL1*Total length of EF number'

DC XL1"EF parameter code'
(See note at beginning of this
section)

DC XL1"Decimals in BI-number'

For internal decimal:

ZAP WORKA(16,13) ,ID-field

L 15,=V(ILBDTEF2)
DC XL1"Decimals in EF mantissa'
DC XL1*Total length of EF number®
DC XL1"EF parameter code’
(See note at beginning of this
section)
DC XL1"Decimals in ID number®

Subroutines for Object Time Program Operations 15

Licensed Material - Property of IBM

For internal floating-point: either
SDR 0,0
LE 0,FP-number
or
LD 0, FP-number
Followed in either case by:
L 15,=V(ILBDTEF3)
CNOP 2,8
BALR 14,15
DC XL1"Decimals in EF mantissa"
DC XL1*Total length of EF number'
DC XL1'EF parameter code'
(See note at beginning of this
section)
DC XLl'Slack byte"

DC XL8'FP-number?
(of the form 10**X, where X is
the number of digits in the EF
mantissa)

Qutput: The external floating-point result
is in WORKA+24(L,13) where register 13
points to the TGT.

Calling Information: Called by compiled
code or by the object-time SYMDMP
subroutine (ILBDMP23).

External Floating-Point to Internal
Floating-Point {ILBDEFLO0)

Operation: Converts an external
floating-point number into an internal
floating-point number.

Linkage:
L 3,=A(EF-number)
L 15,=V(ILBDEFLO0)
BALR 14,15
DC XL1'Decimals in EF mantissaf

DC XL1'Total length of EF-number'
DC XL1"EF parameter code'
(See note at beginning of this
section)
DC XL1'Slack byte*

Output: An internal floating-point number
in floating point register 0.

ARITHMETIC VERB SUBROUTINES

The five subroutines described below
perform involved calculations, such as
exponentiation, or calculations involving
larger numbers. Arithmetic operations not
in these categories are performed in-line
and do not require use of the library.

16 Arithmetic Verb Subroutines

Decimal Multiplication (ILBDMXUO)

Operation: Multiplies two 30-digit decimal
numbers to produce a 60-digit decimal

number. Input signs are expected to be C,
F, or D.
Linkage:
ZAP WORKA(16,13) ,MPLIER
ZAP WORKA+16 (16,13) ,MPCAND
L 15, =V (ILBDXMUO)
BALR 14,15
Qutput: The product, a 60-digit decimal

number is placed in the 32-byte field
following the multiplicand in the working
cell area in the TGT.

Decimal Division (ILBDXDIO)

Operation: Divides a 60-digit decimal
number by a 30-digit decimal number to
yield a 60-digit decimal quotient. The
dividend and divisor are both signed
decimal numbers, right aligned in their
fields.

Linkage:
MVC WORKA(32,13),Dividend
(if dividend is 32 Lkytes)
or
XcC WORKA(16,13) ,WORKA (13)
(if dividend is 16 bytes or
less)
ZAP WORKA+16 (16,13) ,Dividend
Followed in either case by:

ZAP WORKA+48(16,13) ,Divisor
L 15,=V(ILEDXDIO)
BALR 14,15

Output: The quotient, a 60-digit decimal
nuwber, is in the 32-byte field following

the divisor in the working cell area in the
TGT. The sign is determined by the rules
of algebra from the dividend and the
divisor signs. No remainder is returned.

Decimal Fixed-Point Exponentiation
(ILBDXPRO)

Operation: Exponentiates any 30-digit
packed decimal base to a binary exponent.
This subroutine calls packed decimal
multiplication and division routines.

Page of LY28-6424-1, revised 12/3/76 by TNL:

Linkage:
ZAP WORKA(16,13) ,BASE(L)
L 0, EXPONENT
L 15,=V(ILBDXPRO)
BALR 14,15
DC XL1l'Decimal places in base'
DC XL2'Decimal places required in
result’
Qutput: A 16-byte packed decimal number at

the beginning of the working cell area in
the TGT.

Floating-Point Exponentiation to an Integer

LN20-9183

Licensed Material - Property of IBM

Output: The result is in floating-point
register 0. To avoid imaginary numbers
(involving the square root of -1), the
base is always treated as a positive
number, and the result will always be
positive. Any condition which would cause
exponent overflow results in an answer
equal to the largest floating-point number.
Any condition which would cause exponent
underflow results in an answer equal to 0.

DATA MANIPULATION SUBROUTINES

Exponent (ILBDGPWO0)

Operation: Exponentiates a double
precision floating-point number to a binary
exponent.

Linkage:
LD 0,BASE
or
SDR 0,0
LE 0, BASE

Followed in either case by:

0, EXPONENT
(EXPONENT was converted to
binary, if necessary)

L 15,=V(ILBDGPWO0)
BALR 14,15
Output: The result is in floating-point

register 0.

Floating-Point Exponentiation to a
Noninteger Exponent (ILBDFEWO0)

Operation: Exponentiates a long-form
floating-point base to a floating-point
exponent.

Linkage:
LD 0, BASE
or
SDR 0,0
LE 0,BASE

Followed in either case Ly:

MVC WORKA+8(8,13) ,EXPONENT
(EXPONENT was converted into
long-form floating-point,
if necessary)

L 15,=V(ILBDFPWO0)

14,15

The subroutines described bkelow
manipulate data both in virtual storage and
on files. They also perform sorme editing
and initializing functions.

SORT (ILBDSRTO) And MERGE (ILBDSRTQO And

ILBDMRGO) [CA]

Sort Operation: ILBDSRTO acts as an

interface between the COBOL generated
object program and the Program Product
Sort/Merge program. It links to the
Sort/Merge program, using parareters from
the COBOL object program. If INPUT
PROCEDURE or OUTPUT PROCEDURE has been
specified, ILBDSRTO branches at exits from
the Sort/Merge program to the sequence of
instructions specified in the COBOL object
program.

If, instead of the INPUT PROCEDURE, the
USING option of the CCBOL SORT statement
has been specified, at the exit from the
SORT/MERGE program the subroutine branches
to the compiler-generated code to open the
USING file(s). If more than cone file is
specified in the USING statement, they are
all opened at once. The subroutine then
reads every record from the first file
until end-of-file, closes it and then reads
all the records from the next file until
end-of-file, closes it, and so on.

If, instead of the OUTPUT PROCEDURE, the
GIVING option of the COBOL SORT statement
has been specified, at the exit from the
SORT/MERGE program the subroutine branches
to the compiler-generated code to open the
GIVING file. The subroutine then writes
every record onto the GIVING file and
closes it when the operations with it are
complete. Finally, the subroutine returns
ccntrol to the COBOL object program when
the sort operation is complete.

Sort Flow of Contrcl: Diagram 1 (see

"Program Organization" Section) describes
the logical flow among the three programs
which are active during executicn of a
COBOL SORT statement. The statement has
specified both INPUT PROCEDURE and OUTPUT

Subroutines for Object Time Program Cperations 17

Licensed Material - Property of IBM

PROCEDURE; but checkpoint records are not
to be taken.

The COBOL object program sets up the
parameter list, and branches to ILBDSRTO.
This parameter list consists of 10 address
constants pointing to the card. images
describing the parameters for the
Sort/Merge program (see Figure 1, items 1
through 6). The parameter list also
contains the addresses of the three branch
tables and SORT-RET cell in the TGT (see
Figure 1, items 7 through 10). After
initialization the subroutine links to the
Sort/Merge program. When phase 1 of the
sort/Merge program reaches exit E15, it
returns to the subroutine. The first time
this path is followed, ILBDSRTO branches to
the routine in the COBOL okject program
which initializes the PERFORM statement of
the input procedure specified. Control is
then passed to that procedure.

When the RELEASE statement is
encountered in the input procedure, control
returns to the subroutine. The subroutine
then establishes the linkage back to the
statement after the E15 exit instruction of
the Sort/Merge prooram. The Sort/Merge
program then loops through its phase 1
operation until it is ready to receive
another record. It then passes control to
ILBDSRTO, which in turn passes control to
the statement in the input procedure
irmediately following the RELEASE
Statement.

This same flow of control throuch the
Sort/Merge program, ILBDSRT0, and the COBOL
input procedure continues until the input
procedure has released the last record.
Then control passes to the end of the
procedure, and by means of the subroutine,
¢« to phase 2 of the Sort/Merge program.

The interaction among the three programs
during the output procedure is essentially
the same as during the input procedure.
Phase 3 of the Sort/Merge program returns
to the subroutine at exit E35 whenever it
is prepared to return a sorted record.
Linkage between the subroutine and the
output procedure is similar to that between
the subroutine and the input procedure.
After the last record has keen returned by
the Sort/Merge program, control returns
through ILBDSRTO to the COBCL object
program at the instruction immediately
following the one which originally branched
to the subroutine.

Merge Operation: ILBDSRTO and ILBDMRGO act
as the interface between the COBOL object
program and the Sort/Merge Program (Program
Number 5746-SM1).

ILBDSRTO performs the following functions:

18 Data Manipulation Subroutines

e Calls ILBDMRGO for initialization

* Links to the Sort/Merge program using
parameters from the COBOL object
program.

e At exit E32 from the Sort/Merge program
branches to ILBDMRGO.

e When a merged sequence is determined,
branches at exit E35 from the
Sort/Merge program to the COBOL obiject
program OUTPUT PROCEDURE or to the code
for the GIVING option which is the same
as for the SORT statement.

ILBDMRGO performs the following functions:

e At initialization saves the following
information

-- SD buffer address

-- Address of the open USING files
routine in the COBOL object program

-~ Number of input files
-- Recording mode of SD

-- Address of error exit for vsaM
files

e At exit E32 from the Sort/Merge program

-- Branches to the compiler-generated
code to open all the USING files

-- Reads each record from the input
files requested by the Sort/Merge
program

-- Passes the record to the Sort/Merge
program for merging with a record
from other files

-~ Performs a CLOSE operation on a
file on which an end-of-file
occurred

Merge Flow of Control: The flow of control
for MERGE processing is shown in Diagram 2
in "Section 2: Program Organization.”

This diagram describes the logical flow
among the four programs which are active
resident in storage during execution of the
COBOL MERGE statement.

The COBOL object program sets up the
parameter list and branches to ILBDSRTO.
This parameter list consists of ten address
constants pointing to the card images
describing the parameters for the
sort/Merge program (see Figure 2). Items 1
through 6 are set up by the COROL compiler.
ILBDSRTO sets up the rest of the list, then
links to ILBDMRGO for initialization. On
return from ILBDMRGO, ILBDSRTO links to

theSort/Merge program. When phase 3 of the
Sort/Merge program reaches exit E32, it
returns to ILBDSRTO which then branches to
ILBDMRGO.

The first time this path is followed,
ILBDMRGO branches to the COBOL object
program which opens all the input files and
passes control back to ILBDMRGO with
pointers to opened files, DIFs, and BLs in
WORKING CELLS of the TGT. ILBDMRG(O then
reads a record from the input file
requested by the Sort/Merge program, and
establishes the linkage back to the
statement after the E32 exit instruction of
the Sort/Merge program.

The Sort/Merge program loops through
exit E32 until a merged sequence is
established. It then returns to ILBDSRTO
at exit E35. Linkage between ILBDSRTO and
the OUTPUT PROCEDURE is the same as that
for the SORT statement. (If GIVING is
specified, ILBDSRTO writes a record onto an
output file.)

This flow of control through the
Sort/Merge program, ILBDSRTO and ILBDMRGO

Licensed Material - Prorerty of IBM

at exit E32, and ILBDSRT(0 at exit E35
continues until ILBDMRGO has released the
last record to the Sort/Merge program and
after the last merged record has been
returned by the Sort/Merge program.
control is passed from ILBDSRTO to the
COBOL object program at the instruction
immediately following the one that
originally branches to the subroutine.

Parameters Passed to the Sort/Merge
Program: ILBDSRTO passes in register 1 a
pointer to a ten-word parameter list (see
Figure 1 for the SCRT statement). The ten
parameters contain addresses of the control
areas that exist in virtual storage during
execution of the SORT statement. The first
six control areas are generated as EBCDIC
literals by phase 51 of the COBOL compiler.
They correspond to the control cards that
are needed by the Sort/Merge program to
define the specific sort operation. The
next three control areas are tables of
branch addresses that are located in
ILBDSRT0. The final control area is a
location SORT-RET in the TGT into which a
return code is placed by the Sort/Merge
program.

Subroutines for Object Time Program Operations 19

Licensed Material - Property of IBM

| For an explanation of each parameter, see the appropriate circled number under
|"Explanation of Parameter Lists" in this section.

-

r T 1
| | i
O t SORT FIELDS=(ps,ls,f1,S1{s+-Paz2sl12sE12,812}),WCRK=x, [SIZE=valuel I
I | |
| i F 1 |
I @ | t RECORD TYPE=\Vf,LENGTH=(la,,,[1,]) [
| | [
MO t INPFIL EXIT |
[|]
MO t OUTFIL EXIT |
| | |
] @ | t OPTION [LABEL=(,, {s})], [STORAGE=value]]
| ! U |
| | | .
| | or !
| | |
] | t SORT/OPTION data-name |
[I | .
| (6) (a2 + MoDS pH1=(,,E15),PH3=(,,E35) |
| | (b) MoDS PHi=(,,E11,E15),PH2=(,,E21),PH3=(,,E31,E35) |
|
. |
| | |
NON t PH1 B E11 - CHECKPOINT ROUTINE |
[| B E15 - INPUT PROCEDURE OR READ USING FILE(S) |
| | |
[| t PH2 B E21 - CHECKPOINT ROUTINE |
| | !
HOMN t PH3 B E31 - CHECKPOINT ROUTINE 1
| | B E32 - EXIT E32 IS NOT USED |
| | B E35 - OUTPUT PROCEDURE OR WRITE THE GIVING FILE |
L ,'
T - 1
| | _ |
| | t Return Code (2-byte area in the TGT) |
Bl |
| |Note: ¢t indicates "address of". |
| | |
| |
I |
L J

Figure 1. Parameter List Passed by ILBDSRTO for SORT

Explanation of Parameter Lists: 1n=the length in bytes of the
control data field

(:) SORT or MERGE Control Statement: fh=the format of the data in
each of the control data
fields, for example, ZD

The FIELDS parameter describes the (zoned decimal), CSL
SORT or MERGE keys of which a (leading separate
maximum of 12 may be character for ASCII)
specified. For each key there
are four parameters. sn=the sequence into which the

control data field will be
sorted, that is, A

pn=the position within the (ascending), D
record, of the high order (descending)
byte of the control data
field

20 Data Manipulation Subroutines

Licensed Material - Property of IBM

r T !
|] |
I @ | t MERGE FIELDS=(py,l3,f1,S1sse-DP12sla2,f22¢S12),FILES=n |
| | |
| | F 1 i
| (:) | ¥ RECORD TYPE=|V{,LENGTH=\(1+,,,,[1]) |
| I !
I (:) | t INPFIL EXIT i
| | |
MOM * OUTFIL EXIT |
| | |
MO t OPTION [STORAGE=valuel |
| | [
|] or |
] ! [
] | t SORT-OPTION data-name |
| | |
| (6 It + wmoDS PH3(,,E32,E35) |
| | |
i 1 —_— d
| | i
NOM t PHL B E11 - EXIT NOT USED |
| [B E15 - EXIT NOT USED |
| | [
| | t PH2 B F21 - EXIT NOT USED |
| I |
I (:D | t PH3 B E31 - EXIT NOT USED |
1 [B E32 - ILBDMRGO TO READ RECORDS FROM USING FILES I
| | B E35 - OUTPUT PROCEDURE OR WRITE THE GIVING FILE [
| | |
.L - !
	t Return code
+ + —]
] |[Note: ¢t indicates "address of". |
| | I
| | For exrlanation of the parameters see "Explanation of Parameter Lists" in this |
| | section. |
L L J
Figure 2. Parameter List ky ILBDSRTO0 for MERGE

The WORK parameter specifies the

The

number of devices available
for tape intermediate storage
or the number of extents
available for disk
intermediate storage. For
tape devices, the range of
acceptable values is 3 through
9. For direct-access devices,
the range of acceptable values
is 1 through 8. If no value
is specified, default values
of 1 and 3 will be assigned
for disk and tape,
respectively.

FILES parameter specifies the
number of input files that are
to be merged. If
SORT-FILE-SIZE is specifiegd,
the SIZE= parameter is added
for SORT only.

®

©)

RECORD Control Statement:

The

The

TYPE parameter is used to
differentiate between F (fixed
length) and V (variable
length) records.

LENGTH parameter for
fixed-length records specifies
the number of bytes (1) of one
logical record in the input
file. For variable length
records the LENGTH parameter
specifies the maximum (1,)
number of bytes in a single
input record. If
SORT-MODE-SIZE exists, 1 is
also specified.

INPFIL Control Statement:

The

EXIT parameter indicates to
the Sort/Merge program that
all input records are supplied

Subroutines for Object Time Program Operations 21

Licensed Material -~ Property of IBM

at exit E15 and that a routine
at that exit reads the input
file and passes the records
one at a time to the
Sort/Merge program.

@ OUTFIL Control Statement:

The EXIT parameter specifies to
the Sort/Merge program that a
routine at exit E35 will
process each record after it
has been sorted and that a
routine at that exit writes
the output file. This routine
is the output procedure that
has been specified or created.

(:) OPTIONS Control Statement:

The LABEL parameter indicates the
type of label on the work
files. It may ke U
(unlabeled) or S (standard).
All work files must have the
same type of lakel. (Not used
for MERGE.) If SORT-CORE-SIZE
exists, the STORAGE= parameter
is added.

If SORT-OPTION is specified
in the SD statement, the
address of the data-name is
passed to subroutine ILBDSRTO.
The value contained in the
data-name field may have the
following format:

OPTION

PRINT
PRINT=NONE
PRINT=ALL
PRINT=CRITICAL

[,LABEL=(, ,work)]

n
nk
(n,VIRT)
(nK,VIRT)

+ STORAGE=

[,ALTWK] [,ERASE]

» ROUTE=LST
, ROUTE=LOG

+ SORTWK=work

¢ SORTWK=(WOrk4,...work,)
Note: At least one blank must
follow the last operand.
Figure 3 summarizes the

22 Data Manipulation Subroutines

]

SORT-OPTION operands and their
defaults. The word OPTION
must start in column 1.

PRINT Option

PRINT
PRINT=NONE
PRINT=ALL
PRINT=CRITICAL

PRINT and PRINT=ALL specify
that all messages are to be
printed by the Sort/Merge
program. This includes error
and end-of-job messages,
control card informration,
various size calculations, and
other informative messages.

PRINT=NCNE specifies that
no messages are to be printed.
It is useful if you have no
alternate message device and
do not want messages listed
with other printed output. A
message device need not be
assigned.

PRINT=CRITICAL specifies
that only messages resulting
from conditions that can cause
program termination are to be
printed. For more details on
these conditions and messages,
refer to IBM DOS/VS Sort/Merge
Programmer's Guide, Order
No. SC33-4028.

Note: PRINT=ALL is assumed
until the SORT-OPTION
statement is read. Therefore,
if PRINT=NONE or
PRINT=CRITICAL are to be used,
these options must precede all
others in the SORT-OPTION
statement.

LABEL Option
[LABEL=(, ,work)]

This operand specifies the
type of labels associated with
the work files. The parameter
represented by work is either
S (standard labels) or U
(unlakeled). This operand is
required if the SORT-OPTION
statement is specified and
unlabeled work files are used.
If it is omitted, standard
labels are assumed for all
files.

Licensed Material - Property of IBM

r T - T - 1
] Statement | Operands | Comments |
L 1 4 4
r T T - 1
| OPTION | PRINT={ALL/NONE/CRITICAL} or PRINT | Default=ALL |
| : -~ + 1
| | STORAGE=n/(n,VIRT)/(nK,....) | Default: see discussion. |
r ; - + — 1
| | LABEL=(,,work) | Default=standard labels. |
| — 1 1
| | ALTWK | |
c lr - !
] | ERASE |
| ; - 1
	ROUTE={1IST/LOG}	Default: PhO message on
]	printer and console and	
]	Phl-3 on console.	
I b -~ + 1		
	SORTWK={work/(worki,....work)}	Default=(1,2,...m)
L 4 4 -

Figure 3.

Summary of SORT-OPTION Operands

Note: When standard labels
are used, the Sort/Merge
program uses the DOS/VS system
facilities to process these
labels. Unlabeled tape files
are processed by the
Sort/Merge program. No user
programming is required.

STORAGE Option

n
nK

+ STORAGE= (nk,VIRT)
(nK,VIRT)

This option is required to
specify to the Sort/Merge
program how much storage to
use and whether it can fix
pages.

n specifies a decimal
number of bytes of storage to
be made available to the
Sort/Merge program (together
with its user routines). nkK
specifies the decimal number
of K (1024 bytes) of storage
available.

The default is the value of
the SIZE parameter on the EXEC
job control statement. If
both SIZE and STORAGE are
specified, the lower value is
taken. If neither is
specified, the default is the
partition size of the required
size calculated by the
Sort/Merge program (but at
least 6U4K), which ever is
smaller. The Sort/Merge
program terminates if n is
less than 16K bytes. If n is

greater than the partition
size, it is ignored.

If the Sort/Merge program
is invoked from another
program, the defaults are
calculated in a similar way,
but the value of the SIZE
parameter and the partition
size are adjusted downwards by
the difference between the
address of the Sort/Merge load
point and the.starting address
of the partition.

If VIRT is specified, the
Sort/Merge prograr does not
try to fix pages when running
in virtual mode. You may need
to specify VIRT to prevent
interference with other jobs
running simultaneously, or to
allow a user-written routine
to fix pages. VIRT should be
avoided whenever possible,
since it has an unfavorable
effect on Sort/Merge
performance. It is ignored
when the Sort/Merge program is
running in real mode. The
value in SORT-CORE-SIZE is
ignored if the SORT-OPTION
clause is specified.

ALTWK Option

ALTWK specifies an
alternate work drive (tape
only) in a sorting job. This
doubles the maximum input file
size allowed. The address of
the alternate device must be
different from the address of
all other devices used in the
job. Figure 3 shows the file
name and default symbolic unit
name.

Subroutines for Object Time Program Operations 23

Licensed Material - Property of IEM

ERASE Option

ERASE specifies that work
data sets used during a sort
are to be erased at the end of
the job. It is ignored if
2400-series tapes are used for
work areas. If the sort
terminates abnormally,

e ERASE is performed unless
the checkpoint facility
has been specified;

e if ERASE is performed, and

if a workfile has been

pooled with output, the
output file is also
erased.

Note that the Sort/Merge
program does not close work
data sets, even when
terminating normally.

ROUTE Option

. ROUTE=LST
. ROUTE=L0G

LST specifies that messages
are to be routed to the SYSLST
file by the Sort/Merge
program. Messages requiring
operator intervention are also
printed on SYSICG if allocated
to a DOS/VS supported console
device.

LOG specifies that messages
are to be routed to the
controls.

Note: The default is assumed
until the ROUTE option has
been read.

SORTWK_Option

+ SORTWK=work
[,SORTWK=(work1,...workm)]
This operand specifies the
logical unit numbers
associated with the work
files. The parameters within
parentheses must be replaced
by symbolic unit numbers of a
maximum of three significant
digits from 1 to 221, or a
comma. When a comma is coded,
or if the operand is omitted,
the Sort/Merge program uses
the default assignment.
Figure 4 summarizes the file
names and default symbolic
unit names.

24 Data Manipulation Subroutines

r T T 1
|Use of Device|Filename|Symbolic Unit Name|
1 4 4 4
r 1 T 1
| work | SCRTWK1 |SY¥YS001 |
I b - I
| I | |
I l . | . I
1 | SORTWKY |SYS(M) |
1 4 1 J
F I T 1
| ALTWK | SORTALT |SYS(M+1) |
L L 1 4
T 1
|M=the number of work files, as specified |
| |
L

in the SELECT statement for the SD file.
J

4. Sorts/Merge File Nare and .
Default Symbolic Unit Names

MODS Control Statement:

This statement specifies the exits
used to branch out of the
Sort/Merge program to the
subroutine. The PHn entry
specifies the phase in which the
exit occurs. The Enn entry
specifies the number of the exit
used in branching to the
subroutine. When RERUN has been
specified in the COROL source
program (that is, when checkpoint
records have been requested), the
format generated is indicated by
(b) in Figure 1. Otherwise, the
format indicated by (a) in Figure
1 is used.

(a) This statement indicates
to the Sort/Merge program that
exit E15 is to be used in phase 1;
no modification is to be made to
phase 2; and exit E35 is to be
used in phase 3.

(b) This statement indicates
to the Sort/Merge program that
exits E11 and E15 are to be taken
in phase 1; exit E21 is to be used
in phase 2; and exits E31 and E35
are to ke used in phase 3.

(c) This statement indicates
to the Sort/Merge Program that no
modifications are to be made to
Phases 1 and 2, and that Exits E32
and E35 are to be used in Phase 3.

PH1 (Phase 1 Branch Table):

This branch takle consists of
branch instructions that the
Sort/Merge program uses when a
phase 1 exit is requested on the
MODS control statement. It is not
used for MERGE. The three branch
tables are assembled in the SORT
subroutine according to the form
shown in Figure 1. To pass
control to a routine at a

particular exit, the Sort/Merge
program uses the branch table and
a fixed displacement associated
with each program exit and then
branches to the routine indicated.

For example, when the
Sort/Merge program goes to the E15
exit, it loads register 15 with
the address of the beginning of
the table and issues a BAL
14,4(15) instruction. The
Sort/Merge program passes in
register 1 the address of a
parameter list containing pointers
to any records, checkpoint lists,
etc., applicakle to that exit.

PH2 (Phase 2 Branch Table):

This branch takle is used to pass
control to the Checkpoint
subroutine (ILBDCKPO) during Phase
2 of the Sort/Merge program, if
the E21 exit is specified (see
Figure 1, item 6b). It is not
used for MERGE.

PH3 (Phase 3 Branch Table):

This branch table is used to
return a sorted record to
ILBDSRTO0. It is also used to pass
control to the Checkpoint
subroutine, if the E31 exit is
specified.

Return Code:

The Sort/Merge program stores a
return code of 0 or 16 indicating
the success or failure,
respectively, of the sort
procedure. The user can test the
return code by referring to the
reserved word SORT-RETURN.

PH3 (Phase 3 Branch Table)

This branch table is used to
branch to ILBDMRGO to get a record
from one of the input files to be
merged or to return a merged
record to ILBDSRTO from the
sort/Merge Program.

Subroutines for

Licensed Material - Property of IBM

Linkage to ILBDSRTO for SORT or MERGE:

MVC
MvC
LA
LR
LA
LA
LA
LA

LA

STH

BALR

or

PARAM CELLS,literal-1 for SORT FIELDS

PARAM CELLS,literal-2 for RECORD TYPE

0,PARAM CELLS for SORT FIELDS

1,0

1,PARAM CELLS for RECORD TYPE

2,INPFIL

3,0UTFIL

4,0PTIONS (SORT without SORT-OPTION

specified in SD)

4,SORT-OPTION data-name (SORT with
SORT-OPTION
data-name
specified in
SD)

4,4

or

4,4 (MERGE)

0,4, WORKCELLS

0,MODS

1,INPUT PKOCEDURE

2,Input buffer

3,00TPUT PROCEDURE

0,3, WORKCELLS+16

4,"number of USING files"
SORT only

4 ,WORKCELLS+38

15,=V(ILBDSRTO)

14,15

The code generated to open USING files
for MERGE and SORT and pass back DTF and BL
addresses to ILBDMRGO and ILBDSRTO is as
follows:

GN1

EQU *
ST 14,XSA return address to

ILBDSRTO oxr ILBDMRGO

The OPEN code for multiple file-names is as

follows:
L 1,DTF#2 Open coding for
L 2,BL#2 multiple file-names
STM 1,2,WORKING CELLS#1

GN2

L 1,DTF#3
L 2,BL#3

ST™™ 1,2,WORKING CELLS#9

MVI WORKING CELLS#9,X'80"* generated
only if
vsaM file

L 14,XSA
BC 15,14
EQU *

Object Time Program Operations 25

Licensed Material - Property of IBM

Before control is passed to ILBDSRTO,
addressability is set up for the parameters
that are needed in the Sort/Merge program
and for the input and output procedures
that have been specified.

Qutput: If the GIVING option is employed,
the output is the sorted or merged file; if
not, the output is sorted records passed
singly.

Linkage to ILBDMRGO from IIBDSRTO:

At initialization the code is:

L 1,A{SDRUFFER)

L 2,A(USING GN)

L 3,'NUM OF USING FILES'

LA 4,1 If SD recording
rode is V or S

or

SR 4,4 If SD recording
mode is F

L 15,=V(ILBDMRGO)

L 5¢A(ERROREXIT)

BAL 14,4(15)

At exit E32 from the Sort/Merge program the
code is:

L 15,=V(ILBDMRGO)
BR 15
Output: The record is passed to the

Sort/Merge program for merging.

Dummy SORT (ILBDDUMO)

Cper. tion: This subroutine is a 2-byte
dummy subroutine which is loaded after the
object module. If the SYMDMF option is not
specified, the load point of ILBDDUMO is
used as the load point for the DOSAVS
Operating System SORT Program. If the
SYMDMP option is specified, the load point
of the SORT program is determined by adding
the length of the allocated SYMDMP modules
and tables to the load point of ILBDDUMO.

Linkage: None.
Qutput: None.

Move (ILBDVMOQO)

Operation: Used when one or both operands
are variable in length or exceed 4096 bytes
in length and the MVCL instruction cannot
be used because the operands overlap. The
variable~-length operand may exceed 256
bytes. The subroutine has two entry
points, depending upon whether the move is
left justified or right justified.

26 Data Manipulation Subroutines

Linkage:
L 15,=V(ILBDVMOO) (left-justified)
or
L 15,=V(ILBDVMOl) (right-justified)
BALR 1,15
DC XL10'Cperand-2 Information®
(See Note)
DC XL10'Operand-BE Information'
(See Note)
Note: Substitute one of the following:

For a variable-length operand:

DC XL1'Type code'

DC AL3(displacerent of the variable-
length cell in the TGT from the
base register code)

DC ALl (base register code)

DC AL3(displacement of base locator
from the above base register)
DC XL2*Displacement of item from

BL address'
For a fixed-length operand:

DC XL1'Type code'

DC XL3®*Length of operand*

DC ALl(base code)

DC AL3(displacement of item from
above Lase)

DC XL2"Displacement of item from

BL address'
The Type codes are:

Bit Meaning, if on

Figurative constant

Not used

Variable length

Direct pointer to the Program
Global Takle (for a literal)

4-7 Not used

Output: None.

Moving Characters (ILBDMOV(Q) {CB]

Operation: This subroutine executes an MVC
instruction of any length.
Linkage:
L 3,LENGTH
L 5,A(Receiving field)
L 2,A(Sending field)
L 15,=vV (ILBDMOVO)
BALR 14,15
Output: The MVC is executed if the length

is positive.

Transform (ILBDVTROQ)

Operation: This subroutine translates a
field (operand) of variable length or of a
length greater than 256 bytes. It uses the
translate table, ILBDTRNO, which it moves
to a work area and then modifies according
to the needed transformation.

Linkage:
L 2,=A(ILBDTRNO)
L 15,=V(ILBDVTRO)
BALR 1,15
DC XL1"Type code' (see Note)
DC XL3'Length of item'

DC ALl(base code)
DC AL3(displacement of pointer in
TGT or displacement of literal

text)
DC XL2"Displacement from BL"
Note: The Type code bits are:
Bit Meaning, if on
0-1 Not used
2 Variable-length item
3 Direct pointer (for example, a

pointer for a literal or TALLY)
4-7 Not used

Qutput: The data field is transformed as
requested.

MOVE Figurative Constant (ILBDANFO)

Operation: This subroutine moves a
figurative constant of more than one
character into a nonnumeric receiving

field. The result may be right or left
justified.
Linkage:
L 0,Length of receiving field
LA 1,Receiving field
LA 2,Figurative constant
L 15,=V(ILBDANFO0)
BALR 14,15
DC X'00'(Flag byte: BRit 0 = 1 if
the receiving field is
right adjusted)
DC X'00*' (Length of figurative
constant)
Qutput: The receiving field is filled with

the figurative constant.

Licensed Material - Property of IBM

MOVE to Right-Justified Field for
System/370 (ILBDSMVO)

Operation: This subroutine moves
characters into a right-justified receiving
field when the user has specified IBM-370
in the OBJECT-CCMPUTER paragraph and the
receiving field is either greater than 512
bytes in length or variable in length.

Linkage:
LA 0,Receiving field
LH 1,Length of receiving field
LA 2,Sending field
LH 3,Length of sending field
L 15,=V(ILBDSMV0)
BALR 14,15
Output: The characters are transferred to

a right-justified receiving field.

Calling Information:
code.

Called by compiled

Alphanumeric Edit (ILBDANEQ)

Operation: This subroutine moves a
data-name, literal, or figurative constant
into a right- or left-adjusted alphanumeric
edited field. Each group of X's in the
PICTURE is treated as an individual field.

Linkage:

L 0,Length of sending field

a 1,Sending field

LA 2,Receiving field

La 3,Edit mask (see Note 1)

L 15,=V(ILBDANEOQ)

BALR 14,15

DC X'00' (Flag byte; see

Note 2)

DC X*00°' (Mask length)

DC X'0000' (Receiving length)
Note 1: Edit mask is an encoded form of

the COBOL alphanumeric edit picture.

Note 2:

Right-adjusted receiving field
Sending field is a figurative
constant
2-7 Not used

Bit Meaning, if on
0
1

Output: The completed alphanureric edited

move.

Subroutines for Object Time Program Operations 27

Licensed Material - Property of IBM

SEARCH (ILBDSCHO)

Operation: This subroutine searches a
table using a binary search technique and
returns the address of a desired table
entry to the calling routine. From one to
twelve keys may be specified, all of which
must be satisfied for a successful search.
The table must have been presorted on all
keys, and all entries must be of the same
length. If the search is unsuccessful,
control is returned to the AT END address
specified by the caller. The subroutine is
called by code generated from processing a
SEARCH ALL statement.

Linkage:

LA 0,Search argument

LA 1,Table descriptor (See
Note 1)

CNOP 2,04

L 15,=V(ILBDSCHO0)

BALR 14,15

DC x"nn" (See Note 2)

DC X*nn® (Length of first key)

DC X"nnnn' (Offset of first key
from the beginning of table
entry)

. (Same 4 bytes

. of information

. for each key)

Note 1: The table descriptor is a 1l6-byte

area starting at TEMP STORAGE-4 in the TGT
and is in the following format:

Byte Meaning

.0-3 Table address

u-7 Maximum number of occurrences
8-11 AT END address

12 Number of keys

13 Not used
14-15 Length of a takle entry

The search argument is in a location
starting at TEMP STORAGE-2 in the TGT.
Note 2: The type of key is as follows:

Bi

o+

Meaning

1=ascending; 0=descending
Binary

Packed decimal

Zoned decimal
Alphanumeric

5-7 Not used (all bits 0)

FUJMHO.

Output: If.the desired entry is found, its
address is returned in register 0, and
control is returned to the instruction
arpearing after the in-line key
descriptions. If the entry is not found,
control is returned to the AT END address.

The instructions following the key
entries cause the index-name associated

28 Data Manipulation Subroutines

with the level of the table being searched
to be set to the displacement of the found
entry.

segmentation (ILBDSEMOQ) [ccC]

Operation: This subroutine performs the
loading and initializing for the
segmentation feature of the compiler. If
the GO TO statement has a VN as its
operand, this subroutine will do one of the
following:

1. Load and initialize, if the segment of

destination is independent and not in
virtual storage.

2. Load only, if the segment of
destination is overlayable and not in
virtual storage.

3. 1Initialize only, if the segment of
destination is in virtual storage,
independent, and not the same as the
origin of branch.

4. Branch to the desired entry point, if
the segment of destination is in the
root segment.

5. Branch to subroutine ILBDDBGO if the
SYMDMP option is in effect.

If the GO TO has a PN as operand, the
subroutine will load a segment if it is not
in virtual storage.

ILBDSEM1 is an alternate entry point to
the subroutine. If the subroutine is
entered at ILBDSEM1, the Procedure Block
for the PN is loaded into register 11, and
the priority and PN address are calculated
and loaded into register 0 to simulate the
linkage to ILBDSEMO; then operation is the
same as for entry point ILBDSEMO.

Linkage:

For programs for which the ortimization
option (OPT) has not been specified:

If GO TO with VN as operand:

L 15,=V (ILBDSEMO)
L 0, VN#
BALR 14,15
DC X"PTY"
DC X'00°*

IF GO TO with PN as operand:

L 15,=V (ILBDSEMO)
L 0, PN#
LCR 0,0

BALR 14,15

For programs for which the optimization
option (OPT) has been specified:

If GO TO with VN as operand:

L 15,=V(ILBDSEMO)
L 0, VN#
BALR 14,15
DC X'PTY"
DC X* 00"

If GO TO with PN as operand:

L 15,=V(ILBDSEM1)

BALR 14,15

DC X"Priority"

DC X"Block number'

DC XL2'Displacement of PN from
block!*

If GO TO DEPENDING CN:

Control passes to entry point ILBDSEM1
from subroutine ILBDGDOO with register
14 pointing to a uU-byte parameter list
as described above.

Output: There is no output from this
subroutine.

GO TO DEPENDING ON (ILBDGDOQO)

Operation: This subroutine uses the value
of a particular data-name as an index into
a list of constants for each PN specified
and then transfers control to the proper
PN. If the value of data-name is greater
than the number of PN's specified or less
than 1, control returns to the next
instruction after the calling sequence.
Otherwise, the subroutine uses the value of
data-name as an index into the list of
constants for each PN specified. If the
program is not segmented, the subroutine
uses the set of constants to determine the
address of the PN, and loads the Procedure
Block for that PN into register 11, and
then branches to the PN. If the program is
segmented, the subroutine transfers control
to the Segmentation subroutine at entry
point ILBDSEM1; register 14 contains the
address of the set of constants for the
appropriate PN to be branched.

Licensed Material - Prorerty of IBM

Linkage: This subroutine is called only
when the optimization option (OPT) is
requested and a GO TO DEPENDING ON
statement is used.

LH 3,Number of PN's in list
L 1,Contents of data-name
L 2,=V(ILBDSEM1)

or, if the program
is not segmented,

SR 2,2

L 15,=V(ILBDGDOO0)

BALR 14,15
1 set of DC X'Priority"*
constants DC X"Block number’
for each DC XL2'Displacement of PN
PN from block"
specified:
Output: There is no output from this

subroutine.

TEST AND COMPARE SUBROUTINES

The subroutines described below test
certain characteristics of items in virtual
storage. Condition codes or return codes
indicate the results of the test or
comparison.

Class Test (ILBDCLSO0)

Operation: This subroutine performs a test
to determine whether a field is alphabetic,
external decimal, or internal decimal. The
field (operand) will be variable length or
of a length greater than 256 bytes. The
subroutine uses one of five tables:

ILBDATR0O (alphabetic)

ILBDETBO (signed external decimal)
ILBDITBO (signed internal decimal)
ILBDUTBO (unsigned internal decimal)
ILBDWTBO (unsigned external decimal,

numeric edited,
alphanumeric, and
alphanumeric edited)

The address of the table is loaded into
register 2. The tables are 256-byte
translate tables which enable the
subroutine to perform testing.

Subroutines for Object Time Program Operations 29

Licensed Material - Property of IEM

Linkage:

For fixed-length operands:

L 2,=V(Table)
L 15,=V(ILBDCLS0)
BALR 1,15

DC XL1'Type code'
DC XL3'Length of item"

DC ALl (base code)

DC AL3(displacement of pointer
in TGT to data-name)

DC XL2"Displacement of item

from BL address’

For variable-length operands:

L 2,=V(Table)

L 15,=V(ILBDCLS0)
BALR 1,15

DC XL1*Type code"

DC AL3(displacement of the
variable-length cell
in the TGT)

DC ALl (base code)

DC AL3{(displacement of item
from above kase)

DC XL2"Displacement of item

from BL address'

where the type code bits are:

Bit Meaning, if on
0-1 Not used
2 Variable-length item
3 Direct pointer (for example, for

a literal or TALLY)
4-7 Not used

Output: The condition code is set to 0

when the test is true and to nonzero when
the test is false.

Compare (ILBDVCOOQ)

Operation: Compares two operands, one or
both of which are variable in length or are
greater than 4096 bytes in length. When
control is returned to the object program,
the condition code is set to indicate
whether operand-A is less than, equal to,
or greater than operand-B.

Linkage:
L 15,=V(ILBDVCOO0)
BALR 1,15
DC XL10'Operand-A Information'
(sre note)
DC XL10*Operand-B Information'
(see note)
Note: Substitute one of the following:

For a variable~length orerand:

30 Test and Compare Sukroutines

DC XL1'Type code'

DC AL3(displacement of the variable-
length cell in the TGT from the
base register code)

DC ALl (base register code)

DC AlL3(displacement of base locator
from above base register)
DC XL2'Displacement of item from

BL address'
For fixed-length operand:
DC XL1" Type code"

DC XL3"Length of operand'
DC ALl (base code)

DC AL3(displacement of item from
above base)
DC XL2*Displacement of item from

BL address’
The Type codes are:

Bit Meaning, if on
0 Figurative constant
1 Not used
2 Variable length
3 Direct pointer to the Program
Global Table (for a literal)
4-7 Not used

Output: The condition code is set to
indicate whether Operand-A is less than,
equal to, or greater than Operand-B.

Compare Figurative Constant (ILEDIVLO)

Operation: This subroutine compares a
data-name operand and a figurative constant
of more than one character. The figurative
constant is always the second operand.

Linkage:
MvC Param Cell-1,FIGCON
L 0,Length of figurative constant
L 1,Length of data-name operand
LA 2,Param Cell-1
LA 3,Data-name
L 15,=V(ILBDIVLOQ)
BALR 14,15
Output: The condition code is set to

indicate whether the data-name operand is
less’ than, equal to, or greater than the
figurative constant.

UPSI (I1LBDUPSO)

Operation: This subroutine initializes the
UPSI bytes in the TGT. It is called at the
beginning of the program, if the user has

specified UPSI in the SPECIAL NAMES
paragraph.
Linkage:

L 15,=V(ILBDUPSO)
BALR 14,15

Output: If the UPSI bit is on, the
corresponding byte in the TGT is set to
X'Fl1'; otherwise, it is left at X'FO'.

Linkage (ILBDSETO)

Operation: This subroutine sets the switch
byte of the Program Indicator subroutine
(ILBDMNSO0) to X'FF'. The linkage
subroutine must be called by any program
which is not an American National Standard
or DOS/VS COBOL program before that program
calls an American National Standard or
DOS/VS COBOL subprogram. The name of this
subroutine can be changed to any name
specified by the user.

Linkage:
L 13,A(Savearea)
L 15,=V(ILBDSETO0)
BALR 14,15
L 15,=V(COBOL subprogram)

BALR 14,15

Output: The switch byte of subroutine
ILBDMNSO is set to X'FF'.

Program Indicator (ILBDMNS(Q)

Operation: This subroutine is a one-byte
switch which is set to indicate whether the
program is a main program Oor a subprogram.

Linkage: None.
OQutput: The byte is set to X'FF' for a

main program and to X'00' for a subprogram.

TIME-OF-DAY and CURRENT-DATE Subroutine
(ILBDTODO)

Cperation: This subroutine, in response to
the use of the TIME-OF-DAY special
register, issues the GETIME macro
instruction and calculates the time of day
of the execution of the program. 1In
response to the use of the CURRENT-DATE
special register, the subroutine issues the
COMRG macro instruction and calculates the
date of the execution of the program.

Licensed Material - Property of IBM

Linkage:

TIME-OF-DAY

LA 2,receiving field

LH 3,1length of receiving field
LNR 3,3

L 15,=V(ILBDTODO)

BALR 14,15

CURRENT-DATE

LA 2,receiving field
LH 3,1length of receiving field
L 15,=V(ILEBDTOCDO)

BALR 14,15

Output: The time in the form of
hour/minute/second (HHMMSS) or the date in
the form either of day/month/year
(DD/MM/YY) or of month/day/year (MM/DD/YY)
is stored in the receiving field. The form
of the date is set at system generation
time.

SYMDMP Address Test (ILBDADRO)

Operation: This subroutine tests the
validity of an address calculated for a
subscripted identifier or the validity of
the starting and ending addresses of a
variable-length identifier used as a
receiving field in a MOVE instruction. The
subroutine determines whether the address
lies within a data area for any of the
current programs in the run unit. Checking
for valid addresses is only performed when
all programs in the run unit are American
National Standard or DOS/VS COBOL programs.
The subroutine has two entry points.

It is called at entry point ILBDADRO
from the inline code generated to calculate
the address of a subscripted item.

It is called at entry point ILBDADR1

from subroutines ILBDVMOO and ILBDMOVO
before a variable-length MOVE instruction.

Linkage:

From generated code:

LR 0,register containing data-name
address
L 15, =V(ILBDADRO)

BALR 14,15

From subroutines ILBDMOV0O and ILBDMVOO:

LR 0,register containing data-name
address

LR 1,register containing length

L 15,=V (ILEDADR1)

BALR 14,15

Subroutines for Object Time Program Operations 31

Licensed Material - Property of IBM

Output: If the address or addresses are
valid, control is returned to the caller.
If the address or addresses are invalid, an
error message (C1l70I - INVALID ADDRESS) is
written on SYSLST and subroutine ILBDMP20
is called to produce a symbolic dump.

GENERAL LCATA MANAGEMENT SUBROUTINES

The subroutines described kelow perform
certain I/0 operations, such as,, accepting
and displaying information, opening and
closing files.

DISPLAY (ILBDDSPO) [EA]

Operation: This sukroutine is used (in
conjunction with ILBDDSS0) to print, punch,
or type data, usually in limited amounts,
on an output unit. TRACE and EXHIBIT are
special kinds of DISPLAY. The acceptable
forms of data for this subroutine are:

1. Display

2. External decimal

3. 1Internal decimal

4. Binary

5. External floating-point

Internal decimal and binary are converted
by the subroutine to external decimal.
Internal floating-point numbers are
converted to external floating-point before
the subroutine is called and placed in the
PARAM cells of the TGT.

Note: When OPT has been specified,
subroutine ILBDDSS0O is sometimes called
instead of subroutine ILBDDSPO. See
"Optimizer DISPLAY (ILBDDSS0)" below.

When NOOPT is in effect or the ILBDDSSO
criteria cannot be met, ILBLDSPO is called.
This causes ILBDDSSO to be included at 1link
edit time. At object time the two
subroutines act as a superset of the
DISPLAY function. (See the ILBDDSPO and
ILBDDSSO flowcharts for a visual
representation of this interaction.)

Linkage:
For DISPLAY, the linkage is:
LA 2, =C(PROGRAM-ID)
(If DISPLAY on SYSPCH)
L 15,=V(ILBDDSPO)
cr

32 General Data Management Subroutines

L 15,=V (ILBDDSS0)
BALR 1,15
DC XL2'Device code'

(See Note 1)
operand information

(See Note 2)
- (Parameters)

DC X'FFFF"

For TRACE, the linkage is:

L 15,=V(ILBDDSPO)
or

L 15,=V(ILBEDDSS0)

BALR 1,15

DC XL2"Device code'
(See Note 1)

DC X'40' (Type code)
(See Note 3)

DC X'5*

DC XL6 (EBCDIC generated card
number)

For EXHIBIT, the linkage is:

- (Test coding if CHANGED

- case)
L 15,=V(ILBDDSPO)
or

L 15,=V(ILBDDSS0)
L 2,A(Switch)

(See Note 4)
BALR 1,15
DC XL2"Device code'

(See Note 1)
operand information

(See Note 2)
- (Parameters)

DC X"FFFF"

Note 1: The device codes specify the
device to be used. They are:
Code Device

1 SYSLST

2 CONSOLE

3 SYSPCH

4 SYSIPT
Note 2: The operand information describes

each item and has one of the following
three formats:

1. Fixed length, ready to display:

DC XL1"Type code!
(See Note 3)

DC XL3"'Length of item'

DC ALl (base code)
(See Note 5)

DC AL3 (displacement of pointer
in TGT to data-name or
displacement of literal

text or TALLY)

DC XL2'Displacement®
2. Fixed-length binary or internal
decimal (conversion is required):

DC XL1"Type code’

(See Note 3)

DC XL1'Length of input item'

DC XL2'"Length after conversion'

DC ALl (base code)

(See Note 5)

DC AlL3(displacement of item
from above base)

DC XL2'Displacement’

3. Variable length:

DC XL1'Type code'
(See Note 3)

DC AL3(displacement of the
variable-length cell in
the TGT)

DC ALl (base code)

(See Note 5)

DC AL3(displacement of item
from above base)

DC XL2"Displacement®

Note 3: The type code Lkits are:
Bit Meaning, if on
0 Not used
1 TRACE item
2 Variable length
3 DIRECT pointer (for example,
for a literal TALLY)

4-5 See below

6 Internal decimal item
7 Binary item

If bits 4 through 7 are all on, the item
is numeric, ready to display. If bits 4
through 7 are all off, it is nonnumeric.

Note 4: The switch indicates whether or
not an item should be exhibited. It is a
2-bit switch and corresponds to either one

Licensed Material - Property of IBM

or two 10-byte operands. Figure 5 gives
the switch codes, an indication of whether
SEG1 (the first operand) is an alphanumeric
literal, the meaning of codes, and the
action that is taken.

An overriding situation occurs to the
conditions in Figure 5 if register 3
contains a zero when the subroutine is
called, indicating the first-time through
requirement for the EXHIBIT CHANGED (NAMED)
case. It is assumed that the second bit of
the switch is on and only the first three
conditions can occur.

Note 5: The base code indicates a register
which contains a pointer to the TGT or the
PGT.

Output: Lines of print via a PUT on the
printer or the card punch, or via an EXCP
on the console.

Optimizer DISPLAY (ILBDDSSO0) [EE]

Operation:

When OPT has been specified,
this subroutine is used to print or type
data of a certain kind on SYSLST or the
console, respectively. Acceptakle forms of
data are the same as those listed for the
ILBDDSPO subroutine except the following:

floating-pont data-names;

floating-point literals;

variable-length items;

any DISPLAY verb where the sum of the
operand lengths exceeds 120 bytes
for SYSLST or 100 bytes for the
console;

any DISPLAY UPON SYSPCH.

Note: When any of the above items are to
be printed, or typed, subroutine ILBDDSPO
is called together with Subroutine
ILBDDSSO.

T T . ¥ T Al
	First Segment		
	Alphanumeric		
switch	Literal	Meaning	Action
b t $ t 1			
01 or 00} -	Source literal or	Display as 'SEG1' (up to 10 bytes)	
		figurative constant	
b t 1 + 1			
11	yes	Nared, changed	Display as 'SEGl = SEG2' (up to 20 bytes)
L [1 4 1			
1) T) T			
11	no	Not named, changed	Display as *SEG1l' (up to 10 bytes)
4 4 4 4			
T T T K			
i 10	yes	Named, not changed	Nothing displayed (up to 20 bytes)
L 4 1 4 - Jd			
T T I - 1			
{ 10	no	Not named, not	Display n + 1 blanks when n is the length
		changed	of SEG1 (up to 10 bytes)
L L L i]
Figure 5. Switch Codes for Display

Subroutines for Object Time Program Operations

33

Licensed Material - Property of IBM

Linkage: The linkage to this subroutine is
the same as the linkage to subroutine
ILBDDSPO.

Output: Lines of print via a PUT on the
Lutput p

printer or via an EXCP on the console.

ACCEPT (ILBDACPQ) [EC]

Operation: Services ACCEPT and STOP
literal statements. For ACCEPT, a record
~is read from SYSIPT or the console.
Lowercase alphabetic characters accepted
from the console are translated to their
uppercase equivalents. For STOP, the
literal is typed on the console.

Linkage:

L 15,=V(ILBDACPO)

BALR 1,15

DC XL2'Device code'

(See Note 2)

DC XL1'TYPE"

(See Note 1)

DC XL3*MNN" (If binary or internal
decimal, M=length of input
item and NN=length of conver-
ted result. If variable-length
the three bytes are an ADCON
pointing to the VLC-CELL.
Otherwise, the three bytes are
the length.)

nc ALY4 {(base locator)

ox
ALY4 (operand-text)
(if bit 3 of TYPE is set)
DC XL2'Displacement of text
from base®

Note 1: The TYPE bits are:

e}

it Meaning, if on

- Not used

2 Variable~-length

3 Pointer ADCON is direct
-7 Not used

0

n

Note 2: The device codes specify the

device to be used. They are:
Code Device
X*'0002"' CONSOLE
X'ooo0u" SYSIPT

For a STOP literal, the first byte of
the device code is X'80"'.

Output: The record accepted is placed in
the operand specified. 1If it is a STOP
literal, the message is typed on the
console.

34 General Data Management Subroutines

Checkpoint (ILBDCKPO) [ED]

Operation: This subroutine builds a table
of pointers to DTF's of all magnetic tape
units used in the problem program and its
subprograms, and issues a CHKPT macro
instruction, which will write checkpoint
records on a user specified tape or disk
checkpoint device.

There are three sequences:

Linkage:

1. The first call, made during
initialization is:

L 15,=V (ILBDCKPO)
CNOP 2,4
BALR 14,15

DC XL8'0' (See Note)
DC A(DTFPTR-1)

(address of first DTF cell)
DC A(DTFPTR-n)

(address of last DTF cell)

2. When the specified number of records
of the RERUN file has been read or
written, the subroutine is called
again, as follows:

L 15,=V(ILBDCKP1)
BALR 14,15

DC X'N'

DC XL7*External name!

3. During a sorting operaticon requiring
checkpoints the SORT subroutine calls
this subroutine as follows:

L 1,A(Physical IOCS 1list)
L 15, =V(ILBDCKP2)
BALR 14,15

Note: If SORT RERUN is specified,
substitute the following two instructions:

DC X'N*
DC XL7'External name'
where:

N
is the unit number of the checkpoint
device, and

External name
is the external name of the checkpoint
file or SY¥Sxxx if no external name is

used.
Output: For DTFMT's, the DTF address is

placed in a parameter list for CHKPT, and
the macro instruction is issued. For more
details on this macro instruction, refer to
IBM DOS/VS Supervisor and I/0 Macros
Reference, Order No. GC33-5373.

Licensed Material - Property of IBM

Supplemental TNL Page
LN20-9237
August 5, 1977

General Data Management Subroutines

The following subroutine has been added.

ILBDTABO

Operation: This subroutine contains a table of device-dependent
information for tape or mass-storage devices and a search routine

to get the table entry corresponding to the caller's parameter.
The parameter may be either a PUB device code or a DTF device code.

Linkage:
L 1,=A(search argument)
L 15,=V(ILBDTARBO)
BALR 14,15
DC AL1 (indic) (See Note 1)
DC AL1 (default) (See Note 2)
Note 1: indic is an index into branch vector, which

indicates whether the parameter pointed to by
register 1 is a PUB code (indic=0) or a DTF
code (indic=4).

Note 2: default is an alternate search argument to use
instead of the parameter in register 1 if the
search does not yield a match for the parameter.
Specify 255 if you do not want the default.

Output: Register 1 contains the address of the table entry

containing the information corresponding to the caller's
parameter. If the search is unsuccessful, register 1 is set to 0.

4. |

OPEN ACCEPT File (ILBDASY0) [EE]

Cperation: This subroutine ensures that
SYSIPT is open. It is called if there is
an ACCEPT FROM SYSIPT statement in a label
declarative.

Linkage:

L 15, =V(ILBDASYO0)
BALR 14,15

Output: SYSIPT is opened if it was not
already opened.

OPEN DISPLAY File (ILBDOSY(Q) [EF]

Operation: This subroutine ensures that
SYSLST or SYSPCH or both are open. It is
called if there is a DISPLAY UPON SYSLST or
a DISPLAY UPON SYSPCH or both in a label
declarative.

Linkage:
L 15,=V(ILBDOSY0)
BALR 14,15
DC XY NNNN*

where:

* NNNN' = *3000°"
if both DISPLAY's are used

NNNN = '2000°
1if the device is SYSLST

*NNNN' = *1000°
if the device is SYSPCH

Output: SYSLST and/or SYSPCH is opened if
it was not already open.

Close With Lock (ILBOCLKO0) [EG]

Operation: This subroutine receives
control only when an OPEN is to be executed
for a file and a CLOSE WITH LOCK for that
file is specified anywhere within the
program. The Pre-DTF switch is tested to
determine if the file was closed with lock;
a X'FF' indicates it was. If the file was
not closed with lock, control is returned
to the COBOL program. If it was closed
with lock, the subroutine issues an error
message and the job is terminated.

Linkage:
L 1,DTFPTR
L 15,=V{(ILBDCLKO)

BALR 14,15

Licensed Material - Property of IBM

Output: A message is issued stating that
an attempt has been made to reopen a file
that was closed with a lock and the job is
terminated.

User Standard Labels (ILBDUSLO) [EHI]

Operation: This subroutine enakles the
user to write or check user standard
labels. It determines the lakel condition
(BOF, BOV, EOF, or EOV) and branches to the
appropriate user procedure.

Linkage: ©None. The address of this
subroutine is in the DTF and is kranched to
from LIOCS.

OQutput: Register 0 is set to decimal 8,
12, 16, or 20 depending on entry conditions
(ROF, EOF, EOV, BOV, respectively).
Register 4 points to the DTF. If there are
tape output files and no user procedure,
the COBOL label bit is turned on to
indicate to LIOCS that no labels are to be
written.

Nonstandard Labels (ILBDNSLO) [EI]

Operation: This subroutine reads and
writes nonstandard lakels and tranches to
the appropriate user label processing
routine. It writes a tape mark after the
last trailer label on each output reel.

Linkage: One of the following:
1. When the entry is from LIOCS, the
entry point will be ILBDNSLO).

2. When the entry is from a user
procedure and return is to the
procedure:

L 15,=V{(ILBDNSL1)
BR 15

3. When the entry is from a user
procedure and return is to LIOCS:

I 15,=V(ILBDNSL2)
BR 15

Output: Register 4 points to the DTF and
Register 1 to the label area.

Error Messages ($$BCOBER) (EJI]

Operation: This subroutine prepares
input/output error messages to ke printed
by the Error Message Print Subroutine
($$BCOBR1). After preparing the error
message, it places the address cf the

Subroutines for Object Time Program Operations 35

Licensed Material - Property of IBM

message in register 0. Then it fetches
$$BCOBR1, overlaying itself. See the
descriptions of ILBDSAEO, ILBDISEQ, and

ILBDDAEO.
Linkage:
LA 4,DTF-8
LA 0, ERRCODE
SLL 0,24
OR o, u
LA 1,=C*$$BCOBER'
SvC 2
Output: Register 0 contains the address of

an error message to be written by $$BCOBR1
on SYSLOG or SYSLST.

Exror Message Print ($$BCORR1) [EK]

Operation: This subroutine prints the
input/output error messages prepared by the
Error Messages Subroutine ($$BCOBER) and
provides a dump if the DUMP option is in
effect. After the subroutine prints the
error message, it tests the DUMP bit. If
the bit is on, it calls the $$BPDUMP
Subroutine via a SVC 2 instruction. If the
DUMP bit is off, $§$BCOBR1 returns control
to the routine which fetched $$BCOBER. In
either case the fetching routine determines
if the job should be cancelled or control
transferred to the Debug Control subroutine
(ILBDDBGO). See the descriptions of
subroutines ILBDSAEO, ILBDISEO, and
ILBDDAEO for further information on
input/output error handling.

Linkage:
LA 1,=C°$$BCOBR1"
svc 2
Note: Register 0 contains the address of

the message to be printed.

Output: An error message on SYSLOG and/or
SYSLST and, optionally, a PDUMP.

SYMDMP Error Message ($$BCOBEM) [EL]

Operation: This subroutine (a transient)
‘'puts the correct error message into the
buffer of the PRINT routine (ILBDDBG1).
When this subroutine is fetched by the
PRINT routine, register 0 contains the
error number in the high-order byte and the
address of the buffer in the low-order byte
and the address of the buffer in the low-
order three bytes. If the error number
does not fall within the range of errors
contained in the subroutine, control is
returned to the fetching program.

36 General Data Management Subroutines

Linkage:
L 0,CURRBUFF Error code and buffer
address
LA 1,C'$$BCOBEM'
SvC 2
Output: An error message on SYSLST.

3886 Optical Character Reader (OCR)
Interface (ILBDOCRO) I[Chart EM]

Operation: ILBDOCRO handles all
input/output operations with the 3886
Optical Character Reader and builds the OCR
File control Block required for this
purpose. The subroutine receives control
from the COBOL program via the CALL
statement with the USING parameter for
action requests and from the DOS/VS system
for error recovery and end-of-file
condition.

For an action request the functions of
the subroutine are as follows:

e Validate operation code (See Note 1)

* Validate OCR-file identification by
searching OCR File Control Block chain

* Test for valid sequence of WAIT and
READO operations

e Call action routine to issue
appropriate macro instruction for
request (see Note 1)

e Build OCR File Control Block (via
GETVIS) for OPEN requests and release
OCR FCB (via FREEVIS) for CLOSE
requests

e Set Status Key (See Note 2)
Note 1: Valid OCR operations and the

DOS/VS macro instructions issued for each
are listed below:

OCR-operation DCS/VS macro instruction

OPEN OPEN

CLOSE CLOSE

READ READ and WAITF
READO READ

WAIT WAITF

SETDV SETDEV

MARKL CNTRL

MARKD CNTRL

EJECT CNTRL

Note 2: The status key contains a

completion code returned to the COBOL
program. The codes, their meanings, and
the action requests which generate them are
listed below:

Licensed Material - Property of IBM

SA Printer Spacing (ILBDSPAQ) [FAl

T T T -=1q
|Code | Meaning | Action Request |
Lt 1] i
T T 1 a .
| 00 |Successful | OPEN, CLGSE, RERD, | Operation: This subroutine performs
] | completion {READO, WAIT, MARKL, | printer spacing; that is, it handles the
| | | MARKD, EJECT, SETDV | WRITE statement with the ADVANCING option
F + + 4 in the following cases:
| 10 |End-of-file |READ, WAIT, MARKL,]
| | | MARKD, EJECT, SETDV | AFTER...mnemonic-name, using
t + + 4 System/360 control characters,
| 31 |Mark Check | EJECT | ADVANCING identifier, and
b + + 4 ADVANCING integer-greater-than-3.
| 32 |Nonrecovery | READ, READO, WAIT, |
| |exror |MARKL, MARKD, EJECT, | It calls subroutine ILBDVBLO to write
| | | SEIDV | variable-length blocked records and
t + + 4 subroutine ILBDMOVO to move blanks or data
| 33]Incomplete |READ, WAIT | to the buffer.
| !Scan | |
t + + 4 Linkage:
] 34 |Mark Check & |EJECT |
| | Equipment | | L 0,A(Record) (If APPLY WRITE-ONLY)
[| Check | i L 2,BUFDTR (If no APPLY WRITE-ONLY)
b + t 4 L 4,A(Identifier)
| 39 |Permanent | READ, READO, WAIT,] L 1,DTFPTR
| |error | MARKL, MARKD, EJECT, | L 3, RECORDLEN
| | | SETDV] L 15,=V(ILBDSPAOQ)
I + + 9 BALR 14,15
| 92 |Logic error | OPEN, CLOSE, READ,] DC B'01234567' (See Note 1)
| | |READO, WAIT, MARKL, | DC X'z22"' (See Note 3)
| | | MARKD, EJECT, SETDV | DC B'01234567' (See Note 2)
t + + i
| 93 |Insufficient |OPEN | Note 1: Substitute binary digits as
| | storage |] follows:
b + + -—
| 95 |Invalid |OPEN, READ, READO, | For 01: 00 if a binary indentifier
| | Parameter | MARKL, MARKD, EJECT | 01 if a packed decimal
F 1 +) identifier
| 99 |Unrecognizable| | 10 if a zone decimal
| |operation |] identifier
L 1 1 J

For 2: 0 if before
Linkage: Called by compiled code for the 1 if after
CALL statement.

