Program Product

Licensed Material — Property of IBM
LY12-5016-7
File No. S370/4300-50

Data Language/|

Disk Operating System/
Virtual Storage

(DL/1 DOS/VS)

Logic Manual, Volume 1

Program Number 5746-XX1

Eighth Edition (December 1983)

This edition, LY12-5016-7, is a major revision of LY12-5016-6. It applies to Version 1,
Release 7 (Version 1.7) of Data Language/I Disk Operating System/Virtual Storage
(DL/1 DOS/VS), Program Number 5746-XX1 and to all subsequent releases and
modifications until otherwise indicated in new editions or Technical Newsletters.
Changes are made periodically to the information contained herein; before using this
publication in connection with the operation of IBM systems, consult the latest IBM
System/370 and 4300 Processors Bibliography, GC20-0001, for the editions that are
applicable and current.

Summary of Changes
For a list of changes, see page iii.
Changes or additions are indicated by a vertical line to the left of the change.

References in this publication to IBM products, programs or services do not imply that
IBM intends to make these available in all countries in which IBM operates. Any
reference to an IBM program product in this publication is not intended to state or imply
that only IBM’s program product may be used. Any functionally equivalent program may
be used instead.

Publications are not stocked at the address given below. Requests for IBM publications
should be made to your IBM representative or to the IBM branch office serving your
locality.

A form for reader’s comments is provided at the back of this publication. If the form has
been removed, comments may be addressed to:

IBM Corporation

Dept. 812BP

1133 Westchester Avenue
White Plains, NY, 10604 U.S.A.

or

IBM Deutschland GmbH

Dept. 3282

Schoenaicher Strasse 220

D-7030 Boeblingen, Federal Republic of Germany

IBM may use or distribute whatever information you supply in any way it believes
appropriate without incurring any obligation to you.

,© Copyright International Business Machines Corporation 1973, 1974, 1977, 1978,
11979, 1981, 1983

Licensed Material—Property of IBM

)

C

Licensed Material—Property of IBM

Summary of Changes

Summary of Changes
for DL/I Version 1.7
LY12-5016-7

This version of DL/I provides system changes and functional enhancements such
as:

Interactive Utility Generation
This provides an interactive facility to assist with the generation of utility job
streams.

IMF Enhancements
The Interactive Macro Facility (IMF) has been enhanced to support the DL/I
Documentation Aid facility.

Documentation Aid
This provides an ease-of-use facility to document DL /I definitions that can be
accessed directly by ISQL.

IMF Adaptation to ISPF
The Interactive Mactor Facility (IMF) now runs on the Interactive System
Productivity Facility (ISPF) program product, 5668-960.

Variable Length Index Source Segment
This allows an Index Source Segment of a DL/I secondary index to be variable in
length.

Utilities Operational Improvements

Various modifications have been made to the DL/T utilities to permit tape rewind
options, omission of partition dump, suppression of informational messages to
SYSLOG, selectable creation of secondary indexes, automatic open of WORKFIL,
and change accumulation data base specification.

HLPI Support of Boolean Operations
The Boolean AND and OR operators can now be used with the WHERE clause.

MPS Restart
MPS batch environment jobs can be restarted after a failure. This supports the use
of VSE Checkpoint/Restart with the DL /I Checkpoint.

Key Feedback
KEYFEEDBACK and FEEDBACKLEN can be specified with GET commands to
retrieve the key feedback area form the PCB.

Online Initialization Messages

Messages have been added to provide status information during online
initialization. These messages include information concerning DL/I logging status,
DL/I version currently being run, and the program isolation status.

Summary of Changes iii

iv

Licensed Material—Property of IBM

Summary of Changes
DL/I Version 1.6
LY12-5016-6

This version of DL/I provides system changes and functional enhancements such
as:

Limited Data Sharing (Read Only)

This function supports sharing of data bases between DL/I subsystems in one host
or across hosts. One subsystem with update capability and multiple read-only
subsystems can execute concurrently. This function does not guarantee data
consistency for the read-only subsystem.

MPS Under Interactive Computing and Control Facility (ICCF)
DL /I MPS allows multiple MPS batch jobs to run in a single VSE partition.

Boolean Qualification Statements

Boolean logic qualification decreases the application program logic necessary for
complex data retrieval. The user specifies multiple qualification statements to
perform Boolean logic qualification for each segment. Boolean AND and OR
operators logically relate the qualification statements.

ACCESS Macro
The new ACCESS macro allows the user to specify on one statement all of the
necessary parameters to define an access point to an HD data base. The ACCESS

macro automatically generates the definition of any required index data base
DBDs.

Selective Unload

With selective unload, the user can reformat data using Field Level Sensitivity and
Segment Sensitivity. The user can also add new fields for an application program
and move a subset of a data base to another location for faster processing.

Current Position Trace Entry Addition

This function adds two fields (SDBORGN and SDBPTDS) to the current position
trace entry. These fields specify the data base organization and physical pointers
for the segment.

DL/I Trace Print Utility Improvement

This enhancement provides a means of selecting which trace entries print from a
file created by DL/I Trace with OUTPUT=CICS. This function reduces the
amount of output generated by the Trace Print Utility.

Rewind Option for Reorganization Utilities

This support adds an option to the HISAM and HD reorganization unload and
reload utilities to allow the user to not rewind input and output tapes, or to select
rewind only without having the tapes unloaded. This enables the user to reorganize
multiple data bases without having to mount a new tape for each data base
reorganized.

Separate Index Reorganization
With this function, the user can now reorganize an index data base separately by
using the HISAM unload and reload utilities.

DL/1 DOS/VS Logic Manual, Volumel

/ \‘x

N

///\

N

Licensed Material—Property of IBM

Partial Data Base Reorganization Utility

This utility reorganizes a user-selected range of HIDAM or HDAM data base
records into a designated target area within a data base. This minimizes the time a
data base is offline for reorganization.

Run and Buffer Statistics

This facility reports statistics for certain run and buffer events that are currently
collected by DL/I, but not formatted or displayed. The data base administrator or
system programmer uses the statistics in selecting parameters for system tuning.

Extended Remote PSB

This support enables CICS/VS applications to.process both local and remote DL/1
data bases within the same CICS/VS logical unit of work. To application
programs, a concatination of PCBs from local and remote PSBs appear as a single
PSB containing views of both local and remote data bases.

Summary of Changes
DL/I Version 1.5
LY12-5016-5

This version of DL/I provides system changes and functional enhancements such
as:

Field Level Sensitivity

This function makes it possible for the user to specify only those fields in the
physical definition of a given segment that are to be included in his application’s
view of that segment, while remaining insensitive to the other fields in the segment.

Extended Logical Relationships

The restriction of only one logical relationship per logical path has been removed.
The user may now define as many logical relationships as he needs to satisfy his
requirements.

Unique Segment Support
It is possible for the user to specify that only one occurrence of a particular
segment type is allowed under a particular parent.

Selective Log Print

It is possible for the user to selectively print data from the log, using the log print
utility, by specifying a DBD name, CICS task ID, or relative block number.

Summary of Changes v

Preface

Related Publications

Licensed Material—Property of IBM

This manual is to be used with the program listings for DL/I DOS/VS. It discusses
the internal operation of the DL/I system as an application program under
DOS/VS. It is intended for use by persons involved in program maintenance and
by system programmers who are altering the program design.

DL/I DOS/VS is a data management control system that assists the user in
creating, accessing, and maintaining large common data bases. In conjunction with
the Customer Information Control System (CICS/VS), DL/I DOS/VS can be
used in an online teleprocessing environment.

Readers of this manual must be thoroughly familar with the use of DOS/VS, and
of CICS/VS, if DL/I DOS/VS is to be used in the online or multiple partition
support (MPS) environment.

Because DL /I DOS/VS is a functional subset of the IBM Information
Management System/Virtual Storage (IMS/VS), some specific IMS or OS terms
are used in this manual. These terms are used to allow easy reference to the
documentation of the related systems.

This manual is divided into seven sections.

“Section 1: Introduction:” Summarizes DL/I DOS/VS giving general information
about the purpose of system control modules, DL/I facility modules, MPS modules,
and utility modules.

“Section 2: Method of Operation:” Contains HIPO diagrams that describe the
DL/I modules. The diagrams include cross-references to labels in the program
listings. See Data Language/I Disk Operating System/Virtual Storage (DL/I
DOS/VS) Logic Manual, Volume 2 1.Y24-5215.

“Section 3: Program Organization:” This section provides descriptive information
about the DL /I modules and major routines.

“Section 4: Directory:” Lists DL/I module, entry point, and control section names
with cross-references to Section 2: Method of Operation.

“Section 5: Data Areas:”' Describes the data areas used by DL/I. Field and flag
names for each data area are also listed alphabetically.

“Section 6: Diagnostic Aids:” Gives information that may be helpful in locating
specific program listings.

“Section 7: Appendixes:” Contains information about LLC/CC in DL/I, DBD
generation, PSB generation and DL /I macros.

An index is also included.

e DL/I DOS/VS General Information Manual, GH20-1246

o DL/I DOS/VS Application Programming: CALL and RQDLI Interfaces,
SH12-5411

e DL/I DOS/VS Data Base Administration, SH24-5011

vi DL/IDOS/VS Logic Manual, Volume1l

P

Licensed Material—Property of IBM

DL/I DOS/VS Resource Definition and Utilities, SH24-5021
e DL/I DOS/VS Interactive Resource Definition and Utilities, SH24-5029
(DL/I DOS/VS Recovery/Restart Guide, SH24-5030
« DL/I DOS/VS Application Programming: High Level Programming Interface,
SH24-5009
e DL/I DOS/VS Messages and Codes, SH12-5414
DL/I DOS/VS Guide for New Users, SH24-5001
DL/I DOS/VS Diagnostic Guide, SH24-5002
« DL/IDOS/VS Logic Manual, Volume 2, 1.Y24-5215

For VSE and VSE/VSAM messages and return codes:

VSE/Advanced Functions Messages and Codes, SC33-6098

e VSE/Advanced Functions Application Programming: User’s Guide, SC24-5210
VSE/Advanced Functions Application Programming: Reference, SC24-5211
Using VSE/VSAM Commands and Macros, SC24-5144

e« VSE/VSAM Messages and Codes, SC24-5146

(‘ Users employing DL/I DOS/VS in an online environment should have access to
the following CICS/VS publications:

e CICS/DOS/VS Installation and Operations Guide, SC33-0070

e CICS/VS Customization Guide, SC33-0131

e CICS/VS Performance Guide, SC33-0134

e CICS/VS Resource Definition Guide, SC33-0149

« CICS/VS Application Programmer’s Reference Manual (Macro Level),
SC33-0079

(o CICS/VS System/Application Design Guide, SC33-0068

Preface vii

viii

DL/I DOS/VS Logic Manual, Volume1

Licensed Material—Property of IBM

AN

NS

Licensed Material—Property of IBM

Contents

() Section 1. INtroductionc.ouiiiiiuiitiireierierieenerrsotetesssssacsrnsenns 1-1
DL/IBatch SYStEMottt ettt ettt et e e it ettt e e 1-1

DL/T OnNlNE PrOCESSOT v .\ v ittt tee et ettt et ettt et e e e et e ettt et 1-4

DL/IFacility MOQUIESottt ettt ettt et e e et e e e e 1-4

Multiple Partition Support (MPS) it e 1-8

DL/TULHEES ..ottt ettt ettt ettt ettt e e et e it e e 1-8

HLPI Interface Modulesttt ittt ettt et 1-8

Language Interface Modules i 1-8

Section 2. Method of Operationccuiiuiiiiiininenineeneeeieosresesnssanses 2-1

Section 3. Program Organizationc.uiiuiiieuieenenenseeenoniosessnsacensanns 3-1

System Control Modulesttt e 3-2

DLZRRCOO0 - Batch Initialization-Part 1 3-2

DLZRRCI10 - Region Control/Initialization - Part 2covviirnneennnann. 3-2

DLZRRAOO - User Parameter AnalysiSccotiuintnumneernennnnennenennens 3-3

Layout and Description of PARM Fieldttt 3-4

—_— DLZPCCO00 - Application Program Controlc.coiiiinininninenenen... 3-5
(; DLZDBLMO - Application Control Blocks Load and Relocate 3-6
DLZCPIOO - Batch Control Program Initialization nenn.n. 3-7

| DLZBPJRA - DL/I COBOL Preinitialization Modulecoveureennn.n. 3-8

DLZLIO00 - Language Interfaceciuiiiniiininuninnenennnneneneenennn 3-8
DLZLICBL - DL/I DOS/VS HLPI Batch/MPS COBOL Language Interface 3-9
DLZLIPLI - DL/1 DOS/VS HLPI BATCH/MPS PL/I Language Intérface 3-9

DLZPRHBO - Program Request Handler it 3-10

DLZABEND - STXIT ABENDttt ittt it iie et ineneennens 3-12

DLZIWAIT - DL/TIWAIT ...ttt ettt ettt et iie e eens 3-12

DLZSTRBO - Batch Field Level Descriptor (FLD) Storage Manager 3-13

DLZSTROO - Online Field Level Descriptor (FLD) Storage Manager 3-13

Online DL /I Processor MOAUIESviititit ettt ettt et et 3-14

- DLZOLIOO - Online Initiaizationttt nt i 3-14
(Nucleus and Table Initialization ittt nniienann 3-17
Load Action Modules i e e 3-17

Initialize PSBSttt it e 3-18

Attach LOgerot 3-18

Open Data Basesc.o.iiniitiii i e e 3-18

DLZODP - DL/I Task Schedulingccouuununiinnenn e iinanannn 3-18

DL/IScheduling'unitit ittt e e e ettt e e 3-18

Task Schedulingttt ettt et e it 3-19

Local PSB Schedulinginiinintinti ittt eaeenenenns 3-19

PSB Initializationttt e e 3-19

Remote PSB Schedulingt i 3-20

™ DLZPRHOO - Online Program Request Handler 3-20
() Language Interface Module i 3-20
— Program Request Handler it 3-20
IWAIT ROULINE ..ottt ettt ettt e e e e et e e et ettt 3-21

DLZODPO1 - Task Terminationuiniinintnuinentiinnnenenenennns 3-21

Task Terminationc.utitiniitiniit ittt it ennn 3-21

System Resource ALlOCationvuueunenneune e tenneneinnnenas 3-22

DLZODPO02 - DL/I Normal System Terminationceeeunerneennennenns 3-22

DLZODPO03 - DL/I Abnormal System Terminationc..c.oveuvennennnen.. 3-23

DLZODP04 - PSB Scheduling Start-of-Task Record Routine 3-23

DLZODPOS5 - Task Termination Sync Point Routine 3-23

DLZODPO06 - Abnormal Task Termination Dump Entry 3-23

DLZODPO07 - Abnormal Task Termination I/O Check Entryoout. 3-23

DLZODP10 - Common Get Storage Routine for DL/I Online Modules 3-23

DLZODP11 - DL/I Online Common Free Storage Routine 3-24

DLZERMSG - DL/I Online Message WHterc..ooeuieeuneneenneeneennennnns 3-24

DLZOVSEX - VSAM EXCP EXIT Processorcueeieeeninenneneneneenenns 3-24

DLZFSDPO - DL/I Formatted System Dump Programooviunnoon.. 3-24

DLZFTDPO - DL/I Formatted Task Dump Program e 3-25

| DLZCBDPO - DL/I Formatted Control Block Programc.coviivun..n. 3-25

™ DL/IFacility MOQUIESttt ettt et et ettt et 3-26
S/ DLZDLAOQO - Call ANALYZETot v tte et et ettt iiie e iiie s 3-26

° DLZDLOCO - Open/Close e e e e e e 3-28

Contents ix

X

Licensed Material—Property of IBM

DLZDLDOO - Delete/Replacevuuutin et tnieeetae ettt eernereiineeennn. 3-30
DLZDDLEO - Load/INSEIt .. v\ vt veeeeee e et et et e eiitee et eiiiiinenns 3-32
DLZDXMTO - Index Maintenancec.oouininiinnuninenenennenennnanns 3-35
DLZDLROO - RetrieVeottt ittt ittt ettt ittt ittt e e inannns 3-37
DLZDHDSO - HD Space Managementcuuueeeunreeunneennnnnennnns 3-40
DLZDBHOO -DBBuffer Handler ittt iinnnnnann, 3-42
DLZRDBLO - DB LOZEET ..ot tit ittt ttet ettt et in e eineteeaneeeenneennnnns 3-52
Logging in the Online Systemt tiuiinininennenrnenennannns 3-55
DLZRDBL1 - CICS/VS Journal LOggerc.utieettine e eiiinenrneeennnanns 3-56
DLZQUEFO - Quening Facilitycoiiitiiiiiiiniiiieeiineeninnnans 3-57
DLZCPY10 - Field Level Sensitivity COpY covvviintn i iieiiieiieeieennenn. 3-61
MPS Control MOQUIESttt et e e e 3-61
DLZMSTRO - Start MPS Transactionueervenrenneuneeenennennnenannn 3-61
DLZMPCOO - Master Partition Controller (MPC)ccvverneunnnn. e 3-62
DLZBPCO00 - Batch Partition Controller (BPC)cccitiitinininrninennnn. 3-63
DLZMPIOO - MPS Batchttt i et e it eeieeas 3-64
DLZMSTPO - Stop MPS Transactionveeuieeneuneeneennerneennennnnnnn 3-69
| DLZMPURO - Purge Temporary Storage Transactionooeueeunn... 3-69
Data Base Recovery Utilitiesi.iiniiiinin ittt ie i ienennnnns 3-70
DLZBACKO - Batch Backout Interfacec. ot iiiiiinnnninnennnnn. 3-70
DLZRDBCO - DB Change Backoutccoininiiniininineneennennnnnnnns 3-71
DLZURDBO - DB Data SEt RECOVEIYttt iiitin ittt ittt iiniaineeenannn 3-73
DLZURCCO - Recovery Control Statement Processor PPN 3-75
DLZUDMPO - DB Data Set Image Copy et ettt et ettt e e 3-75
DLZUCUMO - DB Change Accumulation Utilitv ~ coiiiiiinn.... 3-76
DLZLOGPO - Log Print Utility S 3-79
Data Base Reorganization Utilitiesttt iiinininnnnnnnn. 3-80
DLZURULO-HSDBURNIOAdciiuniitiitneiiitinnineietneeeenneannanns 3-80
DLZURRLO-HSDBReloadoiiuniiiiiiiiitiit it ieneneeninnnns 3-82
DLZURGUO-HDDBUnIoadciiiiniiniitiiintiininneneennennnennanns 3-83
DLZURGLO-HDDBReloadccuiitiiiinintineenennineenneeinennnnnnn 3-85
Partial Data Base Reorganization Utilitycitiiiiiinenninneinneennn. 3-86
DLZPRCTI - Part 1 Controlutinnitii ettt i e ie e ennenneanenns 3-86
DLZPRABC - Action Table Buildiiiuiittnetiiieiiieeineeenennns 3-87
DLZPRCLN -Part 1 ClEanupvtuntttntenetneneenneneennrennennennnnnnns 3-87
DLZPRDBD - DBD ADALYSIS ..o vvv ittt ettt e e ae et 3-88
DLZPRPSB - Program Specification Block Source Generatorou... 3-89
DLZPRREP - Part 1 Report Writerttt eannn 3-89
DLZPRCT2 - Part 2 Controlouuiitvinin e tie e enene e ennnanns 3-90
DLZPRPAR - Parameter AnalysisScoiiuiimterenunnennenenennenenenennas 3-91
DLZPRSCC - Scan Controlttt it iin e neeneannanns 3-91
DLZPRUPD - Update PrefiXouiiutiiinene it iieiieeiaeiieaannns 3-92
DLZPRSTC - SOrt CONtIol ... oottt ettt ittt ettt iieeinane e eennannanns 3-93
DLZPRURC - Unload/Reload Controlcouueeuuuneenunneeennneeeneannns 3-94
DLZPRWFM - Work File Managercuuiiniinnennennnennennennnnnns 3-94
DLZPRDLI - DL/T SEIVICES . ..ttt eet ettt ettt teeaee et teiinaeaaannens 3-95
DLZPRSTW - Statistical WIiterouiiniiiitit it neeneennnnan 3-96
DLZPRERR - EITor MESSaES .. .ot vvvi ittt ite ittt ee e eneneananes 3-98
High Level Program Interface ciiitiniiiniiii it iiniiennnnennnns 3-99
DLZEIPBO - DL/I Batch/MPS EXEC Interface Initialization 3-99
DLZEIPB1 - Batch/MPS EXEC Interface Programccouiirneirnnnn... 3-100
DLZEIPOO - DL/1 Online EXEC Interface Programcoovuuieeeinnnnn. 3-102
Application Control Blocks Creation and Maintenanceccooieeeunnnn.. 3-104
DLZUACBO - ACB Creation and Maintenanceouueenvenenennennn. 3-104
DLZUSCHO - ACB Maintenance Binary Search/Insertcoveeeevnn.. 3-105
DLZLBLMO - ACB Generation Error Message Handler 3-107
DLZDLBLO, DLZDLBPP, DLZDLBL1, DLZDLBDP, DLZDLBL2, DLZDLBL3 - ACB
BUILDERttt ittt et tee ettt et tte e te et ie e e nenaeanns 3-108
DLZDPSBO - Utility PSBBuilderc.ciuniireennteneennennennenneenns 3-109
Data Base Logical Relationship Utilitiesttt inennaa... 3-109
DLZURPRO - Prereorganizationc.coeueueeeeneneneneeeeennnnesann 3-109
DLZURGSO0 -DB SCam ...\ttt ittt et ittt it eineieeeennennnnns 3-110
DLZDSEHO - Workfile Generatorc.ccoeuttiinenunenenenenanneenns 3-111
DLZURGI1O0 - Prefix ReSOIULIONovuvtutiniee e etetieie e ennennenneeenns 3-114
DLZURGPO - Prefix Updateccuuuiuiiiininneeinneinennnanennnnnnnn .. 3-115
DLZURGMO - DB Reorganization MeSsagevvveuvrennenenannenann... 3-116
Trace Print Utilityottt i i it ettt ea e 3-116
DLZTPRTO - Trace Print Utility 0ottt iiennennnn 3-116
DL/IRun and Buffer StAtiStics\ vvtvttee e it ieneeeeaeeeeaieeiinneeeanns 3-117
DLZSTTL - DL/I Run and Buffer Statisticsccouvuiiiuiriiinnnneennnnns 3-117

DL/1 DOS/VS Logic Manual, Volumel

AN

RN
N

Licensed Material—Property of IBM

Extract Defines Utility i i e 3-118
DLZEXDFP - Extract Defines Utility i, 3-118
General Flow - DLZEXDFPttt ittt 3-120
DLZEXDFM - Extract Defines Utility Error Message Handler 3-122
Sectiond. DIrectoryccouuiiuiiuieninieeeeresesessocesoscssosnsossoeanannnns 4-1
System Control Modulesttt e e e 4-2
DL/IFacility MOQUIES\ttt ittt et ittt ettt ettt te it iiee e 4-4
MPS Control Modulesiiiiiii ittt e e e e 4-7
Data Base Recovery Utilities ittt 4-8
Data Base Reorganization Utilities i 4-10
ACB Uty ..ot e 4-11
DB Logical Relationship Utilities ittt 4-12
Diagnostic and Test Modulesttt 4-14
Section 5. Data Areasc.uiuiiiiiiiiiineiresesresecesaasssesncncscsncananss 5-1
The DL/I Partition and Control Block Relationshipc0oiiiiieiunnna... 5-1
The DL/IBatch Partitionouuuiiniint ittt it 5-1
DL/I Control Block Relationshipcovuiiiiiiiiiiiinneeiiannn.. 5-4
Data Management Block - DMB e 5-8
General StrUCTUIEttt ittt ittt e it e e e e 5-8
Program Specification Block - PSB e 5-9
General STIUCTUIE oottt ettt ettt 5-10
DL/I Buffer Pool Control BIOCKS vvuttettte et ie ettt e ie e iiee e iieeeaannns 5-11
General StIUCTUIEttt ittt ettt it et e et e e e, 5-12
ACBXT - ACB EXtENSIONottt ittt ettt ittt ittt et ettt e e 5-13
ACT - Partial Reorganization Action Table ittt ininennnnnnnnn 5-17
ARGO - HLPI ARGO Parametersouiinmenaniuntnenenaneenenenennnnnnnnn 5-19
BFFR - Buffer Prefix i it e e 5-22
BFPL - Buffer Pool Control Block Prefixc.iitiniitiiininnninnaneannns 5-25
COM - COMMON ATEA ..ottt te e et ettt e et e et et e te ettt te e e aeaeannns 5-27
CPAC - HDAM/HIDAM Variable Length Segment Compression/Expansion 5-38
DACS - HDAM Randomizing Routine Interface Tablec....... 5-39
DBPCB - Program Communication Block i iiiiniiiniinnneann.. 5-40
DBT -DataBase Tableottt ittt et it iieaannn 5-42
DDIR - DMB Dir€CtOryottt ittt ettt ettt et e 5-44
DIB - DL/IInterface BIOCKottt et e e et ettt 5-47
DIB - DL/I System Interface BIOCKouiuniieti ettt ie e 5-48
DMB - Data Management Block (DMB) Prefixciiiiiiiiiiinneneann.. 5-51
DPPCB - PCB Dope Vector Tableiuiininiunin i ienenaannnns 5-53
DSG -Data Set GrOUD . ..ot itt ittt ettt et e ittt e ettt e e et ettt e 5-56
DWR - Data Work Recordt ittt i e 5-59
EIPL - Exec Interface Program Parameter List 5-60
EXWCB - EXTRACT DEFINEs Work Control Blockcciiiiiiinneann.. 5-62
FCB -File Control BIOCKttt ittt it ettt e e eenanenn 5-66
FDB - Field Description BIoCKottt et e ee e e 5-68
FER - Field Exit Routine Interface Listttt innnnnnann 5-71
FERT - Field Exit Routine Table o, e 5-73
FLD - Field Level Descriptioniuuuiininit ittt 5-74
FSB - Field Sensitivity Block i e 5-76
HLPIL - High Level Program Interface Parameter List 5-79
IDBD - DBD DiIECIOIY . . .o v ot ittt ettt et et e e e e e e et et e e e 5-81
JCB-Job Control BIocko e 5-91
LEV -Level Table Entryttt ittt it 5-101
MPC Partition Table Entryttt ittt 5-106
MPC - Start Partition DLZXCBO02ttt ittt ieineaennnnn 5-109
PATH - Path Header Control Block i, 5-110
PCB - Program Communication Block i, 5-111
PDCA - Problem Determination Control Areauuiuinnenennnnenennnnens 5-113
PDIR - PSB DiIECOIY . . . i vttt ettt et e et e e et e e e e et e e enee e 5-114
PPST - PST Prefix . ..ottt e e e et e e 5-116
PSB - PSB Prefixottt e 5-119
PSBSQLIO - PSB SQL/DSI/O AI€a ... vvvvoittieee e iieeeieeeeieeiaeeeenneans 5-121
PSDB - Physical Segment Description Blockcoiiiiiiiiiiiiiiiinen.n. 5-125
PSIL -PSB Segment Intent Listttt 5-129
PST - Partition Specification Table it 5-131
QWA - Queueing Facility Work Areaiuiniuinininenennneneenenennens 5-148
RDB - Resource Descriptor BIock i e 5-149
RGT-Range Tablec.iuiininiiiitiiiiiiii ittt ittt 5-150

Contents xi

Licensed Material—Property of IBM

RIB - Remote Interface Blockttt ittt e iieiaenaes 5-152
RPCB-Remote PCBttt it it et it e et ee e 5-154
RPDIR - Remote PSB Directorycvitientntettneneneeeneeneneennsannannenns 5-155
RPST -Remote PST i i i ettt e i eeeaens 5-156
RRD - Resource Request Descriptor ...ttt iiiiiniinene, 5-158
SBIF - Subpool Information Table i 5-160
SCD - System Contents DIreCtOry oovetvntntnteennonenteenneneneeeneeanainens 5-162
SCDEXT - SCD EXtENSIONttt ettt ettt te ettt enneeeeeenneeneenaeennsns 5-171
SDB - Segment Description Block it e 5-174
SEC -Secondary Listcouiiiniiiiiiiiiit ittt it i 5-179
SGT -Segment Tablecoiuntuietnnennenn e etneennnneeeeneoanenaeennns 5-185
SQLID - Userid Control BIOCK cvuvtett ittt teeiieeeteeneennnenaaannens 5-190
SSA - Segment Search ATEUMENTiuiinininiineneineionennenenenneneenns 5-191
SSAP - Segment Search Appendagec.ouvuniiniinnieiiniieiiieinianaenas 5-193
SSAX - Segment Search Argument EXtensioncoiiiiiiiiiiiiiiniiniennan 5-194
STA - StatiSticS Tableovrttit ettt ettt tee e ene e iaeeeneenanenaenns 5-195
SUIB - User Interface Blockottt et 5-196
TSQE - Temporary Storage Queue Entry ittt nnnnn.. 5-197
DLZTWAB - Transaction Work Areaouuiuiinineunnnennennenenenannans 5-198
UIB - User Interface BIockttt ittt et 5-202
UIB - User Interface BIOCK ittt it e ieiaenann 5-203
XCB1 - MPS Batch Partition Communication Areac.coiiniiuiinennenenen. 5-207
XMPRM - HDAM/HIDAM User Secondary Index Suppression Routine 5-209
XWR -Index Work Recordconiitiiuinit ittt it inneennnn 5-210
Record Layoutsottt it it e e et e 5-211
Record/BIOCK StIUCTUIES . ..o v vttt et ee ettt ene e e iieeerennneaeannees 5-212
Accumulation Header Recordo ittt 5-213
Accumulation Record i i e 5-213
Application Program Scheduling Recordciiiiiiiiiiiiiiiininnnnn, 5-214
Application Program Termination Record iiiiiiiiiinnennn.. 5-214
Checkpoint LOg Record it it i i i e 5-214
Checkpoint RecOrdt ittitiii ittt ittt hietnteerneneananns 5-215
Control Data Setttt ittt ittt e 5-215
DataBase LOgReCOrdttt ittt ittt ineneanann 5-218
DataRecord (INPUL)ottt ittt it it it it it ittt 5-220
Data Record (OULDUL)vit ittt ettt ettt e e e e ia e aeeaeaaans 5-220
Date/Time Tablettt it et ittt et tiee ettt e iee e enanneaenns 5-220
Delete WOTK AT ..o vvtit ittt ittt ettt ettt en e srneaaeneas 5-221
Delete Work Space Prefixo e e 5-222
DL/ICONtrol RECOTA ..ottt ittt ettt e et ettt et et ettt ianens 5-222
Dump Header Recordttt it ineaenannn 5-223
Dump Record Prefixottt i it i e e 5-223
File Open Recordiiiniiniiiiitnint ittt ittt iarenaenas 5-223
Header Record (INPUL) vttt ittt ittt ittt et ettt ias i ananns 5-224
Header Record (OULPUL)ttt ittt ittt it iennennenns 5-224
Index Maintenance WOrK Ar€avivtnenenetnenneneneenenenaeneeeenns 5-225
List Control BIOCKottt ittt ettt et e et 5-226
Output Record Containing Segment Prefix oot 5-227
Output Table ReCOrdottt ittt ittt enneaeiraanannraenenn 5-227
Short Segment Tableciuiuiiiitrie ittt ieenenaennn 5-228
Sorted List BIOCK ovit ittt ittt et e e et 5-228
SSATOr GU Call DY KeY ..o viiie e eieetiiie e eiee e eiiieneenneeeannns ... 5-229
SSAfor GU Call by RBA it ittt e ea e 5-229
SSA for the XMAINT Callto the Analyzerccoiuiinierinennenennnnnnns 5-229
Statistics Record e e e 5-229
Description of Variable Length Last Field of Statistics Record When Used as Output for
DLZURULD. .ottt ettt ittt ittt e e et te ettt ta e iaeneaaenas 5-230
Description of Variable Length Last Field of Statistics Record When Used as Input for
DLZURRLD. ..ttt et ettt it ettt et e i 5-230
WOtk File 1 ..o e i i i et i e e e, 5-230
D03 490 21 I L S 5-233
Section 6. Diagnostic Aidsccvcvivteicirrreccscosssesosvscnsans Cereseeseanen 6-1
DL/IMessage Cross Referencevvtvrineertneeeunneeenuneereenonerenneneonanas 6-2
DL/1 Status Codes Cross Referentevvveteuitenunen e iineneneoneeeenneeonnnsins 6-17
Section 7. Appendixesciiiiiiriiiiiiiattianaenen e eeesesestsestasesannn 7-1
Appendix A: Low-Level Code/Continuity Checkin DL/T 0o iiviinieriieenennn 7-2
FIow of CONtrolottt ittt ittt ittt e tie st eiis e 7-2

xii DL/I DOS/VS Logic Manual, Volume1

O

®

Licensed Material—Property of IBM

Modification Aidsttt e e e e e e 7-3
External Namesttt ittt ittt et ettt 7-3
LLC/CC Execution Control Block (LECB)ttt ettt et 7-4
Language Considerationscoiiuiinenerninenenenenenennnns berreenas 7-5
N . S 7-6
Register USagettt it ettt i 7-6

HIPO Diagrams for LLC/CC ...ttt ettt et eiiee e eiin e ttee e iee i ennnnns 7-6

Appendix B: DBD Generationc.uouvtintntntnnerenennenenneneeneneenenennns 7-19

Description of DBD Generationcouiiueneueeneueneenennenuenenenennns 7-19
DBDGEN Macro Calling Sequencec.vvuiuiiiiunniinnnenneeennnennnn. 7-20

DBDGEN Macro Descriptionsitenttnitn it itetetnenennenenenenennns 7-26
DATASET MaCrO ...ttt ittt ettt te e et ettt ettt ettt aenas 7-26
DBD MaCIO ..o ittt ettt ittt ettt et e e e e e e 7-26
DBDGEN MaCrO ..ottt ittt it ittt it et it et et ettt 7-26
DLZALPHA MacCrO ... otittttttt ettt ittt et ettt et ettt ie e 7-26
DLZCAP MaCIO ... iiti ittt ettt it et ettt et et ettt ettt et ie e 7-27
DLZCKDDN MaCIO . ..o tit ittt ettt et te ittt it e te et et te ettt 7-27
DLZDEVSIMaCIO .. ittt ittt ittt ittt ittt et e et ettt e 7-28
DLZHIERS MaCIO ...\ttt ittt ittt ettt ettt e te et e te e ei e 7-28
DLZLRECL MACIO . .ottt ittt ettt ittt ettt et ie et te e ie e eeenanenenns 7-28
DL ZSEGPT MaCIO ..t it ittt ettt ettt et ittt e ettt 7-29
DL ZSET FL MacCrO ..\ttt ittt ittt e ettt et ettt ettt ettt enans 7-29
DLZSOURS MaCIO .. .tititi ettt ettt et et ittt ittt teeeieneanenanens 7-30
DLZXPARM MAaCIOottt ittt ittt ettt e ettt iaeeaans 7-31
DLZXTDBD MaCIO .. e ttttit ittt ittt et eie te et et te ettt tan e nneaanns 7-31
FIELD MacCrO . .. iititi ittt et ettt e ettt e it ettt ittt aaans 7-31
FINISH Macro . ..ottt ittt ittt et et e ittt ettt et ettt aenaans 7-32
LCHILD MaCIO .. it itti ittt tie e ettt ettt et te ettt te e te et aeeiaannaas 7-32
3 4. . Vo7 ' R 7-32
XDFLD MACTO ottt ittt it ti e eteeeteaeetenenenaeeneasenenenenneaeeneneneenas 7-32
ACCESS MaCrO ..ottt ittt it ittt e e e e e e e 7-32

DBD Generation Control Block Output - DBDGENc.0iiiiiiininnnnnnnnn. 7-32

Appendix C: PSB Generationuiuiiueininnenennunenenenenenennenennns 7-39

Description of PSB Generationoututtniununenetneneneneneeenenenns 7-39
PSBGEN Macro Calling SEqUenceuveiunvineneneenenenenenennenenns 7-39

PSBGEN Macro DesCriptionscttit it tnint e nenineeneneenenneneneenenas 7-41
DLZALPHA MaCIO ..ttt ittt ettt ittt ettt e te ettt et et eeenannn 7-41
DLZCKOPT MaCIO ..ttt ittt ittt ittt ettt te ettt et iaaanas 7-41
DLZPCBPD MACIO ..ottt it ittt ittt ettt et et e et ettt ie e enaanas 7-41
02 3. T (o S 7-41
PSBGEN MaCrO . .oivtiti ettt ettt ettt it e te et e et ettt aieaanns 7-41
SENFLD MacCrOttt ittt itaennenenenannannenns N 7-41
SENSEG MaCIO .. itititit ittt e it ettt et ettt et et e et ettt nenanns 7-41
VIRFLD MaCIOttt tt ittt ettt ettt et ie e e ie et et et et et tennanannns 7-41

PSB Generation Control Block Output -PSBGENt itiiiiiinennennnn. 7-42

AppendiX D: DL/IMAaCIOS oo\ vtttttee et ttte e et teae e e tte e etae e teeieeennnns 7-44

DL B ... e et e 7-44

(075 1 + Vo A PP 7-44
Exit Conditionsttt i e e e 7-44
DLZBLEKLD ...ttt ittt it ittt et et it e i e e e 7-44
OPErandottt e e, 7-45
Exit Conditionst e ey e 7-45

1) 5./ 07 A P 7-45
DLZDVCE ..ot e e e e et e 7-46
DLZER . .. e e e 7-48
OPErandsottt e e e e P 7-48

1) 15715 51 1 AP P 7-49
1) 157711 0 7-49
OPEIANAS .. ottt ittt e e e 7-49
DL ZIDUM P ... e e e e 7-49
DLz PO ST . ittt e e e e e 7-50
DL ZIW AL .. ottt e et e e e e e e 7-50
DLZTRC AL .. i it e e e e e e e 7-50
DLZREL ...t e e e e e e e 7-50
DL T R RM .. e e e e e e 7-50
DL ZM P P T ..ottt ettt e e e e e 7-50
DL ZTWAB .. it i e e e e 7-50
10 97 < - - J 7-50
DLZXCB1l ...ttt P A P 7-50
DLZTSQE .. i e e e e e e e 7-51

Contents xiii

Licensed Material—Property of IBM

Macros Used to Create DSECTS for DL/I System Control Blocks 7-51
DL/I Queuning Facility MACTOS v uvntetteetteetteeennnraneniiananaeneannns 7-51
Formatsiniiiiiii i e e e et 7-52
OPEIANAS ..ottt ettt e e e 7-52

DL/I Documentation Aid MaCIOS cuntvetetetoeneeeeneunnnnenennnnneneeeeeenns 7-52
DLZDLBP O PPt 7-52
DLZDLBD ..ottt it e e e e e e e 7-52
DLZDATAB .. e e e 7-52
DLZDANDX ittt ittt ittt e et e 7-53
DLZDARTN ittt ittt ittt e et e e 7-53
DLZEXDFccvvviinvinnn. O R 7-53

T X-1

DL/I DOS/VS Logic Manual, Volumel

N/

AN

Licensed Material—Property of IBM

Figures
1-1. Elements of a DL/IDOS/VS Batch Partitioncc.iuinintininrnennnn. 1-2
1-2. System Control Facility Relationshipso i, 1-3
1-3. DL/I Facility Relationshipsounttneitnetin e etneneenreneenennnnn 1-7
3-1. Application Control Table (ACT) Formatccviiiunniennneinneennn. 3-16
3-2. Online Log Block Put Operationcciiiiiitiiiniininiiiinnenennnn 3-55
3-3. Enqueue/Dequeue Control Block Relationshipscccoviiiiiineennennn.. 3-59
3-4. HISAM Data Base with One Root Segment oo, 3-81
3-5. Input for HISAM Reorganization Unload Utility 3-82
3-6. HISAM Reorganization Unload Utility Qutput 3-82
3-7. Extract Defines Utility Overview Flow i i, 3-120
5-1. Map of Main Storage in the DL/I Batch Partitioncc.vveiineennn .. 5-3
5-2. DL/I Batch Control Block Relationshipsc..uuueeeeennnnnnnnnnnnnnn. 5-6
l 5-3. DL/I Online Control Block Relationshipsc..oiiiiineiiiennneennn 5-7
5-4. General Structure of DMB e 5-9
5-5. General Structure of PSB. e e 5-11
5-6. General Structure of DL /I Buffer Pool Control Blocksc.ccvveueen.... 5-12
5-7. DL/ILOZRECOTAottt ettt et ie ettt et 5-212
5-8. CICS/VS Journal Record'uiniineinneinetteeiieeneeunenneneenns 5-212
5-9. Layoutof aJournal Blockttt 5-212
7-1. Structure of LLC/CCIn DL/L ... ittt ettt iien et eine e 7-3
7-2. DBDGEN MACRO-GLOBAL Symbol Cross Reference 7-21
7-3. PSBGEN MACRO-GLOBAL Symbol Cross Reference 7-40

Figures xv

xvi DL/IDOS/VS Logic Manual, Volume1

Licensed Material—Property of IBM

A

AN
\
"

4

N
¢

Licensed Material—Property of IBM

Section 1. Introduction

(Data Language/I Disk Operating System/Virtual Storage (DL/I DOS/VS,
hereafter referred to as DL/I) is a data management control system that assists the
user in creating, accessing, and maintaining large common data bases. In
conjunction with the Customer Information Control System (CICS/DOS/VS),
DL/I can be used in an online teleprocessing environment. Also in conjunction
with CICS/VS, DL/1 provides a centralized data facility, multiple partition support
(MPS), which controls concurrent access to data bases from multiple batch
partitions.