For 3: 0 if System/360 control

character

Note: The user must set appropriate fields 1 if ASA control characters
in the identifier data area before issuing
the CALL statement with the USING option. For 45: 00 if integer
(Refer to the 3886 statement in IBM DOS/VS 01 if identifier
CCBOL Programmer's Guide, Order 10 if mnemonic

No. GC28-6u478.)
For 67: The remainder of integer/3.
Qutput: The OCR File Control Block is

built in virtwal storage; the indicated Note 2: Substitute binary digits as
action request is performed; a return code follows: (1, 2, and 3 are not used):
is entered in the Status Key field of the

OCR file data area. For O: 1 if ASCII file

For 4567: 0100 if undefined
1000 if APPLY WRITE-ONLY
0000 if fixed

SEQUENTIAL ACCESS DATA MANAGEMENT 0001 if variable unklocked
SUBROUTINES 0010 if variable blocked
(not APPLY WRITE-ONLY)
The subroutines described below handle Note 3: ZZ = mnemonic skip code, or
some special I/0 operations for the quotient of integer/3, or length of
sequential access method. identifier.

Subroutines for Object Time Program Operations 37

Licensed Material - Property of IBM

Output: The user's record, with proper
spacing, is written on his output file.

IOREG (+4 if variable blocked records) is
forwarded to main line.

SA Variable-~Length Record Output (ILBDVBLQ)

SA Tape Pointer (ILBDIMLQ) [FD]

Operation: This subroutine gets the
pointer to the physical tape drive
associated with the logical unit for a
particular tape file.

[FB]

Operation: This subroutine writes
variable-length blocked records. It calls
ILBDMOVO to move records into a buffer.

Linkage:
L 1,DTFPTR
L 2,A(record)
L 3,Record length
L 15,=V{(entry point)
BALR 14,15
where:

entry point
is ILBDVBLO if the subroutine was
called by ILBDSPAQO, or ILBDVBL1, if
the subroutine was called ky the
main-line program.

Cutput: The record is written and the

ICREG is advanced past the record length
field.

SA Error (ILBLCSAEQ) {FcC]

Operation: This subroutine handles errors
on DTFMT and DTFSD files, either by setting
user error bytes (if any) and exiting to
the user error routines or by setting the
error code and fetching the $$BCOBER
routine. If 4BCOBER is fetched, an
arpropriate message is printed on SYSLOG
and SYSLST by $$BCOBR1. If a dump is not
required, return is made to ILBDSAE(Q; if it
is, $$BPDUMP is called. $$PDUMP provides
the dump and returns control to ILBDSAEOQ.
If ILBDDBG2 (the STXIT routine) is in the
load module, control is passed to it. 1If
it is not, the job is cancelled.

Linkage: None. Control is transferred to
this subroutine through LIOCS. The address
of the subroutine is in the DTF.

Entry points are:

ILBDSAEQO (ADDR in ERROPT field of DTF)
ILBDSAE1l (ADDR in WRLERR field of DTF)

Output: Register 0 contains the error code
and the address of DTF-8 when fetching
$$BCOBER.

Linkage:
LA 0,DTFPTR cell
L 15,=V(ILBDIMLO)

BALR 14,15

Output: The current PUB pointer for this
device is moved to DTF-8.

SA Position Multiple File Tapes (ILBDMFTOQ)
[FE]

Operation: This subroutine positions an
unlabeled or nonstandard labeled tape to
the beginning of a desired file. Given a
position integer greater than one, the
subroutine rewinds and forward-spaces the
tape, bypassing all files ahead of the
desired one.

Linkage:
L 1,DTFPTR
LA 2,Position integer
L 15,=V(ILBDMFTO0)
BALR 14,15
Cutput: The tape is positioned.

SA_Test Tape File (ILBDMVEO) [FF]

Operation: This subroutine determines
whether a multivolume unlabeled tape has
reached EOF or EOV and acts accordingly.

It sends a message reading, "C126D IS IT
EOF?" to the operator. If the operator's
answer is yes (Y or y), the subroutine
exits to the AT END address; if it is no (N
or n), the subroutine executes an FEOV
instruction to switch to the next volume,
executes a GET instruction to get the first

record, and then returns.
Linkage:
L S«.A(AT END routine)
L 1,A(DTF)
BALR 15,0
LA 3412(15) (See Note)
L 15,16(1)
BAL 14,8(15)

For spanned records, a different linkage is
required since register 3 is not available

38 Sequential Access Data Management Subroutines

and the work area address is needed by the
subroutine:

CNOP 2,4

L 5,A(AT END routine)

BALR 15,0

ST 5,20(15)

ST 0,24 (15)

LA 5,20(15) (Register 5 points to the
2 fullword constants below)

L 15,16(1)

B 8(5)

DS F (Contains end-of-file address)

DS F (Contains workarea address)

BAL 14,8(15)

Note: This is the same address as that in
register 14.

Qutput: The message, "C126D IS IT EOF" is
sent to the operator.

SA STXIT Macro Instruction (ILBDABX0) [FGI]

Operation: This subroutine is called
during the code generated for OPEN verbs.
It issues a STXIT AB macro instruction
specifying that an address within the
subroutine is to be given control by the
system in the event of abnormal
termination. The secondary entry point is
called if an error occurs on a unit record
device, there is a standard error
declarative for the device, and STXIT is
requested on the CBL card. If the ILBDTC20
subroutine is in the load module, control
is passed to it.

Linkage:

L 15,=V (ILBDABX0)
BALR 14,15

Qutput: The STXIT AB macro instruction is

issued.

SA Reposition Tape ($$SBFCMUL) [FH]

Cperation: This subroutine resets the PUB
pointer for a particular (SYSnnn) device to
the same as that saved earlier (by
subroutine ILBDIMLO). It rotates the
LUB/JIB pointers until the current PUB
pointer is identical to the saved one.

Linkage:
L 0,A(DTF) (See Note)
LA 1,=CL8"'$$BFCMUL"
SVC 2

Licensed Material - Property of IBM

Note: The saved PUB pointer is at DTF-8
Output: the LUB and JIBR pointers may be
changed.

INDEXED SEQUENTIAL ACCESS DATA MANAGEMENT
SUBROUTINES

The subroutines described below handle
some of the I/0 operations for the indexed
sequential access mrethod.

ISAM READ and WRITE (ILBDISMO) [GA]

Operation: This subroutine handles all
indexed sequential READ and WRITE
instructions. It checks for invalid key
and input/output errors and branches
accordingly to the appropriate procedure.

Linkage:
L 1,DTFPTR
L 0,A(Record) BL for Sequential
READ, REWRITE only
L 15,=V(entry point)
L 5,A(INVKEY or EOF)

BALR 14,15

For ‘entry point,' substitute one of the
following:

ILBDISMO for LOAD or EXTEND (WRITE,
’ Sequential)

ILBDISM1 for ADD (WRITE, Random)

ILBDISM2 for Random Retrieval (READ,
Random)

ILBDISM3 for Random Retrieval (READ,
Sequential)

ILBDISM4 for Random Update (REWRITE,
Random)

ILBDISM5 for Sequential Update (REWRITE,
Sequential)

Output: The record is read or written.

ISAM Error Routine (ILEDISEO) I[GEI]

Operation: This subroutine processes ISAM
errors either by setting user error bytes
(if any) and branching to a user error
routine, or if there is no user error
routine, by setting the error code and
fetching $$BCOBER. If the exit is to the
user routine, register 1 points to the
error block. If 4BCOBER is fetched, an
appropriate message is printed on SYSLOG
and SYSLST by $$BCOBR1. Then, if a dump is
not required, control returns to ILBDISEO;

Subroutines for Object Time Program Operations 39

Licensed Material - Property of IBM

if it is, $3PDUMP is called, provides the
dump and returns control to ILBDISE(Q. If
ILBDDBG2 (the STXIT routine) is in the load
module, control is transferred to it. 1If
it is not, the job is cancelled.

Linkage:

If this subroutine is called by
ILBDISMO:

L 2, ERRBLKPTR

L 1,DTFPTR

L 15,=V(ILBDISEO)
BR 15

If this subroutine is called by the main
line:

L 1,DTFPTR
L 15,=V(ILBDISEl)
BR 15
Output: User error bytes, if any, are set

to reflect the error condition. Register 1
points to the error block for data transfer
on input file. The error code and address
of DTF-8 (for PDUMP) are forwarded in
register 0 when fetching $$BCOBER.

IsaM START (ILBDSTRO) [GC]

Operation: This subroutine, in response to
START or START with the KEY EQUAL TO
option, issues the $$BSETL macro to
initiate sequential retrieval. If the
subroutine is called in.response to the KEY
EQUAL TO option, certaih processing occurs
prior to the issuance of the $$BSETL macro;
after obtaining the address and length of
the NOMINAL KEY data-name (KEYARG) from the
DTF, this subroutine moves the generic key
identifier to the NOMINAL KEY data-name and
pads with zeros if the generic key
identifier is shorter.

Linkage:

If the subroutine is called in response
to START:

L 0,DTFPTR
L 15,=V(ILBDSTR1)
BALR 14,15

(Entry point in
ILBDSTRO)

If the subroutine is called in response
to START with KEY EQUAL TO:

L 0,DTFPTR

LA 3,identifier (Address of
identifier
which contains
key value

requested)

40 Direct-Access Data Management Subroutines

LH 5,=H'LENGTH" (Length of
OR 'VLC® identifier)
L 15,=V(ILBDSTRO)

BALR 14,15

Output: For START, the file is positioned
to the specific key within the file. For
START with KEY EQUAL TO, the file is
positioned to the beginning of the generic
group within the file. The generic key
identifier is moved to the NOMINAL KEY
data-name and padded with zeros if
necessary.

DIRECT-ACCESS DATA MANAGEMENT SUBROUTINES

The subroutines described below handle
some of the I/O operations for the direct
access method.

DA Close Unit (ILBLCRDO) [HA]

Operation: This subroutine implements a
CLOSE UNIT instruction on a DA file which
is read sequentially when absolute track
(physical) addressing is used.

Linkage:
L 1,DTFPTR
L 15,=V(ILBDCRDO)

BALR 14,15

Output: The current extent bucket in the
Extent Store Area (described under "DA
Extent Processor") and the SEEK address are
updated to the first extent on the next
volume for subroutine ILBDDSRO.

DA Close Unit for Relative Track (ILBDRCRO)
[HB]

Operation: This subroutine implements a
CLOSE UNIT instruction for relative track
addressing on a DA file which is read
sequentially.

Linkage:
L 1,DTFPTR
L 15,=V(ILBDRCRO0)

BALR 14,15

Output: The current extent bucket (in the
high-order byte of DTF-16; followed by the
3-byte address of the extent table in the
DTF) and the SEEK address are updated to
the first extent on the next volume for
subroutine ILBDRDSOQ.

DA Extent Processor (ILBDXTINO) [HC]

Operation: When absolute track addressing
is used, this subroutine is called to store
the extent limit information made available
by an OPEN. A maximum of 7 extents can be

stored. The Extent Store Area address is
in DTF-16.
Linkage: None. The address of this

subroutine is in the DTF.

Output: The extent limits are saved. The
SEEK address is initialized for ILBDDSRO,
and the first byte of the Extent Store Area
is initialized to 0.

The Extent Store Area format is as follows:

Current extent bucket. It is
set at CLOSE UNIT time by
subroutine ILBDCRDO and used
as an indicator by subroutine"
ILBDDSRO.

Byte 0:

Byte 1: Used by subroutine ILBDXTNO to
indicate the SY¥S-number of the

applicable unit.

The lower limit of the first
extent, in the form MBBCCHH.

Bytes 2-8:

Bytes 9-15: The upper limit of the first

extent, in the form MBBCCHH.

The lower and upper limits of
any remaining extents, in the
same form as the first.

Bytes 16-n:

X*'FF', to indicate the end of
the extent store area.

Byte n + 1:

DA Sequential Read (ILBDDSRQ) [HD]

Operation: This subroutine reads a DA file
sequentially when absolute track addressing
is used. It generates a SEEK address from
the extent information stored by subroutine
ILBDXTNO and from the IDLOC returned by

LIOCS. It utilizes subroutine ILBDIDAQO to
increase the SEEK address ky one track.
Linkage:
L 1,DTFPTR
L 0,A(ACTKEY) (If actual key
specified)
SR 0,0 (If actual key not
specified)
L 15, =V (ILBDDSRO)
L 5¢+A{(EOF)
BALR 14,15

Licensed Material - Prorerty of IBM

Output: The record is read and the track
address is updated for the next READ.

DA Sequential READ for Relative Track
(ILBDRDSOQ) [HE]

Operation: This subroutine reads a DA file
with relative track addressing
sequentially. The relative track address
is initialized at OPEN time by the
main-line code or, at CLOSE UNIT time, by
subroutine ILBDRCRO. The address of the
next record, which has been stored in the
IDLOC field by the LIOCS module, is stored
in the track address field.

Linkage:

L 1,DTFPTR

L 0,A(ACTKEY) (If actual key
specified)

SR 0,0 (If actual key not
specified)

L 15,=V(ILBDRDSO0)

L 5,A (EOF)

BALR 14,15

Output: The record is read and the track
address is updated for the next READ.

DA RZERO_Record (ILBDFMTO) [HF]

Operation: When aksolute track addressing
is used, this subroutine writes Record 0
onto each track of a DA output file.

Linkage:
L 1,DTFPTR
L 15,=V(ILEDFMTO)
BALR 14,15
Output: The RZERO record is written.

DA RZERO for Relative Track (ILBDRFMO) [HGI]

Operation: This subroutine writes Record 0
onto each track of a DA output file with
relative track addressing.

Linkage:
L 1,DTFPTR
L 15,=V (ILBDRFMO)

BALR 14,15

Output: The RZEROC record is written.

Subroutines for Object Time Prodgram Operations 41

Licensed Material - Property of IBM

DA Increase SEEK Address (ILBDIDAO) ([HH]

Cperation: This subroutine increases a
SEEK address by one track when absolute
addressing is used.

Linkage:
L 1,DTFPTR
L 15,=V(ILBDIDAQ)

BALR 14,15

Output: The SEEK address is increased.

DA READ and WRITE (ILBDDIOQOQ) [HI]

Operation: When absolute track addressing
is used, this subroutine reads or writes
records on random access DTFDA files in
response to READ or WRITE instructions
using absolute addressing. It also checks
for invalid key and input/output errors and
branches, if necessary, to the appropriate
procedure.

Linkage:
LH 3,RECSIZE (Undefined and spanned
records only)
AH «=H'4' (Spanned records only)
L 0,A(ACTKEY)
L 15,=V{(Entry point)
L 5, A{INVKEY)
BALR 14,15

For 'entry point', substitute as
follows:

ILBDDIOO for WRITE AFTER or WRITE key
(American National Standard and
DOS/VS COBOL WRITE/REWRITE)

ILBDDIO1 for READ key and SAVE key
READ (American National Standard and
DOS/VS COBOL READ)

ILBDDIO2 for READ key

ILBDDIO3 for WRITE key

ILBDDIOY4 for WRITE AFTER

Qutput: The record is read or written.

DA READ and WRITE for Relative Track
(ILBDRDIO) [HJ]

Operation: This subroutine reads or writes
records an random access DTFDA files in
response to READ or WRITE instructions
using relative track addressing. It also
checks for invalid key and input/output
errors and, if necessary, kranches to the
appropriate procedure.

42 VSAM Data Management Subroutines

Linkage:
LH 3,RECSIZE
L 1,DTFPTR
L 0,A(ACTKEY)
L 15,=V(entry point)
L 5,A(INVKEY)
BALR 14,15

For 'entry point', substitute as

follows:

ILBDRDIO, for WRITE AFTER or WRITE KEY
(American National Standard and
DOS/VS COBOL WRITE/REWRITE)

ILBDRDI1, for READ KEY and SAVE KEY
READ (American National Standard and
DOS/VS COBOL READ)

ILBDRDI2, for READ KEY

ILBDRDI3, for WRITE KEY

ILBDRDI4, for WRITE AFTER

Output: The record is read or written.

DA Error Routine (ILBLCCAEQ) ({HK]

Operation: This subroutine handles errors
on DTFDA files either by setting user error
bytes (if any) and branching to a user
error routine, or if there is no user erxor
routine, by setting the error code and
fetching $$BCOBER. If $$BCOBER is fetched,
an appropriate message is printed on SYSLOG
and SYSLST. Then, if a dump is not
required, control returns to ILBDDAEQO; if
it is, $$BPDUMP is called. $$BPDUMP
provides the dump and returns control to
ILBDDAEOQ. If ILBDDBG2 (the STXIT routine)
is in the load module, control is passed to
it. If it is not, the job is cancelled.

Linkage:
L 2,A(DTF-24)
L 15,=V(ILBDDAEQO)
BR 15
Output: Register 1 points to the data in

the error block when exiting to user if
there has been input data transferred. The
user error bytes, if any, are set to
reflect the error condition.

VSAM DATA MANAGEMENT SUBRQUTINES

The subroutines described below are the
interface between the IBM DOS/VS COBOL
object program and the VSAM system control
subroutines.

VSAM Initialization (ILBDINTO) [HL]

Operation: This subroutine issues the
GETVIS macro instruction to obtain virtual
storage for the VSAM File Control Block
(FCB) associated with each VSAM File
Information Block (FIB). It initializes
the FCB to zeros, sets some initial values,
and stores the address of the FCB in the
okject program's TGT area. It also
acquires work space for the VSAM

subroutines.
Linkage:
L R15,V(ILBDINTO)
BALR R14,R15
DC XL2'DISPL IN TGT CF 1ST FIB CELL®
DC XL2'NUMBER OF FIB's"'
Output: Storage is acquired for the VSAM

FCB and VSAM work space.

VSAM Open and Close Subroutine (ILBDVOCO0)
(HM]

Cperation: This subroutine handles all
VSAM OPEN and CLOSE requests.

For OPEN, the sukroutine fills in FCB
fields, constructs three control blocks for
each file to be opened (ACEB, EXLST, RPL),
and fills in fields in these control
blocks. It sets up the STATUS KEY and
RERUN integer and checks the CLOSE option
for LOCK. If opened OUTPUTI, it checks the
high relative byte address for zero. It
then branches to the appropriate VSAM
system control subroutine.

For CLOSE, the subroutine issues a
FREEVIS for all space used for the file
peing closed and sets up the STATUS KEY as
well as the CLOSE options in the FCB. It
tests for RERUN and, if required, takes a
checkpoint. It then bkranches to the
appropriate VSAM system control subroutine.

Linkage--For OPEN Request

The following code is generated for each
file to be opened:

L R1, FIB-CELL(R13)
ST R1,SAV3+DISP(R13)
MVvC FOPENOPT(4,R1),
=XLU4* OPEN-OPTIONS"'
MVC FUSEERR(4,R1),
USERRPN(R12)

(See Note 1)
I1f USE...ERROR
Declarative

The following code is generated last:

Licensed Material - Property of IBM

MVI SAV3+LASTDISP Indicate end of

(R13),X"'80 list.
LA R1,SAV3{R13)
L R15,=V(ILBDVOCO)
BALR R14,15
Note 1: See FOPENOPT field of the FCB in

"Section 3: Data Areas" for Lit
assignments for each option.

Linkage--For CLCSE Request

The following code is generated for each
file to be closed:

L R1,FIB-CELL(R13)
ST R1,SAV3+DISP(R13)
MVC FCLOSOPT (4,R1), (See Note 1)
=XL4*CLOSE-OPTIONS'
The following code is generated last:

MVI SAV3+LASTDISP(R13),X'80"

LA R1, SAV3(R13)
L R15, =V (ILBDVOC1)
BALR R14,R15

Note 1: See FCLOSCPT field of the FCB in

"Section 3: Data Areas" for bit
assignments for each option.

VSAM Action Request Subroutine (ILBDVIOO0)
[HN]

This subroutine handles all requests for
START, READ, REWRITE, WRITE, and DELETE
verbs with vsSaM files.

Each request is routed to the code
handling the particular verb. This code
passes the request to VSAM. Upon execution
of the request, it checks the return code
from VSAM for errors. Depending on the
return code and conditions set in the FCE,
it returns control to the calling
subroutine. :

For more specific meanings for each of
the STATUS KEY entries, see the publication
IBM DOS/VS COBOL Programmer's Guide, Order
No. SC28-6u78.

Linkage:
MOVE RECORD-AREA, (If FROM option
FROM—-AREA specified for
WRITE and
REWRITE)
L R4, FIB-CELL(R13)
L R14,return-GN
MYC FENDINV(U4,R4), (If INVALID KEY,
ENDINVGN(R12) AT END, or AT

ECP specified)

Subroutines for Object Time Program Operations 43

Page of LY28-6424-1, revised 8/1/75 by TNL: 1IN20-9122
Licensed Material - Property of IBM

MVI FRECKEY(RY4), (If KEY clause ASCII SUPPORT SUBROUTINE
RECORD-KEY-# specified for
READ and START)
LE RO, =H'RECORD- (If WRITE or The subroutine described below handles
LENGTH" REWRITE speci- two of the functions necessary for handling
fied for fixed files written in ASCII code. Other
length record) functions are handled by code in the COBOL
or program or by subroutine ILBDSPAO.
L4 RO,RECORD-VLC(R13) (If WRITE or 3

REWRITE speci-
fied for vari-

able length rec- Separately Signed Numeric Subroutine
ord) (ILBDSSNO) [IA]
LA RO, KEY-LENGTH (If START speci-
fied with key)
L R15, FCOBRTN(RH) Operation: This subroutine is called
BALR R1,R15 whenever a data-name is involved in an
DC XL1*COMMAND-CODE" (See Note 1) arithmetic operation or in certain move
DC XL3"OPTICNS' (See Note 2) operations and has a TRAILING SEPARATE
NMOVE CHARACTER or LEADING SEPARATE CHARACTER
L R5,NEXT-sentence GN (if INTO option clause in the source program. The
BR R5 for READ) subroutine checks the sign for validity.
If the sign is not a valid sign,the
Note 1: Command Codes- subroutine issues a message and abnormally
(4=READ, 8=WRITE,12=REWRITE,16=START, 20= terminates the job. The subroutine has two
DELETE) entry points, ILBDSSNO and ILBDSSN1.
Note 2: Option bytes have the following The subroutine is called at entry point
bit information: ILBDSSNO, when an internal decimral number
is to be produced. It places the proper
Byte 0 - Bit Meaning sign in the low-order four bits of the
0 Invalid Key receiving byte.
1 At End
2-5 Unused The subroutine is called at entry point
6 Next ILBDSSN1, when a separately signed external
7 Key (For READ or START) decimal number is to be produced. It
places the proper EBCDIC sign in the
receiving byte and replaces the converted
Byte 1 - Search Condition for START sign in the high-~order four bits with a
X'FT.
Code Meaning
X'80" Greater Linkage:
X'40*' Equal
X'20' Not less LA 0,Sign
LA 1,Receiving byte
Byte 2 - X'80' called from ILBDSRTO L 15,=V(ILBDSSNQ) or (ILBDSSN1)
BALR 14,15
Output: The requested input/output Output: The output of this routine is an
instruction is performed. internal decimal number, or a separately

signed external decimal number.

44 VSAM Data Management Subroutines

Three options are available for
object-time debugging. These are the
statement number option (STATE), the flow
trace option (FLOW), and the symbolic debug
option (SYMDMP). The subroutines for the
first two options provide debugging
information at abnormal termination of a
program; the subroutines for the third
option provide debugging information either
at abnormal termination or dynamically
during the execution of a program. All of
the subroutines are under the control of
and are serviced by the Debug Control
subroutine (ILBDDBG0). This chapter
discusses (1) the Debug Control subroutine
(ILBDDBG0), and (2) the sukroutines that
are called in response to each of the three
debug options.

Note: Diagram 6 in "Section 2: Program

Organization" illustrates the calling
dependencies among these routines.

DEBUG_CONTROL SUBROUTINE (ILEDDBGO)

This subroutine is included by the
linkage editor whenever the CBL control
card for a program contains at least one of
the debug options or the CCUNT option. It
is a single CSECT, consisting of eight
routines and one common area. These are,
with their entry points:

¢ Test routine (ILBDDBGO)

e Print routine (ILBDDBG1)

e STXIT routine (ILBDDBG2)

¢ TGT Address routine (ILBDDBG3)

e Save Register 14 routine (ILBDDBGY)
e Dynamic Dump routine (ILBDDBGS5)

¢ Range routine (ILBDDBG6)

e Debug common area (ILBDDEG7)

e Close Debug File routine (ILBDDBGS)

The routines are described below. The
debug common area is descriked in "Section
3: Data Areas."

TEST ROUTINE (ILBDDBGO) [JAl: A call is
generated to the TEST routine (ILBDDBGO) in
INIT 3. This routine tests for the debug
options that have been specified by

Licensed Material - Property of IBM

DIAGNOSTIC AID SUBROUTINES

checking bits 4, 5, and 6 of SWITCH in the
TGT table, or for the COUNT option
specified through bit 20.

The subroutine calls FLOW (ILBDFLWO) for
the flow trace (FLCW) option, and loads and
branches to SYMINIT (ILBDMP10) for the
symbolic dump (SYMDMP) option. These
subroutines perforr initialization
processing for the respective options. The
initialization process varies for each
option and is discussed below.

The TEST subroutine calls the execution
statistics initialization subroutine
(ILBDTCO00) to begin implementation of the
COUNT option.

The TEST routine issues the STXIT macro
instruction specifying that the STXIT
routine (ILBDDBG2) is to receive control
when abnormal termination occurs. It also
computes the load point for SYMDMP modules
and issues the LOAD macro instruction to
load ILBDMP10. ILEDMP10 is then given
control so that it can read in and, process
the SYMDMP control cards.

Diagrams 4 and 5 in "Secticn 2: Program
Organization" show the flow of control for
the Symbolic Dump (SYMDMP) subroutines.
Diagram 6 shows control flow for the Debug
Control Subroutine (ILBDDBGO) through five
levels.

Linkage:

L 15,=V(ILEDDBGO)
BALR 14,15

If the COUNT option has been specified, the
following is added:

DC H'nunker-of-count-blocks'
Input: Register 13 contains the address of
Loput

the TGT.

PRINT ROUTINE (ILBDDBG1l) [JB]: The PRINT
routine is called by each of the
subroutines associated with the debugging
operations. Its function is to print
either the debugging information requested
or any error messages about the debug

option subroutines themselves.

Linkage:

L 15,=V(ILBDDBG1)
BALR 14,15

Diagnostic Aid Subroutines 45

Licensed Material - Property of IBM

Input:

1. DBGI1CODE in the communication area in
ILBDDBGO module. This code indicates
to ILBDDBG1 how the output is to be
printed.

2. Buffer, containing information to be
written on SYSLST.

Qutput:

1. Register 2 contains the address of the
next buffer.

2. A line of output on SYSLST.

STXIT ROUTINE (ILBDDBG2) [Jcl: This
routine gets control from the system when
an abnormal termination has occurred. This
routine may also get control from a COBOL
library I/0 module when a termination type
of error is recognized. It traces all
COBOL programs in the run unit.

For those programs compiled with the
COUNT option, the STXIT routine calls
subroutine ILBDTC20 to write execution
statistics on SYSLST. For those that are
compiled with SYMDMP, STATE, or FLOW
options, the subroutine calls the
corresponding subroutines to record the
requested debugging information.

Therefore, if the interrupted program
was itself called by another program in the
same load module, the STXIT routine also
supervises debugging operations for the
calling program if one of the debug options
has been specified for that program. It
uses data area FIRST-LAST, for this purpose
(see "TGT Address routine (ILBDDBG3))".

The debugging operations are completed when
the highest level calling program which has
been compiled with a dekbug option (SYMDMP,
STATE, or FLOW) has been given debug
information. Diagram 6 shows the control
flow for the STXIT routine through five
levels. Diagram 11 in "Section 2: Program
Organization" shows the doukleword
data-area (FIRST-LAST) which is used to
trace the COBOL programs at abnormal
termination.

Linkage:

This routine is given control directly from
the System at abnormal termination. It
returns to the System by issuing an EOF
macro instruction.

Input: STXIT save area, containing the PSW
and registers 0-15 at the time of abnormal
termination.

TGT ADDRESS ROUTINE (ILBDDBG3) [JCl: The
TGT Address routine (ILBDDBG3) is called by
the COBOL program following the return of

46 Debug Control Statements

control to the COBOL program after a branch
outside the current program. The TGT
Address routine stores in a fullword
(LAST), the address of the current TGT upon
return from a called program. This data
area is used by the STXIT routine at
abnormal termination to trace the calling
programs of an interrupted program so that
debugging information may be provided for
each of them. Diagram 11 in "Section 2:
Program Organization" shows the pointer
connections between the FIRST-LAST data
area and the TGT"s of the programs that are
link edited together.

Linkage:

L 15,=V(ILBDDBG3)
BALR 14,15

Input: Register 13 contains the address of
the current TGT.

SAVE REGISTER 14 ROUTINE (ILBDDBGY) [JC]:
The Save Register 14 routine (ILBDDBGU) is
called by the COBOL program just before any
instruction which passes control outside
the COBOL program. It stores the address
of this instruction. If an abnormal
termination occurs and the PSW points
outside the current COBOL program, it is
this address and not the PSW address that
is used to determine the number of the
source statement that caused the program
error.

Linkage:
L 15,=V(ILBDDBGH)
BALR 14,15
Input: Register 14 contains the address of

the instruction that transfers control
outside the current program.

DYNAMIC DUMP ROUTINE (ILBDDBGS5) {JD]:
function of this routine is to signal
SYMDMP that a dynamic dump is to be given.
Upon return from SYMDMP, register 10
contains the address of the instruction
that was overlaid with the BALR instruction
that called ILBDDBGS5. (See "Program
Modification" under "Symbolic Dump (SYMDMP)
Subroutine".) The overlaid instruction is
then executed and contrcl is returned to
the COBOL programe.

The

Linkage:

L 15,=V(ILBDDBGS)
BALR 14,15

Input:
1. Register 3 contains the TGT address.

2. Upon return from SYMDMP, register 10
points to the instruction that was

overlayed with the BAIR instruction
that invoked ILBDDBGS5.

RANGE ROUTINE (ILBDDBG6)[JEl: This routine
is called from the GOBACK code. Its
function is to indicate that a branch
(GOBACK) to a program that is higher than
the highest COBCL program compiled with
SYMDMP, STATE, or FLOW has been taken.

Such a program is outside the range of the
Debug Control Subroutine. That is, an
abnormal termination in such a program will
be intercepted by the STXIT routine
(ILBDDBG2). The STXIT routine's only
function in this case is to issue the EOJ
macro instruction.

Linkage:

L 15,=V(ILBDDBG6)
BALR 14,15

Input: Register 13 contains the current
TGT address.

CLOSE DEBUG FILE ROUTINE (ILBDDBG8) [JE]:
This routine is called by ILEBDTC20 to close
the debug file when object-time execution
statistics have been written, but there are
no debugging options specified.

Called by: ILBDTC20
Linkage:
L 15,=V(ILBDDBGS8)
BALR 14,15
Calls: $$BCLOSE
Input: None
Output: DTF closed

SUBROUTINES FOR THE DEBUG OPTIONS (STATE,
FLOW, SYMDMP)

The statement number (STATE) and flow trace
(FLOW) options each require a separate
subroutine. They are the Statement Number
subroutine (ILBDSTNO) and the Flow Trace
subroutine (ILBDFLW0). The symbolic dump
option (SYMDMP) requires a subroutine made
up of 13 modules or phases, whose entry
point from the Debug Control Subroutine is
ILBDMP10.

The debugging information provided by
the Statement Number subroutine (ILBDSTNO)
consists of the number of the COBOL
statement and the number of the verb within

Licensed Material - Property of IBM

the statement being executed when abnormal
termination occurred. The debugging
information provided by the Flow Trace
subroutine (ILBDFLW0) consists of the
source card numbers that represent the
COBOL procedures executed before abnormal
termination occurred.

When a dynamic dump is requested, the
Symbolic Dump subroutines provide a
formatted symbolic dump of specified areas
of the Data Division just prior to the
execution of each of the specified COBOL
statements. When SYMDMP is specified, the
symbolic dump subroutines provide at
abnormal termination a formatted symbolic
dump consisting of the following parts:

1. an abnormal termination message
identifying the source statement
causing the error,

2. selected areas in the TGT, and

3. all the data items from the Data
Division.

STATEMENT NUMBER SUBROUTINE (ILBDSTNO) [JF]

Operation: When the subroutine receives
control from the STXIT routine (ILBDDBG2)
at abnormal termination, it provides the
number of the CCBOL statement and the
number of the verb within the statement
that was being executed when aknormal
termination occurred. If abnormal
termination occurs during execution of an
instruction outside of the COBOL program,
the statement number that is provided is
that of the last COBROL statement executed.
The subroutine uses the information stored
by the Save Register 14 routine (ILBDDBGY)
for this purpose. The subroutine calls the
PRINT routine (ILBDDBG1) to write the
debugging information on SYSLST.

This subroutine is called from the STXIT
routine (ILBDDBG2) using the following
sequence:

L 15,=V(ILBDSTNO)
BALR 14,15

Input: Register 13 points to the
communication area in the Debug Control
Subroutine (ILBDDBGO) from which the
address of the current TGT and other
information can be obtained.

Output: Statement number message on

SYSLST.

Diagnostic Aid Subroutines 47

Licensed Material - Property of IBM

FLOW TRACE SUBROUTINE (ILBDFLWO) [JG]

Operation: This sukroutine is entered at
entry point ILBDFLWO by the TEST routine
(ILBDDBGOQ) for initialization and at entry
point ILBDFLW2 by the STXIT routine
(ILBDDBG2) at abnormal termination. It is
also called at entry point ILBDFLW1l by
compiled code upon encountering each COBOL
PN. Calls are not generated for dummy PNs.
When the subroutine is called for
initialization at entry point ILBDFLWO, it
obtains the address of the area allocated
for the flow trace table. The number of
traces specified by the user is a factor in
determining the table size at compile tirme.
This table is at a fixed displacement in
the TGT of the COBOL program. After
initialization each time that the
subroutine receives control from the COBOL
progran, it inserts the executing program's
8-character Program Identification as well
as the card number of the current COBOL
Procedure into the next available position
in the table. The address of the next
available position in the takle is stored
at location NXTAVL. Pointers for physical
end (PEND) and logical beginning (LBEG),
which indicates table wraparound, are also
employed and are located just before the
80-byte PROGRAM-ID area of the table.

When the end of the table is reached,
location NXTAVL points once again to the
beginning of the table; and subsequent
entries into the table overlay previous
entries. The procedure is repeated until
the end of the main COBOL program or until
abnormal termination. If abnormal
termination occurs, the subroutine receives
control from the STXIT routine; and it
calls the PRINT routine (ILBDDBG1l) to print
each entry of the table beginning with the
earliest entry.

Linkage:

From the TEST routine (ILBDDBGO):
L 15,=V(ILBDFLWO0)

BALR 14,15

From compiled code:

L 15,=V(ILBDFLW1)
BALR 14,15

From the STXIT routine (ILBDDBG2)
L 15,=V(ILBDFLW2)
BALR 14,15

48 Symbolic Dump (SYMDMP) Sukroutine

SYMBOLIC DUMP (SYMDMP) SUBROUTINE [JH]

The symbolic dump subroutine, referred to
mnemonically as SYMDMP, consists of 13 load
modules or phases. Of these, two (ILBDMPO1
and ILBDMP02) service I/0 requests for the
remaining modules; five (ILBDMP10 through
ILBDMP14) constitute what is here termed
Pass 1; and six (ILBDMP20 through ILBDMP25)
constitute Pass 2. The first digit in the
load module name identifies the pass, the
second digit the module within the pass.

The 13 modules of SYMDMP are arranged in
an overlay structure under the control of
SYMDMP itself, with the modules of Pass 2
overlaying those of Pass 1 after
initialization is complete. (See Diagrams
3 and 7 in "Section 2: Program
Organization."

PASS1l: The function of Pass 1 is to scan
control cards and translate them into
tables for the use of Pass 2., Pass 1 is
entered during INIT3 kefore execution of a
program compiled with the SYMDMP option or,
when several programs compiled with the
SYMDMP option have been link edited
together, before execution of the first
program. Pass 1 is entered only once per
run unit.

PASS 2: The function of Pass 2 is to
produce the output requested by the control
cards. After Pass 2 has overlaid Pass 1,
it is present during the entire run and ray
be entered many times. Pass 2 may be
entered at the following times:

e During INIT3 before executiocn of each
program

e Before each entry to any independent
program segment

¢ At abnormal termination

e EFach time a dynamic dump request is to
be satisfied.

COMMON DATA AREA: The SYMDMP modules
communicate with one another by means of a
block of cells initialized by Pass 1 and
kept intact (not overlaid) when control is
turned over to Pass 2. Register 12 is
reserved in all modules as the Lkase
register for this area. The first portion
of the common data area contains four
standard register save areas, and data
needed by both passes. The data needed by
both passes include: addresses of tables;
addresses of buffers; cells used by the two
I/0 modules; information about storage
allocation; etc. The second portion
contains data used to communicate between
the modules of either pass, but not between
the passes. This includes: load addresses

for the modules of the pass; addresses of
the table entries currently being
processed; parameters for subroutines; etc.

OBJECT-TIME TABLES: Three tables are built
in Pas$s 1 to facilitate communication among
the modules of SYMDMP. These are:

¢ The PCONTROL table, which contains one
entry for each program in a run unit;
it preserves information about the
program's debug file, the
program-control card options, the other
tables, and critical locations in the
COBOL program itself.

e The DYNAMTAB table, which contains one
entry for each dynamic dump request; it
preserves card/verb number, virtual
storage location and machine
instruction corresponding to the
request, and pointers which are used to
locate on the debug file the data-names
specified.

e The DATADIR table, which is an index to
the blocks of the debug file that are
needed for dynamic dumping.

For detailed descriptions of the PCONTROL,
DYNAMTAB, and DATADIR tables, see "Section
3: Data Areas."

INPUT: SYMDMP receives information from
four sources external to itself:

e The communication area of ILBDDBGO,
containing, in particular, in LAST the
address of the COBOL program's TGT.

e The COBOL program's TGT and INIT1
cells, its instructions, and its Data
Division.

¢ The control cards on SYSIPT.

¢ The debug file built by the COBOL
compiler.

control cards: There are two types of
control cards, program-control and
line-control.

Each program for which any SYMDMP
service is requested must be identified by
a program-control card. PROGRAM-ID, debug
file information, the ENTRY option, and the
HEX option for abnormal termination dumps
are specified on this card. Each dynamic
Qump request is identified by a
line-control card. Card/verb number, the
Data Division items to be dumped, and the
ON and local HEX options are specified on
this card.

The SYMDMP control cards are described
in detail in the publication IBM DOS/VS

Licensed Material - Prorerty of IBM

COBOL Compiler and Library Programmer's
Guide, Order No. SC28-6u478.

Debug File: When the SYMDMP option is
specified on the CBL card, Phases 25 and 65
of the compiler create a file for use by
SYMDMP at object time. The file contains
information about the items of the Data
Division and about the location of the
machine instructions corresponding to each
Procedure Division source statement.

The program-control card identifies the
debug file for SYMDMP at object time by
specifying device type (MT or SD), logical
unit number, and, for a disk file,
filename. These three items of information
are saved in the PCONTROL table. Device
type is used to determine which of the two
I/0 modules to invoke; logical unit number
and file-name are stored in the DTF before
the file is opened. Thus, the single DTF
contained in each of the I/0 modules can
serve any number of files used one at a
time.

The format and contents of the debug
file are described in "Data Areas" under
"Program Organization". Diagrams 8, 9, and
10 in "Section 2: Program Organization"
show the relations between the debug file
and the object-time tables.

CUTPUT: SYMDMP generates the following
types of information:

e Output on SYSLST consisting of:
of all control cards; diagnostic
messages; dynamic dumps; the abnormal
termination statement number message;
the complete aknormal termination dump

a copy

¢ Modifications to the COBOL program in
virtual storage if dynamic dumping is
requested for the program

Program modification: The mechanism by
which SYMDMP intervenes in the COBOL
program to produce a dynamic dump is as
follows:

Pass 1 searches the Procedure Division
tables of the debug file for the specified
card number. It stores, in the DYNAMTAB
entry for the card, the address (relative
to the beginning of the Procedure Division
or of the transient area) of the
corresponding instruction.

Pass 2, when entered during INIT3,
relocates this address to its true current
value and saves the instruction itself in
the DYNAMTAB entry. The first two bytes of
the instruction in virtual storage are then
replaced with BALR 0,12, that is, a branch
to the PGT. Since, in a program compiled
with the SYMDMP option, the first cells of
the PGT contain a call to ILBDDBEGS, the

Diagnostic Aid Subroutines 49

Licensed Material - Property of IBM

effect is to invoke SYMDMP each time
control flows through the modified
instruction.

After it has issued the requested dumps,
SYMDMP returns to ILBDDBGS the address of
the DYNAMTAB cell which contains the saved
original instruction. This instruction is
executed in ILBDDBG5 before control is
returned to the following instruction in
the program. (Note that when abnormal
termination occurs, SYMDMP restores the
original instruction to the program so
that, if the user obtains a system dump,
the dump will reflect the COBOL program as
it was compiled.)

LINKAGE TO SYMDMP:

L 15,=A(ILBDMP10) (See Note A.)
BALR 14,15
DC H'n' (See Note B.)

Note A: the address is computed by
ILBDDBGO before the first call to SYMDMP.

Note B:
'n' 0 in a call for initialization

from ILBDDBGO

4 in a call for dynamic dumps

from ILBDDBGS

8 in a call for abnormal

termination dumps from ILBDDBG2

i

Processing (Sequence of Events)

The sequence of events when SYMDMP
services are requested for a run unit is,
in general, as follows:

e Initialization for the first COBOL
program in a run unit

e Initialization for all other COBOL
programs in a run unit

e Initialization for independent program
segments

e Processing for dynamic dump requests

e Processing for abnormal termination
dumps

The load names, mnemonic names, and
functions of the individual SYDMP modules
are as follows:

1. I/O0 modules:

ILBDMP01 (IODISK) - 1/0 operations

for a debug file
on disk.

50 Symbolic Dump (SYMDMP) Subroutine

ILBDMPO2 (IOTAPE) - 1/0 operations

for a debug file

on tape.
2. Pass 1 modules:
ILBDMP10 (SYMINIT) - initialization
and Pass 1
control.

ILBDMP11 (SCANP) - program-control

card scan.

line-control
card scan.

ILBDMP12 (SCAND) -

ILBDMP13 (FINDNAMS) - resolution of
identifiers.

ILBDMP14 (FINDLOCS) - resolution of
card/verb
numbers.

3. Pass 2 modules:
ILBDMP20 (SYMCNTRL) - Pass 2 control.

ILBDMP21 (SEGINIT) - program and
segment
initialization.

ILBDMP22 (DMPCNTRL) - control for the
two dump
modules.

ILBDMP23 (DUMP1) - group and

elementary item

dump.

ILBDMP24 (DUMP2) - FD, SD, RD, VSAM
FD, and TGT dump

ILBDMP25 (SYMSTATE) - abnormal termi-
nation statement
nunmker
processing.

The overlay structure and the hierarchy
of loading responsibility are detailed in
Diagrams 3 and 7 in "Section 2: Program
Organization." The flow of control among
the modules of Pass 1 and Pass 2 is shown
in Diagrams 4 and 5, respectively. The
operation of the individual modules is
summarized in "Processing (Routines)" in
this chapter.

INITIALIZATION - FIRST COBOL PROGRAM:

During INIT3 of the first program
encountered with the SYMDMP opticn,
ILBDDBGO loads and calls ILBDMP10
(SYMINIT).

1. SYMINIT initializes the cormon data
area and reads the first
prograr-control card.

10.

11.

12.

13.

SYMINIT loads and calls SCANP.

SCANP builds the PCONTRCL takle, reads
the next card, and returns to SYMINIT.

If the card starts with a number
(line-control card), SYMINIT loads and
calls SCAND; otherwise, SYMINIT skips
to step 11 below.

SCAND builds the DYNAMTARB table;
collects data-names in the QUALNAMS
area for the batch search of the debug
file; reads the next card and, if it
starts with a number, repeats the
process.

SCAND loads and calls FINDNAMS,
overlaying itself.

FINDNAMS searches the debug file for
names collected in the CUALNAMS are
and fills in identifier information in
the DYNAMTAB table; FINDNAMS then
loads and returns to SCAND, overlaying
itself.

SCAND enters DYNAMTAB and DATADIR
pointers in the PCONTRCL table, and
returns to SYMINIT.

SYMINIT loads and calls FINDLOCS.

FINDLOCS searches the debug file for
addresses corresponding to card/verb
numbers and enters these in the
DYNAMTAB table, FINDLOCS then returns
to SYMINIT.

If end-of-file has not bee reached on
SYSIPT, SYMINIT returns to step 2
above.

At end-of-file, SYMINIT calculates the
total size of SYMDMP for the rest of
the run unit and stores this value in
the ILBDDBGO cell SYMSIZE for use by
the SORT subroutine; SYMINIT also
stores information in the common data
area for use by the Pass 2 space
allocation routines.

SYMINIT loads ILBDMP20 overlaying
itself and transfers to Pass 2;
ILBDMP20 continues normal
initialization processing. (See
Initialization - All Other COBOL
Programs.")

INITIALIZATION - ALL OTHER CCBOL PROGRAMS:

During INIT3 of all COBOL programs after
the first,, ILEDDBGO calls SYMDMP at its
original address, which is now occupied by
ILBDMP20 (SYMCNTRL).

1.

SYMCNTRL analyzes the calling
parameter and determines that it has
been called for initialization.

8.

9.

Licensed Material - Property of IBM

SYMCNTRL loads and calls SEGINIT.

SEGINIT, by analyzing PROGRAM-ID,
determines that a fresh program is
being entered.

SEGINIT stores ACURPC (pointer to the
current PCONTROL entry) and frequently
referenced addresses in CORBOL program;
SEGINIT also saves the root segment
priority of zero.

If this is the first time that SEGINIT
has been entered (that is, SEGINIT has
been entered from SYMINIT), and the
DYNAMTAB table exists for any program
in the entire run unit, SEGINIT
computes the load addresses for
DUMP1/DUMP2, IODISK/IOTAPE, and the
debug file buffers.

If there is no DYNAMTAB takle for the
current program, SEGINIT skips to step
8 below.

SEGINIT loads and calls IODISK or
IOTAPE to open the debug file;
relocates addresses in the PCONTROL
and DYNAMTAB tables; saves the
original instructions and modifies
them in virtual storage to effect
calls to SYMDMP for dynamic dumping.

SEGINIT returns to SYMCNTRL.

SYMCNTRL returns to ILBDDEGO.

INITIALIZATION - INDEPENDENT PROGRAM

SEGMENT:

Before entry to an independent

program segment, ILBDDBGO calls SYMDMP at
ILBDMP20 (SYMCNTRL).

1.

SYMCNTRL analyzes the calling
parameter and determines that it has
been called for initialization.

SYMCNTRL loads and calls SEGINIT.

SEGINIT, by analyzing the PROGRAM-ID,
determines that the program is the
same program as at the previous entry.

SEGINIT compares the priority in the
TGT with the saved priority; if they
are equal, SEGINIT skips to step 7
below.

SEGINIT saves the new priority; then,
if there is no DYNAMTAB takle for the
program, SEGINIT skips to step 7
below.

SEGINIT saves and modifies
instructions in the current
independent segment to effect calls to
SYMDMP for dynamic dumps.

Diagnostic Aid Subroutines 51

Licensed Material - Property of IBM

7. SEGINIT returns to SYNMCNTRL.
8. SYMCNTRL returns to ILBDDBGO.

DYNAMIC DUMP REQUEST: ILBDDBG5, called
through the program modifications made by
SYMDMP (see step 7 under "Initialization -
All Other COBOL Programs," step 6 under
"Initialization - Independent Program
Segment" and "Program Modification" under
"Output" above) , calls SYMDMP at ILBDMP20
(SYMCNTRL) .

1. SYMCNTRL analyzes the calling
parameter and determines that it has
been called for dynamic dumps.

2. SYMCNTRL loads and calls DMPCNTRL.

3. DMPCNTRL searches the DYNAMTAB table
for all entries with current priority
and address fields which match the
value of register 0 in the COBOL
program; stores the instruction
address for ILBDDBGO; updates and
analyzes ON counters (if any) for the
entries to determine if a dump is
required at this execution of the
COBOL statement specified on the
line-control card. If no dump is
required, DMPCNTRL skips to step 9
below; otherwise, DMPCNTRL gets the
first (or only) active DYNAMTAB entry
for the current request.

4. DMPCNTRL determines from the DYNAMTAB
entry the limits of the dump
requested; and gets the dump’s
starting item from the DATATAB table
on the debug file.

5. DMPCNTRL loads and calls DUMP1 if the
item is a group or elementary item;
otherwise, DMPCNTRL loads and calls
DUMP2.

6. DUMP1 analyzes the item's attributes
which are contained in the DATATAB
entry and issues a formatted dump of
its contents in virtual storage; gets
the next DATATAB entry. If it is
beyond the limits of the requested
dump, DUMP1 returns to DMPCNTRL; if
itis a group or elementary item, DUMP1
repeats the process described above;
if it is other than a group or
elementary item, DUMP1 requests
DMPCNTRL to load and transfer control
to DUMP2 to process the item.

Similarly, DUMP2 dumps information
about FD, RD, SD, or index items; and
gets the next DATATAB entry. If it is
beyond the limits of the requested
dump, DUMP2 returns to DMPCNTRL; if it
is a group or elementary item, DUMP2
requests DMPCNTRL to load and transfer
control to DUMPI.

52 Symbolic Dump (SYMDMP) Sukroutine

7. When DUMP1 or DUMP2 returns after
satisfying a dump request, DMPCNTRL
examines the current DYNAMTIAB entry;
if it specifies further identifiers
for the same card/verb number,
DMPCNTRL returns to step 4 above.

8. DMPCNTRL continues the search of the
DYNAMTAB table for further entries of
equal address and priority; when it
finds any such entries, it returns to
step 4 above.

9. DMPCNTRL returns to SYMCNTRL.

10. SYMCNTRL returns to ILBDDBGS.

ABNORMAL TERMINATION: ILBDDBG2 calls

SYMDMP at entry point ILBDMP20 (SYMCNTRL)
to produce abnormal termination dumps for
the abnormally terrinating program, and, on
subsequent calls, for all other SYMDMP-
compiled programs encountered in its
kackward chain to the main COBOL program.

1. SYMCNTRL analyzes the calling
parameter and determines that it has
been called for abnormal termination
dumps .

2. The BCMB switch is turned on.

3. SYMCNTRL loads and calls SEGINIT.

4. SEGINIT, finding BOMB on, performs
special abnormal termination
processing: examines all DYNAMTAB
entries in the run unit and restores
the modified instructions to their
original state; if the run unit
included no dynamic dumping requests,
searches all PCONTROL entries for a
record of Procedure Divisicns large
enough to be overlaid by as yet unused
SYMDMP modules (DUMP1/DUMP2,
IODISK/IOTAPE, and debug file
buffers); may also use SORT and
DISPLAY subroutines if present; as a
last resort may use space remaining
between end of tables and end of
partition.

5. SEGINIT loads and calls IODISK or
IOTAPE to open (or "rewind") the debug
file; and relocates addresses in the
PCONTROL table if the entry has never
been used.

6. SEGINIT returns to SYMCNTRL.
7. SYMCNTRL loads and calls SYMSTATE.

8. If the STATEOUT switch is on, SYMSTATE
skips to step 9 below, since the
statement numker message is only
produced for an abnormally terminating
program; otherwise, SYMSTATE turns on
STATEOUT; gets the address in

ILBDDBGO's STXIT program status word
(PSW), or, if this is not within the
program's limits, gets the contents of
register 14, which were saved by
ILBDDBGY4; uses this address to search
Procedure Division tables of the debug
file; identifies the most closely
matching card/verb number and issues
the statement number message.

9. SYMSTATE returns to SYMCNTRL.
10. SYMCNTRL loads and calls DMPCNTRL.

11. DMPCNTRL, finding BOMB on, sets the
dump limit at the last entry in the
DATATAB table; turns ALISW on; and
gets the first entry in the DATATAB
table.

12. DMPCNTRL loads and calls DUMP2.

13. DUMP2 dumps the TGT and returns to
DMPCNTRL.

14. DMPCNTRL loads and calls either DUMP1
or DUMP2 depending on the attributes
of the initial DATATAR item (see step
5 under "Dynamic Dump Request").

15. DUMP1 and DUMP2 jointly dump the
virtual storage contents of all
DATATAB items (see step 6 under
"Dynamic Dump Request").

16. DUMP1 returns to DMPCNTRL after
dumping the final Data Divisiion entry
in the DATATAB table.

17. Since ALLSW is on, indicating that the
entire Data Division has been dumped,
there can be no further dump request
to £ill and DMCNTRL returns to
SYMCNTRL.

18. SYMCNTRL returns to ILBDDBG2.

Processing (Routines)

IODISK_ (ILBDMPQ1) [JI]

Operation: Contains DTFSD, SDMOD, and
routines to open, close, read, read and
note, point and read, for a debug file on
disk.

Linkage:
L 15,AI0OMOD
LA 1,=*ILBDMPO1"
LOAD (1), (15
BALR 14,15
DC H'nn' (See note.)

licensed Material - Prorerty of IBM

Note: 'nn' = 00 to open
04 to read
08 to point before reading
12 to close

Output: Address of current debug file
buffer is returned in register 3 and in
ADBGBUF. If note was requested, block
identification is returned in NOTEADR.

Calling Information: Called by the SCAND,
FINDLOCS, and FINDNAMS subroutines in Pass
1, and by the SEGINIT, DMPCNTRL, and
SYMSTATE subroutines in Pass 2. It
overlays IOTAPE.

IOTAPE (ILBDMP02) [JI]

Operation: Identical with IODISK
(ILBDMP(01) except that it contains DTFMT
and MTMOD for a debug file on tape.

Linkage: Identical with IODISK (ILBDMPO1)
except that the loadname is 'ILBDMPO02'.

Output: See ICDISK (ILBDMPO1).

Calling Information:
(ILBDMPO1).

See IODISK

SYMINIT (IIBDMP10) [JJ-JK]

Operation: Controls Pass 1 operations;
contains 3 common subroutines (CALLFIND,
ERROR, and READIPT) for Pass 1 modules.

Linkage:
L 15,=A(ILBDMP10Q)
BALR 14,15
DC H'00"
Output: Table addresses and virtual

storage limits are passed in common data
area to Pass 2. SYMSIZE cell is set in
ILBDDBGO for use by the SORT subroutine.

Calling Information: Called by ILBDDBGO
during INIT3 of the first program compiled
with the SYMDMP option. It is overlaid by
SYMCNTRL (ILBDMP20) after completion of
Pass 1.

CALLFIND (COMMCN PASS 1 SUBROUTINE
CONTAINED IN SYMINIT)

Operation: Effects linkage between SCAND
and FINDNAMS.

Diagnostic Aid Subroutines 53

Licensed Material - Property of IBM

Linkage:
L 15,ACALLFND
BALR 14,15
Output: None.

Calling Information: Called ky SCAND when
the DYNAMTAB table is complete.

ERROR_ (COMMON PASS 1 SUBROUTINE CONTAINED
IN _SYMINIT)

Operation: Issues Pass 1 error messages.

Linkage:
MVI ERR,message-number
L 15,AERROR
BALR 14,15
Output: Error message on SYSLST.

Calling Information: Called ky SYMINIT,
SCANP, SCAND, FINDNAMS, and FINDLOCS.

READIPT (COMMON PASS 1 SUBRQUTINE CONTAINED
IN SYMINIT)

Operation: Reads and calls ILBDDBG1l to
list control card on SYSIPT; scans card.

Linkage:

L 15,AREADIPT
BALR 14,15

Output:

Current input card in INBUF;

AELM, address of start of element;
COL, card column of start of next
element;

LEN, length of element;

EOCSW, on if no more elements on card;
EOFSW, on if end-of-file found;

NUMSW, on if element is number;
PARENSW, on if element starts with
left parenthesis.

Calling Information:
SCANP, and SCAND.

Called by SYMINIT,

SCANP (ILEDMP11) [JL]

Operation: Calls the READIPT subroutine of
SYMINIT to scan program-control card;
builds the PCONTROL table entry.

Linkage:
L 0,ASCANP
L 1,='ILBDMP11"
LOAD (1),(0)
BALR 14,1

54 Symbolic Dump (SYMDMP) Subroutine

Output: PCONTROL entry and its pointer
ACURPC, NXTBYTE, free area pointer, updated
to byte following this entry.

Calling Information: Called by SYMINIT
when program-control card has been found.
Overlays QUALNAMS area used by SCAND and
FINDNAMS.

SCAND (IIBDMP12) [IM]

Operation: Calls the READIPT subroutine of
SYMINIT to scan line-control card; reads
the next card and scans until it comes to a
card which does not start with a
card-number. Builds a DYNAMTAE entry for
each line-control card. Collects
data-names specified in QUALNAMS area.
Reads in the first block of the debug file.

Linkage:
L 0,ASCAND
L 1,="ILBDMP12*
Loap (1), (0)
BALR 14,1
Output: DYNAMTAB table with fields to be

completed by FINDNAMS and FINDLOCS.
QUALNAMS area containing all nares
requested on line-control cards. Pointers
to the DYNAMTAB and DATADIR tables in the
PCONTROL table. NXTBYTE cell updated to
byte following last DYNAMTAB entry.

Calling Information: Called by SYMINIT
when card starting with a number is found
by SCANP. Overlays FINDNAMS and FINDLOCS.

FINDNAMS (ILBDMP13) {JN]

Operation: Searches the DATATAB table on
the debug file for identifiers collected in
the QUALNAMS area. Builds the DATADIR
table containing block identification for
each distinct DATATAB block required.
Enters the table locators for identifiers
in the DYNAMTAB takle.

Linkage:
L 0,ASCAND
L 1,="ILBDMP13"
LOAD (1), (0)
BALR 14,1
Output: Locators in the DYNAMTAB table,

which permit Pass 2 to point directly,
without search, to the requested data-nares
in the debug file. NXTBYTE cell updated to
byte following last DATADIR entry.

Calling Information: Called by SCAND via
CALLFIND subroutine in SYMINIT when last
line-control card for programr has been
scanned. Overlays SCAND and FINDLOCS.

FINDLOCS (ILBDMP14) [JO]

Operation: Searches the PRCCTAB table on
the debug file for the card/verb numbers
specified on line-control cards. Enters
corresponding relative addresses in the
DYNAMTAB table.

Linkage:
L 0,SCAND
L 1,="ILBDMP1U"
LOAD (1),(0)
BALR 14,1
Output: Priority and relative address

fields in the DYNAMTAB table.

Calling Information: Called by SYMINIT
when SCAND returns to it with DTABOK switch
on. Overlays SCAND and FINDNAMS.

SYMCNTRL_(ILBDMP20) [JP-JQ1

Operation: Controls Pass 2 processing.
Contains 1 common subroutine (HEXDUMP) for
Pass 2 modules.

Linkage:
L 15,=A(ILBDMP10)
BALR 14,15
DC H'n' (See note.)
Note: 'n' = 0 for initialization
4 for dynamic dump
8 for abnormal termination
OQutput: BOMB switch is turned on in the

event of an abnormal termination. This
switch is checked by SEGINIT and DMPCNTRL.

Calling Information: Called by ILBDDBGO,
ILBDDBG5, and ILBDDBG2. Overlays SYMINIT.

HEXDUMP_(COMMON PASS 2 SUBROUTINE CONTAINED
IN_SYMCNTRL) .

Operation: Calls ILBDDBGl to print
hexadecimal dumps.

Linkage:

L 15, AHEXDUMP
BALR 14,15

Licensed Material - Property of IBM

Note: Caller places address in ADTODUMP
and length in LENTODMP; places desired
starting column for address in ADCOL and
desired starting column for contents in
CORECOL. If address is to be printed,
caller turns on PRINTLOC switch.

Output: Hexadecimal dump on SYSLST.
Calling Information: cCalled by DUMP1 and
DUMP2.

SEGINIT (ILBDMP21) [JR]

Operation: Opens the debug file; reads the
OBODOTAB table into virtual storage;
relocates table addresses; initializes
virtual storage for dynamic durping;
performs space allocation at abnormal
termination.

Linkage:
L 2,ASEGINIT
LA 1,="ILBDMP21"
LOAD (1),(2)
BALR 14,2
Output: Program modifications for dynamic

dump calls. The pointer contained in
ACURPC is updated to the current PCONTROL
entry. LASTSEG is updated to contain the
current priority.

Calling Information: Called by SYMCNTRL
for initialization and in the event of an
abnormal termination. Overlays DMPCNTRL
and SYSMSTATE.

DMPCNTRL (ILBDMP22) [JS-JT]

Operation: Controls dumping, identifies
current dynamic request in the DYNAMTAB
table, and provides service and control for
DUMP1 and DUMP2. Contains 2 sukroutines
(CALLD1D2 and NXTENTRY) common to DUMP1 and
DUMP2.

Linkage:
L 2,ASEGINIT
LA 1,="ILBDMP22"
LOAD (1),(2)
BALR 14,2
Output: Heading line on SYSLST, before a

dynamic dump, to identify card/verb number
of request. Cells and switches filled in
by NXTENTRY subroutine.

Diagnostic Aid Subroutines 55

Licensed Material - Property of IBM

Calling Information: Called by SYMCNTRL at
each dynamic request and after SYMSTATE at

abnormal termination. Overlays SEGINIT and
SYMSTATE.

CALLD1D2 (COMMON PASS 2 SUBROUTINE
CONTAINED IN DMPCNTRL)

Operation: Serves as linkage between DUMP1
and DUMP2. Loads whichever of the two is
not in virtual storage when it is entered
and passes control to it.

Linkage:
L 15,ACALLD
BR 15

Output: None.

Calling Information: Called by DUMP1 and
DUMP2.

NXTENTRY (COMMON PASS 2 SUERQUTINE
CONTAINED IN DMPCNTRL)

Operation: Gets and analyzes the next
DATATAB entry on the debug file.

Linkage:

L 15, ANXTNTRY
BALR 14,15

Output: Address of the current DATATAB
entry is returned in register 3 and
ADATNAME; address of its attributes field
is returned in ADATTR; LEV, MAJ, MIN, and
other fields are also set.

Calling Information: Called ky DMPCNTRL to
get the first item of a dump, called by
DUMP1 and DUMP2 to get subsequent items.

DUMP1 (ILBDMP23) (JU]

Operation: Formats the contents of group
and elementary items; calls ILBDDBG1l to
print dumps.

Linkage:
L 15,ADUMP1
LA 1,="ILBDMP2"

Loap (1),(15)
BALR 14,15

Output: The following is written on
SYSLST:

For group items: name, level, and

card-number. Hexadecimal dump as
required.

56 Symbolic Dump (SYMDMP) Subroutine

For elementary items: name, level,
card number, location in virtual
storage, type code (for example, B
for "binary," P for "packed
decimal," etc.). Contents of
alphabetic and alphanumeric fields
in normal print characters.
contents of numeric fields in scaled
decimal form.

Every occurrence of each subscripted
elementary item is dumped, preceded on the
line by its subscripts. Every collection
of subscripted elementary items belonging
to a variable-length group is preceded by
the name(s) and current value of the
applicable object(s) of the
OCCURS. . .DEPENDING CN clause.

Calling Information: Called by DMPCNTRL
and DUMP2. Overlays DUMP2.

DUMP2 (ILBDMP24) [JV]

Operation: Formats the contents of FD's,
SD's, RD's, index-names, and fields of the
TGT. Calls ILBDDBG1 to print dumps.

Linkage:

L 15,ADUMP1

1A 1,="ILBDMP24*
LOAD (1), (15)

BALR 14,15

Output: The following is written on
SYSLST:

TGT fields in hexadecimal format.

For an SD: name, type, and
card-numkber.

For an index-name: name, type, and
contents converted to decimal.

For an RD: name, type, card-number,
and contents of PAGE-COUNTER and
LINE-COUNTER, if present (Note:
Report line is printed by DUMP1.)

For an FD: name, type, card-number,
and DTF information including
contents of DTF in hexadecimal
format.

For a VSAM FD: whether the file is
open or closed, file organization,
access method, the file status key,
and the last I/O statement.

Calling Information: Called by DMPCNTRL
and DUMP2. Overlays DUMP2.

SYMSTATE (ILBDMP25) [JW]

Operation: Calls ILBDDBGl to issue
statement number message in the event of
abnormal termination. Calls the FLOW
subroutine (ILBDFLWO), if FLOW is
specified, before the first Data Division
dump is issued.

Linkage:

L 2,ASEGINIT

LA ,="ILBDMP25"

LOoAD (1),(2)

BALR 14,2
Output: Statement number message on
SYSLST. STATEOUT switch is set on.

Calling Information: Called by SYMCNTRL
after SEGINIT in the event of abnormal
termination. Overlays SEGINIT and
DMPCNTRL.

Licensed Material - Prorerty of IBM

SRCHPUBS (ILBDMPO4) [JX]

Operation: Searches the PUB takle for the
device type and then completes the SYS005
DTF by entering the device type, track
capacity, and upper head limit.

Linkage:

L RO, ADBGBUF
La R1," ILEDMPOL"
Loap (1), (0)

A RO,ERREXIT
BALR R10,R1

Qutput: Three bytes beginning at DTF +
X*'1D" are filled in; the first Lyte
contains the device type and the next two
bytes contain the device-type track
capacity. DTF + X"27' contains the maximum
head limit for a cylinder of that device.

Calling Information: Called by IODISK for
each request to open SYS005.

Diagnostic Aid Subroutines 57

Licensed Material - Property of IBM

OBJECT-TIME EXECUTION STATISTICS SUBROUTINES

Programmers can specify three options in
the CBL statement to generate statistics
for helping them make their programs more
efficient. The VERBSUM and VERBREF options
are implemented by the compiler, producing
statistics on the design of the programs.
The COUNT option is imgplemented by the
compiler and object-time execution
statistics subroutines, producing
statistics on the frequency with which
sections of the programs are executed.

RELATIONSHIP TO THE DEBUG CONTROL
SUBROUTINE

The object-time execution statistics
subroutines are controlled and supported by
the debug control subroutine, ILBDDBGO (see
"Diagnostic Aid Subroutines").

The debug TEST subroutine is called by
INIT3 in the object module whenever the
COUNT option has been specified, regardless
of whether any debugging options have also
been specified. The debug TEST subroutine
calls an execution statistics sukroutine to
perform COUNT initialization. The debug
control subroutines also provide the
following functions for the object time
execution statistics subroutines:

e call COUNT subroutines at abnormal
termination of object module execution
(ILBDDBG?2)

e write COUNT option output on the debug
print file (ILBDDBG1)

e close the debug print file (ILBDDBGS8)

COUNT DATA AREAS

The object-time execution statistics
subroutines use a number of tables:

¢ The count table, built by the compiler
as part of the object module. The
table contains each procedure-name and
verb in the order in which it is
encountered in the source program, each
verb being in Pl-code form.

e The verb translate table, verb table,
and verb text table--parts of
subroutine ILBDTC30--which enable the
subroutine to translate the verb codes

58 Symbolic Dump (SYMDMP) Sukroutine

into EBCDIC form for listing and also
enable the sukroutines to locate
verbsum table entries.

s The COUNT chain, space for which is
obtained by ILBDTC00. This table is
modified by the object-time execution
statistics sukroutines and contains the
program-ids, pointers, and the node
count table.

¢ The node count takle contains the
current number of times each
count-block is entered. A count-block
is a set of COBOL verbs such that
(exclusive of ABENDs) each verb in the
block is executed if, and only if, the
first verb is executed.

¢ The verbsum table, space for which is
obtained by sukroutine ILBDTC30. This
table is built at terminaticn of object
module execution and contains a summary
of the information in the count tables
and node count tables.

The COUNT subroutines use the count
common area (ILEDTCO1) to control the
monitoring process. It also uses the debug
common area (ILBDDBG7) for printing. These
tables, chains and common areas are
described in "Section 3: Data Areas."
Diagram 13 in "Section 2: Program
Organization" shows how the tables are
used.

COUNT OPERATIONS

At the start of object module execution
the debug control subroutine calls the
ILBDTCO0 subroutine to begin implementation
of the COUNT option.

During object module execution
subroutine ILBDCT10 is called ky compiled
code to update the counts of the frequency
with which count-blocks of object module
statements are executed. A count-block is
determined by the compiler on the basis
that any statement in it is executed if and
only if all statements in the block are
executed. The start of a block is called a
node.

An example of what constitutes a
count-block is as follows:

Statement Statement
Number Type
1 ADD
2 SUBTRACT
3 MOVE
4 IFe<«aGO TOu4wa
5 ADD

Statement 1 is a node for the first
count-block, which consists of statements 1
through the IF in statement 4. The GO TO
part of statement 4 is the node for a
second count-block. Statement 5 is the
node for the third count-block.

Each count-block is assigned a unique
number. At each node in the object module
is embedded a call to ILBDCT10 with a
parameter consisting of the appropriate
count-block number.

At termination of load module execution,
abnormal or otherwise, the ILBDTC20 and
ILBDTC30 subroutines write the COUNT option
statistics on SYSLST.

Diagram 12 in "Section 2: Program
Organization" show COUNT operations in more
detail. The subroutines themselves are
described individually below.

COUNT Initialization Sukroutine (ILBDTCO00)
[KA]

Cperation: Initializes the count common
area, gets space for and initializes the
count chain, and initializes the count
chain pointer in the object module TGT.

called by: ILBDDBGO, which was called by

INIT3.

Linkage:

L R15,=V(ILBDTC00)
L Rl,A(parameter list)
BALR R14,R15

where the parameter list is:

DC 1H' number-of-count-klocks?
Calls: GETVIS
ILBDDBG1
Input:

1. Register 1 points to the number of
entries for the count table

Licensed Material - Prorerty of IBM

2. Register 8 points to the TGT

3. Register 13 points to the debug common
area (ILBDDBG7)

4. Registers 14, 15: standard linkage

Output:
1. Count chain generated and initialized

2. Count common area initialized and/or
bits set in count common

3. Object module TGT points to the count
chain

Count Frequency Sukroutine (ILBDCT10) [KBI]

Operation: Updates the appropriate node
counter by one and saves the caller's
count~-block number in the count chain.

Called by: Generated code in the object
module.
Linkage:
without SYMDMP option
BALR 1,12
DC H'count-klock number' (Goes to
the COUNT linkage area in
the PGT)
with SYMDMP option
BAL 1,8(12)
DC H'count-klock number' (Goes to
the COUNT linkage area in
the PGT)

where the COUNT linkage area of the
object module PGT contains:

L 15,=V(ILEDCT10)
BCR 15,15
DC 1H' 0"

Calls: None

Input:

1. Register 1 points to the klock number,
and the return address is at
002(register 1).

2. Register 12 points to the PGT

3. Register 13 points to the TGT, where
are contained the save area and a
pointer to the appropriate count chain

4. Register 15 points to this subroutine

Object-Time Execution Statistics Subroutines 59

Licensed Material - Property of IEM

Qutput:

1. Appropriate node counter updated by
one

2. Count chain contains the last

count-block number

COUNT Termination Subroutine (ILBDTC20)
[KC] '

Operation:
module execution to determine if there are
programs being monitored. If so, it calls
subroutine ILBDTC30 to write execution
statistics, and if the termination is
normal, calls ILBDDBG8 to close the debug
print file. If the termination is not
normal, the debug print file is left open
for debugging information.

Called by: Generated code in the object
module, ILBDDBG2, ILBDABXO.

Linkage:
from ILBDDBG2

LA 1,=X* FFFFFFFF*
L 15, =V (ILBDTC20)
BALR 14,15

from all other callers

SR 1,1
L 15,V(ILBDTC20)
BALR 14,15
Calls: ILBDTC30
ILBDDBGS
Input:
Register Contents Meaning
1 Zero Close debug print

file after ILBDTC30
executes.

Pointer to Do not close debug

X'FFFFFFFF" print file after
ILBDTC30 executes.

60 Symbolic Dump (SYMDMP) Subroutine

Called at termination of object

13 Pointer to
save area

Standard
linkage

14,15

Output: None

COUNT Print Subroutine (ILBDTC30) ([KD]

Qperation: This subroutine computes and
writes execution statistics on the debug
print file upon termination of the program
being monitored.

Called by: ILBDTC20
Linkage:
L R15,V(ILBDTC30)
BALR R14,R15
Calls: ILBDDBG1
ILBDDBGS
FREEVIS
GETVIS
Input:
Register Contents Meaning
1 Zeros or From ILBDTC20 input
X'FFFFFFEF"
9 Points to count
common area
13 Points to
save area
14,15 Standard linkage
Output:

1. Printed execution statistics
2. Space for the count chains released

3. Count common area updated

This section is divided into two parts:
"Diagrams" and "Flowcharts". The diagrams
describe the flow of control, loading and
calling dependencies, and virtual storage
layouts in instances where several programs
are present together in virtual storage.

Licensed Material - Property of IBM

SECTION 2: PROGRAM ORGANIZATION

Flowcharts are provided for most of the
data management subroutines, all of the
subroutines for object-time debugging
operations, and for other complex
subroutines.

Section 2: Program Organization 61

Licensed Material - Property of IBM

DIAGRAMS

62 Diagrams

COBOL OBJECT PROGRAM

SORT STATEMENT

INITIALIZE SORT
PARAMETERS

B ILBDSRT) — ——— —

INITIALIZE PERFORM
OF INPUT PROCEDURE

L]

INPUT PROCEDURE

RELEASE
 — |

EXIT

RESET PERFORM OF
INPUT PROCEDURE

INITIALIZE PERFORM
OF OUTPUT PROCEDURE

QUTPUT PROCEDURE

RETURN

Licensed Material - Property of

ILBDSRTO SUBROUTINE SORT/MERGE PROGRAM

o

PHASE 1
. g————
| E15 EXIT

INPUT PROC LINKAGE

S —

.

PHASE 2

OUTPUT PROC LINKAGE

PHASE 3
o+ r—————

E35 EXIT

]
EXIT

RESET PERFORM OF
OUTPUT PROCEDURE

i
Legend:
Broken line arrows indicate logic paths execuw/d only once; solid line arrows represent logic paths in loops.

Diagram

1. ILBDSRTO Logic Flow For SORT

Section 2: Program Organization

IBM

63

Licensed Material - Property of IBM

COBOL OBJECT PROGRAM ILBDSRTO SUBROUTINE SORT/MERGE PRO GRAM

MERGE STATEMENT N
USING . . . OUTPUT |
PROCEDURE |
| EXIT - — —— ——
INITIALIZE MERGE | - ‘ —_
PARAMETERS | : THASES
| o f———
|
B ILBDSRTO _

USING LINKAGE E32 EXIT
—_— . TO ILBDMRGO .

OUTPUT PROC —» EXIT
LINKAGE

E35 EXIT

OPEN USING FILES

EXIT — ———]

———3

INITIALIZE PERFORM
OF OUTPUT PROCEDURE

{LBDMRGO SUBROUTINE

OUTPUT PROCEDURE g INITIALIZATION |

e

RETURN

)
<

EXIT

RESET PERFORM OF
QUTPUT PROCEDURE

Legend:
Broken line arrows indicate logic paths executed only once; solid line arrows represent logic paths in loops.

Diagram 2. ILBDSRTO and ILBDMRGO Logic Flow For MERGE

64 Diagrams

Licensed Material - Property of IBM

TEST PERMANENT MAIN STORAGE VARIABLE MAIN STORAGE
A A
" N N
Link edited SYMINIT SCANP
with
COBOL
program Loaded
i N SCAND 1ODISK
Loaded
when line }.oa:e:
control f‘°|r ebug
card is dl' ekon
read s
‘
|
; FINDNAMS OTAPE \ pass 1
Loaded Loaded
to search for debu
debug file file on o
for names ta
on cards. pe
FINDLOCS
Loaded
to search
debug file
for card
and verb
numbers
SYMCNTRL SEGINIT 10D ISK 4
Loaded
when Loaded
Pass 1 Loaded when
processing fiu‘ring debug
is completed “_"'ﬁ"“m' file on
for tion disk
initializa-
tion
SYMSTATE DUMP1 IOTAPE
Loaded Lifded Loaded
. when dump when when
is at item s debug >. PASS 2
abnormal elementary file on
termination or group tape
I
Modules which lie in the same vertical
position in the diagram overlay one
another in main storage, except that DMPCNTRL DUMP2
in the "Variable Main Storage" portion
of the diagram the Pass 1 modules occupy Loaded
space at the end of the partition, while for dynamic Loaded
the Pass 2 modules are loaded wherever dump or when item
space is available. abnormal is neither
terminoti elementary
. ermination
A line from one module to another in- dump nor group
dicates that the module above or at the
left loads the module below or at the right. J

Diagram 3. SYMDMP Subroutines: Loading Dependencies

Section 2: Program Organization 65

swexbetd 99

UOTIezZTTeTITUL
-4 wexbetq

$S2UT3INOIGNS SOTISTIRIS UOTINODXE pue bngsa

3e TOI3U0D JO MOTJ

once for each run unit of the COBOL
progrom compiled with the SYMDMP

ion.
In segmented programs the Debug Control
Subroutine (ILBDDBGO) calls the SYMDMP
modules of entry to eoch non-zero

priority segment. (See olso diogrons 7,
8, and 9).

Indicates flow of control

R v~ - <

TEST
From INIT3
If 'SYMDMP"
Debug
Control
Subroutine /\
I *FLOW"
FLOW
Inisialize /\ 1F*COUNT*
FLOW tables
once per
run unit \/
NOTE:
This sequence of modules functions

SYMOMP Progrenm
N
T SYMCNTRL SEGINIT T
P
. C rogram
f;"'; and fite
o hons nitiafiza
tion
SYMINIT SCANP
PCONTROL Table
Controt
and service Read from debug file
procesing
of control GBODOTAB Toble
cords and i
initialize [} J__sorcoo
Bl COUNT!
Initialize
1 tine count tobles
control cards and pointers
once per
run unit
1L8DTC00 @
tnitialize Retumn fo
count tobles INT3
and pointers
ance per \ <
run unit M
Pass 2 POINTFIL
CLOSEFIL
Retorn to
INIT3 OPENIT
4 disk file
fled by PFOINTFIL
[oATADR toble] e
routines of Pass 1|\
FINDLOCS
¥ fape file
v

WII Jo A3aodoag - T[eTI9IRW PISUDOTT

Licensed Material - Prorerty of IBM

[Sisevavinwnaa 3198 V100080

o o
1o dwng
314 944u03 jo MmO}y A
ontg 12403 1pu]

“pejjoa Jou 51 (SZIWARTI) ILYLSWAS
3upnoiqns 1oy 1da3xe *woIBOIp o U o
-juesa.da1 Jous so wos 3y 51 Jusod Jouy

dunp wai {ou0 O Moy L *(0ZAWAST)
0 3dAy TEINDWAS 3unoxns $i3o3 (¢H8aagit)
Pl sneers = GG
210N
TINDWa
uoypuue;
%01 |ousouge
mopg 10y
adoy g uauaiols
oy MO, 3 orssy
Braap
: i REE Mmow IIVISWAS
£ 34v101
£ 21994 TOYINODE
e] dunp 1y I
ooy dunp
N ond fouuod
>t vedo wdwawas, N/
it
| N\ A T R
4q pajjo
[eNicd |
3014
oy
P g
uo oy MO 1 TINGWAS,
b o MOTH, 1
sseoy ETESCE] yrvsn)
51001 [
oquou
ousios fousouqe
[0] 10802 -
desst ALVIS, 3 Msd #and waiskg worg
[E01 |
3Lvis z58aa8H
| iiadva |
poscyuow
saysyoNs
THINIOd c— T e _
woiBosd e
Qi /I oyragm /
N «INNOD, 3t 159] PaoULLIS} UoHNDaXa wDiBaid 4
GESLGHIT 6Z51auT

Program Organization 67

Flow of Control at Abnormal

-
.

Section 2

Debug and Execution Statistics Subroutines
Termination

| Diagram 5.

Licensed Material - Property of IBM

r 1
|Routine: ILBDDBGO -- Level 1 |
1 4
r T T T 1
| ROUTINE | PURPOSE {CALLED ROUTINES |CALLING CONDITION |
k + + + 1
ILBDDBGO	Service 3 options for handling	SYMINIT	Called when SYMDMP option
	debugging information and the	(ILBDMP10)	switch is on in TGT.
	COUNT option for providing		
	object-time execution statis-		
	tics.		
	l]	
		SYMCNTRL	called when SYMDMP option
		(ILBDMP20)	switch is on in TGT every
[i		time after the first.	
		ILBDFLWO	called if FLOW option is
			specified.
I			
		ILBDSTNO	Called if STATE option is
]]	specified.	
		[
		ILBDTCOO	Called if COUNT option is
			specified (see "Object-
			Time Execution Statistics
			Subroutines") .
] ILBDTC20	Called in all cases.	
L L L L J

Diagram 6. Debug and Execution Statistics Subroutines: Calling Dependencies (Part 1 of
4)

68 Diagrams

Licensed Material - Progerty of IBM

r 1
|Routine: ILBDDBGO =-- Level 2 |
L 4
13 L] T Bl a
| ROUTINE | PURPOSE |CALLED ROUTINES |CALLING CONDITION |
L 4 4 4 }
¥ T k] s 1
| SYMINIT |Ccontrol routine and common sub- |SCANP {Called if program-control |
| (ILBDMP10) |routines for processing control | (ILBDMP11) |card is found. |
| |cards in SYMDMP option. |]
] | | SCAND |Called if line control |
		(ILBDMP12)	card is found.
	FINDNAMS	called if valid line-	
	(ILBDMP13)	control cards entered in	
{		DYNAMTAB.	
	FINDLOCS	called if valid line-	
	(ILBDMP14)	control cards entered in	
		DYNAMTAB.	
t t + 1			
SYMCNTRL	Control routine for SYMDMP	SEGINIT	Called each time a program
] (ILBDMP20)	output.	(ILBDMP21)	or segment is entered and
		at abnormal termination.	
	I		
	SYMSTATE	Called at abnormal termi-	
		(ILBDMP25)	nation to produce a state-
			ment number message.
	!		
	DMPCNTRL	Called whenever a dump is	
	(ILBDMP22)	to be produced.	
L i 1 4			
3 L} Ll 1			
ILBDFLWO	Produce flow trace if FLOW	Calls no furtherj	
is specified.	routines.		
L 1 1 d			
r 1 + 4			
ILBDSTNO Write statement number if STATE [Calls no further}			
is specified message at abnormal	routines.		
termination.			
: t + 1			
ILBDTCO0 Initialize COUNT statistics if	[Calls no further		
COUNT specified.	routines.		
L L 1 d			
T - Y	1		
ILBDTC20 }Produce COUNT statistics if	ILBDTC30	Called if COUNT specified.	
	COUNT specified.		

L 4 1 L 4

Diagram 6.

Debug and Execution Statistics Subrotines

4)

Section 2:

: Calling Dependencies (Part 2 of

Program Organization 69

Licensed Material - Property of IBM

F 1
|Routine: ILBDDBGO -~ Level 3 i
{ 4
T R T T 1
| ROUTINE | PURPOSE |CALLED ROUTINES |CALLING CONDITICN |
L 1 ——— 4. d
r T T 1
| SCAND | Processes program control cards.|Calls no further| |
| (ILBDMP11) } |routines. | |
F $ + $ 1
| SCAND | Processes line control cards. | TODISK |Called when Debug File is |
| (ILBDMP12) | | (ILBDMPO1) Jon disk. |
| | I | [
| | | IOTAPE |Called when Debug File is |
] | | (ILBDMPO02) lon tape.]
k 1 . + + i
FINDNAMS	Searches Debug File for identi-	IODISK	Debug File on disk.
(ILBDMP13)	fiers requested on line control	(ILBDMPO1)	
	cards; enters locators for them		
	in DYNAMTAB.	IOTAPE	Dekug File on tape.
		(ILBDMPO2)	
k 1 + { i			
FINDLOCS	Searches Debug File for card	IODISK	Debug File on diske.
(ILBDMP14)	number information; enters it in	(ILBDMPO1)	
	DYNAMTAB. i		
]	IOTAPE	Debug File on tape.	
]	(ILBDMPO2)		
b } + + i			
SEGINIT]Initializes program segment for	IODISK	Debug File on disk.	
(ILBDMP21)	dynamic dumping by modifying	(ILBDMPO1)	
	specified instructions; allo-		
	cates space; relocates table	IOTAPE	Dekug File on tape.
	addresses; opens debug file.	(ILBDMP02)	
L 1 4 4 41			
r Rl v T 1			
SYMSTATE	Issues the abnormal termination	IODISK	Debug File on disk.
(ILBDMP25)	statement number message.	(ILBDMPO1)	
I	I I		
		IOTAPE	Debug File on tape.
		(ILBDMP02)	
t + + + 1			
DMPCNTRL	Contains main loop controlling	DUMP1	Called when group oxr
(ILBDMP22)	dump.	(ILBDMP23)	elementary items are to be
} } I	dumped. g		
		DUMP2 ,	Called when item to be
		(ILBDMP24)	dumped is neither group]
			nor elementary.
	I		
		IODISK	Debug File on diska
		(ILBDMPO01)	
I			I
		IOTAPE	Debug File on tape.
		(ILBDMPO02)	
k i + t !			
ILBDTC30	Print the COUNT statistics.	calls no further	
		routines.	
L 1 L L 1

Diagram 6. Debug and Execution Statistics Subroutines: cCalling Dependencies (Part 3 of
4)

70 Diagrams

ILicensed Material - Prorerty of IBM

r— 1
|Routine: ILBDDBGO -- Level 4 !
L
T T T T -——-'
| DUMP1 | Dumps elementary and group | IODISK |Debug File on disk.]
{ (ILBDMP23) |level items | (ILBDMPO1) | |
| I | I |
| | | IOTAPE |Debug File on tape. |
] | | (ILBDMPO2) | |
b 1 ¢ $ 1
DUMP2	Dumps item which are neither	IODISK	Debug File on disk.
ILBDMP24)	elementary or group level	(ILBDMPO1)	
	items.		
		ICTAPE	Debug File on tape.
		(ILBDMPO02)	
L L L L 1			
r 1			
Routine: ILBDDBGO -- Level 5			
[N 4			
i 1 T T 1			
IODISK	performs input/output operations	Calls ILBDMPO4	
(ILBDMPO1)	for debug file on disk.	before each	
		open. [
b + t t 1			
IOTAPE	Performs input/cutput operations	Calls no further	
(ILEDMPO02)	for debug file on tape.	routines.	

4 iR 4

T T T “‘"
| SRCHPUBS |Performs initialization of |Calls no further|Called by IODISK for each |
| (ILBDMPOY4) | SYS005 DTF for disk debug file. |routines. | open. |
| — L L 1 Jd

Diagram 6. Debug and Execution Statisitics Subroutines:

of 4)

Section 2:

Program Organization

Calling Dependencies (Part U

71

Licensed Material - Property of IBM

MINIMUM
SYMDMP

LOADED FROM HIGH TU
LOW ORDER STORAGE

<

Pass 1 Pass 2
SYMDMP LOAD POINT N
Common Data Area
SYMCNTRL
(ILBDMP20)
SYMINIT
(ILBDMP10) }
SEGINIT DMPCNTRL SYMSTATE
(ILBDMP21) (ILBDMP22) (ILBDMP25) \
SCANP QUALNAMS
(ILBDMP1) table
J/

Length unknown during
Pass 1

Object time tables - variable length

Slack - variable length

N WMF

e i

End of tables known after Pass 1

DUMP1 DUMP2
(ILBDMP23) (ILBDMP23)

Debug file buffer 1

IOTAPE IODISK
(ILBDMPO2) (ILBDMPO1)
Debug file buffer 1
Debug file buffer 2
SCAND FINDNAMS FINDLOCS
(ILBDMP12) (ILBDMP13) (ILBDMP14)

END OF PARTITION

Diagram 7.

72 Diagrams

1OTAPE
(ILBDMP02) IODISK
(ILBDMPOY)
Buffer 2 for tape
Buffer 2 for disk v

Note: If, in Pass 2, there is space for all the modules and data areas
of the pass except a second debug file buffer, the buffer is omitted. Routines
IODISK and IOTAPE (ILBDMPO1 and ILBDMP02) use a single buffer in this case .

In the case of a dump for abnormal termination only, as many as
possible of the Pass 2 modules that do not belong to the "minimum
SYMDMP" group are loaded, overlaying the COBOL program's Procedure
Division. If this main storage space is not sufficient, the additional
modules are loaded after the object-time tables.

Virtual Storage lLayout of SYMDMP Modules

SYSIPT

CONTROL
CARDS

NOTE:

Solid arrows indicate the main pointers
connecting the tables.

Broken arrows indicate the primary

sources of information.

Broken lines indicate the boundary between
files.

Diagram 8 SYMDMP Subroutines:

Licensed Material - Property of IBM

MAIN STORAGE

OBJECT TIME
TABLES

PROGRAM 1
PCONTROL,

DYNAMTAB,

N

N

DATADIR,

OBODOTAB,

PROGRAM 2
PCONTROL,

MAIN STORAGE

control Card Processing.

5Y5005

DEBUG FILES

PROGRAM 1

OBODOTAB;

DATATASB,

PROCTAB,

PROGRAM 2
PROGSUMj

~—

TAPE or DISK FILE

Relation Between Object-Time

Tables and Debug File in Processing Identifiers on Control Cards

Section 2:

Program Organization 73

L

suexbetd

weibetq

“6

rsauTInoIqns dWAWAS

d pae) TOoajuod

*butssassox

butrssadord I2TITIUSDPT

D Line-control card is read and identifier found.

SYSIPT

CONTROL
CARDS

CONTROL
CARDS

Main storoge SYS005
PROGSUM
PCONTROL 0BODOTAB
DYNAMTAB
DATATAB
DATADIR
0BODOTAB
QUALNAMS

of corresponding DATATAB entry is entered in

D Address
DATADIR fable.

PROGSUM
PCONTROL OBODOTAB
DYNAMTAB

DATATAB
-
DATADIR

OBODOTAB
QUALNAMS

D Space is reserved in DYNAMTAB table for this identifier.

PROGSUM
CONTROL
CARDS
.
<
PCONTROL OBODOTAB
N\,
\.] DYNAmTAB
\\ DATATAB
DATADR
OBODOTAB
QUALNAMS

E> DATADIR toble pointer is entered in DYNAMTAB table .

PROGSUM
CONTROL
CARDS
PCONTROL OBODOTAB
DYNAMTAS
JFRSS ER. DATATAB
1
1
1
1
! DATADIR
| T .
OBODOTAB
QUALNAMS

[e
tobl

e

CONTROL
CARDS

collected with other identifiers in QUALNAMS

JPRuS—

PROGSUM
PCONTROL OBODOTAB
DYNAMTAB
. DATATAB
DATADIR
OBODOTAB
QUALNAMS
—

¥ OCCURS clause with DEPENDING ON option is used with
idantifier, OBODOTAB table is read into main storoge .

PROGSUM
CONTROL
CARDS
PCONTROL CBODOTAB
/
DYNAMTAB /
J| oatatas
/
/
/
DATAOR { /
1
7
/
‘OBODOTAB /
QUALNAMS

D dentifiers are found in DATATAS table .

PROGSUM
CONTROL
CARDS
PCONTROL OBODOTAB
DYNAMTAB
DATATAB
DATADR /

OBODOTAB

QUALNAMS

Address of OBODOTAS table in main storage is entered in

PCONTROL toble .
PROGSUM
CONTROL
CARDS
PCONTROL ‘OBODOTAS
-~
———
DYNAMTAB
DATATAB
DATADR
OBODOTAS
QUALNAMS

WEI 30 K3xsdoad - TeTADIRW POSUSDTI

‘0T wexbetrqg

isautTInoIqns 4dWANAS

17 UuUoT3IOSS
$9201d ISqUMN PpAed -HBUTSS800Id PIRD TOIIUOD

uoT3RZTURDIO wexboxd
puts

SL

Dunecnmm'wnf‘ur-d

SYSIPT

CONTROL
CARDS

Drwrmm s found in S
PROCTAB table block rumber

CONTROL
CARDS

Main storoge SYS005
PROGSUM
PCONTROL
DYNAMTAB
PROCTAB
DATADIR
OBODOTAS
CARDINDX
SEGINDX
QUALNAMS PROCINDX

EGINDX table, giving

PROGSUM
PCONTROL
DYNAMTAB
PROCTAB
DATADIR
‘OBODOTAB
CARDINDX
QUAL s SEGINDX i
PROCINDX

PROGSUM table contains pointers to CARDINDX, SEGINDX,
PROCINDX, and PROCTASB tables

CONTROL
CARDS

‘oddress.

‘CONTROL
CARDS

PROGSUM
PCONTROL
DYNAMTAB

PROCTAB

DATADIR

‘OBODCTAB

CARDINDX
QUALNAMS SEGINDX

PROCINDX

Dllak aumbes s found in FROCINDX able, giving FROCTAB

B

PROGSUM
PCONTROL
DYNAMTAB
PROCTAB
DATADR
OBODOTAB
QUALNAMS

CONTROL

CONTROL
CARDS

D&d number from control card is entered in DYNAMTAS
table .

ROGSUM
PCONTROL
OYNAMTAB
N\
\\
PROCTAB
DATADR
OBODOTAB
CARDINDX
SEGINDX.
QUALNAMS PROCINDX

Card number is found in correct block of PROCTAB table,
giving location in main storage .

[

N/

PROGSUM
PCONTROL
DYNAMTAB
ROCTAB
DATADR
-
OBODOTAB
CARDINDX
SEGINDX
PROCINDX—{

Card number is found in CARDINDX table, giving segment

and frogment mmbes .

CONTROL
CARDS

CONTROL
CARDS

PROGSUM

CARD INDX

SEGINDX

PROCINDX

Location n main storoge of instruction comresponding to cord
number is entered in DYNAMTAS table .

PROGSUM

ARDINDX

SEGINDX

PROCINDX

WaI 3o L3axedoxd - TeTISIBRK PISUSOTTI

Licensed Material - Property of IBM

r

|

|

I

l -------- r L} T 1 |

| | FIRST |<—— TGT je——o! TGT |<———\\——1 TGT |
L — | | | next highest | | |
| | LAST | | highest | | level | | current |
i b J | level] | program | | program |
| | program+ | | | | |
l L J L J | S ——— |
,]

!

|

L

v

| When SYMDMP, STATE, or FLOW has been requested, the TGT Address Routine (ILEDDBG3) is
|called by the COBOL program at each return of control to the program after a branch
|outside of itself. The routine stores in the fullword LAST the address of the current
|TGT. At abnormal termination this data area is used by the STXIT routine (ILBDDBG2) to
| trace the calling programs of an interrupted program so that information may be
|provided for each of them. Tracing begins at the program whose TGT is stored in data
|area LAST; it ends at the program whose TGT is stored in data area FIRST.

i

R A S U Uy R PRy S ——

L
| *Compiled with the SYMDMP, STATE, or FLOW options.
L

Diagram 11. Doubleword Data Area Used by the TGT Address (ILBDDBG3) and STXIT
(ILBDDBG2) Routines of the Debug Control Subroutine

76 Diagrams

17 uoT3O8S

uot3lezZTURbIO Wexboxd

LL

*z1 wexbetq l

SOT3ST3IPIS UOTINOSXT SWIL-30s[qo Butonpoxd Io3 DButsssdoxd TTeIdA0

From INIT 3 }

From
Via COUNT
Linkoge Areo

(STOP RUN)
or

1LBDDBG2
o

ILBDABXO

-~

J

ILEDDBGO

Call
ILBDTCOO
if
COUNT

specified

ILBDTCO0

Initialize
for
COUNT
operations

ILBDCTI0

TGT count
chain pointer

orea

Count chain

Update
node
counter

1LBDTC20

|

Call

H8DTC30

KBDTC30

COUNT

specified

(D) Using node counter and
count toble(s), get total
of verbs executed on a
Pper progrom basis.

(@ Using node counter and
count table(s), write the
execution frequency of
each individvol statement
and upsdate the verbsum
toble.

(@) Using the vecbsum toble,

write execution
for all verts of the same
type (e.g., all ADD
statements.)

Note: See Diogrom 13 for
detoils of ILBDTC3?
operations.,

Verbsum
table

Node
counter
toble

WgI 3o A3xedoag - TRTISIBW POSUIDTI

Licensed Material - Property of 1IEM

LEREL)

|

SNOUNDIA NIA

?

ANNOD WVNAQ

C: 1=

INNOD Jivis

o3/

$DLSUDIS U]
A 2190IN293

UIUBAOW DI

AN3OT

“00Z 51 SHUPWRIDIS PaA [0 §0 RIOHNKXS

[oi0) *wosBoxd a4 ut 53eA 3|qEINIIND

$Z 910 219Y] “FuoU Jayio Ay ‘sawyy

23244 poinDex® 51 YoM 30 0 *wosbaxd

344 Ul SauRIN 14IDDV RO OW} 310 24y

IO PAINSIXD 51 4O\ JUIWRIDS L4300V

wo 5; 333y woaBoxd JOFOD © U1 GO PO O
NOUVALSaTI

]

e e

(utoy) junco)
24qeL 4unoD
apoN
L3OV V %
Piom 4O $52uppo yibuay
919o x4 G | paom qiaA
2901 qien

R

US|

FWAWON INIWALVLS

SHIA (onpinLpo]

20D oA 1d 30 oN | ocoN | wew | a
WON-3NPIAUG Polg PR Ayuz

390) 0o

l Diagram 13. How Tables Are Used to Produce Object-Time Execution Statistics
78 Diagrams

FLOWCHARTS

FUNCTIONAL SYMBOLS

tt*#tAl‘t#####.‘#

* PROCESSING
: BLOCK
*

rERENE

EAL RIS 2222 A2t

%,
Bl *.
¥ *,
.* DECISION *,
* BLOCK « *

"‘*Cl*#“t"i‘
ENTR OR
:TERMI&AL BLock :

PR TR R L L

FADLERRE KRS
MODIFICATION #
* BLOCK *

* *
LIRS 2

ARMEL¥kbk kb b hEdk
*INPUT/OQUTPUT *
BLOCK .

*hkk ke hhkrkkkkkk

FERFRFLSEER R SR e kS
* *
B e I
* SUBROUTINE *
* BLOCK :

*hkkkhkk Rk ek Rk kk

HRRSRGLERSR R R R
** **
#* PREDEFINED ##*
» PROCESS **
** ¥
* **
ERBERESRRREEREREE

ON-PAGE
CONNECTOR

OFF-PAGE
CONNECTOR

*REFBIRKBEBEERR
*
: HOURSRTN :
C T T e S T2
hEw
* *
* C3 *
* *->
ok
BRANCH v
FEEFFCISRRNRRk RS
#%——-——UPDATE----~ *
* *
* *
* *
* *
AEERRRSERRSARER S
*ERE
* *
* D3 *
* *=>
L]

R DIRkkEbR kT kE
*

Licensed Material

THE TERMIgAL BLOCK IS USED

B3 SHOWS
POINT NAMED HOURSRTN.

THE INSTRUCTION AT LOCATION
BRANCH CALLS A SUBROUTINE
PDATE I1s

SM,
NO FLOWCHART OF IT IS PROVIDED.

ON-PAGE ENTRY CONNECTOR.
ICHES TO

PAGE OF THE FLOWCHART.

OFF-PAGE ENTRY CONNECTOR.

A BRANCE TO LOC!
APPEARS O ANOTHER PAGE(S)
OF THIS FLOWCHART.

THE INSTRUCTION AT LOCATION GOTO
CALLS A SUBROUTINE NAMED SUBN!
THE LOGIC OF SUENM IS SHOWN ON’
CHART YY STARTING AT BLOCK.Al.

ON-PAGE EXIT CONNECTOR, CONTROL
BRANCHES TO BLOCK D3 ON THIS PAGE
OF THE FLOWCHART.

THIS_BLOCK REFERS TO A ROUTINE
R PROGRAM THAT IS DOCUMENTED
IN SOME OTHER PUBLICATION.

OFF~PAGE EXIT CONNECTOR. CONTROL
BRANCHES TO BLOCK Al ON PAGE 2
OF THIS FLOWCHART.

CONTROL B§ANCHES TO AN ENTRY

*
* *
* *
* *
* *
EZ T2 LSS L2222 2 2]
*EE¥
*01 *
* E3 %>
* *
*k% v
E3" s,
¥ *,
el pE
. .
*, ¥
*
GOTO YY01A1
ARBREFIRFERSRRERE
*SUBNM
L I NS N D T S Y
* *
* *
* *
ET RSS2 22222 23
P E— -
LINE JUNCTION
L ..
i 63 .
SEREGLERE RN RS N . '
E .* .
: RETURN ape B P —
TII LT R “x. "
[e] *, % *¥%
S * * *
s * D3 *
I * *
Whee—> 1113
G
v
R kRIS R RRE R R
** *%
#% EXECUTE **
¢ UTLXYZ *#*
* % *¥
*% *¥
E22 T TS A2 E2 2 2L 32
v
33" s,
SRR T2RRR AR RERH ok 'S
* * o*
« RETURN P S— . .
* * *, .
ESITII SIS 22 8) *, ¥
*, L% T L]
CONTROL IS RETURNED T * %02 *
SOVARIABLE POINT: (FOR * A1%
XAMPLE, TO THE POINT *
AT WHICH THIS ROUTINE *
WAS INVOKED
XX02A1
R RK3F ek kk®
*
* TAXRTN .
* *
LTSS 222222 2]

HART XX, PAGE
2, STARTING AT BLOCK A

Section 2: Program Organization

- Property of IBM

79

Licensed Material

Property of IBM

Chart CA. Sort/Merge (ILBDSRTO0, ILBDMRGO) (Part 1 of
Routine
NI Y ["ENTER FROM
* COBOL SORT
+ ILBDSRTO P AT
FEERFER KRR REEE TTmmTET T
*hk%
* *
THIS SYSTEM PROGRAM CALLS * B3 *
THE E15 ROUT D E35 ROUT ¥
ROUTINES OF ILBDSRTO FOR AN
RESUME EVERY RECORD. CONTR
ARERRBLARRRR AR RETURNS TO ILBDSRTO'S MAIN AEERERIRARERER RS
* * ROUTINE WHEN THE SORT HAS ** *
*# SAVE _COBOL * BEEN COMPLETED. _TH. ** DOS SYSTEM *
* REGISTERS * YSTEM PROGRAM ALSO CALLS |—---%*% SORT/MERGE *
* * ILBDCKPO TO T A ** PROGRAM *
* * CHECKPOINT AND RETURN AT *
ERRRRRAERRRRRRERE EXITS E11, E21, AND E31. EEEEERRAARRRERRE
TSTFILSZ .*. v
c1l * ERRRRCOFRRRE R R R *ERERCI oAbk E
* ADD SIZE * *
¥ FILE SIZE *, YES * PARAMETER TO * * STORE SORT
*. SPECIAL o ¥ >3 * SORT! * * RETURN CODE
-gEGISTER.* : STATEMENT : :
T P TTI Iy R kR R
*NO
<
TESTMODE . *.
Dl . wkahkkDIhkokh R b kRE v
% INCLUDE MODAL * *EREDIAREREEE RS
o* MODE-SIZE *. YES * LENGTH IN *
*. SPECIAL —————D% RECORD * * RETURN
*, REGISTER .‘ * STATEMENT * *
* * ERFXEREEERSEREK

¥
*NO

<:

EERRERRRRR AR Rk kS

TESTCORE__.*.
E1 *,

o * CORE-SIZE *.
SPECIAL .
* REGISTER o*

*,

*,

FERERE2ER AR R R TR E®
* *
LADD_{STORAGE=' *

PARAMETER %
*

t
REREERRREERRERR R

“i0
<
MOVECORE _ _V
*EkERFIEEERERRERS

* REPLACE *
‘INPT/OUTPT ROC*
ADDR IN LIST #
WITH SUBROUTINE
ESSES *

PO -
v
k. CAQ3A1
Gl %, EERRAGO RN RRRRRRER
* *. *ILBDMRGO *
¥ MERGE *. -.-t-#-‘_ _s_t_t
*, STATEMENT .#—e—eeea_
. *.* :INITIALIZATION :
Tl .*. LER IR IS I L)
*NO
<
o,
H1 . EREARH2ARR AR RR AR
oF *, * *
.* SYMDMP IN #*. YES * GET SORT LOAD *
*. EFFECT o¥—w——we__>% POINT ADDRESS *
*, ‘.‘ ‘ FROM ILBDDBGO ‘
ERE ct.t#ltttt#ttot‘#
*NO
NOSYM
ERRERTIRRRRR AR RS
* *
* GET SORT LOAD *
: POINT ADDRESS :
* *
AR R
<
LOAD v
FERARRLA KRR RRN S
*

LOAD_ SORT/MERGE#
* PROGRAM :

* *
AEEERERRERERERS R

kR
> *
*

80 Flowcharts

TO COBOL PROGRAM

-
*
*

*
*

*
*

*
*
*
*
*
*

*

*
*
*

Main Routine and E15ROUT

T VR T PR [ENTER FROM E15
* EXIT OF SORT/MERGE
* E15ROUT *————{PROGRAM VIA E15
* BRANCH TABLE
whssnnnnnnnnnns L T
o,
B4 %, SEEBRBSEERERRRAR
¥ *. ‘GENERATED COBOL‘
+*FIRST TIME *. YES === -k
#. THROUGH E15 .#e—wee- -—>‘INITIALIZE INPT*
. ROUTINE . PROC EDUR OR_ *
, ¥ ‘OPEN ING FILE
., % SRRV IRINGL IR
*NO
R
->% *
* HS *
* *
ek
TSTINPRC .*.
cu . HRRARCSERR R AR RREE

*,
INPUT *, YES

+ COBOL INPUT *

.+ #-~-PROCEDURE-=~ #
«. PROCEDURE _.#-———————>*CONTROL RETURNS* .
.. ™ « AFTER RELEASE *
, . * TATEMENT _ *
*, ¥ LRI R PR S L L]
*R0
E L L]
* * —>% *
* Dy * & HS *
- > * *
kS L2232
USING *,
D4 *, AR EADSHERRRRIREE
* % LOOPTHRU 70
+FIRST TIME'*. YES TEST TYEE OF ¢
* . THROUGH USING. ‘—-————-->‘DTF S) LUG IN*
. ROUTINE. . ﬁ S, GET#
. . 'BUFFE ADJﬁEss
*, % “‘t““i.“#‘.“
*No
<
READ ., COMCLOSE
E4 *, SREREESE RS TR R AR RN
. .. *
.+ END OF '#. YES * CLOSE_USING *
*. USING FILE .#————eee-D># FILE *
*, o *
*, ¥ * *
*, % LI T RIS LSS 22 L]
*No
RETAD v .*.
SRR FUk kR dh bRt F5 *,
. ..
. . NO .* ALL FILES *.
READ USING FILE <m=m===c. —-#. HAVE BEEN _.*
* * *, o
SEERERRRR R ‘x, %
*YES
tt"tGSt“‘tt“"
% SET CopE T
#CLOSE EXIT £is *---
.‘.““"‘0““““" ‘
* *
ey * R4 *
* * * *
* HS #* Ty
* -
akn ¥
Hs s,
NO .+ USING '*.
[*. SPECIFIED _.*
*, o
'R %
*, ¥
*YES
INPFINAL .V GOCOEOL
t‘i“Ju#"#“‘t“Q RS R TSR RERRAERRR
* * *
STORE RECORD # * SET USING #
*POINIER TNCSORTS * SWITCH *
*PARAMETER LIST % * :
"'0'#‘."“‘#‘8’ REERSEEERRERRERRS
*EE% *EER
- * —>* -
* K4 = * D4 *
* _—> * -
e L2 1]
A’
EEREKY SRR R RERE RETURN IS TO
* . . SEQUENTIAL INSTRUCTION
* RETURN $emem ER Els’ 1
. 8¥SThy SORT/MERGE PROGRAM
FEEREEERER AR SRS

Licensed Material - Property of IBM

Chart CA. Sort/Merge (ILBDSRTO, ILBDMRGO)(Part 2 of 3): E35ROUT and CHKPOINT Routines
P T T T — Eﬁ;ﬁﬁ-Eﬁaﬁ-Eag_Exxr FRRKALKRRRRRRRE
* * F_SORT/MERGE PROGRAM
: E35ROUT : VIA BRANCH TABLE : CHKPOINT
EREREEERRRREERE T R R AR Rk
- *.
Bl *, ltlttBut**#*tt*tt
o * *, BRANCH IS TO GENERATED *
.*FIRST TIME *. YES E_IN COBOL PROGRAM ‘SAVE SORT/MERGE*
*. THROUGH E35 ,#—————-— EITHER TO INITIALIZE PROGRAM
* ,ROUT RTNE.* OUTPUT PROCEDURE_OR * REGISTERS *
*. ok TO OPEN GIVING FILE * *
*, % P I e T
#NO
k. TSTLAST ¥,
c1 *, c2 *, FRRRECURERRER AR %K
¥ * +* LAST «*. * *
.+’ _OUTPUT *. YES .*_RECORD *, NO BRANCH IS TO INSTRUCTION *LOAD_ SUBROUTINE#
, PROCEDURE . #=w——e—ue >%, RETURNED BY .*--—-]|IN OUTPUT PRO * ILBDCKPO *
*, ¥ *.SORT/MGE .* FOLLOWING THE RETURN » *
. o *. PGM .* STATEMENT * *
*, % .. ERERR R R R R Rk
*NO *
YES
"BRANCH_IS TO AT END
ROUTINE IN OUTPUT
PROCEDURE EDO1Al
___________________ HkRERDYkE Rk ko
*ILBDCKPO *
______ t-t-t
:TAKE CHECKPOINT:
AR R AR
V
GIVING - Y
EEERRER KR A REERAR e REURREERRRRER
. * FIRST *. * * * *
. TIME *. YES * TEST TYPE QF * * RESTORE *
‘. THROUGH ¥ >* DTF AND GET * * SORT/MERGE *
. GIVING . *BUFFER ADDRESS * * REGISTERS *
* .RTNE .* * *
x, ¥ tt‘ttttt‘tt#“ttt ek hhhkkrkhkk %
*NO
<
WRITE . ¥ CLOSEGIV
EEERRP2RE R Rk hkkd /
* CLOSE GIVING * FRKKFUFRR AR R RN
- * FILE AND SET * * RETURN TO *
, >% CODE TQ _CLOSE * * SORT/MGE PGM *
.SORT/MGE . * E35 * * NEX *
*, M . * * * AERERRERR IR RE
. . LRI PR R R LT 2
*NO
LT
—>* *
* K1 *
* *
T

GIV
tttttezttttttt‘*t

* TEST WHET!

'RECORD WI#L FIT:

>+ AND I
:TRUN&ATE BUF#ER:
ERES IS RS2

PUT v
EANHIRERRERNEERE

*WRITE GIVING *
FILE RECORD

EhAERERERR kR Rk RR

*Fh AR TIEEEERARRRE
* *

* SET CODE TO *
: DELETE RECORD :

* *
Rk Er ke bk rn ok

OUTFINAL
FEr T SR LIRS E T A

*
: RETURN
EEERIRERRERERE

RETURN IS T

* SEQUENTIAL INSTRUCTION
*—-——{AFTER EXIT E35 IN

* SORT/MERGE PROGRAM

Section 2: Program Organization 81

Licensed Material - Property of IBM

Chart CA.

R L Y WRES LS LS
* *

: ILBDMRGO
R R R Rk kR

*

B1 ™ .

. *,
«* INITIAL- *, YES

Sort/Merge (ILBDSRTO,

ILBDMRGO) (Part 3 of 3): E32 Routine

1.
OF

ENTER FROM ILBDSRTO

AT INITIALIZATION
* ——————|2. AT EXIT E32
* PROGRAM VIA BRANCH

SgRT/MERGE

ES
L e

INITRTN
La b E2) : VA AT I LR L L LS
* * *hkkkBIkkrrrkrkk
*INITIALIZE OWN * *
~~>¥SAVE AREA WITH *————me—>¥% RETURN *
* POINTERS * * *
AEEEREE R R AR
wkkk kR kR kdokk
TO ILBDSRTO v
POINTERS:
1. SD BUFFER AD]
————————— 2. COBOL USING EXIT R
3. NUMBER OF INPUT FILES
4. ADDR OF PH3 BRANCH TABLE
5. ADDR OF ERROR EXIT FOR VSAM
INITFLS INITLOOP
*EED2RERES BRI kk *EkFADIe ek bk kkEk kR RRDYRE R Rk bR REk HREEADSEREREE R TRk
* SAVE DTF' * * SAVE TYPE OF * * *
* * BL'S IN OWA * * DTF, RECORD # *INSERT EQF ADDR*
—~=> ==-COBOL PGM- >% AREA IN ORDER *——-———-—>%FORMAT, BUFFER *¥—-—————v. D% IN DTF'S *
* OPEN_USING + POINTER FOR + * *

*OF USING FILES #
* * * EACH F *
B L L e e T

H FILE * *
DT T e P T T

*. IZATION .
* - -*.
. %
*NO
v
p1’ s,
. ..
+*FIRST TIME *. YES
.?HRU E32 EXI?. -----
Tl a
*, %
*NO
<
E1T s,
*

. *,
<*EOF ON ALL *.
* FILES *.

READ v
*ERFLERkE kR kR kk
READ RECORD
FROM FILE
REQUESTED BY

* SORT/MERGE *

LRI LR L ST RS2 2]

*

*.
*.

COMRTN v
kb
ORD %
CODE TO
RECORD
RAMETER

LX X

LR F e L)
*kkk
*
Jl *
*

e

> [<

b,
*

:tttthtt#tttttt:
SET CODE TQ_ *

*
_~->:CLOSE EXIT E32 :

* *
EA A SRS S S L2 22]

P
%
* J1 %
* *
ok
EOF COMCLOSE
AREGER R KRR ER R FRRRKGIRRRR AR RE
SET CODE_EOF ON¥
* * * THIS FILE *
—_—> CLOSE FILE A -—~=————- >*#UPDATE INTERNAL*
* * : EOF COUNT :
LT T TR P P T P T YT

EET LY

v
ARERTL R R
*
* RETURN *
* *
Shkkkkkkbkkkkkk
TO SORT/MEKGE

82 Flowcharts

Licensed Material - Property of IBM

Chart CB. Moving Characters (ILBDMOVQ)

HRAEPDR R AR Rk AN
*
: ILBDMOVO :
ARk Rk Rk
P
B2 *, RETURN
¥ *, CHEABIRFERERRRR
. *LENGTH LESS*. YES * *
*, THAN 1 K > ¥ RETURN *
, o * *
*, o+ SErkhkhkkRkkRkk
*, %
*NO
%,
c2 *, HERERCIRRARRRARRR
. *, * *
% LENGTH *. NO * MOVE ALL *
—->%_,GREATER THAN .*%-—-————->% CHARACTERS *
*, 256 . * *
, o * *
*, L% EE TP TP PR T T
*+YES
GT256
EERRRD2R ARk ARk
* * HRRADIRFERR bRk
* MOVE 256 * *
: CHARACTERS : : RETURN :
* * P T e T e
FERERERERAR R AR
v
AERAAE2RF R R R R AR
* *
* SUBTRACT 256 *
: FROM LENGTH :
* *
EERRRERRER R ARk
v
Py s T e
* *
ADVANCE SENDING

~-—* AND RECEIVING *
: POINTERS *

EE RS E S EL R S L]

Section 2: Program Organization 83

Licensed Material - Property of IBM

Chart CC.

RN Ry T

*
: ILBDSEMO :
FEE RS RE

NOTFST ¥,
B1 *

Segmentation (ILBDSEMOQ)

[ENTER FROM_COBOL
SEGMENTED PROGRAM
GO TO STATEMENT

LRSS CEES LT L2
* *
: ILBDSEM1 :

AAER R RR AR R

. EEEERB2 AR EEEHERIHE SRS ERRE
- *, * * * CONVERT BL *
NO .* *, * SET UP INPUT NUMBER AND *
——=*%*.PN IN OPERAND.*¥<{~———————% REGISTERS Sttt *DISPLACEMENT TO*
H) ot : : * PN ADDRESS %
P R R P T T T
*YES
FHERRCLRRRE AR R
* *
* TURN ON A PN *
* SWITCH *
* *
« *
FEEEE R R
OP v
AERERDL*R AR R R
. *
SET ENTRY POINT
—->% ADDRESS AND #
: PRIORITY NO.
ARk
SEGLAB1 o,
. Tx
. YES
* PTY=0 o Hmmm
Tk, o+ &
*, . * kR
*NO * *
* K2 *
* *
L
-‘-
Fl *.,
.*SEG OF *.
YES .* DEST
——=—%, ALREADY I ¥
. VIRTUAL .*
.STOR .
*, %
*NO
SEGWT o ¥, JAO1AL
FRREAGLEF kR RRkk G2" s, FEEERGIFRARRRREES
* * o* *, *ILBDDBGQ *
LOAD SEGMENT AT .* SYMDMP IN *. YES ok kK k¥ k¥
* DESIRED ENTRY *———e—eee_ >, EFFECT e¥——emeee>% INITIALIZE *
* POINT * . . * SEGMENT FOR *
. o* * DYNAMIC DUMPS *
ERREERE AR .ok PRSP et e -
*NO
<
INCORE oEL ¥, ¥,
*, H2 *, H3 *
+*SEGMENT* . o* *, +*SEG OF #
.¥_ OF DEST *. YES o *. NO . ORIGIN= %, YES
. INDEPENDENT .————m—w >#%* PN IN OPERAND. *—cemeeeo >%. SEGMENT Ol L
*, Lk *, ¥ - DEST -
*, . *, . *, ..
, . ¥, ¥ o o ¥
*NO *YES *NO
<
INIT
ERRRRT2RRAERERE RS
* *
* INITIALIZE *
Kmmm e e * TINDEPENDENT *
: SEGMENT :
FRABERRAS RN R
e
* K2 *
T
EXIT1 v
P SRR LI] EXIT
* * ERRKKDH AR R TR
* UPDATE CURPTY * *EXIT TO SEGMENT#*
: CELL :——-—-——-):OF DESTINATION :(

* *
SEEEREE R RNk

84 Flowcharts

FHEREFEEREERRERE

ENTER FROM SEGMENTED

(
PTION IS SPECIFIED

Licensed Material -~ Property of IBM

Chart EA. Display (ILBDDSPO) (Part 1 of 2)
EEESP2ERRREECED
*
: ILBDDSPO *
HEREAFEFE R RR R TS
v
LR 2L S: Wil “ﬁi"ti
‘SAVE REGISTERS, ‘
DEVICE CODE.
t SET BIGSW ON t
Teseserersssaness
een
01 *
* C2 3>
* *
ekk v
UNITCK ., N
c2 *, cu *,
o+ 'R . .,
. *. NO .*
-->*. SYSPCH % >*. CONSOLE
[.. " . e
T3 *, Lk ¥, .¥
* * *YES *YES
*C2 *
M *
*EEh
UNITO1 o*, UNITCON ¥,
AEEDLERER R AR R D2 . pu” s,
. *, o* *,
NO . o* *
. OPEN = Kememmeee *, OPEN .* ‘.*PIRST CALL ‘-‘———
T, ot T, . l
LRI RS R R L) *, % *, % *hEEs
*YES *YES *02 *
* Bl#
* &
*
UNIT10 o*, 1A2
E2 . HRREREIH R AR R R SR phanas heddIETLId
ok * * * *ILBDDSSY4
. *. YES % _POINT TO * bt - PP
%, FIRST CALL .%=—--w-—=>* BUFFER, GET # ¢ INALIzE 4
.-, ot ' RECLEN - b b CONSOLE *
RS AREERRRAER R AR
*
renn No hee
* *
* F2 * * F3 #*
M —> >|<
L aidd L3l
UNIT12 <%, DISPO1 ¥, EXHIB
F2 'S . EESSRTUE AR R
¥ -, o * *, * *
NO *, o *, YES * SET EXHIB *
~——%. SYSPCH i ~=>%. EXHIBIT _.%-—m————=D>% T TINE
. ¥ *, I * SWITCHES *
.. o *. .. M
*, % *, % P T TR e
*YES *NO
*hkk
01 *
* G4 *->
«
b
v N
ERRERGFRRR NSRS 3~ s, SRRRAGLERRRR RS
. * . ., * *
#MOVE_PROG/ID TO#* . . NO $PREPARE EXHIBITS
* BUFFER . . TRACE L $STATEMENT DATA
¥ * - Y 3/ FOR WRITE © *
Ty e, oL e SEERE AR
*YES 02 *
v * B3*
> .
»
UNIT15 ., .,
*, H3 ' P I e I
.* *, . * * *
¥ *, YES YES * *
‘.‘FIRST CALL ‘.*-—-—> *, RESET e : SET UP EXIT :
s, 3 “u, 2 L * M
*, % *, . * *hkk® EEA TSR IS 22 22
*NO *NO *02 *
* C2% Ty
. ¥ D% *
* «C2 *
* .
re
EB0O2A2
SRR T2ERRERR R RS s
* *
* ILBDDSS7 * * MOVE ITEM TO *
- - e o o o * BUFFER *
* PUT SYSPCH * * :
EAE I 2222 L] HEEFREFFERSRNRER S
sEkE
—>* *
* C2 %
* *
s

Section 2:

. *
->%, FIRST CALL
* *

D5°

¥
+* AVAILABL]

«. BUFFER =

* ot e

YES

e
* *
* F5 %
* *>
Rk
E|
SEIFSkEkRkS

ILBDDSS5

OPEN SYSLST *
LR S e i d]

*
*

Program Organization

85

Licensed Material - Property of IBM

Chart EA. Display (ILBDDSPO) (Part 2 of 2)
k& kR
%02 * %02 *
* Bl #—— * B3 %
* *
EL L] XKk
EB0O2A3 TSTPRM %, .
*¥ KBl Rk Rk kS *, *ERKEBUE R RS EREERR
ILBDDSS6 . .. - P
------------- .* %, YES * SET RETURN _ *
DISPLAY ON ~~>#*_VARIABLE DATA.*————-—— >*ADDRES TO VARET*
* CONSOLE * [. o * *
*, o * *
LR LRI S22 2] k¥ *, ¥ L2 TSRS S L 2]
* * *NO
TT1] * B3 %
*02 * * *
* 02 *—m FTIL]
*
*kE®
DMPBO1 N DIEXIT v V_ EBO1A3
c1’ s, FEEARC2R R AR AR A FRARRCIHR AR R ARE FAEERCUREEA R AR E
.+ . * * * * *ILBDDSS8 *
YE! *TURN_OFF BIGSW, * *+ SET RETURN * b it iut-ie S
. LASTSW ON . —>* RESTORE ' * * RDDRESS TO * *LOCATE DATA TO *
-) * REGISTERS ¥ * DILET * *"BE DISPLAYED *
.#. _‘. R R RS RS S22 L L ER ST RSS2 222 22 EEEEEREEFRREERERE
*No
EBQ1A3 VARET v
HEREEDIRERRE R R R K ER L oSS E S 22 L2]
HREAD2FRERRRRRE *ILBDDSS8 * * *
* A Kk bk Kk k% *LOCATE VARIABLE*
* RETURN * *LOCATE DATA TO * * DATA ITEMS *
* * * BE DISPLAYED * * *
EEEES SIS RS L 2] * * *
Ahb ke kR Rk *hkekrkrhhhhkkidks
TO COBOL PROGRAM
>l
DILET
DILOOP . TOBF
E3 *, FEREREUr TR kRN Rk
¥ - * *
ox *. YES * MOVE DATR TO *
WILL DATA FIT:#=—c—m——v >+ BUFFER *
*, T * *
. o « M
P PR T T ey L]
+o
N k.
F3' s, Fu e,
¥ * ¥ *
.+ NUMBER *. NO . *. YES
*., EXHIBIT (#-—- *. BUFFER FULL_ .#---
s, o Tx, o
*, 4 EEEEH *, . FTTT Y
*¥ES %01 # *Ro %01 *
* C2% * C2%
* %
*
NXTPRM o,
ARG HRR RNk G4 *,

86 Flowcharts

*PRINT ON NEW *
LINE

RS R 2L LS

%
‘-‘ EXHIBIT

HY *,
* *,

o* *. NO

'-gERMINAL CODE-*-——
“x. 0 %
*, L% FTTT]
*YES * *
* B3 #
* *

*hEH
HERRE TSR AR R RS SRR
* *
*
SET LASTSW ON :

*
EERRRERES AR ERRRR

EX X 23

Licensed Material - Property of IBM

Chart EB. Optimizer DISPLAY (ILBDDSS0) (Part 1 of 2)
YN R T TR EETE) VIR R PR LS HEREATRR KRR ARk
* * *
: ILBDDSS0 : : ILBDDSS4 : : ILBDDSS8 :
FREARREIRE AR EE ERRRRERARRE AR HRRRARRRERR AR
K
* *
B3 *
>
AkkK
TSTPRM \
EREARDLRERK AR K EEREAPIRKRRKFRREE *RREEDIRERARRR RS
* * * * *
*SAVE REGISTERS, * * SET UP BUFFER * *SET UP POINTER *
* DEVICE CODE *--ww———->#% AND LOGSSW * —->% TQ ITEM TO BE *
: : : CLEAR BUFFER : * DISPLAYED :
R P T L Y TP
v v
o*. ok, CONVRT o,
c2 *, c3 *, FEEFRCLRFRE RN E RSN c5 *,
¥ *, ok * * * oE *,
o* *, NO +*CONVERSION #*. YES *CONVERT AND SET* ¥
.'l BIGSW ON ‘. ————— *, NEEDED o -—>: LENGTH *ene ——>‘.‘ BIGSW ON
Tx, K “x, L * * T, o
*, % €, L% P P TR *, L
*YES *NO *YES
*,
D3 *, v
ERRAD2 AR RNk * EERADUREERE R REE ERARDSRRRERR RN F
* * * * * *
: RETURN : *.* -—D% RETURN : : RETURN :
T T 0 REREREERERE R ARE T
. Lk
TO ILBDDSPO *NO TO ILBDDSPO TO ILBDDSPO
v
AR HREI AR RRAKAEE
* *
* SET LENGTH OF *
* ITEM *
* *
* *
ARRRARR R R RS
v
F3~ T+,
o *, RRERFUEERRRRBHE
o* *, YES * *
. BIGSW ON P > RETURN *
, o * *
*, o LRI R R L R
o« ¥
*NO TO ILBDDSPO
<
MVTOBF v
FERERGIRERRRE KKK
* *
* MOVE DISPLAY #
:ITEM TO BUFFER :

* *
AR RRRERE R R TR Rk E

H3 .
o ..
ok *, NO
. LAST ITEM .——-
* *

e

*, *
*, L * wka
*YES * *
* B3 *
* *
hEE
¥,
J3 *,
. *.
YES
*. CONSOLE e
. R l
¥ L)
+Ro %02 *
*xkx & B3k
—>%02 * * %
* Bl *
* %
Xk

Section 2: Program Organization 87

Licensed Material - Property of IBM

Chart EB.

ITTTI S ETTTT P TS

*
: ILBDDSSS :
FREABRERERR RS

*Eh®
*02 %
* Bl #.>
* *
*E%E
..
Bl *.
.* *.
YES .* *.
-~—%, SYSLST OPEN .*
[., o
.. .*
*, L *
*NO

EEACLE*BkRESE SRS

* *
OPEN SYSLST .

LA R LT S22 TR L]

PUT ..
D1 .
*

. R
. L.
*YES

R AR AT Y 2]
*
. RETURN .
* *
HESLERREES RN

TO ILBDDSPO

88 Flowcharts

% T
~->%, BIGSW ON o o
« .