Section I summarizes and describes the following:

+ DL/I Batch System
o DL/I Online Processor
« DL/I Facility Modules
. o Multiple Partition Support (MPS)
(‘ « DL/I Utilities

DL/I Batch System

The DL/I batch system executes as an application program in a virtual storage
environment under DOS/VS. The DOS/VS partition in which the DL/I batch
system executes is composed of the elements shown in Figure 1-1 on page 1-2.
These are:

o The system control facility
(« The DL/I facility
- o The DOS/VS VSAM and SAM data management modules
« The user application program

The major components of the DL/I system are the system control facility and the

DL/I facility. The system control facility receives control from DOS/VS job

control, initializes the DL/I batch system, and interfaces between DL/I and the

user application program. The DL/I facility interfaces with the DOS/VS VSAM

and SAM data management modules when performing the data base call function
(requested by the user application.

The system control facility is divided into three functional areas (see Figure 1-2 on
page 1-3):

« Batch initialization
o Language interface
« Program request handler.
Batch initialization is responsible for:
« Initial interface with DOS/VS job management
« Analysis and validity checking of DL/I parameter information
« Loading the batch nucleus.
C/ ¢ Loading the DL/1 application control blocks (PSB and DMBs) and relocating

the control block addresses.

Section 1. Introduction 1-1

Licensed Material—Property of IBM

o Creation of the PSB intent list and the DMB directory (DDIR).

e Acquiring and formatting storage for the buffer pool control blocks and their
related I/O buffers.

« Loading the DL/I facility modules.
+ Loading the application program and passing control to it.
The language interface provides communication between the application program

and the program request handler. This module is link-edited with the application
program and provides a common interface for DL/I calls written in PL/I, COBOL,

RPG II, or Assembler language.

VSE
A
A
USER
SYSTEM CONTROL FACILITY -« +| APPLICATION
PROGRAM
A
Y
DL/l FACILITY
Y \
VSAM SAM
A J
\ Y \ Y y \ y
» » SHSAM
HIDAM OR
HSAM

HDAM | | sHisam HISAM I

Figure 1-1. Elements of a DL/I DOS/VS Batch Partition

1-2 DL/IDOS/VS Logic Manual, Volume1l

Py
N

Licensed Material—Property of IBM

Figure 1-2. System Control Facility Relationships

. VSE
SYSTEM \
CONTROL
FACILITY BATCH
INITIALIZATION |
USER
Y APPLICATION
PROGRAM
LANGUAGE |
INTERFACE [A
PROGRAM
REQUEST
HANDLER
A
\
DL/l FACILITY
Y L/
VSAM SAM
f A
/ / \ 4 \ Yy A
) » SHSAM
HD HDAM SHISAM HISAM HIDAM LOG OR
HSAM

The program request handler receives the DL/I call from the user application
program via the language interface. It performs the following functions:

« Checks validity and, if necessary, reformats the caller’s parameter lists and

submits them to the DL /I facility.

o Accepts parameter lists from the DL/I facility and moves data to the user’s

work area, if required.

« Returns control directly to the user application program.

See Section 3 for a detailed description of each of these modules.

Section 1. Introduction

1-3

Licensed Material—Property of IBM

DL/I Online Processor

In an online environment, the DL/I system executes within the CICS/VS partition. ‘(\
CICS/VS provides exit interfaces to DL/I for the following: A W g

« DL/I system initialization during CICS/VS initialization.
« DL/I system termination during CICS/VS termination.

« DL/I user task completion and return of DL/I resources after the application
program has issued a CICS/VS synchronization point (SYNCPOINT)
command or has completed processing.

When the user application program issues a DL/I call, control passes to a language

| interface module, the EXEC interface program (if HLPI is used), and the program
request handler. The program request handler validates the call and passes it to the -
DL/I facility. The DL/I facility invokes CICS/VS services through the online
interface for such functions as transaction and storage management. On P
completion of the DL/I call, the DL/I facility returns control to the user {)
application program via the program request handler.

DL/I Facility Modules

The functions of data base creation, access, maintenance, and reorganization are

accomplished by the DL/1 facility (see Figure 1-3 on page 1-7). The DL/I call is

passed from the system control facility to the DL/I call analyzer, which is the focal

point of the DL /I facility. The type of call is analyzed (DL/I call, pseudo call, or

internal call resulting from a DL/I call), and control is passed to the appropriate -

action module to process the call. /ﬁf \;
g

The action modules of the DL/I facility, together with their major functions, are

listed below:

» Open/Close Module
— Open DL/I data bases

— Close DL/I data bases

— Interface with data base logger to write data set open record to log file L

« Delete/Replace Module N

— Delete a segment of a DL/I data base in conjunction with the buffer
handler

— Replace a segment of a DL/I data base in conjunction with the buffer
handler v

— Interface with data base logger to record changes on log file
— Interface with space management for HDAM and HIDAM data bases

— Interface with index maintenance for data bases with indexes

1-4 DL/I DOS/VS Logic Manual, Volume1

Licensed Material—Property of IBM

Load/Insert Module

— Load segments into a DL/I data base in conjunction with the buffer
handler

— Insert segments into a DL /I data base in conjunction'with the buffer
handler

— Interface with data base logger to record changes-on log file
— Interface with space management for HDAM and HIDAM data bases

— Interface with index maintenance for data bases with indexes

Issue I/O for HSAM and Simple HSAM data bases
Retrieve Module

— Retrieve a segment of a DL/I data base in conjunction with the buffer
handler

— Perform data base positioning for load/insert
— Issue I/O for HSAM and Simple HSAM data bases
Index Maintenance

— Maintain any indexes for HDAM or HIDAM data bases in conjunction
with the buffer handler

— Interface with data base logger to record changes on log file
Space Management

— Allocate and maintain free space on DASD in conjunction with the buffer
handler for storage of DL /I segments for HDAM and HIDAM data bases

— Interface with data base logger to record changes on log file
Buffer Handler

— For HDAM or HIDAM data base, satisfy requests for segments or records
from data currently available in the buffer pool

— Issue I/O to VSAM for HDAM or HIDAM data base requests that cannot
be satisfied from the buffer pool

— Issue I/O to VSAM for all HISAM, Simple HISAM, and Index data base
requests

Data Base Logger

— Record all data base modifications on the DL/I log tape using DOS/VS
SAM or disk log using VSAM, or CICS Journal

Section 1. Introduction 1-5

Licensed Material—Property of IBM

¢ Queuing Facility
— Provide support for contention control at the segment and record level
— Provide deadlock detection and resolution.

« Field Level Sensitivity Copy Module
— Provide user view/physical view conversion for field level sensitivity.

See Section 3 for a detailed description of the modules.

1-6 DL/IDOS/VS Logic Manual, Volumel

Licensed Material—Property of IBM

| |
| I
USER
I SYSTEM CONTROL FACILITY - APPLICATION |
| PROGRAM |
| , |
- _ -
| oun FaciLITY Y |
| DL/I CALL '
l ANALYZER i
_ | \ |
C | n !
’ ' |
| |
| | orenverose DEVETE/ SUEIING »{ LOAD/INSERT RETRIEVE |
| [\)\ ¥ 1 I :
l \) \ Y \ :
) FIELD LEVEL
() l MAINTENANCE MANAGEMENT SENSI T T I
| | |
3 A A .
| Y |
l y Y I
|| pata BASE BUFFER |
I LOGGER HANDLER |
'_ A A __I
C
A
VSAM SAM

A

y

i A Y
»
HD HDAM SHISAM HISAM l

Figure 1-3. DL/I Facility Relationships

A

Y

Section 1. Introduction

Licensed Material—Property of IBM

Multiple Partition Support (MPS)

DL/1 Utilities

HLPI Interface Modules

Language Interface Modules

1-8 DL/IDOS/VS Logic Manual, Volume1

DL/I enables batch application programs executing in different partitions to access
online data bases concurrent with online applications. This capability is called
multiple partition support (MPS). For example, MPS permits online applications to
issue inquiries to a data base while a batch program updates the data base. MPS
uses the DL/I resources and the multitasking facilities of DL /I and CICS/VS.

The DL/T utility modules are categorized as follows:

Application control blocks creation and maintenance: this utility program is
used to merge and expand into an internal format the control blocks created by
the DBD and PSB generation utilities. The control blocks created by this
utility are used by the DL/I system.

Data base recovery: this is a set of utility programs employed to reconstruct a
data base.

Data base reorganization: this is a set of utility programs employed to
reorganize a data base. Use of these programs reduces direct access storage
requirements by compacting data and thus reducing data base access time.

Data base logical relationship resolution: this is a set of utility programs
employed to update pointer information when data bases involved in logical
relationships and/or secondary index relationships are initially loaded or
reorganized.

ISQL Extract Defines Utility: this utility creates and stores an ISQL routine
composed of ISQL Extract Define commands from data previously gathered
and stored in tables with the DL/I Documentation Aid. Once the routine is
created, it can be run under ISQL to define the necessary DL /I information to
the EXTRACT facility of SQL/DS.

Problem determination: this includes the log print utility which enables you to
print the contents of DL /I log files to help you recover from system failures,
and the trace print utility which enables you to print trace entries from tape or
disk input files which are created by the DL/I trace facility.

The HLPI interface modules, DLZEIPOO, DLZEIPBO0, and DLZEIPB1 build DL /I
calls from data provided in calls generated from EXEC DLI commands by the
CICS EXEC translator. After the HLPI interface modules build the DL /I calls,
they pass the calls to the Program Request Handler for execution by DL/I.

There are two language interface modules used with batch and MPS HLPI
programs. They are the COBOL language interface module (DLZLICBL) and the
PL/I language interface module (DLZLIPLI).

A

®

Licensed Material—Property of IBM

Section 2. Method of Operation

This section contains HIPO (Hierarchy, plus Input, Process, Output) diagrams and

is included in Data Language/I Disk Operating System/Virtual Storage (DL/I
DOS/VS) Logic Manual, Volume 2, 1.Y24-5215.

Section 2. Method of Operation 2-1

2-2 DL/IDOS/VS Logic Manual, Volumel

Licensed Material—Property of IBM

PN

k,)‘

TN

N/

Licensed Material—Property of IBM

Section 3. Program Organization

This section contains descriptions of the DL /I modules and their major routines.

Section 3. Program Organization

3-1

System Control Modules

Licensed Material—Property of IBM

DLZRRCO00 - Batch Initialization - Part 1

The responsibilities of this module are to:

¢ Read required parameter information from SYSIPT or SYSLOG based on the
UPSI byte setting.

¢ Determine load address for batch nucleus module (DLZBNUCO).
o Provide a DL /I message subroutine (ERRORMSG).

« -Branch to region control interface (DLZRRC10).

Entry Interface - DLZRRCO00

DLZRRCOO receives control from VSE job control.

Exit Interface

DLZRRCO0O0 passes control through branch to region control interface
(DLZRRC10).

Register Contents

R7 Address of ERRORMSG
R10 Entry point address of DLZRRC10

Entry Interface - ERRORMSG

ERRORMSG receives control through BALR from DL/I modules.
Register Contents

R1 PST address or parameter list address

R13 Save area address

R14 Return address

R15 Entry point address (DLZERRMS)

Exit Interface - Calling Module

" Passes control through branch on register 14.

DLZRRC10 - Region Control/Initialization - Part 2

This routine receives control from the DL /I initialization Part 1 routine and
continues batch initialization. Its responsibilities are:

Save input parameters

Load batch nucleus module (DLZBNUCO)
Establish SCD and PST addressability
Invoke parameter analysis (DLZRRAO00)
Load and initialize PSBs and DMBs
Allocate and format buffers

3-2 DL/IDOS/VS Logic Manual, Volume1

B
\% J

"

~

Licensed Material—Property of IBM

« Branch to application program control module (DLZPCCO00)
Entry Interface - DLZRRC10

Receives control through branch from DLZRRC00

Entry Register Contents

R7 Address of ERRORMSG
R10 Entry point address

Exit Interface - Parameter Analysis
Passes control by fall through to DLZRRAO00
Exit Register Contents

R2 Address of SCD
R9 Address of PST
R13 Save area address

DLZRRAOO0 - User Parameter Analysis

This routine checks the positional parameters for valid length and contents when
first entered. Invalid parameters cause DL /1 to issue an error message and
abnormally end. There is an entry at NXTPORT (just before buffers are to be
allocated) to check keyword parameters. Errors cause DL/I to issue an error
message and abnormally end.

Section 3. Program Organization 3-3

Licensed Material—Property of IBM

Layout and Description of PARM Field

(™
XXX,aaaaaaaa,bbbbbbb,ccc,keyword operands
XXX PARM identifier in columns 1-3.
DLI Data base program to be executed.
UDR Data base recovery utility to be executed.
ULU Data base reorganization or logical
relationship resolution program to be executed.
ULR HD reorganization reload utility to
be restarted from checkpoint record.
PLU Selective Unload
aaaaaaaa One- to eight-character name of the
application program to be executed.
A
bbbbbbb One- to seven-character name of the program _
specification block (PSB) as specified in
the PSB generation.
If PARM is UDR, ULU, or ULR, one- to
seven-character name of the data base
description (DBD) as specified in the DBD generation.
cce Number of data base buffer sub-pools required for job execution.
A
keyword \(Y
operands HDBFR, HSBFR, ASLOG, LOG, and TRACE
Entry Interface
Receives control from DLZRRC10
Entry Register Contents .
e When entered at DLZRRAOO: N

R2 Pointer to SCD (not used)
R9 PST address
R13 Save area address (not used)

o When entered at NXTPORT:

R6 Pointer to first subpool information table
R8 SCD address

Exit Interface

« From DLZRRAOO entry: Passes control by fall through to DLZPCCO00
e From NXTPORT entry: Passes control by branch to PRMSRET

3-4 DL/IDOS/VS Logic Manual, Volumel

Licensed Material—Property of IBM

Exit Register Contents
o From DLZRRAOQO entry:

R2 SCD address
R9 PST address
R13 Save address

¢ From NXTPORT entry:

R2 SCD address

R6 Pointer to last subpool information table
R9 PST address

R13 Save area address

DLZPCCO00 - Application Program Control

This routine is used only in the batch partitions. It performs some functions
analogous to those performed by the CICS scheduler in the online control program.
It is responsible for the following functions:

o Initializing the storage management routine

« Invoking the application control blocks loader/relocator

« Invoking the control program initialization routine

« Loading the application program

« Initializing the PL/I region (if PL/I)

« Invoking the application program

o Issuing an unload call in behalf of the application program upon termination
o Writing the application program termination record on the DL/I log

o Closing the DL/I log.

Data Areas Used

PST
SCD
DDIR
DMB
SDB
PSIL

Entry Interface

Receives control by fall through from DLZRRAQO
Entry Register Contents

R2 SCD address

R9 PST address

R13 Save area address

Exit Interface

« Passes control through BAL to DLZPINIT

« Passes control through BAL to application program

« Passes control through BAL to call analyzer (DLZDLAOO)
« Passes control through BAL to data base logger DLZRDBLO)

Section 3. Program Organization 3-5

Licensed Material—Property of IBM

o Passes control to VSE supervisor by issuing an SVC 14 normal EOJ supervisor
call.

Exit Register Contents
e From exit to DLZPINIT:

R2 SCD address
R9 PST address
R14 Return address

o From exit to application program:

R1 Address of PCB address list
R13 Save area address

R14 Return address

R15 Entry point

o« From exit to DLZDLAOO:

R1 PST address

R13 Save area address

R14 Return address

R15 Entry address of call analyzer (obtained from SCD at label SCDDLICT)

e From exit to DLZRDBLO:

R1. . _PST address

R13 Save area address

R14 Return address

R15 Entry point of log write-only routine (obtained from SCD at label
SCDREENT) or, Entry point of force write routine (obtained from SCD
at label SCDDBLFW) or, Entry point of logger close routine (obtained
from SCD at label SCDDBLCL)

DLZDBIMO - Application Control Blocks Load and Relocate

This routine performs the functions of loading and relocating DL /1 application
control blocks. Once the blocks are loaded and offsets resolved to actual
addresses, the SDBs in the PCBs are connected to the appropriate PSDBs in the
DMBs. The JCB data sets in the data base are connected to the appropriate ACBs
in the DMBs, and control is returned to the calling routine.

For ‘DLT or ‘PLU’ execution, the PSB name extracted from the PARM card is
moved to the PSB directory and the PSB is loaded. The address of the PSB
segment intent list and the PSB are stored in the PSB directory. The index work
area (if required) is allocated and addresses are resolved. Next the intent list is
scanned and the DMB directory is constructed from it. The DMB directory entries
are scanned and the DMBLOADR subroutine (see below) is called to load and
relocate the DMBs in the directory. Upon completion, the SDBs are connected to
their corresponding PSDBs, the JCB DSGs are connected to their ACBs, and
return is made to the caller.

For the following utilities there is no PSB name in the parameter information:

DLZURPRO - Data base prereorganization

3-6 DL/IDOS/VS Logic Manual, Volumel

o
A W

AN
S

\/

Licensed Material—Property of IBM

DLZURGSO - Data base scan
DLZURGPO - Data base prefix update

These utilities perform dynamic block loading using the DLZBLKLD macro.

The DMBLOADR subroutine performs the loading and relocation of DMBs. The
DMB directory is accessed and the DMB name extracted from it. A load is issued
for the DMB and, if HDAM, the randomizing module extracted from the DMB is

loaded. Next, the DMB directory entry is updated with a buffer size indication.

For HD, this value is the control interval size of the data set; for HISAM, it is the

logical record size. Then all offsets are relocated to addresses, and control is

passed to DLZCPIO00.

Entry Register Confents

R2 SCD address

R9 PST address

R13 Address of one of a set of prechained save areas
R14 Return address

Exit Register Contents

Same as entry register contents

DLZCPIO0 - Batch Control Program Initialization

This routine receives control from the application control blocks load and relocate
routine and completes the intialization of the DL/I batch system. It is responsible

for:

e Allocation of the buffer pool

« Formatting the buffer pool prefix, one or more subpool prefixes, and the buffer

prefixes
o Loading all required DL/I action modules
o Initializing the SCD
« Opening the DL/1 log

o Writing the application program scheduling record on the DL /I log

Entry Interface - DLZCPIO00

Receives control by fall through from routine DLZDBLMO.

Entry Register Contents
R2 SCD address

R9 PST address

R13 Save area address
Exit Inferface

Returns to DLZPCCO00

Exit Register Contents

R9 PST address
R2 SCD address

Section 3. Program Organization

3-7

Licensed Material—Property of IBM

R14 Return address

| DLZBPJRA - DL/I COBOL Preinitialization Module

This module is linked with batch COBOL programs to call ILBDSETO. An entry
card with the name CBLCALLA is required in the link edit job step of the batch
COBOL program.

DLZBPJRA does the following:

« Branches to IBLDSETO, the COBOL routine entry point
« Then exits by branching to the application program entry point (DLITCBL).

Interface

This module interfaces with the following:

ILBDSETO - COBOL routine entry point Application program.
Control Blocks

None.

Normal Entry Point

The only entry point to this module is CBLCALLA

Entry Register Contents

R14 Linkage register
R15 Base register

Exit Register Contents

R14 Linkage register
R15 Application program entry point

DLZLI000 - Language Interface

The language interface provides communication between the application program
and the program request handler. A copy of this module is link edited with user
application programs.

The language interface has responsibility for:

o Storing the user’s registers in the save area provided.

« Providing a specific entry for Assembler, COBOL, RPG II, and PL/I
application programs.

o Locating the entry point of the program request handler.

o Passing control to the program request handler

3-8 ' DL/IDOS/VS Logic Manual, Volume1

A

Licensed Material—Property of IBM

Entry Interface - DLZLI000
(Receives control through branch from application program
Entry Register Contents

R1 Call parameter list of implicit or explicit format
R13 Save area address

R14 Return address

R15 Entry point

Exit Interface
Passes control to program request handler through branch from DLZI.I000
Exit Register Contents

RO Language identifier code
(R1 Parameter list
R2-14 As entered from application program
R15 Entry point of program request handler

DLZLICBL - DL/I DOS/VS HLPI Batch/MPS COBOL Language Interface

This module obtains the entry point address of and passes control to DLZEIPBO.
Control Blocks - DLZLICBL
(- EIPL EIP parameter list
- Normal Entry Point
The entry points to this module are:

DLZEIO1 Data base calls
DLZEIO2 All other calls
DLZEIO3 Reserved
o DLZEIO4 Reserved
(, DFHEI1 Common entry point

Entry Register Contents

R13 Register savearea address
DLZLIPLI - DL/1 DOS/VS HLPI BATCH/MPS PL/I Language Interface

This module has two routines; An initialization routine with an entry point
\ DLZLIPLI and a processing routine with an entry point DLZEIOx, or DFHEIO1.

Entry point DLZLIPLI is entered before the application program gets control. It
finds the entry point address of PLICALLB and passes control to it. This is done
to enable the PL/I HLPI application program to use non-PL/I PSBs.

| DLZEIOx or DFHEIO1 performs the same functions as DLZLICBL (see
C DLZLICBL for details).

Section 3. Program Organization 3-9

Licensed Material—Property of IBM

Control Blocks - DLZLIPLI

EIPL EIP parameter list

Normali Eniry Points

The normal entry points to this module are:
DLZLIPLI From DL/I initialization
DLZEIO1 All other calls

DLZEIO2 Data base calls
DLZEIO3 Reserved

DLZEIO4 Reserved

DFHEIO1 Common entry point
Entry Register Contents

R13 Register savearea address

DLZPRHBO - Program Request Handler

The interface between the application program and the DL/I batch or control
program is managed by the program request handler routine (DLZPRHBO) in
module DLZBNUCQO. It accepts parameters passed to it by the language interface
module (DLZLI000), or the HLPI batch EXEC interface program, DLZEIPBI1. It
validates these parameters and passes a parameter list to the call analyzer.

The program request handler accepts three call list formats: implicit direct, explicit
direct, and explicit indirect. COBOL and Assembler-language programs may use
either the implicit direct or explicit direct call list formats. Since special provisions
are made for PL/I in handling the explicit indirect call list, it may be used only by
PL/I language programs.

The first parameter (argument 0) of the DL/I CALL determines whether the list is
explicit or implicit. If the argument contains the address of the parameter count
(count of the number of arguments that follow), this list is an explicit list. If the
argument contains the address of the DL/I CALL function, this list is an implicit
list. '

The responsibilities of this routine are to:

e Verify parameter list addresses aligned and within the dynamic area of the
machine

« Reformat explicit parameter lists to implicit prior to submission

+ Reset PL/I STXIT PC processing

« Provide caller’s parameter list to the call analyzer

« Return data to application program work areas

» Maintain PL/1 variable-length character string dope vector

« Identify abnormal termination condition

« Return directly to application program

Write checkpoint message if checkpoint issued

3-10 DL/IDOS/VS Logic Manual, Volumel

A

AN

Licensed Material—Property of IBM

Data Areas Used

PPST
PST
SCD

Entry Interface

Receives control through branch from language interface (DLZLIO00)

Entry Register Confents

RO

R1

R13
R14
R15

Language indicator. Bit X‘01’ on if PL/I, off for other languages. Bit X‘02’
on if HLPI, off if call interface

Parameter list address (in application program format)

Save area address

Return (to application program)

Entry point address

Exit Interfaces

« Passes control through branch to call analyzer (DLZDLAOO)

« Passes control through branch to error message writer (ERRORMSG)
« Passes control through branch to abend processor (DLZABEND)

« Passes control through branch to application program

Exit Register Contents

¢ From exit to DLZDLAOO:

R1 PST address

R13 Save area address

R14 Return address :

R15 Entry point of call analyzer (obtained from SCD) at label SCDDLICT

« From exit to ERRORMSG:

R1 PST address

R13 Save area address (PSTSV1)

R14 Return address

R15 Entry point of error message writer (obtained from SCD at label

SCDERRMS)

« From exit to DLZABEND:

R15 entry point to DLZABEND

o From exit to application program:

R2-12 Restored to contents upon entry from application program to

language interface module (DLZLI000)

R14 Application program return address

Section 3. Program Organization 3-11

Licensed Material—Property of IBM

DLZABEND - STXIT ABEND

DLZIWAIT - DL/I IWAIT

Abnormal terminations invoked through the VSE STXIT or terminations requested
by DL/I action modules are handled by DLZABEND. Responsibilities are as
foliows:

+ Close the DL/I log.

o Issue an UNLD call to write the last records for Simple HSAM, HSAM, Simple
HISAM and HISAM or write all buffers altered by the user. The UNLD call
also closes the data base.

o If a dump is requested, write a formatted dump of DL/I control blocks.

« Cancel the partition.

Entry Interfaces

e Receives control through VSE STXIT PC interface or STXIT AB interface

» Receives control through branch from program request handler (DLZPRHBO)

+ Receives control through branch from DL/I action modules (including a
'special entry from the buffer handler)

Exit Interfaces

« Passes control through branch to data base logger (DLZRDBLO)
« Passes control through branch to call analyzer (DLZDLAOO)
« Passes control through SVC 6 (CANCEL) or SVC 2 ($$BJIDUMP) to VSE

Exit Register Contents
e From exit to DLZRDBLO:

R1 PST address

R13 Save area address (PSTSV1)

R14 Return address

R15 Entry point of logger force write routine (obtained from SCD at label
SCDDBLEW) or,
Entry point of logger close routine (obtained from SCD at label
SCDDBLCL)

e From exit to DLZDLAOO:

R1 PST address

R13 Save area address

R14 Return address

R15 Entry address of call analyzer (obtained from SCD at label SCDDLICT)

This module receives control when a DL/I action module requires VSE wait
linkage.

. 3-12 DL/IDOS/VS Logic Manual, Volume1

Licensed Material—Property of IBM

Entry Interface
(Receives control through BALR from a DL/I action module
Entry Register Confents
R2 Address of event control block
R14 Return address of caller
R15 Entry point of DLZIWAIT
Exit Interface
« Passes control through SVC 7 (WAIT) to VSE.

« Passes control through branch on register 14 to the calling program.

DLZSTRBO - Batch Field Level Descriptor (FLD) Storage Manager
(: This module frees the current field level descriptor storage, increases storage
: requirements for FLD by 128 bytes, and acquires the storage for the new FLD

entries.
Interface
This module interfaces with the following module:
DLZDLAOQO - Call analyzer

(Control Blocks - DLZSTRBO
o PPST - PST prefix
o« PST - Partial specification table
e SCD - System contents directory
Normal Entry Point
The only entry point to this module is DLZSTRBO

(‘ ," Entry Register Contents

R1 PST address
R13 Current register savearea address

DLZSTROO - Online Field Level Descriptor (FLD) Storage Manager

This module frees the current field level descriptor storage, increases storage
requirements for FLD by 128 bytes, and acquires the storage for the new FLD
entries.

Interface

This module interfaces with the following modules:

C DLZDLAOQO - Call analyzer

Section 3. Program Organization 3-13

Licensed Material—Property of IBM

Control Blocks - DLZSTRO0

CSA

TCA

PPST - PST prefix

PST - Partial specification table
SCD - System contents directory

Normal Entry Point
The normal entry point to this module is DLZSTROO.
Entry Register Contents

R1 PST addreSs
R13 Current register savearea address

Online DL/I Processor Modules

| Before attempting to use this section, you should be familiar with the Customer
Information Control System/Virtual Storage (CICS/VS). References to the
prerequisite publications are contained in the preface to this manual.

The online DL/ processor modules DLZOLIO0 and DLZODP perform the
following functions in a CICS/VS-DL/I environment:

DL/I system initialization

DL /I user task scheduling

Processing DL/I calls (online program request handler)

DL /I user task completion

DL /I normal system termination

DL/I abnormal system termination

DL/I online message writer

DL /I-VSAM-CICS/VS synchronization via VSAM ‘EXCP’ Exit.

PRS0 0 o

DLZOLIOO0 - Online Initialization

In order to process DL/I applications in an online environment, a DL/I online
nucleus must first be generated. The DL/I online nucleus generation procedure is
described in DL/I DOS/VS Resource Definition and Utilities. The result of the
procedure described in the publication is a DL/I online nucleus.

The online nucleus, which is link edited into a VSE core image library, consists of
the following DL/I nucleus modules and tables:

module DLZODP

module DLZEIPOO

module DLZSTROO

module DLZCOMO00

module DLZL.OC00

module DLZODPEX

ACT (Application Control Table)
SCD (System Contents Directory)
DFHDLIAL (CICS/VS-DL/I Interface Address List)
SCD Extension

PDIR (PSB Directory)

L] L] o L] L] . L] L] L] L] L]

3-14 DL/1DOS/VS Logic Manual, Volumel

O

AN
N

o

N
R

Licensed Material—Property of IBM

« RPDIR (Remote PSB Directory) only if a Remote PSB is defined
o« PPST (PST Prefix Table)

« PDCA (Problem Determination Control Area)

« EIPL (EXEC Interface Parameter List)

+« module DLZMMSGT

o module DLZFTDPO

« module DLZISCOO (only if a Remote PSB is defined)

The application control table (ACT) is used by DL/1 online at CICS/VS
initialization to verify and load all PSBs and DMBs that can be referenced online.
The ACT is used during scheduling to determine whether an online program is
permitted to use DL/I. It is also used by DL/I default scheduling to acquire a PSB
to use if none was explicitly specified in the PSB scheduling call or command.

The ACT is produced from parameters specified in the following DLZACT macro
instructions:

DLZACT TYPE=INITIAL
DLZACT TYPE=CONFIG
DLZACT TYPE=PROGRAM
DLZACT TYPE=RPSB
DLZACT TYPE=BUFFER
DLZACT TYPE=FINAL

Each ACT program entry is generated from the DLZACT TYPE=PROGRAM
statement. These statements define to DL/I which application programs can use
DL/I online. They also define which PSB names can be used by each of the
application programs. There is one ACT program entry for each DLZACT
TYPE=PROGRAM statement used to generate the online nucleus. See the format
of the application control table (ACT) in Figure 3-1 on page 3-16.

Section 3. Program Organization 3-15

Generated from:
DLZACT TYPE =¢
PROGRAM

Generated from:
DLZACT TYPE = 4
BUFFER

Licensed Material—Property of IBM

4

A. A(SCDSTART)

A. Address of the System Contents Directory (SCD)

C. D.

[

4 8

2 bytes

B. Buffer pool information address or O
C. Storage layout control table name or O
D. Number of HD DBDs in HDBFR operand

Program entry ‘1’

E. F.| G. H. |®*®®]| H.
8 2 2 2 bytes
E. ACTNM ACT program entry name
F. ACTIND Entry indicator byte:
X‘80’ Program is a DL/l program
X'40’ Program name not in CICS/VS PPT
X‘30" ABEND option bit
X’'02’ Program is deferred~scheduled
G. ACTPCNT Count of PDIR (PSB) pointers for this program
H, ACTPPTR PDIR pointer(s). ACTPCNT indicates how many pointers are

Program entry ‘n’

included here before the start of the next ACT entry.

A maximum of 4095 DLZACT TYPE =PROGRAM statements and a maximum of
4095 unique entries (an entry consisting of program name and one PSBNAME) may
joccur in one ACT generation.

4 bytes
I. Delimiter (FF FF FF FF) indicating end of program entries

HDBFR entry (subpool ‘1°)

K. XX K. L.

2 8

8 2 bytes

J. Length of entry

K. DBD name

L. Number of buffers

HDBFR entry (subpool ‘n’)

HSBFR entry (DBD # 1)

M.