LI Ty VI T DTS

*
: ILBDDSS7 :
L L T

v
HEER2ERRERR IR RS

*PUT TO SYSLST *
—->. OR SYSPCH

FEERESEREREERREE

Optimizer DISPLAY (ILBDDSSO0)

COl

(Part 2 of 2)

FERRDTELEES AR

* *
: ILBDDSS6 :
SEEEREREREISRES

12534

02 *

* B3 %>
e
*ed®
NSOLE v
***#4B3*
*

* SUBTRACT *
TRAILING BLANKS
* FROM LENGTH :
BESEEREER R LR SRR

LR A2 L 1Y
*

v
SRECIRESEF b A bR E

* *
‘EXCP TO CONSOL?

FREESRESREEERENE

>

RET

URN v
AERSUDIHEERSRRES
* -

*
: CLEAR BUFFER

“Hew

*
SEEEE RS S SRR I RRRS
..

P *
*. BIGSW ON P
*, *

v
HXEERFIRASRRARES

RESTORE
REGISTERS

EXY XY
LTS

* *
SEEEERERRSRR RN RS &

v
HEFECIERBk e R E S
* *
H RETURN :
(AT T IR 2113
TO COBOL PROGRAM

FEESEUS RIS ES

>: RETURN

SRS XEEES A S TR S

TO ILBDDSPO

Chart EC.

ERTLYNERTIZ LS
: ILBDACPO
BERERPRRRRE AR R

SETSTOP
*EERRCLAFIRERERRN
* *

*
: SET UP CCW'S

* *
kR R R R AR

\
ek D] #kRR bR E RS

* WRITE STOP *
LITERAL

hkkkkhkk R r R kkd

v
FRRELAFER R RR R

* READ - NO *
. DATA TRANSFER‘
LT R T e

L 22
-S>
*

Accept (ILBDACPO)

AEEREN2BREREERE RS
* *

* * *
#om———ee~=>*%SAVE REGISTERS #
* * *

* *
kR kb kk bk hky

AR AEERRR RN A E
* *

* POINT TO DATA #
:NAME OR LITERAL:

Licensed Material - Property of IBM

* - *
FRRRFEEFEF SRR SR NS
Lx. S
c2 *, c3 *, *EECUdESsE* bkt
. ¥ *, ¥ * .
.*" WHICH #. SYSIPT o*
#. FUNCTION _.%-- —->#%. DTF OPEN OPEN
*, ¥ *, " *
.. .+ ., .+
*, & *, % EIES TSR LIRS R]
*ACCEPT *VES
FROM
CONSOLE
<
CONSOL v ACCPO3 v
EX I I Al 22 RS T2 T] Ak kdDIe kbbb b ke k
* »* * *
M * * SET LOGICAL +
* SET UP CCW'S # * RECORD LENGTH *
* * * TO 80 *
* * * *
LIRS 2SS L] kb Erk bbbk k bk
'
v . ACCPOY
XREE2 R bR ER KRR E3 * *EEFELd R R bbb et
o ¥ *, * *
* .* *. YES * PAD BEYOND 80 #
—> WRITE #.DN LEN GT 80 .%-————-—n >#CHARACTERS WITH#*
* ., .. * BLANKS *
*, o
LA 2222222 1) *, ,* LRSI 2 2222)
*
TEE* No
* *
* F3 *
* >| <
*EEE
J
EREF2RERF SR RE R RS SEEFINEESEE R B RS &
GET (FROM *
READ SYSIPT) |
FxFrhb bR E bk Rk LRI RS RS 2 RS L
(221
* *
* Gy *
* "
sk
Lx, v LWRCASE
G2 *, FEEERGIHRRERRBRRD ERRERGUEERE R E RN
. .. * . * TRANSLATE *
o . * MOVE FROM _ * * LOWERCASE
*. SUCCESSFUL _.%-—- *BUFFER_TO DATA * *ALPHABETICS TO *
. .* * NAME * * DER|
*, . * * * ALPHABETICS #
*, ¥ TRk HEEBERERRERRE RS SHEEERRBRFEE R R kRS
*NO * *
* G4 % k&
* * *
*kEk * Hiy #
>
*HE®
Sx. accpo2
:ttt‘ﬂz*t#*‘#ti‘: ‘H3 '.‘ :‘#t‘ﬂ“‘ i““##:
CLEAR DN TO * .*LT 80 _BYTES*. YES RESTORE *
—_— BLANKS : I LEFT INDN l#——--——--> REGISTERS *
* * “x, Sk * *
(R R 22222 222222 2 1 *, % FEEEREAR RS SRS
*}0
ek TIIkkeehbkohdd !
* * EERETUEERSRBERE
* ADVANCE DN % *
: POINTER : * RETURN *
* * RSB ERRRRREE SRS
L2222 22T S
*kkn
- %
€ F3 %
* »
L1321

89

Section 2: Program Organization

Licensed Material - Property of IBM

Chart ED.

AREERL KRR R AR
* *

: ILBDCKPO :
AR Rk Rk ok

4
Ak R kB kkdok ek Rk k
* *
* *
:SAVE REGISTERS :

* *
ok k ok kkkk ek k

v
HRERRCL*

* *
SAVE PARAMETERS
* FOR SORT *

LA R 2 L)

* *
ERE AR RS2 222 22]

v
ARk RRDL Rk Rk Rk
s *

GE' *
*(DTFPTR*I) AND *
{DTF

RN 4

FhErF Rk Rk Rk kR k%
GETPTR v

ELEZ SRR LA LS

* *

* *

-->% GET DIFPTR %

* *

hkkkk kR kR RkE

G1’ “x.

*,
k) DTFPTR *,
. POINTS TO .
* DTFMT .*
*, o E
*, %
*NO

Checkpoint (ILBDCKFO)

<

NOTDTFMT
#t#t‘ﬂltt#*#t‘*tt

*GET ADDRESS OF *
: NEXT DTFPTR *

* *
ko kk ko kk ek

NO ‘th ADDRES
—, ET (DTFPTR-~ N)
R
*YES

BRERRK] R kkk kR Rk %S
*

RESTORE *
REGISTERS :

EE X T

*
RIS P LS E T

90 Flowcharts

*
EEE TR R T T

* *
ER R RS LS L R LT

EEFRD DR ARk RRE AERRATRERRERRRE AERRDUERER R R
* * * * * *
: ILBDCKP1 * : ILBDCKP2 : : ILBDCKP3 :
Rk khkkhkkkk R kR kkokkokR kR kk kR ERR R RRE
TINITIALIZATION “TAKING THE TSORT “RESTART
CHECKPOINT ENTRY
v v
tt¢$*32‘ ##t#tttt *hRRhkRIkkkrrkkhkk ke EERUkRF Rk kkkk
* * * *
STORE REGISTERS * * * RESTORE -~ *
*AND PARAMETERS ‘ :STORE REGISTERS: : REGISTERS :
* * * *
tt#tt#ttt#####t#t Rk kkkkokokkkkkkkk REkkkR kR kR R Rk kR
NOTQPEN v 3
tttttcza tttt*tt# tt#atc3t t*tttt#* v
ERRRCURRIRRRRRE
* GET ENTRY IN # *INITIALIZE SORT' *
——>‘ TAPLIS :< ————— SWITCH : RETURN :
* P e T A
t#t‘*t“#*“tttt# i'l#lt##*ttt##t#t
E, XSSUCKPT _.*.
D2 *, D3 *, kkkhkDURkkkk R kkd
¥ *, ¥ *, * *
.* END OF *. YES . . YES * MOVE SORT *
. TAPLIST . —~—>%, SORT CALL .———————— >* PARAMETERS TO *
. . *, o* * WORK AREA *
*. . * *. o* *
*, ¥ *, . RIS PP P DT T
*NO *NO
<
¥, NOTSORT
E2 *, *RERREIR R R R RRkk R
¥ *, * *
NO .* *. *GET SYS NUM FOR*
(——*.‘DTFMT OPEN *.* : CKPT DEVICE :
“x, Y * *
L ERRARRRERRRERR AR
*YES
*t*t*?z‘#*t*‘*#tt AERRKP IRk ARk
* *
*STORE DTFMT_IN * * GET PHYSICAL *
———-*PARAMETER LIST * *UNIT USING LUB *
* § PUB *
ttt*#‘t#t#tt*‘#*# RERREER R R Rk
o*. ¥, OPENDTF
RERRRGIR AR R RN KA RE G3 ., G4 *, #ttttcst##t##ttt*
* * * *, ok *
YES *STORE DIFPTR IN* .* PHYSICAL *. NO NO ' MOVE_FILENAME *
———————— >¥ TAPLIST * *.UNIT IS TAPE .*«=———-~->*, DTFPH OPEN .*-—-—-——->*FROM PARAMETER *
* * *, o* . . IST TO DTFPH *
* * *, ok *, E *
PR e P Y *. % .. EERRE ARk Rk
*YES *YES
e RA SRk Rk
* *
* *
* OPEN DTFPH *
* *
* *
RER R Rk Rk
v
<
TAPEREC v
*#tttJ3# ttttt#tt
‘MOVL SYS NUM TO*
ECKPOINT
' MACRO :
ELTEIR S TR SRS T Y
v
ERRRRRIHRRRERRAEE HEERERUS R R RN E
AERRK R AR AR RN * * * * HERNKG R AR AR
* * * * RESTORE * * *
——————— >* RETURN : : ISSUE MACRO :-------->: REGISTERS :-»-—~———>‘ RETURN *
*
FEEARERRRRRR R *

EAA LR R EL L LS L LY

Licensed Material - Property of IBM

Chart EE. Open ACCEPT File (ILBDASYO0)

AR EATEE SRR AR R
* *
: ILBDASYO :
LIS RSS2 2
- %,
B3 .
¥ *,
YES .* *,
—-—*.*SYSIPT OPEN‘.‘
T o
, L
*NO
ERFFECIH SRR kbk kS
* *
* TURN OPEN *
* SWITCH ON *
* *
* *

(AP I TR TR LT ST TS

Sk kkkDIdkkh bk ki

OPEN SYSIPT

XN
EX XX Y

EEE RIS E RS2 RS2 2]

RETURN
PR 5ok e s AR R T

*
* RETURN *
* *
PRI EL SIS 2L L)

Section 2: Program Organization 91

Licensed Material - Property of IEM

Chart EF. Open DISPLAY File (ILBDOSYO)

tttthztt‘ll!t'**
: ILBDOSYQ :
T e T
ok TSTPCH ¥,
B2 *, B3 *, EEKEEBUEERRERRFHK
. *, o ., * *
.* SYSPCH *. YES ¥ *, NO * TURN OPEN *
'.‘ REQUESTED '.* ———————— >%, SYSPCH OPEN . #wmeea—ae): SWITCH ON :
‘x. e “e, e * *
*, . *, Lk L T
*YES
rEx .
* *
* C2 %
* >
T2
¥, OPEN1
c2 *, EET T T TETTTEE TS
. *, -
* *, * *
. SYSLST OPEN . OPEN SYSPCH
*. ¥ * *
., R
*, % PR AT P TS
*NO
v .
REERED2ERRR AR R RRE Db .
* * . *,
* TURN OPEN * .* SYSLST *. YES
* SWITCH ON * *. REQUESTED .*%——-
* * *,)
* * *, o
REREEEEEIRERE RN *, . * LT
*NO * *
* C2 *
* *
hEx
OPEN v
FEAE2R kR kA RREkE
* *
OPEN SYSLST .
FEERERRRRERRRRES
——————————— >
v
<
RETURN v
TEREF2RR SR RN
* *
* RETURN *
* *
L T L P

92 Flowcharts

Licensed Material - Property of IBM

Chart EG. Close With Lock (ILBDCLKO)

EERAAIHEREIREAR

*

: ILBDCLKO :
FEERRBBEREREEE RS

\'
FEERERIRRERIR AR
* *

#POINT REG 1 TO #*
:PRE-DTF SWITCH :

* *
LRSI RSS2 E ST 2 2 2

c3” s,
L * -, FEEACUSEERRR IS
.+’ PRE-DTF *. NO *
#. SWITCH = .%-———=———>% RETURN *
. X'FF' .# * .
*, o SRS RETRRR SR SR
*, .
*YES

p’

AEEEEDIHERRERRSER

*
*PUT_ERROR CODE *
* IN DTF-8 *
* *
* *
EEEERFRRRAERER RS &

V. _FIO1A3
LI ok T TSI T
$$4BCOBER *
LD N s B B b
*EXECUTE SYSTEM #
ERROR PROCEDURE

BEEREERRERRRENRES

\
FEAAFIEAERAEEES

*
* CANCEL *
* *
AREREREFEERSRES

Section 2: Program Organization 93

Licensed Material - Property of IEM

Chart EH.

User Standard Lakels (ILBDUSLO)

ok
* *
* AU
* -
PP
RS
FERRAATHRRRF R AR ay . ARRRRRSH R R R R
ERERRL KRR EREENDRRRA SRR M * . * *
* * * ¥ %, YES * *
: ILBDUSLO : : ILBDUSL1 :—— ——>:INDICATE LBRETI:—~—~-———>* ‘. OPEN I-O o *-—-—————-):INDICATE LBRET3:
AERREERCRR R AERRR R * * “s. y * *
AR . &t T I e
*NO
1L
* .
* B2 * l
* [- <
T
RETURN o*. oE,
MR ARBLARR RN RETURN1 *##ttB3ttt*#‘#ttt By . BS ™ #,
- * B2 . 'R . .,
* * * POINT TO L. YES .* *, NO YES
:‘SAVE REGISTERS : : RETURN#* :(—————— -—‘BUILD AREA FOR ‘(—-—--—-—‘ . DTFMT P N DTFSD e
M * R RRRR AR Tk, £y 't. o
MR Rk *T0 LIOCS WITH svCo ERREERR AR «, % .,
(ILBRET1 * *NO
LBRET2
{LBRET3
L. .,
c1 . c2" . EERRRCIERREERRERY HERRRCL kR RRR S Ek HERERCS RSP bR
. * o M . * *
ok . YES o * . YES *TURN OFF COBOL ‘ *POINT TO LABEL * *POINT TO LABEL *
*. DTFMT B -k, OUTPUT B atatatad LABEL BIT *BUILD AREA FOR * *BUILD AREA FOR *<--
., e -, . * * DTFDA * * DTFSD *
T Cx, %" PP ERERE Rk ERERER R RE SRRk
*NO *NO
P TS
£ _>% * > *
* B2 * % B2 *
< * M * *
T e
TSTOF J*, BOFBOV ¥, o,
p1° x. D3 . Dy’ e, HRRRADSH KA R R
¥ -, . ., . * * *
.*COMING FROM#. YES o . *. OFF * *
. OPEN o %, . DTFDA B BOV BIT . ‘—-————-——):TURN ON BOV BIT:
‘x, L R K Tk %" * *
. L% . L% s, % ERERRE AR R
*NO *YES *NO
o*. BOF BOV 4
EL" s, SEREEEIRRA RS AR EELR SRR E FAARKESKERE RN S
. . * M M . *
. . YES *SET UP TO POINT#* *SET UP TO POINT* *SET UP TQ POINT*
*, DTFDA B e * TO BOF * * TO v * * TO ¥ *
‘o . : PROCEDURE : : PROCEDURE : : PROCEDURE :
En BEEERRAARA IR HEERRN AR EEREERARRA SRR
*NO
<
o ¥ EOF oF. NOPROC ¥, JE,
F1 *, #t**tFZ*#t#tt##it F3 *, F *, FS *,
. * i . .
¥ *, YES *SET UP TO POINT* ‘USER LABEL *, NO YES NO
*, EOF B ——D% TO EOF = *eeme—e. -2k, CED P adRION DTFMT e >%, OUTPUT o
*. . * PROCEDURE ‘ A *. EXISTS
*, ¥ * * N . L o* *, ¥
L+ EERERERR AR . L+ . L * . L
*NO *YES INO *YES
POINT L
HERRRGLAER AR AR 63" s, SREFBGUS ISR RN FERFRGERRHR RN
* . - * * *
SET UP TO POINT « YES * GET DATA * * TURN ON COBOL *
* * * DTFMT B >% ADDRESS FROM #* * LABEL BIT *
* PROCEDURE * . . : CCW FOR DTFMT : : :
EERRE RN e ERRER AR ERRERR R bR
*NO
hnk
- » >|<
. J4
* *
1T
TSTDTFSD__.*. LBRET v
H3 . ARRSHHY AR RN T L L L Ll L]
AL ok * * M * .
* o *, YES GET DATA * * RESTORE *
* ILBDUSL2 * *. DTFSD *—————-—v‘—>* ADDRESS FROM * * REGISTERS *
*, . * CCW FOR DTFSD ‘ * *
HERERR AR RN ., ¥ M *
. ¥ TersresrErir Ry I e T
*NO
e
* .
« Jy *
* >
T
DTFDA Jx.
AR TLRRRR R FREERT IR Ju T, LBRETL: v
* * * * . . N T T L
* * * GET DATA “ . NO
INDICATE LBRET2 * ADDRESS FROM #w—wreemo >*, INPUT B ettt * RETURN *
* * * CCW FOR DTFDA ‘ . .
* * * ., o Iy
My LT *
*YEs
Iz
_— .
* A4 #
M *
T
i CRLELALEEts EXIT
H HHERRSAER RSN
‘ MOVE LABEL TO * *RETURN EXIT TO '
UFFER ‘--————-—)* USER_ LAB. ‘
ettt

94 Flowcharts

*#*t*.ttt‘*###‘ﬁ*

licensed Material - Property of IBM

Chart EI. Nonstandard Labels (ILBDNSLO)
. *. NSL4
FREFEDTHARA AR R aL" s, FrbRRSKRERERLAE
ERERDT R AR FEEER2F SR AR SR * * . . *
* SAVE DTF * NO SET BRANCH TO *
* ILBDNSLO * * ILBDNSL2 Fmmmmm>t ADDRESS e —>% INPUT t—------>*usm PROCEDURE *
Rk R Rk EERRE R * - ‘% _t'
dkkkbkk bk kkkE * ¥ “““'.“'*tlt‘*
YE,
*ak¥ L S eunk P
* * —>% * > *
* B2 * * g1 * * H3 *
* e * * *
rrrn P ok
\ MOVE CB0O1A2 .
AR Rk FRAABR AR AR EBI R R S P - T L)
* * * * *ILEDMOVO * * * SEREBS R ek bk kb
*SAVE IOREG_AND * * D o G g ok k% RESTORE * * EXIT TO USER *
DTF ADDRESS * *SAVE REGISTERS *———————e >‘MOVE LABEL INTO#* =~ e >¥ REGISTERS ¥ e >* ERROR ROUTINE *
* * * * BUFFER * * * * *
* * * * » * * T T P TP
AR AR RE Ak Ak FRER R R AR Rk FERRE R FRERAARE TR
v
.. .. *. IPTRL o*.
c1 *. c2 *. c3 . C *,
o* *, ¥ *, o E . o* * R RFCSE Rk R R R R Rk
. *, NO .* CLOSE ON *., NO o * *. YES *. YES * *
s *. BOF OR BOV ‘.* ———————— *, INPUT . P .S 2y INPUT FILE *.* ———————— >#%. LAST REEL ‘.*—--—-—-->:EXIT TO LIOCS* :
‘., o T, K 't. K2 Tk, T ERRRA AR
... *, . * *. . . ¥
*YES YES *NO *NO *LBRET 2--EOF
[t
> *
* F3 *
* *
T
BOFBOV ¥, CHK1ST < ¥, v
-, FEREEDIHRRAEEERAE
. NIT M *
¥ *, YES ‘REEL COUNT *. NO *TURN ON OUTPUT *
. INPUT C¥oecee—o>%] = CUR REEL . %——— # TRAILER LABEL *
*, . . *" . COUNT . * SWITCH *
Cu, 4 Ta, rhkE MLt
*NO *YES * *
*+ F1 #+
* *
*kkk
v
E1T C#. F%#‘tth##t#tt‘tt& E3" ‘s, baakadTAL AL LEd
. *. * ARRRESH AR SRR kA E
* NOT_FIRST *. NO ‘SET UpP TO POINT"‘ o* *. NO *SET UP TO POINT‘ * *
ME ¥ >#* *. EOF *-—————-—>‘ * ILBDNSL1 *
. . * PROCEDURE ‘ . . PROCEDURE ' *
. . * * *. o * AR AR
*, AR R R *, L% FhE R RE Rk
*YES YES
P P
* « * *
* F1 * * F3 ¥
* > * >
Prr P
BOV EOF \
dande Fhtidediitds addde it ie st tld FEERAFSE AR AR
* *
‘SET up TO POINT" ‘SET Up TO l?OIN’I“'l * SAVE DTF *
TO EOF * ADDRESS *
" PROCEDURE * : PROCEDURE "‘ : :
ERRRA AR RS ERREBEFEREE R AR AR AR
v
< v
ok, WRITELBL NLS5 N ¥,
Gl . FERGIHEFRRE RS G4 %, G5 T+,
* . . *,
o * SER . N * WRITE LABEL * NO .* OUTPUT *, NO . *.
*. PROCEDURE ., *-—- (WAIT) {==w————=<% ,TRAILER LABEL.*<w————=mw— * INPUT . ¥
s * IST: o* A *, ¥ . . *
- . . ¥ *. ¥
. L hRH EERRREA AR RERR . *, %
*YES * * *NO YES
* H5 * P e
* *
e * H3 % * H5 *
* o> * >
- *heH P
o¥. ¥, LBRET
H1 . FEEH2E AR R H3 W . CERERHU SRR FERRAHS R R R Rk
*. o+ . * * * *
. . NO YES .* WRITE TM *, * TURN ON WRITE * * RESTORE *
.‘ INPUT o Fmm e WRITE TM L . SWITCH ON .# * TM SWITCH : : REGISTERS :
“x. x “x, T * * * *
., L+ ERERER AR *, % FEERE AR RS FRERERAR R
YES *NO
e
* »
* J1
* >
L]
REAB&EE*J],“#“““‘ ek Tk b bk ek "“‘Ju.l“*“*‘t‘
* * * R TIEERRRR RN * Maadt At lis i
* READ LA?EL * ‘TURN OFF WRITE * * EXIT TO _LIOCS * * SET BRANCH TO *
* (WAT * ¥ M SWIT P — * OR USER*% * Lo———_s LIOCS *EXIT o LIOCS***
* * * * TR TR TP * * PO
EZETEEL RS LRSS L L L] LRI IR EZ R RS RSS2 2] IR R 222 2 2)
* * ***L,BRET **LBRET 2--EOV
* H3 *
M *
P
N SER
K1 . AEEERR2RRBF RN E
ok * * * Riaas b etdsiils
¥ RE. . NO GET_LABEL * EXIT TO USER *
, BACKWARDS .—meewew-) >% POINTER :— ———>" ERROR ROUTINE :
Tx, o * * AP
o, L * AR AR AR
YES
Lyat*e*
->* *
* B2 *
* *
P

Section 2:

Program Organization 95

Licensed Material - Property of IBM

Chart EJ. Error Messages ($$BCOBER)

AR WELEL LS L]

*
* $$BCOBER :
EEERERE bR R R R

v
SRR EXBIsrRkE b bk
* *

MAKE ERROR CODE
* PRINTABLE IN *
* DECIMAL

*EEERREERER RS Rk R E

v
c3” s,
.* ..
.*+" NON-DTF '*. YES
<, MESSAGE l#——

* o

. ¥
*NO

*

*

*EEEEDIRAE kR kR kkk
* *

* MAKE LOGICAL
*UNIT PRINTABLE
* IN DECIMAL

FE XY

R EEEREEEREEE R RS

v
EXREREIEAERESRER
I

LA AL RS TR LR L L]

P IN——

EREEAFIHRSERNRRER
*

* MOVE IN ERROR
: MESSAGE

EX X T

* *
HEEEEREERERER R A S

)
AEERAGIHREERARRNES
* *

*
*FETCH $$BCOBRL

LY XY

*
SEEBEEERARR R R REE

v
AEEEHISIEERR NS
* XIT TO *
: $$BCOBR1 :
EERASRERERERERE

96 Flowcharts

Chart EK.

FEERQT RRRR KRR
* *
: $$BCOBR1 *

AR AR

AAkREBLEERRRERRER

Error Messages Print ($$BCOBR1)

TYTYPE ¥,
B3

* *
* POINT TO LUB * ¥ *, YES
* TABLE * —D%, BG JOB P
* *. ¥
* * *, .
AR R ERRRR AR *, %
*NO
o, FGLST .,
Cc1l *, *,
. . *,
.* SYS *. YES . NO
* UNASSIGNED OR.*—-=- *, TAPE o Fmem
*.= SYSLST . . .
*, o *, ¥
*, L% . L% ek
*NO *YES * *
* J1 *
* *
EEE 2]
P
ARED] FRRAE XA REER D3 .
¥ *,
WRITE MESSAGE # ¥ FILE *
ON SYSLOG *. PROTECTED _.*¥-—-
* (CONSOLE) * *.* t'*
P T T T T, L% T
*NO * *
*kE * J1 %
P SUN— * * * *
* E3 #* *kkH
* >
PEE
ONLIST ¥,
. FEREI NSk R EREE
*
YES .* LST *WRITE MESSAGE *
-, UNASSIGNED OR * SYSLST TAP.
£ IGNGRED .+ *
REk T ARRERRERERRRRRRE
* * *NO
* K1 * kR
* * =D*
akx * J1 %
* *
*REE
'
tt#ttFl# seernons
SYSLST
DEVICE FROM PUB
'*##Q*Ql"“*"*i
v
GL™ s
¥ “
o* *. NO
*, PRINTER o *
* o ¥
*. *
. L%
*YES
FRRHLE AR R R AR
*WRITE MESSAGE *
ON_SYSLS
* (PRINTER) *
EX IR E LS 222 R L
Raddd
*
* J1 *
>
“*‘ v
CHKDMP o,
J1 . ERRRAT2RERRRRR AR SRR TIREKRRRRREK
o *, * *GET HICORE ADDR*
¥ *. *GET_PPORIG FROM* * OF LAST PHASE *
, DUMP OPTION . ——D>% PIB TABLE e —>*%* LOADED FROM *
*, o * * COMM REGION *
*, L * * * *
¥, . % FEEKRRRER R AR FREERERRRREIRRRE
*
EETTY No
* *
* K1 #*
* >
T
NODUMP
ARERKL R AR KSR

* RETURN TO *
* FETCHING :

* P! RAM
ER IS T TR T L L)

Licensed Material -~ Property of IBM

B4 *.
. *
. YES
——D>%. TAPE o Fmm
*. ¥ %
*, % whnk
*NO * *
* E3 *
* *
*okkk
DKTYPE ¥,

*,
t *,
. YSLST *,
* EXTENT FULL ‘———
.. }
*

. ¥
*NO

- -

*
* X1
*

EEE

*ERDUE TR ERkRR RS

* *

WRITE ON
SYSLST DISK .

L2 SR RS2 L L]

FERRETUREERREEEEE
HREFTSRERRRRRER

* *
PN >*EXIT TO $$PDUMPY

hkkkh Rk k kK
kR E R Rk kR

3§PDUMP IS FETCHED,
RET N TO FETCgING

LEo50me

Section 2: Program Organization 97

Licensed Material - Property of IBM

Chart EL. SYMDMP Error Messages ($$BCOBEM)

AR VELLLELEL L REGISTER 0 - HIGH ORDER BYTE

* $$BCOBEM P - LOW ORDER THREE BYTES
* * CONTAINS ADDRESS OF
P T R BUFFER

PR LTS YRR T PR PR

* *

* GET ERROR *

* NUMBER *

* *

* *

*kk ke ke k ek kkok Rk

AERRRCLEFRRRE SRS
*

*
*
GET_BUFFER *
ADDRESS :
*
*

Xy

kkkkk ek ek bk rkk®

¥,
D1 *.
¥ *,
.* ERROR NUM #*. YES
Q OR LT 0

. P S

‘El. -,
.*ERROR NUM >%. YES
. MAX P B
* o ¥
* *

‘e, st

*
*NO

kkkR kPR Rk ko
* *

* GET CORRECT
: ERROR NUMBER

L XY

*
dkkkH AR kR kR k

v
REEERGL R Rk Rk
* *

CONVERT_TO
EBCDIC_FOR
PRINTING

*EEN
LR

Erkkkkkkkk kR kR Rk

b

AR LRk
*

*MOVE PREFIX OF
* ERROR MSG TO
: BUFFER
Rk kkkkkkkokkkkkk

R

)
kR ETIRkkRS kR kR E
* INDEX INTO *
*ERROR MESSAGES
* AND MOVE TO
: BUFFER

FRERKEE RN Rk kK

XX

HEERR] KRR R,
* *
* RETURN *
* *

ok kkRkE Rk Rk

98 Flowcharts

Chart EM.

LRI NEL SIS LSS CALLE] BY
o CoM

* ILBDOCRO :

Tk kok ko kR Rk Rk k

A
#*l*tBl* Rk Rk Rk
* INITIALIZE, *
#VERIFY CALL AND:

METER
* POINT TO Op *
* " cOD
kR ko kR ok ok Rk ok

XCCSRCH v
FEERKCLHRRA KR RRER

* SEARCH FOR *
*OPERATION CODE, *
* POINT TO FCB *
* CHAIL *

* *
ERERERRRRESE R RN RS

XSEARCH
dkdkEDIdkh kR dok ok
* *

* SEARCH FCB
CHAIN FOR
FILE-ID

FRkFEE R R Rk Rk

AR

*
*
*
*

XFOUND

oU v
*EFERETRbRE ek Rk k
* *
* TEST FOR WAIT *
* AFTER READO *
* *
*
*

*
Fokkkkokkkkkk kK

XINVOKE
FEERRFLRRRREARREE
* *

* BRANCH_TO Hom e READO
* APPROPRIATE * WAIT
:ACTION ROUTINE : MARKD

P e P MARKL

*hkk
* *
* G1 *
* *—

hk%

>

FERRGLRFRA RNk
*
* RETURN *
* *
TSR R

—-|RETURN IS FROM EACH
ACTION REQUEST ROUTINE

Licensed Material - Property of IBM

Optical Character Reader (OCR) Interface (ILBDOCRO)

FROHEDATRRRRRA KRR
* *
+ SERRRTN
AR RS
P
B3 .
¥ *,
o * NON- *. YES
+. RECOVERY .#.-C
. ERROR _. %
“x, % Sk
+NO * *
* Gl *
* M
hhe
%,
Cc3 *.

. *,
<« *INCOMPLETE *. YES
SCAN

*, L% *EE
*NO * *
* G1 *
* *
ek kK
oK,
D3 -
¥ *,
o * *. YES
. MARK CHECK .%——-
*. L%
*, .
L ERE T
*NO * *
* GL #*
* *
EEPe
W*.
E3 *.

L* *,

«*MARK CHECK *. YES

,AND ESUIPMENT.——-
. CHECK .

*, % *Hkk
*Ni

*ERARFIx kb bk kTR kK
* *

* *
* SET CODE bt
* *
* *
LR LSRR RS L S S R 2 2]
* *
* Gl *
*
EE R

Section 2:

FERRASEER R KRR

*
: SEOFRTN :
REEERRE AR R

SRR FRBORRE kR E R A%
*

*
: INDICATE CODE

EX RS

*
dkkkk Rk kR Rk ok k

* kK

Program Organization

99

Licensed Material - Property of IBM

Chart FA.

PEETS SR TE LY
* *
* ILBDSPAO *
* *

EEEERRRRRR AR R K

v
Fkkkk B kR kkk kR
* *

* *
:SAVE KEGISTERS :

* *
Fkokokok ok ok kok ok ok kb k

SA Printer Spacing (ILBDSPAO)

TSTASA ¥
D

D1 *, 2 *.
. *. . *,
¥ *. NO ¥ *. NO
*. VARBLK B ASA o e
*, ¥ * ¥
, o *. o*
, . *. %
*YES *YES
<
SAVEREC
FhRERE] kkkk ke kk R
* *
* SAVE COBOL *
* RECORD *
* *
* *
LRSS RS SRS R LR 22
<
N TSTMNEM L %,
F . F2 *, ARk ARPIR AR RREE
o* *. N *. * INTEGER GET #
¥ *, NO ¥ *. NO * OUOTIENT AND *
, IDENTIFIER .#-——————->%_. MNEMONIC B) >*REMAINDER _FROM #*
. o *, ¥ * PARM LIST *
*. Lk *, ¥ *
*, % *, % EREREEER RN AR AR
*YES *YES
o E. MNEMONI o*.
G1 *. G2 t_ #‘tt*Gattt##t#ttt
* *, *,
YES .* *, o0 SUPPRESS *. YES *SET UP_TO WRITEt
-——*.* BINARY *.* *.‘ SPACING Bttt >* NO SPACE
£ Tx. o Tl Y
*hEH *, .k *, . t*tttt##tt*t#tt#t
* * *NO *+}0
* AL ¥
* *
PETes
<
¥ MNEMONIX
H1 *, AR e R Rk ke kR Rk
. *. *
YES *. *SET UP TO SPACE*
. PACKED * # AND SKIP TO *
"; *.* * CHANNEL *
TS IR ER T T
*NO
*kkk
->*02 *
* F
* *
EETY
FRERETLRRRRRE R
* *
* *
* PACK *
* *
* *
FRkRE R Rk R R
——————————— >
PACKED
FERRRRL ek kR A%
* *
* CONVERT TO *
* BINARY *
* *
* *
AR R RN Rk
EEE T
->* *
* Al =
* *
*EEE

100 Flowcharts

(Part 1 of 3)

*hkk
* *
* AL *
*

*Ekd

DIVIDE
FRREFPURFF RN

* REMA *
* INDICATE *
* SPAC

PACING) *
LRI e AT

TEXTCTL
“tt#cqtttt#t‘ttt
'POINT TO PROPER‘
* CTLCHR b

* *
ERERERERR PR KRR KK

SRR RADYERER AR
GET COBOL
RECLEN

LX)
XX XY

kAR kR ARk E SRR

¥
E4 *,

o *.
t" VARBLK OR *. YES

BEFTSTVU .*.
G4

¥ *,
¥ *. YES
*, VARUNB o Fome
¥, .
*, *
*, PETE]
o *02 *

- APPLY WRITE . *—e———
*. ONLY ¥

APHOTE
*tt*E5dt**tttt*t

MOVE CTLCHR TO *
—_ ‘ OBOL REC *

* *
ek rhhk ok k

tttt#Fsttt#t#ttt#
SAVE OWN
*REGISTERS 5-12
*RESTORE CALLIN *
* REGS 5-12 :

AEREEEERERRERT R R K

FBO1Al
HERRAGE R RN IR R
*ILBDVBLO *

pamtpar R N)

* *
: WRITE TEST :
SRRk RE kR Rk

RS R RS R Rk Rk k
* RESTORE OWN_ *
*REGISTERS 5-12 *
* SAVE CALLING *
* REGS 5-12 *

* *
Arkhkkprkkkk kR k%

o "+, NO
*: AFTER L
* *

Chart FA.
EEESS
*02 *
* Als
* ¥
*
TEXTO01

""#Al‘*“‘t‘t“
*

GET CURRENT AND#*

‘ORIGINAL BUFFER¥*
* POINTERS *

SA Printer Spacing (ILBDSPAQ)

Licensed Material ~ Property of IBM

(Part 2 of 3)

L T T DT R T
¥ VUNBTEXT
BL %, tttsztt##t#t‘tx ‘t‘ttB3ti!ttt“tt
. *, *
¥ *, YES ‘POINT TO_START * *SET_RECORD LEN ‘
, VARUNB o > OF BUFFER ¥ >'l IN BUFFER *
*, ¥ * * *
*, . * * *
., .* LI T R R Y T PP
*NO
<:
*, ASANDTVT CB01A2
c1 *, tttttcztt#“‘tttt tttttc3t“tlttt$‘ FRSERCUI SRR
o* *, * *ILBDMOVO *
P *, YES *MOVE CTLCHR TO * ----- s e
- *, ASA ¥ e >* REC *-———--—->‘ SAVE OWN REGS '—---—-—->* MOVE DATA TO *
‘.‘ . b : BUFFER :
‘w0 L R T ‘ttit’ttt“‘t‘lt‘ t‘ttttttttttttttt
*
NO { e
-2 % *
* Hi
* *
e
N MOVE1 CBO1A2
D1 *, FhhkRD2 ek e BRI E XK *ehesDISRRERRERRE
o * ‘ ‘ILBDMOVO *
*ARE BUFFER *. NO L . e L .
. I#—leee—->* SAVE OWN REGS ‘—----—--)‘ SHIFT DATA IN #——e
QUAL .‘ : BU
. « tttttttttittttltt R T T e P T
*YES *
[T ¥ Gl *
*02 * * *
* E3 #%eo s
*
rex
EERFSELFERERERE R tttt‘E3l#tttttttt
* *
* * ‘POINT TO PROPER‘
POINT TO BUFFER# CONTROL *<m
: * : CHARACTER * I
T T T T T T T P T
* *
han * E3 *
#02 * * *
* P3 *-> (2 E3]
* *
g
¥, SPACECTL__.*. ¥,
Fl1 . ‘*#‘tF2t‘t‘tttttt F3 *, F5 *.
¥ *. *MOVE CTLCHR TO * ¥ *, . .
o *, YES * 2ND BYTE AND # «*ANY TRIPLE *.
, WITH CODE .#~—c—e——we > CODE TO 1ST * . SPACES AFTER P
*, " BYTE *
., .* * . . *, .* *, .
., . * P T T T *, % *, L% .
*NO YES *YES Y
P Y wEeE
02 * ~>%03 #
* Gl *-> * G3 * * C
* * > * %
hnE % Y
MVCTLCHR REMAINER .*.
O‘t##eltttt#ttttt EXRERGIRERENRES R R GU .
* * o *,
MOVE CTLCHK TO * * *
——>* * : GET REC LEN :(—— ‘.‘ MNEMONIC .
. * * * e Y
tttt‘tttt#t Rk EERE FERRRAR RS ER AR .,
*
* Gl s¥ses T No
* * ~>%03 #
*ddes Hi * * P2 *
* *=>|< * *
« sass e
v MNEMON2
CRESRHIRREE R R ER RS SEERRHURS SRR RS Rk FERKS ISR ER R RS R
* SAVE OWN REGS * * * * *
* 3~12 RESTORE # * * * POINT TO SKIP *
* CALLING REGS #* ~~===*POINT TO CTLCHR* # TO CHANNEL #*
- : : : LCHR :
*
T T T T T A T T T T
Ty
D% *
* G3 *
* *
N
LR TR T R
*
. PUT TEXT
EARERE AR
e
€02 *
* K3 #—m
*
P
v ... X
P R T T T K2 & %, HRERRKIRB RN RS TRRESKUEEES IS RREN
* RES;OR OWN * ¥ . * * * EERERSERERE RS
REGS 3-12, SAVE « YES * TEXT PAGE * *RESTORE CALLING* *
* CALLING REGS = #mmmmmmeem >, AFTER L > OVERFLOW ¥ ewe—>% REGS_FORWARD #———e——_D>% RETURN *
5-1 . . * * * IOREG * *
., . * * * SEEERARRRBRR LS
P R R *, ¥ R T L T R T Y
lNO e
> *
* E3 %
* *
e

Section 2:

Program Organization

101

Licensed Material - Property of IBM

Chart FA. SA Printer Spacing (ILBDSPAO) (Part 3 of 3)
LE i Ed
*03 *
* A%
* ¥
l
¥, SETAPWO:
A2 *, tt*t*Auttttl**tt#
P *,
«*VARIABLE OR*. YES * SET DUMMY REC ‘
. APPLY WRITE . >* LEN = 4 BYTES #*
*, O . * * *
. * *
.*. o * FEREEE AR RS RSN R ERE
NO
¥ UNDFVUNB v
B2 *, *kkERBIFEhkEk R kE *kdkkBlUkkkErk bk k%
¥ *, * * * *
.* UNDEF OR #*. YES * SET DUMMY REG * *POINT TO DUMMY *
*, VARUNB o Ko >*LEN = 12 BYTES * *REC_ (CTLCHR AND*
t_* . : : * 3 BLANKS) *
Tw, o P T R e T T wRkh kAR kR kR AR
*
No ke
*03 *
* CY *->
* *
*ERS
¥
c3 *, EEBRKCURIER R RS SR
N *, * SAVE OWN REG *
* *, * 5-2 RESTORE *
C=———m———eem——or%*. VARUNB o * CALLING REGS *
*, oF * 5-12 . *
*, o * *
. ¥ R LI e L LIS L]
*YES
v
- *, VUNDSPAC FB01A1l
D2~ “w. AARRADIF R kAR Rk AR EDY KRR TR
.. * +ILBDVBLO *
NO . *, *SET REC LEN IN * ko —*_t-‘_#-#_t
———*. ASA ¥ * BUFFER *
¥ * * WRITE SPACING ‘
*, ¥ * * * *
*, % LR RS S LRSS EL S] LR LSRR LSS R]
*YES
v
tt*ttE2# #l*‘tt*t P e T PR F Y
* RESTORE OWN
CURRENT ' *REGS_5-12 SAVE *
*BUFFER POINTER * * CALL%N%ZREGS *
LRSS EE TR LR L] HARRE AR RER IRk
{ kR k
—>%02 *
* F
<
kkk
NOTVASA v
LRSI RS RS S 2]
* *
*MOVE CTLCHR TO *
* 1ST BYT
: DUMMY REC :
FERREERERRERRE R R
v
.. CBO1A2
G2 *, AR RGIRR R Rk Rk
. . ‘ILBDMOVO *
o* *. YES ko kekkek_de et %
*. ASA e >‘MOVE BLANKS TO *
*, . FFE! *
* . * *
*, % EE RS L ER S LSS L 2]
*NO
<
FRREREIRRRE KR RN
* SAVE OWN REGS *
3-12, RESTORE *
* CALL%NG REGS *
Bhkk bbbk ke rkkkkkk
FERT2kS R kR R R RERE

* *
PUT SPACING .

ERRERERERRER RS

#t*‘tkztt*#*ttttt

RESTORE OWN _+
YREGE SAVE#
* CALL kE

ELE LR R E e T PR L

102 Flowcharts

Chart FB.
*RFEDN] Rk ek kR kkE —~———
* *
* ILBDVBLO *
* *

ok ok ok ok ko ok ok ok ko

*hkkRR] kR kK kk ok
* *

* *
:SAVE REGISTERS :

* *
ook Aok ok ko akok ok ko

tt#t#cl*ttt*t##t*
INDICATE RECORD
NOT IN BUFFER :

t##*tt»ttttt*#ttt

<

ILBDSPAQ

---[Eﬁiii"ﬁiaﬁ""_'_

FAREBR KRR AR E

* *
* ILBDVBL1 :
FERKRRR KRR RK

v
KRR KCIh Rk bk kR k®
* *

* *
:SAVE REGISTERS :

* *
LR e R e L]

v
Aok AR D] ok kR ko ko
pUT DTF ADDR IN
*REGY4 FOR ERROR *
* AN] L *
: SUBROUTINES :

Aok ok ok Rk kK

E1 *.
L% *
. YES
*. DTFSD e
.. .
*, L *
*NO
A4
LRI R R RSS2 L]
*

*
GET TAPE BUFFER¥
* POINTER *

* *
BT P
Rk
*
Gl : N
T €
.*.
Gl
¥ RECORD IN *. YES
FFER *

EXS

Tk, %
*

Jl' ..,

TRUNC v
tt***Kl*tt#***#t#

%

*
*
*
*

*
LR RS R SRt)

t
TRUNCATE : —————

BUFSD
FRFRAE2R R R R Rk R R kA
* *

GET DISK BUFFER¥
>* POINTER :

LR R IepE EEE SRS
*
SET_RECLEN *

*
——>% FIELD —
* *

* *
Fhkkkkkkokkkkokkkkk

FIRSTIME V. CB0O1A2
FERNRR R A KRR RRRAE

*ILBDMOVO *
_____ [

—-->*MOVE RECORD TO *
BUFFER

##t*#‘t‘t**#**##ﬂ

tt.#tG3tt#*#t‘tt*

RESTORL CALLING
—>* REG 12

S 5-

* *
hkkk Rk Rk Rk Rk Rk

v
*ekHIvsdhbhkkkkd
* *
PUT
* *
whkkkR Rk Rk kR X

v
tt#t*Ja# *tt##***

MRX RE
LEN SET TO 0 BY

Licensed Material - Prorerty of IBM

SA Variable Length Record Output (ILBDVBL()

*, 1 BUFFER «

*YES

<

TRUNC
FRRRRGOHRRRRE KRR
*

TRUNCATE

FEREN

*
Aok ok ok koK R Rk oKk Rk

v
PRI RS IS t*t#tttt
*

*FORWARD IOREG S‘
* R4 RE

STORE
: OTHER REGS :
FERERARRE RN AR

A
*hRETUR R EERREF
* *

* PHASE 21 F
* APPLY WRITE :

* ONLY FILES
R R e e L L e

Section 2:

: RETURN :
EERRRER AR RRE

Program Organization

Licensed Material - Property of IBM

Chart FC. SA Error Routine (ILBDSAEOQ)

AR IE AR N
* *
: ILBDSAEQ : : ILBDSAEL :
L] AERERER R
v \
ERREARIHERRERR SR SEESNBURRSERR RN
. * * »
* INDICATE DATA * * *
* CHECK * * INDICATE WLR *
* * * .
. * - M
BEERR R FrRARR Rk
&
v
REEERCTREA AR
- M .
. *
:SAVE REGISTERS :
* *
FEEIRRSRERSRRES RS
v
p3" s,
.,
NO
——, TAPE ¥
.. N
. %
*YES
¥,
E3 *,
. *,
NO .»* *,
<——*, QUTPUT o ¥
., .
'R R
. .
*YES
¥,
F3 *,
.* ., AEERFUSIA R RSSO
* DATA *, NO *RETURN TO LIOCS*
*,TRANSFER DID .#wee—- ———D% MODULE *
*., OCCUR .¥ * *
. . EAERR SRR
« o ¥
*YES
1
FEEERGI SRR
* .
POINT TO ERROR #
* BLOCK *
* *
* *
EAREERAEER R RN
——————————— >
v
PWCL1 -t TRANS EJO1A3 o,
H3 W s, FEERRLUS SRR H5 .
o ¥ *, ‘$§BCOBER * ¥ *,
«*USER ERROR *. NO e ittt dviatd .*ILBDDB62 IN#*, NO
*. PROCEDURE .#——-ceee-D>%EXECUTE SYSTEM #—cemeeo- >%., VIRTUAL o W
*, . . * :ERROR PROCEDURE: *. ‘STORAGE‘ o *
Te, o M T
*YES *YES
.*.
J3" s, EEERRTUSEE R BRSNS EREERTS RSN EERR RS
o* *, * * *ILEDDB62 *
.*USER_ERROR *. YES *#SET USER _ERROR #* [TR D A)
. BYTES et L BYTES * * PROCESS *
*, ¥ * * * BNORMAL *
- . * * * TERMINATION *
., .+ FEREEARROR R R AR FRREERANS AR RN
*NO
<
USER
EERERIERR R RS SR SERAKSHEBE R R
* USER ERROR * * *
: PROCEDURE : : CANCEL :<__
AERRR ARy CE LTI T T ey T

104 Flowcharts

Licensed Material - Property of IBM

Chart FD. SA Tape Pointer (ILBDIMLO)

KBERAJ ek kRS kR R
* *
: ILBDIMLO :

EERS A2 22 2]

*HEIHPIARRIRERER
*

*GET ADDRESS OF
: DTF

RN

*
HEREEEBIEREERRERE

!
AEEECIRb R kb bbbk

*

* *
* GET_SYSNNN *
* INDEX *
* *
* *
FEERRABERB RN R R RRN

\
R AADI e kAR
* *

* *
*INDEX LUB TABLE:
*

* *
FEERENERE RS XS R RS

3\
FHFFEIRRRREERE R K

L XX Y

*

*

* MOVE PUB
*+ POINTER TO
* DTF~8

*

*

EEERRE P ER SRR kT

\
REEKEFIHEERRAES
-
: RETURN :
BEERERERRERRRER

Section 2: Program Organization 105

Licensed Material - Property of IBM

Chart FE. SA Position Multiple File Tapes (ILBDMFTO0)

SRERR2RRE RN R R,
*
* ILBDMFTO -
* *
*kEERRREERRREEE

EEREES VAL ELE 2L L)
* *

*SAVE REGISTERS *
: 14-12 :

* *
HERERRERE R AR R SR

ERFC2hk kR R kR R E*

* *
REWIND TAPE .

AR RRERRE RS

LA R PEI S LTS 2

* READ

FIRST *
.RECORD ON TAPEt

EREkR kKRR E R Rk E

E2 *,

. *.
YES .* TAPE MARK *.
---*.* READ *-*

)

FERF2ERRRRREL KRR
BACKSPACE ONE #
. RECORD «

Rk ERRERRR R RN

FT1 v
ERE 2R PRI LR 22 2
* *
* SUBTRACT ONE *
+ FROM POSITION *
* INTEGER *

* *
EERERRERERE R R RN E

MFT2

v
AR 2R RN KRR Rk

*FORWARD SPACE *
r—>, ONE FILE

LERS L LRSS

4
LR ENPESL LSS
* *

* SUBTRACT ONE *
* FROM POSITION #*
* INTEGER *

*
LR e LR R]

v
*

K2 s, ARRRERIERE RN
L * *, * * FERERUF ARk
NO .* POSITION #. YES * RESTORE * * EXIT TO MAIN *
L—-——*.*INTEGER = 0*.* ———————— >:REGISTERS 14-12: ———————— >¥ LINE *
*, o * * AR
*, % AR

106 Flowcharts

Licensed Material

SA Test Tape File (ILBDMVEO)

SR AR R e RNk
* *
: ILBDMVEQ :

AR RER RN R AR

PRS- XL T EELL

* INTERROGATE *
SYSLOG 'C126D
* IS IT EOF' +

LRSS 2 22222

\
FERCIadkkrhkhhkd

*READ RESPONSE #
FKROM SYSLOG .

- Property of IBM

EE R S R RS S RS 2]
v
o, o*.
D3 *, D4y *,
¥ * ¥ *, Fak DSk ok ok kK
.*RESPONSE IS*. YES +*RECFORM IS *. YES * RETURN VIA *
. YES . ——>‘.. SPANNED .*—-—-———-):O(RS) TO AT'END:
‘e, ot Ta, o IR 124+~
*, % *, ¥
*NO *NO
L
E3 *,
% .. ARERELE AR
NO .*RESPONSE IS*. #* RETURN VIA RS #*
—, NO . ¥ * TO_AT-END *
. ¥ * ADDRESS *
* ¥ LRI EE S 22)
*, %
*YES

Pk e e

ISSUE FEOV
MACRO

EX XYY
e x .

FEEEERFER TR Rk

v
EERGIR R RS

GET FILE

*kkphk kb

H3 *,

< ¥ *.
.*RECFORM IS #. YES * RETURN VI
*, SPANNED b >*12(R5) TO
* * * NSTRUCT.
whkk b kok ok

*EEKHYR KRRk RS

~
b=
Ex X

N
*kE

*

“«Ro

AR T3k kR Rk E
*RETURN VIA R14 *
* TO NEXT *
* INSTRUCTION *

FRRERERR AR R

Section 2: Program

Organization 107

Licensed Material - Property of IBM

Chart FG.

108 Flowcharts

*
*
*

SA STXIT Macro Instruction (ILBDABXO0)

L O L L L LT T L pp—— ABNORMAL E. SREEDUSERERERRE
* [T S O . | D—
: RETURN : : ILBDABXO :
ERRRERRRERRRER S FEEERRE R AR
¥, v
B2 _* FRERBUREEERRERee
«*CANCEL *
. S DUE TO *. YES ‘SET LINKAGE FOR‘
*.I/0 OPERAT! o ABNORMAL EXIT ‘
. OPTION _. l : (STXIT AB)
Tk, oo T P T ITLry
NO * *
* E4 *
* *
rnn
v
e RCUEE R bRk kk
*RETURN TO COBOL‘
GRAM
“*‘3***“"‘*'
v
p2" k.
. *
¥ ES
‘.‘ READER o ¥—
‘.. e
*, .
*NO
*EEH
* *
+ E4 *
XTI
.., ..
E2 *, E4 .
. * .* *,
ES ¥ *,. NO
. PUNCH > *.SOUNT OPTION'.‘———
“u, . T, Y
*, . *, %
*NO *YES
-*, KCQ1Al
F2 *. SEEFUEERREEFRE SR
. *, BDTC20
. .. e »
—-—‘ PRINTER . PRINT EXECUTION
& ., .t STATISTICS *
“rnn S FERRAARR SRR RN
* *YES
E4 *
* P R——
renn
UNITREC ¥,
G2" . FERRAGURERRRE SRR
K R * *
NO .*USER ERROR *. * *
~—~%, PROCEDURE .* *ISSUE EOJ MACRO#*<--.
£ *. EXISTS _.* * p
.. . * *
LT ., L% EEERRERRARRRRRRAE
* *YES
E4 &
-
hnn
ok,
H2 *, fabi i kEE LT LT LT S
. *, * * I T
. *USER_ERROR *. YES * SET BYTE FOR * * *
*, BYTES o ——— >+ UNIT RECORD * * EXIT *
. . * ERROR * * *
.. .* * ERERRRR RS
.+ ARRAERRRRE AR LR R
*NO
<
USER
Freeag2eeererenne

‘ EXECUTE USER
‘ERROR PROCEDURE‘

‘t“"t“t““.“

*xES
*

[ENTERED AT START
OF DROGRAM
ESTABLSIH LINKAGE

FOR LATE ENTRY
égJ ASE OF ABNORMAL

Licensed Material - Property of IBM

Chart FH. SA Reposition Tape ($$BFCMUL)

REREDDRRARRRRE S

*
: $$BFCMUL :
EERERRERRRRRRES

LR YA IS]
* GET ADDRESSES *
*+ 'OF OUR LUB, *
*PUB, AND FIRST *
* 1B *

EERERERRE RN R AR RN E

)
AERERC2EERE KRR RS
* *

* *
: SEIZE SYSTEM :
. * *
REEEERBRERRAR R RS
L
* *
* D2 *
* ~=>
ke g
COMPTR ot o*.
D2 *, D3 *,
- -, o *,
.* OUR PUB *. NO .* ANY JIBS *. NO
#*, POINTER = . *¥~c—e—e—=D¥, CHAINED o Heee
. DTF-8 . *, ¥
*, R *, .
*, L% *, % LI LY
*YES *YES * *
EXTTY * E2 *
* * *
* E2 ¢ (313
* >
ke
EXIT
EEREAERERRERERRE SEXRAEIRRECRS RS S
* * * *
* . * SAVE QUR PUB *
:RELEASE SYSTEM : : POINTER :
* * * *
EERERERERR R RER R P T T T
GETNXT v
EETT N X PIEEYT VT ¥
TERRF2ENREER AR * *
* * POINT TO NEXT *
* RETURN * ——% JIB *
* * * *
EERERRERRERRRAS * *
SESERREFREREEEEES
v

63" %,
.#STORED #.
.+ STANDARD "*. NO
+. ASSIGNMENT ls-—-
- Y

‘e o

‘*¥ES

\
Ea AR RELELEL LS L
* *

* MOVE THIS PUB #
POINTER TO LAST
* POINTER *

-
EA RS E RS LS AR 2]

Ko e e e e

v
CHKNXT LN
J3 *

.* Te,
NO .*END OF JIB *
* CHAIN

—— o

LPUBPTR
SRS RRKISR S AR TN
* *

*MOVE SAVED PUB *
*POINTER TO END *
* OF CHAIN *
222222 RS R L L]
il 1l

Section 2: Program Organization 109

Licensed Material -~ Property of IBM

Chart GA. ISAM READ and WRITE
whkk AT hRkERkh S LY WIS ES L L)
* * * *
: ILBDISMO : : ILBDISM1 :—--—
RS L R LT T LRI RIS LR L)
BLKADD
(AR SRS ST L L] RERRRBIENERIRRNK
* * * *

* *
:SAVE REGISTERS :

MOVE RECORD KEY
TO BEGINNING OF#<;
* WORK *

(ILBDISMO)

LR A EL T I S 2 d
* *

* *
____>:SAVE REGISTERS :

* *
Fkhkkkkk kb kb ek kkk

. ¥
* *,
. BLOCKED o*
*, .

*

¥
*NO

* * * *
*kkkkkkkbkkkk ke k kkkkkkrk ko kb bk Rk k
-*-
cl1 *, ERRREC2HRRRRRRE R
. *. * *
o* *, NO *MOVE RECORD KEY#*
>, BLOCKED B et >*TO BEGINNING OF*
't ‘- * WORKE *
T iy
*YES
*kkH KAk *kkE
¥ * >
* Dl o * D2 * * D1 *
* > *o *
ok ko LR 2 L]
BLKLOAD v NVKEY
*hADi kb kb kkR EEETS I A2 S SRR T]
* *
*WRITE NEW KEY % * RESTORE *
(NO WAITF) ——>: REGISTERS :(
* M
ERRERR kR R R Rk REkRkh Rk kb k&
v

EL" s,
ok *,
o *. YES
*, INVALID KEY . *——wee—
* *
* . ¥
* *

ek
* Gl *
* >
2T
SRR RG] Rk
*

RESTORE
REGISTERS

e e

*
*
*
*
*
FRESHEEFERRNRFERR

FekBHI kA kR ek k&
*
* RETURN *
* *
AT R R R R R R kRS

110 Flowcharts

¥ T
.. ERROR P
. *

HEREEDdkkkkkkkk

* USER INVALID *
: KEY ROUTINE :

hhkkrkkokakhkkk

GBO01A1l
IBERR
LEE A s L EE L s

*
ILBDISEO :
R e T L

FRARGE Rk h ok
*
: ILBDISM4 :
whhk kb hkkkokkk k&

laabdd: YRR ETRL S 24
* *
* *
:SAVE REGISTERS :

* *
Fhh kbR Rk kbR kR

LRI NI I E2 22T

* WRITE KEY *
(WAITF)

dhkhkkkkkhkhkokk

>

FRECIHRRFR AR T K

*WRITE NEW KEY *
(WAITF)

*hrnkk ks bk ek

*

*kk*k

* *
*ksk¥ Gl *
*

* F2 Ateas

. o *
*YES
Loos

* *
L2 13

AR RGIeekRb R Rk
* *
: ILBDISMS :

dhkkhkk Rk

bhhdad: cALE L L LT 2
* *
* *
:SAVE REGISTERS :

* *
LA AR AL R]

¥
J3 *.
*

* P

o
. BLOCKED

e, o

*, L%

*YES

<

RESE VSIS 222

*
: ILBDISM2 :
LI R e]

HREHHBUREAREREEAE
* *
* *
:SAVE REGISTERS :

* *
AR R SR LA 22222]

/
FEECUR R E R E R kRS

* READ _KEY *
(WAITF)
LT T R T

v

pu’ T,
ox ..
) *. YES
*. INVALID KEY l#--—
. .
*. % PTTT]
*NO * *
EEE * D2 *
* * * *
* Ey # k¥
*k
E4" .
. *
. YES
EN ERROR D
. I

K *EkE
*NO * *
L *kk¥k FQ ¥
> *
* Gl kEekE
LT

*kke TNk kkkkkkkk
*

*POINT TO START *
KS *

——>: OF WOR:

PUT
FhE K3k rkkkokk

* *
PUT
* *

ER IR R AT el

P Sy

* *
RS E T eI AL 1
o ¥,
Ry T,
* *
YES
ERROR oK
‘.. "
*, % akk

*NO * *
l *kdkE F2 ¥
—->% * *
* Gl *kkk%

*

Y

FRRRD SRR R KK KRk
*

: ILBDISM3 :

Fhbkkkkkkkkok Rk

Rk EEBS Rk kkkkk kN
* *
* *
:SAVE REGISTERS :
*
*

*
LR RS i R TS

.
C5 ¥,

. *,
o* *. YES
*, BLOCKED ey
* *

v
HERFEDSHERRRR RRRE
* *
*POINT TO START
: OF WORKS

L RS

* *
FRkkkk ko kR Rk Rk

GET
*kkESk bk bk kkkkk

* *
GET
* *

EE RIS 2 228 1]

OF J
EEEERGEERRAER KRS
*

RESTORE
REGISTERS

IR 23
XXX

HAERERRF KRR RERRRK

v
R RHS# kK Aok
* USER_EOF *
: PROCEDURE :

LAL AR R R R L]

Chart GB.

FERSQ RS

*
: ILBDISEOQ :
REERERIRERRER

A
BEREKBLEFEE IR RN
* *

* SAVE ERROR *
: BLOCK POINTER :

* *
FEREERRE R R E SRS

ISAM Error (ILBDISEOQ)

(222 VL AL L LS

* *
: ILBDISEl :
AREARARER AR

v
e iddo:PI it ddt L]
* *

* *
:SAVE REGISTERS :

NO

* *
LRI L L LY 1)
>
v
c2 *.
J*

*,
.#«USER _ERROR *, NO

‘.‘ PROCEDURE

D2 s,
¥ .
- *USER_ERROR *.
BYTES

tttttE2t7ttttt#tt
* *
*SET USER ERROR *
: BYTES TO ZERO :

* *
FEREREEEE bR R SRS

v
I P I L]
*DETERMINE ERROR‘
AND SET

' APPROPRIA
‘USER ERROR BYTE‘

“ttt‘t‘tt.“‘t‘.

ER v
ERRERCRER b EEREE

REGISTERS :

*
*
: AND RESTORE *
*
EEEFEREBRRRRRRE S

v
HAREHO AR R R R R
USER ERROR *
: PROCEDURE :

*ErkRA bbb kS

Licensed Material - Property of IBM

TRANS EJO1A3 ¥
HEERRCIIFHE R RS FHEBICUS SRR RSHEES c5 t_
* -

#SET ERROR CODE * .+iLBDDBG2 IN* NO
P — S#EXECUTE SYSTEM #———-———->%. VIRTUAL .%-—-—

DTF-8 IN REG 0 * *ERROR PROCEDUREX *. STORAGE .+

EEEEAFEEEREBEREE S

“tt“ttt‘ttt#t‘t ¥, %
*YES

JCO1.
SERRADS RS KRR
‘ILBDDBGZ

TR DU Tt Pt e P
* PROCESS

» ABNORMAL

* TERMINATION
LR LT R R R 2 L

-

EX R X P

SREEESRERERR Ak
: CANCEL
AR EERERE R R RS

*
* e
*

Section 2: Program Organization 111

Chart GC.
LA L) SEEL I EL L
* *
* ILBDSTRO *
* *

FHERERERERR KRR

\
*EEEEPIeFkkEr kb kN
* *

*GET ADDRESS OF *
*KEYARG AND KEY *
* LENGTH *

*kakkhkhkhkhkkkkh

v
*hkkRClekhkhhrkkk
* *
MOVE IDENTIFIER¥
* TO KEYARG AND *
:PAD WITH ZEROS :

R ERRERRERRERRN

\
EEEFED]I AR RS RAAS
* *
*MOVE 'GKEY' TO *
: SETL :

* *
kdkhkkhkkhkkkRkkk

<

Licensed Material - Property of IBM

ISAM Start (ILBDSTRO)

R CIT T L L T
* *
: ILBDSTR1 :

ARk R R kR R Rk kR

v
ARRKEPRR AR RRRAA
*

* MOVE 'KEY' TO *
: SETL *

* *
EEE SRR S22]

:O#.#El##l##t#t#*

*
* ISSUE 2§BSETL *
* MacRo *
* *

* *
EL S ELE RIS L]

FHEEPLhkb kbbb A E

*

* RETURN *
* *
ARBRERAERRRERRE

112 Flowcharts

Chart HA.

DA Close Unit (ILBDCRDO)

FREFAIRRARRRKKE

*
* ILBDCRDO *
* *
EE SRR 222 2]

AR EBIRRRE AR ARk
* *

* *
:SAVE REGISTERS :

* *
LIRSS LR SR L L

R RRCIRRRR R R RN
* *

*UPDATE CURRENT *
: EXTENT BUCKET :

* *
LEE R R R R ST ST

v
FRREEDIHFRERRT NN R
* *

*MOVE LOW LIMIT *
OF NEXT EXTENT #
: TO SEEKADDR :

EELEEZE S S22 2]

v

SRR RREI SRk hk R Rk
* *
* *
* SET RECORD=1 *
* *

*

*

*
Rk kR Rk kR Rk koK

v
*ERERF Ik Rk RR R R
* *

RESTORE
REGISTERS

EX XY
X XX

LA SRR LRSS

RRKAGIRR AR AR KR

*
* RETURN *
* *
EEESEE LRSS S 2]

Licensed Material - Property of IBM

Section 2:

Program Organization 113

Licensed Material - Property of IBM

Chart HB. DA Close Unit for Relative Track (ILBDRCRO)

114 Flowcharts

RARRAT AR AR RS
*
: ILBDRCRO :
AR R SR S e L L

AR RKBIRRR ARk
*

*
*
* *
:SAVE REGISTERS :
*
*

*
Rk ER AR T RS AR

FRRKRCIHRAR R R
* *

*uw

*
: UPDATE EXTENT

* *
FEERREEERERRR R E

v
FRFEADIRERRE AR
* *
*MOVE LOW LIMIT *
OF NEXT EXTENT #
: TO SEEKADR *
AEERE R R R

\
EEL I ORISR AL S 2]
* *

* *
* SET RECORD=1 *
* *
* *
*¥hkkkhkkbhrhbrhrhd

X
ERRRKFI Rk kR Rk E
*

RESTORE
REGISTERS

L X R
EX R XN

LR LR RS S22 22]

v
*RRGIREERRRERE
*
* RETURN *
* *
FEAREERRAEERERK

Chart HC. DA

TP NEET T TR TS
*

: ILBDXTNO :

EEE AL R EE LR LS

v
FERRKBLRERR R R KR
* *
*SAVE REGISTERS *
* 2-12 *

* *
kb bRkk kbR bk k

v
AR RCL AR R
*

*
POINT TQ EXTENT#
: COUNTER :

* *
Aok dok g deoR ok dokok Rk kok ok ok

. ¥
D1 *.
. * *.
+* ALREADY _*,
. PROCESSED 7 .
. EXTENTS .

COUNTER

v
PRI AET TRRET TS
* *

* *
*UPDATE COUNTER *
* *

* *
RE R R R R BT P L S

*EFRKPl o Er kbR kK
* *
* POINT TO 1ST *
*BYTE OF EXTENT *
* STORE AREA *

kR kkkkE kR kR kk

v
*RAHAGLE
*
*INITIALIZE 1ST *
* BYTE FOK *
: ILBDDSRO :
FIIITE TS T LR Y

LRSS L L]
*

v
kb kkH]l ke kkkkkkE*x
*

* POINT TO 1ST
* EXTENT STORE
* FIELD

LR E

EEEEE S LSl dd

* *

.+ Tx,
+. 1ST EXTENT .
* *

Extent

SRR D2 bRk kR kR RkR
* *
YES * RESTORE *
—-——-~——>:REGISTERS 2-12 :
*

*
Aok A Kok Kk kR ok X

LI PAREE R L L]
RETURN (PROCESS
* NO MORE *

* EXTENTS) *
FRAARR R AR

R I N PRI ST L2 L]
* *

YES

* *
—>:SAVE sYs NUMBER:

* *
HERERRRERRA KRR Ak

*ERk
—>% *
* A3 *
* *
*EAE

Processor (ILBDXTNO)

LR 2]

* *

* A3 *

* Hmm.

Pt
TSTSYM EL
A3 *

L

% SAVE
*,SYSNO.
*. N

*

CHKSEQ ¥,
B3

Licensed Material - Prorerty of IBM

AREEKQLE KRR R
* *
* GET PREVIOUS #

>*VALUE OF M AND #-——q
: INCREASE BY 1 :

LR R R R LSRR L]

*, ERERRBURFRERE R KK
. *. * *
. ¥ ¥, NO * GET_ PREVIOUS *
#. 1ST EXTENT . *-——e—mee, >% VALUE OF M *
*, ¥ * *
*. ¥ * *
*, L% EEAERERB R AR AR,
*YES
P OR—
AR ARCIRR AR RRE K AR ECU KRR
* * * *
* * * POINT TO *
* SET M = 0 * *CURRENT EXTENT *
: : * STORE FIELD :
L T Y EEERER R Rk Rk E
<
v
FERRADI Rk kAR E
* *
* STORE EXTENT *
ERM CODE *

* SET T
: SAVE SYS NUM :
AEEERRRE IR Rk

v
.*.
E3° T+,
o *.
NO . ..
---#.,1ST EXTENT .+
. e
*, %
*YES

LEL
F3© T,

NO .*" READ ID *.

<--%, SPECIFIED I+

*, o
* *

"+¥ES

)
FERFFGIFFRARR AR AR
* *
INITIALIZE SEEK¥
* ADDR FOR *
: ILBDDSRO :
FhEEERRRRARRRRRNE

RETURN v
fkkRHHIRk kR Rk R Rk
* *

* RESTORE *
:REGISTERS 2-12 :

* *
dkkkhhkk e kkkkhokkkk

R TIRRRR KRk
*RETURN PROCESS #
: NEXT EXTENT :

RS R LS RS 22 S

Section 2: Program Organization

115

Licensed Material - Property of IBM

Chart HD. DA Sequential Read (ILBDDSRO0)
EEEESNERT TR TS
: ILBDDSRO :
T P T
v
ttt*tBl* tt*#*#**
*SAVE REGISTERS *
* AND POIN
:CURRENT EXTENT *
**ttt#tt*itt##tt*
kK
* *
* Cl *
* *=>
*kkk
EERCLRF kR Rk ke Rk
READ ID
T T T
LS L]
* *
* D2 *
* *-
Hokkk
k. EOQOF
D1 *, FRkR ROk kb Rk ke Rk kN
o* . * * ARRADI Rk kR E
¥ *, YES * RESTORE * *BR TO USERS EOF*
.t EOF e i >: REGISTERS : ———————— > ROUTINE
R o * * tawtttt‘ttttttt
LS FRhE R R KRR R R
*NO
¥ MOVEKEY
E1l *, ttttthtt#ttttttt
. ¥ . *
.*USER WANTS *. YES ‘MOVE IT TO THIS*
*.‘ACTUAL KEY *.*-———---->: ACTKEY FIELD *
T, o * *
R T T e
*NO
<
¥, ¥ ¥,
F1 *, F2 *, F3 *, FERERTL kR Rk
¥ *, o * _t *, * *
% NO RECORD *. NO WRONG NO *, NO * MOVE IDLOC TO *
. O s LENGTH RECORD PSRN ¢ DATA CHECK o ¥——————— >* SEEK ADDRESS *
* . CONDITION. ¥ B o* * *
*. o s T *, o * *
. Lk *, L% THL L% EERERBRRE R RS
*YES *YES *YES
>
V HHO1A1 HKO01A2
ttt*tGl#ttttttttt ERROR
*ILBDIDAO HRREGIH kR RR R kR
[—*-#-*-#-t *
* INCREASE SEEK * * CALL ILBDDAEO #*
ADDR BY 1 TRACK * *
* * e
T T T
No
NXTXTNT ok,
EXEIT S P LT TR TR Y H3 *,
SEEK * * ok *
ADDR WITHIN NO * * .* NOMORE *. YES
*. o ¥ >*GET NEXT EXTENT*—w——eee->%, EXTENTS o e
, EXTENT o * * . .
* .k * * *. ¥
*, ¥ P T R T T Y *, % ET TR
*YES * * *
* D2 *
* *
*EEA
¥,
Jl *.
. o H NO RECORD %, YES
*. CONDITION *°
* # LR L]
*NO * *
¥ Cl #
* *
*k#
RETURN
ttt*‘Kl*tt#tt#t**
* FEREKDRRF R KRR
* REST! t * *
: REGISTERS :—-——————)‘ RETURN :
* * T T
FREEXFRRRERRERERE

116 Flowcharts

Chart HE. DA

HRERRG P kBB kR R
* *
RESTORE *
REGISTERS :(
*
FRERERRAERE R R R

‘unw

wkkkH] ke ko
* EXIT TO USER ¥
: EOF ROUTINE :

kkkkkkokkkhkkkkk

ARE LY VIS I L]

*
: ILBDRDSO :
EARE S SRR R LT L 2]

4
AR Bok ek krkkkk
* *

*SAVE MAIN-LINE *
: REGISTERS :

* *
FRFERERE AR SRR

c2 *,
. *,
¥ -
*.‘ SPANNED ¥
ER o
*, L% *REE
*YES * *
* E2 #
* *
LR 22
HEESED2RRERFRBERE e - o o e
* ¥ e SEARCH KEY EQ CCW
*STORE SYMBOLIC * READ KEY AND DATA
:KEY INTO CCW'S : CCwW
* « _TTTTTmTmTTTTTTTTT
R
1L
* *
* E2 %
hkE -
EHEE2FRBRERAR RN
*
READ ID
* *
B R
v
¥ o,
F2 *, F3 *,
¥ . o* *,
¥ *. YES «*USER WANTS *. YES
‘.§ECORD FOUND‘.‘—— ------ >‘.’ACTUAL KEY ‘.'---—
R K3 Tx, ry
*, % ..
*NO *NO
ke
* *
* G3 *
* *->
LR 22)
-*,
G2 * HEREAGISF SRR,
*, * *
YES .* *, * MOVE IDLOC TO *
*, EOF ‘.’ * SKADDR FIELD :(-—-
Sk, ' * *
*, % LA LS RS2 2 d
*NO
v
RERRRHOERS R AR RS E H3 W .
* * ¥ *,
* ADD 1 TO * «*WLR OR DATA*. YES
:RELRTIVE TRACK : . CHECK P
* * R .+
ek d kTR keI Rk k *, %
*NO
kEE
D% *
* E2 *
*
P
BEERTINER R
*
* RETURN *
M *
EE 222 E 22222 23

Licensed Material - Property of IBM

Sequential Read for Relative Track (ILBDRDS(Q)

SERERFURE R Rk
* *
* MOVE RELATIVE *
* TRACK ADDRESS *
: TO USER FIELD *

LRSS 2 L2 S22 a2 2

¥,
Gl *, ERRREGER R R AR
o* *
YES .* RECFORM *. NO * MOVE SYMBOLIC #
————— * SPANNED e¥eeeeee>% KEY TO USER *
*, *.‘ * FIELD :
k. L% A
.
P
> *
* G3 *
* *
Ardn
HKO1A2
ERROR
ke HY ke bbbk ek ®
* EXIT TO *
ILBDDAEQO :
SRR

Section 2: Program Organization 117

Licensed Material - Property of IBM

Chart HF. DA RZERO Record (ILBDFMTO)

HERAD] R AR R Rk R
ILBDFMTO
TRk kR R kR Rk Rk

*
* *
*

v
KEERRDL R ARk
* *
* *
:SAVE REGISTERS :

* *
LRSS RSS2 2L)

Y
EEARCLA R R RRR R
* *
+ MOVE LOWER _ *
*LIMIT OF EXTENT#
70 SEER ADDRESS*
RERE AR AR AR R R
A
BAEDI Rk kR h Rk R bR
* *
> WRITE RZERO
* *
R
RS ERROR1
E1 *, FEERIEDRRRRRKERKS
. * * M
. YES *PUT ERROR CODE *
L ERROR ->* IN REG 0 HIGH *--
- . * BYTE *
*, ok *
4 FERERARRERRR R
*NO
¥
F1° e, FERRRFRS RN EREA
¥ *, * *
+*THIS EXTENT*. YES * RESTORE *
*, DONE o F e): REGISTERS :
‘. e * *
oLk AERER R
*NO
HHO1Al
PRI E xR LT TE 5
*ILBDIDAQ * ERERGOERE R AR
[t *
l-——* INCREASE BY 1 * - RETURN *
* TRACK * * *
* * AR AR
AR AR
118 Flowcharts

__-):DTF-B IN REG 0O

EARKREISRERE SR SR K
* *

*PUT ADDRESS OF :
*

* *
EEE LRSS S 222

X
kARSI %
*$$BCOBER
LI DR S R e e P
*EXECUTE SYSTEM *
*+ERROR PROCEDURE¥

*
LA R RIS SR 2

v
FERRGIHERERRRAE
* *
CANCEL JOB
ERAERK R AR KRS

* *
* *

Chart HG.

Licensed Material - Property of IBM

DA RZERO Record for Relative Track (ILBDRFMO)

ERREDDEBEERERER

*
: ILBDRFMO :
FERERRARRR SRR

v
(TTT2 -V ETE PR YL
* *

XX

*
:SAVE REGISTERS

* *
R AL RS2 2 2]

3
FERRAC2RR AR
* *

INITIALIZE
: TRKADDR TO 0

-nnw

*
EEERERERRFR KR RN RE

4
FEAD2ERKAEEERERE

* *
WRITE RZERO
* *

RRKRERERERERRERS

v
HREED R R kR Rk
*

WAITF
* *
TR TR R TR PETE 2
Y
F2° s, FREKKFIRRERhRRRER
* *, * *
¥ EOF *. NO * ADD 1 TO *
, (OUTSIDE o Fmm e > TRKADDR *
, EXTENT)’. : :
R L T T
*YES
LEL 2]
—D>% *
* D2 *
* *
k%
EOF v
AERRFCh RS R R REERE
* *
* RESTORE *
* REGISTERS *
* *
* *
T TR PR LY
v
FERRH2RRER AR
: RETURN :
FREEERRERREREES

Section 2: Program Organization 119

Licensed Material - Property of IBM

Chart HH. DA Increase SEEK Address (ILBDIDAO)
¥,
Al *,
ARERAT RN N *,
* . NO
* ILBDIDAO : r—-)‘.‘ 2321 H e
I It R S
, . LT
*YES * *
* G2 ¥
* *
shan
DEV2321 ¥,
HARRABLAER AR RS B ¥, FEERERSRERERRRRRE
* * L& ., * *
* SET R10=18 * .*Hl1 GREATER *. NO * *
: R8=198 : . THAN 3 o ——>: ADD 1 TO H1l :
* * . L+ * *
Rk ¥ T I I T Y
*YES
TEEE
>* *
* Gl *
* *
T
o ¥, IHIGT3
c1 . RERRC2ER RN FEEARCU RSN
. * * * *
. YES * * * *
* 3330 L >: SET RIO=17 : : SET H1 = 0 :
Tk, S * * * *
. % T EREE AR AR
*NO
<
13330 %, IH2GT8 ¥, IH2GT18 ¥,
D1 ., D2 ", FEEEADI R ERR AR D4" e, FEREADSRRS AR
¥ ., * *. * * ¥ . * *
.*H2 GREATER *. YES .*H2 GREATER *. YES * * .*C2 GREATER *. NO * *
UUYTHAN HB L #mmmmmome THAN R1 P > SET H2 = 0 #-——mn *. CTHAN I >+ ADD 1710 C2 %
Tk, W T, L * * “x, e * *
. % . 4 EERERRE AR ., .+ FREEER AR AR
*NO *NO *YES
T
> .
* Gl *
M *
T
o, IC2GT8 v
E2" "*. HERESEL Ok R R AR
. *, * *
NO . . * *
R e *, 2311 o* : SET C2 = 0 :
“x, * * .
., L* EERER AR RSEE RN R
*YES
INCIH2 1 ¥,
FRRRRFL Ak ehe ARERRF2R AR RRAd F4 e, FRREAFSE R RNk
* * * * ¥ *. * -
* * * * .*Cl GREATER *. NO *
‘: ADD 1 TO H2 : : SET H2=0 : *, THAN 18 o¥——eeee>% ADD 1 TO C2 :
* * * * “x, o * *
gy AR AR RS .« .+ EEEERRRRE R
*YES
EE T T
* * * * > -
* Gl * * G2 * * Gl *
* > * > * *
e ok P
¥, IC2GT18
RETURN G2 . ARG FEERRGURE RS
HRERGLARAEE AR o . M * * *
* R *. YES * * * *
pe=D% RETURN * *, cl=1 B) >%* SET RB = 143 # * SET Ci1 =0 *
* * ., . - . * -
Ty PR .+ * * M *
. .k AR R M
*NO
J7<
c2198 ¥, A
H2" .. ERRERH IR AREERHY R R
* *, * * * *
«*C2 GREATER *. NO * * *
*, AN R o ¥): ADD 1 TO C2 :—-- : ADD 1 TO B2 :—--
R o ¥ * * .
. Lk e SRR R R
*YES * * * *
+ Gl * * Gl *
« * * *
s ran
ZEROC2 ¥ DEV3330 ¥ IC2GT254
FRRARTLE AR AR 327 . 33~ e, ERRRETURRE SRR
* * . -, . *, * *
* * NO . . .*C2 GREATER *. YES * *
* SET C2 =0 e *, 3330 o¥* ~~>%, THAN 254 B >% SET C2=0 Cl=1 *
M *) * *
* * ., o ., . * *
M *, % *, .* FREERRRREEEER AR
*YES *NO
s
—>*
* Gl *
* *
.
eI K2© .. FEEERK IR
M * . * .
* YES .* *, NO *
—~-% D 1TOM ¥ b B c1=1 P e * ADD 1 TO C2 *-—-
* * “x. % * M
e P AR
* * .
* Gl *
* M
T

120 Flowcharts

Chart HI.
T YNE LI I
* *
* ILBDDIOCO *
* *

dkkdkkk kR kkkk

whkk kBl kkkk ok kk ok
* *
* *
:SAVE REGISTERS :

* *
*krk e kkk kbR khkk

v
*ERARCLE kR ke Rtk
* INDICATE *
* AME C *

*STANDARD COBOL *
REWRITE
ut*titttttt#t###

\

v
FEEREDLESRRR AR KR
* *

* *
:MOVE IN SEEKADR:< ————————

* *
SRR RRERR AR TR R R E

PR TE SER T TR T Y
* *

* *
: POINT TO KEY :
* *
krkkkokkokkkkdkkkkk

v

F17 s,

SPANNED
RECORD

k.
. ¥
*

YES %’

x,

‘e,

¥ *.
*.‘WRITE AFTER'

D e

ARk E Rl AR,
‘SET KEY ADDRESS‘

IN
* SEARCH KEY-EQ *

#
“‘*‘**‘*#“*****

v
*,

*

a1’
*

SPANNED

RECOCRD

‘.. et
*, %

*YES

l_>a

¥ E5 kkkdk
*
hex

“%. NO

e

o

*,

k¥
* *
EEEE G5 ¥
* *

DA READ and WRITE (ILBDDIOO)

Licensed Material - Property of IBM

EEEES VAL Z 22T 2 *EREAIRREEEREEE RE A2 VES SIS S 2] **‘*AS**.‘*“*;
* * * * * *
: ILBDDIO1 : : ILBDDIO2 : : ILBDDIO3 * * ILBDDIOU *

SRRk REER R kR kRS EE SRS RS EE 2 2 2 *EFE kR R T RERE EEE T 222

v v

¥Rk R Bk ke kbt kd *hkERBIk ke kb bk Kk *kk¥ERUk Rk Rk ke bbbk kR RkBO Rk kkokkkw ok
* * * * * * * *
* * * * * * * *
:SAVE REGISTERS : :SAVE REGISTERS : :SAVE REGISTERS : :SAVE REGISTERS :
* * * * * * * *
EEEE R RSS2SR L L) ER 2 PR RSS2 R LS FEFEFEEE R R TR Rk RIS R 222222)

v X v
ERRERCORb Rk bRk kR R Rk ERC IRk bk bbbk ® *RFRACUS Rk k& HERERCO R e bbb nk
* SET UP TO DO * * * * * * *
* AMERICAN * * SET UP TO DO #* * SET UP TO DO * * SET UP TO DO *
* NATIONAL * * READ KEY * * WRITE KEY * * WKITE AFTER *
* STANDARD READ #* * * * * * *

KE * * * * * *
EE RS RS S S 2T] ek kk Rk kR kR Rk k ‘*“#t“I*“"“* bk Rk Rk bk kR

v
<

v
ARk kDR Aok kR
* INDICATE NOT *
* ERIC. *
* NATIONAL *
* STANDARD *
* WRITE/REWRITE #*
MY ™

L2 1] EX 1Ll EES

* * * *
* E2 * * E4 * * ES5 #+
M . *-
*hbd % EX L] % (122
¥, ¥, o,
E2° . E3° s, 40 e, AERCKES KRR RRR
o ¥ * * EEKADR *SET KEY ADDRESS*
«*KEY SAVED*. YES EE. =_ %, YES +* COMPARE D *. GT * IN
. EY = e >%,SAVED SEEKADR. ¥——wuo, .TO UPPER . * READ-~KEY-AND- *
. . . . *-EHIS E. * : DATA CCW
T, T, T ENne T PP
*NO *NO LT
OR EQ * G3 *
kE
<
o ¥, P \
F2 *, Fu *. tttttFS* t#'t*#at
¥ *, «*SEEKADR:

.* SPANNED #*. YES .% IS VALID . NO *PUT RECORD SIZL‘

*, RECORD o F¥ome *, FOR DEVICE B IN BYTES 4 AND
.. o+ .] sPCF ToARER +
*. ¥ . ¥ v
, J *kkk *, ¥ *hEE R R R A S RS
*NO * * *YES * *
* H2 * * J3 % e
* « > * * * *
*k¥k L2 1S * G5 *
____________ * '—)J
*hkk
ey m AERREGIRRERRE SRS EERGHEEEER SR RR RS G5
* * * * ¥ .
* MOVE KEY TO * * * * APPROPRIATE #* .* NATL STDD *. NO
* BUFFER : :GET NEXT EXTENT:(-- I/0 WAIT -WRITE/REWRITE Heem
* * * * I ‘. -
ERE SIS SRS L L) RS R R R R 2SR R S) LR RS R 222222 RS L] . e EE i L]
* * *YES * *

*ake * 63 * [oaeet 32 %
* * * _>*

* H2 * ares PRI
* > * *
L2 1] LR L 2]

oF,
t‘tttﬂzt*tttttttt H3 . SERERHURE AR R
* Wk * SAVE SEEKADR *
‘ SET UP TO DO * * AND KEY IF *
* WRITE AFTER * # . TERMINAL CODE. *%—- * AMERICAN *
* . . * NATIONAL *
* * *, . * * STANDARD READ *
PRI SRS RSS2 S] « o ¥ k% LA R R R R E R R T L]
*YES * *
Py e * K2 #*
* * * * * *
* J2 % * J3 % T
. > M %>
*kEk *kkEk
J v ¥,
ERRRRETOk Rk Rk kR ke kk PRI NKES SIS I L 2) Ju . R INES ISR SR E T
* * * . * *
*POINT TO FIRST * * RESTORE * . NO * RESTORE *
* EXTENT * : REGISTERS : *, ERROR e >: REGISTERS *
. - *
* * * * *. o * *
kR kR ERE Rk kok EE2 222222 R L L) *, ¥ EE SR RIS 22222]
*
k&S YES
* *
* K2 *
>
TG
x2" Y HKO1A2
_*SEE FEEEKIERR AR R FRRRRLE RN FEEEKSHEEREY RAE
«*COMPARED TO*. LT * USER INVALID * * * *
« LOWER LIMIT .*-———--J * KEY ROUTINE # * ILBDDAEO * * RETURN *
.THIS EXT . *
*, . ¥ AL RS2SR 2 USSR EEERER T RSN EA 22 P S 2T
*, ¥
*GT
l OR%EQ#*
_>* *
* E4 *
* *
*kkk

Section 2:

Program Organization

121

Licensed Material - Property of IEM

Chart HJ.

FRERDLAFREARRRS
* *
* ILBDRDIO *
* *
P TP

HAERRC] kR Rk kR Rk
*

*
:SAVE REGISTERS

LT

*
*EERk AR ek Rk

CcoM1
FRERRDLHRRRRERKAR
* *

* MOVE IN *
*RELATIVE TRACK *<-o-——meuo
* ADDRESS *

*
FhEER kR ARk Rk

*RkERRE]l k¥ hkkhhkk
*

* POINT TO
: SYMBOLIC KEY

EE X R

*
FhERk Rk kR Rk kR k

CHKWRAFT .*.
1 *.
o* *.
ok *. YES
‘.‘HRITE AFTER‘.‘—-—l

*EES

>+ READ KEY AND
* DATA CCW

ARRKDDRFRERRRER
*
* START *
* *
FRR kAR R

v
PR L LS :-PIT I ELE S L)
* *

* *
:SAVE REGISTERS :

* *
FERRRRERRRRRRERRE

v
FEEREC2RRE R ER KR
*

* SET UP _TQ DO
: PROPER 1/0

LR

*
R R Rk R AR RRk

AR RRDIRERRRR R KRR

* INDICATE NOT

* AMERICAN

* NATIONAL
STANDARD

* WRITE/REWRITE *

EREEET T TR

XX

Fadan e AL Eiies
‘ STORE_KEY IN

EX TR

*ERREER R AR R R R RE

v
EERRRGI Rk R R RRRE
*

* STORE RECORD
:SIZE IN IOAREA

EE T XX

*
kR h Rk kR kk Rk kk

STOREKEY v
**‘*#Hlt AREEAERE
*

* STORE KEY IN *
* SEARCH KEY EQ *
: CCW *
T e T T

A’

CHKUSASI _ .
Jl *.

-* AMER *,

NO .* NATL STDD *.
£—~—‘.ERITE/REWRITE.*
*

*, ¥
res £, %

* * YES
* E4 * l EETEY

* * —>%
e * AU *
* *
sk

122 Flowcharts

DA READ and WRITE for Relative Track

ILBDRDI3
ILBDRDIY4

(ILBDRDIO)

*hkk
* *
* A4 *

* -
T
¥,
A4 *,
o *.
«*KEY = SAVED*. NO
*. KEY *.

¥
BU *,
o SA EQUALS *. NO

‘.. SAVED SA D>

¥ *. YES
. SPANNED ‘-*-->

. o *

S
*NO

#tt##Du###ttttti*
. MOVE KEY INTO *
: IOAREA ‘

* *
kR kokkRkk ko kk

*REX
* *

* B4 *
>
khk

HEREL R Rk Rk hkok
* APPROPRIATE *
1/0 AND NAITF’

KRR KRR KRR E RS

TSTERR ¥,
F4 *

oE *
. YES
*. ERROR P S
. .
*, %
*NO
USASIRD oE.
Gl *,
¥ *,
«* AMERICAN *. YES
*. NATIONAL Hmmme

.STANDARD .
*.gEAD‘.‘

HKQ1A2
ERROR

Py I R T T P
EXIT TO *
ILBDDAEO :

REE S 2L RS2 2L L)

SA
O*t#tGSOt#t#t#t#t

*

SAVE SEEKADR *

-——>‘ AND SYMBOLIC *
KEY :
HRRRRE Rk kR Rk R

.

*NO

<
EREEFHUR KK KA X R ES
* *
* RESTORE *
* REGISTERS *
* *
* *
RERREERRRRERREERE
*EERJUSEEEEEEXE
* *
* RETURN *
* *
KRERERERKEEERES

Licensed Material - Property of IBM

Chart HK. DA Error (ILBDDAEQ)

EREKARERR RN RR
* *
: ILBDDAEO :

P T

¥, TRANS
B2 *, PR TR X ET TR A LT Y
¥ *, * *
. *USER ERROR *, NO *SET ERROR CODE *
*, PROCEDURE .%——-————=>#%AND ADDRESS OF *
*, ¥ #DTF-8 IN REG 0 *
*, * * *
*, ¥ BREREER R RN R RRE
*YES
o, V. EJO1A3
c2 *, HERERCIhRk AR Tk E
o *, *$§BCOBER *
.*USER_ERROR *. L I o]
*, BYTES ¥ *EXECUTE SYSTEM #
*.‘ *.* :ERROR PROCEDURE:
Te. U Akk kR Rk
*YES
v
RAKRRD Rk kR D3 T,
* * ¥ *.
SET APPROPRIATE . *ILBDDBG2 IN*. NO
+ ERROR BYTE * *. VIRTUAL ——
* *. STORAGE .*
* * . *. ¥
P T T g *, L%
*YES
v JCO1A1
FRERRED Rk Rk AR ET kbR R R
* * *ILBDDBG2 *
*POINT TO ERROR * L e e itk A]
* BLOCK * * PROCESS *
* * * ABNORMAL *
* * *+ TERMINATION *
P e PR S R A kR AR ARk
----------- >
USER v
*pkkRFhb kb kk kg kk v
* RESTORE * ERERFIhRE kb kR kE
REGISTERS SAVED *
* BY CALLING * * CANCEL *mm
* PROGRAM * * *
* EERE RSk
FERERAERR RO RRRE
ARARG2RER RN KRR

* USER ERROR *
: PROCEDURE :

RERRERRF TR KR E

Section 2: Program Organization 123

Licensed Material - Property of IBM

Chart HL. VSAM Initialization (ILBDINTO)

*ERERTRERR A KRR EKLZEE-E§-EEET1
* [OF COBOL PGM
* ILBDINTO L
T L T

PRELUDE

REEREBIRERRRRERES
* *

* *
:INITIALIZATION :

* *
AERERRRERER KT

INTO
FhhRRCLRRRRRRRA RS
*

* ISSUE GETVIS
* FOR FCB_AND
: WORK SPACE
*

AEFERREERERE R Rk

b}
LEE X 22

INT v
ADLAkRE Rk REEH
*

*
ZERO FCB :

*
kkdkkkkkrkkdokkkk

HREKKE] KRB R R KKK

*
*FILL IN FIELDS *
: OF FCB :

* *
EEEREERRR AR E R kR R

v
AR RFL AR R ARk R
* *
PUT FCB ADDRESS
: IN TGT *

* *
LRSS RS SRS A2 222]

v
FRERGLARERRERES
* *
* RETURN *
* *
ERRERRBRERERRRK

124 Flowcharts

Chart HM.

AERERLEERRRIRER
* ILBOVOCO, *
* ILBOVOC1 *

*
LRSI RIS L)

PRELUDE
FhRRBL
*

4
AhERRERK
*
* *
:INITIALIZATION :

* *
*ekkkhRkRbkkhkkkE

\
BASEADDR _.*.
c1 *.

'.
*, CLOSE
* CLOSE REQUES

‘_ ,*
*. .
*OPEN

[Tl r]

%02 *

* Als
o
*

MDOPEN
*‘t#!Dltttt“ttt

T X}

*

*

*

STORE REG14 :
*

*

EEL IS RE LI L]

MD01000
»#*t¢31¢¢tt¢#¢tta

‘ LOAD FCB_AND
‘ FIB ADDRESSES ‘(

#!t#ttttttt*ttttt
EELE
* *
* F2 %
* P
Tl
¥ MDO1002
F1 *, Rk R TRk Rk kR kR
¥ *.
.* OPENED OF *.
¥, CLOSED WITH
*. LOCK ¥
R
[¢]
NO
¥ ¥,
Gl . G2 *,
. . o * *,

o *, YES .*SEgUENTIAL *,
’.‘OPEN EXTEND*.t ———————— >*, CCESS ‘.'
N) ‘e, o
*, . * *. .

*NO *YES
<
MDO1004 o ¥
H1 *. .
¥ *,
¥ *, NO
*. INDEXED . *
*, o A
*, o
*, L *
*YES
o*. MDO1006
Ji *, FEERRTO2NRERRRRRRR
¥ * *
NO * GET KEY LIST *
* OPTIONAL] >: ENTRY :
*. 'y * *
€, L * ERRERRERERRR RN R
*YES
l EET e
D% *
* F2 %
* *
T

NO
F3' Tk,
. ¥ *,
.*END OF FCB *.
‘e LIST -

ttt#tﬂ3#tttt$*#*t
*
* ISSUE GETVIS; *

¥ —-BLDEXL
>#BUILD SKELETAL *————-———>‘BUILD EXIT LIST‘————-—-—>*
* FIELDS

FREFRSERRRRRER R RS

YES

Licensed Mater

VSAM OPEN And CLOSE Subroutine (ILBDVOCO) (Part 1 of 2)

ial Property of IBM

MD02000 MD06000
kR RALRRERehhE S KEBASERRR kR FEE RS
* *
*MOVE ALL ACB'S * * CLOSE FILES *
f—--=>% TO ONE AREA % r—=>, WITH ERRORS _ <--
* *
*hkhhhkrk ko kb h AEERERERRRRE T RS
MDO3000 MDO600Y N
**kBUk SRR R R AR S *XFEEDSARER KRS
#=—~-CLEANUP~=--#
* * * FREE STORAGE *
OPEN ALL ACB'S *FOR FILES WITH *
* * RRO!
SEEREEEERBRE RS RE HEERFRRABEE R R KSR
MDO6016 v
EEE R LTS R LR L 2L 2] HEEFRCSEEREERBEESF
* * * *
#-~——FINDERR=-=~=*% % SET Up STATUS ¥
1L0QP THRU ACB's$ * KEY
* FOR ERRORS : REQUIRED :
LRSI RS SR HREREREEREERERERR
v
L, ..
Dy~ . D5" C#.
o .. .* *.
R *. YES L#END_OF FCB #. NO
*. ANY ERRORS _.#——--> ., LIST A
R o kN .
.. %, %
*NO *YES
MDO5002
Frkiepys TTTr MDO7000
..... GETRBA~~=~% LR LS EE L 22
*GET ENDRDA FOR * * *
-->*% FILE OPENED * * RETURN *
M OUTP . M *
* * PRI SRS 2 L]
EREFERRRERERE RS
v
F4 T,
R
*
ttt‘#ﬂui’.i.“"# “#‘tﬂst#‘#““‘t
*
---------- BLDACB-=-=~%
BUILD ACB *
*
tl#.“*i‘ittl!‘i‘ ll*##'*‘##*‘!‘#‘*
tttt0J5t#t0ttt*#t
—————— BLDR] L-—--m
*+ BUILD RPL *
* *
- *
HEEkRERRR KBRS R RN
hkE
—d
* F3 *
*hkE

Section 2:

Program Organization

125

Licensed Material Property of IBM

Chart HM. VSAM OPEN And CLOSE Subroutine (ILBDVOCO) (Part 2 of 2)

MDCLOSE
CETETINERT PR

*
*STORE REGISTER *
* i4 *

* *
SRR RS SRR R E RS

MDC1000
2223 SR T E T

* DETERMINE IF
[-->: FILE O

rxenw

t#‘t**i#*#t####t*

MDC1004
HkRRCIkFekhhRkks
* USE CB MANIPULATION
DEACTIVATE e —— | ROU E
LERAD/SYNAD * —-
EXIT *

1
*
*
*
*
*
*
*

*
LR LA AL R]

MDC1006 . ¥ EEO1Al
D1 * 3 il VIS eI T 1

.* * ‘ILBDCKPO *
_____ ‘-*—‘-‘
. RERUN P Db,
e . *TAKE CHECKPOINT:
Te, I ST
*NO
MDC1008 o*.
.El *,
NO *END OF FCB *,
——, LIST
R
*YES

MDC1020 . ¥,
F1l *,

0 ANY FILES *,
‘. TO CLOSE

3
AEREAF 2

YES

i
MOVEACB
*MOVE ALL ACB'S *

-------- >‘TO ONE AREA AND*
CLOSE *

t
AL 222

v

*
kb kkEE

126 Flowcharts

¥, MDC1060
G2 *, FERRRGIFRRE R
o* *, * *
.* * *CLOSE ONE FILE #
*. SUCCESSFUL . *r————e=n>* AT A TIME *
*, ¥ * *
*, Lk * *
*, . SRR EARERRR AR
*YES
<
MDC1064 ¥,
*, tttt#ﬂ3t“ttttttt
o t, *
W ¥ ‘----FI ERR==~<~#
.ELOSE ERRORS.‘-——--—-—> FIND ERRORS :
‘x, ' * *
. 2 ¥ AEEEREE BB R RRERkS
*NO
>1<
MDC3000 v
FEFRB TR RN R AR R ES tttttJ3!itt'tttt#
* *
* GET FCB ADDR # tUSE DLCLARATIVE*
* LIsT * TIN. T —
* *
* *
FRREERER R R kR ek t“t“"t't*#““
A
YES
MDC3004 ¥, MDC3016
:tt#tk2t itttttt# ‘KB t. :ttttxut#tt##ttr:
* SET UP_STATUS ‘ NO o UP=—-~¥
: KEY '-----—--)* DECLARAEIVE ‘-—-———-—>* FREE STORAGE :
* . . *
t#‘t‘tttt‘it#"tt *, * LR 22 22223 S2 2222

*

MDC3050
tt.tKS‘tttttttt
*

RETURN :
P YT T T

Licensed Material - Property of IBM

Chart HN. VSAM Action Request Subroutine (ILBDVIOOQ)

*kE AT kERkExkER
* *
* ILBDVIO *
* *

*hkkRh Rk R R ek

PRELUDE kY
#hkkkR]hkshkkkkk¥k
* *

* *
:INITIALIZATION :

* *
ERRRE Rk ER AR R
v
VIoo ¥ ACT00680
c1 *, FREEKC2RRREEREREH
¥ *, * *
o* *, NO # SET UP FILE =*
#., FILE OPEN .¥e—ee———->% STATUS Dt
*. o ¥ * *
, o * *
*, L% P e T I
*YES * *
* Gl *
*
T
ACT00002 .*.
D1 *. ERRRAD2RR AR E AR R e
Lk . * * USE CB_MANIPULATION
* *. YES * ACTIVATE ittt RO NE
* ,FIRST REQUEST. #-————=—m >* LERAD/SYNAD * = e
. o * EXIT *
, L
. ¥ FRRRRE R R AR R
*NO
<
ACTQ0004
FEERRETRF R AR

* DETERMINE *
¢ REQUEST AND +
+ B TO *
+ APPROPRIATE *
* ROUTIN. *
RERRRRRR R KRB Rk

ACT00700__ .*. ACT00704
F1~ T*. T PR TP
o* *, *
. * M
#. FILE OPEN .#*—=cewe—— S#
* * *

SAVE ACTION
CODE

EX R

'R o *
, .+ ERERRE AR
*NO

rnn
-

Gl *
*—

hx

ACT00736
FRRRGLEFRERERRS

EX

> <

*
* RETURN *
* *
EEEE I RS 2L]

Section 2: Program Organization 127

Licensed Material Property of IBM

Chart IA. Separately Signed Numeric (ILBDSSNO)
MEERQ AR R AR
* ILBDSSNO *
FERRERERERRARRE
%,
Bl . SEERFB2RERERARRNR
¥ *. :SET %OW-ORDER u:
+. IS SIGN + ~=>*RECEIVING FIELD*----—
*. . * TO X°cC* *
*, ok *
, * P I L T T
*NO
¥,
Cc1 *. HARRKCO2REE R R R kR
o* *SET LOW-ORDER ut AERRCIRRRAAERRE
o . YES BITS OF *
‘~‘ IS SIGN - . #———m—mmee >'RECEIVI§G FIELD‘l -------- >* RETURN *
N . ° EESARSAEERRA SN
. ok ERAR R R AR
*NO
v
FEERRDL R RE R SRR R
*
* ISSUE ERROR *
* MESSAGE, D *
* AND TERMINATE :
PP
3
FRARE] SRR AR EE
* *
* END *

* *
EERE R ES S LR L L]

AAERFLRRR R AR
«
* ILBDSSN1 *
AR AR
¥
g1~ . EHrRRGRIERRRLREAS
o * *,
.*HIGH-ORDER *. YES ’ MAKE SEPARATE *
#. 4 BITSSX'F' %——ee—eev >* SIGN A
, OR 'C' . * *
.. . . *
. L ARERRER AR RERRR
[o]
HL W . A AL ARE LA SE
.+ .,
.*HIGH~ORDER *. YES ' MAKE SEPARATE ‘
*1 WTBITSSX'D' l#---omm—->% T SIGN
‘u. ' *
. .* errrrsrrearrrre
*NO
v
ERERETLRER R R
* *
% ISSUE ERROR *
MESSAGE, DUMP, #
+ AND TERMINATE *
FEEEERR AR EE RS
v
HRERRLA RS RRER
* *
* END *

* *
ERERER AT EREES

128 Flowcharts

KERFRHIA AR AR
* *

*SET_ HIGH-ORDER *
>:u BITS TO X'F'

*
LA RS LA L)

SEREHYE AR RR RS

RETURN
FERERARRERREREN

*
*

Licensed Material - Property of IBM

Chart JA. Test (ILBDDBGQ) (Part 1 of 2)
LRI NERS IS L LT
* *
: ILBDDBGO :
hkkkokkkkhk ok kkkk
DAMPD
tttt#Blt t#*tt#t*
_______ CURRBUFF IS INITIALIZED
WITCH TO [WITH BUFFER ADDRESS

:AVOID RECURSION‘

* *
Rk kEkk Rk Rk Rk

o, SYM JJO01A2/JP01A2
c1 *, kR C Aok ok ok koK ok ok
*ILBDMPlO/ZO . :

* SEGMENT *
* dk koo dkokdokok kok kR R kokokkdor
o] *02
* F3%
* ¥

*

*. NOTFIRST NOTOUT EL JJOlAZ/JPOlAZ

ARAKRDU SRR Rk E*

p1’ T+, HRED s aans D3 s,

ENTRY *.*NO

o F
.+ 1sT

*, TO ILBDDBG! 0

k.
*

Y
*

LAST EQUAL * ¥

. *
*SET SYMDM;
----- >‘TO REGISTER 13 :-——-----)‘.* REQUESTED .

*
“t#‘**‘t****t##‘

*ILBDMP10/20 :
%

ERR S LRI s R 2 2]

T#YES *NO *02_*
* F3x%
* %
*

NOSYM B JGO1Al
E3 *. wkhkREY ek k kR Rk &
o* *, 'ILBDFLWO
** STXIT MACRO ** hd FLOW *. YES *
‘*TO ESTABLISH ** r=~>%*, REQUESTED _,#*———————= >*INITIALIZE FOR —
LINKAGE ** *, ¥ FLOW TRACE *

ttttttttt#ttttttt x, % ttt#t*tt**tt*#ttt#*tt#
*NO *02 *
ErT L * F3#%

* %

N
*kkkhElkkkkkkhk Rk
*x %

v
tttt#plt ttt*t*t*
* SET FIRST AND
* LAST EQUAL TO *
: REGISTER 13 :

kR kdok kR kR k

v
EHEERGLE

TURN
ENTRY

IR

REREE Rk

v
FRRKKH*

GET COMRG
ADDRESS

LX)

*erkkkkk

Jl

v

EEE 222 2L]

*
ON_1ST *
SWITCH *

* e

Aok kK

*kk bRk

L X XN

EREEEL L L 2]

*.

P *.
«*PROGRAM HAS*. NO
*.‘ SYMDMP '.‘

et
*YES

Section 2: Program Organization 129

Licensed Material - Property of IBM

Chart JA. Test (ILBDDBGO) (Part 2 of 2)
ok k T
*02 * * *
* Bl *-— * B2 *
Lt % ok
TGTLOOP o E, NOCOB
. PE IS VIR T T Sk kBIkkdokkkdokkk
o ¥ * * * *
NO *GET HIGHER SAVE¥* * GET INIT2 *
—~=>%_,MAIN PROGRAM . *———eee—- >: AREA ADDRESS :- ——>: ADDRESS :
[R S * * * *
EETS *, L% SRRk Rh Rk Rk Rk ARk kAR R kAR
* * *YES
* Bl *
* *
R
MAIN oL
*RkFRRCI kb bk kb k c3 *,
* * t *.,
* GET INIT1 * THIS _*. NO
* ADDRESS * * COBOL PROGRAM.*———
* *
* * R a
B T T *, % PR
*YES * *
* B2 *
* *
Rk
v
¥, NOSEGM L*.
D1 . ittt*DZ*#t##t**** D3 *,
Lk *, W * *
.* PROGRAM *, NO GET ADDRESS * .* PROGRAM .
*., SEGMENTED .¥——————-= >*BEYOND PROGRAM : *. NAMES EQUAL . ¢-———
*, Lk .
*, L% * *, V¥
, . ‘#ttt#**t*#tt*t‘ *, EEE
*YES ES * *
t tt*## B2 !'
D%
x Bl ttttt
**4‘#
*kkkkE]Rkkr kR kkkk
* *
* GET ADDRESS *
*BEYOND LARGEST *
* SEGMENT
LR T
kR Rk
* *
* F3 *
* o
< EE Y %
LOAD ¥
*t*ttFltt#*t*tt** *F3 -
. *,
* LOAD ILBDMP10 * ¥ *
* (SYMDMP) * —~>%,COUNT OPTION .¥=-e-
* . .
* * *, ¥
P e T T *kk ko *, L%
*02 % *YES
* F3%
* ¥
CALLSYM AO1Al
ET T RIS R T P T 8*##!63###&**** *
* * *ILBDTCOO *
SAVE ILBDMP1O * kek—k—k_%— e B
* {SYMDMP) * ‘ INITIALIZE *
* ADDRESS * * COUNT DATA *
* * * AREAS *
TP T E T T R

JJ01A2
SRR RH] kKRR kAR F
*ILBDMPlO
----- * ko k%
* INITIALIZE *
* COBOL PROGRAM *

* *
kkkkEE bbbk Rk kK

»

FERRF T RRRRR KRR KK
SAVE LOAD POINT#
* ADDRESS FOR *

SYSTEM
* SOR%/MERGE *

EXI'v
*EHFRHIHAEFR AR ER
*

GET_ RETURN *
ADDRESS :(——

LR TR

*
FkkkE kR khkk Rk K

AR AET IRk ARk R
RETURN TO COBOL#
* PROGRAM *

EE S ST S LR

* PROGRAM *
R R LIS L LS
* *

* F3 *
* *
DTy
ILBDSRTO USES
- {THIS ADD
TO_LOAD SORT/MERGE
PROGRAM

130 Flowcharts

Licensed Material - Property of IBM

Chart JB. Print (ILBDDBG1)
L NER LT 'EEEEE—FEBE—EQEBEE,
* TRACE TO
* ILBDDBG] 3 ommeaee BRINE ON SVALSr
ARk RRkRRRRE T
SE. ERRTN EKO01A1 JBOLFS
Bl **t*#BZt******'t* kkkkkPBIkkkkkEkkkk EE R SR L T
L¥ . *$SBCOBEM *WRITEL *
Lk *, # MOVE CURRBUFF t THok_ ke kKK k SR KKk kR kk
#. PRINT ERROR .*=————e_ >% TO REGISTER 0 *—————m—o! >k VB ERROR | #o—mmomm>% WRITE ERROR #ee-
.., o B * ¥ MESSAGE TO * * MESSAGE *
.* .*. ok kk ok kR kE Rk Rk k kK Ak k kR kR kR R hkokkkk Ekkkkkk ok kR kkhk kR ok ok
*NO * *
* E1 *
* *
EES T2
v
L*, CKCODE J*.
c1 *, ***t*c2###t****t* c3 .
L * *. o .. BRANCHING_IS VIA
YES .*FIRST ENTRY*. GET CURRENT * *. DBG1RTNS BRANCH
—==*. IN ILBDDBGL .#-~-m-mmm)*BUFFER ADDRESS *--—--—v >*. CHECK CODE 1# ——————|TABLE
Tk, e Tk, 2 TTTTTTTTTTTTTTTTTT
kK *, Lk ttt*tt't#*t*tt#t* .
* * * *
* K3 % I
* *
*kkk 1
2 3J, 4 5]7
RT! WRTNOEJ BOL1FS WRTFOOT JBO1FS WRTHEAD JBO1FS EJHEAD BO1FS
*EkkkED] kkkkkkkkkk #***tDz*#‘*t*t*tt ek xkDIkkkkkkkk k¥ *kkkkDYkkkkkkkokk ¥k **#**DS***#******
*WRITEL *WRITEL #WRITEL * *WRITEL * +WRI
Fokokkok ko k% —F k. _t_#-*-*_* — koo kR k¥ — ko ko kK kK% —%— —*—*—'—'—‘-
* TE * * {TURITE FOOTING + * WRITE RECORD * * WRITE HEADING *
* LINECTRS=MAX, * + WRITE RECORD * *+ ZERO LINECTR * * WRITE HEADING * *
CT & HDfiG* * * * EJECT * * *
Aok kkkokkokkokkkkokR kK hhhkk kR kk Rk kR kR RS S22 R] EE I IS S R L] FEEEERRFRRE R R RERF
BT
* *
* E1 *
* > <
*E k¥
RETN v OPN
*AkRRE] Kk kK kk ok k AR KFREIRRRARERAEE
* * *
* SAVE BUFFER * * TURN ON DBG1 *
* ADDRESS IN * * SWITCH *<m
¥ CURRBUFF * x * 1
REERkRR R AR R R KRRk FhkkR Rk Rk kkhkx ¥

)
Radedebinisdagss
RETURN TO

LING

* CAL
* SUBROUTINE
FEEEERFRRR R RES

e n

* *
* E3 %
* *
*E ok
kR FI ke kkhhkdkkd
E|
* OPEN_OUTPUT * SEVERAL RTNES
FILE IN ILBDDBG1
LR T e e
HRRRKGIRARRORRRK
* *
* SAVE BUFFER *
* ADDRLSS IN *
: URRBUFF :
EE e T
v
o*,
H3 *.
.* CODE = 0, *. NO
*, 4, oK
Tl ry
*, L% Akkx
*YES * *
| * E1 *
*
0 4 5
EJECT1 JBO1F5 WRTFOOT JBO1F5 EJHEA JBO1FS
RERR T ARk R RRRR AERAETIhk kAR Rk EERRRThRR kR Rk EE
*WRITEl * *WRITE1 * *WRITEL *
ok k ko ko k_kk ¥ ok kko ok k¥ ko ko ko kok ko %
* * * * * EJECT, WRITE *
: EJECT PAGE : : WRITE FOOTING : HEADING :
Aokkk kR Rk ok kR Rk kR kAR Rk Rk B T e TR
EEL T Rk Rk
—>* * —>* * —>%
* E1 * * E]l * * E1 *
* * * * * *
*kkk LEE L *kEk

Section 2:

ARRAFSRRE £ Rk kK
*
* WRITEL *
* *
SRRk kR Rk R R Rk A

A’
tttt#GS*#*t*t**tt
‘DETERMINE LINE *
* COUNT_AND
: SPACING *

*
Fkkk ok kkok Rk kR Rk

v
*RKHS Rk Rk

* *
*ISSUE PUT MACR?

AR KO KA E Rk

kR RE TSR Rk Rk Rk
INTERCH%NGE

ADDRESSES
LR L L e

ERE RN
R W

S L S e T
* RETURN TO *
:CALLING ROUTINE:

R R R 2 L E L]

Program Organization

Licensed Material - Property of IBM

| Chart JC. STXIT (ILBDDBG2), TGT Address (ILBDDBG3), and Save Register 14 (ILBDDBGY)
¥ DEAD JB01A1
ILBDDBG2 A2 *. FERDIRE kAR kR RS ILBDDBG3 ILBDDBG4
EI T TINEST I T T T T .* DID *. ILBDDBG1 kR PRk kR kk R RS hdok e kkokk
* * +* ILBDDBG2 *. YES = = *-=—=—-—————e=- * ENTER FROM * * ENTER FROM *
* STXIT ROUTINE ¥————e——n] >%. ABNORMALLY .%-——————-> ISSUE ERROR ¥ COBOL PROGRAM * * COBOL PROGRAM *
* * *_ TERMINATE. * * MESSAGE = * * * * *
Fkkkkkokokokkokkkkk * . E22 IR 2] kkkkk gk ko kkF
*, L% *hkkkkkkkkkkkrkkk
*NO
Lakdd AFTER RETURN FOR!
FROM_CALLED BRANCH TO
* B3 * PROGRAM ANOTHER
* >t bl 0G
*¥k¥x |0 b
DUMP 3
*RkFFBI kR kbR kK FREFEBIRFFAKERREK ek kBUEF Rk SRS #ttt*Bs# #tttt*t*
ENTERED FROM SYSTEM * * * * * UPDATE DATA *
AFTER PROGRAM CHECK. * TURN ON * *ISSUE EOQOJ MACRO* *AREA LAST WITH * ' SAVE CONTENTS *
THIS ROUTINE WAS *ILBDDBG2 SWITCH* * INSTRUCTION * * CONTENTS OF * *OF REGISTER 14 =*
SPECIFIED IN STXIT * * * * * REG13 * SAVER14 *
ISSUED BY ILBDDBGO. * * * * *
*EFRFERRRkF Rk k kS HEFRFRFRERFRRTRF kK krkkk ke kok ik sk khokkkokokk ok kR k
¥,
t v
. ARFRCIREFERRRRK HRERCHE kR kR E Rk *RERCSE Rk R bk kkk
A ILBDDBGO *. YES * EXIT TO * * *
* ABNORMALL: Hmm > * TERMINATE * * RETURN * * RETURN *
*. TERMINATE * * * * * * *
. RS S RS TS 2] dkkkkkkkokkk kR *kFkkkkk ek kkhkk
*.
*NO ————————
RETURN TO
SYSTEM
o*,
¥ EXECUTION *, YES
*. STATI B
*, ROUTINE o
*, Lk
*, ¥
(o)
KCO01lAl
FRRED2kkkk bk k Rk k
ILBDTC20
WRITE COUNT
* STATISTICS, *
IF ANY
dkkkkkkk ok kokokkhk
ke k
* *
* F1 *
* L .
ok kk
LOOPDBG2 1.*.
NO ‘ADDRE S OF *.
r———* INIT1 WITHIN B et
*, REGION *.*
SIS
*YES
*kkk
* *
* G5 *
P %
. COBDBG2 __.*. UPLAST .*, ¥, PFLOW N
Gl *, G2 *, *. GU4 *, G .
.¥ COBOL *. ¥ *, * L *
¥ OGRAM *. YES GR. . YES ¥ FLOW, *. YES ¥ STATE OR *, NO . NO
* RMALLY . #%c——me >*, NAMES EQUAL . *%———eeee >#, STATE, OR ¥—ceceemeeD%, SYMD] B >*, FLOW o o
* . TERMINATE. # . *, SYMDﬁP ¥ . o . . l
. *, ok *, . . ¥ *, o*
* o ¥ *, % *, ¥ *, ¥ * ¥ ko
*NO *NO *NO *YES *YES * *
* J1 *
........... > \]7 M
*kkH
<
Y o*, ok, JGO1AY4
LR 2R T IS R S0 H3 *, HY *, *kk kRO kkh kb hkkk
* . *, o ¥ * *ILBDFLWZ *
‘SET SWITCH FOR * NO .* *, YES .* STATE *, Eok Rk ko kR *
NON-COBOL * *, SYMDMP B] MESSAGE ¥ * PRODUCE FLOW *
* PROGRAM * *, ok *, PRINTED .* RACE *
* * *, ¥ *, o ¥ *
kk ek kk ok k kR Kk kR kk *, % *, % **tttt*ttttt“t**
*YES
*Rk¥ RE¥
* Lk P S——— —>%

* J1 * * J1 *
* t-)L * *
*kkk A LEL L]

o ¥, JPO1A2 v
Ji *, wEk kT Ihkkrk kR kkk FEEERTYR R Rk khkk
ok *, *ILBDMPZO * PRINT PSW *
¥ *. YES ok kokokok k% * ABNORMAL *
*.FIRST = LAST . *-——— *INITIALIZE FOR *<—-— * TERMINATION *
.‘ o * DUMP : : MESSAGE :
.#. . * *hkk Fkkkkkkkkkkhkkhkk RS RS SI LIRS)
*NO * *
* B3 * #kHk
* * —>% *
kK% * J1 *
* *
*Ekk v
NEXTDBG2 ¥, JF01A1
*tt*txl#**t*t*‘ti Ky *, ‘t*#‘xstt##tt“tt
* * *, *ILBDSTI
* GET_HIGHER * NO *, YE; *—*-*-*-4-*-*---:
* PROGRAM * -—---* STATE B COMPLETE *
* * . ¥ * MESSAGE *
* * *, ok * *
*kkkkbkkkkkkkkk¥ *, % A EERAEEERRRRIEE
*
wkkk *kkk
—>* * ->% *
* F1 * ¥ G5 ¥
* *
*hEk *EkH
132 Flowcharts

Chart JD.

HRkER] AR Rk
* *
* ILBDDBGS *
* *

HREE bRk Rk

\
*reeeBle

*SAVE REGISTERS ‘
‘ IN SAVE AREA :

##i#*tti

*
*i*i‘#*t!######‘#

tt¢¢¢c1tnttt:tttt

SET RECURSION ‘
SWITCH ON

EEEER

*
*Erhhrkkkbhkehbkk

\
AR EDLRRRER KA
* *

* *
:GET SYMDMP ADDR:

* *
LR L RS R A AL)

*AARRE] # b4

..#*tFl‘ ‘tt‘ﬁtl*

GE RETURN ADDR‘
*FROM SAVE AREA *

“#t‘lt.i#‘t“*‘t

tttt.Gl#,#tt‘tttt
GET INSTRUCTION
*TO BE EXECUTED *
* IN COBOL *
: PROGRAM *

*
hkkkkkk ke kb kN

!
“*i‘ﬂlt .“l““

*COMPUTE
*OF INSTRUCTION ‘

it"#‘i"..#ti*‘l

:t*ttalt
* ADD LENGTH OF *
*INSTRUCTION TO *
* RETURN ADDR *
deEhhbRRRakR bRk

/
(LRSI L)
*

Dynamic Dump (ILBDDBGS)

[ENTER FROM COBOL

L PR
OF DYNAMIC DUMP

MOVE

kEE
* -
* B3 *
* L T

Tk
FHRREBIRERR AR R AN

*
STORE_IN SAVE *
AREA *

*EE

*
LRSS SRS 2 d

\'J
FRERRCI®
* MOVE *
*INSTRUCTION TO *
* ILBDDBG5 AREA *
INS) *

kkkhkkk kb kkkEk

dokkkok kK

v
#ReksDI*

SET _RECURSION #*
SWITCH OFF *

LR AR L 2

LR

*
Fkkkkkkd ok kR b bk

*EAFREIR e RE SRRk

RESTORE
REGISTERS

EX XY
R

LA SR R R e 2]

v
HERRRFIEE
* EXECUTE
*INSTRUCTION IN *
* ILBDDBGS AREA :

ehkkkEk
*

EES AR Sl]

Ll IRt i s s
RETURN TO COBOL¥
* PROGRAM *

khkkkbkkkhkhb ek

Licensed Material - Property of IBM

Section 2:

Program Organization 133

Licensed Material - Property of

Chart JE.