N. 0. P. Q.

2 8

. FF 00
. DBD name

ocroz=

2 2 2 bytes

. Number of index buffers
. Number of KSDS buffers
. Number of ESDS buffers

HSBFR entry (BDB #n)

4 bytes

R. Delimiter (FF FF FF FF)

Figure 3-1. Application Control Table (ACT) Format

3-16 DL/IDOS/VS Logic Manual, Volumel

AT
NV

O

Licensed Material—Property of IBM

Nucleus and Table Initialization

Load Action Modules

DL /1 initialization is performed during CICS/VS initialization just after loading
the CICS/VS nucleus. The DL/I online nucleus module has been loaded by
CICS/VS in the same manner as a CICS/VS nucleus module, and its address is
placed in the CICS/VS CSA optional features list.

DL/I verifies the presence of the online nucleus by checking the CICS/VS
optional features list DL/I entry for a non-zero value. Once verified, the program
request handler entry point is moved to the COMREG using the MVCOM macro.
Each PSB name in the ACT is eight characters in length. Each PSB name is
padded with @’s, if required, to make it seven characters long, and a P to make it
eight characters long.

Next the PSB segment intent list is built. This is accomplished by loading each PSB
defined in the ACT, except those defined as remote PSBs, in ascending address
space in the low end of the partition and moving the intent list, which is appended
to the front of the PSB, to an entry in the PSB segment intent list table. The length
of the PSB plus the length of the index work area, if required, are used to calculate
how much storage to reserve. The segment intent list is overlaid during this process
because its information is redundant. The PSB directory entry for each PSB is
initialized with the address of the intent list, the PSB’s storage address, and the
amount of storage required.

The DMB directory is constructed. One DMB directory entry is created for each
unique data base (DMB) defined in the PSB intent list entries. DMB names are
eight characters in length and consist of the DBD generation name extended to
seven characters by at-signs (@) if necessary. The eighth character is D. At this
time, a validity check is performed to ensure that all required DMBs, defined by the
PSB intent list, have been defined in the CICS/VS file control table (FCT). If any
are missing, a message is written on the system console and the operator is given
the option to continue or cancel. If initialization is to continue, PSBs which require
the omitted DMB(s) are flagged to indicate this condition. Application programs
which use these PSBs are not scheduled.

Initialization continues with the loading of all DMBs specified in the DMB
directory. As each DMB is loaded, the corresponding entry in the DMB directory
is initialized. A test is then made for HDAM and the defined randomizing routine
is loaded. As the DMBs are loaded, they are initialized. After all DMBs have been
loaded and initialized, the size of the buffer pool is determined. The size of the
pool is based on a user-supplied parameter which defines the number of subpools,
the control interval size of each VSAM data set, and the HDBFR subparameter,
which tells how many buffers will be in a subpool.

After the pool size is determined, the required address space is reserved. Then the
buffer pool prefix in the online nucleus is initialized. Next the subpool prefixes are
created and initialized. There are 2-32 prefixes for each subpool.

Upon completion of initialization of the buffer pool and prefixes, the DL/I action
modules are loaded. As the modules are loaded, their corresponding entry points

-are moved to the SCD. The modules are loaded in the following standard sequence

if not otherwise specified by a storage layout control table:

DLZDBHO00 Buffer handler
DLZDLROO Retrieve

Section 3. Program Organization 3-17

Initialize PSBs

Attach Logger

Open Data Bases

Licensed Material—Property of IBM

DLZDLAOO Call analyzer

DLZRDBLO Data base logger

DLZDLD00 Delete/Replace

DLZDDLEO Load/Insert

DLZDHDSO0 Space management

DLZDXMTO Index maintenance

DLZDLOCO0 Open/Close

DLZQUEFO0 Program Isolation ENQ/DEQ module
DLZQUEFW Program Isolation ENQ/DEQ work area
DLZCPY10 Field Level Sensitivity Copy

Upon completion of the loading of the action modules, initialization moves the
specified PSBs using information stored in the PSB directory entries. After each
PSB is moved, it is initialized and its corresponding PSB directory entry filled in:

If data base logging has been specified by the user, the logger I/O module is
initialized and attached. If the log module fails to attach, the data base log is closed
and no logging takes place.

The final step of initialization is the opening of the data bases. The DMB directory
is scanned for DMB’s that failed during initialization and the open initial attribute
is reset for any found. Next the data bases are opened via an ‘open all’ call to the
DL/I Open/Close module. All modules indicating open initial in the DDIR are
opened by Open/Close at this time.

Upon completion of the open processing, the IWAIT routine address is restored
and control is returned to CICS initialization.

DLZODP - DL/I Task Scheduling

DL/I Scheduling

A DL/I call or HLPI SCHEDULE command initiates DL/I PSB scheduling. The
call function code is ‘PCB’ and the call contains the name of the PSB to be used.
The call is passed to the online program request handler via a language interface
module and a scheduling validity check is made. If the call is valid, the parameter
list is checked for a User Interface Block (UIB) pointer parameter. If specified, a
UIB will be used for returning return code and PCB address list information to the
application program. Upon completion, control is returned to the application
program through the program request handler and the language interface. If the
call is invalid, a two byte error return code is stored in the UIB or CICS/VS TCA
and control is returned directly to the application program. For an HLPI
command, the task abnormally terminates with a DL.Z0371 message indicating why
the PSB was not scheduled if the call could not be completed.

If the ‘PCB’ call is made to schedule the system interface (by specifying a PSB
name of ‘SYSTEMDL’), the password is tested against the one generated in the
nucleus via the DLZACT macro and the system interface is tested for availability.
A PST and dummy DSG are acquired for the caller, the task is marked as a system
task,and control is returned to the user.

3-18 DL/IDOS/VS Logic Manual, Volumel

N

L W

Licensed Material—Property of IBM

Task Scheduling

Local PSB Scheduling

PSB Initialization

The caller provides the name of the PSB to be scheduled or optionally if the caller
omits the PSB name in the call list, the first PSB name in this program’s ACT entry
is provided as default.

This subroutine determines whether DL/I can schedule another concurrent task.
The SCD maximum task indicator is tested. If it is on, the task cannot be
scheduled and the SCD suspended task counter is incremented by one. A
CICS/VS SUSPEND macro is issued to suspend this task.

If the SCD maximum task indicator is off, an available PST prefix entry is located
and initialized for this task. The DL/I task accumulator is incremented by one and
a test is made to determine whether the number of DL /I tasks now equals the
maximum allowed. If yes, the SCD maximum task indicator is set.

PST storage is acquired from CICS/VS Storage Management and the storage
address is saved in the assigned PST prefix. Task Scheduling consists of formatting
the save area chains and storing the address of the assigned PST prefix. Control is
passed to the local/remote call router routine, DLZCOMO0. If a remote PSB is to
be scheduled, control is passed to the remote scheduling subroutine, DLZISCO00,
which transfers the request to the remote system. If a local PSB is to be scheduled,
control is passed to the local PSB scheduling routine, DLZLOCO00.

This subroutine determines the segment intent of the PSB being scheduled and
ensures that no more than one task is scheduled to update the same segment
type(s) in the same data base unless program isolation is active. For retrieve
sensitive only PSBs or update sensitive PSBs with program isolation active, a
duplicate PSB is created if a prior task has scheduled the same PSB. If the task
cannot be scheduled, a CICS/VS SUSPEND is issued. If not in use, but retrieve
sensitive only, the in-use indicator is set and control is passed to PSB initialization.
If neither of the above is true, the PSB segment intent list entry is scanned. If
program isolation is not active and the PSB is not retrieve only sensitive, the PSB
segment intent list entry is scanned.

The segment intent list for this PSB is located from the PSB directory entry. This
list defines all segments in the data base(s) used by this PSB and the PSB’s
sensitivity to them. The segment intent list entry is compared to the segment intent
list entries of all scheduled PSBs. If no intent conflict is detected, the PSB
initialization subroutine is called. Otherwise a CICS/VS SUSPEND is issued for
the task. Upon completion of a successful segment intent scan, the PSB
initialization subroutine is called.

If it is necessary to provide duplicate copy(s) of PSBs, this routine acquires storage
for the copy and moves the original copy to it. Addresses in the duplicate PSB are
initialized and a duplicate PSB directory entry is created. The level table(s) are
then reset and control passed to the PSB initialization subroutine of DLZIL.OCOO.

PSB initialization consists of inserting the SDBs in the PSB into the SDB chain.
The PSB is located from its PSB directory entry, and the address of the PCB
address list is stored in the CICS/VS TCA. Each PCB is located and the JCB
pointer is used to obtain the address of the start of the SDBs for that PCB

Section 3. Program Organization 3-19

Remote PSB Scheduling

Licensed Material—Property of IBM

(JCBSDB1). Each JCB is accessed and the SDB chain pointers in the SDB and the
PSDB in the DMB are updated. This process continues for all SDBs defined in the
PSB. '

The address of the assigned PST is obtained from the PST prefix and stored in the
PSB. Using this address, the PSB directory entry address is stored in the PST. The
“DL/1 is scheduled” indicator in the PST prefix is set. If the PSB indicates update
sensitivity, a call is made to the DL/I data base logger module (DLZRDBLO) or
CICS/VS journal interface routine (DLZDRBL1) to write an application program
scheduling record (X‘08’). Control is then returned to the application program.

This routine builds a scheduling call parameter list and passes it to the CICS/VS
ISC interface routine, DFHISP. The call format is again transformed and routed
by CICS/VS to the remote system that was defined in the corresponding DL /1
online nucleus RPSB definition. The scheduling call is executed on the remote
system by a CICS/VS mirror program, DFHMIR. The results of the scheduling
call is returned to the local system by CICS/VS. If the scheduling call was
successful, CICS/VS returns the addresses of local copies of the PCBs acquired in
the remote system.

DLZPRHOO - Online Program Request Handler

Language Interface Module

Program Request Handler

DL/1 online calls are made in the same format as batch calls except that CALLDLI
is used instead of CALL for Assembler language. The user issues a call instruction,
passing parameters in the call list, and provides a register save area address in
register 13. Communication of the results of the call is also identical to the batch
system. It should be noted that although the format of the call instruction for
online is the same as in batch, storage used by DL/I to process the call (i.e.,
register save area, all data items in the call list, I/O area) must be acquired from
CICS/VS dynamic storage due to the re-enterability requirements of application
programs which run under CICS/VS.

DL /I HLPI commands are translated into calls to the DL/I EXEC interface
program DLZEIPOOQ. This module converts translator-generated calls into
standard DL/I calls for each HLPI command.

/

The language interface module is link-edited with each application program. The
module has two entry points; one for Assembler, COBOL, and RPG II; and the
other for PL/I. The first function performed at either entry point is to save the
user’s registers. Then a language indicator is set, the entry point to the program
request handler is acquired from the VSE COMREG, and a branch is taken to the
program request handler.

For HLPI, CICS/VS EXEC stubs, DFHECI for COBOL, and DFHPL1I for PL/I,
are used instead of the DL /I language interface module. The CICS/VS stubs pass
control to the CICS/VS EXEC interface program and then the DL/I EXEC
interface program before control is given to the program request handler.

I The program request handler validates the DL/ I call parameters. For scheduling

calls, control is then given to the task scheduling subroutine and then to the
common PSB scheduling routine, DLZCOMO00. For data base calls, control is

3-20 DL/IDOS/VS Logic Manual, Volume1

A
R

Licensed Material—Property of IBM

IWAIT Routine

C

given to the common data base call subroutine, DLZCOMO1. This subroutine
routes local calls to the call analyzer and remote calls to the remote data base call
subroutine, DLZISCO1.

The DL/I action modules process the local calls and return control to the program
request handler through the call analyzer. A test is made in the program request
handler to determine whether a pseudo-ABEND condition exists. If it does, a
CICS/VS task ABEND macro is issued with an ABEND code indicating the
reason. If an ABEND is not required, a test is made to determine whether the call
requires data to be moved back to the user. The data is moved to the user’s I/O
area if required. The user’s registers saved by the language interface are restored
and control passed back to the calling application program.

System calls ‘CMXT’, ‘STRT’, ‘STOP’, “TSTR’, and ‘TSTP’ are processed by the

system call routine, PROCSYS in DLZODP, after being routed there by the
program request handler.

The IWAIT routine is entered from the DL /I buffer handler (DLZDBHO00) or from
other modules whenever an I/O wait or resource enqueue wait must be issued.
The following processing occurs:

« Registers 14 through 12 and 13 are saved.

o Registers 12 and 13 are initialized with the CICS/VS CSA and currently
dispatched TCA.

« A CICS/VS WAIT is issued.

¢ Upon return, checks are made to ensure the logger and formatted dump
routines are not busy.

« All registers are restored.

¢ Control is returned to the calling module via register 14.

DLZODPOI - Task Termination

Task Termination

DL/I task termination is entered from the CICS/VS PCP when a user’s task
scheduled by DL/I returns through CICS/VS Program Management, issues a
CICS/VS sync point, or issues a DL/I ‘TERM’ call. This routine is responsible for
purging buffers altered by this task, calling the data base logger to write the
application program termination record (X‘07’), releasing any system resources
owned by this task and resuming tasks which were suspended for the maximum
task limit.

Task termination writes a termination trace entry in the CICS/VS trace table.
Then it determines whether this task is scheduled to use a remote PSB. If it is,
control is given to the remote termination call subroutine, DLZISCO02. This
subroutine issues a CICS/VS sync point call which causes the remote mirror
program, DFHMIR, which processes calls on behalf of the local application
program, to be terminated. Next, task termination determines whether this task
was assigned a PST prefix. If not, this task must have been stall-purged by
CICS/VS after being suspended during task scheduling. In this case, the

Section 3. Program Organization 3-21

System Resource Allocation

Licensed Material—Property of IBM

suspended count accumlator is decremented and the task’s TCA removed from the
DL/1 suspended task chain. Control is then returned to CICS/VS Program
Management.

If this task was assigned a PST prefix, a test is made to determine whether the task
was scheduled. If not, the task was stall-purged by CICS/VS. This means this
task was suspended by a CICS/VS Storage Management attempt to acquire either
PST or PSB storage. If it was due to PST storage acquisition, the assigned PST
prefix is cleared and put back on the free chain and the system resource allocation
routine is entered. If it was due to PSB storage acquisition, the PSB directory entry
is cleared, PST storage is freed, and the PST prefix is inserted in the free chain.
Control is then passed to the system resource allocation routine.

If the task was scheduled and active, normal task termination proceeds. First a
DL/1 internal “TERM’ call is issued to the call analyzer (DLZDLAOO). This call
causes the analyzer to reset the level table(s) in the PSB. If update sensitive, the
buffer handler (DLZDBHOO) is called to write out all buffers altered by this task.
Next the PSB directory entry is tested for update sensitivity. If indicated, the data
base logger (DLZRDBLO or DLZRDBL1, if CICS/VS journal is in use) is called
to write the application program termination record (X‘07’). If the task had update
sensitivity, the PST prefixes are scanned and any suspended for scheduling because
of segment intent conflict are resumed.

Next the PSB directory entry is released. A test is made to determine whether this
was a duplicate PSB. If so, the storage acquired for the PSB is freed and the
duplicate PSB directory entry is cleared.

If the system call interface is active, the DDIR entries for the terminating PSB are
checked to see if the system task is waiting to close this data base. If it is and the .
use count of the DMB is now zero, the system task is posted to continue
processing.

This routine is responsible for resuming tasks which are suspended due to the
maximum task limit. First the DL/I suspended task counter is tested. If nonzero,
the first task on the DL/I suspend chain is located and a CICS/VS RESUME
macro is issued. The suspend chain is then updated by removing the task’s TCA
from it, the suspended task counter is decremented, and, if zero, the maximum task

I indicator is reset. Control is then returned to the CICS/VS PCP.

DLZODPO02 - DL/I Normal System Termination

The following processing occurs prior to CICS/VS termination.

« DL/I system termination (DLZODPO02) is entered from the DL /I linkage
module DLZSTPO0O, as specified in the CICS/VS pre-termination processing
list section of the program list table (PLT).

« If in use, the DL/I log DTF is closed via a VSE CLOSE macro.

« If MPS is active, control is given to the MPS system termination routine in
DLZMPCO00.

o Control is returned to CICS/VS.

« DL/I system termination is re-entered by CICS/VS system termination.

3-22 DL/I DOS/VS Logic Manual, Volumel

P

Licensed Material—Property of IBM

« A DL/I CLOSE call is issued to the DL/I Open/CLose module
(DLZDLOCO) to close all data sets for all DMBs in the system.

o Control is returned to CICS/VS.
DLZODPO03 - DL/I Abnormal System Termination

The DL/1 abnormal system termination routine is entered from CICS/VS when
the DL/I partition is to be terminated abnormally. The following processing
occurs:

« A switch is set to avoid closing data bases on invocation of DLZODPO02.
« Control is returned to CICS/VS which later calls DLZODPO2.

DLZODPO04 - PSB Scheduling Start-of-Task Record Routine

This routine issues CICS/VS DFHJC macros to write a CICS/VS Start-of-Task
record to the CICS journal.

(, This routine is entered from DLZCOMOO on successful completion of a PSB
scheduling call for a local data base.

This routine is not called if a PSB with read-only intent is scheduled. If a
CICS/VS Start-of-Task record was previously written for the current CICS/VS
logical unit of work, this routine returns without writing the Start-of-Task record.

DLZODPOS - Task Tehnination Sync Point Routine

be taken when a DL /I PSB termination or DL/I checkpoint call is being processed.
For TERM calls, this routine is entered from the DL /I Task Termination Routine,
DLZODPO1. For CHKP calls, it is entered from DL /I Online Common Data Base
Routine, DLZCOMO1.

(, This routine issues a CICS/VS DFHSP macro to force a CICS/VS sync point to

The sync point macro is not issued when DLZODPO1 and subsequently,

DLZODPO0S5, is entered from the CICS/VS sync point program, DFHSPP, while

processing a CICS/VS sync point. Instead, a CICS/VS deferred work element is

created to ensure that DL /I will be given control again after additional CICS/VS
(T sync point processing has been completed.

DLZODPO06 - Abnormal Task Termination Dump Entry

This routine is entered from DFHPCP on abnormal task termination before
dynamic transaction backout is performed by CICS/VS. This routine determines
whether a DL/I formatted or VSE IDUMP should be taken and gives control to
the appropriate dump routine.

DLZODPO7 - Abnormal Task Termination I/O Check Entry

This routine is entered from DFHPCP on abnormal task termination before
SETEXIT check is made. This routine checks for and cancels any DL/11/0
" requests that had not completed when the task was terminated.

DLZODPI0 - Common Get Storage Routine for DL /I Online Modules

N This routine gets storage for CICS/VS (up to the maximum GETMAIN size) or
) VSE (for requests beyond the maximum CICS/VS GETMAIN size) on behalf of

Section 3. Program Organization 3-23

Licensed Material—Property of IBM

various DL/I online routines. This routine adjusts the requested storage size and
address to allow for the CICS/VS Storage Accounting Area and its own storage
accounting area.

DLZODPII - DL/I Oniine Common Free Storage Routine

This routine returns storage obtained by using DLZODP10.

DLZERMSG - DL/I Online Message Writer

The following processing occurs:

L]

The DL/I error code is extracted from the active PST or from a parameter list
pointed to by register 1.

o CICS/VS storage is acquired.

+ The appropriate DL /I message text is generated using DLZMMSGT and
logged to destination CSMT via CICS/VS Transient Data Management and to
the operator’s console.

o Control is returned to the calling routine.

If an error occurs while writing to transient data, an ABEND indicator is placed in
the TCA and control is returned to the calling routine.

DLZOVSEX - VSAM EXCP EXIT Processor

This routine prevents the CICS/VS partition from being put into a WAIT state due
to DL/I initiated VSAM I/O. It does this by issuing a CICS/VS WAIT instead of
letting VSAM issue a VSE WAIT. The EXCP exit processor receives control
directly from VSAM after each SVC 0 resulting from a GET or PUT call from the
buffer handler. DL/I checks the ECB for completion of the I/O request. If the
request is incomplete, the CICS/VS environment is re-established and a CICS/VS
task control wait is issued in behalf of the current task. If the ECB was previously
posted or the event completion has caused the task to be removed from the wait
condition, control is returned directly to VSAM via register 14.

DLZFSDPO - DL /I Formatted System Dump Program

The batch and online nucleus programs use this module to dump DL/I control
blocks.

Entry Interface - DLZFSDPO0
[This module interfaces with DLZBNUCO in batch and DLZODPO02 in online.
Exit Interface
This rﬂodﬂe retuﬁs control to caller.
Entry Register Contents
R1 SCD address
R13 Save area address

R14 Caller return address
R15 Module entry point address

3-24 DL/IDOS/VS Logic Manual, Vqlumel

(i

O

N

NS

Licensed Material—Property of IBM

DLZFTDPO - DL/I Formatted Task Dump Program

This module formats DL /I task control blocks and writes them to CICS/VS dump
data sets whenever this module is linkedited with the online nucleus and an
application program scheduled to a DL/I data base ABEND.

C

C

If the DL/I system terminates abnormally without the CICS/VS system
abnormally terminating, this module executes for each DL/I task active at DL/I

ABEND.

Entry Interface - DLZFTDP0

This module is called by DLZODPO6.

Exit Interface

This module returns control to DLZODPO06.

Entry Register Contents

R6 System TCA address

R12 User TCA address

R13 CSA address

R14 Caller return address

R15 Module entry point address

| DLZCBDPO - DL /I Formatted Control Block Program

This module is a collection of subroutines that build a list of addresses that are used
to print DL/I control blocks.

Entry Interface - DLZCBDPO

This module interfaces with DLZFSDPO and DLZFTDPO, the formatted dump

programs.

Exit Interface

This module returns control to the caller:

Entry Register Contents

R11 Address of desired subroutine
R14 Caller return address
R15 Module entry point address

Control blocks

ACB PDIR
ACT PPST
BFFR PSDB
BFPL PST
DDIR RIB
DIB RPCB
DMB RPDIR
EIPL SBIF

Section 3. Program Organization.

3-25

DL/I Facility Modules

DLZDILAO0O0 - Call Analyzer

Licensed Material—Property of IBM

FDB SCD
FERT SDIB
FLD SSA
FSB SSAP
PATH SSAX
PCB UIB
PDCA

The call analyzer module is used for initiation of all data base calls. It receives
control from the DL/I common data base call routine (DLZCOMO1) in the
CICS/VS-DL/I region or from the batch application program request handler
(DLZPRHBO). It receives control from application program control (DLZPCCO00)
at termination of a DL/I batch partition or online task termination (DLZODPO01)
in a CICS/VS-DL/I partition.

For internal DL/1 calls to update an index data base, this module (DLZDLAOO)
receives control from the index maintenance module (DLZDXMTO0).

The call types handled by the call analyzer module can be divided into two groups:
(1) normal data base calls, and (2) special control calls, which are sometimes
referred to as ‘pseudo’ calls. The special calls are GSCD, get SCD address; TERM,
write all buffers altered by that user; and UNLD, write last records for simple .
HSAM, HSAM, simple HISAM, and HISAM load or write all HDAM and HIDAM
data base buffers altered by that user and close all data sets in the system. In the
online environment, GSCD calls are processed by DLZCOMO1 and passed to the
call analyzer module.

The primary functions of the call analyzer are:

o Test the first parameter in the call list for a valid four-character function and
encode this into a one-byte function code.

o Test the second parameter in the call list for a valid PCB address and store the
PCB address in the PST.

« Store the third parameter in the call list in the PST. This is the user’s I/O area
address.

o Verify the format of all segment search argumeénts (SSAs) in the call list and
fill in the corresponding level table entry for the SSA in the call.

¢ Do required checking based on call type and SSAs.

« Test for field level sensitivity when processing SSAs and set on bit if present.
Call DLZCPY10 to map user’s view to physical view if necessary.

» Do sequence checking when loading a data base.

« Pass control to the proper action module to process the call.

3-26 DL/IDOS/VS Logic Manual, Volumel

NS

Licensed Material—Property of IBM

If a data base call requires the VSAM control blocks or SAM DTF representing the
files within a data base to be opened, the analyzer calls upon the DL /I open/close
module (DLZDLOCO) to perform the data management open for all files which
may be needed for that PCB. The DL/I open/close module is called when the
UNLD call is received to close all DL/I data bases opened in the batch partition.

During normal processing of the SSA, when an SDB has been located for the
segment, a test of the SDB will be made to determine if field level sensitivity has
been specified (bit SDBFSB set on in field SDBXFL). If it has, an indicator will be
set in the JCB, signifying that at least one segment has field level sensitivity (bit
JCBFLS set on in field JCBLVT).

When processing a qualified SSA, a check is made to determine if field level
sensitivity has been specified for the segment. If it has, the FSB chain is scanned to
see if the field name exists. If the field name does not exist or if the FSB is not
flagged as an allowable field, a return code of ‘AK’ (invalid field name in call) is
stored in the PCB and return is made to the caller.

If the field name is found and it is an allowable field, then qualification is set in the
level table based on information in the FSB (qualification on data or key).

When the Call Analyzer determines that at least one segment has field level
sensitivity, it will no longer do the processing to determine the offset of the
segment in the user’s I/O area (entry in LEVUSEOF will not be initialized by the
Call Analyzer).

Prior to calling the insert, replace, or retrieve (only if called on behalf of insert)
action modules, if the field level sensitivity indicator has been set in the JCB, the
Call Analyzer will exit to DLZCPY10 to map the user’s view to the physical view.
At this point,the field level sensitivity indicator in the JCB will be reset. Any error
passback from DLZCPY10 will be detected and exit will be taken to the Program
Request Handler.

The field level sensitivity indicator will also be reset if an error is détected while
processing the SSAs.

Control Blocks - DLZDLA00

PST
PDIR
PSB
DDIR
DMB
PCB
JCB
Level table
SDB
FDB
FSB

Register Contents

R1 PST address

R13 Save area address
R14 Return address
R15 Entry point address

Section 3. Program Organization 3-27

DLZDLOCO - Open/Close

Licensed Material—Property of IBM

Interfaces - DLZDLAOO
Receives control from DLZPCC00, DLZODPO00, and DLZPRHBO.

Passes control to DLZDLR00, DLZDLD00, DLZDDLEO (DL/1 action moduies):

These modules need not save the analyzer’s registers. They can return to the
analyzer’s entry point plus an offset stored in the SCD.

Call to DLZDLOCO - DL /1 open/close:

PSTFNCTN has open function
PSTDBPCB has address of the PCB

Call to DLZDBHOO - buffer handler:
PSTFNCTN is PSTPGUSR (X‘07’)

Call to DLZCPY 10 - field level sensitivity copy

The function of module DLZDLOCO is to open and close the DL/I data bases in
either the CICS/VS online control region or the batch partition. VSE open/close
macros are used to open and close data sets. DLZDLOCO opens/closes VSAM
ACB:s for all data base organizations besides HSAM and simple HSAM, where
DTFs are used. For simplicity the term ACB is used in the following description
where ACB or DTF would be correct. For a HISAM data base with all functions,
except for PSTOCDCB, both the KSDS and ESDS are opened/closed.

The PSTFNCTN byte in the PST determines the type of operation to be performed
by DLZDLOCO.

« PSTOCDCB (X‘10’) - Only one ACB is opened/closed. It is located by DSG
address (PSTDSGA).

« PSTOCPCB (X‘02’) - For PROCOPT = L or LS one data base is opened.
For PROCOPT # L or LS:
All SDBs of that PCB are scanned and all referenced data bases are opened,
that is, index data bases and logically related data bases are opened/closed
with this call.
« PSTOCDSG (X‘40’) - One or two (HISAM) data bases are opened/closed.
The ACB is located by DSG address (PSTDSGA).
« PSTOCALL (X‘04’)
— For open:
All ACBs specified for initial opening are opened (CICS/VS online control
region only).

— For close:
All ACBs in the system are closed.

3-28 DL/I DOS/VS Logic Manual, Volumel

N

Licensed Material—Property of IBM

« PSTOCDMB (X‘01’) - The ACBs of one DMB are opened/closed. The DMB
directory address is passed in register 2.

DLZDLOCO compares the following values specified in DBD generation with the
VSAM catalog entries for a data base:

« Control interval size
« Key length (KSDS)
« Relative key position (KSDS)

« Highest RBA used in the data base based on the PROCOPT. For example,
PROCOPT=L requires an empty data base (high RBA=0), while a data base
must contain data if PROCOPT=#L (high RBA>0).

For HISAM, HIDAM, and HDAM data bases, the first control interval of the
VSAM ESDS is reserved for the DL/I control record. DLZDLOCO maintains this
record.

o If PROCOPT=L or LS, space is acquired for one control interval and the
DL /I control record is constructed. The buffer handler (DI.ZDBHOO) is called
to write the DL/I control record.

An open record, code X‘2F’, is written to the log file whenever a data base is
opened. If the open call is successful, bit zero (JCBOPEN) of the JCBORGN byte
equals one (PCB call); and bit zero (PSTOCBAD) of the PSTFNCTN byte equals
Zero.

All PSDBs of a DMB are scanned for variable length segments with the
edit/compression routine. All edit/compression routines that have ‘INIT’ specified
are called after “open” and before “close’.

Register Contents

R1 PST address

R2 DDIR address if it is a close DMB call
R13 Save area address

R14 Return address

R15 Entry point address

Control Blocks - DLZDLOC0

o DL/I control record - DLZRECO
« PSTFNCTN field of the PST:

T Meepse
2 1 Open for load
3 1 Process specific ACB
4 0 Close call
1 Open call

Section 3. Program Organization 3-29

Licensed Material—Property of IBM

Bit Value Meani

5 1 Open/close all DMBs)
6 1 Open/close a PCB (™
7 1 Open/close a DMB \

DLZDLDO00 - Delete/Replace

This module performs the logical actions involved in replacing or deleting segments
in a DL/I data base for all organizations, except HSAM (which has no delete or
replace).

The replace function checks to ensure that the key field of the segment was not
inadvertently altered and that the replace rules were not violated. If the segment to
be replaced is indexed, this module interfaces with the DL /I index maintenance
module (DLZDXMTO).

The first check made upon entry is a key check of the contents of the PCB key
feedback area to the key of the segment in the user’s I/O area. If there are any
changes, a ‘DA’ status code results. Next the segment is retrieved and the
sequence fields are checked for any changes. If any changes occurred, a ‘DA’
status code again results. Then the remainder of the data is checked for changes.
If there were no changes, a blank status code is returned. If there were changes,
the data is replaced.

C

If the segment to be replaced is in an HDAM or HIDAM data base and the
segment is variable length, the segment and its prefix may be separated. The
separation of data is determined by the min-byte value of DBDGEN and the
current size of the segment. ‘Also in this regard, if the segment was previously
separated from its prefix prior to a replace call, the replace will attempt to rejoin
data and prefix.

The delete function for a HISAM data base reads the segment to be deleted. If the
organization is simple HISAM, the buffer handler is called to issue a VSAM
ERASE. Otherwise, the segment is deleted by setting the HISAM segment delete
bit. In addition, if this is the root segment, the record delete bit is also set.

The delete function for HDAM or HIDAM data bases includes a check to ensure Py
that delete rules stated for the DMB will not be violated. If logically related \%\ J
segments with a physical delete rule exist in the data base within the physical -
hierarchy starting with the segment to be deleted, a scan is made of all the

segments to ensure that they include no segment which has not been logically

deleted.

A scan of the data base from the point of deletion is performed. During this scan,
each segment is accessed twice: once on the way ‘down’, and again on the way
‘up’. While scanning ‘down’, any segment in a logical relationship is inspected to
determine its eligibility for deletion and to terminate as many logical relationships
as possible. In some cases (for example, the last logical child for a logical parent
which has already been deleted through its physical path), the deletion of all, or a
portion of, the logically related data base record is required. In this case, the delete
action is expanded to perform the total delete function (except for the checking)
for the new data base record. Then the scan of the original data base record is

continued at the point of exit. C

3-30 - DL/IDOS/VS Logic Manual, Volumel

Licensed Material—Property of IBM

When scanning ‘up’, an interface with index maintenance (DLZDXMTO) is made if
the segment is indexed. Physical pointers are adjusted to bypass any removable
segments (HDAM or HIDAM segments which are no longer required) whose space
is released by interfacing with the space management module, DLZDHDSO0. For
nonremovable segments (segments required to remain because of existing logical
relationships), a logical delete bit is set to indicate the status of the segment.

A work area is obtained from the DL/I buffer pool to maintain the concatenated
key and position of segments in the data base record(s) being scanned during
delete or for calls to index maintenance during replace.

Delete/Replace Work Space Acquisition and the Work Space Prefix

DLZDLDO0 acquires space to build work area(s) from DLZDBHO0O (buffer
handler) via a PSTGBSPC call. The calculated minimum size required is indicated
in PSTBYTNM. If the space is available, the buffer handler returns the address of
the selected buffer in PSTDATA and its size in PSTWRKI1.

The first section of the work space contains a prefix whose format and contents are
described in Section 5. Immediately following is the work area containing
information concerning the segment to be deleted (or the index source segment to
be replaced), its physical data base (HIDAM or HDAM), and other segments in
that data base record.

If a second work area is needed because of logically related segments and the space
remaining in the current work space is large enough, the next work area will be
allocated in the same work space (buffer) immediately following the previous work
area. Forward and backward chains are maintained. If the remaining space is not
large enough, another buffer is obtained from the buffer handler and chained to
and from the previous work space.

Except in the case of an error condition, work areas are freed in the reverse order
in which they were allocated. When the work area freed was the first one in the
work space, the buffer is freed via a PSTFBSPC call to the buffer handler.
Segment Delete Codes

Segment delete codes utilized in the second byte of the prefix of each DL/I
segment:

1... This segment has been deleted (HISAM only).
.1.. This data base record has been deleted (HISAM only).

.1. This segment has been processed by delete or replace.
..X Reserved
1... This variable-length segment has its data separated from the prefix.
.1.. This segment is no longer required by its physical parent.
.1. This segment is no longer required by its logical parent.

«+.. ...1 This segment has been removed from its logical twin chain.

1111 1111 This segment contains the separated data of a variable-length
segment.

Interfaces - DLZDLDO00

This module interfaces with the following modules:

DLZDBHO00

Section 3. Program Organization 3-31

DLZDDLEO - Load/Insert

Licensed Material—Property of IBM

DLZDHDS0
DLZRDBLO
DLZDXMTO
DLZQUEF0

Control Blocks - DLZDLD00

¢ Delete workspace prefix
« Delete work area.

Entry Register Contents

R1 Contains the address of the PST

R13 Points to the current save area

R14 Contains the DL/I analyze call function module (DFSDLAO0O) return point
R15 Contains the module entry point

Exit Register Contents

R1 Contains the PST address

R13 Points to the current save area

R14 Contains the DL/I analyze call function module (DFSDLAOQO) return point

R15 Contains a return code (0)

Register Contents on ABEND - in the SCD ABEND Save Area

R1 PST address

R2 SCD address

R3 SDB address

R4 DMB address

R5 PSDB address

R6/R10 Work registers

R11 Base - (subroutine CSECT)
R12 Base (main CSECT)

R13 Current save area

R14/R15 Work registers

The function of DLZDDLEQ is to load HDAM, HIDAM, Simple HISAM, HISAM,
Simple HSAM, and HSAM data bases (in batch only) and insert segments into
HDAM, HIDAM, Simple HISAM, and HISAM data bases.

DLZDDLEQ is entered from the DL/I call analyzer (DLZDLAOO) on load
requests for HIDAM, Simple HISAM, HISAM, HSAM, and Simple HSAM
segments, HDAM dependent segments, and insert requests for Simple HISAM and
HISAM roots. It is also entered from the retrieve module (DLZDLRO0O0) on load
requests for HDAM root segments, and insert requests for HDAM, HIDAM, and
HISAM dependent segments.

The module performs the following functions:
A. HDAM/HIDAM load/insert -

1. Normal segment:

3-32 DL/1DOS/VS Logic Manual, Volumel

\/

A0

Licensed Material—Property of IBM

« Positioning: retrieve positions for inserting and loading of HDAM
roots. For all other loading, DLLZDDLEQO simulates retrieve
positioning.

o Space for new segment is acquired using the space management
module, DLZDHDSO.

o The segment is moved from the user’s I/O area to the buffer.
o Prefix pointers are updated.

o Actual write is performed by the buffer handler using VSAM.
« Prefix pointers of twins and parents are updated.

o The data base logger (DLZRDBLO) is called to write the new segment
and the updated prefixes.

« If the segment is an index source segment, index maintenance
(DLZDXMTO) is called.

« Exit is to the call analyzer.
Concatenated segment:

« If the destination parent already exists, and the insert rule is physical or
logical: same as normal segment.

« If the destination parent exists and the insert rule is virtual: the logical
child segment is inserted as for a normal segment, data of destination
parent are replaced afterwards.

o If the destination parent does not exist and the rule is not physical, the
destination parent is inserted as for a normal segment; afterwards the
logical child is inserted as a normal segment.