FEARATHRRREEREH
*

*
: ILBDDBG6 :
P T

v

R RBLRRRRR KR

*
* SAVE REGISTER *
* 14 *
* *
* *
T T T

v
¥
c1 *.
o* *.
.* GOBACK IN #*. YES
. HIGHER o

*. PROGRAM‘.‘

*, ¥
*NO

Range (ILBDDBG6) and

EgTER FROM

3]
SYMDMP RANGE

ERRERC2RERE R RERE
* *
*TURN ON *GOING *
>*QUTSIDE SYMDMP *
* RANGE' SWITCH :

*
*hkhkk Rk kb kb k

DBG6RET
FrERD] kkkkkkkkk

* *
* RETURN *
* . *
FRRERFERRRRERRH

134 Flowcharts

IBM

Chose Debug File (ILBDDBGS)

*
*

HRRRDAREREERR RS
*
ILBDDBGS :
EREERERRERRRA RS

v
***B3%

* CLOSE

Rk Rk ok

DEBUG *

PRINT FILE

EERRERRREERERRER

*

A’
kR C 3 *

V.
S LAt E L]
*

RETURN :
EEERE AR R RN RN

Subroutines

Chart JF.
FARRNL KRR ENTER FROM
* omem e LBDDBG2
: ILBDSTNO : —————————— e
AR R AR
o ¥,
Bl *.
SAERBLRAFRRAREE
. FI ST ENTRY* YES *
, TO ILBI DSTNO‘.‘————————> RETURN :
'* e SRR Rk
. o ¥
*NO
oF,
c1 . #t*#thtt'tttt‘t#
¥ *
o * *. YES 'INCREMENT DEBUG*
l'.‘l FLOW ALSO « *————————)‘TABLE PTR BY 4 :
Cx. Y t *
*, . EREERREFRE KRRk hk kK
*NO
<
THRRADLERER KRR RS

*GET ADDRESS OF *
INIT1

* *
*hkkEReR Rk kkok kR k

ERAS 2 KL I T LE Tl
* *
GET REGISTER 13%
FROM_STIXIT *
BLOCK *

Rkkk Rk kR Rk R

AERRAGLERR KRRk
CALCULATE
INTERRUPT
ADDRESS

kAR RRFR R R E Rk

LE XX 2
XX XX

YES

Y INTERRUPT *.
*. ADDR 0

\'
tt##tJlt **##t#**

*CALCULATE ADDR *
OF ABENDING *
* INSTRUCTION :

*
EIL R R S R L]

. RTNS .
* 2 *

Rk
* *
* F2 *
P
kKK]
v
ERERRPERE KA ERER
*

* GET REGISTER
>* 14, SET SW

EEEER

*
AEEER R AR Rk kR Rk

ARARRHO R Rk ko hkk
CALCULA'

TE
ABENDING
INSTRUCTION
ADDR USING
REGISTER 14
CEr e e

XXX Y]
XXX RS

-
e TS

“>* *

* B3 *

kR

L2 2 4
* *
* A3 *
* e

kK
ERRKRDIRE AR
*

GET CURPTY FROM#
* TGT *

* *
HERRkERERR AR R RNk

Licensed Material - Property of IBM

Statement Number (ILBDSTNO) (Part 1 of 2)

v
v**tt33t EEERKKEF
*
GET_PRQCTAB, *
t SEGINDX, AND *
ENDPEM :
*kkkkkkk kR kR kkk Nk
v
SE, *,
c3’ T, cy *, #t‘ttCStt‘tt#‘#tt
o . .* ABEND *.
. No .*INSTR ADDR #*. NO GET_ADDR OF
. CURPTY = 0 .%—ce—em—e ># . BTW START DCL.—mmmmme. —>‘TRANSIENT AREA +
. . #. & ORTNS .¥ FROM INIT 7 *
. . . o *
. ¥ *, ¥ *t“****t‘****‘**
*YES *YES
<
X
:t‘#tD3t T IRty AEREADSERR SRR RR R
* * *
*GET START FROM * * CALCULATE _ *
* INITL * *ORIGIN OF FIRST*
: : * " FRAGMENT *
LRSS] EE LRSS S 222222222
LR L L]
-D% *
* F3 =
* *
*ERk
v o ¥,
AR RREI R Rk KRk Eb .
* * L% *
* CALCULATE__ * NO .* *. YES
#ORIGIN OF PIRST* f———%. END SEGINDX .#%=——
* FRAGMENT * ., L l
SRR AR Rk ¥, % FTLL]
* * *
PrTe A * HU4 *
* * * *
* F3 * LR g
* *=>
ok kk
v
'.‘*‘Fa* Rk kK ‘*“FFM‘ EEL AL L L]
* CALCULATE * *
* RELATIVE * ¥ SET SEGCTR = *
*+ ADDRESS OF * + " SEGCTR+7 *
* ABENDING * * +
* INSTRUCTION * M *
ARk Rk kR Rk Rk kR Rk Kk ERREER R R R RREF
A
<
v B
(I LTl Texi PEES TS S L]
* *
YES * SET SEGMENT #
=== * COUNTER = 0 #-—
* *
Rk kF Skkkkkbkkhkhkrkkkkk
*02 *
* J2%
* *
*
*hEk
SRR RHU R RSk TR E
* *
* MOVE ERROR *
* MESSAGE *
* *
* *
ke hkk kR kkk RN
* ko
->%02 *
* J2 %
*kkE
YES
Rk Kk
*02 *
* J2%
* ¥
*
ox.
.K3 *,
YES .* ABENDING _*. NO
-------- >*_INSTR ADDR IN. % ——
* . TRANSIENT. *
*, ¥
. . R
* *
lyzst*s* * F2 *
* ¥ *
* B3 & kxkE
*
kK

Program Organization 135

Section 2:

Licensed Material - Property of IBM

Chart JF. Statement Number (ILBDSTNO) (Part 2 of 2)
FhaEn
%02 *
* A%
.
*
*EFRRP2RERERE R &Kk
*
*SAVE SEGCTR IN *
* FSTPTY *
* *
EARERERE RS E
P
* *
* B2 *
* >
PEET
¥, ¥,
T SRR T B2 %, B3 x, R RBUR Rk
* * L * *, L *, * *
*SAVE SEGCTR IN * «*ABEND INST ¥, > * *MOVE FSTPTY TO *
* LTPTY * —*_,ADDR: SEGINDX.*--——w—m=>%, LPTY = 0 >% LTPTY *
* . FRG Al % *, .
* * . . *. ¥ * *
P T T T *, L% L * T
= *NO
TG T T T Y AR RC2ER R AR RE
* * * *
* SET_SEGCTR = * *SAVE SEGCTR IN *
* SEGCTR+7 * * LTPTY *
* * * *
* * * *
R T e T E LT A A
!
<
¥, 4
D1 BeeeAD2eEERREEE LY
o . *
.* CURPTY = . NO ‘ PICK UP PTR1 #
*. NEXT PTY IN it d AND PTR2 *
*, SEGI . A : :
. t' FEAREREERERRRE ST
*YES
-*, 4
E1l" "x, tttttht—*tttttit
¥ *.
.* END OF *, NO * SET_CRDPTR = *
*, SEGINDX o e PTR1+3 *
, o *
., ¥ *
*, x RN
YES
L, e hEk
—>* * * *
* B2 * * F2 *
* * * >
RS hEE
babddd PAA LAt bld
*
* FRAG ADDR +
:CRDADDR VRBAD‘
*
'tt""‘.‘l“*‘#‘
ok,
HERAKGLERR R RR A G2~ T,
* * .
* CRDPTR = * < ADDR OF *. >
* CRDPTR+5 PP SN ABENDING o Hom
* * TR: %
* * T VRBAD *
e T T T . LT
= * *
THEH * J1l *
* * * *
* H2 * EEE
* *=>
ok
¥
H1 %, FH AR 2 ARk kR
-* *, * *
«* CRDPTR *. YES * MOVE CARD NO, *
*. LPTR2+3 o W *AND VERB NO. TO*
. ‘. : OUTPUT AREA *
s Tt P T P T T T
*NO * *
P * F2 % T
* * * * %02 *
* J1 * T * J2 k>
* k> * *
*hkE LTS
V. JBO1Al
TR E R T T TP HERAR TR AR RN
* * *ILBDDBGl *
* SET CRDPTR = * e e ot I
* CRDPTR-5 * * GET_ BUFFER *
* * * ADDRESS *
* * * *
P P) L T T
*rEx
_D* *
* H2 *
* *
T
tttttxzt ‘itt“tt AEARER IR AR
*SET FIRST TIME * SERSRUSR RS R R
MOVE MESSAGE TO * SWITCH AND * * *
BUFFER = #—mem———e > % RESTORE ¥ D # RETURN *
* REGISTERS * *
* * P
136 Flowcharts ttttuxtt"xmnnrot LA R R S T

lLicensed Material

Property of

Chart JG. Flow Trace (ILBDFLWO0)
E2E 2 SRS 222) *ERED DRk kR R KRk LEE R REL SRS 2L L] *ERFEDURRERE R RRE
* * * * * * *
: ILBDFLWO : : ILBDFLW1 : : ILBDFLW3 : : ILBDFLW2 :
kkdkkkkkkk b Ekk* hkkkkkkkE ek kk ek LR R RS RSS2 2] *hhk ke Rk ke d ok
Lk, v \ %, DIAGTEST .*.
Bl . Ak kRRBIRRRK kR RRKR *EeRRBIEkkERRRKKS BU4 *, BS *,
o *, * * * S *, . *,
¥ *. YES * INDICATE FLW1 * * INDICATE FLW3 #* +*INITSW OFF *. YES .* ARE THERE *. NO
*, INITSW ON . #——- * ENTRY * * ENTRY * *, (NO TRACING .¥e——eemm >*. DIAGNOSTICS .*———
*, ok * * * *, DONE) .* *, ¥
*, o ¥ * * * * * ¥ *, ¥
Lok wkokddok Rk kR Rk ok Ak Aok Rk kR kR Rk kK *, % *, % IT1T
*NO *NO *YES * *
okk * Pl *
* * * *
* C5 # T]
< * >
4 l E
¥ <X WRITDIAG
FEERRCLR kR IR KRN H c2’ . ARRRECIHR SR bR b ® cu *, FERCORAF SRR AT SN+
* * DOES *, * SET MESSAGE * *,
*GET ADDRESS OF * YES .* PROG-1I *. * ILAC159I: NO * YES % NXTAVL = %, * PUT OUT *
*TRACE TABLE IN * ———% ,MATCH ONE IN .* * PROCEDURES *(————————* PBEG AND LBEG * DIAGNOSTICS
*TGT AND FLOWSZ : 'ABL! o ¥ TRACED i 0 . *
* . . . -
ke kr bk khhkkEk kS *, ¥ dkkbkkkkkkkk Rk kkk *, ¥ EFERARERE kR RN R Rk
*NO *NO
*hk¥k EE L]
—>% —>* *
t cs t * F1 *
* *
*t‘t LR L]
/ oL HEADLINE
ko RD] Rk kR kR kR Rk D2 . AR KADIRR KRR AR E ARRERDUR R RN R EE
* * ok *, * SET ERROR * * SET ASA *
* INITIALIZE * «* IS SLOT *. NO *MESSAGE: TRACE * * CHARACTER AND *
*TABLE POINTERS * *., AVAILABLE .#%-———————c * - * *MOVE_HEADER TO *
: : ‘.‘ *.* : CONTIGUOUS : : BUFFER :
dkkkkkkdohkkkok ko .*. . ° hkk ke ke ko kR koh kR LA S LSS S S A2 L]
*YE
S ek
>
* F1
*kkk
J \’ WRITEBUF JBO1A1
*kkkkELk kb kb dk RENBRE2 RN e E R Rkk *kkEUrkkrkrhkkkd
* * * * ILBDDBG1
* * * INSERT NEW * feemmemmmm————
*TURN INITSW ON * * PROG-ID * ~-=> WRITE BUFFER
* * * * [* *
* * * *
ek kb kR xkrh kb kb kkkkEk Fhkkkh kR E kb Rk
*kkk
* * >
* F1 *
* *_>
*kE¥
STACK s ¥ LASTPRNT JBO1A1
\ “##*FZ‘ LR LR L L] F4 *, ER S RS TR T L]
FRERFL R R Rk * % *. ILBDDBGL
* * ENTER_PROG-ID * .*LAST TABLE *. YES = = #-=—=——-—-=---
* RETURN * *INDEX IN TABLE * . ENTRY = . #%—————e > WRITE LAST
* * * * . . * BUFFER *
dhkkkkhkkkk kb kkh * * "
FEERRERE RN R ER R R E *, % Fhrhbk TR hER XL
*NO
ahhk
—>%
¥ F1 *
* *
axk
v
FREEECRERREE R KRR EEERFGUERRREERERE
* * * CONVERT LINE *
* ENTER 3-BYTE * *NUMBER TO DEC.,*
* CARD NUMBER * ——~% UNPACK. FILL *
* INTO TABLE * * BUFFE ITH *
* * * TABLE ENTRIES *
LIRSS L L L] EE AR R S RS L2 L]
v ¥,
FRRRRH2 R Rk AR R H3 s, AREERU Rk FRRARHSERRR AR AR
- * o *, * TURN LBEG ON * * *
POINT NXTAVL TO +¥NXTAVL > OR¥*. YES * (INDICATES * * POINT NXTAVL *
* NEXT SLOT IN #——e—e—eee> *. = PEND P * TA] #eoee—e———>% BACK TO START *
* TABLE : . ¥ : WRAP-AROUND) : * OF TABLE :
Rk ko kR .t, ,t. REEEERER RN Rk LR S SRR 2222]
*NO
<
3" sl
* *, Ehk e TUk Rk bk ®
P *. NO * RETURN TO *
.‘FLWI ENTRY t. ———————— >:CALLER VIA R1Y4 :
R et Ry
.
*YES
HRRRR IR AR

*RETURN TO_MAIN *
*PROGRAM VIA R1

ERES SR LS E L]

Section 2:

Program

Organization

IBM

137

Licensed Material - Property of IBM

Chart JH.

LRI INE I e it i
* ENTER_FROM *
: COBOL PROGRAM :

*kkk kR R kAkRkkkk

V. JAQ1Al
I R T T T
+ILEDDBGO -
Fmk ko kK Kk k%
% TELL SYMDMP *
INIT, ABEND, OR¥
* DYNAMIC DUMp *
ek ok ok ke ok ok ke ok ok ok ok

v
*,

c1’ s,
*

. *,
.*FIRST TIME *.
.« TO SYMDMP .*

SYMDMP

Overall

NO

BASS 1 OF
SYMDMP

V. JJ01A2
wkkkdD] khkkkhkhkk
*ILEDMP10 *
LI R I B D It B
*COMPUTE _ADDRS 6%
* MODULES AND *
* READ CARD _ *
FAFRERRRRR R TR R ®

*kkk

* *
* E1 #
* *

S MP_OVERLAY *
*. EOF ON SYSIPT SEE >+ SYMINIT WITH #-eme--d
. L SYMCNTRL *
.t‘ K FEIITI ST TS T 1Y
£330}
JLO1A2
EEEZ IS R SRS S L
*ILBDMP1L *
ok Kk Fok_k_k_%
* BLD PCONTROL *
* FROM DGM~CTRL *
* CRD, READ CRD *
tt*tt‘tttlﬁ##‘**#
SE.
g1’ T
o F *,
-* DOES CARD'*. NO
*. START WITH .
NUMBER l
* ELE 2]
*YES * *
* E1 *
* *
*kE¥
1a2
L L N L R L T
*«ILBDMP12 STORE_NAMES
Hok ko kR ko k READ NEXT CARD
—->% BLD DYNAMTAB * e
ENTRY FROM LINE*
* CONTROL CARD *
JE.
g1 e
¥ *.
YES_.* DOES CARD *.
——Z#. STAR H .+
. NUMBER .
ENY
JNQ1AL JOO01A2
*kkk kKl kkkrhkrkkk *RERERD kR kkk kR k
*TLBDMP13 * $ILBDMB1Y *
Aok ko ko kokk ko kokk_ko Kk ¥
* PROCESS FOR *=———e—m==! >*SEARCH CARD FOR*
* DYNAMTAB * NUMS
EEEES 2SR RS L 2 R] EE R R R R R L L L
- ok ok ok
—d *
FOR NAMES; ENTER * E1 *
TABLE LOCATORS * *
IN DYNAMTAB kA
138 Flowcharts

FAKAOKE D Aok ok Aok ok ko K

JPO1A2
AR RATHRRRRRRARRF
*ILBDMP20
L B e s Tt
—D>¥ DETERMINE
:MODULE TO FETCH*

*tt*t**ttttt*tttt

t-*

¥, JRO1A1
B3 *. Rl] Dol L L T ——
L% .. *ILBDMP21 *
«*CALLED FOR *. YES ok kKo k¥
« INIT e H e >*¥ STORE COBOL #——wr——y
. . : ADDRS *
ERT FEARR AR RRRRRRE S
*NO
P .*.
c3 *, *,
¥ DOES *,
. YES . COUNTER *. NO
* DYNAMIC DUMP . *e—————ee >*.*PERMIT DUMP o Fm >
Tx. 0 T, et
O L
*NO *YES
—["aBEND
CONDITION
JRO1A1
FHRRRDIR kKA R R R
*TILBDMP21 *
I e B e et
OPEN DEBUG FILE#
* RELOC COMPUTE *
* TLOAD DRS *
LR E TR EE R R PR]
V. JW01A2
SRR FREIRRRERKRKRK
‘ILBDMP25 :
* ISSUE STATE *
: MESSAGE :
AREEERRERARK A AK
*EhE
* *
* F3 *
* *-><
EEE L] -
JS01A1
#****F3**t*#*t**#
*ILBDMP22
* K _*_*-#—*-*_*
—=D% GET DATATAB %
f ENTRY FOR NAME
HERKKFREERRRKE R
oFo
G3 *,
.* *,
.*% LAST NAME *. YES v
. PROCESSED _.
*, ok
*. L%
¥, ¥
*NO
L, JUQ1A2
H3 *, LRI R 0SS LT T
'ILBDMP23 *
TEM LEVEL *, YES = = k—k—%_d_k— ok
+! DESCRIPTION o ¥, ~>‘ DUMP LEVEL *
- * DESCRIPTION *
, . * *
*. L% Rk bk khk ke kk k%
*NO
*dokk
—>%
* F3 %
* *
kR

Jvo1a2
HRERRT IR R KR

'ILBDMPZ *
[atr S s .

DUMP PD, SD, *
*RD, TGT, INDEX *

*kkkkRbkkkkkkkkEk

[ENTER PRIORITY
AND ADDR IN
DYNAMTAB

IF ANY DYNAMTAB
OVERLAY MAIN
STORAGE WHERE
REQUIRED

>*
*

JDO1A1/JC01J1

ARERGSE KRR K EF
RETURN TO
ILBDDBGO/2

LA R L SR L L L)

* *

*

Chart JI.

CALLED BY ROUTINES
OF SYMDMP

\
FARERETLRERRE R R R

XX
LT XY

POINTS
("REWIND" TO
START)
dhkkk Rk kR Rk Rk Rk
*kkk
~>* *
* C
* *
*hnk

IODISK/IOTAPE (ILBDMPO1/ILBDMP02)

Licensed Material

R O
T VIS TS T TS *A
* ILBDMPO1 * o* DETERMINE *,
: ILBDMPO2 : ———————— >*.‘ HY CALLED ‘-*
EREL IR S EE T 2 T, o
e
OPEN READI POINT CLOSE
OPENIT ¥ READFIL Wk, POINTFIL CLOSEFIL
B2 *, . * Rk ABUS KRR RNk FRERBERRR R R RE Rk
* * * *

. “x. NO
*.,IS DTF OPEN .#-——-

* *

. ok
*YES

CLOSEIT
*t*t#DZt‘#*t*tt‘*

t CLOSE (R) THE *
OPEN

* *
ok ko dkok ok ok ke kR Rk k

P S ——

NEWFILE v
t#*i#EZt tt*****#

*MOVE FILE NAME
& SYSNNN FROM ‘
:PCONTROL TO DTF:

kR R Rk khkkh ko

\
Rk Rk bRk Rk
*

* OPEN (R) THE
: DTF

L X XY

*
Fhkkkekhkorkkkok

kK

Fok ko
* *
* C3 *
., >

*%
READIT
t#t*tc3’ t##t#t#t

READ BLOCR TURN
OFF_SWITCH *
: SINGLE *

EARRR R R AR R kRN

CHECKIT v
**##D}* JTEEL L LS
*

*
:CHECK LAST READ:

* *
ok kR kdkk Rk kokkk

E3" .
. .
.* *. OFF
*. NOTESW ik
*, ¥

*, . ¥

. ¥
*ON

AARIEFIHRRERF T
* *
* ISSUE NOTE *
*STORE BLOCK ID *
* IN NOTEADR *

kkkkkkk kR kk Rk

o "%, ON
* QNEBUF SWITCH. %--—
. 0

*

" %OFF

READIT
dAk R hokkk kR Rk

READ BLOCK

R ER
EX X 20

FREEEREERERER KR TS

<

#==—=CHECKIT=-==*%
*CHECK LAST READY

* *
Fhkkkkkkk kR Rk kK

v
dAk Rk CUR R Rk Rk RNk
*

*ISSUE POINT_TO
* BLOCK IB IN

LR

Hhkkk Rk Rk kk R kkk

SINGLEON 'V
tt‘# DUk Rk E R Rk
*

*
: SET SINGLE ON :

* *
ok kb bk kkkkkkok

READIT v
kR REY Rk Rk Rk khd
*

READ BLOCK

XX X
EXE XN

EEIA RS AR 2SR LS L]

CHECKIT v
tttttpu* LEEE Ry
*

*
:CHECK LAST READ:

* *
*ERREREREr AR r TRk

READEXIT
EREERTIR R E R R,

dkrrkkkrokkdok kR k

Hhh AR ek kR kR E
* RETURN_TO *
* CALLER *

*
LA R R RS LIS S22

Section 2:

¥ - CLOSEIT-=--%
* CLOSE (R) DIF ¥

#**t‘t‘*tt"‘t#*#

Aok OO Rk kR ko
* *
* RETURN *
* *

AR L R e

Program Organization

- Prorperty of IBM

Licensed Material - Property of IBM

Chart JJ.

140 Flowcharts

SYMINIT

(ILBDMP10)

ERRFP2kkh kb kkRk
*

* WH! S
: ILBDMP10 : ———————— EFFECT,

*EERER R Rk Ekk

START v

EEE IS pi i LA 2L
COMPUTE_STORAGE
+ AVAIL FOR *
* DPROGRAM AND *
$L0AD EOINTS OF ¥
hkkkkkkk

i

LEEEEE 22 2

v
AEERC2HRERRERR AR
*

*

*

* *
* OPEN SYSIPT *
* *
* *
* *

LA I RS R L L]

¥ gxo1a1
RRERD DK ttttt#‘
*READIPT
et T zgop

: READ CONTROL : ——————

CARD :
AEREEERE AR AR R R RE

NXTPROG V. JLO1A
FET ey pr AEE

*ILBDMPll «

rkRhk kR bk Rk E

*.
NO ¥ IS FIRS% *,

—— .
*. NUMERIC ¥

*,
UYES

FETCHPHS _ V. JMOL
ERREKGLR AR Rk EE
*

‘ILBDMPlZ

*BUILD

FETCHPHS V. JO0O1A2
FRRRRHI MR R AR KR
*ILBDMPl“ *

Jut e e S S
* COMPLETE *
* DYNAMTAB WITH *
* CARDNUM INFO *
SERRRRR AR AR

R o
* *

[---S¥YMINIT-
CALLED BY ILBDDBGO
YMD

CALLED ONCE
PER FUN UNIT

ENDINIT
SEEREDIERREEE R KK *hEpaDYERRERERRE R
* * STORE SYMDMP
* * SIZE IN
oD
*

ILBD

: CONPORE FRk
STORAGE LEFT

#t##“’##t*‘##"

*

*

——>' CLOSE SYSIPT :
*
*

*
t‘#’#t#*‘tt‘t#“t

LOADP2 v
FERAELRRE SRR AR
*

*

*

* LOAD SYMCNTRL #*
* (ILBDMP20) *
* *
*
*

*
AL ISR LRSS L]

FGTCHPHS

/ JPO1A2

FAERFUR SRR RS
* TRANSFER TO *
* ILBDMP20 *

* *
FEEREREERER RS RS

Chart JK.

t‘.tAltti“ottt

* READIPT/ERROR *
ttttt‘#.t#’*#‘#

l
o1
bR
o
N
g
o8
IR 2

LRI R EER IR E L L
* *

MOVE PROGRAM-ID#
:TO PRINT BUFFER:

* *
EERREERREREE AR R R

JBO1A.
SREAFELSRREERSH R
*ILBDDBGl

LI . —t-‘—‘—.-

+75 iR 135 ERROR
:To WRI ERROR :
HAAAREE KRR KR AR RS

EEITES Wl T2 22 22 L)

*

INCREMENT ERROR

* COUNT_FOR *
FOOTING :

LA RS SR s 2]

SEEEGLERRERARRE

*
* RETURN :
PRARERREREERRER

READIPT/ERROR (in

ILBDMP10)

Licensed Material - Property of IBM

ETELd
* *

* By *
* *
Tty

READ2 P ¥
*, B3 *, tQt‘tBut*tt#ttttt
. ¥ *, *
- . *SCANNED ALL*. NO SET OFF ALL *
———D, FLUSHSW ¥ . CARD_(COL > .‘--——————)‘ SCAN SWITCHES :
Tk, R T, 2 . *
, % . u kkok Aok kR kR ok
*ON *YES
> <.
v
REAFRCInkE kR b bRk R ECHERER bR R ®
*SET POINTER TO *
* END OF LAST *
—————————————— *READ NEXT CARD * *ELEMENT (BUFFER#*
: : * + COL) *
*RREEREEREE AR R R SERREERRERERRERRE
----------- >
EOFIN v 1 JBO1A1l -k,
FEEFED2R kR ERRRRK LI TR vkl BT T D4y *,
* * ‘ILBDDBGI *
* * e~ Y
* CLOSE SYSIPT * *
: : :PRINT NEXT CARD:
HEARRR R AR ERARER AR AR R
*YES
v
v ¥ v
FERRKEQ R R AR AR E3 *, ttottEut EEEERRR
* * * ., *
* SET EOFSW, * oF* *. YES *INCREMENT CQOL. *
: EOCSW ON : *.ELUSH WANTED‘.‘——> AND POINTER :
* * .‘, ,“ * *
AEEERFEE R RER KRR *, ¥ LTI RS E RS 2222]
*NO
v
ARRSRFIR AR AR Py,
* M . *,
* * [No__.# .,
* coL = 0 * ———%, COLUMN 72 .*
* * *. o
* * *, o
EE2 S T2 S22 22 20 *, %
*YES
A
—D% *
* By
* M
kK
Gy s,
¥ *,
NO
S BLANK -*
Ta, 7
*, . *
*YES
EE LIRS CE RS ES L L Ed
* *
* *
: SET EOCSW ON :
* *
LRI S22 L]

COLLECT
P L e
* *

* STORE ADDRESS *
r———=>%QF NEW ELEMENT *
* AT AELM *

*
P e]

%,

GOODBYTE
tt#t#Dsttt#tttttt

*INCREMENT COL.
AND POINTER

FERER

*
EREERXERERER KRR kR

.x s,

* *,
COLUMN 72 .*
, .

NO .
Lom

FARSSFERE R kAR AR Tk
* STORE COL. *
*COMPUTE LENGTH *
* AND STORE AT *
*

* *
RS L RS 22 s 22 L

« ¥
*YES

AARREKHSERERRE R
* *
* *
* SET NUMSW ON *
* *
* *
AEREEFRR AR R RN

\
tt*tth*’tttt#t*t
* *
*CONVERT NUMBER *
* TO BINARY AT *
: DBWORD *

ER L 2 R R i 2 222

Section 2:

READEXIT _V
FEERKS kAR A RRK

* *
* RETURN *
* *

R R R RR KRS

Program Organization

141

Licensed Material - Property of IBM

Chart JL. SCANP (ILBDMP11)

---SC—

LI VAT I L] NP~
* * ENTER FROM ILBDMP10
* ILBDMP11 ¥ TO SCAN PROGRAM
* * CONTROL CARDS
Rk Rk Rk k kR ok
ok, JKO1Al
B2 *, kt**&B3*tt#‘tt**t
. * %, *ERROR
«*ROOM ENOUGH*¥*. NO = = ¥ k% _d_k_h_%_
.' FOR TABLE '. --------)‘ ISSUE %gSSAGE *--———-
N o
*, % P R
*YES
HERRRCIH AR kR Rk
* INITIALIZE *
ROL AND
SWITCHES STORE
PROGRAfI-ID
kkkkhkk Rk kkh ko
GETELM V. JK01Al
EXEI I hril s L T T
*READIPT
¥¥od_ ka4 4o 4o 4 END-OF-CARD
* GET_NEXT
: ELEMENT : |
LR ERE LIRSS] |
|
|
¥, l JKO1A1 XTCRD JKO1A1
E2 *, | EEE 22 kR L LT T2 3 EELS A S T L T 22 3
*ERROR * *READIP *
v L ol L B et P B L . o B
* SYSNNN NUMBER * ———————— >* ISSUE MESSAGE Hr e >* READ NEXT *
‘e . * A : CONTROL CARD :
.#_ .#' kkREk bRk kk ke khbkkkhk bk kkkkkk
*YES
4 .+
HEEREFIRkkk ke kdnk Fu *,
* * * .,
* STORE IN * YES .* FIRST *.
* PCONTROL * St ELEMENT ¥
: : .‘NUMERIC ¥
P T T T T R
*NO
\
LR epE I LTI L]
* *
* *
: SET PTABOK ON *
* *
ER RS RS R LS L]
kkk
* *
* H2 *
* >
whkk
V. JKO1AL GOODRET
SREEREHDRR R R tt#ttﬂ3##tt#ttt#t
*END~OF -
—%_#_&_#_%_#_&_#CARD *CHAIN PCONTROL t
¥l oee—_>% POINTERS
ELEMENT : b
LRI RS 2SI 2] tt*t“t“#i‘#t*t#
L. V. JKO1A1
##t‘tJl‘ #tt#tttt J2 *, Akk kR TIhk kR kR E
X *, *READIPT *
STORE INDICATOR‘ YES . *. e i et
IN PCONTROL #<e—mcwvas *.VALID OPTION .* ‘GET NEXT CARD, *
* * *e, R T ELEMENT ' *
ES R RS ES SRS L] .t, .#. EEERRERF AR EE
*NO
<
JKO1A1 JJO01F2
tt‘tth*#tllttttt
*ERROR dkk kK Jkkkkkkkk
t-i#_*_t-i-t-* * RETURN TO *
* ILBDMP1O *
‘ ISSUE MESSAGE ‘ *
* * hkkFhkk kb kkhkk
T e T T
*kk ok
—%
* H2 *
* *
khkd

142 Flowcharts

Licensed Material - Property of IBM

Chart JM. SCAND (ILBDMP12)

- ~SCAND--— FEERDDRRE AR
ENTER * *
ILBDMPIO TO ——————— * ILBDMP12 *
PROCESS LINE- * *
CONTROL CARDS Ly
P
* *
* B4 *
* [S,
T
ISITHEX ¥ NXTDYCRD JKO1Al
FERRAB2RRE R R R EF ARRFRBIAF AR B4 T, FEVEIBSaneanbial
* * * LENGTHEN, * o* *. *RE IPT
* * * DYNAMTAB BY 8 * NO .* KEYWORD *. ko —#-#-*-*-#-t
OPEN DEBUG FILE¥ r————)*BYTES SET 'ON'#* [—=—*. (HEX ALL ¥ ->
* * SWITCH * -TH RO, 5 *READ NEXT CARD :
Pt FRARAER AR ER A ‘¥, DA
*YES |
JKO1A1 ¥,
HARERCHR A RHAAAE FRARRCTHRRRRRRA R HAAERC YRR H Rk cs” Tw.
* STORE PROGSUM * *READIPT * * * * *,
‘INTO IN COMMON, * Ik kb koK k% * SET * o* FIRST *. YES
INST TABLE ——>% GET _NEXT * * CORRESPONDING * *. ELEMENT Ko
PTRS. : : ELEMENT : : SWITCH : *. *NUMERIC‘ ¥ %
PPN FRARR AR R FERkE R AR Te. % T
* * *
AR No * D2 *
* * * *
* D2 * ok
* >
ok
*. JKO1A1 JNQ1Al
HERERD2 R A AR AR p3’ T#. FRREADYRK KRR AR HAERADSR AR
* NEW * ¥ *. *READIPT * *ILBDMP13
«DYNANTAB ENTRY,* o*) i o Sa SN B B e St Ak ko
* CHAIN, STORE * *, NUMERIC o Foome * GET NEXT * *FETCH FINDNAMS *
* CARD NUMBER * *. . ¥ 1] * ELEMENT * *TO LOCATE NAMES*
* * *, o * * * IN DEBUG FILE *
P T LI) . L% [T AR EREFRRR AR IR RO
*YES * *
* B4 *
* *
HkEE
vV JKO01aAl ¥,
phtasd il AT ARRERE AR ES’ %,
*READIPT * * L * .,
#—‘—‘-"-*—'-‘-*-‘ * STORE IN NEXT #* .*DNEND (ANY *. ON
* GET_NEXT * ~——% ON-COUNTER IN ¥ *, DISASTER) .#%-—-
: ELEMENT : : DYNAMTAB : *, . . * .‘
ARk R kR R Rk AR RE Twl L
*QFF
v il
F2' s, *, EEFRAF SRRk R F
¥ *. *, * *
NO .* *, o¥ *, YES * *
—, NUMERIC ¥ *., END OF CARD .*¥—e-—--J * SET DTABOK ON *
*, o F *, ¥ * *
«, Lk *. L* * *
ok % AEARR AR ARk
*YES *RO
DYNCARD o+, x
FerRrG2errsstanny [T FRERKGEEAEERARA R
¥ *, * *
* STORE_VERB "‘ .* DID 'OF' *. YES * PUT DYNAMTAB *
* NUMBER * *, PRECEDE e * POINTER IN *
. * *. o* 1 . ONTROL *
* * *, o* * *
AR RRR AR RRER A . .+ FRARR R
*NO
P
v JKO1A1l JJ01H2
FARARH2R AR AR RN FRRERHY SRR
*READIPT * * CREATE NEW * LR L 00 L Sk dubbhdd
ko kW k_k ko kk * IDENTIFIER * * RETURN TO *
* GET_NEXT * * ENTRY IN * * ILBDMP10 *
* ELEMENT * * QUALNAMS AND * * *
* * * DY * Rk kFF Rk kR Rk
FEERRRRRRE AR RSk FRRERRRR Rk RRRK
P OU—
\
SEEKON ¥, STOQNAME)
J2 *, ‘#t*Jut kK
. *, *
o *. YES b STORE NAME IN *
D, . ‘ON"* . *ed *QUALNAMS ENTRY *
.. e
. o* OO
NO
Lo ¥t
D% *
* BlUY *
* *
T
V JKO1Al
It
#READIPT *
—F KK ek W Rk
———+* GET NEXT *
: ELEMENT :
*****‘#‘**‘*tﬁﬁﬁt‘t*‘.
*
* By *
* *
P

Section 2: Program Organization 143

Licensed Material

- Property of IBM

Chart JN. FINDNAMS (ILBDMP13)
P Y NETII I TS --~FINDNAMS=---
ER_FROM ILBDMP12
* ILBDMP13 *———w————| WHEN LAST LINE
* CONTROL_CARD IS
FhERRK KRR RKEREE PROCESSED
X%
* *
* B2 *
* *_n <
* ok

v MORETOGO
*kkRRBLA kR R Rk FRRRKBAR R AR R
* * * *

* INIT POINTERS * * POINT TO NEXT *
: AND MARKERS * :QUALNAMS ENTRY :
* * * *
P T T T
*kk#
* *
* C3 *
* *ee
k®k %

V. JIO01A2 PR ¥,
FRRRECLAARARRRRAK c2 . c3 *,
*ILBDMP01/02 * % *,
ook kK Kk * ¥ *. NO NTRY *. YES
* POINT TO 1ST * *#,END OF TABLE .¥———wrm——e > ALREADY FOUND-*———
*DATATAB BLOCK, * *. ¥ .

* EAD * *, o* Tk, o*
RRERE AR R Rk R K . L% *, %
*YES *NO
NXTDATAB
#ttttpzt EhkRkEEk kR RDIRRRERRTERE
* * *

**®

*kkE . Lk
*

*
*kkk

* POINT TO_NEXT *
: DATATAB ENTRY :

* *
FkkkkRkkR kR RRRkkk

v

-k, ST.
E2 *,
*

‘%, NO
F1) e
*

¥ END OF
*.ELOCK (X'F
* o

*YES

¥
F2 *.

*
YES .* LAST
---* DATATAB BLOCK *
Tk, e
*Ro
B4 *

V. JIO0LA2
HEERRGOREE R AR R KK
*ILBDMP01/02 *
t _t_*- _t_*_*_t

EAD *
: DATATAB BLOCK :

EEESET LA LT EE LRSS

144 Flowcharts

>

NEWDNAME
*Ekk RO *

* *
*POINT TO FIRST *
:QUALNAMS ENTRY :<—-

/
Hhkkke®k

* *
LIS L R L L e

* POINT TO *
:FOLLOWING ENTRY:

* *
Rkkkok kR k Rk kkk kK

P S

EPUP \’
kkRREI

BACK UP TO *
PREVIOUS NAME :

KA RERAER
*

*
*
*
*
*
*

*
kEkkk kAR R Rk kN

F3' '*.*
.+ HAS NAME *.
: BEER FOUND !

YES

* o

*.

-* DOES IT *. NO
*.?ATCH DATATAE.‘———
. o¥
*, L * EEE Y

*YES
B2

*kkE

n
e

kkkk kI kkkkkkhkkk

MARK _NAME AS
FOUND

LR 2
EX XX

Fhkkrk Rk Rk Rk

% “x.
+*IS IT FIRST*. NO
‘-§AME IN ENTR¥.‘_—_

*

..)
*YES B2

xERF

L X
.

*hk Rk R Itk kR Rk
¥8RK IDgNTIFIER

'ENTRY BLOCK ip *
& DISP:

*hkkk Rk Rk bk kR k

*k%H

ek
* *
* By *
* *ee

T

LR -l b dddhdiubbd
*POINT TQ FIRST *
* ENTRY OR *
* QUALNAMS & *
* DYNAMTAB *
LR g S e e 2

<
FILLDY B
cu *

o ¥ *,
.*1S DYNAMTAB*. YES
.ENTRY FOR ALL.*

ISQFOUND_ . *.
D4 *

. *,
o* SUALNAMS *
*.*E 'TRY FOUND‘.t ______

‘%, o*
*, ¥
*YES

%
LD

.+"Is THERE '*. VES
*. DATADIRI%NTRY Pk

*
*
*
*
*
*

*
LRSS AT R L]

v
HERKAGYURRRE R KRR KR
*

* ENTER DATATAB
* TABLE-LOCATOR
: IN DYNAMTAB

kR FEE R ARk

ERR R

<

:tt*#csilt#*##**#
POINT TO NEXT *
>*DYNAMTAB ENTRY *(——

*
t#*t*tt*tt#*##t

v
EEKEFS ##t#**#*
* ISSUE MESSAGL *
* 150

*i**#**t#tt#****t

v
EELE T T LE I A 22T
*

*
* MARK DYNAMTAB *
:ENTRY As, ERROR:

* *
kokok ok kR ok ok Rk Rk

A
HkkRKHGH
*

* POINT TO NEXT *
:QUALNAMS ENTRY :

EEE TR L L]
*

* *
EEEEEE S LI S 2L

oK *, NO
.END OF TABLE‘.

T, L

*, .
*YES

JMOLES
R ERUF kR
* RETURN TO *
: ILBDMP12 *

*EERERER R Rk kE

Chart JoO.

=~~FINDLOC=-~~
ENTER FROM
ILBDMP1Q AFTER
ILBDMP13 SWITCH

*kkkkR] ke hkkkk
*TO READ IT IN, *
* STORE ADDRESS *<
* "IN PCONTROL *

*kkkkkkkkkkkkkkk

FINDLOCS (ILBDMP14)

EEEIEI WAEE 2SS S22
* *
________ * ILBDMP14 *
* *

ERE R Rk Rk kR Rk

*,
YES .*’ IS THERE *.
—————"""+. OBODOTAB 1l-*

\
ERERKC R KRR EE

ILBDMEOI/?Z
*POINT AND READ *
*FIRST CARDINDX *

* ENTR *
dk kR Rk kR Rk

>

**tttElk *tt*tttt

*
'CARDINDX ENTRY *
*(READ NEXT BLK *<
*# IF NEEDED) *

* *
LA R RS S S L L)

v
Aok ok D2 ok % K ok ook ok

* DY) AB
FkkkRkkkkkok ok Rk kk

oK

‘.
+* LAST *.
NO .* CARDINDX *.
———————— * .ENTRY LOOKED .¥
*. AT . ¥

* *

..
*YES

JI01A2
AR AFI R R AKX
+ILBDMPO1/02
SPOINT AND READ »
* FIRST SEGINDX *

*

* ENTRY
kR k kR ok

>

kkkkkH] kxR kE R kR RS

* GET NEXT *
* SEGINDX ENTRY *
*(READ BLOCK IF *<
* NEEDED) *

EE RS R A R R L L)

v

EREREGIR R KRRk kRN E R

SEARCH DYNAMTAB#

* FOR PRIORITY/ *
FRAG MATCH

¥ SAVECSHOINDK *

ENT IN DYNAMTAB
ko kkok ko kkk kk

. *.
NO L% LAST *.
________ *.SEGINDX ENTRY.*
.LOOKED AT.

*. %

+YES

UPDY

FRRRRT2RKR KRR RRRR
* *
* GET FIRST *
:DYNAMTAB ENTRY *
*
* *
EERKKEERRR AR IR KK
xRk

%
* AL *
* *
*xk

GTPXBLK

Licensed Material - Property of IBM

*
*EkE

JI01A2
EARKEDLREER R KRR,

*ILBDMPOl/OZ *
*_%

X ER
EETET ET P L T ety

'
*k k¥ kBlkkEE kR kk k&

* FOR C NUM *
LR S T 2

V. JI01A2
FAEFRCUR R R RN RF R
*ILBDMPOI/OZ *
—k k%

GET *
* CORRESPONDING *
* PROCTAB BLOCK *
EEEETS LTI Ty 1)

v
*kkkkDYR Rk Rk Rk
* *
SEARCH PROCTAB #
* BLOCK FOR *
: CARDNUM MATCH :
ERERRRRRREKF RN RR

¥ Tk,
*. MATCH FOUND .
*, ¥

. ¥

e ¥
*#YES

ERERKFURRER R R R
‘ENTER RELATIVE *
ADDR. FROM
‘ PROCTAB IN *
: DYNAMTAB :

kkkb ko kk Rk k ok kR

APPSR KR kR L KK
* MARK CARD *
* NUMBER *
* DYNAMTAB AS

:X'FF' FOR ERROR*

*t***tt*t****#t*t

v JK01Al
EERARGOR Rk R Rk kKK
*ERROR *
Hoko ko ko k%

*
: MESSAGE 151 :
L e

A

HY' .,

¥
PR ESSED *, YES

* LAST DYNAMTAE ________

e

*. .
*NO

NXTDY

Section 2:

HERRRTUERFR KRR RKK
*

X R

* GET NEXT
:DYNAMTAB ENTRY

*
FEREREAERF AR R RRER

JJo1J2

T
FERKHS Rk k kR
* RETURN TO *
>: ILBDMP10 :

LRSS L LSS

Program Organization

Licensed Material - Property of IBM

Chart JP. SYMCNTRL (ILBDMP20)
—~=SYMCNTRL---
ENTER FROM kR PD Rk Rk
ILB: 0, *
ILBDDBGS, —————— ¥ ILBDMP20 *
ILBDDBG2 *
FOR INIT OR SRk kR Rk kR R
DUMP (ABEND OR
DYNAMIC)

¥
B2 *.

¥ *.
*.*FIRST CALL *.*YES
%, ILEDMP10).*%
* el

* *

)

>*COM
*

FHAKKBIF Rk RFERX
* *

INITIALIZE *

* NITI.
MON §0R PASS:

* *
EE R e T e e e L L]

o FL
c2 *.

¥ *.
«* CALL FOR *.

INITIALI-
ATION *

*

YES

)

. *FOR_DYNAMIC*.
*. DUMP :
*

v
FEARRE2 Rk E R Rk Rk
* *

%N

* SET BOMB ON
:(ABEND SWITCH)

* *
rkkkk Rk Rk EERK

V. JRO1A1
Fh AT Rk Rk K
*ILBDMP21 *
ARk k¥
* GET STORAGE, *
:OPEN FILE, E .:

dkkk kR kR kkkkk

JWO1A

v
HRERRGE

*ILBDMP2

Fkkk kK
5

2
**
*

oKk kR k k¥

*
*

STATE

*
*

ISSUE
MESSAGE
ERE TR S R T T T Y

P S
DUMPIT ﬁ JS01A1 FETCH V JRO1A1
iR Vs s T T Y Rk ERHIR kKRR FRE S
*ILBDMP22 * *ILBDMP *
Rk kK _k k% * Rk _k_ kR
* MP DATA * * FI *
+ DIVISION * M INITIQkIzﬁ :
#ok koo kR KRk K EET TP E P TP
¢<
RET oF,
J2 *, FRkERTIR kKRR R R R
o* . * *
-* I/0 ERROR *. YES * SETOFF SYMDMP * *
,0N DEBUG FILE.———w———- >* BIT IN TGT ¥ D%
*, ¥ * A *
*, oE * *
*. L% PR R PP
*NO

146 Flowcharts

JAO1ALl

AN Tl Kk kR Rk
RETURN TO
ILBDDBGO

dhk ok kR Rk kR kk

*
*
*

Licensed Material - Property of IBM

Chart JQ. HEXDUMP (in IIBDMP20)

IIVIii I [ENTER FROM
* D — ILBDMP23 OR
* HEXDUMP * TLBDMP 21
Fhkkkkkkkkkkkkk
*kkk
* *
* B2 *
* * o e e e e e e
*kkk
NEWLINE WORDLOOP L+l
EE R S VA EE RS S LRSS *EREERIRF R SRR RNk B4 *
* *CONVERT A HALF * * .
* SET NEXTSAME * * BYTE IN . * .*" DUMPING *. NO
* OFF M * REGISTER AND #<——q (—->%. ADDRESS .%-——
x : * SHIFT * l *. ITSELF .+ %
kkkkkkkkkkkkkkkk kkkkkkokrkkkk Rk Rk k% - ,' *¥ k¥
* *YES * *
PTT L] * B3 * * E4 *
* * * * * *
t c2 * EEE kTR
>
**4*
L. BYTELOOP _.*. Lx.
W2 c3” s, cu’ T,
*, ¥ * . ¥ *,
¥ES . +15 ADDRESS *. NO .*' DONE 2 *. .+ *. OFF
---------------- +170 BE PRINTED * <--* HALF-BYTES I+ *1, NEXTSAME I#---
* _* *, ¥ *, o *
*, . ¥ L+ P
+No +YES *ON * *
S, * D2 *
* *
* D2 * EX XY
>
¥¥#*
GIVECORE
*kkERD]Eh Rk kR kER K RS e SR RS LR S *EkREEDI*FFERE R RK *kkkkkDyk R Rk kb kk
* * *PUT 4 BYTES OF * *DECREMENT BYTES* * *
*PUT ADDRESS IN * +VIRTUAL STORAGE* TO DUMP, *PUT '-~SAME--' %
+ REGISTER FOR * * AT ADDRESS IN * * INcReMpfr + *IN PRINT BUFFER*
* CONVERSION * + REGISTER FOR * * ADDRESS * + +
* * + CONVERSION * * + M
Rk FEFRE Rk kR okokok ok Fekhk kR kR kA Fr kK EEE RSS2 RS2 2 2 22 REkERER Rk EE R Rk EEE
*kkk *kkk
—D% * * *
* B3 * * E4 *
* * * *_>
Fohkk . *kkk
LINELOOP _.*. . PRINTDMP _ V_ JBO1Al
ok kRkE] Rk kR kF Rk kK E2 * E3 * ok ek ok U % dokodk ok ook ok ok
* * o *. * *, *ILBDDEGL *
* SET HALF-LINE * NO .+ ROOM IN _*. .+BYTES LEFT +. YES it
+ COUNTER TO 3 *<—— —*.BUFFER FOR 8 .* #. TO DUMP=0 .* STYBRINT LINE k
* WORDS * *. WORDS .* *, o * BUILT *
* * * ¥ * . ¥ * *
kkkkkkkkkkkkkkkkk *, ¥ *, % dhkkkkkkkkkkkkkkEk
+YES +o
* kK
* *
* F4 *
* >
*kkk b
. ISITALL _ .*.
EAE L RS PSS LS F3 *, Fy *, HEXOUT
* o ¥ *, o ¥ * EE RSt E L]
* SET HALF-LINE * NO .* . .#BYTES LEFT #. YES * *
+ COUNTER TO 4 * <~-*. DONE A WORD .* *. TO DUMP=0 _.#—mm-mmmem >+ RETURN *
* WORDS * ., ox .. o+ * *
* *, * *, o* ARk Rk Rk kR
kkkkkkkkkk ke Rkk . . .« .
+YES +fo
>
S+ NOTEND : L.
G2 * *EEERGIRERRRRRKKE G4 *
. «AMOUNT *, * * * *,
.#T0 DUMP > i*. NO *SPACE IN PRINT * _*MORE_THAN A%. NO
+.LINE AND NOT .#*—— * BUFFER * #. LINE LEFT .%-—-
. FULL . l * . o+ $
WORD . * * .
*, ¥ *kkk dkkkkkkkkkkkkkokokk * * *kkk
+YES * * *YES * *
* B3 * * B2 *
* * * *
EE2 S *kkk
3
. . ¥,
*****H2********** H3 *, Hu *,
+ UDP BUFFER * . .
* POINTER TO * NO .+ DONE A 4. -+ NEXT LINE *.
+ "ALIGN AND *---->|<--%! HALF-LINE .* +.SANE AS —
* ADJUST BYTES- * *. o* *. %
IN-WORD COUNTER -, o+ *.
ek ko ok okokok kR ko ok ok kK * ., Lk *, ,‘ *kkk
*¥ES *+YES * *
* B2 *
* *
EEE L]
.
kkkkkJ3kk kR kKRR Ji *. EEERET SRR Rk ok
* * o* *, * *
* * x *, OFF * *
*SPACE IN BUFFER} *., NEXTSAME l#-----——->*SET NEXTSAME ON*
* * T, K * *
Hhkkk Rk kR RNk kR kK *, ¥ ERZEE R EL RS R LSS S
*ON
*kkE
—>*
* C2 *
* kK
K3 * kKRR kR R kR KKK
.+ +, t INcrewEnT 4
NO _.*DONE_WHOLE *. ADDRES
At LINE Ix *DECREMENT éYTEs*
*, ot *LEFT BY A LINE
*, ¥ *****t******t*‘**
+VES
l Rk *kkk
>* * >
* B4 * * FlU *
* * * *
P P

Section 2: Program Organization 147

Licensed Material - Property of IBM

Chart JR. SEGINIT (ILBDMP21)
dkk RN kkk Rk kkkk --:::EE(_;EI—‘IEE:::-—-
* * ENTER_FROM
* ILBDMP21 et ILBDMP20 FOR INIT
* * OR ABEND
P T T
*EkE FRkk
* * * *
* By * *# B5 *
* L T * *
*kEX R kk
¥, ¥l GETSPACE . *. INITDYN
Bl *, B2 *. FEA KRB IER AR KRR R KR BU *. FREREBS#hok kkk Rk
B *, ¥ *, * COM’UTE AND * . *, * *
¥ *. YES ¥ AN *. YES * TORE LOAD * YES .* DOES RUN *, * GET FIRST *
. FIRST TIME .#———————- >%*. DYNAMTAB IN .*———————m >* ADDR.SSES OF * — HAVE ANY ¥ *DYNAMTAB ENTRY *
*, o ¥ *, RUN * OTHER MODULES * S DYNAMTAB*.* : :
*, ¥ *, ¥ * - .
*, ¥ *, ¥ ***tt*tt*tt***ttt *, Rk KRR kR kR
*NO *NO ‘NO
HkEE
J’ S
* Cuy o+ R
< * *- P —
kA k
ISITNEW v o*,
*tt**clt FRERERR EEE R ETIE T P TP P c5 *,
* * * # *,
: FIND PCONTROL * *SEARCH FOR_ROOM# NO .* IS IT
* "FOR THIS * * FOR OTHER * —% THIS PRIORITY * B
* PROGRAM * * MODULES *
* * * * “x, a
AEERERRRE RN AR FEERRRRR R R R kK *, L *
* * *YES
* H5 *
* *
ok ok ok
4 s
GOTPRID N CLEANIT LN NEWPROG s Lk
D1 *, tt*#*D2**tttt#tt* D3 %, EHRERRDYF KRk Rk kR *,
* *, * * ¥ AAS .

.* 'BOMB!' *, NO FIRST * * OPEN DEBUG * YES .* INSTRUC- *.
, SWITCH OFF .———————v. >*PCONTROL TABLE * L-—>* FILE, READ * -—-%, TION BEEN .*
*, * ol Tx * PROGSUM * *. STORED .*

* ¥ * ¥ * * *, o ¥
. uE iti#*t*#ttttttttt *, ¥ Fokok Aok kR Kk ok *, Lk

*YES *YES *NO
~
NOTBOMB .*, JP01G2 RESTORE s
El *, FhkkkkEIkkkdhhhkkk *ERFFFU ke hkkkhohkk HRKAEE Sk kb ok ok k kRN K
* FRRKER KR KA KA * RESTORE * * * * *
IS THIS *. YES *+ RETURN_TO # * CLOBBERED _ * * STORE PROGSUM * * RELOCATE *
*.SAME PROG. o Fomme * ILBDMP20 * *INSTRUCTIONS IN* * INFORMATION * * ADDRESS IN *
. AS * * PROGRAM * * * *DYNAMTAB ENTRY *
. . ERRERERRR KRR * * * *
*_ ¥ A LR LR R RS RS2 L] LR R R R RS L R R L S RS S]
*NO
el
YES
PR ¥ TRYPDUMP __.*. “ ¥ WILLFIND v
Fl *, F2 *, F3 *, Fu *, FREHRTCSH Ak kR
*, ok *, . * *. P *, *GET INSTRUCTION#*
NO .¥ IS ENTRY *, . *. .* 1S PDUMP *. NO NO .*FIRST OPEN *. * FROM VIRTUAL *
r———* MESSAGE ¥ ~~>%.SAME SEGMENT .* *. REQUESTED _.*¥-—— r~—=*. FOR FILE ¥ * STORAGE AND *
, WANTED . *. o ¥ *, o % *, o * SAVE IN *
* oK *. o * *. . *. ¥ * DYNAMTAB *
*, % *, % *, % *, L * dhk ek dkokok Rk ko kkkk
*YES *NO *YES *YES
JB01A1 v UNIQUE \
FRHRFGLEERE KRR R TR FREERG2R KRR AR KK *hERRGI Rk kR KKk k RERF ARG R Rk R R R R kR E EERRGH R kR R xRk Rk
*ILBDDBG1 * * * * * * * *REPLACE_2 BYTES*
Kok ko k_kk ek k * * * GET_PROGRAM * * RELOCATE * * IN VIRTUAL *
* PRINT ENTRY * * SAVE PRIORITY * * LIMITS * * ADDRESSES IN #* ——>*STORAGE BY BALR¥*
* MESSAGE * : : : : * PCONTROL : * 0,12 *
ke kkkhkkhk kR KKk Fkkkkhk ok kk b kok k% AR R RS R RS EE L 2] ok ok kR kkkok kR kkkkk kkkkk kR ko k kR kR !
EREH s
—>% * *
* B5 * * HS t
* * *_>
*kEk **‘* -
V. JQO1A2 . ¥ ISITLAS v
kR KRk Rkk Rk Rk ERI RN R HY 'R **tttust #tt**t*t
* * *HEXDUMP * ¥ *.
*STORE CRITICAL * By e NO .* *. NEXT :
~->% ADDRESSES IN * *DUMP PROCEDURE * <--*.ANY OBODOTAB .* *DYNAMTAB ENTRY *
* COMMON : : DIVISION : B *.* t'*
T T P P B T AT *4*¢ttttt#t*t*tst
*YES
[SR——
v v v
ok NOPDUMP EL J ¥,
J1° T, J3 *, RERRRTURERE KRR J5 *.
* ¥ *. * o *.
B DOES * .% ANY MORE * *READ IN ENTIRE * ¥ *.
*,PROGRAM HAVE . *. PCONTROL —— * TABLE * *.END OF TABLE
.DYNAMTAB . *. TABLES .* l * + . o*
* . * o ¥ * * *, . ¥
*, % *hkk *, Lk *kEk Rk Rk ook kR *,
*NO * * +YES * * *YES
* CYy * * BY *
* *
*kEE ERTTY
\
JP01G2 ODODCNE <k, JP01G2
AkRRAKIRER AR KRR KR K4 *,
i*tiKlt##t***#* * * t*‘*KS*tttttttt
* GET NEXT * *BOMB_SWITCH*. NO *
: ILBDMP20 : :PCONTROL TABLE : —-—2%, F e F e): ILBDMPZO *
- . *
T * * *, . B T T TS
EE R R R L R R S *, %
*YES
ok l. *EkkH
D% -D%
* BY * * BS5 *
* * * *
TN Ak
148 Flowcharts

Chart JS.

kA P] kdkkdkodkokkokk

*
* ILBDMP22 |
* *

Ak Rk Rk Rk okok ok

fmmmmmm >

v
FRkRRCT kR kk ok *k
* SEARCH FOR *

* *
EEREERRERFEF R TR R F K

A
LRI EL LA 2
*
STORE RETRY *
ADDR. *
ILBDDBGO :

EE s T L

EX X XY

v

¥,
El *.

*DOnS ENTRY *. NO
HAVE ON

o ¥

\
RN FLERR R Rk k
* *
* UPDATE ITS ON *

* COUNTERS *
* *
* *
kkkkE kR kKRR R R R XK
v
61" s,

o ¥ *,
.*DO _COUNTERS*. YES
.‘PERMIT DUMP‘.——>

\
ARk RHL R Rk kA
* *

* MARK ENTRY TO *
: BE SKIPPED :

* *
ek Rk R R TR E R R Rk

DMPCNTRL

a1t el
.+ -,
NO .* END OF *.
---+]_ DYNAMTAB I+

*

¥
RS
*YES

*

FHKKKR] KRRk Ak
* *
*POINT TO FIRST *
+DYNAMTAB ENTRY *
FOR THIS ADDR. *
dkE ek Ekk kR Rk kR %

Rk

(ILBDMP22)

FEXE

* *

* B2 %

* [—
kkkH

DUMPTGT
Rk RPOR Rk kokk

* *
SET ALLSW, WANT#
TGT ON :

* *
kFkkkRkkk kR kR k

ISDMP2IN V. . Jvola2
EEITTYeptTE LR T
*ILBDMP24
ko ko ko

*

*
: DUMP TGT *
HRERRER RN

3
ARRRED2R AR R R AR
* *
* *
:SET WANTTGT OFF:

* *
ok ok kR kR Rk kK

e i P LR L]
* SET REQUEST *
LIMITS AT START
* AND _END OF *
: DATATAB :
kkkkkkkokkkkkk ok

<

JP01J2
ARRREJRRRkak bk k
* RET 'URN_TO *
* DMP20 :(——
ERRE AR EREEREE

JI01A2
Lt Vi bt il
*ILBDMPOI/OZ *
e e
*POINT TO START ‘
*BLOCK READ

*‘#**'***#**#*#‘*

v JTO
ARk RGR kR Rk ki kk
#NXTENTRY *
ko ko kK ko k¥
ANALYZE DATATAB
* ITEM *

whkkkkkk Rk kkh ok kK

ENTER FROM
ILBDMP23
OR ILBDMPZU

FEFRGIHFREREFEF
*
* CALLD1D2 *
* *
hhkkrkkkkkk kR ek

*
‘e, e
*, L *
*YES

*
* DUMP *
* *
RkEh R R R Rk Rk Rk kR kK

ok k

*.
<* LEVEL- *. NO
.*DESCRIPTION‘.* ——————

V. JVO1A2
Akwk e T3k bRk kR F
+ILBDMP2Y *

_____ ok k
*
* DUMP *
AR AR TR R &

*kkk
—_% *
* B4 *
* *
*¥E¥

Licensed Material - Property of IBM

STE

YES

L —

Section 2:

LAL T
* *
* BY *
*—
o ¥
.. JP01J2
B4 *, T
g *, *¥¥FPEEREF R kLK
. ON RETURN TO *
*, ALLSW B >% ILBDMP20 :
Te. L T T LR TS
*, %
*OFF
PID .*.
cu *, **t*tcs*tttttt*tt
.t ANY *. *
. MORE + YES QOINT TO NEXT *
*, REQUESTS IN .‘--————-->*REQUEST IN SAME*
HIS ENTRY
s, ENTRY " t
EEE R e PP R 2
*NO
P S

v
SREEADUERF KRR RREE
*

* GET NEXT
:DYNAMTAB ENTRY

CXE X

*
kkEkkkkk bk ke kkkk

Eu4 *,
o .,
¥ .
*, END OF TABLE X
*, L
. o ¥
*NO
*kE
* *
* Fu4 *
* *->
TS
o ¥
RO

*IS ENTRY TO‘ YES
*.*BE SKIPPED

*

JBO1AL1
ttttrsut‘tttt#*#t
*ILBDDBGI

_____ t-s_t_t
PRINT CARD *
* NUMBER OF *

* REQUEST *
ek khk kR kkk

*, o *
., L * PrT
*NO * *
* B2 ¥
* *
*kkE
<
v
#*‘ttJu#ttt**#ttt
* E_TABLE
‘LOCATORS TO SET*
LIMITS OF
: REQUEST :
FRRRRE AR

Program Organization

149

Licensed Material - Property of IBM

HkHKBIRRRR R R E

* INIT LOOP

* COQUNTER OF 3,
——=>*_POINTERS TO

:INTO ABOUT 1ST

dkkkkkkkkkhkkhokk

RN R

*REE
* *
* C3 *
* *

N kR

->

oF,

Chart JT. NXTENTRY {(ILBDMP22)
LERR P VELELL LSS ENTER_FROM ILBDMP22
* FOR FIRST ITEM: ROM
* NXTENTRY e ILBDMP23 AND IL
* * FOR SUBSEQUENT ITEMS
R EE KRR RRK RS
< *. SETDISP
Bl s, T
L+ * *
NO .*THIS ENTRY #. *STORE DISPL IN *
(———#*.= LAST ENTRY .* ~-—=>* BLOCK IN THIS *
‘e *.* * ENTRY *
T P e
*YES
AEERRCLEREAE R R A EARERCOREERRERERR
* * *

* *
:SET ENDENTRY ON:

* *
ok kdokkdok Rk Rk kR R

AR RED] KRR A

‘***tglt******t**

UP DATATAB *
‘POINTER TO NEXT*
ENTRY

#
***“*#*‘*‘*t*t##

-¥ *. NO
,END OF BLOCK.*__>
*

Tl o*

.
*YES

JIQ1A2
AERREGLRRRKRKRB KK
*ILBDMP01/02 *

e
:READ NEXT, NOTE*

LRI LR EE LI T 1Y

LR e RS ELE EELE LY
*

*STORE BLOCK-ID *
: IN THIS ENTRY :

* *
*kkE R kR Rk kR Rk k

v
L

Jl
*

..
*

r ‘¥, NO
.IS IT PROCTAB.-—
. .

Tk oLk
*YES

JS01A1
FRRKRK] KRRk kAR E
* RETURN TO *
* ILBDMP22 (NOT *
* TO CALLER) *
kR E Rk Rk

150 Flowcharts

* A

* A(ATTRIBUTES) *
* *
FARRKR AR TRRKR N

*
NO .* DOES *.
~—-*_PROGRAM HAVE .
*. OoDo

*

+YES

*

E2

.*IS ITEM AN *.
*. IDEX Tx
. RENAMES’.

*

YES

*. .
*. ¥
*NO

*,
F2 *,
*
o ¥ LEVEL *. YES
#.*DESCRIPTION‘

P

v
t****GZti***t*ttt

SET MASTLEV AND
* ALL 3 DOLEVS *
* TO X'FF' *

*
*t***‘*i****#*##t

O

NXTEXIT v
FERRHO Rk Rk ko

RETURN_TO
CALLER

*
*

EX X

kkkkkkkEkRFkrhk

c3 *, #t#**cqt*tt*#**#t
«*DATATAB*.
¥ ENT HAVE
ODO AT THIS

. -*
*, %
*YES

* %

le] SET
Koo >* CORRESPON?%?G *

t*i**l***t*

*.

* %

LEV< .+ LEVEL: %,
-+ CORRESPONDIN
[%.G ODOLEV, .+

LEV>

o

SRR RRPIRE kR KR K
* *
* CORRESPONDING *
:ODOLEV = LEVEL *

*hkkkkkkkdhkhhkkkkhd

AEFRRGI R AR REAKK
* COMPUTE AND #*
*STORE ADDR, OF *
* CORRESPONDING *
:OBODOTAB ENTRY :
P T T

<

LEEE LS KT
*

*UT POINTERS TO ¥
* NEXT LEVEL *

v
*hkkk Rk
*

* *
EEE R SRR L]

*

FERERKLEF kX FE R R EX
* *

NO * SET MASTLEV=
Aok X'FF

. ¥ LEVEL *.
. *GT LEVEL OF*. *
. LAST ODO
*., MASTE

*

*
« o ¥ **t***¥*¥****t*t*
*YES

NXTEXIT

*

FEFRKSEER Ak
RETURN 10
CALLER

RS R S LR LS

*
*
*

Chart JU. DUMP1l (ILBDMP23)

ok k [kK Rk kK ok

*
ILBDMP23 :
T T

——————— %

ENTER _FROM
ILBDMP22 OR
ILBDMP24

ttttBlt#*tt*ltt * .t,‘
NO

: RETURN *<-—————-—* A DUMP1 ENTRY *

t*tttst*ttttt** *-

, ,

. o ¥
*YES

HEADERTN v
tittcz

*MOVE NAME LEV# *
* CARD# §
*CODE TO BUFFER *

#tt*#t*t#*t#‘

tt«#**t*

APARTN v
#*tttD2#

GET LOCATIggNOF
WITH ADDR IN Ru

##**t**t*t#**###'

#****#*#

v
E2" s,
¥ ¥,
- *AN OCCURING*.
ITEM

YES

. e
*, %
*NO

TYPERTN
ERRAAE2RRE AR RRRAS

*DETERMINE TYPE *
:OF DATA TO DUMP:(—-

* *
Akkkkkkkk ko Rk kX

A’
FRERRG2E kR Rk kR kK
*

*
* SAVE ADDR_AND *
*LENGTH_OF ITEM *
: FOR HEX DUMP :

Rk kkEkkk kR kR Rk k

v
*,

H2' s

o* *,
NO .* A RENAMED *.
. ITEM

Hdokkok T2k kkk ko

PUT OUT ALL
RENAMERS

XXX RY
L XX

Aok ko ok ok ok Rk ok ok

Lo >

FRkR KRR R AR AR
* *

*MOVE CORRECTED *
:DATA TO BUFFER :

* *
e T T
*Hkk
* *
* AL *
* *
*xkk

CNTRLRTN
FhkAR AT hkk kR kR kK
* CONTROLS THE *
* NUMBER OF *

—=>*0CCURRENCES TO *
* DUMP *

* *
EEZ IS R PR L L

t*tttB3*t**ttt#‘*
*FIND NUMBER OF M
OCCURRENCES AND
:INCREMENT VALUE:

ko ok ko ok okk Rk ok

c3 .
¥ *.
¥ *. NO
. AN ODO ITEM .-—-.
*, o
L
*, % ARAk
*YES * *
* F3 *
* *
ok
OBODORT
FEERIDIAR s
* PUT OUT NAME *
* LENGTH <—

VALUE OF OBJECT
*****t##t**tt*t**

NO

i

. ¥ *.
-*ALL OBJECTS*.
-d ‘.* FINISHED

*I SUBSCRIPTS YuES
INIS HED .*

¥ ¥
+NO

tttt*G3**tt*tt*#t

MOVE CURRENT
————— *SUBSCRIPT VALUE*

#**#t*****#

Licensed Material - Prorerty of IBM

%k
* *
* AL *
*

EE L2

R VEREL S22 S L]
* *

* MOVE ADDR OF *
:DATA TO BUFFER :

* *
dkkkk Rk Rk ok okkk

CALLDBG1 v
FRRFEBY*
*+ILBDDEGL
* — ke

JB01A1
LR EE

*
ko *
* *
: PRINT BUFFER :
kkkkkkkkhkkkokkkokkk

. HEXRTN J901A2
ct . ERKEKCSE AR KRR KK
¥ . *HEXDUMP *
o* *, YES B e)
.HEX REQUESTED. #~——m—we= > PUT QUT HEX *
.. o * DUMP OF DATA *
*, ¥ * *
. o ¥ kR kR kR Rk
*NO
<
¥,
Dy .
*., OCCURRING [J—
. ITEM . l
*, x
*, L% kR
NO * *
* F3 *
* *
EET T
3
*kk kR LRk ok kokok
* *
* GET NEXT *
~->* DICTIONARY *
* ENTRY *
*
ARRRE R R Rk
X

*Fu' 't.‘
.*LAST LEVEL *. NO
] L FOR DUMPING l4---
.)
*,_ t XKk
*YES * *
* B2 *
* *

*kkk

ARERGURRRRR R Kk
* RETURN TO *
: CALLER *

ok kR ok kR ko Rk

Section 2: Program Organization 151

Licensed Material - Property of 1BM

Chart JV. DUMP2 (ILBDMP24)

*RERP2 Rk kR Kk k
——————

ILBDMP24 :
khkkkkkkkkk kb ks

*.
¥ *,
*, WANT TGT .
*, %

*, L%
*ON

DUMPTGT
FRERRC2HK AR RARE
* *

* INIT POINTERS *
: TO TGT TABLES :

* *
dkEEEhk kR rkrkkkk

NEXTCELL
XYY 2* PETTTEEES

*
MOVE FIELD NAME
r——>: TO BUFFER :

* *
hkkkk ok kkk ke kk

HAVELEN v
t##E2* tttttt#*

‘GET ADDRESS AND*
:LENGTH OF FIELD*

* *
kkkkkk kR Rk ko

V. JQ01A2
il WAL T *t*i

*HEXDUMP
ke _*-*_k_t-$-*

*
: DUMP IN HEX :
dokkhkkhk ok kR kkk®

POINTNXT v
t#tttht #ttttt*#

POINT_TO NEXT *
*FIELD IN TABLE *

t t
Hkkdokkk kR Rk R Rk

\'4
H2 s
o* *

* *,
END OF TGT .*
*, L

*

NO .
L%
. ¥

*. .
*YES

JS01B4

T
‘*tth**#ttt#tt
* RETURN T

: ILBDMP22

LA L RS L L)

e

152 Flowcharts

NONLD
FRRFABIRkRKRRRRES

*
* MOVE NAME TO
—>: PRINT BUFFER

EE RN

*
FrekkhR kR R kb ek kF

NO
Sk, Sx.
C3 *, ch *,
. . .+ .