B. HISAM and simple HISAM load

Main storage for a logical record for key sequenced data set (KSDS) and
for entry sequenced data set (ESDS) is acquired from the buffer handler.

The root and all dependent segments that fit into one logical record are
written to the KSDS, using the buffer handler. The remaining dependent

segments are moved to one or more records of the ESDS.

Pointers to those records are inserted.

C. HISAM and simple HISAM root insert

A key equal to or greater than the request is made to the buffer handler. If
the key exists and the delete bit is flagged (HISAM), the space is reused;
otherwise a II status code is returned. If the key does not exist, main
storage is acquired from the buffer handler and the new record is built and
then inserted by VSAM through the buffer handler.

Old (if deleted) and new records are logged.

Section 3. Program Organization 3-33

Licensed Material—Property of IBM

D. HISAM dependent segment insert

o If the segment fits into the record for which retrieve (DLZDLRO00) has
positioned, it is inserted by shifting the segments beyond the insert point to
the right. If the segment does not fit into the record, a new ESDS record is
built. The segment and shifted data are inserted into the new record. If
the shifted data does not fit into the record, a second new ESDS record is
created.

« Pointers to the new records are created.
« Old and new records are logged.
E. HSAM and simple HSAM load

o The I/O areas allocated by batch initialization are used to move the
segments from the user area. PUT locate is executed, whenever one I/0
area is filled.

Blocks and Tables - DLZDDLEO

PST

DDIR
DMB

PCB

JCB

Level table
SDB

FDB

SCD

Registers on Entry and to All Called Modules
R1 PST
Interfaces - DLZDDLEO
This module calls the following modules:
DLZRDBLO Data base logger
DLZDBHOO0 Buffer handler
DLZDHDSO0 Space management
DLZDXMTO Index maintenance
DLZQUEFO0 Queuing Facility
Status Codes - DLZDDLEO

II

AO

IX
LB

3-34 DL/1DOS/VS Logic Manual, Volumel

®

Licensed Material—Property of IBM

DLZDXMTO - Index Maintenance

The function of this module is to load - insert - delete the index pointer segment of
a HIDAM data base and to load - insert - delete - replace the index pointer
segment for secondary indexes of a HDAM or HIDAM data base.

Abbreviations used throughout the module are:

ISS Index source segment
XDS Index target segment (indexed segment)
XNS Index pointer segment (indexing segment)

The following major functions are performed:
ALL CALLS
o Save PST information in XMAINT work area

LOAD
INSERT

« Build index pointer segment in work area

For primary indexes - take key from user I/O area. For secondary indexes -
construct segment from SRCH, SUBSEQ and DDATA fields. For /CK fields
use PCB-key feedback area or read parents of ISS using SDBPOSC or PP
pointers. Call user suppression routine, if needed.

« Build temporary blocks SDB, JCB, DSG
INSERT

¢ Build call list and SSA
o Call analyzer
« Take next index relationship of this ISS

LOAD

¢ Open data base, if necessary, or work data set

« Call buffer handler to write index record or write work data set for secondary
index

o Take next index relationship of this ISS

UNLD
« - Write FF-key record to all index data bases belonging to this data base
DLET

¢ Call buffer handler to get old ISS

Construct the old index pointer segment

For /CK fields take CONCAT key from DLET work area
Call user exit routine, to check for suppression

Build temporary blocks

Log POINTER CHANGE and DEL.BYTE CHANGE
Call buffer handler to change index

L] L] L]] L])

Section 3. Program Organization 3-35

Licensed Material—Property of IBM

o Take next index entry
REPL

e First part = DLET
e Second part = ISRT

ALL CALLS

« Restore PST
« Return to calling module

Entries:

Receives control from DLZDDLEOQ (load/insert) and DLZDLD00
(delete/replace)

Register Contents

R1 PST address
R14 Return address
R15 Start address

PSTWRK1 LSDB of ISS for ISRT, ASTR, REPL calls
LSDB of ROOT for UNLD call
PSDB of ISS for DLFT call

PSTENCTN ‘A0’ Delete
‘A1’ Replace
‘A2’ Insert
‘A3’ Unload

PSTBYTNM RBA of index source segment
Interface to called modules:

1. DLZDLAOO (analyzer)
Called for insert, not load mode

PSTIQPRM points to internal call list
Segment name*X(keyvalue) is used as SSA

2. DLZDBHOO (buffer handler)

PSTFNCTN: PSTMSPUT load HIDAM index
PSTBYLCT get index target segment again
PSTSTLEQ get index pointer segment
PSTPUTKY index of HIDAM data base
PSTBFALT update index of HIDAM data base

PSTBYTNM: RBA of segment
or

Pointer to key to be inserted

3. DLZDLOCO (open/close)

3-36 DL/IDOS/VS Logic Manual, Volumel

AT TN

NS

C

Licensed Material—Property of IBM

DLZDLROO - Retrieve

R2: Address of DDIR

PSTFNCTN: PSTOCOPN + PSTOCLD + PSTOCDMB
PSTOCOPN + PSTOCDMB
PSTOCCLS + PSTOCDMB

4. DLZRDBLO (logger)

PSTWRK1: DBLLGDLT (logical delete)

DBLNDXC + DBLCMC (XMAINT chain maintenance)
PSTWRK2: Old segment code and old delete byte

Old RBA pointer

PSTOFFST: .Offset to new segment code
Offset to new RBA pointer

PSTBYTNM: RBA of record
5. DLZDSEHO (work data set module)

Is called at entry point - 12 to open work file. Return is to BALR if open not
successful, to BALR + 4 if open successful.

6. DLZQUEFO (queueing facility)
Called to do any program isolation queueing necessary

Exits:
Back to calling module.
Control Blocks - DLZDXMTO0

o Index work area - DLZXMTWA
¢ SSA for the XMAINT call to the analyzer.

The DL/1 retrieve phase is responsible for retrieval of all segments, independent of
physical data base organization. When an application program requests the
retrieval of a segment, this phase (DLZDLRO00) gains control from the DL/I call
analyzer, DLZDLAOO. The analyzer has validity-checked the parameters in the
application program’s retrieval request. The analyzer has also placed this
parameter information for retrieval in the DL/T control blocks.

Based upon this information, the retrieve phase calls the DL /I buffer handler
module, DLZDBHOO, which controls physical I/O operations, to read the block
containing the desired segment. Once the desired block exists in the data base
buffer pool, its presence is made known to the retrieve phase.

It is the responsibility of the retrieve phase to “deblock” segments within the block.
Once the desired segment is located, the retrieve phase places the location and
length of the segment in the PST control block associated with the application
making the retrieve request and returns to the DL/I call analyzer. Once a
particular segment within a data base is retrieved for a particular application

Section 3. Program Organization 3-37

Licensed Material—Property of IBM

program, ‘“‘position” is established within the data base for the application program.

This “position” is subsequently used to move sequentially through the data base if N
‘the application program issues GN and GNP calls. ‘i
If the biock containing the segment to be retrieved aiready exists in the daia base

buffer pool, the request from the retrieve phase to the buffer handler results only in

the address of the desired data being returned to the retrieve phase. No physical

I/0 is performed. In the case of HISAM, if a retrieve request involves inspection

of several segments within a record, the retrieve phase requests only the first of

these from the buffer handler and finds the remaining segments itself, utilizing

position information. Positioning information for each application program and

each data base is maintained in the DL/I control blocks which are an extension of

the PCB (that is, JCB, LEVVTAB, and LSDB).

In addition to servicing all data base retrieval requests, the retrieve phase performs

‘“positioning” functions for all segment insertion. In this case, the retrieve phase

receives control from the DL/I call analyzer module on an insert call. Prior to the

insertion of a new segment occurrence, DL/I must insure that the segment does P
not already exist in the data base. It is the responsibility of the retrieve phase to
retrieve the block where the segment to be inserted may already exist. If the
segment does not already exist in the data base, the block retrieved is normally
used for segment insertion. Once the desired physical block is retrieved and
positioning for segment insertion within the block is established, control is passed
to the DL/I load/insert module, DLZDDLEQ. If the data base organization is
Simple HSAM or HSAM, the retrieve phase performs the I/0O (Get/Put) rather
than calling the buffer handler.

N

HIDAM root retrieval by key (qualified GU, GN), results in two buffer handling
requests. The first retrieves the index segment as any HISAM root. The second :
uses the RBA of the HIDAM root in the index segment to get the corresponding e
root segment. The position of the index segment is saved in a special SDB.

Retrieval of segments addressed by secondary indexes is performed in the same
manner, as far as possible, as the retrieval of a HIDAM primary root segment.
(The SDBs are generated so that the index looks like a primary index and the index
target segment like a HIDAM primary root.) The most important differences are:

e The layout of the index pointer segment is user dependent and is different from AN
that of a primary index.

« The sequence field of a secondary index is not necessarily part of the target
segment and may be in a dependent segment.

Variable length segments are handled by the routine VLRT which provides an exit
to a user routine to handle any necessary data expansion after calling the normal
buffer handler interface (SETL).

Retrieval of logically related segments requires special handling. The retrieved

segment (the concatenated segment) consists of the logical child (that is the

concatenated key and the intersection data) and the physical or logical parent

(destination parent). Since the SDBs always reflect the user’s view of the data

base, the same program logic is used whether the segment to be concatenated to

the logical child is a physical or a logical parent. The concatenated key of the

destination parent is constructed using the physical or the logical parent pointer of _ -,
the logical child and the physical parent pointer of the destination parent. For C

3-38 DL/IDOS/VS Logic Manual, Volumel

Licensed Material—Property of IBM

ISRT calls the concatenated key in front of the input data is used to position on the
destination parent. All positions on the physical path to the destination parent and
on the twin chain of the destination parent are maintained.

Command Codes Affecting Retrieval

D - The segment data is moved when the level table is updated and not at return
to the analyzer.

L - The segment skip routine is employed to skip to the last occurrence.

T - The RBA specified in the SSA is moved to the next position pointer location
in the appropriate SDB and an unqualified GN is performed.

F - For a GN (GNP) call, the same logic is employed to retrieve the first
occurrence as for a GU call.

Module Layout - DLZDLRO00

This phase consists of 60 subroutines, a main entry routine (DLZDLRO), a main
exit routine (DLZDLR1), and a general linkage and maintenance support routine
(DLZRLNKD), each of which is preceded by a description in the form input -
processing - output. The subroutines are linked using macro DLZRLNK and the
following macros (refer to the comments in the DLZRLNK source program
listing):

DLZRHDR First macro of a subroutine; generates DSECTs, EQU, and
module identification.

DLZRTLR Last macro of a subroutine.

DLZRCLL Generates code to transfer control to a subroutine using
DLZRLNK.

DLZREXT Generates code to return control to a calling subroutine using
DLZRLNK.

The phase is supplied as eight modules. The first seven, DLZDLRAO to
DLZDLRGQO, contain the subroutines and the eighth, DLZDLNKD, contains the
linkage and maintenance support routine that is generated using the macro
DLZRLNK. The first module, DLZDLRAUO, also contains the routines DLZDLRO
and DLZDLR1. The distribution of the subroutines within the CSECTs contained
in the modules DLZDLRAO to DLZDLRGO is arbitrary and can be changed at
will, necessitating only that the affected modules be reassembled.

Maintenance Support - DLZDLR00

The module DLZRLNKD contains facilities to dynamically dump control blocks
and I/0 buffer sections. The extent and frequency of the dumping is controlled by
DLZRLNK macro parameters or control fields in the PST as described in the
DLZRINK source program listing.

Interfaces - DLZDLR00

This phase interfaces with the following modules:

Section 3. Program Organization 3-39

Licensed Material—Property of IBM

DLZDDLEO Load/insert
DLZDBHO00 Buffer handler
DLZQUEF0 Queuing facility

Entry Register Contents and Return

RO SCD

R1 PST

R2 PCB

Register Contents During Execution 4
RO Work

R1 Work

R2 Work, PCB

R3 JCB

R4 LEVTAB

R5 SDB

R6 Segment address
R7 PST

R8 DSG part of JCB

R9 Byte or record location of SEGM in data base
R10 Work, FLD

R11 Base register for linkage routine DLZRLNKD
R12 Base register

R13 Save area

R14 Work

R15 Work

DLZDHDS0 - HD Space Management

Module DLZDHDSO allocates and maintains free space on direct access storage
devices for storage of DL/I segments in the hierarchical direct organizations
(HDAM and HIDAM). This space is managed through the use of free space
elements (FSEs) in each block of each data set of a data base and a bit map. The
bit map describes blocks that have at least one FSE which can contain the largest
segment in the data set. There is one bit map per data set consisting of one or
more blocks distributed over the data set.

The routines in module DLZDHDSO0 perform the following functions:

| DLZDHDSO contains the entry point for the combined module. It saves
registers, initializes the work words in the PST, and branches to
the appropriate module.

| GETSPACE consists of a ‘driver’ for all subfunctions that may be invoked to
find space. It uses one byte of the work space to control
invocation. This section also controls formatting for HDAM
when the root anchor point is beyond the current end of the data
set and formatting of new bit map blocks, if necessary.

| FRESPACE returns to free space the space occupied by a segment being

deleted. It logs the deletion of the segment and updates the bit
map if required. ,

3-40 DL/IDOS/VS Logic Manual, Volumel

o
L

C

J

Licensed Material—Property of IBM

| SRCHBLK

SRCHPOOL

SRCHBTMP

| CALCSRLM

| BITMPLOC
BITMPON

BITMPOFF

| DEVCHARI

| FORMAT

searches the block passed to it for an FSE that satisfies the
current request. If none is found, control returns to the calling
module. If the request can be satisfied, the return is directly to
the invoker of DLZDHDSO.

searches the DL/I buffer pool for a block in the range passed to
it. If one is found, module SRCHBLK is called to search it. If
the block is rejected, the search continues to the end of the pool,
and control is returned to GETSPACE. To avoid changing the
position of buffers on the buffer pool use chain, online and batch
are treated differently. In a batch environment, the buffer to be
searched is passed to SRCHBLK and may be used without being
requested from the buffer handler. In a DL/I online
environment, the buffer is passed to SRCHBLK. If the request
can be satisfied from it, the buffer is then requested from
DLZDBHOO and again passed to SRCHBLK for actual
alteration.

searches the bit map for a bit that is a one and is also in the
specified range. If one is found, its corresponding block number
is returned to GETSPACE. If all bits are zero, PSTNOSPC is
returned to GETSPACE. The map search functions include
creation and formatting of new bit map blocks, if necessary. To
further proximity of space for related segments, whenever
possible, the search within a given range is done from the center
to the outer ends of that range in both directions at the same
time.

calculates search limits for GETSPACE. A switch is used to
determine the appropriate limit - track, control area, delta control
areas. The limits of the previous scan are used to break the range
into two subranges. This prevents the re-requesting of blocks
that were rejected during earlier scans.

determines the block number for the bit map block appropriate to
the block number passed to it. It also determines the relative bit
position in the bit map block of the block number passed to it.

turns the appropriate bit ON or OFF according to the entry point
involved. The log is also called to reflect the change.

tests to see if the device containing the data base is actually an
FBA device if it was specified as such, and, if it is, calculates the
CIs per track and per cylinder and the scan value in cylinders
equivalent to the number of FBA blocks specified during DBD
generation. These values are stored in the DMB for later use.

formats a new control interval. Builds initial FSEs and root
anchor points.

Interfaces - DLZDHDS0

The following modules are called by DLZDHDSO:

DLZDBHO0 Buffer handler

Section 3. Program Organization 3-41

Licensed Material—Property of IBM

DLZRDBLO Data base logger
Calling Sequence
R1 PST address
PSTDSGA DSG address for appropriate file (all calls)
PSTFNCTN
PSTGTSPC 01 Get space
PSTFRSPC 02 Free space
PSTBTMPF 03 Turn off bit in bit map
PSTGTRAP 04 Get space close to root anchor point
PSTRBN RBN of segment to get space close to - PSTGTSPC
RBN of segment to be deleted - PSTFRSPC
BBBR - PSTGTRAP
where BBB = relative block number,
R = root anchor point number
PSTBLKNM Block number whose bit is to be turned off - PSTBTMPF
R5 DMBPSDB - Address of PSDB of subject segment
R14 Return point
R15 Entry point - DLZDHDSO
On Return

R15 0 - No errors occurred
4 - Error has occurred; check PSTRTCDE

PSTRTCDE 4 - RBN is beyond the end of the data set
8 -1/0 error
C - No space in data set
1C - Insufficient space in buffer pool

For other return codes, see ‘“PST - Partition Specification Table” in *“ Section 5:
Data Areas”.

DLZDBHO00 - DB Buffer Handler

3-42

The primary functions of module DLZDBHOO are:

1. To satisfy requests for buffer space for the processing of the data blocks of HD
data bases. For Simple HISAM and HISAM data bases and for the index of
HIDAM data bases, the VSAM buffer management is used.

2. To issue I/0 requests to VSAM whenever data must be read or written. Thus,
the buffer handler provides an interface between the DL/I action modules and
VSAM data sets.

3. Whenever possible, to satisfy requests for data base segments and or records
from data currently available in its buffer pool without issuing an I/O request.

DL/I DOS/VS Logic Manual, Volume1

o
e

Licensed Material—Property of IBM

For this purpose, data is retained in the pool as long as possible. Various
o features such as use chains and alteration flags are employed so that a
(centralized buffer management is facilitated for concurrent use by all
application programs.

The buffer handler satisfies the following requests as indicated by PSTFNCTN:

1. For processing HDAM, HIDAM, or HISAM ESDS:

Symbol Hex
Function Function Description

PSTBYLCT 02 If the request is issued for an HDAM or HIDAM
data base, the buffer handler retrieves the control
interval whose relative byte number is stored in
PSTBYTNM. The relative byte number in
PSTBYTNM is first converted to a VSAM

control interval number and an offset within the
(control interval.

If this control interval is not in the buffer pool,
buffer space is obtained in the buffer pool, the
buffer which will be used is written, and the
control interval is read into this buffer by a
VSAM get call.

If the requested control interval is already in the
) buffer pool, no read is done and the address of
(the buffer containing this control interval is
‘ passed back to the caller.

If the request is issued for a HISAM ESDS data
base, the buffer handler only issues the proper
VSAM call for retrieving the record identified by
the RBA which has been passed to the buffer
handler in PSTBYTNM.

— PSTBKLCT 01 The same as PSTBYLCT for an HDAM or
() HIDAM data base except that a VSAM control
- interval number is passed to the buffer handler in
PSTBLKNM.

PSTBYALT 06 A locate relative byte number (refer to
PSTBYLCT) is done first and then the buffer
which contains the contains the control interval is
marked as altered by this specific user.

Section 3. Program Organization 3-43

Symbol
Function

PSTBFALT

PSTGBSPC

PSTFBSPC

PSTPGUSR

PSTBFMPT

PSTWRITE

Hex
Function

05

03

04

07

04

08

Licensed Material—Property of IBM

Description

If the request has been issued for an HDAM or
HIDAM data base, the buffer whose prefix
address is stored in PSTBUFFA is marked
altered.

If, however, the request applies to a HISAM
ESDS, the proper VSAM call is issued to write
the record immediately.

A buffer with the length specified in
PSTBYTNM (possibly rounded to the next
multiple of 512 bytes) is provided to the caller.

A buffer identified by a DMB number, ACB
number, and control interval number in
PSTDMBNM, PSTACBNM, and PSTBLKNM is
freed, that is, it is marked empty and put on the
bottom of the use chain.

All the buffers which have been modified by a
specific user are written. All nonreusable buffers
held by this user are marked empty and put to the
bottom of the use chain. The bit representing
this user is turned off in the user mask of all
permanent write error blocks.

If the purge request is on behalf of a CHKP
function-call, all DMBs are scanned for index
data bases and ENDREQs are issued to ensure
that all VSAM buffers are written to the data
bases.

All buffers of one data base or certain buffers of
a data base are marked empty and put on the
bottom of the use chain.

A logical record is added to a HISAM ESDS.

2. For processing HIDAM index, Simple HISAM or HISAM KSDS:

a. Accessed by VSAM RBA

3-44 DL/IDOS/VS Logic Manual, Volumel

£y

i)

;

N

Licensed Material—Property of IBM

Symbol Hex

Function Function Description

PSTBYLCT 02 Retrieve the VSAM KSDS record by the RBA
which is in PSTBYTNM.

PSTBFALT 05 Write the VSAM KSDS record by the RBA
which is in PSTBYTNM.

PSTERASE 0A Delete the VSAM KSDS record identified by the
RBA which is in PSTBYTNM.

b. Accessed by key

Symbol Hex

Function Function Description

PSTSTLEQ 09 Retrieve the VSAM KSDS record whose key is
equal to or greater than the key whose address is
stored in PSTBYTNM.

PSTGETNX 0B Retrieve the next sequential VSAM KSDS
record.

PSTSTLBG 0oC Retrieve the first VSAM KSDS record in a data
base.

PSTPUTKY 0D Insert a record by key directly into a VSAM
KSDS.

PSTMSPUT OE Insert a record which is in ascending key order
into a VSAM KSDS.

The buffers which are used for satisfying these requests are provided by VSAM
buffer management. The buffer handler provides VSAM control blocks (ACB,
EXLST, and RPL) to VSAM data management when issuing the required VSAM
action macro.

The module DLZDBHOO consists of three CSECTs:
DLZDBHOO - Contains the code for the functions

PSTBYLCT
PSTBKLCT
PSTBYALT
PSTBFALT
PSTGBSPC
Maintenance of write chain and use chain

DLZDBHO?2 - Contains the code for the functions

PSTSTLEQ
PSTGETNX
PSTSTLBG
PSTPUTKY
PSTMSPUT

Section 3. Program Organization 3-45

Licensed Material—Property of IBM

PSTERASE
- PSTWRITE

O

Additionally, this CSECT contains the code required for preparing and

issuing of VSAM calis and for processing feedback information by VSAM.
DLZDBHO03 - Contains code for the functions

PSTBFMPT
PSTPGUSR

In addition, this CSECT contains the subroutines for providing an
enqueue/dequeue function.

Write Chain

The new control intervals of a HIDAM or HDAM data base are chained together
on a write chain in ascending order of their control interval numbers. If one of the AT
buffers on the write chain has to be written, all buffers on the chain are written. \ P,

There is a write chain for every data base. It is maintained by storing the prefix
numbers of the prefixes of the next higher and the next lower buffers in bytes 18
and 19 of the prefix. A bit switch in byte 7 of the prefix (X’80’) is on if a buffer is
on a write chain.

Use Chain
All buffers are chained together in the order of their usage. This use chain is A
physically separated from the buffer prefixes and consists of one-byte elements x{‘ B

containing relative numbers of prefixes. The order of the buffers on the use chain
is indicated by the physical order of these use chain elements.

There is one use chain area per subpool. Each use chain area has a maximum of 32

entries. The maintenance of the use chain involves putting a use chain element on

the bottom or on the top of the use chain as follows. The contents of the use chain

element which is to be moved are saved. Then all use chain elements located

behind the element to be put on top, or located before the element to be put on the

bottom, are moved to the address which is one byte lower than the load address (or Q B
one byte higher if an element is placed at the bottom). The saved element is then 7
stored at the top or the bottom of the chain.

ENQ/DEQ Subroutines

Since transactions in an online environment may be processed in multi-thread
mode, the buffer handler may have to synchronize and/or delay requests for
buffers and/or buffer space. This is accomplished in two subroutines which
perform ENQ/DEQ type functions. The following fields are used by the
ENQ/DEQ routine:

3-46 DL/I DOS/VS Logic Manual, Volumel

Licensed Material—Property of IBM

Function Label Control block
ENQ/DEQ existing BFFRPST Buffer prefix
control interval (CI) ID FPSTEXCI PST prefix
ENQ/DEQ pending CI BFFRNPST Buffer prefix
ID PPSTPECI PST prefix
PPSTCHAI PST prefix
ENQ/DEQ subpool SUBNQFI Subpool information
“ SUBNQLA table
PPSTSUPO Subpool information
table
PST prefix
ENQ/DEQ matrix BFPLPSIL. Buffer pool prefix
BFPLFSIF Buffer pool prefix
BFPLPSIL Buffer pool prefix

PPSTMATR PST prefix

The ENQ/DEQ routines use the field BFPLNQW1 in the buffer pool prefix as
work space.

Normally, the resources to be enqueued are the existing contents of a buffer
(existing CI ID) or planned contents of a buffer (pending CI ID). Under certain
circumstances, other resources may be enqueued.

Enqueuing of a resource consists of the following steps.

If the resource is available:

1. Store the PST ID into a field of the resource reserved for this purpose (that is,
BFFRPST, BFFRNPST, SUBNQF1, BFLPSIF).

2. Store the resource ID (for example, the buffer number) into a field in the PST
reserved for this purpose (that is, PPSTEXCI, PPSTPECI, PPSTSUPO,
PPSTMATR).

3. Indicate successful ENQ with a return code of 4 and return to caller.

If the resource is not available:

1. Chain with appropriate chain fields the current PST behind the last PST
already waiting for this resource.

2. Return with a return code of 8 to indicate that a wait condition exists.
Dequeuing of a resource consists of the following steps.

1. Remove the resource ID from the appropriate field in the current PST.
2. Remove the PST ID from the appropriate field in the resource.

3. If the PST chain fields indicate that no other PST was waiting on this resource,
return to caller.

4. If another PST was waiting on this resource:

a. Move the waiting PST ID into the resource.

Section 3. Program Organization 3-47

Licensed Material—Property of IBM

b. Post the waiting PSTs and unchain the current PST.

c. Return to caller. P
For performance reasons, resources contain, in addition to the owning PST’s ID, s
the ID of the last PST in the wait chain for this resource. These IDs are aiso
maintained by the ENQ/DEQ routines.

The following types of ENQ requests may occur:

ENQ existing CI ID When a task either wants to write a buffer or wants to
get posted when reading into or writing a buffer is
finished.

ENQ pending CI ID When a task wants to reuse a buffer in the buffer pool
or when a task wants to get posted when the creation
of a pending (i.e., new) CI is finished.

ENQ subpool When there is currently no buffer prefix in a subpool Pan
allowing a pending CI ID. '.%\)/

ENQ extension queue When a new block past the VSAM SEOF is created,
the task must wait until processing of previous tasks
that created new blocks have been processed.

Control Blocks - DLZDBH00

PST

PPST , P
DDIR /
DMB L
DSG

SCD

BFPL

BFFR

SBIF

Interfaces - DLZDBHO00

DLZDBHOO uses the PST for communication from and to the calling modules and NS
for work space. The DSG is used to obtain the DMB number and ACB number of

the data set which applies during a request. The address of the buffer pool prefix is

obtained from the SCD. The address of the buffer prefix area is obtained from the

buffer pool prefix. VSAM is invoked for all 1/0.

In order to make sure that writing of log information is always ahead of updafing a

data base, the buffer handler may branch to a specific entry point of DLZRDBLO

or DLZRDBL1. (Refer to the description in the paragraph about DLZRDBLO and
DLZRDBL1.)

DLZDBHOO issues the RELPAG macro for buffers that are marked empty.

Buffer Handler Functions and Required Fields

The following chart illustrates which fields must be supplied to the buffer handler G

(input) for each specific function and which fields are filled in by the buffer
handler (output) on completion of the function.

3-48 DL/IDOS/VS Logic Manual, Volumel

Licensed Material—Property of IBM

1. Functions used to access a HIDAM or HDAM data base

Function Input Output
Field Contents Field Contents
PSTBYLCT PSTBYTNM Relative byte number of desired segment |PSTDATA Core address of desired segment
PSTOFFST Offset of segment from beginning of
control interval
PSTBKLCT PSTBLKNM RBA of desired segment PSTDATA Core address of desired segment
PSTBYALT See PSTBYLCT See PSTBYLCT
PSTBFALT PSTBUFFA Address of buffer prefix which is to be
marked altered
PSTGBSPC PSTBYTNM Number of desired bytes PSTDATA Address of provided buffer
PSTFBSPC/ PSTDMBNM |DMB
PSTBFMPT PSTACBNM ACB
PSTBLKNM Control interval RBA
All or part of buffer identifier may be
processed.
PSTPGUSR PSTDMBNM |DMB
PSTACBNM ACB
PSTBLKNM
PPSTID
Control interval RBA User identifier Any
or all of these may be passed.
A
2. Functions used to access a HISAM ESDS
Function Input Output
Field Contents Field Contents
PSTBYLCT PSTBYTNM RBA of the logical record to be read PSTDATA Address of the record within the buffer
PSTBFALT PSTBYTNM RBA of the logical record to be written
PSTWRITE PSTDATA Address of work area containing the PSTBLKNM RBA of the record added to the ESDS
logical record as calculated by VSAM
PSTBUFFA Prefix Address
B
3. Functions used to access a KSDS by key (Simple HISAM, HISAM or HIDAM
index)
Function Input . Output
Field Contents Field Contents
PSTSTLEQ PSTBYTNM Address of the field which contains PSTBYTNM RBA of the logical record retrieved
search argument
PSTDATA Core address of record
PSTSTLBG PSTBYTNM RBA of the logical record retrieved
PSTDATA Core address of record
PSTGETNX PSTBYTNM RBA of the logical record retrieved
PSTDATA Core address of record
PSTPUTKY PSTDATA Address of work area
containing the logical
record
PSTBUFFA Prefix address
PSTMSPUT PSTDATA Address of work area containing the
logical record
PSTBUFFA Prefix address

Section 3. Program Organization 3-49

Licensed Material—Property of IBM

4. Functions used to access a KSDS by RBA (HISAM or HIDAM index)

Function Input Output
Field Contents Field : Contents
PSTBYLCT PSTBYTNM RBA of the logical record to be retrieved [PSTDATA Address of the record within the buffer
PSTBFALT PSTBYTNM RBA of the logical record to be written
PSTDATA Address of record within the buffer
PSTERASE PSTBYTNM RBA of the logical record to be erased

Calling Sequence

RO SCD address
R1 PST address
R14 Return address to caller
R15 Address of DLZDBHO00

Fields Required (Independent of Function)

PSTFNCTN

PSTDSGA

PSTBLKNM

PSTDMBNM

PSTACBNM

PSTBYTNM

PSTBUFFA

DSGDMBNO

DSGDCBNO

On Return

Hexadecimal code for desired function

Address of associated DSG needed for: PSTBYLCT,
PSTBKLCT, PSTBYALT

Identification of desired block needed for: PSTBKLCT,
PSTBFALT, PSTFBSPC

Number of associated DMB needed for: PSTBKLCT,
PSTBFALT, PSTFBSPC, PSTGBSPC

Number of associated ACB needed for: PSTBKLCT,
PSTBFALT, PSTFBSPC, PSTGBSPC

PSTBYLCT/PSTBYALT - relative byte address of desired
segment - relative record number of HISAM ESDS (high-order
byte = X‘80°)

PSTGBSPC - fullword size of requested space

Address of buffer prefix for block to be marked ‘altered’ -
PSTBFALT

DMB number of the referenced data base

ACB number of the referenced data set

R15 0 Request satisfied
4 Warning or error condition

Fields Returned (Independent of Function)

PSTOFFST Offset from PSTDATA back to first byte of block

PSTDMBNM DMB number

3-50 DL/1DOS/VS Logic Manual, Volumel

AT
N

Licensed Material—Property of IBM

PSTACBNM ACB number

PSTDATA Address of first byte of requested segment, record, or space
PSTBUFFA Address of buffer prefix

PSTNUMR Number of reads done during this call

PSTNUMWT Number of writes done during this call

PSTCLRWT Bit O - This caller waited during request
Bits 1-8 - Reserved

PSTRTCDE

Return

Code Hex

Function Function Description

PSTCLOK 00 No error occurred during this request.

PSTGTDS 04 Record, CI, or segment requested is more than
one CI beyond the end of the data set - returned
on PSTBKLCT, PSTBYLCT, PSTBYALT

PSTIOERR 08 Requested CI, record, or segment could not be
read successfully on a PSTBKLCT, PSTBYLCT,
or PSTBYALT call or could not be written
successfully on a PSTPUTKY, PSTMSPUT,
PSTWRITE, or PSTBFALT call.

PSTNOSPC 0oC An out of space condition occurred on the data
set DASD while processing this request.

PSTBDCAL 10 The byte at PSTFENCTN is not a valid function or
the DMB/ACB/BLKID in the PST do not match
corresponding fields pointed to in PSTBUFFA
for a PSTBFALT call.

PSTNOTFD 14 A PSTSTLEQ call has been issued for a record
whose key is higher than the highest key in the
data set.

PSTNWBLK 18 The requested CI, record, or segment will go in
the CI, one greater than the current end of the
data set. Space has been allocated in the pool to
hold the new CI. The address is at PSTDATA.

PSTNPLSP 1C The pool does not contain enough space to

satisfy the request.

Section 3. Program Organization 3-51

DLZRDBLO - DB Logger

Licensed Materiai—Property of IBM

Return

Code Hex)

Function Function Description

PSTWROSI 20 A request (GBSPC) was issued for a buffer size

: which exceeds the highest buffer size handled by
any subpool.

PSTENDDA 24 The end of data set has been reached on a
PSTGETNX call.

PSTBYEND 28 A request has been issued with a key or RBA
higher than the highest key or RBA in the data
set.

PSTEOD 2C End of data set has been reached on a request by
DLZDLOCO.

PSTINLD 34 Invalid request during data set loading.

The data base logger module logs the modifications made to a data base. These
data base log records are written to the system log. This module is invoked by
several of the DL/I modules associated with data base modifications.

The logging of data base modifications, additions, and deletions is done on a
physical basis to facilitate a quick recovery procedure. Only calls that actually
cause a change to be made to a data base are logged. Two sets of information are
logged for each modification - a before set and an after set.

The before information is that required by the data base backout utility. It is used
to back out a partially completed update series and to restore a data base to some
prior point in time.

The after information is that required by the data base recovery routines to restore
the data base from a previous backup copy.

There are five basic types of data base log records.

1. POINTER maintenance record
When a segment is deleted or inserted and it causes a change in any of the
pointers in other segments, each pointer is logged separate ly as a POINTER
maintenance record. A POINTER maintenance record is indicated by bits 1,
2, and 3 of the DLOGFLG?2 field of the log record being set to zero.

2. PHYSICAL INSERT record
When a segment is physically added to the data base, a PHYSICAL INSERT
record is written. This type of record is indicated by a one in bit 1 of the
DLOGFLG?2 field.

3. PHYSICAL DELETE record
When a segment is physically removed from the data base, a PHYSICAL
DELETE record is written. This type of record is indicated by a one in bit 2 of
the DLOGFLG?2 field.

3-52 DL/IDOS/VS Logic Manual, Volumel

A

f Hy

A W

Licensed Material—Property of IBM

4. PHYSICAL REPLACE record
When a segment in a data base is modified, a PHYSICAL REPLACE record is
written. This type of record is indicated by a one in bit 3 of the DLOGFLG?2
field.

5. LOGICAL DELETE record
When a DLET call is issued but the segment is not physically removed from
the data base, a LOGICAL DELETE record is written. Only the segment
code and delete bytes are logged. A logical delete record is indicated by bits 1
and 2 of the DLOGFLG?2 field being set to a one.

In addition to data base log records, the data base logger module also uses:

o Application program termination records
¢ Application program scheduling records
« File open records

¢ Checkpoint records

The layout for these records is shown in Section 5 of this manual.

Record types 1, 2, 3, and 5 contain the before and after information in the same
record and have a log code of X‘50’. Type 4 requires two records. The after
record has a log code of X‘50’; the before record has a log code of X‘51°.
Additionally, if a physical insert reuses space of a deleted record, log records X‘50°
and X‘51’ are written.

If the change is an insert or a delete, the before and after are part of the same
record. On an insert, the new segment, including the prefix, is logged as the change
data. On a delete, the old segment and prefix are the change data. In HD, both
insert and delete cause changes to the free space elements (FSEs) within a block.
The new FSEs and their offsets are logged following the change data and a count
of the changes is place d in bits 4 through 7 of the DLOGFLG1 field.

The information needed to create the log record is retrieved from the various DL /1
blocks. A small amount of additional information is passed as parameters from the
DL /I action modules.

The data base log tape format is undefined records (UNDEF). The block size is
1024 bytes. Maximum record length is 512 bytes. If a segment cannot be logged
into one record, it is internally spanned over two or more log records. The first
record is logged with a data length adjusted to match the data it contains. The
offset for the second record is incremented by the length of the first, and the
second is written as a separate segment. The adjusting of data length and offset
continues until the entire segment is written.

The data base disk log uses VSAM with a CI size of 1024. The user buffer facility
is used to ensure that the log records are written immediately. The disk log record
format is compatible with the tape iog record.

Control Blocks - DLZRDBL(
e Data base log record
e Application program termination record

e Application program scheduling record
« File open record.

Section 3. Program Organization 3-53

Licensed Material—Property of IBM

Register Contents

R1 PST address

R13 Save area

R14 Return address

R15 Entry point address.

High-order byte of PSTWRK1 field in PST:

Bit Value Definition
0 1 Index maintenance call
1-3 000 Chain maintenance call
001 Physical replace
010 Physical delete
100 Physical insert
110 Logical delete
111 Reserved
4 1 Last change for this user call
5 0 One FSE (physical delete or insert)
1 Two FSEs
6 1 Old copy of physical replace
7 1 New block log call
4&6 1-1 No data - end of user call

PSTWRK1 Physical SDB address (except new block call)
Data length (low halfword) if new block call

PSTWRK2,

PSTWRK3,

PSTWRK4 Old data on pointer maintenance and logical delete calls. FSE data
on physical insert and delete calls.

Before a data base block is updated (that is, before the buffer handler issues the
put for an updated block), the associated log information is first written to the log
tape or disk in the following manner.

After issuing a put to write a log block to the log tape or disk, the log module
updates the count of written log blocks in the field SCDLOCOU.

When the log module processes a log call, in which a data base buffer is involved,
the current count of written log records is stored from SCDLOCOU into byte 7 of
the buffer prefix in the case of HD, or into the field DMBACBLC in the ACB
extension in the case of HISAM and HIDAM index.

Before issuing any put for updating a data base block, the buffer handler compares
the value stored in the buffer prefix (HD) or in the ACB extension (HISAM,
HIDAM INDEX) with the current value in SCDLOCOU. If the two values are
unequal, the log information associated with the data base update has already been
written out. If the two values, however, are equal, the buffer handler branches to
entry point WRIAHEAD of DLZRDBLO to force the current contents of the log-
I/0 area to be written out immediately. If, however, asynchronous logging was
requested by the user, the count comparison is bypassed, that is, no "write ahead"
logging takes place.

3-54 DL/IDOS/VS Logic Manual, Volume1

Licensed Material—Property of IBM

Logging in the Online System

In the online system the put for the log blocks is issued in a separate, asynchronous
subtask, which is attached at system initialization time. This subtask is a separate
CSECT within the log module DLZRDBL.O.

The purpose for this is to avoid losing tasks when the end of volume condition is
encountered on the log tape.

The communication between the asynchronous log subtask, the logger, DL/I online
nucleus (DLZODP) is achieved by using three ECBs as follows:

1. System ECB (SCDESECB, in SCD extension), which is used for the
communication between the log module (DLZRDBLO0) and DLZODP.

2. LogI/O ECB (SCDELECSB, in the SCD extension), which is used for the
communication between the log module and the asynchronous log subtask.

3. Private ECB (fullword in the log subtask CSECT), which is used for the
communication between the asynchronous log subtask and the log module
during the end of the I/O operation that was initiated by the log subtask.

Figure 3-2 shows the events which take place when a PUT for a log block becomes
necessary in an online environment.

Logger DLZRDBLO

Asynchronous Log Subtask
ONLLOGWR (CSECT Name)

1. Lock System ECB

2. Unpost Private ECB

3. Post Log I/O ECB

4. IWAIT on Private ECB

10. Post System ECB

lWaitmg on

[T System ECB Log 1/0 ECB

Log 1/0 ECB [K———1

: Private ECB 5. Prepare PUT

6. Issue PUT

.......... =3 7. Post Private ECB

]l 8. Unpost Log I/0 ECB

lWait on
Log I/O ECB

3-2

Figure 3-2. Online Log Block Put Operation

Section 3. Program Organization 3-55

Licensed Material—Property of IBM

The relationship between all modules involved in the asynchronous log writing is as

AT

.

W

follows:
DLZODP DLZOLI0OO0 DLZRDBLO0 ONLLOGWR
PRH
Scheduler Routine
Terminate Routine
Message Routine
IWAIT Routine
EXCPAD Routine
System ECB Checks system ECB, if When PUT has to
LOG subtask is active: be issued, unpost
system ECB
1. Before a call is
processed (PRH -
branches to analyzer
2. When a log request After log subtask is
will be issued finished, post
3. Before branching system ECB
back into a task after
control was given up
LogI/0 Attach When PUT has to Waiting on log
ECB asynchronous | be issued, post log I/0 ECB
log subtask 1/0 ECB, get log -—
subtask started After put is
finished, unpost
log I/0 ECB
Private ECB When put has to be After put, posts
issued, lock private private ECB
ECB (I/0 is active)
IWAIT on private
ECB :

DLZRDBLI - CICS/VS Journal Logger

Logging in the online system can also be done by using the journaling feature of
CICS/VS. That means the DL/I log information as described about module
DLZRDBLO will go on the same file as any CICS/VS journal information.

This is possible because CICS/VS uses different journal record IDs than DL/1
(DL/1 uses X‘07’, X‘08’, X‘2F’, X‘50’, X‘51’). Any DL/I utility which uses a
journal tape will check the record ID and process only those records, which have
record IDs used by DL /1.

The general structure of DL/ log records, CICS/VS journal records and
CICS/VS journal blocks are illustrated in Section 5.

If the user requests logging by CICS/VS journaling (UPSI bits 6 and 7 = 0),
DLZOLIOO loads module DL.ZRDBL1 instead of the standard log module
DLZRDBLO. This module provides the following services:

« Build and write open records for each data base that has been opened.
DFHIJIC TYPE=WRITE is issued to CICS/VS.

3-56 DL/IDOS/VS Logic Manual, Volumel .

Licensed Material—Property of IBM

o Build and write log records on request by the action modules. DFHIC
TYPE=WRITE is issued.

o Write log records built by the sched/term. routine. DFHJC TYPE=WRITE is
issued.

« Initiate a physical put to the journal tape on request of the buffer handler.
DFHJC TYPE=WAIT is issued.

Before a journal call is issued to CICS/VS, DLZRDBL1 checks if the task which is
going to write a journal record already owns a JCA. If it does not, a GET JCA call
is issued prior to issuing the DFHJC call.

Since DLZRDBL1 is not reentrant, no task can be allowed to enter this module
while log I/0 is being processed.

DLZRDBLI1 unposts an ECB (SCDESECB) prior to any physical I/O. In various
parts of DLZODP this ECB is checked, and, if it is locked, a CICS/VS wait is
issued before control is passed to any action module.

When log information is written by using CICS/VS journaling, the writing of log
information is always ahead of updating the associated data base blocks. The
scheme used is the same as with standard logging, the only difference being that the
value for the number of written journal blocks (CICS/VS ECN) is not manipulated
by the log module but is taken out of the JCT.

Control Blocks Addressed

« Data base log record

« Application program termination record
« Application program scheduling record
« File open record

DLZQUEFO0 - Queuing Facility

The DL /I queuing facility module provides resource contention control exclusively
for the requirements of program isolation (PI).

Program isolation supports resource contention control at the segment level (for
HDAM/HIDAM data bases) and at the record level (for HISAM data base).
Module DLZQUEFO provides the control through enqueue/dequeue mechanisms
using a unique 7-byte resource identifier:

Bytes 1-4 a relative byte address (RBA) associated with the resource
Bytes 5-6 the DMB number

Byte 7 the ACB number

The RBAs used are:

For segment level resources - RBA of the segment
For record level resources - RBA+1 of the root segment

For variable length segments where data separation has occurred, the segment is
considered a single entity with an ID based on the RBA of the prefix.

Section 3. Program Organization 3-57

Licensed Material—Property of IBM

The queuing facility module will automatically update the RBA portion of the
resource ID in the event of a VSAM CI or CA split (HISAM only). The module
also contains a deadlock detection routine and will resolve the deadlock by
terminating one of the tasks involved.

Three basic control blocks are used to accomplish the enqueue/dequeue function:

1. PST/PPST - used to identify the task.

2. RDB - used to describe a particular resource.

3. RRD - used to describe a particular task’s request (either satisfied or pending)
for a resource.

As shown in Figure 3-3 on page 3-59, the RDBs are chained together, both
forward and backward, to one of several queue heads located in the QWA (queuing
facility work area). Note that the queue heads have only a forward pointer. The
proper queue head is determined by hashing the resource ID and using the results
as an index to the table of queue headers.

There is one RDB for each resource, no matter how many tasks (maximum of 255) i& J/
have enqueued it. The RRBs are forward and backward chained on two queues,
one from the RDB and one from the PST for the requesting task. There is one

RRD for each resource a task has or is requesting.

On entry to module DLZQUEFO, register 1 contains the PST address and register

15 contains the entry point address (high-order byte contains ‘FLAG’ if specified).

The function requested (enqueue, dequeue, verify, or purge) is contained in the

PSTFNCTN field of the PST. If the requested function is enqueue, dequeue, or

verify, the PSTQLEV and PSTWRK?2 fields also are initialized in the PST. These £
fields contain the queue request level (read-only, update, or exclusive) and the U
address of the resource ID, respectively. See Appendix D for the macros used to

request a specific function.

Enqueue and verify function are essentially the same and are, therefore, processed by
the same routines. The only difference between them is that the user is not the
owner of the resource at the return from a verify request.

Three conditions can be present for the processing of the enqueue and verify
function: . f ™
, S
1. The resource is not currently enqueued (no RDB exists) and is therefore,
available. In this case, if the requested function is enqueue, the user is queued
as owning the resource and control is returned to the caller. If the requested
function is verify, processing is complete.

2. The resource is currently enqueued, but is available at the requested level. In
this case, if the request was for an enqueue, the user is queued as an owner at
that level and control is returned to the caller.

3. The resource is not available. In this case the user is queued as waiting for the
resource, deadlock detection is performed, and a WAIT is issued pending the
availability of the resource.

When the wait is satisfied and if the request was for an enqueue, control is

returned to the user. If, however, the request was for a verify, the user is first O
dequeued (see dequeue function) as owner of the specified level before he is

given control.

3-58 DL/IDOS/VS Logic Manual, Volumel

Licensed Material—Property of IBM

PST1

Degqueue function processing first determines if the resource is currently owned by
the requestor. If it is not, the request is ignored. If it is, the enqueue count at the
specified level is decremented. If all levels are now zero, task ownership is
relinquished, and any ‘waiting tasks that may now own the resource are promoted.
If FLAG was specified, it is set for all waiting tasks.

If the enqueue count goes to zero and it was the highest level, but lower levels still
exist, the ownership level is lowered and any waiting tasks that may now own the
resource are promoted.

Purge function brocessing searches the chain of RRDs queued off the specified PST
for a task and unconditionally relinquishes ownership for all resources encountered.
Any waiting tasks that may now own the resource are promoted.

On return from module DLZQUEFO, return codes are set in register 15 and in the
PSTRTCDE in the PST.

PST2

A

QH1 QH2
4
RDB1 - %1 RDB2 - RDB3
A A \
y \
RRD1 % -1 RRD3
A A
¥ i
RRD2 |- > RRD4 |-
1 1

Figure 3-3. Enqueue/Dequeue Control Block Relationships

The following table identifies the mainline routines and the functional subroutines
of the queuing facility module:

Section 3. Program Organization 3-59

Licensed Material—Property of IBM

Mainline Routines
Routine Function (}\
QENQDEQ Common Entry Logic e
QRETURN Common Exit Logic
QENQVER Enqueue/Verify Mainline
QNRENQ New Resource Enqueue/Verify
QERENQ Existing Resource Enqueue/ Verify
QREENQ Re-enqueue or Verify of Resource Already Owned
QDEQ Dequeue Mainline
QDEQVER Dequeue Specific RRD
QRELRSC Relinquish Ownership of Resource
QPUR Dequeue all Resource for a Task
- DLZIJIRNAD Update Routine for RBA on CI or CA Split
Functional Subroutines
Routine Function AT
QLOCRDB Locate RDB or Position on Chain)/
QLOCRRD Locate RRD or Position on Chain e
QBLDRDB Build, Initialize, and Chain RDB
QBLDRRD Build, Initialize, and Chain RRD
QUCFRDB Unchain and Free RDB
QDASOWN Define Task as Owner of Resource
QWAIT Wait for Ownership of Resource
QLOCNPO Locate New Prime Owner
QPNOWCM Promote New Owners, Do Wait Chain Updates
QPFLAGP Pass Flag Parameters To Waiting Tasks Pt
QDLKDTN Detect and Resolve Deadlocks U
QDLKRSV Resolve Deadlocks -
QGETBLK Get 24-Byte Block from Free Chain
QRETBLK Return 24-Byte Block from Free Chain
Data Areas Used
SCD
PPST
PST A
RDB S
RRD
QWA
Entry Points

QENQDEQ General entry point for request to enqueue, dequeue, or verify a
resource, or to purge enqueues for a task.

DLZJRNAD Entry point to update the RBA portion of any resource IDs as

required due to data movement during a VSAM CI or CA split
(HISAM only).

3-60 DL/IDOS/VS Logic Manual, Volumel

C’.
\
]
2

Licensed Material—Property of IBM

DLZCPY10 - Field Level Sensitivity Copy

MPS Control Modules

DLZCPY10 has two CSECTs: DLZCPY10 and DLZSEGCV.

The function of DLZCPY10 is to map the user view of a segment into its physical
view for DL/I ISRT and REPL calls, in support of field level sensitivity. On a path
call, DLZCPY10 maps the segment at each level of the path. If a level in the path

is not field sensitive, the segment at that level is moved without modification.
DLZCPY10 is invoked by Call Analyzer (DLZDLAQO).

The function of DLZSEGCYV is to convert a segment from either the physical view
to the user view, or the user view to the physical view. DLZSEGCYV is invoked by
DLZCPY10 to convert ISRT and REPL calls from user view to physical view.
DLZSEGCV is invoked by Retrieve (DLZDLRO00) to convert Get calls from
physical view to user view. DLZSEGCY is also invoked by Retrieve to convert
SSA values from user view to physical view.
Interfaces - DLZCPY10
This module interfaces with the following module:

DLZDBHO00
Entry Register Contents

R1 PST address (DLZCPY10)
FER address (DLZSEGCYV)

R5 SDB address (DLZSEGCYV)
R13 Save area address
R14 Return address

R15 Entry point address (DLZCPY10)
Addr(DLZCPY10)+4 - (DLZSEGCV)

Control Blocks - DLZCPY10

SDB PSB
SDB Exp. PCB
FSB JCB
FER LEV
FERT PSDB
PST FDB
SCD SEC
PDIR DDIR

DLZMSTRO - Start MPS Transaction

This module is invoked by the user via a specific transaction code (CSDA) to start
multiple partition support (MPS). The functions of this module are to:

Section 3. Program Organization 3-61

Licensed Material—Property of IBM

Check if the DL/I nucleus is loaded.
Check if MPS is already active.
Attach the master partition controller (DLZMPCO00).

Conitrol Blocks Addressed

CSA-Common System Area (CICS/VS)
SCD-System Contents Directory

Register Contents

R13 Contains CSA address
DLZMPCO00 - Master Partition Controller (MPC)

The master partition controller (MPC) is attached by the start transaction module
(DLZMSTRO).

The functions performed by the master partition controller are:

L]

Initialize the MPC partition tablek (DLZMPCPT).
Define some of the XECBs required for cross partition communication.

Perform some management of CICS/VS temporary storage queue (TSQ)
entries for MPS batch jobs using MPS Restart.

Process all start batch partition controller (BPC) requests and attach a BPC for
a specific batch partition.

Process all stop partition requests.
Process the abend condition if the batch partition controller attach fails.
Process the stop transaction request to terminate MPS.

Return control to CICS/VS after all activity is completed.

Control Blocks Addressed

MPCPT MPC Partition Table

SYSCOM System Communication Region
CSA Common System Area (CICS/VS)
SCD System Contents Directory
MPCECBLT CICS ECB Pointer List

TCA Task Control Area

DCA Dispatch Control Area

DLZTSQE Temporary Storage Queue Entry
DLZXCB1 Batch Communication Area

Register Contents

RI2 Contains TCA address (at entry)
RI13 Contains CSA address (at entry)

3-62 DL/IDOS/VS Logic Manual, Volumel

A

Licensed Material—Property of IBM

Macros Used

(g DFHKC TYPE=WAIT

- DFHKC TYPE=ATTACH

DFHPC TYPE=ABEND
DFHPC TYPE=SETXIT
DFHPC TYPE=RETURN
DFHSP TYPE=USER
DFHTS TYPE=GETQ
DFHTS =~ TYPE=PUTQ
DFHTS TYPE=PURGE

XECBTAB TYPE=CHECK
XECBTAB TYPE=DEFINE
XECBTAB TYPE=DELETE
XPOST

DLZBPCO00 - Batch Partition Controller (BPC)

(The batch partition controller (BPC) is attached by the master partition controller
(MPC) when a start request has been made by a batch partition. The functions
performed by the batch partition controller are:

Define XECB for cross partition communication with the MPS batch
initialization (DLZMINIT), MPS batch program request handler (DLZMPRH),
and MPS batch termination (DLZMTERM).

Issue the DL /I scheduling call on behalf of the batch partition.

Process all DL/I calls on behalf of the batch partition.

Update temporary storage queue entry for MPS Restart if the batch partition
issues a combined checkpoint.

Process ABEND conditions occurring in the batch partition.

Return control to CICS/VS for normal and abnormal conditions

This module must be link-edited with the language interface module, DLZLI0O0O.

(~~ Control Blocks Addressed
MPCPT MPC Partition Table
TCA Transaction Control Area
TWA Transaction Work Area
PST Partition Specification Table
PPST Prefix PST

DLZXCB1 Batch Communication Area
DLZTSQE Temporary Storage Queue Entry

Register Contents

RI2 Contains TCA address (at entry)
RI3 Contains CSA address (at entry)

Section 3. Program Organization 3-63

DLZMPIO00 - MPS Batch

Licensed Material—Property of IBM

Macros Used

DFHKC TYPE=WAIT
DFHPC TYPE=RETURN
DFHPC TYPE=ABEND
DFHPC TYPE=SETXIT
DFHTS TYPE=PUTQ

XECBTAB TYPE=CHECK
XECBTAB TYPE=DEFINE
XECBTAB TYPE=DELETE
XPOST

The MPS batch module is made up of the following five routines:

MPS Batch Initialization (DLZMINIT)

MPS Batch Termination (DLZMTERM)

MPS Batch Program Request Handler (DLZMPRH)
MPS Batch Abend (DLZMABND)

MPS Batch Message Writer (DLZMMSG)

e e

A separate description for each routine is given in the following text.
MPS Batch Initialization - DLZMINIT

This is one of five routines that make up module DLZMPIOQO to support the batch
part of MPS.

DLZMINIT reads the input parameter statement and checks it for validity. It then
loads the user’s program. Next, it determines what to use as a partition identifier
by checking the PIK in the COMREG. This value is used in online messages. The
value for ‘n’ in XECB names is found in the partition table entry pointed to in the
area following XECB DLZXCBO02, and is put into each XECBTAB macro issued.

After saving the program name and PSB name for use by online, an XECB,
DLZXCBnl, is defined in the batch partition for communicating with the online
partition. The online partition XECB, DLZXCBO02, is XPOSTed. This lets the
online partition know that there is an MPS batch job ready to run.

When the online partition completes its initialization, the batch routine sets up
STXIT routines, finishes other initialization activities, and goes to the user
program.

DLZMINIT is entered by DOS/VS job control at the start of the job.

Control Blocks Addressed

MPCPT MPC Partition Table

TCA Transaction Control Area

PST Partition Specification Table

COMREG Communication Region

XCBI XECB DLZXCBnl and data following it

DTFs for SYSLST, SYSLOG, and SYSIPT
STXIT AB Savearea
STXIT PC Savearea

3-64 DL/IDOS/VS Logic Manual, Volumel

S
'

TN

.

Licensed Material—Property of IBM

XECBs DLZXCB02, DLZXCBn2, DLZXCBn3
PDIR PSB Directory

PSB Program Specification Block

PCB Program Control Block

DLZEIPL HLPI Control Block
Register Contents (at Entry to Other Routines)
« User Program

Rl PCBlist if not PL/I; or a pointer to a list containing the following if
PL/I:
- address of PCB list
- address of location containing size of dynamic storage
- address of start of dynamic storage
RI3 Save area
RI4 Return address
RIS Entry address

o Message Writer (DLZMMSG)

RI4 Return Address

« ABEND Routine (DLZMABND)

No special register values

Macros Used

XECBTAB
XECBTAB
XECBTAB
XPOST
XWAIT
OPEN
CLOSE
EXTRACT
GET
GETIME
GETVIS
PUT
CANCEL
STXIT
STXIT
MVCOM
COMRG
LOAD
LOCK
UNLOCK

TYPE=DEFINE
TYPE=DELETE
TYPE=CHECK

PC
AB

MPS Batch Termination - DLZMTERM

This is one of five routines that make up module DLZMPIOO to support the batch

part of MPS.

Section 3. Program Organization

Licensed Material-—Property of IBM

The MPS batch termination routine is entered when the user program finishes. It
tells the online partition to do termination activity, deletes its own XECB, and ends
the job.

Control Blocks Addressed

XCBI XECB DLZXCBnl and the data following it
Register Contents

Registers have the same values at entry as when MPS batch initialization
(DLZMINIT) completed.

Macros Used

XPOST

XWAIT

EOJ

LOCK

UNLOCK

XECBTAB TYPE=DELETE

MPS Batch Program Request Handler - DLZMPRH

This is one of five routines that make up module DLZMPIOO0 to support the batch
part of MPS. '

The MPS batch program request handler routine is entered on each call to DL/I
made by the user program. The user call list is validated and set up for the online
partition to use. Then the online partition is notified by an XPOST of XECB
DLZXCBN2. When the call is complete, data is moved to the user’s [/O area.

Control Blocks Addressed

MPCPT MPC Partition Table

TCA Transaction Control Area
PST Partition Specification Table
XCBI XECB DLZXCBI
DLZEIPL. HLPI Control Block

PCB Program Control Block
Register Contents

o Atentry:

RO Bit X‘01’ ON if PL/I, OFF if not PL/I
Bit X‘02’ ON if HLPI, OFF if call interface

Rl IfPL/ I, points to list of pointers to parameters; if not PL/I, points to list
of parameters

RI3 Save area

RI4 Return address

RI5 Entry address

e Message Writer (DLZMMSG)

RI4 Return address

3-66 DL/IDOS/VS Logic Manual, Volume1

7/

Vs

N

Licensed Material—Property of IBM

Macros Used

GETFLD

STXIT PC

XPOST

XWAIT

XECBTAB TYPE=CHECK

MPS Batch ABEND - DLZMABND

This is one of five routines that make up module DLZMPIQO0 to support the batch
part of MPS.

The MPS batch abend routine has four entries:

1. External routine
2. PC STXIT

3. AB STXIT

4.

Other MPS batch routines that cause abnormal termination.

The first entry initializes registers and then joins the main path. The next two each
identify which way the ABEND routine was entered. They then issue an error
message. Then the fourth entry joins them as the online partition is notified. All
entries delete the batch XECB and cancel or dump.

When an abnormal termination situation has occurred, DLZMABND is entered by:

« DLZMINIT

« DLZMTERM

« DLZMPRH
Control Block Addressed

STXIT AB Save area
STXIT PC Save area

Register Contents
« Atentry
No special values except base registers initialized
e Message Writer (DLZMMSG)
R4 Return address
Exits

JDUMP If dump requested
CANCEL If no dump requested

Entry Points

External routine Abnormal end for separately assembled routine
STXIT AB If abnormal end entered by DOS/VS

STXIT PC If program check determined by DOS/VS

Section 3. Program Organization 3-67

3-68

Licensed Material—Property of IBM

XPOST Entry Other abnormal end when BPC must be notified
Macros Used

DLZIDUMP

LOCK

UNLOCK

XPOST

XECBTAB TYPE=DELETE
JDUMP

CANCEL

MPS Batch Message Writer - DLZMMSG

This is one of five routines that make up module DLZMPIOO to support the batch
part of MPS.

There are two entries:

« From external routines
¢ From routines within DLZMPI00

The MPS batch message writer routine handles all messages issued by the MPS
batch partition. At entry, a parameter list is set up. The first parameter is always a
pointer to the message number. Other parameters, if any, are as needed for the
message.

When a message is to be written to SYSLOG and/or SYSLST, the DLZMMSG
routine is entered by:

DLZMINIT
DLZMTERM
DLZMPRH
DLZMABND
External routines

Control Blocks Addressed

DTFs for SYSLOG and SYSLST

Register Contents
e Atentry:
RI14 Return address

Base registers already initialized except for external routine entry, which
initializes registers before joining mainline

« At entry to message table (DLZMMSGT):

R1 Points to parameter list

R4 Base register for DLZMMSGT

R5 Address of where message is to be placed

R7 Length of message set up before calling DLZMMSGT; after call, R7 has
total message length

R9 Points to PST (for checkpoint message DLZ1051)

R10 Second base register for DLZMMSGT

DL/I DOS/VS Logic Manual, Volumel

N

Licensed Material—Property of IBM

Exits
To calling routine via branch register 14
Macros Used

PUT

DLZMSTPO - Stop MPS Transaction

This module is invoked when a user wants to stop MPS. The user inputs a specific
transaction code (CSDD) defined to initiate the stop transaction processing. The
module then posts the particular XECB that causes the MPC to end the MPS
environment.

After the post, the MPC allows batch jobs already executing to complete, but will
not allow any new ones to start.

This transaction should be started before CICS/VS non-immediate shutdown is
initiated.

Macros Used

XECBTAB TYPE=CHECK

| DLZMPURO - Purge Temporary Storage Transaction

This module is invoked by the user via a specific transaction code (CSDP) to purge
the temporary stroage queue (TSQ) used by MPS Restart.

If MPS is active when this module is invoked, then a flag is set behind the stop
partition XECB (DLZXCBO01) which signals to the master partition controller
(MPC) that the TSQ is to be purged, and the stop partition XECB is posted. (It
serves a dual purpose in this way.)

If MPS is not active, then the TSQ is purged by this module.

Control Blocks Addressed

TDOA CICS/VS Transient Data Output Area
CSA CICS/VS Common System Area
TCA CICS/VS Task Control Area
DLZXCBO01 Stop Partition XECB

Entry Register Contents

R12 TCA address
R13 CSA address
R14 Routine entry point

Macros Used.

DFHPC TYPE=RETURN
DFHPC TYPE=ABEND
DFHSC TYPE=GETMAIN
DFHSC TYPE=FREEMAIN

Section 3. Program Organization 3-69

Licensed Material—Property of IBM

DFHTD TYPE=PUT

DFHTS TYPE=PURGE)
DFHWTO i
EXTRACT L
MAPBDY

I XECBTAB TYPE=CHECK

Data Base Recovery Ultilities

DLZBACKO - Batch Backout Interface

The batch backout interface module reads and validates any ‘LI’ control statements
from SYSIPT. A log input specification table describing each log file to be
processed is created. The module then reads the DL/I log files and passes the data
base log records to the data base backout module (DLZRDBCO0) for processing.

By reading the log files in a backward mode, this module is able to process the data
base records in reverse sequence without using an intermediate work data set.
When a block is read in, it is searched and the sequence field located at the end of S
each logical record is replaced by the length of that logical record. With the length

thus in the back of a record as well as in the front, it is deblocked and spanned.

PR

The interface process includes the following record types:

X07 Application program termination record

X08’ Application program scheduling record

X41 Checkpoint record

X‘50° Data base log record A O
X‘51° Data base log record N/

The batch backout utility is executed under DL/I control as an application
program. Processing of module DLZBACKO is as follows:

1. Control is received from DL/I initialization and the PSB name is obtained
from the parameter data.

2. The log file is opened to be read backward. .

3. The log file is read backward and records bypassed until the first data base log N
record for the PSB is obtained.

4. An application program termination record (X‘07’) for the PSB indicates no
backout necessary, the message 'BACKOUT COMPLETE'" is issued at
SYSLOG, the log is closed, and the job is terminated.

5. Data base log records (X‘50’ and X‘51°) are passed to module DLZRDBCO to
be processed against the appropriate data base. Processing terminates when an
application program scheduling record or a checkpoint record is read, the
message “BACKOUT COMPLETE” is issued at SYSLOG, the log is closed,
and the job is terminated.

If end of file is reached on the log (i.e., the header record is read), it is closed. If

more log files are to be processed, the above process is repeated starting at step 2. .
Multiple log files must be processed in reverse order of their creation. When all log (/

3-70 DL/IDOS/VS Logic Manual, Volumel

O

Licensed Material—Property of IBM

files are processed, a “BACKOUT COMPLETE" message is issued and the job
step is terminated. The job is terminated by returning control to DL/I which
purges all buffers, closes all DMBs, and closes the output log file.

Entry Register Contents

R1 PSB list address
R13 Save area

R14 Return

R15 Entry point

Control Blocks - DLZBACK0

Application program scheduling record
Application program termination record
Checkpoint record

Data base log record

DMB

PDIR

PSB

PST

SCD

External Modules Called
DLZRDBCO - Called to interface with DL/I and perform backout.
DLZBACMO - Message writing ~

Record and Message Formats - DLZBACKO

All messages are sent to the SYSLOG and SYSLST devices. The messages are
contained in module DLZBACMO.

DLZRDBCO - DB Change Backout

This module receives control from:

.1. DLZBACKO in a batch environment, or

2. DFHDBP in an online environment during dynamic transaction backout, or
3. DFHTBP in an online environment during CICS/VS emergency restart.

with a log record to process. They call open/close (DLZDLOCO) to open the
DMB specified in the record unless the data base is already open. The buffer
handler (DLZDBHOO) is called to retrieve the KSDS or ESDS block as indicated
by the key or the ESDS relative block number or relative byte address.

The data in the buffer is replaced with the ‘old’ information in the log, thereby
nullifying the offending programs update. In the case of HD, when a physical
delete or insert record is processed, space management (DLZDHDSO) is called to
update the free space elements and bit map, if necessary and to build the input data
for the data base logger. DLZRDBLO is called when using the DL /I logger to
record the changes made to the data base. DLZRDBL1 is called when using the
CICS/VS journal to record the changes made to the data base.

Section 3. Program Organization 3-71

Licensed Material—Property of IBM

The buffer handler is then called again to mark that buffer altered and control is
returned to the calling module.

iR
Entry Register Contents and Control Blocks A
R1 PST address
R13 Save area
R14 Return
R15 Entry point
PSTSCDAD SCD address
ADDRLOG Address of data base log record within DLZBACKO PSTDGU &
PSTDGN must be zero on initial entry
Control Blocks - DLZRDBCO0
Data base log record
DDIR
DMB AN
DSG Ly
PCB ~
PDIR
PSB
PST
SCD
External Modules Called
DLZDBHOO Called to read a data base record and to mark the buffer altered Pany
DLZDHDSO0 Called to free or reserve space in an HDAM or HIDAM record \:(J
DLZDLOCO Called to open data base
DLZRDBLO Called to log backout modifications to data base
l DLZRDBL1 Called to log backout modifications to data base (online)
Interface with External Modules
All modules expect R14 + R15 to contain return address + module entry point
address.
(af ™
DLZDLOCO N
R1 address of PST
R2 address of DDIR entry for DMB to be opened
PSTDSGA address of DSG to open
PSTFNCTN PSTOCDMB + PSTOCOPN
SCDCWRK address of normal log record work area
DLZDBHO00
R1 address of PST
PSTBLKNM RBN if HD ESDS
PSTACBNO 1
PSTDMBNO 1 . (C
STBYTNM RBA if HISAM ESDS or address of key if KSDS (

PSTFNCTN desired function

3-72 DL/IDOS/VS Logic Manual, Volumel

Licensed Material—Property of IBM

DLZDHDSO0

R1 address of PST
R5 address of PSDB of segment

PSTOFFST offset to segment from beginning of block
PSTCODE1 indicates backout in control (for logger)
PSTFNCTN PSTFRSPC + X‘80’ (to show backout in control)
DLZRDBLO/DLZRDBL1

RO SCD address
R1 PST address

PSTCODE1 PSTINTNT + PSTSCHED to indicate backout calling

PSTDATA address of data in buffer

SCDCWRK address of backout log work area containing the control information
for this log record

Exit Register Contents

All registers are restored with the exception of register 15 which contains a return
code.

Error Codes and Handling - DLZRDBCO0

All error codes are passed in register 15.

DLZURDBO - DB Data Set Recovery

The data base data set recovery utility module DLZURDBO is executed under
DL/I control as an application program. Control is passed to DLZURDBO from
DL /I initialization. This module is comprised of two independent but logically
related functions. The first consists of an image dump and a change accumulation
processor. The PCB address is saved, and a GSCD call is issued to obtain the PST
address. Control is passed to DLZURCCO to read and process control statements
from SYSIPT. From information saved by DLZURCCO, a DMB is loaded from
the Core Image Library to obtain the physical characteristics of the data set to be
recovered. The DL /I open/close routine (DLZDLOCO) is called to open the
output ACB and the input file is opened. Then the program enters a dump/cum
data merge routine. This routine selects a dump record, merges any accumulated
changes from the cum data set, and a call is made to the buffer handler
(DLZDBHO00) to write the new record to the output data set. Upon completion, a
partial or completely recovered data set may exist. If no additional changes are to
be applied through log files, the program calls the DL/I open/close routine
(DLZDLOCO) to close the output ACB and terminates.

If additional changes are to be applied from log files, the program enters the second
function. This routine opens the logs, scans the log to find a record that applies to
this data set, and merges the data from the log to the data set record. Upon
completion, the routine does post-processing and a recovered data set then exists.

The operation of this routine depends on certain DL/I functions to process the
logs. The log is scanned for a matching data base/data set name record. When
one is encountered, the record ID, either a key of a KSDS record or a relative block
number of an ESDS record is saved, and a call is made to the buffer handler

Section 3. Program Organization 3-73

Licensed Material—Property of IBM

(DLZDBHO0) requesting that the record be retrieved. Upon successful return, the
log record data is merged with the returned record, and a call is made to the buffer
handler requesting that the record be marked as altered to cause rewriting. The
records from the log are thus processed until an end of file is encountered on the
log input. At this time, a call is made to the buffer handier requesting that ali
altered buffers be purged, that is, that all records that have been altered be
rewritten. The program then calls the DL/I open/close routine (DLZDLOCO) to
close the output ACB, and the program terminates.

Blocks and Tables - DLZURDBO

This module utilizes certain DL/I blocks, including the PST, DSG, DMB, DMB
directory, SDB, PCB, JCB, and SCD. Additionally, several record formats are
used as follows:

1. HISAM reorganization header and data records. See HISAM reorganization
unload (module DLZURULDO) for details.

2. Data base image dump header and data records. See data base data set image
copy module (DLZUDMPO) for details.

3. Accumulated change CUM header and data records. See change accumulation
module (DLZUCUMO) for details.

4. Data base change log records.

Normal Entry Points

The only entry point to this module is DLZURDBO.
Entry Register Contents

R1 pointer to fullword containing address of PCB
Exit Register Contents

All registers are restored to entry conditions.
Modules Called by DLZURDBO

The recovery control statement processor (DLZURCCO) is called to read and
validate any input control statements.

R1 pointer to recovery common area
The DL/I open routine (DLZDLOCO) is called to open a specific ACB.
R1 pointer to PST

The DL/I buffer handler (DLZDBHOO) is called to retrieve and write a specific
record, mark a buffer altered, and purge (rewrite) all altered buffers.

R1 pointer to PST

The DL/I close routine (DLZDLOCO) is called to close a specific VSAM ACB.

3-74 DL/IDOS/VS Logic Manual, Volumel

-

Licensed Material—Property of IBM

R1 pointer to PST
Error Codes and Handling - DLZURDBO

All codes are in the form of messages. The module DLZRDBMO contains all error
messages issued by the Data Base Data Set Recovery Utility.

DLZURCCO - Recovery Control Statement Processor

This module reads and validates the input control statements from SYSIPT. The ‘S’
control statement describes the data base to be recovered. The ‘LI’control
statements describe the log files to be processed. Information from these
statements is saved in the recovery common area for use by DLZURDBO.

Normal Entry Point

The only entry point to this module is DLZURCCO.
Entry Register Contents

R1 pointer to recovery common area.

Exit Register Contents

All registers are restored to entry conditions except R15, which contains a return
code (see below).