L% IS IT “*. NO . *.
%. INDEX-NAME .*-———-——->%. IS IT FD _.*
. . *, o+
*, o *, . ¥
. % . %

+¥YES *YES
v DUMPFD v
kkkkDIhhkkkkr k¥ ‘‘*#Du*—t##*#‘**
* * *
* GET ADDRESS * * GET LogIcaL +
* FROM TGT * * UNIT NUMBER, *
* * *ETC. IN BUFFER *
*kkrkkk kR Rk kkbkk SkkEER kB R kR kE kRS
v PRINT v JBO1AL
*kkkRE IRk hokokk ko t*tttEutt*t*t*t#t
M * *ILBDDBGL
*CONVERT BINARY * L A S
* CELL IN PRINT * M
: BUFFER * ¢ DRINT LINE %
kkkkkk bk kkkh hkkkkkbkokkhkhkkkk
vV JBO1Al
e ke kFI¥ Qtt###ﬁ* kR kP ek bk ke krk
+ILBDDBGL * *
_____ t-t-t-t * GET TYP, *
. * * ADCRESS TRfpD =+
* PRINT LINE ¥ * LENGTH OF DTF *
FhkFhkh Rk kkkkkrkE kkkkkkkr bk rhkkk
Rk EEGY* t*tgi‘**
*HEXDUMP *
L JURTPRE NS DR JUR DR R D)
* *
DUMP DTF IN HEXY
kb kkkkohokkkkkkkk
ISITALL _ V JTO01Al
‘*'1353‘ LRI L L

DUMPSD

'NXTENTRY *
ok kR k_ k% v
GET NEXT *<
: DATATAB ENTRY :
T e e e T
oF,
J3 *, T
o* *, ERERTURRERRE RN
+*IS IT TO BE*. NO * RETURN TO *
.‘ DUMPED ‘. -------- >% ILBDMP22 :
Tk, o FRRR R AR AR R
L%
*YES
-*. JUO1A2
K3 *,
.*IS ITEM*, HRRRRL Rk ok Rk

NO ‘.' LEVEL~ *. YES

‘DESCRIPTION*.t ________ >

* TRANSFER TO *
* ILBDMP23 :

*
RS RS2SR

——

L___

JBO1A1
tttt*B5tttttttt*#
'ILBDDBGl

L _t_t_t-#_t

*
: PRINT LINE :
ARkEERE Rk

*° *,
.. IS IT RD ¥
* *

‘!‘. ¥
*

DUMPRD ¥,
D

o * *.
% IS THERE *. NO
.EINE-COUNTER‘.--—

" .

" *¥ES

* kR RESR kR kb kkk
* *

#'LINE COUNTER' *
* AND VALUE TO *
* BUFFER *

*
kdkokkkok ok kkkokk

Vv JBO1Al
P I L TR T

* *
: PRINT LINE :
A kR ok ok

N
G5 .
i
I -
<--‘ PAGE-COUNTER o ¥
Tx, 2
*x, %
*YES

\
t‘t#ﬂs’#ttt*##*
* *
*'PAGE COUNTER' *
* AND VALUE TO *
* BUFFER *

Rk kE kR Rk kR Rk

JBO1ALl

RINT v
ERERETS Rk R E R

‘ILBDDBGl *
_____ Hoko koK

*
: PRINT LINE :
LRI T R P e

Chart JW. SYMSTATE (ILBDMP25)
To-CSYMSTATE---
ENTER FRO] *okkok A D dokokokkok kK
ILBDMP20 AT * *
ABEND AFTER |-===—==-- * ILBDMP25 *
ILBDMP21 * *
_________________ P T
-*,
B2 .
¥ *.
o* *, YES
‘.‘STATEOUT ON*.t _____
.. "
*, ¥
*NO
EET TR Yoy PP LT PR TR
*

*USE ADDRESS IN
* STXIT PSW IN
: ILBDDBGO

LR AL B s 2 S 2]

LE XY

>

¥,

D2 Tx,
+'Is 1r In s,

OTIN e,
.* TRANSIENT *.
. AREA LIMITS I+

YES
*

* ROOT SEGMENT P

Licensed Material - Property of IBM

GETSTATE
T JBO1H2 FXKFRBURERERR R RS
*##*B3tttt#$ttt * FIND SEGINDX *
ETURN TO * + "ENTRY, GET +
>+ Siabup20 -->* PROGTAB *
M * [T+ POINTERS *
*Ekkkkkkkkkkkkk * *
ok ko ko Rk kR ko
GOTSX
FRERRCYBkkkkddokk
+SEARCH PROCINDX
* WITHIN LINITS
OF THESE
t polNTERS For +
NEAREST ADDR *
t###t*##*#‘tt
YESROOT ISITPX v
*tt**D3¢t#**““: t‘*#tDut#t**t*t'#
*
* USE START OF * I READ x
~—->* ROOT AS BASE #---->| * CORRESPONDING *
#AND PRIORITY 0 * + PROCTAB BLOCK
EA R LR LS LRI L] ke rh kR Rk kR &
YESTRANS
FRERRESS AR Rk Rk R SRk REL Rk khk ok k
* USE START OF * *+ COUNT THRU *
*TRANSIENT AREA * *+ BLOCK TO #
AS BASE oo * NEAREST MATCH *

:FOR ABEND ADDR :

PRIORITY *
R R R R T S e L] Fhkk kR Rk Rk k Rk

TRY14 -

«*USE 1u *.
. WE -

FRFRRGE R R R ERE®
*

*
: SET USEl4 ON

XXX

*
kkkkkkk kR k

DOWITH14
ek kkRHk kb k A kkk
* *

* USE SAVED *
l———% REGISTER 14 *
* FROM ILBDDBGO ¥

#t*#t#t##*#***t#*

. ARE
. USING SAVED e
* 14) ¥

GOTCDVB o *.
Fu *,
o* *,
+*ACCEPTABLE *.

NO

CANTFINI
tttt¢G3t

*

‘ ERROR TEXT TO *
* BUFFER * *MESSAGE T
* * *
*

v
FRkh bk kk®

* *
hkkkkk ke ke dkkkkkkkbkkkkkkkk

>

PRI

NT v
#kERRHU*
‘ILBDDBGl *
..... ko ko k
* PRINT STATE *
* MESSAGE

drkkkkdokkckkokokkkkk

TRYFLOW ¥
J4 *, kR R ToR ko k
. . * *
% ANY FLOW *., NO
* ,OPTION IN THE.*-—
*, RUN ¥

* *
>:SET STATEOUT ON:

* *
kEkkkk bk Rk Rk ko kok

*, ¥
*YES

JGO1AY JBO1H2
t*t#*Ku‘t*#ltttl#
*ILBDFLWZ KK Gk ko ok ok Ak
—o ko _t-t_i_t_# RETURN_TO *
* e * ILBDMP20 *
* FLOW OUTPUT * *
* * FERERRERR kKR REE

*hkkkkkk iRk bRk

Section 2: Program Organization 153

Licensed Material - Property of IBM

Chart JX. SRCHPUBS (ILBDMPOU4)

FdRRAT Rk R RRkkk
* #—————————|CALLED BY
: ILBDMPOY4 : IODIS:

LA RS RS EL LS

v
Hok ok Bk kokok kokok ok k
*

* GET PUB TABLE *
* POINTERS *
* *

*

*
R R L L R L)

Tt T RS R R R S LR
*

*SEARCH PUB FOR *
: SYS005 ENTRY :
*

*
Aok ko ok ok ok ok ok Rk k&

o ¥,
D1 *, ERREXIT

P *, kR RDkkkkkkk k%K
%2311, 2314,%. NO * RETURN TO *
*. OR 3330 o Fmm e >% ERREXIT IN *
. . * ODISK *
*, * dh kR AR A AR

*, Lk

*YES

v
*kkERE] Rk kkhk ko k
* \% *
* CORRESPONDING *
*DATA TO SYS005 *

DTF *

R R SIS S s

FRRAF]L Rk ke kkk%x
*
* RETURN *
* *
Aok ok kok ko okokk ok

154 Flowcharts

Chart KA.

Licensed

COUNT Initialization Subroutine (ILBDTCO00)

KERRQ DR kA AR KKK

* *
: ILBDTCOO :
#kokk ok kAo k kR Rk

. * *.
<*FIRST TIME #*.
*. ENTRY -
. E
¥
¥
*NO

‘e,

HERFRC 2R Rk kR k%
* *
#SET FIRST-ENTRY*
: SWITCH :

* *
kRkkkhkkk kR Rk Rk kK

STEP2

STEP2400
*EREAE Rk ke k
*

GETVIS_FOR
CHAIN

L XX

*
*
*
*
*
*

kkkkkkhkkkkkkkk*x

ERER ATk kkkkkk k¥
* *

INITIALIZE *
COUNT CHAIN :

XX

*
Frkkkokkhkkkkhkkkk

N4
[TII T ey T T T T2
* *

CHAIN
IN TGT

EX X

* STORE
:ADDRESS

* *
*hkkkkkdokk Rk ko Rk

v
sk dok R 2k

INITIALIZE
OQUNT_COMMON
AREA

*hokkkkKk
*

- x

*
*
* C
*
*
*

ARk E R ARk

TCOOEXIT v
*RERTO

* *
* RETURN *
* *
wkkkk Rk kk kR kR

LR T LR

1. FORWARD, BACKWARD POINTERS
2. PROGRAM-NAM

3. NUMBER OF NODE COUNTERS

4. POINTER TO TABLES

5. POINTERS TO PREVIOUS CALLERS
6. CHAIN SIZE

7. TGT_ POINTER

8. TABLES

%. SET CNTFLG

SET DECIMAL POINT
IS COMMA

Section 2:

Material - Prorerty of IBM

Program Organization 155

Licensed Material - Property of IBM

Chart KB. COUNT Frequency Subroutine (ILBDTC10)

FERRDR R AR RRRRER

*
: ILBDCT10 :
R AR R

¥,
Bl *.
o ¥ *,
«*DOES CQUNT *. NO
.SOMMON EXIST .——-w

*, .
., ¥
*YES

CONT100 F.
cl *.
. * *,
+*DOES COUNT *. NO
. CHAIN EXIST .-->

*, ok
*. .
*YES

*hEkk kD] kR kR kR kK
* *
* FIND NODE *
* ADDRESS *
* *

*

*
FREkERR kR kR kK

’
*hkkRE] kkkkhkbhrk
* *

GET COUNT

X T
X E Y]

FRREEREEREKRERERE

v
*.

F1& T#.
o * .
W * *. YES
*., OVERFLOW 1»—->

R L
*, L%
*NO

KR RRGLARKRR R RR
* *

UPDATE _NODE
COUNT BY ONE

*
E R

*
Rk kEkkRR R Rk kkk k%

CONTEXIT
FRRRHLE kAR
* *

: RETURN :
AkEERRRRRRRKREE

156 Flowcharts

Licensed Material - Property of IBM
IChart KC. COUNT Termination Subroutine (ILBDTC20)

LRSI I
* *
: ILBDTC20 :

ExERRRRRR kR Rk

¥, TCERRRTN JBO1A1
c1l *, FREC2hFhkdokhkkkk
. . ILBDDBG1 EERFECIERETRERRE
.* COUNT __*, YES P ittuputitsu * " .
* ,ROUTINE ERROR.*=——ew——-. > WRITE ERROR ~—-o——m—m >* RETURN *
*. ey *+ MESSAGE 16 * * *
* RERERR R AR
P T T

*

GOTPARM o E
Dl *.

o ¥ *.
. *MONITORING *. NO
PROGRAM

*. .
*, ¥ l
*, L *

*, % *kEE
* *
* H1 *
* *
EET Y

KDO1Al
*kkE] ¥kkkkkkakkk

ILBDTC30

WRITE EXECUTION
* ON__ %

DEBUG PRINT FILE
ERERRE AR RE

!

F1° k. TC20EX10
* * kR RFRk Rk kkF kR
* MAL *

.+’ NOR * *
*. TERMINATION . #-———~wwm >+ RETURN *
. *° TSIt

JEO1A3
FRRGLRERk R Rk KRRy
ILBDDBGS

“CLOSE DEBUG
+ PRINT FILE *

LTS TSP TP PR LYY
*REF¥
* *
* H1 #
* *=>
*Ekk

RETURN
PEEE Sy ET TR
*

*

* RETURN *

* *
*hkkrkhkkhkhkrk

Section 2: Program Organization 157

Licensed Material - Property of IBM

| Chart KD. COUNT Print Subroutine (ILBDTC30)
P N T T Y
*
+ ILBDTC30 *
kR kR kR kR kKK
RN . SPECENTR
Bl . B2 *, kkkk kB3 dkkk ko AkkRRBYF R R K kK *
¥ - * * * %————CONVERT--—-%
* . YES UMMARY ' *. YES *SET UP_HEAD FOR* * CONVERT *
. CHAIN NULL _.————mmee >#. STATS TO . #~——m——ee >+ STATISTICS #=———mme >+ COUNT-SUM_TO *
*! WRI * * #*PACKED DECIMAL *
*, oK *, . * * * *
. . *, ¥ dkkkkkkkkkkkkkkkk kb kkkhk b kkrkkkkk
*NO *NO
STEP2 v
EX T2 S Yes R L T L T2 EE 2 FRECURR RS E Rk
* * ---STATEND--~
===~UPCNTSUM=~~~ * RIT *
* UPDATE < ¥, END _ <--
* COUNT-SUM * * T STATS'VIA +
* * TLBDDBGL
FREEEREFRhRRE R RS ¥k khh Rk hkkkkkkkd
S
D1 *, dkkkkDYdkkkkkkk kK
ok *, * *
o* *. YES * FREEVIS *
.MORE ON CHAIN.—-- * APPROPRIATE ¥
. o * VERBSUM TABLE *
*, ok * *
*, . *hkkkrhkkkkkkkk kK
)
<
J
kkkk kBl kkkkkkbrkk TC3EXIT v
* * EEEE 3opE RS S]]
* GO BACK TO * * *
* FIRST CHAIN ¥ * RETURN *
* ENTRY * * *
* * ke rkkkk Rk Rk k
EAEE RIS L 2]
STEP3
*hEFIRER ek Rk hkk
---STEP3RTN--
* WRITE *
STATISTICS HEAD <
* VIA ILBDDBGL *
LA AL S RS S22 LS
STEPY4
AAAFEGLRRRR R KKK
* *
#POINT TO COUNT *
* TABLE *
* *
* *
*hkhkkkkhkkpkhkrkk
YES
o STEPS SEL
H1 . kR kKRR R Rk TREARGIR kAR hkR kR E HY *,
% *, * * * * ok *,

* *. * UPDATE CHAIN * * FREEVIS * .* IS THERE _*. NO
-->%.END OF TABLE .+ ~->* ~ POINTERS - ~~>*PREVIOUS ENTRY #--————v >* (ANOTHER CHAIN.*---
Tk, o * * * * R S
*, % LR RSS2 S SRS 22 2] *khkk bRk kE SRk kK *, %

*NO *
JBO1AL
Ak Tl hkbhhkkR Rk
ILBDDBG1 .
—-—— WRITE A LINE ON
+ DEBUG PRINT
FEREREEF R R R R R R E

158 Flowcharts

Licensed Material - Property of IBM

SECTION 3: DATA AREAS

DEBUG COMMON AREA (ILBDDBG7)
The debug common area resides in subroutine ILBDDBGO with the DSECT name of DBGOCOM.
It is used by both the debugging subroutines and the object-time execution statistics
subroutines. Its format is as follows:
Displacement No. of
‘ Hex Decimal Field Bytes Description
0 0 SAVEDBGO 72 ILBDDBGO save area
- 48 72 SAVEDBG1 72 ILBDDBG1l save area
90 144 ADBG1 4 Address of ILBDDBG1
94 148 CURRBUFF 4 Subfield Bytes Contents
ERRPARM 0 Error parameter
1-3 Address of current buffer
98 152 STXITSA 8 STXIT save area, containing PSW at the time of
program check (alternate name STXITPSW)
Subfield Bytes Contents
PSWL 0-3 Leftmost PSW bytes
PSWR 4-7 Rightmost bytes (bytes 5-7
. named INITAD)
A0 160 STXITRO 52 Registers 0-12
D4 212 STXITR13 4 Register 13
D8 216 STXITR14 8 Registers 14 and 15
EO0O 224 FIRST 4 Address of highest TGT
E4 228 LAST 4 Address of current TGT
E8 232 SAVER1H4 4y Save register 14 for ABEND outside of
COBOL program
EC 236 FLTEP 4 Virtual for floating-point subroutine used
by SYMDMP
FO 240 STATEEP 4 Virtual for STATE entry point
Fu4 244 FLOW2EP 4 Virtual for print FLOW subroutine
F8 248 SORTSEP 4 Virtual for Sort subroutine
FC 252 DSPLEP 4 Virtual for display subroutine
100 256 SYMSIZE 2 SYMSIZE
102 258 FLAG1 1 Switches
(SWITCHA)
" Equate
Name Code Meaning
FRST X'80' First time through
DBGO X'40" ILBDDBGO error
REC X'20" Debug ABENDed: recursion bit
DBG1 X'10' First time in ILBDDBG1
DBG2 X'o8" In ILBDDBG2
COBSW X'04' Current program is not COBOL
SYMDEAD X'02* SYMDMP is dead switch
ENDFLOW X"01" Print FLOW when FIRST=LAST

Section 2: Program Organization 159

Licensed Material - Property of IBM

Displacement No. of

Hex Decimal Field Bytes Description

103 259 FLAG?2 1 Equate

(SWITCHC) Name Code Meaning
STATEMSG X'80" Statement number already printed
STATEL X'40" Use register 14 for STATE
STATE2 X* 20" Found first segment
SYMIN X"10" SYMDMP in core bit
FLOWINIT X"'08" FLOW already initialized bit
DYNAM X"04" Dynamic dump mask
FLW1RETN X®*02* FLOW1l return bit
RANGE X"01" ABEND occurred outside range of
SYMDMP (for ILBDDBG2)

104 260 DBG1CODE 1 Print code for ILBDDBG1

105 261 ABCODES i ABEND codes

106 262 HEAD1 52 Page eject)

132 314 69 COBOL diagnostic aids

i17F 483 HEAD2 121 Triple space

1F8 604 FOOTING 28 End of COBOL diagnostic aids

214 632 STATERR 1 STATE error byte

215 633 CURRPTY 1 Current priority for STATE

160

Licensed Material - Property of IBM

l DEBUG INPUT FILE
The debug file is made up of fixed-length 512-byte blocks; a l-byte field containing the
hexadecimal value "FF' marks the end of usable information within a block.

The seven tables described in the following pages exist in the debug file at object time.
They are accessed by the sukroutines of the SYMDMP program.

See Diagrams 8, 9, and 10 in "Section 2: Program Organization" for the relations among
these tables and the object-time subroutines.

| =
i PROGSUM —
! }

] |

| OBODOTAB [

| |

u *n

I ‘DATATAB [

I

| 1

1 |

| |

1 J

] i

1 PROCTAB 1

] |

I i

1 d

] i

| CARDINDX [—
] |

1 4

] i

I SEGINDX

|

L

] 1

l PROCINDX I“__‘
! !

Section 3: Data Areas 161

Licensed Material - Property of IBM

PROGSUM TABLE

The PROGSUM table is the first table on the debug file. It consists of a single
fixed-lenath 108~-byte entry and contains information about the program and the debug file
itself.

Dec Hex Field Name Bytes Field Description
0 0 PGPROGID PROGRAM-1ID
8 8 PGDECLEN Length of Declaratives Section
12 C PGBL1 BL1l address relative to the start of the TGT
16 10 PGBLL1 BLL1 address relative to the start of the TGT
20 14 PGSBL1 SBL1 address relative to the start of the TGT
24 18 PGDTF1 DTF1 address relative to the start of the TGT
28 1cC PGVLC1 VLC1 address relative to the start of the TGT
32 20 PGINDEX1 INDEX1 address relative to the start of the TGT
36 24 PGENDDTF End of the DTFs relative to the start of the TGT
40 28 PGENDNDX End of the indexes relative to the start of the TGT
44 2cC PGDTDVAD Device address of first block of DATATAB
48 30 PGDTNUM Number of blocks in DATATAB
50 32 PGDTDSP Displacement in the block of the first DATATAB entry
52 34 PGPTDVAD Device address of PROCTAB
56 38 PGCXDVAD Device address of CARDINDX
60 3C PGSXDVAD Device address of SEGINDX
64 40 PGPXDVAD Device address of PROCINDX
68 44 PGCXNUM Number of entries in CARDINDX
70 46 PGSXNUM Number of entries in SEGINDX
72 48 PGPXNUM Number of entries in PROCINDX
T4 4A PGSXDSP Displacement in the block of the first SEGINDX entry
76 4cC PGPXDSP Displacement in the block of the first PROCINDX entry
78 UE PGFPDSP Displacement of floating-point virtual from the start of the
PGT

NN EEREFEENDNNDNFEEFFRFEFRFERFEFRFREO®

80 50 PGODONUM 2 Number of bytes in OBODOTAB, including the unused bytes at
the end of the blocks

82 52 PGHASH 2 Identifier to insure match between this debug file and
compiled COBOL program

84 5S4 PGFIB 4 Address of first FIB relative to start of TGT

88 58 PGLEN 1 Length of PROGSUM

89 59 PGFILL 19 Reserved for later use

Note: The only fields that may be zero in this table are PGDECLEN, PGODONUM, and PGFPDSP
when the referenced areas are absent from the program. For TGT addresses which do not
exist, the address of the first byte following the previous cell is used because these
cells are used in calculating the number of TGT cells of a given kind to dump.

162 Debug File

Licensed Material - Progerty of IBM
OBODOTAB TABLE

The OBODOTAB table is an abstract of the DATATAB entries for all objects of
OCCURS. . .DEPENDING ON clauses in the program. The OBODOTAB table, if present,
immediately follows the PROGSUM table and contains one variable-length entry for each
unique object of an OCCURS...DEPENDING ON clause. Each entry begins on a fullword
boundary within the block.

The entries are essentially the same as the DATATAB entries for the same name. See
the entries for elementary numeric items in the format of the DATATAB table. OBODOTAB
entries differ only in that the card-number field is zeroc and the renaming information is
omitted. Table-locators within the DATATAB entries are used to access the OBODOTAB
entries. See the subscripting information portion in the format of the DATATAB table.

COUNT-NAME-TYPE FIELD

Dec Hex Field Name Bytes Field Description

0 0 1 Count Field: Number of bytes (c¢) in name field

1 1 Name Field: Number of bytes, varies between 1 and 30
Count Field: Number of bytes in remainder of this entry
Card number where name is defined
Type of Entry (For description of this field see
corresponding field in DATATAB table)

2+c 2+c CARDNUM
5+¢ 5+c MAJMIN

Wk Q

VARIABLE ATTRIBUTES FIELD

For description of this field see corresponding field in DATATAB takle.

Section 3: Data Areas 163

Licensed Material - Property of IBM

DATATAB TABLE

The DATATAB table is the third table in the debug file.
entry of the ORODOTAB table, if that table is present.

table.

It immediately follows the last
Otherwise, it follows the PROGSUM

The table consists of two fields, the Count-Name-Type field (shown below) and the

Variable Attributes field.
entries. It varies in length between 7 and 36 bytes.
differs for each type of entry and is described in the diagrams on the following pages.

The Count-Name-Type field has the same format for all

COUNT-NAME-TYPE FIELD

The Variable Attributes field

Number of bytes (c) in name field
Number of bytes varies between 1 and 30
Number of bytes in remainder of entry

Card number where name is defined (contains zeros for

Displ
Dec Hex Field Name Bytes Field Description
0 0 1 Count field:
1 1 c Name field:
1l+c 1+c 1 Count field:
2+c 2+c CARDNUM 3
RENAMES items)
5+c 5+4c MAJMIN 1 Type of entry

164 Debug File

Bit
Bits Settings Meaning
0-3 1000XXXX FD entry
1001XXXX SD entry
1110XXXX RD entry
1111XXXX Index-name
0000XXXX Level description under FD
0001XXXX Level description under SD
0110XXXX Level description under KD
0100XXXX Level description in Working~Storage
0101XXXX Level description in Linkage
4-7 XXXX0001 Fixed length group
XXXX0010 Alphabetic
XXXX0011 Alphanumeric
XXXX0100 Variable length group
XXXX0101 Numeric edited
XXXX0110 Sterling report
XXXX0111 Usage index
XXXX1000 External decimal
XXXX1001 External floating point
XXXX1010 Internal floating point
XXXX1011 Binary
XXXX1100 Internal decimal
XXXX1101 Sterling non-report
XXXX1110 Alphanumeric edited
XXXX1111 RENAMES (level 66)

SD item:

DATATAB TABLE:

RENAMES item (level 66):

Licensed Material - Property of IBM

VARIABLE ATTRIBUTES FIELD

There are no variakble attributes for an SD entry.

6+cC 6+c RENAMES 1 Bit
Bit Settings Meaning
7 XXXXXXX1 Next DATATAB entry RENAMES
the same item as this one does
XXXXXXX0 This is the last (or only) item
renaming an item
INDEX name:
6+c 6+c INDXCELL 2 Index cell number in TGT
FD item:
6+cC 6+c DTFNUM 1 DTF number
T+c 7+c ACCESFLG 1 Access method
Bit
Bit Settings Meaning
0-3 0001XXXX DTFCD
0010XXXX DTFPR
0011XXXX DTFMT
0100XXXX DTFSD
0101XXXX DTFDA
0110XXXX DTFIS
7 XXXXXXX1 Sequential access method
XXXXXXX0 Random access method
RD item:
6+c 6+c LINECTR 3 Addressing parameters of line counter
Bit
Bit Settings Meaning
0- 0000XXXX BL entry
0001XXXX BLL entry
0100XXXX SBL entry
4-15 Displacement from BL
16-23 BL Number
9+c 9+c PAGECTR 3 Addressing parameters of page counter
(same form as addressing parameters above)
Level Description Item:

vVariable attributes for level description items are divided into two portions:

(1) the type-dependent portion,

entries.

(2) subscripting infarmation portion.
The subscripting information portion is the same for all level description item
It follows and is described after the type dependent portion descriptions

(1) Type Dependent Portion of Level Description Item:

FIXED LENGTH GROUP:
6+C 6+C IDKFLD 3
9+c 9+¢c LVLRDEFN 3
Bit
0-5
6
7-23

Addressing parameters (same form as above)

Bit
Settings Meaning

Normalized level nurber
XxxXxXxx1x REDEFINES

Object time virtual storage size
(in bytes)

Section 3: Data Areas

165

Licensed Material - Property of IBM

DATATAB TABLE:

VARIABLE LENGTH GROUP:
6+C 6+cC 3

VARIABLE ATTRIBUTES FIELD (Continued)

Addressing parameters (same form as above)

Meaning

Normalized level number

REDEFINES

Maximum object time virtual storage
size (in bytes)

Meaning

9+c 9+c MAXSIZE 3 Bit
Bit Settings
0-5
6 XXXXxX1x
7-23
12+c C+c VLCNUM 2 Bit
Bit Settings
0 1XXX
1-3
4-15

ODO Master
Unused
VLC number

ELEMENTARY, ALPHABETIC, ALPHANUMERIC, REPORT, EDITED, STERLING, EXTERNAL FLOATING POINT:

6+cC 6+c 3

Addressing parameters (same form as above)

Meaning

9+c 9+c JUSTRGT 3 Bit
Bit Settings
0-5
6 XXXXXX1x
7 XXXXXXX1
8-23

INTERNAL FLOATING POINT:
6+C 6+C 3

Normalized level number
REDEFINES

JUSTIFIED RIGHT

Object time virtual storage size
(in bytes)

Addressing parameters (same form as akove)

Meaning

S+¢c 9+¢c FLPTYPE 1 Bit
Bit Settings
0-5
6 XXXXXX1x
7 XXXXXXX0
XXXXXXX1
10+c A+c 2 Unused

BINARY, INDEC, INTERNAL DECIMAL, EXTERNAL DECIMAL:

6+cC 6+C 3

Normalized level number
REDEFINES

COMP-1

COMP~-2

Addressing parameters (same form as above)

Meaning

9+c 9+c NUMINFO1l 1 Bit
Bit Settings
0-5
6 XXXXXX1x
7 XXXXXXX1
10+c A+c 2 0 1XXXXXXX
OXXXXXXX
1 X1XXXXXX
XOXXXXXX
2 XX1XXXXX
XXOXXXXX
3 XXX1XXXX
XXX0XXXX
4-8
9-13
14-15

166 Debug File

Normalized level number
REDEFINE

S in PICTURE

Leading sign

Trailing sign

Separate sign

Overpunch

Significant digits left of
decimal point

No significant digits left

of decimal point

Significant digits right of
decimal point

No significant digits right

of decimal point

If bit 2 equals 1, number of
digits to left of decimal point.
If bit 2 equals 0, number of digits to
right of decimal point.

If bits 2 and 3 both equal 1,
number of digits to right of
decimal point. If only bit 2 or
bit 3 equals 1, number of Ps in
PICTURE

Unused

Licensed Material - Progerty of IBM

DATATAB TABLE: VARIABLE ATTRIBUTES FIELD (Continued)

(2) Subscripting Information Portion of Level Description Item:

This portion of the variable Attributes section begins immediately after the
type-dependent portion.

It ranges in size from 1 byte unsubscripted item to a maxirmum of 20 bytes for an
item belonging to 3 variable-length gruups.

1 Guide to RENAMES and subscripting
Bit
Bit Settings Meaning
0 1XXXXXXX This item is renamed. The

next DATATAB entry renames it.

1 X1XXXXXX This item contains an ODO clause.

2 XX1XXXXX Item requires at least 1 subscript.

3 XXX1XXXX OCCURS clause connected with the
most inclusive or only group; or
elementary item contains an ODO.

4 XXXX1XXX Item requires at least two subscripts

5 XXXXX1XX OCCURS clause connected with the
less inclusive group of 2 or the
middle inclusive group of 3 or
elementary group contains an ODO.

6 XXXXXX1X Item requires 3 subscripts

7 XXXXXXX1 OCCURS clause connected with the
least inclusive group of three or
elementary item contains an ODO.

1 VLC information

Bit
Bit Settings Meaning .
0 1XXXXXXX Most inclusive group of 3 or only group

1 X1XXXXXX Less inclusive group of 2 or middle
inclusive group of 3
2 XX1XXXXX Least inclusive group of 3

If any of these bits equals 1, bytes 2 and 3 of the
group length information for the associated group
contain a VLC number rather than the length of

the group.

Section 3: Data Areas 167

Licensed Material - Property of IBM

DATATAB TABLE:

1st subscript
(if present)

2nd subscript
(if present)

3rd subscript
(if present)

1st subscript
with ODO
(if present)

2nd subscript
with ODO
(if present)

3rd subscript
with ODO
(if present)

VARIABLE ATTRIBUTES FIELD (Continued)

Number of occurrences (Maximum number if 0ODO)
specified in OCCURS clause governing this item.
Displacement of next occurrence governed by OCCURS
clause (See Note)

Number of occurrences (as above)
Displacement of next occurrence governed by OCCURS

Number of occurrences (as above)
Displacement of next occurrence governed by OCCURS

OBODOTAB pcinter for most inclusive group or
elementary item containing an ODO

Bits Contents
0-8 Relative block number in OBCDOTAB
9-15 Displacement within block (in
fullwords)

OBODOTAB pointer for less inclusive group (as above)

OBODOTAB pointer for least inclusive group (as above)

Note: 1If the applicable OCCURS clause is on an elementary item, the displacement is the
machine length of that item; if the applicable CCCURS clause is on a fixed-length group,
the displacement is the length of the group as stored in the group's DATATABR entry; if
the applicable OCCURS clause is on a variable-length group, the displacement field
contains the VLC number for the group.

168 Debug File

Licensed Material - Property of IBM

PROCTAB TABLE

The PROCTAB table contains one 5-byte entry for each card and/or verb in the source
listing of the COBOL Procedure Division. The table is ordered on three levels:

1. Priority (in ascending order of independent segments, with the root segmrent last)
2. Card-number within priority
3. Verb-number within card
The last PROCTAB entry for a priority has a card and/or verb number of zero. In
addition, the relative address field contains the address of the first byte following all

instructions for the segment with that priority.

For the relationships among this table and the PROCINDX, SEGINDX, and CARDINDX tables,
see Diagrams 8, 9, and 10 in "Section 2: Program Organization."

Displ
Dec Hex Field Name Bytes Field Description
0 0 PTCDVE 3 Card-number and verb-number on source listing
Bit Contents
0-19 Card-number
20-23 Verb-number
3 3 PTRELAD 2 Relative address of instructions for this entry

within program fragment to which it belongs

CARDINDX TABLE

The CARDINDX table is a directory to the SEGINDX table and contains one 5-byte entry for
each program fragment and one entry for each discontinuity in the COBOL instructions
within a segment. Entries in the CARDINDX table are in ascending card-number order and
are accessed by indexing through the table sequentially.

The CARDINDX table starts at the beginning of a block.

For the relationships among this table and the PROCTAB, PROCINDX, and SEGINDX tables,
see Diagrams 8, 9, and 10 in "Section 2: Program Organization."

Displ
Dec Hex Field Name Bytes Field Description
0 0 CXCDVB 3 Card-number and verb-number of first card
represented by this entry
Bits contents
0-19 Card-number
20-23 Verb-number
3 3 CXPRIOR 1 Priority number associated with this card
4 4 CXFRAG 1 Relative fragment number within the priority

to which this card belongs

Section 3: Data Areas 169

Licensed Material - Property of IBM

SEGINDX TABLE

The SEGINDX table contains one 10-byte entry for each program fragment. The table is
ordered on two levels:

1. Ascending priority number
2. Ascending fragment numker within a priority

For the relationships among this table and the PROCTAB, PROCINDX, and CARDINDX tables,
see Diagrams 8, 9, and 10 in "Section 2: Program Organization."

Displ
Dec Hex Field Name Bytes Field Description
0 0 SXPRIOR 1 Priority number
1 1 SXRELAD 3 Address of this fragment relative to the
beginning of the segment
i 4 SXPTLOC1 3 Table locator for PROCTAB entry of first
card number and/or verb-number in this
fragment
Bits Contents
0-14 Relative Block number in
PROCTAB
15-23 Displacement within block
7 7 SXPTLOC2 3 Takle locator for PROCTAB entry of last card and/or

verb in this fragment
PROCINDX TABLE

The PROCINDX ‘table is a summary index of the PROCTAB table and contains one 10-byte entry
for each block of PROCTAB entries. PROCINDX entries are ordered by relative klock number
in the PROCTAB table and are accessed by searching sequentially after indexing to a
starting point determined by the block number from the CARDINDX or SEGINDX table.

For the relationships among this table and the PROCTAB, SEGINDX, and CARDINDX tables,
see Diagrams 8, 9, and 10 in "Section 2: Program Organization."

Displ
Dec Hex Field Name Bytes Field Description
0 0 PXCDVB 3 Card-number and verb-numner of first entry in klock
of PROCTAB table.

Bits contents
0-19 Card-number
20-23 Verb-number

3 3 PXRELAD 3 Relative address of instructions for this
entry within segment to which it belongs

6 6 PXDEVADR 1) Device address of PROCTAB table block related
to this entry.

170 Debug File

Licensed Material - Property of IBM

EXECUTION-TIME TABLES FOR DEBUG OPERATIONS

The following four tables are built in virtual storage by the SYMDMP subroutines from
information in the Debug File and the control cards for a program compiled with the
SYMDMP option. They are used for producing the duwp to meet dynamic dump request and at
abnormal termination.

DATADIR TABLE

The DATADIR table is a directory to the DATATAB table and only exists when a DYNAMTAB
table exists. There is one fixed-length 8-byte entry for each distinct DATATAB block
which contains an identifier specified on a line-caontrol card. Entries are in the order
in which requests appeared on line-control cards.

Displ
Dec Hex Field Name Bytes Field Description

0 0 DDDEVADR 4 Device address of DATATAB block in debug
file

4 4 DDSW 1 Switch - If bit 0 is equal to 1, the block
is not in virtual storage. If bit 0 is equal
to 0, the block is in virtual storage.

5 5 DDCORE 3 Address of DATATAB block in virtual storage

Note: This table is limited by the 7-bit indexes in the DYLOCNM field of the DYNAMTAB
table to a maximum of 128 entries. If the maximum is exceeded, a message is produced and
further dynamic dumping requests are ignored.

Section 3: Data Areas 171

Licensed Material - Property of IBM

DYNAMTAB TABLE

The DYNAMTAB table summarizes dynamic dump requests and contains one entry for each

line-control card.

Entries are variable in length with a minimum length of 17 bytes.
chained together, and each entry begins with the address of the next entry.
group of entries for one program is marked by the DYLASTDY switch.

The table entries are composed of a fixed and variable portion.

DYNAMTAB entries are
The end of a
The DYNAMTAB table is

searched sequentially; the search ends at the entry in which the DYLASTDY switch is on.

Fixed Portion

Displ -
Dec Hex Field Name Bytes Field Description
0 0 DYNXTDY 3 Address of next DYNAMTAB entry
3 3 DYSW 1 Switch
Name Bit Contents
DYALL 0 If 1, ALL specified
DYHEXALL 1 If 1, HEX with ALL specified
DYON 2 If 1, ON spécified
DYLASTDY 3 If 1, Last DYNAMTAB entry
DYSKPDMP 4 If 1, No dump - ON value is wrong
) 4 DYCDVB 3 Card-number and/or verb-number
Bits Contents
0-19 Card-number
20-23 Verb-number
7 7 DYPRIOR 1 Priority of this card
8 8 DYCOBINS 6 Machine instruction corresponding to card and
verb
14 E DYINSADR 3 Address of this instruction in virtual storage
17 11 DYONS 8 Only present if ON specified
Name Bytes Contents
DYON1 2 Start value
DYON2 2 Increment value
DYON3 2 End value
DYONCUR 2 Current value
Variable Portion
For each DYIDSW 1 Switch
request Name Bit Contents
for a DYHEXID 0 If 1, HEX specified for this request
single DYTHRUID 1 If 1, THRU specified (entry is
identifier: 5 bytes 1long)
DYERRID 2 If 1, error in this request;
ignore it
DYLOCNM 2 Table-locator for this identifier, consisting of: »
Bits contents
0-6 Entry number in DATADIR to find device
address of DATATAR entry for this
identifier
7-15 Displacement in DATATAR block of entry
for this identifier
For each 2 If THRU is specified, table-locator (same
request format as above) for identifier which is
for the object of THRU
identifier
THRU
identifier:
Note: A dummy table-locator of hex '0001' is used te represent TALLY; a dummy .

table-locator of hex "0002' is used to represent SORT-RETURN.

172 Execution-Time Tables for Debug Operations

Licensed Material - Property of IBM

PCONTROL TABLE

The PCONTROL table contains information about each program requesting the symbolic dump
option within a run unit and consists of one fixed-length 76-byte entry for each
program-control card. Entries begin on a fullword boundary and are chained together.
Each entry is followed by the DYNAMTAB table, DATADIR table, and, if necessary for
dynamic dumping, the OBODOTAB table for the program.

Displ
Dec Hex Field Name Bytes Field Description
0 0 PCPROGID 8 PROGRAM-ID
8 8 PCFILNAM 7 File name of debug file (the default is IJSYS05)
15 F PCSYSNNN 1 nnn of SYSnnn for the debug file in binary
16 10 PCBL1 4 BL1 address
20 14 PCBLL1 b4 BBL1 address
24 18 PCSBL1 4 SBL1 address
28 1c PCDTF1 4 DTF1 address
32 20 PVCILIC1 4 VLC1 address
36 24 PCINDEX1) INDEX1 address
40 28 PCANXTPC 4 Address of the next PCONTROL entry (if this is
the last entry, this field contains zeros)
4y 2C PCADYTAB 4 Address of DYNAMTAB for this program (if there

is no DYNAMTAB, this field contains zeros)

48 30 PCAOBODO 4 Address of OBODOTAB in virtual storage
(If OBODOTAB is not in virtual storage,
this field contains zeros)

52 34 PCACOE 4 Address of start of overlayable virtual
storage in root segment

56 38 PCATRANS 4 Address of start of Transient Area

60 3c PCADATDR 4 Address of DATADIR, if present (if there is

no DATADIR, this field contains zeros)

64 40 PCDMPLNG 2 Length of overlayable virtual storage in
root segment
66 42 PCTRLNG 2 Length of Transient Area
68 Ly PCDDNUM 2 Number of DATADIR entries
70 46 PCPRIOR 1 Last non-root segment entered (if any)
71 47 PCSW 1 Switch
Name Bit Contents
PCHEX 0 If 1, HEX specified
PCENTRY i If 1, ENTRY specified
PCPDUMP 2 If 1, PDUMP specified
PCMT 3 I1f 1, MT specified
PCDYNAM 4 If 1, No DYNAMTAB exists
PCRELOC 5 If 1, Address (BL1 through INDEX1)
have been relocated
PCIOERR 6 If 1, I/0 error found on debug file
72 48 PCFIB1 4 Address of first FIB cell

Section 3: Data Areas 173

Licensed Material - Property of IBM

QUALNAMS TABLE

The QUALNAMS table is an area overlaying SCANP (ILBDMP11), in which identifiers are
entered in a manner to permit a batched sequential search through the DATATAB table for
the names requested on line-control cards. The QUALNAMS table contains one entry for
each identifier named on a line-control card. Each entry is composed of a fixed and
variable portion. Entries are in the order in which identifiers and names (qualifiers)
appeared on line-control cards.

Fixed Portion

DlSEl Iy
Dec Hex Field Name Bytes Field Description
0 0 QCODE 2 Switch and displacement
Name Bits Contents .
QID 4] If 1, beginning of an entry
for an identifier
QFOUND 1 If 0, identifier is not resolved
If 1, identifier has been found
in DATATAB
QTHRU 2 If 1, request for this identifier

followed by THRU
3-6 Unused

QDISP 7-15 Contains zeros until identifier has
been found in DATATABR; then it
contains the displacement in the DATATAB
block containing the entry for
the identifier

2 2 QDEVADR 4 Contains zeros until identifier has been found

in DATATAB; then it contains the device address

of the DATATAB block containing the entry for

the identifier

Variable Portion

For each ONMLEN 1 Number of bytes (n) in the following

name (qual- name

ifier) QONAME n Name (qualifier)

making Name Bits Contents

up the QNMZONE 0-3 These bits are used as a switch
identifier: to indicate whether the name has

been found in DATATAB. When it

has not been found, they contain
normal zone bits for the letter or *
number which begins the COBOL name.
When the name has been found, they
are set to zero to prevent
searching for the name again.
Note: There is no special end marker for the QUALNAMS table, but the address of the last
byte of the table is entered in the Common Data Area. The search of the QUALNAMS table
is sequentially forward through the indentifiers, and sequentially kackward within an
identifier entry, from the most inclusive to the least inclusive qualifier.

174 Execution-Time Tables for Debug Operations

Page of LY28-642U4-1, revised 8/1/75 by TNL: LN20-9122
Licensed Material - Property of IBM

CONTROL BLOCKS FOR VSAM

The following two control blocks are required to process input/output requests for
vsaM files.

VSAM FILE INFORMATION BLOCK (FIR)

The file information block, a portion of the completed object module, is used at
execution time by the ILBDINTO, ILBDVOCO, and ILBDVIOO COBOL library subroutines for
processing input/output verbs used with VSAM files. The FIB is kuilt by phase 21 and
completed by the ILBDVOCO sukroutine.

Fixed Portion:

Displacement No. of
Hex Decimal Field Bytes Description
6 0 IFIBID 1 FIB identification code: X'I"'
1 1 IFIBLVL 1 FIB level number
2 2 INAMED 7 External name
9 9 INAMEDB 1 External name
A 10 1 Reserved
B 11 IORG 1 Organization
Code:
Equate Bit
Bits Name Settings Meaning
0-7 IORGVPS 1000 1000 VSAM ADDRESSED SEQUENTIAL
IORGVIX 0100 1000 VSAM INDEXED
C 12 IACCESS 1 ACCESS MODE
Code:
Equate Bit
Bits Name Settings Meaning
0-7 TIACCSEQ 1000 0000 SECUENTIAL
IACCRAN 0100 0000 RANDOM
IACCDYN 0010 0000 DYNAMIC
D 13 IRCDMODE 1 0-7 IRCDFIX 1000 0000 Fixed lengtl records
E 14 ISWl1 1 Miscellaneous switches
Code:
Equate Bit
Bits Name Settings Meaning
0-7 ISOPTNL 1000 0000 OPTIONAL specified
ISSAMREC 0010 0000 SAME RECORD AREA
specified
ISSAME 0001 0000 SAME RECORD specified
F 15 7 Reserved
16 22 IRECLEN 2 Number of bytes in longest Ol-entry
18 24 IRECDBL 2 Displacement in TGT of record's first base locator cell
1a 26 IRECNBL 1 Number of base locators for RECCRD AREA
1B 27 1 Reserved
1c 28 ISTATDBL 2 Displacement in TGT of base lccator for STATUS data-nare
1E 30 ISTATDDN 2 Displacement from base locator of STATUS data-name
20 32 ISTATLDN 2 Length of STATUS data-name
22 34 1 Reserved
23 35 IKEYNO 1 Number of entries in key 1list
24 36 IKEYFNTL 2 Length of each entry in key list
26 38 IPSWISW 1 Miscellaneous switches

Section 3:

Data Areas 175

Licensed Material - Property of IBM

Displacement No. of

Hex Decimal Field Bytes Description

27 39 IPSWNO 1 Number of entries in password list

28 40 IPSWENTL 2 Length of each entry in password list

2A 42 14 Reserved

38 56 IMISCAD 4 Address in variable length portion of FIB for
miscellaneous clauses

3C 60 4 Reserved

Lo 6u IKEYLSTA 4 Address of first key list entry

Ly 68 IPSWLSTA iy Address of first password list entry

48 72 16 Reserved

Variable Length Portion:

Supplementary Information for miscellaneous clauses (one for each clause):

Displacement No. of
Hex Decimal Field Bytes Description
0 0 IMSW1 2 Switch bytes
Code:
Equate Bit
Bits Name Settings Meaning
0-7 IMRREOV 1000 0000 RERUN at end of volume
8-15 Reserved
2 2 IRERUNI 4 RERUN integer (field contains zeros if RERUN not
specified)
6 6 2 Slack bytes
8 8 IRERUNN "8 External-name of RERUN clause

Key List Entry: (one per user-defined key--RECORD/ALTERNATE/RELATIVE)

Displacement No. of
Hex Decimal Field Bytes Description
0 0 KEYSW 1 Miscellaneous switches
Code:
Equate Bit
Bits Name Settings Meaning
0-7 IKEYCOMP 1000 0000 Key is USAGE COMP (binary)
1 1 IKEYLDN 1 Length of key data-name
2 2 IKEYDBL 2 Displacement of key data-name's locator in TGT
4 4 IKEYDDN 2 Data-name displacement from locator
Password List Entry: (one per password)
0 0 IPSWDIXN 1 Associated index number
0 = none
1 = primary
1 1 IPSWDLDN 1 Length of password data-name
2 2 IPSWDDBL 2 Displacement of password data-name's locator in TGT
4y 4 IPSWDDDN 2 Data-name disrlacement from locator

176 Control Blocks for VSAM

Page of LY28-6424-1, revised 8/1/75 by TNL: LN20-9122

Licensed Material - Property of IBM

VSAM FILE CONTROL BLOCK
The VSAM File Control Block is created by the ILBDINTO COBCL library subroutine. It

is used by the ILBDVIOO and ILBDVOCO subroutines to interface with the VSAM system
control subroutines.

Displacement No. of
Hex Decimal Field Bytes Description
0 0 FCBID 1 FCB identification code: 'F*
1 1 FCEBLVL- 1 FCB level number
2 2 FOPENOPT 4 Save area for OPEN options
6 6 FCLOSOPT 4 Save area for CLOSE options
A 10 2 Reserved
C 12 FCOBRTN 4 Address of COBOL transmitter routine
10 16 FUSERR 4 Address of USE...ERROR declarative
14 20 FUSELIST 4 Address of USE declarative Exit List
18 24 6 Reserved
1E 30 FRECKEY 1 Number of RECORD KEY
1F 31 FADVANC 1 Reserved
20 32 FENDINV 4 Return address from INVALID KEY, AT END, or end-of-page
24 36 12 Reserved for compilation-dependent fields
30 48 FOPENOPS 4 Options for VSAM OPEN verb
Code:
Equate Bit
Bits Name Settings Meaning
0-7 FOPIN 1000 0000 INPUT
FOPOUT 0100 0000 OUTPUT
FOPIQ 0010 0000 I-C
FOPEXT 0001 0000 EXTEND
8-15 Reserved
16-23 FOPUERR 1000 0000 USE...ERROR declarative
address in FUSERR cell
24-31 FTSORT 1000 0000 Called from ILBDSRTO
34 52 FCLOSOPS L VSAM CLOSE options
Code:
Equate Bit
Bits Name Settings Meaning
0-7 FCLLOCK 0001 0000 LOCK
8-31 Reserved
38 56 FSW1 4 Miscellaneous switches
Code:
Equate Bit
Bits Name Settings Meaning
0-7 FSOPEN 1000 0000 File is open
FSLOCKED 0100 0000 File is closed with lock
FSOPTNL 0010 0000 Cptional file not present
FSOKACT 0001 0000 Successful action has
occurred since open
FSEOF 0000 1000 Sequential read has
encountered end-of-file
FSVCORE 0000 0100 Main storage to process
this open has been
acquired

8-31 Reserved

Section 3: Data Areas 177

Licensed Material - Property of IBM

178 Control Blocks for VSAM

Displacement No. of
Hex Decimal Field Bytes Description
3C 60 FTRSTMT 4 Transmission statement switches
Code:
0-7 FTREAD 0000 0100 READ statement
FTWRITE 0000 1000 WRITE statement
FTREWRT 0000 1100 REWRITE statement
FTSTART 0001 0000 START
FTDELET 0001 0100 DELETE statement
8-15 FTINVKEY 1000 0000 INVALID KEY
- FTATEND 0100 0000 AT END
FTNEXT 0000 0010 NEXT
FTKEY 0000 0001 KEY
16-23 FTSRCHGT 1000 0000 GREATER THAN
FTSRCHEQ 0100 0000 EQUAL TO
FTSRCHGE 0010 0000 NOT LESS THAN
24-31 Reserved
40 64 FSYSCBAL 4 Address of system control blocks address list
by 68 FSYSCBLL u Address of system control blocks lengths list
48 72 FSYSCBNO 2 Number of system control blocks (DTF, DCB, ACB)
4a T4 FKEYLEN 2 Length of KEY data-name
4c 76 FRECCNT 4 Record count for checkpoint subroutine, if RERUN
specified
50 80 FFIBAD 4 Address of File Information Block (FIR)
54 84 FWORKAD 4 Address of system-dependent work area
58 88 FRECA 4 Address of current record area
5C 92 FSAMRECA 4 Address of SAME RECORD AREA
60 96 FSTATKEY 2 STATUS XEY work area
62 98 FLASTREQ 1 Last 1/0 statement
Code:
Equate Bit
Bits Name Settings Meaning
0-7 FLASTRD 0000 Q100 READ
FLASTWRT 0000 1000 WRITE
FLASTRWT 0000 1100 REWRITE
FLASTSTR 0001 0000 START
FLASTDLT 0001 0100 DELETE
FLASTOPN 0001 1000 OPEN
FLASTCLO 0001 1100 CLCSE
63 99 13 Reserved

COUNT PROGRAM DATA AREAS

The COUNT subroutines use the following
data areas:

¢ The verb translate, verb, and verb text
tables, contained in subroutine
ILBDTC30

¢ The count table, contained in each

object module

¢ The verbsum table, space for which is
obtained dynamically by ILBDTC30.
There is one table for all program
units being monitored

¢ The count chain, space for which is
gotten dynamically by subroutine
ILBDTCO00 for each program unit

¢ The node count table, which is part of
the count chain

¢ The count common area, which is in
subroutine ILBDTCO0

e The debug common area, which is in
subroutine ILBDDBGO

All these data areas are described below
except the debug common area, which is
described elsewhere in this section.

COUNT SUBROUTINE TABLES

Diagram 13 in "Section 2: Program
Organization" shows the relationship among
the six tables used by the COUNT
subroutines. Their formats are shown
below.

Verb Translate, Verb, and Verb Text Tables

The basic input to subroutine ILBDTC30 is
count table entries, which desbribe the
occurrence of verbs in the source program.
These verbs are expressed in Pl-code form
to save space. ILBDTC30 uses the verb
translate, verb, and verb text tables to
translate the Pl-code into the EBCDIC
characters for the verb names.

Each verb translate table entry is one
byte. Its hexadecimal displacement within
the table corresponds to a unique Pl-code.
An entry with a displacement of X'25', for
instance, represents the verb ACCEPT, the
Pl-code for which is X'25'. Each entry
contains either X'FF' (if there is no verb
for the corresponding code) or the entry
number for the verb in the verb table.

Licensed Material - Property of IBM

The verb table contains a four-byte
entry for each COBOL verb, the entries
being arranged by verb name in alphabetic
order. Byte one of each entry contains the
length of the entry for the verk in the
verb text table. The remaining three bytes
contain the address of the verk text table
entry.

The verb text table consists of all the
COBOL verbs in EBCLCIC format, listed in
alphabetic order.

Count Table

The count table contains an entry for each
verb encountered in the source program, in
the order of its appearance. The format is
as follows:

Byte Contents
0 Identity code, as follows:

00 End of table
01 Procedure-name
02 Verb

1 Length of rest of entry (n)

Card number (omitted if byte 0=00)
Count-klock number (X*'00*' if non-
executable verb)

7 Pl-code for verb

l.;‘lt\)
o=

or
7 Procedure-name in EBCDIC

though
n + 1

Verbsum Table

The verbsum table contains an entry for
each verb in the CCBOL language, arranged
in alphabetic order. The format is as
follows:

Byte Contents

0-1 Static verb count: the number of
times the verb occurs in the
program.

2-3 Dynamic count: the number of
these verbs that are actually
executed

4-7 The total number of times these
verbs are executed.

For instance, if the source program
contains three ACCEPT statements, only two
of which are executed--one twice and the
other three times, the static count is 3,
the dynamic count 2, and the total
executicn 5.

Section 3: Data Areas 179

Licensed Material - Property of IBM

COUNT CHAIN

There is one chain element for each program being monitored. The format of an element is
as follows:

Displacement No. of
Hex Decimal Field Bytes Description
0 0 TCFORPTR 4 Forward pointer
4 4 TCBACKPT 4 Backward pointer
8 8 TCPGMID 8 Program name
10 16 TCTMCNTB 4 Pointer to count table
14 20 Reserved
18 24 TCNODNUM 4 Number of counters in node count table
1C 28 Reserved
24 36 TCNODTBA 4 Pointer to start of node count table
28 49 Reserved
2C 4y TCPRVCNT 4 Pointer to previous COUNT COUNT TABLE
30 ug TCCHAINL 4 Length of this chain element
34 52 TCTGTPTR 4 Pointer to TGT of program being monitored
38 56 Node count table (variable length)

Node Count Table

Each entry is a halfword counter for a count-block in the source program. The position
of the entry in the table corresponds to the number of the block.

Count Common Area

There is only one count common area, regardless of how many programs are being monitored.
The contents of the area are as follows:

Displacement No. of
Hex Decimal Field Bytes Description

0 0 TMCNFLG 1 Flags
Equate
Name Code Meaning
CNTFLG X*40* Programs being monitored
TCINIT X*'20* First entry bit
CTPROCOF X'04" cCount percents off
INTCRT X'10" In a count subroutine
CNTFLGOF X'BF'" Turn off CNTFLG
INTCRTOF X'EF* Turn off INTCRT

1 1 TMCNFLG2 1 Flags
Equate
Name Code Meaning
TCERRFLG X"80" Processing count error
TCSVHDSW X"U40" Save HEAD1 switch
NEEDSUMS X"20" Need count summary statistics

2 2 TMCNFLG3 Reserved

3 3 TMCNDECP 1 Decimal point is comma

4 4 CNTSUM 4 Count-sum

8 8 TCAVBSUM 4 Address of verbsum table

& 12 TCLVBSUM 4y Length of verbsum table

10 16 4 Reserved

180 COUNT Program Data Areas

Displacement
Hex Decimal Field
14 20 TCSAVR14
18 24
30 us TMCNCHN
34 52 TMCNSV
7cC 124 TMCN2SV
(o} 196 TMCNWK1
through
TMCNWKP
128 296 TCSVHED1
1A1 417
1a4 420

Licensed Material - Property of IBM

1u

count chain
and ILBDTC30
and secondary save area for

Work areas of four bytes each with names
in the following series: TMCNW1l through TMCNWK9 and

Note: TMNCNWK2 must always be on a doubleword

DBGOCOM

No. of
Bytes Description
4 Save area for register
24 Reserved
4 First chain address of
72 Save area for ILBDTCOO
72 Save area for ILBDTC20
ILBDTCOO
100
then TMCNWKA through TMCNWKP.
boundary.
121 Save area for HEAD1 of
3 Filler
56 Reserved

Section 3: Data Areas 181

Licensed Material - Property of IBM

182

This section provides a few diagnostic aids
for use in case an execution-time error
occurs which is not a user error. Such an
error may produce one of two results: an
abnormal termination or an erroneous output
from a compiled program.

Licensed Material - Property of IBM

SECTION 4: DIAGNOSTIC AIDS

Note: The compiling program-name, its
version numbers, its modificaticn number,
and the PROGRAM-ID can be found at the end
of the INIT1 routine in the listing of the
program. INIT1 is at the end of the object
module listing.

Section 4: Diagnostic Aids 183

Licensed Material - Property of IBM

DIAGNOSTIC AIDS FOR PROGRAM OPERATIONS

EXECUTION-TIME MESSAGES

A few messages, not specified by the
user directly or by the system, may be
printed during execution of the problem
program. These messages originate in the
COBOL library subroutines.

1f the SYMDMP option is in effect, these
messages are followed by the SYMDMP
abnormal termination message and dump of
the Data Division.

If the SYMDMP option is not in effect
but the DUMP option is in effect, a partial
dump is taken from the problem program
origin to the highest virtual storage
location of the last phase loaded. When
this occurs, the eight bytes immediately
preceding the DTF are destroyed.

The format of messages C112I through
C125T is:

CcmmmI SYSnnn filename DTFaddress text

See Figure 6 for mmm (message number) and
text. These messages are issued on SYSLST
and SYSLOG prior to cancellation of the
job.

The debugging routines (SYMDMP, STATE,
FLOW, and COUNT) themselves may, in
addition to their normal diagnostic output,
issue messages. The format of these is:

CmmmI program-id
card/verb-number

}text

See Figure 7 for mmm (message number) and
text. These messages are written on
SYSLST.

184

The ILBDMVE(Q subroutine issues the
following message on SYSLOG.

C126D 1Is IT EOF?

The ILBDSSNO subroutine issues the
following message on SYSLOG and SYSLST:

|
|AFTER CLOSE WITH LOCK |
C124I |CYLINDER AND MASTER | ILBDISEO
| INDEX TCO SMALL |
!

C125I |NO EXTENTS $$BCOBR1
L

C140I INVALID SEPARATE SIGN
CONFIGURATION
f t T 1
| MESSAGE | | I
| NUMBER | TEXT | SUBROUTINE |
L i i d
L) 1 T 1
C1121	PARITY ERROR	ILBDSAEO
C113I	WRONG LENGTH RECORD	ILBDSAEO
C114I	PRIME DATA AREA FULL	ILBDISEO
C115I	CYLINDER INDEX TOO	ILBDISEO
	SMALL	[
C116I	MASTER INDEX TOO SMALL	ILBDISEQ
C117I	OVERFLOW AREA FULL	ILBDISEO
C118I	DATA CHECK IN COUNT	ILBDISEO
C119I	DATA CHECK IN KEY OR	ILBDDAEO
	DATA	I
C120I	NO ROOM FOUND	ILBDDAEO
C120I	DASD ERROR	ILBDISEO
C1221	DASD ERROR WHILE	ILBDFMTO
[ATTEMPTING TO WRITE	
	RECORD ZERO I	
{ C123I	FILE CANNOT BE OPENED	ILBDCLKO
I		
! |
i 4

Figure 6. Execution-Time Messages for I/0

Error Conditions

Iicensed Material - Property of IBM

|cards at the point at which the error is recognized. PR

|messages C153I through C162I.
|nearest preceding program-control card,

| line~-control card is given instead.

For C150I through C1521,

te: Messages C150I through C162I may appear interspersed among the SYMDMP control

OGRAM-ID is specified for
the PROGRAM-ID is that of the

and the card/verb number of the corresponding

| Messages C153I through C155I may also appear in the midst of the dump output if the
Jerror condition is not recognized until dumping has started.
L

f T T 1
| MESSAGE |] |
| NUMBER | TEXT | SUBROUTINE/ACTION |
b ¥ 1 1
c150	IDENTIFIER NOT FQUND	ILBDMP13 - Dump request on line-control card
		for this identifier is ignored.
c1511	CARD NUMBER NOT FOUND	ILBDMP1l4 - Line-control card with
		non-existent card number is skipped.
c1521	VERB NUMBER NOT FCUND	ILBDMP14 - The nearest verb number is used
]	instead of the specified one.	
€1531	NO ROOM TO DUMP	ILBDMP1l and ILBDMP21 - Data Division dump
		(and sometimes COBOL statement numker
		message) not given.
C1541	I/0 ERROR ON DEBUG FILE	ILBDMP12, ILBDMP13, ILBDMP14, ILBDMP21,
		ILBDMP22, ILBDMP25 - SYMDMP output is
		cancelled for the program.
C1551	WRONG DEBUG FILE FORE PROGRAM	ILBDMP12 and ILBDMP21 - SYMDMP output is
i		cancelled for the program.
C1561	NO ROOM FOR DYNAMIC DUMPS	ILBDMP12, ILBDMP13, ILBDMP1l4 - Dynamic
		dumping (but not abnormal termination
		dumping) is cancelled for the program.
1571	INVALID FILE-NAME	ILBDMP11 - All SYMDMP output is cancelled for
		program.
c1s581	INVALID LOGICAL UNIT	ILBDMP11 - All SYMDMP output is cancelled for
]	program.	
c1591	MISSING PARAMETERS	ILBDMP12 - The option with missing parameter
		is ignored.
C160I	INVALID OPTION	ILBDMP11l - The option is ignored
c1611	SUBSCRIPTING ILLEGAL	ILBDMP12 - The subscripts are ignored.
C162I	ON PARAMETER TOO BIG	ILBDMP12 - The number is reduced to 32767.
€1631I	FLOW TRACE NON-CCNTINUOUS.	ILBDFLWO - Tracing is terminated
	MORE THAN 10 PROGRAMS	upon encountering an 11th
	ENCOUNTERED	PROGRAM-ID. Tracing resumes only upon
		returning to one of the original 10 programs.
Clé6u	FLOW TRACE IN EFFECT BUT	ILBDFLWO - No action. '
) { NC PROCEDURES TRACED		
C1651	SYMDMP/STATE/FLOW/COUNT	Job is cancelled.
	INTERNAL ERROR. EXECUTION]	
I	CANCELLED I [
C169T	STATE OPTION CANCELLED	ILBDSTNO - Output cancelled.
€1701	INVALID ADDRESS	ILBDADRO - Symbolic Dump is produced.
c1711	SPACE NOT FOUND FOR THE COUNT	ILBDTCO0 - Count output for the program is
	CHAIN. CONTINUING.	cancelled for this entry into the program
		unit. a
C1721	SPACE NOT FOUND FOR THE	ILBDTC30 - Verb statistics suppressed.
	VERBSUM TABLE. CONTINUING. i	
C1731	FREEVIS FAILED. EXECUTION	Job is cancelled.
	CANCELLED.	i
c1751	INVALID COUNT TABLE ENTRY.	Job is cancelled.
	EXECUTION CANCELLED. i	
b L 1		
No		
I		
]

Figure 7.