Error Codes and Handling

Messages are issued to SYSLST and SYSLOG for any invalid control statements.
On return to DLZURDBO, R15 is set as follows:

R15=0 No errors
R15 =4 No input control statements
R15 =8 Input control statement error

DLZUDMPO - DB Data Set Image Copy

The data base data set image copy utility module DLZUDMPO is executed as a
standard VSE application program and creates a backup copy of a specific data
base data set. Input may be either a KSDS (HISAM, Simple HISAM, or HIDAM
INDEX) or a n ESDS (HISAM, HIDAM, or HDAM). The output is used as input
to the data base data set recovery utility. Processing is as follows:

1. A control card is read from SYSIPT and preliminary validity checking is
performed on various fields. The input card defines the data base/file to be
dumped, the dump output symbolic filenames, and the number of output copies
to be created.

2. The device type is determined for each output file specified and the file(s) are
opened.

3. The DMB is loaded from a core image library to obtain the physical
characteristics of the data base file to be dumped.

Section 3. Program Organization 3-75

Licensed Material—Property of IBM

4. A header record is written to the output file. This record contains information
necessary to allow the use of the image dump file by the data base data set
recovery utility.

5. The input file is opened,

6. Input segments are read sequentially, an 8-byte prefix is added to identify the
segment, and the logical record (prefix + segment) is blocked and written to
the output file. ‘

7. After all segments have been copied (EOF), the input and output files are
closed.

8. Output statistics for the file are written to SYSLST.

9. Processing continues from step 1 until there are no more input cards, at which
time the program terminates.

Control Blocks - DLZUDMP0

¢ Dump record prefix
¢ Dump header record.

Error Codes and Handling - DLZUDMP0

All error codes are in the form of messages to SYSLST and SYSLOG. All the
messages used by the DB Data Set Image Dump Utility are contained in module
DLZDMPMO; a read-only CSECT. :

DLZUCUMO - DB Change Accumulation Utility

The data base change accumulation utility module DLZUCUMQO is executed as a
standard DOS/VS application program. DLZUCUMO controls the overall
operation of the Data Base Change Accumulation Utility. First, the control card
processor module (DLZUCCTO) is called to read the input stream. Upon its
return, the PROCFLAG switch is tested. If records are to be passed to sort, the
sort parameter list is formatted, including a sort Exit 15 (DLZUC150) and the sort
Exit 35 (DLZUC350). The sort program is then loaded, and this module
(DLZUCUMO) waits for it to terminate. Upon termination, a completion code is
tested and appropriate messages are provided as output. If records are not to be
sorted, that is, no DBO type control cards were read, the module calls the Exit 15
module (DLZUC150) to create the new log file. If error are encountered by any of
the four processing modules, control is passed to the common error routine
DLZUCERO.

Control Blocks - DLZUCUMO0

o Data base name table, containing the data base names and the address of the
date/time table for this entry.

« Data/time table

e Accumulation header record

e Accumulation record

3-76 DL/IDOS/VS Logic Manual, Volume1

A Th
o

Licensed Material—Property of IBM

Normal Entry Point

The main entry point to this module is DLZUCUMO. DLZERRTN is an entry
point used by DLZUC150 on any error condition.

Entry Conditions

This is the main module which controls the overall operation of the Data Base
Change Accumulation Utility program.

Control information is passed from module to module by means of an externally
referenced table contained in DLZUCUMO.

DLZCUMMO - Common Error Routine

This module is the common error routine. Control may be passed to it from any of
the four processing modules. It addresses a message depending on parameters
passed to it, and prints a message to the SYSLST and SYSLOG devices.

Normal Entry Point

The only entry to this module is DLZCUMMO.

Entry Conditions

This module is entered to output all error messages.

Entry Register Contents

R1 contains a message number. R2 is negative if this is a multi-part message. (R2
points to last byte of message on second entry of multi-part message.)

Exit Register Contents

All registers are restored to entry conditions except R2, which points to last byte of
message on first entry return of multi-part message.

DLZUCCTO - Control Card Processor

This module is the control card processor. It reads the control card input stream,
checks the cards for validity, and constructs the data base name table and the
date/time table if data base names are supplied. It also constructs the log input
specification table describing the input log file(s).

Normal Entry Point

The only entry to this module is DLZUCCTO.

Entry Conditions

This module is entered to process the control card input stream.

Exit Register Contents

All registers are restored to entry conditions.

Section 3. Program Organization 3-77

Licensed Material—Property of IBM

DLZUCI150 - Sort Exit 15

This module is the sort Exit 15 routine. It reads the log input records, checks the
purge date if applicable, and determines the disposition of the record. If the record
matches an eniry in the data base name table, the date/time tabie is searched and
the appropriate purge date and time are compared. If the record is before the
purge date, the program returns to read another record. If the record is not purged,
the routing is determined from the table and written to sort and/or to the new log.
A table of DMB names and purge dates is prepared for Exit 35.

Normal Entry Point

This module is entered at DLZUEX1S5 if no records are to be accumulated, and at
DLZUC150 by sort.

Entry Conditions
This module is entered to read input logs and disperse records to new log or sort.

R1 contains the address of the parameter list from sort or a dummy list if control
was received from DLZUCUMO.

Exit Register Contents

All registers are restored.

DLZUC350 - Sort Exit 35

This module is the sort Exit 35 routine. It receives all records from sort. If an old
accumulated data set is supplied, a record is read from the data set and a record is
retrieved from sort. The data base name and file identification of the records are
compared. All input cum records are purge-checked according to the date/time, if
any, specified on DBO card(s). If the old cum input is low, it is written to the new
cum data set. If the records are equal, the data from the sort record is merged to
the old cum record, unless purged, and another record is obtained from sort. This
sequence continues until an unequal condition is detected, at which point the
record is written to the new cum data set. If the old cum is high, records from sort
are combined and written to the new cum data set until the compare condition

changes. This process continues until both the sort and the old cum records are
exhausted.

Normal Entry Point

This module is entered at DLZUEX3S5 by sort.

Entry Register Contents

Register 1 contains the address of the sort Exit 35 parameter list.
Entry Conditions

This module is entered by sort to dispose of all sorted records.
Exit Register Contents

All registers are restored to entry conditions, with the sort parameter list updated as
needed.

3-78 DL/1DOS/VS Logic Manual, Volumel

£

L

Ay

N

Licensed Material—Property of IBM

DLZLOGPO - Log Print Utility

The log print utility module (DLZLOGPO) is executed as a standard DOS/VS
application program and prints the contents of DL/I log files. . Input log files may
be either tape or disk. Optionally, the utility can create an output log tape suitable
as input to the backout utility module (DLZBACKO). Processing of the log print
utility is as follows:

1. Module DLZILPCCO is called to process input control statements.

2. If requested, the output log tape file is opened.

3. The DLZDVCE macro is issued to determine the log device type, and the log
file is opened.

4. The log records are read and deblocked, and the record types are checked to
see if valid DL/I record.

5. The log records are printed to SYSLST in either keyword format or dump
format.

6. If requested, log records are written to output log tape.

7. The input log file is closed. If more input log files were specified, processing
continues from Step 3.

8. If requested, the output log file is closed.
9. Informational statistics are written to SYSLST and the program terminates.
Error Codes and Handling

All error codes are in the form of messages written to SYSLST and SYSLOG. All
the messages used by the log print utility are contained in module DLZI. GPMO.

DLZLPCCO - Log Print Control Statement Processor

This module is called by DLZLOGPO to read and process input control statements.
The control statements are read from SYSIPT and validity checking is performed.
Valid control statement types are: ‘LO’, ‘LS’, and ‘LI’. Information from the
control statements is saved in the log print common area.

Normal Entry Point

This module is entered at DLZL.PCCO by DLZLOGPO.

Entry Register Contents

Register 1 points to the log print common area.
Register 9 points to the next available print line buffer.

Entry Conditions

This module is entered by DLZLOGPO to read and process input control
statements.

Section 3. Program Organization 3-79

Licensed Material—Property of IBM

Exit Register Conftents

All registers are restored to entry conditions except register 9, which is updated to
point to the next available print line buffer.

Error Codes and Handling

All error codes are in the form of messages written to SYSLST and SYSLOG. All
the messages used by the log print utility are contained in module DLZL.GPMO.

Data Base Reorganization Ultilities

DLZURULO - HS DB Unload

The HISAM reorganization unload module DLZURULO is executed as a standard
DOS/VS application program. A control card specifying the data base name, data
set name, and output symbolic unit name is read. The DBD specified is loaded,
and a short segment table is constructed. This table consists of the first eight bytes
of each segment table entry in the DBD. This includes, among other things, the
segment physical code and the segment length. The size of the prefix, as described
for each segment type, is added to the segment length and entered in the table.
This length is later used to move the segment from the input area to the output
area.

Next, the input and output data sets are opened. A header record containing
information about the data base data sets is constructed, and a statistics record is
written. The first KSDS record is then read and the root segment is checked to
determine whether the deleted flag is on (no prefix if Simple HISAM). If it is on,
the total segment chain for that root is ignored, and the next root is processed. If
the root is not deleted, it is moved to the output area, and the first depend ent
segment, if present, is processed. If the dependent segment is not deleted, it is
moved to the output area, and the next segment is processed. This continues until
the complete dependent segment chain for this root, including any overflow
dependent segments on the ESDS, have been processed. If the segment is deleted,
each succeeding segment that is a child of the deleted segment is also deleted. The
first segment that is not a child of the deleted segment causes the normal segment
processing to be resumed. The last record written is a statistics record which
includes information needed for audit trail. The output data set now contains the
reorganized KSDS and ESDS logical records in physical sequential format (only
KSDS if Simple HISAM or INDEX). An image of the KSDS record containing a
root segment and dependent segment is followed by images of the ESDS records
containing overflow dependent segments for the root segment. A chain pointer in
the KSDS contains the correct relative byte address of the next ESDS record
containing overflow dependent segments. If more than one ESDS record is needed
to contain overflow dependent segments, they follow in sequence and chain
pointers are maintained in the records.

Error message handling is accomplished in the following manner: When a routine
within module DLZURULO requires an error message to be generated, a number is
loaded into R1. This number corresponds to a message in the message CSECT
(DLZRULMO). The routine then branches to a common routine which outputs the
message. The number passed in R1 is multiplied by 4 and added to the start of the
message CSECT (DLZRULMO). At that offset, a fullword containing the length

3-80 DL/IDOS/VS Logic Manual, Volume1

NS

Licensed Material—Property of IBM

of the message and the offset to the start of message text is obtained. These values
are used to move the message to an output buffer. DLZRULMO is a read-only
module containing all error messages issued by module DLZURULO.

Control Blocks - DLZURUL0

« Short segment table

o Output data record

* Output header record

« Statistics record.

Error Codes and Handling - DLZURUL(O

All error codes are in the form of error messages.

Sample Description of HISAM Reorganized Format

Assume a HISAM data base which consists of a single root segment and dependent
segments in the hierarchical format shown in Figure 3-4.

ROOT SEGMENT

SEG A

SEG B

SEG D SEG G

SEG C SEG E SEG H
SEG F SEG |

SEG J

Figwre 3-4. HISAM Data Base with One Root Segment

The input for the HISAM Reorganization Unload Utility appears as shown in
Figure 3-5 on page 3-82.

Section 3. Program Organization 3-81

KSDS RECORD

Licensed Material—Property of IBM

/ + ROOT SEGMENT (DELETED) (CHILD OF A) | (cHitD oF A) | ©
\ESDS RECORD 1
v f SEG D SEG E (DELETED) SEG G 0
ESDS RECORD 2
0 SEG H SEG | (DSEE%T*'ED) o| FREE sPACE

Figure 3-5. Input for HISAM Reorganization Unload Utility

Given this input, the HISAM Reorganization Unload Utility provides the output
shown in Figure 3-6.

HEADER RECORD

INFORMATION ABOUT DATA BASE

STATISTICS RECORD

TOTSEG VALUE=0

DATA RECORD (KSDS)

‘ ROOT SEGMENT SEG D SEG E SEG G 0
DATA RECORD 2 (ESDS)
0 SEG H SEG | 0 FREE SPACE

UNLOADED STATISTICS RECORD
TOTSEG = NUMBER OF SEGMENTS UNLOADED FOR SEGMENT LEVEL

Figure 3-6. HISAM Reorganization Unload Utility Output

Note: A second ESDS record is unnecessary because space occupied by deleted
segments is reclaimed.

DLZURRLO - HS DB Reload

The HISAM reorganization reload module DLZURRLO is executed as a standard
DOS/VS application program and is used to reload a reorganized HISAM data
base data set group. The input to the program consists of a reorganized dump of
the key sequenced data set (KSDS) and entry sequenced data set (ESDS) created
by the HISAM Reorganization Unload Utility program. Processing is as follows:

1. A control card, which contains the filename of the input file containing the

HISAM data base to be reloaded, is read. The input file is opened and the
header record is read.

3-82 DL/IDOS/VS Logic Manual, Volumel

Licensed Material—Property of IBM

8.

The output KSDS and ESDS ACBs are generated using the information
contained in the header record and the KSDS and ESDS are opened (only
KSDS if Simple HISAM or INDEX).

The statistics record is read and the statistics table initialized.

Records are read sequentially from the input file. These records are images of
KSDS and ESDS records.

KSDS records are written to the output KSDS using VSAM keyed sequential
(mass) insert.

ESDS logical records are written to the output ESDS using VSAM addressed
sequential insert.

After all data records have been processed, the last input statistics record is
read, and a statistics report is printed, comparing segments unloaded/reloaded.

The files are closed.

All error messages issued by the HS DB reload utility are contained in module
DLZRRLMO. It is a read-only module.

Control Blocks - DLZURRLO

DLZURGUO - HD DB Unload

Header record
Input data record

The HD reorganization unload module DLZURGUO is executed under control of
the DL/I system as an application program and is used to unload a data base by
issuing DL/I calls. One or two files may be created and output may be to tape or
DASD. The module contains two processing modes - ‘“‘normal” and “restart”.

Normal processing, after module DLZURGUO receives control from DL/1, is as
follows:

1.

The PCB address is saved and a GSCD call is issued to obtain the PST address.
The PST allows the program to access the DL/I control blocks needed to
construct the prefix portion of the output record. This prefix, as described
below, is used by the HD Reorganization Reload Utility.

The number of outputs (one or two) and output device type (tape or DASD)
are determined.

Storage is obtained for the statistics table.
Each output file is opened.

The statistics tables, which have been initialized for all data base segment
types, are written to the output file(s).

A Get Next (GN) call is issued for the first (or succeeding) segment.

The statistics-table for the segment type is updated.

Section 3. Program Organization 3-83

10.

11.

Licensed Material—Property of IBM

The segment is combined with the segment prefix to form an output logical
record. The output logical records are blocked and written.

Whenever a checkpoint interval is reached (first root segment after 5000
segments have been processed or as specified on CHKPT parameter), a
checkpoint record is written to the output file. The current statistics are part of
the checkpoint record. To insure the checkpoint record is physically written, a
dummy checkpoint is also written to output. Additionally a message containing
the ID of the checkpoint record is written to SYSLOG.

Processing continues at step 6 until end of file is encountered.

At end of file, the statistics table totals are written, the output file(s) is closed,
and the program returns control to DL/I.

Restart processing, after module DLZURGUO receives control from DL/I, is as
follows:

1.

2.

5.

Steps 1 - 4 of “normal processing” are performed.

The restart (RESTART) input file is opened. This is either the outputl
(HDUNLD1) or output2 (HDUNLD?2) file from the previously terminated job
execution.

A message is issued to SYSLOG requesting the checkpoint record number (ID)
at which to restart. The number is validated.

All records, including the requested checkpoint record, of the RESTART file
are copied to the output file(s). A Get Unique (GU) call is issued for the
checkpointed root segment to establish positioning. If the RBA is available for
the root segment, it is placed in the SSA with an internal “*T” command code;
otherwise the segment’s key is placed in the SSA and an internal “*C” (key
retrieve) command code call is issued. The statistics table is initialized with the
checkpointed statistics record.

Steps 6 - 11 of “normal processing” are performed.

Control Blocks - DLZURGUO

Output record containing segment prefix
SSA for GU call by RBA

SSA for GU call by key

Output table record

Checkpoint record.

Interfaces - DLZURGUO

This module interfaces with DL/I through the DL/I language interface module
DLZLIO0O0 at entry point ASMTDLI and by fast path interface to retrieve.

Error Codes and Handling - DLZURGUO

All errors are indicated by error messages. All messages issued by the HD DB
unload utility are contained in module DLZRGUMO. 1t is a read-only module.

3-8¢ DL/IDOS/VS Logic Manual, Volumel

RN
N

q
L %

A™

f{:
S

C

Licensed Material—Property of IBM

DLZURGLO - HD DB Reload

The HD reorganization reload utility (DLZURGLO) is loaded under DL/I control
as an application program. It reloads a data base under control of DL/I. Input to
the module consists of a sequential dump data set of logical records created by the
HD reorganization unload utility (DLZURGUO). A logical record consists of a
segment prefix and a segment.

During the reload, a message is issued each time a checkpoint record is encountered
(approximately every 5000 segments or as specified by user on unload). This
message is the same in content and format as that issued during unload when the
checkpoint record was created, and identifies the checkpoint by number. If the
reload facility fails, a restart capability called ‘Reload Restart” allows restarting
from a checkpoint record.

After module DLZURGLO receives control from DL /1 initialization, processing is
as follows:

1. The PCB address is saved, and a GSCD call is issued to obtain the PST
address.

2. The input device type is determined and the data set is opened.

3. If restarting, obtain checkpoint restart number from operator and locate -
checkpoint record. The data base is then positioned (GU call) and the end of
data is found (GN calls).

4. An input record is read (segment), and a DL/I call list is constructed.

5. A DL/IInsert (ASRT) call is issued for the segment.

6. After all segments have been processed, the last statistics table record is read
and a comparative statistics report is written.

7. The input data set is closed, and the program returns control to DL/I.
Blocks and Tables

Input record

Interfaces - DLZURGLO0

This module interfaces with the DL/I routines through the DL/I language interface
module DLZILI000 at entry point ASMTDLI.

Error Codes and Handling - DLZURGL0
All error conditions are indicated by error messages. All messages issued by the

HD DB reload utility are contained in module DLZRGLMO. It is a read-only
module.

Section 3. Program Organization 3-85

Licensed Material—Property of IBM
Partial Data Base Reorganization Utility

DLZPRCTI - Part 1 Control

The Part 1 Control module initializes the environment for Part 1 then cotrols the
order of execution for Part 1 processing.

Initially this module acquires storage for the data base table (DBT), segment table
(SGT), action table (ACT), and range table (RGT). The common area
(COMAREA) is part of this module and is not dynamically acquired.

Next the Part 1 Control module loads the Part 1 service modules and their entry
points in COMAREA.

The final processing by this module links the Part 1 action modules to the sequence
defined by the linklist table. As each linked to module returns, its return code is
checked. Part 1 processing ends when the return code exceeds the maximum value
allowed for that module, which is an error condition, or Part 1 successfully
completes. In this case the return code is zero.

The highest return code that the Part 1 Control module encounters is the return
code for the Part 1 Control processing.

Interface
This module interfaces with the following modules:
DLZPRERR - Message writer
DLZPRWFM - Work file manager
DLZPRABC - Action table build
DLZPRCLN - Cleanup
DLZPRDBD - DBD analysis
DLZPRPAR - Parameter analysis
DLZPRPSB - PSB source generator
DLZPRREP - PART1 report writer
Control blocks - DLZPRCTI1
e ACT - Action table
« DBT - Data base table
» SGT - Segment table
Normal Entry Point
The only entry point to this module is DLZPRCT]1.
Entry Register Contents
Standard register conventions are used for linkage to this module.

Exit Register Contents

All registers are the same as on entry except R15, which contains the return code.

3-86 DL/I DOS/VS Logic Manual, Volumel

VN

N

A
L

®

Licensed Material—Property of IBM

DLZPRABC - Action Table Build

(This module analyzes logical relationships in the prime and related data bases. It

' builds entries in the action table (ACT). The action table entries indicate the
necessary actions for reorganized segments and for segments that are related to
reorganized segments.

Interface
This module interfaces with the following module:
DLZPRERR - Message writer
Control blocks - DLZPRABC
« COMAREA - common area

(Normal Entry Point
The only entry point to this module is DLZPRABC.
Entry Register Contents
R8 Addressability for ACT
R9 Addressability for DBT
R10 Addressability for SGT
R11 Addressability for COMAREA

— R12 Program base register

(R13 Save area address
R14 Return address
R15 Entry point address
Exit Register Contents

All registers are the same as on entry except R15, which contains the return code.
DLZPRCLN - Part 1 Cleanup

(This module writes the tables created in part one to the communication data set for
' subsequent use in part two. The tables are written in the following order:

1. Common area

2. Data base table

3. Segment table

4. Range table

Control blocks - DLZPRCLN

« COMAREA - Common area
Normal Entry Point

The only entry point to this module is DLZPRCLN.

Section 3. Program Organization 3-87

Licensed Material—Property of IBM

Entry Register Contents

v

Standard register conventions are used for linkage to this module.

S
®

R8 Communication data set DTF
R9 Internal linkage address

R11 Common area

R12 Program base register

R13 Save area address

R14 Return address

R15 Entry point address

Exit Register Contents
All registers are the same as on entry except R15, which contains the return code.

DLZPRDBD - DBD Analysis

This module analyzes the DBD that is to be used in data base partial (
reorganization. The module uses the characteristics of the prime and any related s
DBDs to build the data base table (DBT). It enters information about data sets in

the dataset table3 in COMAREA. DLZPRDBD uses the characteristics of and

relationships between segments in the DBDs to build the segment table (SGT).

Interface

This module interfaces with the following module:

DLZPRERR - Message writer A
Control blocks - DLZPRDBD

« COMAREA - common area

Normal Entry Point

The only entry point to this module is DLZPRDBD.

Entry Register Contents \k S
R2 Addressability for SGT

R3 Addressability for TGT

R4 Addressability for DBT

R5 Second base register

R11 Addressability for COMAREA

R12 Program base register

R13 Save area address

R14 Return address

R15 Entry point address

Exit Register Contents

All registers are the same as on entry except R15, which contains the return code.

C

3-88 DL/I DOS/VS Logic Manual, Volumel

Licensed Material—Property of IBM

DLZPRPSB - Program Specification Block Source Generator

C

This module creates a PSB source deck if the partial reorganization input parameter

PSB= specifies input to Part 1. Because it is not necessary to process all of the

segments in the data base, a PSB source deck specifies only the sensitive segments.

The information used to create this source deck'is taken from the partial

reorganization table created in Part 1 Control. It is the user’s responsibility to run

the PSBGEN and ACBGEN for this PSB prior to Part 2 Processing.

Interface
This module interfaces with the following modules:

DLZPRERR - Message writer
DLZPRWFM - Work file manager

Normal Entry Point

The only entry point to this module is DLZPRPSB.

Entry Register Contents

R2 Addressability for DBT

R6 Addressability for SGT

R10 File control block

R11 Addressability for COMAREA
R12 Program base register

R13 Save area address

R14 Return address

R15 Entry point address

Exit Register Contents

All registers are the same as on entry except R15, which contains the return code.

DLZPRREP - Part 1 Report Writer

This module creates a report based on Part 1 processing for the data base that is

going to be partially reorganized. The information used to create the report is
extracted from the range table, data base table, and the segment table.

Interface
This module interfaces with the following module:
DLZPRWFM - Work file manager

Normal Entry Point

The only entry point to this module is DLZPRREP.

Entry Register Contents

‘R2 Addressability for RGT and SGT

R3 Addressability for DBT
R8 BAL register

Section 3. Program Organization

3-89

Licensed Material—Property of IBM

R10 File control block

R11 Addressability for COMAREA

R12 Program base register (ﬁ\h
R13 Save area address A W
R14 Return address

R15 Entry point address

Exit Register Contents

All registers are the same as on entry except R15, which contains the return code.

DLZPRCT2 - Part 2 Control

This module first loads the service modules. Then it restores the common area and
the tables that were built during Part 1 Control processing from the DLZPRCOM
dataset. Finally, this module establishes linkage to each Part 2 phase.

Interface
N

This module interfaces with the following modules: N

S

DLZPRERR Message writer
DLZPRPAR Parameter analysis
DLZPRUPD Update prefix
DLZPRSTC Sort control
DLZPRURC Unload/reload control

Control blocks - DLZPRCT2

« COMAREA - Common area b/
« DBT - Data base table

Normal Entry Point

The only entry point to this module is DLZPRCT?2.

Entry Register Contents

R10 File control block @;\
R11 Addressability for COMAREA
R12 Program base register

R13 Save area address

R14 Return address

R15 Entry point address

Exit Register Contents

All registers are the same as on entry except R15, which contains the return code.

3-90 DL/IDOS/VS Logic Manual, Volumel

Licensed Material—Property of IBM

DLZPRPAR - Parameter Analysis

(This module analyzes input control statements and generates data in the common
area (COMAREA), segment table (SGT), action table (ACT), and the range table
(RGT).

Interface
This module interfaces with the following modules:

DLZPRWFM - Work file manager
DLZPRERR - Message writer

Control blocks - DLZPRPAR

« DBT - Data base table
e SGT - Segment table
« ACT - Action table

(Normal Entry Point
The only entry point to this module is DLZPRPAR.
Entry Register Contents

R1 Parameters
R11 Addressability for COMAREA
R12 Program base register
(R13 Save area address
- R14 Return address
R15 Entry point address

Exit Register Contents

All registers are the same as on entry except R15, which contains the return code.

DLZPRSCC - Scan Control

C This module scans segments of a data base as indicated in the data base table and
action table in order to produce K records for SORT1 and T records for SORT3.
K record types represent segments with unidirectional pointers to segments which
may have moved during reorganization. T record types represent segments in
secondary index data bases with non-unique key values from the source segment.
T records are provided with a relative record number based on the number of times
the key of the index value is duplicated.

Interface

This module interfaces with the following modules:
ASMTDLI DL/I interface

DLZPRERR Message writer

DLZPRDLI DL/I service
C DLZPRWFM Work file manager
J

Section 3. Program Organization 3-91

Normal Entry Point

The only entry point to this module is DLZPRSCC.

Entry Register Contents

R11
R13
R14
R15

Addressability for COMAREA
Save area address

Return address

Entry point address

Exit Register Contents

Licensed Material—Property of IBM

All registers are the same as on entry except R15, which contains the return code.

DLZPRUPD - Update Prefix

This module adds, deletes, and updates segments and indexes according to the
input data work records and index work records from workfile 3 and workfile 5,
respectively. This module processes each data base in physical order until all
changes are complete.

Interface

This module interfaces with the following modules:

ASMTDLI DL/I interface
DLZPRERR Message writer
DLZPRDLI DL/1 service

DLZPRWFM Work file manager
DLZPRSTW Statistical writer

Normal Entry Point

The only entry point to this module is DLZPRUPD.

Entry Register Contents

R11
R13
R14
R15

Addressability for COMAREA
Save area address

Return address

Entry point address

Exit Register Contents

All registers are the same as on entry except R15, which contains the return code.

3-92 DL/IDOS/VS Logic Manual, Volumel

A)

Licensed Material—Property of IBM

DLZPRSTC - Sort Control

This module contains four routines, SORT1 through SORT4. These routines
arrange data work records for prefix update (DLZPRUPD). Each routine invokes
DOS/VS sort passing parameters which includes the addresses of sort exits 15 and
35. The sort exits perform the processing required by SORT1, SORT2, SORT3,
and SORT4.

SORT1 and SORT?2 process data work records exclusively. The input to SORT1 is
from RELOAD and SCAN. The input to SORT?2 is from RELOAD and SORT1.
Together these routines save the new relative byte address (RBA) of the segment
moved in the associated work records and arranges them in physical sequence as
they exist in the data bases.

SORT3 and SORT4 process index work records exclusively. The input to SORT3
is from RELOAD and SCAN. The input to SORT4 is from the DL/I index
maintenance file and SORT3. Together these routines eliminate index work
records that are not involved in update, convert the DL /I index maintenance
records into partial reorganization format, and arrange the index work records in
physical sequence.

Interface

This module interfaces with the following modules:

DLZPRERR Message writer
DLZPRWFM Work file manager

Normal Entry Point

The only entry point to this module is DLZPRSTC.
Entry Register Contents

R11 Addressability for COMAREA

R13 Save area address

R14 Return address

R15 Entry point address

Exit Register Contents

All registers are the same as on entry except R15, which contains the return code.

Section 3. Program Organization 3-93

Licensed Material—Property of IBM

DLZPRURC - Unload/Reload Control

This module performs the unload and reload of segments within user specified
ranges. DLZPRURC frees the spaces previously occupied by the unload segments.
It then inserts the segments into the user specified target area. The inserted
segment’s prefix carries forward the logical pointers, counters, and delete byte.

As physical changes occur in the data base during the process, this module records
them on the data base log data set. DLZPRURC gathers unload and reload
statistics for reports during the processing. Finally, it creates work records for
update depending on actions defined in the action table for reload.

Interface

This module interfaces with the following modules:

ASMTDLI DL/I interface

DLZPRWFM Work file manager

DLZPRERR Message writer

DLZPRDLI DL/I service

Control blocks - DLZPRURC

COMAREA - Common area

« FCB - File control block
« DBT - Data base table

¢ SGT - Segment table

e« ACT - Action table

« RGT - Range table
Normal Entry Point

The only entry point to this module is DLZPRURC.
Entry Register Contents

R13 Save area address

R14 Return address

R15 Entry point address

Exit Register Contents

All registers are the same as on entry except R15, which contains the return code.

DLZPRWFM - Work File Manager

This module provides open, close, input, and output operations for VSAM and
SAM files used in data base partial reorganization.

Interface
This module interfaces with the following modules:

ASMTDLI DL/I interface
DLZPRERR Message writer

3-94 DL/IDOS/VS Logic Manual, Volume1

A~

Licensed Material—Property of IBM

Control blocks - DLZPRWFM

C :

COMAREA - Common area
FCB - File control block

Normal Entry Point

The only entry point to this module is DLZPRWFM.

Entry Register Contents

R6
R8
R9
R10
R11
R12
R13

(R14
- RIS

Addressability for XWR
Addressability for FILECB
Addressability for DWR
Addressability for DBPCB
Addressability for COMAREA
Program base register

Save area address

Return address

Entry point address

Exit Register Confents

All registers are the same as on entry except R15, which contains the return code.

DLZPRDLI - DL/I Services

This module is the interface with DL /I DOS/VS when the function required

(cannot be accomplished by any of the calls documented in the DL/I DOS/VS

reference manuals. Examples of such functions are:

Retrieval of information from DL /I DOS/VS blocks

« Direct interface with the DL/I DOS/VS buffer handler

Direct request to log changed prefix data

To make use of this module, the caller must:

1.

Complete any pre-requisite for the service needed

(7\; 2. Set the code for the service needed in COMCIREQ
o 3. Enter this module by a BALR 14,15

Interface

This module interfaces with the following modules:

DLZDBHOO0 Buffer handler
DLZPRERR Message writer
DLZFRSPO Space management
DLZRDBL0O Data base logger

Control blocks - DLZPRDLI

COMAREA - Common area
FCB - File control block
DBT - Data base table

SGT - Segment table

Section 3. Program Organization

3-95

e« ACT - Action table
¢« RGT - Range table

Normal Entry Point

The only entry point to this module is DLZPRDLI.

Entry Register Contents

R3
R5
R6
R7
RS
R9
R11
R12
R13
R14
R15

Addressability for DDIR, DMBDACS
Addressability for JCB

SGT, SCD, LEV, SDB, PSDB
DBT, DMB

Data base PCB

PST

Addressability for COMAREA
Program base register

Save area address

Return address

Entry point address

Exit Register Contents

Licensed Material—Property of IBM

All registers are the same as on entry except R15, which contains the return code.

- DLZPRSTW - Statistical Writer

This module is used to produce statistical reports for UNLOAD, RELOAD, and
SCAN in Part 2 Control.

The report created for UNLOAD consists of range unload statistics, block range
statistics, and block changes by data base record.

The report created for RELOAD consists of range reload statistics and block range

statistics.

The report created for SCAN consists of a scanned segment count for each
affected data base record.

Interface

This module interfaces with the following modules:

DLZPRERR Message writer
DLZFRWFM Work file manager

Control blocks - DLZPRSTW

3-96 DL/IDOS/VS Logic Manual, Volume1

ACT - Action table

DBT - Data base table

SGT - Segment table

RGT - Range table
COMAREA - Common area

~
S

™

\

Licensed Material—Property of IBM

Normal Entry Point

The only entry point to this module is DLZPRSTW.

Entry Register Contents

R1
R6
R7
R8
R9
R10
R11
R12
R13
R14
R15

Parameters, File control base register
Print line base register
Addressability for ACT, RGT
Addressability for SGT
Addressability for DBT
Program base register
Addressability for COMAREA
Program base register

Save area address

Return address

Entry point address

Exit Register Contents

All registers are the same as on entry except R15, which contains the return code.

Section 3. Program Organization 3-97

Licensed Material—Property of IBM

DLZPRERR - Error Messages

This module formats and sends messages to SYSLST.

Based on the message number passed to this module by the caller, the text of the
message is retrieved from the message table located in this module. If the message
has a variable data field, the variable data passed by the caller is inserted in the
message text.

If an invalid message number is passed by the caller, the message number is printed
with text that indicates it is an invalid message number.

Control blocks - DLZPRERR

« COMAREA - Common area
« FCB - File control block

Normal Entry Point
The only entry point to this module is DLZPRERR.
Entry Register Contents

R1 Parameters

R3 Addressability for SYSPRINT DCB
R5 FCB File control block base register
R8 Message table base register

R9 Message buffer base register

R11 Addressability for COMAREA

R12 Program base register

R13 Save area address

R14 Return address

R15 Entry point address

Exit Register Contents

All registers are the same as on entry except R15, which contains the return code.

3-98 DL/IDOS/VS Logic Manual, Volume1

O

C

Licensed Material—Property of IBM

High Level Program Interface

, l DLZEIPBO - DL/I Batch/MPS EXEC Interface Initialization

This module has two logical functions. An initialization routine which processes
the HLPI EXEC DLI INIT call and a routine that loads in DLZEIPBI1, and passes
control to it.

All CICS/VS application programs which issue DL /I HLPI statements execute a
translator generated DL/I HLPI INIT call on entry to that program. This INIT call
results in passing control to entry point DLZEIPI in DLZEIPBO.

The language interface module (DLZLIPLI or DLZLICBL) calls DLZEIPBO,
which first checks to see if this is a DL/T HLPI INIT call. If it is, it checks to see if
storage has been acquired for the UDIB/SDIB. Following this acquisition of
storage, DLZEIPBO returns to the caller.

If this is not an initialization call, DLZEIPBO checks the integrity of SDIB, issuing
DLZ0371 if the SDIB has been inadvertently destroyed. If the SDIB is fine,
DLZEIPBO determines if DLZEIPB1 has been loaded and loads it if not.
DLZEIPBO then branches to entry point DLZEIPO in DLZEIPBI1.

Interface

This module interfaces with the following:

DLZEIPB1 HLPI DL/I Batch/MPS EXEC interface

DLZLICBL COBOL language interface module

DLZLIPLI PL/1 language interface module

Control Blocks

+ ARGO - ARGOQ parameter list
DIB - User DL/I interface block

"o EIPL - EIP parameter list
« HLPIL - HLPI parameter list address
« PATH - Path header control block
« SDIB - System DL/I interface block
Normal Entry Point

The only entry point to this module is DLZEIPI.

Entry Register Contents

R1 HLPI parameter list address

R2 System DIB pointer (If storage has been acquired for System DIB)
R13 Caller’s register save area address

R14 Caller’s return address

R15 Entry point of DLZEIPBO

Exit Register Contents

R1 HLPI parameter list address
R2 System DIB pointer

Section 3. Program Organization 3-99

Licensed Material—Property of IBM

R3 ARGO parameter list address
R6 EIP parameter list address
R8 User DIB address
R13 Caller’s register save area

! R14 Caller’s return address

DLZEIPBI - Batch/MPS EXEC Interface Program

This module handles all DL/I BATCH HLPI calls except the translator generated
INIT call. It translates HLPI EXEC DLI statements into DL/I Call parameter
lists. DLZEIPO in DLZEIPOO carries out the same function as this module.

There are differences between DLZEIPB1 and DLZEIPOO because of the different
environments. First, DLZEIPB1 uses DOS/VS storage control GETVIS or
FREEVIS instead of CICS/VS storage control. Secondly, DLZEIPBI1 uses its own
data structure DLZEIPL instead of CICS/VS TCA fields for obtaining the PCB
address list. Thirdly, DLZEIPOO calls the online program request handler
DLZPRHOO.

A

]
DLZEIPBI1 passes control to DL/I Program Request Handler (DLZPRHBO) for \“y)/
batch or DLZMPRH for MPS batch).