Error Messages from Debugging Subroutines

Section 4: Diagnostic Aids 185

Licensed Material - Property of IBM

STORAGE LAYOUT r T 1
i | | Permanent storage locations used|
| |by CPU; Communication Region; |
An example of the general storage usage | CONTROL | Supervisor Nucleus; |
for a COBOL program being executed in the | PROGRAM |I/O Units Control Tables; and |
background area is given in Figure 8. | |Transient Area]
L i J
T T T b}
The memory map printed as a result of | | INIT1 |
the LISTX option contains the relative | | | Working-Storage |
afdresses of the TGT fields, the literal]] | DTF's and Buffers |
pool, PGT fields, the instructions | | { TGT |
generated from the Procedure Division, and | | | PGT |
the INIT2, INIT3, and INIT1 routines, in | | | Literals |
that order. (See the publication IBM | | | Report Writer |
DOS/VS Compiler Program Logic, Order | BACK- |OBJECT] Procedure Division |
No. LY28-6423, for a discussion of these | GROUND |MODULE} (Priority less than |
ion of these fields.) The aksolute | | | segment limit) |
addresses can then be found with the | | * | Q-routines | -
assistance of the phase map (see Figure 9). | | | COUNT Table |
| | | INIT2 |
I i | INIT3 |
		Transient Area
		(Nonresident
		Segments)
LOCATING A DTF	¢ i - i	
	LIOCS Modules	
JCOBOL Library Subroutines		
A particular DTF may be located in an b $ 1		
execution time dump as follows:	FORE-	
GROUNDS	i	
1. Determine the order of the DTF address | II & I} |
(DTFADR) cells in the TGT from the DTF I L 4
numbers shown for each file-name in | *The object module is not always first in|
the GLOSSARY. | its partition. |
L J
Note: Since the order is the same as | Figure 8. Example of Storage Used During
the order of FD's in the Data Execution

Division, it can be determined from
the source program whether the SYM
option was not used (that is, no
GLOSSARY was printed).

186

licensed Material - Property of IBM

}002 UNRESOLVED ADDRESS CONSTANTS
L

PHASE XFR-AD LOCORE HICORE DSK-AD ESD TYPE LABEL LOADED REL-FR]
|
PHASE#** (7D878 07D878 O07F1FF 05F OF 4 CSECT TESTRUN 07D878 07D878 RELOCATAELE |
|
CSECT IJFFBZZN 07E1C8 O07EiCS8 |
* ENTRY IJFFZZIN 07E1C8 |
* ENTRY IJFFB2ZZ 07E1CS8 |
* ENTRY IJFFZZZ7 07E1CS8 |
]
CSECT ILBDSAEQ 07F078 O07F078 i
ENTRY ILBDSAE1l 07F0CO |
|
CSECT ILBDMNSG 07F070 O07F070 |
CSECT ILBDIMLO 07F018 07F018
CSECT ILBDDSPO 07E578 O07E578
ENTRY ILBDDSP1 07E978
CSECT ILBDDSS0 07ECF0 O07ECFO
ENTRY ILBDDSS1 07EF50
ENTRY ILBDDSS2 07EFu48
ENTRY ILBDDSS3 07F008 |
ENTRY ILBDDSS4 07ED16 |
ENTRY ILBDDSSS 07EDC2
ENTRY ILBDDSS6 07EE22
ENTRY ILBDDSS7 07EDEC
ENTRY ILBDDSS8 07ED46
CSECT IJJCPDV O7EAA8 (O7EAAS8
ENTRY IJJCPDV1 O7EAAS
* ENTRY IJJCPDV2 O7ERAS
* UNREFERENCED SYMBOLS WXTRN STXITPSW
WXTRN ILBDDBG2

. | Figure 9. Example of a Phase Map

2.

Determine the relative starting
address of the block of DTFADR cells
from the TGT listing in the Memory

LOCATING DATA

map.

Calculate the absolute starting
address of the block ky adding the
hexadecimal relocation factor for the
beginning of the object module as
given in the linkage editor map.

Allowing one fullword per DTFADR cell,
count off cells from the starting
address found in Step 3, using the
order determined in Step 1, to locate
the desired DTFADR cell.

The DTFADR cell contains the absolute
address of the desired DTF.

Note: The procedure for locating a
secondary DTF is essentially the same,
the only differences being that the
SUBDTF address cells pointed to by the
PGT are used and that the order of the
cells is input, output, input/output,
or input reversed.

The location assigned to a given
data-name may be similarly be found by
using the BL number and displacement given
for that entry in the GLOSSARY, and
locating the appropriate one-word BL cell
in the TGT. The hexadecimal sum of the
GLOSSARY displacement and the contents of
the cell should give the relative address
of the desired area. This can then be
converted to an aksolute address as above.

SPECIAL DIAGNOSTIC AIDS FOR DEBUGGING
SUBROUTINES

VIRTUAL STORAGE LAYOUT

The virtual storage layout of the Debug
Subroutines when SYMDMP is in effect is
shown in Diagram 6. (See "Program
Organization" section.)

Section 4: Diagnostic Aids 187

Licensed Material - Property of IBM

TABLES USED BY SYMDMP

The status of the tables built or
referenced by the SYMDMP subroutines may
reveal how much processing the SYMDMP
subroutines had done before the dump
occurred. Each of the tables on the Debug
File is brought into virtual storage by the
subroutine or subroutines which access it.
The OBODOTAB table, however, is brought
into virtual storage by subroutine ILBDMP21
and remains in virtual storage throughout

the execution of the program. The other
tables, listed in Figure 10, are built by
the subroutines themselves fromr information
located in the Debug File. The Debug File
is designated as SY¥S005 during compilation;
but it may be designated according to the
user's option at execution time.

Figure 10 shows the tables used by the
SYMDMP subroutines together with the
compiler phases or the subroutines which
use them.

used by one of the subroutines.

being debugged.

The OBODOTAB table, however, is read into virtual
storage by ILBDMP21 and remains there throughout the execution of the program which is

igure 10.

188

r k] T T 1
| TABLE | Built by | Used by | Location |
L 1 1 1 4
r . T T T 1
| CARDINDX | Phaseé5 | ILBDMP14, ILBDMP25, | Debug File* |
[R 1 1 4 i |
r v T v 1
| DATADIR] ILBDMP13 | ILBDMP21, ILBDMP22 | Virtual Storage |
F + + + 1
| DATATAB | Phase 25 | ILBDMP13, ILBDMP21, | Debug File* |
1 1 { ILBDMP22 l j
r T H H - i
| DYNAMTIAB | ILBDMP1l2, | ILBDMP21, ILBDMP22 | Virtual Storage |
| { ILBDMP13, | | |
[ILBDMP1U4 | [[
¢ + + {
| FLOW ILBDFLWO, | ILBDFLW2 | Virtual Storage |
| TRACE ILBDFLW1 i I |
| } + i
| OBODOTAB Phase 25 | ILBDMP21, ILBDMP22 | Debug File, Main |
1 (if ODO)in | | Storage* |
rogram
% o | 4 |
PCONTROL	ILBDMP11	ILBDMP10, ILBDMP1l1,	Virtual Storage
	ILBDMP12	ILBDMP12, ILBDMP13,	
		ILBDMP14, ILBDMP20,	
		ILBDMP21, ILBDMP22,	
{		ILBDMP23, ILBDMP24,	I
		ILBDMP25	
F + 1 + {			
PROCINDX	Phase 65	ILBDMP14, ILBDMP25	Virtual Storage
(R + R 4 4			
v Ll T Ll t			
PROCTAB	Phase 65	ILBDMP14, ILBDMP25	Debug File*
i 1 1 1 y]			
r k) T Ll 1			
PROGSUM	Phase 65	ILBDMP12, ILBDMP21	Debug File*
1	1 ILBDMP22 l		
J			
r + +]			
QUALNAMS ILBDMP12	ILBDMP13	Virtual Storage	
[BN 4 4			
T T T 1			
SEGINDX	Phase 65	ILBDMP14, ILBDMP25,	Debug File%
b C i			
*Note: Each of the tables on the Debug File is read into virtual storage when it is			
]			
L 4
F

Tables Used by Debugging Subroutines

$$BFCMUL
$$BPDUMP
$$BCOBEM
$ $BCOBEM
$$BCOBER
$SBCOBER
$$BCOBER
$$BCOBER
$$BCOBER
$$BCOBER
$$BCOBR1
$$BCOBR1

ACCP02
ACCPO3
ACCPOU
ACT00002
ACTO000O04
ACT00680
ACT00700
ACTO0704
ACT00736
APARTN
APWOTEXT
ASANDTVT

BASEADDR
BEFTSTVU
BLKADD
BLKLOAD
BOF
BOFBOV
BOFBOV
BOF1

BOV

BOV
BUFSD
BYTELOOP

CALLDBG1
CALLD1D?2
CALLSYM
CANTFIND
CHECKIT
CHECKIT
CHECKIT
CHKDMP
CHKNXT
CHKSEQ
CHKUSASI
CHKWRAFT
CHK1ST
CKCODE
CLEANIT
CLOSEFIL
CLOSEGIV
CLOSEIT
CLOSEIT
CNTRLRTN
COBDBG2
COLLECT
COMCLOSE
COMCLOSE
COMPTR
COMRTN
com1

Licensed Material - Property of IBM

APPENDIX A: FLOWCHART LABEL DIRECTORY

CONSOL
CONSOLE
CONTEXIT
CONT100
CONVRT
COUNTER
c2128

DAMPDS
DEG6RET
DEAD
DEV2321
DEV3330
DIAGTEST
DIEXIT
DILOCP
DISPO1
DIVIDE
DKTYPE
DMPBO1
DOWITH14
DTFDA
DUMP
DUMPFD
DUMPIT
DUMPRD
DUMPSD
DUMPTGT
DUMPTGT
DYNCARD

EF
EJECT1
EJHEAD
ENDINIT
EOF

EOF

EOF

EOF

EOF

EOF
EOFIN
ERREXIT
ERROR
ERROR
ERROR
ERROR
ERROR
ERROR
ERROR
ERROR
ERROR
ERROR
ERROR1
ERRTN
EXHIB
EXIT
EXIT
EXIT
EXIT
EXIT
EXIT1
E15ROUT
E35ROUT

Appendix A:

EC c1 D2
EB 02 B3
KB 01 H1
KB 01 c1
EB 01 cu
HC 01 El1l
HH 01 H2

Ja 01 B1
JE 01 D1
Jc 01 A3
HH 01 BY4
HH 01 J3
JG 01 B5

Flowchart Label Directory 189

Licensed Material - Property of IBM

FETCH Jp 01 H3 ILBDDBG1 JB 01 Al
FETCHPHS JJ 01 G2 ILBDDBG1 JW 01 HY
FGLST EJ 01 Cc3 ILBDDBG1 Jv 01 J5
FILLDY JN 01 ch ILBDDBG1 Jv 01 F5
FIRSTIME FB 01 K2 ILBDDBG1 Jv 01 B5
FORMAT HG 01 D2 ILBDDBG1 Jv 01 EY4
TILBDDBG1 Jv 01 F3
GET GA 01 E5 ILBDDBG1 Ju 01 B4
GETELM JL 01 D2 ILBDDBG1 Js 01 GU
GETNXT FH 01 F3 ILBDDBG1 JR 01 Gl
GETPTR ED 01 E1 ILBDDBG1 JQ 01 E4
GETSPACE JR 01 B4 ILBDDBG1 JK 01 D3
GETSTATE IW 01 B4 ILBDDBG1 JK 01 El
GIVECORE JQ 01 D2 ILBDDBG1 JG 01 HY
GIVING ca 02 El ILBDDBG1 JG 01 J5
GOCOBOL CA 01 J5 ILBDDBG1 JF 01 J2
GOODBYTE JK 01 D5 ILBDDBG2 JH 01 G5
GOODRET JL 01 H3 ILBDDBG2 Jc 01 Al
GOTCDVB JW 01 Fu ILBDDBG3 Jc 01 Al
GOTPARM RC 01 D1 ILBDDBGY Jc 01 AS
GOTPRID JR 01 D1 ILBDDBGS JD 01 Al
GOTSX JW 01 cy ILBDDBG6 JE 01 Al
GTPXBLK Jo 01 B4 ILBDDBGS JE 01 A3
GT256 CB 01 D2 ILBDDIOO HI 01 Al
ILBDDIO1 HI 01 A2
HAVELEN Jav 01 E2 ILBDDIO2 HI 01 A3
HEADERTN Ju 01 Cc2 ILBDDIO3 HI 01 Al
HEADLINE JG 01 D4 ILBDDIOY HI 01 A5
HEXDUMP Jv 01 F2 ILBDDSRO HD 01 Al
HEXDUMP Jav 01 (1) ILBDFLWO JG 01 Al
HEXDUMP Ju 01 C5 ILBDFLWO JA 01 E4
HEXDUMP JR 01 H3 ILBDFLW1 JG 01 A2
HEXDUMP JQ 01 A2 ILBDFLW2 JG 01 Al
HEXOUT JQ 01 F5 ILBDFLW2 JW 01 K4
HEXRTN Ju 01 C5 ILBDFLW2 Jc 01 H5
H3330 HH 01 D1 ILBDFLW3 JG 01 A3
ILBDFMTO HF 01 Al
IBERR GA 01 F2 ILBDIDAO HD 01 Gl
IC1GT18 HH 01 GU ILBDIDAO HF 01 Gl
IC2GT198 HH 01 G2 ILBDIDAO HH 01 Al
IC2GT254 HH 01 Ju ILBDIMLO FD 01 A3
IC2GTS8 HH 01 EY4 ILBDISEO GB 01 Al
IH1GT3 HH 01 ch ILBDISE1 GB 01 A2
IH2GTS8 HH 01 D2 ILBDISMO GA 01 Al
IH2GT18 HH 01 D3 ILBDISM1 GA 01 A2
ILBDABXO FG 01 Al ILBDISM2 GA 01 Al
ILBDACPO EC 01 Al ILBDISM3 GA 01 A5 .
ILBDASYO EE 01 A3 ILBDMFTO FE 01 A2
ILBDCKPO CB 01 D4 ILBDMOVO CB 01 A2
ILBDCKPO ED 01 Al ILBDMOVO EI 01 B3
ILBDCKP1 ED 01 A2 ILBDMOVO FA 02 ch
ILBDCKP2 ED 01 A3 ILBDMOVO FA 02 D3
ILBDCKP3 ED 01 Al ILBDMOVO Fa 03 G3
ILBDCLKO EG 01 A3 ILBDMOVO FB 01 K2
ILBDCRDO HA 01 A3 ILBDMPO1 JI 01 A2
ILBDCT10 KB 01 Al ILBDMPO1 JIN 01 cl
ILBDDAEO HD 01 G3 ILBDMPO1 JN 01 G2
ILBDDAEO HE 01 HY ILBDMPO1 Jo 01 Cc2
ILBDDAEO HI 01 K4 ILBDMPO1 Jo 01 F2
ILBDDAEO HJ 01 F5 ILBDMPO1 Jo 01 Al
ILBDDAEO HK 01 A2 ILBDMPO1 Jo 01 (o]
ILBDDBGO JH 01 B1 ILBDMPO1 Js 01 F2
ILBDDBGO JH 01 G5 ILBDMPO1 JT 01 Gl
ILBDDEGO JpP 01 Ju ILBDMPO2 JI 01 A2
ILBDDBGO JA 01 Al ILBDMPO2 JN 01 c1
ILBDDBGO cC 01 G3 ILBDMPO2 JN 01 G2

190

ILBDMPO2
ILBDMPO2
ILBDMPO2
ILBDMPO2
ILBDMPO2
ILBDMPOU
ILBDMP10
ILBDMP10
ILBDMP10
ILBDMP10
ILBDMP10
ILBDMP10
ILBDMP10
ILBDMP11
ILBDMP11
ILBDMP11
ILBDMP12
ILBDMP12
ILBDMP12
ILBDMP12
ILBDMP13
ILBDMP13
ILEDMP13
ILBDMP14
ILBDMP14
ILBDMP14
ILEDMP20
ILBDMP20
ILEBDMP20
I1LBDMP20
ILBDMP20
ILBDMP20
ILBDMP20
IILBDMP20
ILBDMP20
ILBDMP20
ILBDMP20
ILBDMP20
ILBDMP20
ILBDMP21
IILBDMP21
IIBDMP21
ILBDMP21
ILBDMP21
ILBDMP22
I1LBDMP22
ILBDMP22
ILBDMP22
ILBDMP22
ILBDMP22
ILBDMP23
ILBDMP23
ILBDMP23
ILBDMP23
ILBDMP2Y4
ILBDMP24
ILBDMP24
ILBDMP2U4
ILBDMP25
ILBDMP25
ILBDMP25
ILBDMVEO
ILBDNSLO
ILBDNSL2
ILBDRCRO
ILBDRDI1

Licensed Material - Property of IEM

ILBDRDSO
ILBDRFMO
ILBDOSYO
ILBDSAEQ
ILBDSAELl
ILBDSEMO
ILBDSPAQ
ILBDSSNO
ILBDSSN1
ILBDSTNO
ILBDSTNO
ILBDTCO0
ILBDTC20
ILBDTC30
ILBDUSLO
ILBDUSL1
JLBDUSL?2
ILBDVBLO
ILBDVELO
ILBDVBLO
ILBDXTNO
INCIH2
INCORE
INIT
INITDYN
INITFLS
INITLOOP
INITRTN
INPFINAL
INTO
INTO0002
INVKEY
IPTRL
ISDMP2IN
ISITALL
ISITALL
ISITHEX
ISITLAST
ISITNEW
ISITPX
ISQFOUND

LASTPRNT
LBRET
LBRET
LBRET1
LINELOOP
LCAD
LOAD
LOADP2
LOOPDBG?2
LPUBPTR
LWRCASE

MAIN

MDCLOSE
MDC1000
MDC1004
MDC1006
MDC1008
MDC1020
MDC1060
MDC1064
MDC3000
MDC3004
MDC3016

Appendix A:

Flowchart Label Directory 191

Licensed Material - Property of IBM

MDC3050
MDOPEN
MD01000
MD01002
MDO1004
MD01006
MD02000
MDO3000
MD0O5002
MDO6000
MDO6004
MDO6016
MDO7000
MFT1
MFT2
MNEMONI
MNEMONIX
MNEMON2
MORETOGO
MCVE
MOVE
MOVECORE
MOVEKEY
MOVE1l
MVCTLCHR
MVTOBF
MVTOBF

NEWDNAME
NEWFILE
NEWLINE
NEWPROG
NEXTCELL
NEXTDBG2
NEXTENTRY
NLS5
NOCOB
NCDUMP
NONLD
NOPDUMP
NOPROC
NOSEGM
NCSYM
NCSYM
NOTBOMB
NCTDTFMT
NOTEND
NOTFIRST
NOTFST
NOTOPEN
NOTOUT
NOTSORT
NOTVASA
NSL4
NXTCRD
NXTDATAB
NXTDY
NXTDYCRD
NXTENTRY
NXTENTRY
NXTEXIT
. NXTEXIT
NXTPRM
NXTPROG
NXTXTNT

192

OBODORTN
ODODONE
ONLIST
OPEN
OPENDTF
OPENIT
OPEN1
OPEN2
OPN
OUTFINAL

PACKED
PFLOW
POINT
POINTFIL
POINTNXT
PRELUDE
PRELUDE
PRELUDE
PRINT
PRINT
PRINT
PRINTDMP
PUT

PUT

PUT

PUT
PWCL1

RD14
READ
READ
READEXIT
READEXIT
READFIL
READIPT
READIPT
READIPT
READIPT
READIPT
READIPT
READIPT
READIPT
READIPT
READIPT
READIPT
READIPT
READIT
READIT
READIT
READLIB
READ2
READY
REMAINER
RESTORE
RESUME
RET

RET

RET

RET

RET

RET

RET

RET
RETAD
RETN

Licensed Material - Property of 1BM

1 RETURN CB 01 B3 TSTPRM EA 02 B3
RETURN EE 01 E3 TSTPRM EB 01 B3
RETURN EF 01 F2 TSTSYM HC 01 A3
RETURN EH 01 B4 TYPERTN JU 01 F2
RETURN EB 02 D3 TYTYPE EK 01 B3
RETURN HC 01 H3
RETURN HD 01 K1
RETURN HH 01 Gl UNDFVUND FA 03 B3
RETURN FG 01 A2 UNIQUE JR 01 G5
RETURN KC 01 H1 UNITCK EA 01 C2
RETURN1 EG 01 B2 UNITCON EA 01 D4

UNITREC FG 01 G2
SAVEREC FA 01 El UNITO1 EA 01 D2
SEEKON JdM 01 J2 UNIT10 EA 01 E2
SEGLAB1 CcC 01 El UNIT12 EA 01 F2
SEGWT cc 01 Gl UNIT15 EA 01 H2
SETAPWOS FA 03 A4 UpPDY Jo 01 J2
SETDISP JT 01 B2 UPLAST Jc 01 G3
SETSTOP EC 01 c1 USASIRD HJ 01 GU
SINGLEON JI 01 D4 USER HK 01 F2
SPACECTL FA 02 F3 USER GB 01 G2
SPECENTR KD 01 B3 USER FG 01 J2
SSA HJ 01 G5 USER FC 01 K3
STACK JG 01 F2 USER EI 01 K2
START JJg 01 B2 USING CA 01 D4
STEPID Js 01 c4
STEPUP JIN 01 E3 VARET EA 02 DY
STEP2 KA 01 D2 VGIV ca 02 G2
STEP2 KD 01 Cc1i VIOO HN 01 c1l
STEP2400 KA 01 Jz2 VNOP CcC 01 D1
STEP3 KD 01 F1l VUNBTEXT FA 03 B3
STEP4 KD 01 Gl VUNDSPAC FA 03 D3
STEPS KD 01 H2
STOQNAME JM 01 Ju WILLFIND JR 01 F5
STOREKEY HJ 01 H1 WORDLOOP JQ 01 B3
SYM JA 01 c2 WRITDIAG JG 01 c5
SYMDMP JD 01 El WRITE Cca 02 F1
SYMDMP JH 01 Al WRITEBUF JG 01 E4

WRITELBL EI 01 G3
TAPEREC ED 01 J3 WRITE1l JB 01 F5
TCERRRTN KC 01 c2 WRITE1l JB 01 B4
TCOOEXIT KA 01 J2 WRITE1 JB 01 D1
TC3EXIT KD 01 E2 WRITE1l JB 01 D2
TESTCORE CA 01 E1 WRITE1 JB 01 D3
TESTMODE CA 01 D1 WRITE1l JB 01 D4
TESTVAR CA 02 Gl WRITE1 JB 01 D5
TEXTCTL FA 01 cy WRITE1 JB 01 J2
TEXTO01 FA 01 D2 WRITE1 JB 01 J3
TGTLOOP JA 02 Bl WRITE1 JB Q1 Ju
TRANS FC 01 H4 WRTFOOT JB 01 D3
TRANS HK 01 B3 WRTFOOT JB 01 J3
TRANS GB 01 C3 WRTHEAD JB 01 D4
TRUNC FB 01 K1 WRTNOEJ JB 01 D2
TRUNC FB 01 G5 WRTPASS JB 01 D1
TRYFLOW JW 01 Ju
TRYPDUMP JR 01 F3 XCCSRCH EM 01 c1
TRY14 JW 01 F2 XFOUND EM 01 El
TSTASA FA 01 D2 XINVOKE EM 01 F1
TSTDTFSD EH 01 H3 XSEARCH EM 01 D1
TSTERR HJ 01 Fu XSSUCKPT ED 01 D3
TSTFILSZ ca 01 c1
TSTINPRC CA 01 cu YESROOT JW 01 D3
TSTLAST CA 02 c2 YESTRANS JW 01 E3
TSTMNEM FA 01 F2
TSTOF EH 01 D1 ZEROC2 HH 01 J1
TSTPCH EF 01 B3

Appendix A: Flowchart Label Directory 193

The words listed below are defined
according to their use in this book, and
the definitions are not necessarily
arplicable elsewhere. Efforts have been
made to exclude terms which are common in
the programming profession unless they are
used in a special sense.

Base Locator (BL): A 4-byte address cell
in the TGT. There is one BL pointing to
the Report Section, one to the
Working-Storage Section, and one to each
FD, SD, and RD entry. Any FD, SD, or RD
entry exceeding 4,096 bytes has one BL
assigned to each 4,096 bytes. The compiler
loads a register with each address unless
there are too many BL's. In that case, it
loads registers with BL’s as they are
needed.

Base Locator for Linkage Section (BLL): A
L-byte address cell in the TGT. BLL"'s are
assigned by counter and are unique. BLL1
points to a work area used to process label
records. BLL2 through BLLn are assigned to
each 77-level and each 0l-level entry in
the Linkage Section. Any 77- or 0Ol-level
entries exceeding 4,096 bytes have one BLL
assigned per 4,096 bytes.

BL: See Base Locator.
BLL: See Base Locator for Linkage Section.

Count-block: A set of COBOL verbs such
that (exclusive of ABENDs) each verb in the
block is executed if, and only if, the
first verb is executed.

Debug Text: A type of debugging text which
contains card numbers, their displacement
within the object module, the priority of
each segment, and discontinuity elements.

Dummy PN: A procedure-name, defined by the
user, but not referenced in any branch
instruction.

Fragments: A portion of code having a
maximum size of one less than 64K bytes
(65,535). A fragment begins with the first
byte of a verb and ends with the first byte
of a verb preceding the verb with a final
relative displacement greater than 64K
bytes. This unit is used in processing for
the SZMDMP or STATE option.

GN: See Procedure-name.
Initialization Routines: Collectively,

routines INIT1, INIT2, and INIT3. These
are generated by the compiler as part of

| Node:

Licensed Material - Property of IBM

GLOSSARY

the object module.

Linkage: As used in this book "linkage" is
synonymous with "calling segquence."

Major Code: A 4-bit code identifying the
different types of DATATAB and CBODOTAB
table entries.

Master of an OCCURS Clause with the
DEPENDING ON Option: A data-name for a
variable-length group item which does not
itself contain an OCCURS clause with the
DEPENDING ON option, but at least one of
its subordinate items at the next level
does contain an OCCURS clause with the
DEPENDING ON option.

Minor Code: A 4-bit code identifying the
type of operand in the DATATAR table entry
of an LD item.

The beginning of a count-block.

Object module: The result of a successful
compilation. It is the output of a single
execution of the compiler and is the input
to the linkage editor.

Optimizer (OPT) Option: An option which
directs the compiler to produce an object
module, optimized for PN addressability and
register usage. The resultant code uses
Procedure Blocks to address procedure-names
that are referenced in branch instructions.
This option reduces the number of
instructions required for branches.

PGT: See Program Global Table.

PN: See Procedure-name.

Priority: See Segmentation.
Procedure-name (GN, PN, or VN): The name
of a point in a program which can be the
object of a branch instruction. PN's are
the user-assigned procedure-names which
correspond to paragraph or section names in
the Procedure Division of the source
program. GN's are compiler-generated and
are inserted wherever a need for an
additional name occurs. VN's are variable
names; that is, they may vary at execution
time because of a PERFORM or ALTER
statement. All procedure-names are unique
since they include a number assigned by a
counter (e.g., PN1, VN2, GN1, and GN2).

Procedure Block: Unit of addressability in
the object module where the optimizer (OPT)
option is specified. Each Procedure Block

Glossary 195

Licensed Material - Property of IBM

consists of approximately 4096 bytes of
code. Most PN's and GN's within a
Procedure Block are addressed as
displacements added to a base register
which contains the address of the first
instruction of the Procedure Block.

Program Global Table (PGT): A part of the
object module. The PGT contains virtuals,
literals, and addresses used during
execution.

Program unit: Any COBOL main program Or
any COBOL subprogram.

@-routine: One of a set of routines
generated by Phase 22. (Q-routines
calculate the length of variable-length
fields and the location of variably located
fields resulting from an OCCURS clause with
the DEPENDING ON option.

Root Segment: See Segmentation.

SBL: See Secondary Base Locator.

Secondary Base Locator (SBL): A Uu-byte
address cell in the TGT. The compiler
assigns a unique SBL, using a counter in
COMMON, to each variably located field. At
execution time, each SBL points to its
field. Variably located fields are those
which follow a variable-length field and
which are not new files or records; they
occur as a result of OCCURS...DEPENDING ON
statements in the source program. If a
variably located field exceeds 4,096 bytes,
the compiler assigns one SBL to each 4,096
bytes.

Section: A series of source program
procedure instructions grouped under the
same section-name.

Segment: A section or a group of sections
all having the same priority.

Segmentation: A special feature of the

compiler which permits the programmer to
organize his program into several load

196

modules. Each section in the Procedure
Division is assigned a priority number.

All sections having the same priority are
loaded together as a segment. One of
these, the root segment, resides in virtual
storage throughout execution of the
program. The other segments are loaded in
order of the priority number, each segment
overlaying the one before.

Table: An area in virtual storage
containing a number of entries of a fixed,
often identical, format.

Task Global Table (TGT): A part of the
object module. The TGT contains
information, addresses, and work areas for
use during execution.

TGT: See Task Global Table (TGT).
Transient area: A portion of virtual
storage reserved during execution time to
contain segments which are not permanently
resident. It contains one such segment at
a time and is large encugh to hold the
largest nonresident segment in the program.

UPSI: User Program Status Information.
There are eight 1-kit UPSI switches
provided by the DOS/VS system. The UPSI
feature of this compiler provides the
facility of naming and using these
switches.

Verb string: A verb and its operands.
Virtual: The name of a procedure or table
referenced by a procedure, but not defined
in the source module. It is necessary
because of a CALL to an external procedure
or a branch to a CCBOL library subroutine.
At execution time, the address of all
procedures referred to by virtuals (which
have been link edited into the load module)
are stored in the Program Global Table.

VN: See Procedure-name.

$SBCOBEM (SYMDMP error message) subroutine
described 36
flowchart 98
$$BCOBER (error message preparation)
subroutine
core image library 9
described 35
flowchart 96
$$BCOBR1 (error message printing)
subroutine
core image library 9
described 36
flowchart 97
$$BFCMUL (SA reposition tape) subroutine
core image library 9
described 39
flowchart 109

abnormal termination
debug subroutine flow of control 67
STIXIT macro instruction subroutines
object-time debugging 46,132
sequential access 39,108
SYMDMP program operation 52
ACCEPT statement subroutine
described 34
flowchart 89
alphanumeric edit subroutine described 27
ALTWK option (SORT-OPTION parameter)
described 23
American National Standard COBOL program:
subroutine for linkage to 31
arithmetic conversion subroutines (cited
here by function; otherwise, use
individual subroutine name for reference
elsewhere)
all numeric forms to external
floating-point 15
binary to éexternal decimal 12
binary to internal decimal 12
binary to internal floating-point 13
external decimal to binary 14
external decimal to internal
floating-point 13
external floating-point to intermnal
floating-point 16
internal decimal to binary 14
internal decimal to internal
floating-point 13
internal decimal to Sterling
nonreport 15
internal decimal to Sterling report 14
internal floating-point to binary 13
internal floating-point to internal
decimal 14
parameter conventions 12
Sterling nonreport to internal
decimal 15
arithmetic verb subroutines (cited here by
function; otherwise, use individual

Licensed Material - Property of IBM

INDEX

subroutine name for reference elsewhere)
decimal division 16
decimal fixed-point exponentiation 16
decimal multiplication 16
floating-point exponentiation to integer
exponent 17
floating-point exponentiation to
noninteger exponent 17

ASCII support subroutine

described 44
flowchart 128

base locator defined 195

base locator (Linkage Section) defined 195

binary to external decimal conversion
subroutine described 12

binary to internal decimal conversion
subroutine described 12

binary to internal floating-point
conversion subroutine described 13

BL (base locator) defined 195

BLL (Linkage Section base locator)
defined 195

CALL FIND subroutine described 53-5u4
calls to subroutines, phases generating 10
CALL1D2 (SYMDMP option program)
subroutine 56
CARDINDX table
contents 169
debug file location 161
SYMDMP usage 188
characters, moving, subroutine for
described 26
flowchart 83
checkpoint subroutine
described 34
flowchart 90
class test subroutine described 29-30
Close Debug File Routine (ILBDDBGS)
described 47
flowchart 134
CLOSE statement subroutines
UNIT (direct access)
absolute address 40,113
relative track 40,114
VSAM
described 43
flowchart 125
WITH LOCK
described 35
flowchart 93
COBOL object program 184
COBOL object-time library summarized 9
common data area (SYMDMP
program) 48,159-160
compare subroutines (see test and compare
subroutines)

Index 197

Licensed Material - Property of IBM

constant, figurative
compare subroutine described 30
MOVE subroutine described 27
core image library, subroutines stored
in 9
COUNT chain
described 180
location 179
summarized 60
use in operations 77
count common area
described 180-181
location 179
COUNT option, code for in ILBDDBGO
linkage 45
COUNT option subroutines (see object-time
execution statistics subroutines)
described 179
location 184
summarized 58
use in operations 78
count-block described 58-59,195
CURRENT-DATE subroutine described 31

DA subroutines (see direct access data
management subroutines)
data, finding location of 187
data areas 159-177
data management subroutines (see under
direct access data management subroutines,
general data management subroutines,
indexed sequential access data management
subroutines, sequential access data
management subroutines, or VSAM data
management subroutines)
data manipulation subroutines (cited here
by function; otherwise, use individual
subroutine names for reference elsewhere)
alphanumeric edit 27
dummy sort 26
GO TO DEPENDING ON 29
MERGE function
described 18-26
flowchart 80-82
linkage 26
parameter list 21
MOVE figurative constant 27
MOVE to right-justified field
(System/370) 27
moving characters
described 26
flowchart 83
moving unusual operands 26
SEARCH function 28 :
segmentation
described 28-29
flowchart 84
SORT function
described 17-26
flowchart 80-82
GIVING option 17-18
INPUT PROCEDURE 17-18
linkage 25

OUTPUT PROCEDURE 17-18

198

parameter list 20
RELEASE statement 18
USING option 17
transform function 27
DATADIR table
contents 171
debug file location 161
described 49
use by SYMDMP option subroutines
DATATAB table
contents 165-168
debug file location 161
use by SYMDMP option subroutines 188
DBGOCOM (debug common area) 48,159-160
debug common area 48,159-160
debug control routines

54,188

described 45-47
flowcharts 129-134
debug file

contents 161
described 49
relationship to object-time tables
(diagrams) 73-75
debug options (for general references, see
diagnostic aid subroutines; for detailed
references, see flow trace option
subroutine, statement number option
subroutine, or SYMDMP option program)
debug text defined 195
debugging (object-time) subroutines (for
general references, see diagnostic aid
subroutines; for detailed references, see
flow trace option subroutine, statement
number option subroutine, or SYMDMP option
program)
decimal division subroutine 16
decimal fixed-point exponentiation
subroutine 16
decimal multiplication subroutine 16
diagnostic aid subroutines
abnormal termination:
control 67
calling dependencies
control routines
described U45-47
flowcharts 129-134
diagnostic aid for 188
diagrams 65-76
flow trace option (for more detailed
references, see flow trace option
subroutine)
described 47
flowchart 137
initialization flow of control 66
statement number option (for more
detailed references, see statement
humber option subroutine)
described 47
flowchart 135
summarized 45,47
symbolic dump option see SYMDMP option
program)
diagnostic aids
debugging subroutines 187-188
program operations 184-187
summarized 183
diagnostic messages
execution-time 184

flow of

68-71

preparation subroutine
described 35
flowchart 96
printing subroutine
described 36
flowchart 97
SYMDMP message subroutine
described 36
flowchart 98
direct access data management subroutines
(listed here by function; otherwise, use
individual subroutine name for reference
elsewhere)
CLOSE UNIT statement
absolute address
relative track
error
described 42
flowchart 123
extent processing
described 41
flowchart 115
increase SEEK address
described 42
flowchart 120
READ, WRITE statements

40,113
40,114

absolute address 42,121

relative track 42,122
RZERO record

absolute address 41,118

relative track 42,119
sequential READ

absolute address 41,116

relative track 41,117

DISPLAY statement subroutine
described 32
flowchart 85
division, decimal, subroutine for
described 16
DMPCNTRL (SYMDMP option program) subroutine
described 55
flowchart 149-150
DOS/VS COBOL program, subroutine for
linkage to 31
DTF, finding location of 186
dummy Sort subroutine described 26
dump contents {dynamic) 47
dump control subroutines (SYMDMP option)
described 55-56
flowchart 149-150
dump formatting subroutines (SYMDMP option)
described 56
flowchart 151-152
DUMP1 (SYMDMP option program)
described 56
flowchart 151
DUMP2 (SYMDMP option program)
described 56
flowchart 152
dynamic dump contents 47
dynamic dump (diagnostic aid) subroutine
described 46
flowchart 133
DYNAMTAB table
contents 172
debug file location 161
defined 49

Licensed Material - Property of IBM

edit, alphanumeric, subroutine for 27
environmental and physical characteristics
of COBOL object-time library 9
ERASE option (SORT-OPTION parameter)
described 24
error-detecting subroutines
direct access
described 42
flowchart 123
indexed sequential access
described 39-40
flowchart 111
sequential access
described 38
flowchart 104
error messages (see diagnostic messages)
Error subroutine (SYMDMP option
program) 54
execution statistics (see object-time
execution statistics subroutines)
execution-time debugging (for general
references, see diagnostic aid
subroutines; for detailed references, see
flow trace option subroutine, statement
number option subroutine, or SYMDMP option
subroutine)
execution-time messages 184
exponentiation subroutines
decimal fixed-point 16
floating-point 17
extent processing (DA) subroutine
described 41
flowchart 115
external decimal to binary, conversion
subroutine described 14
external decimal to internal floating-point
conversion subroutine 13
external floating-point to internal
floating-point conversion subroutine 16

FCB (VvsaM file control block)
contents 177-178
FIB (VsSAM file information block)
contents 175-176
figurative constant
compare subroutine 30
MOVE subroutine 27
file control block (VSAM) contents
file information block (VSAM)
contents 175-176
FINDLOCS subroutine (SYMDMP option program)
described 55
flowchart 145
FINDNAMS subroutine (SYMDMP option program)
described 54-55
flowchart 144
floating-point exponentiation
subroutines 17
flow trace option subroutine
description 48
flowchart 137
function summarized 9
flowchart label directory 189
fragment defined 195

177-178

Index 199

Licensed Material - Property of IBM

general data management subroutines (listed
here by function; otherwise, use
individual subroutine name for reference
elsewhere)
ACCEPT statement
described 34
flowchart 89
checkpoint
described 34
flowchart 90
CLOSE WITH LOCK statement
described 35
flowchart 93
DISPLAY statement
described 32
flowchart 85
error message
preparation 35,96
printing 36,97
nonstandard labels
described 35
flowchart 95
OPEN ACCEPT file
described 35
flowchart 91
OPEN DISPLAY file
described 35
flowchart 92
optimizer DISPLAY
described 33
flowchart 87
SYMDMP error message
described 36
flowchart 98
user standard labels
described 35
flowchart 94
3886 Optical Character Reader
described 36
flowchart 99
GIVING option of SORT statement, effect of
on Sort/Merge operation 17,26
glossary 195
GN (generated procedure name) defined 195
GO TO DEPENDING ON subroutine described 29

HEXDUMP subroutine (SYMDMP option program)
described 55

ILBDABX0 (SA STIXIT macro instruction)
subroutine
described 39
flowchart 107
ILBDACPO (ACCEPT statement) subroutine
described 34
flowchart 89
ILBDADRO (SYMDMP address test)
subroutine 31
ILBDANEQO (alphanumeric edit) subroutine 27
ILBDANFO (MOVE figurative constant)
subroutine 27

200

ILBDASY(0 (OPEN ACCEPT file) subroutine
described 35
flowchart 91
ILBDBIDO (binary to internal decimal
conversion) subroutine 12
ILBDBIEO (binary to external decimal
conversion) subroutine 12
ILBDBIIO (binary to internal floating-point
conversion) subroutine 13
ILBDCKPO (checkpoint) subroutine
described 34
flowchart 90
ILBDCLKO (CLOSE WITH LOCK statement)
subroutine
described 35 v
flowchart 93
ILBDCLSO (class test) subroutine 29-30
ILBDCRDO (DA close unit with absolute
addressing) subroutine
described 40
flowchart 113
ILBDCT10 (COUNT frequency subroutine)
described 59
flowchart 156
. operation diagram 77
ILBDDAE(Q (DA error) subroutine
described 42
flowchart 123
ILBDDBGO (diagnostic aid TEST) subroutine
described 45
flowchart 129
ILBDDBG1l (diagnostic aid PRINT) subroutine
described 45-46
flowchart 131
ILBDDBG2 (diagnostic aid STIXIT) subroutine
described 46
flowchart 132
ILBDDBG3 (diagnostic aid TGT address)
subroutine
described 46
flowchart 132
ILBDDBGY4 (diagnostic aid save register 14)
subroutine
described U46
flowchart 132
ILBDDBG5 (diagnostic aid dynamic dump)
subroutine
described 46
flowchart 133
ILBDDBG6 (diagnostic aid Range) subroutine
described 47
flowchart 134
ILBDDBG7 (debug common area) 48,159-160
ILBDDBG8 (close debug file) subroutine
described 47
flowchart 134
ILBDDCIO (internal and external decimal to
internal floating-point conversion)
subroutine 13
ILBDDIOO (DA READ and WRITE) subroutine
described 42
flowchart 121
ILBDDSPO (DISPLAY statement) subroutine
described 32
flowchart 85
ILBDDSRO (DA sequential read with absolute
addressing) subroutine
described 41

flowchart 116
ILBDDSSO (optimizer DISPLAY) subroutine
described 33
flowchart 87
ILBDDUMO (dummy Sort) subroutine 26
ILBDEFLO (external floating-point to
internal floating-point conversion)
subroutine 16
ILBDFLWO (diagnostic aid flow trace)
subroutine
described 48
flowchart 137
ILBDFMTO (DA RZERO record for absolute
addressing) subroutine
described 41
flowchart 118
ILBDFPWO (floating-point exponentiation to
noninteger exponent) subroutine 17
ILBDGDOO (GO TO DEPENDING. ON)
subroutine 29
ILBDIDAO (DA increase SEEK address)
subroutine
described 42
flowchart 120
ILBDIDBO (internal and external decimal to
binary conversion) subroutine 14
ILBDIDRO (internal decimal to Sterling
report conversion) subroutine 14
ILBDIDTO (internal decimal to Sterling
nonreport conversion) subroutine 15
ILBDIFBO (internal floating-point to binary
conversion) subroutine 13
ILBDIFDO (internal floating-point to
internal decimal conversion)
subroutine 14
ILBDIMLO (SA tape pointer) subroutine
described 38
flowchart 105
ILBDINTO (VSAM initialization) subroutine
described 43
flowchart 124
ILBDISEO (ISAM error) subroutine
described 39-40
flowchart 111
ILBDISMO (ISAM READ and WRITE) subroutine
described 39
flowchart 110
ILBDIVLO (compare figurative constant)
subroutine described 30
ILBDMFTO (SA position multiple file tape)
subroutine
described 38
flowchart 106
ILBDMNSO (program indicator) subroutine
described 31
ILBDMOVO (moving characters) subroutine
described 26
flowchart 83
ILBDMP01 (SYMDMP option routine for disk
1/0)
described 53
flowchart 139
ILBDMP02 (SYMDMP option routine for tape
1/0)
described 53
flowchart 139

Licensed Material - Property of IBM

ILEDMPO4 (SYMDMP option PUBS table search)
subroutine
described 57
flowchart 154
ILBDMP10 (SYMDMP option initialization)
subroutine
described 53
flowchart 140-141
ILBDMP11 (SYMDMP option scan program
control card) subroutine
described 54
flowchart 142
ILBDMP12 (SYMDMP option scan line-control
card) subroutine
described 54
flowchart 143
ILBDMP13 (SYMDMP search DATADIR table)
subroutine
described 54
flowchart 144
ILBDMP14 (SYMDMP option search PROCTAB
table) subroutine
described 55
flowchart 145
ILBDMP20 (SYMDMP option Pass 2 control)
subroutine
described 55
flowchart 146-1u47
ILBDMP21 (SYMDMP option Pass 2
initialization) subroutine
described 55
flowchart 148
ILBDMP22 (SYMDMP option dump control)
subroutine
described 55-56
flowchart 149-150
ILBDMP23 (SYMDMP option dump formatting)
subroutine
described 56
flowchart 151
ILBDMP24 (SYMDMP option dump formatting)
subroutine
described 56
flowchart 152
ILBDMP25 (SYMDMP option statement number
message) subroutine
described 57
flowchart 153
ILBDMRGO (MERGE) subroutine
described 18-26
flowchart 80-82
GIVING option, effect of 26
linkage to 26
logic flow for merging (diagram) 64
parameters 20-25
ILBDMVEQO (SA test tape file) subroutine
described 38
flowchart 107
ILBDMXUQ (decimal multiplication)
subroutine 16
ILBDNSLO (nonstandard labels) subroutine
described 35
flowchart 95
ILBDOCRO (3886 Optical Character Reader)
subroutine
described 36
flowchart 99

Index 201

Licensed Material - Property of IBM

ILBDOSYO (OPEN DISPLAY file) subroutine
described 35
flowchart 92
ILBDGPWO (floating-point exponentiation to
integer exponent) subroutine 17
ILBDRCRO (DA close unit for relative track)
subroutine
described 40
flowchart 114
ILBDRDIO (DA READ and WRITE with relative
track) subroutine
described 42
flowchart 122
ILBDRDSO (DA sequential READ for relative
track) subroutine
described 41
flowchart 117
ILBDRFMO (DA RZERO record with relative
track) subroutine
described 41
flowchart 119
ILBDSAEQ (SA error) subroutine
described 38
flowchart 104
ILBDSCHO (SEARCH) subroutine 28
ILBDSEMO (segmentation) subroutine
described 28-29
flowchart 8u4
ILBDSETO (linkage) subroutine 31
ILBDSMVO (MOVE to right-justified field for
System/370) subroutine 27
ILBDSPAO (SA printer spacing) subroutine
described 37
flowchart 100-102
ILBDSRTO (SORT) subroutine
described 17-26
flowchart 80-82
GIVING option and 17,26
INPUT PROCEDURE and 17-18
linkage 25
logic flow
merging 64
sorting 63
OUTPUT PROCEDURE and 17-18
parameters 20-25
RELEASE statement and 18
USING option card and 17
ILBDSSNO (separately signed numeric ASCII
support) subroutine
described 4u
flowchart 128
ILBDSTIO (Sterling nonreport to internal
decimal conversion) subroutine 15
ILBDSTNO (statement number option)
subroutine
described 47
flowchart 135
ILBDSTRO (ISAM START) subroutine
described 40
flowchart 112
ILBDTCO00 (COUNT initialization subroutine)
calling dependencies 68,69
described 59
flowchart 155
operation diagrams
overall 77
relationship to debug routines 66

1LBDTARY >4. |
202

ILBDTC20 (COUNT termination subroutine)
calling dependencies 68,69
described 60
flowchart 157
operation diagrams
overall 77
relationship to debug routines 67
ILBDTC30 (COUNT print subroutine)
calling dependencies 69,70
described 60
flowchart 158
operation diagrams
overall 77
relationship to debug routines 67
usage of tables 78
ILBDTEFO0 (all numeric forms to external
floating-point conversion) subroutine 15
ILBDTODO (TIME-OF-DAY and CURRENT-DATE)
subroutine 31
ILBDUPSO (UPSI) subroutine 30-31
ILBDUSLO (user standard labels) subroutine
described 35
flowchart 94
ILBDVBLO (SA variable-length record output)
subroutine
described 38
flowchart 103
ILBDVCOO (compare) subroutine 30
ILBDVIOO (VSAM action request) subroutine
described 43-44
flowchart 127
ILBDVMOO (move with unusual operands)
subroutine 26
ILBDVOCO (VSAM open and close) subroutine
described 43
flowchart 125
ILBDVTRO (transform) subroutine 27
ILBDXDIO (decimal division) subroutine 16
ILBDXTNO (DA extent processing) subroutine
described 41
flowchart 115
indexed sequential access data management
subroutines (listed here by function;
otherwise, use individual subroutine names
for reference elsewhere)
error
described 39-40
flowchart 111
READ and WRITE
described 39
flowchart 110
START
described 40
flowchart 112
indicator, program, subroutine for 31
initialization routine defined 195
INIT1, INIT2, INIT3 routines
defined 195
virtual storage location 186
INPUT PROCEDURE and Sort operation 17-18
input/output subroutines (see under direct
access data management subroutines,
general data management subroutines,
indexed sequential access data management
subroutines, sequential access data
management subroutines, or VSAM data
management subroutines)

internal decimal to binary conversion
subroutine 14
internal decimal to internal floating-point
conversion subroutine 13
internal decimal to Sterling nonreport
conversion subroutine 15
internal decimal to Sterling report
conversion subroutine 14
internal floating-point to binary
conversion subroutine 12
internal floating-point to decimal
conversion subroutine 14
IODISK (SYMDMP option) subroutine
described 53
flowchart 139
IOTAPE (SYMDMP option) subroutine
described 53
flowchart 139
ISAM subroutines (see under indexed
sequential access data management
subroutines)

label directory, flowchart 189
LABEL option (SORT-OPTION parameter)
described 22
label subroutines
nonstandard
described 35
flowchart 95
standard user
described 35
flowchart 94
library contents 9
library subroutines summarized 9
line-control card and SYMDMP option
program 54
linkage
defined 195
subroutine described 31

major code defined 195
master (OCCURS...DEPENDING ON clause)
defined 195
MERGE function subroutines
described 18-26
flowchart 80-82
GIVING option and 26
linkage to 26
logic flow for merging (diagram) 64
messages, error, subroutines for (see
diagnostic messages)
messages, execution-time 184
minor code defined 195
MOVE figurative constant subroutine
described 27
MOVE to right-justified field for
System/370 subroutine 27
move (unusual operands) subroutine 26
moving characters subroutine
described 26
flowchart 83
multiple file tape, subroutine for
positioning on
described 38
flowchart 106
multiplication, decimal, subroutine for 16

Licensed Material - Property of IBM

node described
node count table
described 180
location 179
summarized 60
use in operations 78
nonstandard labels subroutine
described 35
flowchart 95
number, statement, option for (see flow
trace subroutine)
numeric (all) to external floating-point
conversion subroutine described 15
NXTENTRY (SYMDMP option) subroutine 56

58,195

object module defined 195
object program, COBOL
phase map 187
storage layout 186
object-time debugging subroutines (for
general reference, see diagnostic aid
subroutines; for detailed references, see
flow trace option subroutine, statement
number option subroutine, or SYMDMP option
subroutines)
object-time execution statistics
subroutines
calling dependencies 68-71
count frequency subroutine (ILBDCT10)
described 59
flowchart 156
operation diagram 77
data areas
described 179-181
summarized 58
use in COUNT option operations
(diagrams) 77,78
diagrams
overall 77
relationship to debug routines 66,67
use of tables to produce object-time
execution statistics 78
initialization subroutine (ILBDTC00)

calling dependencies 68,69

described 59

flowchart 155

operation diagrams 66,77
messages issued by 185
operations summarized 58-59

print subroutine (ILBDTC30)

calling dependencies 68-70
described 60
flowchart 158
operation diagrams 67,77,78

relationship to debug
subroutines 58,66,67
termination subroutine (ILBDTC20)

calling dependencies 68,69
described 60

flowchart 157

operation diagrams 67,72

OBODOTAB table
contents 163
debug file location 161

Index 203

Licensed Material - Property of IBM

OPEN ACCEPT file subroutine
described 35
flowchart 91
OPEN DISPLAY file subroutine
described 35
flowchart 92 .
OPEN statement subroutine (VSAM)
described 43
flowchart 125
Optical Character Reader (3886) subroutine
described 36
flowchart 99
optimizer DISPLAY subroutine
described 33
flowchart 87
optimizer (OPT) option defined 195
OUTPUT PROCEDURE and Sort/Merge
operations 17-18,26

parameters
conventions for conversion
subroutines 12
how passed 10
Sort/Merge program 19-21
Pass 1 (SYMDMP option program)
function summarized 48
modules listed 50
Pass 2 (SYMDMP option program)
control processing
described 55
flowcharts 146-147
function summarized 48
initialization routine
described 55
flowchart 148
modules listed 50
PCONTROL table
contents 173
described 49
PGT (program global table) defined 196
phase map for COBOL object program 187
phases generating calls to subroutines 10
physical and environmental characteristics
of COBOL object-time library 9
PN (source program procedure-name)
defined 195
PRINT option (SORT-OPTION parameter)
described 22
PRINT (diagnostic aid) subroutine
described 45-46
flowchart 131
printer, SA spacing subroutine for
described 37
flowchart 100-102
priority defined 196
procedure block defined 195-196
procedure-name defined 195
PROCINDX table
contents 170
debug file location 161
PROCTAB table
contents 169
debug file location 161
program-control card, SYMDMP option program
action on 54

204

program global table defined 196
program indicator subroutine described 31
program modification (SYMDMP option
program) described 49-50
PROGSUM table
contents 162
debug file location 161
PUBS table search subroutine (SYMDMP option
program)
described 57
flowchart 154

Q~routine defined 196
QUALNAMS table contents 174

Range (diagnostic aid) subroutine
described 47
flowchart 134
READ statement subroutines
direct access 41,111
IsaM
described 39
flowchart 110
sequential direct access
absolute address 41,116
relative track 41,117
reader, 3886 optical character, subroutine
for
described 36
flowchart 99
READIPT (SYMDMP option program)
subroutine 54
record, SA variable-length output,
subroutine for
described 38
flowchart 103
RELEASE statement affect on ILBDSRTO (SORT
operation) subroutine 18
relocatable library, subroutine stored
in 9
right-justified field, move to for
System/370, subroutine 27
root segment defined 196
ROUTE option (SORT-OPTION parameter)
described 24
RZERO record (DA) subroutines
absolute track
described 41
flowchart 118
relative track
described 41
flowchart 119

SA subroutines (see sequential access data
management subroutines)
save register 14 (diagnostic aid)
subroutine
described 46
flowchart 132
SBL (secondary base locator) defined 196
SCAND (SYMDMP option program) subroutine
described 54
flowchart 143

SCANP (SYMDMP option program) subroutine
described 54
flowchart 142
SEARCH subroutine described 28
secondary base locator (SBL) defined 196
section defined 196
SEEK statement: DA increase address
subroutine
described 42
flowchart 120
SEGINDX table
contents 170
debug file location 161
SEGINIT (SYMDMP option program) subroutine
described 55
flowchart 148
segment defined 196
segmentation defined 196
segmentation subroutine
described 28-29
flowchart 84
separately signed numeric subroutine (ASCII
support)
described 44
flowchart 128
sequential access data management
subroutines (listed here by function;
otherwise, use individual subroutine name
for reference elsewhere)
error
described 38
flowchart 104
position multiple file tape
described 38
flowchart 106
printer spacing
described 37
flowchart 100-102
reposition tape
described 39
flowchart 109
STXIT macro instruction
described 39
flowchart 108
tape pointer
described 38
flowchart 105
test tape file
described 38
flowchart 107
variable-length record output
described 38
flowchart 103
SORT, dummy, subroutine 26
SORT function subroutine (see ILBDSRTO
(SORT) subroutine)
SORTWK option (SORT-OPTION parameter)
described 24
SORT-OPTION parameters
described 22-24
position in parameter list
MERGE 21
SORT 20
Sort/Merge program (system)
logic flow in sorting/merging 63,64
object-time subroutines and 17-26
parameters passed 19-21

Licensed Material - Property of IBM

SRCHPUBS (SYMDMP option program) subroutine
described 57
flowchart 154
standard labels, user, subroutine for
described 35
flowchart 94
statement number option subroutines
STATE option
action summarized 9
described 47
flowchart 135
SYMDMP option message
described 57
flowchart 153
START statement (ISAM) subroutine
described 40
flowchart 112
Sterling nonreport to internal decimal
conversion subroutine 15
STIXIT macro instruction subroutines
object-time debugging
described 46
flowchart 132
sequential access data management
described 39
flowchart 108
storage layout of COBOL object program 186
STORAGE option (SORT-OPTION parameter)
described 23
subroutine library contents summarized 9
symbolic dump option subroutines (see
SYMDMP option program)
SYMCNTRL (SYMDMP option program) subroutine
described 55
flowchart 146-147
SYMDMP address test subroutine
described 31
SYMDMP option program (subroutines are
listed here by function; otherwise, use
individual subroutine name for reference
elsewhere)
abnormal termination
action summarized 9
CARDINDX table
contents 169
debug file location 161
common data area 48-49
control card processing
cards described 49
identifier processing 74
number processing 75
object-time tables related to debug
file 73
core image library, in 9
DATADIR table
contents 171
debug file location 161
described 49
use 54,188
DATATAB table
contents 165-168
debug file location 161
debug file
contents 161
described 49
relationship with object-time tables
(diagrams) 73-75

52-53

Index 205

Licensed Material - Property of IBM

disk file input/output subroutine
described 53
flowchart 139
dump control subroutine
described 55-56
flowchart 149-150
dump formatting subroutines
described 56
flowchart 151-152
dynamic dump
contents 47
request 52
DYNAMTAB table
contents 172
debug file location 161
described 49
error message subroutine
described 36
flowchart 98
initialization subroutine
described 53-54
flowcharts 140-141
COBOL programs after first 51
first COBOL program 50-51
input 49
linkage to 50
loading dependencies (diagram) 65
modules
summarized 50
virtual storage layout 72
object-time tables 49
OBODOTAB table
contents 163
debug file location 161
operations summarized 48
output summarized 49-50
Pass 1
function 48
modules 50
Pass 2
control processing 55,146-147
initialization 55,148
PCONTROL table
contents 173
described 49
usage 188
processing (sequence of events) 50-53
processing routine descriptions 53-57
PROCINDX table
contents 170
debug file location 161
usage 188
PROCTAB table
contents 169
debug file location 161
usage 188
program modification 49-50
PROGSUM table
contents 162
debug file location 161
usage 188
PUBS table search subroutine
described 57
flowchart 154
QUALNAMS table
contents 174
usage 188

206

scan line-control subroutine
described 54
flowchart 143
scan program control card subroutine
described 54
flowchart 142
search DATATAB table subroutine
described 54-55
flowchart 144
search PROCTAB table subroutine
described 55
flowchart 145
SEGINDX table
contents 170
debug file location 161
usage 188
statement number message subroutine
described 57
flowchart 153
table usage 188
tape input/output subroutine
described 53
flowchart 139
work file requirements 9
SYMINIT (SYMDMP option program) subroutine
described 53-54
flowchart 140-141
SYMSTATE (SYMDMP option program) subroutine
described 57
flowchart 153
SYS005 work file function for SYMDMP
option 9

table
defined 196
SYMDMP program usage 188
tape file subroutines (sequential access)
pointing
described 38
flowchart 105
positioning
described 38
flowchart 106
repositioning
described 39
flowchart 109
test for EOF or EOV
described 38
flowchart 107
task global table (TGT) defined 196
test and compare subroutines (listed here
by function; otherwise, use individual
subroutine name for reference elsewhere)
class test 29-30
compare 30
compare figurative constant 30
CURRENT-DATE 31
linkage 31
program indicator 31
SYMDMP address test 31
TIME-OF-DAY 31
UPSI 30
TEST routine (diagnostic aid subroutines)
described U5
flowchart 129

TGT address (diagnostic aid) subroutine
described 46
flowchart 132
TGT (task global table) defined 196
TIME-OF-DAY subroutine 31
trace, flow (see flow trace subroutine)
transform function subroutine 27
transient area defined 196
transient subroutines and core image
library 9

UPSI defined 196

UPSI subroutine 30-31

user standard labels subroutine
described 35
flowchart 94

USING option and Sort operation 17

variable-length record output subroutine
(sa)
described 38
flowchart 103
variable procedure-name (VN) defined 196
verb string defined 196
verb table
described 179
summarized 58
use in operation of ILBDTC30 78
verb text table
described 179
summarized 58
use in ILBDTC30 operations 78
verb translate table
described 179
summarized 58
use in ILBDTC30 operations 78

Licensed Material - Property of IBM

verbsum table
described 179-180
summarized 58
use in ILBDTC30 operations 77,78
virtual defined 196
VN (variable procedure name) defined 196
VSAM data management subroutines (listed
here by function; otherwise, use
individual subroutine name)
action request
described 43-44
file control block contents 177-178
file information block
contents 175-176
flowchart 127
initialization
described 43
flowchart 124
open and close
described 43
flowchart 125

work file requirements for SYMDMP option
program 9
WORKING CELL area, form of reference to 10
WRITE statement subroutines
direct access
absolute address 42,121
relative track 42,122
indexed sequential
described 39
flowchart 110

3886 Optical Character Reader subroutine
described 36
flowchart 99

Index 207

LY28-6424-1

L-¥ZYI-8CAT "V'S'N ul pauld NTd dunnoigns 10800 SA/SOA NAI

JISIN

®

International Business Machines Corporation

Data Processing Division

1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

1BM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

READER’'S COMMENTS

TITLE: IBM DOS/VS COBOL Subroutine ORDER NO. LY28-6424-1
Program Logic

Your comments assist us in improving the usefulness of our publications; they are an important part
of the input used in preparing updates to the publications. All comments and suggestions become
the property of IBM.

Please do not use this form for technical questions about the system or for requests for additional
publications; this only delays the response. Instead, direct your inquiries or requests to your IBM
representative or to the IBM Branch Office serving your locality.

Corrections or clarifications needed:

Page Comment

Please include your name and address in the space below if you wish a reply.

Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

LY28-6424-1 :

aury sty3 Suore o

¢
fold fold A
NO POSTAGE
NECESSARY
IF MAILED

IN THE :
UNITED STATES :
R .
—— .
BUSINESS REPLY MAIL Em— :
. - .
;] .
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y. :
[] .
I .
POSTAGE WILL BE PAID BY ADDRESSEE: EEE——— :
] .
] .
IBM CORPORATION] :
1271 Avenue of the Americas I :
I .
New York, New York 10020 ——— :
EeE—— :

R
Attention: PUBLICATIONS .

L-PZ¥9-8CAT "V'S'N ul paiulid NTd duinoigng 70800 SA/SOA WAl

International Business Machines Corporation

Data Processing Division

1133 Waestchester Avenue, White Plains, New York 10604
[U.S.A. only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017,
[International]

1essee o