On entry, DLZEIPB1 determines if the call is a data base call. If so, it does the
following:

Checks to see if Key feedback is requested

Determines which PCB in the PCB list to use

Checks to see if a data transfer is to take place
Checks to see if segment name has been specified A \"j,
Checks to see if the call is a replace call with a previous get path call WJJ
Acquires storage for the SSA

Checks to see if the call is a valid insert call

Establishes the correct command codes

Builds field qualifications

Sets up the correct SSA for use by the DL/I Program Request Handler

After DLZEIPBI finishes building the SSA, it calculates the required I/O area size
and builds a common I/O area for path calls. Then DLZEIPB1 passes control to «
the correct Program Request Handler. . (‘k

If the call is not a data base call, DLZEIPB1 does the following:

Terminates task if it is a SCHEDULE call (Invalid in a batch environment)
Terminates task if it is a TERMINATE call (Invalid in a batch environment)
Builds the checkpoint call if it is a CHECKPOINT call and passes control to
the correct Program Request Handler.

On return from the Program Request Handler, DLZEIPB1 does the following:
Initializes the UDIB with information passed by DL/I in the PCB
Checks the status code

Moves Key Feedback information to user area if requested
Transfers data to user segment I/O areas

Returns to Caller C

3-100 DL/IDOS/VS Logic Manual, Volumel

Licensed Material—Property of IBM

Interface
This module interfaces with the following:

DLZEIPBO HLPI DL/I Batch/MPS EXEC interface initialization

DLZBNUCO Batch nucleus (Routine DLZPRHBO - Batch Program Request
Handler)

DLZMPIOO MPS Batch (Routine. DLZMPRH - MPS Batch Program Request
Handler)

DLZMMSGT Message Module for error and informational messages

Control Blocks

ARGO ARGO parameter list

DBPCB DL/I Program Control Block

DIB User DL/I interface block

EIPL EIP parameter list

HLPIL HLPI parameter list

PATH Path header control block

SDIB System DL/I interface block

SSA Segment Search Argument control block
SSAP SSA path call appendage block

SSAX SSA extension block

Normal Entry Point

The only entry point to this module is DLZEIPO.
Entry Register Contents

R1 HLPI parameter list address

R2 System DIB pointer

R3 ARGQO parameter list address

R6 EIP parameter list address

R13 Caller’s register save area address
R14 Caller’s return address

R15 Entry point of DLZEIPB1

Exit Register Contents

R14 Caller’s return address

Section 3. Program Organization 3-101

Licensed Material—Property of IBM

DLZEIPOO - DL/I Online EXEC Interface Program

DLZEIPOO handles all DL/T ONLINE HLPI calls. It is the online interface
routine that connects the user application program to the online program request
handler. It performs the combined function of its batch environment counterparts
DLZEIPBO and DLZEIPB1. DLZEIPOO builds data base calls to the online
program request handler (DLZPRHOO0) according to HLPI command syntax.

On entry, DLZEIPOO determines if the call is the initialization call. If it is, it
acquires storage for the SDIB/UDIB.

If it is not the initialization call, DLZEIPOO goes to the routine DLZEIPO where it
verifies the integrity of the system DIB. If the call is a data base call, it does the
following:

Checks.to see if Key feedback is requested.

Determines which PCB in the PCB list to use

Checks to see if a data transfer is to take place

Checks to see if segment name has been specified

Checks to see if the call is a replace call with a previous get path call
Acquires storage for the SSA

Checks to see if the call is a valid insert call

Establishes the correct command codes

Builds field qualifications

Sets up the correct SSA for use by the DL/I Program Request Handler

After DLZEIPOO finishes building the SSA, it calculates the required I/O area size
and builds a common I/O area for path calls. Then DLZEIPOO passes control to
DLZPRHOO (Online Program Request Handler).

If the call is not a database call, DLZEIPOO does the following:

Builds a SCHEDULE call if requested

Builds a TERMINATE call if requested

Builds the CHECKPOINT call if requested

DLZEIPOO then passes control to the Program Request Handler.

After returning from the Program Request Handler, DLZEIPOO does the following
for data base calls:

Initializes the UDIB with information passed by DL/I in the PCB
Checks the status code

Moves Key Feedback information to user area if requested
Transfers data to user segment I/O areas if necessary

Returns to DFHEIP

After returning from the Program Request Handler, DLZEIPOO does the following
for the SCHEDULE call:

Counts the number of PCBs
Acquires storage for the path header control blocks
Returns to DFHEIP

3-102 DL/IDOS/VS Logic Manual, Volumel

P

.S

Licensed Material—Property of IBM

Interface
This module interfaces with the following:
DFHEIP CICS/VS EXEC Interface Program

DLZPRHOO Online Program Request Handler
DLZMMSGT Message module for error and informational messages

Control Blocks

ARGO ARGQOQ parameter list

DBPCB DL/1 Program Control Block
DIB User DL/I interface block
EIPL EIP parameter list

HLPIL HLPI parameter list

PATH Path header control block
SDIB System DL /I Interface block
SSA Segment Search Argument control block
SSAP SSA path call appendage block
SSAX SSA extension block

UIB User Interface Block

Normal Entry Point

The only entry point to this module is DLZEIPI
Entry Register Contents

R1 HLPI parameter list address

R7 CICS/VS CSA address

R13 Register save area address

R14 Caller’s return address

R15 Entry point of DLZEIPOO0

Exit Register Contents

R14 Caller’s return address

Section 3. Program Organization

3-103

Licensed Materiai—Property of IBM

Application Control Blocks Creation and Maintenance

DLZUACBO - ACB Creation and Maintenance

The application control blocks creation and maintenance utility creates the internal
control blocks required by the DL/T application program. Using the PSB and
DBDs as input, this utility creates DL /I internal format control blocks as output.
These output control blocks must be link edited into the VSE Core Image Library,
either private or system, as specified by the user. These blocks contain information
about the data bases and the programs which use them. They describe some device
and media characteristics, the stored data structures, and the logical data structures
as seen by both the system and application programs. The program accepts control
card input to determine what functions are required. For the DL/I-SQL/DS user,
if requested, all DBD and PSB data definitions will be collected and stored into the
DL /I Documentation Aid SQL/DS tables.

The logic flow is as follows: The control card input stream is processed and each
card is syntax-checked. A sorted list of requested blocks is built in main storage. { |
Each PSB name specified on the control card is inserted into the list. S

Each name on the constructed build list is then passed to the application control
blocks builder module DLZDLBLO to have blocks constructed. Addresses are
relocated relative to zero and the completed blocks are written to a SYSPCH or
SYSLNK data set.

Blocks and Tables - DLZUACBO

Program control parameter block ﬁ \’
PST L W
SCD

PDIR

USERIDCB

PSBSQLIO

Interfaces - DLZUACBO
This module interfaces with the following modules: £
DLZUSCHO Called to create and search sorted PSB lists

DLZLBLMO Called to format prebuilt messages
DLZDLBLO Called to build and output control blocks for a PSB

Register Contents

RO-R1 PARM registers

R2-R8 Work registers

R9 Pointer to PST

R10-R11 Work registers

R13 Pointer to save area and primary base register

R14-R15 Operating system linkage registers

»

3-104 DL/IDOS/VS Logic Manual, Volumel

Licensed Material—Property of IBM

DLZUSCHO - ACB Maintenance Binary Search/ Insert

The function of module DLZUSCHO is to create and search sorted lists in dynamic
(GETVIS) storage using the binary search technique. Any number of lists may be
created simultaneously (subject only to the limit of available storage). A list entry
may be any length from 1 to 256 bytes. The key or sequence field may also be
from 1 to 256 bytes in length and may be located anywhere in the list entry. The
only restriction on keys is that they must consist of a single contiguous string of
bytes within the list entry.

The number of entries in any list is limited only by available storage. However,
since this routine physically moves data in storage to make room for new entries, it
becomes less efficient as the number of entries increases. For large numbers of
items, it might be best to consider sorting the entries in the conventional fashion.

This module is called by DLZUACBO to build and maintain the list of PSBs to be
processed.

Operation
1. The following interface is used to initiate a new list:

L 15,=V(DLZUSCHO)
LA 1,PARMS
BALR 14,15

where PARMS is a 3-word list whose contents are as follows:

Word 1 = length of the list entry

Word 2 = offset from the beginning of the list entry to the key/sequence
field

Word 3 = length of the key/sequence field

On return, register 1 contains the location of the new list control block. (This
location must be submitted to the search routine on all subsequent search or
insert calls for this list.)
2. The following interface is used to insert an entry into a list:
L 15,=V(INSRCH)
A 1,INPARMS
BALR 14,15

where INPARMS is the location of a two-word list whose contents are:

Word 1 = address of the list control block
Word 2 = address of the list entry to be inserted

On return from INSRCH, register 15 contains zero if the entry was
successfully inserted, and register 1 contains the location at which the insert

was made.

If the entry was not inserted (because a duplicate was found), register 15
contains 8, and register 1 contains the location of the duplicate entry.

3. The following interface is used to locate an entry in a list created by INSRCH:

Section 3. Program Organization 3-105

Licensed Material—Property of IBM

L 15,=V(LOCSRCH)
LA 1,LOCPARMS
BALR 14,15

where LOCPARMS is the location of a two-word list whose contents are:

Word 1 = address of the list control block
Word 2 = address of the search argument (key)

On return from LOCSRCH, register 15 contains zero if an entry containing the
search argument in its key field was found, and register 1 contains the location
of this entry. If no entry was found, Register 15 contains 4 and register 1
remains as it was on entry to LOCSRCH.

The following interface is used to delete all storage obtained by OPENSRCH
and INSRCH for a given list:

L 15,=V(CLOSESCH)
L 1,LOCPARMS
BALR 14,15

where LOCPARMS contains the location of the list control block for the list to
be deleted.

Control Blocks - DLZUSCHO

List control block
Sorted list block.

Programming Note

If some number of entries have been placed in a list through repeated calls to

INSRCH, they can be retrieved in sorted order by locating the first block by way of

CHAINLOC and all subsequent blocks by way of their CHAIN fields. The entries
are in order (low to high logical sequence) with the lowest entry in block 1 entry 1,
next in block 1 entry 2, etc., with the highest entry located in the last-used slot in
the last block.

3-106 DL/IDOS/VS Logic Manual, Volumel

s

\

Licensed Material—Property of IBM

DLZLBILMO0 - ACB Generation Error Message Handler

This module is used to contain, select, and format error messages for the ACB
generation facility. Given a message number in register one, the module will select
the matching message and format it by insertihg an arbitrary number of additional
character strings addressed by specified registers. The 'PRTMSG’ routine in
module DLZUACRBQO is called to print the message. Control is returned to the
caller.

Entry Register Contents - DLZLBLMO0

R1 Message number

R13 Save area

R14 Return address

R15 Entry point

Additionally, any registers are passed that have been defined to contain pointers to
character strings to be inserted into the message. These are generally (but not
always) registers 5, 6, and 7.

External Routines Called - DLZLBLMO0

PRTMSG - Entry point to the print routine in module DLZUACBO.

Section 3. Program Organization 3-107

Licensed Material—Property of IBM

DLZDLBLO, DLZDLBPP, DLZDLBL1, DLZDLBDP, DLZDLBL2, DLZDLBL3 - ACB BUILDER

The four modules, (DLZDLBLO, DLZDLBL1, DLZDLBL2, and DLZDLBL3),
are responsible for building all the control blocks for a given PSB and its associated
DBDs, and fer outputting them to either SYSPCH or SYSLNK in a format that
allows LINKing them into the VSE core image library.

The two modules, (DLZDLBPP and DLZDLBDP), are responsible for collecting
all the data definitions for the DBDs and PSBs and storing them into the DL/I
Documentation Aid SQL /DS tables.

The first module, DLZDLBLO, loads the specified PSB and calls module
DLZDLBPP, if the USERID parameter was specified on the BUILD statement.

Module DLZDLBPP creates the PSBBASICDATA, PSBPCBDATA,
PSBSEGMENTDATA, and PSBFIELDDATA records from information retrieved
from the DL/I PSB control blocks and inserts them into the appropriate DL/1
Documentation Aid SQL/DS tables. After all processing is completed for the PSB,
control is returned to DLZDLBLO.

Module DLZDLBLO then builds the PCBs and SDBs for segments identified via
SENSEG statements at PSBGEN time. It then passes control to module
DLZDLBLI1.

Module DLZDLBL1 loads the DBDs for all referenced data bases and calls module
DLZDLBDP, if the USERID parameter was specified on the BUILD statement.

Module DLZDLBDP creates the DBDBASICDATA, DBDACCESSDATA,
DBDSEGMENTDATA, DBDLCHILDDATA, and DBDFIELDDATA records
from information retrieved from the DL/I DBD control blocks and inserts them
into the appropriate DL/I Documentation Aid SQL/DS tables. After all
processing is completed for the DBD, control is returned to DLZDIL.BL.1.

Module DLZDLBL1 then builds the associated DMBs (for all but logical DBDs).
It then processes the SDBs associated with each DBD, copying any required
information from the physical definitions and building any required generated
SDBs. Control is given to module DLZDLBL2 when all DBDs have been
processed.

Module DLZDLBL2 finishes the processing of the SDBs. It acquires and builds
the intent list, including propagation of intent, and initializes any field level
sensitivity control blocks required. The PCB is moved to its proper location and
the JCB, level table, and DSGs are built. Control is passed to module
DLZDLBL3.

The last module, DLZDLBL3, builds the index maintenance PCB if one is
required, performs some additional clean-up, and packages and outputs the DMBs
and the PSB to either SYSLNK or SYSPCH. If a utility PSB is required, module
DLZDPSBO is called to build it, and module DLZDLBLO is re-called at entry
PSBPASS to initialize it.

Interfaces - DLZDLBLO - DLZDLBL3

These modules interface with the following modules:

DLZDPSBO Called to build a utility PSB

3-108 DL/IDOS/VS Logic Manual, Volumel

Licensed Material—Property of IBM

DLZLBLMO Called to format and write error message
Entry Register Contents

R1 Address of parameter list
R13 Save area address

R14 Return address

R15 Entry point address

| Parameter List

PST address
USERIDCB address

Exit Register Contents
All registers are restored. The return code appears in PSTERCOD of the PST.

PSTERCOD = 0 Valid return
PSTERCOD # 0 Errors encountered

DLZDPSBO - Utility PSB Builder

This module is called by the application control blocks builder module
(DLZDLBLO) to dynamically construct a special utility PSB from a specific DBD.
The created PSB is in PSBGEN format. A GETVIS is issued to obtain storage
necessary to create the PSB. The created PSB is sensitive to all segments for the
data base.

Entry Register Contents

R1 Address of parameter list

R13 Save area address

R14 Return address of DLZDLBLO

R15 Entry point

The parameter list consists of a DBD address and a PSB address.

Exit Register Contents

All registers are restored except R15 which contains a return code passed to
DLZDLBLO.

R15 = 0 Valid return
R15 # 0 Errors encountered

Data Base Logical Relationship Ultilities

DLZURPRO - Prereorganization

The purpose of this module is to examine input control cards provided by the user,
and, based upon the information contained in DL /I control blocks, to generate a
control data set for use by other programs concerned with the resolution of logical
and index relationships.

Section 3. Program Organization 3-109

DLZURGSO0 - DB Scan

Licensed Materiai—Property of IBM

The input control cards for this program indicate the names of data bases that a
user wishes to initially load or to reorganize. The control blocks for each segment
of each data base listed on an input control card are examined. For each logical
relationship in which a segment participates, a prefix resolution check is performed.
This check consists of generating a bit map reflecting the prefix fields involved in
the logical relationship, and then checking the bit map against a table that indicates
the fields which must be resolved for the types of data bases in which the logical
parent and the logical child reside. For purposes of the prefix resolution check, the
type of data base is considered to mean an initially loaded data base, a reorganized
data base, or another data base (not reorganized or loaded, but logically related to
a data base that is reorganized or loaded). If the bit map and the table entry match
yields a nonzero value, prefix fields must be resolved in either or both the logical
parent and logical child.

If prefix fields must be resolved, a control list entry is built for the logical parent
and/or the logical child. This control list entry indicates the fields to be resolved,
the work data set record format options to use, etc. As control data set list entries

are built, each record is calculated to determine a maximum record length. The

largest size is saved and put into field LESRTSZE when the control data set is
written. The prefix resolution utility (DLZURG10) reads this value and passes it
to SORT.

After generating the control list, the data bases to be scanned, loaded, or
reorganized are listed. The scan list is punched if requested. The control list is
then written to the control data set.

Control Blocks - DLZURPRO

« Control file consisting of one or more records, each with a pointer to the next
block of control file and an area containing one or more control list entries.

o List entry.

e Secondary list entry.

Interfaces - DLZURPRO

The interface with the reorganization message module (DLZURGMO) is through
the tables provided in that module. See the description of that module for table

format.

The interface with batch initialization to load the required blocks dynamically is
accomplished with the DLZBLKLD macro.

Error Codes and Handling - DLZURPRO
This program audits all input control cards and verifies the consistency of DL /I

control blocks. Any errors encountered cause one or more messages to be
generated. Refer to DL/I DOS/VS Messages and Codes for details.

This module searches one or more data bases for all segments that are involved in
logical relationships. For each such segment, DLZURGSO0 generates one or more

3-110 DL/IDOS/VS Logic Manual, Volumel

s

Licensed Material—Property of IBM

output records, depending upon the relationships in which that segment is involved.
- The output work data set of this program serves as one of the inputs to the prefix
(resolution utility.

This program scans data bases as indicated either by scan control cards or by the
control data set generated by the prereorganization program. If scan control cards
are present, they are checked for consistency with the DL/I control blocks. Data
base scanning is done by segment type for HDAM and HIDAM data bases. If scan
control cards are provided for segments in an HDAM or a HIDAM data base, work
data set records are generated only for those segments listed on scan control cards.

After the segments are read into core, control is passed to the work data set
generator module (DLZDSEH0). DLZDSEHO generates any necessary output
work data set records based upon information contained in the control data set. It
then returns control to this program (DLZURGS0).

Interfaces - DLZURGSO0

(‘ Module DI.ZURGSO interfaces with the reorganization message module
) (DLZURGMO) through the tables provided in that module. See the description of
that module for table format.

The interface with the work data set generator module (DLZDSEHO) is as
described in the documentation for that module.

The interface with the buffer handler module (DLZDBHO0) is as described in the
documentation for that module. The buffer handler module is used to directly
(’ access records in a data base.

The interface with batch initialization to load the required blocks needed for
processing is accomplished with the DLZBLKLD macro.

Error Codes and Handling - DLZURGS0

This program audits all input control cards and verifies the consistency of DL/I
control blocks with the control data set. Any errors encountered cause one or
more messages to be generated. Refer to DL/I DOS/VS Messages and Codes.

(‘ ABEND:s - DLZURGS0

If an input card is read with “ABEND” in columns 1-5, a dump (PDUMP) will be
taken if an error condition is detected. This should always be done on a rerun of
this utility if an APAR is to be submitted because of an error return code.

DLZDSEHO - Workfile Generator

This module generates the work file records that are required to resolve logical
and/or index relationships after one or more data bases have been initially loaded
or reorganized. This program is used by the HD reload (DLZURGLO) and scan
(DLZURGSO) utility programs provided by DL./I DOS/VS. 1t is also called
automatically by internal DL /I modules (DLZDDLEO and DLZDXMTO0) when a
data base is initially loaded by a user-written program.

(j*~ The general operation of this program consists of creating one or more work file

records for each segment that is initially loaded, reloaded, or scanned, if that
segment is involved in at least one logical or index relationship. The work file

Section 3. Program Organization 3-111

Licensed Materiai-—Property of IBM

records reflect the new location of each segment and, if the data base is being
reloaded, its old location. Each work file record also contains related information
that indicates the data bases and segments involved in the logical or index
relationship described by the record, their old pointer values, etc.

This program generates all work file records that are used as input by the data base
prefix resolution module (DLZURG10). The format of each output record
generated by this program (DLZDSEHO) is as described for input of the data base
prefix resolution module (DLZURG10).

This module contains a CSECT which is also used by scan (DLZURGSO0) and
index maintenance (DLZDXMTO) to open the work file DTF. Within this routine
is a subroutine (FINDDTF) which is also used by scan to determine the correct
DTF (disk or tape) to use for a given file depending on the assignment for it.

DLZDSEHO is loaded by batch initialization when the PROCOPT is ‘load’ or when
HD reload or scan are to be executed. The primary entry point address is found in
SCDDSEHO. The DL/I termination routine will close the work data set.

Interfaces - DLZDSEH0
The first seven fullwords of the CSECT contain information to be used by the

modules which interface with DLZDSEHO. These words concern the work data set
and entry points or addresses needed by scan (DLZURGSO0).

Displ. from

Entry Point

DLZDSEHO0 Contents

-28 Base address of this module

-24 Address of LPLCSV - information needed by scan

-20 Address of TEST - entry point when called by scan

-16 Address of FINDDTF - a subroutine used by scan

-12 Address of OPENWORK - entry point of routine to open
WORKEFIL file

-8 Address of work area available to build output record

-4 Address of opened work file DTF. If this field is zero, the file is
not open.

» When invoked during initial data base load or during data base reorganization,
the following interface is used:

Entry Point

DLZBEGIN (Address found in SCDDSEHO0)
Register Contents

R1 PST

R13 Save area

R14 Return address

R15 Entry point address

Control Blocks

JCBPRESF - Operation type (FUNCASRT or FUNCISRT)
PSTWRK1 - SDB address

3-112 DL/IDOS/VS Logic Manual, Volumel

Licensed Material—Property of IBM

Exit

Return to calling program with a return code in register 15. The values are:

0 (X0) Successful completion

4 (X‘4°) WORKFIL could not be opened (IGN was specified). This is not an
error condition if the user does not wish to create a work file.

8 (X‘8%) Sort field size exceeded

12 (X‘C’) GETVIS error occurred

16 (X‘10’) Invalid DL/I control blocks

20 (X‘14’) Length of PCB key feedback area is zero

24 (X‘18’) 1/0 error occurred on WORKFIL or CONTROL data set.

28 (X‘1C’) CONTROL or WORKFIL data set could not be opened (invalid or
unassigned device)

« When the OPENWORK routine is called by scan (DLZURGSO0) or index
maintenance (DLZDXMTO), the following interface is used:

Entry Point
OPENWORK
Register Contents
R13 Caller’s save area address
R14 Return address
R15 Entry point address.
Exit
All registers are restored to entry condition. Return is made to the address in R14
plus the displacement O if an unknown or invalid device is specified or 4 if
WORKFIL is successfully opened.
o When invoked during a data base scan, the following interface is used:
Entry Point
TEST

Register Contents

R3 Location for prefix parameter list area for segmént just read
R5 Secondary list entry

R6 PSDB
R7 SDB
R9 PCB
R10 PST

R11 Location of DTF for work data set (must be open)
R12 Base address for DLZDSEHO

R13 Save area for use by DLZDSEHO

R15 Entry point TEST

Control Blocks

PSTWRK1 Byte 0 Operation type (FUNCIHPS)

Section 3. Program Organization 3-113

Licensed Material—Property of IBM

PSTWRKI1 Byte 1-3 SDB address
Exit

Return to calling program with return code in register 15 as for entry point
DLZBEGIN.

o When the FINDDTF routine is invoked by scan, the following interface is
used:

Entry Point
FINDDTF
Register Contents

RO System logical unit number in hex

R2 Address of disk DTF

R3 Address of tape DTF (or 0, if not an option)
R13 Caller’s save area address

R14 Return address

R15 Entry point of FINDDTF

Exit

Register 15 - address of chosen DTF

All other registers are restored to entry conditions. Return is made to the address
in R14 plus the displacement 0 if an unknown or invalid device specified or 4 if

successful completion. When error return to R14+0 is made, R15 is zero if IGN
was specified, or nonzero otherwise.

DLZURGI10 - Prefix Resolution

This module accumulates the information generated on work data sets during the
load and/or reorganization of one or more data bases. It produces an output data
set that contains the prefix information needed to complete the logical and/or
index relationships defined for the data base(s).

Operation of this program centers around at least one and possibly two, phases of
the DOS Sort/Merge program execution. In the first phase, the Sort/Merge
program is attached by this program. All work data set records generated during
data base initial load, reorganization, or scan are input to the sort program. All
input records are sorted such that all work data set records associated with a given
occurrence of a logical parent follow the work data set record describing that
logical parent. On exit from the first phase sort, this program has available the
information needed to resolve the logical parent pointers that reside in logical
children, the counter field and logical child pointers in the logical parent, and the
logical twin pointers in the logical child (if a sequence field is carried in the work
data set record). Any unnecessary records are dropped before entering the second
sort phase. The second phase of this program is not executed if only index
relationships need to be resolved.

In the second phase of this program, the Sort/Merge program is again attached. In
this sort execution, the output records from phase one are sorted according to data
base name and physical location within data base of each segment that must be

3-114 DL/IDOS/VS Logic Manual, Volumel

Licensed Material—Property of IBM

updated by the prefix update program. On exit from the second phase sort, any
remaining logical twin pointers are resolved, and further accumulation of logical
parent counter fields is performed. Any records not actually necessary to update a
data base are dropped at this time.

This program uses the control data set generated by the prereorganization program
to govern its general operation. That is, the lists in the control data set indicate
prefix fields to be resolved, etc. The pre-reorganization utility also calculates the
maximum record length for SORT records and stores the size in the control data
set (LESRTSZE). The prefix resolution utility reads this value and passes it to
SORT.

Control Blocks - DLZURG10

e Input work file record - DLZURWF1
e Output work file record - DLZURWEF3

Error Codes and Handling - DLZURG10

This program audits all input work data set records for consistency and for
correspondence with the control list provided with the control data set. Any errors
encountered cause one or more messages to be generated. Refer to the DL/I
DOS/VS Messages and Codes.

DLZURGPO - Prefix Update

This module reads the input work data set provided by the data base prefix
resolution module, reads the data base segment indicated by each record of the
input work data set, and applies the prefix changes indicated by the work data set
record to the segment read into main storage.

The input work data set is sorted in data base and segment physical location order
by the data base prefix resolution module (DFSURG10) to afford most efficient
update of each data base by this module. The format of each input record read by
this program is as described for output of the data base prefix resolution module.

One or more input work data set records may be present for each segment that
participates in logical or index relationships. The records are successively applied
to the prefix of each segment affected, and the updated segment is written to its
storage device. The prefix fields updated by this program include the logical
parent, logical twin, and logical child pointer fields, and the counter fields
associated with logical parents.

Interfaces - DLZURGPO

The interface with the reorganization message module (DLZURGMO) is through
the tables provided in that module. See the description of that module for table
format.

The interface with the language interface module (DLZLI0O00) is as described in
the documentation for that module. The DL/I “ISRT” and “GHU?” calls are
issued by this program.

The interface with the buffer handler module (DLZDBHOO0) is as described in the

documentation for that module. The buffer handler module is used to directly
access records in a data base.

Section 3. Program Organization 3-115

Licensed Materiai—Property of IBM

The interface with batch initialization to load the required blocks dynamically is
accomplished with the DLZBLKLD macro.

Error Codes and Handling - DLZURGPO

This program audits all input work data set records for consistency with data base
control blocks, checks all data base update operations, and checks input control
card information. Any errors encountered cause one or more messages to be
generated. Refer to the DL/I DOS/VS Messages and Codes.

DLZURGMO - DB Reorganization Message

This module contains messages used by the following utilities: preorganization
(DLZURPRO), scan (DLZURGSO0), prefix resolution (DLZURG10), and prefix
update (DLZURGPO). The module consists of the two tables defined below.

Control Blocks - DLZURGM0
1. Message Length and Offset Table

One 4-byte table entry exists for each message. Each 4-byte entry contains
the message length and offset.

2. Message Table

One variable-length entry is present for each message. Each entry contains the
text of the message. The length is found in the message length and offset
table.

Interfaces - DLZURGMO0
This module contains messages that are used by the following modules:

DLZURPRO (prereorganization)
DLZURGSO (scan)
DLZURGI10 (prefix resolution)
DLZURGPO (prefix update)

Trace Print Utility

DLZTPRTO0 - Trace Print Utility

The Trace Print Utility is used to format and print trace entries previously written
to a tape or disk by the CICS/VS extra partition dataset facility. The format of the
output records on SYSLST is the same as those written directly to SYSLST by the
Trace Facility. Trace Print Utility processing is as follows:

1. The utility opens the reader (SYSIN), printer (SYSLST), and console log
(SYSLOG).

2. Arread is issued to SYSIN, looking for a TI statement. If present, the fields on
the statement are validated and saved. Further reads are issued to SYSIN until
EOF is returned. All statements read from SYSIN are recorded on SYSLST.

3. When End-of-File is reached on SYSIN, the reader is closed.

3-116 DL/IDOS/VS Logic Manual, Volume1

o

7

Licensed Material—Property of IBM

DL/I Run and Buffer Statistics

A GETVIS is issued to acquire sufficient storage for two trace input buffers.
The buffer size will either be the default of 32763 bytes, or the size specified
on the TT statement.

The device assigned for trace input is then checked by the DLZDVCE macro
routine. If the device is a valid tape or disk, the corresponding DTF is
modified and the file opened for input.

Trace records are then read from the input file until End-of-File is returned.

Trace entries are processed from the input buffer one at a time until all of the
entries in the record are printed. If selective output was specified by using a
TO statement, each entry is checked against the desired selection. If the entry
passes the selection test, it is printed. If it does not pass the test, it is ignored.
When the last entry of the record is processed, control is returned to the read
routine.

Any errors detected will be written to SYSLST and/or SYSLOG. If no errors
are detected, a message indicating successful completion is written.

DLZSTTL - DL/I Run and Buffer Statistics

The run and buffer statistics function captures online (including MPS) DL/1
system statistics and writes them to the extra-partition CSSL. This data is
cumulative for the current invocation of CICS/VS and automatically printed during
CICS/VS shutdown.

Interfaces

This module interfaces with the following modules:

CSAPCNAC - CICS/VS program control routine
CSASCNAC - CICS/VS storage control routine
CSATDNAC - CICS/VS transient data control routine

Control Blocks - DLZPRCTI1

CICS/VS - CSA
CICS/VS - TCA
DL/I-SCD
DL/I - BFFL
DL/I - SBIF

Normal Entry Point

The only entry point to this module is DLZPRCT1.

Entry Register Contents

R1 RPL address

R2 STTLPUT subroutine linkage
R3 STTLCNFG loop control

R5 DLZSBIF base register

Section 3. Program Organization 3-117

Extract Defines Ultility

Licensed Material—Property of IBM

R6 DLZBFPL base register
R8 DFHTCTTE base register
R9 DFHTIOA base register
R10 DFHTDOA base register
R11 DLSSTTL base register
R12 DFHTCADS base register
R13 DFHCSADS base register
R14 External link

Exit Register Contents

All registers are the same as on entry except R15, which contains the return
address.

DLZEXDFP - Extract Defines Utility

The Extract Defines utility creates an ISQL Routine containing EXTRACT
DEFINE commands. This utility uses the information about the the DL/I
databases in the DL/I Documentation Aid SQL/DS tables created by the
Application Control Blocks Creation and Maintenance Utility.

The logic flow is as follows: Each control statement is syntax-checked and
processed individually based on the PCB. The DEFINE commands are created and
inserted into the SQL/DS ROUTINE table in the following order:

DEF PCB NAME=XXXXXXXX,PSB=(XXXXXXX,nnn) , PROC=XXXXXXXX

DEF SEGMENT NAME=XXXXXXXX, PCB=xXXXXXXX , PARENT=0

DEF FIELD NAME= (XXXXXXXX, {SEQ|NOSEQ}) , SEGM=XXXXXXXX , PCB=XXXXXXXX,
TYPE=x, START=nnnnn, BYTES=nnn

(and all other DEFINE FIELD commands associated with this
segment)

DEF SEGMENT NAME=XXXXXXXX,PCB=XXXXXXXX, PARENT=XXXXXXXX
DEF FIELD NAME= (xxxXxxxXX, {SEQ|NOSEQ}) , SEGM=XXXXXXXX , PCB=XXXXXXXX,
TYPE=x,START=nnnnn, BYTES=nnn

(and all other DEFINE FIELD commands associated with this
segment)

The process for creating DEFINE SEGMENT and FIELD commands is repeated
until all SEGMENTSs have been processed for this PCB.

DEF PCB NAME=XXXXXXXX,PSB=(XXXXXXX,nnn) , PROC=XXXXXXXX

(and all DEFINE SEGMENT and FIELD commands associated with
this PCB)

The process for creating SEGMENT and FIELD commands is repeated until all
PCBs have been processed for this PSB.

3-118 DL/IDOS/VS Logic Manual, Volumel

L W

Licensed Material—Property of IBM

Blocks and Tables - DLZEXDFP

EXINOUT DEFINE COMMAND build area
DLZEXWCB DEFINE work control block
DSQLCA SQL Communication Area
SQLDSECT SQL/DS Interface Control Block

Interfaces - DLZEXDFP

This module interfaces with the following modules:

DLZEXDFM Called to format pre-built messages
ARIPRDID SQL/DS interface module

Register Contents

RS
R6
R7
R8
R9

SQLCA Address

" EXINOUT Address

DLZEXWCB Address
Error Information
SQLDSECT Address

Section 3. Program Organization 3-119

Licensed Material—Property of IBM

Main Routine ra
DLZEXDFP {
S
SCNCARDS | »| Parser
Routines

For Each PCB

PCBDEF
For Concatenated Segment
- | CSEGBYTS
SEGDEF
S For FLS
- -1 FLSBYTES |«
Loop For Loop For VR
Segments Fields
S 7
Loop For Fields
- —>| FINDFLD |-
FLDDEFS
Loop For
Fields
For Concatenated Segment
CKDEFS VLCDEFS ﬁ LCDEFS DPDEFS
Loop For Loop For Loop For Loop For /'r]
CK Fields VLC Fields LC Fields DP Fields t,/
| INSRTFLD
Figure 3-7. Extract Defines Utility Overview Flow)
7N
..\ ;/

General Flow - DLZEXDFP

DLZEXDFP: Mainline routine that does the utility intitialization.
SCNCARDS: Scans the control statements and retreives all information.
PARSER Routines:

PROPSBNM - Parses the PSBNAME parameter and saves the psbname and
pcbnumber. If the pcbnumber is omitted, it defaults to 1.

PROPCBNM - Parses the PSBNAME parameter and saves the pcbname.

PRODLIPR - Parses the DLIPROC parameter and saves the DL/I procedure

name. /
.
J/

3-120 DL/I DOS/VS Logic Manual, Volumel

Licensed Material—Property of IBM

PROREDP - Parses the REPLACE parameter and sets the replace flag
accordingly.

PROUSRID - Parses the USERID parameter and saves the user-id and
password.

PCBDEF: This routine selects the information required from the DL/I PSB or
DBD SQL/DS tables and builds the DEFINE PCB command. If REPLACE was
specified, the old SQL/DS routine by the pcbname being processed in the
ROUTINE table is deleted (if there) and replaced by these new DEFINE
commands. If REPLACE was not specified, a check is made to see if the routine
already exists, and if so, an error message is issued. If no routine exists for the
specified pcbname, the new commands are inserted.

SEGDEFS: This routine builds the DEFINE SEGMENT commands and inserts
them into the ROUTINE table. It determines if the segment is a concatenated
segment, a virtual logical child, and if the PSB is field level sensitive. If the PSB is
field level sensitive, routine FLSBYTES is called to calculate the length of the
segment. If the segment is a concatenated segment, routine CSEGBYTS is called to
calculate the length of the segment. If neither of the above, the length of the
segment is obtained from the physical DBD.

CSEGBYTS: This routine obtains the length of the logical child segment and
calculates the length of the destination parent’s concatenated key. If the current
segment is a virtual logical child, it calculates the logical parent’s concatenated key.
It also obtains the length of the destination parent’s segment.

For a logical child segment:
Segment length = logical child segment + logical parent segment lengths
For a virtual logical child segment:

Segment length = logical child segment + logical parent concatenated key +
physical parent concatenated key + physical parent segment lengths

FLSBYTES: This routine calculates the segment length for a field level sensitive
segment. It also calculates the starting position of the sensitive field and updates
the PSBFIELDDATA table entry for this field with the length and the datatype of
the field.

FLDDEFS: This routine builds the DEFINE FIELD commands and inserts them
into the ROUTINE table. If the segment is a concatenated segment, routines
CKDEFS, VLCDEFS, LCDEFS, and DPDEFS are called to obtain the field
information. If the segment is field level sensitive, field information is obtained
from the PSBFIELDDATA table. For segments other than field level sensitive or
concatenated segments, the field information is obtained from the physical DBD
definition.

FINDFLD: This routine locates the sensitive field and returns the length and
datatype to the caller. If the segment is not a concatenated segment, the
information is obtained from the physical field definition. If the segment is a
concatenated segment, the order of search is:

Section 3. Program Organization 3-121

|

Licensed Materiai—Property of IBM

If segment is a virtual logical child, first select from the virtual logical child. If
not found or if segment is not a virtual logical child, select from the logical
child. If still not found, select from the destination parent.

CKDEFS: This routine obtains the information to build the DEFINE FIELD

commands for the concatenated key.

VLCDEFS: This routine obtains the information to build the DEFINE FIELD
commands for the virtual logical child segment fields.

LCDEFS: This routine obtains the information to build the DEFINE FIELD
commands for the logical child segment fields.

DPDEFS: This routine obtains the information to build the DEFINE FIELD
commands for the destination parent segment fields.

INSRTFLD: This routine inserts the DEFINE FIELD commands into the SQL/DS
ROUTINE table.

| DLZEXDFM - Extract Defines Utility Error Message Handler

This module is used to contain, select, and format error messages for the Extract
Defines utility. Given a message number in register one, the module will select the
matching message and format it, by inserting an arbitrary number of additional
character strings addressed by specific registers. Control is returned to
DLZEXDFP who in turn calls routine ‘PRTMSG’ to print the message.

Entry Register Contents - DLZEXDFM

R1 Message number -

R2 Message Buffer Address
R13 Save area

R14 Return Address

R15 Entry point

Additionally, any registers are passed that have been defined to contain pointers to
character strings to be inserted into the message.

3-122 DL/I DOS/VS Logic Manual, Volumel

/

AN

S

C

Licensed Material—Property of IBM

Section 4. Directory

This table gives the following information for all DL/I DOS/VS modules:
o Core Image Library

The name of the DL/I DOS/VS phase residing in the core image library.
e CSECT(s)/Entry Point(s)

The CSECTs that comprise each PHASE. Any indented name under a
CSECT is an entry point within that CSECT. If the indented name is preceded
by ‘*’, it designates a routine within the CSECT and may, or may not, appear
on the link-edit map. Unreferenced entry points have been omitted.

o Relocatable Library

The name(s) of the module(s) in the relocatable library that are needed for
linkage editing.

o Source Library

The name(s) of the module(s) in the source statement library. For each
module, source code listings are available on microfiche (under the module
name).

o Storage ID

The storage ID for the applicable modules. This is located near the beginning
address of each module and is usually followed by the version, release level,
and latest PTF level applied.

o Supplementary Information

The entry SVA means the module concerned is eligible to be loaded into the
shared virtual area (SVA). Any other entry in this column is the entry point
name that must be present on the END statement when assembling this
module, for example, END DLZBEGIN.

Note: The figure number shown after the descriptive name refers to the figure
number of the module’s HIPO diagram in * Section 2: Method of Operation”,
Data Language/I Disk Operating System/Virtual Storage (DL/I DOS/VS) Logic
Manual, Volume 2, 1.Y24-5215.

Section 4. Directory 4-1

System Control Modules

CSECT(S)/
Entry
Point (s)

Core
Image
Library

** Batch Initialization ** (See Figure 2-3.)

DLZRRCO0O
*ERRORMSG
DLZMMSGT
DLZRDR
DLZCONSL
DLZRRC10
*DLZ2MSGT
*DLZ3MSGT
*DLZ4MSGT
*DLZRRAOO
*DLZPCCOO0
*DLZDBLMO
*LOADDMBS
*PCBROUT
*¥DLZCPIOO
*DMBLOADR

DLZRRCOO

Relo
Library

DLZRRCOO

DLZMMSGT

** Batch Nucleus ** (See Figure 2-4.)

DLZBNUCO SCDCSECT
SCDSTART
¥DLZIWAIT
*DLZPRHBO
*DLZABEND

DLZEIPI

** Online Initialization ** (See Figure 2-5.)

DFHDIDL DLIOLIOO
*DLZCPIOO
INITLODR

DLIOLI10

4-2 DL/IDOS/VS Logic Manual, Volume1

DLZBNUCO

DLZEIPBO

DLZOLIOO

Source
Library

DLZRRCOO

DLZMMSGT

DLZBNUCO

DLZEIPBO

DLZOLIOO

Storage
ID

DLZRRCOO

DLZMMSGT

DLZ2MSGT
DLZ3MSGT
DLZ4MSGT

DLZBNUCO

DLZEIPBO

DLZOLIOO

Licensed Material—Property of IBM

o
'

Suppl

Inf

DLZRRCST
,/V
\ s
A
s
N

Core
Image
Library

Licensed Material—Property of IBM

CSECT(S)/
Entry
Point (s)

Relo
Library

** Online Nucleus ** (See Figure 2-6.)

DLZNUCxx

DLZEIPOO
DLZODP
DLZODPOO
DLZSCHDL
DLZODPO3
DLZODPO02
DLZODPO4
DLZODPO7
DLZODPO06
DLZODPO1
DLZTKTRM
DLZTKBAD
DLZODPO5
DLZPRHOO
DLZABNDO
DLZOLTOO
DLZOLTO02
DLZOLTO1
DLZOWAIT
DLZOVSEX
DLZERMSG
DLZODP10
DLZODP11
DLZEIPI
DLZSTROO
DLZCOMOO
DLZCOMO 1
DLZLOCO00
DLZLOCO1
DLZODPEX
DLZNUC
SCDSTART
DLZEIPL
DLZMMSGT
*DLZ2MSGT
*DLZ3MSGT
*DLZ4MSGT
DLZFTDPO
DLZISCO0O
DLZISCO1
DLZISCO02
DLZISCO03

DLZODP

DLZEIPOO
DLZSTROO
DLZCOMOO

DLZLOCO0

DLZMMSGT

DLZFTDPO
DLZISCOO0

Source
Library

DLZODP

DLZEIPOO
DLZSTROO
DLZCOMOO

DLZLOCO00

DLZMMSGT

DLZFTDPO
DLZISCO00

Note: xx is the suffix specified during ACT generation.

** DL /I Online System Termination ** (See Figure 2-7.)

I DLZSTPOO

DLZSTPOO

DLZSTPOO

DLZSTPOO

Storage
1D

DLZNUCXX

DLZODPO02
DLZODPO4
DLZODPO7

DLZODPO1

DLZODPO5
DLZPRHOO

DLZOLTOO

DLZOWAIT
DLZOVSEX
DLZERMSG
DLZODP10
DLZODP11
DLZEIPOO
DLZSTROO
DLZCOMOO
DLZCOMO 1
DLZLOCO00
DLZLOCO1
DLZODPEX

DLZMMSGT
DLZ2MSGT
DLZ3MSGT
DLZ4MSGT
DLZFTDPO
DLZISCOO0
DLZISCO1
DLZISCO02
DLZISCO03

DLZSTPOO

Suppl
Inf

Section 4. Directory 4-3

DL/I Facility Modules
Core CSECT(S)/
Image Entry
Library Point (s)

Relo
Library

** Call Analyzer ** (See Figure 2-8.)

DLZDLAOO

DLZDLAOO

DLZDLAO1

DLZDLAOO

DLZDLAO1

** Retrieve ** (See Figure 2-9.)

DLZDLROO

DLZDLROO
DLZDLR10
DLZRETNO
DLZEODCO
DLZGERCO
DLZGERO
DLZGETSO

DLZCLRPO
DLZWIPEO

DLZMOVAQ
DLZMOVBO
DLZDELTO
DLZPSDBO
DLZHUNTO
DLZSETLO
DLZBHO
DLZSSDBO
DLZNOOPO
DLZCONCO
DLZRLNKD
DLZPOSTO
DLZSKPGO
DLZSKPSO
DLZSKPDO
DLZSKPEO
DLZHIDAO
DLZHDAMO
DLZHISAQ
DLZSTLAO
DLZSTLGO
DLZUPDTO
DLZKDTEO
DLZPCHKO
DLZSSAQ
DLZTAGO
DLZLTWO
DLZNOSSO
DLZISRTO
DLZVLRTO
DLZAREJO
DLZVLCHO
DLZXDFTO
DLZHSAMO
DLZALTSO
DLZFLDO
DLZLOGRO

DLZDLRAO

DLZDLRBO

DLZRLNKD
DLZDLRGO

DLZDLREO

DLZDLRCO

DLZDLRFO

DLZDLRDO

4-4 DL/IDOS/VS Logic Manual, Volumel

Source
Library

DLZDLAOO

DLZDLAO1

DLZDLRAO

DLZDLRBO

DLZRLNKD
DLZDLRGO

DLZDLREO

DLZDLRCO

DLZDLRFO

DLZDLRDO

Storage
1D

DLZDLAOO

DLZDLAO1

DLZDLRAO

DLZDLRBO

DLZRLNKD
DLZDLRGO

DLZDLREO

DLZDLRCO

DLZDLRFO

DLZDLRDO

Licensed Material—Property of IBM

Suppl
Inf

SVA
DLZEPDLA

SVA

C

Core
Image
Library

Licensed Material—Property of IBM

CSECT(S)/
Entry
Point(s)

DLZRETKO
DLZRETIO
DLZKDRKO
DLZKDTLO
DLZUPDCO
DLZUPDLO
DLZAPSTO
DLZYENTO
DLZYSTCO
DLZYENDO
DLZDEQO

DLZLPSLO

Relo
Library

** Load/Insert ** (See Figure 2-10.)

DLZDDLEO

DLZDDLEO
HDROUTIN
VLROUTIN
HSROUTIN

DLZDDLEO

** Delete/Replace ** (See Figure 2-11.)

DLZDLDOO

** Index Maintenance ** (See Figure 2-12.)

DLZDXMTO

DLZDLDOO
DLZDLDAO
DLZDLDDO
DLZDLDRO

DLZDXMTO

DLZDLDOO

DLZDXMTO

Source
Library

DLZDDLEO

DLZDLDOO

DLZDXMTO

** HD Space Management ** (See Figure 2-13.)

DLZDHDSO

DLZDHDSO
*GETSPACE
*CALCSRLM
*SRCHPOOL
*SRCHBTMP
*FRESPACE
*SRCHBLK
*FORMAT
*BITMPLOC
*BITMPOFF
*BITMPON
*DEVCHARI
DFSRLO30
SNAPDCB
SNPSW
SNPCNT

DLZDHDSO

** Open/Close ** (See Figure 2-14.)

DLZDLOCO

DLZDLOCO

DLZDLOCO

DLZDHDSO

DLZDLOCO

Storage
ID

DLZDDLEO

DLZDLDOO

DLZDXMTO

DLZDHDSO

DLZDLOCO

Suppl

Inf

SVA

SVA

SVA

SVA

Section 4. Directory 4-5

Core CSECT(S) /
Image Entry Relo
Library Point (s) Library

** DB Buffer Handler ** (See Figure 2-15.)
DLZDBHO0O DLZDBHO0O DLZDBHOO0
*MAINROUT
ROULINK
*PREPENQ

Source
Library

DLZDBHOO

*PREPDEQ
*ABEXIT
*BOTTOUSE
*ALLDEQ
*BFFERREL
*RETURN
DLZDBHO02
*WRITE
*READ
*HSREAD
*HSWRITE
*LOWRITE
*PUTKY
*MSPUT
*STLEQ
*STLBG
*GETNX
DETIOERR
*TSTPST1
DLZDBHO3
*MRKEMPT
*PGUSR

DLZDBHO02 DLZDBHO02

_ DLZDBHO3 DLZDBHO3

** DB Logger ** (See Figure 2-16.)
DLZRDBLO DLZRDBLO DLZRDBLO
DLZIDBLO
IOFILA1
LOGOUT
LSCDADDR
IJFUZZZN
IJFUZZZZ
IJ2Nnnnn
ONLLOGWR
(DLZRDBLO) SAVE
PRIVECB

DLZRDBLO

IJFUZZZN

DLZRDBLO DLZRDBLO

** CICS/VS Journal Logger ** (See Figure 2-17.)

DLZRDBL1 DLZRDBL1 DLZRDBL1 DLZRDBL1
DLZIDBLO

** Queuing Facility ** (See Figure 2-23.)

DLZQUEFO DLZQUEFO DLZQUEFO DLZQUEFO

DLZQUEFW DLZQUEFW DLZQUEFW DLZQUEFW

| ** Field Level Sensitivity Copy ** (See Figure 2-41.)
DLZCPY10 DLZCPY10 DLZCPY10 DLZCPY10
DLZSEGCV

4-6 DL/IDOS/VS Logic Manual, Volumel

Storage
D

DLZDBHOO

DLZDBHO2

DLZDBHO3

DLZRDBLO

DLZRDBL1

DLZQUEFO
DLZQUEFW

DLZCPY10
DLZSEGCV

Licensed Material—Property of IBM

Suppl

Inf ‘ /(BN
\'k,/

SVA
.)
\‘-;,//
A
«_
’f/’"\\
{ I
NS

SVA

®

Licensed Material—Property of IBM

MPS Control Modules
Core CSECT(S) /
Image Entry Relo Source
Library Point(s) Library Library
** MPS Start Transaction ** (See Figure 2-18.)
DLZMSTRO DLZMSTRO DLZMSTRO DLZMSTRO

** Master Partition Controller ** (See Figure 2-19.)
DLZMPCOO DLZMPCOO DLZMPCOO DLZMPCOO

** Batch Partition Controller ** (See Figure 2-20.)
DLZBPCOO DLZBPCOO DLZBPCOO DLZBPCOO
DLZLIO0O00

** MPS Batch Initialization ** (See Figure 2-21.)
DLZMPIOO DLZMPIOO DLZMPIOO DLZMPIOO

*DLZMPRH

*DLZMINIT

*DLZMTERM

*DLZ2MSGT

*DLZ3MSGT

*DLZ4MSGT

*DLZMMSG

*DLZMABND

DLZCONSL

DLZDIMOD

DLZEIPI DLZEIPRBO DLZEIPRO

DLZMMSGT DLZMMSGT DLZMMSGT

** Stop Transaction ** (See Figure 2-22.1.)
DLZMSTPO DLZMSTPO DLZMSTPO DLZMSTPO

** Purge Temporary Storage Transaction ** (See Figure 2-22)

DLZMPURO DLZMPURO DLZMPURO DLZMPURO

Storage

1D

DLZMSTRO

DLZMPCOO0

DLZBPCOO

DLZMPIOO

DLZ2MSGT
DLZ3MSGT
DLZ4MSGT

DLZEIPBO
DLZMMSGT

DLZMSTPO

DLZMPURO

Suppl
Inf

Section 4. Directory 4-7

Data Base Recovery Utilities

Core CSECT(S)/
Image Entry Relo Source
Library Point(s) Library Library
** DB Data Set Image Copy ** (See Figure 2-25.)
DLZUDMPO DLZUDMPO DLZUDMPO DLZUDMPO
DLZPRNT
DLZSLOG
PRNTAREA
IJ2Mnnnn DLZUDMPO DLZUDMPO
DLZDMPMO DLZDMPMO DLZDMPMO
IJJFCBZD IJJFCBZD
IJFSZZWN IJFSZZWN
IJFVZZWN

** DB Change Accumulation ** (See Figure 2-26.)

DLZUCUMO

DLZUCUMO
DLZERRTN
DLZUSPKL
DLZWORK#
DLZPRNT
DLZSLOG
DLZUCONS

DLZUCCTO

DLZUC150
DLZUEX15

DLZUC350
DLZUEX35

DLZCUMMO

IJFSZZWN
IJFVZZWZ

IJJFCBZD
IJJFCIZD

IJ2Mnnnn

IJFUZ2Z27Z

DLZUCUMO

DLZUCCTO
DLZUC150

DLZUC350

DLZCUMMO
IJFSZZWN

IJJFCBZD

DLZUCUMO
IJFUZZ227Z

DLZUCUMO

DLZUCCTO
DLZUC150

DLZUC350

DLZCUMMO

DLZUCUMO

** DB Data Set Recovery ** (See Figure 2-27.)

DLZURDBO

DLZURDBO
DLZURCCO
DLZLIOO0O0
CDLTDLI
DLZRDBMO
IJJFCBID
IJJFCBZD
IJJFCIID
IJFSZZWN
IJFVZZWN
IJ2Mnnnn
IJFUZZZN

4-8 DL/IDOS/VS Logic Manual, Volume1

DLZURDBO
DLZURCCO
DLZLIOO00

DLZRDBMO
IJJFCBID

IJFSZZWN

DLZURDBO
IJFUZZZN
IJGUICZZ
IJGQICZZ

DLZURDBO
DLZURCCO
DLZLIOO00

DLZRDBMO

DLZURBDO

Storage
ID

DLZUDMPO

DLZUCUMO

DLZUCCTO
DLZUC150

DLZUC350

DLZCUMMO

DLZURDBO
DLZURCCO
DLZLIOO00

DLZRDBMO

Licensed Material—Property of IBM

Suppl
Inf

Licensed Material—Property of IBM

Core
Image
Library

** DB Change Backout ** (See Figure 2-28.)

DLZBACKO

CSECT(S) /
Entry
Point (s)

DLZBACKO
READAREA
DLZPRNT
DLZSLOG

DLZRDBCO

DLZBACMO

DLZLIOO00
ASMTDLI

IJFUBZZZ

IJJFCBZD
IJJFCIZD

IJ2Mnnnn

Relo
Library

DLZBACKO

DLZRDBCO
DLZBACMO
DLZLIOO00

IJFUBZZZ
IJJFCBZD

DLZBACKO

| ** Log Print Utility ** (See Figure 2-40.)

DLZLOGPO

DLZLOGPO
DLZLGPCN
DLZLGPMT
DLZLPCCO
DLZLGPMO
IJJFCBID
IJJFCIID
IJFUZZZN

DLZLOGPO

DLZLPCCO
DLZLGPMO
IJJFCBID

IJFUZZZN

Source
Library

DLZBACKO

DLZRDBCO
DLZBACMO
DLZLIO00

DLZBACKO

DLZLOGPO

DLZLPCCO
DLZLGPMO

Storage
ID

DLZBACKO

DLZRDBCO
DLZBACMO
DLZLIOO00

DLZLOGPO

DLZLPCCO

Suppl
Inf

DLZLOGPE

Section 4. Directory 4-9

Data Base Reorganization Utilities

Core CSECT(S) /

Image Entry Relo

Library Point (s) Library

** HS DB Unload ** (See Figure 2-29.)

DLZURULO DLZURULO DLZURULO
DLZRULMO DLZRULMO
IJJFCBZD IJJFCBZD
IJFVZZWN IJFVZZWN
DLZCONSL

** HS DB Reload ** (See Figure 2-30.)

DLZURRLO DLZURRLO
DLZRRLMO

IJJFCBZD

IJFVZZWN

IJFVZZWZ

DLZCONSL

DLZURRLO
DLZRRLMO
IJJFCBZD
IJFVZZWN

** HD DB Unload ** (See Figure 2-31.)

DLZURGUO DLZURGUO
DLZCONSL
DLZLIO0O00
CBLTDLI
DLZRGUMO
IJJFCBZD
IJFUZZZN
IJGUOCZ2Z
IJGUICZZ

DLZURGUO
DLZLIOO00

DLZRGUMO
IJJFCBZD
IJFUZZZN
IJGUOCZZ
IJGUICZZ

** HD DB Reload ** (See Figure 2-32.)

DLZURGLO DLZURGLO
DLZLIOO00
CBLTDLI
DLZRGLMO
IJJFCBZD
IJGQICzzZ
IJGVICZZ
IJFSZZWN
IJFVZZZN

DLZURGLO
DLZLIOO0O0

DLZRGLMO
IJJFCBZD
IJGQICZZ

IJFSZZWN

4-10 DL/1DOS/VS Logic Manual, Volumel

Source
Library

DLZURULO
DLZRULMO

DLZURRLO
DLZRRLMO

DLZURGUO
DLZLIOO00

DLZRGUMO

DLZURGLO
DLZLIOO00

DLZRGLMO

Storage
1D

DLZURULO

DLZURRLO

DLZURGUO

DLZLIOO00

DLZURGLO
DLZLIOO00

Licensed Material—Property of IBM

Suppl
Inf

Licensed Material—Property of IBM

ACB Utility

(‘ Core CSECT(S)/

Image Entry Relo Source Storage Suppl
Library Point (s) Library Library 1D Inf
** ACB Creation ** (See Figure 2-33.)
DLZUACBO DLZUACBO DLZUACBO DLZUACBO DLZUACBO
PRTMSG
DLZDLBLO DLZDLBLO DLZDLBLO DLZDLBLO
PSBPASS
DLZDLBL4
| DLZDLBPP DLZDLBPP DLZDLBPP DLZDLBPP
DLZDLBL1 DLZDLBL1 DLZDLBL1 DLZDLBL1
| DLZDLBDP DLZDLBDP DLZDLBDP DLZDLBDP
DLZDLBL2 DLZDLBL2 DLZDLBL2 DLZDLBL2
DLZDLBL3 DLZDLBL3 DLZDLBL3 DLZDLBL3
FREESTOR
IJSYSLN
PCHDTF
= DLZLBLMO DLZLBLMO DLZLBLMO DLZLBLMO
(f DLZUSCHO DLZUSCHO DLZUSCHO DLZUSCHO
INSRCH y;
CLOSESCH
DLZDPSBO DLZDPSBO DLZDPSBO DLZDPSBO
IJJCPD1N IJJCPDIN
IJJFCBZD IJJFCBZD
IJJFCIZD

Section 4. Directory 4-11

Core
Image
Library

DLZURPRO

DB Logical Relationship Utilities

CSECT(S) /

Entry Relo

Point(s) Library
** Prereorganization ** (See Figure 2-35.)

DLZURPRO DLZURPRO

DLZLIOO0O0 DLZLIOO00

ASMTDLI

DLZURGMO DLZURGMO

IJJIFCBZD IJJFCBZD

IJGFOCZz IJGFOCZZ

** DB Scan **

DLZURGSO

(See Figure 2-36.)

DLZURGSO
DLZCONSL
DLZURGMO
DLZLIOO00
ASMTDLI
IJJFCBZD
IJJFCIZD
IJFSZZWN
IJFVZZZN
IJGQICZZ
IJGVICZZ
IJGFICzZ

DLZURGSO

DLZURGMO
DLZLIOO0O0

IJJFCBZD
IJFSZZWN
IJGQRICZZ

IJGFICZZ

** Prefix Resolution ** (See Figure 2-37.)

DLZURG10

DLZURG10
DLZURGMO
IJJFCBZD
IJJFCIZD
IJGFICZZ
I1JGQICZZ
IJGVICZZ
IJFSZZWN
IJFVZZZN
IJFVZZWN
IJFFZZZN
1JGQOCZZ
1JGVOCZZ
DLZX 1581
DLZX15S2
DLZX3581
DLZX35S2

DLZURG10
DLZURGMO
IJJFCBZD

IJGFICZZ
IJGQICZZ

IJFSZZWN
IJFFZZZN
IJGQOCZZ

DLZURG10

** Prefix Update ** (See Figure 2-38.)

DLZURGPO

DLZURGPO
DLZURGMO
DLZLIOO00
ASMTDLI
CBLTDLI
IJJFCBZD

DLZURGPO
DLZURGMO
DLZLIOO00

IJJFCBZD

4-12 DL/IDOS/VS Logic Manual, Volume1

Source
Library

DLZURPRO
DLZLIOO00

DLZURGMO

DLZURGSO

DLZURGMO
DLZLIOO00

DLZURG10
DLZURGMO

DLZURG10

DLZURGPO
DLZURGMO
DLZLIOOO

Storage
ID

DLZURPRO
DLZLIOO00

DLZURGSO

DLZLIOOO

DLZURG10

DLZURGPO

DLZLIOO00

Licensed Material—Property of IBM

A ™
NS
Suppl
Inf
‘\\ ,«/"
AN
oS
//((\
N

Core
Image
Library

DLZDSEHO

Licensed Material—Property of IBM

CSECT(S) /
Entry Relo Source
Point (s) Library Library
IJJFCIZD
IJFSZZWN IJFSZZWN
IJFVZZZN
IJGQICZZ IJGQICZZ
IJGVICZZ
** Work File Generator ** (See Figure 2-39.)
DLZDSEHO DLZDSEHO DLZDSEHO
DLZBEGIN
OPENWORK
IJFSZZWN IJFSZZWN
IJFVZZWN
IJGFICZZ IJGFICZZ
IJGQOCZZ IJGQOCZZ
IJGVOCZZ

Storage
ID

DLZDSEHO

Suppl
Inf

DLZBEGIN

Section 4. Directory 4-13

Diagnostic and Test Modules

Core CSECT(S)/
Image Entry Relo Source Storage
Library Point (s) Library Library iD

** System Formatted Dump **
DLZFSDPO DLZFSDPO DLZFSDPO DLZFSDPO DLZFSDPO
l DLZCBDPO DLZCBDPO DLZCBDPO

** DL /I Tracing Facility **

user DLZTRACE user DLZTRACE DLZTRACE
chosen chosen
DLZTRPRO DLZTRPRO DLZTRPRO DLZTRPRO

IJJFCBIC IJJFCBIC

** DL /I Test Program - Batch **

DLZDLTXX DLITCBL DLZDLTXX DLZDLTXX DLZDLTXX
DLZSNAP
DLZLIOO00 DLZLIOO00 DLZLIOO00 DLZLIOO00
CBLTDLI
IJGFIZzz IJGFIZZZ
IJJFCBID IJJFCBID
IJJFCIID

** DL /I Test Program - Online **
DLZDLTXY DLITCBL DLZDLTXY DLZDLTXY DLZDLTXY

DLZSNAP

DLZLIOO00 DLZLIOO00 DLZLIOO00 DLZLIOO00
CBLTDLI

IJGFI1IZZZ IJGF12722Z

IJJFCBID IJJFCBID
IJJFCIID

** Online Task Formatted Dump **
DLZFTDPO DLZFTDPO DLZFTDPO DLZFTDPO DLZFTDPO
| DLZCBDPO DLZCBDPO DLZCBDPO

** Run and Buffer Statistics ** (See Figure 2-43.)
DLZSTTL DLZSTTL DLZSTTL DLZSTTL DLZSTTL

** Trace Print Utility ** (See Figure 2-42.)

DLZTPRTO DLZTPRTO DLZTPRTO DLZTPRTO DLZTPRTO
DLZTPRMO DLZTPRMO DLZTPRMO
IJJFCBIC
IJJFCIZD IJJFCIZD
IJFVZZZ2Z IJFVZZ2%Z
IJGVIEZZ IJGVIEZZ
| IJ2Mnnnn IJ2Mnnnn

4-14 DL/IDOS/VS Logic Manual, Volumel

Licensed Material—Property of IBM

Suppl
Inf

DLZTPRTE
DLZTPRMO

\“< P

Licensed Material—Property of IBM

Core CSECT(S)/
Image Entry Relo Source Storage Suppl
(:%~ Library Point (s) Library Library 1D Inf

** HD Partial Reorganization Utility ** (See Figure 2-44.)
DLZPRABC DLZPRABC DLZPRABC DLZPRABC DLZPRABC
DLZPRCLN DLZPRCLN DLZPRCLN DLZPRCLN DLZPRCLN

DLZPRCT1 DLZPRCT1 DLZPRCT1 DLZPRCT1 DLZPRCT1
COMAREA
IJJFCBZD IJJFCBZD
IJJFCIZD
DLZPRCT2 DLZPRCT?2 DLZPRCT2 DLZPRCT?2 DLZPRCT2
WORK 1
COMAREA
DLZLIO00 DLZLI000 DLZLI000 DLZLIO00
ASMTDLI
CBLTDLI
PLITDLI
RPGTDLI
IJJFCBZD IJJFCBZD
IJJFCIZD
N DLZPRDBD DLZPRDBD DLZPRDBD DLZPRDBD DLZPRDBD
™ DLZPRDLI DLZPRDLI DLZPRDLI DLZPRDLI DLZPRDLI
j DLZPRERR DLZPRERR DLZPRERR DLZPRERR DLZPRERR

DLZPRPAR DLZPRPAR DLZPRPAR DLZPRPAR DLZPRPAR
DLZPRPSB DLZPRPSB DLZPRPSB DLZPRPSB DLZPRPSB
DLZPRREP DLZPRREP DLZPRREP DLZPRREP DLZPRREP
DLZPRSCC DLZPRSCC DLZPRSCC DLZPRSCC DLZPRSCC
DLZPRSTC DLZPRSTC DLZPRSTC DLZPRSTC DLZPRSTC
DLZPRSTW DLZPRSTW DLZPRSTW DLZPRSTW DLZPRSTW
DLZPRUPD DLZPRUPD DLZPRUPD DLZPRUPD DLZPRUPD
DLZPRURC DLZPRURC DLZPRURC DLZPRURC DLZPRURC
DLZPRWFM DLZPRWFM DLZPRWFM DLZPRWFM DLZPRWFM

Section 4. Directory 4-15

4-16 DL/IDOS/VS Logic Manual, Volumel

Licensed Material—Property of IBM

A
NS

Licensed Material—Property of IBM

Section 5. Data Areas

This section describes the major data areas used by DL/I DOS/VS. The
description of each data area generally includes:

o Its DSECT name.

o The symbolic names of the fields and flags.

o The displacement of each field, in both decimal and hexadecimal.
« The length of each field.

* An alphabetic listing of all field and flag names.

« The hexadecimal code of each flag.

The data areas are documented in alphabetical order as listed in the Contents of
this publication.

This section also describes the DL/I partition in a batch environment and
illustrates the relationship of the DL/I control blocks. In addition, the description
and general structure is given for the data management block (DMB), the program
specification block (PSB), and the DL /I buffer pool control blocks.

The DL/I Partition and Control Block Relationship

The DL /I Batch Partition

The following text describes the DL /I partition in a batch environment and
illustrates the relationship of the DL/I control blocks described in this section.

Figure 5-1 on page 5-3 is a map of main storage in the DL/I DOS/VS batch
partition. Storage is allocated from the bottom or lowest storage address to the top
or highest storage address of the partition. The eight areas in the DL/I batch
partition are as follows:

« Area1 contains the DL/I nucleus. The SCD is the first control block in the
nucleus and contains the DL/I copyright information. This block also contains
the entry point address for every module in the DL/I system. The PST prefix,
PST, and PSB directory (PDIR) are in this area. There is one entry in the PSB
directory (PDIR).

o Area 2 contains the DL /I program request handler, DLZPRHBO, which is
loaded during DL /1 initialization. It is part of the batch nucleus module
(DLZBNUCO).

e Area 3 contains the PSB intent list (PSIL), PSB, and one DMB directory
(DDIR) entry for each DMB referenced by the PSB. The DMB directory is
created dynamically during DL/ initialization.

o Area 4 contains DMBs loaded from the DOS/VS Core Image Library by the
DL /1 Batch Initialization module. Randomizing modules are loaded after the

Section 5. Data Areas 5-1

5-2 DL/IDOS/VS Logic Manual, Volume1

Licensed Material—Property of IBM

DMBs for HDAM. They are followed by VSAM control blocks, index
management modules if secondary indexes are used, and by segment
compression modules if variable length segments are used.

Area 5 contains the DL /I buffer pool control blocks. These blocks are created
dynamically. There are one buffer pool prefix, one subpool information table
for each subpool specified, one DMB subpool directory entry for each DMB,
and 2-32 buffer prefixes for each subpool specified.

Area 6 contains the DL /I I/O buffers which comprise the buffer pool. There
are 2-32 buffers for each subpool specified. Each subpool is aligned on a 2K
page boundary.

Area 7 contains the DL /I action modules and the user trace module if
requested.

Area 8 contains the user batch application program.

BN

£
A

C

.
c,/

Licensed Material—Property of IBM

HIGH STORAGE

LOCATION AREA
b DL/l BATCH APPLICATION PROGRAM o8
PAGE BOUNDARY
TRACE MODULE — (USER NAMED)
SPACE MANAGEMENT — DLZDHDSO
OPEN/CLOSE — DLZDLOCO
LOAD/INSERT — DLZDDLEO INDEX MAINTENANCE — DLZDXMTO
DELETE/REPLACE — DLZDLDOO
7
CALL ANALYZER — DLZDLAQO DATA BASE LOGGER — DLZRDBLO
DL/l RETRIEVE — DLZDLROO
DB BUFFER HANDLER — DLZDBHO0
BUFFER POOL (NOTE) 6
PAGE BOUNDARY
BUFFER POOL CONTROL BLOCKS (NOTE) 5
PAGE BOUNDARY VSAM CONTROL BLOCKS, INDEX MANAGEMENT MODULES,
AND SEGMENT COMPRESSION MODULES
4
DMB POOL AND RANDOMIZING MODULES
PSB INTENT LIST AND PSB DMB DIRECTORY (NOTE) 3
APPLICATION PROGRAM REQUEST HANDLER — DLZPRHBO 2

LOW STORAGE
LOCATION

DL/I NUCLEUS — DLZBNUCO
SCD — PST PREFIX — PST — PSB DIRECTORY

DLZRRCO0 — PARTLY OVERLAID BY DLZBNUCO

-
L g

NOTE: BLOCKS DYNAMICALLY CREATED OR FORMATTED

Figure 5-1. Map of Main Storage in the DL/I Batch Partition

Section 5. Data Areas

5-3

Licensed Material—Property of IBM

DL/I Control Block Relationship

The purpose of this section is to show the relationships of the various DL/I control
blocks and provide a means by which the user can quickly find these control
blocks. The following discussion references Figure 5-2 on page 5-6 and Figure 5-3
on page 5-7. (Figure 5-2 on page 5-6 shows the DL/I control block relationships
in the batch environment; Figure 5-3 on page 5-7 shows these relationships in the
online environment.)

The SCD is the major control block in the DL/I system. It is located in the DL/I
nucleus. The SCD contains DL/I copyright information, entry point addresses of
DL /I routines, and pointers to the following DL/I control blocks:

« The buffer pool prefix, which is the first block of the buffer pool control
blocks.

In a batch system, there is only one PSB directory entry. In an online system,

‘ « The PSB directory from which the PSB and PSB intent list may be obtained.
there may be many PSB directory entries.

o The DMB directory. There is one DMB directory entry for each DMB
referenced by the PCBs.

o The first PST prefix from which the first PST may be obtained. There is only

one PST prefix in a batch system.

tasks while they are being served by DL/I. The address of the PST is contained in
the PST prefix. The following pointers are available in the PST:

' The PST provides task-local storage for batch and CICS/DOS/VS - DL/I online
« Caller’s (user program) parameter list
« SCD
e PSB directory for the task
« PCB currently being accessed

« I/0 buffer to be used for the data base call (used by the buffer handler)

« Subpool information table assigned to the data base (used by the buffer
handler)

» Buffer prefix which points to the I/O buffer containing the segment for the call
(used by the buffer handler)

| There is one PSB directory entry and one PSB for each program that may issue
DL/I calls or commands. In a CICS/DOS/VS - DL/I online environment, the
maximum is 255; in batch, there can be only one. The PSB directory entry
contains address pointers to the PSB and the PSB intent list.

The PSB intent list is a variable-length control block and contains an entry for each
DMB referenced by the PSB. Each entry contains the address of the DMB.

The PSB contains prefix information and one or more PCBs. For each PCB there
is a JCB, which is made up of the following: JCB prefix, level table, and one or

5-4 DL/IDOS/VS Logic Manual, Volume1

Licensed Material—Property of IBM

more SDBs. The PCB points to the JCB. The JCB contains working storage for
the program’s use of that data base and points to the level table. The JCB also
points to the SDB for the root segment and the VSAM ACB for the data base
(KSDS ACB if HISAM). The level table contains working storage for DL/I to
store its positioning data for each level of the data base. The level table points to
the current level SDB.

The SDB describes the user’s logical use of the sensitive segment. There is one
SDB for each segment to which the user is sensitive. Each SDB points to the
corresponding PSDB in the DMB.

The DMB directory entry contains the address of the DMB. Each DMB contains a
prefix, one ACB extension for each data set in the DMB (HISAM has two data
sets), one PSDB for each physical segment type, and one FDB for each field
defined for a segment. In addition, there is one direct algorithm communication
table (DMBDACS) if HDAM is used, and secondary list entries if HIDAM or
HDAM with index or logical relationships is used.

The DMB prefix contains:

« A two-byte relative offset to the first PSDB

« A two-byte relative offset to the end of the last PSDB+1, which is either the
first secondary list entry (HIDAM) or the first FDB

« A four-byte pointer to DMBDACS if HDAM

The ACB extension contains information about the data set as well as pointers to
the VSAM ACB and RPL for the data set. Each PSDB contains:

e A pointer to the first FDB for the segment

« A pointer to the SDB for the active PCB which is sensitive to this segment
type. If more than one PCB is sensitive to this segment type, the address of
the SDB for the next PCB is contained in the acti<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>